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Preface to the second edition

This book provides a thorough introduction to econophysics and finance

market theory, and leads the reader from the basics to the frontiers of

research. These are good times for econophysics with emphasis on market

instability, and bad times for the standard economic theory that teaches

stable equilibrium of markets. I now explain how the new volume differs in

detail from the first edition.

The first edition of Dynamics of Markets (2004) was based largely on our

discovery of diffusive dynamics of the exponential model, and more generally

on the dynamics of Markovian models with variable diffusion coefficients.

Since that time, the progress by the University of Houston Group (Kevin

Bassler, Gemunu Gunaratne, and me) has produced a far more advanced

market dynamics theory based on our initial discovery. The present book

includes our discoveries since 2004. In particular, we’ve understood the

limitations of scaling and one-point densities: given a scaling process, only

the one-point density can scale, the transition density and all higher-order

densities do not and cannot scale, and a one-point density (as Hänggi and

Thomas pointed out over 30 years ago) cannot be used to identify an

underlying stochastic process. Even pair correlations do not scale. It follows

that scaling cannot be used to determine the dynamics that generated a time

series. In particular, scaling is not an indication of long time correlations, and

we exhibit scaling Markov models to illustrate that point. Our focus in this

edition is therefore on the pair correlations and transition densities for

stochastic processes, representing the minimum level of knowledge required

to identify (or rule out) a class of stochastic processes.

The central advances are our 2007 foreign exchange (FX) data analysis,

and the Martingale diffusion theory that it indicates. We therefore focus from

the start on the pair correlations of stochastic processes needed to understand

and characterize a class of stochastic processes. The form of the pair
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correlations tells us whether we’re dealing with Martingale dynamics, or with

the dynamics of long time pair correlations like fractional Brownian motion.

The stochastic processes with pair correlations agreeing empirically with

detrended finance data are Martingales, and the addition of drift to a

Martingale yields an Ito process. We therefore emphasize Ito processes, which

are diffusive processes with uncorrelated noise increments. Stated otherwise,

the Martingale is the generalization of the Wiener process to processes with

general (x,t)-dependent diffusion coefficients. In physics x denotes position;

in finance and macroeconomics x denotes the logarithm of a price.

A much more complete development of the theory of diffusive stochastic

processes is provided in this text than in the first edition, with simple examples

showing how to apply Ito calculus. We show that stationary markets cannot

be efficient, and vice versa, and show how money could systematically be

made with little or no risk by betting in a stationary market. The Dollar on

the gold standard provides the illuminating example. The efficient market

hypothesis is derived as a Martingale condition from the absence of influence

of the past on the future at the level of pair correlations. Because of non-

stationarity, the analysis of an arbitrary time series is nontrivial. We show

how to construct an approximate ensemble for a single historic time series like

finance data, and then show how a class of dynamical models can be deduced

from the statistical ensemble analysis. Our new FX data analysis is discussed

in detail, showing that the dynamics in log returns is a Martingale after a

time lag of 10 minutes in intraday trading, and we show how spurious stylized

facts are generated by a common but wrong method of data analysis based

on time averages.

Here are some main points from each chapter. In Chapter 1 physics is

contrasted with economics, andWigner’s description of the basis in symmetry

for natural law is surveyed. We point out that some sort of regularity in a time

series is required if a model is to be deduced. Chapter 2 introduces neo-

classical economics and its falsification by Osborne. Increments, pair correl-

ations, and transition densities are developed as the basis for the theory

of stochastic processes in Chapter 3, where enlightening and nonstandard

derivations of Kolmogorov’s two partial differential equations (pdes) are

provided. Chapter 4 provides a solid basis for much in the rest of the text.

Therein, we explain both stationary and efficient markets and show how

one excludes the other, and generalize the neo-classical notion of “value” to

uncertain markets. The efficient market hypothesis is derived from the

assumptions that past returns are uncorrelated with future returns increments,

and an error in Fama’s discussion is corrected. Standard misconceptions

about market equilibrium and stability are exposed and dispelled. Chapter 5
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covers standard topics like the Capital Asset Pricing Model and the original

Black–Scholes model. Chapter 6 covers scaling processes and also fractional

Brownian motion in detail, and shows why transition densities and pair

correlations cannot scale for a “scaling process,” relegating scaling to no

interest when the aim is to identify the dynamics from a time series. Statistical

ensembles and their basis in vanishing correlations of initial data are presented

in fairly complete detail in Chapter 7. An approximate statistical ensemble is

constructed for the analysis of a single, historic time series, where it’s shown

that certain averages can be reliably measured, others not. Regularities in

traders’ daily behavior are reflected in the time variation of the ensemble

average diffusion coefficient of the Martingale describing the finance market.

I also show how and why standard time averages (“sliding windows”) on

nonstationary time series cannot be expected to converge to any limit in

probability. I use our FX analysis to illustrate the basis for pinning down

classes of mathematical models in the social sciences and beyond. I then show

how spurious stylized facts like fat tails and misleading Hurst exponents are

generated when time averages are used on nonstationary time series. Volatility

is introduced and discussed (and is discussed in detail in Chapter 10). In

Chapter 8 I provide a basic introduction to generalized Black–Scholes option

pricing for arbitrary Ito processes, and show that for arbitrary drift and

diffusion coefficients the generalized Black–Scholes pde yields Martingale

option prices. We discuss how invalid liquidity assumptions can lead to

market crashes, and begin to discuss the derivatives-based credit bubble that

burst in September, 2008. Chapter 9 presents the history of the Dollar and FX

since the gold standard as the prime example of the instability generated by

deregulation, and ends with a discussion of the worldwide financial crisis and

the money supply. The main point, illustrated by the Dollar on and off the

gold standard, is that markets without strong regulations can be expected to

show instability. The notion that deregulation and free trade are maximally

beneficial to society is a neo-classical assumption with nations taken as agents.

We discuss the mortgage credit bubble and shadow banking, and why credit

creation has exploded worldwide via derivatives. Chapter 10 presents stand-

ard econometric methods of regression analysis in macroeconomic theory,

based on the untenable assumption of market stability. Cointegration and

integration I(d) are presented, and the inapplicability of those assumptions to

real data are discussed. I show that the Lucas policy critique is based on a

severely restricted and nonempirically based monetary model, and explain via

counterexamples that nonstationarity in empirical data cannot be eliminated

by cointegration in regression analysis. ARCH and GARCH regression

models are shown to violate observed Martingale finance markets. The final
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chapter on complexity is an enlargement of the original one, and includes

the idea of emergence (in biology).

In short, we offer an alternative to the standard macroeconomic theory,

which is based on overly restrictive regression models, and we name this

alternative “The New Financial Economics.” This is one step toward

the goal stated in Nature (Ball, 2006), that econophysics will eventually

replace micro- and macroeconomic theory in both the classrooms and the

boardrooms. This second edition appears at the right time, when ordinary

people (if not academic theorists) are questioning the use of ad hoc models

as the basis for finance trading, and are questioning the assumption that

unregulated markets provide the best of all possible worlds as their jobs

are transferred eastward to cheaper, unorganized labor. The lessons of the

local labor battles in the west from the early part of the twentieth century,

where unions had to be established so that workers could gain a living

wage from the owners of capital, have been lost. With the fall of the Berlin

Wall in 1989, and then the USSR in 1991, it was largely assumed that laissez

faire had triumphed as regulated Europe began to follow Reagan-Thatcher-

Friedman policies and deregulate, but the failed promise of Pareto

optimality of the laissez faire program has now been exposed by the popping

of the worldwide credit bubble. Deregulation has helped the east, and has

hurt the west. The big question is how ordinary workers will make a living

in the future. Such questions are not discussed in financial engineering

classes. The student who wants to learn financial engineering is advised

to put away this book, which focuses on understanding markets rather than

on making ad hoc models to sell to well-heeled buyers, and instead to

consult one of the many fine financial math books available (e.g. Baxter

and Rennie, 1995).

This book can be studied as follows. First, for the mathematically chal-

lenged reader, Chapters 1, 2, 4, and 9 can be read while ignoring the math. In

Chapters 1, 3, 4, 6, 7, and 9 the math and main ideas are fully developed.

Chapter 7 is the high point, but Chapter 9 broadens the perspective from FX

markets to the role of the money supply in international trade and finance.

Chapters 1–5 provide a basic introduction to elementary ideas of finance

combined with the math. The original Black–Scholes model in Chapter 5 can

be understood by restricting the math in Chapter 3 to basic Ito calculus and

the Fokker–Planck equation. Chapter 10 requires Chapters 3 and 7 as back-

ground, and is further illuminated by the analysis of Chapter 9. The one-

semester econophysics course at the University of Houston consists regularly

of Chapters 1 and 2 (lightly covered), Chapters 4–8 (heavily covered).

Chapter 9 (which began as an invited talk for the 2007 Geilo NATO-ASI)
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was included once. Chapter 10 was developed later. Chapter 11 presents my

understanding of complexity in dynamics.

Chapter 3 is quite long because it’s unusually complete; topics are included

there that are either hard or impossible to find in other texts. Through

Chapter 5, the following parts can be ignored: 3.5–3.53, 3.6.8–9, 3.7.4, 3.9.

For Chapter 6 one needs part 3.6.9. For Chapter 7 one needs parts 3.5–3.5.3

and 3.6.8. Chapter 8 is based on Section 3.9.

I’m extremely grateful for key discussions and criticism (mainly via email)

to Harry Thomas, Enrico Scalas, Giulio Bottazzi, S�ren Johansen, Giovanni

Dosi, Duncan Foley, Peter R. Hansen, Steve Keen, Jonathan Batten, and

Barkley Rosser. I’m also grateful to Doyne Farmer, Giulia Rotundo, Emanuel

Derman, Peter Toke Heden Algren, and Bernard Meister for (largely email)

discussions. My friend Vela Velupillai has encouraged and supported my work

strongly, even to the extent of having made me a Fellow in Economics at the

National University of Ireland, Galway, before his health forced him to give

up his position as the John E. Cairnes Professor there. Useful conversations

with Stefano Zambelli, Mauro Gallegatti, Sorin Solomon, David Bree,

Simona Cantono, Filipo Petroni and Roberto Tamborini are also acknow-

ledged. My wife, hiking partner, and local editor, Cornelia Küffner, critically

read the entire manuscript (skipping the math) and made useful suggestions for

a better presentation. Finally, I’m grateful to Simon Capelin for the opportun-

ity to publish this revised second edition at an extremely interesting – because

troublesome – time in international finance, and to Lindsay Barnes for riding

herd on the project once it started.
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1

Econophysics: why and what

1.1 Why econophysics?

This is the era of growing financial instability, a new era of worldwide

privatization and deregulation made possible by a vast credit expansion based

on the Dollar as the worldwide default reserve currency. Derivatives are

unregulated and are used as a form of money creation totally beyond the

control of any central bank. Standard economic theory completely rules out

the possibility of such instability.

Before WWII, the expansion of a currency and consequent inflation was

not possible with the Dollar regulated by gold at $35/oz. The gold standard

was finally and completely abandoned by the USA in 1971 after “Euro-

dollars” became on the order of magnitude of the US gold supply. On the

gold standard, hedging foreign currency bets apparently was not necessary.

We can date our present era of inflation, credit, and high level of consump-

tion with increasing finance market instability from the deregulation of the

Dollar in 1971, and it’s not accidental that both the Black–Scholes derivatives

model and the legalization of large-scale options trading both date from 1973.

We can contrast this reality, described in popular books by Stiglitz (2002),

Morris (2008), and Soros (2008), with the teaching of equilibrium in standard

academic economics texts.

Economists teach market equilibrium as the benchmark in the classroom,

even while the real world of economics outside the classroom experiences

no stability. There is an implicit assumption in those texts that unregulated

markets are stable, as if completely free markets should somehow self-

organize in a stable way.

Standard microeconomic theory is based on a deterministic equilibrium

model, called neo-classical economics (Chapter 2), where perfect knowledge

of the infinite future is assumed on the part of all players. That an equilibrium
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exists mathematically under totally unrealistic conditions has been proven, but

that the hypothetical equilibrium is stable (or computable) or has anything at

all to do with reality was never demonstrated. The generalization of the neo-

classical model to uncertain but still hypothetically stable markets assumes a

stationary stochastic process, and is called “rational expectations”. Standard

macroeconomics is based on the assumption of stationary and therefore

stable economic variables. Rational expectations emerged as the dominant

economic philosophy parallel to deregulation in the 1970s and 1980s, with

regression analysis as the tool of choice for modeling. Regression analysis is

based on the assumption of stationary noise, but there is no solid empirical

evidence for stationarity of any kind in any known market. The only scientific

alternative is to approach markets as a physicist, and ask the market data

what are the underlying unstable dynamics.

Having stated our view of standard economics and our offered alternative,

we now survey the historic viewpoint of physics. In particular, Galileo did

not merely discover a mathematical model of nature, he discovered two

inviolable local laws of nature: the law of inertia and the local law of gravity.

Both of those local laws survived the Einsteinian and quantum revolutions.

Following the lessons of Galileo, Kepler, and Newton, scientists have

amassed indisputable evidence that mindless nature behaves mathematically

lawfully. But “motion” guided by minds is an entirely different notion. Social

behavior is generally complicated, it may be artificially regulated by the

enforcement of human law, or it may be completely lawless. Neo-classical

economists try to model human preferences using a priori models of behavior

(utility maximization) that have been falsified. More recent work in both

econophysics and economics uses agent-based modeling, which is like trying

to replace thinking, hopeful, and fearful agents with fixed rules obeyed by

spins on a lattice. In this text we will instead adopt an inherently macroeco-

nomic, or phenomenological, viewpoint. We will not try to model what agents

prefer or do, but instead will simply ask real markets what the observed

statistics can teach us. In particular, we will try to discover regularities in

the form of equations of motion for log returns of prices. The discovery of a

correct class of dynamic models is far beyond the reach of regression analysis

in econometrics.

The history of physics shows that mathematical law cannot be discovered

from empirical data unless something is repeated systematically. Wigner has

explained the basis for the discovery of mathematical laws of motion in local

invariance principles. But the method of the natural sciences cannot be found

in standard economic theorizing and data analysis. In financial economics,

where no correct dynamical model has been discovered, the term “stylized
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facts” appears. “Stylized facts” are supposed to be certain statistical features

of the data. But even there, certain hidden assumptions in statistical analysis

have implicitly and unquestionably been taken for granted without checking

for their validity. We’ll show (Chapter 7) how a common method of data

analysis leads to spurious stylized facts, to features “deduced statistically”

that are really not present in the empirical data. We avoid generating spurious

statistical results by constructing an approximate statistical ensemble for the

analysis of a single, historic nonstationary time series.

Karl Popper only put into words what physicists since Galileo, Kepler, and

Newton have done. Science consists of falsifiable propositions and theories.

Falsifiable models have no free parameters to tweak that would make a

wrong model fit adequate data (data with enough points for “good statis-

tics”). A falsifiable model is specified completely by empirically measurable

parameters so that, if the model is wrong, then it can be proven wrong via

measurement. Examples of falsifiable models in economics and finance are

neo-classical economics and the original Black–Scholes Gaussian returns

model. Both models have been falsified. In science the skeptics, not the

believers, must be convinced via systematic, repeatable measurements. The

application of the idea of “systematic repeated observations,” the notion of a

statistical ensemble, is applied to the analysis of a single, historic time series in

Chapter 7. The basis for the statistical ensemble is an observed repetitiveness

in traders’ behavior on a daily time scale. We predict a new class of falsifiable

dynamical model.

In Chapter 3 we will emphasize the distinction between local and global

predictions. “Local” means in a small region near a given point (x,t), whereas

“global” means over large displacements x(t,T) ¼ x(t þ T)�x(t) for different

initial times t and large time lags T. The limitations on global predictability in

perfectly well-defined deterministic dynamical systems are well defined, and

inform the way that I understand and present stochastic dynamics and market

models. We will distinguish local from global solutions of stochastic processes.

In particular, we see no good reason to expect universality of market dynamics,

and find no statistical evidence for that notion. Our analysis shows that finance

markets vary in detail from one financial center to another (e.g. New York to

Tokyo), and may not obey exactly the same dynamics.

The reader is encouraged to study Wigner’s (1960) essay on the unreason-

able effectiveness of mathematics in nature and his book Symmetries and

Reflections ( 1967), and Velupillai’s corresponding essay on the unreasonable

ineffectiveness of mathematics in economics (2005). We turn next to Wigner’s

explanation of the basis for discovering laws of motion: local invariance

principles.

1.1 Why econophysics? 3



1.2 Invariance principles and laws of nature

It’s important to have a clear picture of just how and why standard economic

theorizing differs from theoretical physics. To see the difference, the reader

may compare any micro- or macroeconomics text with any elementary phys-

ics or astronomy text. The former describes only mental constructs like

equilibrium of supply and demand that are not observed in real markets;

the latter present the accurate mathematical descriptions of the historic

experiments and observations on which physics and astronomy are based.

In particular, where equilibrium is discussed, real examples are presented

(a flower pot hanging from a ceiling, for example). Physics and astronomy

are about the known mathematical laws of nature. Economics texts are about

stable equilibria that do not exist in any known market. Why, in contrast, has

mathematics worked so precisely in the description of nature?

Eugene Wigner, one of the greatest physicists of the twentieth century and

the acknowledged expert in symmetry principles, wrote most clearly about the

question: why are we able to discover mathematical laws of nature? (Wigner,

1967) An historic example points to the answer. In order to combat the

prevailing Aristotelian ideas, Galileo proposed an experiment to show that

relative motion doesn’t matter. Motivated by the Copernican idea, his aim

was to explain why, if the earth moves, we don’t feel the motion. His

proposed experiment: drop a ball from the mast of a uniformly moving ship

on a smooth sea. It will, he asserted, fall parallel to the mast just as if the

ship were at rest. Galileo’s starting point for discovering physics was therefore

the principle of relativity. Galileo’s famous thought experiment would have

made no sense were the earth not a local inertial frame for times on the order

of seconds or minutes.1 Nor would it have made sense if initial conditions like

absolute position and absolute time mattered.

The known mathematical laws of nature, the laws of physics, do not

change on any observable time scale. Physicists and chemists were able to

discover that nature obeys inviolable mathematical laws only because those

laws are grounded in local invariance principles, local invariance with respect

to frames moving at constant velocity (principle of relativity), local transla-

tional invariance, local rotational invariance and local time-translational

invariance. These local invariances are the same whether we discuss Newton-

ian mechanics, general relativity, or quantummechanics. Were it not for these

underlying invariance principles it would have been impossible to discover

1 There exist in the universe only local inertial frames, those locally in free fall in the net gravitaional field
of other bodies; there are no global inertial frames as Mach and Newton assumed. See Barbour ( 1998)
for a fascinating and detailed account of the history of mechanics.
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mathematical laws of nature in the first place. Why is this? Because the local

invariances form the theoretical basis for repeatable identical experiments/

observations whose results can be reproduced by different observers inde-

pendently of where and at what time the observations are made, and

independently of the state of relative motion of the observational machinery.

This leads us to the idea of a statistical ensemble based on repetition, a main

topic of Chapter 7.

In physics, astronomy, and chemistry, we do not have merely models of the

behavior of matter. Instead, we know mathematical laws of nature that

cannot be violated intentionally. They are beyond the possibility of human

invention, intervention, or convention, as Alan Turing, the father of modern

computability theory, said of arithmetic in his famous paper defining

computability. Our discussion above informs us that somethingmust be syste-

matically repeated if we’re to have any chance to discover equations of

motion. The motion of the ball is trivial periodic; it has a cycle of period

zero. A simple pendulum has a cycle of period one. Finance data don’t

generate deterministic cycles, but instead, as we’ll show, exhibit a certain

statistical periodicity.

Mathematical laws of nature have been established by repeatable identical

(to within some decimal precision) experiments or observations. Our aim is to

try to mimic this so far as is possible in finance. To qualify as science, a model

must be falsifiable. A falsifiable theory or model is one with few enough

parameters and definite enough predictions, preferably of some new phenom-

enon, that it can be tested observationally and, if wrong, can be proven

wrong. A theory is not established because its promoters believe it. To gain

wide acceptance, a theory must convince the skeptics, who should perform

their own experiments or observations. In economics this has not been the

method of choice. As various books and articles have correctly observed,

textbook economic theory is not empirically based but rather is an example of

socially constructed modeling. Rational expectations (Chapter 10) provides

the latest example.

1.3 Humanly invented law can always be violated

Physics and economics are completely different in nature. In economics, in

contrast with physics, there exist no known inviolable mathematical laws of

“motion”/behavior. Instead, economic law is either legislated law, dictatorial

edict, contract, or in tribal societies the rule of tradition. Economic “law,”

like any legislated law or social contract, can always be violated by willful

people and groups. The idea of falsification via observation has not yet taken

1.3 Humanly invented law can always be violated 5



root in adequately thick topsoil. Instead, an internal logic system called neo-

classical economic theory was invented via postulation and still dominates

academic economics, the last contributor being Robert Lucas, who’s given

credit for the “rational expectations revolution” in economic theory. Neo-

classical economics is not derived from empirical data. The good news is that

the general predictions of the theory are specific and have been falsified. The

bad news is that this is still the standard theory taught in economics

textbooks, where there are many “graphs” but few if any that can be obtained

from or justified by unmassaged, real market data.

In his very readable book Intermediate Microeconomics, Hal Varian (1999),

who was a dynamical systems theorist before he was an economist, writes that

much of (neo-classical) economics (theory) is based on two principles:

The optimization principle. People try to choose the best patterns of

consumption they can afford.

The equilibrium principle. Prices adjust until the amount that people

demand of something is equal to the amount that is supplied.

Both of these principles sound like common sense, and we will see that they

turn out to be more akin to common sense than to science. They have

been postulated as describing markets, but lack the required empirical

underpinning.

Because the laws of physics, or better said the known laws of nature, are

based on local invariance principles, they are independent of initial conditions

like absolute time, absolute position in the universe, and absolute orientation.

We cannot say the same about markets: socio-economic behavior is not

necessarily universal but may vary from country to country. Mexico is not

necessarily like China, which is certainly not like the USA or Germany. Many

econophysicists, in agreement with economists, would like to ignore the

details and hope that a single universal “law of motion” governs markets,

but that idea remains only a hope. We will see in Chapter 4 that there is but a

single known law of socio-economic invariance, and that is not enough for

universally valid market dynamics.

The best we can reasonably hope for in economic theory is a model that

captures and reproduces the essentials of historical data for specific markets

during some epoch, like finance markets since c. 1990. We can try to describe

mathematically what has happened in the past, but there is no guarantee that

the future will be the same. Insurance companies provide an example. There,

historic statistics are used with success in making money under normally

expected circumstances, but occasionally there comes a “surprise” whose risk

was not estimated correctly based on past statistics, and the companies

consequently lose a lot of money through paying unexpected claims.
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Some people may fail to see that there is a difference between economics

and the hardest unsolved problems in physics. One might object: we can’t

solve the Navier-Stokes equations for turbulence because of the butterfly

effect or the computational complexity of the solutions of those equations,

so what’s the difference with economics? Economics cannot be fairly com-

pared with turbulence. In fluid mechanics we know the equations of motion

based on Galilean invariance principles. In turbulence theory we cannot

predict the weather. However, we understand the weather physically and

can describe it qualitatively and reliably based on the equations of thermo-

hydrodynamics. We understand very well the physics of formation and

motion of hurricanes and tornadoes, even if we cannot predict when and

where they will hit. No comparable basis for qualitative understanding exists

in economic theory.

1.4 Origins of econophysics

Clearly, econophysics should not try to imitate academic economic theory,

nor should econophysics rely on standard econometric methods. We are not

trying to make incremental improvements in theory, as Yi-Cheng Zhang has

so poetically put it, we’re trying instead to replace the standard models and

methods with entirely new results. Econophysics began in this spirit in 1958

with M.F.M. Osborne’s discovery of Gaussian stock market returns (the

lognormal pricing model), Mandelbrot’s emphasis on Martingales for

describing hard-to-beat markets, and then Osborne’s falsification in 1977 of

the supply–demand curves. From the practical side, a supply–demand mis-

match of physics PhDs to academic jobs, and new research opportunities in

practical finance, drew many physicists to “Wall Street.” Physics funding had

exploded in America after Sputnik was launched by the USSR in October,

1957, but had tapered off by 1971, when academic jobs in physics began to

dry up (see Derman’s informative autobiography (2004), which is a history of

that era). In 1973 the Black–Scholes theory of option pricing was finally

published after a struggle of several years against editors who insisted that

finance wasn’t economics, and large-scale options trading was legalized at the

same time. The advent of deregulation as a dominant government philosophy

in the 1980s (along with the opening of China to investment c. 1980, following

the Nixon-Kissinger visit to Chairman Mao and Chou En-Lai in 1973), the

collapse of the USSR in 1989–1991, and the explosion of computing technol-

ogy in the 1980s all played determining roles in the globalization of capital.

With computerization, finance data became more accurate and more reliable

than fluid turbulence data, inviting physicists to build falsifiable finance
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models. All of these developments opened the door to the globalization of

trade and capital and led to a demand on modeling and data analysis in

finance that many physicists have found to be either interesting or lucrative.

1.5 A new direction in econophysics

One can ask why physicists believe that they’re more qualified than economists

to explain economic phenomena, and if physicists then why not also mathe-

maticians, chemists, and biologists? Mathematicians dominate both theoretical

economics and financial engineering, and by training and culture they are a

strongly postulatory tribe that at worst ignores real market data, and at best

(financial engineering) proves powerful theorems about Gaussian models

while introducing no new empirically based models to solve the fundamental

problem of market dynamics (see for example the closing words in Steele’s

(2000) book!). Chemists and biologists are certainly empirically oriented, but

are trained to focus on details that physicists usually find boring. Physicists are

trained to see the connections between seemingly different phenomena, to try

to get a glimpse of the big picture, and to present the simplest possible

mathematical description of a phenomenon that includes nomore factors than

are necessary to describe the empirical data. Physicists are trained to isolate

cause and effect. A good physicist like Feynman has more in common with a

radio or car repairman thanwith amathematician. A few highlights of a debate

between econophysicists and economists can be found inGallegati et al. (2006),

Ball (2006), and McCauley (2006). An interesting discussion of an entirely

different nature can be found in Solomon and Levy (2003).

Since the word was coined by Gene Stanley in 1995 (Mantegna and

Stanley, 1999), the term econophysics has been characterized largely by three

main directions, not necessarily mutually exclusive. First, there was the

thorough mathematical solution of the Minority Game inspired by the

Fribourg school of econophysics (Challet et al., 2005), and related models

of agent-based trading (Maslov, 2000). That work partly evolved later into

studies of networks (Caldarelli, 2007) and “reputation systems” (Masum and

Zhang, 2004). The foray into finance is illustrated by Dacorogna et al. (2001),

Farmer (1999), and Bouchaud and Potters (2000). Models of market crashes

have been constructed by A. Johansen and Sornette (2000). Most popular,

however, has been the reliance on econophysics as the attempt to explain

economic and finance data by scaling laws (the Hurst exponent) and fat-tailed

probability distributions. The work on fat tails was initiated historically by

Pareto and was revived by Mandelbrot around 1960. Since 1995, fat tails and

scaling studies have been inspired by the Boston School led by Gene Stanley,
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who also opened Physica A to econophysics. Econophysics is still unrecognized

as science by the American Physical Society, but fortunately the European

Physical Society has had a Finance and Physics section since 1999 or earlier.

Without Gene Stanley and Physics A, econophysics would never have gotten

off the ground. Hurst exponent scaling was also emphasized in the earlier era

by Mandelbrot, with his papers on rescaled range (R/S) analysis and frac-

tional Brownian motion. If we would judge what econophysics is by the

number of papers in the field, we would say that the main ideas of econo-

physics are agent-based models, fat tails, and scaling. But this is not enough

to determine the underlying market dynamics.

Blazing a new trail, we offer an alternative approach to econophysics. We

follow Osborne’s lead (and validate Mandelbrot’s Martingale efficient

market hypothesis) and focus on the discovery of falsifiable classes of market

dynamics models deduced directly from empirical data. In particular, we will

present evidence for diffusive models that don’t scale in log returns, nor do we

find evidence for fat tails in log returns. We offer a view of finance market

dynamics that contradicts the standard so-called stylized facts. Our method

of analysis, unlike the other approaches, is based on statistical ensembles. In

particular, we do not use time averages (“sliding windows”) on nonstationary

time series.

Econophysics does not mean lifting tools and models from statistical

physics and then applying them directly to economics. Economics is not like

chemistry, where all results follow at least in principle from physics. Neither is

economics a trivial science that can be formulated and solved by transferring

methods and ideas directly from physics, mathematics, or from any other

field. We use the theory of stochastic processes both in data analysis and

modeling, but we’ve had to invent new classes of stochastic models, and have

found it necessary to clarify some older mathematical ideas, in order to

understand finance markets. As Lars Onsager once asserted, a theoretical

physicist should not start with a mathematical tool and then look around for

data to explain. Instead, a “real theorist” should study the data and invent the

required mathematical tools. That’s what Galileo, Kepler, and Newton did.

That’s also what Lars did when he solved the 2D Ising model, and also earlier

when he produced an exact solution to the pdes describing the dissociation

and recombination of ions of a weak electrolyte in an electric field. Both were

amazing mathematical feats, and the latter was directly applicable to experi-

mental data. Econophysics, simply stated, means following the example of

physics in observing and modeling markets.
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2

Neo-classical economic theory

2.1 Why study “optimizing behavior”?

Globalization via deregulation and privatization is supported by the implicit

and widespread belief in an economic model that teaches the avoidance of

government intervention in socio-economic life. The old laissez faire belief

was revived in the Reagan-Thatcher era, and then gained ground explosively

after the collapse of central planning in communist countries. The old fight

through the 1970s was between the idea of regulated markets in the west and

strong central planning under communism. The question for our era is

whether markets should be regulated for social purposes, as they were in

western Europe prior to the fall of the wall,1 or whether the current laissez

faire binge will continue in spite of its inherent financial instabilities and the

irreversible loss of jobs in previously well-off western nations. In particular,

laissez faire teaches that regulations should have been avoided, and this has

led to the peculiar problem that financial derivatives are a highly leveraged

and unregulated form of credit creation. In contrast, the standard economic

theory to be described in this chapter does not admit “money” in any form,

shape, or fashion.

The “losing side” in the Cold War has adopted capitalism with a vengeance,

and is now beating its former enemies: China and Russia, as of 2007, sit on the

largest Dollar reserves in the world. With imports outrunning exports in the

west, the problems that follow from deregulation and privatization are now felt

in the so-called “First World” countries: degradation of the currency, so far

mainly the Dollar, and unemployment due to the systematic loss of manufac-

turing capacity to cheap labor. The financial pressure to deregulate everything

1 The vast middle ground represented by the regulation of free markets, along with the idea that markets
do not necessarily provide the best solution to all social problems, is not taught by “Pareto efficiency” in
the standard neo-classical model.
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and let the cards fall as they may has reigned effectively unchallenged from

1981 until the effects of the 2007 derivatives-based credit bubble started to

deflate. As Keynes once wrote, “practical men, who believe themselves to be

quite exempt from any intellectual influences, are usually the slaves of some

defunct economist.” What are the defunct ideas that practical men like

bankers, bureaucrats, and politicians operate under today?

The dominant theoretical economic underpinning for the unregulated free

market is provided by neo-classical equilibrium theory, also called optimizing

behavior, and is taught in standard economics texts. As Morris (2008) has

written, the marriage of (neo-classical) economics with high-powered

mathematics has led to the illusion that economics has become a science.

The most recent form of the basic theoretical assumptions has been advanced

in macroeconomics under the heading “rational expectations,” which we will

cover in detail in Chapter 10. The most basic assumptions are the same there

as in neo-classical economics: (i) optimizing behavior and (ii) implicitly stable

market equilibrium. In this chapter we will explain the predictions of those

basic assumptions and compare them with reality, following Osborne (1977).

We will see, among other things, that although the model is used to advise

governments, businesses, and international lending agencies on financial

matters, the deterministic neo-classical model (microeconomics and its

extrapolation to macroeconomics) relies on presumptions of stability and

equilibrium in a way that completely excludes the possibility of discussing

money/capital and financial markets. It is even more strange that the stand-

ard equilibrium model completely excludes the profit motive as well in

describing markets: the accumulation of capital is not allowed within the

confines of that model, and, because of the severe nature of the assumptions

required to guarantee equilibrium, cannot be included perturbatively either.

The contradiction with real markets when the neo-classical assumptions are

relaxed to include stationary stochastic markets (“rational expectations”) is

described in Chapters 4, 9 and 10.

Economists distinguish between classical and neo-classical economic ideas.

Classical theory began with Adam Smith; neo-classical with Walras,

Pareto, I. Fisher, and others. Adam Smith (2000) observed society qualita-

tively and invented the notion of an Invisible Hand that hypothetically should

match supply to demand in free markets. When politicians, businessmen, and

economists assert that “I believe in the law of supply and demand” they

implicitly assume that Smith’s Invisible Hand is in firm control of the market.

Mathematically formulated, the Invisible Hand represents the implicit

assumption that a stable equilibrium point determines market dynamics,

whatever those dynamics may be. This philosophy has led to an elevated
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notion of the role of markets in our society. Exactly how the Invisible Hand

should accomplish the self-regulation of free markets and avoid social chaos

is something that economists have not been able to explain satisfactorily.

Adam Smith was not blindly against the idea of government intervention,

and noted that it is sometimes necessary. He didn’t assert that free markets

are always the best solution to all socio-economic problems. Smith lived in a

Calvinist society and also wrote a book about morals. He assumed that

economic agents (consumers, producers, traders, bankers, CEOs, account-

ants) would exercise self-restraint so that markets would not be dominated by

greed and criminality. He believed that people would regulate themselves,

that self-discipline would prevent foolishness and greed from playing the

dominant role in the market. This is quite different from the prevailing belief

that elevates self-interest and deregulation to the level of guiding principles.

Varian (1992), in his text Intermediate Economics, shows via a rent control

example how to use neo-classical reasoning to “prove” mathematically that

free market solutions are best, that any other solution is less efficient. This is

the theory that students of economics are most often taught. We therefore

present and discuss it critically in the next sections. In the chapter on the

history of foreign exchange, we will provide examples of why unregulated

society is unstable society. Interestingly enough, Adam Smith’s friend David

Hume introduced the equilibrium theory of foreign exchange on the gold

standard in his discussion of how international trade imbalances could be

remedied (Chapter 9).

Supra-governmental organizations like the World Bank and the Inter-

national Monetary Fund (IMF) rely on the neo-classical equilibrium model

in formulating guidelines for extending loans (Stiglitz, 2002). After you

understand this chapter, you should be in a better position to understand

what are the unstated ideas hidden underneath the surface whenever one of

those organizations announces that a country is in violation of its rules.

2.2 Dissecting neo-classical economic theory (microeconomics)

In economic theory we speak of “agents.” In neo-classical theory agents

consist of consumers and producers. Let x ¼ (x1,. . .,xn), where xk denotes

the quantity of asset k held or desired by a consumer. The quantity x1 may

be the number of VW Golfs, x2 the number of Philips TV sets, x3 the number

of ice cream cones, etc. These are demanded by a consumer at prices given by

p ¼ (p1,. . .,pn). Neo-classical theory describes the behavior of a so-called

“rational agent.” By “rational agent” the neo-classicals mean the following:

each consumer is assumed to perform “optimizing behavior.” This means
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that the consumer’s implicit mental calculations are assumed equivalent to

maximizing a utility function U(x) that is supposed to describe his ordering of

preferences for these assets, limited only by his or her budget constraint M,

where

M ¼
Xn
k¼1

pkxk ¼ ~px ð2:1Þ

Here, e.g., M equals five TV sets, each demanded at price 230 Euros, plus

three VW Golfs, each wanted at 17 000 Euros, and other items. In other

words, M is the sum of the number of each item wanted by the consumer

times the price he or she is willing to pay for it.

That is, complex calculations and educated guesses that might require

extensive information gathering, processing and interpretation capability by

an agent are vastly oversimplified in this theory and are replaced instead by

maximizing a simple utility function in the standard theory.

A functional form of the utility U(x) cannot be deduced empirically, but U is

assumed to be a concave function of x in order to model the expectation of

“decreasing returns” (see Arthur (1994) for examples and models of increasing

returns and feedback effects in markets). By decreasing returns, we mean

that we are willing to pay less for n Ford Mondeos than we are for n�1, less

for n�1 than for n�2, and so on. An example of such a utility is U(x) ¼ lnx

(see Figure 2.1) But what about producers?

Optimizing behavior on the part of a producer means that the producer

maximizes profits subject to his or her budget constraint. We intentionally

leave out savings because there is no demand for liquidity (money as cash) in

this theory. The only role played here by money is as a bookkeeping device.

This is explained below.

U (x )

x

Figure 2.1 Utility vs quantity x demanded for decreasing returns.
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Each consumer is supposed to maximize his or her own utility function

while each producer is assumed to maximize his or her profit. As consumers

we therefore maximize utility U(x) subject to the budget constraint (2.1),

dU � ~pdx=l ¼ 0 ð2:2Þ
where 1/l is a Lagrange multiplier. We can just as well take p/l as price p

since l only changes the price scale. This yields the following result for a

consumer’s demand curve, describing algebraically what the consumer is

willing to pay for more and more of the same item,

p ¼ rUðxÞ ¼ f ðxÞ ð2:3Þ
with slope p of the bidder’s price decreasing toward zero as x goes to infinity,

as with U(x) ¼ lnx and p ¼ 1/x, for example (see Figure 2.2). Equation (2.3) is

a key prediction of neo-classical economic theory because it turns out to be

falsifiable.

Some agents buy while others sell, so we must invent a corresponding

supply schedule. Let p ¼ g(x) denote the asking price of assets x supplied.

Common sense suggests that asking price should increase as the quantity x

supplied increases (because increasing price will induce suppliers to increase

production), so that neo-classical supply curves slope upward. The missing

piece, so far, is that market clearing is assumed: everyone who wants to trade

finds someone on the opposite side and matches up with him or her. The

market clearing price is the equilibrium price, the price where total demand

equals total supply. There is no dissatisfaction in such a world, dissatisfaction

being quantified as excess demand, which vanishes.

p = f (x )

x

Figure 2.2 Neo-classical demand curve, downward sloping for case of
decreasing returns.
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But even an idealized market will not start from an equilibrium point,

because arbitrary initial bid and ask prices will not coincide. How, in principle,

can an idealized market of utility maximizers clear itself dynamically? That is,

how can a nonequilibrium market evolve toward equilibrium? To perform

“optimizing behavior” the agents must know each other’s demand and supply

schedules (or else submit them to a central planning authority2) and then agree

to adjust their prices to produce clearing. In this hypothetical picture everyone

who wants to trade does so successfully, and this defines the equilibrium price

(market clearing price), the point where the supply and demand curves p¼ g(x)

and p ¼ f(x) intersect (Figure 2.3).

There are several severe problems with this picture, and here is one:

Kenneth Arrow has pointed out that supply and demand schedules for the

infinite future must be presented and read by every agent (or a central market

maker). Each agent must know at the initial time precisely what he or she

wants for the rest of his or her life, and must allocate his or her budget

accordingly. Otherwise, dissatisfaction leading to new further trades (non-

equilibrium) could occur later. In neo-classical theory, no trades are made at

any nonequilibrium price. Agents must exchange information, adjust their

prices until equilibrium is reached, and then goods are exchanged.

2 Mirowski (2002) points out that socialists were earlier interested in the theory because, if the Invisible
Hand would work purely mechanically then it would mean that the market should be amenable to
central planning. The idea was to simulate the free market via mechanized optimal planning rules that
mimic a perfect market, and thereby beat the performance of real markets.

p

f (x )

x

g (x )

Figure 2.3 Neo-classical predictions for demand and supply curves p ¼ f(x)
and p ¼ g(x) respectively. The intersection determines the idea of neo-
classical equilibrium, but such equilibria are typically ruled out by the
dynamics.
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The vanishing of excess demand, the condition for equilibrium, can be for-

mulated as follows: let xD ¼ D(p) denote the quantity demanded, the demand

function. Formally, this should be the inverse of p ¼ f(x) if the inverse f of D

exists. Also, let xS¼ S(p) (the inverse of p¼ g(x), if this inverse exists) denote the

quantity supplied. In equilibrium we would have vanishing excess demand

xD � xS ¼ DðpÞ � SðpÞ ¼ 0 ð2:4Þ
The equilibrium price, if one or more exists, solves this set of n simultaneous

nonlinear equations. The excess demand is simply

eðpÞ ¼ DðpÞ � SðpÞ ð2:5Þ
and fails to vanish away from equilibrium. Market efficiency e can be defined

as

eðpÞ ¼ min
S

D
;
D

S

� �
ð2:6Þ

so that e¼ 1 in equilibrium. Note that, more generally, efficiency emust depend

on both bid and ask prices if the spread between them is large. Market clearing

is equivalent to assuming 100% efficiency. One may rightly have doubts that

100% efficiency is possible in any process that depends on the gathering,

exchange, and understanding of information, the production and distribution

of goods and services, and other human behavior. This leads to the question

whether market equilibrium can provide a good zeroth-order approximation to

any real market. A good zeroth-order approximation is one where a real market

can then be described accurately perturbatively, by including corrections to

equilibrium as higher-order effects. That is, the equilibriumpointmust be stable.

A quick glance at any standard economics text (see Mankiw (2000) or

Varian (1999), for example) will show that equilibrium is assumed both to

exist and to be stable. The assumption of a stable equilibrium point is

equivalent to assuming the existence of Adam Smith’s Invisible Hand. The

assumption of uniqueness, of a single global equilibrium, is equivalent to

assuming the universality of the action of the Invisible Hand independently of

initial conditions. Here, equilibrium would have to be an attractive fixed

point with infinite basin of attraction in price space.

Arrow (Arrow and Hurwicz, 1958) and other major contributors to neo-

classical economic theory went on to formulate “General Equilibrium Theory”

using

dp

dt
¼ eðpÞ ð2:7Þ

16 Neo-classical economic theory



and discovered the mathematical conditions that guarantee a unique, stable

equilibrium (again, no trades are made in the theory so long as dp/dt 6¼ 0).

The equation simply assumes that prices do not change in equilibrium (where

excess demand vanishes), that they increase if excess demand is positive, and

decrease if excess demand is negative. The conditions discovered by Arrow

and others are that all agents must have perfect foresight for the infinite

future (all orders for the future are placed at the initial time, although delivery

may occur later as scheduled), and every agent conforms to exactly the same

view of the future (the market, which is “complete,” is equivalent to the

perfect cloning of a single agent as a “utility computer” that can receive all

the required economic data, process it, and price all his future demands in a

very short time). Here is an example: at time t ¼ 0 you plan your entire future,

ordering a car on one future date, committing to pay for your kids’ education

on another date, buying your vacation house on another date, placing all

future orders for daily groceries, drugs, long distance charges and gasoline

supplies, and heart treatment as well. All demands for your lifetime are

planned and ordered in preference. In other words, your and your family’s

entire future is decided completely at time zero. These assumptions were seen

as necessary in order to construct a theory where one could prove rigorous

mathematical theorems. Theorem proving about totally unrealistic markets

became more important than the empirics of real markets in this picture.

Savings, cash, and financial markets are irrelevant here because no agent

needs to set aside cash for an uncertain future. How life should work for real

agents with inadequate or uncertain lifelong budget constraints is not and

cannot be discussed within the model. In the neo-classical model it is possible

to adjust demand schedules somewhat, as new information becomes avail-

able, but not to abandon a preplanned schedule entirely.

The predictions of the neo-classical model of an economic agent have proven

very appealing to mathematicians, international bankers, and politicians. For

example, in the ideal neo-classical world, free of government regulations that

hypothetically only promote inefficiency, there is no unemployment. Let L

denote the labor supply. With dL/dt ¼ e(L), in equilibrium e(L) ¼ 0 so that

everyone who wants to work has a job. This illustrates what is meant by

maximum efficiency: no resource goes unused. The introduction of uncertainty

in the stationary models of rational expectations avoids 100% efficiency, but

provides no insight at all into real macroeconomic problems like inflation and

unemployment.

Whether every possible resource (land as community meadow, or public

walking path, for example) ought to be monetized and used economically is

taken for granted, is not questioned in the model, leading to the belief that

2.2 Dissecting neo-classical economic theory 17



everything should be priced and traded (see elsewhere the formal idea of

Arrow-Debreu prices, a neo-classical notion that foreshadowed in spirit the

idea of derivatives). Again, this is a purely postulated abstract theory with no

empirical basis, in contrast with real markets made up of qualitatively differ-

ent kinds of agents with real desires and severe limitations on the availability

of information and the ability to sort and correctly interpret information.

In the remainder of this chapter we discuss scientific criticism of the neo-

classical program from both theoretical and empirical viewpoints, starting

with theoretical limitations on optimizing behavior discovered by three

outstanding neo-classical theorists.

2.3 The myth of equilibrium via perfect information

In real markets, supply and demand determine nonequilibrium prices. There

are bid prices by prospective buyers and ask prices by prospective sellers, so

by “price” we mean here the price at which the last trade occurred. This is not

a clear definition for a slow-moving, illiquid market like housing, but is well-

enough defined for trades of Intel, Dell, or a currency like the Euro, for

example. The simplest case for continuous time trading, an idealization of

limited validity, would be an equation of the form

dp

dt
¼ Dðp; tÞ � Sðp; tÞ ¼ eðp; tÞ ð2:8Þ

where pk is the price of an item like a computer or a cup of coffee, D is the

demand at price p, S is the corresponding supply, and the vector field e is the
excess demand. Phase space is just the n-dimensional p-space, and is flat with

no metric (the ps in (2.8) are always Cartesian (McCauley, 1997a)). More

generally, we could assume that dp/dt ¼ f(e(p,t)) where f is any vector field

with the same qualitative properties as the excess demand. Whatever the

choice, we must be satisfied with studying topological classes of excess

demand functions, because the excess demand function cannot be uniquely

specified by the theory. Given a model, equilibrium is determined by vanish-

ing excess demand, by e ¼ 0. Stability of equilibrium, when equilibria exist at

all, is determined by the behavior of solutions displaced slightly from an

equilibrium point. Note that dynamics requires only that we specify x ¼ D(p),

not p ¼ f(x), and likewise for the supply schedule. The empirical and theoretical

importance of this fact will become apparent below.

We must also specify a supply function x ¼ S(p). If we assume that

the production time is long on the time scale for trading then we can take the

production function to be constant, the “initial endowment,” S(p)� x0, which is
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just the total supply at the initial time t0. This is normally assumed in papers on

neo-classical equilibrium theory. In this picture agents simply trade what is

available at time t ¼ 0, there is no new production (pure barter economy).

With demand assumed slaved to price in the form x¼ D(p), the phase space

is the n-dimensional space of the prices p. That phase space is flat means

that global parallelization of flows is possible for integrable systems. The n-

component ordinary differential equation (2.8) is then analyzed qualitatively

in phase space by standard methods. In general there are n�1 time-independent

locally conserved quantities, but we can use the budget constraint to show

that one of these conservation laws is global: if we form the scalar product of

p with excess demand e then applying the budget constraint to both D and S

yields

~peðpÞ ¼ 0 ð2:9Þ
The underlying reason for this constraint, called Walras’s Law, is that capital

and capital accumulation are not allowed in neo-classical theory: neo-

classical models assume a pure barter economy, so that the cost of the goods

demanded can only equal the cost of the goods offered for sale. This condi-

tion means simply that the motion in the n-dimensional price space is con-

fined to the surface of an n�1-dimensional sphere. Therefore, the motion is at

most n�1-dimensional. What the motion looks like on this hypersphere for n

> 3 is a question that cannot be answered a priori without specifying a

definite class of models. Hyperspheres in dimensions n ¼ 3 and 7 are flat

with torsion, which is nonintuitive (Nakahara, 1990). Given a model of excess

demand we can start by analyzing the number and character of equilibria and

their stability. Beyond that, one can ask whether the motion is integrable.

Typically, the motion for n > 3 is nonintegrable and may be chaotic or even

complex, depending upon the topological class of model considered.

As an example of how easy it is to violate the expectation of stable

equilibrium within the confines of optimizing behavior, we present next the

details of H. Scarf’s model (Scarf, 1960). In that model consider three agents

with three assets. The model is defined by assuming individual utilities of the

form

UiðxÞ ¼ minðx1; x2Þ ð2:10Þ
and an initial endowment for agent number 1

x0 ¼ ð1; 0; 0Þ ð2:11Þ
The utilities and endowments of the other two agents are cyclic permutations

on the above. Agent k has one item of asset k to sell and none of the other two

2.3 The myth of equilibrium via perfect information 19



assets. Recall that in neo-classical theory the excess demand equation (2.8) is

interpreted only as a price-adjustment process, with no trades taking place

away from equilibrium. If equilibrium is reached then the trading can only be

cyclic with each agent selling his asset and buying one asset from one of the

other two agents: either agent 1 sells to agent 2 who sells to agent 3 who sells

to agent 1, or else agent 1 sells to agent 3 who sells to agent 2 who sells to

agent 1. Nothing else is possible at equilibrium. Remember that if equilibrium

is not reached then, in this picture, no trades occur. Also, the budget con-

straint, which is agent k’s income from selling his or her single unit of asset k if

the market clears (he or she has no other source of income other than from

what he or she sells), is

M ¼ ~px0 ¼ pk ð2:12Þ
Because cyclic trading of a single asset is required, one can anticipate that

equilibrium can only be possible if p1 ¼ p2 ¼ p3. In order to prove this, we

need the idea of “indifference curves.”

The idea of indifference curves in utility theory, discussed by I. Fisher

(Mirowski, 1989), may have arisen in analogy with either thermodynamics or

potential theory. Indifference surfaces are defined in the following way. Let

U(x1,. . .xn) ¼ C ¼ constant. If the implicit function theorem is satisfied then

we can solve to find one of the xs, say xi, as a function of the other n�1 xs and

C. If we hold all xs in the argument of f constant but one, say xj, then we get an

“indifference curve”

xi ¼ f ðxj;CÞ ð2:13Þ
We can move along this curve without changing the utility U for our “rational

preferences.” This idea will be applied in an example below.

The indifference curves for agent 1 are as follows. Note first that if x2 > x1
then x1 ¼ C whereas if x2 < x1 then x2 ¼ C. Graphing these results yields as

indifference curves x2 ¼ f(x1) ¼ x1. Note also that p3 is constant. Substituting

the indifference curves into the budget constraint yields the demand vector

components for agent 1 as

x1 ¼ M

p1 þ p2
¼ D1ðpÞ

x2 ¼ M

p1 þ p2
¼ D2ðpÞ

x3 ¼ 0

ð2:14Þ
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The excess demand for agent 1 is therefore given by

e11 ¼ p1
p1 þ p2

� 1 ¼ � p2
p1 þ p2

e12 ¼ p1
p1 þ p2

e13 ¼ 0

ð2:15Þ

where eij is the jth component of agent i’s excess demand vector. We obtain

the excess demands for agents 2 and 3 by cyclic permutation of indices. The

kth component of total excess demand for asset k is given by summing over

agents

ek ¼ e1k þ e2k þ e3k ð2:16Þ
so that

e1 ¼ �p2
p1 þ p2

þ p3
p1 þ p3

e2 ¼ �p3
p2 þ p3

þ p1
p1 þ p2

e3 ¼ �p1
p3 þ p1

þ p2
p2 þ p3

ð2:17Þ

The excess demand has a symmetry that reminds us of rotations on the

sphere. In equilibrium e ¼ 0 so that

p1 ¼ p2 ¼ p3 ð2:18Þ
is the only equilibrium point. It’s easy to see that there is a second global

conservation law

p1p2p3 ¼ C2 ð2:19Þ
following from

e1p2p3 þ e2p1p3 þ e3p1p2 ¼ 0 ð2:20Þ
With two global conservation laws the motion on the 3-sphere is globally

integrable, i.e. chaotic motion is impossible (McCauley, 1997a).

It’s now easy to see that there are initial data on the 3-sphere from which

equilibrium cannot be reached. For example, let

ðp10 ; p20 ; p30Þ ¼ ð1; 1; 1Þ ð2:21Þ
so that

p21 þ p22 þ p231 ¼ 3 ð2:22Þ
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Then with p10p20p30 ¼ 1 equilibrium occurs but for other initial data the plane

is not tangent to the sphere at equilibrium and equilibrium cannot be reached.

The equilibrium point is an unstable focus enclosed by a stable limit cycle. In

general, the market oscillates and cannot reach equilibrium. For four or more

assets it is easy to write down models of excess demand for which the motion

is chaotic (Saari, 1995).

Suppose that agents have slightly different information initially. Then

equilibrium is not computable. That is, the information demands made on

agents are so great that they cannot locate equilibrium. In other words,

maximum computational complexity enters when we deviate even slightly

from the idealized case. It is significant that if agents cannot find an equilib-

rium point, then they cannot agree on a price that will clear the market. This

is one step closer to the truth: real markets are not approximated by the neo-

classical equilibrium model. The neo-classical theorist Roy Radner (1968)

suggested that liquidity demand, the demand for cash as savings, for example,

arises from two basic sources. First, in a certain but still neo-classical world

liquidity demand would arise because agents cannot compute equilibrium

(although Radner had no idea of a Turing machine, nor did he have a clear

idea what he meant by “computational limitations”). Therefore, the agents

cannot locate equilibrium. Second, the demand for liquidity should also arise

from uncertainty about the future. The notion that liquidity reflects uncer-

tainty appears naturally when we study the dynamics of financial markets; in

that case the money bath is the noise created by the traders.

The paper by Bak et al. (1999) attempts to define the absolute value of

money and is motivated by the fact that a standard neo-classical economy is a

pure barter economy, where price p is merely a label3 as we have described

above.

Neo-classical economic theory assumes 100% efficiency (perfect matching

a buyer to every seller, and vice-versa), but typical markets outside the

financial ones4 are highly illiquid and inefficient (housing, automobiles, floor-

lamps, carpets, etc.) where it is typically relatively hard to match buyers to

sellers. Were it easy to match buyers to sellers, then advertising and inventory

would be largely superfluous. Seen from this standpoint, one might conclude

that advertising may distort markets instead of making them more efficient.

Again, it would be important to distinguish advertising as formal “infor-

mation” from knowledge of empirical facts. In financial markets, which are

3 In a standard neo-classical economy there is no capital accumulation, no financial market, and no
production of goods either. There is merely exchange of pre-existing goods.

4 Financial markets are far from 100% efficient; excess demand does not vanish due to outstanding limit
orders.
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usually very liquid (with a large volume of buy and sell executions per

second), the neo-classical economic assumptions of equilibrium and stability

fail even as a zeroth-order approximation.

The absence of entropy representing disorder in neo-classical equilibrium

theory can be contrasted with thermodynamics in the following way: for

assets in a market let us define economic efficiency as

e ¼ min
D

S
;
S

D

� �
ð2:23Þ

where S and D are net supply and net demand for some asset in that market.

In neo-classical equilibrium the efficiency is 100%, e ¼ 1, whereas the second

law of thermodynamics via the heat bath prevents 100% efficiency in any

thermodynamic machine. That is, the neo-classical market equilibrium

condition e ¼ 1 is not a thermodynamic efficiency, unless we would be able

to interpret it as the zero (Kelvin) temperature result of an unknown thermo-

dynamic theory (100% efficiency of a machine is thermodynamically possible

only at zero absolute temperature). In nature or in the laboratory, superfluids

flow with negligible friction below the lambda temperature, and with zero

friction at zero degrees Kelvin, at speeds below the critical velocity for

creating a vortex ring or vortex pair. In stark contrast, neo-classical econo-

mists assume the unphysical equivalent of a hypothetical economy made up

of Maxwellian demonish-like agents who can systematically cheat the second

law perfectly. We should add that the attempts at thermodynamic descrip-

tions of economics are many, and all are wrong. There is no entropy/disorder

in neo-classical economics.

In neo-classical equilibrium theory perfect information about the infinite

future is required and assumed. In reality, information acquired at one time is

incomplete and tends to become degraded as time goes on. Entropy change

plays no role in neo-classical economic theory in spite of the fact that, given a

probability distribution reflecting the uncertainty of events in a system (the

market), the Gibbs entropy describes both the accumulation and degradation

of information. Neo-classical theory makes extreme demands on the ability of

agents to gather and process information, but as Fischer Black wrote, it is

extremely difficult in practice to know what is noise and what is information

(we will discuss Black’s 1986 paper “Noise” in Chapter 4). For example, when

one reads the financial news one usually only reads someone else’s opinion, or

assertions based on assumptions that the future will be more or less like the

past. Most of the time, what we think is information is probably more like

noise or misinformation. This point of view is closer to finance theory, which

does not use neo-classical economics as a starting point.
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Another important point is that information should not be confused

with knowledge (Dosi, 2001). The symbol string “saht” (based on at least a

26-letter alphabet a–z) has four digits of information, but without a rule to

interpret it the string has no meaning, no knowledge content. In English we can

givemeaning to the combinations “hast,” “hats,” and “shat.” Information theory

is based on the entropy of all possible strings that one can make from a given

number of symbols, that number being 4! ¼ 24 in this example, but “infor-

mation” in standard economics and finance theory does notmake use of entropy.

Why would neo-classical thinking be useful were it correct? Because the

equilibrium label p* (a star denotes equilibrium) could be identified as

“value.” Undervalued and overvalued would then be well-defined, measur-

able ideas. Unfortunately, p* could not be identified as an equilibrium price

because money does not enter the theory. We’ll see in Chapter 4 that a more

useful definition of value can be identified in uncertain markets.

2.4 How many green jackets does a consumer want?

An empirically based criticism of neo-classical theory was provided by

M. F. M. Osborne (1997), whom we can regard as the first econophysicist.

According to the standard textbook argument, utility maximization for the

case of diminishing returns predicts price as a function of demand, p¼ f(x), as

a downward-sloping curve (Figure 2.2). Is there empirical evidence for this

prediction? Osborne tried without success to find empirical evidence for the

textbook supply and demand curves (Figure 2.3), whose intersection would

determine equilibrium. This was an implicit challenge to the notion that

markets are in or near equilibrium. In the spirit of Osborne’s toy model of

a market for red dresses, we now provide a Gedanken experiment to illustrate

how the neo-classical prediction fails for individual agents. Suppose that I’m

in the market for a green jacket. My neo-classical demand curve would then

predict that I, as consumer, would have the following qualitative behavior,

for example: I would want/bid to buy one green jacket for $50, two for $42.50

each, three for $31.99 each, and so on (and this hypothetical demand curve

would be continuous!). Clearly, no consumer thinks this way. This is a way of

illustrating Osborne’s point, that the curve p ¼ f(x) does not exist empirically

for individual agents.

What exist instead, Osborne argues, are the functions x ¼ D(p) and x ¼ S(p),

which are exactly the functions required for excess demand dynamics (2.8).

Osborne notes that these functions are not invertible, implying that utility

cannot explain real markets. One can understand the lack of invertibility by

modeling my demand for a green jacket correctly. Suppose that I want one

24 Neo-classical economic theory



jacket and am willing to pay a maximum of $50. In that case I will take any

(suitable) green jacket for $50 or less, so that my demand function is a step

function x ¼ y ($50 – p), as shown in Figure 2.4. The step function y is zero if p

> $50, unity if p � $50. Rarely, if ever, is a consumer in the market for two

green jackets, and one is almost never interested in buying three or more at one

time. Nevertheless, the step function can be used to include these rare cases.

This argument is quite general: Osborne points out that limit bid/ask orders in

the stock market are also step functions (one can see this graphically in delayed

time on the web site 3DStockCharts.com). Limit orders and the step demand

function for green jackets provide examples of the falsification of the neo-

classical prediction that individual agents have downward-sloping demand

curves p ¼ f(x). With or without equilibrium, the utility-based prediction is

wrong. Optimizing behavior does not describe even to zeroth order how

individual agents order their preferences. Alternatives like wanting one or

two of several qualitatively different jackets can also be described by step

functions just as limit orders for different stocks are described by different step

functions. The limit order that is executed first wins, and the other orders are

then cancelled unless there is enough cash for more than one order.

2.5 Macroeconomics

One might raise the following question: suppose that we take many step

functions x ¼ D(p) for many agents and combine them. Do we get approxi-

mately a smooth curve that we can invert to find a relation p ¼ f(x) that

agrees qualitatively with the downward-sloping neo-classical prediction? In

x = D (p)

2

1

0
$ 50 p

Figure 2.4 Empirical demand functions are step functions.
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agreement with Osborne’s attempts, apparently not empirically, the econo-

mist Paul Ormerod has pointed out that the only known downward-sloping

macroscopic demand curve is provided by the example of cornflakes sales in

British supermarkets.

What about theory? If we assume neo-classical individual demand functions

and then aggregate them, do we arrive at a downward-sloping macro-demand

curve? According to H. Sonnenschein (1973) the answer is no, that no definite

demand curve is predicted by aggregation; the resulting curve can be anything,

including no curve at all. In other words, nothing definite is predicted. This

means that there exists no macroeconomic theory that is grounded in

microeconomic theory. What is worse, there is no empirical evidence for the

downward-sloping demand curves presented in typical neo-classical texts on

macroeconomics, like the relatively readable one by N. G.Mankiw (2000). This

means that there is no microeconomic basis for either Keynesian economics or

monetarism, both of which make empirically illegitimate assumptions about

equilibrium.

For example, in Keynesian theory (Modigliani, 2001) it is taught that there

is an aggregate output equilibrium where the labor market is “stuck” at less

than full employment but prices do not drop as a consequence. Keynes tried

to explain this via an equilibrium model that went beyond the bounds of

neo-classical reasoning. The neo-classicals led by J. R. Hicks later revised

theoretical thinking to try to include neo-Keynesianism in the assumption of

vanishing total excess demand for all goods and money, but Radner has

explained why money cannot be included meaningfully in the neo-classical

model. A better way to understand Keynes’s original idea is to assume that

the market is not in equilibrium,

dp

dt
¼ e1ðp;LÞ 6¼ 0 ð2:22bÞ

with

dL

dt
¼ e2ðp;LÞ 6¼ 0 ð2:22cÞ

where p is the price vector of commodities and financial markets. But a

deterministic model will not work: financial markets (which are typically

highly liquid) are described by stochastic dynamics. Of interest would be to

model the Keynesian liquidity trap (see Ackerlof, 1984; Krugman, 2000)

without assuming expected utility maximization. There, one models markets

where liquidity dries up. If one wants to model nonequilibrium states that
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persist for long times, then maybe spin glass/neural network models would be

interesting.

John Maynard Keynes advanced a far more realistic picture of markets

than do monetarists by arguing that capitalism is not a stable, self-regulating

system capable of perpetual prosperity. Instead, he saw markets as inherently

unstable, occasionally in need of a fix by the government. We emphasize that

by neglecting uncertainty the neo-classical equilibrium model ignores the

second law prohibition against the construction of an economic perpetuum

mobile. The idea of a market as frictionless, 100% efficient machine (utility

computer) that runs perpetually is a wrong idea from the standpoint of

statistical physics. Markets require mechanical acts like production, con-

sumption, and information gathering and processing, and certainly cannot

evade or supplant the second law of thermodynamics simply by postulating

utility maximization. Keynes’s difficulty in explaining his new and important

idea was that while he recognized the need for the idea of nonequilibrium

markets in reality, his neo-classical education mired him in the sticky mud of

equilibrium ideas. Also, his neo-classical contemporaries seemed unable to

understand any economic explanation that could not be cast into the strait-

jacket of an equilibrium description.

Monetarism (including supply-side economics) and Keynesian theory are

examples of ideas that have become ideologies, because they both represent

attempts to use equilibrium arguments to describe the behavior and regula-

tion of a complex system by controlling the parameters of inapplicable

models. The advice provided by both approximations was found to be useful

by governments during certain specific eras (otherwise they would not have

become widely believed), but all of that advice has failed in our present era of

high inflation and loss of manufacturing capacity due to globalization via

deregulation. In monetarism one controls the money supply, in Keynesianism

the level of government spending, while in the supply-side belief tax reduc-

tions dominate the thinking. We will consider Keynesian and monetarist

notions further in Chapter 10.

Marxism and other earlier competing economic theories of the nineteenth

and early twentieth centuries also assumed stable equilibria of various kinds.

In Marxism, for example, evolution toward a certain future is historically

guaranteed. This assumption is equivalent mathematically to assuming a

stable fixed point, a simple attractor for some undetermined mapping of

society. Society was supposed somehow to iterate itself toward this inevitable

state of equilibrium with no possible choice of any other behavior, a silly

assumption based on wishful thinking. But one of Karl Marx’s positive

contributions was to remind us that the neo-classical model ignores the profit
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motive completely: in a pure barter economy the accumulation of capital is

impossible, but capitalists are driven to some extent by the desire to accumu-

late capital. Marx reconnected economic theory to Adam Smith’s original

idea of the profit motive.

Evidence for stability and equilibrium in unregulated markets is largely if

not entirely anecdotal, more akin to excessively weak circumstantial evidence

in legal circles than to scientific evidence. Convincing, reproducible empirical

evidence for the Invisible Hand has never been presented by economists.

Markets whose statistics are well-enough defined to admit description by

falsifiable stochastic models (financial markets) are unstable (see Chapter 7).

It would be an interesting challenge to find at least one example of a real,

economically significant market where excess demand actually vanishes and

remains zero or close to zero to within observational error, where only small

fluctuations occur about a definite state of equilibrium. A flea market is an

example where equilibrium is never reached. Some trades are executed but at

the end of the day most of the items put up for sale are carried home again

because most ask prices were not met, or there was inadequate demand for

most items. Selling a few watches from a table covered with watches is not an

example of equilibrium or near-equilibrium. The same goes for filling a

fraction of the outstanding limit orders in the stock market.

We now summarize the evidence from the above sections against the

notion that equilibrium exists, as is assumed explicitly by the intersecting

neo-classical supply–demand curves shown in Figure 2.3. Scarf’s model

shows how easy it is to violate stability of equilibrium with a simple model.

Sonnenschein explained that neo-classical supply–demand curves cannot be

expected macroeconomically, even if they would exist microeconomically.

Osborne explained very clearly why neo-classical supply–demand curves do

not exist microeconomically in real markets. Radner showed that with even

slight uncertainty, hypothetical optimizing agents cannot locate the equilib-

rium point assumed in Figure 2.3, even in a nearly ideal, toy neo-classical

economy. And yet, intersecting neo-classical supply–demand curves remain

the foundation of nearly every standard economics textbook. See also Keen

(2001) and Ormerod (1994) for discussions of the neo-classical model.

Finally, the notion that free trade among nations is self-stabilizing is a neo-

classical idea, taking nations as agents. We will return to this theme in

Chapters 9 and 10, where the more modern notion of rational expectations

generalizes the neo-classical model to include noise.
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3

Probability and stochastic processes

3.1 Elementary rules of probability theory

The aim of this chapter is to prepare the reader to understand the stochastic

analysis used to model finance and other macroeconomic data, and to

prepare the reader for the analysis of nonstationary time series via statistical

ensemble analysis in Chapter 7. This chapter provides the mathematics

needed to follow the rest of the text.

In the absence of the laws of physics, which were themselves extracted from

nature, the extraction from empirical data is the only scientific basis for a

model. We therefore adopt from the start the frequency definition of prob-

ability based upon the law of large numbers, Tschebychev’s Theorem, which

is presented below. The frequency definition of probability is also called the

empirical definition, or the statistical definition. Given an event with possible

outcomes A1, A2, . . ., AN, the probability for Ak is pk� nk/N where N is

the number of repeated identical experiments or observations and nk is the

number of times that the event Ak is observed to occur. The statistical

definition of probability agrees with the formal measure theoretic definition.

For equally probable events p ¼ 1/N.

For mutually exclusive events (Gnedenko and Khinchin, 1962; Gnedenko,

1967) A and B, probabilities add, P(A or B) ¼ P(A) þ P(B). For example, the

probability that a coin lands heads plus the probability that it does not land

heads add to unity (total probability is normalized to unity in this text). For a

complete (i.e. exhaustive) set of mutually exclusive alternatives {Ak}, we have

SP(Ak)¼ 1. For example, in die tossing, if pk is the probability for the number

k to show, where 1� k� 6, then p1 þ p2 þ p3 þ p4 þ p5 þ p6 ¼ 1. For a fair die

tossed fairly, pk ¼ 1/6.

For statistically independent events A and B, the probabilities multiply,

P(A and B) ¼ P(A)P(B), and this is true for all combinations of multiple events
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as well. For example, for n successive fair tosses of a fair coin (p ¼ 1/2) the

probability to get n heads is pn ¼ (1/2)n. Statistical independence is often

mislabeled as “randomness,” but statistical independence occurs in determin-

istic chaos where there is no randomness at all; there is in that case only the

pseudorandom generation of numbers deterministically via an algorithm.

We can use what we have developed so far to calculate a simple formula for

the occurrence of at least one desired outcome in many events. For this, we

need the probability that the event does not occur. Suppose that p is the

probability that event A occurs. Then the probability that the event A does

not occur is q ¼ 1 – p. The probability to get at least one occurrence of A in n

repeated identical trials is 1 – qn. As an example, the probability to get at least

one “six” in n tosses of a fair (where p ¼ 1/6) die is 1 – (5/6)n. The break-even

point is given by 1/2 ¼ (5/6)n, or n � 4 is required to break even. One can

make money by getting many people to bet that a 6 won’t occur in 4 (or more)

tosses of a die so long as one does not suffer the Gambler’s Ruin (so long as

an unlikely run against the odds doesn’t break your gambling budget). That

is, we should not only consider the expected outcome of an event or process,

we must also look at the fluctuations.

What are the odds that at least two people in one room have the same

birthday? We leave it to the reader to show that the break-even point (even

odds) for the birthday game requires n¼ 22 people (Weaver, 1982). The

method of calculation is the same as in the paragraph above.

Stock market betting is not as simple as standard examples with probabil-

ities known a priori. As Keynes stated, finance market success is more like

a beauty contest where in order to win one must anticipate which candidate

the other players will find most beautiful before the voting takes place. The

popularity contest over a short time interval can determine the financing

that affects the chance whether a company fails or succeeds in the long term

as well.

3.2 Ensemble averages formed empirically

Consider any collection of n points arranged on the x-axis, x1, x2, . . ., xn.

The “points” are known empirically to within some definite decimal preci-

sion, and that decimal precision determines the coarsegraining of the x-axis

into cells (also called boxes, or bins). For example, if the observational

precision is known to within .01, then there are a hundred boxes in [0,1],

each of size .01, and the normalized data would fall into one or another of

those boxes. Naturally, some boxes may be multiply occupied. We can define

a distribution for the point set. Let P(x) denote the probability that a point
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lies to the left of x on the x-axis. The empirical (one-point) probability

distribution is then

PðxÞ ¼
Xk
i¼1

yðx� xiÞ=n ð3:1Þ

where xk is the nearest point to the left of x, xk� x and y(x) ¼ 1 if x� 0, 0

otherwise. Note that P(–1) ¼ 0 and P(1) ¼ 1. The function P(x) is nonde-

creasing, defines a staircase of a finite number of steps, is constant between any

two data points and is discontinuous at each data point. P(x) satisfies all of the

formal conditions required to define a probability measure mathematically.

Theoretical measures like the Cantor function define a probability distribution

on a staircase of infinitely many steps, a so-called devil’s staircase.

There is no variation with time here (no dynamics), such a point set arises

empirically by defining an ensemble of data points at one fixed time t. The

ensemble represents many identical repetitions of the same experiment under

the same conditions. That is, for a given time t if we would only consider one

run of the experiment then we would only have one point in (3.1). That is, one

run of an experiment produces one point in the time series x1(t) at time t.

n reruns, under identical experimental conditions, produce n different time

series xk(t), k ¼ 1,. . .,n at the same time t (we assume, for example, the use of a

24-hour clock with each experiment repeated at the same time each day). The

averages that we discuss represent an ensemble average over n points taken at

the same time t. The histograms so derived represent the probability distribu-

tion at a single time t. To discover the time variation of averages and the

distribution, the procedure must be repeated for every time t.

In the first few sections to follow, where the time dependence is not made

explicit, averages and distributions are assumed to reflect ensemble averages

computed at one time t. We will not assume time averages of any kind in

this text, especially as we’re concerned with nonstationary processes where

ergodic and recurrence theorems fail to apply.

We can also construct the probability density f(x) where dP(x) ¼ f(x)dx

f ðxÞ ¼
Xn
i¼1

dðx� xiÞ=n ð3:2Þ

We can then compute averages using the empirical distribution. For example,

xh i ¼
ð1

�1
xdPðxÞ ¼ 1

n

Xn
1

xi ð3:3Þ
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and

x2
� � ¼ ð1

�1
x2dPðxÞ ¼ 1

n

Xn
1

x2i ð3:4Þ

The variance is defined by

s2 ¼ �x2
� � ¼ ðx� xh iÞ2

D E
¼ x2

� �� xh i2 ð3:5Þ

The standard deviation s is taken as an indication of the usefulness of the

average (3.3) for characterizing the data. The data are accurately character-

ized by the mean if and only if

s= xh ij j � 1 ð3:6Þ
and even then only for a sequence of many identical repeated experiments or

approximately identical repeated observations.

Statistics generally have no useful predictive power for a single experiment

or observation, and can at best be relied on for accuracy in predictive power

for an accurate description of the average of many repeated trials. In social

applications where nothing can be repeated at will, like the observed price of a

stock, we have but a single historic time series. The problem addressed in

Chapter 7 is the question of whether and how an approximate statistical

ensemble can be constructed from a single time series.

3.3 The characteristic function

An idea that’s sometimes useful in probability theory is that of the character-

istic function of a distribution, defined by the Fourier transform

eikx
� � ¼ ð

dPðxÞeikx ð3:7Þ

Expanding the exponential in power series we obtain the expansion in terms

of the moments of the distribution

eikx
� � ¼ X1

m¼0

ðikÞm
m!

xmh i ð3:8Þ

showing that the distribution is characterized by all of its moments (with

some exceptions), and not just by the average and variance. For an empirical

distribution the characteristic function has the form
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eikx
� � ¼ Xn

j¼1

eijkxj=n ð3:9Þ

Clearly, if all moments beyond a certain order m diverge (as with Levy

distributions, for example) then the expansion (3.9) of the characteristic

function does not exist.

Empirically, smooth distributions do not exist. Only histograms can be

constructed from data, but we will still consider model distributions P(x) that

are smooth with continuous derivatives of many orders, dP(x) ¼ f(x)dx, so

that the density f(x) is at least once differentiable. Smooth distributions are

useful if they can be used to approximate observed histograms accurately.

3.4 Transformations of random variables

In order to perform simple coordinate transformations, one must first know

how probabilities and probability densities transform. Here, we use standard

ideas from tensor analysis or group theory.

In the smooth case, transformations of the variable x are important.

Consider a transformation of a variable y ¼ h(x) with inverse x ¼ q(y). The

new distribution of y has density

~f ðyÞ ¼ f ðxÞ dy
dx

ð3:10Þ

For example, if

f ðxÞ ¼ e�x2=2s2 ð3:11Þ
where x ¼ ln(p/p0) and y ¼ (p – p0)/p0 then y ¼ h(x) ¼ ex – 1 so that

~f ðyÞ ¼ 1

1þ y
e�ðlnð1þyÞÞ2=2s2 ð3:12Þ

The probability density transforms f(x) like a scalar density, and the probability

distribution P(x) transforms like a scalar (i.e. like an ordinary function),

~PðyÞ ¼ PðxÞ ð3:13Þ
Whenever a distribution is invariant under the transformation y ¼ h(x) then

PðyÞ ¼ PðxÞ ð3:14Þ
That is, the functional form of the distribution doesn’t change under the

transformation. As an example, if we replace p and p0 by lp and lp0, a scale

transformation, then neither an arbitrary density f(x) nor its corresponding
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distribution P(x) is invariant. In general, even if f(x) is invariant then P(x) is

not, unless both dx and the limits of integration in

PðxÞ ¼
ðx

�1
f ðxÞdx ð3:15Þ

are invariant. The distinction between scalars, scalar densities, and invariants

is stressed here, because even books on relativity often write “invariant” when

they should have written “scalar” (Hamermesh, 1962; McCauley, 2001).

3.5 Laws of large numbers

We will need to distinguish in all that follows between statistically independ-

ent variables and merely pairwise uncorrelated variables. Often, writers

assume statistical independence whereas in fact all that is used is lack of

pairwise correlation. In principle and in practice, the difference is enormous,

as certain combinations of variables in data analysis and modeling are often

uncorrelated but are seldom or never statistically independent.

A set of n random variables is statistically independent if the joint n-point

density factors into n one-point densities,

fnðxn; . . . ; x1Þ ¼ fnðxnÞ . . . f1ðx1Þ: ð3:16Þ
If the n one-point densities are the same, if fkðxkÞ ¼ f1ðxkÞ for k ¼ 2, . . . , n,

then the n variables are called independently identically distributed, or “iid.”

A far weaker but much more useful condition is that the n variables are not

statistically independent but are pairwise uncorrelated, i.e. xjxk
� � ¼ 0 if j6¼k.

An example is provided by the increments (displacements) in a discrete or

continuous random walk, where the positions themselves are correlated.

3.5.1 Tschebychev’s inequality

Tschebychev’s inequality states that for every random variable x with finite

mean xh i ¼ a and variance s2, the inequality

Pð x� aj j � eÞ � s2=e2 ð3:17Þ
holds for every e > 0. The proof is easy:

Pð x� aj j � eÞ ¼
ð

x�aj j�e

dPðxÞ� 1

e2

ð
x�aj j�e

ðx� aÞ2dPðxÞ ¼ s2

e2
ð3:18Þ
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We assume here that, even if the distribution has fat tails, the tails are not fat

enough to make the variance blow up. An example is presented in a later

section. We can choose e¼ ns, obtaining as the probability for an “ns-event”

Pð x� aj j � nsÞ � 1

n2
ð3:19Þ

This result has interesting practical implications. Irrespective of the distribution,

the probability of a 2s event is bounded only by¼, which is a large probability.

Were the distribution Gaussian we could achieve a much tighter bound, but

finance distributions are not Gaussian. No assumption of stationarity has been

made here. The result applies to the nonstationary distributions of financewhere

s increases with time.

Next, we introduce a result of much practical use. Tschebychev’s Theorem

provides the justification for the construction of statistical ensembles using

repeated identical experiments. Here, statistics and laboratory science merge

in a very fruitful marriage. Although the theorem requires variables with a

common mean, which would be hard to satisfy, we will apply the result to

detrended variables in finance in Chapter 7.

3.5.2 Tschebychev’s Theorem

Assume a large number of pairwise uncorrelated variables x1,. . .,xn with the

same ensemble average mean a, and uniformly bounded variances.

Let xk occur pk times with k ¼ 1,. . .,m. Then

xh i ¼
ð
xdPðxÞ ¼ 1

n

Xn
j¼1

xj ¼
Xm
k¼1

pkxk ð3:20Þ

Define a new random variable x as

x ¼ 1

n

Xn
k¼1

xk ð3:21Þ

From

x� xh i ¼ 1

n

Xn
j¼1

xj � xh i� � ð3:22Þ

we obtain

x� xh ið Þ2¼ 1

n2

Xn
j¼1

xj � xh i� �2þ 1

n2

Xn
j6¼k

xj � xh i� �
xk � xh ið Þ ð3:23Þ
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so that

s2
x ¼

1

n2

Xn
j¼1

ðxj � xh iÞ2
D E

¼ 1

n2

Xn
j¼1

s2
j �

ðs2
j Þmax

n
ð3:24Þ

where

s2
j ¼ xj � xj

� �� �2D E
ð3:25Þ

Tschebychev’s inequality then yields

P jx� xh ij > að Þ �
s2
j

� �
max

na2
ð3:26Þ

This is the main result of general interest for us later.

If, in addition, the n random variables would have the same variance s2

then we obtain from (3.24) that

s2
x ¼

s2

n
ð3:27Þ

which also suggests that scatter can be reduced by studying the sum x of n

uncorrelated variables instead of the individual variables xk.

The law of large numbers requires only pairwise uncorrelated variables. The

central limit theorem (CLT) described next is less applicable, as it requires the

stronger and empirically unrealistic assumption of statistical independence.

The CLT can be used to prove powerful convergence theorems in probability

that do not apply widely enough to empirical data. The law of large numbers,

however, is quite general and even provides the basis for constructing statis-

tical ensemble averages based on repeated identical experiments.

3.5.3 The central limit theorem

We showed earlier that a probability distribution P(x) may be characterized

by its moments via the characteristic function F(k), which we introduced in

part 3.3 above. The Fourier transform of a Gaussian is again a Gaussian,

fðkÞ ¼ 1ffiffiffiffiffiffi
2�

p
s

ð1
�1

dxeikxe�ðx� xh iÞ2=2s2 ¼ eik xh ie�k2s2=2 ð3:28Þ

We now show that the Gaussian plays a special role in a certain ideal limit.

Consider N independent random variables xk, which may or may not be

identically distributed. Each has finite standard deviation sk. That is, the

36 Probability and stochastic processes



individual distributions Pk(xk) need not be identical; the central assumption is

statistical independence. We can formulate the problem in either of two ways.

We may ask directly what is the distribution P(x) of the variable

x ¼ 1ffiffiffi
n

p
Xn
k¼1

xk ð3:29Þ

where we can assume that each xk has been constructed to have vanishing

mean. The characteristic function is

�ðkÞ ¼
ð1

�1
eikxdPðxÞ ¼ eikx

� � ¼ Yn
k¼1

eikxk=
ffiffi
n

p
* +

¼
Yn
k¼1

eikxk=
ffiffi
n

pD E
ð3:30Þ

where statistical independence was used in the last step. Writing

�ðkÞ ¼ eikx
� � ¼ Yn

k¼1

eikxk=
ffiffi
n

pD E
¼ e

Pn
k¼1

Akðk=
ffiffiffi
nÞ

p
ð3:31Þ

where

Akðk=
ffiffiffi
n

p Þ ¼ ln eikxk=
ffiffi
n

pD E
ð3:32Þ

we can expand to obtain

Akðk=
ffiffiffi
n

p Þ ¼ Akð0Þ þ k2A00
kð0Þ=2nþ k3Oðn�1=2Þ=nþ . . . ð3:33Þ

where

A00
kð0Þ ¼ xk

2
� � ð3:34Þ

If, as N goes to infinity, we could neglect terms of order k3 and higher in the

exponent of F(k) then we would obtain the Gaussian limit

eikx
� � ¼ e

P
Akðk=

ffiffiffi
N

p Þ � e�k2s2
x=2 ð3:35Þ

where sx is the variance of the cumulative variable x.

An equivalent way to derive the same result is to start with the convolution

of the individual distributions subject to the constraint (3.29)

PðxÞ ¼
ð
. . .

ð
dP1ðx1Þ . . . :dPnðxnÞdðx�

X
xk=

ffiffiffi
n

p Þ ð3:36Þ

Using the Fourier transform representation of the delta function yields

�ðkÞ ¼
YN
i¼1

fiðk=
ffiffiffiffi
N

p
Þ ð3:37Þ
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where fk is the characteristic function of Pk, and provides another way to

derive the CLT.

A nice example that shows that limitations of the CLT is provided by

Bouchaud and Potters (2000) who consider the asymmetric exponential

density

f1ðxÞ ¼ yðxÞae�ax ð3:38Þ
Using (3.40) in (3.36) yields the density

f ðx;NÞ ¼ yðxÞaN x
N�1e��x

ðN � 1Þ! ð3:39Þ

Clearly, this distribution is never Gaussian for either arbitrary or large values

of x. What, then, does the CLT describe? If we locate the value of x for which

f(x,N) is largest, the most probable value of x, and approximate lnf(x,N) by a

Taylor expansion to second order about that point, then we obtain a Gaussian

approximation to f. Since the most probable and mean values approximate

each other for large N, we see that the CLT asymptotically describes small

fluctuations about the mean. However, the CLT does not describe the distri-

bution of very small or very large values of x correctly for any value of N. Even

worse, the common expectation that a financial returns distribution should

become Gaussian at long times is completely misplaced: we’ll see that neither

financial returns nor returns differences satisfy the conditions for statistical

independence.

In this text we will not appeal to the CLT in data analysis because that

theorem does not provide a reasonable approximation for a large range of

values of x. It is possible to go beyond the CLT and develop formulae for

“large deviations” and “extreme values,” but we will not need those results in

this text and so refer the interested reader to the literature (Frisch and

Sornette, 1997).

3.6 Examples of theoretical distributions

The Gaussian and lognormal distributions (related by a coordinate transform-

ation) form the basis for financial engineering. The exponential distribution has

been discovered in finance, hard turbulence, and firm growth data. Both

student-t-like and Levy densities exhibit fat tails, but have entirely different

origins dynamically. Student-t-like densities are derived in Chapter 6 from

diffusive processes. Levy densities do not satisfy a diffusion equation because

the variance is infinite.
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3.6.1 Gaussian and lognormal densities

A Gaussian distribution has the one-point density

f ðxÞ ¼ 1ffiffiffiffiffiffi
2�

p
s
e�ðx� xh iÞ2=2�s2 ð3:40Þ

with variance

s2 ¼ �x2
� � ð3:41Þ

and plays a special role in probability theory. On the one hand it arises as a

limit distribution from the law of large numbers. On the other hand, a special

Gaussian process, the Wiener process, forms the basis for stochastic calculus.

If we take x ¼ lnp then g(p)dp ¼ f(x)dx defines the density g(p), which is

lognormal in the variable p. The lognormal distribution was first applied in

finance by Osborne in 1958 (Cootner, 1964), and was used later by Black,

Scholes, and Merton in 1973 to price options falsifiably via a special trading

strategy.

3.6.2 The exponential density

The asymmetric exponential density (Laplace density) was discovered in an

analysis of financial data by Gunaratne c. 1990. The exponential density

survived in finance analysis even after a more careful data analysis was

performed (Chapter 7).

A version of the asymmetric exponential density is defined by

f ðxÞ ¼
g
2 e

gðx�dÞx < d
n
2 e

�nðx�dÞx > d



ð3:42Þ

where d, g, and n are the parameters that define the distribution and generally

depend on time. Many different possible normalizations of the density are

possible. The normalization chosen above is not the one required to conserve

probability in a stochastic dynamical description. That normalization is

derived in Chapter 8.

Moments of this distribution are easy to calculate in closed form. For

example,

xh iþ¼
ð1
d

xf ðxÞdx ¼ dþ 1

n
ð3:43Þ

is the mean of the distribution for x > d while
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xh i�¼
ðd

�1
xf ðxÞdx ¼ d� 1

g
ð3:44Þ

defines the mean for that part with x < d. The mean of the distribution is

given by

xh i ¼ dþ ðg� nÞ
gn

ð3:45Þ

The analogous expressions for the mean square are

x2
� �

þ¼
2

n2
þ 2

d
n
þ d2 ð3:46Þ

and

x2
� �

�¼
2

g2
� 2

d
g
þ d2 ð3:47Þ

Hence the variances for the distinct regions are given by

s2
þ ¼ 1

n2
ð3:48Þ

s2
� ¼ 1

g2
ð3:49Þ

and for the whole by

s2 ¼ g2 þ n2

g2n2
ð3:50Þ

We can estimate the probability of large events. The probability for at least

one event x > s is given (for x > d) by

Pðx > sÞ ¼ n
2

ð1
s

e�nðx�dÞdx ¼ 1

2
e�nðs�dÞ ð3:51Þ

The exponential density was observed in foreign exchange (FX) data (and also

in hard turbulence) by Gunaratne (McCauley and Gunaratne, 2003) and in

the analysis of firm size growth rates by Bottazzi and Secchi (2005) and by

Lee et al. (1998).
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3.6.3 Student-t-like densities (fat tails)

Pareto introduced fat-tailed densities in wealth accumulation studies in the

nineteenth century. Fat-tailed densities do not arise from a single, unique

dynamic model. Instead, they arise from various mutually exclusive models.

One class is student-t-like.

An interesting class of student-t-like densities is given by

f ðxÞ ¼ ½1þ ex2��1�a: ð3:52Þ
This density has fat tails,

f ðxÞ � xj j�m; xj j >> 1 ð3:53Þ
where m¼ 2 þ 2a is the tail exponent. Consequently all moments xnh i blow up

for n > 1 þ 2a. The variance s2 ¼ x2
� �

is finite if a > 1/2. Student-t-like

densities can be generated by diffusive dynamics.

3.6.4 Stretched exponential distributions

The stretched exponential density is defined by

f ðx; tÞ ¼ Ae�ðnðx�dÞÞa ; x > d
Aeð�ðx�dÞÞa ; x < d



ð3:54Þ

Using

dx ¼ n�1z1=��1dz ð3:55Þ
we can easily evaluate all averages of the form

znh iþ¼ A

ð1
d

ðnðx� dÞÞnae�ðnðx�dÞÞadx ð3:56Þ

for n an integer. Therefore we can reproduce analogs of the calculations for

the exponential distribution. For example,

A ¼ gn
gþ n

1

�ð1=aÞ ð3:57Þ

where G(z) is the Gamma function, and

xh iþ¼ d� 1

n
�ð2=aÞ
�ð1=aÞ ð3:58Þ

Calculating the mean square fluctuation is equally simple. This concludes our

survey of well-known one-point densities.
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3.6.5 Levy distributions

Mandelbrot (1966) argued that the idea of aggregation should be important

in economics, where data are typically inaccurate and may arise from many

different underlying causes, as in the growth populations of cities or the

number and sizes of firms. He therefore asked which distributions have

the property (unfortunately called “stable”) that, with the n different densities

fk in the CLT replaced by exactly the same density f, we obtain the same

functional form under aggregation, but with different parameters a, where

a stands for a collection (a1,. . .,am) of m parameters including the time

variables tk:

~f ðx; aÞ ¼
ð
. . .

ð
dx1f ðx1; a1Þ . . . dxnf ðxn;anÞdðx�

X
xk=

ffiffiffiffiffi
nÞ

p
ð3:59Þ

Here, the connection between the aggregate and basic densities is to be given

by self-affine scaling

~f ðxÞ ¼ Cf ðlxÞ ð3:60Þ
As an example, the convolution of any number of Gaussians is again Gauss-

ian, with a different mean and standard deviation than the individual

Gaussians under the integral sign. Levy had already answered the more

general question, and the required distributions are called Levy distributions.

Levy distributions have the fattest tails (the smallest tail exponents).

However, in contrast with Mandelbrot’s motivation stated above, the Levy

distribution does have a well-defined underlying stochastic dynamics, namely,

the Levy flight (Hughes et al., 1981).

Denoting the Fourier transform by f(k),

f ðxÞ ¼
ð
fðkÞeikxdkdk ð3:61Þ

the use of (3.61) in the convolution (3.59) yields

~f ðxÞ ¼
ð
dk�ðkÞeikx ¼

ð
dkfnðkÞeikx ð3:62Þ

so that the scaling condition (3.60) yields

fnðkÞ ¼ Cfðk=lÞ=l ð3:63Þ
The most general solution was found by Levy and Khintchine (Gnedenko,

1967) to be
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lnfðkÞ ¼
imk � g kj ja½1� ib

k tanðpa=2Þ
kj j �;a 6¼ 1

imk � g kj j½1þ ib
2k ln kj j
p kj j �; a ¼ 1

8>><
>>: ð3:64Þ

Denote the Levy densities by La(x,Dt). The parameter b controls asymmetry,

0 < a � 2, and only three cases are known in closed form: a ¼ 1 describes the

Cauchy distribution,

L1ðx;�tÞ ¼ 1

p�t

1

1þ x2=�t2

� �
ð3:65Þ

a ¼ 1/2 is Levy-Smirnov, and a ¼ 2 is Gaussian. For 0 < a < 2 the variance is

infinite. For x large in magnitude and a < 2 we have

LaðxÞ � mAa
�

xj j1þa ð3:66Þ

so that the tail exponent is m ¼ 1 þ a. The truncated Levy distribution was

applied to a stock index by Mantegna and Stanley (2000).

There is a scaling law for both the density and also the peak of the density

at different time intervals that is controlled by the tail exponent a. For the
symmetric densities

Laðx;�tÞ ¼ 1

p

ð1
�1

dkeikx�gka�t ð3:67Þ

so that

Laðx;�tÞ ¼ �t�1=aLaðx=�t1=a; 1Þ ð3:68Þ
A data collapse is predicted with rescaled variable z¼ x/Dt1/a. The probability
density for zero return, a return to the origin after time Dt, is given by

Lað0;�tÞ ¼ Lað0; 1Þ=�t1=a ð3:69Þ
Many interesting properties of Levy distributions are presented in Scalas

et al. (2000) and Mainardi et al. (2000).

3.7 Stochastic processes

A random variable x is, by definition, any variable that is described by a

probability distribution. Whether a “random variable” evolves deterministic-

ally in time via deterministic chaotic differential equations (where nothing in the

time evolution is random) or “randomly” (via stochastic differential equations
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or sdes) is not implied in the definition. Chaotic differential equations generate

pseudo-random time series x(t) and corresponding probability distributions

perfectly deterministically. In this text, we are not concernedwith deterministic

dynamical systems (excepting Chapter 2) because they are not indicated by

market data analysis. The reason for this is simple. Deterministic dynamics is

smooth at the smallest time scales. There, the motion is equivalent via a local

coordinate transformation to constant-velocity motion. Random processes

(stochastic processes), in contrast, have unpredictable jumps at even the

shortest time scales, as in the stock market over one tick (where typically Dt � 1

second).Hence, in this textwe concern ourselveswith themethods of the theory

of stochastic processes, but treat here only the ideal case of continuous time

processes because the discrete case is much harder to handle analytically, and

because finance data can be fit to a large extent using continuous time models.

By a stochastic or random process we mean one where the random variable

x(t) obeys a stochastic equation of motion, an equation of motion driven by

noise. By noise, we will mean a drift-free random variable specified by a

probability distribution, where the random variable does not evolve in time

deterministically. The discrete random walk or continuous Brownian motion

provide the canonical examples. We will call a realization of a stochastic

process a random time series.

3.7.1 Introduction to stochastic processes

Before discussing stochastic equations of motion, we ask: how can a random

time series x(t) be characterized? According to Kolmogorov, we can define a

specific stochastic process precisely if and only if we can specify the complete,

infinite hierarchy of joint probability distributions. From an empirical stand-

point we can at best obtain finitely many histograms from measurement of N

different runs for n different times, using the frequency definition of prob-

ability, so we can never hope to specify a process uniquely; the best we can

hope for is to specify some class of processes.

Let P1ðxÞ denote the probability to find a value X < x at time t. This is the

one-point distribution of x. Then P2ðx; t; x0; t0Þ denotes the probability to find

both X < x at time t and X’ < x’ at time t’, and so on up to Pnðx1; t1; . . . ; xn; tnÞ.
Clearly, both the number N of runs and the number n of times that we strobe/

observe the system must be large in order to have any hope of gett-

ing good statistics (meaning reliable histograms). Statistical independence

of events, complete lack of correlations at all levels, means that

Pnðx1; t1; . . . ; xn; tnÞ ¼ P1ðx1; t1Þ . . .P1ðxn; tnÞ, but this is the rare exception. In

order to discuss correlations we will need P2, at the very least. We can expect in
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practice that Pn will be ill-defined, experimentally, because we’ve reached the

limit of resolution of our measurements. Moreover, we will discover that for

certain common classes of time series it’s nontrivial to get enough points from

even a long time series to discoverP1. Nonuniqueness inmodeling is inherent in

the fact that we can only hope to discover the lowest few distributions Pn from

empirical data. The class of models that we are able to deduce from data may

be unique at the level of P2, but then will be nonunique at the level of P3 and

beyond. But in that case what cannot be discovered frommeasurement should

not be interpreted as license for invention from mathematical imagination.

Although the above background is necessary for theoretical orientation,

we will see in Chapter 7 that densities are very, very hard to obtain empiric-

ally. Generally, one must settle in practice for simple averages and pair

correlations.

Looking ahead, we introduce the hierarchy of probability densities fn via

dPnðx1; t1; . . . ; xn; tnÞ ¼ fnðx1; t1; . . . ; xn; tnÞdx1 . . .dxn ð3:70Þ

3.7.2 Conditional probability densities

Correlations cannot be described by a one-point density f1(x,t). The two-

point density f2(y,t;x,s) is required to calculate pair correlations

xðtÞxðsÞh i ¼ Ð
dydxyxf2ðy; t; x; sÞ. The one-point density suffices if and only

if the variables x(t) and x(s), t 6¼ s, are statistically independent, if

f2ðy; t; x; sÞ ¼ f1ðy; tÞf1ðx; sÞ. Statistical independence is the rare exception, not
the rule. Generally, values of x at two different times are correlated by the

underlying dynamics. Our aim is to learn how to deduce and model dynamics

faithfully by using adequate empirical data. That will require discovering the

pair correlations.

Consider a time series x(t) representing one run of a stochastic process.

Empirically, we can only strobe the system a finite number of times, so

measurements of x(t) take the form of {x(tk)}, k ¼ 1,. . .,n where n is the

number of measurements made. If we can extract good enough histograms

from the data, then we can construct the hierarchy of probability densities

f1(x,t), f2(x1,t1;x2,t2), . . ., fk(x1,t1;,. . .;xk,tk) where k << n (the one-point density

f1 reflects a specific choice of initial condition in data analysis). To get decent

histograms for fn, one would then need a much longer time series.

We note that

fn�1ðx1;t1; . . . ; xk�1;tk�1; xkþ1;tkþ1; . . . ; xn;tnÞ ¼
ð
dxkfnðx1;t1; . . . ; xn;tnÞ ð3:71Þ
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so that

f1ðx; tÞ ¼
ð
dyf2ðy; s; x; tÞ: ð3:72Þ

Densities of all orders are normalized to unity if
Ð
dxxf1(x,t) ¼ 1.

Let t1 < . . . < tn. Two-point conditional probability densities pk, or

transition probability densities, are defined by

f2ðx2; t2; x1; t1Þ ¼ p2ðx2; t2 x1; t1j Þf1ðx1; t1Þ ð3:73Þ
f3ðx3; t3; x2; t2; x1; t1Þ ¼ p3ðx3; t3 x2; t2j ; x1; t1Þp2ðx2; t2 x1; t1j Þf1ðx1; t1Þ ð3:74Þ

and more generally as

fnðxn; tn; . . . ; x1; t1Þ ¼ pnðxn; tn xn�1; tn�1j ; . . . ; x1; t1Þ
fn�1ðxn�1; tn�1; . . . ; x1; t1Þ ¼ pnðxn; tn xn�1; tn�1j ; . . . ; x1; t1Þ . . .
p2ðx2; t2 x1; t1j Þf1ðx1; t1Þ

ð3:75Þ

where pn is the two-point conditional probability density to find xn at time tn,

given the last observed point (xn–1,tn–1) and the previous history (xn–2,tn–2;. . .;

x1,t1). The previous history can be regarded as discrete, finite memory. There

are also processes like fractional Brownian motion with uncountable memory

encoded in f2 via the pair correlations.

A Markov process is a process with no memory (“no after effect”) other

than that of the last observed point (xn–1,tn–1). This yields

fnðxn; tn; . . . ; x1; t1Þ ¼ p2ðxn; tn xn�1; tn�1j Þ . . . p2ðx2; t2 x1; t1j Þf1ðx1; t1Þ ð3:76Þ
because

pkðxk; tk xk�1; tk�1; . . . ; x1; t1Þj ¼ p2ðxk; tk xk�1; tk�1Þj ð3:77Þ

for k ¼ 3,4,. . . so p2 cannot depend on an initial state (x1,t1) or on any

previous state other than the last observed point (xk–1,tk–1). By “memory”

we mean history other than the last observed state; a Markov process

by definition has no memory. Only in the absence of memory does the two-

point density p2 describe the complete time evolution of the dynamical

system. The Markov process is a dynamically interesting generalization of

the less useful notion of statistical independence of the n random variables xk,

whereby

fnðxn; tn; . . . ; x1; t1Þ ¼ fnðxn; tnÞ . . . f2ðx2; t2Þf1ðx1; t1Þ ð3:78Þ
For an arbitrary process with or without memory it follows that
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pk�1ðxk; tk xk�2; tk�2; . . . ; x1; t1Þj ¼
ð
dxk�1pkðxk; tk xk�1; tk�1; . . . ; x1; t1Þj
pk�1ðxk�1; tk�1 xk�2; tk�2; . . . ; x1; t1Þj

ð3:79Þ

so that

p2ðx3; t3jx1; t1Þ ¼
ð
dx2p3ðx3; t3jx2; t2; x1; t1Þp2ðx2; t2jx1; t1Þ: ð3:80Þ

Normalization of conditional densities follows easily: fromð
dydxf2ðy; s; x; tÞ ¼

ð
dyf1ðx; tÞ ¼ 1 ð3:81Þ

we obtain ð
dyp2ðy; s x; tj Þ ¼ 1 ð3:82Þ

which also reflects conservation of probability. From the definition of

conditional probability, where x was observed to have occurred at time t,

we obtain

p2ðy; t x; tÞ ¼ dðy� xÞj ð3:83Þ
For a Markov process we have pn ¼ p2 for n ¼ 2,3,. . . so that

p2ðx3; t3 x1; t1Þj ¼
ð
dx2p2ðx3; t3 x2; t2Þj p2ðx2; t2 x1; t1Þj ð3:84Þ

The Markov property is expressed by pn ¼ p2 for all n�3, the complete lack

of history-dependence excepting the last observed point. The Chapman-

Kolmogorov (CK) equation (3.84) is a necessary but insufficient condition

for a Markov process. A CK equation (3.84) does not imply a Markov

process (McCauley, 2008b).

The unconditioned average over initial conditions (the initial condi-

tion is defined by specifying f1(x,t0)) is an average over all variables, for

example

xðtÞxðsÞh i ¼
ð
dydxxyp2ðy; s x; tÞf1j ðx; tÞ ð3:85Þ

Unconditioned averages must be distinguished from conditional averages,

where in the latter a specific “last position” was observed, for example

xðtÞh icond¼
ð
dyyp2ðy; t x; sÞj ð3:86Þ
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so that

xðtÞxðsÞh i ¼
ð
dxx xðtÞh icond f1ðx; sÞ ð3:87Þ

includes an average over all possible initial positions. In finance theory (e.g.

option pricing and in some definitions of volatility) we often meet conditional

averages. For example, the price is always known at the present time t, so

averages over prices at future times t þ T can in principle be conditioned on

the fact that we know p(t). In general, f1(x,t) reflects the free choice of initial

condition f1(x,t0) rather than the dynamics.

3.7.3 Martingales

A Martingale, more precisely, a “local Martingale,” is defined by the

condition

xðtÞh icond¼
ð
dyyp2ðy; t x; sÞj ¼ x ð3:88Þ

and generalizes the idea of a fair game to continuous time processes. The idea

of a fair game is that there is no gain or loss. The Martingale condition states

that the expected future average equals the last observed value and there’s no

trend to move you away from where you stand right now on the average, so

that the expected value of your later net worth is what you hold at the

moment.

A Martingale has no trend, d xh i=dt ¼ 0, because

xðtþ TÞh icond¼ xðtÞ ð3:89Þ
where the average is conditioned on having observed the point x at an earlier

time t,

xðtþ TÞh icond¼
ð
dyyp2ðy; tþ Tjx; tÞ ¼ x ð3:90Þ

Using this condition in the unconditioned average (hereafter simply called

“the average”)

xðtÞxðsÞh i ¼
ð
dydxyxp2ðy; t x; sÞf1j ðx; tÞ ð3:91Þ

yields a powerful result:

xðtÞxðsÞh i ¼ x2ðsÞ� �
; s < t ð3:92Þ
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We can reverse the argument to show, since f1 arises from a freely chosen

initial condition, that (3.91) implies a Martingale. We can take (3.92) as the

Martingale condition.

We show next that the condition (3.92) rules out memory (history depend-

ence) in a Martingale at the level of simple averages and pair correlations.

From (3.92) we derive the more general condition that there is no correlation

in increments/displacements occurring in nonoverlapping time intervals; the

increment autocorrelation

ðxðtÞ � xðt� TÞÞðxðtþ TÞ � xðtÞÞh i ¼
ð
dxdydzðz� yÞðy� xÞ

p2ðz; tþ T y; t; x; t� Tj Þp2ðy; t x; t� Tj Þf1ðx; t� TÞ ¼ 0

ð3:93Þ

vanishes via term-by-term cancellation. This means that nothing that

happened in the past can be used to predict future patterns of behavior at

the level of pair correlations. We can also take (3.93) as the Martingale

condition, but there may be memory in a Martingale.

Memory, history dependence, can appear in a Martingale in a subtle way.

We now follow Hänggi and Thomas (1977) to explain in part what we mean

by “subtle.” In an obvious shorthand notation, starting with f2(x3;x2)¼
Ð
f3(x3;

x2;x1)dx1 and using f2ðx3; x2Þ ¼ p2ðx3 x2j Þf1ðx2Þ ¼ p2ðx3 x2j ÞÐp2ðx2 x1j Þf1ðx1Þdx1
we obtain

p2ðx3; t3 x2; t2j Þ ¼
Ð
dx1p3ðx3; t3 x2; t2; x1; t1j Þp2ðx2; t2 x1j ; t1Þf1ðx1; t1Þdx1Ð

p2ðx2; t2 x1j ; t1Þf1ðx1; t1Þdx1 ð3:94Þ

which is a functional of the initial state f1(x1,t1) in which the system was

prepared at the initial time t1 unless the process is Markovian. In a non-

Markov system one may sometimes be able to mask this dependence on state

preparation by choosing the initial condition to be f1(x1,t1)¼ d(x1). If, instead,
we would or could choose f1(x1,t1) ¼ d(x1 – x00) at t1 ¼ 0, for example, then we

would obtain p2ðx3; t3 x2; t2j Þ ¼ p3ðx3; t3 x2; t2; x
0
0

�� Þ. So in this case, what appears

superficially as p2 is really a special case of p3. A Martingale may have

memory of a discrete set of states (xn–1, . . ., x1) in the past, but cannot have

memory of an entire continuous past trajectory x(t). The latter sort of

memory (exemplified by fractional Brownian motion in Chapter 6) violates

(3.94) because the pair correlations violate (3.92) and reflect the strong

memory.

One can introduce a trend by adding a drift term to aMartingale. There is an

intimate connection between Martingales and detrendable processes, which

are called Ito processes. An Ito process is quite simply a trend plus a Martin-

gale, where the Martingale may be understood as noise, albeit generally not
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white noise. The reason that a Martingale is a form of noise is simply that it

doesn’t transport you anywhere on the average.

There are no elementary or easily readable references on Martingales, but

see Steele (2000) and especially both books by Durrett (1984, 1996). Certain

elementary exercises are assigned in those texts, and the reader can get a

better feeling for Martingales by working them. Durrett is hard to read, his

notation at one stage is not clearly defined and must be decoded by the

reader, but many sections can be skipped and the books are worth the effort.

3.7.4 Detrending a Martingale plus drift

We can classify processes according to those that can be detrended and those

that can’t. The first class, we can think of as drift plus noise or, more

precisely, drift plus a Martingale. Martingales can be understood as noise

sources with no increment autocorrelations: with increments M(t,T) ¼ M(t þ
T) – M(t) and M(t,–T) ¼ M(t) – M(t – T), we have Mðt; TÞMðt;�TÞh i ¼ 0. This

leads us to study Ito processes, which include Martingales, Markov processes,

and generalizations of Markov processes with drift, and also Ito processes

with finite memory (the latter are not treated here). We must first develop the

connection between Martingales and the absence of trend, and then show

how trend can be added.

Consider a Martingale M(t), with M(t0) ¼ 0, plus a drift A(t). We suggest

that the general form of a detrendable process is

xðtÞ ¼ xðt0Þ þ AðtÞ þMðtÞ ð3:95Þ

so that xðtÞh icond¼ AðtÞ; and M(t) describes the noise. The next point is

to show that the drift term can be written as A(t) ¼ Ð
R(x(s),s)ds, a path-

dependent functional of the stochastic process x. First, we must define the

drift coefficient R.

Whenever it exists the drift coefficient is defined by

Rðx; tÞ � 1

T

ð1
�1

dyðy� xÞp2ðy; t; x; t� TÞ ð3:96Þ

as T vanishes. Here is our main point: if R ¼ 0 then we obtain from (3.96) the

condition

ð1
�1

dyyp2ðy; t; x; t� TÞ ¼ x ð3:97Þ
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so that the average at a later time is given by the last observed point in the

time series, xðtþ TÞh icond¼ xðtÞ. This is the notion of a fair game: there is no

change in the average of x as t increases.

Using the delta function initial condition for p2 as T vanishes, we can

generalize

xðtÞh icond� xðt0Þ þ RðxðtÞ; tÞT ð3:98Þ
valid for small T ¼ t – t0 to obtain

xðtÞh icond ¼ xðt0Þ þ
ðt
t0

RðxðsÞ; sÞh icondds ð3:99Þ

which is valid for all t. The trend is described by the average drift

d xðtÞh icond=dt ¼ Rh icond ð3:100Þ
This suggests a stochastic process of the form

xðtÞ ¼ xðt0Þ þ
ðt
t0

RðxðsÞ; sÞdsþMðtÞ ð3:101Þ

where, as we will see, the MartingaleMmay also depend on the path x(t). The

general specification of M(t) using the most basic Martingale can be stated

only after we prove Ito’s theorem.

Our main point is that the possibility of detrending by subtracting a well-

defined average drift presumes that the irreducible underlying noise source is

a Martingale. So we could divide stochastic processes into those that satisfy

the Martingale condition xðtÞh icond¼ xðt0Þ and those that don’t. This classifi-

cation is too broad to be very useful, as the latter class includes both

fractional Brownian motion and Markov processes, which are very different

at the level of pair correlations and beyond.

For a time series describing a Martingale, the problem of forecasting is

trivial. Given any set of n points in a time series, {x(tk)}, k ¼ n,n–1, . . . , 2,1,

where tn > tn–1 > . . . > t2 > t1, and the hierarchy of transition densities pn, if

the increments are uncorrelated then the best systematic forecast of the future

is the conditional average xðtkÞh i ¼ xðtk�1Þ. That is, the future is forecast on

the average by the last observed point in the time series,ð
dxnxnpnðxn; tn xn�1; tn�1; . . . ; x1; t1j Þ ¼ xn�1 ð3:102Þ

All previous observations (xn–1, . . . , x1) don’t contribute. This is nontrivial

precisely because Martingales can admit history dependence. The point is that
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at the level of simple averages and pair correlations the history dependence

cannot be detected. The simplest example of a Martingale is a drift-free

Markov process.

In order to appreciate that economic and finance data are strongly nonsta-

tionary, we exhibit the idea of a stationary process for comparison. Toward that

end, we generalize the idea of equilibrium to stochastic processes. Statistical

equilibrium is a property of a stationary stochastic process. A nonstationary

stochastic process is not asymptotically stationary; it does not approach statis-

tical equilibrium. To make matters worse for the reader, these ideas should not

be confused with stationary and nonstationary increments!

3.7.5 Stationary vs nonstationary processes

Time-translational invariance means that every density in the infinite hier-

archy is invariant under a shift of time origin,

fnðx1; t1 þ T; . . . ; xn; tn þ TÞ ¼ fnðx1; t1; . . . ; xn; tnÞ ð3:103Þ
This means that the normalizable one-point density, if it exists, must be

t-independent, i.e. f1(x,t) ¼ f1(x). The condition is important because we’ll

exhibit Markov processes where time-translational invariance holds for fn,

n > 2, but where there is no normalizable one-point density f1. Such processes

are nonstationary; the normalizable one-point t-independent density of a

stationary process describes statistical equilibrium.

A time-translationally invariant Markov process defines a one-parameter

semi-group U(t2,t1) of transformations (A. Friedman, 1975), where

p2ðxn; tn xn�1; tn�1j Þ ¼ p2ðxn; tn � tn�1 xn�1; 0j Þ. Clearly, the drift and diffusion

coefficients are t-independent here. An arbitrary time-translationally invari-

ant Markov process generally does not possess a normalizable stationary one-

point density, and therefore is not a stationary process. This will be illustrated

below via an example.

Weak stationarity or “wide sense” stationarity (Wax, 1954; Yaglom

and Yaglom, 1962; Stratonovich, 1963; Gnedenko, 1967) requires only that

the normalizable densities f1 and f2 are time-translationally invariant, so that

the mean and variance are constants and the pair correlations are stationary,

xðtÞxðtþ TÞh i ¼ xð0ÞxðTÞh i. Weak stationarity is adequate for defining statis-

tical equilibrium and was introduced from the practical standpoint: densities

(histograms) generally cannot be obtained from time series due to sparseness

of data; simple averages and pair correlations often can be measured quite

accurately. The difficulty of extracting densities empirically will be addressed

and illustrated in Chapter 7 for nonstationary processes.
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A stationary process describes a system in or near statistical equilibrium, or

a driven steady state. Because the one-point density is t-independent, all

moments are constants. In particular, the average and variance are constants.

By an asymptotically stationary process we mean that f1(x,t) approaches

arbitrarily closely to a t-independent density f1(x) as t becomes large, and that

the pair correlations become independent of the starting time t.

Next, we introduce the important ideas of stationary and nonstationary

increments. As an overview, nonstationary increments are restricted to non-

stationary processes, but stationary increments may also occur in a nonsta-

tionary process. All this will be illustrated below.

3.7.6 Nonstationary increments

Stationary increments x(t,T) of a nonstationary process x(t) are defined by

xðt; TÞ ¼ xðtþ TÞ � xðtÞ ¼ xð0;TÞ ð3:104Þ
“in distribution,” and by nonstationary increments (Stratonovich, 1963) we

mean that

xðtþ TÞ � xðtÞ 6¼ xð0; TÞ ð3:105Þ
For stationary increments (Mandelbrot and van Ness, 1968; Embrechts and

Maejima, 2002), time-translational invariance of the one-point density and

transition density (weak stationarity) will be seen below to be sufficient but

unnecessary.

To explain the meaning of “equality in distribution,” let z ¼ x(t,T)

denote the increment, or difference. Then the one-point increment density is

given by

f ðz; t; tþ TÞ ¼
ð
f2ðy; tþ T; x; tÞdðz� yþ xÞdxdy ð3:106Þ

which yields

f ðz; t; tþ TÞ ¼
ð
p2ðxþ z; tþ T x; tj Þf1ðx; tÞdx ð3:107Þ

For stationary increments this one-point density must be independent of the

starting time t and can depend only on (z,T), yielding f(x,t,t þ T) ¼ f(z,0,T),

whereas in the nonstationary increment case the t-dependence of f remains.

We showed above that Martingale increments are uncorrelated,

xðt; TÞxðt;�TÞh i ¼ 0 ð3:108Þ
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Combining

ðxðtþ TÞ � xðtÞÞ2
D E

¼ x2ðtþ TÞ� �þ x2ðtÞ� �� 2 xðtþ TÞxðtÞh i ð3:109Þ

with (3.92) we get

ðxðtþ TÞ � xðtÞÞ2
D E

¼ x2ðtþ TÞ� �� x2ðtÞ� � ð3:110Þ

which depends on both t and T, excepting the special case where the variance

x2ðtÞ� �
is linear in t. Martingale increments are uncorrelated and are generally

nonstationary. This result is of central importance for finance, and for making

the so-called efficient market hypothesis precise.

3.7.7 Stationary increments

We’ve shown that, at the pair correlation level of description, a Martingale

cannot be distinguished from a drift-free Markov process.

Consider next the class of stochastic processes with stationary increments:

x(t,T) ¼ x(0,T) “in distribution.” The class is wide because it’s dynamically

nonselective: both stationary and nonstationary processes are included, both

efficient and nonefficient markets are included. Following common practice,

we will sometimes write x(0,T)¼ x(T), but there we must avoid the nonsensical

misinterpretation that “ xð0; TÞxð0;�TÞh i ¼ � x2ðTÞ� � ¼ 0” for the case where

the increments are stationary and the variance is linear in the time. In the

context of increments, by the notation “x(T)” we will always mean x(0,T).

We begin simply with

� 2 xðtþ TÞxðtÞh i ¼ ðxðtþ TÞ � xðtÞÞ2
D E

� x2ðtþ TÞ� �� x2ðtÞ� �
; ð3:111Þ

then using increment stationarity on the right hand side of (3.111) we obtain

� 2 xðtþ TÞxðtÞh i ¼ x2ðTÞ� �� x2ðtþ TÞ� �� x2ðtÞ� � ð3:112Þ
which differs significantly from (3.92). For increments with nonoverlapping

time intervals, the simplest autocorrelation function is

2 ðxðtÞ � xðt� TÞÞðxðtþ TÞ � xðtÞÞh i
¼ ðxðtþ TÞ � xðt� TÞÞ2

D E
� ðxðtÞ � xðt� TÞÞ2
D E

� ðxðtþ TÞ � xðtÞÞ2
D E

¼ x2ð2TÞ� �� 2 x2ðTÞ� �
ð3:113Þ
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which generally does not vanish. Stationary increments of a nonstationary

process are strongly correlated if the process variance is nonlinear in the time t.

And by process variance we mean s2ðtÞ ¼ x2ðtÞ� �
measured from x(0) ¼ 0.

In the literature the mean square fluctuation x2ðt;TÞ� �
about the point x(t) is

too often called “the variance.” This should instead be denoted as “the

increment variance.” Precision of language in mathematics is absolutely

necessary, otherwise confusion rather than understanding is generated.

In economics, it’s quite generally believed that increments are stationary

and that increment stationarity implies ergodicity. We next show that the

latter cannot hold except for two exceptional processes, processes that don’t

appear as noise in real economic data.

3.7.8 Increment stationarity vs ergodicity

As is often assumed in economics, let T ¼ one period in a nonstationary

model with stationary increments. Then x(0,1) has a well-defined stationary

density f(z,t,tþ1) ¼ f(z,0,1), but there generally is no ergodicity accompanying

increment stationarity. There is one exception. Consider a time- and space-

translationally invariant drift-free Markov process. For tn � tn�1 ¼ . . .

¼ t1 � t0 ¼ T, the Markov condition then yields the density fnþ1 as

p2ðxn�xn�1;1 0;0j Þp2ðxn�1�xn�2;T 0;0j Þ...p2ðx2�x1;T 0;0j Þp2ðx1�x0;T 0;0j Þ with
f1ðx;tÞ¼p2ðx1�x0;T 0;0Þj . With T taken as time variable the increment process

is nonstationary as T increases, but with T fixed (T ¼ 1, for example) the

increments are iid (stationary, statistically independent, and identically dis-

tributed). In this case the Tschebychev inequality (the law of large numbers)

guarantees ergodicity: time averages of increments will converge with prob-

ability one to ensemble averages. We’ll see below that the increment process

so described must be Gaussian with variance linear in T, and is in fact the so-

called Wiener process, the Wiener process being the only (x,t)-translationally

invariant Martingale, and this assertion is easily proven below using the

Fokker–Planck pde.

3.7.9 Gaussian processes

In order to introduce the fundamental stochastic process out of which all

others can be built via “stochastic integration,” the Wiener process B(t),

we first define Gaussian stochastic processes. This class includes Markov

processes and Martingales, but is much larger. It also includes fractional

Brownian motion (Chapter 6), and other strong memory processes of interest

primarily in near-equilibrium statistical physics based on an assumption of
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correlated noise. In other words, Gaussian processes include very many

dynamically unrelated processes.

A Gaussian process has the n-point densities (see Wang and Uhlenbeck in

Wax, 1954)

fnðx1; t1; . . . ; xn; tnÞ ¼ 1

ð2�Þn=2 detB1=2
e�ðx� xh iÞyB�1ðx� xh iÞ=2 ð3:114Þ

where the matrix B is defined by the pair correlations,

Bkl ¼ xkxlh i ð3:115Þ
That is, a Gaussian process is completely defined by its mean and pair

correlations.

The two-point and one-point densities have the general form

f2ðx; t1; y; sÞ ¼ 1

2�sðtÞsðsÞð1� r2Þ1=2
e�ðx2=s2ðtÞþy2=s2ðsÞ�2rxy=sðtÞsðsÞÞ=2ð1�r2Þð3:116Þ

and

f1ðy; sÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�s2ðsÞÞp e�ðx�aðsÞÞ2=2s2ðsÞ ð3:117Þ

Using the notation in the papers by Harry Thomas and his students, the

conditional density p2 ¼ f2/f1 is given by

p2ðx; t y; sj Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Kðt; sÞp e�ðx�mðt;sÞy�gðt;sÞÞ2=2Kðt;sÞ ð3:118Þ

From (3.118) follows

xðtÞh icond¼
ð1

�1
dxxp2ðx; t y; sj Þ ¼ mðt; sÞyþ gðt; sÞ ð3:119Þ

so that

xðtÞxðsÞh i ¼ mðt; sÞðs2ðsÞ þ a2ðsÞÞ þ gðt; sÞ ð3:120Þ
The time evolution of the one-point density is given by

aðtÞ ¼ gðt; sÞ þ mðt; sÞaðsÞ
s2ðtÞ ¼ Kðt; sÞ þ m2ðt; sÞs2ðsÞ ð3:121Þ

These processes are quite generally non-Markovian. For a Martingale, we

need m(t,s) ¼ 1 with g(t,s) ¼ 0, and s2(t) generally depends on t.
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The conditions such that the transition density p2 satisfies the CK equation

(Hänggi et al., 1978) are (3.84)

mðt; t0Þ ¼ mðt; sÞmðs; t0Þ
gðt; t0Þ ¼ gðt; sÞ þ mðt; sÞgðs; t0Þ
Kðt; t0Þ ¼ Kðt; sÞ þ m2ðt; sÞKðs; t0Þ

ð3:122Þ

A Gaussian Markov process must satisfy these relations, but a Gaussian

process satisfying these relations is not necessarily Markovian. Simple

examples are given in McCauley (2008b).

3.7.10 The Wiener process

The Wiener process B(t) is defined as a Gaussian process with statistically

independent, stationary increments B(t,T)¼ B(0,T). We can apparently choose

the initial condition B(0) ¼ 0 at t0 ¼ 0, so that B(t,0) ¼ B(t) – B(0) ¼ B(t), with

stationary increments B(t,T) ¼ B(0,T) ¼ “B(T)” in distribution. Statistical

independence of the increments implies vanishing increment autocorrelations,

Bð0;TÞBð0;�TÞh i ¼ 0, which requires in turn that the variance is linear in t,

B2ðtÞ� � ¼ t . The Wiener process therefore has the transition density

p2ðB; t B0; t0Þ ¼j 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðt� t0Þ

p e�ðB�B0Þ2=2ðt�t0Þ ð3:123Þ

and is a time-translationally invariant Martingale. It is also the simplest

time-translationally invariant Markov process. There is no corresponding

normalizable time-independent one-point density; the Wiener process is fun-

damentally nonstationary (the variance increases with t). As one-point dens-

ity for calculating averages like the variance, we use f1ðB; tÞ ¼ p2ðB; t 0; 0Þj .

By “white noise” in statistical physics and radio theory (albeit not in econo-

metrics) is meant �¼ dB/dt. This pointwise undefined derivativemakes sense in

a certain statistical sense (see Wax (1954) or Stratonovich (1963)), where one

can show that � is formally a stationary process. In this text we will work only

with theWiener process via Ito calculus, and not with white noise. TheWiener

process is the simplest example of a nonstationary process. As we’ve pointed

out above, theWiener process is also singular as a stationary increment process

because the Markov condition for fixed lag times yields iid increments.

3.8 Stochastic calculus

The motivation for stochastic calculus is as follows. Without noise, a financial

instrument (savings deposit, certificate of deposit (CD), or money market
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deposit) simply pays an interest rate m, so that the price obeys dp ¼ mpdt.
A bond pays a definite interest rate but also fluctuates in price according to

interest rate competition with the central bank, so noise must be added. For a

bond, we have dp ¼ mp dt þ noise, but what sort of noise? If we would take

“noise” ¼ s1dB, where B is the Wiener process, then we would obtain the

stationary predictions of the Ornstein–Uhlenbeck (OU) model (described

below). But stationarity is not a property of financial markets. The next

simplest assumption is that dp ¼ mpdt þ ps1dB, which is the lognormal

pricing model (also described below) and is nonstationary. Although we’ve

argued from the standpoint of bonds, this equation has also been applied

historically to stock and foreign exchange markets. Figure 3.1 shows a stock

index, and Figure 3.2 shows the prediction of the lognormal pricing model

(which we can solve once we know stochastic calculus). Although the details

are wrong, one sees visually that the model has some correct qualitative

features. The point is to develop stochastic calculus in order to introduce

the empirically correct class of model.

3.8.1 Ito’s theorem

Stochastic calculus is developed based on the Wiener process. We begin by

introducing the stochastic differential

dy ¼ RðB; tÞdtþ bðB; tÞdB ð3:124Þ
in combination with the stochastic integral

1200

800

400

1970 1980 1990

Figure 3.1 UK FTA index, 196 3–92. Fr om Baxter and Renni e (19 95 ), fig. 3.1 .
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yðtÞ ¼ yðt0Þ þ
ðt
t0

RðBðsÞ; sÞdsþ
ðt
t0

bðBðsÞ; sÞdBðsÞ ð3:125Þ

The first term is an ordinary integral of a random variable B(t), but the

second term is a “stochastic integal” and is denoted by the symbol for the

“Ito product”

b ��B ¼
ðt
0

bðBðsÞ; sÞdBðsÞ ð3:126Þ

which is strictly defined by

b ��B ¼
ðt
0

bðBðsÞ; sÞdBðsÞ �
XN
k¼1

bðBk�1; tk�1Þ�Bk ð3:127Þ

for large N, where DBk ¼ B(tk) – B(tk–1).

The main point is that Ito defined the stochastic integral so that the noise

does not renormalize the drift (Stratonovich’s definition of the stochastic

integral is different). Because the integrand is defined in the sum at the left

end point tk–1, we have

b ��Bh i ¼ 0 ð3:128Þ
because the increments are uncorrelated: �Bk�1�Bkh i ¼ 0 because Bk–1

occurs before DBk. Functions b(B,t) that satisfy this condition are called

“nonanticipating functions,” meaning functions determined by the Wiener

process at times earlier than time t.
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Figu re 3.2 Expone ntial Br ownian moti on d p ¼ Rp dt þ s pdB with constant
R and s . Bax ter and Renni e (1995 ), fig. 3.6 .
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The next order of business is to prove Ito’s theorem, and then Ito’s lemma.

To prove Ito’s theorem, we must study the variable dB(t)2 ¼ (dB(t))2. We must

be careful to distinguish (dB)2 from d(B2(t)) in all that follows. We aim to

prove that the former behaves deterministically, that in Ito calculus we can

use (dB)2 ¼ dt.

To derive Ito’s theorem we study the stochastic integral

I ¼
ðt
0

dB2 �
XN
k¼1

�B2
k ð3:129Þ

The variance of I is

s2
I ¼ Nð �B4

� �� �B2
� �2Þ ð3:130Þ

Denoting the increment as DB ¼ B(t þ Dt) – B(t) and using the Gaussian

distribution, we get �B4
� � ¼ 3�t2, so that with Dt ¼ t/N we get sI

2¼ 2t2/N,

which vanishes as N goes to infinity. That is, the width of the density of the

random variable (DB)2 vanishes as Dt vanishes, so that density of the random

variable (dB)2 is a delta function. This means that (dB)2 is, with probability

unity, deterministic and so we can take

ðdBÞ2 ¼ dt ð3:131Þ
“in probability.” An immediate consequence of this is that, with R ¼ 0, the

process variance is

y2ðtÞ� �
cond

¼ y2ðt0Þ þ
ðt
t0

b2ðBðsÞ; sÞ� �
cond

ds ð3:132Þ

That is, variances can be easily formulated as ordinary integrals by using Ito

calculus. We will next prove Ito’s lemma, which is the practical tool needed to

do stochastic calculus.

The beauty and usefulness of Ito calculus is twofold. First, in the Ito

stochastic integral the noise does not renormalize the drift. The latter effect

is built into the definition of the Ito integral, as we’ve just shown:

b ��Bh i ¼ 0, whether the average is conditioned or not. Second, as we show

next, given a specific stochastic process x(t), Ito’s lemma allows us easily to

construct coordinate transformations to define topologically related stochas-

tic processes y(t). Two different processes are topologically equivalent

if connected by a continuous, invertible transformation. Ito processes in

addition require twice-differentiability of the transformation.
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3.8.2 Ito’s lemma

Given the Wiener process B(t), we consider the class of twice-differentiable

functions G(B,t), which we can understand as a coordinate transformation

from the random variable B to define a new random variable y ¼ G(B,t). If

the transformation is also invertible then the processes are topologically

equivalent. Ito’s lemma uses the lowest-order terms in a Taylor expansion

dG ¼ @G

@t
dtþ @G

@B
dBþ 1

2

@2G

@B2
dB2 ð3:133Þ

to construct the stochastic differential defining the new random variable y:

dG ¼ @G

@t
þ 1

2

@2G

@B2

� �
dtþ @G

@B
dB ð3:134Þ

Note that the first term on the right-hand side is the drift and the second term

is the noise term, so that the noise renormalizes the drift in the coordinate

transformation.

Using (3.134) we can obtain y ¼ G ( B,t ) via stochastic integration

y ¼ GðB; tÞ ¼ Gð0; 0Þ þ
ð
ð@G=@tþ 1

2
@2G=@B2Þdtþ

ð
@G=@BdB ð3:135Þ

One can use Ito’s lemma to evaluate stochastic integrals, or to reduce new

stochastic integrals to the evaluation of other ones. Here are two easy

examples.

First, consider y ¼ B2 – t. Ito’s lemma yields

dy ¼ 2BdB ð3:136Þ
Conbining this with y we obtain

ðB
0

BdB ¼ ðB2 � tÞ=2 ð3:137Þ

Second, consider G(B,t) ¼ B3/3 – Bt. Then

dy ¼ ðB2 � tÞdB ð3:138Þ
so that

ðB
0

B2dB�
ðt
0

sdBðsÞ ¼ B3=3� t ð3:139Þ
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Note next that the examples y(t) considered have no drift (no “trend”),

yðtÞh i ¼ Gð0; 0Þ ¼ 0. We have two explicit examples of Martingales.

3.8.3 Local vs global descriptions of stochastic dynamics

Note that the stochastic differential dy provides a “local” description of a

stochastic process, one valid in a very small neighborhood of a point (B,t),

�y � RðB; tÞ�tþ bðB; tÞ�B ð3:140Þ
The full transformation y ¼ G(B,t) provides a global description of the

same process, a description valid over finite (if not infinite) intervals in both

B and t.

Let R ¼ 0 here. Note further that locally, with Dy ¼ y(t þ Dt) – y(t), the

mean square fluctuation is

�y2
� � � b2ðB; tÞ� �

�t ð3:141Þ
so that b2(B(t),t) is the diffusion coefficient for the transformed Wiener

process: the new process y is, by a twice-differentiable coordinate transform-

ation, topologically equivalent to a Wiener process. The stochastic processes

important for finance markets are not topologically equivalent to Wiener

processes, and we will show how to build topologically inequivalent processes

from a Wiener process via a stochastic integral equation.

Note that the mean square fluctuation hyðt;TÞ2i about an arbitrarily

chosen point y(t) is not the process variance. The variance of the process

y(t) is defined by hyðtÞ2i. Confusing the two can arise from insufficient

attention to the question of stationary vs nonstationary increments.

3.8.4 Martingales for beginners

The defining condition for a local Martingale M(t) with M(0) ¼ 0 is

MðtÞh icond¼ Mðt0Þ. This implies MðtÞMðsÞh icond¼ M2ðsÞ� �
if s < t, conditions

satisfied by the Wiener process. Note that

MðtÞ ¼ Mðt0Þ þ
ðt
t0

bðBðsÞ; sÞdBðsÞ ð3:142Þ

is also a Martingale for nonanticipating functions b(B,t).

We can use transformations y ¼ G(B,t) on Wiener processes to construct

Martingales, because aMartingale is generated by any drift-free Ito stochastic

process
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y ¼ GðB; tÞ ¼ Gð0; 0Þ þ
ð
@G=@BdB ð3:143Þ

where

GðB; tÞh i ¼ Gð0; 0Þ ð3:144Þ
It follows by Ito’s lemma that

dy ¼ ð@G=@tþ 1

2
@2G=@B2Þdtþ @G

@B
dB ð3:145Þ

We can define infinitely many different Martingales y ¼ G(B,t) by solving the

simplest backward-time-diffusive pde

@G=@tþ 1

2
@2G=@B2 ¼ 0 ð3:146Þ

subject to boundary or initial conditions.

With a Martingale y ¼ G(B,t)

dG ¼ ð@G=@xÞdB ð3:147Þ
�y ¼ G0 � dB ð3:148Þ

then the additional condition

s2 ¼ ð�yÞ2
D E

¼
ð
G02� �

dt < 1 ð3:149Þ

is required for a global Martingale where the function D(B,t) ¼ √G0(B,t) is
identified as the diffusion coefficient.

We’re now prepared to study stochastic differential and stochastic integral

equations.

3.9 Ito processes

Ito processes are diffusive processes with uncorrelated noise. The latter

follows from Ito’s theorem in the definition of the stochastic integral. We

now illustrate the diffusive property.

3.9.1 Stochastic differential equations

We argued earlier that the general form of a process made up of noise with

uncorrelated increments plus a drift term is

xðtÞ ¼ AðtÞ þMðtÞ ð3:150Þ
where the drift term is given by A(t) ¼ Ð

R(x(s),s)ds with
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Rðx; tÞ � 1

T

ð1
�1

dyðy� xÞp2ðy; t; x; t� TÞ ð3:151Þ

as T vanishes, and M(t) is a Martingale with M(0) ¼ 0. Here is the central

question for finance theory: what is the most general Martingale that we can

write down? Note that the stochastic integral equation

xðtÞ ¼ xðt0Þ þ
ðt
t0

bðxðsÞ; sÞdBðsÞ ð3:152Þ

is a Martingale so long as b(x,t) is a nonanticipating function. This is the most

general form of a Martingale, and appears in the math literature as the

Martingale Representation Theorem.

The diffusion coefficient is defined analogous to the drift coefficient by

Dðx; tÞ � 1

T

ðtþT

t

ðy� xÞ2p2ðy; tþ T; x; tÞ ð3:153Þ

as T vanishes. Note that (without drift)

x2ðtþ TÞ� � � x2ðtÞ þ Dðx; tÞT ð3:154Þ
where b2(x,t) ¼ D(x,t) is the diffusion coefficient. For a Martingale, the mean

square fluctuation about the point x(t) is given by

x2ðt; TÞ� � ¼ ðtþT

t

DðxðsÞ; sÞh ids ð3:155Þ

If the average is conditional then (3.154) is to be calculated using the transi-

tion density p2. Otherwise, f2 is required.

The general form of an Ito process is defined by the stochastic integral

equation

xðtþ TÞ ¼ xðtÞ þ
ðtþT

t

RððsÞ; sÞdsþ
ðtþT

t

bðxðsÞ; sÞdBðsÞ ð3:156Þ

and consists of an arbitrary Martingale plus a drift term. If the transition

density has memory of finitely many states in the past, then by definition of

the drift and diffusion coefficients that memory should appear explicitly in

the coefficients (McCauley, 2008b).
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Locally the sde generates the Ito process. For questions of existence,

continuity, and stability of processes, the reader is referred to L. Arnold’s

informative text (1992) where Lipshitz conditions and Picard’s iterative

method for stochastic integral equations are discussed along with stability

conditions. Existence requires a Lipshitz condition on drift and diffusion

combined, and continuity requires that the drift and diffusion coefficients

do not grow faster than quadratically in x. Stability means asymptotically

stable, so any process with variance unbounded as a function of t is unstable.

Stationary processes are stable, for example. The idea of stability is limitation

on the size of allowed fluctuations as time increases. The Wiener process is

unstable in the sense that the particle is not limited to a finite region of the

x-axis as t increases, but escapes to infinity in infinite time. Stability generally

requires putting the particle in a box of finite size.

Excepting the most trivial cases, one cannot try realistically to solve for x(t)

via Picard’s method. The best way to think of solving an Ito process is to find

a way to calculate the two-point transition probability density. Before deriv-

ing the pdes that generate the transition density, we first derive some other

important relations.

Let R ¼ 0. The conditional mean square fluctuation is given as

x2ðt;TÞ� �
cond

¼
ðtþT

t

ds

ð1
�1

dyp2ðy; s x; tj ÞDðy; sÞ ¼
ðtþT

t

ds Dðx; sÞh icond ð3:157Þ

This is corrected by easily derived extra terms when R 6¼ 0, but those terms are

of O(T2) for small T. The point is that we obtain

ðxðtþ TÞ � xðtÞÞ2
D E

cond
� Dðx; tÞT ð3:158Þ

as T goes to zero. Using the definition

ðxðtþ TÞ � xðtÞÞ2
D E

cond
¼

ð
dxdyðx� yÞ2p2ðx; tþ T y; tj Þ ð3:159Þ

we obtain

Dðx; tÞ � 1

T
ðxðtþ TÞ � xðtÞÞ2

D E
cond

¼ 1

T

ð
ðx� x0Þ2p2ðx; tþ T x0; tj Þdx0 ð3:160Þ

as T vanishes. Likewise,

Rðx; tÞ � 1

T
xðtþ TÞ � xðtÞh icond¼

1

T

ð
ðx� x0Þp2ðx; tþ T x0; tj Þdx0 ð3:161Þ
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as T vanishes. We’ve therefore shown that Ito calculus reproduces the stand-

ard definitions of drift and diffusion as conditional averages.

3.9.2 Ito’s lemma revisited

Ito’s lemma for the transformation of general stochastic process x(t) is based

on Ito’s theorem. Because (dB)2 ¼ dt we obtain (dx)2 ¼ D(x,t)dt, so that in

any twice-differentiable and invertible transformation of variables y ¼ G(x,t)

we obtain

dy ¼ @G

@t
dtþ @G

@x
dxþ 1

2

@2G

@x2
ðdxÞ2 ð3:162Þ

Substituting, using the sde for dx, we get the sde

dy ¼ @G

@t
þ Rðx; tÞ @G

@x
þ Dðx; tÞ

2

@2G

@x2

� �
dtþ @G

@x
bðx; tÞdB ð3:163Þ

The diffusion coefficient for the process y(t) is therefore E(y,t) ¼ (G0(G–1(y,t),

t))2D(G–1(y,t),t). For this, the at least twice-differentiable transformation

y ¼ G(x,t) must be invertible. The stochastic integral equation for y follows

easily as well. Processes where the transformation exists globally and is

invertible are topologically equivalent to the original process x. For example,

with price p and log return x¼ lnp, price and returns behavior are topologic-

ally equivalent.

Note next that Martingales

MðtÞ ¼ Mðt0Þ þ
ðt
t0

ð@GðxðsÞ; sÞ=@xÞbðxðsÞ; sÞdBðsÞ ð3:164Þ

can be constructed by requiring that

@G

@t
þ Rðx; tÞ @G

@x
þ Dðx; tÞ

2

@2G

@x2
¼ 0 ð3:165Þ

subject to specific initial or boundary conditions, and that infinitely many

different Martingales correspond to the different possible choices of initial or

boundary conditions. Equation (3.165) is a backward-time-parabolic pde, a

backward-time-diffusion equation because b2(x,t) ¼ D(x,t) > 0.

Next, we derive the forward-time-diffusive pde satisfied by the transition

density of an Ito process.
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3.9.3 The Fokker–Planck pde

We arrive now at a most important and extremely useful juncture, one basic

in statistical physics but seldom mentioned in economics and finance (the

reverse is true of the Ito sde). However, our derivation is far more general

than the usual textbook one, and makes no assumption that the underlying

process is necessarily Markovian.

Consider a twice-differentiable dynamical variable A(x) whose average is

finite. The time evolution of A is given by Ito’s lemma:

dA ¼ ðR @A

@x
þ D

2

@2A

@x2
Þdtþ b

@A

@x
dB ð3:166Þ

We can calculate the average of A conditioned on x(t0) ¼ x0 at time t0 in x(t)¼
x0 þ

Ð
R(x,s)ds þ Ð

b(x,s)dB(s), if we know the transition density,

AðxÞh icond¼
ð
p2ðx; t x0; t0j ÞAðxÞdx ð3:167Þ

From

d AðxÞh icond
dt

¼
ð
@p2ðx; t x0; t0j Þ

@t
AðxÞdx ð3:168Þ

and using

dAh icond¼ R
@A

@x

� 
cond

þ D

2

@2A

@x2

� 
cond

� �
dt ð3:169Þ

with d Ah i=d t defined by (3.168), we obtain from (3.169), after integrating

twice by parts and assuming that the boundary terms vanish, thatð
dxAðxÞ @p2

@t
þ @ðRp2Þ

@x
� 1

2

@2ðDp2Þ
@x2

� �
¼ 0 ð3:170Þ

For arbitrary A(x) this yields

@p2
@t

¼ � @ðRp2Þ
@x

þ 1

2

@2ðDp2Þ
@x2

: ð3:171Þ

This is theFokker–Planckpde, orKolmogorov’s secondpde (K2), and theGreen

function is the transition density. Given the transition density and the one-point

density we can construct a two-point density f2ðx; t; y; sÞ ¼ p2ðx; t y; sj Þf1ðy; sÞ
where by integration the one-point density satisfies

f1ðx; tÞ ¼
ð
f2ðx; t; y; sÞdy ¼

ð
p2ðx; t y; sj Þf1ðy; sÞdy ð3:172Þ
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and so satisfies the same pde as does p2, but with an arbitrary choice of initial

condition f1(x,t0). The transition density satisfies p2ðx; t0 x0; t0j Þ ¼ �ðx� x0Þ
and reflects the underlying dynamics while f1 does not. No Markovian

assumption was made, and (3.171) is not an approximation: the Fokker–

Planck pde is demanded by the Ito sde (3.166). Note that the line of reasoning

here is not the standard one found in other texts (excepting Friedman (1975),

in part); our treatment here follows Schulten (1999).

In particular, no assumption was made that R, D, and hence p2, are

independent of memory of an initial state, or of finitely many earlier states.

If there is memory, e.g. if p1(x,t0) ¼ u(x) and if D ¼ D(x,t;x0,t0) depends on one

initial state x0 ¼
Ð
xu(x)dx, then due to memory in p,

p2ðx3; t3jx2; t2Þ ¼
Ð
p3ðx3; t3jx2; t2; x1; t1Þp2ðx2; t2jx1; t1Þp1ðx1; t1Þdx1Ð

p2ðx2; t2jx1; t1Þp1ðx1; t1Þdx1 ð3:173Þ

Then by the two-point transition density we must understand that

p2ðx; t y; sj Þ ¼ p3ðx; t y; s; x0; t1j Þ. That is, in the simplest case p3 is required to

describe the stochastic process. Memory appears in (3.173) if, for example, at

time t0, f1(x,0) ¼ d(x – x0) with x0 6¼ 0.

It’s now quite easy to prove that the sde

dx ¼ bðtÞdB ð3:174Þ
is simply a change of time variable on the Wiener process. Consider scaling

solutions of the corresponding pde

@f

@t
¼ DðtÞ

2

@2f

@x2
ð3:175Þ

f ðx; tÞ ¼ s�1ðtÞFðuÞ; u ¼ x=sðtÞ, so that

x2ðtÞ� � ¼ s2ðtÞ
ð
duu2FðuÞ ¼ s2ðtÞ ð3:176Þ

and F(u)¼ (2p)–1/2exp(–u2/2). Scaling requires that

DðtÞ ¼ d

dt
s2ðtÞ ð3:177Þ

so that with dt¼ D(t)dt,

� ¼
ðt
0

DðtÞdt ¼ s2ðtÞ ð3:178Þ
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we obtain f(x,t) ¼ g(x,t) satisfying

@g

@t
¼ 1

2

@2g

@x2
ð3:179Þ

with corresponding sde dx ¼ dB(t). The Green function of this pde is

the transition density of the Wiener process. Time-translational invariance

means that D(x,t) depends on x alone; space-translational invariance means

that D(x,t) depends on t alone. The only time- and space-translationally

invariant Martingale (requiring that D(x,t) ¼ constant) is therefore the

Wiener process.

3.9.4 Calculating averages and correlations

We can use Ito’s lemma for the calculation of averages. Consider first

the average of any dynamical variable A(x) that doesn’t depend explicitly on

t (e.g. A(x) ¼ x2). From Ito’s lemma we obtain

dA ¼ ðRA0ðxÞ þ D

2
A00ðxÞÞdtþ A0bdB ð3:180Þ

Whether the average is conditioned or not we obtain

d Ah i
dt

¼ RA0ðxÞh i þ 1

2
DA00ðxÞh i ð3:181Þ

For example, if A ¼ xn (and not worrying here about unfinite moments due to

fat tails) then

d xnh i
dt

¼ n Rxn�1
� �þ nðn� 1Þ

2
Dxn�2
� � ð3:182Þ

Correlations are equally easy to calculate. Suppose one wants to know

Aðxðtþ TÞÞBðxðtÞÞh i. For simplicity consider the case where A(x(0)) ¼ 0,

B(x(0)) ¼ 0 and assume that R ¼ 0, that x(t) is a Martingale (the reader can

easily generalize the result). Then from Ito’s lemma

AðxðtÞÞ ¼
ðt
0

A00ðxðsÞÞDðxðsÞ; sÞdsþ A00b ��B ð3:183Þ

and the analogous equation for B, we obtain the correlation function for

unequal times t and t þ T. For example, let A ¼ B ¼ x2. Then
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x2ðtþ TÞx2ðtÞ� � ¼ ðtþT

0

ðt
0

dsdq DðxðsÞ; sÞDðxðqÞ; qÞh i

þ
ðt
0

x4ðsÞDðxðsÞ; sÞ
* +

ds

ð3:184Þ

The second termonthe right-hand side is uninteresting if t is taken tobe fixedand

T is varied. The quantity (3.184) is used as a “volatility measure” in finance. In the

literature it’s often taken for granted thatmemory is necessary to understand the

variation of a volatility measure with time lag T, but even Markov models may

produce interesting volatility. The reader should by now have become aware of

the power of Ito calculus, but we will provide more examples below.

Here’s another way to formulate the same result. Using A(x(t þ T)) ¼ x2(t þ T)

in (3.183), multiplying by x2(t) and averaging we obtain

x2ðtþ TÞx2ðtÞ� � ¼ x4ðtÞ� �þ ðtþT

t

x2ðtÞDðxðsÞ; sÞ� �
ds ð3:185Þ

3.9.5 Stationary processes revisited

A process is called strongly stationary if densities fn and transition densities pn
of all orders n are time-translationally invariant and normalizable:

fnðx1; t1 þ T; . . . ; xn; tn þ TÞ ¼ fnðx1; t1; . . . ; xn; tnÞ ð3:186Þ
For n ¼ 2 this requires

p2ðxn; tn xn�1; tn�1j Þ ¼ p2ðxn; tn � tn�1 xn�1; 0j Þ ð3:187Þ
and for n ¼ 1 we must have f1ðx; tþ TÞ ¼ f1ðx; tÞ independent of t. We can

easily produce examples where the stationary one-point density is not nor-

malizable even if (3.187) holds. Such processes are nonstationary.

A stationary process demands a normalizable time-translationally invariant

one-point density f1(x), so that the mean xðtÞh i, variances2 ¼ x2ðtÞ� �� xðtÞh i2,
and all higher moments are constants, independent of t. The normalizable one-

point density describes fluctuations about statistical equilibrium (or a driven

steady state), where the equilibrium values of the process are the averages

calculated using that density. In equilibrium nothing changes with time.

For a time-translationally invariant process x(t) with normalizable density

f1(x), p2ðy; tþ T x; tj Þ ¼ p2ðy; T x; 0j Þ yields pair correlations
xðtþ TÞxðtÞh i ¼ xðTÞxð0Þh i ð3:188Þ
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depending on T alone, independent of t. With T ¼ 0 we get s2 ¼
x2ðtÞ� � ¼ x2ð0Þ� � ¼ constant if x(0)¼ 0. Stationary pair correlations generally

exhibit the asymptotic approach to equilibrium. These pair correlations do not

follow for a time-translational invariant Markov process if the stationary

density f1(x) is not normalizable (an example is provided below) and contra-

dicts the Martingale pair correlations, which depend on t alone independently

of the time lag T.

For a time-translationally invariant Martingale

xðtþ TÞ ¼ xðtÞ þ
ðtþT

t

bðxðsÞÞdBðsÞ ð3:189Þ

we obtain

s2 ¼ x2ðtÞ� � ¼ ðt
0

ds

ð1
�1

dyDðyÞp2ðy; s 0; 0j Þ ð3:190Þ

which depends on t and generally does not approach a constant for t 	 1

excepting one special case. A Martingale would agree with the stationarity

requirement if xðTÞxð0Þh i ¼ x2ð0Þ� �
, but only the single case of translationally

invariant quadratic diffusion yields that result. Generally, a Martingale

process is nonstationary.

In contrast withMartingales, the increment autocorrelations of a stationary

process do not vanish,

xðt; TÞxðt;�TÞh i ¼ xð2TÞxð0Þh i � s2 ð3:191Þ
except in the iid case.

Time-translationally invariant Martingales are defined by the class where

D(x,t) ¼ D(x) 6¼ constant, but where there is no normalizable t-independent

one-point density. A normalizable one-point density is provided by

f1ðx; tÞ ¼ p2ðx; t 0; 0j Þ. The simplest example is provided by the drift-free lognor-

mal process dx¼ xdB(t). In Chapter 4, we show that the variance of this process

is nonlinear in time t and increases without bound: the process is nonstationary.

More generally, stationary processes may be Markovian, but time-transla-

tionally invariant Markov processes are generally not stationary. In the case

of an infinite or semi-infinite interval (b ¼1) a time-translationally invariant

Markov process is generally not stationary because the stationary one-point

density is not normalizable, and this is the rule, not the exception. Such a

process does not describe fluctuations about statistical equilibrium. In

this case a time-dependent mean and the moments are calculated from
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f1ðx; tÞ ¼ p2ðx; t 0; 0j Þ with initial condition f1(x,0) ¼ d(x). Here’s the simplest

example, with –1 < x < 1.

Consider the Wiener process dx¼ dB on the entire interval –1 < x < 1,

@g

@t
¼ 1

2

@2g

@x2
ð3:192Þ

The transition density/Green function is given by the Green function

gðx; tjx0; t0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4��t

p e�
ðx�x0Þ2
2s�t ð3:193Þ

The equilibrium one-point density satisfies @2f1=@x
2 ¼ 0 and is not normal-

izable, therefore the Wiener process is nonstationary. Another way to see that

the process is nonstationary is that s2ðtÞ ¼ t is never constant. We can take as

the normalizable nonequilibrium one-point density f1ðx; tÞ ¼ gðx; t 0; 0j Þ.
The lognormal model dp ¼ mpdtþ s1pdB can be solved by transforming to

theGaussianmodel.With x¼ lnp, Ito’s lemmaplus a trivial stochastic integration

yields x ¼ ðm� s2
1=2Þtþ s1B so that pðtÞ ¼ pð0Þ½expðm� s2

1=2Þt� exps1BðtÞ.
Evaluating es1Bh i by completing the squares in the Gaussian exponent for the

Wiener process yields pnðtÞh i ¼ pnð0Þen½mþs2
1
ðn�1Þ=2�t. Since the variance grows

unbounded as t increases, the process is strongly nonstationary, reflecting the

stochastic analog of an unstable dynamical system (Arnold, 1992).

In stark contrast, an example of a process with an asymptotic approach to

statistical equilibrium, an asymptotically stationary process, is provided by

the OU process:

dv ¼ �bvdtþ s1dB ð3:194Þ
(b > 0).

In Ito calculus the derivative of a stochastic variable and an ordinary function

obeys the ordinary chain rule (proof left to reader) so that

e�btdðvebtÞ ¼ s1dB

v ¼ v0e
�bt þ s1e

�bt
ðt
0

ebsdBðsÞ ð3:195Þ

vðtÞh i ¼ v0e
�bt ! 0; t ! 1

s2 ¼ vðtÞ2
D E

� vðtÞh i2¼ s2
1

2b
ð1� e�2btÞ ! s2

1

2b
; t ! 1

ð3:196Þ

Stationary processes obey a “fluctuation-dissipation theorem” whereby the

friction constant b is determined by the equilibrium fluctuations, yielding a
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relationship between b and s1. In equilibrium statistical physics v is the speed

of a Brownian particle; the equilibrium density f(v) satisfies

@f

@t
¼ b

@

@v
ðvf Þ þ s2

1

2

@2f

@v2
¼ 0 ð3:197Þ

and is the Maxwell–Boltzmann density (a Gaussian)

f ðvÞ / e�v2=2kT ð3:198Þ
The fluctuation-dissipation theorem (first noted by Einstein in 1905) yields s1

2/

b¼ kTwhere k is Boltzmann’s constant and T is the absolute/Kelvin temperature

of the heat bath, the fluid molecules that the Brownian particle continually

collides with. See Kubo et al. (1978) on the fluctuation-dissipation theorem.

We can derive the transition density of the OU process by using Ito

calculus combined with our knowledge of Gaussian processes. Note that in

the solution

vðtÞebt � vð0Þ ¼ s1

ðt
0

ebqdBðqÞ ð3:199Þ

the noise term

MðtÞ ¼ s1

ðt
0

ebqdBðqÞ ð3:200Þ

is a Martingale with nonstationary increments because the variance

M2ðtÞ� � ¼ s2
1

2b
ðe2bt � 1Þ ð3:201Þ

is nonlinear in t. On the other hand this Martingale is Gaussian because the

diffusion coefficient depends on t alone. We can easily construct the transition

density. According to (3.119), we have

ðx� myÞ2
D E

cond
¼ Kðt; sÞ ð3:202Þ

From the standard form

vðtÞ ¼ vðsÞe�bðt�sÞ þ s1e
�bt

ðt
s

ebqdBðqÞ ð3:203Þ

we see that m(t,s)¼ e–(t–s) and so
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Kðt; sÞ ¼ e�2bt M2ðs; t� sÞ� � ¼ s2
1

2b
ð1� e�2ðt�sÞÞ ð3:204Þ

where the Martingale increment in (3.200) is given by

Mðs; t� sÞ ¼ s1

ðt
s

e2bqdBðqÞ ð3:205Þ

This yields the time-translationally invariant transition density

p2ðv; t� s w; 0j Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�s2

1ð1� e�ðt�sÞÞ=2b
q e�ðv�we�bðt�sÞÞ=2s2

1
ð1�e�ðt�sÞÞ=2b ð3:206Þ

and the pair correlations are given by xðTÞxð0Þh i ¼ s2e�bT .

The transition density is normally derived by solving the Fokker–Planck

pde for the OU process. The OU process is asymptotically stationary: a

normalizable one-point density f1ðvÞ ¼ p2ðv;1 0; 0j Þ representing statistical

equilibrium occurs in the limit where t� s ! 1. The reader may check to

see that the functions

mðt; sÞ ¼ e�ðt�sÞ

Kðt; sÞ ¼ s2
1

2b
ð1� e�ðt�sÞÞ

gðt; sÞ ¼ 0

ð3:207Þ

obey the conditions (3.122) for a Gaussian transition density to satisfy the CK

equation. We also see that the OU process is Markovian, because there’s no

memory in either the drift or diffusion term in the sde for the OU process.

3.9.6 Stationary one-point densities

A time-independent one-point density can be derived from the Fokker–

Planck pde whenever the drift and diffusion coefficients are t-independent

but to qualify as defining a stationary process, the time-independent one-

point density must be normalizable. The Fokker–Planck equation expresses

local conservation of probability

@f

@t
¼ � @j

@x
ð3:208Þ

where the probability current density is
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jðx; tÞ ¼ Rf ðx; tÞ � 1

2

@

@x
ðDf ðx; tÞÞ ð3:209Þ

Global probability conservation

ð1
�1

f ðx; tÞdx ¼ 1 ð3:210Þ

requires

d

dt

ð
fdx ¼

ð
@f

@t
dx ¼ � jj

1

�1
¼ 0 ð3:211Þ

Equilibrium solutions may exist only if both R(x) and D(x) are time-

independent, and then must satisfy

jðx; tÞ ¼ Rf ðx; tÞ � 1

2

@

@x
ðDf ðx; tÞÞ ¼ 0 ð3:212Þ

and are given by

f ðxÞ ¼ C

DðxÞ e
2
Ð

RðxÞ
DðxÞdx ð3:213Þ

with C a constant. The general stationary state, in contrast, follows from

integrating (again, only if R and D are t-independent) the first order equation

j ¼ RðxÞf ðxÞ � 1

2

@

@x
ðDðxÞf ðxÞÞ ¼ J ¼ constant 6¼ 0 ð3:214Þ

and is given by

f ðxÞ ¼ C

DðxÞ e
2
Ð

RðxÞ
DðxÞdx þ J

DðxÞ e
2
Ð

RðxÞ
DðxÞdx

ð
e
�2

Ð
RðxÞ
DðxÞdxdx ð3:215Þ

Stationary solutions reflect either statistical equilibrium (J ¼ constant¼ 0) or

the driven time-independent steady state (j(x) ¼ J ¼ constant 6¼ 0). In the OU

process J ¼ 0.

Note that time-translationally invariant Martingales generate stationary

solutions of the form f1(x) ¼ C/D(x). These solutions generally are not

normalizable on –1 < x < 1 if the quadratic growth limitation on D(x)

for continuity of the stochastic process is met. A stationarity process is not

guaranteed for arbitrary time-translationally invariant drift and diffusion

coefficients, and this was not pointed out by Kubo, who assumed without

discussion that there would be an approach to statistical equilibrium for

arbitrary D(x) if R(x) < 0.
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3.9.7 Stationary increment Martingales

Consider the increment density (3.107) of a time-translationally invariant

process. With both p2 and f1 independent of t we obtain an increment density

f(z,0,T) independent of t. Hence, the increments of stationary processes

are also stationary. This does not hold for a general Markov process where

p2 is time-translationally invariant but there is no normalizable time-

translationally invariant one-point density. Nor does it generally hold for a

Martingale.

What class of Martingales has stationary increments? An arbitrary

Martingale increment has the form

xðt; TÞ ¼
ðtþT

t

bðxðsÞ; sÞdBðsÞ ð3:216Þ

By time-translational invariance of the Wiener process, we obtain

xðt; TÞ ¼
ðT
0

bðxðsþ tÞ; sþ tÞdBðsÞ ð3:217Þ

To go further we would need to assume that x(t þ T)¼ x(t) in distribution, i.e.

we would have to assume stationary increments under the stochastic integral

sign. Actually, we know already that time-translationally invariant Martin-

gales (Martingales with b(x,t) depending on x alone) have nonstationary

increments because the variance is not linear in t. The lognormal process

dp ¼ mpdt þ s1pdB(t) provides the simplest example, as was shown by the

moment derivation above. Since we can rule out the case D(x,t) ¼ D(x) as a

candidate for diffusion with stationary increments, what’s left?

Let’s return to the increment density

f ðz; t; tþ TÞ ¼
ð
p2ðxþ z; tþ T x; tj Þf1ðx; tÞdx ð3:218Þ

If we assume time-translational invariance of the transition density,

f ðz; t; tþ TÞ ¼
ð
p2ðxþ z;T x; 0j Þf1ðx; tÞdx ð3:219Þ

then this is clearly not enough. To obtain stationary increments we would

need to assume in addition that the transition density is space-translationally

invariant as well, so that f(z,t,t þ T) ¼ p2ðz; T 0; 0j Þ. But this reduces us to the

Wiener process.
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Aside from the Wiener process, we do not know how to construct a

Martingale model with stationary increments (we ignore the Levy processes

here since they aren’t diffusive). We’ve shown above that there is a class of

stationary increment processes with long time increment correlations. In

Chapter 6 we will produce a Gaussian example from that class, and will see

that there both p2 and f1 break time-translational invariance. For nonstation-

ary processes, time-translational invariance is generally not a property of

stationary increment processes.

3.10 Martingales and backward-time diffusion

Weturnnowtoa topic seldomtreated in thephysics and financialmath literature.

The result is central to the theory of stochastic processes, it goes hand-in-hand

with theFokker–Planckpde andprovides the clearest basis for understanding the

Black–Scholes model of risk neutral option pricing in Chapter 8.

3.10.1 Kolmogorov’s backward-time pde

Consider a diffusive process described by an Ito sde

dx ¼ Rðx; tÞdtþ bðx; tÞdBðtÞ ð3:220Þ
Consider a twice-differentiable dynamical variable A(x,t). The sde for A is

dA ¼ @A

@t
þ R

@A

@x
þ D

2

@2A

@x2

� �
dtþ b

@A

@x
dB ð3:221Þ

so that

Aðxðtþ TÞ; tþ TÞ ¼ AðxðtÞ; tÞ þ
ðtþT

t

@AðxðsÞ; sÞ
@t

þ R
@A

@x
þ D

2

@2A

@x2

� �

dsþ
ðtþT

t

bðxðsÞ; sÞ @AðxðsÞ; sÞ
@x

dBðsÞ
ð3:222Þ

A Martingale is defined by the conditional average Ah icond¼ Aðx; tÞ where a

backward-in-time average is indicated. The backward-timepde,Kolmogorov’s

first equation, follows directly from requiring that the drift term vanishes,

@AðxðsÞ; sÞ
@t

þ R
@A

@x
þ D

2

@2A

@x2
¼ 0 ð3:223Þ

yielding a Martingale
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Aðxðtþ TÞ; tþ TÞ ¼ AðxðtÞ; tÞ þ
ðtþT

t

bðxðsÞ; sÞ @AðxðsÞ; sÞ
@x

dBðsÞ ð3:224Þ

We’ve made no assumption that A is positive. That is, A is generally not a

one-point probability density, A(x,t) is simply any Martingale, and an infinity

of Martingales can be so constructed depending on the choice of forward-

time initial conditions specified on A (an initial value or boundary value

problem backward in time is solved). Let pþ denote the backward time-

transition density of the process (3.223). Because of linearity of the solution

of the initial value problem,

Aðx; tÞ ¼
ð
dypþðx; t y; t0j ÞAðy; t0Þ ð3:225Þ

where A(x,t0) is the forward-time initial condition to be specified. The

required transition density therefore satisfies the same pde as the Martingale,

0 ¼ @pþðx; tjy; sÞ
@t

þ Rðx; tÞ @p
þðx; tjy; sÞ
@x

þ Dðx; tÞ
2

@2pþðx; tjy; sÞ
@x2

ð3:226Þ

where pþ(x,t|y,t) ¼ d(x – y). The conditions under which pþ exists, is unique,

and is nonnegative definite are stated in Friedman (1975). Equation (3.226)

is called Kolmogorov’s first pde (K1). Kolmogorov’s backward-time pde is

fundamental for understanding Martingale option pricing.

3.10.2 The adjoint pde

Return now to the calculation of averages of dynamical variables via the

transition density p2. Now, for the case where A(x(t)) is a Martingale (requir-

ing that the drift term in dA vanishes), (3.167) must yield

Ah it¼
ð
pðx; tjx0; t0ÞAðxÞdx ¼ Aðx0Þ ð3:227Þ

and since (3.227) cannot differ from (3.225) if the theory is to make any sense,

then there must be a connection between the backward and forward time-

transition densities pþ and p2 . Comparing (3.225) with (3.227) we see that p þ

and p2 must be adjoints,

pþðx; t y; sj Þ ¼ p2ðy; s x; tj Þ ð3:228Þ
Consequently, to calculate Martingale option pricing we will need only to

solve a certain Fokker–Planck pde.
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We’ve proven elsewhere that the Green functions of K1 and K2 plus

boundary conditions imply the Chapman-Kolmogorov equation even if finite

memory is present. That the Chapman-Kolmogorov equation makes sense in

the face of finite memory follows from

pk�1ðxk; tk xk�2; tk�2; . . . ; x1; t1j Þ ¼
ð
dxk�1pkðxk; tk xk�1; tk�1; . . . ; x1; t1Þj

pk�1ðxk�1; tk�1 xk�2; tk�2; . . . ; x1; t1Þj ð3:229Þ
If pk ¼ pn for all k � n, then from (3.229) we obtain the Chapman-Kolmogorov

equation in the form

pnðxn; tn xn�1; tn�1; . . . ; x1; t1Þj ¼
ð
dypnðxn; tn y; s; xn�2; tn�2; . . . ; x1; t1Þj

pnðy; s xn�1; tn�1; . . . ; x1; t1Þj ð3:230Þ
Explicit examples are shown in McCauley (2008b).
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4

Introduction to financial economics

We will begin with several standard ideas from finance: no-arbitrage, the time

value of money, and the Modigliani–Miller theorem, and then will introduce

the newer concepts of liquidity and reversible trading, market instability,

value in uncertain markets, and Black’s idea of noise traders. More funda-

mentally, we’ll formulate the efficient market hypothesis (EMH) as a Martin-

gale condition, reflecting a hard-to-beat market. We’ll also formulate

hypothetical stationary markets, and show that stationary markets and effi-

cient markets are mutually exclusive. A dynamic generalization of the neo-

classical notion of value to real, nonstationary markets is presented. We will

rely heavily on our knowledge of stochastic processes presented in Chapter 3.

Orientation in finance market history is provided in the books by Bernstein

(1992), Lewis (1989), Dunbar (2000), and Eichengreen (1996).

4.1 What does no-arbitrage mean?

The basic idea of horse trading is to buy a nag cheap and unload it on

someone else for a profit. An analog of horse trading occurs in financial

markets, where it’s called “arbitrage.” The French word sounds more respect-

able than the Germanic phrase, especially to academics and bankers.1

The idea of arbitrage is simple. If gold sells for $1001 in Dubai and for $989

in New York, then traders should tend to sell gold short in Dubai and

simultaneously buy it in New York, assuming that transaction costs and

taxes are less than the total gain (taxes and transaction costs are ignored to

zeroth order in theoretical finance arguments). This brings us to two points.

Trading is often performed by using some fraction of borrowed money. In the

1 For a lively description of the bond market in the time of the early days of derivatives, deregulation, and
computerization on Wall Street, see Liar’s Poker by the ex-bond salesman Lewis (1989).
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stock market, that’s called margin trading and may be highly leveraged. Short

selling means borrowing someone else’s shares for sale (via a brokerage

house, for example) for a fee, and then replacing the shares on or before the

expiration date for the sell order.

A basic assumption in standard finance theory (Bodie andMerton, 1998) is

that arbitrage opportunities are expected to disappear very quickly because

there are many “hungry” and competent professional traders (the civilized

analog of hunters) looking systematically for profits. Such traders are nor-

mally assumed to be posed to take advantage of any opportunity that

presents itself (there is an unstated assumption that the market is liquid

enough that fast trading is possible). This leads to the so-called no-arbitrage

argument, the so-called “law of one price” (Bodie and Merton, 1998). The

idea is that arbitrage occurs on a very short time scale, and on longer time

scales equivalent assets will then tend to have more or less the same ask price

(or bid price) in different markets (assuming markets with similar tax struc-

ture, transaction costs, etc).

Arbitrage arguments are also applied to entirely different assets, like

Motorola and Intel. Deciding what is an equivalent asset here is like compar-

ing apples with oranges and can be dangerous because there is no falsifiable

basis for equivalence. One must also be careful not to confuse a no-arbitrage

condition with the entirely different condition of market equilibrium (market

clearing). For example, in Nakamura (2000) the no-arbitrage condition is

assumed to represent Adam Smith’s Invisible Hand. But consider two geo-

graphically separated markets with different prices for the same asset, say

Intel. Via arbitrage the price may be lowered in one market and raised in the

other, but even if the prices are the same in both markets a positive excess

demand will cause the price to increase as time goes on. Therefore, the

absence of arbitrage opportunities does not imply either equilibrium or

stability. By Adam Smith’s Invisible Hand we mean market stability, or an

asymptotically stationary market. The Invisible Hand is a synonym for an

unspecified mechanism that moves prices toward a statistical equilibrium

distribution.

Arbitrage, carefully and precisely stated, is based on the comparison of

spatially separated prices of the same asset at a single time t. To make clear

that “no-arbitrage” is not an equilibrium condition (has nothing to do with

time-translational invariance), we identify the correct analogy with an under-

lying symmetry and invariance principle. To see that a no-arbitrage condition

doesn’t imply vanishing total excess demand for an asset, consider two

spatially separated markets with two different price distributions for the same

asset. If enough traders go long in one market and short in the other, then the
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market price distributions may be brought into agreement. Even then, if there

is positive excess demand for the asset then the average price of the asset will

continue increasing with time, so that there is no equilibrium. So, markets

that are far from equilibrium can satisfy the no-arbitrage condition. Here,

econophysicists have the advantage over economists: we understand the

difference between time-translational invariance on the one hand, and spatial

translational/rotational invariance on the other. In particular, continuous

symmetries are intimately connected with conservation laws (Wigner, 1967).

In order to understand the geometric meaning of the no-arbitrage condi-

tion, consider a spatial distribution of markets with different price distribu-

tions at each location, i.e. the stock AMD has different prices in New York,

Tokyo, Johannesburg, Frankfurt, London, and Moscow. That is, the price

distribution g(p,X,t) depends on price p, market location X, and time t. It is

now easy to formulate the no-arbitrage condition in the language of statistical

physics. The no-arbitrage condition means spatial homogeneity and isotropy

of the price distribution (to within transaction, shipping and customs fees,

and taxes). In the ridiculously oversimplified case of a uniform market

distribution over the globe, “no-arbitrage” would be analogous to rotational

invariance of the price distribution, and to two-dimensional translational

invariance locally in any tangent plane (from Boston to New York, for

example). The price distribution is not required to be stationary, so market

equilibrium/market clearing is not achieved merely by the lack of arbitrage

opportunities. Given this, how can we define the underlying “value” of an

asset?

The terms “overpriced” and “underpriced” are often heard and read in the

financial news. But to determine whether an asset is overpriced or under-

priced we would need a notion of “value.” Do paper assets like money or

stocks really admit an observable intrinsic or fundamental value, or any

useful notion of value other than the current market price?

4.2 Nonfalsifiable notions of value

A debt of one Dollar owed today is worth less to the lender if payment is

deferred for a year. If the annual bank interest rate is r, then one Dollar

promised to be paid now but paid instead after a year is worth only $1/(1 þ r)

to the recipient today, or PV ¼ FV/(1 þ r) where p(t0) ¼ PV is present value

and p(t) ¼ FV is future value. In finance texts this is called “the time value of

money.” For n discrete time intervals �t with interest rate r for each interval,

we have p(t)¼ p(t0)(1þ r�t)n. This is also called “discounting.” In continuous

time p(tn) ¼ p(t0)e
r�t so that present value is p(t0) ¼ p(t)e–r�t.
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The time value of money is determined by the ratio of two prices at two

different times. Consider either money or any other asset, like a stock or a

house. Is there an underlying “true value” of the asset, a fundamental price at

a single time t? The answer is “Jain” (German for “yes-no”). First, even in

standard economics thinking the value of an asset is not a uniquely defined

idea: there are at least five different definitions of “value” in finance theory.

The first is book value. The second uses the replacement price of a firm (less

taxes owed, debt, and other transaction costs). These first two definitions are

respected by market fundamentalists, and can apparently be useful, judging

from Warren Buffett’s successes. But it’s rare that market prices for com-

panies with good future prospects fall to book value, although the writer

knew one such case in 1974 and by 1975 the price had quadrupled (anti-

pollution laws had just been passed, and the company had just begun business

in that area). Instead, we will concentrate on the standard ideas of value from

finance theory, ideas not used by successful traders. A still popular idea

among some theorists is the old idea of dividends and returns discounted

infinitely into the future for a financial asset like a stock or bond. This

reminds us vaguely of the neo-classical condition of “infinite foresight” on

the part of agents. The fourth idea of valuation, due to Modigliani and

Miller, is somewhat more realistic and is discussed in part 4.4 below.

The idea of dividends and returns discounted infinitely into the future is

not falsifiable because it makes impossible demands on human knowledge.

Here’s the formal definition:

Starting with the total return given by the gain R�t due to price increase

with no dividend paid in a time interval �t, and using the small returns

approximation, we have

�x ¼ ln pðtÞ=pðt0Þ � �p=p ð4:1Þ
or

pðtþ�tÞ � pðtÞð1þ R�tÞ ð4:2Þ
But paying a dividend d at the end of a quarter (�t¼ one quarter) reduces the

stock price, so that for the nth quarter

pn ¼ pn�1ð1þ RnÞ � dn ð4:3Þ
If we solve this by iteration for the implied fair value of the stock at time t0
then we obtain

pðt0Þ ¼
X1
k¼1

dn
1þ Rn

ð4:4Þ
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whose convergence assumes that pn goes to zero as n goes to infinity. This

reflects the assumption that the stock is only worth its dividends, an assump-

tion of little or no practical use in investing, especially asModigliani andMiller

have explained that dividends don’t matter in the valuation of a firm. Robert

Shiller (1999) uses this formal definition of value in his theoretical discussion of

the market efficiency in the context of rational vs irrational behavior of agents,

but wewill not follow that discussion in this book.What is ignored in the above

model and in neo-classical economics is precisely what we focus on here, that

markets are based on uncertainty about the future. Nothing could be a bigger

waste of time for an investor than trying to guess a flow of future dividends.

Finally, in the neo-classical model where money/liquidity is excluded

because uncertainty was systematically and unrealistically deleted, “value”

is the price-label at which equilibrium occurs. There, 100% of all agents agree

on value. Undervalued and overvalued would be well defined were money

allowed, but money is not allowed and cannot be introduced. The generaliza-

tion of the neo-classical model to an uncertain market is a stationary market.

We will show that “value” can be identified in a stationary market, and that

the notion can be extended to nonstationary markets as well. The latter is the

idea of value that we will deal with in this text.

4.3 The Gambler’s Ruin

The Gambler’s Ruin is a useful idea, as it provides advice about making many

small bets in the market compared with a single large bet.

Consider any game with two players (you and the stock market, for

example). Let d denote a gambler’s stake, and D the house’s stake. If

borrowing is not possible then d þ D ¼ C ¼ constant is the total amount of

capital. Let Rd denote the probability that the gambler goes broke, in other

words the probability that d ¼ 0 so that D ¼ C. Assume a fair game; for

example, each player bets on the outcome of the toss of a fair coin. Then

Rd ¼ 1

2
Rdþ1 þ 1

2
Rd�1 ð4:5Þ

with boundary conditions R0 ¼ 1 (ruin is certain) and RC ¼ 0 (ruin is

impossible). To solve (4.5), assume that Rd is linear in d. The solution is

Rd ¼ D

C
¼ 1� d

C
ð4:6Þ

Note first that the expected gain for either player is zero,

Gh i ¼ �dRd þ Dð1� RdÞ ¼ 0 ð4:7Þ
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representing a fair game on the average: for many identical repetitions of the

same game, the net expected gain for either the player or the bank vanishes,

meaning that sometimes the bank must also go broke in a hypothetically

unlimited number of repetitions of the game. In other words, in infinitely

many repeated games the idea of a fair game would re-emerge: neither the

bank nor the opponent would lose money on balance. However, in finitely

many games the house, or bank, with much greater capital has the advantage;

the player with much less capital is much more likely to go broke. Therefore if

you play a fair game many times and start with capital d < D you should

expect to lose to the bank, or to the market, because in this case Rd > 1/2. An

interesting side lesson taught by this example that we do not discuss here is

that, with limited capital, if you “must” make a gain “or else,” then it’s better

to place a single bet of all your capital on one game, even though the odds are

that you will lose. By placing a single large bet instead of many small bets you

improve your odds (Billingsley, 1983).

But what does a brokerage house have to do with a casino? The answer is:

quite a lot. Actually, a brokerage house can be understood as a full-service

casino (Lewis, 1989; Millman, 1995). Not only will they place your bets.

They’ll lend you the money to bet with, on margin, up to 50%. However,

there is an important distinction between gambling in a casino and gambling

in a financial market. In the former, the probabilities are fixed: no matter how

many people bet on red, if the roulette wheel turns up black they all lose. In

the market, the probability that you win increases with the number of people

making the same bet as you. If you buy a stock and many other people buy

the same stock afterward then the price is driven upward. You win if you sell

before the others get out of the market. That is, in order to win you must (as

Keynes pointed out) guess correctly what other people are going to do before

they do it. This would require having better than average information about

the economic prospects of a particular business, and also the health of the

economic sector as a whole. Successful traders like Soros and Buffett are

examples of agents with much better than average knowledge. They don’t

defeat the EMH, they go around it.

4.4 The Modigliani–Miller argument

We define the “capital structure” of a publicly held company as the division

of financial obligations into stocks and bonds. The estimated value2 of a firm

2 One might compare this with the idea of “loan value,” the value estimated by a bank for the purpose of
lending money.
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is given by p ¼ B þ S where B is the total debt and S is the equity, also called

market capitalization. Defined as Bþ S, market value p is measurable because

we can find out what is B, and S ¼ psNs where Ns is the number of shares of

stock outstanding at price ps. For shares of a publicly traded firm like intc,

one can look up both Ns and ps on any discount broker’s website. The

Modigliani–Miller (M & M, meaning Franco Modigliani and Merton Miller)

theorem asserts that capital structure doesn’t matter, that the firm’s market

value p (what the firm would presumably sell for on the open market, were it

for sale) is independent of the ratio B/S. Liquidity of the market is taken for

granted in this discussion (otherwise there may be no buyers, in which case

the M & M price estimate is not useful) in spite of the fact that huge, global

companies like Exxon and GMC rarely change hands: the capital required for

taking them over is typically too large.

Prior to the M & M (1958) theorem it had been merely assumed without

proof that the market value p of a firm must depend on the fraction of a

firm’s debt vs its equity, B/S. In contrast with that viewpoint, the M &

M theorem seems intuitively correct if we apply it to the special case of

buying a house or car: how much one would have to pay for either today is

roughly independent of how much one pays initially as downpayment (this

is analogous to S) and how much one borrows to finance the rest (which

is analogous to B). From this simple perspective, the correctness of the

M & M argument seems obvious. Let’s now reproduce M & M’s “proof”

of their famous theorem.

Their “proof” is based on the idea of comparing “cash flows” of equivalent

firms. M & M neglect taxes and transaction fees and assume a very liquid

market, one where everyone can borrow at the same risk-free interest rate. In

order to present their argument we can start with a simple extrapolation of

the future based on the local approximation ignoring noise

�p � rp�t ð4:8Þ
where p(t) should be the price of the firm at time t. This equation assumes the

usual exponential growth in price for a risk-free asset like a money market

account where r is fixed. Take the expected return r to be the market

capitalization rate, the expected growth rate in value of the firm via earnings

(the cash flow), so that �p denotes earnings over a time interval �t. In this

picture p represents the value of a firm today based on the market’s expect-

ations of its future earnings <�p> at a later time tþ �t. To arrive at the M &

M argument we concentrate on

p � �ph i=r ð4:9Þ
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where p is to be understood as today’s estimate of the firm’s net financial

worth based on <�p> ¼ E and r is the expected profit and expected rate of

increase in value of the firm over one unit of time, one quarter of a year. If we

take �t¼ one quarter in what follows, then E denotes expected quarterly

earnings. With these assumptions, the “cash flow” relation E ¼ pr yields that

the estimated fair price of the firm today would be

p ¼ E=r ð4:10Þ
where r is the expected rate of profit per quarter and E is the expected

quarterly earnings. Of course, in reality we have to know E at time tþ �t

and p at time t and then r can be estimated. Neither E nor r can be known in

advance and must either be estimated from historic data (assuming that the

future will be like the past) or else guessed on the basis of new information. In

the relationship p ¼ B þ S, in contrast, B and S are always observable at time

t. B is the amount of money raised by the firm for its daily operations by

issuing bonds and S is the market capitalization, the amount of money raised

by issuing shares of stock.

Here comes the main point: M & M want us to assume that estimating E/r

at time t is how the market arrives at the observable quantities B and S. To say

the least, this is a very questionable proposition. In M &M’s way of thinking,

if the estimated price E/r differs from the market price p ¼ B þ S then there is

an arbitrage opportunity. M & M assume that there is no arbitrage possible,

so that the estimated price E/r and the known value B þ S must be the

same. Typically of neo-classical economists, M & M mislabel the equality

B þ S ¼ E/r as “market equilibrium,” although the equality has nothing to do

with equilibrium, because in equilibrium nothing can change with time.

In setting B þ S¼ p¼ E/r, M & M make an implicit assumption that the

market collectively “computes” p by estimating E/r, although E/r cannot be

known in advance. That is, an implicit, unstated model of agents’ collective

behavior is assumed without empirical evidence. The assumption is charac-

teristic of neo-classical thinking.3 One could try to assert that the distribution

of prices, which is in reality mainly noise (and is completely neglected in M &

M), reflects all agents’ attempts to compute E/r, but it is doubtful that this is

what agents really do, or that the noise can be interpreted as any definite form

of computation. In reality, agents do not seem to behave like ideally rational

bookkeepers who succeed in obtaining all available information in numerical

bits. Instead of bookkeepers and calculators, one can more accurately speak

3 The market would have to behave trivially like a primitive computer that does only simple arithmetic,
and that with data that are not known in advance. Contrast this with the complexity of intellectual
processes described in Hadamard (1945).
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of agents, who speculate about many factors like the “mood” of the market,

the general economic climate of the day triggered by the latest news on

unemployment figures, etc., and about how other agents will interpret that

data. One also should not undervalue personal reasons like financial con-

straints, or any irrational look into the crystal ball. The entire problem of

agents’ psychology and herd behavior is swept under the rug with the simple

assumptions made by M & M, or by assuming optimizing behavior. Of

course, speculation is a form of gambling: in speculating one places a bet

that the future will develop in a certain way and not in alternative ways.

Strategies can be used in casino gambling as well, as in blackjack and poker.

In the book The Predictors (Bass, 1999) we learn how the use of a small

computer hidden in the shoe and operated with the foot leads to strategies in

roulette as well.

This aside was necessary because when we can agree that agents behave less

like rational computers and more like gamblers, then M & M have ignored

something important: the risk factor, and risk requires the inclusion of noise4 as

well as possible changes in the “risk-free” interest rate which are not perfectly

predictable and are subject to political tactics by the Federal Reserve Bank.

Next, we follow M & M to show that dividend policy should not affect net

shareholders’ wealth in a perfect market, where there are no taxes and

transaction fees. The market price of a share of stock is just ps ¼ S/Ns.

Actually, it is ps and Ns that are observable and S that must be calculated

from this equation. Whether or not the firm pays dividends to shareholders is

irrelevant: paying dividends would reduce S, thereby reducing ps to p0s ¼ (S-d
S)/Ns. This is no different in effect than paying interest due quarterly on a

bond. Paying a dividend is equivalent to paying no dividend but instead

diluting the market by issuing more shares to the same shareholders (the firm

could pay dividends in shares), so that p0s ¼ S/(Nsþ dNs) ¼ (S-dS)/Ns. In either

case, or with no dividends at all, the net wealth of shareholders is the same:

dividend policy affects share price but not shareholders’ wealth. Note that we

do not get ps ¼ 0 if we set dividends equal to zero, in contrast with (4.4).

Here’s a difficulty with the picture we’ve just presented: although the

M & M argument assumes perfect liquidity, liquidity in reality has been

ignored (because liquidity is noise). Suppose that the market for firms is not

liquid, because most firms are not traded often or in volume. Also, the idea of

characterizing a firm or asset by a single price doesn’t make sense in practice

unless bid/ask spreads are small compared with both bid and ask prices.

4 Ignoring noise is the same as ignoring risk, the risk is in price fluctuations. Also, as F. Black pointed out
“noise traders” provide liquidity in the market.
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Estimating fair price p independently of themarket in order to comparewith

the market price B þ S and find arbitrage opportunities is not as simple as it

may seem (see Bose (1999) for an application of equation (4.10) to try to

determine if stocks and bonds are mispriced relative to each other). In order

to do arbitrage you would have to have an independent way of making a

reliable estimate of future earnings E based also on an assumption of what is

the rate r during the next quarter. Then, even if you use this guesswork to

calculate a “fair price” that differs from the present market price and place

your bet on it by buying a put or call, there is no guarantee that the market will

eventually go along with your sentiment within your prescribed time frame.

For example, if you determine that a stock is overpriced then you can buy a

put, but if the stock continues to climb in price then you’ll have to meet the

margin calls, so the Gambler’s Ruin may break your bank account before the

stock price falls enough to exercise the put. This is qualitatively what happened

to the hedge fundLongTermCapitalManagement (LTCM),whose collapse in

1998 was a danger to the global financial system (Dunbar, 2000). Remember,

there are no springs in the market, only unbounded diffusion of stock prices

with nothing to pull them back to your notion of “fair value.”

To summarize, the M & M argument that p ¼ B þ S is independent of B/S

makes sense in some cases,5 but the assumption that most agents uniformly

can compute what they can’t know, namely E/r to determine a single fair price

p, does not hold water. The impossibility of using then-existing finance theory

to make falsifiable predictions led Black via the Capital Asset Pricing Model

(CAPM) to discover a falsifiable model of options pricing, which (as he

pointed out) can be used to value corporate liabilities. We will present the

CAPM in the next chapter. CAPM was essentially the earliest falsifiable

contribution to finance market theory.

We next turn to what M & M neglected: the noise that represents the

liquidity in the market.

4.5 Excess demand in uncertain markets

We begin by asserting, in agreement with the idea of prices determined by

supply and demand, that

dp

dt
¼ eðp; tÞ ð4:11Þ

5 For a very nice example of how a too small ratio S/B canmatter, see pp. 188–190 in Dunbar (2000). Also,
the entire subject of Value at Risk (VaR) is about maintaining a high enough ratio of equity to debt to
stay out of trouble while trading.
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where e is the excess demand at time t. Market clearing means that dp=dt ¼ 0,

requiring an equilibrium market. We will show that the assumptions found in

the literature of market clearing in finance markets are unfounded and

wrong, even in a hypothetical stationary market as we point out below.

An uncertain market is described as a stochastic price process, and if we

assume a market composed of drift plus a Martingale then excess demand

takes on the form

dp ¼ rðp; tÞdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðp; tÞ

p
dB ð4:12Þ

We begin here with the first finance market model by Osborne (1958).

In a noise-free market like a bank deposit we have r(p,t)¼mp where m is the

bank’s interest rate. To generate Osborne’s 1958 observation that stock prices

were approximately lognormally distributed, we need D(p,t) ¼s1
2p2,

dp ¼ mpdtþ s1pdB ð4:13Þ
This was used by Black, Scholes, and Merton to price options falsifiably in

1973, and forms the basis for “financial engineering” today. The model was

not falsified until after the 1987 stock market crash. Here, average market

clearing dp=dth i ¼ 0 is impossible. Exact market clearing is always impossible

under noise (uncertainty), but average market clearing would be possible if

and only if the market were a stationary one. We’ll show this in the section

below on stationary markets.

By Ito’s lemma the returns x ¼ lnp are Gaussian distributed in the lognor-

mal model,

dx ¼ m� s2
1=s

� �
dtþ s2

1dB ð4:14Þ
The earliest model of a real finance market is nonstationary; it describes a far-

from-equilibrium market. To verify this, notice that the variance and all

moments of p increase exponentially with time. From the returns

xðtÞ ¼ m� s2
1=s

� �
tþ s2

1BðtÞ ð4:15Þ
and using p(t) ¼ p(0)ex to obtain the solution

pðtÞ ¼ pð0Þe m�s2
1
=2ð Þtþs1BðtÞ ð4:16Þ

the moments are easily calculated by using the one-point Gaussian distribu-

tion of B,

pnðtÞh i ¼ pnð0Þen m�s2
1
ðn�1Þ=2ð Þt ð4:17Þ

The excess demand vanishes on the average but fluctuates; the model

has no approach to stationarity. The measure of the fluctuations
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s2ðtÞ ¼ p2ðtÞ� �� pðtÞh i2 increases exponentially with time. The lognormal

pricing model does not fit the data quantitatively, but is partly qualitatively

correct, in the sense that real finance markets are nonstationary. We’ll learn

that finance markets demand a non-Gaussian nonstationary model

dp ¼ rpdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2dðp; tÞ

q
dB ð4:18Þ

one where d(p,t) is both strongly nonlinear and nonseparable in p and t. We’ll

see in Chapter 6 that this viewpoint is useful for modeling real finance

markets.

4.6 Misidentification of equilibrium in economics and finance

There are at least five wrong definitions of equilibrium in the economics and

finance literature. The first three definitions would be correct were markets

stationary, but economic processes are known to be nonstationary: there is

(1) the idea of equilibrium fluctuations about a drift in price, requiring a

stationary noise source. Then (2) there is the related notion that market

averages describe equilibrium quantities (Fama, 1970). Assumption (3) is

widespread in the literature, and is the notion that the CAPM describes

“equilibrium” prices (Sharpe, 1964). Again, this definition fails because (as

we’ll see in the next chapter) the parameters in the CAPM vary with time

because finance markets are nonstationary. (4) Black (1989) claimed that

“equilibrium dynamics” is described by the Black–Scholes equation. That

was equivalent to assuming that (i) normal liquid market returns are Gauss-

ian-Markov distributed, and (ii) that “no-arbitrage” is the same idea as

market equilibrium. Absence of arbitrage opportunities is also (mis)identified

as “equilibrium” in Bodie and Merton (1998). Finally, there is the idea (5)

that the market and stochastic models of the market define sequences of

“temporary price equilibria” (Föllmer, 1995). We now proceed to deconstruct

definition (5).

The clearest discussion of “temporary price equilibria” is provided by

Föllmer (1995). In this picture excess demand can vanish but prices are still

fluctuating. Föllmer expresses the notion by trying to define an “equilibrium”

price for a sequence of time intervals (very short investment/speculation

periods �t), but the price so defined is not constant in time and is therefore

not an equilibrium price. He begins by stating that an equilibrium price would

be defined by vanishing total excess demand, e(p)¼ 0. He then claims that the

condition defines a sequence of “temporary price equilibria,” even though

the time scale for a “shock” from one “equilibrium” to another would be on
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the order of a second: the “shock” is nothing but the change in price due to

the execution of a new buy or sell order. Föllmer’s choice of language sets the

stage for encouraging the reader to believe that market prices are, by defin-

ition, “equilibrium” prices. In line with this expectation, he next invents a

hypothetical excess demand for agent i over time interval [t, tþ �t] that is

logarithmic in the price,

eiðpÞ ¼ ai lnðpiðtÞ=pðtÞÞ þ�xiðt;�tÞ ð4:19Þ
where pi(t) is the price that agent i would be willing to pay for the asset during

speculation period �t. The factor xi(t,�t) is a “liquidity demand”: agent i will

not buy the stock unless he already sees a certain amount of demand for the

stock in the market. This is a nice idea: the agent looks at the number of limit

orders that are the same as his and requires that there should be a certain

minimum number before he also places a limit order. By setting the so-

defined total excess demand e(p) (obtained by summing (4.18) over all agents)

equal to zero, one obtains the corresponding equilibrium price of the asset

ln pðtÞ ¼
�X

i

ðai ln piðtÞ þ�xiðtÞÞ
�
=
X
i

ai ð4:20Þ

In the model pi is chosen as follows: the traders have no sense where the

market is going so they simply take as their “reference price” pi(t) the last

price demanded in (4.19) at time t – �t,

piðtÞ ¼ pðt��tÞ ð4:21Þ
This yields

ln pðtÞ ¼
�X

i

ðai ln pðt��tÞ þ�xiðt;�tÞÞ
�
=
X
i

ai

¼ ln pðt��tÞ þ�xðt;�tÞ
ð4:22Þ

If we assume next that the liquidity demand �x(t,�t), which equals the log

of the “equilibrium” price increments, executes Brownian motion then we

obtain a contradiction: the excess demand (4.20), which is logarithmic in the

price p and was assumed to vanish does not agree with the total excess

demand defined by the right-hand side of (4.18), which does not vanish,

because with �x ¼ (R – s2/2)�tþ s�B we have dp/dt ¼ r þ sdB/dt ¼ e(p)
6¼ 0. The price p(t) so defined is not an equilibrium price because the resulting

lognormal price distribution depends on the time.

A related misuse of the word “equilibrium” appears in Muth’s original

definition of rational expectations in Chapter 10. Muth wrote demand/con-

sumption and supply (using our notation) as
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Dðdp; tÞ ¼ bdpðtÞ
Sðdp; tÞ ¼ � dph isubj þ uðtÞ

ð4:23Þ

where dp is supposed to be the deviaton from an equilibrium price, dph isubj is
the subjectively expected price deviation at time t, and e(t) is noise represent-
ing the uncertainty of the agents. The idea is to try to understand how

producers’ expectations correspond to future prices. Setting D ¼ S Muth

obtains

dpðtÞ ¼ g
b

dph isubjþ
1

b
uðtÞ ð4:24Þ

The result is self-contradictory: from an equilibrium assumption D ¼ S we

derive a time-varying price dp. Physics referees would have balked at such an

outlandish claim. In physics we have ideas like “local thermodynamics equi-

librium” where the temperature and other variables evolve slowly, but not

suddenly on a short time scale.

4.7 Searching for Adam Smith’s Unreliable Hand

The idea of Adam Smith’s Invisible Hand is that markets should tend

toward equilibrium, requiring that market equilibrium must (a) exist,

and (b) be stable. This requires that the total excess demand for an asset

vanishes on the average and that the average asset price and variance are

constants.

The OU model

dp ¼ � mj jpdtþ s1dB ð4:25Þ

with negative interest rate m < 0 would provide us with a simple model of

Adam Smith’s stabilizing Invisible Hand. Statistical equilibrium is

achieved as t increases. Unfortunately, there is no evidence for such behavior.

Asset markets are described qualitatively correctly by the lognormal pricing

model

dp ¼ mpdtþ s1pdB ð4:26Þ

where, even if the interest rate is negative, the model is nonstationary. Here,

the variable diffusion coefficient wins over the restoring force and destabilizes

the motion.

The Fokker–Planck equation for the lognormal model
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@g

@t
¼ �m

@

@p
ðpgÞ þ s2

1

2

@2

@p2
ðp2gÞ ð4:27Þ

has the time-invariant solution

gðpÞ ¼ C=p1þ2m=s2
1 ð4:28Þ

which is not normalizable over 0 < p < 1, therefore statistical equilibrium

does not exist for this model. As we showed in Chapter 3, the variance grows

exponentially with t, for example, reflecting loss of knowledge about the

prices as t increases. The lognormal process is a time-translationally invariant

nonstationary Markov process. Stated otherwise, the Gibbs entropy of this

process S ¼ –
R
glngdp increases without bound.

Statistical equilibrium can be achieved in this model by imposing price

controls p1 � p � p2. Mathematically, this is represented by reflecting walls

at the two end points (one can set p1¼ 0 but p2<1 is required), the problem of

a particle in a box. In that case, themost general solution of the Fokker–Planck

equation is given by the equilibrium solution plus terms that die exponentially

as t goes to infinity (Stratonovich, 1963). The spectrum of the Fokker–Planck

operator that generates the eigenfunctions has a discrete spectrum for a par-

ticle in a box, and the lowest eigenvalue vanishes. It is the vanishing of the

lowest eigenvalue that yields equilibrium asymptotically. When the prices are

unbounded, the lowest eigenvalue still vanishes but the spectrum is continuous,

and equilibrium does not follow. Themain point is that themeremathematical

existence of a statistical equilibrium solution of the Fokker–Planck equation

does not guarantee that time-dependent solutions of that equation will con-

verge to that statistical equilibrium as time goes to infinity unless the stationary

solution is normalizable. In this example, Adam Smith’s hands are not invis-

ible, but have the form of stiff barriers that limit prices.

We show in the next section that the detrended nonstationary lognormal

process, which is nonstationary on the interval 0 � p � 1, describes a

hypothetical efficient market. We then show in the section afterward that

a stationary model like the price-controlled process above violates the

conditions for market efficiency.

4.8 Martingale markets (efficient markets)

In discussing the EMH, we restrict our modeling to a normal liquid market.

The EMH describes a market that is either very hard or perhaps impossible to

beat (McCauley et al., 2007a) and is inapplicable to a market crash. Since we

would have to exploit correlations in order to beat a market, the EMHmeans
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that there are no easy-to-find correlations or patterns that can be exploited

systematically for profit. A Markovian Martingale market would be unbeat-

able in this sense. Real liquid markets may not be Markovian Martingales;

they may be merely very hard but not impossible to beat.

First, we want to deduce the possible form of an efficient market process

from the condition that the past provides no knowledge of the future at the

level of pair correlations. Higher-order correlations are then left unspecified.

In all that follows, we assume that detrending is possible and that the time

series under consideration have been detrended. Given our discussion of

detrending in Chapter 3, we can hardly avoid deducing a Martingale process.

To formulate the dynamics of hard-to-beat markets we assume that

the increment autocorrelations vanish, where by increments we mean

x(t,T)¼ x(t þ T) – x(t), x(t,–T)¼ x(t) – x(t – T). The statement that trading

during an earlier time interval provides no signals for traders in a later

nonoverlapping time interval at the level of pair correlations is simply

ðxðt1Þ � xðt1 � T1ÞÞðxðt2 þ T2Þ � xðt2ÞÞh i ¼ 0 ð4:29Þ
If there is no time interval overlap, ½t1 � T1; t1� \ ½t2; t2 þ T2� ¼ ;, where ;
denotes the empty set on the line. This is a much less restrictive condition

than assuming that the increments are statistically independent on the one

hand, or that the detrended market returns are Markovian on the other. The

condition (4.29) is necessary but insufficient for a drift-free Markov process.

This insufficiency permits market memory at a level beyond pair correlations,

in principle, but the necessity makes the market look like a Markovian

Martingale at the level of pair correlations or simple averages.

Consider any stochastic process x(t) where the increments are uncorrelated,

where (4.29) holds. From this condition we obtain the autocorrelation func-

tion for positions (returns). Let t > s, then

xðtÞxðsÞh i ¼ ðxðtÞ � xðsÞÞxðsÞh i þ x2ðsÞ� � ¼ x2ðsÞ� �
> 0 ð4:30Þ

since x(s) – x(t0) ¼ x(s), so that xðtþ TÞxðtÞh i ¼ x2ðtÞ� �
is simply the variance

in x at the earlier time t. This condition is equivalent to a Martingale process:ð
dyyp2ðy; tþ Tjx; tÞ ¼ x ð4:31Þ

xðtþ TÞxðtÞh i ¼
ð ð

dxdyxyp2ðy; tþ Tjx; tÞf1ðx; tÞ

¼
ð
xf1ðx; tÞdxð

ð
ydyp2ðy; tþ Tjx; tÞÞ ¼

ð
x2f1ðx; tÞdx

ð4:32Þ
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Mandelbrot (1966) originally proposed the Martingale as a model for the

EMH on the basis of simple averages in x, but we have deduced the Martin-

gale property from a two-point condition, the lack of increment autocorrela-

tions. Note also that (4.30) can be interpreted as asserting that earlier returns

have no correlation with future gains.

Next, we discover an extremely important point for data analysis and

modeling. Combining

ðxðtþ TÞ � xðtÞÞ2
D E

¼ x2ðtþ TÞ� �þ x2ðtÞ� �� 2 xðtþ TÞxðtÞh i ð4:33Þ

with (4.32) we get

ðxðtþ TÞ � xðtÞÞ2
D E

¼ x2ðtþ TÞ� �� x2ðtÞ� � ð4:34Þ

which depends on both t and T, excepting the rare case where x2ðtÞ� �
is linear

in t. Uncorrelated increments are generally nonstationary. Notice further that

(4.34) states that

s2ðtþ TÞ ¼ x2ðt;TÞ� �þ s2ðtÞ ð4:35Þ
That is, s2(t þ T) > s2(t), the variance increases with time, statistical equilib-

rium cannot be approached unless s(t) approaches a constant limit. Since a

Martingale has the form

xðtÞ ¼ xð0Þ þ
ðt
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxðsÞ; sÞ

p
dBðsÞ ð4:36Þ

the variance taken about x(0) is

s2ðtÞ ¼
ðt
0

DðxðsÞ; sÞh ids ð4:37Þ

and does not approach a constant as t increases. AMartingale is a nonstationary

stochastic process.We’ll show in the next section that the pair correlations of an

efficient market (a hard-to-beat market) conflict with those of hypothetical

stationary markets. An efficient market is nonstationary, is far from equilib-

rium. This has not been understood in financial economics: either real markets

provide falsifiable evidence for an approach to statistical equilibrium at long

time, or else they do not. So far, no such evidence has been produced.

The Martingale interpretation of the EMH is interesting because technical

traders assume that certain price sequences give signals either to sell or buy.

In principle, that is permitted in a Martingale. A particular price sequence
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(p(tn),. . .,p(t1)), were it quasi-systematically to repeat, can be encoded as

returns (xn,. . .,x1) so that a conditional probability density pn(xn|xn–1,. . .,x1)

could be interpreted as providing a risk measure to buy or sell. By “quasi-

repetition” of the sequence we mean that pn(xn|xn–1,. . .,x1) is significantly

greater than the corresponding Markovian prediction. Typically, technical

traders make the mistake of trying to interpret random price sequences quasi-

deterministically, which differs from our interpretation of “technical trading”

based on conditional probabilities (see Lo et al. (2000) for a discussion of

technical trading claims, but based on a non-Martingale, nonempirically

based model of prices). With only a conditional probability for “signaling”

a specific price sequence, an agent with a large debt-to-equity ratio can easily

suffer the Gambler’s Ruin. In any case, we can offer no advice about tech-

nical trading because the existence of market memory has not been estab-

lished (the question is left open by the analysis of Lo et al.). Liquid finance

markets are effectively Markovian Martingales after ten minutes of trading

(Chapter 7). We next review the idea of the EMH as it appears typically in

economics discussions.

The strict interpretation of the EMH is that there are no correlations, no

patterns of any kind, that can be employed systematically to beat the average

return Rh i reflecting the market itself: if one wants a higher return, then one

must take on more risk (in the French–Fama way of thinking, “omniscent

agents” are assumed who neutralize all information up until time t1).

A Markovian Martingale market is unbeatable, it has no systematically

repeated patterns, no memory to exploit. We argue that the stipulation

should be added that in discussing the EMH we should consider only normal,

liquid markets (a normal liquid market is defined precisely below). Otherwise,

“Brownian” market models do not apply to describe the market dynamics.

Liquidity, the “money bath” created by the noise traders whose behavior is

reflected in the diffusion coefficient, is somewhat qualitatively analogous to

the idea of the heat bath in thermodynamics: the second-by-second fluctu-

ations in x(t) are created by the continual “noise trading.”

Historically, Mandelbrot had proposed the idea of the EMH as a Martin-

gale condition, but discussed only simple averages, not pair correlations.

Fama then took Mandelbrot’s proposal seriously and tried to test finance

data at the simplest level for a fair game condition. Fama made a mathemat-

ical mistake (see the first two of three unnumbered equations at the bottom of

p. 391 in Fama, 1970) that has become propagated in the literature. He

wrongly concluded in his discussion of Martingales as a fair game condition

that xðtþ TÞxðtÞh i ¼ 0: Here’s his argument, rewritten partly in our notation.

Let x(t) denote a “fair game.” With the initial condition chosen as x(t0) ¼ 0,
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we have the unconditioned expectation xðtÞh i ¼ Ð
xdxf1ðx; tÞ ¼ 0 (there is no

drift). Then the so-called “serial covariance” is given by

xðtþ TÞxðtÞh i ¼
ð
xdx<xðtþ TÞ >condðxÞ f1ðx; tÞ: ð4:38Þ

Fama states that this autocorrelation vanishes because xðtþ TÞh icond¼ 0. This

is impossible: by a fair game we mean a Martingale, the conditional expect-

ation is

xðtþ TÞh icond¼
ð
ydyp2ðy; tþ T x; tÞj ¼ x ¼ xðtÞ 6¼ 0 ð4:39Þ

and so Fama should have concluded instead that xðtþ TÞxðtÞh i ¼ x2ðtÞ� �
as

we showed in the last section. Vanishing of (4.38) would be true of statistically

independent returns but is violated by a “fair game.” Can Fama’s argument

be saved? Suppose that instead of x(t) we would try to use the increment x(t,T)

¼ x(t þ T) – x(t) as variable. Then xðt; TÞxðtÞh i ¼ 0 for a Martingale. However,

Fama’s argument still would not be generally correct because x(t,T) cannot be

taken as a “fair game” variable unless the variance is linear in t.

In our discussion of the EMHwe have not followed the economists’ tradition

of discussing three separate forms (weak, semi-strong, and strong (Skjeltorp,

2000)) of the EMH, where a nonfalsifiable distinction is made between three

separate classes of traders. Normal market statistics overwhelmingly (with high

probability) reflect the noise traders (Black, 1986), so we consider only normal

liquid markets and ask whether noise traders produce signals that one might be

able to trade on systematically. The question of whether insiders, or exceptional

traders like Buffett and Soros, can beat the market probably cannot be tested

scientifically: even if we had statistics on such exceptional traders, those statistics

would likely be too sparse to draw a firm conclusion. Furthermore, it is not clear

that they beat liquid markets; some degree of illiquidity seems to play a signifi-

cant role there. Effectively, or with high probability, there is only one type of

trader under consideration here, the noise trader. The question that we pose is

whether, given aMartingale created by the noise traders, a normal liquidmarket

can be beaten systematically at some higher level of correlation than pair

correlations. In a word, Buffett and Soros are not noise traders.

4.9 Stationary markets: value and inefficiency

A neo-classical equilibrium deterministic market is a barter system. Money/

liquidity does not exist. “Value” is the “price label” at which goods and

services are exchanged. Undervalued and overvalued are well-defined ideas,
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but profit is disallowed by lack of money; exchange of goods and services is

allowed only at the equilibrium point.

Real markets are noisy. Uncertainty dominates real life. The relaxation of

the neo-classical equilibrium straitjacket to permit the least harmful sort of

uncertainty leads to a stationary price process. A stationary process describes

fluctuations about statistical equilibrium (or a steady state), in which equilib-

rium is described by a normalizable time-invariant one-point density of

returns f1(x). All simple averages are calculated from the equilibrium density,

so that nothing changes with time at the level of simple averages. Any

attempted definition of “equilbrium” that contradicts this does not describe

statistical equilibrium (equilibrium means time-translational invariance with

an invariant, normalizable one-point density). We can now identify “value”

in a hypothetical stationary market.

In neo-classical economics, value is the price label where barter occurs, and

100% of all agents agree on value. We can generalize this in a useful way.

“Value” in an uncertain (fluctuating, noisy) market is the price assigned by

the largest fraction of traders to an asset. This price is consensus value,

meaning the most probable value, the price where the returns density f1(x,t)

peaks, and this holds whether a market is stationary or nonstationary. In a

stationary market, value so identified is constant, does not change with time.

We can refer to this as “value under uncertainty.” Noise represents agents’

uncertainty, and only a small fraction of traders (those with price expect-

ations near the peak of f1) agree on “value.” In a hypothetical stationary

market, “overvalued” and “undervalued” are useful, observable ideas

because value stands still and the process is recurrent; what goes up must

come down and vice versa. It is exactly time-translational invariance that

makes such a market inefficient; stationarity makes the market violate the

EMH at the level of pair correlations. All earlier economic theorizing about

stationarity has missed this key point (McCauley, 2008a), because economists

are aware of market efficiency but are married very unfortunately to the

unrealistic notion that markets should clear.

In a stationary process, densities fn and transition densities pn of all orders n

are time-translationally invariant,

fnðx1; t1 þ T; . . .; xn; tn þ TÞ ¼ fnðx1; t1; . . .; xn; tnÞ ð4:40Þ
and p2ðxn; tn xn�1; tn�1j Þ ¼ p2ðxn; tn � tn�1 xn�1; 0j Þ as well. A stationary process

also requires time-translational invariance of a normalizable one-point density

f1(x), so that the mean xðtÞh i, variance s2 ¼ x2ðtÞ� �� xðtÞh i2, and all higher

moments are constants, independent of t. The one-point density describes

fluctuations about statistical equilibrium where the equilibrium values of the
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process are the averages calculated using that density. In equilibrium nothing

changes with time. But there is a subtle point that must be appreciated. Some

stationary processes are Markovian (the OU process is an example), but time-

translationally invariant Markov processes are generally not stationary.

For a time-translationally invariant Markov process a stationary one-point

density f1 can be derived via the Fokker–Planck pde, but the stationary density

generally is not normalizable unless the process is confined to a box of finite

size, – 1 < a � x � b < 1. The Wiener and related lognormal processes

provide the simplest example. In the case of an infinite or semi-infinite interval

(b ¼ 1) a time-translationally invariant Markov process is generally not

stationary because the stationary one-point density is not normalizable, and

this is the rule, not the exception. Such a process does not describe fluctuations

about statistical equilibrium. In this case a time-dependent mean and the

moments are calculated from f1ðx; tÞ ¼ p2ðx; t 0; 0Þj with initial condition

f1(x,0) ¼ d(x). Again, the lognormal process is the canonical example of a

time-translationally invariant nonstationary Markov process. Next we explain

how and why a stationary market would contradict the EMH.

Consider a stationary process x(t). Here, f1(x,t) ¼ f1(x) is normalizable

and time-translational invariance of the transition density p2ðy; tþ T x; tj Þ
¼ p2ðy;T x; 0j Þ yields pair correlations

xðtþ TÞxðtÞh i ¼ xðTÞxð0Þh i ð4:41Þ
depending on T alone, independent of t or s2 ¼ x2ðtÞ� � ¼ x2ð0Þ� � ¼ constant

with x(0) ¼ 0. This result does not follow for a time-translational invariant

Markov process where f1(x) is not normalizable. It contradicts the Martingale

condition (4.30), where for aMartingale the pair correlations depend on t alone,

independent of the time lag T (a drift-free Markov process is a Martingale, with

one singular exception). For a time-translationally invariant Martingale

xðtþ TÞ ¼ xðtÞ þ
ðtþT

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxðsÞÞ

p
dBðsÞ ð4:42Þ

we obtain

s2 ¼ x2ðtÞ� � ¼
ðt
0

ds

ð1
�1

dyDðyÞp2ðy; sj0; 0Þ ð4:43Þ

which depends unavoidably on t. A Martingale is a nonstationary stochastic

process. This means that an efficient market, a hard-to-beat market, cannot be

stationary.
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The increment correlations of a stationary process do not vanish; instead

we obtain

xðt; TÞxðt;�TÞh i ¼ xð2TÞxð0Þh i � s2 ð4:44Þ
yielding pair correlations that can in principle be traded on for profit. The

increments are stationary; the increment autocorrelations do not decay with

time.

Without market stationarity there is no way to identify a time-invariant

numeraire. In option pricing, the so-called “risk-free asset” is taken as the

standard against which other prices are measured, and this is taken to be a

currency, but currencies are subject to FX fluctuations and inflation. Since

the gold standard was abandoned, there has been no currency stability and no

time-invariant standard of “value.” On the gold standard, the time-invariant

numeraire was measured in physical units, grams or ounces. Today, the

financial equivalent of one gram of measure does not exist for money.

A fluctuation-dissipation theorem can be developed for a class of station-

ary processes (Kubo et al., 1978), relating the friction coefficient (the analog

or return m) to equilibrium fluctuations. Stationary processes can be used to

describe equilibrium statistical physics, from whose time-invariant averages

thermodynamics is derived. Were markets stationary, a thermodynamics of

economics might in principle make sense. But real markets are nonstationary,

and no meaningful thermodynamics of economics has been constructed

(McCauley, 2004). With a stationary process the Gibbs entropy can be

constructed from the one-point distribution and properly reflects disorder.

Historic attempts in economics to base entropy on utility fail miserably,

because disorder/uncertainty is completely barred from neo-classical theory.

Entropy can only be based on disorder. The Gibbs entropy of the market

distribution can be trivially constructed, but does not stabilize, and economic

analogies with other physical quantities like energy and free energy do not

exist. In particular, since utility is constructed for systems with perfect order,

utility bears no relation to entropy.

4.10 Black’s “equilibrium”: dreams of recurrence in the market

In the short paper “Noise,” Fischer Black (1986) discusses three topics: price,

value, and noise.6 He states that price is random and observable whereas

value is random and unobservable. He asserts boldly that, because of noise,

6 We recommend the short paper “Noise” by Fischer Black, who wrote and thought very clearly. He died
too early to receive the Nobel Prize along with Myron Scholes and Robert Merton. See especially the
entertaining NOVA video The Trillion Dollar Bet, www.pbs.org/wgbh/nova/stockmarket/
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price deviates from value but always returns to value (he introduced the

phrase “noise traders” in this paper). He regards price and value as roughly

the same if price is within twice value. There is only one problem: he never

defines what he means by “value.” Black’s considerations would have made

sense in part, were the price process stationary. We’ll point out in Chapter 7

that even stationary densities generally are beyond the reach of empirical

analysis, so would a stationary density exist we might have trouble locating

the peak accurately.

Black apparently believed the neo-classical economists’ ideas of “equilib-

rium,” which he called “beautiful.” He should have realized the conflict with

his own nonstationary pricing model, the Black–Scholes model, but appar-

ently did not. We can only guess what Black may have thought, but the

following argument would explain Black’s claims about price and value. The

market, as Osborne taught us, consists of unfilled limit book orders that are

step functions. One can see these step functions evolving in time on the

website 3DCharts.com, and one can consult Nasdaq Level 2 for detailed

numerical information. If we would assume that market equilibria exist and

are stable, as neo-classical economics teaches, then every limit book would

have a daily clearing price, namely, the equilibrium price, where total supply

exactly matches total demand. Were the clearing price to exist, then it could

be taken to define “value.” Were the equilibrium stable, then price would

always tend to return to value no matter how far price would deviate from

value. The trades occur in discrete prices, and a discrete stationary process is

necessarily recurrent (Kac, 1949, 1959b). Unfortunately, the evidence sug-

gests strongly that markets are far from equilibrium, and are nonstationary.

4.11 Value in real, nonstationary markets

In a stationary market the generalization of perfectly agreed-on “value” (the

equilibrium price) can be taken as the location of the peak of the price

density. Such a market describes statistical equilibrium, and we now general-

ize the idea of value to general nonstationary markets. The definition is the

same: the peak of the price density locates consensus value.

Suppose that price obeys dp ¼ mpdtþ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dðp; tÞp

dB. A price series canonly be

detrended multiplicatively: if S ¼ pe�mt then dS ¼ S
ffiffiffiffiffiffiffiffiffiffiffiffi
eðS; tÞp

dB is a Martingale,

where e(S,t)¼ d(p,t). Let V represent the most probable price. The local approxi-

mation about the price V at time t0 is described by the local Gaussian density

gðS; tÞ � ðeðV; t0ÞTÞ�1=2e�ðS�VÞ2=2eðV;t0ÞT ð4:45Þ
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where t – t0¼ T. With T small but finite, gðV; tÞ � ðeðV; t0ÞTÞ�1=2 is maximum

if the most probable price V locates the minimum of the returns diffusion

coefficient D(x – mt,t) ¼ e(S,t). Or, if there is only one price scale in the process

then we can expect that the consensus price pcðtÞ ¼ pce
mt locates the minimum

of the diffusion coefficient. This is difficult to prove rigorously in general, our

argument here is heuristic, but we will give an explicit example in Chapter 7

where it holds rigorously, the case of scaling Martingales.

The existence of a price scale, the consensus price, is essential. In the

transformation from price to log returns we must define x(t) ¼ ln(p(t)/V(t))

where V(t) is a price that makes the argument of the logarithm dimensionless.

In principle V(t) may be arbitrary, can be taken as constant, but there’s then a

further unanswered question: what sets the price scale of the log return in the

returns diffusion coefficient D(x,t)? We will largely consider models where

D(x,t) increases with xj j, so the question is: for what price is D a minimum?

Again, if there is but one price scale, then the consensus price sets the scale for

the diffusion coefficient as well. We therefore generally will assume in what

follows that x(t) ¼ ln(p(t)/pc(t)) so that the corresponding increments are

xðt; TÞ ¼ lnðe�mTpðtþ TÞ=pðtÞÞ. These increments do not represent detrended

returns, because the returns sde corresponding to a detrended price S is

dx ¼ �Dðx; tÞdt=2þ bðx; tÞdB. We would have approximately detrended

returns if and only if we could ignore the variable drift term proportional

to D in the sde. Detrending a time series is intimately connected with the

question of consensus price. We will return to this question in Chapter 7. In

any case, in a nonstationary market there is no tendency of price to return to

consensus value, there is only the tendency to diffuse away from value.

Placing bets in a nonstationary market on the assumption that prices will

recur would amount to taking on high risk against the advice of the market.

Fischer Black apparently believed in the neo-classical notion of stable market

equilibrium (so didMerton and Scholes, as the history of LTCM (Dunbar, 2000)

makes clear): Black argued that priceswill always tend to return to “value.”Here,

he was wrong: there is no tendency for prices to “return to value.” Because market

dynamics are unstable/nonstationary, price always diffuses away from “value,”

there being no “springs” in the market to pull prices back to value. In contrast,

Soros (1998, 2008) is correct: financial markets are dynamically unstable.

4.12 Liquidity, noise traders, crashes, and fat tails

By a normal liquid market for a very frequently traded stock like Intc, Aapl,

or Nok we mean a market where the bid/ask spread is tiny compared with the

bid and ask prices, or with the price of the last executed trade. The reader can
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best get a feeling for this by checking bid, ask, and last trade prices on a

discount broker site on a computer. An essential condition for the applicabil-

ity of stochastic processes is that the market consists of an adequate “liquidity

bath.” A normal liquid market in a frequently traded stock approximates

this. By a normal liquid market we mean the following: a money/liquidity

bath is assumed, in part analogous to the heat bath in statistical physics,

where approximately reversible trades are possible via your discount broker

in real time over the shortest time intervals �t on the order of a few seconds

on your Mac or PC. An approximately reversible trade is one where you can

reverse your trade in a few seconds with only a small loss or gain. This

assumes that the brokerage firm executes limit orders for small trades in real

time (1000 shares of the above mentioned stocks is an example of a small

trade). This works in detail in the following way. You have Y shares of Intc to

sell. You check for the last bid price, and place a limit order to sell Y shares of

Intc at a slightly lower price. An illiquid market is one with large bid/ask

spreads, like housing, carpets, or cars, where trades occur far less frequently

and with much lower volume than in financial markets.

Our definition of liquidity assumes implicitly that the future will obey the

same statistics as the past. This ignores the surprises that characterize com-

plexity in simple dynamical systems. We ignore the possibility of a fundamen-

tal shift in the market distribution. Option pricing, for example, is based on

this assumption.

Fischer Black (1986) has taught us that liquidity is provided by the noise

traders. It’s the noise traders who make it possible for us to place a buy limit

order at a price slightly above the ask price and have the order executed

in real time (if your discount broker is a good one). The noise traders are

represented by the noise term
ffiffiffiffi
D

p
(x,t)dB(t) in the Ito sde. Liquidity can

be understood as entropy, the Gibbs entropy of the one-point distribution

is S¼ –
R
f1lnf1dx and increases with time. The noise traders constitute the

market “with measure one”: uncertain of “value,” they buy and sell frequently:

a financial market is essentially noise because most traders don’t have inside

or other useful knowledge to trade on.

Fat tails don’t describe market crashes. We’ll show in Chapter 6 that fat tails

may describe large returns that occur during normal liquidmarkets. In contrast,

a market crash is a liquidity drought where the noise traders can’t sell because

there are effectively no buyers. This is described qualitatively to zeroth order by

R<< 0 withD(x,t)� 0. The systematic degradation of the Dollar, as this is being

written, can likely be understood by a liquid market with systematic drops in R.

When we refer to “market price” we make an implicit assumption of

adequate liquidity. A liquid market is one with many rapidly executed trades
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in both directions, always far from equilibrium, where bid/ask spreads are

small compared with price. This allows us to define “market price” in real

time as the price at the last trade. Examples of liquid markets are well-traded

stocks and bonds, and foreign exchange of currencies like the Euro, Dollar,

and Yen, so long as large buy/sell orders are avoided, and so long as there’s

no market crash.

The former trader George Soros, who bet heavily against the Bank of

England and won, asserts that the market is always wrong. He tries to explain

what he means by this in his book The Alchemy of Finance (1994) and more

recent books, but like a baseball batter trying to explain how to hit the ball,

Soros was much better at winning than at explaining how he wins. He

discusses the difference between science and self-fulfilling expectations, and

introduces the interesting idea of a perception gap between what we believe to

be market reality, and market reality, which is not knowable in real time.

A bubble is an example of a self-fulfilling expectation.

4.13 Long-term capital management

A main theme of this book is that there are no forces to cause a market to

tend toward an equilibrium state. Markets are nonstationary, and nonsta-

tionary processes are neither ergodic nor recurrent. There is no statistical

evidence for Adam Smith’s Invisible Hand. Recurrence of a stationary price

process would have provided the most general possible description of Adam

Smith’s Hand but stationarity is not to be found in real markets, only in the

markets hypothesized in macroeconomic and econometric texts.

The dramatically failed hedge fund LTCM assumed that deviations from

Black–Scholes option pricing would always return to historic market aver-

ages (Dunbar, 2000). This was an implicit assumption of ergodicity. Initially,

the fund made a lot of money for several years during the mid-nineties by

betting on small-fluctuation “mispricing.” LTCM had two Nobel Prize-

winning neo-classical economists on its staff, Merton and Scholes. They

apparently assumed some form of market stability in spite of the fact that

the model used by them to price options is nonstationary. Finally, LTCM

suffered the Gambler’s Ruin during a long time-interval large deviation. For

a very interesting story of how, in contrast, a group of physicists who do not

believe in equilibrium and stability placed bets in the market during the

nineties and are still in business, see The Predictors (Bass, 1998).

The hedge fund used the idea of a fair price for options. The Black–Scholes

option price can be shown to represent a Martingale. The model therefore

provides a basis for arbitrage: if one finds “mispricing” in the form of option
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prices that violate Black–Scholes, then a bet can be placed that the deviation

from the Black–Scholes prediction will disappear, that the market will elim-

inate these “efficiencies” via arbitrage. That is, Black–Scholes assumes that

the market is efficient in the sense of the EMH, which is fine so long as

liquidity does not dry up. But LTCM placed bets on deviations from historic

behavior that grew in magnitude instead of disappearing over a relatively

long time interval precisely because, as Dunbar described, their positions

were so large that they literally became the market in certain assets. As the

spread widened they continued to place more bets, assuming that returns

would spring back to historic values on a relatively short time scale, even

though there were no buyers in sight. That’s how they suffered the Gambler’s

Ruin. Both the recurrence property of a stationary process and the price

fairness of a Martingale process presume adequate liquidity, otherwise those

stochastic models fail.
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5

Introduction to portfolio selection theory

5.1 Introduction

Everyone would like to know how to pick winning stocks, but there exists

no reliable mathematical theory, nor is a guaranteed qualitative method of

success1 available to us. Given one risky asset, how much should one bet

on it? According to the Gambler’s Ruin, we should bet the whole amount if

winning is essential for survival. If, however, one has a time horizon beyond

the immediate present, then maybe the amount gambled should be less than

the amount required for survival in the long run. Given two or more risky

assets we can ask Harry Markowitz’s question: can we choose the fractions

invested in each in such a way as to minimize the risk, where risk is defined by

the standard deviation of the expected return? This is the beginning of the

analysis of the question of risk vs reward via diversification and assumes

normal liquid markets.

This chapter is written on the assumption that the future will be statistic-

ally like the past, that the historic statistical price distributions of financial

markets are adequate to predict future expectations like option prices. This

assumption will fail miserably during a liquidity crunch, and also after the

occurrence of any surprise that changes market psychology permanently.

5.2 Risk and return

A so-called risk-free asset has been defined historically as one with a fixed

interest rate, like a CD, money market account, or treasury bill (this defin-

ition is based on the assumption that the currency in question is not

1 According to Warren Buffett, more or less: pick a stock that has good earnings prospects. Don’t be
afraid to buy when the market is low. Do be afraid to buy when the market is high. This advice goes
against that inferred from the EMH. Soros (2008) offers his qualitative idea of how the market works
(“reflexivity”).
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systematically debased, so that at the time of writing the Euro and Yen serve

the purpose far better than the Dollar). Barring financial disaster, you’re

certain to get your money back, plus interest. A risky asset is one that

fluctuates in price, one where retrieving the capital cannot be guaranteed, espe-

cially over the long run. In all that follows we work with returns x¼ ln(p(t)/p(0))

instead of prices p.

Averages

R ¼ xh i ¼ lnðpðtÞ=pð0ÞÞh i ð5:1Þ
are understood always to be taken with respect to the empirical distribution

unless we specify that we are calculating for a particular model distribution in

order to make a point. The empirical distribution is not an equilibrium one

because its moments change with time without approaching any constant limit.

Finance texts written from the standpoint of neo-classical economics assume

“equilibrium,” but statistical equilibrium would require time-independence

of the empirical distribution, and this is not found in any financial market.

The Gaussian model of returns used by Black and Scholes is an example of

a nonequilibrium distribution.

Consider first a single risky asset with expected return R1 combined with a

risk-free one with known return R0. Let f denote the fraction invested in the

risky asset. The fluctuating return of the portfolio is given by x ¼ fR1 þ (1–f)

R0 and so the expected return of the portfolio is

R ¼ fR1 þ ð1� f ÞR0 ¼ R0 þ f�R ð5:2Þ
where DR ¼ R1 – R0. The portfolio standard deviation, or root mean square

fluctuation (rmsf), is given as

� ¼ f�1 ð5:3Þ
where

�1 ¼ ðx� R1Þ2
D E1=2

ð5:4Þ

is the standard deviation of the risky asset. We can therefore write

R ¼ R0 þ �

�1
�R ð5:5Þ

which we will generalize later to include many uncorrelated and also correl-

ated assets.

In this simplest case the relation between return and risk is linear

(Figure 5.1): the return is linear in the portfolio standard deviation. The

greater the expected return, the greater the risk. If there is no chance of
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return then a trader or investor will not place the bet corresponding to

buying the risky asset.

We’ve seen inChapter 4 that theGambler’sRuin advises us to put all our eggs

in one basket if it’s a matter of survival. Here, we concentrate on the opposite

advice: diversificationof bets. In particular, the lawof large numbers canbe used

to show how to reduce risk (measured as variance) in a normal liquid market

in a portfolio of n risky assets. The Strategy of Bold Play and the Strategy of

Diversification provide mutually exclusive answers to different questions.

5.3 Diversification and correlations

Consider next n uncorrelated assets; the xk are all assumed hypothetically

to be distributed statistically independently. The expected return would be

given by

R ¼
Xn
k¼1

fkRk ð5:6Þ

and the mean square fluctuation by

�2 ¼
X

fkxk � R
� �2

� 
¼

X
f 2k �

2
k ð5:7Þ

where fk is the fraction of the total budget that is bet on asset k.

As a special case consider a portfolio constructed by dart throwing (a

favorite theme in Malkiel (1996), who assumes statistical independence where

it doesn’t apply):

R

s

Figure 5.1 Return R vs “risk”/standard deviation s for a portfolio made up
of one risky asset and one risk-free one.
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fk ¼ 1=n ð5:8Þ
Let s1 denote the largest of the sk. Then

� � �1ffiffiffi
n

p ð5:9Þ

This shows how the variance/uncertainty could in principle be reduced

by diversification with a statistically independent choice of assets. But statis-

tically independent assets are hard or impossible to find. For example,

automobile and auto supply stocks are correlated within the sector, computer

chip and networking stocks are correlated with each other, and there are

also correlations across different sectors due to general business and political

conditions.

Consider a portfolio of two assets with historically expected return

given by

R ¼ fR1 þ ð1� f ÞR2 ¼ R2 þ f ðR1 � R2Þ ð5:10Þ
and risk-squared by

�2 ¼ f 2�2
1 þ ð1� f Þ2�22 þ 2f ð1� f Þ�12 ð5:11Þ

where

�12 ¼ ðx1 � R1Þðx2 � R2Þh i ð5:12Þ
describes the correlation between the two assets. Eliminating f via

f ¼ R� R2

R1 � R2
ð5:13Þ

and solving

�2 ¼ R� R2

R1 � R2

� �2

�21 þ 1� R� R2

R1 � R2

� �2

�2
2 þ 2

R� R2

R1 � R2
1� R� R2

R1 � R2

� �
�12ð5:14Þ

for reward R as a function of risk s yields a parabola opening along the

s-axis, which is shown in Figure 5.2.

Now, given any choice for f we can combine the risky portfolio (as fraction

w) with a risk-free asset to obtain

RT ¼ ð1� wÞR0 þ wR ¼ R0 þ w�R ð5:15Þ
With sT ¼ ws we therefore have

RT ¼ R0 þ �T

�
�R ð5:16Þ

110 Introduction to portfolio selection theory



The fraction w ¼ sT/s describes the level of risk that the agent is willing

to tolerate. The choice w ¼ 0 corresponds to no risk at all, RT ¼ R0, and w ¼ 1

corresponds to maximum risk, RT ¼ R1.

Next, let’s return to equations (5.14)–(5.16). There’s a minimum risk port-

folio that we can locate by using (5.14) and solving

d�2

dR
¼ 0 ð5:17Þ

Instead, because R is proportional to f, we can solve

d�2

df
¼ 0 ð5:18Þ

to obtain

f ¼ �22 � �12

�21 þ �2
2 � 2�12

ð5:19Þ

Here, as a simple example to prepare the reader for the more important case,

risk is minimized independently of expected return. Next, we derive the so-

called “tangency portfolio,” also called the “efficient portfolio” (Bodie and

Merton, 1998). We can minimize risk with a given expected return as con-

straint, which is mathematically the same as maximizing the expected return

for a given fixed level s of risk. This leads to the so-called efficient and

tangency portfolios. First, we redefine the reference interest rate to be the

risk-free rate. The return relative to R0 is

R

s

Figure 5.2 The efficient portfolio, showing the minimum risk portfolio as
the left-most point on the curve.
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�R ¼ R� R0 ¼ f1�R1 þ f 2�R2 ð5:20Þ
where DRk ¼ Rk – R0 and where we’ve used the constraint f1 þ f2 ¼ 1. The

mean square fluctuation of the portfolio is

s2 ¼ �x2
� � ¼ f 21s

2
1 þ f 22s

2
2 þ 2 f1 f 2s12 ð5:21Þ

Keep in mind that the five quantities Rk, s
2
k, and s12 should in principle be

calculated from empirical data and will vary with time. Next, we minimize the

mean square fluctuation subject to the constraint that the expected return

(5.20) is fixed. In other words we minimize the quantity

H ¼ s2 þ lðDR� f1DR1 � f2DR2Þ ð5:22Þ
with respect to the fs, where l is the Lagrange multiplier. This yields

@H

@f 1
¼ 2 f 1s

2
1 þ 2 f 2s12 � l�R1 ¼ 0 ð5:23Þ

and likewise for f2. Using the second equation to eliminate the Lagrange

multiplier l yields

l ¼ 2f 2s
2
2 þ 2f 1s12

�R2
ð5:24Þ

and so we obtain

2 f 1s
2
1 þ 2 f 2s12 �

�R1

�R2
ð2 f 2s2

2 þ 2f1s12Þ ¼ 0 ð5:25Þ

Combining this with the second corresponding equation (obtained by

permuting indices in (5.25)) we can solve for f1 and f2. Using the constraint

f2 ¼ 1 – f1 yields

f 1 ¼
s2
2�R1 � �12�R2

ðs2
1 � s12Þ�R2 þ ðs2

2 � s12Þ�R1

ð5:26Þ

and likewise for f2. This pair ( f1, f2), so calculated, defines the efficient port-

folio of two risky assets. In what follows we denote the expected return and

mean square fluctuation of this portfolio by Re and see.

If we combine the efficient portfolio as fraction w of a total investment

including the risk-free asset, then we obtain the so-called tangent portfolio

RT ¼ R0 þ w�Re ð5:27Þ
where DRe ¼ Re – R0 and w is the fraction invested in the efficient portfolio,

the risky asset. With sT ¼ wse we have
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RT ¼ R0 þ �T

�e
�Re ð5:28Þ

The result is shown as Figure 5.3. Tobin’s separation theorem (Bodie and

Merton, 1998), based on the tangency portfolio (another Nobel Prize in

economics), corresponds to the trivial fact that nothing determines w other

than the agent’s psychological risk tolerance, or the investor’s preference: the

value ofw is given by free choice. Clearly, a younger person far from retirement

may sensibly choose a much larger value for w than an older person who must

live off the investment. Unless, of course, the older person is in dire straits and

must act boldly or else face the financial music. But as happened in the late

1990s it can also go otherwise: older people with safe retirement finances

gambled by following the fad of momentum trading via home computer. That

was in the late days of the dot.com bubble. As one financial advisor recently

said about the subprimemortgage fiasco, one knows it’s a bubble, but it’s hard

to quit before the music stops. See also Soros (2008) for the difficulty of

shorting the market while the bubble continues to expand.

We turn next to the standard and first model of diversification that takes

into account stock correlations in a normal liquid market, CAPM.

5.4 The CAPM portfolio selection strategy

The Capital Asset Pricing Model (CAPM) is very general: it assumes no

particular distribution of returns and is consistent with any distribution with

finite first and second moments. Therefore, in this section, we generally

R

s

Figure 5.3 The tangency portfolio.
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assume the empirical distribution of returns. The CAPM (Varian, 1992) is

not, as is often claimed (Sharpe, 1964), an equilibrium model because the

distribution of returns is not an equilibrium distribution. Some economists

and finance theorists have mistakenly adopted and propagated the strange

notion that random motion of returns defines “equilibrium.” However, this

disagrees with the requirement of time-translational invariance that in equi-

librium no averages of any moment of the distribution can change with time.

Random motion in the market is due to trading and the excess demand of

unfilled limit orders prevents equilibrium at all or almost all times. Appar-

ently, what many economists mean by “equilibrium” is more akin to assum-

ing the EMH or the absence of arbitrage opportunities, which have nothing

to do with vanishing excess demand in the market.

The only dynamically consistent definition of equilibrium is vanishing

excess demand: if p denotes the price of an asset then excess demand e(p,t) is
defined by dp/dt ¼ e(p,t) including the case where the right-hand side is drift

plus noise, as in stochastic dynamical models of the market. Bodie and

Merton (1998) claim that vanishing excess demand is necessary for the

CAPM, but we will see below that no such assumption comes into play

during the derivation and would even cause all returns to vanish in

the model.

The CAPM can be stated in the following way: Let R0 denote the risk-free

interest rate.

xk ¼ lnð pkðtþ�tÞ=pkðtÞÞ ð5:29Þ
is the fluctuating return on asset k where pk(t) is the price of the kth asset at

time t. The total return x on the portfolio of n assets relative to the risk-free

rate is given by

x� R0 ¼
Xn
i¼0

fiðxi � R0Þ ð5:30Þ

where fk is the fraction of the total budget that is bet on asset k. The CAPM

minimizes the mean square fluctuation

�2 ¼
X
i; j

fi fj ðxi � R0Þðxj � R0Þ
� �¼ X

i; j

fi fj�ij ð5:31Þ

subject to the constraints of fixed expected return R,

R� R0 ¼ ðx� R0Þh i ¼
X
i

fi ðxi � R0Þh i¼
X
i

fiðRi � R0Þ ð5:32Þ

and fixed normalization
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Xn
i¼ 0

fi ¼ 1 ð5:33Þ

where sij is the correlation matrix

�ij ¼ ðxi � R0Þðxj � R0Þ
� � ð5:34Þ

Following Varian (1992), we solve

�ij ¼ ðxi � R0Þðxj � R0Þ
� � ð5:35Þ

for the fs where DRe ¼ R e – R 0 and R e is the expected return of the “efficient

portfolio,” the portfolio constructed from f s that satisfy the condition (5.35).

The expected return on asset k can be written as

DRk¼ske

see
�Re¼ bk�Re ð5:36Þ

where s2 is the mean square fluctuation of the efficient portfolio, ske is the

correlation matrix element between the kth asset and the efficient portfolio,

and DRe is the “risk premium” for asset k.

The quantity b is interpreted as follows: b ¼ 1 means the portfolio moves

with the efficient portfolio, b < 0 indicates anticorrelation, and b > 1 means

that the swings in the portfolio are greater than those of the efficient one.

Small b indicates weak correlations but b ¼ 0 doesn’t signal statistical inde-

pendence. Greater b also implies greater risk; to obtain a higher expected

return you have to take on more risk. In the finance literature b ¼ 1 is

interpreted as reflecting moves with the market as a whole, but we will

analyze and criticize this assumption below (in rating mutual funds, as on

morningside.com, it is usually assumed that b ¼ 1 corresponds to the market,

or to a stock index). Contradicting the prediction of CAPM, studies show

that portfolios with the highest bs usually yield lower returns historically than

those with the lowest bs (Black et al., 1972). This indicates that agents do not

minimize risk as is assumed by the CAPM.

In formulating and deriving the CAPM above, nothing is assumed either

about diversification or how to choose a winning portfolio. CAPM only

advises us how to try to minimize the fluctuations in any arbitrarily chosen

portfolio of n assets. The a priori chosen portfolio may or may not be well

diversified relative to the market as a whole. It is allowed in the theory to

consist entirely of a basket of losers. However, the qualitative conclusion that

we can draw from the final result is that we should avoid a basket of losers by

choosing assets that are anticorrelated with each other. In other words,

although diversification is not necessarily or explicitly a sine qua non, we
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are advised by the outcome of the calculation to diversify in order to reduce

risk. And on the other hand we are also taught that in order to expect large

gains we should take on more risk. In other words, diversification is only one

of two mutually exclusive messages gleaned from CAPM.

In the model, negative x represents a short position, positive x a long

position. Large b implies both greater risk and larger expected return. With-

out larger expected return a trader will not likely place a bet to take on more

risk. Negative returns R can and do occur systematically in market down-

turns, and in other bad bets.

In the finance literature the efficient portfolio is identified as the market as a

whole. This is an untested assumption: without the required empirical analysis,

there is no reason to believe that the entire Nasdaq or New York Exchange

reflect the particular asset mix of an efficient portfolio, as if “the market”

would behave as a CAPMrisk-minimizing computer. Also, wewill show below

that Black–Scholes option pricing does not follow the CAPM strategy of risk

minimization, but instead reflects a different strategy. In general, all that

CAPM does is assume that n assets are chosen by any method or arbitrariness

whatsoever. Given those n assets, CAPM shows how to minimize risk with

return held fixed. The identification of the efficient portfolio as the market

confuses together two separate definitions of efficiency: (1) the CAPM idea of

an arbitrarily chosen portfolio with an asset mix that minimizes the risk, and

(2) the EMH. The latter has nothing at all to do with portfolio selection.

Finance theorists distinguish systematic ormarket risk fromdiversifiable risk.

The latter can be reduced, e.g. via CAPM, whereas we have no control over the

former. The discussion that follows is an econophysics treatment of that subject.

Let’s think of a vector f with entries ( f1,. . ., fn) and a matrix S with elements

skl. The scalar product of f with sf is the mean square fluctuation

�2¼ ~fSf ð5:37Þ
If next we define a transformation U

w ¼ Uf

� ¼ U� ~U
ð5:38Þ

that diagonalizes S then we obtain

�2¼
Xn
k¼1

w2
k�k ð5:39Þ

For many assets n in a well-diversified portfolio, studying the largest eigen-

value L1 of the correlation matrix S has shown that that eigenvalue represents
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the market as a whole, and that clusters of eigenvalues represent sectors of the

market like transportation, paper, autos, computers, etc. Here, we’ve ordered

eigenvalues so that L1 � L2 � . . . � Ln. In equation (5.39)

s2 ¼ w2
1�1 þ

Xn
k¼2

w2
k�k ð5:40Þ

the first term represents so-called “nondiversifiable risk,” risk due to the market

as awhole,while the second term (the sum from2 to n) represents risk that canbe

reduced by diversification. If we could assume that a vector component has

order of magnitude wk ¼ O(1/n) then we would arrive at the estimate

s2 � w2
1�

2
1þ

�2
k

n
ð5:41Þ

which indicates that n must be very large in order to effectively get rid of

diversifiable risk.

Let us consider a portfolio of two assets, e.g. a bond (asset #1) and the

corresponding European call option (asset #2). For any two assets the solu-

tion for the CAPM portfolio can be written in the form

f1=f2 ¼ ð�12�R2 � �22�R1Þ=ð�12�R1 � �11�R2Þ ð5:42Þ
Actually there are three assets in this model because a fraction f0 can be

invested in a risk-free asset, or may be borrowed in which case f0 < 0. With

only two assets, data analysis indicates that the largest eigenvalue of

L apparently still represents the market as a whole, more or less (Laloux

et al., 1999; Plerou et al., 1999). This means simply that the market systemati-

cally tends to drag the assets up or down with it.

5.5 Hedging with options

Fischer Black was motivated historically to try to use the CAPM for option

pricing. His idea was simple: construct a two-asset portfolio consisting of a

stock and the corresponding option. After introducing the idea of options

and hedging we’ll revisit Black’s original idea. As is often the case, the

original idea did not work as had been hoped, but a better idea for pricing

options was found along the way.

Futures and options are examples of financial derivatives. A derivative is a

bet contingent on the behavior of another financial asset, like a stock. An

option is a contract that gives you the right but not the obligation to buy or

sell an asset at a preselected price. The preselected price is called the strike
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price, K, and the deadline for exercising the option is called the expiration

time T. An option to buy a financial asset is a call, an option to sell the asset is

a put. A so-called “American option” can be exercised on or before its

expiration time. A so-called “European option” can only be exercised at the

strike time. These are only names having nothing to do with geography. An

elementary description of options can be found in Bodie and Merton (1998),

while Hull (1996) provides advanced details. Some familiarity with options is

necessary in order to follow the text. For example, the reader should learn

how to read and understand Figure 5.4.

We assume a so-called “frictionless” liquid market: we ignore all transac-

tion fees, dividends, and taxes. We discuss only the so-called “European

option” because it has mathematically the simplest forward-time initial con-

dition, but has nothing geographically to do with Europe (in the context of

the money supply, so-called “Eurodollars” also have nothing geographically

to do with Europe).

Consider first a call. We want to know the value C of the call at a time

t < T. C will depend on (p(t), K, T – t) where p(t) is the observed price at time t.

In what follows p(t) is assumed known. At t ¼ T we know that

C ¼ max½ pðTÞ � K; 0� ¼ ð pðTÞ � KÞyð pðTÞ � KÞ ð5:43Þ
where p(T) is the price of the asset at expiration. Likewise, a put at exercise

time T has the value

P ¼ max½K � pðTÞ; 0� ¼ ðK � pðTÞÞyðK � pðTÞÞ ð5:44Þ
The main question is: what are the expected values of C and P at an earlier

time t < T? The final price p(T), unknown at time t < T, must be averaged and

then discounted over the time interval Dt ¼ T – t at some rate rd

Cð p;K;T � tÞ ¼ e�rdðT�tÞ ðpðTÞ � KÞ#ðpðTÞ � KÞh i ð5:45Þ
for the call. Clearly, this average is conditioned on observing p at time t so

that the transition density for the price process is required. For the put,

Pð p;K;T � tÞ ¼ e�rdðT�tÞ ðK � pðTÞÞ#ðK � pðTÞÞh i ð5:46Þ
Note that

C� P ¼ e�rdðT�tÞð pðTÞh i � KÞ ¼ V � e�rdðT�tÞK ð5:47Þ
where V is the expected asset price p(T) at expiration, discounted back to time

t at interest rate rd where r0 � rd. The identity

Cþ e�rdðT�tÞK ¼ Pþ V ð5:48Þ
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Figure 5.4 Table of option prices from the February 4, 1993 Financial Times.
Fro m W ilmott, Howison, and DeWynn e ( 1995 ), Figu re 1.1 .
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is called put-call parity, and provides a starting point for discussing so-called

synthetic options. That is, we can simulate puts and calls by holding some

combination of an asset and money market.

Suppose first that we finance the trading by holding an amount of money

M0 ¼ –e–rd
(T–t)K in a risk-free fund like a money market, so that rd ¼ r0 where

r0 is the risk-free interest rate, and also invest in one call. The value of the

portfolio is

� ¼ Cþ e�r0ðT�tÞK ð5:49Þ
This result synthesizes a portfolio of exactly the same value made up of one

put and one share of stock (or one bond)

� ¼ V þ P ð5:50Þ
and vice versa. Furthermore, a call can be synthesized by buying a share of

stock (taking on risk) plus a put (buying risky insurance2),

C ¼ Pþ V � e�r0ðT�tÞK ð5:51Þ
while borrowing an amount M0 (so-called risk-free leverage).

In all of the above discussion we are assuming that fluctuations in asset and

option prices are small, otherwise we cannot expect mean values to be

applicable. In other words, we must expect the predictions above to fail in a

market crash when liquidity dries up. Option pricing via calculation of

expectation values can only work during normal trading when there is

adequate liquidity. LTCM failed because they continued to place “normal”

bets against the market while the market was going against them massively

(Dunbar, 2000).

5.6 Stock shares as options on a firm’s assets

We reproduce in part here an argument from the original paper by Black

and Scholes (1973) that starts with the same formula as the M &M argument,

p ¼ B þ S where p is the current market estimate of the value of a firm, B is

debt owed to bondholders, and S is the current net value of all shares of stock

outstanding. Black and Scholes noticed that their option-pricing formula can

be applied to this valuation p ¼ B þ S of a firm. This may sound far-fetched

at first sight, but the main point to keep in mind in what follows is that

2 This form of insurance is risky because it’s not guaranteed to pay off, in comparison with the usual case
of life, medical, or car insurance.
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bondholders have first call on the firm’s assets. Unless the bondholders can be

paid in full the shareholders get nothing.

The net shareholder value at time t is given by S ¼ Nsps where Ns is the

number of shares of stock outstanding at price ps. To keep the math simple we

assume in what follows that no new shares are issued and that all bonds were

issued at a single time t0 and are scheduled to be repaid with all dividends owed

at a single time T (this is a mathematical simplification akin to the assumption

of a European option). Assume also that the stock pays no dividend. With Ns

constant the dynamics of equity S are the same as the dynamics of stock price

ps. Effectively, the bondholders have first call on the firm’s assets. At time T the

amount owed by the firm to the bondholders is B0(T)¼ B(T)þD, where B(T) is

the amount borrowed at time t0 and D is the total interest owed on the bonds.

Note that the quantity B0(T) is mathematically analogous to the strike price K

in the last section on options: the stock share is worth something if p(T)>B0(T),
but is otherwiseworthless. At expiration of the bonds, the shareholders’ equity,

the value of all shares, is then

SðTÞ ¼ maxðpðTÞ � B0ðTÞ; 0Þ ð5:52Þ
Therefore, at time t < T we can identify the expected value of the equity as

Sðp;B0ðTÞ; T � tÞ ¼ e�rdðT�tÞ maxðpðTÞ � B0ðTÞ; 0Þh i ð5:53Þ
showing that the net value of the stock shares S can be viewed formally for t<

T as an option on the firm’s assets. Black and Scholes first pointed this out.

This is a very beautiful argument that shows, in contrast with the famous

1970s-style brokerage house advertisement “Own a Piece of America,” a

stock shareholder owns nothing but an option on future equity, so long as

there is corporate debt outstanding. An option risks loss of capital via the

market turning against the bet; a money market account risks loss of capital

via inflation. But as at least one famous trader has stated, in times of

uncertainty liquidity is king.

Of course, we have formally treated the bondholder debt as if it would be

paid at a definite time T, which is not realistic, but this is only an unimportant

detail that can be corrected by a much more complicated mathematical

formulation. That is, we have treated shareholder equity as a European

option, mathematically the simplest kind of option. The idea here is to

illustrate an idea, not to provide a calculational recipe.

The idea of a stock as an option on a company’s assets is theoretically

appealing: a stockholder owns no physical asset, no buildings, no equipment,

etc., at t< T (all debt is paid hypothetically at time T), and will own real assets

like plant, machinery, etc. at t > T if and only if there is anything left over
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after the bondholders have been paid in full. The Black–Scholes explanation

of shareholder value reminds us superficially of the idea of book or replace-

ment value mentioned in Section 4.2, which is based on the idea that the value

of a stock share is determined by the value of a firm’s net real and financial

assets after all debt obligations have been subtracted. However, in a bubble

the equity S can be inflated, and S is anyway generally much larger than book

or replacement value in a typical market. That S can be inflated is in qualita-

tive agreement with M & M, that shares are bought based on future expect-

ations of equity growth DS. In this formal picture we only know the dynamics

of p(t) through the dynamics of B and S. The valuation of a firm on the basis

of p ¼ B þ S is not supported by trading the firm itself, because even in a

liquid equity market Exxon, Intel, and other companies do not change hands

very often. Thinking of p ¼ B þ S, we see that if the firm’s bonds and shares

are liquid in daily trading, then that is as close to the notion of liquidity of the

firm as one can get.

The “air” never came out of the market after the dot.com bubble popped in

2001. Far too much money was/is in circulation for a deflation to occur (the

money supply is discussed in Chapter 9). See Baruch’s autobiography (1957)

for his account of how he bought railroad stocks at greatly lowered costs after

the onset of the liquidity crunch (the Great Depression) following the 1929

market crash.

5.7 The Black–Scholes model

The Black–Scholes model can be derived in all detail from a special portfolio

called the delta hedge (Black and Scholes, 1973). Let w(p,t) denote the option

price. Consider a portfolio short one call option and long D shares of stock.

“Long” means that the asset is purchased, “short” means that it is sold. If

we choose D ¼ w0 then the portfolio is instantaneously risk-free. To see this,

we calculate the portfolio’s value at time t

� ¼� wþ�p ð5:54Þ
Using the Gaussian returns model we obtain the portfolio’s rate of return

(after using dB2 ¼ dt)

d�

�dt
¼ ð�dwþ�dpÞ=�dt

¼ ð� _w�t� w0dp� w00�2
1p

2=2þ�dpÞ=�dt
ð5:55Þ

Here, we have held the fraction D of shares constant during dt because this is

what the hypothetical trader must do. If we choose D ¼ w0 then the portfolio
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has a deterministic rate of return dP/Pdt ¼ r. In this special case, called the

delta hedge portfolio, we obtain

d�

�dt
¼ ð� _wdt� w00�1

2p2=2Þ=ð�wþ w0pÞdt ¼ r ð5:56Þ

where the portfolio return r does not fluctuate randomly to O(dt) and must be

determined or chosen. In principle r may depend on (p,t). The cancellation of

the random term w 0 dp in the numerator of (5.56) means that the portfolio

is instantaneously risk-free: the mean square fluctuation of the rate of return

dP/Pdt vanishes to O(dt),

d�

�dt
� r

� �2
* +

¼ 0 ð5:57Þ

but not to higher order. This is easy to see. With w(p,t) deterministic the finite

change DP ¼ –Dw þ w0�Dp fluctuates over a finite time interval due to Dp.
This makes the real portfolio risky because continuous time portfolio rebal-

ancing over infinitesimal time intervals dt is impossible in reality.

The delta hedge portfolio is therefore not globally risk-free like a CD where

the mean square fluctuation vanishes for all finite times Dt. To maintain the

portfolio balance as the observed asset price p changes while t increases

toward expiration, the instantaneously risk-free portfolio must continually

be updated. This is because p changes and both w and w0 change with t and p.

Updating the portfolio frequently is called “dynamic rebalancing.” Therefore

the portfolio is risky over finite time intervals Dt, which makes sense: trading

stocks and options, in any combination, is a very risky business, as any trader

can tell you.

The standard assumption among finance theorists is that r ¼ r0 is the risk-

free rate of interest. Setting r ¼ r0 means that one assumes that the hedge

portfolio is perfectly equivalent to a money market deposit, which is wrong.

Note, however, that (5.56) holds for any value of r. The theory does not pick

out a special value for the interest rate r of the hedge portfolio.

Finally, with r ¼ dP/ Pd t in (5.56) we obtain the famous Black–Scholes pde

rw ¼ r _wþ rpw0 þ 1

2
�2
1p

2w00 ð5:58Þ

a backward-in-time diffusion equation that revolutionized finance. The initial

condition is specified at a forward time, the strike time T, and the equation

diffuses backward in time from the initial condition to predict the option

price w(p,t) corresponding to the observed asset price p at time t. For a call,

for example, the initial condition at expiration is given by (5.43).
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Black, Scholes, and Merton were not the first to derive option-pricing

equations; Samuelson and others had made option-pricing models. Black,

Scholes, andMerton were the first to derive a falsifiable option-pricing pde by

using only observable quantities. Long before their famous discovery, Black

was an undergraduate physics student, Scholes was an economist with a

lifelong interest in the stock market, and Merton was a racing car enthusiast/

mechanic who played the stock market as a student. Samuelson revived Ito

calculus and Merton, a strong mathematician, put it to work in finance

theory.

In their very beautifully written original 1973 paper Black and Scholes

produced two separate proofs of the pde (5.58), one from the delta hedge and

the other via CAPM. Black (1989) has explained that the CAPM provided his

original motivation to derive an option-pricing theory. We will show next that

CAPM does not lead to (5.58) but instead assumes a different risk-reduction

strategy, so that the original Black–Scholes paper contains an error.

Strangely enough, Steele (2000) apparently was aware of that mistake but

wrote a weak excuse for Black and Scholes instead of presenting a clarifica-

tion. Worse, he wrote as if the formula justified the wrong derivation, which is

bad advice. Science is not like religion where humans are canonized as

perfection with human errors erased from history. We should learn from

mistakes instead of sweeping them under the rug.

5.8 The CAPM option pricing strategy

In what follows we consider the CAPM for two assets, a stock or bond with

rate of return R1, and a corresponding option with rate of return R2. Assum-

ing lognormal asset pricing (5.54) the average return on the option is given by

the sde for w as

dw ¼ ð _wþ R1pw
0 þ �21p

2w00=2Þdtþ pw0�1dB ð5:59Þ
where we’ve used dB2 ¼ dt. This yields an instantaneous rate of return on the

option

x2 ¼ dw

wdt
¼ _w

w
þ pw0

w
R1 þ 1

2
�21p

2 w
00

w
þ pw0

w
�21

dB

dt
ð5:60Þ

where dB/dt is white noise. From CAPM we have

R2 ¼ R0 þ b2�Re ð5:61Þ
for the average return. The average return on the stock is given from

CAPM by
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R1 ¼ R0 þ b1�Re ð5:62Þ
and the instantaneous return rate is x2 ¼ dp/pdt ¼ R1 s1dB/dt. According to

the original Nobel Prize-winning 1973 Black–Scholes paper we should be able

to prove that

b2 ¼
pw0

w
b1 ð5:63Þ

Were this the case then we would get a cancellation of the two b terms in

(5.64) below:

R2 ¼ R0 þ b2�Re ¼ _w

w
þ pw0

w
R1 þ 1

2
�2
1p

2 w
00

w

¼ _w

w
þ pw0

w
R0 þ

pw0

w
b1�Re þ 1

2
�21p

2 w
00

w

ð5:64Þ

leaving us with risk-free rate of return R0 and the Black–Scholes option-

pricing pde (5.63). We show next that this result would only follow from a

circular argument and is wrong: the two b terms do not cancel each other.

From the sde (5.59) for w the fluctuating option price change over a finite

time interval Dt is given by the stochastic integral equation

�w ¼
ðtþ�t

t

ð _wþ w0R1pþ 1

2
w00�21p

2Þdtþ �1ðw0pÞ ��B ð5:65Þ

where the dot in the last term denotes the Ito product. In what follows we

assume sufficiently small time intervals Dt to make the small returns approxi-

mation whereby ln(w (t þ Dt )/w (t )) � D w /w and ln(p (t þ D t)/ p( t)) � Dp /p .
In the small returns approximation (local solution of (5.65))

�w � ð _wþ w0R1pþ 1

2
w00�21p

2Þ�tþ �1w
0p�B ð5:66Þ

We can use this to calculate the fluctuating option return x2 � Dw/wDt at
short times. With x1 � Dp/pDt denoting the short time approximation to the

asset return, we obtain

x2 � R0 � 1

w
ð _wþ �2

1p
2w00

2
þ R0pw

0 � R0wÞ þ pw0

w
ðx1 � R1Þ ð5:67Þ

Taking the average would yield (5.63) if we were to assume that the Black–

Scholes pde (5.58) holds, but we are trying to derive (5.58), not assume it.

Therefore, taking the average yields
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b2	
1

w�Re

@2w

@t2
þ�21p

2w00

2
þR0pw

0 � R0w

� �
þ pw0

w
b1 ð5:68Þ

which is true but does not reduce to (5.58), in contrast with the claim made by

Black and Scholes. Equation (5.58) is in fact impossible to derive without

making a circular argument. Within the context of CAPM one certainly

cannot use (5.63) in the CAPM model.

To see that we cannot assume (5.58) just calculate the ratio f2/f1 invested by

our hypothetical CAPM risk-minimizing agent. Here, we need the correlation

matrix for Gaussian returns only to leading order in Dt:

�11 � �2
1=�t ð5:69Þ

�12 � pw0

w
�11 ð5:70Þ

and

�22 � pw0

w

� �2

�11 ð5:71Þ

The variance of the portfolio vanishes to lowest order as with the delta hedge,

but it is also easy to show that to leading order in Dt

f1 / ðb1pw0=w� b2Þpw0=w ð5:72Þ
and

f2 / ðb2 � b1pw
0=wÞ ð5:73Þ

so that it is impossible that the Black–Scholes assumption (5.68) could be

satisfied. Note that the ratio f1/f2 is exactly the same as for the delta hedge.

That CAPM is not an equilibrium model is exhibited explicitly by the time

dependence of the terms in the averages used.

The CAPM does not predict either the same option-pricing equation as

does the delta hedge. Furthermore, if traders actually use the delta hedge in

option pricing then this means that agents do not trade in a way that minim-

izes the variance via CAPM. The CAPM and the delta hedge do not try to

reduce risk in exactly the same way. In the delta hedge the main fluctuating

terms are removed directly from the portfolio return, thereby lowering the

expected return. In CAPM, nothing is subtracted from the return in forming

the portfolio and the idea there is not only diversification but also increased

expected return through increased risk. In other words, the delta hedge and

CAPM attempt to minimize risk in two entirely different ways: the delta hedge
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attempts to eliminate risk altogether whereas in CAPM one acknowledges

that higher risk is required for higher expected return. We see now that the

way that options are priced is strategy dependent, which is closer to the idea

that psychology plays a role in trading.

The CAPM option-pricing equation depends on the expected returns for

both stock and option,

R2w ¼ _wþ pw0R1 þ 1

2
�21p

2w00 ð5:74Þ

and so differs from the original Black–Scholes equation (5.63) of the delta

hedge strategy. There is no such thing as a universal option-pricing equation

independent of the chosen strategy, even if that strategy is reflected in this era

by the market. Economics is not like physics (non-thinking nature), but

depends on human choices and expectations. This can easily be forgotten

by financial engineers under pressure to invent ever-new derivatives in order

to circumvent regulations and make new sales.

5.9 Backward-time diffusion: solving the Black–Scholes pde

Next, we show that it is very simple to use the Green function method from

physics to solve the Black–Scholes pde, which is a simple, linear, backward-

in-time diffusion equation. This approach is much more transparent than the

standard one found in finance texts.

Consider the simplest diffusion equation

]f

]t
¼ D

]2f

]x2
ð5:75Þ

with D > 0 a constant. Solutions exist only forward in time; the time evolu-

tion operator

UðtÞ ¼ etD
]2

]x2 ð5:76Þ
has no inverse. The solutions

f ðx; tÞ ¼ UðtÞf ðx; 0Þ ¼ f ðx; 0Þ þ tD
]f ðx; 0Þ

]x
þ 
 
 
 þ ðtDÞn

n!

]nf ðx; 0Þ
]xn

þ 
 
 
 ð5:77Þ

form a semi-group. The infinite series (5.77) is equivalent to the integral

operator

f ðx; tÞ ¼
ð1

�1
gðx; tjz; 0Þf ðz; 0Þdz ð5:78Þ
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where g is the Green function of (5.78). That there is no inverse of (5.76)

corresponds to the nonexistence of the integral (5.78) if t is negative.

Consider next the diffusion equation (Sneddon, 1957)

]f

]t
¼ �D

]2f

]x2
ð5:79Þ

It follows that solutions exist only backward in time, with t starting at t0 and

decreasing. The Green function for (5.79) is given by

gðx; tjx0; t0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�Dðt0 � tÞp e

�ðx�x0Þ2
4Dðt0�tÞ ð5:80Þ

With arbitrary initial data f(x,t0) specified forward in time, the solution of

(5.79) is for t � t0 given by

f ðx; tÞ ¼
ð1

�1
gðx; tjz; t0 Þf ð z; t0 Þ dz ð5 :81Þ

where the Green function is the transition density for the Markov process.

We can rewrite the equations as forward in time by making the transformation

Dt ¼ t0 – t so that (5.79) and (5.80) become

]f

]�t
¼ D

]2f

]x2
ð5:82Þ

and

gðx; tjx0; t0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�D�t

p e�
ðx�x0Þ2
4D�t ð5:83Þ

with Dt increasing as t decreases.

We can solve the Black–Scholes pde as follows. Starting with the Black–

Scholes pde (5.58) and transforming to returns x

ru ¼ _uþ r0u0 þ 1

2
�2
1u

00 ð5:84Þ

where u(x,t) ¼ w(p,t) transforms like price, not density. We next make the

time-transformation w ¼ vert so that

0 ¼ _vþ r0vþ 1

2
�2v00 ð5:85Þ

The Green function for this equation is the Gaussian
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gðx� r0ðT � tÞ; T � tÞ ¼ 1

s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2ðT � tÞ

q e
�ðx�r0ðT�tÞÞ2

2s2
1
ðT�tÞ ð5:86Þ

and the forward-time initial condition for a call at time T is

vðx;TÞ ¼ e�rTðpex � KÞ; x < 0

vðx;TÞ ¼ 0; x > 0
ð5:87Þ

so that the call has the value

CðK; p;T � tÞ ¼ e�rðT�tÞp
ð1

lnK=p

gðx� r0ðT � tÞ; T � tÞexdx

� e�rðT�tÞKð1
lnK=p

gðx� r0ðT � tÞ;T � tÞdx

ð5:88Þ

The reader can write down the corresponding formula for a put. However, in

the transformation back to price in (5.88), the Green function, a transition

density, transforms like a density. That is, the option priceC and the transition

density in (5.88) obey completely different coordinate transformation rules.

By completing the square in the exponent of the first integral in (5.88) and then

transforming variables in both integrals, we can transform equation (5.88) into

the standard textbook form (Hull, 1997), convenient for numerical calculation:

CðK; p; T � tÞ ¼ pNðd1Þ � Ke�r�tNðd2Þ ð5:89Þ
where

NðdÞ ¼ 1ffiffiffiffiffiffi
2p

p
ðd

�1
e�y2=2dy ð5:90Þ

with

d1 ¼ ln p=K þ ðr þ s2
1=2Þ�t

s1

ffiffiffiffiffiffi
�t

p ð5:91Þ

and

d2 ¼ ln p=K þ ðr � s2
1=2Þ�t

s1

ffiffiffiffiffiffi
�t

p ð5:92Þ
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Finally, to complete the picture, Black and Scholes, following the theorists

Modigliani and Miller, assumed the no-arbitrage condition. Because the

portfolio is instantaneously risk-free they chose r ¼ r0, the bank interest rate.

Again, the idea is to predict a hypothetically fair option price, then use it as

benchmark to look for “mispricings” to trade on. See Wilmott (1995) for

solutions of the Black–Scholes pde for the different boundary conditions of

interest in financial engineering.

5.10 Enron 2002

The collapse of Enron can be discussed in the context of the Gambler’s Ruin

and the M & M theorem.

Enron (Bryce and Ivins, 2002) started by owning real assets in the form of

gas pipelines, but became a so-called New Economy company during the

1990s based on the belief that derivatives trading, not assets, paves the way to

great wealth acquired fast. This was during the era of widespread belief in

reliable applicability of mathematical modeling of derivatives, and “equilib-

rium” markets, before the collapse of LTCM. At the time of its collapse,

Enron was building the largest derivatives trading floor in the world.

Compared with other market players, Enron’s Value at Risk (VaR, Jorion,

1997) and trading-risk analytics were “advanced,” but were certainly not

“fool-proof.” Enron’s VaR model was a modified Heath–Jarrow–Morton

model utilizing numerous inputs (other than the standard price/volatility/

position) including correlations between individual “curves” as well as clus-

tered regional correlations, factor loadings (statistically calculated potential

stress scenarios for the forward price curves), “jump factors” for power price

spikes, etc. Component VaR was employed to identify VaR contributors and

mitigators, and Extreme Value Theory3 was used to measure potential fat-tail

events. However, about 90% of the employees in “Risk Management” and

virtually all of the traders could not list, let alone explain, the inputs into

Enron’s VaR model.4

A severe weakness is that Enron tried to price derivatives in nonliquid

markets. This means that inadequate market returns or price histograms were

used to try to price derivatives and assess risk. VaR requires good statistics

for the estimation of the likelihood of extreme events, and so with an inad-

equate histogram the probability of an extreme event cannot be meaningfully

estimated. Enron even wanted to price options for gas stored in the ground,

3 See Sornette (1998) and Dacorogna et al. (2001) for definitions of Extreme Value Theory.
4 The information in this paragraph was provided by a former Enron risk management researcher who
prefers to remain anonymous.
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an illiquid market for which price statistics could only be invented.5 Some

information about Enron’s derivatives trading was reported in the article

www.nytimes.com/2002/12/12/business/12ENER.html?pagewanted¼1.
But how could Enron “manufacture” paper profits, without corresponding

cash flow, for so long and remain undetected? The main accounting trick that

allowed Enron to report false profits, driving up the price of its stock and

providing enormous rewards to its deal-makers, was “mark to market”

accounting. Under that method, future projected profits over a long time

interval are allowed to be declared as current profit even though no real profit

has been made, even though there is no positive cash flow. In other words,

firms are allowed to announce to shareholders that profits have been made

when no profit exists. Enron’s globally respected accounting firm helped by

signing off on the auditing reports, in spite of the fact that the auditing

provided so little real information about Enron’s financial status. At the same

time, major investment houses that also profited from investment banking

deals with Enron touted the stock.

Another misleading use of mark to market accounting is as follows: like

many big businesses (Intel, GE, etc.), Enron owned stock in dot.com outfits

that later collapsed in and after winter 2000, after never having shown a

profit. When the stock of one such company, Rhythms NetConnections, went

up significantly, Enron declared a corresponding profit on its books without

having sold the stock. When the stock price later plummeted Enron simply

hid the loss by transferring the holding into one of its spinoff companies.

Within that spinoff, Enrons’ supposed “hedge” against the risk was its own

stock.

The use of mark to market accounting as a way of inflating profit sheets

surely should be outlawed,6 but such regulations fly in the face of the

widespread belief in the infallibility of “the market mechanism.” Shareholders

should at the very least be made fully aware in quarterly reports of all

derivatives positions held by a firm, and how big a fraction of a market those

derivatives represent (this would help to expose potential liquidity problems

under selling pressure). Ordinary taxpayers in the USA are not permitted to

declare as profits or losses unrealized stock price changes. As Black and

Scholes made clear, a stock is not an asset, it is merely an option on an asset.

Real assets (money in the bank, plant and equipment, etc.), not unexercised

options, should be the basis for deciding profits/losses and taxation. In

addition, accounting rules should be changed to make it extremely difficult

5 Private conversation with Enron modelers in 2000.
6 It would be a good idea to mark liquid derivatives positions to market to show investors the level of risk.
Illiquid derivatives positions cannot be marked to market in any empirically meaningful way, however.
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for a firm to hide its potential losses on bets placed on other firms: all

holdings should be declared in quarterly reports in a way that makes clear

what are real assets and what are risky bets.

Let us now revisit the M & M theorem. Recall that it teaches that to a first

approximation in the valuation of a business p ¼ B þ S the ratio B/S of debt

to equity doesn’t matter. However, Enron provides us with examples where

the amount of debt does matter. If a company books profits through buying

another company, but those earnings gains are not enough to pay off the

loan, then debt certainly matters. With personal debt, debt to equity matters

since one can go bankrupt by taking on too much debt. The entire M & M

discussion is based on the small returns approximation E ¼ <Dp> � pDt,
but this fails for big changes in p. The discussion is therefore incomplete

and can’t be extrapolated to extreme cases where bankruptcy is possible.

So the ratio B/S in p ¼ B þ S does matter in reality, meaning that something

important is hidden in the future expectations E and ignored within the

M & M theorem.

Enron made a name for itself in electricity derivatives after successfully

lobbying for the deregulation of the California market. The manipulations

that were successfully made by options traders in those markets are now well

documented. Of course, one can ask: why should consumers want deregu-

lated electricity or water markets anyway? Deregulation lowered telephone

costs, both in the USA and western Europe, but electricity and water are very

different. Far from being an information technology, both require the expen-

sive transport of energy over long distances, where dissipation during trans-

port plays a big role in the cost. So far, in deregulated electricity and water

markets, there is no evidence that the lowering of consumer costs outweighs

the risk of having firms play games trying to make big wins by trading options

on those services. The negative effects on consumers in California and Buenos

Aires do not argue in favor of deregulation of electricity and water.

It’s too easy to conclude that Adam Smith qualitatively extrapolated

simple ideas of mechanical friction to conclude that supply and demand is

self-stabilizing, analogous to the way that the laws of mechanics lead to a

terminal speed for a ball falling through the air. But Smith, a Calvinist with

strong moral principles, was not so naive. He asserted that moral restraint

would be necessary for free markets to function correctly (in stable fashion).

Smith was perceptive, but his hopes have not been realized. That moral

restraint alone is inadequate to stabilize free markets is illustrated in Chapter 9,

in the context of the Dollar under the gold standard.
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6

Scaling, pair correlations, and conditional densities

We’ve covered the basic required math in Chapter 3, and have introduced the

reader to the most basic ideas of financial markets in Chapter 4. Scaling is

widely assumed in econophysics; the questions for us are simple: (i) what does

scaling imply, and (ii) does it really occur (Chapter 7)? In this chapter we

explicitly construct scaling models where one class violates the EMH and the

other class satisfies it. We also determine whether scaling, when it occurs, is

reflected in transition densities and pair correlations.

6.1 Hurst exponent scaling

We now begin to discuss two completely unrelated topics that are often

confused together in the literature: scaling and long time correlations. Scaling

with a Hurst exponent H 6¼ 1/2 is often misinterpreted as implying the long

time autocorrelations of fractional Brownian motion (fBm). We’ll show that

scaling has nothing to do with long time correlations: when scaling occurs,

then it’s restricted to one-point densities and one-point densities tell us

nothing about correlations. We’ll show in the end that transition densities

and pair correlations generally cannot scale even if certain random trajector-

ies do scale. In other words, and in contrast with the statistical physics of

order-disorder transitions, scaling does not reflect dynamics at all!

A stochastic process x(t) is said to scale with Hurst exponent H if

xðtÞ ¼ tHxð1Þ ð6:1Þ
where by equality we mean equality “in distribution” (Embrechts and

Maejima, 2002). We next define what that means for one class of processes.

Clearly, x(0) ¼ 0 is necessary for random trajectories that scale.

Consider next simple averages of a dynamical variable A(x,t). Simple

averages require only the one-point density,
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AðtÞh i ¼
ð1

�1
Aðx; tÞf1ðx; tÞdx ð6:2Þ

From (6.1), the moments of x must obey

xnðtÞh i ¼ tnH xnð1Þh i ¼ cnt
nH ð6:3Þ

Combining this with

xnðtÞh i ¼
ð
xnf ðx; tÞdx ð6:4Þ

we obtain

f ðx; tÞ ¼ t�HFðuÞ ð6:5Þ
where the scaling variable is u ¼ x/tH. This predicts a data collapse F(u) ¼ tHf

(x,t) that could be tested empirically, if densities can be extracted reliably from

empirical data (see Chapter 7).

We’ll see below that scaling generally requires a drift coefficient R ¼ 0, so

that with x(0) ¼ 0 the unconditioned average of x vanishes. The variance is

then simply

s2 ¼ x2ðtÞ� � ¼ x2ð1Þ� �
t2H ð6:6Þ

This explains what is meant by Hurst exponent scaling, and also specifies

what’s meant by that (6.1) holds “in distribution,” namely, that the one-point

density scales.

The Wiener process is an example of a Markov process that scales. One

sees this from the one-point Gaussian density f1(B,t) ¼ t�1/2F(B/t1/2) where

F(u) ¼ exp(�u2/2)/(2p)1/2. We conclude that B(t) ¼ t1/2B(1) with B(0) ¼ 0. The

two-point density obeys p2ðB; t B0; t0j Þ ¼ p2ðB� B0; t� t0 0; 0j Þ ¼ f1ð�B;�tÞ due
to stationarity of the increments. Note that the transition density scales with

the time lag T ¼ t � t0 only because of time-translational invariance. The pair

correlations are given by Bðtþ TÞBðtÞh i ¼ B2ðtÞ� � ¼ t and do not scale with

exponent H ¼ 1/2 in time scales t and t þ T.

Even if scaling occurs, it’s broken by arbitrary choices of initial conditions

x(t0) 6¼ 0. A more precise way to say this is that the only density that may scale

is f1ðx; tÞ ¼ p2ðx; t 0; 0Þj . We make this claim rigorous below, where we show

that p2ðy; tþ Tjx; tÞ generally does not scale.

Our scaling discussion above assumes finite moments of all orders. Both

Levy and Markov processes can generate “fat tails,” f1ðx; tÞ � xj j�m when

xj j >> 1, where moments xnðtÞh i blow up after some finite value of n. In that
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case one would have to discuss scaling using the one-point density directly

(Scalas et al., 2000) without any appeal to the moments.

Nothing is implied about correlations and/or dynamics by Hurst exponent

scaling. We’ll exhibit this below by presenting both Markov and strongly

correlated processes that scale with the same Hurst exponent H, and generate

exactly the same one-point density. This tells us that neither one-point densities,

nor diffusion equations for one-point densities, imply a specific underlying sto-

chastic process, a fact pointed out much earlier in the context of stochastic

models with either correlated or uncorrelated noise (Hänggi and Thomas,

1977). As a hypothetical example, to assert that prices are lognormal, without

stating the pair correlations or transition density, does not tell us that prices

are generated by an Ito process.

6.2 Selfsimilar Ito processes

This first subsection is general, is not restricted to Ito processes. Consider

drift-free trajectories that scale with some function of time,

xðtÞ ¼ s1ðtÞxð1Þ ð6:7Þ
Notice that s1(0) ¼ 0 is necessary for scaling, so that all trajectories that scale

necessarilypass through theorigin.Hurst exponent scaling is definedbys1(t)¼ tH.

With averages given by

xnðtÞh i ¼
ð
xnf1ðx; tÞdx ð6:8Þ

then the variance is

s2ðtÞ ¼ x2ðtÞ� � ¼ s2
1ðtÞ x2ð1Þ� � ð6:9Þ

Satisfying (6.8) requires that

f1ðx; tÞ ¼ s�1
1 ðtÞFðuÞ; u ¼ x=s1ðtÞ ð6:10Þ

Next, we show that Hurst exponent scaling is the only possibility for a

selfsimilar process.

First, let

xðtÞ ¼ bxðatÞ ð6:11Þ
be a general selfsimilar process. From

xðt0Þ ¼ bða0Þxða0tÞ ð6:12Þ
and t0 ¼ a0t we obtain
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xðtÞ ¼ bða0aÞxða0atÞ ¼ bða0ÞbðaÞxða0atÞ ð6:13Þ
so that

bðaÞ ¼ aH ð6:14Þ
with H > 0 follows. Setting at ¼ 1 in (6.11) we obtain

xðtÞ ¼ tHxð1Þ ð6:15Þ
We can therefore take f1(t) ¼ tH for any selfsimilar process (Embrechts and

Maejima, 2002). So far our conclusions are not restricted to Ito processes

but apply to any selfsimilar process. Next, we consider selfsimilar diffusive

processes.

6.2.1 Martingales

The sde

dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðx; tÞ

p
dBðtÞ ð6:16Þ

generates a drift-free Ito process x(t) and transforms one-to-one with the

Fokker–Planck pde

@p2
@t

¼ 1

2

@2ðDp2Þ
@x2

ð6:17Þ

for the transition density of the Ito process. Scaling of the one-point density

f1(x,t) combined with the sde (6.16) yields variance scaling

�2ðtÞ ¼
ðt
0

ds

ð1
�1

dxf1ðx; sÞDðx; sÞ ¼ t2H x2ð1Þ� � ð6:18Þ

if and only if the diffusion coefficient scales as

Dðx; tÞ ¼ t2H�1 �DðuÞ ð6:19Þ
Scaling is restricted to the one-point density f1ðx; tÞ ¼ p2ðx; t 0; 0Þj , where the

scale-independent part F(u) satisfies the ode

2HðuFðuÞÞ0 þ ð �DðuÞFðuÞÞ00 ¼ 0 ð6:20Þ
which is solved by

FðuÞ ¼ C
�DðuÞ e

�2H
Ð
udu= �DðuÞ ð6:21Þ
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if no current J flows through the system, otherwise there’s another term

proportional to J. We can easily calculate some examples.

First, let �D¼ constant. Then

FðuÞ ¼ H
�D�

� �1=2
e�Hu2= �D ¼ 1

2� x2ð1Þh i
� �1=2

e�u2=2 x2ð1Þh i ð6:22Þ

Second, assume that

�DðuÞ ¼ 1þ uj j ð6:23Þ
Here, we find that

FðuÞ ¼ C

�DðuÞ1�2H
e�2H uj j ð6:24Þ

Both these results are changed if we include a constant factor multiplying

the diffusion coefficient, but we leave the details as an exercise. Here, we

obtain a pure exponential density if and only if H ¼ 1/2, otherwise there is a

u-dependent prefactor. In any case there are no fat tails; the exponential

factor dominates as u increases in magnitude.

To obtain

FðuÞ ¼ Ce� uj j ð6:25Þ
we need

D
_ðuÞ ¼ 1

2H
ð1þ uj jÞ ð6:26Þ

Last, we study the class of quadratic diffusion coefficients

�DðuÞ ¼ d0ðeÞð1þ eu2Þ ð6:27Þ
which yields the two-parameter (e,H) class of student-t-like densities

FðuÞ ¼ C0ð1þ eu2Þ�1�H=ed0ðeÞ ð6:28Þ
where H and e are independent parameters to be determined empirically. Here

we have fat tails,

FðuÞ � juj��; juj >> 1 ð6:29Þ
with tail exponent m ¼ 2 þ 2H/ed0(e). We can generate all fat tail exponents in

the range 2 < m < 1, but the variance is finite, s2 ¼ ct2H, if and only if m > 3.

For 2 �m� 3 the variance is infinite.
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The original references on scaling in diffusive processses are Alejandro-

Quinones et al. (2005, 2006), Bassler et al. (2006), and Gunaratne and

McCauley (2005a).

Finally, a variable drift R(x,t) can be invented to satisfy scaling but the drift

so constructed violates the variable drift of Martingale option-pricing theory.

TheMartingales above can be transformed into Ito processes with t-dependent

drift R(t) by the substitution x ! x� Ð
RðtÞdt.

6.2.2 What does H 6¼ 1/2 mean?

The above solutions are Martingales. We know that the increments of

Martingales are nonstationary when the variance is nonlinear in t. For a

scaling process this requires H 6¼ 1/2. Vanishing increment autocorrelations

is easy to prove using the Martingale increment formula

xðt;TÞ ¼
ðtþT

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxðsÞ; sÞ

p
dBðsÞ ð6:30Þ

There’s no autocorrelation in the increments x(t,–T), x(t,T) over the two

nonoverlapping time intervals,

xðt;�TÞxðt; TÞh i ¼
ðtþT

t

ds

ðt
t�T

dw DðxðwÞ;wÞDðxðsÞ; sÞh i dBðwÞdBðsÞh i ¼ 0 ð6:31Þ

because dBðwÞdBðsÞh i ¼ 0 for nonoverlapping time intervals dw and ds. The

function D(x,t) is called “nonanticipating” in the math literature. This just

means that, by Ito’s definition of the stochastic integral (6.30), the function

D(x,t) of the random variable x and the random increment dB(t) from t to

t þ dt are statistically dependent because x(t) was determined in the Martingale

sde by the Wiener increment dB(t – dt) before dB(t) occurs. That is, D(x(t),t)

cannot “anticipate” the next random increment dB(t) in (6.30).

It’s also easy to illustrate the nonstationarity of the increments whenH 6¼ 1/2

and for H ¼ 1/2 as well:

xðtþ TÞ � xðtÞ ¼
ðtþT

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxðsÞ; sÞ

p
dBðsÞ �

ðt
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxðsÞ; sÞ

p
dBðsÞ

¼
ðtþT

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxðsÞ; sÞ

p
dBðsÞ ¼

ðtþT

t

jsjH�1=2
ffiffiffiffiffiffiffiffiffiffi
DðuÞ

p
dBðsÞ

¼
ðT
0

jsþ tjH�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðx=jsþ tjHÞ

q
dBðsÞ 6¼ xðTÞ

ð6:32Þ
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where B(t) has stationary increments, dB(s þ t) ¼ dB(s).

Scaling Martingales with nonstationary increments have an “intrinsic

time,” t ¼ t2H. If we transform a scaling Martingale to this time variable then

the variance is linear in t and the mean square fluctuation in the increment

becomes stationary even if (6.32) generally is not.

So H 6¼ 1/2 simply means nonstationary increments if the increments are

uncorrelated.

With H ¼ 1/2 the variance is linear in the time t. This is a necessary but

insufficient condition for stationary increments. Stationary increments are not

proven for Martingales scaling with H ¼ 1/2, and cannot be assumed to hold.

Next, we’ll show that the implication of H 6¼ 1/2 is quite different for

processes with stationary correlated increments.

6.3 Long time increment correlations

We consider next the class of stochastic processes generating long-time incre-

ment autocorrelations, both without and with scaling.

Let x(t,T) ¼ x(t þ T) – x(t) denote an increment and let x(t,–T) denote the

preceding increment. We obtain

2 xðt;�TÞxðt; TÞh i ¼ ðxðt;�TÞ þ xðt;TÞÞ2
D E

� x2ðt; TÞ� �� x2ðt;TÞ� � ð6:33Þ

If the stochastic process x(t) has stationary increments, x(t,T)¼ x(t þ T) – x(t)¼
x(0,T), meaning that the one-point distribution of x(t,T) is independent of t.

Then (using the sloppy but standard notation x(0,T) ¼ x(T)) the mean square

fluctuation calculated from any starting point x(t) is independent of starting

time t,

ðxðtþ TÞ � xðtÞÞ2
D E

¼ x2ðTÞ� � ð6:34Þ

From this result we obtain long time increment autocorrelations

2 xðt;�TÞxðt; TÞh i ¼ x2ð2TÞ� �� 2 x2ðTÞ� � ð6:35Þ
if and only if the variance is nonlinear in the time. Exactly how the variance

is nonlinear in t is irrelevant: the sole ingredients required for long time

increment autocorrelations are:

(i) stationary increments, x(t,T) ¼ x(T) “in distribution”

(ii) a variance nonlinear in the time.

If, in addition, the variance would scale in time with H, then we would obtain

the simple prediction
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ðxðtþ TÞ � xðtÞÞ2
D E

¼ x2ðTÞ� � ¼ cT2H ð6:36Þ

and also that

2 xðt;�TÞxðt;TÞh i= x2ðTÞ� � ¼ 22H�1 � 1 ð6:37Þ
Clearly, scaling with arbitrary Hurst exponent 0 < H < 1 is not a condition for the

presence or absence of long time correlations. Next, we present the canonical

example where both long time pair correlations and scaling appear simultan-

eously. The main references here are McCauley et al. (2007a, 2007c), who

followed Mandelbrot and van Ness (1968).

6.3.1 Fractional Brownian motion defined as a stochastic integral

For finite autocorrelations over nonoverlapping time intervals the increments

must be stationary,

xðtþ TÞ � xðtÞ ¼ xðTÞ ð6:38Þ
so that, for example,

ðxðtþ TÞ � xðtÞÞnh i ¼ xðTÞnh i ð6:39Þ
for n ¼ 1,2,3,. . . To try to construct such a process, consider stochastic

integrals of the form

xðtÞ ¼
ðt
t0

kðt; sÞdBðsÞ ð6:40Þ

With k(t,s) dependent on the upper limit t, the stochastic integrals cannot

be generated by an sde. This condition avoids the construction of an Ito

process. We know from the discussion above that if the increments of (6.40)

are stationary, then long time autocorrelations in increments appear if the

variance is nonlinear in t. Stationary increments apparently occur if and only

if t0 ¼ �1 in (6.40). Satisfying the stationarity condition

xðtþ TÞ � xðtÞ ¼
ðT

�1
kðT; sÞdBðsÞ ¼ xðTÞ ð6:41Þ

requires a very special class of kernels k(t,s).Wehavenot assumed that x(t) scales.

Independently of the question of stationarity of the increments and the

corresponding long time autocorrelations, consider next the possibility of

scaling, x(t) ¼ tHx(1). Transforming variables u ¼ s/t in (6.40) we obtain
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xðtÞ ¼
ð1
t0=t

kðt; tuÞt1=2dBðuÞ ð6:42Þ

because dB(s)¼ B(sþ ds) – B(s)¼ B(ds) so that B(tdu)¼ t1/2B(du)¼ t1/2dB(u).

To get x(t) ¼ tHx(1) we need both that the kernel scales, k(t,tu) ¼ tH�1/2k(1,u),

and that the lower limit of integration is either t0 ¼ 0 or �1. For the former

case the increments of (6.42) are typically not stationary, but one may obtain

stationary increments for t0 ¼ �1 for a very special kernel k(t,s). In either

case, with or without long time autocorrelations, we have a stochastic process

that scales.

The main point here is that in order to obtain the standard predictions for

the long time correlations of fBm where

ðxðtþ TÞ � xðtÞÞnh i ¼ xðTÞnh i ¼ cTnH ð6:43Þ
two entirely separate conditions must be satisfied. First, the increments must

be stationary, for without this condition scaling merely leads to Markov-like

behavior. Second, the variance must scale with H. These two separate condi-

tions are generally confused together in the literature with far too much

emphasis on the second one. To test either of these two assumptions empiric-

ally correctly is more difficult than most of the existing literature on the

subject would have the reader believe. The key test is for stationarity and

correlation of the increments, not scaling.

However, if we have stationary increments combined with Hurst exponent

scaling, then a simple prediction for the autocorrelations of fBm over non-

overlapping time intervals follows easily. Let t1 – T1 < t1 < t2 < t2 þ T2. With

the autocorrelation function defined by

2 ðxðt2 þ T2Þ � xðt2ÞÞðxðt1Þ � xðt1 � T1ÞÞh i
¼ ðxðt2 þ T2Þ � xðt1 � T1ÞÞ2

D E
þ ðxðt2Þ � xðt1ÞÞ2
D E

� ðxðt2 þ T2Þ � xðt1ÞÞ2
D E

� ðxðt2Þ � xðt1 � T1ÞÞ2
D E ð6:44Þ

where we’ve used 2(a – c)(d – b) ¼ (a – b)2 þ (c – d)2 – (a – d)2 – (c – b)2, then

using stationarity of the increments, and also dividing by a product of the

variances at times T1 and T2 with t2 ¼ t/2 ¼ –t1, we can evaluate

2CðS1; S2Þ ¼ ðxðt=2þ T2Þ � xðt=2ÞÞðxð�t=2Þ � xð�t=2� T1ÞÞh i
=ð x2ðT1Þ
� �

x2ðT2Þ
� �Þ1=2 ð6:45Þ

where S1 ¼ T1/t, S2 ¼ T2/t, to obtain
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CðS1; S2Þ ¼ ½ð1þ S1 þ S2Þ2H þ 1� ð1þ S1Þ2H � ð1þ S2Þ2H�=2ðS1S2ÞH ð6:46Þ
This result was first derived by Mandelbrot and van Ness (1968). The

resulting long time correlations vanish if and only if H ¼ 1/2, if the variance

is linear in t.

Mandelbrot and van Ness have also provided us with an example of a

scaling kernel that generates stationary increments, and hence describes fBm,

xHðtÞ ¼
ð0

�1
½ðt� sÞH�1=2 � ð�sÞH�1=2�dBðsÞ þ

ðt
0

½ðt� sÞH�1=2dBðsÞ ð6:47Þ

or

xHðtÞ ¼
ðt
�1

½ðt� sÞH�1=2 � NðsÞð�sÞH�1=2�dBðsÞ ð6:48Þ

where N(s) ¼ 1 – y(s). To see that the increments are indeed stationary, use

u ¼ s – t and s ¼ u – t respectively in

xHðtþ TÞ � xHðtÞ ¼
ðtþT

�1
½ðtþ T � sÞH�1=2 � NðsÞð�sÞH�1=2�dBðsÞ

�
ðt
�1

½ðt� sÞH�1=2 � NðsÞð�sÞH�1=2�dBðsÞ
ð6:49Þ

along with dB(t þ u) ¼ B(t þ u þ du) – B(t þ u) ¼ B(du) ¼ dB(u) to obtain

xHðtþ TÞ � xHðtÞ ¼
ðT
�1

½ðT � uÞH�1=2 � NðuÞð�uÞH�1=2�dBðuÞ ¼ xHðTÞ ð6:50Þ

This result follows from a cancellation of terms from each integral in (6.49).

Again, the reader should be aware that by “x(T)” we always mean the

increment x(0,T); “x(T)” is always measured from the origin x(0) ¼ 0.

6.3.2 The distribution of fractional Brownian motion

It’s easy and instructive to construct the one-point density that describes fBm,

f1ðx; tÞ ¼ dðx� k ��BÞh i ¼ 1

2�

ð1
�1

eipx e�ipk��B
� �

dp ð6:51Þ

where k�DB denotes the Ito product representing the stochastic integral (6.48).

From this one easily obtains a scaling Gaussian f(x,t) ¼ t–HF(u), F(u) ¼
(1/(2p<x2(1)>))1/2exp(�u2/2<x2(1)>) with u ¼ x/tH, which is identical with

the one-point density of a scaling GaussianMarkov process, or for a Gaussian
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Martingale with finite memory. A scaling Ito process cannot be distinguished

from fBm on the basis of the one-point density; the one-point density provides

us with no knowledge of the underlying dynamics of the process that generated

it. It’s necessary to ask if the increments are stationary or uncorrelated whenH

6¼ 1/2, and answering that question demands constructing the two-point

density, or at least the pair correlations.

We can construct the two-point density that defines fBm because, for a

Gaussian process, the pair correlations specify all densities of all orders n.

FBm is a Gaussian process simply because there is no x-dependence in the

kernel of the stochastic integral for fBm. However, fBm is not merely a time-

transformation on a Wiener process; that triviality is eliminated by the fact

that the kernel k depends on the upper limit of integration.

Any two-point Gaussian density is given by

f2ðx; tÞ ¼ 1

2�det B
e�xyB�1x ð6:52Þ

where

Bkl ¼ xkxlh i ð6:53Þ
defines the autocorrelation matrix. Without specifying the autocorrelations

(6.53), one cannot say whether the process x(t) is Markovian or not. The

autocorrelation

xðsÞxðtÞh i ¼ x2ð1Þ� �
2

ð sj j2Hþ tj j2H� s� tj j2HÞ ð6:54Þ

enforces stationary increments, where scaling with H is also asssumed in

agreement with (6.47), and therefore will enforce the long time autocorrela-

tions of fBm in the increments. The resulting two-point density of fBm can be

written as1

f2ðxðsÞ; s; xðtÞ; tÞ ¼ 1

2�s1s2ð1� r2Þ1=2
e�ðx2ðsÞ=s2

1
þx2ðtÞ=s2

2
�2rxðsÞxsðtÞ=s1s2Þ=2ð1�r2Þ2ð6:55Þ

where s1s2r ¼ xðsÞxðtÞh i, s2
1 ¼ xð1Þh i tj j2HZ, and s2

2 ¼ xð1Þh i sj j2H, and
r ¼ ð sj j2Hþ tj j2H� t� sj j2HÞ=2 stj jH ð6:56Þ

If we integrate over the earlier variable x(s), taking s < t, then we obtain the

one-point density f1,

1 This corrects a misstatement about fBm in McCauley et al. (2007a).
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f1ðx; t;�1Þ ¼ t�Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� x2ð1Þh ip e�x2=2hx2ð1Þit2H ð6:57Þ

which scales with H. The result is identical with the density for a scaling diffusive

process. However, the transition density p2 ¼ f2/f1 of fBm does not satisfy a

diffusion pde (the reader is invited to construct the transition density).

For the analysis of time series, the two central questions are those of

nonstationary vs stationary increments, and correlated vs uncorrelated incre-

ments. Scaling makes modeling easier but can’t be counted on to exist in

empirical data. We emphasize that (i) a Hurst exponent H, taken alone, tells

us nothing about the dynamics, and even worse (ii) a one-point density, taken

alone, tells us little or nothing about the dynamics. It’s absolutely necessary to

study the autocorrelations of increments in order to obtain any idea what sort

of dynamics are generated by a time series.

Finally, we can now easily write down the two-point transition density

p2ðy; sjx; tÞ ¼ f2ðy; s; x; tÞ=f1ðx; tÞ ð6:58Þ
and it to show that the conditional expectation of y is not x, but is rather

ð1
�1

p2ðy; s x; tÞydy ¼ Cðs; tÞxj ð6:59Þ

where C 6¼ 1 varies, fBm is not a Martingale. Depending on H, the prefactor

C may be either positive or negative. The factor C(t,s) is proportional to the

autocorrelation function that reflects the stationary increments of fBm.

With xðsÞh i ¼ Cðs; tÞx, where x is the last observed point at time t, we

therefore obtain d xðsÞh i=ds ¼ xdCðs; tÞ=ds 6¼ 0, showing a trend/bias that is

inherent in the process and so can’t be eliminated by subtracting a drift

term.

FBm has infinite memory (McCauley, 2008b); the entire past trajectory is

remembered in (6.48). Another way to state this is that the n-point density

hierarchy fn doesn’t truncate for any finite integer n. Next, we consider

processes where memory of a finite number of states is possible. These are

Ito processes, processes consisting of a drift A plus a Martingale M; that is,

x(t) ¼ A(t) þ M(t). Markov processes are Ito processes with memory only

of the last observed state, and of no earlier states: R(x,t) and D(x,t) cannot

depend on any states other than (x,t). The dependence of either on a func-

tional like xðtÞh i ¼ Ð
dxxf1ðx; tÞ is also merely state-dependence (McCauley,

2008b). A Martingale has uncorrelated, generally nonstationary increments.

Adding drift to a Martingale can create increment autocorrelations.
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6.4 The minimal description of dynamics

A one-point density doesn’t classify the underlying dynamics (Hänggi et al.,

1978). Given a one-point density, or a diffusive pde for a one-point density, we

cannot even conclude that we have a diffusive process at the level of the transi-

tion density (McCauley et al., 2007a). The one-point density for fBm, a non-

diffusive process with long time increment autocorrelations, satisfies the same

diffusive pde as does a GaussianMarkov process. A detrended diffusive process

has no increment autocorrelations, so that the pde for the transition density is

also diffusive (Fokker–Planck). Therefore, the minimal knowledge needed to

identify the class of dynamics is either the transition density depending on two

points or else the specification of the pair correlations xðsÞxðtÞh i.
For a general stochastic process, transition densities depending on the

history of all possible lengths are required. The pair correlations are adequate

to pin down the stochastic process in exactly two distinct cases. First, for a

drift-free process, if xðsÞxðtÞh i ¼ x2ðsÞ� �
with s < t, then the process is either

Markovian (memory-free) or else is a Martingale with finite memory. In

either case the process is diffusive. The other case where pair correlations

determine the process is in the case of Gaussian processes. There, pair

correlations specify processes of all orders.

6.5 Scaling of correlations and conditional probabilities?

Simple averages scale if the one-point density scales, and vice versa. But scaling

starts and stops with one-point densities; neither transition densities nor pair

correlations may scale except in one pathological case (Bassler et al., 2008).

Conditional averages and pair correlations require the two-point density

f2ðx; tþ T; y; tÞ ¼ p2ðx; tþ Tjy; tÞf1ðy; tÞ ð6:60Þ
or, more to the point, the two-point transition density (conditional probability

density) p2ðx; tþ T y; tÞj . Assume in all that follows that f1ðx; tÞ ¼ tj j�HFðx= tj jHÞ,
but assume nothing in advance about the underlying dynamics.

Without specifying the dynamics, the vanishing of an unconditioned aver-

age of x does not mean that there’s no conditional trend: in fBm, for example,

where xðtÞh i ¼ xð0Þ ¼ 0 by construction, the conditional average of x does not

vanish and depends on t, reflecting either a trend or an anti-trend. In a

Martingale process, scaling may occur if the drift rate is either constant or

depends on t alone (is independent of x) and has been subtracted, that by “x”

we really mean the detrended variable x(t) –
R
R(s)ds. Markov processes with

x-independent drift can be detrended over a definite time scale, but any
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attempt to detrend fBm would at best produce spurious results because the

“trend” is due to long time autocorrelations, not to a removable additive drift

term.

Here’s the main point of this section. Even if scaling holds at the one-point

level as in fBm, then the two-point density (the transition density p2) and the

pair correlations xðtÞxðsÞh i

xðtÞxðsÞh i ¼
ð ð

dydxyxf2ðy; t; x; sÞ ð6:61Þ

do not scale with H in the two different times (t,s), and it’s the transition

density p2, or at least the pair correlations, that’s required to give a minimal

description of the underlying dynamics.2 We can illustrate this via some

closed-form examples.

We know how to calculate f2 and p2 analytically only for Gaussian processes,

where the densities of all orders are determined once the pair correlations are

specified, so let’s examine Hurst exponent scaling in that case. Assume that the

process is both Gaussian,

p2ðx; t y; sÞ ¼j 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Kðt; sÞp e�ðx�mðt;sÞyÞ2=2Kðt;sÞ ð6:62Þ

f1ðy; sÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�s2ðsÞÞp e�x2=2s2ðsÞ ð6:63Þ

and selfsimilar. The selfsimilarity condition requires s2ðtÞ ¼ t2H x2ð1Þ� �
. This

immediately yields scaling of f1, f1ðy; sÞ ¼ sj j�HFðy= sj jHÞ, but nothing else.

Consider next three separate cases. First, assume statistical independence

of the process at different times (t,s), f2(x,t;y,s) ¼ f1(x,t)f1(y,s), so that if f1
scales then so does f2, f2(x,t;y,s) ¼ t�HF(x/tH)s�HF(y/sH), but m(t,s) ¼ 0,

xðtÞxðsÞh i ¼ 0. This is the trivial case.

Next, because

xðtÞh icond¼
ð1

�1
dxxp2ðx; tjy; sÞ ¼ mðt; sÞy ð6:64Þ

for Martingale dynamics we must require m(t,s) ¼ 1 and so we obtain the

pair correlations xðtÞxðsÞh i ¼ x2ðsÞ� � ¼ sj j2H x2ð1Þ� �
, t > s. For a Gaussian

Martingale neither the pair corelations nor p2 scales in both t and s.

2 For a Gaussian process, pair correlations and p2 provide a complete description. But for non-Gaussian
processes like FX markets, all of the transition densities pn, n ¼ 2,3,. . . may be required to pin down the
dynamics. In data analysis it’s hard to measure more than pair correlations.
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Next, apply

xðtÞxðsÞh i ¼ mðt; sÞs2ðsÞ ð6:65Þ
to fBm, a selfsimilar Gaussian process with stationary increments. Here,

xðtÞxðsÞh i ¼ x2ð1Þ� �
2

ð sj j2Hþ tj j2H� s� tj j2HÞ ð6:66Þ

follows. This is the canonical “selfsimilar process with long time autocorrela-

tions,” but neither the pair correlations (6.65), the increment autocorrela-

tions, nor the transition density (6.62) scale in both times t and s.

From (6.62) and (6.65) we see that, excepting the trivial case of statistical

independence where the pair correlations vanish, scaling of both the pair

correlations and f2 occurs if and only if the pathology mðt; sÞ ¼ tj jH= sj jH holds.

We therefore conjecture from these Gaussian examples that, in general, neither

pair correlations nor two-point (or higher order) densities scale whenever the

stochastic process is selfsimilar. This means that scaling does not have the

importance for understanding market dynamics that econophysicists have

heretofore assumed. In particular, when long time correlations are claimed

in the literature then the reader should ask: what is the evidence presented for

stationary increments? In the next chapter we’ll discuss the questions of

increment autocorrelations and increment stationarity in finance data.
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7

Statistical ensembles

Deducing dynamics from time series

We now begin our ascent toward the main peak of our effort, although there

are still interesting and useful peaks to climb in the remaining chapters. The

theories of stochastic processes and probability are put to work below to

address the central question: can we reliably deduce a model or class of

dynamic models from a single time series, where “systematically rerunning

the experiment” is impossible? If so, then how, and what are the main pitfalls

to be avoided along the way? With detrended data in mind, the two classes of

dynamics of interest are those with and without increment autocorrelations:

Martingales vs everything else. We will also see that Wigner’s analysis applies

(Chapter 1): unless we can find an inherent statistical repetitiveness to exploit,

then the effort is doomed in advance. We will exhibit the required statistical

repetition for FX data, and also show how a class of diffusive models is

implied. Because we work with detrended time series (this would be impossible

were the increments correlated), attention must first be paid to restrictions on

detrending Ito processes.

7.1 Detrending economic variables

Prices are recorded directly but we’ll study log returns of prices. The use

of logarithms of prices is common both in finance and macroeconomics.

Before the transformation can be made from price to log returns, a price

scale must be defined so that the argument of the logarithm is dimension-

less. In finance, we can begin with the sde for price p, dp ¼ mpdtþ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dðp; tÞp

dB, where p can be detrended multiplicatively so that S ¼ pe�mt is

a Martingale. If we next transform to log returns, then we could arbitrarily

define x ¼ lnðpðtÞ=VðtÞÞ where V(t) is nonunique, but here we choose the

price V(t) to locate the minimum of the price diffusion coefficient e(S,t)

in dS ¼ S
ffiffiffiffiffiffiffiffiffiffiffiffi
eðS; tÞp

dB, so that VðtÞ ¼ Ve�mt where V would locate that
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minimum at t ¼ 0. The corresponding Fokker–Planck pde for the log returns

Green function is then

@g

@t
¼ 1

2

@

@x
ðDðx; tÞgÞ þ 1

2

@2

@x2
ðDðx; tÞgÞ ð7:1Þ

andweget corresponding log increments xðt; TÞ ¼ lnðe�mTpðtþ TÞ=pðtÞÞ. If there
is but a single price scale in the problem, then V is the consensus price at t ¼ 0,

where the consensus price locates the peak of the one-point density.

In FX data analysis, the drift term is so small that it nearly can be ignored.

Because of that, in our FX data analysis below we can effectively work with

the approximation xðt;TÞ � lnðpðtþ TÞ=pðtÞÞ. In this approximation the

returns were detrended empirically, corresponding to an approximate

Martingale Fokker–Planck pde in returns also with the variable drift term

in (7.1) ignored. This completely drift-free approximation was used in our FX

data analysis (Bassler et al., 2007) described below. Detrending of prices and

returns is discussed formally in McCauley et al. (2007c).

In practice, detrending a price series directly is problematic unless the time

scale is small enough that we can linearize the exponential multiplying p(t)

and then simply subtract the drift term from the price increments. The reason

for this is that we don’t know the unreliable parameter m in advance, and

generally have no good way to determine it. In our discussions of increments

below we always assume detrended time series, because a drift term can

generate trivial increment autocorrelations.

7.2 Ensemble averages constructed from time series

How and when can the dynamics that generated a single time series be discovered

via a reliable statistical analysis? What constitutes a reliable statistical analy-

sis? Which quantities should be measured, and which should be ignored? The

standard methods of statistics and econometrics fail to shed light on market

dynamics, and may even generate spurious results. How can we do better?

We’ll pose and answer the main question for the social sciences in particular,

and for modeling in general: given a single historical record in the form of a

price series, we can construct ensemble averages and discover evidence of a

definite underlying law of motion if statistical regularity can be discovered in

the time series. If statistical regularity cannot be found then a reliable statis-

tical analysis of a single, historic time series may not be possible. We’ll see

that the analysis of a single, historic time series is nontrivial, and that a

statistical ensemble can be constructed if there is an underlying time scale

for treating a collection of equal time segments of the series approximately as

“reruns of one uncontrolled experiment.”
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To demonstrate these assertions, we begin by explaining why the construc-

tion of a statistical ensemble is a necessary condition for time series analysis in

the first place. Toward that end, we begin with the requirements imposed by

limited, finite precision in measurement, namely, the binning of data on the

real axis, the construction of histograms, and statistical averages.

The original references for this chapter are Bassler et al. (2007, 2008) and

McCauley (2008c).

7.2.1 Coarsegraining

Consider the time series generated by a one-dimensional stochastic process.

Coarsegrain the x-axis into bins. The number and size of the bins must be

such that, excepting the region for large enough x where few or no points

are observed, the number of points per bin is large compared with unity.

Obviously, this will fail when x is large enough in magnitude: “good statistics”

means having many points in each bin. As Feynman wrote, there’s a very

good reason why the last measured point is not reliable.

For good histograms (“good statistics”) we need many points at each

time t. One therefore needs many reruns of the same, identical experiment

in order to obtain good statistical averages. We need N different realizations

of the process xk(t), k ¼ 1, . . . ,N, where for good statistics N 	 1. At time

t each point in each run adds one point to the histogram. The average of a

dynamical variable A(x,t) is then given byD
Aðx; tÞ

E
¼ 1

N

XN
k¼1

AðxkðtÞ; tÞ ð7:2Þ

where the N values xk(t) are taken from different runs repeated at the same time

t, resetting the clock to t ¼ 0 after each run.

Assume that the variable x takes on n discrete values xm, m ¼ 1,2, . . . , n,

and assume that xm occurs Wm times during the N runs and falls into the mth

bin, and denote wm ¼ Wm/N,
Pn
m¼1

Wm ¼ 1, with

N ¼
Xn
m¼1

Wm ð7:3Þ
Then

Aðx; tÞh i ¼
Xn
m¼1

wmAðxmðtÞ; tÞ ð7:4Þ

The wm are what we mean by the histograms for the one-point density. If the

histograms can be approximated by a smooth density f1 (x ,t), then (7.4)

becomes
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Aðx; tÞh i ¼
ð
dxf1ðx; tÞAðx; tÞ ð7:5Þ

as n goes to infinity. This is the unconditioned ensemble average. In general,

an ensemble average is an average over a density at one time t, and is

generally different than a time average. In reality N and n are finite. An

empirical average (7.4) should show scatter about the ensemble average

(7.5) as t is varied (such scatter is shown in Figure 7.2 below).

We always adhere to what Gnedenko (1967) calls “the statistical definition

of probability,” the definition in terms of relative frequencies observed in a

large number of repetitions of the same experiment. Stratonovich (1963) has

stated that, given x1, . . . , xN, the realizations of a random variable (e.g. x(t) for

fixed t), the mean can be defined by

xh i ¼ x1 þ . . .þ xN
N

ð7:6Þ
as the arithmetic mean of the sample values as the number of sample values is

increased without limit. Probability theory can only be used to study experi-

mental data for which such limits exist and do not depend on how the

realizations x1, . . . , xN are chosen from the total statistical ensemble. We

want next to make this precise, to explain why ensemble averages make sense

in light of Tschebychev’s Theorem.

7.2.2 Statistical ensembles

We begin with the case where laboratory experiments are possible, because

this viewpoint provides the statistical theory that must be approximated

in economics and finance. The repeated runs of an experiment would allow

us to define “statistical probability” and the corresponding averages, and

Tschebychev’s Theorem (Chapter 3) will be used to make the idea precise.

In what follows, the process may be nonstationary with nonstationary incre-

ments; there is no restriction to any kind of stationarity.

Let there be N experimental realizations of a time series x(t), where the

system is strobed at the same times t1,t2, . . . , tN in each run. This is possible

when studying turbulence in a wind tunnel, for example, but not in astron-

omy and economics, nor is it possible when studying atmospheric turbulence

or the hydrodynamics of the ocean. Consider the N points xk¼ xk(t), k ¼ 1,

. . . ,N, for the runs at the same time t. Then the histogram for the one-point

density at one time t is given by

f1ðx; tÞ � 1

N

XN
k¼1

dðx� xkÞ ð7:7Þ
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and will show scatter so long as N is finite, which is necessarily the case in

experiments and simulations. To apply Tschebychev’s Theorem for conver-

gence (“convergence” in practice means systematically reduced scatter as N is

increased), we need

dðx� xðtÞÞdðy� xðtÞÞh i ¼ 0 ð7:8Þ
The ensemble average is

dðx� xðtÞÞdðy� xðtÞÞh i ¼
ðð

dx1dx2dðx� x1Þdðy� x2Þf2ðx2; t; x1; tÞ ð7:9Þ

With f2 ðy ; t ; x ; s Þ ¼ p 2 ðy ; t x; sÞ f1j ðx; sÞ and p2ðy; t x; tj Þ ¼ dðy� xÞ we obtain van-

ishing correlations (7.8) for y 6¼ x, so the fixed-t series (7.7) for the histograms

converges to the ensemble average f1(x,t) as N increases. One can show

similarly that the correlations of other quantities calculated at equal times

vanish as well. Tschebychev’s Theorem provides the basis for the construction of

statistical ensembles for general stationary and nonstationary processes. The

interesting question for us is: how can we implement the idea of ensemble

averages when we’re faced with a single, historic time series?

7.3 Time series analysis

In finance and economics we cannot “rerun the experiment.” We have but a

single, historic time series for each different macroeconomic variable.

A single time series provides us a priori with no statistics, no histograms:

there is only one point at each time t. This does not present a big difficulty

in astronomy and atmospheric turbulence because we know the laws of

motion. In economics and finance, we do not know anything in advance (a

priori expectations must be distinguished from knowledge); discovering the

correct underlying dynamics is the problem to be solved (this is not the

viewpoint of econometrics!). The only option available to us is that we

meet time series that can be understood approximately as N statistically

equivalent pieces, where a time scale for some sort of statistical regularity

can be found. If the increments would be stationary, then N could be taken

to be arbitrary, but stationary increments cannot be established without an

ensemble analysis. Also, the increments cannot be expected or assumed to be

stationary; most time series should be expected to exhibit nonstationary

increments.

For an ergodic stationary process the problem could very easily be solved.

There, a single time series can be used to obtain statistics reflecting an entire

ensemble (Gnedenko, 1967). For the case of nonstationary processes,
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however, there is no ergodic theorem. Nonstationary processes can be

classified as those having stationary increments, and those that do not. We

now describe the analyses required in all of these cases, beginning with the

easiest one.

7.3.1 Ergodic stationary processes

If the underlying process is time-translationally invariant, then a finite length

time series can be broken up into N pieces, and the size of N will not matter,

although N 	 1 will be needed to get good statistics. Each segment can be

regarded as a rerun of the experiment from t ¼ 0 to T, where NT is the total

length of the original series. These pieces can then be used to calculate the

ensemble average of a t-independent function A(x) at each time t, 0 � t � T. If

the process is stationary, then this average will not vary with t. Instead, it will

appear as a flat line (time averages for a stationary process converge to some

limit). If, in addition, the condition for ergodicity is satisfied, then the time

average converges to the ensemble average

Ah i ¼
ð
dxAðxÞf1ðxÞ ð7:10Þ

within scatter due to the fact that N and n are finite. If the line is not flat, then

the series is not stationary. Note that fat tails in f1 can cause some variables

A(x) to blow up, in which case one must restrict the test to low moments. For

stationary processes, time averages converge to some limit, not necessarily to

the limit given by the ensemble average.

If the time series is both ergodic and stationary (Yaglom and Yaglom,

1962; Stratonovich, 1963; Gnedenko, 1967), then

AðxÞh i ¼
ð
dxAðxÞf1ðxÞ ð7:11Þ

holds with probability one as N goes to infinity. This is a generalization of the

law of large numbers, and means that for finite N the difference between the

time average

AðxÞh it¼
1

N

XN
k¼1

AðxkðtÞÞ ð7:12Þ

and the ensemble average AðxÞh i ¼ Ð
dxAðxÞf1ðxÞ should look like scatter. In

this case, a time average taken over a finite length series provides an estimate of

the ensemble average. This is what’s meant in the literature by the statement:

if a system is ergodic, then a single time series can be used to deduce the

underlying statistical properties.
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Tschebychev’s Theorem requires that N pairwise uncorrelated random

variables xk have a common mean and bounded variances in order that

ergodicity in the form

xðtÞh i ¼ 1

N

XN
k¼1

xkðtÞ ¼
ð
dxxf1ðxÞ ð7:13Þ

holds in probability as N goes to infinity. This can be applied to functions of x

so long as the functions are uncorrelated. The more general basis for the

convergence of time averages of a stationary process is the Birkhoff–

Khinchin–Kolmogorov ergodic theorem (Gnedenko, 1967) and can be under-

stood as follows. With a single stationary time series divided into N equal

segments, we can calculate the empirical ensemble average, which in principle

should converge as N goes to infinity. The scatter in the empirically con-

structed ensemble average should be reduced systematically as N is increased.

Consider

xh it¼
1

T

ðT
0

xðsÞds ð7:14Þ

Form the variance in xh it as an ensemble average. This yields

ð xh it� xh iÞ2
D E

t
¼ 1

T2

ðT
0

ðT
0

dsdt ð xh it� xh iÞð xh is� xh iÞ� � ð7:15Þ

For a stationary process the pair correlation function xðtÞxðtþ TÞh i must

depend on T alone, independent of t, so that the integrand is the pair

correlation function and can depend on t – s alone. Denote the pair correl-

ation function by R(t – s). By a coordinate transformation the integral can be

cast into the form

ð xh it� xh iÞ2
D E

t
� 1

T2

ðT
0

d��Rð�Þ � 1

T

ðT
0

d�Rð�Þ ð7:16Þ

This shows that the time average converges in probability to the ensemble

average as T ! 1 if the pair correlation is integrable from 0 to 1. For

discrete time random variables Gnedenko shows that the condition for ergo-

dicity is the vanishing of R(t – s) as t – s goes to infinity (an example will be

given in Chapter 10 from regression analysis). Kac (1949) proved that discrete

stationary processes are recurrent. We cannot escape the Tschebychev condi-

tion that, asymptotically, pair correlations must vanish, and in the case of

continuous time, they must vanish sufficiently fast that R(t) is integrable over
the infinite interval (an example is the OU process).
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Strong stationarity means that all densities in the infinite hierarchy are

both normalizable and time-translationally invariant. Obviously, strong sta-

tionarity cannot be verified empirically. At best, we might hope to get

histograms for f1, but even this is difficult. The notion of weak stationarity

was introduced because, even for the one-point density f1, the empirical

histograms converge notoriously slowly in practice. Weak stationarity

replaces the requirements of measuring densities by the relative ease of

measuring simple averages and pair correlations. Weak stationarity means

that we verify, in practice, that the mean and variance are constants, and that

the pair correlation function depends on time lag T alone independent of the

starting time t. It may initially seem to the reader like magic, but where

densities show too much scatter certain averages can still be computed reli-

ably. We can expect this to hold for nonstationary processes as well, and will

illustrate the phenomenon for FX data, where we will see that the empirical

extraction of one-point densities is impossible, even on the time scale of a day

(and taking longer time scales like a week only makes the statistics worse by

reducing the number of points in the ensemble).

Next, we focus on nonstationary processes. In that case there is no ergodic

theorem to permit the replacement of time averages by ensemble averages.

We will use Tschebychev’s Theorem to show that time averages cannot be

expected to converge to any definite limit at all.

7.3.2 Stationary increment processes

Stationary increments “in probability” means precisely, with z ¼ x(t þ T) – x

(t) ¼ y – x, that the one-point increment density

f ðz; t; tþ TÞ ¼
ðð

dydxf2ðy; tþ T; x; tÞdðz� yþ xÞ ð7:17Þ
or

f ðz; t; tþ TÞ ¼
ð
dxf2ðxþ z; tþ T; x; tÞ ð7:18Þ

is independent of t and depends on the lag time T alone. There is no require-

ment placed on time-translational invariance of the densities fn, n > 2, and

(as we showed in Chapter 3) the pair correlations of stationary increment

processes generally admit no ergodicity. Stationary processes trivially gener-

ate stationary increments, but arbitrary stationary increment processes are

generally nonstationary.

Stationarity of increments could in principle be established empirically as

follows. Break up a single long time series into N pieces, where N is large

enough to be able to get good statistics. If the increments are stationary, the
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following result will hold for all N. If the increment density can be extracted

from the ensemble, then it will be independent of t. For example, calculate the

increment from t ¼ 0 to T. Then from t ¼ 1 to 1 þ T, and so on. The problem

with this test is that it’s in practice impossible; densities generally cannot be

reliably extracted. That is, it will be very hard or even impossible to verify

stationary increments even if they would occur.

The idea of weak stationarity was introduced historically because even

one-point and two-point densities cannot be obtained reliably; there’s too

much scatter in the histograms. Economic data are certainly too sparse to test

for a density exhibiting stationary increments, so we introduce the notion

of weak increment stationarity. In weak increment stationarity, we ask only

if the mean square fluctuation is time-translationally invariant; that is if

x2ðt; TÞ� � ¼ x2ð0;TÞ� � ¼ x2ð1Þ� �
T. This would guarantee that the process

variance is linear in t, but does not imply that the increments are stationary.

First, of great interest to macroeconomists, is there any case where ergodicity

follows from increment stationarity?

We already know that there is only one nonstationary process for which an

ergodic theorem applies to stationary increments, the Wiener process. The

Markov condition can be written as

fnðxn; tn; xn�1; tn�1; . . . ; x1; t1Þ ¼ p2ðxn; tn xn�1; tn�1j Þ
p2ðxn�1; tn�1 xn�2; tn�2j Þ . . . p2ðx2; t2 x1; t1j Þp2ðx1; t1 0; 0Þj ð7:19Þ

and if the process is both time- and x-translationally invariant (implying the

Wiener process), then with fixed time differences T ¼ tk – tk�1 we obtain an iid

condition on the increments zn¼ xn–xn�1 and T – t1, where z1 ¼ x1, as

fnðxn; tn; xn�1; tn�1; . . . ; x1; t1Þ ¼ p2ðzn;T 0; 0j Þ
p2ðzn�1; T 0; 0j Þ . . . p2ðz2; T 0; 0j Þp2ðz1;T 0; 0Þj ð7:20Þ

This means that Tschebychev’s Theorem can be used to predict that time

averages converge to ensemble averages. This is the only case of stationary

increments where an ergodic theorem holds. This foreshadows what we are

about to establish next: stationary increments or not, an ensemble analysis

must be performed. In particular, we will show next that time averages in the

form of a “sliding window” cannot be expected to yield reliable statistics. We

show in another section below how time averages on nonstationary processes

generate spurious stylized facts.

The time average of the increment density is defined by

fsðz;TÞ ¼ 1

N

XtN
t¼t1

dðz� xðt;TÞÞ ð7:21Þ
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where in this case the delta function should be understood as the Kronecker

delta. We assume stationary increments, so that x(t,T) ¼ x(0,T) “in distribu-

tion.” The time average is constructed by sliding a window in the following

way: start at time t in the time series. Then read the difference x(t,T) at the

points t and t þ T. Since N is the number of points in the time series, to ensure

uncorrelated increments we must restrict to t ¼ nT. Even this restriction

doesn’t save the procedure from defects: the definition of the two-point

(ensemble average) increment density is

f ðz1; t1; t1 þ T; z2; t2; t2 þ TÞ ¼ dðz1 � xðt1; TÞÞdðz2 � xðt2;TÞÞh i ð7:22Þ
Two points are noteworthy. First, (i) the two-point density defined by (7.22)

is not necessarily time-translationally invariant, and (ii) this density generally

doesn’t vanish, or even factor into two one-point increment densities for

nonoverlapping time intervals. The variables in the time series (7.21) are strongly

correlated so that Tschebychev’s Theorem does not apply. This means that we

don’t know if the time series (7.21) has a limit, much less which limit. Hence,

when histograms are constructed by sliding a window, there is no reason to

expect that one has obtained either f(z,0,T), where generally f(z,0,T) 6¼ f1(z,t). By

assuming instead that one reads z ¼ x(0,T) ¼ x(T) in the procedure, one could

ask if f1(x,T) is the limit, but again, Tschebychev’s Theorem fails to apply.

The ensemble average is given by

f ðx; t; tþ T; z0; t0; t0 þ TÞ ¼ dðz� xðt;TÞÞdðz0 � xðt0;TÞÞh i ð7:23Þ
or

f ðx; t; tþ T; z0; t0; t0 þ TÞ

¼
ðY4

k¼1

dxkdðz� x4 þ x3Þdðz0 � x2 þ x1Þf4ðx4; tþ T; . . . ; x1; t
0Þ ð7:24Þ

which reduces to

f ðx; t; tþ T; z0; t0; t0 þ TÞ
¼

ð
dx3dx1f2ðx2 þ z; tþ T; x3; t; x1 þ z0; t0 þ T; x1; t

0Þ ð7:25Þ

and this doesn’t vanish at a rate rapid enough to yield convergence. Clearly,

we cannot use Tschebychev’s Theorem to argue that a long time series allows

the sliding window to converge to a definite limit.

So, stationary increments or not, we cannot escape the need to construct

statistical ensembles in data analysis. In particular, without the construction

of an ensemble, the question of stationary vs nonstationary increments

cannot even be posed, much less answered. The good news is that, with
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stationary increments, one could break up the time series into N “runs” where

N is arbitrary. This is called “bootstrapping” in econometrics, but economet-

ricians merely assume rather than establish increment stationarity (we

analyze the common econometric assumptions in detail in Chapter 10).

A sliding window time average for the mean square fluctuation was used

by Mandelbrot (1968) to analyze cotton price returns. The plot of the mean

square fluctuation varied considerably (see Figure 7.2 in Mandelbrot (1968))

and did not represent scatter about a flat line. The assumption was made that

the series is stationary (the series is most likely nonstationary with nonsta-

tionary increments) and the lack of convergence was assumed to mean that

the increment variance is badly behaved. The variance was set equal to

infinity, and a Levy distribution was deduced. Levy distributions have the

fattest tails because the variance is infinite. We would expect lack of conver-

gence of the time average of the mean square fluctuation based on the

considerations above. The original conclusion that cotton returns have fat

tails is therefore questionable.

7.3.3 Nonstationary increment processes

Suppose that we’re given a single time series like a six-year Euro/Dollar

exchange rate in returns. We can only proceed by making an ansatz of statis-

tical repetition in the time series. To construct an approximate ensemble, we

must first assume that there’s a time scale on which traders’ behavior is

statistically repetitive. Once applied, the ansatz must be checked for correct-

ness.We show in Section 7.4 how to apply this assumption to an FX series, and

how to check it. With the time scale for repetition assumed to be one day, each

day is considered as a “rerun” of the same uncontrolled trading experiment. So

in a six-year time series there are about 1500 systematically repeated time series

from which to contruct ensemble averages. In the next section, we show that

Tschebychev’s Theorem can be used to see not only that the approximate

ensemble so constructedmakes sense, but to tell us which quantities tomeasure

and which to avoid. That is, in contrast with the case of repeated experiments,

one cannot assume that the ensemble exists independently of the particular

averages calculated. For example, we will show that it makes good sense to

calculate the mean square fluctuation but not the process variance.

7.3.4 Approximate statistical ensembles

Summarizing what we’ve learned above, the way to test for stationary or

nonstationary increments in a nonstationary process like a finance or other
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macroeconomic time series is via ensemble averages. Moreover, to analyze

the series at all, a statistical ensemble must be constructed, otherwise no

reliable analysis is possible. Sliding window time averages fail the test for

Tschebychev’s Theorem, so that we have no reason to believe that those

averages yield correct estimates either of densities or statistical averages.

We assume here a single, historic time series. Our experience with FX time

series is used as the example. Reruns of the same experiment must be replaced

by evidence of statistical repetition on some time scale Trep. Evidence from the

FX market is shown as Figure 7.2, where Trep ¼ 1 day, whereas T ¼ 10

minutes is the time lag for increment autocorrelations to decay to zero. This

requires some explanation.

In the construction of an ensemble based on taking each day in the market

as a rerun of the “trading experiment,” the starting prices/returns from one

day to the next are correlated. Tschebychev’s Theorem can only be applied to

quantities where the day-to-day correlation falls off fast enough to be negli-

gible. FX markets run 24 hours a day, five days a week, so in our analysis the

clock is arbitrarily reset to 9 am each day to define the new “run.” The first

return of day n at 9 am is the same as the last return of day n – 1, and those two

returns are Martingale correlated: xðtÞxðtþ TÞh i ¼ x2ðtÞ� �
. Clearly, process

returns are not a candidate for the application of Tschebychev’s Theorem.

What about densities? The relevant correlation for the ensemble average of

the one-point density is in this case f2ðx; tþ nT; y; tÞ with T ¼ 10 minutes and

n ¼ 1 day/10 minutes ¼ 144. With f2ðx; tþ nT; y; tÞ ¼ p2ðx; tþ nT y; tÞf1j jðy; tÞ
the question is whether p2ðx; tþ nT y; tj jÞ � 1; n 	 1. For a diffusive process

we expect this to hold independently of x 6¼ y, but getting a result close

enough to zero for good convergence of the density series is highly unlikely.

Correspondingly, in practice, we know that histograms based on only about

1500 points (1500 trading days in a six-year time series) have too much scatter

to identify a density. In contrast with claims made on the basis of sliding-

window time averages, we cannot obtain a plot with little enough scatter to

identify a density even on the time scale of one day (one week or one month is

far worse).

But even if densities cannot be determined empirically, various averages

can be extracted pretty accurately. Consider the mean square fluctuation, the

“increment variance”

x2ðt; TÞ� � ¼ XN
k¼1

x2kðt;TÞ ð7:26Þ

at time t. There are N points in the ensemble, where N ¼ 1500 for a

six-year FX time series. The “independence” condition for validity of an
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ensemble average based on taking each day as a “rerun” is that

x2ðt; TÞx2ðtþ nT; TÞ� � � 0 where nT ¼ one day for FX markets. It’s easy to

show that

x2ðt1;TÞx2ðt2; TÞ
� � ¼ x2ðt2 þ TÞx2ðt1 þ TÞ� �� x2ðt2Þx2ðt1 þ TÞ� �

þ x2ðt2Þx2ðt1Þ
� �� x2ðt2 þ TÞx2ðt1Þ

� �
: ð7:27Þ

For t2 >> T the right-hand side vanishes pairwise linearly in T/t, so that mean

square fluctuation estimates from the approximate ensemble should be pretty

good. One cannot reason similarly that the process variance �2ðtÞ ¼ x2ðtÞ� �
can be extracted empirically, because the required condition that

x2ðtÞx2ðtþ nTÞ� � � 1 is not met.

Summarizing, there are three time scales in the construction of the ensem-

ble from a single long time series. First, there is the time lag T for increment

autocorrelations to die out (establishing a Martingale for detrended data).

For FX data this is shown as Figure 7.1, where we found that T ¼ 10 minutes.

Second, there is the time lag Tcorr for day-to-day correlations to die, so that

ensemble averages converge. Third, there is the time scale for behavioral

repetition of the traders’ Trep (one day for FX trading), shown as Figure

7.2, which is the basis for the ensemble in the first place, and we clearly need

Tcorr � Trep. The periodicity on which finance market ensembles are based was

first noted by Gallucio et al. (1997).

Apparently, if the increments are stationary then the time scale chosen for

breaking up the time series into an ensemble is arbitrary. For example, one
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Figure 7.1 Normalized autocorrelations in increments AT(t1,t2) ¼
<x(t1,T)x(t2,T)>/(<x2(t1)> <x2(t2)>)1/2 for two nonoverlapping time intervals
[t1,t1þ T], [t2,t2þ T] decay rapidly toward zero for a time lag of T� 10 minutes
of trading.

160 Statistical ensembles



could choose one day or any other time scale for defining reruns of the

trading experiment. The limitation imposed on the choice of long time scales

will be too much scatter due to too few points at each time t in the ensemble.

For example, stationary increments or not, a six-year time series would

require taking a time scale no longer than a day to define the ensemble.

Stationary increments implies a variance linear in the time, so scaling of the

one-point density with H ¼ 1/2 should be checked. The advantage gained by

scaling, if the data collapse can be verified, is that the intraday density can be

found, and the extrapolation of that density to larger time scales of a week or

a month would be a reasonable guess.

If we return briefly to the sliding window method applied to the mean

square fluctuation for stationary increments, then the time average

x2ðt;TÞ� �
timeavg

¼ 1

N

XN
k¼1

x2ðtk; TÞ ð7:28Þ

would meet Tschebychev’s convergence requirement if x2ðtk;TÞ
�

x2ðtkþ1; TÞi << 1. From the analysis above, this can be satisfied if tk >> T. In

FX analysis intraday increments are strongly nonstationary and there is insuffi-

cient data to check the increments via an ensemble average calculation for inter-

day trading. However, a “visual” inspection of Figure 7.2 below provides soft

evidence that the mean square fluctuation may be linear i n T for time l ags T ¼ 1

day. Thiswould require tk >> 1 day in (7.27), for example, tk � 100 days, reducing

the number of data points in the sum (7.2 8) c on si de r ab l y . I n th e e nd , th er e i s

nothing to be gained from sliding the window. We see no convincing test for

weakly stationary increments other than from an ensemble calculation.

Finally, ensemble averages suggest a method for detrending a time series.

A trivial drift, one depending on t alone, can be removed from an increment x

(t,T) for each fixed (t,T). The problem of detrending a general (x,t)-dependent

drift is discussed in McCauley et al. (2007c).

Lillo and Mantegna (2000, 2001) tried to define an ensemble by taking

entirely different stocks as “runs of the same experiment.” They used the

variable Yk(t) ¼ (pk(t þ T) – pk(t))/pk(t) instead of the logarithmic return, but

Tschebychev’s Theorem for the construction of an ensemble is not met

because (i) the stocks were not detrended, and (ii) different stocks are gener-

ally pairwise correlated (Laloux et al., 1999; Plerou et al., 1999). This means,

for example, there is no reason to expect that a sensible dynamic model can be

extracted from the S&P 500, or from any other existing stock index; the

conditions for convergence to an ensemble average simply are not met. But

Lillo and Mantegna’s idea of using different stocks to define an ensemble
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suggests an interesting alternative. The stock prices first should be detrended

multiplicatively. Tschebychev’s Theorem requires only bounded variances,

not equal ones. One could therefore choose as an “index” a collection of

detrended and pairwise uncorrelated stocks. Such an index can be expected to

converge to an ensemble averages if the number of stocks is large enough.

Clearly, 500 detrended and pairwise uncorrelated stocks would be far too few;

we will show below that we would need at least 1500, and preferably many

more than that.

7.4 Deducing dynamics from time series

We now describe our study of a six-year time series of Euro/Dollar exchange

rates from Olsen and Associates recorded at one-minute intervals. We started

by assuming that one day is the time scale for repetitive behavior. That

provided the ensemble of 1500 days from which the averages shown in Figure

7.1 and 7.2a were calculated. We verified the assumption of statistical
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Figure 7.2a The rmsf x2ðt; TÞ� �1=2
of the daily Euro-Dollar exchange rate

is plotted against time of day t, with time lag T ¼ 10 minutes to ensure
that autocorrelations in increments have died out (Figure 7.1). This shows
that the increments are nonstationary and depend strongly on starting time t.
Both of the plots 7.2a and 7.2b would be flat were the increments x(t,T)
stationary. The plot represents approximately the (square root of the) aver-
age diffusion coefficient. The four lines drawn in the plot represent regions
where scaling with four different Hurst exponents can be used to fit the data.

162 Statistical ensembles



repetition of behavior as Figures 7.2a and 7.2b, showing that the daily rmsf in

returns is repeated for each trading day of the week, with the scatter some-

what worse on Fridays, perhaps because this is the last trading day. The

valleys in Figure 7.2 may reflect lunch breaks and other daily regularities in

the life of a trader; the peaks represent times of greatest activity (one could try

to correlate this with volatility; see also Cross (1998)). It would have been

impossible to extract the knowledge we’ve obtained had we relied on standard

methods of econometrics and statistical analysis, on regression methods, for

example. The discussion in this chapter can be understood as the suggested

replacement for econometrics and standard statistical methods in macroeco-

nomics and beyond.

Summarizing, we performed ensemble averages for each time t within a day

based on the assumption that each day is a rerun of the same process. That

means, for a six-year time series, the averages for each time of day t were

calculated on the basis of about 1500 points, there being about 1500 days in

six years. Using log return levels x(t) ¼ ln(p(t)/pc), a very small drift was

removed initially from the data at each time t. And because a trading day runs
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Figure 7.2b The rmsf x2ðt; TÞ� �1=2
plotted for five successive trading days.

Note that the same intraday average is repeated during each trading day,
providing the statistical regularity necessary as the basis for analyzing a
nonstationary time series via the construction of an approximate ensemble.
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for 24 hours, we reset the clock each morning at 9 am. The data represent a

single FX market; we did not mix statistics from different markets (say, New

York and London) together.

That the intraday level differences x(t,T) ¼ x(t þ T) – x(t) ¼ ln(p(t þ T)/p(t))

are strongly nonstationary is shown by the mean square fluctuation

x2ðt; TÞ� �
, which varies considerably as the time t is increased for fixed lag

time T ¼ 10 minutes (Figure 7.2).

We’ve shown in Chapter 3 that the lack of increment autocorrelations

guarantees Martingale differences

xðt;TÞ ¼
ðtþT

t

bðxðsÞ; sÞdBðsÞ ð7:29Þ

so that a diffusion coefficient D(x,t) ¼ b2(x,t) describes the traders’ behavior.

Can we discover the diffusion coefficient that characterizes the FX market

Martingale? This is a problem not less demanding than discovering the one-

point density empirically. We were not able to discover either quantity, but

we can say something about both. In particular, Figure 7.2 can be understood

as the ensemble average of the diffusion coefficient.

The reason that Figure 7.2a represents an unconditioned average follows

from the lack of control of any starting point x(t) at “opening time” each day.

Figure 7.2a was constructed as follows: for each time interval [t,t þ T ] neither

end point x(t) or x(t þ T) is controllable from one day to the next over the

1500 days in the sample. That is, unlike in a laboratory, we could not rerun

the experiment by choosing the same initial condition at each starting time.

The best we could do was to calculate the ensemble average of the difference x

(t,T) for fixed t and T using the 1500 days. With T fixed we redo the calculation

for each time t during the day, generating Figure 7.2a. Here’s the correspond-

ing theoretical average. Setting z ¼ x(t,T), the density

fincrðz; t; TÞ ¼
ð
dxp2ðxþ z; tþ T x; tÞf1j ðx; tÞ ð7:30Þ

describes the increments and can be used to calculate

z2
� � ¼ ðð

dxdzz2p2ðxþ z; tþ T x; tÞf1j ðx; tÞ ð7:31Þ

For t >> T, using the definition of the diffusion coefficient

Dðx; tÞ � 1

T

ð1
�1

dyðy� xÞ2p2ðy; tþ T x; tÞ; T � tj ð7:32Þ
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yields the quantity measured by us in Figure 7.2 as would be predicted by

x2ðt;TÞ� � � T

ð
dxDðx; tÞf1ðx; tÞ ð7:33Þ

where D(x,t) characterizes the traders’ behavior during a single trading day

and f1 is the corresponding one-point density. Figure 7.2 is therefore not a

volatility, which would require a conditioned average, it’s simply the uncon-

ditioned ensemble average of the diffusion coefficient. There is noise in Figure

7.2 because there are only 1500 points for each time t, otherwise the plot should

be piecewise-smooth, allowing that the diffusion coefficient may have piece-

wise discontinuous slope. We can deduce a diffusion coefficient and one-point

density only for the time intervals in Figure 7.2a where a data collapse due to

scaling can be used roughly to fit the mean square fluctuation. See van

Kampen (1981) for an early discussion of conditions for discovering the

diffusion coefficient empirically for stationary processes.

The four lines drawn into Figure 7.2a represent time intervals where we

could fit the data via a scaling function with a Hurst exponent H. The Hurst

exponent is different for each region, but H � 0.35 was necessary to get a data

collapse for the one-point density for the longest line, the line based on the

most data points. We now show how to deduce the corresponding diffusion

coefficient for that time interval.

Within the largest interval shown in Figure 7.2a, a data collapse F(u) ¼ tHf

(x,t), u¼ x/tH with H� 0.35 can be used to fit the density for the longest line at

different times of day t. Figure 7.3a shows that the scaling function F(u) has

no fat tails, is instead approximately a two-sided exponential. We have

Martingale dynamics, and the transition density obeys

@p2ðx; t x0; t0Þj
@t

¼ 1

2

@2

@x2
ðDðx; tÞp2ðx; t x0; t0Þj Þ ð7:34Þ

with p2ðx; t x0; tÞj ¼ dðx� x0Þ, and “local volatility” is described by the insep-

arable (x,t)-dependence in the diffusion coefficient D(x,t). The one-point

density obeys the same pde

@f1ðx; tÞ
@t

¼ 1

2

@2

@x2
ðDðx; tÞf1ðx; tÞÞ ð7:35Þ

Figure 7.3a shows the data collapse that we fit using

f 1ðx; tÞ ¼ t�HFðuÞ; u ¼ x= tj jH ð7:36Þ
We then obtain from (7.35) that
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2HðuFÞ0 þ ðD_FÞ00 ¼ 0 ð7:37Þ
where

Dðx; tÞ ¼ tj j2H�1D
_ðuÞ ð7:38Þ

From this, we obtain

D
_ðuÞFðuÞ ¼ D

_ð0ÞFð0Þ � 2H

ðu
0

uFðuÞdu ð7:39Þ

For a two-sided exponential density

FðuÞ ¼ Aþe�nu; u > 0
A�e�u; u < 0



ð7:40Þ

we obtain

D
_ðuÞ ¼ 2H½1þ nu�=n2; u > 0

2H½1� �u�=�2; u < 0



ð7:41Þ

It is this diffusion coefficient that generates the Martingale dynamics of a

scaling exponential density.

We could calculate the transition density p2 numerically, but not analytic-

ally. We understand the dynamics of the nonstationary variable diffusion

processes that describe FX markets, trading produces a Martingale in
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Figure 7.3a This data collapse for H¼ 0.35 was obtained for the longest line
shown in Figure 7.2a, where 10 min.� T� 160 min. Note that F(u) is slightly
asymmetric and is approximately exponential, showing that the variance is
finite and thereby ruling out Levy densities.
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detrended returns, and Martingales are diffusive. Volatility is caused by the

variable diffusion coefficient D(x,t), which is in turn caused by the traders’

nonstationary intraday behavior. Volatility and instability are not necessarily

the same idea.

FXmarket instability is characterized as follows. First, we have aMartingale

process (uncorrelated increments). The mean square fluctuation does not

stabilize on the time scale of a day so that the variance does not approach a

constant. Considering unconditioned Martingale averages

s2ðtþ TÞ ¼ x2ðt; TÞ� �þ s2ðtÞ ð7:42Þ
if we take the time lag T to be one day instead of 10 minutes, then we see from

Figure 7.2b that the mean square fluctuation visually appears to be approxi-

mately t-independent, so that the increments may be approximately weakly

stationary for time lags of T � 1 day. That is, the variance may be roughly

linear in the time on the time scale of a day or longer, which is expressed in

(7.42) as s 2 ðtÞ �  t x2 ð 1Þ� �
, x2ðt; TÞ� � � T x2ð1Þ� �

for t � T � 1–5 days. In other

words, for time scales on the order of a day or more, the variance may

increase linearly with the time. There is no evidence that the variance

approaches a constant for any measurable time scale. Another way to say it is

that finance markets are unstable.

7.5 Early evidence for variable diffusion models

The earliest indication of the need for variable diffusion in returns was the

idea of “implied volatility” in the Black–Scholes model, although implied

volatility was never understood in that light until our 2003 paper (McCauley

and Gunaratne, 2003).

In the Black–Scholes model, the constant s1 in the Gaussian transition

density is required to vary with strike price, which is not allowed by the

model. In that case the observed option price is used and the “volatility” is

then implied. This led to the notion of variance as volatility; the variance

s2(t)¼ ct predicted by the Gaussian returns model is wrong. In that model the

increments are stationary. A more accurate statement is that the prediction

for the mean square fluctuation x2ðt;TÞ� � ¼ x2ðTÞ� � ¼ cT is wrong. We’ve

seen above how this fails. First, the increments are not stationary and,

second, the one-point density is not Gaussian.

7.6 Volatility measures

Various volatility measures have been proposed in the literature. We can take

as one volatility measure the conditioned mean square fluctuation, chosen in
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the 1980s by Engle (who did not study Martingales). For Martingales the

conditioned average yields

x2ðt; TÞ� �
cond

¼
ðtþT

t

ds

ð1
�1

dyDðy; sÞp2ðy; s x; tÞj ð7:43Þ

which depends on the last observed point x at time t. The unconditioned

average is

x2ðt; TÞ� � ¼ ðtþT

t

ds

ð1
�1

dyDðy; sÞf1ðy; sÞ ð7:44Þ

and is shown as Figure 7.2. In the nonsystematic modeling of finance data

(“stochastic volatility” is an example) “volatility” is often modeled separately

from returns. This is inconsistent. Given a stock, there is only a single,

historic nonstationary price series from which the time series for log returns

is directly obtained. From that series all calculations of volatility as one

choice of correlation or another must follow, by self-consistency. Otherwise

stated, volatility is simply one way of discussing fluctuations in returns and

there is only one time series for returns. Stochastic volatility models are seen

as unnecessary and inconsistent from this standpoint.

In the literature on autoregressive conditional heteroskedasticity (ARCH)

and generalized ARCH (GARCH) processes (Chapter 10), it’s normally

assumed that volatility goes hand in hand with local nonstationarity, but that

in the long run finance time series are stationary. There’s no evidence at all for

long time stationarity, and we’ll show in addition that ARCH and GARCH

models generalized to nonstationary processes violate both the empirical data

and the EMH: the increment autocorrelations in those models cannot vanish.

7.7 Spurious stylized facts

The purpose of this section is to make clear the misconceptions that can arise

from using a sliding window to build histograms from a time series with

nonstationary increments.

We can begin with Hommes’s (2002) statement of the “observed stylized

facts” of FX markets: (i) “asset prices are persistent and have, or are close to

having, a unit root and are thus (close to) nonstationary”; (ii) “asset returns

are fairly unpredictable, and typically have little or no autocorrelation”;

(iii) “asset returns have fat tails and exhibit volatility clustering and long

memory. Autocorrelations of squared returns and absolute returns are
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significantly positive, even at high-order lags, and decay slowly.” These three

statements, although largely wrong, reflect a fairly standard set of expect-

ations in financial economics. Next, we contrast those expected stylized facts

with the hard results of our FX data analysis.

In point (i) above, “unit root” means that in p(t þ T)¼ lp(t)þ noise, l¼ 1.

That’s simply the necessary condition for a Martingale, and rules out persist-

ence like fBm but also stationarity. In the focus on a unit root, economists are

searching for evidence of a stationary time series, requiring 0 < l < 1 (see

Chapter 10). Prices are not “close to nonstationary,” prices are very far from

both strong and weak stationarity. (ii) Increment autocorrelations in FX

market returns will vanish after about 10 minutes of trading. By “persistence”

Hommes presumably means serial correlations, but he should have noted that

a continuous coordinate transformation x(t) ¼ ln(p(t)) cannot possibly erase

pair correlations. Both detrended prices and detrended returns have (Martin-

gale) positive serial correlations, e.g. with x(0)¼ 0. The autocorrelations in

increments approximately vanish after 10 minutes of trading (Figure 7.1),

xðtþ TÞxðtÞh i ¼ x2ðtÞ� �
> 0. (iii) We find no evidence for fat tails in intraday

trading (Figure 7.4a), and no evidence for Hurst exponent scaling persisting

on the time scale of a day (Figure 7.2a). We offer no comment on the question

of necessity of memory to understand volatility clustering at this point; we

note only that the claim has not been proven.

Our main point in this section is: the data analyses used to arrive at the

expected stylized facts have generally used a technique called “sliding windows.”

The aim of this section is to explain that sliding windows can produce

spurious, misleading results because a sliding window presumes stationarity

of the increments. Stated in the language of econometrics, the differences

between levels are not stationary; the intraday differences are strongly non-

stationary (Figure 7.2a). Only one previous FX data analysis that we are

aware of (Gallucio et al., 1997) showed that sliding windows lead to predict-

ing a Hurst exponent Hs¼ 1/2, even if the original time series would scale with

H 6¼ 1/2. That analysis correctly identified the cause as nonstationarity of the

increments. We will explain theoretically why sliding a window on nonsta-

tionary increments yields Hs ¼ 1/2.

It must first be realized that there are three separate one-point densities.

First, there is the empirically correctly obtained density f1(x,t). Second, there

is the increment density fincr (z ,t,T ) 6¼ f1( x,t ) (7.17) because the increments are

nonstationary. Third, there is the spurious density fs(z,T) obtained from a

sliding window analysis (from an empirical time average over the time t with

lag time T fixed), which equals neither of the first two densities and cannot be

calculated analytically because the ergodic theorem cannot be applied.
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Nearly all previous analyses (Osborne, 1964; Mantegna and Stanley, 1995,

1996; Friedrich et al., 2000; Dacorogna et al., 2001; Borland, 2002; di Matteo

et al., 2003 ; McCauley and Gunaratne, 2003) have used a time average called

a sliding window. To illustrate the spurious stylized facts generated by

constructing time averages using a sliding window, we apply that method to

a time series with uncorrelated nonstationary increments, with no fat tails and

with a Hurst exponent H 6¼ 1/2, namely, a time series generated by the

exponential density (7.40) with H ¼ 0.35 and linear diffusion (7.41). The

process is Markovian. Figure 7.4a was generated by taking 5,000,000 inde-

pendent runs of the Ito process, each starting from x(0) ¼ 0 for T ¼ 10, 100,

and 1000. The sliding window result is shown as Figure 7.4b. In this case, the

sliding windows appear to yield a scale-free density Fs(us), us¼ xs(T)/T
Hs, from

an empirical average over t that one cannot even formulate analytically,

because for a nonstationary process there is no ergodic theorem. Not only are

fat tails generated artificially here, but we get a Hurst exponent Hs ¼ 1/2 that

disagrees with the Hurst exponent used to generate the time series. This is the

method that has been used to generate stylized facts in nearly all existing

finance data analyses. Figure 7.3b shows how the approximately exponential
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Figure 7.3b The “sliding interval scaling function” Fs(us), us ¼ xs(T)/T
Hs, is

constructed using a sliding window time average for the same interval as in
Figure 7.3a for T ¼ 10, 20, and 40 min. Note that fat tails have been
generated spuriously by the sliding window, and that a Hurst exponent
Hs ¼ 1/2 has been generated contradicting the fact that the correct scaling
function shown as Figure 7.3a has H ¼ 0.35.
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Figure 7.4a The scaling function F(u) is calculated from a simulated time
series generated via the exponential model, D

_ðuÞ ¼ 1þ uj j with H ¼ 0.35. An
ensemble consisting of 5,000,000 independent runs of the exponential sto-
chastic process was used here.
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Figure 7.4b The “sliding window scaling function” Fs(us), us ¼ xs(T)/T
Hs was

calculated by using a time average on the same simulated data. Note that Fs

has fat tails whereas F does not, and that Hs ¼ 1/2 emerges, contradicting the
fact that H ¼ 0.35 was used to generate the original time series. That is, the
time average generates two spurious stylized facts.
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FX density of Figure 7.3a is fattened by sliding a window on the six-year

Olsen and Associates time series. We can explain the origin of Hs ¼ 1/2.

I offer here an anecdote that shows that people are not necessarily consist-

ent in their viewpoints (Holton, 1993). Gunaratne used the sliding window

method to deduce the exponential density for FX returns that was presented

in the first edition of this book. In 2005, in an attempt to understand what

Hurst exponents had to do with correlations, and to try to understand claims

made in the literature about “nonlinear Fokker–Planck equations” (Borland,

2002; Frank, 2004; McCauley, 2007), our group (Bassler, Gunaratne, and

McCauley) first noticed what Mandelbrot and van Ness (1968) had made

clear but that nearly everyone had since forgotten: the argument that H 6¼ 1/2

implies long time correlations is based on an implicit assumption of station-

ary increments. We then discovered a class of Markov models that scale

(Bassler et al., 2005) and provided examples. We also showed how the

predictions of “nonlinear Fokker–Planck pdes” are only superficially non-

linear, and are actually generated by a linear diffusion model. We explained

that, when increment autocorrelations vanish, H 6¼ 1/2 is simply a signal that

increments are nonstationary. We then proceeded to analyze our FX data

using a sliding window! Bassler found that we could not really fit the fat tails

in the sliding window density by any number of terms combined as polyno-

mials in x/tH in the diffusion coefficient. Eventually, Gunaratne noted: we’ve

explained that the increments should be nonstationary, so we can’t slide a

window. That illustrates just how inconsistent a viewpoint can be, even in

mathematics. One understands something, and one assumes something else

that contradicts the original assertion. As Holton notes, this “inconsistency of

worldview” is probably quite common in humans. We return next to our

technical discussion.

With uncorrelated, nonstationary increments, in an interval where scaling

fits, the unconditioned mean square fluctuation is

x2ðt;TÞ� � ¼ ðxðtþ TÞ � xðtÞÞ2
D E

¼ x2ð1Þ� �½ðtþ TÞ2H � t2HÞ� ð7:45Þ

In most existing data analyses we generally have T/t << 1 (where T ¼ 10

minutes and t ranges from opening to closing time over a day), so

x2ðt;TÞ� � � x2ð1Þ� �
2Ht2H�1T ð7:46Þ

A sliding window then (illegally, because the process is not ergodic so that time

averages cannot be replaced by ensemble averages) averages empirically over t,

x2ðt; TÞ� �
s
� x2ð1Þ� �

2H t2H�1
� �

s
T ð7:47Þ
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yielding x2ðt;TÞ� � � T2Hs with 2Hs ¼ 1. Sliding window Hurst exponents

Hs ¼ 1/2 have been reported in the literature (Fogedby et al., 1992; Borland,

1998), but without any correct explanation of how they arise from selfsimilar

models where increments are uncorrelated with H 6¼ 1/2. That Hs ¼ 1/2 is a

consequence of using sliding windows was first reported by Gallucio et al.

in 1997.

7.8 An sde for increments?

We’ve argued that x(t) is always a well-defined variable in an sde but that the

increment x(t,T) is not. This must be qualified.

If we consider t as the variable, with T fixed, then we cannot use Ito’s

lemma to derive an sde for x(t,T). At best we would obtain three coupled sdes

for x(t,T), p(t), and p(t þ T).

If we fix t and let T vary, then we can derive an sde. This makes sense

because t is an initial time; T is the real time variable in the stochastic

process. Denote t ¼ s þ T with s fixed. Then p(s þ T) is the variable in

x(t,T), p(s) is a fixed reference price, and from the sde for p(s þ T) with T

varying we obtain

dxðt;TÞ ¼ ðm� 	Dðxðs; sþ TÞ; sþ TÞÞdT þ
ffiffiffiffi
	D

p
dBðTÞ ð7:48Þ

since B is time-translationally invariant. If one looks at a scaling model then

we see easily that the diffusion coefficient does not scale in T, it scales in sþ T,

and setting T ¼ 0 produces neither the price at which 	D has a minimum, nor

the consensus price. That is, this sde and the corresponding Fokker–Planck

pde are cumbersome to work with. In general, the diffusion coefficient 	D also

depends on the consensus price pc, if not on two hidden price scales.

So we do not know at this stage how to apply the increment sde in any

empirically useful way. This concludes our presentation of empirically based

modeling via ensemble averages.

7.9 Topological inequivalence of stationary

and nonstationary processes

In rudimentary applications of regression analysis it’s sometimes assumed

that a nonstationary time series can be transformed into a stationary one.

Such a transformation is trivially true locally but is generally impossible to

construct globally. Stationarity is an analog of the notion of “integrability” in

nonlinear dynamics (Bassler et al., 2008). We show next that global trans-

formations from nonstationarity to stationarity are far from guaranteed.
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Locally seen, every sde is a Wiener process (the noise is always locally

white): with

dx ¼ Rðx; tÞdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðx; tÞ

p
dB ð7:49Þ

the local solution, meaning the solution over a very short finite time interval

dt ¼ t – t0, is

xðtÞ � x0 þ Rðx0; t0Þdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðx0; t0Þ

p
dB ð7:50Þ

With the transformation y ¼ (x – x0)/(
ffiffiffiffi
D

p
(x0,t0))dt we get a stationary

process: y2
� � ¼ 1; yh i ¼ 0 , and the density of y is a stationary Gaussian (see

also www.xycoon.com/non_stationary_time_series.htm and related papers

on regression analysis, which go no further than this). Next, we ask if such

a transformation is globally possible. As in nonlinear dynamics or differential

geometry, this is an integrability question.

The integrability problem (first addressed by Giulio Bottazzi) can easily be

formulated by using Ito calculus. Starting with the sde for x(t), we ask for a

global transformation y ¼ G(x,t) to a Wiener process. From a Wiener process

B(t), one can trivially transform to a stationary process B(1) ¼ t�1/2B(t).

That is, the scale-invariant part F(B/tH) ¼ tHf1(B,t) of the Gaussian density

is stationary in the rescaled variable u ¼ B/tH. Given the transformation

y ¼ G(x,t),

dy ¼ @G

@t
dtþ Dðx; tÞ

2

@2G

@x2
dtþ @G

@x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðx; tÞ

p
dB ð7:51Þ

the condition for a Wiener process is

@G

@X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðX; tÞ

p
¼ sðtÞ

@G

@t
þ DðX; tÞ

2

@2G

@X2
¼ mðtÞ

ð7:52Þ

The required integrability conditions (the conditions under which G exists

globally) are
@2G

@x@t
¼ @2G

@t@x
ð7:53Þ

with

@G

@t
¼ mðtÞ � cR=

ffiffiffiffi
D

p
þ 1

4

@D

@x
=D3=2

@G

@x
¼ c=

ffiffiffiffi
D

p ð7:54Þ

An easy calculation shows that, aside from the lognormal process, the only

process satisfying global integrability is another Wiener process, y ¼ mt þ cB
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(McCauley et al., 2007c). A nonstationary process with D(x,t) depending on x

generally cannot be transformed to a Wiener process. Processes with R and D

depending only on t are trivially Wiener by a simple transformation of

variables.

One can ask more generally if a nonstationary process can be transformed

into an asymptotically stationary process like OU. This question can also be

formulated as an integrability question, and there is at this stage no general

answer. Given some asymptotically stationary process

dy ¼ ��ðyÞdtþ
ffiffiffiffiffiffiffiffiffi
EðyÞ

p
dB ð7:55Þ

with the appropriate conditions for stationarity on g and E, the conditions are

then

@G

@t
þ �1R=

ffiffiffiffi
D

p
� 1

4

@D

@x
=D3=2 ¼ ��ðyÞ

@G

@x

ffiffiffiffi
D

p
¼ EðyÞ

ð7:56Þ

where we must know G in advance and then invert to obtain x ¼ H(y,t) in

order to test for integrability. No general theory is available, and our conjec-

ture is that the procedure is generally impossible. The deterministic analog

would be that nonintegrable deterministic systems cannot be transformed

into integrable ones. In any case, there is no reason to believe a priori that

an arbitrary nonstationary process can be transformed into a stationary one.

A scaling one-point density can be transformed into a stationary one-point

density, F(u) ¼ tHf1(x,t). However, both the transition density p2 (which

generally does not scale) and the Ito sde show that the stochastic process

studied in the variable u is nonstationary. So an arbitrary scaling process

cannot be transformed into a stationary one.

This eliminates the assumption that nonstationary time series can be

transformed into stationary ones. But mathematical economists are far more

sophisticated than this naive assumption (7.50). On the subject of “Integra-

tion I(d)” and cointegration, to be covered in Chapter 10, the claim is made

that nonstationary levels can be made stationary by taking differences.
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8

Martingale option pricing

8.1 Introduction

Betting is risky, and for noise traders financial markets are formalized gam-

bling casinos. The idea of a bet is to take a risk in order to try for a big win.

A hedge on the bet reduces the risk, reducing both the possible win and the

possible loss. Buying stocks in both rain and beach umbrellas reflects the idea

of a hedged bet. Options provide a more direct way of hedging a bet on a

stock, bond, or FX. Even money, however, is risky, as inflation can occur and

a currency can be degraded systematically by the policies of the government

in charge.

A stock, bond, or a foreign currency is a risky paper “asset” because the

price fluctuates freely against your local currency. A bank deposit in the local

currency, CD, or money market account is called “risk free” in financial math

texts. Obviously, that idealization ignores the riskiness of the local currency

(which reflects a nation’s financial and fiscal policies) against necessary

imports like oil and food. The riskiness of the Dollar as the world’s default

reserve currency is discussed in Chapter 9. Here, we will write as if a local

currency could be “risk-free.” We will ignore inflation and consider only local

bank interest rates. In truth, because of market instability, nothing in finance

is risk-free.

A bond is a loan at a fixed interest rate, and fluctuates in price in anticipa-

tion of changes in future money market interest rates. A stock guarantees the

owner nothing definite in returns, whereas a bond is guarantreed to pay back

the principle plus interest if held to maturity, if the issuer doesn’t go belly-up

beforehand. Following Black and Scholes (1973), a stock can be understood

as an option on real assets at an indefinite future date. So a stock option is an

option on an option. A local currency can change in value compared with a

foreign currency. This is of much practical interest because a local currency
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generally must be converted into a foreign currency or equivalent to pay for

imports, or to be paid for exports. Hedges of one currency against another are

used in the attempt to limit risk in contracts for future delivery or purchase of

goods. To keep the language simple we will often call stocks, bonds, and FX

“stocks” in what follows.

A call is a contract that gives one the right, but not the obligation, to buy a

stock at a predetermined price K within a time frame [t,T] where t is present

time and T is the expiration date of the contract. The price K is called the

strike price. Owning a put gives one the right to sell a stock at a predeter-

mined price K in the same time interval. With a good enough credit rating and

evidence of enough money to play, one can obtain from a broker the right to

trade puts and calls. Merely owning enough shares of a stock generally

confers the right to sell covered calls on those shares (a covered call is a call

on the number of shares of a stock that you own). More precisely, we

have described a so-called American option. A so-called European option

(Chapter 5) can be exercised only at the expiration time T. This type of option

is of less practical interest but is quite easy to formulate mathematically as an

initial value problem, and so is of pedagogic interest.

The aim here is to formulate mathematically the expression for a fair price

of a European option. Given the fair price, if an option sells above or below

that price then one can say that the option is overvalued or undervalued, and

that would allow one to define arbitrage opportunities. There is one catch: the

predicted fair price will implicitly assume a normal liquid market. We don’t

know how to price options meaningfully in a crash because a crash is a

surprise, and the liquid market fair price is formulated explicitly on the

assumption that the future will be the same statistically as the past (the reader

is advised to review Section 4.13 at this point).

At expiration time T the fair price is easy to formulate. Consider a call

option. Denote the expected fair price by C. If the asset price at expiration

satisfies p(T) < K then the call is worthless, C ¼ 0, because I can buy the stock

at time Tmore cheaply than is specified in the contract. Suppose that p(T)> K

by an amount that is greater than transaction costs and taxes. Then one

should exercise the option because there is an immediate arbitrage oppo-

rtunity: one can buy the stock at price K and immediately sell it at price p(T) if

the market is liquid. Ignoring brokerage fees and taxes, the fair price is then

given by

C ¼ max½pðTÞ � K; 0� ¼ ðpðTÞ � KÞyðpðTÞ � KÞ ð8:1Þ
Normally, one never owns the stock in an options trade; a covered call

provides an exception. Generally, the discount brokerage contract takes care
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of all buying and selling in real time for the stock market. Small fish ($10,000–

100,000) are more or less barred from the pond of currency options because in

that case discount brokers don’t exist, and US banks act on small accounts

bureaucratically at snail’s pace.

The idea of “fair option pricing” is to use it as a benchmark to look for

“mispricing” to trade on. To be confident, one would need first to establish

that the predicted fair option price accurately describes real prices in normal

liquid markets.

8.2 Fair option pricing

8.2.1 What is a fair price?

The question of “fairness” in mathematics and in life is not unique (Davis and

Hersch, 2005). By a fair price in finance theory is meant that the effective

interest rate on a portfolio equals the bank, or “risk neutral,” interest rate.

This provides the basis for arbitrage in normal, liquid markets: if the observed

portfolio interest rate differs from the bank interest rate, then one might

interpret this as a buy or sell signal. We will derive the option price from a

portfolio that increases in value at the bank interest rate, and then prove that

that option price satisfies a Martingale condition.

8.2.2 A phenomenological model

Before getting down to serious mathematics, we first entertain the reader with

an example of the kind of phenomenological reasoning that’s been found

useful in physics (McCauley and Gunaratne, 2003). The main question for us

is: what is a fair price for an option at present time t < T, where p ¼ p(t) is

known and p(T) is unknown (this obviously requires a conditional average

over P(T)). Here’s how a physicist might reason. We can extrapolate our

expectation (8.1) by averaging over what we don’t know, namely, pT ¼ p(T).

This requires assuming that the empirically determined transition density

gpðpT ;T p; tÞj at future time T is the same as the one that is known for times

up to the present time t, because we have no scientific way to construct this

density other than by using existing statistics. That is, we assume that the

future will be statistically the same as the past, that there will be no surprises

in the market. If the market has no memory, then we have a Markov process

with price Green function gpðpT ;T p; tÞj satisfying the Fokker–Planck pde for

the stock price process. Given that gpðp; t p0; t0Þj dp ¼ gpðx; t x0; t0Þj dx where g is

the returns Green function, and taking into account the time value of money

in the bank, then we arrive at the prediction
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Cðp;K; T � tÞ ¼ e�rdðT�tÞ ðpðTÞ � KÞ#ðpðTÞ � KÞh i

¼ e�rdðT�tÞ
ð1

lnK=pc

ðpðTÞ � KÞgðxT; T x; tj ÞdxT ð8:2Þ

where rd is on the order of the bank interest rate and x ¼ ln(p/pc) where pc is

the consensus price. This is the fair price estimate that a physicist would

expect (Gunaratne, c. 1990). The problem here is to find the transition density

that describes the market correctly, which is nontrivial.

For a put we correspondingly obtain

Pðp;K; T � tÞ ¼ e�rdðT�tÞ ðpðTÞ � KÞ#ðpðTÞ � KÞh i

¼ e�rdðT�tÞ
ðlnK=pc

�1
ðpðTÞ � KÞgðxT;T x; tj ÞdxT

ð8:3Þ

Note that we can get rid of the stock “interest rate” R, which is hard or

impossible to know accurately, in the Fokker–Planck pde by imposing a

“working man’s Martingale condition” (Gunaratne, c. 1990)

pðtÞh i ¼ prdt ð8:4Þ
thereby fixing R by the “cost of carry” rd, which traders take to be a few

percentage points above the bank interest rate r.

Next, if we make the assumption that present time prices don’t fluctuate far

from the consensus price pc in a normal liquidmarket, p� pc, then with x(t)� 0

we obtain the approximation

Cðp;K;TÞ � e�rdT

ð1
lnK=p

ðpðTÞ � KÞf1ðxT; TÞdxT ð8:5Þ

where f1ðx; tÞ ¼ p2ðx; t 0; 0Þj is the empirically observed density of returns. This

prediction was first written down and used by Gemunu Gunaratne in 1990 to

price options successfully using the exponential density (McCauley and

Gunaratne, 2003; McCauley, 2004). Next, we return to our formal develop-

ment in order to derive a more rigorous notion of fair option pricing. In the

end, the phenomenological prediction (8.5) can be used in practice.

8.2.3 The delta hedge strategy

It’s easy to show that the delta hedge strategy, when based on a nontrivial

diffusion coefficient D(x,t), is still instantaneously “risk-free,” just as in the
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case of the Black–Scholes–Merton model based on Gaussian returns, where

D ¼ constant

rw ¼ @w

@t
þ rp

@w

@p
þ dðp; tÞp2

2

@2w

@p2
ð8:6Þ

With the transformation from prices to returns, x ¼ lnp, the option price is a

scalar and obeys u(x,t) ¼ w(p,t) so we get

ru ¼ @u

@t
þ ðr � Dðx; tÞ=2Þ @u

@x
þ Dðx; tÞ

2

@2u

@x2
ð8:7Þ

Using the time-transformation

u ¼ erðt�TÞv ð8:8Þ
equation (8.7) becomes

0 ¼ @v

@t
þ ðr � D=2Þ @v

@x
þ D

2

@2v

@x2
ð8:9Þ

The pde is exactly the backward-time equation, or first Kolmogorov equa-

tion, corresponding to the Fokker–Planck pde for the market Green function

(transition density) of returns g if we choose m ¼ r in the latter. With the

choice m ¼ r both pdes are solved by the same Green function so that no

information is provided by solving the option pricing pde (8.9) that is not

already contained in the Green function of the market Fokker–Planck equa-

tion. Of course, we must interpret (x, t) in (8.9) as the initial data for the

Fokker–Planck pde, as v ¼ gðxT ;T x; tÞj :

We can now use the market Green function to price options:

Cðp;K;T � tÞ ¼ erðt�TÞ
ð1

�1
ðpT � KÞyðpT � KÞgðxT; T x; tÞj dxT ð8:10Þ

where xT ¼ ln(pT/pc) and x ¼ ln(p/pc) where p is the observed price at present

time t. In the delta hedge model financial purists take the arbitrary interest

rate r to be the risk-free (bank or CD) rate, but traders do not necessarily

follow that advice.

There’s a subtle point that should be mentioned. Although the option price

transforms like a scalar, the transition density g in (8.10) transforms like a

density. If we transform to price variables under the integral sign then we

must use gdx ¼ gp dp where gp is the price transition density that solves (8.9)

for the delta function initial condition. The best way to see this is that, in

(8.10), we average over the initial price p with density g.
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If we restrict to x ¼ 0, so that p ¼ pc, then this is essentially the formula we

used to price options empirically. It means that we have approximated an

arbitrary stock price p by the consensus price pc. That this doesn’t get us into

trouble indicates option pricing is not very sensitive to some details. Indeed,

option pricing is not a strong test of the correctness of an underlying model of

market dynamics. This much was covered in McCauley (2004). The reference

for the next section is McCauley et al. (2007b). It proves for arbitrary diffu-

sion coefficients (actually restricted to quadratic growth or less, to ensure

continuity of the stochastic process) what Harrison and Kreps (1979) proved

for the Black–Scholes model.

8.2.4 The martingale condition

We can show that the generalized Black–Scholes pde above is equivalent to a

Martingale in the appropriately discounted stock price. The Black–Scholes

pde is equivalent via a time-transformation to the backward-time Kolmo-

gorov pde

0 ¼ @v

@t
þ ðr � D=2Þ @v

@x
þ D

2

@2v

@x2
ð8:11Þ

The call price is calculated from the Green function v ¼ gyðx; t xT ;Tj Þ of this
pde (where the dagger denotes the adjoint of g). The forward-time Kolmo-

gorov pde

@g

@T
¼ � @

@xT
ððr � DðxT ;TÞ=2ÞgÞ þ @2

@xT2
DðxT; TÞ

2
g

� �
ð8:12Þ

has exactly the same Green function gðxT ;T x; tÞj ¼ gþðx; t xT; TÞj . The price sde

corresponding to this Fokker–Planck pde (dropping subscripts capital T for

convenience) is

dp ¼ rpdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2dðp; tÞ

q
dB ð8:13Þ

where d(p,t) ¼ D(x,t) and r is the risk-neutral rate of return (actually, r is

arbitrary in the delta hedge and can be chosen freely). With y ¼ x – rt and

gðx; t x0; t0Þj ¼ Gðy; t y0; t0Þj (since dx ¼ dy) we obtain

@G

@t
¼ � @

@y
�E

2
G

� �
þ @2

@y2
E

2
G

� �
ð8:14Þ

with E(y,t) ¼ D(x,t) which has the sde

dy ¼ �Eðy; tÞdt=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðy; tÞ

p
dBðtÞ ð8:15Þ
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and yields the corresponding price sde (with x ¼ lnS(t)/Sc(t))

dS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2eðS; tÞ

q
dBðtÞ ð8:16Þ

with price diffusion coefficient e(S,t) ¼ E(y,t). All of this shows that the risk-

neutral discounted price S ¼ pe�rt is a Martingale. However, the expected

return on the stock appears in the consensus price in the diffusion coefficient.

Unlike the Gaussian returns model, the stock return cannot be completely

eliminated by constructing a Martingale.

8.3 Pricing options approximately via the exponential density

8.3.1 Normalization

In order that the exponential density

f1ðx; tÞ ¼ Aegðx��Þ; x < �
Be�nðx��Þ; x > �



ð8:17Þ

with the slope jump location d to be determined, satisfies the diffusion pde

@f1
@t

¼ �RðtÞ @f1
@x

þ 1

2

@2ðDf1Þ
@x2

ð8:18Þ

it’s necessary to remove the delta function at x ¼ d arising from the slope

discontinuity. The solutions below lead to the conclusion that R is continuous

across the discontinuity, and that D(x,t) is discontinuous at x ¼ d.
In order to satisfy conservation of probability at the discontinuity at x ¼ d

it’s not enough to match the current densities on both sides of the jump.

Instead, we must apply the more general condition

d

dt

ðd
�1

f�ðx; tÞdxþ
ð1
d

fþðx; tÞdx
0
@

1
A ¼ ððR� _�Þf � 1

2
ðDf Þ0Þ

����
d
¼ 0 ð8:19Þ

The extra term arises from the fact that the limit of integration d depends on

the time. In differentiating the product Df while using

f ðx; tÞ ¼ yðx� �Þfþ þ yð� � xÞf� ð8:20Þ
and

Dðx; tÞ ¼ yðx� �ÞDþ þ yð� � xÞD� ð8:21Þ
we obtain a delta function at x ¼ d. The coefficient of the delta function

vanishes if we choose

Dþfþ ¼ D�f� ð8:22Þ
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at x ¼ d. These conditions determine the normalization coefficients A and B

once we know both pieces of the function D at x ¼ d. In addition, there is the

extra condition on d,

ðR� _dÞf ��
�
¼ 0 ð8:23Þ

so that d ¼ Ð
R(t)dt. With

D�ðx; tÞ ¼ Dþð1þ nðx� dÞÞ; x > d
D�ð1� gðx� dÞÞ; x < d



ð8:24Þ

we obtain
A

g2
¼ B

n2
ð8:25Þ

From the normalization condition
Ð
f1dx ¼ 1 follows

A

g
þ B

n
¼ 1 ð8:26Þ

Combining (8.25) and (8.26) yields the normalization

A ¼ g2

gþ n

B ¼ n2

gþ n

ð8:27Þ

Finally, we see from (8.27) that scaling f1(x,t)¼ t–HF(x/tH) can hold if and only

if g and n have exactly the same dependence on tH. That is, the slopes of ln(f1)

can differ to the right and left of d but the time dependence must be the same

on both sides of the discontinuity in order for scaling to hold.

With R(t) continuous we would have a trivial time evolution of value. With

x ¼ ln(p(t)/pc) with pc a constant locating the peak of f1 for t ¼ 0 we see that

x – d ¼ ln(p(t)/pc(t)) where pc(t) ¼ pce
Ð
R(t)dt. This means that the stock interest

rate R(t) appears in the Martingale option price. Statistically seen, the expected

stock interest rate R(t) is an unreliable parameter. We can eliminate it by

applying the working man’s Martingale condition

pðtÞh i ¼ prdðT�tÞ ð8:28Þ
where p is the observed stock price at the present time t, and rd is the cost of

carry (the risk-free interest rate plus a few percent).

8.3.2 Exponential option pricing

We’ve seen that we can extract the one-point density from FX data only in the

small intraday scaling region; that density is exponential with H � 0.35. Our
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best practical guess for interday trading is to assume an exponential density

with H � 1/2.

Consider the price of a call for x > d where u ¼ (x – d)/
ffiffi
t

p
, where R(t) is

determined by the working man’s Martingale condition (8.28), yielding

rd ¼ 1

ðT � tÞ
ðtþT

t

RðsÞdsþ ln
gnþ ðn� gÞ
ðgþ 1Þðn� 1Þ

� �0
@

1
A ð8:29Þ

which fixes R.

With

Cðp;K; T � tÞ ¼ erðt�TÞ
ð1

lnK=p

ðpT � KÞgðxT; T; x; tÞdxT ð8:30Þ

where p is the known stock price at present time t < T. We know the Green

function both empirically and analytically only for the case where

gðx; t 0; 0Þ ¼ f1ðx; tÞj . This approximation yields

CðK; p;�tÞ ¼ e�rd�t ðpT � KÞyðpT � KÞh i

¼ e�rd�t

ð1
lnðK=pÞ

ðpex � KÞf1ðx; tÞdx ð8:31Þ

and amounts to assuming that p � pc, that the present price is the same as the

consensus price. We’ll see that this uncontrolled approximation does not

destroy the usefulness of the prediction. In addition, in agreement with traders,

we’ve replaced the risk-free interest rate by the cost of carry rate in the prefactor

in (8.31). If we also make the approximation R (x ,t) ¼ r – D ( x,t )/2 � R( t) then

for D (x ,t ) linear in xj j= tj j1= 2 we obtain the exponential density (8.17). We can

take this as a phenomenological prediction of the option price.

Given this approximation, with the exponential density (8.17) and normal-

ization (8.27), we find that the call price is given for xK ¼ ln(K/p) < d by

CðK; p;�tÞerd�t ¼ peR�t

ðgþ nÞ
g2ðn� 1Þ þ n2ðgþ 1Þ

ðgþ 1Þðn� 1Þ þ

Kg
ðgþ 1Þðgþ nÞ ð

K

p
e�R�tÞg �K

ð8:32Þ

For xK > d the call price is given by

CðK; p;�tÞerd�t ¼ K

gþ n
n

n� 1

K

p
e�R�t

� ��n

ð8:33Þ
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The corresponding put prices are

PðK; p;�tÞerd�t ¼ Kg
ðgþ nÞðgþ 1Þ

K

p
e�R�t

� �g

ð8:34Þ

if xK < d and

PðK; p;�tÞerd�t ¼ K � perR�t

ðgþ nÞ
g2ðn� 1Þ þ n2ðgþ 1Þ

ðgþ 1Þðn� 1Þ

þ Kn
ðnþ gÞðn� 1Þ

K

p
eR�t

� ��n
ð8:35Þ

for xK > d. These predictions were first derived c. 1990 by Gunaratne, who

accidentally introduced the notation gn.

8.4 Option pricing with fat tails

Consider the price of a call for x > d,

Cðp;K;T � tÞ ¼ erðt�TÞ
ð1

lnK=p

ðpT � KÞgðxT; T x; tj ÞdxT ð8:36Þ

We know the transition density analytically only for the case where

gðx; t 0; 0Þ ¼ f1ðx; tÞj , the empirical distribution for the case where we can make

the approximation R(x,t) ¼ r – D(x,t)/2 � R(t),

Cðpc;K;T � tÞ ¼ erðt�TÞ
ð1

lnK=pc

ðpT � KÞf ðxT; TÞdxT ð8:37Þ

This is enough to make our point: with fat tails f1ðx; tÞ � xj j��, xj j >> 1 we get

Cðpc;K;T � tÞ � erðt�TÞ
ð1

lnK=pc

pexx�mdx ¼ 1 ð8:38Þ

Fat tails cause the option price to diverge. We haven’t found fat tails in

intraday FX data; the densities generally cannot be extracted even for a time

scale of a single day. So we don’t know if fat tails are present in stock data.

They may well be. But if they are, then they’re apparently ignored by traders

pricing options.
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8.5 Portfolio insurance and the 1987 crash

Option pricing is based on the assumption of a normal liquid market, a

“Brownian” market, otherwise there is no way to price options. This assump-

tion fails miserably when liquidity dries up in a market crash.

Synthetic options are based on put-call parity (Chapter 5). Under normal

market conditions, a synthetic option duplicates the payoff of a long under-

lying position with a long call and short put at the same strike and expiration.

For example, a synthetic call is constructed by the right-hand side of

C ¼ Pþ V � e�r0ðT�tÞK, and money in the bank would hypothetically be

equivalent to e�r0ðT�tÞK ¼ Pþ V � C. Anyone who takes this literally should

also believe in the tooth fairy, but adults who do not believe at all in the tooth

fairy believed in synthetic options because they ignored liquidity droughts in

market crashes. As Morris (2008) wrote, only people of high intelligence can

make monumental mistakes.

Portfolio insurance, as engineered by Rubenstein and Leland (1981), is

based on synthetic options. The assumption is that one should go with the

market: buy as prices rise above some benchmark price increase, and sell

when prices fall below some benchmark drop. This is the destabilizing behav-

ior typical of our modern era. When enough big traders act collectively, when

their computer programs try to execute the same sell orders massively, a large

enough drop in market prices can cause a crash. That is presumably what

happened in 1987, when the New York stock market fell by 40% in a few

days.

8.6 Collateralized mortgage obligations

Collateralized mortgage obligations (CMOs) were invented in the 1980s,

exactly in the era when finance market deregulation led to the inability of

savings and loans to compete further in mortgage lending (Lewis, 1989). With

a CMO, mortgages are split into three separate derivatives and sold separ-

ately (Morris, 2008; Soros, 2008). The construction of special derivatives

made the parts look superficially like bonds. With too much money in

circulation looking for a place to be parked at high interest rates (see Chapter

9 for the reason), Wall Street bought mortgages and resold them at a profit as

CMOs. As with the derivatives market in general, complex financial instru-

ments were created that no one understood. In particular, the derivatives

could not be evaluated in any sensible way if liquidity were to start drying up.

The role played by CMOs in the 2007 subprime mortgage fiasco, a part of the

larger worldwide credit bubble, is described by Morris (2008) and is discussed

in the context of unregulated forms of money creation in Chapter 9.
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We’ve formulated this chapter in standard textbook fashion, assuming that

a local currency can be treated as risk-free. The question of the time scale over

which that assumption makes sense was not considered. The next chapter is

devoted to the history of the instability of the Dollar, and in the few months

over which this chapter was written the price of oil increased from about $80/

barrel to $140/barrel. Normally, one assumes that a major currency can be

taken to be approximately risk-free on a time scale of weeks or even months.

On a time scale of the last few months, the Dollar was not very reliable in the

role of a “risk-free” paper asset. We will next present the case that we live in a

very singular era in financial history, the era of the worldwide credit bubble

based on a weak and further weakening Dollar as international reserve

currency.

Credit default swaps have also been modeled and used by lending agencies

in deciding on the riskiness of loans. What the modelers and users typically

and too easily forget, or were never aware of, is that all such models assume

fairly normal market liquidity; the models cannot be used to anticipate a

liquidity drought, a market crash.
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9

FX market globalization

Evolution of the Dollar to worldwide reserve currency

9.1 Introduction

We return to the theme introduced in the first chapter, economists’ expectations

of stable equilibrium vs the reality of market instability under deregulation.

We’ll now illustrate the disparity by following the evolution of the Dollar

and FX markets from the gold standard to September, 2008.

We begin by following Eichengreen’s (1996) informative history of the

evolution of western FX markets from the gold standard of the late nine-

teenth century through the Bretton Woods Agreement (post-WWII–1971)

and later the floating currencies of the early market deregulation era 1971–

1995. We add equations, models, and observations to broaden that discussion

and explain mathematically how the FX markets work. We also add a

discussion of the era 1995–2008 based on our understanding of finance

markets gained in Chapter 7.

Although WWI-era finance data (or any pre-computerization-era data)

would be too sparse to permit a meaningful empirical analysis (see Chapter 7),

there is qualitative evidence for a change from stability to instability over the

time interval of WWI. With the risk and instability of our present era

(Chapters 7 and 8) in mind, we show how speculators could have made

money systematically from an effectively regulated FX market like that of

the gold standard era. The present era normal liquid FX markets are in

contrast approximately impossible to beat, are “efficient,” and require

options to hedge against currency risk. The ideas of Martingales and

options/hedging became of great practical importance after 1971, but were

of little use or interest in the gold standard era. The main weakness of

Eichengreen’s book is that the role of derivatives as a completely unregulated

form of money creation is ignored. Before following the evolution of

the Dollar, we first define the “official” or “on the books” money supply
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M0–M3, and the regulated method of money creation called “fractional

reserve banking.”

9.2 The money supply and nonconservation of money

Standard measures of the money supply, money recorded “on the central

bank books,” are defined here: M0 is the total of all “physical currency,” plus

accounts at the central bank that can be exchanged for physical currency.

That is, M0 consists of physical currency circulating in the economy plus

checking account deposits. This is a measure used by economists trying to

quantify the amount of money in circulation, and is a very liquid measure of

the money supply. M1 consists of currency in circulation plus checking

deposits, officially called demand deposits, and other deposits that work like

checking deposits, plus traveler’s checks. M2 consists of M1 plus most savings

accounts, money market accounts, and small-denomination time deposits

(certificates of deposit of under $100,000). M2 provides us with the measure

of the currency within the country. M3 is extremely important, as compared

with M2: M3 includes M2 plus all other CDs, deposits of Eurodollars, and

repurchase agreements (“repos”). “Eurodollars” means simply Dollars in

foreign banks anywhere in the world, and can be used to create Dollar-

denominated credit in foreign banks via fractional reserve banking. Eurodol-

lars are beyond the control of the US Federal Reserve Bank. M3/M2 tells us

the fraction of the currency beyond the control of the central bank that is

supposed to regulate that currency.

Fractional reserve banking is a form of money creation via credit (http://

en.wikipedia.org/wiki/Money_creation) regulated by the central bank. As an

example, consider a saver with $100, a bank accepting a $100 deposit, an

outboard store and a customer who buys from the store using only borrowed

money. If the fractional reserve rate is 20%, then from $100 deposited the

bank must keep on hand $20 and may lend $80 to the consumer. The

consumer borrows $80 and buys some motor parts. The dealer deposits that

$80 in the bank, of which $64 may then be lent to the boater who wants to

buy several cases of oil. The dealer deposits that $64 in the bank, and (if the

bank is willing to give the loan) the boater may borrow another $51.20, and

so on. Money is effectively not conserved because the time scale for borrowing

is very short compared with the time scale for repayment (consider credit

cards, for example, where the repayment time may be set approximately equal

to infinity). Furthermore, if there is default then the money is never repaid; it

was created and remains in circulation. This is the regulated form of money

creation under the legal banking system. A central bank’s method of trying to
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control the money supply is simple: selling treasury bonds and treasury bills

to banks reduces the money supply, while buying them back from banks

increases the money supply. Selling US Treasury Bills and bonds to foreigners

is the government’s way of borrowing money from foreigners.

9.3 The gold standard

Credit has played a strong role in finance and economics since at least the

Renaissance in Europe, and dominates all markets today. With a credit card,

purchases can be made with the tap of a computer key. Let’s begin next with

the pre-WWI era of financial stability when the level of money creation via

credit was relatively low.

The gold standard became widely accepted around 1890. But even then the

“quantity theory of money” presented by Hume (1898 ) did not hold strictly.

With a strict gold standard, and no new mining production or coinage of

existing gold, money would be conserved. We’ve explained how money

is created via credit under fractional reserve banking. Credit controlled by

central banks is included systematically in the estimate of both the national

(M2) and worldwide (M3) money supply.

Before WWI, stable currency values were supposedly maintained by the

threat of central bank intervention. The threat led speculators to bid up a

weak currency with the expectation of a profit, and thereby strengthened

the currency via a self-fulfilling process: speculation in that era tended to

stabilize FX markets, as we’ll explain below via a specific model. After

WWI the central bank threat either fell by the wayside or else no longer

carried sufficient weight, and FX markets became unstable: weak currencies

were bid lower by speculators. The historic reasons for the change are

discussed below.

9.4 How FX market stability worked on the gold standard

Adhering to a gold standard meant very tight money: $20 would buy you an

ounce of gold, but money was hard to come by. Credit cards didn’t exist;

credit was hard to obtain. Banks in the gold standard era, and later, did not

make loans for consumption. Today, high school students are offered credit

cards, but in the 1960s a college student could not borrow $250 from a bank

to buy an old car unless his parents co-signed the loan. Americans who came

of age after 1971 have grown up in a very different country, one that since

1981 seems very different to me. Markets were relatively illiquid, meaning

that items were infrequently traded. We begin with the pre-WWI era, in which
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maintaining the gold value of a currency was the overwhelmingly dominant

factor in finance. According to the history of the gold standard and its

replacement as international standard by the post-WWII Dollar under the

Bretton Woods Agreement, we can infer that there was a fundamental shift in

the FX noise distribution after WWI from a stationary process to a Martin-

gale process. The shift was from a stationary market to a nonstationary one.

The motion of money in a political economy bears only very limited

resemblance to the motion of a mass in physics. In economics/politics, the

future can be shaped by acting on beliefs and wishes. The beliefs/wishes are

then called self-fulfilling expectations. Changing the motion by acting on

wishes is impossible in the mindless matter that we study in physics. There-

fore, we must pay close attention to political policy in discussing economics

and finance, where the log return “x(t)” bears only a limited resemblance to

x(t) in physics. A main question in political economy is: what should be

regulated, and what should be allowed to move freely? For example, tele-

phone costs have dropped significantly under deregulation (phone calls to

and from Europe are possible at about $0.03/minute now in either direction)

but electricity costs for consumers have not decreased under deregulation, nor

has service become better. Information transport is very cheap; electricity

transport is extremely expensive. The question of deregulation is nontrivial.

In particular, we will analyze whether money creation and financial transfers

define a self-stabilizing dynamical system, or do we need regulations to

achieve market stability?

In all that follows we must keep in mind two different degrees of instability.

First, in a normal liquid market instability means simply that the market

returns are a nonstationary process: statistical equilibrium is not approached.

This is modeled in Chapter 7, and examples are provided by the usual daily

operation of a finance market. Second, a market crash, a liquidity drought, is

a far worse form of instability that we cannot model reliably because no

meaningful empirical analysis is possible (the statistics would be too sparse;

see Chapter 7). An example from 2007 is the subprime mortgage fiasco, and

consequent related examples from 2008 are the bankruptcies of Lehman

Brothers and AIG, threatening either the collapse of the worldwide financial

system (depression) or the further inflation of the Dollar (why these are the

alternatives is discussed in this chapter). Laws were passed in the USA in

the 1930s to avoid and manage liquidity droughts, but most of those laws

have been repealed since the deregulation revolution of 1981. So let’s turn

to history as a guide for our analysis.

Before WWI, the main job of western central banks and parliaments was

seen as keeping the national currency from falling outside chosen gold
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standard “bands.” The claim is that, before WWI, the currency speculators,

confident that governments could be relied on to maintain the gold value

of the currency, bid a weak currency up, expecting a profit in the long run.

The older FX data are too poor to test this idea but, if true, it would mean

that FX markets were (at least asymptotically) stationary in that era. This is

interesting because no known market is stationary today. We know that FX

markets since 1958 are described approximately by the nonstationary Gaussian

returns model. Gaussian returns markets are nonvolatile; volatile markets

became important after the crash of 1987. Although economists generally do

not recognize market instability as a key idea, or as any admissible idea, the

economist Eichengreen (1996) argues that the onset of the instability coin-

cided with social pressures after WWI (his subsequent papers are all based on

equilibrium models, however).

Here’s how the pre-WWI FX market worked. Imagine a Dollar equivalent

to 25.9 grains of gold. Take the Reichsmark (the “Euro” of that time) as the

foreign currency of interest, and focus on trade with Germany. Assume that

credit (money creation without gold backing) doesn’t change the money

supply significantly inside the US. A trade deficit meant too many Dollars

were outside the country. In practical terms, M3/M2 was too large. When

there were too few Dollars inside the country, economic activity within the

US fell. Banks in that era attempted in some rough sense to conserve the

Dollar, so that the trade deficit reduced liquidity inside a country on the gold

standard (meaning deflation, lower prices, unless more money was printed).

So the trade deficit was eventually reversed via cheaper exports. The latter

brought money back into the country, which increased the Dollar against the

RM without the need for a devaluation of the weak Dollar by the central

bank. By reducing the money supply (thus weakening demand further),

a central bank could speed up this process.

We can make an FX model describing that stability. Consider the logarith-

mic return x(t) = ln(p(t)/pc) where p is the price of one currency in units

of another (e.g., the Reichsmark in 1913, or the Euro today, in Dollars),

and pc is the value of the Dollar set by the gold standard. In a stationary

process, the one-point returns density f1(x,t) is time-independent: the average

return, the variance, and all other moments of the one-point distribution are

constants. A market that possesses a statistical equilibrium distribution

has fluctuations that obey a stationary process x(t). We can easily model an

asymptotically stationary market. From the usual stochastic supply–demand

equation

dp ¼ rpdtþ �1pdBðtÞ ð9:1Þ
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we obtain

dx ¼ r � �1
2=2

� �
dtþ �1dBðtÞ ð9:2Þ

Let R= r � s1
2/2 denote the expected return, x ¼ Rt. For FX markets we

know empirically that R � 0. If �1 < x < 1, then (9.2) is the lognormal

model introduced by Osborne in 1958 and used by Black and Scholes in 1973.

The speculators’ behavior generates the noise, which in the case of (9.2) is the

Wiener process. But central bank intervention means that unbounded prices,

�1 < x < 1, is the wrong assumption.

With the pre-WWI Dollar supported within a gold band b1 < x < b2,

stationarity is the consequence. We can set the equilibrium probability dens-

ity f1(x) = constant except at the boundaries and then we obtain an approach

to statistical equilibrium: f1(x,t) approaches f1(x) as t increases (see Stratono-

vich (1963) for the mathematical details). That is, the market is asymptotic-

ally stationary. Here’s how speculators could systematically suck money out

of a stationary market. Consider the price distribution g(p,t) = f(x,t)dx/dp

with price variance sp
2. One buys, for example, if p < pG�sp, and one sells

if p > pGþsp. Such fluctuations are guaranteed if the stationary process is

ergodic or is at least recurrent (discrete stationary processes are recurrent

(Kac, 1949)), and the first passage time for a specific fluctuation can easily be

calculated (see Stratonovich (1963) or Durrett (1984; 1996)). So we under-

stand how speculators could systematically have made money with little risk

in the pre-WWI era. All that was required was, once the bet was placed, the

trader had to be able to afford to leave his money in place until stationarity

provided him with a gain. That is, the correct strategy was to buy and hold;

there was little or no motivation to hedge risk, or to trade frequently. The

stabilization process was a self-fulfilling expectation. But there’s a very good

reason why speculators traded in a stabilizing way: they were limited by

boundaries imposed by the central bank.

We must interpret the boundary conditions in order to understand why

traders stabilized the FX rate: it wasn’t the gold standard alone, but rather

was the serious threat of punishment combined with reward that produced

stability. The band limits, b1< x < b2, represent the threat of intervention and

can be understood effectively as a form of regulation. The process is asymp-

totically stationary if and only if both b1 and b2 are finite (the particle with

position x is confined between two walls), so that hxi ¼ (b1 þ b2)/2 ¼ constant

fixes pc at the gold value of the Dollar. The central bank would threaten to

intervene to buy/sell Dollars if x would hit b1 or b2, so speculators could

confidently buy Dollars if s< x< b1, for example, where s2 ¼ hx2i ¼ constant.

Stationarity guarantees that profitable fluctuations occur with average first
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passage time t = s2/2s1
2. The ability to establish boundaries, representing

“threats of punishment with teeth,” a form of regulation, generated stable

dynamics. We can profitably emphasize the stabilization process via compari-

son with related social analogies.

In the language of the Ultimatum Game, the boundary conditions/regula-

tions were threats of financial punishment. Those threats of punishment were

effective if the central banks had gold reserves large enough to beat the

speculators, if necessary. A related social analogy is the old saying that “kids

like boundaries.” Kids don’t “like” boundaries, everyone prefers to be free to

explore vast possibilities, including the dangerous ones like sex, alcohol, and

habitual smoking at ages 14–17, but if parents set strong boundaries and

enforce them with punishment and rewards then behavior modification is

likely. This provides us with an example of a regulated system like the FX

market on the gold standard. Here’s an example of an unregulated free

market, “The Tragedy of the Commons (die Tragödie der Allmende)”: with

free farmers sharing a common meadow, the tendency is for each farmer to

add “one more cow.” Regarding stability or lack of it, Adam Smith wrote

earlier that moral restraint is required for a free market system to function.

Moral restraint doesn’t prevent farmers from adding one more cow. Moral

restraint is inadequate in modern finance. A comparison of the gold standard

era FX market with current FX markets illuminates this claim. By “morals,”

should we include the notion of not taking advantage of a big personal gain if

other citizens would be significantly hurt by that gain?

Summarizing, speculators created stabilizing self-fulfilling prophecies

before WWI because governments (a) had adequate gold reserves and (b) saw

their job as maintaining the stability of the currency, instead of guaranteeing

high employment and social services. WWI changed the priorities. The rise

of socialism and labor unions after WWI meant that social spending had to

be given priority. The consequent threat of inflation via printing paper money

or borrowing to finance deficits caused the wealthy to prefer gold over paper

Dollars. Social spending and regulation on finance markets increased dra-

matically during and after the Great Depression of the 1930s.

9.5 FX markets from WWI to WWII

Banks and the government saw the avoidance of inflation, not high employ-

ment, as their main job prior to the depression. After the onset of depression,

Keynesian policies were introduced in order to fight it. Keynesian policies

were seen as inflationary because fiscal policies should be instituted to
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stimulate spending. That is, the money supply should be inflated, distributing

money to those in need who would spend it for necessities.

From an entirely different perspective, inflation of the money supply is

necessary but not sufficient for a boom or bubble (Kindleberger, 1996), and

inflation of the money supply via credit played a role in creating and

expanding the 1929 bubble. The stock market crash of 1929 caused a liquidity

crisis:1 deflation occurred because there was no “lender of the last resort” to

provide liquidity. Margin trading, a form of leveraged betting, was a major

source of running up stock prices in the late 1920s, as in the late 1990s.

Therefore, the 1929 crash hurt the lenders, including banks that had lent

money for stock speculation (this can be said of the 2007–08 crisis as well).

Many banks went bankrupt and closed after the crash. Depositors withdrew

money from solvent banks for fear of losing more money, causing a liquidity

drought. The depression/deflation followed from the lack of money in circu-

lation: many people were unemployed, and those with money tended to hoard

instead of spending. Bank deposits were not insured at that time. Franklin

D. Roosevelt was elected President in 1932 based on his promise to abandon

past social policies and institute a “back to work” policy, and to restore

confidence in the banking system. People with money expected inflation via

social spending, encouraging the conversion of paper Dollars into gold at

$20/ounce, a conversion rate that reflected the financial stability of a dead

era. The liquidity crisis can be understood as a form of the Gambler’s Ruin

(see Chapter 4). Until 1935, the gold value of the Dollar had been maintained

roughly at $20/ounce (from a physical perspective, this was possible because

the US gold supply had been analogous to a heat reservoir).

Roosevelt’s “Bank Holiday” in 1933 was partly the consequence of a run

on gold by people getting rid of the Dollar. To close escape hatches, in 1935

he outlawed the ownership of gold by Americans, recalled all gold coins,

excepting rare coins held by collectors, and then fixed the price of gold at

$35/ounce (potentially inflating the money supply by about a factor of two!)

thereby guaranteeing that Americans could not depreciate the Dollar by

buying gold. Fear of bank failures was exceedingly widespread: many people

hid money at home rather than trust the banks again. In a further effort to

control the Dollar and restore confidence, bank deposits were insured and the

Glass–Steagall Act was passed to keep commercial banks out of the stock

brokerage business. With New Deal acts in place as law, the US government

could then spend freely on public works projects like the Tennessee Valley

1 The key question for the reader is: why haven’t market crashes since 1929 but before 2007 caused another
depression?
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Authority, which was and still is a very effective and profitable socialist

project, and the Works Projects Administration. The US government got

away with it because the US then had the largest gold reserves in the world.

France and, surprisingly, the defeated Germany were second and third.2

During the depression, the gold reserves of the US, France, and Germany

were more than adequate compared with the paper currency in circulation.

Liquidity, not total wealth, was the problem.

9.6 The era of “adjustable pegged” FX rates

After WWII, eastern Europe became Soviet satellite states while Germany

under the Marshall Plan was rebuilt as a capitalist showcase against the

USSR. This caused large Dollar transfers to Europe. The gold standard

was replaced in the west by the Bretton Woods Agreement: (1) “adjustable”

pegged exchange rates, (2) controls were allowed and placed on international

capital flows, and (3) the IMF was created to monitor economic policies

within participating nations, and to extend credit to countries at risk with

large trade imbalances.3 Interest rates were capped as well. Controls were

understood as necessary in order to avoid flight from a currency; the com-

mitment to economic growth and/or full employment is not consistent with

absence of inflation. Financial markets in that era were clearly regulated.

By 1959, the Bretton Woods exchange controls began to fail. The US had

pegged the Dollar artificially to internally nonliquid gold while inflating the

Dollar, and the rest of the west pegged currencies to the Dollar with the right

to exchange Dollars for gold. The Dollar had replaced gold as the unit of

international currency. Japan and Germany restricted US imports further.

The result was that, by 1959–60, the order of magnitude of Dollars in Europe

was on the order of magnitude of the Dollar value of gold stored in Fort

Knox (the latter was about $20,000,000). We don’t need a detailed dynamical

model to help us to understand that speculators rightfully expected a devaluation

of the Dollar. In 1958, Eisenhower prohibited Americans from owning gold

in Europe, and in 1961, Kennedy outlawed the ownership of gold coins

by American collectors, going further than Roosevelt, but those acts were

like band aids on a broken artery. The acts were a futile attempt to delay the

2 A common misunderstanding is that the Nazis came to power in 1933 because the Allies drained Germany
via reparations. In fact, Germany successfully resisted reparations but had high unemployment for the same
reason as did the USA. Hitler’s Finanzminister Hjalmar Horace Greely Schacht got the ball rolling via
Keynesian-style inflationary public spending. That was the era when the Autobahns began to be built, for
example. The wild German inflation of 1923 was a Berlin ploy to deflect France’s demands for reparations
payments.

3 The traditional method of removing a serious trade imbalance was devaluation of the currency against gold.
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inevitable: either transfer all the gold in Fort Knox on demand to the creditors,

or else devalue the Dollar. Significantly for the history of the Dollar, the

Organization of the Petroleum Exporting Countries (OPEC) was formed in

the same era.

Wecanmodel thepost-WWI instabilitymathematically.Far-from-equilibrium

dynamics is exhibited by the Gaussian returns model that Osborne proposed

empirically to describe stock returns in 1958,

dx ¼ r � s1
2=2

� �
dtþ s1dBðtÞ ð9:3Þ

subject to no boundary conditions. Even with r < 0 this model allows no

approach to statistical equilibrium. The model is nonstationary but nonvo-

latile. Presumably, FX markets were like this from the end of WWI through

1987. Volatility could be introduced in an artificial way by letting the con-

stant s1 experience large jumps at discrete, unpredictable times.

Modern credit based on fractional reserve banking is a regulated form of

money creation. The first credit card, the BankAmericard (later VISA)

appeared c. 1960, introduced by an Italian-American banker in California

presumably to help the local Italian community. By 1964 the Dollar was weak

enough that silver coins were worth more than their face value, so the USA

under Lyndon Johnson stopped minting them. The Vietnam War caused

inflation, as do all wars.4 The government-financed Advanced Research

Projects Agency Network (ARPANET) appeared in that era, signaling that

communication speed would increase in the future. These facts are central

for understanding today’s Dollar, and the FX transfers that occur second

by second, shortening the time scale over which instabilities can make their

effects known.

9.7 Emergence of deregulation

In 1961 the order of magnitude of Dollars outside the USA was far greater

than the US gold supply in Dollars. In 1971 France demanded an exchange of

Dollars for gold. This forced Richard Nixon to deregulate the Dollar, to let it

“float” freely against gold and all other currencies. Note from Figure 9.1

that M3 was still insignificant compared with M2, which means that

the number of Dollars in circulation in the US was far greater than

the gold supply at $35/ounce. Significantly, Forex was created in 1971, and

the first ARPANET email program appeared then as well. The Chicago

4 No well-off population would likely choose war were the costs explained in advance, and were it
understood that the war must eventually be paid for via either higher taxes, inflation, or generally both.
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Board of Options Exchange (CBOE) was created in 1973, the year that the

Black–Scholes solution was finally published. This was the beginning of

deregulation and the consequent financial revolution of 1971. The creation

of derivatives/options/hedging literally exploded, and we understand why: the

new market instability of the Dollar required hedging bets.

OPEC understood the 1971 Dollar devaluation (deregulation from gold,

basically defaulting on payments to Europeans holding Dollars) and raised

the price of oil dramatically. By 1973 gold had hit $800/ounce, options

trading was in full swing, and many OPEC oil fields were nationalized.

To give the reader an idea of the price inflation, a VW Beetle that had cost

$700–800 in 1968 cost $1600 by 1974, and the US gasoline price had doubled

in Dollars as well, after first hitting $1.20/gallon. I was there, waiting in the
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Figure 9.1 The US Dollar money supply, showing especially the growth of
M3, reflecting the Dollar as the world’s default reserve currency since WWII
(provided by Steve Keen’s “Debtwatch,” www.debtdeflation.com/blogs).
The standard measures of the money supply are: M0 = the total of all
physical currency, plus accounts at the central bank that can be exchanged
for physical currency. M1 = M0+ those portions of M0 held as reserves or
vault cash + the amount in demand accounts (“checking” or “current”
accounts). M2 = M1 + most savings accounts, money market accounts,
and small denomination time deposits (certificates of deposit of under
$100,000). M3 = M2 + all other CDs, deposits of Eurodollars and repur-
chase agreements. Eurodollars = Dollars in foreign banks, and can be used
to create Dollar-denominated credit in those banks beyond control of the
US Federal Reserve Bank.
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first gas lines in Houston. This was the great inflation of the 1970s, and was

the beginning of deregulation in American politics. America from 1935 to

1971 was very, very different from America after 1971. The regulations put in

place in the Great Depression (and irrationally hated as “evil” by the right

wing) were under systematic attack by political and economic conservatives,

who pointed to stagflation and announced: “Keynesianism doesn’t work!”.

The program of privatization and deregulation began euphorically and in

earnest, and the idea of making money by trading instead of producing began

to spread broad and deep roots.

With the Dollar inflating faster than paychecks could keep up, Americans

in the 1970s got rid of Dollars in favor of art, collectible coins, and other

“values,” and began to run up credit card bills with the expectation that next

year’s Dollar would be worth much less than today’s (this was the beginning

of modern consumerism). In the 1980s, the savings and loan associations were

deregulated and went bankrupt, unable to compete with bond trading houses

like Salomon Brothers who split principle and interest into separate deriva-

tives for sale to the public (see former bond trader Lewis’s excellent descri-

ption (1989)). Leveraged buyouts financed by junk bonds5 emerged, and

became the order of the day on Wall Street. Old companies were bought

and stripped for profit, with the carcass either later sold for profit or aban-

doned. Monetization of debt increased, with leveraged borrowing providing

the required liquidity. FX transactions, on the order of $108/minute c. 1981,

decoupled from economic growth. With no certainty about currency at home

or in international trade, physicists began to be hired on Wall Street to model

derivatives in the 1980s. See Derman (2004) for an excellent and entertaining

history of that era. The October, 1957 launching of Sputnik had caused the

USA to pour money into science education in the 1960s, and by 1971 there

was an oversupply of physics graduates available to be hired elsewhere,

including as “rocket scientists” on Wall Street. Emanuel Derman was one

of the first.

The inflation rate became so high (the USA experienced “stagflation,”

meaning inflation combined with unemployment) that Keynesian economics

fell into disrepute, and monetarists claimed victory. Neo-classical economics

theory was revived and began to fill the academic void (created by the fall of

Keynesian economics) under the heading of “rational expectations.” As my

good friend and economist Duncan Foley once stated, you had to live

through that era in order to understand the magnitude of the change in the

5 A junk bond fund operates on the assumption that the danger of individual risky bonds is reduced by
choosing a basket of risky bonds.
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(academic economics) profession. Even liberals became free market theorists.

The completely nonempirically based model called “rational expectations”

provides the theoretical underpinning for unlimited deregulation and

privatization.

At street level, to fight inflation, Carter-appointed Federal Reserve Bank

Chairman Paul Volcker let interest rates float to 13.5% in 1981, eventually

reducing inflation to 3.5% by 1983. The budget-breaking by the US govern-

ment was far worse in the eras 1981–88 and 2001–08 than in any other era.

In both eight-year terms, two presidents were elected who had promised to

reduce both the size of government and taxes simultaneously. Instead, the

government budget deficit was vastly expanded while taxes were decreased.

Adhering to the philosophy of laissez faire, they even encouraged US manu-

facturing capacity to leave the country in search of cheap labor costs (Mexico,

China, etc.). The dominant idea of morals was to permit a few people to make

as much money as possible. That philosophy was most forcefully expressed

by the wealthy (by inheritance, not work) political pundit William F. Buckley,

beginning with his trumped-up, scurrilous attacks on Yale professors in the

1950s (Yale Alumni Magazine, 2008).

Developments in technology have also played a central role in the financial

revolution. Faster and cheaper communication encourages faster and greater

financial transactions. By 1985 Apple (and Commodore) computers and PCs

had become common in offices and homes. Discount brokers appeared as a

form of finance market deregulation. In the 1970s and earlier, unless one had

enough money to bring the buy/sell rates for stocks down to 3% or lower, one

phoned one’s stock broker and paid 6% coming and going, and orders were

executed at a snail’s pace. Limit orders were not effective because of the

slowness of execution, unless you were a big enough player to have a trader

on the exchange floor. By 1999 one could place a small (say $10,000–30,000

or a smaller amount) limit order with a discount broker on a Mac or PC and

have it executed in a matter of seconds, if the order were placed close

enough to the respective bid/ask prices (also shown in real time), paying

$20 to buy and sell. Liquidity and speed of transaction increased by many

orders of magnitude.

China had begun to invite foreign capital for building modern industry

c. 1980, following the “opening of the door” by the Nixon–Kissinger visit

with Mao and Zhou Enlai in the early seventies.6 US industry had begun

drifting across the Mexican border as early as 1960, and migrated later to

6 The University of Houston began accepting large numbers of very good Chinese graduate students in
1981, as the result of an effort by Bambi Hu and myself.
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Asia. The internal collapse of the USSR in 1991 signaled that capitalism had

won, and that globalization via privatization and deregulation could begin

in earnest. All of these facts are central for understanding the financial crisis

of 2007–2008 (which will likely continue into 2009 and beyond) and the

consequent return in 2008 of finance market regulation. The explosion of

Dollar credit drove all of this.

In 1994, an extremist free market Congress was elected in the US, and the

stock bubble inflated rapidly in response to the deregulation fever (Newt

Gingrich and Tom DeLay led the charge in congress): the Dow Jones Average

quadrupled from 1994 to 2000. From 1987 to 1994 it had doubled, and had

doubled earlier from 1973 to 1987. By 1999 the signs of the bubble were strong:

many people quit their jobs to “momentum trade” dot.com stocks on margin,

others mortgaged their houses to bet on dot.com stocks that had never

shown a profit (many never showed a profit). The dot.com bubble had begun

with Netscape in August, 1995, and lasted through 2000–01. The World Wide

Web was the result of 30 years of government development and investment,

primarily for military purposes, and exploded financially when deregulated

in 1995. No private business would have financed a non-profit development

for 30 years.

Bubbles require credit for their inflation, and interest rate increases then

create margin calls. The stock bubble was popped the same way as in 1929:

the Fed tried to deflate it slowly via a systematic sequence of many small

quarterly interest rate increases. The difference with 1929 is that, with an

enormously inflated money supply (Figure 9.1) and lenders of the last resort

in place to avoid a liquidity crunch, the air never completely came out of the

market. With so many Dollars in circulation worldwide, investors, always

rightly afraid of inflation and looking for gain, demand a place to park their

money. Consequently, even in 2008 stocks sold at very high price/earnings

ratios. As we’ve shown in earlier chapters, instability in a normal liquid

market means that the ideas of “overvalued” and “undervalued” are effect-

ively subjective so that stocks are “valued” at whatever the largest group of

traders thinks they’re worth at any given time. Valuation in a nonstationary

market is largely subjective, and can shift like dunes in a hurricane.

In 1998, the world finance market nearly crashed again (Dunbar, 2000).

Following two ideas, the M & M theorem and the expectation that market

equilibrium will prevail after large deviations, the hedge fund LTCM had

achieved a debt-to-equity ratio “approaching infinity,” with leveraging sup-

plied by nearly every major bank in the world. The fund was run by bond

trader John Meriwether and economics Nobel Prize winners Scholes and

Merton (Black had died in 1993; the Nobel Prize for the Black–Scholes model
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was awarded in 1997). Ignoring that markets are nonstationary and that the

liquidity bath is necessary for the application of stochastic models in the first

place, LTCM literally “became the market” in Russian bonds, so that when

they wanted to sell they suffered the Gambler’s Ruin. M & M had restricted

their analysis to small changes in returns, where there is no need to worry

about the Gambler’s Ruin, and concluded that the debt-to-equity ratio

doesn’t matter in evaluating a firm. In contrast with their analysis, reality

shows that the debt-to-equity ratio matters: too much debt leads to bank-

ruptcy and can effectively eliminate the equity altogether. Since 2001 the US

government began to operate with a dangerously high debt-to-equity ratio

(see the next section). For a survey of finance market instabilities from the

savings and loan days through LTCM and including the subprime mortgage

fiasco, see Morris (2008). Unmanageable liquidity droughts are made

possible today because finance markets in general, and derivatives markets

in particular, have not been regulated (see also www.marketoracle.co.uk/

Article3652.html).

Instead of gold era central bank “carrots and sticks” for speculators, we’ve

relied on the IMF and other nondemocratic, supra-governmental agencies

like the World Bank and the World Trade Organization that try to penalize

participating governments who violate what amount largely to neo-classical-

based playing rules. One idea is that governments should pay attention to

maintaining “stable” exchange rates, but without any notion of limiting the

highly leveraged derivatives trading that could easily bring down the global

financial system (as in 1998 and 2008). Worldwide, a currency remains strong

when an economically strong enough country has a decent trade balance and/

or pays a high enough (compared with main competitors for deposits) interest

rate. With a weak currency like the 2001–2008 (and beyond) Dollar, and with

both trade and budget deficits out of control, the US government can finance

its debt only through attracting foreign money via high enough interest rates

or other waning influence. A small country like Argentina cannot get away

with that sort of flagrant behavior. The USA has got away with fiscally

irresponsible behavior from 1981 to 2008 only because speculators have not

(yet) believed that the US Government will default on its financial obliga-

tions, but a large inflation is a kind of default. In analogy with the necessity to

deregulate the Dollar from gold in 1971, we can expect a liquidity crisis

whenever the bets in finance markets are on the order of magnitude of the

money supply.

For perspective, the number of Dollars recorded officially in the money

supply (M0–M3) in the world increased about 55% from 1945 to 1965, and

by about 2000% from 1971 to 2001. “Money” includes credit. Governments
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in our era have used interest rates to try to keep credit partially in check, also

in Europe. For reference, when I first went to Germany in 1985 one could not

buy a car on credit, and credit cards were useless in restaurants and gasoline

stations (Scandinavia was an exception). At that time, credit cards were

accepted in tourist businesses in big cities. Germans had a strong habit of

saving and paying as they went, as did Americans before 1971. I recall vividly

when, c. 1992,Deutsche Bank announced that credit cardswould be issued and

their use would be encouraged (the reader is invited to look up graphs of the

growth ofM2 andM3 for the Euro).Whenmywife and I hiked over theAlps in

1989, we sometimes had to take a bus to a larger Italian village to find a bank,

where we could then get cash by writing a Eurocheck. Eurocheck cards and

automated bank teller machines did not widely exist in Europe until later.

The second Bush administration (2001–2008) systematically encouraged

the depreciation of the Dollar even though, for the US, the gold standard

method of remedying a trade imbalance no longer works. China had pegged

the Yuan to the Dollar, guaranteeing that cheap production in China will

always win no matter whether the Dollar increases or decreases. The west

exports manufacturing eastward, increasing western unemployment and sim-

ultaneously increasing inflation via increasing oil prices due to a weak Dollar.

At the same time, the US must pay high enough interest rates to attract

foreign capital (via sale of US Treasury Bills and bonds) to finance the

enormous budget deficit. Via the burgeoning US trade deficit, China had

accumulated far more than enough Dollars to offer to buy Unocal for cash in

2005, but the free market US Congress nixed the deal for security reasons.

The story of trade with China now is similar to the story with Europe in the

1950s, but for an entirely different reason: the USA sacrifices its currency and

loses its productive capacity based on the illusion that free trade produces

a social optimum (this is still taught in economics classes).7 This is the story

of the US trade deficit. It’s as if Asia has followed the advice of Jane

Jacobs to replace imports with its own production, while the west has

followed Milton Friedman and the Chicago School of Economics (Friedman,

1975; Friedman and Friedman, 1990) to leave production to those who can

produce most cheaply. Friedman ignored the fact that the deregulation/

privatization philosophy makes an assumption of liquidity of creativity and

creation of new industries that fails in reality: inventiveness, new industry,

and new jobs cannot arise at a rate fast enough to match the loss of industry

to cheaper labor.

7 In the summer of 2007 Harley-Davidson sent representatives to Germany to try to buy a gear-cutting
machine. Of the many small companies that had made the machines in the US, none were left.
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The history of globalizing capital can therefore be seen systematically as

the history of the increase in liquidity and deregulation internationally, and of

the loss of manufacturing capacity in the west due to the freedom of powerful

corporations to abandon any home region in search of the cheapest labor, the

lowest taxes, and new markets. And unfortunately, in 1999 the Glass–Steagall

Act was repealed by Congress, and ill-advisedly signed into law by President

Clinton, allowing commercial banks to get back into stock market betting.

The assumption that deregulation and privatization lead to optimal societies is

essentially the assumption of neo-classical equilibrium with agents replaced by

nations. Only in September, 2008 did widespread fear of the consequences of

this 28-year-long program arise in Washington (www.nytimes.com/2008/09/

20/business/20politics.html). But let us take our time on the path to the

liquidity drought of September, 2008.

9.8 Deficits, the money supply, and inflation

The Dollar weakened dramatically against the Euro and Yen from 2001–

2008, while the trade imbalance and budget deficits exploded. A solution is

made much harder than in 1982 because the USA has lost too much of its

production capacity to Asia, while consuming energy at a very high rate and

importing two-thirds of its energy demands (China is similar in this respect).

The USA in 2008 consumes more than twice as much energy as either

Germany or China.

George Soros asserted in the news in January, 2008 that the status of the

Dollar as default worldwide reserve currency has ended. In order to under-

stand better how the USA arrived at a Dollar crisis in 2008, we must review

the fiscal/taxation policies under Reagan (1980–1988) and Bush (2001–2008),

and the expansion of the Dollar supply shown in Figure 9.1. First, we exhibit

some standard academic economic reasoning by reviewing and commenting

on the picture of the relation of budget deficits to increases in the money

supply provided by Sargent (1986), a rational expectations theorist.

Inflation means an increase in the price level measured by some basket of

goods and services. Fiat money, money printed by the Treasury without any

backing through private lending, is inflationary since it increases the money

supply without increasing the supply of goods and services. The money

supply is also increased by credit, which can increase inflation, since via credit

more money is funneled into consumption.

To try to quantify the ideas in a rough, elementary way, let G(t) and Tax(t)

denote government expenditures and expected tax revenues respectively. If

governments operated from taxation alone, then the budget constraint would
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be G(t) = Tax(t). This was rarely if ever the case. Governments borrowed

historically to finance wars and explorations (Columbus’s voyages to Ireland,

Iceland, and America, for example), so that bankers like the Fuggers in

Augsburg, Germany, and later the Rothschilds in London, England, grew

in importance to governments as governmental projects became larger and

more expensive, and financial markets became correspondingly more power-

ful. We follow Sargent (1986) in part in what follows.

The so-called “Ricardian regime” is defined as G(t) – Tax(t)= D(t) where

debt D(t) > 0 is privately financed, there is no new creation of money. For

example, with the budget constraint

GðtÞ � TaxðtÞ ¼ BðtÞ � Bðt� TÞð1þ rðt� TÞÞ ð9:4Þ
we can think of government debt as financed by issuing bonds B(t) paying

interest at rate r. State and city governments are forced to operate in the

Ricardian regime because they cannot “coin” money, and (since the last third

of the nineteenth century in the USA) neither can commercial banks. Clearly,

the interest rate must be high enough to attract investors to take the risk. But

a central government can inflate, can print fiat money M(t), so that

GðtÞ � TaxðtÞ ¼ MðtÞ �Mðt� TÞ þ BðtÞ � Bðt� TÞð1þ rðt� TÞÞ ð9:5Þ
hence financing the debt in part by inflation (generally adiabatically, meaning

very slow inflation in order not to disturb the system too much), and in part

by private borrowing on the open market via B(t).

Were a government to finance the debt entirely or largely by fiat money,

then that government might lose credibility. The German response to the

French invasion of the Ruhr coalfields (as demand for payment of war

reparations) in 1923 was hyperinflation, G(t) � M(t). The money was printed

as a form of passive resistance to the occupation and paid out to miners on

strike. In this case, Berlin managed to recover its financially reliable image

after the French left the Ruhr, and the hyperinflation was ended. Because of

Eurodollars, included in M3, Washington does not have the control over the

Dollar that Berlin had over the Reichsmark in 1923.

The stated ideological aim of both Reagan (1981–1988) and Bush (2001–

2008) economics, was to reduce both G(t) and Tax(t) simultaneously. In both

regimes, in contrast to the promised policy, G(t) increased significantly while

tax rates were reduced. An implicit liquidity assumption is made in (9.5),

which is only a back-of-the-envelope equation that neglects dynamics: one

would expect that, with Tax(t) nonincreasing, the government would need to

increase interest rates r in B(t) in order to attract investors to finance govern-

ment debt G – Tax. In January, 2008, due to fear of a recession, and on the
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heels of the subprime mortgage fiasco, the Bush administration proposed

reducing both taxes and interest rates simultaneously, with the Dollar already

having sunk to a new low of about $1.50/Euro, and oil correspondingly

having hit nearly $100/barrel. With too few private investors due to too small

an interest rate r (compared with the Euro, for example), M(t) would need to

be increased via fiat to take up the slack, which would only cause Washington

to lose more credibility by decreasing the value of the massive number of

Dollars held in Beijing and Moscow, for example. The following argument

is a monetarist view (Sargent and Wallace, 1986) of Reaganomics.

In the Reagan and Bush regimes, G(t) increased dramatically while tax

rates were systematically and considerably reduced. One possibility was that

M(t) could have increased; fiat money could have been printed to pay for the

deficit. But this policy would have angered the 10% who disproportionately

hold most of the wealth and would have caused foreigners who finance the

budget deficit to dump US bonds and Treasury Bills. In an attempt to explain

the contradictory policy of increasing G(t) while decreasing Tax(t), Wallace

(Sargent, 1986) suggested an analogy with the game of chicken. In chicken,

two cars drive toward each other and at the last second one must chicken out,

otherwise both drivers die. The one who doesn’t chicken out “wins.” This is a

Nash equilibrium game where self-interest represents the winning strategy, as

in all Nash equilibria. Wallace compared the monetary authority (controlling

M(t)) and fiscal authority (controlling G(t)) with the two drivers. Wallace

suggests that the ideological aim of Reagan was to force downsizing govern-

ment by reducing Tax(t), to force the fiscal authority to reduce G(t). This

argument is exceedingly naive because it ignores the obvious alternative: to

finance the debt privately, borrowing in finance markets, which is exactly

what happened. In other words, the chicken game argument was concocted

by rational expectations theorists in agreement with the illusion that Reaga-

nomics was supposed to have “forced” the elimination of government

programs by eliminating their funding source (taxes). Indeed, the goal of

neo-conservatives is to privatize everything, including the schools and

(already partly accomplished) the army. In the neo-conservative (neo-con)

philosophy, fathered by William Kristol but grandfathered by William

F. Buckley, taxation and regulations for “the public good” are oversimplified

as socialistic evils that must be eliminated come hell or high water.

Were the budget constraint (9.5) the whole story, there should have been

no significant inflation, because the US debt has apparently been largely

privately financed, mainly by selling US government debt to Japan and China

in the most recent years. Why does the US currently experience an inflation

comparable to that of the 1970s? The cost of oil reflects the weakness of the
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Dollar, which reflects agents’ lack of trust in Washington’s economic and

financial policies, including fear over the size of both the budget and trade

deficits. On top of that, interest rates have been reduced since 2001 for fear of

a recession, making the US debt (Treasury Bills and bonds) less attractive

for foreign money, thereby weakening the Dollar further. Oil cost increases

also drive up other costs since, for example, agriculture is now centralized

(family farms are a “set of measure zero”) so that food must be shipped

over long distances. With reduced manufacturing capacity, US consumers

must be stimulated to spend in order to avoid high unemployment in the

service and housing sectors. Hence the housing boom, which was fueled by

low interest rates and exceedingly easy credit (but with sliding mortgage

rates). Much of the money from which the housing credit was created came

from foreign banks, which had encouraged their clients to invest in the US

housing boom (this is why the European Central Bank also provided liquidity

in 2007 and 2008).

The simple budget constraint (9.5) considers only fiat money created to pay

for deficits, money simply printed without taxation or borrowing to cover the

amount, and ignores the creation of money via credit. That budget constraint

is too simple to describe the inflation of the US Dollar 2001–2008: the money

supply in (9.5) represents only an insignificant component of money creation;

it does not include M1 and M2, where the credit created is regulated by the

Fed, nor does it contain M3.

The component M3 includes so-called “Eurodollars,” Dollar deposits and

credit created from Dollar deposits outside the US and therefore beyond the

control of the Fed. Those Dollars, like M0–M2, are used to create new money

via a multiplier effect, but the multiplier is decided by the central bank of

the nation where the Eurodollars are deposited. This reflects the role of the

Dollar as the international reserve currency. In 2006, the US Federal Reserve

announced that it would no longer provide information on M3, but a few

private organizations listed on the internet continue that service for the

general public (http://seekingalpha.com/article/21027-the-return-of-m3-money-

supply-reporting).

Although the Dollar has fallen due to low interest rates and lack of

confidence in US governmental policy (“value,” pc, fell by over 60% against

the Euro from 2000 to 2008), it seems doubtful that another single currency

like the Euro or Yen will replace the Dollar as worldwide reserve currency in

the future. The reason is simple: if, for example, the Euro were to replace

the Dollar, then the European Central Bank would no longer control that

currency entirely, which (like the Dollar) would necessarily grow significantly

in quantity (via credit) in the form of M3 in order to finance worldwide
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economic expansion and consumption. Euros accumulate in Russia for the

same reason that Dollars accumulated in OPEC countries in the 1970s: oil

and gas purchases in Russia by Europe. In December, 2007 the Euro M3 was

8.7 trillion Euros and, given the exchange rate, roughly matched the Dollar

M3 of about 13 trillion Dollars. However, whereas the Euro M2 at 7 trillion

Euros accounts for most of the M3, the Dollar M3 is nearly 50% larger than

the Dollar M2. So “Euroeuro” reserves would have to increase by several

trillion in order to replace the Dollar as international reserve currency at

this stage, allowing M3 to become of the same order of magnitude as M2.

So far, for the Euro, the M3/M2 ratio has increased in 2007 only slightly

above its 110% 2005 ratio. With the second largest Dollar reserves in the

world, the Russians started switching from the Dollar to the Euro as reserve

currency in 2004. That the Euro M3 has not exploded means that Europe

(primarily Germany) has approximately held its own in the export game,

while the US has faltered.

Europeans who may take pride in the idea of OPEC, Russia, and China

swapping Dollars for Euros have not thought of the possible implications for

themselves of an increase in their currency by the creation of trillions of Euros

via Euroeuro loans in banks outside of Europe. But, then, most voters do not

possess the knowledge necessary to form opinions on the basis of severely

idealized notion of “rational expectations” (Chapter 10). Most likely, the role

of providing worldwide credit will have to be shared among several currencies

in the future, but this would require some sort of agreement to prevent the

expansion in M3 created since 1971 for Dollars. That is, agreement on and

enforcement of new and more restrictive international trade and monetary

regulations will be required in order to reduce both international and local

financial instability.

The discussion above is terribly incomplete. We’ve written as if money

creation were due to fractional reserve banking alone, focusing on M2 and

M3 which include regulated forms of money creation. We’ve neglected the

most significant contribution of financial deregulation to the world: the role

of derivatives in “shadow banking” (Gross, 2007a).

9.9 Derivatives and shadow banking

The Dollar first reached crisis stage c. 1961 when Eurodollars were at least on

the order of magnitude of the US gold supply. A new crisis stage is suggested

because M3 is roughly twice M2, and the USA has no way under deregulation

rules to plug that dike. We can speculate that the next depression could occur

when derivatives bets are on the order of magnitude of M2. When that
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occurs, then there will be no way to provide liquidity other than by degrading

the currency. Actually, the crisis conditions were already met in 2007. But, we

could not predict that the crisis would explode exactly in September, 2008.

Recall that crisis conditions were met in 1961, but band aids “worked” until

1971 when the Dollar had to be cut loose from gold. Now, there is no gold to

cut loose from, there is only the possibility of money creation either by

borrowing, or by fiat, in order to provide liquidity.

The current Dollar credit crisis began in earnest in 2007, and many Dollars

and Euros have been created in order to provide the liquidity needed to avoid

bank collapses. In the subprime mortgage crash, which surfaced in August,

2007, subprime mortgages were about a trillion Dollars, and total mortgages

were about 9 trillion Dollars. How could total mortgages in Dollars be on the

order of magnitude of M3? Apparently, excessive amounts of money as credit

are being created that do not appear on the balance sheets of any bank. The

money is created by derivatives called CMOs. Deloitte (2007) states that

worldwide, central banks provided half a trillion Dollars in liquidity in

August, 2007, and that was only the beginning of the crisis. In 2008, another

100 billion was provided by the US Government to bankrupt AIG, and a

consortium of European nations injected another 200 billion in liquidity to

prevent further bank collapses due to European bets placed in the American

housing market. The subprime mortgage debt is not counted in either M2 or

M3 because of the new and powerful role played in international finance

by “shadow banking.” The mortgages may have been created originally by

banks, but were then immediately sold to third-party investors or repackaged

into structured products and then sold. By this trick they don’t appear on the

balance sheet of any bank. The creation of unregulated CMOs and other

derivatives faces us squarely with the old problem of the nineteenth century

before banks were prohibited from printing their own local currencies. The

US Federal Reserve Bank, under Alan Greenspan, systematically adhered

to laissez faire policies and failed to consider the problem of regulating

derivatives markets. Complexity enters because the “structured instruments”

created are not understood (Gross, 2007b). Complexity also enters because,

while we understand normal liquid FX markets pretty well, we cannot always

foresee when a liquidity problem will arise in one market and cause liquidity

problems in other markets. But we can always expect that when the bets are

on the order of magnitude of the money supply, a crisis is at hand. Clearly,

derivatives in particular and finance markets in general should be regulated to

prohibit bets of that order of magnitude. The question is: how? With modern

technology and quants, hedge funds systematically create ways to escape

governmental regulation. International cooperation of governments will be
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required to prevent brokerage operations from escaping outside national

boundaries as a means of avoiding regulating finance and controlling the

money supply. Otherwise, as stated earlier, we’re in the position of the

nineteenth century when commercial banks could print their own paper

money. True to the cause of their extremist anti-regulation philosophy, the

“Austrian School of Economics” (which has nothing to do with Austria

today) is against central bank control of a currency. That is, any instability

imaginable is preferred over any reasonable degree of control (but only in

theory, of course).

The credit bubble problem is actually far worse than has been described

above in the discussion of CMOs. I therefore end with some information from

Soros’s (2008) book. We’ve mentioned that M2 is about half M3, which was

about $13 trillion in 2007. This includes all “on balance sheet” credit created

in Dollars in the world. For reference, US household wealth is about $43

trillion, the capitalization of the US stock markets is about $19 trillion, and

the US treasuries market is roughly $5 trillion. Soros (2008) discusses a host

of derivatives, all “off balance sheet” including collateralized debt obligations

(CDOs), CDO2s, CDO3s, and credit default swap (CDS) contracts. The

estimated nominal value of CDS contracts outstanding is about $43 trillion.

According to Soros (2008) early warnings were given: Greenspan chose to

ignore warnings given privately before 2000 about adjustable rate and sub-

prime mortgages, Kindleberger warned in 2002 that there was a housing

bubble (no mathematical model was needed or relied on), and Volcker and

others voiced warnings. Soros (2008) states that hedge funds who tried to sell

housing short before the bubble popped suffered bad enough margin calls

that they quit betting against the bubble, but after the AIG/Lehman Brothers

liquidity crisis of September, 2008, a continuation of the subprime mortgage

fiasco, shorting bank stocks was temporarily banned (the first sign of finance

market regulation to come).

Standard economists, bureaucrats, and politicians have sold the idea of

deregulation as if it would achieve stability. There was no ground whatsoever

for that belief other than the mathematical delusions created by too-respected

economics theorists like Lucas and his predecessors, based on the empirically

untenable assumptions of equilibrium and optimizing behavior. Osborne

(1977) knew better. Why did rational expectations grow so in influence?

Because it coincided perfectly with the dominant illusion (born 1981, died

2008) that deregulation would solve all economic problems.

Bubbles have been discussed in the literature (MacKay (1980) and Kindle-

berger (1996)) but since 1973 there’s a new element that was not present

earlier: the reliance on mathematical models in trading strategies. The basic
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theory of a single option based on a stock is simple. But some derivatives are

options on other complicated options, and mathematizing that is nontrivial.

Predictions based on models of derivatives linked together are not reliable.

The empirical data needed to falsify such models is simply not available.

9.10 Theory of value under instability

Hume’s (1752) price-specie flow mechanism described a tendency toward

equilibrium in the marketplace and in FX transactions on the gold standard.

If a country imported too much, then the currency piled up in the hands of

foreigners, reducing the money in circulation inside the economically weaker

country. Prices fell, manufacturing picked up as foreigners bought exports,

and the local currency began to increase inside the financially weaker country

as prices rose. In that era, factories were not exported outside the US,

workers were simply laid off temporarily and then rehired as production

picked up again (as in the coal mines and auto factories of the 1950s and

1960s). This was a regular feature of American factory life until c. 1970.

In the absence of a gold standard (which ties money to a particular physical

unit, namely, mass), what is a currency worth? What determines its “value”?

The theory of value in nonstationary markets is as follows: a currency has no

inherent value, its value is whatever price FX traders believe the currency to

be worth. What determines the traders’ beliefs? If a country produces high-

quality and attractive products cheaply enough, then exports will increase.

Foreigners will want that country’s currency in order to buy the exports. If,

on the other hand, a country imports more than it exports then the currency

piles up (as Eurodollars, for example) outside the country. But exports do not

become cheaper, and the currency correspondingly does not rebound by this

scheme because too much production has been moved outside the USA.

Hume’s equilibrium theory of value no longer applies, the Dollar simply falls

persistently in value against stronger currencies as imports are relied on

irreplaceably. Exports can’t stem the flood of Dollars outside the USA unless

the country produces and sells enough internationally to match the flood of

imports. The factories that would have produced the exports no longer exist

inside the USA, and cannot be rebuilt without enormous time and investment

(this is a like a liquidity drought). Budget deficits magnify the instability of

a currency under these circumstances: when a government spends too much

and taxes too little, then the money may be borrowed from the same foreign-

ers who have accumulated the currency due to the export-import imbalance.

This weakens the currency further in the minds of speculators, who easily

sense the instability.
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Like 1932 and 1981, the financial crash of 2007–2008 is a turning point in

ideas about political economy. After seeing the free market idea explode into

absurdity in September, 2008, many deregulation enthusiasts finally began to

see that markets require regulation if we’re to avoid global liquidity crises.

In Germany, 480 billion Euros was guaranteed by the government to prevent

bank collapses. In the US, more than a trillion dollars has been thrown at

the financial system, with partial government ownership of banks as a conse-

quence. It’s exceedingly shortsighted, as former Federal Reserve Chairman

Greenspan does, to blame the financial collapse on greed and to continue to

argue that derivatives trading should not be restricted. Here’s my last

analogy. Deregulators are typically strong believers in “law and order.”

In the case of street crime and ordinary burglary, they believe that strong

laws with stiff penalties can effectively deter armed robbery and other street

crime. It’s inconsistent to fail to apply the same idea to finance markets and

trading, to believe that the humans in Wall Street markets are more moral

than the humans on the Main Street markets and in the back alleys. Stated

otherwise, mathematical theorizing about market preferences/utilities alone

idealizes human behavior in a way that ignores avarice, and therefore cannot

be helpful.

9.11 How may regulations change the market?

In September, 2008 the USA began again to regulate financial markets. Short

selling of financial stocks was (at least temporarily) outlawed, and the failed

mortgage betting debt of finance houses may be bought by the US govern-

ment. The total of all bailouts is expected to amount to more than a trillion

Dollars. We can compare this with the annual budget deficit of half a trillion

with interest payments. How finance markets will be affected by new regula-

tions depends on how the bailouts are financed, and whether regulations

effective enough to prevent bets on the order of magnitude of the money

supply are constructed. So far as financing bailouts, there are three alterna-

tives, and combinations thereof: (i) to raise taxes, (ii) to borrow in inter-

national finance markets, or (iii) to print fiat money. Unless taxes are raised

and trade tariffs are imposed to rebuild industry, we should expect a much

greater inflation than has been experienced to date.

Market regulations may well reduce financial trading, but statistical equi-

librium will not emerge. If leveraged derivatives trading were outlawed

then liquidity droughts should become much less likely. We won’t know for

at least five to six years after the institution of regulations how the market

dynamics will be changed (see Chapter 7 for the limitations on discovering
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dynamics from sparse data). We can expect that volatile Martingale dynamics

will persist, that markets will remain nonstationary/unstable (because there

can be no return to anything equivalent to a gold standard). Volatility would

be reduced significantly by a return to something like the Bretton Woods

Agreement, but that is made difficult by the inherent instability of money and

governmental economic policies.

The traditional monetarist/rational expectations viewpoint on money

supply growth is discussed in the next section. Rational expectations theo-

rizing was in its heyday in the 1980s and likely to be made defunct by the

2007–08 financial crisis, if not by the analysis presented in this book. Predict-

ing realistically and usefully how fast the money supply should grow is still

unsolved, and the entire discussion is made useless so long as money creation

via derivatives is left unregulated.
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10

Macroeconomics and econometrics

Regression models vs empirically based modeling

10.1 Introduction

The level of business activity depends strongly on the ease of obtaining money

as credit, and the level of money should in principle be determined by central

banks.1 However, central banks rely notoriously on models, and the eco-

nomic models used have not been empirically deduced from observed time

series. Rather, the models have been postulated, or “validated,” on the basis

of regression analysis, while relying on an assumption of stationarity of

economic variables. In later, more sophisticated treatments, the method of

cointegration, which assumes stationary increments and also ergodicity, is

used. The assumptions made by economists about the noise in the regression

models cannot be justified empirically, and the models yield spurious predic-

tions of stability.

Keynes stated that economic theory is used for creating and maintaining

economic policy and models have been invented that support one brand of

economic policy or another. Keynesian economics encouraged government

intervention to try to fine-tune the economy from the Great Depression until

at least the early 1970s. The emergence of rational expectations in the 1960s

and beyond provided theoretical support for laissez faire policies (Bell and

Kristol, 1981). Deregulation as policy has dominated in the USA and UK

since at least 1981, and has spread worldwide on the advice of economists

based on rational expectations theory. The aim here is to expose the holes in

the rational expectations claims, and to see that that model does not provide

any empirical basis for adopting laissez faire as policy. Rational expectations

exemplifies what postmodernists would label as “socially constructed

theory.”

1 This viewpoint ignores derivatives and off-balance-sheet money creation.
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Keynesian ideas of governmental intervention became popular during the

liquidity drought of the 1930s when deflation and high unemployment were

the main economic problems. Fiscal policies were instituted both in Germany

and the USA to employ jobless people. Money was in short supply, and those

who had money didn’t spend enough to alleviate the high unemployment.

The Keynesian advice made sense: when money is in too short supply,

consumption can be stimulated either via taxation and redistribution, or by

printing or borrowing money and redistributing it to those who need it (neo-

classical economics ignores “needs” in favor of “preferences”). Keynesian

macroeconomics was geared to specific historic conditions and was unable to

deal successfully with the 1970s stagflation (inflation combined with

unemployment). We understand why inflation in that era was high: because

of the large number of Eurodollars relative to gold, the Dollar was deregu-

lated from the gold standard in 1971. Runaway inflation inside the USA was

the result. In that era, monetarist policy based on rational expectations theory

emerged and dominated until October, 2008.

Rational expectations was created in an era when shadow banking and the

flood of derivatives did not exist. Rational expectations can properly treat

neither money nor derivatives, but the underlying economic philosophy of

“hands-off business” promoted the unregulated explosion of credit via

derivatives that led to the bust of 2007–08. A mathematical presentation of

rational expectations theory, from its neo-classical foundations through

regression models, can be found in Sargent (1987).

In order to go to the source of the confusion reigning in economic theory,

we begin with Muth’s original model of rational expectations (1961, 1982).

We will expose the inconsistency in Muth’s derivation. The rational expect-

ations model’s policy predictions are discussed in Section 10.5. In Section 10.6

a more realistic model of macroeconomic behavior is presented. There, we

replace the untenable assumption of stationary economic variables by non-

stationary ones. Throughout, we will use models continuous in price and time

for mathematical convenience. Our viewpoint could be reformulated to

describe more realistic discrete models, but too much work would be required

for too little payoff. Now and then, however, we will pay attention to the fact

that prices are stated at most to three decimal places.

The reader should understand that regression analysis in statistics origin-

ally was a method whereby theoretical predictions could be compared with

empirical measurements. The theory was either assumed to be correct (e.g.

describing a planetary orbit), or else one wanted to test a calculation, and the

difference between theory and measurement was attributed to “scatter” due

to finite precision. Although the scatter is sometimes called “error,” this is not
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theoretically correct: Tschebychev’s Theorem predicts that scatter must be

present because we cannot carry out infinitely many reruns of an experiment

of observation. The so-called “error” was therefore assumed, with good

reason, to be stationary. Here’s our first point: in econometrics, the regression

model becomes the theory. The assumption that the noise in that case is

stationary is untenable. We will first follow the economists’ standard argu-

ments, and then point out exactly where and why stationarity assumptions

must be abandoned if we’re to present a realistic picture of macroeconomic

variables. This path will lead us all the way through cointegration and

ARCH/GARCH models to the frontiers of modern econometrics.

10.2 Muth’s rational expectations

We rely on the history of neo-classical economic theory in order to under-

stand the unnecessary and wrong steps in Muth’s original argument. Muth

began (i) by deriving time-dependent prices from an “equilibrium” assump-

tion, and then (ii) replaced subjective expectations of a representative agent

whose ensemble average expectations agree with those calculated for the

stochastic process under consideration. One is supposed to take point (i) for

granted, and then appreciate point (ii). Here’s the necessary historic

background.

Arrow and Debreu, whose ideas of implicitly stable equilibrium dominated

economic theory in Muth’s time and beyond (Geanakoplos, 1987), had

created a theory where uncertainty/probability was thought to have been

banished (McCann, 1994). That banishment was based on the noncomputa-

ble and humanly impossible requirement of perfect knowledge and infinite

foresight on the part of all agents (see Chapter 2 in this book). The uncertain

reality of market statistics was disallowed in favor of absolute certainty in the

neo-classical model. Probability was reduced to subjective choices among

fixed and well-defined alternatives/preferences. It was necessary to pay lip

service to those ideas in order to be published. Even today, one generally

cannot publish criticism of neo-classical ideas in mainstream economics

journals. This is the background needed to understand Muth’s artificial-

sounding argument (point (ii) above) to replace subjective probabilities by

expectations based on the theory of stochastic processes, where he “derives”

time-varying prices from an invalid market-clearing assumption (point (i)

above).

In the rational expectations model, broad deviation from the Arrow–

Debreu program (Geanakoplos, 1987) is avoided by limiting market uncer-

tainty to stationary processes. Stationary processes are absolutely necessary if

216 Macroeconomics and econometrics



there’s to be any hope at all of maintaining agreement with neo-classical

predictions of relations between variables on the average in regression

analysis.

Muth’s original model of rational expectations is based on a mathematical

self-inconsistency committed originally by Ezekiel, but, as strange as it seems,

still defended today by neo-classical economists. Consider a market with one

item. Assume that there exists an equilibrium price �p. Let pðtÞ ¼ �pþ dp. In a

deterministic market the equilibrium price is obtained by solving Dð�pÞ ¼ Sð�pÞ
where Dð�pÞ is demand and Sð�pÞ is supply. Following Muth, assume instead

that demand/consumption and supply are given by

Dðdp; tÞ ¼ bdpðtÞ
Sðdp; tÞ ¼ g dph isubjþuðtÞ ð10:1Þ

where dph isubj is supposed to be agents’ subjective estimate of future price

change made on the basis of past knowledge, and u(t) is random noise to be

specified. The noise represents the uncertainty in the market and is the source

of liquidity. Setting demand equal to supply yields

dpðtÞ ¼ g
b

dph isubjþ
1

b
uðtÞ ð10:2Þ

From an assumption of equilibrium is derived a non-time-translationally invari-

ant price. This is a contradiction, but before correcting the mistake let’s

continue with Muth’s so-called derivation of rational expectations.

The process u(t) is assumed stationary, so the price process p(t) is also

stationary with time-invariant one-point density f1(p). Fluctuations about

equilibrium are described by a time-translationally invariant two-point dens-

ity f2 (p ,t þ T; p0 ,t) ¼ f2 (p ,T ;p0 ,0) and by higher-order translationally invariant

densities. Averaging (10.2) using the equilibrium density f1(p) generated by

time series obeying (10.2) yields the ensemble average prediction

dpðtÞh i ¼ g
b

dph isubj ð10:3Þ

“Rational expectations” amounts to assuming that agents’ subjective and

ensemble averages agree,

dpðtÞh i ¼ dph isubj ð10:4Þ
In a stationary model this means one of two things. Either (i) g ¼ b, or (ii)
dpðtÞh i ¼ 0 so that pðtÞh i ¼ �p. Since dp ¼ pðtÞ � �p, in either case the prediction

of Muth’s rational expectations is simply that

pðtÞh i ¼ �p ð10:5Þ
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the expected price is the equilibrium price. With an ergodic stationary

process, rational expectations claims that the “rationally-subjectively

expected price” defined as ensemble average is the same as the equilibrium

price computed from the price history of the model. This means that past

history can be used to determine future expectations. That the model, in the

end, represents a stationary hypothetical market is correct. But the claim

that market clearing holds for that hypothetical stationary model is wrong

because point (i) above is inconsistent with the statistical ensemble predic-

tions of the stationary market model. We know from Chapter 4 that

hypothetical stationary markets would clear only on the average, and that

the equilibrium price is agreed on only by a small fraction of all agents.

Stated otherwise, hypothetical stationary markets do not clear due to

fluctuations.

If we relax the stationarity assumption, as real markets demand, then we

can see that “rational expectations” is neither a theory nor a model. Rational

expectations should simply mean that the ensemble averages of a chosen

model define our expectations about the future, if we extrapolate and assume

that the future will resemble the past statistically. From a physicist’s perspec-

tive, the notion of subjective probabilities was unnecessary from the start.

Subjective probabilities may be of interest in agent-based modeling, where the

modeling should be constrained by macroeconomic facts, if one can get a

clear picture of exactly what are macroeconomic facts from the standpoint of

statistical ensembles.

From a practical standpoint, standard rational expectations assumes that

the “representative agent” should form expectations based on his or her best

guess about the future, updating his or her knowledge up to the present. But

there can be no surprisingly new knowledge in a stationary market, because

recurrence ensures us that the future is statistically a repetition of the past

(Kac (1949) showed that all discrete stationary processes are recurrent, even

with no assumption of ergodicity). The words about agents updating their

knowledge in order better to anticipate the future actually acknowledge the

fact that real markets are nonstationary, but those words are relatively empty

in the context of hypothetical stationary models of economic variables. The

only “updating” that can be done is to place a buy order if prices fall far

enough below value, and a sell order when the reverse occurs, profitable

fluctuations being guaranteed by recurrence. Presumably, by using “the best

forecast,” the rational expectations advocates likely meant that the represen-

tative agent should optimize one or another ad hoc expected utility. But

traders and financial engineers do not waste time on utility-based models

when using or creating synthetic options.
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The advice to use the best possible forecast in a real, nonstationary world is

imprecise and ill-defined. What does a forecast mean in that case? How

should agents know how to distinguish knowledge from noise, and to arrive

at “the best forecast of the future”? A “best forecast of the future” is not

necessarily the same as using a historic time average to predict the future. The

latter does not take new knowledge into account; it extrapolates by using the

assumption that the future resembles the past, which is what’s generally

assumed by insurance companies and financial engineers for real, nonsta-

tionary processes.

As Arrow and Debreu may have anticipated in their adherence to subject-

ive probabilities on sets of fixed alternatives, the neo-classical picture begins

to dissolve when faced with uncertainty. The assumptions of maximizing one

or another expected utility on the one hand, and statistical equilibrium on the

other, may be retained by ivory tower theorists, but all features of that

worldview disintegrate in the face of market reality. When Muth assumed

that supply and demand match in real time by using (10.1) to obtain (10.2), he

created a mathematical contradiction. When supply and demand match for

all times then markets clear, and 100% of all traders agree on exactly the

same price. No trading takes place in the neo-classical world until the equi-

librium price is established by the Walras auctioneer, or by the central

authority, neither of which is computable. In an uncertain but still stationary

world, markets do not and cannot clear. Even hypothetical stationary markets

cannot clear. In the neo-classical mindset, trading should not take place at all

in a rational expectations model because even stationary fluctuating prices

are out of equilibrium.

10.3 Rational expectations in stationary markets

The assumed basis for Muth’s model, market clearing with D ¼ S, is wrong

because time-translational invariance (equilibrium) does not tolerate a time-

varying price. We can formulate the model correctly, first for hypothetical

stationary markets, and later for nonstationary ones. Demand vs supply

means that
dp

dt
¼ Dðp; tÞ � Sðp; tÞ ð10:6Þ

so that market clearing is possible if and only if the price is constant and

solves D(p) ¼ S(p). This determines the equilibrium price �p. In a stochastic

model, market clearing cannot occur because of uncertainty. A stochastic

model with an approach to equilibrium is given by the OU model

dp ¼ �rpdtþ s1dB ð10:7Þ
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with r > 0 where B (t ) is the Wiener process and u(t ) ¼ d B /dt is white noise.

Here, the right-hand side of (10.7) represents excess demand D – S in an

uncertain market. At best, in statistical equilibrium (at long enough times rt

>> 1) we can obtain vanishing of excess demand on the average,

dp

dt

� 
¼ 0 ð10:8Þ

That is, in an uncertain market, the market can never clear in detail but clears

on the average. One way to remedy the Ezekiel–Muth error of deriving a

time-varying price from market clearing is, instead of (10.2), to write

dp

dt
¼ Dðp; tÞ � Sðp; tÞ ¼ bpðtÞ � g pðtÞh i þ uðtÞ ð10:9Þ

where rational expectations requires g ¼ b. Statistical equilibrium exists if and

only if b¼ g < 0, reflecting negative demand. If we interpret “ pðtÞh i” in (10.9)
not as the average price at time t but rather as the equilibrium price (the

average price when bt >> 1), then the model is, to within a shift of variable,

the OU model (10.7). But negative demand is not of economic interest.

Therefore we must find a better way to derive Muth’s stationary model.

Here’s the mathematically correct solution. Assume a market in statistical

equilibrium, and assume we don’t care how it got there. That is, we do not

prescribe a model like (10.9) of how equilibrium is reached from a non-

equilibrium state (this is analogous to ignoring the role of the Walras auc-

tioneer or central authority in neo-classical economics). Equilibrium values

are constant averages ph i, s2 ¼ p2
� �� ph i2, etc., calculated from a stationary

price density f1(p), pnh i ¼ Ð1
0

dppnf1ðpÞ, and the corresponding stationary

stochastic process

pðtÞ ¼ ph i þ uðtÞ ð10:10Þ
with ph i ¼ �p ¼ Ð

dppf1ðpÞ, describes fluctuations about statistical equilibrium.

A simple example of uncorrelated stationary noise is what economists and

statisticians label “white noise,” a Gaussian process where ( uðtÞuðsÞh i ¼ 0 if s

6¼ t) with constant variance u2ðtÞ� � ¼ s2
1, but “u(t)” is identified as an incre-

ment of a process.

The average price can be identified as time-invariant “value.” In contrast

with the neo-classical barter model where 100% of all agents agree on “value”

and have infinite foresight, only a small fraction of our hypothetical agents

agree on “value” because of market uncertainty. If the density f1(p) is

approximately symmetric, then the average and most probable prices coincide

and we can take the most probable price pc, the consensus price, as “value.”
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The most probable price pc locates the peak of f1(p). In a stationary market,

only the fraction of agents described by the small region near the peak of the

distribution agree on “value,” but overvalued and undervalued are defined in

a precise, time-invariant way. Statistical certainty about the future is restored

(for discrete prices) by recurrence, so that derivatives and hedging are

unnecessary.

Stationary regression models with lag times can now be considered.

Assuming a stationary process u(t), assume, for example, that

pðtÞh icond¼ lpðt� TÞ ð10:11Þ
where we take the expected price at time t to be proportional to the last

observed price p (t – T ) one period earlier. The assumption (10.11) yields the

stochastic difference equation

pðtÞ ¼ lpðt� TÞ þ uðtÞ ð10:12Þ
where the conditional expectation (10.11) is computed using the transition

density p2ðp; T p0j ; 0Þ for the stationary price process. With noise and price

assumed uncorrelated, uðtþ TÞuðtÞh i ¼ 0, pðtÞuðtÞh i ¼ 0, we obtain the

unconditioned average

pðtÞpðt� TÞh i ¼ l p2ðt� TÞ� � ð10:13Þ
For a stationary process the pair correlations can depend only on time lag T,

not on the observation time t, so that p(t) is stationary only if the variance is

constant, p2ðtÞ� � ¼ constant, yielding pair correlations (10.13) that also are

constant 6¼ 0 and thus violate the EMH. With u2ðtÞ� � ¼ s2
1 constant, the

constant variance s2 ¼ p2ðtÞ� �� pðtÞh i2 satisfies

s2 ¼ s2
1

1� l2
: ð10:14Þ

We obtain a stationary model for 0 � l < 1 with a singularity at l ¼ 1. That

singularity arises from the fact that a Martingale condition

pðtÞh icond¼ pðt� TÞ; ð10:15Þ
the assumption of an efficient market, cannot be represented by a stationary

market. Economists who believe that stationary markets are efficient simply

have not considered the pair correlations.

In standard rational expectations modeling it’s largely irrelevant which

particular distribution is used to model the noise; the important assumption

above is that noise and prices are stationary. Rational expectations, from

our standpoint, does not require optimizing behavior on the part of the
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agents, although the two principles of equilibrium and optimization are

regarded as reflecting the standard ideology (Lucas, 1972). Optimizing behav-

ior does not produce market efficiency; market efficiency (the Martingale

condition) implies market instability.

10.4 Toy models of monetary policy

We reiterate our viewpoint on regression analysis, or curve fitting. Physicists

also use regression analysis. For example, if we know or expect that the data

are described by a specific theory, then we may make a regression analysis in

order to try to fit empirical data. Compared with theory, data will always

show scatter due to finite precision even if there would be no measurement

error (e.g., due to a finite-sized probe in a turbulent flow). For example, if we

know that the measured variable y should be a parabola, then we would write

y ¼ a þ bx þ cx2 þ e where e is assumed to describe the scatter and can be

taken to be stationary. In economics, we have no idea a priori what the model

should be; we have to discover it from the data. In econometrics, a regression

analysis with stationary “error” (market noise) becomes the model. This is

quite different than starting with a known, correct theory as in physics, or

with a model deduced empirically from the data as we’ve exhibited in Chapter

7, where a Martingale was established via lack of increment correlations, so

that the theoretical prediction (7.33) was established. In other words, regres-

sion analysis and theory are confused together in economics/econometrics,

and we must separate one from the other in order to get any idea what’s going

on. The most modern and most advanced development in regression analysis

in econometrics is called “cointegration,” which is also described below.

We’ve pointed out in the last section that there is triviality in discussing

“the best forecast” in a hypothetical stationary market. We must ignore that

fact for now in order to try to understand the basis for Lucas’s policy

neutrality advice. Here, we will follow the readable paper by Sargent and

Wallace (1976), and the book by McCallum (1989).

Let m(t) denote, for example, the logarithm of the money supply and let y(t)

denote a variable that onewants to forecast or control. If y(t) is an interest rate, a

return, then y(t) is also the log of a “price.” We first assume that all processes

under consideration are stationary.Keynesians weremotivated to invent econo-

metric models in order to try to defend their policy advice from a scientific

standpoint. The monetarists rightfully criticized those models, which did not

work, and went on to replace them by models reflecting their own ideology.

In the Keynesian era, the laissez faire monetarist Milton Friedman pro-

posed the notion of increasing the money supply at a fixed rate of x% per
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year. Keynesians could argue as follows that Friedman’s rule is not optimal

for setting policy. Let y(t) denote a variable that the central bank wants to

control, and assume that

yðtÞ ¼ aþ lyðt� TÞ þ bmðtÞ þ uðtÞ ð10:16Þ
That is, rational expectations assumes simply that processes are linearly

related (as in standard regression analysis) and that all processes considered

are stationary. In particular, u(t) is assumed stationary with no pair correl-

ations, and is assumed uncorrelated with y(t). With the idea in mind of (i)

setting average yðtÞh i equal to a target y*, and (ii) minimizing the variance

about that target, assume a linear feedback rule

mðtÞ ¼ g0 þ g1yðt� TÞ ð10:17Þ
This yields

yðtÞ ¼ Aþ l0yðt� TÞ þ uðtÞ ð10:18Þ
where A ¼ aþ bg0 and l0 ¼ lþ bg1. We then obtain

yðtÞh i ¼ A

1� l0
ð10:19Þ

and

y2ðtÞ� � ¼ A2 þ s2
1

1� ðl0Þ2 ð10:20Þ

Setting the expected value equal to the target value, yðtÞh i ¼ y� fixes g0,

yðtÞ ¼ y� þ uðtÞ ð10:21Þ

This guarantees that the fluctuations dy ¼ y(t) – y* are uncorrelated,

dyðtþ TÞdyðtÞh i ¼ 0.

We can minimize the variance s2 ¼ y2ðtÞ� �� yðtÞh i2,

s2 ¼ s2
1

1� ðl0Þ2 ð10:22Þ

by taking l0 ¼ 0, or g1 ¼ �l=b. Since Friedman’s feedback rule is given by

g1 ¼ 0, that rule is suboptimal in the sense that the variance about the target is

not minimized. This provides an example of what is meant by producing an

optimal forecast in a stationary world. But there’s a serious contradiction

with reality that we must eventually face: in a stationary world nothing can

grow, including the money supply. Before generalizing to nonstationary

variables we exhibit the class of models behind Lucas’s laissez faire policy

advice on the basis of rational expectations’s stationary world.
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10.5 The monetarist argument against government intervention

Lucas’s aim was apparently twofold: (i) to poke holes in Keynesian policy

analysis, and (ii) to see in his critique the generalization to deduce laissez faire

as the logical consequence, that government intervention is by mathematical

necessity ineffective. The first aim is admirable and useful; a scientist should

always try to find the weakness in every theory. Indeed, Lucas succeeded

there. His second goal was to derive laissez faire policy advice as if it would be

a mathematical necessity. The reason why the academic economics profession

honors Lucas is that, in contrast with Muth who reasoned minimally, Lucas

brought in the full, cumbersome apparatus of neo-classical optimizing to

“explain” the rational expectations model.

Suppose that instead of (10.16) and (10.17) we would be faced with the

processes

yðtÞ ¼ &0 þ &1ðmðtÞ � mðtÞh icondÞ þ &2yðt� TÞ þ uðtÞ ð10:23Þ
and

mðtÞ ¼ g0 þ g1yðt� TÞ þ eðtÞ ð10:24Þ
so that instead of (10.17) we have

mðtÞh icond¼ g0 þ g1yðt� TÞ ð10:25Þ
Substituting (10.24) and (10.25) into (10.23) yields

yðtÞ ¼ &0 þ &2yðt� TÞ þ &1eðtÞ þ uðtÞ ð10:26Þ
which is independent of the parameters g in (10.24), so that an optimal policy

for y is independent of g0 and g1. This is neither a deep result nor even a

surprise; the g were systematically eliminated from y(t) by direct construction

of (10.23) and (10.24)! To see more thoroughly the shaky ground on which

Lucas’s policy neutrality advice is based, the reader is invited to follow the

Sargent–Wallace extension of this argument to unemployment. Clearly, from

a scientific standpoint there is no ground here for advising laissez faire,

Keynesian, or any other policy on the basis of existing econometric models

because the models are not derived from macroeconomic data.

Although the above equations have no empirical basis whatsoever, Lucas’s

argument was accepted as indicating that one cannot expect to tame or

otherwise influence business cycles (production drops and unemployment)

by managing the money supply or other macroeconomic variables. From a

scientific standpoint, Lucas’s conclusion should have been entirely different:

we should investigate the fluctuations of the money supply m(t) and all

variables y(t) of interest empirically to find out how they behave statistically,

if possible.
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The Sargent–Wallace paper repeats Lucas’s advice that the government

should not try to “lean against the wind.” This is nothing other than laissez

faire advice against government intervention in the economy. It supported

the vast deregulation from the Reagan–Thatcher era until the bursting in

2007–08 of the worldwide derivatives-based credit bubble. Laissez faire advice

was based on stationary models that fail miserably to describe the behavior of

real macroeconomic variables. There is no reason to expect that regulations

are a priori bad or wrong; indeed we see now, as in the 1930s, that regulations

are needed in order to reduce the chance of liquidity droughts and depression.

In spite of the stationary models and their vast influence, in theoretical

economics it’s long been known (but only quietly mentioned in polite com-

pany) that macroeconomic variables are nonstationary. The final escape hatch

we need to close is called “cointegration.” Cointegration recognizes the non-

stationarity of macroeconomic variables, but constructs the illusion that stable

relationships between unstable variables can be discovered and predicted. We

write “illusion,” because we will show as an example below that the conditions

under which cointegration works are severely violated by finance markets.

10.6 Rational expectations in a nonstationary world

Consider next nonstationary macroeconomic variables. As hypothetical

examples, equations (10.16) and (10.17) would then become

yðtÞ ¼ aþ lyðt� TÞ þ bmðtÞ þ b ��B ð10:27Þ
and

mðtÞ ¼ g0 þ g1yðt� TÞ ð10:28Þ
where b ��B is the Ito product and b(y,m,t) defines the nature of the noise

and is to be empirically determined. Since the variances are not constant, one

cannot minimize as before, but a Keynesian can still minimize the volatility:

with
yðt; TÞ ¼ aþ ðlþ bg1 � 1Þyðt� TÞ þ b ��B ð10:29Þ

we have

y2ðt;TÞ� � ¼ a2 þ ðlþ bg1 � 1Þ2 y2ðt� TÞ� �þ ðt
t�T

bh i2dt ð10:30Þ
Volatility is minimized if we choose g1 ¼ ð1� lÞ=b.

If instead we make (10.23) and (10.24) nonstationary then, as before, we

cannot minimize the volatility of y(t) by playing with g1 unless the diffusion

coefficient for y(t) depends on m(t), which is possible. The correct implication

is not that business cycles cannot be influenced by monetary policy, but rather

that the first order of business would be to try to establish correct empirically
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based equations of motion for variables y(t) of interest and for the money

supply m(t). To date, no correct analysis of money supply fluctuations has

been performed. Without a correct empirically based set of equations, macro-

economic theory cannot produce insight into macroeconomic phenomena.

We’ve seen in Chapter 9 how an equilibrium model can be imposed via

strong regulations (stationarity under the gold standard via boundary condi-

tions). That is, a model of social behavior can be enforced. This was also the

case under communism, even if we don’t like the result. One could argue that,

for many years, life under communism was relatively stable and restrictive

under dictatorial regulations.

We’ve shown in Chapter 7 the basic limitations on discovering the dynam-

ics of deregulated FX markets: even a six-year time series is “too short” from

the standpoint of the required statistical ensemble. The earlier alternative was

to make questionable assumptions, and try to turn regression analysis into a

mathematical model. That’s exactly what’s done under rational expectations,

and while econometricians have been regressing, cointegrating, and assuring

us that macroeconomics is like physics (we need only calculate and predict),

worldwide financial instability has exploded in our faces. Guessing how

macroeconomic variables might hypothetically behave under strong assump-

tions (regression analysis) is not a substitute for discovering how those vari-

ables really behave (statistical ensemble analysis). And if the data are too

sparse, then we cannot, with any degree of statistical probability, claim to

understand how the variables behave. We end this section with a telling quote

from the 2004 Sveriges Riksbank Lecture:

Macroeconomics has progressed beyond the stage of searching for a theory to the
stage of deriving the implications of theory. In this way, macroeconomics has become
like the natural sciences. Unlike the natural sciences, though, macroeconomics
involves people making decisions based upon what they think will happen, and
what will happen depends upon what decisions they make. This means that the
concept of equilibrium must be dynamic, and – as we shall see – this dynamism is
at the core of modern macroeconomics.

Edward C. Prescott

(http://nobelprize.org/nobel_prizes/economics/laureates/2004/prescott-lecture.

html)

10.7 Integration I(d) and cointegration

10.7.1 Definition of integration I(d)

The standard expectation in econometrics and macroeconomic data analysis

is that x(t,–T) may be a stationary increment, with fixed T, even if the
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stochastic process x(t) is nonstationary. Stated explicitly, if the process x is

nonstationary then form the first difference x(t,–T) ¼ x(t) – x(t–T). If the first

difference x(t,–T) is nonstationary with T fixed, then one may study the second

difference xðt� T;�TÞ ¼ xðtÞ � 2xðt� TÞ þ xðt� 2TÞ, and so on until either

stationarity is found or the chase is abandoned. If the process x(t) is already

stationary then it’s called I(0). If the process x(t) is nonstationary but the first

difference x(t,–T) is stationary for fixed T then the process is called integrated

of order 1, or I(1). If neither x nor the first difference is stationary but the

second difference is stationary for fixed T, then the process is called I(2).

According to S. Johansen (1991, 2008) the above prescription is not strictly

correct: it’s possible to construct a two-variable regression model based on

special assumptions about the noise where both the processes x, y and

differences x(t,–1), y(t,–1) are nonstationary (T ¼ 1 here) but there is still a

stationary linear combination ax(t) þ by(t).
By “noise” we mean any drift-free stochastic process. Typical examples of

noise are the Wiener process, white noise, statistically independent nonsta-

tionary noise, iid noise, drift-free stationary processes, Martingales, fBm, and

the correlated noise of near-equilibrium statistical physics. “Noise” therefore

implies nothing whatsoever about correlations, only that the stochastic pro-

cess is drift-free.

Our goal in this chapter is to pin down the class of noise processes x(t)

for which integration I(1) is possible when T is held fixed. In theoretical

discussions of integration and cointegration, either “white noise” or iid noise

is assumed ad hoc. In the context of the Granger Representation Theorem,

it’s been stated that the practitioners of cointegration generally do not worry

much about the noise distribution because the cointegration technique is

presented primarily as matrix algebra (Hansen, 2005). In cointegration

studies the test of the noise distribution generally does not go beyond

checking for a (presumably one-point) Gaussian distribution. It’s also

known that a change of time variable is sometimes adequate to transform

nonstationary differences to stationary ones but is generally inadequate, and

we will explain below why such a time transformation generally cannot be

found.

The tradition in macroeconomics is to postulate the noise in as simple a

way as possible (“iid” or “white”) instead of discovering the noise distribution

from time series analysis. We will therefore analyze the distributions of

“white” and iid noise processes below, and will show that stationary incre-

ment Martingales include the economists’ “white noise.” First, we summarize

standard economics viewpoints about regression analysis and cointegration

in the next two sections.
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10.7.2 Regression analysis as a search for stationarity

To illustrate regression models, consider any macroeconomic variable x(t) like

unemployment, the price level, the money supply, or an exchange rate.

Suppose that by ignoring uncertainty, macroeconomic theory predicts or

speculates that x(t) ¼ lx(t–1) should hold, where t–1 is the present time and

t is one period later. Then the hope is to find that

xðtÞ ¼ lxðt� 1Þ þ eðtÞ ð10:31Þ
where e(t) is drift-free uncorrelated noise with zero mean and finite variance

(modulo fat tails), and l is a free parameter. This defines what econometri-

cians mean by “white noise” if the variance is taken to be constant. If the

noise is stationary then so is x (t) if there is no drift in (10.31). Assuming “white

noise” e(t), we obtain
xðtÞh i ¼ 0

x2ðtÞ� � ¼ s2
1

1� l2
ð10:32Þ

where e2ðtÞ� � ¼ s2
1 ¼ constant if the drift xðtÞh i ¼ ltxð0Þ has been subtracted

from x(t). Stationarity is therefore possible if and only if –1 < l < 1, where l¼
1 is called a “unit root” in econometrics. Another macroeconomic way to

arrive at (10.31) is simply to regard it as a regression equation and to use

standard econometric assumptions to try to test data for its validity. Still a

third interpretation is to assert that the monetary authority may try to enforce

a rule x(t) ¼ lx(t – 1) “to within error” for the next period t, at present time

t – 1 based on the presently observed value x(t – 1).

Econometrics and regression analysis aside, from the standpoint of the

theory of stochastic processes the model (10.31) with l ¼ 1 defines a Martin-

gale process if the noise e(t) is uncorrelated, and Martingales are inherently

nonstationary. That is, stationary noise in (10.31) is impossible if l ¼ 1.

Indeed, macroeconomists interpret a unit root as necessity to worry about

nonstationarity. The simplest Martingale is provided by the Wiener process

B(t), but the Wiener process is too simple to describe real markets or macro-

economic noise.

Continuing with regression analysis, suppose instead of (10.31) that we

consider a twice time-lagged regression equation

xðtÞ ¼ axðt� 1Þ þ bxðt� 2Þ þ eðtÞ ð10:33Þ
We introduce the time-shift operator Ly(t) ¼ y(t – 1). The noise term in

equation (10.33) can then be rewritten as equal to

xðtÞ � axðt� 1Þ � bxðt� 2Þ ¼ ð1� l1LÞð1� l2LÞxðtÞ ð10:34Þ
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Here’s the central question in regression analysis: when is stationary noise

possible? If –1 < l1 < 1 then we can set l2 ¼ 0, but if l1 ¼ 1 then we have

ð1� LÞð1� l2LÞxðtÞ ¼ eðtÞ ð10:35Þ
or with x(t,–T) ¼ x(t) – x(t – T),

xðt;�1Þ ¼ l2 xð t;�2 Þ þ  eð tÞ ð10:36Þ
so we see that stationary noise is possible in (10.33) for –1 < l2 < 1 even if

equation (10.31) has a unit root. So-called “unit root processes” are central:

Martingales describe detrended financial variables.

Ergodic processes are a subclass of stationary processes. Ergodicity means

that time averages converge in probability to ensemble averages. By iid is

meant statistical independence with stationarity. Iid noise is trivially ergodic,

the convergence of time to ensemble averages is provided by the law of large

numbers. The stationary process y (t ) defined by (10.31) with lj j < 1 is

ergodic in discrete time: the pair correlations for a time lag nT,

yðtÞyðtþ nTÞh i ¼ RðnTÞ, vanish as n goes to infinity. This is the sort of

ergodicity that’s assumed in regression analysis models.2 With a discrete time

stationary process the time average always converges, but if the system is not

ergodic then the limit is not necessarily the ensemble average. With a nonsta-

tionary process there is no possible appeal to time averages. We know that we

must construct ensemble averages in order to perform any data analysis at all.

Inadequate distinction is made in regression analysis between noise levels

and noise increments (see Kuersteiner (2002) for an exception). We will clarify

this below and will point out that the noise “e(t)” in the regression equations

is always, by necessity, a noise increment e(t,–T). For example, in equation

(10.31) with l ¼ 1 the noise is exactly a Martingale increment x(t,–1) ¼ x(t) – x

(t – 1).

10.7.3 Cointegration

In macroeconomics, relations between economic variables are expected on

the basis of non-empirically based equilibrium argumentation. In economet-

rics, regression analysis is used to try to discover or verify the predicted

relationships. Given two time series for two different economic variables x

and y, like price levels and the money supply, or FX rates and the relative

price levels in two countries, regression analysis assumes a form y ¼ a þ bx þ
e(t) where the standard assumption in the past was that the noise e(t) can be

treated as a stationary “error” (nonlinear regression analysis exists in the

2 And is generally absent in the case of Martingales.
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literature but is irrelevant here). It was realized well before the rational

expectations era that typical macroeconomic variables x and y (price levels

and FX rates, for example) are nonstationary. It’s also been known since the

1920s that regression analysis based on the assumption of stationary noise

can easily “predict” spurious relations between completely unrelated nonsta-

tionary variables. The assumption of integration I(d) is that with nonstation-

ary random variables x(t), increments x(t,T) ¼ x(t þ T) – x(t) are stationary

with T fixed, to within a removable drift. Cointegration was invented as a

generalization of the idea of “integration I(d)” as a technique for trying to

infer both short-time (T ¼ one period) and long-time equilibrium (based on

ergodicity) relations between nonstationary economic variables via regression

analysis.

Here’s a definition of cointegration quoted literally from Engle and Gran-

ger (1987). Think of macroeconomic variables as the components of a column

vector x(t). “The components of x(t) are said to be cointegrated of order d,b,

denoted CI(d,b), if (i) all components of x are I(d); (ii) there exists a vector a

6¼ 0 so that zðtÞ ¼ a_x is I(d – b), b> 0. The vector a is called the co-integrating

vector.” The “hat” denotes the transpose, a row vector so that a_x denotes the

scalar product of two vectors. The authors then state that for the case where d

¼ b¼ 1, cointegration would mean that if the components of x(t) were all I(1),

then the equilibrium error would be I(0), and z(t) will rarely drift far from

zero if it has zero mean, and z(t) will often cross the zero line. That is, a_x ¼ 0

is interpreted as an equilibrium relationship, and the last part of the sentence

above expresses the unproven hope that the stationarity of integration I(d) is

the strong stationarity that brings with it the ergodicity of statistical equilib-

rium (“. . . will rarely drift far from zero . . . will often cross the zero line”).

The Nobel Committee’s description of Granger’s work noted that cointe-

gration had failed to exhibit the expected long-time equilibrium relationship

expected between FX rates and relative price levels in two countries. It was

argued therein that cointegration deals with short times, T ¼ one period, and

that short time lags are inadequate to expose the long-time equilibrium

relations that would follow from ergodicity. We will show that the real reason

for the failure of an equilibrium relation between two financial variables is

entirely different, and is not at all due to the restriction to a short time lag T.

Statisticians have constructed simple models where cointegration works,

and the conditions to be satisfied are quite restrictive. It’s doubtful that two

empirical time series will satisfy the conditions for the required noise differ-

ences. We therefore challenge the idea that cointegration can be used to

explain macroeconomic phenomena. In particular, if (as is always the case

in economics) the noise has been postulated rather than discovered empirically,
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we see the following danger: if one takes enough differences, using sparse

data, then spurious “I(d)” and cointegration may occur. That is, the effect of

finite, low precision must be taken into account in reality.

In the next two sections we analyze the statistical properties of noise levels

and increments. Below, we will show that arbitrary stationary increment

Martingales are the right generalization of “white” and iid noise, and that

the assumption of iid is both unnecessary and too limiting; lack of increment

correlations rather than full statistical independence of increments is

adequate. This is also practical, because in empirical analysis we generally

cannot discover even a one-point distribution (although various averages and

correlations can be calculated empirically), much less prove that hypothetical

empirical data are iid even if they were.

10.7.4 The distributions of iid and “white noise”

processes and increments

10.7.4.1 Iid noise

Because econometrics and macroeconomics typically assume either “white”

or iid noise, we now analyze the statistical properties of both. We will show

that an iid (drift-free, statistically independent, identically distributed) noise

process e(t) generally cannot generate stationary increments, and therefore is

not I(d). To avoid confusion, we’ll distinguish carefully between the distribu-

tions of noise levels and noise level differences. We want to show that the

noise “e(t)” in regression analysis is always a noise increment, and that white

noise, not iid noise, is the correct basis for relaxing the restrictions imposed in

regression analysis.

Consider an identically distributed statistically independent process, the

definition of n identical statistically independent variables x1, . . ., xn. All

n-point densities of random variables factor into products of the same one-

point density fnðxn; tn; . . . ; xn; tnÞ ¼ f1ðxn; tnÞ . . . f1ðx1; t1Þ, n ¼ 2, 3, . . . An iid

distribution is in addition stationary, requiring that f1 is independent of t.

Consider a nonstationary process x(t) ¼ e(t) defined as drift-free, statistic-

ally independent, identically distributed noise. For example, the one-point

density may be Gaussian with the variance linear in the time t. Here, the

increment autocorrelations do not vanish,

eðt; TÞeðt;�TÞh i ¼ � e2ðtÞ� �
0 ð10:37Þ

For this process a condition of stationarity of increments is impossible: the

mean square fluctuation
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e2ðt;TÞ� � ¼ e2ðtþ TÞ� �þ e2ðtÞ� � ð10:38Þ
cannot be made independent of t unless the process itself is stationary, but

macroeconomic processes are not stationary, and the most fundamental

nonstationarity is due to the nature of the noise, not the presence of drift.

One can see the impossibility of stationary increments e(t,T) directly by

assuming statistical independence in the two-point density while calculating

the increment density. With z ¼ x(t,T) ¼ e(t,T), we use

f ðz; t; tþ TÞ ¼
ð1

�1
dxdyf2ðy; tþ T; x; tÞdðz� yþ xÞ ð10:39Þ

to obtain

f ðz; t; tþ TÞ ¼
ð1

�1
dxf1ðxþ z; tþ TÞf1ðx; tÞ ð10:40Þ

If one assumes a nonstationary Gaussian one-point density with process

variance s2(t), then one sees easily that f(z,t,T) depends irreducibly on both

T and t. Stationary increments cannot be achieved under conditions of statistical

independence of the stochastic process. Generally, by “iid” econometricians

and statisticians implicitly presume a stationary process; the variance is then

constant.

In contrast, for the Wiener process B(t), the simplest Martingale with

stationary increments, one obtains from (10.10) that f ðz ; t ; t þ T Þ ¼
p2ðz; T 0; 0Þj where p2 is the transition density of the Wiener process,

f2ðy; tþ T; x; tÞ ¼ p2ðy; tþ T x; tj Þf1ðx; tÞ. Although the Wiener process B(t) is

not iid, the Wiener increments B(t,T) are iid in the following precise sense if

and only if we restrict our considerations to T ¼ constant: the Wiener process

B(t) is Markovian,

fnðxn; tn; xn�1; tn�1; . . . ; x1; t1Þ ¼ p2ðxn; tn xn�1; tn�1j Þ
p2ðxn�1; tn�1 xn�2; tn�2j Þ . . .
p2ðx2; t2 x1; t1j Þp2ðx1; t1 0; 0Þj ð10:41Þ

If we combine the Markov condition with the time- and space-

translational invariance of the Wiener process p2ðxn; tn xn�1; tn�1j Þ ¼
p2ðxn � xn�1; tn � tn�1 0; 0j Þ, then this casts (10.41) into the form of a condition

for iid increments if we take tk – tk–1 ¼ T for all k, where the one-point density

of increments is exactly f ðz; t; tþ TÞ ¼ p2ðz;T 0; 0Þj .3 That is, the random walk

3 Without both time- and space-translational invariance, one cannot obtain an iid distribution for
increments from a Markov condition.
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is not iid, but random walk increments are iid. Note that with T varying, the

increment process is nonstationary, but with T ¼ constant we may treat

random walk increments as iid. The basic example of iid increments is not a

stationary process, and the iid property is simply time- and space-translational

invariance applied to a Markov condition. This is unnecessarily restrictive. We

don’t need the iid assumption; we only need uncorrelated increments.

Again, for I(1) noise x(t), all we need is that x(t,1) and x(0,1) have the same

one-point distribution. Full statistical independence is unnecessary; all we need

is the condition of uncorrelated, stationary increments. Second, deducing iid

conditions from empirical data would be effectively impossible; the best that

can be hoped for empirically is to test for vanishing increment autocorrela-

tions. Therefore, the iid assumption can and should be replaced by the much

more general condition of a Martingale with stationary increments (Martin-

gales are Markovian if and only if there is no finite memory in the transition

density). We will eventually have to face and answer the question: what class

of Martingales has stationary increments? First, more background.

10.7.4.2 “White noise” in econometrics

To support our claim of the importance of Martingales for integration I(d),

here’s the simplest I(1) case presented in the literature. Consider the

random walk on the line, the Wiener process B(t). The Wiener process is a

Martingale, BðtÞBðt� TÞh i ¼ B2ðt� TÞ� �
, with stationary increments:

Bðt; TÞ ¼ Bðtþ TÞ � BðtÞ ¼ BðTÞ in distribution because the variance is

linear in t; B2ðtÞ� � ¼ t. The increments are therefore uncorrelated,

Bðt;TÞBðt;�TÞh i ¼ � BðTÞBð�TÞh i ¼ 0. That is, the process B(t) has Martin-

gale pair correlations and the increments are uncorrelated and stationary.

The increment viewed as a process B(t,T) ¼ B(0,T) ¼ B(T), with B(0) ¼ 0, is

therefore nonstationary in T because the increment variance is linear in T.

Economists study increments with a fixed time lag T ¼ one period.

The Wiener increment process has been labeled as “white noise” in economet-

rics (Murray, 1994). In the economists’ “white noise,” the increments are

uncorrelated, Bðt; 1ÞBðt;�1Þh i ¼ 0, and have constant variance B2ð1Þ� � ¼ 1,

nothing more. In other words, “white noise” in econometrics is actually the

simplest Martingale with stationary increments and fixed time lag. We can

therefore de-emphasize “white noise” and iid noise and focus instead on the much

more general case of stationary increment Martingales in order to define inte-

gration I(d) for drift-free stochastic processes (McCauley, 2009).

With T fixed, any stationary increment Martingale is I(1). For Martingales,

I(d) with d � 2 is superfluous.
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10.7.5 Integration I(d) via stationary increment martingales

An Ito process is generated locally by a drift term plus aMartingale dx¼ b(x,t)

dB. Setting b2(x,t) ¼ D(x,t) ¼ D(t), or b(x,t) ¼ x (lognormal process), in an Ito

process generates two different Martingales, but each is equivalent to the

Wiener process by a specific coordinate transformation (McCauley et al.,

2007c). Setting D ðx ; t Þ ¼  tj j2 H �1 ð 1 þ xj j= tj jH Þ with H � 0.35 in (7.34) describes

a nontrivial Martingale observed during one time interval of intraday FX

trading. This Martingale is topologically inequivalent to the Wiener process.

Martingales may serve as noise sources in a generalization of standard

regression analysis, but are themselves not subject to regression analysis: a

linear combination of two Martingales is another (local) Martingale, as one

can see from the Martingale representation theorem. Given two Martingales

defined by two independent Wiener processes, the two Martingales are also

independent. Stationary increment Martingales define the class of pure noise

processes that are I(1). Exactly what is the class of stationary increment

Martingales?

Consider first the class of all drift-free nonstationary processes with uncor-

related stationary increments. For this class the one-point density of the

random variable x is nonstationary, and the increments x(t,T) and x(0,T) have

the same nonstationary one-point distribution as a function of the time lag T

as has the one-point distribution of the process x(t) as a function of the

starting time t.

The simplest example of a Martingale where I(1) is impossible is a Martin-

gale with b(t) independent of x, and where the increments are nonstationary

unless b(t) ¼ constant. But this increment nonstationarity can be easily

eliminated, yielding an I(1) process, by discovering the time transformation

that reduces the process to the Wiener process. The required transformation

can easily be constructed once b(t) is known, and b(t) could be discovered if

one could measure the time dependence of the process variance

x2ðtÞ� � ¼ ðt
0

b2ðsÞds ð10:42Þ

As an example, b(t)¼ t2H–1 yields x2ðtÞ� �¼ t2H x2ð1Þ� �
so the time-transformation

t¼ t2H yields stationary increments.

If we consider general diffusive processes, with diffusion coefficient D(x,t),

then we obtain a mean square fluctuation independent of t if and only if

the variance is linear in t. This occurs for scaling processes Dðx; tÞ ¼
tj j2H�1D

_ð xj j= tj jHÞ with H ¼ 1/2, but these processes generally do not satisfy the

condition for a t-independent increment density f(z,t,T). For time-translationally
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invariant diffusive processes, D(x,t) ¼ D(x), but these processes have variance

nonlinear in t. The simplest example is given by the drift-free lognormal process

dp ¼ pdB ð10:43Þ
where B is the Wiener process. The first differences are Martingale increments

pðtþ TÞ � pðtÞ þ
ðtþT

t

pðsÞdBðsÞ ð10:44Þ

and are nonstationary,

ðpðtþ TÞ � pðtÞÞ2
D E

¼
ðtþT

t

p2ðsÞ� �
ds ð10:45Þ

because p2ðtÞ� � ¼ Cet. Is there a nontrivial stationary increment Martingale?

With the increment density

f ðz; t; tþ TÞ ¼
ð
dxp2ðxþ z; tþ T x; tÞf1j ðx; tÞ ð10:46Þ

if we assume time-translational invariance, then we also need space-

translational invariance to obtain

f ðz; t; tþ TÞ ¼ p2ðz; tþ Tj0; tÞ
ð
dxf1ðx; tÞ ¼ p2ðz; tþ Tj0; tÞ ð10:47Þ

but this implies the Wiener process! We speculate that the Wiener process is the

only stationary increment Martingale. If true, this means that cointegration is

built on a noise model too simple to describe real empirical data. There is

therefore no reason to assume that differences obtained from real data can

generate ergodicity.

This leads us to the interesting question: what methods have been used

to claim stationarity of differences, “integration I(1),” in macroeconomic

data analysis (Dickey et al., 1991)? Given the standard statistical tests

including the search for a unit root, we suspect that the answer to our

question ranges from completely inadequate evidence to none at all. The

unit root test is an insufficient test for a Martingale, and even then does not

test for increment stationarity. The evidence is often provided only by the

visual inspection of a time series (see the graphs of levels and differences in

Juselius and MacDonald, 2003). A more convincing argument would

require using an ensemble average to show that a mean square fluctuation

is t-independent.

Where increments can be measured accurately using ensemble averages for

intraday finance data, the increments are strongly nonstationary. In any case,
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from the standpoint of Martingales as financial returns there’s no reason to

expect a long-time equilibrium based on ergodicity for FX rates and relative

price levels for two different countries. The required convergence of time

averages to ensemble averages simply does not exist.

10.7.6 Nonstationary increment martingales are not I(d)

Here’s the most general case: integration I(d) is in principle impossible,

whether for T ¼ one period or for any value of T, if Martingale noise

increments are nonstationary, as indeed they are in finance data.

Figure 7.2a shows the nonstationarity of increments in intraday trading as

the time variation of the ensemble average of the diffusion coefficient D(x,t).

The scatter in Figure 7.2 is due to inadequate intraday statistics caused by the

ensemble average required to handle nonstationary increments correctly.

Each day can be understood as a rerun of the same uncontrolled experiment

if we restrict to certain averages and avoid others, and in a six-year time

series, there are only 1500 points for each intraday time t (1500 days for each

time t) from which to calculate ensemble averages.

With nonstationary increments, the increment xðt;�TÞ ¼ xðtÞ � xðt� TÞ
depends irreducibly on the starting time t, and no amount of higher-order

differencing can eliminate this nonstationarity in principle. That is, integra-

tion I(d) is impossible for intraday FX data; differencing cannot lead to

stationarity for financial time series. A visual inspection of Figure 7.2b, for

the ensemble average result for the rmsf over a week, indicates visually that

the increments “look” approximately stationary on the time scale of a day.

But if one would try to verify that, then the histograms would have 1500

points for one day, 750 points for the second day; far too few to reach a

conclusion.

The longest line in Figure 7.2a shows the region for which we were able to

fit the FX data via a scaling Martingale,

Dðx; tÞ ¼ tj j2H�1ð1þ xj j= tj jHÞ=H ð10:48Þ
with H � 0.35, and this model explicitly has nonstationary increments with H

6¼ 1/2. The fit is shown as Figure 10.1.

What about loopholes? Is it possible to “flatten” the mean square fluctu-

ation of the Martingale describing intraday trading by a time transformation?

For the model (10.49) a time transformation t ¼ t2 H yields a variance linear in

t, but this model only describes trading over one small segment of a day.

Using a two-year Olsen and Associates FX series, Gallucio et al. (1997)

performed a local time transformation to obtain a time-independent mean
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square fluctuation. This might be possible piecewise numerically using a

transformation to a local lag time t, t << T, where (analogous to the proced-

ure described by Gallucio et al.)

� �
ðtþT

t

x2ðs;TÞ� �
ds ð10: 49Þ

and where

x2ðt;TÞ� � � T

ð
dxDðx; tÞf1ðx; tÞ ð10:50Þ

describes Figure 10.7, but we haven’t bothered to try this recipe numerically.

We would not be able to construct such a transformation globally (over a day

or longer) accurately due to too much scatter in the fit of (10.50) to the data.

And even if we could succeed, ergodicity would not be part of the package.

Nor could we conclude that the increment density is y-independent; t-inde-

pendence of the rmsf is too weak a condition for that purpose. This brings us

to the next question.

One may ask if tick data (Jensen et al., 2004; Politi and Scalas, 2008) yield a

flat rmsf. A moment’s reflection shows that the transformation from tick time

to real time is not deterministic: given a tick, we cannot state with certainty

when the next tick occurs, so we cannot transform systematically from a
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Figure 10.1 The data in the time interval shown by the longest line in Figure
7.2a can be fit by scaling with a single Hurst exponent H � 0.35.
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real-time analysis to a tick analysis. If the ticks are recorded in real time then

a local time transformation from ticks to real time would be numerically

possible. Recording ticks in real time, the nonstationarity of the increments

can be understood (Cross (1988)) in terms of lunch breaks, the closing time of

New York markets, the closing of one international market, and the opening

of another. This is an indication that intraday increments may have a flat

rmsf in tick time, but this doesn’t help us with either cointegration or with

real-time data analysis.

10.8 ARCH and GARCH models of volatility

In discussions of ARCH and GARCH models, as in regression analysis in

general, an inadequate distinction is made between noise levels and noise

increments as we’ve discussed above. The noise in regression equations must

be interpreted as noise increments, whether one assumes iid or “white noise.”

Therefore, what Engle originally called a “variance” should be understood as

a mean square fluctuation, or “increment variance.” We’ve shown above that

“white noise” in econometrics means stationary noise increments with van-

ishing increment autocorrelations.

There are various volatility measures in practical use in finance theory. The

volatility measure chosen by Engle is the conditional mean square fluctuation

Vðt;TÞ ¼ x2ðt;�TÞ� �
cond

. In a diffusive model (an Ito process) this would be

given by

x2ðt;�TÞ� �
cond

¼
ð
dyðy� xÞ2p2ðy; tþ Tjx; tÞ ð10:51Þ

where p2 is the conditional density for the returns process x(t).

In all that follows, we assume detrended data and/or detrended stochastic

models of levels x(t). This severely restricts the class of models to those where

the drift is neither a function nor a functional of x. With the choice x(0) ¼ 0

the process variance is given by s2ðtÞ ¼ x2ðtÞ� �
, where the process x(t) is then

drift-free noise. Only uncorrelated noise increments are of interest here, the

time lag T must be sufficient that xðt;TÞxðt;�TÞh i � 0, ruling out fBm and

other strongly correlated stationary increment processes. Next, we consider

the basic regression models of volatility.

The standard statement of an ARCH(1) process is that with et= y2t
� �

assumed to be white noise, then

y2t
� �

cond
¼ aþ !y2t�1 ð10:52Þ

where the detrended returns are described by et ¼ lnðpðtÞ=pðt� 1ÞÞ. Clearly,
as has been pointed out recently, both the noise and the variable y here are
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not levels; they are both increments. Having made this point, we now return

to our standard notation for increments. We’ve pointed out elsewhere that it’s

quite common, if mistaken, to regard the log increment x(t) ¼ ln(p(t)/p(t – T))

as a process, or level.

Historically, ARCH models were introduced to remedy the lack of volatil-

ity of the Gaussian returns model in the 1980s. The ARCH models were

constructed with memory intentionally built into the mean square fluctu-

ation. Whether or not it was realized that the EMH is violated is not clear,

because previous discussions of Martingales as the EMH focused on simple

averages and either ignored pair correlations or stated them incorrectly (see

Chapter 4). The contradiction between ARCH and the EMH was probably

masked by failing to distinguish between levels and differences in the noise,

and by taking T ¼ 1 instead of letting T vary.

The ARCH(1) model is defined by the regression equation

x2ðt;�TÞ� �
cond

¼ aþ ox2ðt� T;�TÞ ð10:53Þ
with the assumption that the increments are stationary, and hence are inde-

pendent of t. In addition, the assumption was made that

xðt;�TÞ ¼ zðTÞ x2ðt;�TÞ� �1=2
cond

ð10:54Þ
where z(T) was originally taken to be iid with zero mean and unit variance.

It’s adequate to assume that z(T) is uncorrelated with zero mean and unit

variance. The idea is that x(t,–T) ¼ x(0,–T) “in distribution” is the stationary

noise in regression equations (10.53) if T is held fixed. So far, this is com-

pletely in the spirit of regression analysis: the noise is not assumed to have

been discovered empirically; it’s postulated in as simple a way as possible.

The unconditioned averages in ARCH(1) then obey

x2ðt;�TÞ� � ¼ aþ o x2ðt� T;�TÞ� � ð10:55Þ
In regression analysis the assumption is that the increments are stationary.

Stationary increments have been hypothesized on the basis of “eyeballing”

plots of levels and differences, but were never verified by a statistical analysis

based on constructing approximate ensemble averages. Accepting the

assumption of stationary increments for the time being, we obtain

x2ðt;�TÞ� � ¼ x2ðt� T;�TÞ� � ¼ x2ð0;�TÞ� � ð10:56Þ
independent of t. This would yield

x2ð0;�TÞ� � ¼ aðTÞ
1� oðTÞ ð10:57Þ
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This is a T-dependent relationship that could be checked, but that fact is

masked by setting T ¼ 1 in regression analysis. We now show, without appeal

to any particular dynamics, that the ARCH(1) model is completely inconsist-

ent with “white noise” (uncorrelated noise differences).

Increment autocorrelations are given by

2 xðt;�TÞxðt;TÞh i¼ ðxðtþTÞ�xðt�TÞ2
D E

� x2ðt;�TÞ� �� x2ðt;TÞ� � ð10:58Þ

With stationary increments we obtain

2 xð0;�TÞxð0; TÞh i ¼ ðxð0; 2TÞÞ2
D E

� 2 x2ð0;TÞ� � ð10:59Þ

The increment autocorrelations vanish if and only if the levels’ variance is

linear in the time, which then yields also that x2ð0; TÞ� � ¼ T x2ð0; 1Þ� �
.

Inserting this into (10.66), if we set T ¼ 0 then we obtain a ¼ 0. If T 6¼ 0 then

we obtain o¼ 0 (regression analysis therefore fails). This shows thatARCH(1)

is inconsistent with stationary, uncorrelated increments. The same conclusion

will hold if the increments are nonstationary and uncorrelated. The reason for

the contradiction is clear: uncorrelated increments guarantee a Martingale x

(t), and the Martingale condition rules out memory at the level of simple

averages and pair correlations. ARCH models, in stark contrast, have finite

memory built in at the pair correlation level. The correct way to understand

the ARCH models is that the memory requires nonvanishing increment

correlations. This violates the EMH and finance data as well. Higher order

ARCH models admit exactly the same interpretation.

The GARCH(1,1) model is defined by

x2ðt;�TÞ� �
cond

¼ aþ !x2ðt� T;�TÞ þ 	 x2ðt� T;�TÞ� �
cond

ð10:60Þ
If we again assume stationary increments then we obtain an analogous

constant mean square fluctuation for fixed T. In this case “white noise” would

imply that a ¼ 0 and that !þ 	 ¼ 0. With enough parameters the models are

not falsifiable. There is no evidence for memory in observed finance market

returns for T � 10 minutes. ARCH and GARCH models are only applicable

to processes with correlated increments, and not to “white noise” processes.

In financial applications this requires lag time of T < 10 minutes in trading.

Correlated increments characterize fBm, while uncorrelated increments char-

acterize an efficient market.

Summarizing, no existing regression model (cointegration, ARCH/

GARCH) describes finance data qualitatively correctly because the empirical

conditions necessary to apply those ideas are not met.
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11

Complexity

11.1 Reductionism and holism

It was a fad in certain circles in the 1990s to announce that “reductionism

is dead,” and that holism1 is necessary in order to understand biology and

social systems. To discuss this we must first define the terms (The American

Heritage Dictionary).

Holism is a theory or belief emphasizing the importance of the whole and

the interdependence of its parts. In classical mechanics, for example, we

understand the solar system in terms of its parts (the sun and the planets),

and the interactions (“relationships”) are nonlinear. In quantum mechanics

we understand complicated molecules like DNA in terms of the binding of

smaller molecules. The genetic code is understood in terms of its building

blocks: the four letter (computer) alphabet constructed from the bases A, C,

G, and T. One understands the bases in terms of simpler molecules, the

molecules in terms of atoms, and the atoms in terms of electrons and nuclei.

This is reductionism: everything can be understood to be constructed system-

atically from electrons and positively charged nuclei. Yet, there is something

that we cannot calculate from first principles using quantum mechanics: the

behavior or the genes as a classical computer with three-letter words con-

structed from a four-letter alphabet. Quantum theory is linear, and the phase

coherence cannot be destroyed from within, meaning that classical behavior

cannot be derived from quantum theory without introducing a nonquantum

assumption of destruction of phase coherence. This leads into the famous

measurement problem clarified by von Neumann. The genetic code and

protein production are understood via reductionism. In fact, every important

discovery in biology, from the chromosomes to the genetic code to cancer-

causing mutations are results of reductionism, which we can understand in

1 Holism was thought to provide a pathway to understand complexity.
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a general way as the isolation of cause and effect. This is obviously not what

people mean when they claim that reductionism has failed, and that holism

offers new hope.

If we visit Wikipedia (http://en.wikipedia.org/wiki/Holism) then we find a

definition of holism more to the liking of those who claim that reductionism

has failed us: holism . . . is the idea that not all the properties of a given system

(ruling out physical systems like genes and protein production) can be

explained by its components alone. Instead, the system as a whole determines

in an important way how the parts behave. Actually, the fact that not all

properties of a system can be understood in terms of components is not

“holism”; there may well be properties that cannot be understood at all (like

consciousness and thinking). This idea of holism is prescientific and was

expounded by Aristotle, who wrote that “the whole is more than the sum of

its parts.” If we would interpret the term “sum” literally, then all that’s stated

is that the system is nonlinear (which is certainly not true of quantum systems

like DNA). But this leads us trivially back to physics as the basis for under-

standing everything. Indeed, the three-body problem in classical mechanics,

and hence the solar system as well, is irreducibly nonlinear (in contrast,

the also nonlinear sun–earth two-body problem can be linearized exactly by a

coordinate transformation). As Galileo discovered, Aristotle is not a reliable

guide to scientific advances; he had to be completely sidestepped by Archimedes,

Galileo, and Kepler before science could begin and then advance. This doesn’t

prevent some mysticists from believing that Aristotle was right.

Some earlier system biologists have argued that nonlinear systems are

holistic. That argument is flawed: anything that can be mathematized is an

example of reductionism, meaning we can understand the system in terms of its

parts, the parts being represented by the terms in the nonlinear equation.

What Aristotle had in mind was nonscientific, namely, a “first cause,” which

Tomaso d’Aquino replaced by the idea of God. But the idea of a god who

tweaks the universe to keep it stable, or who tweaks molecules to make life,

is an unnecessary assumption.

Reductionism is isolation of cause and effect. Let us accept that reduction-

ism is the understanding of the whole in terms of its parts. Thus do we

understand the solar system and the building of proteins from DNA. Strict

reductionism would assert that, in principle, we “understand” everything

once we’ve understood quarks. Or, we understand almost everything in

principle once we’ve understood electrons and nuclei and how they interact.

This is not a useful viewpoint. In fact, it’s downright silly. We know that

electrons and nuclei make up the atoms in a turbulent flow, but only an

uninformed greenhorn would suggest that we try to understand fluid
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turbulence by starting with electrons and protons. We don’t even understand

fluid turbulence in mathematical detail from the Navier–Stokes equations.

Reductionism doesn’t mean that we can calculate everything from electrons

and nuclei, or from quarks. As Rolf Landauer once stated, reductionism

means that we can successfully divide the world into “system plus environ-

ment” and can, to zeroth order, neglect the interaction of the system with

the environment. If we can’t do that then we can’t study “the system” at all.

To understand cellular interactions we try to start with cells as basic units,

cells being well-defined and persistent if not invariant, but we certainly

cannot completely ignore what happens inside a cell. On the other hand,

medical doctors could not, for example, treat liver disease were it always

necessary to take into account the brain, the heart, the nervous systems, etc.,

because no one can make any sense of such complexity. It would be worse

than trying to repair a motor or radio by trying to think of all the parts

and their interconnections simultaneously. All of scientific medicine is

reductionist. “Holistic medicine” rears its head where no treatment is known,

and never offers any systematically verifiable solution, only false hope for

uncritical believers. Some herbal remedies systematically work, and there are

scientific reasons why.

Economic models ignore nearly everything in the environment in the effort

to try to get a handle on something. The attempt to derive a mathematical

model from a time series in finance is an example of reductionism. The

component parts are the prices. At a deeper level, researchers try to invent

agent-based models. There, the components are rules representing idealized

agents who try to set prices. Generally, it makes no sense whatsoever to try to

look into the minds of agents because either (i) the effort is destroyed

in advance by nonuniqueness (due to finite precision; see Chapter 7) or else

(ii) trivialized by unrealistic assumptions like utility and price preferences in

neo-classical economics. In contrast with the failure of microeconomic theory,

our path is inherently nonstandard macroeconomic. We’ve used historic

market price series to try to understand markets: we extracted a correct class

of price dynamics models from observed time series, Martingales with (x,t)-

dependent diffusion coefficients.

Reductionism means the arbitrary division of nature into laws of motion

and initial conditions, plus “the environment.” The initial conditions are

lawless, are not themselves derived from an identifiable equation of motion.

The division into laws of motion and approximately uncorrelated initial

conditions is very important for analyzing finance time series via an approxi-

mate statistical ensemble in Chapter 7. There, we replaced Wigner’s assertion

that initial conditions should be “random” by the less restrictive and more
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directly applicable requirement that initial conditions must be uncorrelated,

otherwise they are not initial conditions but effectively are determined by

a law of motion. This summarizes our viewpoint on reductionism, but the

question of complexity has not been addressed yet. The failed hope was that

holism would explain or at least handle complex systems.

11.2 What does “complex” mean?

Is market behavior complex? What’s meant by “complexity”? In particular,

does the word have definite dynamical meaning? How does complexity differ

from complication? From chaos? From randomness? Can scaling be used to

describe complexity? Because the word “complexity” is most often used with-

out having been explicitly and clearly defined, we delineate what is complex

from what is not on the basis of standard ideas of computational complexity.

The reason for this choice of reference is that we still lack a convincing

physically or biologically motivated definition of complexity, in spite of the

fact that cell biology apparently provides us with plenty of examples of

complexity. A digital computer provides an example of complexity and can

be described mathematically as a Newtonian electro-mechanical machine.

The only precise definitions of complexity that have been used so far in

physics, biology, and nonlinear dynamics are definitions that were either

taken from or are dependent on computability theory.

The first idea of complexity to emerge historically was that of the highest

degree, equivalent to a Turing machine. Ideas of degrees of complexity, like

how to describe the different levels of difficulty of computations or how to

distinguish different levels of complexity of formal languages generated by

automata, came later.

We begin with binary strings because from a fundamental standpoint

there’s nothing computable that can’t be encoded as a binary string, or as a

sequence of strings (whether binary, ternary, or decimal is a detail). As von

Neumann (1970a) wrote, decimal expansions are an application of informa-

tion theory. Digit strings can be regarded as patterns.

A systematically repeated pattern in finance data would violate the EMH

and could in principle be exploited to make unusual profits in trading. By an

unusual profit we mean a profit greater than the expected return as discussed

in CAPM. We could search for patterns in economic data as follows: suppose

that we know market data to three-decimal accuracy; for example, after

rescaling all prices p by the highest price so that 0 � p � 1. This would allow

us to construct three separate coarsegrainings: empirical histograms based

on ten bins, 100 bins, and 1000 bins. Of course, because the last digit obtained
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empirically is the least trustworthy, we should expect the finest coarsegraining

to be the least reliable one. In the ten-coarsegraining each bin is labeled by

one digit (0 through 9) while in the 1000 coarsegraining each bin is labeled

by a triplet of digits (000 through 999). An example of a pattern would be to

record the time-sequence of visitation of the bins by the market in a given

coarsegraining. That observation would produce a sequence of digits, called

a symbol sequence. The question for market analysis is whether a pattern

systematically nearly repeats itself. Mathematically well-defined symbolic

dynamics is a signature of deterministic chaos, or of a deterministic dynam-

ical system at the transition to chaos.

First, we present some elementary number theory as the necessary back-

ground. We can restrict to numbers between zero and unity because, with

those numbers expressed as digit expansions (in binary, or ternary, or in any

base of arithmetic) all possible one-dimensional patterns that can be defined

to exist abstractly exist there. Likewise, all possible two-dimensional patterns

arise as digit expansions of pairs of numbers representing points in the unit

square, and so on. Note that by “pattern” we do not restrict ourselves to a

periodic sequence; nonperiodic sequences are included.

We can use any integer base of arithmetic to perform calculations and

construct histograms. In base m we use the digits ek ¼ 0, 1, 2, . . ., m�1 to

represent any integer x as x ¼ P
ekm

k. In base ten the digit 9 is represented by

9, whereas in base two the digit 9 is represented by 101, and in base three 9 is

represented by 22. Likewise, a number between zero and one is represented by

x ¼ P
ekm

�k. We will mainly use binary expansions (m ¼ 2) of numbers in the

unit interval in what follows, because all possible binary strings/patterns are

included in that case. From the standpoint of arithmetic we could as well use

ternary, or any other base.

Finite-length binary strings like 0.1001101 (meaning 0.100110100000000. . .

with the infinite string of 0s omitted) represent rational numbers that can be

written as a finite sum of powers of 2�n, like 9/16 ¼ 1/2 þ 1/24. Periodic

strings of infinite length represent rational numbers that are not a finite sum

of powers of 2�n, like the number 1/3 ¼ 0.010101010101. . ., and vice versa.

Nonperiodic digit strings of infinite length represent irrational numbers, and

vice versa (Niven, 1956). For example,
ffiffiffi
2

p � 1 ¼ 0.0110101000001001. . . This

irrational number can be computed to as high a digital accuracy as one

pleases by the standard grade school algorithm.

We also know that every number in the unit interval can be formally

represented by a continued fraction expansion. However, to use a continued

fraction expansion to generate a particular number, we must first know the

initial condition or “seed.” As a simple example, one can solve for the square
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root of any integer easily via a continued fraction formulation: with
ffiffiffi
3

p ¼ 1þx,

so that 0 < x < 1, we have the continued fraction x ¼ 2/(2 þ x). In this

formula the digit 2 in the denominator is the seed (initial condition) that

allows us to iterate the continued fraction, x ¼ 2/(2 þ 2/(2 þ . . .)) and thereby

to construct a series of rational approximations whereby we can compute x ¼ffiffiffi
3

p � 1 to any desired degree of decimal accuracy. Turing (1936) proved via an

application of Cantor’s diagonal argument (Hopkin and Moss, 1976) that for

almost all numbers that can be defined to “exist” abstractly in the mathemat-

ical continuum there is no seed: almost all numbers (with measure one) that

can be defined to exist in the mathematical continuum are both irrational and

not computable via any possible algorithm. The measure-zero set of irrational

numbers that have an initial condition for a continued fraction expansion

were called computable by Turing. Another way to say it is that Turing

proved that the set of all algorithms is countable, is in one-to-one correspond-

ence with the integers. This takes us to the original idea of maximum compu-

tational complexity at the level of the Turing machine.

11.2.1 Computable numbers and functions

Mathematics is required to describe theoretical mechanics, but arithmetic can

be understood as a mechanical operation: Alan Turing mechanized the idea

of computation systematically by defining the Turing machine. A Turing

machine can in principle be used to compute any computable number or

function (Turing, 1936). We can recursively construct a computable number

or function, digit by digit, using only integers in an algorithm. The algorithm

can be used to generate as many digits as one wants, within the limits set only

by computer time. Examples are the continued fraction expansion for
ffiffiffi
2

p
and

the grade school algorithm for
ffiffiffi
2

p
.

An example of recursion is the logistic map xn ¼ Dxn�1(1 � xn�1) with

control parameter D. Recursion alone doesn’t guarantee computability: if the

initial condition x0 is noncomputable, or if D is noncomputable, then so are

all of the iterates xn for n > 0. If, however, we choose as initial condition a

computable number like x0¼
ffiffiffi
2

p � 1, and a computable control parameter like

D ¼ 4, then by expressing both the initial condition and the map using binary

expansions xn ¼ 0.e1(n). . .eN(n). . ., where D ¼ 4 ¼ 100 in binary, the logistic

map defines a simple automaton/machine from which each point of the orbit

x0, x1, . . ., xn, . . . can be calculated to as many decimals as one wants, always

within the limits set by computation time (McCauley, 1993, 1997a). Infor-

mation is lost only if one truncates or rounds an iterate, but such mistakes are

unnecessary (in grade school, such mistakes are penalized by bad grades,
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whereas scientific journals during the last 25 years have typically rewarded

them). We have just described an example of an exact, computable chaotic

trajectory calculated with controlled precision.

A noncomputable number or function is a number or function that

cannot be algorithmically generated digit by digit. No one can give an

example of a noncomputable number, although such numbers “fill up” the

continuum (are of measure one). If we could construct market statistics by a

deterministic model or game, then market statistics would be algorithmically

generated. This would not necessarily mean that the model or game is

complex. But what is the criterion for complexity? Let’s survey next a useful

attempt to define complexity.

11.2.2 Algorithmic complexity

Consider a binary string/pattern of length n. The definition of the algorithmic

complexity of the string is the length Kn of the shortest computer program

that can generate the string. The algorithm is the computer program. To keep

the discussion focused, let us assume that machine language is used on a

binary computer. The longest program of interest is: to write the digits one

after the other, in which case Kn ¼ n.

The typical sort of example given in popular papers on algorithmic infor-

mation theory is that 101010101010 should be less complex than a nonper-

iodic string like 100100011001. From a naive standpoint both strings would

appear to be equally simple. For example, seen as binary fractions, 0.1010 ¼
5/8 whereas 0.1001 ¼ 9/16. Every finite binary string can be understood as

either a binary fraction or an integer (1010.0 ¼ 5 and 1001.0 ¼ 17, for example).

Instead of writing the string explicitly, we can state the rule for any string of

finite length as: write the binary expansion of the integer or divide two

integers in binary. All rational numbers between zero and unity are specified

by an algorithm that states: divide integer P by integer Q. But the number of

steps required to carry out these divisions grows in length as the denominator

grows in size. Intuition is dangerous here. Stefano Zambelli has programmed

Turing machines on his laptop to show that the Kolmogorov complexity of

various simple-looking binary sequences can differ by orders of magnitude

(Velupillai, 2005a). One can prove that almost all numbers (in the sense of

measure one), written as digit expansions in any integer basis of arithmetic,

are algorithmically complex (Martin-Löf, 1966).

We can summarize by saying that many periodic binary sequences are

simple, and that some nonperiodic strings are also simple because the

required algorithm is short, like computing
ffiffiffi
2

p
. From this perspective,
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nonperiodic computable sequences that are constructed from irreducibly

very long algorithms are supposed to be more complex, and these sequences

can be approximated by rational sequences of long period. Unfortunately,

this definition still does not give us any “feeling” for or insight into what

complexity really means physically, economically, or biologically. Also, the

shortest algorithm that generates a given sequence may not be the one that

nature (or the market) uses. For example, one can generate pictures of

mountain landscapes via simple algorithms for self-affine fractals, but those

algorithms are not derived from physics or geology and in addition provide

no insight whatsoever into how mountains actually are formed, showing that

the shortest algorithm doesn’t necessarily explain the phenomenon physically.

What about the idea of complexity from both simple seeds and simple

algorithms? The logistic map is not complex but generates chaotic orbits from

simple binary initial conditions, like x0 ¼ 1/8. That is, the chaos is “manufac-

tured” from simplicity (1/8 ¼ 0.001) by a very simple algorithm. Likewise, we

know that there are one-dimensional cellular automata that are equivalent to

a Turing machine (Wolfram, 1983, 1984). However, the simpler the machine,

the more complicated the program. There is apparently no way to get com-

plexity from simple dynamics plus a simple initial condition.

11.2.3 Automata

Can every mathematical problem that is properly defined be solved? Motiv-

ated by this challenging question posed by Hilbert, Turing (1936) mechanized

the idea of computation and generalized the notion of typing onto a ribbon

of unlimited length to define precisely the idea of a universal computer, or

Turing machine. The machine is capable of computing any computable

number or function and is a formal abstraction of a real, finite computer.

A Turing machine has unlimited memory. By proving that almost all numbers

that can be defined to exist are noncomputable, Turing proved that there exist

mathematical questions that can be formulated but not definitively answered.

For example, one can construct computer programs that do not terminate

in finite time to yield a definite answer, representing formally undecidable

questions.

Von Neumann (1970a) formalized the idea of abstract mechanical systems,

called automata, that can be used to compute. This led to a more useful and

graphic idea of abstract computers with different degrees of computational

capability. A so-called “universal computer” or universal automaton is any

abstract mechanical system that can be proven to be equivalent to a Turing

machine. The emphasis here is on the word mechanical, in the sense of
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classical mechanical: there is no randomness in the machine itself, although

we can imagine the use of random programs in a deterministic machine. One

can generate a random program by hooking a computer up to radioactive

decays or radio noise, for example.

In thinking of a computer as an automaton, the automaton is the dynam-

ical system and the program is the initial condition. A universal binary

computer accepts all possible binary programs. Here’s an example of a very

simple automaton, one that is far from universal: it accepts only two different

programs and can compute only very limited results. Starting with the binary

alphabet {a, b} and the rule R whereby a is replaced by ab and b by ba we can

generate the nonperiodic sequence a, ab, abba, abbabaab, abbabaabbaababba, . . .

The finite automaton in Figure 11.1 computes the Thue–Morse sequence in the

following way. Consider the sequence of programs 0, 1, 10, 11, 100, 101, 110,

111, 1000, . . . to be run sequentially. Before running each separate program,

we agree to reset the machine in the state a. The result of all computations

is recorded as the combined sequence of outputs for each input, yielding the

Thue–Morse sequence: abbabaabbaababba. . . Note that the machine simply

counts the number of as in each program mod 2, and that the separate

programs are the integers 0, 1, 2, 3, . . . written in base two.

Addition can be performed on a finite automaton but multiplication,

which requires increasing the precision (increasing the number of bits held

in the registers and output) rapidly during the calculation, requires an

automaton of unlimited size (Hopkin and Moss, 1976). Likewise, determinis-

tic chaos requires increasing the precision within which the initial condition is

specified at a rate determined by the largest Liapunov exponent l. For an

iterated map xn ¼ f(xn�1) with l ¼ ln 2, for example, we must increase the

number of bits specified in the initial condition x0 (written as a binary

string) at the rate of one bit per iteration of the map. As an example, if

we choose x0 ¼ 1/8 for the logistic map xn ¼ 4xn(1 � xn�1) and write all

numbers in binary (4¼ 100, for example), then we obtain the orbit x0 ¼ 0.001,

x1 ¼ 0.0111, x2 ¼ 0.111111, x3 ¼ 0.0000111111, . . . The effect of the Liapunov

0

a b

0

1

1

Figure 11.1 The two-state automaton that generates the Thue-Morse
sequence.

11.2 What does “complex” mean? 249



exponent D ¼ 4 ¼ elnl ¼ 100 is to shift the third bit of the simple product

xn�1(1 � xn�1) into the first bit of xn, and also to tell us the rate at which we

must expect to increase the precision of our calculation per iteration in order

to avoid making a mistake that eventually will be propagated into an error

in the first bit. This orbit is chaotic but it is neither random (it is pseudo-

random) nor is it complex: the required algorithm is simple. The level of

machine complexity required for computing deterministic chaos here is

simply the level of complexity required for multiplication, plus adequate

memory for storing digit strings that grow in length at the rate Nn � 2nN0

where N0 is the number of bits in the initial condition (McCauley, 1993).

How do we know when we have a complex pattern or when we have

complex dynamics? In the absence of a physically or biologically motivated

definition of degrees of complexity, we must rely on definitions of levels

of complexity in computer science, like NP-completeness (Hopcroft and

Ullman, 1979). There is also the Chomsky hierarchy for formal language

recognition, which starts with a very simple automaton for the recognition

of simple inputs, and ends with a Turing machine for arbitrary recursive

languages (Feynman, 1996).

Next, we distinguish chaos from randomness and from complexity, but will

see that there can be overlap between chaos and complexity. It’s important to

make the distinction because complexity is sometimes confused with random-

ness in the literature.

11.2.4 Chaos vs randomness vs complexity

Ideas of computational complexity have arisen within physics from the stand-

points of both nonlinear dynamics2 and statistical physics.3 A deterministic

dynamical system cannot generate truly random numbers. Deterministic

chaos, which we will simply call chaos, is pseudorandomness of bounded

trajectories generated via positive Liapunov exponents. The origin of pseudo-

randomness always lies in an algorithm. In deterministic chaos the algorithm

is discovered by digitizing the underlying dynamical system and initial condi-

tions in an integer base of arithmetic. This is not at all the same as truncating

power series solutions of differential equations for computation and then

using floating point arithmetic. In contrast, randomness, for example white

noise or a Wiener process, is not algorithmically generated in an sde.

2 See Fredkin and Toffoli (1982) for computation with billiard balls.
3 Idealized models of neural networks are based on the Hopfield model (Hopfield, 1994; Hopfield and
Tank, 1986).
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Complexity is not explained by either deterministic chaos or randomness,

but is a phenomenon that is distinct from either.

Deterministic dynamics generating chaotic behavior is approximated by

easily predictable regular behavior over very short time scales, whereas

random behavior is always unpredictable at even the shortest observable time

scales. The same can be said of complexity generated by a deterministic

dynamical system: over short enough time scales all deterministic systems,

including chaotic and complex ones, are trivially predictable. Stochastic

processes, in contrast, are unpredictable even over the shortest time scales.

Scaling is sometimes claimed to describe complexity, but scaling is an idea

of simplicity: scaling is the notion that phenomena at shorter length scales

look statistically the same, when magnified and rescaled, as do phenomena at

larger length scales. In other words: no surprises occur as we look at smaller

and smaller length scales. In this sense, the Mandelbrot set is an example of

simplicity. So is the invariant set of the logistic map in the chaotic regime,

where a generating partition that asymptotically obeys multifractal scaling

has been discovered. Where does complexity occur in deterministic dynamics?

Edward Fredkin and Tommaso Toffoli showed in 1982 that billiard balls

with reflectors (a chaotic system) can be used to compute reversibly, demon-

strating that a Newtonian system is capable of behavior equivalent to a

Turing machine. The difficulty in trying to use this machine in practice stems

from the fact that the system is also chaotic: positive Liapunov exponents

magnify small errors very rapidly. In fact, billiard balls have been proven by

Ya. G. Sinai to be mixing, giving us an example of a Newtonian system that is

rigorously statistical mechanical. In 1993 Moore constructed simple deter-

ministic maps that are equivalent to Turing machines.4 In these dynamical

systems there are no scaling laws, no symbolic dynamics, no way of inferring

the future in advance, even statistically. Instead of scaling laws that tell us

how the system behaves at different length scales, there may be surprises at all

scales. In such a system, the only way to know the future is to choose an

initial condition, compute the trajectory and see what falls out. Given the

initial condition, even the statistics generated by a complex system cannot be

known in advance. In contrast, the statistics generated by a chaotic dynamical

system with a generating partition5 can be completely understood and classi-

fied according to classes of initial conditions. Likewise, there is no mystery

in principle about which statistical distribution is generated by typical sdes.

4 See Siegelmann (1995) for a connection with the Hopfield model.
5 A generating partition is a natural, unique coarsegraining of phase space generated by the dynamical
system. For chaotic one-dimensional maps, the generating partition, if it exists, is discovered via
backward iteration of the (always multi-valued) map.
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However, the element of complexity can perhaps be combined with stochastic

dynamics as well.

Complexity within the chaotic regime is unstable due to positive Liapunov

exponents, making the systems unreliable for building machines. Therefore

the emphasis in the literature on the appearance of complexity at the transi-

tion to chaos.

11.2.5 Complexity at the border of chaos

In equilibrium statistical physics, universal scaling exponents arise at order-

disorder transitions. For example, the transition from normal, viscous flow

to superfluid flow is characterized by scaling exponents that belong to the

same universality class as those for other physical systems with the same

symmetry and dimension, like the planar Heisenberg ferromagnet on a

three-dimensional lattice. The scaling exponents describing the vanishing of

the order parameter at the critical point, the divergence of the susceptibility,

and the behavior of other singular thermodynamic quantities are called

critical exponents.

A related form of scaling exponent universality has also been discovered

for dynamical systems at the transition to chaos where the systems under

consideration are far from thermal equilibrium (Feigenbaum, 1988). For

example, every map in the universality class of iterated maps defined by the

logistic map generates the same scaling exponents at the transition to chaos.

The same is true for the circle map universality class. This kind of universality

is formally analogous to universal scaling that occurs at a second-order phase

transition in equilibrium statistical physics.

It is known that limited computational capability can appear in determin-

istic dynamical systems at the borderline of chaos, where universal classes of

scaling exponents also occur. At the transition to chaos the logistic map

defines an automaton that can be programmed to do simple arithmetic

(Crutchfield and Young, 1990). It is also known that the sandpile model,

at criticality, has nontrivial computational capability (Moore and Nilsson,

1999). Both of these systems produce scaling laws and are examples of

computational capability arising at the borderline of chaos, although the

scaling exponents do not characterize the computational capability generated

by the dynamics. Moore showed that simple-looking one- and two-dimensional

maps can generate Turing machine behavior, and speculated that the Liapunov

exponents vanish asymptotically as the number of iterations goes to infinity,

which would represent the borderline of chaos (Moore, 1990, 1991; Koiran

and Moore, 1999).
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There is interest within statistical physics in self-organized criticality

(SOC), which is the idea of a far-from-equilibrium system where the control

parameter is not tuned but instead dynamically adjusts itself to the borderline

of chaos (Bak et al., 1987, 1988). The approach to a critical point can be

modeled simply (Melby et al., 2000). The logistic map, for example, could

adjust to criticality without external tuning if the control parameter

would obey a law of motion Dm ¼ Dc � am(Dc � Dm�1) with �1 < a < 1

and m ¼ 1, 2, . . ., for example, where Dc is the critical value. One can also try

to model self-adjustment of the control parameter via feedback from the map.

However, identifying real physical dynamical systems with self-organized

behavior seems nontrivial, in spite of claims that such systems should be

ubiquitous in nature.

Certain scaling laws have been presented in the literature as signaling

evidence for SOC, but a few scaling laws are not an adequate empirical

prescription: scaling alone does not tell us that we are at a critical point,

and we cannot expect critical exponents to be universal except at a critical

point. SOC is an attempt to realize the notion that complexity occurs at the

borderline of chaos, but scaling behavior is not complex. Moore and Nilsson

(1999) have discussed the computational complexity of sandpile models.

Israeli and Goldenfeld (2004, 2006) have offered a different idea of coarse-

grained complexity, and have argued that there are predictable aspects. These

analyses represent the frontier of complexity research and leave us without

any intuitive feeling for complexity.

11.3 Replication, mutations, and reliability

We will now concentrate on “surprises,” which Moore (1990) has suggested

are the essence of complexity. Surprises may also describe the changes in

market sentiment that lead to booms and busts. But first, some thoughts that

point in the direction of surprises from computer theory and biology.

From the standpoint of physics, complex systems can do unusual things.

One is self-replication. Von Neumann (1970a), who invented the first example

of an abstract self-replicating automaton, also offered the following rough

definition of complexity: a system is simple when it is easier to describe

mathematically than to build (chaos in the solar system, for example).

A system is called complex if it is easier to build or produce it than to describe

it mathematically, as in the case of DNA leading to an embryo. Von

Neumann’s original model of a self-replicating automaton with 32 states

was simplified to a two-state system by McCullough and Pitts (Minsky,
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1967). The model was later generalized to finite temperatures by Hopfield

(1994) and became the basis for simple neural network models in statistical

physics.

Both bacteria and viruses can replicate themselves under the right condi-

tions, but we cannot know in advance the entirely new form that a virulent

bacterium might take after mutation. There, we do have not the probabilities

for different possible forms for the bacteria, as in the tosses of a die. We have

instead the possibility of an entirely new form, something unexpected, occur-

ring via mutation during the time evolution of the dynamics. The result of

fertilizing an egg with a sperm is another example of complexity. The essence

of complexity is unpredictability in the form of “surprises” during the time

evolution of the underlying dynamics. Scaling, attractors, and symbolic

dynamics cannot be used to characterize complexity. From the standpoint

of surprises as opposed to cataloging probabilities for a set of known,

mutually exclusive alternatives, we can also see scientific progress as an

example of “mutations” that may represent an underlying complex dynamical

process: one cannot know in advance which new scientific discoveries will

appear, nor what new technologies and also economies they may give birth to.

Clearly, the economists’ idea of equilibrium is completely useless for under-

standing inventiveness and economic growth.

Game theory, particularly Nash equilibrium ideas, is used by mainstream

economic theorists (Gibbons, 1992) and has had very strong influence on the

legal profession at high levels of operation (Posner, 2000). Nash equilibria

have been identified as neo-classical, which partly explains the popularity of

that idea (Mirowski, 2002). In econophysics, following the inventive econo-

mist Brian Arthur, the Minority Game has been extensively studied and

solved by the Fribourg school (Challet et al., 2005). Von Neumann first

introduced the idea of game theory into economics, but later abandoned

game theory as “the answer” in favor of studying automata.

Standard economic theory emphasizes optimization, whereas biological

systems are apparently redundant rather than optimally efficient (von

Neumann, 1970b).6 This pits the idea of efficiency/performance against reli-

ability, as we now illustrate. A racing motor, a sequential digital computer,

and a thoroughbred horse are examples of finely tuned, highly organized

machines. One small problem, one wire disconnected in a motor’s ignition

system, and the whole system fails. Such a system is very efficient but failure-

prone. A typical biological system, in contrast, is very redundant and inefficient

6 For a systematic discussion of the ideas used in von Neumann’s paper, see the text by Brown and
Vranesic (2000).
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but has invaluable advantages. It can lose some parts, a few synapses, an arm,

an eye, or some teeth, and still may function at some reduced and even

acceptable level of performance, depending on circumstances. Or, in some

cases, the system may even survive and function on a sophisticated level, like

bacteria that are extremely adaptable to disasters like nuclear fallout. A one-

legged runner is of little use, but an accountant, theorist, or writer can

perform his work with no legs, both in principle and in practice. The loss of

a few synapses does not destroy the brain, but the loss of a few wires

incapacitates a PC, Mac, or sequential mainframe computer. Of interest in

this context is von Neumann’s paper on the synthesis of reliable organisms

from unreliable components. Biological systems are redundant, regenerative,

and have error-correcting ability. Summarizing, in the biological realm the

ability to correct errors is essential for survival, and the acquisition of perfect

information by living beings is impossible (see Leff and Rex (1990) for a

collection of discussions of the physical limitations on the acquisition of

information-as-knowledge). In economic theory we do not even have a sys-

tematic theory of correcting misinformation about markets. Instead, econom-

ics texts still feed students the standard neo-classical equilibrium line of

perfect information acquisition and Pareto efficiency.7

In the name of control and efficiency, humanly invented organizations like

firms, government, and the military create hierarchies. In the extreme case of

a pure top-down hierarchy, where information and decisions flow only in one

direction, downward into increasingly many branches on the organizational

tree, a mistake is never corrected. Since organizations are rarely error-free, a

top-down hierarchy with little or no upward feedback, one where the sup-

posedly “higher-level automata” tend not to recognize (either ignore or don’t

permit) messages sent from below, can easily lead to disaster. In other words,

error-correction and redundance may be important for survival. Examples of

dangerous efficiency in our age of terrorism is the concentration of a very

large fraction of the US’s refining capacity along the Houston Ship Channel,

the concentration of financial markets in New York, and the concentration of

government in a few buildings in Washington, DC.

Adami (2002) and Wilke and Adami (2002) have offered ideas about

evolution of complexity in digital simulations, and Velupillai (2005a) has

written extensively on computability in economics, but we have no empiric-

ally based theory of either economic or biological behavior, so the existing

exercises on complexity are too far removed from the phenomena we want to

7 Imperfect information is discussed neo-classically, using expected utility, in the theory called
“asymmetric information” by Stiglitz and Weiss (1992) and by Ackerlof (1984).
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understand. In principle, complexity might emerge via bifurcations in simple

models. This leads us to the notions discussed next.

11.4 Emergence and self-organization

Molecular biology is apparently largely about complexity at the cellular and

molecular (DNA-protein) level. For example, the thick, impressive, and

heavy text by Alberts et al. (2002) is an encyclopedia of cell biology, but

displays no equations. Again, with no equations as an aid, Weinberg (1999)

describes the five or six independent mutations required to produce a metas-

tasizing tumor. All these impressive biological phenomena may remind us

more of the results of a complicated computer program than of a dynamical

system, and have all been discovered reductively by standard isolation of

cause and effect in controlled, repeatable experiments. We might learn some-

thing about complexity “physically” were we able to introduce some useful

equations into Alberts et al. The Nobel Prize winning physicist-turned-

biophysicist Ivar Giæver (1999) has remarked on the difference between

biology and physics texts: “Either they are right or we are right, and if we

are right then we should put some equations in that text.”

Many economists and econophysicists would like to use biological analo-

gies in economics, but the stumbling block is the complete absence of a

dynamical systems description of biological evolution. Instead of simple

equations, we have simple objects (genes) that behave like symbols in a

complicated computer program. Complex adaptable mathematical models

notwithstanding, there exists no mathematical description of evolution that

is empirically correct at the macroscopic or microscopic level. Schrödinger

(1944), following the track initiated by Mendel8 that eventually led to the

identification of the molecular structure of DNA and the genetic code,

explained quite clearly why evolution can only be understood mutation by

mutation at the molecular level of genes. Mendelism (Olby, 1985; Bowler,

1989) provides us with a falsifiable example of Darwinism at the cellular level,

the only precise definition of biological evolution, there being no falsifiable

model of Darwinism at the macroscopic level. That is, we can understand

how a cell mutates to a new form, but we do not have a picture of how a fish

evolves into a bird. That is not to say that it hasn’t happened, only that we

don’t have a model that helps us to imagine the details, which must be

grounded in complicated cellular interactions that are not yet understood.

Weinberg (1999) suggests that our lack of understanding of cellular networks

8 Mendel studied physics before he studied peas.
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also limits our understanding of cancer, where studying cellular interactions

empirically will be required in order to understand how certain genes are

turned on or off.

The terms “emergence” and “self-organization” are not precisely defined;

they mean different things to different people. What can writers on the

subject have in mind other than symmetry-breaking and pattern formation

at a bifurcation in nonlinear dynamics, when they claim that a system self-

organizes.9 Some researchers who study complex models mathematically

expect to discover new, “emergent” dynamics for complex systems, but so

far no one has produced an empirically relevant or even theoretically clear

example. See Lee (1998) for a readable account of some of the usual ideas of

self-organization and emergence. Crutchfield and Young (1990), Crutchfield

(1994),10 and others have emphasized the interesting idea of nontrivial com-

putational capability appearing/emerging in a dynamical system due to bifur-

cations. This doesn’t present us with any new dynamics; it’s simply about

computational capability appearing within already existing dynamics at a

bifurcation to chaos or beyond. Crutchfield assumes a generating partition

and symbolic dynamics, but Moore has shown that we have to give up that

idea for dynamics with Turing-equivalent complexity. Another weakness in

Crutchfield is the restriction of noise to stationary processes. If we would

apply that proposed method of discovery to Galilean and Keplerian orbits,

then we would discover only trivial automata reflecting orbits of periods zero

and one. Newton did considerably better, and we’ve done better in finance

theory, so there must be more to the story. One can argue: the scheme wasn’t

invented to discover equations of motion, it was invented as an attempt to

botanize complexity. In that case, can the program be applied to teach us

something new and unexpected about empirical data? Why doesn’t someone

try to apply it to market data? Crutchfield’s scheme is in any case far more

specific than the program proposed by Mirowski (2002) in a related vein.

Given the prevailing confusion over “emergence,” I offer an observation to

try to clarify one point: whatever length and time scales one studies, one first

needs to discover approximately invariant objects before one can hope

to discover any possible new dynamic.11 The “emergent dynamics,” if such

9 Hermann Haken (1983), at the Landau–Ginzburg level of nonequilibrium statistical physics, provided
examples of bifurcations to pattern formation via symmetry-breaking. Too many subsequent writers
have used “self-organized’ as if the term would be self-explanatory, even when there is no apparent
symmetry-breaking.

10 My discussion is contrary to the philosophical expectations expressed, especially in part I, of
Crutchfield’s 1994 paper.

11 For example, a cluster, like suburbanization in a city (Lee, 2004), is not an example of an approximately
invariant object, because the cluster changes significantly on the length and time scale that we want to
study it.
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dynamics can be discovered, will be the dynamics of those objects. Now, what

many complexity theorists hope and expect is that new dynamical laws

beyond physics will somehow emerge statistically-observationally at larger

length and time scales, laws that cannot be derived systematically from

phenomena at smaller length scales. A good example is that many Darwinists

would like to be able to ignore physics and chemistry altogether and try to

understand biological evolution macroscopically, independently of the mass

of details of genetics, which have emerged from controlled experiments and

data analysis.

But consider the case of cell biology where the emergent invariant objects

are genes. Genes constitute a four-letter alphabet used to make three-letter

words. From the perspective of quantum physics, genes and the genetic code

are clear examples of emergent phenomena. With the genetic code, we arrive

at the basis for computational complexity in biology. Both DNA and RNA

are known to have nontrivial computational capability (Bennett, 1982;

Lipton, 1995; Adelman, 1994). One can think of the genes as “emergent”

objects on long, helical molecules, DNA and RNA. But just because genes

and the code of life have emerged on a long one-dimensional tape, we do not

yet know any corresponding new dynamical equations that describe genetics,

cell biology, or cancer. So far, one can only use quantum or classical mech-

anics, or chemical kinetics, in various different approximations to try to

calculate some aspects of cell biology.

The point is that the emergence of invariant objects does not imply the

appearance of new laws of motion. Apparently, invariant objects can emerge

without the existence of any simple new dynamics to describe those objects.

Genes obey simple rules and form four-letter words but that, taken alone,

doesn’t tell us much about the consequences of genetics, which reflect the

most important possible example in nature of computational complexity: the

evolution from molecules to cells and human life.

At a more fundamental level, genes obey the laws of quantum mechanics

in a heat bath, with nontrivial intermolecular interactions. I emphasize that

Schrödinger (1944) has already explained why we should not expect to

discover statistically based laws that would describe evolution at the macro-

scale. So I am not enthusiastic about the expectation that new “emergent”

laws of motion will be discovered by playing around with nonempirically

inspired computer models like “complex adaptable systems.” I think that we

can only have hope of some success in economics, as in chemistry, cell

biology, and finance, by following the traditional Galilean path and sticking

close to the data. For example, we can thank inventive reductionist methods

for the known ways of controlling or retarding cancer, once it develops.

258 Complexity



Thinking of examples of emergence in physics, at the Newtonian level,

mass and charge are invariant. The same objects are invariant in quantum

theory, which obeys exactly the same local space-time invariance principles as

does the Newtonian mechanics, and gives rise to the same global conservation

laws. We do not yet understand how Newtonian mechanics “emerges” from

quantum mechanics in a self-consistent mathematical way (quantum phase

coherence cannot be destroyed in a linear theory). Similarly, we do not

understand why genes should behave like elements of a classical computer,

while the DNA molecule requires quantum mechanics for its formation and

description. Quantum phase coherence must be destroyed in order that a

Newtonian description, or classical statistical mechanics, becomes valid as

a mathematical limit as Planck’s constant vanishes. One can make arguments

about the destruction of phase coherence via external noise in the heat

bath defined by the environment, but this path only begs the question. This

incompleteness in our theoretical understanding does not reduce our confi-

dence in either classical or quantum mechanics, because all known observa-

tions of the motions of masses and charges are described correctly to within

reasonable or high decimal precision at the length scales where each theory

applies. One point of mesoscopic physics is to study the no-man’s-land

between the quantum and classical limits.

The creation of new markets depends on new inventions and their exploit-

ation for profit. Mathematical invention has been described psychologically

by Hadamard (1945). Conventional ideas of psychology (behavioral, etc.)

completely fail to describe the solitary mental act of invention, whether in

mathematical discovery or as in the invention of the gasoline engine or the

digital computer. Every breakthrough that leads to a new invention is a

“surprise” that emerges from within the system (the system includes human

brains and human actions) that was not foreseen. I now suggest a simple-

minded analogy between biology and economics. A completely new product

is based on an invention. The creation of a successful new market, based on a

new product, is partly analogous to an epidemic: the disease spreads seem-

ingly uncontrollably at first, and then eventually meets limited or negative

growth. The simplest mathematical model of creation that I can think of

would be described mathematically by the growth and branching of a com-

plete or incomplete tree (binary, ternary, . . .), where new branches (inventions

or breakthroughs) appear suddenly without warning. This is not like a search

tree in a known computer program. Growth of any kind is a form of instabil-

ity, and mathematical trees reflecting instability do appear in nature, as in the

turbulent eddy cascade. But in the case of turbulence the element of surprise

is missing in the dynamics.
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One can also make nonempirically based mathematical and even

nonmathematical models, and assert that if we assume this and that, then

we expect that such and such will happen. That sort of modeling activity is not

necessarily completely vacuous, because new socio-economic expectations can

be made into reality by acting strongly enough on wishes or expectations: a

model can be enforced or legislated, for example. Both communism (imple-

mented via bloody dictatorships) and globalization via deregulation and

privatization (implemented via legislation, big financial transfers, and supra-

governmental12 edict) provide examples. In any case, models based on real

market statistics can be useful for confronting ideologues with the known

constraints imposed by reality. Instead of market equilibrium, we see that

instability and surprises occur with increased frequency under deregulation.

12 Examples of powerful supragovernmental organizations are the IMF, the World Bank, the World
Trade Organization, and the European Union. One might try to argue roughly that the US Federal
Reserve Bank has had a somewhat comparable influence.
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