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Introduction

The LIBOR Market Model (LMM) is the first model of interest rates dynamics consistent
with the market practice of pricing interest rate derivatives. The model was created in 1994 by
Kristian Miltersen, Klaus Sandmann and Dieter Sondermann (1997), then developed in 1995
to a form applicable in practice by Alan Brace, Dariusz Gatarek and Marek Musiela (1997).
Its current form (including the name) belongs to Farshid Jamshidian (1997) and is based an
abstract formulation of LMM by Marek Musiela and Marek Rutkowski (1997a). The LMM
is also called Brace-Gatarek-Musiela (BGM) model. Some authors claim that the model
was discovered independently, that is not true – there was close collaboration between the
Bonn group (Miltersen, Sandmann and Sondermann), the Sydney group (Brace, Gatarek and
Musiela), Marek Rutkowski in Warsaw and Farshid Jamshidian in London. Its popularity
is a result of consistency with practice, allowing the pricing of vanilla products in LMM
to be reduced to using standard market formulae. However ease of use does not suffice to
win the market, and there are numerous theoretical advantages to the LMM as well. The
LMM was preceded by so called short rate models – where the dynamics of all interest rates
was determined by the dynamics of the overnight rate. This is a counterintuitive property
but practitioners learned how to apply it to a relatively high degree of effectiveness. The
next stage was the seminal Heath-Jarrow-Morton (HJM) model (1992), where attention was
shifted correctly from the artificial notion of the short rate to the whole term structure
of interest rates – a mathematically interesting problem of random dynamics in infinite
dimension. We may say that all questions were already answered, the main contribution
of the LMM is one more shift of attention to instantaneous forward rates and, interesting
for theorists, to forward rates with market compounding – quarterly, semi-annual, annual,
etc. The history of science has told us that the simple and obvious properties are the most
difficult to spot.

Why one more book on LMM? In almost all books dealing with derivatives pricing, there
is a chapter on the LMM, for example ten books1 deal entirely or for large parts with the
LMM. One thing is sure – a new book on the LMM must be really new. What is (in our
opinion) new in this book is the full practitioner’s approach – a quantitative analyst, being
the target reader of our book, is neither a less gifted version of an academic researcher nor
an operator of pricing software nor just a trader’s associate. We tried to adopt the specific

1 Brigo and Mercurio, 2001; Hunt and Kennedy, 1999; Jaeckel, 2002; Joshi, 2003; Musiela and Rutkowski, 1997b; Pelsser, 2000;
Rebonato, 2002, 2004; Schoenmakers, 2005; Zühlsdorff, 2002.
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language of a quantitative analyst to the largest possible level – borrowing from the language
of a trader or of an academia theorist as little as necessary. It is one of first books entirely
by quants for quants. In the theoretical part, we try to be as rough as possible – we do
not deal with issues like capital asset pricing, security replication, complete markets, mean-
variance hedging, existence and uniqueness of martingale measures and other issues, instead
we refer the reader to other sources such as Musiela and Rutkowski, 1997b; Bjork, 2004;
Shreve, 2004, 2005. In our very personal but justified view, they have very little impact
on every day pricing of financial derivatives. We try to replicate the way of thinking of a
quantitative analyst – mathematical notions must be kept in mind but they are treated in a way
closer to physics rather than mathematics: computational efficiency is more important than
mathematical rigour. On the other hand, except for basic mathematical ideas, we derive all
used properties, and at the same time try to make the book as self-contained as possible. In the
practical parts our attention is focused on concrete financial applications rather than the full
presentation of the numerical method, which may make it a tough read and indeed to some
extent slightly messy. This is because no-one before, to our knowledge, has used this kind of
presentation.

The book is self-contained but advanced, we do not recommend it as a first textbook in
derivatives pricing. Most parts of this book were not published in full extent before and we
cover new and important issues such as various drift approximations, various parametric and
nonparametric calibrations, the uncertain volatility approach to smile modelling, a version
of the HJM model based on market observables and the duality between BGM and HJM
models. We decided to divide the book into three parts – theory, calibration and numerical
pricing methods.

In the first part we deal with the mathematical background of the BGM and HJM models
and the models themselves. We start with the shortest ever summary on probability theory
and stochastic processes. We present new compact proofs on change of numeraire and
forward measure formulas.

Then we present both models in parallel, both in the spot and forward measures. Special
attention is paid to analogies between the models. In addition we give a brief summary on
most important short rate models: Vasiček (1997), Cox-Ingersoll-Ross (1985) and Black-
Karasiński (1991) and their relation to HJM model. We close the section with cap and floor
formulae in BGM and HJM models.

In the next section we give basic information on tree and Monte Carlo simulation of the
BGM and HJM models in larger dimensions, particularly focussing on Principal Compo-
nent Analysis and Cholesky decomposition. We give new formulae for a multidimensional
trinomial tree approximation for correlated diffusions.

The next section is entirely devoted to pricing of swaptions. There exists a swap-related
counterparty of the LIBOR market model called the swap market model (Jamshidian, 1997)
but to our knowledge is rarely used in practice. Therefore we have decided to restrict
ourselves to swaption pricing in the LIBOR market model, which in practice coincides
with swap market model. In this section we give market conventions for pricing swaptions
by the Black formula. We give three accurate approximations to swaption prices with the
BGM and HJM models: linear, semilinear and nonlinear. We study the problem of volatility
parameterisation and propose six methods: parametric by Rebonato (2002), parameterised,
separated, time homogeneous, universal and locally single factor. We close the section with
a numerical example dealing with the separated calibration approach and its relation to the
string model of Longstaff-Schwartz-Santa Clara for the BGM model (2001).
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In the next section we investigate the problem of volatility smile modelling in the interest
rate derivatives world. We start with presenting exact nature of the volatility smile, how the
smile is quoted for interest rate derivatives and what the difference is in the methodology
between smile modelling for equity and currency and smile modelling for interest rates.
In particular we study the problem of smile modelling for long term options, its relation
to the ergodicity of stochastic processes and its implications for interest rate volatility
smiles. We propose two methods for smile modelling: the shifted BGM model and the
uncertain volatility displaced BGM model. We prove that the shifted BGM model forms an
interpolation between BGM and HJM models. We finish the section with a simple approach
to smile modeling by ‘mixing’ the BGM and HJM models.

The last section of the theoretical part is devoted to the single dimensional BGM and HJM
models – giving an extremely easy method of pricing certain interest derivatives, constant
maturity swaps (CMS) in particular. We present the dynamics of CMS rates in both BGM
and HJM models and discuss calibration to co-terminal swaptions and smile modelling
issues.

The second part of the book deals with practical issues related to calibration and is
designed as a manual allowing the reared to implement the presented algorithms in an easy
way. We present the most popular calibration algorithms of the LIBOR Market Model used
in practice. Although descriptions are restricted only to at-the-money (ATM) volatilities
the presented step-by-step procedure of calibration is very detailed and can really help the
beginning quant to understand the matter.

The chapters containing calibration algorithms are organized in the following way.
Chapter 7 presents the first necessary steps in calibration. We present the market data set
used in all calibration procedures. All the market data are taken from a particular working
day and contains discount factors bootstrapped from par interest rates (LIBOR’s, FRA, IRS),
at-the-money cap volatilities and swaption volatilities. We deal with EUR currency in all
the calibration chapters.

The next part in the chapter describes the nature of caps and ways of determining resets
and payments. That may seems to be easy but provides a short introduction for some of the
readers may not be familiar with nature of the cap mechanism. For that case is seems to be
useful to show the interpretation of cap quotes.

After that we present a big section describing calibration algorithms to caps. Presented in
the book the calibration algorithms to caps are the simplest algorithms used in practice and
do not require the use of any optimization techniques. All the algorithms are presented in
a high level of detail. Because calibration of the LIBOR Market Model requires knowing
how to price caps, the standard Black formula for caplets is also presented both theoretically
and practically. Next we present the market standard of determining strikes for caps through
deriving forward swap rates.

The next part of the chapter is dedicated to stripping caplet volatilities from cap quotes
which is the last step before presenting the final calibration to caps. In the calibration some
definitions are introduced and recalled. This includes instantaneous and piecewise constant
instantaneous volatilities and also time homogeneity. Two ways of calculating volatility
structures are provided: piecewise constant instantaneous volatilities depending on time to
maturity and piecewise constant instantaneous volatilities depending on the maturity of the
underlying forward rate. Both approaches have examples of usage of them in practice. One
of the example shows that time homogeneity assumption may lead to negative instantaneous
volatilities.
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Chapter 8 introduces calibration algorithms to swaptions. First we present one of the
popular approaches of BGM calibration what is called the separated approach. The separated
approach provides a direct way of calibrating the model to the full set of swaptions. As a
result of some computations we show the variance-covariance matrices and also perform
some analysis to compute eigenvectors and eigenvalues. We compare results between the
many variants of the separated approach by computing theoretical swaption volatilities and
root mean squared errors between them and market swaption volatilities.

In the next paragraph we develop the previously demonstrated separated approach by
adding an optimization algorithm. As the target function we set a root mean squared error
for differences between the theoretical and market swaption volatilities. We minimize that
function but with several restrictions for the VCV. We postulate that the VCV matrix must
be positive definite. For that case we implement a subalgorithm for reducing the VCV matrix
by removing all eigenvectors associated with negative eigenvalues. We present all necessary
steps for that calibration algorithm so that it can be utilised in practice. We present the whole
calibration algorithm in Matlab code.

Next we move to another widely used approach of calibration to swaptions which is called
the locally single factor approach. We present algorithms in a detailed way and present
results of instantaneous volatility calculations.

After that we present a nonparametric calibration to swaptions using historical correlations.
First we show that we have to compute the matrix of historical correlations of forward
rates. We give an example for EUR market and show some unexpected results that a lot of
historical correlations have negative signs. That may suggest that market of forward rates is
not as effective as everybody assumes.

We move afterwards to another widely used technique of BGM calibration which is
calibration to co-terminal swaptions. Analysing the results we can observe a typical hump
of volatility between one and three years. Our results are also similar to those obtained via
calibration to caps.

Chapter 9 turns to look at nonparametric calibration to caps and swaptions based on the
Rebonato approach. This is a very popular algorithm allowing one to obtain the implied
instantaneous correlations of forward rates. First we derive the annual caplet volatilities
driven by a dynamic of annual forward rates from the dynamics of quarterly forward
rates. Having done that we then compute the forward swap rates. Our goal is to find
such instantaneous correlations of LIBOR rates, which together with the instantaneous
volatilities obtained from caplet prices will give a negligible difference between the Black
and LFM swaption prices. For that reason we also recall the Black closed formula for
swaptions and also approximations to LFM Black squared swaption volatilities as well as
swap rates expressed as linear combination of forward rates. In the calibration we consider
a piecewise – constant instantaneous volatility structure. Finally we present theoretical and
market volatilities of swaptions together with differences between them after calibration.

The last part of the chapter is a simultaneously parametric calibration to caps and swap-
tions. After the derivation of caplet prices from cap prices we present all the necessary steps
of the algorithm including: the structure of parametric functions, optimization algorithms
and minimization functions. Finally we present the results.

It is worth bearing in mind that all calibration algorithms presented in the chapter contain
detailed steps allowing for them to be implemented in practice. Many theoretical aspects
are presented on diagrams and schemas in a simple manner. Additionally a lot of examples
are provided which we feel help the reader to really understand the matter. Finally results
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of each algorithm are presented and commented upon. The results obtained via different
algorithms can be used to value some interest rate derivatives and analyse the impact of
various techniques of calibrations on the fair value of exotic products.

The last and third part of the book deals with using numerical methods in the pricing of
derivatives. The pricing algorithms are again described at very high level of detail and they
are supported by numerical examples of ‘step-by-step’ calculations. The presented methods
are focused on pricing Bermudian and American claims, i.e. problem of optimal stopping.
Generally these methods can be split into two main groups:

(1) Trees
(2) Monte Carlo simulations

Chapter 10 presents different methods of drift approximation in the BGM model and the
application these methods to derivatives pricing. The first part of this chapter describes
different methods of drift approximation ranging from the simplest ‘frozen drift’ to a method
based on the Brownian Bridge. The second part of the chapter presents unpublished con-
structions of recombining binomial and trinomial trees basing upon a Brownian Bridge drift
approximation. We present four basis construction algorithms in the following sections:

7. Binomial tree construction for LA
n �t�

8. Binomial tree construction for LD
n �t�

10. Trinomial tree construction for LA
n �t�

11. Trinomial tree construction for LD
n �t�

Section 13 describes an approximation of annuities presenting the improvement that applied
to each of the aforementioned four basis constructions to improve its accuracy, especially
for very high volatilities of forward LIBORs (40 %–70 %). Although descriptions of the
tree construction is limited to the one dimensional case it can be easily generalized to
multidimensional cases. The third part of the chapter compares the accuracy of different
methods of drift approximation and shows that the tree constructions based on Brownian
Bridge approximations seem to outperform other approximations. The last part of the chapter
presents a complete application of the constructed binomial tree for pricing a Bermudian
swaption – starting from the calibration model to co-terminal European swaptions by a tree
construction to calculating the value of the priced swaption.

Chapter 11 presents an alternative approach for the HJM and BGM – the LIBOR Functional
Markov Model. The first part of the chapter describes a theoretical construction of the
one dimensional version of the model. Our description is based on that of Bennett and
Kennedy (2005). Unlike in case of the HJM and BGM, the dynamic of the interest rate
term structure in the LIBOR Functional Markov Model is not given by an analytical SDE.
It is derived from market prices of caps by a numerical construction. The second part of the
chapter describes constructions of binomial trees. This description is supported by numerical
‘step-by-step’ example of such a construction.

Chapter 12 gives an overview of different methods of pricing Bermudian claims: recom-
bining trees/lattices, stochastic mesh, direct methods, additive noise, Longstaff-Schwartz.
Two of presented approaches:

1. Recombining trees/lattices
2. Longstaff-Schwartz
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are widely used in practice. The exact implementation of these approaches are described in
Chapters 13 and 10.

Chapter 13 presents several algorithms that use Least Squares Monte Carlo to estimate
a stopping boundary. All the presented algorithms use one or two sets of Monte Carlo
scenarios for the evolution of interest rates (Forward LIBORs). The first part of the chapter
presents five different algorithms based on the LSM approach. The second part describes
numerical ‘step-by- step’ examples of some of the algorithms described in the first part. The
third part of the chapter presents results of a valuation of a Bermudian Swaption using each
of the derived algorithms. The fourth part presents an estimation of the differences between
the real derivative value and the expected value of its estimator and therefore shows reasons
for under- and overpricing that appear during valuation with LSM approaches. The last part
is a trial valuation algorithm taking into account the results of their application to Bermudian
swaption pricing (i.e. in third part of the chapter) as well as the theoretical divagation from
fourth part of the chapter.
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INDEX OF NOTATIONS FOR THE ENTIRE BOOK

AnN �t� = N∑
i=n+1

B�t�Ti� – annuity associated to a swap

B�t�T � – discount factors on the period [t� T ]

Ckl�s�T � =
T∫
s

�l�t� · �k�t�dt – BGM covariance

Dn�t� = B�t�Tn−1�

B�t�Tn�
– forward compound factors

d1 = ln�X�0�/K� + �2T/2

�
√

T
– in Black formula

d2 = d1 − �
√

T – in Black formula
� – accrual period
E – expected (mean) value
En – expected value under forward measure Pn

EnN – expected value under forward swap measure
PnN

�n�t� = 	�t�Tn� − 	�t�Tn−1� – volatility of forward compound factors
�nN �t� – HJM volatility of forward swap rates

Fkl�s�T � =
T∫
s

�l�t� · �k�t�dt – HJM covariance


i =

⎡
⎢⎢⎢⎣

�i
11 �i

12 � � � �i
1N

�i
21 �i

22 � � � �i
2N

� � � � � � � � � � � �

�i
N1 �i

N2 � � � �i
NN

⎤
⎥⎥⎥⎦ – BGM covariance matrix

�i
kl = Ckl�0� Ti� – BGM covariance

�n�t� – volatility of forward LIBOR rates
�nN �t� – BGM volatility of forward swap rates
K – strike price

Kn�t� = �Ln�t�

1 + �Ln�t�
– volatility component

kn – LIBOR shift

knN = N∑
i=n+1

ui�0�ki – swap shift

Ln�t� = �−1

(
B�t�Tn−1�

B�t�Tn�
− 1

)
– forward LIBOR rates

Mn
k �t� =

t∫
0

�n�s� · dWk�s� – BGM martingale


i
kl = Fkl�0� Ti� – HJM covariance

N – Principal notional

N n
k �t� =

t∫
0

�n�s� · dWk�s� – HJM martingale

P – probability
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Pn – forward measure
PnN – forward swap measure

�i =

⎡
⎢⎢⎢⎣


i
11 
i

12 � � � 
i
1N


i
21 
i

22 � � � 
i
2N

� � � � � � � � � � � �


i
N1 
i

N2 � � � 
i
NN

⎤
⎥⎥⎥⎦ – HJM covariance matrix

r�t� – short rate
R̃i

nN �t� – HJM swaption volatility weight
Ri

nN �t� – BGM swaption volatility weight

SnN �t� =
N∑

i=n+1
B�t�Ti�Li�t�

AnN �t�
– forward swap rates

SwaptionnN �0�K� – swaption price
	�t�T� – volatility of discount factors
�nN – market swaption volatility
T – time
Tn – time grid

uj�t� = B�t�Tj�

AnN �t�
– weight function

W�t� – Wiener process or Brownian motion

Wn�t� = W�t� +
t∫

0

	�s�Tn�ds – Wiener process under forward measure

WnN �t� = W�t� +
t∫

0

N∑
i=n+1

B�s�Ti�	�s�Ti�

AnN �t�
ds – Wiener process under forward swap

measure
X0�t� – savings account
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1
Mathematics in a Pill

The purpose of this chapter is to give a brief outline of the probability theory underlying the
mathematics inside the book, and to introduce necessary notation and conventions which are
used throughout.

1.1 PROBABILITY SPACE AND RANDOM VARIABLES

A probability triple �����P� consists of the following components:

1. A set � of elementary outcomes called the sample space.
2. A �-algebra � of possible events (subsets of �).
3. A probability function P � � → 	0�1
 that assigns real numbers between 0 and 1 called

probabilities to the events in �.

The conditional probability of A given B is defined as follows:

P�A�B� = P�A ∩ B�/P�B��

Two events are said to be independent if the following three (equivalent) conditions hold:

1. P�A ∩ B� = P�A�P�B�
2. P�A� = P�A�B�
3. P�B� = P�B�A�

A random variable X � � → G is a measurable function from a probability space � into a
Banach space G known as the state space.

We say that random two variables X and Y are independent if for all events A and B

P�X ∈ A�Y ∈ B� = P�X ∈ A�P�Y ∈ B��

We define expected (mean) value EX of the random variable X as the integral

EX =
∫
�

X���P�d���

and define the variance DX as

DX =
∫
�

�X��� − EX� ⊗ �X��� − EX�P�d���
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where ⊗ stands for tensor product. We may define the conditional expectation of a random
variable X with respect to a �-algebra � ⊂ �. It is the only random variable E�X��� such
that for all A ∈ � ∫

A

X���P�d�� =
∫
A

E�X������P�d���

If the state space is the real line R, we define the distribution function F�x� (also called the
cumulative density function or probability distribution function) as the probability that a real
random variable X takes on a value less than or equal to a number x.

F�x� = P�X < x��

If the function F is differentiable, its derivative f�x� is called the density function:

f�x� = F ′�x��

1.2 NORMAL DISTRIBUTIONS

A normal (Gaussian) distribution on R with mean EX = 
 and variance DX = �2 is a
probability distribution with probability function

f�t� = 1

�
√

2�
exp

{
−
(

�t − 
�2

2�2

)}
� (1.1)

f(x)

x

F(x)

x

Figure 1.1 Gaussian distribution.

We also have the result that the sum of two normal variables is also a normal variable. A
normal variable with mean 
= 0 and variance � = 1 is called a standard normal. We denote
the cumulative distribution by N . A vector of M normal variables is called a multidimensional
normal variable.

1.3 STOCHASTIC PROCESSES

Let Ft ⊂ � be a family of increasing �-algebras. We define the probability quadruple
���Ft���P� as a standard probability setting for all dynamic models used in this book. A
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stochastic process is an indexed collection of Ft-measurable random variables X�t�, each
of which is defined on the same probability triple �����P� and takes values on the same
codomain – in our case the interval 	0� T
. In a continuous stochastic process the index set
is continuous, resulting in an infinite number of random variables. A particular stochastic
process is determined by specifying the joint probability distributions of the various random
variables X�t�.

1.4 WIENER PROCESSES

A continuous-time stochastic process W�t� with the following properties

• W�0� = 0,
• W has continuous paths,
• W�s� and �W�t� − W�s�� are independent random variables for any 0 < s < t,
• W�t� has Gaussian distribution with mean 0 and variance t

is called Wiener process or Brownian motion. It was introduced by Louis Bachelier in
1900 as a model of stock prices. A vector of N independent Wiener processes is called a
multidimensional Wiener process. The general shape of such a process is seen in the example
below.

Figure 1.2 Wiener process.

1.5 GEOMETRIC WIENER PROCESSES

The following stochastic process

X�t� = X�0� exp
{


t + �W�t� − �2

2
t

}
(1.2)

is called geometric Wiener process. The coefficient 
 is called the drift and the coefficient
� is called the volatility.
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1.6 MARKOV PROCESSES

A stochastic process X whose future probabilities are determined by its most recent values
is called or is said to be Markov. This can be described mathematically in the following
manner

P�X�T� ∈ A�X�s�� s ≤ t� = P�X�T� ∈ A�X�t���

1.7 STOCHASTIC INTEGRALS AND STOCHASTIC
DIFFERENTIAL EQUATIONS

If Y is a predictable stochastic process such that

P

⎛
⎝ t∫

0

�Y�s��2 ds < �
⎞
⎠= 1�

we may define the stochastic integral with respect to the Wiener process W�t� to be

C�t� =
t∫

0

Y�s� · dW�s�� (1.3)

If the process Y is deterministic then C is Gaussian with independent increments. The
stochastic integral has the following properties:

EC�t� = 0 and EC2�t� = E

t∫
0

�Y�s��2 ds�

We say that Y satisfies the Ito stochastic differential equation

dY�t� = f�t� Y�t��dt + g�t� Y�t�� · dW�t��

Y�0� = y�
(1.4)

If

Y�t� = Y�0� +
t∫

0

f�s� Y�s��ds +
t∫

0

g�s� Y�s�� · dW�s��

If f and g are deterministic functions with properties that ensure uniqueness of solution,
then the process Y is a Markov process. A Geometric Wiener process satisfies the following
stochastic equation:

dX�t� = 
X�t�dt + �X�t�dW�t�� (1.5)
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1.8 ITO’S FORMULA

Let the process Y satisfy the Ito equation:

dY�t� = f�t�dt + g�t� · dW�t�

and let F be a smooth function. By applying the Ito formula we produce the stochastic
equation satisfied by the process F�t� Y�t��:

dF�t� Y�t�� =
(

�F

�t
+ 1

2
�2F

�Y 2
�g�t��2

)
dt + �F

�Y
dY�t�� (1.6)

1.9 MARTINGALES

The N -dimensional stochastic process M�t� is a martingale with respect to Ft if E�C�t��<�
and the following property also holds:

M�t� = E �M�T��Ft� �

Every stochastic integral (and hence any Wiener process) is a martingale. However, a
Geometric Wiener process is a martingale only if 
 = 0. Any continuous martingale M can
be represented as an Ito integral, i.e.

M�t� =
t∫

0

Y�s� · dW�s�

for some predictable process Y . A martingale can be considered as a model of a fair game
and therefore can be considered a proper model of financial markets.

1.10 GIRSANOV’S THEOREM

Let M be a positive continuous martingale, such that M�0�=1. Then there exists a predictable
stochastic process ��t� such that

dM�t� = −��t�M�t�dW�t�

or, equivalently

M�t� = exp

⎧⎨
⎩−1

2

t∫
0

�2�s�ds −
t∫

0

��s�dW�s�

⎫⎬
⎭ �

If we now define new probability measure ET by

PT �A� =
∫
�

IA���M�T���P�d���
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then PT is a probability measure under which the stochastic process

WT �t� = W�t� +
t∫

0

��s�ds

is a Wiener process.

1.11 BLACK’S FORMULA (1976)

Let the stochastic process X satisfy the equation:

dX�t� = �X�t�dW�t��

Let C represent the (undiscounted) payoff from a European call option, so that C =
E �X�T� − K�+. Then C is given by the Black’76 formula:

C = X�0�N�d1� − KN�d2�� (1.7)

where

d1 = ln�X�0�/K� + �2T/2

�
√

T
�

d2 = d1 − �
√

T�

1.12 PRICING DERIVATIVES AND CHANGING OF NUMERAIRE

We can introduce a general abstract approach to derivatives pricing as follows: We are
given a set of positive continuous stochastic processes X0�t��X1�t�� � � � �XN �t� representing
market quantities; these could be stock prices, interest rates, exchange rates, etc. We assume
that the market is arbitrage-free, so that the quantities M1�t� = X1�t�

X0�t�
� � � � �MN �t� = XN �t�

X0�t�
are

martingales, where X0�t� is called a basic asset – a numeraire. Pricing European derivatives
maturing at time T consists of calculating functionals of the form:

Price = E

{
�

X0�T�

}
�

where � is a random variable representing the payoff at time T . The process X0�t� is
understood as the time value of money, i.e. comparable to a savings account, so we have to
assume that X0�0� = 1. If we define N new probability measures by

Pi�A� = X−1
i �0�

∫
�

IA���Mi�T���P�d���

then this leads to the following theorem:
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Theorem. The processes X0�t�

Xi�t�
�

X1�t�

Xi�t�
� � � � �

XN �t�

Xi�t�
are martingales under the measure Pi.

Proof. Let � be an Ft-measurable random variable.

Xi�0�Ei

{
Xj�t�

Xi�t�
�

}
= E

{
Xj�t�

Xi�t�

Xi�t�

X0�t�
�

}
= EMj�t�� = E�E

(
Mj�T� �Ft

)
= EE

(
Mj�T��

∣∣∣Ft

)
= EMj�T�� = E

{
Xj�T�

Xi�T�

Xi�T�

X0�T�
�

}
= Xi�0�Ei

{
Xj�T�

Xi�T�
�

}
�

This simple theorem is extremely important. In pricing derivatives the savings account X0�t�
can be replaced by any other tradable asset – we can change the numeraire, which may
allow us to simplify certain calculations, for example we have

Price = E

{
�

X0�T�

}
= E

{
�

X1�T�

X1�T�

X0�T�

}
= X1�0�E1

{
�

X1�T�

}
�

1.13 PRICING OF INTEREST RATE DERIVATIVES AND THE
FORWARD MEASURE

The theory of interest rate derivatives is in some sense simple because it relies only on one
basic notion – the time value of money. Let us start with some basic notions: denote by
B�t�T� be discount factors on the period 	t� T
 – understood as value at time t of an obligation
to pay $1 at time T . Payment of this dollar is certain; there is no credit risk involved. This
obligation is also called a zero-coupon bond. We assume that zero-coupon bonds with all
maturities are traded and this market is absolutely liquid – there are no transaction spreads.
These assumptions are quite sensible since the money, bond and swap markets are very
liquid with spreads not exceeding several basis points. Notice several obvious properties of
discount factors:

0 < B�t�T� ≤ B�t� S� ≤ 1 if S ≤ T and B�T�T� = 1�

Let X0�t� be the savings account then all tradable assets ��t� satisfy the arbitrage property
that

��t�

X0�t�
is a martingale�

In particular we have that

M�t�T� = B�t�T�

X0�t�B�0� T�

is a positive continuous martingale. We assume that the savings account is a process with
finite variation – existence and uniqueness of a savings account may be a subject to a
fascinating mathematical investigation. Since this problem is completely irrelevant to pricing
issues – we refer to Musiela and Rutkowski (1997b) stating only that it is satisfied for all
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practical models. The savings account is of little interest because it is not a tradable asset,
hence its importance is rather of mathematical character and practitioners try get rid of all
notions not related to trading as soon as possible. We adopt this principle and will shortly
remove the notion of savings account from our calculations.

There exists a d-dimensional stochastic process ��t�T� a d-dimensional Brownian motion
and such that

dB�t�T� = −B�t�T� �−d ln X0�t� + ��t�T� · dW�t��

and

dM�t�T� = −M�t�T���t�T� · dW�t��

Remark. The d-dimensional representation is not unique, however uniqueness does hold for
the single dimensional representation. Since most financial models are multidimensional we
have chosen the less elegant d-dimensional representation. The dot stands for scalar product.

Therefore

M�t�T� = exp

⎧⎨
⎩−1

2

t∫
0

���s�T��2ds −
t∫

0

��s�T� · dW�s�

⎫⎬
⎭

and

B�t�T� = B�0� T�X−1
0 �t� exp

⎧⎨
⎩−1

2

t∫
0

���s�T��2ds −
t∫

0

��s�T� · dW�s�

⎫⎬
⎭ � (1.8)

Since B�T�T� = 1� M�T�T�B�0� T� = X−1
0 �T�.

The pricing of European interest rate derivatives consists of finding expectation of dis-
counted values of cash flows

E
(
X−1

0 �t��
)
�

where � is an FT -measurable random variable – the intrinsic value of the claim. Define the
probability measure ET by

ET � = E�M�T�T�

for any random variable �. By the Girsanov theorem ET is a probability measure under
which the process

WT �t� = W�t� +
t∫

0

��s�T�ds

is a Wiener process. Now

EX−1
0 �T�� = B�0� T�EM�T�T�� = B�0� T�ET ��
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We may take discounting with respect to multiple cash flows as in the case of swaptions.
Let � be accrual period for both interest rates and swaps. For simplicity, we assume it is
constant. Define consecutive grid points as Ti+1 = Ti + � for a certain initial T = T0 < �.
To ease the notation, we set En = ETn

and Wn = WTn
. The forward compound factors and

forward LIBOR rates are defined as

�Ln�t� + 1 = Dn�t� = B�t�Tn−1�

B�t�Tn�
(1.9)

and forward swap rates as

SnN �t� =
N∑

i=n+1
B�t�Ti�Li�t�

AnN �t�
= B�t�Tn� − B�t�TN �

�AnN �t�

where

AnN �t� =
N∑

i=n+1

B�t�Ti��

Now let

C�SnN � =
N∑

i=n+1

X−1
0 �Ti� =

N∑
i=n+1

B�0� Ti�M�Ti�Ti��

Thus the pricing of European swap derivatives consists of finding

E�C�SnN ����

where � is an FTn+1
-measurable random variable – the intrinsic value of the claim. Since

M�t�T� is a positive continuous martingale we also have that the following is a positive
continuous martingale:

M�t�SnN � =
N∑

i=n+1
B�0� Ti�M�t�Ti�

AnN �0�
=

N∑
i=n+1

B�t�Ti�

X0�t�AnN �0�
�

Moreover

dM�t� SnN � = −
N∑

i=n+1
B�0� Ti�M�t�Ti�

AnN �0�
·

N∑
i=n+1

B�0� Ti�M�t�Ti���t�Ti�

N∑
i=n+1

B�0� Ti�M�t�Ti�

dW�t�

= −M�t�SnN �

N∑
i=n+1

B�t�Ti���t�Ti�

AnN �t�
dW�t��
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Therefore EnN defined by

EnN � = E�M�Tn+1� SnN �

is a probability measure under which the process

WnN �t� = W�t� +
t∫

0

N∑
i=n+1

B�s�Ti���s�Ti�

AnN �t�
ds (1.10)

is a Wiener process. Hence

EC�SnN �� =
N∑

i=n+1

B�0� Ti�EM�Ti�Ti��

=
N∑

i=n+1

B�0� Ti�EM�Tn+1� Ti�� = AnN �0�EnN ��

Moreover

M�t�SnN �SnN �t� =
N∑

i=n+1
B�t�Ti�

X0�t�AnN �0�

B�t�Tn� − B�t�TN �

AnN �t�
= B�t�Tn� − B�t�TN �

X0�t�AnN �0�
�

Therefore SnN �t�M�t� SnN � is a martingale under the measure E, and then the forward swap
rate SnN �t� is a martingale under EnN .



2
Heath-Jarrow-Morton and

Brace-Gatarek-Musiela Models

2.1 HJM AND BGM MODELS UNDER THE SPOT MEASURE

The purpose of this section is to derive stochastic equations for interest rates dynamics in
both the HJM and BGM models. Since the models can be considered as twins, they will be
studied in parallel. We will extensively use the Ito formula. By (1.8),

Dn�t� = B�0� Tn−1�

B�0� Tn�
exp

⎧⎨
⎩−1

2

t∫
0

(���s�Tn−1��2 − ���s�Tn��2
)
ds

−
t∫

0

���s�Tn−1� − ��s�Tn�� · dW�s�

⎫⎬
⎭ �

By the Ito formula Dn�t� satisfies

dDn�t� = ��t�Tn� · ���t�Tn� − ��t�Tn−1��Dn�t�dt + Dn�t� ���t�Tn� − ��t�Tn−1�� · dW�t��

The HJM model is constructed as follows: Setting ��t�T� to be deterministic and denoting
�n�t� = ��r�Tn� − ��t�Tn−1� we get an equation similar to Black-Scholes:

dDn�t� = ��t�Tn� · �n�t�Dn�t�dt + Dn�t��n�t� · dW�t�� (2.1)

Hence if we set ��t� s� = 0 for s ≤ t + � we have

��t�Tn� =
n∑

Tj>t+�

�j�t��

In a similar manner, the BGM model is constructed as follows: Since �dLn�t� = dDn�t�

dLn�t� = ��t�Tn� · ���t�Tn� − ��t�Tn−1��
(
Ln�t� + �−1

)
dt

+ (Ln�t� + �−1
)
���t�Tn� − ��t�Tn−1�� · dW�t��

Then, set the linear diffusion parameter

Ln�t�	n�t� = ���t�Tn� − ��t�Tn−1��
(
Ln�t� + �−1

)
�

where 	�t� is the LIBOR volatility. Therefore

��t�Tn� = ��t�Tn−1� + Kn�t�	n�t� with Kn�t� = �Ln�t�

1 + �Ln�t�
�
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Hence

��t�Tn� =
n∑

Tj>t+�

Kj�t�	j�t�

finally if we set ��t� s� = 0 for s ≤ t + � then

dLn�t� = ��t�Tn� · 	n�t�Ln�t�dt + Ln�t�	n�t� · dW�t�� (2.2)

By the standard fixed point method and Picard theorem, there exist unique solutions for
the equations (2.1) and (2.2) by Lipschitz continuity of parameters, for details we refer
to Doberlein and Schweizer (2001) and Shreve (1988). Indeed, the equation (2.1) is linear,
hence it defines a geometric Brownian motion. The equation (2.2) is nonlinear and may be
solved by induction with respect to n. Notice that the BGM (2.2) and HJM (2.1) models
may be studied in parallel and we will use this approach in this chapter. As it will be shown
later, forward rate models are used only under forward measures, hence assumptions that
��t� s�=0 for s ≤ t +� are not restrictive. Determining of bond volatilities ��t�T� is indeed
equivalent to construction of a term structure model.

Warning for rigorous mathematicians. The derivation of the HJM and BGM equations
was done in the way known from physics – assuming that all qualitative assumptions are
satisfied, we then derive the proper form of the equation. The mathematical approach is
different – we prove non-arbitrage property while constructing a model. Those who wish to
look at a more rigorous method are referred to Musiela and Rutkowski (1997b); Karatzas
and Shreve (1988), at least for this part of the theory.

For historical reasons the HJM model is not formulated in the form (2.1) but as a
differential one. Assuming that B�t�T� is differentiable with respect to T and

B�t�T� = exp

⎧⎨
⎩−

T∫
t

r�t� s�ds

⎫⎬
⎭ �

Then obviously the savings account X0�t� is defined as

X0�t� = exp

⎧⎨
⎩

t∫
0

r�s�ds

⎫⎬
⎭ with r�s� = r�s� s��

Hence

B�t�T�

X0�t�
= E exp

⎧⎨
⎩−

t∫
0

r�s�ds −
T∫

t

r�t� s�ds

⎫⎬
⎭�

Assume that Y has bounded variation and r�·� T� is an Ito process, i.e.

dr�t�T� = a�t�T�dt + 
�t�T� · dW�t�� (2.3)

where W is a Wiener process, a and 
 are stochastic processes. We can now present
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Theorem. For any 0 ≤ t ≤ T < �

a�t�T� = 
�t�T� ·
T∫

t


�t� s�ds�

Proof. By the Ito formula

d
B�t�T �

X0�t�
= B�t�T �

X0�t�
�r�t� − r�t��dt

+ B�t�T �

X0�t�

⎧⎪⎨
⎪⎩

1
2

∣∣∣∣∣∣
T∫

t


�t� s�ds

∣∣∣∣∣∣
2

dt −
T∫

t

a�t� s�dsdt −
T∫

t


�t� s�ds·dW�t�

⎫⎪⎬
⎪⎭ �

To ensure the martingale property for B�t�T�

X0�t�
for any 0 ≤ t ≤ T , we must have

1
2

∣∣∣∣∣∣
T∫

t


�t� s�ds

∣∣∣∣∣∣
2

=
T∫

t

a�t� s�ds

and therefore

a�t�T� = 
�t�T� ·
T∫

t


�t� s�ds�

Hence the equation (2.3) becomes

dr�t�T� = 
�t�T� ·
T∫

t


�t� s�dsdt + 
�t�T� · dW�t�� (2.4)

The equation (2.4) is called Heath-Jarrow-Morton equation and normally in literature the
model is formulated as above rather than (2.1). Justification for this formulation is hard
to find, and in fact appears only to be done for historical reasons. The instantaneous rates
r�t� T� are not quoted by the market, while LIBOR rates Ln and hence compound factors
Dn are. People normally discretise the equation (2.4) – taking r�t� T� for a short term (say,
one week) interest rate, and such an approximated model is used in valuation of derivatives.
We, however, do not recommend this procedure as a short cut, which is longer than the
regular way.

There is one reason for which the form (2.4) should be present in this book. The rate r�t�
is called short rate and has very intuitive interpretation as the interest rate on a very short
period – overnight for instance. There exists a large class of interest rate models, called short
rate models based on some mathematically correct but counterintuitive property. Since they
are still used in practice, they deserve several comments. Let us start with this property:
Since B�T�T� = 1 and

B�t�T� exp

⎧⎨
⎩−

t∫
0

r�s�ds

⎫⎬
⎭
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is a martingale,

B�t�T� = E

⎧⎨
⎩exp

⎛
⎝−

T∫
t

r�s�ds

⎞
⎠
∣∣∣∣∣∣Ft

⎫⎬
⎭ � (2.5)

We may assume that r�s� is a Markov process, which in practice means that r�s� satisfies
the following stochastic differential equation

dr�t� = a�t� r�t��dt + 
�t� r�t��dW�t�

for sufficiently regular functions a and 
 . By the Markov property

B�t�T� = E

⎧⎨
⎩exp

⎛
⎝−

T∫
t

r�s�ds

⎞
⎠
∣∣∣∣∣∣Ft

⎫⎬
⎭= E

⎧⎨
⎩exp

⎛
⎝−

T∫
t

r�s�ds

⎞
⎠
∣∣∣∣∣∣ r�t�

⎫⎬
⎭= h�t�T� r�t��

for some deterministic function h. The functions a and 
 obviously determine the function
h, at least with help of a numerical procedure. Traders however will never agree that the
dynamics of all interest rates are determined by dynamics of the overnight rate. However
in practice the short rate is never used and the single factor, identified by mathematicians
as the short rate, is rather understood as a parameterization of a medium or long term rate.
By the Ito formula, every short rate model is a HJM model, i.e. there exist deterministic
functions F and G such that:

r�t� T� = F�t�T� r�t�� (2.6)

and


�t�T� = G�t�T� r�t��� (2.7)

Formulae (2.6) and (2.7) have no important practical implication but show relation between
various interest rate models. We present an overview of three short rate models which are
of special interest from practical point of view: Vasiček, Cox-Ingersoll-Ross and Black-
Karasiński.

2.2 VASIČEK MODEL

In the Vasiček model (Vasiček, 1977) the short rate follows the Ito equation:

dr�t� = a�b − r�t��dt + 
dW�t�� (2.8)

where a� b and 
 are given constants. We may calculate that the discount factors are given
by the formula

B�t�T� = A�T − t� · eC�T−t�r�t�� (2.9)
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where for a �= 0

C�t� = e−at − 1
a

�

A�t� = exp
{

�C�t� − t��a2b − 
2/2�

a2
− 
2C�t�2

4a

}
�

If a = 0, then C�t� = t and

A�t� = exp
{

2t3/6

}
�

The Vasiček model with added time dependennce in the parameter b�t� calculated to fit the
initial yield curve is called the Hull-White model.

2.3 COX-INGERSOLL-ROSS MODEL

In the Cox-Ingersoll Ross (1985) model the short rate follows the Ito equation:

dr�t� = a�b − r�t��dt + 

√

r�t�dW�t�� (2.10)

where a� b and 
 are constants. We may calculate that the discount factors are given by
the formula (2.9), where

C�t� = 2
(
e�t − 1

)
�� + a� �e�t − 1� + 2�

�

A�t� =
{

2�e�a+��t/2

�� + a� �e�t − 1� + 2�

} 2ab


2

�

� =
√

a2 + 2
2�

The formula (2.9) is crucial – it states that the bond prices is an exponent of an affine
function of the short rate. Duffie and Singleton (1997) proved that only the Vasiček (1977)
and Cox-Ingersoll-Ross (1985) models follow the exponential affine property.

2.4 BLACK-KARASIŃSKI MODEL

In the Black-Karasiński (1991) model the short rate is given by the formula r�t� = ef�t�,
where f follows the Ito equation:

df�t� = a�b − f�t��dt + 
dW�t��

There is known no closed form representation for B�t�T� and it has to be calculated by
numerical methods. The popular Black-Derman-Toy (1990) model is a special case of
Black-Karasiński model. All three models, when used in practice, will have time-dependent
parameter b�t� to fit initial yield curve.
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2.5 HJM AND BGM MODELS UNDER THE FORWARD
MEASURES

In order to avoid repeating formula we introduce the following convention:

n∑
j=k+1

aj = −
k∑

j=n+1

aj (2.11)

for n ≤ k. Recall that the process

Wk�t� = W�t� +
t∫

0

��s�Tk�ds

is a Wiener process under the measure Ek. The compound factors Dn�t� in the HJM model
and forward LIBORs Ln�t� in the BGM model, follow the equations:

dDn�t� = −Dn�t�
k∑

j=n+1

�j�t� · �n�t�dt + Dn�t��n�t� · dWk�t� (2.12)

and

dLn�t� = −Ln�t�
k∑

j=n+1

Kj�t�	j�t� · 	n�t�dt + Ln�t�	n�t� · dWk�t�� (2.13)

Under the swap measure EnN for n < k, we have that the compound factors Dk�t� in the
HJM model and forward LIBORs Lk�t� in the BGM model, follow the equations:

dDk�t� = Dk�t��k�t� ·
(

dWnN �t� +
k∑

j=n+2

�j�t�dt −
N−1∑

j=n+1

AjN �t�

AnN �t�
�j+1�t�dt

)
(2.14)

and

dLk�t� = Lk�t�	k�t� ·
(

dWnN �t� +
k∑

j=n+2

Kj�t�	j�t�dt −
N−1∑

j=n+1

Kj+1�t�AjN �t�

AnN �t�
	j+1�t�dt

)
�

(2.15)
And finally

dLn�t� = Ln�t�	n�t� · dWn�t��

hence

E
�Ln�Tn−1� − K�+

X0�Tn�
= B�0� Tn�En �Ln�Tn−1� − K�+ = B�0� Tn� �Ln�0�N�d1� − KN�d2���

where

d1 = ln�Ln�0�/K� + 
2/2



�

d2 = d1 − 
�
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and we have


2 =
Tn−1∫
s

�	n�t��2dt�

This is one of main reasons for the popularity of BGM model – caplet pricing coincides
with the market convention of using the Black’76 formula. Similarly a analogy holds for the
HJM model as well, although differs from the market convention:

dDn�t� = Dn�t��n�t� · dWn�t��

hence

E
�Ln�Tn−1� − K�+

X0�Tn�
= E

�Dn�Tn−1� − ��K + 1��+

�X0�Tn�

= �−1B�0� Tn�En �Dn�Tn−1� − ��K + 1��+

= B�0� Tn�
(
�Ln�0� + �−1�N�d1� − �K + �−1�N�d2�

)
�

where

d1 = ln��Ln−1�0� + 1� − ln��K + 1� + 
̃2/2

̃

�

d2 = d1 − 
̃�

and


̃2 =
Tn−1∫
0

��n�t��2 dt�

We have never seen a situation where pricing of interest rated derivatives is most suitable
under the spot measure. In our experience – interest rate derivatives should be priced under
suitable forward measure. To be honest – the proper choice of the most convenient forward
measure is not straightforward and may be tricky.





3
Simulation

3.1 SIMULATION OF HJM AND BGM MODELS UNDER THE
FORWARD MEASURE

Again by the Ito formula Dk�t� in the HJM model and forward LIBORs Ln�t� in the BGM
model, are given by the formulae:

Dn�t� = Dn�0� exp
(

−Fjn�0� t� − 1
2

Fnn�0� t� + N n
k �t�

)
(3.1)

and

Ln�t� = Ln�0� exp

⎛
⎝−

t∫
0

k∑
j=n+1

Kj�s��j�s� · �n�s�ds − 1
2

Cnn�0� t� + Mn
k �t�

⎞
⎠� (3.2)

where

N n
k �t� =

t∫
0

�n�s� · dWk�s�� (3.3)

Mn
k �t� =

t∫
0

�n�s� · dWk�s�� (3.4)

Fkl�s�T� =
T∫

s

�l�t� · �k�t�dt� (3.5)

and

Ckl�s�T� =
T∫

s

�l�t� · �k�t�dt� (3.6)

We have arrived at an important difference between the two twins: in the case of HJM
model (3.1) forms a closed formula, where for the BGM model (3.2) is a just alternative
representation. Clearly

EkN
n
k �t� = EkM

n
k �t� = 0�

EkN
n
k �t�N m

k �t� = Fmn�0� t�
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and

EkM
n
k �t�Mm

k �t� = Cmn�0� t��

Since our compound factors Dn�t� are deterministic functions of the zero-mean Gaussian
process with independent increments �N 1

k �t�� 	 	 	 �N d
k �t�
 with given correlations Fmn�0� t�,

it suffices to simulate �N 1
k �t�� 	 	 	 �N d

k �t�
. The simulation scheme for BGM is not that easy
but also not very sophisticated:

Ln�t + �t� = Ln�t� exp

(
−

k∑
j=n+1

Kj�t�Cjn�t� t + �t� − 1
2

Cnn�t� t + �t� + �Mn
k �t�

)
� (3.7)

where

�Mn
k �t� =

t+�t∫
t

�n�s� · dWk�s� = Mn
k �t + �t� − Mn

k �t��

In both cases the deterministic functions Cmn�s� t� and Fmn�s� t� determine dynamics of the
compound factors and LIBOR rates and volatility terms �n�t� and �n�t� are redundant.
Simulation of HJM model was here reduced to generation of multidimensional Gaussian
variables. We present it briefly for the sake of completeness.

3.2 MONTE CARLO SIMULATION OF MULTIDIMENSIONAL
GAUSSIAN VARIABLES

Let

� =

⎡
⎢⎢⎣


11 
21 	 	 	 
N1


12 
22 	 	 	 
N2

	 	 	 	 	 	 	 	 	 	 	 	

1N 
2N 	 	 	 
NN

⎤
⎥⎥⎦

be the covariance matrix of Fmn�s� t� or Cmn�s� t� in our case. Our task is to generate a
pseudo-random zero-mean vector with covariance matrix �. We use the scheme in Figure 3.1
in order to accomplish this task.

Random numbers generation

The most popular generator of uniformly distributed on [0,1] (pseudo) random numbers is
the affine generator (Wieczorkowski and Zieliński, 1997):

xn = �axn−1 + b�mod�c�� Xn = xn/c�

Generators based on genetic algorithms are popular as well. Random numbers Y =(
N−1�Xn��N−1�Xn+1�� 	 	 	 �N−1�Xn+m�

)
are random normally distributed random vectors

with covariance matrix I , where N is the cumulative distribution of standard normal random
variables. There exist more sophisticated and efficient generators of normally distributed
random vectors, we refer to Wieczorkowski and Zieliński (1997).
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independent
normal variables

…...

or

Vectors of Gaussian
variables with

given covariance

Principal
Component

System

independent
uniform
variables

Box-Muller
transformation

Random Numbers
Generator

Cholesky
transformation

vectors of independent
normal variables

Figure 3.1 Generation of multidimensional Gaussian variables.

Principal Components Analysis (PCA)

Due to the fact that the covariance matrix is symmetric positive we are able to transform it
in the following way:

�̂ = P�P ′�

where matrix P is orthonormal, i.e.: PP ′ = I , and matrix �̂ is diagonal of the form:

�̂ =

⎡
⎢⎢⎣

�1 0 	 	 	 0
0 �2 	 	 	 0

	 	 	 	 	 	 	 	 	 	 	 	
0 0 	 	 	 �N

⎤
⎥⎥⎦ �

where

�1 ≥ �2 ≥ 	 	 	 � ≥ �N ≥ 0�
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The foregoing transformation corresponds to the transformation by rotation of coordinates;
the i-th column of the matrix P corresponding to the eigenvalue �i is called i-th eigenvector.
Let � = ��1� �2� 	 	 	 � � �N �, where �1� �2� 	 	 	 � � �N are independent identically distributed
standard random variables. Then the random vector

B =
√

�̂P� =
N∑

i=1

�i

√
�iPi

is a multidimensional Gaussian random variable with covariance matrix �, where

P =

⎡
⎢⎢⎣

p11 p21 	 	 	 pN1

p12 p22 	 	 	 pN2

	 	 	 	 	 	 	 	 	 	 	 	
p1N p2N 	 	 	 pNN

⎤
⎥⎥⎦ and Pi =

⎡
⎢⎢⎣

pi1

pi2

	 	 	
piN

⎤
⎥⎥⎦ �

When �1 is much larger than the rest of eigenvalues the random vector Y =
√

�̂P� with
covariance matrix � can be accurately approximated by one-dimensional random vector
Ỹ = �1

√
�1P1 with covariance matrix �̃ = �1P

′
1P1.

This means that the eigenvector P1 describes a large part of the matrix � and there-
fore is called principal component. This approach can be easily generalized to more
components.

Cholesky decomposition

An alternative way of generating multidimensional Gaussian random variable with given
covariance matrix � is via Cholesky decomposition. Define a triangular matrix A by

A =

⎡
⎢⎢⎣

a11 0 	 	 	 0
a12 a22 	 	 	 0
	 	 	 	 	 	 	 	 	 0
a1N a2N 	 	 	 aNN

⎤
⎥⎥⎦ �

where

aii =
√√√


ii −
i−1∑
k=1

a2
ki

and

aij =

√

ij − i−1∑

k=1
akiakj

aii

�

Then � = AA′ and the random vector A′� is a multidimensional Gaussian random variable
with covariance matrix �.
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3.3 TRINOMIAL TREE SIMULATION OF MULTIDIMENSIONAL
GAUSSIAN VARIABLES

The construction of trinomial trees has the following graphical representation:

l = 4

l = 3

l = 2

l = 1

l = –1

l = 0

l = –2

l = –3

l = –4
m = 0 m = 1 m = 2 m = 3 m = 4

Δt Δx

Figure 3.2 Example of a trinomial tree.

Let our simulated Gaussian process Gn
i = N n

k �Ti� (or Gn
i = Mn

k �Ti�, or other) admit the
representation

Gn
i =

i∑
k=1

Y n
k � (3.8)

Let Yk = (
Y 1

k � Y 2
k � 	 	 	 � Y

p
k

)
be a sequence of independent random vectors with covariance

matrices

�k =

⎡
⎢⎢⎣

�k
11 �k

12 	 	 	 �k
1p

�k
21 �k

22 	 	 	 �k
2p

	 	 	 	 	 	 	 	 	 	 	 	
�k

p1 �k
p2 	 	 	 �k

pp

⎤
⎥⎥⎦ �

The random variables
(
Y 1

k � Y 2
k � 	 	 	 � Y

p
k

)
can be approximated by trinomial random variables(

Z1
k�Z2

k� 	 	 	 �Z
p
k

)
. Let

a2 = max
1≤l≤p

max
0≤k≤N

�k
ll�

Let
(
Z1

k� 	 	 	 �Z
p
k

)
k=0� 	 	 	 �N

be independent random variables on �−a� 0� a
p. Define probabil-
ities as

bk
i1�i2� 	 	 	 �ip

= P
(
Z

i1
k = i1a�Z

i2
k = i2a� 	 	 	 �Z

ip
k = ipa

)
for i1� i2� 	 	 	 � ip = −1� 0� 1�
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b
kj
i = �k

jj

2a2
if i �= 0�

b
kj
i =

(
1 − �k

jj

a2

)
if i = 0�

bk
i1�i2� 	 	 	 �ik

=
p∏

j=1

b
kj
ij

+
∑
l �=j

ilij�
k
lj

∏
l �=m�=j

bkm
im

4a2
�

We preserve the expectations and variances of the variables Y l
k i.e. EY l

k =EZl
k =0� E

(
Y l

kY
i
k

)=
E
(
Zl

kZ
i
k

) = �k
li and E

(
Y l

k

)2 = E
(
Zl

k

)2 = �k
ll. To make things more clear let us give the

formulae above for the most important two-dimensional case which is when p = 2.

bk
1�0 = bk

−1�0 = �k
11

2a2

(
1 − �k

22

a2

)
�

bk
0�1 = bk

0�−1 = �k
22

2a2

(
1 − �k

11

a2

)

bk
0�0 =

(
1 − �k

11

a2

)(
1 − �k

22

a2

)
�

bk
−1�−1 = bk

1�1 = �k
11�

k
22 + a2�k

12

4a4
�

bk
1�−1 = bk

−1�1 = �k
11�

k
22 − a2�k

12

4a4
�

The process
k∑

i=0

(
Z1

i � 	 	 	 �Z
p
i

)
is a Markov process on the net �	 	 	 �−2a�−a� 0� a� 2a� 	 	 	 
p.
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Swaption Pricing and Calibration

Take grid points T1� T2� � � � being consecutive maturities for both options and their underlying
swaps. A European payer swaption with strike K, maturing at some date Tn gives the holder
the right to pay fixed cashflows �K at Tk, for k=n+ 1� � � � �N in exchange for LIBOR on
a $ 1 notional. Its price is given by

SwaptionnN �0�= �E
{

N∑
i=n+1

X−1
0 �Ti� �SnN �Tn�−K�+

}

= �E
{
X−1

0 �Tn� �SnN �Tn�−K�+E
(

N∑
i=n+1

X0�Tn�

X0�Ti�

∣∣∣∣∣FTn
)}

=E
{
X−1

0 �Tn�I�SnN �Tn�>K�

(
1 −B�Tn�TN �− �K

N∑
i=n+1

B�Tn�Ti�

)}
	

By the forward measure paradigm

SwaptionnN �0�= �AnN �0�EnN �SnN �Tn�−K�+ 	

Let us start with practical issues on swaption pricing. In practice swap options are priced by
the Black formula (call option, strike =K, option maturity =T )

SwaptionnN �0�= �AnN �0� �SnN �0�N�d1�−KN�d2��� (4.1)

where

d1 = ln�SnN �0�/K�+Tn
2
nN /2


nN
√
Tn

� (4.2)

d2 =d1 −
nN
√
Tn	 (4.3)

A typical swaption quotation from Tullet is displayed in Figure 4.1
By calibration we usually understand determining the set of instantaneous volatilities

��t�= �
1�t��
2�t�� � � � � 
N �t��. If we are able to do it we are thus able to price every-
thing, at least in theoretical sense. In practice we do not have enough data to determine
instantaneous volatilities, so some silent assumptions must be imposed. In most, if
not all cases, we assume some interpolation between grid points – imposed by some
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(c) 2004 Tullett Financial Information 15–Apr–2004 07 : 45
NOK Swaption Yield Volatility

1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1M 32	8 26	6 23	5 21	9 20.9 19.5 18.4 17.4 16.6 15.9 1M
3M 32	3 26	3 23	4 21	8 20.8 19.5 18.4 17.5 16.7 16.1 3M
6M 30	3 25	2 22	7 21	2 20.1 19.0 17.9 17.1 16.3 15.8 6M
1Y 26	1 22	8 20	8 19	3 18.2 17.3 16.4 15.7 15.1 14.6 1Y
2Y 20	7 18	9 17	5 16	5 15.5 14.9 14.4 13.9 13.6 13.2 2Y
3Y 17	9 16	5 15	5 14	5 13.6 13.2 12.9 12.6 12.3 12.1 3Y
4Y 15	6 14	8 13	8 12	9 12.0 11.8 11.7 11.5 11.4 11.2 4Y
5Y 14	5 13	4 12	5 11	7 11.0 10.9 10.7 10.6 10.5 10.4 5Y
7Y 12	8 12	0 11	4 10	9 10.2 10.2 10.1 9.98 9.95 9.90 7Y

10Y 12	3 11	5 11	0 10	5 9.84 9.84 9.81 9.74 9.66 9.57 10Y

1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

Figure 4.1 Swaption quotation.

model assumptions. Before we pass to calibration let us collect some simple properties of
volatilities. Define the covariance matrix

�i =

⎡
⎢⎢⎣
�i11 �i12 � � � �i1N
�i21 �i22 � � � �i2N
� � � � � � � � � � � �
�iN1 �iN2 � � � �iNN

⎤
⎥⎥⎦ � (4.4)

where, for i < k and i < l, we define the entries of the matrix by

�ikl =Ckl�0� Ti�=
Ti∫

0


l�t� ·
k�t�dt

and let us also define the matrix

�i =

⎡
⎢⎢⎣
�i11 �i12 � � � �i1N
�i21 �i22 � � � �i2N
� � � � � � � � � � � �
�iN1 �iN2 � � � �iNN

⎤
⎥⎥⎦ � (4.5)

where again for i < k and i < l, the entries are given by

�ikl =Fkl�0� Ti�=
Ti∫

0

�l�t� ·�k�t�dt	

All further theory deals with both �i and �i exactly in the same sense, therefore we restrict
our attention to the matrix �i only. The notion of correlation may be defined twofold: as an
instantaneous correlation:

corrkl�t�=

l�t� ·
k�t�√


k�t� ·
k�t�
√

l�t� ·
l�t�
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or as a terminal correlation

corrkl�t� T�=
Ckl�t� T�√

Ckk�t� T�Cll�t� T�
	

If we know our volatility interpolation scheme, the calibration of the models reduces to
calculation of the matrices�i. We can make some simple conclusions after a little mathemat-
ics – there are N�N+1�

2 swaptions and caplets in the period �0�N� (N = option expiry + swap
tenor). On the other hand all �k’s have

N∑
k=1

k�k+ 1�
2

= N�N + 1��N + 2�
6

free parameters. Hence there are many possible calibrations (and indeed perhaps too many)
of the BGM and HJM models and our choice should thus depend on our aim. Unlike the
short rate models, we have enough freedom to model the volatility structure of forward rate
models. There may be several specifications of the model volatility and we will describe
them in later sections in this book.

4.1 LINEAR PRICING IN THE BGM MODEL

Since SnN �t� is a positive martingale with respect to the measure EnN it follows the dynamics

dSnN �t�= SnN �t�
nN �t� ·dWnN �t�� (4.6)

where 
nN �t� is the stochastic instantaneous volatility of SnN �t�. On the other hand

dSnN �t�=
N∑

i=n+1

�SnN �t�

�Li�t�
Li�t�
i�t�·dWnN �t�= SnN �t�

N∑
i=n+1

RinN �t�
i�t�·dWnN �t�� (4.7)

where

Ri+1
nN �t� �=

� lnSnN �t�
� lnLi+1�t�

=Ki+1�t�
B�t�Tn�AiN +B�t�TN �Ani�t�
�B�t�Tn�−B�t�TN ��AnN �t�

	

Obviously we have


nN �t�=
N∑

k=n+1

RknN �t�
k�t�	 (4.8)

If we make rough assumption that B�t�Ti�
AnN �t�

does not depend on Lk�t� we get an attractive ‘brute
force’ approximation

RinN �t��
B�t�Ti�Li�t�
N∑

k=n+1
B�t�Tk�Lk�t�

= �B�t�Ti�Li�t�

B�t�Tn�−B�t�TN �
= B�t�Ti−1�−B�t�Ti�
B�t�Tn�−B�t�TN �
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for which swap volatility becomes just a weighed average of the LIBOR volatilities:


nN �t�=
N∑

k=n+1
B�t�Tk�Lk�t�
i�t�

N∑
k=n+1

B�t�Tk�Lk�t�

	

We may approximate RknN �t� by RknN �0�. This makes sense if most of the interest rate
movements are parallel shifts. Hence

Tk

2
kN =

Tk∫
0


2
kN �t�dt�

N∑
l=k+1

N∑
i=k+1

RikN �0��
k
ilR

l
kN �0�	 (4.9)

We call this pricing linear since both drift term in swap rate dynamics and swaption variance
term are linear with respect to swap rate and correlation terms respectively.

4.2 LINEAR PRICING OF SWAPTIONS IN THE HJM MODEL

The European swaption price is given by (4.1). Since 1 + �SnN �t� is a positive martingale
with respect to the measure EnN

d ��SnN �t�+ 1�= ��SnN �t�+ 1��nN �t� ·dWnN �t�� (4.10)

where �nN �t� is the stochastic instantaneous volatility of �SnN �t�+ 1. On the other hand

d ��SnN �t�+ 1�=
N∑

i=n+1

� ��SnN �t�+ 1�

�Di�t�
Di�t��i�t�·dWnN �t�	 (4.11)

Denote

R̃inN �t�=
Ai−1�N �t�

AnN �t�
− Ai−1�N−1�t�

An−1�N−1�t�
	 (4.12)

Then

�nN �t�=
N∑

k=n+1

R̃knN �t��k�t�	 (4.13)

If we again make a rough assumption that B�t�Ti�

AnN �t�
does not depend on Dk�t� (i.e. in a similar

way to when we were working with the HLM model) we again get an attractive ‘brute force’
approximation

R̃inN �t��
B�t�Ti�Di�t�
N∑

k=n+1
B�t�Tk�Dk�t�

= B�t�Ti−1�

An−1�N−1�t�
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and hence the swap volatility becomes just a weighed average of the compound factor
volatilities:

�nN �t�=
N−1∑
k=n
B�t�Tk��i+1�t�

An−1�N−1�t�
	

We may approximate R̃knN �t� by R̃knN �0� again in a similar way to before which makes sense
if most of the interest rate movements are parallel shifts.

Since market volatilities are quoted in lognormal terms and HJM model is a Gaussian one,
they should be transformed to their (equivalent) Gaussian form. The at-the-money swaption
price is given by:

SwaptionnN �0�=�AnN �0�
(
SnN �0�N

(

nN

√
Tn

2

)
− SnN �0�N

(
−
nN

√
Tn

2

))

=�AnN �0�SnN �0�
(

2N
(

nN

√
Tn

2

)
− 1

) (4.14)

where the transformation to Gaussian form consists of finding sequence of market Gaussian
standard deviations �nN satisfying

SwaptionnN �0�=AnN �0�
(
��SnN �0�+ 1�N

(
�nN
2

)
− ��SnN �0�+ 1�N

(
−�nN

2

))
	 (4.15)

Hence (4.14) reduces to

�SnN �0�N
(

nN

√
Tn

2

)
+ 1

2
= �1 + �SnN �0��N

(
�nN
2

)
	

The equation (4.14) can be easily solved by Newton method or bisection. Since the �n are
very small, the one-step Newton method gives satisfactory results. Taking two or three steps
makes the approximation almost perfect.

Hence

�2
kN =

Tk∫
0

�2
kN �t�dt�

N∑
l=k+1

N∑
i=k+1

R̃ikN �0��
k
ilR

l
kN �0�	 (4.16)

4.3 UNIVERSAL VOLATILITY FUNCTION

The volatility structure of the LIBOR market model is so rich that the model can be calibrated
to a given instantaneous correlation and all swaption process in the same time. Let � be
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a correlation matrix (historic for instance) of forward LIBORs and let the matrices�k−�k−1

be of the form: �kij −�k−1
ij =�ki �kj�ij , setting �−1

ij = 0. Then

Tk

2
k�k+1 =

k∑
j=0

(
�
j
k+1

)2
�

Tm

2
mN =

k∑
j=0

N∑
l=m+1

N∑
i=m+1

RimN �0��
j
l�il�

j
iR

l
mN �0�	

We call that approach universal because of ability to simultaneous fit to both: swaption
prices and given correlation. The everlasting discussion of ‘implied versus historic’ threatens
the problem of determining the swaption correlation matrix. Not all authors are aware that
it possible to calibrate to historic correlation and swaption prices in the same time. We have
the following formulae for �mm+1:

�0
1 =
01� �kk+1 =

√√√√Tk
2
k�k+1 −

k−1∑
j=0

(
�
j
k+1

)2

and the following quadratic equation for �mN :

(
�mNR

N
mN �0�

)2 + 2�mNR
N
mN �0�

N−1∑
i=m+1

RimN �0��iN�
m
i −Tm
2

mN

= −
m−1∑
j=0

N∑
l=m+1

N∑
i=m+1

RimN �0��
j
l�il�

j
iR

l
mN �0�−

N−1∑
l=m+1

N−1∑
i=m+1

RimN �0��
m
l �il�

m
i R

l
mN �0�	

(4.17)

The assumption that the covariance matrices �i are of single factor means that �kij −�k−1
ij =

�ki �
k
j . Under this assumption we have the following simple approximate formulae:

Tk

2
k�k+1 =

k∑
j=0

(
�
j
k+1

)2
�

Tk

2
kN =

k∑
j=0

(
N∑

i=k+1

RikN �0��
j
i

)2

	 (4.18)

A locally single factor approximation provides a direct way of calibrating the model to the
full set of N�N+1�

2 swaptions in the following manner:

�0
1 =
01�

� � � � � � � � � � � �
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�kk+1 =
√√√√Tk
2

k�k+1 −
k−1∑
j=0

(
�
j
k+1

)2
� (4.19)

� � � � � � � � � � � �

�kn =

√
Tk


2
kn − k−1∑

j=0

(
n∑

i=k+1
Rikn�0��

j
i

)2

− n−1∑
i=k+1

Rikn�0��
k
i

Rnkn�0�
	 (4.20)

It is possible to calibrate the single-factor model to the full set of caps and swaptions prices
provided the condition below holds:

Tk

2
kN ≥

k−1∑
j=0

(
N∑

i=k+1

RikN �0��
j
i

)2

	

Notice that although the model is locally single factor, the actual dynamics of SkN �t� is
driven by more factors.

4.4 TIME HOMOGENEOUS VOLATILITY

For a time homogeneous model, where 
k�t�=
�Tk − t�

�ikl =
Ti∫

0


�Tl − t� ·
�Tk − t�dt	

Hence if �=T0 then we have that

�ikl =
Ti∫

0


�Tl − t� ·
�Tk − t�dt=
i∑
j=0

�0
k−j�l−j 	

Hence for the time homogeneous model

Tk

2
kN =

Tk∫
0


2
kN �t�dt�

k∑
j=0

N∑
l=k+1

N∑
i=k+1

RikN �0��
0
i−j�l−jR

l
kN �0�	

There are N�N+1�
2 free parameters in the matrix �0. Analogously for the time homoge-

neous model

�0
11 =T0


2
01�

�0
kk =T0


2
k−1�k −

k−1∑
j=0

�0
jj�
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�0
k+1�N =

Tk

2
kN − k∑

j=1

N∑
l=k+1

N∑
i=k+1

RikN �0��
0
i−j�l−jR

l
kN �0�−

N∑
l=k+1

N∑
i=k+1

RikN �0��
0
ilR

l
kN �0�+ 2Rk+1

kN �0��
0
k+1�NR

N
kN �0�

2Rk+1
kN �0�R

N
kN �0�

	

4.5 SEPARATED VOLATILITY

If we assume that

�ikl =�i�kl�

where �i are positive numbers and

�=

⎡
⎢⎢⎣
�11 �12 � � � �1N

�21 �22 � � � �i2N
� � � � � � � � � � � �
�N1 �N2 � � � �NN

⎤
⎥⎥⎦

is a covariance matrix we may calibrate the model perfectly. With these assumptions this
approach will be called separated. If we assume that �kk = 1 for all k� � is obviously a
correlation matrix, although we do not want to restrict ourselves to that class. The volatil-
ity functions 
n�t� can be represented as 
n�t�= ��t��n, where ��t� is a scalar function
satisfying

�k =
Tk∫

0

�2�t�dt

and �i are volatility vectors. In the case when �k=Tk represents the situation when ��t�≡ 1
and is called by Longstaff, Santa-Clara and Schwartz (2001) a string model.

Let �1>�2>� � � >�N denote the eigenvalues of the matrix � with respective eigenvec-
tor basis �e11� e12� � � � � e1N �� �e21� e22� � � � � e2N �� � � � � �eN1� eN2� � � � � eNN �. Then by Principal
Component Analysis Mn�t� admits the representation:

Mn�t�=
N∑
i=1

√
�iein

t∫
0

��s�dWi�s�	

The dimension of the problem can be reduced (usually to dimension 2 or 3) by removing
eigenvectors corresponding to very small eigenvalues. Under our assumption we have the
following simple formulae:

Tk−1

2
k−1�k =�k−1�kk�

Tk

2
kN =�k

N∑
l=k+1

N∑
i=k+1

RikN �0��ilR
l
kN �0�	 (4.21)
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The separated approach provides a direct way of calibrating the model to the full set of
N�N+1�

2 swaptions, even via closed form formulae:

�kk = Tk−1

2
k−1�k

�k−1

�

� � � � � � � � � � � �

�k+1�N =
Tk


2
kN −�k

(
N∑

l=k+1

N∑
i=k+1

RikN �0��ilR
l
kN �0�− 2Rk+1

kN �0��k+1�NR
N
kN �0�

)
2�kR

k+1
kN �0�R

N
kN �0�

	 (4.22)

Note that the formulae above are recursive in an unusual way. First we calculate parameters
on the diagonal and the pass to the lower-left and upper-right corners. We must also remark
that when we assume time-homogeneity this already determines the form of the calibration
and the number of factors. Separated calibration leaves one free parameter to be determined
by the user – Dk. It may be considered as an emergency parameter – by manipulating Dk
we may control the number of factors and the positivity of the covariance matrix �. The
separated approach may be also useful to input the covariance matrix but here we must
limit the number of swaptions. Let � be a correlation matrix of forward LIBORs and let
the matrix � be of the form: �ij = kikj�ij . In order to avoid non-unique solutions we force
kN = 1.

Ti−1

2
i−1�i =�i−1k

2
i �

Tm

2
mN =�m

N∑
l=m+1

N∑
i=m+1

RimN �0�kl�ilkiR
l
mN �0�	 (4.23)

We can perform the calibration as follows

�N−1 =TN−1

2
N−1�N �

Tm

2
m�m+1 =�mk2

m+1�

Tm

2
mN = �m

{(
km+1R

m+1
mN �0�

)2 + 2km+1R
m+1
mN �0�

N∑
i=m+2

RimN �0��ilki

+
N∑

l=m+2

N∑
i=m+2

RimN �0�kl�ilkiR
l
mN �0�

}
�

which leads to quadratic equation:

(

2
mN


2
n�m+1

−Rm+1
mN �0�

2

)
k2
m+1 = 2km+1R

m+1
mN �0�

N∑
i=m+2

RimN �0��i�m+1ki

+
N∑

l=m+2

N∑
i=m+2

RimN �0�kl�ilkiR
l
mN �0�	
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An important special case is the single factor model, i.e. when �ij = 1. In such case we
have the equalities:

Ti−1

2
i−1�i =Di−1k

2
i �

Tm

2
mN =�m

N∑
l=m+1

N∑
i=m+1

RimN �0�klkiR
l
mN �0�	 (4.24)

�N−1 =TN−1

2
N−1�N	

Hence

Tm

2
m�m+1 =�mk2

m+1�

Tm

2
mN =�m

{
km+1R

m+1
mN �0�+

N∑
i=m+2

RimN �0�ki

}2

�

which again leads to a quadratic equation:

(

2
mN


2
n�m+1

−Rm+1
mN �0�

2

)
k2
m+1 = 2km+1R

m+1
mN �0�

N∑
i=m+2

RimN �0�ki +
(

N∑
i=m+2

RimN �0�ki

)2

	

Example of separated calibration

The example is entirely based on Krynicki (2003). We decided to deal with separated
approach because it gives us best control over the number of factors – an issue extremely
important when considering the speed of pricing and hedging swaptions and the pricing of
exotic products, particularly of Bermudan style. Let us consider the USD data of 28th April
2003 from Table 4.1 below. Volatilities are quoted in percentages.

Table 4.1 Swaption quotations

Swap maturity

O
pt

io
n

m
at

ur
ity

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y
1M 55	50 47	10 42	90 40	50 37	40 34	30 32	60 30	80 29	10
1Y 49	60 43	20 39	30 36	50 34	30 32	00 30	60 29	30 27	90
2Y 38	00 34	80 32	40 30	50 29	10 27	70 26	70 25	60 24	60
3Y 31	70 29	70 28	00 26	70 25	60 24	50 23	70 22	90 22	10
4Y 27	50 26	00 4	90 23	90 23	10 22	30 21	60 20	80 20	10
5Y 24	40 23	40 22	50 21	70 21	00 20	20 19	60 19	00 18	40
6Y 22	50 21	60 20	80 20	10 19	50 18	90 18	30 17	80 17	30
7Y 20	60 19	90 19	20 18	50 18	00 17	50 17	00 16	60 16	10
8Y 19	30 18	70 18	00 17	40 17	00 16	50 16	10 15	70 15	30
9Y 17	90 17	40 16	90 16	40 16	00 15	60 15	20 14	80 14	40
10Y 16	60 16	20 15	70 15	30 15	00 14	60 14	30 13	90 13	60
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We calculate the following parameters:

�0 = 0	07900, �6 = 2	44949,
�1 = 0	88650, �7 = 2	64575,
�2 = 1	41421, �8 = 2	82843,
�3 = 1	73205, �9 = 3	00000,
�4 = 2	00000, �10 = 3	16228
�5 = 2	23607,

which lead us to the following eigenvalues:

�1 = 105	9 % �6 = 9	5 %
�2 = 49	9 % �7 = 6	6 %
�3 = 27	4 % �8 = 4	3 %
�4 = 19	4 % �9 = −2	3 %
�5 = −13	5 % �10 = 1	0 %

Removing of eigenvectors associated to negative eigenvalues leads to insignificant mispricing
of some options. Reduction of the number of factors to three also has minimal impact on the
pricing. For the string model of Longstaff, Santa-Clara and Schwartz, (i.e. when �i = Ti�
the situation however is different. Our eigenvalues are the equal to:

�1 = 127	6 % �6 = 6	0 %
�2 = −29	2 % �7 = −4	1 %
�3 = 29	2 % �8 = 2	3 %
�4 = −16	6 % �9 = −1	2 %
�5 = 14	4 % �10 = −0	8 %

Because of the large negative eigenvalues the model is misspecified, hence option prices
may very dependent of choice of calibration swaptions.

4.6 PARAMETRIZED VOLATILITY

Let Xnk be defined as

Xn0 =
T0∫

0


n�t�dW�t�� (4.25)

Xnk =
Tk∫

Tk−1


n�t�dW�t�	 (4.26)

In addition we let the matrix �̃k be the covariance matrix of the random variables
Xnk�k=0�1� � � � �n−1 (with entries to be determined below). If,

Xnk =
p∑
l=1

qnl Y
l
k (4.27)



38 The LIBOR Market Model in Practice

for some numbers qnl and any n, where �Y 1
k � Y

2
k � � � � � Y

p
k � are independent p-dimensional

Gaussian random variables, we say that dynamics of Ln�n=1�2� � � � is of p-factors. The dynamics
of the LIBOR rates Ln�t� can be represented as

dLn�t�=drift ·dt+Ln�t�
p∑
i=1

p∑
l=1

qnl �
li�t�dWi�t��

where Wi�t� are independent Wiener processes and �li�t� are volatility functions. Denote
�kli =E�Y lkY ik�. Hence the covariance matrix �̃k is of the form

�̃kmn =
p∑
i=1

p∑
l=1

qml q
n
i �

k
il (4.28)

and the relation between swaption market volatility and model parameters can be written as

Tn

2
nN =

p∑
l=1

p∑
i=1

n∑
j=0

AlnN�
j
liA

i
nN � (4.29)

where

AlnN =
N∑

k=n+1

RknN �0�q
k
l 	

The calibration of the model to swaptions (caplets and floorlets are considered as trivial
one-period swaptions) consists of determining the parameter pairs �qnl ��

k
li�l�i=1�		�p�k�n=1�2� � � �

to satisfy the equation (4.9) for a given set of swaption volatilities 
nN . Once more let
us make some arithmetical calculations. There are N�N + 1�/2 swaptions and caplets in
the period �0�N�. The p-factors model has N

(
p�p+1�

2 +p
)

free parameters. Therefore to
calibrate the model perfectly both these numbers have to be approximately the same size.
Hence N ≈ p�p+ 3�− 1. Results are surprising: two factors can calibrate the model up to
ten years, three factors work successfully up to twenty years. Since not all the swaptions are
liquid, a two factor calibration is satisfactory in most cases.

4.7 PARAMETRIC CALIBRATION TO CAPS AND SWAPTIONS
BASED ON REBONATO APPROACH

The first part of calibration is to fit the instantaneous volatilities to the observable market
caplet prices. Having a set of caplet implied volatilities �
capleti �t�� i= 1� � � � �N� we can set
functions:

Ij	i �v�=
Ti∫
Tj

�f �Ti − t��2 dt

where for f�Ti − t� we can choose f�t�= v1 + �v2 + v3�Ti − t�e−v4�Ti−t��	
The three stage procedure of calibration based on the Rebonato approach can be written as:
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1. Obtain estimates of v:

2.
�
v= arg minv

∣∣∣∣∣
N∑
i=1

[


caplet
i �t�2 �Ti − t�−

i∑
j=1
Ij	i �v�

]2
∣∣∣∣∣

3. Setting g
(
tj
)= 1 + �j for reset times Tj and estimate �= {

�j
}

as:

4.
�
�= arg min�

∣∣∣∣∣
N∑
i=1

[


caplet
i �t�2 �Ti − t�−

i∑
j=1
Ij	i�

�
v�

(
1 + �j

)]2
∣∣∣∣∣

5. Setting 1 + �i for reset times Ti as:

1 + �

�=
N∑
i=1



caplet
i �t�2 �Ti − t�
i∑
j=1
Ij	i

(
�
v
)(

1 + �
�j

)

Thus we can write the functional form for � as:

� �Ti − t�= g1 + g2 cos �g3 �Ti − t��

We thus have that most of 
capleti values are explained by the function f �t�. Most of the
rest are explained by function g�t� and the remainder are explained by 1 + �.

The second part of calibration is fitting to the swaptions. We will use the Rebonato
approximation formula for swaptions where the LFM Black squared swaption volatility can
be approximated by

(
�LFMn�N

)2 =
N∑

i�j=n+1

wi �0�wj �0�Li �0�Lj �0��i�j
Sn�N �0�

2

Tn∫
0


i �t�
j �t�dt

and the swap rates are expressed as a linear combination of forward rates

Sn�N �0�=
N∑

i=n+1

wi �t�Li �t�
assumption=

N∑
i=n+1

wi �0�Li �0� 	

For the purpose of the calibration all wi �t� and Li �t� are frozen to the value at time 0.
The instantaneous correlations in that approach can be approximated by:

�i�j = cos
(
�i −�j

)− sin ��i� sin
(
�j

) [
1 − cos

(
 i − j

)]
where �i� i will have the following functional forms:

 i = �1 + ��2 + �3 �Ti − t�� e−�4�Ti−t�

�i =!1 + �!2 +!3 �Ti − t�� e−!4�Ti−t�	

Our calibration to swaptions is based on a local algorithm of minimization for finding the
best fitting parameters � and ! starting from certain initial guesses and with the restriction
that all �i�j > 0.
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4.8 SEMILINEAR PRICING OF SWAPTIONS IN THE BGM
MODEL

In the formula (4.1) we assume both lognormality of the swap rate in the BGM model and
linear dependence of swap volatility with respect of forward LIBOR in the BGM model
volatility. If we allow the dependence of swap volatility with respect of forward LIBOR to be
nonlinear, keeping the lognormality of the swap rate, we get a more accurate approximation
of swaption prices. All volatility parameterisations are independent of approximation of
swaption prices, although the semilinear approximation provides no closed formulae for
model volatilites.

Approximation 1. Let T = Tn. Then the distribution of swap rate SnN �T� under
swap measure EnN can be approximated as lognormal, with the variance of lnSnN �T�
equal to:
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Rationale. So long as 
nN �t� is deemed to be almost deterministic we may approxi-

mate lnSnN �T � = lnSnN �T �+
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0
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with variance
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We find using integration by parts:
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Hence
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where �jknN �t� is expectation of the drift of QjknN �t�, namely dEnNQ
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nN �t� = �
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By (1.10) and (2.15), for n< l≤N

dLk�t�=Lk�t�
k�t� ·
[
dWnN �t�−

N−1∑
j=n+1

Kj+1�t�AjN �t�

AnN �t�

j+1�t�dt+

k∑
j=n+2

Kj�t�
j�t�dt

]
	

Hence we can approximate

�
jk
nN �t�≈

N∑
l=n+1

�Q
jk
nN �0�

�Ll�0�
Ll�0�
l�t� · Jl�t�+

1
2

N∑
l�m=n+1

�2Q
jk
nN �0�

�Ll�t��Lm�0�
Ll�0�Lm�0�
l�t� ·
m�t�	

Putting this into (4.31) and then to (4.30) completes the proof.

Although closed formulae for �Q
jk
nN �0�
�Li�0�

and �2Q
jk
nN �0�

�Li�0��Ll�0�
in principle do exist, for practi-

cal applications their complexity deems their usage unrealistic, and we suggest numerical
differentiation.

4.9 SEMILINEAR PRICING OF SWAPTIONS IN
THE HJM MODEL

An analogous result may be proved in the HJM model.

Approximation 2. Let T = Tn. Then the distribution of shifted swap rate 1 + �SnN �T�
under the swap measure EnN can be approximated as lognormal, with the variance of
ln �1 + �SnN �T�� equal to:

V =
N∑

j�k=n+1

Q̃
jk
nN �0�

T∫
0

�j �t� ·�k �t�dt

+
N∑

j�k�l=n+1

�Q̃
jk
nN �0�

�Dl�0�
Dl �0�

T∫
0

Fjk �t� T��l �t� · J̃l �t�dt

+
N∑

j�k�l�m=n+1

1
2

�2Q̃
jk
nN �0�

�Dl�0��Dm�0�
Dl �0�Dm �0�

T∫
0

Fjk �t� T��l �t� ·�m �t�dt



42 The LIBOR Market Model in Practice

where Q̃jknN �t�= R̃jnN �t�R̃knN �t� and
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Rationale. As far as �nN �t� is deemed to be almost deterministic we may approximate
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We find using integration by parts:
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where �̃jknN �t� is expectation of the drift of Q̃jknN �t�, namely dEnN Q̃
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By (1.10) and (2.14), for n< l≤N
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Putting this into (4.33) and then to (4.32) completes the proof.

Analogously as for the BGM case, closed formulae for �Q̃
jk
nN �0�

�Di�0�
and

�2Q̃
jk
nN �0�

�Di�0��Dl�0�
in principle

do exist, but again their complexity means that numerical differentiation should be used in
practice.
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4.10 NONLINEAR PRICING OF SWAPTIONS

There exists an alternative formula for the swaption price. Again, after changing the reference
measure:
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What remains is the calculation of Pi �SnN �Tn�>K� for various (mutually absolutely con-
tinuous) probability measures Pi. Since SnN �Tn� is a function of Lk�Tn�, knowledge of
distribution of Lk�Tn� under the measure Pi is sufficient to calculate Pi �SnN �Tn�>K�.
Now – for the HJM model and for Euler, Predictor-Corrector, Brownian Bridge, modified
Brownian Bridge and Lognormal approximations of the BGM model from Chapter 10, the
forward swap rate is a deterministic function of the multidimensional Gaussian process
Nk�t�= �Nn+1

k �t�� � � � �NN
k �t�� (in HJM case) or Mk�t�= �Mn+1

k �t�� � � � �MN
k �t�� (in BGM

case), where

Nn
k �t�=

t∫
0

�n�s� ·dWk�s�� Mn
k �t�=

t∫
0


n�s� ·dWk�s�	

Analogous algorithms are also available for nonlinear pricing – provided closed form for-
mulae are replaced by optimizations in lower dimensions such as dimensions one and two.
We still use our recursive approach – first we calculate parameters on the diagonal and the
pass to the lower-left and upper-right corners.

4.11 EXAMPLES

Accuracy of the previously presented models was examined for several instruments. In
order to test swap rate approximations we took a semi-annual settlement ��= 0	5� with
flat initial interest rate and volatility structures: Li �0�= 6 %� 
i �t�= 20 % with perfect
correlation between the LIBOR rates (in a one factor model). We work with a 10Y payer
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option on a 10Y swap for three various strikes: ATM, ATM − 200 bp and ATM + 200 bp.
We used the following pricing methods:

Monte Carlo (MC) – Monte Carlo simulation with 1,000,000 paths,
Semilinear lognormal (SL) – semilinear lognormal approximation of the swap

variance under swap measure E10�20,
Andersen-Andreasen (AA) – lognormal approximation

∑N
j�k=n+1Q

jk
nN �0�Cjk�0�

of the swap variance under swap measure E10�20

(introduced by Andersen-Andreasen, 2000),
Brace-Gatarek-Musiela (BGM) – nonlinear method with Euler drift approximation

(introduced by Brace-Gatarek-Musiela).

The results of our various computations are shown in Table 4.2 below, where Monte-Carlo
is used as a reference result.

Table 4.2 Comparison of methods

Strike 4.0 % 6.0 % 8.0 %

Standard swaption

MC 1017	81 609	61 368	40

Errors w.r.t. standard swaptions

SL −0	49 0	37 1	57
AA 1	70 3	67 5	00
BGM −0	49 0	39 1	62

For our knowledge, the AA method is the market standard in pricing European standard and
cash-settled swaptions. The SL method outperforms the AA and seems to give very accurate
and satisfactory approximations.



5
Smile Modelling in the BGM Model

Both the HJM and BGM models fit perfectly the at-the-money caps, floors and swap-
tion volatility structures. They are different away-from-the-money: the compound factors
1 + �Ln�t� are lognormally distributed in the HJM model, while the LIBOR rates Ln�t�
are lognormal for the BGM model. Before the Asian crisis the BGM model seemed to fit all
swaption prices perfectly but now the truth lies between: the HJM model shows a skew of
swaption prices, whilst the BGM model shows no skew, and the market prices are somehow
in-between HJM and BGM. The skew can be described as follows: the market swaption
volatility is a function of strike prices i.e.

SwaptionnN �0�K� = �AnN �0�BS
(
SnN �0��K� 0� Tn�

2
nN �K�

)
� (5.1)

Symmetric smiles and skews are different market phenomena and therefore there is a reason
to treat them separately.

Table 5.1 Smile versus skew

Market
Observations

Underlying
Probability Issues

Possible Reasons Modelling required

Symmetric
smile

Kurtosis Uncertainty, fear
of illiquidity

Jumps, Stochastic volatility,
Local volatility

Skew Skewness Fear of crises Jumps, CEV, Local volatility,
Displaced diffusion, Correlation

Therefore development of a ‘model in-between’ seems to be reasonable and this is a motiva-
tion to create a shifted BGM model. The direct import of methods developed in the context
of equity and exchange rates may be problematic since there are different modeling problems
for both asset classes as seen in the table below:

Table 5.2 Equity smile versus interest rate smile

Equity/Currency Interest rates

One spot pricing measure More forward pricing measures
Simple spot-forward parity Complex spot-forward parity
Linear number of options Nonlinear number of options
One underlying More correlated underlyings
Liquid underlying Most forward CMS rates non traded
Short maturities Long maturities
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5.1 THE SHIFTED BGM MODEL

In the shifted LIBOR Market Model (LMM) we assume that the LIBOR rates satisfy the
following stochastic equations:

dLn�t� =
(

n∑
Tj>t+�

�
(
Lj�t� + kj

)
�j�t�

1 + �Lj�t�

)
�n�t� �Ln�t� + kn�dt

+ �n�t� �Ln�t� + kn�dW�t��

(5.2)

where �n�t� are deterministic volatility functions, −�<kn ≤�−1 are deterministic displace-
ment factors and W�t� is a Wiener process. Define ZnN �t� as
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N∑
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�

Since ZnN �t� is a positive martingale with respect to the measure EnN

dZnN �t� = �nN �t�ZnN �t�dW�t�� (5.3)

where �nN �t� is the stochastic instantaneous volatility of ZnN �t�. On the other hand

dZnN �t� =
N∑

i=n+1

	ZnN �t�

	Li�t�
�Li�t� + ki��i�t�dW�t�� (5.4)

By the Ito formula:
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If we approximate Rk
nN �t� by Rk

nN �0� and ZnN �t� by SnN �t� + knN , where

knN =
N∑

i=n+1

ui�0�ki�

then the swap rate SnN �t� satisfies:

dSnN �t� = �nN �t� �SnN �t� + knN �dW�t�� (5.6)

We denote the covariance matrix
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⎤
⎥⎥⎦ � (5.7)

where the elements are defined as (for i < k and i < l)

�i
kl =

Ti∫
0

�l�t� · �k�t�dt�

In practice swap options are priced by the Black formula (e.g. for a call option, strike = K,
option maturity = T )

MarketnN �K� = �AnN �0� �SnN �0�N�d1� − KN�d2��� (5.8)

where

d1 = ln�SnN �0�/K� + Tn�
2
nN /2

�nN

√
Tn

� (5.9)

d2 = d1 − �nN

√
Tn� (5.10)

If the shift of SnN �t� was equal 0, we would have direct link between market volatilities
SnN �t� and model volatilities SnN �t�. This however is not the case; since market volatilities
are quoted in lognormal terms and they need then be transformed to their shifted form. The
transformation to shifted form consists of finding sequence of market standard deviations
�nN satisfying

ModelnN �K� = �AnN �0�

((
SnN �0� +

N∑
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ui�0�ki

)
N�d1� −
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(5.11)
where
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ln
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SnN �0� + N∑
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ui�0�ki
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− ln

(
K + N∑
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ui�0�ki

)
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nN /2
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� (5.12)

d2 = d1 − �nN � (5.13)
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Calibrating the model consists of minimizing the square distance between model and market
prices over the given set of swaptions:

min ← Q��n+1� 
 
 
 ��N �kn+1� 
 
 
 � kN � = ∑
Swaptions

�MarketnN �K� − ModelnN �K��2

MarketnN �K�2
�

Remark 1. The family of covariance matrices �n+1� 
 
 
 ��N must be parameterized anal-
ogously as for the BGM model without shift.

Remark 2. For a border case, i.e. when kn = �−1, we HJM model.

The shifted BGM captures only skew. Thus it is required to incorporate a kind of stochastic
volatility to model kurtosis. The most natural approach is to make the volatility functions
�n�t� stochastic and displacement factors – � < kn < �−1 random. The volatility functions
�n�t� may be correlated with the Wiener process W , which makes the approach impractical –
the pricing of interest rate derivatives consists of calculating functionals under various
forward measures, hence the dynamics of �n�t� could be different for different maturities.
In practice we have to assume that �n�t� is independent of W – the shift kn models skew
and randomness of volatility �n�t� models kurtosis. We opt for a special form of making the
volatility �n�t� stochastic as explained in the following sections.

5.2 STOCHASTIC VOLATILITY FOR LONG TERM OPTIONS

Let us start with the following general observation. Caps, floors and swaptions are usually
options with long or very long maturity. Let F�t� be the price of a forward contract maturing
at T . Assume that F�t� follows (under the forward measure):

dF�t� = ��t�F�t�dW�t� (5.14)

for t < T , where W�t� is a Wiener process and ��t� is the stochastic volatility process inde-
pendent of W . Let Option�0�K� be the price of a call option with strike K and maturity T .
By Hull (1999) it is equal to:

Option�0�K�T�Q�T �� = B�0� T �

�∫
0

BS
(√

x�K�F�0��T
)
Q�T�dx�� (5.15)

Where the right hand side elements are given by the following:

Q�T�x� = P ���T� ≤ x� (5.16)

��T � = T−1

T∫
0

�2�t�dt� (5.17)

BS���K�F�T � = FN�d1� − KN�d2�� (5.18)
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with, similar to before,

d1 = ln�F/K� + T�2/2

�
√

T
� (5.19)

d2 = d1 − �
√

T� (5.20)

As it was already observed, for any stochastic process ��t� smile effect is observed: implied
volatility for options away from money is larger than for options at the money. Notice the
obvious fact that the option price Option�0�K�T�Q�T�� depends not directly on ��t� but
on ��T�. By Borovkov (1998), for large class of stochastic processes (including ‘practically
all’ processes used in option pricing) ��T� → ���� for certain random variable ���� and
Q�T� → Q���, where Q��� x� = P ����� ≤ x�. Hence it is appropriate to conclude that
Option�0�K�T�Q�T��≈Option�0�K�T�Q���� for sufficiently large T . Therefore, if we
assume that F�t� follows the time-homogeneous version of (5.14)

dF�t� =√����F�t�dW�t� (5.21)

we will not observe large differences in prices of long term options compared with the
original dynamics (5.14). If the random variable ���� = m is deterministic, we say that the
stochastic volatility process ��t� is mean reverting (in the language of finance) or ergodic
(in the language of mathematics Borovkov (1998)). For mean reverting stochastic volatility
models Q��� = �m, therefore smiles vanish as option maturity grows. Almost all studied
stochastic volatility models are mean reverting, thus this makes them less suitable for pricing
long term options.

Example Let the stochastic volatility process ��t� follow the Ornstein-Uhlenbeck (Vasiček)
dynamics

d��t� = a�k − ��t��dt + bdV�t��

where V is a Wiener process independent of W . Then

��T� → k2 + b2
/

2a

and option prices satisfy:

Option�0�K�≈B�0� T�BS

(√
k2 + b2

/
2a�K�F�0��T

)
�

Hence smiles vanish for sufficiently large T .
The simple uncertain volatility approach Brigo, Mercurio and Rapisarda (2004) is based

on the equivalence between (5.14) and (5.21). Let

dF�t� = �F�t�dW�t�� (5.22)

where � is a discrete random variable independent of W�t� with

P �� = �k� = pk� (5.23)
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where �k+1 > �k and

M∑
k=1

pk = 1� (5.24)

Hence

Option�0�K� = B�0� T�
M∑

k=1

pkBS��k�K�F�0��T�� (5.25)

We define the implied volatility ��K� as a number �1 < ��K� < �M such that

BS���K��K�F�0��T� =
M∑

k=1

pkBS��k�K�F�0��T�� (5.26)

Denote

fn�t� = 1

�n

√
2�

exp
{
− t2

2�2
n

}

and

f�t� =
M∑

k=1

pkfk�t��

Thus since

fn�t�

f�t�
→ I�n=M�

pn

as t → ��

we observe the following simple property:

��K� → �M as K → �or K → 0� (5.27)

That model reflects relatively well the market’s feelings on long term options: the market is
not afraid that the realized volatility may fluctuate up and down – the market is afraid that
the realized volatility may be larger (for longer lime) then the currently quoted volatility.

5.3 THE UNCERTAIN VOLATILITY DISPLACED LIBOR
MARKET MODEL

Uncertain volatility is an easy and attractive prescription. Some pros for the uncertain
volatility approach were given in Brigo, Mercurio and Rapisarda (2004):

1. Explicit marginal density (mixture of lognormal densities).
2. Explicit option prices (mixtures of Black-Scholes prices).
3. Nice fitting to smile-shaped implied volatility curves and surfaces.
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On the other hand the uncertain volatility approach is counter-intuitive and causes some
paradoxes but without impact on pricing abilities. Referring to Piterbarg (2003) we note that
the paradoxes described are common for all pricing methods used in practice. Derivatives
pricing, although strongly mathematical, is not an academic activity. The uncertain volatility
displaced LIBOR market model is constructed as follows:

dLi
k�t� =

(
n∑

Tj>t+�

�
(
Li

j�t� + �i
j

)
�i

j�t�

1 + �Li
j�t�

)
�i

n�t�
(
Li

n�t� + �i
n

)
dt + �i

n�t�
(
Li

n�t� + �i
n

)
dW�t��

(5.28)

where
{
�1

n�t���2
n�t�� 
 
 
 ��M

n �t�
}

are deterministic volatilities and
{
�1

n� �2
n� 
 
 
 � �M

n

}
are dis-

placements such that �i
j ≤ �−1. Let Z be a discrete random variable on �1� 2� 
 
 
 �M�,

independent of W�t�, defined by:

P �Z = k� = pk� (5.29)

where the pk satisfy (5.24). The stochastic process LZ
k �t� satisfies an equation analogous

to (5.2)

dLZ
k �t� =

(
n∑

Tj>t+�

�
(
LZ

j �t� + �Z
j

)
�i

j�t�

1 + �LZ
j �t�

)
�Z

n �t�
(
LZ

i �t� + �z
n

)
dt + �Z

n �t�
(
LZ

n �t� + �Z
n

)
dW�t��

(5.30)

Hence the dynamics of forward swap rates may be approximated analogously as in (5.6).
The pricing of all derivatives securities is extremely easy and is just a weighted average of
various prices:

Price =
M∑

k=1

pkPricek� (5.31)

where Pricek is the price of our derivative under the k-th scenario. Monte Carlo simulation
is straightforward as well.

The uncertain volatility displaced LIBOR market model is obviously only an approxima-
tion of a ‘perfect’ stochastic volatility model, but a sufficiently good approximation. Let
us assume that �L1�T0�� 
 
 
 �Ln�Tn−1�� follows ‘perfect’ stochastic volatility model. Then,
consider the joint distribution of �L1�T0�� 
 
 
 �Ln�Tn−1�� on

[−�−1�+�)n. By Daniluk and
Gatarek (2005), see also section 10, the distribution of

{
Li

1�T0� + �i
1� 
 
 
 �Li

n�Tn−1� + �i
n

}
is

very close to the joint lognormal under all forward measures. Since the displaced lognormal
distributions span the set of all probability distributions on

[−�−1�+�)n, by a proper choice
of
{
�1

n�t���2
n�t�� 
 
 
 ��M

n �t�
}
�
{
�1

n� �2
n� 
 
 
 � �M

n

}
, and �p1� p2� 
 
 
 � pM�, we may approximate

any dynamics of forward LIBORs by a displaced diffusion with an uncertain volatility. Thus
we have that the displacement parameters

{
�1

n� �2
n� 
 
 
 � �M

n

}
are responsible for skewness

of caps, floors and swaptions, while variance of Z is responsible for their kurtosis. Replac-
ing the random variable Z by a stochastic process Z�t� may bring a bit more flexibility
to modelling of swaption kurtosis. Since swaptions away-from-the-money are not very liq-
uid, the uncertain volatility approach seems to be satisfactory at current state of the market.



52 The LIBOR Market Model in Practice

Definitely – mean reverting stochastic volatility is a much better recipe for a hangover,
than uncertain volatility. Papers Errais and Mercurio (2004) and Jarrow, Li and Zhao (2006)
show that mean reverting stochastic volatility models cannot fully capture the interest rate
derivatives skew, while the uncertain volatility approach can.

5.4 MIXING THE BGM AND HJM MODELS

Since Dn�t� = 1 + �Ln�t� the HJM model is itself a displaced BGM model. Moreover
the BGM and HJM models are extreme points for the class of shifted BGM models –
as normal and lognormal. Hence we may find the easiest way of dealing with the skew
and smile phenomenon: If we let Z be an random variable independent of W�t� on the
set �0� 1� such that P�Z = 1� = p for some 0 < p < 1. Let Ln�t� satisfy the following
equation:

dLn�t� = (Ln�t� + Z�−1
)
�Z�n�t� + �1 − Z��n�t�� ���t�Tn�dt + dW�t��� (5.32)

where

��t�Tn� =
n∑

Tj>t+�

(
�Lj�t� + Z

) (
Z�j�t� + �1 − Z��j�t�

)
1 + �Lj�t�

�

If Z =0 then the LIBORs follow BGM dynamics, and if Z =1 then the LIBORs follow HJM
dynamics. Moreover the model is already calibrated to ATM swaptions. Here the pricing of
all derivatives securities is extremely easy and is just a weighted average of the HJM and
BGM prices:

Price = pPriceHJM + �1 − p�PriceBGM� (5.33)

Fitting to the smile consists of finding a proper proportion between HJM and BGM –
i.e. finding the probability p to minimize distance between model smile and market smile.
This can be done by one-dimensional optimization:

min ← Q�p� = ∑
i∈Swaptions

�Mkti − BGMi + p �BGMi − HJMi��
2

Mkt2
i

�

where Mkti�BGMi�HJMi are market prices and calibrated at the money BGM and HJM
prices of the swaptions under investigation. Since the optimization problem is quadratic
there exists a closed-form solution p such that Q′�p� = 0. Hence

0 = Q′�p� = 2p
∑

i∈Swaptions

�BGMi − HJMi�
2

Mkt2
i

+ 2
∑

i∈Swaptions

�Mkti − BGMi� �BGMi − HJMi�

Mkt2
i

�
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Therefore our solution is simply

p =
∑

i∈Swaptions

�BGMi − Mkti� �BGMi − HJMi�

Mkt2
i∑

i∈Swaptions

�BGMi − HJMi�
2

Mkt2
i

�

One can take other ‘quality’ functions as weighted averages. There is one final optimization
that may be carried out to improve the fit; the calibration is perfect ATM and we may get
much closer fit away-from-the-money at the cost by simply relaxing quality of ATM fit.





6
Simplified BGM and HJM Models

The topic of this chapter is to create the ‘simplest possible term structure models’ for single
factor BGM and HJM – surprisingly useful in some applications. We develop a ‘mixture of
models’ approach in order to capture the volatility smile effect. As an example we derive
pricing formulae for exotic CMS swaps.

6.1 CMS RATE DYNAMICS IN SINGLE-FACTOR HJM MODEL

Assume that �n�t� = ��t�. In the single factor HJM model forward discount factors Dn�t�
follow the equation

dDn�t� = ��t�Dn�t�dWn�t� = ��t�Dn�t� ���t�Tn�dt + dW�t�� � (6.1)

Hence we have that

��t�Tn� = [	−1 �Tn − t�
]+

��t��

therefore the swap rate:

	SnN �t� + 1 =
N∑

i=n+1
B�t�Ti�Di�t�

N∑
i=n+1

B�t�Ti�

= exp

⎧⎨
⎩

t∫
0

��s�dW�s� − 1
2

t∫
0

�2�s�ds

⎫⎬
⎭ Ā�t��

where

Ai�t� = Di�0� exp

⎧⎨
⎩

t∫
0

�2�s�
[
	−1 �Ti − s�

]
ds

⎫⎬
⎭

Ā�t� =
N∑

i=n+1
B�t�Ti�A

i�t�

AnN �t�
�

By the Ito formula and the forward measure paradigm:

d �1 + 	SnN �t�� = �1 + 	SnN �t����t��1 − HnN �t��dWnN �t�

= �1 + 	SnN �t����t��1 − HnN �t��

⎛
⎜⎜⎝dW�t� +

N∑
i=n+1

B�t�Ti���t�Ti�

AnN �t�
dt

⎞
⎟⎟⎠ �
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where

HnN �t� =

N∑
j=n+1

N∑
i=n+1

B�t�Tj�B�t�Ti�
(
Ai�t� − Aj�t�

)
�i − n�

AnN �t�2Ā�t�

=
N∑

i=n+1
B�t�Ti�

(
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)
�i − n�

Ā�t�AnN �t�
=

N∑
i=n+1

B�t�Ti�A
i�t��i − n� − Ā�t�

N∑
i=n+1

Ani�t�

Ā�t�AnN �t�
�

If we assume that B�t�T� ≤ B�t� S� for T ≥ S (this does hold in practice)

∣∣∣HnN �t�
∣∣∣≤ max

i�j

(
Ai�t� − Aj�t�

) N − n + 1
2

�

For a flat initial yield curve HnN �t� is close to 0. Hence the forward swap rate SnN �t� satisfies
the approximate equation:

d �1 + 	SnN �t��≈ �1 + 	SnN �t���nN �t�dWn+1�t� + �1 + 	SnN �t��
nN �t�dt
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6.2 CMS RATE DYNAMICS IN A SINGLE FACTOR BGM MODEL

A completely analogous procedure can be performed for the single-factor BGM model,
where the forward LIBOR rates satisfy:

dLn�t� = ��t�Ln�t�dWn�t� = ��t�Ln�t� ���t�Tn�dt + dW�t���

where

��t�Tn� = ��t�
n∑

Tj>t+	

	Lj�t�

1 + 	Lj�t�
�

Similarly for the swap rate:

SnN �t� =
N∑

i=n+1
B�t�Ti�Li�t�
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By the Ito formula:

dSnN �t� = SnN �t���t��1 − GnN �t��dWnN �t�
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Hence the forward swap rate SnN �t� satisfies the approximate equation:

dSnN �t�≈ SnN �t��nN �t�dWn+1�t� + SnN �t��nN �t�dt

= SnN �t��nN �t�

(
dWn+1�t� + �nN �t�

�nN �t�
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)
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where
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6.3 CALIBRATION

In practice swap options are priced by the Black formula (i.e. a call option, strike = K,
option maturity = T ):

SwaptionnN �0� = 	AnN �0�BS
(
SnN �0��K� 0� Tn�

2
nN

)
�

where

BS�S�K�U�V� = SeU N�d1� − KN�d2��

d1 = ln�S/K� + U + V/2√
V

�
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d2 = d1 − √
V�

N�x� = 1√
2


x∫
−�

e−u2/2du�

Here the parameters �nN are given by the market and called market volatilities. The process
for calibration of option models consists of determining volatilities ��t� for the HJM model
and ��t� for the BGM model such that market prices and model prices coincide at least for
the at-the-money (ATM) swaptions. Since the market does not provide enough information
to determine both ��t� and ��t� completely, the determining of synthetic integral forms:

�n =
Tn∫

0

�2�t�dt and �n =
Tn∫

0

�2�t�dt

is sufficient for most pricing purposes. A calibration to BGM model is easier – by the
forward measure paradigm we clearly have

�n = Tn�
2
nN �1 − GnN �0��−2 �

Since the model is single-factor, the number of market volatilites must be equal to the
number of model parameters, so calibration either to caps/floors or to co-terminal swaptions
is straightforward. In contrast the calibration of the HJM model is slightly more complex.
To make both prices for the two models consistent for at-the-money swaptions the following
equality must hold:

SwaptionnN �0� = 	AnN �0�BS
(
SnN �0�� SnN �0�� 0� Tn�

2
nN

)
= 	AnN �0�BS

(
SnN �0�� SnN �0�� 0� �n�1 − GnN �0��2

)
(6.2)

= AnN �0�BS
(
1 + 	SnN �0�� 1 + 	SnN �0�� 0��n��1 − FnN �0��2

)
�

Since BS�S�S� 0�V � = 2SN
(√

V
2

)
− S, (2) reduces to

�1 + 	SnN �0��N

(
�1 − FnN �0��

√
�n

2

)
= 	SnN �0�N

(
�nN

√
Tn

2

)
+ 1

2
�

Since �n−1 ≤ �n ≤ �n and N ′�x� = 1√
2


e−x2/2 the equation (6.2) can be easily solved by
Newton method or bisection. Since �n are very small, the one-step Newton method is
suitable. Taking two or three steps makes the approximation almost perfect.

6.4 SMILE

Both models now fit the market prices of ATM co-terminal swaptions. Is one better than
the other? To examine this notion we should check prices away-from-the-money. The skew
can be described as follows: market swaption volatility is a function of strike prices i.e.

SwaptionnN �0�K� = 	AnN �0�BS
(
SnN �0��K� 0� Tn�

2
nN �K�

)
�
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The easiest way of dealing with the skew phenomenon is by a random mixture of models:
Let Z be an independent on W�t� random variable on the set �0� 1� such that P�Z = 1� = p
for some 0 < p < 1. Let Ln�t� satisfy the following equation:

dLn�t� = �Z��t� + �1 − Z���t��
(
Ln�t� + Z	−1

)
���t�Tn�dt + dW�t���

where

��t�Tn� = �Z��t� + �1 − Z���t��
n∑

Tj>t+	

Z + 	Lj�t�

1 + 	Lj�t�
�

If Z = 0 then LIBORs follow BGM dynamics, and if Z = 1 then LIBORs follow HJM
dynamics. Moreover the model is already calibrated to ATM swaptions. Then the pricing of
all derivatives securities, including CMS, is extremely easy and is just a weighted average
of HJM and BGM prices:

Price = pPriceHJM + (1 − p)PriceBGM�

Fitting to the smile consists of finding a proper proportion between HJM and BGM –
i.e. finding the probability p to minimize distance between model smile and market smile.
This can be done by one-dimensional optimization:

Q�p� =
N−1∑
n=1

M∑
i=1

�BSin�Market� − BSin �BGM� + p �BSin �BGM� − BSin �HJM���2 → min�

where

BSin�Market� = 	BS
(
SnN �0��Kin� 0� Tn�

2
nN �Kin�

)
�

BSin�BGM� = 	BS
(
SnN �0��Kin� 0� �n�1 − GnN �0��2

)
�

BSin�HJM� = BS
(
1 + 	SnN �0�� 1 + 	Kin� 0��n�1 − FnN �0��2

)
�

Since the optimization problem is quadratic there exists its closed-form solution p such that
Q′�p� = 0. Hence

Q′�p� =2
N−1∑
n=1

M∑
i=1

�BSin �BGM� − BSin �HJM�� �BSin�Market� − BSin �BGM��

+ 2p
N−1∑
n=1

M∑
i=1

�BSin �BGM� − BSin �HJM��2 = 0�

Therefore

p =
N−1∑
n=1

M∑
i=1

�BSin �BGM� − BSin �HJM�� �BSin �BGM� − BSin�Market��

N−1∑
n=1

M∑
i=1

�BSin �BGM� − BSin �HJM��2
�
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One may take other quality functions as weighted averages. The fit may be improved by one
more (very last) optimization: the calibration is perfect ATM and we may get much closer
fit away-from-the-money at the cost of relaxing quality of ATM fit. Namely, for any n < N
minimize

M∑
i=1

�BSin�Market� − BSin �Model� �n��n��
2 → min

subject to the constraints �n−1 ≤ �n and �n−1 ≤ �n�

where

BSin�Model� �n��n� = �1 − p�	BS
(
SnN �0��Kin� 0� �n�1 − GnN �0��2

)
pBS

(
1 + 	SnN �0�� 1 + 	Kin� 0��n�1 − FnN �0��2

)
�

Since the sensitivity of the function BS�S�K�U�V� with respect to V is known as Vega,
gradient methods can be used in optimization.

Returning to the initial problem of pricing cash flows of the form �SnN �Tn� − K�+, which
is equivalent to the calculation of E �D�Tn+1��SnN �Tn� − K�+�. By our calculations

E
(
D�Tn+1��SnN �Tn� − K�+)= B�0� Tn+1� �pBS�HJM� + �1 − p�BS�BGM���

where

BS�HJM� =BS

⎛
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B�0� Ti�
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⎞
⎟⎟⎠

and

BS�BGM� = 	BS

(
SnN �0��K��n�1 − GnN �0��

N∑
i=n+2

Qi
kN �0�� �n�1 − GnN �0��2

)
�

Cash flows of CMS swaps are of the form SnN �Tn�, which is equivalent to the calculation
of E �D�Tn+1�SnN �Tn��. Hence

E �D�Tn+1�SnN �Tn�� = B�0� Tn+1� �pCMS�HJM� + �1 − p�CMS�BGM���
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where

CMS�HJM� = �	SnN �t� + 1� exp
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Calibration





Index of Notations for Part II

Ti – Time expressed as a dd/mm/yy
B �0� Ti� – Discount factor for the period 0 ÷ Ti

�cap
(
Ti�Tj

)= �
cap
i�j – Volatility of cap for option maturing at Ti and

length Ti ÷ Tj

N – Principal notional
L
(
t� Ti� Tj

)
– LIBOR forward rate at time t for period Ti ÷Tj

�i�j – Day count fraction for period Ti ÷ Tj

X – Strike price
Wi – Payoff at time Ti

Si�j �t� = S
(
t� Ti� Tj

)
– Forward swap rate at time t for period Ti ÷ Tj

c
(
t� Tn−1� Tn��

cpl
n−1�n

)
– Caplet value for caplet covering period Tn−1 ÷

Tn with caplet volatility equal to �
cpl
n−1�n

�cpl �t� Tn−1� Tn� = �
cpl
n−1�n – Caplet volatility for a caplet covering period

Tn−1 ÷ Tn

�inst �t� Ti−1� Ti� – Instantaneous volatility of the forward rate
L�t�Ti−1� Ti�

�inst
(
t� Ti−1�i� Tk�l

)
– Piecewise constant instantaneous volatility of

forward rate L�t�Ti−1� Ti� at time interval Tk ÷
Tl, where k < l ≤ i − 1

�_inst – Matrix of instantaneous volatilities
�_cpl – Matrix of caplet volatilities
�swpt

(
t� Ti� Tj

)= �
swpt
i�j – Swaption volatility for swaption with maturity

at Ti and underlying swap length Ti ÷ Tj





7
Calibration Algorithms to Caps and Floors

7.1 INTRODUCTION

There is a wide range of various calibration algorithms for the LIBOR Market Model when
used in practice. A lot of them are described in books and articles (see Rebonato (2002),
Brigo and Mercurio (2001)), however there is still a lack of detailed algorithms presenting
the step-by-step procedure of calibration clearly.

In this chapter we describe at the beginning some preliminary theory. We present the
methodology of cap valuation. We demonstrate how to price caplets, how to derive ATM
strikes from caps and finally we present the full algorithm for stripping caplet volatilities
from cap quotes. All the theory is enriched by detailed examples taken from the real market.

All the market data are taken from a particular working day. The data contains interest
rates for EUR taken from both the deposit and IRS markets and also ATM cap volatilities.

The next part of the chapter is dedicated to the application of non-parametric calibration
algorithms to caps. For that purpose we use an algorithm that utilizes the derivation of caplet
volatilities from cap volatilities, what is hard to find anywhere. It may seem to be easy but
in our opinion the presentation of a detailed algorithm is necessary.

Taking into account the current situation of the market, we present some procedures of
calibration without the time homogeneity assumption and then afterwards with the time
homogeneity assumption. We compare both algorithms and results are produced. We present
the calibration algorithms first with piecewise constant instantaneous volatilities depending
on the time to maturity and then with a dependency on the maturity of the underlying
forward rate. Both algorithms were presented in Brigo and Mercurio (2001) but in this book
we present them in a more detailed way allowing them to be understood by readers of all
levels. We present examples that the time homogeneity assumption does not work properly
in certain market conditions.

7.2 MARKET DATA

One of the goals of the chapter is to present detailed algorithms and results of calibration.
To do this we take into account one set of market data. All the market data is taken
from 21 January 2005. We take into account following rates in EUR: the discount factors
bootstrapped to form par interest rates (LIBOR’s, FRA, IRS), at-the-money cap volatilities
and swaption volatilities. Table 7.1 presents the discount factors and cap volatilities for a
set of particular days.
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Table 7.1 Market data from 21 January 2005: discount factors and cap
volatilities

Tenor Ti Date Discount
factor B�0� Ti�

Cap volatility
�cap�T0� Ti�

t = 0 21-01-2005 1.0000000 N/A
T0 25-01-2005 0.9997685 N/A
TSN 26-01-2005 0.9997107 N/A
TSW 01-02-2005 0.9993636 N/A
T2W 08-02-2005 0.9989588 N/A
T1M 25-02-2005 0.9979767 N/A
T2M 25-03-2005 0.9963442 N/A
T3M 25-04-2005 0.9945224 N/A
T6M 25-07-2005 0.9890361 N/A
T9M 25-10-2005 0.9832707 N/A
T1Y 25-01-2006 0.9772395 0.1641
T2Y 25-01-2007 0.9507588 0.2137
T3Y 25-01-2008 0.9217704 0.2235
T4Y 26-01-2009 0.8908955 0.2188
T5Y 25-01-2010 0.8589736 0.2127
T6Y 25-01-2011 0.8262486 0.2068
T7Y 25-01-2012 0.7928704 0.2012
T8Y 25-01-2013 0.7595743 0.1958
T9Y 27-01-2014 0.7261153 0.1905
T10Y 26-01-2015 0.6942849 0.1859
T12Y 25-01-2017 0.6348348 0.1806
T15Y 27-01-2020 0.5521957 0.1699
T20Y 27-01-2025 0.4345583 0.1567

where

B�0� Ti� – Discount factor for time period 0 ÷ Ti

�cap�T0� Ti� – Market volatility of cap option starting at time T0 and maturing at Ti.

The various discount factors are bootstrapped from interbank deposits and FRA quotations
for short term below one year and IRS prices for long term above one year.

Some of the readers may not be familiar with nature of the cap mechanism. For that case
it seems to be worth showing how to interpret the cap quotes.

Below we present the nature of caps and how to determine resets and payments. Let us
start from cap covering one period. Usual periods are semiannual, however on the market
there are also caps with quarterly periods. Payments from a cap are illustrated in Figure 7.1.

In Figure 7.1 t = 0 means the pricing day (today). Date T1 is the first reset date where
LIBOR rate covering the period T1 ÷ T2 will be determined. The payment associated with
this LIBOR rate occurs in date T2 and equals W2.

W2 = N �L�T1� T1� T2� − X�+ �1�2�

In general we have

Wn = N �L�Tn−1� Tn−1� Tn� − X�+ �n−1�n (7.1)
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t T1 T2 T3 Tn

W2 = N [L(T1, T1, T2) – X ]+δ1,2

W3 = N [L(T2, T2, T3) – X ]+δ2,3

Wn = N [L(Tn – 1, Tn – 1, Tn) – X ]+δn – 1,n

Figure 7.1 Payments from cap option covering n periods.

where: N is notional value of the cap, L�Tn−1� Tn−1� Tn� is the LIBOR rate resetting at Tn−1

and covering the period Tn−1 ÷ Tn� X is the strike price of the cap, symbol ��+ denotes
value from the brackets if greater than zero and zero otherwise and finally �n−1�n denotes
year fraction of period Tn−1 ÷Tn computed according to one of well defined day count basis,
e.g. actual/360.

It is very important that we consider at this stage cap contracts functioning in the described
manner. If the payment W2 occurs at a different moment than T2 and the payoff function
remains unchanged then we will have not a plain-vanilla instrument, but an exotic one.
Analogously, payments W3�W4� � � � �Wn are defined accordingly.

Payments constructed as described above constitute caplets. So, we can say, that a cap
option is a set of caplets. Later in the text we describe how to obtain caplet volatilities from
cap volatilities, which is the first and necessary step to any calibration of cap options.

Now we can move to swaptions to present the nature of these contracts. Table 7.2 presents
market quotations of at-the-money swaption volatilities. By the ‘at-the-money swaption
volatility’ we mean such volatility for which strike price is equal to forward swap rate. The
definition of the forward swap rate will be presented later in the chapter.

Table 7.2 Market data from 21 January 2005: swaption volatilities

Underlying IRS length

1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

O
pt

io
n

m
at

ur
ity

T1Y 0.2270 0.2300 0.2210 0.2090 0.1960 0.1860 0.1760 0.1690 0.1630 0.1590
T2Y 0.2240 0.2150 0.2050 0.1940 0.1830 0.1740 0.1670 0.1620 0.1580 0.1540
T3Y 0.2090 0.2010 0.1900 0.1800 0.1700 0.1630 0.1580 0.1550 0.1520 0.1500
T4Y 0.1950 0.1870 0.1770 0.1680 0.1600 0.1550 0.1510 0.1480 0.1470 0.1450
T5Y 0.1820 0.1740 0.1650 0.1580 0.1510 0.1480 0.1450 0.1430 0.1420 0.1400
T6Y 0.1746 0.1674 0.1590 0.1524 0.1462 0.1436 0.1410 0.1394 0.1384 0.1368
T7Y 0.1672 0.1608 0.1530 0.1468 0.1414 0.1392 0.1370 0.1358 0.1348 0.1336
T8Y 0.1598 0.1542 0.1470 0.1412 0.1366 0.1348 0.1330 0.1322 0.1312 0.1304
T9Y 0.1524 0.1476 0.1410 0.1356 0.1318 0.1304 0.1290 0.1286 0.1276 0.1272
T10Y 0.1450 0.1410 0.1350 0.1300 0.1270 0.1260 0.1250 0.1250 0.1240 0.1240

Interpretation of ATM swaption quotes

The number 22.70 % in first column and first row means market swaption volatility with
maturity equal to 1 year �T1Y =T0� (see column on the left) on the underlying swap starting
in 1 year �T1Y � and maturing in 2 years �T2Y = T1� from now.
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We can define this volatility in the following way: �
swpt
0�1 = �swpt �t� T0� T1� = 22�70 %.

Figure 7.2 presents a schema for payments from a swaption with maturity T1Y = T0 with an
underlying swap period T0 ÷ T1.

t = 0 T0 = T1Y T1 = T2Y T2 = T3Y T3 = T4Y TM – 1 = TMY

Swaption maturity

Underlying swap length

W0 = N [S0,1(T0) – X ]+ δ 0,1

Figure 7.2 Payment from a swaption with maturity T0 covering the period T0 – T1

Where X means strike price for the swaption and S0�1 �T0� is a forward swap rate that will
be determined at T1Y = T0 and covering the period T0 ÷ T1.

Generally we can write �MKT
n�N which means the market swaption volatility for a swaption

maturing at Tn with underlying swap length Tn ÷ TN .
We have presented in this section all necessary basic data which allows us to construct var-

ious calibration techniques. In the next section we start to present the calibration algorithms
to cap options.

7.3 CALIBRATION TO CAPS

Calibration algorithms to caps are the simplest algorithms used in practice and do not
require the use of optimization techniques. However, one should be careful and aware that
such a calibration technique will definitely not be enough to solve the complicated pricing
problems. Although the calibration is simple and almost straightforward it will be useful for
later purposes to present it in a more detailed way. This is important because if one wants to
obtain a good understanding of any calibration procedure for a LIBOR Market Model it is
necessary to good understand how caps are quoted on the market and how to obtain caplet
prices from cap quotes.

The calibration of the LIBOR Market Model requires knowing how to price caps, and
more precisely, caplets in particular cap. To start with we should remember, that market
prices of caplets are valued using the standard Black formula.

7.3.1 Caplet values

The LIBOR rate covering the period Tn−1 ÷ Tn resetting in Tn−1 can be expressed from the
perspective of today in terms of deterministic discount factors for periods t ÷Tn−1 and t ÷Tn

and year fraction �n−1�n. So we have:

L�Tn−1� Tn−1� Tn� = F �T0� Tn−1� Tn� =
(

B �T0� Tn−1�

B �T0� Tn�
− 1

)
1

�n−1�n

(7.2)

where F�T0� Tn−1� Tn� is an interest rate determined at T0 covering the period Tn−1 ÷ Tn.
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Having this we can now determine the caplet price for the period Tn−1 ÷Tn with payment
at Tn and strike X in the following way:

c
(
T0� Tn−1� Tn��

cpl
n−1�n

)
= B �T0� Tn��n−1�n 	F �T0� Tn−1� Tn�N �d1� − XN �d2�
 (7.3)

where:

N �d1� =
ln
(

F�T0�Tn−1�Tn�

X

)
+ �

cpl
n−1�n

2
�0�n−1

2

�
cpl
n−1�n

√
�0�n−1

N �d2� =
ln
(

F�T0�Tn−1�Tn�

X

)
− �

cpl
n−1�n

2
�0�n−1

2

�
cpl
n−1�n

√
�0�n−1

and N�� denotes standard normal distribution function and �
cpl
n−1�n the market volatility of caplet

covering the period Tn−1 ÷ Tn. This is a good moment to present an example of caplet pricing.

Example 7.1 Caplet value

We compute the caplet value taking real market data from 21 January 2005. The character-
istics of the caplet is presented in Table 7.3:

Table 7.3 Caplet characteristic from example 7.1

Parameter Value

t = 0 21-01-2005
T0 25-01-2005
Tn−1 25-01-2006
Tn 25-04-2006
B �t�Tn−1� 0.9774658
B �t�Tn� 0.9712884
X 2.361 %
�

cpl
n−1�n 20.15 %

Taking the data from Table 7.3 we have caplet value for unit value of currency EUR:

c
(
T0� Tn−1� Tn��

cpl
n−1�n

)
= 0�000733039

End of example 7.1

The next step is to determine ATM strikes for cap options.

7.3.2 ATM strikes for caps

Let us define the forward swap rate, the rate of fixed leg of IRS which makes the contract
fair in the context of present time. For computational reasons our IRS contract has length
Ts ÷ TN . The present value of the floating leg is given by:

PV �Floating Leg� =
N∑

i=s+1

B �T0� Ti�L �Ti−1� Ti−1� Ti� �i−1�i�
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Analogously, the present value of the fixed leg is given by:

PV �Fixed Leg� =
N∑

i=s+1

B �T0� Ti� S �T0� Ts� TN ��i−1�i�

Assuming that the frequency of the floating payment is the same as the frequency of the
fixed payments we can write:

PV �Floating Leg� = PV �Fixed Leg� ⇔
N∑

i=s+1

B �T0� Ti�L �Ti−1� Ti−1� Ti� �i−1�i =
N∑

i=s+1

B �T0� Ti� S �T0� Ts� TN ��i−1�i�

So the forward swap rate can be written as

S �T0� Ts� TN � =
N∑

i=s+1
B �T0� Ti�L �Ti−1� Ti−1� Ti� �i−1�i

N∑
i=s+1

B �T0� Ti� �i−1�i

�

The LIBOR rate L�Ti−1� Ti−1� Ti� in above equation can be changed to the forward
LIBOR rate.

S �T0� Ts� TN � =
N∑

i=s+1
B �T0� Ti�

(
B�T0�Ti−1�

B�T0�Ti�
− 1

)
1

�i−1�i
�i−1�i

N∑
i=s+1

B �T0� Ti� �i−1�i

= B �T0� Ts� − B �T0� TN �
N∑

i=s+1
B �T0� Ti� �i−1�i

� (7.4)

For practical reasons it is important that �i−1�i denotes the year fraction of the fixed leg of
given IRS. But in our particular case of calibration presented later we will use the same
frequency for both the fixed and floating legs.

The forward swap rate derived above will be used to constitute the definition of an at-the-
money (ATM) cap. We are saying that a particular cap is ATM if the strike price is equal
to the forward swap rate. More precisely, let us consider a cap covering the period Ts ÷ Tn.
Payments from that cap can be written:

N∑
i=s+1

Wi =
N∑

i=s+1

N �L�Ts−1� Ts−1� Ts� − X�+ �s−1�s

If strike price X in above equation is equal to forward swap rate S �t�Ts� TN � the cap is
said to be ATM. Let us move now to present an example presenting computations of ATM
strikes for cap options.

Example 7.2 ATM strikes for caps

Let us compute ATM strikes for a series of caps maturing from one year up to 20
years. Having computed the discount factors (given in Table 7.1) we can determine the
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ATM cap strikes taking into consideration that the ATM cap options may be constructed in
two ways:

1. Cap starts at date T0, first reset rate is on T3M , first payment is on T6M based on a 3-month
LIBOR resetting on T3M and covering the period T3M ÷ T6M . All the other caplet periods
are based on similar three-monthly spaced intervals.

2. Cap starts at date T0, first reset rate is on T3M , first payment is on T6M based on a 3-month
LIBOR resetting on T3M and covering the period T3M ÷T6M . The caplet periods up to and
including 1 year are based on similar three-monthly spaced intervals. Above one year
there is change of caplet interval from three-months to six-months. So the reset moment
T1Y determines a 6-month LIBOR rate covering the period T1Y ÷ T18M which makes the
caplet payment at T18M . All the other caplet periods are based on similar six-monthly
spaced intervals.

In this example we will use the first case.

Table 7.4 shows the computations for ATM strikes for caps from 1 year up to 20 years.

Table 7.4 ATM strikes for caps, preliminary computations

Time Ti Date Year
fraction
ACT/360
�i−1�i

Discount
factor (DF)
B�T0� Ti�

Year
fraction∗ DF
�i−1�iB�T0� Ti�

Cumulative sum
i∑

j=6M

�j−1�jB�T0� Tj�

Difference
of DF
B�T0� T3M�−
B�T0� Ti�

Forward
swap rate
(ATM cap
strike)
S�T0� T3M�Ti�

3M 25-01-2005 0.25000 0.9947527
6M 25-07-2005 0.25278 0.9892651 0.2500642 0.2500642 0.0054876 2.19 %
9M 25-10-2005 0.25556 0.9834984 0.2513385 0.5014027 0.0112543 2.24 %
1Y 25-01-2006 0.25556 0.9774658 0.2497968 0.7511995 0.0172869 2.30 %
1Y 3M 25-04-2006 0.25000 0.9712884 0.2428221 0.9940216 0.0234643 2.36 %
1Y 6M 25-07-2006 0.25278 0.9648035 0.2438809 1.2379025 0.0299492 2.42 %
1Y 9M 25-10-2006 0.25556 0.9580084 0.2448244 1.4827269 0.0367443 2.48 %
2Y 25-01-2007 0.25556 0.9509789 0.2430279 1.7257548 0.0437737 2.54 %
2Y 3M 25-04-2007 0.25000 0.9440868 0.2360217 1.9617765 0.0506659 2.58 %
2Y 6M 25-07-2007 0.25278 0.9369436 0.2368385 2.1986150 0.0578091 2.63 %
2Y 9M 25-10-2007 0.25556 0.9295484 0.2375513 2.4361663 0.0652043 2.68 %
3Y 25-01-2008 0.25556 0.9219838 0.2356181 2.6717844 0.0727689 2.72 %
3Y 3M 25-04-2008 0.25278 0.9145031 0.2311661 2.9029504 0.0802496 2.76 %
3Y 6M 25-07-2008 0.25278 0.9068886 0.2292413 3.1321917 0.0878640 2.81 %
3Y 9M 27-10-2008 0.26111 0.8990590 0.2347543 3.3669460 0.0956937 2.84 %
4Y 26-01-2009 0.25278 0.8911017 0.2252507 3.5921967 0.1036510 2.89 %
4Y 3M 27-04-2009 0.25278 0.8833709 0.2232965 3.8154933 0.1113818 2.92 %
4Y 6M 27-07-2009 0.25278 0.8754579 0.2212963 4.0367896 0.1192947 2.96 %
4Y 9M 26-10-2009 0.25278 0.8673616 0.2192497 4.2560393 0.1273911 2.99 %
5Y 25-01-2010 0.25278 0.8591725 0.2171797 4.4732190 0.1355802 3.03 %
5Y 3M 26-04-2010 0.25278 0.8512070 0.2151662 4.6883852 0.1435457 3.06 %
5Y 6M 26-07-2010 0.25278 0.8430804 0.2131120 4.9014972 0.1516723 3.09 %
5Y 9M 25-10-2010 0.25278 0.8347939 0.2110173 5.1125146 0.1599588 3.13 %
6Y 25-01-2011 0.25556 0.8264399 0.2112013 5.3237159 0.1683127 3.16 %
7Y 25-01-2012 0.25556 0.7930540 0.2026694 6.1405422 0.2016987 3.28 %
8Y 25-01-2013 0.25556 0.7597502 0.1941584 6.9256882 0.2350025 3.39 %
9Y 27-01-2014 0.26111 0.7262834 0.1896407 7.6788386 0.2684693 3.50 %
10Y 26-01-2015 0.25278 0.6944457 0.1755404 8.3930044 0.3003070 3.58 %
11Y 25-01-2016 0.25278 0.6645450 0.1679822 9.0763113 0.3302076 3.64 %
12Y 25-01-2017 0.25556 0.6349818 0.1622731 9.7331116 0.3597709 3.70 %
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Table 7.4 Continued

Time Ti Date Year
fraction
ACT/360
�i−1�i

Discount
factor (DF)
B�T0� Ti�

Year
fraction∗ DF
�i−1�iB�T0� Ti�

Cumulative sum
i∑

j=6M

�j−1�jB�T0� Tj�

Difference
of DF
B�T0� T3M�−
B�T0� Ti�

Forward
swap rate
(ATM cap
strike)
S�T0� T3M�Ti�

13Y 25-01-2018 0.25556 0.6068399 0.1550813 10.3590352 0.3879128 3.74 %
14Y 25-01-2019 0.25556 0.5792752 0.1480370 10.9567889 0.4154775 3.79 %
15Y 27-01-2020 0.26111 0.5523236 0.1442178 11.5300493 0.4424291 3.84 %
16Y 25-01-2021 0.25278 0.5273147 0.1332934 12.0726815 0.4674379 3.87 %
17Y 25-01-2022 0.25556 0.5030900 0.1285675 12.5919467 0.4916627 3.90 %
18Y 25-01-2023 0.25556 0.4795796 0.1225592 13.0870691 0.5151731 3.94 %
19Y 25-01-2024 0.25556 0.4567881 0.1167347 13.5588099 0.5379646 3.97 %
20Y 27-01-2025 0.26111 0.4346590 0.1134943 14.0115070 0.5600937 4.00 %

End of example 7.2

Having computed ATM strikes for cap options we can move to caplet bootstrapping.

7.3.3 Stripping caplet volatilities from cap quotes

The market volatility of caplets will be derived from cap volatilities quotations; to do that
we need to introduce a stripping algorithm.

Let us start from a cap maturing in one year. Remembering that we have quarterly resets,
so the effective date of the cap is Ts = T3M , and payments are made at times: T6M�T9M�T1Y .
The volatility (precisely forward volatility) �cap �t� T1Y � for a one year cap equals 16.41 %.
The strike price S �t�T3M�T1Y � for this cap equals 2.301 %. However we need to make
some assumptions if we want to compute caplet volatilities for the periods shorter than
one year. To obtain this we generate two additional caps covering the periods: T3M ÷ T6M

and T3M ÷ T9M . The strike prices (ATM) for these caps equals the appropriate forward
swap rates S �t�T3M�T6M� with value 2.194 % and S �t�T3M�T9M� with value 2.245 %. These
strike rates can be obtained directly from yield curve. However, we have no volatilities for
periods shorter than one year. To obtain these values, we use constant extrapolation, so
we assume that: �cap �t� T6M� = �cap �t� T9M� = �cap �t� T1Y �. With this assumption we can
compute 6-month caps using standard Black formula:

cap �t�T6M� = B �t�T6M��3M�6M�F �t�T3M�T6M�N
(
d1�6M

)− S �t�T3M�T6M�N
(
d2�6M

)�
where:

N
(
d1�6M

)= ln
(

F�t�T3M �T6M �

X

)
+ �cap�t�T6M �2�t�3M

2

�cap �t� T6M�
√

�t�3M

�

and

N
(
d2�6M

)= ln
(

F�t�T3M �T6M �

X

)
− �cap�t�T6M �2�t�3M

2

�cap �t� T6M�
√

�t�3M

�

Because the six month cap is built only from one caplet covering the period T3M ÷ T6M , the
caplet volatility �caplet �t� T3M�T6M� for the period T3M ÷T6M is the same as the cap volatility
�cap �t� T6M� for the cap maturing at T6M and equals 16.41 %.



Calibration Algorithms to Caps and Floors 75

Now we move to the next step, where we deal with the cap maturing at T9M . We compute
value of this cap again using the standard Black formula:

cap �t�T9M� =B �t�T6M��3M�6M

[
F �t�T3M�T6M�N

(
d1�6M

)
−S �t�T3M�T9M�N

(
d2�6M

)]+ B �t�T9M��6M�9M

[
F �t�T6M�T9M�N

(
d1�9M

)
−S �t�T3M�T9M�N

(
d2�9M

)]
where:

N
(
d1�9M

)= ln
(

F�t�T6M �T9M �

X

)
+ �cap�t�T6M �2�t�6M

2

�cap �t� T9M�2√�t�6M

and

N
(
d1�9M

)= ln
(

F�t�T6M �T9M �

X

)
− �cap�t�T9M �2�t�6M

2

�cap �t� T9M�2√�t�6M

�

Having the value of the cap maturing at T9M , we can compute the sum of the caplet values
for the periods T3M ÷ T6M and T6M ÷ T9M in the following way:

caplet �t� T3M�T6M�=B �t�T6M��3M�6M

⌊
F �t�T3M�T6M�N

(
d1�6M

)− S �t�T3M�T9M�N
(
d2�6M

)⌋
where

N
(
d1�6M

)= ln
(

F�t�T3M �T6M �

X

)
+ �caplet�t�T3M �T6M �2�t�3M

2

�caplet �t� T3M�T6M�
√

�t�3M

and

N
(
d2�6M

)= ln
(

F�t�T3M �T6M �

X

)
− �caplet�t�T3M �T6M �2�t�3M

2

�caplet �t� T3M�T6M�
√

�t�3M

�

In this case we input �caplet �t� T3M�T6M� as the value computed in the previous step
of calibration (equaling 16.41 %). Next we compute the caplet value for the second
period:

caplet �t� T6M�T9M�=B �t�T9M��6M�9M

⌊
F �t�T6M�T9M�N

(
d1�9M

)− S �t�T3M�T9M�N
(
d2�9M

)⌋
where:

N
(
d1�9M

)= ln
(

F�t�T6M �T9M �

S�t�T3M �T9M �

)
+ �caplet�t�T6M �T9M �2�t�6M

2

�caplet �t� T6M�T9M�
√

�t�6M
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and

N
(
d1�9M

)= ln
(

F�t�T6M �T9M �

S�t�T3M �T9M �

)
− �caplet�t�T6M �T9M �2�t�6M

2

�caplet �t� T6M�T9M�
√

�t�6M

�

The final computation in this step of calculation is solving the equation with respect to
�caplet �t� T6M�T9M�

cap �t�T9M� = caplet �t� T3M�T6M� + caplet �t� T6M�T9M� �

Next we will obtain the caplet volatilities in the same way. For the broken periods greater
then one year (e.g. one year and three months) we will be obliged to interpolate (usually
using the linear method) the market quotes for cap volatilities.

Now we are able to write the complete algorithm for stripping caplet volatilities having
market quotes for various cap volatilities which are ATM.

Algorithm 7.1 Caplet volatilities stripping

1. Determine all resets and maturity dates of all caplets. We deduce them from the mar-
ket quotes of caps. Let us denote these moments (for 3-month intervals) as: Ts =
T3M�T6M�T9M� � � � � TN .

2. Generate the artificial caps according to the determined resets and maturities

a. Compute the appropriate forward swap rates for ATM strikes of the caps for the
periods: Ts ÷ T6M�Ts ÷ T9M� � � � � Ts ÷ TN

b. Extrapolate using an interpolation method applied to observed mar-
ket cap volatilities for all generated caps to obtain volatilities:
�cap �t� T6M���cap �t� T9M�� � � � ��cap �t� TN �.

3. The first caplet volatility will be equal the first cap volatility, so �cap �t� T6M� =
�caplet �t� T3M�T6M�.

4. Compute the market value for the cap whose maturity is longer by exactly one interval
then previous cap, so �cap �t� T6M+i� = �cap �t� T9M�.

5. Having computed the previous caplet volatility (for last interval) we compute the implied
caplet volatility for next interval solving the equation for the appropriate cap and sum of

appropriate caplets, so cap �t�T9M� = N∑
i=1

caplet �t� Ti� Ti+1�.

6. Continue up to last cap reset. Increase the index in step (5).

End of algorithm 7.1

We now present an example of the stripping algorithm using our work just completed.

Example 7.3 Stripping caplet volatilities from cap quotes

Table 7.5 presents cap volatilities for periods from one year up to 20 years. Only cap volatil-
ities for full years are taken directly from the market. Caps before 1 year are extrapolated
using one year volatility as a constant. Caps for broken periods above 1 year are linearly
interpolated. Strikes for ATM caps are taken from Table 7.4.
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Table 7.5 Caplet volatilities stripped from cap volatilities

Tenor Ti Market cap volatility
�cap�T0� Ti�

Caplet volatility
�caplet�T0� T3M�Ti�

Time homogeneity test1

�caplet�T0� T3M�Ti�
2�T0�i−1

6M 0.1641 0.1641 0.0067
9M 0.1641 0.1641 0.0135
1Y 0.1641 0.1641 0.0204
1Y 3M 0.1765 0.2015 0.0412
1Y 6M 0.1889 0.2189 0.0606
1Y 9M 0.2013 0.2365 0.0848
2Y 0.2137 0.2550 0.1152
2Y 3M 0.2162 0.2212 0.0992
2Y 6M 0.2186 0.2255 0.1158
2Y 9M 0.2211 0.2298 0.1336
3Y 0.2235 0.2341 0.1527
3Y 3M 0.2223 0.2097 0.1338
3Y 6M 0.2212 0.2083 0.1429
3Y 9M 0.2200 0.2077 0.1530
4Y 0.2188 0.2051 0.1602
4Y 3M 0.2173 0.2007 0.1636
4Y 6M 0.2158 0.1982 0.1695
4Y 9M 0.2142 0.1959 0.1753
5Y 0.2127 0.1938 0.1810
6Y 0.2068 0.1859 0.2015
7Y 0.2012 0.1781 0.2171
8Y 0.1958 0.1700 0.2272
9Y 0.1905 0.1622 0.2335
10Y 0.1859 0.1570 0.2439
11Y 0.1833 0.1652 0.2976
12Y 0.1806 0.1602 0.3059
13Y 0.1770 0.1451 0.2723
14Y 0.1735 0.1380 0.2656
15Y 0.1699 0.1315 0.2587
16Y 0.1673 0.1353 0.2925
17Y 0.1646 0.1300 0.2872
18Y 0.1620 0.1243 0.2782
19Y 0.1593 0.1184 0.2666
20Y 0.1567 0.1131 0.2563

Note: 1 Results of these computations will be used later in the cap calibration algorithm.

End of example 7.3

We can present our computations graphically:
Figure 7.3 shows a typical pattern for cap volatilities and caplet volatilities as a function

of maturity. In the case of cap volatility the maturity is the maturity of the cap, in the case
of caplet volatility it is the maturity of the caplet. The cap volatilities are akin to cumulative
averages of the caplet volatilities and therefore exhibit less variability. As indicated by
Figure 7.3 we usually observe a hump in the volatilities. The peak of the hump is at about
the 2 to 3 year point. There is no general agreement on the reason for the existence of
the hump.
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Figure 7.3 Cap and caplet volatility from 21 January 2005.

Having defined and computed caplet volatilities we can start to describe the key calibration
algorithms.

7.4 NON-PARAMETRIC CALIBRATION ALGORITHMS

We have computed caplet volatility in the previous section and this is a good place to give
an explanation of instantaneous volatility. The relationship between caplet volatility and
instantaneous volatility of the forward rate F �t� Ti−1� Ti� is defined as:

�caplet �t� Ti−1� Ti�
2 = 1

�t�Ti−1

i−1∫
t

�2
i �t� dt

Having above equation in mind we can create many piecewise-constant instantaneous volatil-
ity structures.

Def. (Piecewise constant volatility). A volatility structure ��i ����
N
i=1 is piecewise constant if

�i �t� = �const�� t ∈ �Ti−1� Ti�

Figure 7.4 below illustrates the nature of piecewise constant instantaneous volatility. We
take, for example, volatility of forward rate covering the period T6M ÷ T9M .

The real value of forward rate F �t�T6M�T9M� will have uncertain value until time t =T6M .
Before time T6M starting at T0 we can derive the instantaneous volatility of the forward rate
(e.g. from caplet volatilities). There is a practice in the market to assume, that instantaneous
volatility will have constant value for a particular time period. In Figure 7.4 we assume a
constant instantaneous volatility at periods T0 ÷ T3M and T3M ÷ T6M .

As we will see later some of the structures can be impossible to create, because caplet
volatilities may be not time-homogenous for a particular cap quotation taken from the real
market.
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Figure 7.4 Piecewise constant instantaneous volatility.

Def. (Time homogeneity). Let us define a fixing to be one of the time points T1� � � � � TN .
Define 
 � 	0� T 
 → �1� � � � �N�,


 �t� = # �fixings in �0� t�� �

A volatility structure is said to be time homogeneous if it depends only on the index to
maturity i − 
 �t�.

In our case, we can test time homogeneity in a simple way, by just multiplying the squared
caplet volatilities by time. As we will see later the time homogeneity assumption does not
hold for the market data used in our examples. We cannot assume that the instantaneous
volatilities depend only on the time to maturity, because then some of piecewise-constant
instantaneous volatilities might be negative.

We are ready to present now two approaches of LIBOR market model calibration to cap
(precisely caplet) volatilities. Both are described in Brigo and Mercurio (2001), however we
present more detailed algorithms and provide examples. The first of the algorithms is based
upon the assumption that volatility depends only upon the time to maturity.

7.4.1 Piecewise constant instantaneous volatilities depending on the time to
maturity

One possible way to determine instantaneous volatility is to assume that the piecewise
constant instantaneous volatility depends only on the time to maturity. Figure 7.5 shows
how piecewise constant instantaneous volatility depends on the time to maturity.

The interpretation of the Figure 7.5 is straightforward. The piecewise constant instanta-
neous volatility of the forward rate F �t�T3M�T6M� at the period T0 ÷ T3M is the same as the
piecewise constant instantaneous volatility of the forward rate F �t�T6M�T9M� at the period
T3M ÷ T6M , and the same as the piecewise constant instantaneous volatility of the forward
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Figure 7.5 Piecewise constant instantaneous volatility dependent on time to maturity.

rate F �t�T9M�T1Y � at the period T6M ÷ T9M and finally the same as the piecewise constant
instantaneous volatility of the forward rate F �t�T19Y 9M�T20Y � at the period T19Y 6M ÷ T19Y 9M .
A similar situation exists for the other forward rates.

Our goal is to derive the instantaneous volatility matrix. So at the beginning we
have to define an instantaneous volatility matrix to be computed. We present this as
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the lower triangular matrix below, based on a maximum caplet maturity at 20 years
from now.

�_inst=
⎡
⎢⎣

�inst
(
t� T3M�6M �T0�3M

) − − − − − − � � � − − −
�inst

(
t� T6M�9M �T0�3M

)
�inst

(
t� T6M�9M �T3M�6M

) − − − � � � − − −
�inst

(
t� T9M�1Y � T0�3M

)
�inst

(
t� T9M�1Y � T3M�6M

)
�inst

(
t� T9M�1Y � T6M�9M

)
� � � − − −

� � � � � � � � � � � � � � �

�inst
(
t� T19�75Y�20Y � T0�3M

)
�inst

(
t� T19�75Y�20Y � T3M�6M

)
�inst

(
t� T19�75Y�20Y � T6M�9M

)
� � � �inst

(
t� T19�75Y�20Y � T19�75Y�20Y

)

⎤
⎥⎦

Elements of matrix �_inst have the following interpretations:

�_inst �1� 1� = �inst
(
t� T3M�6M�T0�3M

)
– instantaneous volatility related to

the forward rate F �t�T3M�T6M� for
time interval T0 ÷ T3M

�_inst �2� 1� = �inst
(
t� T6M�9M�T0�3M

)
– instantaneous volatility related to

the forward rate F �t�T6M�T9M� for
time interval T0 ÷ T3M

�_inst �2� 2� = �inst
(
t� T6M�9M�T3M�6M

)
– instantaneous volatility related to

the forward rate F �t�T6M�T9M� for
time interval T3M ÷ T6M� � �

The elements follow exactly the same scheme.
We also need to define the matrix of caplet volatilities. This matrix is presented

below

�_cpl =

⎡
⎢⎢⎢⎢⎢⎢⎣

�caplet
(
t� T3M�6M

)
�caplet

(
t� T6M�9M

)
�caplet

(
t� T9M�1Y

)
� � �

�caplet
(
t� T19�75Y�20Y

)

⎤
⎥⎥⎥⎥⎥⎥⎦

Elements of the matrix �_cpl have the following interpretations

�_cpl�1� = �caplet�t� T3M�6M� – Market caplet volatility for time interval T3M ÷ T6M .

Finally we define the matrix of time T

T =

⎡
⎢⎢⎢⎢⎢⎣

0
T3M

T6M

� � �

T20Y

⎤
⎥⎥⎥⎥⎥⎦ �

Having that we can then define ��i� j� = 	T �j� − T �i�
 /basis for j > i.

We can move now to present the algorithm for calibration.
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Algorithm 7.2 Calibration to caplets – piecewise constant instantaneous volatility
depending on time to maturity

For i = 1 to N // Number of caplet volatilities

LeftSide= 0

For j = 1 to i

Sum = �_inst �i� j�2 ��j − 1� j�

LeftSide=LeftSide+Sum

Next j

RightSide = �_cpl �i�2 ��0� i�

�Function� SolvingEquation → RightSide = LeftSide//for �_inst �i� 1��

For k = 1 to i

�_inst �i + 1� k + 1� = �_inst �i� k� // Assignment

Next k

Next i

End of algorithm 7.2

Below is example for first three iterations of algorithm 7.2:

Example 7.4 Calibration to caplets – piecewise constant instantaneous volatility
depending on time to maturity

Equation for �_inst �1� 1�:

�_cpl �1�2 ��0� 1� = �_inst �1� 1�2 ��0� 1� ⇒ �_inst �1� 1� = sqrt

(
��0� 1�

� �0� 1�
�_cpl �1�2

)
= �_cpl �1� = 16�41 %

Assignments � �_inst �2� 2� = �_inst �1� 1� = 16�41 %

Equation for �_inst �2� 1�:

�_cpl �2�2 ��0� 2� = �_inst �2� 1�2 ��0� 1� + �_inst �2� 2�2 ��1� 2�

⇒ �_inst �2� 1� = sqrt

(
��0� 2�

� �0� 1�
�_cpl �2�2 − ��1� 2�

� �0� 1�
�_inst �2� 2�2

)

= sqrt

(
0�50277778

0�25
16�41 %2 − 0�25277778

0�25
16�41 %2

)
= 16�41 %

Assignments: �_inst �3� 2� = �_inst �2� 1� = 16�41 %� �_inst �3� 3� = �_inst �2� 2� =
16�41 %
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Equation for �_inst �3� 1�:

�_cpl �3�2 ��0� 3� = �_inst �3� 1�2 ��0� 1� + �_inst �3� 2�2 ��1� 2� + �_inst �3� 3�2 ��2� 3�

⇒ �_inst �3� 1� = sqrt

(
��0� 3�

� �0� 1�
�_cpl �3�2 − ��1� 2�

� �0� 1�
�_inst �3� 2�2 − ��2� 3�

� �0� 1�
�_inst �3� 3�2

)

= sqrt

(
0�7583333

0�25
16�412 − 0�25277778

0�25
16�41 %2 − 0�2599556

0�25
16�41 %2

)
= 16�41 %

Assignments: �_inst �4� 2� = �_inst �3� 1� = 16�41 %� �_inst �4� 3� = �_inst �3� 2� =
16�41 %� �_inst �4� 4� = �_inst �3� 3� = 16�41 %

End of example 7.4

Further computations should be done in similar way. Our results are presented in Table 7.6:

Table 7.6 Piecewise constant instantaneous volatilities depending on time to maturity

Tenor Ti Date Caplet
volatility

Squared
caplet
volatility
multiplied
by time

Forward
rate

Period
0; 3M

Period
3M; 6M

Period
6M; 9M

� � � Sum of
squared
piecewise
constant
volatilities
multiplied
by time
period

T6M 25/07/2005 16.41% 0.0067322 F3M�6M�t� 16.41 % � � � 0.0067322
T9M 25/10/2005 16.41 % 0.0135392 F6M�9M�t� 16.41 % 16.41 % � � � 0.0135392
T1Y 25/01/2006 16.41 % 0.0204210 F9M�1Y �t� 16.41 % 16.41 % 16.41 % � � � 0.0204210
T1�25Y 25/04/2006 20.15 % 0.0411662 F1Y�1�25Y �t� 28.71 % 16.41 % 16.41 % � � � 0.0411772
T1�5Y 25/07/2006 21.89 % 0.0605620 F1�25Y�1�5Y �t� 27.74 % 28.71 % 16.41 % � � � 0.0605691
T1�75Y 25/10/2006 23.65 % 0.0848306 F1�5Y�1�75Y �t� 30.92 % 27.74 % 28.71 % � � � 0.0848381
T2Y 25/01/2007 25.50 % 0.1152388 F1�75Y�2Y �t� 34.60 % 30.92 % 27.74 % � � � 0.1152465
T2�25Y 25/04/2007 22.12 % 0.0992180 F2Y�2�25Y �t� 0.00 % 34.60 % 30.92 % � � � 0.1155363

where:

Squared caplet volatility multiplied by time �caplet
(
T0� Ti�j

)2
�T0�i−1

Sum of squared piecewise constant volatilities multiplied by
time period

��k�l�
inst
(
t� Ti�jTk�l

)2

The result of the time homogeneity assumption for instantaneous volatility is visible at
tenor T2�25Y . In such case a sum of squared piecewise constant volatilities multiplied by the
time period is greater than squared caplet volatility multiplied by time, even if we put zero
instantaneous volatility for forward rate F2Y�2�25Y �t� for time period 0,3M.

We can find an alternative way of calibrating BGM to cap options. A good choice will
be piecewise constant instantaneous volatility depending on the maturity of the underlying
forward rate, which we present below.
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7.4.2 Piecewise constant instantaneous volatilities depending on the
maturity of the underlying forward rate

Another way to determine the instantaneous volatility is assuming that the piecewise constant
instantaneous volatility depends only on the maturity of underlying forward rate. Figure 7.6
presents the schema of the volatility dependent only on the maturity of the underlying
forward rate.

…

…

…

…
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Figure 7.6 Piecewise constant instantaneous volatility dependent on the maturity of the underlying
forward rate.

The piecewise constant instantaneous volatilities have identical values for all 3-month peri-
ods for a particular forward rate. For example for forward rate F �t�T9Y � T1Y � instantaneous
volatility is the same in periods T0 ÷ T3M�T3M ÷ T6M�T6M ÷ T9M .
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We now present our modified calibration algorithm.

Algorithm 7.3 Calibration to caplets – piecewise constant instantaneous volatility
depending on the maturity of the underlying forward rate

For i = 1 to N // Number of caplet volatilities

For j = 1 to i

�_inst �i� j� = �_cpl �i�

Next j

Next i

End of algorithm 7.3

Let us present an example for the first three iterations.

Example 7.5 Calibration to caplets – piecewise constant instantaneous volatility
depending on the maturity of the underlying forward rate

Equation for �_inst �1� 1�:

�_cpl �1�2 ��0� 1� = �_inst �1� 1�2 ��0� 1� ⇒ �_inst �1� 1�

= sqrt

(
��0� 1�

� �0� 1�
�_cpl �1�2

)
= �_cpl �1� = 16�41%

Equation for �_inst �2� 1�:

�_cpl �2�2 ��0� 2� = �_inst �2� 1�2 	� �0� 1� + ��1� 2�


⇒ �_inst �2� 1� = sqrt

(
��0� 2�

� �0� 1� + ��1� 2�
�_cpl �2�2

)
= �_cpl �2� = 16�41%

Assignments: �_inst �2� 2� = �_inst �2� 1� = 16�41 %

Equation for �_inst �3� 1�:

�_cpl �3�2 ��0� 3� = �_inst �3� 1�2 	� �0� 1� + ��1� 2� + ��2� 3�


⇒ �_inst �3� 1� = sqrt

(
��0� 3�

� �0� 1� + ��1� 2� + ��2� 3�
�_cpl �3�2

)
= �_cpl �3� = 16�41%

Assignments: �_inst �3� 2� = �_inst �3� 1� = 16�41 %� �_inst �3� 3� = �_inst �3� 1� =
16�41 %

End of example 7.5

Further computations should be done in similar way.
Table 7.7 presents the computed results for piecewise constant instantaneous volatilities

depending on the maturity of the underlying forward rate.
Having analysed the two approaches for BGM calibration to caps it is important to notice

that the time homogeneity assumption may lead to negative instantaneous volatilities but this
is not the case for every business day. Banks and financial institutions may use a calibration
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Table 7.7 Piecewise constant instantaneous volatilities depending on the maturity of the underlying
forward rate

Tenor Ti Date Caplet
volatility

Squared
caplet
volatility
multiplied
by time

Forward
rate

Period
0; 3M

Period
3M;
6M

Period
6M;
9M

� � � Sum of
squared
piecewise
constant
volatilities
multiplied
by time
period

T6M 25/07/2005 16.41% 0.0067322 F3M�6M�t� 16.41% � � � 0.0067322
T9M 25/10/2005 16.41% 0.0135392 F6M�9M�t� 16.41% 16.41% � � � 0.0135392
T1Y 25/01/2006 16.41% 0.0204210 F9M�1Y �t� 16.41% 16.41% 16.41% � � � 0.0204210
T1�25Y 25/04/2006 20.15% 0.0411662 F1Y�1�25Y �t� 20.15% 20.15% 20.15% � � � 0.0411662
T1�5Y 25/07/2006 21.89% 0.0605620 F1�25Y�1�5Y �t� 21.89% 21.89% 21.89% � � � 0.0605620
T1�75Y 25/10/2006 23.65% 0.0848306 F1�5Y�1�75Y �t� 23.65% 23.65% 23.65% � � � 0.0848306
T2Y 25/01/2007 25.50% 0.1152388 F1�75Y�2Y �t� 25.50% 25.50% 25.50% � � � 0.1152388
T2�25Y 25/04/2007 22.12% 0.0992180 F2Y�2�25Y �t� 22.12% 22.12% 22.12% � � � 0.0992180
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

to caps based on the time homogeneity assumption but under the extra condition that all
instantaneous volatilities will be positive for a particular day.

7.5 CONCLUSIONS

In this chapter we have presented in a detailed way all the necessary tools which help a
beginner quantitative analyst to start learning calibration algorithms for the LIBOR Mar-
ket Model.

At the beginning of the chapter we have gathered market data from a particular working
day, using this data in all examples in the chapter. Such an approach seems to be very
useful especially in the case where someone wants to compare results generated by different
algorithms. This allows one to determine which calibration algorithm is better than another.
However, one should be very careful in interpreting the conclusions because what is true
for one particular day may not be true for another. Nevertheless the results may be a good
starting point for further research.

After presenting the market data we have showed the nature of the cap mechanism.
This is due to the fact that some readers may not be familiar with this and because
such knowledge is fundamental for later cases. We demonstrated how to determine resets
and payments in caps. Although the chapter was intended only for calibration to caps
we have also presented the mechanism for swaptions. This will be used in Chapters 8
and 9 when we present calibration algorithms to swaptions and simultaneously to caps and
swaptions.

Chapter 7 should be treated as introductory tool. We have presented the most popular
algorithms allowing the user to calibrate LIBOR Market Models to cap options. In some
market environments that approach seems to be sufficient. These algorithms may be used
if we deal with those interest rate derivatives that depend mostly on behaviour of cap
movements. Additionally one should assume that instantaneous correlations of forward rates
will equal to one.
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Both approaches presented in the chapter require caplet volatilities to be bootstrapped
from cap options. Both can be used as a base for simultaneous calibration to caps and
swaptions. However, as we have seen in some market circumstances the assumption of
time homogeneity may lead to obtaining negative volatilities. Much safer is using approach
based on assumption that volatilities depends on the maturity of the underlying forward rate
presented in section 7.4.2 than on time to maturity presented in section 7.4.1.

In the next chapter we start to introduce non parametric calibration algorithms to caps and
swaptions. First we introduce a separated approach. Next we move onto locally single factor
approach. We also present calibration using historical correlations and extremely useful
calibration to co-terminal swaptions.





8
Non-Parametric Calibration Algorithms

to Caps and Swaptions

8.1 INTRODUCTION

In the previous chapter we have presented two simple calibration algorithms to cap options. It
was shown how to understand the cap and swaption payments mechanism. We have showed
step-by-step how to strip caplet volatilities from caps and finally presented the two most
popular calibration algorithms to caps. Both were based on the piecewise constant volatility
assumption. One of them has presented calibration assuming that volatilities depend only
on the time to maturity, whilst the other one has assumed that volatilities depend on the
maturity of the underlying forward rate.

Chapter 8 concerns non-parametric calibration algorithms of caps and swaptions.
The nature of swaption quotations was presented in the previous chapter in section 7.2. The
section contains also market swaption quotations taken from a particular working day, the
same day for which caps and interest rate date for EUR were taken previously. Such an
approach will enable comparisons between results of various calibration algorithms.

We start with a description of one of the most popular algorithm of calibration to swaptions
called the separated approach. The separated approach provides a direct way of calibrating
the model to the full set of swaptions. We present in detail all necessary steps allowing an
implementation of the algorithm in practice. First we create a matrix of swaption volatilities
and after that define the covariance matrix of the forward LIBOR rates. Next we present
how to compute the elements of the covariance matrix. Additionally, that part contains
intermediate calculations and intermediate results which helps the reader to fully understand
the matter. As a result we obtain a variance-covariance matrix of the forward LIBOR rates.
We show how to transform the obtained matrices to ensure positivity of the matrices. For
this we utilize principal component analysis.

We compute matrices for each of the different variants of the separated approach. The
differences arise from different specification of the parameters �i used in the calibration.
We see later the exact definition of these parameters. For each variant we present vectors
of eigenvalues and additionally the root mean squared error between theoretical and market
swaption volatilities. The two variants of calibration are then described in more detail. One
can find algorithms that allow the instantaneous volatilities to be derived by a specification as
orthogonal vectors. The specification is based first for the assumption of constant volatility
through time and next as the piecewise constant case.

Next we develop a previously demonstrated separated approach by adding an optimization
algorithm. As a target function we set a root mean squared error for the difference between
the theoretical and market swaption volatilities. We minimize that function but under several
restrictions for VCV. We postulate that the VCV matrix must be positive definite. For that
case we implement a subalgorithm for reducing the VCV matrix by removing eigenvectors
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associated with negative eigenvalues. We describe all the necessary steps for that calibration
routine. We present the whole calibration algorithm in Matlab code.

Another calibration algorithm presented in the chapter is the locally single factor approach.
First we present all necessary assumptions and after that we move into the details of the
algorithm. Based on the market reference data we show some results of the computations.

We then move into the calibration to swaptions given the exogenously computed corre-
lations of forward LIBOR rates based on historical market data. In that part of the chapter
we present how to compute historical correlations and present the final results.

The last part of the chapter is dedicated to calibration to co-terminal swaptions. We present
the nature of co-terminal swaptions and the bootstrap of instantaneous volatility. Finally we
present calibration results.

8.2 THE SEPARATED APPROACH

One of the popular approaches of BGM calibration is called the separated approach. This
approach provides a direct way of calibrating the model to the full set of swaptions. In many
situations there is more worth calibrating the model to swaptions instead of caps. This is
especially true when we want to value an exotic instrument which is more dependent on
swaption prices than cap volatilities. A good example will be any Bermudan type swaption.

We start our separated approach calibration by creating a matrix of swaption volatilities
as below:

�SWPT =

⎡
⎢⎢⎢⎢⎣

�
swpt
1�2 �

swpt
1�3 �

swpt
1�4 � � � �

swpt
1�m+1

�
swpt
2�3 �

swpt
2�4 �

swpt
2�5 � � � �

swpt
2�m+2

�
swpt
3�4 �

swpt
3�5 �

swpt
3�6 � � � �

swpt
3�m+3

� � � � � � � � � � � � � � �
�

swpt
m�m+1 �

swpt
m�m+2 �

swpt
m�m+3 � � � �

swpt
m�M

⎤
⎥⎥⎥⎥⎦

m×m

where in our case m = 10 and M = 20 and �
swpt
1�2 = �swpt �t� T1� T2� is the market swaption

volatility for a swaption maturing at T1 with underlying swap period T1 ÷T2. We can define
the dependency of the components of �SWPT on market swaption volatility symbols in the
following way:

�MKT
n�N = �SWPT �n�N − n�

Let us define the covariance matrix of forward LIBOR rates in the following way:

	i =

⎡
⎢⎢⎢⎢⎣


i
1�1 
i

1�2 
i
1�3 � � � 
i

1�m


i
2�1 
i

2�2 
i
2�3 � � � 
i

2�m


i
3�1 
i

3�2 
i
3�3 � � � 
i

3�m

� � � � � � � � � � � � � � �

i

m�1 
i
m�2 
i

m�3 � � � 
i
m�m

⎤
⎥⎥⎥⎥⎦

m×m

where:


i
kl =

Ti∫
0

�inst �t� Tl−1� Tl��inst �t� Tk−1� Tk�dt for i < k and i < l
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and �inst �t� Tl−1� Tl� is the stochastic instantaneous volatility of the LIBOR rate
Ll �t�Tl−1� Tl�.

We assume that


i
kl = �i
kl

where �i are positive numbers and

	 =

⎡
⎢⎢⎢⎢⎣


1�1 
1�2 
1�3 � � � 
1�m


2�1 
2�2 
2�3 � � � 
2�m


3�1 
3�2 
3�3 � � � 
3�m

� � � � � � � � � � � � � � �

m�1 
m�2 
m�3 � � � 
m�m

⎤
⎥⎥⎥⎥⎦

m×m

�

Parameters on diagonal can be calculated via the closed form formulae


kk = �0�k�
swpt �t� Tk�Tk+1�

2

�k

where k = 1� � � � � m.
Having that we can use the simple algorithm below to calculate the diagonal values of

the matrix 	:

Algorithm 8.1 Diagonal elements of matrix 	

For k = 1 to m//number of rows in market swaption volatility matrix

	�k�k� = ��0� k���k� 1�2/��k�

Next k

//where ��0� k� is a year fraction for particular day count basis between T0 and Tk

End of algorithm 8.1

The next step is to compute the parameters Rk
i�j �t�. These parameters will be used later for

determining the non-diagonal elements of the matrix 	. We define Rk
i�j �t� as:

Rk
i�j �0� = B �0� Tk−1� − B �0� Tk�

B �0� Ti� − B
(
0� Tj

)
Now we can compute the whole matrix of parameters R. The form of matrix R is presented
on the next page.
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R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
R2

1�2 �t�
] ⎡
⎢⎣R2

1�3 �t�

R3
1�3 �t�

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

R2
1�4 �t�

R3
1�4 �t�

R4
1�4 �t�

⎤
⎥⎥⎥⎥⎥⎦

� � � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R2
1�m+1 �t�

R3
1�m+1 �t�

R4
1�m+1 �t�

� � �

Rm+1
1�m+1 �t�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
R3

2�3 �t�
] ⎡
⎢⎣R3

2�4 �t�

R4
2�4 �t�

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

R3
2�5 �t�

R4
2�5 �t�

R5
2�5 �t�

⎤
⎥⎥⎥⎥⎥⎦

� � � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R3
2�m+2 �t�

R4
2�m+2 �t�

R5
2�m+2 �t�

� � �

Rm+2
2�m+2 �t�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
R4

3�4 �t�
] ⎡
⎢⎣R4

3�5 �t�

R5
3�5 �t�

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

R4
3�6 �t�

R5
3�6 �t�

R6
3�6 �t�

⎤
⎥⎥⎥⎥⎥⎦

� � � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R4
3�m+3 �t�

R5
3�m+3 �t�

R6
3�m+3 �t�

� � �

Rm+3
3�m+3 �t�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� � � � � � � � � � � � � � �

[
Rm+1

m�11 �t�
] ⎡
⎢⎣Rm+1

m�12 �t�

Rm+2
m�12 �t�

⎤
⎥⎦
⎡
⎢⎢⎢⎢⎢⎣

Rm+1
m�13 �t�

Rm+2
m�13 �t�

Rm+3
m�13 �t�

⎤
⎥⎥⎥⎥⎥⎦

� � � ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rm+1
m�M �t�

Rm+2
m�M �t�

Rm+3
m�M �t�

� � �

RM
m�M �t�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
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m×M×M
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We can treat this matrix as a three dimensional matrix. The first dimension for Rk
i�j �t� is

index i, the second j and the third k. Having that we can define assignment for the elements
of matrix R:

R �i� j� k� = Rk
i�j �t�

And the calculation of the entries for R requires the algorithm presented below.

Algorithm 8.2 Elements of matrix R

For i = 1 to m // NumberOfSwaptionMaturities

For j = �i + 1� to �M − m� + i // NumberOfSwaptionUnderlyings + i

For k = �i + 1� to j

R �i� j� k� = 
B �k − 1� − B �k�� / 
B �i� − B �j�� // B is a vector of discount factors

Next k

Next j

Next i

End of algorithm 8.2

Vector of discount factors B can be presented as:

B =

⎡
⎢⎢⎣

B �0� T1�
B �0� T2�

� � �
B �0� TM�

⎤
⎥⎥⎦

Using algorithm 8.2 for our market data taken from 20 January 2005 gives the results
presented by Table 8.1.

Table 8.1 Matrix R

R(1) 2 3 4 5 6 7 8 9 10 11

2 1
3 0�477395 0�522605
4 0�306688 0�335732 0�35758
5 0�223908 0�245112 0�261063 0�269916
6 0�175379 0�191988 0�204482 0�211416 0�216735
7 0�143629 0�157231 0�167462 0�173141 0�177497 0�18104
8 0�121658 0�133179 0�141846 0�146656 0�150345 0�153346 0�152969
9 0�105449 0�115435 0�122947 0�127116 0�130314 0�132915 0�132588 0�133237
10 0�093586 0�102449 0�109116 0�112816 0�115654 0�117963 0�117673 0�118249 0�112493
11 0�084644 0�09266 0�09869 0�102036 0�104603 0�106691 0�106429 0�10695 0�101744 0�095553
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Table 8.1 Continued

R(2) 3 4 5 6 7 8 9 10 11 12

3 1
4 0�484244 0�515756
5 0�315829 0�336382 0�347789
6 0�23282 0�247971 0�25638 0�262829
7 0�183601 0�195549 0�20218 0�207266 0�211404
8 0�151626 0�161493 0�166969 0�171169 0�174586 0�174157
9 0�129042 0�13744 0�1421 0�145675 0�148583 0�148218 0�148943
10 0�113027 0�120382 0�124464 0�127596 0�130143 0�129823 0�130458 0�124107
11 0�101228 0�107816 0�111472 0�114276 0�116557 0�116271 0�11684 0�111152 0�104389
12 0�091758 0�097729 0�101043 0�103585 0�105653 0�105393 0�105909 0�100753 0�094623 0�093556
� � �

R(10) 11 12 13 14 15 16 17 18 19 20

11 1
12 0�502837 0�497163
13 0�341309 0�337458 0�321233
14 0�259621 0�256691 0�24435 0�239338
15 0�210387 0�208013 0�198012 0�193951 0�189637
16 0�178905 0�176887 0�168382 0�164929 0�16126 0�149636
17 0�156257 0�154494 0�147066 0�14405 0�140846 0�130693 0�126595
18 0�139159 0�137589 0�130974 0�128288 0�125434 0�116393 0�112743 0�109419
19 0�125814 0�124394 0�118414 0�115985 0�113405 0�10523 0�101931 0�098926 0�0959
20 0�115097 0�113798 0�108327 0�106105 0�103745 0�096267 0�093248 0�090499 0�087731 0�085182

The representation of R above is explained with this small submatrix example shown below:

R(1) 2 3

2 1

3 0.477395 0.522605 

R1,3(0)
2

Having computed the matrix of parameters R we can determine the off diagonal parameters
of our covariance matrix 	. We will use the following formulae


k�N−1 =
�k�

2
kN − �k

(
N∑

l=k+1

N∑
i=k+1

Ri
kN �0�
i−1l−1R

l
kN �0� − 2Rk+1

kN �0�
k�N−1R
N
kN �0�

)
2�kR

k+1
kN �0�RN

kN �0�
(8.1)

for k = 1� � � � � m and N = k + 2� � � � .
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The full calculation of matrix 	 requires a detailed recursive algorithm. This is pre-
sented below.

Algorithm 8.3 Matrix 	

s = 1

SumTemp = 0

For i = 1 to R // NumberOfRowsInCovarianceMatrix

For j = i + 1 to R // NumberOfRowsInCovarianceMatrix

Sum = 0

For 1 = i + j − 2s + 1 to j + 1

For k = i + j − 2s + 1 to j + 1

SumTemp = R�i + j − 2s� j + 1� k�∗R�i + j − 2s� j + 1� 1�∗	�k − 1� 1 − 1�

Sum = Sum + SumTemp

Next k

Next l

	�i + j − 2s� j� =
���0� i + j − 2s�∗��i + j − 2s� i + 1�∧2 − ��i + j − 2s�∗


Sum − 2∗R�i + j − 2s� j + 1� i + j − 2s + 1�∗	�i + j − 2s� j�∗R�i + j − 2s� j + 1� j + 1���/


2∗D�i + j − 2s�∗R�i + j − 2s� j + 1� i + j − 2s + 1�∗R�i + j − 2s� j + 1� j + 1��

	�j� i + j − 2s� = 	�i + j − 2s� j�// set up whole matrix

Next j

s = s + 1

Next i

End of algorithm 8.3

Below we present some of our computed matrices 	, where elements of the matrices are
expressed as 
i

kl = �i
kl for several arbitrary chosen functions �i. First we have assumed

Table 8.2 VCV matrix for Longstaff-Schwartz-Santa Clara string model

k/l 1 2 3 4 5 6 7 8 9 10

1 5.15 % 5.50 % 4.76 % 3.46 % 2.04 % 2.76 % 1.12 % 1.85 % 0.42 % 1.66 %
2 5.50 % 5.02 % 4.57 % 3.82 % 3.13 % 2.19 % 2.58 % 2.27 % 2.39 % 1.23 %
3 4.76 % 4.57 % 4.37 % 4.00 % 3.09 % 2.61 % 1.75 % 2.33 % 2.08 % 3.15 %
4 3.46 % 3.82 % 4.00 % 3.81 % 3.45 % 2.73 % 2.31 % 1.73 % 2.76 % 1.59 %
5 2.04 % 3.13 % 3.09 % 3.45 % 3.31 % 2.88 % 2.12 % 1.95 % 1.29 % 2.83 %
6 2.76 % 2.19 % 2.61 % 2.73 % 2.88 % 3.05 % 2.68 % 2.00 % 1.82 % 1.37 %
7 1.12 % 2.58 % 1.75 % 2.31 % 2.12 % 2.68 % 2.80 % 2.50 % 1.86 % 1.70 %
8 1.85 % 2.27 % 2.33 % 1.73 % 1.95 % 2.00 % 2.50 % 2.56 % 2.31 % 1.75 %
9 0.42 % 2.39 % 2.08 % 2.76 % 1.29 % 1.82 % 1.86 % 2.31 % 2.33 % 2.14 %
10 1.66 % 1.23 % 3.15 % 1.59 % 2.83 % 1.37 % 1.70 % 1.75 % 2.14 % 2.10 %
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Table 8.3 Vector of eigenvalues of VCV matrix for LS Santa Clara string model

i 1 2 3 4 5 6 7 8 9 10

�i 26.676 % 5.391 % 2.251 % 1.908 % 1.456 % 0.661 % −0.028 % −0.387 % −0.934 % −2.501 %

Table 8.4 Matrix of eigenvectors of VCV matrix for LS Santa Clara string model

i e1i e2i e3i e4i e5i e6i e7i e8i e9i e10i

1 37�39 % −58�77 % 6�98 % 5�52 % −28�58 % −18�30 % 2�07 % −2�24 % 49�38 % 38�34 %
2 40�99 % −32�58 % 32�11 % −20�48 % 13�40 % 45�00 % 0�61 % 41�38 % −13�76 % −41�24 %
3 40�29 % −18�27 % −35�45 % −19�65 % −9�14 % −17�76 % 18�82 % −23�41 % −69�94 % 14�41 %
4 36�23 % 1�46 % −1�63 % 7�84 % 65�13 % −14�67 % −8�01 % −52�92 % 24�43 % −26�50 %
5 31�19 % 19�46 % −37�37 % 44�63 % 11�12 % 46�81 % −36�76 % 16�85 % −2�14 % 36�14 %
6 28�49 % 18�80 % 19�77 % 55�79 % −11�58 % −56�38 % −0�95 % 34�45 % −15�20 % −24�49 %
7 24�52 % 38�41 % 42�62 % 15�14 % −15�31 % 30�86 % 59�07 % −27�35 % 1�82 % 21�22 %
8 24�40 % 28�87 % 23�90 % −27�40 % −47�95 % 0�88 % −61�78 % −31�10 % −0�71 % −12�83 %
9 22�18 % 37�93 % 9�17 % −52�26 % 32�23 % −27�86 % −1�02 % 39�85 % 10�74 % 41�64 %
10 22�63 % 25�87 % −58�32 % −16�96 % −29�13 % 3�22 % 30�29 % 12�65 % 39�10 % −40�80 %

that �i = �0�i (the year fraction between time T0 and Ti). Choosing �i = �0�i leads to the
Longstaff-Schwartz-Santa Clara model. The results are presented below.
As we can see such a matrix 	 has negative eigenvalues. What’s more, taking absolute
values of eigenvalues we can see that ��10� has third biggest value. One can see that for
some market data the model may give significant mispricing of European swaptions. Let us
see if this is the case for our market data.

First let us compute a modified matrix 	PCA created by removing eigenvectors associated
with negative eigenvalues. For such modification we have to:

1. Create a new matrix constructed by multiplying eigenvectors by corresponding squared
root of eigenvalues. We do that only for positive eigenvalues.

Table 8.5 Eigenvectors multiplied by squared root of eigenvalues

i e1i

√
�1 e2i

√
�2 e3i

√
�3 e4i

√
�4 e5i

√
�5 e6i

√
�6

1 19�31 % −13�64 % 1�05 % 0�76 % −3�45 % −1�49 %
2 21�17 % −7�56 % 4�82 % −2�83 % 1�62 % 3�66 %
3 20�81 % −4�24 % −5�32 % −2�71 % −1�10 % −1�44 %
4 18�71 % 0�34 % −0�24 % 1�08 % 7�86 % −1�19 %
5 16�11 % 4�52 % −5�61 % 6�16 % 1�34 % 3�81 %
6 14�72 % 4�37 % 2�97 % 7�71 % −1�40 % −4�58 %
7 12�66 % 8�92 % 6�39 % 2�09 % −1�85 % 2�51 %
8 12�60 % 6�70 % 3�59 % −3�78 % −5�79 % 0�07 %
9 11�46 % 8�81 % 1�38 % −7�22 % 3�89 % −2�27 %
10 11�69 % 6�01 % −8�75 % −2�34 % −3�52 % 0�26 %

2. Multiply the matrix created in step 1 by its transposition. In effect we obtain modified
matrix 	PCA.
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Table 8.6 Modified covariance matrix

VCV 1 2 3 4 5 6 7 8 9 10

1 5.75 % 5.04 % 4.58 % 3.32 % 2.38 % 2.45 % 1.34 % 1.73 % 0.87 % 1.45 %
2 5.04 % 5.53 % 4.48 % 3.98 % 2.79 % 2.52 % 2.32 % 2.35 % 2.01 % 1.62 %
3 4.58 % 4.48 % 4.90 % 3.79 % 3.22 % 2.59 % 1.84 % 2.31 % 2.12 % 2.74 %
4 3.32 % 3.98 % 3.79 % 4.15 % 3.17 % 2.79 % 2.23 % 1.88 % 2.43 % 1.92 %
5 2.38 % 2.79 % 3.22 % 3.17 % 3.66 % 2.68 % 2.28 % 1.82 % 1.69 % 2.46 %
6 2.45 % 2.52 % 2.59 % 2.79 % 2.68 % 3.27 % 2.51 % 2.04 % 1.60 % 1.58 %
7 1.34 % 2.32 % 1.84 % 2.23 % 2.28 % 2.51 % 2.95 % 2.45 % 2.04 % 1.48 %
8 1.73 % 2.35 % 2.31 % 1.88 % 1.82 % 2.04 % 2.45 % 2.64 % 2.13 % 1.85 %
9 0.87 % 2.01 % 2.12 % 2.43 % 1.69 % 1.60 % 2.04 % 2.13 % 2.83 % 1.77 %
10 1.45 % 1.62 % 2.74 % 1.92 % 2.46 % 1.58 % 1.48 % 1.85 % 1.77 % 2.67 %

Having computed the matrix of modified covariances we can compute the matrix of theo-
retical swaptions. The matrix will contain theoretical swaption volatilities approximated via
principal component modification of the initial covariance matrix. For that purpose we use
the equations:


PCAi

kl = �i

PCA
kl

and

�k�
2
kN � �k

N∑
l=k+1

N∑
i=k+1

Ri
kN �0�
PCA

i−1�l−1R
l
kN �0� �

And because �k = �k (for LS Santa Clara string model), we obtain:

�2
kN �

N∑
l=k+1

N∑
i=k+1

Ri
kN �0�
PCA

i−1�l−1R
l
kN �0�

Below you can see results of our approximation for theoretical swaption volatilities as well
as differences between theoretical and market swaption volatilities:

Table 8.7 Theoretical and market volatilities of swaptions

Theoretical 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 23�98 % 23�10 % 22�15 % 20�93 % 19�62 % 18�61 % 17�61 % 16�91 % 16�32 % 15�90 %
2Y 23�51 % 21�99 % 20�79 % 19�46 % 18�40 % 17�45 % 16�75 % 16�22 % 15�81 %
3Y 22�14 % 20�38 % 19�14 % 18�06 % 17�06 % 16�35 % 15�86 % 15�50 %
4Y 20�35 % 18�78 % 17�72 % 16�81 % 16�02 % 15�53 % 15�12 %
5Y 19�12 % 17�52 % 16�60 % 15�82 % 15�22 % 14�83 %
6Y 18�07 % 16�76 % 15�94 % 15�27 % 14�64 %
7Y 17�17 % 16�20 % 15�52 % 14�74 %
8Y 16�26 % 15�59 % 14�80 %
9Y 16�82 % 15�05 %
10Y 16�35 %
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Table 8.7 Continued

Market 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 22�70 % 23�00 % 22�10 % 20�90 % 19�60 % 18�60 % 17�60 % 16�90 % 16�30 % 15�90 %
2Y 22�40 % 21�50 % 20�50 % 19�40 % 18�30 % 17�40 % 16�70 % 16�20 % 15�80 %
3Y 20�90 % 20�10 % 19�00 % 18�00 % 17�00 % 16�30 % 15�80 % 15�50 %
4Y 19�50 % 18�70 % 17�70 % 16�80 % 16�00 % 15�50 % 15�10 %
5Y 18�20 % 17�40 % 16�50 % 15�80 % 15�10 % 14�80 %
6Y 17�46 % 16�74 % 15�90 % 15�24 % 14�62 %
7Y 16�72 % 16�08 % 15�30 % 14�68 %
8Y 15�98 % 15�42 % 14�70 %
9Y 15�24 % 14�76 %
10Y 14�50 %

Difference 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 1�28 % 0�10 % 0�05 % 0�03 % 0�02 % 0�01 % 0�01 % 0�01 % 0�02 % 0�00 %
2Y 1�11 % 0�49 % 0�29 % 0�06 % 0�10 % 0�05 % 0�05 % 0�02 % 0�01 %
3Y 1�24 % 0�28 % 0�14 % 0�06 % 0�06 % 0�05 % 0�06 % 0�00 %
4Y 0�85 % 0�08 % 0�02 % 0�01 % 0�02 % 0�03 % 0�02 %
5Y 0�92 % 0�12 % 0�10 % 0�02 % 0�12 % 0�03 %
6Y 0�61 % 0�02 % 0�04 % 0�03 % 0�02 %
7Y 0�45 % 0�12 % 0�22 % 0�06 %
8Y 0�28 % 0�17 % 0�10 %
9Y 1�58 % 0�29 %
10Y 1�85 %

The root mean squared error between theoretical and market swaptions volatilities is
defined as:

RMSE =
10∑

i�j=1

(
�THEO

ij − �MKT
ij

)2 = 0�0013

Having computed our modified matrix 	PCA we can also determine vectors of instantaneous
volatilities for the forward rates. Below we demonstrate how to do this.

Taking into account the equation for elements of covariance matrix 	PCAi


PCAi

kl =
Ti∫

0

�l �t�
T · �k �t�dt

for i ≤ k and i ≤ l, we can specify vectors of instantaneous volatility in the following way:

⎡
⎢⎢⎢⎢⎣

�1
1

0
0

� � �
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

�1
2

�2
2

0
� � �

0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

�1
3

�2
3

�3
3

� � �
0

⎤
⎥⎥⎥⎥⎦� � �

⎡
⎢⎢⎢⎢⎣

�1
N

�2
N

�3
N

� � �
�N

N

⎤
⎥⎥⎥⎥⎦

for �1�t���2�t���3�t�� � � � � �N �t� respectively.
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For pricing purposes we can assume that we have constant instantaneous volatilities
through a given period of time. Having that assumption in mind we can write:


PCAi

kl =
Ti∫

0

�l �t�
T · �k �t�dt = (�l �t�

T · �k �t�
)
�Ti

= �i

PCA
kl

and

�1 �t� =

⎡
⎢⎢⎢⎢⎣

�1
1 �t�
0
0

� � �
0

⎤
⎥⎥⎥⎥⎦ and �1

1 �t� = �1
1 for 0 < t ≤ T1

�2 �t� =

⎡
⎢⎢⎢⎢⎣

�1
2 �t�

�2
2 �t�
0

� � �
0

⎤
⎥⎥⎥⎥⎦ and

�1
2 �t� = �1

2

�2
2 �t� = �2

2
for 0 < t ≤ T2

� � �

�N �t� =

⎡
⎢⎢⎢⎢⎣

�1
N �t�

�2
N �t�

�3
N �t�
� � �

�N
N �t�

⎤
⎥⎥⎥⎥⎦ and

�1
N �t� = �1

N

�2
N �t� = �2

N

�3
N �t� = �2

N

� � �
�N

N �t� = �N
N

for 0 < t ≤ TN

We present an example of the determination of vector components �i �t� for i=1� 2� � � � � 10

Example 8.1 Components of vectors �i�t�

First we take into consideration the elements of the matrix 	PCA from upper left corner

PCA

11 = 5�75 % and �1 obtaining:

�1

PCA
11 = (�1 �t�T · �1 �t�

)
�T1

Because �1 = �T1
, we can write:


PCA
11 =

⎡
⎢⎢⎢⎢⎣

�1
1

0
0

� � �
0

⎤
⎥⎥⎥⎥⎦

T

·

⎡
⎢⎢⎢⎢⎣

�1
1

0
0

� � �
0

⎤
⎥⎥⎥⎥⎦= (�1

1

)2 ⇒ �1
1 =

√

PCA

11 = √
5�75% = 23�98 %
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For elements 
PCA
21 = 5�04 % and �1 we obtain:

�1

PCA
21 = (�1 �t�T · �2 �t�

)
�T1

⇔

PCA

21 = �1 �t�T · �2 �t� ⇔


PCA
21 =

⎡
⎢⎢⎢⎢⎣

�1
1

0
0

� � �
0

⎤
⎥⎥⎥⎥⎦

T

·

⎡
⎢⎢⎢⎢⎣

�1
2

�2
2

0
� � �

0

⎤
⎥⎥⎥⎥⎦= �1

1�1
2 ⇒ �1

2 = 
PCA
21

�1
1

= 5�04%
23�98%

= 21�02%

Similarly for elements 
PCA
k1 where k = 3� 4� � � � � 10 and �1 we obtain:

�1

PCA
k1 = (�1 �t�T · �k �t�

)
�T1

⇔

PCA

k1 = �1 �t�T · �k �t� ⇔


PCA
k1 =

⎡
⎢⎢⎢⎢⎣

�1
1

0
0

� � �
0

⎤
⎥⎥⎥⎥⎦

T

·

⎡
⎢⎢⎢⎢⎣

�1
k

�2
k

�3
k

� � �
� � �

⎤
⎥⎥⎥⎥⎦= �1

1�1
k ⇒ �1

k = 
PCA
k1

�1
1

Taking values for 
PCA
k1 for k = 3� 4� � � � � 10

K 3 4 5 6 7 8 9 10


PCA
k1 4.58 % 3.32 % 2.38 % 2.45 % 1.34 % 1.73 % 0.87 % 1.45 %

We obtain:

K 3 4 5 6 7 8 9 10

�1
k 19.10 % 13.85 % 9.92 % 10.23 % 5.58 % 7.20 % 3.63 % 6.03 %

Now we choose element 
PCA
22 = 5�53 % and �1 or �2 obtaining:

�1

PCA
22 = (�2 �t�T · �2 �t�

)
�T1

or

�2

PCA
22 = (�2 �t�T · �2 �t�

)
�T2
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We assume that the instantaneous volatilities are constant through a given period. Having
that in mind we can write:


PCA
22 = �2 �t�T · �2 �t� ⇔


PCA
22 =

⎡
⎢⎢⎢⎢⎣

�1
2

�2
2

0
� � �

0

⎤
⎥⎥⎥⎥⎦

T

·

⎡
⎢⎢⎢⎢⎣

�1
2

�2
2

0
� � �

0

⎤
⎥⎥⎥⎥⎦= (�1

2

)2 + (�2
2

)2 ⇒ �2
2 =

√

PCA

22 − (�1
2

)2 ⇒

�2 =
√

5�53% − �21�02�2 = 10�53 %

For element 
PCA
32 = 4�48 % and �1 or �2 we obtain:

�1

PCA
32 = (�3 �t�T · �2 �t�

)
�T1

or

�2

PCA
32 = (�3 �t�T · �2 �t�

)
�T2

Once again we have assumed that the instantaneous volatilities are constant through a given
period. Having that in mind we can write:


PCA
32 = �3 �t�T · �2 �t� ⇔


PCA
32 =

⎡
⎢⎢⎢⎢⎣

�1
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�2
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�2
3

� � �
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⎤
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·

⎡
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�2
2

0
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⎤
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3 = 1

�2
2

(

PCA

32 − �1
3�1

2

)⇒

�2
3 = 1

10�53%
�4�48% − 19�10% · 21�02%� = 4�38%

Similarly for 
PCA
k2 for k = 4� 5� � � � � 10 and �1 or �2 assuming constant instantaneous

volatilities we obtain:


PCA
k2 = �k �t�T · �2 �t� ⇔


PCA
k2 =
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Taking values for 
PCA
k2 for k = 4� 5� � � � � 10.

k 4 5 6 7 8 9 10


PCA
k2 3.98 % 2.79 % 2.52 % 2.32 % 2.35 % 2.01 % 1.62 %

We obtain:

k 4 5 6 7 8 9 10

�2
k 10.13 % 6.64 % 3.52 % 10.87 % 7.95 % 11.85 % 3.33 %

Going further and generalizing the algorithm for elements 
PCA
kk , for k = 2� 3� 4� � � � � 10 for

each �i where i ≤ k instantaneous volatilities will be obtained via:


PCA
kk = �k �t�T · �k �t� ⇔


PCA
kk =

⎡
⎢⎢⎢⎢⎣

�1
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�2
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� � �
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)2 ⇒

�k
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√

PCA

kk − (�1
k

)2 − (�2
k

)2 + � � � − (�k−1
k

)2

Similarly, for elements 
PCA
kl , for l = 2� 3� 4� � � � � 10 and l < k < 10 for each �i where i ≤ k

and i ≤ l instantaneous volatilities will be obtained via:


PCA
kl = �k �t�T · �l �t� ⇔


PCA
kl =

⎡
⎢⎢⎢⎢⎣

�1
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�2
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�2
k

� � �
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·

⎡
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�2
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�2
l

� � �
�2

l

⎤
⎥⎥⎥⎥⎦= �1

k�
1
l + �2

k�2
l + � � � + �l

k�
l
l ⇒

�l
k = 1

�l
l

(

PCA

kl − �1
k�

1
l − �2

k�2
l + � � � − �l−1

k �l−1
l

)

End of example 8.1

Having that we can present the full results of computations for the instantaneous volatility
vectors:
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Table 8.8 Vectors of instantaneous volatilities

Index �1�t� �2�t� �3�t� �4�t� �5�t� �6�t� �7�t� �8�t� �9�t� �10�t�

1 23�98 % 21�02 % 19�10 % 13�85 % 9�92 % 10�23 % 5�58 % 7�20 % 3�63 % 6�03 %
2 10�53 % 4�38 % 10�13 % 6�64 % 3�52 % 10�87 % 7�95 % 11�85 % 3�33 %
3 10�29 % 6�85 % 10�06 % 4�70 % 2�94 % 5�73 % 8�86 % 14�04 %
4 8�57 % 5�07 % 8�11 % 1�83 % −3�72 % 1�35 % −2�45 %
5 9�81 % 5�61 % 6�33 % 1�98 % −4�27 % 3�63 %
6 9�51 % 9�68 % 9�94 % 5�58 % 1�89 %
7 0�00 % 0�00 % 0�00 % 0�00 %
8 0�00 % 0�00 % 0�00 %
9 0�00 % 0�00 %
10 0�00 %

The structure of the matrix confirms that our computations were done properly. This is
because during PCA modification of the VCV matrix we have removed four eigenvectors
with associated negative eigenvalues.

One additional remark is very important. The presented algorithm is very sensitive to
the precision of the computed elements of the VCV matrix. In the case of too much
approximation in the values in the matrix the algorithm may fail.

We can do the same computations for VCV matrix reduced to two factors. Figure below
shows two eigenvectors with the biggest eigenvalues:

–80.00 %

–60.00 %

–40.00 %

–20.00 %

0.00 %

20.00 %

40.00 %

60.00 %

2 4 6 8 10 12

e1 e2

0

Figure 8.1 Eigenvectors with the biggest eigenvalues for �i = �i.

Using only two factors we obtain the following results for the theoretical swaptions:
Reducing number of factors to only the two biggest gives slightly worse results. The root

mean squared error equals:

RMSE =
10∑

i�j=1

(
�THEO

ij − �MKT
ij

)2 = 0�0030
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Table 8.9 Theoretical and market volatilities of swaptions

Theoretical 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 23�65 % 22�83 % 22�07 % 20�86 % 19�50 % 18�48 % 17�49 % 16�84 % 16�29 % 15�90 %
2Y 22�48 % 21�79 % 20�53 % 19�18 % 18�19 % 17�28 % 16�67 % 16�18 % 15�81 %
3Y 21�24 % 19�84 % 18�50 % 17�57 % 16�77 % 16�24 % 15�83 % 15�49 %
4Y 18�70 % 17�55 % 16�76 % 16�16 % 15�73 % 15�41 % 15�11 %
5Y 16�72 % 16�03 % 15�65 % 15�29 % 15�06 % 14�77 %
6Y 15�34 % 15�21 % 14�89 % 14�74 % 14�44 %
7Y 15�48 % 14�85 % 14�70 % 14�33 %
8Y 14�27 % 14�31 % 13�93 %
9Y 14�44 % 13�76 %
10Y 13�14 %

Market 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 22�70 % 23�00 % 22�10 % 20�90 % 19�60 % 18�60 % 17�60 % 16�90 % 16�30 % 15�90 %
2Y 22�40 % 21�50 % 20�50 % 19�40 % 18�30 % 17�40 % 16�70 % 16�20 % 15�80 %
3Y 20�90 % 20�10 % 19�00 % 18�00 % 17�00 % 16�30 % 15�80 % 15�50 %
4Y 19�50 % 18�70 % 17�70 % 16�80 % 16�00 % 15�50 % 15�10 %
5Y 18�20 % 17�40 % 16�50 % 15�80 % 15�10 % 14�80 %
6Y 17�46 % 16�74 % 15�90 % 15�24 % 14�62 %
7Y 16�72 % 16�08 % 15�30 % 14�68 %
8Y 15�98 % 15�42 % 14�70 %
9Y 15�24 % 14�76 %
10Y 14�50 %

Difference 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 0�95 % −0�17 % −0�03 % −0�04 % −0�10 % −0�12 % −0�11 % −0�06 % −0�01 % 0�00 %
2Y 0�08 % 0�29 % 0�03 % −0�22 % −0�11 % −0�12 % −0�03 % −0�02 % 0�01 %
3Y 0�34 % −0�26 % −0�50 % −0�43 % −0�23 % −0�06 % 0�03 % −0�01 %
4Y −0�80 % −1�15 % −0�94 % −0�64 % −0�27 % −0�09 % 0�01 %
5Y −1�48 % −1�37 % −0�85 % −0�51 % −0�04 % −0�03 %
6Y −2�12 % −1�53 % −1�01 % −0�50 % −0�18 %
7Y −1�24 % −1�23 % −0�60 % −0�35 %
8Y −1�71 % −1�11 % −0�77 %
9Y −0�80 % −1�00 %
10Y −1�36 %

Let us move to analyse further the specifications for the functions �i. A popular choice
of function is �i =

√
�i. For such a specification we obtain the following eigenvalues and

eigenvectors:

Table 8.10 Vector of eigenvalues of VCV matrix

i 1 2 3 4 5 6 7 8 9 10

�i 37.82 % 21.19 % 6.90 % 6.07 % 3.06 % 1.39 % 0.50 % 0.16 % −2.49 % −4.03 %

Comparing the results to the LS Santa Clara string model we can see that we have
obtained only two negative eigenvalues with modulus smaller than the fourth biggest positive
eigenvalue. Creating a modified VCV matrix by removing the two eigenvectors associated
with negative eigenvalues gives result presented below.
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Table 8.11 Matrix of eigenvectors of VCV matrix

i e1i e2i e3i e4i e5i e6i e7i e8i e9i e10i

1 −35�25 % −30�68 % −11�64 % −6�32 % −14�40 % 23�03 % 10�27 % −4�63 % 77�71 % −27�16 %
2 −4�81 % −51�76 % 4�66 % −45�55 % −13�49 % −44�29 % −15�86 % 44�99 % −0�44 % 27�97 %
3 15�41 % −51�06 % 39�68 % −6�17 % −28�87 % 46�23 % −17�41 % −21�68 % −34�42 % −24�77 %
4 27�22 % −43�54 % 8�69 % 10�22 % 62�04 % −5�41 % 16�66 % −39�52 % 17�69 % 33�94 %
5 34�04 % −26�60 % −6�61 % 53�98 % −19�46 % −41�73 % 31�98 % 18�34 % −0�43 % −41�19 %
6 35�23 % −13�56 % −53�23 % 17�16 % 5�30 % 51�86 % −16�68 % 44�86 % 1�83 % 20�87 %
7 37�87 % 3�33 % −45�32 % −26�49 % −15�69 % −26�26 % −45�24 % −47�74 % 10�30 % −20�78 %
8 37�00 % 12�38 % −5�79 % −44�98 % −32�17 % 13�51 % 69�67 % −8�63 % 3�16 % 16�30 %
9 37�16 % 19�07 % 31�92 % −34�13 % 44�56 % 5�62 % −8�06 % 34�84 % 18�95 % −49�16 %
10 34�23 % 21�38 % 47�00 % 25�39 % −35�42 % −2�55 % −28�20 % 2�64 % 44�55 % 38�34 %

Table 8.12 Modified covariance matrix

VCV 1 2 3 4 5 6 7 8 9 10

1 6�95 % 4�06 % 1�25 % −1�20 % −3�01 % −3�31 % −4�81 % −5�33 % −6�50 % −6�28 %
2 4�06 % 7�37 % 5�45 % 3�80 % 1�12 % −0�14 % −0�24 % −0�76 % −1�94 % −3�36 %
3 1�25 % 5�45 % 8�09 % 5�91 % 4�38 % 2�28 % 0�67 % 1�20 % 0�75 % 1�17 %
4 −1�20 % 3�80 % 5�91 % 8�12 % 5�92 % 4�73 % 2�88 % 1�73 % 2�89 % 1�32 %
5 −3�01 % 1�12 % 4�38 % 5�92 % 8�04 % 5�77 % 4�27 % 2�73 % 2�15 % 4�04 %
6 −3�31 % −0�14 % 2�28 % 4�73 % 5�77 % 7�60 % 6�13 % 4�36 % 2�99 % 2�41 %
7 −4�81 % −0�24 % 0�67 % 2�88 % 4�27 % 6�13 % 7�46 % 6�40 % 4�77 % 3�35 %
8 −5�33 % −0�76 % 1�20 % 1�73 % 2�73 % 4�36 % 6�40 % 7�09 % 6�08 % 4�81 %
9 −6�50 % −1�94 % 0�75 % 2�89 % 2�15 % 2�99 % 4�77 % 6�08 % 8�02 % 5�70 %
10 −6�28 % −3�36 % 1�17 % 1�32 % 4�04 % 2�41 % 3�35 % 4�81 % 5�70 % 7�70 %

Having that we can compute the matrix of theoretical swaption volatilities and compare it
to observed market swaption volatilities:

Table 8.13 Theoretical and market volatilities of swaptions

Theoretical 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 23.68 % 23.73 % 22.23 % 21.01 % 19.71 % 18.65 % 17.68 % 16.95 % 16.43 % 16.04 %
2Y 22.89 % 21.63 % 20.62 % 19.41 % 18.31 % 17.40 % 16.70 % 16.22 % 15.83 %
3Y 21.64 % 20.14 % 19.18 % 18.01 % 17.03 % 16.30 % 15.86 % 15.54 %
4Y 20.18 % 18.73 % 17.73 % 16.82 % 16.02 % 15.56 % 15.17 %
5Y 19.02 % 17.45 % 16.60 % 15.83 % 15.24 % 14.88 %
6Y 17.67 % 16.75 % 15.92 % 15.30 % 14.70 %
7Y 16.94 % 16.10 % 15.48 % 14.80 %
8Y 16.10 % 15.57 % 14.84 %
9Y 16.36 % 15.06 %
10Y 15.64 %

Market 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 22.70 % 23.00 % 22.10 % 20.90 % 19.60 % 18.60 % 17.60 % 16.90 % 16.30 % 15.90 %
2Y 22.40 % 21.50 % 20.50 % 19.40 % 18.30 % 17.40 % 16.70 % 16.20 % 15.80 %
3Y 20.90 % 20.10 % 19.00 % 18.00 % 17.00 % 16.30 % 15.80 % 15.50 %
4Y 19.50 % 18.70 % 17.70 % 16.80 % 16.00 % 15.50 % 15.10 %
5Y 18.20 % 17.40 % 16.50 % 15.80 % 15.10 % 14.80 %
6Y 17.46 % 16.74 % 15.90 % 15.24 % 14.62 %
7Y 16.72 % 16.08 % 15.30 % 14.68 %
8Y 15.98 % 15.42 % 14.70 %
9Y 15.24 % 14.76 %
10Y 14.50 %
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Table 8.13 Continued

Difference 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 0.98 % 0.73 % 0.13 % 0.11 % 0.11 % 0.05 % 0.08 % 0.05 % 0.13 % 0.14 %
2Y 0.49 % 0.13 % 0.12 % 0.01 % 0.01 % 0.00 % 0.00 % 0.02 % 0.03 %
3Y 0.74 % 0.04 % 0.18 % 0.01 % 0.03 % 0.00 % 0.06 % 0.04 %
4Y 0.68 % 0.03 % 0.03 % 0.02 % 0.02 % 0.06 % 0.07 %
5Y 0.82 % 0.05 % 0.10 % 0.03 % 0.14 % 0.08 %
6Y 0.21 % 0.01 % 0.02 % 0.06 % 0.08 %
7Y 0.22 % 0.02 % 0.18 % 0.12 %
8Y 0.12 % 0.15 % 0.14 %
9Y 1.12 % 0.30 %
10Y 1.14 %

The root mean squared error equals:

RMSE =
10∑

i�j=1

(
�THEO

ij − �MKT
ij

)2 = 0�0019

The instantaneous volatilities cannot be specified as a constant through time for this specifica-
tion of the parameters �i. Instead we deal with piecewise constant instantaneous volatilities.
We describe this is more detail below.

Having the components of instantaneous volatility vectors as
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Therefore we can see that the generation of the instantaneous volatilities is quite similar to
the previous example and thus we do not repeat that example again.

On the other hand we may reduce VCV only to three factors. The figure below shows the
three eigenvectors with the biggest eigenvalues:
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Figure 8.2 Eigenvectors with the biggest eigenvalues for �i =
√

�i.
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Using only three factors we obtain the following results for the theoretical swaptions:

Table 8.14 Theoretical and market volatilities of swaptions

Theoretical 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 26�06 % 22�60 % 21�41 % 20�81 % 19�68 % 18�59 % 17�66 % 16�85 % 16�28 % 15�96 %
2Y 20�22 % 20�73 % 20�41 % 19�35 % 18�24 % 17�39 % 16�64 % 16�11 % 15�78 %
3Y 20�83 % 19�90 % 18�69 % 17�60 % 16�92 % 16�28 % 15�83 % 15�52 %
4Y 18�52 % 17�52 % 16�96 % 16�62 % 16�00 % 15�51 % 15�17 %
5Y 16�25 % 16�40 % 16�83 % 15�71 % 15�18 % 14�84 %
6Y 16�95 % 16�64 % 15�55 % 14�87 % 14�52 %
7Y 16�10 % 14�90 % 14�53 % 14�41 %
8Y 13�97 % 14�35 % 14�53 %
9Y 14�94 % 15�00 %
10Y 14�79 %

Market 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 22�70 % 23�00 % 22�10 % 20�90 % 19�60 % 18�60 % 17�60 % 16�90 % 16�30 % 15�90 %
2Y 22�40 % 21�50 % 20�50 % 19�40 % 18�30 % 17�40 % 16�70 % 16�20 % 15�80 %
3Y 20�90 % 20�10 % 19�00 % 18�00 % 17�00 % 16�30 % 15�80 % 15�50 %
4Y 19�50 % 18�70 % 17�70 % 16�80 % 16�00 % 15�50 % 15�10 %
5Y 18�20 % 17�40 % 16�50 % 15�80 % 15�10 % 14�80 %
6Y 17�46 % 16�74 % 15�90 % 15�24 % 14�62 %
7Y 16�72 % 16�08 % 15�30 % 14�68 %
8Y 15�98 % 15�42 % 14�70 %
9Y 15�24 % 14�76 %
10Y 14�50 %

Difference 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 3�36 % −0�40 % −0�69 % −0�09 % 0�08 % −0�01 % 0�06 % −0�05 % −0�02 % 0�06 %
2Y −2�18 % −0�77 % −0�09 % −0�05 % −0�06 % −0�01 % −0�06 % −0�09 % −0�02 %
3Y −0�07 % −0�20 % −0�31 % −0�40 % −0�08 % −0�02 % 0�03 % 0�02 %
4Y −0�98 % −1�18 % −0�74 % −0�18 % 0�00 % 0�01 % 0�07 %
5Y −1�95 % −1�00 % 0�33 % −0�09 % 0�08 % 0�04 %
6Y −0�51 % −0�10 % −0�35 % −0�37 % −0�10 %
7Y −0�62 % −1�18 % −0�77 % −0�27 %
8Y −2�01 % −1�07 % −0�17 %
9Y −0�30 % 0�24 %
10Y 0�29 %

Reducing the number of factors to the three biggest gives slightly worse results. The root
mean squared error equals:

RMSE =
10∑

i�j=1

(
�THEO

ij − �MKT
ij

)2 = 0�0034

We can also specify another form for the functions �i. Below we present for each specifi-
cation the matching vectors of eigenvalues and root mean squared errors.
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Table 8.15 Vectors of eigenvalues and root mean squared errors

�i �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 RMSE

1) 12�21 % 0�31 % 0�05 % 0�01 % −0�01 % −0�08 % −0�18 % −0�47 % −1�63 % −5�85 % 41�527
2) 18�53 % 5�67 % 0�91 % 0�16 % −0�08 % −0�26 % −0�51 % −0�80 % −1�67 % −6�54 % 0�3578
3) 40�09 % 16�56 % 3�21 % 2�27 % 1�38 % 0�59 % −0�16 % −0�81 % −3�27 % −11�94 % 0�0239
4) 55�37 % 24�26 % 7�99 % 6�90 % 3�42 % 1�51 % 0�48 % 0�06 % −4�83 % −11�67 % 0�0226
5) 91�10 % 42�12 % 20�77 % 14�79 % 6�92 % 3�28 % 2�84 % 1�80 % −7�36 % −15�88 % 0�0435

1) �i = e�i

2) �i =
√

e�i

3) �i = �i − ln �i

4) �i =
√

�i − ln �i

5) �i = 1

As an alternative calibration algorithm one can use a separated approach with an opti-
mization algorithm, where the target function will minimize the differences between the
theoretical and market swaption volatilities. In that case some restrictions for the VCV
matrix must be added. First of all the VCV matrix must be positive definite. If that is not
the case the algorithm must first reduce VCV matrix by removing eigenvectors associated
with negative eigenvalues.

8.3 THE SEPARATED APPROACH WITH OPTIMIZATION

In this section we develop the previously demonstrated separated approach by adding an
optimization algorithm. As a target function we set the root mean squared error for the
differences between theoretical and market swaption volatilities. We would like to minimize
that function but under several restrictions for VCV. We show that the VCV matrix must be
positive definite. For that case we have to implement a subalgorithm for reducing the VCV
matrix by removing eigenvectors associated with negative eigenvalues. Below we present
all the necessary steps for the calibration algorithm, using code consistent with Matlab.

Step 0: Loading initial data and naming the minimization function

Minimization function:
function f = CalibrationObjectiveFunction_SeparatedOptim(Lambda);
% Definition of minimization function will be provided after step 6
% Vector of parameters [Lambda] will contain first initial data
% and after that the parameters will be subject to change during optimization

Initial data will contain:

1) Matrix of market swaption volatilities [Sig]

Sig = � � �

0�227 0.23 0.221 0.209 0.196 0.186 0.176 0.169 0.163 0.159;
0.224 0.215 0.205 0.194 0.183 0.174 0.167 0.162 0.158 0.154;
0.209 0.201 0.19 0.18 0.17 0.163 0.158 0.155 0.152 0.15;
0.195 0.187 0.177 0.168 0.16 0.155 0.151 0.148 0.147 0.145;
0.182 0.174 0.165 0.158 0.151 0.148 0.145 0.143 0.142 0.14;
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0.1746 0.1674 0.159 0.1524 0.1462 0.1436 0.141 0.1394 0.1384 0.1368;
0.1672 0.1608 0.153 0.1468 0.1414 0.1392 0.137 0.1358 0.1348 0.1336;
0.1598 0.1542 0.147 0.1412 0.1366 0.1348 0.133 0.1322 0.1312 0.1304;
0.1524 0.1476 0.141 0.1356 0.1318 0.1304 0.129 0.1286 0.1276 0.1272;
0.145 0.141 0.135 0.13 0.127 0.1260 0.125 0.125 0.124 0�124� �

2) Date for computations

Today=‘25-Jan-2005’;

3) Vector of dates [T_Num] and vector of discount factors [B]

VectorOfDates = � � � B = � � �
[‘25-Jan-2006’; [0.9774658
‘25-Jan-2007’; 0.9509789
‘25-Jan-2008’; 0.9219838
‘26-Jan-2009’; 0.8911017
‘25-Jan-2010’; 0.8591725
‘25-Jan-2011’; 0.8264399
‘25-Jan-2012’; 0.7930540
‘25-Jan-2013’; 0.7597502
‘27-Jan-2014’; 0.7262834
‘26-Jan-2015’; 0.6944457
‘25-Jan-2016’; 0.6645450
‘25-Jan-2017’; 0.6349818
‘25-Jan-2018’; 0.6068399
‘25-Jan-2019’; 0.5792752
‘27-Jan-2020’; 0.5523236
‘25-Jan-2021’; 0.5273147
‘25-Jan-2022’; 0.5030900
‘25-Jan-2023’; 0.4795796
‘25-Jan-2024’; 0.4567881
‘27-Jan-2025’]; 0.4346590];

To be consistent with Matlab code we have to transform vector of dates according to
function:

T_Num = datenum(VectorOfDates);

Having loaded all necessary initial data we can we have to compute matrix of parameters [R]

Step 1: The Matrix of parameters [R]

% Input: Vector of discount factors [B]
% Output: Matrix of parameters [R]

Algorithm for step 1:
m = 10; % Number of swaption maturities

M = 20; % Number of swaption maturities plus number of swaption underlyings

R = 
�; % Setting zeros for matrix [R] as initial values

for i = 1 � m
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for j = i + 1 � M − m + i

for k = i + 1 � j

R�i� j� k� = �B�k − 1� − B�k��/�B�i� − B�j��;

end

end

end

Step 2: The Matrix of covariances [VCV] as a function of parameters
[Lambda]

% Input: (1) Matrix of parameters [R]
% (2) Vector of dates [T_Num]
% (3) Matrix of market swaption volatilities [Sig]
% (4) Vector of initial parameters [Lambda]
% Output: Matrix of covariances [VCV] as a function of parameters [Lambda]

Algorithm for step 2:
VCV = []; % Setting zeros for matrix [VCV] as initial values

% Diagonal elements of matrix VCV

for k = 1 � m

VCV�k� k� = yearfrac�Today� T_Num�k��∗Sig�k� 1�∧2/Lambda�k�;

end

s = 1;

for i = 1 � m

for j = i + 1 � m

Sum = 0;

for l = i + j − 2∗s + 1 � j + 1

for k = i + j − 2∗s + 1 � j + 1

SumTemp = R�i + j − 2∗s� j + 1� k�∗R�i + j − 2∗s� j + 1� 1�∗VCV�k − 1� l − 1�;

Sum = Sum + SumTemp;

end

end

VCV�i + j − 2∗s� j� = �yearfrac�Today� T_Num�i + j − 2∗s��∗Sig�i + j − 2∗s� i + 1�∧2 −
Lambda�i + j − 2∗s�∗�Sum − 2∗R�i + j − 2∗s� j + 1� i + j − 2∗s + 1�∗VCV�i + j −
2∗s� j�∗R�i + j − 2∗s� j + 1� j + 1���/�2∗Lambda�i + j − 2∗s�∗R�i + j − 2∗s� j + 1� i + j −
2∗s + 1�∗R�i + j − 2∗s� j + 1� j + 1��;

VCV�j� i + j − 2∗s� = VCV�i + j − 2∗s� j�;

end

s = s + 1;

end
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Step 3: The Vector of eigenvalues [L] and the Matrix of eigenvectors [E] as a
function of parameters [Lambda]

% Input: Matrix of covariances [VCV] as a function of parameters [Lambda]
% Output: (1) Vector of eigenvalues [L] as a function of parameters [Lambda]
% (2) Matrix of eigenvectors [E] as a function of parameters [Lambda]

Algorithm for step 3:
[E,X] = eig(VCV);

L = diag(X);

Step 4: The modified covariance matrix [VCV_M] as a function of
parameters [Lambda]

% Input: (1) Vector of eigenvalues [L] as a function of parameters [Lambda]
% (2) Matrix of eigenvectors [E] as a function of parameters [Lambda]
% Output: Modified covariance matrix [VCV_M] as a function of parameters [Lambda]

% Step 4 contains sub-algorithm for eliminating eigenvectors associated with negative
eigenvalues

Algorithms for step 4:
for i = 1 � m

if L�i� < 0

L_check�i� = 1;

else

L_check�i� = 0;

end

end

% Matrix [E_sqrL] constructed by multiplying eigenvectors by square root of associated
positive eigenvalues

for i = 1 � m

if L_check(i) == 0

for j = 1 � m

E_sqrL�j� i� = E�j� i�∗sqrt�L�i��;

end

else

for j = 1 � m

E_sqrL(j,i) = 0;

end

end

end

VCV_M = E_sqrL∗E_sqrL’; % symbol’ denotes transposition
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Step 5: Calculation of theoretical swaption volatilities [Sig_theo]

% Input: (1) Matrix of parameters [R]
% (2) Matrix of modified covariance [VCV_M]
% Output: Matrix of theoretical swaption volatilities [Sig_theo]

Algorithm for step 5:
Sig_theo=[];

for k = 1:m

for N = k + 1 � m + 1

Sum = 0;

for l = k + 1:N

for i = k + 1:N

SumTemp = R�k� N� i�∗VCV_M�i − 1� l − 1�∗R�k� N� l�;

Sum = Sum + SumTemp;

end

end

Sig_theo(k,N-k)=sqrt(Sum∗Lambda(k)/yearfrac(Today,T_Num(k)));

end

end

Step 6: RSME between theoretical and market swaption volatilities

% Input: (1) Matrix of theoretical swaption volatilities [Sig_theo]
% (2) Matrix of market swaption volatilities [Sig]
% Output: RSME between theoretical and market swaption volatilities

Algorithm for step 6:
RSME = 0;

for i = 1:m

for j = 1 � m − i + 1

RSME_Temp = (Sig_theo(i, j)-Sig(i, j))∧2;

RSME = RSME+RSME_Temp;

end

end

f = RSME; % function f will be used as a minimization function

For the purpose of optimization we set initial values of parameters [Lambda] as:

Lambda0 = 
1 2 3 4 5 6 7 8 9 10�;

Having that we use Matlab function @fminsearch dedicated for nonlinear optimization:

[Lambda, f] = fminsearch(@CalibrationObjectiveFunction_SeparatedOptim, Lambda0);
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Results of computations:

1) Parameters [Lambda]

Lambda =
2.1848
3.4058
3.3030
2.7767
2.4863
2.5656
2.7588
2.5325
1.6783
0.4483

2) Vector of eigenvalues [L]
L =
−0�0083
0.0000
0.0070
0.0119
0.0216
0.0290
0.0706
0.1367
0.2696
0.4927

3) Matrix of eigenvectors

E =
0.3073 0.1854 0.5379 −0�1028 −0�4686 0.5464 0.1659 −0�0605 0.1412 −0�0452

−0�3571 −0�6145 −0�1988 0.3945 −0�1505 0.4219 0.1730 −0�0667 0.2305 −0�1076
0.2648 −0�4985 −0�1433 −0�6669 −0�1641 −0�1958 −0�0486 −0�2608 0.2673 −0�0944

−0�3471 −0�1183 0.6026 0.1006 0.1183 −0�1818 −0�4200 −0�5105 0.0325 −0�0846
0.4086 0.0957 −0�3578 0.4094 −0�3322 −0�0654 −0�1795 −0�5742 −0�2140 0.0769

−0�4287 0.2228 −0�2551 −0�4496 0.0612 0.4319 0.0629 −0�3769 −0�3991 0.0611
0.3816 −0�3520 0.2430 0.0668 0.5225 0.0929 0.4200 −0�1711 −0�4204 0.0541

−0�2701 −0�1437 0.1694 −0�0167 −0�5571 −0�4390 0.3956 0.0861 −0�4587 0.0009
0.1275 −0�3141 0.0304 −0�0581 −0�1240 0.2421 −0�6213 0.3915 −0�5069 −0�1030

−0�0426 −0�1531 0.0753 −0�0311 −0�0632 0.0361 −0�0936 0.0400 0.0729 0.9732

4) Matrix of covariances [VCV]

VCV =
0.0236 0.0216 0.0120 0.0014 −0�0078 −0�0058 −0�0148 −0�0135 −0�0226 −0�0187
0.0216 0.0295 0.0194 0.0020 −0�0104 −0�0218 −0�0217 −0�0292 −0�0338 −0�0483
0.0120 0.0194 0.0397 0.0259 −0�0002 −0�0163 −0�0321 −0�0325 −0�0443 −0�0408
0.0014 0.0020 0.0259 0.0548 0.0400 0.0134 −0�0034 −0�0210 −0�0102 −0�0402

−0�0078 −0�0104 −0�0002 0.0400 0.0666 0.0528 0.0289 0.0200 0.0021 0.0309
−0�0058 −0�0218 −0�0163 0.0134 0.0528 0.0713 0.0600 0.0393 0.0321 0.0192
−0�0148 −0�0217 −0�0321 −0�0034 0.0289 0.0600 0.0709 0.0554 0.0260 0.0136
−0�0135 −0�0292 −0�0325 −0�0210 0.0200 0.0393 0.0554 0.0807 0.0486 −0�0104
−0�0226 −0�0338 −0�0443 −0�0102 0.0021 0.0321 0.0260 0.0486 0.1246 −0�0526
−0�0187 −0�0483 −0�0408 −0�0402 0.0309 0.0192 0.0136 −0�0104 −0�0526 0.4691
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5) Matrix of modified covariances [VCV_M]

VCV_M=
0.0244 0.0207 0.0127 0.0005 −0�0067 −0�0069 −0�0138 −0�0142 −0�0222 −0�0188
0.0207 0.0305 0.0186 0.0031 −0�0116 −0�0205 −0�0229 −0�0284 −0�0341 −0�0482
0.0127 0.0186 0.0403 0.0251 0.0007 −0�0172 −0�0313 −0�0331 −0�0441 −0�0409
0.0005 0.0031 0.0251 0.0558 0.0388 0.0146 −0�0045 −0�0202 −0�0106 −0�0400

−0�0067 −0�0116 0.0007 0.0388 0.0680 0.0513 0.0302 0.0190 0.0026 0.0308
−0�0069 −0�0205 −0�0172 0.0146 0.0513 0.0728 0.0586 0.0403 0.0316 0.0194
−0�0138 −0�0229 −0�0313 −0�0045 0.0302 0.0586 0.0721 0.0545 0.0264 0.0135
−0�0142 −0�0284 −0�0331 −0�0202 0.0190 0.0403 0.0545 0.0813 0.0484 −0�0103
−0�0222 −0�0341 −0�0441 −0�0106 0.0026 0.0316 0.0264 0.0484 0.1248 −0�0526
−0�0188 −0�0482 −0�0409 −0�0400 0.0308 0.0194 0.0135 −0�0103 −0�0526 0.4691

6) Root mean squared error for differences between theoretical and market swaption
volatilities

RSME = 4�6066e-005

7) Theoretical swaptions volatilities [Sig_theo]

Sig_theo=
0.2308 0.2301 0.2212 0.2091 0.1961 0.1861 0.1760 0.1690 0.1630 0.1590
0.2280 0.2150 0.2057 0.1940 0.1833 0.1740 0.1671 0.1620 0.1580
0.2105 0.2010 0.1903 0.1800 0.1701 0.1630 0.1580 0.1550
0.1968 0.1870 0.1772 0.1680 0.1600 0.1550 0.1510
0.1839 0.1740 0.1652 0.1580 0.1510 0.1480
0.1765 0.1674 0.1591 0.1524 0.1462
0.1686 0.1608 0.1531 0.1468
0.1604 0.1542 0.1470
0.1525 0.1476
0.1450

8) Market swaptions volatilities [Sig]

Sig =
0.2270 0.2300 0.2210 0.2090 0.1960 0.1860 0.1760 0.1690 0.1630 0.1590
0.2240 0.2150 0.2050 0.1940 0.1830 0.1740 0.1670 0.1620 0.1580
0.2090 0.2010 0.1900 0.1800 0.1700 0.1630 0.1580 0.1550
0.1950 0.1870 0.1770 0.1680 0.1600 0.1550 0.1510
0.1820 0.1740 0.1650 0.1580 0.1510 0.1480
0.1746 0.1674 0.1590 0.1524 0.1462
0.1672 0.1608 0.1530 0.1468
0.1598 0.1542 0.1470
0.1524 0.1476
0.1450

Comments

If we analyse the eigenvalues and eigenvectors we can see that we have obtained only one
negative eigenvalue and of very small absolute value. If we take the absolute values of
all eigenvalues, the negative eigenvalue will have eighth biggest value from the set of ten
values. What is more, the first three biggest eigenvalues (0.4927, 0.2696, 0.1367) have much
bigger values than other eigenvalues. The eigenvectors associated with first three biggest
eigenvalues are presented on Figure 8.3:
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Figure 8.3 Eigenvectors associated with first three biggest eigenvalues for optimized �i.

Although the eigenvectors do not have the typical humps presented in many books, these
values generate very small differences between the theoretical and swaption volatilities.

The biggest differences are denoted for swaptions with one year length underlying swaps.
There are practically no other significant differences in the volatilities for other maturities
and underlying lengths. This suggests that this kind of calibration may be widely used in
practice for valuation of various interest rate derivatives.

Let us see a graphical representation of optimized parameters �i [Lambda].
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Figure 8.4 Parameters �i obtained through optimization.

The values obtained through optimization are much different than for any arbitrary chosen
function �i presented in section 8.2. For such optimized parameters �i give much a better
RSME levels than previously presented. Recall that setting �i =�i we had a RSME=0�0013,
setting �i =

√
�i we have had a RSME = 0�0019, and in result of optimization we have

obtained a RSME = 0�000046066.
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Having presented the separated approach with optimization let us move on now to another
widely used approach to the calibration to swaptions – which is called the locally single
factor approach.

8.4 THE LOCALLY SINGLE FACTOR APPROACH

The locally single factor approach is based upon the assumption that the covariance matrices
	i are of single factor which means that 
i

kl −
i−1
kl =
i

k

i
l and 
−1

kl =0. Using this assumption
we can write:


k
k+1 =

√√√√�k�
2
k�k+1 −

k−1∑
j=0

(



j
k+1

)2
� 
k

N =

√
�k�

2
k�N − k−1∑

j=0

(
N∑

i=k+1
Ri

kN �0�

j
i

)2

− n−1∑
i=k+1

Ri
kN �0�
k

i

RN
kN �0�

where

�k = ��0 ÷ Tk� = ��k�

The matrix of market swaption volatilities can be arranged in a slightly different way.

�MKT =

⎡
⎢⎢⎢⎢⎣

�MKT
0�1 �MKT

0�2 �MKT
0�3 � � � �MKT

0�m − − − −
− �MKT

1�2 �MKT
1�3 � � � �MKT

1�m �MKT
1�m+1 − − −

− − �MKT
2�3 � � � �MKT

2�m �MKT
2�m+1 �MKT

2�m+2 − −
� � � � � � � � � � � � � � � � � � � � � � � � � � �
− − − � � � �MKT

m−1�m �MKT
m−1�m+1 �MKT

m−1�m+2 � � � �MKT
m−1�M

⎤
⎥⎥⎥⎥⎦

m×M

Such arrangement allows us to construct a calibration algorithm in a little easier for practical
implementation. The interpretation of the subscripts are presented below:

T0 = 1Y T1 = 2Y T2 = 3Y0

 σ MKT ⇒ k = 0, N = 1
0,1

Swaption with market volatility

Figure 8.5 Interpretation of swaption volatility.

Let us go to a practical example. We take market data for a swaption and appropriate
discount factors only up to three years.

Example 8.2 Locally single factor calibration

Table 8.16 presents initial market data
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Table 8.16 Market data – swaption volatility, discount factors

Swaption volatility Underlying swap length Discount factor

1Y 2Y

Option
maturity

T0 = 1Y 22�70 % 23�00 % 0.9774658
T1 = 2Y 22�40 % 21�50 % 0.9509789
T2 = 3Y 0.9219838

For k = 0, N = 1 we have


0
1 =

√√√√�0�
2
0�1 −

−1∑
j=0

(



j
1

)2 =√�0�0�1 = √
1 · 22�70% = 22�70 %�

For k = 0, N = 2 we have


0
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√
�0

(
�0�2
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j
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0

i

R2
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=

=
√

�0

(
�0�2
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0

1

R2
0�2 �0�

=
√

1 · 23�00 % − 0�4774 · 22�70 %
0�5226

= 23�27 %�

For k = 1, N = 2 we have


1
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2

)2 =
√
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(
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)2 = √
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Finally we obtain


0
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0
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0

1�1 = (
0
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)2 = 0�2272 = 0�051529
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1
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1

2�2 = (
1
2

)2 + 
0
2�2 = 0�21492 + 0�054168 = 0�100352
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Going further we generate matrices 	i for the rest of the swaptions. These is shown below.

Table 8.17 Matrix with elements 
i
k.

i/k 0 1 2 3 4 5 6 7 8 9

1 22�70 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 %
2 23�27 % 21�49 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 %
3 20�48 % 20�85 % 21�36 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 %
4 17�65 % 19�60 % 20�64 % 20�03 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 %
5 14�90 % 17�69 % 17�94 % 20�83 % 19�14 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 %
6 14�08 % 14�32 % 16�91 % 17�55 % 19�74 % 21�05 % 0�00 % 0�00 % 0�00 % 0�00 %
7 12�06 % 14�16 % 13�14 % 16�95 % 16�72 % 21�51 % 20�24 % 0�00 % 0�00 % 0�00 %
8 12�35 % 13�04 % 13�32 % 12�88 % 16�83 % 16�53 % 21�56 % 18�91 % 0�00 % 0�00 %
9 11�57 % 13�72 % 12�84 % 13�51 % 9�73 % 17�39 % 16�28 % 21�67 % 17�09 % 0�00 %
10 12�11 % 12�62 % 14�82 % 10�53 % 15�66 % 7�05 % 16�47 % 15�65 % 22�13 % 12�92 %

Table 8.18 Matrices 	i

i = 0 1 2 3 4 5 6 7 8 9 10

1 5�15 %
2 5�28 % 5�42 %
3 4�65 % 4�77 % 4�20 %
4 4�01 % 4�11 % 3�62 % 3�12 %
5 3�38 % 3�47 % 3�05 % 2�63 % 2�22 %
6 3�20 % 3�28 % 2�88 % 2�49 % 2�10 % 1�98 %
7 2�74 % 2�81 % 2�47 % 2�13 % 1�80 % 1�70 % 1�46 %
8 2�80 % 2�87 % 2�53 % 2�18 % 1�84 % 1�74 % 1�49 % 1�52 %
9 2�63 % 2�69 % 2�37 % 2�04 % 1�72 % 1�63 % 1�40 % 1�43 % 1�34 %
10 2�75 % 2�82 % 2�48 % 2�14 % 1�81 % 1�71 % 1�46 % 1�50 % 1�40 % 1�47 %

i = 1 1 2 3 4 5 6 7 8 9 10

2 10�04 %
3 9�25 % 8�54 %
4 8�32 % 7�70 % 6�96 %
5 7�27 % 6�74 % 6�10 % 5�35 %
6 6�35 % 5�87 % 5�29 % 4�63 % 4�03 %
7 5�85 % 5�42 % 4�90 % 4�30 % 3�73 % 3�46 %
8 5�68 % 5�25 % 4�74 % 4�15 % 3�61 % 3�34 % 3�23 %
9 5�64 % 5�23 % 4�73 % 4�15 % 3�59 % 3�34 % 3�22 % 3�22 %
10 5�53 % 5�11 % 4�61 % 4�04 % 3�51 % 3�25 % 3�14 % 3�13 % 3�06 %

…

i = 10 1 2 3 4 5 6 7 8 9 10

10 21�04 %
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Having this data, the instantaneous volatility vectors will have the following values:

Table 8.19 Instantaneous volatility vectors for locally single factor calibration

Index �1 �t� �2 �t� �3 �t� �4 �t� �5 �t� �6 �t� �7 �t� �8 �t� �9 �t� �10 �t�

1 22�70 % 23�27 % 20�48 % 17�65 % 14�90 % 14�08 % 12�06 % 12�35 % 11�57 % 12�11 %
2 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 %
� � �
10 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 % 0�00 %

So in this case the instantaneous volatilities will be equal to the market swaption volatilities
�MKT

i�i+1 for i = 0� T1� T2� � � � � T9.
Another popular way of calibration is calibration to swaptions using the historically

computed correlations of forward rates.

8.5 CALIBRATION WITH HISTORICAL CORRELATIONS
OF FORWARD RATES

Before we present the calibration algorithm we have to do preliminary computations. We
have to compute a matrix of historical correlations.

The matrix of historical correlations will be computed using daily EUR interest rates taken
from deposits and IRS (in both cases mid rates). The time series starts at 29-10-1999 and
ends at 21-01-2005. Below is a graph presenting an example of historical EUR interest rates
for 3 month deposit and 5Y IRS.
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Figure 8.6 Historical EUR interest rates for 3 month deposit and 5 year IRS.

We will have to compute correlations between the rates of return from forward rates for
EUR. We select the following intervals for forward rates.
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3M-6M 4Y-5Y 9Y-10Y 15Y-16Y
6M-9M 5Y-6Y 10Y-11Y 16Y-17Y
9M-1Y 6Y-7Y 11Y-12Y 17Y-18Y
1Y-2Y 7Y-8Y 12Y-13Y 18Y-19Y
2Y-3Y 8Y-9Y 13Y-14Y 19Y-20Y
3Y-4Y 14Y-15Y

All market data used in calculations was taken from Reuters.
The set of data consisted of daily-quoted closing bid and ask par rates for euro from t =29

October 1999 to 20 January 2005 for the following tenors Ti

3M 2Y 6Y 10Y
6M 3Y 7Y 12Y
9M 4Y 8Y 15Y
1Y 5Y 9Y 20Y

The rates for tenors from 3M to 1Y came from the deposit market; the rates for tenors from
2Y to 20Y came from the IRS market.

Any missing records in the data, separately for bid and ask series, were interpolated using
the formula

R̃ �t� t� Ti� = R�t − 1� t − 1� Ti�
(
1 + Pt�t−1

)
where t indexes consecutive days, i indexes tenors Ti, R̃ �t� t� Ti� is the interpolated par rate
for day t and tenor Ti� R �t − 1� t − 1� Ti� is the par rate taken from the previous day with
the same tenor Ti and Pt�t−1 is the percentage market move, averaged across all bid or ask
percentage changes for the rest of tenors

Pt�t−1 = 1
nJt

nJt∑
i∈Jt

pi
t�t−1 = 1

nJt

nJt∑
i∈Jt

R �t� t� Ti� − R�t − 1� t − 1� Ti�

R �t − 1� t − 1� Ti�
× 100 %

In the above formula, J t is the set of all i’s for which data exists for day t� nJt is the total
number of elements in set J t and pi

t�t−1 is the percentage change in R�t� t� Ti�, i.e. the change
of par rate between day t and day t − 1 for tenor Ti.

After interpolating missing records, we obtained mid rates by averaging bid and ask rates
for each tenor Ti

ri
m = ri

b + ri
a

2

where ri
m� ri

b and ri
a are vectors of mid, bid and ask rates, respectively.

The next step is to calculate par rates for the non-standard tenors: 11Y, 13Y, 14Y, 16Y,
17Y, 18Y and 19Y. We use linear interpolation

R�t� t� Ti� = R
(
t� t� Ti2

) (
Ti − Ti1

)+ R
(
t� t� Ti1

) (
Ti2

− Ti

)
Ti2

− Ti2

�

In the above expression, R�t� t� Ti� is the par rate being interpolated for tenor Ti and
R
(
t� t� Ti1

)
�R
(
t� t� Ti2

)
are known par rates for tenor Ti1

and Ti2
, respectively. If, for example,

Ti = 17Y, then Ti1
= 15Y and Ti2

= 20Y.
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The discount factors were calculated as follows.
As par rates for euros are quoted by Reuters in the Act/360 convention, the discount

factors up to 1Y were determined using the following formula

B �t�Ti� =
(

1 + R�t� t� Ti� × Tj

360

)−1

where B �t�Ti� denotes the discount factor for day t and for tenor Ti. In this case we have
Ti = 90� 180� 270 and 360.

For tenors 2Y and above, discount factors were calculated using the standard bootstrapping
technique

B �t�Ti� =
1 − R�t� t� Ti� ×

j−1∑
k=1

B �t�Tk�

1 + B �t�Tk�

The discount factors for future periods were calculated using the relationship:

B �i�Ti� Ti+1� = B �t�Ti+1�

B �t�Ti�

where B �t�Ti� Ti+1� denotes the discount factor for future period Ti ÷ Ti+1.
Now that all the discount factors have been calculated for the future periods, we are able

to calculate forward rates. In continuous compounding, forward rates f for tenors up to 1Y
may be expressed as

B �t�Ti� Ti+1� = e− Ti
360 F�t�Ti�Ti+1� ⇒ L�t�Ti� Ti+1� = −360

Tj
ln B �t�Ti� Ti+1�

where Ti = 90, 180, 270 and 360. For tenors 2Y and above, we can write

B �t�Ti� Ti+1� = e− 1Y
360 ×F�t�Ti�Ti+1� ⇒ L�t�Ti� Ti+1� = − ln B �t�Ti� Ti+1� �

Next we calculate rates of return s from the forward rates. We defined the rates of return as
follows

si
t = ln

L�t�Ti� Ti+1�

L �t − 1� Ti� Ti+1�
�

Finally we calculate correlations between the rates of return from the forward rates

Corr�si� sk� =
N∑

t=1
�si

t − s̄i� × �sk
t − s̄k�√

N∑
t=1

�si
t − s̄i�2 × N∑

i=1
�sk

t − s̄k�2

� (8.2)

In the above formula s̄i denotes the average of all rates of return in the series corresponding
to tenor Ti.
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The resulting correlation matrix is presented below.

Table 8.20 Historical correlation matrix of forward rates

3M–6M 6M–9M 9M–1Y 1–2Y 2–3Y 3–4Y 4–5Y 5–6Y 6–7Y 7–8Y 8–9Y 9–10Y

3M–6M 1�000 0�128 0�214 0�159 0�223 0�200 0�155 0�082 0�046 0�020 0�074 −0�008
6M–9M 0�128 1�000 −0�072 0�179 0�199 0�200 0�215 0�065 0�062 0�056 0�069 −0�025
9M–1Y 0�214 −0�072 1�000 −0�016 0�202 0�164 0�126 0�050 0�041 0�115 0�023 −0�004
1Y–2Y 0�159 0�179 −0�016 1�000 0�513 0�379 0�354 0�259 0�134 0�124 0�155 −0�005
2Y–3Y 0�223 0�199 0�202 0�513 1�000 0�208 0�194 0�168 0�128 0�204 0�059 0�002
3Y–4Y 0�200 0�200 0�164 0�379 0�208 1�000 0�149 0�142 0�164 0�072 0�110 0�013
4Y–5Y 0�155 0�215 0�126 0�354 0�194 0�149 1�000 −0�176 0�133 0�019 0�161 −0�010
5Y–6Y 0�082 0�065 0�050 0�259 0�168 0�142 −0�176 1�000 −0�121 0�260 0�055 0�007
6Y–7Y 0�046 0�062 0�041 0�134 0�128 0�164 0�133 −0�121 1�000 −0�128 0�062 0�015
7Y–8Y 0�020 0�056 0�115 0�124 0�204 0�072 0�019 0�260 −0�128 1�000 −0�359 −0�011
8Y–9Y 0�074 0�069 0�023 0�155 0�059 0�110 0�161 0�055 0�062 −0�359 1�000 −0�709
9–10Y −0�008 −0�025 −0�004 −0�005 0�002 0�013 −0�010 0�007 0�015 −0�011 −0�709 1�000
14–15Y 0�071 0�131 0�086 0�308 0�310 0�296 0�222 0�249 0�180 0�193 0�123 0�018
19–20Y 0�041 −0�003 0�066 0�126 0�113 0�167 0�114 0�128 0�199 0�126 0�075 0�023

10Y–
11Y

11Y–
12Y

12Y–
13Y

13Y–
14Y

14Y–
15Y

15Y–
16Y

16Y–
17Y

17Y–
18Y

18Y–
19Y

19Y–
20Y

10Y–
11Y

11Y–
12Y

3M–6M 1�000 0�128 0�214 0�159 0�223 0�200 0�155 0�082 0�046 0�020 0�074 −0�008
6M–9M 0�128 1�000 −0�072 0�179 0�199 0�200 0�215 0�065 0�062 0�056 0�069 −0�025
9M–1Y 0�214 −0�072 1�000 −0�016 0�202 0�164 0�126 0�050 0�041 0�115 0�023 −0�004
1Y–2Y 0�159 0�179 −0�016 1�000 0�513 0�379 0�354 0�259 0�134 0�124 0�155 −0�005
2Y–3Y 0�223 0�199 0�202 0�513 1�000 0�208 0�194 0�168 0�128 0�204 0�059 0�002
3Y–4Y 0�200 0�200 0�164 0�379 0�208 1�000 0�149 0�142 0�164 0�072 0�110 0�013
4Y–5Y 0�155 0�215 0�126 0�354 0�194 0�149 1�000 −0�176 0�133 0�019 0�161 −0�010
5Y–6Y 0�082 0�065 0�050 0�259 0�168 0�142 −0�176 1�000 −0�121 0�260 0�055 0�007
6Y–7Y 0�046 0�062 0�041 0�134 0�128 0�164 0�133 −0�121 1�000 −0�128 0�062 0�015
7Y–8Y 0�020 0�056 0�115 0�124 0�204 0�072 0�019 0�260 −0�128 1�000 −0�359 −0�011
8Y–9Y 0�074 0�069 0�023 0�155 0�059 0�110 0�161 0�055 0�062 −0�359 1�000 −0�709
9–10Y −0�008 −0�025 −0�004 −0�005 0�002 0�013 −0�010 0�007 0�015 −0�011 −0�709 1�000
14–15Y 0�071 0�131 0�086 0�308 0�310 0�296 0�222 0�249 0�180 0�193 0�123 0�018
19–20Y 0�041 −0�003 0�066 0�126 0�113 0�167 0�114 0�128 0�199 0�126 0�075 0�023

The results seem to be a little unexpected. We have obtained a lot of negative historical
correlations. Perhaps this is due to the fact that market of forward rates is not as effective
as everybody thinks. The presence of negative correlations creates a possibility of statistical
arbitrage. That means one can construct instruments that will use the information about
negative historical correlations and make an arbitrage opportunity if any counterparty does
not have information about the presented fact.

Let us denote the computed correlation matrix by � . Our goal is to obtain the VCV
matrices. We may use for that universal volatility function presented in Chapter 4 ‘Swaption
Pricing and Calibration’. Using this we specify formulae for 
m

m+1:


0
1 = �01� 
k

k+1 =
√√√√�k�

2
k�k+1 −

k−1∑
j=0
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j
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)2

and the following quadratic equation for 
m
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m
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−
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N∑
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l�il
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mN �0� −
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mN �0�
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l �il

m
i Rl

mN �0��

Let us present a practical example showing the necessary steps to compute the required
VCV matrices:

Example 8.3 Calibration with historical correlations

Table 8.21 presents the initial market data for our example. The data is identical as for
locally single factor calibration.

Table 8.21 Market data - swaption volatility, discount factors

Swaption volatility Underlying swap length Discount fact.

1Y 2Y

Option
maturity

T0 = 1Y 22�70 % 23�00 % 0.9774658
T1 = 2Y 22�40 % 21�50 % 0.9509789
T2 = 3Y 0.9219838

For k = 0, N = 1 we have


0
1 =

√√√√�0�
2
0�1 −

−1∑
j=0

(



j
1

)2 =√�0�0�1 = √
1 · 22�70 % = 22�70 %�

For k = 0, N = 2 we have
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0
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1
0�2 �0� = 0 ⇒

0�52262 · (
0
2

)2 + 2 · 0�5226 · 0�4774 · 0�5133 · 22�70 % · (
0
2

)− 1 · �23�00 %�2

+ 0�47742 · 22�70 %2 · 1 = 0

0�2731 · (
0
2

)2 + 0�0581 · (
0
2

)− 0�0412 = 0 ⇒ 
0
2 = −50�90 % or 
0

2 = 29�61 %

For our calibration case we take the positive value 
0
2 = 29�61 %.

For k = 1� N = 2 we have


1
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1�2 −

0∑
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2

)2 =
√

�1

(
�1�2
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)2 = √
2 · 22�40 %2 − 29�61 %2 = 11�26 %
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Finally we obtain:


0
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0
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We can go further and compute the whole matrix with elements 
m
N . For this we can specify

parameters a,b,c in the following way:
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N �2 = −b−√

�
2a

i.e. solutions of a quadratic equation. However one can find that for some specific market
data (swaption volatilities) and historical correlations the parameter � may have a negative
value. This is the case for 
2

3 for our market data taken from 25 January 2005. Let us see
that �k = 2� N = 3�:


2
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√√√√�2�
2
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3

)2 =
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�2�
2
2�3 − (
0

3

)2 − (
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3

)2 = √
3 · 20�90 %2 − 34�63 %2 − 29�34 %2

= √−7�50 %

We have obtained square root from a negative value and the whole algorithm will collapse
for that set of market data. On the other hand this situation is not a general rule which means
that for another set of data the algorithm may give proper results.

We now present another calibration algorithm to co-terminal swaptions.

8.6 CALIBRATION TO CO-TERMINAL SWAPTIONS

Another widely used technique for BGM calibration is calibration to co-terminal swaptions.
Figure 8.7 presents the idea of that calibration.
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0 T1Y T2Y T3Y T4Y T5Y T6Y T7Y T8Y T9Y T10Y

σinst(t,T9Y,10Y,T0,9Y)

σinst(t,T8Y,9Y,T0,8Y)

σinst(t,T7Y,8Y,T0,7Y)

σinst(t,T6Y,7Y,T0,6Y)

σinst(t,T5Y,6Y,T0,5Y)

σinst(t,T4Y,5Y,T0,4Y)

σinst(t,T3Y,4Y,T0,3Y)

σinst(t,T2Y,3Y,T0,2Y)

σinst(t,T1Y,2Y,T0,1Y)

Co-terminal swaptions: S( t,TiY,T10 − iY ), i = 1, 2, ..., 9

9 × 1

8 × 2

7 × 3

6 × 4

5 × 5

4 × 6

3 × 7

2 × 8

1 × 9

L(t,T9Y,T10Y)

L(t,T8Y,T9Y)

L(t,T7Y,T8Y)

L(t,T6Y,T7Y)

L(t,T5Y,T6Y)

L(t,T4Y,T5Y)

L(t,T3Y,T4Y)

L(t,T2Y,T3Y)

L(t,T1Y,T2Y)

Figure 8.7 Set of co-terminal swaptions and instantaneous volatilities of forward rates.

We can see in the figure a set of nine co-terminal swaptions. Co-terminal swap-
tions are swaptions which expire at the same time (in our case T10Y ) and maturi-
ties increases through time, e.g. by one year per swaption. In our case we consider
the following co-terminal swaptions: 9 × 1, 8 × 2, 7 × 3, 6 × 4, 5 × 5, 4 × 6, 3 × 7,
2 × 8, 1 × 9. Table 8.22 presents also a set of forward rates L�t�TiY � Ti+1Y � and cor-
responding instantaneous volatilities of �inst

(
t� TiY�i+1Y � T0�iY

)
which are constant through

periods 0 ÷ iY .
The first step of the calibration will be deriving the forward swap rates for the considered

co-terminal swaptions.
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Step 1: Derivation of the forward swap rates for a co-terminal swaption

Because we have derived forward swap rates in one of our previous exercises, we present
now only the results of the derivation. Table 8.22 below presents forward swap rates and
additionally forward rates together with ATM swaption volatilities.

Table 8.22 Forward rates, swap rates and swaption ATM volatilities

Forward rate Swap rate Swaption volatility

L�0� T9Y � T10Y � 4.534 % S �0� T9Y � T10Y � 4.534 % �swpt �0� T9Y � T10Y � 15.24 %
L�0� T8Y � T9Y � 4.520 % S �0� T8Y � T10Y � 4.527 % �swpt �0� T8Y � T10Y � 15.42 %
L�0� T7Y � T8Y � 4.312 % S �0� T7Y � T10Y � 4.452 % �swpt �0� T7Y � T10Y � 15.30 %
L�0� T6Y � T7Y � 4.152 % S �0� T6Y � T10Y � 4.372 % �swpt �0� T6Y � T10Y � 15.24 %
L�0� T5Y � T6Y � 3.906 % S �0� T5Y � T10Y � 4.271 % �swpt �0� T5Y � T10Y � 15.10 %
L�0� T4Y � T5Y � 3.675 % S �0� T4Y � T10Y � 4.161 % �swpt �0� T4Y � T10Y � 15.50 %
L�0� T3Y � T4Y � 3.400 % S �0� T3Y � T10Y � 4.039 % �swpt �0� T3Y � T10Y � 15.80 %
L�0� T2Y � T3Y � 3.102 % S �0� T2Y � T10Y � 3.906 % �swpt �0� T2Y � T10Y � 16.20 %
L�0� T1Y � T2Y � 2.747 % S �0� T1Y � T10Y � 3.758 % �swpt �0� T1Y � T10Y � 16.30 %

Let us remember also results of the weights used for forward swap derivation that will be
used in the calibration.

Table 8.23 Weights for swap rates

2y 3y 4y 5y 6y 7y 8y 9y 10y

9y × 1y 1
8y × 2y 0.509736 0.490264
7y × 3y 0.347558 0.332573 0.319869
6y × 4y 0.266116 0.255067 0.24407 0.234747
5y × 5y 0.216549 0.208489 0.199832 0.191217 0.183912
4y × 6y 0.18453 0.176589 0.170017 0.162957 0.155931 0.149975
3y × 7y 0.160158 0.154976 0.148307 0.142787 0.136858 0.130958 0.125955
2y × 8y 0.142109 0.137398 0.132953 0.127231 0.122496 0.11741 0.112347 0.108056
1y × 9y 0.127793 0.123949 0.11984 0.115962 0.110972 0.106842 0.102405 9.80E-02 0.094247

Now we are ready to move to step 2 of the co-terminal calibration. This step is very
similar to the bootstrapping technique widely used in the market.

Step 2: The Bootstrapping technique for instantaneous volatility

We start our algorithm from the derivation of instantaneous volatility for the forward rate
F �t�T9Y � T10Y �. We assume that such volatility will be constant through all the period before
our forward rate will be known, i.e. in the period: 0 ÷ 9Y . We will use previously computed
approximations of swaption volatility by instantaneous volatility of forward rates. For the first
period the computations will be straightforward, and the volatilities for all other periods 0 ÷ 8Y
for rate F �t�T8Y � T9Y �, 0 ÷ 7Y for rate F �t�T7Y � T8Y � and so on, will be computed based on
the results obtained in the previous steps. We also assume, that all instantaneous correlations
between the forward rates are equal to one. Let us start our computations:

Period: 0 ÷ 9Y for forward rate F �t�T9Y � T10Y �
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The market swaption volatility will be approximated by:

�swpt �t� T9Y � T10Y �2 = w10Y�10Y
10Y �0�2 L�0� T9Y � T10Y �2

�0�9Y S �0� T9Y � T10Y �2 �0�9Y �inst
(
0� T9Y�10Y � T0�9Y

)2

= 12 · 4�5342 · 1
4�5342

· �inst
(
0� T9Y�10Y � T0�9Y

)2 = �inst
(
0� T9Y�10Y � T0�9Y

)2

⇒ �inst
(
0� T9Y�10Y � T0�9Y

)= 15�25 %

Period: 0 ÷ 8Y for forward rate F �t�T8Y � T9Y �

�swpt �t� T8Y � T10Y �2 = w9Y�10Y
9Y �0�2 L�0� T8Y � T9Y �2

S �0� T8Y � T10Y �2 �inst
(
0� T8Y�9Y � T0�8Y

)2

+ w9Y�10Y
10Y �0�2 L�0� T9Y � T10Y �2

S �0� T8Y � T10Y �2 �inst
(
0� T9Y�10Y � T0�9Y

)2

+ 2 · w9Y�10Y
9Y �0�w9Y�10Y

10Y �0�L �0� T8Y � T9Y �L �0� T9Y � T10Y �

S �0� T8Y � T10Y �2 �inst
(
0� T8Y�9Y � T0�8Y

)
× �inst

(
0� T9Y�10Y � T0�9Y

)
�

We have obtained a quadratic equation with unknown �inst
(
0� T8Y�9Y � T0�8Y

)
. The value of

instantaneous volatility �inst
(
0� T9Y�10Y � T0�9Y

)
has been obtained from the previous step. We

can rearrange the above equation into a classic quadratic equation. Putting in the real market
data we can write:

A8Y�9Y �inst
(
0� T8Y�9Y � T0�8Y

)2 + B8Y�9Y �inst
(
0� T8Y�9Y � T0�8Y

)+ C8Y�9Y = 0 ⇔
⇔ 0�0005309 · �inst

(
0� T8Y�9Y � T0�8Y

)2 + 0�0001561 · �inst
(
0� T8Y�9Y � T0�8Y

)− 0�0000373 = 0 ⇔
⇔ �inst

(
0� T8Y�9Y � T0�8Y

)= 15�06 % or �inst
(
0� T8Y�9Y � T0�8Y

)= −75�85 %

We take into account only positive values. We show below the required computations in
the next period. Other computations will be very similar.

Period: 0 ÷ 7Y for forward rate F �t�T7Y � T8Y �

�swpt �t� T7Y � T10Y �2 = w8Y�10Y
8Y �0�2 L�0� T7Y � T8Y �2

S �0� T7Y � T10Y �2 �inst
(
0� T7Y�8Y � T0�7Y

)2

+ w8Y�10Y
9Y �0�2 L�0� T8Y � T9Y �2

S �0� T7Y � T10Y �2 �inst
(
0� T8Y�9Y � T0�8Y

)2

+ w8Y�10Y
10Y �0�2 L�0� T9Y � T10Y �2

S �0� T7Y � T10Y �2 �inst
(
0� T9Y�10Y � T0�9Y

)2

+ 2 · w8Y�10Y
8Y �0�w8Y�10Y

9Y �0�L �0� T7Y � T8Y �L �0� T8Y � T9Y �

S �0� T8Y � T10Y �2 �inst
(
0� T7Y�8Y � T0�7Y

)

× �inst
(
0� T8Y�9Y � T0�8Y

)+ 2 · w8Y�10Y
8Y �0�w8Y�10Y

10Y �0�L �0� T7Y � T8Y �L �0� T9Y � T10Y �

S �0� T8Y � T10Y �2

× �inst
(
0� T7Y�8Y � T0�7Y

)
�inst

(
0� T9Y�10Y � T0�9Y

)
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+ 2 · w8Y�10Y
9Y �0�w8Y�10Y

10Y �0�L �0� T8Y � T9Y �L �0� T9Y � T10Y �

S �0� T8Y � T10Y �2 �inst
(
0� T8Y�9Y � T0�8Y

)
× �inst

(
0� T9Y�10Y � T0�9Y

)

Once again we have obtained a quadratic equation with unknown �inst
(
0� T7Y�8Y � T0�7Y

)
.

In this step the values of the instantaneous volatilities �inst
(
0� T9Y�10Y � T0�9Y

)
and

�inst
(
0� T8Y�9Y � T0�8Y

)
have been obtained from previous steps. We can rearrange above

equation into a classic quadratic equation. Substituting in real market data we can write:

A7Y�8Y �inst
(
0� T7Y�8Y � T0�7Y

)2 + B7Y�8Y �inst
(
0� T7Y�8Y � T0�7Y

)+ C7Y�8Y = 0 ⇔
⇔ 0�0002246 · �inst

(
0� T7Y�8Y � T0�7Y

)2 + 0�0001365 · �inst
(
0� T7Y�8Y � T0�7Y

)− 0�0000257 = 0 ⇔
⇔ �inst

(
0� T7Y�8Y � T0�7Y

)= 15�06 % or �inst
(
0� T7Y�8Y � T0�7Y

)= −105�55 %

Again we take into account only positive values.

The results for other periods are presented in Table 8.24.

Table 8.24 Calibration results to co-terminal swaptions

i AiY�i+1Y BiY�i+1Y CiY�i+1Y �inst
(
0� TiY�i+1Y � T0�iY

)
9Y 15.24 %
8Y 0.0005309 0.0001561 −0�0000373 15.59 % −45�00 %
7Y 0.0002246 0.0001365 −0�0000257 15.06 % −75�85 %
6Y 0.0001221 0.0001105 −0�0000194 15.06 % −105�55 %
5Y 0.0000716 0.0000883 −0�0000143 14.49 % −137�91 %
4Y 0.0000460 0.0000713 −0�0000140 17.60 % −172�61 %
3Y 0.0000296 0.0000594 −0�0000114 17.62 % −218�04 %
2Y 0.0000194 0.0000482 −0�0000101 19.38 % −267�58 %
1Y 0.0000123 0.0000387 −0�0000071 17.36 % −331�63 %

Our results seem to be sensible. We can observe the typical hump of volatility between years
1 and 3. The result is similar to that obtained via calibration to caps.

8.7 CONCLUSIONS

This chapter was dedicated to presenting calibration algorithms to caps and swaptions. All
the algorithms were non parametric. We have started with a separated approach. Based on
the market data taken from particular working day we have obtained results of the calibration
as a set of covariance matrices. Many of the matrices had negative eigenvalues so we have
transformed them by eliminating the eigenvectors associated with the negative eigenvalues.
Our results seem to be right for some of the variants of the calibration. For two parameters
of �i we have presented the algorithms of calibration in more detail. For these two cases
we have showed how to compute instantaneous volatility vectors. We also compared the
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root mean squared errors between the theoretical and market swaption volatilities. The best
results occurred for two forms of parameters �i when equal to time �i specified as a day
count fraction and next when equal to a squared root of time

√
�i.

In the next section the separated approach was developed further. As a target function we
have set a root mean squared error for differences between theoretical and market swaption
volatilities. We have minimized that function under several restrictions for VCV. We have
postulated that the VCV matrix must be positive definite. For that case we have implemented
a subalgorithm for reducing VCV matrix by removing eigenvectors associated with negative
eigenvalues. Results here were very good. There were much better than for any arbitrary
chosen function �i.

In the chapter we have also presented an approach called locally single factor. After
defining initial assumptions and the constituting algorithm we have moved to results. In
this simple calibration we have obtained instantaneous volatilities of forward rates equal to
one year swaptions. This will be always the case as long as we are interested in obtaining
instantaneous volatilities for one-year forward rates and we choose for calibration swaptions
with underlying swaps length also equal to one year and paying once a year.

After that we have moved into calibration to swaptions given an exogenously instantaneous
correlation matrix of forward LIBOR rates. The correlations were computed from historical
data. We have presented the method of obtaining historical correlations and also computed
the correlation matrix for particular working day. The results are completely unexpected.
We have seen forward correlations that are close to one. Unfortunately there were a lot of
negative correlations. One reason may be that the historical data is not totally accurate. The
data was taken from one of most popular financial services as closing prices for LIBOR’s
and IRS quotations. We used a bootstrapping technique to obtain zero coupon rates and after
that forward zero coupon rates. The data has daily frequency and it is possible that some
marginal computation technique during interpolation caused it to have too much influence
on the final results. Nevertheless one should be very careful if it was decided to use this
technique in practice. It is worthy to mention that some other research obtains quite good
results of historical correlations but they used data from zero coupon bonds. We still think
that taking data from IRS market should be more appropriate because of the nature of LIBOR
Market Model which is dedicated mainly to the money market.

The last part of the chapter was dedicated to calibration to co-terminal swaptions. Co-
terminal swaptions were such swaptions which expire at the same time and maturities
increased through time, e.g. by one year per swaption. We have presented all necessary steps
for calibration and computed the final result. All the results seem to be very sensible. We
have observed a typical hump of volatility between years 1 and 3. The results were also very
similar to obtained via calibration only to caps using assumption of volatility dependency
only on time to maturity.

Please be aware that the presented algorithms should be used in practice for those interest
rate instruments which by nature are close to the swaption market. A classical example may
be any Bermudan swaption. An example of pricing a Bermudan swaption using calibration
to co-terminal swaption is presented in Chapter 10.

We have presented many variations of non-parametric calibration to swaptions. This is
a good time now to move onto parametric calibration algorithms to caps and swaptions
simultaneously based on optimization techniques. In the next chapter we present at the
beginning non parametric calibration to caps and swaptions based on the Rebonato approach
and then simultaneous parametric calibration to caps and swaptions.
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Calibration Algorithms to Caps and Swaptions

Based on Optimization Techniques

9.1 INTRODUCTION

The previous chapter was dedicated to calibration algorithms to swaptions. We have presented
a separated approach, a Longstaff-Schwartz-Santa Clara approach, a locally single factor
method, a calibration with historical correlations and finally a calibration to co-terminal
swaptions. Some of the algorithms should be used very carefully in practice. The locally
single factor may lead to negative variances and the calibration with historical correlations
may lead to negative correlations.

This chapter describes simultaneous calibration approaches to caps and swaptions. The first
algorithm is non-parametric, whilst the second parametric. The non-parametric calibration
is based on the Rebonato approach. At the beginning we derive annual caplet volatilities
driven by the dynamics of annual forward rates from the dynamics of quarterly forward
rates. It is very important to notice that some market participants often forget about such a
transformation. The consequence may be wrong calibration results and mispriced derivative
instruments.

Next we compute forward swap rates and present an approximation of the swaption
formula for LIBOR Market Model as a linear combination of forward LIBOR rates. In the
calibration we use also piecewise – constant instantaneous volatilities described in Chapter 7.
Finally we constitute an optimization function minimizing the difference between theoretical
and market swaption volatilities. The result of the optimization is a matrix of annualized
instantaneous volatilities and also instantaneous correlations. At the end we compare results
of the theoretical and market caplet volatilities and the theoretical and market swaption
volatilities.

The second part of the chapter is dedicated to parametric calibration to caps and swaptions.
First we use caplet volatilities derived in Chapter 7 and based on that constitute some
appropriate parametric functions of caplet volatilities. Next we define optimization functions
minimizing differences between theoretical and market caplet prices. After that we move into
calibration to swaptions. For that reason we constitute another set parametric functions and
run optimizations but now to minimize the differences between the theoretical and market
quotations of swaptions.

After presenting all the algorithms we move to analyse the results of such computations.
Taking real market data (LIBOR rates, FRA, IRS, caps and swapations, historical corre-
lations) from a particular working day we present in detail how the algorithms should be
implemented in practice.
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9.2 NON PARAMETRIC CALIBRATION TO CAPS AND
SWAPTIONS

The first step before a simultaneous calibration to cap and swaptions is deriving annual
caplet volatilities driven by the dynamic of annual forward rates from the dynamics of the
quarterly forward rates.

Preliminary computations

We concentrate our computations on a particular case of four quarterly interest forward rates
covering one particular one year period. If we do that, a generalization for all one year
periods for all swaptions is straightforward.

The first step is to compute the ratios of discount factors as functions of quarterly
forward rates.

L�t�Tk+i� Tk+i+1� = 1
�k+i�k+i+1

[
B �t�Tk+i�

B �t�Tk+i+1�
− 1
]

⇒

B �t�Tk+i�

B �t�Tk+i+1�
= �k+i�k+i+1L�t�Tk+i� Tk+i+1� + 1

for i = 0� 1� 2� 3�

Now we can express a one year forward rate covering the period Tk ÷ Tk+4 as functions of
previously computed discount factor ratios

L�t�Tk�Tk+4� = 1
�k�k+4

[
B �t�Tk�

B �t�Tk+4�
− 1
]

= 1
�k�k+4

[
B �t�Tk�

B �t�Tk+1�

B �t�Tk+1�

B �t�Tk+2�

B �t�Tk+2�

B �t�Tk+3�

B �t�Tk+3�

B �t�Tk+4�
− 1
]

�

Substituting the expression for fractions of discount factors from above expressions we
obtain:

L�t�Tk�Tk+4� = 1
�k�k+4

·
{[

�k�k+1L�t�Tk�Tk+1� + 1
] [

�k+1�k+2L�t�Tk+1� Tk+2� + 1
] [

�k+2�k+3L�t�Tk+2� Tk+3� + 1
]

× [�k+3�k+4L�t�Tk+3� Tk+4� + 1
]}
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L�t�Tk�Tk+4� = 1
�k�k+4

· (9.1)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(
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(
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(
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The dynamics of quarterly forward rates can be expressed under the measure Qk+4 as:

dL�t�Tk�Tk+1� =

− �inst
k+i+1 �t�F �t�Tk+i� Tk+i+1�

k+i+4∑
j=k+i+2

�k+i+1�j�j−1�j�
inst
j �t�L

(
t� Tj−1� Tj

)
1 + �j−1�jF

(
t� Tj−1� Tj

) dt

+ �inst
k+i+1 �t�F �t�Tk+i� Tk+i+1�dW k+4

k+i+1 �t�

(9.2)

for i = 0� 1� 2� 3

where �k�j denotes the instantaneous correlation between the forward rates L�t�Tk−1� Tk� and
L�t�Tj−1� Tj�, and �inst

k+i �t� = �inst�t� Tk+i� Tk+i+1�� i = 0� 1� 2� 3 is the instantaneous volatility
of the quarterly forward rate L�t�Tk+i� Tk+i+1�� i = 0� 1� 2� 3.

The dynamic of annual the forward rate under the measure Qk+4 can be written:

dF �t�Tk�Tk+4� = � �t�L �t�Tk�Tk+4�dW k+4
k+4 �t� (9.3)

where �inst�t� = �inst�t� Tk�Tk+4� is the instantaneous volatility of the annual forward rate
L�t�Tk�Tk+4�.

Our goal is to derive an annual caplet volatility driven by the dynamic of the annual
forward rate from the dynamics of quarterly forward rates. We present the algorithm based
on the example for period Tk ÷ Tk+4 under the measure Qk+4.

First we assume, that correlations between quarterly forward rates are equal to one.
Let us take logarithms of the dynamics presented by equations (9.2) and (9.3). Using Ito’s

lemma we have:

d ln L�t�Tk+i� Tk+i+1� = − �inst
k+i+1 �t�

k+i+4∑
j=k+i+2

�k+i+1�j�j−1�j�
inst
j �t�L

(
t� Tj−1� Tj

)
1 + �j−1�jL

(
t� Tj−1� Tj

) dt

− 1
2

�inst
k+i+1 �t�2 dt + �inst

k+i+1 �t�dW k+4
k+i+1 �t�
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for i = 0� 1� 2� 3 and

d ln L�t�Tk�Tk+4� = −1
2

�inst �t�2 dt + �inst �t�dW k+4
k+4 �t�

For further computations we need the multi-dimensional Ito Lemma. In general if we have
a function:

V �S1� S2� 	 	 	 � Sn� t�

we can write

dV =
(


V


t
+ 1

2

n∑
i=1

n∑
j=1

�i�j�ijSiSj


2V


Si
Sj

)
dt +

n∑
i=1


V


Si

dSi� (9.4)

In our case we need a four-dimensional version of the Ito lemma. For simplicity we can
write:

L�t�Tk�Tk+4� = LA
4 �t�

L �t�Tk+i� Tk+i+1� = LQ
i+1 �t� � for i = 0� 1� 2� 3

and

�k�k+4 = �A
4 � �k+i�k+i+1 = �Q

i+1� for i = 0� 1� 2� 3

�Q
i �t� = �inst

k+i �t� � for i = 1� 2� 3� 4�

So using four dimensional Ito we have:
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for i = 0� 1� 2� 3.
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We do not need in our computations the term dt. So we can write:

dLA
4 �t� = �	 	 	 � dt + 
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where:
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we obtain after performing straightforward calculations:

dLA
4 �t� = �	 	 	 � dt + �Q

1 �t�

(
�Q

1

�A
4

LQ
1 �t� + �Q

1 �Q
2

�A
4

LQ
1 �t�LQ

2 �t� + �Q
1 �Q

3

�A
4

LQ
1 �t�LQ

3 �t�

+ �Q
1 �Q

4

�A
4

LQ
1 �t�LQ

4 �t� + �Q
1 �Q

2 �Q
3

�A
4

LQ
1 �t�LQ

2 �t�LQ
3 �t� + �Q

1 �Q
2 �Q

4

�A
4

LQ
1 �t�LQ

2 �t�LQ
4 �t�

+�Q
1 �Q

3 �Q
4

�A
4

LQ
1 �t�LQ

3 �t�LQ
4 �t� + �Q

1 �Q
2 �Q

3 �Q
4

�A
4

LQ
1 �t�LQ

2 �t�LQ
3 �t�LQ

4 �t�

)
dW 4

1 �t�

+ �Q
2 �t�

(
�Q

2

�A
4

LQ
2 �t� + �Q

1 �Q
2

�A
4

LQ
1 �t�LQ

2 �t� + �Q
2 �Q

3

�A
4

LQ
2 �t�LQ

3 �t� + �Q
2 �Q

4

�A
4

LQ
2 �t�LQ

4 �t�

+ �Q
1 �Q

2 �Q
3

�A
4

LQ
1 �t�LQ

2 �t�LQ
3 �t� + �Q

1 �Q
2 �Q

4

�A
4

LQ
1 �t�LQ

2 �t�LQ
4 �t� + �Q

2 �Q
3 �Q

4

�A
4

LQ
2 �t�

× LQ
3 �t�LQ

4 �t� + �Q
1 �Q

2 �Q
3 �Q

4

�A
4

LQ
1 �t�LQ

2 �t�LQ
3 �t�LQ

4 �t�

)
dW 4

2 �t� (9.5)

+ �Q
3 �t�

(
�Q

3

�A
4

LQ
3 �t� + �Q

1 �Q
3

�A
4

LQ
1 �t�LQ

3 �t� + �Q
2 �Q

3

�A
4

LQ
2 �t�LQ

3 �t� + �Q
3 �Q

4

�A
4

LQ
3 �t�LQ

4 �t�

+ �Q
1 �Q

2 �Q
3

�A
4

LQ
1 �t�LQ

2 �t�LQ
3 �t� + �Q

1 �Q
3 �Q

4

�A
4

LQ
1 �t�LQ

3 �t�LQ
4 �t�

+ �Q
2 �Q

3 �Q
4

�A
4

LQ
2 �t�LQ

3 �t�LQ
4 �t� + �Q

1 �Q
2 �Q

3 �Q
4

�A
4

LQ
1 �t�LQ

2 �t�LQ
3 �t�LQ

4 �t�

)
dW 4

3 �t�

+ �Q
4 �t�

(
�Q

4

�A
4

LQ
4 �t� + �Q

1 �Q
4

�A
4

LQ
1 �t�LQ

4 �t� + �Q
2 �Q

4

�A
4

LQ
2 �t�LQ

4 �t� + �Q
3 �Q

4

�A
4

LQ
3 �t�LQ

4 �t�

+ �Q
1 �Q

2 �Q
4

�A
4

LQ
1 �t�LQ

2 �t�LQ
4 �t� + �Q

1 �Q
3 �Q

4

�A
4

LQ
1 �t�LQ

3 �t�LQ
4 �t�

+ �Q
2 �Q

3 �Q
4

�A
4

LQ
2 �t�LQ

3 �t�LQ
4 �t� + �Q

1 �Q
2 �Q

3 �Q
4

�A
4

LQ
1 �t�LQ

2 �t�LQ
3 �t�LQ

4 �t�

)
dW 4

4 �t�



136 The LIBOR Market Model in Practice

Let us set:

ai �t� = 1
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for i = 1� 2� 3� 4�

Taking variance on both sides which is conditional on time t we can write:

�inst �t�2 =
4∑

i=1

ai �t�
2 �Q

i �t�2 + 2
4∑

i=1

4∑
j=i

�i�j�
Q
i �t��Q

j �t� ai �t� aj �t� (9.6)

We can freeze all F at zero time value to obtain

�inst
appr �t�2 =

4∑
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ai �0�2 �Q
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4∑
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i �t��Q
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We can consider F as a swap rate being the underlying of the Tk × 1 swaption. In such case
the squared Black’s swaption volatility can be written as:
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Considering the first integral:
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If we assume that the forward rates have constant volatilities, we can write:
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Finally we obtain

�2
Black ≈

(
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The result is very similar to result presented in Brigo and Mercurio (2001) but here our example
is for quarterly forward rates instead of annual rates. Let us present a practical example.

Example 9.1 Annualization of volatility

We will compute the annual market volatilities generated from quarterly caplet volatilities.
In our computations we use market data taken from 21/01/2005 (with value date equal to
25/01/2005). We set intra-correlation of quarterly rates to one.

Let us consider period 1Y – 2Y. Table 9.1 presents data for interval with start date
25/01/2006 and end date 25/01/2007. Four quarterly sub-intervals have expiry dates
24/04/2006, 25/07/2006, 25/10/2006 and 25/01/2007. For each sub-interval we have the
caplet volatility, quarterly year fraction and forward rate.

Table 9.1 Quarterly initial data

Tenor Date Caplet
volatility

Year
fraction

Forward
rate
(quarterly)

Discount
factor

Annual
forward
rate

1Y 25/01/2006
1.25Y 25/04/2006 20.15 % 0.25000 2.5440 % 0.971064
1.50Y 25/07/2006 21.89 % 0.25278 2.6591 % 0.964580
1.75Y 25/10/2006 23.65 % 0.25556 2.7755 % 0.957787
2Y 25/01/2007 25.50 % 0.25556 2.8925 % 0.950759 2.7471 %

Taking data from Table 9.1 we compute the annual forward rate covering period 1Y – 2Y

F �0� T1Y � T2Y � =
[

B �0� T1Y �

B �0� T2Y �
− 1
]

360
�T2Y − T1Y �

= 2�7471%�

Now we have to compute parameters: a1 �0� � a2 �0� � a3 �0� � a4 �0�:

a1 �0� = 0.233223

a2 �0� = 0.246394

a3 �0� = 0.259912

a4 �0� = 0.270786

Having computed parameters a1�0��a2�0��a3�0��a4�0� and assuming �ij =1 we can compute
the annual volatility:

�2
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2Y∑
i=1Y
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2

+ 2
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(
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�2
Black �0� T1Y � T2Y �≈a1 �0�2 �cpl �t� T1Y � T1�25Y �2 + a2 �0�2 �cpl �t� T1�25Y � T1�5Y �2

+ a3 �0�2 �cpl �t� T1�5Y � T1�75Y �2 + a4 �0�2 �cpl �t� T1�75Y � T2Y �2

+ 2 · a1 �0� · a2 �0��cpl �t� T1Y � T1�25Y ��cpl �t� T1�25Y � T1�5Y �

+ 2 · a1 �0� · a3 �0��cpl �t� T1Y � T1�25Y ��cpl �t� T1�5Y � T1�75Y �

+ 2 · a1 �0� · a4 �0��cpl �t� T1Y � T1�25Y ��cpl �t� T1�75Y � T2Y �

+ 2 · a2 �0� · a3 �0��cpl �t� T1�25Y � T1�5Y ��cpl �t� T1�5Y � T1�75Y �

+ 2 · a2 �0� · a4 �0��cpl �t� T1�25Y � T1�5Y ��cpl �t� T1�75Y � T2Y �

+ 2 · a3 �0� · a4 �0��cpl �t� T1�5Y � T1�75Y ��cpl �t� T1�75Y � T2Y �

Using the real values we obtain:

v2
Black �0� T1Y � T2Y �≈ 23�14 %

End of example 9.1

Table 9.2 presents the results of the computations of all annual forward volatilities:

Table 9.2 Annual forward volatilities

Tenor Date Caplet
vol

Year
fraction
quarterly

Year
fraction
annual

Discount
factor

Forward
rate
quarterly

Forward
rate
annual

a1(0) a2(0)
a3(0) a4(0)

Annual
volatility

1Y 25/01/2006 16.41 % 0.25556 1.0139 0.97724 2.4150 % 2.2972 %
1.25Y 25/04/2006 20.15 % 0.25000 0.971064 2.5440 %
1.50Y 25/07/2006 21.89 % 0.25278 0.96458 2.6591 %
1.75Y 25/10/2006 23.65 % 0.25556 0.957787 2.7755 %
2Y 25/01/2007 25.50 % 0.25556 1.0139 0.950759 2.8925 % 2.7471 % 0.233223 23.14 %

0.246394
0.259912
0.270786

2.25Y 25/04/2007 22.12 % 0.25000 0.943868 2.9201 %
2.50Y 25/07/2007 22.55 % 0.25278 0.936727 3.0161 %
2.75Y 25/10/2007 22.98 % 0.25556 0.929333 3.1131 %
3Y 25/01/2008 23.41 % 0.25556 1.0139 0.92177 3.2105 % 3.1018 % 0.2377 23.05 %

0.248157
0.258869
0.266908

3.25Y 25/04/2008 20.97 % 0.25278 0.914291 3.2361 %
3.50Y 25/07/2008 20.83 % 0.25278 0.906679 3.3216 %
3.75Y 27/10/2008 20.77 % 0.26111 0.898851 3.3352 %
4Y 26/01/2009 20.51 % 0.25278 1.0194 0.890895 3.5326 % 3.3995 % 0.242234 21.03 %

0.248582
0.257753
0.264238

5Y 25/01/2010 19.38 % 0.25278 1.0111 0.858974 3.7707 % 3.6754 % 0.242123 19.98 %
0.249997
0.258101
0.263498
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10Y 26/01/2015 15.70 % 0.25278 1.0111 0.694285 4.5640 % 4.5342 % 0.247076 16.28 %
0.252105
0.257512
0.260177

20Y 27/01/2025 11.31 % 0.26111 1.0222 0.434558 4.8409 % 4.9805 % 0.2517 11.67 %
0.252753
0.256584
0.25766

Our next step in simultaneous calibration is computing forward swap rates which can be
expressed as:

SsN �t� = B �t�Tn� − B �t�TN �
N∑

i=n+1
�i−1�iB �t�Ti�

(9.10)

The forward swap rates computed using equation (9.10) are presented below in Table 9.3.

Table 9.3 Forward swap rates

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 2.92 % 3.08 % 3.22 % 3.35 % 3.47 % 3.58 % 3.68 % 3.76 % 3.81 %
2Y 3.25 % 3.39 % 3.51 % 3.63 % 3.73 % 3.83 % 3.91 % 3.96 % 4.01 %
3Y 3.54 % 3.65 % 3.77 % 3.87 % 3.97 % 4.04 % 4.08 % 4.13 % 4.17 %
4Y 3.79 % 3.90 % 4.00 % 4.10 % 4.16 % 4.20 % 4.24 % 4.27 % 4.30 %
5Y 4.03 % 4.12 % 4.21 % 4.27 % 4.30 % 4.33 % 4.36 % 4.39 % 4.42 %
7Y 4.41 % 4.45 % 4.45 % 4.47 % 4.49 % 4.51 % 4.54 % 4.56 % 4.57 %
10Y 4.51 % 4.53 % 4.57 % 4.61 % 4.62 % 4.64 % 4.66 % 4.68 % 4.71 %

The tenors in the rows represents the start dates of the forward swap rate, tenors in columns
represents the end dates of the forward swap rate.

Having the forward swap rates and the ATM volatilities we can use the Black formula
for swaptions to compute values of all swaptions from the tables.

SwaptionnN �0� =
N∑

i=n+1

�i−1�iB�0� Ti� �SnN �0�N�d1� − KN�d2��� (9.11)

where

d1 = ln�SnN �0�/K� + �0�n�
2
nN /2

�nN

√
�0�n

� d2 = d1 − �nN

√
�0�n�

Our goal is to find such instantaneous correlations of the LIBOR rates, which together
with the instantaneous volatilities obtained from caplet prices will give possibly negligible
difference between Black and LFM swaption prices.

The detailed algorithm of the calibration to swaption and cap prices is based on the
Rebonato approach.
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The LFM Black squared swaption volatility for swaptions can be approximated by

(
�LFM

n�N

)2 =
N∑

i�j=n+1

wi �0�wj �0�F �0� Ti−1� Ti�F
(
0� Tj−1� Tj

)
�i�j

Sn�N �0�2

Tn∫
0

�i �t��j �t�dt

where the swap rates are expressed as a linear combination of the forward rates.

Sn�N �t� =
N∑

i=n+1

wi �t�F �t�Ti−1� Ti�

Sn�N �0�
assumption=

N∑
i=n+1

wi �0�F �0� Ti−1� Ti�

All wi �t� and F �t�Ti−1� Ti� are frozen at the time 0 value.
In the calibration we consider piecewise-constant instantaneous volatilities according to

specification in Table 9.4.

Table 9.4 Piecewise – constant instantaneous volatilities

Time t ∈ �0� T0� t ∈ �T0� T1� t ∈ �T1� T2� t ∈ �TM−2� TM−1�

Forward rate

F �t�T0� T1� �1�1 = �1�1
F �t�T1� T2� �2�1 = �2�2 �2�2 = �2�1

F �t�TM−1� TM� �M�1 = �M�M �M�2 = �M�M−1 �M�3 = �M�M−2 �M�M = �M�1

We assume that caplet volatilities multiplied by time �cpl �0� Ti−1� Ti� are read from the
market. These volatilities should be annualized (an example can you find in the previous
section). Then the parameters � can be given in terms of parameters � as:

�2
i =
(
�cpl �0� Ti−1� Ti�

)2
j∑

i=1
�j−2�j−1�

2
i−j+1

The last approximation is

�i�j = cos
(

i − 
j

)
�

Calibration is based on the algorithm of minimization for finding the best fitting parameters �
and 
 starting from certain initial guesses and with restriction which implies that all �i�j > 0.

Now we can move into some examples clarifying the theory. Let us define the Number
Of Grid Points as number of annual forward rates plus one equal to the number of annual
caplet rates. In our case of calibration we take Number of Grid Points equal to 21. This is
because we start our calibration from period 2Y – 3Y.
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Let us define vectors � and 
. The initial values of these vectors are presented in Table 9.5
(same as in Brigo and Mercurio (2001)).

Table 9.5 Initial values of vectors ��


i ��i� 
�i�

1 1�0000 �/2 = 1�5708
2 1�0000 �/2 = 1�5708
3 1�0000 �/2 = 1�5708
4 1�0000 �/2 = 1�5708
5 1�0000 �/2 = 1�5708
6 1�0000 �/2 = 1�5708
7 1�0000 �/2 = 1�5708
8 1�0000 �/2 = 1�5708
9 1�0000 �/2 = 1�5708
10 1�0000 �/2 = 1�5708
11 1�0000 �/2 = 1�5708
12 1�0000 �/2 = 1�5708
13 1�0000 �/2 = 1�5708
14 1�0000 �/2 = 1�5708
15 1�0000 �/2 = 1�5708
16 1�0000 �/2 = 1�5708
17 1�0000 �/2 = 1�5708
18 1�0000 �/2 = 1�5708
19 1�0000 �/2 = 1�5708
20 1�0000 �/2 = 1�5708
21 1�0000 �/2 = 1�5708

Now we have to generate the vector � whose values are functions of parameters of vector
�. For technical reasons the first two rows of the vector � will take zero values.

Algorithm 9.1 Calculation of vector �

We start our loop from i = 3 up to [Number Of Grid Points]=21

We take initial values

SumTemp = 0

Sum = 0

For each i we have to compute Sum in the following way:

Start from j = 3 up to current value of i and compute Sum using the loop procedure:

SumTemp = � �j − 2� j − 1� � �i − j + 3�2

Sum = SumTemp + Sum

Then vector � will have parameters:

� �i� = sqrt
⌊
�_cplann �i�2 ��j − 2� j − 1� /Sum

⌋
End of algorithm 9.1

In the algorithm above �_cplann is a vector of annualized caplet volatilities.

Initial values of � vector for initial values of vector � are presented in Table 9.6.
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Table 9.6 Initial values of vector �

i ��i�

1 0�0000
2 0�0000
3 0�2314
4 0�2305
5 0�2105
6 0�1997
7 0�1918
8 0�1841
9 0�1761
10 0�1676
11 0�1627
12 0�1696
13 0�1648
14 0�1499
15 0�1428
16 0�1358
17 0�1397
18 0�1342
19 0�1284
20 0�1225
21 0�1167

The next step is the generation of the matrix of weights W that will be used in further
computations (e.g. for forward swap rates). This is presented by algorithm 9.2 below.

Algorithm 9.2 Generation of weights

For i = 1 To NumberOfSwaptionMaturities

If i <= 5 Then n = i
If i = 6 Then n = 7

//due to the fact, that in our case we have no market volatilities for period 6Y,

alternatively we may interpolate this value and skip the assignment

If i = 7 Then n = 10

//due to the fact, that in our case we have no market volatilities
for periods 8Y and 9Y,

alternatively we may interpolate this values and skip the assignment

For j = 2 To NumberOfSwaptionUnderlyings

Sum = 0

For k = i + 1 To i + j

Sum_1 = 0

For 1 = i + 1 To i + j

Sum_Temp = ��l − 1� l� · B�l + 1�

Sum = Sum + Sum_Temp
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Next l

W�i� j� k − i� = ��k − 1� k�B�k + 1�/Sum // Elements of matrix of weights

Next j

Next i

End of algorithm 9.2

The structure of the matrix of weights W is thus as is presented below.

Figure 9.1 Structure of matrix W.

We need to create the instantaneous volatility matrix whose values are functions of the
parameter �.

Algorithm 9.3 Instantaneous volatility matrix

For i = 1 To NumberOfGridPoints-2

For j = 1 To i

�_inst�i� j� = � �i + 1� · ��i − j + 3�
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Next j

Next i

End of algorithm 9.3

The algorithm for the theoretical LFM swaption prices is presented below. Additionally
a minimization function is attached for the purpose of decreasing differences as much as
possible between the theoretical and market swaption volatilities.

Algorithm 9.4 LFM theoretical swaption prices

MininizationFunction = 0

For i = 1 to NumberOfSwaptionMaturities

if i = 6 then n = 7

// this condition resulting from the fact
that in our case we have no volatilities for periods 6Y, 8Y and 9Y

elseif i = 7 then n = 10

else n = i

end

for j = 2 to NumberOfSwaptionUnderlyings
Sum_2 = 0
for k = 1 to j

for 1 = 1 to j
Sum_1 = 0;
for z = 1 to n

Sum_1Temp =
�_inst�n + k − 1� z� · �_inst�n + 1 − 1� z� · ��z� z + 1�

Sum_1 = Sum_1 + Sum_1Temp

Next z

Sum_2Temp =
Sum_1 · W�i� j� k� · W�i� j� l� · F�k + n + 1� · F�1 + n + 1�·

cos���k + 2� − ��1 + 2��/S�i� j�2 · ��1� n + 1�

Sum_2 = Sum_2 + Sum_2Temp
Next l

Next k

�_swaption_LFM�i� j� = sort�Sum_2�

// elements of matrix of LFM swaption volatilities

Temp = �_swaption_LFM�i� j� − �_swaption_mkt�i� j�

// difference between LFM and market swaption volatilities

MinimizationFunction = MinimizationFunction + Temp;
// creation of minimization function

Next j

Next i

End of algorithm 9.4
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In algorithm 9.4 F denotes a vector of forward rates with values F�i�

Table 9.7 Forward rates

i F(i) Forward rate
F�0� Tk�Tk+1y�
for k

1 0 0
2 0.022972 1Y
3 0.027471 2Y
4 0.031018 3Y
5 0.033995 4Y
6 0.036754 5Y
7 0.039064 6Y
8 0.041521 7Y
9 0.043117 8Y
10 0.045201 9Y
11 0.045342 10Y
12 0.044500 11Y
13 0.045794 12Y
14 0.045739 13Y
15 0.046933 14Y
16 0.047866 15Y
17 0.046906 16Y
18 0.047492 17Y
19 0.048352 18Y
20 0.049212 19Y
21 0.049805 20Y

We can write algorithm 9.4 as a function: MinimizationFunction and together with constraints
for 
�i� we can define an optimization algorithm.

Target function: MinimizationFunction → MIN

Constraints � −�

x
≤ 
 �i� − 
 �i − 1� <

�

x
� where x are positive numbers

We now present the results of our computations for the market data from 21/01/2005. We
set our restrictions for 
�i� as

−�

2
≤ 
 �i� − 
 �i − 1� <

�

2
�

Presented below are the results for vectors � �i����i�� ��i� after running the optimization
algorithm.

Table 9.9 presents the theoretical and market volatilities of caps.
We show in detail how the LFM caplet volatilities were computed for periods 1Y ÷ 2Y�

2Y ÷ 3Y� 3Y ÷ 4Y .
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Table 9.8 Results of optimization for vectors � �i����i�� ��i�

i ��i� � �i� 
�i�

3 1�0617 0�2180 1�4224
4 1�3808 0�1872 2�1771
5 1�6176 0�1534 1�1391
6 1�2381 0�1491 1�4950
7 0�9211 0�1513 1�5943
8 1�1882 0�1467 1�5815
9 0�4533 0�1500 1�5823
10 0�9412 0�1461 1�5712
11 1�1465 0�1418 1�5740
12 0�7785 0�1520 1�5607
13 0�5637 0�1528 1�5708
14 0�9090 0�1408 1�5708
15 0�9048 0�1357 1�5708
16 0�9387 0�1299 1�5708
17 0�9810 0�1342 1�5708
18 1�0081 0�1291 1�5708
19 1�0125 0�1237 1�5708
20 1�0162 0�1182 1�5708
21 1�0094 0�1128 1�5708

Table 9.9 Theoretical and market volatilities of caps

Tenor Market caplet volatility LFM caplet volatility

1Y–2Y 23.1450 % 23.1450 %
2Y–3Y 23.0510 % 23.0510 %
3Y–4Y 21.0307 % 21.0499 %
4Y–5Y 19.9772 % 19.9754 %
5Y–6Y 19.1815 % 19.1780 %
6Y–7Y 18.4074 % 18.4028 %
7Y–8Y 17.6072 % 17.6130 %
8Y–9Y 16.7570 % 16.7657 %
9Y–10Y 16.2764 % 16.2723 %
10Y–11Y 16.9667 % 16.9634 %
11Y–12Y 16.4732 % 16.4700 %
12Y–13Y 14.9914 % 14.9931 %
13Y–14Y 14.2830 % 14.2865 %
14Y–15Y 13.5744 % 13.5770 %
15Y–16Y 13.9757 % 13.9759 %
16Y–17Y 13.4165 % 13.4149 %
17Y–18Y 12.8406 % 12.8372 %
18Y–19Y 12.2463 % 12.2491 %
19Y–20Y 11.6680 % 11.6726 %

Example 9.2 LFM caplet volatilities

For the period 1Y ÷ 2Y we have:

�
cpl
LFM �0� T1Y � T2Y � =

√
� �3�2 � �3�2

�0�1Y

=
√

0�21802 · 1�06172

1
= 23�1450 %
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For the period 2Y ÷ 3Y we have:

�
cpl
LFM �0� T2Y � T3Y �=

√√√√� �4�2
[
� �3�2+� �4�2

]
�0�2Y

=
√

0�18722 · �1�06172+1�38082�

2
=23�0520 %

For the period 3Y ÷ 4Y we have:

�
cpl
LFM �0� T3Y � T4Y � =

√√√√� �5�2
[
� �3�2 + � �4�2 + � �5�2

]
�0�3Y

=
√

0�15342 · �1�06172 + 1�38082 + 1�61762�

3
= 21�0499 %

End of example 9.2

Table 9.10 presents the results for matrix of weights W

Table 9.10 Matrix of Weights

W(1,i,j) I = 1 2 3 4 5 6 7 8 9 10

j=2 0�507635 0�492365
3 0�343916 0�333571 0�322513
4 0�262115 0�254231 0�245803 0�237850
5 0�213516 0�207094 0�200228 0�193750 0�185412
6 0�181174 0�175725 0�169899 0�164402 0�157328 0�151472
7 0�158206 0�153447 0�148360 0�143560 0�137382 0�132269 0�126777
8 0�141090 0�136846 0�132309 0�128029 0�122519 0�117959 0�113061 0�108187
9 0�127793 0�123949 0�119840 0�115962 0�110972 0�106842 0�102405 0�097990 0�094247
10 0�117294 0�113766 0�109994 0�106436 0�101856 0�098064 0�093993 0�089940 0�086505 0�082152

W(2,i,j) I = 1 2 3 4 5 6 7 8 9 10

j=2 0�508428 0�491572
3 0�344540 0�333118 0�322341
4 0�263316 0�254586 0�246350 0�235748
5 0�214606 0�207491 0�200778 0�192138 0�184987
6 0�182285 0�176242 0�170540 0�163202 0�157127 0�150603
7 0�159325 0�154043 0�149060 0�142645 0�137336 0�131633 0�125958
8 0�142109 0�137398 0�132953 0�127231 0�122496 0�117410 0�112347 0�108056
9 0�128883 0�124611 0�120579 0�115390 0�111095 0�106482 0�101891 0�097999 0�093069
10 0�118353 0�114429 0�110727 0�105962 0�102018 0�097782 0�093566 0�089992 0�085464 0�081706
	 	 	

W(7,i,j) I = 1 2 3 4 5 6 7 8 9 10

j=2 0�511016 0�488984
3 0�347558 0�332573 0�319869
4 0�266578 0�255085 0�245340 0�232997
5 0�218015 0�208615 0�200646 0�190552 0�182172
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Table 9.10 Continued

W(7,i,j) I = 1 2 3 4 5 6 7 8 9 10

6 0�185584 0�177583 0�170800 0�162206 0�155073 0�148754
7 0�162500 0�155494 0�149554 0�142030 0�135784 0�130250 0�124388
8 0�145261 0�138998 0�133688 0�126962 0�121379 0�116432 0�111192 0�106087
9 0�131828 0�126145 0�121326 0�115222 0�110155 0�105666 0�100910 0�096277 0�092471
10 0�121238 0�116011 0�111579 0�105966 0�101306 0�097177 0�092804 0�088543 0�085042 0�080334

The matrix of annualized instantaneous volatilities is presented by Table 9.11:

Table 9.11 Matrix of annualized instantaneous volatility

1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 11Y 12Y 13Y 14Y 15Y 16Y 17Y 18Y 19Y

F(t,1Y,2Y) 0�23
F(t,2Y,3Y) 0�26 0�20
F(t,3Y,4Y) 0�25 0�21 0�16
F(t,4Y,5Y) 0�18 0�24 0�21 0�16
F(t,5Y,6Y) 0�14 0�19 0�24 0�21 0�16
F(t,6Y,7Y) 0�17 0�14 0�18 0�24 0�20 0�16
F(t,7Y,8Y) 0�07 0�18 0�14 0�19 0�24 0�21 0�16
F(t,8Y,9Y) 0�14 0�07 0�17 0�13 0�18 0�24 0�20 0�16
F(t,9Y,10Y) 0�16 0�13 0�06 0�17 0�13 0�18 0�23 0�20 0�15
F(t,10Y,11Y) 0�12 0�17 0�14 0�07 0�18 0�14 0�19 0�25 0�21 0�16
F(t,11Y,12Y) 0�09 0�12 0�18 0�14 0�07 0�18 0�14 0�19 0�25 0�21 0�16
F(t,12Y,13Y) 0�13 0�08 0�11 0�16 0�13 0�06 0�17 0�13 0�17 0�23 0�19 0�15
F(t,13Y,14Y) 0�12 0�12 0�08 0�11 0�16 0�13 0�06 0�16 0�12 0�17 0�22 0�19 0�14
F(t,14Y,15Y) 0�12 0�12 0�12 0�07 0�10 0�15 0�12 0�06 0�15 0�12 0�16 0�21 0�18 0�14
F(t,15Y,16Y) 0�13 0�13 0�12 0�12 0�08 0�10 0�15 0�13 0�06 0�16 0�12 0�17 0�22 0�19 0�14
F(t,16Y,17Y) 0�13 0�13 0�12 0�12 0�12 0�07 0�10 0�15 0�12 0�06 0�15 0�12 0�16 0�21 0�18 0�14
F(t,17Y,18Y) 0�13 0�12 0�12 0�12 0�11 0�11 0�07 0�10 0�14 0�12 0�06 0�15 0�11 0�15 0�20 0�17 0�13
F(t,18Y,19Y) 0�12 0�12 0�12 0�12 0�11 0�11 0�11 0�07 0�09 0�14 0�11 0�05 0�14 0�11 0�15 0�19 0�16 0�13
F(t,19Y,20Y) 0�11 0�11 0�11 0�11 0�11 0�11 0�10 0�10 0�06 0�09 0�13 0�11 0�05 0�13 0�10 0�14 0�18 0�16 0�12

Let us show an example of the computation for the first six elements of the matrix represented
by Table 9.9.

Example 9.3 Annualized instantaneous volatility

(a) Piecewise constant instantaneous volatility �inst�0� T1Y�2Y � T0�1Y � of the forward rate
F�t�T1Y � T2Y � at an interval 0 ÷ T1Y will be computed as:

F (t,T1Y,T2Y)

T1Y T2Y T3Y T4Y0

σ
 

inst (t,T1Y, 2Y ,T0,1Y)

Figure 9.2 Instantaneous volatility of forward rate F�t�T1Y � T2Y � at interval 0 ÷ T1Y .

�_inst �1� 1� = �inst
(
0� T1Y�2Y � T0�1Y

)= � �3� � �3� = 0�2180 · 1�0617 = 0�2314
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(b) Piecewise constant instantaneous volatility �inst�0� T2Y�3Y � T0�1Y � of the forward rate
F�t�T2Y � T3Y � at an interval 0 ÷ T1Y will be computed as:

F (t,T2Y,T3Y)

T1Y T2Y T3Y T4Y0

σ 
inst (t,T2Y,3Y ,T0,1Y)

Figure 9.3 Instantaneous volatility of forward rate F�t�T2Y � T3Y � at interval 0 ÷ T1Y .

�_inst �2� 1� = �inst
(
0� T2Y�3Y � T0�1Y

)= � �4� � �4� = 0�1872 · 1�3808 = 0�2584

(c) Piecewise constant instantaneous volatility � inst�0� T2Y�3Y � T1Y�2Y � of the forward rate
F�t�T2Y � T3Y � at an interval T1Y ÷ T2Y will be computed as:

F (t,T2Y,T3Y 
)

T1Y T2Y T3Y T4Y0

σ 
inst

 
(t,T2Y,3Y,T1Y,2Y 

)

Figure 9.4 Instantaneous volatility of forward rate F�t�T2Y � T3Y � at interval T1Y ÷ T2Y .

�_inst �2� 2� = �inst
(
0� T2Y�3Y � T1Y�2Y

)= � �4� � �3� = 0�1872 · 1�0617 = 0�1987

(d) Piecewise constant instantaneous volatility �inst�0� T3Y�4Y � T0�1Y � of the forward rate
F�t�T3Y � T4Y � at an interval 0 ÷ T1Y will be computed as:

T1Y T2Y T3Y T4Y0

σ 
inst

 
(t,T3Y,4Y,T0,1Y 

)

F
 
(t,T3Y,T4Y 

)

Figure 9.5 Instantaneous volatility of forward rate F�t�T3Y � T4Y � at interval 0 ÷ T1Y

�_inst �3� 1� = �inst
(
0� T3Y�4Y � T0�1Y

)= � �5� � �5� = 0�1534 · 1�6176 = 0�2481
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(e) Piecewise constant instantaneous volatility �inst�0� T3Y�4Y � T1Y�2Y � of the forward rate
F�t�T3Y � T4Y � at an interval T1Y ÷ T2Y will be computed as:

T1Y T2Y T3Y T4Y0

σ 
inst(t,T3Y,4Y,T1Y,2Y)

F (t,T3Y ,T4Y )

Figure 9.6 Instantaneous volatility of forward rate F�t�T3Y � T4Y � at interval T1Y ÷ T2Y .

�_inst �3� 2� = �inst
(
0� T3Y�4Y � T1Y�2Y

)= � �5� � �4� = 0�1534 · 1�3808 = 0�2118

(f) Piecewise constant instantaneous volatility �inst�0� T3Y�4Y � T2Y�3Y � of the forward rate
F�t�T3Y � T4Y � at an interval T2Y ÷ T3Y will be computed as:

T1Y T2Y T3Y T4Y0

σ 

inst(t,T3Y,4Y,T2Y,3Y )

F (t,T3Y,T4Y )

Figure 9.7 Instantaneous volatility of forward rate F�t�T3Y � T4Y � at interval T2Y ÷ T3Y .

�_inst �3� 3� = �inst
(
0� T3Y�4Y � T2Y�3Y

)= � �5� � �3� = 0�1534 · 1�0617 = 0�1628

The other volatilities would be computed in similar manner.

End of example 9.3

Let us move to present the results of the instantaneous correlations. The matrix of instanta-
neous correlation is presented by Table 9.12 below.

We present an example of the computation for the first three elements of the matrix
presented by Table 9.10.

Example 9.4 Instantaneous correlations

(a) Instantaneous correlation �inst�0� T1Y�2Y � T2Y�3Y � between the forward rates F�t�T1Y � T2Y �
and F�t�T2Y � T3Y � will be computed as:

�inst
(
t� T1Y�2Y � T2Y�3Y

)= cos �
 �3� − 
 �4�� = cos �1�4224 − 2�1771� = 0�728
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Table 9.12 Matrix of instantaneous correlation

1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 11Y 12Y 13Y 14Y 15Y 16Y 17Y 18Y 19Y
2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 11Y 12Y 13Y 14Y 15Y 16Y 17Y 18Y 19Y 20Y

F(t,1Y,2Y) 1.000
F(t,2Y,3Y) 0.728 1.000
F(t,3Y,4Y) 0.960 0.508 1.000
F(t,4Y,5Y) 0.997 0.776 0.937 1.000
F(t,5Y,6Y) 0.985 0.835 0.898 0.995 1.000
F(t,6Y,7Y) 0.987 0.828 0.904 0.996 1.000 1.000
F(t,7Y,8Y) 0.987 0.828 0.903 0.996 1.000 1.000 1.000
F(t,8Y,9Y) 0.989 0.822 0.908 0.997 1.000 1.000 1.000 1.000
F(t,9Y,10Y) 0.989 0.824 0.907 0.997 1.000 1.000 1.000 1.000 1.000
F(t,10Y,11Y) 0.990 0.816 0.912 0.998 0.999 1.000 1.000 1.000 1.000 1.000
F(t,11Y,12Y) 0.989 0.822 0.908 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F(t,12Y,13Y) 0.989 0.822 0.908 0.997 1.000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
F(t,13Y,14Y) 0.989 0.822 0.908 0.997 1.000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
F(t,14Y,15Y) 0.989 0.822 0.908 0.997 1.000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
F(t,15Y,16Y) 0.989 0.822 0.908 0.997 1.000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
F(t,16Y,17Y) 0.989 0.822 0.908 0.997 1.000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
F(t,17Y,18Y) 0.989 0.822 0.908 0.997 1.000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
F(t,18Y,19Y) 0.989 0.822 0.908 0.997 1.000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
F(t,19Y,20Y) 0.989 0.822 0.908 0.997 1.000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

T1Y T2Y T3Y T4Y0

ρinst
 
(t,T1Y,2Y,T2Y,3Y 

 )

F
 
(t,T1Y,T2Y 

) F
 
(t,T2Y,T3Y 

 )

Figure 9.8 Instantaneous correlation between forward rates F�t�T1Y � T2Y � and F�t�T2Y � T3Y �.

(b) Instantaneous correlation �inst�0� T1Y�2Y � T3Y�4Y � between the forward rates F�t�T1Y � T2Y �
and F�t�T3Y � T4Y � will be computed as:

T1Y T2Y T3Y T4Y0

ρinst
 (t,T1Y,2Y,T2Y, 3Y )

F (t,T1Y,T2Y ) F (t,T3Y,T4Y )

Figure 9.9 Instantaneous correlation between forward rates F�t�T1Y � T2Y � and F�t�T3Y � T4Y �.

�inst
(
t� T1Y�2Y � T3Y�4Y

)= cos �
 �3� − 
 �5�� = cos �1�4224 − 1�1391� = 0�960

(c) Instantaneous correlation �inst�0� T2Y�3Y � T3Y�4Y � between the forward rates F�t�T2Y � T3Y �
and F�t�T3Y � T4Y � will be computed as:

�inst
(
t� T2Y�3Y � T3Y�4Y

)= cos �
 �4� − 
 �5�� = cos �2�1771 − 1�1391� = 0�508
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T1Y T2Y T3Y T4Y0

ρinst
 (t,T2Y,3Y,T3Y,4Y )

F  (t,T2Y,T3Y ) F  (t,T3Y,T4Y )

Figure 9.10 Instantaneous correlation between forward rates F�t�T2Y � T3Y � and F�t�T3Y � T4Y �.

End of example 9.4

Table 9.13 presents the theoretical and market volatilities of swaptions together with differ-
ences between them after calibration has been done. The results can be regarded as a test of
quality of the calibration.

Table 9.13 Theoretical and market volatilities of swaptions

Market 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 23�0000 % 22�1000 % 20�9000 % 19�6000 % 18�6000 % 17�6000 % 16�9000 % 16�3000 % 15�9000 %
2Y 21�5000 % 20�5000 % 19�4000 % 18�3000 % 17�4000 % 16�7000 % 16�2000 % 15�8000 % 15�4000 %
3Y 20�1000 % 19�0000 % 18�0000 % 17�0000 % 16�3000 % 15�8000 % 15�5000 % 15�2000 % 15�0000 %
4Y 18�7000 % 17�7000 % 16�8000 % 16�0000 % 15�5000 % 15�1000 % 14�8000 % 14�7000 % 14�5000 %
5Y 17�4000 % 16�5000 % 15�8000 % 15�1000 % 14�8000 % 14�5000 % 14�3000 % 14�2000 % 14�0000 %
7Y 16�0800 % 15�3000 % 14�6800 % 14�1400 % 13�9200 % 13�7000 % 13�5800 % 13�4800 % 13�3600 %
10Y 14�1000 % 13�5000 % 13�0000 % 12�7000 % 12�6000 % 12�5000 % 12�5000 % 12�4000 % 12�4000 %

Theoretical 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 22�8456 % 22�2082 % 21�1750 % 19�6068 % 19�2116 % 17�3138 % 16�8400 % 16�7739 % 16�3004 %
2Y 21�4321 % 20�2366 % 19�1965 % 18�4057 % 17�3602 % 16�2795 % 16�0939 % 15�9419 % 15�4138 %
3Y 19�5268 % 18�3651 % 17�8254 % 16�8311 % 16�1050 % 15�5008 % 15�3907 % 15�1239 % 14�7108 %
4Y 18�4133 % 17�4195 % 16�6899 % 15�8987 % 15�4312 % 15�0399 % 14�8372 % 14�5533 % 14�2019 %
5Y 17�6008 % 16�4634 % 15�8282 % 15�2690 % 15�0064 % 14�5916 % 14�3339 % 14�0665 % 13�7521 %
7Y 15�8337 % 14�9355 % 14�8172 % 14�4852 % 14�0973 % 13�6810 % 13�4305 % 13�2774 % 13�0863 %
10Y 15�3569 % 14�2214 % 13�7411 % 13�2651 % 13�0214 % 12�7576 % 12�5968 % 12�4248 % 12�2293 %

Difference 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 0�6713 % −0�4897 % −1�3158 % −0�0349 % −3�2882 % 1�6260 % 0�3549 % −2�9076 % −2�5183 %
2Y 0�3158 % 1�2848 % 1�0491 % −0�5774 % 0�2289 % 2�5177 % 0�6551 % −0�8981 % −0�0894 %
3Y 2�8517 % 3�3415 % 0�9702 % 0�9935 % 1�1962 % 1�8937 % 0�7052 % 0�5007 % 1�9279 %
4Y 1�5331 % 1�5849 % 0�6556 % 0�6330 % 0�4437 % 0�3977 % −0�2516 % 0�9976 % 2�0558 %
5Y −1�1543 % 0�2218 % −0�1786 % −1�1190 % −1�3944 % −0�6319 % −0�2368 % 0�9403 % 1�7708 %
7Y 1�5315 % 2�3825 % −0�9349 % −2�4417 % −1�2738 % 0�1385 % 1�1012 % 1�5027 % 2�0486 %
10Y −8�9138 % −5�3435 % −5�7007 % −4�4495 % −3�3444 % −2�0610 % −0�7740 % −0�1998 % 1�3769 %

We present some examples of the theoretical swaption results. We will concentrate on four
swaptions: 1Y × 2Y� 1Y × 3Y� 2Y × 2Y� 2Y × 3Y .

Example 9.5 LFM swaption volatilities

(a) Swaption 1Y × 2Y

Figure 9.11 presents graphically all components we need to compute the LFM swaption
volatility.
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T1Y T2Y T3Y T4Y0

F
 
(t,T1Y,T2Y 

)

F(t,T2Y,T3Y)

T5Y

Swaption maturity T1Y

Necessary components:

σ
 

inst
 
(t,T1Y,2Y,T0,1Y 

)

σ
 

inst
 
(t,T2Y,3Y,T0,1Y 

)

Underlying swap length  T1Y  ÷ T3Y

ρinst
 
(t,T1Y,2Y,T2Y,3Y 

)

Figure 9.11 LFM swaption volatility for T1Y ÷ T3Y (swaption 1Y × 2Y).

Thus the swaption volatility will be computed as:

�
swpt
LFM �S1Y×2Y �0�� =

{⌊
W �1� 2� 1�2 F �0� T1Y � T2Y �2 �_inst �1� 1�2

+ W �1� 2� 2�2 F �0� T2Y � T3Y �2 �_inst �2� 1�2

+ 2W �1� 2� 1� W �1� 2� 2�F �0� T1Y � T2Y �F �0� T2Y � T3Y �

cos �
 �3� − 
 �4���_inst �1� 1��_inst �2� 1��/
[
�0�1Y S1Y×2Y �0�

]} 1
2

Using real market data we obtain:

�
swpt
LFM �S1Y×2Y �0�� ={⌊0�5076352 · 0�0274712 · 0�23142 + 0�4923652 · 0�0310182 · 0�25842

+ 2 · 0�507635 · 0�492365 · 0�027471 · 0�031018

· cos �1�4224 − 2�1771� ·0�2314 · 0�2584� /�1 · 0�0292�
} 1

2 = 22�8456 %

(b) Swaption 1Y × 3Y

Figure 9.12 presents graphically all components we need to compute the LFM swaption
volatility.

The swaption volatility will be computed as:

�
swpt
LFM �S1Y×3Y �0�� =

{⌊
W �1� 3� 1�2 F �0� T1Y � T2Y �2 �_inst �1� 1�2

+ W �1� 3� 2�2 F �0� T2Y � T3Y �2 �_inst �2� 1�2

+ W �1� 3� 3�2 F �0� T3Y � T4Y �2 �_inst �3� 1�2

+ 2W �1� 3� 1� W �1� 3� 2�F �0� T1Y � T2Y �F �0� T2Y � T3Y �

× cos �
 �3� − 
 �4���_inst �1� 1��_inst �2� 1�
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+ 2W �1� 3� 1� W �1� 3� 3�F �0� T1Y � T2Y �F �0� T3Y � T4Y �

× cos �
 �3� − 
 �5���_inst �1� 1��_inst �3� 1�

+ 2W �1� 3� 2� W �1� 3� 3�F �0� T2Y � T3Y �F �0� T3Y � T4Y �

× cos �
 �4� − 
 �5���_inst �2� 1��_inst �3� 1�� /
[
�0�1Y S1Y×3Y �0�

] } 1
2

T1Y T2Y T3Y T4Y0

ρinst
 (t,T1Y, 2Y,T2Y,3Y )

F (t,T1Y,T2Y )

F (t,T2Y,T3Y )

T5Y

Swaption maturity T1Y

Underlying swap length T1Y  ÷ T4Y

Necessary components:

σ 

inst
 (t,T1Y,2Y,T0,1Y )

σ 

inst
 (t,T2Y,3Y,T0,1Y )

F (t,T3Y,T4Y )

ρinst
 (t,T2Y,3Y, T3Y,4Y )

ρinst
 (t,T1Y,2Y, T3Y,4Y )

Figure 9.12 LFM swaption volatility for T1Y ÷ T4Y (swaption 1Y × 3Y ).

Using the real market data we obtain:

�
swpt
LFM �S1Y×3Y �0�� =

{⌊
0�3439162 · 0�0274712 · 0�23142 + 0�3335712 · 0�0310182

· 0�25842 + 0�3225132 · 0�0339952 · 0�24812 + 2 · 0�343916

· 0�333571 · 0�027471 · 0�031018 · cos �1�4224 − 2�1771� · 0�2314

· 0�2584 + 2 · 0�343916 · 0�322513 · 0�027471 · 0�033995

· cos �1�4224 − 1�1391� · 0�2314 · 0�2481 + 2 · 0�333571 · 0�322513

· 0�031018 · 0�033995 · cos �2�1771 − 1�1391� ·0�2584 · 0�2481�/

�1 · 0�0308�
} 1

2 = 22�2082 %
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(c) Swaption 2Y × 2Y

Figure 9.13 presents graphically all components we need to compute the third LFM swaption
volatility.

T1Y T2Y T3Y T4Y0

F (t,T2Y,T3Y )

T5Y

Swaption maturity T2Y

Underlying swap length T2Y  ÷  T4Y

Necessary components:

F (t,T3Y,T4Y )

σ 
inst(t,T2Y,3Y,T0,1Y )

σ 
inst

 (t,T2Y,3Y,T1Y,2Y )

σinst
 (t,T3Y,4Y,T1Y,2Y )

σ 
inst

 (t,T3Y,4Y,T0,1Y )

ρ 
inst

 (t,T2Y,3Y,T3Y,4Y )

Figure 9.13 LFM swaption volatility for T2Y ÷ T4Y (swaption 2Y × 2Y ).

Thus we can compute the swaption volatility by:

�
swpt
LFM �S2Y×2Y �0�� =

{⌊
W �1� 2� 1�2 F �0� T1Y � T2Y �2

⌊
�_inst �2� 1�2 + �_inst �2� 2�2

⌋
+ W �2� 2� 2�2 F �0� T3Y � T4Y �2

[
�_inst �3� 1�2 + �_inst �3� 2�2

]
+ 2W �2� 2� 1� W �2� 2� 2�F �0� T2Y � T3Y �F �0� T3Y � T4Y �

× cos �
 �3� − 
 �4�� · ��_inst �2� 1��_inst �3� 1�

+�_inst �2� 2��_inst �3� 2��� /
[
�0�2Y S2Y×2Y �0�

]} 1
2

Finally, using the real market data we obtain:

�
swpt
LFM �S2Y×2Y �0�� =

{[
0�5084282 · 0�0310182 · [0�25842 + 0�19872

] + 0�4915722

· 0�0339952 · [0�24812 + 0�21182
]+ 2 · 0�508428 · 0�491572

· 0�031018 · 0�033995 · cos �1�4224 − 2�1771�

· �0�2584 · 0�2481 + 0�1987 · 0�2118��
/

�2 · 0�0325�
} 1

2 = 21�4321 %
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(d) Swaption 2Y × 3Y

Figure 9.14 presents graphically all components we need to compute our final LFM swaption
volatility example.

Swaption maturity T2Y

Necessary components:

Underlying swap length T2Y  ÷ T5Y

T1Y T2Y T3Y T4Y0 T5Y
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F (t,T3Y,T4Y 
)
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inst
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inst
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inst
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inst
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inst
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inst
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Figure 9.14 LFM swaption volatility for T2Y ÷ T5Y (swaption 2Y × 3Y ).

The final swaption volatility is given by:

�
swpt
LFM �S2Y×3Y �0�� =

{⌊
W �2� 3� 1�2 F �0� T2Y � T3Y �2 ��_inst �2� 1�2 + �_inst �2� 2�2�

+ W �2� 3� 2�2 F �0� T3Y � T4Y �2
[
�_inst �3� 1�2 + �_inst �3� 2�2

]
+ W �2� 3� 3�2 F �0� T4Y � T5Y �2

[
�_inst �4� 1�2 + �_inst �4� 2�2

]
+ 2W �2� 3� 1� W �2� 3� 2�F �0� T2Y � T3Y �F �0� T3Y � T4Y � cos �
 �3� − 
 �4��

· ��_inst �2� 1��_inst �3� 1� + �_inst �2� 2��_inst �3� 2��
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+ 2W �2� 3� 1� W �2� 3� 3�F �0� T2Y � T3Y �F �0� T4Y � T5Y � cos �
 �3� − 
 �5��

· ��_inst �2� 1��_inst �4� 1� + �_inst �2� 2��_inst �4� 2��

+ 2W �2� 3� 2� W �2� 3� 3�F �0� T3Y � T4Y �F �0� T4Y � T5Y � cos �
 �4� − 
 �5��

· ��_inst �3� 1��_inst �4� 1�

+ �_inst �3� 2��_inst �4� 2��� /
[
�0�2Y S2Y×3Y �0�

]} 1
2

Thus we obtain:

�
swpt
LFM �S2Y×3Y �0�� ={[0�3445402 · 0�0310182 · [0�25842 + 0�19872

]
+ 0�3331182 · 0�0339952 · [0�24812 + 0�21182

]
+ 0�3223412 · 0�0367542 · [0�18462 + 0�24112

]
+ 2 · 0�344540 · 0�333118 · 0�031018 · 0�033995 · cos �1�4224 − 2�1771�

· �0�2584 · 0�2481 + 0�1987 · 0�2118�

+ 2 · 0�344540 · 0�322341 · 0�031018 · 0�036754 · cos �1�4224 − 1�1391�

· �0�2584 · 0�1846 + 0�1987 · 0�2411�

+ 2 · 0�333118 · 0�322341 · 0�033995 · 0�036754 · cos �2�1771 − 1�1391�

· �0�2481 · 1�1846 + 0�2118 · 0�2411��
/

�2 · 0�0339�
} 1

2

End of example 9.5

The next part of the chapter will describe the different parametric methods for calibration to
caps and swaptions.

9.3 PARAMETRIC METHOD OF CALIBRATION

This section is in two parts. The first describes the parametric calibration to caps. The second
will use the results and apply them for the parametric calibration to swaptions.

9.3.1 Parametric calibration to cap prices

The purpose of this chapter is to describe a detailed algorithm allowing a calibration of the
LIBOR Market Model parametric calibration to cap prices.

Step 1

Derivation of caplet prices from cap prices.

Such a derivation was done in previous sections. Thus it is not necessary to present algorithm
once again. The table below presents the quarterly caplet volatilities �cpl �T0� Ti−3M�Ti� for
different maturities. All maturities are expressed using day count fractions using Act/360
base convention.
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Table 9.14 Caplet implied volatilities

Ti

�Ti − T0�

360
�caplet �T0� Ti−3M�Ti� Ti

�Ti − T0�

360
�caplet �T0� Ti−3M�Ti�

6M 0.5028 0.1641 5Y 6M 5�5778 0.1902
9M 0.7583 0.1641 5Y 9M 5�8306 0.1879
1Y 1.0139 0.1641 6Y 6�0861 0.1859
1Y 3M 1.2639 0.2015 6Y 3M 6�3361 0.1844
1Y 6M 1.5167 0.2189 6Y 6M 6�5889 0.1824
1Y 9M 1.7722 0.2365 6Y 9M 6�8444 0.1804
2Y 2.0278 0.2550 7Y 7�1000 0.1781
2Y 3M 2.2778 0.2212 7Y 3M 7�3528 0.1766
2Y 6M 2.5306 0.2255 7Y 6M 7�6056 0.1743
2Y 9M 2.7861 0.2298 7Y 9M 7�8611 0.1724
3Y 3.0417 0.2341 8Y 8�1167 0.1700
3Y 3M 3.2944 0.2097 8Y 3M 8�3667 0.1677
3Y 6M 3.5472 0.2083 8Y 6M 8�6194 0.1657
3Y 9M 3.8083 0.2077 8Y 9M 8�8750 0.1637
4Y 4.0611 0.2051 9Y 9�1361 0.1622
4Y 3M 4.3139 0.2007 9Y 3M 9�3806 0.1623
4Y 6M 4.5667 0.1982 9Y 6M 9�6333 0.1612
4Y 9M 4.8194 0.1959 9Y 9M 9�8944 0.1599
5Y 5.0722 0.1938 10Y 10�1472 0.1570
5Y 3M 5.3250 0.1925

Step 2

Having the caplet volatilities �caplet �T0� Ti−3M�Ti� we need to multiply the time to maturities
(expresses as day count fractions) by the squared implied caplet volatility. Our results are
presented in Table 9.15.

Step 3

We need to find parameters v1� v2� v3� v4 using optimization algorithms. First let us define
the set of functions:

f �Ti − t� =
∣∣∣∣v1 +

[
v2 + v3

Ti − t

360

]
e−v4

Ti−t
360

∣∣∣∣ (9.12)

for Ti = T3M�T9M�T1Y � 	 	 	 � T10Y respectively.

Having that we will compute integrals of f �Ti − t�2 as:

I �Ti − t�2 =
Ti∫

0

∣∣∣∣v1 +
[
v2 + v3

Ti − t

360

]
e−v4

Ti−t
360

∣∣∣∣
2

dt −
Ti−1∫
0

∣∣∣∣v1 +
[
v2 + v3

Ti − t

360

]
e−v4

Ti−t
360

∣∣∣∣
2

dt

(9.13)
for Ti = T6M�T9M�T1Y � 	 	 	 � T10Y respectively.

Next let us define:

fFO �Ti� =∑
Ti

I �Ti − t�2 (9.14)
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Table 9.15 Squared caplet implied volatilities multiplied by time to maturity

Ti

�Ti − T0�

360
�caplet �T0� Ti−3M�Ti�

2 Ti

Ti − T0

360
�caplet �T0� Ti−3M�Ti�

2

6M 0.0135392 5Y 6M 0.2017819
9M 0.0204210 5Y 9M 0.2058560
1Y 0.0273028 6Y 0.2103288
1Y 3M 0.0513167 6Y 3M 0.2154491
1Y 6M 0.0726744 6Y 6M 0.2192108
1Y 9M 0.0991244 6Y 9M 0.2227467
2Y 0.1318563 7Y 0.2252092
2Y 3M 0.1114504 7Y 3M 0.2293152
2Y 6M 0.1286794 7Y 6M 0.2310605
2Y 9M 0.1471291 7Y 9M 0.2336461
3Y 0.1666919 8Y 0.2345717
3Y 3M 0.1448702 8Y 3M 0.2352982
3Y 6M 0.1539100 8Y 6M 0.2366597
3Y 9M 0.1642888 8Y 9M 0.2378295
4Y 0.1708347 9Y 0.2403605
4Y 3M 0.1737656 9Y 3M 0.2470959
4Y 6M 0.1793935 9Y 6M 0.2503264
4Y 9M 0.1849549 9Y 9M 0.2529813
5Y 0.1905048 10Y 0.2501189
5Y 3M 0.1973245

Having that our minimization function will be:

fmin =
√√√√∑

Ti

([
Ti − T0

360
�caplet �T0� Ti−3M�Ti�

2

]
− �fFO �Ti��

)2

→ min (9.15)

Running the optimization starting from initial values: v1� v2� v3� v4 =0�1 we obtain the values:
v1 =0�112346� v2 =−0�441811� v3 =0�971559� v4 =1�223058� fmin =0�0436646. Table 9.16
presents the results of our computations.

Step 4

Let us define the function

� �Ti − T0� = g1 + g2 cos
[
g3

Ti − T0

360

]
(9.16)

Next let us define correction factor

corr �Ti − T0� = �1 + � �Ti − T0�� I �Ti − t�2 (9.17)

And

fSO �Ti� =∑
Ti

�1 + � �Ti − T0�� I �Ti − t�2 =
∑
Ti

{
�1 + g1 + g2 cos �g3 �Ti − T0��� I �Ti − t�2

} (9.18)
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Table 9.16 Results for step 3 of parametric calibration

Ti f �Ti − T0�
Ti∫
0

f �Ti − t�2 dt fFO �Ti� Ti f �Ti − T0�
Ti∫
0

f �Ti − t�2 dt fFO �Ti�

6M 0.137578 0.010484 0.010484 5Y 6M 0.117769 0.003552 0.199307
9M 0.229015 0.009274 0.019758 5Y 9M 0.116523 0.003467 0.202775
1Y 0.269545 0.016331 0.036088 6Y 0.115547 0.003440 0.206214
1Y 3M 0.279902 0.019118 0.055207 6Y 3M 0.114809 0.003316 0.209530
1Y 6M 0.273766 0.019513 0.074720 6Y 6M 0.114231 0.003314 0.212844
1Y 9M 0.258856 0.018194 0.092914 6Y 9M 0.113783 0.003321 0.216165
2Y 0.240319 0.015946 0.108860 7Y 0.113439 0.003298 0.219463
2Y 3M 0.221586 0.013338 0.122198 7Y 3M 0.113179 0.003245 0.222708
2Y 6M 0.203654 0.011421 0.133619 7Y 6M 0.112980 0.003232 0.225940
2Y 9M 0.187368 0.009757 0.143376 7Y 9M 0.112826 0.003257 0.229198
3Y 0.173246 0.008296 0.151671 8Y 0.112709 0.003250 0.232448
3Y 3M 0.161419 0.007066 0.158737 8Y 3M 0.112622 0.003173 0.235621
3Y 6M 0.151575 0.006180 0.164918 8Y 6M 0.112555 0.003204 0.238825
3Y 9M 0.143257 0.005665 0.170583 8Y 9M 0.112504 0.003236 0.242061
4Y 0.136747 0.004947 0.175530 9Y 0.112464 0.003304 0.245365
4Y 3M 0.131513 0.004542 0.180072 9Y 3M 0.112436 0.003091 0.248456
4Y 6M 0.127338 0.004229 0.184301 9Y 6M 0.112414 0.003195 0.251651
4Y 9M 0.124027 0.003989 0.188290 9Y 9M 0.112397 0.003299 0.254950
5Y 0.121417 0.003804 0.192094 10Y 0.112384 0.003193 0.258143
5Y 3M 0.119369 0.003661 0.195755

Having that our minimization function will then be:

∼
fmin =√√√√∑

Ti

([
Ti − T0

360
�caplet �T0� Ti−3M�Ti�

2
]

−
[∑

Ti

�1 + g1 + g2 cos �g3 �Ti − T0��� I �Ti − t�2

])2

→ min

(9.19)

Running the optimization starting from initial values: g1� g2� g3 = 0�1 we obtain values:
g1 = −7�02054� g2 = 7�027038� g3 = 0�012987� f̃min = 0�043502. Table 9.17 below displays
the results of our computations.

Table 9.17 Results for step 4 of parametric calibration

Ti � �Ti − T0� corr �Ti − T0� fSO �Ti� Ti � �Ti − T0� corr �Ti − T0� fSO �Ti�

6M 0�006343 0�010551 0�010551 5Y 6M −0�011935 0�003509 0�199764
9M 0�006152 0�009331 0�019881 5Y 9M −0�013643 0�003420 0�203184
1Y 0�005884 0�016427 0�036308 6Y −0�015445 0�003387 0�206570
1Y 3M 0�005546 0�019225 0�055533 6Y 3M −0�017284 0�003258 0�209829
1Y 6M 0�005130 0�019613 0�075145 6Y 6M −0�019218 0�003251 0�213079
1Y 9M 0�004632 0�018278 0�093424 6Y 9M −0�021249 0�003250 0�216330
2Y 0�004057 0�016011 0�109435 7Y −0�023358 0�003221 0�219551
2Y 3M 0�003419 0�013384 0�122819 7Y 3M −0�025520 0�003162 0�222713
2Y 6M 0�002699 0�011451 0�134270 7Y 6M −0�027757 0�003142 0�225856
2Y 9M 0�001894 0�009775 0�144045 7Y 9M −0�030095 0�003159 0�229015
3Y 0�001011 0�008304 0�152349 8Y −0�032511 0�003144 0�232159
3Y 3M 0�000062 0�007067 0�159416 8Y 3M −0�034948 0�003062 0�235221
3Y 6M −0�000962 0�006175 0�165590 8Y 6M −0�037487 0�003084 0�238305
3Y 9M −0�002100 0�005653 0�171243 8Y 9M −0�040131 0�003106 0�241412
4Y −0�003278 0�004931 0�176174 9Y −0�042911 0�003162 0�244573
4Y 3M −0�004532 0�004521 0�180695 9Y 3M −0�045587 0�002950 0�247524
4Y 6M −0�005861 0�004205 0�184900 9Y 6M −0�048428 0�003040 0�250564
4Y 9M −0�007267 0�003960 0�188860 9Y 9M −0�051442 0�003129 0�253693
5Y −0�008747 0�003771 0�192631 10Y −0�054435 0�003019 0�256712
5Y 3M −0�010303 0�003624 0�196254
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Step 5

In the calibration to swaptions the delta function will be used. The function will be defined as:

��Ti� =
Ti−T0

360 �caplet �T0� Ti−3M�Ti�
2

fSO �Ti�
− 1 (9.20)

Table 9.18 presents the results of our computations of step 5.

Table 9.18 Results for step 5 of parametric calibration

Ti ��Ti� Ti ��Ti�

6M 0�283266 5Y 6M 0�010102
9M 0�027149 5Y 9M 0�013151
1Y −0�248024 6Y 0�018194
1Y 3M −0�075917 6Y 3M 0�026785
1Y 6M −0�032884 6Y 6M 0�028775
1Y 9M 0�061017 6Y 9M 0�029662
2Y 0�204885 7Y 0�025772
2Y 3M −0�092562 7Y 3M 0�029643
2Y 6M −0�041638 7Y 6M 0�023045
2Y 9M 0�021408 7Y 9M 0�020222
3Y 0�094142 8Y 0�010393
3Y 3M −0�091244 8Y 3M 0�000327
3Y 6M −0�070538 8Y 6M −0�006906
3Y 9M −0�040611 8Y 9M −0�014838
4Y −0�030308 9Y −0�017226
4Y 3M −0�038351 9Y 3M −0�001728
4Y 6M −0�029781 9Y 6M −0�000947
4Y 9M −0�020677 9Y 9M −0�002806
5Y −0�011036 10Y −0�025684
5Y 3M 0�005453

Now we can extend the calibration scheme to swaptions.

9.3.2 Parametric calibration to swaptions

Parametric calibration to swaptions will be done using the previously computed parameters.
Algorithm 9.5 presents our parametric calibration to swaptions.

Algorithm 9.5 Parametric calibration to swaptions

SwaptionImpliedVolatility=0; Counter=0 // Setting initial values

1 = 
2 = 
3 = 
4 = 1
// Setting the initial values of parameters used in parametric swaption calibration
�1 = �2 = �3 = �4 = 1
// Setting the initial values of parameters used in parametric swaption calibration
�i = Algorithmx�x → �i� i = 1� 2� 3� 4
// Taking values computed in caplet calibration
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Step 1 of calibration

For i = 1 to NumberOfCapletPeriods

�0�i� = �Ti − T0�/basis� �Ti = T3M�T6M� 	 	 	 � T10y� // basis = 365
��i� = 
1 + �
2 + 
3�0�i��e

−
4�0�i�

��i� = �1 + ��2 + �2�0�i��e
−�1�0�i�

f�i� = 
v1 + �v2 + v2�0�i��e
−v1�0�i�
// values taken form caplet calibration

��i� = Algorithmx�x → ��i�� i = 1� 2� 	 	 	 , Number of caplet periods
// values taken form caplet calibration
��i� = Algorithmx�x → ��i�� i = 1� 2� 	 	 	 , Number of caplet periods
// values taken form caplet calibration
�3M�i� = �Ti − Ti−3M�/basis
��i� = �3M�i�L�T0� Ti−3M�T3M�2

// where L�T0� Ti−3M�Ti� is a forward LIBOR for period Ti−3M ÷ Ti

Next i

Step 2 of calibration

For i = 1 to NumberOfCaplet Periods
For j = 1 to NumberOfCaplet Periods

��i� j� = cos���i� − ��j�� − sin���i�� sin���j���1 − cos���i� − ��j���
// instantaneous correlations

Next j

Next i

For a_1 = 1 to 6
For b_1 = 1 to 6

i = 1 + 4x�x = 1� 2� 3� 4� 5� 7 ⇒ i = 5� 9� 13� 17� 21� 29
// Index allowing to choose time to maturity for swaptions
j = 4x�x = 1� 2� 3� 4� 5� 7 ⇒ j = 4� 8� 12� 16� 20� 28
// Index allowing to choose length of underlying swap
j = i + j − 1 ⇒ j = 8� 16� 24� 32� 40� 56
If j <=NumberOfCapletPeriods // NumberOfCapletPeriods = 40 in our case

counter = counter +1
� = 0
For i_1 = i to j

� = � + ��i_1�

Next i

�swaption = 0 // Setting initial swaption volatility to zero

For k = i to j

For l = i to j

�_k = ��k�/���_l = ��l�/�
�_kl = 0

For i_1 = 1 to i − 1

f_k = f�k − i_1��1 + ��i_1���1 + ��k��
f_l = f�l − i_1��1 + ��i_1���1 + ��l��
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�_kl = �_kl + f_k · f_l · ��i_1�

Next i_1

�swaption = �swaption + �_k · �_l · ��k� l� · �_kl

Next l

Next k

T_i = �0�i�
�swaption =√�swaption/T_i
err = �swaption − �swaption��
// difference between theoretical and market swaption volatilities
rsme = rsme + err2 // root mean squared error

End If

Next b_1

Next a_1

End of algorithm 9.5

Results of the calibration

Step 1

Preliminary computations

Table 9.19 presents the preliminary computation results for swaption calibration (step 1)

Table 9.19 Results for step 1 of parametric swaption calibration

Ti �0�i� �3M�i� L�T0� Ti−3M�Ti� �3M�i� · L�T0� Ti−3M�Ti�
2

3M 0.2466 0.2528
6M 0.4959 0.2556 0.02194 0.00012173
9M 0.7479 0.2556 0.02294 0.00013453
1Y 1.0000 0.2500 0.02415 0.00014905
1Y 3M 1.2466 0.2528 0.02544 0.00016180
1Y 6M 1.4959 0.2556 0.02659 0.00017873
1Y 9M 1.7479 0.2556 0.02775 0.00019686
2Y 2.0000 0.2500 0.02892 0.00021381
2Y 3M 2.2466 0.2528 0.02920 0.00021318
2Y 6M 2.4959 0.2556 0.03016 0.00022994
2Y 9M 2.7479 0.2556 0.03113 0.00024767
3Y 3.0000 0.2528 0.03211 0.00026342
3Y 3M 3.2493 0.2528 0.03236 0.00026471
3Y 6M 3.4986 0.2611 0.03322 0.00027889
3Y 9M 3.7562 0.2528 0.03335 0.00029046
4Y 4.0055 0.2528 0.03533 0.00031546
4Y 3M 4.2548 0.2528 0.03462 0.00030299
4Y 6M 4.5041 02528 0.03576 0.00032320
4Y 9M 4.7534 0.2528 0.03693 0.00034470
5Y 5.0027 0.2528 0.03771 0.00035940
5Y 3M 5.2521 0.3302 0.03702 0.00034643
5Y 6M 5.5778 0.1753 0.02919 0.00028135
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Table 9.19 Continued

Ti �0�i� �3M�i� L�T0� Ti−3M�Ti� �3M�i� · L�T0� Ti−3M�Ti�
2

5Y 9M 5.7507 0.2556 0.05662 0.00056206
6Y 6.0027 0.2500 0.03955 0.00039983
6Y 3M 6.2493 0.2528 0.03986 0.00039724
6Y 6M 6.4986 0.2556 0.04053 0.00041530
6Y 9M 6.7507 0.2556 0.04121 0.00043405
7Y 7.0027 0.2528 0.04189 0.00044850
7Y 3M 7.2521 0.2528 0.04152 0.00043569
7Y 6M 7.5014 0.2556 0.04212 0.00044839
7Y 9M 7.7534 0.2556 0.04272 0.00046647
8Y 8.0055 0.2500 0.04333 0.00047984
8Y 3M 8.2521 0.2528 0.04378 0.00047927
8Y 6M 8.5014 0.2556 0.04438 0.00049779
8Y 9M 8.7534 0.2611 0.04498 0.00051693
9Y 9.0110 0.2444 0.04461 0.00051951
9Y 3M 9.2521 0.2528 0.04479 0.00049047
9Y 6M 9.5014 0.2611 0.04421 0.00049402
9Y 9M 9.7589 0.2528 0.04373 0.00049923
10Y 10.008 0.2493 0.04564 0.00052654

Step 2 of the algorithm is the running an optimization process where the goal is to minimize
the difference between the theoretical and market prices of swaptions where the optimization
is over the correlation parameters.

Starting from initial values 
1 = 
2 = 
3 = 
4 = 1 and �1 = �2 = �3 = �4 = 1 after the
optimization we obtain the following values:

Table 9.20 Final values of parameters 
��


1 0�1000000 �1 0�0404450

2 0�1354474 �2 −0�0404486

3 −0�0796023 �3 −0�0000264

4 0�2899784 �4 0�0006514

We can now calculate the following parameters of ��i� = 
1 + �
2 + 
3�0�i��e
−
4�0�i� and

��i� = �1 + ��2 + �2�0�i��e
−�1�0�i� which are then presented in Table 9.21.

We can compare the theoretical and market swaption volatilities. Table 9.22 presents these
results.

The instantaneous correlations are almost equal to one. The results seem to be
much worse than when obtained via non-parametric calibration algorithms. There is the
possibility to improve the results by manipulating the functional forms of functions
��i� = 
1 + �
2 + 
3�0�i��e

−
4�0�i� and ��i� = �1 + ��2 + �2�0�i��e
−�1�0�i�. Another way

to improve results may be by the use of more effective optimization algorithms allowing
the minimization of the differences between theoretical and market swaption volatilities
further.
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Table 9.21 Final values of parameters ���

Ti ��i� ��i� Ti ��i� ��i�

3M 0�20782734 −0�000003618 5Y 3M 0�03836996 −0�000003828
6M 0�18311905 −0�000003639 5Y 6M 0�03878027 −0�000003827
9M 0�16110851 −0�000003659 5Y 9M 0�03917682 −0�000003825
1Y 0�14178780 −0�000003678 6Y 0�03994451 −0�000003822
1Y 3M 0�12523052 −0�000003695 6Y 3M 0�04088341 −0�000003818
1Y 6M 0�11060945 −0�000003711 6Y 6M 0�04199164 −0�000003813
1Y 9M 0�09777542 −0�000003727 6Y 9M 0�04324713 −0�000003807
2Y 0�08669785 −0�000003741 7Y 0�04461381 −0�000003800
2Y 3M 0�07738401 −0�000003754 7Y 3M 0�04605355 −0�000003791
2Y 6M 0�06933744 −0�000003766 7Y 6M 0�04756188 −0�000003782
2Y 9M 0�06245475 −0�000003777 7Y 9M 0�04913960 −0�000003771
3Y 0�05669461 −0�000003787 8Y 0�05075542 −0�000003760
3Y 3M 0�05197979 −0�000003796 8Y 3M 0�05236029 −0�000003747
3Y 6M 0�04813327 −0�000003804 8Y 6M 0�05399617 −0�000003734
3Y 9M 0�04496754 −0�000003811 8Y 9M 0�05565359 −0�000003719
4Y 0�04259363 −0�000003816 9Y 0�05734173 −0�000003702
4Y 3M 0�04081855 −0�000003821 9Y 3M 0�05891017 −0�000003686
4Y 6M 0�03957031 −0�000003824 9Y 6M 0�06051381 −0�000003668
4Y 9M 0�03878407 −0�000003826 9Y 9M 0�06214526 −0�000003649
5Y 0�03840144 −0�000003828 10Y 0�06369579 −0�000003628

Table 9.22 Theoretical and market swaption volatilities

Market 1Y 2Y 3Y 4Y 5Y 7Y

1Y 22�7000 % 23�0000 % 22�1000 % 20�9000 % 19�6000 % 17�6000 %
2Y 22�4000 % 21�5000 % 20�5000 % 19�4000 % 18�3000 % 16�7000 %
3Y 20�9000 % 20�1000 % 19�0000 % 18�0000 % 17�0000 % 15�8000 %
4Y 19�5000 % 18�7000 % 17�7000 % 16�8000 % 16�0000 %
5Y 18�2000 % 17�4000 % 16�5000 % 15�8000 % 15�1000 %
7Y 16�7200 % 16�0800 % 15�3000 %

Theoretical 1Y 2Y 3Y 4Y 5Y 7Y

1Y 22�8165 % 22�0415 % 19�2960 % 17�1058 % 15�5043 % 13�6844 %
2Y 22�8386 % 20�6389 % 18�4044 % 16�5967 % 15�3733 % 13�7711 %
3Y 20�1999 % 18�9490 % 17�2257 % 15�8731 % 14�8469 % 13�6224 %
4Y 19�4248 % 18�2455 % 16�7513 % 15�4790 % 14�4750 %
5Y 18�9177 % 17�7192 % 16�2348 % 14�9735 % 14�3294 %
7Y 17�1656 % 15�8917 % 15�0285 %

Difference 1Y 2Y 3Y 4Y 5Y 7Y

1Y 0�1165 % −0�9585 % −2�8040 % −3�7942 % −4�0957 % −3�9156 %
2Y 0�4386 % −0�8611 % −2�0956 % −2�8033 % −2�9267 % −2�9289 %
3Y −0�7001 % −1�1510 % −1�7743 % −2�1269 % −2�1531 % −2�1776 %
4Y −0�0752 % −0�4545 % −0�9487 % −1�3210 % −1�5250 %
5Y 0�7177 % 0�3192 % −0�2652 % −0�8265 % −0�7706 %
7Y 0�4456 % −0�1883 % −0�2715 %
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9.4 CONCLUSIONS

In this chapter we have presented two expanded calibration algorithms to caps and swaptions
simultaneously. Both algorithms have used optimization techniques. The first algorithm,
based on the Rebonato approach, resulted in some quite good results. The market and
theoretical caplet volatilities are practically the same – all the differences are negligible.
The obtained piecewise constant matrix of instantaneous volatilities also seems to be logical
with values in the matrix close to untransformed market data. The outstanding values are
rare and have small impact in real derivatives valuation.

The matrix of instantaneous correlations is also quite good. Correlations are close to
one and there are no outstanding values as in the case of historical correlations. Based on
instantaneous volatilities and implied correlations the table comparing differences between
the theoretical and market swaption volatilities seems to be correct. Differences are relatively
small and thus such results may be used in practice for valuation purposes.

The second algorithm was based on parametric functions approximating the market quo-
tations of caps and swaptions. First we have to compute the parametric approximations of
the caplet prices. Next we have to run an optimization to minimize the differences between
the theoretical and market quotations of caps. We see that the results of calibration are
acceptable but definitely worse than those obtained during non parametric calibration.

Having calibrated the approximating functions to caps we have moved into the calibration
to swaptions. As a result we have obtained a matrix of instantaneous correlations. However
the results are not as good as for non-parametric calibration. Almost all instantaneous
correlations are equal to one. The reason for that may be in the wrong form of the widely
used approximation functions. The other reason for wrong results may by using ineffective
optimization algorithms when minimizing differences between the theoretical and market
swaption volatilities. Definitely there is a place for further research in order to find more
accurate optimization routines.

It is worth noting that in this chapter there are many of intermediate results. The reason
for that is to help the reader fully understand the theory of calibration and the practical
algorithms for implementation of the techniques in practice.

Both algorithms are frequently used in the market. However as we have seen in some
market circumstances the results may be not satisfactory. This was especially evident in the
case for parametric calibration. For that reason there is a clear visible trend in the market to
use non-parametric calibration algorithms. Most of them are based on the piecewise constant
volatility assumption which helps to price exotic interest derivatives in practice.
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Index of Notations for Part III

Boundn = Contn ∩ Stopn – free boundary
Cn�x� – payoff
Contn = {x ∈ Rd � Vn�x� = Un�x�

}
– continuation set

LA
n �t� – combined predictor-corrector approximation of

Libor rates
LB

n �t� – Brownian bridge approximation of Libor rates
LC

n �t� – predictor-corrector approximation of Libor rates
LD

n �t� – lognormal approximation of Libor rates
LE

n �t� – Euler approximation of Libor rates
L̂A

n �l�m� numerical approximation of LA
n �t� on the tree

L̂D
n �l�m� numerical approximation of LD

n �t� on the tree
Stopn = {x ∈ Rd � Vn�x� = Cn�x�

}
– stopping set

Un�x� deferred Bellman function
Û 1

n �x� � Û 2
n �x� estimators of Un�x�

Vn�x� – Bellman function
Ṽn �x� � V̂n �x� estimators of Vn�x�





10
Approximations of the BGM Model

In the case of the HJM model all forward rates are represented as deterministic functions of
the diffusion term – a property which does not hold for the BGM model. In this chapter we
will present several formulae extending this property to the BGM model, however we can
only achieve this in an approximate way.

10.1 EULER APPROXIMATION

This is a very simple approximation, also called ‘freezing the drift.’ It just consists of
freezing random term in the drift, namely:

LE
n �t� = Ln�0� exp

(
−

k∑
j=n+1

Kj�0�Cjn�0� t� − 1
2

Cnn�0� t� + Mn
k �t�

)
� (10.1)

Define also

KE
n �t� = �LE

n �t�

1 + �LE
n �t�

�

10.2 PREDICTOR-CORRECTOR APPROXIMATION

This approximation Hunter, Jaeckel and Joshi (2001); Joshi and Stacey (2006) is based on
simplest possible approximation of integrals – we take value in the left end, add to the value
in the right end, multiply by length of the interval and divide by two. Length of the interval
is taken as a measure of Cnn�0� t�.

LC
n �t� = Ln�0� exp

(
−1

2

k∑
j=n+1

Cjn�0� t�

(
Kj�0� + �LC

j �t�

1 + �LC
j �t�

)
− 1

2
Cnn�0� t� + Mn

k �t�

)
�

(10.2)

If n < k, the formula (10.2) is a recursive definition of LC
n �t�. If n > k, the formula (10.2)

is not a definition but a set of equations giving unique solutions of LC
n �t�, which may be

solved by approximations. Taking first step in the approximations is also acceptable:

LC
n �t� = Ln�0� exp

(
1
2

n∑
j=k+1

Cjn�0� t�
(
Kj�0� + KE

j �t�
)− 1

2
Cnn�0� t� + Mn

k �t�

)
� (10.3)
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10.3 BROWNIAN BRIDGE APPROXIMATION

This approximation is due to Pietersz, Pelsser and Van Regenmortel (2004). Define a new
Gaussian process

M̂n
k �t� = Mn

k �t� − Cnn�0� t�

Cnn�0� T�
Mn

k �T�

Lemma. The process M̂n
k �t� is Gaussian with mean zero, independent of Mn

k �T� and its
variance is equal to

EkM̂
n
k �t�2 = Cnn�0� t�Cnn�t� T�

Cnn�0� T�
�

Proof. We can clearly see that

EkM̂
n
k �t�2 = Ek

(
Mn

k �t� − Cnn�0� t�

Cnn�0� T�
Mn

k �T�

)2

= Ek

(
Cnn�t�T�

Cnn�0� T�
Mn

k �t� + Cnn�0� t�

Cnn�0� T�
�Mn

k �t� − Mn
k �T��

)2

= Cnn�0� t�Cnn�t� T�

Cnn�0� T�

and

EkM̂
n
k �t�Mn

k �T� = Ek

(
Mn

k �t�Mn
k �T� − Cnn�0� t�

Cnn�0� T�
Mn

k �T�2

)
= 0�

As uncorrelated Gaussian processes are also independent, the Lemma is proven. Hence we
have

Ek �exp �Mn
k �t�� �Mn

k �T�� = Ek

(
exp

(
M̂n

k �t� + Cnn�0� t�

Cnn�0� T�
Mn

k �T�

)∣∣∣∣Mn
k �T�

)

= exp
(

Cnn�0� t�

Cnn�0� T�

(
Mn

k �T� + 1
2

Cnn�t�T�

))

and therefore

L̃n �t� T� = Ek

(
LE

n �t�
∣∣LE

n �T�
)

= Ln �0� exp

(
Cnn�0� t�

Cnn�0� T�

(
Mn

k �T� − 1
2

Cnn�0� t�

)
−

k∑
i=n+1

Ki�0�Cni �0� t�

)
� (10.4)

Thus we can define

LB
n �T� = Ln �0� exp

⎛
⎝Mn

k �T� − 1
2

Cnn�0� T� −
t∫

0

k∑
i=n+1

�L̃i�s�T��n �s� · �i�s�

1 + �L̃i�s�T�
ds

⎞
⎠ � (10.5)
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10.4 COMBINED PREDICTOR-CORRECTOR-BROWNIAN
BRIDGE

A combination of the Predictor-Corrector and Brownian bridge approaches seems to be most
suitable. We make use of the approximation:

LA
n �T� = Ln �0� exp

⎛
⎝Mn

k �T� − 1
2

Cnn�0� T� −
k∑

i=n+1

Ek

⎛
⎝ T∫

0

KE
i �s��n �s� · �i�s�ds

∣∣∣∣∣∣Mi
k�T�

⎞
⎠
⎞
⎠ �

(10.6)

what is more accurate than (10.5). Calculate the auxiliary variable Y in
k �Mi

k�T��T�

Y in
k �Mi

k�T��T� = Ek

⎛
⎝ T∫

0

KE
i �s��n �s� · �i�s�ds

∣∣∣∣∣∣Mi
k�T�

⎞
⎠

= Ek

⎛
⎝Ek

⎛
⎝ T∫

0

KE
i �s��n �s� · �i�s�ds

∣∣∣∣∣∣Mi
k�t�� S ≤ t ≤ T

⎞
⎠
∣∣∣∣∣∣Mi

k�T�

⎞
⎠

= Ek

⎛
⎝Ek

⎛
⎝ S∫

0

KE
i �s��n �s� · �i�s�ds

∣∣∣∣∣∣Mi
k�S�

⎞
⎠+

T∫
S

KE
i �s��n �s� · �i�s�ds

∣∣∣∣∣∣Mi
k�T�

⎞
⎠

= Ek

⎛
⎝Y in

k �Mi
k�S�� S� +

T∫
S

KE
i �s��n �s� · �i�s�ds

∣∣∣∣∣∣Mi
k�T�

⎞
⎠

� Ek

(
Y in

k �Mi
k�S�� S� + 1

2

(
KE

i �S� + KE
i �T�

)
Cin�S�T�

∣∣∣∣Mi
k�T�

)
�

where the distribution of Mi
k�S�

∣∣∣Mi
k�T� is normal with mean � = Cii�0� S�Mi

k�T�/Cii�0� T�

and variance 	2 = Cii�0� S�Cii�t� T�/Cii�0� T�.

Hence

Y in
k �Mi

k�T��T� = 1

	
√

2


�∫
−�

(
Y in

k �x� S� + 1
2

�Lk
i �S� x�Cin�S�T�

1 + �Lk
i �S� x�

)
exp

(
�x − ��2

2	2

)
dx

+1
2

KE
i �T�Cin�S�T�� (10.7)

where

Lk
i �t� x� = Li�0� exp

(
−

k∑
j=i+1

Kj�0�Cjn�0� t� − 1
2

Cii�0� t� + x

)
�
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Alternatively, if we resign from Predictor-Corrector adjustment

Y in
k �Mi

k�T��T� � Ek

(
Y in

k �Mi
k�S�� S� + KE

i �S�Cin�S�T�
∣∣Mi

k�T�
)

and

Y in
k �Mi

k�T��T� = 1

	
√

2


�∫
−�

(
Y in

k �x� S� + �Lk
i �S� x�Cin�S�T�

1 + �Lk
i �S� x�

)
exp

(
�x − ��2

2	2

)
dx�

where the integral with respect to time was replaced by a space integral and both may be
calculated by numerical methods. While pricing on trees, Mi

k�S�
∣∣∣Mi

k�T� is naturally calculated
via the Bayes formula and backward trees. We can then finally define

LA
n �T� = Ln �0� exp

(
Mn

k �T� − 1
2

Cnn�0� T� −
k∑

i=n+1

Y in
k �Mi

k�T��T�

)
� (10.8)

10.5 SINGLE-DIMENSIONAL CASE

In the single dimensional case we have the following properties:

�n �t� = �n� �t� (10.9)

Where �n�t� is the BGM volatility,

Mn
k �t� = �nMk �t� � where Mk�t� =

t∫
0

��s�dWk�s�� (10.10)

Cmn �t�T� = �n�mC �t�T� � where C�t�T� =
T∫

t

∣∣∣��s�
∣∣∣2ds� (10.11)

It is possible to slightly improve our approximation in this case:

LA
n �T� = Ln �0� exp

⎛
⎝Mn

k �T� − 1
2

Cnn�0� T� −
k∑

i=n+1

Ek

⎛
⎝ T∫

0

�LA
i �s��n �s� · �i�s�

1 + �LA
i �s�

ds

∣∣∣∣∣∣Mk�T�

⎞
⎠
⎞
⎠

(10.12)

Thus we now have

Y in
k �Mk �T� �T� = Ek

⎛
⎝ T∫

0

�LA
i �s��n �s� · �i�s�

1 + �LA
i �s�

ds

∣∣∣∣∣∣Mk�T�

⎞
⎠

And we may calculate that

Y in
k �Mk�T��T� � Ek

(
Y in

k �Mk�S�� S� + 1
2

(
�LA

i �S�

1 + �LA
i �S�

+ �LA
i �T�

1 + �LA
i �T�

)
Cin�S�T�

∣∣∣∣Mk�T�

)
�

(10.13)
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Or alternatively

Y in
k �Mk�T��T� � Ek

(
Y in

k �Mk�S�� S� + �LA
i �S�

1 + �LA
i �S�

Cin�S�T�

∣∣∣∣Mk�T�

)
� (10.14)

where the distribution of Mk�S�
∣∣∣Mk�T� is normal with mean �=C�0� S�Mk�T�/C�0� T� and

variance 	2 = C�0� S�C�S�T�/C�0� T�. Hence from (10.14) we see that

Y in
k �Mk�T��T� = 1

	
√

2


�∫
−�

(
Y in

k �x� S� + 1
2

�Lk
i �S� x�Cin�S�T�

1 + �Lk
i �S� x�

)
exp

(
− �x − ��2

2	2

)
dx

(10.15)
+ 1

2
LA

i �T�

1 + �LA
i �T�

Cin�S�T��

where

Lk
i �t� x� = Li �0� exp

(
−

k∑
j=i+1

Y
jn
k �x� t� − 1

2
Cii �0� t� + x

)
� (10.16)

Finally we obtain

LA
n �T� = Ln �0� exp

(
Mn

k �T� − 1
2

Cnn�0� T� −
k∑

i=n+1

Y in
k �Mi

k�T��T�

)
� (10.17)

Where, as before, if n < k, the formula (10.17) is a recursive definition of LA
n �t�. If n > k,

the formula (10.17) is a set of equations giving unique solutions of LA
n �t�, which may be

solved by approximations.

10.6 SINGLE-DIMENSIONAL COMPLETE CASE

An analogous approximation may be performed in the multiplicative form:

LD
n �T� = Ln �0� exp

(
Mn

k �T� − 1
2

Cnn �0� T�

)
Zn

k �Mk �T� �T� � (10.18)

where Zn
k�Mk�T��T� = Ek

(
Ak

n�0� T�
∣∣∣Mk�T�

)
and

An
k �t�T� = exp

⎛
⎝−

T∫
t

k∑
j=n+1

�LD
j �s��k �s� · �j�s�

1 + �LD
j �s�

ds

⎞
⎠ �

Calculate

Zn
k �Mk �T� �T� = Ek �Ek �An

k�0� T��Mk�s�� S ≤ s ≤ T��Mk�T��

= Ek �Ek �An
k�0� S��Mk�s�� S ≤ s ≤ T�An

k�S�T��Mk�T�� (10.19)

= Ek �Zn
k �Mk�S�� S�An

k�S�T��Mk�T�� �
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The exponential integral An
k�S�T� may be approximated by the Predictor-Corrector method:

An
k �S�T� � exp

(
−1

2

k∑
i=n+1

(
�LD

i �T�

1 + �LD
i �T�

+ �LD
i �S�

1 + �LD
i �S�

)
Cin �S�T�

)
(10.20)

or Euler method

An
k �S�T� � exp

(
−

k∑
i=n+1

�LD
i �S�

1 + �LD
i �S�

Cin �S�T�

)
� (10.21)

Therefore (by using (10.19) and (10.20))

Zn
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2
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)
�

where we have
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i �T� = �LD

i �T�

1 + �LD
i �T�

�

Similarly as in LA
i �·� case described previously distribution of Mk �S�

∣∣∣Mk �T� is normal with

mean � = C�0� S�Mk�T�/C�0� T� and variance 	2 = C�0� S�C�S�T�/C�0� T�. Hence
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2
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Finally

LD
n �T� = Ln �0�Zn

k �Mk �T��T� exp
(

−1
2

Cnn �0� t� + Mn
k �T�

)
� (10.22)

Once again we have the situation that if n < k, the formula (10.22) is a recursive definition
of LD

n �t�. If n>k, the formula (10.22) is a set of equations giving unique solutions of LD
n �t�,

which may be solved by approximations.
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10.7 BINOMIAL TREE CONSTRUCTION FOR LA
n �t�

In the next sections we deal with numerical construction of binomial and trinomial trees.
We assume that

� �t� ≡ 1 (10.23)

(See (10.9))
By equations (10.23), (10.9), (10.10), (10.11) and (10.17)

LA
n �t� = Ln �0� · exp

(
−

N∑
j=n+1

Y
jn
N

(
�jWN �t�� t

)− 1
2

· �2
n · t + �n · WN �t�

)
(10.24)

where, following (10.6)

Y
jn
N

(
�jWN �t�� t�

)= EN

(
Y

jn
N

(
�jWN �t − �t�� t − �t

)+ �LA
j �t − �t��n�j

1 + �LA
j �t − �t�

�t

∣∣∣∣WN �t�

)
(10.25)

where �t is the size of a time step inside the constructed tree.
The processes LA

n �t� depend only on the one dimensional Brownian Motion WN �t� and
therefore can be modelled by binomial tree. At each node of constructed tree the values of
the forward LIBORs are approximated by:

L̂A
n �l�m� = Ln�0� · exp

(
−

N∑
j=n+1

Ŷ jn �l�m� − 1
2

· �2
n · m · �t + �n · Ŵ �m� l�

)
� (10.26)

where the Markov chain Ŵ �m� approximates a Brownian motion and is defined as

Ŵ �0� = 0

Ŵ �m� =
{

Ŵ �m − 1� + √
�t with probability = 0.5

Ŵ �m − 1� − √
�t with probability = 0.5

Ŵ �m� l� = l
√

�t�

The numbers m and l are horizontal and vertical coordinates of the tree respectively.
The discrete process Ŷ jn �l�m� approximates Y jn

(
�jWN �t�� t

)
and is defined recursively as

Ŷ jn �l�m� = EN

(
Ŷ jn �·�m − 1� + � · �j · �n · L̂A

j �·�m − 1�

1 + � · L̂A
j �·�m − 1�

· �t

∣∣∣∣∣ Ŵ �m� = l
√

�t

)
(10.27)

We can demonstrate this process by means of a detailed example.
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l = 5

l = 4

l = 3

l = 1

l = 0

l = –1

l = –2

l = –3

l = –4

l = –5

l = 2

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

Figure 10.1 Example of a binomial tree to be used in our example.

In order to calculate Ŷ jn �l�m� let us notice that node (m, l) can be reached only from one
of the two nodes (given that we are in the main part of the tree and not at an edge or at the
start of the tree):

�m − 1� l − 1� (let us call this node ‘Low Node’)

(m, l)

(m – 1, l – 1)

Figure 10.2 Movement up.
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or �m − 1� l + 1� (let us call this node ‘Hi Node’).

(m – 1, l + 1)

(m, l)

Figure 10.3 Movement down.

Following (10.27) we have

Ŷ jn �l�m� = PHi �m� l� ·
(

Ŷ jn �l + 1�m − 1� + � · �j · �n · L̂A
j �l + 1�m − 1�

1 + L̂A
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)
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Ŷ jn �l − 1�m − 1� + � · �j · �n · L̂A
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· �t

)

where

PHi �m� l� 
= EN

(
1Ŵ �m−1�=�l+1�

√
�t

∣∣ Ŵ �m� = l
√

�t
)

is a conditional probability that node (m, l) is reached from the node �m − 1� l + 1� under
condition that node (m, l) was reached at all. In addition

PLow �m� l� 
= EN

(
1Ŵ �m−1�=�l−1�

√
�t

∣∣ Ŵ �m� = l
√

�t
)

is a conditional probability that node (m, l) is reached from the node �m − 1� l − 1� under
condition that node (m, l) was reached at all.

Let us define

P �m� l� 
= EN

(
1Ŵ �m�=l

√
�t

)
as the unconditional probability that node (m, l) will be reached at all, so:

PLow �m� l� = P �m − 1� l − 1� · 0�5
P �m� l�

(10.28)
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The numerator of the expression above is equal to unconditional probability that node
�m −1� l−1� will be reached, multiplied by probability that movement from this node will be
upward. So the numerator is equal to unconditional probability that both nodes �m −1� l −1�
and (m, l) will be reached. Analogously:

PHi �m� l� = P �m − 1� l + 1� · 0�5
P �m� l�

(10.29)

In order to calculate P �m� l� let us see that node (m,l) will be reached if and only if there
are exactly l + m/2 movements up (out of total number of movements equal m). Hence the
unconditional probability that node (m,l) will be reached is:

P�m� l� =
(

m
l + m

2

)
· 2−m (10.30)

By the equation (10.28), (10.29) and (10.30) we have:

PLow �m� l� =

(
m − 1

l + m − 2

2

)
(

m
l + m

2

) (10.31)

PHi �m� l� =

(
m − 1
l + m

2

)
(

m
l + m

2

) (10.32)

Therefore we are able to calculate PHi and PLow by closed formulas. Alternatively, these
probabilities can be calculated numerically using the described below recursion.

P�1�−1� = P�1� 1� = 0�5

P�m� l� = 0�5 · P�m − 1� l − 1� + 0�5 · P�m − 1� l + 1�

10.8 BINOMIAL TREE CONSTRUCTION FOR LD
n �t�

We can build our tree basing on formula (10.18). In this case forward LIBORs will be
approximated by:

LD
n �t� = Ln�0� · Zn

N �WN �t�� t� exp
(

−1
2

�2
nt + �nWN �t�

)

where following (10.19) and (10.21) we have that

Zn
N �WN �t�� t� = EN

(
Zn

N �WN �t − �t�� t − �t� exp

(
−

N∑
i=n+1

�LD
i �t − �t��i�n�t

1 + �LD
i �t − �t�

)∣∣∣∣∣WN �t�

)
�
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The processes LD
n �t� can be modeled by binomial tree, analogously as processes LA

n �t�. At
each node of the constructed tree the LD

n �t� are approximated by

L̂D
n �m� l� = Ln�0� Ẑn�l�m� exp

(
−1

2
�2

nm�t + �nŴ�m�

)
� (10.33)

where

Ẑn �l�m� =EN

(
Ẑn �·�m − 1� · exp

(
−

N∑
j=n+1

�L̂D
j �m − 1� ·��j�n�t

1 + �L̂D
j �m − 1� ·�

)∣∣∣∣∣ Ŵ �m� = l
√

�t

)

= PHi �m� l� · Ẑn �l + 1�m − 1� · exp

(
−

N∑
j=n+1

�L̂D
j �m − 1� l + 1��j�n�t

1 + �L̂D
j �m − 1� l + 1�

)

(10.34)

+ PLow �m� l� · Ẑn �l − 1�m − 1� · exp

(
−

N∑
j=n+1

�L̂D
j �m − 1� l − 1��j�n�t

1 + �L̂D
j �m − 1� l − 1�

)

and PHi �m� l� and PLow �m� l� are defined by formulae (10.31) and (10.32).

10.9 NUMERICAL EXAMPLE OF BINOMIAL TREE
CONSTRUCTION

In this example we construct a binomial tree that models four 6M forward LIBORs
L1�L2�L3�L4, so hence N = 4. We assume that time step of the tree �t = 0�25. It means
that there are two time steps within each LIBOR period. Initial values of forward
LIBOR are all equal 5 %. Volatility of each forward LIBOR is assumed to be 20 %, so
�1 =�2 =�3 =�4 =0�2. We describe the calculation of L̂D

1 � L̂D
2 � L̂D

3 � L̂D
4 via this tree method.

A reference tree for this example is shown on the next page.
We now work in detail through this numerical example:

At node m = 0� l = 0 we have

L̂D
1 �0� 0� = L̂D

2 �0� 0� = L̂D
3 �0� 0� = L̂D

4 �0� 0� = 0�05� (10.35)

Ẑ1 �0� 0� = Ẑ2 �0� 0� = Ẑ3 �0� 0� = Ẑ4 �0� 0� = 1� (10.36)

At node m = 1� l = −1 following (10.31) and (10.32)

PLow �1�−1� = 0

PHi �1�−1� = 1�

Then from (10.34), (10.35) and (10.36)

Ẑ2 �−1� 1� = 1 · exp
(

−0�5 · 0�05 · 0�2 · 0�2 · 0�25
1 + 0�5 · 0�05

− 0�5 · 0�05 · 0�2 · 0�2 · 0�25
1 + 0�5 · 0�05

)
= 0.9995123

(10.37)
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T0 T1 T2 T3

L1 L2 L3 L4

T4

l = 6

l = 5

l = 4

l = 3

l = 2

l = 1

l = 0

l = –1

l = – 2

l = – 3

l = – 4

l = – 5

l = – 6

m = 6m = 5m = 4m = 3m = 2m = 1m = 0

Figure 10.4 Example tree for reference.

Ẑ3 �−1� 1� = 1 · exp
(

−0�5 · 0�05 · 0�2 · 0�2 · 0�25
1 + 0�5 · 0�05

)
= 0.9997561 (10.38)

Ẑ4 �−1� 1� = 1 (10.39)

And from (10.33), (10.37) to (10.39)

L̂D
2 �1�−1� = 0�05 · 0.9995123 · exp

(
−1

2
· 0�22 · 1 · 0�25 + 0�2 · �−1� · √0�25

)
= 0.0449943

(10.40)

L̂D
3 �1�−1� = 0�05 · 0.9997561 · exp

(
−1

2
· 0�22 · 1 · 0�25 + 0�2 · �−1� · √0�25

)
= 0.0450052

(10.41)
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L̂D
4 �1�−1� = 0�05 · 1 · exp

(
−1

2
· 0�22 · 1 · 0�25 + 0�2 · �−1� · √0�25

)
= 0.0450162 (10.42)

At node m = 1� l = 1 following (10.31) and (10.32)

PLow�1� 1� = 1

PHi�1� 1� = 0

Then from (10.34), (10.35) and (10.36)

Ẑ2 �1� 1� = exp
(

−0�5 · 0�05 · 0�2 · 0�2 · 0�25
1 + 0�5 · 0�05

− 0�5 · 0�05 · 0�2 · 0�2 · 0�25
1 + 0�5 · 0�05

)
= 0.9995123

(10.43)

Ẑ3 �1� 1� = exp
(

−0�5 · 0�05 · 0�2 · 0�2 · 0�25
1 + 0�5 · 0�05

)
= 0.9997561 (10.44)

Ẑ4 �1� 1� = 1 (10.45)

And from (10.33), (10.43) to (10.45)

L̂D
2 �1� 1� = 0�05 · 0.9995123 · exp

(
−1

2
· 1 · 0�22 · 0�25 + 0�2 · 1 · √0�25

)
= 0.0549561

(10.46)

L̂D
3 �1� 1� = 0�05 · 0.9997561 · exp

(
−1

2
· 1 · 0�22 · 0�25 + 0�2 · 1 · √0�25

)
= 0.0549695

(10.47)

L̂D
4 �1� 1� = 0�05 · 1 · exp

(
−1

2
· 0�22 · 1 · 0�25 + 0�2 · 1 · √0�25

)
= 0.0549829 (10.48)

At node m = 2� l = −2 following (10.31) and (10.32)

PLow�2�−2� = 0

PHi�2�−2� = 1

Then from (10.34), (10.37) to (10.42)

Ẑ2 �−2� 2� = 0.9995123 · exp
(

−0�5 · 0�0450052 · 0�2 · 0�2 · 0�25
1 + 0�5 · 0�0450052

− 0�5 · 0�0450162 · 0�2 · 0�2 · 0�25
1 + 0�5 · 0�0450162

)
(10.49)

= 0.999072
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Ẑ3 �−2� 2� = 0.9997561 · exp
(

−0�5 · 0.0450162 · 0.2 · 0.2 · 0.25
1 + 0.5 · 0.0450162

)
= 0.999536 (10.50)

Ẑ4 �−2� 2� = 1 (10.51)

And from (10.33), (10.49) to (10.51)

L̂D
2 �2�−2� = 0�05 · 0.999072 · exp

(
−1

2
· 0�22 · 2 · 0�25 + 0�2 · �−2� · √0�25

)
= 0.040492

(10.52)

L̂D
3 �2�−2� = 0�05 · 0.999536 · exp

(
−1

2
· 0�22 · 2 · 0�25 + 0�2 · �−2� · √0�25

)
= 0.04051

(10.53)

L̂D
4 �2�−2� = 0�05 · 1 · exp

(
−1

2
· 0�22 · 2 · 0�25 + 0�2 · �−2� · √0�25

)
= 0.040529 (10.54)

At node m = 2� l = 0 following (10.31) and (10.32)

PLow�2� 0� = PHi�2� 0� = 0�5

Then from (10.34), (10.37) to (10.42), (10.43) to (10.48)

Ẑ2 �0� 2� =0�5 · 0.9995123 · exp
(

−0�5 · 0.0549695 · 0.2 · 0.2 · 0.25
1 + 0�5 · 0.0549695

− 0�5 · 0.0549829 · 0.2 · 0.2 · 0.25
1 + 0�5 · 0.0549829

)

+ 0�5 · 0.9995123 · exp
(

−0�5 · 0.0450052 · 0.2 · 0.2 · 0.25
1 + 0�5 · 0.0450052

− 0�5 · 0.0450162 · 0.2 · 0.2 · 0.25
1 + 0�5 · 0.0450162

)
(10.55)

= 0.999025

Ẑ3 �0� 2� =0�5 · 0.9997561 · exp
(

−0�5 · 0.0549829 · 0.2 · 0.2 · 0.25
1 + 0�5 · 0.0549829

)

+ 0�5 · 0.9997561 · exp
(

−0�5 · 0.0450162 · 0.2 · 0.2 · 0.25
1 + 0�5 · 0.0450162

)
(10.56)

=0.999512

Ẑ4 �0� 2� = 1 (10.57)

And from (10.33), (10.55) to (10.57)
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L̂D
2 �2� 0� = 0�05 · 0.999025 · exp

(
−1

2
· 0�22 · 2 · 0�25 + 0�2 · 0 · √0�25

)
= 0.049454

(10.58)

L̂D
3 �2� 0� = 0�05 · 0.999512 · exp

(
−1

2
· 0�22 · 2 · 0�25 + 0�2 · 0 · √0�25

)
= 0.049478

(10.59)

L̂D
4 �2, 0� = 0.05 · 1 · exp

(
−1

2
· 0�22 · 2 · 0�25 + 0�2 · 0 · √0�25

)
= 0.049502 (10.60)

At node m = 2� l = 2 following (10.31) and (10.32)

PHi�2� 2� = 0

PLow�2� 2� = 1

Then from (10.34), (10.43) to (10.48)

Ẑ2�2� 2� = 0�9995123 · exp
(

−0.5 · 0.0549695 · 0.2 · 0.2 · 0.25
1 + 0.5 · 0.0549695

− 0�5 · 0.0549829 · 0.2 · 0.2 · 0.25
1 + 0�5 · 0.0549829

)
(10.61)

= 0.998978

Ẑ3 �2� 2� = 0.9997561 · exp
(

−0.5 · 0.0549829 · 0.2 · 0.2 · 0.25
1 + 0�5 · 0.0549829

)
= 0.999489 (10.62)

Ẑ4 �2� 2� = 1 (10.63)

And from (10.33), (10.61) to (10.63)

L̂D
2 �2� 2� = 0�05 · 0.998978 · exp

(
−1

2
· 0�22 · 2 · 0�25 + 0�2 · 2 · √0�25

)
= 0.060401

(10.64)

L̂D
3 �2� 2� = 0�05 · 0.999489 · exp

(
−1

2
· 0�22 · 2 · 0�25 + 0�2 · 2 · √0�25

)
= 0.060432

(10.65)

L̂D
4 �2� 2� = 0�05 · 1 · exp

(
−1

2
· 0�22 · 2 · 0�25 + 0�2 · 2 · √0�25

)
= 0.060462 (10.66)

At node m = 3� l = −3 From (10.31) and (10.32)

PHi�3�−3� = 1

PLow�3�−3� = 0

Then from (10.34), (10.49) to (10.54)

Ẑ3 �−3� 3� = 0.999536 · exp
(

–0.5 · 0.040529 · 0.2 · 0.2 · 0.25
1 + 0�5 · 0.040529

)
= 0.999338 (10.67)
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Ẑ4 �−3� 3� = 1 (10.68)

And from (10.33), (10.67) and (10.68)

L̂D
3 �−3� 3� = 0�05 · 0.999338 · exp

(
−1

2
· 0�22 · 3 · 0�25 + 0�2 · �−3� · √0�25

)
= 0.036465

(10.69)

L̂D
4 �−3� 3� = 0�05 · 1 · exp

(
−1

2
· 0�22 · 3 · 0�25 + 0�2 · �−3� · √0�25

)
= 0.036489 (10.70)

At node m = 3� l = −1 from (10.31) and (10.32)

PHi �3�−1� = 2
3

PLow �3�−1� = 1
3

Then from (10.34) and (10.49) to (10.54) and (10.55) to (10.60)

Ẑ3 �−1� 3� = 1
3

· 0.999536 · exp
(

–0.5 · 0.040529 · 0.2 · 0.2 · 0.25
1 + 0.5 · 0.040529

)

+2
3

· 0.999512 · exp
(

–0.5 · 0.049502 · 0.2 · 0.2 · 0.25
1 + 0.5 · 0.049502

)
= 0.999293 (10.71)

Ẑ4 �−1� 3� = 1 (10.72)

And from (10.33), (10.71) and (10.72)

L̂D
3 �3�−1� = 0�05 · 0.999293 · exp

(
−1

2
· 0�22 · 3 · 0�25 + 0�2 · �−1� · √0�25

)
= 0.044537

(10.73)

L̂D
4 �3�−1� = 0�05 · 1 · exp

(
−1

2
· 0�22 · 3 · 0�25 + 0�2 · �−1� · √0�25

)
= 0.044568 (10.74)

At node m = 3� l = 1

From (10.31) and (10.32)

PHi �3� 1� = 1
3

PLow �3� 1� = 2
3
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Then from (10.34), (10.55) to (10.60), (10.61) to (10.66)

Ẑ3 �1� 3� = 1
3

· 0.999489 · exp
(

−0�5 · 0.060462 · 0.2 · 0.2 · 0.25
1 + 0�5 · 0.060462

)

+2
3

· 0.999512 · exp
(

−0�5 · 0.049502 · 0.2 · 0.2 · 0.25
1 + 0�5 · 0.049502

)
(10.75)

= 0.999246

Ẑ4 �1� 3� = 1 (10.76)

And from (10.33), (10.75) and (10.76)

L̂D
3 �1� 3� = 0�05 · 0.999246 · exp

(
−1

2
· 0�22 · 3 · 0�25 + 0�2 · 1 · √0�25

)
= 0.054395

(10.77)

L̂D
4 �1� 3� = 0�05 · 1 · exp

(
−1

2
· 0�22 · 3 · 0�25 + 0�2 · 1 · √0�25

)
= 0.054436 (10.78)

At node m = 3� l = 3

From (10.31) and (10.32)

PHi�3� 3� = 0

PLow�3� 3� = 1

Then from (10.34) and (10.61) to (10.66)

Ẑ3 �3� 3� = 0.999489 · exp
(

−0.5 · 0.060462 · 0.2 · 0.2 · 0.25
1 + 0�5 · 0.060462

)
= 0.999195 (10.79)

Ẑ4 �3� 3� = 1 (10.80)

And from (10.33), (10.79) and (10.80)

L̂D
3 �3� 3� = 0�05 · 0.999195 · exp

(
−1

2
· 0�22 · 3 · 0�25 + 0�2 · 3 · √0�25

)
= 0.066435

(10.81)

L̂D
4 �3� 3� = 0�05 · 1 · exp

(
−1

2
· 0�22 · 3 · 0�25 + 0�2 · 3 · √0�25

)
= 0.066488 (10.82)

Calculations for remaining nodes are left for the reader as exercises.
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10.10 TRINOMIAL TREE CONSTRUCTION FOR LA
n �t�

In a similar way to the above, we could use trinomial trees to construct our LIBOR rates.
This is described below.

By (10.9), (10.10), (10.11) and (10.17)

LA
n �t� = Ln�0� · exp

⎛
⎝ N∑

j=n+1

Y
jn
N

(
�jMN �t�� t

)− 1
2

· �n
2 ·

t∫
0

�2 �s� · ds + �nMN �t�

⎞
⎠ (10.83)

where, by (10.14)

Y jn
(
�j �t�MN �t�� t

)= EN

⎛
⎝ t∫

0

� · �j · �n · �2 �s� · LA
j �s�

1 + �j · LA
j �s�

· ds
∣∣MN �t�

⎞
⎠

Analogously as in binomial tree case, forward LIBORs can be approximated by

L̂A
n �m� l� = Ln �0� · exp

(
−

N∑
j=n+1

Ŷ jn �l�m� − 1
2

· �2
n · A�m� + �n · M̂N �m� l�

)
� (10.84)

where m and l are horizontal and vertical coordinates of the tree respectively and �t is
length of single time step of the tree as at Figure 10.5 below

l = 4

l = 2

l = 1

l = 0

l = –1

l = –2

l = –3

l = –4

l = 3

m = 0 m = 1 m = 2 m = 3 m = 4

Δt Δx

Figure 10.5 Example of trinomial tree for the basis of our work.

The discretisation of function ��t� is given by the formula

�̂�m� = ��m · �t� (10.85)



Approximations of the BGM Model 189

And M̂N �m� is a Markov chain approximating process MN �t�. It is defined by the formula

M̂N �0� = 0

M̂N �m� =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M̂N �m − 1� + �x with prob.
�̂2 �m − 1��t

2 ��x�2

M̂N �m − 1� with prob. 1 − �̂2 �m − 1��t

��x�2

M̂N �m − 1� − �x with prob.
�̂2 �m − 1��t

2 ��x�2

(10.86)

The approximation of the integral
t∫

0

�2�s� · ds for t = m · �t is defined as

A�m� =
m−1∑
k=0

�̂2 �k� · �t� (10.87)

As in binomial tree case, Ŷ jn�l�m� will be defined recursively, basing on (10.14).

Ŷ jn �l�m� = EN

(
Ŷ jn �·�m − 1� + � · �j · �n · L̂A

j �·�m − 1�

1 + � · L̂A
j �·�m − 1�

· �t

∣∣∣∣∣ M̂N �m� = l · �x

)
(10.88)

Let us notice that given node (m,l) can be reached in one of three ways, and this is displayed
on the figure below:

(m, l)

(m – 1, I + 1)

(m – 1, I  –1)

(m –  1, I)

Figure 10.6 Backward tree.
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• From the node �m − 1� l + 1� (let us call it ‘hi node’)
• From the node �m − 1� l� (let us call it ‘mid node’)
• From the node �m − 1� l − 1� (let us call it ‘low node’)

By this observation and (10.88)

Ŷ jn �m� l� = PHi �m� l� ·
(

Ŷ jn �l + 1�m − 1� + � · �j · �n · �̂2 �m − 1� · L̂A
j �m − 1� l + 1�

1 + � · L̂A
j �m − 1� l + 1�

· �t

)

+PMid ·
(

Ŷ jn �l�m − 1� + � · �j · �n · �̂2 �m − 1� · L̂A
j �m − 1� l�

1 + � · L̂A
j �m − 1� l�

· �t

)
(10.89)

+PLow ·
(

Ŷ jn �l − 1�m − 1� + � · �j · �n · �̂2 �m − 1� · L̂A
j �m − 1� l − 1�

1 + � · L̂A
j �m − 1� l − 1�

· �t

)

where

PHi �m� l� 
= EN

(
1M̂N �m−1�=�l+1�·�x

∣∣ M̂N �m� = l · �x
)

(10.90)

is a conditional probability that node (m,l) was reached from the node �m − 1� l + 1� under
condition that node (m,l) was reached.

PMid �m� l� 
= EN

(
1M̂N �m−1�=l·�x

∣∣ M̂N �m� = l · �x
)

(10.91)

is a conditional probability that node (m,l) was reached from the node �m − 1� l� under
condition that node (m,l) was reached.

PLow �m� l� 
= EN

(
1M̂N �m−1�=�l−1�·�x

∣∣ M̂N �m� = l · �x
)

(10.92)

is a conditional probability that node (m,l) was reached from the node �m� l − 1� under
condition that node (m,l) was reached.

Now, let us define P�m� l� as the unconditional probability that node (m,l) will be reached.

P�m� l� = EN

(
1M̂N �m�=l�x

)
P �m� l� satisfies the following recursive formulae

P �m� l� =pu �m − 1� l − 1� · P �m − 1� l − 1� + pm �m − 1� l� · P �m − 1� l�

+ pd �m − 1� l + 1� · P �m − 1� l + 1� (10.93)

P �0� 0� =1

where pu �m� l��pd �m� l��pm �m� l� are probabilities of up, down or flat movements from
node (m, l) and are calculated as
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pu �m� l� = pd �m� l� = �̂2 �m��t

2 ��x�2

pm �m� l� = 1 − �̂2 �m��t

��x�2

By (10.90), (10.91) and (10.92) we can deduce that

PHi �m� l� = P �m − 1� l + 1� · pd �m − 1� l + 1�

P �m� l�

PLow �m� l� = P �m − 1� l − 1� · pu �m − 1� l − 1�

P �m� l�
(10.94)

PMid �m� l� = P �m − 1� l� · pm �m − 1� l�

P �m� l�

By (10.89), (10.90) and (10.94) we may recursively calculate L̂A
n at each node of the tree.

10.11 TRINOMIAL TREE CONSTRUCTION FOR LD
n �t�

There exists an alternative approach to build a trinomial tree building based on for-
mula (10.18):

LD
n �t� = Ln�0� exp

⎛
⎝�nMN �t� − 1

2
�n

2

t∫
0

�2 �s�ds

⎞
⎠Zn

N �MN �t� � t�

where, following (10.19) and (10.21)

Zn
N �MN �t�� t� = EN

⎛
⎝Zn

N �MN �t − �t�� t − �t� exp

⎛
⎝−

N∑
i=n+1

�LD
i �t − �t��i�n

1 + �LD
i �t − �t�

t∫
t−�t

�2 �s�ds

⎞
⎠
⎞
⎠

The process LD
n �t� is approximated on the trinomial tree

L̂D
n �m� l� = Ln �0� Ẑn �l�m� exp

(
−1

2
�n

2A�m� + �nM̂N �m� l�

)

Ẑn �l�m� = EN

(
Ẑn �·�m − 1� exp

(
−

N∑
j=n+1

�L̂D
j �m − 1� ·��j�n�̂ �m − 1�

1 + �L̂D
j �m − 1� ·� �t

)∣∣∣∣∣ M̂N �m� = l�x

)

= PHi �m� l� Ẑn �l + 1�m − 1� exp

(
−

N∑
j=n+1

�L̂D
j �m − 1� l + 1��j�n�̂ �m − 1�

1 + �L̂D
j �m − 1� l + 1�

�t

)

+PMid �m� l� Ẑn �l�m − 1� exp

(
−

N∑
j=n+1

�L̂D
j �m − 1� l��j�n�̂ �m − 1�

1 + �L̂D
j �m − 1� l�

�t

)

+PLow �m� l� Ẑn �l − 1�m − 1� exp

(
−

N∑
j=n+1

�L̂D
j �m − 1� l − 1��j�n�̂ �m − 1�

1 + �L̂D
j �m − 1� l − 1�

�t

)



192 The LIBOR Market Model in Practice

10.12 NUMERICAL RESULTS

In order to verify the previously described approaches we have constructed a binomial tree
with the following parameters:

� = 0�5 (six month LIBORs)

N = 20 (calculations were performed under forward measure connected with a 10 year zero
coupon Bond).

We assume flat initial term structure (all forward LIBORs equal to 5 %). We have price single
caplet maturing in 4.5 years with strike K = 5 % and compare results with the analytical
results given my the Black’76 formula. The results from our calculations are shown in the
table below, followed by a chart of the errors in the two approximations when compared to
the analytical results.

Table 10.1 Caplet pricing

Volatility Estimator LD�·� Estimator LA�·� Black’76

10 % 0.165 % 0.165 % 0.165 %
15 % 0.247 % 0.247 % 0.247 %
20 % 0.328 % 0.328 % 0.328 %
25 % 0.408 % 0.408 % 0.408 %
30 % 0.487 % 0.486 % 0.488 %
35 % 0.562 % 0.561 % 0.566 %
40 % 0.633 % 0.629 % 0.642 %
45 % 0.690 % 0.678 % 0.717 %
50 % 0.723 % 0.695 % 0.789 %
55 % 0.713 % 0.661 % 0.860 %
60 % 0.657 % 0.577 % 0.929 %
65 % 0.567 % 0.461 % 0.995 %
70 % 0.458 % 0.337 % 1.059 %

Chart of approximation error. Note how the errors increase dramtically after approx. 40 %
volatility.

10.13 APPROXIMATION OF ANNUITIES

In section 12 the caplet payoff (under the numeraire B �t�T20�� was defined to be

V �T9� = ��L10 �T9� − K�+
20∏

j=11

(
1 + �Lj �T9�

)

and in the example was approximated by

V A �T9� = �
(
LA

10 �T9� − K
)+ 20∏

j=11

(
1 + �LA

j �T9�
)
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Figure 10.7 Error of caplet pricing.

or alternatively,

V D �T9� = �
(
LD

10 �T9� − K
)+ 20∏

j=11

(
1 + �LD

j �T9�
)
�

This shows that the annuity
20∏

j=11
�1 + �Lj�T9�� was approximated by a product of estimators.

That may lead to significant approximation errors. In order to improve our approximations
let us introduce two stochastic processes defined as:

An�t� =
N∏

j=n+1

(
1 + �Lj �t�

)
(10.95)

Xn�t� = Ln�t�An�t� (10.96)

Both processes are non-Markov martingales under the measure EN and satisfy stochastic
differential equations:

An�t� =
t∫

0

An�s�	An
�s�dWN �s� + An�0�

Xn�t� =
t∫

0

Xn�s�
(
	An

�s� + �n

)
dWN �s� + Xn�0�

	An
�t� =

N∑
j=n+1

�Lj �t��j

1 + �Lj �t�
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We can approximate these by the Markov processes:

AA
n �t� = EN

⎛
⎝ t∫

0

AA
n �s�	A

An
�s�dWN �s�

∣∣WN �t�

⎞
⎠+ An�0�

XA
n �t� = EN

⎛
⎝ t∫

0

XA
n �s�

(
	A

An
�s� + �n

)
dWN �s�

∣∣WN �t�

⎞
⎠+ Xn�0�

	A
An

�t� =
N∑

j=n+1

�LA
j �t��j

1 + �LA
j �t�

or

AD
n �t� = EN

⎛
⎝ t∫

0

AD
n �s�	D

An
�s�dWN �s�

∣∣WN �t�

⎞
⎠+ An�0�

XD
n �t� = EN

⎛
⎝ t∫

0

XD
n �s�

(
	D

An
�s� + �n

)
dWN �s�

∣∣WN �t�

⎞
⎠+ Xn�0�

	D
An

�t� =
N∑

j=n+1

�LD
j �t��j

1 + �LD
j �t�

Thus we can determine, by using these approximations, that

AA
n �t� = EN

⎛
⎝AA

n �t − �t� +
t∫

t−�t

AA
n �s�	A

An
�s�dWN �s�

∣∣WN �t�

⎞
⎠

� EN

(
AA

n �t − �t�
(
1 + 	A

An
�t − �t�

)
�WN �t� − WN �t − �t��

)∣∣WN �t�
)

XA
n �t� � EN

(
XA

n �t − �t�
(
1 + (	A

An
�t − �t� + �n

)
�WN �t� − WN �t − �t��

)∣∣WN �t�
)

AD
n �t� � EN

(
AD

n �t − �t�
(
1 + 	D

An
�t − �t� �WN �t� − WN �t − �t��

)∣∣WN �t�
)

XD
n �t� � EN

(
XD

n �t − �t�
(
1 + 	D

An
�t − �t� + �n

)
�WN �t� − WN �t − �t��

)∣∣WN �t�
)

The above processes will thus be approximated by the following ones:

ÂA
n �m� l� =PHi �m� l� ÂA

n �m − 1� l + 1�
(

1 − 	̂A
An

�m − 1� l + 1�
√

�t
)

+ PLow �m� l� ÂA
n �m − 1� l − 1�

(
1 + 	̂A

An
�m − 1� l − 1�

√
�t
)

X̂A
n �m� l� =PHi �m� l� X̂A

n �m − 1� l + 1�
(

1 − (	̂A
An

�m − 1� l + 1� + �n

)√
�t
)

+ PLow �m� l� X̂A
n �m − 1� l − 1�

(
1 + (	̂A

An
�m − 1� l − 1� + �n

)√
�t
)
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ÂD �m� l� =PHi �m� l� ÂD
n �m − 1� l + 1�

(
1 − 	̂D

An
�m − 1� l + 1�

√
�t
)

+ PLow �m� l� ÂD
n �m − 1� l − 1�

(
1 + 	̂D

An
�m − 1� l − 1�

√
�t
)

X̂A �m� l� =PHi �m� l� X̂D
n �m − 1� l + 1�

(
1 − (	̂D

An
�m − 1� l + 1� + �n

)√
�t
)

+ PLow �m� l� X̂D
n �m − 1� l − 1�

(
1 + (	̂D

An
�m − 1� l − 1� + �n

)√
�t
)

	̂A
An

�m� l� =
N∑

j=n+1

�L̂A
j �m� l��j

1 + �L̂A
j �m� l�

	̂D
An

�m� l� =
N∑

j=n+1

�L̂D
j �m� l��j

1 + �L̂D
j �m� l�

We know that the caplet payoff is equal V�T9� = �X10�T9� − KA10�T9��
+ using our new

processes. We approximate the payoff using X̂A� ÂA or X̂D� ÂD with the following results,
which present a much reduced error.

Table 10.2 Improved caplet pricing

Volatility Estimator LD�·� Estimator LA�·� Black’76

10 % 0.16490 % 0.16490 % 0.16500 %
15 % 0.24720 % 0.24720 % 0.24690 %
20 % 0.32820 % 0.32820 % 0.32810 %
25 % 0.40900 % 0.40900 % 0.40840 %
30 % 0.48810 % 0.48810 % 0.48760 %
35 % 0.56590 % 0.56590 % 0.56550 %
40 % 0.64260 % 0.64260 % 0.64180 %
45 % 0.71560 % 0.71560 % 0.71650 %
50 % 0.78900 % 0.78900 % 0.78920 %
55 % 0.85810 % 0.85810 % 0.86000 %
60 % 0.92450 % 0.92450 % 0.92860 %
65 % 0.98860 % 0.98860 % 0.99490 %
70 % 1.04790 % 1.04800 % 1.05890 %

10.14 SWAPTION PRICING

Our approximation was also tested on the example of an at-the-money 4.5 year option on 3
years swap under a flat yield curve equal to 5 %.

We observe a similar phenomenon as to before – the approximation is very accurate up to
volatility 40 % and then the approximation error explodes. However, as swaption volatility
rarely exceeds 20 % in most markets, this approximation can be used successfully. However,
if the there is a need we can increase the accuracy of swaption pricing significantly if the
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Figure 10.8 Error of improved caplet pricing.

Table 10.3 Swaption pricing

Volatility Estimator LD�·� Estimator LA�·� Black’76

10 % 0.9330 % 0.9330 % 0.9314 %
15 % 1.3904 % 1.3904 % 1.3938 %
20 % 1.8549 % 1.8548 % 1.8524 %
25 % 2.3045 % 2.3041 % 2.3058 %
30 % 2.7408 % 2.7394 % 2.7529 %
35 % 3.1788 % 3.1739 % 3.1925 %
40 % 3.5784 % 3.5639 % 3.6235 %
45 % 3.9403 % 3.9027 % 4.0450 %
50 % 4.2205 % 4.1326 % 4.4559 %
55 % 4.3332 % 4.1569 % 4.8554 %
60 % 4.2809 % 3.9836 % 5.2428 %
65 % 4.0145 % 3.5722 % 5.6173 %
70 % 3.5894 % 3.0162 % 5.9784 %

annuities (defined by (10.95)) are modeled on the tree as described in section 12. The final
payment of our swaption (under numeraire B �t�T20�) is

V �T9� =
(

A10 �T9� − A16 �T9� − �K
15∑

j=10

Aj+1 �T9�

)+
�
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Figure 10.9 Error of swaption pricing.

Our improved results are tabulated below, and the displayed on the chart below. Notice
again that the errors are somewhat oscillatory in behaviour but are now more accurate up
to approx. 70 % volatility as opposed to the previous 40 % level. This approximation should
cover all normal market requirements to a high level.

Table 10.4 Improved swaption pricing

Volatility Estimator LD�·� Estimator LA�·� Black’76

10 % 0.9333 % 0.9333 % 0.9314 %
15 % 1.3915 % 1.3915 % 1.3938 %
20 % 1.8577 % 1.8577 % 1.8524 %
25 % 2.3107 % 2.3107 % 2.3058 %
30 % 2.7533 % 2.7532 % 2.7529 %
35 % 3.2037 % 3.2035 % 3.1925 %
40 % 3.6297 % 3.6292 % 3.6235 %
45 % 4.0524 % 4.0509 % 4.0450 %
50 % 4.4698 % 4.4669 % 4.4559 %
55 % 4.8534 % 4.8482 % 4.8554 %
60 % 5.2499 % 5.2388 % 5.2428 %
65 % 5.6156 % 5.5977 % 5.6173 %
70 % 5.9643 % 5.9304 % 5.9784 %
75 % 6.3900 % 6.3412 % 6.3255 %
80 % 7.2654 % 7.1795 % 6.6583 %
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Figure 10.10 Error of improved swaption pricing.

10.15 LOGNORMAL APPROXIMATION

In the HJM model all discount factors are lognormal under all forward measures. Unfortu-
nately we do not have this nice property for BGM model – only the relevant forward LIBOR
rate is lognormal under a given forward measure. However, if street knowledge is to be
believed, all LIBOR and swap rates are ‘almost’ lognormal. The purpose of our calculations
in this section if to justify such a statement by finding an accurate lognormal approximation
of the distribution of forward LIBOR rates.

Theorem. Let T ≤ min�Tk�Tn�. Then the distribution of LIBOR rate Lk�T� under forward
measure En can be approximated as lognormal, given by the formula:

LD
k �T� = Lk�0� exp

⎛
⎝ T∫

0

�kn �t� T�dWn �t� − 1
2

Ckk�0� T� +
T∫

0

�0
kn �t� T�dt

⎞
⎠ � (10.97)

where

�kn �t� T� = �k �t� −
n∑

j=k+1

Cjk �t� T�
Kj �0�

1 + �Lj �0�
�j �t� (10.98)

and

�0
kn �t� T� =

n∑
j=k+1

Kj�0��j �t� ·
[
−�k�t� + Cjk�t� T�

1 + �Lj�0�

n∑
i=j

Ki�0��i�t�

]
(10.99)
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– in case of k < n or

�0
kn �t� =

k∑
j=n+1

Kj�0��j �t� ·
[

�k�t� + Cjk�t� T�

1 + �Lj�0�

j−1∑
i=n+1

Ki�0��i�t�

]
(10.100)

– in case of k > n.

Proof. Denote

�kn�t� 
= ��t�Tk� − ��t�Tn� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k∑
j=n+1

Kj�t��j�t�� n < k

0� n = k

− n∑
j=k+1

Kj�t��j�t�� n > k�

We find using integration by parts:

0 = Cjk�T�T�Kj�T� = Kj�0�Cjk �0� T� +
T∫

0

Cjk �t� T�dKj�t� +
T∫

0

Kj�t�dCjk �t� T��

hence

T∫
0

Kj�t��j �t� · �k �t�dt = −
T∫

0

Kj�t�dCjk �t� T� = Kj�0�Cjk �0� T� +
T∫

0

Cjk �t� T�dKj�t�

(10.101)

=
T∫

0

Kj�0��j �t� · �k �t�dt +
T∫

0

Cjk �t� T�dKj�t�

With a little bit of work we can thus achieve

dKj�t� = �dLj�t�(
1 + �Lj �t�

)2 − K2
j �t���j�t��2dt(
1 + �Lj�t�

)
= Kj �t��j �t�

1 + �Lj �t�
· (dWn �t� + �jn�t�dt

)− K2
j �t���j�t��2dt(
1 + �Lj�t�

)
= Kj �t��j �t�

1 + �Lj �t�
· (dWn �t� + (�jn�t� − Kj �t��j �t�

)
dt
)
�

hence ‘freezing’ LIBORs:

dKj�t�≈
Kj�0��j�t�·
1 + �Lj�0�

[
dWn�t� −

n∑
i=j

Kj�0��i�t�dt

]
� for j < n�

dKj�t�≈
Kj�0��j�t�·
1 + �Lj�0�

[
dWn�t� +

j−1∑
i=n+1

Kj�0��i�t�dt

]
� for j > n�
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Putting this into (10.101), then using (10.99) and (10.100) and grouping integrals we
obtain (10.97) which completes the proof.

10.16 COMPARISON

The presented models were examined on several instruments on basic data.
In order to test the LIBOR rate approximations we took a quarterly settlement �� = 0�25�

and flat initial interest rate and volatility structures: Li�0� = 6 %� �i�t� = 21 % and we simu-
lated LIBOR rates in arrears with 30Y maturity. We compared standard convexity adjustment
approach (Euler method), Predictor-Corrector, Brownian bridge, combined Brownian bridge-
predictor-corrector, direct Milstein method and lognormal approach (Daniluk and Gatarek
(2005)). Density of approximation errors is shown in the next chart.
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Figure 10.11 Comparison of methods.

The Brownian bridge method and then combined Brownian bridge-predictor-corrector meth-
ods seem to outperform the other approaches.

10.17 PRACTICAL EXAMPLE – CALIBRATION TO
CO-TERMINAL SWAPTIONS AND SIMULATION

In this subsection we calibrate binomial tree to co-terminal swaptions and use calibrated
tree to valuate Bermudian swaption. Since examples described in previous parts of this
section (pricing caplets and european swaption under flat interest rate term structure)
were pure theoretical and focused rather on showing accuracy of model than to be used
directly in practice, the calibration to European swaption market has the significant practical
importance.

Our calculations in this section were performed using estimators LA�·� supported by
annuities. We perform calibration with the following input data:
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Table 10.5 Input data

Swaption Forward Swap Rate Market Volatility Swaptions

9Y × 1Y 4.534240165 % 15.24 %
8Y × 2Y 4.527014194 % 15.42 %
7Y × 3Y 4.452167050 % 15.30 %
6Y × 4Y 4.372320332 % 15.24 %
5Y × 5Y 4.271427603 % 15.10 %
4Y × 6Y 4.161450501 % 15.50 %
3Y × 7Y 4.039418324 % 15.80 %
2Y × 8Y 3.906172246 % 16.20 %
1Y × 9Y 3.758046796 % 16.30 %

Additionally 1 Y spot rate is 2.2972 %
Forward Swap Rates was calculated from IRS and interbank deposits market using standard

bootstrapping algorithm, Market Volatility Swaptions is taken directly from market. Now,
using an elementary algorithm we calculate forward rates, and using calibration methodology
described in section 8.6 we calculate the instantaneous volatilities of these forward rates.
Results are presented below.

Table 10.6 Forward rates

Period Forward Rate Instantaneous Volatility of
The Forward Rate

9Y−10Y 4.5342 % 15.2400 %
8Y−9Y 4.5201 % 15.5937 %
7Y−8Y 4.3117 % 15.0635 %
6Y−7Y 4.1521 % 15.0626 %
5Y−6Y 3.9064 % 14.4856 %
4Y−5Y 3.6754 % 17.6026 %
3Y−4Y 3.3995 % 17.6187 %
2Y−3Y 3.1018 % 19.3789 %
1Y−2Y 2.7471 % 17.3572 %
0Y−1Y 2.2972 % N/A

Now when we know forward rates and their instantaneous volatilities the construction
of a binomial tree is straightforward. Below in Table 10.7 we compare European at the
money swaption prices calculated using the binomial tree method, a binomial tree method
with improvement and the closed formula for swaptions (Black). Prices are presented as
percentage of the swap notional.

Our aforementioned improvement of the calibration is performed as follows:

Define 	 as a vector of instantaneous volatilities of the forward rate. Let 	�10� be the volatil-
ity of the forward rate �9Y −10Y�� 	 �9� be the volatility of the forward rate �8Y − 9Y� etc.
� is a small constant number (in our case 0.001). Then algorithm of volatility improvement is
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Table 10.7 Values in tree nodes

Swaption Value (Black) Value (Tree) Value (Tree with improvement)

9Y × 1Y 0.572 % 0.573 % 0.572 %
8Y × 2Y 1.116 % 1.117 % 1.116 %
7Y × 3Y 1.564 % 1.565 % 1.564 %
6Y × 4Y 1.933 % 1.930 % 1.933 %
5Y × 5Y 2.184 % 2.170 % 2.184 %
4Y × 6Y 2.396 % 2.384 % 2.396 %
3Y × 7Y 2.448 % 2.433 % 2.448 %
2Y × 8Y 2.312 % 2.299 % 2.312 %
1Y × 9Y 1.816 % 1.799 % 1.816 %

Algorithm 10.1
For i = 10 to 2 step -1

V = Value of i –th swaption calculated on the tree using volatility vector 	

	̃ is defined as follow: for j = 2 to 10: 	̃�j� =
{

	�j�� if j �= i

	�j� + � if j = i

Ṽ = Value of i-th swaption calculated on the tree using volatility vector 	̃

Vega = Ṽ − V

�

V76 = Value of i-th swaption calculated using Black for swaption formula
(with swaption volatility taken directly from the market)

	 �i� = 	 �i� + V − V76
Vega

Next i

End of algorithm 10.1

After calculation 	 �i� is the improved volatility vector.

By the ‘i-th swaption’ we understood 9Y × 1Y for i = 10� 8Y × 2Y for i = 9 etc.
Our accuracy of such an improved calibration is very close to perfect; the differences

between the price of the European options calculated analytically and using the tree are
presented in Table 10.8 below.

Now we can use the constructed and calibrated tree to valuation a Bermudian swaption
with following details:

– Right to receive floating leg and pay fixed leg
– Strike 4.25 %
– Maturity of the Swap: 10Y
– Moments when swaption can be exercised: 3Y, 4Y, 5Y, 6Y, 7Y, 8Y, 9Y
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Table 10.8 Pricing errors

Swaption Difference between tree and analytical formula
(in % of swap notional)

9Y × 1Y 0�000000387 %
8Y × 2Y 0�000000385 %
7Y × 3Y −0�000000159 %
6Y × 4Y 0�000000133 %
5Y × 5Y 0�000011210 %
4Y × 6Y 0�000000080 %
3Y × 7Y 0�000000362 %
2Y × 8Y 0�000000006 %
1Y × 9Y −0�000000251 %

Results:

Table 10.9 Results

Calibration without improvement 2.890 %
Calibration with improvement 2.907 %





11
The One Factor LIBOR

Markov Functional Model

In this section we describe a functional market model that can be easily calibrated to
market volatility and allow the pricing of derivatives effectively just like short rate models.
The main characteristic of the functional market model family is that discount factors or
forward LIBORs are at any time deterministic functions of a low-dimensional process being
Markovian in some martingale measure – for practical reasons we focus on the terminal
measure. This allows implementation of the model using standard ideas, such as binomial
or trinomial trees, that is important for all valuations requiring using optimal stopping rules,
e.g. American or Bermudian. Market models themselves does not possess this property and
their exact implementation leads to constructing extremely inefficient non recombining trees.
On the other hand there exist very reasonable approximations of market models (some of
them are described in Chapter 10. Approximations of the BGM model) where approximated
forward LIBORs and discount factors are deterministic functions of Markovian martingales.

Theoretically, the calibration of functional market models is more than straightforward: it
is a part of model construction. However, direct implementation of the model construction
can lead to significant mispricing (see subsection ‘Binomial tree construction – approach 1’
below).

The interesting feature of the functional market models is that, unlike the case of majority
of used models, there are no closed formulas for the SDEs driving interest rates or discount
factors, so users and researches can rely only on numerical calculations. This fact can reduce
the understanding of the risk factor behaviour under the functional Markov models. For
example, the distribution of the forward LIBOR at its reset date is known and is exactly
the same as under the BGM model (approximately lognormal), but distribution of the same
forward LIBOR at any time before reset is difficult to observe under a functional Markov
model while under BGM it remains still more or less lognormal.

11.1 LIBOR MARKOV FUNCTIONAL MODEL CONSTRUCTION

In this section we will construct a model that:

– is arbitrage free
– is easy to calibrate with market volatilities
– has all forward LIBOR rates being (under the forward measure associated with the

numeraire being a zero coupon bond maturing at TN ) deterministic functions of the
stochastic process:

MN �t� =
t∫

0

��u�dWN �u� (11.1)
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and can be expressed as Li �t�MN �t��. This function is monotonically increasing in respect
to second argument. Presented construction is basing on Hunt, Kennedy and Pelsser (2000).
Other publications that deal with the problem are Balland and Hughston (2000) and Brigo
and Mercurio (2003).

In order to calibrate to market volatilities let us calculate:

Ji �M
∗� = B�T0� TN �EN

(
1MN �Ti−1�>M∗

1
B �Ti�TN �

)

= B �T0� TN �EN

(
1MN �Ti−1�>M∗EN

(
1

B �Ti�TN �

∣∣∣∣FTi−1

)) (11.2)

where Ji �M
∗� is a value of digital caplet with maturity Ti−1 and strike price Li �Ti−1�M∗�.

So according to the Black formula:

Ji �M
∗� = B �T0� Ti�N

⎛
⎜⎜⎝

ln
(

Li �T0� 0�

Li �Ti−1�M∗�

)
�i

√
Ti−1 − T0

− 1
2

�i

√
Ti−1 − T0

⎞
⎟⎟⎠ (11.3)

From (11.3) we can calculate

Li �Ti−1�M∗� = Li �T0� 0� exp
(

−1
2

�2
i �Ti−1 − T0� − �i

√
Ti−1 − T0N

−1

(
Ji �M

∗�
B �T0� Ti�

))
(11.4)

Formulae (11.2) and (11.4) define functions Li �t� x� in the following way:
Let us assume that all functions Li+1 �t� x��Li+2 �t� x�� � � � �LN �t� x� are defined for all x

and all t where the appropriate forward LIBOR is alive. According to formulas (11.2) and
(11.4) the function Li �t� x� can be calculated for each x and t = Ti−1. Li �t� x� for t < Ti−1

and can be calculated in the following way:
Let us define:

AN
j �t� x� =

N∏
k=j

�1 + �Lk �t� x�� (11.5)

with the note that if j > N then AN
j �t� x� = 1	

According to our assumption AN
i+1 �t� x� is calculated for all x and t. Additionally

AN
i �Ti−1� x� is also defined for all x. Since AN

i �t�MN �t�� is TN - martingale then AN
i �t� x�

can be calculated for all x and all t < Ti−1:

AN
i �t� x� = EN

(
AN

i �Ti−1�MN �Ti−1��
∣∣MN �t� = x

)
(11.6)
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Now, following (11.5) we achieve the following result

Li �t� x� = 1
�

(
AN

i �t� x�

AN
i+1 �t� x�

− 1
)

(11.7)

11.2 BINOMIAL TREE CONSTRUCTION – APPROACH 1

Let us assume that � �t� ≡ 1. Then formula (11.1) converts into

MN �t� = WN �u�

and forward LIBOR can be modelled using a binomial tree. Forward LIBORs Li �t�WN �t��
will be approximated by the discrete processes:

L̂i

(
m�Ŵ �m� l�

)

Where Ŵ �m� is a Markov chain approximating Brownian motion. It is defined as

Ŵ �0� = 0

Ŵ �m� =
{

Ŵ �m − 1� + √

t with probability = 0	5

Ŵ �m − 1� − √

t with probability = 0	5

Ŵ �m� l� = l
√


t

and m and l are horizontal and vertical coordinates of the tree:

l = 5

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

l = 4

l = 3

l = 2

l = 1

l = 0

l = –1

l = –2

l = –3

l = –4

l = –5

Figure 11.1 Binomial tree
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For the sake of clarity and notation let us abbreviate:

L̂ �m� l� = L̂
(
m�Ŵ �m� l�

)
Values L̂i �m� l� will be calculated recursively using backward induction on the tree. Let
us assume that all values L̂i �m + 1�·� are known. Now we calculate all values L̂i �m�·�. In
addition let us assume that Tj−1 ≤ m
t < Tj , i.e. we have

Tj –1 Tj Tj +1

Lj Lj +1

mΔt

Figure 11.2 Time grid.

Now we will proceed in two steps:

1) Calculate forward LIBORs L̂j+1 �m�·�� � � � � L̂N �m�·� based on the values
L̂j+1 �m + 1�·�� � � � � L̂N �m + 1�·� calculated during previous induction step

2) Additionally if m
t = Tj−1 calculate LIBOR L̂j �m�·� basing on market volatil-
ity for digital caplets and forward LIBORs L̂j+1 �m�·� � � � � � L̂N �m�·� calculated
during step 1)

Part (1)

Following formula (11.6) we can calculate (for t ≤ Tj − 
t, i = j + 1� � � � N�

AN
i �t� x� = EN

(
AN

i

(
Tj�MN

(
Tj

))∣∣MN �t� = x
)

= EN

(
EN

(
AN

i

(
Tj�MN

(
Tj

))∣∣Ft+
t

)∣∣MN �t� = x
) (11.8)

Since AN
i �t�MN �t�� is TN then martingale (11.8) converts into

AN
i �t� x� = EN

(
AN

i �t + 
t�MN �t + 
t��
∣∣MN �t� = x

)
(11.9)

The stochastic process AN
i �t�MN �t�� will be approximated on the tree by the process

ÂN
i

(
m�Ŵ�m�·�

)
following the equation:

ÂN
i

(
m�Ŵ�m� l�

)
= EN

(
ÂN

i

(
m + 1� Ŵ �m + 1�·�

) ∣∣Ŵ �m�·� = l
√


t
)

= 1
2

ÂN
i

(
m + 1� Ŵ �m + 1� l + 1�

)
+ 1

2
ÂN

i

(
m + 1� Ŵ �m + 1� l − 1�

) (11.10)
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By analogy to formula (11.5) we thus have the following result:

L̂i �m� l� = 1
�

⎛
⎝ ÂN

i

(
m�Ŵ�m� l�

)
ÂN

i+1

(
m�Ŵ�m� l�

) − 1

⎞
⎠ (11.11)

Part (2)

Let us define

Ĵi �l� = B �T0� TN �EN

(
1Ŵ�mTi−1

�·�≥l
√


tÂ
N
i+1

(
mTi

�·))
= B �T0� TN �EN

(
1Ŵ�mTi−1

�·�≥l
√


tEN

(
ÂN

i+1

(
mTi

� ·) ∣∣FTi−1

))
= B �T0� TN �EN

(
1Ŵ�mTi−1

�·�≥l
√


tÂ
N
i+1

(
mTi−1

� ·))
(11.12)

where mTi
is a number of time steps on the tree corresponding to time Ti. It means that

mTi
= Ti


t

From (11.12)

Ĵj �l� = B �T0� TN �EN

(
1

Ŵ
(
mTj−1�·

)
≥ l

√

t

ÂN
j+1

(
mTj−1

�·
))

(11.13)

Values ÂN
j+1

(
mTj−1

�·
)

have been calculated during step 1).
From the features of the binomial tree:

EN

(
1

Ŵ
(
mTj−1�·

)
≥l

√

t

ÂN
j+1

(
mTj−1

�·
))

= 2−mTj−1

mTj−1∑
k=

mTj−1
+l

2

(
mTj−1

k

)
ÂN

j+1

(
mTj−1

� k
)

(11.14)

On the other hand Ĵj �l� is the price of a digital caplet with maturity Tj−1 and strike price

equal to L̂j

(
mTj−1

� l
)

. From (11.13), (11.14) and the formula for the digital caplet price we

obtain formula for j-th LIBOR corresponding to node
(
mTj−1

� l
)

:

L̂j

(
mTj−1

� l
)

= Lj �T0� exp

(
−1

2
�2

j

(
Tj−1 − T0

)− �j

√
Tj−1 − T0N

−1

(
Ĵj �l�

B
(
T0� Tj

)
))

(11.15)
Ĵj �l� = 2−mTj−1 B �T0� TN �

mTj−1∑
k=

mTj−1
+l

2

(
mTj−1

k

)
ÂN

j+1

(
mTj−1

� k
)
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And analogically to formula (11.5)

ÂN
j

(
mTj−1

� l
)

= ÂN
j+1

(
mTj−1

� l
)(

1 + �Lj

(
mTj−1

� l
))

for j ≤ N

ÂN
N+1

(
mTN−1�l

)= 1
(11.16)

Example 11.1

In this example we construct part of a binomial tree. This example tree models four forward
6M LIBORs L1�L2�L3�L4, thus we have N = 4. We assume that time step of the tree

t = 0	25. It means that there are two time steps within each LIBOR period. The initial
values of the forward LIBOR are all equal 5 %. We assume that the market volatility of each
caplet is 20 %. Calculations yield

BN �T0� T4� =
4∏

k=1

1
1 + 0	5Lk �T0�

= 0	90595	

Now, let us focus on the upper right part of the tree (see Figures 11.3 and 11.4).

For node �m = 6� l = 6�:

From formula (11.15)

Ĵ4 �6� = 2−6 · 0	90595 ·
(

6
6

)
· 1 = 0	014155

L̂4 �6� 6� = 0	05 · exp
(

−1
2

· 0	22 · 1	5 − 0	2 · √1	5 · N−1

(
0	014155
0	90595

))
= 0	082238	

(11.17)

From (11.16) and (11.17)

Â4
4 �6� 6� =

(
1 + 1

2
· 0	082238

)
= 1	041119	 (11.18)

For node �m = 6� l = 4�

Ĵ4 �4� =2−6 · 0	90595 ·
((

6

6

)
· 1 +

(
6
5

)
· 1

)
= 0	099088

L̂4 �6� 4� =0	05 · exp
(

−1
2

· 0	22 · 1	5 − 0	2 · √1	5 · N−1

(
0	099088
0	90595

))
= 0	06558

(11.19)

Â4
4 �6� 4� =

(
1 + 1

2
· 0	06558

)
= 1	03279 (11.20)
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l = 6

l = 5

l = 4

l = 3

l = 2

l = 1

l = 0

l = –1

l = –2

l = –3

l = –4

l = –5

l = –6

m = mT3
 = 6m = mT2

 = 4 m = 5m = mT1
 = 2 m = 3m = mT0

 = 0 m = 1

T0 T1 T2 T3

L1 L2 L3 L4

T4

Figure 11.3 Tree for calculations

For node �m = 6� l = 2�

Ĵ4 �2� = 2−6 · 0	90595 ·
((

6
6

)
· 1 +

(
6
5

)
· 1 +

(
6
4

)
· 1
)

= 0	311421

L̂4 �6� 2� = 0	05 · exp
(

−1
2

· 0	22 · 1	5 − 0	2 · √1	5 · N−1

(
0	311421
0	90595

))
= 0	053547

(11.21)

Â4
4 �6� 2� =

(
1 + 1

2
· 0	053547

)
= 1	026773 (11.22)
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For node �m = 6� l = 0�

Ĵ4 �0� = 2−6 · 0	90595 ·
((

6
6

)
· 1 +

(
6
5

)
· 1 +

(
6
4

)
· 1 +

(
6
3

)
· 1
)

= 0	59453

L̂4 �6� 0� = 0	05 · exp
(

−1
2

· 0	22 · 1	5 − 0	2 · √1	5 · N−1

(
0	59453
0	90595

))
= 0	043969

(11.23)

Â4
4 �6� 0� =

(
1 + 1

2
· 0	043969

)
= 1	021985 (11.24)

The calculations for nodes �m = 6� l =−2�� �m = 6� l =−4�� �m = 6� l =−6� are analogous
to that presented above.

Now for node �m = 5� l = 5�:

From formulae (11.10), (11.18) and (11.20)

Â4
4 �5� 5� = 0	5 · Â4

4 �6� 6� + 0	5 · Â4
4 �6� 4� = 0	5 · 1	041119 + 0	5 · 1	03279

= 1	036954
(11.25)

And from formulae (11.11) and (11.25)

L̂4 �5� 5� = 1
0	5

·
(

Â4
4 �5� 5�

Â4
5 �5� 5�

− 1

)
= 2 ·

(
1	036954

1
− 1

)
= 0	073909 (11.26)

For node �m = 5� l = 3�

Â4
4 �5� 3� = 0	5 · Â4

4 �6� 4� + 0	5 · Â4
4 �6� 2� = 1	029782 (11.27)

L̂4 �5� 3� = 1
0	5

·
(

1	029782
1

− 1
)

= 0	059563 (11.28)

For node �m = 5� l = 1�

Â4
4 �5� 1� = 0	5 · Â4

4 �6� 2� + 0	5 · Â4
4 �6� 0� = 1	024379 (11.29)

L̂4 �5� 1� = 1
0	5

·
(

1	024379
1

− 1
)

= 0	048758 (11.30)

Again the calculations for the similar nodes �m = 5� l = −1�� �m = 5� l = −3�� �m = 5�
l = −5� are analogous and we leave them as exercise for the reader.

Now, for node �m = 4� l = 4� from (11.10), (11.25) and (11.27), we calculate

Â4
4 �4� 4� = 0	5 · Â4

4 �5� 5� + 0	5 · Â4
4 �5� 3� = 1	033368 (11.31)
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From (11.11) and (11.31)

L̂4
4 �4� 4� = 1

0	5
·
(

Â4
4 �4� 4�

Â4
5 �4� 4�

− 1

)
= 0	066736 (11.32)

From (11.15) and (11.31)

Ĵ3 �4� = 2−4 · 0	90595 ·
(

4
4

)
· Â4

4 �4� 4� = 0	058511 (11.33)

From (11.15) and the fact that

B �T0� T3� = 1

�1 + 0	5 · 0	05�3 = 0	928599 (11.34)

L̂3 �4� 4� = 0	05 · exp
(

−1
2

· 0	22 · 1 − 0	2 · √1 · N−1

(
0	058511
0	928599

))
= 0	066554 (11.35)

From (11.16), (11.31) and (11.35)

Â4
3 �4� 4� = �1 + 0	5 · 0	066554� · 1	033368 = 1	067756 (11.36)

For node �m = 4� l = 2� from (11.10), (11.27) and (11.29)

Â4
4 �4� 2� = 0	5 · Â4

4 �5� 3� + 0	5 · Â4
4 �5� 1� = 1	02708 (11.37)

From (11.11) and (11.37)

L̂4
4 �4� 2� = 1

0	5
·
(

Â4
4 �4� 2�

Â4
5 �4� 2�

− 1

)
= 0	054161 (11.38)

From (11.15), (11.31) and (11.37)

Ĵ3 �2� = 2−4 · 0	90595 ·
((

4
4

)
· Â4

4 �4� 4� +
(

4
3

)
· Â4

4 �4� 2�

)
= 0	291132 (11.39)

From (11.15), (11.34) and (11.39)

L̂4
3 �4� 2� = 0	05 · exp

(
−1

2
· 0	22 · 1 − 0	2 · √1 · N−1

(
0	291132
0	928599

))
= 0	054012 (11.40)

From (11.16), (11.37) and (11.40)

Â4
3 �4� 2� = �1 + 0	5 · 0	054012� · 1	02708 = 1	054818 (11.41)



214 The LIBOR Market Model in Practice

We can represent these calculations on the following diagram:

m = 5, l = 3

Â4 (5,3) = 1.029782
4

4L̂4 (5,3) = 0.059563

m = 5, l = 1

Â4 (5,1) = 1.024379
4

4L̂4 (5,1) = 0.048758

m = 5, l = 5

Â4 (5,5) = 1.036954
4

4L̂4 (5,5) = 0.073909m = 4, l = 4

Â4 (4,4) = 1.033368
4

Â3 (4,4) = 1.067756
4

L̂4 (4,4) = 0.66736

L̂3 (4,4) = 0.066554

Ĵ3 (4) = 0.058511

m = 6, l = 6

Â4 (6,6) = 1.041119
4

L̂4 (6,6) = 0.082238

Ĵ4 (6) = 0.014155

m = 6, l = 4

Â4 (6,4) = 1.03279
4

L̂4 (6,4) = 0.06558

Ĵ4 (4) = 0.099088

m = 6, l = 2

Â4 (6,2) = 1.026773
4

L̂4 (6,2) = 0.053547

Ĵ4 (2) = 0.311421

m = 6, l = 0

Â4 (6,0) = 1.021985
4

L̂4 (6,0) = 0.043969

Ĵ4 (0) = 0.59423

m = 4, l = 2

Â4 (4,2) = 1.02708
4

Â3 (4,2) = 1.054818
4

L̂4 (4,2) = 0.054161

L̂3 (4,2) = 0.054012

Ĵ3 (2) = 0.291132

Figure 11.4 Tree with data

End of example

Numerical results

In order to test our binomial tree construction described above we construct a tree for the
following input parameters:

– flat interest rate term structure (each forward 6M LIBOR equal to 5 %)
– terminal measure is associated with a 10 year zero-coupon Bond
– market volatilities for digital caplets equal to 20 % and 50 %

The constructed tree has been used to price a plain vanilla caplet with a maturity of 4.5
years for different strike prices. Results are presented below.
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For volatility = 20 %

Table 11.1 Low volatility

Strike Price Tree Black’76

4.50 % 0.365 % 0.419 %
4.60 % 0.346 % 0.399 %
4.70 % 0.330 % 0.380 %
4.80 % 0.314 % 0.362 %
4.90 % 0.297 % 0.345 %
5.00 % 0.281 % 0.328 %
5.10 % 0.268 % 0.312 %
5.20 % 0.255 % 0.297 %
5.30 % 0.241 % 0.283 %
5.40 % 0.228 % 0.269 %

For volatility = 50 %

Table 11.2 High volatility

Strike Price Tree Black’76

4.50 % 0.755 % 0.851 %
4.60 % 0.743 % 0.838 %
4.70 % 0.730 % 0.825 %
4.80 % 0.720 % 0.813 %
4.90 % 0.710 % 0.801 %
5.00 % 0.700 % 0.789 %
5.10 % 0.690 % 0.778 %
5.20 % 0.680 % 0.767 %
5.30 % 0.670 % 0.755 %
5.40 % 0.660 % 0.745 %

As previously mentioned this shows that the construction of the tree leads to significant
mispricing.

11.3 BINOMIAL TREE CONSTRUCTION – APPROACH 2

In order to improve the calculation accuracy we decide to provide some improvement in
the tree construction. All calculations remain the same except formula (11.15). Now this
formula is used to calculate auxiliary variables:

L̂j

′ (
mTj−1

� l
)

= Lj �T0� exp

(
−1

2
�2

j

(
Tj−1 − T0

)− �j

√
Tj−1 − T0N

−1

(
Ĵj �l�

P
(
T0� Tj

)
))

Ĵj �l� = 2−mTj−1 P �T0� TN �

mTj−1∑
k=

mTj−1
+l

2

(
mTj−1

k

)
ÂN

j+1

(
mTj−1

� k
)

(11.42)
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The calculations of LIBOR corresponding to a given node are performed based on results
calculated using formula (11.42):

L̂j

(
mTj−1

� l
)

=

⎧⎪⎨
⎪⎩

3

2
L̂j

′ (
mTj−1

� l
)

− 1
2

L̂j

′ (
mTj−1

� l − 2
)

if mTj−1
= l

1
2

L̂j

′ (
mTj−1

� l
)

+ 1
2

L̂j

′ (
mTj−1

� l + 2
)

otherwise
(11.43)

These changes provide a significant improvement in the accuracy of the pricing. For the
same case as in approach 1 the results are:

For volatility = 20 %

Table 11.3 Low volatility – second approach

Strike Price Tree Black’76

4.50 % 0.421 % 0.419 %
4.60 % 0.402 % 0.399 %
4.70 % 0.382 % 0.380 %
4.80 % 0.363 % 0.362 %
4.90 % 0.347 % 0.345 %
5.00 % 0.331 % 0.328 %
5.10 % 0.314 % 0.312 %
5.20 % 0.298 % 0.297 %
5.30 % 0.284 % 0.283 %
5.40 % 0.271 % 0.269 %

For volatility = 50 %

Table 11.4 High volatility – second approach

Strike Price Tree Black’76

4.50 % 0.856 % 0.851 %
4.60 % 0.843 % 0.838 %
4.70 % 0.830 % 0.825 %
4.80 % 0.817 % 0.813 %
4.90 % 0.804 % 0.801 %
5.00 % 0.792 % 0.789 %
5.10 % 0.781 % 0.778 %
5.20 % 0.771 % 0.767 %
5.30 % 0.760 % 0.755 %
5.40 % 0.749 % 0.745 %

Our approximation was also tested on the example of an at-the-money 4.5 year option on 3
years swap under the flat yield curve equal to 5 % and the results are:
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For volatility = 20 %

Table 11.5 Low volatility – second approach

Strike Price Tree Black’76

4.50 % 2.382 % 2.364 %
4.60 % 2.274 % 2.253 %
4.70 % 2.166 % 2.146 %
4.80 % 2.059 % 2.044 %
4.90 % 1.963 % 1.946 %
5.00 % 1.873 % 1.852 %
5.10 % 1.784 % 1.763 %
5.20 % 1.694 % 1.677 %
5.30 % 1.608 % 1.595 %
5.40 % 1.535 % 1.517 %

For volatility = 50 %

Table 11.6 High volatility – second approach

Strike Price Tree Black’76

4.50 % 4.940 % 4.803 %
4.60 % 4.872 % 4.731 %
4.70 % 4.804 % 4.660 %
4.80 % 4.736 % 4.590 %
4.90 % 4.668 % 4.522 %
5.00 % 4.600 % 4.456 %
5.10 % 4.532 % 4.391 %
5.20 % 4.468 % 4.327 %
5.30 % 4.414 % 4.265 %
5.40 % 4.359 % 4.204 %

However, although the accuracy of approach 2 is much better than the accuracy of approach 1
it is still far from the accuracy of Brownian Bridge approach described in Chapter 10.





12
Optimal Stopping and

Pricing of Bermudan Options

Pricing of Bermudan options in the interest rate market is related to the optimization problem
in large dimensions because of the high number of risk factors in the interest rate world. We
are going to describe briefly the most popular pricing methods. Consider option price given
by the formula:

Option = E
{
X−1

0 �Tk��
}

with the intrinsic value �. Obviously

Option = B�0� Tn�En

{
X0�Tn��

X0�Tk�

}
= B�0� Tn�En

{
�

n∏
i=k+1

Di�Tk�

}
�

By Doob the optional sampling theorem the same formula holds if � is a stopping time with
values in T1� T2� � � � � Tn

Option = E
{
X−1

0 ����
}= B�0� Tn�En

{
�

n∏
Ti>�

Di���

}
� (12.1)

In conclusion – if we price options under the forward measure, discounting may be extracted
from the expected value; hence all pricings of Bermudan options may be reduced to the
following problem of optimal stopping in discrete time:

Let Xn be a Markov process on Rd
+. Define

Vn�x� = sup
n≤�≤N

E 	C��X���Xn = x
 � (12.2)

where the supremum is taken over the set of all stopping times with values in 	n� � � � �N
.
Then Vn�x� is the value of the option at date n in state x, given that the option was not
exercised at 0� 1� � � � � n − 1. Our objective is to find V0�x�. The option values satisfy the
dynamic programming equations Longstaff and Schwartz (2001). Define

Vn�x� = sup
n≤�≤N

E 	C��X���Xn = x
 �

Un�x� = sup
n<�≤N

E 	C��X���Xn = x
 = E
[
Vn+1�Xn+1��Xn = x

]= TnVn�x��

Then

VN �x� = CN �x��

Vn�x� = max �Cn�x��Un�x�
 �
(12.3)
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Taking formula (12.1) into consideration we have not included discount factors. If, in
addition, we define

Stopn = {x ∈ Rd � Vn�x� = Cn�x�
}

�

Contn = {x ∈ Rd � Vn�x� = Un�x�
}

�

Then the set Boundn =Contn ∩Stopn = {x ∈ Rd � Vn�x� = Un�x� = Cn�x�
}

is called the stop-
ping boundary. The stopping time

�∗ = min �n ≥ 0 � Xn ∈ Stopn
 �

is the optimal stopping time to exercise the option, i.e.

V0�x� = E
⌊
CN∧�∗�XN∧�∗��X0 = x

⌋
�

The problem thus consists in fact of calculation of Un�x�.

Remark 1. By (12.3), V is represented as

Vn�x� = max�Cn�x��Un�x�
 = Cn�x� + Q+
n �x�� (12.4)

where Qn�x� = Un�x� − Cn�x� is called time-value of the option. In most cases

Q+
n �x� → 0 as x → 
 or x → 0� (12.5)

12.1 TREE/LATTICE PRICING

Continuous mathematics is a proper tool for human imagination but numerical calculations
require a discrete state space. Discretisation of the problem normally follows the following
algorithm:

1. For every time step n define N�n� grid points Xk
n.

2. Calculate transition probabilities Xp
n �→ Xk

n+1 as P
(
Xk

n+1�Xp
n

)
.

3. Calculate Un�X
p
n� = N∑

k=1
Vn+1�X

k
n+1�P�Xk

n+1�Xp
n�.

We may list several practical problems associated to discretization scheme:

• Number of N�n� grid points may increase with n (trees) or be constant (lattices).
• Transition probabilities are often null for most transitions Xp

n �→ Xk
n+1.

• There are many methods of calculation of transition probabilities:

– Preserving likehood ratios,
– Preserving moments,
– Preserving probabilities.

Tree simulation method presented in section 3 is especially useful in pricing of Bermudan
products. We refer to Glasserman (2003) for detailed discretisation formulae and algorithms.
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12.2 STOCHASTIC MESHES

The Stochastic mesh is described in Glasserman (2003) as a Monte Carlo counterparty
to tree/lattice pricing. It is based on the concept that Monte Carlo paths are somehow
‘typical’ for the dynamics of the process. The Stochastic mesh algorithm is very similar to
deterministic methods:

1. Generate N independent realizations Xk
n of random trajectory Xn.

2. Calculate transition probabilities Xp
n �→ Xk

n+1 as P
(
Xk

n+1�Xp
n

)
.

3. Calculate Un�X
p
n� = N∑

k=1
Vn+1�X

k
n+1�P�Xk

n+1�Xp
n�.

Point 2 forms the major problem, since the Monte Carlo simulation gives no transition
probability between the simulated grid points Xk

n. The most popular is the preserved likehood
ratio approach with

P
(
Xk

n+1�Xp
n

)= f
(
Xk

n+1�Xp
n

)
N∑

i=1
f
(
Xi

n+1�Xp
n

) �

where f
(
Xk

n+1�Xp
n

)
is the transition density for the continuous dynamics.

S

S0

t
0

t
1

t
2

t
3

t
4

Figure 12.1 Example of a stochastic mesh that could be used for pricing

12.3 THE DIRECT METHOD

The direct method is conceptually very simple – it consists of parameterization of the
stopping boundary Stopn��� with a family of parameters � and find its optimal value by
optimization. For swaptions in the BGM model this is called the Andersen (1999/2000)
method. Namely

�k
� = min

{
n ≥ 0 � Xk

n ∈ Stopn���
}
�
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V��� = 1
M

M∑
k=1

CN∧�k
�

(
Xk

N∧�k
�

)

and

V0�X0� = min
�

V����

Of course the difficulty lies in details and finding the proper parameterization thus making
a nontrivial numerical problem.

12.4 THE LONGSTAFF-SCHWARTZ METHOD

The Longstaff-Schwartz method Longstaff and Schwartz (2001); Carriere (1996) is based
on a completely different concept. First notice that

Un�Xn� = E �Vn+1�Xn+1��Xn� �

Hence

min
H

E �Vn+1�Xn+1� − H�Xn��
2 = E �Vn+1�Xn+1� − Un�Xn��

2 �

Obviously, we do not know all paths of a stochastic process but via Monte Carlo simulation
can create some of them. Let Xk

n be independent realizations of random variable Xn. The
Longstaff-Schwartz algorithm consists of calculation of Un�x� as

Un�X
k
n� = Vn+1�X

k
n+1� + �k = H���Xk

n�� (12.6)

where H is deterministic function and � is a vector parameter. In the original Longstaff-
Schwartz article H is a linear function of � and a family of polynomials, this assumption
may be relaxed. The parameter � is calculated in the standard error minimization:

M∑
k=1

(
Vn+1�X

k
n+1� − H���Xk

n�
)2 → min (12.7)

In the original linear parameterization the function H is of a linear form with respect to �:

H���x� =
d∑

i=1

�iHi �x��

where Hi �x� is a basis function. Longstaff and Schwartz propose:

• Polynomials,
• Polynomials multiplied by a decay function,
• Trigonometric series.
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Then the optimization problem:

N∑
k=1

(
Vn+1�X

k
n+1� −

d∑
i=1

�iHi

(
Xk

n

))2

→ min

is equivalent to a set of linear equations

M∑
k=1

Hj�X
k
n�

(
Vn+1�X

k
n+1� −

d∑
i=1

�iHi

(
Xk

n

))= 0

for all j. Hence

d∑
i=1

�i

M∑
k=1

Hi

(
Xk

n

)
Hj

(
Xk

n

)= M∑
k=1

Hi

(
Xk

n

)
Vn+1

(
Xk

n+1

)
�

In matrix notation: BA = C, where

A = 	�1� � � � ��d
 �

bij =
M∑

k=1

Hi

(
Xk

n

)
Hj

(
Xk

n

)
�

ci =
M∑

k=1

Hi

(
Xk

n

)
Vn+1

(
Xk

n+1

)
�

Hence A = B−1C. Longstaff-Schwartz reduce sample paths to in-the-money: Xk
n ∈ Contn,

which will be explained later. The dimension of the problem may be reduced by introduction
of synthetic explanatory variables. This is made clearer by the means of the following
example:

Example. Let the payoff function be of the form:

Cn�x� = �g�x� − K�+

for the call option and

Cn�x� = �K − g�x��+

for the put option, where x represents the term structure of interest rates and g�x� represents
the underlying, e.g. swap rate, CMS spread, etc. then we may set the function H of the form:

H���x� = Cn �x� + Q�g�x�� �

We may set:

H���x� =
{

K − g�x� for g�x� < �0�

�K − �0� exp ��0��0 − g�x�� for g�x� > �0
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for call options and for put options we have

H���x� =
{

g�x� − K for g�x� > �0�

��0 − K� exp ��0�g�x� − �0�� for g�x� < �0

The numbers �0 and �0 may be found by optimization. Stylized experimental facts support
such choice of function. By the use of explanatory variables, optimization was reduced to
a two-dimensional problem. We note that the choice of explanatory variables should follow
market intuition rather than scientific methods.

The accuracy may be improved if we then calculate

V0�X0� = 1
M

M∑
k=1

CN∧�k∗

(
Xk

N∧�k∗

)
�

Where �k
∗ = min

{
n ≥ 0 � Xk

n ∈ Stopn

}
. This makes the Longstaff-Schwartz method a direct

one in some sense. Indeed – we do not calculate the value functions Vn but only determine
the stopping boundary Boundn and then calculate the initial value V0�X0� by Monte Carlo
simulation. This justifies why we may reduce sample paths to in-the-money and even more
restrictive reductions are also possible. Therefore the choice of basis functions H �x��� is
not that important – since they are used to determine the stopping boundary only.

12.5 ADDITIVE NOISE

If we assume noise to be additive, we may calculate directly the approximate value functions
for Bermudan options in a standard dynamic programming approach. The dynamics of a
multidimensional financial parameter X�n�= �X1�n��X2�n�� � � � �Xm�n�� are assumed to be
given by the following recursive formula:

X�n� = Fn�X�n − 1�� + �n�X�n − 1��� (12.8)

where �n�x� ∈ Rm is a sequence of independent zero mean vector normal variables with
covariance matrix �n�x�∈Rm×m. The process X itself is not simulated. We rely strongly on
recursive formula of the type (12.3), which may be considered restrictive in theory, but this
is the most common practice, coming from discretization of stochastic Ito equations.

Providing the payoff function C is known, the problem reduces to calculation of

U�x� = E
[
Vn+1�X�n + 1���X�n� = x

]= TV�x� = E 	V�F�x� + ��x��
 �

(where we have dropped the indices from V , F and � for clarity).
We use the analytical properties of Hermite polynomials, Wick formula and their relations

with normal variables. The Hermite polynomials are defined by the recurrence relations1

H0�x� = 1�

H1�x� = 2x�

Hn+1�x� = 2xHn�x� − 2nHn−1�x��

(12.9)

1 http://mathworld.wolfram.com/.
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Figure 12.2 Hermite polynomials

Here are formulae for the next Hermite polynomials:

H2�x� = 4x2 − 2�

H3�x� = 8x3 − 12x�

H4�x� = 16x4 − 48x2 + 12�

H5�x� = 32x5 − 160x3 + 120x�

Their crucial property is that they are orthogonal in the range �−
�+
� with respect to the
weighting function e−x2

+
∫
−


Hn�x�Hm�x�e−x2
dx = �nm2nn!√� = �nmKn� (12.10)

Another important property is the equality:

Hn�x + y� =
n∑

k=0

(
n
k

)
Hk�x��2y�n−k (12.11)

Hermite polynomials are also defined in dimension m by

Hn�x� =
m∏

i=1

Hni
�xi� with n = �n1� � � � � nm� and x = �x1� � � � � xm�� (12.12)

(where we use boldface for vector polynomials in order to avoid any confusion).
In our approach we approximate the option payoff V by a linear combination of Hermite

polynomials in dimension m. Let �i be weights such that:

V�x�≈
n∑

i=0

�iHi�x�� (12.13)
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Recall that both x and n are multidimensional, i.e. n= �n1� � � � � nm� and x= �x1� � � � � xm�, so
summation is also multidimensional. Since Hermite polynomials form an orthogonal basis

in the Hilbert space of square integrable functions on Rm with weight e−x2 = m∏
i=1

e−x2
i then

we have

�i = K−1
i

+
∫
−


V�x�Hi�x�e−x2
dx = K−1

i

+
∫
−


� � �

+
∫
−


V�x�Hi�x�e−x2
dx1� � � dxm� (12.14)

where

Ki =
√

�m

m∏
j=1

2ij ij! and i = �i1� � � � � im� �

We know from the Hilbert space theory Maurin (1967) that

+
∫
−


(
V�x� −

n∑
i=0

�iHi�x�

)2

e−x2
dx → 0 as n → 


and

+
∫
−


V 2�x�e−x2
dx =


∑
i=0

Ki�
2
i �

Calculation of �i may be performed in various ways, the easiest one is probably by Monte
Carlo or quasi-Monte Carlo. Let �k ∈ Rm be a sequence of independent multidimensional
normal variables with standard deviation 1/

√
2, not related to the process X�n�. Then Glasser-

man (2003)

�i ≈

√
�mK−1

i N−1
N∑

k=1

V��k�Hi��k�� (12.15)

Remark. By (12.3), V is represented as

V�x� = max�C�x�� U�x�
 = C�x� + Q�x�� (12.16)

where Q is called time-value of the option. In most cases Q�x�→ 0 as x →
. If C remains
the same for all steps in dynamic programming, separation of C and Q may accelerate
calculations.

Now we may return to calculations of the expected value U�x� = E 	V�F�x� + ��x��
,
where ��x� is a normal variable. By (12.13)

U�x�≈
n∑

i=0

�iE 	Hi�F�x� + ��x��
 =
n∑

i=0

�iUi�x�� (12.17)
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By linearity it suffices to calculate the value of Ui�x�. By (12.11)

Ui�x� = THi�x� = E 	Hi�F�x� + ��x��
 (12.18)

=
i1∑

k1=0

� � �
im∑

km=0

(
i1

k1

)
Hk1

�F1�x��2i1−k1 � � �

(
im
km

)
Hkm

�Fm�x��2im−kmE

[
m∏

j=1

�
ij−kj

j �x�

]
�

Let the covariance matrix ��x� of ��x� admit the representation

��x� =

⎡
⎢⎢⎣

�11�x� �12�x� � � � �1m�x�
�21�x� �22�x� � � � �2m�x�
� � � � � � � � � � � �

�m1�x� �m2�x� � � � �mm�x�

⎤
⎥⎥⎦ � (12.19)

We replace the term E

[
m∏

j=1
�

ij−kj

j �x�

]
by E

[
N∏

j=1
�j�x�

]
, where the variable �1�x� is taken

i1 − k1 times, the variable �2�x� is taken i2 − k2 times, and so on, up to the variable �m�x�
which is taken im −km times. By the Wick formula Simon (1974), Triantafyllopoulos (2003)

E

[
N∏

j=1

�j�x�

]
=
⎧⎨
⎩

0 if N is odd�∑
i�j

�i1j1
�x� � � � �i1j1

�x� if N = 2n is even� (12.20)

The sum in (12.20) runs over all pairs of increasing sequences �i1 < i2 < � � � < in
,
�j1 < j2 < � � � < jn
, such that ik < jk for each k. The sum in (12.20) is called Hafnian and is
a standard tool of calculating functionals in quantum physics Simon (1974). If the variables
�i�x� are independent, formula (12.20) simplifies to

Ui�x� = E 	Hi�F�x� + ��x��
 =
m∏

j=1

(
ij∑

k=0

(
ij
k

)
Hk�Fj�x��2ij−kE

[
�

ij−k

j �x�
])

� (12.21)

The values of E�k
j �x� are just central moments of normal variables. For odd powers k,

E�k
j �x� = 0 because of symmetry of normal distribution, for even powers k, we have:

variance = E�2
j �x� = �2

j �x�� kurtosis = E�4
j = 3�4

j �x�� (12.22)

If �j�x� = �j is a normal variable with standard deviation 1/
√

2, formula (12.20) simplifies
even more. Again by (12.11)

Ui�x� = 1√
�m

+
∫
−


Hi�F�x� + y�e−y2
dy

= 1√
�m

m∏
j=1

⎛
⎝ ij∑

k=0

(
ij
k

)
�2F�x�j�

ij−k

+
∫
−


Hk�y�H0�y�e−y2
dy

⎞
⎠ �
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Then by orthogonality from (12.10)

Ui�x� = THi�x� =
m∏

j=1

(
2F�x�j

)ij � (12.23)

which leads to the following nice interpretation: the Hermite expansion of V�x� gives a
Taylor-like expansion of U�x� with the same coefficients.

The described procedure can be repeated recursively: having calculated U�x�, we may set
new V�x� as V�x� = max�C�x�� U�x�
, approximate it as in (12.13) and so on back to the
initial point.

12.6 EXAMPLE OF BGM DYNAMICS

The dynamic of LIBOR rates in the BGM model follows the recursive formula:

Ln�Tk� = Ln�Tk−1� exp

{
Mn

k +
n∑

j=k+1

�Lj�Tk−1��
k
jn

1 + �Lj�Tk−1�
− �k

nn

2

}
� (12.24)

where

�i
kl =

Ti∫
Ti−1

�l�t� · �k�t�dt� �i =

⎡
⎢⎢⎣

�i
11 �i

12 � � � �i
1N

�i
21 �i

22 � � � �i
2N

� � � � � � � � � � � �
�i

N1 �i
N2 � � � �i

NN

⎤
⎥⎥⎦ (12.25)

and Mn
k is a Gaussian random variable with covariance matrix �k. Set Xn�k−1�= ln Ln�Tk−1�

and X�n� = �X1�n��X2�n�� � � � �Xm�n�� ∈ Rm. Then X satisfies (12.8) with

Fk�x�n = xn +
n∑

j=k+1

� exp �xn��k
jn

1 + � exp �xn�
− �k

nn

2
�

12.7 COMPARISON OF METHODS

Recombining trees and lattices are most popular in smaller dimensions (less than four) but
are very slow for larger dimensions. The Stochastic mesh method has very good theoretical
properties but is too slow for practical applications. Direct methods are good in dimension
one, but are ambiguous in larger and strongly product dependent. The additive noise approach
is not very accurate and not really used in practice, being more applicable to other stochastic
control problems such as gas contract pricing. Methods based on PDEs are questionable
in larger dimensions. The Longstaff-Schwartz method in various versions dominates the
market, although we must mention that it is product dependent as well.
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Using the LSM Approach
for Derivatives Valuation

This section is devoted to algorithms that use a Least Squares Monte Carlo (LSM) approach
for pricing American/Bermudian value.

In the first part of the chapter we describe a few algorithms that use the LSM approach for
the pricing of American/Bermudian derivatives.

In the second part we present detailed numerical examples of algorithms selected from
the algorithms described in the first section. Our described algorithms are applied to price a
Bermudian Swaption.

In the third part we present results of pricing a Bermudian swaption using the described
algorithms and we compare calculated values with value calculated using a binomial tree
with drift approximation (see Chapter 10, Approximations of the BGM model).

In the fourth part we focus of some theoretical features of the tested algorithms. The
section focusses especially on trying to address the question about when the algorithms
might cause an under- or over- estimation of the instrument value.

In the fifth and final part we try to interpret the results of the simulation described in
the third section and theoretical divagation described in section four. We try to determine
usability of each of described algorithms for practice purposes.

13.1 PRICING ALGORITHMS

The key point of pricing an American/Bermudian option is the recursive calculation of the
option value at time n in state x basing on the expected value of the option at time n + 1
(see Chapter 12, Optimal stopping and pricing of Bermudan options). Following (12.3) this
value is:

VN �x� = CN �x�

Vn �x� = max �Cn�x� �Un�x�� (13.1)

Where

Un �x� = E
[�Vn+1 �Xn+1��Xn = x

]
�

Of course, during MC simulations, we are not able to calculate Vn �x� nor Un �x� themselves.
Instead of them we need to use their estimators and formula (13.1) is approximated by:

V̂n �x� = 1Cn�x�>Û 1
n �x�Cn �x� + 1Cn�x�≤Û 1

n �x�Û
2
n �x� (13.2)

Where V̂n �x� is an estimator of Vn �x� and Û 1
n �x� � Û 2

n �x� are estimators of Un �x�.
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Below we present a few algorithms that implement Bermudan/American option pricing
using formula (13.2). Symbols Xk

n and H �·� ·� are defined in Chapter 12, Optimal stopping
and pricing of Bermudan options in subsection ‘The Longstaff-Schwarz method’. M is the
number of generated scenarios.

For each of these implementation we describe recursive calculation for one time step.
During this step calculations for time Tn are based on the values calculated for time Tn+1.

Algorithm 13.1
In this algorithm estimator Û 1

n

(
Xk

n

)
is estimated using LSM while Û 2

n

(
Xk

n

)
is the value of

the option calculated in previous step of simulation.

Begin

Find regression coefficient vector � that minimizes the expression (LSM
algorithm) below.

M∑
k=1

(
V̂n+1

(
Xk

n+1

)− H
(
��Xk

n

))2

Denote this vector as �min

For each scenario k calculate:

If Cn

(
Xk

n

)
> H

(
�min�Xk

n

)
then

V̂n

(
Xk

n

)= Cn

(
Xk

n

)
/ ∗ Exercise option ∗/

Else

V̂n

(
Xk

n

)= V̂n+1

(
Xk

n+1

)
/ ∗ Continue option ∗ /

End If

Next k

End of algorithm 13.1

Value of the derivative is calculated as the average of V̂1

(
Xk

1

)
across all scenarios

Algorithm 13.2
Algorithm 13.2 is similar to Algorithm 13.1 with the exception that the regression coefficients
are calculated basing on one MC scenarios set while the derivative pricing is done basing on
another scenarios set (both MC scenario sets are realizations of the same stochastic process).
We denote the scenario set generated for the calculation of the regression coefficients as
‘Scenario Set 1’ and denote the scenario set generated for the derivative pricing as ‘Scenario
Set 2’.

In the algorithm below:

Xk�1
n – means realization of Markovian Process Xn for scenario k from Scenario Set 1

Xk�2
n – means realization of Markovian Process Xn for scenario k from Scenario Set 2

Begin

Find regression coefficient vector � that minimizes the expression (LSM algorithm).
M∑

k=1

(
V̂n+1

(
X1�k

n+1

)− H
(
��X1�k

n

))2
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Denote this vector as �min

For each scenario k from Scenario Set 1 calculate:

If Cn

(
X1�k

n

)
> H

(
�min�X1�k

n

)
then

V̂n

(
X1�k

n

)= Cn

(
X1�k

n

)
/ ∗ Exercise option ∗ /

Else

V̂n

(
X1�k

n

)= V̂n+1

(
X1�k

n+1

)
/ ∗ Continue option ∗ /

End If

Next k

For each scenario k from Scenario Set 2 calculate:

If Cn

(
X2�k

n

)
> H

(
�min�X2�k

n

)
then

V̂n

(
X2�k

n

)= Cn

(
X2�k

n

)
/ ∗ Exercise option ∗ /

Else

V̂n

(
X2�k

n

)= V̂n+1

(
X2�k

n+1

)
/ ∗ Continue option ∗ /

End If

Next k

End of algorithm 13.2

In the algorithm above values V̂n

(
X1�k

n

)
are calculated only for regression purposes. The

final value of the priced financial instrument is calculated as the average of V̂1

(
X2�k

1

)
across

all scenarios.

Algorithm 13.3
We use only one set of MC Scenarios. Û 1

n �x� ≡ Û 2
n �x� and it is calculated by LSM

Begin

Find regression coefficient vector � that minimizes the expression (LSM algorithm).
Denote this vector as �min
M∑

k=1

(
V̂n+1

(
Xk

n+1

)− H
(
��Xk

n

))2

For each scenario k calculate:

If Cn

(
Xk

n

)
> H

(
�min�Xk

n

)
then

V̂n

(
Xk

n

)= Cn

(
Xk

n

)
/ ∗ Exercise option ∗ /

Else

V̂n

(
Xk

n

)= H
(
�min�Xk

n

)
/ ∗ Continue option ∗ /

End If

Next k

End of algorithm 13.3

The final value of the priced derivative is calculated as an average of V̂1

(
Xk

1

)
across all

scenarios.
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Algorithm 13.4
Algorithm 13.4 is similar to algorithm 13.3 with exception that regression coefficients are
calculated based on a generated scenario set while values V̂n

(
Xk

n

)
are calculated based on a

modification of this scenario set.

k
Xn +1

k
Xn

k-th scenario

Extension of
k-th scenerio
generated at

timeTn

Extension of
k-th scenerio
generated at

time Tn +1

k
Xn  +2

~ k
Xn +1

~ k
Xn +2

Figure 13.1 Generation of the scenario modification

Find regression coefficient vector � that minimizes the expression (LSM algorithm).
Denote this vector as �n

min
M∑

k=1

(
Vn+1

(
Xk

n+1

)− H
(
��Xk

n

))2

For each scenario k from set 1 calculate:

Generate a new realization of the random variable X̃k
n+1 starting at Xk

n.

/∗ See Figure 13.1 above∗/

If n + 1 is the maturity of valued instrument then

Ṽn+1

(
X̃k

n+1

)
= Cn+1

(
X̃k

n+1

)
Else

Ṽn+1

(
X̃k

n+1

)
= max

(
Cn+1

(
X̃k

n+1

)
�H
(
�n+1

min � X̃k
n+1

))
End If

If Cn

(
Xk

n

)
> Ṽn+1

(
X̃k

n+1

)
then

V̂n

(
Xk

n

)= Cn

(
Xk

n

)
/ ∗ Exercise option ∗ /

Else
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V̂n

(
Xk

n

)= Ṽn+1

(
X̃k

n+1

)
/ ∗ Continue option ∗ /

End If

Next k

End of algorithm 13.4

Again, the final value of the priced derivative is calculated as an average of V̂1

(
Xk

1

)
across

all scenarios.

Algorithm 13.5
Algorithm 13.5 is a modification of Algorithm 13.4. The difference between these two
algorithms is that in case of Algorithm 13.4

Û 1
n

(
Xk

n

)= Û 2
n

(
Xk

n

)= Ṽn+1

(
X̃k

n+1

)
�

while in the case of Algorithm 13.5

Û 1
n

(
Xk

n

)= Ṽn+1

(
X̃k

n+1

)
Û 2

n

(
Xk

n

)= V̂n+1

(
Xk

n+1

)
Begin

Find regression coefficient vector � that minimizes the expression (LSM algorithm).
Denote this vector as �n

min
M∑

k=1

(
V̂n+1

(
Xk

n+1

)− H
(
��Xk

n

))2

For each scenario k from set 1 calculate:

Generate a new realization of the random variable X̃k
n+1 starting at Xk

n.

If n + 1 is the maturity of instrument then

Ṽn+1

(
X̃k

n+1

)
= Cn+1

(
X̃k

n+1

)
Else

Ṽn+1

(
X̃k

n+1

)
= max

(
Cn+1

(
X̃k

n+1

)
�H
(
�n+1

min � X̃k
n+1

))
End If

If Cn

(
Xk

n

)
> Ṽn+1

(
X̃k

n+1

)
then

V̂n

(
Xk

n

)= Cn

(
Xk

n

)
/ ∗ Exercise option ∗ /

Else

V̂n

(
Xk

n

)= V̂n+1

(
Xk

n+1

)
/ ∗ Continue option – instead of

V̂n�X
k
n� = Ṽn+1

(
X̃k

n+1

)
in Algorithm 13�4 ∗ /

End If

Next k

End of algorithm 13.5
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The final value of the priced derivative is calculated as an average of V̂1

(
Xk

1

)
across all

scenarios.

13.2 NUMERICAL EXAMPLES OF ALGORITHMS 13.1–13.4

In these part we present detailed numerical examples of the application of Algorithms
13.1–13.4 described above to pricing a Bermudian swaption. Let us assume that the swaption
gives its holder right to enter into a swap paying float and receiving fix. Let the fixed
payment frequency be 6 months. The swaption can be exercised at three time points:

T1 = 0�5 Gives right to enter into IRS starting at T1 and maturing at T4

T2 = 1 Gives right to enter into IRS starting at T2 and maturing at T4

T3 = 1�5 Gives right to enter into IRS starting at T3 and maturing at T4. This swaption
is degenerate to the caplet

The fixed rate of the swap is K = 5 %. Maturity of the swap is T4 = 2

The simulation will be performed under the terminal measure, i.e. the forward measure
associated with the zero coupon bond maturing at time T4 = 2. There are two time steps of
simulation within each forward LIBOR period so time step of the simulation is 	t = 0�25.
The Markovian process Xn will be defined as a multidimensional process:

Xn =

⎡
⎢⎢⎢⎢⎣

L1 �Tn�
L2 �Tn�
L3 �Tn�
L4 �Tn�

WTn

⎤
⎥⎥⎥⎥⎦ (13.3)

This process as a whole vector is Markovian under the forward measure associated with a zero
coupon bond maturing at T4. However, it is not necessarily true for each of its components.

In order to perform the calculations we need to model three forward LIBORs: L2�L3�L4

driven by following stochastic processes consistent with standard LMM:

dLi = Li

(
−

4∑∑∑
j=i+1


Lj�i�j

1 + 
Lj

dt + �idWt

)

In our example Wt is a one dimensional Brownian Motion. We set the volatilities to be
�i = 0�3. In order to describe algorithm easily we will only generate ten scenarios of the
LIBOR. We use the Euler schema:

Li �t + 	t� = Li �t� + Li �t�

(
−

4∑∑∑
j=i+1


Lj �t��i�j

1 + 
Lj �t�
	t + �i �Wt+	t − Wt�

)
(13.4)

The results of our simulations are given below:
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Example of Algorithm 13.1
Scenario Set 1

T0 = 0 T 1
0 = 0�25 T1 = 0�5 T 1

1 = 0�75 T2 = 1 T 1
2 = 1�25 T3 = 1�5

Scenario 1
W 0 −0�62556 0.142542 −0�47478 −0�78972 −0�46497 −0�86703
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 4.0562 % 4.9872 % Expired Expired Expired Expired
L 3 5.0000 % 4.0589 % 4.9924 % 4.0651 % 3.6792 % Expired Expired
L 4 5.0000 % 4.0617 % 4.9976 % 4.0720 % 3.6873 % 4.0466 % 3.5585 %

Scenario 2
W 0 0.62556 −0�14254 0.474783 0.789724 0.464967 0.867028
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 5.9329 % 4.5580 % Expired Expired Expired Expired
L 3 5.0000 % 5.9356 % 4.5640 % 5.4069 % 5.9146 % Expired Expired
L 4 5.0000 % 5.9383 % 4.5700 % 5.4163 % 5.9281 % 5.3505 % 5.9959 %

Scenario 3
W 0 −0�05002 −0�06374 −0�32575 −1�10699 −1�07849 −0�45718
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 4.9195 % 4.8939 % Expired Expired Expired Expired
L 3 5.0000 % 4.9222 % 4.8993 % 4.5116 % 3.4519 % Expired Expired
L 4 5.0000 % 4.9250 % 4.9047 % 4.5192 % 3.4600 % 3.4896 % 4.1400 %

Scenario 4
W 0 0.050018 0.06374 0.325749 1.10699 1.078491 0.457183
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 5.0695 % 5.0848 % Expired Expired Expired Expired
L 3 5.0000 % 5.0723 % 5.0903 % 5.4876 % 6.7704 % Expired Expired
L 4 5.0000 % 5.0750 % 5.0959 % 5.4965 % 6.7847 % 6.7267 % 5.4729 %

Scenario 5
W 0 0.003759 1.193405 1.758721 1.949461 2.595586 3.527374
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 5.0002 % 6.7792 % Expired Expired Expired Expired
L 3 5.0000 % 5.0029 % 6.7856 % 7.9314 % 8.3785 % Expired Expired
L 4 5.0000 % 5.0056 % 6.7921 % 7.9440 % 8.3986 % 10.0266 % 12.8294 %

Scenario 6
W 0 −0�00376 −1�19341 −1�75872 −1�94946 −2�59559 −3�52737
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 4.9889 % 3.2029 % Expired Expired Expired Expired
L 3 5.0000 % 4.9916 % 3.2074 % 2.6623 % 2.5092 % Expired Expired
L 4 5.0000 % 4.9944 % 3.2119 % 2.6672 % 2.5146 % 2.0271 % 1.4605 %

Scenario 7
W 0 −0�50241 −0�33478 −0�49262 0.165897 0.310097 1.011739
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 4.2409 % 4.4502 % Expired Expired Expired Expired
L 3 5.0000 % 4.2436 % 4.4551 % 4.2419 % 5.0780 % Expired Expired
L 4 5.0000 % 4.2464 % 4.4599 % 4.2488 % 5.0881 % 5.3082 % 6.4256 %

Scenario 8
W 0 0.502406 0.334777 0.492616 −0�1659 −0�3101 −1�01174
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 5.7481 % 5.4518 % Expired Expired Expired Expired
L 3 5.0000 % 5.7509 % 5.4580 % 5.7132 % 4.5810 % Expired Expired
L 4 5.0000 % 5.7536 % 5.4643 % 5.7230 % 4.5924 % 4.3937 % 3.4689 %
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T0 = 0 T 1
0 = 0�25 T1 = 0�5 T 1

1 = 0�75 T2 = 1 T 1
2 = 1�25 T3 = 1�5

Scenario 9
W 0 0.170297 −0�30515 −0�24493 −0�51339 −0�23812 −0�92795
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 5.2500 % 4.4951 % Expired Expired Expired Expired
L 3 5.0000 % 5.2527 % 4.5005 % 4.5795 % 4.2084 % Expired Expired
L 4 5.0000 % 5.2554 % 4.5058 % 4.5872 % 4.2178 % 4.5661 % 3.6211 %

Scenario 10
W 0 −0�1703 0.30515 0.244925 0.513385 0.238115 0.927954
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 4.7391 % 5.4101 % Expired Expired Expired Expired
L 3 5.0000 % 4.7418 % 5.4157 % 5.3146 % 5.7395 % Expired Expired
L 4 5.0000 % 4.7446 % 5.4213 % 5.3233 % 5.7521 % 5.2771 % 6.3692 %

The final payment at time T3 = 1�5 expressed with the numeraire being a zero coupon bond
maturing at time T4 = 2 (assuming that swaption has not been exercised previously) is:

V̂3

(
Xk

3

)= 
�L4 − K�+ (13.5)

The final payments for each scenario is listed in Table 13.1 below.

Table 13.1

Scenario Number L4 V̂3

(
Xk

3

)
1 3�5585 % 0�0000 %
2 5�9959 % 0�4980 %
3 4�1400 % 0�0000 %
4 5�4729 % 0�2365 %
5 12�8294 % 3�9147 %
6 1�4605 % 0�0000 %
7 6�4256 % 0�7128 %
8 3�4689 % 0�0000 %
9 3�6211 % 0�0000 %
10 6�3692 % 0�6846 %

During the calculations for the time T2 we need to compare two values:

1) Intrinsic value of the swaption. This value at T2 is

C2

(
Xk

2

)= ��1 + 
L3� �1 + 
L4� − 1 − 
k ��1 + 
L4� + 1

+ (13.6)

2) Value of the swaption under assumption that it is not exercised at T2. For this comparison
the value of continuation is estimated by

Û 1
2

(
Xk

n

)= H
(
�min�Xk

n

)= a0 + a1WT2
+ a2WT2

� (13.7)
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Where

�min =
⎡
⎣a0

a1

a2

⎤
⎦

Coefficients a0� a1� a2 will be estimated using an LSM approach across all scenarios in order
to minimize the expression

10∑
k=1

(
H
(
��W k

T2

)− V̂3

(
Xk

3

))2
�

Where W k
T2

is a realization of random variable WT2
in k-th scenario

In Table 13.2 below we have value of Brownian motion at time T2 and value that swaption
holder receive under given scenario if decide not to exercise swaption at T2. This value is
equal to swaption payoff at T3 and it is rewritten from Table 13.1.

Table 13.2

Scenario Number WT2
V̂3

(
Xk

3

)
1 −0�78972 0.0000 %
2 0�78972 0.4980 %
3 −1�10699 0.0000 %
4 1�10699 0.2365 %
5 1�949461 3.9147 %
6 −1�949461 0.0000 %
7 0�165897 0.7128 %
8 −0�165897 0.0000 %
9 −0�51339 0.0000 %
10 0�51339 0.6846 %

Now we regress the last column of the Table 13.2 on 1, WT2
� W 2

T2
across all scenarios. We

obtain following values of regression coefficients:

a0 = 0�0006473
a1 = 0�007370 (13.8)
a2 = 0�004544

Now, using formula (13.7) with calculated coefficients (13.8) we calculate the values of the
estimator Û 1

2

(
X1

2

)
for each scenario. For example for the scenario 1 this value is:

Û 1
2

(
X1

2

)= 0.0006473 + 0.007370 · WT2
· 0�004544 · (WT2

)2

= 0�0006473 + 0.007370 · �−0�78972� + 0�004544 · �−0�78972�2

= −0�002339
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And using formula (13.6) we can calculate the value of exercising at time T2 which is
C2

(
Xk

2

)
for each of generated scenarios. For example for the scenario 2 value of exercising

will be calculated as

C2

(
X2

2

)= ��1 + 0�5 · 0.059146� · �1 + 0�5 · 0.059281� − 1 − 0�5 · 0�05

· �1 + 0�5 · 0.059281 + 1�
+ = 0.009349

The results of calculation are presented in Table 13.3 below.

Table 13.3

Scenario
Number

WT2
L3 L4 C2

(
Xk

2

)
Û 1

2

(
Xk

2

)
Optimal
Decision

1 −0�78972 3.6792 % 3.6873 % 0.0000 % −0�2339 % Exercise
2 0�78972 5.9146 % 5.9281 % 0.9349 % 0�9301 % Exercise
3 −1�10699 3.4519 % 3.4600 % 0.0000 % −0�1942 % Exercise
4 1�10699 6.7704 % 6.7847 % 1.8076 % 1�4370 % Exercise
5 1�949461 8.3785 % 8.3986 % 3.4595 % 3�2280 % Exercise
6 −1�949461 2.5092 % 2.5146 % 0.0000 % 0�3545 % Continue
7 0�165897 5.0780 % 5.0881 % 0.0840 % 0�1995 % Continue
8 −0�165897 4.5810 % 4.5924 % 0.0000 % −0�0450 % Exercise
9 −0�51339 4.2084 % 4.2178 % 0.0000 % −0�1938 % Exercise
10 0�51339 5.7395 % 5.7521 % 0.7564 % 0�5628 % Exercise

In some cases continuation value Û 1
2

(
Xk

2

)
is less than zero. It is possible since the regression

gives only an approximation of the continuation value not its exact value. It causes strange
situations: option may be expired although it is out of the money. We decide to not improve
this feature of the algorithm in order to preserve its generality (in cases of exotics instruments
it can be not possible to determine if they are out of the money or in the money).

Now according to our simulation for all scenarios except scenarios 6 and 7 the swaption
should be exercised at time T2 (of course if it has not been exercised earlier). Below in
Table 13.4 we present the value of swaption at time T2 across all ten scenarios. This value
is calculated as:

1) If according to regression results the option should be exercised (column ‘Optimal Deci-
sion’ in Table 13.4) then the value is equal to the intrinsic value

V̂2

(
Xk

2

)= C2

(
Xk

2

)
2) If according to the regression results the option should be continued then the value is equal

to continuation value. But now continuation value is estimated by Û 2
2

(
Xk

2

)= V̂3

(
Xk

3

)
,

(instead of Û 1
2

(
Xk

n

)
that is used to check if option should be continued or exercised), so

V̂2

(
Xk

2

)= Û 2
2

(
Xk

2

)= V̂3

(
Xk

3

)



Using the LSM Approach for Derivatives Valuation 239

Table 13.4

Scenario
Number

Optimal
Decision

V̂3

(
Xk

3

)
C2

(
Xk

2

)
V̂2

(
Xk

2

)

1 Exercise 0.0000 % 0.0000 % 0.0000 %
2 Exercise 0.4980 % 0.9349 % 0.9349 %
3 Exercise 0.0000 % 0.0000 % 0.0000 %
4 Exercise 0.2365 % 1.8076 % 1.8076 %
5 Exercise 3.9147 % 3.4595 % 3.4595 %
6 Continue 0.0000 % 0.0000 % 0.0000 %
7 Continue 0.7128 % 0.0840 % 0.7128 %
8 Exercise 0.0000 % 0.0000 % 0.0000 %
9 Exercise 0.0000 % 0.0000 % 0.0000 %
10 Exercise 0.6846 % 0.7564 % 0.7564 %

The result of this calculation is presented in Table 13.4 below. C2

(
Xk

2

)
is rewritten from

Table 13.3 and V̂3

(
Xk

3

)
is rewritten from Table 13.1.

Now, basing on the calculated value of the swaption at time T2 which is V̂2

(
Xk

2

)
(Table 13.4

above) we can calculate the value of the swaption at time T1. Similarly as before at time T2

we have to compare:

1) Intrinsic value of the swaption. This value at T1 is

C1

(
Xk

1

)= ��1 + 
L2� �1 + 
L3� �1 + 
L4� − 1 − 
k ��1 + 
L3� �1 + 
L4� + �1 + 
L4� + 1

+

(13.9)

2) Value of the swaption under the condition that option is not exercised, estimated by

Û 1
1

(
Xk

1

)= a0 + a1WT1
+ a2W

2
T1

(13.10)

The coefficients a0� a1� a2 are calculated by the LSM algorithm using the data listed in
Table 13.5 below.

Table 13.5

Scenario
number

WT1
V̂2

(
Xk

2

)

1 0�142542 0.0000 %
2 −0�142542 0.9349 %
3 −0�06374 0.0000 %
4 0�06374 1.8076 %
5 1�193405 3.4595 %
6 −1�193405 0.0000 %
7 −0�33478 0.7128 %
8 0�33478 0.0000 %
9 −0�30515 0.0000 %
10 0�30515 0.7564 %
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We regress the last column of the table on 1, WT1
�W T1

2 across all scenarios. We obtain
following values of regression coefficients:

a0 = 0�004847
a1 = 0�01240
a2 = 0�008537

(13.11)

Then we can find the optimal decision regarding continuation of the option:
If Û 1

1

(
Xk

1

)
> C1

(
Xk

1

)
then the optimal decision should be: Continue

Otherwise it should be: Exercise.

The optimal decisions for each scenario are listed in Table 13.6 below.

Table 13.6

Scenario
Number

WT1
L2 L3 L4 C1�X

k
1� Û 1

11 �X
k
1� Optimal

Decision

1 0�142542 4�9872 % 4�9924 % 4�9976 % 0�0000 % 0�6788 % Continue
2 −0�142542 4�5580 % 4�5640 % 4�5700 % 0�0000 % 0�3253 % Continue
3 −0�06374 4�8939 % 4�8993 % 4�9047 % 0�0000 % 0�4091 % Continue
4 0�06374 5�0848 % 5�0903 % 5�0959 % 0�1388 % 0�5672 % Continue
5 1�193405 6�7792 % 6�7856 % 6�7921 % 2�7702 % 3�1804 % Continue
6 −1�193405 3�2029 % 3�2074 % 3�2119 % 0�0000 % 0�2207 % Continue
7 −0�33478 4�4502 % 4�4551 % 4�4599 % 0�0000 % 0�1653 % Continue
8 0�33478 5�4518 % 5�4580 % 5�4643 % 0�7058 % 0�9955 % Continue
9 −0�30515 4�4951 % 4�5005 % 4�5058 % 0�0000 % 0�1857 % Continue
10 0�30515 5�4101 % 5�4157 % 5�4213 % 0�6404 % 9�4270 % Continue

Now according to the performed simulation the option should be continued for all ten
scenarios. Analogously as in the case of swaption value calculation for T2 value of swaption
at time T1 is equal:

1) If according to the regression results the option should be exercised (column ‘Optimal
Decision’ in Table 13.6) then the value is equal to the intrinsic value:

V̂1

(
Xk

1

)= C1

(
Xk

1

)
2) If according to the regression results the option should be continued then the value is

equal to the continuation value estimated by Û 2
1 �Xk

1� = V̂2�X
k
1�, so

V̂1

(
Xk

1

)= V̂2

(
Xk

2

)
�

As mentioned in our particular case condition 2) held for all ten scenarios. Table 13.7
below presents results of calculations for each scenario. Columns: ‘Optimal Deci-
sion’ and C1�X

k
1� are rewritten from Table 13.6. Column V̂2�X

k
2� is rewritten from

Table 13.5.
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Table 13.7

Scenario
Number

Optimal
Decision

V̂2�X
k
2� C1�X

k
1� V̂1�X

k
1�

1 Continue 0.0000 % 0�0000 % 0�0000 %
2 Continue 0.9349 % 0�0000 % 0�9349 %
3 Continue 0.0000 % 0�0000 % 0�0000 %
4 Continue 1.8076 % 0�1388 % 1�8076 %
5 Continue 3.4595 % 2�7702 % 3�4595 %
6 Continue 0.0000 % 0�0000 % 0�0000 %
7 Continue 0.7128 % 0�0000 % 0�7128 %
8 Continue 0.0000 % 0�7058 % 0�0000 %
9 Continue 0.0000 % 0�0000 % 0�0000 %
10 Continue 0.7564 % 0�6404 % 0�7564 %

Now, the value of the swaption at pricing time �T0� can be calculated as the average of
‘Value at time T1’ from Table 13.7 above. This calculation gives us:

S̃T0
= 0.7671 % (13.12)

But we should remember that this value is expressed with the numeraire being a zero coupon
bond maturing at time T4. In order to obtain value of swaption expressed in currency we need
simply multiplied calculated value (13.12) by value of the numeraire. Then the value of the
swaption is:

ST0
= S̃T0

· B �T0� T4� = S̃T0

4∏
i=1

�1 + 
L1 �T0��

= 0.7671%

�1 + 0.5 · 0.05�4 = 0.6949 % (13.13)

Example of Algorithm 13.2
As mentioned, algorithm 13.2 requires the generation of two sets of scenarios. The first set is
used only for calculating the regression coefficients, while the pricing of the derivative is done
with the second set of Monte Carlo scenarios. We assume that the first set of MC scenarios is the
set generated in Example of Algorithm 13.1 above (Scenario Set 1). The second set of scenarios

Scenario Set 2

T0 = 0 T 1
0 = 0�25 T1 = 0�5 T 1

1 = 0�75 T2 = 1 T 1
2 = 1�25 T3 = 1�5

Scenario 1
W 0 0.13659 0.997955 1.395052 1.949337 2.153192 3.011643
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 5.1994 % 6.5370 % Expired Expired Expired Expired
L 3 5.0000 % 5.2021 % 6.5435 % 7.3183 % 8.5294 % Expired Expired
L 4 5.0000 % 5.2049 % 6.5499 % 7.3302 % 8.5491 % 9.0719 % 11.4082 %

Scenario 2
W 0 −0�13659 −0�99795 −1�39505 −1�94934 −2�15319 −3�01164
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 4.7896 % 3.5469 % Expired Expired Expired Expired
L 3 5.0000 % 4.7924 % 3.5515 % 3.1270 % 2.6059 % Expired Expired
L 4 5.0000 % 4.7951 % 3.5560 % 3.1324 % 2.6115 % 2.4518 % 1.8204 %
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Continued

T0 = 0 T 1
0 = 0�25 T1 = 0�5 T 1

1 = 0�75 T2 = 1 T 1
2 = 1�25 T3 = 1�5

Scenario 3
W 0 0.22994 1.017657 1.606291 1.995752 2.031917 1.966467
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 5.3394 % 6.5950 % Expired Expired Expired Expired
L 3 5.0000 % 5.3422 % 6.6015 % 7.7625 % 8.6629 % Expired Expired
L 4 5.0000 % 5.3449 % 6.6080 % 7.7749 % 8.6833 % 8.7775 % 8.6052 %

Scenario 4
W 0 −0�22994 −1�01766 −1�60629 −1�99575 −2�03192 −1�96647
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 4.6496 % 3.5461 % Expired Expired Expired Expired
L 3 5.0000 % 4.6523 % 3.5505 % 2.9222 % 2.5798 % Expired Expired
L 4 5.0000 % 4.6551 % 3.5550 % 2.9272 % 2.5852 % 2.5572 % 2.6074 %

Scenario 5
W 0 1.396211 2.176931 2.866458 2.935699 3.011579 2.878209
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 7.0888 % 8.7382 % Expired Expired Expired Expired
L 3 5.0000 % 7.0916 % 8.7471 % 10.5482 % 10.7554 % Expired Expired
L 4 5.0000 % 7.0943 % 8.7559 % 10.5672 % 10.7867 % 11.0322 % 10.5908 %

Scenario 6
W 0 −1�39621 −2�17693 −2�86646 −2�9357 −3�01158 −2�87821
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 2.9002 % 2.2191 % Expired Expired Expired Expired
L 3 5.0000 % 2.9029 % 2.2221 % 1.7619 % 1.7249 % Expired Expired
L 4 5.0000 % 2.9057 % 2.2251 % 1.7648 % 1.7282 % 1.6888 % 1.7564 %

Scenario 7
W 0 −0�01038 −0�55202 −0�61657 −1�39958 −1�41616 −1�70855
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 4.9789 % 4.1645 % Expired Expired Expired Expired
L 3 5.0000 % 4.9817 % 4.1695 % 4.0868 % 3.1250 % Expired Expired
L 4 5.0000 % 4.9844 % 4.1745 % 4.0937 % 3.1320 % 3.1165 % 2.8431 %

Scenario 8
W 0 0.010376 0.552016 0.616574 1.399581 1.416164 1.708546
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 5.0101 % 5.8187 % Expired Expired Expired Expired
L 3 5.0000 % 5.0128 % 5.8246 % 5.9337 % 7.3237 % Expired Expired
L 4 5.0000 % 5.0156 % 5.8306 % 5.9435 % 7.3396 % 7.3761 % 8.0231 %

Scenario 9
W 0 −0�1661 −0�42833 −0�83104 −0�48295 −0�66263 −0�73868
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 4.7454 % 4.3671 % Expired Expired Expired Expired
L 3 5.0000 % 4.7481 % 4.3721 % 3.8418 % 4.2413 % Expired Expired
L 4 5.0000 % 4.7508 % 4.3771 % 3.8483 % 4.2502 % 4.0211 % 3.9293 %

Scenario 10
W 0 0.166102 0.428331 0.831039 0.482948 0.662631 0.738679
L 1 5.0000 % Expired Expired Expired Expired Expired Expired
L 2 5.0000 % 5.2437 % 5.6501 % Expired Expired Expired Expired
L 3 5.0000 % 5.2464 % 5.6561 % 6.3359 % 5.6699 % Expired Expired
L 4 5.0000 % 5.2492 % 5.6621 % 6.3461 % 5.6834 % 5.9898 % 6.1265 %
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is listed below. Both scenarios sets are realizations of the same Markovian process Xn defined
by (13.3).

The final payment at time T3 = 1�5 expressed with numeraire being a zero coupon bond
maturing at time T4 = 2 (assuming that swaption has not been exercised previously) is
calculated with formula (13.5). Our results of this calculation for the scenarios from Scenario
Set 2 are given in Table 13.8 below.

Table 13.8

Scenario Number L4 V̂3�X
k
3�

1 11�4082 % 3�2041 %
2 1�8204 % 0�0000 %
3 8�6052 % 1�8026 %
4 2�6074 % 0�0000 %
5 10�5908 % 2�7954 %
6 1�7564 % 0�0000 %
7 2�8431 % 0�0000 %
8 8�0231 % 1�5116 %
9 3�9293 % 0�0000 %
10 6�1265 % 0�5632 %

During the calculation for the time T2 we need to compare two values (calculated for
scenarios from Scenario Set 2)

1) Intrinsic value of the swaption – formula (13.6)
2) Value of continuation approximated by formula (13.7)

If 1� > 2� then the swaption should be exercised at time T2, otherwise the swaption should
be continued.

In the case of Algorithm 2 the regression coefficients are calculated based on one sce-
nario set (Scenario Set 1) and then applied to values of a Brownian motion (using for-
mula (13.7) taken from another set of scenarios (Scenario Set 2). In case of Algorithm 13.1
the regression coefficients and value of continuation (13.7) are calculated basing of the same
scenario set.

Table 13.9 below presents intrinsic value (13.6) and value of continuation (13.7), both
calculated for Scenario Set 2. Regression coefficients for formula (13.7) are calculated
with Scenario Set 1 and therefore they are identical as regression coefficients calculated by
Algorithm 13.1, so they are given by formula (13.8).

Identically as in case of previous version of the algorithm the optimal decision is assumed
to be ‘exercise’ if C2�X

k
2� > Û 1

2 �Xk
2� and ‘continue’ otherwise.

For each scenario

1) If according to Table 13.9 above Optimal Decision is ‘exercise’ – the swaption value at
T2 is equal its intrinsic value.

V̂2

(
Xk

2

)= C2

(
Xk

2

)
2) Otherwise, the swaption value at T2 is equal to continuation value estimated by

Û 2
2 �Xk

2� = V̂ �Xk
3�

V̂2

(
Xk

2

)= V̂3

(
Xk

3

)
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Table 13.9

Scenario
Number

WT2
L3 L4 C2�X

k
2� Û2�X

k
2� Optimal

Decision

1 1�949337 8�5294 % 8�5491 % 3�6147 % 3�2281 % Exercise
2 −1�949337 2�6059 % 2�6115 % 0�0000 % 0�3547 % Continue
3 1�995752 8�6629 % 8�6833 % 3�7526 % 3�3455 % Exercise
4 −1�995752 2�5798 % 2�5852 % 0�0000 % 0�4037 % Continue
5 2�935699 10�7554 % 10�7867 % 5�9262 % 6�1445 % Continue
6 −2�935699 1�7249 % 1�7282 % 0�0000 % 1�8173 % Continue
7 −1�39958 3�1250 % 3�1320 % 0�0000 % −0�0770 % Exercise
8 1�39958 7�3237 % 7�3396 % 2�3743 % 1�9863 % Exercise
9 −0�48295 4�2413 % 4�2502 % 0�0000 % −0�1850 % Exercise
10 0�48295 5�6699 % 5�6834 % 0�6862 % 0�5266 % Exercise

The results of calculation are presented in Table 13.10 below. Columns ‘Optimal Decision’
and C2�X

k
2� are rewritten from Table 13.9. Column V̂3�X

k
3� is rewritten from Table 13.8.

Table 13.10

Scenario
Number

Optimal
Decision

V̂3�X
k
3� C2�X

k
2� V̂2�X

k
2�

1 Exercise 3.2041 % 3.6147 % 3�6147 %
2 Continue 0.0000 % 0.0000 % 0�0000 %
3 Exercise 1.8026 % 3.7526 % 3�7526 %
4 Continue 0.0000 % 0.0000 % 0�0000 %
5 Continue 2.7954 % 5.9262 % 2�7954 %
6 Continue 0.0000 % 0.0000 % 0�0000 %
7 Exercise 0.0000 % 0.0000 % 0�0000 %
8 Exercise 1.5116 % 2.3743 % 2�3743 %
9 Exercise 0.0000 % 0.0000 % 0�0000 %
10 Exercise 0.5632 % 0.6862 % 0�6862 %

Based on the calculations done for time T2 we calculate the value of the swaption
for each scenario at time T1. Similarly to the calculations for time T2 we have to
compare intrinsic value of the swaption (13.9) and value of swaption continuation –
formula (13.10) with regression coefficients (13.11). Identically as in the case of T2

coefficients calculation is done using Scenario Set 1. All remaining calculations use
Scenario Set 2.

The option should be continued for all ten scenarios because for each scenario Û 2
1

(
Xk

1

)
>

C1

(
Xk

1

)
. Therefore the swaption value at time T1 is equal to continuation value estimated by

Û 2
1

(
Xk

1

)= V̂2

(
Xk

2

)
, then

V̂1

(
Xk

1

)= V̂2

(
Xk

2

)
�

The results of calculation are listed in Table 13.12 below. Columns ‘Optimal Decision’ and
C1

(
Xk

1

)
are rewritten from Table 13.12, column V̂2

(
Xk

2

)
is rewritten from Table 13.10.



Using the LSM Approach for Derivatives Valuation 245

Table 13.11

Scenario
Number

WT1
L2 L3 L4 C1

(
Xk

1

)
Û1

(
Xk

1

)
Optimal
Decision

1 0�997955 6�5370 % 6�5435 % 6�5499 % 2�3916 % 2�5724 % Continue
2 −0�99795 3�5469 % 3�5515 % 3�5560 % 0�0000 % 0�0974 % Continue
3 1�017657 6�5950 % 6�6015 % 6�6080 % 2�4822 % 2�6307 % Continue
4 −1�01766 3�5461 % 3�5505 % 3�5550 % 0�0000 % 0�1069 % Continue
5 2�176931 8�7382 % 8�7471 % 8�7559 % 5�8698 % 7�2298 % Continue
6 −2�17693 2�2191 % 2�2221 % 2�2251 % 0�0000 % 1�8310 % Continue
7 −0�55202 4�1645 % 4�1695 % 4�1745 % 0�0000 % 0�0603 % Continue
8 0�552016 5�8187 % 5�8246 % 5�8306 % 1�2731 % 1�4293 % Continue
9 −0�42833 4�3671 % 4�3721 % 4�3771 % 0�0000 % 0�1102 % Continue
10 0�428331 5�6501 % 5�6561 % 5�6621 % 1�0121 % 1�1725 % Continue

Table 13.12

Scenario
Number

Optimal
Decision

V̂2

(
Xk

2

)
C1

(
Xk

1

)
V̂1

(
Xk

1

)

1 Continue 3.6147 % 2.3916 % 3.6147 %
2 Continue 0.0000 % 0.0000 % 0.0000 %
3 Continue 3.7526 % 2.4822 % 3.7526 %
4 Continue 0.0000 % 0.0000 % 0.0000 %
5 Continue 2.7954 % 5.8698 % 2.7954 %
6 Continue 0.0000 % 0.0000 % 0.0000 %
7 Continue 0.0000 % 0.0000 % 0.0000 %
8 Continue 2.3743 % 1.2731 % 2.3743 %
9 Continue 0.0000 % 0.0000 % 0.0000 %
10 Continue 0.6862 % 1.0121 % 0.6862 %

Now the value of the swaption (expressed in assumed numeraire – a zero coupon bond) at
pricing time �T0� is calculated as the average of ‘Value at T1 − V̂1

(
Xk

1

)
’ from Table 13.12

above across all ten scenarios and it is:

S̃T0
= 1.3223 % (13.14)

Finally we can express the swaption in currency as:

ST 0
= S̃T0

4∏
i=1

�1 + 
Li �0��

= 1.3223 %

�1 + 0.5 · 0.05�4 = 1.1979 % (13.15)

Example of Algorithm 13.3
The value of the swaption at T3 is V̂3

(
Xk

3

)
for each scenario and is calculated identically as

in the case of Algorithm 13.1; formula (13.5) is applied to forward LIBORs from Scenario
Set 1. The results of calculations are listed in Table 13.1.

At time T2, identically as in case of Algorithm 13.1 and Algorithm 13.2, we need to compare
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1) Intrinsic value of swaption – formula (13.6).
2) Value of swaption under assumption that option is continued. This value is approximated

by (13.7) with coefficients given by (13.8).

If 1� > 2� then the swaption should be exercised. It means that

V̂2

(
Xk

2

)= C2

(
Xk

2

)
Otherwise the swaption should be continued and its value is equal to continuation value
estimated by Û 2

2

(
Xk

2

)
. But in case of Algorithm 3 Û 2

2

(
Xk

2

) = Û 1
2

(
Xk

2

)
and from (13.7)

we have

V̂2

(
Xk

2

)= Û 2
2

(
Xk

2

)= a0 + a1WT2
+ a2W

2
T2

Where coefficients a0� a1� a2 are given by (13.8).
The results of this calculation are given in Table 13.13 below. Since all calculations in

Table 13.13 are performed for Scenario Set 1 then values C2

(
Xk

2

)
and Û 2

2

(
Xk

2

)
are identical

as these values listed in Table 13.3. However, values V̂2

(
Xk

2

)
can be different that these

listed in Table 13.3 because:

1) For Algorithm 13.1: V̂2

(
Xk

2

)= V̂3

(
Xk

3

)
2) For Algorithm 13.3: V̂2

(
Xk

2

)= a0 + a1WT2
+ a2W

2
T2

Table 13.13

Scenario Number C2

(
Xk

2

)
Û 2

2

(
Xk

2

)= Û 1
2

(
Xk

2

)
Optimal Decision V̂2

(
Xk

2

)
1 0.0000 % −0�2339 % Exercise 0�0000 %
2 0.9349 % 0�9301 % Exercise 0�9349 %
3 0.0000 % −0�1942 % Exercise 0�0000 %
4 1.8076 % 1�4370 % Exercise 1�8076 %
5 3.4595 % 3�2280 % Exercise 3�4595 %
6 0.0000 % 0.3545 % Continue 0�3545 %
7 0.0840 % 0.1995 % Continue 0�1995 %
8 0.0000 % −0�0450 % Exercise 0�0000 %
9 0.0000 % −0�1938 % Exercise 0�0000 %
10 0.7564 % 0�5628 % Exercise 0�7564 %

Now we can calculate swaption values at time T1, V̂1

(
Xk

1

)
. Analogically as for the calculation

at T2 we have:

V̂1

(
Xk

1

)= max
(
C1

(
Xk

1

)
� Û 2

1

(
Xk

1

))

C1

(
Xk

1

)
is calculated using formula (13.9). Û 2

1

(
Xk

1

) = Û 1
1

(
Xk

1

)
is calculated with for-

mula (13.10). Coefficients a0� a1� a2 are calculated using LSM by fitting (LSM) values
V̂2

(
Xk

2

)
to 1�WT1

�
(
WT1

)2
(see Table 13.14 below).
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Table 13.14

Scenario Number WT1
V̂2

(
Xk

2

)
1 0�142542 0�0000 %
2 −0�142542 0�9349 %
3 −0�06374 0�0000 %
4 0�06374 1�8076 %
5 1�193405 3�4595 %
6 −1�193405 0�3545 %
7 −0�33478 0�1995 %
8 0�33478 0�0000 %
9 −0�30515 0�0000 %
10 0�30515 0�7564 %

As mentioned V̂2

(
Xk

2

)
can be different than these values calculated with Algorithm 13.1, so

the regression coefficients can be different than the coefficients given by (13.11). Indeed,
they are equal

a0 = 0�004138
a1 = 0�01164
a2 = 0�01020

The results of calculations are given in Table 13.15 below.

Table 13.15

Scenario Number C1

(
Xk

1

)
Û 2

1

(
Xk

1

)= Û 1
1

(
Xk

1

)
Optimal Decision V̂1

(
Xk

1

)
1 0�0000 % 0.6005 % Continue 0�6005 %
2 0�0000 % 0.2685 % Continue 0�2685 %
3 0�0000 % 0.3437 % Continue 0�3437 %
4 0�1388 % 0.4922 % Continue 0�4922 %
5 2�7702 % 3.2562 % Continue 3�2562 %
6 0�0000 % 0.4769 % Continue 0�4769 %
7 0�0000 % 0.1383 % Continue 0�1383 %
8 0�7058 % 0.9180 % Continue 0�9180 %
9 0�0000 % 0.1535 % Continue 0�1535 %
10 0�6404 % 0.8641 % Continue 0�8641 %

Now the value of the swaption at pricing time T0 is calculated as the average of V̂1

(
Xk

1

)
across all ten scenarios (see Table 13.15 above). The calculated value is expressed in the
numeraire used for simulations (again a zero coupon bond with maturity at T4) and is equal to

S̃T0
= 0.75124 % � (13.16)
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In order to get value of the swaption we need to multiply (13.16) by the value of the
numeraire:

ST0
= S̃T0

4∏∏∏
i=1

�1 + 
Li �T0��

= 0.75124 %

�1 + 0.5 · 0.05�4 = 0.680586 % (13.17)

Example of Algorithm 13.4
The value of the swaption at T3

(
V̂3

(
Xk

3

))
under each scenario is calculated identically as

in case of Algorithm 13.1; formula (13.5) is applied to the forward LIBORs from Scenario
Set 1. The results of calculations are listed in Table 13.1.

At time T2 the regression coefficients for the function Û 1
2

(
WT2

)
are calculated using LSM.

These regression coefficients are identical as in case of Algorithm 1 and they are given
by (13.8).

Then for each scenario from Scenario Set 1 a new realization of random variable X3 is
generated. Denote X̃k

3 as this new realization for scenario k.

X̃k
3 =

⎡
⎢⎢⎢⎢⎢⎣

L̃k
1 �T3�

L̃k
2 �T3�

L̃k
3 �T3�

L̃k
4 �T3�

W̃ k
T3

⎤
⎥⎥⎥⎥⎥⎦

Where following (13.4) L̃k
4 �T3� is generated as:

L̃k
4

(
T 1

2

)= Lk
4 �T2� + Lk

4 �T2��4	W̃ k
T2

L̃k
4 �T3� = L̃k

4

(
T 1

2

)+ L̃k
4

(
T 1

2

)
�4	W̃ k

T 1
2

The remaining forward LIBORs �L1�L2�L3� are expired at time T3. The results of the
calculations are presented in Table 13.16 below.

Table 13.16

Scenario Number L4 �T2� 	W̃T2
L̃4

(
T 1

2

)
	W̃T1

2
L̃4 �T3�

1 3�6873 % 0�203855 3�9128 % 0�858451 4�9205 %
2 5�9281 % −0�20385 5�5656 % −0�85845 4�1322 %
3 3�4600 % 0�036165 3�4975 % −0�06545 3�4289 %
4 6�7847 % −0�03616 6�7111 % 0�06545 6�8429 %
5 8�3986 % 0�07588 8�5898 % −0�13337 8�2461 %
6 2�5146 % −0�07588 2�4574 % 0�13337 2�5557 %
7 5�0881 % −0�01658 5�0628 % −0�29238 4�6187 %
8 4�5924 % 0�016583 4�6152 % 0�292382 5�0201 %
9 4�2178 % −0�17968 3�9904 % −0�07605 3�8994 %
10 5�7521 % 0�179684 6�0622 % 0�076048 6�2005 %
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By analogy to (13.5) the value of the swaption at T3 is equal:

Ṽ3

(
X̃k

3

)
= 


(
L̃k

4 − K
)+

�

The value of the swaption at T2 for each scenario k is calculated as

V̂2

(
Xk

2

)= max
(
C2

(
Xk

2

)
� Ṽ3

(
X̃k

3

))
�

The results are given in Table 13.17 below.

Table 13.17

Scenario Number L̃4 �T3� Ṽ3

(
X̃k

3

)
C2

(
Xk

2

)
V̂2

(
Xk

2

)
1 4�9205 % 0.0000 % 0.0000 % 0�0000 %
2 4�1322 % 0.0000 % 0.9349 % 0�9349 %
3 3�4289 % 0.0000 % 0.0000 % 0�0000 %
4 6�8429 % 0.9210 % 1.8076 % 1�8076 %
5 8�2461 % 1.6230 % 3.4595 % 3�4595 %
6 2�5557 % 0.0000 % 0.0000 % 0�0000 %
7 4�6187 % 0.0000 % 0.0840 % 0�0840 %
8 5�0201 % 0.0100 % 0.0000 % 0�0100 %
9 3�8994 % 0.0000 % 0.0000 % 0�0000 %
10 6�2005 % 0.6000 % 0.7564 % 0�7564 %

Note that the intrinsic value at time T2�C2

(
Xk

2

)
, is rewritten from Table 13.3.

Now, in order to calculate V̂1

(
Xk

1

)
we need to generate the alternative realization of random

variable X2 − X̃k
2 . Analogically as in previous time steps we calculate L̃k

3 �T2�� L̃k
4 �T2� using

Euler approximation (13.4):

L̃k
3

(
T 1

1

)= Lk
3 �T1� + Lk

3 �T1�

(
−
�3�4L

k
4 �T1�

1 + 
Lk
4 �T1�

	t + �3	W̃T1

)

L̃k
3 �T2� = L̃k

3

(
T 1

1

)+ L̃k
3

(
T 1

1

)(−
�3�4L̃
k
4

(
T 1

1

)
1 + 
L̃k

4

(
T 1

1

) 	t + �3	W̃T 1
1

)

L̃k
4

(
T 1

1

)= Lk
4 �T1� + Lk

4 �T1��4	W̃T1

L̃k
4 �T2� = L̃k

4

(
T 1

1

)+ L̃k
4

(
T 1

1

)
�4	W̃T 1

1

The results are given in Table 13.18 below.
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Table 13.18

Scenario Number Lk
3 �T1� 	W̃T1

L̃k
3

(
T 1

1

)
	W̃T1

1
L̃k

3 �T2�

Lk
4 �T1� L̃k

4

(
T 1

1

)
L̃k

4 �T2�

1 4�9924 % 5�5844 % 6�5096 %
4�9976 % 0�3970971 5�5930 % 0�554286 6�5230 %

2 4�5640 % 4�0180 % 3�3481 %
4�5700 % −0�397097 4�0256 % −0�55429 3�3562 %

3 4�8993 % 5�7618 % 6�4314 %
4�9047 % 0�5886339 5�7708 % 0�389461 6�4451 %

4 5�0903 % 4�1881 % 3�6965 %
5�9590 % −0�588634 4�9067 % −0�38946 4�3334 %

5 6�7856 % 8�1842 % 8�3470 %
6�7921 % 0�6895267 8�1971 % 0�069242 8�3674 %

6 3�2074 % 2�5428 % 2�4892 %
3�2119 % −0�689527 2�5475 % −0�06924 2�4946 %

7 4�4551 % 4�3666 % 3�3388 %
4�4599 % −0�064557 4�3735 % −0�78301 3�3462 %

8 5�4580 % 5�5604 % 6�8632 %
5�4643 % 0�0645575 5�5701 % 0�783007 6�8786 %

9 4�5005 % 3�9546 % 4�3658 %
4�5058 % −0�402708 3�9614 % 0�348092 4�3751 %

10 5�4157 % 6�0668 % 5�4292 %
5�4213 % 0�4027079 6�0763 % −0�34809 5�4417 %

Now we can calculate values Ṽ2

(
X̃k

2

)
:

Ṽ2

(
X̃k

2

)
= max

(
C2

(
X̃k

2

)
�H
(
�2

min� X̃k
2

))

Where the intrinsic value of the swaption C2

(
X̃k

2

)
is by analogy to (13.6):

C2

(
X̃k

2

)
=
[(

1 + 
L̃k
3

)(
1 + 
L̃k

4

)
− 1 − 
K

[(
1 + 
L̃k

4

)
+ 1

]]+

And

H
(
�2

min� X̃k
2

)
= a0 + a1W̃

k
T2

+ a2

(
W̃ k

T2

)2

W̃ k
T2

= WT1
+ 	W̃T1

+ 	W̃T 1
1

Coefficients a0� a1� a2 are calculated during the previous time step of simulation and they
are expressed by (13.8).
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The results of calculation are listed in Table 13.19 below.

Table 13.19

Scenario Number H
(
�2

min� X̃k
2

)
C2

(
X̃k

2

)
Ṽ2

(
X̃k

2

)
1 1�4147 % 1.5409 % 1�5409 %
2 −0�1980 % 0.0000 % 0�0000 %
3 1�1185 % 1.4613 % 1�4613 %
4 −0�2290 % 0.0000 % 0�0000 %
5 3�2352 % 3.4272 % 3�4272 %
6 0.3577 % 0.0000 % 0�3577 %
7 −0�1710 % 0.0000 % 0�0000 %
8 1�5713 % 1.9029 % 1�9029 %
9 −0�2070 % 0.0000 % 0�0000 %
10 0.6862 % 0.4413 % 0�6862 %

Then V̂1

(
Xk

1

)
are calculated as

V̂1

(
Xk

1

)= max
(
C1

(
Xk

1

)
� Ṽ2

(
X̃k

2

))
Where the intrinsic value, C1

(
Xk

1

)
, is given by formula (13.9). Calculation results are listed

in Table 13.20 below.

Table 13.20

Scenario Number C1

(
Xk

1

)
Ṽ2

(
X̃k

2

)
V̂1

(
Xk

1

)
1 0.0000 % 1.5409 % 1�5409 %
2 0.0000 % 0.0000 % 0�0000 %
3 0.0000 % 1.4613 % 1�4613 %
4 0.1388 % 0.0000 % 0�1388 %
5 2.7702 % 3.4272 % 3�4272 %
6 0.0000 % 0.3577 % 0�3577 %
7 0.0000 % 0.0000 % 0�0000 %
8 0.7058 % 1.9029 % 1�9029 %
9 0.0000 % 0.0000 % 0�0000 %
10 0.6404 % 0.6862 % 0�6862 %

The value of the swaption expressed in the assumed numeraire is then calculated as the
average of V̂1

(
Xk

1

)
across all ten scenarios.

S̃T0
= 0.9515 %

Then value of the swaption expressed in currency is:

ST0
= S̃T0

4∏
i=1

�1 + 
Li �0��

= 0.9515 %

�1 + 0.5 · 0.05�4 = 0.86201 %
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13.3 CALCULATION RESULTS

In order to verify the accuracy of algorithms described above we have made simulation using
5,000 scenarios (2,500 base scenarios and 2,500 antithetic ones). For each of Algorithms 13.1–
13.5 the simulation has been repeated 100 times. We have also changed, in comparison to the
example described above, the parameters of simulation and parameters of the priced swap-
tion. Now, we have four time steps within each LIBOR period, so time step of simulation
	t = 0�125, swaption holder has a right to enter into swap that pays float and receives fixed
rate K = 5 %. The maturity of the swap is T15 = 7�5. We allow the swaption to be exercisable
at times T9� T10� T11� T12� T13� T14. Initial values of all forward LIBORs are equal 5 %, their
volatilities are 30 % and all LIBORs are assumed to be perfectly correlated (calculations are
performed under one factor model). Simulation is done under the forward measure associated
with zero coupon bond maturing at T20 = 10. Regressions have been done to polynomials:

H���WT � =
N∏

j=0

aj �WT �j

For N = 10� 20� 50

Our results are presented in Tables 13.21–13.23 below.

Table 13.21 Calculation results for polynomial of 10th degree

Average Stdev of single simulation result Stdev of average

Algorithm 13.1 2.930 % 0.110 % 0.011 %
Algorithm 13.2 2.900 % 0.120 % 0.012 %
Algorithm 13.3 3.100 % 0.150 % 0.015 %
Algorithm 13.4 2.870 % 0.120 % 0.012 %
Algorithm 13.5 2.950 % 0.100 % 0.010 %

Table 13.22 Calculation results for polynomial of 20th degree

Average Stdev of single simulation result Stdev of average

Algorithm 13.1 2.935 % 0.120 % 0.012 %
Algorithm 13.2 2.910 % 0.110 % 0.011 %
Algorithm 13.3 3.090 % 0.150 % 0.015 %
Algorithm 13.4 3.100 % 0.900 % 0.900 %
Algorithm 13.5 2.950 % 0.110 % 0.011 %

Table 13.23 Calculation results for polynomial of 50th degree

Average Stdev of single simulation result Stdev of average

Algorithm 13.1 2�935 % 0�130 % 0�013 %
Algorithm 13.2 2�850 % 0�110 % 0�011 %
Algorithm 13.3 3�390 % 1�100 % 1�100 %
Algorithm 13.4 8882�000 % 63440�000 % 6344�000 %
Algorithm 13.5 2�935 % 0�110 % 0�011 %
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In order to verify the accuracy of the algorithms we also price the swaption using binomial
trees (see Chapter 10, Approximations of the BGM model). We receive the value 0.0295.

13.4 SOME THEORETICAL REMARKS ON OPTIMAL
STOPPING UNDER LSM

The goal of this subsection is to investigate from a theoretical point of view reasons for
under- or over-estimation generated by a described algorithm. In order to do it we estimate
the systematic error of one step of simulation. Systematic error is defined:

	�x� =
∣∣∣E ( V̂n

(
Xk

n

)∣∣Xk
n = x

)
− V �x�

∣∣∣ (13.18)

All algorithms of optimal stopping described in this chapter have one common generic
form:

Begin
If Cn

(
Xk

n

)
> Û 1

n

(
Xk

n

)
then

V̂n

(
Xk

n

)= Cn

(
Xk

n

)
Else

V̂n

(
Xk

n

)= Û 2
n

(
Xk

n

)
End If

End

Now we calculate E
(
V̂n

(
Xk

n

)∣∣Xk
n = x

)
under the assumption that estimator Û 1

n

(
Xk

n

) ≡
Û 2

n

(
Xk

n

)
is unbiased. ��·� is a conditional distribution of the random variable Û 1

n

(
Xk

n

)−
Un

(
Xk

n

)
under condition Xk

n = x

E
(

V̂n

(
Xk

n

)∣∣Xk
n = x

)
=

+�∫
−�

max �Cn �x��Un �x� + y���y�dy

=
Cn�x�−Un�x�∫

−�
Cn �x���y�dy +

+�∫
Cn�x�−Un�x�

�Un �x� + y���y�dy

(13.19)

Now, let us consider two cases:

1) Cn�x� ≥ Un�x�

From (13.19)

E
(

V̂n

(
Xk

n

)∣∣Xk
n = x

)
=

Cn�x�−Un�x�∫
−�

Cn �x���y�dy +
+�∫

Cn�x�−Un�x�

�Cn�x� + y + �Un �x�

− Cn �x�����y�dy

=
+�∫

−�
Cn �x�� �y�dy +

+�∫
Cn�x�−Un�x�

�y + �Un �x� − Cn �x���� �y�dy
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And since

Vn �x� = max �Cn �x� �Un �x�� = Cn �x�

We obtain

E
(

V̂n

(
Xk

n

)∣∣Xk
n = x

)
= Vn �x� +

+�∫
Cn�x�−Un�x�

�y + �Un �x� − Cn �x���� �y�dy > Vn �x�

(13.20)
2) Cn �x� < Un �x�

From (13.19)

E
(

V̂n

(
Xk

n

)∣∣Xk
n = x

)
=

Cn�x�−Un�x�∫
−�

�Un �x� + �Cn �x� − Un �x���� �y�dy

+
+�∫

Cn�x�−Un�X�

�Un �x� + y�� �y�dy =
+�∫

−�
Un �x�� �y�dy

+
Cn�x�−Un�x�∫

−�
�Cn �x� − Un �x��� �y�dy +

+�∫
Cn�x�−Un�x�

y� �y�dy�

Since

Vn �x� = max �Cn �x� �Un �x�� = Un �x�

And

Cn�x�−Un�x�∫
−�

�Cn �x� − Un �x��� �y�dy +
+�∫

Cn�x�−Un�x�

y� �y�dy >

+�∫
−�

y� �y�dy = 0�

We obtain

E
(
Vn

(
Xk

n

)∣∣Xk
n = X

)= Vn �x� +
Cn�x�−Un�x�∫

−�
�Cn�x� − Un�x��
�y�dy

(13.21)
+

+�∫
Cn�x�−Un�x�

y� �y�dy > Vn �x��

The results mean that if we use the same estimator of Un

(
Xk

n

)
for determining exercise barrier

and the same estimator for calculate value of priced instrument we can obtain overestimated
result. In our numerical test algorithms that use the same estimator of Un

(
Xk

n

)
for both
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purposes are Algorithm 13.3 and Algorithm 13.4. It is also the case of the most naive
algorithm of optimal stopping

(
where Û 1

n

(
Xk

n

)= Û 2
n

(
Xk

n

)= Vn+1

(
Xk

n+1

))
:

Algorithm 13.6
Begin

For each scenario k calculate:

If Cn

(
Xk

n

)
> Vn+1

(
Xk

n+1

)
then

Vn

(
Xk

n

)= Cn

(
Xk

n

)
Else

Vn

(
Xk

n

)= Vn+1

(
Xk

n+1

)
End If

Next k

End of algorithm 13.6

Now calculate E
(
V̂n

(
Xk

n

)∣∣Xk
n = x

)
under the assumption that estimators Û 1

n �x� and

Û 2
n �x� are independent. �1 �·� and �2 �·� in the formula below are distributions of

the random variables Û 1
n �x� − Un �x� and Û 2

n �x� − Un �x� respectively, conditionally
that Xk

n = x

E
(

V̂n

(
Xk

n

)∣∣Xk
n = x

)
= 1Û 1

n �x�>Cn�x�

+�∫
−�

�Un �x� + y2��2 �y2�dy2

+ 1U 1
n �x�≤Cn�X�

+�∫
−�

�Cn �x� + y2��2 �y2�dy2

(13.22)

= Un �x�

+�∫
Cn�x�−Un�x�

� �y1�dy1 + Cn �X�

Cn�x�−Un�x�∫
−�

��y1�dy1

≤ max �Un �x� �Cn �x�� = Vn �x�

and the inequality in (13.22) becomes equality only if Cn �x� = Un �x�. So, in this case
calculations can lead to an underpricing of a valued claim.

Now, we compare the systematic error (13.18) for the two described cases:

1) Û 1
n �x� ≡ Û 2

n �x�
2) Û 1

n �x� and Û 2
n �x� are independent

Let us assume that both random variables: Û 1
n �x� − Un �x� and Û 2

n �x� − Un �x� are standard
normal variables.

The results of the calculations are listed in the Table 13.24 below.
We look at the systematic error:

1) For Û 1
n �x� ≡ Û 2

n �x�



256 The LIBOR Market Model in Practice

(a) Cn�x� > Un�x�
From (13.20) and features of the standard normal distribution:

∣∣∣Vn �x� − E
(

V̂n

(
Xk

n

)∣∣Xk
n = X

)∣∣∣= +�∫
Cn�X�−Un�X�

�y + �Un �x� − Cn �x���� �y�dy

= 1√
2�

+�∫
�Cn�x�−Un�x��2

2

e−zdz

+ �Un �x� − Cn �x��N �Un �x� − Cn �x��

= 1√
2�

e
−�Cn�x�−Un�x��2

2

+ �Un �x� − Cn �x��N �Un �x� − Cn �x��

Cn �x� ≤ Un �x�

From (13.21) and features of the standard normal distribution:

∣∣∣Vn �x� − E
(

V̂n

(
Xk

n

)∣∣Xk
n = x

)∣∣∣=
Cn�x�−Un�x�∫

−�
�Cn �x� − Un �x��� �y�dy

+
+�∫

Cn�x�−Un�x�

y� �y�dy

= �Cn �x� − Un �x��N �Cn �x� − Un �x��

+ 1√
2�

+�∫
�Cn�x�−Un�x��2

2

e−zdz = 1√
2�

e
−�Cn�x�−Un�x��2

2

+ �Cn �x� − Un �x��N �Cn �x� − Un �x��

2) Û 1
n �x� and Û 2

n �x� are independent
From (13.21) and features of the standard normal distribution:∣∣∣Vn �X� − E

(
V̂n

(
Xk

n

)∣∣Xk
n = x

)∣∣∣
= max �Un �x��Cn�x�� − Un �x�

+�∫
Cn�x�−Un�x�

� �y1�dy1 − Cn �x�

Cn�x�−Un�x�∫
−�

��y1�dy1

= max �Un �x��Cn�x�� − Un �x�N �Un �x� − Cn �x�� − Cn �x�N �Cn �x� − Un �x��

Systematic error results are listed in Table 13.24 below.
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Table 13.24

Cn�X� Un�X� Systematic error for case 1) Systematic error for case 2)

10 13 0.000382 0.00405
10 12.7 0.00106 0.009361
10 12.4 0.00272 0.019674
10 12.1 0.006468 0.037515
10 11.8 0.014276 0.064675
10 11.5 0.029307 0.100211
10 11.2 0.056102 0.138084
10 10.9 0.100431 0.165654
10 10.6 0.168673 0.164552
10 10.3 0.266761 0.114627
10 10 0.398942 0
10 9.7 0.266761 0.114627
10 9.4 0.168673 0.164552
10 9.1 0.100431 0.165654
10 8.8 0.056102 0.138084
10 8.5 0.029307 0.100211
10 8.2 0.014276 0.064675
10 7.9 0.006468 0.037515
10 7.6 0.00272 0.019674
10 7.3 0.00106 0.009361
10 7 0.000382 0.00405

13.5 SUMMARY

Among tested Algorithms, only Algorithm 13.1 and Algorithm 13.5 give appropriate accu-
racy. Algorithm 13.3 and Algorithm 13.4 are examples of algorithm where the same estimator
of continuation value is used for both purposes of:

1) Determining if swaption should be continued.
2) Calculation of swaption value.

In another words Û 1
n �x� ≡ Û 2

n �x�.
According to our theoretical divagation in section 13.4 ‘Some theoretical remarks on

optimal stopping under LSM’ Algorithms 13.3 and 13.4 should lead to overestimation and
our numerical tests confirm this.

Algorithm 13.2 is an example of an algorithm where both estimators of U�x� are inde-
pendent and, consistently with our theoretical reasoning, it leads to underestimation.

And finally one important remark on Algorithm 13.1. If the regression polynomial has an
appropriatly high degree we have:

M∑
k=1

(
V̂n+1

(
Xk

n+1

)− H
(
��Xk

n

))2 = 0

Meaning that for each scenario:

V̂n+1

(
Xk

n+1

)= H
(
��Xk

n

)
And Algorithm 13.1 becomes the naive Algorithm 13.6.
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swaption pricing/calibration 27–9,

195–8
examples 43–4
linear in BGM model 29–30
linear in HJM model 30–1
nonlinear 43
parametrized volatility 37–8
Rebonato approach 38–9
semilinear in BGM model

40–1
semilinear in HJM model

41–2
separated volatility 34–7
time homogeneous volatility 33–4
universal volatility function 31–3
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time homogeneous volatility 33–4
tree pricing 220
trinomial tree construction

for LA
n �t� 188–91

for LD
n �t� 191

trinomial tree simulation 25–6

uncertain volatility 50–2
universal volatility function

31–3

Vasiček model 16–17
volatility

parametrized 37–8
separated 34–7
stochastic 48–50
time homogeneous 33–4
uncertain 50–2
universal 31–3

Wiener processes 5
geometric 5




