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THE VALUATION OF INTEREST 
RATE DERIVATIVE SECURITIES 

The increased volatility of interest rates during recent years and the corresponding 
introduction of a variety of interest rate derivative securities like bond options, futures 
and embedded options in mortgages, stress the need for a comprehensive financial theory 
to determine values of fixed income instruments and derivative securities consistently. 

This book provides: 

● A detailed overview and classification of the different approaches to value interest rate 
dependent securities 

● A comparison of the numerical approaches to value complex securities 
● An empirical examination for the Dutch Fixed Income Market of some well-known 

interest rate models which demonstrates recent improvements to describe interest rate 
movements in relation to contingent claim valuation 

Jeroen F.J.de Munnik completed his Ph.D. thesis The Valuation of Interest Rate 
Derivative Securities’ in 1992. During his Ph.D. study he worked for J.P.Morgan 
Securities Inc. in New York and published in the Journal of Banking and Finance. 
Currently, he is working as a financial controller at Spaarbeleg Bank, a 100 per cent 
subsidiary of AEGON Insurance.  



ROUTLEDGE NEW ADVANCES IN 
ECONOMICS 

 
Series Editor: Albert Jolink 

1. THE VALUATION OF INTEREST RATE DERIVATIVE 
SECURITIES 

Jeroen F.J.de Munnik 



THE VALUATION OF INTEREST 
RATE DERIVATIVE SECURITIES 

Jeroen F.J.de Munnik 

 

 

 

 

 

 

 

London and New York 



First published 1996  by Routledge  11 New Fetter Lane, London EC4P 4EE 
This edition published in the Taylor & Francis e-Library, 2005. 

 
 “To purchase your own copy of this or any of Taylor & Francis  
 or Routledge’s collection of thousands of eBooks please go to  

http://www.ebookstore.tandf.co.uk/.” 

Simultaneously published in the USA and Canada  by Routledge  29 West 35th Street, New York, 
NY 10001 

© 1996 Jeroen F.J.de Munnik 

All rights reserved. No part of this book may be reprinted or  reproduced or utilized in any form or 
by any electronic,  mechanical, or other means, now known or hereafter  invented, including 

photocopying and recording, or in any  information storage or retrieval system, without permission 
in  writing from the publishers. 

British Library Cataloguing in Publication Data  A catalogue record for this book is available from 
the British Library 

Library of Congress Cataloguing in Publication Data  Munnik, J.F.J.de (Jeroen F.J.), 1966–  The 
valuation of interest rate derivative securities/Jeroen F.J.  de Munnik.  p. cm.—(Routledge new 

advances in economics; 1)  Includes bibliographical references and index.  1. Securities–Valuation–
Mathematical models. 2. Interest rates–  Mathematical models. 3. Derivative securities–Valuation–  
Mathematical models. I. Title. II. Series.  HG4515.2.M86 1996 96–6089  332.63′2042–dc20 CIP 

ISBN 0-203-98277-0 Master e-book ISBN 

ISBN 0-415-13727-6 (Print Edition) 



CONTENTS 
  

   List of Figures   vi 

   List of Tables   viii 

   List of Symbols   ix 

   Preface   xi 

  
1   Introduction   1 

  
I  The Theoretical Valuation of Interest Rate Derivative Securities 6 

  
2   Arbitrage Opportunities and the Valuation of Contingent Claims   7 

3   An Overview of the Valuation of Interest Rate Derivative Securities   32 

4   Modelling Bond Prices   38 

5   Modelling the Term Structure of Interest Rates   60 

6   Numerical Methods to Value Interest Rate Derivative Securities   109 
  

II  Empirical Results of the Estimation of Interest Rate Dynamics 140 

  
7   Estimating the Term Structure of Interest Rates: A Time Series Analysis   141 

8   Estimating the Term Structure of Interest Rates: A Cross-Sectional Analysis   151 

9   Estimating the Term Structure of Interest Rate Volatilities: Principal 
Components   165 

10   Conclusions and Further Research   172 

  
   References   177 

   Index   180 



LIST OF FIGURES 
  

3.1   Overview   33 

5.1   The term structure of interest rates   64 

5.2   European and American call options on discount bonds   66 

5.3   European call options on discount bonds   68 

5.4   The term structure of interest rates   70 

5.5   The term structure of interest rate volatilities   72 

5.6   European call options on discount bonds   74 

5.7   The term structure of interest rates   79 

5.8   The term structure of interest rate volatilities   81 

5.9   European call options on discount bonds   83 

5.10   European call options on discount bonds   102 

6.1   The method of Nelson and Ramaswamy   114 

6.2   The method of Tian   118 

6.3   The method of Hull and White   121 

6.4   Numerically obtained option values   127 

7.1   The Amsterdam InterBank Offered Rate   145 

7.2   Time series option values   149 

8.1   Short-term and long-term yields   155 

8.2   Pricing errors   157 



8.3   Estimated structural parameters   158 

8.4   Cross-sectional option values   160 

8.5   Estimation results for a particular week   162 

8.6   Results of grid search over mean reversion   163 



LIST OF TABLES 
  

6.1   Scenarios used for numerical comparison  129 

6.2   Statistics of numerical comparison  130 

6.3   Numerical bond values  134 

6.4   Numerical option values  134 

7.1   Summary statistics of AIBOR data  144 

7.2   Results of time series analysis  146 

8.1   Summary statistics of bond data  154 

8.2   Results of cross-sectional analysis  156 

9.1   European call option values  170 



LIST OF SYMBOLS 
Ω Sample space 

 σ-algebra 

P Probability measure 

Q Risk-neutral probability measure 

F  Filtration 

(Ω, , F, P) Filtered probability space 

Ep(. | s) Expectation operator given the information at time s with 
respect to the probability measure P 

EQ(. | s)  Expectation operator given the information at time s with 
respect to the risk-neutral probability measure Q 

t  Calendar time 

τ  Time-to-Maturity 

T Final Trading Date 

r(t)  Instantaneous short-term rate of interest at time t 

θ Unconditional mean of instantaneous short rate 

κ Level of mean reversion of instantaneous short rate 

σ  Volatility of instantaneous short rate 

λ Market price of risk 

ρ(λ, t) Radon-Nikodym derivative at time t 

W(t) Standard Brownian Motion at time t relative to the 
probability measure P 

 
Standard Brownian Motion at time t relative to the risk-

neutral probability measure Q 

ƒ(t, τ)  Instantaneous forward rate with time-to-maturity τ at time t 

R(t, τ)  Spot rate with time-to-maturity τ at time t 

µR(s, t)  Mean of spot rate with time-to-maturity τ at time t given 
the information at time s 

σR(s, t) Volatility of spot rate with time-to-maturity τ at time t 
given the information at time s 

P(t, τ)  Discount bond with time-to-maturity τ at time t 

n Number of cashflows of coupon paying bond  

τ  Vector of payment dates of coupon paying bond, 

 



c Vector of coupon payments of coupon paying bond, 

 
P(t, τ, c)  Coupon paying bond with vector of coupon payments c 

and coupon payment dates τ at time t 

B(t)  Money market account at time t 

C(t, K, τ1, τ2)  Call option with exercise price K, time-to-maturity τ1 on 
discount bond with maturity τ2 at time t 

P(t, K, τ1, τ2) Put option with exercise price K, time-to-maturity τ1 on 
discount bond with maturity τ2 at time t 

N  Number of traded assets 

M  Number of states in discrete-time economy 

N(t)  Vector of portfolio weights or trading strategy at time t 

Vt(N(t))  Value of trading strategy at time t 

I I Identity matrix,  

 (1,...,1)T,  



PREFACE 

 

The main reason for starting my Ph.D. study in October 1988 was the expectation of 
getting the opportunity to investigate thoroughly an economically relevant valuation 
problem as well as the opportunity to combine practical and theoretical experiences 
within the financial investment community. After four years of research, consultancy and 
writing a thesis, these expectations are to a great extent fulfilled. 

Working together with Ton Vorst, Angelien Kemna and Peter Schotman was a very 
learning experience and I am proud of the final result, which could not have been 
established without their supervision and co-operation. 

The two periods of three months I worked for the Shell Pension Fund in The Hague 
increased my interest in the modelling of financial securities and I am very much 
indebted for their efforts to initiate the opportunity to work for J.P.Morgan Securities Inc. 
in New York. In addition, I would like to thank these companies and ABN AMRO for 
providing valuable data on yield curves, bond prices and interest rates. 

Although the writing of a Ph.D. thesis is primarily an individual experience, this work 
could not have been completed without the help and assistance of my family, friends, and 
colleagues. 

My colleagues at the Tinbergen Institute, and especially those who shared a room with 
me during the last four years, were of great assistance in establishing this work. It was a 
pleasure to work at the Tinbergen Institute and the importance of shared research 
experiences cannot be overestimated. My research also greatly benefited from the visits 
to scientific conferences and colleagues abroad and I would like to thank the Tinbergen 
Institute, the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) and the 
Erasmus Center for Financial Research for giving me these opportunities. 

I am very much indebted to my friends, and especially Willem Brussaard and Peter 
Serhalawan, for patiently listening to a lot of problems I encountered during the last 
years. In addition, the a.i.o. soccer team ‘Bahrakkers/Faionoord’ and the social meetings 
on Thursday night were an important part of my Ph.D. study.  

Finally, this preface is very well suited to thank my parents and my brother for 
accepting my apologies for not visiting them as much as we wanted. I hope this finished 
thesis serves as a final excuse. 

This thesis would definitely not have been completed without the encouragement and 
patience of Barbara. I thank her for all those evenings I had to work and for her support 



and assistance when I worked in New York. I hope to be able to give her back all the love 
she demonstrated. 

Jeroen F.J.de Munnik  



1 
INTRODUCTION 

If Aristotle is to be believed, Thales started it all in the 6th 
century BC with an option on olives. But it was only after 
academic options-pricing theory of the 1960s and 1970s 
met the volatile financial markets of the deregulating 
1980s that options took off. So did futures, warrants, 
swaps, swaptions, collars, caps, floors, circuses and scores 
of other products known collectively as derivatives. 
Nothing today is transforming financial markets as rapidly 
and completely as what their inventors like to call tools for 
the management of financial risk. Nothing now gives so 
many financial regulators so many nightmares.[…] What 
especially worries most of them is that banks are the 
biggest traders and counterparts, and neither banks (nor 
anyone else) understand the risks well enough to price 
them properly. A derivatives disaster could overwhelm the 
world’s financial system, as third-world debt, highly 
leveraged transactions and property lending have not 
managed to do.1 

This quotation is but one of many examples of the caution and sceptical attitudes existing 
regarding the development and further evolution of the use of financial derivative 
securities. At the same time, it stresses the importance and need of an accurate 
assessment of the values of the different contingent claims and the risks involved. 

During the last two decades a lot of academic research has concentrated on the 
theoretical valuation and the associated empirical validity of commonly known 
contingent claims like call and put options on stocks. The relatively high risk of stocks in 
comparison to other alternative financial assets like bonds and the corresponding 
popularity of these instruments for portfolio management easily explains the primary 
focus of contingent claim research during this period.2 

In the last decade, however, increased attention has been paid to the valuation of 
contingent claims whose values depend on the term structure of interest rates and its 
subsequent movement over time. Although the level of price risk of Traded Government 
Bonds3 may give the impression at first sight of a relatively unimportant problem, the 
variety of financial instruments with complex option characteristics such as callable 
bonds, different types of mortgages and the delivery option embedded in a futures 
contract and the size of the different markets in which these instruments are traded,4 
definitely leads to an opposite conclusion. In addition, the modelling and estimation of 
the stochastic dynamics of the yield curve not only enables an assessment of the interest 



rate risk of the above-mentioned instruments but also allows for a general interest rate 
risk management of fixed income portfolios. 

Regarding the strong attention that has been paid to the theoretical valuation problem 
of ordinary options on stocks, it is important to explain the institutional differences 
between a stock and a bond to understand and justify the separate treatment of the 
valuation of interest rate derivative securities. 

The main difference between a stock and an ordinary coupon paying bond is the 
certainty at some valuation date of the amounts and corresponding payment dates of the 
different coupons and face value. Obviously, this affects the possible price movements of 
bonds in comparison to those of stocks. Near the final maturity date of a bond, for 
example, the probability of an increase in value of a par bond is much smaller than it is at 
some other valuation date, all else being equal. In the case of stocks, however, there is no 
reason why such particular stochastic behavior can be assumed or derived from 
institutional characteristics. As another result of this price effect, the corresponding 
volatility of possible price movements decreases as the maturity of the bond decreases. 
The range of possible bond prices that can be attained with some probability narrows 
when the final payment date is reached. 

Although not generally empirically justified, one of the basic assumptions in the 
classical stock options valuation problem is a constant interest rate at which long and 
short asset positions can be financed. In the case of interest rate derivative securities, 
however, it is clearly theoretically inconsistent to adopt this assumption. The relationship 
between bond values and the term structure of interest rates implied by the familiar 
discounting of future payments, necessitates a formulation of the stochastic movement of 
the yield curve over time. As will be seen in the remainder of this thesis, this difference 
results in an increased theoretical and empirical complexity of the valuation problem of 
these contingent claims and leads to an important distinction between the different 
valuation methods. 

RESEARCH OBJECTIVES 

Having explained and justified a separate and extensive treatment of the general valuation 
problem of interest rate derivative securities, it is important to formulate and discuss 
some more specific research objectives.  

Given the above-mentioned institutional and theoretical differences between the 
stochastic dynamics of stocks and bonds affecting the valuation problem of interest rate 
derivative securities, it is both necessary and important to investigate and to give an 
overview of the different conditions under which derivative securities can be valued. 
Given the characteristics of some contingent claims, for example, and given the 
stochastic properties of the underlying values of these claims, is it possible to formulate 
general conditions regarding the possible values of the claims that exclude riskless 
arbitrage opportunities between the underlying values and the derivative securities? 

The increased academic interest that has been paid during the last few years to the 
valuation of interest rate derivative securities has resulted in a variety of different 
theoretical models. To be able to investigate the possible advantages and drawbacks of 
these approaches with respect to each other and to decide under which theoretical and 
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empirical circumstances a particular model should be preferred, it is necessary to develop 
a basic classification scheme. Is it possible, therefore, to classify the different interest rate 
models according to some basic or general characteristics? 

The first paragraph of this chapter mentioned that during the last few years a lot of 
highly complex derivative securities have been developed and introduced. Because of the 
possible complicated payouts of some of these securities, the actual valuation given some 
interest rate model relies heavily on the use of numerical methods. Is it possible to 
classify these numerical approaches also and to develop some decision rules to be able to 
decide under which conditions a particular method should be preferred? 

The principal reason for the increased theoretical attention to the valuation of interest 
rate derivative securities has been the aim to incorporate the institutional characteristics 
and the observed empirical properties of interest rate dynamics as much as possible into 
the derivative securities models. Less emphasis has been paid, however, to an empirical 
evaluation of the different models and to an assessment of the actual need to incorporate 
these characteristics. As the resulting valuation complexity and estimation difficulties 
generally rapidly increase as more properties are built into the model, it is obvious that 
this comparison should be carried out. Is it possible to distinguish different interest rate 
models with respect to their empirical validity? 

OVERVIEW 

The recent extensive theoretical developments within the field of the valuation of interest 
rate derivative securities implies the necessity of an accurate description of the various 
models and corresponding numerical approaches according to some basic characteristics. 
In addition, an empirical investigation has to be carried out to compare different interest 
rate models and to assess the trade-off between the desire to incorporate as many 
institutional characteristics as possible and the resulting theoretical and numerical 
complexity. The different research objectives of this thesis discussed in the previous 
section are, therefore, either theoretical or empirical in nature and justify a separation of 
the theoretical and empirical issues into two parts. The distinction further clarifies the 
clear emphasis on theoretical research during the past and the only recent empirical 
developments.  

The first chapter of the theoretical part (Chapter 2) derives and formulates conditions 
under which riskless arbitrage opportunities between contingent claims and the 
corresponding underlying assets are excluded and under which it is possible to determine 
a unique arbitrage-free value of a derivative security. It is shown that every contingent 
claim can uniquely be valued in this way if there exists a unique equivalent probability 
measure such that the stochastic process of the underlying values of this security in terms 
of a short-term money market account is a martingale. Furthermore, the unique arbitrage-
free value of the claim is shown to be equal to the discounted expected value of the 
payout of this claim under the equivalent martingale measure. 

To proceed with the theoretical investigation of the valuation of interest rate derivative 
securities, Chapter 3 presents a general overview and classification of the different 
theoretical approaches. The major distinction between the different approaches can be 
made with respect to the modelling of the underlying values of the different securities. 
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Just as in the case of the classical stock options valuation problem, the underlying values 
are explicitly modelled in the direct approach. Given the stochastic dynamics of these 
values, contingent claims can be valued according to the unique equivalent martingale 
measure approach. The indirect approach, however, starts with a description of the 
stochastic dynamics of interest rates. The exclusion of arbitrage opportunities between 
different bonds, then, results in a description of the specific shape of the term structure of 
interest rates at a given date and the corresponding stochastic movement over time. The 
equivalent martingale approach and the derived yield curve then enable the arbitrage-free 
valuation of any interest rate contingent claim. 

Chapter 4 discusses the approach based on the explicit modelling of bond prices. 
Given the above-mentioned academic research regarding the valuation of options on 
stocks, it is natural to extend these approaches to incorporate the specific characteristics 
of bonds and to value contingent claims analogously. Because the model presented 
basically combines and extends two existing models with respect to the theoretical 
validity of the proposed stochastic processes, a lot of attention is paid in this chapter to 
regularity of the processes and the existence of a unique equivalent martingale measure.  

The different models within the indirect approach are discussed and illustrated in 
Chapter 5. Within this class, the different models can be further distinguished according 
to the term structure of interest rates at the valuation date. The first part of this chapter 
discusses those models in which the yield curve is endogenously implied by the 
stochastic characteristics of the interest rate processes and the no-arbitrage relationships. 
The second part then presents the models in which this term structure is exogenously 
specified at the given valuation date. In this part, a similar distinction is made between 
the endogenous and exogenous term structure of interest rate volatilities at some date. 

As mentioned above, the complexity of the different valuation models and of the 
characteristics of the different contingent claims results in the use of numerical valuation 
methods. In Chapter 6, three approaches are discussed to value a contingent claim 
numerically given a general stochastic process of the underlying state variable. In 
addition to this overview, general decision rules are developed to assess and distinguish 
the numerical accuracy of the different methods in terms of the numerical complexity. 
Although these methods allow for a numerical approximation of rather general interest 
rate processes, some interest rate models enable a significant simplification of the 
original stochastic process with respect to the numerical applicability or can only be 
approximated by different approaches. At the end of this chapter, some specific 
numerical methods to value interest rate derivative securities in the case of these interest 
rate models are presented and further developed. 

In the first two chapters of the empirical part of this thesis, the estimation and 
corresponding results of two models within the class of the endogenous term structure of 
interest rate models are discussed. The reasons for concentrating on these two models 
within this particular class are two-fold. The endogenous yield curve at some valuation 
date is a result of the stochastic characteristics of the underlying interest rate process and 
the no-arbitrage conditions. A cross-sectional estimation of this yield curve and a time 
series estimation of the corresponding interest rate process, therefore, enables an 
interesting comparison between the implicitly and explicitly estimated interest rate 
processes. In addition, because the two models basically differ with respect to the 
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assumed interest rate process, an empirical comparison allows for an assessment of the 
increased complexity resulting from the exclusion of negative nominal interest rates. 

Chapter 7, therefore, discusses the time series estimation of the two models and the 
corresponding results. Chapter 8 follows with the estimation method and results of the 
cross-sectional approach. In addition to an actual comparision of the estimated interest 
rate processes, these two chapters compare the implications of the estimations for the 
valuations of European call options on discount bonds.  

In the last chapter of this part, some serious problems resulting from the use of 
principal component analysis to value interest rate derivative securities are discussed. 
Because this estimation technique is used both by practitioners and academics, Chapter 
10, finally, provides an important and illustrative example of taking a cautious approach 
to the practical implementation of valuation models. 

NOTES 
1 “Taming the Derivative Beast”, 23 May 1992, The Economist, pp. 85–6. 
2 See, for example, Malkiel (1990, p. 221). 
3 These bonds are assumed to be default-free and as such, the risk of an actual default may be 

ignored. Throughout this thesis, only this particular type of bonds is considered. 
4 For an example in the case of the Dutch Fixed Income Market, see de Munnik and Vorst 

(1988). 
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Part I 
THE THEORETICAL 

VALUATION OF INTEREST 
RATE DERIVATIVE 

SECURITIES 

 



2  
ARBITRAGE OPPORTUNITIES AND THE VALUATION 

OF CONTINGENT CLAIMS 

The notion of the existence of arbitrage opportunities in financial markets constitutes a 
significant area of continuing research in financial economics. Given the current values at 
which traded securities, such as stocks and bonds, can be bought and sold, is it possible, 
for example, to construct so-called arbitrage portfolios containing some or all of these 
securities with a current total value of zero and a strict positive value, with certainty, 
some time in the future? If it is, one would not expect to achieve an equilibrium between 
or within financial markets. Investors would recognize these opportunities and perform 
arbitrage strategies on a very large scale by buying securities that are relatively 
undervalued and vice versa. This will change the prices of traded securities and eliminate 
the opportunities for arbitrage, accordingly. An interesting problem arising from this 
mechanism is the formulation of conditions regarding the current values of traded 
securities and their probability distributions so that such arbitrage opportunities do not 
exist. 

Another interesting problem, related to the above-mentioned questions, is the 
valuation of contingent claims or derivative securities, securities whose values depend on 
the prices and characteristics of one or more traded securities. Is it possible to consider 
these claims as portfolios of traded securities and to replicate the payout of these claims 
by trading in the underlying securities? Can unique prices or a range of prices for these 
claims be derived such that arbitrage opportunities between the claims and other 
securities are eliminated? 

This chapter deals with the formulation and derivation of general conditions under 
which the unique value of a contingent claim can be derived. It will show the existence of 
an arbitrage-free price of a contingent claim to be equivalent to the existence of a unique 
equivalent probability measure, under which prices of traded securities relative to a short-
term money market account are martingales. Although this thesis is mainly concerned 
with the valuation of interest rate derivative securities, this chapter focuses on the 
valuation of derivative securities in a more general way. As will be explained in later 
chapters, the results derived are shown to be readily applicable to the valuation of 
specific interest rate contingent claims. 

The first part of this chapter is concerned with economies in which prices of securities 
change randomly at discrete points in time and the sample space is finite. This relatively 
simple structure allows for explanation of the concepts and definitions of arbitrage 
opportunities, trading strategies and contingent claim valuation in simple mathematical 
terms that facilitate economic interpretation. As an illustration of the main theorems of 
this section, an example is provided: how the value of a European call option on a 
discount bond is derived. The second part of this chapter will then extend this simple 
economy to an economy in which prices change continuously and investors are allowed 
to trade continuously. It will be shown that the results and main conclusions of the first 
part of this chapter are directly extendable to these continuous-time economies. Because 
the valuation technique of contingent claims derived in this section may seem rather 



technical and abstract, its practical relevance will be demonstrated with an example in 
which the familiar Black and Scholes (1973) formula for the value of a European call 
option on a non-dividend paying stock is derived in detail. 

THE DISCRETE TIME CASE 

This section focuses on economies in which prices change randomly at discrete points in 
time, the sample space is finite, and investors are allowed to trade in these securities at 
these discrete points in time. For expository reasons, the section starts with a one-period 
economy. By concentrating first on this simple economy, problems related to the 
rebalancing of portfolios and the comparison of securities with differing maturity times 
are avoided. After this, the derived results are extended to a multi-period economy. 

One-Period Economies 

Consider an economy with only two dates, a current trading date 0 and a final date T, T ≥ 
0. The Probability space is specified and fixed as follows. The sample space 
Ω has a finite number of elements ωi, j=1,…, M, each of which can be interpreted as a 
possible state of the world. All probability measures P are equivalent in requiring that the 
probability measure P may be replaced by another equivalent measure P*. P(ωj) > 0 for 
all ωj � Ω,j=1,…, M, meaning that investors have to agree on which states of the world 
are possible. It is not necessary that investors agree on the actual assessment of 
probabilities of states of the world at time T. Revelation of information through time is 
specified by a filtration , where it is assumed, without loss of 
generality, that equals the trivial tribe {Ø, Ω} and that equals , the set of all 
subsets of Ω 

There are N traded securities or marketed claims at time 0, of which the prices are 
given by the N-dimensional vector S(0), with component prices or values S1(0), S2(0),…, 
SN(0). Each component process Si is strictly positive and adapted to the filtration F, 
reflecting the assumption of limited liability and implying that investors know at time 0 
and time T the values of all traded securities. The set of possible values for these 
securities at time T is specified by a matrix 

for i=1,…, N and j= 1,…, M. 
Without loss of generality, the first asset is assumed to be a riskless bond with a current 
value of 1 and paying an interest rate r(0), r(0) ≥ 0, or 

 (2.1) 

This assumption implies that investors are able to invest in a riskless money market 
account, which will facilitate the discussion of well-known interest rate models to be 
treated in later chapters. 
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A portfolio of traded assets or a trading strategy is defined as a predictable vector 

process N(T) with components N1(T),N2(T),…NN( T), implying is 
denoted as the set of trading strategies. Each component Ni(T) can be interpreted as the 
number or quantity of security i,i= 1,…, N in this portfolio, which may be positive or 
negative. The requirement that the vector process N(T) must be predictable, is merely a 
stipulation that the portfolio has to be established before the announcement of the prices 
of the traded securities at time T. The value V0(N(T)) of the portfolio at time 0 is now 

 (2.2) 

whereas the possible values at time T can be expressed as the vector 

 (2.3) 

The introduction to this chapter raised the question of the existence of arbitrage 
opportunities. To be able to answer this question, one must be able to specify the 
conditions under which there are riskless arbitrage opportunities. In this study, as in 
Ingersoll (1987, p. 53), an arbitrage opportunity of the first type exists if there is a 
portfolio N(T) such that the current value of the portfolio or initial investment is zero and 
the value of the portfolio at the final date T is non-negative with probability one and 
strictly positive with positive probability. Formally stated, 

 (2.4) 

and  

 
(2.5) 

In relation to this concept of arbitrage and as a useful concept for multiperiod economies, 
an arbitrage opportunity of the second type is defined to exist if there is a portfolio N(T) 
such that the current value of the portfolio is negative with probability one and the final 
value is non-negative, that is, 

 
(2.6) 

and 

 (2.7) 

The following lemma states that if an arbitrage opportunity of the second type exists, an 
arbitrage opportunity of the first type exists, too. 
Lemma 2.1 If there exists an arbitrage opportunity of the second type in the one-period 
economy, then there also exists an arbitrage opportunity of the first type. 
Proof Suppose N2(T) is an arbitrage opportunity of the second type, having an initial 
negative investment of V0(N2(T)). Create a portfolio N1(T) equal to N2(T) and an amount 
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–V0(N2(T)) invested in the riskless money market account, making the initial investment 
of this portfolio zero. So, 

 
  

and 

 
  

The possible values of the portfolio at the final trading date T are 

 

  

As a result, portfolio N1(T) creates an arbitrage opportunity of the first type, which 
completes the proof.■ 

An economy containing arbitrage opportunities cannot be in equilibrium. Investors 
would recognize these opportunities immediately and construct such portfolios. Securities 
that are relatively overvalued are sold and vice versa. This will change the prices of these 
securities and arbitrage opportunities will cease to exist. Given the prices of the traded 
securities at time 0, S(0), and given the matrix of possible prices at the final trading date 
T, S(T), is there a simple condition that excludes the possibility of riskless arbitrage 
profits? To show that this is indeed the case, one starts with the following lemma, stating 
the equivalence between the existence of arbitrage opportunities of the first type in this 
economy and in a corresponding economy where prices are expressed in terms of the first 
security or value of the money market account, that is, 

(2.8) 

As a direct result, the exclusion of arbitrage opportunities of the first type in this relative 
economy implies the exclusion of the same opportunities in the original economy. 
Although no economic justification for this transformation is available at this moment, it 
will be seen that the interpretation of subsequent results is greatly facilitated. 
Lemma 2.2 There exists an arbitrage opportunity of the first type in the one-period 
economy if and only if there exists an arbitrage opportunity of the first type in the 
corresponding one-period economy, in which prices are expressed in terms of the value 
of the riskless money market account. 
Proof Suppose an arbitrage opportunity of the first type exists in the original one-period 
economy, that is, there exists an N(T) such that 
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and 

 
  

Executing the same trading strategy N(T) in the discounted economy, gives 

 
  

and 

 
  

which creates an arbitrage opportunity of the first type. Because a proof of the converse 
statement is completely analogous, it is omitted.■  

The following theorem shows that if and only if there exists an equivalent probability 
measure such that relative prices are martingales, or equivalently, such that relative 
values of trading strategies are martingales, riskless arbitrage opportunities of the first 
type in this relative economy do not exist. Combining this result with the lemmas above, 
one can conclude that arbitrage opportunities in our one-period economy do not exist, 
either.  
Theorem 2.3 Arbitrage opportunities of the first type in the relative oneperiod economy 
do not exist if and only if there exists a probability measure equivalent to P, such that 
prices are martingales with respect to this measure. 
Proof Suppose arbitrage opportunities of the first type do not exist. First construct the 
following linear programming problem: 

 

  

with , and . This problem is an extension of the problem 
formulated in Ingersoll (1987, p. 55), in which the equivalence between the exclusion of 
arbitrage opportunities of the second type in the relative economy and the existence of a 
probability measure such that relative prices are martingales is proved. However, as is 
clear from Lemma 2.1 above, the exclusion of arbitrage opportunities of the second type 
does not necessarily imply the exclusion of arbitrage opportunities of the first type. To 
prohibit these opportunities also, the probability measure has to be equivalent to P. 

The objective function of this linear programming problem can be interpreted as the 
initial value of the portfolio. The first constraint denotes the value of this portfolio in all 
possible states of the world at time T. Combined with the other two constraints, this value 
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is non-negative in all possible states and strictly positive in at least one state. By taking 

, one sees that the problem 
is feasible and has a minimum value of the objective function that is strictly positive.1 
Now comes the formulation of the corresponding dual linear programming problem: 

 

  

Because of the feasibility of the primal linear programming problem, this corresponding 
dual problem is known to be feasible and to have a maximum value of the objective 
function that is strictly positive. This implies that the value of y, for which this optimum 
is obtained, is strictly positive, too, causing the vector q to be strictly positive. Because of 
the first equality in the formulation of the problem above, equation (2.1) and the 

definition of S*(T), this is also true  
The vector is thus suitable as an equivalent probability measure. The remaining 

equalities above show that under this measure, all traded security prices are martingales. 
To prove the converse statement, we simply reverse the different steps above. The 

primal linear programming problem has a minimum value of the objective function that is 
strictly positive, excluding arbitrage opportunities of the first type.2■ 

is now defined as the set of equivalent martingale measures. The elements 
, each of which can be represented by an M-dimensional vector q, with q > 0 and iTq = 1, 
are often called 'risk-neutral probabilities', because the expected return on all traded 
securities with respect to these measures is equal to the riskless interest rate, r(0). This 
does not mean, however, that investors have to be risk-neutral to exclude arbitrage 
opportunities. Theorem 2.3 implies only that there has to exist a probability measure 
under which investors are risk-neutral. 

We define a contingent claim as a random variable XT on the probability space 

. This random variable can be interpreted as a contract or agreement paying 
XT(ωj) at time T if state ωj � Ω, j = 1,…, M pertains. Let denote the set of all such 
claims. A contingent is here attainable if there exists a trading strategy that generates XT, 

that is, there is a such that VT(N(T)) = XT. The initial value V0(N(T)) of 
such a replicating portfolio can then be regarded as the price π of this attainable claim. Is 
this price unique or, in other words, are there different trading strategies generating XT 
with different initial values? The following theorem states that in an economy in which 
arbitrage opportunities do not exist, prices of attainable contingent claims are indeed 
unique. 
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Theorem 2.4 If arbitrage opportunities do not exist in the one-period economy, there is a 
single price π associated with each attainable contingent claim XT, which satisfies 

. 

Proof Define as the set of trading strategies generating the contingent claim 
XT. Because is not empty, 

 

  

for all . To show that π is the unique price associated with 

the contingent claim XT. suppose there are , with corresponding 
price π1 and π2, respectively, generating XT. Taking the difference results in 

 

  

This completes the proof.■ 
From this theorem it is known that if a contingent claim is attainable, a 

unique price for this claim can be computed or derived. But how does one know if a 
contingent claim is attainable? Under which circumstances concerning this one-period 
economy is every contingent claim attainable? If, in fact, every contingent claim is 
attainable, our economy or security market model can be judged to be complete. To avoid 
any trivial complications, first a non-degeneracy condition is imposed. This economy or 
price process contains a redundancy if there exists a trading strategy 

such that VT(N(T))=0. If such redundancy existed, 
possession of some security would be completely equivalent to a portfolio of other traded 
securities. Ignoring this redundant security would therefore not limit the ability to attain 
contingent claims, which justifies this assumption. The following theorem shows the 
condition under which this market model contains no arbitrage opportunities and is 
complete. 
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Theorem 2.5 The one-period economy contains no arbitrage opportunities and is 
complete if and only if there exists a unique equivalent probability measure such that 
relative prices are martingales. 
Proof Because no redundancy exists, Rank(S(T))=N. For this model also to be complete, 
it must be stipulated that for every contingent claim , there exists a trading 
strategy such that X= VT(N(T))=S(T)TN(T), implying Rank(S(T))=M and 
therefore S(T) to be invertible. The exclusion of arbitrage opportunities is equivalent to 
the set of equivalent martingale measures being not empty. The invertibility of S(T), 
then, implies that is a singleton. 

To prove the converse, because it is known that the existence of an equivalent 
martingale measure implies no arbitrage opportunities and because this measure is 
unique, we have Rank(S(T))=Rank(S*(T))=M. The no-redundancy assumption then 
completes the proof.■  

Based on this theorem, it is known that every possible contingent claim is attainable, 
once the existence of a unique equivalent martingale measure is determined. According 
to Theorem 2.4 then, a claim’s unique price is equal to its discounted expected value at 
maturity, where the expectation has to be taken with respect to the equivalent martingale 
measure. 

Multi-Period Economies 

In this section, the one-period economy is extended to a multi-period economy. In this 
economy, security prices change randomly at discrete points in time, the sample space is 
again finite and investors can trade in the securities at these discrete points in time. 
Although most of the concepts and theorems derived above are easily applicable, some 
interesting problems are worth mentioning. Contrary to the economy described above, for 
example, contingent claims can reach maturity at different or even random times. Related 
to this, securities and contingent claims can pay dividends or have other payouts at 
certain points in time and a refinement and modification of trading strategies must be 
made to be able to generate those contingent claims. As will be shown, however, the 
unique arbitrage-free valuation of every contingent claim is again equivalent to the 
existence of a unique equivalent martingale measure, a result which will be illustrated by 
the valuation of a European call option on a discount bond. 

The characterization of the multi-period economy starts with a finite set of trading 

dates with 0 the current trading date and T the final date. The 

probability space is specified and fixed as in our one-period economy. The 
sample space Ω has a finite number of elements and the probability measure P may be 
replaced by an equivalent probability measure P* without changing the conclusions. The 

filtration is specified as an increasing set of σ-algebras, that is, 
for all equals the trivial tribe {Ø, Ω} and 

equals again , the set of all subsets of Ω. 
The prices of the N traded securities are specified as an N-dimensional stochastic 

process , with component stochastic processes S1(t),…, SN(t) that 
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are strictly positive and adapted to the filtration F.Because of the requirement that the 
process S(t) be measurable with respect to , the investors know at time t the 
prices of all traded securities at and before time t. Again the assumption is made that the 
first asset is a locally riskless money market account, defined by 

 

(2.9) 

The specification of this money market account implies only at this moment that 
investors have the opportunity at any time t, , to invest in an account 
earning a positive riskless rate of r(t) during the period [t, t+1]. As such, the rate of return 

on this account during a longer period is unknown 
beforehand, as short-term interest rates generally are assumed to be stochastic. In the rest 
of this section, however, conditions will be derived under which investors are, in fact, 
able at some time t to invest or create trading strategies yielding a riskless return during 
any period. 

A portfolio or trading strategy is defined as a vector process 
with components N1(t),…,NN(t). This process is again assumed to be predictable, meaning 

, for all , because the portfolio N(t) has to be established 
before the announcement of the security prices S(t). The value of the portfolio can now be 

expressed as a stochastic process , which is -
measurable and has initial value 

 (2.10) 

The value at time t is 

 (2.11) 

A general trading strategy may require the addition of new funds after time zero or the 
withdrawal of funds for consumption. If no funds are withdrawn or added, a portfolio 
may be called self-financing, implying that changes in the portfolio holdings obey 

(2.12) 

Let denote the set of self-financing trading strategies. As in the oneperiod economy, 
an arbitrage opportunity of the first type exists if there is a self-financing trading strategy 
N such that 

 (2.13) 
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and 

 (2.14) 

An arbitrage opportunity of the second type is defined to exist now if there is a self-
financing trading strategy N such that 

 
(2.15) 

and 

 (2.16) 

These two types of arbitrage opportunities are very general and include all possible 
arbitrage situations. If, for example, a portfolio exists with zero initial value and a non-
negative value at time , this value will be invested at time t in the 
money market account. The value of the portfolio at the final trading date T, then, is non-
negative too, creating an arbitrage opportunity of the first type. A similar argument can 
be used to show that a strategy with an initial zero investment and final non-negative 
value, yielding positive payments at some trading dates, is also an arbitrage opportunity 
of the first type. The following lemma states a familiar relationship between the two 
types of arbitrage.  
Lemma 2.6 If there exists an arbitrage opportunity of the second type in the multi-period 
economy, then there also exists an arbitrage opportunity of the first type. 
Proof Assume, as in the proof of lemma 2.1, that there is a trading strategy that is an 
arbitrage opportunity of the second type. Because the initial value of this portfolio is 
negative, this cash inflow is invested in the money market account, creating an alteraative 
portfolio with an initial value of zero. Because the arbitrage portfolio has a final value 
that is non-negative, the alternative portfolio will have a final value that is non-negative 
and not equal to zero, because of the initial investment in the money market account. This 
alternative portfolio is then an arbitrage opportunity of the first type.■ 

To facilitate the interpretation of the theorems concerning the exclusion of arbitrage 
opportunities and completeness of the security market as in the one-period economy, 
prices of traded securities are expressed in terms of the value of the money market 

account, and the resulting -measurable price process is 
defined as 

 

(2.17) 
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The stochastic process of the value of trading strategies , 

is defined accordingly and this multi-period economy will be referred to 
as the relative multi-period economy. 
Lemma 2.7 There exists an arbitrage opportunity of the first type in the multi-period 
economy if and only if there exists an arbitrage opportunity of the first type in the 
corresponding multi-period economy, in which prices are expressed in terms of the value 
of the locally riskless money market account. 
Proof See the proof of lemma 2.2.■ 

The proof of the following theorem, in which a condition prohibiting arbitrage 
opportunities in the relative multi-period economy is derived, directly depends on the 
results obtained in the previous section. By presenting the multi-period economy in the 
way described above, it will be seen that the multi-period economy is a straightforward 
extension of the one-period economy.  
Theorem 2.8 Arbitrage opportunities of the first type in the relative multiperiod economy 
do not exist if and only if there exists a probability measure , equivalent to P, such that 
values of self-financing trading strategies are martingales with respect to this measure. 

Proof Let denote the partition of Ω underlying . Call the discounted 
prices in the cells in , which are contained in , together with the 
discounted prices in A, a relative sub one-period economy. This demonstrates the 
equivalence between the existence of arbitrage opportunities of the first type in the 
relative multi-period economy and the existence of an arbitrage opportunity in one of the 
relative sub one-period economies. Combining this equivalence with the results of 
Theorem 2.3, the proof is complete. 

Suppose an arbitrage opportunity of the first type exists in the relative multi-
period economy and not in any of the relative sub oneperiod economies. It will be shown 
by induction that the value of this portfolio is zero in all possible states of the world at 
time T, which is a contradiction. 

At time 0, the value of the arbitrage portfolio is, because , 

 
  

By assumption the first relative sub one-period economy does not contain an arbitrage 
opportunity, so, for all cells , 

   

The trading strategy is self-financing, which also implies, for all cells , 

   

Suppose now that at time there, for all cells  
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Each of these cells is the initial trading date of a relative sub one-period economy. 
Therefore 

 
  

for all cells which are contained in . Because the zero-probabil-ity events 
do not exist by assumption, the value of the portfolio is zero at time t+1 for all cells 

. Because N is self-financing  

 
  

for all cells . 
To prove the converse statement, suppose that there is a relative sub one-period 

economy with initial trade date in which an arbitrage opportunity of 
the first type exists. Suppose, also, that the starting point of this relative sub one-period 
economy is A �Pt and that N′ are the portfolio holdings creating this arbitrage 
opportunity. We then create the following trading strategy, 

 

  

The portfolio holdings are equal to zero except when is reached. Then the 
portfolio holdings are equal to N′. At the end of the period the proceedings are invested in 
the first asset until the final trading date T. It is easy to verify that this strategy is self-
financing and creates an arbitrage opportunity of the first type.■ 

The following corollary states that under this equivalent probability measure , 
discounted or relative prices of traded securities are also martingales. Although this result 
is quite obvious in the discrete multi-period economy, and may even seem a little 
superfluous, it is by no means in the continuous-time economy to be discussed in the next 
section. 
Corollary 2.9 The relative values of self-financing trading strategies are martingales 

with respect to the probability measure if and only if relative prices of traded 
securities are martingales with respect to the probability measure . 
Proof Suppose relative prices are martingales with respect to the probability measure . 
Using the law of iterated conditional expectations and the predictability of trading 
strategies, there is for all , s < t,  
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To prove the converse, simply construct a self-financing trading strategy by holding a 
long position in one of the N traded assets.■ 

Let again denote the set of equivalent probability measures, such that discounted 

prices are martingales. In the multi-period economy, let denote the set of all -
measurable contingent claims , where Xt is a contingent claim yielding 

pertains at time t, and zero otherwise. At first sight, it seems that 
this set of claims does not contain claims with random maturities or payouts during 
maturity of the claim. However, because an investor can always invest or withdraw 
money from the money market account, this set is not too limited for the purpose at hand. 

Call a contingent claim to be attainable if there exists a trading strategy 
which generates Xt, that is, vt,(N(t)) = Xt. Then, call 

the value or price of the claim at time s. The 
following theorem is equivalent to Theorem 2.4 and it states the uniqueness of the price 
of a derivative security given the exclusion of arbitrage opportunities in the multi-period 
economy. 
Theorem 2.10 If arbitrage opportunities do not exist in the multi-period economy, there 
is a single price π(s) associated contin with any attainable gent claim 

, which satisfies . 

Proof Define as the set of trading strategies generating the contingent claim 
. Because arbitrage opportunities do not exist, the set is not empty. According 

to Corollary 2.9 then, 
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for all . To show that π(s) is the unique price associated with the 

contingent claim , suppose there are with 
corresponding prices π1(s) and π2(S), respectively, generating Xt. Taking the difference 
results in  

 

  

 

  

which completes the proof.■ 
In this multi-period economy in which investors can trade at different points in time 

and face a lot of investment opportunities, it is interesting to examine which claims are 
attainable. The multi-period economy will be complete if every claim in is attainable; 
this is the case if the set of equivalent martingale measures is a singleton. 
Theorem 2.11 The multi-period economy contains no arbitrage opportunities and is 
complete if and only if there exists a unique equivalent probability measure such that 
relative prices are martingales. 
Proof The equivalence between completeness of the relative multi-period economy and 
completeness of all possible relative sub one-period econ-omies, together with Theorems 
2.5 and 2.8, is sufficient to prove this theorem. Because a proof of this equivalence is 
very similar to the proof of Theorem 2.8, it is omitted.■ 

This last theorem can be used to determine whether a contingent claim is attainable or 
not. If it is, Theorem 2.10 states that the arbitrage-free price of this claim is unique and 
equal to its discounted expected value under the equivalent martingale measure. Suppose 
the multi-period economy is complete and arbitrage opportunities are not possible. How 
can this valuation procedure be used to determine the value at time 0 of a European call 
option with maturity and exercise price K < 1, where the underlying value is a 
riskless discount bond with face value 1 and maturity First, the 

value of this discount bond at maturity of the option given the set of 
information available at this time is derived. Because the bond is default-free, its value at 
time T2 is unity and according to Theorem 2.10 

 
(2.18) 

Given the value of the bond at time T1 and the information available, the option value 

is simply 
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 (2.19) 

The last step in the valuation procedure is again the application of Theorem 2.10 to derive 
the option’s value at time 0. So  

 
(2.20) 

which can be written after some calculations as 

 

(2.21) 

where denotes the value at time 0 of a riskless bond maturing at time T1, 

and the probability at time 0 of {B(T1, T2) > K} under the 
equivalent probability measure . 

CONTINUOUS-TIME ECONOMIES 

In the previous section, the one-period economy was extended to the multi-period 
economy, in which prices change randomly at discrete points in time and investors can 
trade in the securities at these discrete points in time. This section will discuss the 
valuation of derivative securities and the exclusion of arbitrage opportunities in a 
continuous-time economy. This economy, in which prices change randomly and 
continuously, and in which investors can modify their portfolios of traded assets 
continuously, is the framework of a lot of financial research, from which the derivation of 
the value of a European call option on a stock by Black and Scholes (1973) is a well-
known example. 

This section starts with a general description of the stochastic movement of prices of 
traded securities that is similar to Harrison and Pliska (1981). The equivalence between 
arbitrage opportunities in this economy and an economy where prices are taken relative 
to a locally riskless money market account will be demonstrated, and it will be shown, as 
in the multi-period economy, that the security market contains no arbitrage opportunities 
and that every contingent claim is attainable if there exists an equivalent probability 
measure such that the relative value of a self-financing portfolio is a martingale. As such, 
this result is similar to the one obtained in Theorem 2.11 of the previous section. 
However, as will become clear later on, the equivalence between the martingale property 
of the relative value of self-financing portfolios and the relative value of traded securities 
under an equivalent probability measure no longer holds, resulting in additional 
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restrictions on the portfolio weights. We illustrate these results by an example in which 
we derive the Black-Scholes option pricing formula. 

In the continuous-time economy, there is an initial trading date 0 and a fixed planning 
horizon T. Given this planning interval, the continuoustime uncertainty is specified by the 

following filtered probability space . In this probability space, Ω denotes 
the state space, P a  

probability measure and F the filtration of increasing sub-σ-algebras , 0 ≤ t ≤ T, 
which satisfy the following usual conditions:3 

 

  

As in the discrete case, investors have only to agree on the null sets of the probability 
measure instead of on an actual assessment of probabilities of certain events, which 
implies that P can be replaced by any equivalent probability measure P*. 

Define the stochastic process S={S(t), 0 ≤ t ≤ T} to be a real-valued N-dimensional 
vector process of prices of traded securities with component processes S1(t),…, SN(t), 
which are strictly positive, adapted and right continuous with left limits (RCLL). Specify 
the first asset as a locally riskless money market account. By requiring S1(t) to have finite 
variation and to be continuous, one can write4 

 
(2.22) 

for some process r(t), which serves as the riskless interest rate at time t. 
A portfolio is defined as an N-dimensional vector process N={N(t), 0 ≤ t ≤ T} with 

predictable components N1(t),…,NN(t) representing the quantities of the different assets in 
the portfolio and 

 
(2.23) 

locally integrable. The value of the portfolio or trading strategy can again be expressed as 
a stochastic process V= {Vt(N(t)), 0 ≤ t ≤ T} with initial value of 

 (2.24) 

and value at time t of 

 (2.25) 
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A trading strategy N is self-financing if 

 
(2.26) 

where the stochastic integral is defined by continuously extending the Lebesque-Stieltjes 
integral of simple predictable processes. From this  

relation, it can be seen that continuous-time economies are essentially the limit of 
multi-period economies.5 We denote as the set of these self-financing trading 
strategies. 

An arbitrage opportunity of the first type is defined as a portfolio N with an initial 
value of zero 

 (2.27) 

and a value at time T that is non-negative and strictly positive, with positive probability, 
that is, 

 (2.28) 

 (2.29) 

Similar to the multi-period economy, an arbitrage opportunity of the second type exists if 
there is a trading strategy N such that 

 (2.30) 

and 

 (2.31) 

For the same reasons discussed in the discrete case, these two types of arbitrage include 
all possible arbitrage opportunities. The following lemma states that an arbitrage 
opportunity of the second type implies an arbitrage opportunity of the first type. Although 
the exclusion of first-type arbitrage is therefore sufficient, and one can even argue why 
attention has been paid to second-type arbitrage opportunities, this general treatment 
stresses the similarities between discrete- and continuous-time economies. 
Lemma 2.12 If there exists an arbitrage opportunity of the second type in the 
continuous-time economy, then there also exists an arbitrage opportunity of the first type. 
Proof Suppose N1 denotes an arbitrage opportunity of the second type in the continuous-
time economy with initial value V0(Nl(0)) < 0. By investing 

 
  

in the locally riskless money market account and 
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in the other traded securities, N2 is an arbitrage opportunity of the first type in the 
continuous-time economy.■ 

Again, prices of traded securities are expressed in terms of the first asset by defining a 
discounted price process S*={S*(t), 0 ≤ t ≤ T} as 

 
(2.32) 

Similarly, denotes the discounted value process of 
the self-financing trading strategy6 N 

 
(2.33) 

This transformation facilitates only the derivation of conditions under which arbitrage 
opportunities do not exist. The following lemma shows that no opportunities have been 
added or withdrawn because of this transformation. 
Lemma 2.13 There exists an arbitrage opportunity of the first type in the continuous-time 
economy if and only if there exists an arbitrage opportunity of the first type in the 
corresponding continuous-time economy, in which prices are expressed in terms of the 
value of the locally riskless money market account. 
Proof Suppose N is a trading strategy creating an arbitrage opportunity of the first type in 
the continuous-time economy. Because S*(0)=S(0), 

   

The prices of traded assets are strictly positive with probability one, and so the final value 
of this portfolio in the relative continuous-time economy is 

 

  

The proof of the converse statement is almost similar.■ 
Thus, it has been shown that if an arbitrage opportunity in the continuoustime 

economy exists, an arbitrage opportunity of the first type exists in the relative continuous-
time economy. As a logical consequence, conditions prohibiting this type of arbitrage in 
the relative economy also exclude any kind of arbitrage in the original continuous-time 
economy. 
Theorem 2.14 Arbitrage opportunities of the first type in the relative continuous-time 
economy do not exist if and only if there exists a probability measure , equivalent to P, 
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such that discounted values of self-financing trading strategies are martingales with 
respect to this measure.  
Proof For a discussion regarding the necessity of the existence of an equivalent 
martingale measure under which self-financing trading strategies are martingales, see 
Harrison and Pliska (1981, p. 339). For a detailed proof for the case of a specific 
continuous-time economy in which there is one stock with a price process that follows a 
geometric Brownian motion and a money market account with a price process that is 
deterministic, see Heath and Jarrow (1987).■ 

The similarity between the results derived for the case of the continuoustime economy 
and the multi-period economy is striking. Theorem 2.14 is the exact equivalent of 
Theorem 2.8: if there is a probability measure such that self-financing trading strategies 
are martingales, arbitrage opportunities do not exist and vice versa. As a direct 
consequence in the multiperiod economy, this condition also implies that prices of 
different traded securities are martingales and vice versa. As the following Corollary 
shows, the converse statement no longer holds in continuous-time econ-omies. If relative 
prices of securities are martingales, relative values of trading strategies are local 
martingales.7 
Corollary 2.15 If relative values of self-financing trading strategies are martingales with 
respect to the probability measure , relative prices are martingales with respect to this 
probability measure. However, if prices are martingales with respect to the probability 
measure , relative self-financing trading strategies are local martingales with respect 
to this measure. 
Proof To prove the first statement, a self-financing trading strategy will be created by 
holding a long position in one of the N-traded assets. For a proof of the second statement, 
see Harrison and Pliska (1981, p. 238).■ 

This Corollary and Theorem 2.14 imply that trading strategies have to fulfil 

certain conditions to ensure that under a probability measure such that relative prices 
are martingales, relative trading strategies are martingales too. The class of local 
martingales is simply too large and if these conditions are not imposed, arbitrage 
strategies are still possible. 

A well-known example of such a strategy is the doubling strategy discussed in 
Harrison and Kreps (1979) and Dybvig (1980). In this case, the initial and final trade are 
zero and one, respectively. The short-term rate of interest is zero and investors can trade 

at times , for all n=0, 1, 2, 3,…. At each of these dates, a bet on the flip 
of a fair coin is possible. At time t0, now, an investor makes a bet of 1 on heads. The 
initial value V0 of this strategy is therefore 

 
(2.34) 

If it turns out at time t1 that heads occurs, he invests the proceeds in the riskless money 
market account and stops betting. If he loses, however, he withdraws 1 from the money 
market account and bets 2 on heads at the same time. At time tn, the investor bets 2n on 
heads, if all previous bets are lost. In case he wins, the proceeds cover previous losses 
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plus one and are invested in the money market account. At time 1, the value of the 
strategy is8 

V1=1 with probability one 
(2.35) 

It is obvious from this example that the value of a trading strategy is not a martingale, 
although the possible outcomes of flipping a fair coin and the value of a money market 
account are. 

Another example of a trading strategy that is a local martingale and not a martingale is 
the so-called suicide strategy, described in Harrison and Pliska (1981, p. 250). As in the 
previous example, the initial and final trading dates are zero and one, respectively, and 

the trading dates are , for all n=0, 1, 2, 3,… . Investors have the 
opportunity to invest in a money market account or stock with corresponding price 
processes S1={S1(t), 0 ≤ t ≤ 1} and S2={S2(t), 0 ≤ t ≤ 1}, respectively. The initial value of 
the stock is one and without loss of generality, it can be assumed that interest rates are 
deterministic and zero, such that S1(t)=1 for all 0 ≤ t ≤ 1. At time 0, an investor sells b, b 
> 0 shares of stock short and puts the proceeds plus one in the money market account, 
that is, 

 

(2.36) 

The initial value of this strategy therefore is 

 (2.37) 

The probability of ruin during the interval [t0, t1] is p=Pr(inf{t: S2(t) = 1+1/b}). If ruin 
actually occurs before t1, the portfolio is liquidated. If not, the number of shares sold 
short is increased at time t1 such that during the interval [t1, t2], the probability of ruin is 
again equal to p. At time 1, then, the value of the portfolio is9 

V1(N(1))=0 with probability one 
(2.38) 

Because this strategy can be performed with any positive initial value, values of trading 
strategies that yield the same final value are not unique. Suppose there is a trading 
strategy N1 with initial value V0(N1(0)) and final value VT(N1(T)). Create another strategy 
from this, N2(t)= N1(t)+N(t) for all 0 ≤ t ≤ T, with a some positive real-valued constant. 
The final value of this strategy also is VT(N1(T)). However, the initial value equals 
V0(N1(0))+α. 

A number of authors have proposed certain trading constraints that are exogenously 
imposed upon the continuous-time economy. These constraints restrict the class of local 
martingales to martingales and therefore ensure that arbitrage opportunities are 
prohibited. 
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One possible solution, as proposed by Kreps (1979), is to impose a uniform instead of 
local bound on the predictable vector process N. Although the total number of securities 
outstanding would be a natural candidate and does not seem to restrict trading strategies, 
existing short sale positions are ignored and the uniform bound is inconsistent with 
frictionless security markets in which securities are infinitely divisible. 

Another possible trading restriction is the specification at the initial date of a finite 
number of dates at which investors are allowed to trade. These so-called simple trading 
strategies are extensively discussed in Harrison and Kreps (1979), but are in a sense too 
restrictive. One cannot ensure that every contingent claim is attainable unless additional 
structure upon the preferences of investors is defined.10 

Some constraint on the value of the investor’s entire portfolio also serves as a trading 
restriction under which the relative value of a portfolio is a martingale if relative prices 
are martingales. This constraint is investigated by Dybvig (1980) (the case of general 
wealth constraints) and is explained in Heath and Jarrow (1987) (the specific case of 
margin requirements). Because these requirements are actually present in security 
markets and do not seem too restrictive as far as the attainability of contingent claims is 
concerned, it will be assumed throughout the rest of the thesis that this restriction holds. 

Let denote the set of equivalent probability measures such that relative prices of traded 

securities are martingales. Given this set , then, denotes the set of 
self-financing trading strategies such that the relative values of these portfolios are 
martingales, too. As in the multi-period economy, is the set of contingent claims {Xt, 
0 ≤ t ≤ T} and it is assumed that the processes Xt relative to the money market account are 
integrable and adapted to the filtration . From the discussions in the previous section, 
this set is known to be general enough to contain all possible claims. Again, call a 
contingent claim Xt to be attainable if there exists a trading strategy that 
generates the claim Vt(N(t))=Xt; call π(s)=Vs(N(s)), 0≤ s≤ t the price of the contingent 
claim at time s. Before the last theorem regarding the attainability of contingent claims is 
presented, the following theorem ensures that if a contingent claim is attainable and 
arbitrage opportunities are prohibited, the price of the claim is unique. 
Theorem 2.16 If arbitrage opportunities do not exist in the continuoustime economy, 
there is a single price π(s) associated with any attainable contingent claim 

, which satisfies . 
Proof See the proof of Corollary 2.9.■  

The following theorem now states that if the set of equivalent martingale measures 
is a singleton, every contingent claim is attainable. 
Theorem 2.17 The continuous-time economy contains no arbitrage opportunities and is 
complete if there exists a unique equivalent probability measure such that relative self-
financing trading strategies are martingales. 
Proof See Harrison and Pliska (1981, Corollary 3.36, p. 241).■ 

The Black and Scholes (1973) formula will now be derived by closely following the 
lines suggested by the theorems above. This example serves as a nice illustration of the 
strong implications of the exclusion of arbitrage opportunities and the valuation of 
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contingent claims and illustrates, more generally, the procedure to be followed in the next 
chapters when interest rate contingent claims will be discussed. 

The continuous-time economy in which Black and Scholes derived a closed-form 
solution for a European call option on a non-dividend paying stock is mainly 
characterized by a Brownian motion {W(t), 0 ≤ t ≤ T} defined on a filtered probability 

space described at the beginning of this section. We focus on the 
stochastic process of one stock price, {S(t), 0 ≤ t ≤ T}, which follows a geometric 
Brownian motion and pays no dividends, 

 
(2.39) 

Because S(0), µ and are assumed to be strictly positive constants, the stochastic 
differential equation above has a unique solution.11 The riskless interest rate r is assumed 
to be constant, resulting in the following deterministic differential equation for the money 
market account {B(t), 0 ≤ t ≤ T}, 

 
(2.40) 

The first step in the valuation procedure is the derivation of the stochastic differential 
equation of the relative value of the stock price {S*(t)=S(t)/B(t), 0 ≤ t ≤ T}. Because the 
function ƒ(x1, x2)=x1/x2, x1, x2 > 0 is continuously differentiable, Ito’s Lemma can be 
applied to obtain the unique process of S*(t) 

 
(2.41) 

The next step is to show that there exists a unique equivalent martingale measure such 
that the relative price S*(t) is a martingale. From Theorem 2.17 it is known that arbitrage 
opportunities do not exist and  

that every contingent claim is attainable. To show that is actually the case, first A. is 
defined as the market price of risk, 

 (2.42) 

and the Radon-Nikodym derivative {p(λ, t), 0 /), 0 ≤ t ≤ T}, which defines the change of 
probability measure, is specified as follows 

 
(2.43) 

Due to the assumptions regarding the coefficients of the stochastic process for S(t) and r, 
the market price of risk is a constant, implying 
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 (2.44) 

It is now allowed to apply Girsanov’s Theorem,12 which states that the process 

defined by 

 
(2.45) 

is a Brownian motion for the filtered probability space . The unique 
equivalent probability measure is given by 

 (2.46) 

By the linearity of stochastic integration, and equations (2.41), (2.42) and (2.45), one can 
write 

 
(2.47) 

which is a martingale with respect to the probability measure 13Given the information 
set at some time s, S*(t), t ≥ s is lognormally distributed14 with mean S*(s) and variance 
S*(s)2(exp(σ2(t–s))–1). 

The last step is the actual calculation of the value of a European call option maturing 
at time 0 < τ ≤ T with exercise price K > 0. The value of the call at maturity is given by 

 (2.48) 

To obtain the value of the call at some time t, 0 ≤ t ≤ τ, apply Theorem 2.16 

 
(2.49) 

which is equal to  

 
(2.50) 

or, equivalently, 

Arbitrage opportunities and the valuation of contingent claims   29



 

(2.51) 

Similar to the example at the end of the previous section, 

denotes the probability under the measure of the event given the 
information at time t. After some straight-forward calculations, 

 
(2.52) 

where 

 

  

and N(.) is the cumulative standard normal distribution function. 
From this closed-form formula, it is evident that the value of the contingent claim at 

time t, 0 ≤ t ≤ τ is equal to a portfolio containing the stock S(t) and the money market 

account B(t) with weights N(d1) and , respectively. It is easy to verify that 
this trading strategy is self-financing and that the final value of the portfolio is equal to 
the value of the call option at maturity. 

Another interesting issue is the fact that the call option formula is independent on the 
coefficient µ. As has been shown in the previous discussion, investors have equivalent 
probability measures if they agree on the value of σ, whatever their individual assessment 
of µ is. Because the exclusion of arbitrage opportunities and the attainability of 
contingent claims is guaranteed if there exists a unique equivalent probability measure 
such that relative prices are martingales, this independence is easily explained. 

NOTES 
1 For more on feasibility and the relationship between primal and dual linear programming 

problems, see Chvátal (1983).  
2 Although this theorem can be proved straightforwardly and in a sense equivalently by using 

Farkas’ Lemma or the Separating Hyperplane Theorem (see, for example, Pedersen et al. 
1989) this approach is preferred here because of its clear interpretation. 
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3 For an intuitive explanation of probabililty spaces in continuous-time econ-omies, see Duffie 
(1988, ch. 14). 

4 See Harrison and Pliska (1981, p. 232). 
5 See Duffie (1988, ch. 15). 
6 Again, see Harrison and Pliska (1981, p. 238) for a formal proof of the equivalence between a 

self-financing portfolio N in the continuous-time economy and in the relative continuous-
time economy. 

7 For a definition of local martingales, see Harrison and Pliska (1981, p. 235). 
8 Because 

 

  

9 Because 

   

10 Brennan (1979) showed that under the assumption of a bivariate lognormal distribution of 
the price of the underlying asset and aggregate wealth, a sufficient condition to obtain the 
Black-Scholes formula is the utility function to exhibit constant proportional risk aversion. 
Duan (1990) extended this valuation technique in the case of Garch(p, q) distributed 
lognormal returns. 

11 See Gihman and Skorohod (1972, p. 40). 
12 For the details of Girsanov’s Theorem, see Elliott (1982). 
13 See, for example, Duffie (1988, p. 142). 
14 For a clear explanation of the distribution of linear stochastic differential equations, see 

Arnold (1974, ch. 8). 

Arbitrage opportunities and the valuation of contingent claims   31



3  
AN OVERVIEW OF THE VALUATION OF 

INTEREST RATE DERIVATIVE 
SECURITIES 

The previous chapter examined the notion of arbitrage opportunities and the conditions 
under which these opportunities are excluded in security markets. The valuation of 
derivative securities, and especially interest rate derivative securities, is strongly related 
to this concept and the accompanying conditions. It was shown that every contingent 
claim can be replicated by a portfolio, consisting of traded securities, if there exists a 
unique equivalent probability measure such that the value of trading strategies expressed 
in terms of a money market account is a martingale. This strong result actually makes it 
possible to obtain the value of any contingent claim by calculating the expected 
discounted value of the claim at maturity. This expectation has to be taken with respect to 
this unique probability measure. 

This chapter serves as an introduction to the next chapters, which will thoroughly 
discuss the various models developed to value interest rate derivative securities. First, a 
general overview of the different valuation approaches, using Figure 3.1, will provide the 
reader with some feeling for valuing interest rate derivative securities. The first section of 
this chap-ter, therefore, discusses the valuation of interest rate derivative securities based 
on the explicit modelling of the underlying values. This approach, which is called the 
direct approach, is similar to the stock option valuation problem, solved in the seminal 
paper of Black and Scholes (1973). The second section then illustrates the indirect 
approach, in which the values or prices of all interest rate dependent securities are 
considered to be a function of the instantaneous short rate. Because the main objective of 
this chapter is the general comparison of the characteristics of each of the valuation 
approaches, not so much attention will be given to exact definitions of probability spaces 
and regularity conditions of stochastic processes. 

THE DIRECT APPROACH 

The first step in valuing derivative securities in the direct approach is the specification of 
the stochastic behavior of the underlying values. Given  



 

Figure 3.1 Overview 

these specified characteristics of the underlying values and the properties of the 
contingent claim, the exclusion of arbitrage opportunities and the desire for a unique 
price of this claim require the existence of an equivalent probability measure as discussed 
in the previous chapter. A nice example of this approach is the Black and Scholes (1973) 
European call option formula, which has been derived in the previous section. An 
explanation of the direct approach starts with the general specification of a continuous 
time vector process B={B(t, θ1), 0 ≤ t ≤ τ}, denoting the prices of the underlying values 
of the derivative security. The initial and final trade date are 0 and τ, respectively, and the 
symbol θ1 represents the specific characteristics of the underlying securities, such as 
time-to-maturity and coupon payments. Before deriving the unique value of the 
contingent claim, define C={C(t, θ2), 0 ≤ t ≤ τ} as the stochastic process of the claim. At 
the maturity date, the claim is a known function of the values of the underlying securities 
during maturity. The characteristics of this claim, such as exercise prices, are represented 
by the symbol θ2 and it is assumed that the final trading date τ equals the maturity of the 
derivative security. This may seem rather restrictive. Because the main purpose of the 
direct approach is the valuation of the contingent claim, however, only the values of this 
claim and its underlying securities during maturity of the claim are of interest.  
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It will be further assumed that one of the securities, say B1(t, θ1), can be regarded as an 
alternative default-free investment, maturing at the final trade date τ. In the previous 
chapter, this alternative investment was a locally riskless money market account that 
allowed investors to invest or withdraw money at an instantaneously riskless interest rate. 
The existence of a unique probability measure such that relative trading strategies are 
martingales, then also implied the opportunity to create a strategy that replicates the value 
of a default discount bond maturing at τ. In the direct approach, however, only this latter 
opportunity has to exist. As already mentioned above, because the principal objective is 
the unique arbitrage-free valuation of one particular contingent claim, arbitrage 
opportunities between this claim, its underlying values and the alternative investment 
have to be excluded. As such, this approach can also be regarded as a partial equilibrium 
approach because no conditions are imposed to ensure that arbitrage opportunities 
between other contingent claims and other traded securities are also prohibited. 

This section started with a general specification of the stochastic process of the 
underlying traded securities. No reference has been made with respect to the probability 
space and the corresponding probability measure. To be able to obtain a unique arbitrage-
free value of the contingent claim, however, it must be assumed that there exists a unique 

probability measure such that the values of trading strategies consisting of the 
underlying values expressed in terms of the alternative investment are martingales. In that 
case, arbitrage opportunities between these strategies and the alternative investment are 
prohibited and the unique value of the contingent claim C at time t, 0 ≤ t ≤ τ equals 

(3.1) 

In this expression, denotes the expectation at time t with respect to the probability 

measure and it is assumed that the claim is a suitable regular function of the 
underlying values such that this expectation exists. 

This explanation of the basic steps and characteristics of the direct approach sets the 
stage for a discussion of some of the advantages and limitations. For a European call 
option price on a coupon paying bond, both the stochastic processes of the underlying 
bond and a discount bond with a maturity equal to the option must be specified. As a 
realistic description of the actual behavior of bond prices, these price processes must 
incorporate the payment of coupons and ensure that at maturity of the bond the value of 
the bond equals its face value. In addition to these obvious requirements, nominal yields 
of bonds are known to be always positive, which puts another constraint on the 
specification of the processes.  

After this specification, the value of the option can be determined by actually 
calculating the discounted expectation of the option at maturity. The expectation has to be 
taken with respect to the unique probability measure such that the value of the coupon 
paying bond in terms of the discount bond is a martingale. As is clear from the example 
of the European call option on the coupon paying bond, the derivation of the existence of 
an equivalent martingale measure and the determination of the option’s price under this 
measure can be difficult. 

The basic advantage of this approach, however, is the fact that only the processes of 
those securities on which the claim is dependent have to be specified. No assumptions 
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have to be made, therefore, about a general equilibrium within the fixed-income market. 
As another result, once the processes of specific bonds are obtained, the observed prices 
of these bonds can be used to estimate the necessary parameters. As will be seen in the 
next section, this is rarely the case in the indirect approach. 

THE INDIRECT APPROACH 

The main characteristic of the direct approach is the explicit formulation of the stochastic 
processes of the securities on which the contingent claim is dependent. As discussed in 
the previous section, a severe disadvantage of this approach is the fact that these 
processes have to capture specific features of the security, such as a known face value at 
the maturity of a bond. Fulfilling these requirements and ending up with processes that 
allow for the calculation of the value of the contingent claim has proven difficult. 

The indirect approach, however, starts with the specification of some processes on 
which all interest rate dependent securities depend. Generally, the first step is the 
assumption that the process of the instantaneous spot rate {r(t), 0 ≤ t ≤ τ} is a well-
defined function of the values of these basic processes. In the next step then, all interest 
rate dependent securities, represented by the vector process B={B(t, θ1), 0 ≤ t ≤ τ}, are 
considered to be a function of this instantaneous spot rate. In this formulation, 0 and τ are 
the initial and final trade date, respectively, and θ1 denotes the characteristics of the 
securities. Because the underlying assets of the contingent claim are in fact derivative 
securities, too, the unique arbitrage-free prices of these securities must also be derived. 
Without a detailed description of the probability space, it will be assumed for the moment 
that sufficient conditions are fulfilled to ensure that these unique prices exist. From the 

previous chapter, this means that there exists a unique probability measure such that 
values of trading strategies relative to the money market account are martingales, or 
equivalently,  

 (3.2) 

It is obvious that , again, denotes the expectation operator under the measure . 
The last step is the actual calculation of the value of the contingent claim. Define 

C={C(t, θ2), 0 ≤ t ≤ τ} as the stochastic process of the claim and let the symbol θ2 denote 
the characteristics of the contingent claim. At maturity of the claim, say τ1, 0 ≤ τ1 ≤ τ, the 
payout of the claim is a known suitable regular function of the values of the underlying 
securities during maturity. As with the values of the underlying securities, the unique 
arbitrage-free price of the derivative security can be obtained by calculating the 
discounted expectation with respect to the martingale measure , or 

 (3.3) 

Because all interest rate dependent securities are assumed to be functions of the 
instantaneous spot rate, the indirect approach can also be considered as a general 
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equilibruim approach. Given the stochastic process of this short rate, the prices of bonds 
with various maturities or the term structure of interest rates at some valuation date can 
be derived. After this valuation date, the process of the short rates implies a stochastic 
behavior of the term structure of spot rates, or, which is equivalent, a term structure of 
spot rate volatilities. The various general equilibrium models developed in past years can 
now be simply classified according to these two term structures. 

The first distinction can be made with respect to the term structure of interest rates. If 
the process of the instantaneous spot rate is explicitly modelled in the first step as a 
function of some parameters, the term structure of spot rates at the valuation date is a 
specific function of these parameters. The possible shape of this term structure, therefore, 
is endogenously implied by the stochastic characteristics of the short rate. As will be 
shown in later chapters, where some of these models are tested empirically, this 
relationship can also be used the other way around. In that case, the shape of the term 
structure of interest rates is considered to imply a stochastic behavior of the instantaneous 
spot rate. 

The class of exogenous term structure of interest rates models, however, starts at the 
valuation date with a given term structure of interest rates. The parameters of the 
stochastic process of the short rate are time-dependent to ensure that this observed term 
structure is obtained at the valuation date. It is obvious that in this class of models no 
inferences can be made at the valuation date about the probability distribution of the 
instantaneous spot rate.  

The second distinction, which is only relevant in the case of the exogenous term 
structure of interest rate models, can be made with respect to the term structure of interest 
rate volatilities. The time-dependent parameters of the instantaneous spot rate not only 
ensure a pre-specified term structure of spot rates at the valuation date, but also imply a 
particular shape of the term structure of interest rate volatilities. This term structure can 
have a specific functional form, which is dependent on a few parameters. These 
parameters, however, can also be taken in such a way that a given volatility structure of 
spot rates is implied. As before, the same distinction now applies. 

The basic difference between the direct and indirect approaches is the modelling or 
specification of the securities on which a contingent claim is dependent. A serious 
limitation of the direct approach is the formulation of stochastic processes describing the 
stochastic behavior of the underlying securities. As discussed in the previous section, this 
can be rather difficult in the case of coupon paying bonds because of numerous boundary 
conditions. In the indirect approach, however, this problem is to some extent avoided. In 
the first step, a stochastic process describing the stochastic behavior of the instantaneous 
spot rate must be formulated. In the second step, then, the stochastic process of the 
underlying securities is derived by taking the discounted expectation of the payouts. The 
value of the coupon paying bond, for example, is simply the sum of the values of the 
different payments. The specific features of securities are thus modelled indirectly in the 
second step and do not have to be modelled explicitly in the first step, as in the direct 
approach. 

Another difference between the two approaches is the resulting impact on a possible 
equilibrium within the fixed-income market. As all interest dependent securities are 
solely dependent on the instantaneous spot rate, it has been seen that the indirect 
approach requires a general equilibrium between these securities. On the one hand, this 
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can be regarded as a strong result. The general modelling of the term structure of interest 
rates allows for the valuation of interest rate derivative securities, for which the 
underlying value is not necessarily observable. An example of such a security is a 
callable bond, which can be seen as an ordinary coupon paying bond less the value of a 
call option on this bond. To value this bond in the direct approach, a specification of the 
price process of the underlying bond is needed even if this bond does not exist. On the 
other hand, the description of the term structure and its likely movement over time 
implies a stochastic behavior of specific securities. As will be seen, it does not need to be 
true that this particular behavior is suitably described by the general stochastic movement 
of the term structure.  
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4  
MODELLING BOND PRICES 

The valuation of European call and put options on stocks is one of the most popular 
examples in financial research of the strong implications of the no-arbitrage approach. 
Given a Geometric Brownian Motion to describe the stochastic behavior of stocks over 
time and a constant interest rate at which investors can finance their hedge positions, 
Black and Scholes (1973) were the first to derive a closed-form solution for the value of a 
European call and put option on a stock. This approach was extended in a seminal paper 
by Merton (1973) to incorporate a stochastic instead of a constant short-term rate of 
interest. 

In utilizing this approach to the valuation of options on discount bonds, some 
fundamental differences are encountered between the possible stochastic behavior of 
stocks and bonds that affect the value of an option. At any time before maturity of the 
bond, for example, the investor knows with certainty that at maturity he will receive the 
principal payment of the bond. As a result, the stochastic process that describes the bond 
price has to ensure that at maturity the value of the bond equals this face value. In 
addition, the uncertainty of bond prices or the variance of the corresponding bond returns 
is decreasing during the maturity time of the bond and is zero at maturity. Finally, 
because of the one-to-one correspondence between bond prices and interest rates, it is 
clearly inconsistent to assume the short-term rate of interest to be constant as in the 
original derivation of Black and Scholes. Although one can argue that the value of short-
term options on long-term bonds is hardly affected by these fundamental differences, a 
generally applicable bond option model should incorporate these specific bond 
characteristics.1 

The model of Schaefer and Schwartz (1987) modifies the stochastic differential 
equation of the bond price by assuming that the volatility is proportional to the duration 
of the bond. As maturity decreases, the volatility decreases and becomes zero in the end. 
However, the drift term of the Schaefer and Schwartz bond price process is assumed to be 
constant, ignoring thereby the above-mentioned price effect, by which bond prices are 
forced to equal their face value at the final maturity date.  

In addition, the short-term rate of interest is assumed to be constant, restricting the 
empirical applicability of their model to short-term options on long-term bonds. 

The model of Ball and Torous (1983) incorporates the “drift-to-face-value” effect by 
using the Brownian Bridge to model bond prices. A significant weakness of their model, 
however, is the assumed constant instantaneous variance of bond prices. The volatility of 
the corresponding yield-to-maturity, therefore, increases without bound as the bond 
approaches maturity, which again stresses the importance of consistently modelling the 
different specific bond price features. To obtain arbitrage-free option values, as Chapter 2 
pointed out, a unique equivalent probability measure such that relative bond prices are 
martingales has to exist. Although Ball and Torous actually derive closed-form solutions 
for Euro-pean options on discount bonds by simply assuming such an equivalent 



martingale measure to exist,2 Cheng (1989) has shown that this measure does not exist 
and that arbitrage opportunities are, therefore, not excluded. Referring to the above-
mentioned volatility of the yield-to-maturity implied by their bond price process, this 
result is hardly surprising. 

This chapter develops a model incorporating both the volatility specification of the 
Schaefer and Schwartz model and the “drift-to-face-value” effect of the model of Ball 
and Torous. Starting with a specification of the stochastic process of the yield-to-maturity 
of a bond with constant coefficients, the corresponding stochastic process of the bond 
prices is easily obtained. The instantaneous volatility of the resulting stochastic 
differential equation is linearly dependent on the remaining time-to-maturity or duration 
of the discount bond. In addition, the drift term of the process is equal to that found in the 
Ball and Torous model, ensuring that at maturity the value of the bond equals its face 
value. Although it is argued in Cheng (1989, p. 196) that, in general, a Brownian Bridge 
process to model bond prices is not acceptable to value options (as the equivalent 
martingale measure does not exist), it will be shown in the current model that the 
modified Brownian Bridge process does allow for a unique change of measure such that 
relative prices are martingales. Based on this equivalent measure then, closed-form 
solutions will be obtained for the value of European call and put options on discount 
bonds. 

Apart from the theoretical validity of the Schaefer and Schwartz model, the valuation 
of options is exactly the same as that found in Merton (1973). Although the drift term of 
bond prices is irrelevant for the bond option price, a result which is thoroughly discussed 
at the end of Chapter 2 in the case of the Black and Scholes model, the estimation of the 
volatility parameters is definitely dependent on the particular functional form of the drift 
term. The estimation procedure suggested by Ball and Torous, however, ignores this 
time-varying drift term, although their model gets its strength from a theoretical drift 
term, which.is not constant. This chapter obtains maximum likelihood estimators for the 
volatility parameters of the option price that are consistent, asymptotically normally 
distributed, and efficient in the class of all consistent and uniformly asymptotically 
normal (CUAN) estimators. The derived theoretical estimators for the different 
parameters are also easily applicable to a sample of observations where the length of the 
time intervals between subsequent observations is not constant, due to non-trading. 

The results of this chapter with respect to the theoretical validity of the discount bond 
option model and the estimation of the necessary input parameters are supposed to 
enhance the understanding of the valuation of interest rate derivative securities and may 
improve current research. A practical implementation of this approach is not yet possible 
because no options except those on coupon paying bonds are traded and a natural 
extension of the proposed model to incorporate these additional price characteristics is 
not straightforward, as will be made clear in the next sections. 

The first section of this chapter presents the current model and shows that the 
stochastic differential equations of the bond price have a unique solution. The second 
section demonstrates that a unique equivalent martingale measure exists, thereby 
excluding any arbitrage opportunities. After this, closed-form solutions are derived for 
the values of European call and put options on a discount bond. Finally, the third section 
derives the maximum likelihood estimators of the different coefficients or parameters of 
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the bond price process necessary for the valuation of options on bonds in the second 
section. 

THE MODEL 

The continuous-time economy is characterized by an initial trade date 0 and a final trade 
date TS. The continuous-time uncertainty is specified by the filtered probability space 

. Ω denotes the state space, P some probability measure and F the 
filtration of increasing σ-algebras , 0 ≤ t ≤ TS, which satisfy the usual conditions. As 
before, investors have only to agree on the null sets of the probability measure, which 
implies that the measure P may be replaced by an equivalent probability measure P*. 

Suppose PL(t, TL) denotes the value at time t � [0, Ts] of a discount bond that matures 
at time TL > TS and has unit face value. Suppose, further, that Ps(t, TS) is the value of a 
similar bond maturing at time Ts. Given the value of these discount bonds at some time, 
the corresponding yield-to-maturity is obtained from the following familiar relationship:  

 

(4.1) 

The unique Ito processes of these yield-to-maturities (yL, yS)= {(yL(t), yS(t)). t � [0, TS]} 
obey the following stochastic differential equations, 

 
(4.2) 

with 

 

  

The two-dimensional process W= {(W1(t), W2(t), t � [0, TS]} is a vector process of 
independent Standard Brownian Motions initialized at zero and defined on the above-

specified probability space  
The relationship between the discount bonds and their respective yields allows the 

determination of the unique stochastic Ito processes PL={PL(t, TL), t � [0, TS]} and 
PS={PS(t, TS), t � [0, TS]} by using Ito’s Lemma,3 

 

(4.3) 
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with 

 

  

and 

 

  

The following theorem asserts that the process given by equation (4.3) actually fulfils 
suitable regularity conditions that guarantee the existence of a unique solution.4 
Theorem 4.1 There exists a unique, continuous and square integrable stochastic process 
(PL, PS)={(PL(t, TL), PS(t, TS)), t [0, TS]} that is a solution to equation (4.3).  
Proof See Appendix A.■ 

It is interesting now to investigate exactly the differences between the Brownian 
Bridge model described above and the one proposed by Ball and Torous (1983). In their 
model, the stochastic process of the short-term and long-term bonds (PL, PS)={(PL(t, TL), 
PS(t, TS)), t � [0, TS]} obey the following stochastic differential equation,5 

 

  

with drift term 

 

  

and covariance matrix 

 

  

The difference between this expression and the model given by (4.3) is the multiplication 
of the volatility parameters by the remaining time-to-maturity of the bond or, which is 
equivalent, the duration of the bond. As already noted in the introduction to this chapter, 
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the “drift-to-face-value” of the bond implies a decreasing instantaneous variance that 
reaches zero at maturity. To explain the importance of this implication, the following 
stochastic process of the corresponding yield-to-maturities of the Brownian Bridge model 
of Ball and Torous is derived, which is equal to 

 

(4.5) 

Although the above short derivation is not formally justified because the yield processes 
are not Ito processes and the initial bond price processes do not fulfil sufficient conditions 
guaranteeing uniqueness and existence, it does give the necessary economic intuition as 
to why their model is not arbitrage-free and why the variance of the bond price should be 
a decreasing function of its remaining time-to-maturity. 

Another interesting implication of the Brownian Bridge process of Ball and Torous is 
the fact that negative interest rates occur with probability one. As noted by Ball and 
Torous (1983, p. 524), a Brownian Bridge process Z(t), t � [0, 1] can be seen as the 
following transformation of a Standard Brownian Motion W(t), t � [0, 1], 

 (4.6) 

The function gives a one-to-one correspondence between the intervals (0, 1) 
and (0, ∞). Because it is well known that a Brownian Motion, independent of its 
particular state, will become zero at some future point in time with probability one, the 
Brownian Bridge becomes zero at some time t � [0, 1]. In the current model, the 
effective probability of negative interest rates is much smaller.6 

OPTION VALUATION 

The possibility of the arbitrage-free valuation of a claim contingent on some security is 
equivalent to the existence of a unique equivalent probability measure such that the 
relative price of the security is a martingale. Chapter 2 showed that if such a probability 
measure indeed exists, the value of any claim should be equal to its discounted expected 
value under the equivalent martingale measure. 

The previous section presented a description of the stochastic evolution of bond prices 
over time. It was explained that the instantaneous variance of bond prices should be a 
decreasing function of a bond's remaining time-to-maturity or duration. This particular 
property appears to be the crucial difference between the current model and the Brownian 
Bridge model as proposed by Ball and Torous. Correspondingly, as shown by Cheng 
(1989), their model does not allow for the arbitrage-free valuation of contingent claims 
because the above-mentioned unique probability measure does not exist. 

This section will show that in the current model there does exist a unique probability 
measure such that the stochastic process of the longterm maturity bond PL(t, TL) in terms 
of the value of the short-term maturity bond PS(t, TS) is a martingale. After this, the exact 
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values will be derived of European call and put options with maturity TS written on the 
discount bond PL(t, TL), and some of the properties of these valuation formulas will be 
discussed. 

Because the stochastic differential equation of the different processes PL={PL(t, TL), t 
� [0, TS]} and PS={PS(t, TS), t � [0, TS]} of the longterm and short-term maturity bond 
have a unique, continuous and square integrable solution according to Theorem 4.1, Ito’s 
Lemma can be employed to derive the following differential equation of the relative price 

process ,  

(4.7) 

with 

 

  

and 

 

  

The following theorem asserts the existence of a unique equivalent probability measure 

under which the relative price process , t � [0, TS]} is a 
martingale. 

Theorem 4.2 The process defined through 

 

(4.8) 

is a martingale on the filtered probability space if the following sufficient 
condition holds, 

 
(4.9) 
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with 

 

(4.10) 

Furthermore, the equivalent probability measure is unique and the distribution of the 

process on corresponds with the 

distribution of the process on . 
Proof See Appendix B.■ 

Based on this unique martingale measure7 , the value at time t � [0, TS] of a 
European call option C*(t, TS, TL, K) with maturity date TS, exercise price K and written 
on a discount bond with maturity TL, in terms of the value of the short-term maturity 
discount bond PS(t, TS) is 

 (4.11) 

which yields, after applying some standard calculus, 

 (4.12) 

with 

 

  

Evaluating the last integral yields, 

 

(4.13) 

The price of the European call option C(t, TS, TL, K) at time t � [0, TS] in terms of the 
original units of measurement is, therefore, 
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 (4.14) 

The similarity between this valuation formula and the Black-Scholes for-mula,8 derived 
in Chapter 2, is striking. The option value is equal to a weighted average of the values of 
the long-term and short-term maturity bond. The first term in this weighted average or 
hedge portfolio is the current value of the long-term bond, multiplied by the hedge ratio 
N(d1). The second term is the total amount of borrowed money to finance the hedge 
position or, which is equivalent, the present value of the exercise price times the 

probability N(d2), under the equivalent martingale measure , of the option maturing in-
the-money. 

The volatility parameter v of the option formula reflects both the “drift-to-face-value” 
effect of the underlying bond as well as the stochastic behavior of the short-term maturity 
bond. Because the interval of possible long-term maturity bond values at maturity of the 
option is much more narrow compared to the range of possible stock values in the case of 
the Black-Scholes economy, the volatility parameter decreases at a higher rate as the 
maturity date nears. If the volatility of the underlying bond and the covariance between 
the long-term and short-term maturity bond is constant, a higher volatility of the short-
term yield increases the value of the option. Because the European call option is an 
increasing convex function of the short-term yield, this positive relationship is easily 
understood. 

The value of a European put option P(t, TS, TL, K) at time t � [0, TS] with maturity 
date TS, exercise price K and written on the long-term maturity discount bond with 
maturity TL can be derived similarly or by making use of the put-call parity,9 yielding 

(4.15) 

ESTIMATION OF THE MODEL 

As discussed in the example on p. 31, the value of the European call option on the stock 
depends on the volatility of the stock. The drift term or mean return of the stock does not 
enter the option formula, as different investors have only to agree on the null sets of their 
probability measures. The actual assessment of probabilities of certain events, 
represented by the particular value of the drift coefficient, is the result of individual risk-
return preferences and is, therefore, not important for the arbitrage-free valuation of 
contingent claims. 

The previous section derived the value of a European call and put option on a discount 
bond and noted the similarity between that derivation and the Black-Scholes option 
pricing formula. The value of the options on a discount bond depends only on the 
volatilities of the underlying bond and the short-term maturity bond, and their correlation. 
In this section, maximum likelihood estimators of these particular parameters will be 
obtained, even for the case when the time intervals between the different observations are 
not equal. The asymptotic distribution of these estimators will, in addition, be derived. 
Because the standard errors of the different estimators also imply a standard error of the 
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calculated option price, this asymptotic distribution may be of some interest for future 
empirical research regarding the valuation of interest rate derivative securities.10 

Using the notation of the previous sections, suppose there is a sample of N+1 
observations of the long-term and short-term maturity bond, 

   

with t0 < t1 < … < tN and tN < TS. Using the relationship between these bond values and 
their corresponding yields, the above sample of observations can be transformed to the 
following sample of observations of longterm and short-term maturity yields:  

 
  

Based on the stochastic differential equation 4.2, the yields at some time t, given the 
information at time s < t are normally distributed,11 that is, 

 
(4.16) 

with 

 

  

and 

 

  

After defining 

 

  

the likelihood function12 can be obtained 

(4.17) 

Based on this likelihood function, the Maximum Likelihood (ML) estimators of the 
parameters of interest are 
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(4.18) 

 
(4.19) 

 

(4.20) 

Under mild regularity conditions, these ML estimators are consistent, asymptotically 
normally distributed, and efficient in the class of all consistent and uniformly 
asymptotically normal (CUAN) estimators.13  

Furthermore, the vector of estimated parameter has asymptotically 
the following distribution: 

 

(4.21) 

with 

 

  

and indicates an asymptotic relationship.14 
In Ball and Torous (1983, Section V), the volatility parameters are estimated using 

logarithmic bond returns. In addition, it is assumed that the mean logarithmic bond return 
at some time ti, i=1, …, N is equal to the expected return at time t0. Although the 
proposed estimators are unbiased if the time interval between different observations 
approaches zero, the estimation procedure derived above is preferable, as no additional 
assumptions about the observed sample of bond prices are necessary. 

As already mentioned in the introduction to this chapter, the derivation of the precise 
estimation of this model is supposed to enhance the understanding of the current 
valuation model. The partial equilibrium between the long-term and short-term bond 
which is assumed to exist and excludes the possibility of arbitrage opportunities, allows 
for the valuation of options on discount bonds. This approach is similar to the model of 
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Black and Scholes and it is interesting to compare the results obtained thus far with the 
general equilibrium results of the next chapter. A practical implementation of this model, 
however, is severely limited by the fact that options only on coupon paying bonds are 
traded. Because a direct stochastic description of these bonds incorporating the additional 
price characteristics is not possible yet,15 and the corresponding derivative securities 
cannot be valued, no further attention will be given to an empirical investigation of these 
approaches. 

APPENDIX A 

Suppose is a -valued function that is measurable with 
respect to all its arguments and σ(x, t) is a -valued function that is also 
measurable with respect to all its arguments. According to Gihman and Skorohod (1972, 
p. 40), the stochastic differential equation given by  

 (A. 
1) 

with W={W1(t),…, WM(t), t � [0,TS]} an M-dimensional Standard Brownian Motion 
initialized at zero, has a unique, continuous and square integrable solution x = {x(t), t � 
[0, T]}, if there exists a constant such that 

 (A.2) 

and 

 (A.3) 

holds true for all t � [0, T] and with the Euclidean norm ||A|| = (tr(AAT))½ 

for . 
To prove that the stochastic differential equation given by equation (4.3) has a solution 

with the above-mentioned properties, it is sufficient to show that the following 
augmented system of differential equations fulfils (A.2) and (A.3), 

 

(A.4) 
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with W3(t) = lnPL(t, TL), W4(t) = lnPS(t, TS). Using Arnold (1974, p. 142) equation (4.2) 
can be written as 

 
(A.5) 

which allows the specification of the drift functions µw3(t) and µw4(t) in terms of W1(t) 
and W2(t), as follows: 

 (A.6) 

Define now 

 

  

Because µ(x, t) is linear in x(t) and σ(x, t) is independent of x(t), a constant can 

easily be found such that equation (A.2) is fulfilled for all t � [0, Ts] and all 
.  

To prove condition (A.3), now define 

 

  

and 

 

  

after which this can be written 

 (A.7) 

for all t � [0, TS] and all . Taking appropriate real-valued constants C2, C3 and 
C4 yields 

 (A.8) 

For the case , 
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 (A.9) 

with C5=Max(C2, C3+C4). 
For the case , simply take C5=C2+C3+C4 to get 

 (A.10) 

By taking C=Max(C1, C5), finally, the desired result has been obtained. 

APPENDIX B 

The first step of the proof16 consists of rewriting the stochastic differentialequation of the 

relative price as  

 
(B.l) 

In this equation, the drift and volatility functions are equal to  

 

  

and 

 

  

The Brownian Motions (Z1, Z2)={(Z1(t), Z2(t)), t � [0, TS]} are defined such that 

 

(B.2) 

and 
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(B.3) 

In order to apply Girsanov’s Theorem to obtain a unique equivalent probability measure 

such that the relative price process , t � [0, TS]} is a martingale 
with respect to this measure, the Radon-Nikodym derivative which denotes the 
corresponding change of probability measure given by 

 
(B.4) 

with 

 
(B.5) 

must be well-defined. A sufficient condition to guarantee the existence of such a unique 
equivalent probability measure, as stated in Müller (1985, p. 91) and Cheng (1989, pp. 
188–9), is the following inequality 

 
(B.6) 

To investigate the conditions under which this inequality holds, first define 

 (B.7) 

and 

 (B.8) 

to obtain  

 
(B.9) 

Obviously, there is less than perfect correlation between the two bond price processes 
PL={PL(t, TL), t � [0, TS]} and Ps={PS(t, TS), t �[0, TS]}. 

Therefore 

 (B.10) 
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Moreover, there is 

 
  

for all t � [0, TS]. This inequality can be used to write 

 

(B.11) 

Because the function ƒ2(t) is uniformly bounded and continuous on [0, TS]: 

 

  

Denoting f2(t)=dF2(t), yields 

 

(B.12) 

Denoting this expression by yields 

 
(B.13) 

Therefore 

 
(B.14) 

so  
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(B.15) 

Define now 

 
(B.16) 

and 

 
(B.17) 

It must be shown that 

 (B.18) 

Because 

 

(B.19) 

and is normally distributed with finite mean and variance, it remains to be shown 

that and are finite. Consider therefore, the following expectation: 

 
(B.20) 

with 

 

  

In the remaining part of this proof, this integral will be written as the limit of the 
following Riemann-summation, that is, 
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(B.21) 

with an equidistant partition and t0=0 and tN=TS. The vector of stochastic variables 
Z1=(Z1(t0),…, Z1(tN))T is normally distributed with zero mean and covariance-matrix  

 

(B.22) 

The inverted matrix is equal to 

 

(B.23) 

which can be used to solve the expectation 

 

(B.24) 

It is obvious that | . | denotes the determinant of a matrix. Suppose 

. If VN is positive definite for all N, this results in, 
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(B.25) 

Define  

 

(B.26) 

then 

 

(B.27) 

This specific structure allows for the derivation of the following recursive relationship 

 
(B.28) 

with 

 
(B.29) 

and 

 
(B.30) 
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In order to solve the difference equation, the roots of the corresponding second order 
polynomial must be determined: 

 

(B.31) 

yielding the following two solutions 

 (B.32) 

 (B.33) 

where  

 

  

This can also be written as 

 (B.34) 

 (B.35) 

The general solution to the difference equation is now 

 (B.36) 

with initial conditions (B.29) and (B.30). These conditions give 

 
(B.37) 

and 

 
(B.38) 

Because the expectation is equal to 

 
(B.39) 

we first determine 
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(B.40) 

It is known that parameter b fulfils 

 (B.41) 

and 

 (B.42) 

yielding 

 

(B.43) 

with 0 < xN < 1. This limit can be solved by using an upper and lower boundary of 
arctan(xN), that is, 

 
(B.44) 

which gives  

 
(B.45) 

The above transformation of multivariate normal distributions is allowed only if the 
matrix VN is positive definite. Because Dk, k = 1, 2, …, is monotonically decreasing and 

 (B.46) 

the matrix VN is positive definite. Therefore 

 

(B.47) 

Because it has been shown that a sufficient condition is fulfilled for the existence of a 
unique equivalent martingale measure if 
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 (B.48) 

or, equivalentely, 

 
(B.49) 

it is hard to investigate this existence if (B.49) does not hold. As such, this situation will 
not be further analyzed here. 

NOTES 
1 Based on these specific bond characteristics, rational boundaries, which option prices have to 

obey, can be derived. Throughout this thesis, different models are frequently illustrated by 
means of these boundaries. For an overview, see Rady and Sandmann (1992). 

2 In Schöbel (1986), this model is extended by deriving option values subject to the constraint 
of long-term bonds having a lower value than short-term bonds, that is, positive forward 
rates. The resulting option formula contains an additional term, called the “anti-option,” 
which can be interpreted as a discount to the regular option value, as negative forward rates 
are excluded. However, the original discount bond price processes still allow for negative 
forward rates. Only the option value has been obtained subject to this constraint. Because of 
this inconsistency, no further attention will be paid to this extended valuation approach. 

3 See, for example, Gihman and Skorohod (1972, p. 269–70). 
4 See again Gihman and Skorohod (1972, p. 40). 
5 This equation is obtained simply by rewriting equation (7) of Ball and Torous (1983, p. 526).  
6 As a result of this small effective probability of negative interest rates, the value of an option 

on a discount bond with a strike price equal to the face value of the underlying bond is 
insignificant for reasonable values of the necessary parameters. For this reason, no attention 
will be paid to the model of Bühler and Käsler (1989). Although their model excludes 
negative interest rates, the stochastic differential equations of the bond prices do not permit 
any empirical analysis. 

7 The sufficient condition regarding the existence of the unique equivalent martingale measure 
is not stringent. Suppose the following reasonable values for the different 

parameters:  TL=10 and 
TS=5. It is easy to verify that the sufficient condition holds. 

8 Although this thesis is concerned with the theoretical and empirical valuation of interest rate 
derivative securities, it is interesting to apply the analysis of this chapter to the valuation of 
options on stocks. Suppose S(t denotes the value of the stock at time t � [0, TS]. Assuming 
the following relationship between the long term yield and the stock, 

   

it is easily verified that Theorems 4.1 and 4.2 apply to the resulting 
price processes as well. The value of a European call option C(t, TS, 
S(t), K) on the stock can be derived similarly and is equal to 
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with 

 

  

If the volatility of the short-term yield is equal to zero, we again have 
the familiar Black and Scholes formula. 

9 The put-call parity gives the relation between a European call and put option with the same 
exercise price and the same maturity date, that is, 

   

The value of a long call and short put is equal to the underlying value 
less the present value of the exercise price, a result that is obtained 
simply by comparing the payout of both positions at maturity of the 
option and taking the expectation of both positions under the 
probability measure . Using the relationship 

   

and the call option valuation formula, the put option valuation 
formula is directly obtained. 

10 In Lo (1986), for example, extensive simulations are carried out to determine the minimum 
number of observations necessary to be able to apply the asymp-totic theory in the case of 
the Black and Scholes formula.  

11 See Arnold (1974, ch. 8). 
12 See, for example, Judge et al. (1982, Section 7.1). 
13 See Kendall and Stuart (1979). 
14 See again Kendall and Stuart (1979, p. 59). 
15 See, for example, Rady and Sandmann (1992, p. 1). 
16 We would like to thank Marc Yor for helpful comments by means of private communication 

regarding this proof. 
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5  
MODELLING THE TERM STRUCTURE 

OF INTEREST RATES 

In the indirect one-factor approach, the prices of all interest rate dependent securities are 
assumed to be functions of the instantaneous spot rate. The explicit description of the 
stochastic process of this short rate, together with the well-known conditions that prohibit 
arbitrage opportunities, then provide a general valuation relationship that all securities 
have to obey. As part of this equilibrium, the term structure of interest rates at some 
valuation date can be obtained. Because the stochastic process of the short rate also 
implies a stochastic movement of the term structure over time, a corresponding term 
structure of interest rate volatilities can be derived. 

In Chapter 3, the various interest rates models are generally classified according to 
these two term structures. In this chapter, these models will be discussed in detail in the 
order of this classification. The first section, therefore, starts with the endogenous term 
structure of interest rates models. In the second section, the exogenous term structure 
models are explained. To maintain the classification, this section is divided into two 
parts. The first subsection deals with the endogenous term structure of volatilities models, 
while the second subsection focuses on the exogenous volatility structure models. 

ENDOGENOUS TERM STRUCTURE OF INTEREST RATES 
MODELS 

The endogenous term structures of interest rates models are principally characterized by 
the stochastic process of the instantaneous shortterm interest rate. The parameters of the 
process are assumed to be time-invariant and, therefore, no explicit reference is being 
made at this moment to an observed term structure of interest rates at some valuation 
date. 

This section discusses the well-known interest rates models of Merton (1973), Vasicek 
(1977) and Cox, Ingersoll and Ross (1985). As will be seen in the next section, these 
models have a nice counterpart within the class of exogenous term structure models, 
which explains the detailed treatment. In addition, a great deal of attention in the 
empirical part of this thesis will be paid to the Vasicek and Cox et al. models; this 
section, therefore, paves the way by deriving some relations that will be estimated later 
on. 

The description of each of these models will start with the stochastic process of the 
short rate. After the properties of this short rate have been discussed, both the implied 
term structure of interest rates and the corresponding term structure of interest rate 
volatilities will be derived. The value of a European call option on a discount bond will 
also be obtained. Although these models allow for the valuation of any interest rate 
dependent security according to the valuation techniques of Chapter 2, the focus here is 
on this particular interest rate contingent claim for two reasons. 



The problem of the valuation of a call option on a discount bond has attracted a great 
deal of attention within the field of valuing interest rate derivative securities, as it has a 
clear analogue to the familiar valuation problem of options on stocks. To be in line with 
these well-known approaches, it is natural to concentrate on this claim. 

In addition, these models have the common property that closed-form solutions can be 
obtained in case of call options on discount bonds. As such, these interest rates models 
can be compared analytically and the differences between stock and bond options given 
emphasis. 

After this detailed explanation, some other interest rates models will be discussed. As 
the basic drawback of these models is their analytic complexity, which limits an 
economic interpretation and empirical investigation, a brief explanation of some of the 
basic characteristics of these models will complete the overview. 

The interest rates models to be discussed in this section are one-factor interest rates 
models, which can easily be extended to multi-factor models. Although the complexity of 
the stochastic dynamics definitely increases, the main characteristics by which one 
compares and illustrates the different models remain the same and because of this, limited 
attention will be given to these multi-factor analogues. 

The Merton Model 

The continuous time uncertainty will be specified by the filtered probability space 
, satisfying the usual conditions. As before, investors have only to agree 

on the null sets of the probability measure instead of an actual assessment of probabilities 
of certain events, which means that the probability measure P can be replaced by any 
other equivalent measure P*.  

The stochastic differential equation of the instantaneous short-term rate of interest is 
given in Merton (1973, p. 163) by 

 (5.1) 

In this equation, θ and σ are real-valued constants and W={W(t), t ≥ 0} is a Standard 
Brownian Motion. According to Arnold (1974), the short rate at time t, given the 
information set at time s, s ≤ t, is normally distributed, that is, 

 (5.2) 

It is obvious that this specification of the short rate is only expository. As already noted 
by Merton (1973), the assumed normality assigns positive probabilities to negative rates. 
In addition, if θ ≠ 0, the conditional mean of the short rate at time s increases without 
bound as t increases.1 

In order to derive the value of an interest rate derivative security, a unique equivalent 
probability measure must first be identified. A stochastic process or Radon-Nikodym 
derivative p={p(λ, t), t ≥ 0}, is, therefore, defined by 
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(5.3) 

with λ a fixed real-valued constant. In the remainder of this section, it will be seen that A. 
can be interpreted as the market price of risk. By Girsanov’s Theorem, the stochastic 
process , defined by 

 
(5.4) 

is a Standard Brownian Motion on the probability space , where the 
unique equivalent probability measure is given by 

 
(5.5) 

According to Chapter 2, the value of a discount bond P(r(t), t, τ) at time t with remaining 
time to maturity τ and unit face value, equals its discounted expected value. The 
expectation has to be taken with respect to a unique equivalent probability measure such 
that the values of trading strategies in terms of the money market account are 
martingales. In case of the endogenous term structure models, this can be established by 
calculating the expectation under the unique measure , yielding  

 

(5.6) 

It is easy to verify that under this measure , investors are risk-neutral. The 
instantaneous expected return and volatility of this return on a zerocoupon bond under 
this measure are r(t) and στ, respectively. Under the original measure P, however, the 
instantaneous expected return and volatility are equal to r(t)+λστ and στ, from which λ 
can be interpreted as the market price of risk. If investors are risk averse and the market 
price of risk is positive, accordingly, the relationship between the instantaneous expected 
return and volatility of bonds is linear with positive slope coefficient λ. 

All investors have to agree on and on the resulting values of discount bonds in 
order to exclude riskless arbitrage opportunities. Looking at the relationships between 
bond values and the interest rate process, this translates into an agreement between 
investors on the particular values of the parameters θ+λσ and σ. It is not necessary, 
therefore, that the instantaneous returns on discount bonds or the market prices of risks 
are the same among investors. 
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Obtained from the values of these bonds, the endogenous term structure of interest 
rates R(t, τ) at time t is, 

(5.7) 

This relationship allows for some interesting observations. Because the term structure of 
interest rates equals the sum of the instantaneous short rate and a quadratic function in τ, 
changes in the value of this short rate cause parallel shifts in the term structure. In 
addition, yields are a concave function of the volatility of the short rate. Figure 5.1 shows 
the term structure of interest rates for different values of this volatility. The instantaneous 
short rate is 0.07 and the risk-neutral drift term of the corresponding process, 0.02. The 
different values of the volatility are 0.01, 0.04 and 0.07, respectively. 

This figure reveals that yields are negatively related to the value of the volatility. As 
volatility increases, the curvature of the term structure also increases and, at last, although 
this is not clear from Figure 5.1, the value of the infinite maturity yield R(t, ∞), equals 

 (5.8) 

These relationships have a simple explanation. Due to the simple normal distribution of 
instantaneous spot rates, a higher volatility increases the probability of both higher and 
lower spot rates. The relationship, however, between bond values and spot rates is 
convex, implying a greater impact of lower rates on bond values. Because the volatility of 
spot rates also increases as a function of maturity, the above relationships are easily 
understood.  
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Figure 5.1 The term structure of 
interest rates 
This figure shows the term structure of 
interest rates according to the model of 
Merton for different values of the 
volatilities. The instantaneous short-
term rate of interest is 0.07 and the 
risk-neutral drift term of the 
corresponding process 0.02. The 
values of the volatility are 0.01, 0.04 
and 0.07, respectively. 

The yield-to-maturity R(t, τ) at time t, given the information set at time s, s ≤ t, is 
normally distributed, 

 (5.9) 

The volatility of the yield-to-maturity is independent of the time-tomaturity. In the 
classification scheme, this means that the endogenous term structure of interest rate 
volatilities is a flat function. 
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The value of a European call option on a discount bond can also be derived by taking 

the discounted expectation with respect to of the payout of the claim at maturity. 
Denote the value at time t of a call option with maturity τ1 exercise price K and 
underlying discount bond with maturity τ2, by C(r(t), t, K, τ1, τ2); this means that 

 

(5.10) 

which is equal to 

 
(5.11) 

with 

 

  

Figure 5.2 shows the value of this European call option for different maturities. The 
instantaneous short rate is again 0.07, while the risk-neutral drift term and volatility are 
0.02 and 0.07, respectively. The maturity of the underlying bond is ten years and the 
exercise price is equal to the forward price of the underlying bond in order to be able to 
concentrate on  
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Figure 5.2 European and American 
call options on discount bonds 
This figure shows the value of a 
European and American call option on 
a discount bond with face value 100 
for different maturities of the option 
using the Merton model. The maturity 
of the underlying bond is ten years and 
the exercise price of the options is 
equal to the forward price of the 
underlying bond. The instantaneous 
short rate is 0.07, while the risk-neutral 
drift term and volatility are 0.02 and 
0.07, respectively. 

the time value of the claim. Finally, the face value of the bond is 100. As an interesting 
comparison to options on stocks, the figure also shows the values of the corresponding 
American call options.2 

When the maturity of the option increases in comparison to the maturity of the 
underlying bond, two different effects occur. On the one hand, the increased maturity of 
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the claim results in higher in-the-money option values at maturity and, therefore, in a 
corresponding higher current option value. On the other hand, as the underlying bond 
nears maturity, the range of possible bond values narrows, which decreases the current 
value of the at-the-money option. This second effect is partly offset if American options 
are considered. Although near the maturity of the bond a high option value is still less 
likely, the American feature of the option enables a premature exercise when high bond 
values occur. The option value, however, also decreases in this case, as maturity 
increases because of the higher exercise price that has to be paid. 

To investigate the impact of volatility on option prices, Figure 5.3 shows the values of 
European at-the-money call options on discount bonds for different maturities and 
different volatilities. The parameter values and claim characteristics in this example are 
the same as in the previous figure, demonstrating the impact of volatility on the term 
structure of interest rates. 

As volatility increases, the value of the at-the-money option generally increases and 
the two countervailing effects just described are more pronounced. 

The Vasicek Model 

The process of the instantaneous short rate in the Vasicek (1977) model obeys the 
following stochastic differential equation 

 (5.12) 

The parameters K, θ and σ in this equation are real-valued constants, which are assumed 
to be positive, and W={W(t), t ≥ 0} is a Standard Brownian Motion. The continuous time 
uncertainty is specified as in the Merton (1973) model, discussed in the previous section. 

The drift term of this stochastic process forces the short-term rate of interest towards 
the parameter θ. If, for example, the value of r(t) is greater than θ, the drift term is 
negative, which increases the probability of lower rates in the future. The degree with 
which this force is pulling back interest rates is dependent on ĸ, the mean reversion 
parameter. The distribution of the short rate at time t, given the information at time s, s ≤ 
t, can again be obtained by making use of Arnold (1974):  
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Figure 5.3 European call options on 
discount bonds 
This figure shows the value of a 
European call option on a discount 
bond with face value 100 for different 
values of the volatility and for different 
maturities of the option in case of the 
Merton model. The maturity of the 
underlying bond is ten years and the 
exercise price of the options is equal to 
the forward price of the underlying 
bond. The instantaneous short rate is 
0.07, while the risk-neutral drift term 
equals 0.02, respectively. The different 
values of the volatility are 0.01, 0.04 
and 0.07, respectively. 

 
(5.13) 
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As in the Merton (1973) model, positive probabilities are assigned to negative interest 
rates. However, the unconditional mean and unconditional variance of the short rate at 
time s, given by 

 (5.14) 

 
(5.15) 

respectively, are both constant. The mean reversion process, therefore, implies 
significantly lower probabilities to unreasonably large interest rates and, as such, seems 
more suitable as a realistic description.  

The existence and calculation of arbitrage-free values of interest rate derivative 
securities requires the existence of a unique equivalent probability measure such that 
values of trading strategies in terms of the money market account are martingales. The 
derivation of such an equivalent measure in this particular interest rate economy, starts 
again with the specification of the familiar Radon-Nikodym derivative p={p(λ, t), t), t ≥ 
0} as 

 
(5.16) 

with the market price of risk λ. being a fixed real-valued constant. As before, Girsanov’s 

Theorem can be applied to let the process , defined by 

 
(5.17) 

be a Standard Brownian Motion on the probability space The unique 

equivalent measure on this probability space is again given by 

 (5.18) 

The value of a discount bond P(r(t), t, τ) is derived by taking the discounted expected 
value of this bond with respect to the measure , 

 

(5.19) 

In this expression, R(t, ∞) denotes the yield on a bond with infinite maturity, which is 
equal to the constant, 
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(5.20) 

The instantaneous rate of return and volatility of this return on a discount bond are equal 
to r(t)+λσ(l—e–kτ)/ĸ and σ(1—e–kτ)/ĸ, respectively, under the original measure P. As 
opposed to the Merton (1973) model, where the return and volatility depend linearly on 
maturity, the instantaneous return and volatility in the Vasicek (1977) model increase 
nonlinearly, as maturity decreases with limiting values r(t)+λσ/ĸ and σ/ĸ, respectively, 
assuming a positive market price of risk.  

The term structure of interest rates at time t is now, 

(5.21) 

It is interesting to note that the yield on a discount bond is a weighted combination of the 
instantaneous spot rate and the “infinite” maturity yield, with positive weights summing 
to one plus some function. This function is a product of spot rate volatility and a positive 
weighting function, which is zero at both ends of the maturity spectrum. As a result, this 
function causes a curvature of the yield curve. Figure 5.4 shows the term structure of 
interest rates for different values of the mean reversion parameter K. The initial value of 
the instantaneous spot rate is 0.07, while the values of the risk-neutral unconditional 

mean and volatility are 0.10 and 0.04, respectively. The different values of the 
mean reversion parameter are 0.2, 0.4 and 0.6.  

 

Figure 5.4 The term structure of 
interest rates 
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This figure shows the term structure of 
interest rates according to the model of 
Vasicek for different values of K. The 
instantaneous short-term rate of 
interest is 0.07, while the values of the 
risk-neutral unconditional mean and 
volatility are 0.10 and 0.04, 
respectively. The different values of 
the mean reversion parameter are 0.2, 
0.4, and 0.6. 

The different positions of the three term structures can simply be explained by looking 
at the “infinite” maturity yield and the weights of this yield and the short rate in the term 
structure expression. The higher the value of ĸ, the higher the value of the “infinite” 
maturity yield, thus rotating the yield curve. In addition, an increased value of ĸ puts 
more weight on the “infinite” maturity yield in comparison to the instantaneous short-
term rate of interest, thereby increasing the curvature of the term structure. It is further 
interesting to note that the “infinite” maturity yield is always lower than the risk-neutral 
unconditional mean of the instantaneous spot rate. As is explained in the previous 
section, this is due to the convex relation between bond values and spot rates. 

The distribution of a spot rate at time t, given the information at time s, t ≥ s, can 
easily be derived by using the linear relationship between spot rates and the instantaneous 
short rate, 

 (5.22) 

with 

 
  

 

  

and 

 

  

The mean of the spot rate is a weighted sum of the current value and the unconditional 
mean of the spot rate. The endogenous term structure of interest rate volatilities σR(S, t) is 
a decreasing function of time-to-maturity with limiting value zero. The mean reversion 
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process of the short rate, therefore, implies short-term interest rates are less volatile than 
are longterm interest rates. Figure 5.5 shows the endogenous term structure of interest 
rate volatilities for different values of ĸ. The values of the parameters used in this 
example are the same as in the previous figure. The difference t–s is equal to one year. 
The higher the value of ĸ, the lower the volatility of spot rates. As ĸ increases, the force 
with which interest rates are pulled back to their long-term mean increases, too. As a 
result, the volatility of corresponding interest rates decreases.  

 

Figure 5.5 The term structure of 
interest rate volatilities 
This figure shows the term structure of 
interest rate volatilities according to 
the model of Vasicek for different 
values of ĸ. The instantaneous short-
term rate of interest is 0.07, while the 
values of the risk-neutral unconditional 
mean and volatility are 0.10 and 0.04, 
respectively. The different values of 
the mean reversion parameter are 0.2, 
0.4, and 0.6. The difference t–s is 
equal to one year. 
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The value of a European call option on a discount bond is obtained by taking the familiar 

discounted expectation with respect to of the payout of the claim at maturity, 

 
(5.23) 

which is equal to 

 
(5.24) 

with  

 

  

To assess the impact of the mean reversion parameter ĸ on option values, Figure 5.6 
presents these values for different values of ĸ and different time-to-maturities of the 
option. The values of the other parameters are the same as in the previous examples. The 
maturity and face value of the underlying bond are ten years and 100, respectively, while 
the exercise  
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Figure 5.6 European call options on 
discount bonds 
This figure shows the value of a 
European call option on a discount 
bond with face value 100 for different 
values of ĸ in the case of the Vasicek 
model. The maturity of the underlying 
bond is ten years and the exercise price 
of the option is equal to the forward 
price of this underlying bond. The 
instantaneous shortterm rate of interest 
is 0.07, while the values of the risk-
neutral unconditional mean and 
volatility are 0.10 and 0.04, 
respectively. The different values of 
the mean reversion parameter are 0.2, 
0.4, and 0.6. 
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price of the call option is equal to the forward price of this underlying bond to 
concentrate on the time value of the claim. 

As expected, a higher value of ĸ yields a lower value of the call option. The two 
countervailing effects described in the previous section are less pronounced in this case 
due to the steeper term structure of interest rate volatilities.3 

The Cox, Ingersoll and Ross Model 

The basic drawbacks of the Merton (1973) model are the normality of interest rates and, 
related to the specific distribution chosen, the unbounded unconditional expectation and 
variance of the short rate. In the Vasicek (1977) model, this unboundedness of the first 
and second moment of the distribution of the instantaneous spot rate is avoided by 
assuming a mean reverting process of the short rate. The mean reversion is forcing the 
spot rate towards its unconditional mean, which is a constant. Although the first and 
second moment of the distribution of interest rates seem to be more reasonable in this 
model, interest rates are still normally distributed, implying positive probabilities of 
negative rates. 

In Cox, Ingersoll and Ross (1985) (CIR), however, a stochastic process of the 
instantaneous short rate is proposed that retains the mean reversion property of the 
Vasicek model and excludes negative interest rates. In their model, the short rate obeys 

 (5.25) 

The parameters ĸ, θ and σ are positive real-valued constants and the process W= {W(t), t 
≥ 0} is a Standard Brownian Motion. The probability space and the corresponding 
probability measure are specified as in the previous two sections. 

As in the Vasicek model, the drift term is causing a mean reversion of the spot rate. 
The interest rate r(t) is stochastically moving around a location parameter θ with speed of 

adjustment or mean reversion force ĸ. If , the upward drift is sufficiently 
large to make the origin inaccessible.4 If initial interest rates are positive, they can never 
become negative with probability one. 

The actual distribution function of spot rates at time t, given the information at time s, 
s ≤ t, is the non-central chi-square, x(2cr(t), 2q+2, 2u), with 2q+2 degrees of freedom and 
parameter of non-centrality 2u proportional to the current spot rate r(s). The constants c, 
u, v and q are defined as  
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According to this distribution, the mean and variance of the spot rate at time /, given the 
information at time s, s ≤ t, are 

 (5.26) 

 

(5.27) 

The mean is a weighted average of the current value of the spot rate and the 
unconditional mean θ. These weights are positive and sum to one, reflecting the mean 
reversion of spot rates. As opposed to the model of Vasicek, the variance is positively 
dependent both on the current value of the spot rate and on the unconditional mean. As t 
becomes larger, the variance becomes independent on the current information at time s. 
The steady-state mean and variance of the spot rate are, summarized, 

 (5.28) 

 
(5.29) 

To derive the arbitrage-free values of interest rate dependent securities, such as bonds and 
option on bonds, the study proceeds along the lines of the previous sections. The first step 
in this derivation is to determine a unique probability measure, which is equivalent to P, 
by specifying the familiar Radon-Nikodym derivative p={P(λ, r(t), t), r(t), t), t ≥ 0} as 

 
(5.30) 
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with A a fixed real-valued constant. In contrast to the models of Merton and Vasicek, the 
change of probability measure is explicitly dependent on the value of the short rate. As 
the remainder of this section will demonstrate, this particular choice is justified because 
of the resulting analytic tractability of the model. The characteristics of the stochastic 
differential equation of the short rate r(t) allows for application of Girsanov’s Theorem. 

The process , defined by  

 
(5.31) 

is then a Standard Brownian Motion on the probability space . The 
unique equivalent measure on this space is given by 

 (5.32) 

The value of a discount bond P(r(t), t, τ) is obtained by taking the discounted expected 
value of this bond with respect to the measure , 

 (5.33) 

with 

 

  

and 

   

In this expression, R(t, ∞) denotes the “infinite” maturity yield, which is equal to the 
constant 
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Under the original measure P, the instantaneous rate of return and volatility of this return 

on a discount bond are r(t)(1+λσB(τ)) and , respectively. Assuming a 

positive market price of risk , an increase in the maturity of the bond increases 
this return and volatility monotonically, with limiting values 

and , respectively. 
The term structure of interest rates at time / is equal to 

(5.34) 

with  

 

  

and 

 

  

The yield on a zero-coupon bond is a weighted combination of the instantaneous spot rate 
and the “infinite” maturity yield, where the weights are strictly positive. It is interesting, 
now, to make a comparison between the term structure of interest rates based on the 
Vasicek and CIR models. In both models, the initial value of the spot rate r(t), the mean 
reversion parameter ĸ and the unconditional mean θ are equal to 0.07, 0.4 and 0.10, 
respectively. The volatility in the Vasicek model is 0.04, while in the CIR model it is 

to equal the instantaneous volatilities of spot rates. The market price of 
risk A. is equal to zero in both models. Figure 5.7 shows the term structures of interest 
rates based on these parameters. 
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Figure 5.7 The term structure of 
interest rates 
This figure shows the term structures 
of interest rates according to the 
models of Vasicek and Cox, Ingersoll 
and Ross (CIR). The instantaneous 
short-term rate of interest is 0.07, 
while the values of the mean reversion 
parameter and the unconditional mean 
are 0.4 and 0.10, respectively. The 
value of the volatility parameter using 
the Vasicek model is 0.04 and using 
the CIR model, . 

Interest rates based on the CIR model are always lower than those based on the Vasicek 
model. Because the instantaneous volatility of the spot rate is linearly dependent on the 
square root of the spot rate in the CIR model, a lower value of this rate increases the 
probability of a relatively low rate one instant later. Although a similar argument can be 
posed for the case of increased probabilities of relatively high spot rates in the CIR 
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model, the convex relation between bond values and spot rates results in significantly 
lower interest rates in comparison to the Vasicek model. 

The linear relationship between interest rates and the instantaneous short-term rate of 
interest of equation (5.34), together with the analytic expressions of the mean and 
variance of the short rate (equations (5.26) and (5.27)) provide the means for obtaining 
the mean and variances of spot rates at time t, given the information at time s, s ≤ t, 

 (5.35) 

with 

 
  

and 

 (5.36) 

with 

 

  

The variance of interest rates is a linear function of this interest rate. As time increases, 
the variance decreases monotonically with limiting value 

 
(5.37) 

As in the Vasicek model, longer-term interest rates are less volatile than short-term 
interest rates are. 

Figure 5.8 shows the term structure of volatilities of the CIR and Vasicek models for 
the same set of parameters as the previous figure. 

The volatility of interest rates in the CIR model is significantly lower than that in the 
Vasicek model. The volatility curve, in addition, is much  
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Figure 5.8 The term structure of 
interest rate volatilities 
This figure shows the term structures 
of interest rate volatilities according to 
the models of Vasicek and Cox, 
Ingersoll and Ross (CIR). The 
instantaneous short-term rate of 
interest is 0.07, while the values of the 
mean reversion parameter and the 
unconditional mean are 0.4 and 0.10, 
respectively. The value of the volatility 
parameter using the Vasicek model is 
0.04 and using the CIR model, 

. 

steeper. Compare this to Figure 5.7, where the term structures of interest rates were 
shown for both models, and this can be explained similarly. The linear relationship 
between the variance of the spot rate and its value increases the probability of low rates in 
the future, when current rates are relatively low. Although this can also happen the other 
way around, the generally lower interest rate volatilities are due to the convex relation 
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between bonds and instantaneous short rates. As the maturity of interest rates increases, 
this combined variance and convexity effect increases, too, resulting in a steeper term 
structure of interest rate volatility in comparison to the Vasicek model. 

Next the Cox, Ingersoll and Ross model will be applied by discussing the derivation 
and characteristics of a European call option on a discount bond. To obtain this value, 
calculate the discounted expectation with respect to the probability measure of the 
payout of the claim atmaturity:  

 
(5.38) 

This yields (see CIR (1985, p. 396)) 

 

(5.39) 

with 

 

  

and 

 

  

which is the value of the instantaneous spot rate at maturity of the option at which 
investors are indifferent between exercising the option or not. 

Although not obvious at first sight, this option pricing formula has an interpretation 
similar to those obtained in previous sections. The first term in the option formula is the 
discounted expected value of the bond on which the option is written, conditional upon 
an in-the-money option at maturity of the option. The second term is the discounted 
exercise price of the option multiplied by the probability of the option ending up in-the-
money. 
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Figure 5.9 compares option prices based on the Vasicek and CIR model, for different 
time-to-maturities. The parameters are again the same as in Figures 5.7 and 5.8. The 
option is a European at-the-money call option on a discount bond with a face value of 
100 and a time-to-maturity equal to ten years. 

It would be logical to expect the option values based on the CIR model to be lower 
than those based on the Vasicek model. As options depend crucially on the term structure 
of volatilities, the previous figure, in which both models were compared with respect to 
these term structures, would suggest such a result. However, the CIR option values are 
higher for  

 

Figure 5.9 European call options on 
discount bonds 
This figure shows the value of a 
European call option on a discount 
bond with face value 100 for different 
time-to-maturities using the models of 
Vasicek and Cox, Ingersoll and Ross 
(CIR). The exercise price of the option 
is equal to the forward price of the 
underlying bond. The instantaneous 
short-term rate of interest is 0.07, 
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while the values of the mean reversion 
parameter and the unconditional mean 
are 0.4 and 0.10, respectively. The 
value of the volatility parameter using 
the Vasicek model is 0.04 and using 
the CIR model, . 

most of the maturity range considered. This result is due to the particular shapes of the 
term structures of volatilities. 

The discussion of the option pricing formulas made it clear that European option 
prices are a function of the volatility of the forward price of the underlying discount 
bond. As the term structure of volatilities in the CIR model is, for most of the maturity 
spectrum, much steeper than in the Vasicek model regardless of the volatilities’ specific 
position, forward price volatilities and corresponding option prices are higher.5 

Miscellaneous Interest Rates Models 

The previous section discussed some well-known interest rates models. These models 
have the common property that they allow for closed-form solutions for the term 
structure of interest rates, the term structure of interest rate volatilities and European call 
options and put options on discount bonds. Connected to this analytic tractability, a great 
deal of attention has been paid to investigating these models empirically. As will be seen 
in later chapters, the model of Cox, Ingersoll and Ross (1985), especially, has been the 
subject of a thorough empirical examination. 

This section will briefly discuss some other interest rates models. The basic drawback 
of these models is the necessity of using numerical methods to obtain, for example, the 
term structure of interest rates. This dependence limits an economic interpretation and 
practical implementation of these models. As the main reason for discussing these models 
is to complete the overview of the endogenous term structure of interest rates models, no 
attention will be given to a clear description of probability spaces and probability 
measures. 

In the interest rates model of Dothan (1978), the instantaneous rate of interest obeys 
the following stochastic differential equation 

 (5.40) 

In this specification, a is a real-valued constant and W={W(t), t ≥ 0} is a familiar 
Standard Brownian Motion. The zero drift term and proportional volatility function cause 
the spot rate r(t) at time t, given the infomation at time s, s ≤ t, to be lognormally 

distributed with mean r(s) and variance and, more specifically, to 
be positive with probability one.6 

As in the previous illustrations, a unique equivalent probability measure can be 
determined under which relative values of interest rate derivative securities are 
martingales. The resulting term structure of interest rates is a monotonically decreasing 
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function of maturity, an increasing concave function of the current value of the 
instantaneous spot rate and a decreasing convex function of σ2. The analytic expression, 
however, of this term structure of interest rates is quite complicated, making a statistical 
analysis cumbersome. The valuation of other interest rate derivative securities, such as 
options on bonds, can be performed only by using numerical methods.7 

In the model of Courtadon (1982), the stochastic process of the instantaneous short 
rate of the Dothan model is extended by a mean reverting drift term, that is, 

 (5.41) 

The speed of adjustment parameter ĸ, the unconditional mean of interest rates θ and the 
volatility parameter σ are real-valued constants and W= {W(t), t ≥ 0} is again a Standard 
Brownian Motion. Although the distribution of spot rates in this model is unknown and 
no analytic expression can be obtained for the moments of the distribution, it is argued in 
Courtadon that this process is more suited to describe the actual behavior of interest rates 
than is the Geometric Brownian Motion because interest rates exhibit mean reversion and 
are strictly positive with probability one.8 As this may be true, it is by no means certain, 
however, that this process is to be preferred empirically to the mean reverting processes 
of Vasicek or Cox et al. apart from the analytic tractability of these models. 

After the derivation of a unique equivalent probability measure, values of interest rate 
derivative securities can only be obtained by use of numerical methods. 

In the model of Brennan and Schwartz (1983), interest rate derivative securities are 
assumed to be a function of the instantaneous short-term rate of interest and the yield on a 
consol bond or long rate. These short-rate and long-rate processes r={r(t), t ≥ 0} and 
/={l(t), t ≥ 0} obey the following stochastic differential equations, 

 

  

The parameters and are real-valued constants and W“= 
{W1(t), W2(t), t ≥ 0} is a two-dimensional vector process of independent Standard 
Brownian Motions. 

The exclusion of arbitrage opportunities results in a second order partial differential 
equation, which has to be solved numerically for all interest rate derivative securities, 
making use of particular boundary conditions.  

As the value of a consol bond at time t is a closed-form solution9 of the consol rate /(/), 

interest rate securities are a function only of the risk-neutral drift term of the short rate 
and the different volatility parameters σr1, σr2, σl1 and σl2 However, because some of the 
coefficients in this partial differential equation are unbounded in the underlying 
stochastic processes, the numerical results obtained are questionable. 
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EXOGENOUS TERM STRUCTURE OF INTEREST RATES 
MODELS 

Within the class of endogenous term structure of interest rates models, all securities are 
considered to be interest rate contingent claims. Given the distributional characteristics of 
the instantaneous short rate, the exclusion of arbitrage opportunities results in valuation 
relationships for any interest rate derivative security. As an important result, the term 
structure of interest rates at some valuation date is a specific function of the current value 
of the short rate and its risk-neutral stochastic characteristics. Thus, not only the 
stochastic movement over time of the yield curve is implied by the short rate, but also the 
actual shape of the yield curve at the valuation date.  

Within the class of exogenous term structure of interest rates models, however, the 
stochastic differential equation of the short rate is specified such that a given term 
structure of interest rates or term structure of forward rates at an initial valuation date is 
obtained. Instead of implying the actual shape of the yield curve and its subsequent 
stochastic movement over time, the stochastic component of the process of the short rate 
now determines only the distribution of interest rates. 

The model of Ho and Lee (1986) is the first model that is based on this fundamentally 
different approach of valuing interest rate contingent claims. Given the prices of all zero-
coupon bonds at the valuation date, a binomial lattice is constructed representing the 
discrete stochastic movement of these bond prices or term structures over time. In Heath 
et al. (1990a, 1992), this approach is considerably extended. Besides the generalization to 
continuous time, a whole family of potential stochastic processes is presented to describe 
the movement of the forward rate curve over time, and general conditions are derived to 
exclude riskless arbitrage opportunities. 

The different models implying a given term structure of interest rates at the valuation 
date can be further classified according to the overview of Chapter 3. In the first part of 
this section, those models are presented in which the stochastic differential equation of 
the instantaneous short rate implies a term structure of interest rate volatilities. The 
second part of this section will then discuss an approach to modify the stochastic 
diflferential equation to reflect both a given term structure of interest rates as well as a 
given term structure of interest rate volatilities. 

The presentation and discussion of the different models in this section is completely 
opposite to that in the previous section, starting with the derivation of the stochastic 
differential equation of the short-term rate of interest in a risk-neutral economy such that 
the initial yield curve at the valuation date is obtained and arbitrage opportunities do not 
exist. Subsequently, the possible term structures of interest rates after the initial trading 
date will be obtained and, if possible, the closed-form value of a European call option on 
a discount bond will be derived. As investors do not have to be risk-neutral and may have 
subjective probability beliefs with respect to a particular assessment of certain events, the 
actual distribution of interest rates and the endogenous and exogenous term structure of 
interest rate volatilities will be derived. For the same reasons as in the previous section, 
limited attention is paid to the multi-factor analogues of the one-factor models discussed 
in this section. 
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Endogenous Term Structure of Volatility Models 

This subsection begins with the discussion of the continuous time version of the Ho and 
Lee (1986) model. Because the Ho and Lee model is a  

counterpart to the Merton (1973) model, attention can be focused on the differences 
between the endogenous and exogenous term structure of interest rates models. An 
extension of this will be provided by examining another model within the class of Heath 
et al. (1992) term structure models, which is a counterpart to the Vasicek (1977) model 
discussed in the previous section. After this, the general model of Heath et al. will be 
examined. 

The Ho and Lee Model 

The continuous time uncertainty of the risk-neutral economy is specified by the filtered 
probability space , satisfying the usual conditions and a trading interval 
[0, T] for a fixed T > 0. As the economy is assumed to be risk-neutral, investors have to 
agree on the unique probability measure in this particular type of economy. The 
exogenous term structure of interest rates at the initial trading date 0 is given and 
represented by the initial term structure of forward rates ƒ(0, t), t � [0, T], which is non-
random, measurable and absolutely integrable and defined as 

 (5.42) 

for all τ [0, T]. 
The value of the instantaneous short-term rate of interest at time t � [0, T], is assumed 

to obey 

 (5.43) 

In this expression, α(t), t � [0, T] is non-random, measurable and absolutely integrable, a 

is a real-valued constant and is a Standard Brownian 
Motion, initialized at zero.10 

The exclusion of arbitrage opportunities requires the existence of a unique equivalent 
probability measure such that the values of all interest rate derivative securities relative to 

the money market account are martingales. By definition, this probability measure is , 
and by imposing suitable conditions with respect to the function α(t), t � [0, T], we can 
ensure that the given term structure of forward rates at the initial trading date 0 is 
obtained. The value of a discount bond P(0, τ) at time 0 with maturity τ, τ � [0, T], 
therefore, has to be equal to the following two expressions, 

 
(5.44) 

Calculating the expectation,11 results in 
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(5.45) 

for all t � [0, T].  
To obtain the value of a discount bond P(t, τ) at some time t � [0, T] with maturity τ, 

the discounted expected value is calculated with respect to the unique probability 
measure , 

(5.46) 

The possible term structures of interest rates at some time t � [0, T] can be derived from 
the values of these bonds, as they are implied by the term structure of interest rates at the 
initial trading date and the stochastic movement of the short rate over time, 

(5.47) 

Using relationship (5.43), this can be rewritten as 

(5.48) 

This final expression, in which future yields are related to the value of the short rate, 
resembles the similarity between the models of Merton and Ho and Lee. The value of a 
particular yield at time t � [0, T] with maturity τ is the sum of the difference between the 
instantaneous short rate and forward rate, the forward rate at the initial trade 0 covering 
the period [t, t+τ], and a term reflecting the convexity between interest rates and bond 
prices. As in the Merton model, changes in the short rate cause parallel shifts in the term 
structure. However, although the continuous time economy is not designed to look at 
infinite maturity yields due to the fixed final trading date T > 0, the infinite maturity yield 
at some future date t � [0, T] in the Ho and Lee model has limiting value if forward rates 
are bounded 

 (5.49) 

Because the risk-neutral drift term of the short rate increases without bound as maturity 
increases, the convexity effect causing the infinite maturity yield to decrease without 
bound in the Merton model is completely outweighted.12 

The value of a European call option C(K, τ1, τ2) at the initial valuation date with 
maturity τ1 written on a discount bond with maturity τ2, is derived analogously,  
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 (5.50) 

and equal to 

 (5.51) 

with 

 

  

Besides the actual values of the short and long bond at the valuation date, this option 
pricing formula is equal to the one derived and already illustrated in Section 5.1 where 
the Merton model was discussed. 

The possible bond values at some future date and European call option prices on a 
discount bond are derived by taking the appropriate expectations with respect to the 
probability measure . Investors agree on the existence of this unique measure in order 
to exclude arbitrage opportunities. However, the actual probability measure that implies 
the distribution of the term structure of interest rates may differ among investors, as was 
seen in the previous section where the endogenous term structure of interest rates models 
was examined. To derive the subjective distributions of interest rates, a stochastic process 
or Radon-Nikodym derivative p={p(λ, t), t � [0, T]} is defined by 

 
(5.52) 

In this case, the market price of risk, λ, is assumed to be a fixed, realvalued constant 
although other specifications are possible.13 By Girsanov’s Theorem, the stochastic 
process W={W(t), t � [0, T]}, defined by 

 
(5.53) 

is a Standard Brownian Motion on the probability space , where the 
equivalent probability measure P is given by 

 
(5.54) 
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Given a fixed value of the market price of risk, λ, interest rates at time t � [0, T], given 
the information at the initial trade date, are normally distributed14 with respect to the 
probability measure P, 

 

(5.55) 

As investors may have different beliefs about the value of the market price of risk, λ, 
probability measures and corresponding distributions of interest rates may differ with 
respect to their mean. However, given the previous assumptions regarding the initial term 
structure of forward rates, the mean of future yields becomes unreasonably large as time 
increases, irrespective of the value of λ. As in the Merton model, the endogenous term 
structure of interest rate volatilities is again a flat function, independent of any particular 
maturity. 

The Heath, Jarrow and Morton I Model 

The basic drawbacks of the model of Ho and Lee (1986) are the positive probability of 
negative interest rates in the future and the unreasonable values of the corresponding 
mean of these future interest rates. As these problems are also present in the Merton 
(1986) model and solved partially in the Vasicek (1977) model by introducing mean 
reversion of the instantaneous short rate, it is a natural step to apply this approach to the 
Ho and Lee model. This analogue of the Vasicek model is discussed as an example in 
Heath et al. (1990a, 1992) and proposed after an empirical analysis by Dybvig (1989). 

The exposition of this model starts with the specification of the continuous time 
uncertainty of the risk-neutral economy by the filtered probability space 
, satisfying the usual conditions. There is a trading interval of [0, T], T > 0 and, because 
the economy is assumed to be riskneutral, all investors have to agree on a unique 

probability measure . The exogenous term structure of forward rates at the initial trade 
0 is given by the function ƒ(0, t), t � [0, T], which is again non-random, measurable and 
absolutely integrable. 

The value of the instantaneous short-term rate of interest at time t � [0, T] is assumed 
to obey15 

 (5.56) 

The function α (t), t � [0, T], is non-random, measurable and absolutely integrable, σ is a 
real-valued constant and x(t), t � [0, T] is the unique solution to the Ornstein-Uhlenbeck 
process 

 
(5.57) 
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where K is a real-valued constant and is a Standard 
Brownian Motion, initialized at zero. 

As before, the exclusion of arbitrage opportunities requires relative values of interest 
rate derivative securities to be martingales with respect to a unique equivalent probability 

measure. This measure is assumed to exist and already defined as . To ensure that the 
given term structure of interest rates at the valuation date is obtained, suitable restrictions 
upon the function α(t), t � [0, T] have to be imposed. The value of a discount bond P(0, 
τ) at time 0 with maturity τ � [0, T], therefore, has to be equal to the following two 
expressions: 

 
(5.58) 

Solving this expression16 yields, 

 
(5.59) 

for all t � [0, T]. 
The value of a discount bond P(t, τ) at some time t � [0, T] in the future, is calculated 

in the same way, 

 (5.60) 

yielding 

 
(5.61) 

with 

 (5.62) 

The term structure of interest rates at time t � [0, T] equals, 

 
(5.63) 

To express this term structure in terms of the value of the instantaneous short rate, 
expression (5.56) is used to obtain 
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(5.64) 

with  

 
(5.65) 

The value of a particular yield at time t � [0, T] with maturity τ is the sum of the 
difference between the short rate and the instantaneous spot rate multiplied by a factor 
reflecting the mean reversion, the forward rate at the initial trade covering the period [t, 
t+τ] and a term reflecting the mean reversion and the convexity between interest rates and 
bond prices. At first sight, this expression does not appear to have any relation to the 
Vasicek model, which is supposed to be the analogue. However, if, for example, the 
initial yield curve is flat, the term structure of interest rates can be simplified to 

 
(5.66) 

As in the original Vasicek model, yields are a weighted combination of the instantaneous 
spot rate and the infinite maturity yield, with positive weights summing to one plus some 
function. This latter function is the product of interest rate volatility and another 
weighting function, which is zero at both ends of the maturity spectrum, causing a 
curvature of the yield curve. Although the initial yield curve is flat, future term structures 
of interest rates are curved. 

The value of a European call option C(K, τ1, τ2) at the initial valuation date with 
maturity τ1 written on a discount bond with maturity τ2 is now, 

 (5.67) 

yielding 

 (5.68) 

with 
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Although the initial bond prices may differ, this option pricing formula is equal to the one 
derived in Section 5.1 where the model of Vasicek was examined. 

In the specification of the continuous time economy, investors agree on the unique 

probability measure . The term structure of interest rates and the values of interest rate 
derivative securities are obtained by taking the appropriate expectations, thus ensuring 
that relative values of securities are martingales and excluding riskless arbitrage 
opportunities. As noted before, investors do not have to agree on the actual probability 
measure in the continuous time economy. To investigate the actual possible distributions 
of future interest rates resulting from different equivalent probability measures, the 
Radon-Nikodym derivative ρ={ρ(λ, t), t � [0, T]} is again defined by 

 
(5.69) 

For ease of exposition, the market price of risk, λ, is assumed to be a fixed-real valued 
constant.17 By Girsanov’s Theorem, the stochastic process W={W(t), t �[0, T]}, defined 
by 

 
(5.70) 

is a Standard Brownian Motion on the probability space , where the 
equivalent probability measure P is given by 

 (5.71) 

Given some fixed value of λ, interest rates at time t � [0, T], given the information at the 
initial trade date, are normally distributed with respect to the probability measure P 

 (5.72) 

with 
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(5.73) 

and 

 
(5.74) 

In contrast to the Ho and Lee model, the mean of future interest rates converges to the 
infinite maturity yield at the initial trade date as maturity increases. The term structure of 
interest rate volatilities is the same as in the Vasicek model and converges to zero.18 

The Heath, Jarrow and Morton II Model 

The previous two sections dealt with the model of Ho and Lee (1986) and a particular 
version within the class of Heath et al. (1992) term structure models. These models are a 
counterpart of the models of Merton (1973) and Vasicek (1977). Similar to these two 
models, interest rates are normally distributed and negative values can occur with a 
strictly positive probability. A natural step in our presentation of the exogenous term 
structure of interest rates models is an illustration of the analogue of the CIR (1985) 
model. Although this is extensively discussed in Heath et al. (1992, Section 8), further 
attention will not be given to it in this section for obvious reasons. 

The CIR model incorporates some reasonable features of the possible stochastic 
movement of the short rate like mean reversion and the exclusion of negative values. In 
addition, the endogenous term structure of interest rates and the time series characteristics 
allow for closed-form solutions and as a result, it is very popular from an empirical point 
of view. The exogenous counterpart of this model, however, does not result in closed-
form solutions for interest rate distributions, and the exclusion of negative interest rates 
restricts the possible shape of the initial term structure of interest rates. Because there are 
alternative ways of modelling the volatility of the instantaneous short rate to exclude 
negative interest rates, one of which is discussed in detail analytically and empirically in 
Heath et al. (1990b, 1992), discussion of this other model will take place here. 

Because the class of interest rates models of Heath et al. (1992) is very general and 
includes all exogenous term structure of interest rates approaches to be discussed in this 
thesis, the illustration of this model is also more general than in the previous two 
sections. 

The continuous time uncertainty of the risk-neutral economy is again specified by the 

filtered probability space , satisfying the usual conditions. There is a 
trading interval [0, T] with the final trading date T > 0 fixed. The term structure of 
forward rates ƒ(0, t), t � [0, T] at the initial trade date 0 is a known, non-random, 
measurable and absolute integrable function. 

The forward rate at time t maturing at time s, t < s, t, s � [0, T], which is defined as 
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(5.75) 

obeys the following stochastic differential equation: 

 
(5.76) 

The function α(., ., .) and σ(., .,) are Lipschitz continuous, bounded and satisfy  

 
(5.77) 

 
(5.78) 

with probability one for fixed, but arbitrary s � [0, T]. At this point, this volatility 
function is left unspecified to preserve the general treatment of the exogenous term 
structure of interest rates models. As mentioned in the introduction to this chapter, a 
specific volatility function ensuring positive interest rates will be discussed later on. 

Finally, the process is a familiar Standard Brownian 
Motion initialized at zero. 

In the discussions of interest rates models thus far, only the stochastic dynamics of the 
instantaneous short rate were taken into consideration. It is important to realize that the 
major results and the derivation of general interest rate model of Heath et al. also depend 
on the characteristics of the short rate only. As will be seen in the remainder of this 
section, the presentation is considerably facilitated by modelling the entire forward rate 
curve instead of the short rate only. 

The next step is the derivation of the unspecified function α(., .). The stochastic 
differential equation of the forward rate curve has to ensure that at the initial trade date, 
values of discount bonds determined by means of discounted expectation equal their 
given values. In addition, relative values of interest rate derivative securities have to be 
martingales with respect to the unique probability measure . The value of a discount 
bond P*(t, s − t) at some time t �[0, T] with maturity s − t is defined by 

 (5.79) 

and the value of the money market account B(t), t � [0, T] is given by 

 (5.80) 

Refer to Heath et al. (1992, Conditions C.2–C.3) for regularity conditions regarding the 
stochastic processes of bond prices and money market account. 
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The stochastic differential equation of which the relative bond price P*(t, s − t)=P(t, s 
− t)/B(t) is a strong solution, is now 

 

(5.81) 

where the dependence of the functions α(., ., .) and σ(., ., .) on forward rates is suppressed 
for notational convenience. It is easy to verify that, at the initial trade date, bond prices 
obeying these specifications are consistent with the given term structure of interest rates 
or forward rates. 

To exclude arbitrage opportunities, the process Z*(t, s) has to be a martingale with 
respect to the unique probability measure . To accomplishthis, take the function α(t, s), 
t < s, t, s � [0, T] as the solution to 

 
(5.82) 

yielding, by taking the derivative with respect to s, 

 
(5.83) 

From the regularity conditions regarding the volatility function σ(t, s), t < s, t, s �[0, T], it 
can be concluded that relative bond prices are martingales.19 It is easy to verify that the 
models discussed in the previous two sections are particular examples of this general 
class of interest rates models. 

As noted earlier, the general derivation of conditions excluding arbitrage opportunities 
is facilitated considerably by modelling the entire term structure of forward rates. At 
every time t �[0, T], the value of all forward rates is known if the particular path of the 
Standard Brownian Motion up to this time is known also. The term structure of interest at 
this time is then by definition 

 

(5.84) 

The value of a European call option C(K, τ1, τ2) at the initial trade date with maturity τ1 
written on a discount bond with maturity τ2 is derived by taking the appropriate 
expectations, that is, 
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 (5.85) 

Because no elegant presentation of this expectation is possible, the next chapter will 
discuss numerical methods to value interest rate derivative securities. 

The presentation of the general arbitrage-free valuation of interest rate derivative 
securities when the initial term structure of interest rates is exogenously specified, has 
been similar to the previous sections. Investors agree on the unique probability measure 

, under which relative values of all traded securities are martingales. As a result, 
arbitrage opportunities are excluded and investors are risk-neutral in this continuous time 
economy. In the actual economy, however, investors do not have to agree on the 
probability measure; because of this the possible distributions of future term structures of 
forward rates will next be examined. First, the familiar Radon-Nikodym derivative 
ρ={ρ(λ, t), t � [0, T]} will be defined as 

 
(5.86) 

Assume that the market price of risk, λ, is a real-valued constant.20 By Girsanov’s 
Theorem, the stochastic process W=(W(t), t � [0, T]}, defined by 

 
(5.87) 

is a Standard Brownian Motion on the probability space , where the 
equivalent probability measure P is given by 

 (5.88) 

For some fixed value of λ, the forward rate curve at some time t � [0, T], given some 
realization of the Standard Brownian Motion W={W(t), t � [0, T]} up to this time, is 

 

(5.89) 

Until now, the volatility function has not been specified and, as noted before, all interest 
rates models discussed are a special case within this general class of interest rates models. 
To ensure that negative values of future interest rates are excluded, take, as in Heath et al. 
(1992, p. 95), 
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 (5.90) 

with σ and ƒMax positive, real-valued constants. The volatility is proportional to the value 
of the forward rate, when forward rates are “small”, and is constant, when forward rates 
are “large”. As shown in Heath et al. (1992, Proposition 5), this specific volatility 
function guarantees the existence of a solution to the stochastic differential equation 
(5.76). In addition, negative interest rates are excluded with probability one.21,22  

Exogenous Term Structure of Volatility Models 

The main difference between the endogenous and exogenous term structure of interest 
rates models is the specification of the parameters of the stochastic process of the 
instantaneous spot rate. Within the class of endogenous term structure models, the 
parameters are assumed to be constant. The exclusion of arbitrage opportunities then 
implies a specific yield curve at some valuation date. The models of Merton (1973) 
Vasicek (1977) and Cox et al. (1985) are some well-known examples of this approach 
and are discussed in previous sections. 

Because the drift term of the stochastic process is time-dependent, the term structure 
of interest rates at the valuation can be any arbitrary function. The volatility of the short 
rate implies only a term structure of interest rate volatilities, whereas in the above-
mentioned approach, both term structures were dependent on this parameter. In the 
previous sections, the model of Ho and Lee (1986) and two versions of the general class 
of interest rates models of Heath et al. (1992) were discussed. The first two of these 
models are counterparts of the Merton and Vasicek model, while the last one is 
comparable to the model of Cox et al., as negative interest rates are excluded. 

The main similarity between the models discussed so far is the implied term structure 
of interest rate volatilities. Because the stochastic dynamics of the instantaneous short 
rate are driven by a Standard Brownian Motion and a few constant parameters, this term 
structure at the valuation date is also an implied function of these parameters. It is not 
surprising, therefore, that by allowing the short rate volatility to be dependent on calendar 
time, the term structure of interest rate volatilities can be an arbitrary or, in other words, a 
given function. In Chapter 3, it was already noted that this extension or generalization 
does not mean that this class of models, in which both term structures are exogenous, is 
able to describe the actual stochastic dynamic behavior of interest rates over time more 
accurately. In forthcoming chapters, where some empirical results regarding term 
structures of interest rates and the valuation of derivative securities will be extensively 
discussed, it is argued that the large amount of freedom created by this time-dependency 
of the coefficients may actually lead to estimation problems. 

In principle, the analysis of the different interest rates models of the previous sections 
can be repeated for the case of a time-varying volatility. In this section, however, only the 
extended version of the Ho and Lee model, derived by Jamshidian (1990)23 will be 
discussed. Because this model is empirically analyzed, a detailed treatment of the various 
stochastic characteristics and valuation formulas seems to be justified. In addition, the 
extended square-root process of Hull and White (1990b) or the extended log-normal 
process of Black et al. (1990) generally leads to too many parameters or unknown 
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distributions of interest rates and corresponding estimation problems. To maintain the 
general treatment of interest rates models, refer to the discussion of the general class of 
models of Heath et al. (1992).  

The Jamshidian Model 

As in the analysis of the original Ho and Lee model, the continuous time uncertainty of 
the risk-neutral economy is specified by the filtered probability space , 
satisfying the usual conditions, and a trading interval [0, T] with T > 0 fixed. Investors 
agree on the unique probability measure . The exogenous term structure of forward 
rates at the initial trade date is given by f(0, t), t � [0, T], which is a non-random, 
measurable and absolute integrable function. At this point, the exogenous term structure 
of interest rate volatilities is not specified. Because the general shape of this term 
structure is derived from the model specification, a discussion of some limitations can 
take place; an explicit characterization is thus premature. 

The value of the instantaneous short rate at time t � [0, T] obeys 

 (5.91) 

The functions α(t) and σ(t) are deterministic, bounded and Lipschitz continuous. The 

process is again a Standard Brownian Motion initialized at 
zero. 

The first step in the discussion is the characterization of α(t), t �[0, T]. Similar to 
previous presentations, the given term structure of interest rates at the initial trade date 0 
and the explicit requirement of relative values of securities being a martingale under the 
unique probability measure , results in an analytic solution to the unknown function 
α(t), t � [0, T]. The value of a discount P(0, τ) at time 0 with maturity τ, τ � [0, T], 
therefore, necessarily equals the following two expressions 

 
(5.92) 

Calculation of the expectation results in24 

 
(5.93) 

The value of a discount bond P(t, τ) at some future point in time t � [0, T], can be 
obtained analogously, yielding  
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(5.94) 

The term structure of interest rates at this time is, therefore, 

 

(5.95) 

Opposed to the nested Ho and Lee model, changes in the short rate do not necessarily 
imply parallel shifts in the yield curve. In fact, a whole family of possible movements can 
be obtained after a suitable specification of the volatility function σ(t), t � [0, T]. If 
forward rates are bounded, the infinity maturity yield is a constant if and only if 

 (5.96) 

Although the continuous time economy is not originally designed to investigate infinite 
maturity yields, it is clear that reasonable values of this yield to remove a basic drawback 
of the Ho and Lee model can only be obtained by an unreasonable long-term stochastic 
behavior of the short-term rate of interest.25 

The value of a call option C(K, τ1, τ2) at the initial valuation date with maturity τ1 and 
underlying discount bond maturing at τ2 is 

 

(5.97) 

with  
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In order to illustrate the rich pattern of possibilities, option values based on two different 
volatility functions will be compared to those in the original Ho and Lee model. Simply 
assume that the implied term structure of interest rates of the Merton model is the same as 
the exogenous yield curve at the valuation date in the Ho and Lee model. As the volatility 
parameter of the option formula is the same as in the Merton model, refer to Figure 5.3 
for the different base-case scenarios and option and bond characteristics. 

The first volatility function σ(t), t � [0, T] is parabolic in calendar time. At the 
minimum and maximum maturity of the option, that is, 0 and 10 years, the volatility of 
the short rate equals 0.04, the value of the base-case scenario. When the time-to-maturity 
of the option is 5 years, the volatility function attains its maximum value, which is 0.07. 
The second volatility function is also parabolic in calendar time. However, when the 
option maturity is 5 years, volatility attains a minimum value of 0.01. It is clear that these 
volatility functions are not a realistic description of the actual volatility of the short rate. 
As mentioned before, they only serve as a nice illustration. Figure 5.10 presents the 
option values. 

When we compare this figure to Figure 5.3, it is seen that option values based on the 
high and low scenarios are generally lower and higher, respectively, than the 
corresponding scenarios in the case of the Ho and Lee model. What is interesting to 
examine in this case is the particular shape of the option value as a function of maturity. 
In the low scenario, option values are rather constant, as maturity varies between two and 
seven years. In the case of the high scenario, option values are changing heavily within 
this region. Although both shapes can be explained by the typical functional form of 
volatility, it is still interesting to see what different kinds of option values can be 
modelled. 

Similar to the discussion of the previous term structure of interest rates models, option 
valuation formulas and possible future term structures are derived in an arbitrage-free 
economy. Investors agree on the unique probability measure , and relative values of all 
securities are martingales with respect to this measure. We now derive the distribution of 
interest rates in the case of different equivalent probability measures, reflecting the fact 
that investors do not have to agree on actual assessments of certain events. The Radon-
Nikodym derivative ρ={ρ(λ, t), t � [0, T]} is, therefore, defined as 

 
(5.98) 
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For simplicity, assume that the market price of risk, λ, is a real-valued constant.26 By 
Girsanov’s Theorem, the stochastic process W={W(t), t � [0, T]}, defined by  

 

Figure 5.10 European call options on 
discount bonds 
This figure shows the value of a 
European call option on a discount 
bond with face value 100 for different 
volatility functions and for different 
maturities of the option under the 
Jamshidian model. The maturity of the 
underlying bond is ten years and the 
exercise price of the options is equal to 
the forward price of the underlying 
bond. The exogenous term structure of 
interest rates at the valuation date is 
equal to the yield curve implied by the 
Merton model. In this case, the 
instantaneous short-rate is 0.07, while 
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the risk-neutral drift term and constant 
volatility equal 0.02, and 0.04, 
respectively. The volatility functions in 
the case of the high and low scenario 
are parabolic functions with value 0.04 
at both ends of the maturity spectrum, 
and with maximum and minimum 
value of 0.07 and 0.01, respectively. 

 
(5.99) 

is a Standard Brownian Motion on the probability space , with P given 
by 

 (5.100) 

Given this fixed λ, interest rates at time t, t � [0, T], are normally distributed  

 (5.101) 

with 

 

(5.102) 

and 

 
(5.103) 

The term structure of interest rate volatilities can attain a number of different shapes. 
Given such an exogenous term structure, one can solve for the volatility function σ(t), t � 
[0, T] and value interest rate derivative securities. It is obvious, however, that the 
exogenous term structure of interest rate volatilities has to be positive for all maturities or 
negative for all maturities.27,28 
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NOTES 
1 It is easy to see that a multi-factor extension of this model does not make any sense. Suppose 

there are n factors xi(t), i=l, ..., n, obeying 

   

with θi and σi real-valued constants and W = {W1(t),..., Wn} a vector 
process of n independent Standard Brownian Motions. If the 
instantaneous interest rate r(t) is equal to the sum of these n factors, 
r(t) is again normally distributed, given the information at time s, s ≤ 
t, with mean r(s) + θ(t − s) and variance σ2(t − s) where 

 

  

From this, it can be concluded that the multi-factor extension 
simplifies to the one-factor case. 

2 For a detailed description of the numerical methods used to calculate these option values, see 
Chapter 6. 

3 To review briefly the multi-factor extension, suppose there are n factors xi(t), i = 1, …, n, 
obeying 

   

with Ki, θi, and σi real-valued constants and W={W1(t),…, Wn(t)} a 
vector process of independent Standard Brownian Motions. If the 
instantaneous interest rate r(t) is the sum of these n factors, the 
analysis in this section can be easily generalized to obtain the value 
of a discount bond Pn(t, τ) at time t with maturity τ and unit face 
value 

 

  

The derivation of the value of a European call option Cn(t, K, τ1, τ2) 
on a discount bond in this case is also similar: 

   

where 
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For a thorough discussion of the multi-factor extension of the 
Vasicek (1977) model, see Langetieg (1980). 

4 For a thorough discussion of the square root process, see Feller (1951). 
5 To review the multi-factor extension of this model briefly, suppose there are n factors xi(t), 

i=1,..., n, obeying 

 
  

with Ki, θi and σi real-valued constants and W={W1(t),..., Wn(t), t ≥ 0} 
a vector process of n independent Standard Brownian Motions. If the 
instantaneous interest rate r(t) is equal to the sum of these n factors, 
each of which is ensured to be positive by imposing the familiar 
parameter constraint, the value of a discount bond Pn(t, τ) at time t 
with maturity τ and unit face value is simply 

 

  

The value of the European call option on a discount bond can be 
derived similarly. 
For a discussion of the two-factor extension of this model, see Cox et 
al. (1985, p. 398–401) and Richard (1978). 

6 In Courtadon (1982, p. 92) it is shown that if interest rates follow a geometric Brownian 
Motion with zero drift, 

 
  

by the Law of Iterated Logarithms. As a result, it is concluded that 
this process is inadequate to represent the long-term behavior of 
interest rates, although it might be a good appoximation in the short 
run. 
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7 For a detailed description of the numerical methods used to calculate the values of interest rate 
derivative securities, see Chapter 6. 

8 See Courtadon (1982, p. 98–9).  
9 The value of the consol bond Pl(c, l(t)) at time t paying a continuous coupon c is 

 

  

10 Given these specifications, equation (5.43) can also be rewritten as the following stochastic 
differential equation 

 
  

which is a more familiar representation in comparison to the previous 
sections. 

11 To evaluate this expression, we have used 

 
  

if is normally distributed. 
12 Another way of explaining this phenomenom is to compare the initial term structures of 

forward rates. In the Merton model, forward rates are decreasing without bound as maturity 
increases. 

13 For a detailed exposition of these necessary requirements, see Heath et al. (1992, Condition 
C.4). 

14 Similar to the Merton (1973) model, a multi-factor extension does not make any sense. 
15 This derivation is similar to de Munnik (1992) and facilitates the numerical analysis; see 

Chapter 6. 
16 See n. 11. 
17 See again Heath et al. (1992, Condition C.4). 
18 As is the case with the Vasicek (1977) model, a multi-factor extension is easily 

accomplished. Suppose there are n factors xi(t), i=1,..., n, obeying 

 

  

with Ki real-valued constants and a vector 
process of independent Standard Brownian Motions. A multi-factor 
extension of the analysis then yields 

 

  

where σi are real-valued constants. The term structure at some future 
date t � [0, T] is 
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with v1i(t, τ) defined accordingly. The value of the option Cn(K, τ1, τ2) 
is 

   

with d1 and d2 defined as before and  

 

  

19 See Heath et al. (1992, Condition C.3) and Duffie(1988, Page 140 and Section 15.E). 
20 See Heath et al. (1992, Condition C.4) for general regularity conditions regarding the market 

price of risk. 
21 It is important that the volatility of forward rates is constant when forward rates are “large”. 

Suppose 

   

with σ a positive, real-valued constant. In Morton (1988) it is shown 
that in this case no finite valued solution to (5.76) exists, because 
volatility is unbounded. 

22 In case of a multi-factor extension of this model, the forward rate curve at some time t � [0, 
T], given n volatility functions σi(t, s), t < s, t, s � [0, T], n fixed real-valued market prices of 
risk (λ1,…, λn) and some realization of the vector process W={W1(t),…, Wn(t), t � [0, T]}, is 

 

  

As before, see Heath et al. (1992) for a detailed overview of the 
regularity conditions concerning the volatility functions and market 
prices of risk. Finally, the valuation of interest rate derivative 
securities is accomplished similarly, by generalizing the one-factor 
risk-neutral expectation. 

23 The binomial version or discretizaton of this model was derived independently by Pederson 
et al. (1989). 

24 See n. 11 and Arnold (1974, ch. 8) 
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25 As in the previous sections, the introduction of a mean reverting process for the short rate 
also removes this drawback, and preserves reasonable stochastic dynamics. However, the 
estimation problems already noted in the introduction to this section remain. For a detailed 
treatment of this process, see Jamshidian (1990). 

26 See again Heath et al. (1992, Condition C.4) for general regularity conditions regarding the 
market price of risk. 

27 This can be explained by the symmetry of the Brownian Motion. 
28 In the case of n factors, the short rate obeys 

 

  

with 

 

  

and the volatility functions satisfying 
the requirements described above and 

a vector process of independent 
Standard Brownian Motions. The term structure of interest rates at 
time t � [0, T] is 

 

  

The value of the option Cn(K, τ1, τ2) is  

   

with d1 and d2 defined as before and 

 

  

For a detailed exposition and empirical application of this model, see 
Jamshidian (1989) and Chapter 9. 

The valuation of interest rate derivative securities    108



6  
NUMERICAL METHODS TO VALUE 

INTEREST RATE DERIVATIVE 
SECURITIES 

Chapter 2 discussed the general issue of the valuation of interest rate derivative securities. 
The most important result of this chapter is the equivalence between the possibility of 
valuing any security or claim uniquely and arbitrage-free and the existence of a unique 
probability measure such that prices expressed in terms of a money-market account are 
martingales. If this condition is fulfilled, the value of such a security has to be equal to 
the expected discounted value of the claim. The expectation in this case should be taken 
with respect to the unique probability measure. 

In previous chapters different approaches for valuing specifically interest rate 
dependent securities were categorized and a variety of well-known models developed in 
recent years were discussed. The two main categories are characterized by the explicit 
formulation of the underlying value of an interest rate contingent claim. In the case where 
the value of a bond is treated as a state variable and exogenously or directly modelled, the 
resulting valuation procedure is classified as the direct approach. The indirect approach, 
however, considers the value of a discount bond as an interest rate contingent claim, too. 
In the modelling of the instantaneous short-term rate of interest, the value of the bond or 
the term structure of interest rates is derived by taking the familiar discounted 
expectation. 

Most of the models discussed so far have been illustrated by calculating the value of a 
European call option written on a discount bond. The reasons for concentrating the 
analysis on this particular interest rate contingent claim are twofold. Within the field of 
valuing interest rate derivative securities, this claim has attracted a lot of attention 
because it has a valuation problem similar to that of options on stocks. As a result, an 
interesting comparison could be made between these two claims. In addition, for most 
interest rates models, the value of a European call option written on a discount bond can 
be expressed as a closed-form solution, facilitating the above-mentioned analysis and 
clearly illustrating the general arbitrage-free valuation procedure. 

A number of interest rate derivative securities mentioned in Chapter 1, however, do 
not allow for the derivation of a closed-form solution that can readily be calculated. In 
order to determine the values of these instruments, therefore, numerical procedures have 
to be used. These procedures have the common property of evaluating sample paths of 
the underlying stochastic state variable. Based on these particular paths and their 
corresponding probabilities, the value of the contingent claim is again obtained by 
calculating the discounted expectation. 

A straightforward approach that utilizes this evaluation of sample paths is simulation. 
In the case of the Black and Scholes (1973) model, for example, the value of a European 
call option on a non-dividend paying stock can be determined by randomly generating 
stock prices that are risk-neutrally distributed at maturity of the option, and calculating 
the discounted average option value. By increasing the number of stock prices generated, 



a reasonable approximation of the option is obtained.1 Although this method can handle 
complicated distributions of the state variables, its inability to incorporate early-exercise 
features of contingent claims still severely limits the method's practical application. 

A lattice approach, however, does incorporate this early-exercise feature because of 
the ability to represent the conditional distribution of the underlying state variables. Each 
point of the lattice represents the value of the state variable at some point in time in some 
state. From this particular point, different nodes of the lattice, representing different states 
at some future time, can be reached with some probability. The actual values at each node 
and the corresponding probabilities are chosen such that by increasing the number of 
steps, the discrete-time distribution converges to the continuous-time distribution. Based 
on such a tree, the value of the contingent claim is calculated in the usual way. 

The lattice approaches can be classified according to the extent to which the different 
sample paths recombine. If nodes representing possible future values of the state variable 
can be reached with positive probability by several previous nodes, the lattice, or tree, is 
path-independent. It is obvious from this definition that if such nodes can only be reached 
by one previous node, the sample paths of the tree do not recombine and, thus, the lattice 
is denoted path-dependent. 

This categorization of the lattice approaches might suggest that path-independent trees 
are generally preferable. Given a fixed number of points in time or dates to span some 
time interval, the corresponding total number of nodes in this approach is less than in the 
path-dependent approach, facilitating numerical application and possibly increasing 
convergence and accuracy. As will be seen in the next sections, however, the constraints 
imposed on the lattice to let the paths recombine can decrease the rate of convergence. In 
addition, the distributional characteristics of some interest rate processes are dependent 
on the particular realizations of previous interest rates and, as a result, the construction of 
path-independent trees might not be possible.  

The first section of this chapter discusses three general approaches to constructing 
path-independent interest rate trees. Although the analysis is primarily concerned with the 
valuation of interest rate derivative securities, the approaches are easily extendable and 
applicable for different state variables. Apart from this detailed treatment, a comparison 
of the different methods will be made in the second section by actually calculating 
options on bonds for the Cox et al. (1985) model. In addition to this practical 
demonstration, some criteria to assess and compare the rate of convergence and 
numerical stability will be put forward. After this, the third section analyzes the model of 
Heath, Jarrow and Morton I and shows the construction of a path-independent interest 
rate tree. 

In general, path-dependent trees are constructed only for specific cases, when another 
approach is not applicable because of distributional characteristics. A well-known 
example is the particular version of the model of Heath, Jarrow and Morton II, discussed 
in Chapter 5. Because of the popularity of this model in financial practice and the fact 
that in the empirical part of this thesis some serious objections to it are discussed with 
respect to the empirical implementation, the construction of a path-dependent interest rate 
tree is discussed in the last section. 
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PATH-INDEPENDENT NUMERICAL METHODS 

If some nodes representing possible future values of the interest rate can be attained by 
more than one previous node with positive probability, the lattice, or tree, is path-
independent. This recombining of sample paths reduces the total number of nodes in the 
tree compared to the path-dependent approach and there are obvious numerical reasons 
mentioned in the introduction to this chapter for constructing these modified trees. 

The desired reduction of nodes, however, imposes some constraints on the drift and 
volatility functions of the stochastic interest rate process. In this section, these conditions 
are formulated and three well-known approaches for constructing a path-independent 
interest rate tree are discussed. The first numerical procedure to be discussed is the 
method of Nelson and Ramaswamy (1990). In this approach, a binomial tree is 
constructed to represent the possible values of future interest rates. By modifying the 
probabilities at each node of the tree, this approach is able to represent a general class of 
stochastic processes (to be defined later on). Although the path-independent tree is 
binomial, multiple jumps may be necessary to accomplish the convergence of the 
discrete-time distribution to the continuous-time equivalent. In the method of Tian 
(1991), for instance, these multiple jumps are excluded, simplifying the numerical 
procedure. Finally, the method of Hull and White (1990a), who construct a trinomial tree 
based on the explicit finite difference method, will be analyzed.  

The first step in the construction of the interest rate lattice in these approaches is the 
following necessary transformation of the stochastic process of the interest rate. Suppose 
the general stochastic differential equation of the instantaneous short-term rate of interest 
in the risk-neutral economy is given by 

 (6.1) 

The initial value of the interest rate r(0) is a constant and the process 

is a Standard Brownian Motion initialized at zero. The 
assumption is made that a solution to this equation exists with probability one, which is 
distributionally unique. The functions µr(r(t), t) and σr(r(t), t) are continuous and are 
dependent only on the information at time t, represented by the value of the interest rate 
at this time, and not on the particular path followed by the interest rate through [0, t]. As 
will be seen in the remainder of this section, this assumption is crucial in order to obtain a 
path-independent interest rate tree that will approximate the continuous process. In 
addition, the drift and volatility functions obey the following conditions:2 

 

  

Although this singularity at r(t) = 0, t � [0, T], limits, to some extent, our general 
treatment, it is a reasonable assumption for the modelling of asset prices or nominal 
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interest rates within the model of Cox et al. (1985). In addition, the algorithm presented 
below is easily modified to deal with processes without this singularity. 

The basic principle of the numerical tree consists of the discrete approximation of the 
Standard Brownian Motion and the transformation at each node of the tree to obtain a 
corresponding interest rate value. After this, suitable probabilities have to be specified to 
match the instantaneous drift and volatility functions. If, however, this procedure is 
applied to equation (6.1), the tree is not path-independent if the volatility function is 
explicitly dependent on the value of the interest rate. To avoid this pathdependency, the 
original interest rate process must be transformed such that it has an instantaneous 
standard deviation equal to one. Suppose therefore, that x(r(t), t) is twice differentiable in 
r(t) and once in t, t � [0, T]. Using Ito’s Lemma, 

 (6.2) 

with  

 

  

For notational convenience, the dependency of the variable r(t) on t, t � [0, T], has been 
suppressed. To get a unit-instantaneous standard deviation of this transformed variable 
x(r, t), t � [0, T], take 

 
(6.3) 

In addition, define 

 

  

and, after assuming both xL(t) and xU(t) to be real-valued constants for all t � [0, T], the 
inverse transformation is defined as 

 

  

for t � [0, T]. 
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The presentation of the different procedures in the following subsections starts with 
the illustration of the construction of the tree to approximate the transformed process 
x={x(t), t � [0, T]}. Next, a derivation is made of the exact number of nodes in a tree, 
given a fixed number of steps to divide the time interval spanned by this tree, as this 
number is useful in the general comparison in the next section. A demonstration next 
follows of the different numerical methods, using a simple example of valuing an 
American call option on a discount bond under the model of Nelson and Ramaswamy 
(1990). 

In Chapter 5, limited attention was paid to the multi-factor extensions of the different 
interest rates models, as this extension is easily accomplished by making the short-term 
rate a sum of several independent stochastic variables. For the same reason, the 
discussion of the numerical procedures in this chapter concentrates on one-factor interest 
rates models. 

The Method of Nelson and Ramaswamy 

The stochastic process of the transformed variable x={x(t), t � [0, T]} is approximated by 
a binomial tree consisting of n steps. Each of these steps represents a subinterval of 
length , and the different values of the approximate process 

at each point of the lattice are given by 

 (6.4) 

with i=0,…, j and j=0,…, n. In Figure 6.1, the resulting binomial tree is shown; at each 
point of the tree, the approximate process can either increase or decrease. Use of the 
inverse transformation yields the corresponding approximate discrete values of the 

interest rate process . The binomial 
probabilities at each point of the lattice are now chosen to match the instantaneous drift 
term of the continuous-time process given by equation (6.2) exactly. At node (i, tj) with 
i=0,…, j and j=0,…, n−1, therefore, the probability of an upward move during the next 
period is3 

 
(6.5) 

The assumed singularity of the instantaneous volatility function in relation to the 
conditions regarding the instantaneous drift term, however, might result in negative 
binomial probabilities. By allowing multiple upward and downward jumps in the 
binomial tree, however, one can avoid this complication. At each point of the lattice, the 
minimum number of upward jumps required to keep the upward probability less than one 
is given by 
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Similarly, the minimum number of downward jumps required to keep the upward 
probability positive is given by 

 

  

This multiple upward and downward jumping to modify the branching process is 
illustrated in Figure 6.1. At node (−1, tj), the transformed binomial process can attain 

either (2, tj+1) or (−2, tj+1). The corresponding values of and 
are 3 and −1, respectively. 

Based on these possible multiple jumps at each point of the node, the modified 
binomial upward probability at each node (i, tj), with i=0,…, j and j = 0,…, n−1 is  

 

Figure 6.1 The method of Nelson and 
Ramaswamy 
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This figure shows the binomial lattice 
constructed by means of the method of 
Nelson and Ramaswamy. At each 
point of the tree, the variable can either 
move upward or downward with some 
probability. At point (−1, tj), for 
example, the variable can attain state 
(2, tj+1) at time tj+1 with probability 

and state (−2, tj+1) at time tj+1 
with probability . 

 
(6.6) 

If this modified probability still exceeds the desired boundaries because of the maximum 
and minimum number of jumps possible at each node, simply censor the modified 
probability to obtain: 

 (6.7) 

The binomial tree constructed in the way described above ensures that the discrete-time 

process of the instantaneous interest rate 
converges in distribution towards the continuous-time process r={r(t), t � [0, T]} given 
by equation (6.1).4 Given the number of steps n to divide a given time interval, the 
number of nodes in the tree (which is a useful benchmark or measure to compare with 
other numerical methods) is simply equal to 

 
(6.8) 

The use of this binomial lattice for the valuation of interest rate derivative securities can 
be illustrated very clearly by an American call option on a discount bond. Suppose, 
therefore, that the maturities of the option and the underlying bond are τ1 and τ2 
respectively. The face value of the bond is 100 and the exercise price of the option is 
defined as K. The total number of steps to divide the time interval [0, τ2] is n2, whereas 
the number of steps to divide the subinterval [0, τ1] is n1. The discrete-time value of the 

bond at each node (i, tj), with i=0,…, j and j=0,…, n2 is denoted by . The value of 

the option at each node (i, tj), with i=0,…, j and j=0,…, n1, finally, is given by . 
At maturity of the bond, it is obvious that at each of the corresponding nodes the value 

of the bond equals its face value, that is: 
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 (6.9) 

for i=0,…, n2. The value of the bond at the other nodes can be obtained using the 
equivalence between the exclusion of arbitrage opportunities and the martingale property 
of relative values of interest rate dependent securities. The arbitrage-free value of a 
security is equal to its discounted expectation, where the expectation has to be taken with 
respect to the unique probability measure under which the relative value of securities are 
martingales. As the binomial tree is discretely representing the continuous-time process 
with respect to this unique measure, the following recursive relationship results: 

 (6.10) 

with i=0,…, j and i=0,…, n2−1. These bond values can be used to obtain the value of the 
call option at maturity of the option,5 that is: 

 (6.11) 

for i=0,…, n1. Based on the same recursive relationship, 

 (6.12) 

with i=0,…, j and i=0,…, n1−1. If at some node, premature exercise of the option would 
be optimal, the value of option determined by discounted expectation at this node can be 
replaced by its exercise value. In the numerical algorithm this translates into 

 

(6.13) 

for i= 0,…, j and i=0,…, n1−1. The convergence properties of the discrete-time interest 
rate process translate, in some sense, to the discrete-time option value. If the number of 

steps n2, and therefore n1, increases, the initial value of the option, , obtained by 
using the binomial tree, converges to its continuous-time counterpart.6  

The Method of Tian 

The method of Nelson and Ramaswamy (1990) approximates a continuous-time 
stochastic process by a discrete binomial tree. The binomial probabilities at each node of 
the tree are chosen such that the instantaneous drift and volatility functions of the 
stochastic process are matched exactly as the number of steps goes to infinity. At some 
nodes of the binomial lattice, however, multiple upward and downward jumps may be 
possible to accomplish this matching and get legitimate probabilities, increasing the 
numerical complexity of this binomial approximation. 
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This increased numerical complexity is avoided in the method of Tian (1991) by 
considering only simple upward and downward jumps and censoring the binomial 
probability, if necessary. Although this simplification may hurt the numerical accuracy 
and stability, some of the different steps in this approach are easier to implement and 
decrease the number of calculations necessary to determine the value of an interest rate 
derivative security, as will be shown in this section. 

The continuous-time process x={x(t), t � [0, T]} is again approximated by a binomial 
tree consisting of n steps. Each of these steps represents a subinterval of length 

and the different values of the approximate process 

at each point of the tree are given by 

 (6.14) 

with i=0,…, j and j=0,…, n. However, the binomial probabilities are now chosen such 
that the instantaneous drift of the transformed process given by equation (6.2), is matched 
exactly:7 

 
(6.15) 

Similar to the method of Nelson and Ramaswamy, this probability may turn negative or 
become greater than one because of the particular behavior of the drift and volatility 
functions. A necessary and sufficient condition to ensure that this probability is legitimate 
at node (i, tj) with i=0,…, j and j=0,…, n−1 is:8 

 
(6.16) 

The set of nodes for which this condition holds is defined as  

 (6.17) 

If the initial point of the binomial lattice is an interior point of this sample, the 
probabilities at the outside regions of the tree are modified to ensure that only elements of 

can be reached. Practically, this means for the lower part of the lattice 

 (6.18) 

for j=0,…, n−1, while for the upper part 

 (6.19) 

for j=0,…, n−1. This inward jumping to modify the branching process is illustrated in 
Figure 6.2. At each point of the lattice, which is an element of , the transformed 
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binomial process can either increase or decrease by . At point (−3, tj), which is not 
an element of , however, the process can only attain the point (−2, tj+1) with probability 
one. This point (−2, tj+1) is again an element of .  

 

Figure 6.2 The method of Tian 
This figure shows the binomial lattice 
constructed by means of the method of 
Tian. At any point of the tree, which is 
an element of , the variable can 
either move upward or downward with 
some probability. At point (−1, t1), for 
example, which is an element of , 
the variable can attain state (0, t2) at 
time t2 with probability q−1(t1) or state 
(−2, t2) at time t2 with probability 1−q–
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1(t1). At point (−3, tj), however, which 
is a point just outside , the variable 
can only attain state (−2, tj+1) at time 
tj+1 in , with probability 1. 

The binomial tree constructed in this way clearly facilitates a numerical 
implementation. Multiple upward and downward jumps are avoided and the number of 
nodes in the tree has decreased. To calculate the actual number of nodes necessary for the 
numerical illustration of the next section, it will be assumed that 

are constant for all even and odd j=0,…, n−1. Therefore 
define 

 
(6.20) 

 
(6.21) 

and 

 

  

The total number of nodes, given the number of steps n, equals9 

 

(6.22) 

for J−K is even. Otherwise, we have 

 

(6.23) 

where Ent[.] denotes the Entier function. 
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The valuation of interest rate derivative securities by means of this binomial lattice is 
similar to the approach described in the previous section. The recursive discounted 
expectation procedure or “backwardation” is even simplified by cutting off the tree, if 
necessary; thus facilitating numerical implementation. 

The Method of Hull and White 

In the previous two methods, the continuous-time stochastic process of the instantaneous 
short-rate is approximated by a discrete binomial process. The approach of Nelson and 
Ramaswamy (1990) explicitly determines the binomial probabilities at each node of the 
tree, ensuring convergence in distribution of this discrete process to its continuous-time 
counterpart. This procedure is modified by Tian (1991) to avoid multiple upward and 
downward jumps at some nodes and reduce the number of nodes, accordingly. 

The method of Hull and White (1990a), however, is originally based on the explicit 
finite difference method to solve the partial differential equation that every contingent 
claim obeys. This explicit finite difference method is preferred in comparison to the 
implicit finite difference method for several reasons. In an extensive numerical 
comparison of the various difference methods of Geske and Shastri (1985), the explicit 
finite difference method is concluded to be the most efficient numerical procedure. In 
addition, this method is computationally much simpler than the implicit method since it 
does not require the inversion of matrices. 

The stochastic process of the transformed underlying state variable x={x(r(t), t), t � 
[0, T]} is approximated by a trinomial tree consisting of n steps. A subinterval of length 
∆t=T/n is spanned by each step of the lattice and the different values of the approximate 

process at each point are given by 

 (6.24) 

for some ∆x>0, i=−j, −j+1,…, j−1, j and j=0,…, n. At some point of the lattice (i, tj), 
three different points (i+1, tj+1), (i, tj+1) and (i–1, tj+1) at time tj+1 can be reached with 
probability qi, i+1(tj), qi,i(tj+1) and qi, i–1(tj), respectively. Figure 6.3 shows the resulting 
branching process. The trinomial probabilities at each point of the lattice are chosen such 
that again the instantaneous drift term and volatility functions are matched exactly, 
yielding10 
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These probabilities are positive if both 

 
(6.25) 

and  

 

Figure 6.3 The method of Hull and 
White 
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This figure shows the trinomial lattice 
constructed by means of the method of 
Hull and White. At any point of the 
tree, which is an element of , the 
variable can move upward or 
downward or stay the same with some 
probability. At point (−1, t1), for 
example, which is an element of the 
variable can attain state (0, t2) (−1, t2) 
or (−2, t2) at time t2 with probabilities 
q−1, 0(t1), q–1, –1(t1) and q−1, −2(t1), 
respectively. At point (−3, tj), however, 
which is a point just outside , the 
variable can only attain states (−1, tj+1), 
(−2, tj+1) or (−3, tj+1) at time tj+1 in 
with probabilities q–3, −1(tj), q–3, −2(tj) 
amd q–3, –3(tj), respectively. 

 
(6.26) 

are satisfied. Again, the sample of nodes fullfilling these conditions is defined as 

 (6.27) 

It is clearly possible to let contain all nodes if the instantaneous drift term µx(x, t) is 
bounded.11 

However, due to a possible singularity of the volatility function of the stochastic 
process of the short rate, just as with the one discussed in the previous two sections, some 
points of the original tree may not be elements of . Modification of the jump process in 
these particular nodes, similar to the binomial lattice approaches, enables retention of 
positive probabilities and ensures convergence. Suppose therefore, for example, that at 
some point (i, tj) of the lattice, one wants to reach the following three different points 
(i+k+1, tj+1), (i+k, tj+1) and (i+k–1, tj+1) at time tj+1 with probability qi, i+k+1 (tj), qi, i+k(tj+1) 
and qi, i+k−1(tj), respectively. Matching of the first and second moments now yields: 
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If is the smallest negative value of the approximate discrete process at time tj, 
j=0,…, n, which is not an element of , formally identified as 

 (6.28) 

the number of extra upward jumps K(IL) at this point necessary to return to the trinomial 
tree is: 

 

  

This modified upward jumping is illustrated in Figure 6.3. At point (−3, tj), which is just 
outside , the process can attain the nodes (−l, tj+1), (−2, tj+1) and (−3, tj+1) with 
probabilities q−3,−1 (tj), q−3,−2(tj) and q−3,−3(tj), respectively. The value of K(IL) in this case 
is equal to 1. 

Similarly, if is the smallest positive value of the approximate discrete process 
at time tj, j=0,…, n, which is not an element of , formally identified as  

 (6.29) 

the number of extra downward jumps K(IU), at this point, necessary to return to the 
trinomial tree is: 
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If at these points one of the trinomial probabilities is still negative, the three probabilities 
are censored by equating them to 1/3 

To calculate the number of nodes in the trinomial tree, again the assumption is made 

that and are constant for all j=0, …, n. If the number of steps in the 
lattice is n, the number of nodes is12 

 (6.30) 

with 

 
(6.31) 

 
(6.32) 

and 

 

  

As explained and illustrated in the section on the method of Nelson and Ramaswamy (pp. 
112–5 above), the value of an interest rate derivative security is determined by 
calculating its discounted expectation. Starting at maturity of the claim, the value of the 
short-term rate of interest at each node, together with the corresponding trinomial 
probabilities, are used recursively to obtain this expectation. In the case of an American 
option, the early-exercise feature can simply be incorporated by replacing the option's 
value, determined recursively, by the early-exercise value. Because the discrete-time 
process of the interest rate converges in distribution to its continuous-time counterparts as 
the number of steps increases, convergence of option values, obtained numerically, is 
easily shown.13  
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COMPARING PATH-INDEPENDENT NUMERICAL METHODS: 
THE MODEL OF COX, INGERSOLL AND ROSS 

This section illustrates and compares the three numerical methods by valuing options on 
discount bonds using the model of Cox, Ingersoll and Ross (1985) (CIR), discussed in 
Chapter 5, pp. 76–83. Because this model incorporates a lot of empirical characteristics 
of interest rates and, as such, is the subject of extensive empirical research, it is 
interesting to show an actual implementation of the numerical methods using this 
particular model. In addition, an attempt will be made to develop some decision rules to 
compare different numerical methods, and this model serves as a nice benchmark to 
illustrate this analysis. 

This section starts with a derivation of the transformed process using the CIR model, 
necessary for the application of the three different numerical methods. The instantaneous 
short-term rate of interest in this model obeys the following stochastic differential 
equation in the risk-neutral economy: 

 (6.33) 

The parameters κ, θ and σ are positive, real-valued constants, while the stochastic process 

is a Standard Brownian Motion initialized at zero. The 
initial value of the interest rate, r(0), is a known, real-valued constant. 

The transformation used to obtain a stochastic process with a unit-instantaneous 
volatility function is, according to equation (6.3), 

 
(6.34) 

yielding 

 
6.35 

The resulting stochastic differential equation of the transformed variable equals 

 
(6.36) 

with  
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Given the characteristics of the contingent claim and the particular values of the 
parameters of the stochastic process, interest rate contingent claims can be valued 
according to the different numerical procedures described and discussed in the previous 
section. In the case of a call option on a bond, the lattice has to span the maturity of the 
option only and not the maturity of the underlying security as well. At each of the final 
nodes, the corresponding instantaneous interest rate in that state is known and because the 
value of the underlying bond is an explicit analytic function of this rate, the exercise 
value of the option is readily obtained.14 

An interesting problem, now, is the way in which these procedures have to be 
compared with respect to convergence and stability. In a number of papers, in which 
actual comparisons between some numerical procedures are performed,15 a contingent 
claim, for which a closed-form solution exists, serves as a benchmark. This claim is then 
evaluated for different claim characteristics, parameter values and an increasing number 
of steps. Based on this increasing number of steps, a judgement can be made about the 
convergence and stability of the various numerical methods. 

In the event that numerical methods have to be used because of the complex 
characteristics of the derivative security in question, it seems reasonable to use a claim as 
benchmark for which a closed-form solution does exist. For different characteristics of 
this benchmark, a sufficient number of steps can be determined to guarantee the desired 
numerical properties such as stability and convergence. However, as will be clear from 
the discussion of the term structure models so far, this closed-form contingent claim does 
not always exist and a comparison of the different methods on the basis of an increasing 
number of steps is difficult. 

Even if closed-form solutions for some claims do exist, the different claim values, 
determined numerically, may exhibit very typical oscillatory patterns. Showing the 
claim's values, therefore, for some specific number of steps is definitely not sufficient to 
examine the numerical properties. To illustrate this statement, Figure 6.4 shows the 
numerical value of a 10 per cent in-the-money European call option on a discount bond 
for different numbers of steps. The maturity of the option and the underlying bond are 
five and ten years, respectively, whereas the face value of the bond is 100. The option 
values are obtained by using the method of Hull and White (1990a).  
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Figure 6.4 Numerically obtained 
option values 
This figure shows numerically 
obtained European call option values 
as a function of the number of steps. 
The numerical approach used is the 
method of Hull and White (1990a). 
The maturity of the option is five years 
and the exercise price of the option is 
1.1 times the forward price of the 
underlying bond. The maturity of the 
underlying bond is ten years, while the 
face value is 100. The values of the 
parameters r(0), κ, θ and σ are 0.10, 
0.2, 0.10 and 0.10, respectively. 

It is obvious from this specific oscillatory pattern of the option values that a simple 
examination of convergence is not possible. In observing a particular array of increasing 
number of steps, overestimating or under-estimating the numerical accuracy, and thereby 
the rate of convergence, is almost unavoidable. 
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To take these typical patterns of option values into consideration and to be able to 
compare the numerical properties of interest rate processes for which closed-form option 
values do not exist, this section proposes the following procedure, using the CIR interest 
rate model and the numerical procedures, mentioned above, to illustrate it. 

Convergence properties of the different approaches can be compared by valuing 
European call and put options on discount bonds. Although the values of these contingent 
claims allow for closed-form solutions, we do not use this property, which will keep the 
presentation as general as  

possible. For a specific scenario of parameter values and option characteristics, the 
benchmark value is determined as follows: 

 
(6.37)  

where denote the numerically obtained option 
values based on n steps using the three methods, respectively. The number of steps, 
nBench, to obtain the benchmark value is, for each of the scenarios, equal to 300, although 
even this number, of course, may introduce some error due to the above-mentioned 
cyclical behavior of option values.16 

Given a particular scenario and the corresponding benchmark value, the maximum 
number of steps nNR, nTian and nHW for which the difference between the numerical and 
benchmark option value is greater than one cent can be recursively determined. More 
formally, this means 

 

  

and  
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Table 6.1 Scenarios used for numerical comparison 

  Low case Base case High case 

r(0) 0.06 0.10 0.14 

κ 0.2 0.2 0.2 

θ 0.1 0.1 0.1 

σ 0.1 0.1 0.1 

α −0.1 0 0.1 

τ0 2.5 5 7.5 

τB 10 10 10 

This table contains the different scenarios used to compare the numerical methods using the CIR 
model. The parameters κ, θ, σ and the initial value of the interest rate r(0) describe the stochastic 
dynamics of the interest rate, as is discussed in Section 5.1. The symbols τ0 and τB denote the 
maturity of the option and the underlying bond in years, respectively. Finally, the parameter α 
represents the degree by which the option is in-the-money or out-of-the-money. In the case that this 
parameter is zero, the exercise price of the option is equal to the forward price of the underlying 
bond. 

Based on these numbers nNR, nTian and nHW, then, the computational efficiency to achieve 
this rate of convergence is measured by the number of nodes of the lattice. 

The various scenarios used to perform this numerical comparison can be classified 
according to the particular values of the stochastic interest rate process and the dififerent 
option characteristics, such as time-to-maturity, put or call and the degree to which the 
option is in-the-money or outof-the-money. Preferable is a low case, base case and high 
case, for each of these values and characteristics, resulting in 37×2=4374 different 
scenarios. This thesis, however, will only compare the numerical approaches by means of 
the following cases shown in Table 6.1, resulting in 54 scenarios. These scenarios cover a 
range of reasonable parameter values for which it is interesting to examine the 
convergence of the different approaches. 

The results shown in Table 6.2 indicate that the binomial lattice approach of Tian is 
generally the most efficient numerical procedure to value options on bonds using the CIR 

model. The average number of nodes for which the corresponding option 
value is at least within one cent of the benchmark value, is 3140, compared to 3743 and 
4298 for the method of Hull and White and Nelson and Ramaswamy. In addition, the 
corresponding standard deviation of this number is also significantly lower. It is further 
interesting to note that in a comparison of the methods with respect to the mean and 
standard deviation of the number of steps, the trinomial approach would be preferred, 
while the two binomial methods would be almost indistinguishable. The decrease in the 
number of nodes in the method of Tian because of the mean reversion and the resulting 
inward jumps, significantly increases the computational efficiency.  
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Table 6.2 Statistics of numerical comparison 

  Nelson and Ramaswamy Tian Hull and White 

  nNR QNR(nNR) nTian QTian(nTain) nHw QHW(nHW) 

Mean 87 4,298 88 3,140 69 3,743 

St. Dev. 3.85 370 3.96 241 4.06 375 

Maximum 156 12,403 148 7,269 149 13,320 

Minimum 21 253 21 208 12 133 

This table contains the summary statistics of the comparison of the three numerical procedures. The 
different scenarios are described in Table 6.1, and the total number is 54. The numbers nNR, nTian 
and nHw represent the number of steps for which convergence within one cent of the benchmark 
value has been obtained. The functions and give the 
corresponding number of nodes, useful as a measure of computational efficiency. 

THE PATH-INDEPENDENT INTEREST RATE MODEL OF 
HEATH, JARROW AND MORTON I 

This section illustrates a two-factor model of Heath, Jarrow and Morton (1990a, 1992) I, 
discussed in Section 5.2.17 Although their original discrete approximation of the 
continuous-time interest rate model is path-dependent, this section will derive a 
numerical procedure that is pathindependent.18 In addition, an extension of the interest 
rate tree will be presented to determine any kind of desired hedge ratios, which are useful 
for the management of interest rate risk. At the end of this section, various features and 
numerical efficiency of this method will be illustrated. 

The instantaneous short-term rate of interest is a function of two independent factors 
and a term, ensuring that a given term structure of interest rates at the valuation date is 
obtained in the risk-neutral economy,19 that is, 

 (6.38) 

with 

 
(6.39) 

 
(6.40) 

and 

 (6.41) 
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(6.42) 

In these expressions, f(0, t) is the exogenous term structure of forward rates at the initial 
trade date 0. The parameters σ1, κ and σ2 are real-valued constants and the processes 

and are independent 
Standard Brownian Motions initialized at zero. 

According to Arnold (1974, p. 134), the factor x2(t) is a unique solution to an 
Ornstein—Uhlenbeck process and the stochastic process of the two factors are therefore: 

 (6.43) 

 (6.44) 

with x1(0)=0 and x2(0)=0. The method of Tian (1991) can be employed to construct a tree 
with maturity T and the number of steps n. The two continuous-time stochastic factors 

x1(t) and x2(t) are approximated in this method by two binomial factors and 

. Starting with the initial values and , at each point of the lattice 

each binomial factor and can either increase or decrease by at time 
ti, where ∆t=T/n and ti= i∆t, i=0,…, n−1, resulting in four possible states. In case of the 

second factor, given its value at time t, the values and 

at time t+∆t can be reached with probability 

, respectively. If one of these probabilities 
turns out to be negative at some point of the lattice, a simple inward jump with 
probability one is modelled. It is obvious that in case of the first factor, the corresponding 
values can be reached with equal probability. At each point of this two-dimensional tree, 
finally, the value of the instantaneous interest rate r(t) is then obtained from equation 
(6.38) and interest rate contingent claims are valued by means of the familiar recursive 
computation, starting at maturity of this claim.  

Similar to the CIR model (1985) in the previous section, the value of a discount bond, 
on which the claim may be dependent at maturity, is an explicit analytic function of the 
short-rate at this time. This known formula considerably enhances the computational 
speed of the algorithm, because the interest rate tree has only to span the maturity of the 
claim instead of the maturity of the underlying value.20 At time t, therefore, the value of a 
zero-coupon P(x1(t), x2(t), t, τ) bond with remaining time-to-maturity τ, is given the 
values of the two factors x1(t) and x2(t) at this time,21 

 (6.45) 

where 

Numerical methods to value interest rate derivative securities   131



 (6.46) 

with 

 
(6.47) 

and 

(6.48) 

with 

 
(6.49) 

Because the first factor in this model is similar to the model of Ho and Lee (1986) and 
changes in this factor result in parallel shifts in the yield curve, the derivative of the bond 
P(x1(t), x2(t), t, τ) with respect to this factor equals the Redington (1952) duration22 DP, 

 
(6.50) 

Changes in the value of the second factor can now be interpreted as causing a rotation RP 
of the term structure of interest rates, 

 
(6.51) 

Although the sensitivities of discount bonds with respect to changes in the underlying 
two factors can be derived analytically, it would be interesting to be able to obtain these 
sensitivities for any interest rate contingent claim. To obtain these values numerically, the 
interest rate tree described above can be expanded in the following way.23 The interest 
rate tree will be increased by two time steps. The new valuation date starts with an 
exogenous term structure R*(0, τ) such that after two steps the term structure R*(0, 0, 
2∆t, τ) resulting from an up and down move of each of the factors is equal to the 
exogenous term structure R(0, τ) at the original initial valuation date 0, that is, 

 

(6.52) 
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The values of the contingent claim at time t=2∆t at two up and down moves can then be 
used to determine the sensitivity of this claim with respect to the underlying factors. In 
the case of the discount bond, the numerical values of duration and rotation are 

 

(6.53) 

and  

 

(6.54) 

To illustrate the proposed numerical method, start by calculating the initial value, 
duration and rotation of a zero-coupon bond with a maturity of ten years and face value 
of 100. The exogenous term structure at the initial trade date is assumed to be flat at 10 
per cent, while the parameters σ1, κ and σ2 are 0.02, 0.4 and 0.02, respectively. The 
numerically obtained results are shown in Table 6.3. 

Although this example is only expository, it can be seen that convergence within one 
cent of the exact value is obtained after more than thirty steps. The rate of convergence of 
duration and rotation, however, seems to be even higher. 

To extend the example, the value of a European call option will also be computed. The 
value of this claim C(0, τ1, τ2, K) with maturity τ1, exercise price K and written on a 
discount bond with maturity τ2 at the initial valuation date is:24 

(6.55) 

with 
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Table 6.3 Numerical bond values 

Number oƒ steps Value Dp Rp 

10 36.7870 10.0534 4.3334 

20 36.7862 10.0267 4.3283 

30 36.7865 10.0178 4.3267 

40 36.7868 10.0133 4.3258 

50 36.7870 10.0107 4.3253 

60 36.7871 10.0089 4.3250 

Exact value 36.7879 10.0000 4.3233 

This table contains the numerical values of a discount bond with a maturity of ten years, its 
duration and rotation for a different number of steps using the model of Heath, Jarrow and Morton 
I. The initial term structure is flat at 10 per cent, while the values of the parameters σ1, κ and σ2 are 
0.02, 0.4 and 0.02, respectively. 

Table 6.4 Numerical option values 

Number of steps Value 
  

10 7.6301 0.8183 −0.2711 

20 7.6202 0.8220 −0.2743 

30 7.6161 0.8234 −0.2755 

40 7.6201 0.8238 −0.2760 

50 7.6152 0.8246 −0.2766 

60 7.6186 0.8246 −0.2767 

Exact value 7.6156 0.8262 −0.2782 

This table contains the numerical values of a European call option with a maturity of two years 
written on a discount bond with a maturity of ten years for a different number of steps using the 
model of Heath, Jarrow and Morton I. The exercise price of the option is equal to the current value 
of the underlying bond. The initial term structure is flat at 10 per cent, while the values of the 
parameters σ1, κ and σ2 are 0.02, 0.4 and 0.02, respectively. 

The extension of the two-dimensional interest rate tree can also be applied to obtain the 
hedge ratios of this option with respect to the underlying bond and the discount bond with 
a maturity equal to the maturity of the option. For this purpose, the following relationship 
between hedge ratios and sensitivities with respect to the underlying factors will be used: 
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(6.56) 

In Table 6.4, the numerical results are shown for the same parameter values and different 
number of steps. The exercise price of the option is equal to the current value of the 
underlying bond, while the maturity of the option and the underlying bond are two and 
ten years, respectively. 

Convergence within one cent of the exact value has now been achieved after forty 
steps. Moreover, it can be seen from this table that extending the interest rate tree to 
obtain the hedge ratios also yields accurate results. 

THE PATH-DEPENDENT INTEREST RATE MODEL OF HEATH, 
JARROW AND MORTON II 

Path-dependent interest rate trees are characterized by the simple property that each of 
the nodes in the tree can be reached by one particular node with some positive 
probability. The previous section defined some constraints on the stochastic interest rate 
process such that it is possible to construct lattices in which the different paths 
recombine, making the tree path-independent. As was noted in the introduction to this 
chapter, it is tempting to consider a path-independent interest rate tree numerically to be 
more attractive than a path-dependent tree. The number of nodes in the tree as a function 
of the number of steps increases less than exponentially when the paths are recombining, 
resulting in the possibility of evaluating more steps in practical applications.  

Recombining interest rate trees, however, imposes some constraints on the values of 
the interest rate at each of the nodes and the corresponding probabilities, which may 
decrease the rate of convergence. In addition, the class of interest rate processes for 
which it is possible to construct these trees is not general enough to be able to deal with 
all the interest rate models discussed in Chapter 5. As a result, it is necessary and 
interesting to pay some attention to those models for which only path-dependent interest 
trees can be constructed to value contingent claims. 

This section will discuss the construction of a path-dependent interest rate tree using 
the model of Heath, Jarrow and Morton (1990b) II for two reasons. First, this model 
serves as a nice example of an interest rate process for which only a path-dependent tree 
can be constructed. Second, the multi-factor extension of this model is used as an 
example in Chapter 9 to illustrate some serious limitations of a commonly used 
estimation technique when valuing interest rate derivative securities. 

In Chapter 5 we derived the continuous-time stochastic process of the forward rate 
curve in the risk-neutral economy: 
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(6.57) 

In this expression, ƒ(0, t), t �[0, T] is the familiar exogenous forward rate curve at the 

initial valuation date, whereas the process t �[0, T]} represents a Standard 
Brownian Motion initialized at zero. The general volatility function σ(t, s, ƒ(t, s)), t, s � 
[0, T], s > t, is dependent on the calendar time, the maturity of the forward rate and the 
value of the forward rate itself. Although the discussion of this model in Chapter 5 is 
mainly concerned with this general specification, the particular volatility function used in 
the empirical analysis of Heath et al. (1990b), and used in Chapter 9 to illustrate some of 
the estimation problems with this model, is equal to 

 (6.58) 

where σ and ƒMax are positive, real-valued constants.  

The continuous-time stochastic process is approximated 
by a path-dependent tree consisting of n steps. A subinterval of length ∆t = T/n is 
spanned by each step of the of the tree the approximate discrete process 

, j=0,…, n} can either increase or decrease by . 
The continuous-time stochastic process of the forward rate curve can now be 

approximated by the following discrete-time process 

. At some time tj, the forward rate 
can attain two values at time tj+1 with equal probability due to the binomial approximation 
of the Standard Brownian Motion, that is: 

 

  

with j=0,…, n−1, s � [tj+1, T]. For ease of exposition, the dependence of the different 
functions on the current value of the forward rate has been suppressed. The resulting 
interest rate tree is path-dependent and at time tj, j = 0,…, n, the number of different 
states is 2j. 

The analytic expression of the discrete function α(tj, s) can readily be obtained from 
the continuous-time stochastic process given by equation (6.57). As the number of steps n 
increases, the resulting discrete process converges to its continuous-time counterpart. 
However, the path-dependent tree limits the number of steps to be evaluated because the 
number of nodes grows exponentially. To increase convergence, therefore, the function 
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α(tj, s) is chosen such that the exogenous term structure of forward rates at the initial 
valuation date is always obtained, whatever the number of steps n, that is: 

 (6.59) 

for j= 0,…, n, s� [tj, T]. This expression can be rewritten as25 

 

(6.60) 

After taking natural logarithms and differentiating with respect to s26 

 

(6.61) 

with cosh(x) = (ex+e−x)/2.  
Once the path-dependent interest rate tree is constructed, contingent claims can easily 

be valued by taking the usual discounted expectation of the claim at maturity. Similar to 
the models illustrated in the second section of Chapter 6, the interest rate tree has only to 
span the maturity of the claim, because at each node the whole term structure of forward 
rates is available. To restrict the number of nodes in the tree to avoid computational 
problems, it may be necessary to vary the different time intervals. 

NOTES 
1 To increase the accuracy of this approach by means of, for example, the Control Variate 

Technique, see Boyle (1977) and Hull and White (1988). 
2 For additional restrictions regarding the drift and volatility functions, see Nelson and 

Ramaswamy (1990, Assumptions 7, 9 and 10). 
3 By choosing the binomial probabilities in this way, the instantaneous drift term is matched 

exactly, but the instantaneous volatility is not. However, the central and noncentral second 

moment converge to the same limit as ∆t ↓ 0, because the difference is of the order . 
4 See Nelson and Ramaswamy (1990, Theorem 3). 
5 In the models illustrated in the next section, bond values are a known explicit function of the 

instantaneous interest rate. To value an option on a bond, therefore, an interest rate tree must 
be constructed that spans the maturity of the option, as the exercise value of the option at 
maturity can be directly calculated. 

6 See Nelson and Ramaswamy (1990, Theorem 4) for conditions regarding convergence in case 
of stock options. The results established easily translate to European and American call and 
put options on discount bonds. 

7 See n. 3. 
8 See Tian (1991, Equation (9)). 
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9 See Tian (1991, Section 4.3). 
10 Note that with three probabilities, the first and second moment of the distribution can be 

matched exactly in discrete-time. See also n. 3. 
11 In addition, Hull and White (1990a, p. 94), suggest taking 

 
  

as ∆t ↓ 0 to increase convergence. 
12 See Tian (1991, Section 4.3). 
13 See n. 6. 
14 See n. 5. 
15 See, for example, Geske and Shastri (1985), Nelson and Ramaswamy (1990) Tian (1991), 

Hull and White (1990a), Boyle (1988), Boyle et al. (1989) and Amin (1991). 
16 An interesting and necessary extension of the numerical analysis is the determination of the 

sensitivity of the results obtained with respect to this benchmark value. 
17 See also Chapter 5, n. 18 for the general multi-factor case. 
18 This different discrete approximation was first discussed in de Munnik (1994a).  
19 In Heath et al. (1990a, p. 434–5), convergence of the limiting process of the forward rate was 

obtained by equating the constant martingale probability π to the actual probability q. 
However, one can show that convergence can be established more generally. In their 
notation, the discrete martingale probability should equal 

 
  

where the so-called market price of risk is 
deterministic and bounded on [0, T]. 

20 In Amin (1991), the entire forward rate curve is similarly discretely approximated. At 
maturity of the claim, therefore, the term structure of interest rates is known. However, 
practical implementation is facilitated in our approximation, as yields are a closed-form 
solution of the short-rate only, whereas in Amin, yields are a sum of different forward rates. 

21 See again Chapter 5, n. 18 with n=2 and κ1=0. 
22 This was first noted by Musiela et al. (1990). 
23 This method is basically an extension of the approach described in Hull (1989, p. 225–6) for 

the case of stock options. 
24 See, again, Chapter 5, n. 18 with n=2 and κ1=0 or Heath et al. (1992, p. 20). 
25 See Heath et al. (1990b, p. 75). 
26 The volatility function given by equation (6.58), may give some problems as it is not 

differentiable at ƒ(t, s)=fMax. However, this function can be approximated with any desired 
degree of accuracy by 
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It is readily verified that this approximation is differentiable for all 
ƒ(t, s). 
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Part II  
EMPIRICAL RESULTS OF 

THE ESTIMATION OF 
INTEREST RATE 

DYNAMICS 

 



7  
ESTIMATING THE TERM STRUCTURE OF 

INTEREST RATES: A TIME SERIES ANALYSIS 

In this chapter, the models of Vasicek (1977) and Cox, Ingersoll and Ross (1985) are 
estimated by means of a time series analysis.1 Although these two models represent only 
some specific models within the class of endogenous term structure of interest rates 
models, there are several reasons for concentrating the empirical analysis on these 
specific interest rate processes. 

The models within the class of the endogenous term structure of interest rate models 
imply both a stochastic dynamics of spot rates over time and a particular shape of the 
yield curve at some valuation date. These models, therefore, allow for an interesting 
comparison between the results of a time series analysis of spot rates and the results of a 
cross-sectional analysis of bond prices to assess the implications of the shape of the yield 
curve on the distribution of future spot rates. 

The derivation of the different models in this thesis is based principally on the 
continuous time evolution of interest rates. The obviously discrete time observation of 
spot rates, therefore, requires a discrete time distribution that is equivalent to its 
continuous time counterpart. Although one can assume that in the case of daily 
observations of spot rates the discrete time process is approximately equal to the 
continuous time process, this chapter shows that an exact aggregation over time seems to 
be necessary in the case of longer maturity spot rates. This exact aggregation over time to 
determine the discrete time distribution and its corresponding moments results in closed-
form solutions for the models of Vasicek and Cox, Ingersoll and Ross (CIR), facilitating 
the actual time series analysis. 

The main difference between the Vasicek model and the CIR model is the 
specification of the variance of the spot rates. In the Vasicek model, this variance is 
constant for a given maturity; because of the resulting normality of interest rates, positive 
probabilities are assigned to negative rates. In the CIR model, however, the discrete time 
variance is a linear function of the spot rate with a positive, constant intercept, and, as 
shown in Chapter 5, this heteroscedasticity excludes negative nominal interest rates. The 
time series analysis of spot rates and the nested variance specifications, therefore, enable 
an explicit econometric test of the contribution or significance of the exclusion of 
negative interest rates. 

The first section of this chapter briefly reviews and repeats the discrete time 
distributions of the spot rate under the Vasicek and CIR models. Next follows a 
discussion and explanation of the econometric methodology to estimate these time series 
equations. The next section gives a description of the data used to estimate the different 
models, while the third section thoroughly discusses the results of the estimation. The last 
section illustrates the economic implications of these results for the term structure of 
interest rate volatilities by valuing options on bonds. 



ESTIMATION OF THE MODELS 

Chapter 5 derived the conditional distribution of the spot rate under the Vasicek model 
(see p. 69–76). Conditional upon the information at time t, the spot rate R(t + ∆t, τ) with 
maturity τ at time t + ∆t, is normally distributed and follows the following first order 
autoregressive process 

 (7.1) 

The parameter b0 is the unconditional mean of the spot rate, that is: 

 

  

while b1 reflects the mean reversion of interest rates 

 
  

The disturbances are conditionally normally distributed with mean 

   

and constant variance 

 

  

Not all of the parameters of the Vasicek model can be identified from the linear 
regression (7.1). The identifiable structural parameters are κ and σ2, which can be 
expressed as a function of b1 and s2,  

 
(7.2) 

 (7.3) 

Although the unconditional mean b0 of the spot rate can be estimated, the unconditional 
mean θ of the instantaneous short-rate and the market price of risk λ are not identifiable 
separately. The time series estimation, therefore, does not allow for the construction of 
yield curves and term structures of interest rate volatilities. 

The conditional distribution of the spot rate in the case of the CIR model, presented in 
Chapter 5, also follows a first order autoregressive process: 
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 (7.4) 

The parameter b0 again represents the unconditional mean of the spot rate, 

 

  

while b1 is the autocorrelation coefficient 

   

The disturbances, however, are not conditionally normally distributed. Although the 
mean is equal to zero: 

,   

the variance is linearly dependent on the lagged spot rate at time t, 

 
  

where 

 

  

and 

 

  

As can readily be seen, the Vasicek model is nested within the CIR model by setting 
a1=0. In this case, either interest rates are deterministic or the resulting stochastic 
dynamics can only be captured by the Vasicek model. This hypothesis can be tested with 
a Lagrange Multiplier Test by computing NR2 of a regression of the squared residuals of 
the Vasicek model on a constant and the lagged interest rate, where N denotes the number 
of observations and R2 the coefficient of multiple correlation.2  

The first order autoregressive process of the spot rate (7.4) can be estimated by 
feasible GLS, which consists of a two-step OLS procedure. In the first step, the 
autoregressive process is estimated by OLS. The resulting squared residuals are then 
regressed on a constant and the lagged interest rate to obtain first round estimates of the 
coefficients a0 and a1. Efficient estimates are obtained by running a second round of 
regressions, where the estimated variances are used to remove the heteroscedasticity by 
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weighted least squares. Finally, the resulting squared residuals of the weighted least 
squares regression are regressed on a constant and the lagged spot rate to obtain the final 
estimates3 of a0 and a1. 

The estimated four parameters, b0, b1, a0 and a1, enable the separate identification of 
the structural parameters κ, σ, θ and λ. 

DESCRIPTION OF THE DATA 

For the estimation of the time series equations of the Vasicek and CIR models, daily 
observations of the nominal Amsterdam InterBank Offered  

Table 7.1 Summary statistics of AIBOR data 

τ Mean St. Dev. Minimum (date) Maximum (date) 

1/12 6.32 
0.00239 

1.37 
0.0649 

3.54 (88/06/24) 
−0.375 (85/05/08) 

9.66 (90/12/27) 
0.375 (85/02/04) 

2/12 6.35 
0.00239 

1.38 
0.0595 

3.82 (88/06/24) 
−0.313 (87/01/07) 

9.61 (90/12/27) 
0.375 (85/02/07) 

3/12 6.37 
0.00240 

1.40 
0.0620 

4.03 (88/04/14) 
−0.375 (85/02/18) 

9.60 (90/12/27) 
0.375 (85/02/07) 

6/12 6.43 
0.00233 

1.43 
0.0613 

4.11 (88/03/08) 
−0.500 (85/02/18) 

9.58 (90/12/18) 
0.250 (85/02/01) 

12/12 6.50 
0.00226 

1.45 
0.0612 

4.25 (88/03/10) 
−0.375 (85/02/18) 

9.57 (90/12/18) 
0.250 (85/02/04) 

This table contains the summary statistics of the AIBOR data. The sample period is 85/01/02 until 
90/12/31, which is equivalent to 1551 daily observations. τ denotes the maturity of each interest 
rate. The first line corresponding to each maturity date contains the summary statistics of the 
interest rate, which is measured in percentages, while the second line contains the statistics of the 
first differences of this interest rate. Minimum and Maximum refer to the minimum and maximum 
interest rate during this period. In parentheses is the date the minimum and maximum occurred. 
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Figure 7.1 The Amsterdam InterBank 
Offered Rate 
This figure shows the one-month and 
twelve-month Amsterdam InterBank 
Offered Rate (AIBOR) on a daily basis 
for the years 1985 through 1991. 

Rate (AIBOR) have been used during the years 1985 through 1990. The estimations are 
carried out for different time series of interest rates with a maturity of one, two, three, six 
and twelve months, respectively. 

Table 7.1 contains summary statistics of these interest rates and the corresponding first 
difference. From this table and Figure 7.1, it is clear that interest rates do not exhibit a 
significant upward drift. In addition, the mean interest rate and the corresponding 
standard deviation during this period is an increasing function of the time-to-maturity. 
However, the minimum and maximum value of the different interest rates show exactly 
an opposite relationship. 

RESULTS OF THE ESTIMATION 

The results of the time series estimation of the Vasicek and CIR models for the different 
interest rate series are shown in Table 7.2. 
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The existing literature on time series econometrics makes it clear that a long time 
series, spanning many years, is needed to estimate the mean reversion parameter, and to 
test the hypothesis κ=0. Since a discrete  

Table 7.2 Results of time series analysis The model 
of Vasicek 

  1/12 2/12 3/12 6/12 12/12 

 
7.507 
(8.210) 

7.505 
(7.222) 

7.449 
(6.916) 

7.403 
(6.246) 

7.517 
(6.685) 

 
0.99799 
(0.0030) 

0.99794 
(0.0029) 

0.99778 
(0.0031) 

0.99762 
(0.0031) 

0.99778 
(0.0029) 

 4.227 
(0.1518) 

3.546 
(0.1273) 

3.854 
(0.1384) 

3.777 
(0.1356) 

3.761 
(0.1351) 

 0.5027 
(0.2974) 

0.5158 
(0.2679) 

0.5569 
(0.2775) 

0.6957 
(0.2679) 

0.5558 
(0.2640) 

 1.1040 
(0.0491) 

0.9673 
(0.0567) 

1.1080 
(0.0893) 

1.2660 
(0.1859) 

1.6010 
(0.4669) 

The model of Cox, Ingersoll and Ross 

  1/12 2/12 3/12 6/12 12/12 

 
7.375 
(7.775) 

7.337 
(6.799) 

7.270 
(6.480) 

7.169 
(5.739) 

7.265 
(6.082) 

 
0.99789 
(0.001202) 

0.99782 
(0.001089) 

0.99764 
(0.001132) 

0.99743 
(0.001103) 

0.99755 
(0.001098) 

 
2.313 
(1.457) 

1.470 
(1.125) 

1.242 
(1.277) 

0.304 
(1.256) 

0.340 
(1.103) 

 3.036 
(2.254) 

3.278 
(1.718) 

4.105 
(1.958) 

5.414 
(1.908) 

5.271 
(1.656) 

 4.551 
(0.5022) 

3.873 
(0.4196) 

4.225 
(0.4771) 

4.184 
(0.5050) 

4.169 
(0.4926) 

LM(1) 0.82 1.50 2.32 5.18* 6.67* 

 0.5271 
(0.3011) 

0.5445 
(0.2730) 

0.5906 
(0.2836) 

0.6439 
(0.2764) 

0.6125 
(0.2751) 

 0.1546 0.1323 0.1457 0.1463 0.1438 

These tables contain the estimated coefficients and structural parameters of the Vasicek and CIR 
models. The sample period is 85/01/02 until 90/12/31, which is equivalent to 1551 daily 
observations of AIBOR. The maturity is expressed in years, while the estimated coefficients and 
structural parameters are measured in percentage points. The standard errors are denoted in 
parentheses. LM(1) denotes the value of the test statistic of the Lagrange Multiplier test with one 
degree of freedom. An asterix denotes significance at the 5 per cent level (3.84). 
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time representation of the processes of the risk-free rate is a first order autoregression, a 
test for κ=0 amounts to testing for a unit root. For the Vasicek model, the test in Fuller 
(1976) could be used for this purpose. But, with only six years of data, the critical value 
for κ is 2.35, which is implausibly large.4 For smaller values of κ, the unit root hypothesis 
(implying the Merton (1973) model with zero drift for the term structure) cannot be 
rejected. The mean reversion parameters are approximately the same for all maturities, as 
should be the case. Neither point estimates nor the standard errors are sensitive to the 
heteroscedasticity correction applied in estimating the CIR model. 

The 1551 observations in the six-year sample are informative, though, about the 

volatility of interest rates. The asymptotic standard error on in the Vasicek model is of 

the order , which is about 3.5 per cent of the estimated value. For the CIR 

model, the unconditional variance is of the same order of magnitude. 
The Lagrange Multiplier Test rejects the constant-volatility Vasicek model in favor of 

the heteroscedasticity implied by the CIR model only for the two longest maturities. 
Compared to the results of Chan et al. (1991, 1992) for the US Treasury Bill rates and the 
Japanese Gensaki rate, this result for daily data is surprising. Based on monthly data, the 
conditional volatility of the one-month T-Bill rate and three-month Gensaki rate appears 
to be highly sensitive with respect to the level of the lagged interest rate. 

The last row in each of the tables presents estimates of the structural variance 
parameter σ2. The implied variance of the Vasicek model is estimated precisely for all 
individual maturities. The estimates, however, differ across maturities. The variance of 
the twelve-month rate is about 1.5 times the variance of the one-month rate. The 
estimates of σ2 are also sensitive to the method of aggregation, as noted in the 

introduction to this chapter. The approximate estimates are downward-
biased by between 5 per cent for the one-month rate and 40 per cent for the twelve-month 
rate. 

For the CIR model, it is impossible to solve the set of non-linear equations for the 
structural parameters σ2, θ and λ, given the unrestricted estimates of a0, a1, b0 and b1, as 
one of the equations on the system is nearly redundant. The actual estimates in Table 7.2 
are obtained by approximating θ (the unconditional mean of the instantaneous short-rate) 
by b0τ (the unconditional mean of the yield on a discount bond with maturity τ).5 The 
error of this approximation is likely to be very small given that the term structure was 
almost flat over most of the sample period according to the results derived in the next 
chapter. 

Although the econometric analysis of this chapter focuses only on two specific models 
within the class of endogenous term structure of interest rates models and no comparison 
has been made between these models and other specifications in which the conditional 
variance is dependent on higher order lagged interest rates, the results are encouraging. 
Given the rejection of the heteroscedasticity model of Cox, Ingersoll and Ross in the case 
of short maturity interest rates and the robustness of conditional variance specifications 
with respect to structural breaks in monetary policy, as shown by Chan et al. (1992, pp. 
13–14), the primary objective of valuing interest rate derivative securities and of 
comparing the above results to a cross-sectional analysis of the same term structure 
models seems to be reasonably supported. 
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OPTION PRICING 

The main result of comparing the time series analysis of the Vasicek model and CIR 
model is the statistical rejection of the constant volatility for longer maturity interest 
rates. Despite the previous research of Chan et al. (1991, 1992) concerning the US 
Treasury Bill rate and the Japanese Gensaki rate resulting in opposite conclusions, the 
heteroscedasticity implied by the CIR model is shown to be insignificant in comparison 
to the Vasicek model for maturities up to three months. 

An interesting extension to this comparison is the implication of the results of the 
estimations of the different models for the values of call options on bonds. As options are 
critically dependent on the term structure of volatilities, a comparison of the two models 
with respect to these option prices based on the estimations for short maturity interest 
rates, provides some insight into the implications for longer maturity volatilities. 

The actual calculation of the options based on the estimations discussed in the 
previous sections requires some additional assumptions. In the case of the Vasicek model, 
the value of an option on a discount bond depends on the parameters κ, σ2 and the infinite 
maturity yield R(t, ∞). Because the estimated coefficients allow only for a direct 
calculation of the first two parameters, the infinity maturity yield can only be determined 
by making an additional assumption. For this purpose, the one-month and two-month 
AIBOR are used to calculate the infinite maturity yield on a daily basis using equation 
(5.21). The instantaneous spot rate on a daily basis is then obtained using the one-month 
AIBOR on a daily basis and the average infinite maturity yield over the sample period. In 
the case of the CIR model, the separate identification of the parameters κ, σ2 is only 
possible by assuming a flat term structure of interest rates because the system of 
equations, of which these parameters are a solution, is nearly redundant. To determine the 
infinite maturity yield R(t, ∞), it is assumed that the market price of risk is zero for the 
same reason. The instantaneous spot rate on a daily basis is then obtained by using 
equation (5.34) and again the one-month AIBOR on a daily basis and the infinite 
maturity yield.6 

Figure 7.2 shows the CIR European call option values as a function of the 
corresponding Vasicek option values. To be able to compare the time series option values 
with the cross-sectional option values of the next chapter and to concentrate as much as 
possible on the time value of the option, the maturities of the option and the underlying 
bond are four and eight years, respectively. The exercise price of the option is equal to 
the forward price of the underlying value, while the face value is 100.  

The valuation of interest rate derivative securities    148



 

Figure 7.2 Time series option values 
This figure shows the European at-the-
money call option values on a daily 
basis for the years 1985 through 1991 
(1551 option values) based on the 
results of the time series estimation for 
the Vasicek and CIR models. The 
values of the options for the latter 
model are calculated numerically using 
the method of Nelson and 
Ramaswamy, described in Chapter 6. 
The maturity of the underlying bond is 
eight years, while the maturity of the 
option is four years. 

Although the determination of the option values is not justified theoretically because of 
the additional assumptions, it is interesting to note the relatively low option values 
present for both models. Although the values of the underlying long term bond are 
slightly higher and more sensitive with respect to changes in the one-month AIBOR in 
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the case of the CIR model, option values are generally higher in the case of the Vasicek 
model. 

NOTES 
1 This chapter is based on “Cross-sectional versus Time Series Estimation of Term Structure 

Models: Empirical Results for the Dutch Bond Market”, J.F.J.de Munnik and P.C.Schotman, 
1994, Journal of Banking and Finance, Vol. 18, No. 5, pp. 997–1025. 

2 For a thorough discussion of the Lagrange Multiplier Test, see Harvey (1990, pp. 172–3).  
3 For a discussion of this two-step procedure and the corresponding efficiency of the estimates, 

see Maddala (1988, pp. 170–1). 
4 According to Table 8.5.1 in Fuller (1976, p. 371), the 5 per cent critical value of the test 

statistic is −14.1, where N is the number of observations and the estimated 
autocorrelation. Substituting 

 
  

using ln(1+x) ≈ x for small x, and noting that N∆t is the number of 
years, we find the inequality 

   

5 Equating to implies 

 
  

The estimated value of the unconditional variance of the yield then 
gives 

 

  

6 To assess the impact of longer maturity AIBOR rates on the results, option prices were also 
calculated using these different rates. The results, however, hardly changed. 
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8  
ESTIMATING THE TERM STRUCTURE 

OF INTEREST RATES: A CROSS-
SECTIONAL ANALYSIS 

In the previous chapter, two models within the class of endogenous term structure of 
interest rate models were estimated by means of a time series analysis. Based on the 
Amsterdam InterBank Offered Rate for different maturities, the constant variance of 
interest rates specification of the Vasicek (1977) model was not rejected in favor of the 
heteroscedastic variance specification implied by the model of Cox, Ingersoll and Ross 
(CIR) (1985) for maturities of up to three months. Given the estimations of the structural 
parameters of these models, option prices were also calculated to assess the impact of the 
results of the time series analysis on long-maturity volatilities. Although this latter 
analysis is not theoretically completely justified and some additional assumptions have to 
be made, it turned out that, over the sample period, option values based on the CIR model 
are more sensitive to the value of the instantaneous spot rate than are those option values 
based on the Vasicek model. 

As already mentioned, there are several reasons for concentrating this empirical 
analysis on the specific interest rate models of Vasicek and Cox, Ingersoll and Ross. The 
stochastic differential equation of the spot rate and the term structure of interest rates 
implied by these dynamics and the well-known no-arbitrage conditions, allow for an 
interesting comparison between a time series analysis of spot rates and the stochastic 
behavior of interest rates implied by a particular shape of the yield curve. In addition, the 
two models considered differ with respect to their variance specification of spot rates; it 
is interesting, thus, to investigate empirically the increased complexity resulting from the 
exclusion of negative nominal interest rates in the case of the CIR model, as opposed to 
the normally distributed nominal interest rates in the case of the Vasicek model. 

This chapter compares the two above-mentioned models empirically by means of a 
cross-sectional analysis for the Dutch Government Bond Market.1 The first section 
briefly reviews the functional specifications of the implied yield curve and discusses the 
estimation technique, and is followed by a description of the data in the second section. 
The third section discusses and illustrates the results of the estimation. In the fourth 
section the implications of these results for the implied term structure of interest rate 
volatilities are discussed by means of calculating the values of options on discount bonds. 
In the final section, a particular week of the sample period is analyzed in detail to 
highlight some problems and estimation difficulties. 



ESTIMATION OF THE MODELS 

In the Vasicek model, discussed in Chapter 5, the spot rate R(t, τ) at time t with maturity τ 
can be written as a weighted average of the instantaneous short-term rate of interest and 
the infinite maturity yield plus a linear function of interest rate volatility, that is, 

 (8.1) 

with 

 

  

As can easily be shown, the two weighting functions satisfy the following conditions: 

 

  

At both ends of the maturity spectrum, the effect of volatility on the shape of the yield 
curve is zero. In between these two points, volatility is increasing the level of interest 
rates, causing a curvature of the yield curve. For reasonable values of the parameters κ 
and σ2, however, the contribution to this curvature of the volatility is negligible. If, for 
example, κ=1 and σ2=1, which is reasonable given the results of the time series analysis 
of Chapter 7,2 the maximum contribution of volatility to the level of interest rates is less 
than one basis point. To have some impact on the yield curve, it takes extreme values for 
either the mean reversion parameter κ or the volatility σ. 

Because only coupon-paying bonds are traded in the Dutch Government Bond Market, 
the values of these bonds have to be expressed in terms of zero-coupon bonds. Consider, 
therefore, a coupon bond at time t, P(t, τ, c), which entitles the holder to a vector of n 
cash flows c=(c1,…, cn)T with corresponding payment dates τ=(τ1,…, τn)T. The value of 
such a bond or dirty price in terms of the different discount bonds is 

 
(8.2) 

To estimate the parameters of the Vasicek model at time t, it will be assumed, similar to 
Brown and Dybvig (1986), that the quoted bond price P*(t, τ, c) deviates from the model 
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price P(t, τ, c) by a zero-mean error A justification of this stochastic error term 
is the presence of a measurement error due to the bid-ask spread. Assume that the errors 
are i.i.d., allowing cross-sectional estimation of equation (8.2) by NLS.3 Since the 
instantaneous spot rate r(t) is unobservable, r(t) is treated as an unknown parameter, 

which is estimated jointly with , as in Brown and Dybvig. The market price 
of risk λ. is not individually observable. 

In the case of the CIR model, the spot rate can also be expressed as a weighted 
combination of the instantaneous spot rate and the infinite maturity yield: 

 

(8.3) 

The two weighting functions in this case obey 

 

  

Contrary to the findings of the Vasicek model, the CIR spot rate is not a weighted 
average of the instantaneous short and infinite maturity yield. The two different 
weighting functions are also a function of the volatility of the spot rate. Although not 
directly clear, it can be shown that volatility is causing a curvature of the yield curve in 
this case, too. 

Similar to the estimation of the Vasicek model, the instantaneous spot rate r(t) can be 
treated as an unknown parameter and equation (8.2) can be estimated by NLS. From this 

cross-sectional estimation, the parameters can be identified separately. 
Estimation of the individual parameters of the risk-neutral process of the short-rate using 
bond prices, however, results in the impossibility of an individual identification of the 
parameters λ, κ and θ.  

DESCRIPTION OF THE DATA 

For cross-sectional estimation of the Vasicek and CIR models, data of actively traded 
Dutch Government Bonds with a remaining maturity of longer than six months for each 
trading day during 1989 and 1990 has been used. For each of the bonds in the sample, 
data has been gathered on the clean closing price and accrued interest. This data allowed 
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for the computation of the corresponding cash flow patterns consisting of coupon 
payments, final repayment and corresponding payment dates. 

Table 8.1 provides summary statistics of the data set. The total number of trading days 
is 507, while the number of actively traded bonds in a day varies between 33 and 47. The 
longest maturity is about ten years, while the duration of the longest bond is, on average, 
somewhat more than seven years during the sample period. During most of the period, 
the yield curve has been flat, and, on average, it has been inverted.4 

In Figure 8.1, the yield on the longest maturity bond is shown together with the one-
month AIBOR during the same period. As already noted above, during most of the 
sample period, short-term yields have been higher than long-term yields.  

Table 8.1 Summary statistics of bond data 

  Mean St. Dev. Minimum 
(date) 

Maximum 
(date) 

Max. yield 7.99 0.90 6.40 
(89/01/02) 

9.30 
(90/12/31) 

Min. yield 7.65 0.90 5.52 
(89/01/05) 

8.79 
(90/09/28) 

Sd. yield 0.08 0.04 0.03 
(89/03/13) 

0.19 
(89/12/18) 

Spread −0.14 0.25 −0.95 
(89/10/10) 

0.67 
(89/01/05) 

Maturity 9.97 0.06 9.81 
(89/10/25) 

10.13 
(90/03/22) 

Duration 7.21 0.25 6.81 
(89/10/08) 

7.68 
(89/01/02) 

Number of bonds 40.13 4.12 33 
(89/01/02) 

47 
(90/10/31) 

This table contains the summary statistics of the bond data. The sample period is 89/01/02 until 
90/12/31, which is equivalent to 507 daily observations. Max. yield, Min. yield and Sd. yield refer 
to the maximum yield, the minimum yield and the standard deviation of yields on a given day, 
respectively. Spread is the difference in yield between the bond with the longest and shortest 
duration on a day. Maturity and Duration give the maximum maturity and duration on a day. In 
parentheses is the date the minimum and maximum occurred. 
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Figure 8.1 Short-term and long-term 
yields 
This figure shows the one-month 
Amsterdam InterBank Offered Rate 
and the yield-to-maturity on the 
longest maturity bond on a daily basis 
for the years 1989 and 1990. 

RESULTS OF THE ESTIMATION 

As in Brown and Dybvig (1986), equation (8.2) can be estimated for each trading day of 
the sample period. Preliminary estimation, however, revealed that the parameters of the 
CIR model were hardly estimable using data for a single trading day. It was therefore 
decided to pool the data for the five trading days of the week and assume that the 
parameter vector was constant over the week. The risk-free rate is allowed to take on a 
different value each day. For the CIR and Vasicek models, this leaves eight parameters to 
be estimated each week. 

The results of this cross-sectional estimation are summarized in Table 8.2. Both 
models provide a good fit for bond prices. The average error of both models is 0.18 
guilders (par bonds are normalized to 100 guilders). The Vasicek model fits marginally 
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even better than the CIR model does. In Figure 8.2, it is shown that for most weeks the 
two models fit almost identically, while the fit is almost fairly constant for all weeks. 

Because of the frequent occurence of extreme outliers, the mean and standard 
deviation of the parameter estimates over the 104 weeks are not  

Table 8.2 Results of cross-sectional analysis The 
model of Vasicek 

        s.e. 

Mean 8.28 1.23 9.27 6.45 2633.65 13.07 0.1808 

St. Dev. 2.55 1.81 3.96 3.42 12228.08 49.63 0.0366 

Minimum 0.60 0.01 2.49 0.50 0.05 0.22 0.1017 

Maximum 15.78 5.00 31.49 21.46 83392 288.78 0.3046 

Median 8.73 0.19 7.77 6.97 0.05 0.22 0.1726 

Range 2.16 1.57 2.59 2.46 0 0 0.0468 

The model of Cox, Ingersoll and Ross 

        
s.e. 

Mean 8.68 0.84 9.63 6.63 292.17 17.23 0.1824 

St. Dev. 2.45 1.40 4.80 2.56 1371.0 70.35 0.0376 

Minimum 5.58 0.005 1.87 0.85 0.01 0.08 0.1017 

Maximum 22.01 5.00 27.98 17.57 8862.30 431.63 0.3047 

Median 8.76 0.15 7.90 6.90 0.01 0.29 0.1734 

Range 2.21 1.16 2.87 2.01 0 0.05 0.0466 

This table contains the cross-sectionally estimated structural parameters of the models of Vasicek 
and Cox, Ingersoll and Ross. The sample period is 89/01/02 through 90/12/31, which is equivalent 
to a total of 104 weekly estimations. Minimum and Maximum refer to the minimum and maximum 
value of the 104 weeks. Median and Range refer to the median and interquartile range of the 104 
estimated values. s.e. refers to the pricing error. 

very informative about the typical parameter estimates. The median and interquartile 
range are more robust measures of location and dispersion. In Figure 8.3, the estimated 
risk-free rate is almost equal for the two models, except for some severe outliers. The 
Vasicek model has a number of exceptionally low estimates, while the CIR model leads 
to some high estimates of r(t). The outliers are highly correlated across parameters. 
Whenever an outlier occurs for one structural parameter, an outlier for some of the other 
parameters is always present. The estimated risk-free rate is nearly always above the 
observed one-month AIBOR. 

In most weeks, the other end of the yield curve or the infinite maturity yield can also 
be estimated reasonably well. For the Vasicek model, there are four upward outliers (the 
first four weeks of the sample, see Figure 8.3) and a series of downward outliers at the 
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last quarter of 1990, where R(t, ∞) reaches its numerical lower bound of 5 per cent.5 
Again, the estimates of the Vasicek and CIR models are generally quite similar, although 
in the CIR model R(t, ∞) never approaches negative values, as it does in the Vasicek 
model. 

The mean reversion parameter in the CIR model) and the 
volatility parameter σ2 behave erratically. They usually differ greatly  

 

Figure 8.2 Pricing errors 
This figure shows the root-mean-
square-error on a weekly basis under 
the models of Vasicek and Cox, 
Ingersoll and Ross for the years 1989 
and 1990. 

from week to week with large standard errors.6 Since the term structure models are valid 
only for κ > 0, and since it is numerically impossible to compute bond prices for very 
small κ, κ had to be restricted to κ > 0.01 in the Vasicek model and to in the 
CIR model. This corner solution frequently occurs for both models. The outliers for R(t, 
∞) occur only when k is small. In this case, R(t, ∞) is almost unidentified in both models. 
Too large values of κ are also unacceptable. For κ > 5 the Hessian of the likelihood 
function becomes numerically singular. When the optimum of κ falls within the 
admissible range, the estimates are remarkably similar for the Vasicek and CIR models.  
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In many cases, σ2 falls to zero in unconstrained non-linear estimation. For numerical 
stability, a lower bound of σ2 > 0.01 was set for the CIR model and σ2 > 0.05 for the 
Vasicek model. The lower bounds are attained in more than half of the sample weeks. 
The effect of the lower bound was checked on the fit of the models, which turns out to be 
negligible. The standard deviation of the residuals never changes by more than one-tenth 
of a cent if σ2 is allowed to take on values below the bounds. For most cases the lower 
bound could also have been set at 0.01  

 

Figure 8.3 Estimated structural 
parameters 
These figures show the estimated 
values of the different structural 
parameters on a weekly basis in the 
case of the Vasicek and CIR models 
for the years 1989 and 1990. 

without significantly deteriorating the fit of the model, indicating that the likelihood 
function is exceptionally flat.7 If κ hits its upper bound, the optimization algorithm cannot 
get any estimate of σ2, except an extreme outlier (σ2 > 10,000). For κ at its lower bound, 
σ2 always falls to zero. In both cases it seems that the yield curve is already reasonably 
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well described as a weighted average of the instantaneous short-rate r(t) and the infinite 
maturity yield R(t, ∞). Given the discussion in the first section of the effect of volatility 
on the shape of the yield curve and the observed flat yield curve during the sample 
period, it is not surprising that the curvature effect implied by the volatility is not present 
in the data. For those weeks where an unconstrained optimum is not found (mostly in the 
fourth quarter of 1990), the CIR and Vasicek models are indistinguishable.  

The overall impression from the cross-sectional estimates is that the model is 
overspecified. Without any loss in fit one of the structural parameters can be set at some 
“reasonable” value and can be optimized over the other. The symptoms of the 
overparameterization are the frequent occurence of outliers and the near singularity of the 
Hessian. 

In addition, the results do not favor one of the two term structure models. If the 
parameters are estimated unrestrictedly and revised every week, both models do equally 
well (or poorly). More general models with more state variables will even lead to more 
estimation difficulties, since these simple one-factor models are already too flexible. To 
discriminate between the models, more restrictions are needed; for instance, requiring the 
structural parameters to be constant over a much larger time period than one week, such 
as is the case in Brown and Schaefer (1994). 

Given the results of the cross-sectional estimation, a third general conclusion is that 
the implied process of the risk-free rate is close to a random walk without drift and 
almost deterministic. This conclusion might be specific for the data set, which contains 
many days with flat term structures. The low implied volatility conflicts strongly with the 
time series estimates. Interest rates have been quite volatile during the sample period, but 
the yield curve has usually shifted up and down with movements in the short-rate. In 
comparison to similar estimations of the CIR model in the case of US Treasuries and 
British Government Index-Linked bonds, carried out by Brown and Dybvig (1986) and 
Brown and Schaefer (1994), respectively, this result is remarkable. Based on US 
Treasury issues for the period 1952 through 1983, cross-sectional estimation of the 
volatility of the CIR model on a daily basis seems to correspond quite well to the 
volatility resulting from a time series estimation. Similar to our results, however, the 
implied values of the short-term spot rate are generally higher than the observed values. 
Using real interest rates derived from British Government Index-Linked bonds for the 
period 1981 through 1989, Brown and Schaefer show the infinite maturity yield to be 
fairly stable. The unconstrained estimated value of the mean reversion parameter also 
behaves erratically during their sample period and often becomes negative. 

OPTION PRICING 

Although the Vasicek and CIR models differ principally in their specification of the 
stochastic differential equation of the short-rate and the resulting value of a discount bond 
as a function of the structural parameters, both models provide a good fit of the term 
structure of interest rates for the Dutch Government Bond Market. 

As was the case in Chapter 7, it is interesting to investigate and compare the 
implications of the estimation of the yield for the term structure of interest rate volatilities 
by valuing European call options on discount bonds. Because the cross-sectional analysis 
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of the term structure of interest rates yields estimations of the parameter values of the 
stochastic process of the short-rate in a risk-neutral economy, no additional assumptions 
have to be made in order to calculate the option prices, as in Chapter 7. 

In Figure 8.4, the values of a European at-the-money call option on a discount bond 
under the CIR model as a function of the corresponding option values under the Vasicek 
model are shown. To cover the relevant maturity spectrum of the different bonds in the 
sample and to concentrate on the time value of the option, the maturities of the option and 
the underlying bond are four and eight years, respectively. In addition, the exercise price 
of the option is equal to the forward price of the underlying bond. In case option values 
cannot be computed because of numerical problems resulting from extreme structural 
parameter values, these weeks from the sample are simply ignored.  

 

Figure 8.4 Cross-sectional option 
values 
This figure shows the European at-the-
money call option values on a daily 
basis for the years 1989 and 1990, or 
403 option values, based on the results 
of the cross-sectional estimation in the 
case of the Vasicek and CIR models. If 
possible, the values of the options in 
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the latter model are calculated 
numerically using the method of 
Nelson and Ramaswamy, described in 
Chapter 6. Otherwise, these days are 
removed from the sample. The 
maturity of the underlying bond is 
eight years, while the maturity of the 
option is four years. 

The general conclusion from this figure is the strong one-to-one correspondence of the 
implications of the estimation for the valuation of options between both models. Except 
for a few outliers, the CIR option values are almost equal to the corresponding Vasicek 
option values, suggesting a significant equivalence between both term structures of 
interest rate volatilities. 

A CLOSER LOOK AT A SELECTED WEEK 

The cross-sectional analysis of the term structure of interest rates on a weekly basis often 
results in estimation problems because of an overspecification of both models. As already 
noted in the discussion of the results, pooling of different days for longer periods of time 
such as quarters, years or even the total sample period may reduce these difficulties. To 
assess the impact of the over-identification more closely and to investigate the properties 
of the models in more detail, one week has been selected from the sample. 

The week 22–6 October 1990 is in many respects typical for the Dutch bond market in 
our two-year period. The yield curve is flat, and the parameters are very poorly estimated 
for both models. The best solution is obtained when the mean reversion parameter κ is at 
its lower bound, although the optimization routine failed to converge for many starting 
values. In Figure 8.5, the actual and fitted yields of the different bonds in the sample are 
shown. In addition, the pricing errors and actual and fitted prices for this particular week 
are presented. The models fit perfectly in the price dimension with a coefficient of 
multiple correlation R2 = 0.999 for both models. It fits poorly, however, in the yield 
dimension, with R2 = 0.030, implying that the models can explain only 3 per cent of the 
cross-sectional variation in yields. 

To investigate the problems, a grid search was performed over the mean reversion 
parameter κ. Conditional on a range of values of κ, the other parameters of the model 
were estimated. Figure 8.6 shows the fit of the model, measured by the root-mean-square-
error (RMSE) of the pricing residuals. The CIR and Vasicek models are almost 
indistinguishable for all values of κ. For both models, the global minimum is obtained for 
κ at its lower bound. More disturbing is the decrease in the function value for large κ. It 
explains why it is so hard to obtain point estimates. If the starting value of κ in an 
optimization algorithm based on derivatives is too large, say larger than 0.3, the 
algorithm will not converge, and will produce implausibly large estimates of κ, coupled 
with very small values of σ2. 

Estimating the term structure of interest rates   161



The two models are identical not only in fit, but also with respect to other structural 
parameters. In Figure 8.6, the implied volatility of both models is shown. For the Vasicek 
model, this is the estimated σ corresponding to each value of κ; for the CIR model, it is 

with  

 

Figure 8.5 Estimation results for a 
particular week 
These figures show some results of the 
estimation in case of the particular 
week 22–6 October 1990, which is in 
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many respects typical for the Dutch 
Bond Market. 

the average of the estimated risk-free rates over the five days of the week. In one respect, 
the week 22–6 October 1990 is special, because there is a range of κ for which the 
volatility is not at its lower bound. 

Finally, Figure 8.6 shows that even the implied option values are almost equal for the 
two models for all κ. The last two results are surprising, since both the cross-sectional 
yield curves, and the option formulas, are completely different between the two models. 
Given that the option values are much easier to compute using the Vasicek model, it 
seems there is little empirical reason to prefer the theoretical advantages of the CIR 
model over the Vasicek model.8  

 

Figure 8.6 Results of grid search over 
mean reversion 
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These figures show some results of the 
grid search over the mean reversion 
parameter under the Vasicek and CIR 
models for the particular week 22–6 
October 1990, which is in many 
respects typical for the Dutch Bond 
Market. 

NOTES 
1 Like the previous chapter, this chapter is based on “Cross-Sectional versus Time Series 

Estimation of Term Structure Models: Empirical Results for the Dutch Bond Market”, 
J.F.J.de Munnik and P.C.Schotman, 1994, Journal of Banking and Finance, Vo1. 18, No. 5, 
pp. 997–1025. 

2 In terms of structural parameters measured in percentages, this accounts for κ=1 and σ=10−4. 
3 Alternative stochastic specifications are possible. Homoscedastic errors for prices imply 

heteroscedastic errors for yields. An error in a bond price has the largest effect on yields for 
short-term bonds. With our specification, long-term yields fit closer than short-term yields. If 
we aim to fit yields, we would have to assume that the errors in our specification are related 
to squared duration. This considerably affects estimates of the risk-free rates. Our 
assumption of homoscedastic errors in prices is consistent with the interpretation of 
measurement error due to the bid-ask spread, which is constant across maturities.  

4 Unfortunately, during the subperiod 1 February 1989, to 3 March 1990, the quoted clean 
closing price and accrued interest of all bonds in the sample were incorrectly assigned to the 
next day. For example, the quoted bond price and accrued interest of a bond on 1 February 
1989, was assigned to 2 February 1989. Although the pooling of bonds for the five trading 
days of a week, as discussed and explained in the next section, is therefore incorrect because 
of a possible “weekend-effect”, a preliminary analysis of the corrected data resulted in 
negligible changes; because of this, we will not pursue the issue any further. 

5 The unconstrained optimization did not converge and led to negative values of R(t, ∞). 
6 Standard errors of the parameters were computed from the inverse of the Hessian of the least 

squares function. The standard error of the risk-free rate is of the order 0.1 per cent, and that 
of R(t, ∞) is either of the same order or extremely large. The other parameters are never 
significant. Still, these standard errors probably underestimate the true standard errors for 
two reasons. Due to the pooling of the five days of the week, it is likely that the errors are 
autocorrelated. Second, for most weeks a corner solution is obtained where some of the 
parameters are constrained. In that case, only standard errors conditional on the constrained 
parameters can be obtained, and these are usually much smaller than the unconditional 
standard errors. 

7 Brown and Dybvig (1986) and Brown and Schaefer (1994) encounter similar problems. They 
also found a flat likelihood function, while the (indirect) estimates of σ2 are often negative in 
the case of Brown and Dybvig. 

8 The robustness of this result to different shapes of the yield curve must, of course, be 
investigated. 
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9  
ESTIMATING THE TERM STRUCTURE 

OF INTEREST RATE VOLATILITIES: 
PRINCIPAL COMPONENTS 

The use of principal components is a commonly applied statistical technique in the 
finance literature to determine a reduced number of factors or sources of uncertainty to 
describe the stochastic movement of the term structure of interest rates over time. Using 
weekly observations from 1984 until 1988 in the case of US Treasuries, for example, 
Litterman and Scheinkman (1988), conclude that, based on principal component analysis, 
a three-factor model explains at least 98 per cent of the variability of excess returns of 
any zero coupon bond. The first factor essentially represents a parallel change in yields, 
while the second and third factors represent a change in the steepness and curvature of 
the yield curve, respectively. These findings have been confirmed by several authors, for 
example, Garbade (1986), Dybvig (1989) and Heath et al. (1990b). 

The estimation of the endogenous term structure of interest rate models by means of a 
time series or cross-sectional analysis, as conducted in the previous two chapters, directly 
implies a particular shape of the endogenous term structure of interest rate volatilities. As 
options are critically dependent on both the yield and volatility curves, implied estimation 
of only the yield curve may ignore or misspecify some of the volatility characteristics 
mentioned above. 

The exogenous term structure of interest rate models avoids these possible problems 
by allowing for a separate estimation of the yield curve and the term structure of interest 
rate volatilities. Given a yield curve at some initial valuation date, the endogenous term 
structure of interest rate volatilities enables the specification or estimation of a volatility 
curve as a function of a few structural parameters without affecting the initial term 
structure of interest rates. In the case of the exogenous term structure of interest rate 
models, an exact matching of the observed or estimated volatility curve can be obtained; 
this approach enables the application and integration of principal components analysis to 
the valuation of interest rate derivative securities. 

An interesting problem arising from the application of principal component analysis is 
whether the reduced number of factors used to describe the variability of the term 
structure over time is sufficient to model the specific volatility structure necessary for the 
valuation of options on bonds. Although a reduced number of factors fairly accurately 
describes the general variability of the yield curve over time, this chapter shows that they 
are generally not sufficient to describe the variability of specific maturity segments upon 
which options are crucially dependent.1 As a result, the application of principal 
components is questionable in determining a relatively small number of factors to 
describe the movement of the term structure over time and to value interest rate 
dependent securities, based on this reduced set of principal components. 

The first section of this chapter derives the analytical relationship between a principal 
component analysis and the valuation of European call options on discount bonds under 
the Jamshidian (1989) model, discussed in Chapter 5. Due to the possibility of an explicit 



formulation of the distribution of different spot rates, the problems related to the volatility 
parameter of the option and the reduced number of principal factors can be identified 
exactly. In the second section, a simple numerical example is presented, showing the 
dependence of the call option of the different factors to assess the estimation problems for 
the model of Heath et al. (1990b), also presented in Chapter 5. Because an explicit 
formulation of the distribution of forward rates is not possible and a closed-form solution 
for the value of an option on a discount bond does not exist, this numerical counter 
example is the only way of investigating these statistical problems. 

THE JAMSHIDIAN MODEL 

In the N-factor “variable-volatility” model of Jamshidian (1989) discussed in Chapter 5,2 
the stochastic process of the instantaneous spot rate r(t) at time t � [0, T], given the 
information at time 0 is equal to 

 
(9.1) 

with 

 

  

The volatility functions σi(t), t � [0, T], i=1,…, N and market prices of risk λi, i=1,…, N 
satisfy the usual requirements and the N elements of the vector process W={W1(t),…, 
WN(t), t � [0, T]} are independent Standard Brownian Motions, initialized at zero.  

To apply a principal component analysis, the distribution at time t given the 
information at time 0 of an N-dimensional, vector of logarithms of bond prices is first 
derived, that is 

 (9.2) 

with 0 < τ1 <…< τN. The reason for concentrating this analysis on the logarithms of bond 
prices instead of the familiar yields-to-maturity is mainly for expository purposes, as will 
become clear later on. This vector of logarithms of bond prices lnP(t) is normally 
distributed with mean µ and covariance matrix Ω: 

   

The N-dimensional vector of means µ is a function of the volatility functions, the vector 
of N market prices of risk, and the different times-to-maturity. The covariance matrix Ω 
can simply be written as 

 
(9.4) 
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with 

 
(9.5) 

Alternatively, the vector lnP(t) can be written as a linear function of its N principal 
components3 x, 

 (9.6) 

with 

 

  

and 

 

  

In terms of standardized components y having unit variances, the above relationship 
becomes 

 (9.7) 

implying the following relationship for the matrix of volatility functions  

 (9.8) 

To investigate the impact of the standardized components y on option valuation, first a 
presentation will be made of the familiar pricing formula of a European call option C(K, 
τi, τj) with exercise price K and maturity τj on a discount bond with τi at time 0, 

 (9.9) 

with 
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The volatility parameter v2 can be rewritten as follows 

 

(9.10) 

Finally, 

 
(9.11) 

Principal component analysis, now, is selecting a certain number of factors A4 such that a 
given fraction α of the total variance of the elements of the vector lnP(t), is explained, 
that is: 

 
(9.12) 

However, even if λi, i=M+1,…, N is relatively small, the difference between elements of 
the corresponding eigenvector can be relatively large, making the product of the two a 
significant part of the volatility parameter v2 of the option. Because this can also happen 
the other way around, the first M factors do not necessarily explain a significant part of 
v2. As mentioned in the introduction to this chapter, principal component analysis selects 
a number of factors sufficient to describe or represent a preselected fraction of the total 
variability of the yield curve. However, certain options are dependent upon the variability 
of a very specific maturity segment of the term structure of interest rates not covered by 
the reduced number of factors.  

Although the effect of a reduction of the number of factors can be quantified precisely 
in the case of European call and put options on discount bonds, it is not the case when 
valuing contingent claims, such as American call and put options, for which closed-form 
solutions are not available. The use of principal component analysis, therefore, is 
generally not justified. 
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THE HEATH, JARROW AND MORTON II MODEL 

In the N-factor discrete time version of the model of Heath et al. (1990b), discussed in 
Chapters 5 and 6, the continuous time process of the forward rate curve is approximated 

by a discrete time process , tj=j∆t, j=0,…, n, s �[tj+1, T]}, which obeys 
the following stochastic difference equation 

 
(9.13) 

The vector process {W1(tj+1) − W1(tj),…, WN(tj+1) − WN(tj), j=0,…, n −1} contains N 
independently binomial distributed random variables that can either increase or decrease 

at some time by with equal probability. The function δi(tj, s), i=1,…, N, j=0,…, n 
−1, is defined as 

 (9.14) 

with λ, i= 1,…, N, the market price of risk and αi(tj, s) defined according to equation 
(6.61). The corresponding volatility function σi(tj, s) is equal to 

 (9.15) 

with ƒMax a real-valued constant and σi(s − tj) a deterministic function dependent on the 
remaining time-to-maturity s − tj of the forward rate. 

Because closed-form solutions for the value of contingent claims cannot be derived in 
this “almost-proportional” interest rate model of Heath et al., a numerical example using 
the techniques of Chapter 6 (pp. 132–5) is necessary to illustrate the impact of principal 
component analysis on derivative security valuation. For this purpose, a three-factor 
economy is assumed and the matrix A is defined as follows 

 (9.16) 

with  

 (9.17) 

The particular elements of the matrix A are given by 
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The eigenvalues or variances of the three factors are 0.80, 0.18 and 0.02 respectively, 
which means that the third factor counts for only 2 per cent of the total variability of the 
yield curve over time. The trading interval [0, T] is assumed to be divided into four 
periods of unit length, implying T = 4. The forward rate curve at the initial trade date 0, 
f(0, 0), f(0, 1), f(0, 2) and f(0, 3) is upward sloping with corresponding values 0.10, 0.12, 
0.14 and 0.16, respectively. 

In Table 9.1, the numerically obtained European call option values for different option 
and bond maturities are shown as a function of an increasing number of factors. The 
exercise price of the option is equal to the forward price of the underlying bond plus 10 
per cent, while the face of the underlying discount bond is 100. From this table, similar 
evidence regarding the appropriateness of the application of principal component analysis 
to bond option valuation is obtained. Although a reduced number of factors represents 98 
per cent of the total variability of the term structure of interest rates over time, the 
particular dependence of option values on this variability or volatility is not well 
described. Based on three factors, for example, the value of a one-year call European call  

Table 9.1 European call option values 

  Option maturity Bond maturity 

    2 3 4 

One factor   0 1.167 3.375 

Two factors 1 0.002 1.295 3.375 

Three factors   0.077 1.319 3.375 

One factor     0.109 2.020 

Two factors 2   0.277 2.326 

Three factors     0.332 2.373 

One factor       0 

Two factors 3     0 

Three factors       0.004 

This table contains the numerically obtained European call option values in the case of the model of 
Heath, Jarrow and Morton (1990b) II as a function of the different factors for different option and 
bond maturities. The exercise price of an option is equal to the forward price of the underlying 
bond plus 10 per cent. 

option of a two-year bond is 7.7 cents. However, using the first two factors, the value of 
this option is only 0.2 cents. 

Although the numerical example in this section is explicitly designed to illustrate the 
basic problem of the application of a principal component analysis to represent the 
volatility of the term structure of interest rates over time, a general application of this 
technique to value complicated interest rate contingent claims is not allowed. Due to 
numerical limitations, the dependence of some securities on particular factor volatilities 
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cannot be quantified and some serious undervaluation of the “true” value of the security 
may be the result. 

NOTES 
1 This chapter is based on “Note on the Interest Rate Contingent Claim Valuation and the Use 

of Principal Components”, J.F.J. de Munnik, 1994, The Review of Futures Markets, Vol. 13, 
No. 2, pp. 695–702. 

2 For more details on the N-factor case, see Chapter 5, n. 28. 
3 See Lawley and Maxwell (1971, pp. 6–17). 
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10  
CONCLUSIONS AND FURTHER 

RESEARCH 

The theoretical overview of the different interest rates models and the empirical 
implementation of some particular models reveal the academic attention that has been 
paid to the problem of the valuation of interest rate derivative securities and show that a 
lot of empirical research has yet to be carried out to evaluate and assess the different 
models. 

The theoretical overview by means of some general characteristics of the interest rates 
models enables and facilitates the explanation of the different features of the models 
presented. In addition, it clearly shows the trade-off between the need to incorporate the 
different institutional and empirically observed characteristics of the yield curve and the 
corresponding complexity of the resulting model. The numerical approaches discussed 
provide a general framework for the actual valuation of interest rate derivative securities 
given some interest rates model. The institutional characteristics of commonly traded 
contingent claims do not generally allow for the derivation of so-called closed-form 
solutions, implying the necessity of accurate and stable numerical methods to 
approximate the claims' value and assess the sensitivities of the claims with respect to the 
different input parameters. 

Results presented in the empirical part point to the conclusion that an empirical 
comparison between theoretically correct but complex models and relatively simple 
implementable models is necessary. The empirically obtained results from the Dutch 
Government Bond Market during the years 1989 and 1990 do not favor a particular 
model in which interest rates are positive in comparison to another model in which 
interest rates are normally distributed. In addition, it has been shown that statistical 
criteria to obtain a sufficiently accurate description of the stochastic dynamics of the 
yield curve may lead to serious pricing errors in some derivative securities, stressing the 
need to integrate the estimation of interest rate models and the valuation of interest rate 
derivative securities.  

CONCLUSIONS 

This section presents more specific conclusions with respect to the research objectives 
formulated in Chapter 1. 

The problem of the valuation of interest rate derivative securities relies heavily on 
conditions regarding the stochastic dynamics of the underlying values of the claim or the 
term structure of interest rates to be able to exclude arbitrage opportunities and to derive 
the value of any claim. The first chapter of the theoretical part presented an extensive 
overview regarding these conditions in discrete-time and continuous-time economies. 



Given the stochastic processes of the assets, riskless arbitrage opportunities are excluded 
if there exists a unique equivalent probability measure such that the values of the 
different assets relative to a short-term money market account are martingales. In this 
case, the security market is complete, implying that every contingent claim has a unique 
and arbitrage-free value equal to the discounted expected value of the specific payout of 
the claim under this martingale measure. It is important to realize that in the actual 
economy individual investors may have subjective probability beliefs regarding the 
expected returns on different assets. As long as their probability measures are equivalent 
and as long as there exists a unique equivalent martingale measure, riskless arbitrage 
opportunities do not exist and every contingent claim can be uniquely priced. 

The many different models designed to value interest rate derivative securities, which 
are discussed and explained in Chapters 4 and 5, illustrate the academic interest during 
the last decade. In order to determine the theoretical and empirical circumstances under 
which a particular model should be preferred and to be able to make some suggestions for 
further research, it is necessary to classify the different models according to some general 
characteristics. The most important distinction between the different approaches is the 
modelling of the underlying values of the contingent claims. 

The direct approach basically extends the Black-Scholes security market model to 
incorporate the institutional characteristics of bonds. Given the stochastic processes of the 
underlying values explicitly, the existence of a unique equivalent probability measure 
excludes riskless arbitrage opportunities between these underlying values and between 
these underlying values and the contingent claim. The possibility of arbitrage 
opportunities between other interest rate dependent assets is not taken into account and as 
such, the direct approach can also be classified as a partial equilibrium approach. The 
model presented is a combination of two existing models and is applicable to the 
valuation of options on pure discount bonds. Both the explicit modelling of the stochastic 
processes of coupon-paying bonds and the necessity of obtaining conclusive results 
regarding the exclusion of arbitrage, seem impossible.  

In the indirect approach, all interest rate derivative securities are considered to be 
functions of the instantaneous rate of interest. To obtain the actual values of these 
securities, arbitrage opportunities between all securities have to be excluded. The 
existence of a unique equivalent martingale measure enables the derivation of the term 
structure of interest rates at some valuation date and establishes a general equilibrium 
between all interest rate dependent securities. The different models within this indirect 
class can be further classified according to the endogenous or exogenous specification of 
the yield curve. 

Within the class of endogenous term structure of interest rates models, the drift and 
volatility functions of the stochastic process of the instantaneous short-term rate of 
interest are not functions of calendar time. Because the arbitrage-free values of discount 
bonds are determined by the discounted expectation of the final payment under the 
martingale measure, the yield curve at some valuation date is a function of the parameters 
of the stochastic process of this instantaneous spot rate in a risk-neutral economy. Some 
well-known models in this class are the Vasicek (1977) model, in which interest rates are 
normally distributed and mean reverting, and the Cox, Ingersoll and Ross (1985) model, 
in which the instantaneous variance of the spot rate is proportional to the value of the spot 
rate and interest rates are mean reverting. 
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By allowing the drift term of the stochastic process of the instantaneous spot rate to be 
a function of calendar time, the exogenous term structure of interest rates models enables 
the implementation of an exogenously estimated or observed term structure of interest 
rates. A well-known model within this class is that of Ho and Lee (1986), in which 
interest rates are normally distributed. 

In addition to this distinction, the term structure of interest rates models can be further 
and similarly classified according to the endogenous and exogenous specification of the 
term structure of interest rate volatilities. The Heath, Jarrow and Morton (1990b) II 
model is an example of an interest rate model in which both term structures are 
exogenously specified. 

The different numerical methods necessary to value an interest rate contingent claim, 
given some specific model, generally approximate the continuous-time stochastic process 
of the interest rate by a discrete-time process or interest rate tree. Dependent upon the 
recombining of the different paths of this tree, the tree is denoted as path-dependent or 
pathindependent. In the case where the drift and volatility functions of the stochastic 
process are not dependent upon the particular path followed by the interest rate, the 
approaches of Nelson and Ramaswamy (1990) and Tian (1991) binomially approximate 
the continuous-time process. In the method of Hull and White (1990a), however, this 
approximation is established by means of a trinomial interest rate tree. By changing the 
corresponding probabilities at each node, one can ensure convergence of the discrete-time 
distribution towards its continuous-time counterpart. 

To assess the computational efficiency and numerical accuracy of these three different 
methods, values of European call and put options on discount bonds have been calculated 
for the Cox, Ingersoll and Ross (1985) model for several combinations of the input 
parameters. For each of the scenarios, a benchmark value has been calculated that can be 
regarded as the true value of the option. Based on this benchmark value, the 
computational efficiency in relation to the numerical accuracy can be determined by 
calculating for each of the methods the maximum number of nodes for which the 
difference between the corresponding option value and benchmark value is more than one 
cent. For a number of scenarios considered, the method of Tian (1991) performs best in 
terms of both the mean as well as the standard deviation. 

Although the original discrete-time derivation of the Heath, Jarrow and Morton 
(1990a) I model results in an interest rate tree that is path-dependent, a transformation 
can be applied to their interest rate process after which the construction of a simple path-
independent interest rate tree is possible. It has been shown that the resulting numerical 
algorithm to value contingent claims is directly implementable and computationally 
efficient. In addition, the transformation allows for the direct calculation of the 
sensitivities of the value of the contingent claim with respect to term structure 
movements or changes in the underlying values, facilitating practical applications. 

In the empirical part, the models of Vasicek (1977) and Cox, Ingersoll and Ross (CIR) 
(1985) have been estimated by means of a time series and cross-sectional analysis. Apart 
from the interesting comparison of two different models within the class of endogenous 
term structure of interest rate models, two ways of estimation are possible, that allow for 
a comparison between an implicitly and explicity estimated interest rate process. 

Based on an exact discrete-time representation of the interest rate processes, the 
Vasicek model is nested within the CIR model. Only for the six-month and twelve-month 

The valuation of interest rate derivative securities    174



AIBOR during the years 1985 through 1990, the Vasicek model has been rejected in 
favor of the CIR model. Based on a sample of liquid Dutch Government Bonds during 
1989 and 1990, it can be concluded that the differences between the weekly estimated 
term structures of interest rates and the resulting implications for contingent claim pricing 
are small. Although further research should be carried out to investigate this conclusion, 
the results seem to suggest that the relatively simple model of Vasicek is able to capture 
the stochastic dynamics of interest rates in relation to the valuation of interest rate 
derivative securities in comparison to the more complicated CIR model.  

The two estimation methodologies, however, do reveal significant differences between 
the cross-sectional and time series estimation of the stochastic process of the 
instantaneous short term rate of interest. The instantaneous volatility of the spot rate is 
significantly higher based on a time series analysis for both models. Based on a cross-
sectional analysis, however, interest rates are close to a random walk and almost 
deterministic. 

A principal component analysis to determine a relatively small number of factors to 
describe the stochastic dynamics of the yield curve over time is generally not applicable 
to value interest rate derivative securities. A theoretical and numerical investigation in 
case of the Jamshidian (1990) and Heath, Jarrow and Morton (1990b) II model, 
respectively, shows that, although a small number of factors sufficiently describe the 
general movement of the term structure of interest rates, the stochastic dynamics of 
specific maturity segments upon which a contingent claim critically depends may be 
ignored, thereby seriously underestimating the true value of the claim. Because the exact 
relationship between the stochastic dynamics of specific segments and the value of a 
contingent claim is generally unknown, the application of principal component analysis 
to value interest rate derivative securities is disputable. 

FURTHER RESEARCH 

As the last decade has shown a lot of theoretical progress with respect to the theoretical 
valuation of interest rate derivative securities, it can be expected that much attention will 
be paid to an empirical investigation of the different models. 

Preliminary results regarding two specific models within the class of endogenous term 
structure of interest rate models reveal that the implied and explicit estimation of the 
stochastic process of the interest rate is significantly different. Although one may 
conclude that the models are misspecified, it is interesting to investigate an integration of 
the two different estimation methodologies and of the corresponding two different 
samples of observations. 

In addition to an extension of the empirical research regarding endogenous term 
structure of interest rate models, future research should be focused on an empirical 
examination of the exogenous term structure of interest rate models. The explicit 
modelling of the stochastic evolution of the yield curve over time, given an observed 
yield curve at some valuation date, might be able to capture or describe the observed 
interest rate process more accurately than do the models within the class of endogenous 
term structure of interest rate models. 
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The last chapter of the empirical part has shown that applying principal component 
analysis to the stochastic movement of the yield curve is generally not justified to value 
interest rate derivative securities. First, it would be interesting to investigate the 
determination of an extended statistical criterium that not only describes the proportion 
explained by each of the different factors but also enables the assessment of the possible 
pricing errors of representative contingent claims. Second, it is necessary to examine the 
possibility of the existence of similar pricing errors resulting from estimating well-known 
models like the Vasicek model, the CIR model and the Heath, Jarrow and Morton I 
model. The cross-sectional estimation of the Vasicek model, for example, results 
implicitly in the stochastic description of different maturity segments. The specific 
stochastic characteristics of a particular segment may not be sufficiently represented as a 
result of the used statistical criteria. Further research should also be concentrated on a 
theoretical assessment and empirical investigation of this phenomenon.  
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