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Preface

This book is an outgrowth of notes compiled by the author while teaching
courses for undergraduate and masters/MBA finance students at Washing-
ton University in St. Louis and the Institut für Höhere Studien in Vienna. At
one time, a course in Options and Futures was considered an advanced finance
elective, but now such a course is nearly mandatory for any finance major and
is an elective chosen by many non-finance majors as well. Moreover, students
are exposed to derivative securities in courses on Investments, International
Finance, Risk Management, Investment Banking, Fixed Income, etc. This ex-
pansion of education in derivative securities mirrors the increased importance
of derivative securities in corporate finance and investment management.

MBA and undergraduate courses typically (and appropriately) focus on
the use of derivatives for hedging and speculating. This is sufficient for many
students. However, the seller of derivatives, in addition to needing to under-
stand buy-side demands, is confronted with the need to price and hedge. More-
over, the buyer of derivatives, depending on the degree of competition between
sellers, may very likely benefit from some knowledge of pricing as well. It is
“pricing and hedging” that is the primary focus of this book. Through learn-
ing the fundamentals of pricing and hedging, students also acquire a deeper
understanding of the contracts themselves. Hopefully, this book will also be
of use to practitioners and for students in Masters of Financial Engineering
programs and, to some extent, Ph.D. students in finance.

The book is concerned with pricing and hedging derivatives in frictionless
markets. By “frictionless,” I mean that the book ignores transaction costs
(commissions, bid-ask spreads and the price impacts of trades), margin (col-
lateral) requirements and any restrictions on short selling. The theory of pric-
ing and hedging in frictionless markets stems of course from the work of Black
and Scholes [6] and Merton [51] and is a very well developed theory. It is based
on the assumption that there are no arbitrage opportunities in the market.
The theory is the foundation for pricing and hedging in markets with fric-
tions (i.e., in real markets!) but practice can differ from theory in important
ways if the frictions are significant. For example, an arbitrage opportunity in
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a frictionless market often will not be an arbitrage opportunity for a trader
who moves the market when he trades, faces collateral requirements, etc. This
book has nothing to say about how one should deviate from the benchmark
frictionless theory when frictions are important. Another important omission
from the book is jump processes—the book deals exclusively with binomial
and Brownian motion models.

The book is intended primarily to be used for advanced courses in deriv-
ative securities. It is self-contained, and the first chapter presents the basic
financial concepts. However, much material (functioning of security exchanges,
payoff diagrams, spread strategies, etc.) that is standard in an introductory
book has not been included here. On the other hand, though it is not an in-
troductory book, it is not truly an advanced book on derivatives either. On
any of the topics covered in the book, there are more advanced treatments
available in book form already. However, the books that I have seen (and there
are indeed many) are either too narrow in focus for the courses I taught or
not easily accessible to the students I taught or (most commonly) both. If this
book is successful, it will be as a bridge between an introductory course in
Options and Futures and the more advanced literature. Towards that end, I
have included cites to more advanced books in appropriate places throughout.

The book includes an introduction to computational methods, and the
term “introduction” is meant quite seriously here. The book was developed
for students with no prior experience in programming or numerical analysis,
and it only covers the most basic ideas. Nevertheless, I believe that this is an
extremely important feature of the book. It is my experience that the theory
becomes much more accessible to students when they learn to code a for-
mula or to simulate a process. The book builds up to binomial, Monte Carlo,
and finite-difference methods by first developing simple programs for simple
computations. These serve two roles: they introduce the student to program-
ming, and they result in tools that enable students to solve real problems,
allowing the inclusion of exercises of a practical rather than purely theoretical
nature. I have used the book for semester-length courses emphasizing calcu-
lation (most of the exercises are of that form) and for short courses covering
only the theory.

Nearly all of the formulas and procedures described in the book are both
derived from first principles and implemented in Excel VBA. The VBA pro-
grams are in the text and in an Excel workbook that can be downloaded free
of charge at www.kerryback.net. I use a few special features of Excel, in
particular the cumulative normal distribution function and the random num-
ber generator. Otherwise, the programs can easily be translated into any other
language. In particular, it is easy to translate them into MATLAB, which also
includes a random number generator and the cumulative normal distribution
function (or, rather, the closely related “error function”) as part of its basic
implementation. I chose VBA because students (finance students, at least)
can be expected to already have it on their computers and because Excel is
a good environment for many exercises, such as analyzing hedges, that do
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not require programming. An appendix provides the necessary introduction
to VBA programming.

Viewed as a math book, this is a book in applied math, not math proper.
My goal is to get students as quickly as possible to the point where they can
compute things. Many mathematical issues (filtrations, completion of filtra-
tions, formal definitions of expectations and conditional expectations, etc.) are
entirely ignored. It would not be unfair to call this a “cookbook” approach. I
try to explain intuitively why the recipes work but do not give proofs or even
formal statements of the facts that underlie them.

I have naturally taken pains to present the theory in what I think is the
simplest possible manner. The book uses almost exclusively the probabilis-
tic/martingale approach, both because it is my preference and because it
seems easier than partial differential equations for students in business and
the social sciences to grasp. A sampling of some of the more or less distinctive
characteristics of the book, in terms of exposition, is:

• Important theoretical results are highlighted in boxes for easy reference;
the derivations that are less important and more technical are presented
in smaller type and relegated to the ends of sections.

• Changes of numeraire are introduced in the first chapter in a one-period
binomial model, the probability measure corresponding to the underlying
as numeraire being given as much emphasis as the risk-neutral measure.

• The fundamental result for pricing (asset prices are martingales under
changes of numeraire) is presented in the first chapter, because it does not
need the machinery of stochastic calculus.

• The basic ideas in pricing digital and share digitals, and hence in deriving
the Black-Scholes formula, are also presented in the first chapter. Digitals
and share digitals are priced in Chap. 3 before calls and puts.

• Brownian motion is introduced by simulating it in discrete time. The
quadratic variation property is emphasized, including exercises that con-
trast Brownian motion with continuously differentiable functions of time,
in order to motivate Itô’s formula.

• The distribution of the underlying under different numeraires is derived
directly from the fundamental pricing result and Itô’s formula, bypassing
Girsanov’s theorem (which is of course also a consequence of Itô’s formula).

• Substantial emphasis is placed on forwards, synthetic forwards, options
on forwards and hedging with forwards because these have many applica-
tions in fixed income and elsewhere—a simple but characteristic example
is valuing a European option on a stock paying a known cash dividend as
a European option on the synthetic forward with the same maturity.

• Following Margrabe [50] (who attributes the idea to S. Ross) the for-
mula for exchange options is derived by a change of numeraire from the
Black-Scholes formula. Very simple arguments derive Black’s formula for
forward and futures options from Margrabe’s formula and Merton’s for-
mula for stock options in the absence of a constant risk-free rate from
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Black’s formula. This demonstrates the equivalence of these important
option pricing formulas as follows:

Black-Scholes =⇒ Margrabe
=⇒ Black
=⇒ Merton
=⇒ Black-Scholes

• Quanto forwards and options are priced by first finding the portfolio that
replicates the value of a foreign security translated at a fixed exchange
rate and then viewing quanto forwards and options as standard forwards
and options on the replicating portfolio.

• The market model is presented as an introduction to the pricing of fixed-
income derivatives. Forward rates are shown to be martingales under the
forward measure by virtue of their being forward prices of portfolios that
pay spot rates.

• In order to illustrate how term structure models are used to price fixed-
income derivatives, the Vasicek/Hull-White model is worked out in great
detail. Other important term structure models are discussed much more
briefly.

Of course, none of these items is original, but in conjunction with the compu-
tational tools, I believe they make the “rocket science” of derivative securities
accessible to a broader group of students.

The book is divided into three parts, labeled “Introduction to Option Pric-
ing,” “Advanced Option Pricing,” and “Fixed Income.” Naturally, many of
the chapters build upon one another, but it is possible to read Chaps. 1–3,
Sects. 7.1–7.2 (the Margrabe and Black formulas) and then Part III on fixed
income. For a more complete coverage, but still omitting two of the more dif-
ficult chapters, one could read all of Parts I and II except Chaps. 8 and 10,
pausing in Chap. 8 to read the definitions of baskets, spreads, barriers, look-
backs and Asians and in Chap. 10 to read the discussion of the fundamental
partial differential equation.

I would like to thank Mark Broadie, the series editor, for helpful comments,
and especially I want to thank my wife, Diana, without whose encouragement
and support I could not have written this. She mowed the lawn—and managed
everything else—while I typed, and that is a great gift.

College Station, Texas Kerry Back
April, 2005



Contents

Part I Introduction to Option Pricing

1 Asset Pricing Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 State Prices in a One-Period Binomial Model . . . . . . . . . . . . . . 11
1.3 Probabilities and Numeraires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Asset Pricing with a Continuum of States . . . . . . . . . . . . . . . . . 17
1.5 Introduction to Option Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 An Incomplete Markets Example . . . . . . . . . . . . . . . . . . . . . . . . . 24
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Continuous-Time Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1 Simulating a Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Quadratic Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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Part I

Introduction to Option Pricing



1

Asset Pricing Basics

This chapter introduces the “change of numeraire” (or “martingale”) method
for valuing derivative securities. The method is introduced in a binomial model
and then extended to more general (continuum of states) models. Computa-
tions in the more general model require the continuous-time mathematics that
will be presented in Chap. 2. We will begin with a brief description of the basic
derivatives (calls and puts) and some other financial concepts. More detailed
descriptions can be found in any of the many introductory books on derivative
securities (e.g., [37] or [49]).

It should be noted that the pricing and hedging results in this book are not
tied to any particular currency. However, for specificity (and as a consequence
of the author’s habit) the discussion will generally be in terms of dollars.
Multiple currencies are addressed in Chap. 6.

1.1 Fundamental Concepts

Longs, Shorts, and Margin

In financial markets, the owner of an asset is said to be “long” the asset. If
person A owes something to person B, the debt is an asset to person B but
a liability to person A. One also says that person A is “short” the asset. For
example, if someone borrows money and invests the money in stocks, then the
individual is short cash and long stocks.

One must invest some of one’s own money when borrowing money to buy
stocks. For example, an individual could invest $600, borrow $400, and buy
$1000 of stock. The $600 is called the “margin” posted by the investor, and
buying stocks in this way is called buying “on margin.” The investor, or the
portfolio, is also said to be “levered,” because buying $1000 of stock with only
a $600 investment amplifies the risk and return per dollar of investment. On
a percentage basis, we would say the account has 60% margin, the 60% being
the ratio of the equity (assets minus liabilities = $1000 of stock minus $400
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debt) to the assets ($1000 of stock). If the value of the stock drops sufficiently
far, then it may become doubtful whether the investor can repay the $400.
In this case, the investor must either sell the stock or invest more of his own
funds (i.e., he receives a “margin call”). In other words, in actual markets
there are “margin requirements,” that specify a minimum percent margin an
investor must have initially (when borrowing money) and a minimum percent
margin the investor must maintain.

Rather than borrowing money to buy stocks, an investor can do the
opposite—he can borrow stocks to buy money. In this case, “buying money”
means selling the borrowed stocks for cash. Such an investor will be short
stocks and long cash. This is called “short selling” (or, more briefly, “short-
ing”) stocks. For example, suppose individual A borrows 100 shares of stock
from individual B and then sells them to individual C. Both B and C are long
the 100 shares and A is short, so the net long position is 2× 100− 100, which
is the original 100 shares that B was long. A short seller of stocks must pay to
the lender of the stocks any dividends that are paid on the stock. In our ex-
ample, both B and C own the 100 shares so both expect to receive dividends.
The company will pay dividends only to C, and A must pay the dividends
to B.

Of course, investors always wish to buy low and sell high. The usual
method is to buy stocks and hope they rise. An investor who short sells also
wishes to buy low and sell high, but he reverses the order—he sells first and
then hopes the stocks fall. The risk is that the stocks will instead rise, which
will increase the value of his liability (short stock position) without increasing
the value of his assets (long cash position), thus putting him “under water.”
To shield the lender of the stocks from this risk, a short seller must also invest
some of his own funds, and this amount is again called the investor’s mar-
gin. For example, an investor might invest $600, and borrow and sell $1000
of stock. In this case, the investor will be long $1600 cash and short $1000
worth of stock. His equity is $600 and his percent margin is calculated as
$600/$1000 = 60%. Again, there are typically both initial and maintenance
margin requirements. An additional feature of short selling for small individ-
ual investors is that they typically will not earn interest on the proceeds of the
short sale (the $1000 cash obtained from selling stocks in the above example).

In this book, we will assume there is a single risk-free rate at which one can
both borrow and lend. Moreover, we will assume that investors earn this rate
on margin deposits, including the proceeds of short sales (and including any
margin that may be required when buying and selling forward and futures
contracts). Thus, investors gain from buying on margin if the asset return
is sure to exceed the risk-free rate, and they gain from short selling if the
return on an asset is sure to be below the risk-free rate. These assumptions
are not reasonable for small individual investors, but they are fairly reasonable
for institutional investors. We will assume that no asset has a return that is
certain to be above the risk-free rate nor certain to be below the risk-free rate,
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because institutional investors could “arbitrage” such guaranteed high-return
or guaranteed low-return assets.

Calls and Puts

Call and put options are the basic derivative securities and the building blocks
of many others. A derivative security is a security the value of which depends
upon another security. A call option is the right to buy an asset at a pre-
specified price. The pre-specified price is called the exercise price, the strike
price, or simply the strike. We will often call the asset a “stock,” but there
are options on many other types of assets also, and everything we say will
be applicable to those as well.1 The asset to which the call option pertains is
called the “underlying asset,” or, more briefly, the “underlying.” If the market
value of the asset exceeds the exercise price, then we say the call option is
“in the money.” Buying a call option is a way to bet on the upside of the
underlying asset.

A put option is the right to sell an asset at a pre-specified (exercise, strike)
price. Buying a put is a way to bet on an asset price becoming low (similar
to shorting). A put option is in the money if the exercise price exceeds the
value of the asset. Both puts and calls are potentially valuable and hence the
buyer of a put or call must pay the seller.

A long put option provides insurance to someone who is long the under-
lying asset, because it guarantees that the asset can always be sold at the
strike price of the put (of course, it can be sold at the market price, if that is
higher than the strike of the put). Symmetrically, a long call option provides
insurance to someone who is short the underlying asset. The terminology in
option markets reflects the parallels between options and insurance contracts.
In particular, the seller of an option is said to “write” the option and the com-
pensation (price) he receives from the buyer is called the option “premium,”
just as an insurance company writes insurance contracts in exchange for pre-
mium income. Calculating the price at which one should be willing to trade
an option is the main topic of this book.

It is important to recognize the different situations of someone who is short
a call option and someone who is long a put. Both positions are bets on the
downside of the asset. Both the investor who is short a call and the investor
who is long a put may eventually sell the underlying asset and receive the
exercise price in exchange. However, the investor who is long a put has an
option to sell the asset at the exercise price and the investor who is short
a call has an obligation to sell the asset at the exercise price, should the
counterparty choose to exercise the call. Thus, the investor who is long a put
will be selling at the exercise price when it is profitable to do so, whereas
the investor who is short a call will be selling at the exercise price when it is
1 One caveat is that by “asset” we mean something that can be stored; thus, for

example, electricity is, practically speaking, not an asset.
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unprofitable. The buyer of a put must pay the premium to the seller; he then
profits if the asset price is low, with his maximum possible profit being quite
large (the maximum value is attained when the market value of the underlying
asset reaches zero). In contrast, the seller of a call receives premium income,
and the premium is his maximum possible profit, whereas his potential losses
are unbounded. Thus, these are very different positions.

Individuals who sell calls usually sell out-of-the-money covered calls. “Cov-
ered” means that they own the underlying asset and can therefore deliver the
underlying if the call is exercised without incurring any further expense—they
experience only an “opportunity cost” in delivering it for less than the market
price.2 A call being out of the money implies that the price of the underlying
must rise before the call would be exercised against the seller; thus, the seller
of an out-of-the money covered call still has some potential for profit from
the underlying. In addition, of course, the seller receives the premium income
from the call. Institutions often follow this strategy also, using the premium
income to “enhance” their return from the underlying. One can hedge a short
call without owning a full share of the underlying asset, if one is able to rebal-
ance the hedge over time. Calculating such hedges is another of the principal
topics of this book.

In a certain sense, option markets are zero-sum games. The profit earned
by one counterparty to an option transaction is a loss suffered by the other.
However, options can allow for an increase in the welfare of all investors by
improving the allocation of risk. A producer who must purchase a certain
input may buy a call option, giving him the right to buy the input at a fixed
price. This caps his expense. The seller of the call now bears the risk that
the input price will be high—in this case, the option will be exercised and he
will be forced to sell at a price below the market price. It may be that the
seller is in a better position to bear the risk (for example, he may have less
of the risk in his portfolio) and the option transaction may thereby improve
the allocation of risks across investors. The similarity to insurance should be
apparent.

Quite complex bets or hedges can be created by combining options. For
example, a long call and put with the same strike price is called a “strad-
dle.” Such a portfolio is (almost) always in the money. It is in fact a bet on
volatility—a big move in the underlying asset value away from the exercise
price will lead to either the call or put having a high value. Another important
example of an option portfolio is a “collar.” A collar consists of a long put and
a short call, or a short call and a long put, with the options having the same
maturity. As mentioned before, a long put provides insurance to someone who
is long the underlying asset. Selling a call provides premium income that can
2 In contrast, one who sells a call without owning the underlying is said to sell a

“naked call.” The seller of a naked call, or the seller of a put, must post margin,
just like a short seller of stocks, in order to ensure that he can meet his obligation.
However, this does not apply to sellers of covered calls.
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be used to offset the cost of the put (the most popular type of collar is a zero-
cost collar: a collar in which the premium of the call is equal to the premium
of the put). The cost of selling a call for an owner of the underlying is that it
sells off the upside of the underlying asset—if the value of the asset exceeds
the strike price of the call, then the call will be exercised and the underlying
asset must be delivered for the strike price (rather than the higher market
price). Thus, one can purchase the downside insurance provided by a long put
by selling part of the upside potential of the asset, rather than paying the
cost of the insurance out of pocket. There are many other examples of option
portfolios that could be given.

Some puts and calls are traded on exchanges. In this case, the exchange
clearinghouse “steps between” the buyer and seller and becomes the counter-
party to both the buyer and seller. This eliminates the risk that the seller
might default on his obligation when the buyer chooses to exercise his option.
If the owner of an option chooses to exercise, the clearinghouse randomly
chooses someone who is short the option to fulfill the obligation. Most ex-
change traded options are never exercised, because any gain on a long contract
can be captured by selling the contract at the market price, thus cancelling the
position. Obviously, however, the right to exercise is essential, because it deter-
mines the market price. Puts and calls are also transacted “over the counter,”
which means that they are private contracts of the counterparties. Moreover,
puts and calls are embedded in many other financial instruments. A prosaic
but important example is that most homeowners have the right to pay off their
mortgages early. This means they have call options on their mortgages, with
exercise price equal to the remaining mortgage principal. Similarly, callable
bonds can be redeemed early by the company issuing them, convertible bonds
have embedded call options on the company’s stock (which are exercised by
“converting” the bonds) and there are many, many other examples. Puts and
calls also exist outside financial markets. For example, a company may begin
manufacturing a new product at a small scale; if the product is successful, the
scale can be expanded. In this case, the company buys a call option on large-
scale production with the premium being the cost of launching small-scale
production. Adapting the methods developed for financial options to value
such “real options” is an important and growing field.

Exercise Policies for Calls and Puts

It may be rational to exercise a call if the asset value exceeds the exercise
price. Thus, denoting the price of the asset by S and the exercise price by K,
the owner of a call option can profit by S−K dollars by exercising the option
when S > K. If S < K, exercise would be irrational. Thus, the payoff to the
owner of the call option is3 max(0, S − K). It has been said that timing is

3 We use the standard notation: max(a, b) denotes the larger of a and b and min(a, b)
denotes the smaller.
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everything, and the timing here should be made clearer. The simplest type of
option is called a “European” option. A European option has a finite lifetime
and can only be exercised at its maturity date. For a European call option, the
exercise strategy just described is the optimal one, with S representing the
asset price at the maturity date of the option. Equally, if not more, important
are “American” options, which can be exercised at any time before maturity.

For an American call option, the exercise strategy just described is the
optimal one at the maturity date, but it may also be optimal to exercise prior
to maturity. Let K denote the exercise price, T the date the option matures,
and S(t) the price of the underlying asset at date t ≤ T . The “intrinsic value”
of the call option at date t is defined to be max(0, S(t) − K). One would
of course never exercise unless the intrinsic value is positive—i.e., unless the
option is in the money. Moreover, if the asset does not pay a dividend (or other
type of cash flow) prior to the option maturity then one should not exercise
in any circumstances prior to maturity. This is captured in the saying: “calls
are better alive than dead.” Exercise being suboptimal is equivalent to the
value of the option exceeding the intrinsic value.

The principle that calls on non-dividend-paying assets are better alive
than dead follows from two facts: (i) it is generally a good thing (in financial
markets as well as in life) to keep one’s options open, and (ii) early exercise
implies early payment of the exercise price and hence foregone interest. The
usual protest that is heard when this statement is made is that one should
surely exercise if he expects the stock price to plummet, because by exercising
(and then selling the stock acquired) one can lock in the current stock price
rather than waiting for it to fall, in which case the option will surely be
worth less. This intuition is a reasonable one, but it ignores the fact that the
investor could short sell the stock if he expects it to plummet—he doesn’t
need to exercise the option to lock in the current stock price. In fact, shorting
the stock and retaining the option is always better than exercising, assuming
the underlying asset does not pay a dividend.

Specifically, suppose an investor considers exercising at date t. As an alter-
native to exercising early, consider shorting the stock at date t and retaining
the option. This is always better than exercising at date t, because the short
position can be “covered” (the stock can be purchased and returned to the
lender to cancel the short position) at cost K at date T by exercising the
option, and paying K at date T is better than paying it at date t, given that
interest rates must be nonnegative. To be more precise, note that exercise at
date t produces S(t) − K dollars at date t. On the other hand, retaining the
option, shorting the stock at date t, and covering the short either by exercising
the option or buying the stock in the market (whichever is cheaper) produces
S(t) dollars at date t and

max(0, S(T ) − K) − S(T ) = max(−S(T ),−K) = −min(S(T ),K) ≥ −K

dollars at date T . If S(T ) > K, one has −K dollars at date T , in which
case retaining the option has been superior due to the time value of money.
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Furthermore, if S(T ) < K, the strategy of retaining the option and shorting
the stock produces −S(T ) > −K dollars at date T , so retaining the option is
superior due both to flexibility (waiting until T to decide whether to exercise
turns out to be better than committing at date t) and because of the time
value of money.4

Early exercise of a call option can be optimal when the underlying asset
pays a dividend. The above analysis does not apply in this case, because
paying the dividend to the lender of the stock is an additional cost for the
strategy of retaining the option and shorting the stock. If the dividend is so
small that it cannot offset the time value of money on the exercise price, then
early exercise will not be optimal. In other cases, deriving the optimal exercise
strategy is a complicated problem that we will first begin to study in Chap. 5.

A European put option will be exercised at its maturity T if the price
S(T ) of the underlying asset is below the exercise price K. In general, the
value at maturity can be expressed as max(0,K − S(T )). Early exercise of
an American put can be optimal, regardless of whether the underlying pays
a dividend. While it is valuable to keep one’s options open (for puts as well
as calls) the time value of money works in the opposite direction for puts.
Early exercise of a put option implies early receipt of the exercise price, and
it is better to receive cash earlier rather than later. In general, whether early
exercise is optimal depends on how deeply the option is in the money—if
the underlying asset price is sufficiently low, then it will be fairly certain
that exercise will be optimal, whether earlier or late; in this case, one should
exercise earlier to earn interest on the exercise price. How low it should be
to justify early exercise depends on the interest rate (a higher rate makes the
time-value-of-money issue more important, leading to earlier exercise) and the
volatility of the underlying asset price (a lower volatility reduces the value of
keeping one’s options open, leading also to earlier exercise). We will begin to
study the valuation of American puts in Chap. 5 also.
4 Recall that we are assuming investors earn interest on the proceeds of short sales;

otherwise, the S(t) dollars earned from exercising the option and selling the stock
will be worth more than the S(t) dollars earned from shorting the stock. In this
case, early exercise could be optimal. However, assuming institutional investors
can earn interest on the proceeds of shorts, such investors should prefer owning
the option and shorting the stock to exercising. This means they should bid up
the price of the option to the point where it exceeds the value S(t)−K of exercise.
If this is the case, then an investor who cannot earn interest on the proceeds of
shorts should simply sell the option in the market rather than exercise it. Thus, a
sufficient condition for calls to be “better alive than dead” is that there be some
investors who can earn interest on the proceeds of shorts. This type of reasoning
is possible for each situation in this book where the assumption of earning interest
on margin deposits is important, and we will not deal with it in this much detail
again.
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Compounding Interest

During most of the first two parts of the book (the only exception being
Chap. 7) we will assume there is a risk-free asset earning a constant rate of
return. For simplicity, we will specify the rate of return as a continuously
compounded rate. For example, if the annual rate with annual compounding
is ra, then the corresponding continuously compounded rate is r defined as r =
log(1 + ra), where “log” denotes the natural logarithm function. This means
that the gross return over a year (one plus the rate of return) is er = 1 + ra.
More generally, an investment of x dollars for a time period of length T (we
measure time in years, so, e.g., a six-month investment would mean T = 0.5)
will result in the ownership of xerT dollars at the end of the time period.

Expressing the interest rate as a continuously compounded rate enables
us to avoid having to specify in each instance whether the rate is for annual
compounding, semi-annual compounding, monthly compounding, etc. For ex-
ample, the meaning of an annualized rate rs for semi-annual compounding
is that an investment of x dollars will grow over a year to x(1 + rs/2)2. The
equivalent continuously compounded rate is defined as r = log(1+rs/2)2, and
in terms of this rate we can say that the investment will grow in six months
to xe0.5r and that it will grow in one year to xer. We can interpret this rate
as being continuously compounded because compounding n times per year at
an annualized rate of r results in $1 growing in a year to (1 + r/n)n and

lim
n→∞

(
1 +

r

n

)n

= er .

To develop pricing and hedging formulas for derivative securities, it is a
great convenience to assume that investors can trade continuously in time.
This requires us to assume also that returns are computed continuously. In
the case of a risk-free investment of x(t) dollars at any date t at a continuously
compounded rate of r, we will say that the interest earned in “an instant dt”
is x(t)r dt dollars. This is only meaningful when we accumulate the interest
over a non-infinitesimal period of time. So consider investing x(0) dollars at
time 0 and reinvesting interest in the risk-free asset over a time period of
length T . Let x(t) denote the account balance at date t, for 0 ≤ t ≤ T . The
change in the account balance in each instant is the interest earned, so we
have dx(t) = x(t)r dt. The real meaning of this equation is that x(t) satisfies
the differential equation

dx(t)
dt

= x(t)r ,

and it is well known (and easy to verify) that the solution is

x(t) = x(0)ert ,

leading to an account balance at the end of the time period of x(T ) = x(0)erT .
Thus, the statement that “the interest earned in an instant dt is x(t)r dt” is
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equivalent to the statement that interest is continuously compounded at the
rate r.

In the last part of the book, we will drop the assumption that the risk-
free asset earns a constant rate of return. In this case, we will still generally
assume that there is a risk-free asset for very short-term investments (i.e., for
investments with infinitesimal durations!). We will let r(t) denote the risk-free
rate for an instantaneous investment at date t. This means that an investment
of x(t) dollars at date t in the risk-free asset earns interest in an instant dt
equal to x(t)r(t) dt. Consider again an investment of x(0) dollars at date 0 in
this instantaneously risk-free asset with interest reinvested and let x(t) denote
the account balance at date t. Then x(t) must satisfy the differential equation

dx(t)
dt

= x(t)r(t) .

The solution of this differential equation is

x(t) = x(0) exp
(∫ t

0

r(s) ds

)
.

The expression
∫ t

0
r(s) ds can be interpreted as a continuous sum over time of

the rates of interest r(s) earned at times s between 0 and t. If these rates are
all the same, say equal to r, then

∫ t

0
r(s) ds = rt and our compounding factor

exp
(∫ t

0
r(s) ds

)
is ert as before.

1.2 State Prices in a One-Period Binomial Model

To introduce the concepts that will be discussed in the remainder of the
chapter, we will consider in this and the following section the following very
simple framework. There is a stock with price S today (which we will call
date 0). At the end of some period of time of length T , the stock price will take
one of two values: either Su or Sd, where Su > Sd. If the stock price equals Su

we say we are in the “up” state of the world, and if it equals Sd we say we are in
the “down” state. The stock does not pay a dividend. There is also a risk-free
asset earning a continuously compounded rate of interest r. Finally we want
to consider a European call option on the stock with maturity T and strike K.
The value of the call option at the end of the period is Cu = max(0, Su − K)
in the up state and Cd = max(0, Sd − K) in the down state.

We will assume
Su

S
> erT >

Sd

S
. (1.1)

This condition means that the rate of return on the stock in the up state
is greater than the risk-free rate, and the rate of return on the stock in the
down state is less than the risk-free rate. If it were not true, there would be
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an arbitrage opportunity: if the rate of return on the stock were greater than
the risk-free rate in both states, then one should buy an infinite amount of
the stock on margin, and conversely if the rate of return on the stock were
less than the risk-free rate in both states, then one should short an infinite
amount of stock and put the proceeds in the risk-free asset. So what we are
assuming is that there are no arbitrage opportunities in the market for the
stock and risk-free asset.

The “delta” of the call option is δ = (Cu −Cd)/(Su −Sd). Multiplying by
Su − Sd gives us δ(Su − Sd) = Cu − Cd and rearranging yields δSu − Cu =
δSd − Cd, which is critical to what follows. Consider purchasing δ shares of
the stock at date 0 and borrowing

e−rT (δSu − Cu) = e−rT (δSd − Cd)

dollars at date 0. Then you will owe

δSu − Cu = δSd − Cd

dollars at date T , and hence the value of the portfolio at date T in the up
state will be

Value of delta shares − Dollars owed = δSu − (δSu − Cu) = Cu ,

and the value of the portfolio at date T in the down state will be

Value of delta shares − Dollars owed = δSd − (δSd − Cd) = Cd .

Thus, this portfolio of buying delta shares and borrowing money (i.e., buying
delta shares on margin) “replicates” the call option. Consequently, the value C
of the option at date 0 must be the date–0 cost of the portfolio; i.e.,

C = Cost of delta shares−Dollars borrowed = δS − e−rT (δSu −Cu) . (1.2)

Because the call option is equivalent to buying the stock on margin, it can be
considered a levered investment in the stock.

We will now rewrite the option pricing formula (1.2) in terms of “state
prices.” By substituting for δ in (1.2), we can rearrange it as

C =
S − e−rT Sd

Su − Sd
× Cu +

e−rT Su − S

Su − Sd
× Cd . (1.3a)

A little algebra also shows that

S =
S − e−rT Sd

Su − Sd
× Su +

e−rT Su − S

Su − Sd
× Sd , (1.3b)

and
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1 =
S − e−rT Sd

Su − Sd
× erT +

e−rT Su − S

Su − Sd
× erT . (1.3c)

It is convenient to denote the factors appearing in these equations as

πu =
S − e−rT Sd

Su − Sd
and πd =

e−rT Su − S

Su − Sd
. (1.4)

The numbers πu and πd are called the “state prices,” for reasons that will be
explained below.

With these definitions, we can write (1.3a)–(1.3c) as

C = πuCu + πdCd , (1.5a)
S = πuSu + πdSd , (1.5b)

1 = πuerT + πderT . (1.5c)

These equations have the following interpretation: the value of a security
today is its value in the up state times πu plus its value in the down state
times πd. This applies to (1.5c) by considering an investment of $1 today in
the risk-free asset—it has value 1 today and will have value erT in both the
up and down states at date T . Moreover, this same equation will hold for
any other derivative asset. For example, if we considered a put option, then
a delta–hedging argument analogous to that we just gave for the call option
will lead to a formula for the value P of the put today which can be expressed
as P = πuPu + πdPd for the same πu and πd defined in (1.4).

In this model, we can think of any security as a portfolio of what are called
“Arrow securities” (in recognition of the seminal work of Kenneth Arrow [1]).
One of the Arrow securities pays $1 at date T if the up state occurs and
the other pays $1 at date T if the down state occurs. For example, the stock
is equivalent to a portfolio consisting of Su units of the first Arrow security
and Sd units of the second, because the stock is worth Su dollars in the up
state and Sd dollars in the down state. Equations (1.5a)–(1.5c) show that πu

is the price of the first Arrow security and πd is the price of the second. For
example, the right-hand side of (1.5b) is the value of the stock at date 0 viewed
as a portfolio of Arrow securities when the Arrow securities have prices πu

and πd. Because the stock clearly is such a portfolio, its price today must
equal its value as that portfolio, which is what (1.5b) asserts.

As mentioned before, the prices πu and πd of the Arrow securities are called
the “state prices,” because they are the prices of receiving $1 in the two states
of the world. The state prices should be positive, because the payoff of each
Arrow security is nonnegative in both states and positive in one. A little
algebra shows that the conditions πu > 0 and πd > 0 are exactly equivalent to
our “no-arbitrage” assumption (1.1). Thus, we conclude that in the absence
of arbitrage opportunities, there exist positive state prices such that
the price of any security is the sum across the states of the world
of its payoff multiplied by the state price.
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This conclusion generalizes to other models, including models in which
the stock price takes a continuum of possible values. We will discuss more
general models later in this chapter. It is a powerful result that tremendously
simplifies derivative security pricing.

1.3 Probabilities and Numeraires

In this section, we will continue our analysis of the binomial example. To apply
the statement about state prices appearing in boldface type above in the most
convenient way, we will manipulate the state prices so we can interpret the
sums on the right-hand sides of (1.5a)–(1.5c) in terms of expectations. The
expectation (or “mean”) of a random variable is of course its probability-
weighted average value.

In general, there are different expectations that are useful. In this model,
there are two that we can define: one corresponding to the risk-free asset and
one corresponding to the stock. Many readers will have experience with the
first in the form of “risk-neutral probabilities.”

The risk-neutral probabilities are defined as πuerT for the up state and
πderT for the down state. Denoting these as pu and pd respectively, (1.5a)–
(1.5c) can be written as

C = e−rT [puCu + pdCd] , (1.6a)

S = e−rT [puSu + pdSd] , (1.6b)
1 = pu + pd . (1.6c)

The numbers pu and pd are both positive (because the state prices are positive
under our no-arbitrage assumption) and (1.6c) states that they sum to one,
so it is indeed sensible to consider them as probabilities. Equations (1.6a)
and (1.6b) state that the value of a security today is its expected value at
date T (the expectation taken with respect to the risk-neutral probabilities)
discounted at the risk-free rate. Thus, these are “present value” formulas.
Unlike the Capital Asset Pricing Model, for example, there is no risk premium
in the discount rate. This is the calculation we would do to price assets under
the actual probabilities if investors were risk neutral (or for zero-beta assets).
So, we can act as if investors are risk neutral by adjusting the probabilities. Of
course, we are not really assuming investors are risk neutral. We have simply
embedded any risk premia in the probabilities.5

Equations (1.6a) and (1.6b) can be written in an equivalent form, which,
though somewhat less intuitive, generalizes more readily. First, let’s introduce
some notation for the price of the risk-free asset. Considering an investment
of $1 today which grows to erT at date T , it is sensible to take the price
5 This fundamental idea is due to Cox and Ross [20].
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today to be R = 1 and the price in the up and down states at date T to be
Ru = Rd = erT .6 In terms of this notation, (1.6a)–(1.6c) can be written as:

C

R
= pu

Cu

Ru
+ pd

Cd

Rd
, (1.7a)

S

R
= pu

Su

Ru
+ pd

Sd

Rd
, (1.7b)

1 = pu + pd . (1.7c)

Each of equations (1.7a) and (1.7b) states that the price of a security today
divided by the price of the risk-free asset equals the expected future value of
the same ratio, when we take expectations using the risk-neutral probabilities.
In other words, the mean of the date–T value of the ratio is equal to the ratio
today. We will discuss the interpretation and significance of these equations
further below. First, we consider the other type of expectation in this model,
which is based on probabilities corresponding to the stock.

Note that the risk-neutral probabilities are the state prices multiplied by
the gross return on the risk-free asset. Analogously, define numbers qu =
πuSu/S and qd = πdSd/S. Substituting for πu and πd in (1.5a)–(1.5c) and
continuing to use the notation R for the price of the risk-free asset, we obtain

C

S
= qu

Cu

Su
+ qd

Cd

Sd
, (1.8a)

1 = qu + qd , (1.8b)
R

S
= qu

Ru

Su
+ qd

Rd

Sd
. (1.8c)

Equation (1.8b) establishes that we can view the q’s as probabilities (like
the risk-neutral probabilities, they are positive because the state prices are
positive). Equations (1.8a) and (1.8c) both state that the ratio of a security
price to the price of the stock today equals the mean value of the same ratio
at date T , when we compute expectations using the q’s as probabilities.

Here is some useful terminology:

• An assignment of probabilities to events is called a probability measure, or
simply a measure (because it “measures” the events, in a sense). Thus, we
have described two different probability measures in this section.

• The ratio of one price to another is the value of the first (numerator)
asset when we are using the second (denominator) asset as the numeraire.
The term “numeraire” means a unit of measurement. For example, the
ratio C/S is the value of the call when we use the stock as the unit of
measurement: it is the number of shares of stock for which one call option
can be exchanged (to see this, note that C/S shares is worth C/S×S = C
dollars, so C/S shares is worth the same as one call.)

6 All of the equations appearing below will also be true if instead we take R = e−rT

and Ru = Rd = 1.
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• A variable that changes randomly over time with the expected future value
being always equal to the current value is called a martingale.

The right-hand sides of (1.7a)–(1.7b) and (1.8a) and (1.8c) are expecta-
tions under different probability measures (the p’s or q’s). The expected future
(date–T ) value equals the current (date–0) value, so the random variables
(C/R and S/R or C/S and R/S) are martingales. The values C/R and S/R
are the values of the call and stock using the risk-free asset as numeraire, and
the values C/S and R/S are the values of the call and risk-free asset using the
stock as numeraire. Thus, we will express (1.7a)–(1.7b) as “the call and stock
are martingales when we use the risk-free asset as numeraire.” Likewise, we
will express (1.8a) and (1.8c) as “the call and risk-free asset are martingales
when we use the stock as numeraire.” It should be understood in both cases
that “using an asset as numeraire” means that we also use the corresponding
probability measure (i.e., the p’s or q’s). In general, our conclusion that assets
can be priced in terms of positive state prices when there are no arbitrage op-
portunities can be rephrased as: if there are no arbitrage opportunities,
then for each (non-dividend-paying) asset, there exists a probabil-
ity measure such that the ratio of any other (non-dividend-paying)
asset price to the first (numeraire) asset price is a martingale.7

For this exposition, it was convenient to first calculate the state prices
and then calculate the various probabilities. However, that is not the most
efficient way to proceed in most applications. In a typical application, we
would view the prices of the stock and risk-free asset in the various states of the
world as given, and we would be attempting to compute the value of the call
option. Note that the sets of equations (1.5a)–(1.5c), (1.7a)–(1.7c), and (1.8a)–
(1.8c) are all equivalent. In each case we would consider that there are three
unknowns—the value C of the call option and either two state prices or two
probabilities. In each case the state prices or probabilities can be computed
from the last two equations in the set of three equations and then the call
value C can be computed from the first equation in the set. All three sets of
equations produce the same call value.

In fact, as we will see, it will not even be necessary to calculate the prob-
abilities. The fact that ratios of non-dividend paying asset prices to the nu-
meraire asset price are martingales will tell us enough about the probabilities
to calculate derivative values without having to calculate the probabilities
themselves.

We conclude this section with another reformulation of the pricing re-
lations (1.5a)–(1.5c). This formulation will generalize more easily to pricing

7 We have applied this statement to the risk-free asset, which pays dividends (inter-
est). However, the price Ru = Rd = erT includes the interest, so no interest has
been withdrawn—the interest has been reinvested—prior to the maturity T of the
option. This is what we mean by a “non-dividend-paying” asset. In general, we will
apply the formulas developed in this and the following section to dividend-paying
assets by considering the portfolios in which dividends are reinvested.
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when there are a continuum of states, the subject of the next section. Let
probu denote the actual probability of the up state and probd denote the
probability of the down state. These probabilities are irrelevant for pricing
derivatives in the binomial model, but we will use them to write the pricing
relations (1.5a)–(1.5c) as expectations with respect to the actual probabilities.
To do this, we can define

φu =
πu

probu

,

φd =
πd

probd

.

Then (1.5a)–(1.5c) can be written as

C = probuφuCu + probdφdCd , (1.9a)
S = probuφuSu + probdφdSd , (1.9b)
R = probuφuRu + probdφdRd . (1.9c)

The right-hand sides are expectations with respect to the actual probabilities.
For example, the right-hand side of equation (1.9a) is the expectation of the
random variable that equals φuCu in the up state and φdCd in the down
state. The risk-neutral probabilities can be calculated from φu and φd as pu =
probuφuRu/R and pd = probdφdRd/R. Likewise, the probabilities using the
stock as the numeraire can be calculated from φu and φd as qu = probuφuSu/S
and qd = probdφdSd/S. In the following section, we will assume (which can
be shown to be true under some technical conditions) that relations such as
(1.9a)–(1.9c) hold in a general (non-binomial) model given the absence of
arbitrage opportunities. We will then show, using definitions analogous to the
definitions of pu, pd, qu, and qd in this paragraph, that relations analogous to
(1.7a)–(1.7c) and (1.8a)–(1.8c) hold.

1.4 Asset Pricing with a Continuum of States

In this section, we will define the concepts of state prices and probabilities
corresponding to different numeraires in a more general framework than that
of the preceding section. This leads to what we will call the “fundamental
pricing equation,” namely equation (1.17). There are really no new concepts
in this section, only a bit more mathematics.

Consider a non-dividend-paying security having the random price S(T ) at
date T . We call the contingencies that affect the price S(T ) the “states of the
world.” Our principle regarding state prices developed in the preceding section
can in general be expressed as:8 if there are no arbitrage opportunities,
8 We have proven this in the binomial model, but we will not prove it in general.

As is standard in the literature, we will simply adopt it as an assumption. A
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there exists for each date T a positive random variable φ(T ) such
that the value at date 0 of a non-dividend-paying security with price
S is

S(0) = E[φ(T )S(T )] . (1.10)

Here, E[φ(T )S(T )] denotes the expectation of the random variable φ(T )S(T ).
The random variable φ(T ) is called the “state price density.”9 In a binomial
model (or in any model with only a finite number of states of the world), the
concept of an expectation is clear: it is just a weighted average of outcomes,
the weights being the probabilities. In the binomial model, the right-hand side
of equation (1.9b) is the same as the right-hand side of equation (1.10).10

To convert from state prices to probabilities corresponding to different nu-
meraires, we follow the same procedure as at the end of the previous section:
we multiply together (i) the probability of the state, (ii) the value of φ(T )
in the state, and (iii) the gross return of the numeraire in the state. If there
is a continuum of states, then the actual probability of any individual state
will typically be zero, so this multiplication will produce a zero probability.
However, we can nevertheless “add up” these probabilities to define the prob-
ability of any event A, an “event” being a set of states of the world. To do this,
let 1A denote the random variable that takes the value 1 when A is true and
which is zero otherwise. Then the probability of A using S as the numeraire
is defined as

E

[
1Aφ(T )

S(T )
S(0)

]
. (1.11)

This makes sense as a probability because it is nonnegative and because, if A
is the set of all states of the world, then its probability is E[φ(T )S(T )/S(0)],
which equals one by virtue of (1.10). From the definition (1.11) of the prob-
ability of any event A, it can be shown that the expectation of any random
variable X using S as the numeraire is

E

[
Xφ(T )

S(T )
S(0)

]
. (1.12)

The use of the symbol S to denote the price of the numeraire may be
confusing, because S is usually used to denote a stock price. The numeraire

general proof is in fact difficult and requires a definition of “no arbitrage” that is
considerably more complicated than the simple assumption (1.1) that is sufficient
in the binomial model.

9 The term “density” reflects the fact that in each state of the world φ(T ) can be
interpreted as the state price per unit of probability, just as the normal meaning
of density is “mass per unit of volume.”

10 In general the expectation (or mean) of a random variable is an intuitive concept,
and an intuitive understanding will be sufficient for this book, so I will not give
a formal definition. It should be understood that we are assuming implicitly,
whenever necessary, that the expectation exists (which is not always the case). In
this regard, it is useful to note in passing that a product of two random variables
XY has a finite mean whenever X and Y have finite variances.
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here could be any non-dividend-paying asset. For example, we can take S(t) =
ert, the price of the risk-free asset. The definition of probabilities as

E[1Aφ(T )erT ] (1.13)

will be called the “risk-neutral probability measure” or simply “risk-neutral
measure” as before.

Different numeraires lead to different probability measures and hence to
different expectations. To keep this straight, we will use the numeraire as a
superscript on the expectation symbol: for example, ES will denote expecta-
tion with respect to the probability measure that corresponds to S being the
numeraire. Also, we will use the symbol probS(A) to denote the probability
of an event A when we use S as the numeraire. So, (1.11) and (1.12) will be
written as

probS(A) = E

[
1Aφ(T )

S(T )
S(0)

]
, (1.14)

ES [X] = E

[
Xφ(T )

S(T )
S(0)

]
. (1.15)

Our key result in the preceding section was that the ratio of the price of
any non-dividend paying asset to the price of the numeraire asset has zero
expected change when we use the probability measure corresponding to the
numeraire. We will demonstrate the same result in this more general model.
Recall that T denotes an arbitrary but fixed date at which we have defined
the probabilities using S as the numeraire in (1.11). At each date t < T ,
let ES

t denote the expectation given information at time t and using S as
the numeraire (we will continue to write the expectation at date 0 without a
subscript; i.e., ES has the same meaning as ES

0 ). Let Y denote the price of
another non-dividend-paying asset. We will show that

Y (t)
S(t)

= ES
t

[
Y (T )
S(T )

]
. (1.16)

Thus, the expected future (date–T ) value of the ratio Y/S always equals
the current (date–t) value when we use S as the numeraire. As discussed
in the preceding section, the mathematical term for a random variable whose
expected future value always equals its current value is “martingale.” Thus, we
can express equation (1.16) as stating that the ratio Y/S is a martingale when
we compute expectations using the probability measure that corresponds to S
being the numeraire.

The usefulness of equation (1.16) is that it gives us a formula for the asset
price Y (t) at any time t—and recall that this formula holds for every non-
dividend paying asset. The formula is obtained from (1.16) by multiplying
through by S(t):

Y (t) = S(t)ES
t

[
Y (T )
S(T )

]
. (1.17)



20 1 Asset Pricing Basics

We will call equation (1.17) the fundamental pricing formula. It is
at the heart of modern pricing of derivative securities. It is a present value
relation: the value at time t of the asset is the expectation of its value Y (T ) at
time T “discounted” by the (possibly random) factor S(t)/S(T ). To emphasize
that the numeraire can be any non-dividend-paying asset (and not necessarily
a stock price, as the symbol S might suggest), we can write equation (1.17)
in the equivalent form

Y (t) = num(t)Enum
t

[
Y (T )

num(T )

]
, (1.17′)

where now num(t) denotes the price of the (non-dividend-paying) numeraire
asset at time t.

For example, letting R(t) denote the value ert of the risk-free asset and
using it as the numeraire, equation (1.17) becomes

Y (t) = ertER
t

[
Y (T )
erT

]
= e−r(T−t)ER

t [Y (T )] , (1.18)

which means that the value Y (t) is the expected value of Y (T ) discounted
at the risk-free rate for the remaining time T − t, when the expectation is
computed under the risk-neutral probability measure.

We end this section with a proof of (1.16), a proof that the reader may
skip if desired.11

Consider any time t and any event A that is distinguishable by time t. Consider
the trading strategy of buying one share of the asset with price Y at time t when A
has happened and financing this purchase by short selling Y (t)/S(t) shares of the
asset with price S. Each share of this asset that you short brings in S(t) dollars,
so shorting Y (t)/S(t) shares brings in Y (t) dollars, exactly enough to purchase the
desired share of the first asset. Hold this portfolio until time T and then liquidate
it. Liquidating it will generate

1A

(
Y (T ) − Y (t)

S(t)
S(T )

)

dollars. The multiplication by the random variable 1A is because we only implement
this strategy when A occurs (i.e., when 1A = 1). Consider the security that pays this
number of dollars at time T . Because we obtained it with a trading strategy that
required no investment at time t, its price at time 0 must be 0. We already observed
that we can represent the price in terms of state prices, so we conclude that

E

[
φ(T )1A

(
Y (T ) − Y (t)

S(t)
S(T )

)]
= 0 .

When we divide by S(0), this will still equal zero. Factoring S(T ) outside the paren-
theses gives

11 The proof is due to Harrison and Kreps [31]. See also Geman, El Karoui and
Rochet [27]. We omit here technical assumptions regarding the existence of ex-
pectations.
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E

[
1A

S(T )

S(0)
φ(T )

(
Y (T )

S(T )
− Y (t)

S(t)

)]
= 0 .

We see from the formula (1.15) for expectations using S as the numeraire that we
can write this as

ES

[
1A

(
Y (T )

S(T )
− Y (t)

S(t)

)]
= 0 .

This is true for any event A distinguishable at time t, so the expectation of
Y (T )/S(T ) − Y (t)/S(t) must be zero given any information at time t when we
use S as the numeraire; i.e.,

ES
t

[
Y (T )

S(T )
− Y (t)

S(t)

]
= 0 ,

or, equivalently

ES
t

[
Y (T )

S(T )

]
=

Y (t)

S(t)
.

1.5 Introduction to Option Pricing

A complete development of derivative pricing requires the continuous-time
mathematics to be covered in the next chapter. However, we can present the
basic ideas using the tools already developed. Consider the problem of pricing
a European call option. Let T denote the maturity of the option and K its
strike price, and let S denote the price of the underlying. We will assume
for now that the underlying does not pay dividends, but we will make no
assumptions about the distribution of its price S(T ) at the maturity of the
option. Assume there is a risk-free asset with constant interest rate r.

Our convention will be that date 0 denotes the date at which we are
attempting to value a derivative. The value of the option at maturity is
max(0, S(T ) − K). Consider a contract that pays S(T ) at date T when
S(T ) ≥ K and that pays zero when S(T ) < K, and consider another contract
that pays K at date T when S(T ) ≥ K and zero when S(T ) < K. In Chap. 3,
we will call the first contract a “share digital” and the second contract a “dig-
ital.” The call option is equivalent to a portfolio that is long the first contract
and short the second, because the value of the call at maturity is S(T ) − K
when S(T ) ≥ K and it is zero otherwise. So, we can value the call if we can
value the share digital and the digital. This “splitting up” of complex payoffs
into simpler contracts is a key to analyzing many types of derivatives.

Pricing Share Digitals

Consider first the problem of valuing the share digital. Let Y (t) denote its
value at each date t ≤ T . We seek to find Y (0). Our fundamental pricing
formula (1.17) tells us that

Y (0) = num(0)Enum

[
Y (T )

num(T )

]
,
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for any numeraire with price num(t). We want to choose the numeraire to
simplify the calculation of the expectation. The expectation only involves the
states of the world in which S(T ) ≥ K, because Y (T ) = 0 when S(T ) < K.
In the states of the world in which S(T ) ≥ K, the value of the share digital
is S(T ). The calculation of the expectation would be simplified if the value
were a constant when it was nonzero, because, if you are to receive a constant
amount in a certain event, your expected payoff is the constant times the
probability of the event (e.g., the expected payoff of a gamble that pays $1
when a fair die rolls a 6 is 1/6). This suggests we should use the stock as the
numeraire, because then we will have

Y (T )
num(T )

=
S(T )
S(T )

= 1

when S(T ) ≥ K, implying that

Enum

[
Y (T )

num(T )

]
= probS

(
S(T ) ≥ K

)
,

where probS denotes the probability using S as the numeraire. This implies
that the value of the share digital is

S(0) × probS
(
S(T ) ≥ K

)
.

The remaining question is obviously how to compute the probability. We
will not use the formula (1.11) which expresses the probability in terms of an
expectation involving state prices. To attempt to do so would simply raise the
question of how to compute the state prices. Instead, we use the fundamental
pricing formula again, this time replacing the derivative value Y with the
value of the risk-free asset. This is exactly analogous to computing the “q
probabilities” from (1.8b) and (1.8c) in Sects. 1.2. Recall that the fundamental
formula holds for any non-dividend-paying asset, so it holds for R(t) = ert,
telling us that the ratio R(t)/S(t) is a martingale when we use S as the
numeraire. In a continuous-time model (at least until we introduce stochastic
volatility) this will give us exactly the information we need to compute the
distribution of S(T ) when we use S as the numeraire, and from the distribution
of S(T ) we can easily compute probS

(
S(T ) ≥ K

)
. This calculation will be

covered in Chap. 3 for the Black-Scholes model.

Pricing Digitals

Now consider the problem of pricing the digital. We will change notation to let
Y (t) denote now the value of the digital at time t. Again we want to compute

Y (0) = num(0)Enum

[
Y (T )

num(T )

]
,



1.5 Introduction to Option Pricing 23

and again this expectation only involves the states of the world in which
S(T ) ≥ K. In these states of the world, the value of the digital is already a
constant K, so we should take the numeraire to have a constant value at T , so
that the ratio Y (T )/num(T ) will be constant in the states in which S(T ) ≥ K.
This means that we should take the numeraire to be the risk-free asset. For
this numeraire, the pricing formula is

Y (0) = e−rT ER[Y (T )] = e−rT K × probR
(
S(T ) ≥ K

)
,

so we need to compute the risk-neutral probability that S(T ) ≥ K. We will
do this by using the fact that S(t)/R(t) = e−rtS(t) is a martingale under
the risk-neutral probability measure. This is analogous to computing the risk-
neutral probabilities from (1.7b) and (1.7c) in Sects. 1.2. This calculation will
also be covered in Chap. 3 for the Black-Scholes model.

Readers familiar with the Black-Scholes formula may already have sur-
mised that, under the Black-Scholes assumptions,

probS
(
S(T ) ≥ K

)
= N(d1) and probR

(
S(T ) ≥ K

)
= N(d2) ,

where N denotes the cumulative normal distribution function . The numbers
d1 and d2 are different, and hence these are different probabilities, even though
they are both probabilities of the option finishing in the money (S(T ) ≥ K).
They are different probabilities because they are computed under different
numeraires.

A Remark

It seems worthwhile here to step back a bit from the calculations and try to
offer some perspectives on the methods developed in this chapter. The change
of numeraire technique probably seems mysterious. Even though one may
agree that it works after following the steps in the chapter, there is probably
a lingering question about why it works. The author’s opinion is that it may
be best to regard it simply as a “computational trick.” Fundamentally it works
because valuation is linear. Linearity simply means that the value of a cash
flow X = X1 + X2 is the sum of the values of the cash flows X1 and X2 and
the value of the cash flow aX is a times the value of X, for any constant a.
This linearity is manifested in the statement that the value of a cash flow is
the sum across states of the world of the state prices multiplied by the size
of the cash flow in each state. The change of numeraire technique exploits
the linearity to further simplify the valuation exercise. There are other ways
the linearity can be used (for example, it produces solvable partial differential
equations) but the particular trick we have developed in this chapter seems
the most useful to the author (and to others, though perhaps not to everyone).
After enough practice with it, it will seem as natural as other computational
tricks one might have learned.



24 1 Asset Pricing Basics

1.6 An Incomplete Markets Example

In this section, we consider a more difficult valuation problem than the bi-
nomial model and discuss the general implications of this example. We only
need to make the problem slightly more difficult to see the issues. Consider
a “trinomial” model, in which the asset price takes three possible values:
Su > Sm > Sd (“m” for middle, medium, median, ...). We continue to make
the “no arbitrage” assumption (1.1). State prices πu, πm and πd must satisfy
equations analogous to (1.5b)–(1.5c); specifically,

S = πuSu + πmSm + πdSd , (1.19a)

1 = πuerT + πmerT + πderT . (1.19b)

In the binomial case, these equations can be solved for πu and πd, as shown
in (1.4). However, in the trinomial case, we have only two equations in three
unknowns. Thus, there exist many solutions.

Given any particular solution (πu, πm, πd) of (1.19), we can define the
risk-neutral probabilities pu, pm and pd as before—e.g., pu = πuerT . Likewise,
we can define the probabilities using the stock as numeraire. Thus, we can
value calls and puts and other derivative securities. However, the values we
obtain will depend on the particular solution (πu, πm, πd). There are many
arbitrage-free values for a call option, one for each solution of (1.19).

The reason that there are many arbitrage-free values for a call (or put)
is that a call cannot be replicated in a trinomial model using the stock and
risk-free asset; we can say equivalently that there is no “delta hedge” for a call
option. Recall that we first found the value of a call in the binomial model by
finding the replicating portfolio and calculating its cost. A similar analysis is
impossible in the trinomial model. To see this, consider a portfolio of a dollars
invested in the risk free asset and b dollars invested in the stock. The value of
the portfolio at date T will be aerT +bSx/S, where x ∈ {u,m, d}. To replicate
the call, we need a and b to satisfy

aerT + bSu/S = max(0, Su − K) , (1.20a)

aerT + bSm/S = max(0, Sm − K) , (1.20b)

aerT + bSd/S = max(0, Sd − K) . (1.20c)

These are three linear equations in the two unknowns a and b. For any strike
price K between Sd and Su, none of the equations is redundant, and the system
has no solution. When there are state-contingent claims (such as the call
option payoff) that cannot be replicated by trading in the marketed assets (the
stock and risk-free asset in this case), one says that the market is “incomplete.”
Thus, the trinomial model is an example of an incomplete market.

To value derivative securities in this situation, we have to select some par-
ticular solution (πu, πm, πd) of (1.19) and assume that the market uses that
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solution for valuation. Equivalently, we can assume the market uses a particu-
lar set of risk-neutral probabilities (pu, pm, pd). This type of valuation is often
called “equilibrium” valuation, as opposed to arbitrage valuation, because to
give a foundation for our particular choice of risk-neutral probabilities, we
would have to assume something about the preferences and endowments of
investors and the production possibilities. We will encounter incomplete mar-
kets when we consider stochastic volatility in Chap. 4.

Problems

1.1. Create an Excel worksheet in which the user inputs S, Sd, Su, K, r
and T . Check that the no-arbitrage condition (1.1) is satisfied. Compute the
value of a call option in each of the following ways:

(a) Compute the delta and use (1.2).
(b) Compute the state prices and use (1.5a).
(c) Compute the risk-neutral probabilities and use (1.6a).
(d) Compute the probabilities using the stock as numeraire and use (1.8a).

Verify that all of these methods produce the same answer.

1.2. In a binomial model, a put option is equivalent to δp shares of the stock,
where δp = (Pu − Pd)/(Su − Sd) (this will be negative, meaning a short
position) and some money invested in the risk-free asset. Derive the amount
of money x that should be invested in the risk-free asset to replicate the put
option. The value of the put at date 0 must be x + δpS.

1.3. Using the result of the previous exercise, repeat Problem 1.1 for a put
option.

1.4. Here is a chance to apply option pricing theory to real life. Suppose you
have a “significant other” who would marry you if you ask.

(a) What type of option do you have on marriage? Can you tell when it is in
the money?

(b) Under what circumstances should you exercise this option early?
(c) What is the put option in a marriage contract called? (You shouldn’t need

a hint for this one, but, just in case, it is the name of a song made popular
by Dolly Parton!).

Before anyone might be tempted to take this too literally, it should be pointed
out that, in some “real option” settings, keeping one’s options open has both
advantages and disadvantages. Airbus’ decision to build a new larger passenger
plan can be seen as the early exercise of a call option, justified perhaps because
by committing to do so it discouraged Boeing from launching a similar project,
both companies presumably believing that the market is too small for both
to enter. Thus, the exercise of a real option (commitment) can change the
environment in ways that do not arise, or at least we assume not to arise, in
financial markets.
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Continuous-Time Models

This chapter has three objectives. The first is to introduce the concept of a
Brownian motion. A Brownian motion is a random process (a variable that
changes randomly over time) that evolves continuously in time and has the
property that its change over any time period is normally distributed with
mean zero and variance equal to the length of the time period. The “mean
zero” feature means that a Brownian motion is a martingale. We will also
give a different characterization (Levy’s theorem) emphasizing the “quadratic
variation” process, which is a property of the paths (how the variable evolves
over time, in a given state of the world) of the process.

The second objective is to explain Itô’s formula, which is the chain rule
for stochastic calculus. In the Black-Scholes model, the stock price is assumed
to satisfy

dS

S
= µdt + σ dB ,

where B is a Brownian motion. In the case that the stock pays no dividend,
the rate of return is its price change dS divided by the initial price S, so the
model states that the expected rate of return in each instant dt is µdt (of
course, t denotes time, so dt is the change in time). The variance of the rate
of return depends on σ. This model can be equivalently written in terms of
the natural logarithm of S, which we will write as log S. The above equation
for the rate of return is equivalent to

d log S =
(

µ − 1
2
σ2

)
dt + σ dB .

We will explain this equivalence and other similar calculations that are useful
for pricing derivatives.

The third objective is to explain how, when we change numeraires, as
described in the previous chapter, we can calculate the expectation in the
fundamental pricing formula (1.17). The question is what effect does changing
the numeraire (and hence the probability measure) have on the distribution
of an asset price.
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Everything in the remainder of the book is based on the mathematics
presented in this chapter. For easy reference, the essential formulas have been
highlighted in boxes.

2.1 Simulating a Brownian Motion

We begin with the fact that changes in the value of a Brownian motion are
normally distributed with mean zero and variance equal to the length of the
time period. Let B(t) denote the value of a Brownian motion at time t. Then
for any date u > t, given the information at time t, the random variable
B(u) − B(t) is normally distributed with mean zero and variance equal to
u− t. Unless stated otherwise, our convention will be that a Brownian motion
starts at B(0) = 0.

We can generate an approximate Brownian motion in Excel. To do so, we
take a small time period ∆t and define the value at the end of the period
to be the value of the Brownian motion at the beginning plus a normally
distributed variable with mean 0 and variance ∆t. In the following procedure,
the user is prompted to input the length T of the entire time period over
which the Brownian motion is to be simulated and to input the number N
of time periods of length ∆t within the full interval [0, T ]. The length ∆t of
each individual time period is then calculated as T/N . The quality of the
approximation of this simulation to a true Brownian motion will be always be
improved by increasing the number N . Plotting the output of the procedure
creates a picture of what we call a “path” of the Brownian motion, which
means that it shows the value taken at each time in one state of the world.
Running the procedure again (for the same T and N) will create a different
plot, which can be interpreted as the values of the Brownian motion in another
state of the world. In other words, the path of the Brownian motion is itself
random, depending in this approximation on the numbers produced by Excel’s
random number generating function.1

Sub Simulating_Brownian_Motion()

Dim T, dt, Sqrdt, BrownianMotion, i, N

T = InputBox("Enter the length of the time period (T)")

N = InputBox("Enter the number of periods (N)")

dt = T / N

Sqrdt = Sqr(dt)

1 The generation of normally distributed random numbers in Excel is discussed
in Appendix A. The function RandN() here is user-created (to simplify typing)
to equal the function Application.NormSInv(Rnd()) supplied in VBA. The con-
struction sqrtdt ∗ z scales the standard normal z so that its standard deviation is√

∆t and hence its variance is ∆t, as desired. The subroutine creates two columns
of data below the active cell in the Excel worksheet with headings “Time” and
“Brownian Motion.” To plot the path of the Brownian motion, select the two
columns and insert an “XY (Scatter)” chart, with data points connected by lines.
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ActiveCell.Value = "Time"

ActiveCell.Offset(0, 1) = "Brownian Motion"

ActiveCell.Offset(1, 0) = 0 ’ beginning time

ActiveCell.Offset(1, 1) = 0 ’ beginning value of Brownian motion

BrownianMotion = 0

For i = 1 To N

ActiveCell.Offset(i + 1, 0) = i * dt ’ next time

BrownianMotion = BrownianMotion + Sqrdt * RandN()

ActiveCell.Offset(i + 1, 1) = BrownianMotion ’ next value

Next i

End Sub

2.2 Quadratic Variation

If we take a large number N of time steps in the simulation of the preceding
section, we will see the distinctive characteristic of a Brownian motion: it jig-
gles rapidly, moving up and down in a very erratic way. The name “Brownian
motion” derives from the botanist Robert Brown’s observations of the erratic
behavior of particles suspended in a fluid. This has long been thought to be a
reasonable model for the behavior of a stock price. The plot of other functions
with which we may be familiar will be much smoother. This is captured in
the concept of quadratic variation.

Consider a discrete partition

0 = t0 < t1 < t2 < · · · < tN = T

of the time interval [0, T ]. Let B be a Brownian motion and calculate the sum
of squared changes

N∑
i=1

[∆B(ti)]2 ,

where ∆B(ti) denotes the change B(ti) − B(ti−1). If we consider finer parti-
tions with the length of each time interval ti − ti−1 going to zero, the limit
of the sum is called the “quadratic variation” of the process. For a Brown-
ian motion, the quadratic variation over an interval [0, T ] is equal to T with
probability one.

The functions with which we are normally familiar are continuously dif-
ferentiable. If X is a continuously differentiable function of time (in each
state of the world), then the quadratic variation of X will be zero. A simple
example is a linear function: X(t) = at for some constant a. Then, taking
ti − ti−1 = ∆t = T/N for each i, the sum of squared changes is

N∑
i=1

[∆X(ti)]2 =
N∑

i=1

[a∆t]2 = Na2(∆t)2 = Na2

(
T

N

)2

=
a2T 2

N
→ 0
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as N → ∞. Essentially the same argument shows that the quadratic variation
of any continuously differentiable function is zero, because such a function is
approximately linear at each point.

Thus, the jiggling of a Brownian motion, which leads to the nonzero
quadratic variation, is quite unusual. To explain exactly how unusual it is,
it is helpful to introduce the concept of “total variation,” which is defined in
the same way as quadratic variation but with the squared changes [∆B(ti)]2

replaced by the absolute value of the changes |∆B(ti)|. If the quadratic varia-
tion of a continuous function is nonzero, then its total variation is necessarily
infinite, so each path of a Brownian motion has infinite total variation (with
probability one). It was mentioned above that, with a large number of time
steps in the simulation of the preceding section, one could see the distinc-
tive jiggling property of a Brownian motion. This is not quite right. Any plot
drawn by a pencil (or a laser printer, for that matter) must have finite total
variation, because the total variation is the total distance traveled by the pen-
cil. Hence, no matter how many time steps one uses, one will never create a
continuous plot with the nonzero quadratic variation (and infinite total varia-
tion) that a Brownian path has. Another way to understand this is to consider
focusing on a small segment of a plot and viewing it with a magnifying glass.
If the segment is small enough, and excluding the finite number of kinks that
a pencil can draw in the plot of a function, it will look approximately like a
straight line under the magnifying glass (with slope equal to the derivative
of the function). However, if one could view a segment of a path of a true
Brownian motion under a magnifying glass, it would look much the same as
the entire picture does to the naked eye—no matter how small the segment,
one would still see the characteristic jiggling.

One may well question why we should be interested in this curious mathe-
matical object. The reason is that asset pricing inherently involves martingales
(variables that evolve randomly over time in such a way that their expected
changes are always zero), as our fundamental pricing equation (1.17) estab-
lishes. Furthermore, continuous processes (variables whose paths are contin-
uous functions of time) are much more tractable mathematically than are
processes that can jump at some instants. More importantly, it is possible
in a mathematical model with continuous processes to define perfect hedges
much more readily than it is in a model involving jump processes. So, we
are led to a study of continuous martingales. An important fact is that any
non-constant continuous martingale must have infinite total variation! So, the
normal functions with which we are familiar are left behind once we enter the
study of continuous martingales.

There remains perhaps the question of why we focus on Brownian motion
within the world of continuous martingales. The answer here is that any con-
tinuous martingale is really just a transformation of a Brownian motion. This
is a consequence of the following important fact, which is known as Levy’s
theorem:
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A continuous martingale is a Brownian motion if and only if its quadratic
variation over each interval [0, T ] equals T .

Thus, among continuous martingales, a Brownian motion is defined by the
condition that the quadratic variation over each interval [0, T ] is equal to T .
This is really just a normalization. A different continuous martingale may have
a different quadratic variation, but it can be converted to a Brownian motion
just by deforming the time scale. Furthermore, many continuous martingales
can be constructed as “stochastic integrals” with respect to a Brownian mo-
tion. We take up this topic in the next section.

2.3 Itô Processes

An Itô process is a variable X that changes over time as

dX(t) = µ(t) dt + σ(t) dB(t) , (2.1)

where B is a Brownian motion, and µ and σ can also be random processes.
Some regularity conditions are needed on µ and σ which we will omit, except
for noting that µ(t) and σ(t) should be known at time t. In particular, constant
µ and σ are certainly acceptable. When we add the changes over time, we get

X(T ) = X(0) +
∫ T

0

µ(t) dt +
∫ T

0

σ(t) dB(t)

for any T > 0. There are other types of random processes, in particular,
processes that can jump, but we will not consider them in this book.

We will not formally define the integral
∫ T

0
σ(t) dB(t), but it should be

understood as being approximately equal to a discrete sum of the form

N∑
i=1

σ(ti−1)∆B(ti) ,

where 0 = t0 < · · · tN = T and the time periods ti−ti−1 are small. Given that
we can simulate the changes ∆B(ti) as random normals, we can approximately
simulate the random variable

∫ T

0
σ(t) dB(t) and hence we can approximately

simulate X(T ).
An Itô process evolves continuously over time. We interpret µ(t) dt as the

expected change in X in an instant dt. The quantity µ(t) is also called the
“drift” of the process X at time t. The coefficient σ(t) is called the “diffusion”
coefficient of X at time t.

If µ and σ are constant, it is standard to refer to an Itô process X as a
(µ, σ)–Brownian motion. Of course, it is not a martingale when µ �= 0. For
example, when µ > 0, X tends to increase over time. However, it has the
jiggling property of a Brownian motion, scaled by the diffusion coefficient σ.
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A very important fact is that an Itô process such as (2.1) can be a mar-
tingale only if µ = 0. This should seem sensible, because µdt is the expected
change in X, and a process is a martingale only if its expected change is zero.2

This observation plays a fundamental role in deriving asset pricing formulas,
as we will begin to see in Sect. 2.9. Conversely, if µ = 0 and

E

[∫ T

0

σ2(t) dt

]
< ∞ (2.2)

for each T , then the Itô process is a continuous martingale and the variance
of its date–T value, calculated with the information available at date 0, is:

var[X(T )] = E

[∫ T

0

σ2(t) dt

]
.

Whether µ is zero or not, and independently of the assumption (2.2), the
quadratic variation of the Itô process X is

lim
N→∞

N∑
i=1

[∆X(ti)]2 =
∫ T

0

σ2(t) dt (2.3)

with probability one. Thus we obtain (when µ = 0 and (2.2) holds) a contin-
uous martingale with a different quadratic variation than a Brownian motion
via the diffusion function σ.

To “compute” the quadratic variation of an Itô process, we use the fol-
lowing simple and important rules (for the sake of brevity, we drop the “(t)”
notation from B(t) here and sometimes later):

(dt)2 = 0 , (2.4a)
(dt)(dB) = 0 , (2.4b)

(dB)2 = dt . (2.4c)

We apply these rules to “compute” the quadratic variation of X as follows:
2 If the sources of uncertainty in the market can be modeled as Brownian motions,

then in fact every martingale is an Itô process with µ = 0. This is some justification
for the assumption we will make in this book, when studying continuous-time
models, that all martingales are Itô processes.
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If dX = µdt + σ dB for a Brownian motion B, then

(dX)2 = (µdt + σ dB)2

= µ2(dt)2 + 2µσ(dt)(dB) + σ2(dB)2

= 0 + 0 + σ2 dt .

We integrate this from 0 to T to obtain the quadratic variation (2.3) over
that time period:3 ∫ T

0

(dX(t))2 =
∫ T

0

σ2(t) dt . (2.5)

2.4 Itô’s Formula

First we recall some facts of the ordinary calculus. If y = g(x) and x = f(t)
with f and g being continuously differentiable functions, then

dy

dt
=

dy

dx
× dx

dt
= g′(x(t))f ′(t) .

Over a time period [0, T ], this implies that

y(T ) = y(0) +
∫ T

0

dy

dt
dt = y(0) +

∫ T

0

g′(x(t))f ′(t) dt .

Substituting dx(t) = f ′(t) dt, we can also write this as

y(T ) = y(0) +
∫ T

0

g′(x(t)) dx(t) . (2.6)

We can contrast (2.6) with a special case of Itô’s formula for the calcu-
lus of Itô processes (the more general formula will be discussed in the next
section). If B is a Brownian motion and Y = g(B) for a twice-continuously
differentiable function g, then

Y (T ) = Y (0) +
∫ T

0

g′(B(t)) dB(t) +
1
2

∫ T

0

g′′(B(t)) dt . (2.7)

3 In a more formal mathematical presentation, one normally writes d〈X, X〉 for
what we are writing here as (dX)2. This is the differential of the quadratic vari-
ation process, and the quadratic variation through date T is

〈X, X〉(T ) =

∫ T

0

d〈X, X〉(t) =

∫ T

0

σ2(t) dt .
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Thus, relative to the ordinary calculus, Itô’s formula has an “extra term”
involving the second derivative g′′. We can write (2.7) in differential form as

dY (t) =
1
2
g′′(B(t)) dt + g′(B(t)) dB(t).

Thus, Y = g(B) is an Itô process with drift g′′(B(t))/2 and diffusion coefficient
g′(B(t)).

To gain some intuition for the “extra term” in Itô’s formula, we return
to the ordinary calculus. Given dates t < u, the derivative defines a linear
approximation of the change in y over this time period; i.e., setting ∆x =
x(u) − x(t) and ∆y = y(u) − y(t), we have the approximation

∆y ≈ g′(x(t))∆x .

A better approximation is given by the second-order Taylor series expansion

∆y ≈ g′(x(t))∆x +
1
2
g′′(x(t)) [∆x]2 .

An interpretation of (2.6) is that the linear approximation works perfectly for
infinitesimal time periods dt, because we can compute the change in y over the
time period [0, T ] by “summing up” the infinitesimal changes g′(x(t)) dx(t).
In other words, the second-order term 1

2g′′(x(t)) [∆x]2 “vanishes” when we
consider very small time periods.

The second-order Taylor series expansion in the case of Y = g(B) is

∆Y ≈ g′(B(t))∆B +
1
2
g′′(B(t)) [∆B]2 .

For example, given a partition 0 = t0 < t1 < · · · < tN = T of the time interval
[0, T ], we have, with the same notation we have used earlier,

Y (T ) = Y (0) +
N∑

i=1

∆Y (ti)

≈ Y (0) +
N∑

i=1

g′(B(ti−1))∆B(ti) +
1
2

N∑
i=1

g′′(B(ti−1)) [∆B(ti)]2 . (2.8)

If we make the time intervals ti − ti−1 shorter, letting N → ∞, we cannot
expect that the “extra” term here will disappear, leading to the result (2.6)
of the ordinary calculus, because we know that

lim
N→∞

N∑
i=1

[∆B(ti)]2 = T ,

whereas for the continuously differentiable function x(t) = f(t), the same limit
is zero. In fact it seems sensible to interpret the limit of [∆B]2 as (dB)2 = dt.
This is perfectly consistent with Itô’s formula: if we take the limit in (2.8),
replacing the limit of [∆B(ti)]2 with (dB)2 = dt, we obtain (2.7).
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2.5 Multiple Itô Processes

Now consider two Itô processes

dX(t) = µx(t) dt + σx(t) dBx(t) , (2.9a)
dY (t) = µy(t) dt + σy(t) dBy(t) , (2.9b)

where Bx and By can be different Brownian motions. The relation between the
two Brownian motions is determined by their covariance or correlation. Given
dates t < u, we know that both changes Bx(u)−Bx(t) and By(u)−By(t) are
normally distributed with mean 0 and variance equal to u− t. There will exist
a (possibly random) process ρ such that the covariance of these two normally
distributed random variables, given the information at date t, is

Et

[∫ u

t

ρ(s) ds

]
.

The process ρ is called the correlation coefficient of the two Brownian motions,
because when it is constant the correlation of the changes Bx(u)−Bx(t) and
By(u) − By(t) is

covariance
product of standard deviations

=

∫ u

t
ρds√

u − t
√

u − t
=

(u − t)ρ
u − t

= ρ .

Moreover, given increasingly fine partitions 0 = t0 < · · · < tN = T of an
interval [0, T ] as before, we will have

N∑
i=1

∆Bx(ti) × ∆By(ti) →
∫ T

0

ρ(t) dt

as N → ∞, with probability one.
We know that

N∑
i=1

[∆X(ti)]2 →
∫ T

0

σ2
x(t) dt and

N∑
i=1

[∆Y (ti)]2 →
∫ T

0

σ2
y(t) dt . (2.10)

Furthermore, it can be shown that the sum of products satisfies

N∑
i=1

∆X(ti) × ∆Y (ti) →
∫ T

0

σx(t)σy(t)ρ(t) dt . (2.11)
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By adding the rule
(dBx)(dBy) = ρdt (2.4d)

to the rules (2.4a)–(2.4c), we can “compute” the limit in (2.11) as

lim
N→∞

N∑
i=1

∆X(ti) × ∆Y (ti) =
∫ T

0

(dX)(dY )

=
∫ T

0

(µx dt + σx dBx)(µy dt + σy dBy)

=
∫ T

0

σx(t)σy(t)ρ(t) dt . (2.12)

The most general case of Itô’s formula that we will need is for a function
Z(t) = g(t,X(t), Y (t)) where X and Y are Itô processes as in (2.9). In this
case, Itô’s formula is4

Z(T ) = Z(0) +
∫ T

0

∂g

∂t
dt +

∫ T

0

∂g

∂x
dX(t) +

∫ T

0

∂g

∂y
dY (t)

+
1
2

∫ T

0

∂2g

∂x2
(dX(t))2 +

1
2

∫ T

0

∂2g

∂y2
(dY (t))2

+
∫ T

0

∂2g

∂x∂y
(dX(t))(dY (t)) . (2.13)

In this equation, we apply the rules (2.4a)–(2.4d) to compute

(dX(t))2 = σ2
x(t) dt ,

(dY (t))2 = σ2
y(t) dt ,

(dX(t))(dY (t)) = σx(t)σy(t)ρ(t) dt .

Itô’s formula (2.13) appears a bit simpler (and easier to remember) if we write
it in “differential form.” We have:

If Z(t) = g(t,X(t), Y (t)) where X and Y are Itô processes as in (2.9), then

dZ =
∂g

∂t
dt +

∂g

∂x
dX +

∂g

∂y
dY +

1
2

∂2g

∂x2
(dX)2 +

1
2

∂2g

∂y2
(dY )2

+
∂2g

∂x∂y
(dX)(dY ) . (2.14)

4 We need to assume g(t, x, y) is continuously differentiable in t and twice contin-
uously differentiable in (x, y) for (2.13) and (2.14) to be valid. Note also that we
are using a short-hand notation here. The partial derivatives of g will generally
depend on t, X(t) and Y (t) just as g does.
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2.6 Examples of Itô’s Formula

The following are the applications of Itô’s formula that will be used most
frequently in the book. They follow from the boxed formula at the end of
the previous section by taking g(x, y) = xy or g(x, y) = y/x or g(x) = ex or
g(x) = log x.

Products. If Z = XY , then dZ = X dY +Y dX+(dX)(dY ). We can write
this as

dZ

Z
=

dX

X
+

dY

Y
+
(

dX

X

)(
dY

Y

)
. (2.15)

Ratios. If Z = Y/X, then

dZ

Z
=

dY

Y
− dX

X
−
(

dY

Y

)(
dX

X

)
+
(

dX

X

)2

. (2.16)

Exponentials. If Z = eX , then

dZ

Z
= dX +

(dX)2

2
. (2.17)

Logarithms. If Z = log X, then

dZ =
dX

X
− 1

2

(
dX

X

)2

. (2.18)
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Compounding/Discounting. Let

Y (t) = exp
(∫ t

0

q(s) ds

)

for some (possibly random) process q and define Z = XY for any Itô
process X. The usual calculus gives us dY (t) = q(t)Y (t) dt, and the product
rule above implies

dZ

Z
= q dt +

dX

X
. (2.19)

This is the same as in the usual calculus.

2.7 Reinvesting Dividends

Frequently, we will assume that the asset underlying a derivative security
pays a “constant dividend yield,” which we will denote by q. This means, for
an asset with price S(t), that the dividend “in an instant dt” is qS(t) dt. If
the dividends are reinvested in new shares, the number of shares will grow
exponentially at rate q. To see this, consider the portfolio starting with a
single share of the asset and reinvesting dividends until some date T . Let
X(t) denote the number of shares resulting from this strategy at any time
t ≤ T . Then the dividend received at date t is qS(t)X(t) dt, which can be
used to purchase qX(t) dt new shares. This implies that dX(t) = qX(t) dt, or
dX(t)/dt = qX(t), and it is easy to check (and very well known) that this
equation is solved by X(t) = eqtX(0). In our case, with X(0) = 1, we have
X(t) = eqt.

The dollar value of the trading strategy just described will be X(t)S(t) =
eqtS(t). Denote this by V (t). This is the value of a non-dividend-paying portfo-
lio, because all dividends are reinvested. From the Compounding/Discounting
example in Sect. 2.6, we know that

dV

V
= q dt +

dS

S
. (2.20)

This means that the rate of return on the portfolio is the dividend yield q dt
plus the return dS/S due to capital gains.
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2.8 Geometric Brownian Motion

Let
S(t) = S(0) exp

(
µt − σ2t/2 + σB(t)

)
(2.21)

for constants µ and σ, where B is a Brownian motion. Using the product rule
and the rule for exponentials, we obtain

dS

S
= µdt + σ dB . (2.22)

When we see an equation of the form (2.22), we should recognize (2.21) as
the solution.

The process S is called a “geometric Brownian motion.” In keeping with
the discussion of Sect. 2.3, we interpret (2.22) as stating that µdt is the
expected rate of change of S and σ2 dt is the variance of the rate of change
in an instant dt. We call µ the “drift” and σ the “volatility.” The geometric
Brownian motion will grow at the average rate of µ, in the sense that E[S(t)] =
eµtS(0).

Taking the natural logarithm of (2.21) gives an equivalent form of the
solution:

log S(t) = log S(0) +
(

µ − 1
2
σ2

)
t + σB(t) . (2.23)

This shows that log S(t)− log S(0) is a (µ−σ2/2, σ)–Brownian motion. Given
information at time t, the logarithm of S(u) for u > t is normally distributed
with mean (u − t)(µ − σ2/2) and variance (u − t)σ2. Because S is the expo-
nential of its logarithm, S can never be negative. For this reason, a geometric
Brownian motion is a better model for stock prices than is a Brownian motion.

The differential of (2.23) is

d log S(t) =
(

µ − 1
2
σ2

)
dt + σ dB(t) . (2.24)

We conclude:

The equation
dS

S
= µdt + σ dB

is equivalent to the equation

d log S(t) =
(

µ − 1
2
σ2

)
dt + σ dB(t) .

The solution of both equations is (2.21) or the equivalent formula (2.23).
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Over a discrete time interval ∆t, equation (2.24) implies that the change
in the logarithm of S is

∆ log S =
(

µ − 1
2
σ2

)
∆t + σ ∆B . (2.25)

If S is the price of a non-dividend-paying asset, then over the time period ti−1

to ti, with ti − ti−1 = ∆t, we have

∆ log S = ri ∆t , (2.26)

where ri is the continuously compounded annualized rate of return during the
period ∆t. This follows from the definition of the continuously compounded
rate of return as the constant rate over the time period ∆t that would cause S
to grow (or fall) from S(ti−1) to S(ti). To be precise, ri is defined by

S(ti)
S(ti−1)

= eri∆t ,

which is equivalent to (2.26). Thus, the geometric Brownian motion model
(2.22) implies that the continuously compounded annualized rate of return
over a period of length ∆t is given by

ri = µ − 1
2
σ2 +

σ∆B

∆t
.

This means that ri is normally distributed with mean µ − σ2/2 and variance
σ2/∆t. Given historical data on the rates of return, the parameters µ and σ
can be estimated by standard methods (see Chap. 4).

We can simulate a path of S by simulating the changes ∆ log S. The ran-
dom variable σ∆B in (2.25) has a normal distribution with zero mean and
variance equal to σ2∆t. We simulate it as σ

√
∆t multiplied by a standard

normal.

Sub Simulating_Geometric_Brownian_Motion()

Dim T, S, mu, sigma, dt, SigSqrdt, LogS, drift, i, N

T = InputBox("Enter the length of the time period (T)")

N = InputBox("Enter the number of periods (N)")

S = InputBox("Enter the initial stock price (S)")

mu = InputBox("Enter the expected rate of return (mu)")

sigma = InputBox("Enter the volatility (sigma)")

dt = T / N

SigSqrdt = sigma * Sqr(dt)

drift = (mu - 0.5 * sigma * sigma) * dt

LogS = Log(S)

ActiveCell.Value = "Time"

ActiveCell.Offset(0, 1) = "Stock Price"

ActiveCell.Offset(1, 0) = 0 ’ beginning time

ActiveCell.Offset(1, 1) = S ’ beginning stock price
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For i = 1 To N

ActiveCell.Offset(i + 1, 0) = i * dt ’ next time

LogS = LogS + SigSqrdt * RandN()

ActiveCell.Offset(i + 1, 1) = Exp(LogS) ’ next stock price

Next i

End Sub

2.9 Numeraires and Probabilities

When we change probability measures, we cannot expect a process B that
was a Brownian motion to remain a Brownian motion. The expected change
in a Brownian motion must always be zero, but when we change probabilities,
the expected change of B is likely to become nonzero. (Likewise, a martingale
is unlikely to remain a martingale when we change probabilities.) However,
the Brownian motion B will still be an Itô process under the new probability
measure. In fact, every Itô process under one probability measure will still be
an Itô process under the new probability measure, and the diffusion coefficient
of the Itô process will be unaffected by the change in probabilities.5 Changing
probabilities only changes the drift of an Itô process.

In a sense, this should not be surprising. It was noted in Sect. 2.2 that
a Brownian motion B can be defined as a continuous martingale with paths
that jiggle in such a way that the quadratic variation over any interval [0, T ]
is equal to T . Changing the probabilities will change the probabilities of the
various paths (so it may affect the expected change in B) but it will not affect
how each path jiggles. So, under the new probability measure, B should still
be like a Brownian motion but it may have a nonzero drift. If we consider
a general Itô process, the reasoning is the same. The diffusion coefficient σ
determines how much each path jiggles, and this is unaffected by changing the
probability measure. Furthermore, instantaneous covariances—the (dX)(dY )
terms—between Itô processes are unaffected by changing the probability mea-
sure. Only the drifts are affected.

As explained in Sect. 1.5, we need to know the distribution of the un-
derlying under probability measures corresponding to different numeraires.
Let S be the price of an asset that has a constant dividend yield q, and, as
in Sect. 2.7, let V (t) = eqtS(t). This is the price of the portfolio in which all
dividends are reinvested, and we have

dV

V
= q dt +

dS

S
.

Let Y be the price of another another asset that does not pay dividends.
Let r(t) denote the instantaneous risk-free rate at date t and let R(t) =
5 To be a little more precise, this is true provided sets of states of the world hav-

ing zero probability continue to have zero probability when the probabilities are
changed. Because of the way we change probability measures when we change
numeraires (cf. (1.11)) this will always be true for us.
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exp
(∫ t

0
r(s) ds

)
. Assume

dS

S
= µs dt + σs dBs ,

dY

Y
= µy dt + σy dBy ,

where Bs and By are Brownian motions under the actual probability measure
with correlation ρ, and where µs, µy, σs, σy and ρ can be quite general random
processes. We consider the dynamics of the asset price S under three different
probability measures. In each case, we follow the same steps: (i) we note that
the ratio of an asset price to the numeraire asset price must be a martingale,
(ii) we use Itô’s formula to calculate the drift of this ratio, and (iii) we use
the fact that the drift of a martingale must be zero to compute the drift of
dS/S.

Risk-Neutral Probabilities

Under the risk-neutral measure, Z(t) defined as

Z(t) =
V (t)
R(t)

= exp
(
−
∫ t

0

r(s) ds

)
V (t)

is a martingale. Using the compounding/discounting rule, we have

dZ

Z
= −r dt +

dV

V
= (q − r) dt +

dS

S
.

For Z to be a martingale, the drift (dt part) of dZ/Z must be zero. Therefore,
the drift of dS/S must be (r − q) dt under the risk-neutral measure. Because
the change of measure does not affect the volatility, this implies:

dS

S
= (r − q) dt + σs dB∗

s , (2.27)

where B∗
s is a Brownian motion under the risk-neutral measure.

Underlying as the Numeraire

When V is the numeraire, the process Z(t) defined as

Z(t) =
R(t)
V (t)

=
exp

(∫ t

0
r(s) ds

)
V (t)

is a martingale. Using the rule for ratios, we have
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dZ

Z
= r dt − dV

V
+
(

dV

V

)2

= (r − q + σ2
s) dt − dS

S
.

Because the drift of dZ/Z must be zero, this implies that the drift of dS/S is
(r − q + σ2

s) dt. We conclude that:

dS

S
= (r − q + σ2

s) dt + σs dB∗
s , (2.28)

where now B∗
s denotes a Brownian motion when V (t) = eqtS(t) is the nu-

meraire.

Another Risky Asset as the Numeraire

When Y is the numeraire, Z(t) defined as

Z(t) =
V (t)
Y (t)

must be a martingale. Using again the rule for ratios, we have

dZ

Z
=

dV

V
− dY

Y
−
(

dV

V

)(
dY

Y

)
+
(

dY

Y

)2

=
dV

V
− dY

Y
− ρσsσy dt + σ2

y dt

=
dS

S
− dY

Y
+ (q − ρσsσy dt + σ2

y) dt .

We can apply our previous example to compute the dynamics of Y when Y is
the numeraire. This shows that the drift of dY/Y is (r + σ2

y) dt. Because the
drift of dZ/Z must be zero, it follows that the drift of dS/S is (r−q+ρσsσy) dt.
We conclude that:

dS

S
= (r − q + ρσsσy) dt + σs dB∗

s , (2.29)

where B∗
s denotes a Brownian motion under the probability measure cor-

responding to the non-dividend-paying risky asset Y being the numeraire,
and where ρ is the correlation of S and Y .

Notice that the formula (2.29), while more complicated, is also more gen-
eral than the others. In fact, it includes the formulas (2.27) and (2.28) as
special cases: (i) if Y is the price of the instantaneously risk-free asset, then
σy = 0 and (2.29) simplifies to (2.27), and (ii) if Y = V , then σy = σs and
ρ = 1, so (2.29) simplifies to (2.28).
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Further Discussion

It would be natural for one to ask at this point: “what is the Brownian motion
B∗

s and where did it come from?” We have argued that once we know the
drift, and the fact that the volatility does not change, we can immediately
write down, for example,

dS

S
= (r − q) dt + σs dB∗

s

for a Brownian motion B∗
s under the risk-neutral measure. To answer this

question, we will give here the definition of B∗
s under the risk-neutral measure.

The definition shows that we are justified in writing down (2.27)–(2.29), but
we will not repeat the definition each time we make a statement of this sort.

We showed that Z is a martingale under the risk-neutral measure, where Z
satisfies

dZ

Z
= (q − r) dt +

dS

S
= (q − r + µs) dt + σs dBs . (2.30)

Define B∗
s (0) = 0 and

dB∗
s =

(
q − r + µs

σs

)
dt + dBs . (2.31)

Then

dB∗
s =

1
σs

(
dZ

Z

)
and hence is a continuous martingale under the risk-neutral measure. We can
compute its quadratic variation as

(dB∗
s )2 =

(
q − r + µs

σs

)2

(dt)2 + 2
(

q − r + µs

σs

)
(dt)(dBs) + (dBs)2 = dt .

Therefore, by Levy’s theorem (Sect. 2.2), B∗
s is a Brownian motion under the

risk-neutral measure. From (2.30) and (2.31) we have

(q − r) dt +
dS

S
= σs dB∗

s ⇐⇒ dS

S
= (r − q) dt + σs dB∗

s ,

as in (2.27).

2.10 Tail Probabilities of Geometric Brownian Motions

For each of the numeraires discussed in the previous section, we have

d log S = α dt + σ dB , (2.32)

for some α and σ, where B is a Brownian motion under the probability mea-
sure associated with the numeraire. Specifically, σ = σs, B = B∗

s , and
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(1) for the risk-neutral measure, α = r − q − σ2
s/2,

(2) when eqtS(t) is the numeraire, α = r − q + σ2
s/2,

(3) when another risky asset price Y is the numeraire, α = r−q+ρσsσy−σ2
s/2.

We will assume in this section that α and σ are constants. The essential
calculation in pricing options, as we will see in the next chapter and in Chap. 8,
is to compute prob(S(T ) > K) and prob(S(T ) < K) for a constant K (the
strike price of an option), where prob denotes the probabilities at date 0 (the
date we are pricing an option) associated with a particular numeraire.

Equation (2.32) gives us

log S(T ) = log S(0) + αT + σB(T ) .

Given this, we deduce

S(T ) > K ⇐⇒ log S(T ) > log K

⇐⇒ σB(T ) > log K − log S(0) − αT

⇐⇒ B(T )√
T

>
log K − log S(0) − αT

σ
√

T

⇐⇒ −B(T )√
T

<
log S(0) − log K + αT

σ
√

T

⇐⇒ −B(T )√
T

<
log

(
S(0)
K

)
+ αT

σ
√

T
. (2.33)

The random variable on the left-hand side of (2.33) has the standard normal
distribution—it is normally distributed with mean equal to zero and variance
equal to one. As is customary, we will denote the probability that a standard
normal is less than some number d as N(d). We conclude:

Assume d log S = α dt+σ dB, where B is a Brownian motion. Then, for any
number K,

prob(S(T ) > K) = N(d) , (2.34)

where

d =
log

(
S(0)
K

)
+ αT

σ
√

T
. (2.35)

The probability prob(S(T ) < K) can be calculated similarly, but the sim-
plest way to derive it is to note that the events S(T ) > K and S(T ) < K
are “complementary”—their probabilities sum to one (the event S(T ) = K
having zero probability). Therefore prob(S(T ) < K) = 1 − N(d). This is the
probability that a standard normal is greater than d, and by virtue of the
symmetry of the standard normal distribution, it equals the probability that
a standard normal is less than −d. Therefore, we have:
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Assume d log S = α dt+σ dB, where B is a Brownian motion. Then, for any
number K,

prob(S(T ) < K) = N(−d) , (2.36)

where d is defined in (2.35).

2.11 Volatilities

As mentioned in Sect. 2.8, when we encounter an equation of the form
dS

S
= µdt + σ dB

where B is a Brownian motion, we will say “σ is the volatility of S.” For
example, in the Black-Scholes model, the most important assumption is that
the volatility of the underlying asset price is constant. We will occasionally
need to compute the volatilities of products or ratios of random processes.
These computations follow directly from Itô’s formula.

Suppose
dX

X
= µx dt + σx dBx and

dY

Y
= µy dt + σy dBy ,

where Bx and By are Brownian motions with correlation ρ, and µx, µy, σx,
σy, and ρ may be quite general random processes.

Products

If Z = XY , then (2.15) gives us

dZ

Z
= (µx + µy + ρσxσy) dt + σx dBx + σy dBy . (2.37)

The instantaneous variance of dZ/Z is calculated, using the rules for products
of differentials, as (

dZ

Z

)2

= (σx dBx + σy dBy)2

= (σ2
x + σ2

y + 2ρσxσy) dt .

As will be explained below, the volatility is the square root of the instanta-
neous variance (dropping the dt). This implies:

The volatility of XY is √
σ2

x + σ2
y + 2ρσxσy . (2.38)
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Ratios

If Z = Y/X, then (2.16) gives us

dZ

Z
= (µy − µx − ρσxσy + σ2

x) dt + σy dBy − σx dBx . (2.39)

The instantaneous variance of dZ/Z is therefore(
dZ

Z

)2

= (σy dBy − σx dBx)2

= (σ2
x + σ2

y − 2ρσxσy) dt .

This implies:

The volatility of Y/X is √
σ2

x + σ2
y − 2ρσxσy . (2.40)

Further Discussion

To understand why taking the square root of (dZ/Z)2 (dropping the dt) gives
the volatility, consider for example the product case Z = XY . Define a random
process B by B(0) = 0 and

dB =
σx

σ
dBx +

σy

σ
dBy , (2.41)

where σ is the volatility defined in (2.38). Then we can write (2.37) as

dZ

Z
= (µx + µy + ρσxσy) dt + σ dB . (2.42)

From the discussion in Sect. 2.3, we know that B is a continuous martingale.
We can compute its quadratic variation from

(dB)2 =
(

σx dBx + σs dBs

σ

)2

=
(σ2

x + σ2
s + 2ρσxσs) dt

σ2
,

= dt .

By Levy’s theorem (see Sect. 2.2), any continuous martingale with this
quadratic variation is necessarily a Brownian motion. Therefore, (2.42) shows
that σ is the volatility of Z as defined at the beginning of the section.
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Problems

2.1. Consider a discrete partition 0 = t0 < t1 < · · · tN = T of the time
interval [0, T ] with ti − ti−1 = ∆t = T/N for each i. Consider the function

X(t) = et .

Create a VBA subroutine, prompting the user to input T and N , which com-
putes and prints

∑N
i=1[∆X(ti)]2, where

∆X(ti) = X(ti) − X(ti−1) = eti − eti−1 .

Hint: The sum can be computed as follows.

sum = 0

For i = 1 To N

DeltaX = Exp(i/N)-Exp((i-1)/N)

sum = sum + DeltaX * DeltaX

Next i

2.2. Repeat the previous problem for the function X(t) = t3. In both this
and the previous problem, what happens to

∑N
i=1[∆X(ti)]2 as N → ∞?

2.3. Repeat the previous problem to compute
∑N

i=1[∆B(ti)]2, where B is
a simulated Brownian motion. For a given T , what happens to the sum as
N → ∞?

2.4. Repeat the previous problem, computing instead
∑N

i=1 |∆B(ti)| where
| · | denotes the absolute value. What happens to this sum as N → ∞?

2.5. Consider a discrete partition 0 = t0 < t1 < · · · tN = T of the time
interval [0, T ] with ti − ti−1 = ∆t = T/N for each i. Consider a geometric
Brownian motion

dZ

Z
= µdt + σ dB .

An approximate path Z̃(t) of the geometric Brownian motion can be simulated
as

∆Z̃(ti) = Z̃(ti−1)
[
µ∆t + σ ∆B

]
. (2.43)

The subroutine Simulating_Geometric_Brownian_Motion simulates a path Z
of a geometric Brownian motion. Modify the subroutine to prompt the user to
input T , N , σ, µ, and Z(0) and to generate both a path Z(t) and an approx-
imate path Z̃(t) according to (2.43), using the same ∆B for both paths and
taking Z̃(0) = Z(0). Plot both paths in the same figure. How well does the
approximation work for large N? Warning: For N larger than about 100T ,
the approximation will look perfect—you won’t be able to tell that there are
two plots in the figure.
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Black-Scholes

In this chapter, we will study the value of European digital and share dig-
ital options and standard European puts and calls under the Black-Scholes
assumptions. We will also explain how to calculate implied volatilities and
the option “Greeks.” The Black-Scholes assumptions are that the underlying
asset pays a constant dividend yield q and has price S satisfying

dS

S
= µdt + σ dB (3.1)

for a Brownian motion B. Here σ is assumed to be constant (though we will
allow it to vary in a non-random way at the end of the chapter) and µ can
be a quite general random process. It is also assumed that there is a constant
continuously-compounded risk-free rate r.

Under these assumptions, we will complete the discussion of Sect. 1.5 to
derive option pricing formulas. Recall that, to price a European call option, all
that remains to be done is to calculate the probabilities of the option finishing
in the money when we use the risk-free asset and the underlying asset as
numeraires. We will do this using the results of Sect. 2.9. As in Sect. 1.5, we
will approach the pricing of call and put options by first considering their
basic building blocks: digitals and share digitals.

3.1 Digital Options

A digital (or “binary”) option pays a fixed amount in a certain event and zero
otherwise. Consider a digital that pays $1 at date T if S(T ) > K, where K
is a number that is fixed by the contract. This means that the digital pays x
dollars at date T where x is defined as

x =

{
1 if S(T ) > K ,

0 otherwise .
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Using the risk-neutral pricing formula (1.18), the value of the digital at date 0
is e−rT ER[x]. Note that

ER[x] = 1 × probR(x = 1) + 0 × probR(x=0)

= probR(x = 1)

= probR
(
S(T ) > K

)
.

So we need to calculate this probability of the digital finishing in the money.
In Sect. 2.9—see (2.27)—we learned that under the Black-Scholes assump-

tion (3.1) we have
dS

S
= (r − q) dt + σ dB∗ ,

where B∗ is a Brownian motion under the risk-neutral measure.1 In Sect. 2.8,
we observed that this is equivalent to

d log S =
(

r − q − 1
2
σ2

)
dt + σ dB∗ .

Now using the formulas (2.34)–(2.35), with α = r − q − σ2/2, we have
probR

(
S(T ) > K

)
= N(d2) where

d2 =
log

(
S(0)
K

)
+
(
r − q − 1

2σ2
)
T

σ
√

T
. (3.2)

The notation d2 is standard notation from the Black-Scholes formula, and we
use it—rather than a simple d—to distinguish the number (3.2) from a similar
number—to be called d1 of course—that we will see in the next section. We
conclude:

The value of a digital option that pays $1 when S(T ) > K is e−rT N(d2),
where d2 is defined in (3.2).

Consider now a digital that pays when the underlying asset price is low;
i.e., consider a security that pays y dollars at date T where

y =

{
1 if S(T ) < K ,

0 otherwise .

Using risk-neutral pricing again, the value of this digital at date 0 is
1 There is no other risky asset price Y in this model, so the subscripts we used in

Sect. 2.9 on the volatility coefficients and on B and B∗ to distinguish the Brownian
motion driving S from the Brownian motion driving Y and to distinguish their
volatilities are not needed here.
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e−rT ER[y] = e−rT probR(y = 1) = e−rT probR
(
S(T ) < K

)
.

From this fact and the formula (2.36), we conclude:

The value of a digital option that pays $1 when S(T ) < K is e−rT N(−d2),
where d2 is defined in (3.2).

3.2 Share Digitals

Consider a derivative security that pays one share of the underlying asset at
date T if S(T ) > K and pays zero otherwise. This is called a “share digital.”
As before, let

x =

{
1 if S(T ) > K ,

0 otherwise .

Then the payoff of the share digital at date T is xS(T ). Let Y (t) denote the
value of this claim for 0 ≤ t ≤ T . We have Y (T ) = xS(T ) and we want to
find Y (0).

From Sect. 2.7, we know that V (t) = eqtS(t) is the price of a non-dividend-
paying portfolio. From our fundamental pricing formula (1.17), using V as the
numeraire, we have

Y (0) = S(0)EV

[
Y (T )

eqT S(T )

]
= e−qT S(0)EV [x] .

As in the previous section, EV [x] = probV(x = 1), so we need to compute this
probability of the option finishing in the money.

We follow the same steps as in the previous section. From (2.28) we have

dS

S
= (r − q + σ2) dt + σ dB∗,

where now B∗ denotes a Brownian motion when V is the numeraire. This is
equivalent to

d log S =
(

r − q +
1
2
σ2

)
dt + σ dB∗ . (3.3)

Thus, from the formulas (2.34)–(2.35), with α = r − q + σ2/2, we have

probV
(
S(T ) > K

)
= N(d1) ,

where
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d1 =
log

(
S(0)
K

)
+
(
r − q + 1

2σ2
)
T

σ
√

T
. (3.4)

This implies:

The value of a share digital that pays one share when S(T ) > K is
e−qT S(0)N(d1), where d1 is defined in (3.4).

Consider now a share digital that pays one share of the stock at date T if
S(T ) < K. Letting

y =

{
1 if S(T ) < K ,

0 otherwise ,

the payoff of this option is yS(T ). Its value at date 0 is

e−qT S(0)EV [y] = e−qT S(0) × probV(y = 1)

= e−qT S(0) × probV
(
S(T ) < K

)
,

and from the formula (2.36) we have

probV
(
S(T ) < K

)
= N(−d1) .

We conclude:

The value of a share digital that pays one share when S(T ) < K is
e−qT S(0)N(−d1), where d1 is defined in (3.4).

3.3 Puts and Calls

A European call option pays S(T )−K at date T if S(T ) > K and 0 otherwise.
Again letting

x =

{
1 if S(T ) > K ,

0 otherwise ,

the payoff of the call can be written as xS(T ) − xK. This is equivalent to
one share digital minus K digitals, with the digitals paying in the event that
S(T ) > K. The share digital is worth e−qT S(0)N(d1) at date 0 and each
digital is worth e−rT N(d2). Note that equations (3.2) and (3.4) for d1 and d2

imply d2 = d1 − σ
√

T . Therefore, combining the results of the previous two
sections yields the Black-Scholes formula:
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The value of a European call option at date 0 is

e−qT S(0)N(d1) − e−rT K N(d2) , (3.5)

where d1 is defined in (3.4) and d2 = d1 − σ
√

T .

A European put option pays K − S(T ) at date T if S(T ) < K and 0
otherwise. As before, let

y =

{
1 if S(T ) < K ,

0 otherwise .

The payoff of the put option is yK − yS(T ). This is equivalent to K digitals
minus one share digital, all of the digitals paying when S(T ) < K. Thus, we
have:

The value of a European put option at date 0 is

e−rT K N(−d2) − e−qT S(0)N(−d1) , (3.6)

where d1 is defined in (3.4) and d2 = d1 − σ
√

T .

Again, this is the Black-Scholes formula.
The values of the European put and call satisfy put-call parity, and we

can also find one from the other by2

e−rT K + Call Price = e−qT S(0) + Put Price . (3.7)

3.4 Greeks

The derivatives (calculus derivatives, not financial derivatives!) of an option
pricing formula with respect to the inputs are commonly called “Greeks.” The
most important Greek is the option “delta.” This measures the sensitivity of
the option value to changes in the value of the underlying asset. The following
table shows the standard Greeks, with reference to the Black-Scholes pricing
formula.
2 The put-call parity relation follows from the fact that both the left and the right-

hand sides are the prices of portfolios that have value max(S(T ), K) at the matu-
rity of the option. To see this for the left-hand side, note that e−rT K is sufficient
cash to accumulate to K at date T , allowing exercise of the call when it is in
the money and retention of the cash K otherwise. For the right-hand side, note
that e−qT S(0) is enough cash to buy e−qT shares of the stock at date 0 which,
with reinvestment of dividends, will accumulate to one share at date T , enabling
exercise of the put if it is in the money or retention of the share otherwise.
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Table 3.1. Black-Scholes Greeks

Input Input Symbol Greek Greek Symbol

Stock price S delta δ

delta δ gamma Γ

- Time to maturity −T theta Θ

Volatility σ vega V
Interest rate r rho ρ

The second line of the above shows δ as an input.3 Of course, it is not
an input but instead is calculated. Gamma, the derivative of δ, is the second
derivative of the option price with respect to the underlying asset price. The
reason for calculating Θ as the derivative with respect to −T instead of T is
that the time-to-maturity T decreasing (−T increasing) is equivalent to time
passing, so Θ measures the change in the option value when time passes.

We can calculate these from the Black-Scholes formula using the chain rule
from differential calculus. The derivative of the normal distribution function N
is the normal density function n defined as

n(d) =
1√
2π

e−d2/2 .

One can easily verify directly that

e−qT S n(d1) = e−rT K n(d2) , (3.8)

which simplifies the calculations for the Black-Scholes call option pricing for-
mula. For this formula, the Greeks are as follows:

δ = e−qT N(d1) + e−qT S n(d1)
∂d1

∂S
− e−rT K n(d2)

∂d2

∂S

= e−qT N(d1) + e−qT S n(d1)
(

∂d1

∂S
− ∂d2

∂S

)
= e−qT N(d1) ,

Γ = e−qT n(d1)
∂d1

∂S
= e−qT n(d1)

1
Sσ

√
T

,

3 The delta is frequently denoted by the upper case ∆, but we will use the lower
case, reserving the upper case for discrete changes, e.g., ∆t. One may have noticed
also that the symbol for vega is a little different from the others; this reflects the
fact that vega is not actually a Greek letter.
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Θ = −e−qT S n(d1)
∂d1

∂T
+ qe−qT S N(d1)

+ e−rT K n(d2)
∂d2

∂T
− re−rT K N(d2)

= e−qT S n(d1)
(

∂d2

∂T
− ∂d1

∂T

)
+ qe−qT S N(d1) − re−rT K N(d2)

= −e−qT S n(d1)
σ

2
√

T
+ qe−qT S N(d1) − re−rT K N(d2) ,

V = e−qT S n(d1)
∂d1

∂σ
− e−rT K n(d2)

∂d2

∂σ

= e−qT S n(d1)
(

∂d1

∂σ
− ∂d2

∂σ

)
= e−qT S n(d1)

√
T ,

ρ = e−qT S n(d1)
∂d1

∂r
− e−rT K n(d2)

∂d2

∂r
+ T e−rT K N(d2)

= e−qT S n(d1)
(

∂d1

∂r
− ∂d2

∂r

)
+ T e−rT K N(d2)

= T e−rT K N(d2) .

We can calculate the Greeks of a European put option from the call option
Greeks and put-call parity:

Put Price = Call Price + e−rT K − e−qT S(0) .

For example, the delta of a put is the delta of a call (with the same strike and
maturity) minus e−qT , and the gamma of a put is the same as the gamma of
the corresponding call.

3.5 Delta Hedging

The ability to create a fully hedged (risk-free) portfolio of the stock and an
option is the essence of the arbitrage argument underlying the Black-Scholes
formula, as we saw in Chap. 1 for the binomial model. For a call option, such
a portfolio consists of delta shares of the underlying asset and a short call
option, or a short position of delta shares of the underlying and a long call
option. These portfolios have no instantaneous exposure to the price of the
underlying. To create a perfect hedge, the portfolio must be adjusted contin-
uously, because the delta changes when the price of the underlying changes
and when time passes. In practice, any hedge will therefore be imperfect, even
if the assumptions of the model are satisfied.

We first consider the continuous-time hedging argument. Consider a Eu-
ropean call option with maturity T , and let C(S, t) denote the value of the
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option at date t < T when the stock price is S at date t. Consider a portfolio
that is short one call option and long δ shares of the underlying asset and that
has a (short) cash position equal to C − δS. This portfolio has zero value at
date t.

The change in the value of the portfolio in an instant dt is

−dC + δ dS + qδS dt + (C − δS)r dt . (3.9)

The first term reflects the change in the value of the option, the second term
is the capital gain or loss on δ shares of stock, the third term is the dividends
received on δ shares of stock, and the fourth term is the interest expense on
the short cash position.

On the other hand, we know from Itô’s formula that

dC =
∂C

∂S
dS +

∂C

∂t
dt +

1
2

∂2C

∂S2
(dS)2

= δ dS + Θ dt +
1
2
Γσ2S2 dt . (3.10)

Substituting (3.10) into (3.9) shows that the change in the value of the port-
folio is

−Θ dt − 1
2
Γσ2S2 dt + qδS dt + (C − δS)r dt . (3.11)

Several aspects of this are noteworthy. First, as noted earlier, the delta hedge
(being long δ shares of the underlying) eliminates the exposure to changes
in the price of the underlying—there is no dS term in (3.11). Second, Θ will
be negative, because it captures the time decay in the option value; being
short the option means the portfolio will profit from time decay at rate −Θ.
Third, this portfolio is “short gamma.” We can also say it is “short convexity,”
the term “convexity” referring to the convex shape of the option value as
a function of the price of the underlying, which translates mathematically
to a positive second derivative (gamma). The volatility in the stock makes
convexity valuable, and a portfolio that is short convexity will suffer losses.
Finally, the portfolio is earning dividends but paying interest.

It is straightforward to check, from the definitions of Θ, Γ and δ in the
preceding section, that the sum of the terms in (3.11) is zero. The time decay
in the option value and dividends received on the shares of the underlying
exactly offset the losses due to convexity and interest. Therefore, the delta
hedge is a perfect hedge. The portfolio, which has a zero cost, neither earns
nor loses money. This is true not only on average but for every possible change
in the stock price.

To see how well this works with only discrete adjustments to the hedge,
one can simulate the changes in S over time and sum the gains and losses over
discrete rebalancing periods. One should input the actual (not risk-neutral)
expected rate of return on the asset to compute the actual distribution of
gains and losses. This is discussed further in Sect. 3.10.
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3.6 Gamma Hedging

To attempt to improve the performance of a discretely rebalanced delta hedge,
one can use another option to create a portfolio that is both delta and gamma
neutral. Being delta neutral means hedged as in the previous section—the
portfolio value has no exposure to changes in the underlying asset price. In
other words, it means that the derivative of the portfolio value with respect
to the price of the underlying (the portfolio delta) is zero. Being gamma neu-
tral means that the delta of the portfolio has no exposure to changes in the
underlying price, which is equivalent to the second derivative of the portfolio
value with respect to the price of the underlying (the portfolio gamma) being
zero. If the delta truly did not change, then there would be no need to rebal-
ance continuously, and hence no hedging error introduced by only adjusting
the portfolio at discrete times rather than continuously. However, there is
certainly no guarantee that a discretely-rebalanced delta/gamma hedge will
perform better than a discretely rebalanced delta hedge.

A delta/gamma hedge can be constructed as follows. Suppose we have
written (shorted) a call option and we want to hedge both the delta and
gamma using the underlying asset and another option, for example, another
call option with a different strike. In practice, one would want to use a liquid
option for this purpose, which typically means that the strike of the option
will be near the current value of the underlying (i.e., the option used to hedge
would be approximately at the money).

Let δ and Γ denote the delta and gamma of the written option and let δ′

and Γ ′ denote the delta and gamma of the option used to hedge. Consider
holding a shares of the stock and b units of the option used to hedge in
conjunction with the short option. The delta of the stock is one (dS/dS = 1),
so to obtain a zero portfolio delta we need

0 = −δ + a + bδ′. (3.12)

The gamma of the stock is zero (d2S/dS2 = d 1/dS = 0), so to obtain a zero
portfolio gamma we need

0 = −Γ + bΓ ′ . (3.13)

Equation (3.13) shows that we should hold enough of the second option to
neutralize the gamma of the option we have shorted; i.e.,

b =
Γ

Γ ′

Equation (3.12) shows that we should use the stock to delta hedge the portfolio
of options; i.e.,

a = δ − Γ

Γ ′ δ
′ .
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3.7 Implied Volatilities

All of the inputs into the option pricing formulas are in theory observable,
except for the volatility coefficient σ. We can estimate σ from historical data
(see Chap. 4), or estimate it from the prices of other options. The latter
method exploits the fact that there is a one-to-one relationship between the
price given by the Black-Scholes formula and the σ that is input, so one can
take the price as given and infer σ from the formula. The σ computed in this
way is called the “implied volatility.” The implied volatility from one option
can be used to price another (perhaps non-traded or less actively traded)
option. The calculation of implied volatilities is discussed in Sect. 3.10.

Even if we acknowledge that the model is not correct, the computation
of implied volatilities is still useful for characterizing market prices, because
we can quickly describe an option as “expensive” or “cheap” depending on
whether its implied volatility is large or small. Somewhat paradoxically, it
is less easy to see if an option is expensive or cheap by looking at its price,
because one must consider the price in the context of the exercise price and
maturity. To some extent, the implied volatility normalizes the price relative
to the exercise price and maturity. Of course, it does not always pay to sell
expensive options or buy cheap options, unless they are expensive or cheap
relative to an accurate model!

3.8 Term Structure of Volatility

The option pricing formulas in this chapter are derived from the fact that the
natural logarithm of the stock price at maturity is normally distributed with
a certain mean (depending on the numeraire) and variance equal to σ2T . It is
not actually necessary that the volatility be constant. The formulas are still
valid if

dS(t)
S(t)

= µ(t) dt + σ(t) dB(t)

where σ(t) is some non-random function of time (and again µ can be a quite
general random process). In this case, the variance of log S(T ) will be

∫ T

0

σ2(t) dt , (3.14)

which is essentially the sum of the instantaneous variances σ2(t) dt. In the d1’s
and d2’s in the option pricing formulas, σ2T should be replaced by (3.14). A
convenient way of expressing this is as follows. Let σavg be the positive number
such that

σ2
avg =

1
T

∫ T

0

σ2(t) dt . (3.15)
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Then we simply need to input σavg as sigma in our option pricing functions.
We will call σavg the “average volatility,” though note that it is not really the
average of σ(t) but instead is the square root of the average of σ2(t).

It is important to recognize that, throughout this chapter, date 0 means
the date at which the option is being valued. It is not necessarily the date at
which the option was first bought or sold. So σavg is the average (in a sense)
volatility during the remaining lifetime of the option, which need not be the
same as the average during the option’s entire lifetime. It is this remaining
volatility that is important for pricing and hedging. Moreover, it is a mistake
at date 0 to use σ(0) as the volatility to compute prices and hedges. Instead,
prices and hedges should be based on σavg.

These considerations provide a way to address the following situation. If
we compute implied volatilities for options with different maturities, we will
normally get different numbers. For example, consider two at-the-money op-
tions with maturities T1 and T2 where T2 > T1. Denote the implied volatilities
by σ̂1 and σ̂2. We want to interpret these as average volatilities for the time
periods [0, T1] and [0, T2] respectively. This requires the existence of a function
σ(t) such that

σ̂2
1 =

1
T1

∫ T1

0

σ2(t) dt and σ̂2
2 =

1
T2

∫ T2

0

σ2(t) dt .

This would imply

σ̂2
2T2 − σ̂2

1T1 =
∫ T2

T1

σ2(t) dt ,

which requires
σ̂2

2T2 − σ̂2
1T1 ≥ 0 .

Equivalently,

σ̂2 ≥
√

T1

T2
σ̂1 .

Provided this last inequality is satisfied, we can easily construct the function
σ(t) as

σ(t) =

{
σ̂1 for t ≤ T1√

σ̂2
2T2−σ̂2

1T1

T2−T1
for T1 < t ≤ T2.

More generally, given a sequence of at-the-money options with maturities
T1 < T2 < · · ·TN and implied volatilities σ̂1, . . . , σ̂N , we define

σ(t) =

√
σ̂2

i+1Ti+1 − σ̂2
i Ti

Ti+1 − Ti

for Ti < t ≤ Ti+1, provided the expression inside the square root symbol is
positive. This σ(t) is often called the “term structure of (implied) volatilities.”
Generally, we may expect σ(t) to be a decreasing function of time t when the
current market is especially volatile and to be an increasing function when
the current market is especially quiet.
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3.9 Smiles and Smirks

If we compute implied volatilities for options with the same maturity but dif-
ferent strikes, we will again obtain different implied volatilities for different
options. If we plot implied volatility against the strike, the pattern one nor-
mally sees for equities and equity indices is the implied volatility declining
as the strike increases until the strike is somewhere near the current value
of the underlying (so the option is at the money). The implied volatility will
then generally flatten out or increase slightly at higher strikes. The graph
looks like a twisted smile (smirk). This pattern has been very pronounced
in equity index option prices since the crash of 1987. In contrast to the term
structure of implied volatilities, this “moneyness” structure of implied volatil-
ities is simply inconsistent with the model. It suggests that the risk-neutral
return distribution is not lognormal but instead exhibits a higher likelihood of
extreme returns than the lognormal distribution (i.e., it has “fat tails”) with
the likelihood of extreme negative returns being higher than the likelihood of
extreme positive returns (i.e., it is “skewed”). We will return to this subject
in Sect. 4.6.

3.10 Calculations in VBA

The Black-Scholes call and put formulas and Greeks can easily be calculated
in an Excel worksheet, using the standard functions Exp, Ln and the cumula-
tive normal distribution function, which is provided in Excel as NormSDist.
However, if these are to be used repeatedly, it is useful to create func-
tions in VBA. In VBA, the cumulative normal distribution function is called
Application.NormSDist. Also, the natural logarithm function in VBA is Log
rather than Ln and the square root function in VBA is Sqr rather than Sqrt.

Black-Scholes Call and Put Formulas

The following function implements the Black-Scholes call pricing formula. For
the sake of completeness, the function returns a value even when a volatility
of zero is input, in which case the formula (3.5) is invalid (it involves division
by zero in the calculation of d1 and d2). If the volatility is zero, then the stock
is riskless and should appreciate at rate r − q. Moreover the option is riskless
and its date–0 value should be the date–T value discounted at the risk-free
rate. This implies that the call value at date 0 is4

4 This result can be verified by a simple arbitrage argument. For example, if the
call value were less than this formula, then put-call parity would show that the
put price is negative, which is impossible. On the other hand, if the call price is
greater than this formula (and hence positive), then put-call parity shows that
the put price is positive, and it is impossible that both the put and call will finish
in the money (so, given that they are riskless, only one should have a positive
value).
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e−rT max
(
0, e(r−q)T S(0) − K

)
= max

(
0, e−qT S(0) − e−rT K

)
.

Function Black_Scholes_Call(S, K, r, sigma, q, T)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’

Dim d1, d2, N1, N2

If sigma = 0 Then

Black_Scholes_Call = Application.Max(0,Exp(-q*T)*S-Exp(-r*T)*K)

Else

d1 = (Log(S/K) + (r-q+0.5*sigma*sigma)*T) / (sigma*Sqr(T))

d2 = d1 - sigma * Sqr(T)

N1 = Application.NormSDist(d1)

N2 = Application.NormSDist(d2)

Black_Scholes_Call = Exp(-q*T)*S*N1 - Exp(-r*T)*K*N2

End If

End Function

It is useful to note that

Black_Scholes_Call(S,K,r,sigma,q,T)

gives the same result as

Black_Scholes_Call(exp(-q*T)*S,K,r,sigma,0,T).

In the latter formulation, we view the underlying asset as the portfolio which
starts with e−qT shares of the asset and reinvests dividends until date T . This
portfolio has value S(T ) at date T , so a European call option on this non-
dividend-paying portfolio is equivalent to a European call option on the stock.
The initial value of the portfolio is e−qT S(0), which is input as the asset price
in the latter formulation.

The Black-Scholes formula for the value of a European put option can be
implemented as follows.

Function Black_Scholes_Put(S, K, r, sigma, q, T)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’

Dim d1, d2, N1, N2
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If sigma = 0 Then

Black_Scholes_Put = Application.Max(0,Exp(-r*T)*K-Exp(-q*T)*S)

Else

d1 = (Log(S/K) + (r-q+0.5*sigma*sigma)*T) / (sigma*Sqr(T))

d2 = d1 - sigma * Sqr(T)

N1 = Application.NormSDist(-d1)

N2 = Application.NormSDist(-d2)

Black_Scholes_Put = Exp(-r*T)*K*N2 - Exp(-q*T)*S*N1

End If

End Function

Black-Scholes Greeks

The delta and gamma of a European call option can be computed with the
following functions. The other Greeks are obviously calculated in a similar
manner. Note that the constant π = 3.14159... is provided in Excel as the
“function” Pi() and can be accessed in Excel VBA as Application.Pi.

Function Black_Scholes_Call_Delta(S, K, r, sigma, q, T)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’

Dim d1, d2, N1, N2

d1 = (Log(S/K) + (r-q+0.5*sigma*sigma)*T) / (sigma*Sqr(T))

d2 = d1 - sigma * Sqr(T)

N1 = Application.NormSDist(d1)

N2 = Application.NormSDist(d2)

Black_Scholes_Call_Delta = Exp(-q*T)*N1

End Function

Function Black_Scholes_Call_Gamma(S, K, r, sigma, q, T)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’

Dim d1, d2, N1, N2, nd1

d1 = (Log(S/K) + (r-q+0.5*sigma*sigma)*T) / (sigma*Sqr(T))

d2 = d1 - sigma * Sqr(T)

N1 = Application.NormSDist(d1)

N2 = Application.NormSDist(d2)
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nd1 = Exp(-d1 * d1 / 2) / Sqr(2 * Application.Pi)

Black_Scholes_Call_Gamma = Exp(-q*T)*nd1/(S*sigma*Sqr(T))

End Function

Implied Volatilities

We could find an implied volatility using the Solver tool, but then we would
have to re-run Solver each time we changed one of the input values. We will
need to solve similar problems on several occasions, so it seems worthwhile to
program a Solver-like function in VBA. We will write this in such a way that
it can easily be applied in other contexts. We will assume there is a single
variable for which we want to solve, solving for multiple variables being more
difficult.

Letting C denote the market price of a European call option, the implied
volatility is sigma satisfying

Black_Scholes_Call(S,K,r,sigma,q,T) - C = 0.

The solution of this equation is called a “root” of the function

Black_Scholes_Call(S,K,r,sigma,q,T) - C,

and the problem of finding roots of functions is a standard numerical problem.
Roots are found by what are essentially sophisticated trial-and-error methods.
The simplest method is to start with upper and lower bounds for σ and
repeatedly bisect the interval containing σ, each time finding a new upper or
lower bound. The program below is a standard bisection routine.

For there to be a volatility that equates the market price to the Black-
Scholes price, it is necessary for the call option price to satisfy the arbitrage
bound5 C +e−rT K ≥ e−qT S. We check this condition at the beginning of the
program and supply an error message if it is violated.

We need to input all of the inputs of Black_Scholes_Call other than σ,
and we need to input the call option price. The following uses an error tol-
erance of 10−6. Therefore, the value that is returned will equal the exact
implied volatility to at least five decimal places. The bisection is begun with a
lower bound of σ = 0. An iterative procedure is used to find an upper bound,
starting with σ = 100%.

5 Note that by put-call parity—equation (3.7)—the difference between the left and
right-hand sides of this inequality is the value of the put with the same strike and
maturity as the call. Thus, the inequality is equivalent to the statement that the
put value is nonnegative, which must be the case.
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This same algorithm can be used to find a real number x such that f(x) = 0
for any (continuous) function f . The only changes necessary are in the right
hand sides of the assignment statements for flower, fupper, and fguess and
in finding lower and upper bounds (and obviously one would not check the
arbitrage bound in general).6 We will use this algorithm on several occasions
to find roots of functions.

Function Black_Scholes_Call_Implied_Vol(S, K, r, q, T, CallPrice)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ q = dividend yield

’ T = time to maturity

’ CallPrice = call price

’

Dim tol, lower, flower, upper, fupper, guess, fguess

If CallPrice < Exp(-q * T) * S - Exp(-r * T) * K Then

MsgBox ("Option price violates the arbitrage bound.")

Exit Function

End If

tol = 10 ^ -6

lower = 0

flower = Black_Scholes_Call(S, K, r, lower, q, T) - CallPrice

upper = 1

fupper = Black_Scholes_Call(S, K, r, upper, q, T) - CallPrice

Do While fupper < 0 ’ double upper until it is an upper bound

upper = 2 * upper

fupper = Black_Scholes_Call(S, K, r, upper, q, T) - CallPrice

Loop

guess = 0.5 * lower + 0.5 * upper

fguess = Black_Scholes_Call(S, K, r, guess, q, T) - CallPrice

Do While upper - lower > tol ’ until root is bracketed within tol

If fupper * fguess < 0 Then ’ root is between guess and upper

lower = guess ’ make guess the new lower bound

flower = fguess

guess = 0.5 * lower + 0.5 * upper ’ new guess = bi-section

fguess = Black_Scholes_Call(S,K,r,guess,q,T) - CallPrice

Else ’ root is between lower and guess

upper = guess ’ make guess the new upper bound

fupper = fguess

guess = 0.5 * lower + 0.5 * upper ’ new guess = bi-section

6 The key to the function is checking each time whether the root is between the
guess and the upper bound or between the guess and the lower bound. If fupper×
fguess < 0, then there is a root between the guess and the upper bound. In this
case, we define the new lower bound to be the old guess and define the new guess
to be the midpoint of this new lower bound and the old upper bound. We do the
opposite if we find the root is between the guess and the lower bound.
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fguess = Black_Scholes_Call(S,K,r,guess,q,T) - CallPrice

End If

Loop

Black_Scholes_Call_Implied_Vol = guess

End Function

To compute an implied volatility from a put option price, one can first
compute a corresponding call option price from put-call parity and then run
the above program.

There are faster root-finding methods than bisection. These use other
methods to update the guess than just halving the distance between the prior
guess and the upper or lower bound. For example, one can use the vega (the
derivative of the option formula with respect to σ) at the given guess for σ
and replace the bisection with

guess = guess - call/vega .

This amounts to approximating the Black-Scholes formula as being linear in σ
and using the root of the approximation as the updated guess. This is the
essence of the Newton-Raphson method. A similar idea that does not require
the computation of vega is to keep track of the two most recent (guess, call)
pairs and to approximate vega as:

vega = (call - prior_call) / (guess - prior_guess) .

This is the essence of the secant method.

Discretely-Rebalanced Delta Hedges

To compute the real-world distribution of gains and losses from a discretely-
rebalanced delta hedge, we input the expected rate of return µ. We consider
adjusting the hedge at dates 0 = t0 < t1 < · · · < tN = T , with ti − ti−1 =
∆t = T/N for each i. The changes in the natural logarithm of the stock price
between successive dates ti−1 and ti are simulated as

∆ log S =
(

µ − q − 1
2
σ2

)
∆t + σ ∆B ,

where ∆B is normally distributed with mean zero and variance ∆t. The ran-
dom variables ∆B are simulated as standard normals multiplied by

√
∆t. We

begin with the portfolio that is short a call, long δ shares of the underlying,
and short δS −C in cash. After the stock price changes, say from S to S′, we
compute the new delta δ′. The cash flow from adjusting the hedge is (δ−δ′)S′.
Accumulation (or payment) of interest on the cash position is captured by the
factor er∆t. Continuous payment of dividends is modelled similarly: the div-
idends earned during the period ∆t is taken to be δS

(
eq∆t − 1

)
. The cash

position is adjusted due to interest, dividends, and the cash flow from adjust-
ing the hedge. At date T , the value of the portfolio is the cash position less
the intrinsic value of the option.
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To describe the distribution of gains and losses, we compute percentiles of
the distribution. You should see that the hedge becomes more nearly perfect
as the number of periods N is increased. Note that this is true regardless of
the µ that is input, which reaffirms the point that option values and hedges do
not depend on the expected rate of return of the underlying. The percentile
is calculated with the Excel Percentile function.7

Function Simulated_Delta_Hedge_Profit(S0,K,r,sigma,q,T,mu,M,N,pct)

’

’ Inputs are S0 = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’ mu = expected rate of return

’ N = number of time periods

’ M = number of simulations

’ pct = percentile to be returned

’

Dim dt, SigSqrdt, drift, LogS0, Call0, Delta0, Cash0, Comp, Div

Dim S, LogS, Cash, NewS, Delta, NewDelta, HedgeValue, i, j

Dim Profit() As Double

ReDim Profit(M)

dt = T / N

SigSqrdt = sigma * Sqr(dt)

drift = (mu - q - 0.5 * sigma * sigma) * dt

Comp = Exp(r * dt)

Div = Exp(q * dt) - 1

LogS0 = Log(S0) ’ store log of initial stock price

Call0 = Black_Scholes_Call(S0, K, r, sigma, q, T)

Delta0 = Black_Scholes_Call_Delta(S0, K, r, sigma, q, T)

Cash0 = Call0 - Delta0 * S0 ’ initial cash position

For i = 0 To M

LogS = LogS0 ’ initialize log of stock price

Cash = Cash0 ’ initialize cash position

S = S0 ’ initialize beginning stock price

Delta = Delta0 ’ initialize beginning stock position

For j = 1 To N - 1

LogS = LogS + drift + SigSqrdt * RandN() ’ new log S

NewS = Exp(LogS) ’ new S

7 If numsims = 11 and pct =0.1, the percentile function returns the second lowest
element in the series. The logic is that 10% of the numbers, excluding the number
returned, are below the number returned—i.e., 1 out of the other 10 are below—
and 90% of the others are above. In particular, if pct = 0.5, the percentile function
returns the median. When necessary, the function interpolates; for example, if
numsims = 10 and pct=0.1, then the number returned is an interpolation between
the lowest and second lowest numbers.
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NewDelta = Black_Scholes_Call_Delta(NewS,K,r,sigma,q,T-j*dt)

Cash = Comp*Cash + Delta*S*Div - (NewDelta-Delta)*NewS

S = NewS ’ update stock price

Delta = NewDelta ’ update stock position

Next j

LogS = LogS+drift+SigSqrdt*RandN() ’ final log of stock price

NewS = Exp(LogS) ’ final stock price

HedgeValue = Comp*Cash + Delta*S*Div + Delta*NewS

Profit(i) = HedgeValue - Application.Max(NewS-K,0)

Next i

Simulated_Delta_Hedge_Profit = Application.Percentile(Profit, pct)

End Function

Problems

3.1. Create an Excel worksheet in which the user inputs K, r, σ, q and T .
Compute the delta of a call option for stock prices S = .01K, .02K, . . . ,
1.99K, 2K (i.e., S = iK/100 for i = 1, . . . 200) and plot the delta against the
stock price.

3.2. The delta of a digital option that pays $1 when S(T ) > K is

e−rT n(d2)
σS

√
T

.

Repeat the previous problem for the delta of this digital. Given that in reality
it is costly to trade (due to commissions, the bid-ask spread and possible
adverse price impacts for large trades), do you see any problems with delta
hedging a short digital near maturity if it is close to being at the money?

3.3. Repeat Prob. 3.1 for the gamma of a call option.

3.4. Use put-call parity to derive the Greeks of a put option, and write a VBA
function that computes the value and Greeks.

3.5. Consider delta and gamma hedging a short call option, using the under-
lying and a put with the same strike and maturity as the call. Calculate the
position in the underlying and the put that you should take, using the analysis
in Sect. 3.6. Will you ever need to adjust this hedge? Relate your result to
put-call parity.

3.6. The delta of a share digital that pays one share when S(T ) > K is

e−qT N(d1) +
e−qT n(d1)

σ
√

T
.

Repeat Prob. 3.1 for the delta of this share digital.
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3.7. Create an Excel worksheet in which the user inputs K, r, q and T .
Compute the value of an at-the-money call option (S = K) using the function
Black_Scholes_Call for volatilities σ = .01, .02, . . . , 1.0. Plot the call value
against the volatility.

3.8. Repeat the previous problem for S = 1.2K (an example of an in-the-
money call option).

3.9. The file CBOEQuotes.txt (available at www.kerryback.net) contains
price data for call options on the S&P 500 index. The options expired in
February, 2003, and the prices were obtained on January 22, 2003. The first
column lists various exercise prices. The second column gives the bid price and
the third column the ask price. Import this data into an Excel worksheet and
compute and plot the implied volatility against the exercise price using this
data. Use the ask price as the market price for the option. The options have 30
days to maturity (so T = 30/365). At the time the quotes were downloaded,
the S&P 500 was at 884.25. According to the CBOE, the dividend yield on
the S&P 500 was 1.76%. Use 1.25% for the risk-free interest rate.

3.10. Attempt to repeat the previous problem using the bid price as the
market price of the option. If this doesn’t work, what is wrong? Does this
indicate there is an arbitrage opportunity?

3.11. Suppose an investor invests in a portfolio with price S and constant
dividend yield q. Assume the investor is charged a constant expense ratio α
(which acts as a negative dividend) and at date T receives either his portfolio
value or his initial investment, whichever is higher. This is similar to a popular
type of variable annuity. Letting D denote the number of dollars invested in
the contract, the contract pays

max
(

D,
De(q−α)T S(T )

S(0)

)
(3.16)

at date T . We can rearrange the expression (3.16) as

max
(

D,
De(q−α)T S(T )

S(0)

)
= D + max

(
0,

De(q−α)T S(T )
S(0)

− D

)

= D + e−αT D max
(

0,
eqT S(T )

S(0)
− eαT

)
. (3.17)

Thus, the contract payoff is equivalent to the amount invested plus a cer-
tain number of call options written on the gross holding period return
eqT S(T )/S(0). Note that Z(t) = eqtS(t)/S(0) is the date–t value of the port-
folio that starts with 1/S(0) units of the asset (i.e., with a $1 investment) and
reinvests dividends. Thus, the call options are call options on a non-dividend
paying portfolio with the same volatility as S and initial price of $1. This
implies that the date–0 value of the contract to the investor is e−rT D plus
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Exp(-alpha*T)*D*Black_Scholes_Call(1,Exp(alpha*T),r,sigma,0,T)

(a) Create a VBA function to compute the fair expense ratio; i.e., find α such
that the date–0 value of the contract is equal to D. Hint: Modify the

Black_Scholes_Call_Implied_Vol

function. You can use α = 0 as a lower bound. Because the value of the
contract is decreasing as α increases, you can find an upper bound by
iterating until the value of the contract is less than D.

(b) How does the fair expense ratio vary with the maturity T? Why?

3.12. Modify the function Simulated_Delta_Hedge_Profit to compute per-
centiles of gains and losses for an investor who writes a call option and con-
structs a delta and gamma hedge using the underlying asset and another call
option. Include the exercise price of the call option used to hedge as an input,
and assume it has the same time to maturity as the option that is written.
Hint: In each period j = 1 to N-1, the updated cash position can be calcu-
lated as

Cash = exp(r*dt)*Cash + a*S*(exp(q*dt)-1) - (Newa-a)*NewS _

- (Newb-b)*PriceHedge ,

where a denotes the number of shares of the stock held, b denotes the number
of units held of the option that is used for hedging, and PriceHedge denotes
the price of the option used for hedging (computed from the Black-Scholes
formula each period). This expression embodies the interest earned (paid) on
the cash position, the dividends received on the shares of stock and the cash
inflows (outflows) from adjusting the hedge. At the final date N, the value of
the hedge is

exp(r*dt)*Cash + a*S*(exp(q*dt)-1) + a*NewS _

+ b*Application.Max(NewS-KHedge,0) ,

and the value of the overall portfolio is the value of the hedge less

Application.Max(NewS-KWritten,0) ,

where KHedge denotes the strike price of the option used to hedge and
KWritten denotes the strike of the option that was written.
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Estimating and Modelling Volatility

Thus far, we have assumed that the volatility of the underlying asset is con-
stant or varying in a non-random way during the lifetime of the derivative. In
this chapter we will look at models that relax this assumption and allow the
volatility to change randomly. This is very important, because there is plenty
of evidence that volatilities do change over time in a random way.

In the first three sections, we will consider the problem of estimating the
volatility. The discussion of estimation methods leads naturally into the dis-
cussion of modelling a changing volatility.

4.1 Statistics Review

We begin with a brief review of basic statistics. Given a random sample
{x1, . . . , xN} of size N from a population with mean µ and variance σ2, the
best estimate of µ is of course the sample mean

x̄ =
1
N

N∑
i=1

xi .

The variance is the expected value of (x − µ)2, so an obvious estimate of the
variance is the sample average of (xi − µ)2, replacing µ with its estimate x̄.
This would be

1
N

N∑
i=1

(xi − x̄)2

However, because x̄ is computed from the xi, the xi will deviate less on average
from x̄ than they do from the true mean µ. Hence the estimate proposed above
will on average be less than σ2. To eliminate this bias, it suffices just to scale
the estimate up by a factor of N/(N − 1). This leads to the estimate

s2 =
1

N − 1

N∑
i=1

(xi − x̄)2 ,
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and the best estimate of σ is the square root

s =

√√√√ 1
N − 1

N∑
i=1

(xi − x̄)2 .

To calculate s2, notice that

N∑
i=1

(xi − x̄)2 =
N∑

i=1

(x2
i − 2xix̄ + x̄2)

=
N∑

i=1

x2
i − 2x̄

N∑
i=1

xi +
N∑

i=1

x̄2

=
N∑

i=1

x2
i − 2x̄(Nx̄) + Nx̄2

=
N∑

i=1

x2
i − Nx̄2 .

Therefore

s =

√√√√ 1
N − 1

(
N∑

i=1

x2
i − Nx̄2

)
.

It is important to know how much variation there would be in x̄ if one had
access to multiple random samples. More variation means that an x̄ computed
from a single sample will be a less reliable estimate of µ. The variance of x̄
in repeated samples is σ2/N ,1 and our best estimate of this variance is s2/N .
The standard deviation of x̄ in repeated samples, which is called the “standard
error” of x̄, is σ/

√
N , and we estimate this by s/

√
N , which equals√√√√ 1

N(N − 1)

(
N∑

i=1

x2
i − Nx̄2

)
.

If the population from which x is sampled has a normal distribution, then a
95% confidence interval for µ will be x̄ plus or minus 1.96 standard errors.
Even if x does not have a normal distribution, by the Central Limit Theorem,
x̄/

√
N will be approximately normally distributed if the sample size N is large

enough, and plus or minus 1.96 standard errors will still be approximately a
95% confidence interval for µ.
1 The variance of x̄ = (1/N)(x1 + · · ·+ xN ) is, by independence of the xi, equal to

(1/N)2(var x1 + · · ·+ var xN ), and, because the xi all have the same variance σ2,
this is equal to (1/N)2 × Nσ2 = σ2/N .
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4.2 Estimating a Constant Volatility and Mean

Consider an asset price that is a geometric Brownian motion under the actual
probability measure:

dS

S
= µdt + σ dB ,

where µ and σ are unknown constants and B is a Brownian motion. We can
as usual write this in log form as

d log S =
(

µ − 1
2
σ2

)
dt + σ dB .

Over a discrete time period of length ∆t, this implies

∆ log S =
(

µ − 1
2
σ2

)
∆t + σ∆B . (4.1)

Suppose we have observed the asset price S at dates 0 = t0 < t1 < · · · <
tN = T , where ti − ti−1 = ∆t. If the asset pays dividends, we will take S
to be the value of the portfolio in which the dividends are reinvested in new
shares. Thus, in general, S(ti)/S(ti−1) denotes the gross return (one plus
the rate of return) between dates ti−1 and ti. This return is measured on
a non-compounded and non-annualized basis. The annualized continuously-
compounded rate of return is the rate ri defined by

S(ti)
S(ti−1)

= eri∆t .

This implies that

ri =
log S(ti) − log S(ti−1)

∆t
= µ − 1

2
σ2 + σ

B(ti) − B(ti−1)
∆t

. (4.2)

Because B(ti) − B(ti−1) is normally distributed with mean zero and vari-
ance ∆t, the sample {r1, . . . , rN} is a sample of independent random variables
each of which is normally distributed with mean µ−σ2/2 and variance σ2/∆t.
We are focused on estimating σ2, so it will simplify things to define

yi = ri

√
∆t =

log S(ti) − log S(ti−1)√
∆t

. (4.3)

The sample {y1, . . . , yN} is a sample of independent random variables each of
which is normally distributed with mean (µ− σ2/2)

√
∆t and variance σ2. As

was discussed in the previous section, the best estimate of the mean of y is
the sample mean

ȳ =
1
N

N∑
i=1

yi ,
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and the best estimate of σ2 is

σ̂2 =
1

N − 1

N∑
i=1

(yi − ȳ)2 .

This means that we estimate µ as

µ̂ =
ȳ√
∆t

+
1
2
σ̂2 = r̄ +

1
2
σ̂2 .

Let us digress for a moment to discuss the reliability of µ̂ as an estimate
of µ. Notice that

r̄ =
∑N

i=1 log S(ti) − log S(ti−1)
N∆t

=
log S(T ) − log S(0)

N∆t

=
log S(T ) − log S(0)

T
. (4.4)

Therefore the first component r̄ of the estimate of µ depends only on the total
change in S over the time period. Hence, the reliability of this component
cannot depend on how frequently we observe S within the time period [0, T ].
The standard deviation of r̄ in repeated samples is the standard deviation of
[log S(T ) − log S(0)]/T , which is σ/

√
T . This is likely to be quite large. For

example, with σ = 0.3 and ten years of data (T = 10), the standard deviation
of r̄ is 9.5%, which means that a 95% confidence interval will be a band of
roughly 38%. Given that µ itself should be of the order of magnitude of 10%,
such a wide confidence interval is useless for all practical purposes.

Fortunately, it is easier to estimate σ. We observed in the previous section
that the σ̂2 defined above can be calculated as

1
N − 1

N∑
i=1

y2
i − Nȳ2

N − 1
. (4.5)

From the definition (4.3) of yi and equation (4.4), we have

ȳ =

√
∆t

T
[log S(T ) − log S(0)] .

Hence, the second term in (4.5) is

N

N − 1

(
∆t

T 2

)
[log S(T ) − log S(0)]2 .

If we observe the stock price sufficiently frequently, so that ∆t is very small,
this term will be negligible. In this circumstance, σ̂2 is approximately
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1
N − 1

N∑
i=1

y2
i =

1
N − 1

N∑
i=1

[log S(ti) − log S(ti−1)]2

∆t
(4.6)

=
N

N − 1
× 1

T
×

N∑
i=1

[log S(ti) − log S(ti−1)]2 . (4.7)

If we observe S more and more frequently, letting ∆t → 0 and N → ∞, the
sum

N∑
i=1

[log S(ti) − log S(ti−1)]2

will converge with probability one to σ2T , as explained in Sect. 2.2. This
implies that σ̂2 will converge to σ2. Thus, in theory, we can estimate σ2 with
any desired degree of precision by simply observing S sufficiently frequently.
This is true no matter how short the overall time period [0, T ] may be.

In practice, this doesn’t work out quite so well. If we observe minute-by-
minute data, or we observe each transaction, much of the variation in the
price S will be due to bouncing back and forth between the bid price and
the ask price. This is not really what we want to estimate, and this source
of variation will be much less important if we look at weekly or even daily
data. So, there are practical limits to how frequently we should observe S.
Nevertheless, it is still true that, if σ2 were truly constant, we could estimate
it with a very high degree of precision. In fact, we can estimate the volatility
of a stock with enough precision to determine that it really isn’t constant!
The real problem that we face is to estimate and model a changing volatility.

4.3 Estimating a Changing Volatility

Without attempting yet to model how the volatility may change, we can say
a few things about how we might estimate a changing volatility. In this and
following sections, we will take the observation interval ∆t to be fixed. We as-
sume it is small (say, a day or a week) and focus on the estimate (4.7). Recall
from Sect. 4.1 that the reason we are dividing by N − 1 rather than N is that
the sample standard deviation usually underestimates the actual standard de-
viation, because it uses the sample mean, which will be closer to the points xi

than will be the true mean. However, (4.7) does not employ the sample mean
(it replaces it with zero), so there is no reason to make this correction. So, we
take as our point of departure the estimate

1
T

N∑
i=1

[log S(ti) − log S(ti−1)]2 =
1
N

N∑
i=1

y2
i .

An obvious response to the volatility changing over time is simply to avoid
using data from the distant past. Such data is not likely to be informative
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about the current value of the volatility. What “distant” should mean in this
context is not entirely clear, but, for example, we might want to use only
the last 60 observations. If we are using daily data, this would mean that
at the end of each day we would add that day’s observation and drop the
observation from 61 days past. This leads to a somewhat abruptly varying
estimate. For example, a very large movement in the price on a particular
day increases the volatility estimate for the next 60 days. On the 61st day,
this observation would drop from the sample, leading to an abrupt drop in
the estimate (presuming that there is not an equally large change in S on the
61st day). This seems unreasonable. An estimate in which the impact of each
observation decays smoothly over time is more attractive.

We can construct such an estimate as

σ̂2
i+1 = (1 − λ)y2

i + λσ̂2
i (4.8)

for any constant 0 < λ < 1. Here, σ̂2
i+1 denotes the estimate of the volatility

from date ti to date ti+1. The estimate (4.8) is a weighted average of the esti-
mate σ̂2

i for the previous time period and the most recently observed squared
change y2

i . Following the same procedure, the next estimate will be

σ̂2
i+2 = (1 − λ)y2

i+1 + λσ̂2
i+1

= (1 − λ)y2
i+1 + λ(1 − λ)y2

i + λ2σ̂2
i .

Likewise, the estimate at the following date will be

σ̂2
i+3 = (1 − λ)y2

i+2 + λ(1 − λ)y2
i+1 + λ2(1 − λ)2y2

i + λ3σ̂2
i .

This demonstrates the declining importance of the squared deviation y2
i for

future estimates. At each date, y2
i enters with a weight that is lower by a factor

of λ, compared to the previous date. If λ is small, the decay in the importance
of each squared deviation will be fast. In fact, the formula (4.8) shows that,
if λ is close to zero, the estimate σ̂2

i+1 is approximately equal to the squared
deviation y2

i —previous squared deviations are relatively unimportant. On the
other hand, if λ is close to one, the decay will be slow; i.e., the importance
of y2

i for the estimate σ̂2
i+2 will be nearly the same as for σ̂2

i+1, and nearly
the same for σ̂2

i+3 as for σ̂2
i+2, etc. This will lead to a smooth (slowly varying)

volatility estimate. The slowly varying nature of the estimate in this case is
also clear from (4.8), because it shows that if λ is close to one, then σ̂2

i+1 will
be approximately the same as σ̂2

i .
This method can also be used to estimate covariances, simply by replacing

the squared deviations y2
i by the product of deviations for two different assets.

And, of course, given covariance and variance estimates, we can construct
estimates of correlations. To ensure that an estimated correlation is between
−1 and +1, we will need to use the same λ to estimate each of the variances
and the covariance. This is the method used by RiskMetrics.2

2 See Mina and Xiao [53], available online at www.riskmetrics.com.
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4.4 GARCH Models

We are going to adopt a subtle but important change of perspective now.
Instead of considering (4.8) as simply an estimation procedure, we are going to
assume that the actual volatility evolves according to (4.8), or a generalization
thereof. We are also going to reintroduce the expected change in log S, which
we dropped in going from (4.5) to (4.7). Specifically, we return to (4.1), but
we operate under the risk-neutral measure, so µ = r − q, and we have

log S(ti+1) − log S(ti) =
(

r − q − 1
2
σ2

i+1

)
∆t + σi+1∆B . (4.9)

We assume the volatility σi+1 between dates ti and ti+1 is given by

σ2
i+1 = a + by2

i + cσ2
i , (4.10)

for some constants a > 0, b ≥ 0 and c ≥ 0, with yi now defined by

yi =
log S(ti) − log S(ti−1) −

(
r − q − 1

2σ2
i

)
∆t√

∆t
.

From (4.9), applied to the period from ti−1 to ti, this implies that yi is nor-
mally distributed with mean zero and variance σ2

i , and of course yi+1 has vari-
ance σ2

i+1, etc. Under these assumptions, the random process log S is called
a GARCH(1,1) process.3 There are many varieties of GARCH processes that
have been proposed in the literature, but we will only consider GARCH(1,1),
which is the simplest.

We assume b + c < 1, in which case we can write the variance equation as
a generalization of (4.8). Namely,

σ2
i+1 = κθ + (1 − κ)

[
(1 − λ)y2

i + λσ2
i

]
, (4.11)

where λ = c/(b + c), κ = 1 − b − c, and θ = a/(1 − b − c). Hence, σ2
i+1

is a weighted average with weights κ and 1 − κ, of two parts, one being
the constant θ and the other being itself a weighted average of y2

i and σ2
i .

Whatever the variance might be at time ti, the variance of yj at any date tj far
into the future, computed without knowing the intervening yi+1, yi+2, . . ., will
be approximately the constant θ. The constant θ is called the “unconditional
variance,” whereas σ2

i is the “conditional variance” of yi.
To understand the unconditional variance, it is useful to consider the vari-

ance forecasting equation. Specifically, we can calculate Eti

[
σ2

i+n

]
, which is

the estimate made at date ti of the variance of yi+n; i.e, we estimate the
variance without having observed yi+1, . . . , yi+n−1. Note that by definition
Eti

[y2
i+1] = σ2

i+1, so (4.11) implies

3 GARCH is the acronym for “Generalized Autoregressive Conditional Het-
eroskedastic.” “GARCH(1,1)” means that there is only one past y (no yi−1, yi−2,
etc.) and one past σ (no σi−1, σi−2, etc.) in (4.10). See Bollerslev [7].
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Eti

[
σ2

i+2

]
= κθ + (1 − κ)

[
(1 − λ)Eti

[y2
i+1] + λσ2

i+1

]
= κθ + (1 − κ)σ2

i+1 .

Likewise,
Eti+1

[
σ2

i+3

]
= κθ + (1 − κ)σ2

i+2 ,

and taking the expectation at date ti of both sides of this yields

Eti

[
σ2

i+3

]
= Eti

[
Eti+1

[
σ2

i+3

]]
= κθ + (1 − κ)Eti

[
σ2

i+2

]
= κθ + (1 − κ)

[
κθ + (1 − κ)σ2

i+1

]
= κθ[1 + (1 − κ)] + (1 − κ)2σ2

i+1 .

This generalizes to

Eti

[
σ2

i+n

]
= κθ

[
1 + (1 − κ) + · · · (1 − κ)n−2

]
+ (1 − κ)n−1σ2

i+1 .

Thus, there is decay at rate κ in the importance of the current volatility σ2
i+1

for forecasting the future volatility. Furthermore, as n → ∞, the geometric
series

1 + (1 − κ) + · · · (1 − κ)n−2

converges to 1/κ, so, as n → ∞ we obtain

Eti

[
σ2

i+n

] → θ .

This means that our best estimate of the conditional variance, at some date
far in the future, is approximately the unconditional variance θ.

The most interesting feature of the volatility equation is that large returns
(in absolute value) lead to an increase in the variance and hence are likely
to be followed by more large returns (whether positive or negative). This is
the phenomenon of “volatility clustering,” which is quite observable in actual
markets. This feature also implies that the distribution of returns will be “fat
tailed” (more technically, “leptokurtic”). This means that the probability of
extreme returns is higher than under a normal distribution with the same
standard deviation.4 It is well documented that daily and weekly returns in
most markets have this “fat-tailed” property.

We can simulate a path of an asset price that follows a GARCH process
and the path of its volatility as follows. The following macro produces three
columns of data (with headings), the first column being time, the second the
asset price, and the third the volatility.

Sub Simulating_GARCH()

Dim S, sigma, r, q, dt, theta, kappa, lambda, LogS, Sqrdt

Dim a, b, c, y, i, N

4 Conversely, the probability of returns very near the mean must also be higher
than under a normal distribution with the same standard deviation—a fat-tailed
distribution must also have a relatively narrow peak.
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S = InputBox("Enter initial stock price")

sigma = InputBox("Enter initial volatility")

r = InputBox("Enter risk-free rate")

q = InputBox("Enter dividend yield")

dt = InputBox("Enter length of each time period (Delta t)")

N = InputBox("Enter number of time periods (N)")

theta = InputBox("Enter theta")

kappa = InputBox("Enter kappa")

lambda = InputBox("Enter lambda")

LogS = Log(S)

Sqrdt = Sqr(dt)

a = kappa * theta

b = (1 - kappa) * (1 - lambda)

c = (1 - kappa) * lambda

ActiveCell.Value = "Time"

ActiveCell.Offset(0, 1) = "Stock Price"

ActiveCell.Offset(0, 2) = "Volatility"

ActiveCell.Offset(1, 0) = 0 ’ initial time

ActiveCell.Offset(1, 1) = S ’ initial stock price

ActiveCell.Offset(1, 2) = sigma ’ initial volatility

For i = 1 To N

ActiveCell.Offset(i + 1, 0) = i * dt ’ next time

y = sigma * RandN()

LogS = LogS + (r - q - 0.5 * sigma * sigma) * dt + Sqrdt * y

S = Exp(LogS)

ActiveCell.Offset(i + 1, 1) = S ’ next stock price

sigma = Sqr(a + b * y ^ 2 + c * sigma ^ 2)

ActiveCell.Offset(i + 1, 2) = sigma ’ next volatility

Next i

End Sub

To price European options, we need to compute the usual probabilities
probS(S(T ) > K) and probR(S(T ) > K). Heston and Nandi [35] provide
a fast method for computing these probabilities in a GARCH (1,1) model.5

Rather than developing this approach, we will show in Chap. 5 how to apply
Monte-Carlo methods.

4.5 Stochastic Volatility Models

The volatility is stochastic (random) in a GARCH model, but it is determined
by the changes in the stock price. In this section, in contrast, we will consider
models in which the volatility depends on a second Brownian motion. The
5 Actually, a slightly more general model is considered in [35], in which large nega-

tive returns lead to a greater increase in volatility than do large positive returns.
This accommodates the empirically observed negative correlation between stock
returns and volatility.
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most popular model of this type is the model of Heston [34]. In this model,
we have, as usual,

d log S =
(

r − q − 1
2
σ2

)
dt + σ dBs , (4.12a)

where Bs is a Brownian motion under the risk-neutral measure but now σ is
not a constant but instead evolves as σ(t) =

√
v(t), where

dv(t) = κ
[
θ − v(t)

]
dt + γ

√
v(t) dBv , (4.12b)

where Bv is a Brownian motion under the risk-neutral measure having a con-
stant correlation ρ with the Brownian motion Bs. In this equation, κ, θ and γ
are positive constants. Given the empirical fact that negative return shocks
have a bigger impact on future volatility than do positive shocks, one would
expect the correlation ρ to be negative.

The term κ(θ−v) will be positive when v < θ and negative when v > θ and
hence σ2 = v will tend to drift towards θ, which, as in the GARCH model,
is the long-run or unconditional mean of σ2. Thus, the volatility is said to
“mean revert.” The rate at which it drifts towards θ is obviously determined
by the magnitude of κ, also as in the GARCH model.

The specification (4.12b) implies that the volatility of v approaches zero
whenever v approaches zero. In this circumstance, one might expect the drift
towards θ to dominate the volatility and keep v nonnegative, and this is indeed
the case; thus, the definition σ(t) =

√
v(t) is possible. Moreover, the para-

meter γ plays a role here that is similar to the role of 1 − λ in the GARCH
model—the variance of the variance in the GARCH model (4.11) depends on
the weight 1 − λ placed on the scaled return yi, just as the variance of the
variance in the stochastic volatility model (4.12b) depends on the weight γ
placed on dBv.

We could discretize (4.12) as:

log S(ti+1) = log S(ti) +
(

r − q − 1
2
σ(ti)2

)
∆t +

√
v(ti) ∆Bs, (4.13a)

v(ti+1) = v(ti) + κ
[
θ − v(ti)

]
∆t + γ

√
v(ti) ∆Bv . (4.13b)

However, even though in the continuous-time model (4.12) we always have
v(t) ≥ 0 and hence can define σ(t) =

√
v(t), there is no guarantee that

v(ti+1) defined by (4.13b) will be nonnegative. A simple remedy is to define
v(ti+1) as the larger of zero and the right-hand side of (4.13b); thus, we will
simulate the Heston model as (4.13a) and6

6 There are better (but more complicated) ways to simulate the Heston model. An
excellent discussion of ways to simulate the volatility process can be found in
Glasserman [29]. Broadie and Kaya [16] present a method for simulating from the
exact distribution of the asset price in the Heston model and related models.
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v(ti+1) = max
{

0, v(ti) + κ
[
θ − v(ti)

]
∆t + γ

√
v(ti) ∆Bv

}
. (4.13b′)

A simple way to simulate the changes ∆Bs and ∆Bv in the two correlated
Brownian motions is to generate two independent standard normals z1 and z2

and take
∆Bs =

√
∆t z and ∆Bv =

√
∆t z∗ ,

where we define

z = z1 and z∗ = ρz1 +
√

1 − ρ2 z2 .

The random variable z∗ is also a standard normal, and the correlation be-
tween z and z∗ is ρ.

Sub Simulating_Stochastic_Volatility()

Dim S, sigma, r, q, dt, theta, kappa, Gamma, rho, LogS, var

Dim Sqrdt, Sqrrho, z1, Z2, Zstar, i, N

S = InputBox("Enter initial stock price")

sigma = InputBox("Enter initial volatility")

r = InputBox("Enter risk-free rate")

q = InputBox("Enter dividend yield")

dt = InputBox("Enter length of each time period (Delta t)")

N = InputBox("Enter number of time periods (N)")

theta = InputBox("Enter theta")

kappa = InputBox("Enter kappa")

Gamma = InputBox("Enter gamma")

rho = InputBox("Enter rho")

LogS = Log(S)

var = sigma * sigma

Sqrdt = Sqr(dt)

Sqrrho = Sqr(1 - rho * rho)

ActiveCell.Value = "Time"

ActiveCell.Offset(0, 1) = "Stock Price"

ActiveCell.Offset(0, 2) = "Volatility"

ActiveCell.Offset(1, 0) = 0 ’ initial time

ActiveCell.Offset(1, 1) = S ’ initial stock price

ActiveCell.Offset(1, 2) = sigma ’ initial volatility

For i = 1 To N

ActiveCell.Offset(i + 1, 0) = i * dt ’ next time

z1 = RandN()

LogS = LogS + (r-q-0.5*sigma*sigma)*dt + sigma*Sqrdt*z1

S = Exp(LogS)

ActiveCell.Offset(i + 1, 1) = S ’ next stock price

Z2 = RandN()

Zstar = rho * z1 + Sqrrho * Z2

var = Application.Max(0, var+kappa*(theta-var)*dt _

+Gamma*sigma*Sqrdt*Zstar)

sigma = Sqr(var)

ActiveCell.Offset(i + 1, 2) = sigma ’ next volatility
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Next i

End Sub

To price European options, we again need to compute

probS(S(T ) > K) and probR(S(T ) > K) .

The virtue of modelling volatility as in (4.12b) is that these probabilities can
be computed quite efficiently, as shown by Heston [34].7 There are many other
ways in which one could model volatility, but the computations may be more
difficult. For example, one could replace (4.12b) by

σ(t) = ev(t) and dv(t) = κ(θ − v(t)) dt + λ dB∗ . (4.12b′)

This implies a lognormal volatility and is simpler to simulate than (4.12b)—
because ev is well defined even when v is negative—but it is easier to calcu-
late the probabilities probS(S(T ) > K) and probR(S(T ) > K) if we assume
(4.12b).

One way to implement the GARCH or stochastic volatility model is to
imply both the initial volatility σ(0) and the constants κ, θ and λ or κ, θ,
γ and ρ from observed option prices. These four (or five) constants can be
computed by forcing the model prices of four (or five) options to equal the
observed market prices. Or, a larger set of prices can be used and the constants
can be chosen to minimize the average squared error or some other measure
of goodness-of-fit between the model and market prices.

4.6 Smiles and Smirks Again

As mentioned before, the GARCH and stochastic volatility models can gen-
erate “fat-tailed” distributions for the asset price S(T ). Thus, they can be
more nearly consistent with the option smiles discussed in Sect. 3.9 than is
the Black-Scholes model (though it appears that one must include jumps in
asset prices as well as stochastic volatility in order to duplicate market prices
with an option pricing formula). To understand the relation, let σam denote
the implied volatility from an at-the-money call option, i.e., a call option with
strike K = S(0). The characteristic of a smile is that implied volatilities from
options of the same maturity with strike prices significantly above and below
S(0) are higher than σam.

A strike price higher than S(0) corresponds to an out-of-the money call
option. The high implied volatility means that the market is pricing the right
to buy at K > S(0) above the Black-Scholes price computed from the volatil-
ity σam; thus, the market must attach a higher probability to stock prices
S(T ) > S(0) than the volatility σam would suggest.

7 Further discussion can be found in Epps [26].
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A strike price lower than S(0) corresponds to an in-the-money call option.
The put option with the same strike is out of the money. The high implied
volatility means that the market is pricing call options above the Black-Scholes
price computed from the volatility σam. By put-call parity, the market must
also be pricing put options above the Black-Scholes price computed from the
volatility σam. The high prices for the rights to buy and sell at K < S(0) means
that the market must attach a higher probability to stock prices S(T ) < S(0)
than the volatility σam would suggest. In particular, the high price for the right
to sell at K < S(0) means a high insurance premium for owners of the asset
who seek to insure their positions, which is consistent with a market view that
there is a significant probability of a large loss. This can be interpreted as a
“crash premium.” Indeed, the implied volatilities at strikes less than S(0) are
typically higher than the implied volatilities at strikes above S(0) (giving the
smile the appearance of a smirk, as discussed in Sect. 3.9), which is consistent
with a larger probability of crashes than of booms (a fatter tail for low returns
than for high).

4.7 Hedging and Market Completeness

The GARCH model is inherently a discrete-time model. If returns have a
GARCH structure at one frequency (e.g., monthly), they will not have a
GARCH structure at a different frequency (e.g., weekly). Hence, the return
period (monthly, weekly, . . . ) is part of the specification of the model. One
interpretation of the model is that the dates ti at which the variance changes
are the only dates at which investors can trade. Under this interpretation,
it is impossible to perfectly hedge an option: the gross return S(ti)/S(ti−1)
over the interval (ti−1, ti) is lognormally distributed, so no portfolio of the
stock and riskless asset formed at ti−1 and held over the interval (ti−1, ti)
can perfectly replicate the return of an option over the interval. As discussed
in Sect. 1.6, we call a market in which some derivatives cannot be perfectly
hedged an “incomplete market.” Thus, the GARCH model is an example of
an incomplete market, if investors can only trade at the frequency at which
returns have a GARCH structure. However, it is unreasonable to assume that
investors can only trade weekly or monthly or even daily.

Another interpretation of the GARCH model is that investors can trade
continuously and the asset has a constant volatility within each period
(ti−1, ti). Under this interpretation, the market is complete and options can
be delta-hedged. The completeness is a result of the fact that the change
σi+1 − σi in the volatility at date ti (recall that σi is the volatility over the
period (ti−1, ti) and σi+1 is the volatility over the period (ti, ti+1)) depends
only on log S(ti). Thus, the only random factor in the model that needs to be
hedged is, as usual, the underlying asset price. However, this interpretation
of the model is also a bit strange. Suppose for example that monthly returns
are assumed to have a GARCH structure. Then the model states that the
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volatility in February will be higher if there is an unusually large return (in
absolute value) in January. Suppose there is an unusually large return in the
first half of January. Then, intuitively, one would expect the change in the
volatility to occur in the second half of January rather than being delayed
until February. However, the model specifies that the volatility is constant
during each month, hence constant during January in this example.

The stochastic volatility model is more straightforward. The market is
definitely incomplete. The value of a call option at date t < T , where T is
the maturity of the option, will depend on the underlying asset price S(t) and
the volatility σ(t). Denoting the value by C(t, S(t), σ(t)), we have from Itô’s
formula that

dC(t) = something dt +
∂C

∂S
dS(t) +

∂C

∂σ
dσ(t) .

A replicating portfolio must have the same dollar change at each date t. If we
hold ∂C/∂S shares of the underlying asset, then the change in the value of the
shares will be (∂C/∂S) dS. However, there is no way to match the (∂C/∂σ) dσ
term using the underlying asset and the riskless asset.

The significance of the market being incomplete is that the value of a deriv-
ative asset that cannot be replicated using traded assets (e.g., the underlying
and riskless assets) is not uniquely determined by arbitrage considerations. As
discussed in Sect. 1.6, one must use “equilibrium” pricing in this circumstance.
That is what we have implicitly done in this chapter. By assuming particular
dynamics for the volatility under the risk-neutral measure, we have implicitly
selected a particular risk-neutral measure from the set of risk-neutral measures
that are consistent with the absence of arbitrage.

Problems

4.1. The purpose of this exercise is to generate a fat-tailed distribution from
a model that is simpler than the GARCH and stochastic volatility models
but has somewhat the same flavor. The distribution will be a “mixture of
normals.” Create an Excel worksheet in which the user can input S, r, q, T ,
σ1 and σ2. Use these inputs to produce a column of 500 simulated log S(T ).
In each simulation, define log S(T ) as

log S(T ) = log S(0) +
(

r − q − 1
2
σ2

)
T + σ

√
Tz ,

where z is a standard normal, σ = xσ1 +(1−x)σ2, and x is a random variable
that equals zero or one with equal probabilities. You can define z in each
simulation as NormSInv(Rand()) and x as If(Rand()<0.5,1,0). Calculate
the mean and standard deviation of the log S(T ) and calculate the fraction
that lie more than two standard deviations below the mean. If the log S(T )
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all came from a normal distribution with the same variance, then this fraction
should equal N(−2) = 2.275%. If the fraction is higher, then the distribution
is “fat tailed.” (Of course, the actual fraction would differ from 2.275% in
any particular case due to the randomness of the simulation, even if all of the
log S(T ) came from a normal distribution with the same variance).

4.2. Create an Excel macro prompting the user to input the same inputs as
in the Simulating_GARCH subroutine except for the initial volatility and θ.
Simulate 500 paths of a GARCH process and output log S(T ) for each simula-
tion (you don’t need to output the entire paths as in the Simulating_GARCH
macro). Take the initial volatility to be 0.3 and θ = 0.09. Determine whether
the distribution is fat-tailed by computing the fraction of the log S(T ) that
lie two or more standard deviations below the mean, as in the previous exer-
cise. For what values of κ and λ does the distribution appear to be especially
fat-tailed?

4.3. Repeat Prob. 4.2 for the Heston stochastic volatility model, describing
the values of κ, γ and ρ that appear to generate especially fat-tailed distrib-
utions.

Note

Excel provides some tools that are useful for exercises of this sort. If you load
the Data Analysis add-in (click Tools/Add Ins), you can produce a histogram
of the simulated data, which is useful for visually analyzing departures from
normality. The Data Analysis add-in will also produce summary statistics,
including the kurtosis and skewness of the data (without using the add-in,
the kurtosis can be computed with the Excel function KURT and the skewness
with the Excel function SKEW). The kurtosis of a random variable x is defined
as E[(x − µ)4]/σ4, where µ is the mean and σ is the standard deviation of x.
The kurtosis of a normal distribution is 3. A kurtosis larger than 3 is “excess
kurtosis,” meaning the distribution is leptokurtic (fat tailed). Excel’s KURT
function actually computes excess kurtosis, so a positive value indicates a
fat-tailed distribution. The skewness of x is defined as E[(x − µ)3]/σ3. The
skewness of a normal distribution is zero. Negative skewness indicates the
distribution is skewed to the left, meaning the lower tail is fatter than the
upper tail (crashes are more likely than booms). Positive skewness indicates
the distribution is skewed to the right.
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Introduction to Monte Carlo
and Binomial Models

In this chapter, we will introduce two principal numerical methods for valuing
derivative securities: Monte Carlo and binomial models. We will consider two
applications: valuing European options in the presence of stochastic volatility
with Monte Carlo and valuing American options via binomial models. Addi-
tional applications of these methods will be presented in Chap. 9. Throughout
the chapter, we will assume there is a constant risk-free rate. The last section,
while quite important, could be skimmed on first reading—the rest of the
book does not build upon it.

5.1 Introduction to Monte Carlo

According to our risk-neutral pricing formula (1.18), the value of a security
paying an amount x at date T is

e−rT ER[x] . (5.1)

To estimate this by Monte-Carlo means to simulate a sample of values for the
random variable x and to estimate the expectation by averaging the sample
values.1 Of course, for this to work, the sample must be generated from a
“population” having a distribution consistent with the risk-neutral probabil-
ities.

The simplest example is valuing a European option under the Black-
Scholes assumptions. Of course, for calls and puts, this is redundant, because
we already have the Black-Scholes formulas. Nevertheless, we will describe how
to do this for the sake of introducing the Monte Carlo method. In the case of
a call option, the random variable x in (5.1) is max(0, S(T )−K). To simulate
a sample of values for this random variable, we need to simulate the terminal
1 Boyle [8] introduced Monte-Carlo methods for derivative valuation, including the

variance-reduction methods of control variates and antithetic variates to be dis-
cussed in Chap. 9.



88 5 Introduction to Monte Carlo and Binomial Models

stock price S(T ). This is easy to do, because, under the Black-Scholes assump-
tions, the logarithm of S(T ) is normally distributed under the risk-neutral
measure with mean log S(0) + νT and variance σ2T , where ν = r − q − σ2/2.
Thus, we can simulate values for log S(T ) as log S(0)+νT +σ

√
Tz, where z is

a standard normal. We can average the simulated values of max(0, S(T )−K),
or whatever the payoff of the derivative is, and then discount at the risk-free
rate to compute the date–0 value of the derivative. This means that we gen-
erate some number M of standard normals zi and estimate the option value
as e−rT x̄, where x̄ is the mean of

xi = max
(
0, elog S(0)+νT+σ

√
Tzi − K

)
.

To value options that are path-dependent we need to simulate the path of
the underlying asset price. Path-dependent options are discussed in Chaps. 8
and 9.

There are two main drawbacks to Monte-Carlo methods. First, it is diffi-
cult (though not impossible) to value early-exercise features.2 To value early
exercise, we need to know the value at each date if not exercised, to compare
to the intrinsic value. One could consider performing a simulation at each date
to calculate the value if not exercised, but this value depends on the option
to exercise early at later dates, which cannot be calculated without knowing
the value of being able to exercise early at even later dates, etc. In contrast,
the binomial model (and finite difference models discussed in Chap. 10) can
easily handle early exercise but cannot easily handle path dependencies.

The second drawback of Monte Carlo methods is that they can be quite in-
efficient in terms of computation time (though, as will be explained in Chap. 9,
they may be faster than alternative methods for derivatives written on multi-
ple assets). As in statistics, the standard error of the estimate depends on the
sample size. Specifically, we observed in Sect. 4.1 that, given a random sample
{x1, . . . , xM} of size M from a population with mean µ and variance σ2, the
best estimate of µ is the sample mean x̄, and the standard error of x̄ (which
means the standard deviation of x̄ in repeated samples) is best estimated by√√√√ 1

M(M − 1)

(
M∑
i=1

x2
i − Mx̄2

)
. (5.2)

Recall that x̄ plus or minus 1.96 standard errors is a 95% confidence interval
for µ when the xi are normally distributed. In the context of European option
valuation, the expression (5.2) gives the standard error of the estimated option
value at maturity, and multiplication of (5.2) by e−rT gives the standard error
of the estimated date–0 option value.
2 Monte-Carlo methods for valuing early exercise include the stochastic mesh

method of Broadie and Glasserman [15] and the regression method of Longstaff
and Schwartz [48]. Glasserman [29] provides a good discussion of these methods
and the relation between them.
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To obtain an estimate with an acceptably small standard error may re-
quire a large sample size and hence a relatively large amount of computation
time. The complexities of Monte Carlo methods arise from trying to reduce
the required sample size. In Chap. 9, we will describe two such methods (anti-
thetic variates and control variates). For those who want to engage in a more
detailed study of Monte Carlo methods, the book of Glasserman [29] is highly
recommended. Jäckel [39] is useful for more advanced readers, and Clewlow
and Strickland [17] and Brandimarte [10] are useful references that include
computer code.

5.2 Introduction to Binomial Models

As in the previous section, we will work with the dynamics of the logarithms
of asset prices under the risk-neutral measure. Thus, our starting point is the
equation

d log S =
(

r − q − σ2

2

)
dt + σ dB , (5.3)

where B represents a Brownian motion under the risk-neutral measure.
In the binomial model, we assume that if the stock price is S at the begin-

ning of the period, it will be either uS or dS at the end of the period, where
the multiplicative factors u and d are constants to be determined. This means
that the rate of return is ∆S/S = u−1 in the “up” state and ∆S/S = d−1 in
the “down state.” There are three parameters to the model: u, d, and the prob-
ability p of the up state (the probability of the down state being necessarily
1−p). The following illustrates a three-period model.
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A tree constructed like this is “recombining” in the sense that the stock
price after an up-down sequence is the same as after a down-up sequence. This
is very important for reducing the computation time. For example, the number
of nodes at the final date is N+1 in a recombining tree, where N is the number
of periods, but it is 2N for a non-recombining (sometimes called “bushy”) tree.
Hence, the computation time will increase linearly with N for a recombining
tree but exponentially with N for a non-recombining tree. Unfortunately, this
computational savings is generally not possible for path-dependent options,
because the number of distinct paths through a tree (whether recombining or
not) is again 2N .

The value of a European derivative is of course the discounted expecta-
tion of its value at maturity, discounting at the risk-free rate and taking the
expectation under the risk-neutral measure. The binomial tree allows us to
approximate the expectation very easily. We simply sum over the nodes of
the tree at the option maturity and weight each node by its binomial prob-
ability. In an N -period model, the probability of the top node is pN , since
the stock must go up each time to reach the top node. There are N paths
reaching the second node from the top (since the period of the single down
move could be any one of the N periods) and each such path has probability
pN−1(1 − p); therefore, the probability of reaching the second node from the
top is NpN−1(1 − p). More generally, the probability of going up i times and
down N − i times is

N !
i!(N − i)!

pi(1 − p)N−i ,

where as usual x! denotes x factorial. Therefore, the expectation, for a Euro-
pean call option, is the following sum over the N +1 nodes at date N (starting
with i = 0 up moves and ending with i = N up moves):

N∑
i=0

N !
i!(N − i)!

pi(1 − p)N−i max(uidN−iS − K, 0) . (5.4)

Multiplying the expectation by e−rT yields the option value.
It is worthwhile to emphasize the close connection between this method

and the Monte-Carlo method discussed in the previous section. In the Monte-
Carlo method for valuing a European call option, we generate M random
values for S(T ) and estimate the expectation ER[max(0, S(T )−K)] by aver-
aging the M values. This amounts to approximating the distribution of S(T )
by an M–point distribution, each point being assigned equal probability. In
the binomial method, we choose a particular set of points for S(T ) and assign
the probabilities specified above in order to approximate the distribution of
S(T ). Both the Monte-Carlo and the binomial approximations are known to
converge to the continuous-time distribution of S(T ) as the number of points
increases. However, by specifically choosing the points and their probabilities,
the binomial method allows us to use a much smaller number of points to
obtain the same accuracy; i.e., for a given desired accuracy, we can use many
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fewer periods N in the binomial model than we would need simulations M
in the Monte-Carlo method. Thus, the binomial method will be much faster.
Furthermore, as we will discuss in the next section, the binomial method is
much better for pricing American options. On the other hand, as mentioned in
the previous section, to value a path-dependent option in an N–period bino-
mial tree would require the analysis of 2N separate paths, so Monte Carlo may
be faster for path-dependent options. Finally, as we will discuss in Sect. 9.2,
Monte Carlo may be faster for options on multiple assets.

There is an important alternative method for calculating the sum (5.4),
which is usually called “backward induction.” We will describe it here and
implement it in the next section to value American options. We begin at the
last date, where there are N + 1 nodes. We calculate the option value at each
of these nodes, storing the value at the bottom node as C(0), the value at
the next node up as C(1), etc. This is illustrated in the diagram on the next
page. Then we step back to the penultimate date. At each node at this date,
we calculate the option value as the discounted expectation of its value at the
last date. From each node, there are two nodes that can be reached at the
next date, corresponding to a down move or an up move. So, the option value
is calculated as

C = e−r∆tpCup + e−r∆t(1 − p)Cdown . (5.5)

In terms of the vector notation shown in the diagram on the following page,
the down move from node i is also node i and the up move is i + 1. So, we
write over the elements of the C vector as

C(i) = e−r∆tpC(i + 1) + e−r∆t(1 − p)C(i) . (5.6)

Discounting back through the tree like this, we reach date 0 and return the
option value as C(0). The virtue of this procedure is that it calculates a
value for the option at each node in the tree, the value being the discounted
expectation of the subsequent values attained by the option. This approach
is essential for assessing the value of early exercise.

5.3 Binomial Models for American Options

Early exercise features are very simple to handle in a binomial framework. One
only has to use the backward induction approach and check the optimality
of early exercise at each node. Exercise is optimal when the intrinsic value
of the option exceeds the discounted expected value of the option contingent
on not exercising. When we back up in the tree, we check whether exercise is
optimal, and, when it is, we replace the discounted expected value with the
intrinsic value.
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Early exercise is more important for puts than for calls (as discussed in
Sect. 1.1, an American call on a non-dividend-paying stock should not be
exercised early) so we will change our symbol for the option value from C
to P . For a put option, we would calculate the value at each node at the end
of the tree as described in the previous section:

P (i) = max
(
0,K − uidN−iS

)
, (5.7)

for i = 0, . . . , N . For a European put, we would also back up in the tree in
accord with (5.6):

P (i) = e−r∆tpP (i + 1) + e−r∆t(1 − p)P (i) . (5.8)

To accommodate early exercise, we simply need to assign to P (i) the larger of
this value and the value of early exercise. At node i at date n the stock price
is uidn−iS and the intrinsic value of a put option is max(0,K − uidn−iS).
Therefore we replace (5.8) with

P (i) = max
(
K − uidn−iS, e−r∆tpP (i + 1) + e−r∆t(1 − p)P (i)

)
. (5.9)

This will be explained in more detail in Sect. 5.8.

5.4 Binomial Parameters

Several different ways have been proposed for matching the binomial model to
the continuous-time model. Consider an N–period binomial model for a time
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period of T years. This means that the length of each period is ∆t = T/N .
In the continuous-time model, over a discrete time period ∆t, we have

∆ log S = ν ∆t + σ ∆B ,

where ν = r − q − σ2/2 and B is a Brownian motion under the risk-neutral
measure. The mean and variance, under the risk-neutral measure, of ∆ log S
in the continuous-time model are

ER[∆ log S] = ν ∆t ,

varR[∆ log S] = σ2∆t ,

so

ER[∆ log S]
∆t

= ν ,

varR[∆ log S]
∆t

= σ2 .

In the binomial model, we have

ER
[
∆log S

]
∆t

=
p log u + (1 − p) log d

∆t
,

varR
[
∆log S

]
∆t

=
p (1 − p)(log u − log d)2

∆t
.

In order for the binomial model to converge in the appropriate sense to the
continuous-time model as the number of periods N → ∞ keeping the total
amount of time T fixed (equivalently, as ∆t → 0), it is sufficient that

p log u + (1 − p) log d

∆t
→ ν ,

p (1 − p)(log u − log d)2

∆t
→ σ2 .

The most popular model is probably that proposed by Cox, Ross and
Rubinstein [21], who set d = 1/u and

u = eσ
√

∆t , (5.10a)

p =
e(r−q)∆t − d

u − d
. (5.10b)

Another well-known model is that of Jarrow and Rudd [44], who take p = 1/2
and

u = exp
((

(r − q − 1
2
σ2

)
∆t + σ

√
∆t

)
, (5.11a)

d = exp
((

(r − q − 1
2
σ2

)
∆t − σ

√
∆t

)
. (5.11b)
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Yet another method is proposed by Leisen and Reimer [46], and Jackson
and Staunton [40] show that it is more efficient for approximating the Black-
Scholes value of a European option than are the Cox-Ross-Rubinstein and
Jarrow-Rudd trees.

For illustration, the Cox-Ross-Rubinstein tree will be implemented in
Sect. 5.8. However, when we consider binomial models for multiple assets
in Chap. 9, we will use the tree proposed by Trigeorgis [61], because it is the
simplest to explain in that context. Trigeorgis proposes choosing p, u and d
so that the mean and variance of ∆ log S in the binomial model match those
in the continuous-time model exactly. This means that

p log u + (1 − p) log d

∆t
= ν ,

p(1 − p)(log u − log d)2

∆t
= σ2 .

These are two equations in the three unknowns, leaving one degree of freedom,
so Trigeorgis takes d = 1/u, as do Cox, Ross and Rubinstein. As we will show
in the next section, taking d = 1/u simplifies the calculations of deltas and
gammas. Solving these two equations yields3

log u =
√

σ2∆t + ν2(∆t)2 , (5.13a)

p =
1
2

+
ν∆t

2 log u
. (5.13b)

5.5 Binomial Greeks

To estimate Greeks in any valuation model, one can run the valuation program
twice, for two different parameter values, and then estimate the Greek as the
difference in value divided by the difference in parameters. For example, to
estimate vega when the volatility of the underlying is σ, we could estimate
the derivative value for a volatility of 0.99σ and for a volatility of 1.01σ.
3 Notice that if we were to drop the (∆t)2 term in (5.13a) (which we could do

because it becomes increasingly negligible as ∆t → 0), then (5.13a) would be
the same as (5.10a). The different choices of p in (5.10b) and (5.13b) can be
understood as follows. Equation (5.10b) implies that the expected stock price
pSu +(1−p)Sd equals e(r−q)∆tS, so we have average growth at the rate r−q as in
the continuous-time model. On the other hand, (5.13b) implies that the expected
log stock price p log Su+(1−p) log Sd equals log S+ν∆t, so the expected change in
the logarithm is ν∆t, also as in the continuous-time model. Thus, both match the
binomial model to the continuous-time model, the Cox-Ross-Rubinstein method
focusing on the expected return (equivalently, the expected change in the price of
the underlying) and the Trigeorgis method focusing on the expected continuously-
compounded return (the expected change in the logarithm of the price).
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Denoting the former derivative value by Cd and the latter by Cu, the vega
can be estimated by

Cu − Cd

1.01σ − 0.99σ
=

Cu − Cd

0.02σ
.

We can in principle obtain a more precise estimate of the derivative by making
a smaller change in the parameter (e.g., using 0.999σ and 1.001σ) but com-
puter round-off errors limit how small a parameter change one should take in
practice.

To estimate the gamma when the price of the underlying is S, we need to
estimate the derivative value at two other prices for the underlying, which we
will call Su and Sd, with Su > S > Sd. As just explained, the estimate of the
delta (which we continue to denote by δ) would be

δ =
Cu − Cd

Su − Sd
, (5.14)

where Cu denotes the derivative value when the underlying is equal to Su

and Cd denotes the derivative value when the underlying is equal to Sd. Let-
ting C denote the derivative value when the underlying is equal to S, two
other obvious estimates of the delta are

δu =
Cu − C

Su − S
and δd =

C − Cd

S − Sd
.

The first of these should be understood as an estimate of the delta when the
price of the underlying is at the midpoint of Su and S, and the second is an
estimate of the delta when the price of the underlying is at the midpoint of
Sd and S. The distance between these midpoints is

Su + S

2
− Sd + S

2
=

Su − Sd

2
,

so we obtain an estimate of Γ (the derivative of δ) as

Γ =
δu − δd

(Su − Sd)/2
. (5.15)

In a binomial model, it is possible to compute the most important Greeks,
delta and gamma, more efficiently than by simply running the valuation pro-
gram several times. Assume we have taken d = 1/u, so after an up and a
down move (or a down and an up move) the stock price returns to its initial
value S. After fixing the length ∆t = T/N of each time period, we redefine
N = N + 2. This results in an N + 2 period tree covering a time period of
length T + 2∆t. Now consider the tree starting two periods from the initial
date. At the middle node shown below, the stock price is udS = S. Ignoring
the top and bottom nodes and the branches that follow them, the result of
adding two periods is that the tree starting from udS is an N–period tree for
a time period of length T .
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Hence, the derivative price calculated at the middle node will be the price
we are trying to estimate. The derivative price at the top node will be the
value of a derivative of maturity T when the initial price of the underlying is
u2S. Similarly, the derivative price at the bottom node will be the value of a
derivative of maturity T when the initial price of the underlying is d2S. Thus,
when we back up in the tree to this date, we will have all of the information we
need to return an estimate of the derivative value and to return estimates of
the delta and gamma, taking Su = u2S and Sd = d2S in equations (5.14) and
(5.15). We are not interested in the tree to the left of what is shown above.

5.6 Monte Carlo Greeks I: Difference Ratios

As with binomial models, Greeks can be calculated by Monte Carlo by running
the valuation program twice and computing a difference ratio, for example
(Cu − Cd)/(Su − Sd) to estimate a delta. However, to minimize the error,
and minimize the number of computations required, one should use the same
set of random draws to estimate the derivative value for different values of
the parameter. For path-independent options (e.g., European puts and calls)
under the Black-Scholes assumptions, we only need to generate S(T ) and then
we can compute Su(T ) as [Su(0)/S(0)] × S(T ) and Sd(T ) as [Su(0)/S(0)] ×
S(T ). We can estimate standard errors for the Greeks in the same way that
we estimate the standard error of the derivative value.

Actually, there is often a better method available that is just as simple.
This is called “pathwise calculation.” We will explain this in the next section.
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Here we will describe how to estimate the delta and gamma of a derivative as
sample means of difference ratios.

Consider initial prices for the underlying Su > S > Sd. Denote the under-
lying price at the option maturity in a given simulation by Su(T ) when the
initial underlying price is Su, by S(T ) when the initial underlying price is S,
and by Sd(T ) when the initial underlying price is Sd. Under the Black-Scholes
assumptions, the logarithm of the stock price at date T starting from the
three initial prices Sd, S and Su is

log Sd(T ) = log Sd +
(

r − q − 1
2
σ2

)
T + σB(T ) ,

log S(T ) = log S +
(

r − q − 1
2
σ2

)
T + σB(T ) ,

log Su(T ) = log Su +
(

r − q − 1
2
σ2

)
T + σB(T ) ,

so

log Sd(T ) = log S(T ) + log Sd − log S =⇒ Sd(T ) =
(

Sd

S

)
S(T ) ,

and

log Su(T ) = log S(T ) + log Su − log S =⇒ Su(T ) =
(

Su

S

)
S(T ) .

Therefore, under the Black-Scholes assumptions, we only need to simulate
S(T ) and then perform the multiplications indicated above to obtain Sd(T )
and Su(T ).

Consider a particular simulation and let Cd(T ) denote the value of the
derivative at maturity when the initial asset price is Sd, let C(T ) denote
the value of the derivative at maturity when the initial asset price is S, and
let Cu(T ) denote the value of the derivative at maturity when the initial
asset price is Su. For path-independent derivatives under the Black-Scholes
assumptions, these can be computed directly from the simulation of S(T ) as
just described. However, the following applies to general European derivatives
under general assumptions about the underlying asset price (for example, it
could follow a GARCH process).

The estimates Cd, C and Cu of the date–0 derivative values, for the dif-
ferent initial prices of the underlying, are the discounted sample means of the
Cd(T ), C(T ) and Cu(T ). One way to estimate the delta is (Cu−Cd)/(Su−Sd).
This is a difference of discounted sample means, multiplied by the reciprocal of
Su−Sd. Equivalently, it is the sample mean of the differences Cu(T )−Cd(T ),
multiplied by e−rT /(Su − Sd). As a sample mean, its standard error can be
estimated as described in Chap. 4. The standard error is

e−rT

Su − Sd

√√√√ 1
M(M − 1)

(
M∑
i=1

[Cui(T ) − Cdi(T )]2 − M
[
Cu(T ) − Cd(T )

]2)
,
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where the overline denotes the sample mean and where Cui(T ) [respectively,
Cdi(T )] denotes the value of the derivative at maturity in simulation i when
the initial asset price is Su [respectively, Sd].

The corresponding Monte Carlo estimate of the gamma is also a sample
mean. Simple algebra shows that the formula (5.15) is equivalent to

Γ =
2

(Su − S)(Su − Sd)
Cu − 2

(Su − S)(S − Sd)
C +

2
(S − Sd)(Su − Sd)

Cd .

(5.16)
Normally one would take Su = (1 + α)S and Sd = (1 − α)S for some α (e.g.,
α = 0.01). In this case (5.16) simplifies to

Γ =
Cu − 2C + Cd

α2S2
, (5.17)

and the standard error of the gamma is

e−rT

α2S2

√
1

M(M − 1)

×
√√√√ M∑

i=1

[Cui(T ) − 2Ci(T ) + Cdi(T )]2 − M
[
Cu(T ) − 2C(T ) + Cd(T )

]2
.

5.7 Monte Carlo Greeks II: Pathwise Estimates

We will examine the bias in the Monte Carlo delta estimate discussed in the
preceding section and explain “pathwise” estimation of Greeks. By “biased,”
we mean that the expected value of an estimate is different from the true
value. It is important to recognize that if a Monte Carlo estimate is biased,
then, even if a large number of simulations is used and the standard error is
nearly zero, the answer provided by the Monte Carlo method will be incorrect.
For simplicity, consider a European call under the Black-Scholes assumptions.

The delta estimate we have considered is the discounted sample mean of

Cu(T ) − Cd(T )
Su − Sd

. (5.18)

This ratio takes on one of three values, depending on S(T ):

• If Su(T ) ≤ K then the option is out of the money in both the up and
down cases; i.e.,

Cu(T ) = Cd(T ) = 0 ,

so the ratio (5.18) is zero.
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• If Sd(T ) ≥ K then the option is in the money in both the up and down
cases; i.e.,

Cu(T ) = Su(T ) − K =
(

Su

S

)
S(T ) − K ,

Cd(T ) = Sd(T ) − K =
(

Sd

S

)
S(T ) − K ,

so the ratio (5.18) equals S(T )/S.
• If Su(T ) > K > Sd(T ), then the option is in the money in only the up

case; i.e.,

Cu(T ) = Su(T ) − K =
(

Su

S

)
S(T ) − K ,

Cd(T ) = 0 ,

so the ratio (5.18) equals(
Su

S

)
S(T ) − K

Su − Sd
<

S(T )
S

.

The bias is induced by the third case above. We can see this as follows.
We are trying to estimate

∂

∂S
e−rT ER

[
max(0, S(T )−K)

]
= e−rT ER

[
∂

∂S
max(0, S(T ) − K)

]
. (5.19)

The delta estimate (Cu−Cd)/(Su−Sd) replaces the mean ER with the sample
mean and replaces

∂

∂S
max(0, S(T ) − K) (5.20)

with the ratio (5.18). The derivative (5.20) takes on two possible values, de-
pending on S(T )—we can ignore the case S(T ) = K because it occurs with
zero probability:

• If S(T ) < K, then max(0, S(T ) − K) = 0 and the derivative is zero.
• If S(T ) > K, then max(0, S(T )−K) = S(T )−K and the derivative equals

∂S(T )
∂S

= e(r−q−σ2/2)T+σB(T ) =
S(T )

S
.

Therefore, the true delta—the expectation (5.19)—equals4

4 By changing numeraires, we can show that (5.21) equals e−qT EV [x] = e−qT N(d1),
as we know from Chap. 3 is the delta of a European call in the Black-Scholes model
(here, as in Chap. 3, V (t) = eqtS(t) denotes the value of the non-dividend-paying
portfolio created from the stock).
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e−rT ER

[
S(T )

S
x

]
, (5.21)

where x is the random variable defined as

x =

{
1 if S(T ) > K ,

0 otherwise .

On the other hand, our analysis of the ratio (5.18) shows that the expected
value of the delta estimate (Cu − Cd)/(Su − Sd) is

e−rT ER

[
S(T )

S
y

]
+ e−rT ER

[
SuS(T ) − SK

S(Su − Sd)
z

]
, (5.22)

where

y =

{
1 if Sd(T ) > K ,

0 otherwise .

and

z =

{
1 if Su(T ) > K > Sd(T ) ,

0 otherwise .

To contrast (5.21) and (5.22), note that if y = 1 then x = 1, so the term
ER

[
S(T )

S y
]

in (5.22) is “part of” (5.21). However, there are two partially
offsetting “errors” in (5.22): z sometimes equals one when x is zero, and when
both z and x are one, then the factor multiplying z is smaller than the factor
multiplying x. In any case, the expected value (5.22) is not the same as the
true delta (5.21). As noted before, this implies that the delta estimate will be
incorrect even if its standard error is zero. The bias can be made as small as one
wishes by taking the magnitude Su − Sd of the perturbation to be small, but
taking the perturbation to be very small will introduce unacceptable roundoff
error.

The obvious way to estimate the delta in this situation is simply to com-
pute the discounted sample average of [S(T )/S]x. This is called a “pathwise”
estimate of the delta, because it only uses the sample paths of S(t) rather
than considering up and down perturbations. This method is due to Broadie
and Glasserman [14]. Because the pathwise estimate is a sample average, its
standard error can be computed in the usual way.

To compute pathwise estimates in other models and for other Greeks, we
need the Greek to be an expectation as on the right-hand side of (5.19).
Additional examples can be found in Glasserman [29] and Jäckel [39].
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5.8 Calculations in VBA

Monte Carlo Valuation of a European Call

We will illustrate Monte Carlo by valuing a European call under the Black-
Scholes assumptions. We will also estimate the delta by each of the methods
described in Sects. 5.6 and 5.7. Of course, we know the call value and its
delta from the Black-Scholes formulas, and they can be used to evaluate the
accuracy of the Monte Carlo estimates.

In this circumstance, we only need to simulate the price of the underlying
at the option maturity rather than the entire path of the price process. To
estimate the option delta as a difference ratio (Cu − Cd)/(Su − Sd), we use
the perturbations Su = 1.01S and Sd = 0.99S. The inputs are the same as for
the Black-Scholes formula plus the sample size M (the number of stock prices
to be simulated).

Function European_Call_MC(S, K, r, sigma, q, T, M)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’ M = number of simulations

’

’ This outputs the row vector (call value, delta 1, delta 2)

’

Dim LogS0,drift,SigSqrT,UpChange,DownChange,SumCall,SumCallChange

Dim SumPathwise,LogS,LogSd,LogSu,CallV,CallVu,CallVd,i,Delta1,Delta2

LogS0 = Log(S)

drift = (r - q - 0.5 * sigma * sigma) * T

SigSqrT = sigma * Sqr(T)

UpChange = Log(1.01)

DownChange = Log(0.99)

SumCall = 0

SumCallChange = 0

SumPathwise = 0

For i = 1 To M

LogS = LogS0 + drift + SigSqrT * RandN() ’ log S(T)

CallV = Application.Max(0, Exp(LogS) - K) ’ call value

SumCall = SumCall + CallV ’ sum call values

LogSu = LogS + UpChange ’ log Su(T)

CallVu = Application.Max(0, Exp(LogSu) - K) ’ call value

LogSd = LogS + DownChange ’ Sd(T)

CallVd = Application.Max(0, Exp(LogSd) - K) ’ call value

SumCallChange = SumCallChange + CallVu - CallVd ’ differences

If Exp(LogS) > K Then
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SumPathwise = SumPathwise + Exp(LogS) / S ’ for pathwise

End If

Next i

CallV = Exp(-r * T) * SumCall / M

Delta1 = Exp(-r * T) * SumCallChange / (M * 0.02 * S)

Delta2 = Exp(-r * T) * SumPathwise / M

European_Call_MC = Array(CallV, Delta1, Delta2)

End Function

Monte Carlo Valuation in a GARCH Model

For another example of Monte Carlo, we will value a European call option and
estimate its standard error in a GARCH model. The underlying asset price
is simulated as in Sect. 4.4. After each path of the underlying is simulated,
we compute the date–T value of the option. We sum these as the simulations
proceed in order to compute the average value. We also sum the squared date–
T option values in order to compute the standard error of the estimate of the
date–0 option value.

In addition to the inputs in the previous function, we input the number N
of time periods in the interval [0, T ]—implying a GARCH model for returns
over time intervals of length ∆t = T/N under the risk-neutral measure—and
the GARCH parameters κ, θ, and λ. To value a different type of European
derivative, we would simply modify the statement

CallV = Application.Max(0,Exp(LogS)-K).

Function Eur_Call_GARCH_MC(S,K,r,sigma0,q,T,N,kappa,theta,lambda,M)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma0 = initial volatility

’ q = dividend yield

’ T = time to maturity

’ N = number of time periods

’ kappa = GARCH parameter

’ theta = GARCH parameter

’ lambda = GARCH parameter

’ M = number of simulations

’

’ This returns the row vector (call value, standard error).

’

Dim dt, Sqrdt, a, b, c, LogS0, SumCall, SumCallSq, LogS, sigma

Dim y, CallV, StdError, i, j

dt = T / N

Sqrdt = Sqr(dt)

a = kappa * theta ’ GARCH parameter

b = (1 - kappa) * lambda ’ GARCH parameter
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c = (1 - kappa) * (1 - lambda) ’ GARCH parameter

LogS0 = Log(S) ’ store log stock price

SumCall = 0 ’ initialize running total

SumCallSq = 0 ’ initialize running total

For i = 1 To M

LogS = LogS0 ’ initialize log stock price

sigma = sigma0 ’ initialize volatility

For j = 1 To N ’ generate path

y = sigma * RandN()

LogS = LogS + (r-q-0.5*sigma*sigma)*dt + Sqrdt*y

sigma = Sqr(a + b * y ^ 2 + c * sigma ^ 2) ’ update vol

Next j

CallV = Application.Max(0, Exp(LogS) - K) ’ date-T value

SumCall = SumCall + CallV ’ update sum

SumCallSq = SumCallSq + CallV * CallV ’ update sum

Next i

CallV = Exp(-r * T) * SumCall / M

StdError = Exp(-r * T) * Sqr((SumCallSq - SumCall * SumCall / M) / _

(M * (M - 1)))

Eur_Call_GARCH_MC = Array(CallV, StdError)

End Function

Binomial Valuation of European Options

The binomial model for path-independent European options can be imple-
mented as follows. We will use the Cox-Ross-Rubinstein parameters. To value
a different type of European option in a binomial model, one would only have
to change the formula

Application.Max(S - K, 0)

in the following. We first define the binomial parameters and some useful
constants, denoting the probability p of an up move as pu and the probability
1 − p of a down move as pd.

Function European_Call_Binomial(S, K, r, sigma, q, T, N)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’ N = number of time periods

’

Dim dt, u, d, pu, pd, u2, prob, CallV, i

dt = T / N ’ length of time period

u = Exp(sigma * Sqr(dt)) ’ size of up step

d = 1 / u ’ size of down step
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pu = (Exp((r - q) * dt) - d) / (u - d) ’ probability of up step

pd = 1 - pu ’ probability of down step

u2 = u * u

Now we calculate the stock price at the bottom node (the node corresponding
to all down moves), the probability of reaching that node, and the first term
in the sum (5.4).

S = S * d ^ N ’ stock price at bottom node at last date

prob = pd ^ N ’ probability of bottom node at last date

CallV = prob * Application.Max(S - K, 0)

To calculate the other N terms in the sum, we note that the stock price
when there are i up moves is u2 times the stock price with only i−1 up moves
(because one more up move also means one fewer down move and adding an
up and removing a down produces the factor u/d = u2). Furthermore, the
ratio of the probability of i up moves to i − 1 up moves is

pi(1 − p)N−iN !/i!(N − i)!
pi−1(1 − p)N−i+1N !/(i − 1)!(N − i + 1)!

=
(N − i + 1)p

(1 − p)i
.

Therefore, as we increase the index i in computing the sum (5.4), we need to
multiply the previous stock price by u2 and multiply the previous probability
by (N − i + 1)p/[(1 − p)i]. We add the result to CallV each time and, at the
end, discount by e−rT .

For i = 1 To N

S = S * u2

prob = prob * (pu / pd) * (N - i + 1) / i

CallV = CallV + prob * Application.Max(S - K, 0)

Next i

European_Call_Binomial = Exp(-r * T) * CallV

End Function

Binomial Valuation of American Options

We will consider an American put. It may also be optimal to exercise an Amer-
ican call early, if there is a positive dividend yield, and the same procedure
can be used for American calls. We begin as in the previous subsection by
defining the binomial parameters, some useful constants, and the stock price
at the bottom node at the last date.5 We also compute the put value P (0) at
the bottom node at the last date.
5 Note that the variable name S0 is assigned to the initial stock price. The variable

S is modified as we step up across the nodes at each date. When we back up to
the previous date, the initial stock price is still available in the variable S0.
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Function American_Put_Binomial(S0, K, r, sigma, q, T, N)

’

’ Inputs are S0 = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’ N = number of time periods

’

Dim dt, u, d, pu, dpu, dpd, u2, S, i, j

Dim PutV() As Double

ReDim PutV(N)

dt = T / N ’ length of time period

u = Exp(sigma * Sqr(dt)) ’ size of up step

d = 1 / u ’ size of down step

pu = (Exp((r - q) * dt) - d) / (u - d) ’ probability of up step

dpu = Exp(-r * dt) * pu ’ discount x up prob

dpd = Exp(-r * dt) * (1 - pu) ’ discount x down prob

u2 = u * u

S = S0 * d ^ N ’ bottom stock price

PutV(0) = Application.Max(K - S, 0) ’ bottom put value

Now we loop over the other nodes at the last date, increasing the stock
price by a factor of u2 each time as before, and defining the put value as its
intrinsic value at maturity.

For j = 1 To N

S = S * u2

PutV(j) = Application.Max(K - S, 0)

Next j

Now we do the backward induction. Note that a “period” is the time
period between successive dates. In a one-period model, there are two dates
(the beginning and end) and in general there are N + 1 dates in an N–period
model. We index the dates as i = 0, . . . , N . Since we are backing up in the
tree, we step backwards from i = N − 1 to i = 0. At each date we start by
defining the stock price at the bottom node. At date i there have been i past
periods, so the bottom node corresponds to i down moves. The put value at
each node is computed as the larger of the discounted expected value and the
value of immediate exercise (the intrinsic value). Having already dealt with
the bottom node (j = 0) we loop over the nodes j = 1, . . . , i at each date i,
increasing the stock price by a factor of u2 each time. When we have backed
up to date 0, we return the put value P (0), the value at the bottom node,
which is the only node at date 0.

For i = N - 1 To 0 Step -1 ’ back up in time to date 0

S = S0 * d ^ i ’ bottom stock price

PutV(0) = Application.Max(K - S, dpd * PutV(0) + dpu * PutV(1))
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For j = 1 To i ’ step up over nodes

S = S * u2

PutV(j) = Application.Max(K-S, dpd*PutV(j)+dpu*PutV(j+1))

Next j

Next i

American_Put_Binomial = PutV(0)

End Function

Binomial Estimation of Delta and Gamma

We add two periods to the model and then stop the backward induction at
date n = 2, as described in Sect. 5.5.

Function American_Put_Binomial_DG(S0, K, r, sigma, q, T, N)

’

’ Inputs are S0 = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’ N = number of time periods

’

’ This returns the row vector (put value, delta, gamma).

’

Dim dt, u, d, pu, dpu, dpd, u2, S, Su, Sd, Deltau, Deltad, dist

Dim i, j, NewN, Delta, Gamma

Dim PutV() As Double

ReDim PutV(N + 2)

dt = T / N ’ length of time period

NewN = N + 2 ’ now we add 2 periods

u = Exp(sigma * Sqr(dt)) ’ size of up step

d = 1 / u ’ size of down step

pu = (Exp((r - q) * dt) - d) / (u - d) ’ probability of up step

dpu = Exp(-r * dt) * pu ’ discount x up prob

dpd = Exp(-r * dt) * (1 - pu) ’ discount x down prob

u2 = u * u

S = S0 * d ^ NewN ’ bottom stock price

PutV(0) = Application.Max(K - S, 0) ’ bottom put value

For j = 1 To NewN ’ step up over nodes

S = S * u2

PutV(j) = Application.Max(K - S, 0)

Next j

For i = NewN - 1 To 2 Step -1 ’ back up in time

S = S0 * d ^ i ’ bottom stock price

PutV(0) = Application.Max(K - S, dpd * PutV(0) + dpu * PutV(1))

For j = 1 To i ’ step up over nodes

S = S * u2

PutV(j) = Application.Max(K-S, dpd*PutV(j)+dpu*PutV(j+1))
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Next j

Next i

Su = S0 * u2 ’ higher stock price

Sd = S0 / u2 ’ lower stock price

Deltau = (PutV(2) - PutV(1)) / (Su - S0) ’ midpoint delta

Deltad = (PutV(1) - PutV(0)) / (S0 - Sd) ’ midpoint delta

dist = S0 * (u2 - d * d) ’ dist between Su and Sd

Delta = (PutV(2) - PutV(0)) / dist

Gamma = 2 * (Deltau - Deltad) / dist

American_Put_Binomial_DG = Array(PutV(1), Delta, Gamma)

End Function

Problems

5.1. Consider an at-the-money European call option on a non-dividend-paying
stock with six months to maturity. Take the initial stock price to be $50,
the interest rate to be 5% and σ =30%. Compute the value in a binomial
model with N = 10, 11, . . . , 20 and plot the values against N . Is convergence
monotone?

5.2. Consider the same option as in the previous problem. Roughly what value
of N is needed to get penny accuracy? (To evaluate the accuracy, compare
the price to the price given by the Black-Scholes formula.)

5.3. The “early exercise premium” is the difference between the value of an
American option and the value of a European option with the same parame-
ters. Compute the early exercise premium for an American put and various
values for the interest rate, exercise price, and stock parameters. Under what
circumstances is the early exercise premium relatively large?

5.4. Create an Excel worksheet in which the user inputs S, r, σ, q, T , N , κ,
θ, and λ. Use the function European_Call_GARCH_MC to compute call option
prices for exercise prices K = 0.6S, 0.7S, 0, 8S, 0.9S, S, 1.1S, 1.2S, 1.3S
and 1.4S, taking M = 500 in each case. For each computed price, use the
function Black_Scholes_Call_Implied_Vol to compute an implied Black-
Scholes volatility. Plot the implied volatilities against the exercise prices.

5.5. Create a VBA function using Monte Carlo to estimate the value of a
European call option in the Heston stochastic volatility model. The inputs
should be the initial stock price S, the strike price K, the risk-free rate r, the
initial volatility σ, the dividend yield q, the time to maturity T , the number of
time periods N , the parameters κ, θ, γ, and ρ, and the number of simulations
M . Return the estimated option value and its standard error.

5.6. Modify the VBA function in the previous exercise to also return the
estimated delta of the option and the standard error of the delta.
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5.7. Repeat Prob. 5.4 using the Heston model (the function developed in
Prob. 5.5) to compute the call option prices, allowing the user to input γ
and ρ (instead of λ).



Part II

Advanced Option Pricing



6

Foreign Exchange

We will see in this chapter how to apply the Black-Scholes formulas to value
currency options and options on foreign assets. We will also discuss currency
forwards and futures, quanto forwards, and return swaps.

For concreteness, we will call one currency the “domestic” currency and
the other the “foreign” currency. Let X(t) denote the exchange rate at time t
measured in units of the domestic currency per unit of the foreign currency.
Exchange rates can be confusing, because we can look at them from the per-
spective of either currency, so it may help to keep in mind that X(t) here
means the price of a unit of the foreign currency, just as we might consider
the price of a stock. When we speak of the “cost” or “value” of something
without specifying the currency, it should be understood to be the domestic
currency that we mean. If S is the price of a foreign asset, denominated in
units of the foreign currency, we can convert it into a domestic asset price
simply by multiplying by the exchange rate: X(t)S(t) is the price of the asset,
denominated in the domestic currency. For example, if the domestic currency
is dollars and the foreign currency is yen, then S is in units of yen and X is
units of dollars per unit of yen, so XS is in units of dollars.

Throughout the chapter, we will maintain assumptions similar to the
Black-Scholes assumptions. There is a foreign asset with price S in the foreign
currency. It has a constant dividend yield q and a constant volatility σs. The
exchange rate has a constant volatility σx and a constant correlation ρ with
the foreign asset. There is a domestic risk-free asset with constant interest
rate r and a foreign risk-free asset with constant interest rate rf . The term
“risk free” means of course that they are risk-free in their respective curren-
cies. For example, an investment in the foreign risk-free asset is not risk free
to a domestic investor, because of exchange rate risk.
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6.1 Currency Options

A European call option on the exchange rate X pays max(0, X(T )−K) at its
maturity T , where K is the strike price (in domestic currency). The underlying
asset should be regarded as the foreign risk-free asset, the domestic price of
which fluctuates with the exchange rate. An investment in the foreign risk-
free asset grows via reinvestment of interest at rate rf , just as the number of
shares held of a stock grows via reinvestment of dividends at rate q, if q is its
constant dividend yield. In particular, the cost at date 0 of obtaining one unit
of foreign currency at date T is the cost at date 0 of e−rf T units of foreign
currency, which is e−rf T X(0). Thus, the exchange rate is analogous to a stock
price, with the foreign risk-free rate being its dividend yield. This means we
can apply the Black-Scholes formulas to value currency calls and puts:

Calls and puts on foreign currency can be valued by the Black-Scholes formu-
las with inputs X(0) = initial asset price, r = risk-free rate, σx = volatility,
and rf = dividend yield.

6.2 Options on Foreign Assets Struck in Foreign
Currency

An option on a foreign asset, with the strike price defined in the foreign
currency, can be priced with the Black-Scholes formula, assuming the volatility
and dividend yields of the asset are constant and that the (foreign) interest
rate is constant. This must be true, because we did not need to specify the
currency (dollars, yen, etc.) when deriving the Black-Scholes formula. The
value given by the Black-Scholes formula is in the same currency as the asset.
To obtain a value in domestic currency for an option on a foreign asset, we
simply multiply the Black-Scholes formula by the current exchange rate.

6.3 Options on Foreign Assets Struck in Domestic
Currency

A call option with domestic strike price K on the foreign asset with price S
pays

max(X(T )S(T ) − K, 0)

at its maturity T . The underlying price X(T )S(T ) is the value in domestic cur-
rency of the portfolio that with starts with e−qT units of the asset and reinvests
dividends until date T . Thus, we can use the Black-Scholes formula to value
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it, taking the initial asset price to be e−qT X(0)S(0) and the dividend rate
to be zero (or taking the initial asset price to be X(0)S(0) and the dividend
rate to be q). The volatility that should be input into the Black-Scholes for-
mula is the volatility of the domestic currency price e−q(T−t)X(t)S(t), which
is the same as the volatility of X(t)S(t). According to the formula (2.38), the
volatility of the domestic currency price XS is

σ =
√

σ2
x + σ2

s + 2ρσxσs . (6.1)

We conclude:

Calls and puts on foreign assets struck in domestic currency can be valued
by the Black-Scholes formulas with inputs X(0)S(0) = initial price, r =
risk-free rate, (6.1) = volatility, q = dividend yield.

6.4 Currency Forwards and Futures

Consider a forward contract maturing at some date T on one unit of foreign
currency. In keeping with our convention for options, we will always assume
(without loss of generality) that a forward contract is written on a single unit
of currency. Let F (t) denote the forward price (in domestic currency) at date
t ≤ T . This means that someone who purchases (goes long) the contract at
date t will receive a unit of foreign currency, worth X(T ), at date T and must
pay F (t) at date T . The value of the long contract at date T is therefore
X(T )−F (t). The value at date T of a short contract initiated at date t is the
opposite: F (t)−X(T ). Naturally, the forward price F (t) is called the “forward
exchange rate.”

The deepest market for currency is the inter-bank forward market, but
futures contracts are also traded on exchanges. The difference between for-
wards and futures is that futures are “marked to market” daily. Thus, there
are daily cash flows with a futures contract, whereas the only cash flows on
a forward contract occur at the maturity of the forward. In both cases, there
is no cash flow at the time the contract is bought/sold, so its market value is
zero. In Sect. 7.7 we will discuss futures contracts further. In particular, we
will show, assuming continuous marking to market, that if there is a constant
(domestic) risk-free rate—or, more generally, if there is an instantaneous risk-
free rate that changes over time in a non-random way—then futures prices
must equal forward prices in the absence of arbitrage opportunities. Thus, our
assumptions in this chapter imply that currency futures prices should equal
currency forward prices. We will consider currency forwards in the remainder
of this section.

A forward contract on a traded asset can always be created synthetically
simply by buying the asset and holding it, using borrowed money to finance
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the purchase and to finance any storage costs, assuming the storage costs can
be estimated in advance. If the asset pays dividends or generates other pos-
itive cash flows, then we do not need to purchase the entire amount covered
by the forward contract, because we can accumulate additional amounts of
the asset by reinvesting the dividends. There are no storage costs on cur-
rency and its dividend yield is equal to the foreign risk-free rate. A forward
contract on one unit of foreign currency maturing at date T can be created
synthetically at date 0 by buying e−rf T units of foreign currency and bor-
rowing the cost e−rf T X(0) at the domestic risk-free rate. This will lead to
ownership of one unit of foreign currency at date T and a liability, including
interest, of e(r−rf )T X(0) at date T . Thus, the forward price at date 0 must be
F (0) = e(r−rf )T X(0); otherwise, one could arbitrage by buying the forward
and “selling” the synthetic forward, or vice versa. More generally,

The forward exchange rate at date t, for a contract maturing at T , must be

F (t) = e(r−rf )(T−t)X(t) . (6.2)

The relation (6.2) is called “covered interest parity.” The name stems from
the fact that an investment in one of the risk-free assets (foreign or domestic)
financed by borrowing in the other, with the currency risk hedged (“covered”)
by a forward contract, is certain to generate zero value (otherwise, it would
be an arbitrage opportunity).1

Suppose that one has made a commitment to pay a certain amount of
foreign currency (perhaps to a foreign manufacturer) at some date in the
future. The exchange rate risk that this commitment entails can obviously
be hedged by buying the currency forward. However, one can also create a
synthetic forward, by buying currency today and investing it in the foreign
risk-free asset. The cash outflow can be incurred today, or it can be deferred
by borrowing the cost of the currency at the domestic risk-free rate. In the
latter case, we have created a true synthetic forward. In either case, we would
call this a “money market hedge” because we have utilized the foreign money
market (risk-free asset) to create the hedge.

Later in this chapter we will construct replicating strategies for various
contracts using the foreign risk-free asset and the domestic risk-free asset.
1 A relation analogous to covered interest parity holds for any forward contract if

the underlying asset has a constant dividend yield and storage costs that are a
constant proportion of the value of the units stored. For commodities, the term
“dividend yield” must be interpreted in a broad sense, and is usually called “con-
venience yield,” because ownership of the physical asset may produce abnormal
profits during temporary shortages, an advantage that is not obtained by owning
a forward contract on the asset, just as dividends are not received by the owner
of a forward contract. Thus, one must consider the “convenience” of owning the
physical asset as an advantage analogous to dividends.
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One can interpret these replicating strategies as money market hedges or
synthetic currency forwards. In practice, it will often be more convenient to
use actual forwards rather than using the foreign risk-free asset. Using actual
currency forwards produces an equivalent (given that we are not considering
transaction costs) replicating strategy. Here is, in abstract, the way we convert
from money market hedges to hedges using forwards. As we have discussed,

Long Currency Forward = Long Synthetic Currency Forward
= Long Foreign Risk-Free Asset

+ Short Domestic Risk-Free Asset .

Subtracting a short position is the same as adding a long position, so we can
rearrange this as

Long Currency Forward + Long Domestic Risk-Free Asset
= Long Foreign Risk-Free Asset .

Thus, an investment in the foreign risk-free asset can be replaced in any repli-
cating strategy by long currency forwards and an investment in the domestic
risk-free asset.

To be more precise about the sizes of the investments, consider replacing
a money market hedge with a forward hedge at some date t prior to the
maturity of the forward and analyze the replacement per unit of the money
market hedge (per unit of foreign currency invested in the foreign risk-free
asset). One unit of foreign currency invested in the foreign risk-free asset at
date t will grow to erf (T−t) units by date T . Thus, the corresponding forward
contract should be on erf (T−t) units of currency. The value at date t of both
sides of the above equation should be the same, and the value of a forward
contract at the date of initiation is zero, so the investment in the domestic
risk-free asset should be the domestic currency equivalent of one unit of foreign
currency, which is the exchange rate X(t). Thus, we have

erf (T−t) Long Currency Forwards
+ X(t) Long in the Domestic Risk-Free Asset

= 1 Unit of Foreign Currency Long in the Foreign Risk-Free Asset .
(6.3)

To check this, consider holding the portfolios until date T . As explained
in the first paragraph of this section, the currency forwards will have value
erf (T−t)[X(T ) − F (t)], which by covered interest parity is erf (T−t)X(T ) −
er(T−t)X(t). When we include the long position in the domestic risk-free asset
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with accumulated interest, the value at date T of the portfolio on the left-
hand side of (6.3) is erf (T−t)X(T ). On the other, the right-hand side of (6.3)
with accumulated interest will consist of erf (T−t) units of foreign currency,
also worth erf (T−t)X(T ).

6.5 Quantos

A “quanto” is a derivative written on a foreign asset the value of which is
converted to domestic currency at a fixed exchange rate. In other words,
the contract pays in the domestic currency and the exchange rate is part of
the contract. Such contracts are very useful for investors who want to bet
on foreign assets but do not want exposure to exchange rate risk. Such an
investor could simply buy the foreign asset and hedge the currency risk by
selling currency futures or forwards, but doing so is a bit tricky because the
amount of currency that needs to be hedged depends on how well the foreign
asset does. Thus, quantos can be desirable contracts. Of course, when an
investor purchases a quanto, the problem of hedging the exchange rate risk
has simply been transferred to the seller. In this and the following section,
we will see how to value and how to replicate a contract that pays the price
of a foreign asset at some future date T with the price translated into the
domestic currency at a fixed exchange rate. The replicating strategy is the
strategy that would be followed by the seller (or by an investor who wants to
create a synthetic on his own). Specifically, in this section we will determine
the value at date 0 (in domestic currency) of a contract that pays X̄S(T )
at date T , where X̄ is a fixed exchange rate. Later in the chapter, we will
consider quanto forwards and quanto options.

In addition to being practically useful, this contract is an excellent example
for demonstrating the methodology of pricing and hedging. The best way to
proceed in problems of this general type is to first value the contract and
then calculate the replicating strategy.2 As discussed in Sect. 1.5, valuation
is simplified by choosing a numeraire that will cancel the randomness in the
contract payoff. Our numeraire must be a non-dividend-paying (domestic)
asset price, so we can choose Z(t) = X(t)eqtS(t) to be the numeraire asset
price. This is the value in the domestic currency of a strategy that is long
one unit of the foreign asset at date 0 and which reinvests the dividends of
the asset into new shares. As we will see immediately, using it as numeraire
introduces randomness into the payoff through the exchange rate, and that
poses some complications. Applying our fundamental pricing formula (1.17),
the value of the contract is
2 We did the same thing in Chap. 3: we first derived the Black-Scholes formula and

then found the replicating strategy (delta hedge) by differentiating the formula.
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Z(0)EZ

[
X̄S(T )
Z(T )

]
= e−qT X(0)S(0)EZ

[
X̄S(T )

X(T )S(T )

]

= e−qT X̄S(0)EZ

[
X(0)
X(T )

]
. (6.4)

Now we need to evaluate EZ [X(0)/X(T )], which is the expected growth
of 1/X when Z is used as the numeraire. We will show that

EZ

[
X(0)
X(T )

]
= exp {(rf − r − ρσxσs)T} . (6.5)

This implies:

The value at date 0 of a contract that pays X̄S(T ) at date T , where X̄ is
a fixed exchange rate and S is the foreign price of an asset with a constant
dividend yield q, is

exp {(rf − r − q − ρσxσs)T} X̄S(0) . (6.6)

We will now prove (6.5). The assumption that S and X have constant volatilities
and correlation means that

dX

X
= µx dt + σx dBx ,

dS

S
= µs dt + σs dBs ,

for some (possibly random) µx and µs, where Bs and Bx are Brownian motions with
correlation equal to ρ. From Itô’s formula, we have

dZ

Z
= q dt +

d(XS)

XS

= (q + µx + µs + ρσxσs) dt + σx dBx + σs dBs

= (q + µx + µs + ρσxσs) dt + σ
(σx

σ
dBx +

σs

σ
dBs

)
= (q + µx + µs + ρσxσs) dt + σ dB ,

where we define σ in (6.1) and B by B(0) = 0 and

dB =
σx

σ
dBx +

σs

σ
dBs .

As discussed in Sect. 2.11, B is a Brownian motion and σ is the volatility of Z.
Notice that the correlation of X and Z is

(dB)(dBx) =
(σx

σ
dBx +

σs

σ
dBs

)
(dBx)

=
σx + ρσs

σ
dt .
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Now we use (2.29) in Sect. 2.9 which gives the drift of an asset when another risky
asset is used as the numeraire. We use Z as the numeraire and X as the other as-
set, regarding X as the domestic price of an asset with dividend yield rf as before.
Therefore, we substitute rf for q in (2.29), substitute σ for the volatility of the nu-
meraire asset price, substitute σx for the volatility of the other asset, and substitute
(σx + ρσs)/σ for their correlation. This yields

dX

X
=
(
r − rf + σ2

x + ρσxσs

)
dt + σx dB∗

x ,

where B∗
x is a Brownian motion when Z is the numeraire. Now we apply Itô’s formula

for ratios to obtain

d(1/X)

1/X
= −dX

X
+

(
dX

X

)2

= (rf − r − ρσxσs) dt + σx dB∗
x .

This implies that 1/X is a geometric Brownian motion with growth rate rf − r −
ρσxσs, from which (6.5) follows.

6.6 Replicating Quantos

The assets we will use to replicate the payoff X̄S(T ) are the foreign asset
with price S, the foreign risk-free asset, and the domestic risk-free asset. At
the end of this section, we will explain how to replace the foreign risk-free
asset with currency forwards, as discussed in Sect. 6.4. Before beginning the
calculations, we can make the following intuitive observations:

• The payoff X̄S(T ) has exposure to the foreign asset price S, so the repli-
cating portfolio must be long the foreign asset.

• The payoff X̄S(T ) has no exposure to the exchange rate, so the replicating
portfolio cannot have any exposure to the exchange rate either. Thus, the
long position in the foreign risky asset must be offset by an equal short
position in the foreign risk-free asset.

• As a result of the previous observation, the value of the replicating port-
folio, displayed in (6.6), will equal the investment in the domestic risk-free
asset.

Consequently, our real task is to compute the number of shares of the foreign
asset that should be held, the remainder of the replicating portfolio being
thereby determined.

The value of the replicating portfolio at any date t ≤ T must be the value
at date t of receiving the payoff X̄S(T ) at date T . We have calculated this
value at date 0, and, clearly, the formula (6.6) applies to general dates t, when
we replace the time T to maturity by T − t and the asset price S(0) at the
date of valuation by S(t). That is, the value of the portfolio at any date t ≤ T
must be V (t) defined as
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V (t) = exp {(rf − r − q − ρσxσs)(T − t)} X̄S(t) . (6.7)

As just noted, we will need to invest this amount in the domestic risk-free
asset at date t. What remains to be done is to calculate the size of the long
position in the foreign risky asset and the offsetting short position in the
foreign risk-free asset.

From Itô’s formula, we have

dV

V
= −(rf − r − q − ρσxσs) dt +

dS

S
. (6.8)

Equivalently,

dV = (r + q − rf + ρσxσs)V dt + V
dS

S
. (6.9)

On the other hand, consider a strategy that invests a(t) units of the domestic
currency in the foreign asset, b(t) units of the domestic currency in the foreign
risk-free asset, and c(t) units of the domestic currency in the domestic risk-
free asset. Let W = a+ b + c denote the value of this portfolio. The return on
the foreign asset, per unit of domestic currency invested, is

d(XeqtS)
XeqtS

= q dt +
dX

X
+

dS

S
+
(

dX

X

)(
dS

S

)

= (q + ρσxσs) dt +
dX

X
+

dS

S
. (6.10)

Similarly, the rate of return on the foreign risk-free asset is

d(erf tX)
erf tX

= rf dt +
dX

X
, (6.11)

and of course the rate of return on the domestic risk-free asset is r dt. There-
fore, the change in the value of the portfolio will be

dW = a

[
(q + ρσxσs) dt +

dX

X
+

dS

S

]
+ b

[
rf dt +

dX

X

]
+ cr dt

= (aq + aρσxσs + brf + cr) dt + (a + b)
dX

X
+ a

dS

S
. (6.12)

The change (6.12) of the portfolio value will match the change (6.9) of V if
and only if

a = V, b = −V, c = V . (6.13)

This implies:
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The strategy that replicates the payoff X̄S(T ) at date T is to invest V (t)
units of domestic currency in the foreign asset, where V (t) is defined in (6.7).
This will purchase

V (t)
X(t)S(t)

=
X̄

X(t)
exp {(rf − r − q − ρσxσs)(T − t)} (6.14)

shares of the foreign asset. This position is financed entirely by borrowing
at the foreign risk-free rate. On the other hand, the same amount V (t) of
the domestic currency is invested in the domestic risk-free asset.

From our analysis at the end of Sect. 6.4, we know that the foreign risk-free
asset in this replicating strategy can be replaced by currency forwards. The
strategy here involves borrowing at the foreign risk-free rate, so we should
replace “long” by “short” in (6.3). Borrowing V (t) units of domestic currency
means borrowing V (t)/X(t) units of the foreign currency. Therefore, (6.3)
gives us:

An equivalent strategy for replicating the payoff X̄S(T ) at date T is to
invest V (t) units of domestic currency in the foreign asset and to be short
erf (T−t)V (t)/X(t) currency forwards at date t.

At the beginning of the previous section, we noted that an investor who
wants to bet on a foreign asset but does not want the exchange rate exposure
could simply buy the asset and sell the currency forward. This shows how much
of the asset he should buy and how much currency he should sell forward.

It is important to note that this strategy involves continuously buying
and selling forwards, just as it involves continuously trading the foreign asset.
Buying at date t a forward contract sold at date s < t cancels the delivery
obligation on the contract sold at s and leaves a cash flow of F (s) − F (t) to
be paid/received at the maturity date T . Therefore, the strategy accumulates
a liability or asset, depending on the direction the forward price moves, to be
received at T . On the other hand, maintaining an investment of V (t) in the
foreign asset will generate cash flows as the asset is sold or purchased over
time. As (6.14) shows, whether it is sold or purchased depends on the direction
the exchange rate moves. These cash flows should be invested or borrowed at
the domestic risk-free rate. Thus, there is a liability or asset to be received
at date T that is not shown in the boxed statement immediately above, and
there is an investment or liability in the domestic risk-free asset that is not
shown. It can be demonstrated that these cancel each other: if profits are made
from trading forwards, then they (more precisely, their present value) will be
consumed by the cost of buying the foreign asset, and vice versa. Hedging
with forwards (and with futures) is considered in more detail in Sect. 7.10.
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6.7 Quanto Forwards

In this section, we consider a contract similar to that of the previous section,
except that it is a pure forward, meaning that the payment for the contract
occurs at date T . We maintain all of the assumptions of the previous section.
The payment at date T is in domestic currency, and we define the quanto
forward price in units of domestic currency. Specifically, a long quanto forward
contract, initiated at date t and maturing at date T and initiated at the
forward price F ∗(t) will pay

X̄S(T ) − F ∗(t)

at date T . The forward price F ∗(t) should be the price that makes this contract
have a value of 0 at date t.

We already know how to replicate the underlying payoff X̄S(T ) of the
forward contract at the cost V (t) defined in (6.7). Thus, the synthetic quanto
forward is to purchase the replicating strategy and to borrow the cost V (t) at
the domestic risk-free rate. This leads to the liability er(T−t)V (t) at date T .
Therefore, we have:

The quanto forward price is

F ∗(t) = er(T−t)V (t) = exp {(rf − q − ρσxσs)(T − t)} X̄S(t) . (6.15)

Notice that borrowing V in domestic currency to finance the replicating
strategy of the previous section — i.e., the domestic currency investments
described in (6.13) — means eliminating the domestic risk-free investment
c = V required in the previous section. The replicating strategy for the quanto
forward is simply to invest V in the foreign asset and to finance the investment
entirely by borrowing at the foreign risk-free rate. As in the previous section,
borrowing at the foreign risk-free rate can be replaced by borrowing at the
domestic risk-free rate and selling currency forwards.

6.8 Quanto Options

Consider now a European call option on a foreign asset, with strike K set in
the domestic currency and the value of the foreign asset being converted to
domestic currency at a fixed exchange rate X̄. This is called a “quanto call.”
We maintain all of the assumptions of the previous two sections.

The value of the quanto call at maturity is max(0, X̄S(T ) − K). To value
this, we make use of what we learned in Sect. 6.5. Namely, the portfolio with
value V defined in (6.7) replicates the payoff X̄S(T ): in each state of the
world, V (T ) = X̄S(T ). Therefore, the quanto call is equivalent to a standard
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European call on the portfolio with domestic currency price V . The value
is therefore given by the Black-Scholes formula. From the formula (6.8) for
the dynamics of V , we see that the volatility of V is the same as that of S;
therefore, we should input σs as the volatility in the Black-Scholes formula.
Furthermore, the portfolio V is non-dividend-paying (it is the value of a claim
to X̄S(T ) at date T with no interim cash flows), so the dividend rate in the
Black-Scholes formula should be zero. Thus, we have:

The value of a quanto call is

V (0)N(d1) − e−rT K N(d2)

= exp {(rf − r − q − ρσxσs)T} X̄S(0)N(d1) − e−rT K N(d2) , (6.16)

where

d1 =
log

(
V (0)

K

)
+
(
r + 1

2σ2
s

)
T

σs

√
T

=
log

(
X̄S(0)

K

)
+
(
rf − q − ρσxσs + 1

2σ2
s

)
T

σs

√
T

, (6.17a)

d2 = d1 − σs

√
T . (6.17b)

Likewise, the value of a quanto put is given by the Black-Scholes formula:

e−rT K N(−d2) − V (0)N(−d1) .

Notice that this is simply the Black-Scholes option formula with inputs V (0) =
initial asset price, K = exercise price, r = interest rate, σs = volatility, 0 =
dividend yield, and T = time to maturity.

We can hedge a written quanto call the same way we hedge a written or-
dinary call: we buy delta shares of the underlying and borrow the difference
between the cost of the delta shares and the option value. However, for the
quanto call, the underlying should be regarded as the portfolio with value V
described in Sect. 6.5. This portfolio consists of investing V (0) units of domes-
tic currency in the foreign asset, borrowing the same amount at the foreign
risk-free rate, and investing V (0) units of domestic currency in the domestic
risk-free asset. The delta of the call is N(d1), so the hedge consists of investing
N(d1)V (0) units of domestic currency in the foreign asset, borrowing the same
amount at the foreign risk-free rate, and investing N(d1)V (0) in the domestic
risk-free asset. The difference between the cost of this portfolio and the value
of the option is

N(d1)V (0) − [V (0)N(d1) − e−rT K N(d2)] = e−rT K N(d2) .
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This amount is to be borrowed at the domestic risk-free rate. Thus, the net
investment in the domestic risk-free asset is

N(d1)V (0) − e−rT K N(d2) ,

which is just the value of the option. To summarize:

To delta-hedge a written quanto call, one should invest N(d1)V (0) units
of domestic currency in the foreign asset, borrow the same amount at the
foreign risk-free rate, and invest the value of the option in the domestic
risk-free asset.

As in Sect. 6.6, borrowing N(d1)V (0) units of domestic currency at the
foreign risk-free rate can be replaced by borrowing the same amount at the
domestic risk-free rate and selling erf T N(d1)V (0)/X(0) currency forwards.
This results in:

An equivalent delta hedge for a written quanto call is to invest N(d1)V (0)
units of domestic currency in the foreign asset, sell erf T N(d1)V (0)/X(0)
currency forward contracts at the market forward price F (0), and borrow
e−rT K N(d2) at the domestic risk-free rate.

6.9 Return Swaps

There are many types and applications of return swaps, but here is one im-
portant example that involves the concepts discussed in this chapter. Suppose
an investor wants to receive at date T the difference in the rates of return
of two assets that are denominated in different currencies. The return will
be calculated on a given “notional principal.” For example, an investor may
want to receive at the end of a year the Nikkei rate of return minus the rate
of return on the S&P 500, calculated on a $1 million notional principal. If the
Nikkei earns 15% over the year and the S&P earns 10%, then the payment to
the investor is 5% of $1 million. If the reverse happens—the Nikkei earns 10%
and the S&P earns 15%—then the investor must pay 5% of $1 million to the
counterparty.

To model this, let Sf denote the price of a foreign asset and Sd the price
of a domestic asset. Assume they have constant dividend yields qf and qd. If
the returns are calculated excluding dividends, as is likely to be the case, then
the payment to the investor is(

Sf (T ) − Sf (0)
Sf (0)

− Sd(T ) − Sd(0)
Sd(0)

)
A =

(
Sf (T )
Sf (0)

− Sd(T )
Sd(0)

)
A ,
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where A denotes the notional principal. Of course, the investor may want the
reverse swap, and we consider this particular case only for concreteness.

The swap may have nonzero market value at date 0, which means that
some payment will have to be made upfront. To eliminate this, we can add
a “swap spread” into the contract, affecting the cash flow at date T . This is
a constant number a (which may be positive or negative), and including it
changes the payment to the investor to(

a +
Sf (T )
Sf (0)

− Sd(T )
Sd(0)

)
A . (6.18)

The question we will address here is: what is the “fair” swap spread; i.e., for
what number a does the cash flow (6.18) have zero market value at date 0?

If the value is zero, then it is zero for any notional principal A, so we
can conveniently take A = 1. The cash flow consists of three pieces, all of
which are to be received/paid at date T : the constant a, the gross return on
the foreign asset, and the gross return on the domestic asset. The value at
date 0 of receiving a units of domestic currency is obviously e−rT a. As we
have observed several times before, the value at date 0 of receiving Sd(T )
units of domestic currency at date T is e−qdT Sd(0), because this is the cost
of enough shares to accumulate to one share at date T via reinvestment of
dividends. Therefore, the value at date 0 of receiving Sd(T )/Sd(0) at date T
is e−qdT Sd(0)/Sd(0) = e−qdT .

What remains is to calculate the value of receiving Sf (T )/Sf (0) units of
domestic currency at date T . We can do this by interpreting 1/Sf (0) as the
fixed exchange rate X̄ in the definition of a quanto.3 We need to assume as
before that the foreign asset price Sf and the exchange rate have constant
volatilities and a constant correlation. Denoting the volatilities by σs and σx

and the correlation by ρ as before, equation (6.6) shows that the value of
receiving X̄Sf (T ) = Sf (T )/Sf (0) units of domestic currency at date T is

exp {(rf − r − qf − ρσxσs)T} .

Adding up the pieces, the value at date 0 of the cash flow (6.18) (with A = 1)
is

e−rT a + exp {(rf − r − qf − ρσxσs)T} − e−qdT ,

so we conclude:

The fair swap spread, which equates the value at date 0 of receiving the cash
flow (6.18) at date T to zero, is

a = exp {(r − qd)T} − exp {(rf − qf − ρσxσs)T} . (6.19)

3 To make sense of the units, note that the cash flow of Sf (T )/Sf (0) units of
domestic currency can be calculated as Sf (T ) units of foreign currency times
1/Sf (0) units of domestic currency per unit of foreign currency. Therefore, the
units of 1/Sf (0) can be taken to be the units of an exchange rate.
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6.10 Uncovered Interest Parity in the Risk-Neutral
Probabilities

When we use numerical methods to value American and path-dependent op-
tions, as in Chap. 5, we typically focus on the dynamics of asset prices under
the risk-neutral measure. To apply these results to currency options or op-
tions on foreign assets, we need to know the dynamics of the exchange rate
under the risk-neutral measure. Because we can view the exchange rate as
the domestic price of an asset with the foreign risk-free rate rf being its div-
idend yield, we have already calculated these dynamics in equation (2.27) of
Sect. 2.9. The result is:

The exchange rate X must satisfy

dX

X
= (r − rf ) dt + σx dB∗

x , (6.20)

where B∗
x is a Brownian motion under the risk-neutral measure.

This equation has an interesting interpretation in terms of “uncovered
interest parity,” which is the theory that differences in interest rates across
currencies will be offset on average by appreciation/depreciation of the cur-
rencies. In other words, it is the theory that the strategy of borrowing in
low-interest-rate currencies to invest in high-interest-rate currencies will not
earn money on average because of depreciation of the high-interest-rate cur-
rency relative to the low-interest-rate currency. It is well known that this
theory is not always true in reality. However, equation (6.20) shows that it is
true when we calculate expectations using the risk-neutral measure.

To see the interpretation of equation (6.20) as uncovered interest parity,
suppose that the foreign interest rate rf is lower than the domestic rate r.
Then one may be tempted to borrow at the foreign rate and invest at the
domestic rate. This would create a short position in the foreign currency.
Equation (6.20) states that the exchange rate is expected (under the risk-
neutral measure) to appreciate at the rate r−rf ; thus, repayment of the foreign
currency will be more expensive in terms of domestic currency, offsetting the
interest rate differential.

Problems

6.1. Create an Excel worksheet to compare the values of call options on foreign
assets that are (i) struck in foreign currency or (ii) struck in domestic currency.
Prompt the user to input X(0), S(0), K, r, rf , σx, σs, ρ, q and T . Take the
strike price of the option struck in foreign currency to be K and take the
strike price of the option struck in domestic currency to be X(0)K (so K is
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interpreted as an amount in foreign currency). You should be able to confirm,
for example, that if r = rf and ρ ≥ 0 then the option struck in domestic
currency is more valuable.

6.2. Repeat the preceding problem comparing (i) call options struck in foreign
currency, versus (ii) quanto call options. Use the same inputs as in the preced-
ing problem and take the fixed exchange rate in the quanto to be X̄ = X(0).
You should be able to confirm, for example, that if r = rf and ρ ≥ 0 then the
option struck in foreign currency is more valuable.

6.3. Create an Excel worksheet in which the user inputs r and rf and
the exchange rate. Compute the forward exchange rate at maturities T =
0.1, 0.2, . . . , 2.0 and plot the forward rate against the maturity in a scatter
plot. A market is said to be in “contango” if this curve is upward sloping and
to be in “backwardation” if this curve is downward sloping. For currencies,
what determines whether the market is in contango or in backwardation?

6.4. Create a VBA subroutine to simulate a path of the exchange rate and
the forward exchange rate under the risk-neutral measure, prompting the user
to input X(0), r, rf , σx, and the maturity T of the forward contract.

6.5. Create a VBA subroutine to simulate a path of the exchange rate under
the actual probability measure, prompting the user to input X(0), σx, and the
expected rate of growth µ of the exchange rate under the actual probability
measure. Prompt the user also to input S(0), r, rf , σs, q, ρ, a fixed exchange
rate X̄, a maturity T , and a number of periods N . Calculate the gain/loss
from the portfolio that promises to pay X̄S(T ) at date T and uses a discretely
rebalanced hedge, rebalancing at dates t1, . . . tN = T , where ti − ti−1 = T/N ,
similar to the calculation in the function Simulated_Delta_Hedge_Profit.
Use the money-market hedge, which means investing V (0) at date 0, holding
the number of shares of the foreign asset shown in (6.14) at each date ti,
and having a short position in the foreign risk-free asset of the same value
at each date ti. Cash flows generated at each date from buying/selling the
foreign asset and lending/borrowing at the foreign risk-free rate should be
withdrawn/deposited in the domestic risk-free asset. Note: Because of discrete
rebalancing, this is not a perfect hedge, and the investment in the domestic
risk-free asset will not always equal V (t).

6.6. Repeat the previous exercise using the forward contract hedge discussed
in Sect. 6.6. The cash flows generated from trading forwards cannot be with-
drawn/deposited in the domestic risk-free asset, because they do not materi-
alize until the maturity of the forward. You will have to create a variable to
keep track of the net asset/liability and include it in the valuation at date T .
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6.7. Derive the money-market hedge and the forward contract hedge for a
written quanto put.

6.8. Suppose a customer has contracted with you for a return swap in which
the customer will receive the cash flow (6.18) for some number a, where A = 1.
How can you hedge this?
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Forward, Futures, and Exchange Options

In this chapter, we will derive three important generalizations of the Black-
Scholes formula. We will derive them from the Black-Scholes formula, which
shows that all of the formulas are equivalent. We will start with Margrabe’s
[50] formula for an option to exchange one asset for another. Standard calls
and puts are special cases, involving the exchange of cash for an asset or an
asset for cash. From Margrabe’s formula, we will derive Black’s [3] formulas
for options on forward and futures contracts. Then, from Black’s formulas,
we will derive Merton’s [51] formulas for calls and puts in the absence of a
constant risk-free rate.

Unless explicitly stated otherwise, we will not assume in this chapter the
existence of a risk-free asset (or even an instantaneously risk-free asset as de-
scribed in Sect. 1.1). This implies that the market is incomplete and there
are many risk-neutral measures. Nevertheless, we can price exchange options,
forward and futures options, and stock options by arbitrage. Understanding
this issue is not essential for deriving the formulas in this chapter—as men-
tioned, they will all be derived from the Black-Scholes formula—but the issue
is nonetheless important. It is discussed in the final section of the chapter.

Naturally, all of the option-pricing formulas discussed in this chapter are
quite similar. The similarity can be seen from the Black-Scholes formula for
a call option, which we can write as follows (replacing d1 by x and d2 by y):

e−qT S(0)N(x) − e−rT K N(y) , (7.1a)

where

x =
log

(
S(0)
K

)
+
(
r − q + 1

2σ2
)
T

σ
√

T
(7.1b)

y = x − σ
√

T . (7.1c)

Note that e−qT S(0) is the present value at date 0 of the stock that would be
acquired if the option is exercised, because it is the cost that one must pay
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at date 0 to have one share of the stock at date T with no withdrawal of
dividends in the interim. Obviously, e−rT K is the present value of the cash
that is paid if the option is exercised. Moreover, x is equal to

log
(

e−qT S(0)
e−rT K

)
+ 1

2σ2T

σ
√

T
,

and the logarithm in the numerator is of the ratio of present values. All of
the option pricing formulas in this chapter have the same form: the present
value of the asset to be acquired multiplied by N(x) minus the present value
of the asset to be delivered multiplied by N(y). Moreover in each case x is the
logarithm of the ratio of present values plus one-half σ2T all divided by σ

√
T ,

and in each case y is defined by (7.1c). Notice that the Black-Scholes put
option formula has this structure also. The Black-Scholes put option formula
is

e−rT K N(x) − e−qT S(0)N(y) , (7.2a)

where

x = −d2

= −
log

(
S(0)
K

)
+
(
r − q − 1

2σ2
)
T

σ
√

T

=
log

(
e−rT K

e−qT S(0)

)
+ 1

2σ2T

σ
√

T
, (7.2b)

y = −d1

= −
log

(
S(0)
K

)
+
(
r − q + 1

2σ2
)
T

σ
√

T

= x − σ
√

T . (7.2c)

This similarity is discussed further in Sect. 7.5, where the pricing formulas
are implemented in VBA.

7.1 Margrabe’s Formula

Consider two assets with prices S1 and S2 and a European option to exchange
asset 2 for asset 1 at date T . The value of the option at maturity is

max(0, S1(T ) − S2(T )) .

Note that there is no real difference between a put and a call: the exchange
option can be viewed as a call on the first asset with random strike S2(T ) or
as a put on the second asset with random strike S1(T ).



7.1 Margrabe’s Formula 131

Assume the assets pay constant dividend yields qi and assume the prices
satisfy

dSi

Si
= µi dt + σi dBi

where each Bi is a Brownian motion under the actual probability measure.
As before, the drifts µi can be quite general random processes. We also allow
the volatilities σi and the correlation ρ of the Brownian motions to be random
processes; however, we make the assumption that σ defined as

σ =
√

σ2
1 + σ2

2 − 2ρσ1σ2 (7.3)

is a constant. As shown in (2.40), σ is the volatility of S1/S2 (and also S2/S1).
So, the assumption we are making is that the volatility of the ratio of the asset
prices is constant. In Sect. 7.9, we will relax this assumption to allow σ to be
time-varying (though still non-random).

The following is the formula of Margrabe [50]:

The value of a European option to exchange two assets at date T is

e−q1T S1(0)N(d1) − e−q2T S2(0)N(d2) , (7.4a)

where

d1 =
log

(
S1(0)
S2(0)

)
+
(
q2 − q1 + 1

2σ2
)
T

σ
√

T
, (7.4b)

d2 = d1 − σ
√

T . (7.4c)

Margrabe’s derivation is a very simple argument based on the Black-
Scholes formula. We noted in Chap. 6 that the Black-Scholes formula does
not depend on the currency—if the underlying asset and risk-free asset are
dollar denominated, the formula gives the dollar value of an option; if they
are yen denominated, the formula gives the yen value of an option, etc. So we
can take the “currency” to be units of the second asset; i.e., we will use the
second asset as numeraire. With this numeraire, the value of the first asset is
S1/S2. The value of the exchange option at maturity is

max(0, S1(T ) − S2(T )) = S2(T )max
(

0,
S1(T )
S2(T )

− 1
)

.

This is the value in the natural currency (e.g., dollars). The value using the
second asset as numeraire is obtained by dividing by S2(T ), so it is

max
(

0,
S1(T )
S2(T )

− 1
)

.
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This is the value of a standard call option, the underlying being the first asset
measured in units of the second. We can apply the Black-Scholes formula to
obtain the value of the option (in units of the second asset) at date 0. Multi-
plying this value by S2(0) will give the option value in the natural currency.

The risk-free rate when the second asset is the numeraire is the dividend
yield on the second asset q2. To see this, note that the price of the second
asset is always equal to one; moreover, an investment in the second asset will
accumulate at the rate q2 via reinvestment of dividends. Therefore, q2 is a
risk-free rate of return.

The dividend yield on the first asset remains q1. To see this, note that the
dividend paid in the natural currency is q1S1(t) dt in an instant dt and the
value of this dividend using the second asset as numeraire is [q1S1(t)/S2(t)] dt,
which is the fraction q1 dt of the value S1(t)/S2(t) of the first asset using the
second asset as numeraire.

The volatility of the first asset using the second as numeraire is the volatil-
ity of the ratio S1(t)/S2(t), which is σ defined in (7.3). Applying the Black-
Scholes formula with these inputs yields Margrabe’s formula directly.1

7.2 Black’s Formula

Black [3] gives formulas for the values of options on futures contracts when
interest rates are deterministic (i.e., non-random). It is well known (and we
will establish this in Sect. 7.7) that, when interest rates are deterministic,
futures prices should equal forward prices, so Black’s formulas also yield for-
mulas for the values of options on forward contracts when interest rates are
deterministic. However, the formulas for options on forwards are valid more
generally (even when interest rates vary randomly) and now a mention of
Black’s formulas is more likely to be referring to the formulas for options on
forwards, instead of the formulas for options on futures. In any case, we will
start with the formulas for options on forwards and then in Sect. 7.8 derive
the formulas for options on futures when interest rates are deterministic.

We consider a forward contract that matures at some date T ′ and a call
or put option on the forward that matures at T ≤ T ′. The meaning of a call
option on a forward is that exercise of the call creates a long position in the
forward contract with forward price equal to the strike price of the option.
The long forward contract means that the investor will receive the underlying
asset at T ′ and pay the forward price (the strike of the option) at T ′. Thus,
the strike price is not paid at the date of exercise but instead is paid when
the underlying asset is delivered. Symmetrically, the exercise of a put creates
a short position in the forward contract with forward price equal to the strike
of the put, which means that the exerciser must deliver the underlying at T ′

and will receive the strike price at T ′.
1 Of course, it is possible to give a direct proof, without relying on the Black-Scholes

formula. A sketch is given in Sect. 7.11.
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We will denote the market forward price by F (t). We assume the forward
price satisfies

dF

F
= µdt + σ dB , (7.5)

where B is a Brownian motion. As before, µ can be a quite general random
process. We will assume in this section that the volatility σ is a constant
and generalize to a time-varying (but non-random) volatility in Sect. 7.9. In
Sect. 7.3, we will discuss the relations of the forward price and its volatility
to the price and volatility of the underlying.

Black’s formulas are particularly useful when interest rates are assumed to
be random, as we will see in Part III of the book when we study fixed income
derivatives. Therefore, we do not assume here that there is a constant risk-free
rate. Instead we will assume that there is a “discount bond” that pays $1 at
date T ′. It is called a “discount bond” because its price is the appropriate
discount factor for computing the present value of nonrandom cash flows at
date T ′. Such a bond is also called a “zero coupon” bond because it does not
pay any cash flows until T ′, when it pays its face value (which we take simply
for convenience to be $1). We will let P (t, T ′) denote the price of the bond at
date t.2

Black’s formulas are:

The values at date 0 of European options with strike K and maturity T on
a forward contract with maturity T ′ are

Call Price = P (0, T ′)F (0)N(d1) − P (0, T ′)K N(d2) , (7.6a)
Put Price = P (0, T ′)K N(−d2) − P (0, T ′)F (0)N(−d1) , (7.6b)

where

d1 =
log

(
F (0)
K

)
+ 1

2σ2T

σ
√

T
, (7.6c)

d2 = d1 − σ
√

T . (7.6d)

Black’s formulas are a simple consequence of Margrabe’s formula. To see
this, we first need to describe the value of an option on a forward at the
maturity date T of the option. Consider a call option. Exercise of the call
results in a long forward position with forward price K. The value of the long
forward is given by its market price F (T ), but we must keep in mind that
the forward price is not paid until the underlying is delivered at date T ′. So
2 In this section we could drop the T ′ in P (t, T ′) and simply write P (t), because

we only consider one maturity date, but we will use the same notation when
discussing multiple maturities in Part III.
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suppose that you exercise the call and then sell a forward contract at the
market forward price F (T ). The delivery/receipt obligations of the long and
short forwards cancel, leaving you with the obligation to pay K dollars at
date T ′ and with an asset of F (T ) dollars to be received at date T ′. The value
of the net cash flow at date T is P (T, T ′)[F (T ) − K]. This is the value if
exercised, so the value of the call at date T is

max
(
0, P (T, T ′)[F (T ) − K]

)
= max

(
0, P (T, T ′)F (T ) − P (T, T ′)K

)
. (7.7)

We can write this as
max(0, S1(T ) − S2(T )) (7.8)

if we define

S1(t) = P (t, T ′)F (t) and S2(t) = P (t, T ′)K (7.9)

for t = T (and more generally for t ≤ T ). Thus, the value at maturity of a call
option on a forward is the value at maturity of an option to exchange the two
assets with prices S1 and S2 (we will establish in a moment that S1 and S2

are actually asset prices). It follows that the value at date 0 of a call option
on a forward is the value at date 0 of an option to exchange the two assets.

Now consider a put option on a forward. Exercising the put and unwinding
the short forward position by buying a forward at the market price F (T ) will
leave one with a net cash flow of K − F (T ) to be received at the maturity
date T ′ of the forward. Therefore the value of the put at maturity is

max(0, P (T, T ′)[K − F (T )]) = max(S2(T ) − S1(T )) . (7.10)

Therefore, the value at date 0 of the put option on a forward must be the
value at date 0 of an exchange option, where asset one in (7.9) is exchanged
for asset two.

The key assumption in deriving Margrabe’s formula is that the volatility
of the ratio of asset prices is a constant. For a call option on a forward, the
relevant ratio is S1/S2 = F/K. Because K is a constant, the volatility of the
ratio is the volatility σ of the forward price F , which we have assumed to be
constant. For a put option on a forward, the relevant ratio is S2/S1 = K/F .
Itô’s formula implies

d(K/F )
K/F

= −dF

F
+
(

dF

F

)2

,

= (−µ + σ2) dt − σ dB

= (−µ + σ2) dt + σ(−dB),

The purpose of the last equality displayed here is to emphasize that we should
take the volatility of K/F to be the positive number σ. We can do this by using



7.2 Black’s Formula 135

−B as the Brownian motion instead of B.3 Thus, we can apply Margrabe’s
formula to value calls and puts on forwards (once we verify that S1 and S2

are indeed asset prices).
To obtain Black’s formula (7.6a) for a call on a forward from Mar-

grabe’s formula (7.4a), we simply substitute S1(0) = P (0, T ′)F (0), S2(0) =
P (0, T ′)K, q1 = 0 and q2 = 0 in Margrabe’s formula. A put option is the
reverse exchange, so Margrabe’s formula gives

P (0, T ′)K N(dm
1 ) − P (0, T ′)F (0)N(dm

2 ) , (7.11)

where

dm
1 =

log
(

P (0,T ′)K
P (0,T ′)F (0)

)
+ 1

2σ2T

σ
√

T
,

dm
2 = dm

1 − σ
√

T .

We introduce the superscript m here to distinguish these numbers in Mar-
grabe’s formula from the d1 and d2 defined in (7.6c) and (7.6d). Notice that

dm
1 = −

log
(

F (0)
K

)
− 1

2σ2T

σ
√

T
= −d2

dm
2 = −

log
(

F (0)
K

)
+ 1

2σ2T

σ
√

T
= −d1,

so Margrabe’s formula (7.11) is the same as Black’s formula (7.6b) for a put
option on a forward.

We still need to explain why S1 and S2 defined in (7.9) are asset prices, in
fact the prices of non-dividend-paying assets since we have taken q1 = q2 = 0
in applying Margrabe’s formula. The case of S2 should be clear: it is the price
of K units of the discount bond maturing at T ′. The case of S1 is more subtle.
It is the price of the following portfolio constructed at date 0 and held until
date T : go long one forward contract and buy F (0) units of the discount
bond maturing at T ′. The value at date t of the bonds in the portfolio is
F (0)P (t, T ′). The value at date t of the long forward contract can be seen
by considering unwinding it by selling a forward at date t at the market
price F (t). This cancels the delivery/receipt obligations on the underlying
and results in a net cash flow of F (t) − F (0) to be received at date T ′. The
value at date t of this future cash flow is P (t, T ′)[F (t) − F (0)] and when we
add this to the value of the bonds we obtain P (t, T ′)F (t) = S1(t).

Put-call parity for options on forwards is

Call Price + P (0, T ′)K = Put Price + P (0, T ′)F (0) .

3 This is really nothing more than the usual convention of defining the standard
deviation of a random variable to be the positive square root of the variance.
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The left-hand side is the cost of the call and K units of the discount bond,
which have value max(F (T ),K)P (T, T ′) at time T . The right-hand side is
the cost of the put option and F (0) units of the discount bond, which,
together with a long forward contract initiated at date 0, also have value
max(F (T ),K)P (T, T ′) at time T .

7.3 Merton’s Formula

Now we reconsider the Black-Scholes model but without assuming there is
a constant risk-free rate. We assume instead that there is a discount bond
maturing at the same date as the option. Letting T denote the maturity date
of the option and discount bond, we write the price of the discount bond at
dates t ≤ T as P (t, T ). We continue to assume that the stock has a constant
dividend yield q but we make a different assumption about volatility—instead
of assuming that the volatility of the stock is constant, we assume that the
volatility of its forward price is constant. We relax this to allow time-varying
but non-random volatility of the forward price in Sect. 7.9.

The forward contract we consider is a forward contract for the stock matur-
ing at the date T that the option matures. Let F (t) denote the forward price
for this contract at dates 0 ≤ t ≤ T . Because the forward price must equal
the spot price at the maturity of a forward contract, we have F (T ) = S(T ).
Consider a call option on the forward, with the call maturing at T also. In
the notation of the previous section, we have T ′ = T and hence P (T, T ′) = 1
(the discount bond is worth $1 at maturity). Therefore the value (7.7) of the
call on the forward at its maturity T is

max(0, F (T ) − K) = max(0, S(T ) − K) ,

which is the same as the value of the call on the stock. Therefore, the value
at date 0 of the call on the stock must equal the value at date 0 of the call
on the forward, and we can use Black’s formula (7.6a) for a call option on a
forward to price a call option on the stock, assuming the forward price has a
constant volatility.

Likewise, the value at the maturity date T of a put option on the same
forward contract is, from (7.10),

max(0,K − F (T )) = max(0,K − S(T )) .

Hence, we can use Black’s formula (7.6b) to price a put option on the stock,
assuming the forward price has a constant volatility.

It is not necessary that the forward contract be traded, because we can
create a synthetic forward using the stock. To create a synthetic forward at
date t we buy e−q(T−t) shares of the stock at cost e−q(T−t)S(t). With reinvest-
ment of dividends, this will accumulate to one share at date T . We finance the
purchase of the stock by shorting e−q(T−t)S(t)/P (t, T ) units of the discount
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bond. This results in a liability of e−q(T−t)S(t)/P (t, T ) dollars at date T , so
the forward purchase is arranged by promising to pay e−q(T−t)S(t)/P (t, T )
dollars at the delivery date; i.e., the forward price is4

F (t) =
e−q(T−t)S(t)

P (t, T )
. (7.12)

The assumption we need to apply Black’s formulas is that

dF

F
= µdt + σ dB , (7.13)

where B is a Brownian motion, µ can be a quite general random process,
and σ is a constant. At the end of this section, we will discuss the meaning
of this assumption in terms of the volatilities of the stock and bond and their
correlation.

Under this assumption, the following formulas originally due to Merton
[51] follow immediately from Black’s formulas (7.6) by substituting F (0) =
e−qT S(0)/P (0, T ).

Assuming the forward price has a constant volatility σ, the values at date 0
of European calls and puts maturing at date T on a stock with a constant
dividend yield q are

Call Price = e−qT S(0)N(d1) − P (0, T )K N(d2) , (7.14a)

Put Price = P (0, T )K N(−d2) − e−qT S(0)N(−d1) , (7.14b)

where

d1 =
log

(
S(0)

KP (0,T )

)
− qT + 1

2σ2T

σ
√

T
, (7.14c)

d2 = d1 − σ
√

T . (7.14d)

These formulas are clearly similar to the Black-Scholes formulas. The sim-
ilarities are made more apparent by writing the discount bond price in terms
of its yield. The yield y of the discount bond is defined as

y =
− log P (0, T )

T
⇐⇒ P (0, T ) = e−yT .

4 If there is a constant risk-free rate r, then it must be that P (t, T ) = e−r(T−t), so
(7.12) becomes

F (t) = e(r−q)(T−t)S(t) ,

which is the same as the covered interest parity condition (6.2)—recall that we
interpret the exchange rate as the price of an asset with dividend yield q = rf .
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Substituting this into the expressions above, we have:

Assuming the forward price has a constant volatility σ, the values at date 0
of European calls and puts maturing at date T on a stock with a constant
dividend yield q are

Call Price = e−qT S(0)N(d1) − e−yT K N(d2) , (7.15a)

Put Price = e−yT K N(−d2) − e−qT S(0)N(−d1), (7.15b)

d1 =
log

(
S(0)
K

)
+
(
y − q + 1

2σ2
)
T

σ
√

T
, (7.15c)

d2 = d1 − σ
√

T . (7.15d)

This shows that the Merton call and put formulas can be calculated from the
Black-Scholes call and put functions given in Chap. 3 by inputting the yield
of the discount bond as the risk-free rate and by inputting the volatility of
the forward price as σ.

If one wants to assume that there is a constant risk-free rate, then the dis-
count bond price will have to be e−rT and its yield will be the risk-free rate r.
In this case, the forward price is e(r−q)T S(0) and it has the same volatility
as S. Making these substitutions, the Merton formulas (7.15) are the same as
the Black-Scholes formulas. However, the Merton formulas are an important
generalization. It is common practice to use the yield of the discount bond as
the risk-free rate that is input into the Black-Scholes formulas. The Merton
formulas justify this practice. It is less common to attempt to estimate the
volatility of the forward price and use this (as one should since the risk-free
rate really is not constant) as the volatility in the Black-Scholes-Merton formu-
las. However, this does little damage for pricing short-term options, because
the volatility of the forward price—see (7.16) below—will be approximately
the same as the volatility of the underlying for short-term options, due to
the low volatility of short-term bond prices. Moreover, when one computes
an implied volatility from the Black-Scholes formula (using the discount bond
yield as the risk-free rate), it should be regarded as the market’s view of the
forward price volatility, and it is perfectly appropriate to input it into the
Black-Scholes-Merton formulas to price another option (assuming of course
that the forward price volatility can be regarded as constant).

The volatility of the forward price can be computed in terms of the volatil-
ities and correlation of the stock and discount bond as follows. Assume that

dS

S
= µs dt + σs dBs ,

dP

P
= µp dt + σp dBp,
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where Bs and Bp are Brownian motions with correlation ρ. Then (2.38) and
(2.40) show that the volatility of F (t) = e−q(T−t)S(t)/P (t, T ) is σ defined as

σ =
√

σ2
s + σ2

p − 2ρσsσp . (7.16)

As mentioned before, we will consider in Sect. 7.9 that the the volatility (7.16)
may vary over time in a non-random way.

7.4 Deferred Exchange Options

A call option on a forward can be viewed as an option to exchange K dollars
(or, equivalently, K units of the discount bond maturing at the maturity date
of the forward) for the underlying asset, with the exchange taking place at the
maturity date of the forward. Therefore, it is an exchange option in which the
exchange takes place at a fixed date after the option matures. We can easily
extend Margrabe’s formula to value options to exchange other assets when
the option maturity precedes the date of the exchange.

As in Sect. 7.1, consider two assets with prices Si and constant dividend
yields qi and assume the prices satisfy

dSi

Si
= µi dt + σi dBi ,

where the drifts µi, the volatilities σi and the correlation ρ of the two Brownian
motions can be general random processes. However, also as in Sect. 7.1, assume
that the volatility

σ =
√

σ2
1 + σ2

2 − 2ρσ1σ2

of the ratio of asset prices is constant.
Consider an option maturing at date T to exchange the second asset for

the first asset at date T ′ ≥ T . To understand the value of the option at date T ,
suppose it is exercised. To unwind the positions in the two assets, one can sell
a forward contract on the asset to be received and buy a forward contract on
the asset to be delivered, with the forward contracts maturing at the date of
the exchange. Then the difference F1(T ) − F2(T ) in the forward prices is a
cash flow to be received/paid at the exchange date T ′ and its value at date T
is P (T, T ′)[F1(T )−F2(T )]. Therefore, the value of the option at its maturity T
is

max(0, P (T, T ′)F1(T ) − P (T, T ′)F2(T )) .

As in Sect. 7.2, this valuation does not require the existence of traded forward
contracts, because synthetic forwards can be created. Also as in Sect. 7.2 we
know that

S∗
1 (t) = P (t, T ′)F1(t) and S∗

2 (t) = P (t, T ′)F2(t)
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are the prices of non-dividend-paying assets. Therefore, the option to exchange
the assets at date T ′ must have the same value as an option to exchange at
date T the assets with prices S∗

i .
We recall here the arbitrage formula (7.12) for the forward prices (making

the change that here the forwards mature at T ′):

Fi(t) =
e−qi(T

′−t)Si(t)
P (t, T ′)

.

Thus,
S∗

i (t) = e−qi(T
′−t)Si(t) .

This implies that the volatility of the ratio S∗
1/S∗

2 is the same as the volatility
of the ratio S1/S2. Therefore, we can price a deferred exchange option from
Margrabe’s formula, inputting the prices S∗

i (0) = e−qiT
′
Si(0) as the initial

asset prices and zero as their dividend yields. This formula is:

The value of a European option maturing at date T to exchange two assets
at date T ′ is

e−q1T ′
S1(0)N(d1) − e−q2T ′

S2(0)N(d2) , (7.17a)

where

d1 =
log

(
S1(0)
S2(0)

)
+ (q2 − q1)T ′ + 1

2σ2T

σ
√

T
, (7.17b)

d2 = d1 − σ
√

T , (7.17c)

7.5 Calculations in VBA

We could of course write entirely separate programs for the options discussed
so far in this chapter but it seems useful to emphasize their common structure.
As discussed in the introduction to this chapter, each is the present value of
what is received upon exercise multiplied by N(x) minus the present value of
what is delivered upon exercise multiplied by N(y) and x in each case is the
logarithm of the ratio of present values plus one-half σ2T , all divided by σ

√
T .

In the case of options on forwards, the present values are the present values
of what is received or delivered at the maturity of the forward contract. We
can do this calculation in the following program.

Function Generic_Option(P1, P2, sigma, T)

’

’ Inputs are P1 = present value of asset to be received

’ P2 = present value of asset to be delivered
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’ sigma = volatility

’ T = time to maturity

’

Dim x, y, N1, N2

x = (Log(P1 / P2) + 0.5 * sigma * sigma * T) / (sigma * Sqr(T))

y = x - sigma * Sqr(T)

N1 = Application.NormSDist(x)

N2 = Application.NormSDist(y)

Generic_Option = P1 * N1 - P2 * N2

End Function

Now we can use the following one-line programs to value exchange and forward
options. We will explain in Sect. 7.8 why (and in what circumstance) the Black
call and put functions are appropriate for options on futures.

Function Margrabe(S1, S2, sigma, q1, q2, T)

’

’ Inputs are S1 = price of asset to be received

’ S2 = price of asset to be delivered

’ sigma = volatility of ratio of prices

’ q1 = dividend yield of asset to be received

’ q2 = dividend yield of asset to be delivered

’ T = time to maturity

’

Margrabe = Generic_Option(Exp(-q1*T)*S1,Exp(-q2*T)*S2,sigma,T)

End Function

Function Black_Call(F, K, P, sigma, T)

’

’ Inputs are F = forward price

’ K = strike price

’ P = price of bond maturing when forward matures

’ sigma = volatility of forward price

’ T = time to maturity

’

’ To value a futures option, input F = futures price and

’ P = price of bond maturing when option matures.

’

Black_Call = Generic_Option(P * F, P * K, sigma, T)

End Function

Function Black_Put(F, K, P, sigma, T)

’

’ Inputs are F = forward price

’ K = strike price

’ P = price of bond maturing when forward matures

’ sigma = volatility of forward price

’ T = time to maturity

’
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’ To value a futures option, input F = futures price and

’ P = price of bond maturing when option matures.

’

Black_Put = Generic_Option(P * K, P * F, sigma, T)

End Function

Function Margrabe_Deferred(S1, S2, sigma, q1, q2, Tm, Te)

’

’ Inputs are S1 = price of asset to be received

’ S2 = price of asset to be delivered

’ sigma = volatility of ratio of prices

’ q1 = dividend yield of asset to be received

’ q2 = dividend yield of asset to be delivered

’ Tm = time to maturity of option

’ Te = time until exchange >= Tm

’

Margrabe_Deferred = _

Generic_Option(Exp(-q1*Te)*S1,Exp(-q2*Te)*S2,sigma,Tm)

End Function

We could also have calculated the Black-Scholes call formula as

Generic_Option(Exp(-q*T)*S, Exp(-r*T)*K, sigma, T)

and the Black-Scholes put formula as

Generic_Option(Exp(-r*T)*K, Exp(-q*T)*S, sigma, T).

7.6 Greeks and Hedging

The Greeks for the Margrabe and Black formulas can be calculated in the
same way that we calculated them in Chap. 3 for the Black-Scholes formula.
In analogy with (3.8), it can be shown for the Margrabe formula that

e−q1T S1(0) n(d1) = e−q2T S2(0) n(d2) ,

and again this simplifies the calculations. This equation applies to the Black
call formula by taking q1 = q2 = 0, S1(0) = P (0, T ′)F (0), and S2(0) =
P (0, T ′)K, leading to

F (0) n(d1) = K n(d2) .

The Greeks for the Black call formula and the Margrabe formula are:
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Black Call Margrabe

∂

∂F
= P (0, T ′) N(d1)

∂

∂S1
= e−q1T N(d1)

∂

∂P
= F (0) N(d1) − K N(d2)

∂

∂S2
= −e−q2T N(d2)

∂2

∂F 2
=

P (0, T ′) n(d1)

σ
√

TF (0)

∂2

∂S2
1

=
e−q1T n(d1)

σ
√

TS1(0)

∂2

∂P 2
= 0

∂2

∂S2
2

=
e−q2T n(d2)

σ
√

TS2(0)

∂2

∂F∂P
= N(d1)

∂2

∂S1∂S2
= −e−q1T n(d1)

σ
√

TS2(0)

− ∂

∂T
= −σP (0, T ′)F (0) n(d1)

2
√

T
− ∂

∂T
= q1e

−q1T S1(0) N(d1)

− q2e
−q2T S2(0) N(d2)

− σe−q1T S1(0) n(d1)

2
√

T
∂

∂σ
=

√
TP (0, T ′)F (0) n(d1)

∂

∂σ
=

√
T e−q1T S1(0) n(d1)

Hedging for the Margrabe formula is much the same as for the Black-
Scholes formula. We would delta-hedge a written exchange option by holding
δ1 = e−q1T N(d1) shares of the first asset and δ2 = −e−q2T N(d2) shares of
the second asset (which means shorting the second asset). Note that selling
the option will exactly finance the hedge, so the overall portfolio has zero
cost. The same argument that we used in Sect. 3.5 shows that this zero-cost
portfolio will have a zero return if continuously rebalanced.

Because the Black formulas are a special case of the Margrabe formula, we
can delta-hedge options on forwards in the same way. Putting q1 = q2 = 0,
S1(0) = P (0, T ′)F (0) and S2(0) = P (0, T ′)K, we would delta-hedge a written
call option by buying N(d1) shares of the first asset and shorting N(d2) shares
of the second, where d1 and d2 are defined in the Margrabe formulas (7.4b)
and (7.4c) and equivalently in the Black formulas (7.6c) and (7.6d). The first
asset here consists of a long forward contract plus F (0) units of the discount
bond, and the second asset is K units of the discount bond. Therefore, we
should buy N(d1)F (0)−N(d2)K units of the discount bond and go long N(d1)
forward contracts.

A more direct analysis of hedging options on forwards is possible and
instructive. We will consider that topic further in Sect. 7.10.
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7.7 The Relation of Futures Prices to Forward Prices

The difference between futures and forward contracts is that futures are
marked to market, which means that daily gains and losses are posted to
the investor’s margin account. Thus, there are interim cash flows on a futures
contract, whereas the only cash flows on a forward contract are at the matu-
rity of the forward. We will establish three useful facts in this section, the last
of which follows from the first two:

(1) Futures prices are martingales under the risk-neutral measure.
(2) Forward prices are martingales when we use the discount bond with the

same maturity as the forward as the numeraire.
(3) When interest rates are non-random, futures prices equal forward prices.

We consider the idealized case in which the futures contract is continuously
marked to market. Assume there is an instantaneously risk-free asset with rate
of return r, which could vary randomly over time, and define, as in Sect. 1.1,

R(t) = exp
(∫ t

0

r(s) ds

)
,

which is the value at date t of a $1 investment in the asset at date 0, with
interest continuously reinvested. Let T ′ denote the maturity of the futures
contract, and let F ∗(t) denote the futures price at dates t ≤ T ′ (the ∗ notation
is to distinguish the futures price from the forward price F ). Consider the
portfolio strategy that starts with zero dollars and one long futures contract
at price F ∗(0) and which continuously invests and withdraws from the risk-
free asset the gains and losses on the futures contract. Let V (t) denote the
value of this portfolio at date t. The change in the value of the portfolio at
any instant is the interest earned (or paid, if V < 0) on the risk-free asset
plus the gain/loss on the futures. This means that

dV = rV dt + dF ∗ .

Because all gains and losses on this portfolio are reinvested, V is the price of
a non-dividend-paying asset. Therefore, under the risk-neutral measure (i.e.,
using R as the numeraire), the ratio V/R must be a martingale and hence
have zero drift. From Itô’s formula,

d(V/R)
V/R

=
dV

V
− dR

R

=
rV dt + dF ∗

V
− r dt

=
dF ∗

V
.

Thus, the drift of V/R being zero implies the drift of F ∗ is zero. We need
to assume (and can assume) that F ∗ is an Itô process with finite expected
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quadratic variation—cf. condition (2.2)—in which case the absence of a drift
implies that it is a martingale.

Now we turn to fact (2). Consider a forward contract with maturity T ′

and a discount bond also maturing at T ′. Let F (t) denote the forward price
and let P (t, T ′) denote the price of the discount bond at dates t ≤ T ′. We
observed in Sect. 7.2 that there is a non-dividend paying asset with price
P (t, T ′)F (t). When we use the discount bond as the numeraire, the ratio
P (t, T ′)F (t)/P (t, T ′) = F (t) must be a martingale, which is fact (2). Because
of this fact, a probability measure corresponding to a discount bond being the
numeraire is called a “forward measure.”

Suppose now that interest rates are deterministic, that is, even if r varies
over time, it does so in a non-random way. Then the discount bond price at
date 0 must be the discount factor

P (0, T ′) = exp

(
−
∫ T ′

0

r(t) dt

)
.

Equation (1.11) gives the probability of any event A when the discount bond
is used as the numeraire as

probP [A] = E

[
1Aφ(T ′)

P (T ′, T ′)
P (0, T ′)

]
= exp

(
−
∫ T ′

0

r(t) dt

)
E[1Aφ(T ′)] ,

where φ denotes the state prices. On the other hand, the same equation gives
the probability of A when R is used as the numeraire as

probR[A] = E

[
1Aφ(T ′)

R(T ′)
R(0)

]
= exp

(
−
∫ T ′

0

r(t) dt

)
E[1Aφ(T ′)] .

Therefore, the two probability measures are the same, and consequently the
expectations EP and ER are the same. Now using the fact that both the
futures price and the forward price must equal the spot price at maturity, we
have F ∗(T ′) = F (T ′), and, from the martingale properties,

F ∗(t) = EP
t [F ∗(T ′)] = EP

t [F (T ′)] = ER
t [F (T ′)] = F (t) ,

which is fact (3).

7.8 Futures Options

Now we consider options on futures contracts, assuming that interest rates
are deterministic. We just showed that in this circumstance the futures price
will equal the forward price for a contract of the same maturity. However, the
values of options on a futures contract do not equal the values of options on
the corresponding forward contract.
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The difference is due to marking to market. Consider futures and forward
contracts with maturity T ′ and options maturing at T ≤ T ′. Exercise of
a call option on a futures contract will roll the investor into a long futures
contract with futures price equal to the market futures price at that date. The
difference F ∗(T )−K between the market futures price and the strike price of
the option is immediately credited to the investor’s margin account. On the
other hand, exercise of an option on a forward and sale of the forward results
in a cash flow of F (T ) − K that is received at the maturity date T ′ of the
forward. Therefore, the value at maturity of a call option on a futures contract
is max(0, F ∗(T )− K), whereas, as noted before, the value of a call option on
a forward at the maturity of the option is P (T, T ′) max(0, F (T ) − K)

As in the analysis of options on forwards, an options on a futures contract
can be viewed as an exchange option, where one exchanges the asset with price
S2(t) = P (t, T )K at date t ≤ T for the asset with price S1(t) = P (t, T )F ∗(t).
The asset with price S2 is of course K units of the discount bond maturing
at T . Assuming interest rates are deterministic, we have F ∗(t) = F (t), and
we noted in Sect. 7.2 that P (t, T )F (t) is the price of a non-dividend-paying
asset. Thus, we can apply Margrabe’s formula to price call (and put) options
on futures when interest rates are deterministic. Compared to options on for-
wards, the difference is that the discount bonds defining the prices S1 and S2

mature at the maturity date of the option rather than at the maturity date
of the futures or forward contract. The result is Black’s formula:

When interest rates are deterministic and the futures price F ∗ has a constant
volatility σ, the values of European calls and puts on a futures contract are

Call Price = P (0, T )F ∗(0)N(d1) − P (0, T )K N(d2) , (7.18a)
Put Price = P (0, T )K N(−d2) − P (0, T )F ∗(0)N(−d1) , (7.18b)

where

d1 =
log

(
F∗(0)

K

)
+ 1

2σ2T

σ
√

T
, (7.18c)

d2 = d1 − σ
√

T . (7.18d)

We can calculate these values from the Black_Call and Black_Put functions
by inputting the price of the discount bond maturing when the option matures
rather than the price of the discount bond maturing when the forward/futures
matures. We will derive delta hedges for futures options in Sect. 7.10.
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7.9 Time-Varying Volatility

All of the option pricing formulas in this chapter were derived from Margrabe’s
formula, the main assumption of which is that the logarithm of the ratio of
asset prices at date T is normally distributed with variance equal to σ2T . As
in Sect. 3.8 regarding the Black-Scholes formulas, the formulas in this chapter
can easily be adapted to allow a time-varying but non-random volatility. If
the volatility is a non-random function σ(t) of time, then we define σavg to be
the number such that

σ2
avg =

1
T

∫ T

0

σ2(t) dt . (7.19)

We should input σavg as (i) the volatility of the ratio of asset prices in Mar-
grabe’s formula and the deferred exchange option formula if σ(t) is the volatil-
ity of the ratio at date t or as (ii) the volatility of the forward price in Black’s
and Merton’s formulas if σ(t) is the volatility of the forward price at date t.

As in Sect. 3.8, equation (7.19) enables one to interpret and apply different
implied volatilities computed at different maturities. Another circumstance in
which it can be useful is in conjunction with bond price models such as the
Vasicek and extended Vasicek models described in Chap. 13 that imply a
time-varying non-random volatility for discount bond prices.5 If we assume a
constant volatility for the price of the underlying and a constant correlation
between the underlying and the discount bond, then we will have a time-
varying non-random forward price volatility via (7.16), and we should input
the “average volatility” σavg defined in (7.19) for the forward price volatility
in Black’s and Merton’s formulas. As mentioned in Sect. 7.3, this will be more
important for long-term options than for short-term options.

7.10 Hedging with Forwards and Futures

In Chap. 6, we considered hedging quanto contracts with currency forwards.
In Sect. 7.6, we considered hedging options on forwards with forwards. To
present a more complete analysis of these topics, we need to discuss the gains
and losses that accrue from trading forwards.

Consider dates t < u and a forward contract with maturity T . Suppose we
purchase x(t) forwards at date t and then change our position in forwards to
x(u) at time u. The purchase/sale of x(u)−x(t) new contracts does not affect
the portfolio value, so the change in the value of the portfolio is the change in
the value of the x(t) contracts purchased at date t. These contracts were worth
zero at date t, because forward contracts have zero value at initiation. Selling
them at date u cancels the obligation to deliver/receive the underlying, leaving
one with a cash flow of x(t)[F (u)−F (t)] dollars to be received at date T . The

5 The volatility of a discount bond price cannot be constant because it must go to
zero as the bond approaches maturity.
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value of this cash flow at date u is x(t)P (u, T )[F (u) − F (t)]. We can write
this as

x(t)P (u, T )[F (u) − F (t)]

= x(t)
[
P (t, T )[F (u) − F (t)] + [P (u, T ) − P (t, T )][F (u) − F (t)]

]
= x(t)

[
P (t, T )∆F + (∆P )(∆F )

]
.

This motivates the following definition:

The change in the value of a portfolio of forward contracts at date t is

x(t)
[
P (t, T ) dF (t) + dP (t, T ) × dF (t)] , (7.20)

where x(t) denotes the number of forward contracts held, F (t) denotes the
forward price, P (t, T ) denotes the price of a discount bond maturing at T ,
and T is the maturity of the forward contract.

Hedging with futures is a bit simpler, because the gains and losses are
received instantaneously (daily, at least) rather than being deferred to the
contract maturity. Letting x(t) denote the number of futures contracts held
at date t and F ∗(t) the futures price, the cash flow from the contracts is
x(t) dF ∗(t). This is also the change in the value of the portfolio, because
marking to market means that the contracts always have zero value.

To compare hedging with futures and forwards, assume there is a constant
risk-free rate r. Let T denote the maturity of the futures and forward con-
tracts. Because there is a constant risk-free rate, we have P (t, T ) = e−r(T−t),
which implies (dP )(dF ) = 0. Moreover, futures prices equal forward prices.
Thus,

If there is a constant risk-free rate r, the change in the value of a portfolio
of forward contracts at date t is

x(t)e−r(T−t) dF (t) (7.21)

and the change in the value of a portfolio of futures contracts is

x(t) dF (t) , (7.22)

where x(t) denotes the number of futures/forward contracts held at date t, T
is the maturity of the futures and forward contracts and F (t) is the futures
(= forward) price at date t.

Comparing (7.21) and (7.22), we see that if x(t) is the number of forward
contracts that should be held in a hedge, then



7.10 Hedging with Forwards and Futures 149

y(t) = e−r(T−t)x(t) (7.23)

is the number of futures contracts that should be held, because with this
number of contracts we have

Change in Forward Portfolio = x(t)e−r(T−t) dF (t)
= y(t) dF (t)
= Change in Futures Portfolio .

In short, we don’t require as many futures contracts as forward contracts, and
the scaling factor to convert from forwards to futures is just the present value
factor e−r(T−t).

For example, the result of Sect. 6.6 on replicating the payoff X̄S(T ) with
forward contracts leads to the following:

To replicate the payoff X̄S(T ) at date T , where X̄ is a fixed exchange rate
and S is the foreign currency price of an asset, one should invest V (t) units
of domestic currency in the foreign asset and be short e(rf−r)(T−t)V (t)/X(t)
currency futures at date t, where V (t) is defined in (6.7) and X(t) is the
spot exchange rate.

We can use (7.23) to determine how to delta hedge futures options. As
explained in Sect. 7.8, assuming non-random interest rates, futures options are
more valuable than options on forwards because futures are marked to market
upon exercise of an option. Specifically, Black’s formulas (7.6) for options on
forwards and (7.18) for options on futures show that the values are the same
except for the maturity of the discount bond appearing in the equations.
With a constant risk-free rate r, options maturing at T and futures/forwards
maturing at T ′, the relation is

Value of Futures Option = er(T ′−T ) × Value of Forward Option .

Because the scaling factor er(T ′−T ) does not change as time passes, this implies
that as time passes we have

Change in Futures Option Value

= er(T ′−T ) × Change in Forward Option Value . (7.24)

We can combine (7.23) and (7.24) to convert from a hedge of a forward option
using forward contracts, which we discussed in Sect. 7.6, to a hedge of a futures
option using futures contracts. For example, we concluded in Sect. 7.6 that
we should be long N(d1) forwards to hedge a short call option on a forward
contract. Consequently, (7.23) shows that we can hedge a short call option on
a forward by being long e−r(T ′−t) N(d1) futures, and then we see from (7.24)
that the hedge for a short call on a futures is being long
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er(T ′−T )e−r(T ′−t) N(d1) = e−r(T−t) N(d1)

futures contracts.
In Sect. 7.6, we derived the hedges for forward options by considering

them as exchange options. We can use the definition (7.20) to confirm that
our calculations were correct. Consider hedging a short call maturing at T on a
forward contract maturing at T ′. We can assume interest rates vary randomly
and use discount bonds in the hedge. We stated in Sect. 7.6 that we should
hold F (0)N(d1) − K N(d2) units of the discount bond maturing at T ′ and
we should go long N(d1) forwards to hedge the short call. This is a zero-cost
portfolio when we include the proceeds from selling the call. Using (7.20), we
see that the change in the value of the portfolio will be

−dC + [F (0)N(d1) − K N(d2)]dP + N(d1)[P (0, T ′) dF + (dP )(dF )] . (7.25)

The value of the call at date t will be a function of t, P (t, T ′) and F (t), which
we write as C(t, P, F ). From Itô’s formula,

dC =
∂C

∂t
dt +

∂C

∂P
dP +

∂C

∂F
dF

+
1
2

∂2C

∂P 2
(dP )2 +

1
2

∂2C

∂F 2
(dF )2 +

∂2C

∂F∂P
(dP )(dF ) .

= Θ dt + δP dP + δF dF +
1
2
ΓPP (dP )2 +

1
2
ΓFF (dF )2 + ΓFP (dP )(dF ) ,

where the δ’s and Γ ’s denote the first and second partial derivatives indicated
by the subscripts. Inserting this formula into (7.25) and making use of the
formulas in the table in Sect. 7.6, we see that the dP terms cancel because
δP = F (0)N(d1)−K N(d2). Furthermore, the dF terms cancel because δF =
N(d1)P (0, T ′). Thus, there is no exposure in the portfolio to the two risky
asset prices P and F . Furthermore, ΓPP = 0 and the (dP )(dF ) terms cancel
because ΓFP = N(d1). These substitutions simplify the change (7.25) in the
value of the portfolio to

−Θ dt − 1
2
ΓFF (dF )2 =

σP (0, T ′)F (0) n(d1)
2
√

T
dt − P (0, T ′) n(d1)

2σ
√

TF (0)
(dF )2 ,

which we can see to be zero because (dF )2 = σ2F 2 dt. Thus, the hedge is
perfect when continuously rebalanced.

7.11 Market Completeness

A formal definition of market completeness must specify which state-contin-
gent claims (random variables depending on the history of prices) can be
replicated by trading the marketed assets—for example, one might want all
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of the claims with finite means to be replicable, or only all of the claims with
finite variances, etc. A formal analysis of market completeness is not presented
in this book, except for the binomial and trinomial models in Chap. 1. How-
ever, we have stated that stochastic volatility models are incomplete. This
follows intuitively from the fact that a portfolio containing only one risky
asset (the underlying) cannot be perfectly correlated with the two Brownian
motions that determine the value of a derivative asset (the Brownian motions
driving the price of the underlying and its volatility). In general, a market
must include an instantaneously risk-free asset and as many risky assets as
there are Brownian motions in order to be complete.

The exchange-option model of Margrabe—with two risky assets, two
Brownian motions, and no risk-free asset—is obviously incomplete. For ex-
ample, it is impossible to have exactly $100 at date T . With no risk-free
asset, there is simply no way to store money. This may seem far-fetched, but
we might be interested in payoffs in “real” (i.e., inflation-adjusted) dollars,
in which case the absence of a risk-free asset may be a normal situation. In
any case, we have not assumed a risk-free asset exists, but we have priced
options without appealing to “equilibrium” arguments. This deserves some
clarification.

As mentioned above, a formal definition of market completeness must spec-
ify which contingent claims are to be replicable. The Margrabe model is com-
plete for a certain set of contingent claims. Contingent claims of the form
S2(T )X(T ) where X(T ) is a random variable depending on the relative prices
S1(t)/S2(t) for 0 ≤ t ≤ T can be replicated. Likewise, contingent claims of
the form S1(T )X(T ) can be replicated. The payoffs of exchange options are of
this form, so they can be priced by arbitrage, even though there are other con-
tingent claims (for example, receiving exactly $100 at date T ) that cannot be
replicated and hence cannot be priced by arbitrage. Likewise, the Black and
Merton models in which there is a zero-coupon bond but no instantaneously
risk-free asset are examples of incomplete markets that are still sufficiently
complete to price options by arbitrage (the options can be replicated). The
proof that the Margrabe model is complete in the sense stated here follows
from the change of numeraire argument used to derive Margrabe’s formula
from the Black-Scholes formula (recall that the second asset is risk-free when
we use it as the numeraire, so there is a risk-free asset under the new nu-
meraire) and a proof that the Black-Scholes model is complete (which we
have omitted, except to show that European options can be replicated).

We will conclude with a proof of the Margrabe formula that does not depend on
the Black-Scholes formula. Let x denote the random variable taking the value 1 when
S1(T ) > S2(T ) and which is 0 otherwise. Then the value of the exchange option at
maturity is xS1(T ) − xS2(T ). Let Vi denote the value of the portfolio beginning
with e−qiT units of asset i at date 0 and reinvesting dividends, to accumulate to
one share at date T . Then Vi(T ) = Si(T ) and from the fundamental pricing formula
(1.17) the value at date 0 of receiving xSi(T ) at date T is
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Vi(0)EVi

[
x

Si(T )

Vi(T )

]
= e−qiT Si(0)EVi [x]

= e−qiT Si(0) × probVi
(
V1(T ) > V2(T )

)
.

We can write the value of receiving xS1(T ) as

e−q1T S1(0) × probV1

(
V2(T )

V1(T )
< 1

)

and the value of receiving xS2(T ) as

e−q2T S2(0) × probV2

(
V1(T )

V2(T )
> 1

)
.

Note that V2/V1 is a martingale when we use V1 as the numeraire and V1/V2 is a
martingale when we use V2 as the numeraire. Because they are martingales, they
have no drifts. The volatility of the ratios is given in (7.3). Therefore, we have

d(V2/V1)

V2/V1
= σ dB∗

1 ,

d(V1/V2)

V1/V2
= σ dB∗

2 ,

where B∗
i is a Brownian motion when Vi is used as the numeraire. Margrabe’s

formula now follows from the tail probability formulas (2.34)–(2.36).

Problems

7.1. Derive the Greeks of a call option on a futures contract.

7.2. Using the results of the previous exercise, show that the delta hedge of a
written call on a futures contract that consists of e−r(T−t) N(d1) long futures
contracts and the value of the call invested in the risk-free asset is a riskless
hedge.

7.3. Derive a formula (like put-call parity) for the value of an option to ex-
change asset 1 for asset 2 in terms of the value of an option to do the reverse
exchange.

7.4. Create a VBA function Black_Call_ImpliedVol that uses bisection to
compute an implied forward price volatility from Black’s formula and the
market price of a call option on a forward.

7.5. Using a “synthetic forward” argument, derive the forward price for a
forward contract on a stock, where the forward matures at T ′ and the stock
pays a single known cash dividend D at date T < T ′.

7.6. Using the result of the previous exercise and Black’s formula, derive a
formula for the value of a European call option on a stock that pays a single
known cash dividend before the option matures.
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7.7. Modify the function Simulated_Delta_Hedge_Profits to compute the
percentiles of gains and losses for an investor who writes a call option on a
forward contract and uses a discretely-rebalanced delta hedge. As in Prob. 6.6,
you will need to create a variable to keep track of the net asset/liability from
trading forwards and include it in the valuation at date T .

7.8. Consider the portfolio that promises to pay X̄S(T ) at date T and repli-
cates the payoff using currency forwards described in Sect. 6.6, where X̄ is
a fixed exchange rate and S is the foreign currency price of an asset. Using
the definition (7.20) of gains and losses from trading forwards, verify that the
portfolio is riskless.

7.9. Repeat the previous exercise using the futures hedge described in Sect.
7.10.

7.10. It has been observed empirically that implied volatilities of stocks are
upward biased estimates of future volatility. Given that there is not really a
constant risk-free rate, implied volatilities should be interpreted as implied
forward-price volatilities, whereas the empirical literature has measured “fu-
ture volatility” as the subsequent volatility of the stock. What assumptions
about bond volatilities and the correlation of bonds and stocks could explain
the empirical finding; i.e., what assumptions imply that the volatility of the
forward price exceeds the volatility of the stock?

7.11. In the continuous-time Ho-Lee model described in Chap. 13, the volatil-
ity of a discount bond with time τ to maturity is σrτ for a constant σr. Under
this assumption, calculate the average volatility of the forward price of a stock
from date 0 to date T , where T is the maturity of the forward contract. As-
sume the stock has a constant volatility σs and the correlation between the
stock and bond is a constant ρ.

7.12. Making the same assumptions as in the previous exercise, and using
the result of that exercise and Merton’s formula, write a VBA function to
calculate the value of a call option on a stock. The inputs should be S, K, P ,
σs, σr, ρ, q, and T .



8

Exotic Options

We will only discuss a few exotic options. The reason for studying the deriva-
tion of an option pricing formula is that it may better equip one to analyze
new products. Hopefully, this chapter will be of some assistance in that re-
gard. Of course, one cannot expect to derive a closed-form solution for the
value of every product, and often numerical methods will be necessary. For
a much more comprehensive presentation of exotic option pricing formulas,
the book by Haug [32] and the Excel software that accompanies it are highly
recommended. Zhang [65] is also a comprehensive reference for exotics.

The valuation of an American call option on an asset paying a discrete
cash dividend (rather than a continuous dividend) is considered in Sect. 8.3.
Under a particular assumption on the volatility, valuing this option is very
similar to valuing a compound option. Except for the assumption of a discrete
dividend in Sect. 8.3, we will make the Black-Scholes assumptions throughout
this chapter: there is a constant risk-free rate r and the underlying asset has
a constant volatility σ and a constant dividend yield q.

The order in which exotics are presented in this chapter is based on the
simplicity of the analysis—the chapter begins with the easiest to analyze and
works towards the more difficult. This order is roughly the inverse of impor-
tance, the most important exotics in practice being barriers, baskets, spreads
and Asians. In the cases of Asian and basket options, we will explain why there
are no simple closed-form formulas (sums of lognormally distributed random
variables are not lognormal). We will use these cases and discretely-sampled
barriers and lookbacks as examples in the next chapter.

8.1 Forward-Start Options

A forward-start option is an option for which the strike price is set equal to
the stock price at some later date. In essence, it is issued at the later date,
with the strike price set at the money. For example, an executive may know
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that he is to be given an option grant at some later date with the strike price
set equal to the stock price at that date.

Forward-Start Call Payoff

A forward-start call is defined by its maturity date T ′ and the date T < T ′ at
which the strike price is set. The value of a forward-start call at maturity is

max(0, S(T ′) − S(T )) .

Let

x =

{
1 if S(T ′) > S(T ) ,
0 otherwise .

Then, the value of the call at maturity can be written as

xS(T ′) − xS(T ) .

Numeraires

1. Use V (t) = eqtS(t) as numeraire to price the payoff xS(T ′). From the
fundamental pricing formula (1.17), the value at date 0 is

e−qT ′
S(0)EV [x] = e−qT ′

S(0) × probV(S(T ′) > S(T )) .

2. To price the payoff xS(T ), use the following portfolio as numeraire:1 pur-
chase e−qT shares of the stock at date 0 and reinvest dividends until
date T . This will result in the ownership of one share at date T , worth
S(T ) dollars. At date T , sell the share and invest the proceeds in the risk-
free asset and hold this position until date T ′. At date T ′, the portfolio
will be worth er(T ′−T )S(T ). Let Z(t) denote the value of this portfolio for
each 0 ≤ t ≤ T ′. The fundamental pricing formula (1.17) implies that the
value of receiving xS(T ) at date T ′ is

Z(0)EZ

[
xS(T )
Z(T ′)

]
= e−qT S(0)EZ

[
xS(T )

er(T ′−T )S(T )

]
= e−qT−r(T ′−T )S(0)EZ [x]

= e−qT−r(T ′−T )S(0) × probZ(S(T ′) > S(T )) .

1 We are going to use equation (1.11) at date T ′ to define the probabilities, because
it will not be known until date T ′ whether the event S(T ′) > S(T ) is true. Thus,
we need the price of a numeraire asset at date T ′. We would like this price to be a
constant times S(T ), which is what we will obtain. An equivalent numeraire is to

make a smaller investment in the same portfolio: start with e−r(T ′−T )−qT shares.
This results in a final value of S(T ) at date T ′. As will be seen, this is useful for
deriving the put-call parity relation for forward-start options.
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Calculating Probabilities

1. As in the case of a share digital, we know that

log S(t) = log S(0) +
(

r − q +
1
2
σ2

)
t + σB∗(t)

for all t > 0, where B∗ is a Brownian motion when V is used as the
numeraire. Taking t = T ′ and t = T and subtracting yields

log S(T ′) − log S(T ) =
(

r − q +
1
2
σ2

)
(T ′ − T ) + σ [B∗(T ′) − B∗(T )] .

Hence, S(T ′) > S(T ) if and only if

−B∗(T ′) − B∗(T )√
T ′ − T

<

(
r − q + 1

2σ2
)
(T ′ − T )

σ
√

T ′ − T
.

The random variable on the left hand side is a standard normal, so

probV(S(T ′) > S(T )) = N(d1) ,

where

d1 =

(
r − q + 1

2σ2
)
(T ′ − T )

σ
√

T ′ − T
=

(
r − q + 1

2σ2
)√

T ′ − T

σ
. (8.1a)

2. To calculate the probability probZ(S(T ′) > S(T )), note that between T
and T ′, the portfolio with price Z earns the risk-free rate r. The same
argument presented in Sect. 2.9 shows that between T and T ′ we have

dS

S
= (r − q) dt + σ dB∗ ,

where now B∗ denotes a Brownian motion when Z is used as the nu-
meraire. This implies as usual that

d log S =
(

r − q − 1
2
σ2

)
dt + σ dB∗ ,

which means that

log S(T ′) − log S(T ) =
(

r − q − 1
2
σ2

)
(T ′ − T ) + σ(B∗(T ′) − B∗(T )) .

Hence, S(T ′) > S(T ) if and only if

−B∗(T ′) − B∗(T )√
T ′ − T

<

(
r − q − 1

2σ2
)
(T ′ − T )

σ
√

T ′ − T
.

As before, the random variable on the left hand side is a standard normal,
so

probZ(S(T ′) > S(T )) = N(d2) ,

where

d2 =

(
r − q − 1

2σ2
)√

T ′ − T

σ
= d1 − σ

√
T ′ − T . (8.1b)
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Forward-Start Call Pricing Formula

Combining these results, we have:

The value of a forward-start call at date 0 is

e−qT ′
S(0)N(d1) − e−qT−r(T ′−T )S(0)N(d2) , (8.2)

where d1 and d2 are defined in (8.1).

Put-Call Parity

Forward-strike calls and puts satisfy a somewhat unusual form of put-call
parity. The usual put-call parity is of the form:

Call + Cash = Put + Underlying .

The amount of cash is the amount that will accumulate to the exercise price at
maturity; i.e., it is e−rT ′

K. For forward-start calls and puts, the effective ex-
ercise price is S(T ), which is not known at date 0. However, the portfolio used
as numeraire to value the second part of the payoff will be worth er(T ′−T )S(T )
at date T ′, and by following the same strategy but starting with e−r(T ′−T )−qT

instead of e−qT shares, we will have S(T ) dollars at date T ′. The date–0 value
of this portfolio should replace “Cash” in the above. Thus:

Put-call parity for forward-start calls and puts is

Call Price + e−r(T ′−T )−qT S(0) = Put Price + e−qT ′
S(0) . (8.3)

8.2 Compound Options

A compound option is an option on an option, for example a call option on
a call option or a call on a put. These options are useful for hedging when
there is some uncertainty about the need for hedging which may be resolved
by the exercise date of the compound option. As speculative trades, they have
the benefit of higher leverage than ordinary options. These options were first
discussed by Geske [28].
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Call-on-a-Call Payoff

Let the underlying call option have exercise price K ′ and maturity T ′. Con-
sider an option maturing at T < T ′ to purchase the underlying call at price K.

Let C(t, S) denote the value at date t of the underlying call when the
stock price is S (i.e., C is the Black-Scholes formula). It is of course rational
to exercise the compound call at date T if the value of the underlying call
exceeds K; i.e., if C(T, S(T )) > K. Let S∗ denote the critical price such that
C(T, S∗) = K. To calculate S∗, we need to solve

Black_Scholes_Call(Sstar,Kprime,r,sigma,q,Tprime-T) = K.

for S∗. We can do this by bisection or one of the other methods mentioned in
Sect. 3.7. It is rational to exercise the compound option when S(T ) > S∗.

When S(T ) > S∗, exercise of the compound option generates a cash flow
of −K at date T . There is a cash flow (of S(T ′) − K ′) at date T ′ only if the
compound call is exercised and the underlying call finishes in the money. This
is equivalent to:

S(T ) > S∗ and S(T ′) > K ′ . (8.4)

Let

x =

{
1 if S(T ) > S∗ ,
0 otherwise ,

and let

y =

{
1 if S(T ) > S∗ and S(T ′) > K ′ ,
0 otherwise .

The cash flows of the compound option are −xK at date T and yS(T ′)−yK ′

at date T ′. We can value the compound option at date 0 by valuing these
separate cash flows.

The cash flow −xK is the cash flow from being short K digital options on
the underlying asset with strike price S∗ and maturity T . Therefore the value
at date 0 of this cash flow is −e−rT K N(d2), where

d1 =
log

(
S(0)
S∗

)
+
(
r − q + 1

2σ2
)
T

σ
√

T
, d2 = d1 − σ

√
T . (8.5)

Numeraires

The payoffs yS(T ) and yK ′ are similar to share digitals and digitals, respec-
tively, except that the event y = 1 is more complex than we have previously
encountered. However, we know from the analysis of share digitals and digitals
that the values at date 0 of these payoffs are

e−qT ′
S(0) × probV(y = 1) and e−rT ′

K ′ × probR(y = 1) ,

where V (t) = eqtS(t) and R(t) = ert.
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Calculating Probabilities

We will calculate the two probabilities in terms of the bivariate normal dis-
tribution function.

1. The event y = 1 is equivalent to

log S(0) +
(

r − q +
1
2
σ2

)
T + σB∗(T ) > log S∗

and

log S(0) +
(

r − q +
1
2
σ2

)
T ′ + σB∗(T ′) > log K ′ ,

where B∗ is a Brownian motion when the underlying asset (V ) is used as
the numeraire. These conditions can be rearranged as

−B∗(T )√
T

< d1 and − B∗(T ′)√
T ′ < d′1 , (8.6)

where d1 is defined in (8.5), and

d′1 =
log

(
S(0)
K′

)
+
(
r − q + 1

2σ2
)
T ′

σ
√

T ′ , d′2 = d′1 − σ
√

T ′ . (8.7)

The two standard normal variables on the left-hand sides in (8.6) have a
covariance equal to

1√
TT ′ cov(B(T ), B(T ′)) =

1√
TT ′ cov(B(T ), B(T )) =

√
T

T ′ ,

the first equality following from the fact that B(T ) is independent of
B(T ′)−B(T ) and the second from the fact that the covariance of a random
variable with itself is its variance. Hence, probV(y = 1) is the probability
that a ≤ d1 and b ≤ d′1, where a and b are standard normal random
variables with covariance (= correlation coefficient) of

√
T/T ′. We will

write this probability as M
(
d1, d

′
1,
√

T/T ′
)
. A program to approximate

the bivariate normal distribution function M is provided in Sect. 8.10.
2. The calculation for probR(y = 1) is similar. The event y = 1 is equivalent

to

log S(0) +
(

r − q +
1
2
σ2

)
T + σB∗(T ) > log S∗ ,

and

log S(0) +
(

r − q +
1
2
σ2

)
T ′ + σB∗(T ′) > log K ′ ,

where B∗ now denotes a Brownian motion under the risk-neutral measure.
These are equivalent to
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−B∗(T )√
T

< d2 and − B∗(T ′)√
T ′ < d′2 . (8.8)

Hence, probR(y = 1) = M
(
d2, d

′
2,
√

T/T ′
)
.

Call-on-a-Call Pricing Formula

We conclude:

The value of a call on a call is

− e−rT K N(d2) + e−qT ′
S(0)M

(
d1, d

′
1,
√

T/T ′
)

− e−rT ′
K ′ M

(
d2, d

′
2,
√

T/T ′
)

, (8.9)

where d1 and d2 are defined in (8.5) and d′1 and d′2 are defined in (8.7).

Put-Call Parity

European compound options with the same underlyings and strikes satisfy
put-call parity in the usual way:

Cash + Call = Underlying + Put .

The portfolio on each side of this equation gives the owner the maximum of
the strike and the value of the underlying at the option maturity. In the case
of options on calls, put-call parity is specifically

e−rT K + Value of call on call
= Value of underlying call + Value of put on call ,

where K is the strike price of the compound options and T is their maturity
date. Likewise, for options on puts, we have

e−rT K + Value of call on put
= Value of underlying put + Value of put on put .

Thus, the value of a put on a call can be derived from the value of a call on
a call. The value of a put on a put can be derived from the value of a call on
a put, which we will now consider.
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Call-on-a-Put Pricing Formula

Consider a call option maturing at T with strike K with the underlying being
a put option with strike K ′ and maturity T ′ > T . The underlying of the put is
the asset with price S and constant volatility σ. The call on the put will never
be in the money at T and hence is worthless if K > e−r(T ′−T )K ′, because
the maximum possible value of the put option at date T is e−r(T ′−T )K ′. So
assume K < e−r(T ′−T )K ′.

Let S∗ again denote the critical value of the stock price such that the call
is at the money at date T when S(T ) = S∗. This means that S∗ solves

Black_Scholes_Put(Sstar,Kprime,r,sigma,q,Tprime-T) = K.

We leave it as an exercise to confirm the following.

The value of a call on a put is

− e−rT K N(−d2) + e−rT ′
K ′ M

(
−d2,−d′2,

√
T/T ′

)
− e−qT ′

S(0)M
(
−d1,−d′1,

√
T/T ′

)
, (8.10)

where d1 and d2 are defined in (8.5) and d′1 and d′2 are defined in (8.7).

8.3 American Calls with Discrete Dividends

It can be optimal to exercise an American call option early if the underlying
asset pays a dividend. The optimal exercise date will be immediately prior to
the asset going “ex-dividend.” Consider a call option maturing at T ′ on an
asset that will pay a known cash dividend D at a known date T < T ′. We
assume there is no continuous dividend payment, so q = 0. For simplicity,
we assume that the date of the dividend payment is also the date that the
asset goes ex-dividend; i.e., ownership of the asset at any date t < T entitles
the owner to receive the dividend at date T . Under this assumption, it is
reasonable also to assume that the stock price drops by D when the dividend
is paid.

There is some ambiguity about how to define the asset price at the instant
the dividend is paid—whether to include or exclude the dividend. We will let
S(T ) denote the price including the dividend and denote the price excluding
the dividend by Z(T ), so Z(T ) = S(T ) − D. In fact, it is convenient to let
Z(t) denote the price stripped of the dividend value at all dates t ≤ T , so we
will define

Z(t) =

{
S(t) − e−r(T−t)D if t ≤ T ,
S(t) if t > T .
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Note that Z is the price of the following non-dividend-paying portfolio: buy
one unit of the asset at date 0, borrow e−rT D at date 0 to help finance the
purchase, and use the dividend D at date T to retire the debt.

If we assume as usual that the asset price S has a constant volatility, then,
using formula (2.21) for a geometric Brownian motion and letting B∗ denote
a Brownian motion under the risk-neutral measure, we have

S(T ′) = [S(T ) − D] exp
{
(r − σ2/2)(T ′ − T ) + σB∗(T ′) − σB∗(T )

}
=
[
S(0) exp

{
(r − σ2/2)T + σB∗(T )

}− D
]

× exp
{
(r − σ2/2)(T ′ − T ) + σB∗(T ′) − σB∗(T )

}
= S(0) exp

{
(r − σ2/2)T ′ + σB∗(T ′)

}
− D exp

{
(r − σ2/2)(T ′ − T ) + σB∗(T ′) − σB∗(T )

}
.

Thus, S will be a sum of lognormal random variables. A sum of lognormals is
not itself lognormal, so S will not be lognormal, and we are unable to calculate
the option value in a simple way.

We will assume instead that Z has a constant volatility σ. Thus, Z is
the price of a non-dividend-paying portfolio, it satisfies the Black-Scholes as-
sumptions, and we have S(T ′) = Z(T ′). To value a European option, we
would simply use Z(0) = S(0)− e−rT D as the initial asset price and σ as the
volatility.

American Call Payoff

If the call is not exercised before the dividend is paid at date T , then its value
at date T will be

Black_Scholes_Call(Z,K,r,sigma,0,Tprime-T)

where Z = Z(T ). Hence, exercise is optimal when

Z + D − K > Black_Scholes_Call(Z,K,r,sigma,0,Tprime-T) .

A lower bound for the Black-Scholes call value on the right-hand side is Z(T )−
e−r(T ′−T )K. If Z(T ) + D − K is less than or equal to this lower bound,
then exercise cannot be optimal. Thus, if D − K is less than or equal to
−e−r(T ′−T )K, then exercise will never be optimal. In this circumstance, the
dividend is simply too small to offset the time value of money on the exercise
price K, and the value of the American call written on the asset with price S is
the same as the value of the European call written on the non-dividend-paying
portfolio with price Z.

On the other hand, if D−K > −e−r(T ′−T )K, then exercise will be optimal
for sufficiently large Z(T ). In this case, there is some Z∗ such that the owner
of the call will be indifferent about exercise, and exercise will be optimal for
all Z(T ) > Z∗. This Z∗ is defined by

Zstar + D − K = Black_Scholes_Call(Zstar,K,r,sigma,0,Tprime-T) .
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As in the previous section, we can compute Z∗ by bisection.
Define

x =

{
1 if Z(T ) > Z∗ ,
0 otherwise ,

y =

{
1 if Z(T ) ≤ Z∗ and Z(T ′) > K ,
0 otherwise .

Then the American call option will pay [Z(T ) + D − K]x at date T (due to
early exercise) and [Z(T ′) − K]y at date T ′ (due to exercise at maturity), if
D − K > −e−r(T ′−T )K.

Numeraires

Assume for now that D − K > −e−r(T ′−T )K. The payoff (D − K)x is the
payoff of D − K digital options maturing at T , and the payoff Z(T )x is the
payoff of one share digital on the portfolio with price Z. Therefore, the value
of receiving [Z(T ) + D − K]x at date T is

Z(0)N(d1) + e−rT (D − K)N(d2) ,

where

d1 =
log

(
Z(0)
Z∗

)
+
(
r + 1

2σ2
)
T

σ
√

T

=
log

(
S(0)−e−rT D

Z∗

)
+
(
r + 1

2σ2
)
T

σ
√

T
, (8.11a)

d2 = d1 − σ
√

T . (8.11b)

As in the previous section,2 the value of receiving [Z(T ) − K]y at date T ′ is

Z(0) × probZ(y = 1) − e−rT ′
K × probR(y = 1) .

Calculating Probabilities

The calculations are very similar to the calculations we did for a call option
on a call. In fact, they are exactly the same as we would do for a put option
on a call.
2 The only difference is that here Z is the price of a non-dividend-paying portfolio,

so, in the notation of the previous section, we have V (t) = Z(t).
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1. The event y = 1 is equivalent to

log Z(0) +
(

r +
1
2
σ2

)
T + σB∗(T ) ≤ log Z∗

and

log Z(0) +
(

r +
1
2
σ2

)
T ′ + σB∗(T ′) > log K ,

where B∗ is a Brownian motion when the underlying asset (with price Z)
is used as the numeraire. We can write this as

B∗(T )√
T

< −d1 and − B∗(T ′)√
T ′ < d′1 , (8.12)

where d1 is defined in (8.11a),

d′1 =
log

(
Z(0)
K

)
+
(
r + 1

2σ2
)
T ′

σ
√

T ′

=
log

(
S(0)−e−rT D

K

)
+
(
r + 1

2σ2
)
T ′

σ
√

T ′ (8.13a)

d′2 = d′1 − σ
√

T ′ . (8.13b)

The two standard normal variables on the left-hand sides in (8.12) have
a covariance equal to

− 1√
TT ′ cov(B(T ), B(T ′)) = − 1√

TT ′ cov(B(T ), B(T )) = −
√

T

T ′ .

Hence, probZ(y = 1) is the probability that a ≤ −d1 and b ≤ d′1,
where a and b are standard normal random variables with covariance
(= correlation coefficient) of −√T/T ′. We are writing this probability as

M
(
−d1, d

′
1,−

√
T/T ′

)
.

2. The calculation for probR(y = 1) is similar. The event y = 1 is equivalent
to

log Z(0) +
(

r − 1
2
σ2

)
T + σB∗(T ) ≤ log Z∗

and

log Z(0) +
(

r − 1
2
σ2

)
T ′ + σB∗(T ′) > log K ,

where B∗ now denotes a Brownian motion under the risk-neutral measure.
These are equivalent to

B∗(T )√
T

≤ −d2 and − B∗(T ′)√
T ′ < d′2 . (8.14)

Hence, probR(y = 1) = M
(
−d2, d

′
2,−

√
T/T ′

)
.
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American Call Pricing Formula

Under our assumptions, the value of an American call option maturing at T ′

with a dividend payment of D at date T < T ′ is as follows. If

D − K ≤ −e−r(T ′−T )K ,

then the value of the call is given by the Black-Scholes formula

[S(0) − e−rT D] N(d′1) − e−rT K N(d′2) ,

where d′1 and d′2 are defined in (8.13). On the other hand, if

D − K > −e−r(T ′−T )K ,

then the value of the call is

[S(0) − e−rT D] N(d1) + e−rT (D − K)N(d2)

+ [S(0) − e−rT D]M
(
−d1, d

′
1,−

√
T/T ′

)
− e−rT ′

K M
(
−d2, d

′
2,−

√
T/T ′

)
, (8.15)

where d1 and d2 are defined in (8.11) and d′1 and d′2 are defined in (8.13).

8.4 Choosers

A “chooser option” allows the holder to choose whether the option will be a
put or call at some fixed date before the option maturity. Let T denote the
date at which the choice is made, Tc the date at which the call expires, Tp

the date at which the put expires, Kc the exercise price of the call, and Kp

the exercise price of the put, where 0 < T < Tc and 0 < T < Tp. A “simple
chooser” has Tc = Tp and Kc = Kp. A chooser is similar in spirit to a straddle:
it is a bet on volatility without making a bet on direction. A simple chooser
must be cheaper than a straddle with the same exercise price and maturity
T ′ = Tc = Tp, because a straddle is always in the money at maturity, whereas
a simple chooser has the same value as the straddle if it is in the money but
is only in the money at T ′ when the choice made at T turns out to have been
the best one.
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Chooser Payoff

The value of the chooser at date T will be the larger of the call and put prices.
Let S∗ denote the stock price at which the call and put have the same value.
We can find S∗ by solving

Black_Scholes_Call(Sstar,Kc,r,sigma,q,Tc-T)

= Black_Scholes_Put(Sstar,Kp,r,sigma,q,Tp-T).

For a simple chooser with Kc = Kp = K and Tc = Tp = T ′, we can find S∗

from the put-call parity relation at T , leading to S∗ = e(q−r)(T ′−T )K.
The call will be chosen when S(T ) > S∗ and it finishes in the money if

S(Tc) > Kc at date Tc, so the payoff of the chooser is S(Tc) − Kc when

S(T ) > S∗ and S(Tc) > Kc .

The payoff is Kp − S(Tp) at date Tp when

S(T ) < S∗ and S(Tp) < Kp .

Let

x =

{
1 if S(T ) > S∗ and S(Tc) > Kc ,
0 otherwise .

Likewise, let

y =

{
1 if S(T ) < S∗ and S(Tp) < Kp ,
0 otherwise .

Then the payoff of the chooser is xS(Tc)− xKc at date Tc and yKp − yS(Tp)
at date Tp.

Numeraires

As in the analysis of compound options, the value of the chooser at date 0
must be

e−qTcS(0) × probV(x = 1) − e−rTcKc × probR(x = 1)

+ e−rTpKp × probR(y = 1) − e−qTpS(0) × probV(y = 1) , (8.16)

where we use V (t) = eqtS(t) and R(t) = ert as numeraires.
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Chooser Pricing Formula

Equation (8.16) and calculations similar to those of the previous two sections
lead us to:

The value of a chooser option is

e−qTcS(0)M
(
d1, d1c,

√
T/Tc

)
− e−rTcKc M

(
d2, d2c,

√
T/Tc

)
+ e−rTpKp M

(
−d2,−d2p,

√
T/Tp

)

− e−qTpS(0)M
(
−d1,−d1p,

√
T/Tp

)
, (8.17)

where

d1 =
log(S(0)

S∗ )+(r−q+ 1
2 σ2)T

σ
√

T
, d2 = d1 − σ

√
T ,

d1c =
log(S(0)

Kc
)+(r−q+ 1

2 σ2)Tc

σ
√

Tc
, d2c = d1c − σ

√
Tc ,

d1p =
log

(
S(0)
Kp

)
+(r−q+ 1

2 σ2)Tp

σ
√

Tp

, d2p = d1p − σ
√

Tp .

8.5 Options on the Max or Min

We will consider here an option written on the maximum or minimum of two
asset prices; for example, a call on the maximum pays

max(0,max(S1(T ), S2(T )) − K) = max(0, S1(T ) − K,S2(T ) − K)

at maturity T . There are also call options on min(S1(T ), S2(T )) and put op-
tions on the maximum and minimum of two (or more) asset prices. Pricing
formulas for these options are due to Stulz [58], who also discusses applica-
tions. We will assume the two assets have constant dividend yields qi, constant
volatilities σi, and a constant correlation ρ.
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Call-on-the-Max Payoff

To value a call on the maximum, define the random variables:

x =

{
1 if S1(T ) > S2(T ) and S1(T ) > K ,

0 otherwise ,

y =

{
1 if S2(T ) > S1(T ) and S2(T ) > K ,

0 otherwise ,

z =

{
1 if S1(T ) > K or S2(T ) > K ,

0 otherwise .

Then the value of the option at maturity is

xS1(T ) + yS2(T ) − zK .

Numeraires

Consider numeraires V1(t) = eq1tS1(t), V2(t) = eq2tS2(t), and R(t) = ert. By
familiar arguments, the value of the option at date 0 is

e−q1T S1(0) × probV1(x = 1) + e−q2T S2(0) × probV2(y = 1)

− e−rT K × probR(z = 1) .

Calculating Probabilities

1. We will begin by calculating probV1(x = 1). From the second and third
examples in Sect. 2.9, the asset prices satisfy

dS1

S1
= (r − q1 + σ2

1) dt + σ1 dB∗
1 ,

dS2

S2
= (r − q2 + ρσ1σ2) dt + σ2 dB∗

2 ,

where B∗
1 and B∗

2 are Brownian motions when we use V1 as the numeraire.
Thus,

log S1(T ) = log S1(0) +
(

r − q1 +
1
2
σ2

1

)
T + σ1B

∗
1(T ) ,

log S2(T ) = log S2(0) +
(

r − q2 + ρσ1σ2 − 1
2
σ2

2

)
T + σ2B

∗
2(T ) .

The condition log S1(T ) > log K is therefore equivalent to

− 1√
T

B∗
1(T ) < d11 , (8.18a)
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and the condition log S1(T ) > log S2(T ) is equivalent to

σ2B
∗
2(T ) − σ1B

∗
1(T )

σ
√

T
< d1 , (8.18b)

where
σ =

√
σ2

1 − 2ρσ1σ2 + σ2
2 , (8.19)

and

d1 =
log

(
S1(0)
S2(0)

)
+
(
q2 − q1 + 1

2σ2
)
T

σ
√

T
, d2 = d1 − σ

√
T , (8.20a)

d11 =
log

(
S1(0)

K

)
+
(
r − q1 + 1

2σ2
1

)
T

σ1

√
T

, d12 = d11 − σ1

√
T . (8.20b)

The random variables on the left-hand sides of (8.18) have standard nor-
mal distributions and their correlation is

ρ1 =
σ1 − ρσ2

σ
.

Therefore,
probV1(x = 1) = M(d11, d1, ρ1) ,

where M again denotes the bivariate normal distribution function.
2. The probability probV2(y = 1) is exactly symmetric to probV1(x = 1),

with the roles of S1 and S2 interchanged. Note that the mirror image of
d1 defined in (8.20a) is

log
(

S2(0)
S1(0)

)
+
(
q1 − q2 + 1

2σ2
)
T

σ
√

T
,

which equals −d2. Therefore,

probV2(y = 1) = M(d21,−d2, ρ2) ,

where

d21 =
log

(
S2(0)

K

)
+
(
r − q2 + 1

2σ2
2

)
T

σ2

√
T

, d22 = d21 − σ2

√
T , (8.20c)

and
ρ2 =

σ2 − ρσ1

σ
.
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3. As usual, we have

log S1(T ) = log S1(0) +
(

r − q1 − 1
2
σ2

1

)
T + σ1B

∗
1(T ) ,

log S2(T ) = log S2(0) +
(

r − q2 − 1
2
σ2

2

)
T + σ2B

∗
2(T ) ,

where B∗
1 and B∗

2 now denote Brownian motions under the risk-neutral
measure. The event z = 1 is the complement of the event

S1(T ) ≤ K and S2(T ) ≤ K ,

which is equivalent to

1√
T

B∗
1(T ) < −d12 , (8.21a)

and

1√
T

B∗
2(T ) < −d22 . (8.21b)

The random variables on the left-hand sides of (8.21a) and (8.21b) are
standard normals and have correlation ρ. Therefore,

probR(z = 1) = 1 − M(−d12,−d22, ρ) .

Call-on-the-Max Pricing Formula

The value of a call option on the maximum of two risky asset prices with
volatilities σ1 and σ2 and correlation ρ is

e−q1T S1(0)M
(

d11, d1,
σ1 − ρσ2

σ

)
+ e−q2T S2(0)M

(
d21,−d2,

σ2 − ρσ1

σ

)
+ e−rT K M(−d12,−d22, ρ) − e−rT K , (8.22)

where σ is defined in (8.19) and d1, d2, d11, d12, d21 and d22 are defined in
(8.20).

8.6 Barrier Options

A “down-and-out” call pays the usual call value at maturity if and only if
the stock price does not hit a specified lower bound during the lifetime of
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the option. If it does breach the lower barrier, then it is “out.” Conversely, a
“down-and-in” call pays off only if the stock price does hit the lower bound.
Up-and-out and up-and-in calls are defined similarly, and there are also put
options of this sort. The “out” versions are called “knock-outs” and the “in”
versions are called “knock-ins.”

Knock-ins can be priced from knock-outs and vice-versa. For example, the
combination of a down-and-out call and a down-and-in call creates a standard
European call, so the value of a down-and-in can be obtained by subtracting
the value of a down-and-out from the value of a standard European call.
Likewise, up-and-in calls can be valued by subtracting the value of an up-
and-out from the value of a standard European call. Both knock-outs and
knock-ins are of course less expensive than comparable standard options.

We will describe the pricing of a down-and-out call. The pricing of up-and-
out calls and knock-out puts is similar. Often there are rebates associated with
the knocking-out of a barrier option, but we will not include that feature here
(see Sect. 10.7 however).

A down-and-out call provides a hedge against an increase in an asset price,
just as does a standard call, for someone who is short the asset. The difference
is that the down-and-out is knocked out when the asset price falls sufficiently.
Presumably this is acceptable to the buyer because the need to hedge against
high prices diminishes when the price falls. In fact, in this circumstance the
buyer may want to establish a new hedge at a lower strike. However, absent
re-hedging at a lower strike, the buyer of a knock-out call obviously faces the
risk that the price may reverse course after falling to the knock-out boundary,
leading to regret that the option was knocked out. The rationale for accepting
this risk is that the knock-out is cheaper than a standard call. Thus, compared
to a standard call, a down-and-out call provides cheaper but incomplete in-
surance.

The combination of a knock-out call and a knock-in call (or knock-out
puts) with the same barrier and different strikes creates an option with a strike
that is reset when the barrier is hit. This is a hedge that adjusts automatically
to the market. An example is given in Probs. 8.9 and 8.10.

Down-and-Out Call Payoff

Let L denote the lower barrier for the down-and-out call and assume it has not
yet been breached at the valuation date, which we are calling date 0. Denote
the minimum stock price realized during the remaining life of the contract by
z = min0≤t≤T S(t). In practice, this minimum is calculated at discrete dates
(for example, based on daily closing prices), but we will assume here that
the stock price is monitored continuously for the purpose of calculating the
minimum.

The down-and-out call will pay max(0, S(T )−K) if z > L and 0 otherwise,
at its maturity T. Let
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x =

{
1 if S(T ) > K and z > L ,
0 otherwise .

Then the value of the down-and-out call at maturity is

xS(T ) − xK .

Numeraires

As in other cases, the value at date 0 can be written as

e−qT S(0) × probV (x = 1) − e−rT K × probR(x = 1) ,

where V (t) = eqtS(t) and R(t) = ert.

Calculating Probabilities

To calculate probV (x = 1) and probR(x = 1), we consider two cases.

1. Suppose K > L. Define

y =

{
1 if S(T ) > K and z ≤ L

0 otherwise .

The event S(T ) > K is equal to the union of the disjoint events x = 1
and y = 1. Therefore,

probV (x = 1) = probV (S(T )>K) − probV (y = 1) ,

probR(x = 1) = probR(S(T )>K) − probR(y = 1) .

As in the derivation of the Black-Scholes formula, we have

probV (S(T )>K) = N(d1) and probR(S(T )>K) = N(d2) , (8.23)

where

d1 =
log

(
S(0)
K

)
+
(
r − q + 1

2σ2
)
T

σ
√

T
, d2 = d1 − σ

√
T . (8.24a)

Furthermore , defining

d′1 =
log

(
L2

KS(0)

)
+
(
r − q + 1

2σ2
)
T

σ
√

T
, d′2 = d′1 − σ

√
T , (8.24b)

it can be shown (see Appendix B.2) that

probV (y = 1) =
(

L

S(0)

)2(r−q+ 1
2 σ2)/σ2

N(d′1) , (8.25a)

probR(y = 1) =
(

L

S(0)

)2(r−q− 1
2 σ2)/σ2

N(d′2) . (8.25b)
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2. Suppose K ≤ L. Then the condition S(T ) > K in the definition of the
event x = 1 is redundant: if z > L ≥ K, then it is necessarily true that
S(T ) > K. Therefore, the probability (under either numeraire) of the
event x = 1 is the probability that z > L. Define

y =

{
1 if S(T ) > L and z ≤ L ,
0 otherwise .

The event S(T ) > L is the union of the disjoint events x = 1 and y = 1.
Therefore, as in the previous case (but now with K replaced by L),

probV (x = 1) = probV (S(T )>L) − probV (y = 1) ,

probR(x = 1) = probR(S(T )>L) − probR(y = 1) .

Also as before, we know that

probV (S(T )>L) = N(d1) and probR(S(T )>L) = N(d2) , (8.26)

where now

d1 =
log

(
S(0)

L

)
+
(
r − q + 1

2σ2
)
T

σ
√

T
, d2 = d1 − σ

√
T . (8.27a)

Moreover, probV (y = 1) and probR(y = 1) are given by (8.25) but with
K replaced by L, which means that

d′1 =
log

(
L

S(0)

)
+
(
r − q + 1

2σ2
)
T

σ
√

T
, d′2 = d′1 − σ

√
T . (8.27b)

Down-and-Out Call Pricing Formula

The value of a continuously-sampled down-and-out call option with barrier L
is

e−qT S(0)

[
N(d1) −

(
L

S(0)

)2(r−q+ 1
2 σ2)/σ2

N(d′1)

]

− e−rT K

[
N(d2) −

(
L

S(0)

)2(r−q− 1
2 σ2)/σ2

N(d′2)

]
, (8.28)

where

(1) if K > L, d1, d2 , d′1 and d′2 are defined in (8.24),
(2) if K ≤ L, d1, d2, d′1 and d′2 are defined in (8.27).
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8.7 Lookbacks

A “floating-strike lookback call” pays the difference between the asset price
at maturity and the minimum price realized during the life of the contract.
A “floating-strike lookback put” pays the difference between the maximum
price over the life of the contract and the price at maturity. Thus, the floating-
strike lookback call allows one to buy the asset at its minimum price, and the
floating-strike lookback put allows one to sell the asset at its maximum price.
Of course, one pays upfront for this opportunity to time the market. These
options were first discussed by Goldman, Sosin and Gatto [30].

A “fixed-strike lookback put” pays the difference between a fixed strike
price and the minimum price during the lifetime of the contract. Thus, a
fixed-strike lookback put and a floating-strike lookback call are similar in one
respect: both enable one to buy the asset at its minimum price. However, the
put allows one to sell the asset at a fixed price whereas the call allows one
to sell it at the terminal asset price. A “fixed-strike lookback call” pays the
difference between the maximum price and a fixed strike price and is similar
to a floating-strike lookback put in the sense that both enable one to sell the
asset at its maximum price. Fixed-strike lookback options were first discussed
by Conze and Viswanathan [18]. We will discuss the valuation of floating-strike
lookback calls. As in the discussion of barrier options, we will assume that the
price is continuously sampled for the purpose of computing the minimum.

Floating-Strike Lookback Call Payoff

As in the previous section, let z denote the minimum stock price realized over
the remaining lifetime of the contract. This is not necessarily the minimum
stock price realized during the entire lifetime of the contract. Let Smin denote
the minimum stock price realized during the lifetime of the contract up to
and including date 0, which is the date at which we are valuing the contract.
The minimum stock price during the entire lifetime of the contract will be
the smaller of z and Smin. The payoff of the floating strike lookback call is
S(T ) − min (z, Smin).

Calculations

The value at date 0 of the piece S(T ) is simply e−qT S(0). Using the result in
Appendix B.2 on the distribution of z, it can be shown (see, e.g., Musiela and
Rutkowski [54] for the details) that the value at date 0 of receiving

min(z, Smin)

at date T is
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e−rT Smin N(d2) − σ2

2(r − q)

(
Smin

S(0)

)2(r−q)/σ2

e−rT S(0)N(d′2)

+
(

1 +
σ2

2(r − q)

)
e−qT S(0)N(−d1) .

where

d1 =
log

(
S(0)
Smin

)
+
(
r − q + 1

2σ2
)
T

σ
√

T
, d2 = d1 − σ

√
T , (8.29a)

d′1 =
log

(
Smin
S(0)

)
+
(
r − q + 1

2σ2
)
T

σ
√

T
, d′2 = d′1 − σ

√
T . (8.29b)

Using the fact that [1 − N(−d1)]e−qT S(0) = e−qT S(0)N(d1), this implies:

Floating-Strike Lookback Call Pricing Formula

The value at date 0 of a continuously-sampled floating-strike lookback call,
given that the minimum price during the lifetime of the contract through
date 0 is Smin and the remaining time to maturity is T , is

e−qT S(0)N(d1) − e−rT Smin N(d2)

+
σ2

2(r − q)

(
Smin

S(0)

)2(r−q)/σ2

e−rT S(0)N(d′2)

− σ2

2(r − q)
e−qT S(0)N(−d1) , (8.30)

where d1, d2, and d′2 are defined in (8.29).

8.8 Basket and Spread Options

A “spread option” is a call or a put written on the difference of two asset
prices. For example, a spread call will pay at maturity T the larger of zero and
S1(T )−S2(T )−K, where the Si are the asset prices and K is the strike price
of the call. Spread options can be used by producers to hedge the difference
between an input price and an output price. They are also useful for hedging
basis risk. For example, someone may want to hedge an asset by selling a
futures contract on a closely related but not identical asset. This exposes
the hedger to basis risk: the difference in value between the asset and the
underlying asset on the futures contract. A spread call can hedge the basis
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risk: take S1 to be the value of the asset underlying the futures contract and
S2 the value of the asset being hedged.

A spread option is actually an exchange option. Assuming constant divi-
dend yields q1 and q2, we can take the assets underlying the exchange option
to be as follows

1. At date 0, purchase e−q1T units of the asset with price S1 and reinvest
dividends, leading to a value of S1(T ) at date T ,

2. At date 0, purchase e−q2T units of the asset with price S2 and invest
e−rT K in the risk-free asset. Reinvesting dividends and accumulating in-
terest means that we will have S2(T ) + K dollars at date T .

However, we cannot apply Margrabe’s formula to price spread options, because
the second portfolio described above will have a stochastic volatility. To see
this, note that if the price S2(t) falls to a low level, then the portfolio will
consist primarily of the risk-free asset, so the portfolio volatility will be near
the volatility of the risk-free asset, which is zero. On the other hand, if S2(t)
becomes very high, then the portfolio will be weighted very heavily on the
stock investment, and its volatility will approach the volatility of S2.

A “basket option” is an option written on a portfolio of assets. For example,
someone may want to hedge the change in the value of the dollar relative
to a basket of currencies. A basket option is an alternative to purchasing
separate options on each currency. Generally, the basket option would have a
lower premium than the separate options, because an option on a portfolio is
cheaper (and pays less at maturity) than a portfolio of options.

Letting S1, . . . , Sn denote the asset prices and w1, . . . , wn the weights
specified by the contract, a basket call would pay

max

(
0,

n∑
i=1

wiSi(T ) − K

)

at maturity T . A spread option is actually a special case of a basket option,
with n = 2, w1 = 1, and w2 = −1. The difficulty in valuing basket options
is the same as that encountered in valuing spread options. The volatility of
the basket price

∑n
i=1 wiSi(t) will vary over time, depending on the relative

volatilities of the assets and the price changes in the assets. For example,
consider the case n = 2 and write S(t) for the basket price w1S1(t)+w2S2(t).
Then

dS

S
=

w1 dS1

S
+

w2 dS2

S

=
w1S1

S
× dS1

S1
+

w2S2

S
× dS2

S2
.

Let xi(t) = wiSi(t)/S(t). This is the fraction of the portfolio value that the
i–th asset contributes. It will vary randomly over time as the prices change.
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Letting σi denote the volatilities of the individual assets and ρ their correla-
tion, the formula just given for dS/S shows that the instantaneous volatility
of the basket price at any date t is√

x2
1(t)σ

2
1 + 2x1(t)x2(t)ρσ1σ2 + x2

2(t)σ
2
2 .

Hence, the volatility will vary randomly over time as the xi change. As in the
case of spread options, there is no simple closed-form solution for the value of
a basket option.

8.9 Asian Options

An “Asian option” is an option the value of which depends on the average
underlying asset price during the lifetime of the option. “Average-price” calls
and puts are defined like standard calls and puts but with the final asset price
replaced by the average price. “Average-strike” calls and puts are defined like
standard calls and puts but with the exercise price replaced by the average
asset price. A firm that must purchase an input at frequent intervals or will sell
a product in a foreign currency at frequent intervals can use an average price
option as an alternative to buying multiple options with different maturity
dates. The average-price option will generally be both less expensive and a
better hedge than purchasing multiple options.

In practice, the average price is computed by averaging over the prices
sampled at a finite number of discrete dates. First, we consider the case of
continuous sampling. With continuous sampling, the average price at date T
for an option written at date 0 will be denoted by A(T ) and is defined as

A(T ) =
1
T

∫ T

0

S(t) dt .

To obtain a closed-form solution for the value of an option on the average
price, we face essentially the same problem as for basket and spread options:
a sum of lognormally distributed variables is not itself lognormally distributed.
In this case, the integral, which is essentially a continuous sum of the prices
at different dates, is not lognormally distributed.

An alternative contract would replace the average price with the “geomet-
ric average.” This is defined as the exponential of the average logarithm. We
will denote this by Ag(T ). The average logarithm is

1
T

∫ T

0

log S(t) dt ,

and the geometric average is

Ag(T ) = exp

(
1
T

∫ T

0

log S(t) dt

)
.
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The concavity of the logarithm function guarantees that

log
1
T

∫ T

0

S(t) >
1
T

∫ T

0

log S(t) dt .

Therefore,

A(T ) = exp

(
log

1
T

∫ T

0

S(t)

)

> exp

(
1
T

∫ T

0

log S(t) dt

)

= Ag(T ) .

Consequently, approximating the value of an average-price or average-strike
option by substituting Ag(T ) for A(T ) will produce a biased estimate of the
value. Nevertheless, the geometric averageAg(T ) and the arithmetic average
A(T ) will be highly correlated, so Ag(T ) forms a very useful control variate
for Monte-Carlo valuation of average-price and average-strike options, as will
be discussed in Chap. 9. To implement the idea, we need a valuation formula
for options written on Ag(T ). We will derive this for an average-price call, in
which Ag(T ) substitutes for A(T ).

Specifically, consider a contract that pays

max(0, Ag(T ) − K)

at its maturity T . This is a “geometric-average-price call,”, and we will analyze
it in the same way that we analyzed quanto options in Chap. 6. Let V (t) denote
the value at date t of receiving Ag(T ) at date T . This can be calculated, and
the result will be given below. V (t) is the value of a non-dividend-paying
portfolio, and, by definition, V (T ) = Ag(T ), so the geometric-average-price
call is equivalent to a standard call with V being the price of the underlying.
We will show that V has a time-varying but non-random volatility. Therefore,
we can apply the Black-Scholes formula, inputting the average volatility as
described in Sect. 3.8, to value the geometric-average-price call. We could
attempt the same route to price average-price options, but we would find that
the volatility of the corresponding value V would vary randomly, just as we
found the basket portfolio to have a random volatility in the previous section.

The value V (t) can be calculated as

V (t) = e−r(T−t)ER
t

[
Ag(T )

]
.

Define

Ag(t) = exp
(

1
t

∫ t

0

log S(u) du

)
.

We will verify at the end of this section that
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V (t) = e−r(T−t)Ag(t)
t
T S(t)

T−t
T exp

(
(r − q − σ2/2)(T − t)2

2T
+

σ2(T − t)3

6T 2

)
.

(8.31)
Two points are noteworthy. First, the value at date 0 is

V (0) = e−rT S(0) exp
(

(r − q − σ2/2)T
2

+
σ2T

6

)

= exp
(
−6r + 6q + σ2

12
T

)
S(0) . (8.32)

Second, the volatility comes from the factor

S(t)
T−t

T ,

and, by Itô’s formula,

dS
T−t

T

S
T−t

T

= something dt +
(

T − t

T

)
σ dB .

This implies that the average volatility, in the sense of Sect. 3.8, is

σavg =

√
1
T

∫ T

0

(
T − t

T

)2

σ2 dt =
σ√
3

.

Applying the Black-Scholes formula yields:

The value at date 0 of a continuously-sampled geometric-average-price call
written at date 0 and having T years to maturity is

V (0)N(d1) − e−rT K N(d2) ,

where

d1 =
log

(
V (0)

K

)
+
(
r + 1

2σ2
avg

)
T

σavg

√
T

, d2 = d1 − σavg

√
T ,

V (0) is defined in (8.32), and σavg = σ/
√

3.

We can also value a discretely-sampled geometric-average-price call by the
same arguments. Consider dates 0 < t0 < t1 < · · · tN = T , where ti − ti−1 =
∆t for each i and suppose the price is to be sampled at the dates t1, . . . , tN .
Now let V (t) denote the value at date t of the contract that pays

exp

(
1
N

N∑
i=1

log S(ti)

)
=

(
N∏

i=1

S(ti)

)1/N

(8.33)
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at date T . The call option will pay max(0, V (T )−K) at date T . Let k denote
the integer such that tN−k−1 ≤ t < tN−k. This means that we have already
observed the prices S(t1), . . . , S(tN−k−1) and we have yet to observe the k+1
prices S(tN−k), . . . , S(tN ). Define ε = (tN−k − t)/∆t, which is fraction of the
interval ∆t that must pass before we reach the next sampling date tN−k. We
will show at the end of this section that

V (t) = e−r(T−t)S(t)
k+1
N

N−k−1∏
i=1

S(ti)
1
N

× exp
([

(k + 1)εν
N

+
k(k + 1)ν

2N
+

(k + 1)2σ2ε

2N2
+

k(k + 1)(2k + 1)σ2

12N2

]
∆t

)
,

(8.34)

where ν = r − q − σ2/2
Again, two points are noteworthy. Assume the call was written at date 0

and the first observation date t1 is ∆t years away. Then, we have k + 1 = N
and ε = 1 so

V (0) = e−rT S(0) exp
(

(N + 1)ν∆t

2
+

(N + 1)(2N + 1)σ2∆t

12N

)
. (8.35)

Second, the volatility of V (t) comes from the factor S(t)(k+1)/N , and

dS
k+1
N

S
k+1
N

= something dt +
(

k + 1
N

)
σ dB .

This implies that the average volatility, in the sense of Sect. 3.8, is

σavg =

√√√√ 1
N

N−1∑
k=0

(
k + 1

N

)2

σ2 dt

=
σ

N3/2

√
N(N + 1)(2N + 1)

6
, (8.36)

where we have used the fact that
∑N

i=1 i2 = N(N + 1)(2N + 1)/6 to obtain
the second equality. Thus, the Black-Scholes formula implies:



182 8 Exotic Options

The value at date 0 of a discretely-sampled geometric-average-price call writ-
ten at date 0 and having T years to maturity is

V (0)N(d1) − e−rT K N(d2) , (8.37)

where

d1 =
log

(
V (0)

K

)
+
(
r + 1

2σ2
avg

)
T

σavg

√
T

, d2 = d1 − σavg

√
T ,

V (0) is defined in (8.35), and σavg is defined in (8.36).

This formula will be used in Sect. 9.5 as a control variate for pricing discretely-
sampled average-price calls (even average-price calls that were written before
the date of valuation).

We will now derive equations (8.31) and (8.34). We will begin with (8.31). The
random variable Ag(T ) is normally distributed under the risk-neutral measure given
information at time t. To establish this, and to calculate the mean and variance of
Ag(T ), the key is to change the order of integration in the integral in the second
line below to obtain the third line:∫ T

t

log S(u) du =

∫ T

t

{
log S(t) +

(
r − q − 1

2
σ2

)
(u − t) + σ[B(u) − B(t)]

}
du

= (T − t) log S(t) +

(
r − q − 1

2
σ2

)
(T − t)2

2
+ σ

∫ T

t

∫ u

t

dB(s) du

= (T − t) log S(t) +

(
r − q − 1

2
σ2

)
(T − t)2

2
+ σ

∫ T

t

∫ T

s

du dB(s)

= (T − t) log S(t) +

(
r − q − 1

2
σ2

)
(T − t)2

2
+ σ

∫ T

t

(T − s) dB(s)

and then to note that
∫ T

t
(T − s) dB(s) is normally distributed with mean zero and

variance equal to ∫ T

t

(T − s)2 ds =
(T − t)3

3
.

Therefore ER
t [Ag(T )] is the expectation of the exponential of a normally distributed

random variable. Equation (8.31) now follows from the fact that if x is normally

distributed with mean µ and variance σ2 then E [ex] = eµ+σ2/2.
To establish (8.34), note that the discounted risk-neutral expectation of (8.33),

conditional on having observed S(t1), . . . , S(tN−k−1), is
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V (t) = e−r(T−t)ER
t

[
exp

(
1

N

N∑
i=1

log S(ti)

)]

= e−r(T−t) exp

(
1

N

N−k−1∑
i=1

log S(ti)

)
× ER

t

[
exp

(
1

N

N∑
i=N−k

log S(ti)

)]

=

(
N−k−1∏

i=1

S(ti)
1
N

)
× e−r(T−t)ER

t

[
exp

(
1

N

N∑
i=N−k

log S(ti)

)]
. (8.38)

Let ∆0B = B(tN−k)−B(t) and ∆iB = B(tN−k+i)−B(tN−k+i−1) for i ≥ 1. We can
write the sum of logarithms inside the expectation above as

k∑
i=0

{
[log S(t) + (tN−k+i − t)ν + σ[B(tN−k+i) − B(t)]

}

= (k + 1) log S(t) +
k∑

i=0

(ε + i)ν∆t + σ
k∑

i=0

[∆0B + ∆1B + · · · + ∆iB]

= (k + 1) log S(t) + (k + 1)εν∆t +
k(k + 1)

2
ν∆t + σ

k∑
i=0

(k + 1 − i)∆iB ,

where to obtain the last equality we used the fact that
∑k

i=0 i = k(k + 1)/2. The
random variables ∆iB are normally distributed with mean zero and variance ∆t (the
variance is ε∆t for i = 0). Thus, the sum of logarithms is a normally distributed
random variable with mean

(k + 1) log S(t) + (k + 1)εν∆t +
k(k + 1)

2
ν∆t

and variance

(k + 1)2σ2ε∆t + σ2
k∑

i=1

(k + 1 − i)2∆t = (k + 1)2σ2ε∆t +
k(k + 1)(2k + 1)σ2

6
,

using the fact that
∑k

i=1 i2 = k(k+1)(2k+1)/6. The expectation of the exponential
of a normally distributed random variable equals the exponential of its mean plus
one-half of its variance, and the exponential of (k + 1) log S(t)/N is S(t)(k+1)/N .
Therefore the conditional expectation in (8.38) is

S(t)
k+1
N exp

([
(k + 1)εν

N
+

k(k + 1)ν

2N
+

(k + 1)2σ2ε

2N2
+

k(k + 1)(2k + 1)σ2

12N2

]
∆t

)
,

which implies (8.34).

8.10 Calculations in VBA

The new features in the option pricing formulas in this chapter are the use of
the bivariate normal distribution function and sometimes the need to compute
a critical (at-the-money) value of the underlying asset price. We will compute
the critical values by bisection, in the same way that we computed implied
volatilities for the Black-Scholes formula in Chap. 3.
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Bivariate Normal Distribution Function

The following is a fast approximation of the bivariate cumulative normal dis-
tribution function, accurate to six decimal places, due to Drezner [23]). For
given numbers a and b, this function gives the probability that ξ1 < a and
ξ2 < b where ξ1 and ξ2 are standard normal random variables with a given
correlation ρ, which we must input.

Function BiNormalProb(a, b, rho)

Dim a1, b1, sum, z1, Z2, z3, rho1, rho2, Delta, x, y, i, j

x = Array(0.24840615, 0.39233107, 0.21141819, _

0.03324666, 0.00082485334)

y = Array(0.10024215, 0.48281397, 1.0609498, _

1.7797294, 2.6697604)

a1 = a / Sqr(2 * (1 - rho ^ 2))

b1 = b / Sqr(2 * (1 - rho ^ 2))

If a <= 0 & b <= 0 & rho <= 0 Then

sum = 0

For i = 0 To 4

For j = 0 To 4

z1 = a1 * (2 * y(i) - a1)

Z2 = b1 * (2 * y(j) - b1)

z3 = 2 * rho * (y(i) - a1) * (y(j) - b1)

sum = sum + x(i) * x(j) * Exp(z1 + Z2 + z3)

Next j

Next i

BiNormalProb = sum * Sqr(1 - rho ^ 2) / Application.Pi

ElseIf a <= 0 & b >= 0 & rho >= 0 Then

BiNormalProb = Application.NormSDist(a)-BiNormalProb(a,-b,-rho)

ElseIf a >= 0 & b <= 0 & rho >= 0 Then

BiNormalProb = Application.NormSDist(b)-BiNormalProb(-a,b,-rho)

ElseIf a >= 0 & b >= 0 & rho <= 0 Then

sum = Application.NormSDist(a) + Application.NormSDist(b)

BiNormalProb = sum - 1 + BiNormalProb(-a, -b, rho)

ElseIf a * b * rho > 0 Then

rho1 = (rho*a-b) * Sgn(a) / Sqr(a^ 2 - 2*rho*a*b + b^ 2)

rho2 = (rho*b-a) * Sgn(b) / Sqr(a^2 - 2*rho*a*b + b^ 2)

Delta = (1 - Sgn(a) * Sgn(b)) / 4

BiNormalProb = BiNormalProb(a,0,rho1) _

+BiNormalProb(b,0,rho2) - Delta

End If

End Function

Notice that this function calls itself. This is an example of “recursion.”

Forward-Start Call

The forward-start call pricing formula is of the same form as the Black-Scholes,
Margrabe, Black, and Merton formulas, as discussed in Sect. 7.5. We can
compute it with our Generic_Option pricing function.
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Function Forward_Start_Call(S, r, sigma, q, Tset, TCall)

’

’ Inputs are S = initial stock price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ Tset = time until the strike is set

’ TCall = time until call matures >= Tset

’

Dim P1, P2

P1 = Exp(-q * TCall) * S

P2 = Exp(-q * Tset - r * (TCall - Tset)) * S

Forward_Start_Call = Generic_Option(P1, P2, sigma, TCall - Tset)

End Function

Call on a Call

We will use bisection to find the critical price S∗. We can use eq(T ′−T )(K+K ′)
as an upper bound for S∗ and 0 as a lower bound.3 The following uses 10−6

as the error tolerance in the bisection.

Function Call_On_Call(S, Kc, Ku, r, sigma, q, Tc, Tu)

Dim tol, lower, upper, guess, flower, fupper, fguess, Sstar

Dim d1, d2, d1prime, d2prime, rho, N2, M1, M2

’

’ Inputs are S = initial stock price

’ Kc = strike price of compound call

’ Ku = strike price of underlying call option

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ Tc = time to maturity of compound call

’ Tu = time to maturity of underlying call >= Tc

’

’ The first step is to find Sstar.

’

tol = 10 ^ -6

lower = 0

upper = exp(q * Tu) * (Kc + Ku)

guess = 0.5 * lower + 0.5 * upper

flower = -Kc

fupper = Black_Scholes_Call(upper, Ku, r, sigma, q, Tu - Tc) - Kc

fguess = Black_Scholes_Call(guess, Ku, r, sigma, q, Tu - Tc) - Kc

3 We set the value of the call to be zero when the stock price is zero. The up-
per bound works because (by put-call parity and the fact that the put value

is nonnegative) C(T, S) ≥ e−q(T ′−T )S − e−r(T ′−T )K′. Therefore, when S =

eq(T ′−T )(K + K′), we have C(T, S) ≥ K + K′ − e−r(T ′−T )K′ > K.
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Do While upper - lower > tol

If fupper * fguess < 0 Then

lower = guess

flower = fguess

guess = 0.5 * lower + 0.5 * upper

guess = Black_Scholes_Call(guess,Ku,r,sigma,q,Tu-Tc)-Kc

Else

upper = guess

fupper = fguess

guess = 0.5 * lower + 0.5 * upper

fguess = Black_Scholes_Call(guess,Ku,r,sigma,q,Tu-Tc)-Kc

End If

Loop

Sstar = guess

’

’ Now we calculate the probabilities.

’

d1 = (Log(S/Sstar) + (r-q+sigma^2/2)*Tc) / (sigma*Sqr(Tc))

d2 = d1 - sigma * Sqr(Tc)

d1prime = (Log(S/Ku) + (r-q+sigma^2/2) * Tu) / (sigma*Sqr(Tu))

d2prime = d1prime - sigma * Sqr(Tu)

rho = Sqr(Tc / Tu)

N2 = Application.NormSDist(d2)

M1 = BiNormalProb(d1, d1prime, rho)

M2 = BiNormalProb(d2, d2prime, rho)

’

’ Now we calculate the option price.

’

Call_On_Call = -Exp(-r * Tc) * Kc * N2 + Exp(-q * Tu) * S * M1 _

-Exp(-r * Tu) * Ku * M2

End Function

Call on a Put

The implementation of the call-on-a-put formula is of course very similar to
that of a call-on-a-call. One difference is that there is no obvious upper bound
for S∗, so we start with 2K ′ (= 2*K2) and double this until the value of the
put is below K. We can take 0 again to be the lower bound. Recall that we
assume K < e−r(T ′−T )K ′ and the right-hand side of this is the value of the
put at date T when S(T ) = 0.

Function Call_On_Put(S, Kc, Ku, r, sigma, q, Tc, Tu)

Dim tol, lower, flower, upper, fupper, guess, fguess, Sstar

Dim d1, d2, d1prime, d2prime, rho, N2, M1, M2

’

’ Inputs are S = initial stock price

’ Kc = strike price of compound call

’ Ku = strike price of underlying put option



8.10 Calculations in VBA 187

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ Tc = time to maturity of compound call

’ Tu = time to maturity of underlying put >= Tc

’

tol = 10 ^ -6

lower = 0

flower = Exp(-r * (Tu - Tc)) * Ku - Kc

upper = 2 * Ku

’

’ We double upper until the put value is below Kc

’

fupper = Black_Scholes_Put(upper,Ku,r,sigma,q,Tu-Tc)-Kc

Do While fupper > 0

upper = 2 * upper

fupper = Black_Scholes_Put(upper,Ku,r,sigma,q,Tu-Tc)-Kc

Loop

’

’ Now we do the bisection to find Sstar

’

guess = 0.5 * lower + 0.5 * upper

fguess = Black_Scholes_Put(guess,Ku,r,sigma,q,Tu-Tc)-Kc

Do While upper - lower > tol

If fupper * fguess < 0 Then

lower = guess

flower = fguess

guess = 0.5 * lower + 0.5 * upper

fguess = Black_Scholes_Put(guess,Ku,r,sigma,q,Tu-Tc)-Kc

Else

upper = guess

fupper = fguess

guess = 0.5 * lower + 0.5 * upper

fguess = Black_Scholes_Put(guess,Ku,r,sigma,q,Tu-Tc)-Kc

End If

Loop

Sstar = guess

’

’ Now we calculate the probabilities.

’

d1 = (Log(S/Sstar) + (r-q+sigma^2/2)*Tc) / (sigma*Sqr(Tc))

d2 = d1 - sigma * Sqr(Tc)

d1prime = (Log(S/Ku) + (r-q+sigma^2/2)*Tu) / (sigma*Sqr(Tu))

d2prime = d1prime - sigma * Sqr(Tu)

rho = Sqr(Tc / Tu)

N2 = Application.NormSDist(-d2)

M1 = BiNormalProb(-d1, -d1prime, rho)

M2 = BiNormalProb(-d2, -d2prime, rho)

’
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’ Now we calculate the option price.

’

Call_On_Put = -Exp(-r * Tc) * Kc * N2 + Exp(-r * Tu) * Ku * M2 _

- Exp(-q * Tu) * S * M1

End Function

American Calls with Discrete Dividends

To value an American call when there is one dividend payment before the
option matures, we input the initial asset price S(0) and then compute Z(0) =
X(0) − e−rT D. If D − K ≤ −e−r(T ′−T )K, we return the Black-Scholes value
of a European call written on Z. Otherwise, we need to compute Z∗ and our
bisection algorithm requires an upper bound for Z∗, which would be any value
of Z(T ) such that exercise at T is optimal. It is not obvious what this should
be, so we start with K and keep doubling this until we obtain a value of Z(T )
at which exercise would be optimal. Then, we use the bisection algorithm to
compute Z∗ and finally compute the option value (8.15).

Function American_Call_Dividend(S, K, r, sigma, Div, TDiv, TCall)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ Div = cash dividend

’ TDiv = time until dividend payment

’ TCall = time until option matures >= TDiv

’

Dim LessDiv, upper, tol, lower, flower, fupper, guess, fguess

Dim LessDivStar, d1, d2, d1prime, d2prime, rho, N1, N2, M1, M2

LessDiv = S - Exp(-r * TDiv) * Div ’ called Z in text

If Div / K <= 1 - Exp(-r * (TCall - TDiv)) Then

American_Call_Dividend = _

Black_Scholes_Call(LessDiv, K, r, sigma, 0, TCall)

Exit Function

End If

’

’ Now we find an upper bound for the bisection.

’

upper = K

Do While upper + Div - K < _

Black_Scholes_Call(upper,K,r,sigma,0,TCall-TDiv)

upper = 2 * upper

Loop

’

’ Now we use bisection to compute Zstar = LessDivStar.

’

tol = 10 ^ -6

lower = 0
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flower = Div - K

fupper = upper + Div - K _

- Black_Scholes_Call(upper,K,r,sigma,0,TCall-TDiv)

guess = 0.5 * lower + 0.5 * upper

fguess = guess + Div - K _

- Black_Scholes_Call(guess,K,r,sigma,0,TCall-TDiv)

Do While upper - lower > tol

If fupper * fguess < 0 Then

lower = guess

flower = fguess

guess = 0.5 * lower + 0.5 * upper

fguess = guess + Div - K _

- Black_Scholes_Call(guess,K,r,sigma,0,TCall- Div)

Else

upper = guess

fupper = fguess

guess = 0.5 * lower + 0.5 * upper

fguess = guess + Div - K _

- Black_Scholes_Call(guess,K,r,sigma,0,TCall-TDiv)

End If

Loop

LessDivStar = guess

’

’ Now we calculate the probabilities and the option value.

’

d1 = (Log(LessDiv / LessDivStar) _

+ (r + sigma ^ 2 / 2) * TDiv) / (sigma * Sqr(TDiv))

d2 = d1 - sigma * Sqr(TDiv)

d1prime = (Log(LessDiv / K) _

+ (r + sigma ^ 2 / 2) * TCall) / (sigma * Sqr(TCall))

d2prime = d1prime - sigma * Sqr(TCall)

rho = -Sqr(TDiv / TCall)

N1 = Application.NormSDist(d1)

N2 = Application.NormSDist(d2)

M1 = BiNormalProb(-d1, d1prime, rho)

M2 = BiNormalProb(-d2, d2prime, rho)

American_Call_Dividend = LessDiv*N1 + Exp(-r*TDiv)*(Div-K)*N2 _

+ LessDiv*M1 - Exp(-r*TCall)*K*M2

End Function

Choosers

To implement the bisection to compute S∗, we can take zero as a lower bound
and eqTc(Kc + Kp) as an upper bound.4

4 We take the call value to be zero and the put value to be e−r(Tp−T )Kp at date
T when the stock price is zero. To see why the upper bound works, note that
when the stock price is S at date T , the call is worth at least e−q(Tc−T )S − Kc
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Function Chooser(S, Kc, Kp, r, sigma, q, T, Tc, Tp)

’

’ Inputs are S = initial stock price

’ Kc = strike price of call option

’ Kp = strike price of put option

’ r = risk-free rate

’ sigma = volatility

’ Div = cash dividend

’ T = time until choice must be made

’ Tc = time until call matures >= T

’ Tp = time until put matures >= T

’

Dim tol, lower, upper, guess, flower, CallUpper, PutUpper

Dim fupper, CallGuess, Putguess, fguess, Sstar, d1, d2

Dim d1c, d2c, d1p, d2p, rhoc, rhop, M1c, M2c, M1p, M2p

’

’ First we find Sstar by bisection.

’

tol = 10 ^ -6

lower = 0

upper = exp(q * Tc)*(Kc + Kp)

guess = 0.5 * Kc + 0.5 * Kp

flower = -Exp(-r * (Tp - T)) * Kp

fupper = Black_Scholes_Call(upper,Kc,r,sigma,q,Tc-T) _

- Black_Scholes_Put(upper,Kp,r,sigma,q,Tp-T)

fguess = Black_Scholes_Call(guess,Kc,r,sigma,q,Tc-T) _

- Black_Scholes_Put(guess,Kp,r,sigma,q,Tp-T)

Do While upper - lower > tol

If fupper * fguess < 0 Then

lower = guess

flower = fguess

guess = 0.5 * lower + 0.5 * upper

fguess = Black_Scholes_Call(guess,Kc,r,sigma,q,Tc-T) _

- Black_Scholes_Put(guess,Kp,r,sigma,q,Tp-T)

Else

upper = guess

fupper = fguess

guess = 0.5 * lower + 0.5 * upper

fguess = Black_Scholes_Call(guess,Kc,r,sigma,q,Tc-T) _

- Black_Scholes_Put(guess,Kp,r,sigma,q,Tp-T)

End If

Loop

Sstar = guess

’

’ Now we compute the probabilities and option value.

’

and the put is worth no more than Kp. Hence when S = eqTc(Kc + Kp), we have
C − P ≥ 0.
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d1 = (Log(S/Sstar) + (r-q+sigma^2/2)*T) / (sigma*Sqr(T))

d2 = d1 - sigma * Sqr(T)

d1c = (Log(S/Kc) + (r-q+sigma^2/2)*Tc) / (sigma*Sqr(Tc))

d2c = d1c - sigma * Sqr(Tc)

d1p = (Log(S/Kp) + (r-q+sigma^2/2)*Tp) / (sigma*Sqr(Tp))

d2p = d1p - sigma * Sqr(Tp)

rhoc = Sqr(T / Tc)

rhop = Sqr(T / Tp)

M1c = BiNormalProb(d1, d1c, rhoc)

M2c = BiNormalProb(d2, d2c, rhoc)

M1p = BiNormalProb(-d1, -d1p, rhop)

M2p = BiNormalProb(-d2, -d2p, rhop)

Chooser = Exp(-q*Tc)*S*M1c - Exp(-r*Tc)*Kc*M2c _

+ Exp(-r*Tp)*Kp*M2p - Exp(-q*Tp)*S*M1p

End Function

Call on the Max

Function Call_On_Max(S1, S2, K, r, sig1, sig2, rho, q1, q2, T)

’

’ Inputs are S1 = price of stock 1

’ S2 = price of stock 2

’ K = strike price

’ r = risk-free rate

’ sig1 = volatility of stock 1

’ sig2 = volatility of stock 2

’ rho = correlation

’ q1 = dividend yield of stock 1

’ q2 = dividend yield of stock 2

’ T = time to maturity

’

Dim sigma, d1, d2, d11, d12, d21, d22, rho1, rho2, M1, M2, M3

sigma = Sqr(sig2 ^ 2 - 2 * rho * sig1 * sig2 + sig1 ^ 2)

d1 = (Log(S1/S2) + (q2-q1+sigma^2/2)*T) / (sigma*Sqr(T))

d2 = d1 - sigma * Sqr(T)

d11 = (Log(S1/K) + (r-q1+sig1^2/2)*T) / (sig1*Sqr(T))

d12 = d11 - sig1 * Sqr(T)

d21 = (Log(S2/K) + (r-q2+sig2^2/2)*T) / (sig2*Sqr(T))

d22 = d21 - sig2 * Sqr(T)

rho1 = (sig1 - rho * sig2) / sigma

rho2 = (sig2 - rho * sig1) / sigma

M1 = BiNormalProb(d11, d1, rho1)

M2 = BiNormalProb(d21, -d2, rho2)

M3 = BiNormalProb(-d12, -d22, rho)

Call_On_Max = Exp(-q1 * T) * S1 * M1 + Exp(-q2 * T) * S2 * M2 _

+ Exp(-r * T) * K * M3 - Exp(-r * T) * K

End Function
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Down-and-Out Calls

Function Down_And_Out_Call(S, K, r, sigma, q, T, Barrier)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’ Barrier = knock-out barrier < S

’

Dim a, b, d1, d2, d1prime, d2prime, N1, N2

Dim N1prime, N2prime, x, y, q1, q2

If K > Barrier Then

a = S / K

b = Barrier * Barrier / (K * S)

Else

a = S / Barrier

b = Barrier / S

End If

d1 = (Log(a) + (r-q+0.5*sigma^2)*T) / (sigma*Sqr(T))

d2 = d1 - sigma * Sqr(T)

d1prime = (Log(b) + (r-q+0.5*sigma^2)*T) / (sigma*Sqr(T))

d2prime = d1prime - sigma * Sqr(T)

N1 = Application.NormSDist(d1)

N2 = Application.NormSDist(d2)

N1prime = Application.NormSDist(d1prime)

N2prime = Application.NormSDist(d2prime)

x = 1 + 2 * (r - q) / (sigma ^ 2)

y = x - 2

q1 = N1 - (Barrier / S) ^ x * N1prime

q2 = N2 - (Barrier / S) ^ y * N2prime

Down_And_Out_Call = Exp(-q * T) * S * q1 - Exp(-r * T) * K * q2

End Function

Floating-Strike Lookbacks

Function Floating_Strike_Call(S, r, sigma, q, T, SMin)

’

’ Inputs are S = initial stock price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’ Smin = minimum during past life of contract

’

Dim d1, d2, d1prime, d2prime, N1, N2, N2prime, x, y

d1 = (Log(S/SMin) + (r-q+0.5*sigma^2)*T) / (sigma*Sqr(T))
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d2 = d1 - sigma * Sqr(T)

d2prime = (Log(SMin/S) + (r-q-0.5*sigma^2)*T) / (sigma*Sqr(T))

N1 = Application.NormSDist(d1)

N2 = Application.NormSDist(d2)

N2prime = Application.NormSDist(d2prime)

x = 2 * (r - q) / (sigma ^ 2)

Floating_Strike_Call = Exp(-q*T)*S*N1 - Exp(-r*T)*SMin*N2 _

+ (1/x)*(SMin/S)^x * Exp(-r*T)*SMin*N2prime _

- (1/x)*Exp(-q*T)*S*(1-N1)

End Function

Discretely-Sampled Geometric-Average-Price Calls

Function Discrete_Geom_Average_Price_Call(S,K,r,sigma,q,T,N)

’

’ Inputs are S = initial stock price

’ K = stock price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’ N = number of time periods

’

Dim dt, nu, a, V, sigavg

dt = T / N

nu = r - q - 0.5 * sigma ^ 2

a = N * (N + 1) * (2 * N + 1) / 6

V = Exp(-r*T)*S*Exp(((N+1)*nu/2 + sigma^2*a/(2*N^2))*dt)

sigavg = sigma * Sqr(a) / (N ^ 1.5)

Discrete_Geom_Average_Price_Call = _

Black_Scholes_Call(V, K, r, sigavg, 0, T)

End Function

Problems

8.1. Intuitively, the value of a forward-start call option should be lower the
closer is the date T at which the strike is set to the date T ′ at which the
option matures, because then the option has less time to maturity after being
“created” at T . Create an Excel worksheet to confirm this. Allow the user
to input S, r, σ, q, and T ′. Compute and plot the value of the option for
T = 0.1T ′, T = 0.2T ′, . . . , T = 0.9T ′.

8.2. Create an Excel worksheet to demonstrate the additional leverage of a
call-on-a-call relative to a standard call. Allow the user to input S, r, σ, q,
and T ′. Use the Black-Scholes_Call function to compute and output the
value C of a European call with strike K ′ = S (i.e., the call is at the money)
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and maturity T ′. Use the Call_on_Call function to compute and output the
value of a call option on the call with strike K = C (i.e., the call-on-a-call is
at the money) and maturity T = 0.5T ′. Compute the percentage returns the
standard European call and the call-on-a-call would experience if the stock
price S instantaneously increased by 10%.

8.3. Create an Excel worksheet to illustrate the early exercise premium for an
American call on a stock paying a discrete dividend. Allow the user to input
S, r, σ, and T ′. Take the date of the dividend payment to be T = 0.5T ′ and
take the strike price to be K = S. As discussed in Sect. 8.3, the value of a
European call is given by the Black-Scholes formula with S − e−rT D being
the initial asset price and q = 0 being the constant dividend yield. Use the
function American_Call_Dividend to compute the value of an American call
for dividends D = .1S, . . .D = .9S. Subtract the value of the European call
with the same dividend to obtain the early exercise premium. Plot the early
exercise premium against the dividend D.

8.4. Create a VBA function to value a simple chooser (a chooser option in
which Kc = Kp and Tc = Tp) using put-call parity to compute S∗ as men-
tioned in Sect. 8.4. Verify that the function gives the same result as the func-
tion Chooser.

8.5. Create an Excel worksheet to compare the cost of a simple chooser to
that of a straddle (straddle = call + put with same strike and maturity).
Allow the user to input S, r, σ, q, and T ′. Take the time to maturity of the
underlying call and put to be T ′ for both the chooser and the straddle. Take
the strike prices to be K = S. Take the time the choice must be made for the
chooser to be T = 0.5T ′. Compute the cost of the chooser and the cost of the
straddle.

8.6. A stock has fallen in price and you are attempting to persuade a client
that it is now a good buy. The client believes it may fall further before bounc-
ing back and hence is inclined to postpone a decision. To convince the client
to buy now, you offer to deliver the stock to him at the end of two months at
which time he will pay you the lowest price it trades during the two months
plus a fee for your costs. The stock is not expected to pay a dividend during
the next two months. Assuming the stock actually satisfies the Black-Scholes
assumptions, find a formula for the minimum fee that you would require.
(Hint: It is almost in Sect. 8.7.) Create an Excel worksheet allowing the user
to input S, r, and σ and computing the minimum fee.

8.7. Suppose you must purchase 100 units of an asset at the end of a year. Cre-
ate an Excel worksheet simulating the asset price and comparing the quality
of the following hedges (assuming 100 contracts of each):

(a) a standard European call,
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(b) a down-and-out call in which the knock-out barrier is 10% below the
current price of the asset.

Take both options to be at the money at the beginning of the year. Allow
the user to input S, r, σ and q. Generate 500 simulated end-of-year costs
(net of the option values at maturity) for each hedging strategy and create
histogram charts to visually compare the hedges. Note: to create histograms,
you will need the Data Analysis add-in, which may be need to be loaded (click
Tools/Add Ins).

8.8. Compute the prices of the options in the previous exercise. Modify the
simulations to compare the end-of-year costs including the costs of the options,
adding interest on the option prices to put everything on an end-of-year basis.

8.9. Modify Prob. 8.7 by including a third hedge: a combination of a down-
and-out call as in part (b) of Prob. 8.7 and a down-and-in call with knockout
barrier and strike 10% below the current price of the asset. Note that this
combination forms a call option with strike that is reset when the underlying
asset price hits a barrier.

8.10. Modify Prob. 8.8 by including the hedge in Prob. 8.9. Value the down-
and-in call using the function Down_And_Out_Call and the fact that a down-
and-out and down-and-in with the same strikes and barriers form a standard
option.

8.11. Each week you purchase 100 units of an asset, and you want to hedge
your total quarterly (13-week) cost. Create an Excel worksheet simulating the
asset price and comparing the quality of the following hedges:

(a) a standard European call maturing at the end of the quarter (T = 0.25)
on 1300 units of the asset,

(b) 13 call options maturing at the end of each week of the quarter, each
written on 100 units of the asset, and

(c) a discretely sampled average-price call with maturity T = 0.25 written on
1300 units of the asset, where the sampling is at the end of each week.

(d) a discretely sampled geometric-average-price call with maturity T = 0.25
written on 1300 units of the asset, where the sampling is at the end of
each week.

Allow the user to input S, r, σ and q. Assume all of the options are at the
money at the beginning of the quarter (K = S). Compare the hedges as in
Prob. 8.7.

8.12. In the setting of the previous problem, compute the prices of the options
in parts (a), (b) and (d). Modify the simulations in the previous problem to
compare the end-of-quarter costs including the costs of the options (adding
interest on the option prices to put everything on an end-of-quarter basis).
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8.13. Using the put-call parity relation, derive a formula for the value of a
forward-start put.

8.14. Derive formula (8.10) for the value of a call on a put.

8.15. Complete the derivation of formula (8.17) for the value of a chooser
option.

8.16. Derive a formula for the value of a put option on the maximum of two
risky asset prices.

8.17. Using the result of the preceding exercise and Margrabe’s formula, ver-
ify that calls and puts (having the same strike K and maturity T ) on the
maximum of two risky asset prices satisfy the following put-call parity rela-
tion:

e−rT K + Value of call on max

= e−q2T S2(0) + Value of option to exchange asset 2 for asset 1
+ Value of put on max .
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More on Monte Carlo and Binomial Valuation

This chapter is a continuation of Chap. 5, introducing somewhat more ad-
vanced issues and applications of Monte Carlo and binomial models. We
will consider some of the exotic options introduced in the previous chapter
for which closed-form solutions do not exist: basket options, spread options,
discretely-sampled lookback options, and Asian options. The next chapter
introduces finite difference methods, which are similar to binomial models
in their applications (useful for American options, not so useful for path-
dependent options) but generally faster.

9.1 Monte Carlo Models for Path-Dependent Options

A derivative is said to be “path dependent” if its value depends on the path
of the underlying asset price rather than just on the price at the time of
exercise. Examples of path-dependent options are lookbacks, barrier options,
and Asians. To value a path-dependent option by Monte Carlo, we need to
simulate an approximate path of the stock price. We do this by considering
time periods of length ∆t = T/N for some integer N . Under the risk-neutral
measure, the logarithm of the stock price changes over such a time period by

∆ log S = ν ∆t + σ
√

∆t z , (9.1)

where ν = r−q−σ2/2 and z is a standard normal. Given that there are N time
periods of length ∆t, we need to generate N standard normals to generate
a stock price path. If we generate M paths to obtain a sample of M option
values, then we will need to generate MN standard normals.

Consider for example a floating-strike lookback call. The formula for this
option given in Sect. 8.7 assumes the minimum stock price is computed over
the entire path of the stock price, i.e., with continuous sampling of the stock
price. In practice, the minimum will be computed by recording the price at a
discrete number of dates. We can value the discretely sampled lookback using
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Monte-Carlo by choosing ∆t to be the interval of time (e.g., a day or week)
at which the price is recorded. For example, if the contract calls for weekly
observation, we will attain maximum precision by setting N to be the number
of weeks before the option matures.

Asian and barrier options are also subject to discrete rather than continu-
ous sampling and can be valued by Monte-Carlo in the same way as lookbacks.
We will discuss Asian options in Sect. 9.5.

9.2 Binomial Valuation of Basket and Spread Options

By combining binomial models, we can value options or other derivatives on
multiple assets. We will illustrate for an option on two assets. This is the most
important case, and the extension to more than two assets is straightforward.

Consider two stocks with constant dividend yields qi and constant volatil-
ities σi. Suppose the two Brownian motions driving the two stocks have a
constant correlation coefficient ρ. We will denote the price of stock i (i = 1, 2)
in the up state in each period by uiSi and the price in the down state by diSi,
where Si is the price at the beginning of the period, and ui and di are para-
meters to be specified. In each period, there are four possible combinations
of returns on the two stocks: up for both stocks, up for stock 1 and down
for stock 2, down for stock 1 and up for stock 2, and down for both stocks.
Denote the probabilities of these four combinations by puu, pud, pdu, and
pdd respectively. Thus, there are eight parameters in the binomial model: the
number N of periods (which defines the length of each period as ∆t = T/N
where T is the option maturity), the up and down parameters ui and di for
each stock, and three probabilities (the fourth probability being determined
by the condition that the probabilities sum to one).

Given the period length ∆t, we want to choose the up and down para-
meters and the probabilities to match (or approximately match in an ap-
propriate sense) the means, variances and covariances of the returns ∆Si/Si

or the continuously-compounded returns ∆ log Si. There are two means, two
variances and one covariance, so there are five restrictions to be satisfied and
seven parameters. As in Chap. 5, it is convenient to take di = 1/ui, leaving
five restrictions and five free parameters.

As discussed in Sect. 5.4, there are multiple ways to define the binomial
model so that it converges to the continuous-time model as the number of
periods is increased. As an example, we will describe here the suggestion
of Trigeorgis [61], which matches the means, variances and covariance of the
continuously-compounded returns. Letting pi denote the probability of the up
state for stock i, matching the means and variances implies, as in Sect. 5.4,

log ui =
√

σ2
i ∆t + ν2

i (∆t)2 ,

pi =
1
2

+
νi∆t

2 log ui
.
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where νi = r − qi − σ2
i /2. In terms of the notation puu, pud, pdu, and pdd, the

probability of the up state for stock 1 is p1 = puu + pud and the probability
of the up state for stock 2 is p2 = puu + pdu. Therefore,

puu + pud =
1
2

+
ν1∆t

2 log u1
, (9.2a)

puu + pdu =
1
2

+
ν2∆t

2 log u2
. (9.2b)

In the continuous time model, over a discrete time period ∆t, the co-
variance of ∆ log S1 and ∆ log S2 is ρσ1σ2∆t. In the binomial model, with
di = 1/ui, we have

E
[
∆log S1 × ∆log S2

]
= (puu − pud − pdu + pdd) log u1 log u2 .

Given that E[∆ log Si] = νi∆t, this implies a covariance of

(puu − pud − pdu + pdd) log u1 log u2 − ν1ν2(∆t)2 .

Matching the covariance in the binomial model to the covariance in the
continuous-time model therefore implies

puu − pud − pdu + pdd =
ρσ1σ2∆t + ν1ν2(∆t)2

log u1 log u2
. (9.2c)

We can solve the system (9.2), together with the condition that the prob-
abilities sum to one, to obtain the probabilities puu, pud, pdu, and pdd. This
solution and a VBA function for valuing an American spread call option are
given in Sect. 9.7. This function operates much like the binomial valuation
of American options described in Chap. 5. The primary difference is that the
value of the option at maturity depends on both stock prices, so we have to
consider each possible combination of stock prices. In an N–period model,
there are N + 1 nodes at the final date for each of the two stocks, and hence
(N +1)2 possible combinations of nodes. In fact, at each date n (n = 0, . . . , N)
there are (n + 1)2 combinations of nodes to be considered. The computation
time required for a spread call option is therefore roughly the square of the
time required for a standard call.

Likewise, in an N–period model for a basket option written on three assets,
there are (n + 1)3 combinations of nodes to be considered at date n; if there
are five assets, there are (n + 1)5 combinations, etc. Thus, the computation
time required increases exponentially with the number of assets. This can be
a serious problem. For example, with five assets and N = 99, we would have
1005 (10 billion) combinations. As this suggests, problems with multiple assets
quickly become intractable in a binomial framework. This is called the “curse
of dimensionality.”
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9.3 Monte Carlo Valuation of Basket and Spread
Options

In this section, we will consider the valuation of European spread and basket
options by the Monte Carlo method. As noted in Sect. 8.8, there are no simple
formulas for these options. In each simulation, we will generate a terminal
price for each of the underlying assets and compute the value of the option at
its maturity. Discounting the average terminal value gives the estimate of the
option value as usual.

The difference between binomial and Monte Carlo methods for options
written on multiple assets can be understood as follows. Both methods at-
tempt to estimate the discounted expected value of the option (under the
risk-neutral measure). In an N–period model, the binomial model produces
N + 1 values for the terminal price of each underlying asset. Letting k de-
note the number of underlying assets, this produces (N + 1)k combinations
of asset prices. Of course, each combination has an associated probability.
In contrast, the Monte Carlo method produces M combinations of terminal
prices, where M is the number of simulations. Each combination is given the
same weight (1/M) when estimating the expected value.

With a single underlying asset, the binomial model is more efficient, as
discussed in Sect. 5.2, because the specifically chosen terminal prices in the
binomial model sample the set of possible terminal prices more efficiently than
randomly generated terminal prices. However, this advantage disappears, and
the ranking of the methods can be reversed, when there are several underlying
assets. The reason is that many of the (N + 1)k combinations of prices in the
binomial model will have very low probabilities. For example, with two assets
that are positively correlated, it is very unlikely that one asset will be at its
highest value in the binomial model and the other asset simultaneously at its
lowest. It is computationally wasteful to evaluate the option for such a com-
bination, because the probability-weighted value will be very small and hence
contribute little to the estimate of the expected value. On the other hand, each
set of terminal prices generated by the Monte Carlo method will be gener-
ated from a distribution having the assumed correlation. Thus, only relatively
likely combinations will typically be generated, and time is not wasted on
evaluating unlikely combinations. However, it should not be concluded that
Monte Carlo valuation of a derivative on multiple assets will be quick and
easy—even though the computation time required for more underlying assets
does not increase as much with Monte Carlo as for binomial models, it can
nevertheless be substantial.

To implement Monte Carlo valuation of options on multiple assets, we
must first explain how to simulate correlated asset prices. As observed in
Sect. 4.5, we can simulate the changes in two Brownian motions B1 and B2

that have correlation ρ by generating two independent standard normals Z1

and Z2 and defining
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∆B1 =
√

∆t Z1 , and ∆B2 =
√

∆t Z ,

where Z is defined as
Z = ρZ1 +

√
1 − ρ2 Z2 .

The random variable Z is also a standard normal, and the correlation between
Z1 and Z is ρ. Thus, we can simulate the changes in the logarithms of two
correlated asset prices as

∆ log S1 = ν1∆t + σ1

√
∆tZ1 ,

∆log S2 = ν2∆t + σ2ρ
√

∆tZ1 + σ2

√
1 − ρ2

√
∆tZ2 ,

where νi = r − q1 − σ2
i /2 and the Zi are independent standard normals.

To generalize this idea to more than two assets, we introduce some addi-
tional notation. The simulation for the case of two assets can be written as

∆ log S1 = ν1∆t + a11

√
∆tZ1 + a12

√
∆tZ2 , (9.3a)

∆ log S2 = ν2∆t + a21

√
∆tZ1 + a22

√
∆tZ2 , (9.3b)

where
a11 = σ1 , a12 = 0 ,

a21 = σ2ρ , a22 = σ2

√
1 − ρ2 .

These are not the only possible choices for the constants aij . Given that Z1

and Z2 are independent standard normals, the conditions the aij must satisfy
in order to match the variances σ2

i ∆t and correlation ρ of the changes in the
logarithms are

a2
11 + a2

12 = σ2
1 , (9.4a)

a2
21 + a2

22 = σ2
2 , (9.4b)

a11a21 + a12a22 = σ1σ2ρ . (9.4c)

These three equations in the four coefficients aij leave one degree of freedom.
We choose to take a12 = 0 and then solve for the other three.

In matrix notation, the system (9.4) plus the condition a12 = 0 can be
written as the equation(

a11 0
a21 a22

)(
a11 0
a21 a22

)�
=
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

where � denotes the matrix transpose. The matrix on the right hand side is the
covariance matrix of the continuously-compounded annual returns (changes
in log asset prices). Choosing the aij so that the “lower triangular” matrix

A ≡
(

a11 0
a21 a22

)
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satisfies
AA� = covariance matrix

is called the the “Cholesky decomposition” of the covariance matrix. Given
any number L of assets, provided none of the assets is redundant (perfectly cor-
related with a portfolio of the others), the Cholesky decomposition of the L×L
covariance matrix always exists. An algorithm for computing the Cholesky de-
composition is given in Sect. 9.7.

We can use the Cholesky decomposition to perform Monte-Carlo valuation
of a basket or spread option.1 If there were some path dependency in the option
value, we would simulate the paths of the asset prices as in (9.3). However a
standard basket option is not path dependent, so we only need to simulate
the asset prices at the option maturity date T , as in Sect. 5.1. The value of a
basket call option at its maturity T is

max

(
0,

L∑
i=1

wiSi(T ) − K

)
,

where L is the number of assets in the basket (portfolio) and wi is the weight of
the i–th asset in the basket. The logarithm of the i–th asset price at maturity
is simulated as

log Si(T ) = log Si(0) + νiT +
√

T

L∑
j=1

aijZj ,

where the Zj are independent standard normals. Given the simulated values of
the log Si(T ), the value at maturity of the basket option is readily computed.
The estimate of the date–0 value is then computed as the discounted average
of the simulated values at maturity.

9.4 Antithetic Variates in Monte Carlo

In this and the following section, we will discuss two methods to increase the
efficiency of the Monte Carlo method. These are two of the simplest methods.
They are used extensively, but there are other important methods that are also
widely used. Jäckel [39] and Glasserman [29] provide a wealth of information
on this topic.

The Monte Carlo method estimates the mean µ of a random variable x as
the sample average of randomly generated values of x. An antithetic variate
is a random variable y with the same mean as x and a negative correlation
with x. It follows that the random variable z = (x + y)/2 will have the same
mean as x and a lower variance. Therefore the sample mean of M simulations
of z will be an unbiased estimate of µ and will have a lower standard error
1 For a spread option, take L = 2, w1 = 1 and w2 = −1.
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than the sample mean of M simulations of x. Thus, we should obtain a more
efficient estimator of µ by simulating z instead of x.2

In the context of derivative valuation, the standard application of this
idea is to generate two negatively correlated underlying asset prices (or price
paths, if the derivative is path dependent). The terminal value of the derivative
written on the first asset serves as x and the terminal value of the derivative
written on the second serves as y. Because both asset prices have the same
distribution, the means of x and y will be the same, and the discounted mean
is the date–0 value of the derivative.

Consider for example a non-path-dependent option in a world with con-
stant volatility. In each simulation i (i = 1, . . . , M), we would generate a
standard normal Zi and compute

log Si(T ) = log S(0) +
(

r − q − 1
2
σ2

)
T + σ

√
TZi ,

log S′
i(T ) = log S(0) +

(
r − q − 1

2
σ2

)
T − σ

√
TZi .

Given the first terminal price, the value of the derivative will be some number
xi and given the second it will be some number yi. The date–0 value of the
derivative is estimated as

e−rT 1
M

M∑
i=1

xi + yi

2
.

We will illustrate this method for the floating-strike lookback call in Sect. 9.7.

9.5 Control Variates in Monte Carlo

Another approach to increasing the efficiency of the Monte Carlo method is
to adjust the estimated mean (option value) based on the known mean of
another related variable. We can explain this in terms of linear regression in
statistics. Suppose we have a random sample {x1, . . . , xM} of a variable x with
unknown mean µ, and suppose we have a corresponding sample {y1, . . . , yM}
of another variable y with known mean φ. Then an efficient estimate of µ
is µ̂ = x̄ + β̂(φ − ȳ), where x̄ and ȳ denote the sample means of x and y,
and where β̂ is the coefficient of y in the linear regression of x on y (i.e., the

2 The negative correlation between x and y is essential for this method to generate
a real gain in efficiency. To generate M simulations of z, one must generate M
simulations of x and M of y, which will generally require about as much compu-
tation time as generating 2M simulations of x. If x and y were independent, the
standard error from M simulations of z would be the same as the standard error
from 2M simulations of x, so using the antithetic variate would be no better than
just doubling the sample size for x.
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estimate of β in the linear model x = α + βy + ε). The standard Monte Carlo
method, which we have described thus far, simply estimates the mean of x
as x̄. The “control variate” method adjusts the estimate by adding β̂(φ − ȳ).
To understand this correction, assume for example that the true β is positive.
If the random sample is such that ȳ < φ, then it must be that small values of y
were over-represented in the sample. Since x and y tend to move up and down
together (this is the meaning of a positive β) it is likely that small values of x
were also over-represented in the sample. Therefore, one should adjust the
sample mean of x upwards in order to estimate µ. The best adjustment will
take into account the extent to which small values of y were over-represented
(i.e., the difference between ȳ and φ) and the strength of the relation between
x and y (which the estimate β̂ represents). The efficient correction of this sort
is also the simplest: just add β̂(φ − ȳ) to x̄. In practice, the estimation of β̂

may be omitted and one may simply take β̂ = 1, if the relationship between
x and y can be assumed to be “one-for-one.” If β is to be estimated, the
estimate (by ordinary least squares) is

β̂ =
∑M

i=1 xiyi − Mx̄ȳ∑M
i=1 y2

i − Mȳ2
.

In general, the correction term β̂(φ − ȳ) will have a nonzero mean, which
introduces a bias in the estimate of µ. To eliminate the bias, one can compute β̂
from a “pre-sample” of {x, y} values.

As an example, consider the classic case of estimating the value of a
discretely-sampled average-price call, using a discretely-sampled geometric-
average-price call as a control variate. Let τ denote the amount of time that
has elapsed since the call was issued and T the amount of time remaining be-
fore maturity, so the total maturity of the call is T +τ . To simplify somewhat,
assume date 0 is the beginning of a period between observations. Let t1, . . . , tN
denote the remaining sampling dates, with t1 = ∆t, ti − ti−1 = ∆t = T/N
for each i, and tN = T . We will input the average price A(0) computed up to
date 0, assuming this average includes the price S(0) at date 0. The average
price at date T will be

A(T ) =
τ

T + τ
A(0) +

T

T + τ

(∑N
i=1 S(ti)

N

)
.

The average-price call pays max(0, A(T ) − K) at its maturity T , and we can
write this as

max(A(T ) − K, 0) = max

(
T

T + τ

(∑N
i=1 S(ti)

N

)
−
(

K − τ

T + τ
A(0)

)
, 0

)

=
T

T + τ
max

(∑N
i=1 S(ti)

N
− K∗, 0

)
,
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where
K∗ =

T + τ

T
K − τ

T
A(0) .

Therefore, the value at date 0 of the discretely-sampled average-price call is

T

T + τ
e−rT ER

[
max

(∑N
i=1 S(ti)

N
− K∗, 0

)]
.

In terms of the discussion above, the random variable the mean of which we
want to estimate is

x = e−rT max

(∑N
i=1 S(ti)

N
− K∗, 0

)
.

A random variable y that will be closely correlated to x is

y = e−rT max
(
e
∑N

i=1 log S(ti)/N − K∗, 0
)

.

The mean φ of y under the risk-neutral measure is given in the pricing formula
(8.37). We can use the sample mean of y and its known mean φ to adjust
the sample mean of x as an estimator of the value of the average-price call.
Generally, the estimated adjustment coefficient β̂ will be quite close to 1.

9.6 Accelerating Binomial Convergence

Broadie and Detemple [13] show that a modified binomial model is a quite
efficient way to value American put options. They modify the binomial model
as follows: (i) the Black-Scholes formula is used to value the option at the
penultimate date, and (ii) Richardson extrapolation is used to estimate what
the option value would be with an infinite number of periods.

If an option is not exercised at date N −1 in an N–period binomial model
(i.e., one date from the end), then, because in the binomial model there are no
further opportunities for early exercise, the American option at date N − 1 is
equivalent to a European option at that date. The value of a European option
is given by the Black-Scholes formula. Therefore, the estimate of the option
value can be improved by replacing

PutV(j) = max(S-K, dpd*PutV(j)+dpu*PutV(j+1))

with

PutV(j) = max(S-K,Black_Scholes_Put(S,K,r,sigma,q,dt))

at date N − 1 (of course this also means that we do not need to compute
the intrinsic value at date N). This idea can be effectively used in binomial
valuation of any option for which there is a closed-form solution (like the
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Black-Scholes formula) for the value of the corresponding European option in
a continuous-time model.

Broadie and Detemple combine the use of the Black-Scholes formula at
date N − 1 with Richardson extrapolation. Richardson extrapolation is a
method that may improve the efficiency of any algorithm by “extrapolat-
ing to the limit.” In the case of a binomial model, the idea is to extrapolate
the values calculated for different numbers of periods (different N ’s) to try to
estimate the value for N = ∞.

It is easier to work with convergence to zero than convergence to infinity,
so define x = 1/N . For any value of N , the binomial model will return a value,
which is an estimate of the option value and which we denote as y = f(x).
We would like to know the value at N = ∞, which in this notation is f(0). Of
course, we cannot calculate f(0), because we do not know the function f , but
we can approximate f by a known function g and then estimate f(0) by g(0).

A linear approximation is the simplest and is shown by Broadie and De-
temple to be quite effective. For a linear approximation, we would take

g(x) = a + bx

for parameters a and b to be determined. We can input values N1 and N2 =
2N1 for the number of periods, run the binomial model for each, set xi = 1/Ni,
and define yi = f(xi) to be the value of the option returned by the binomial
model when the number of periods is Ni. Then we force g(xi) = f(xi) for
i = 1, 2 by solving the equations

yi = a + bxi

for a and b. Of course, g(0) = a, so we will return the constant a as our
estimate of f(0). This is simpler than it may appear—we put

y1 = a + bx1 = a + 2bx2 ,
y2 = a + bx2 ,

and subtracting gives us y1−y2 = bx2, which implies from the bottom equation
that a = 2y2−y1. We can think of N2 as being the number of periods we want
to use in the binomial model, in which case y2 would be our estimate of the
option value. Richardson extrapolation here means also running the binomial
model for half as many periods (N1 = N2/2) and adding the difference of the
estimates y2 − y1 to the estimate y2.

Richardson extrapolation can be viewed as cancelling the first-order term
in the Taylor series expansion of f . We have

y1 = f(x1) = f(0) + f ′(0)x1 + higher order terms
= f(0) + 2f ′(0)x2 + higher order terms ,

y2 = f(x2) = f(0) + f ′(0)x2 + higher order terms .
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This implies

2y2 − y1 = f(0) + difference of higher order terms .

Having eliminated the first-order term, one can hope to obtain a closer ap-
proximation to f(0).

9.7 Calculations in VBA

Monte Carlo Valuation of Path-Dependent Options

We will illustrate the valuation of path-dependent options by Monte Carlo by
valuing a discretely-sampled floating-strike lookback call. The inputs of the
following are the same as for the lookback-call pricing function in Sect. 8.7,
plus the number of time periods N and the number of simulations M. The loga-
rithm of the initial stock price S and the logarithm of the historical minimum
Smin are calculated and stored at the beginning of the program. In each sim-
ulation i = 1, . . . , M , the variables logS and logSmin are initialized to equal
the stored values. They are then updated at each time period j = 1, . . . N in
accord with (9.1), with LogSmin being changed only when a new minimum is
reached.

Function Floating_Strike_Call_MC_SE(S, r, sigma, q, SMin, T, N, M)

’

’ Inputs are S = initial stock price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = remaining time to maturity

’ Smin = minimum during previous life of contract

’ N = number of time periods

’ M = number of simulations

’

’ This returns the row vector (call value, standard error)

’

Dim dt, LogS0, LogSmin0, LogS, LogSMin, sigsdt, nudt

Dim CallV, SumCall, SumCallSq, i, j, StdError

dt = T / N

nudt = (r - q - 0.5 * sigma * sigma) * dt

sigsdt = sigma * Sqr(dt)

LogS0 = Log(S) ’ store log of initial stock price

LogSmin0 = Log(SMin) ’ store log of historical minimum

SumCall = 0 ’ initialize sum of call values

SumCallSq = 0 ’ initialize sum of squared values

For i = 1 To M

LogS = LogS0 ’ initialize log of stock price

LogSMin = LogSmin0 ’ initialize log of minimum
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For j = 1 To N

LogS = LogS + nudt + sigsdt * RandN() ’ update log price

LogSMin = Application.Min(LogS, LogSMin) ’ update log min

Next j

CallV = Exp(LogS) - Exp(LogSMin) ’ call at maturity

SumCall = SumCall + CallV ’ sum of call values

SumCallSq = SumCallSq + CallV * CallV ’ sum of squares

Next i

CallV = Exp(-r * T) * SumCall / M

StdError = Exp(-r*T) * Sqr((SumCallSq-SumCall*SumCall/M)/(M*(M-1)))

Floating_Strike_Call_MC_SE = Array(CallV, StdError)

End Function

Binomial Valuation of American Spread Options

To illustrate binomial valuation of basket and spread options, we will consider
an American put written on a spread S1 − S2. The value of the option at
maturity is

max
(
0,K − [S1(T ) − S2(T )]

)
= max

(
0,K − S1(T ) + S2(T )

)
.

We input the stock parameters as vectors S = {S(1), S(2)}, q = {q(1), q(2)},
sigma = {σ(1), σ(2)}. This can be done by inputting a cell range (e.g., A2:B2)
for each variable or by inputting the values enclosed in curly braces (e.g.,
{50, 40}). The following declares certain arrays and defines the binomial pa-
rameters.

Function American_Spread_Put_Binomial(S, K, r, sigma, rho, q, T, N)

’

’ Inputs are S = 2-vector of initial stock prices

’ K = strike price

’ r = risk-free rate

’ sigma = 2-vector of volatilities

’ rho = correlation

’ q = 2-vector of dividend yields

’ T = time to maturity

’ N = number of periods in binomial model

’

Dim dt, num, constant, pud, pdu, puu, pdd, disc

Dim dpud, dpdu, dpuu, dpdd, IntrinsicV, DiscV, x, h, i, j

Dim p(1 To 2), u(1 To 2), d(1 To 2), logu(1 To 2)

Dim nu(1 To 2), u2(1 To 2)

Dim Stock() As Double

Dim PutV() As Double

ReDim Stock(2, N)

ReDim PutV(N, N)

dt = T / N ’ length of time period

For x = 1 To 2 ’ parameters for each stock

nu(x) = r - q(x) - sigma(x) * sigma(x) / 2
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logu(x) = Sqr(sigma(x)*sigma(x)*dt + nu(x)*nu(x)*dt*dt)

u(x) = Exp(logu(x))

d(x) = 1 / u(x)

p(x) = 0.5 * (1 + nu(x) * dt / logu(x))

u2(x) = u(x) * u(x)

Next x

num = rho * sigma(1) * sigma(2) * dt + nu(1) * nu(2) * dt * dt

constant = num / (logu(1) * logu(2))

pud = (p(1) - p(2)) / 2 + (1 - constant) / 4 ’ prob 1 up, 2 down

pdu = pud - p(1) + p(2) ’ prob 1 down, 2 up

puu = p(1) - pud ’ prob both up

pdd = 1 - puu - pud - pdu ’ prob both down

disc = Exp(-r * dt) ’ one-period discount

dpuu = disc * puu ’ prob x discount factor

dpud = disc * pud ’ prob x discount factor

dpdu = disc * pdu ’ prob x discount factor

dpdd = disc * pdd ’ prob x discount factor

In each of the two binomial models, there are N +1 nodes at the last date.
This implies (N + 1)2 possible combinations. We define the put values at the
last date by looping over the N + 1 possibilities for the second stock price,
for each possible value for the first stock price. Rather than recalculating the
N +1 values for the second stock price each time we loop over them, it is more
efficient to store them in a vector. For the sake of simplicity, we will do the
same for the first stock. We store all the prices in a 2× (N+1) array denoted
Stock. We store the put values in an (N +1) × (N +1) array. PutV(0,0) is
the put value when both stocks are at their bottom nodes, PutV(0,1) is the
value when the first stock is at its bottom node and the second stock is one
node up from the bottom, etc.

For x = 1 To 2 ’ for matrix at last date

Stock(x, 0) = S(x) * d(x) ^ N ’ stock x at bottom node

For j = 1 To N ’ step up in tree x

Stock(x, j) = Stock(x, j-1)*u2(x) ’ stock x at node j

Next j

Next x

For j = 0 To N ’ loop over nodes in tree 1

For h = 0 To N ’ loop over nodes in tree 2

PutV(j, h) = Application.Max(K-Stock(1,j)+Stock(2,h),0)

Next h

Next j

Now we back up N times to get to the beginning of the tree, checking the
early exercise condition at each date, and return the put value as PutV(0,0).

For i = N - 1 To 0 Step -1 ’ back up in time to date 0

For x = 1 To 2

Stock(x, 0) = S(x) * d(x) ^ i ’ stock x at bottom node

For j = 1 To i ’ step up in tree x

Stock(x, j) = Stock(x, j-1)*u2(x) ’ stock x at node j

Next j
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Next x

For j = 0 To i ’ loop over nodes in tree 1

For h = 0 To i ’ loop over nodes in tree 2

IntrinsicV = K - Stock(1, j) + Stock(2, h)

DiscV = dpdd * PutV(j, h) + dpdu * PutV(j,h+1) _

+ dpud * PutV(j+1, h) + dpuu * PutV(j+1, h+1)

PutV(j, h) = Application.Max(IntrinsicV, DiscV)

Next h

Next j

Next i

American_Spread_Put_Binomial = PutV(0, 0)

End Function

Cholesky Decomposition

An algorithm for computing the decomposition is as follows. We assume the
L × L matrix has been input as cov, with the interpretation that cov(i,j)
is σiσjρij and cov(i,i) is σ2

i for i, j = 1, . . . , L. We start the indices i, j at 1
because this is the convention when inputting arrays from an Excel worksheet.
The output matrix is also indexed i, j = 1, . . . , L.

Function Cholesky(L, cov)

’

’ Inputs are L = number of assets

’ Cov = L x L matrix of covariances

’

Dim SumSq, SumPr, h, i, j

Dim a()

ReDim a(1 To L, 1 To L)

For i = 1 To L

SumSq = 0

For h = 1 To i - 1

SumSq = SumSq + a(i, h) * a(i, h)

Next h

a(i, i) = Sqr(cov(i, i) - SumSq)

For j = i To L

SumPr = 0

For h = 1 To i - 1

SumPr = SumPr + a(i, h) * a(j, h)

Next h

a(j, i) = (cov(i, j) - SumPr) / a(i, i)

Next j

Next i

Cholesky = a

End Function
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Monte Carlo Valuation of European Basket Options

We input S as the vector of initial asset prices, q as the vector of dividend
yields, cov as the covariance matrix, w as the vector of weights defining the
basket option, and L as the number of assets in the basket. The following
function can also be used to value a spread option, by inputting L = 2 and w
= [1,−1].

Function European_Basket_Call_MC(S, K, r, cov, q, w, T, L, M)

’

’ Inputs are S = L-vector of initial stock prices

’ K = strike price

’ r = risk-free rate

’ Cov = L x L matrix of covariances

’ q = L-vector of dividend yields

’ w = L-vector of basket weights

’ T = time to maturity

’ L = number of assets in the basket

’ M = number of simulations

’

Dim BasketValue, CallV, SumCall, h, i, j

Dim a(), Mean(), z(), Multiplier(), LogS()

ReDim Mean(1 To L)

ReDim z(1 To L)

ReDim Multiplier(1 To L, 1 To L)

ReDim LogS(L)

a = Cholesky(L, cov)

For i = 1 To L

Mean(i) = Log(S(i))+(r-q(i)-0.5*cov(i,i))*T ’ expected log S(i)

For j = 1 To L

Multiplier(i, j) = Sqr(T) * a(i, j)

Next j

Next i

SumCall = 0 ’ initialize sum of option values

For h = 1 To M

BasketValue = 0 ’ initialize portfolio value

For j = 1 To L

z(j) = RandN()

Next j

For i = 1 To L ’ calculate each stock separately

LogS(i) = Mean(i) ’ start at expected log S(i)

For j = 1 To L ’ add L random terms

LogS(i) = LogS(i) + Multiplier(i, j) * z(j)

Next j

BasketValue = BasketValue + w(i) * Exp(LogS(i))

Next i

CallV = Application.Max(BasketValue - K, 0) ’ call value

SumCall = SumCall + CallV ’ update sum

Next h
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European_Basket_Call_MC = Exp(-r * T) * SumCall / M

End Function

Monte Carlo Valuation with an Antithetic Variate

We will illustrate antithetic variates by modifying our previous valuation of a
floating strike call. We denote log S by LogS(1) and log S∗ by LogS(2). We
simulate

∆LogS(1) = ν ∆t + σ∆B

and
∆LogS(2) = ν ∆t − σ∆B .

We compute the minimums LogSMin(1) and LogSMin(2) of the logarithms of
the two stock prices for each simulated path, and compute at the end of each
simulated path the average call value

0.5 × max
(
0, eLogS(1) − eLogSMin(1)

)
+ 0.5 × max

(
0, eLogS(2) − eLogSMin(2)

)
.

Function Floating_Strike_Call_MC_AV_SE(S,r,sigma,q,SMin,T,N,M)

’

’ Inputs are S = initial stock price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = remaining time to maturity

’ Smin = minimum during previous life of contract

’ N = number of time periods

’ M = number of simulations

’

’ This returns the row vector (call value, standard error)

’

Dim LogS0, LogSMin0, sigsdt, nudt, CallV, SumCall, SumCallSq

Dim dt, z, StdError, LogS(1 To 2), LogSMin(1 To 2), i, j

dt = T / N

nudt = (r - q - 0.5 * sigma * sigma) * dt

sigsdt = sigma * Sqr(dt)

LogS0 = Log(S) ’ store log of initial stock price

LogSMin0 = Log(SMin) ’ store log of historical minimum

SumCall = 0 ’ initialize sum of values

SumCallSq = 0 ’ initialize sum of squared values

For i = 1 To M

LogS(1) = LogS0 ’ initialize log stock price

LogS(2) = LogS0 ’ initialize log stock price

LogSMin(1) = LogSMin0 ’ initialize historical log min

LogSMin(2) = LogSMin0 ’ initialize historical log min

For j = 1 To N

z = RandN()
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LogS(1) = LogS(1) + nudt + sigsdt * z

LogS(2) = LogS(2) + nudt - sigsdt * z

LogSMin(1) = Application.Min(LogS(1), LogSMin(1))

LogSMin(2) = Application.Min(LogS(2), LogSMin(2))

Next j

CallV = 0.5 * (Exp(LogS(1)) - Exp(LogSMin(1))) _

+ 0.5 * (Exp(LogS(2)) - Exp(LogSMin(2)))

SumCall = SumCall + CallV ’ sum of call values

SumCallSq = SumCallSq + CallV * CallV ’ sum of squares

Next i

CallV = Exp(-r * T) * SumCall / M

StdError = Exp(-r*T)*Sqr((SumCallSq-SumCall*SumCall/M)/(M*(M-1)))

Floating_Strike_Call_MC_AV_SE = Array(CallV, StdError)

End Function

Monte Carlo Valuation with a Control Variate

We use the geometric average as a control variate for the arithmetic average in
an average-price call, using a pre-sample to estimate the beta. For pedagogic
purposes, we return the beta in addition to the call value.

Function Average_Price_Call_MC(S,K,r,sigma,q,Avg,TPast,TFut,N,M1,M2)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ Avg = average price during past life of contract

’ TPast = time since creation of contract

’ TFut = remaining time to maturity

’ N = number of time periods

’ M1 = number of simulations in the pre-sample

’ M2 = number of simulations in the sample

’ and geometric averages

’

’ This returns the row vector (call value, beta)

’

Dim Kstar, dt, nudt, sigsdt, disc, x, y, LogS0, LogS, SumS, SumLogS

Dim Sumx, Sumx2, Sumy, Sumy2, Sumxy, beta, phi, CallV, i, j

Kstar = (TFut + TPast) * K / TFut - TPast * Avg / TFut

dt = TFut / N

nudt = (r - q - 0.5 * sigma * sigma) * dt

sigsdt = sigma * Sqr(dt)

disc = Exp(-r * TFut)

LogS0 = Log(S) ’ store log stock price

’

’ First we compute the known mean for the geometric average

’
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phi = Discrete_Geom_Average_Price_Call(S,Kstar,r,sigma,q,TFut,N)

’

’ Now we run the pre-sample to estimate the regression beta

’

Sumx = 0 ’ sum of arithmetic option values

Sumx2 = 0 ’ sum of squared arithmetic values

Sumy = 0 ’ sum of geometric option values

Sumy2 = 0 ’ sum of squared geometric values

Sumxy = 0 ’ sum of products

For i = 1 To M1

LogS = LogS0 ’ initialize log stock price

SumS = 0 ’ initialize sum of stock prices

SumLogS = 0 ’ initialize sum of log stock prices

For j = 1 To N

LogS = LogS + nudt + sigsdt * RandN() ’ update log price

SumS = SumS + Exp(LogS) ’ update sum of prices

SumLogS = SumLogS + LogS ’ update sum of logs

Next j

x = disc*Application.Max(SumS/N-Kstar,0) ’ arithmetic

y = disc*Application.Max(Exp(SumLogS/N)-Kstar,0) ’ geometric

Sumx = Sumx + x ’ sum of arithmetic values

Sumx2 = Sumx2 + x * x ’ sum of squared arithmetic values

Sumy = Sumy + y ’ sum of geometric values

Sumy2 = Sumy2 + y * y ’ sum of squared geometric values

Sumxy = Sumxy + x * y ’ sum of products

Next i

beta = (M1*Sumxy-Sumx*Sumy)/(M1*Sumy2-Sumy*Sumy) ’ regression beta

’

’ Now we compute sample arithmetic and geometric averages

’

Sumx = 0 ’ sum of arithmetic option values

Sumy = 0 ’ sum of geometric option values

For i = 1 To M2

LogS = LogS0 ’ initialize log stock price

SumS = 0 ’ initialize sum of stock prices

SumLogS = 0 ’ initialize sum of log stock prices

For j = 1 To N

LogS = LogS + nudt + sigsdt * RandN() ’ update log price

SumS = SumS + Exp(LogS) ’ update sum ofprices

SumLogS = SumLogS + LogS ’ update sum of logs

Next j

x = disc*Application.Max(SumS/N-Kstar,0) ’ arithmetic

y = disc*Application.Max(Exp(SumLogS/N)-Kstar,0) ’ geometric

Sumx = Sumx + x ’ total of arithmetic values

Sumy = Sumy + y ’ total of geometric values

Next i

’

’ Now we adjust the sample arithmetic average

’
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CallV = (TFut/(TFut+TPast))*(Sumx/M2+beta*(phi-Sumy/M2))

Average_Price_Call_MC = Array(CallV, beta)

End Function

Accelerated Binomial Valuation of American Puts

First we create a binomial valuation program that replaces (i) calculation
of the intrinsic value at maturity and (ii) calculation of the value at the
penultimate date as the larger of intrinsic value and the discounted value
at maturity with (iii) calculation of the value at the penultimate date as the
larger of intrinsic value and the Black-Scholes value of a European option with
one period to maturity.

Function American_Put_Binomial_BS(S0, K, r, sigma, q, T, N)

’

’ Inputs are S0 = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’ N = number of time periods

’

Dim dt, u, d, pu, dpu, dpd, u2, S, i, j

Dim PutV() As Double

ReDim PutV(N)

dt = T / N ’ length of time period

u = Exp(sigma * Sqr(dt)) ’ size of up step

d = 1 / u ’ size of down step

pu = (Exp((r - q) * dt) - d) / (u - d) ’ prob of up step

dpu = Exp(-r * dt) * pu ’ discount x up prob

dpd = Exp(-r * dt) * (1 - pu) ’ discount x down prob

u2 = u * u

’

’ First we value at the penultimate date

’

S = S0 * d ^ (N - 1) ’ bottom stock price

PutV(0) = Application.Max(K-S,Black_Scholes_Put(S,K,r,sigma,q,dt))

For j = 1 To N - 1 ’ step up over nodes

S = S * u2

PutV(j) = _

Application.Max(K-S,Black_Scholes_Put(S,K,r,sigma,q,dt))

Next j

’

’ Now we back up to date 0 as before

’

For i = N - 2 To 0 Step -1

S = S0 * d ^ i ’ bottom stock price
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PutV(0) = Application.Max(K-S,dpd*PutV(0)+dpu*PutV(1))

For j = 1 To i ’ step up over nodes

S = S * u2

PutV(j) = Application.Max(K-S,dpd*PutV(j)+dpu*PutV(j+1))

Next j

Next i

American_Put_Binomial_BS = PutV(0)

End Function

Now we create a program that uses Richardson extrapolation from a binomial
model with N periods and a binomial model with N/2 periods to estimate
the value from a binomial model with an infinite number of periods. We use
the previous program as our binomial model.

Function American_Put_Binomial_BS_RE(S, K, r, sigma, q, T, N)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’ N = number of time periods

’

Dim y2, y1

If Not (N / 2 = Round(N / 2, 0)) Then

MsgBox ("Number of periods N should be a multiple of two.")

Exit Function

End If

y2 = American_Put_Binomial_BS(S, K, r, sigma, q, T, N)

y1 = American_Put_Binomial_BS(S, K, r, sigma, q, T, N / 2)

American_Put_Binomial_BS_RE = 2 * y2 - y1

End Function

Problems

9.1. Create an Excel worksheet in which the user inputs S, r, σ, q, Smin, T ,
N and M . Compute the value of a floating strike call by Monte Carlo with
and without using an antithetic variate. Compare the standard errors.

9.2. Create an Excel worksheet to compare the estimates of the value of an
American put given by the functions

American_Put_Binomial

and

American_Put_Binomial_BS_RE
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for various values of N . Allow the user to input S, K, r, σ, q, and T . To assess
the quality of the estimates, provide also the estimate given by the function
American_Put_Binomial with a large value of N (say N = 1000).

9.3. Estimate the value of option (c) in Prob. 8.11 using the function

Average_Price_Call_MC.

Complete the simulations in Prob. 8.12 by including the cost of the options
for hedge (c).

9.4. Create a VBA function European_Basket_Call_Binomial to value a
basket option on two assets.

9.5. Create a VBA function European_Basket_Call_Binomial_RE that calls
the function from Prob. 9.4 and uses Richardson extrapolation to estimate
the value of a basket call in a binomial model with N = ∞.

9.6. Create a VBA function European_Basket_Call_MC_AV that uses Monte
Carlo with an antithetic variate to value a basket call option. Create an Excel
worksheet to compare the standard errors of the estimates from the functions
European_Basket_Call_MC and European_Basket_Call_MC_AV for a call on
a basket of three assets. Allow the user to input S, K, r, cov, q, w, T , and M .
Recall that S, cov, q and w are arrays.

9.7. Create an Excel worksheet to compare the estimates of the value of a
basket call on two assets given by the binomial model (with and without
Richardson extrapolation) and Monte Carlo (with and without an antithetic
variate) for various values of N and M . To assess the quality of the estimates,
provide also the estimate given by the binomial model without Richardson
extrapolation with N = 100.

9.8. Suppose you must purchase 100 units of each of two assets at the end
of the quarter (T = 0.25). You want to hedge the cost at the beginning of
the quarter. Use simulation in an Excel worksheet to compare the quality of
the following hedges (assuming 100 contracts for each option in (a) and 200
contracts in (b) and (c)):

(a) standard European calls for both assets,
(b) a basket call written on both assets (with w1 = w2 = 0.5),
(c) a call on the maximum of the two asset prices

Assume the two assets have the same initial price S and the options are all
at the money at the beginning of the quarter. Allow the user to input S, r,
σ1, σ2, ρ, q1, and q2. Compare the quality of the hedges as in Prob. 8.7.

9.9. Compute the prices of the options in the previous exercise (using a bi-
nomial model or Monte Carlo for the basket option). Compare the hedges
including the costs of the options as in Prob. 8.8.
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9.10. Create a VBA function American_Spread_Put_Binomial_RE that calls
American_Spread_Put_Binomial and uses Richardson extrapolation to es-
timate the value of an American spread put for N = ∞. Create an Excel
spreadsheet to compare the estimates of the functions as in Prob. 9.7.

9.11. Create a VBA function Down_And_Out_Call_MC using Monte Carlo to
value a discretely sampled down-and-out call option. The inputs should be S,
K, r, σ, q, N , M and Barrier.

9.12. Create a VBA function Down_And_Out_Call_MC_CV that uses Monte
Carlo to value a discretely sampled down-and-out call option and that uses a
standard European call as a control variate.
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Finite Difference Methods

In this chapter we will see how to estimate derivative values by numerically
solving the partial differential equation (pde) that the derivative value satis-
fies, using finite difference methods. More advanced discussions of this topic
can be found in Wilmott, DeWynne and Howison [64], Wilmott [63], and
Tavella [60], among other places. We will only consider derivatives written on
a single underlying asset, but the ideas generalize to derivatives written on
multiple underlying assets (e.g., basket and spread options) in much the same
way that binomial models can be applied to derivatives on multiple underlying
assets. The curse of dimensionality is the same for finite difference methods
as for binomial models—the computation time increases exponentially with
the number of underlying assets.

10.1 Fundamental PDE

Consider an asset with price S and constant dividend yield q. Set X = log S.
Then we have

dX = ν dt + σ dB ,

where ν = r − q − σ2/2 and B is a Brownian motion under the risk-neutral
measure.

Let T denote the maturity date of a derivative security. At time t (when
the remaining time to maturity is T−t), assume the price of the derivative can
be represented as C(t,X(t)).1 Since C is a function of t and X, Itô’s formula
implies
1 If the price of the derivative is a function of the asset price S and time, then we

can always write it in this form as a function of the natural logarithm of S and
time.
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dC =
∂C

∂t
dt +

∂C

∂X
dX +

1
2

∂2C

∂X2
(dX)2

=
∂C

∂t
dt +

∂C

∂X

(
ν dt + σ dB

)
+

1
2

∂2C

∂X2
σ2 dt . (10.1)

On the other hand, under the risk-neutral measure, the instantaneous ex-
pected rate of return on the derivative is the risk-free rate, so

dC

C
= r dt + something dB .

where the “something” is the volatility of the derivative value. We can of
course rearrange this as

dC = rC dt + something C dB . (10.2)

In order for both (10.1) and (10.2) to hold, the drifts on both right-hand sides
must be equal.2 This implies

rC =
∂C

∂t
+ ν

∂C

∂X
+

1
2
σ2 ∂2C

∂X2
. (10.3)

This equation is the “fundamental pde.” It is an equation that we want to solve
for the function C. Every derivative written on S satisfies this same equation.
Different derivatives have different values because of boundary conditions. The
boundary conditions are the intrinsic value at maturity, optimality conditions
for early exercise, barriers and the like.

To translate the terms in (10.3) into more familiar ones, notice that, be-
cause S = eX , we have

∂S

∂X
= eX = S .

Therefore, by the chain rule of calculus,

∂C

∂X
=

∂C

∂S

∂S

∂X
= S

∂C

∂S
.

Thus the term ∂C/∂X is the delta of the derivative multiplied by the price
of the underlying. Similarly, by ordinary calculus, the term ∂2C/∂X2 can be
written in terms of the delta and the gamma of the derivative.

Sometimes one writes the derivative value as a function of time to maturity
(τ = T − t) instead of t. The partial derivative of C with respect to τ is the
negative of the partial derivative with respect to t, so the fundamental pde is
2 Suppose a process X satisfies dX = α1 dt+σ1 dB = α2 dt+σ2 dB for coefficients

αi and σi. This implies (α1 − α2) dt = (σ2 − σ2) dB. The right-hand side defines
a (local) martingale and the left-hand side defines a continuous finite-variation
process. As discussed in Sect. 2.2, the only continuous finite-variation martingales
are constants, so the changes must be zero; i.e., α1 = α2 and σ1 = σ2.
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the same except for a different sign on the first term of the right-hand side of
(10.3). Rearranging a little, we have

∂C

∂τ
= −rC + ν

∂C

∂X
+

1
2
σ2 ∂2C

∂X2
. (10.3′)

In this form, the pde is similar to important equations in physics, in particular
the equation for how heat propagates through a rod over time. In fact, it can
be transformed exactly into the heat equation, which is how Black and Scholes
originally solved the option valuation problem. The terminal condition for a
call option, C = max(S − K, 0), can be viewed as defining C over the X
dimension at τ = 0, just as the temperature along the length of the rod might
be specified at an initial date, and as τ increases C changes at each point X
according to (10.3′), which is similar, as noted, to the equation for the change
in temperature at a point on the rod as time passes.

10.2 Discretizing the PDE

To numerically solve the fundamental pde, we consider a discrete grid on the
(t, x) space. We label the time points as t0, t1, t2, . . . , tN , and the x points
as x−M , x−M+1, . . . , x0, x1, . . . , xM , with t0 = 0, tN = T , and x0 = log S(0).
The equation should hold for −∞ < x < ∞, but obviously we will have to
bound this space, and we have denoted the upper and lower bounds by xM

and x−M here. We take the points to be evenly spaced and set ∆t = ti − ti−1

and ∆x = xj − xj−1 for any i and j.
For specificity, we will consider a call option, though the discussion in this

section applies to any derivative. We will compute a value for the call at each
of the points on the grid. Then we return the value of the call at the point
(t0, x0).

Consider a point (ti, xj). We could denote the estimated value of the call at
this point by Cij but for now we will just use the symbol C. Think of t being
on the horizontal axis and x on the vertical axis. There are four points that
can be reached from (ti, xj) by one step (an increase or decrease) in either t
or x. Let’s denote the estimated call value at (ti, xj + ∆x) as Cup, the value
at (ti, xj −∆x) as Cdown, the value at (ti + ∆t, xj) as Cright and the value at
(ti − ∆t, xj) as Cleft.

We want to force (10.3) to hold on the grid. To estimate ∂C/∂X and
∂2C/∂X2, we make exactly the same calculations we made to estimate deltas
and gammas in a binomial model. At the point (ti, xj), we estimate

∂C

∂X
≈ Cup − Cdown

2∆x
. (10.4a)

There are two other obvious estimates of this derivative:

Cup − C

∆x
and

C − Cdown

∆x
.
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The first of these should be understood as an estimate at the midpoint of
xj and xj + ∆x and the second as an estimate at the midpoint of xj and
xj − ∆x. The distance between these two midpoints is ∆x, so the difference
in these two estimates of ∂C/∂X divided by ∆x is an estimate of the second
derivative:

∂2C

∂X2
≈ Cup − 2C + Cdown

(∆x)2
. (10.4b)

The obvious estimate of ∂C/∂t, which is analogous to the estimate of
∂C/∂X, is

Cright − Cleft

2∆t
.

This is not the estimate we are going to use. The reason is that we want to
solve for the call values on the grid in much the same way that we solved the
binomial model—starting at the end and working backwards. If we use the
above estimate of the time derivative, then at each point (ti, xj), equation
(10.3) will link the call values at times ti−1, ti and ti+1. This would substan-
tially complicate the “backing up” process. However, in a sense, it is the right
estimate, and the Crank-Nicolson method to be discussed below uses a similar
idea.

The other two choices for estimating ∂C/∂t are analogous to the other two
choices for estimating ∂C/∂X. We can use either

∂C

∂t
≈ C − Cleft

∆t
, (10.4c)

or

∂C

∂t
≈ Cright − C

∆t
. (10.4c′)

Using the first is called the “explicit” method of solving the pde, and using
the second is called the “implicit” method. The reason for these names should
become clear below.

10.3 Explicit and Implicit Methods

We first consider the explicit method. We set the value of the call at the final
date tN and each point xj to be its intrinsic value, max (exj − K, 0). Now
consider calculating the value at date tN−1 and any point xj . We do this
by forcing the approximation to (10.3) based on (10.4a)–(10.4c) to hold at
the point (tN , xj). Using the same notation as before, for (ti, xj) = (tN , xj),
implies

rC =
C − Cleft

∆t
+ ν

(
Cup − Cdown

2∆x

)
+

1
2
σ2

(
Cup + Cdown − 2C

(∆x)2

)
. (10.5)
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Given that ti is the final date tN , the values C, Cup and Cdown have already
been calculated as the intrinsic value of the call at maturity. The only unknown
is Cleft, which is the value of the call at (tN−1, xj). We can solve this explicitly
for Cleft, whence the name of the algorithm. We do this at each point xj at
date tN−1 (except for the top and bottom points, which we will discuss below)
and then we follow the same procedure to back up sequentially to the initial
date, as in the binomial model.

Equation (10.5) cannot be used to find Cleft at the bottom point x−M ,
because at this point there is no Cdown at date tN . Similarly, we cannot use it
to find Cleft at the top point xM , because at that point there is no Cup. We
have to define the values along the top and bottom of the grid in some other
fashion. We do this using conditions the derivative is known to satisfy as the
stock price approaches +∞ or 0. For example, for a European call option, we
use the conditions that ∂C/∂S → 1 as S → ∞ and ∂C/∂S → 0 as S → 0.
We will explain this in more detail in the following section.

The solution of (10.5) for Cleft can be written as

Cleft =
(
1 − r∆t

)(
puCup + pC + pdCdown

)
, (10.5′)

where

pu =
σ2∆t + ν∆t∆x

2(1 − r∆t)(∆x)2
,

pd =
σ2∆t − ν∆t∆x

2(1 − r∆t)(∆x)2
,

and

p = 1 − pu − pd .

This can be interpreted as discounting the probability-weighted values of the
call at the next date, where we consider that starting at the grid point (ti, xj),
the logarithm of the stock price takes three possible values (xj −∆x, xj , and
xj + ∆x) at the next date ti+1, and where we use 1 − r∆t as the discount
factor. Thus, it is essentially a trinomial model. This relationship was first
noted by Brennan and Schwartz [11].

Actually, for this to be a sensible trinomial model, the “probabilities” pu,
p and pd should be nonnegative. Assuming 1 − r∆t > 0, this will be the case
if and only if

∆x ≤ σ2

|ν| and ∆t ≤ (∆x)2

σ2 + r(∆x)2
.

The first of these conditions characterizes pu and pd being nonnegative. The
second is derived from pu+pd ≤ 1. It is interesting to examine these conditions
in terms of the number N of time periods and the number of steps in the x
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dimension, which is 2M . To simplify the notation in the following somewhat,
denote the distance of the upper x boundary from x0 by D (i.e., D = xM−x0).
Then ∆t = T/N and ∆x = D/M . The probabilities are nonnegative if and
only if

M ≥ |ν|D
σ2

and N ≥ rT +
(

σ2T

D2

)
M2 .

Consider fixing D and increasing the number of time periods and space steps
(i.e., steps along the x dimension). To maintain positive probabilities, the
above shows that the number of time periods must increase as the square of
the number of space steps: increasing M by a factor of 10 requires increasing N
by a factor of 100. The upshot is it can be computationally expensive to use a
large number of space steps, if we want to maintain nonnegative probabilities.

One can reasonably ask whether this is important, because we can certainly
solve (10.5) to estimate the call values even when the “probabilities” are
negative. The answer is that it is important, but for a reason we have not yet
discussed. In a numerical algorithm for solving a partial differential equation
(or for solving many other types of problems) there are two types of errors:
discretization error and roundoff error. If we increase N and M sufficiently,
we should reduce the discretization error. However, each calculation on the
computer introduces roundoff error. An algorithm is said to be “stable” if the
roundoff errors stay small and bounded as the discretization error is reduced.
An unfortunate fact about the explicit method is that it is stable only if the
number of time steps increases with the square of the number of space steps. In
the absence of this condition, the roundoff errors can accumulate and prevent
one from reaching a solution of the desired accuracy.

The implicit method is known to be fully stable, so it is to be preferred to
the explicit method. We will discuss briefly how to implement this method,
before moving in the next section to the “Crank-Nicolson” method, which is
also fully stable and known to be more efficient than the implicit method.

The implicit method uses the approximation (10.4c′) for ∂C/∂t. As before,
the call values are defined at the final date as the intrinsic value. Backing up a
period, consider a grid point (tN−1, xj). We will try to estimate the call value
at this date by forcing (10.3) to hold at this point. This means

rC =
Cright − C

∆t
+ ν

(
Cup − Cdown

2∆x

)
+

1
2
σ2

(
Cup + Cdown − 2C

(∆x)2

)
. (10.6)

We know Cright, because it is the intrinsic value at (tN , xj). This equation
links three unknowns (C, Cup, and Cdown) to the known value Cright. We
cannot solve it explicitly for these three unknowns. Instead, we need to solve
a system of linear equations to simultaneously solve for all the call values at
date tN−1. There are 2M −1 equations of the form (10.6) plus conditions that
we will impose at the upper and lower boundaries, and we need to solve these
for the 2M + 1 call values. This system of equations has the same form, and
is solved in the same way, as the system of equations in the Crank-Nicolson
method.
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10.4 Crank-Nicolson

The estimate (10.4c′) of ∂C/∂t used in the implicit method is best understood
as an estimate of ∂C/∂t at the midpoint of (ti, xj) and (ti+1, xj), i.e., at
(ti + ∆t/2, xj). This is the basic idea of the Crank-Nicolson method. With
this method, we continue to estimate the call values at the grid points, but
we do so by forcing (10.3) to hold at midpoints of this type. To do this, we
also need estimates of C, ∂C/∂X and ∂2C/∂X2 at the midpoints, but these
are easy to obtain.

Let’s modify the previous notation somewhat, writing C ′ for Cright and
C ′

up and C ′
down for the values to the right and one step up and down, i.e., at

the grid points (ti + ∆t, xj + ∆x) and (ti + ∆t, xj − ∆x) respectively. The
obvious estimate of the call value at the midpoint (ti+∆t/2, xj) is the average
of C and C ′, so set

Cmid =
C + C ′

2
.

Analogously, define

Cmid
up =

Cup + C ′
up

2
, and Cmid

down =
Cdown + C ′

down

2
. (10.7)

The formulas (10.7) give us estimates of the call value at the midpoints one
space step up and one space step down from xj—i.e., at (ti +∆t/2, xj+1) and
(ti+∆t/2, xj−1). We can now estimate ∂C/∂X and ∂2C/∂X2 at the midpoint
(ti + ∆t/2, xj) exactly as before:

∂C

∂X
≈ Cmid

up − Cmid
down

2∆x
,

and
∂2C

∂X2
≈ Cmid

up + Cmid
down − 2Cmid

(∆x)2
.

Now, (10.3) becomes

rCmid =
C ′ − C

∆t
+ ν

(
Cmid

up − Cmid
down

2∆x

)
+

1
2
σ2

(
Cmid

up + Cmid
down − 2Cmid

(∆x)2

)
.

(10.8)
Substituting from the formulas for Cmid, Cmid

up , and Cmid
down, we can re-write

(10.8) as(
r

2
+

1
∆t

+
σ2

2(∆x)2

)
C −

(
σ2

4(∆x)2
+

ν

4∆x

)
Cup

−
(

σ2

4(∆x)2
− ν

4∆x

)
Cdown =

(
1

∆t
− r

2
− σ2

2(∆x)2

)
C ′

+
(

σ2

4(∆x)2
+

ν

4∆x

)
C ′

up +
(

σ2

4(∆x)2
− ν

4∆x

)
C ′

down (10.8′)
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We can also write this as

a1C − a2Cup − a3Cdown = a4C
′ + a2C

′
up + a3C

′
down , (10.8′′)

where the constants ai are the factors in parentheses in (10.8′).
As before, we start at the final date tN and define the call value at that

date by its intrinsic value. Consider a grid point (tN−1, xj). Forcing (10.3) to
hold at the midpoint (tN−1 + ∆t/2, xj) leads us to (10.8′′). In this equation,
C ′, C ′

up and C ′
down are known from the intrinsic value at maturity, and we

need to solve for C, Cup and Cdown. There are 2M − 1 linear equations of
this type and we will add linear equations at the upper and lower boundaries
of the grid and solve the resulting system of 2M + 1 linear equations for the
2M + 1 call values. After finding the call values at date tN−1, we then repeat
the calculation at tN−2 and continue backing up in this way until we reach
the initial date.

Notice that the Crank-Nicolson equations (10.8′) are similar to the equa-
tions (10.6) in the implicit method, but more information is used in each
step of the Crank-Nicolson method than is used in each step of the implicit
method. Equation (10.8′) links the call values C, Cup and Cdown to the pre-
viously calculated C ′, C ′

up and C ′
down, whereas in the implicit method they

were linked only to C ′ (which we called Cright).

10.5 European Options

To value a European option, one simply defines the values at the final date
as the intrinsic value and then backs up to the initial date, using any of
the methods described (explicit, implicit, or Crank-Nicolson). The value that
should be returned is the value at the middle node at the initial date, which
corresponds to the initial price of the underlying.

The boundary conditions normally used at the bottom and top of the grid
are conditions that the first derivative ∂C/∂S of the option value are known
to satisfy as S → 0 and S → ∞. These are conditions of the form

lim
S→∞

∂C

∂S
= λ0 , and lim

S→0

∂C

∂S
= λ∞ , (10.9)

for constants λ0 and λ∞. In the case of a call option, we have λ0 = 0 and
λ∞ = 1. For a put option, we have λ0 = −1 and λ∞ = 0.

These conditions are implemented on the grid by forcing each value C at
a point (ti, x−M ) on the bottom of the grid to satisfy

C − Cup = λ0(S − Sup) (10.10a)

and by forcing each value C at a point (ti, xM ) on the top of the grid to satisfy

C − Cdown = λ∞(S − Sdown) . (10.10b)
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These two linear equations in the values at time ti augment the 2M − 1
equations already described to form a system of 2M + 1 linear equations to
be solved for the derivative values at the 2M + 1 grid points at time ti.

10.6 American Options

The explicit method is easily adapted to American options. As in a binomial
model, we compute the option value at each node as the larger of its discounted
expected value and its intrinsic value. To be somewhat more precise, we replace
the “trinomial” value (10.5′) with

Cleft = max
((

1 − r∆t
)(

puCup + pC + pdCdown

)
, intrinsic value

)
.

In the Crank-Nicolson method, one can in similar fashion compute the value
of the derivative at each space node at any date by solving the system of
equations (10.8′′) and then replace the computed values by the intrinsic value
when that is higher. However, because the values at the different space nodes
are linked (i.e., the method is an implicit-type method), this one-at-a-time
replacement of values by intrinsic values is not the most efficient method. See
Wilmott [63] for more details (and for VBA code implementing the “projected
successive over-relaxation” method).

10.7 Barrier Options

Finite-difference methods work well for valuing discretely-sampled barrier op-
tions. For a down-and-out option, one should place the bottom of the grid
at the knock-out boundary. For an up-and-out option, one should place the
top of the grid at the knock-out boundary. As discussed in Chap. 8, knock-in
options can be valued as standard options minus knock-out options.

For barrier options, the boundary information (10.9) can be replaced by
assigning a value of zero at the knock-out boundary. For example, for a down-
and-out option, the condition (10.10a) can be replaced by C = 0. If the
contract specifies that a rebate is to be paid to the buyer when the option is
knocked out, then condition (10.10a) should be replaced by C = Rebate.

10.8 Calculations in VBA

Crank-Nicolson

We will create a program that solves a system of equations of the form (10.8′′),
(10.10a) and (10.10b). We input the vector a of coefficients, a vector y of
dimension 2M + 1 containing the estimated values of the derivative at any
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date ti+1, and an integer L from which M is defined as M = (L − 1)/2 (i.e.,
L = 2M + 1). The function will return the vector of values at date ti.

We will write the boundary conditions (10.10a) and (10.10b), respectively,
in the more general forms

C = z1 + b1Cup , (10.11a)

and
C = zL + bLCdown , (10.11b)

where z1, b1, zL and bL are numbers to be calculated or input by the user. The
equations (10.10a) and (10.10b) are the special cases in which z1 = λ0(S −
Sup), b1 = 1, zL = λ∞(S − Sdown), and bL = 1. The additional generality in
allowing b1 and bL to be different from one is important for many purposes,
and we will see an example of it in the valuation of barrier options.

The system of equations that we want to solve is therefore⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −b1 0 0 0 · · · 0 0 0 0 0
−a3 a1 −a2 0 0 · · · 0 0 0 0 0
0 −a3 a1 −a2 0 · · · 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 −a3 a1 −a2 0
0 0 0 0 0 · · · 0 0 −a3 a1 −a2

0 0 0 0 0 · · · 0 0 0 −bL 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1

C2

C3

...
CL−2

CL−1

CL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1

z2

z3

...
zL−2

zL−1

zL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where we are denoting the derivative values to be determined at date ti across
the L (= 2M +1) space nodes as C1, . . . , CL. The coefficients ai are defined in
(10.8′′). The numbers z2, . . . , zL−1 are the right-hand sides of (10.8′′) and are
determined by the coefficients ai and the derivative values y1, . . . , yL at date
ti+1. The system of equations that must be solved to implement the implicit
method is of this same form.

The first equation in this array (equation (10.11a)) can be written as

C1 = u1 + b1C2 , (10.12a)

where u1 = z1. By induction, we will see that we can write, for each j =
2, . . . , L,

Cj−1 = uj−1 + bj−1Cj (10.12b)

for some coefficients uj−1 and bj−1 to be determined. The j–th equation (j =
2, . . . , L − 1) in the array (equation (10.8′′)) is

−a3Cj−1 + a1Cj − a2Cj+1 = zj .

Supposing (10.12b) holds and using it to substitute for Cj−1, we have

−a3 (uj−1 + bj−1Cj) + a1Cj − a2Cj+1 = zj ⇐⇒ Cj = uj + bjCj+1 ,
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where

uj =
zj + a3uj−1

a1 − a3bj−1
,

bj =
a2

a1 − a3bj−1
.

This establishes that (10.12b) holds for each j = 2, . . . , L.
The last equation in the array (equation (10.11b)) is

CL = zL + bLCL−1 . (10.12c)

Our induction argument gives us

CL−1 = uL−1 + bL−1CL ,

and when we combine these we have two equations in two unknowns and can
solve for CL as

CL =
zL + bLuL−1

1 − bLbL−1
.

We then successively obtain CL−1, CL−2, . . . , C1 from (10.12b).

Function CrankNicolson(a, y, L, z1, b1, zL, bL)

’

’ Inputs are a = 4-vector of coefficients

’ y = L-vector of function values at a point in time

’ L = number of space points in the grid

’ z1 = constant for bottom boundary condition

’ b1 = coefficient for bottom boundary condition

’ zL = constant for top boundary condition

’ bL = coefficient for top boundary condition

’

’ This returns a row vector of function values

’

Dim c(), b(), u(), z(), j

ReDim c(1 To L), b(1 To L), u(1 To L), z(1 To L)

u(1) = z1

b(1) = b1

For j = 2 To L - 1

z(j) = a(4) * y(j) + a(2) * y(j + 1) + a(3) * y(j - 1)

u(j) = (a(3) * u(j - 1) + z(j)) / (a(1) - a(3) * b(j - 1))

b(j) = a(2) / (a(1) - a(3) * b(j - 1))

Next j

c(L) = (zL + bL * u(L - 1)) / (1 - bL * b(L - 1))

For j = L - 1 To 1 Step -1

c(j) = u(j) + b(j) * c(j + 1)

Next j

CrankNicolson = c

End Function
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Crank-Nicolson for European Options

We will demonstrate the Crank-Nicolson method by valuing a European call.
Any other path-independent European derivative is valued in the same way,
by appropriately redefining the value of the derivative at the final date and
redefining the constants z1 and zL in the boundary conditions (10.11) at the
bottom and top of the grid.

As elsewhere in this chapter, N denotes the number of time periods, and
2M + 1 will be the number of x values on the grid. We use the symbol D
to denote the distance of the top (or bottom) of the grid from log S(0). In
other words, D = xM −x0. A reasonable value for D would be three standard
deviations for log S, which would mean D = |ν|T +3σ

√
T . For example, for a

one-year option on a stock with a volatility of 30%, it should suffice to input
D = 1.

As should be clear, the program is conceptually very similar to a binomial
model. The difference is that the “backing up” procedure, which involves
node-by-node discounting in a binomial model, here is accomplished via the
Crank-Nicolson algorithm.3

Function European_Call_CrankNicolson(S0,K,r,sigma,q,T,N,M,Dist)

’

’ Inputs are S0 = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’ N = number of time periods

’ M = number of space points above (or below) log(S0)

’ Dist = distance of boundary of grid from log(S0)

’

Dim dt, dx, dx2, u, sig2, nu, St, Sb, S, z1, b1, zL, bL, i, j, L

Dim CallV, y(), a(1 To 4)

L = 2 * M + 1 ’ number of space points in the grid

ReDim y(1 To L)

’

’ First we define parameters

’

dt = T / N ’ size of each time step

dx = Dist / M ’ size of each space step

dx2 = dx * dx

u = Exp(dx) ’ up parameter, same as in binomial model

3 We use a different variable (y) for the call values at the final date—and conse-
quently need to separate the first step of backing up (to the penultimate date)
and the other steps of backing up (to date zero)—because element-by-element
definition of an array and assignment of an array to a variable require different
variable types in VBA. See Appendix A for more discussion.
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sig2 = sigma * sigma

nu = r - q - sig2 / 2 ’ risk-neutral drift

St = S0 * Exp(Dist) ’ stock price at the top nodes

Sb = S0 * Exp(-Dist) ’ stock price at the bottom nodes

a(1) = r / 2 + 1 / dt + sig2 / (2 * dx2)

a(2) = sig2 / (4 * dx2) + nu / (4 * dx)

a(3) = a(2) - nu / (2 * dx)

a(4) = -a(1) + 2 / dt

’

’ Now we compute the call value at the final date

’

S = Sb

y(1) = Application.Max(S - K, 0)

For j = 2 To L ’ loop over nodes at last date

S = S * u

y(j) = Application.Max(S - K, 0)

Next j

’

’ Now we calculate the call value at the penultimate date

’

z1 = 0 ’ constant for bottom boundary condition

b1 = 1 ’ coefficient for bottom boundary condition

zL = St - St / u ’ constant for top boundary condition

bL = 1 ’ coefficient for top boundary condition

CallV = CrankNicolson(a, y, L, z1, b1, zL, bL)

’

’ Now we back up to date 0

’

For i = (N - 2) To 0 Step -1

CallV = CrankNicolson(a, CallV, L, z1, b1, zL, bL)

Next i

European_Call_CrankNicolson = CallV(M + 1) ’ value at middle node

End Function

Crank-Nicolson for Barrier Options

To price a down-and-out (or up-and-out option), we put the bottom (or top)
of the grid at the boundary. The boundary condition that we use is that the
value at the boundary is zero. We will consider the example of a down-and-out
call option. In this case, the boundary condition at the bottom of the grid is
(10.11a) with z1 = 0 and b1 = 0. The boundary condition at the top is the
same as for an ordinary call. We can easily handle a rebate paid when the
option is knocked out by inputting the value of the rebate as z1.

The main new issue that we encounter in valuing barriers is locating the
boundary of the grid at the barrier. For the down-and-out, we will input the
value of the stock price at which the option is knocked out as Bar. We want
the bottom of the grid to lie at the natural logarithm of this number. This
will influence our choice of the space step ∆x, because we want to have an
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integer number of steps between the bottom of the grid and log S(0). We
assume that the value M input by the user represents the desired number of
space steps above log S(0). We start with ∆x = D/M as an initial estimate
of the size of the space step. We then decrease it, if necessary, to ensure
that the distance between Bar and log S(0) is an integer multiple of ∆x. We
then increase M , if necessary, to ensure that the top of the grid will still
be at or above D + log S(0). Finally, we define the top of the grid to be at
log S(0) + M · ∆x.

Function Down_And_Out_Call_CN(S0,K,r,sigma,q,T,N,M,Dist,Bar)

’

’ Inputs are S0 = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’ N = number of time periods

’ M = number of space points above log(S0)

’ Dist = distance of top of grid from log(S0)

’ Bar = knock-out barrier < S0

’

Dim dx, DistBot, DistTop, dt, dx2, u, sig2, nu, St, S, z1, b1

Dim zL, bL, CallV, y(), a(4), i, j, L, NumBotSteps, NumTopSteps

dx = Dist / M ’ first guess at size of space step

DistBot = Log(S0) - Log(Bar) ’ dist of log(S0) from bottom of grid

NumBotSteps = Application.Ceiling(DistBot / dx, 1)

dx = DistBot / NumBotSteps ’ new (smaller) space step

NumTopSteps = Application.Ceiling(Dist / dx, 1)

DistTop = NumTopSteps * dx ’ dist of log S(0) from top of grid

L = NumBotSteps + NumTopSteps + 1 ’ number of space points

ReDim y(L)

dt = T / N ’ size of time step

dx2 = dx * dx

u = Exp(dx) ’ up parameter, as in binomial

sig2 = sigma * sigma

nu = r - q - sig2 / 2

St = S0 * Exp(DistTop) ’ stock price at top node

a(1) = r / 2 + 1 / dt + sig2 / (2 * dx2)

a(2) = sig2 / (4 * dx2) + nu / (4 * dx)

a(3) = a(2) - nu / (2 * dx)

a(4) = -a(1) + 2 / dt

S = Bar ’ stock price at bottom node

y(1) = Application.Max(S - K, 0)

For j = 2 To L ’ loop over nodes at last date

S = S * u

y(j) = Application.Max(S - K, 0)

Next j

z1 = 0 ’ constant for bottom boundary
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b1 = 0 ’ coefficient for bottom boundary

zL = St - St / u ’ constant for top boundary

bL = 1 ’ coefficient for top boundary

CallV = CrankNicolson(a, y, L, z1, b1, zL, bL)

For i = N - 2 To 0 Step -1 ’ back up to date 0

CallV = CrankNicolson(a, CallV, L, z1, b1, zL, bL)

Next i

Down_And_Out_Call_CN = CallV(NumBotSteps + 1)

End Function

Problems

10.1. Create an Excel worksheet to compare the estimates of the value of a dis-
cretely sampled barrier option given by the functions Down_And_Out_Call_MC
created in Prob. 9.11 and the function Down_And_Out_Call_CN. Allow the user
to input S, K, r, σ, q, the knock-out barrier, the number of Monte Carlo sim-
ulations, and the number of space steps above log S(0) in the Crank-Nicolson
algorithm.

10.2. Create a VBA function Up_And_Out_Put_CN to value an up-and-out put
option by the Crank-Nicolson method.

10.3. Create a VBA function European_Call_Explicit that uses the explicit
method (10.5′) to value a European call option.

10.4. Write the system of equations (10.6) for the implicit method, together
with boundary conditions of the form (10.11) as a matrix system and solve
for uj and bj in (10.12), as in the subsection that defines the function
CrankNicolson.

10.5. Create a VBA function Implicit that solves the system of equations
in the preceding exercise.

10.6. Create a VBA function European_Call_Implicit that uses the implicit
method to value a European call option.
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Fixed Income Concepts

In this part of the book, we will study the pricing and hedging of fixed-income
derivatives, that is, derivatives that can be viewed as written on bonds or
on interest rates. The complexities of this subject stem from the fact that
the underlying bonds or rates will have time-varying and generally random
volatilities and have volatilities that must be linked in some way to each other.
We are not free to arbitrarily specify the volatilities and correlations, as we
can, for example, with basket equity options, because such a specification may
imply there is an arbitrage opportunity available from trading the underlying
assets, and, of course, one could not trust a derivative value or a hedging
strategy derived from such a model. There are many books that provide a
more comprehensive and advanced treatment than we will be able to give
here, among which Rebonato [55, 56], James and Webber [41] and Brigo and
Mercurio [12] seem particularly useful.

We will focus on derivatives and underlyings that have very little default
risk and ignore the pricing of default (credit) risk. Credit risk and credit
derivatives are booming areas in both theory and practice. For this topic,
one can consult the recent books of Bielecki and Rutkowski [2], Duffie and
Singleton [25], Schönbucher [57], and Tavakoli [59]. Another important topic
that will not be covered is mortgages.

In the first section, we introduce a fundamental construct: the yield curve,
by which we mean the yields of (possibly theoretical) zero-coupon bonds of
various maturities. The last two sections of the chapter (on principal compo-
nents) are optional—nothing else in the book builds upon them.

11.1 The Yield Curve

Given prices of discount (zero-coupon) bonds of all maturities, any coupon
paying bond can be priced as a portfolio of discount bonds. The relationship
between time to maturity and the price of the corresponding discount bond
with $1 face value is sometimes called the discount function. An equivalent
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concept is the yield curve, which is the relationship between time to matu-
rity and the yield of the corresponding discount bond. Yields can be quoted
according to different compounding conventions (semi-annual being the most
common), but we will continue to use continuous compounding.1 With this
convention, the yield of a zero-coupon bond with $1 face value having τ years
to maturity and price P is defined to be the rate y such that P = e−yτ . De-
noting this yield y at maturity τ by y(τ), the yield curve is the collection of
yields {y(τ)|τ > 0}, conventionally plotted with maturity τ on the horizontal
axis and the yields y(τ) on the vertical. Usually (but certainly not always)
this is an upward sloping curve, meaning that rates at longer maturities are
higher than rates at shorter maturities.

Some amount of estimation is necessary to compute the yield curve. We
would like to know yields at arbitrary maturities, but there are not enough
actively traded zero-coupon bonds to provide this information. Thus, we have
to “fill in” the missing maturities. We may also use coupon-paying bonds (or
swap rates, as we will discuss later) to estimate the yields.

The most popular method of estimating the yield curve from bond prices is
to fit a “cubic spline,” using the prices of a finite set of actively traded bonds.
Given the set of bonds, let Pi denote the price of bond i, Ni the number of
dates at which bond i pays a coupon or its face value, and {τij |j = 1, . . . , Ni}
the dates at which bond i pays a coupon or its face value. Finally, let Cij

denote the cash flow paid by bond i at date τij for j = 1, . . . , Ni. Then for
each i it “should” be the case that

Pi =
Ni∑
j=1

e−y(τij)τij Cij . (11.1)

This simply says that the price should be the present value of the cash flows.
However, in practice, we will typically be unable to find yields y(τij) such that
(11.1) holds exactly for each bond i. This is due to “measurement errors” in
the form of bid-ask spreads and nonsynchronous pricing. Furthermore, even if
we can find such yields, we still face the issue of estimating the yields at other
maturities τ /∈ {τij}. The cubic spline is one way to address these issues.

A cubic spline consists of several cubic polynomials “spliced” together at a
set of “knot points.” Specifically, it consists of maturities τ1, . . . , τn (the “knot
points”) and coefficients (ai, bi, ci, di) for i = 0, . . . , n, and the yield curve is
modeled as

y(τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0τ
3 + b0τ

2 + c0τ + d0 for 0 < τ ≤ τ1 ,

a1τ
3 + b1τ

2 + c1τ + d1 for τ1 < τ ≤ τ2 ,

· · · · · ·
anτ3 + bnτ2 + cnτ + dn for τn < τ ≤ T ,

1 The relationship between the annually compounded rate ya, the semi-annually
compounded rate ys and the continuously compounded rate yc is eyc = 1 + ya =
(1 + ys/2)2.
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where T is the maximum maturity considered. By changing the constants
d1, . . . , dn, we can write this in an equivalent and more convenient form:

y(τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0τ
3 + b0τ

2 + c0τ + d0 for 0 < τ ≤ τ1 ,

a1(τ − τ1)3 + b1(τ − τ1)2 + c1(τ − τ1) + d1 for τ1 < τ ≤ τ2 ,

· · · · · ·
an(τ − τn)3 + bn(τ − τn)2 + cn(τ − τn) + dn for τn < τ ≤ T .

(11.2)
To “splice” these polynomials together at the knot points means to choose

the coefficients so that the two polynomials that meet at a knot point have
the same value and the same first and second derivatives at the knot point.
For example, at the first knot point τ1, we want the adjacent polynomials to
satisfy

Equality of yields: a0τ
3
1 + b0τ

2
1 + c0τ1 + d0 = d1 ,

Equality of first derivatives: 3a0τ
2
1 + 2b0τ1 + c0 = c1 ,

Equality of second derivatives: 6a0τ1 + 2b0 = 2b1 .

Thus, given the coefficients a0, b0, c0, d0, the only free coefficient for the second
polynomial is a1. Likewise, at the second knot point τ2, we want the adjacent
polynomials to agree with regard to:

Yields: a1(τ2 − τ1)3 + b1(τ2 − τ1)2 + c1(τ2 − τ1) + d1 = d2 ,
First derivatives: 3a1(τ2 − τ1)2 + 2b1(τ2 − τ1) + c1 = c2 ,
Second derivatives: 6a1(τ2 − τ1) + 2b1 = 2b2 .

Thus, the only free coefficient for the third polynomial is a2. Continuing in
this way, we see that the cubic spline is defined by the knot points and the
coefficients a0, b0, c0, d0, a1, a2, . . . , an. One wants to choose the knot points
(hopefully, not too many) and these coefficients so that the relations (11.1)
hold as closely as possible in some sense. For more on this subject, a good
reference is James and Webber [41].

11.2 LIBOR

Many fixed-income instruments have cash flows tied to interest rate indices
that are quoted as simple (i.e., noncompounded) interest rates. If you deposit
$1 at an annualized simple interest rate of R for a period of time ∆t, then
at the end of the period you will have 1 + R∆t dollars.2 The most common
interest rate index is LIBOR (London Inter-Bank Offered Rate) which is an
average rate in the London inter-bank market for loans for a specific term.
2 The calligraphic symbol R will be used only for simple interest rates and hopefully

will not be confused with the symbol R used for the accumulation factor R(t) =

e
∫ t
0 r(s) ds and the corresponding risk-neutral expectation ER.
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For example, if R denotes six-month LIBOR, a $1 million deposit at this rate
will grow in six months to $1 million times 1 + R∆t, where ∆t = 1/2. We
will use “LIBOR” as a generic term for such indices.

We will frequently find it convenient to express LIBOR rates in terms
of equivalent bond prices. As before, let P (t, u) denote the price at date t
of a zero-coupon bond with a face value of $1 maturing at date u, having
∆t = u − t years to maturity. Previously, we used this notation only for
default-free bonds such as Treasuries. However, there is a small amount of
credit risk in LIBOR rates because of the possibility of a bank failure. In
discussing derivatives linked to LIBOR rates, such as swaps, caps, and floors,
we will use the notation P (t, u) for the price of a bond having the same default
risk as a LIBOR deposit, but our models will ignore the possibility of default.
An investment of $1 at date t in the bond will purchase 1/P (t, u) units of
the bond, which, in the absence of default, will be worth 1/P (t, u) dollars at
maturity. We will assume

1
P (t, u)

= 1 + R∆t . (11.3)

When necessary for clarity, we call the rate R a “spot rate” (at date t for the
time period ∆t), to distinguish it from “forward rates” to be defined later.
The spot rate is also called a “floating rate,” because it changes with market
conditions.

11.3 Swaps

A “plain vanilla” interest rate swap involves the swap of a fixed interest rate
for a floating interest rate on a given “notional principal.” Let R̄ denote the
fixed rate on a swap. The floating rate will be LIBOR (or some other interest
rate index). In addition to R̄ and the floating rate index, the swap is defined
by “payment dates,” which we will denote by t1, . . . , tN , with ti+1 − ti = ∆t.
In the most common form, the “reset dates” are t0, . . . , tN−1, with t1−t0 = ∆t
also.

At each reset date ti, the simple interest rate Ri for period ∆t is observed.
This rate determines a payment at the following date ti+1. In terms of bond
prices, Ri is defined in accord with (11.3), substituting date ti for date t and
date ti+1 for date u; i.e.,

1
P (ti, ti+1)

= 1 + Ri ∆t . (11.4)

One can enter a swap as the fixed-rate payer, normally called simply the
“payer” or as the fixed-rate receiver, normally called the “receiver.” The payer
pays the fixed rate R̄ and receives the spot rate Ri at each payment date ti+1.
Only the net payment is exchanged. If R̄ > Ri then the amount (R̄−Ri)∆t is
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paid at date ti+1 by the payer to the receiver for each $1 of notional principal.
If R̄ < Ri, then the payer receives (Ri − R̄)∆t from the receiver for each $1
of notional principal at date ti+1. To state this more simply, the cash flow to
the payer is (Ri − R̄)∆t and the cash flow to the receiver is (R̄ − Ri)∆t,
with the usual understanding that a negative cash flow is an outflow. Note
that there is no exchange of principal at initiation, and there is no return of
principal at the end of the swap. The principal is “notional” because it is used
only to define the interest payments.

The value of a swap to the fixed-rate payer at any date t ≤ t0 is

P (t, t0) − P (t, tN ) − R̄∆t

N∑
i=1

P (t, ti) . (11.5)

To see this, note that P (t, t0) is the cost at date t of receiving $1 at t0. This $1
can be invested at t0 at the rate R0 and the amount R0 ∆t withdrawn at t1
with the $1 principal rolled over at the new rate R1. Continuing in this way,
one obtains the cash flow Ri ∆t at each payment date ti+1 and the recovery of
the $1 principal at date tN . The value of the $1 principal at date tN is negated
in expression (11.5) by the term −P (t, tN ). Thus, P (t, t0) − P (t, tN ) is the
value of the floating rate payments on the notional principal. On the other
hand, R̄∆t

∑N
i=1 P (t, ti) is the value of the fixed-rate payments. Therefore,

expression (11.5) is the difference in the values of the floating and fixed-rate
legs.

As with a forward price, the swap rate is usually set so that the value of
the swap is zero at initiation. A swap initiated at date t ≤ t0 has zero value
at initiation if the fixed rate R̄ equates the expression (11.5) to zero. This
means that R̄ = R(t), where R(t) is defined by

P (t, t0) = P (t, tN ) + R(t)∆t

N∑
i=1

P (t, ti) . (11.6)

If t = t0 the rate R(t) is a “spot swap rate,” and if t < t0 the rate R(t) is
a “forward swap rate.” The concept of forward swap rates will be important
in the discussion of swaptions in Sect. 12.5. Of course, there are many spot
and forward swap rates at any date, corresponding to swaps with different
maturities and different payment (and reset) dates.

The “swap yield curve” or simply “swap curve” is the relation between
time-to-maturity and the yields of discount bonds, where the discount bond
prices and yields are inferred from market swap rates. To explain this in a
manner consistent with Sect. 11.1, consider date t = 0 and consider swaps
with t0 = 0 (i.e., spot swaps). In the notation of Sect. 11.1, and noting that
P (0, 0) = 1, equation (11.6) can be written in terms of yields as

1 = e−y(tN )tN +
N∑

i=1

e−y(ti)tiR(0)∆t . (11.7)
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Consider for example a collection of nineteen swaps at date 0 with semi-annual
payments and maturity dates tN = 1.0, tN = 1.5, . . . , tN = 10.0. Each market
swap rate (a different rate R(0) for each maturity) can be considered to satisfy
(11.7). In these equations we have the twenty yields y(0.5), y(1.0), y(10.0).
The yield y(0.5) will be given by six-month LIBOR according to (11.3). The
other nineteen yields can be obtained by simultaneously solving the system of
nineteen equations of the form (11.7), given the nineteen market swap rates.
In practice, there are missing maturities and the swap curve is estimated using
a cubic spline or some other technique, as discussed in Sect. 11.1.

11.4 Yield to Maturity, Duration, and Convexity

Consider a bond with cash flows C1, . . . , CN at dates u1 < · · · < uN and
price P at date t, where t < u1. Write τj = uj − t as the time remaining until
the j–th cash flow is paid. The (continuously compounded) yield to maturity
of the bond at date t is defined to be the rate y such that

P =
N∑

j=1

e−yτj Cj . (11.8)

The bold character y is meant to distinguish this from the yield y of a discount
bond. Viewing the right-hand side of (11.8) as a function of y, we can express
the first derivative in differential form as

dP = −
N∑

j=1

τje−yτj Cj dy ,

or, equivalently,
dP

P
= −

N∑
j=1

e−yτj Cj

P
τj dy .

The factor
N∑

j=1

e−yτj Cj

P
τj

is called the “Macaulay duration” of the bond, and we will simplify this to
“duration.” It is a weighted average of the times to maturity τj of the cash
flows, the weight on each time τj being the fraction of the bond value that
the cash flow constitutes (using the same rate y to discount all of the cash
flows). Thus, we have

dP

P
= −Duration × dy . (11.9)

Given the initial yield y and a change in the yield to y′, this equation suggests
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the following approximation for the return ∆P/P :

∆P

P
≈ −Duration × ∆y , (11.10)

where ∆y = y′ − y.
The relationship (11.10) is the foundation for “duration hedging.” For

example, to duration hedge a liability with a present value of xL dollars and
a duration of DL years, one needs an asset with a value of xA dollars and
a duration of DA satisfying xADA = xLDL. If the change in the yields to
maturity of the asset and liability are the same number ∆y, then by (11.10)
the change in the value of the liability will be approximately −DL ∆y per
dollar of initial value, for a total change in value of −xLDL ∆y dollars. The
change in the value of the asset will approximately offset the change in the
value of the liability.

Actually, because of the convexity of the bond price (11.8) as a function
of the yield y, the approximation (11.10) will overstate the loss on an asset
when the yield rises and understate the gain when the yield falls. Given a
change in yield ∆y, the change in price ∆P = P ′ − P would actually satisfy

∆P > −Duration × P × ∆y .

Thus, if a liability is duration hedged, and the asset value is a “more convex”
function of its yield than is the liability value, then an equal change ∆y in their
yields will lead to a net gain, the asset value falling less than the liability if
∆y > 0 and gaining more than the liability if ∆y < 0. The value of convexity
(as a function of the yield to maturity) in a bond portfolio is the same as
the value of convexity (as a function of the price of the underlying) in option
hedging—cf. Sect. 3.5.

In general, the changes in the yields of an asset and a liability (or two
different coupon bonds) will not be equal. To understand how the changes
will be related, note that the definition (11.8) of the yield to maturity and the
formula (11.1) relating a bond price to the yields of discount bonds imply

N∑
j=1

e−yτj Cj =
N∑

j=1

e−y(τj)τj Cj .

Taking differentials of both sides, we have

dP = −P × Duration × dy = −
N∑

j=1

τje−y(τj)τj Cj dy(τj) .

If we suppose that the changes dy(τj) in the yields of the discount bonds are
equal, to, say, dy, then we have

dP = −P × Duration × dy = −P × Duration′ × dy,
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where we define

Duration′ =
N∑

j=1

e−y(τj)τj Cj

P
τj . (11.11)

This new definition of duration differs from the previous by using the yields
of discount bonds to define the fraction of the bond value that each cash flow
contributes, rather than the yield to maturity. If the changes in the yields of
discount bonds are equal, then we say that there has been a “parallel shift”
in the yield curve—it has moved up or down with the new curve being at
each point the same distance from the old. Our previous discussion shows
that duration hedging works if we use the new definition (11.11) of duration
and if the yield curve shifts in a parallel fashion. Of course, parallel shifts in
the yield curve are not the only, or even most common, types of shifts. In the
next two sections, we discuss hedging against more general types of shifts in
the yield curve.

Something very similar to duration hedging works if we can continuously
rebalance the hedge and there is only a single factor determining the yield
curve (meaning a single Brownian motion driving all yields). To understand
this, we must first note that the expressions given in this section for dP are
not the Itô differential, which explains how the bond price evolves over time
and would include a second-derivative term. For example, in (11.9) we are
simply asking how different the price would be if the yield to maturity had
been different at a given point in time. To define the Itô differential, let now
y(t) denote the yield to maturity of the bond at date t. Equation (11.8) can
be restated as

P (t) = f(t,y(t)) =
N∑

j=1

ey(t)(uj−t)Cj . (11.12)

Note that even if the yield to maturity were constant over time, the bond price
would change with t as a result of the changes in the times to maturity uj − t
of the cash flows. This creates the dependence on t in the function f(t,y).

From Itô’s formula, we have

dP =
∂f

∂t
dt +

∂f

∂y
dy +

1
2

∂2f

∂y2
(dy)2 .

As explained above, the factor ∂f/∂y equals −Duration × P . The value of
convexity appears here in the last term, the derivative ∂2f/∂y2 being positive
as a result of convexity and analogous to the gamma of an option. Assuming
dy(t) = α(t) dt + σ(t) dB(t) for a Brownian motion B and some α and σ, we
have

dP

P
=

1
P

(
∂f

∂t
+

∂f

∂y
α +

1
2

∂2f

∂y2
σ2

)
dt − Duration × σ dB .

If the yields of an asset and liability are driven by the same Brownian motion
and the duration hedge is adjusted for the relative volatilities of the asset
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and liability (holding more of the asset if its yield volatility is lower), then a
duration hedge will hedge the risky part of the change in the liability value.
If adjusted continuously, it will provide a perfect hedge, exactly analogous
to a delta hedge of an option position. The Vasicek model we will discuss
in Chap. 13 and the Cox-Ingersoll-Ross model we will discuss in Chap. 14
are examples of continuous-time models that assume a single Brownian mo-
tion driving all yields (i.e., they are single-factor models).The Ho-Lee, Black-
Derman-Toy, and Black-Karasinski binomial models that will be discussed
in Chap. 14 are also single-factor models and have the same implication for
hedging. In the following section, we will discuss the fact that, empirically,
there appears to be more than one factor determining the yield curve.

11.5 Principal Components

This section will describe a popular statistical method for determining the
factors that have the most impact on the yield curve. We consider yields at
fixed maturities τ1, . . . , τN , the yield for maturity τj at date t being denoted
y(t, τj). We assume that we have a sample of past yields at dates t0, . . . , tM
at equally spaced dates. Thus, ti − ti−1 = ∆t for some ∆t and each i. We
compute the changes in yields:

∆ij = y(ti, τj) − y(ti−1, τj) .

Thus we are looking at the changes in the yield curve over time periods of
length ∆t, focusing on N points on the yield curve defined by the maturi-
ties τj . Let V denote the sample covariance matrix of the changes in yields:
the element in row j and column k of V is the sample covariance of the changes
in yields at maturities τj and τk; thus, the diagonal elements are the sample
variances.3

The method of principal components is to compute the “eigenvectors”
and “eigenvalues” of the estimated covariance matrix V . An eigenvector is a
vector x for which there corresponds a number λ such that V x = λx. The
number λ is called the eigenvalue corresponding to the eigenvector x. Given
the N ×N symmetric matrix V , we can construct an N ×N matrix C whose
columns are eigenvectors of V and an N×N diagonal matrix D containing the
eigenvalues of V on the diagonal. The eigenvectors can be normalized to have
unit length and to be mutually orthogonal, which means that the matrix C of
eigenvectors has the property that C−1 = C�, where C−1 denotes the inverse
of C and C� its transpose. The property V x = λx for the columns x of C
implies that V C = CD. Hence C�V C = C�CD = D.
3 The sample covariance matrix V is an estimate of the “unconditional” covariances.

It is a common finding that variances and covariances change over time. Thus,
we could (and probably should) use methods such as those described in Chap. 4
to estimate the covariance matrix. The following applies equally well to other
estimates V of the covariance matrix.
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This can be understood as a factor model for the changes in yields, where
there are as many factors as maturities. At date ti, the vector of factor real-
izations zij is computed as⎛

⎜⎝
zi1

...
ziN

⎞
⎟⎠ = C�

⎛
⎜⎝

∆i1

...
∆iN

⎞
⎟⎠ . (11.13)

Thus, ⎛
⎜⎝

∆i1

...
∆iN

⎞
⎟⎠ = C

⎛
⎜⎝

zi1

...
ziN

⎞
⎟⎠ . (11.14)

Given any random vector ξ with covariance matrix Σ and a linear transforma-
tion ξ′ = Lξ, the covariance matrix of ξ′ is LΣL�. Therefore, (11.13) implies
that the covariance matrix of the factors is C�V C, and we observed in the
previous paragraph that C�V C = D. Therefore, the factors are uncorrelated,
and the factor variances are the eigenvalues of V .

Let βk� denote the (k, �)–th element of C. Then we can write (11.14) as

∆i1

...
∆iN

=
...
=

β11zi1 + · · · + β1NziN ,
...

βN1zi1 + · · · + βNNziN .

(11.15)

As in any factor model, the factors are common to all of the maturities. Each
factor is random, taking a different value at each date ti. The β’s represent
the “loadings” of the yield changes on the factors, βk� being the loading of
the change in the yield at maturity τk on the �-th factor.

In a normal factor model, there are fewer factors than variables being
explained. It serves no point to have a factor model with as many factors as
there are variables to be explained (in our case, as many factors as maturities).
We can improve the usefulness of the above by omitting some factors. We will
omit the factors that are least important in explaining the changes in yields.
For example, if we omit all but the first three factors, we will have

∆i1

...
∆iN

=
...
=

β11zi1 + β12zi2 + β13zi3 + εi1,
...

βN1zi1 + βN2zi2 + βN3zi3 + εiN ,

(11.16)

where
εij = βj4zi4 + · · · + βjNziN (11.17)

is interpreted as the “residual” part4 of ∆ij .
4 Frequently, the definition of “factor model” requires the residuals to be uncorre-

lated, in which case they are called “idiosyncratic risks.” Rather than producing
uncorrelated residuals, the principal components methods identifies factors such
that the residuals are “small.”
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The importance of a factor depends on the factor loadings and the variance
of the factor. The loadings on the j–th factor are the elements in the j–th
column of C, which is the j–th eigenvector of V . Because the eigenvectors all
have unit length and are mutually orthogonal, each vector of loadings has the
same importance as any other for explaining the changes in yields. Thus, the
importance of a factor in this model depends on the variance of the factor.
The variance of the j–th factor is the j–th element on the diagonal of D, which
is the eigenvalue corresponding to the j–th eigenvector. The factors that we
should omit are clearly those with small eigenvalues.

As an example, an analysis of monthly changes in (continuously com-
pounded) U.S. Treasury yields from 1992 through 2002 at maturities of 1
month, 3 months, 1 year, 2 years, 3 years, 4 years, and 5 years5 produces seven
eigenvalues (corresponding to the seven maturities) that sum to 5.526×10−5.
This sum is the total variance of the seven factors. The largest eigenvalue is
74% of the total, the two largest eigenvalues constitute 94% of the total, and
the three largest constitute 98% of the total. Thus, three factors contribute
98% of the total factor variance for this data set, so a factor model with three
(or even two) factors explains a very high percentage of the changes in yields
for this data set.

The factors can be interpreted by examining the corresponding eigenvec-
tors. The eigenvectors corresponding to the three largest eigenvalues in this
data set are the columns below (the first column corresponding to the largest
eigenvalue, etc.):

0.1967 -0.8512 0.4782

0.2234 -0.3740 -0.6389

0.3775 -0.1077 -0.4783

0.4415 0.0855 -0.0530

0.4528 0.1532 0.0980

0.4428 0.2013 0.2043

0.4158 0.2294 0.2834

We can interpret these as follows. A positive value in a given month for the
factor with the highest variance will lead to an increase in all of the yields,
because all of the elements in the first column are positive (it will also lead
to a slight increase in the slope due to the loadings at longer maturities being
generally slightly larger than the loadings at smaller maturities). A positive
value for the next factor will decrease yields at short maturities and increase
the yields at longer maturities, thus leading to an increase in the slope of the
yield curve. A positive value for the third factor will lead to an increase in
yields at short and long maturities and a decrease in yields at intermediate
maturities, thus affecting the curvature of the yield curve. Results of this sort
are common for data sets containing longer maturities also, leading to the
conclusion that the most important factor is the level of the yield curve, the
5 These were computed from discount bond price and yield data from the Center

for Research in Security Prices (CRSP) at the University of Chicago.
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second most important factor is the slope of the yield curve, and the third
most important factor is the curvature of the yield curve, with three factors
explaining nearly all of the variations in yields.

11.6 Hedging Principal Components

Consider again a bond with cash flows C1, . . . , CN at dates τ1 < · · · < τN and
price P and recall that the price at date 0 < τ1 should be

P =
N∑

j=1

e−yjτj Cj ,

where for convenience we are writing yj for the yield y(0, τj) of the discount
bond maturing at τj . Viewing the price as a function of y1, . . . , yN , we can
write the differential as

dP = −
N∑

j=1

τje−yjτj Cj dyj .

Equivalently,
dP

P
= −

N∑
j=1

e−yjτj Cjτj

P
dyj .

Given discrete changes ∆yj in the yields, this implies the following approxi-
mation for the return:

∆P

P
≈ −

N∑
j=1

e−yjτj Cjτj

P
∆yj . (11.18)

As in Sect. 11.4, because of convexity, the approximation understates the new
price P ′ = P + ∆P . In Sect. 11.4 we considered this equation assuming equal
changes in the yields (a parallel shift in the yield curve). Here, we will discuss
the more general case.

The approximation (11.18) suggests how we can hedge against the factors
identified in the previous section. For example, let β1�, . . . , βN� denote the
loadings of the yields at maturities τ1, . . . , τN on the factor with the �–th
greatest variance, for � = 1, 2, 3.6 Then the factor model suggests

∆yj ≈ βj1z1 + βj2z2 + βj3z3 ,

6 It is unlikely that these specific maturities would have been used in the principal
components algorithm, so the loadings would have to be estimated by interpo-
lating or fitting some type of curve to the loadings of the maturities that were
used.
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where the zk denote the realizations of the factors. Combining this with (11.18)
results in

∆P

P
≈ −

N∑
j=1

(
e−yjτj Cjτj

P

3∑
k=1

βjkzk

)

= −
3∑

k=1

⎛
⎝ N∑

j=1

e−yjτj Cjτjβjk

P

⎞
⎠ zk.

This means that the bond return is approximately a linear combination of the
factors, with the coefficient (loading) on the k–th factor being

−
N∑

j=1

e−yjτj Cjτjβjk

P
. (11.19)

To hedge a liability against the factor, we want this coefficient for the asset
multiplied by the dollar value of the asset to equal the corresponding coeffi-
cient for the liability multiplied by its dollar value. There are three conditions
of this type in a three-factor model, which means that a portfolio of three dis-
tinct assets is necessary to hedge a liability. A similar application is in bond
portfolio management. If we want to avoid exposing ourselves to factor risk
relative to a benchmark portfolio, then we should match the loadings (11.19)
for our portfolio with the corresponding loadings of the benchmark.

Problems

Assume the following discount bond prices for each of the following exercises:

P (0, 0.5) = 0.995
P (0, 1.0) = 0.988
P (0, 1.5) = 0.978
P (0, 2.0) = 0.966
P (0, 2.5) = 0.951
P (0, 3.0) = 0.935
P (0, 3.5) = 0.916
P (0, 4.0) = 0.896
P (0, 4.5) = 0.874
P (0, 5.0) = 0.850

11.1. Compute the six-month and one-year LIBOR rates.

11.2. Compute the swap rate for a two-year swap with semi-annual payments.
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11.3. Compute the forward swap rate for a two-year swap with semi-annual
payments beginning in

(a) one year,
(b) two years,
(c) three years.

11.4. Compute and plot the continuously-compounded discount-bond yields
at maturities 0.5, 1.0, 1.5, . . . , 5.0.

11.5. Consider a cubic spline as defined in (11.2) with knot points at two and
four years and the following coefficients:

a0 = −0.00163
b0 = 0.00812
c0 = −0.00676
d0 = 0.01184
a1 = 0.00052
b1 = −0.00169
c1 = 0.00609
d1 = 0.01770
a2 = −0.00175
b2 = 0.00141
c2 = 0.00552
d2 = 0.02725

(a) Plot the cubic spline and compare it to the plot from the previous exercise.
(b) Confirm that the adjacent polynomials have the same values, first deriv-

atives, and second derivatives at each of the two knot points.

11.6. Create a VBA function DiscountBondPrice that takes the time τ to
maturity as an input and returns an estimated price for a discount bond
maturing at τ , using the cubic spline formula (11.2), knot points at 2 and
4 years, and the coefficients in the previous exercise. Confirm that it gives
approximately the same discount bond prices as those at the beginning of
this set of exercises. A Warning about Extrapolating to Longer Maturities:
What price does the function give for a discount bond maturing in ten years?

11.7. Consider a two-year coupon bond with $1 face value and a semi-annual
coupon of $0.03, with the first coupon being six months away.

(a) Compute the price of the bond.
(b) Compute the yield to maturity of the bond using the Excel solver tool.
(c) Compute the duration of the bond.
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11.8. Repeat the previous exercise for a one-year coupon bond with $1 face
value and a semi-annual coupon of $0.04.

11.9. Repeat the previous exercise for a five-year coupon bond with $1 face
value and a semi-annual coupon of $0.02.

11.10. Suppose you have shorted $100 million of the two-year bond with the
semi-annual coupon of $0.03. How much of the five-year bond with the semi-
annual coupon of $0.02 should you hold to duration hedge the short position?

11.11. Suppose you have shorted $100 million of the two-year bond with the
semi-annual coupon of $0.03. Using the data from the principal components
example in Sect. 11.6, find a portfolio of the one-year bond with a coupon
of $0.04 and the five-year bond with a coupon of $0.02 that will hedge the
first two principal components of the short position. Assume the loadings of
the six-month yield on the two factors are the averages of the loadings of the
one-month and one-year yields, the loadings of the 1.5 year yield on the two
factors are the averages of the loadings of the 1.0 and 2.0 years, the loadings
of the 2.5 year yield are the averages of the loadings of the 2.0 and 3.0 year
yields, etc.
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Introduction to Fixed Income Derivatives

In this chapter, we will introduce some fundamental fixed-income derivatives
(caps, floors and swaptions) and explain the “market model” approach to
valuation. We will also explain the relation between caps, floors and swaptions
on the one hand and discount and coupon bond options on the other. This
leads to other approaches for valuing caps, floors and swaptions, which will
be developed in the following chapters.

12.1 Caps and Floors

Caps and floors have a structure very similar to that of swaps, as described
in Sect. 11.3. At each reset date ti, the simple interest rate Ri for period ∆t
is observed. This rate determines a payment at the following date ti+1. As
discussed in the preceding chapter, the cash flow to the payer in a swap is
(Ri − R̄)∆t and the cash flow to the receiver is (R̄ − Ri)∆t, for each $1
of notional principal. A swap is really a series of forward contracts, in which
both parties have obligations. On the other hand, caps and floors are series
of options. A premium is paid up-front by the buyer of a cap or floor to the
seller and all future cash flows are paid by the seller to the buyer. The owner
of a cap with cap rate R̄ receives max(0,Ri − R̄)∆t at date ti+1 for each $1
of notional principal, and the owner of a floor receives max(0, R̄ − Ri)∆t at
date ti+1 for each $1 of notional principal.

Caps and floors are used in conjunction with hedging floating rate obliga-
tions or for speculative purposes. Portfolios of caps and floors have properties
analogous to option portfolios. For example, the combination of a long cap
and a short floor at the same rate R̄ creates the payer side of a swap, in
the same way that a long call and short put create a synthetic long forward
(and a short cap and a long floor at the same rate R̄ creates the receiver side
of a swap just as a short call and long put create a synthetic short forward
contract). A long cap at rate R̄c and a short floor at rate R̄f < R̄c creates a
collar (for an underlying floating rate obligation), etc.
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The individual payments on a cap are called “caplets,” and a cap is simply
a portfolio of caplets. Similarly, the individual payments on a floor are called
“floorlets,” and the values of caplets and floorlets are linked by put-call parity,
as we will see below.

A caplet can be viewed as a call option on the spot rate with strike equal
to the fixed rate. Thus, it is a “bet” on higher interest rates. Because interest
rates and bond prices are inversely related, it can also be viewed as a bet on
lower bond prices. In this regard, it is similar to a put option on bond prices.
In fact, we will see in Sect. 12.7 that a caplet is exactly equivalent to a put
option on a discount bond. Likewise, a floorlet can be viewed either as a put
option on the spot rate or a call option on a discount bond.

12.2 Forward Rates

Suppose we wish to borrow money at date u for a period of ∆t years, and
we want to lock in the rate on the loan at date t < u. To do this, we can
buy the discount bond maturing at u and finance the purchase by shorting
P (t, u)/P (t, u + ∆t) units of the bond maturing at u + ∆t. This generates a
cash flow of $1 at date u and −P (t, u)/P (t, u + ∆t) dollars at date u + ∆t.
This implies a simple interest rate of R defined as

P (t, u)
P (t, u + ∆t)

= 1 + R∆t . (12.1)

This rate is called a “forward rate.”
Forward rates will be important for loans at the reset dates maturing at

the subsequent payment dates. We will denote the forward rate at date t ≤ ti
for a loan between ti and ti+1 as Ri(t). This rate is defined in accord with
(12.1), substituting the date ti for date u; i.e.,

P (t, ti)
P (t, ti+1)

= 1 + Ri(t)∆t . (12.2)

Note that when t = ti, P (t, ti) = 1, so Ri(ti) = Ri defined in (11.4)—i.e., the
forward rate equals the spot rate at ti.

12.3 Portfolios that Pay Spot Rates

One way to value caps and floors is to view them as portfolios of options on
rates, as we will see later. In order to apply the option pricing formulas derived
earlier, we need to know that each rate is the value of some asset, so the option
can be viewed as an option on an asset. This is very straightforward.

To obtain the spot rate Ri at date ti+1, one needs $1 to invest at date ti.
This can be arranged at date t < ti by buying one unit of the bond maturing
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at ti. Investing the dollar paid by the bond at the spot rate at ti will generate
1 +Ri ∆t dollars at date ti+1. The “extra” dollar can be eliminated by being
short one unit of the bond maturing at ti+1, leaving Ri ∆t dollars. Thus, the
portfolio that pays the spot rate multiplied by the period length ∆t consists
of being long one unit of the bond maturing at ti and short one unit of the
bond maturing at ti+1. This implies that the value at date t < ti of receiving
Ri ∆t dollars at date ti+1 is P (t, ti) − P (t, ti+1).

At date ti the spot rate Ri becomes known. Between ti and ti+1, the value
of receiving Ri ∆t dollars at date ti+1 is the present value of this known cash
flow, which is Ri ∆t P (t, ti+1). To summarize, the value of receiving Ri ∆t
dollars at date ti+1 is

Si(t) =

{
P (t, ti) − P (t, ti+1) if t < ti ,

Ri ∆t P (t, ti+1) if ti ≤ t ≤ ti+1 .
(12.3)

Actually, we will view a caplet as an option on a forward contract and
apply Black’s formula. To do this, we need to know the forward price of the
asset with price Si(t) for a contract maturing at ti+1. We denote this forward
price by Fi(t). The synthetic forward argument presented in Sect. 7.3 shows
that for any non-dividend paying asset with price S, the forward price for a
contract maturing at T is S(t)/P (t, T ). So, Fi is given by

Fi(t) =

{
P (t,ti)

P (t,ti+1)
− 1 if t < ti ,

Ri ∆t if ti ≤ t ≤ ti+1 .

=

{
Ri(t)∆t if t < ti ,

Ri ∆t if ti ≤ t ≤ ti+1 ,
(12.4)

where Ri(t) is the forward rate defined in (12.2). Thus, the asset with price
Si(t) pays the spot rate at date ti times the period length at date ti+1, and
the forward price of this asset is the forward rate times the period length.

12.4 The Market Model for Caps and Floors

The valuation we will describe here is standard market practice for valuing
caps and floors or at least for quoting the prices of caps and floors. Specifi-
cally, it is standard to quote prices in terms of implied volatilities, where the
volatility is to be input into Black’s formula for options on forwards. This
model is sometimes called the “market model.”

We can apply Black’s formula to the forward contract with price Fi de-
scribed in the previous section. We view the caplet as a call option maturing
at ti on this forward contract that matures at ti+1. As explained in Chapter 7,
the value at the maturity date T of a call option with strike K on a forward
contract with price F maturing at T ′ ≥ T is max(0, F (T ) − K)P (T, T ′).
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Therefore, the value at maturity of a call option maturing at ti with strike
R̄∆t on the forward contract with price Fi is

max(0, Fi(ti) − R̄∆t)P (ti, ti+1) .

Since Fi(ti) = Ri ∆t, this equals

max(0,Ri − R̄)∆t P (ti, ti+1) . (12.5)

This is also the value of the caplet at date ti.
It follows that the value of the caplet at any date t ≤ ti is the value of the

call option on the forward contract. To apply Black’s formula, we need the
forward price to have a constant (or at least non-randomly varying) volatility.
As noted earlier, at dates t ≤ ti, Fi(t) = Ri(t)∆t, where Ri(t) is the forward
rate, so the volatility of the forward price is the volatility of the forward rate.
Black’s formula yields:

Assuming the forward rate Ri(t) has a constant volatility σ, the value at
date 0 < ti of a caplet with reset date ti and payment date ti+1 is

P (0, ti+1)Ri(0)∆tN(d1) − P (0, ti+1)R̄∆tN(d2) , (12.6a)

and the value at date 0 < ti of a floorlet with reset date ti and payment
date ti+1 is

P (0, ti+1)R̄∆tN(−d2) − P (0, ti+1)Ri(0)∆tN(−d1) , (12.6b)

where

d1 =
log

(Ri(0)/R̄)+ 1
2σ2ti

σ
√

ti
, (12.6c)

d2 = d1 − σ
√

ti . (12.6d)

The put-call parity relationship for caplets and floorlets can be seen as
follows. If we add R̄∆t to the caplet payment, we obtain

R̄∆t + max(0,Ri − R̄)∆t = max(R̄,Ri)∆t .

On the other hand, if we add Ri ∆t to the floorlet payment, we obtain the
same thing:

Ri ∆t + max(0, R̄ − Ri)∆t = max(Ri, R̄)∆t .

Hence, the value of a caplet plus the value of receiving R̄∆t at date ti+1

must equal the value of a floorlet plus the value of receiving Ri ∆t at date
ti+1. The value at any date t ≤ ti of receiving R̄∆t at date ti+1 is the value
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of R̄∆t discount bonds maturing at date ti+1, which we are denoting by
R̄∆tP (t, ti+1). The value at at any date t ≤ ti of obtaining Ri ∆t dollars at
date ti+1 is Si(t) = P (t, ti) − P (t, ti+1). We conclude that

Value of Caplet + R̄∆tP (t, ti+1) = Value of Floorlet + P (t, ti)−P (t, ti+1) .

12.5 The Market Model for European Swaptions

The owner of a European swaption has an option to enter into a swap at
the maturity date of the swaption. A payer swaption gives the owner of the
option the right to enter into a swap as a fixed-rate payer, for a given swap
rate (not necessarily a rate that makes the swap have zero value at any date).
The owner of a receiver swaption has the right to enter into the swap as a
fixed-rate receiver. The values of payer swaptions and receiver swaptions are
linked by put-call parity.

A payer swaption has similarities to a cap. The owner of a cap has the
right to receive the floating rate and pay the fixed rate and will do so in
each period in which the floating rate is higher. Similarly, the owner of a
payer swaption has the right to receive floating and pay fixed. However, the
owner of a cap chooses each period whether to exercise his option, whereas the
owner of a swaption makes a once-and-for-all decision whether to exercise, at
the maturity of the swaption. A cap is therefore a portfolio of options, whereas
a swaption is an option on a portfolio. In general of course, other things being
equal, a portfolio of options is worth more than an option on a portfolio.

Consider a payer swaption with maturity date T and swap rate R̄, where
the underlying swap has payment dates t1, . . . , tN with the first reset date of
the swap being t0 = t1 − ∆t ≥ T . We assume the notional principal of the
swap is $1. Expression (11.5) in Sect. 11.3 gives the value at date T to the
payer in the swap as

S(T ) − Z(T ) ,

where we define

S(t) = P (t, t0) − P (t, tN ) , (12.7)

Z(t) = R̄∆t

N∑
i=1

P (t, ti) . (12.8)

As explained in Sect. 11.3, S(t) is the value of the floating-rate payments in
the swap and Z(t) is the value of the fixed-rate payments. The value of a
payer swaption at its maturity T is therefore

max(0, S(T ) − Z(T )) .

We can value the swaption using Margrabe’s formula for exchange options
provided the ratio of prices S/Z has a constant (or non-randomly varying)
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volatility. The volatility of the ratio is the same as the volatility of the forward
swap rate. To see this, recall that in Sect. 11.3 the forward swap rate R(t)
was defined to be the rate such that

P (t, t0) − P (t, tN ) = R(t)∆t

N∑
i=1

P (t, ti) ,

which means that the swap would have zero value if initiated at date t at the
rate R(t)—cf. equation (11.6). Thus,

S(t)
Z(t)

=
P (t, t0) − P (t, tN )

R̄∆t
∑N

i=1 P (t, ti)
=

R(t)∆t
∑N

i=1 P (t, ti)

R̄∆t
∑N

i=1 P (t, ti)
=

R(t)
R̄ ,

where R(t) is the forward swap rate. Margrabe’s formula implies:1

Assuming the forward swap rate R(t) has a constant volatility σ, the date–0
value of a European payer swaption is

[
P (0, t0) − P (0, tN )

]
N(d1) −

[
R̄∆t

N∑
i=1

P (0, ti)

]
N(d2) , (12.9a)

and the date–0 value of a European receiver swaption is[
R̄∆t

N∑
i=1

P (0, ti)

]
N(−d2) −

[
P (0, t0) − P (0, tN )

]
N(−d1) , (12.9b)

where

d1 =
log

(
P (0, t0) − P (0, tN )

)− log
(
R̄∆t

∑N
i=1 P (0, ti)

)
+ 1

2σ2T

σ
√

T
,

(12.9c)

d2 = d1 − σ
√

T . (12.9d)

Put-call parity for swaptions is as follows: fixed-rate cash flows plus the
option to exchange for floating is equivalent to floating-rate cash flows plus
the option to exchange for fixed. In each side of this equivalence, one obtains,
at the option maturity, the larger of the values of the fixed and floating-rate
legs. More formally,
1 To improve the clarity of the typesetting, we have written log(S) − log(Z) in

(12.9c) instead of our customary log(S/Z).
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R̄∆t

N∑
i=1

P (T, ti) + max

(
0, P (T, t0) − P (T, tN ) − R̄∆t

N∑
i=1

P (T, ti)

)

= P (T, t0)−P (T, tN )+max

(
0, R̄∆t

N∑
i=1

P (T, ti) − P (T, t0) + P (T, tN )

)
.

Therefore, at any date t ≤ T ,

R̄∆t

N∑
i=1

P (t, ti) + Value of Payer Swaption

= P (t, t0) − P (t, tN ) + Value of Receiver Swaption. (12.10)

12.6 A Comment on Consistency

It is well known that it is inconsistent to assume both that the forward rates
Ri(t) and the forward swap rate R(t) have constant volatilities. We can obtain
some intuition for this as follows. Recall that

Ri(t)∆t =
P (t, ti) − P (t, ti+1)

P (t, ti+1)
,

and

R(t)∆t =
P (t, t0) − P (t, tN )∑N−1

i=0 P (t, ti+1)
.

The numerator in the last equation is the sum (over i = 0, . . . , N − 1)
of the numerators in the previous equation; hence, it is the sum of the
Ri(t)∆t P (t, ti+1). This implies that

R(t) =
∑N−1

i=0 P (t, ti+1)Ri(t)∑N−1
i=1 P (t, ti+1)

,

which we can write as

R(t) =
N−1∑
i=0

wi(t)Ri(t) ,

where the weights wi(t) are defined as

wi(t) =
P (t, ti+1)∑N−1

i=0 P (t, ti+1)
.

Therefore, the forward swap rate is a weighted average of the forward rates.
A sum (or average) of lognormal variables is not lognormal, so if the forward
rates have constant volatilities, then the forward swap rate will not (and vice
versa), absent very peculiar assumptions about the weights wi(t). This means



260 12 Introduction to Fixed Income Derivatives

that one should not really simultaneously use Black’s formula for valuing
caps (or floors) and Margrabe’s formula for valuing swaptions (though there is
evidence that the error introduced by doing so may be small). In the following
chapters, we will consider other models that do not suffer from this type of
inconsistency.

12.7 Caplets as Puts on Discount Bonds

Previously, we considered a caplet as a call option on the forward rate and
thus a “bet” on higher interest rates. This is equivalent to a bet on lower
bond prices, and we will now show that a caplet with payment date ti+1 is
equivalent to 1 + R̄∆t put options on the ti+1–maturity discount bond. The
put options mature at the reset date ti of the caplet and have strike equal to
1/(1 + R̄∆t). To see this equivalence, note that the value of 1 + R̄∆t such
options at their maturity date ti is

[
1 + R̄∆t

]
max

(
0,

1
1 + R̄∆t

− P (ti, ti+1)
)

= max
(
0, 1 − [

1 + R̄∆t
]
P (ti, ti+1)

)
= P (ti, ti+1)max

(
0, 1

P (ti,ti+1)
− 1 − R̄∆t

)
.

Given that 1/P (ti, ti+1) = 1 + Ri ∆t, this equals

P (ti, ti+1) max(0,Ri − R̄)∆t .

This is the value at date ti of the caplet with payment date ti+1 shown in
expression (12.5). It follows that the caplet and the 1+R̄∆t put options must
have the same value at any date prior to ti.

Similarly, a floorlet with payment date ti+1 is equivalent to 1 + R̄∆t call
options on the ti+1–maturity discount bond, with the call options maturing
at date ti and having strike equal to 1/(1 + R̄∆t). In the following chapters,
we will describe models for valuing bond options. These models will also be
applied to price caps, as portfolios of put options on discount bonds, and to
price floors, as portfolios of calls.

12.8 Swaptions as Options on Coupon Bonds

As noted previously, the value at date T of the payer swaption, if exercised,
is

P (T, t0) − P (T, tN ) − R̄∆t

N∑
i=1

P (T, ti) .

In Sect. 12.5, we considered this as the difference of two pieces, the first piece
being S(T ) = P (T, t0) − P (T, tN ), which is the value of the floating-rate leg,
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and the second being Z(T ) = R̄∆t
∑N

i=1 P (T, ti), the value of the fixed-rate
leg. We can also separate it differently—the first part being P (T, t0), which is
the value at the swaption maturity of the discount bond maturing at t0, and
the second part being P (T, tN ) + R̄∆t

∑N
i=1 P (T, ti), which is the value of a

fixed-rate bond including the face value at maturity. Thus, a payer swaption
is equivalent to an option to exchange a fixed-rate coupon bond for a discount
bond. A receiver swaption is an option to engage in the reverse exchange.

Typically, t0 = T (the swap starts at the swaption maturity), in which case
P (T, t0) = 1 and the payer (receiver) swaption is a standard put (call) option
on the coupon bond, with exercise price equal to 1. The models developed
in later chapters for valuing options on coupon bonds can therefore also be
applied to value swaptions.

12.9 Calculations in VBA

Valuing Caps with Black’s Formula

We will compute the value of each caplet with the Black_Call function. In
the Black_Call function, we input the forward price for the caplet with reset
date ti as

Fi(0) = Ri(0)∆t =
P (0, ti)

P (0, ti+1)
− 1 , (12.11)

as given in equations (12.2) and (12.4). The exercise price of each caplet is K =
R̄∆t. We also need to input the discounting factor P (0, ti+1). The discount
bond prices P (0, t1), . . . , P (0, tN ) are input as a vector P. The discount bond
price P (0, t0) is input as P0.2 We will assume the same volatility for each
forward rate.

Function MarketModel_Cap(P0, P, rbar, sigma, N, t0, dt)

’

’ Inputs are P0 = price of discount bond maturing at t0

’ P = N-vector of discount bond prices, from t1 to tN

’ rbar = fixed rate in the cap

’ sigma = volatility of the forward LIBOR rates

’ N = number of reset (or payment) dates

’ t0 = time until first reset date

’ dt = time between reset (or payment) dates

’

Dim K, F, i

K = rbar * dt ’ strike prices of caplets

2 The reason for separating the bond maturing at t0 is that vectors input as arrays
from Excel worksheets are automatically indexed beginning with the index 1. To
keep the indexing consistent with our notation, we want the first element of the
input vector to be P (0, t1), the second element to be P (0, t2), etc. This consistency
is convenient, though obviously not essential.
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If t0 = 0 Then

’

’ if valuing at the reset date of the first caplet,

’ the caplet value is its intrinsic value

’

MarketModel_Cap = P(1)*Application.Max(0,1/P(1)-1-rbar*dt)

Else ’ if valuing prior to maturity of first caplet

F = P0 / P(1) - 1

MarketModel_Cap = Black_Call(F, K, P(1), sigma, t0)

End If

For i = 1 To N - 1 ’ adds caplets with reset dates t1, ..., t(N-1)

F = P(i) / P(i + 1) - 1

MarketModel_Cap = MarketModel_Cap _

+ Black_Call(F,K,P(i+1),sigma,t0+i*dt)

Next i

End Function

Valuing Swaptions with Margrabe’s Formula

Function MarketModel_Payer_Swaption(P0, P, rbar, sigma, N, T, dt)

’

’ Inputs are P0 = price of discount bond maturing at t0

’ P = N-vector of discount bond prices, from t1 to tN

’ rbar = fixed rate in the swap

’ sigma = volatility of the forward swap rate

’ N = number of swap cash flows

’ T = time to maturity

’ dt = time between swap cash flow dates

’

Dim Floating, Fixed, i

Floating = P0 - P(N) ’ value of the floating leg

Fixed = P(1)

For i = 2 To N

Fixed = Fixed + P(i)

Next i

Fixed = rbar * dt * Fixed ’ value of the fixed leg

MarketModel_Payer_Swaption = Margrabe(Floating,Fixed, sigma,0,0,T)

End Function

Problems

12.1. Modify the function MarketModel_Cap so that rather than taking P0
and the vector P of discount bond prices as inputs, it “looks up” discount
bond prices from a function DiscountBondPrice that returns a discount bond
price for any maturity. For example, DiscountBondPrice might be based
on a cubic spline fit to the yield curve as discussed in Sect. 11.1. To test
the new function MarketModel_Cap, you will need to create a test function
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DiscountBondPrice. For example, you could use the following, which corre-
sponds to a rather steeply increasing yield curve, especially at the short end.

Function DiscountBondPrice(t)

DiscountBondPrice = Exp(-t * (0.01 + 0.0052 * t - 0.00012 * t ^ 2))

End Function

12.2. Create a function MarketModel_Cap_ImpliedVol that uses bisection to
find the forward rate volatility (assume the same volatility for each forward
rate) that equates the cap price given by MarketModel_Cap to a market cap
price. The function should take the same inputs as MarketModel_Cap except
that the forward rate volatility should be replaced by the market cap price.

12.3. Repeat Prob. 12.1 for the function MarketModel_Payer_Swaption.

12.4. Create a function MarketModel_Payer_Swaption_ImpliedVol that uses
bisection to find the forward swap rate volatility that equates the swaption
price given by MarketModel_Payer_Swaption to a market swaption price.
The function should take the same inputs as MarketModel_Payer_Swaption
except that the forward swap rate volatility should be replaced by the market
swaption price.

12.5. Create a VBA function MarketModel_Floor to value a floor, assuming
the forward rates have constant and equal volatilities. Write the function so
that it looks up discount bond prices from the DiscountBondPrice function.

12.6. Create a VBA function MarketModel_Receiver_Swaption to value a
receiver swaption, assuming the forward swap rate has a constant volatil-
ity. Write the function so that it looks up discount bond prices from the
DiscountBondPrice function.

12.7. The following exercise is motivated by an example presented in one of
my classes by David Eichhorn of NISA Investment Advisors.

(a) Using the DiscountBondPrice function above, calculate what the swap
rate should be today for a 10-year swap with semiannual cash flows.

(b) Calculate the value of a 3 × 10 European receiver swaption (an option
maturing in 3 years to enter into a 10-year swap as the receiver) with the
underlying swap having semiannual cash flows and the fixed rate being
equal to the spot swap rate calculated in part (a). Assume the forward
swap rate has a constant volatility equal to 0.1.

(c) Consider a 3 × 10 European payer swaption with the underlying swap
having semiannual cash flows. Calculate the fixed rate of the swap (using
bisection or the Excel Solver tool) that makes the payer swaption have
the same value as the receiver swaption calculated in part (b). Assume
the forward swap rate has a constant volatility equal to 0.1.

(d) Calculate the forward swap rate for a 10-year swap with semiannual cash
flows beginning in 3 years.
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Commentary

A collar is an alternative to a forward contract. With standard options, as
mentioned in Sect. 1.1, a collar consists of a long call and short put (or the
reverse). If the strike of each equals the forward price, then the collar is equiv-
alent to a forward and will have zero cost—by put-call parity, both options
have the same price, so the purchase of the call can be financed by selling the
put. One can also construct a zero-cost collar with the call and put having
different strikes.

A swaption collar is an alternative to a forward swap contract. For exam-
ple, consider a long receiver swaption with the underlying swap rate being R̄r

and a short payer swaption with the underlying swap rate being R̄p > R̄r,
with the swaptions having the same time to maturity T . If the market swap
rate R(T ) at date T is below R̄r then the receiver swaption will be in the
money and will be exercised—one would rather receive R̄r than R(T ) in
this circumstance. Likewise, if R(T ) > R̄p then the payer swaption will be
exercised—one would rather pay R̄p than R(T ) in this circumstance. When
R̄p > R(T ) > R̄r, neither swaption is in the money. Thus, we have the fol-
lowing for the investor who is long the receiver swaption and short the payer
swaption:

• R(T ) < R̄r =⇒ receive R̄r and pay floating for the maturity of the swap
contract,

• R̄r < R(T ) < R̄p =⇒ neither swaption exercised,
• R(T ) > R̄p =⇒ receive R̄p and pay floating for the maturity of the swap

contract.

Note that one can always pay floating just by borrowing short term; it is
receiving fixed that is important here. In the second case above, the investor
can engage in a swap at date T and receive the market swap rate R(T ). Thus,
the collar guarantees that he will receive at least R̄r and will receive no more
than R̄p, whatever might be the market swap rate at date T .

An institution such as a pension fund can use a receiver swap to help
hedge its fixed-rate liabilities. As an alternative, it can use a collar as just
described. The difference is that a forward receiver swap would guarantee
a fixed rate to be received, whereas the collar leaves some residual risk—it
guarantees only that the fixed rate will be between R̄r and R̄p. This risk may
appear attractive. In Prob. 12.7, the lower rate R̄r is the market swap rate,
and the higher rate R̄p is significantly higher; thus, it may appear that the
worst-case scenario is the same as what one can get in the market with a swap
and the best case is significantly better. However, this is an illusion, because
the appropriate comparison is with a forward swap (starting at the maturity
of the swaptions) and the forward swap rate is substantially higher than the
spot swap rate (due to the yield curve being steeply upward sloping). This
“illusion” may create a good marketing opportunity for sellers of collars.



13

Valuing Derivatives in the Extended Vasicek
Model

In the preceding chapter, we presented models for valuing swaptions, caps,
and floors based on assumptions that certain forward rates have constant
volatilities. As noted, the assumptions used to value swaptions on the one
hand and caps and floors on the other are inconsistent. Because the values
of fixed-income derivatives are derived from the yield curve, one can obtain
a consistent model by developing a model of how the yield curve will evolve
over time. In this chapter, we will give a fairly full account of one popular and
relatively simple model. The next chapter contains much briefer descriptions
of other models.

We will begin by describing the basic Vasicek model. The extended Vasicek
model (of which there are several versions) includes time-dependent parame-
ters, so that it can be fit to the yield curve at the time it is used and possibly
also to other market variables, such as cap prices or yield volatilities.

13.1 The Short Rate and Discount Bond Prices

An assumption of the Vasicek model and related models discussed in the next
chapter is that there is an instantaneously risk-free rate. Letting r(s) denote
this rate at date s, the meaning of this assumption, as discussed in Sect. 1.1,
is that there is an asset with price process

R(t) = exp
(∫ t

0

r(s) ds

)
.

The instantaneous rate of return on this asset is

dR(t)
R(t)

= r(t) dt .

There is no random term (of the form σ dB) in this rate of return; thus, we
view the return as known at date t, whence the name “instantaneously risk-
free.” If there were another instantaneously risk-free asset with rate of return
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r̂(t) which differed from r(t) on a non-negligible set of dates and states of the
world, there would be an arbitrage opportunity. Hence, we will assume there is
a unique instantaneously risk-free rate. We will call this rate the “short rate.”
The interpretation of the price R(t) is that it is the amount that would be
accumulated by date t, beginning with $1 at date 0 and continuously rolling
over the investment in the instantaneously risk-free asset. It is conceptually
similar to the net asset value of a money market fund, so R is sometimes called
the price of a money market account. We will also call it an “accumulation
factor.”

The probability measure associated with R being the numeraire is called
the risk-neutral measure, just as when the short rate is constant. Under the
risk-neutral measure, the price P (t, u) at date t of a discount bond maturing
at u must be

P (t, u) = R(t)ER
t

[
1

R(u)

]
= ER

t

[
exp

(
−
∫ u

t

r(s) ds

)]
, (13.1)

the first equality being a result of our fundamental pricing formula (1.17) and
the fact that the discount bond pays $1 at maturity and the second equality
following from the definition of R. Thus, a model for the evolution of the short
rate under the risk-neutral measure implies a model for discount bond prices
and hence the yield curve.

13.2 The Vasicek Model

In the basic Vasicek [62] model, it is assumed that

dr(t) = κ
[
θ − r(t)

]
dt + σ dB(t) (13.2)

for constants κ ≥ 0, θ, and σ, where B is a Brownian motion under the
risk-neutral measure. In this model, θ is the long-run mean of the short rate
process and κ is interpreted as the rate of mean reversion. When r(t) > θ,
the drift term will be negative and push r down towards θ. Likewise, when
r(t) < θ, the drift term will be positive and push r up towards θ. The rate
at which r drifts towards θ is obviously determined by κ. We are going to
depart from our convention and call σ the “volatility” of the short
rate even though σ2 dt is the instantaneous variance of dr rather than dr/r.

The short rate is normally distributed in the Vasicek model. Given infor-
mation at date t—i.e., knowledge of r(t)—then, if κ > 0, the rate r(s) for
s > t is normally distributed with mean1

θ + e−κ(s−t)
[
r(t) − θ

]
(13.3)

1 These results on the mean and variance of r(s) follow from the solution (13.5) of
the Vasicek equation (13.2).
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and variance
σ2

(
1 − e−2κ(s−t)

)
2κ

. (13.4)

For any r(t), the mean converges to θ at long horizons (i.e., as s → ∞),
justifying the interpretation of θ as the long run mean. In fact, the mean
converges exponentially to θ at rate κ. The variance at long horizons is σ2/2κ.
On the other hand, if κ = 0, then the short rate is a Brownian motion with
volatility σ. The mean of r(s) is r(t) for s > t, and the variance of r(s) is
(s−t)σ2. Thus, the uncertainty at long horizons, as measured by the variance,
is unbounded when κ = 0. Whether κ is positive or not, an implication of
the normal distribution is that there is a positive probability of the short
rate r(s) being negative at any date s > t, which should not be the case
for (nominal) interest rates. However, the probability of negative rates over
any given horizon will be small if the variance is sufficiently small. From the
formula (13.4), we see that, when κ > 0, the variance will be small if either
the volatility σ is small or the rate of mean reversion κ is large.

These facts about the distribution of the short rate demonstrate the im-
portance of assuming mean reversion (κ > 0). If κ = 0, the short rate (because
it is a Brownian motion) has the property that for any real number K, with
probability one there will be some date s > t such that r(s) > K, irrespective
of the starting position r(t). Likewise, there will be some date s′ > t such
that r(s′) < −K. Thus, the short rate “wanders” off in both directions in an
unbounded way. This property may be reasonable for the logarithm of a stock
price, because a stock price may become arbitrarily high or arbitrarily close
to zero (implying that the logarithm is unbounded both above and below).
However, it is not reasonable for an interest rate, which should exhibit more
stability. The assumption of mean reversion (κ > 0) provides this stability,
guaranteeing that the uncertainty at long horizons is bounded and that on
average the short rate will converge back to a finite long-run mean. Neverthe-
less, we will give results in this chapter for the case κ = 0, because this is a
particularly simple model and because it is the basic building block for what is
called the “continuous-time Ho-Lee model.” The actual Ho-Lee model, which
is a binomial model, will be discussed in the following chapter.

The relative simplicity of the Vasicek model stems from the fact that
under assumption (13.2) the accumulation factor R is lognormally distributed.
Specifically, at any date t and given any date u > t, the random variable∫ u

t

r(s) ds

is normally distributed. Its mean and variance depend on the parameters κ,
θ, and σ and the length of the time interval u− t. The mean also depends on
the short rate r(t) at date t. Therefore, the discount bond price depends on
the same things.

We will now present an explicit formula for discount bond prices, based on
the fundamental formula (13.1). By taking the Itô differential of r(s) in the
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following, one can verify that it is the solution of the Vasicek model (13.2):2

r(s) = θ − e−κ(s−t)
[
θ − r(t)

]
+ σ

∫ s

t

e−κ(s−y) dB(y). (13.5)

If κ = 0, this simplifies to

r(s) = r(t) + σ

∫ s

t

dB(y) = r(t) + σ[B(s) − B(t)] . (13.5′)

These equations imply the following.

In the Vasicek model, consider dates t < u and define τ = u − t. Given the
short rate r(t) at date t, the discount bond price has the form

P (t, u) = exp (−a(τ) − b(τ)r(t)) , (13.6a)

where, if κ = 0,

a(τ) = −σ2τ3/6 , (13.6b)
b(τ) = τ , (13.6c)

and, if κ > 0,

a(τ) = θτ − θ

κ

(
1 − e−κτ

)− σ2

4κ3

(
2κτ − e−2κτ + 4e−κτ − 3

)
, (13.6b′)

b(τ) =
1
κ

(
1 − e−κτ

)
. (13.6c′)

We will end this section with a proof of (13.6) in the case κ = 0. The formula for
κ > 0 can be established by the same reasoning, the calculations being only slightly
more complicated. From (13.5′), we have∫ u

t

r(s) ds =

∫ u

t

[
r(t) + σ

∫ s

t

dB(y)

]
ds

= τ r(t) + σ

∫ u

t

{∫ s

t

dB(y)

}
ds .

We can change the order of integration in the double integral above to obtain

2 Equation (13.5) implies the distributional properties of r(s) stated earlier. The
integral

∫ s

t
e−κ(s−y) dB(y) is normally distributed with mean zero; therefore equa-

tion (13.5) shows that the mean of r(s) in the case κ > 0 is as given in (13.3).
The variance is computed, following the rules in Chap. 2, as

∫ s

t
e−2κ(s−y) dy, which

simplifies to the formula given in (13.4).
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t

{∫ s

t

dB(y)

}
ds =

∫ u

t

{∫ u

y

ds

}
dB(y)

=

∫ u

t

(u − y) dB(y) .

Given the information at date t, this is a normally distributed random variable with
mean zero and variance equal to∫ u

t

(u − y)2 dy =
τ3

3
.

Therefore,
∫ u

t
r(s) ds is normally distributed with mean τ r(t) and variance σ2τ3/3.

We now use the fact that if x is normally distributed with mean µ and variance σ2,

then the mean of ex is eµ+σ2/2. Substituting this into (13.1) gives the result.

13.3 Estimating the Vasicek Model

One way to choose the parameters κ, θ and σ of the Vasicek model is to imply
them from market bond prices and the formula (13.6). This is analogous to
implying the volatility of a stock from market option prices and the Black-
Scholes formula. This can also be viewed as an alternative to fitting a cubic
spline, as discussed in Chap. 11. Rather than selecting the parameters of the
cubic spline to provide the best approximation to market bond prices, one can
choose the Vasicek parameters κ, θ and σ. The formula (13.1) will then give
prices of discount bonds of all maturities.3

An alternative procedure is to estimate the parameters from historical data
on the short rate. The short rate is a theoretical construct and one must choose
some proxy to use for empirical work, for example, the Federal Funds rate, or
the yield of a short-term (typically one-month or three-month) Treasury bill.
One also needs to use a proxy for the short rate when implying the parameters
from market bond prices as described in the previous paragraph (or one could
view the short rate as one of the parameters to be implied).

An issue that arises when estimating the model from historical data is
that the Vasicek equation (13.2) characterizes the evolution of the short rate
relative to a Brownian motion under the risk-neutral measure, whereas the his-
torical data is governed by the actual measure. Vasicek [62] actually assumed
that (13.2) holds relative to a Brownian motion under the actual probability
measure. We will write his assumption as

dr(t) = κ∗[θ∗ − r(t)] dt + σ∗ dB∗(t) , (13.7)

3 Of course, the fit to market bond prices will typically be poorer with fewer para-
meters; therefore, the Vasicek yield curve will typically not fit as well as a cubic
spline.
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where κ∗, θ∗, σ∗ are constants and B∗ is a Brownian motion under the ac-
tual probability measure.4 Vasicek then assumed a constant “market price of
risk” λ, from which it follows that5

dr(t) = κ∗[θ∗ − r(t)] dt + σ∗λ dt + σ∗ dB(t) , (13.2′)

where B is a Brownian motion under the risk-neutral measure. This is the
same as (13.2) when we define κ = κ∗, σ = σ∗, and θ = θ∗ + σ∗λ/κ∗. This
means that the mean-reversion and volatility parameters are the same under
the actual and risk-neutral measures, whereas the long-run mean parameters
θ and θ∗ are related via the market price of risk. Thus, to estimate κ, θ and σ
in (13.2), we could estimate κ∗ = κ, σ∗ = σ, and θ∗ from (13.7) and historical
data and then choose θ to best fit market bond prices.

We can estimate the parameters of (13.7) by linear regression. Suppose we
have data on a proxy for the short rate at dates t0, t1, . . . , tN , with ti − ti−1 =
∆t for each i. The solution (13.5) of the Vasicek equation (13.2) for the short
rate, adapted to (13.7), implies the following equation for the changes in the
short rate:

r(ti) − r(ti−1) =
(
1 − e−κ∗∆t

)
θ∗ −

(
1 − e−κ∗∆t

)
r(ti−1)

+ σ∗
∫ ti

ti−1

e−κ∗(ti−a) dB∗(a) .

We can write this as

r(ti) − r(ti−1) = a + b r(ti−1) + ε

where ε is a normally distributed random variable, independent of r(ti−1),
with mean zero and variance

σ∗2
∫ ti

ti−1

e−2κ∗(ti−a) da =
σ∗2 (1 − e−2κ∗∆t

)
2κ∗ .

We can estimate a, b and the variance of ε by linear regression and then obtain
κ∗, θ∗ and σ∗ from the equations

a =
(
1 − e−κ∗∆t

)
θ∗ ,

b = −
(
1 − e−κ∗∆t

)
,

var(ε) =
σ∗2 (1 − e−2κ∗∆t

)
2κ∗ .

4 Note that our notation is the reverse of what many people use: here B denotes a
Brownian motion under the risk-neutral measure (under which we will primarily
operate) and B∗ denotes a Brownian motion under the actual measure.

5 The price of risk is the new drift of B∗ when we change from the actual measure
to the risk-neutral measure. See Appendix B.1.
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13.4 Hedging in the Vasicek Model

Because the Brownian motion driving the short rate also drives all the discount
bond prices, the bond prices are (instantaneously) perfectly correlated in the
Vasicek model (and also in the extensions we will consider next). This is true
in any model in which there is a single factor, such as the short rate, that
determines all bond prices. The volatilities of the bond returns determine the
hedge ratios for hedging one bond with another.

Equation (13.6a) and Itô’s formula (the rule that, if P = eX , then dP/P =
dX + (dX)2/2) imply that for any date t and any fixed maturity date u > t,
we have

dP (t, u)
P (t, u)

= r(t) dt − σb(u−t) dB(t) . (13.8)

Because B is a Brownian motion under the risk-neutral measure, this equation
implies that the expected rate of return on a discount bond under the risk-
neutral measure is the short rate. This is not a surprise, because it is true
for every asset under the risk-neutral measure. What is important in this
equation is that the volatility is a non-random function of the date t, given
the maturity u.

As an example, consider hedging a short two-year bond with a long position
in a one-year bond at some date t. According to the formula (13.8), the change
in the value of the short position in the two-year bond will be

−P (t, t + 2)r(t) dt − P (t, t + 2)σb(2) dB(t)

Suppose we hold x units of the one-year bond as a hedge and borrow

xP (t, t + 1) − P (t, t + 2)

dollars at the instantaneously risk-free rate to finance the hedge. Then the
change in the value of the portfolio will be

xP (t, t + 1)r(t) dt + xP (t, t + 1)σb(1) dB(t)
− P (t, t + 2)r(t) dt − P (t, t + 2)σb(2) dB(t)

− [xP (t, t + 1) − P (t, t + 2)] rdt

= xP (t, t + 1)σb(1) dB(t) − P (t, t + 2)σb(2) dB(t) ,

so a perfect hedge is obtained by setting

x =
b(2)P (t, t + 2)
b(1)P (t, t + 1)

.

In the case κ = 0, this simplifies to x = 2P (t, t + 2)/P (t, t + 1), which means
that the dollar value xP (t, t + 1) of the holding in the one-year bond is twice
the dollar value of the short position in the two-year bond. One holds twice
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as much of the one-year bond, because it is half as volatile as the two-year
bond in this model.

By this same reasoning, one can compute a perfect hedge for any discount
bond by using another discount bond of any maturity. In fact, one can hedge
any term structure derivative in this model by investing the right amount in
a bond of any maturity. This is clearly overly simplistic, and such arbitrary
hedges would not be used in practice.

There is a close connection between hedging in this model and duration
hedging, as discussed in Sect. 11.4. To see this, consider a coupon bond that
at date t has remaining cash flows C1, . . . , Cn at dates t + τ1 < · · · < t + τn

and price P (t). Its price should satisfy

P (t) =
n∑

j=1

CjP (t, t + τj) .

In the Vasicek model, the random part of the change in the price of the coupon
bond is

−σ

⎛
⎝ n∑

j=1

b(τj)CjP (t, t + τj)

⎞
⎠ dB(t) ,

and the random part of the return is

−σ

⎛
⎝ n∑

j=1

b(τj)CjP (t, t + τj)
P (t)

⎞
⎠ dB(t) . (13.9)

Consider the case κ = 0. Then b(τj) = τj , so the random part of the return
of the coupon bond is

−σ

⎛
⎝ n∑

j=1

τjCjP (t, t + τj)
P (t)

⎞
⎠ dB(t) .

The factor in parentheses is Duration′ defined in (11.11). Denoting it now as
D(t) and recognizing that the expected rate of return of the bond must be
the short rate, we have, in the Vasicek model with κ = 0,

dP (t)
P (t)

= r(t) dt − σD(t) dB(t) .

It follows that in this model one can hedge any fixed-income liability by hold-
ing enough of any coupon bond such that the dollar value multiplied by its
duration equals the dollar value of the liability multiplied by its duration. In
Sect. 11.4, we noted that duration matching works for parallel shifts in the
yield curve. Later, we will see that in the Vasicek model with κ = 0 only paral-
lel shifts in the yield curve are possible. Therefore, it should not be surprising
that duration matching works in this model.
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In the case κ > 0, one can interpret the volatility of the coupon bond
similarly. The analogue to duration for this model is the weighted average
of the function b(τj) of the times to maturity, as the formula (13.9) shows.
The weights again are the fractions of the bond value that each cash flow
contributes.

13.5 Extensions of the Vasicek Model

To fit the model to current market conditions at the time the model is being
used, the parameters κ, θ and σ can be taken to be time-dependent. The
model with time-dependent parameters is studied in Hull and White [38] and
is usually called the Hull-White model. It is convenient to denote by θ(t) the
time-dependent function replacing the constant κθ in the definition of the
Vasicek model (13.2); that is, we redefine as θ what was previously κθ.6 As
usual, we will let date 0 be the date at which we are using the model. The
model is then, for t > 0,

dr(t) = θ(t) dt − κ(t)r(t) dt + σ(t) dB(t) . (13.10)

We will focus on the simplest case, in which κ and σ are constants, deferring
discussion of the general case to the last section of this chapter. The general
case is quite similar, with the formulas being only slightly more complicated.
So, we assume now that

dr(t) = θ(t) dt − κr(t) dt + σ dB(t) . (13.10′)

for a non-random function θ. We will call this model with κ > 0 the Hull-
White model. The model with κ = 0 (i.e., in the absence of mean reversion)
is called the continuous-time Ho-Lee model. We will refer to the general case
(13.10) as the general Hull-White model, and we will discuss it in Sect. 13.11.
In the Hull-White model, we can interpret θ(t)/κ as a time-varying long-run
mean of the short rate process, because we have

dr(t) = κ

[
θ(t)
κ

− r(t)
]

dt + σ dB(t) .

6 Some authors (including Hull and White) do not make this definition—i.e., they
denote by κ(t)θ(t) what we are denoting by θ(t)—so be careful when combining
results from different sources.
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One can show by the following by directly differentiating.

In the Hull-White model,

r(s) = φ(s) + r̂(s) , (13.11a)

where
φ(s) =

∫ s

0

e−κ(s−y)θ(y) dy , (13.11b)

and
r̂(s) = e−κsr(0) + σ

∫ s

0

e−κ(s−y) dB(y) . (13.11c)

When κ = 0 (the continuous-time Ho-Lee model), these formulas simplify
to

φ(s) =
∫ s

0

θ(y) dy . (13.11b′)

and
r̂(s) = r(0) + σB(s) . (13.11c′)

Note that (13.11c) and (13.11c′) imply

dr̂(t) = −κr̂(t) dt + σ dB(t) , (13.12)

where κ = 0 for (13.11c′). Thus, r̂ is a Vasicek short-rate process having a
long-run mean of zero.

The virtue of the expression for r given in (13.11) is that the basic bond
pricing equation (13.1) now gives us

P (t, u) = ER
t

[
exp

(
−
∫ u

t

r(s) ds

)]

= ER
t

[
exp

(
−
∫ u

t

φ(s) + r̂(s) ds

)]

= ER
t

[
exp

(
−
∫ u

t

φ(s) ds

)
exp

(
−
∫ u

t

r̂(s) ds

)]

= exp
(
−
∫ u

t

φ(s) ds

)
ER

t

[
exp

(
−
∫ u

t

r̂(s) ds

)]
. (13.13)

Thus, the non-random part φ(s) of the short-rate process “pulls out” of the
expectation in the pricing formula. Furthermore, we have already calculated
the expectation in (13.13) because it is the discount bond price in the Vasicek
model with a long-run mean of zero. This yields the following.
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Consider dates t < u and define τ = u− t. The price at date t of a discount
bond maturing at date u in the extended Vasicek model is

P (t, u) = exp
(
−
∫ u

t

φ(s) ds − a(τ) − b(τ)r̂(t)
)

, (13.14a)

where, in the continuous-time Ho-Lee model,

a(τ) = −σ2τ3/6 , (13.14b)
b(τ) = τ , (13.14c)

and, in the Hull-White model,

a(τ) = − σ2

4κ3

(
2κτ − e−2κτ + 4e−κτ − 3

)
, (13.14b′)

b(τ) =
1
κ

(
1 − e−κτ

)
. (13.14c′)

Using the fact that the expected rate of return on a discount bond must
be the short rate under the risk-neutral measure, we obtain from (13.14a) and
(13.12) that, for each fixed maturity date u,

dP (t, u)
P (t, u)

= r(t) dt − σb(τ) dB(t) . (13.15)

Thus, the volatilities are determined by the function b, just as in the basic
Vasicek model. The computation of hedge ratios is therefore analogous to the
computations presented in Sect. 13.4 for the basic Vasicek model. In fact, the
volatilities of discount bond returns in the Hull-White model are the same as
in the Vasicek model with κ > 0, and the volatilities in the continuous-time
Ho-Lee model are the same as in the Vasicek model with κ = 0.

13.6 Fitting Discount Bond Prices and Forward Rates

It is simple to fit the Hull-White model and continuous-time Ho-Lee model
to market discount bond prices by choosing the function φ. We will use the
superscript “mkt” to denote market prices. Letting date 0 denote the date at
which we are fitting the model, we want to have

Pmkt(0, u) = P (0, u)

for all maturities u, where P (0, u) denotes the model prices given in (13.14a)
as
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P (0, u) = exp
(
−
∫ u

0

φ(s) ds − a(u) − b(u)r(0)
)

.

The functions a and b depend on κ and σ, but we regard them now as having
already been chosen. Therefore, to match the model prices to market prices,
we simply have to set

exp
(
−
∫ u

0

φ(s)
)

= exp (a(u) + b(u)r(0)) Pmkt(0, u) . (13.16)

Usually we will only need to solve (13.16) for a finite number of maturi-
ties u in order to calibrate the model sufficiently. We will illustrate this in the
analysis of coupon bond options in Sect. 13.8. However, the equation can be
solved in principle for each maturity u as follows: take the natural logarithm of
both sides, multiply by minus 1, and differentiate with respect to u to obtain

φ(u) = −∂a(u)
∂u

− ∂b(u)
∂u

r(0) − ∂ log Pmkt(0, u)
∂u

. (13.17)

Equation (13.17) gives the solution of the model for φ(u), and it also has
an important interpretation. We can obviously rearrange it as

φ(u) +
∂a(u)
∂u

+
∂b(u)
∂u

r(0) = −∂ log Pmkt(0, u)
∂u

. (13.17′)

The expression

−∂ log Pmkt(0, u)
∂u

is the market instantaneous forward rate at date 0 for maturity u. The left-
hand side of (13.17′) is equal to

−∂ log P (0, u)
∂u

,

and hence is the model instantaneous forward rate at date 0 for maturity u.
Therefore, fitting the model to the yield curve is equivalent to fitting model
forward rates to market forward rates.7

7 To understand the interpretation of the derivatives of the log bond prices as
forward rates, consider the market prices Pmkt(0, u). Recall from our discussion
in Sect. 12.2 that to lock in at date 0 the rate of interest on a $1 loan from
dates u to u′, one can buy a unit of the discount bond maturing at u and raise
the funds Pmkt(0, u) required by short-selling Pmkt(0, u)/Pmkt(0, u′) units of the
bond maturing at u′, which leads to an obligation of Pmkt(0, u)/Pmkt(0, u′) dollars
at date u′. The continuously compounded forward rate for the loan between dates
u and u′ is therefore x defined by

e(u′−u)x =
Pmkt(0, u)

Pmkt(0, u′)
.
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It is very important to note that if we choose the function φ(t) at date 0 to
match the market, then when we want to recalibrate the model at some later
date to match the market at that date, we will have to select a different φ
function at the later date. In other words, we use a model today that we know
we will discard as incorrect tomorrow. The φ function (as well as the κ and σ
functions in the general Hull-White model) is continually discarded and refit
to match the market. This is an unpleasant reality, but it is not really too
different from using implied volatilities in the Black-Scholes formula. We know
that the implied volatility curve changes over time, so the volatility we use
tomorrow may well be different from the volatility we use today. No model is
every a literally correct description of the real world. As has been said, the test
of the pudding is in the tasting. The test of a model is whether it generates
reasonably correct values and hedges. This is an empirical question, and it is
not equivalent to the question of whether the assumptions of the model are
correct.

13.7 Discount Bond Options, Caps and Floors

We can use Black’s formula to value discount bond options in the Vasicek
model and in its extensions. As explained in the previous chapter, caps and
floors are portfolios of discount bond options, so the values of caps (floors) can
be computed by summing the values of the individual caplets (floorlets). The
reason we can apply Black’s formula is that the volatility of the forward price
of a discount bond is non-random in the Vasicek model and its extensions.

Consider valuing at date 0 an option maturing at date T on a discount
bond maturing at u > T . Because forward must equal spot at maturity, an
option written on a forward contract maturing at T is equivalent.8 The forward
price of the discount bond at date t ≤ T for a forward contract maturing at T
is given by

F (t) =
P (t, u)
P (t, T )

.

From Itô’s formula and the equation (13.15) for the discount bond returns,
we have

Equivalently,

x =
log Pmkt(0, u) − log Pmkt(0, u′)

u′ − u
= − log Pmkt(0, u′) − log Pmkt(0, u)

u′ − u
.

As we make the maturity of the loan shorter, with u′ → u, the limit of the above
(the forward rate for an instantaneous loan) is by definition the derivative (the
usual calculus derivative) of − log Pmkt(0, u).

8 This is the same reasoning we used to derive Merton’s formulas from Black’s
formulas in Sect. 7.3.
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dF (t)
F (t)

= something dt +
dP (t, u)
P (t, u)

− dP (t, T )
P (t, T )

= something dt − σ[b(u − t) − b(T − t)] dB(t) .

Thus, the volatility depends on the non-random function b.
In the continuous-time Ho-Lee model, we have

b(u − t) − b(T − t) = u − T .

Therefore, the forward price has a constant volatility equal to (u − T )σ. In
the Hull-White model, we have

b(u − t) − b(T − t) =
1
κ

(
e−κ(T−t) − e−κ(u−t)

)
=

(
e−κT − e−κu

)
eκt

κ
.

Thus, the volatility is time varying (it depends on t), so we compute the
average volatility as in Sects. 3.8 and 7.9. Specifically,

σavg =
σ
(
e−κT − e−κu

)
κ

√
1
T

∫ T

0

e2κt dt

=
σ
(
e−κT − e−κu

)
κ

√
e2κT − 1

2κT
. (13.18)

Substituting Pmkt(0, u)/Pmkt(0, T ) as the forward price of the discount
bond maturing at u in Black’s formula gives the following.

Consider an option with exercise price K maturing at date T on a discount
bond maturing at date u > T . In the extended Vasicek model, the values at
date 0 of such options are

Call Price = Pmkt(0, u)N(d1) − Pmkt(0, T )K N(d2) , (13.19a)

Put Price = Pmkt(0, T )K N(−d2) − Pmkt(0, u)N(−d1) , (13.19b)

where

d1 =
log Pmkt(0, u) − log

(
Pmkt(0, T )K

)
+ 1

2σ2
avgT

σavg

√
T

, (13.19c)

d2 = d1 − σavg

√
T . (13.19d)

The volatility σavg is defined as σavg = (u−T )σ in the continuous-time Ho-
Lee model and according to the formula (13.18) in the Hull-White model.

As our notation indicates, the discount bond prices appearing in these formu-
las should be taken to be the market prices of the bonds at the date the options
are valued, rather than the model prices. Of course, if we have fit the model
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to the market prices of discount bonds, there is no distinction. Using model
prices that are different from market prices would be similar to inputting a
stock price in the Black-Scholes formula obtained from a discounted-cash-flow
analysis rather than using the market price of the stock. This is not something
that one would normally do.

Because the discount bond volatilities are the same in the continuous-time
Ho-Lee model as in the basic Vasicek model with κ = 0 and are the same in the
Hull-White model as in the basic Vasicek model with κ > 0, the formulas for
the values of discount bond options are the same in the corresponding models.
These extensions of the basic Vasicek model permit one to match model bond
prices to market bond prices, but they have no effect on the values of discount
bond options, provided we remember to use the market prices in (13.19).

As noted before, these option pricing formulas can be used to value caplets
and floorlets. A caplet with reset date ti and payment date ti+1 is equivalent,
as discussed in Sect. 12.7, to 1 + R̄ ∆ put options maturing at ti on the
discount bond maturing at ti+1, with the exercise price of each option being
1/(1 + R̄ ∆t). When we make these substitutions in the above formulas (and
the same for floorlets) we obtain the following.

Consider a caplet and a floorlet with reset date ti and payment date ti+1.
Define ∆t = ti+1 − ti. Let R̄ denote the cap and floor rate. In the extended
Vasicek model, the values at date 0 of the caplet and floorlet are as follows.

Floorlet Price = (1 + R̄ ∆t)Pmkt(0, ti+1)N(d1) − Pmkt(0, ti)N(d2) ,
(13.20a)

Caplet Price = Pmkt(0, ti)N(−d2) − (1 + R̄ ∆t)Pmkt(0, ti+1)N(−d1) ,
(13.20b)

where

d1 =
log

(
(1 + R̄ ∆t)Pmkt(0, ti+1)

)− log Pmkt(0, ti) + 1
2σ2

avgti

σavg

√
ti

, (13.20c)

d2 = d1 − σavg

√
ti , (13.20d)

The volatility σavg is defined as σ ∆t in the continuous-time Ho-Lee model
and as

σavg =
σe−κti

(
1 − e−κ ∆t

)
κ

√
e2κti − 1

2κti
(13.20e)

in the Hull-White model.

A reasonable way to choose the parameter σ in the continuous-time Ho-
Lee model and the parameters κ and σ in the Hull-White model would be to
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fit the model as well as possible to market prices of caps and/or floors. The
function φ(t) can then be chosen as discussed in the preceding section.

We also used Black’s formula to value caplets and floorlets in Sect. 12.4.
However, the formulas in this section and the formulas in Sect. 12.4 give dif-
ferent values, because they are based on different assumptions. In the Vasicek
model and its extensions, the forward price

F (t) =
P (t, ti+1)
P (t, ti)

of the discount bond corresponding to the caplet with payment date ti+1 has a
non-random volatility, and this is the assumption on which (13.20) is based. In
Sect. 12.4, we assumed the forward LIBOR rate had a non-random volatility.
The definition (12.2) of the forward rate is

Ri(t) =
P (t, ti)

P (t, ti+1)
− 1 =

1
F (t)

− 1 .

If the forward price has a non-random volatility, then the forward rate is the
sum of a variable (1/F (t)) with a constant volatility and a constant (−1)
and hence will have a random volatility. Likewise, if the forward rate has a
non-random volatility, then the forward price will have a random volatility.
Therefore, the assumptions of the two models are inconsistent.

13.8 Coupon Bond Options and Swaptions

In this section, we will discuss the valuation of coupon bond options in the
extended Vasicek models. As discussed in Sect. 12.8, swaptions are equivalent
to options on coupon bonds, so the valuation methods can also be applied to
swaptions.

Consider a bond paying a coupon of $c at dates t1, t2, . . . , tN and its face
value of $1 at date tN . Consider a European call option on the bond maturing
at date T . In the case of a European swaption, all of the coupon payment
dates occur after the option maturity (ti > T for i = 1, . . . , N), and the
coupon is taken to be c = R̄ ∆t, where R̄ is the swap rate. In the case of an
option on a coupon bond, some of the coupons may occur before the option
maturity, but naturally the value of the option depends only on the coupons
that occur after the option matures, because those are the only coupons to
which an exerciser of the option would be entitled. By focusing only on those
coupons, we can take ti > T for i = 1, . . . , N .

A coupon bond is a portfolio of discount bonds, so an option on a coupon
bond is an option on a portfolio of discount bonds. In general, an option on
a portfolio is worth less than a portfolio of options, so an option on a coupon
bond should be worth less than a portfolio of discount bond options. However,
in any “single-factor” model, it is possible to define the strike prices of the
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discount bond options so that the option on the coupon bond is worth exactly
the same as a portfolio of discount bond options.9 This reduces the valuation
problem for coupon bond options to the problem of valuing discount bond
options, which we have already solved for this model. We will use the same
technique in Sect. 13.9 to value options on caps (“captions”) and options on
floors (“floortions”).

As shown in (13.14a), the single factor that determines all discount bond
prices in this model is the random variable r̂. We let r∗ denote the value
of r̂(T ) such that, according to the model, the coupon bond option will be at
the money at maturity when r̂(T ) = r∗. Being at the money means of course
that

N∑
i=1

cP (T, ti) + P (T, tN ) = K . (13.21)

Thus, based on the formula (13.14a) for the discount bond prices, we define r∗

by

N∑
i=1

c exp
(
−
∫ ti

T

φ(s) ds − a(ti − T ) − b(ti − T )r∗
)

+ exp
(
−
∫ tN

T

φ(s) ds − a(tN − T ) − b(tN − T )r∗
)

= K . (13.21′)

According to the model, if r̂(T ) is lower than r∗, then the bond prices will be
higher and the call option will be in the money; conversely, if r̂(T ) is higher
than r∗, then the bond prices will be lower and the call option will be out of
the money.

For i = 1, . . . , N , define Ki to be the model value of the discount bond
price P (T, ti) when r̂(T ) = r∗. In other words, define Ki as

Ki = exp
(
−
∫ ti

T

φ(s) ds − a(ti − T ) − b(ti − T )r∗
)

. (13.22)

Note that equations (13.21′) and (13.22) imply

N∑
i=1

cKi + KN = K . (13.23)

Consider for each i (i = 1, . . . , N) a hypothetical call option maturing at T
with the underlying for the option being the discount bond maturing at ti.
Let Ki be the exercise price of option i. According to the model, the value of
the underlying at date T for option i will be

P (T, ti) = exp
(
−
∫ ti

T

φ(s) ds − a(ti − T ) − b(ti − T )r̂(T )
)

.

9 This method was first described by Jamshidian [42].
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By the definition of Ki, therefore, option i will be in the money if and only if
r̂(T ) < r∗. Thus, all of the options are in (or out) of the money in the same
circumstances.

Now consider the portfolio consisting of c units of option i for i =
1, . . . , N −1 and 1+ c units of option N . According to the model, the value of
the portfolio will be zero at date T if r̂(T ) ≥ r∗, and, if r̂(T ) < r∗, it follows
from (13.23) that the value of the portfolio will be

N−1∑
i=1

c
[
P (t, ti)−Ki

]
+ (1 + c)

[
P (t, TN )−KN

]
=

N∑
i=1

cP (t, ti) + P (t, TN )−K,

which is the intrinsic value of the coupon bond option when r(T ) < r∗. There-
fore, according to the model, the coupon bond option is equivalent to this
portfolio of discount bond options. We can value the discount bond options
from the formulas in the previous section and then value the portfolio and
hence the coupon bond option by summing. The same type of reasoning also
allows us to value put options on coupon bonds.

The only issue in implementing this method is that we need to compute
the exercise prices Ki. Of course, we define them by (13.22), given r∗. To do
this requires that we calculate the factor

exp
(
−
∫ ti

T

φ(s) ds

)
, (13.24)

by fitting the model to market bond prices, as discussed in Sect. 13.6. We
will explain this more explicitly in the next paragraph. In order to apply
equation (13.22), we need to compute r∗, which is given by equation (13.21′).
We can solve (13.21′) for r∗ by bisection or some other root-finding method.
Again, we need to know the factors (13.24) in order to solve this equation.

To compute the factors (13.24), we use (13.16). We repeat it here twice,
for maturity dates ti and T :

exp
(
−
∫ ti

0

φ(s) ds

)
= exp (a(ti) + b(ti)r(0)) Pmkt(0, ti) ,

exp

(
−
∫ T

0

φ(s) ds

)
= exp (a(T ) + b(T )r(0)) Pmkt(0, T ) .

If we divide the top equation by the bottom, then on the left-hand side we
obtain

exp
(
− ∫ ti

0
φ(s) ds

)
exp

(
− ∫ T

0
φ(s) ds

) = exp

(
−
∫ ti

0

φ(s) ds +
∫ T

0

φ(s) ds

)

= exp
(
−
∫ ti

T

φ(s) ds

)
,
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which is the number we want. Hence, we obtain by dividing the right-hand
sides of the above equations:

exp
(
−
∫ ti

T

φ(s) ds

)
= exp {a(ti) − a(T ) + [b(ti) − b(T )]r(0)} Pmkt(0, ti)

Pmkt(0, T )
.

(13.25)

13.9 Captions and Floortions

In this section, we will consider options on caps and floors, which are some-
times called “captions” and “floortions” respectively. For specificity, we will
consider a call option on a cap. A cap is a portfolio of caplets, and each caplet
is a call option on a spot rate. Therefore a call option on a cap is a call op-
tion on a portfolio of calls on spot rates and hence is a bet on (or insurance
against) high spot rates.

Of course, high spot rates are equivalent to low bond prices, so a call on
a cap can also be seen as a bet on low bond prices. We will actually take
this latter approach and view a cap as a portfolio of put options on discount
bonds, as in Sect. 13.7. This means that we will analyze a call option on a cap
as a call on a portfolio of puts. We will use the trick of the previous section
and reduce this call on a portfolio of puts to a portfolio of calls on puts. Each
call on a put is a compound option and can be valued as in Chap. 8. The
assumptions made in Chap. 8 for compound options are valid here, because
the forward prices of the discount bonds (which are the underlyings for the
puts) have non-random volatilities in the extended Vasicek models.

Consider a cap with reset dates t0, . . . tN−1 and payment dates t1, . . . , tN ,
with ti+1 − ti = ∆t for each i. Let R̄ denote the fixed rate on the cap. We
consider a call option on the cap maturing at date T ≤ t0 and having exercise
price K. In the model, the value of the cap at the option maturity will depend
on the random variable r̂(T ). As in the previous section, we will let r∗ denote
the value of r̂(T ) such that the call option on the cap is at the money at date T
when r̂(T ) = r∗. If r̂(T ) > r∗ then the cap will be more valuable, so the call
will be in the money; conversely if r̂(T ) < r∗ the call will be out of the money.
Also, similar again to the previous section, we will let Ki denote the value of
the caplet with reset date ti and payment date ti+1 (i = 0, . . . , N − 1) when
r̂(T ) = r∗. We consider hypothetical call options on the individual caplets
with exercise prices Ki. If r̂(T ) > r∗, then, according to the model, all of the
calls on the caplets will be in the money, and the sum of their values will
equal the value of the call on the cap. On the other hand, if r̂(T ) < r∗ then
all of the calls on the caplets will be out of the money, as will be the call on
the cap. Thus, the value of the call on the cap is the sum of the values of the
calls on the caplets. In order to apply the methods developed in Chap. 8 for
valuing compound options to value the calls on the caplets (i.e., the calls on
puts on discount bonds), all we need to do is to calculate the rate r∗ and the
exercise prices Ki. We will explain this only briefly.
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Consider the caplet with payment date ti+1. According to the valuation
formula (13.20b), the value of the caplet at date T , when there is a remaining
time to maturity of ti − T , will be10

Caplet Value at Date T = P (T, ti)N(−d2) − (1 + R̄∆t)P (T, ti+1)N(−d1) ,
(13.26a)

where

d1 =
log

(
(1 + R̄∆t)P (T, ti+1)

)− log P (T, ti) + 1
2σ2

avg(ti − T )
σavg

√
ti − T

, (13.26b)

d2 = d1 − σavg

√
ti − T . (13.26c)

Here σavg denotes the average volatility of the forward price of the discount
bond between the option valuation date T and the option maturity date ti.
This shows that the values of the caplets and hence the value of the cap depend
on the discount bond prices at date T , which, according to the model, depend
on r̂(T ). One can use bisection or some other root-finding method again to
find the value of r̂(T ) such that, according to the model, the value of the cap
will be K at date T . Substituting this value of r̂(T ) into the bond pricing
formula (13.14) and then substituting the bond prices P (T, ti) and P (T, ti+1)
into (13.26), we define Ki as the caplet value in (13.26a).

13.10 Yields and Yield Volatilities

We are denoting the price at date t of a discount bond maturing at u, with
remaining time to maturity of τ = u− t, as P (t, u). However, as in Sect. 11.1,
we will denote the corresponding yield as y(t, τ). The yield is defined as

y(t, τ) =
− log P (t, u)

τ
.

In the extended Vasicek model, the yield is given by the bond pricing formula
(13.6a) as

y(t, τ) =

∫ t+τ

t
φ(s) ds + a(τ) + b(τ)r̂(t)

τ
.

Note that the component
a(τ) + b(τ)r̂(t)

τ

of the yield y(t, t + τ) is independent of t, except for its dependence on r̂(t).
For example, in the continuous-time Ho-Lee model, this component equals
10 We use now the model prices for the discount bonds at date T . Obviously, the

market prices at the caption maturity date T are unknown at date 0, the date at
which we are valuing the caption.
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−σ2τ2

6
+ r̂(t) .

This is a decreasing function of the time to maturity τ with intercept equal
to r̂(t). At a different date t, this component of the yield curve would be
the same, except for having a different intercept.11 This is the reason for the
statement in Sect. 13.4 that only parallel shifts in the yield curve are possible
in this model (and hence duration hedging works in the model).

The volatility at date t of the yield at a fixed maturity τ is12 σb(τ)/τ . In
the continuous-time Ho-Lee model, this is σ and in the Hull-White model it
is σ (1 − e−κτ ) /(κτ). In Sect. 13.7 we mentioned that one might choose the
parameter σ in the Ho-Lee model and the parameters σ and κ in the Hull-
White model to fit cap or floor prices as well as possible. An alternative would
be to choose them to match estimated yield volatilities. Of course the fit to
either cap prices or yield volatilities will be of limited quality, given that there
is only one or two parameters in these models. On the other hand, an exact
fit can be obtained with the general Hull-White model.

13.11 The General Hull-White Model

We will briefly discuss the general Hull-White model, in which

dr(t) = θ(t) dt − κ(t)r(t) dt + σ(t) dB(t) . (13.27)

By differentiating the following, one can see that the short rate r in the general
Hull-White model satisfies

r(s) = φ(s) + r̂(s) , (13.28a)

where

φ(s) =
∫ s

0

exp
(
−
∫ s

y

κ(x) dx

)
θ(y) dy . (13.28b)

and
11 Note that this part decreases to −∞ at long maturities (τ → ∞), which is very

strange for yields, which should be nonnegative. To compensate for this strange
behavior, one needs the part

1

τ

∫ t+τ

t

φ(s) ds ,

which is the average of φ(s) between t and t + τ to be growing sufficiently with
τ . This phenomenon is a consequence of the absence of mean reversion.

12 By “volatility” here we mean the instantaneous standard deviation of dy(t, τ) not
the instantaneous standard deviation of dy(t, τ)/y(t, τ).
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r̂(s) = exp
(
−
∫ s

0

κ(x) dx

)
r(0) +

∫ s

0

exp
(
−
∫ s

y

κ(x) dx

)
σ(y) dB(y) .

(13.28c)
As before, discount bond prices are

P (t, u) = exp
(
−
∫ u

t

φ(s) ds

)
ER

t

[
exp

(
−
∫ u

t

r̂(s) ds

)]
. (13.29)

Moreover, (13.28c) implies, for s > t,

r̂(s) = exp
(
−
∫ s

t

κ(x) dx

)
r̂(t) +

∫ s

t

exp
(
−
∫ s

y

κ(x) dx

)
σ(y) dB(y) .

Using this fact, the expectation in (13.29) can be calculated as before as the
expectation of the exponential of a normally distributed random variable,
leading to the result

P (t, u) = exp
(
−
∫ u

t

φ(s) ds − a(t, u) − b(t, u)r̂(t)
)

, (13.30a)

where

b(t, u) =
∫ u

t

exp
(
−
∫ s

t

κ(x) dx

)
ds , (13.30b)

a(t, u) = −1
2

∫ u

t

b(y, u)2σ(y)2 dy . (13.30c)

Note that the functions a and b now depend on the date t of valuation and
the date u of maturity rather than being determined entirely by the time to
maturity u − t. Note also that we can write

b(t, u) = exp
(∫ t

0

κ(x) dx

)∫ u

t

exp
(
−
∫ s

0

κ(x) dx

)
ds

= exp
(∫ t

0

κ(x) dx

)
(13.31)

×
[∫ u

0

exp
(
−
∫ s

0

κ(x) dx

)
ds −

∫ t

0

exp
(
−
∫ s

0

κ(x) dx

)
ds

]

= exp
(∫ t

0

κ(x) dx

)(
b(0, u) − b(0, t)

)
. (13.32)

Therefore, we can recover the functions b(t, u) and a(t, u) from the functions
b(0, t), exp

(∫ t

0
κ(x) dx

)
, and σ(t).
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The returns of discount bonds satisfy

dP (t, u)
P (t, u)

= r(t) dt − σ(t)b(t, u) dB(t) . (13.33)

Hence, hedge ratios, which depend on relative volatilities, are determined by
the function b as before. Given the functions κ and σ, the model can be
calibrated to market discount bond prices by choosing the function φ exactly
as discussed in Sect. 13.6.

The pricing of fixed-income derivatives discussed in Sects. 13.7–13.9 was
based on forward prices of discount bonds having non-random volatilities.
This is true also in the general Hull-White model. Given dates t < T < u, the
forward price at date t of the discount bond maturing at date u, when the
forward contract matures at T , is, as before, F (t) = P (t, u)/P (t, T ). In the
general Hull-White model, we have

dF (t)
F (t)

= something dt +
dP (t, u)
P (t, u)

− dP (t, T )
P (t, T )

= something dt − σ(t)[b(t, u) − b(t, T )] dB(t)

= something dt − σ(t) exp
(∫ t

0

κ(x) dx

)[
b(0, u) − b(0, T )

]
dB(t) .

Thus, the average volatility, from date 0 to date T, is

σavg =
[
b(0, u) − b(0, T )

]√ 1
T

∫ T

0

σ(t)2 exp
(

2
∫ t

0

κ(x) dx

)
dt .

With this substitution, the pricing of fixed-income derivatives is the same as
in the basic Hull-White model discussed in Sects. 13.7–13.9.

The advantage of the general Hull-White model is that it allows more
flexibility in fitting the model to current market conditions. This may (though
there is certainly no guarantee) provide better pricing and hedging of interest-
rate derivatives. Hull and White suggest choosing the volatility function σ to
fit anticipated future volatilities of the short rate and choosing the mean-
reversion function κ to fit market cap/floor prices or yield volatilities. We will
assume that the volatility function σ has been chosen, and we will describe
how to choose the mean-reversion function to fit the model to estimated yield
volatilities or cap prices. As usual, we let date 0 denote the date at which we
are fitting the model.

The simplest approach is to take the function κ(t) to be piecewise constant.
Consider dates 0 = t0 < t1 < · · · tM with ti− ti−1 = ∆t for each i. For valuing
a swaption, for example, we would want tM to be the sum of the time to
maturity of the swaption and the length of the swap. Thus, we are fitting the
model until the end of the swap underlying the swaption. We want to find
numbers κ1, . . . , κM and will set the function κ to equal κi for t between ti−1

and ti.
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Given this definition, we have

exp
(
−
∫ t1

0

κ(x) dx

)
= e−κ1 ∆t ,

exp
(
−
∫ t2

0

κ(x) dx

)
= e−κ1 ∆te−κ2 ∆t ,

exp
(
−
∫ t3

0

κ(x) dx

)
= e−κ1 ∆te−κ2 ∆te−κ3 ∆t ,

etc. Furthermore,

b(0, t1) = e−κ1 ∆t∆t ,

b(0, t2) = e−κ1 ∆t ∆t + e−κ1 ∆te−κ2 ∆t ∆t ,

b(0, t3) = e−κ1 ∆t ∆t + e−κ1 ∆te−κ2 ∆t ∆t + e−κ1 ∆te−κ2 ∆te−κ3 ∆t ∆t ,

etc. This yields the following recursive structure for the b(0, ti).

b(0, t1) = e−κ1 ∆t∆t , (13.34a)

b(0, t2) = b(0, t1) + b(0, t1)e−κ2 ∆t , (13.34b)

(∀i ≥ 3) b(0, ti) = b(0, ti−1) + [b(0, ti−1) − b(0, ti−2)]e−κi ∆t . (13.34c)

Matching the yield volatilities in the model to estimated market volatilities
is extremely simple. The same analysis presented in Sect. 13.10 for the basic
Hull-White model shows that the volatility at date 0 of the yield at maturity ti
in the general Hull-White model is

σ(0)b(0, ti)
ti

.

Given the estimated yield volatility, we can define b(0, ti) by equating the
model volatility to the estimated volatility. Using (13.34), the κi can be com-
puted from the b(0, ti) for i = 1, 2, . . ..

It is equally easy to match the model to market cap or floor prices. Suppose
we have estimated implied volatilities for caplets using the pricing formula
(13.20). Suppose the first caplet has reset date t1 and payment date t2, the
second has reset date t2 and payment date t3, etc. According to the model,
the average volatility of the forward price of the discount bond underlying the
caplet with reset date ti and payment date ti+1 is

[
b(0, ti+1) − b(0, ti)

]√ 1
ti

∫ ti

0

σ(t)2 exp
(

2
∫ t

0

κ(x) dx

)
dt .

Notice that everything in this expression, except b(0, ti+1), is determined by
κ1, . . . , κi and the σ function. Therefore, we can select the number b(0, ti+1)
to match the model volatility to the implied volatility for this caplet. This
defines κi+1 from (13.34). Continuing in this way, we can successively define
κ1, κ2, . . . .
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13.12 Calculations in VBA

Discount Bond Options

Rather than calculating σavg from the volatility σ of the short rate and the
constant κ or function κ(t), we will treat σavg as an input into the option pric-
ing formulas. This is necessary if one wants to use (i.e., invert) the following
functions to imply σavg from market prices and then used the implied σavg to
calibrate the model.

Function Vasicek_Discount_Bond_Call(Underlying,K,MatDisc,sigavg,T)

’

’ Inputs are Underlying = price of underlying discount bond

’ K = strike price

’ MatDisc = price of bond maturing when option matures

’ sigavg = average volatility of the forward bond price

’ T = time to maturity

’

Dim F

F = Underlying / MatDisc ’ forward price of the underlying

Vasicek_MatDisc_Bond_Call = Black_Call(F, K, MatDisc, sigavg, T)

End Function

Function Vasicek_Discount_Bond_Put(Underlying,K,MatDisc,sigavg,T)

’

’ Inputs are Underlying = price of underlying discount bond

’ K = strike price

’ MatDisc = price of bond maturing when option matures

’ sigavg = average volatility of the forward bond price

’ T = time to maturity

’

Dim F

F = Underlying / MatDisc ’ forward price of the underlying

Vasicek_Discount_Bond_Put = Black_Put(F, K, MatDisc, sigavg, T)

End Function

Caps

We input the first reset date t0, the time between payments ∆t, the total
number of payments N and the cap rate R̄. As in Sect. 12.9, we input the
price of the discount bond maturing at t0 as P0, and we input a vector P
containing the N discount bond prices P (0, t1), . . . , P (0, tN ). We will allow
different volatilities for the different caplets. The input sigavg should have
elements 1 through N , with sigavg(i) being the average volatility of the
forward price of the discount bond maturing at ti, where the forward contract
matures at ti−1, and the average volatility is computed from date 0 to date
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ti−1, according to the formulas in Sect. 13.7. Specifically, sigavg(i) should
be σ ∆t for the continuous-time Ho-Lee model, and sigavg(i) should be

σe−κti−1
(
1 − e−κ ∆t

)
κ

√
e2κti−1 − 1

2κti−1
(13.35)

for the Hull-White model.

Function Vasicek_Cap(P0, P, rbar, sigavg, N, t0, dt)

’

’ Inputs are P0 = price of discount bond maturing at t0

’ P = N-vector of discount bond prices, from t1 to tN

’ rbar = fixed rate in the cap

’ sigavg = N-vector of average vols of forward prices

’ N = number of reset (or payment) dates

’ t0 = time until first reset date

’ dt = time between reset (or payment) dates

’

Dim K, x, MatDisc, Underlying, mat, i

K = 1 / (1 + rbar * dt) ’ exercise price of each caplet

If t0 = 0 Then

’ if valuing at the reset date of the first caplet,

’ the value of the first caplet is its intrinsic value

x = P(1) * Application.Max(0, 1 / P(1) - 1 - rbar * dt)

Else ’ if valuing before maturity of first caplet

MatDisc = P0

Underlying = P(1)

x = _

Vasicek_Discount_Bond_Put(Underlying,K,MatDisc,sigavg(1),t0)

End If

For i = 1 To N - 1

MatDisc = P(i) ’ price of bondmaturing at reset date

Underlying = P(i + 1) ’ price of bondmaturing at payment date

mat = t0 + i * dt ’ reset date of i-th caplet

x = x + _

Vasicek_Discount_Bond_Put(Underlying,K,MatDisc,sigavg(i+1),mat)

Next i

Vasicek_Cap = (1 + rbar * dt) * x ’ each caplet is (1+rbar*dt) puts

End Function

Coupon Bond Options in the Hull-White Model

We will value a European call option on a coupon bond. First we create
functions to calculate a(τ) defined in (13.14b′), b(τ) defined in (13.14c′), and
σavg defined in (13.18).

Function hwa(sigma, kappa, tau)

hwa = -sigma ^ 2 * (2 * kappa * tau - Exp(-2 * kappa * tau) _



13.12 Calculations in VBA 291

+ 4 * Exp(-kappa * tau) - 3) / (4 * kappa ^ 3)

End Function

Function hwb(kappa, tau)

hwb = (1 - Exp(-kappa * tau)) / kappa

End Function

Function hwsigavg(sigma, kappa, T, u)

hwsigavg = (sigma * (Exp(-kappa * T) - Exp(-kappa * u)) / kappa) _

* Sqr((Exp(2 * kappa * T) - 1) / (2 * kappa * T))

End Function

We calculate the model value of the coupon bond at date T (given by the
left-hand side of (13.21′) for r = r∗) in the function HW_Coup_Bond. The
vector Cal contains N elements, and Cal(i) represents the calibration fac-
tor e−

∫ ti
T φ(s) ds, which will be calculated from (13.25) in the main function

HW_Coup_Bond_Call.

Function HW_Coup_Bond(Coup,N,t1,dt,Cal,r,sigma,kappa,T)

Dim x, tau, a, b, i

x = 0

For i = 1 To N - 1 ’ coupon dates before maturity

tau = t1 + (i - 1) * dt - T ’ tau = ti - T

a = hwa(sigma, kappa, tau) ’ a(ti - T)

b = hwb(kappa, tau) ’ b(ti - T)

x = x + Coup * Cal(i) * Exp(-a - b * r)

Next i

tau = t1 + (N - 1) * dt - T ’ tau = tN - T

a = hwa(sigma, kappa, tau) ’ a(tN - T)

b = hwb(kappa, tau) ’ b(tN - T)

x = x+(1+Coup)*Cal(N)*Exp(-a-b*r) ’ face and coupon at maturity

HW_Coup_Bond = x

End Function

In the main function HW_Coupon_Bond_Call, we input the coupon paid by the
bond, the number N of coupon payments, the amount of time t1 before the
first coupon payment, the amount of time dt between coupon payments, the
strike price K of the option, the price MatDisc of the discount bond maturing
at the option maturity date T , a vector P containing the N market prices of the
discount bonds maturing at the coupon payment dates t1, . . . , tN , the current
short rate r, the parameters sigma and kappa of the Vasicek model, and the
amount of time T until the option matures.

Function HW_Coup_Bond_Call(Coup,N,t1,dt,K,MatDisc,P,r,sigma,kappa,T)

’

’ Inputs are Coup = amount of each coupon

’ N = number of coupons

’ t1 = time until first coupon

’ dt = time between coupon payment dates
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’ K = strike price

’ MatDisc = price of bond maturing when option matures

’ P = N-vector of bond prices from t1 to tN

’ r = initial value of the short rate

’ sigma = volatility of the short rate

’ kappa = mean-reversion of the short rate

’ T = time to maturity

’

Dim tol, guess, fguess, rstar, x, tau, lower, flower, upper, fupper

Dim a, b, aT, bT, strike, sigavg, Cal(), i

ReDim Cal(1 To N)

’

’ First we calibrate the model to market bond prices

’

aT = hwa(sigma, kappa, T)

bT = hwb(kappa, T)

For i = 1 To N

tau = t1 + (i - 1) * dt ’ tau = ti

a = hwa(sigma, kappa, tau) ’ a(ti)

b = hwb(kappa, tau) ’ b(ti)

Cal(i) = Exp(a - aT + (b - bT) * r) * P(i) / MatDisc

Next i

’

’ We find upper and lower bounds for rstar

’

lower = 0 ’ first try at lower bound

flower = HW_Coup_Bond(Coup,N,t1,dt,Cal,lower,sigma,kappa,T)-K

Do While flower < 0 ’ reduce lower for a lower bound

lower = lower - 1

flower = _

HW_Coup_Bond(Coup,N,t1,dt,Cal,lower,sigma,kappa,T)-K

Loop

upper = 1 ’ first try at upper bound

fupper = HW_Coup_Bond(Coup,N,t1,dt,Cal,upper,sigma,kappa,T)-K

Do While fupper > 0 ’ increase upper for an upper bound

upper = upper + 1

fupper = _

HW_Coup_Bond(Coup,N,t1,dt,Cal,upper,sigma,kappa,T)-K

Loop

’

’ Now we do the bisection to find rstar

’

tol = 10 ^ -8

guess = 0.5 * lower + 0.5 * upper

fguess = HW_Coup_Bond(Coup,N,t1,dt,Cal,guess,sigma,kappa,T)-K

Do While upper - lower > tol

If fupper * fguess < 0 Then

lower = guess

flower = fguess
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guess = 0.5 * lower + 0.5 * upper

fguess = _

HW_Coup_Bond(Coup,N,t1,dt,Cal,guess,sigma,kappa,T)-K

Else

upper = guess

fupper = fguess

guess = 0.5 * lower + 0.5 * upper

fguess = _

HW_Coup_Bond(Coup,N,t1,dt,Cal,guess,sigma,kappa,T)-K

End If

Loop

rstar = guess

’

’ Now we calculate the exercise prices and

’ sum the values of the discount bond options

’

For i = 1 To N - 1

tau = t1 + (i - 1) * dt - T ’ tau = ti - T

a = hwa(sigma, kappa, tau) ’ a(ti - T)

b = hwb(kappa, tau) ’ b(ti - T)

strike = Cal(i) * Exp(-a - b * rstar) ’ Ki

sigavg = hwsigavg(sigma,kappa,T,T+tau) ’ sigavg for option i

x = x + _

Coup*Vasicek_Discount_Bond_Call(P(i),strike,MatDisc,sigavg,T)

Next i

tau = t1 + (N - 1) * dt - T ’ tau = tN

a = hwa(sigma, kappa, tau) ’ a(tN - T)

b = hwb(kappa, tau) ’ b(tN - T)

strike = Cal(N) * Exp(-a - b * rstar) ’ KN

sigavg = hwsigavg(sigma,kappa,T,T+tau) ’ sigavg for option N

x = x + _

(1+Coup)*Vasicek_Discount_Bond_Call(P(N),strike,MatDisc,sigavg,T)

HW_Coup_Bond_Call = x

End Function

Problems

13.1. Modify the function Vasicek_Cap so that rather than taking the vec-
tor P of discount bond prices as an input, it “looks up” discount bond prices
from a function DiscountBondPrice that returns a discount bond price for
any maturity, as in Exercise 12.12.1.

13.2. Create a function ContinuousHoLee_Cap by modifying the function
Vasicek_Cap so that the average volatilities are computed as σ∆t. In other
words, input σ rather than the vector σavg. Write the function so that it looks
up discount bond prices as in the previous exercise.
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13.3. Create a function ContinuousHoLee_ImpliedVol using bisection that
takes the same inputs as the previous function, except taking a cap price as
input rather than σ, and which returns the volatility σ that is consistent with
the cap price.

13.4. Create a function HW_Cap by modifying the function Vasicek_Cap so
that the average volatilities are calculated from equation (13.35). Thus, σ
and κ should be input rather than the vector σavg. Write the function so that
it looks up discount bond prices as in the previous exercises.

13.5. Create an Excel worksheet in which the user inputs r̄, σ and κ. Compute
the values of caps using the function HW_Cap for caps of length N = 1, . . . 20.
Take t0 = 0 and ∆t = 0.5 and look up discount bond prices. For each N , use
the Excel solver tool or the function created in Exercise 13.3 to compute the
volatility σ for which the ContinuousHoLee_Cap function gives the same cap
price. In other words, compute the implied Ho-Lee volatilities, given the cap
prices. What is the pattern in implied volatilities and why?

13.6. Create a VBA function Vasicek_Floor to value a floor in the extended
Vasicek model, looking up discount bond prices from the DiscountBondPrice
function.

13.7. Modify the function HW_Coup_Bond_Call so that it looks up discount
bond prices from the DiscountBondPrice function.

13.8. Create a VBA function HW_Coup_Bond_Put to value a put option on a
coupon bond in the basic Hull-White Model, looking up discount bond prices
from the DiscountBondPrice function.

13.9. Create a VBA function HW_Payer_Swaption to value a payer swaption
in the basic Hull-White Model, looking up discount bond prices from the
DiscountBondPrice function.

13.10. Create a VBA function HW_Receiver_Swaption to value a receiver
swaption in the basic Hull-White Model, looking up discount bond prices as
in previous exercises.

13.11. Repeat Prob. 12.7, assuming the basic Hull-White Model, for various
values of σ and κ.
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A Brief Survey of Term Structure Models

This chapter presents very brief descriptions of several important models. The
list of models is certainly not exhaustive, and our descriptions will be far from
complete. As mentioned previously, there are many good references for this
material in book form already, and our goal here is merely to provide a short
introduction.

14.1 Ho-Lee

The Ho-Lee [36] model is a binomial version of the Vasicek model without
mean reversion, in which the one-period interest rate is assumed to have a
deterministic drift. This was the first widely-used model that enabled one to
fit the current yield curve.

Consider discrete times 0 = t0 < t1 < · · · tN with ti − ti−1 = ∆t for
each i. We denote the one-period interest rate from date ti to ti+1 by r(ti).
We express the rate as an annualized continuously compounded rate, so the
one-period discount factor from date ti to ti+1 is e−r(ti)∆t. We could put this in
a continuous-time framework by assuming the short rate is constant (= r(ti))
during each time interval (ti, ti+1). As always, the risk-neutral measure is the
probability measure corresponding to the numeraire

R(t) = exp
(∫ t

0

r(s) ds

)
. (14.1)

However, we will only be doing valuation at the discrete dates t0, . . . , tN and
at date ti the accumulation factor (14.1) is

R(ti) = exp

⎛
⎝i−1∑

j=0

r(tj)∆t

⎞
⎠ .

Thus, the continuous-time framework is not necessary.
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The model assumes that over each time period ti−ti−1 the change ∆r(ti) =
r(ti) − r(ti−1) in the one-period rate is

∆r(ti) = θ(ti)∆t ± σ
√

∆t ,

where the risk-neutral probability of “+” and “−” is 1/2 each and θ is a non-
random function. As in the discussion of the extended Vasicek model, it is
convenient to define a random process r̂ by r̂(0) = r(0) and

∆r̂(ti) = ±σ
√

∆t

for each i. Also, define φ(ti) =
∑i

j=1 θ(ti) for i ≥ 1. Then we have, for i > 0,

r(ti) = φ(ti) + r̂(ti) .

The following illustrates a three-period tree with initial one-period rate
r0 =5%, ∆t = 1, θ(ti) = 0 for all i, and σ =1%.
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2%

4%

6%

8%

To value a fixed-income derivative, we discount the terminal value back-
wards through the tree as in Chaps. 5 and 9. The new feature is that the
discount rate is changing over time. So, we now have three trees to consider:
the tree for the underlying, the tree for the one-period interest rate, and the
tree for the derivative value. However, the tree for the underlying can be cre-
ated from the interest-rate tree, so the interest-rate tree is the basic input
instead of the tree for the underlying.

To clarify this, we will start with the simplest example: valuing a discount
bond. Consider the above interest-rate tree and a discount bond that matures
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at date 3. The value of the bond is 1 at maturity. Because we are using
continuous compounding, the discount factor is e−.07 = 0.932 at the top node
at date 2. This is also the value of the discount bond at that node. Likewise,
the value of the bond at the middle node at date 2 is e−.05 = 0.951. This
implies that the value of the bond at the top node at date 1 is

e−.06

(
1
2
× 0.932 +

1
2
× 0.951

)
= 0.887 .

Continuing in this way, we derive the following tree for the discount bond,
concluding that its price at date 0 should be $0.861.
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0.861

0.887

0.923
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0.951

0.932
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1.000

1.000

1.000

In general, the price at date 0 of a discount bond maturing at date tn is

P (0, tn) = ER

[
exp

(
−

n−1∑
i=0

r(ti)∆t

)]

= ER

[
exp

(
−r(t0)∆t −

n−1∑
i=1

[r̂(ti) + φ(ti)]∆t

)]

= exp

(
−r(t0)∆t −

n−1∑
i=1

φ(ti)∆t

)
ER

[
exp

(
−

n−1∑
i=1

r̂(ti)∆t

)]
.

(14.2)

Given the parameter σ, the expectation in the last line of the above can easily
be computed.



298 14 A Brief Survey of Term Structure Models

The parameters φ(tn) can be chosen to equate model prices of discount
bonds maturing at t1, . . . , tN to market prices. This is done simply by choosing
φ(tn) to satisfy the following equation, which we will derive below:

e−φ(tn) ∆t =
2er(0) ∆t

enσ
√

∆t ∆t + e−nσ
√

∆t ∆t
× Pmkt(0, tn+1)

Pmkt(0, tn)
. (14.3)

Because the ratio of market prices Pmkt(0, ti+1)/Pmkt(0, ti) is the reciprocal
of one plus the market forward rate at date 0 for loans from date ti to ti+1, this
formula for the parameters φ(ti) is equivalent to equating model forward rates
to market forward rates, as was discussed for the Hull-White and continuous-
time Ho-Lee models in Sect. 13.6. In fact, the fitting of the Ho-Lee model
to market bond prices is often expressed by saying “the market forward rate
curve is an input to the model.” This idea was developed further by Heath,
Jarrow and Morton [33]—see Sect. 14.6.

As for options on equities and currencies, the binomial model for interest
rates is especially useful for valuing early exercise features. However, it should
be noted that, even though this model is very easy to use, it has important
limitations. The assumption of a constant volatility for the one-period rate
and no mean reversion implies excessive uncertainty about the level of the
one-period rate at long horizons, as discussed in Sect. 13.1. To offset this, one
could use a smaller volatility when valuing long-maturity options. However,
for options with early exercise features, this would imply too little uncertainty
about the level of the one-period rate at short horizons and thereby undervalue
the early exercise option.

We will conclude this section with a proof of formula (14.3). Let ε(ti) denote
independent random variables that equal ±σ

√
∆t with probability 1/2 each under

the risk-neutral measure. Then we can write

r̂(ti) = r(0) +

i∑
j=1

ε(tj) .

This implies that

n−1∑
i=0

r̂(ti) = (n − 1)r(0) +

n−1∑
i=1

i∑
j=1

ε(tj)

= (n − 1)r(0) + (n − 1)ε(t1) + (n − 2)ε(t2) + · · · + ε(tn−1)

= (n − 1)r(0) +

n−1∑
i=1

(n − i)ε(ti) .

Therefore, (14.2) gives us

P (0, tn) = exp

(
−nr(0) ∆t −

n−1∑
i=1

φ(ti) ∆t

)
ER

[
exp

(
−

n−1∑
i=1

(n − i)ε(ti)∆t

)]
.

Moreover,
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ER

[
exp

(
−

n−1∑
i=1

(n − i)ε(ti) ∆t

)]
= ER

[
n−1∏
i=1

exp (−(n − i)ε(ti)∆t)

]

=

n−1∏
i=1

ER [exp (−(n − i)ε(ti) ∆t)]

=

n−1∏
i=1

(
1

2
exp

(
(n − i)σ

√
∆t ∆t

)
+

1

2
exp

(
−(n − i)σ

√
∆t ∆t

))
.

Thus,

P (0, tn) = exp

(
−nr(0) ∆t −

n−1∑
i=1

φ(ti) ∆t

)

×
n−1∏
i=1

(
1

2
exp

(
(n − i)σ

√
∆t ∆t

)
+

1

2
exp

(
−(n − i)σ

√
∆t ∆t

))
.

Likewise,

P (0, tn+1) = exp

(
−(n + 1)r(0) ∆t −

n∑
i=1

φ(ti) ∆t

)

×
n∏

i=1

(
1

2
exp

(
(n + 1 − i)σ

√
∆t ∆t

)
+

1

2
exp

(
−(n + 1 − i)σ

√
∆t ∆t

))
,

which we can write as

exp

(
−(n + 1)r(0) ∆t −

n∑
i=1

φ(ti)∆t

)

×
n−1∏
i=0

(
1

2
exp

(
(n − i)σ

√
∆t ∆t

)
+

1

2
exp

(
−(n − i)σ

√
∆t ∆t

))

= exp (−r(0) ∆t − φ(tn) ∆t)

×
(

1

2
exp

(
nσ

√
∆t ∆t

)
+

1

2
exp

(
−nσ

√
∆t ∆t

))
P (0, tn) .

Thus, the ratio of model prices is

P (0, tn+1)

P (0, tn)
= exp (−r(0) ∆t − φ(tn) ∆t)

×
(

1

2
exp

(
nσ

√
∆t ∆t

)
+

1

2
exp

(
−nσ

√
∆t ∆t

))
.

Equating this to the ratio of market prices Pmkt(0, tn+1)/Pmkt(0, tn) gives the for-
mula (14.3).
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14.2 Black-Derman-Toy

The Black-Derman-Toy [4] model is, like the Ho-Lee model and the Black-
Karasinski model discussed in the next section, a binomial model of the one-
period interest rate. The model assumes that

∆ log r(ti) = η(ti)∆t ± σ(ti)
√

∆t, (14.4)

where “+” and “−” have probability one-half each under the risk-neutral
measure. The volatility σ(ti) has the interpretation of the percentage volatility
of the one-period rate (rather than the absolute volatility, as in the Vasicek
and Ho-Lee models). The model implies that the one-period rate will always
be nonnegative.

A significant feature of the model is that the volatility is allowed to be time-
varying. This would produce a non-recombining tree except that the drift η(ti)
is allowed to vary across the date–ti−1 nodes, i.e., to be a random variable,
depending on the level of the one-period rate at date ti−1. To understand
this, consider the following two-period tree. For convenience, we write ai for
η(ti)∆t and bi for σ(ti)

√
∆t.

log r(0) �
��

�
��

�
��

�
��
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��

�
��

log r(0) + a1 + b1

log r(0) + a1 − b1

log r(0) + a1 − b1 + a2d − b2

?

log r(0) + a1 + b1 + a2u + b2

We have written a2u and a2d to demonstrate that the drift between date 1
and date 2 can vary, depending on whether we are at the top or bottom node
at date 1. If we arrive at the node marked with a question mark via a down
move from the top node at date 1, the value will be

log r(0) + a1 + b1 + a2u − b2 .

On the other hand, if we arrive at it via an up move from the bottom node
at date 1, the value will be

log r(0) + a1 − b1 + a2d + b2 .

For the tree to be recombining, these values must be the same, which implies

a2d = a2u + 2b1 − 2b2 .
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In general, at each date there are two free parameters: the volatility and the
drift at one of the nodes, the drifts at the other nodes then being determined
by the requirement that the tree be recombining.

The dependence of the drift on the node can be expressed as a linear
dependence on the logarithm of the one-period rate. In other words, it is
possible (and convenient) to write the Black-Derman-Toy model (14.4) as

∆ log r(ti) = κ(ti)[θ(ti) − log r(ti−1)]∆t ± σ(ti)
√

∆t, (14.5)

where now the functions κ(ti), θ(ti), and σ(ti) are deterministic—i.e., depend-
ing on time but constant across nodes at each date.

In the two-period example above, we have

a2u = κ(t2)[θ(t2) − {log r(t0) + a1 + b1}]∆t ,

and
a2d = κ(t2)[θ(t2) − {log r(t0) + a1 − b1}]∆t ,

so the relation a2d = a2u + 2b1 − 2b2 is equivalent to

κ(t2) =
b1 − b2

b1 ∆t
= − 1

σ(t1)
× σ(t2) − σ(t1)

∆t
= − 1

σ(t1)
× ∆σ(t2)

∆t
. (14.6)

This same relationship holds at each node at each date (just consider the two-
period example as two periods extending from any node in the tree); thus, in
general, we have

κ(ti) = − 1
σ(ti−1)

× ∆σ(ti)
∆t

. (14.7)

Equations (14.5) and (14.7) define the Black-Derman-Toy model. The free
parameters at each date are σ(ti) and θ(ti), and the parameter κ(ti) is defined
by (14.7). Alternatively, one can view κ(ti) and θ(ti) as free parameters and
define σ(ti) from (14.7). Note that κ(ti) can be interpreted as a mean-reversion
parameter for log r(ti), at least when it is positive (i.e., when ∆σ(ti) < 0).
Because there are two free parameters at each date rather than one (as in the
Ho-Lee model) it is possible to match both market bond prices and market
yield volatilities or cap prices.

In continuous time, we would write (14.7) as

κ(t) = −d log σ(t)
dt

.

Therefore, the continuous-time version of the Black-Derman-Toy model is

d log r(t) = −d log σ(t)
dt

[θ(t) − log r(t)] dt + σ(t) dB(t) ,

with B being a Brownian motion under the risk-neutral measure.
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14.3 Black-Karasinski

The Black-Karasinski [5] model is similar to the Black-Derman-Toy model—it
assumes (14.5) for the changes in the logarithm of the one-period rate—but
it removes the linkage (14.7) between the mean-reversion parameter and the
volatility. It does this by allowing the lengths of the time steps to vary. Denote
the length of the time-step ti − ti−1 by τi. Consider again the two-period
example of the previous section. As a necessary condition for the tree to be
recombining, we deduced (in (14.6)) that

κ(t2) =
b1 − b2

b1 τ2
.

In this model, we have bi = σ(ti)
√

τi. Making this substitution, we obtain

κ(t2) =
σ(t1)

√
τ1 − σ(t2)

√
τ2

σ(t1)
√

τ1τ2
,

which we can rewrite as

κ(t2)σ(t1)
√

τ1τ2 + σ(t2)
√

τ2 − σ(t1)
√

τ1 = 0 .

This is a quadratic equation in the unknown
√

τ2 with the unique positive
solution (assuming κ(t2) > 0)

√
τ2 =

√
σ(t2)2 + 4κ(t2)σ(t1)2

√
τ1 − σ(t2)

2κ(t2)σ(t1)
√

τ1
.

This relation must hold at each date. Thus, squaring both sides, we obtain
the general formula

τi =

[√
σ(ti)2 + 4κ(ti)σ(ti−1)2

√
τi−1 − σ(ti)

]2
4κ(ti)2σ(ti−1)2τi−1

. (14.8)

To summarize, the Black-Karasinski model is given by (14.5) with three
free parameters—κ(ti), θ(ti), and σ(ti)—at each date. It is implemented in a
recombining tree by defining the length of each time step τi = ti − ti−1 for
i ≥ 2 according to the formula (14.8). The length of the first time step τ1 can
be chosen arbitrarily.

14.4 Cox-Ingersoll-Ross

Cox, Ingersoll, and Ross [19] introduced a continuous-time model1 in which
the short rate satisfies
1 Cox, Ingersoll and Ross (hereafter CIR) also discuss a variety of other continuous-

time models, but this particular model is so well known that it is often simply
called the CIR model.
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dr(t) = κ[θ − r(t)] dt + σ
√

r(t) dB(t), (14.9)

where κ, θ, and σ are positive constants and B is a Brownian motion under
the risk-neutral measure. Like the Vasicek model, this short rate process has
a long-run mean of θ. The difference between the CIR model and the Vasicek
model is that the volatility in the CIR model is proportional to the square
root of the short rate rather than being constant. Because of this fact, the
short rate can never be negative. Intuitively, the reason is that the volatility
σ
√

r(t) is very small if r(t) is near zero, so the drift will dominate the change
in r(t), pushing it upwards towards θ. This interest rate model was mimicked
by Heston [34] in his stochastic volatility model discussed in Chap. 4. We
will briefly discuss three topics in connection with this model: discount bond
prices, calibrating the model to the current market, and pricing fixed-income
derivatives.

Discount Bond Prices in the CIR Model

Discount bond prices can be most easily computed in the CIR model by solving
the fundamental partial differential equation (pde) discussed in Chap. 10. Let
P (t, u) denote the price at date t of a discount bond maturing at date u,
having remaining time to maturity of τ = u − t. The discount bond price
will depend on the remaining time to maturity and the short rate at date t,
because, as in the Vasicek model, the short rate is the only random factor
in this model. Thus, there must be some deterministic function f such that
P (t, u) = f(r(t), τ). As in Chap. 10, the fundamental pde is obtained by
applying Itô’s formula to f to compute df in terms of the partial derivatives
of f and then using the fact that the expected return of the discount bond
(hence the drift of df/f) must equal the short rate under the risk-neutral
measure.

From Itô’s formula and the definition (14.9) of dr, we have

df =
∂f

∂τ
dτ +

∂f

∂r
dr +

1
2

∂2f

∂r2
(dr)2

= −∂f

∂τ
dt +

∂f

∂r

{
κ[θ − r] dt + σ

√
r dB

}
+

1
2

∂2f

∂r2
σ2r dt

=
(
−∂f

∂τ
+

∂f

∂r
κ[θ − r] +

1
2

∂2f

∂r2
σ2r

)
dt +

∂f

∂r
σ
√

r dB . (14.10)

Equating the drift to rf dt gives us the fundamental pde:

−∂f

∂τ
+

∂f

∂r
κ[θ − r] +

1
2

∂2f

∂r2
σ2r = rf . (14.11)

This equation should be solved for the function f subject to the boundary
condition that the value of the discount bond is one at maturity; i.e., f(r, 0) =
1 for all r.
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The solution can be obtained by “guessing” a solution of the same form
as the Vasicek bond pricing formula (13.6a), namely2

f(r, τ) = exp (−a(τ) − b(τ)r) (14.12)

for deterministic functions a and b. The boundary condition

f(r, 0) = exp (−a(0) − b(0)r) = 1

for all r implies a(0) = b(0) = 0, and it can easily be checked that the
fundamental pde is equivalent to

b′(τ) = 1 − κb(τ) − 1
2
σ2b2(τ) , (14.13a)

and
a′(τ) = κθb(τ) , (14.13b)

where the “primes” denote derivatives. By differentiating, one can verify that
the solution of (14.13a) (which is called a “Riccati equation”) with the bound-
ary condition b(0) = 0 is

b(τ) =
2 (eγτ − 1)

c(τ)
, (14.14a)

where

γ =
√

κ2 + 2σ2 and c(τ) = (κ + γ) (eγτ − 1) + 2γ . (14.14b)

Integrating (14.13b) then gives

a(τ) = −2κθ

σ2

[
(κ + γ)τ

2
+ log

2γ

c(τ)

]
. (14.14c)

To summarize,

The price at date t of a discount bond maturing at u > t in the CIR model
is

P (t, u) = exp (−a(τ) − b(τ)r(t)) , (14.15)

where τ = u − t and a(τ) and b(τ) are defined in (14.14).

Note that (14.12) implies ∂f/∂r = −b(τ)f . Substituting this into (14.10)
gives us the discount bond return as

dP (t, u)
P (t, u)

=
df

f
= r(t) dt − b(τ)σ

√
r(t) dB(t) . (14.16)

2 This guess works because the CIR model, like the Vasicek model, is an “affine
model.” See Sect. 14.5.
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This is again similar to the Vasicek model except for the appearance of the
√

r
factor in the volatility. Because of this factor, the volatility is random. Thus,
the option pricing formulas of previous chapters cannot be directly applied to
price discount bond options (and hence caps, floors, coupon bond options, and
swaptions). Nevertheless, the ideas underlying those formulas can be applied
to obtain similar valuation formulas.

Hedge ratios depend on relative volatilities, so they are determined by the
function b, just as discussed in Sect. 13.4 for the Vasicek model.

Calibrating the CIR Model to the Yield Curve

The CIR model can be calibrated to current market conditions by taking one
or more of the parameters κ, θ and σ to be time-varying, as in the extended
Vasicek model. This was suggested by Cox, Ingersoll and Ross. However, the
simplest way to calibrate the model to discount bond prices, which was also
suggested by Cox, Ingersoll and Ross, is to take the short rate to be the sum of
a non-random function of time and a square-root process as defined in (14.9).
Specifically, let

r(t) = φ(t) + r̂(t) ,

where φ is a non-random function and r̂ satisfies

dr̂(t) = κ[θ − r̂(t)] dt + σ
√

r̂(t) dB(t) , (14.17)

with r̂(0) = r(0). Then, as in the Hull-White model, discount bond prices are
given by

P (t, u) = exp
(
−
∫ u

t

φ(s) ds

)
ER

t

[
exp

(
−
∫ u

t

r̂(s) ds

)]
.

Moreover, the expectation in this equation is the discount bond pricing func-
tion calculated in the previous subsection, so we have

P (t, u) = exp
(
−
∫ u

t

φ(s) ds

)
exp (−a(τ) − b(τ)r̂(t)) . (14.18)

In particular, discount bond prices at date 0 are

P (0, u) = exp
(
−
∫ u

0

φ(s) ds

)
exp (−a(u) − b(u)r(0)) ,

so the model can be calibrated to market prices Pmkt(0, u) by setting

exp
(
−
∫ u

0

φ(s) ds

)
= exp (a(u) + b(u)r(0)) Pmkt(0, u) (14.19)

for each u. Note that the calibration does not affect discount bond returns:
the expected return under the risk-neutral measure must still be the short
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rate and the volatility is unaffected by a deterministic factor. Therefore, we
have, as in (14.16),

dP (t, u)
P (t, u)

= r(t) dt − b(τ)σ
√

r̂(t) dB(t) . (14.20)

This can be verified by applying Itô’s formula to (14.18).

Pricing Fixed-Income Derivatives in the CIR Model

In the previous chapter, it was shown for the extended Vasicek model that
pricing formulas for caps, floors, coupon bond options, and swaptions can be
derived from a pricing formula for discount bond options. The same is true
in the CIR model — caps and floors are of course portfolios of discount bond
options and, in a single-factor model such as the Vasicek or CIR model, coupon
bond options and swaptions can also be priced as portfolios of discount bond
options. Here we will explain briefly how to price discount bond options in
the CIR model.

Consider a call option maturing at date T with the underlying being a
discount bond maturing at u > T . Let K denote the strike price. From our
fundamental pricing formula (1.17), the value at date 0 of the option is

P (0, u) × probu
(
P (T, u) > K

)− P (0, T ) × probT
(
P (T, u) > K

)
, (14.21)

where probu denotes the probability measure using the discount bond matur-
ing at u as numeraire and probT denotes the probability measure using the
discount bond maturing at T as the numeraire. Using the calibration of the
previous subsection, the price of the underlying at date T will be, according
to the model,

P (T, u) = exp
(
−
∫ u

T

φ(s) ds − a(u − T ) − b(u − T )r̂(T )
)

.

Therefore, the option will finish in the money if and only if

− ∫ u

T
φ(s) ds − a(u − T ) − log K

b(u − T )
> r̂(T ) . (14.22)

Thus, to price discount bond options, we need to compute the probabilities
that r̂(T ) is less than a given number, using discount bonds as numeraires.

Consider the discount bond maturing at u. The calculation for the discount
bond maturing at T can be done in the same way. We use the fact that

e
∫ t
0 r(s) ds

P (t, u)

is a martingale, when P (t, u) is used as the numeraire, for t ≤ u. Let Z(t)
denote this ratio and apply Itô’s formula for ratios to derive
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dZ(t)
Z(t)

= r(t) dt − dP (t, u)
P (t, u)

+
(

dP (t, u)
P (t, u)

)2

.

Substituting from (14.20) now gives us

dZ(t)
Z(t)

= b(τ)σ
√

r̂(t) dB(t) + b(τ)2σ2r̂(t) dt

= b(τ)σ
√

r̂(t)
[
dB(t) + b(τ)σ

√
r̂(t) dt

]
.

Given that Z is a martingale, dZ/Z cannot have a drift, so it must be that B∗

defined by B∗(0) = 0 and

dB∗(t) = dB(t) + b(τ)σ
√

r̂(t) dt

is a martingale, and hence a Brownian motion, when P (t, u) is used as the
numeraire. Substituting this into the definition (14.17) of r̂, we have

dr̂(t) = κ[θ − r̂(t)] dt + σ
√

r̂(t)
[
dB∗(t) − b(τ)σ

√
r̂(t) dt

]
= κ[θ − r̂(t)] dt + σ

√
r̂(t) dB∗(t) − σ2b(τ)r̂(t) dt

= κ∗(t)[θ∗(t) − r̂(t)] dt + σ
√

r̂(t) dB∗(t) , (14.23)

where we define

κ∗(t) = κ + σ2b(u − t) and θ∗(t) =
κθ

κ∗(t)
.

Thus, using a discount bond as numeraire, the process r̂ is still a square root
process, but now with a time-dependent long-run mean and mean-reversion
rate.

The random variable r̂(T ) defined by r̂(0) = 0 and equation (14.23) for
t ≤ T is a transformation of a random variable having what is called a “non-
central chi-square” distribution. See Appendix B.3 for further discussion and
calculation of the probabilities probu

(
P (T, u) > K

)
and probT

(
P (T, u) > K

)
.

14.5 Longstaff-Schwartz

Cox, Ingersoll and Ross suggest adding two independent square-root processes
to obtain a two-factor model. This means that we would take r(t) = x1(t) +
x2(t), where

dxi(t) = κi[θi − xi(t)] dt + σi

√
xi(t) dBi(t) , (14.24)

where B1 and B2 are independent Brownian motions under the risk-neutral
measure and κi, θi and σi are positive constants for i = 1, 2. Longstaff and



308 14 A Brief Survey of Term Structure Models

Schwartz [47] investigate this model further, including providing an “equilib-
rium” foundation, deriving discount bond option prices, and estimating the
coefficients. The model is usually called the Longstaff-Schwartz model.

An important observation made by Longstaff and Schwartz is that the
model can be rewritten so that the short rate and its volatility are the fac-
tors (rather than the unobservable x1 and x2).3 Note that the instantaneous
variance of r = x1 + x2 is(

σ1

√
x1(t) dB1(t) + σ2

√
x2(t) dB2(t)

)2

=
(
σ2

1x1(t) + σ2
2x2(t)

)
dt .

Define V (t) = σ2
1x1(t) + σ2

2x2(t). We can solve for x1 and x2 in terms of r
and V as

x1 =
σ2

2r − V

σ2
2 − σ2

1

(14.25a)

x2 =
V − σ2

1r

σ2
2 − σ2

1

, (14.25b)

provided σ1 �= σ2. Making these substitutions for x1 and x2 on the right-hand
side of (14.24) and noting that dr = dx1 +dx2 and dV = σ2

1 dx1 +σ2
2 dx2, we

obtain the following equations presented by Longstaff and Schwartz:

dr =
(

αγ + βη − βδ − αξ

β − α
r − ξ − δ

β − α
V

)
dt

+ α

√
βr − V

α(β − α)
dB1 + β

√
V − αr

β(β − α)
dB2 , (14.26a)

dV =
(

α2γ + β2η − αβ(δ − ξ)
β − α

r − βξ − αδ

β − α
V

)
dt

+ α2

√
βr − V

α(β − α)
dB1 + β2

√
V − αr

β(β − α)
dB2 , (14.26b)

where δ = κ1, ξ = κ2, α = σ2
1 , β = σ2

2 , γ = κ1θ1/σ2
1 , and η = κ2θ2/σ2

2 .
Thus, this can be regarded as a two-factor model in which the factors are the
short rate and its instantaneous variance, with the six parameters δ, ξ, α, β,
γ, and η.

The simplest way to compute discount bond prices in this model is to
return to the definition r = x1 + x2. Discount bond prices are
3 Of course, the volatility is also not directly observable. Longstaff and Schwartz

use a GARCH model to estimate it and then use the time series of estimated
volatilities and the time series of short rates to estimate the parameters of the
model.
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P (t, u) = Et

[
exp

(
−
∫ u

t

r(s) ds

)]

= Et

[
exp

(
−
∫ u

t

x1(s) ds

)
exp

(
−
∫ u

t

x2(s) ds

)]

= Et

[
exp

(
−
∫ u

t

x1(s) ds

)]
Et

[
exp

(
−
∫ u

t

x2(s) ds

)]
,

due to the independence of x1 and x2. Moreover, these expectations have the
same form as discount bond prices in the CIR model, namely

Et

[
exp

(
−
∫ u

t

xi(s) ds

)]
= exp (−ai(τ) − bi(τ)xi(t)) , (14.27)

where the functions ai and bi are defined in (14.14), using the parameters κi,
θi and σi. The expectations (14.27) can be written in terms of r(t) and V (t)
by substituting from (14.25).

The Vasicek, CIR and Longstaff-Schwartz models are examples of “affine
models.” An affine model is defined by a set of factors x1, . . . , xn, where

• The short rate is an affine function of the factors;4 i.e., r(t) = α0 +∑n
i=1 αixi(t) for constants αi,

• The drift of each factor is an affine function of the factors.
• The instantaneous variance of each factor is an affine function of the fac-

tors.
• The instantaneous covariance of each pair of factors is an affine function

of the factors.

In any affine model, discount bond prices are of the form

P (t, u) = exp

(
−a(τ) −

n∑
i=1

bi(τ)xi(t)

)
(14.28)

for deterministic functions a and bi for i = 1, . . . , n, as we have seen is true
for the Vasicek, CIR, and Longstaff-Schwartz models. Most, but certainly not
all, of the continuous-time models studied in the finance literature are affine.

In any single-factor affine model, the short rate can be used as the factor.
Thus, the general affine one-factor model is of the form

dr = κ(θ − r) dt +
√

α + βr dB ,

for constants κ, θ, α and β, where B is a Brownian motion under the risk-
neutral measure. The Vasicek model is the special case β = 0 (α being the
same as the parameter σ2). The CIR model is the special case α = 0 (β being
the same as the parameter σ2).
4 An affine function of a real variable x is a function f(x) = a + bx for constants a

and b. This is often called a linear function, but technically a linear function is of
the form f(x) = bx. Thus, an affine function is a constant plus a linear function.
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Because yields of discount bonds are affine functions of the factors in an
affine model, as (14.28) shows, the short rate and yields at n− 1 fixed times-
to-maturity τi can be chosen to be the n factors (except in the rare case
that the linear transformation from factors to the short rate and yields fails
to be invertible). The transformation from factors to yields is analogous to
the transformation from (x1, x2) to (r, V ) in the Longstaff-Schwartz model.
Important papers on affine models include Duffie and Kan [24] and Dai and
Singleton [22].

14.6 Heath-Jarrow-Morton

Heath, Jarrow and Morton [33] propose an alternative framework for mod-
elling. Rather than modelling the evolution of the short rate (and possibly
other factors such as the volatility of the short rate or other yields), Heath,
Jarrow and Morton (hereafter, HJM) propose modelling the evolution of in-
stantaneous forward rates. They derive a formula for the drifts of instanta-
neous forward rates under the risk-neutral measure, in terms of the volatilities
of the forward rates. A model is therefore completely defined by specifying the
volatilities of forward rates. A model of this type is easily fit to market dis-
count bond prices by simply using the initial term structure of forward rates
as an input. By calibrating the volatility structure, the model can also be fit
to other market prices. Any of the continuous-time models we have discussed
can be written in the HJM form. The virtue of the HJM approach is that
it facilitates the construction of new models. The disadvantage of the HJM
approach is that models of this form will generally be path-dependent—bond
prices and the prices of other fixed-income instruments at any point in time
depend on the entire history of the forward rate processes, rather than de-
pending only on the values of a small set of factors. This makes computation
quite difficult, just as computation with non-recombining binomial trees is
much more difficult than with recombining trees.

As discussed in Sect. 13.6, the forward rate at date t for an instantaneous
loan at date u ≥ t is f(t, u) defined by

f(t, u) = −d log P (t, u)
du

. (14.29)

The short rate at time t is the forward rate for maturity date t; i.e.,
r(t) = f(t, t). By integrating (14.29), one can see that discount bond prices
are written in terms of forward rates as:

P (t, u) = exp
(
−
∫ u

t

f(t, s) ds

)
. (14.29′)

Heath, Jarrow and Morton use the definition (14.29′) and the fact that the
expected return of a discount bond under the risk-neutral measure must be
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the short rate to derive a formula for the drifts of forward rates under the
risk-neutral measure.

Assume, for the sake of simplicity, that there is only a single source of
uncertainty (i.e., a single Brownian motion) driving the yield curve. Then, for
each fixed u, the forward rate f(t, u) at date t < u will evolve as

df(t, u) = µ(t, u) dt + σ(t, u) dB(t) , (14.30)

for some µ and σ, where B is a Brownian motion under the risk-neutral
measure. In general µ(t, u) and σ(t, u) could depend on the entire history of
the Brownian motion through date t. Heath, Jarrow and Morton show that

µ(t, u) = σ(t, u)
∫ u

t

σ(t, s) ds . (14.31)

One can show that
∫ u

t
σ(t, s) ds is the volatility of P (t, u). Therefore, (14.31)

states that the drift of the forward rate is the product of the volatilities of the
forward rate and the discount bond return. A model is fully specified by spec-
ifying initial forward rates—i.e., f(0, u) for all u—and the volatility processes
σ(t, u) for each u and t ≤ u. The generalization to multiple Brownian motions
is straightforward and allows for forward rates that are not instantaneously
perfectly correlated. An important application of the HJM modelling frame-
work is work by Brace, Gatarek and Musiela [9] and Miltersen, Sandmann,
and Sondermann [52], who derive conditions on the volatility processes σ(t, u)
that guarantee forward LIBOR rates of a fixed maturity (e.g., quarterly or
semi-annual rates) have deterministic volatilities, thus justifying the use of
Black’s formula in Sect. 12.4 for valuing caps and floors.

To see how some of the models we have discussed can be written in the
HJM form, let us re-examine the Hull-White model. From the Hull-White
bond price formula (13.14), the instantaneous forward rate in the Hull-White
model is

f(t, u) = φ(u) +
∂

∂u
a(u − t) + r̂(t)

∂

∂u
b(u − t)

= φ(u) − σ2

2κ2

(
1 + e−2κ(u−t) − 2e−κ(u−t)

)
+ e−κ(u−t)r̂(t) .

Applying Itô’s formula yields

df(t, u) = −σ2

κ

(
e−2κ(u−t) − e−κ(u−t)

)
dt + σe−κ(u−t) dB .

Therefore, in the HJM notation,

µ(t, u) = −σ2

κ

(
e−2κ(u−t) − e−κ(u−t)

)
and σ(t, u) = σe−κ(u−t) .

A direct calculation shows that these functions µ and σ satisfy the HJM
equation (14.31), as we knew they must, given that the HJM equation is
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based only on the assumption that expected returns of discount bonds equal
the short rate under the risk-neutral measure. The initial forward rate curve
in the Hull-White model is f(0, u) = φ(u) which is chosen to fit the market
forward rate curve, as discussed in Sect. 13.6. Thus, rather than defining the
Hull-White model as we did in Chap. 13, it could be defined alternatively as
an HJM model in which the volatility process is the deterministic function
σ(t, u) = σe−κ(u−t) for positive constants σ and κ. The normal distribution
of the short rate in the Hull-White model is a consequence of the volatility
σ(t, u) being non-random.

Likewise, the Cox-Ingersoll-Ross model fit to market bond prices as we
discussed in Sect. 14.4 could be described as an HJM model. Calculations of
the sort we have just done show that the volatility process in the CIR model is
σ(t, u) = σb′(τ)

√
r̂(t), where τ = u− t and the function b is defined in (14.14).

In this case, the volatility is random, but it depends only on the short rate at
date t. Similarly, in any factor model, such as the Longstaff-Schwartz model,
the volatilities σ(t, u) of the forward rates will depend only on the factors
at each date t. As mentioned at the beginning of this section, such a factor
structure simplifies calculations considerably.

HJM models are sometimes written in a slightly different fashion than we
have done here. If we define

Σ(t, u) =
∫ u

t

σ(t, s) ds

then we have dΣ(t, u)/du = σ(t, u), and the HJM equation (14.31) can be
written as

µ(t, u) = Σ(t, u)
dΣ(t, u)

du
,

so the evolution of forward rates can be written as

df(t, u) = Σ(t, u)
dΣ(t, u)

du
dt +

dΣ(t, u)
du

dB(t) .

For example, in the Hull-White model we have Σ(t, u) = σb(τ) where b is
defined in (13.14), and in the CIR model, we have Σ(t, u) = σb(τ)

√
r̂(t),

where b is defined in (14.14).

14.7 Market Models Again

Many fixed-income derivatives (e.g., caps, floors, and swaps) have cash flows
that depend on simple interest rates (e.g., LIBOR). In this chapter and the
preceding chapter, we discussed valuation formulas for fixed-income deriva-
tives based on (i) models of the short rate or one-period rate and possibly
other factors, or (ii) models of instantaneous forward rates. However, it is
possible, and simpler for many purposes, to model simple interest rates di-
rectly. For example, we observed in Chap. 12 that Black’s formula can be
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applied to value caps and floors when the underlying simple interest rates
have nonrandom volatilities. Models of this type are called “market models”
or “LIBOR models” or, sometimes, “BGM models,” the last name referring
to the paper of Brace, Gatarek and Musiela [9].5 This class of models has
become quite popular in recent years. A thorough and very readable account
is given by Rebonato [56].

As in Chap. 12, we will use “LIBOR” as a generic name for simple in-
terest rates. One important fact about forward LIBOR rates that we have
already essentially derived is that they are martingales under the correspond-
ing forward measures. As was discussed in Sect. 7.7, a probability measure
corresponding to a discount bond being the numeraire is called a “forward
measure,” because the forward price of any contract maturing at the same
time as the discount bond is a martingale under that measure. We showed
in Sect. 12.3 that forward LIBOR rates are forward prices of portfolios that
pay spot rates. Specifically, considering a LIBOR rate of term (also called
“tenor”) ∆t and the forward LIBOR rate corresponding to loans over a pe-
riod u to u + ∆t, the forward LIBOR rate is a martingale under the measure
corresponding to the discount bond maturing at u + ∆t.

To price derivatives other than caps and floors (e.g., swaptions), it is im-
portant to know the dynamics of forward LIBOR rates under other probability
measures as well—for example, it is useful to know the dynamics under the for-
ward measures corresponding to discount bonds maturing at dates T �= u+∆t,
or under the risk-neutral measure, or under the measure that uses as numeraire
the portfolio consisting of rolling over an investment at spot LIBOR rates.6

We will derive here the dynamics under different forward measures.
Consider dates t1 < t2 < · · · < tN with ti − ti−1 = ∆t for each i. At

dates t ≤ ti, we denote the forward LIBOR rate for the time period (ti, ti+1)
by Ri(t). The forward LIBOR rate satisfies equation (12.2), which we repeat
here:

P (t, ti)
P (t, ti+1)

= 1 + Ri(t)∆t . (14.32)

Fix a date tn. We will compute the drift of each rate Ri(t) when we use the
discount bond maturing at tn as the numeraire.

Let σi(t) denote the volatility of rate Ri(t) at date t. This means that

dRi(t)
Ri(t)

= µi(t) dt + σi(t) dBi(t) , (14.33)

5 Other important work on this topic includes Miltersen, Sandmann, and Sonder-
mann [52] and Jamshidian [43].

6 Actually, for this theory, it is not even necessary that the short rate exist, so the
risk-neutral measure may not even be defined. The risk-neutral measure uses as
numeraire the portfolio that consists of continuously rolling over an investment at
the instantaneously risk-free rate, and the more natural object in a market model
is the portfolio that consists of rolling over an investment at spot LIBOR rates.
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for some µi, where the Bi are Brownian motions when P (t, tn) is used as the
numeraire. The different rates should be correlated, so the Brownian motions
will be correlated. Let ρij denote the correlation of Bi and Bj . We will show
that the drifts µi are determined by the volatilities and correlations, in analogy
to the HJM result for instantaneous forward rates. Specifying the volatilities
and correlations of forward rates, and inputting initial forward rates, must
therefore determine the value of any security whose cash flows depend on
the LIBOR rates of term ∆t at the dates t1, . . . , tN . Of course, this does not
mean that there are simple formulas. Obviously, the easiest case is when the
volatilities and correlations are nonrandom. In this case, we can use Black’s
formula to price caps and floors as in Chap. 12. However, even when the σi are
nonrandom, forward swap rates will have random volatilities, as mentioned in
Sect. 12.6.

If i = n − 1, then (14.32) implies

Ri(t) =
P (t, tn−1) − P (t, tn)

P (t, tn)∆t
.

Hence, it is the ratio of a non-dividend-paying asset (portfolio) price to the
price of the numeraire asset. Consequently, it is a martingale, and we have
µn−1 = 0. This is the case discussed in the second paragraph of this section.
Consider now i �= n − 1.

Define

Y (t) =
P (t, ti+1)
P (t, tn)

, (14.34)

and
Z(t) = Ri(t)Y (t) . (14.35)

Note that Y is the ratio of a non-dividend-paying asset price to the price of
the numeraire asset and hence is a martingale. Furthermore, (14.32) gives us

Z(t) =
P (t, ti) − P (t, ti+1)

P (t, tn)∆t
,

and hence Z is also the ratio of a non-dividend-paying asset (portfolio) price to
the price of the numeraire asset and consequently a martingale. Itô’s formula
applied to (14.35) yields

dZ

Z
=

dRi

Ri
+

dY

Y
+
(

dRi

Ri

)(
dY

Y

)
.

Because both Z and Y are martingales, the drift of dRi/Ri must cancel the
product (covariance) term in this equation, implying

µi dt = −
(

dRi

Ri

)(
dY

Y

)
. (14.36)

To compute the covariance, it is helpful to define
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Xj(t) = 1 + Rj(t)∆t (14.37)

for j = 1, . . . , N . Then we have

dXj

Xj
=
( Rj ∆t

1 + Rj ∆t

)(
µj dt + σj dBj

)
. (14.38)

We distinguish two cases. If i < n − 1, then the definitions (14.32), (14.34)
and (14.37) imply

Y (t) =
P (t, ti+1)
P (t, ti+2)

× P (t, ti+2)
P (t, ti+3)

· · · × P (t, tn−1)
P (t, tn)

= Xi+1(t) × Xi+2(t) × · · · × Xn−1(t) .

In this case, (14.33) and (14.38) yield(
dRi

Ri

)(
dY

Y

)
=

n−1∑
j=i+1

(
dRi

Ri

)(
dXj

Xj

)

=
n−1∑

j=i+1

( Rj ∆t

1 + Rj ∆t

)
σiσjρij dt .

On the other hand, if i > n − 1, then the definitions (14.32), (14.34) and
(14.37) imply

1
Y (t)

=
P (t, tn)

P (t, tn+1)
× P (t, tn+1)

P (t, tn+2)
× · · · × P (t, ti)

P (t, ti+1)
= Xn(t) × Xn+1(t) × · · · × Xi(t) .

In this case, (14.33) and (14.38) yield(
dRi

Ri

)(
dY

Y

)
= −

i∑
j=n

(
dRi

Ri

)(
dXj

Xj

)

= −
i∑

j=n

( Rj ∆t

1 + Rj ∆t

)
σiσjρij dt .

We conclude:

When we use the discount bond maturing at tn as the numeraire, the drift
of (expected percentage change in) the forward rate Ri is

µi(t) =

⎧⎪⎪⎨
⎪⎪⎩
∑n−1

j=i+1

( Rj(t) ∆t
1+Rj(t) ∆t

)
σiσjρij if i < n − 1 ,

0 if i = n − 1 ,

−∑i
j=n

( Rj(t) ∆t
1+Rj(t) ∆t

)
σiσjρij if i > n − 1 .

(14.39)
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Problems

14.1. Create an Excel worksheet demonstrating a four-period Ho-Lee model.
Allow the user to input σ, ∆t, and Pmkt(tn) for n = 1, . . . , 5. Compute φ(tn)
from (14.3) for n = 1, . . . , 4. Create the one-period interest rate tree (starting
from r(0) = − log Pmkt(t1)/∆t) and the valuation tree for a discount bond
maturing at t5. Verify that the tree gives the price Pmkt(t5). Note: to create
a binomial tree in a spreadsheet, it is probably easiest to put the topmost (or
bottommost) nodes along one row and the other nodes in a triangle below (or
above).

14.2. Modify the preceding exercise to include the valuation tree for a caplet
with t4 as its reset date and t5 as its payment date. Note that the payoff of
the caplet at date t5 is

max
(
0,R(t4) − R̄)∆t,

where
R(t4) =

1
P (t4, t5)

− 1.

Allow the user to input R̄.

14.3. Create a function Ho_Lee_Caplet that values a caplet in the Ho-
Lee model. Look up market discount bond prices from a function such as
DiscountBondPrice in Prob. 12.1 and calibrate to the market from (14.3).
The inputs to the function should be R̄, σ, T1, T2, N1 and N2, where T1 is
the reset date for the caplet, T2 is the payment date for the caplet, N1 is the
number of periods between date 0 and T1, and N2 is the number of periods
between T1 and T2. Note that the payoff of the caplet at date T2 is

max
(
0,R(T1) − R̄)× (T2 − T1),

where
R(T1) =

1
P (T1, T2)

− 1.

14.4. Create an Excel worksheet demonstrating a four-period Black-Derman-
Toy model. Allow the user to input ∆t, r(0), and σ(ti) and θ(ti) for i =
1, . . . , 4. Create the one-period interest rate and the valuation tree for a dis-
count bond maturing at t5.

14.5. Modify the preceding exercise by including the valuation tree for a
caplet with reset date t4 and payment date t5, as in Prob. 14.2.

14.6. Repeat Probs. 14.4 and 14.5 for the Black-Karasinski model, allowing
the user to also input κ(ti) for i = 1, . . . , 4.
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14.7. Create a VBA function CIR_Caplet_MC that values a caplet in the CIR
model using Monte Carlo, without calibrating the model to the current yield
curve. Simulate the CIR process as described in Sect. 4.5 for the Heston model.
The inputs should be R̄, r(0), κ, θ, σ, T1, T2, N and M , where T1 is the reset
date for the caplet, T2 is the payment date for the caplet, N is the number
of periods between 0 and T1, and M is the number of simulations. The payoff
of the caplet is as in Prob. 14.3, where P (T1, T2) is the function of r(T1) and
T2 − T1 given in (14.18) with φ = 0.

14.8. Modify the function in the preceding exercise to create a function
CIR_Calibrated_Caplet_MC that values a caplet in the CIR model using
Monte Carlo, with the model calibrated to the market. Look up market dis-
count bond prices from a function such as DiscountBondPrice in Prob. 12.1.
To compute φ(ti) for i = 1, . . . , N from market bond prices, use (14.19) for
dates ti and ti+1 as in Sect. 13.8.



A

Programming in VBA

The purpose of this appendix is to provide an introduction to the features of
Excel VBA that are used in the book. To learn more about VBA in a finance
setting, Jackson and Staunton [40] is a good source.

A.1 VBA Editor and Modules

Subroutines and functions are created in the VBA editor, which is reached
through Tools/ Macros/Visual Basic Editor. When the editor opens, click
Insert/Module to open an editing screen in which subroutines and functions
can be typed. If you have opened a new workbook and inserted a module, you
should see on the left a small pane with the heading Project-VBA Project
that lists the elements of the workbook, including Module 1, which is the
default name for the collection of things you might type in the editing screen
(if the pane is not present, click View/Project Window). You should also see
on the left a pane with the heading Properties-Module 1 (if it is not there,
click View/Properties). You can rename Module 1 to something more useful
by highlighting Module 1 in the Properties Window and typing the new name.
You can add another module by clicking Insert/Module again. If you save the
Excel workbook, all of the modules (and hence all of the subroutines and
functions created in them) are saved with the workbook.

If you open the workbook distributed with this book, you will see in the
Project Window modules named Chapt2, Chapt3, . . . , Chapter 13. Each of
these modules contains the VBA code in the corresponding book chapter. To
view the code in a particular module, right-click on its name in the Project
Window and select View Code. You will see a collection of programs sepa-
rated by gray lines (which are added by the VBA editor to make things more
readable). Each subroutine starts with Sub and ends with End Sub and each
function starts with Function and ends with End Function. You will also see
“Option Explicit” at the top of each module—this will be discussed below.
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The organization of subroutines and functions into modules is not impor-
tant (except for globally defined variables, which are not used in this book).
All of the subroutines and all of the functions in all of the modules in any
open workbook are available to use in any open workbook. However, you may
find it convenient to organize your work into separate modules, for example
Homework1, Homework2, etc.

If you open multiple workbooks, and open the VBA editor with one of
them, then the Project Window will list each workbook and the modules
associated with each. When the workbooks are saved, each set of modules will
be saved with the associated workbook.

If VBA catches an error (normally a syntax error or an undeclared vari-
able if “Option Explicit” has been declared) when executing a subroutine or
function, a message box will pop up to inform the user. If the “Debug” option
is chosen in this box, the offending VBA code will be highlighted in the VBA
editor. After correcting the error, you need to click Run/Reset in the editor
(or the square button in the editor’s toolbar).

VBA ignores everything written on a line following an apostrophe, so com-
ments can be placed on any line by preceding them with an apostrophe. In-
cluding comments in your subroutines and functions is very important to make
them understandable.

The underscore character indicates that a line is to be continued. For
example,

y = x + 5

is the same as

y = x _

+ 5

This is useful for breaking long lines.

A.2 Subroutines and Functions

A subroutine is also called a macro. It is a way of automating tasks, including
mathematical calculations, cell formatting, and outputting results to cells. The
subroutines in this book simulate a random process and output the results
to the active worksheet. The other programs in the book are user-defined
functions.

To execute a macro, click Tools/Macros. Clicking the name of a macro
and then clicking Run will execute it. A macro or function created in one
workbook can be used in another. To execute a macro created in another
workbook, simply open both workbooks at the same time, click Tools/Macros
and choose the option “All Open Workbooks” for the macros to be displayed.1

1 Since you will be running macros and using user-defined functions frequently,
it is useful to add buttons to the toolbar to execute the keystrokes of clicking
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To create a macro in the VBA editor, type

Sub WhateverNameYouWant()

...

list of commands

...

End Sub

You will notice that the editor automatically adds the parentheses () at the
end of the subroutine name and adds the End Sub statement when you type
Sub WhateverNameYouWant.

A user-defined function is executed just like any other Excel function—in
a cell of the spreadsheet, type =FunctionName(arguments). The arguments
supplied to the functions can be numbers or can be cell references, just as
with any other Excel function. To see the user-defined functions that have
been created, click Insert/Function and select the category User Defined. You
may see a lot of functions created by Excel add-ins in addition to the functions
that are in the modules. You can also execute a function by double-clicking
on its name here.

To create a function in the VBA editor, type

Function AnotherName(argument1, argument2, ..., lastargument)

...

list of commands

...

AnotherName = WhateverTheAnswerMightBe

End Function

A.3 Message Box and Input Box

One way for a subroutine or function to deliver information is through the
MsgBox function. In Module 1, type

Sub WhateverNameYouWant()

MsgBox("Whatever you want to type.")

End Sub

When you execute this macro, a message box will pop up, displaying the
message. To close the message box, click OK. The message box function is
useful primarily for displaying error messages. However, the message box can
also return the results of mathematical operations, as the next example shows.

Tools/Macros and Insert/Function, if the buttons are not already there. To add
the macro button, click Tools/Customize/Commands/Tools, scroll to Macros, and
drag the “Macros . . . ” button to the toolbar. To add the function button, scroll
to Insert and drag the “Insert Function” button to the toolbar.
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One way for a subroutine or function to obtain information from the user
is via the InputBox function. In Module 1, type

Sub AnotherSub()

x = InputBox("What is your favorite number?")

MsgBox("You said your favorite number was " & x)

End Sub

When you execute this macro, a box will pop up displaying the text “What is
your favorite number?” and providing a facility for inputting a number. When
you hit Enter or click OK, the input box will disappear and the message box
will appear, displaying the message and the number you chose.

A.4 Writing to and Reading from Cells

You can write a number, text, or formula to any cell in any worksheet of any
open workbook. For example, executing the following macro

Sub WritingTest()

Workbooks("Book1.xls").Sheets("Sheet1").Range("B3").Value = 7

End Sub

will write the number 7 to cell B3 of Sheet1 of Book1.xls. The statement can
be shortened to

Sheets("Sheet1").Range("B3").Value = 7

if you want to write to the active workbook, and it can be shortened to

Range("B3").Value = 7

if you want to write to the active sheet in the active workbook. To write text
to the cell, enclose it in parentheses; for example, we could replace Value = 7
with Value = "some text". It is also possible to write a formula to a cell
by replacing Value = 7 with, for example, Formula = "=A6". Running any
macro of this sort will over-write anything that may already be in cell B3.

In the macros in this book, rather than writing to a particular cell, we
write to the active cell of the active sheet of the active workbook (i.e., the cell
in which the cursor is) and to cells surrounding the active cell. This is done
as follows:

Sub WritingTest()

ActiveCell.Value = 7

ActiveCell.Offset(1,2) = 8

End Sub

This macro writes the number 7 to the active cell and the number 8 to the
cell that is one row below and two columns to the right of the active cell.

A subroutine or function can also read directly from a cell in a workbook,
though we do not use that feature in this book. The syntax is the same as
for writing to a cell; for example, x = ActiveCell.Value assigns the value
in the active cell to the variable x.



A.5 Variables and Assignments 323

The formatting of cells (and ranges of cells) can also be changed in Excel
macros. Moreover, the active cell/sheet/workbook can also be selected within
a macro, and charts can be generated within macros, etc. We use VBA mainly
as a computational engine in this book rather than as a means to create and
modify worksheets, so we do not use many of the features of Excel VBA.

A.5 Variables and Assignments

Variable names must begin with a letter, be less than 256 characters long, and
cannot include various special characters (in particular, they cannot contain
blank spaces, hyphens or periods). Variable names are not case sensitive: a
is the same variable as A (in fact, you may find the VBA editor changing
the capitalization of names to maintain consistency across a project). It is of
course a good idea to use names that mean something, so your programs are
easier to read later. You cannot use any name already reserved by VBA or
Excel; for example, attempting to create a variable with the name Sub will
generate an error message.

An expression like y = x + 3 is an assignment statement (unless it is
prefaced by an If, ElseIf or Do While—see below). The computer evaluates
the right-hand side, by looking up the value already assigned to x, adding 3,
and storing this value in the memory space reserved for y. A statement like
x = x + 3 is perfectly acceptable. It simply adds 3 to the value of x. It doesn’t
matter whether you add spaces around the = and + signs; the VBA editor
will automatically adjust the spacing.

It is optional whether you must specifically allocate memory space for a
variable. If you type “Option Explicit” in a VBA module, then all variables
must be declared. This is done with the keyword Dim at the beginning of the
program (more on this below). If you do not type “Option Explicit,” then
you can create a new variable in the middle of a program simply by assigning
it a value. For example, you can type y = x+3. If y has not been previously
defined, then it will be created and assigned the value x+3. If x has not been
defined, it will be created and given the value 0.

The main virtue of selecting “Option Explicit” is that it helps to avoid
typographical errors. Suppose for example that you intend to assign a new
value to a variable named HardToSpell. If you misspell the name in the
assignment statement and have not declared “Option Explicit,” then VBA
will create a new variable with the misspelled name. The program will still
execute, but it will not calculate what you intended it to calculate. Likewise, if
you intend to perform some operation with HardToSpell and assign the result
to another variable and you misspell HardToSpell, then a new variable will be
created with the misspelled name, given a value of zero, and the operation will
be performed with the value zero rather than with the value of HardToSpell.
In both cases, with “Option Explicit” declared, VBA will generate an error
message alerting you to the misspelling.
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A.6 Mathematical Operations

The basic mathematical operations are performed in VBA in the same way as
in Excel: addition, subtraction, multiplication (the asterisk symbol), division
(/), and exponentiation (the caret symbol—3^2 is 3 squared). The natural
exponential is also the same in VBA as in Excel: Exp(6) is e6. The square root
and natural logarithm functions are also available in VBA but with different
names than in Excel. The name of the square root function is Sqr in VBA
(rather than Sqrt as in Excel) and the name of the natural logarithm function
is Log in VBA (rather than Ln as in Excel). It does not matter whether or
not you capitalize the names; the VBA editor will automatically capitalize,
converting for example exp to Exp.

Other mathematical functions are used in VBA by preceding their Excel
names with Application. For example Application.Max(3,4) returns the
larger of 3 and 4. Of course, VBA means “Visual Basic for Applications”
and the application being used here is Excel, so the name Application.Max
indicates that the Excel Max function is to be used. A function that we use
frequently is Application.NormSDist(d), which returns the probability that
a standard normal random variable is less than or equal to d.

A.7 Random Numbers

Computers do not behave in a random way (though of course it may seem
like it when one crashes) but they can generate sequences of numbers that
pass statistical tests for randomness. The basic construction is the genera-
tion of a random integer in some range [0, N ] with each integer in the range
being “equally likely.” Dividing by N gives a number between 0 and 1 that
has the appearance of being uniformly distributed. This number can then be
transformed to give the appearance of a normal distribution or other standard
distributions. Random integers are generated sequentially by an algorithm of
the type Ij = aIj−1 + c mod N , for constants a and c. “mod N” means the
remainder after dividing by N (7 mod 5 is 2, 10 mod 3 is 1, etc.). In this
construction, Ij−1 is called the “seed,” and each integer becomes the seed for
the next. This is certainly not a random construction, but if the constants
and N are suitable chosen (N must be very large) then the integers will have
the appearance of unpredictability, both to the human observer and according
to formal statistical tests.

VBA has a built-in function for generating random variables that are uni-
formly distributed between 0 and 1. This function is called Rnd(). The same
function is in Excel but called Rand(). Applying the inverse of the standard
normal cumulative distribution function to a random variable that is uni-
formly distributed between 0 and 1 will generate a random variable with the
standard normal distribution (i.e, the normal distribution with mean 0 and
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variance 1). The inverse of the standard normal cumulative distribution func-
tion is provided in Excel as the NormSInv function, and hence it can be called
in VBA as Application.NormsInv. Given the existence of the NormSInv func-
tion, this is the simplest, though not the fastest, way to transform a uniformly
distributed random variable into a normally distributed one. To reduce typing,
the following function is used throughout this book.

Function RandN()

RandN = Application.NormSInv(Rnd())

End Function

A.8 For Loops

A loop is a command or set of commands that executes repeatedly either for
a fixed number of times or until some condition is violated. To execute the
commands for a fixed number of times, use a “for loop.”

To add the first 10 integers together we can create the following macro:

Sub AddIntegers()

x = 1

For i = 2 To 10

x = x + i

Next i

ActiveCell.Value = x

End Sub

In the above, we first initialized the value of x to be 1. The statement(s)
between the For statement and the Next statement are executed repeatedly.
In the first passage through the loop, the variable i has the value 2 and the
statement x = x + i translates as x = 1 + 2, so x is given the value 3. In
the next passage, i has the value 3 and x has the value 3, so the statement
x = x + i translates as x = 3 + 3, and x is given the value 6, etc.

Any variable name (not just i) can be used as a counter. The indentation
of the line x = x + i is optional and serves only to make the program easier
to read.

The number of iterations need not be fixed when the program is written.
We can use variables in the For statement like For i = y To z. The number
of iterations will then be determined by the values of y and z when the for
loop is encountered.

In the statement For i = 2 To 10, MATLAB increases i by one each
time it reaches the statement Next i. This is the default, but it can be
changed. If you want i to increase by two each time, you can write

For i = 2 To 10 Step 2.

Negative step sizes and non-integer step sizes are also acceptable. For exam-
ple, the statement For i = 10 To 1 Step -1 produces a loop that executes
“backwards,” starting from i = 10 and counting down until i = 2.
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A.9 While Loops and Logical Expressions

A “while loop” executes a block of statements repeatedly until some condition
is violated. For example a crude way to add the first 10 integers would be with
the following macro:

Sub AddIntegers2()

x = 0

i = 1

Do While i <= 10

x = x + i

i = i + 1

Loop

ActiveCell.Value = x

End Sub

When the program first encounters the Do While statement, it checks
whether the condition i ≤ 10 is true. If it is, then the statements preceding
the Loop statement are executed. The condition i ≤ 10 is then checked again,
and the statements are executed repeatedly in this way until the condition
i ≤ 10 is false. Be careful that the statements being executed will eventually
cause the condition to be false.

The comparison operators that can be used in the Do While statement
(and If and ElseIf described below) are less than (<), less than or equal to
(<=), greater than (>), greater than or equal to (>=), and equal to (=).

The expression Not(i > 10) is equivalent to (i <= 10). Multiple condi-
tions can be combined: the expression i <= 10 And y > 6 is true if (and
only if) both i ≤ 10 and y > 6 are true, and the expression i <= 10 Or y > 6
is true if either or both of its component statements is true.

A.10 If, Else, and ElseIf Statements

You can cause a statement to execute only when a certain condition is satisfied
by prefacing it with an If statement. The format is

If y <= 10 Then

x = 2 * x

End If

which doubles x if y ≤ 10 and does nothing otherwise. Rather than doing
nothing otherwise, you can cause a different statement or block of statements
to execute when the condition is violated by including an Else. For example,

If y <= 10 Then

x = 2 * x

Else

x = 3 * x

End If
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In this case, if y > 10, the statements following the Else statement execute,
tripling x. Finally, you can check multiple conditions sequentially with ElseIf.
Consider the following:

If y <= 10 Then

x = 2 * x

ElseIf y <= 20 Then

x = 3 * x

ElseIf y <= 30 Then

x = 4 * x

Else

x = 5 * x

End If

The conditions are checked sequentially as follows. If y ≤ 10, then x is doubled
and execution of of the If block ends. If y > 10, the condition y ≤ 20 is
checked. If this is true, x is tripled. If it is not true, the next condition is
checked, etc. The result is that x is doubled when y ≤ 10; it is tripled when
10 < y ≤ 20; it is quadrupled when 20 < y ≤ 30; and it is quintupled when
y > 30.

A.11 Variable Declarations

As mentioned before, if “Option Explicit” is declared, each variable must be
declared at the beginning of a subroutine or function. A variable can be de-
clared to be of a specific type or the type can be left unspecified and VBA
will choose what seems to be the appropriate type. For numerical calcula-
tions, the important types are Integer, Long, Double, and Variant. The In-
teger data type is for storage of integers between -32,768 and 32,769. The
Long data type can store integers between plus or minus 2 billion (actually
a bit more than 2 billion). The Double data type stores arbitrary (floating
point) numbers, to sixteen digits of accuracy. The Variant data type is the
default type for variables whose type is not specified, and it adjusts itself
automatically to the data stored within it. To declare a variable to be of a
particular type, there are two equally acceptable syntaxes. For example, the
Double type can be declared either as Dim x As Double or Dim x#. The In-
teger type can be declared either as Dim x As Integer or Dim x%. Note that
the syntax Dim i, j, k As Integer is acceptable but it declares only k as
being of type Integer, with i and j still being of type Variant. On the other
hand, Dim i%, j%, k% declares i, j and k as being of type Integer.

In this book, the data type is left unspecified (hence as Variant), with the
exception that the type of large arrays is declared. The Variant data type
requires more memory for storage, so this is a bit inefficient.

Variables declared within a function or subroutine are “local variables.”
They can only be accessed within the function or subroutine within which
they are defined. To understand this, consider the following simple example
of a function (TestFunction) calling another function (AddTwo).
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Function TestFunction(x)

TestFunction = x * AddTwo(x)

End Function

Function AddTwo(x)

Dim y

y = x + 2

AddTwo = y

End Function

The result of TestFunction(3) is 3 × 5 = 15. Consider now the following
(strange) change to TestFunction.

Function TestFunction(x)

Dim z

z = x * AddTwo(x)

TestFunction = y

End Function

The new feature is that TestFunction(x) attempts to return y, which is
defined only in AddTwo. If TestFunction(3) is executed, then one of two
things will happen: (i) if “Option Explicit” has been declared, an error message
will appear with the information that the variable y has not been declared
within TestFunction, or (ii) if “Option Explicit” has not been declared, the
function will return a value of zero. The reason in both cases is that the
variable y defined within AddTwo is not available to TestFunction—it is local
to AddTwo. In case (ii), a new variable y is created within TestFunction and,
like all new variables, is given a default value of zero. The error message is
probably preferable in this circumstance, which points again to the value of
the “Option Explicit” declaration.

It is possible to declare a variable so that it is available to (and can be
modified by) all of the functions in a module, or all of the functions in a
workbook, or even all of the functions in all open workbooks. Such variables
are called “global variables.” That facility is useful in some situations, but it
is not used in this book.

A.12 Variable Passing

As we have seen, functions and macros can call other functions or macros
to perform part of their work. For example, macros shown previously in this
appendix call the MsgBox function. The default arrangement in VBA is that
variables are passed to functions (or to macros—though variables are not
passed to macros in this book) “by reference” rather than “by value.” This
means that the actual memory location of the variable is given to the func-
tion, and any changes made to a variable by a function will affect the use of
the variable in a calling function. Consider, for example the following simple
change to the function AddTwo:
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Function AddTwo(x)

x = x + 2

AddTwo = x

End Function

This function still adds the number 2 to its input. Now when we execute

TestFunction(3)

and it reaches the line

TestFunction = x * AddTwo(x)

it will be multiplying x by 5 as before. However, now x has been changed in
AddTwo from 3 to 5, so the result of TestFunction(3) is 5 × 5 = 25.

This may sometimes be what one wants, but it is more likely that it will
produce mistakes. There are two possible solutions. One is to change the
function AddTwo as follows:

Function AddTwo(ByVal x)

x = x + 2

AddTwo = x

End Function

This forces VBA to pass only the value of x and not the memory location.
So when 2 is added to x and returned to TestFunction(3), the value of x in
TestFunction is still 3.

The second solution is more straightforward: simply do not change input
variables within a function. That is, we can use our first version of AddTwo,
which created a new variable to store the sum of x and 2, rather than changing
the value of x (or we could use the simpler one-line function AddTwo = x + 2).
The functions in this book follow this second approach—we avoid changing
the values of input variables.

A.13 Arrays

It is very useful to be able to use a single variable name to store multiple
values. For example, we can write loops such as

For i = 1 To 10

x(i) = whatever

Next i

An array variable must be declared, regardless of whether “Option Explicit”
is declared. Normally, the declaration takes the form Dim x(10) if the largest
index number of x is known (to equal 10) when the function or macro is writ-
ten. The default in VBA is that the first element is indexed by 0.2 Therefore,
2 This can be changed so that the default is for the first element to be indexed by 1

with the statement “Option Base 1.”
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Dim x(10) creates a vector with 11 elements, which are accessed as x(0), . . . ,
x(10). The type of each element is Variant, unless it is declared otherwise—for
example, Dim x(10) As Integer reserves memory locations for 11 integers.
Multidimensional arrays can also be used. For example, x(10, 6, 12) cre-
ates a 3-dimensional array, with 11 × 7 × 13 elements. The first index does
not have to be zero. The declaration Dim x(1 To 10) creates a vector with
10 elements, which are accessed as x(1), . . . , x(10). Likewise, one can use,
for example Dim x(-6 To 3) to start the indexing at -6 and end at 3.

If the dimension of the array is not fixed, which is often the case, then nor-
mally it must be declared with empty parentheses—for example, Dim x(). The
dimension will depend on the input arguments, or on calculations based on the
input arguments. Before the array is used, the program must include a state-
ment specifying the dimension, of the form ReDim x(N), or ReDim x(1 To N),
where the variable N is either an input argument to the function or has been
calculated prior to the statement ReDim x(N).

The exception to the above statements about declaring array variables,
whether the number of elements is known in advance or not, is when an array
is assigned to a variable by a call to a function. The Array function is one
example of a function that creates an array. For example

Dim x

x = Array(3, 6, 7)

will create an array with elements x(0)=3, x(1)=6, and x(2)=7. Replacing
Dim x with Dim x(2) in this context will not work.

Functions can take arrays as inputs and return arrays as outputs. Arrays
can be input by (i) typing the array as an argument of the function, (ii)
inputting the worksheet cells in which the array resides, or (iii) passing the
array as an output from another function. An array created in one function
is passed to another function in the same way that any other variable is
passed. To type an array as an input, enclose it curly braces, separate items
in each row with a comma, and separate rows with a semicolon—for example
{3, 1, 2; 4, 6, 2} is an array with two rows and three columns, the first row
being {3, 1, 2} and the second row being {4, 6, 2}. The same array might be
input via cell references as B3:C5.

Arrays can also be output to Excel worksheets. Consider the following:

Function MyArray(x)

Dim y(3)

For i = 1 To 3

y(i) = i * x

Next i

MyArray = y

End Function

Note that the array y has four elements. The program does not define ele-
ment 0, so it is zero by default. If we execute MyArray(2), the other elements
will be y(1) = 2, y(2) = 4, and y(3) = 6. If we execute the function by



A.14 Debugging 331

typing =MyArray(2) in a cell of a worksheet, the number 0 will appear. (To
avoid this and have the output show up in three cells instead of four, we could
have declared Dim y(1 To 3).) To see the rest of the output, highlight the
active cell and the three cells immediately to the right on the same row. Click
the function key F2 and then hold down the key combination CTRL-SHIFT-
ENTER. This is the standard Excel procedure for displaying arrays returned
by functions. For example, the output of Excel’s matrix algebra functions,
such as MMULT, is revealed in the same way.3 Two-dimensional arrays can be
output to worksheets in the same way.

A.14 Debugging

Errors (bugs) are inevitable. VBA will catch some types (for example, syntax
errors) and inform you. The more troublesome errors are those that do not
prevent the program from running but lead to incorrect results. It is essential
therefore to debug each program carefully.

To debug a subroutine, put the cursor on the subroutine name in the
Visual Basic editor. Click on Debug/Step Into (or the function key F8) to
step through the subroutine one line at a time. Putting the cursor over any
variable will show the value of the variable at that stage of the program. To
observe the values of variables more systematically, you can include statements
of the form Debug.Print x or Debug.Print "The value of x is " & x in
the subroutine. The subroutine will then print to the Immediate Window.
To view the Immediate Window, click View/Immediate Window. Click on
Run/Reset (or the square button on the toolbar) to discontinue debugging.

To debug a function, one can rewrite it as a subroutine, defining values
for the input variables in the beginning of the subroutine. The VBA debugger
has many other features. Debug/Step Over is particularly useful for stepping
over a line that does not need to be checked and will be time consuming to
check, for example, a call to another function.

3 Once this is done, the individual cells in which the array was output cannot be
changed. Attempting to do so will generate an error message, and it may be
necessary to hit the Escape key once or twice to allow any use of the worksheet
after the error message appears.
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Miscellaneous Facts
about Continuous-Time Models

B.1 Girsanov’s Theorem

In Sect. 2.9, we were able to compute the expected return of an asset under
different numeraires directly, by using Itô’s formula and the fact that the
ratio of a non-dividend-paying asset price to the numeraire asset price is a
martingale under the measure associated with the numeraire. In other cases
(e.g., Heston’s stochastic volatility model and Vasicek’s model) the drift of a
process could not be computed directly when we changed numeraires, because
the process (volatility in Heston’s model and the short rate in Vasicek’s model)
was not an asset price. In general, the change in the drift of a process when we
change numeraires (or, more generally, change probability measures) is given
by Girsanov’s theorem.

An heuristic explanation of Girsanov’s theorem is as follows. Let λ be
a constant, and let B be a Brownian motion under a probability measure
that we will denote by prob. Let B∗(t) = B(t) + λt; i.e., dB∗ = dB + λ dt.
Girsanov’s theorem shows how to change the probability measure so that the
drift of B∗ is zero, i.e., how to change the probability measure to make B∗ a
martingale and hence (by Levy’s theorem) a Brownian motion.

Consider discrete time periods of length ∆t and approximate B by a bi-
nomial process that steps up or down by

√
∆t in each time period, with up

and down being equally likely. This approximation implies that the changes
∆B of the binomial process have mean equal to zero and variance equal to
∆t, just as for a true Brownian motion. We have ∆B∗ = λ ∆t ± √

∆t. If we
change the probability of the up move to (1 − λ

√
∆t)/2 and the probability

of the down move to (1 + λ
√

∆t)/2, then the expected change in B∗ will be(
1 − λ

√
∆t

2

)(
λ ∆t +

√
∆t

)
+

(
1 + λ

√
∆t

2

)(
λ ∆t −

√
∆t

)
= 0 .

Therefore, B∗ is a martingale under these revised probabilities.



334 B Miscellaneous Facts about Continuous-Time Models

Changing the probabilities of each “branch” of the binomial tree in this
way implies that the probability of a path through the tree is changed as
follows. The probability of a path is the product of the probabilities of the
branches, so, letting prob∗ denote the revised probabilities, we have

prob∗(path through time t)
prob (path through time t)

=
prob∗(path through time t−∆t)
prob (path through time t−∆t)

× prob∗(branch at t)
prob (branch at t)

.

Note that our definitions imply

prob∗(up branch at t)
prob (up branch at t)

=
1
2

(
1 − λ

√
∆t

)
1/2

= 1 − λ ∆B(t) ,

and

prob∗(down branch at t)
prob (down branch at t)

=
1
2

(
1 + λ

√
∆t

)
1/2

= 1 − λ ∆B(t) .

Therefore,

prob∗(path through time t)
prob (path through time t)

=
prob∗(path through time t−∆t)
prob (path through time t−∆t)

× (
1 − λ ∆B(t)

)
.

If we let Y (t) denote the ratio of path probabilities through time t, this shows
that the percent change in Y at time t is −λ ∆B(t), i.e.,

Y (t) = Y (t − ∆t) × (
1 − λ ∆B(t)

)
=⇒ Y (t) − Y (t − ∆t)

Y (t − ∆t)
= −λ ∆B(t) .

A continuous-time formulation of this equation is

dY (t)
Y (t)

= −λ dB(t) .

This equation implies that Y is a geometric Brownian motion with explicit
solution (given that the ratio of path probabilities at date 0 is Y (0) = 1)

Y (t) = exp
(−λ2t/2 − λB(t)

)
. (B.1)

The above heuristic argument suggests that the process (B.1) defines a
ratio of path probabilities, prob∗ to prob, such that B∗ is a martingale un-
der prob∗. Because B∗ is continuous and its quadratic variation through each
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date t is equal to t (because the addition of λt to B does not alter the quadratic
variation of B), Levy’s theorem implies that B∗ must in fact be a Brownian
motion relative to the measure prob∗. This is the content of Girsanov’s the-
orem. In the formal statement, there is no reference to ratios of path proba-
bilities, because individual paths actually have zero probability under either
prob or prob∗. Instead, the theorem states that B∗ is converted to a Brown-
ian motion by multiplying the probability of any event (set of paths) by the
conditional expectation of Y , given the event.

There is no need to assume λ is a constant, provided the random process λ
is sufficiently regular that the general form of (B.1), i.e.,

Y (t) ≡ exp
{
−1

2

∫ t

0

λ2(u) du −
∫ t

0

λ(u) dB(u)
}

, (B.2)

is a martingale.1

Girsanov’s Theorem: Let B be a Brownian motion on a time horizon
[0, T ] and let λ be a stochastic process such that Y defined by (B.2) is a
martingale. Define

B∗(t) = B(t) +
∫ t

0

λ(u) du, (B.3)

and define a new probability measure prob∗ by setting prob∗(A) = 0 for
each event A such that prob(A) = 0, and by defining

prob∗(A) = E
[
Y (T )|A]× prob(A) (B.4)

for each event A such that prob(A) > 0. Then B∗ is a Brownian motion on
the time horizon [0, T ] relative to prob∗.

The definition of prob∗ in the boxed statement emphasizes the ratio of
probabilities aspect. It is equivalent to the definition

prob∗(A) = E [1AY (T )] (B.5)

for each event A. Thus, it is consistent with the definition (1.11) of the prob-
ability of an event A when we use a non-dividend-paying asset price S as the
numeraire. The relation between the two is that the “ratio of path probabili-
ties” Y (T ) equals φ(T )S(T )/S(0), where φ(T ) denotes the random state price
at date T .
1 The process (B.2) is an Itô process with zero drift. A sufficient condition for it to

be a martingale is that

E

[
exp

{
1

2

∫ T

0

λ2(u) du

}]
< ∞ .

This is called “Novikov’s condition.” See, e.g., Karatzas and Shreve [45].
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Note also that for any random variable X (for which the mean exists) the
mean of X under prob∗, which we denote by E∗[X], is given by

E∗[X] = E[Y (T )X] . (B.6)

In some cases we may be given (perhaps by equilibrium arguments) the
random variable Y defining the change of measure, and we wish to compute
the change in the drift of a Brownian motion (in order to compute, for ex-
ample, the drift of a volatility or an interest rate). Thus, we need to reverse
the above process, in which we started with the change of drift λ and com-
puted Y . This is straightforward. Given Y (T ), define Y (t) = Et[Y (T )], i.e.,
the expectation of Y (T ) under the original measure, given information at
date t. Equation (B.2) shows that

dY

Y
= −λ dB .

Therefore,

−(dB)
(

dY

Y

)
= λ dt .

It follows that the definition

dB∗ = dB − (dB)
(

dY

Y

)

gives us a Brownian motion B∗ relative to the measure prob∗. In other words,
the drift of B under the measure prob∗ is (dB)(dY )/Y .

B.2 Distribution of the Minimum of a Geometric
Brownian Motion

Here we will give an explanation of formulas used in Chap. 8 for valuing barrier
and lookback options. From a mathematical point of view, our discussion will
be decidedly informal.

Consider an asset price S satisfying

d log S = µdt + σ dB ,

for constants µ and σ, where B is a Brownian motion. Consider constants
K ≥ L with L < log S(0). Define z = min0≤t≤T S(t). Define

x =

{
1 if S(T ) > K and z > L ,

0 otherwise .

To price a down-and-out call, we need to compute prob(x = 1). As in Sect. 8.6,
define
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y =

{
1 if S(T ) > K and z ≤ L ,

0 otherwise .

The event S(T ) > K is the union of the disjoint events x = 1 and y = 1, so
we have

prob(x = 1) = prob(S(T ) > K) − prob(y = 1)
= N(d) − prob(y = 1) ,

where

d =
log

(
S(0)
K

)
+ µT

σ
√

T
. (B.7)

Thus, the remaining task is to compute prob(y = 1).
To price lookback options, it is necessary to know the cumulative distri-

bution function of z, i.e., we need to know prob(z ≤ L) for arbitrary L. The
event z ≤ L is the union of the disjoint events S(T ) ≤ L and y = 1, where we
specialize to the case K = L in the definition of y. Thus,

prob(z ≤ L) = prob(S(T ) ≤ L) + prob(y = 1)
= N(−d) + prob(y = 1) ,

where again we take K = L in the definition of d. Thus, for pricing lookbacks
also, the key task is to compute prob(y = 1).

Assume first that µ = 0, so log S is a Brownian motion with zero drift. We
want to compute the probability of the paths of log S that dip below log L and
end above log K. Each such path has a “twin” defined by reflecting the path
(as in a mirror image) through the horizontal line x(t) = log L after the first
time log S hits log L. The original path increases by at least log K− log L after
hitting log L (otherwise, it could not end above log K). So, the twin decreases
by at least log K − log L after hitting log L. This means that it ends below
2 log L − log K. Moreover, each path ending below 2 log L − log K is the twin
in this sense of a path hitting log L and then ending above log K. Because
log S has no drift, the “twins” are equally likely. Therefore, when µ = 0,

prob(y = 1) = prob
(
log S(T ) ≤ 2 log L − log K

)
= prob

(
B(T )√

T
≤ 2 log L − log K − log S(0) − µT

σ
√

T

)
= N(d∗) ,

where

d∗ =
log

(
L2

KS(0)

)
σ
√

T
. (B.8)

Now consider the case µ �= 0, the case in which we are really interested.
By Girsanov’s theorem, the process B∗ defined by B∗(0) = 0 and
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dB∗ = dB +
µ

σ
dt

is a Brownian motion under the measure prob∗ defined by (B.1) and (B.4),
where we take λ = µ/σ in the definition of Y (T ). The purpose of this definition
is that we have

d log S = µdt + σ
(
dB∗ − µ

σ
dt
)

= σ dB∗ .

Letting E denote expectation relative to the measure under which B is a
Brownian motion and E∗ denote expectation relative to prob∗, we have from
(B.6) that

prob(y = 1) = E[y] = E

[
Y (T )

y

Y (T )

]

= E∗
[

y

Y (T )

]

= E∗
[
exp

(
1
2
λ2T + λB(T )

)
y

]

= E∗
[
exp

(
1
2
λ2T + λ[B∗(T ) − λT ]

)
y

]

= E∗
[
exp

(
−1

2
λ2T + λB∗(T )

)
y

]
. (B.9)

Because log S has no drift under prob∗, the twin paths described before
are equally likely under prob∗. However, the reflection leads to low values of
log S(T ) and hence to low values of B∗(T ) rather than high values, and we
must compensate for this in (B.9). Specifically, for a path of log S that ends
above log K, we have

B∗(T ) =
log K − log S(0) + ε

σ
(B.10)

for some ε > 0 and the reflection of this path has

B∗(T ) =
2 log L − log K − log S(0) − ε

σ
(B.10′)

for the same ε. Therefore, to use the reflected path, we compute

ε = 2 log L − log K − log S(0) − σB∗(T )

from (B.10′) and substitute this into the right-hand side of (B.10) to obtain

log K − log S(0) + 2 log L − log K − log S(0) − σB∗(T )
σ

=
2 log L − 2 log S(0)

σ
− B∗(T )
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as the value that should replace B∗(T ) in (B.9) when we use the reflected
paths. As in the case µ = 0, using the reflected paths means replacing the
random variable y with y′ defined as

y′ =

{
1 if log S(T ) ≤ 2 log L − log K ,

0 otherwise .

Substituting into (B.9) and employing some algebra gives us

prob(y = 1) = E∗
[
exp

(
−1

2
λ2T + λ

[
2 log L − 2 log S(0)

σ
− B∗(T )

])
y′
]

=
(

L

S(0)

)2µ/σ2

E∗
[
exp

(
−1

2
λ2T − λ[B(T ) + λT ]

)
y′
]

=
(

L

S(0)

)2µ/σ2

E∗
[
exp

(
−3

2
λ2T − λB(T )

)
y′
]

=
(

L

S(0)

)2µ/σ2

E
[
exp

(−2λ2T − 2λB(T )
)
y′] , (B.11)

where for the last equality we used (B.6) again.
Now we will define another change of measure. Set δ = 2λ,

Z(T ) = exp
(−δ2T/2 − δB(T )

)
and prob∗∗(A) = E[1AZ(T )] for each event A. From the definition of δ and
(B.6) we have

E
[
exp

(−2λ2T − 2λB(T )
)
y′] = E

[
exp

(
−1

2
δ2T − δB(T )

)
y′
]

= E∗∗[y′]
= prob∗∗(y′ = 1) . (B.12)

Moreover, Girsanov’s theorem states that dB∗∗ = dB+δ dt defines a Brownian
motion B∗∗ under the measure prob∗∗. The event y′ = 1 is equivalent to

log S(0) + µT + σB(T ) ≤ log
(

L2

K

)

⇐⇒ log S(0) + µT + σ[B∗∗(T ) − δT ] ≤ log
(

L2

K

)

⇐⇒ log S(0) − µT + σB∗∗(T ) ≤ log
(

L2

K

)

⇐⇒ B∗∗(T )√
T

≤ d′ , (B.13)
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where we define

d′ =
log

(
L2

KS(0)

)
+ µT

σ
√

T
. (B.14)

Combining (B.11), (B.12) and (B.13) yields

prob(y = 1) =
(

L

S(0)

)2µ/σ2

N(d′) .

Summarizing, we have

Assume d log S = µdt + σ dB where B is a Brownian motion. Define z =
min0≤t≤T S(t). For K ≥ L and L ≤ log S(0),

1. The probability that S(T ) > K and z > L is

N(d) −
(

L

S(0)

)2µ/σ2

N(d′) ,

where d is defined in (B.7) and d′ is defined in (B.14).
2. The probability that z ≤ L is

N(−d) +
(

L

S(0)

)2µ/σ2

N(d′) ,

where d is defined in (B.7) and d′ is defined in (B.14), substituting K = L
in both.

B.3 Bessel Squared Processes and the CIR Model

This section will present additional results regarding the CIR square-root
short rate process discussed in Sect. 14.4. The ideas described here are one
way (though not the only way) to derive the CIR discount bond option pricing
formula. We begin with the following simpler process

dx(t) = δ dt + 2
√

x(t) dZ (B.15)

for a Brownian motion Z and constant δ > 0. This is called a Bessel-squared
process with parameter δ. The parameter δ determines whether x can ever
reach zero. If δ ≥ 2, then with probability one, x(t) is strictly positive for
all t; whereas, if δ < 2, then with positive probability, x will sometimes hit
zero (but will never go negative).



B.3 Bessel Squared Processes and the CIR Model 341

In the particular (rare) case that δ is an integer, the squared length of
a δ-dimensional vector of independent Brownian motions is a process x sat-
isfying (B.15). To see this, let B1, . . . , Bδ be independent Brownian motions
starting at given values bi; i.e., Bi(0) = bi. Define x(t) =

∑δ
i=1 Bi(t)2. Then

Itô’s formula gives us

dx(t) =
δ∑

i=1

2Bi(t) dBi(t) +
δ∑

i=1

dt

= δ dt + 2
√

x(t)
δ∑

i=1

Bi(t)√
x(t)

dBi(t).

The process Z defined by Z(0) = 0 and

dZ =
δ∑

i=1

Bi(t)√
x(t)

dBi(t)

is a Brownian motion (because it is a continuous martingale with (dZ)2 = dt);
thus, we obtain (B.15).

Continuing to assume that δ is an integer and that x(t) =
∑δ

i=1 Bi(t)2,
note that, for any t, the random variables ξi defined as ξi = [Bi(t)−Bi(0)]/

√
t

are independent standard normals, and we have

x(t) =
δ∑

i=1

[
bi + Bi(t) − Bi(0)

]2

= t ×
δ∑

i=1

(
bi√
t

+ ξi

)2

.

A random variable of the form
∑δ

i=1 (γi + ξi)
2, where the γi are constants

and the ξi are independent standard normals, is said to have a non-central
chi-square distribution with δ degrees of freedom and noncentrality parame-
ter

∑δ
i=1 γ2

i . Thus, x(t) is equal to t times a non-central chi-square random
variable with δ degrees of freedom and noncentrality parameter

δ∑
i=1

b2
i

t
=

x(0)
t

.

The noncentral chi-square distribution can be defined for a non-integer degrees
of freedom also, and a process x satisfying (B.15) for a non-integer δ has the
same relation to it, namely,

If x satisfies (B.15), then for any t and α > 0, the probability that x(t) ≤ α
is equal to the probability that z ≤ α/t, where z is a random variable
with a non-central chi-square distribution with δ degrees of freedom and
noncentrality parameter x(0)/t.
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Now consider the CIR process (14.9). Define δ = 4κθ/σ2 and define x by
(B.15), with x(0) = r(0). Set2

h(t) =
σ2

4κ

(
eκt − 1

)
,

and
r(t) = e−κtx(h(t)) .

Then it can be shown3 that r satisfies the CIR equation (14.9), namely

dr = κ(θ − r) dt + σ
√

r dB (B.16)

for a Brownian motion B. For any t and α > 0, the probability that r(t) ≤ α
is equal to the probability that x(h(t)) ≤ eκtα. In view of the previous boxed
statement, this implies:

If r satisfies the CIR equation (B.16) where κ, θ and σ are positive constants,
then, for any t > 0 and any α, the probability that r(t) ≤ α is the probability
that z ≤ eκtα/h(t), where z is a random variable with a non-central chi-
square distribution with δ = 4κθ/σ2 degrees of freedom and noncentrality
parameter r(0)/h(t).

To derive the discount bond option pricing formula for the CIR model,
we need to know the distribution of r(T ) when the parameters κ and θ are
time-dependent. Let w denote either u (the maturity of the underlying) or T
(the maturity of the option). Using the discount bond maturing at w as the
numeraire, we repeat here (14.23), dropping now the “hat” on r̂:

dr(t) = κ∗(t)[θ∗(t) − r(t)] dt + σ
√

r(t) dB∗(t) , (B.17)

where
κ∗(t) = κ + σ2b(w − t) and θ∗(t) =

κθ

κ∗(t)
.

Because κ∗(t)θ∗(t) = κθ, we again define δ = 4κθ/σ2 but now set

h∗(t) =
σ2

4

∫ t

0

exp
(∫ s

0

κ∗(y) dy

)
ds

2 I learned this transformation from unpublished lecture notes of Hans Buehlmann.
3 The key to this calculation is the fact that if Z is a Brownian motion and h is a

continuously differentiable function with h′(s) > 0 for all s > 0 then B defined
by

B(t) =

∫ t

0

1√
h′(s)

dZh(s)

is a Brownian motion also.
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and

r(t) = exp
(
−
∫ t

0

κ∗(s) ds

)
x(h∗(t)) .

Then it can be shown that r satisfies (B.17) for a Brownian motion B∗. Thus,
as in the previous paragraphs, the probability that r(T ) ≤ α, where r satisfies
(B.17), is the probability that

z ≤
exp

(∫ T

0
κ∗(s) ds

)
α

h∗(T )
,

where z has a non-central chi-square distribution with δ degrees of freedom
and noncentrality parameter r(0)/h∗(T ).

Straightforward calculations, using in particular the fact that b(τ) =
a′(τ)/(κθ) and∫

eγt

c(t)2
dt = − 1

(κ + γ)γ

∫
d
dt

(
1

c(t)

)
dt = − 1

(κ + γ)γc(t)

give us:

exp

(∫ T

0

κ∗(s) ds

)
=

e−γT c(w)2

c(w − T )2

and

h∗(T ) =
σ2e−γwc(w)
4(κ + γ)γ

[
c(w)

c(w − T )
− 1

]
,

where γ and c are defined in (14.14). This simplifies somewhat in the case
w = T because c(0) = 2γ. Thus, the probabilities in the CIR option pricing
formula (14.21), which are the probabilities of the event shown in (14.22), are
as follows:

• probu
(
P (T, u) > K

)
is the probability that

z ≤ −µu

λu

(∫ u

T
φ(s) ds + a(u − T ) + log K

b(u − T )

)
,

where z has a non-central chi-square distribution with 4κθ/σ2 degrees of
freedom and noncentrality parameter r(0)/λu, and

µu =
e−γT c(u)2

c(u − T )2
,

λu =
σ2e−γuc(u)
4(κ + γ)γ

[
c(u)

c(u − T )
− 1

]
.
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• probT
(
P (T, u) > K

)
is the probability that

z ≤ −µT

λT

(∫ u

T
φ(s) ds + a(u − T ) + log K

b(u − T )

)
,

where z has a non-central chi-square distribution with 4κθ/σ2 degrees of
freedom and noncentrality parameter r(0)/λT , and

µT =
e−γT c(T )2

4γ2
,

λT =
σ2e−γT c(T )
4(κ + γ)γ

[
c(T )
2γ

− 1
]

.
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