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The success of any financial institution in the trading environment rests on
one important issue: The successful implementation of the building blocks
that make up such an institution. In this book we consider one of the most
important building blocks, namely yield curves.

Yield curves are commonly used in the pricing and valuation environ-
ments to assist in the subjective and objective decision-making processes
respectively. In a pricing environment yield curves assist dealmakers to
determine the current level of market interest rates, and can offer informa-
tion on what price to quote for interest rate instruments. Yield curves that are
used for pricing are usually subjective, in that dealmakers add spreads to the
yield curve to cover factors like transaction costs, credit risk, liquidity issues,
and a little extra to make the deal profitable.

In a valuation environment, yield curves are used to value the deals in a
portfolio. A portfolio is considered to be a set of instruments bought or sold
in the market. The valuation yield curves have to be objective and accurate
reflections of market rates to ensure that the estimates of future profits are
correct. The numbers are usually compiled by accountants, who are typically
interested in the factors to which profits or losses can be attributed.

The valuation yield curves are also used in the risk management process
to determine the current market risk of any portfolio. The risk management
function is separate from the dealmakers, because risk managers have to be
objective when determining the risks to which the financial institution is
exposed.

In short, an incorrect yield curve may lead to incorrect valuations and
risk numbers, which in turn may lead to either inadequate or too large
economic capital reserves. These respectively increase the solvency risk
of the institution, or inhibit the dealmakers from entering into more
lucrative deals.

In Section 1.1 we discuss some background theory regarding yield
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curves. We consider the various shapes a yield curve can take, and discuss
the various theories that attempt to explain yield curve shapes. In Section
1.2 we consider the main approaches to modeling yield curves. Finally in
Section 1.3 we give a brief layout of the rest of the book.

1 . 1 Y I E L D  C U R V E  B AC KG R O U N D

Interest rates usually differ according to the tenor of the instrument. For
example, the return on a one-year instrument will differ from the return on
a two-year instrument. This is the concept behind the term structure of
interest rates. A yield curve describes both the shape and level of the term
structure of interest rates at any time.

The four main shapes that yield curves usually take are shown in Figure
1.1. They are positively sloped, negatively sloped, humped, and flat curves
(Douglas, 1988; McEnally, 1987). It is interesting to note the different
shapes that can occur as a result of market dynamics, since a naïve view of

YIELD CURVE MODELING2

Figure 1.1 Different shapes of the yield curve
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yield curves could be that only upward-sloping yield curves are possible,
as investors want to be compensated more for money that is invested for
longer periods.

In the attempt to explain the shape of the term structure, three prominent
theories have been proposed: the market segmentation theory, the pure
expectations theory and the liquidity premium theory. These theories are
generally not exclusively accepted by market participants; they are rather
regarded as influences on the shape of the yield curve.

According to the market segmentation theory, institutions have prefer-
ences for securities that match their needs, and the shape of the term struc-
ture is primarily determined by the supply and demand of the instruments
and the interaction of the institutions in the market. For instance, consider
two groups of investors, where the one group buys short-term securities
and the other group buys long-term securities. The two groups may influ-
ence the prices of the securities in which they are investing, since they
simultaneously increase the demand for the instruments and also reduce
their effective liquidity by holding on to the securities. The interaction of
the two groups thus creates an interest rate differential between securities
with different maturities (Bodie, Kane, and Marcus, 1996).

The pure expectations theory acknowledges that maturity preferences
exist, but theorizes that investors may take advantage of the expectations
about future interest rates to such an extent that they neutralize the matu-
rity preferences and create yield differences for securities with differing
maturities. Investors require a premium to hold instruments with maturities
different from their investment horizons. The expectations theory depends
heavily on the assumption that investors are indifferent to maturities as
long as they obtain the highest total return over the investment period
(Bodie et al., 1996; Douglas, 1988).

The liquidity premium theory differs from the expectations theory in that
the notion that investors are indifferent to the maturity of securities is
rejected. The assumption is that investors will prefer short-term securities,
because they have smaller interest-rate risk. The greater demand for short-
term securities increases the liquidity of the instruments, which means their
yields are lower than those of long-term securities. The yield curve will be
upward sloping when short-term securities have lower yields than long-
term securities (Douglas, 1988; Fisch, 1997).

1 . 2 M A I N  A P P R OAC H E S  TO  M O D E L I N G  Y I E L D
C U R V E S

The traditional way of deriving yield curves is to apply regression-type
yield curve models. Consider a scatter plot of the yields to maturity
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against the terms to maturity of a series of bonds. The yield curve is the
function that best fits through all the points on the scatter plot. The
resulting yield curve is called a par rate curve, which has to be boot-
strapped to get a zero rate curve. Please refer to Chapter 2 for a detailed
discussion.

One of the main problems with the regression-type models is that the
“coupon effect” is not taken into account. The coupon effect refers to the
fact that different bonds with the same term to maturity may have very
different yields to maturity because of differences in their coupon rates.
To get around the “coupon effect” issue some practitioners use duration
on the x-axis instead of term to maturity (McLeod, 1990). However, it is
difficult to interpret the duration yield curve because it is unclear to
which periods the different rates apply.

Another approach to yield curve modeling is to assume a functional
form for the discount function. The discount function is used to calculate
the fitted prices of a series of instruments. The parameters of the discount
function are estimated by setting up an optimization routine that mini-
mizes the differences between the actual and fitted instrument prices.
These models are referred to as empirical yield curve models, and were
developed to overcome some of the shortcomings of the regression-type
yield curve models.

Some of the empirical models are highly parameterized, which may be
problematic since it is usually difficult to find adequate estimates for the
parameters. The empirical models are the most commonly used models
in practice because they tend to show a good fit of the underlying 
instruments.

The final approach to modeling yield curves is known as the dynamic
asset pricing approach. With this approach we take a dynamic view of
both the shape of the term structure and its evolution over time, by
making explicit assumptions regarding the stochastic processes of the
factors driving the interest rates (Yao, 1998).

In Chapter 3 we consider one of the major approaches to dynamic
asset pricing, namely equilibrium models. Equilibrium models make
assumptions about economic variables by taking phenomena such as
mean reversion and volatility roll-down into account. Mean reversion
refers to the idea that interest rates have a drift rate that forces them 
to converge to some long-term average level, and volatility
roll-down refers to the fact that volatility is a decreasing function of
maturity.

Equilibrium models are only briefly considered in Chapter 3, because
zero curves derived from equilibrium models do not fit the observed data
very well. These models are not flexible enough to allow for the various
shapes of yield curves.

YIELD CURVE MODELING4



1 . 3 T H E  L AYO U T  O F  T H E  B O O K

The book is divided into a number of chapters that discuss the various
aspects of yield curve modeling.

It is important to choose the correct instruments when any yield curve is
derived. The instruments dictate the way the yield curve should be derived,
as well as the type of instruments that can be valued from the derived yield
curve. There are different types of rates that have to be allowed for; for
instance:

� the yields-to-maturity of coupon-paying bonds are par rates
� the rates derived from forward rate agreements (FRAs) are forward

rates
� the Treasury bill rates are usually discount rates
� zero-coupon bonds prices are discount factors so that the rates derived

from them are zero rates
� the interest rate swap rates quoted in the market are par rates.

In Chapter 2 we define the various types of interest rates. We show the 
logical derivation of the various formulae and discuss practical examples on
the use of the formulae. We also highlight possible pitfalls. The formulae and
concepts discussed in Chapter 2 form the basic building blocks in the process
of deriving any yield curve, and are used extensively in later chapters.

There are three main types of yield curve models, namely regression-
type models, empirical models, and equilibrium models (please refer to the
discussion in Section 1.2). In Chapter 3 we consider some of the most
popular models that are proposed in the literature. In this book we focus on
the empirical models.

Other important issues that have to be taken into account when deriving
yield curves are:

� the compounding of the instrument rates, for example whether it is a
simple rate or a continuously compounded rate

� daycount conventions
� allowing for public holidays and business day rules
� the credit quality of the instrument
� the liquidity of the instrument 
� interpolation and extrapolation techniques.

These issues are considered in Chapter 4.
We begin Chapter 5 with a discussion on how to fit the empirical yield

curve models discussed in Chapter 3 to coupon-paying bonds. There are
various important points that are addressed, like:
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� setting up the optimization routine
� choosing initial parameter estimates for the yield curve function
� choosing the appropriate yield curve function
� which bonds to include in the process
� how to test whether the fitted yield curve model is adequate.

Any attempt to model the term structure introduces the practical problem
of how to fill the gaps in the maturity spectrum that arise because of incom-
plete and imperfect financial markets. To fill these gaps there is a trade-off
between smoothness and reliability. The “noise” should be removed from
the data, while still allowing for genuine “bends” in the term structure. This
process is discussed in detail in Chapter 5.

In Chapter 5 we also consider how to derive zero rate curves from FRAs
and interest rate futures. Finally we discuss a way in which to derive a term
structure for interest rates that have no quoted term structure, for instance
the bank prime rate.

The idea of Chapter 5 is to give the reader practical ideas on how to
derive yield curves from the various types of instruments, and to explain
the issues that should be taken into account. After working through this
chapter it should be clear that the most important part in deriving a yield
curve is to understand the underlying instrument.

In Chapter 6 we consider the relationship between nominal interest
rates, real interest rates, and inflation rates. We consider some inflation-
linked securities, and show how to derive a real curve from these instru-
ments. We also discuss a few interesting examples on how to derive an
inflation term structure, and how to use the inflation term structure to
derive real interest rates where there are no inflation-linked securities
available in the market.

In Chapter 7 we explore the factors that drive credit, liquidity, and coun-
try risk premiums, and we consider various ways in which to measure these
premiums using yield curves. It is important for financial institutions to be
able to understand the different sources of risk and to quantify it.

In Chapter 8 we consider the types of risks that have to be minimized
when a yield curve model is put together. We briefly consider the types of
yield curve risks that have to be allowed for, as well as how to measure
interest rate risk. We also discuss the effect incorrect yield curves can have
on the risk measures. We further explore some examples where operational
and model risk may occur with respect to yield curves, and we discuss
ways to minimize the risks. We end the chapter with a brief discussion on
liquidity risk.

This book will give the reader insight into the techniques that can be
used to model yield curves in our incomplete and imperfect financial
markets. It is assumed that the reader has a basic understanding of the
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financial instruments that are available in the market. Various practical
solutions are provided and possible pitfalls highlighted. The objective of
this book is to be a practical guide on yield curves that is easy to follow,
and that presents techniques that are simple to implement.
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In this chapter a few basic types of interest rates and the relationships
between them are defined. The formulae denoting these relationships are
derived by using very straightforward arguments; this involves the break-
ing up of instruments into their underlying cash flows. The formulae and
concepts discussed in this chapter form the basic building blocks for the
derivation of yield curves, and are used extensively in later chapters.

In Section 2.1 zero interest rates are discussed. It is important to under-
stand the different ways in which rates can be compounded, because it
has a major effect on the instruments valued with the rate. In Section 2.2
discount factors are discussed. Discount factors play an important role in
deriving empirical yield curves from bonds, but that is discussed in more
detail in Chapters 3 and 5. Another important concept, discussed in
Section 2.3, is that of forward interest rates. A forward interest rate repre-
sents the return that is expected to be achieved between two dates in the
future. An intuitive way in which to derive forward rates is shown. In
Sections 2.4 and 2.5 the concepts of yield to maturity and par interest
rates are discussed. These two types of rates are in fact the same in that
they are implicitly internal rates of return: the yield to maturity is the
internal rate of return of a bond, and a par rate the internal rate of return
of an interest rate swap. In later chapters we do not refer to a yield to
maturity curve, but rather just a par curve derived from bond yields. In
Section 2.6 we obtain the formulae to derive zero rates from par rates.
Finally in Section 2.7 the concept of implied interest rates is discussed by
considering the relationship between domestic and foreign interest rates
and the relevant exchange rates.

The information in this chapter is adopted from various sources, which
include Deacon and Derry (1994a), McCutcheon and Scott (1994), Svens-
son (1994), Anderson et al. (1997), Waggoner (1997), McCulloch and
Kochin (1998), and Cairns (2004).

Concepts and 
Terminology
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2 . 1 Z E R O  I N T E R E S T  R AT E S

The concept of time value of money refers to the fact that one unit of money,
invested today, will be worth more (or less) at the end of the investment
period. The difference between the value of the investment today and the
value of the investment at some future date is due to the fact that a zero nomi-
nal interest rate is earned on the investment. For example, say an investor
deposits an amount P into a bank account today for a period n years where a
nominal zero interest rate of i per annum, compounded annually, is earned.
After the first year, the investment will be worth:

FV1 = P(1 + i)
.
This amount FV1 will now earn interest for the next year, so at the end of
two years the investment will be worth:

FV2 = FV1(1 + i) = P(1 + i)(1 + i) = P(1 + i)2

and so on until at the end of n years the investment will have a value of

FVn = P(1 + i)n (2.1)

where FVn is the future value of the investment at the end of year n.
The zero interest rate is a nominal annual rate that is compounded annu-

ally, or in short, a naca rate. The formulae derived above assume that the
rate at which interest is earned and reinvested remains constant over the
investment period. This assumption is necessary to find the relationship
between rates that are compounded differently.

In the rest of this section we explore the different ways in which zero
interest rates can be compounded. By using similar arguments to those
used to derive (2.1), we derive the formulae necessary to convert between
two rates that are compounded differently.

2.1.1 Rates compounded at regular intervals

The relationship between a nominal rate that is compounded m times a year
and a nominal rate that is compounded n times a year can be expressed as:

(2.2)

where
i(m) = nominal annual rate compounded m times per annum
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i(n)= nominal annual rate compounded n times per annum
m = number of compounding periods per annum 
n = number of compounding periods per annum.

By solving for i(m) in (2.2) we find that to convert a rate compounded n
times a year, to a rate compounded m times a year, we do the following:

In practice the most commonly used compounding periods are annually,
semi-annually, quarterly, and monthly. The corresponding interest rates are
referred to as naca, nacs, nacq and nacm rates respectively.

2.1.2 Continuous compounding

Continuous compounding assumes that an investment amount grows
continuously at a fixed specified rate throughout the investment period.
The relationship between a continuously compounded rate i and a nominal
rate compounded n times a year, i(n), is:

(2.3)

where e ≈ 2.718 is the base of the natural logarithm. To convert the nomi-
nal rate to a continuously compounded rate, we would rewrite (2.3) as
follows:

2.1.3 Simple interest

Simple interest is defined as an investment where interest is earned on the
principal amount only, in other words no “interest on interest” is earned. To
illustrate this, say an amount P is invested and simple interest is earned at
a rate of r per annum. After n years the investment will be worth:

FVn = P(1 + nr) (2.4)

where FVn denotes the future value of the investment. By setting (2.4)
equal to (2.1) we see that the relationship between a simple rate and an
annually compounded rate can be written as:

YIELD CURVE MODELING10
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DC

(1 + nr) = (1 + i)n

A more generalized formula to illustrate the relationship between a simple
interest rate r and a nominal rate compounded m times a year is as follows:

(2.5)

where d is the number of days in the investment period and DC is the
number of days that there is assumed to be in a year (which depends on the
daycount convention used).

The daycount convention differs between countries, for example when
working with US dollar rates we usually use 360 days, and for sterling
(GBP) rates we usually use 365 days. However, the daycount convention
may differ depending on the type of instrument. Please refer to Chapter 4
for a detailed discussion.

By rearranging (2.5), the simple interest rate is obtained from the
compounded rate as follows:

Alternatively, the compounded rate can be calculated from the simple rate
as follows:

Another important concept is the calculation of the effective rate of
interest. The effective rate reflects the total interest amount an investor
receives over a period, assuming that interest is received periodically and
then immediately reinvested at the original rate. The effective rate is
always greater than the nominal rate by an amount that increases as the
interest earned is reinvested more frequently. To calculate an effective
annual rate i, from a nominal annual rate compounded m times a year i(m),
the following relationship is used:

(2.6)

which is analogous to the previously shown relationship between simple
and compounding interest rates given by (2.5).
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2.1.4 Discount rates

Some money market instruments like treasury bills and bankers accept-
ances are generally issued and traded at a discount rate. The discount rate
of interest is used to calculate the amount an investor must invest today in
order to receive a prespecified amount at maturity. The difference between
the maturity value and the initial investment amount is the discount
amount. The discount amount, when compared with the maturity value,
results in the discount rate.

The relationship between simple and discount rates is as follows:

(2.7)

where
i = simple interest rate
r = discount rate
d = number of days in the investment period 
DC = number of days in the year—this depends on the daycount 

convention applicable.

To derive a simple rate from a discount rate, we rearrange (2.7) as follows:

and similarly, to derive the discount rate from a simple rate, we have that:

2 . 2 D I S CO U N T  FAC TO R S

The discount factor dfm denotes the price at time t of a zero-coupon bond
that pays 1 at the maturity T where the term to maturity is calculated as 
m = T – t. Discount factors can take on values in the interval [0; 1].

The plot of a set of discount factors against the relevant terms to maturity
is called the discount factor curve, or the discount function. The discount
function is considered to be the continuous analog to a set of discount factors
and is denoted by δ(m). A discount factor dfm can be regarded as a discrete
point on the continuous discount function δ(m), thus dfm = δ(m) (Deacon and
Derry, 1994a). The discount function typically has a negative exponential
shape with df0 = 1. An example of a discount function is given in Figure 2.1.
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(1 + i d )= (1 – r   d )–1

DC DC

i = r
1 – r ×  dDC

r = i
1 + i ×  dDC



Discount factors are used to calculate the present value of an investment.
Say the investor expects to receive a series of cash flows in the future. To
calculate what the total value of these cash flows is today, the investor has
to discount each of the cash flows back to today with the appropriate
discount factor.

The compounding of the rate has to be taken into account when a
discount factor is calculated from a zero interest rate. It is done as follows:

(2.8)

where i is the annual zero rate compounded as specified in each case, and
m the period in years for which a discount factor is calculated.

2 . 3 F O R WA R D  R AT E S

A forward interest rate represents the return that is expected to be achieved
between two dates in the future. Forward rates are calculated from zero
rates using the arbitrage-free condition, which holds that an investment that
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Figure 2.1 Example of a discount function

⎛ 1
⎜ (1 + i )mn

⎜
⎜ 1

dfm = ⎨ (1 + im)
⎜
⎜ 
⎜   e–im

⎝

n
, i compounded n times per annum

, i a simple rate

, i a continuously compounded rate



earns interest of i1 from t0 up to time t1 and is then reinvested at an interest
rate of f1,2 for the remainder of the period up to time t2, should have the
same value at the end of the investment period (t2) as an investment of the
same funds that earns interest of i2 from t0 up to time t2. This concept is
depicted graphically in Figure 2.2 and mathematically in (2.9).

YIELD CURVE MODELING

Figure 2.2 An investment that earns interest of i1 up to time t1 and is then
reinvested to earn interest of f1,2 up to time t2, should have the
same value as an investment of the same funds that earns interest
of i2 from t0 to time t2

14

t0 t1 t2

i2

i1 f1,2

(2.9)

Equation (2.9) is valid when i1 and i2 are simple zero rates and DC refers
to the number of days in the year as dictated by the daycount convention.
By solving for f1,2 in (2.9), we have that:

where f1,2 is the simple forward rate between times t1 and t2.
Using the same arguments, a forward rate can be calculated between any

two periods, with the forward rate compounded in any appropriate way. For
example, to calculate a simple forward rate from zero rates that are
compounded m times a year, the formula needs to be adjusted slightly, to
get the following relationship:

(2.10)

[1 + i1
t1 – t0][1 + f1,2

t2 – t1 ] = [1 + i2
t2 – t0]DC DC DC

[1 + i2
t2 – t0]

f1,2   =                           –1  × DC

[1 + i1
t1 – t0]

⎛
⎢
⎢
⎢
⎢
⎝ ⎛

⎢
⎢
⎢
⎢
⎝

DC

DC

t2 – t1

[1 + i1]        [1 + f1,2
t2 – t1 ] = [1 + i2]m

m(t1 – t0)
DC

DC m

m(t2 – t0)
DC



where i1 and i2 are now compounded m times per year. The forward rate can
easily be determined by solving for f1,2 as follows:

By using the relationship between discount factors and zero interest rates
given by (2.8), it is clear that simple forward interest rates can easily be
calculated from discount factors by rewriting the relationship as given by
(2.10) as follows:

where dft denotes the discount factor for a period of t years. By solving for
the forward rate we get the following relationship:

(2.11)

The difference between zero rates and forward rates can be briefly stated
as follows: Zero rates describe interest rates over periods from the current
date to a given future date, while forward rates describe the interest rates
applicable between two dates in the future.

Two other concepts which are important are the instantaneous forward
interest rate and the mean forward interest rate. The instantaneous forward
interest rate ρ(m) is given by the following equation:

(2.12)

where δ(m) is the continuous discount function defined in Section 2.2. The
instantaneous forward rate can be used to derive the mean forward interest
rate f1,2 over the interval [t1,t2] as follows:
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1 [ 1 + f1,2
t2 – t1 ] = 1

dft1 dft2DC

[1 + i2 ]
f1,2   =                           –1  × DC

[1 + i1 ]
⎛
⎢
⎢
⎢
⎢
⎝ ⎛

⎢
⎢
⎢
⎢
⎝

m

m

t2 – t1

m(t2 – t0)
DC

m(t1 – t0)
DC

f1,2   = [dft1 – 1] × DC
dft2 t2 – t1

ρ(m) = – d lnδ(m) = – δ
´(m)

dm                   δ(m)

f1,2 =    1 ∫ ρ(m)dm = 1    lnδ(t1)
t2 – t1                              t2 – t1      δ(t2)

t2

t1



which corresponds with (2.11), the formulae derived for discrete time.
Under certain assumptions forward rates can be interpreted as indicating

market expectations of future short-term interest rates (Svensson, 1994).

2 . 4 Y I E L D  TO  M AT U R I T Y

The yield to maturity is the internal rate of return of a bond if it is held until
maturity. This means the yield to maturity is the constant interest rate that
makes the present value of all the future coupon payments and the redemp-
tion payment equal to the price of the bond (Fabozzi, 1993). It can be
explained as a complex average of spot rates.

In general the price of a regular fixed coupon-paying bond can be 
written as:

(2.13)

where
P = the all-in price of the bond
n = number of outstanding cash flows of the bond
y = yield-to-maturity of the bond
mj = the term in years from the settlement date until cash flow Cj
Cj = jth cash flow of the bond (the last cash flow will be the redemption

payment plus the coupon payment).

In some markets, bonds are quoted in terms of their prices. So to determine
the yield to maturity we need to solve iteratively for the yield to maturity y
in (2.13). Conversely there are other markets where bonds are quoted and
traded in terms of their yields to maturity, and (2.13) can then be used to
calculate the price of the bond.

2 . 5 PA R  R AT E S

A par rate is defined as the average rate at which a bond should be priced
if the bond is to be issued at par. In other words, given the coupon rate and
the par rate, the bond has a value of 100 per 100 nominal (Cairns, 2004).
The same concept is used to value the fixed leg of an interest rate swap,
therefore the terms “par” and “swap” rates refer to the same type of rate.
The average rate is also known as the internal rate of return.

Let us first consider the concept of an internal rate of return. Say we
have an instrument that pays three cash flows CF1, CF2, and CF3, one cash
flow every year. The present value of this instrument is:
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P = ∑ Cj

(1 + y/2)2×mj

n

j=1



(2.14)

where df1, df2 and df3 denote the one-year, two-year, and three-year
discount factors respectively, and i1, i2 and i3 denote the zero rates applica-
ble to a one-year, two-year, and three-year period respectively. To deter-
mine an internal rate of return, we need to determine an average rate r3 over
the three-year period that can be used to discount all three cashflows so that
we will get to the same present value PV as in (2.14). This means that we
have to solve for the average rate r3 in the following:

(2.15)

so that r3 represents the internal rate of return for the three-year period.
Alternatively we can write (2.15) as follows:

(2.16)

In other words in this transaction the investor invests an initial amount of
CF0 (equal to the PV in equation (2.15)) and receives three cash flows CF1,
CF2, and CF3.

We have seen that the internal rate of return is the average rate the invest-
ment earns over the whole investment period. In a similar way we can define
an average rate that is paid by an investment. Consider the case where the
three yearly cash flows are determined by the three interest rates f1, f2, and f3,
where the cash flow at year 1 is determined from f1, the cash flow at year 2
is determined from f2, and the cash flow at year 3 is determined from f3. The
present value of the transaction can be written as:

PV = ( f1   × df1) + ( f2   × df2) + ( f3 × df3) (2.17)

We are now interested in calculating the fixed average rate that can be 
paid each year such that we get the same present value as in (2.17). 
Mathematically this is written as:

PV = (r3   × df1) + ( r3   × df2) + (r3 × df3) (2.18)

where r3 denotes the average three-year rate for which we need to solve
iteratively. Similarly to (2.16), we can now rewrite (2.18) as follows:
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PV = CF1 × df1 +CF2 × df2 +CF3 × df3

= CF1 + CF2 + CF3

(1 + i1) (1 + i2)2 (1 + i3)3

PV = CF1 + CF2 + CF3

(1 + r3) (1 + r3)2 (1 + r3)3

0 = – CF0 + CF1 + CF2 + CF3

(1 + r3) (1 + r3)2 (1 + r3)3



0 = –CF0 + (r3   × df1) + ( r3   × df2) + (r3 × df3)

where CF0 = PV. This can be interpreted as the investor that invests an
initial amount of CF0 and receives three cash flows calculated from the
average rate r3. The same concept is used when we value the fixed leg of
an interest rate swap. A one-year swap rate r1 is the average rate calculated
from the following:

0 = –1 + (1 + r1) × df1 (2.19)

where df1 denotes the one-year discount factor. This means by investing a
nominal amount of 1, the investor is paid back the nominal plus interest of
r1 after one year. Similarly a two-year swap rate r2 is the average rate 
calculated from:

0 = –1 +r2 × df1 + (1 + r2) × df2 (2.20)

where df2 denotes the two-year discount factor. By investing the nominal
amount of 1, the investor receives interest of r2 every year, and on the
expiry date the investor is paid back the nominal as well. In a similar way
we can set up the equations for each of the yearly swap rates up to rn which
denotes the n-year swap rate. We will now set up these equations and show
how they can be used to iteratively convert zero rates to par rates.

Consider the situation where we have a zero yield curve available that is
indicative of current market interest rates. Say a dealer would like to use
the zero curve to determine appropriate quotes for interest rate swaps. The
yearly zero rates with maturities up to n years are interpolated off the zero
yield curve and are denoted by zi, i = 1,...,n. Please refer to Chapter 4 for a
discussion on interpolation techniques. The zero rates are converted to
yearly discount factors by using (2.8) which are then denoted by dfi; the
yearly swap rates which we need to calculate are denoted by ri.

By using the same argument that is used to derive (2.19) and (2.20), we
find the following set of equations:

0 = –1 + (1 + r1) × df1
⇒ 1 = (1 + r1) df1

so that we can solve for the one-year swap rate as follows:

The rest of the swap rates are extracted iteratively with similar arguments,
as follows:
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r1 = 1 – df1
df1



and so on, so that in general the formula to extract the swap rates from the
zero rates, is:

(2.21)

where k = 1,...,n. However, in practice we know that the swap rates will not
apply to a fixed number of years due to business-day rules and daycount
conventions (please refer to Chapter 4 for a detailed discussion). In other
words, the one-year swap rate may apply to a period of 1.01 years, the two-
year swap rate may apply to a period of 2.03 years, and so on. We have to
allow for this when we derive swap rates to ensure that more accurate
results are obtained.

Consider the same dealer that has the zero rate curve available. This
dealer knows that when a swap is quoted in the market, the one-year swap
rate has a term-to-maturity of t1; the two-year swap rate has a term-to-
maturity date of t2, and so on. In order to take the swap maturity dates into
account, we first have to interpolate the zero curve to get a zero rate at each
of these swap maturity dates. Each of these interpolated zero rates is then
converted to a discount factor that is used in the following recursive 
formulae (using similar arguments as before) to derive the simple swap
rates:

and so on, so that in general the formula to extract the simple swap rates
from zero rates, is:

(2.22)

where tk is the term in years from the curve date to the swap maturity date
of contract k. We take t0 to be the value date.
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1 = (r2)df1 + (1 + r2)df2    ∴ r2 = 1 – df2

df1 + df2

1 = (r3)df1 + (r3)df2   + (1 + r3)df3 ∴ r3 =      1 – df3

df1 + df2 + df3

∴ rk = 1 – dfk

∑ dfj
k

j=1

1 =  (1 + r1[t1 – t0])df1    ∴ r1 =   1 – df1

[t1 – t0]df1

1 =  (r2[t1 – t0])df1 + (1 + r2[t2 – t1])df2    ∴ r2 =         1 – df2

[t1 – t0]df1 + [t2 – t1]df2

∴ rk =       1 – dfk

∑ [tj – tj–1]dfj
k

j=1



The calculations to derive a par curve from a zero curve are illustrated
with a simple example in Section 2.5.1.

2.5.1 Example: Deriving naca par rates from yearly zero rates

In this example we assume that we have a zero naca curve, with rates at
yearly tenors. From this curve we would like to derive par rates at the fixed
yearly tenors using (2.21). Table 2.1 shows the assumed zero rates. The
discount factors are derived from the zero rates by using (2.8). From these
discount factors the par rates are derived as follows:

and so on to get swap rates out to 15 years.
Figure 2.3 shows a comparison of the derived par rates with the zero

rates. It is interesting to see that the differences between the two curves are
minimal at the short end and then increase at the longer end. This par curve
can now be used by dealers to set prices in the interest rate swap market.
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r1 = 1 – df1    = 1 – 0.976 = 2.45%df1                  0.976

r2 =   1 – df2     =      1 – 0.951 = 2.56%df1 + df2          0.976 + 0.951

Table 2.1 Deriving naca par rates from yearly naca zero rates by assuming
fixed periods

Tenor k Zero rate i(1) dfk ∑dfj Par rate rk

0 year 0 2.40 1.000 2.40
1 year 1 2.45 0.976 0.976 2.45
2 year 2 2.56 0.951 1.927 2.56
3 year 3 2.70 0.923 2.850 2.70
4 year 4 2.85 0.894 3.744 2.84
5 year 5 2.95 0.865 4.608 2.94
6 year 6 3.16 0.830 5.438 3.13
7 year 7 3.60 0.781 6.219 3.53
8 year 8 4.10 0.725 6.944 3.96
9 year 9 4.57 0.669 7.613 4.35
10 year 10 5.00 0.614 8.227 4.69
11 year 11 5.23 0.571 8.797 4.88
12 year 12 5.12 0.549 9.347 4.82
13 year 13 4.87 0.539 9.886 4.66
14 year 14 4.60 0.533 10.418 4.48
15 year 15 4.50 0.517 10.935 4.42

k

j=1



2 . 6 T H E  “ B O OT S T R A P P I N G” T E C H N I Q U E

The technique to derive zero rates from swap rates is called bootstrapping.
Using the same arguments as in Section 2.5, we set up the equations with
which to value the fixed leg of an interest rate swap. The only difference is
that we now solve for the discount factors and not the swap rates.

2.6.1 Zero rates from naca swap rates

Say naca swap rates with maturities up to n years are available and denoted
by ri, i = 1,...,n. We assume the swap rates apply to exact yearly periods, so
the discount factors are derived as follows:

and so on, so that in general the formula to extract the discount factors is:
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Figure 2.3 Comparison of zero and par rate curves

1 = (1 + r1)df1 ∴ df1 =     1(1 + r1)

1 = (r2)df1 + (1 + r2)df2 ∴ df2 =    1 – r2df1
(1 + r2)

1 = (r3)df1 + (r3)df2 + (1 + r3)df3 ∴ df3 =    1 – r3(df1 +df2 )
(1 + r3)



(2.23)

where k = 1,...,n and dfk is the k-year discount factor. The zero rates are then
calculated from these discount factors using the relationship given by (2.8).

As was mentioned in Section 2.5, we have the situation in practice that
the periods to which different swap rates apply are usually different due to
market conventions relating to business-day rules and daycount conven-
tions. It is necessary to allow for the actual periods to which the swap rates
apply in order to derive the zero rates more accurately. The simplest way
to take this into account when deriving the bootstrap formulae, is to assume
that yearly naca swap rates with maturities up to n years are available in the
market.

t1–t0 t2–t1

t0 = 0        t1 = 1 yr      t2 = 2 yrs       t3 = 3 yrs               ... tn = n yrs

Let tk, k = 1,...,n, denote the actual term (in years) from the value date to
the maturity date, corresponding with the swap rate rk. We take t0 to be the
value date. The discount factors are then calculated using these formulae:

so that in general:

(2.24)

where k = 1,...,n and dfk is the k-year discount factor.

2.6.2 Zero rates from nacq swap rates

Say yearly swap contracts with quarterly resets are quoted in the market.
These swaps rates are nacq. To derive zero rates from these swap rates,
there are two possible approaches. The first approach is to convert all the
swap rates to naca rates and then just use (2.24) to derive the discount
factors. The second approach involves interpolating the nacq swap rates to
get an interpolated swap rate value at each quarter. These swap rates are
then bootstrapped using (2.24) as before, except that the bootstrap formula
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dfk = 1 – rk ∑ dfj

1 + rk

k–1

j=1

1 = (1 + r1)t1–t0 df1 ∴ df1 =      1(1 + r1)t
1
–t0

1 = [(1 + r2)t1–t0 – 1]df1 + (1 + r2)t2–t1 df2 ∴ df2 = 1 – [(1 + r2)t
1
–t0 – 1]df1

(1 + r2)t
2
–t1

k–1

j=1dfk =
1 – ∑[(1 + rk)tj–tj–1 – 1]dfj

(1 + rk)tk–tk–1



now has to take into account the fact that the rates are compounded
quarterly.

To derive the formulae for the second approach, let tk denote the actual
term (in years) from the value date to the maturity date corresponding with
each of the quarterly swap rates rk. The quarterly discount factors are then
calculated using these formulae:

and so on, so that in general:

(2.25)

where k denotes each of the quarters and dfk is the discount factor for the
contract with maturity tk.

2.6.3 Zero rates from simple swap rates

It is straightforward to extend the bootstrap formulae to allow for simple
swap rates. The discount factors are calculated by:

(2.26)

where rk are the simple swap rates, all other symbols as defined before.

2.6.4 Generalized bootstrap formulae

It is clear from 2.6.1 and 2.6.2 that in each of the instances the same type
of approach is followed. When naca swap rates are quoted, discount factors
are calculated for yearly periods. When nacs swap rates are quoted,
discount factors for semi-annual periods are calculated. In general, when
swap rates are quoted that are compounded m times a year, we can 
calculate m-period discount factors.

When swap rates are quoted in the market, it is usually for yearly
contracts, in other words we have contracts for one year, two years, three
years and so on. However, these swaps will have reset frequencies that
usually correspond with the compounding frequency of the quoted swap
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1 = (1 + r1)4(t1–t0) df1 ∴ df1 =      1(1 + r1)4(t
1
–t0)

1 = [(1 + r2)4(t1–t0) – 1]df1 + (1 + r2)4(t2–t1) df2 ∴ df2 = 1 – [(1 + r2)4(t
1
–t0) – 1]df1

(1 + r2)4(t2
–t1)

4
4

4 4
4

4

dfk =
1 – ∑[(1 + rk)4(tj–tj–1) – 1]dfj

(1 + rk)4(tk–tk–1)
4

4

dfk =
1 – rk ∑(tj – tj–1) dfj

(1 + rk(tj – tj–1))

k–1

k–1

j=1

j=1



rate. Say we have a two-year swap contract with quarterly resets, then
usually the swap rate will also be quarterly compounded. To use the
methodology described in this section, we have to interpolate to get swap
rates for each of the interim contract maturities, in other words for the 1.25
year, 1.5 year, 1.75 year, and so on, contracts. In general, the bootstrap
formula for swap rates compounded m times a year, is:

(2.27)

where k denotes each of the m-periods; dfk is the k-period discount factor;
tk is the time in years until the kth reset and rk is the swap rate for each of
the m periods.

An application of the bootstrap formulae is shown in the example in
Section 2.6.5.

2.6.5 Example: Bootstrapping nacs swap rates quoted yearly

Table 2.2 shows the mid swap rates quoted for yearly contracts. These
contracts have semi-annual resets and the swap rates are nacs. We are inter-
ested in using these swap rates to derive a zero curve that will be represen-
tative of the current interest rates in the market. We assume the curve date is
24 June 2004 and that an actual/360 daycount convention is applicable. The
specifics of this daycount convention can be found in Chapter 4.

Following the discussion in this section, there are three ways in which
we can bootstrap these swap rates to get to zero rates.
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k–1

j=1dfk =
1 – ∑[(1 + rk)m(tj–tj–1) – 1]dfj

(1 + rk)m(tk–tk–1)
m

m

Table 2.2 Semi-annually compounded swap rates as quoted for yearly
contracts

Tenor Maturity date Mid rate

6 month 28 Dec 2004 1.600
1 year 24 Jun 2005 2.100
2 year 26 Jun 2006 3.000
3 year 25 Jun 2007 3.600
4 year 24 Jun 2008 4.000
5 year 24 Jun 2009 4.300
6 year 24 Jun 2010 4.600
7 year 24 Jun 2011 4.800
8 year 25 Jun 2012 5.000
9 year 24 Jun 2013 5.100
10 year 24 Jun 2014 5.200



Table 2.3 Bootstrapping by assuming the swap rates apply to exactly yearly
periods

k rk ∑dfj dfk

1 year 1 2.111 0.979
2 year 2 3.022 0.979 0.942
3year 3 3.632 1.921 0.898
4 year 4 4.040 2.819 0.852
5 year 5 4.346 3.671 0.805
6 year 6 4.653 4.476 0.757
7 year 7 4.858 5.233 0.711
8 year 8 5.062 5.944 0.665
9 year 9 5.165 6.609 0.626
10 year 10 5.268 7.236 0.588

Approach 1

The quotes are for yearly contracts, so we convert the swap rates to naca
rates and then apply the bootstrap formulae that assume exactly yearly 
periods. We derive the discount factors with (2.23). In this case rk denotes
the k-year swap rate compounded annually. We have that:

and so on to get discount factors out to 10 years. The calculations are
summarized in Table 2.3.

The problem with this approach is that we have an actual/360 daycount
convention. This means that we should take the actual number of days from
the curve date to the swap maturity date into account. For instance, the one-
year swap will have an actual term to maturity of approximately 365/360 ≈
1.014 years whereas with this approach we assume it applies to 360/360 =
1 year.
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df1 = 1 =         1 = 0.979(1 + r1)        (1 + 0.02111)

df2 = 1 – r2df1 =    1–0.03022(0.979) = 0.942(1 + r2)              (1 + 0.03022)

df3 = 1 – r3(df1 + df2) = 1–0.03632(0.979 + 0.942) = 0.898(1 + r3)                    (1 + 0.03632)

k–1

j=1

Approach 2

We convert the swap rates to be compounded annually and take the actual
contract maturity dates into account by using (2.27) to derive the discount



factors. In this application rk denotes the k-year swap rate compounded
annually (m = 1). We have that:

and so on, the results summarized in Table 2.4.
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df1 = 1 =         1 = 0.979(1 + r1)(t1–t0) (1 + 0.02111)1.0

df2 = 1 – [(1 + r2)(t1–t0) –1]df1 =    1 – [(1+ 0.03022)1.0– 1](0.979) = 0.941(1 + r2)(t2–t1) (1 + 0.03022)1.02

df3 = 1 – [(1 + r3)(t1–t0) –1]df1 – [(1 + r3)(t2–t1) –1]df2
(1 + r3)(t3–t2)

= 1–[(1 + 0.03632)1.0 – 1](0.979)–[(1 + 0.03632)1.02 – 1](0.941) = 0.896(1 + 0.03632)1.01

Table 2.4 Bootstrapping by taking the swap maturity dates into account

Tenor k tk – tk–1 rk ∑[ (1 + rk)(tj–tj–1) –1]dfj dfk

1 year 1 1.0 2.111 0.979
2 year 2 1.02 3.022 0.030 0.941
3 year 3 1.01 3.632 0.071 0.896
4 year 4 1.01 4.040 0.115 0.850
5 year 5 1.01 4.346 0.162 0.803
6 year 6 1.01 4.653 0.211 0.753
7 year 7 1.01 4.858 0.257 0.708
8 year 8 1.02 5.062 0.305 0.661
9 year 9 1.01 5.165 0.346 0.622
10 year 10 1.01 5.268 0.386 0.583

k–1

j=1

Approach 3

We use linear interpolation to get a swap rate for each semi-annual period
out to ten years. We then bootstrap the semi-annual rates by taking the
actual contract maturity into account by using (2.27). In this application rk
denotes the semi-annual swap rate (m = 2). Deriving the discount factors
recursively, we have that:

df1 = 1 =         1 = 0.992(1 + r1)2(t1–t0) (1 + 0.016)2(0.52)
2 2



df2 =
1 – [(1 + r2)2(t1–t0)

–1]df1 =   
1– [(1+ 0.021)2(0.52)

– 1]0.992
= 0.979

(1 + r2 )2(t2–t1) (1 + 0.021)2(0.49)

and so on, with the results summarized in Table 2.5.
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2 2

2 2

Table 2.5 Bootstrapping nacs swap rates and taking the actual swap maturity
dates into account

Tenor Maturity date       k        tk – tk–1 rk ∑[(1 + rk)(tj–tj–1) –1]dfj        dfk

0.5 year 28 Dec 2004 1 0.52 1.600 0.992
1 year 24 Jun 2005 2 0.49 2.100 0.011 0.979
1.5 year 24 Dec 2005 3 0.51 2.549 0.025 0.962
2 year 26 Jun 2006 4 0.51 3.000 0.045 0.941
2.5 year 26 Dec 2006 5 0.51 3.302 0.065 0.920
3 year 25 Jun 2007 6 0.50 3.600 0.088 0.896
3.5 year 25 Dec 2007 7 0.51 3.801 0.110 0.873
4 year 24 Jun 2008 8 0.51 4.000 0.133 0.850
4.5 year 24 Dec 2008 9 0.51 4.150 0.156 0.826
5 year 24 Jun 2009 10 0.51 4.300 0.180 0.803
5.5 year 24 Dec 2009 11 0.51 4.450 0.204 0.778
6 year 24 Jun 2010 12 0.51 4.600 0.229 0.753
6.5 year 24 Dec 2010 13 0.51 4.700 0.252 0.730
7 year 24 Jun 2011 14 0.51 4.800 0.275 0.708
7.5 year 24 Dec 2011 15 0.51 4.900 0.299 0.684
8 year 25 Jun 2012 16 0.51 5.000 0.322 0.661
8.5 year 25 Dec 2012 17 0.51 5.050 0.342 0.641
9 year 24 Jun 2013 18 0.50 5.100 0.362 0.622
9.5 year 24 Dec 2013 19 0.51 5.150 0.382 0.602
10 year 24 Jun 2014 20 0.51 5.200 0.402 0.583

k–1

j=1
2

With each of the three approaches, we get discount factors out to 10 years
that are converted to zero rates. Table 2.6 shows the naca zero rates. It is
interesting to see what big differences there are between the zero rates from
Approaches 1 and 2. It is clearly necessary to take the actual swap maturity
dates into account, because the differences between the two sets of zero
rates are as big as 8 basis points (bps) at the longer maturities. There are no
big differences between the zero rates derived using Approaches 2 and 3.
The biggest difference is around 0.4 bps and may be due to the fact that
linear interpolation was used that does not allow for curvature.



This example illustrates the differences in zero curves when actual swap
maturity dates are taken into account, compared with the case where
fixed periods are assumed. In practice these differences may lead to big
valuation errors. Say the zero curve is derived from the swaps by incor-
rectly assuming fixed periods as in Approach 1. Now consider a
scenario where a dealer enters into an interest rate swap. By definition
the value of this deal should be approximately zero on the trade date;
however when this deal is valued with the zero curve, the deal will
show a value. When this value is not favorable to the trader, there will
be complaints.

The effect of assuming fixed periods are usually not very significant
when actual/365 daycount conventions are followed. However, it is 
significant when the market follows an actual/360 daycount convention.

2 . 7 I M P L I E D  I N T E R E S T  R AT E S

Some countries may have undesirable political and economic issues that
oblige them to provide incentives for investors to invest money. This may be
done by paying investors a spread above the interest rates. This spread is
known as the country risk premium. The country risk premium is discussed in
detail in Chapter 7. In this section we investigate a way in which investors can
calculate an implied rate from domestic interest rates and exchange rates to
determine what interest rate they are actually earning on an investment.

A nominal amount N is invested in the domestic currency for d days at
the domestic interest rate of id. The future value of this investment is:
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Table 2.6 Zero rates calculated from the discount factors obtained from each
of the bootstrapping approaches. These rates are compounded
annually.

Tenor Approach 1     Approach 2     Approach 3

1 year 2.08 2.11 2.11
2 year 2.99 3.04 3.04
3 year 3.61 3.67 3.67
4 year 4.03 4.10 4.10
5 year 4.36 4.42 4.43
6 year 4.69 4.76 4.77
7 year 4.92 4.99 4.99
8 year 5.15 5.23 5.23
9 year 5.26 5.34 5.34
10 year 5.38 5.46 5.46



where DCd is the number of days assumed in a year according to the
domestic daycount convention.

Say the same nominal amount N is converted at the spot exchange rate
Xs to a foreign currency amount N/Xs. When this amount is invested in a
foreign market for the same investment period of d days, at an interest rate
of if, then the future value of the investment (expressed in the units of the
foreign currency) will be:

where DCf is the number of days assumed in a year according to the foreign
daycount convention. After d days the investment is then converted back to
the domestic currency at the exchange rate at that time, which is expected
to be Xf, the forward exchange rate.

In order to prevent arbitrage between the two markets, we must have
that:

(2.28)

where
N = nominal amount (in units of the domestic currency)
Xs = spot exchange rate
Xf = forward exchange rate
if = foreign interest rate (this is a simple rate)
d = number of days in the investment period
id = domestic interest rate (this is a simple rate)
DCd = number of days in the year as specified by the daycount 

convention of the domestic market
DCf = number of days in the year as specified by the daycount 

convention of the foreign market.

Using this relationship, it is trivial to solve for the required implied rate. Typi-
cally the domestic interest rate id and exchange rates Xs and Xf are known
because they are traded in the market, then we just solve for if as follows:

assuming that the interest rates are simple rates. When the investment period
is longer than one year, we typically would not be working with simple rates.
Using the same argument as before, we get to the following relationship:
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N [1 + id
d ]DCd

N [1 + if
d ]Xs DCf

N [1 + id
d ] = N [1 + if

d ] × XfDCd Xs DCf

if = ( Xs [1 + id
d ]–1) × DCf

Xf DCd                   d



(2.29)

assuming that the domestic rate is compounded m times per year and the
foreign rate n times per year. Solving for if we get:

all the symbols as defined before. With similar arguments it is possible to
derive an implied domestic rate or implied forward exchange rates.

These formulae provide a way with which to recognize arbitrage oppor-
tunities between the foreign exchange market and the interest rate market.
However, the practitioner may face a problem where there may no forward
exchange rates quoted in the market that are liquid enough for the longer
investment periods. These formulae cannot be used to imply rates in such
circumstances. Another option is to use basis swaps.

The example in Section 2.7.1 illustrates the calculations of implied 
interest rates.

2.7.1 Example: Calculating an implied domestic  zero curve

When the foreign interest rates as well as the exchange rates are known, we
can infer a domestic zero rate from the relationship given by (2.29) which
is as follows:

(2.30)

Table 2.7 shows the foreign zero rates (assumed to be naca) at various dates
as well as the spot and forward foreign exchange rates. We assume the
foreign rates follows an actual/360 daycount convention, whereas the
domestic rates follow an actual/365 daycount convention. From these rates
we then infer annually compounded domestic rates from (2.30) as follows:

and so on until we have a rate at each tenor.
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id = m ×([ Xf [1 + if ] ]    – 1)Xs n

nd
DCf

DCd
md

if = [(Xs [1 + id ]  )    – 1] × nXf m
m d

DCd

DCf
nd

N [1 + id ] = N [1 + if ]      × Xfm             Xs n

m d
DCd

n d
DCf

i30 = 1 ×([6.33[1 + 2.37] ] – 1) = 8.5%6.3      100

i61 = 1 ×([6.37[1 + 2.01] ] – 1) = 9.01%6.3      100

30
360

365
30

61
360

365
61
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Table 2.7 Deriving an implied domestic curve

End Foreign Implied 
date d rate if Xf domestic id

Spot date: 05 Dec 2004 30 2.37 6.33 8.50
05 Nov 2004 05 Jan 2005 61 2.01 6.37 9.01
FX spot: (Xs) 05 Feb 2005 92 2.00 6.40 8.61
6.30 05 Mar 2005 120 2.30 6.41 7.86

05 Apr 2005 151 2.60 6.42 7.43
05 May 2005 181 2.88 6.43 7.25
05 Jun 2005 212 3.00 6.44 7.02
05 July 2005 242 3.10 6.45 6.87
05 Aug 2005 273 3.20 6.46 6.77
05 Sep 2005 304 3.21 6.47 6.61
05 Oct 2005 334 3.23 6.48 6.50
05 Nov 2005 365 3.25 6.50 6.58

Figure 2.4 shows a comparison of the foreign and implied domestic curves
(out to one year). It should be noted that the implied curve is very sensitive
to the foreign exchange quotes and may not always appear this smooth.

Another important fact to note is that it is implicitly assumed that we are
working with spot curves. To get a curve for the value date, both these
curves need to be discounted from the spot date to the curve date. This,
however, is a concept that will be discussed in Chapter 5.

Figure 2.4 Comparison of foreign and implied domestic zero curves



2 . 8 CO N C LU D I N G  R E M A R K S

In this chapter we considered the various types of interest rates and showed
how they are related to each other, using simple arbitrage arguments. It was
in various cases necessary to break the instruments up into their underlying
cash flows in order to, for instance, derive the relationship between a zero
rate and a par rate. It is important that the way rates are compounded as
well as the periods to which the rates apply are taken into account, because
it has a big effect on the resulting yield curve and can have a big effect on
the portfolio value when this yield curve is used to value the instruments in
that portfolio.

Incorrect yield curves will lead to incorrect valuations which in turn lead
to unexplained profits and losses. Our goal is to always value the portfolios
as accurately as possible to prevent this. Unexplained profits and losses
indicate that the instruments are not properly understood, which in turn
means that they are not properly hedged. This uncertainty increases the risk
of the instruments, which means that more capital has to be reserved to be
able to handle big losses that can occur in times of stress. A large capital
reserve inhibits the dealer from taking on more positions, which reduces
the dealer’s ability to make big profits.

The aforementioned argument illustrates the importance of getting the
basics right, like deriving the yield curve correctly and valuing the instru-
ments accurately, because this has an effect on everything in the financial
institution.
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This chapter provides a basic overview of the three types of yield curve
models known as regression-type models, empirical models, and equilib-
rium models. In Section 3.1 various regression-type models are discussed.
Regression modeling is the most traditional method of fitting a yield curve,
where a function is simply fitted to the yields to maturity of regular
coupon-paying bonds. The fitted curve is considered to be a par yield
curve, which can be converted to a zero curve by using the methods
described in Chapter 2. One of the main problems with the regression-type
models is that the ”coupon effect” is not taken into account. The coupon
effect refers to the fact that different bonds with the same term to maturity
may have very different yields to maturity because of differences in their
coupon rates.

Empirical yield curve models, which were developed to overcome some
of the shortcomings of the regression-type yield curve models, are
discussed in Section 3.2. Empirical yield curve models usually specify a
functional form for the discount function. Various ways in which to fit
empirical yield curve models bonds are discussed in Chapter 5.

In Section 3.3 equilibrium models are discussed. The models that are
discussed have closed-form solutions and can be fitted to bond prices in a
similar way to empirical yield curve models. However, these models are
usually not flexible enough in practice to provide an adequate fit of the
underlying instruments used to derive the yield curve.

3 . 1 R E G R E S S I O N - T Y P E  M O D E L S

The traditional way of deriving a yield curve is to consider a scatter plot of
the yields to maturity against the terms to maturity of a series of bonds. The
yield curve is then the function that best fits all the points on the graph.
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Regression techniques are used to estimate the parameters of the models.
Typically we would estimate the function parameters by minimizing the
squared differences between the actual and fitted yields to maturity, in
other words:

(3.1)

where
ri = actual yield to maturity of bond i (derived from the market price of the

bond)
r∧i = fitted yield to maturity of bond i as determined by the specified 

function
n = number of bonds used to derive the par yield curve.

We shall take a brief look at some of the regression models that are
discussed in the literature.

3.1.1 Bradley–Crane model

The Bradley–Crane model is formulated as follows (McEnally, 1987):

ln(1 +ri) = β0 + β1ti + β2ln(ti) (3.2)

where

ri = yield to maturity of bond i
ti = term to maturity of bond i (in years) 
β = regression parameters to be estimated.

This curve is not defined when ti is 0.
The Bradley–Crane model is a very simplistic model and is not able to

allow for the different types of shapes a yield curve can take on. An example
of a poor fit between bond yields and the Bradley–Crane model is shown in
Figure 3.1, where the Bradley–Crane model is fitted to the bond yields given
in Table 3.1. It is clear that the actual yield curve is shaped like a spoon, in
other words it is curved, and the fitted curve does not allow for the curvature.

3.1.2 Elliot–Echols model

The Elliot–Echols model is a three-dimensional yield curve and has the
following form (McEnally, 1987):

(3.3)
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min ∑(ri – r∧i)2
n

j=1

ln(1 +ri) = β0 + β1
1 + β2ti+ β3Citi



where
ri = yield to maturity of bond i
ti = term to maturity of bond i (in years)
Ci = the coupon rate of bond i 
β = regression parameters to be estimated.

This model attempts to take the effect coupons have on the yields to 
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Table 3.1 Bond yields that will be used to derive a regression-type yield curve

Bond code             Term to maturity Yield to maturity

BOND1 1.8 2.250
BOND2 2.9 2.500
BOND3 4.2 3.098
BOND4 4.5 3.300
BOND5 4.7 3.320
BOND6 6.0 3.900
BOND7 7.0 4.150
BOND8 7.5 4.210
BOND9 8.0 4.260
BOND10 8.5 4.420
BOND11 9.0 4.470
BOND12 9.2 4.397
BOND13 16.5 4.250
BOND14 21.7 4.100

Figure 3.1 An example of the Bradley–Crane curve fitted to the bond yields in
Table 3.1



maturity into account. However, market participants will not be in favour
of this model because a three-dimensional yield curve is unnecessarily
complicated. Furthermore, this model is not flexible enough to allow for
the different shapes the yield curve can take on.

3.1.3 Dobbie–Wilkie model

The Dobbie–Wilkie model has the following functional form (Dobbie and
Wilkie, 1978 and 1979):

ri = β0 + β1e–α1ti + β2e–α2ti

(3.4)

where
ri = yield to maturity of bond i
ti = term to maturity of bond i (in years)
αi = the non-linear regression parameters with i = 1 and 2
βj = the linear regression parameters to be estimated with j = 0, 1, and 2.

This model was used by some practitioners, but it was found that it is
susceptible to “catastrophic jumps.” This term is used to describe the event
when the least squares fit jumps from one set of parameters to another quite
different set of values (Cairns, 1998; Feldman et al., 1998).

3.1.4 Ayres–Barry model

The Ayres–Barry model is given by:

ri = r∞ + e–β(ti – t0)(r0 – r∞ ) (3.5)

where
ri = yield to maturity of bond i
r∞ = yield on a perpetuity (or long-dated instrument)
ti = term to maturity of bond i (in years)
t0 = term of shortest stock in the fit (in years)
β = fitted parameter 
r0 = yield on shortest stock in the fit.

Paterson (1996) adjusts this model by allowing both r∞ and r0 to be fitted
parameters together with ß, and finds that this resulted in an improvement
in the goodness of fit. This model is not as flexible as the Dobbie–Wilkie
model discussed in Section 3.1.3, and has the same shortcomings as the
Bradley–Crane and Elliot–Echols models.
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3.1.5 The Super-Bell model

The Super-Bell model was developed by Bell Canada Limited in the 1960s.
It is a regression-type model which specifies a functional form for a par
curve as (Bolder and Stréliski, 1999):

ri = β0 + β1ti + β2ti
2 + β3ti

3 + β4√ti + β5 ln(ti) + β6Ci + β7Citi (3.6)

where
ri = yield to maturity of bond i
ti = term to maturity of bond i (in years)
Ci = the coupon rate of bond i
βj = regression parameters to be estimated with j = 0, 1 ,..., 7.

To fit the model, the regression parameters of (3.6) are estimated. The fitted
par yields are then used in a second regression analysis, where the param-
eters of (3.6) are estimated again, but ignoring the parts depended on the
coupon rate, in other words estimating only the following terms:

r̂i = β0 + β1ti + β2ti
2 + β3ti

3 + β4√ti + β5 ln(ti)

One of the biggest shortcomings of this model is that the zero curve can only
be derived for discrete points in time, which means that additional assumptions
are needed to interpolate between the discrete points. In some situations this
model leads to forward rate curves with very strange shapes, and it does not
always fit the underlying bonds adequately (Bolder and Stréliski, 1999).

3.1.6 McLeod model

This model was developed in the 1990s and was used as the official South
African yield curve model until 2003. Cluster analysis is used to divide the
bonds into different groups according to their terms to maturity. A cubic
spline function is then fitted through these node points (McLeod, 1990).

The process to do the cluster analysis is as follows:

� Five knot points κ1,...,κ5 are provided to enable the cluster analysis to
begin. These knot points denote the terms to maturity (in years), and
are independent of the data and the date of analysis.

� The two bonds whose terms to maturity are closest to each of the knot
points are chosen. It is possible that a situation can occur where a bond
contributes to more than one cluster. The bond is then treated as an
additional bond and added to the process. For each bond the following
value is calculated:
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where m is the number of bonds used to derive the curve; ti is the
term to maturity of bond i, and Wi the weight attached to bond i. The
two bonds with the highest gi,j value are chosen for each cluster.

� Each of the five clusters now contains two bonds. For each cluster the
weighted average term to maturity (ADj) and the weighted average
yield to maturity (AYj) are calculated. The bonds get weighted with
the nominal amount issued, which is done as follows:

(3.7)

where t1,j and r1,j denote the term to maturity and yield to maturity
respectively of the bond closest to κj, and t2,j and r2,j denote the term
to maturity and yield to maturity respectively of the bond second
closest to κj.

� The remaining bonds are now allocated to clusters by comparing
their yields and terms to maturity to the weighted averages that were
calculated in the previous step. The remaining bonds are not allowed
to contribute to more than one cluster. To enforce this, the following
quantity is calculated:

where z denotes the index by which we loop through the remaining
bonds. The idea is to allocate each remaining bond to that cluster
where it shows the lowest hz,j value.

� The center point of each cluster is now determined by calculating the
weighted average term to maturity and the weighted average yield to
maturity similarly to the way it was done in (3.7).

� The weighted average terms to maturity ADj form the x coordinates,
and the weighted average yields to maturity AYj form the y coordinates
when fitting the cubic spline.

Please refer to Chapter 4 for a detailed discussion on the cubic spline 
interpolation function.

The problem with this model is that the resulting par yield curve is
dependent on the chosen knot points to such an extent that the individual
par yields may not be fitted closely enough. A further disadvantage is that
because a cubic spline is used, the curve does not converge to a constant
level at the long end.
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gi,j =     Wi , i = 1,...,m; j = 1,...,5(ti – κj)2

ADj =
t1,jW1,j + t2,jW2,j and AYj =

r1,jW1,j + r2,jW2,j; j = 1,...,5W1,j + W2,j W1,j + W2,j

hz,j = (tz – ADj)2 + 1(rz – AYj)2; j = 1,...52



3.1.7 Concluding remarks

Using the yields to maturity of coupon-paying bonds to represent the term
structure of interest rates is not entirely correct. First, the yield to maturity
can be seen as an average of the zero rates up to maturity, and second, for
a given term structure of zero rates, the yield to maturity of a bond will
depend on its coupon rate (known as the “coupon effect”), which is why
two coupon-bearing bonds that mature at the same date generally have
different yields to maturity if they have different coupon rates. The reason
is that, all else being equal, a higher coupon rate implies that the share of
early payment increases, which gives more weight to the short spot rate in
the determination of the yield to maturity (Svensson, 1994).

The McLeod model attempts to address the issue where different bonds
with the same term to maturity do not necessarily have the same yield to
maturity. However, this model also has some shortcomings, as discussed in
Section 3.1.6.

A drawback of the regression-type models is that when fitting a curve
through the yields to maturity, we do not explicitly restrict payments due
on the same date to be discounted at the same rate (Anderson et al., 1997).
To see the effect of this, consider the example of two bonds, A and B,
where bond A is maturing in one period’s time and bond B in two periods.
The prices of these two bonds are calculated as follows:

where C refers to the coupon payment, R to the redemption payment and y
to the yield to maturity of each specific bond. The first coupon payment of
bond B is thus not restricted to being discounted at the same rate as bond
A, even though they are due at exactly the same time. Thus, when estimat-
ing a yield curve, the assumption needs to be made that the yield on bond
A is used to discount the first coupon on bond B, and that the yield on bond
B reflects the difference in rates between periods 1 and 2.

Another drawback of regression-type models is that they do not show an
adequate fit of the data, because of their over-simplified presentations of
the term structure of market rates. When deriving a yield curve, it is neces-
sary that the curve fits the yields as smoothly as possible; that the model is
easy to implement, and that the model is easily adaptable to changing
conditions in the market.

A problem when estimating the regression parameters with ordinary
least squares arguments is that we may find that the parameter estimates are
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Price of bond A = CA + RA

(1 + yA)

Price of bond B = CB +  CB + RB

(1 + yB)    (1 + yB)2



very volatile from day to day, since the regression assumptions are not
necessarily met.

The regression-type models will not be considered or discussed in any
amount of detail because of their shortcomings as discussed above. Empir-
ical yield curve models are an improvement on regression-type models,
and are discussed in detail in the next section.

3 . 2 E M P I R I C A L  Y I E L D  C U R V E  M O D E L S

The models discussed in this section were developed to overcome some of
the shortcomings of the regression-type yield curve models. In general, the
idea is to use an appropriate mathematical discount function and estimate
the parameters thereof, with the constraint that when each of the bond’s
cash flows are discounted with it, the fitted bond price will equal the
current market price. Note that the price on bond i (i = 1,...,N) can be 
written as:

(3.8)

where
Pi = the all-in price of bond i
ni = number of outstanding cash flows of bond i
N = total number of bonds used to derive the curve
dfm = discount function for a term m
mi,j = term in years from the value date until cash flow Ci,j
Ci,j = jth cash flow of bond i (the last cash flow will be the redemption

payment plus the coupon payment).

In this section we implicitly assume that the value date corresponds with
the settlement date. The validity of this assumption is, however, discussed
in Chapter 5.

Empirical yield curve models are expressed in two ways:

� An explicit mathematical function for the discount function is given,
for instance the exponential polynomial model discussed in Section
3.2.2.

� In terms of basis functions, for instance the McCulloch–Kochin model
discussed in Section 3.2.5.

Basis functions are defined by decomposing the discount function into a set
of k linearly independent functions that can be written as (Anderson et al.,
1997; McCulloch, 1971):
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Pi = ∑Ci,j dfmi, j

ni

j=1



(3.9)

where the αs are the parameters to be estimated and fj(m) denotes the
basis functions. They are complex functions of the term of the discount
factor m.

The form of the basis function fj(m) and the value of k are very impor-
tant for the quality of the fit. There are two main rules when choosing the
basis functions (McCulloch, 1971):

� fj(m) must be continuously differentiable 
� fj(0) must be equal to 0.

We now consider the various empirical yield curve models that are
proposed in the literature. It is important to note that all these models are
functions of the term denoted by m.

3.2.1 Polynomial model

The polynomial model is the most basic empirical yield curve model. This
model is defined in terms of the following basis functions:

fj(m) = mj; j = 1,2,...k (3.10)

Substituting (3.10) into (3.9) yields the following equation for the discount
function:

by taking α0 as one. The discount function dfm is a kth-degree polynomial.
Some drawbacks to using a polynomial are:

� This formulation does not have the ability to give more weight to
values of m which are more likely to occur.

� It would take an extremely high-order polynomial to fit both the long
and short end of the curve, and this would result in the polynomial
taking on extreme values between observations at the long end.

� Some practitioners also found that the polynomial conforms too
strongly to shapes at the far end of the curve while smoothing over
shapes implied by data at the near end.

� The function is not monotonically decreasing, which is a requirement
for a discount function (McCulloch, 1971; Coleman, Fisher, and 
Ibbotson, 1992).
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dfm = α0 + ∑αj fj(m)
k

j=1

dfm = α0 + ∑αjm j
k

j=1



3.2.2 Exponential polynomial model

The exponential polynomial model is defined as:

(3.11)

where the αs are the parameters to be estimated and k denotes the degree
of the polynomial.

In practice a third-degree polynomial is usually sufficient (Chambers et
al., 1984). The Nelson–Siegel and Cairns models that are discussed in
Section 3.2.10 are variations on this model.

3.2.3 Bernstein polynomial model

The Bernstein polynomial model is defined in terms of basis functions as follows:

(3.12)

where k denotes the degree of the polynomial and the αj parameters of (3.9)
are restricted to be greater than or equal to 0. By letting α0 = 1 it is ensured
that df0 = 1.

The advantage of this function over conventional polynomial functions
is that it estimates the derivatives better, which is important since the
forward rate is a function of the first derivative of the discount function
(Schaefer, 1981; Anderson et al., 1997).

3.2.4 McCulloch cubic spline model

Say we have N bonds available to derive a yield curve and we let mN denote the
term to maturity of the longest-term bond (in years). We divide the maturity
range [0, mN] into subintervals by specifying k knot points κ1, κ2,...,κk such that
κ1 = 0 and κk = mN. A separate function for dfm is then fitted to each subinterval.

The McCulloch cubic spline model is defined in terms of basis functions
and is given by (McCulloch, 1975; Anderson et al., 1997):

(3.13)
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dfm = exp[– ∑αjmj]k

j=1

0      j = 0
fj(m) = 

∑ (–1)r+1(k– j) m j+r
j = 1,...,kr    j + r

⎛
⎢
⎨
⎢
⎝

k–j

r=0

0      for m < κj–1
(m – κj–1)3

for κj–1≤    m < κj6(  κj – κj–1)
fj(m) = c2

+ ce + e2       
+ e3

for κj ≤    m < κj+16           2            6(κj+1 – κj)

(  κj+1 – κj–1)[2κj+1 – κj – κj–1 + m – κj+1] for κj+1≤    m6              2

⎛
⎢
⎢
⎢
⎨
⎢
⎢
⎢
⎝



when j < k and with c = κj – κj–1 and e = m – κj. When j = k we have that
fj(m) = m for all m. Please note that k denotes the chosen number of knot
points.

It is not an easy task to determine the number of knot points. The greater
the number of knot points, the better the fit of the discount function will be.
However, if too many knot points are chosen, the discount function may
conform too closely to outliers and the resulting curve will not be smooth
enough. The spline may weave around the exponential function, which will
result in highly unstable forward rates. A suggestion is to choose the
number of knots as the nearest integer of √N, and choose the knot points so
that approximately an equal number of bonds fall between any pair of knot
points (McCulloch, 1971).

A drawback to using this model is that at times the estimated discount
function may slope upward at the long end of the curve, which leads to
negative forward rates. A solution is to impose the additional constraint of
a negative slope everywhere in the spline approximation. Even though this
will serve to prevent negative forward rates, it will not, however, lead to
more stable forward-rate curves. It is impossible to adequately fit the 
exponential form of the discount function with a splines model (Shea,
1984; Vasicek and Fong, 1982; Deacon and Derry, 1994a; Bliss, 1997).

The cubic splines approach can be shown to be mathematically the
smoothest function that fits the data points, is continuous, and is twice
differentiable at the knot points (Van Deventer and Imai, 1997). Adams
and van Deventer (1994) define smoothness as follows:

where f is the function used to smooth the observed data. Bigger values
of Z indicate a more erratic or a less smooth function f. Should the
objective be to produce the smoothest possible yield curve, then the
cubic spline model should be used to fit the yields to maturity, since it
produces the smoothest yield curve. If the objective is the smoothest
possible discount bond price function, a cubic spline fitted to the zero-
coupon bond prices produces the smoothest curve by the above-
mentioned smoothness criterion.

A problem when fitting cubic splines directly to the yields of bonds
is that the resulting forward-rate curve is not twice differentiable at the
knot points. This means that it is not smooth (according to the defini-
tion of smoothness above) and that the forward rate curve tends to be
volatile particularly at the longer maturities (Van Deventer and Imai,
1997).
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Z =∫[f″(s)]2ds
T

0



3.2.5 The McCulloch–Kochin quadratic-natural spline model

McCulloch and Kochin (1998) suggest the quadratic-natural spline model
for which the basis functions are defined as follows:

(3.14)

where θ1(m) = m, θ2(m) = m2 and θj(m) = max(0, m – κj–2)3 for j = 3,..., k+1.
Let κ denote the knot points, mN the longest term to maturity (in years) and
k the number of knot points. We have that θ″j(m) denotes the second 
derivative of θ with respect to m.

McCulloch and Kochin define ϕ(m) as the log of the discount function,
which may be constructed as:

(3.15)

so that the discount function is defined as:

(3.16)

From (3.15) and (3.16) it follows that ϕ(m)  = –log[dfm ]. By imposing the
restriction that ϕ′(mN) = 0 at the longest observed maturity, the function can
be extrapolated by a straight line to infinity. This restriction implies that the
discount function is a pure exponential decay beyond this maturity.
Another restriction is that ϕ″(m) = 0, m∈ [0, κ1] where κ1 is the first knot.
This restriction allows the spot and forward curves to have any slope at m
= 0 and only constrains them to be linear out to the first knot.

The number of knots can be chosen to be √N where N is the number of
bonds used to derive the yield curve. The positions of the knots are chosen
so that an equal number of bonds fall between two adjacent knots.

3.2.6 The Vasicek–Fong exponential spline model

Vasicek and Fong (1982) use exponential splines that produce a smooth
and continuous forward rate curve. They suggested that a transform should
be applied to the argument m of the discount function dfm, where the 
transform has the following form:

The goal is to transform the discount function from an exponential function
of m to a linear function of x. It can be shown that using a cubic spline to
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fj(m) = θj(m) – θ″j(mN)     θn+1(m) , j = 1,...,k
θ″n+1(mN)

ϕ(m)  = ∑αj fj(m)
k

j=1

dfm = exp[–∑αj fj(m)]k

j=1

m = –(1)ln(1 – x),0 ≤ x ≤ 1α



estimate both the transformed discount function and the parameter α is
equivalent to estimating the discount function by a third-order exponential
spline. Between each pair of knots the discount function takes the 
following form:

dfm = b0 + b1e–αm + b2e–2αm + b3e–3αm (3.17)

Vasicek and Fong (1982) claim that the advantage of using this approach is
that no complicated non-linear estimation techniques need to be used. Shea
(1985) shows that this is not the case. He furthermore shows that the
Vasicek–Fong model is no more likely to yield stable forward interest rate
structures than ordinary polynomial spline models. He recommends using
polynomial spline models in preference to exponential splines since the
resulting term-structure estimates are very close to those obtained by the
polynomial spline method but are computationally not as cumbersome.

3.2.7 Carriere model

Carriere (1998) points out that the discount function dfm can be viewed as
a survival function, which means that the parametric survival functions that
actuaries have used in modeling losses can be used as price models. His
model is formulated as follows.

Let κ0,κ1,...,κn denote the knot points of the spline function restricted to
the interval [0, 1]. The formula for a polynomial q-spline is then given by:

(3.18)

where {φ0;...;φq;ξ1;...;ξn–1}denote the set of unknown parameters that have to
be estimated and υ(m) denotes any parametric discount function. This spline
is a piecewise polynomial of degree q with q–1 continuous derivatives at the
knots κ0,κ1,...,κn where κ0 = 0 and κn = 1.

With this model dfm ≥ 0 is restricted to be a non-increasing function. A
further restriction is that df0 = 1, which implies that φ0 = 1, and to get 
dfm = 0 when 1 – υ(m) = 1 we must have that:

Note that that the spline is linear in the parameters.
There are two sets of parameters to be estimated: the parameters of the

υ(m) function and that of the spline dfm. Carriere found that when these two
sets of parameters are estimated simultaneously, the implied forward rates
took on strange shapes. For this reason he suggests that the parameters of

45YIELD CURVE MODELS

dfm = ∑φj[1 – v(m)]j + ∑ξi max(0,1 – υ(m) – κj)q
q

j=0

n–1

i=1

∑φj + ∑ξi (1 – κi)q = 0
q

j=0

n–1

i=1



υ(m) must be estimated first. These should then be used as constants when
the remaining parameters are estimated.
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Table 3.2 Two-parameter functions used by Carriere

Function υ(m)

Weibull

Gompertz

exp[–(m) ], µ >    0, σ > 0
µ

exp[e   (1 – e ) ], µ ∈ℜ, σ > 0

µ
σ

µ
σ

m
σ

Some of the analyzed υ(m) functions are the transformed gamma, Weibull,
Gompertz, and lognormal functions. Carriere shows that the best-fitting
two-parameter model is the Weibull model, but cautions that it shows odd
behaviour at the shorter maturities. Other functional forms he considers are
the Nelson–Siegel, Vasicek, and the Cox, Ingersoll, and Ross models. The
Weibull and Gompertz functions are shown in Table 3.2.

3.2.8 The Malan model

Malan (1999) proposes the following model:

dfm = 1 + b1x + b2x2 + b3x3 +b4y3 +b5z3 +b6w3 (3.19)

where
x = 1 – e–αm

y = { 0 ,m < κ1
1 – e–α(m–κ1) , otherwise

z = { 0 ,m < κ2
1 – e–α(m–κ2) , otherwise

w = { 0 ,m < κ3
1 – e–α(m–κ3) , otherwise

The function she suggests consists of three knot points κ1, κ2, and κ3
given in years. The issues around specifying knot points are discussed in
Chapter 5.



She estimates the parameters by fixing the value of α and then using
generalized least squares to obtain the bi parameter values. A one-
dimensional function minimization procedure is then implemented to
obtain a value for α where the bi values are now fixed.

This model is a variation of the model suggested by Vasicek and Fong
(1982), which is discussed in Section 3.2.6.

3.2.9 B-spline model

Steeley (1991) defines the B-spline model in terms of basis functions as:

(3.20)

where the subscript p indicates that Bg
p(m) is non-zero only if m is in the

interval [mp, mp+g+1] and g indicates the degree of the spline. For instance,
a linear B-spline function (g = 1) would be given by:

which is non-zero over the interval [mp, mp+2]. This function takes on the
values:

To obtain a smooth forward rate, a function of at least order three should
be used.

Steeley (1991) also gives the following recurrence relation:

which holds for all real values of m. The discount function between any
two knots mp and mp+1 is then defined as:

where mp ≤ m < mp+1 (Steeley, 1991; Anderson et al., 1997).
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Bg
p(m) = ∑   [ ∏ 1 ] max(0, m – ml)g ,  –∞ < m < ∞(mh – ml)

p+g+1 p+g+1

l=p h=p, h≠l

B1
p(m) = ∑   [ ∏ 1 ] max(0, m – ml),  –∞ < m < ∞(mh – ml)

p+2 p+2

l=p h=p, h≠l

0 m ≤ mp
(m – mp) mp < m ≤ mp+1( mp+1 – mp)(mp+2 – mp)

B1
p(m) = (mp+2 – m) mp+1 < m ≤ mp+2(mp+2 – mp)(mp+2 – mp+1)

0 mp+2 < m

⎛
⎢
⎢
⎢
⎨
⎢
⎢
⎢
⎝

Bg
p(m) = (m – mp) Bp

g–1(m) +  (mp+g+1 – m) Bg–1(m)
(mp+g+1 – mp)

p+1

dfm = ∑α jBg
j(m)

p

j=p–g



3.2.10 Nelson and Siegel type models

An important aspect of the Nelson–Siegel model is the fact that it attempts
to explicitly model the implied forward-rate curve. The chosen functional
form allows the forward-rate curve to take on a number of sensible shapes
(Anderson et al., 1997; Cairns, 1998). The Nelson–Siegel model for the
forward rate is:

(3.21)

from which the discount function can be derived as:

where both β0 and τ1 must be positive.
The forward rate function (3.21) consists of three components. The first

component is a constant β0, which specifies the long rate to which the
forward rates converge, and that is why it is necessary to restrict this
parameter to be positive. The second component is an exponential term
β1 exp(– m) which is monotonically decreasing (or increasing if β1 is

negative), and the third component is a term that generates a hump-shape
(or U-shape if β2 is negative).

When term to maturity approaches zero, the forward rate approaches the
value β0+β1 (Anderson et al., 1997).

Svensson (1994) increases the flexibility of the Nelson and Siegel model
by adding a fourth term and so allowing for a second hump-shape or U-
shape. The Svensson model of the forward rate is written as:

(3.22)

where β0, τ1 and τ2 must be positive.
Another model that has the same form as the Nelson and Siegel model

is the exponential model (Anderson et al., 1997). The forward rate is
described by the following function:

where cj > 0 for all j ≥1. Conventionally cj > cj +1 for all j. A similar model
is suggested by Cairns (1998) to fit the forward-rate curve of the UK
securities market. He specifies the model as follows:
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ρ(m) = β0 + β1 exp(– m ) + β2
m exp(– m)τ1                  τ   1                τ   1

dfm = exp[–m(β0 + (β1+ β2)
τ1 [1– exp(– m)] – β2 exp[– m ]) ]m τ1                                τ   1

τ1

ρ(m) = β0 + β1exp(– m) + β2 [mexp(– m)] + β3 [mexp(– m)]τ1 τ1               τ   1 τ2               τ   2

ρ(m) = ∑βje– cjm
n

j=0

ρ(m) = β0 + ∑βje– cjm
4

j=1



which is equivalent to fitting the discount function:

(3.23)

By fixing the cj as constants in the model, only five parameters need to be
estimated, and Cairns argues that this reduces the risk of multiple solutions.
He considers this model to be an improvement to the Nelson–Siegel and
Svensson models as this model allows up to three turning points and does
not exhibit the catastrophic jumps to which the other two models are
subject. Cairns (1998) discusses how the cj values are to be chosen. He uses
cj = ( 0,2; 0,4; 0,8; 1,6).

3.2.11 Piecewise constant forward rate model

Coleman et al. (1992) approximate the forward curve by fixing it to be
constant over certain maturity ranges ρ(m) = fj for κj–1 < m ≤ κj. This
method is equivalent to fitting exponential splines to estimate the discount
function, for example for κ2 < m ≤ κ3:

(3.24)

where κi denote the knot points. Coleman et al. estimate {fj} using non-
linear least squares and maximum likelihood estimation. They find that the
function adequately approximates the different shapes the yield curve can
take on. This model yields continuous discount functions, but the first
derivative is discontinuous.

3.2.12 Concluding remarks

Some of the empirical models are very highly parameterized, and they can
also be very difficult to implement, since it may be difficult to find
adequate parameter estimates. The empirical models, however, do show a
good fit when fitted to bonds. In Chapter 5 we consider some examples that
illustrate how to implement the empirical models.

3 . 3 E Q U I L I B R I U M  M O D E L S

Equilibrium models propose theories about the nature of the stochastic
process that drives interest rates, and deduce a characterization of the term
structure in an efficiently operating market (Vasicek and Fong, 1982). Zero
curves derived from these models depend only on a few parameters. The
problem is that these zero curves do not fit the observed data on bond
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dfm = exp[–β0m –∑βj
1 – e–cjm]cj

4

j=1

dfm = exp[–f1κ1 + f2(κ2 – κ1) + f3(m – κ2)]



yields and prices very well. Actual yield curves typically exhibit more
varied shapes than those justified by equilibrium models.

The most basic equilibrium models are one-factor models where it is
assumed that a single economic variable explains the level of the yield curve.
In this section three equilibrium models, for which a functional form for the
discount function can be derived, are examined. These equilibrium models
are then used as descriptive models in the sense that they can be fitted to a
single day’s yield curve data. These three models are chosen because they are
the most basic models and thus not too difficult to implement.

3.3.1 Ito’s lemma

It is important to know Ito’s lemma in order to understand how the differ-
ential equation for the discount factor, which is a function of the interest
rate, is determined. It is assumed that the interest rate r follows an Ito
process.

Suppose we have a variable x that follows an Ito process:

dx = a(x,t)dt + b(x,t)dZ (3.25)

where dZ is a Wiener process and a and b are functions of x and t.
A Wiener process has two basic properties. First, dZ is related to dt by

the equation dZ = ε√dt where ε is a random variable from a standard
normal distribution. Second, the values for dZ for any two different short
intervals of time dt are independent.

From (3.25) we see that x has a drift rate of a and variance of b2. Accord-
ing to Ito’s lemma we know that a function G of x and t then follows the
process:

(3.26)

where dZ is the same Wiener process as in equation (3.25) (Hull, 1997).

3.3.2 Vasicek model

Vasicek (1977) explains the levels of yields by making use of a model with
a single exogenous factor. His model produces a zero-coupon (spot) yield
curve that is arbitrage-free and driven by the current level of short-term
rates. He defines the short-term rate process as:

dr = α(γ – r)dt + σdZ (3.27)

where
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dG = (∂G a + ∂G + 1 ∂2G b2)dt + ∂G bdZ∂x         ∂t     2 ∂x2                       ∂x



r = the risk-free money-market rate
γ = the expected long-term level of the money-market rate
α = the mean reversion rate
σ = the volatility of the money-market rate 
dZ = a normally distributed stochastic term.

The model incorporates what is known as mean reversion. In practice it
was found that interest rates appeared to be pulled back to some long-run
average level over time, and this is referred to as mean reversion. When r
is high it will have a negative drift; when r is low it has a positive drift.

Using Ito’s lemma and the process proposed for r (3.27), we find:

dP = µPdt + ρPdZ (3.28)

where                                                           and                   

We interpret µ as the instantaneous rate of return on the bond; and ρ as the
sensitivity of the bond price to changes in the spot rate (Vasicek, 1977).
Under the assumption that the expected return on a bond is equal to the
risk-free rate plus an allowance for risk, it holds that µ = r + aρ where a
denotes the market price of risk and all the other symbols are defined as
before. For the sake of simplicity it is assumed that a is constant.

It can be shown that the differential equation of (3.28) has the following
solution (and thus the functional form of the discount function):

(3.29)

where

and all the other symbols defined as before. The zero-rate curve starts at the
current level of the short-term rate and approaches an asymptote of r∞ at
longer maturities.

One problem with Vasicek’s model is that negative short-term rates are
allowed. Cox, Ingersoll, and Ross (1985) proposed an alternative one-
factor model for which the short-term rates are always non-negative. The
Cox–Ingersoll–Ross model is discussed in the next section.

3.3.3 Cox, Ingersoll, and Ross model

Cox, Ingersoll, and Ross (1985) propose the following risk-neutral process
for r:
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µ = 1 (∂P α(γ – r) + ∂P + 1 ∂2P σ2)P ∂r                  ∂t     2 ∂r2 ρ = σ ( ∂P 1)∂r P

dfm = exp{1(1 – e–αm)(r∞ – r) – mr∞ – ρ2
(1 – e–αm)2}α 4α3

r∞ = γ + aρ –   ρ
2

α 2α2



dr = α(γ – r)dt + σrβdZ (3.30)

It has the same mean-reverting drift as Vasicek’s formula, but the stochas-
tic term has volatility proportional to rβ. They suggest β = 0.5, as this
would prevent the interest rate from being negative. When β = 0 the
proposed model is exactly the same as the Vasicek model, which may lead
to negative interest rates.

It can be shown that the discount function has the following form when
β = 0.5:

(3.31)
where a = √(α + θ)2 + 2σ2 and θ is the market price of risk.

3.3.4 Duffie–Kan model

The Duffie–Kan model assumes that the short-term rate follows this process:

dr = (a – br)dt + √µ2 + rv2 dZ

where a, b, µ and v are the four parameters to be estimated. The formula
for the discount function is then:

(3.32)
where γ = √b2 + 2v2 (Brousseau, 2002).

3.3.5 Concluding remarks

Yield curves exhibit more varied shapes in practice than those justified by
equilibrium models. We have only considered one-factor models since the
complexity of the model increases when additional factors are taken into
account, which makes them more difficult to implement. The three models
that were discussed in Section 3.3 were chosen because they have closed-
form solutions available for the discount factor. This allows them to be
fitted to bond yields similarly to the empirical yield curve models.
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dfm = [ 2aem(α+θ+a)/2 ]2aγ/σ2

exp [–r{ 2 (eam – 1)               }](α + θ + a)(eam – 1) + 2a                     (α + θ + a)(eam – 1) + 2a

× ln ( 2γe(b + γ)m/2 )+ µ2m](γ + b)(eγ m – 1) + 2γ v2

dfm = exp[– 2(eγm – 1)            [r + µ
2]+ 2 bµ2 + av2

((γ + b)(eγm – 1) + 2γ)       v2                        v4               



4 . 1 OV E R V I E W

This chapter should be used as a checklist when deriving any yield curve.
Various issues are discussed that practitioners have to take into account
when deriving interest rate curves.

In Section 4.2 the various daycount conventions are discussed, along with
practical examples of how to allow for them when deriving a yield curve.

In Section 4.3 the importance of knowing the quoting convention of the
instruments used to derive the yield curve is discussed. This refers to how
the instrument rate is compounded as well as whether it is a zero, par, or
forward rate.

Sections 4.4 and 4.5 show how to allow for public holidays and business
day rules. It is important to note that these rules cannot be standardized
because they differ from market to market.

Sections 4.6 and 4.7 discuss credit and liquidity issues which may lead to
distortions in the resulting yield curve. In Section 4.8 we mention various
points that have to be considered before loading any curve into a subsystem.

In Sections 4.9 and 4.10 the various ways in which curves can be inter-
polated and extrapolated are discussed. Interpolation methods include
linear, cubic splines, log-linear, and exponential. Extrapolation methods
include both keeping the rates constant and regression methods. Some
examples show why it is important to be consistent in the way interpola-
tion methods are applied to different curves.

4 . 2 D AYCO U N T  CO N V E N T I O N S

It is important to know which daycount convention is associated with each
instrument, because it can have a major impact on the valuation of the
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instrument as well as on the curve that is derived from that instrument. The
daycount convention indicates how the number of days between any two
dates should be determined.

The most common daycount conventions are 30/360, 30/360 European,
actual/365 and actual/actual. Typically the first number denotes the
assumption about the number of days in the month; the second number
denotes the assumption regarding the number of days in a year. For exam-
ple with a 30/360 daycount convention the number of days between two
dates are determined based on the assumption that each month contains 30
days and that the number of days in the year is 360. Similarly with the
actual/365 convention, the number of days between the two dates is taken
as the actual number of days, assuming 365 days in a year.

4.2.1 Actual/actual daycount convention

There are various definitions for the actual/actual daycount convention
(ISDA, 1998). With the ISDA definition, the actual number of days is used
as numerator, and 366 is used as a denominator to determine the portion of
the calculation period that falls within a leap year; the actual number of
days is used as numerator and 365 is used as denominator to determine the
portion of the calculation period that does not fall in the leap year.

Consider the example shown in Figure 4.1. The investment period is
from 5 November 2003 to 5 March 2004, so with the ISDA definition the
investment will earn interest for the period t (in years), determined as
t = (57/365) +(64/366) = 0.331 years.
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Figure 4.1 Illustrating the determination of the interest accrual period with the
actual/actual daycount convention

1 Jan                                         5 Nov 31 Dec   1 Jan         5 Mar 31 Dec
2003                                          2003   2003     2004          2004 2004

365 days 366 days

Investment period

Another definition is the AFB method, where the denominator is 365 if the
investment period does not contain 29 February, or 366 if it does contain
29 February. Considering Figure 4.1, we would determine the investment
period with this approach as t = 121/366 = 0.3306 years.



4.2.2 30/360 daycount convention

The 30/360 daycount convention is also known as the U.S. (NASD)
method. The following rules are followed to determine the number of days
between two dates:

� If the starting date is the 31st of a month, it becomes equal to the
30th of the same month.

� If the ending date is the 31st of a month and the starting date is earlier
than the 30th of a month, the ending date becomes equal to the 1st of
the next month; otherwise the ending date becomes equal to the 30th
of the same month.

4.2.3 30/360 European daycount convention

The only rule that is followed with the 30/360 European daycount conven-
tion is if either of the two dates falls on the 31st of a month it is changed
to the 30th of the same month.

4.2.4 Actual/360 and actual/365 daycount conventions

The only difference between the actual/360 and actual/365 daycount
conventions is that 360 and 365 are used as the denominators respectively.
In both cases the actual number of days between the two dates are used as
the numerator.

4.2.5 Example

Consider the scenario where we invest 100 units of currency at a simple
interest rate of 3 percent for the period 29 January 2004 to 31 December
2004. Table 4.1 shows the number of days in this investment period for
each of the daycount conventions.
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Table 4.1 An illustration of the differences between daycount conventions

Daycount Begin End Number Future value of
convention date date of days the investment

30/360 29 Jan 2004 31 Dec 2004 332 376.67
30/360 European 29 Jan 2004 31 Dec 2004 331 375.83
Actual/365 29 Jan 2004 31 Dec 2004 337 376.99
Actual/360 29 Jan 2004 31 Dec 2004 337 380.83
AFB actual/actual 29 Jan 2004 31 Dec 2004 337 376.23



To calculate the future value of the investment (FV), we use:

where d denotes the number of days in the investment period and DC
denotes the number of days (according to the daycount convention)
assumed to be in the year. We can see that the differences between the
investment values can be quite significant when we are investing millions.

4 . 3 I N S T R U M E N T  Q U OT I N G  CO N V E N T I O N

Yield curves are very important when one wants to be competitive in the
financial market, because without them most instruments cannot be valued.
It is important not only to have a yield curve that reflects the market as
accurately as possible, but also to use the correct curves to value different
types of deals.

Quoting convention refers to how the instrument rate is compounded as
well as whether it is a zero, par, or forward rate. In Chapter 2 the relation-
ship between the different types of rates is discussed. Making an incorrect
assumption about the type of rate would mean that the wrong approach was
used to derive zero rates, and that would  result in a yield curve that was
completely wrong or inappropriate.

4 . 4 H O L I D AYS  A N D  W E E K E N D S

The importance of taking holidays and weekends into account when deter-
mining the period to which any rate applies is illustrated with a simple
example.

Consider when we derive a yield curve from instruments with various
tenors that all have the same settlement date. This settlement date is called
the spot date, and is usually two business days after the value date (depend-
ing on the specific market convention). When we derive a yield curve from
these instruments, we have a spot curve. In other words, the one-month rate
typically applies to the period one month beginning from the spot date.
Similarly the three-month rate applies to the period three months beginning
from the spot date. Figure 4.2 illustrates the periods to which the different
rates apply.

Usually we are interested in finding a curve from the value date
onwards. In this situation we then have to discount the whole curve back
with the number of days between the spot date and the value date, so we
can have what is called a “today curve.”
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Now consider the case when the value date falls on a Thursday. If just
two business days are added to the value date, the spot date is Monday.
However, when the Monday is a public holiday, the spot date would actu-
ally be Tuesday. By taking Monday as the spot date, we would then
discount the curve by four days to get a today curve, whereas in actual fact
it should be discounted with five days. With this example our spot date will
be perfect, but our today curve will be wrong, and we will show unex-
pected profit and loss numbers if the trades in the subsystem are valued
with this (incorrect) today curve.

It is important to ensure that the underlying assumptions are correct, and
that the market conventions for each instrument used to derive a yield
curve are known. Even when instruments with the same underlying
currency are used, there may still be different settlement conventions and
assumptions regarding public holidays. There are cases when public holi-
days are not necessarily market holidays, so that settlements can still take
place on these dates. The information on the exact settlement date should
be specified in the contract that defines any instrument.

4 . 5 B U S I N E S S  D AY  R U L E S

A business day rule is typically applied when the settlement date of an
instrument falls on a public holiday or weekend. Depending on the rule
applicable, the settlement date of the instrument is moved either forward or
backward. The examples discussed in Section 4.4 typically assumed that
the settlement date is moved forward.

There are various rules that have to be allowed for, such as:

� the following business day rule
� the modified-following business day rule
� the preceding business day rule
� the modified-preceding business day rule.

These rules are usually associated with a specific instrument, which means
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Figure 4.2 The rates used to derive the curve all apply from the spot date
onwards. To get a today curve, we have to discount the whole curve
from the spot date back to the value date.

Value date     Spot date                                               1-month             2-month       3-month



that we cannot just define general rules, but also have to allow that the
different instruments follow different rules.

4.5.1 Following business day rule

When the settlement date falls on a weekend or public holiday, the date is
adjusted to be the next business day that follows this date.

4.5.2 Modified following business day rule

When the settlement date falls on a weekend or public holiday, the date is
adjusted to be the next business day that follows the settlement date.
However, if the next business day is not in the same month, the settlement
date is adjusted to be the business day just prior to the settlement date.

4.5.3 Preceding business day rule

When the settlement date falls on a weekend or public holiday, the date is
adjusted to be the business day just prior to this date.

4.5.4 Modified preceding business day rule

When the settlement date falls on a weekend or public holiday, the date is
adjusted to be the business day just prior to this date. If the date is not
within the same month, the date is adjusted to be the first business day
following the settlement date.

4.5.5 Example

Say we are working in a market where the settlement date is determined on
a t+3 basis. This means that three business days are added to the value date
to determine the settlement date. Table 4.2 shows an example where the
different types of business day rules are applied to the value date 25
November 2004.
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Table 4.2 Example showing the application of the various business day rules

Business day rule Value date Settlement date Holidays

Following 25 Nov 2004 01 Dec 2004 30 Nov 2004
Modified following 25 Nov 2004 29 Nov 2004
Preceding 25 Nov 2004 29 Nov 2004
Modified preceding 25 Nov 2004 29 Nov 2004



4 . 6 C R E D I T  Q UA L I T Y  O F  T H E  I N S T R U M E N T S

Deriving a yield curve with instruments of different credit quality will
result in a curve that may not representative of the market. For example a
risk-free curve derived from government bonds will always be below a
more risky corporate bond curve, because investors require compensation
for the additional risk that they take on. Not all instruments can be valued
with the same yield curve because of the differences in the instruments. For
instance we cannot value a money market instrument off a risk-free curve,
because we will clearly under-value the trade.

Let us consider an example:
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Table 4.3 Bonds available to derive a yield curve

Bond Term to maturity Yield to maturity

A001 0 5.5
A002 1 5.1
A003 2 5.0
A004 3 5.4
A005 3.5 5.9
A006 5 6.1
A007 6 6.3
A008 7 6.4
A009 8 6.7
A010 10 6.3
A011 15 5.6
A012 20 5.2

Say we have the bonds in Table 4.3 available to derive a yield curve. There
are various approaches to follow, but first we consider the case where we
want to derive a curve under the assumption that all bonds should be priced
perfectly off this curve.

Figure 4.3 (overleaf) shows a perfect-fit par curve, which means that all
the bond yields lie on the fitted par curve. The problem is that this curve is
not very smooth, so typically we can take the same combination of bond
yields and fit another curve with the constraints that the curve has to be
smooth and fits all the bonds as closely as possible. The curve is then
known as the best-fit curve, and is shown in Figure 4.4 (also overleaf). We
can see how the par curve either over-estimates or under-estimates the
bond yields in the five to ten-year area.

Say we find some more information regarding the bonds that are used to
derive the yield curve. We find that all the bonds are government bonds,



except two that are actually corporate bonds (bonds A005 and A009 in
Table 4.3). Figure 4.5 shows the perfect-fit curve derived from the govern-
ment bonds only. Clearly our yield curve is now much smoother. Addi-
tionally we also now know that it is a risk-free curve. Should we wish to
include the two corporate bonds when deriving the yield curve, we will
need to adjust the two bonds with credit spreads. Ways to estimate credit
spreads are discussed in Chapter 7.

The point of this example is to show the effect on the final yield curve,
depending on the underlying assumptions that are made when the curve is
derived, using the same set of bonds. The example also shows how
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Figure 4.3 A perfect-fit curve
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distorted a yield curve can be, should instruments with different credit
qualities be used to derive the same curve.

An additional problem may be that not enough short-term instruments of
a certain credit quality are available to derive a curve. For example, using
risky instruments at the short end and risk-free instruments at the long end
of a curve, means there would be a definite change in the level of the curve
where the two parts of the curves are put together. We can solve this prob-
lem by estimating credit spreads and adjusting the yields of the short-term
instruments downward. Please refer to Chapter 7 for a detailed discussion
on the various techniques available to estimate credit spreads.

4 . 7 L I Q U I D I T Y  O F  T H E  I N S T R U M E N T S

A curve has to be derived from liquid instruments to ensure that it is represen-
tative of current market rates. Distortions in the curve may be caused when
combinations of liquid and illiquid instruments are used in its derivation.

Consider very liquid market instruments. Typically the rates of the liquid
instruments will be lower than those of the less liquid instruments, because
investors require additional compensation to invest in less liquid instru-
ments. This means less liquid instruments should be priced lower, or put
another way, have higher returns.

Among the features that influence the liquidity of bonds are bench-
marks, the amount in issue, futures contracts, ex-dividend effects, and
market segmentation.

Benchmarks are bonds issued with convenient terms to maturity.
Because of this they attract investors, and this greater demand drives
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Figure 4.5 Perfect-fit par yield curve derived from only the government bonds



their prices up. This has the effect that their yields lie below the yields of
similar bonds that are less liquid.

The nominal amount issued of a bond also plays an important role in the
bond’s liquidity. The characteristics of those who purchased the bonds are
also important, because some investors may not wish to actively trade the
bond. This effectively causes the bond to be less liquid. It is important to
use turnover in conjunction with the nominal amount when considering the
liquidity of the bond.

A futures contract on a bond signifies that a bond will be bought or sold
on a future date, at a price that is determined on the day the contract is writ-
ten. This contract on a bond means that the seller has to buy the specific
bond in order to be able to deliver the bond to the purchaser of the futures
contract. Effectively this increases the liquidity of the bond, as there is
greater demand for it. As explained above, this results in the yield of this
bond lying below that of the other bonds.

When a bond is traded in an ex-interest period, the yield at which it is
traded will lie above the cum-interest bonds in the market. Effectively this
again distorts the estimated yield curve.

The existence of “preferred habitats” which segment the market may
drive up the prices of the “preferred” securities. For instance, banks mostly
require short-dated (and high-coupon) securities. They simultaneously
increase the demand for these bonds and reduce their effective liquidity.

When tax is payable on income (the coupons received) but not on capi-
tal gains, investors will tend to prefer lower-coupon bonds, resulting in
these bonds being more liquid.

Another quantity that can be considered an indication of the liquidity of
a bond is the bid/ask spread of the quoted prices (Persaud, 2003).

The effect of liquidity can be shown with examples similar to that given
in Section 4.6, where the credit quality of an instrument is discussed.
Please refer to Chapter 7 for a detailed discussion on how the liquidity
premium of instruments can be estimated.

4 . 8 S U B S YS T E M  R E Q U I R E M E N T S

In a trading environment, all deals are booked into a subsystem. It is impor-
tant to understand which yield curve to load into the subsystem, when this
subsystem is also used to value the deals and to calculate the risk numbers.
Some issues to address are:

� whether the bid, offer, or mid rates of the instruments be used to
derive the curve

� whether it should be a today or a spot curve
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� how the rates should be compounded 
� whether the curves should be saved as discount factors or as zero rates.

4 . 9 I N T E R P O L AT I O N  T E C H N I Q U E S

Once a yield curve has been derived, only the rates at certain tenors are saved
to a database. It is not very sensible to save a rate for each of the possible tenors
out to, say, 30 years since it will take up too much space electronically and will
not add any real value. In practice, a certain number of tenors are decided on
and the rates at these tenors are stored. When a rate is needed for a specific
tenor that is not stored in the database, the rate has to be interpolated. Various
interpolation techniques are discussed in the next sections.

4.9.1 Constant interpolation

Constant interpolation refers to the situation where the interpolated value
is assumed to be equal to the value at the previous node. This means that if
a curve is constructed with constant interpolation, the curve is a step func-
tion.

4.9.2 Linear interpolation

Linear interpolation assumes a linear function between any two known
node points (x1, y1) and (x2, y2). Say we are interested in interpolating a
value for y at node point x, where y1 ≤ y ≤ y2 and x1 ≤ x ≤ x2. Graphically
this is shown in Figure 4.6 (overleaf).

The linear interpolation formula is derived from the following relationship:

which means that we want the slope of the linear function to be equal in the
intervals [x1; x2] and [x; x1]. Solving for y we get:

(4.1)

which is then used as the linear interpolation formula.

4.9.3 Cubic spline interpolation

To construct a cubic spline function we define three knot points κ1, κ2, and
κ3. At these knot points the cubic spline takes on values f1, f2, and f3. Graph-
ically this is depicted in Figure 4.7 (overleaf).
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y – y1 = y2 – y1
x – x1 x2 – x1

y = y1 + (x – x1)
(y2 – y1)
(x2 – x1)
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Figure 4.6 Linear interpolating a value for y between two nodes x1 and x2

Figure 4.7 Cubic spline interpolation



The cubic polynomial function between knot points is denoted by

(4.2)

where {a1, a2, a3, a4, b1, b2, b3, b4} are the parameters to be solved for. The
first derivative of this function is given by:

and the second derivative by:

The parameters are solved by setting the following conditions:

� We know that F(κ1) = f1; F(κ2) = f2;and F(κ3) = f3.
� To get a function that is twice continuously differentiable at the inte-

rior knot point κ2, we set the first and second derivatives to be equal
which means that a2 + 2a3(κ2 – κ1) + 3a4 (κ2 – κ1)2 – b2 = 0  and 2a3 +
6a4 (κ2 – κ1) – 2b3 = 0.

� The final two conditions are that F″(κ1) = 0 and F″(κ3) = 0.

The simplest way to solve for these parameters is to put these conditions
into matrix form as follows:

(4.3)

where i1 = κ2 – κ1 and i2 = κ3 – κ2. We then just solve for the parameters
with simple matrix manipulation. To illustrate these calculations, say we
know a function has the following function values at the given knot points:

i knot point κi function value fi
1 7 3
2 4 5
3 3 8
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F(x) = {a1 + a2(x – κ1) + a3(x – κ1)2 + a4(x – κ1)3 , x ∈[κ1;κ2]
b1 + b2(x – κ2) + b3(x – κ2)2 + b4(x – κ2)3 , x ∈[κ2;κ3]

F′(x) = {a2 + 2a3(x – κ1) + 3a4(x – κ1)2 , x ∈[κ1;κ2]
b2 + 2b3(x – κ2) + 3b4(x – κ2)2 , x ∈[κ2;κ3]

F′′(x) = {2a3 + 6a4(x – κ1)  , x ∈[κ1;κ2]
2b3 + 6b4(x – κ2) , x ∈[κ2;κ3]

1 0 0 0 0 0 0 0 a1 f1
0 0 0 0 1 0 0 0 a2 f2
1 i1 i1

2 i1
3 0 0 0 0 a3 f2

0 0 0 0 1 i2 i2
2 i2

3 a4 f3
0 1 2i1 3i1

2 0 –1 0 0 b1 0
0 0 2 6i1 0 0 –2 0 b2 0
0 0 2 0 0 0 0 0 b3 0
0 0 0 0 0 0 2 6i2 b4 0

=



and we are interested in interpolating a value at x = 3.5. Substituting the
known values into the parameters of the matrix given in (4.3) yields:

so it follows that our interpolated value is F(3.5) = 6.39. Please refer to
Bolder and Gusba (2002) for a detailed discussion.

4.9.4 Log-linear interpolation

Log-linear interpolation is used when we need to interpolate between two
nodes that lie on an exponential curve, like a discount function. Say we are
interested in interpolating a value for y at node point x, where y1 ≤ y ≤ y2
and x1 ≤ x ≤ x2. This is illustrated by Figure 4.8.
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1 0 0 0 0 0 0 0 a1 3
0 0 0 0 1 0 0 0 a2 5
1 –3 9 –27 0 0 0 0 a3 5
0 0 0 0 1 –1 1 –1 a4 8
0 1 –6 27 0 –1 0 0 b1 0
0 0 2 –18 0 0 –2 0 b2 0
0 0 2 0 0 0 0 0 b3 0
0 0 0 0 0 0 2 –6 b4 0

=

Figure 4.8 Log-linear interpolation



By taking the log of the y values, we convert the exponential curve to a
linear curve as illustrated by Figure 4.9, which means that we can use (4.1)
as follows (Haug, 1997):

and then solving for y gives:

(4.4)

This means we can use (4.4) to interpolate between y values that fall on an
exponential curve.
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ln y = ln y1 + (x – x1)
(ln y2 – ln y1)

(x2 – x1)

y = y1 exp( x2 – x ) × y2 exp( x – x1 )x2 – x1. x2 – x1

Figure 4.9 Log-linear interpolation: the exponential curve is converted to a
linear curve

4.9.5 Exponential interpolation

The exponential interpolation function is derived with similar arguments to
those for the log-linear interpolation function.



We are interested in interpolating a value for y at node point x, where y1
≤ y ≤ y2 and x1 ≤ x ≤ x2, where the y values can be modeled with a log func-
tion. By taking the exponent of the y values, we convert the logarithmic
curve to a linear curve, which means that we can use (4.1) as follows:

and then solving for y gives:

(4.5)

4.9.6 Example

Table 4.4 shows an example of yield curve values at certain tenors. We are
interested in comparing the different approaches to interpolate values at
those tenors that are not available.
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ey = ey1 + (x – x1)
(ey2 – ey1)
(x2 – x1)

y = ln[ey1 + (x – x1)
(ey2 – ey

1)](x2 – x1)

Table 4.4 Yield curve values

Term Interest rate 
(yrs)  (%)

0 4.0
1 3.6
3 3.0
5 3.3

10 5.0
15 5.0
20 4.0
25 2.0
30 3.0

Figure 4.10 shows a comparison of the curves when these rates are inter-
polated with constant, linear, and cubic spline interpolation. Some 
interesting facts are illustrated:

� Depending on the technique used, we get very different interpolated
interest rate curves. This means that two people who are determining
the value of the same portfolio  may get two totally different portfolio
values, should they use two different interpolation techniques.

� Linear interpolation does not allow for curvature. The adjacent points
of the curve are joined by a straight line. At the short end of the curve,



where more rates are available, the cubic spline and linear interpolated
rates are very close.

� Constant interpolation should only be used if a lot of tenor points are
available and we do not want to make any assumptions regarding the
shape the curve can take on between two adjacent points.

� Cubic spline interpolation may allow for too much curvature, which
means that at times this technique may over-fit the data points so that
the resulting curve is not smooth enough. A good example of a curve
that allows for too much curvature is shown in Figure 4.3.

4 . 1 0 E X T R A P O L AT I O N  T E C H N I Q U E S

Extrapolation refers to the scenario where a curve has to be extended, but
there are no market rates available at those tenors. Typically we may have
a yield curve out to 30 years, but we need a 35-year rate to determine the
value of a certain deal. The various extrapolation techniques are discussed
in this section. All examples will use the data in Table 4.5 (overleaf).

4.10.1 Constant zero rates

The yield curve is extrapolated by keeping the value at the last node
constant. This is similar to the constant interpolation technique that was
discussed in Section 4.9.1.
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Figure 4.10 A comparison of different interpolation techniques



Figure 4.11 shows the zero rates and one-year forward rates (calculated
from the zero rates using the techniques discussed in Chapter 2). With this
extrapolation technique the zero curve from the 15-year point is constant
(data from Table 4.5). It is immediately evident that the main problem with
this approach is that the discontinuity at the node on the curve where the
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Table 4.5 A zero and par yield curve. All rates are naca.

Term (yrs) Zero rates (%)           Par rates  (%)

0 1.01 1.01
1 2.05 2.05
2 2.925 2.912335
3 3.5325 3.501142
4 3.9825 3.929518
5 4.318 4.243466
6 4.5775 4.482263
7 4.783 4.668366
8 4.945 4.813153
9 5.078 4.93032
10 5.19 5.027499
11 5.279877 5.104989
12 5.37 5.179812
13 5.433333 5.233583
14 5.496667 5.285238
15 5.56 5.334915

Figure 4.11 Comparison of the zero and forward rate curves using constant
zero rate extrapolation



extrapolated curve starts (the 15-year point in this case) leads to disconti-
nuities in the forward rate curve. However, most practitioners prefer this
method, because no assumptions regarding the shape of the curve at the
long end are made, and we still have a zero curve that converges to a level.

4.10.2 Constant forward rates

Another approach to extrapolate a yield curve is to keep the last forward
rate constant. Figure 4.12 illustrates this technique using the data in Table
4.5 and keeping the one-year forward rate, calculated from the zero rates,
constant. The zero rates from the 16-year point onwards are then derived
from the extrapolated forward rates.
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Figure 4.12 Comparison of the zero and forward rate curves using constant
forward rate extrapolation

The problem with this approach is that the forward rate curve is smooth,
but the zero rate curve does not converge to a fixed level. We will either get
very high or very low zero rates at the very long maturities. In this specific
example we see that our curve is upward sloping.

Another issue to keep in mind with this approach is that we have to
decide which forward rates to keep constant. There will be a difference in
the extrapolated curve when the three-month forward rates are kept
constant and when the one-year forward rates are kept constant.

4.10.3 Constant par rates

To extrapolate the yield curve we can also keep the swap (or par) rates
constant. Figure 4.13 shows the zero and forward rate curves calculated from
the extrapolated par rates (data in Table 4.5). In this case the zero rate curve



is now downward-sloping at the long end and there is a discontinuity in the
forward curve.

4.10.4 Regression techniques

To extrapolate a yield curve with regression techniques, we make use of the
linear interpolation function described in Section 4.9.2. We basically estimate
the slope between the last two node points of the given zero curve with:

(4.6)

where yi denotes the zero rate and xi denotes the term in years. The idea is then
to just keep this slope constant when extrapolating the rest of the curve with:

y = y1 + (x – x1)m (4.7)

where all the symbols are defined as in section 4.9.2. Figure 4.14 shows the
zero and forward rate curves when applying this technique to the zero rates
in Table 4.5 and then calculating the forward rates from the zero rates. It is
interesting to see that in this case both the zero and forward rate curves are
upward-sloping at the long end.

4 . 1 1 CO N C LU D I N G  R E M A R K S

We have seen the effects holidays and weekends, daycount conventions,
instrument quoting conventions, and business-day rules have on the 
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Figure 4.13 Comparison of the zero and forward rate curves using constant
par rate extrapolation

m = (y2 – y1)
(x2 – x1)



valuation of an instrument, and thus also on the yield curve derived from
this instrument. Another two very important issues are the credit quality
and liquidity of the instruments. We have seen some examples that show
how distorted a yield curve can be when the credit quality of the instru-
ments is not taken into account. Similar remarks apply to illiquid instru-
ments. Ways in which to estimate the credit and liquidity premium are
discussed in Chapter 7.

Another interesting point to note is how one set of data can be used to
get very different estimates of long-term rates, depending on the interpola-
tion and extrapolation techniques used. It is important that the practitioner
carefully considers the various techniques and the underlying assumptions
made. It is obviously important to apply techniques consistently. For
instance, consider the situation when two curves are derived from different
instruments at the short end, but their long-term instruments are the same.
Depending on the interpolation or extrapolation technique used at the long
end, we may find that the long ends of the curves do not move together
when there is a market move in interest rates. This means that the risk
manager will pick up basis risk. Remember that basis risk refers to the situ-
ation where an instrument is valued off one curve and its hedge is valued
off another curve. When the two curves do not move together, it means the
hedge may not be effective any more, and that means the portfolio is more
risky. However, in this example the basis risk that the risk manager will
pick up is actually model risk, because the two curves are the same at the
long end and theoretically should move together. Basis risk and model risk
are discussed in detail in Chapter 8.

It is possible that a situation may occur where the portfolio will show a
bigger profit when a specific interpolation or extrapolation technique is
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Figure 4.14 Comparison of the zero and forward rate curves when 
extrapolating the zero rates with regression techniques



applied to the yield curve used to value the portfolio. It will obviously be
very tempting to choose the method that will result in the biggest profit in
the portfolio. However an inappropriate technique, even when applied
consistently, may still have some undesired after-effects.
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In this chapter we explore how to derive yield curves from the various
types of instruments available in the market.

In Section 5.1 we see how to fit the yield curve models discussed in Chap-
ter 3 to coupon-paying bonds. There are various important points in this
process that have to be considered. These include how the optimization routine
should be set up; choosing initial parameter estimates for the yield curve func-
tion; choosing the appropriate yield curve function; which bonds to include in
the process; and how to test whether the fitted yield curve model is adequate.

In Section 5.2 we derive a curve from forward rate agreements (FRAs).
FRAs are usually used to derive the midsection of a swap-type yield curve.
The difference between FRAs and futures is discussed in Section 5.3. We
also consider the various issues that complicate the model when deriving a
curve from futures contracts.

In Section 5.4 we consider a way in which to derive a term structure for
interest rates that have no quoted term structure, for instance the bank
prime rate. We use the concept of an averaging swap, and apply a technique
similar to the bootstrap technique discussed in Chapter 2.

The idea with this chapter is to give the reader practical ideas on how to
derive yield curves from the various types of instruments, and outline the
issues that should be taken into account. After reading this chapter it should
be clear that the most important part in deriving a yield curve is to understand
how an instrument is valued. By decomposing the instrument into its relevant
cash flows it should be reasonably simple to put together a yield curve model.

5 . 1 B O N D  C U R V E S

In this section we discuss the various issues relating to deriving yield
curves from bonds using the functions discussed in Chapter 3. We begin by
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considering ways in which to set up the optimization routine which is used
to estimate the parameters of the yield curve function.

5.1.1 Setting up an optimization routine

Say we have a series of N bonds, and we know the price of bond i can be
written as:

(5.1)

where i = 1,...,N and
Pi = the all-in price of bond i
ni = number of outstanding cash flows of bond i
N = total number of bonds used to derive the curve
dfm = discount function for a term m
mi,j = term in years from the settlement date until cash flow Ci,j
Ci,j = jth cash flow of bond i (the last cash flow will be the redemption

payment plus the coupon payment).

The idea is to choose an appropriate mathematical function for the discount
factors and then estimate the parameters, with the constraint that when each
of the bond’s cash flows are discounted with this function, the fitted bond
price will equal the current market price.

The information on the bonds that are used to derive the curves in this
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Pi = ∑Ci,jd fmi, j

ni

j=1

Table 5.1 Bond information that is used to derive the curves in Section 5.1.1

Bond Yield Coupon Maturity date

A001 2.250 1.125 30 Jun 2005
A002 2.500 2 31 July 2006
A003 3.098 3 15 Nov 2007
A004 3.300 3 15 Feb 2008
A005 3.320 2.625 15 May 2008
A006 3.900 3.25 15 Aug 2009
A007 4.150 5.75 15 Aug 2010
A008 4.210 5 15 Feb 2011
A009 4.260 5 15 Aug 2011
A010 4.420 4.875 15 Feb 2012
A011 4.470 4.375 15 Aug 2012
A012 4.397 4 15 Nov 2012
A013 4.250 3.5 15 Feb 2020
A014 4.100 3.45 15 May 2025



section is shown in Table 5.1. We know that the settlement date of these
bonds is calculated on a t + 3 basis and that we are working with a 30/360
daycount convention. The modified following business day rule is applied.
Coupons are paid yearly on all bonds, and we work with a nominal of 1
million.

The value date is 25 August 2003, so we know the settlement date is 28
August 2003. The short-term rate used to discount the bonds from the
settlement date to the value date is 3.32% SMP. All instruments are
assumed to be of the same credit quality.

The first step is to determine the cash flow dates of each of the bonds.
Table 5.2 shows the cash flows for bond A003. We can see how some of
the dates had to be adjusted when they fall on a weekend (the first column
in Table 5.2). The next step is to determine what cash flow will take place
on the cash flow date. When the cash flow date is not the maturity date, the
cash flow is:

Ci,j = (Coupon rate of bond i x Nominal)/100

and on the maturity date the cash flow is:

Ci,j = Nominal + (Coupon rate of bond i x Nominal)/100

The present value of each of these cash flows is then calculated by multi-
plying each cash flow with the appropriate discount function calculated
from the yield to maturity of the bond. As is shown in Table 5.2, the actual
all-in price is then the sum of these present-valued cash flows. To get the
all-in price of the bond on the value date, we discount the bond back from
the settlement date to the value date using the short-term rate.
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Table 5.2 The cash flows of bond A003 and determining the actual all-in price

Cash flow date Cash flow Term Present value
Ci,j mi,j Ci,j x dfm

15 Nov 2002 30,000
17 Nov 2003 30,000 0.22 29,800
15 Nov 2004 30,000 1.21 28,909
15 Nov 2005 30,000 2.21 28,041
15 Nov 2006 30,000 3.21 27,198
15 Nov 2007 1,030,000 4.21 905,748

Actual all-in price (settlement) 1,019,696
Actual all-in price (value date) 1,019,414



In this example the Cairns model will be used as the functional form for the
discount function. It is important to remember that the model is a function
of the term m. The Cairns function is given by:

(5.2)

where {β0,...,β4,c1,...,c4} are the parameters to be estimated.
To determine the fitted price of the bond with the Cairns function we

create the cash flows similarly to the method shown in Table 5.2, except
that we now have a column where the discount factor is given as a function
of the term (in years). This is shown in Table 5.3 in column 4. The present
value of each cash flow is then calculated as the cash flow multiplied with
the relevant discount factor calculated from the Cairns function given by
(5.2). We obviously need to assume starting values for the Cairns model
parameters, otherwise we will not get any values for the discount factors.
The fitted all-in price on the settlement date is then the sum of all these
present-valued cash flows. The all-in price on the value date is again calcu-
lated by discounting the all-in price on the settlement day with three days
using the short-term rate.

The parameters of the discount function are now estimated by an itera-
tive technique where we minimize the weighted squared differences (WSE)
between the actual and fitted all-in prices. The WSE is defined by:
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dfm = exp[–β0m – ∑βi
1 – e–cim]ci

4

i=1

Table 5.3  The cash flows of bond A003 and determining the fitted all-in price

Cash flow Cash flow Term Discount factor Present 
date Ci,j mi,j dfm value 

15 Nov 2002 30,000
17 Nov 2003 30,000 0.22 exp[–0.22*β0 Ci,1 x dfm

– β1(1–exp(–c1*0.22))/c1

– β2(1–exp(–c2*0.22))/c2

– β3(1–exp(–c3*0.22))/c3

– β4(1–exp(–c4*0.22))/c4]
15 Nov 2004 30,000 1.21
15 Nov 2005 30,000 2.21
15-Nov 2006 30,000 3.21
15 Nov 2007 1,030,000 4.21 repeated in each column Ci,5 x dfm

Fitted all-in price (settlement) Ci,1 x dfm

+ …
+ Ci,5 x dfm

… …



(5.3)

where Wi is the weight of bond i, P
∧

i denotes the fitted all-in price and N is
the number of bonds used to derive the yield curve.

By setting these calculations up in a spreadsheet, we can see how the
discount function values change as the optimization routine runs through
different combinations of parameter values in an attempt to minimize the
WSE. Table 5.4 shows the estimated parameters when we take wi = 1/N, in
other words, when all bonds carry the same weight.
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WSE = ∑ 1 (Pi – P
∧

i)2

Wi

N

i=1

Table 5.4 Estimated parameters of the Cairns function

β0 0.03
β1 1.06
β2 –2.52
β3 1.53
β4 –0.06
c1 0.36
c2 0.50
c3 0.67
c4 1.87

Figure 5.1 shows the bond yields given in Table 5.1 with the fitted par
rate curve derived from the Cairns discount function. The short-term rate is
used to anchor the curve at the very short end of the curve.

Figure 5.1 A par yield curve derived using the Cairns model and the bonds
specified in Table 5.1



We can see that the par curve fits the bond yields very closely, but not
perfectly. This type of curve would usually be referred to as a best-fit curve.
Should we wish to have a perfect-fit curve, we will have to add more terms
to the Cairns function or use another type of yield curve function. A
perfect-fit curve will be volatile in that every little hump or trough will be
shown. With a best-fit curve we smooth the curve to get a more average
curve.

5.1.2 Initial parameter estimates

The parameters of the empirical yield curve models are estimated with iter-
ative techniques. All iterative procedures require starting values for the
parameters. If good starting values are chosen, the iterative technique will
usually converge to results much faster, and may also show a global 
optimum value instead of wrongly converging to a local optimum.

The simplest way to choose starting values is to consider various differ-
ent combinations of parameters, then choose that combination where the
resulting curve has the correct shape. This can be a tedious task the first
time a specific yield curve function is fitted. However, once the parameters
are adequately estimated, these parameter estimates are used as the starting
values for the next day, and so on.

With some of the yield curve models discussed in Chapter 3, we specify
the range in which the parameters can fall. Some of the model specifica-
tions also involve specifying whether the parameters can assume negative
values, and so on. For example, the Nelson and Siegel model for the
discount function is specified as:

where β0 and τ1 must be positive. We know that β0 specifies the long rate
to which the forward rates converge, so we restrict this parameter to be
positive and we can choose an initial parameter estimate as the level of the
long-term bond yields.

5.1.3 Other estimation functions

In Section 5.1.1 the WSE function is minimized to estimate the model
parameters. In this section we look an alternative function that can be
minimized, which incorporates a smoothness quantity.

Waggoner (1997) considered minimizing the function:

(5.4)
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dfm = exp[–m(β0 + (β1 + β2)τ1 [1 – exp(– m)]– β2 exp[– m ])]m τ1 τ1

∑ [Pi – P
∧

i]2 + λ ∫ [ ψ″(t)]2dt
N

i=1

Kk

0



where
Pi = the actual all-in price of bond i
P
∧

i = the fitted all-in price of bond i
N = total number of bonds used to derive the curve
k = total number of knot points specified
λ = roughness penalty
κ = the knot points
ψ = the function to be fitted to the bonds.

In our case where we fit the discount function, the function which mini-
mizes (5.4) over the space of all twice continuously differentiable functions
will be a cubic spline with the specified knot points.

Minimizing (5.4) is a trade-off between minimizing the first term which
measures the goodness of fit, and the second term that measures smooth-
ness. The positive constant λ determines the trade-off between goodness of
fit and smoothness, and is called the roughness penalty. For large values of
λ, the flexibility of the function is the same across all regions. Waggoner
(1997) argues that the function should be more flexible at the short end
than at the long end, which results in his proposal of a modified smoothed
spline, and means the function ψ is estimated by minimizing:

(5.5)

where all symbols are as defined before. He finds that by allowing the rough-
ness penalty λ to be a function of the term to maturity of the bond, the volatil-
ity at the long end of the curve is reduced while the flexibility at the short end
of the curve remains. He specified the roughness penalty as follows:

which is a step function that corresponds with the maturities of the three sets
of instruments he uses in his analysis. This function ensures that the short end
of the curve will be more volatile, whereas the long end has a much higher
λ and thus will be much smoother. By testing the out-of-sample performance
of the fitted curves, it is possible to ascertain whether the roughness penalty
specified is correct. If the out-of-sample fit is not adequate, it is an indication
that another roughness penalty should be specified.

5.1.4 Perfect fit and smoothness

It has to be decided whether the bonds are to be fitted perfectly, as this will
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∑ [Pi – P
∧

i]2 + ∫  λ(t)[ ψ″(t)]2dt
N

i=1

Kk

0

0.1 ,0 ≤ t ≤ 1
λ(t) =   {100 ,1 ≤ t ≤ 10

100,000 ,t > 10



have an effect on the smoothness of the curve. When there are a lot of
bonds in a certain maturity range, all with different coupons and yields to
maturity, it is referred to as “noisy” data, which means that a perfect-fit
curve will not be smooth in that maturity range. Should we wish to get an
idea of the average level of the market interest rates, we would typically
prefer a best-fit curve and smooth over the noise in the data. However,
when the curve is used for valuation purposes, the practitioner would prefer
that the bonds be priced perfectly off the curve. In this situation the analyst
typically has two choices: either choose fewer bonds to derive the curve
and thereby enforce smoothness, or have a curve that is not very smooth
but fits the bonds perfectly.

In the optimization routine we would usually also add the constraint that
the forward rate curve should be smooth and the forward rates should not
be allowed to be negative. The smoothness constraint of the forward curve
usually depends on the model; typically we would prefer a model that has
no discontinuities, as the forward rate curve would then be smooth. Ensur-
ing non-negative forward rates typically involves constraining the values
the parameters can take on. This will differ from model to model. It is
usually never a good idea to constrain a model too much, because then the
optimization routine will struggle to find adequate parameter estimates. In
this case the starting values (discussed in Section 5.1.2) are even more
important.

5.1.5 Knot points

Various yield curve models that are discussed in Chapter 3 require knot
points to be chosen before the model parameters can be estimated.

There are various issues to consider when determining the number of
knot points, the most important being the trade-off between goodness of fit
and smoothness. The greater the number of knot points, the better the fit of
the discount function will be. However, if too many knot points are chosen,
the discount function may conform too closely to outliers and the resulting
curve will not be smooth enough. This can be seen clearly in Figure 5.2,
where the cubic spline function was fitted to the bonds in Table 5.5. In this
example the number of knots is chosen to be the same as the number of
bonds used to derive the curve. The actual knots were chosen to correspond
with the terms to maturity of each of the bonds.

Another idea is to choose the number of knots to be √N where N is the
number of bonds used to derive the yield curve. The knots are chosen such that
an equal number of bonds are between each subsequent knot (McCulloch,
1971; McCulloch and Kochin, 1998). Remember that most knot points are
specified in terms of terms to maturity. We shall refer to this approach to 
choosing knot points as the McCulloch approach.
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Figure 5.3 shows a comparison of the perfect fit curve shown in Figure
5.2 and the curve derived by choosing knot points with the McCulloch
approach. The knot points are {0; 4.2; 5; 8; 9.7}. It is clear that the curve
does not fit the bonds adequately. This is mainly because the bonds are not
spread evenly across maturities, but tend to form clusters.

Figure 5.4 (overleaf) shows the case where the knot points are chosen to
correspond with the bond clusters. In this case the knot points are chosen
as {0; 1.8; 4.2; 5; 6.9} and we can see that the resulting curve is now much
smoother than the perfect fit curve, yet still fits the bonds adequately. If the
knot points are chosen to correspond with the bond clusters, the curve
seems to fit the bond yields more closely than when the knots are chosen
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Figure 5.2 Cubic spline curve derived from the bonds in Table 5.5

Figure 5.3 Comparison of cubic spline curves derived from the bonds in Table
5.5, but with different sets of knot points



with the McCulloch approach. It is quite interesting to see that the biggest
difference between these two curves is around 20 bps. This is a very high
number, especially when we consider that in each case the same set of
bonds is used to derive the curve.

Consider the way in which the risk of an interest rate portfolio is deter-
mined. In practice we would add 1 bp to the yield curve and see what the
effect is on the portfolio value. This gives us an idea of the sensitivity of
the portfolio value to yield curve moves, and is usually referred to as the
present value of a basis point move or PV01. One way to determine the
stress loss of the portfolio is to stress the PV01s with stress factors that are
calculated from yield curve moves. (Please refer to Chapter 8 for a more
complete discussion.) In the example above we see that by just changing
the knot points, we get a 20 bp difference in the curve. This move is not a
result of market moves in the underlying bonds, but is purely caused by the
way the knot points are chosen. The problem is that our risk measure will
pick up these moves in the yield curve, and this results in incorrect
estimates of the risk of the portfolio.

The examples discussed in this section show how sensitive spline
models are to the number and location of the knot points.

Another interesting issue is when a market only has a limited number of
bonds available that can be used to derive a yield curve. This may be
because there are not enough liquid bonds or not enough bonds of the same
credit quality. Over time the number of bonds used to derive the curve is
thus kept constant, but the term to maturity of each bond decreases. A bond
will then move from one interval to the next, where the interval refers to
the area between any two knot points. In situations like this it is necessary
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Figure 5.4 Comparison of cubic spline curves derived from the bonds in Table
5.5, but with different sets of knot points



to constantly update the knot points, as this may affect the parameter esti-
mates of the yield curve model and also how well the curve fits the bonds.
The effects of changing knot points on the parameter estimates are
discussed in Section 5.1.8.

The bonds in Table 5.5 have settlement dates that are determined on a t
+ 3 basis. This specific market follows a 30/360 daycount convention and
a modified following business day rule. Coupons are paid semi-annually on
all bonds. The value date is 25 August 2003, so we know the settlement
date is 28 August 2003. The short-term rate that is used to discount the
bonds from the settlement date to the value date is 1.4% SMP. All these
instruments are assumed to be of the same credit quality.

5.1.6 Parsimonious function

In fitting any yield curve there is a trade-off between goodness of fit,
smoothness, and a parsimonious function. When deciding on the number of
parameters, we have to consider the same issues as those discussed in
Section 5.1.5, where we considered them in the context of knot points. In
other words, it may be possible that we are over-fitting the underlying
bonds when using a too highly parameterized function, so that the result-
ing yield curve may show troughs and humps that cannot be explained by
the actual bond yields.

When the function is too highly parameterized, we may not be able to
estimate consistent parameters and then we may have trouble with
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Table 5.5 Bond information that is used to derive the curves in Section 5.1.5

Bond Yield Coupon Maturity date

A001 2.30 1.125 30 Jun 2005
A002 2.45 1.5 31 Jul 2005
A003 2.40 3 15 Nov 2007
A004 2.50 3 15 Feb 2008
A005 2.50 2.625 15 May 2008
A006 2.55 3.25 15 Aug 2008
A007 2.40 5.75 15 Aug 2010
A008 2.55 5 15 Feb 2011
A009 2.40 5 15 Aug 2011
A010 2.50 4.875 15 Feb 2012
A011 2.56 4.375 15 Aug 2012
A012 2.60 4 15 Nov 2012
A013 2.62 3.875 15 Feb 2013
A014 2.60 3.625 15 May 2013



“catastrophic” jumps (a topic discussed in Section 5.1.8). A general rule is
not to use a function with more parameters than we have instruments to
which we want to fit the function.

When the function is too parsimonious, the resulting function will not be
flexible enough to allow for the different shapes the yield curve can take
on. It will typically produce an overly smooth curve which will not fit the
bonds adequately.

5.1.7 Weights for the WSE

The weighted squared error (WSE) defined by equation (5.3) is the function
we wish to minimize when estimating the parameters of the yield curve
model. Obviously the bigger the weight we choose for any particular bond,
the closer the yield curve function will fit that specific bond.

There are various reasons that we might want to use weights. Consider
for instance the situation where we have noisy data to which we would like
to fit a smooth curve. This is the situation in the example in Section 5.1.5,
where the bonds do not cover the whole maturity range, but are clustered
around certain maturity dates. Say we suspect some of the bonds are more
liquid than others. (This would explain the volatility in the yields to matu-
rity, even though their maturity dates are close to each other.) Then we can
weight them according to some liquidity measure. An example of a liquid-
ity measure is the amount issued of a particular bond. We would want
bonds that are more liquid to have a greater weight, because the liquid bond
yields more closely reflect the actual level of the market rates.

In a market where the short-term instruments are more liquid than the
long-term instruments, we can use the inverse of the instrument’s modified
duration as a liquidity weight. This will ensure that the short-term instru-
ments carry the higher weight. This is a good approach, because the liquid-
ity weights are chosen objectively, which is preferable when the yield
curve is used for valuation purposes.

One problem when choosing different weights for the various bonds is
that it is possible to manipulate the yield curve model to get a curve that is
most advantageous in the sense that when a portfolio is valued off it, the
portfolio will show big potential profits. Thus, by applying weights we get
a very objective curve and not one that is necessarily a true reflection of
market rates.

When a yield curve is used for pricing purposes by a trader, the weights
applied do not need to be objective. Traders could adjust the weights as
they see fit and depending on where they think the market is most liquid or
under-valued. By trying different weights they could get a feel of what rate
would be most appropriate when they want to trade in any instrument. The
flip side of this is that when they price a deal off one curve, but the risk
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manager values the deal off another more objective curve, the trader may
show a loss. To prevent situations like that the trader may prefer to price a
deal off the same curve that is used to value the deal. Obviously a trader
will not be too worried when he/she shows a profit.

In order to be as objective as possible, most practitioners use equal
weights across all bonds.

When trading with a counterparty, there usually is a legal agreement in
place which specifies which curve will be used to settle the deal at maturity
(for example the ISDA agreements when trading in interest rate swaps).
These agreements almost force the issue of transparency, and usually refer
to a yield curve that is published by a trusted outside source like an exchange.
When we value a portfolio with an objective yield curve, and the agreements
refer to another curve that is completely different, there may be big differ-
ences between the expected profits our portfolio shows when the deals are
valued off our curve, and the actual earnings made at maturity when settling
the deal off the curve specified in the agreement.

Another important reason to be objective when deriving yield curves is
that the external audit process will typically pick up subjectivity; this can
be perceived as manipulating the results. This may cause the auditors to
write unfavourable reports to upper management, and there is also a 
reputation risk that has to be considered.

5.1.8 Catastrophic jumps

Estimating the parameters of empirical yield curve models usually involves
the minimization or maximization of a function like the weighted least
squares function discussed in Section 5.1.1.

A yield curve model with linear parameters, like the regression-type
models discussed in Chapter 3, will have a single global minimum.
However, most yield curve models are non-linear so that the function
may have more than one local minimum (Draper and Smith, 1981:
465–6). The location of the global minimum might jump when the func-
tion is evaluated from day to day, resulting in a completely new set of
parameter estimates. When such a jump occurs, the resulting effect is that
the yield curve will also jump in an equally obvious way, and the curve
may start to lose credibility, because the moves will not be explainable
by moves in the underlying bonds (Cairns and Pritchard, 1999).

When a yield curve model requires knot points to be specified, it is
necessary to ensure that the knots are chosen in such a way that a specific
bond will not jump from one interval to the next, where an interval refers
to the gap between two successive knot points. Consider the situation
where a bond has a yield substantially different from the rest of the portfo-
lio, and that bond has a large weight in the optimization routine. (Please
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refer to Section 5.1.7 for more details.) When the bond moves to a differ-
ent interval there may be a significant change in the parameter estimates,
in other words a “catastrophic” jump. User intervention is thus necessary
at the start of each month or quarter, when the bonds and the weights that
are used to derive the yield curve are reviewed, to prevent a situation like
this from occurring.

Using a different number of knots from one day to the next may cause
huge differences in the parameter estimates which are not warranted by
actual bond moves, as was shown with an example in Section 5.1.5.

When deciding on a yield curve model, it is important to back-test the
model through time to see whether the model parameters are subject to
these catastrophic jumps. One way to test whether a model is subject to
catastrophic jumps is to choose 100 different starting points at random for
optimization, and see whether the optimization routine converges to the
same minimum in each case (Cairns, 1998).

5.1.9 Selecting the bonds

When choosing the bonds that will be used to derive a yield curve, there
are several issues that have to be taken into account. These include:

� The credit rating of the instruments that will be priced off the yield
curve. For example when we need a risk-free curve we would typically
use government bonds to derive the curve.

� We would typically only use the most liquid bonds, because then we
know the yield curve is representative of market interest rates. The
amount issued, turnover, or the bid/ask spread of the bond can be used
as an indication of the liquidity of the bond.

� Only bonds for which prices are actively quoted in the market by a
minimum number of market makers should be considered. If a bond is
included and with no current price available, it may cause distortions
in the yield curve.

� Depending on the market perception of their value, the prices (and thus
the yields) of bonds with special features like callable, puttable, and
convertible bonds will differ from those of the rest of the bonds in the
market.

� The duration of a bond is defined as the weighted average time to cash
flows. A very general formula for duration is (Fabozzi, 1993):

where
P = all-in price of the bond per 100 nominal
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C = coupon of the bond
R = redemption value of the bond per 100 nominal
n = number of coupon payments of the bond
y = yield to maturity of the bond.

Depending on the shape of the yield curve, the duration of a bond may be
an indication of which bond has the higher value. For example, if the yield
curve is upward sloping, then (ignoring other factors like income tax) high-
coupon bonds having a shorter duration than low coupon bonds will
usually be preferred. This may lead to high-coupon bonds being more in
demand, which indicates that they will also be priced higher than lower-
coupon bonds with the same term. The implication is that these higher-
coupon bonds will have lower yields than the rest of the bonds in the
market.

5.1.10 Comparison of yield curve models

In this section we compare three of the yield curve models that are
discussed in Chapter 3. The models are the McCulloch–Kochin quadratic
natural spline; the Carriere–Gompertz model, and a restricted version of
the Cairns model. The idea is that in the process of comparing the different
models, we also illustrate the way the different types of functions are
specified. Finally we show some examples of the parameter estimates.

The yield curve functions are fitted to the bonds listed in Table 5.6. 
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Table 5.6 Bond information used to derive the curves in Section 5.1.1

Bond Yield Coupon Maturity date

A001 2.500 1.125 30 Jun 2005
A002 2.750 2 31 July 2006
A003 3.200 3 15 Nov 2007
A004 3.500 3 15 Feb 2008
A005 3.200 2.625 15 May 2008
A006 3.900 3.25 15 Aug 2009
A007 4.150 5.75 15 Aug 2010
A008 4.210 5 15 Feb 2011
A009 4.600 5 15 Aug 2011
A010 4.300 4.875 15 Feb 2012
A011 4.500 4.375 15 Aug 2012
A012 4.200 4 15 Nov 2012
A013 4.200 3.5 15 Feb 2020
A014 4.000 3.45 15 May 2025



The settlement date of these bonds are calculated on a t + 3 basis and 
a 30/360 daycount convention is applicable. The modified following
business day rule is applied. Coupons are paid yearly on all bonds.

The value date is 25 August 2003 and the short-term rate that is used to
discount the bond prices from the settlement date to the value date is 1.80%
SMP. All instruments are assumed to be of the same credit quality.

McCulloch–Kochin quadratic natural spline

The first model we consider is the McCulloch–Kochin quadratic natural
spline, where the basis functions are defined as follows:

(5.6)

where
θ1(m) = m
θ2(m) = m2

θj(m) = max(0, m – κj–2)3 for j = 3,..., k + 1
and
κ = the knot points
mN = the term to maturity (in years) of the longest-term bond
k = number of knot points
θ″j(m) = the second derivative of θ with respect to m.

The discount function is then defined as:

(5.7)

We choose five knot points with κ5 = mN. These knot points are all speci-
fied in terms of years. Table 5.7 shows how (5.6) is used to determine the
basis functions. Please note that {α1; α2; α3; α4; α5} in (5.7) are the param-
eters of the discount function that are estimated. The parameters are esti-
mated with the approach discussed in Section 5.1.1, in other words by
minimizing the weighted squared differences between the actual and fitted
bond prices; we use equal weights for all bonds.

The chosen knot points and estimated parameters of the McCulloch–
Kochin quadratic natural spline model are given in Table 5.8.

Carriere–Gompertz model

The second model we consider is the Carriere–Gompertz model given by:

(5.8)
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fj(m) = θj(m) –   
θ″j(mN)

θn+1(m) , j = 1,...,kθ″n+1(mN)

dfm = exp[– ∑αj fj(m)]k

j=1

dfm = ∑ φj[1 – v(m)] j + ∑ ξj max(0,1 – v(m) – κi)q
q

j=0 i=1

n–1



where {κ0;κ1;...;κn} denote the knot points of the spline function restricted to
the interval [0;1] and {φ0;...;φq;ξ1;...;ξn–1}denote the parameters to be esti-
mated for the spline function. We have that v(m) is the Gompertz function
given by:

(5.9)

where µ and σ are two further parameters that have to be estimated. By
choosing q as 3 and the number of knot points n as 5, we fit the model to
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Table 5.7 Illustration of how to create the McCulloch–Kochin basis functions
when five knot points are chosen

j θj(m) θj'(m) θj''(m) fj(m)

1 m 1 0 m
2 m2 2m 2 m2

– 2max(0,m – κ1)3

/ 6max(0, κ5 – κ1)
3 max(0,m – κ1)3 3 × max(0,m – κ1)2 6 × max(0,m – κ1) max(0,m – κ1)3

– max(0, κ5 – κ1)
× max(0,m – κ2)3

/ max(0, κ5 – κ2)
4 max(0,m – κ2)3 3 × max(0,m – κ2)2 6 × max(0,m – κ2) max(0,m – κ2)3

– max(0, κ5 – κ2)
× max(0,m – κ3)3

/ max(0, κ5 – κ3)
5 max(0,m – κ3)3 3 × max(0,m – κ3)2 6 × max(0,m – κ3) max(0,m – κ3)3

– max(0, κ5 – κ3)
× max(0,m – κ4)3

/ max(0, κ5 – κ4)
6 max(0,m – κ4)3 3 × max(0,m – κ4)2 6 × max(0,m – κ4)

Table 5.8 Knot points and estimated parameters of the McCulloch–Kochin
model fitted to the bonds in Table 5.6

Parameters Knot points

α1 0.01799 κ1 0.25
α2 0.00207 κ2 4
α3 0.00041 κ3 7
α4 –0.00114 κ4 9
α5 0.00063 κ5 22.0

v(m)  = exp[e– (1–e )]µ
σ

m
σ



the bonds in Table 5.6. In this case an iterative process is necessary to 
estimate the parameters:

� Initial values are chosen for {φ1;...;φ3;ξ1;...;ξ4}and {µ;σ}.
� Estimate only {µ;σ} by minimizing the equally weighted squared

differences between the fitted and actual all-in prices of the bonds.
� Keep the estimates of {µ;σ} now fixed and estimate only

{φ1;...;φ3;ξ1;...;ξ4}.
� Repeat this process until both sets of parameters converge.

Table 5.9 shows the specified knot points and the estimated parameters of
the Carriere–Gompertz yield curve model. Please note that with this model
the knot points are specified in terms of the discount function v(m) and are
thus restricted to [0; 1].
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Table 5.9  Parameter estimates and knot points of the Carriere–Gompertz
model

Parameters Knot points

φ1 –0.43 κ0 0
φ2 –1.21 κ1 0.1
φ3 –5.78 κ2 0.2
ξ1 10.98 κ3 0.3
ξ2 7.82 κ4 0.6
ξ3 –17.34 κ5 1.0
ξ4 –31.36
µ –78.19
σ 71.58

Restricted Cairns model

The third model we consider is the restricted Cairns model. The model is
considered in Section 5.1.1 and is given by (5.2). However, in this section
we restrict the model in the sense that the only parameters that are esti-
mated are {β0;...;β4}. We choose fixed constant values for {c1;...;c4}. Table
5.10 shows the estimated parameter values as well as the fixed constants
for {c1;...;c4}.

Comparing the models

Figure 5.5 shows a comparison of the par yield curves derived from the
McCulloch–Kochin, Carriere–Gompertz and restricted Cairns models. At



the long end of the curve we see that the Carriere–Gompertz model does
not converge to a level. This model may be too highly parameterized in this
example, because it seem to allow for a lot of curvature but does not seem
to fit the bond yields very closely. The restricted Cairns and McCul-
loch–Kochin models both show a very good fit of the bonds, even though
the par curves from these two models are very different. This is an inter-
esting situation, because it is difficult to decide which model is superior; in
other words which curve more accurately reflects the current level of
market interest rates.

Perhaps we can argue that the McCulloch–Kochin model in this
example does not allow for enough curvature. However, a lot depends on
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Table 5.10 Parameters of the restricted Cairns model

β0 0.026
β1 0.211
β2 –0.392
β3 0.203
β4 –0.031
c1 0.200
c2 0.400
c3 0.800
c4 1.600

Figure 5.5 A plot of the bond yields and the par curves from each of the yield
curve models fitted to the data in Table 5.6



the choice of knot points. Perhaps by adding more knot points to the
McCulloch–Kochin model we would find it will showed more curvature.
When we consider model complexity as one of the factors when choos-
ing the superior model, the restricted Cairns model is definitely the supe-
rior model. With the Cairns model no knot points have to be determined
and only five parameters are estimated. It is also a very simple function
that clearly allows for adequate curvature.

5.1.11 Testing the final yield curve

The final step in the yield curve derivation process is to test whether the
curve fits the bonds adequately and is an adequate reflection of the market
interest rates. This is done by deriving a yield curve from a set of bonds; it
is referred to as the in-sample fit. We then take a bond that is not part of the
sample (but has similar characteristics) and calculate its price using the
curve. This is referred to as the out-of-sample fit. If the out-of-sample fit is
adequate, we know that our yield curve is correct.

5 . 2 F O R WA R D  R AT E  AG R E E M E N T  C U R V E

To derive a yield curve from forward rate agreement (FRA) rates, it is
important to remember that these rates are forward rates. Table 5.11 shows
a typical example of the rates available in the market that can be used to
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Table 5.11 Typical deposit and FRA rates quoted in the market

Short-term rate Bid Offer

1 month 1.04 1.14
2 month 1.12 1.22
3 month 1.23 1.33

FRA contract Bid Offer

1 x 4 1.5 1.53
2 x 5 1.72 1.74
3 x 6 1.892 1.922
4 x 7 2.073 2.103
5 x 8 2.26 2.28
6 x 9 2.427 2.457
7 x 10 2.579 2.609
8 x 11 2.725 2.755
9 x 12 2.88 2.9



derive a yield curve. These rates are all assumed to be simple annual rates,
and we assume an actual/360 daycount convention is applicable.

The FRA rates are interpreted as follows: the 1 x 4 FRA is the three-
month rate, applicable  one month from the spot date; the 2 x 5 FRA is the
three-month rate applicable two months from the spot date, and so on.
Figure 5.6 shows a graphical depiction of this.
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Figure 5.6 An example of the periods to which the FRA rates apply

Spot 1–month 2–month 3–month 4–month 5–month 6–month

1 x 4 FRA

2 x 5 FRA

3 x 6 FRA

To derive a zero curve from the FRAs we follow these steps:

� Calculate the mid rates. A mid rate is the average of the bid and offer
rates.

� Determine the period to which all the short-term rates apply. For exam-
ple when we are looking at the one-month rate, we need to determine
the number of days in the one-month period.

� Convert all the short-term mid rates to discount factors. Typically we
would use deposit rates, which are zero rates.

� Determine the number of days in each of the forward periods. We are
working with an actual/360 daycount convention, so even though we
are using three-month FRA rates, the number of days in each forward
period will usually differ.

� Calculate the forward discount factors. This is the discount factor for
each of the forward periods. For example, to calculate the forward
discount factor for the 2 x 5 FRA, we have:

where i denotes the mid FRA rate and t the period in years in the
forward period.

� Now determine the number of days between the spot date and the end
of the FRA period. This will form the period to which the zero rate
applies that is derived from each FRA. For example, we will derive a
six-month zero rate from the 3 x 6 FRA.

df2,5 =      1 =     1 = 0.9961 + it 1 + 1.73 × 91
360



� From Figure 5.6 we can see that to get a discount factor for the period
from spot to four months, we need to multiply the forward discount
factor df1,4 with the one-month discount factor calculated from the
short-term rates. Similarly, to get a discount factor for the period from
spot to five months, we need to multiply the forward discount factor
df2,5 with the two-month discount factor derived from the short-term
rate. These calculations are shown in Table 5.12.
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Table 5.12 Demonstrating the calculations to derive a zero curve from FRAs

Short-term Mid rate Number of days Discount
rate (SMP) from spot factor (DF)

1 month 1.09 30 0.999
2 month 1.17 62 0.998
3 month 1.28 91 0.997

FRA Mid rate Forward Forward Number of 
contract (SMP) period DF days from spot DF

1 x 4 1.515 90 0.996 120 0.995
2 x 5 1.73 91 0.996 153 0.994
3 x 6 1.907 89 0.995 180 0.992
4 x 7 2.088 92 0.995 212 0.990
5 x 8 2.27 91 0.994 244 0.988
6 x 9 2.442 92 0.994 272 0.986
7 x 10 2.594 92 0.993 304 0.984
8 x 11 2.74 92 0.993 336 0.981
9 x 12 2.89 92 0.993 364 0.979

Once all the discount factors are calculated, it is easy to convert them to
zero rates using the techniques described in Chapter 2. Figure 5.7 shows
the final zero curve.

Usually we would extend this curve by bootstrapping swap rates and
stitching it to the long end of the curve. The bootstrapping technique is
discussed in Chapter 2.

5 . 3 F U T U R E S  C U R V E

Interest rate futures can be used as an alternative to FRAs to derive the middle
area of the swap curve. The differences between FRAs and futures are:

� FRAs have a fixed time horizon to settlement and the contracts settle
at maturity.



� Futures contracts have a fixed settlement date but are marked to market
daily.

In practice the FRAs for most currencies suffer from lack of liquidity,
whereas futures contracts are exchange traded, which make them more
liquid and transparent. An interesting discussion on the relationship
between futures and forwards can be found in Das (2004: 307–15).

5.3.1 Convexity adjustment

The convexity adjustment is the adjustment of the theoretical forward
interest rate that is necessary to allow for the impact of funding or rein-
vesting the cash flows resulting from the futures contract being marked
to market periodically. The convexity adjustment is positively corre-
lated to the futures contract maturity, and gradually increases with term
to maturity.

Kirikos and Novak (1997) discuss a way in which to adjust Eurodollar
futures prices with the convexity bias. At maturity the value of the futures
contract is:

Ft = 100(1 – ft,T) (5.10)

where
Ft = price of the futures contract at maturity t
ft,T = Libor observed at time t for a deposit maturing at time T
t = maturity date of the futures contract
T = maturity date of the underlying Libor deposit.
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Figure 5.7 The zero curve derived from the instruments in Table 5.11



where ft,T is calculated as:

(5.11)

and DC denotes the number of days assumed in the year as specified by the
daycount convention and dft,T the discount factor applicable to the period
from t to T. It is important to know the relationship between forward prices
and futures prices to be able to derive a yield curve. The convexity bias is
estimated as

(5.12)

where

with ct,T denoting the convexity bias for the futures contract which has
maturity t and whose underlying Libor deposit has maturity T, t0 the value
date, Fquoted the current quoted market price of the futures contract, σ the
annual volatility and a the mean reversion factor. The quoted futures price
is then adjusted as follows:

Fadjusted = Fquoted + ct,T (5.13)

so that the implied forward rate can be derived from the adjusted futures
price Fadjusted, as follows:

rt,T = 100 – Fadjusted (5.14)

where rt,T denotes the simple implied forward rate between t and T. Please
refer to Kirikos and Novak (1997) for a detailed discussion.

Another way to estimate the convexity adjustment is given by Hull
(1997), and is specified as follows:

(5.15)

where
ct,T = convexity adjustment for the futures rate applicable to period t to T
t0 = value date
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ft,T = DC ( 1 – 1)T – t   dft,T

ct,T = (1 – e–Z)(100 – Fquoted + 100 DC )T – t

Z = Λ + Φ

Λ = σ2(1 – e–2a(t–t0)/DC )(1 – e–a(T–t)/DC )2

2a                     a

Φ = σ2
(1 – e–a(T–t)/DC )(1 – e–a(t–t0)/DC )2

2a3

ct,T = B(t,T) DC [B(t,T)(1 – e–2a(t–t0)/DC) + 2aB(t0,t)2] σ2

T – t 4a



t = maturity date of the futures contract
T = maturity date of the underlying Libor deposit
a = mean reversion
σ = annual volatility
DC = the assumed number of days in the year as prescribed by the

market daycount convention
B(t,T) =
B(t0,t) =

When we assume that the mean reversion factor is zero, then the convexity
adjustment can be estimated by:

ct,T = ½ σ2 × t × T (5.16)

with all symbols as defined before. In this case the implied forward rate is
calculated from the futures rate as:

rt,T = rfutures – ct,T (5.17)

where rt,T is the implied forward rate and rfutures the rate derived from the
futures price. Both these rates are assumed to be continuously compounded.

In both the approaches discussed above to estimate the convexity adjust-
ment, we need estimates of the volatility and the mean reversion rate. Vari-
ous ways in which to estimate these quantities are discussed in Sections
5.3.2 and 5.3.3 respectively.

Please refer to Piterbarg and Renedo (2004) for an interesting approach
where a volatility smile is used to determine the convexity adjustment.

5.3.2 Interest rate volatility

There are several methods for estimating the volatility of the short-term
interest rate. The most basic methods that are usually employed in practice
are discussed in this section.

Some issues that have to be addressed when estimating historical 
volatility are:

� which data series to use: do we use closing prices, bid/ask prices, opening
prices, high or low prices?

� the frequency of the data points: whether to use daily, weekly or
monthly data

� the number of observations to use
� whether the assumption that we can use past observations to estimate

future volatility is correct.
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1(1 – e–a(T–t)/DC)a
1(1 – e–a(t–t0)/DC)a



The most common approach is to use the closing prices, because then we
capture the effect of a full-day move. We assume that all relevant information
that became available in the market through the course of a day is captured in
the closing price. Should close to open prices be used we measure overnight
volatility, and that is an indication of the reaction to information released
overnight. Please refer to Das (2004: 448–84) for a complete discussion.

Hull (1997) describes estimating volatility from historical data, which
basically entails calculating the standard deviation of the daily moves in the
interest rate and then scaling it to get an annualized volatility with the √t
rule where t denotes the number of business days. According to this rule we
can scale an one-day volatility by √252 to get an annual volatility. This
obviously assumes 252 business days in the year. However, we know that
theoretically this rule only applies when we have a series of data points that
is independent and from the same distribution (Diebold et al., 1997). Typi-
cally that is not the case with financial time series, but in practice this fact
is usually ignored and the rule is applied anyway.

A class of models that is very well documented is the GARCH type. An
ARMA(p,q) time series model is fitted to a return series rt so we have a
model of the following form:

where {εt} is a white noise process and φs and θs the parameters to be esti-
mated (Wei, 1990). Typically it is assumed that {εt} has a constant variance
of σ2. The GARCH(P,Q) model is an extension of this model in that it is
assumed that the variance is time-dependent and that the variance can be
modeled by a process of the following form:

(5.18)

where λs and ρs are the parameters to be estimated (Engle, 1982; Boller-
slev, 1986, 1987). ARMA models with GARCH innovations offer a parsi-
monious and flexible description of the conditional mean and variance
dynamics in a time series (Diebold and Lopez, 1995). GARCH models
capture the volatility clustering that is usually evident in a financial return
series. Volatility clustering refers to the situation where large returns in the
market tend to be followed by large returns, of either sign.

Figure 5.8 shows the return series of the yields of the South African
R150 bond. This is a government bond and the data is available daily 
from the Bond Exchange of South Africa (or from the website
www.bondex.co.za). We can clearly see the clusters of periods where the
market shows more volatility.
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rt – ∑φirt–i = εt – ∑θjεt–j

p

i=1 j=1

q

σt
2 – ∑λiσ2

t–i = ∑ρjε2
t–j

P

i=1

Q

j=1



The problem with GARCH-type models is that it is quite a process to esti-
mate the parameters and to determine which model fits the data adequately.
However, there are various software packages available that can be used to
this end, for instance MATLAB (please look at www.mathworks.com for more
information).

Diebold and Lopez (1995) discuss examples where GARCH models
perform well in an in-sample test, but do not show adequate out-of-sample
performance. Contrary to this study Anderson and Bollerslev (1997) show
that GARCH models can provide good out-of-sample performance should
the model be specified correctly.

A simplified version of (5.18) is known as the exponentially weighted-
moving average model, where the volatility is estimated from the return
series as follows (Mina and Xiao, 2001):

(5.19)

where λ is known as the decay factor. Typically when calculating a one-day
volatility we use a λ of 0.94. The volatility estimate changes every day as
new market information is taken into account, and the model allows for the
stochastic nature of volatility.

The problem with the GARCH-type models is that when there are big
moves in the short-term rate, the volatility will show a big jump. When a
convexity adjustment is calculated from this volatility, the convexity
adjustment may also show a big increase across all tenors. This increase
may not necessarily be explainable by actual market moves.

Finally it is also possible to calculate an implied volatility from option
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Figure 5.8 The daily return series of the South African R150 bond yield

σt
2 = λσ2

t –1+ (1 + λ)rt
2



prices. The problem is that the relevant options may not be readily available
in the market.

5.3.3 Mean reversion

Ron (2000) discusses a way in which historical data can be used to estimate
a mean reversion rate. He considers the Vasicek (1977) process of the
short-term rate (please refer to Chapter 3 for a more detailed discussion on
this process) which is given by :

dr = α(γ – r)dt + σdZ

where
r = the risk-free money-market rate
γ = the expected long-term level of the money-market rate
α = the mean reversion rate
σ = the volatility of the money-market rate
dZ = a normally distributed stochastic term.

He considers a discretized version of this process of the following form:

rt – rt–1 = β0 + β1rt–1 + et (5.20)

where the parameters β0 and β1 are estimated in a regression analysis. The
mean reversion factor is then assumed to be equal to –β1.

Another way to set up the regression model is to note that the convexity
formulae are based on the Hull–White model of the term structure of 
interest rates. A discrete form of this continuous model is:

rt – rt–1 = a( r
_

– rt–1) + et (5.21)

where rt is the interest rate at time t; r
_

the long-run average of the short-
term rate, and a the mean reversion rate.

According to Ron (2000), a typical range of values for the mean reversion
rate is 0.001 when there is very little mean reversion, to 0.1 which indicates
a stronger mean reversion rate. He also states that to simplify the model we
could assume a constant value for the mean reversion rate. Alternatively it is
possible to use the values published by vendors like Bloomberg.

5.3.4 Example of a futures curve

In this section we consider an example of how to derive a zero curve from
futures prices. Table 5.13 shows the futures prices that we have available
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for value date 15 January 2004. We also show the futures maturity dates as
well as the maturity date of the underlying Libor deposits. In practice we
have a problem in that there are gaps between contract maturity dates. For
example the maturity of the June futures contract does not necessarily coin-
cide with the maturity date of the underlying deposit of the March contract.
To be able to derive a yield curve, we usually make the assumption that
there are no gaps and we adjust the futures contract maturity dates to
match. For instance, in Table 5.13 the March contract has a futures matu-
rity date of 17 March and the June contract has a futures maturity date of
16 June. We now assume that the underlying Libor deposit of the March
contract also expires on 16 June so that it coincides with the June futures
maturity date.

We shall estimate the convexity adjustment with the method proposed by
Kirikos and Novak (1997) which is discussed in Section 5.3.1. We assume a
mean reversion rate of 3%, a volatility of 2% and an actual/360 daycount
convention. The calculations are summarized in Table 5.14 (overleaf).

It is important to note that the implied forward rates that we obtain by
using (5.14) are simple rates. The process from this point onwards to derive
a zero curve is similar to the approach described in Section 5.2 where a
zero curve is derived from FRAs. Table 5.15 (also overleaf) shows the
calculations to convert the forward rates to zero rates. A short-term rate is
necessary. We assume a simple rate of 1.2%, and this rate is applicable to
the period from the value date 15 January 2004 to 17 March 2004. This
assumption makes the calculations easier.
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Table 5.13 Example of futures prices

Futures maturity Maturity date of the Eurodollar futures
date t underlying Libor deposit T closing price Fquoted

17 Mar 2004 16 Jun 2004 98.84
16 Jun 2004 15 Sep 2004 98.72
15 Sep 2004 15 Dec 2004 98.465
15 Dec 2004 16 Mar 2005 98.1
16 Mar 2005 15 Jun 2005 97.71
15 Jun 2005 21 Sep 2005 97.315
21 Sep 2005 21 Dec 2005 96.97
21 Dec 2005 15 Mar 2006 96.675
15 Mar 2006 21 Jun 2006 96.46
21 Jun 2006 20 Sep 2006 96.245
20 Sep 2006 20 Dec 2006 96.05
20 Dec 2006 21 Mar 2007 95.85
21 Mar 2007 20 Jun 2007 95.71
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Table 5.14  Illustrating the estimation of the convexity adjustment with the
approach suggested by Kirikos and Novak (1997)

Futures Adjusted Implied
maturity Convexity futures forward 
date adjustment price rate
t Λ Φ Z ct,T Fadjusted rt,T

17 Mar 2004 0.000004 0.000001 0.000006 0.0023 98.8423 1.1577
16 Jun 2004 0.000011 0.000009 0.000020 0.0078 98.7278 1.2722
15 Sep 2004 0.000017 0.000023 0.000040 0.0157 98.4807 1.5193
15 Dec 2004 0.000023 0.000042 0.000065 0.0260 98.1260 1.8740
16 Mar 2005 0.000029 0.000068 0.000097 0.0386 97.7486 2.2514
15 Jun 2005 0.000040 0.000107 0.000148 0.0546 97.3696 2.6304
21 Sep 2005 0.000041 0.000140 0.000181 0.0721 97.0421 2.9579
21 Dec 2005 0.000040 0.000169 0.000209 0.0901 96.7651 3.2349
15 Mar 2006 0.000060 0.000245 0.000305 0.1131 96.5731 3.4269
21 Jun 2006 0.000058 0.000285 0.000343 0.1369 96.3819 3.6181
20 Sep 2006 0.000064 0.000343 0.000407 0.1626 96.2126 3.7874
20 Dec 2006 0.000069 0.000407 0.000476 0.1904 96.0404 3.9596
21 Mar 2007 0.000074 0.000476 0.000550 0.2200 95.9300 4.0700

Table 5.15 Converting the forward rates implied from the futures prices to
zero rates

Period
Forward between Zero
rate t and T rate 

t T rt,T (SMP) (yrs) dft,T dft0,T (SMP)

15 Jan 2004 17 Mar 2004 1.2 0.172 0.998 0.998 1.20
17 Mar 2004 16 Jun 2004 1.1577 0.253 0.997 0.995 1.18
16 Jun 2004 15 Sep 2004 1.2722 0.253 0.997 0.992 1.21
15 Sep 2004 15 Dec 2004 1.5193 0.253 0.996 0.988 1.30
15 Dec 2004 16 Mar 2005 1.8740 0.253 0.995 0.983 1.43
16 Mar 2005 15 Jun 2005 2.2514 0.253 0.994 0.978 1.58
15 Jun 2005 21 Sep 2005 2.6304 0.272 0.993 0.971 1.76
21 Sep 2005 21 Dec 2005 2.9579 0.253 0.993 0.964 1.92
21 Dec 2005 15 Mar 2006 3.2349 0.233 0.993 0.956 2.08
15 Mar 2006 21 Jun 2006 3.4269 0.272 0.991 0.948 2.24
21 Jun 2006 20 Sep 2006 3.6181 0.253 0.991 0.939 2.39
20 Sep 2006 20 Dec 2006 3.7874 0.253 0.991 0.930 2.53
20 Dec 2006 21 Mar 2007 3.9596 0.253 0.990 0.921 2.66
21 Mar 2007 20 Jun 2007 4.0700 0.253 0.990 0.912 2.79



In Table 5.15 we define dft,T as the discount factor applicable to the
period from t to T. This means that to get the discount factor for the period
from 15 January 2004 to 17 March 2004, we have:

or to calculate the discount factor for the period from 17 March 2004 to 16
June 2004, we have:

and so on. This is how we get to column 5 in Table 5.15. These discount
factors are forward discount factors. The period to which these discount
factors apply are graphically depicted in Figure 5.9.
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df15 Jan 04, 17 Mar 04 =                         1 = 0.998
1 + 1.2 × (17 Mar 04 – 15 Jan 04)

360

df17 Mar 04,16 June 04 =                         1 = 0.997
1 + 1.1577 × (16 June 04 – 17 Mar 04 )

360

Figure 5.9 The periods to which the forward discount factors in Table 5.15
apply

Value date
15 Jan 2004

17 Mar 2004 16 Jun 2004 15 Sep 2004

df15Jan04,17Mar04 df17Mar04,16Jun04 df16Jun04,15Sep04 and so on

The next step is get a discount factor in each case applicable from the
value date t0 out to T. It is clear from Figure 5.9 that we need to do a recur-
sive calculation. The discount factor for the period from the value date up
to 16 June 2004 is calculated as:

df15 Jan 04,16 June 04 = df15 Jan 04,17 Mar 04 × df17 Mar 04,16 June 04 (5.22)

The next discount factor for the period from the value date up to 15
September 2004 is calculated using (5.22) as follows:

df15 Jan 04,15 Sep 04 = df15 Jan 04,16 June 04 × df16 June 04,15 Sep 04

and so on. This is column 6 in Table 5.15. From these discount factors the
zero rates are derived as always using the relationships discussed in 
Chapter 2. The zero rates in Table 5.15 are simple rates.

Figure 5.10 shows a plot of the forward and zero rate curves derived



from the futures prices. It is interesting to see how much these two curves
differ. The resulting zero curve is however very smooth.

Figure 5.11 shows a comparison of zero curves derived from the futures
in Table 5.15 by just assuming different volatility estimates. It is interest-
ing to see that the volatility estimate has the biggest effect at the long end
of the curves. We know the convexity adjustment is an increasing function
of the tenor of the contract; if we assume higher volatility the convexity
adjustment increases at a higher rate. The biggest difference between the
zero curves is 27 bps, which is quite significant.

This example highlights one of the problems when deriving a zero curve
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Figure 5.10 The implied forward and zero rates curves derived from the
futures prices in Table 5.13

Figure 5.11 The zero rate curves derived from the futures prices in Table 5.13
assuming different volatility when deriving the convexity bias



from futures. We see how dependent the resulting zero curve is on the
volatility estimate. The volatility estimates may show big jumps from day
to day, for instance when the exponential weighted model given by (5.19)
is used. These jumps lead to jumps in the convexity adjustment, which in
turn lead to big moves in the zero curves. The changes in the zero curves
may not necessarily be explainable by moves in the market, but may purely
be an artefact of an incorrectly specified model. This is an example of
model risk, and will be discussed in more detail in Chapter 8.

5.3.5 General comments on futures curves

Futures are highly liquid exchange-traded contracts, and this makes them
attractive to use when deriving yield curves. The disadvantage is that we
need to estimate a convexity adjustment, which in turn means we need to
estimate volatility and a mean reversion factor. This increases the complex-
ity of the model, and also increases the possibility for making mistakes: in
other words increasing model risk.

What is interesting is that in practice the convexity adjustment is observ-
able, in that we can compare zero rates derived from FRAs and interest rate
swaps with rates derived from futures contracts. The differences between
these two sets of rates are the observed convexity adjustment.

Consider the example of a dealer that trades in interest rate swaps. The
official yield curve that is used to value his/her portfolio is derived from
interest rate futures. Say the estimated convexity adjustment is used to
adjust the futures and then derive futures curve. If the estimated convexity
adjustment does not correspond with the observed convexity adjustment it
may give the dealer an opportunity to arbitrage the official yield curve.

This leads to the interesting question of whether a futures curve should be
used to derive a yield curve. In order to prevent the situation sketched above,
we may wish to take the market observed convexity as our “estimated”
convexity adjustment. However, that will lead to the same zero curve as when
FRAs are used directly to derive the zero curve. Perhaps the answer lies in
which instruments are valued with the final yield curve; or perhaps the liquid-
ity of the FRAs. FRAs are assumed to be less liquid than futures, which
means that there is a further liquidity premium which can explain the differ-
ence between observed and estimated convexity adjustments. Liquidity
premiums and ways to estimate them are discussed in Chapter 8.

5 . 4 AV E R AG I N G  S WA P  C U R V E

Basis swaps between different money market or short-term indexes entail
floating-to-floating interest rate swaps. Please refer to Das (2004, 2730: 77)
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for a comprehensive discussion on the various types of basis swaps. An
example is where the investor enters a deal to swap the bank prime rate
adjusted with a margin, with the three-month Libor rate. With an averaging
swap we have predefined averaging periods where the index rate, in this
example the bank prime rate, is sourced every day. At the end of the averag-
ing period, the average prime rate is calculated and then the average rate,
adjusted with the margin, is used to determine one leg of the swap. The prob-
lem is how to value this leg of the swap, because there is no term structure of
prime rates available. In this section we consider a way in which to derive 
a term structure of average prime rates which can be used to value this type 
of deals.

5.4.1 Deriving the formulae

Consider a basis swap that pays at three-monthly intervals:
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t1 t2 t3

df1

df2

value date                      3-month                      6-month                     9-month           ...
reset date 0                   reset date 1                 reset date 2                 reset date 3       ...

We define the following variables:

Pj = the average prime rate during the period tj (these are simple annual
forward rates)

tj = the period in years between two reset dates, in other words tj
=[reset date(j) – reset date(j–1)]/365 assuming an actual/365
daycount convention

dfj = discount factor calculated off the zero curve derived from swap
rates for the period from the value date to reset date (j)

Mj = margin below the specific prime rate payable (margin below
simple annual rates).

To derive the average prime rates we use arguments similar to those used
in Chapter 2 where the bootstrap formulae are derived. The discount factors
are calculated from the zero rates for which (average prime – margin) is
swapped.

We know that average prime minus a margin is paid. To get to the average
prime forward rates, we get a set of equations and solve for the average
forward prime rate as follows:



Three-month rate:

Six-month rate:

and so on, so that in general we have that

(5.23)

It is important that Pi, i = 1,...,n denotes average forward prime rates. This
means we still need to convert these rates to average zero prime rates.

However, using this approach the current prime rate is not taken into
account. We will assume that the current prime rate P0 is the average rate
from today to the next business day. To take the current prime rate into
account, consider the following figure:
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1 = [1 + (P1 – M1)t1]df1 ∴ P1 = M1 + [1 – df1]t1df1

1 = (P1 – M2)t1df1 + [1 +(P2 – M2)t2]df2

∴ P2 = [1 – df2 – P1t1df1 + ∑M2tjdfj ]t2df2

2

j=1

Pn = [1 – dfn – ∑Pjtjdfj + ∑Mntjdfj ]tndfn

n–1

j=1 j=1

n

t1 t2 t3

df1

df2

value      T/N                        3-month                      6-month                     9-month           ...
date 

reset date 0                reset date 1                reset date 2               reset date 3        ...

t0

The variables are exactly as defined before, except for t1 which is now the
period from the first business day (after the value date) out to the first swap
date. To get to the average forward prime rates and taking the current prime
rate P0 into account, we get a set of equations as follows:

Three-month rate:

Six-month rate:

2

j=1

1 = [1 + (P0 – M1)t0 + (P1 – M1)t1]df1

∴ P1 = M1 + [1 – df1 –  (P0 – M1)t0df1]t1df1

1 = [(P0 – M2)t0 + (P1 – M2)t1]df1 + [1 + (P2 – M2)t2]df2

∴ P2 = [1 – df2 – (P0 – M2)t0df1 – P1t1df1 + ∑M2tjdfj ]t2df2



and in general we have that

(5.24)

Once we have a set of average forward prime rates we need to derive the
average zero rate curve. This is done by defining

and PZj as the zero rate compounded m times per annum with a tenor of Tj
years. The zero rates can then be extracted from the forward rates by 
solving iteratively for PZj in the following way:

and so on, so that in general the zero rates are calculated with:

(5.25)

with all symbols as defined before. Please remember that PZj denotes the
average zero prime rate, which means that this curve can now be used to
value a prime/Libor averaging basis swap.

The formulae derived in this section are illustrated in the example
discussed in Section 5.4.2.

5.4.2 Example of an average prime zero curve

Consider a country where the current bank prime rate is 14.25% SMP.
Table 5.16 shows the margins below prime at which the basis swaps are
quoted. These basis swaps have quarterly resets.

We take the term structure of the basis swap spreads into account by
interpolating a spread at each tenor we need. Also, we assume an
actual/365 daycount convention and a regular following business day rule.
The term structure for the prime rate is derived following these steps:
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n–1

Pn = [1 – dfn – (P0 – Mn)t0df1 – ∑Pjtjdfj + ∑Mnt jdf j]tndfn

n

Tj = reset date(j) – value date
365

(1 + PZ0)mT0

= (1 + P0t0)m

(1 + PZ1)mT1

= (1 + P1t1)(1 + PZ0)mT0

m m

(1 + PZ2)mT2

= (1 + P2t2)(1 + PZ1)mT1

m m

PZn = m × {[(1 + PZn–1)mTn–1

(1 + Pntn)]    –1}m

1
mTn

j=1 j=1



� Determine the tenor points for which rates have to be derived. All dates
are determined by adjusting them with the following business day rule.

� Calculate the period in years from the value date up to the date at each
tenor and denote this by Tj. For instance, in Table 5.17 T2 = (20 June
2005 – 20 December 2004)/365 = 0.5 years.

� Calculate the term in years between two adjacent tenor points, in other
words, tj = Tj – Tj –1.

� Calculate discount factors dfj off the zero curve that is assumed
appropriate to discount the swap leg. In this case the discount factors
are calculated off the swap curve derived from market quotes corre-
sponding with the other leg of this basis swap. In this example the
discount factors are assumed to be known. They are given in Table
5.17 (overleaf).

� Interpolate the margins in Table 5.16 to get a margin at every tenor. In
this example linear interpolation is applied. To extrapolate for tenors
less than one year, we just keep the one-year value constant.

� We can now calculate the average simple forward prime rates with
(5.24). For example to get P1 we have:

Remember that the values in Table 5.17 are rounded.
� We can now calculate the average prime zero rates using (5.25). In this

example quarterly compounded zero rates are calculated. For example,
PZ1 in Table 5.17 is calculated as follows:
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Table 5.16 Margins quoted for prime/money market basis swaps

Tenor Margin below prime

1  year 3.78
2  years 3.85
3  years 3.90
4  years 3.95
5  years 3.92

P1 = M 1 × [1 – df1 – (P0 – M1)t0df1]t1df1

= 3.78 + 100  × [1 – 0.977– (14.25 – 3.78)/100 × 0.003 × 0.977]0.25 × 0.977

=  13.40

PZ1 = 400 × {[(1 + 14.5)4 ×0.003(1 + 13.4 × 0.25)]        –1}400                 100

= 13.41

1
4×0.25



Figure 5.12 shows the average forward and zero prime rate curves. This is
an interesting example which shows how we can derive a curve using the
definition of the instrument that will be priced off this curve.

5 . 5 CO N C LU D I N G  R E M A R K S

The first step in deriving any curve is to decide what that curve will be used
for, because that will determine what type of instrument should be used to
derive it. When we need a curve to value interest rate swaps, we would
typically use interest rate swaps to derive it. When we need a risk-free
curve, we would use government bonds to derive the curve. Bonds issued
by the governing body are usually assumed to have no risk of default.

It is important to establish where the curve will be used: a curve used in a
valuation environment will differ from a curve in a pricing environment. In
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Table 5.17 Deriving a term structure for the bank prime rate

Value date 20 Dec 2004

Term Average Average 
from Term Margin forward zero 
value between below prime prime
date tenors prime rate rate

Dates j Tj tj dfj Mj Pj PZj

20 Dec 2004 0.0 1.000 3.78 14.25 14.50
21 Dec 2004 0 0.0 0.003 1.000 3.78 14.25 14.50
21 Mar 2005 1 0.2 0.25 0.977 3.78 13.40 13.41
20 Jun 2005 2 0.5 0.25 0.954 3.78 13.20 13.31
20 Sep 2005 3 0.8 0.25 0.936 3.78 11.55 12.72
20 Dec 2005 4 1.0 0.25 0.915 3.78 12.72 12.72
20 Mar 2006 5 1.2 0.25 0.895 3.80 12.84 12.74
20 Jun 2006 6 1.5 0.25 0.878 3.81 11.64 12.56
20 Sep 2006 7 1.8 0.25 0.860 3.83 12.25 12.51
20 Dec 2006 8 2.0 0.25 0.842 3.85 12.69 12.53
20 Mar 2007 9 2.2 0.25 0.823 3.86 13.31 12.62
20 Jun 2007 10 2.5 0.25 0.804 3.87 13.56 12.71
20 Sep 2007 11 2.8 0.25 0.784 3.89 13.79 12.81
20 Dec 2007 12 3.0 0.25 0.766 3.90 13.90 12.90
20 Mar 2008 13 3.2 0.25 0.747 3.91 13.98 12.99
20 Jun 2008 14 3.5 0.25 0.729 3.93 14.13 13.07
22 Sep 2008 15 3.8 0.26 0.710 3.94 14.34 13.15
22 Dec 2008 16 4.0 0.25 0.692 3.95 14.66 13.25
20 Mar 2009 17 4.2 0.24 0.674 3.94 14.56 13.32
22 Jun 2009 18 4.5 0.26 0.656 3.93 14.66 13.40
21 Sep 2009 19 4.8 0.25 0.639 3.93 14.76 13.47
21 Dec 2009 20 5.0 0.25 0.622 3.92 14.71 13.53



a valuation environment we need an objective curve that accurately repre-
sents the current market interest rates. The curve will usually be a perfect-fit
curve, which means that market instruments are priced accurately from this
curve.

The next important decision is which quoted rate to use, in other words bid
or offer rates. When we need a curve for valuation purposes, we would
usually derive the curve with mid rates. The mid rates are the average of the
market bid and offer rates. A dealer that needs a curve to determine where to
quote prices in the market will rather use the bid prices when deriving the
curve. Alternatively the mid prices can be used, but then the final curve will
have to be adjusted with a spread to get the correct bid prices.

The type of instrument dictates the way we decompose the instrument
into its underlying cash flows, and thus which type of approach to follow
when deriving a yield curve from it. There are various intricacies that have
to be allowed for, which can complicate a model significantly. A good
example is when we derive a futures curve and we need to estimate a
convexity adjustment. There is a lot of uncertainty in the model, because
not only is there uncertainty in the way the convexity adjustment formulae
are derived, but the formulae usually also require further assumptions
regarding interest rate volatility and mean reversion.

The choice of the yield curve model is very important. We have to
choose a yield curve model that converges to a fixed level at the longer
maturities, because that ensures that long-term rate estimates behave
adequately. Say we have a set of bonds and the longest-term bond has a
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Figure 5.12 A comparison of the average forward and zero prime rate curves
that are derived in Table 5.17



term to maturity of 20 years. When we fit a yield curve to the bonds and
the yield curve is upward-sloping after the 20-year point, we will find that
long-term rates calculated from the function will be extremely high. Simi-
larly when the yield curve function is downward-sloping at the long end
after the 20-year point, the long-term rates calculated from the function
will converge to zero and may even go negative, which is also undesirable.
In truth we do not know what the actual rates are after the 20-year point, so
a better idea is to just choose a function that converges to the level of the
rate at the 20-year point. This will ensure that we keep the longest-term rate
(that is known in the market) constant and do not make any additional
assumptions regarding the very long-term rates. Please refer to Chapter 4
for a discussion on the extrapolation techniques.

Finally a curve also has to be derived from instruments with similar
liquidity and credit quality, otherwise there will be distortions in the curve
and it will not adequately reflect market rates.

In deriving any type of yield curve, there are a lot of decisions that have
to be made. Even the simplest decision, for instance which interpolation
technique to use, can have an adverse effect on the final yield curve. Incor-
rect decisions or over-complicating yield curve models lead to model risk.
Model risk is discussed in detail in Chapter 8.
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In this chapter the relationships between nominal interest rates, real inter-
est rates, and inflation rates are shown. Various ways in which to derive
real yield curves are discussed.

We begin this chapter by considering the various types of inflation-
linked securities, in Section 6.1. It is important to understand the security
to be able to derive a real yield curve from it. In Section 6.2 we discuss
various ways in which to derive an inflation term structure, and how to use
the inflation term structure to derive real rates where there are no inflation-
linked securities available in the market. Finally in Section 6.3 we show an
example where a real yield curve is derived from an inflation-linked 
security by allowing for indexation lags.

6 . 1 I N F L AT I O N - L I N K E D  S E C U R I T I E S

Inflation-indexed securities are designed to protect investors against the
effect of inflation. There are various inflation-linked securities available in
the market. In this section we briefly describe how the cash flows of the most
basic inflation-indexed securities are determined. When we know how to
determine the cash flows of a security and there are market quotes available
for the security in the market, then we can derive a yield curve from it.

The information in this section was obtained from Deacon, Derry, and
Mirfendereski (2004).

6.1.1 Capital-indexed bonds

A capital-indexed bond (CIB) has a fixed real coupon rate, but the redemp-
tion value varies with inflation. The cash flows of this bond are determined
as follows:
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(6.1)

where
Cj = cash flow at time j, j = 1,...,n
r = fixed real coupon rate
I0 = index value on the issue date of the bond
Ij = index value at time j
n = time of the final cash flow of the bond.

A typical problem with these securities is that we need estimates of the
future index values. This will be addressed in a later section. To illustrate
how the cash flows for the CIB are determined, consider a ten-year CIB
that pays an annual real coupon of 3 percent with assumed index values as
shown in Table 6.1.
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r ×
Ij , j < n

Cj = I0{100 × Ij + r × Ij , j = n
I0               I0

Table 6.1 Cash flows of a ten-year CIB that pays an annual real coupon 
of 3 percent

Fixed Index Final 
Cash real value Coupon Redemption cash
flow no. coupon It It /I0 portion portion flow

0 103
1 3 110 1.07 3.20 3.20
2 3 115 1.12 3.35 3.35
3 3 116 1.13 3.38 3.38
4 3 118 1.15 3.44 3.44
5 3 127 1.23 3.70 3.70
6 3 135 1.31 3.93 3.93
7 3 136 1.32 3.96 3.96
8 3 140 1.36 4.08 4.08
9 3 142 1.38 4.14 4.14
10 3 144 1.40 4.19 139.81 144.00

6.1.2 Interest-indexed bonds

An interest-indexed bond (IIB) pays a fixed real coupon plus an indexation
of the fixed redemption value on each cash flow date. The redemption
value at maturity, however, is not adjusted. The cash flows for these bonds
are calculated as:



(6.2)

where all symbols are as defined before. Table 6.2 illustrates the cash flows
of a ten-year IIB that pays an annual coupon of 3 percent. It is interesting
to see how the cash flow of this bond differ from the CIB that is shown in
Table 6.1.
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100 × (   Ij – 1 ) + r , j < nIj–1Cj = {100 × Ij + r , j = n
Ij–1

Table 6.2 Cash flows of a ten-year IIB that pays an annual real coupon 
of 3 percent

Fixed Index Final
Cash real value Coupon Redemption cash
flow no. coupon It It It–1 portion portion flow

0 103
1 3 110 1.07 3.00 6.80 9.80
2 3 115 1.05 3.00 4.55 7.55
3 3 116 1.01 3.00 0.87 3.87
4 3 118 1.02 3.00 1.72 4.72
5 3 127 1.08 3.00 7.63 10.63
6 3 135 1.06 3.00 6.30 9.30
7 3 136 1.01 3.00 0.74 3.74
8 3 140 1.03 3.00 2.94 5.94
9 3 142 1.01 3.00 1.43 4.43
10 3 144 1.01 3.00 101.41 104.41  

6.1.3 Current pay bonds

A current pay bond (CPB) pays an inflation-adjusted coupon as well as an
indexation of the fixed redemption value. The redemption value at maturity
is not adjusted for inflation. The cash flows of this bond are determined as
follows:

(6.3)

where all the symbols are as defined before. Table 6.3 illustrates the cash
flows of a ten-year CPB with an annual real coupon of 3 percent.

100 × (   Ij – 1 ) + r × ( Ij ) , j < nIj–1 Ij–1Cj = {100 × Ij + r × Ij , j = n
Ij–1 Ij–1



6.1.4 Indexed annuity bond

Index annuity bonds (IAB) has a fixed base annuity payment and a variable
payment to compensate the investor for inflation. The cash flows of this
instrument are determined as follows:

(6.4)

where B denotes the base payment. The base payment is determined as
follows:

(6.5)

where r is the annual real interest rate for a period of n years and R is the
redemption value of the bond. Table 6.4 shows an example of a ten-year
AIB with the base payment calculated based on a real rate of 3 percent.

6.1.5 Indexed zero-coupon bonds

Indexed zero-coupon bonds (IZCB) pays a single inflation-adjusted
amount on the redemption date. This cash flow is determined as follows:

(6.6)

with all symbols as defined before.

YIELD CURVE MODELING118

Table 6.3 Cash flows of a ten-year CPB that pays an annual real coupon 
of 3 percent

Fixed Index Final
Cash real value Coupon Redemption cash
flow no. coupon It It It–1 portion portion flow

0 103
1 3 110 1.07 3.20 6.80 10.00
2 3 115 1.05 3.14 4.55 7.68
3 3 116 1.01 3.03 0.87 3.90
4 3 118 1.02 3.05 1.72 4.78
5 3 127 1.08 3.23 7.63 10.86
6 3 135 1.06 3.19 6.30 9.49
7 3 136 1.01 3.02 0.74 3.76
8 3 140 1.03 3.09 2.94 6.03
9 3 142 1.01 3.04 1.43 4.47
10 3 144 1.01 3.04 101.41 104.45

Cj = B × Ij , for all j = 1,...,n
I0

B  = R/(1 – (1 + r)–n)r

Cn = 100 × In
I0



6 . 2 F O R E C A S T I N G  I N D E X  VA LU E S

There are various possible indices to which a bond can be linked. In this
chapter the focus is on the consumer price index (CPI) which is the most
widely used index.

From the discussion in Section 6.1 it is clear that when deriving a yield
curve, and pricing inflation-linked securities for that matter, part of the
process is to estimate future values of the inflation index. In this process
some issues about index values that have to be taken into account are:

� The index definition may change over time. This means that should we
wish to fit a time series model to the historical index series to predict
future index values, our time series model has to incorporate these
changes.

� When an index is determined, not all the components are necessarily
sampled and included in the calculations each time. For instance, to
calculate the CPI index the housing sub-index may not be included
every time it is published because the calculation would be too 
onerous.

� The index value will show a seasonality effect that has to be taken into
account.

� The index value may not be published regularly and so most markets
use a lagged index value in the calculation of the inflation-indexed
securities.

There are various ways in which to estimate future index values. These
approaches are discussed in Sections 6.2.1 to 6.2.6.
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Table 6.4 Cash flows of a ten-year AIB based on an annual real rate of 3 percent

Cash flow no. Base payment Index value It /I0 Final cash flow

0 103
1 11.7 110 1.07 12.52
2 11.7 115 1.12 13.09
3 11.7 116 1.13 13.20
4 11.7 118 1.15 13.43
5 11.7 127 1.23 14.45
6 11.7 135 1.31 15.37
7 11.7 136 1.32 15.48
8 11.7 140 1.36 15.93
9 11.7 142 1.38 16.16
10 11.7 144 1.40 16.39



6.2.1 A time series approach

One idea is to fit a time series model to the historical index series. The
problem is that various factors have to be taken into account (as discussed
above), and that could complicate the model significantly. The analyst may
also wish to take other variables into account when estimating future infla-
tion rates, for instance the exchange rate. Please refer to Schwert (1986)
and Barr and Campbell (1996) for some examples of inflation time series
models.

6.2.2 Breakeven inflation rates

Another interesting approach is to use the concept of breakeven inflation
rates. Deacon et al. (2004) show that we can take a set of nominal and
inflation-linked bonds with the same maturities, and then define the
expected inflation yield as the difference between the nominal bond yield
to maturity and the real yield on the index-linked bond. In other terms:

π = i – r (6.7)

where π is the expected inflation rate, i the nominal yield to maturity, and
r the real yield.

With (6.7) we obtain a rough estimate of the average expected inflation
value over the specific period. In other words, when we have a nominal and
real yield with maturity of three years, then the expected inflation rate
denotes the average inflation rate over this whole three-year period. The
inflation number should not be interpreted as the expected inflation in three
years’ time. To get a term structure of annual inflation rates we use an inter-
polation function to find an average inflation rate at each tenor, then use a
bootstrap procedure to calculate yearly inflation rates (as discussed in
Chapter 2).

6.2.3 The interest rate parity approach

Jarrow and Yildirim (2003) suggest using the interest rate parity equation
(discussed in Chapter 2), which links the forward exchange rate to the spot
exchange rate:

(6.8)

where
Xf = forward exchange rate
Xs = spot exchange rate

YIELD CURVE MODELING120

Xf = Xs × (1 + id )t

1 + if



id = annually compounded domestic interest rate
if = annually compounded foreign interest rate 
t = time to maturity in years (assuming similar daycount conventions for

the domestic and foreign interest rates).

Jarrow and Yildirim suggest that real yields correspond to foreign rates; the
nominal yields correspond to the domestic rates; and the inflation rate
corresponds to the spot exchange rate. This means we can rewrite (6.8) as:

(6.9)

where
CPIt = forecasted CPI value
CPI0 = current CPI value
i = annually compounded nominal interest rate for a period of t years
r = annually compounded real interest rate for a period of t years
t = time to maturity in years (assuming similar daycount conventions

for the nominal and real interest rates).

Depending on the market we are working with, we do not necessarily have
real yields available at all maturities. Some markets have only a few 
inflation-indexed bonds available that can be used in an analysis like this.

Consider for example the South African market, which has only four
government-issued inflation-linked bonds available. These bonds are
quoted in terms of their yields, and the closing prices are published daily
by the Bond Exchange of South Africa (refer to www.bondex.co.za). For this
market we can use the yields of the four inflation-linked bonds, together
with the yields of similar maturity nominal bonds in (6.9), to infer future
CPI values. We will have five points on a curve: the CPI value today plus
the four inferred CPI values. A suitable function can then be fitted to these
CPI values to form a whole term structure of future index values.

6.2.4 Fisher identity

Consider a market where there are no short-term inflation-linked instru-
ments available that can be used to derive a curve. An interesting idea is to
use the Fisher identity, which provides a relationship between nominal and
real interest rates as follows (Deacon et al., 2004):

(1 + i) = (1 + r)(1 + π)(1 + κ) (6.10)

where
i = nominal annual interest rate
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CPIt = CPI0 × (1 + i )t

1 + r



r = real annual interest rate
κ = risk premium 
π = expected inflation rate.

The risk premium reflects the uncertainty of future inflation. Section 6.3.1
shows an example where the Fisher identity is applied. The main drawback
of using (6.10) is that further assumptions regarding the risk premium have
to be made. The practitioner has to decide whether a term structure of risk
premiums is appropriate, or whether a constant value can be used.

Similar to the breakeven inflation rate, the inflation rate derived from
this approach is interpreted as the average inflation rate over the period.

Deacon and Derry (1994b) discuss an interesting application of (6.10).
Consider an index-linked bond that is priced as follows:

(6.11)

where
P = price of the index-linked bond
C = annual real coupon
R = redemption payment
π0 = known inflation rate
πa = assumed average future inflation rate over the life of the bond 
r = real yield to maturity.

Deacon and Derry derive a term structure of inflation rates with the 
following steps:

� Assume a risk premium of zero in (6.10) and fix the average inflation
rate πa in (6.11) at 3 percent (this can be any fixed percentage).

� Derive a nominal par curve with the regression techniques discussed in
Chapter 3 using a set of coupon-paying bonds. Convert the par rates to
zero and forward interest rates.

� Determine the real yields from the market prices of the index-linked
bonds.

� Fit a real par yield curve to these real yields by applying one of the
regression models discussed in Chapter 3. From the real par yield curve
a real zero and forward rate curve is derived.

� By using the derived nominal and real forward interest rates for similar
periods in (6.10), it is possible to derive an initial forward inflation rate
curve. The forward inflation rate between time j–1 and j is denoted by πj.

� The forward inflation curve is then converted into an average inflation
curve by solving for πa

t in the following relationship:
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P =  ∑    C (1 + π0)       +     R(1 + π0)
(1 + r)i(1 + π a)   (1 + r)n(1 + πa)

n

i=1



where π a
t is the average inflation rate for the period t years.

� Inflation rates are interpolated for each of the index-linked gilts from
the average inflation rate curve, and then substituted into (6.11).

� The real yields on the index-linked bonds are now re-estimated and
again a par real curve is fitted to these yields.

� Following the same steps, an inflation term structure is produced.
� These steps are repeated until there is convergence between the infla-

tion rates produced by (6.10) and the real yields derived from the prices
of the bonds given by (6.11).

6.2.5 Survey methods

It is possible to use published forecasts. Typically a data vendor may ask
economists from various financial institutions to predict index values. The
median of the various forecasts can then be used when valuing the instru-
ment. The problem with this approach is that survey respondents have no
incentive to answer accurately. However if the results are published stating
the organization that made the specific forecast, the answers should be
more appropriate.

A drawback of this approach is that it will usually reflect short-term
expectations of inflation. Because of the time it may take to compile the
surveys, these may not reflect current inflationary expectations. Please
refer to Deacon and Derry (1994b) for a more detailed discussion.

6.2.6 Constant extrapolation

The simplest approach is to just keep the current inflation rate constant.
That way no assumptions regarding future inflation need to be made.

6.2.7 General comments on the various approaches

In Sections 6.2.2, 6.2.3, and 6.2.4 we mentioned matching the maturities of
nominal and inflation-linked bonds to infer an inflation rate. The problem
with this approach is that we do not take into account the different coupon
structures of the bonds. Two bonds with the same term to maturity may pay
different coupon rates, so that their yields to maturity will be different. To
take this coupon effect into account, we can rather match the bonds by
duration. However, the problem with duration is that it is difficult to inter-
pret the period to which the implied inflation rate applies (Deacon and
Derry, 1994b).
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Another important issue to take note of is the type of nominal bond used
in the calculations. Bonds with special features, for instance callable bonds,
will have different characteristics from regular nominal bonds, which result
in differences in their yields. The yield differences may distort the implied
inflation rate.

6 . 3 T E R M  S T R U C T U R E  O F  R E A L  R AT E S

In a perfect market the derivation of a real interest zero rate curve is not
significantly different from the construction of a nominal interest zero rate
curve. In this perfect market we have reasonably liquid inflation-indexed
securities with a sufficient range of differing maturities. In practice,
however, this is not yet the case, and this restricts the approaches that can
be followed to derive a real interest rate curve.

In Section 6.3.1 we look at an example of how to derive the short end of
the real curve when there are no liquid short-term inflation-linked instru-
ments available in the market. To derive the long end of the curve we
assume there are at least some index-linked bonds available, and in Section
6.3.2 we see how to derive a curve from the index-linked bonds by taking
indexation lags into account.

6.3.1 The short end of the curve

Say there are no liquid short-term inflation-linked instruments in the
market. We only have a nominal zero curve available, as well as a term
structure of inflation rates which was derived using one of the approaches
discussed in Section 6.2. We are going to use the Fisher identity discussed
in Section 6.2.4 to derive the real rates.

Depending on the approach used to estimate the inflation term structure
(for instance using (6.7) or (6.9)), it is possible that the resulting inflation
term structure already incorporates the risk premium as defined in (6.10).
With this argument it is then appropriate to use a risk premium of zero.
However, Deacon et al. (2004) allude to the fact that the inflation rate risk
premium and bond convexity will bias the inflation term structure in oppo-
site directions, to the extent that they may partially offset each other. This
means that we need to incorporate a risk premium. One method of doing
this is to use historical risk premium estimates and just keep the risk
premium fixed in the model. These premiums can then be updated as new
research becomes available. The problem is that this adds another level of
uncertainty to the model.

Table 6.5 shows a term structure of nominal rates that are compounded
semi-annually, and inflation rates compounded annually. When assuming a
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flat risk premium term structure of zero, then (6.10) has to be adjusted as
follows to derive the semi-annually compounded real rates:

(6.12)

where all symbols are as defined before. Solving for the real rate then
gives:

which is the formula that is used to derive the real rate given in Table 6.5.
In this example an actual/365 daycount convention is used and no

business day rule is applied.
Implicit in this example is the fact that the nominal rates are zero rates

with the required credit quality. In other words, say we need a risk-free real
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Table 6.5 Deriving a real curve from nominal rates and an inflation term 
structure

Value date: 05 April 2004

Term Nominal rate Inflation rate Real rate
Date (yrs) (NACS) (NACA) (NACS)

05 Apr 2004 0.00 7.84 6.47 1.42
06 Apr 2004 0.00 7.84 6.47 1.42
01 May 2004 0.07 7.92 7.00 1.01
01 Jun 2004 0.16 8.03 7.80 0.36
01 July 2004 0.24 8.13 9.80 –1.37
01 Aug 2004 0.32 8.16 9.40 –0.98
01 Sep 2004 0.41 8.18 7.23 1.04
01 Oct 2004 0.49 8.20 6.47 1.77
01 Nov 2004 0.58 8.24 6.46 1.82
01 Dec 2004 0.66 8.28 6.92 1.42
01 Jan 2005 0.74 8.32 6.67 1.70
01 Feb 2005 0.83 8.37 6.01 2.38
01 Mar 2005 0.90 8.41 5.44 2.96
01 Apr 2005 0.99 8.46 5.28 3.16
01 July 2005 1.24 8.62 6.62 2.04
01 Oct 2005 1.49 8.79 5.99 2.80
01 Jan 2006 1.74 8.96 6.11 2.85
01 Apr 2006 1.99 9.13 5.39 3.71

(1 + i )2

(1 + r )2

= 2
2 (1 + π)

(1 + i )2

r = 2 × [( 2 ) – 1](1 + π)

1
2



rate curve: then we use risk-free nominal rates. Credit and liquidity 
premiums are discussed in detail in Chapter 7.

It is interesting to see that some of the implied real rates are negative
because of the high inflation rates relative to the given nominal rates. Figure
6.1 shows a comparison of the nominal, inflation, and real rate term struc-
tures. The nominal rate curve is quite flat, so the main volatility in the real
rate curve can be explained by the volatile nature of the inflation rate curve.

An analyst may prefer to have a smoother real zero curve, because then
the forward rates derived from the zero curve will also be smoother. To get
a smoother real curve, we can smooth either the inflation rate curve or the
real rate curve directly. In this example we smooth the real curve. A plot of
a smoothed real curve is shown in Figure 6.2.

To derive the smoothed curve in Figure 6.2 we took the actual overnight,
one-month, and then the six-monthly real rates out to two years. The values
between these tenor points are interpolated using the cubic splines
approach. The resulting curve is much smoother, but the problem is that
depending on the initial tenors chosen, we can get a completely different
real curve.

Another way to smooth the real curve is to fit a function through all the
real rates simultaneously to get a best-fit curve. However, in the end it may
be too subjective to actually smooth the real curve. Remember that if the
curve is used for valuation purposes, we need to have an objective curve
(please refer to the discussion in Chapter 1).
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Figure 6.1 A comparison of the real rate curve with the nominal and inflation
rate curves from which it is derived



There is a lot of uncertainty in this model:

� We make assumptions when deriving a nominal curve (please refer to
the discussion in Chapter 5).

� We have to make assumptions in order to derive an inflation term
structure.

� We assume a flat risk premium term structure.
� We assume that the Fisher identity given by (6.10) actually holds, and

that it is appropriate to derive real interest rates from this identity.

When working in a market where there are not enough instruments avail-
able, the assumptions are necessary to get at least some idea of the level
and shape of the term structure of real rates.

6.3.2 The long end of the curve

To derive a real yield curve for longer maturities we use inflation-indexed
securities. Consider the price of a nominal bond paying a regular annual
nominal coupon:

(6.13)

where
PN= the all-in price of the nominal bond
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Figure 6.2 The actual real curve compared with a smoothed version

PN = ∑   CN +   RN
(1 + ytj)tj (1 + ytn)tn

n

j=1



n = number of outstanding cash flows of the bond
ytj = nominal annual zero rate for a period tj
tj = the term in years from the settlement date until cash flow j
CN = nominal annual coupon of the bond 
RN = the nominal redemption payment at the maturity of the bond.

The price of a CIB paying real annual coupons can be written similarly:

(6.14)

where
PR = the all-in price of the real bond
n = number of outstanding cash flows of the bond
rtj = real annual zero rate that apply to a period tj
tj = the term in years from the settlement date until cash flow j
Itj = CPI value at time tj
πti = inflation rate between time ti–1 and ti
CN = real annual coupon of the bond 
RN = the real redemption payment at the maturity of the bond.

In (6.14) it is assumed that there is no indexation lag. In practice there
usually is a lag in the publication of the index value. This lag is due to the
time it takes to sample the data and calculate indices like the CPI. This lag
will differ between markets. Deacon et al. (2004) discuss how various
countries deal with this issue. The interested reader can also refer to Evans
(1998) and Anderson and Sleath (2001) for a discussion on UK index-
linked securities.

In this section we consider an example of a market where there are three
inflation-linked securities available and that in this market (6.14) is
adjusted as follows:

(6.15)

where It is the most recently published CPI value and I0 is the index value
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PR = ∑
CR ×         

+
RR ×

(1 + rtj)tj × (1 + rtn)tn ×

= ∑
CR∏(1 +πti)

+
RR∏(1 +πti)

(1 + rtj)tj ∏(1 +πti) (1 + rtn)tn ∏(1 +πti)

= ∑
CR + RR
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fixed on the issue date of the bond; all other symbols as defined before.
Table 6.6 shows the information of these bonds. The bonds pay semi-
annual coupons. We assume that the bonds are traded in terms of yields
(and not prices); the yields are semi-annually compounded. The value date
is assumed to be 20 December 2004.
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Table 6.6 Information on CIBs

Name Maturity Reference index Yield Coupon rate

CP01 15 Mar 2010 118 3.2 3.0
CP02 15 Feb 2012 115 4.4 4.0
CP03 15 Oct 2014 116 4.7 4.2

To derive a yield curve from these bonds, we note that we only have
long-term bonds. This means the first issue to be addressed is how to find
a short-term security which can anchor the yield curve at the short end.
The discussion in the previous section showed that there can be a lot of
volatility when real rates are inferred using the Fisher identity, so to
prevent this, we only use the information available in the market. We
only know the current inflation rate, so using this rate and the correspon-
ding short-term nominal rate, we infer a short-term real rate with (6.10)
by assuming a risk premium of zero. This rate is 2.2% and is
compounded semi-annually.

Table 6.7 (overleaf) shows the cash flows of the CIB CP01; the most
recent published CPI value is 121.6. An actual/365 daycount convention
is used and no business day rule is applied. Also, the settlement date of
the bond is assumed to correspond with the value date. The cash flows of
the bond are determined exactly as described by (6.15). We determine the
current market prices of the bonds by using the quoted yields given in
Table 6.6.

The next step is to choose a functional form for the discount function
(similarly to the method described in Chapter 5 when deriving a yield curve
from nominal bonds). The fitted function in this example is assumed to be
a function of n+1 parameters given by β0,...,βn and a function of the term
of the specific cash flow, namely ti, i = 1,..., m where m denotes the number
of cash flows and the function is denoted by f(β0,..., βn|ti).

By multiplying each of the cash flows now with the fitted discount
factors and adding them all, we have the fitted price of the inflation-
linked bonds. This process is repeated for each of the bonds in Table 6.6.
To estimate the parameters of the chosen function f(β0,..., βn|ti), we use an
optimization routine to minimize the weighted-squared differences



between the actual and fitted prices. Please refer to Chapter 5 for a
detailed discussion on how this process is set up.

Figure 6.3 shows the real curve derived from the inflation-indexed
bonds in Table 6.6 using a cubic spline function. The curve is very
smooth, even at the short end where we have no instruments available
and had to make assumptions to derive a short-term rate that can anchor
the curve. The problem is that we have no instruments up to the six-year
point, which means that the area on the curve between the implied
overnight rate and the six-year point is purely derived from the fitted
function. Depending on the function, the curve may show very different
shapes. At least we know that we can price inflation-linked securities
accurately from this derived real curve.

Because of the indexation lag, this real rate is only an approximation
of the actual real rate in the market (Evans, 1998).

This is a very simplified example. Consider the case where indexa-
tion takes place as is given by (6.11); then we will have to estimate an
average inflation interest rate, which leads to some extra complexity. It
is important to model the inflation-linked security as specified by the
governing body of the specific country.
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Table 6.7 Cash flows of CIB CP01 given in Table 6.6

Bond: CP01
Current index value (It): 121.6

Reference index (I0): 118

Cash Fixed DF Cash Cash
flow real Cash from flow Fitted flow ×
date coupon It /I0 flow YTM × DF DF fitted DF

15 Mar 2005 1.5 1.03 1.55 0.99 1.53 f(β0,…, βn|t1) f(.|t1) x 1.55
15 Sep 2005 1.5 1.03 1.55 0.98 1.51
15 Mar 2006 1.5 1.03 1.55 0.96 1.49 : :
15 Sep 2006 1.5 1.03 1.55 0.95 1.46
15 Mar 2007 1.5 1.03 1.55 0.93 1.44
15 Sep 2007 1.5 1.03 1.55 0.92 1.42
15 Mar 2008 1.5 1.03 1.55 0.90 1.40
15 Sep 2008 1.5 1.03 1.55 0.89 1.38
15 Mar 2009 1.5 1.03 1.55 0.88 1.35
15 Sep 2009 1.5 1.03 1.55 0.86 1.33
15 Mar 2010 1.5 1.03 104.60 0.85 88.81 f(β0,…,βn|t11) f(.|t11) x 104.60

Actual value: 103.12
Add all the

values to get
fitted price



6 . 4 CO N C LU D I N G  R E M A R K S

The instruments discussed in Section 6.1 give a broad overview of how
indexation is applied to value the different types of index-linked instruments.
However, the indexation usually also differs across countries, so when
putting together a yield curve model, the analyst has to ensure that the instru-
ments are modeled as prescribed by the specific country’s governing body
(Das, 2004; Deacon et al., 2004).

In Section 6.2 various techniques to forecast index values, specifically the
CPI and thus the inflation rate, are discussed. It is important to forecast these
values so we are able to price the index-linked instruments. The forecast
inflation rates can also be used to derive a term structure of real rates when
no actual short-term inflation-linked instruments are available in the market.

To illustrate a possible problem with implying the real rates from infla-
tion forecasts: consider the case where we imply a real curve out to two
years with the Fisher identity. Assume the shortest-dated inflation-linked
instrument that we have available has a term to maturity of three years.
This means that in the process of deriving the real yield curve, we price the
three-year inflation-linked instrument with the implied real rates out to two
years, and real rates from the interpolating function between the two and
three-year period. The problem is that as time progresses, the optimization
routine used to derive the yield curve will have difficulty pricing this
instrument accurately, because a bigger part of the value of the bond will
be determined by the fixed implied real rates and only a very small portion
will depend on the interpolating function. In a case like this the 
analyst should infer a shorter part of the real curve, and rather let the 
interpolating function fill in the gaps.
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Figure 6.3 Real rate curve derived from the inflation-linked bonds in Table 6.6



In Section 6.3.2 we show that to derive a real curve from inflation-linked
securities is similar to the approach followed to derive a yield curve from
nominal bonds. The problem, however, is that there are usually only a
limited number of available instruments, and gaps in the term structure
require additional assumptions which are difficult to validate. The liquidity
in the underlying market may also be limited, which means that it may be
necessary to allow for liquidity spreads in the model. Liquidity spreads are
discussed in detail in Chapter 7.
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It is important to financial institutions to understand the different sources
of risk inherent in any transaction and to be able to quantify it. Traders need
to understand the dynamics of credit, liquidity, and country premiums,
otherwise they will not be able to put successful hedges in place.

In this chapter we explore the factors that drive credit, liquidity, and
country risk premiums, and consider various ways in which to measure
these premiums.

7 . 1 C R E D I T  S P R E A D S

7.1.1 Overview

Government bonds are usually considered to be risk-free. Any non-
government bond is expected to have some risk attached to it, and typically
pays higher yields. The higher yields compensate investors for taking on
additional default and liquidity risks. Consider two bonds that are identical,
except one is a risky bond and the other a risk-free government bond. The
difference between the yields of these two bonds is a spread that consists 
of two components, one attributable to credit risk and the other to liquidity 
risk. The difficulty comes in estimating these two components separately.

Amato and Remolona (2003) show that spreads on corporate bonds are
much wider than would be needed to meet the expected default losses.
They argue that this is because in practice investors cannot diversify all
unexpected losses, which means that the credit spread also has to allow for
undiversifiable risk.

There are various factors that affect the credit spread. The credit rating of
the bond plays a role, because this is an indication of the credit quality of the
bond. The better the credit rating, the lower we would expect the credit
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spread to be (Amato and Remolona, 2003). The credit spread of the instru-
ment may also be affected by the instrument tenor. We can argue that longer-
term instruments have higher credit spreads, because there is more
uncertainty about the future. However Annaert and Ceuster (1999) argue
that the credit spread term structure is not necessarily upward sloping; vari-
ous curve shapes are possible. Another important factor to remember is that
the credit spreads differ between different types of instruments. The spread
above a coupon bond will not necessarily be the same as above a zero coupon
bond, because the credit spread term structure is not necessarily flat.

There are various reasons that practitioners are interested in estimating
these spreads. For instance, financial institutions may set the credit spread
on a loan high enough to ensure the target return is achieved on the
economic capital that is set aside for the transactions. Another example is
that a trader of corporate bonds may hedge with derivatives based on
government bonds. It is obviously important the trader understands the
dynamics of the credit spread with respect to the interest rate term structure
for the hedge to be successful. Please refer to Annaert and Ceuster (1999)
for a complete discussion.

Say we wish to derive a risk-free curve, but there are not enough liquid
risk-free instruments in the market to derive it. Then it is possible to take
a risky instrument, adjust it with a credit spread, and use the adjusted
instrument when deriving the risk-free curve.

7.1.2 Estimating a credit spread for a single instrument

In this section we will focus on estimating credit spreads, so in this
discussion we assume that all instruments have the same liquidity.

Consider the bonds shown in Table 7.1. The bond code RF indicates a
risk-free bond, and CB indicates a corporate bond. The two corporate
bonds have the same issuer and the same credit rating. All bonds have
coupons that are paid semi-annually, and they are settled on a t + 3 basis.
The bonds are assumed to go ex-coupon one month before each coupon.
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Table 7.1 Bond information

Bond code Maturity Coupon rate Yield to maturity

RF001 28 Feb 2008 10.00 8.710
CB002 1 Jun 2008 11.00 9.180
RF002 31 Aug 2010 13.00 9.100
RF003 15 Sep 2015 13.50 9.645
CB001 1 Aug 2020 13.50 9.855
RF004 21 Dec 2026 10.50 9.000



The value date is 21 December 2004. The overnight rate used is 7.278%
compounded semi-annually.

We would like to derive a risk-free curve from the bonds in Table 7.1.
The problem is that we only have four bonds available, and the gap in the
terms to maturity between RF003 and RF004 is quite big, so the idea is to
add the corporate bond CB001 to the process. We will now consider the
various approaches to estimate a credit spread for this corporate bond.

Estimating a credit spread: approach 1

We are interested in estimating a credit spread for the corporate bond
CB001. Say we have an identical risk-free bond available, then we can 
estimate the credit spread as the difference between the bond yields to
maturity. In other words:

cs = ycb – yrf (7.1)

where
cs = credit spread above the risk-free rate
yrf = yield to maturity of the risk-free bond 
ycb = yield to maturity of the corporate bond.

It is important to note that the credit spread derived from (7.1) is a spread
above a yield to maturity (or par rate). The credit spread can be interpreted
as the average spread over the specific tenor (which is equal to the bond’s
term to maturity). When we are interested in adjusting a risky zero rate with
a credit spread, we will obviously have to adjust the credit spread to be a
spread above zero rates.

In practice (and in this example), corporate bonds will rarely have a risk-
free bond available in the market that exactly matches their cash flow struc-
tures. We have to make additional assumptions should we wish to follow
this approach. In this example two assumptions are necessary:

� We assume a flat credit spread term structure, in other words the credit
spread for all the corporate bonds (with the same issuer) is the same
across all tenors.

� The second corporate bond that is not part of the process to derive this
curve, CB002, has a maturity that is very close to the risk-free bond
RF001. Ignoring the differences in coupon rates, we can calculate the
differences between these two bonds’ yields to maturity using (7.1). In
this case the credit spread will then be 9.18 – 8.71 = 47 bps.

Because we are assuming a flat credit spread term structure, we can now
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argue that the credit spread estimated from CB002 can be used to adjust the
yield of CB001. Once the yield to maturity of CB001 has been adjusted, we
can continue to derive the yield curve from the (now) five risk-free bonds.

However, the assumptions made are quite bold. We know that a yield to
maturity is the internal rate of return for a bond if it is held till maturity
(please refer to Chapter 2). This means that term to maturity and coupon
rates definitely play a role in the level of the yield to maturity. The assump-
tions made with this approach will never be adequate, and it is therefore not
recommended to use a credit spread derived from the yield of one bond, to
adjust the yield of another bond if the two bonds do not have the same cash
flow structure.

Estimating a credit spread: approach 2

One way to overcome the inadequacies of approach 1 is to fit a yield curve
to the risk-free bond yields using the regression techniques discussed in
Chapter 3. However, instead of using term to maturity, we use the duration
of each bond on the x axis to counteract the effects the different coupon
rates of the risk-free bonds have on the yield (Annaert and Ceuster, 1999).
We follow these steps:

� Plot the risk-free yields against the duration of each bond.
� Decide on one of the regression-type yield curve models and estimate

the parameters so the fitted function will go through all the points on
the curve.

� Interpolate a yield (from the fitted curve) with a duration similar to the
duration of the corporate bond CB001 for which we need the credit
spread. This is an estimate of the risk-free version of the corporate
bond.

� Calculate the credit spread with (7.1); it is the difference between the
yield on the corporate bond CB001 and the interpolated risk-free yield.

Figure 7.1 shows the yield curve fitted with a cubic spline. The corporate
bond CB001 has a duration of approximately 7.5 years, so interpolating a
value from the curve at this duration, we get a synthetic risk-free yield of
9.599%. The estimated credit spread is then 9.855% – 9.599% = 26 bps.

The problem with approach 2 is that it is very dependent on the 
interpolating function used.

Estimating a credit spread: approach 3

Another approach to estimate a credit spread is to create a synthetic
government bond that exactly matches the cash flow structure of the 
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corporate bond. This is done by deriving a zero curve from the risk-free
bonds using one of the empirical models discussed in Chapter 3. From the
empirical yield curve we can now price a risk-free bond with the same
coupon rate and cash flow dates as the corporate bond. Once we have a
price for the synthetic bond, we solve iteratively to find the yield to matu-
rity of the synthetic bond. The yield to maturity represents the risk-free
equivalent of the corporate bond, so the credit spread can be calculated
using (7.1) (Leake, 2003; Longstaff, Mithal, and Neis, 2004).

Figure 7.2 shows the curve derived from the risk-free bonds. Following
the procedure described above, the synthetic yield to maturity is found to
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Figure 7.1 A plot of the yield to maturity against duration of the risk-free
bonds in Table 7.1

Figure 7.2 Zero curve derived from the risk-free bonds in Table 7.1



be 9.607% which means the credit spread for CB002 is 9.855% – 9.607%
= 25 bps.

These calculations again depend on the interpolating function used, but
it should be more accurate than approaches 1 and 2. The reason we want to
add the corporate bond to this process has to be kept in mind: there is a big
gap at the long end of the curve between the terms to maturity of RF003
and RF004. The gap is filled by the interpolating function, so we have to
rely on the function being stable in this process.

There is an interesting problem with the way this approach has been
applied in this example. The risk-free zero curve is used to derive a
synthetic yield for CB002, and this yield is then used to derive the spread
for the corporate bond. This means the adjusted corporate bond will now
always lie on the zero curve, because of the way in which the credit spread
is estimated, and will thus not really help with the problem of filling the
maturity gap at the long end.

Another idea is to use the shorter-term corporate bond CB002 in the
procedure, and again assume a flat credit spread term structure. The spread
of CB002 is then used to adjust CB001. However, we again have the prob-
lem that the cash flow structures of the two corporate bonds are not the
same.

It may be more appropriate to estimate a spread above zero rates,
because then we get rid of the “cash flow structure” issue.

Estimating a credit spread: approach 4

In approach 4 we estimate a credit spread above zero rates. This is done by
considering the way a government bond can be priced off a risk-free zero
curve:

(7.2)

where
P = the all-in price of bond
n = number of outstanding cash flows of bond
ij = risk-free zero interest rate applicable to tenor j
tj = term between the settlement date and the cash flow date
m = number of times a year the zero rate is compounded 
Cj = jth cash flow of the bond; the last cash flow will be the redemption

payment plus the coupon payment.

Say we would like to price a corporate bond using the same approach as
(7.2). The corporate bond has to be adjusted with a credit spread, so we can
adjust (7.2) as follows:
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(7.3)

where cs denotes the credit spread. We assume here that the credit spread
is fixed across all tenors. Remember that the zero curve is a risk-free curve,
so to price the corporate bond we need to add a credit spread to the risk-
free rates.

To estimate the credit spread from (7.3), we follow these steps:

� Derive a risk-free zero curve from all the risk-free bonds in Table 7.1.
� Model the shorter corporate bond CB002 as shown in Table 7.2 by

interpolating interest rates ij, j = 1,...,7 from the risk-free zero curve.
� We know the current market price of CB002, so using the market price

and the fitted price obtained in Table 7.2, we iteratively solve for a
credit spread with the constraint that the fitted and actual corporate
bond prices must be exactly equal. In this example the credit spread
was found to be approximately 40 bps. This is now an average credit
spread above zero rates.

� We assume a flat credit spread term structure, in other words, the credit
spread derived from CB002 is adequate to adjust the longer-term
corporate bond CB001.
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P = ∑Cj(1 + ij + cs)–m×tj

m
n

j=1

Table 7.2 Modeling the CB002 corporate bond in Table 7.1 to estimate the
credit spread

Cash Term to Cash flow 
flow settlement per 100 Interpolated

Cash flow no. date nominal zero rate
date j tj Cj ij + cs PV

1 Jun 2005 1 0.447 55,000 r1 = i1 + cs C1 / (1+r1/2)2×t1

1 Dec 2005 2 0.948 55,000
1 Jun 2006 3 1.447 55,000
1 Dec 2006 4 1.948 55,000 : :
1 Jun 2007 5 2.447 55,000
1 Dec 2007 6 2.948 55,000
1 Jun 2008 7 3.449 1,055,000 r7 = i7 + cs C7 / (1+r7/2)2×t7

Price on settlement date: add values
in column

Price on value date: PV settlement
price 3 business 
days to value date



Please note that the credit spread derived from this approach is the aver-
age spread above the risk-free zero rates. This approach should give
answers very close to approach 3. The difference is that we do not have the
coupon-effect problem in approach 4, because it is a spread above zero
rates.

In Section 7.1.4 we discuss the term structure of credit spreads, then we
take a closer look at how to interpret this spread.

Comparison of yield curves

The final step in the example is to derive the risk-free yield curve from the
now five risk-free bonds. Remember we have four risk-free bonds and then
the long-term corporate bond CB001 which is adjusted with the estimated
spread, so this bond can now also be considered to be “risk-free.” It is
important to know that we have to model CB001 similarly to the approach
shown in Table 7.2 when deriving the risk-free curve. The only difference
is that we “know” the credit spread and can just continue to derive the yield
curve as if we have five risk-free bonds following the techniques discussed
in Chapter 5.

It is extremely interesting to see how the credit spreads differ, depend-
ing on the method applied. Table 7.3 shows a summary of the credit spreads
obtained from each of the approaches. In all cases we are working with
semi-annually compounded rates.
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Table 7.3 Summary of the estimated credit spreads from the four different
approaches

Approach Spread (bps)

1 47
2 26
3 25
4 40

Figure 7.3 shows a comparison between two zero curves derived from
the risk-free bonds and the corporate bond CB001 adjusted with the credit
spreads derived from approaches 3 and 4. The differences between the two
curves in Figure 7.3 may have a big impact on instruments that are valued
off this curve, and this highlights the importance of the approach chosen to
estimate a credit spread.

This example focuses mainly on deriving a credit spread for coupon-
paying bonds. In a market in which actively traded government and corpo-
rate zero-coupon bonds are available, the credit spread can be derived



directly from the differential of the zero rates implied from these zero-
coupon bonds. In this case we then have a credit spread above a zero rate.

7.1.3 Interpretation of the credit spread

The type of instrument used to derive the credit spread is one of the
factors that has an effect on the level of the credit spread. Annaert and
Ceuster (1999) discuss the fact that credit spreads differ between differ-
ent types of instruments, even though the different credit spreads may
move together.

We have to be consistent in the application of the credit spread; a spread
derived from par rates should not be used to adjust zero rates. Also, the
compounding of the rate of the instrument is also very important. Consider
the following example.

We have a risk-free zero rate of 7.5% which is compounded semi-
annually. The credit spread above this zero rate is 40 bps, so that the risky
rate is 7.5% + 40/100 = 7.9%.

Say we need risky rates that are compounded quarterly to be able to
value a specific instrument. By converting the risky rate, we get a quarterly
compounded rate of 7.823%. However, when we convert the risk-free rate
and the credit spread individually to quarterly rates, we get a risk-free rate
of 7.431% and a spread of 38 bps. When we now calculate the quarterly
compounded risky rate, we get 7.431% + 38/100 = 7.813%. This means
there is a 1 bp difference between the two quarterly compounded risky
rates purely because of the approach followed to do the conversion.

The example illustrates that we cannot just convert a credit spread by
using the approaches discussed in Chapter 2 for interest rates and add that
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Figure 7.3 Comparison of zero curves when applying approaches 3 and 4 
to estimate a credit spread for CB002



to the converted risk-free rate. The reason for this can be seen from the
following relationship:

(7.4)

where
im = risk-free rate compounded m times per annum
csm = credit spread above a risk-free rate that is compounded m times per

annum.

This means that when we have a credit spread csm available above a rate
that compounds m times a year, we can find the credit spread above a rate
compounded n times a year by solving for csn in (7.4). In simple terms,
when the credit spread is derived for semi-annual rates, then this spread
should only be used to adjust semi-annual rates, because the spread above
annual rates will usually be different.

7.1.4 Deriving a credit spread curve

In Section 7.1.2 various techniques are discussed that can be used to calcu-
late a single credit spread for a certain instrument. To derive a credit spread
term structure, we can use the same techniques, except that we now need
corporate bonds with a range of different maturities.

The idea is to estimate a credit spread at each tenor and then just use an
interpolating technique to fit a function to these spreads to get a credit
spread curve. However, there are various factors that have to taken into
account:

� The corporate bonds used in the process must have the same credit
rating. We discussed in Section 7.1.1 how credit spreads differ
depending on the rating.

� The corporate bonds must have the same features. For example, we
know that credit spreads of coupon bonds will differ from credit
spreads on zero coupon bonds.

� We have to make sure that the credit spreads are all based on rates
compounded similarly. If not, we need to use (7.4) to convert the
spreads to the same compounding factor.

� The instruments must have the same liquidity premium.

Approach 4 discussed in Section 7.1.2 will be used to estimate a credit
spread for each of the corporate bonds in Table 7.1. We follow these steps:

� Derive a zero curve from all the risk-free bonds.
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(1 +
im + csm )m

= (1 +
in + csn )n

m                        n



� Model each corporate bond with the technique shown in Table 7.2.
� Iteratively solve to find the credit spread for each bond separately.

Table 7.4 shows the estimated spread for each of the corporate bonds. The
overnight rate is assumed to have a credit spread of zero. This at least helps
us to anchor the curve. Figure 7.4 shows the credit spread term structure.
These are spreads above semi-annual zero rates. It is interesting to see that
in this case our credit spread actually decreases with tenor.

The spreads calculated with approach 4 indicate the average spreads that
are appropriate for the tenors. For example, the three-year spread is a fixed
average credit spread of 40 bps across all tenors. This means this credit
spread term structure is similar to the par rate concept explained in Chap-
ter 2. To get “zero” credit spreads, we thus have to bootstrap the average
spreads.

A practical problem with the example is that we have only two corporate
bonds available, so a big area has to be interpolated. This means the inter-
polating function plays an important role in the process. Please refer to
Chapter 4 for a discussion of the effect different interpolating functions
have on a curve.
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Table 7.4 Credit spreads estimated using approach 3 in Section 7.1.2

Bond Tenor Credit spread

Overnight 0 0
CB002 3 40
CB001 16 25

Figure 7.4 Credit spread term structure estimated from the corporate bonds
in Table 7.1



A better way to obtain a “zero” credit spread term structure is to assume
a functional form for the credit spread. The function will typically be one
of the empirical yield curve models discussed in Chapter 3.

Say we have a risky zero rate rt, a risk-free zero rate rft, and a credit
spread cst, all with tenor t years and compounded continuously. The rela-
tionship between the discount factors derived from rt and rft respectively is
as follows:

df r
t = exp[–rt × t]

= exp[–(rft + cst) × t]
= exp[–rft × t]+ exp[–cst × t]
= df rf

t × df cs
t (7.5)

where df r
t, df rf

t, and df cs
t denote the discount factors derived from rt, rft, and

cst respectively.
In Chapter 5 we show how to derive a yield curve by assuming a func-

tional form for the discount function, estimating the parameters of the func-
tion by minimizing the weighted squared differences between bond prices.
From (7.5) it is clear that we can follow a similar approach for corporate
bonds, except that we have to assume an additional function for the credit
spread discount function, because we are actually interested in estimating
a credit spreads term structure above zero rates. Using (7.5), we see that we
can derive the all-in price of a corporate bond as follows:

(7.6)

where all symbols are as defined before and
P = the all-in price of the corporate bond
n = number of outstanding cash flows of the corporate bond
mj = term in years from the value date until cash flow Cj
Cj = jth cash flow of the corporate bond (the last cash flow will be the

redemption payment plus the coupon payment).

To derive the credit spread term structure, we first derive a risk-free
curve and then model the corporate bond with (7.6). Table 7.5 shows the
cash flows per 100 nominal of a corporate bond paying a semi-annual
coupon. The annual coupon rate is 9%. The value date is assumed to be
21 December 2004.

The risk-free discount factor in Table 7.5 is calculated from the risk-free
curve and is known. In this example we assume a functional form for the
credit spread discount function is f(β0,β1,β2|t) which denote the facts that
the chosen function has three parameters that have to be estimated, namely
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P = ∑Cj × df r
m j = ∑Cj × df r f

m j × df cs
mj

n n

j=1 j=1



{β0,β1,β2} and that the function depends on t, the term from the value date
to the cash flow date (in years). The exact function is not important,
because we just want to illustrate how the modeling should be done. The
parameters of the credit spread discount function are estimated by mini-
mizing the weighed difference between the actual and fitted all-in prices.
Please refer to Chapter 5 for a complete discussion on this procedure.

Another approach to derive a zero credit spread curve is to derive two
zero interest rate curves, one from risk-free instruments and one from
risky instruments (like corporate bonds). The credit spread curve is then
derived as the difference between the corporate zero curve and the risk-
free zero curve, calculated at each tenor. The tenors at which the credit
spreads are calculated have to be fixed. The obvious problem with this
approach is that a lot depend on the interpolation functions used and the
number of instruments available to derive the two zero curves.

7.1.5 Credit default swaps

The value of credit derivatives is driven by the credit risk of institutions
(other than the counterparties to the credit derivative transaction itself).
The principal feature of credit derivatives is that they provide the means to
isolate and trade credit risk with the purpose of replicating, transferring,
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Table 7.5 Cash flows for a corporate bond paying a semi-annual coupon of 
9 percent

Credit 
Risk-free spread Risky

Cash discount discount discount
Cash flow flow Term factor factor factor Present
date Cj mj dfrf dfcs dfm value

1 Jun 2005 4.5 m1 dfrf(1) f(β0,β1,β3|m1) dfm1 = dfrf(1) C1 x dfm1

×
f(β0,β1,β3|m1)

1 Dec 2005 4.5 m2 dfrf(2) f(β0,β1,β3|m2)
1 Jun 2006 4.5 m3

1 Dec 2006 4.5
… … … … … … … 

1 Jun 2010 4.5
1 Dec 2010 104.5 m12 repeated in C12 x dfm12

each column

Fitted all-in price: C1 dfm1

+ ...
+ C12 dfm12



and/or hedging credit risk. Credit default swaps are the most common type
of credit derivative. The transaction operates as follows (Das, 2004):

� The protection buyer pays a periodic fee to the protection seller on an
identified reference entity.

� If there is a credit event in respect of the reference entity, the protec-
tion seller makes an agreed payment to the protection buyer to cover
any loss suffered because of credit exposure to the reference entity.

� If there is a no credit event, there are no payments by the protection seller.

An interesting idea is to use the credit default swap premium as an estimate
of the credit spread.

Up to this point we have assumed that all bonds have the same liquidity.
In practice this is not the case. Government bond markets are larger and
more liquid than corporate bond markets, which implies that in addition to
the credit spread, investors also require an additional liquidity premium as
compensation (Annaert and Ceuster,1999).

Longstaff et al. (2004) calculate credit spreads from corporate and risk-
free bonds using approach 3 discussed in Section 7.1.2. They measure the
default component of these spreads by following these steps:

� They define rt as the risk-free rate, λt the intensity process governing
default, and γt a liquidity process. Each of these processes is assumed
to be stochastic, and they evolve independently of each other.

� They assume an intensity process λt as follows:

d λ    = (α      – βλ)dt + σ√λdZλ (7.7)

where α, β and σ are positive constants to be estimated, and Zλ a
standard Brownian motion.

� The liquidity process γt is given by

dγ = ηdZγ (7.8)

where η is a positive constant to be estimated and Zλ a standard 
Brownian motion.

� They argue that the liquidity process plays a role when valuing 
corporate bonds, but not when valuing credit default swaps. With this
argument they show that when valuing a credit default swap with matu-
rity T years and assuming the premium s is paid continuously, the
protection buyer will pay the following:

(7.9)
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PBT = E[s ∫exp(– ∫ (rk + λk)dk)dt]T t

0 0



and the protection seller will pay the following:

(7.10)

where it is assumed that 1–W of the par value of the bond is recovered
when a default occurs. Please note that E[.] denotes the expected future
value. By setting (7.9) equal to (7.10), it is possible to solve for the
credit default swap premium that is paid. Using market quotes for
credit default swaps, the next step is to estimate the parameters of the
default component given by (7.7), with the constraint that this default
component must fit the credit default swap spread accurately.

� Assuming a continuous coupon c is paid, the corporate bond is valued as:

(7.11)

Thus by using the parameters of the intensity process and still assum-
ing a zero liquidity process, (7.11) will give us the price at which the
corporate bond will trade should there be no liquidity issues. Longstaff
et al. call this the liquidity-adjusted corporate bond.

� The default component is now obtained by solving iteratively for the
yield on this liquidity-adjusted corporate bond and subtracting from
this the yield of a risk-free bond with similar cash flows (approach 3 in
Section 7.1.2).

Longstaff et al. (2004) show that there is quite a big difference between the
estimated default component and the credit default swap premium, which
means that the credit default swap premium cannot directly be used as an
estimate of the default component of a corporate bond yield spread above
the risk-free yield.

7.1.6 Summary

In Section 7.1.2 various techniques are discussed to estimate credit spreads
by way of an example. To summarize these techniques:

� In approach 1 we calculate the credit spread as the difference between
the yields to maturity of a corporate and risk-free bond that have 
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PST = E[W ∫exp(– ∫ (rk + λk)dk)dt]T t

0 0

CBT = E[c ∫exp(– ∫ (rk + λk+ γk)dk)dt]
+ E[exp(– ∫ (rt + λt + γt)dt)]
+ E[(1 – W)∫ λt exp(– ∫ (rk + λk+ γk)dk)dt]

T

0 0

t

T

0

T t

0 0



similar maturities. We ignore the fact that their cash flow structures
may differ.

� With approach 2 we plot the yield to maturity of the risk-free bonds
against duration and interpolate a risk-free yield off the curve with a
similar duration to the corporate bond. The credit spread is estimated
as the difference between the corporate bond yield and the synthetic
risk-free yield.

� With the third approach a synthetic government bond is created that
exactly matches the cash flow structure of the non-government bond.
The synthetic bond is priced off the risk-free zero curve and then we
solve iteratively to find the corresponding risk-free yield to maturity of
the synthetic bond. The credit spread is the difference between the
corporate bond yield and the synthetic risk-free yield.

� Approach 4 shows a way in which an average credit spread above zero
rates can be estimated. This spread is fixed across all tenors. In Section
7.1.4 we see that a credit spread curve derived with this technique is
similar to the par-rate concept discussed in Chapter 2. This means we
need to bootstrap the average credit spread curve to get to a “zero”
spread curve. The credit spreads derived from approach 4 should be
similar to those derived from approach 3.

� When we have zero coupon bonds available, it is possible to directly
derive credit spreads above zero rates by just calculating the spread
between the zero rate from the corporate zero-coupon bond and the
zero rate from the risk-free zero-coupon bond.

� It is also possible to derive a zero credit spread curve by deriving two
zero interest rate curves: one from risk-free instruments and one from
risky instruments (like corporate bonds) and then calculating the
spread curve between the two zero curves.

� In Section 7.1.5 we show how to derive the credit spread from credit
default swaps.

There are various assumptions underlying each of the approaches to esti-
mate credit spreads. It is important to note that we get very different esti-
mates of credit spreads using the same dataset, depending on the
assumptions we are willing to make.

7 . 2 L I Q U I D I T Y  P R E M I U M

7.2.1 Overview

By defining corporate spreads as the difference between the yield of a
corporate bond and that of a risk-free bond with similar cash flows, we
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know the spreads consist of two main components. The two components
compensate investors for the credit quality and liquidity of the corporate
bond. Longstaff et al. (2004) find that the credit risk component accounts
for the majority of the corporate spread across all ratings.

There are various market variables that can be used as an indication of
the liquidity of an instrument, for example Fleming (2001), Longstaff et al.
(2004), and De Jong and Driessen (2004):

� The bid/ask spread of the instrument: the bigger the spread, the less
liquid is the instrument. However, a drawback of the bid/ask spread is
that the bid and offer quotes are usually only appropriate for a limited
period and a specific quantity of the instrument.

� The rise in price that occurs with a buyer-initiated trade. This is meas-
ured as the slope of the regression of price changes against net trade
volume. It is referred to as the Kyle lamda.

� Trading frequency, which reflects the number of trades executed within
a specified interval, not taking into account the trade size. High trading
frequency reflects a more liquid market.

� The notional amount outstanding measures the general availability of
the bond in the market. The larger issues are usually more liquid.

� The age of the bond, which uses the notion of on-the-run and off-the-
run bonds. On-the-run bonds refer to the most recently issued securi-
ties. The measure assumes that on-the-run bonds are much more liquid
than off-the-run bonds.

� The term to maturity of the bond: longer-term bonds are usually less
liquid than short-term bonds.

� The rating of the institution that issued the bond may also play a role.
The higher the rating, the higher the liquidity of the bond should be.

In the next section we consider various ways in which to estimate
liquidity spreads from market instruments. In all cases we ignore the
effects of tax.

7.2.2 Estimating liquidity spreads

In this section we consider various ways in which to estimate liquidity
spreads depending on the instruments available in the market.

Estimating a liquidity spread: approach 1

When we work in a market where credit derivatives are actively traded, it
is possible to use the approach suggested by Longstaff et al. (2004), where
credit default swaps are used to estimate a default and non-default portion
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of the corporate bond spread. This approach is discussed in Section 7.1.5.
The non-default portion of the corporate spread is simply the difference
between the total corporate spread and the default component. It is
assumed here that taxes do not play a significant role, so the non-default
portion is assumed to be attributable to the liquidity of the instrument.

Estimating a liquidity spread: approach 2

Another way to estimate the liquidity premium is to compare the spreads
between the yields of on-the-run and off-the-run bonds with similar cash
flows and credit quality. We expect on-the-run bonds to be more liquid and
thus have a smaller liquidity spread. An interesting problem may arise
when we compare an off-the-run benchmark bond with an on-the-run bond,
because this spread is not easy to interpret (Fleming, 2001). Remember that
benchmark bonds are issued at convenient points along the yield curve so
they attract investors, and thus are liquid. By comparing an off-the-run
benchmark with an on-the-run bond, we may be comparing two liquid
instruments and not get an appropriate estimate of the liquidity spread.

With approach 2 we need a lot of bonds with similar credit quality in the
market. Usually it will also be difficult to find instruments with similar
cash flow characteristics, which means that interpolation techniques have
to be applied, and this adds to the uncertainty in the model.

Estimating a liquidity spread: approach 3

Consider a market where there are only five benchmark government bonds
available. We know these bonds are liquid, and they are considered to be
risk-free. We can compare these benchmark bonds with other government
bonds (with similar features) and estimate liquidity premiums with similar
techniques to those discussed in Section 7.1, where credit spreads are
derived. The differences between these two sets of bonds should reflect the
liquidity premium, because both sets of bonds are risk-free.

We assume that the liquidity premium estimated from government bonds
applies directly to corporate bonds. However, when we have corporate
bonds that are liquid, we can follow a similar approach to estimate the
liquidity premium. The point is that we need to compare instruments with
the same credit quality, but with different liquidity.

7.2.3 Summary

Some research indicates that tax effects should be taken into account when
the non-default component of the corporate spread is estimated (Elton et
al., 2001). However, Longstaff et al. (2004) analyzed the non-default
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component of corporate spreads to test for tax effects. They found only
weak evidence that tax affects the spread, and concluded that liquidity
measures play a more significant role. We ignored the tax effect when
estimating the liquidity premium.

7 . 3 CO U N T RY  R I S K  P R E M I U M

7.3.1 Overview

Investors in emerging markets are, among other things, exposed to
economic and political phenomena that are not generally present in more
developed markets. This is usually referred to country or political risk
(Clark, 2002). The investors require a premium to compensate them for the
additional risk, and this premium is called the country risk premium.

Borio and Packer (2004) explain the three main views on country risk.
The first view is known as “debt intolerance,” which refers to the reduced
debt-bearing capacity of emerging market economies because of their
history of economic mismanagement. High inflation and past defaults are
indications of deeper economic problems which may discourage investors
to invest in these countries. The second view is known as “original sin,”
and argues that countries less able to borrow in their own currency should
be riskier, because exchange rate depreciations should make it increasingly
difficult to pay external debts. Similar to this is the third view which is
known as “currency mismatches.” The net debt positions in a foreign
currency that is sensitive to exchange rate fluctuations can make countries
more vulnerable, and increase the costs in a crisis.

Borio and Packer (2004) calculate the average of the foreign currency
sovereign ratings published by Moody and Standard & Poor, as a meas-
ure of country risk. They do a regression analysis by recoding the
ratings numerically, with AAA (Aaa) equal to 17, down to CCC+ (Caa1)
which is set equal to 1. They consider a variety of explanatory variables
including:

� macroeconomic variables like the per capita GDP, inflation, and real
GDP growth

� debt burden as measured by external debt/exports
� government finance measured by public debt/GDP
� political, socioeconomic variables like corruption and political risk
� dummy variables indicating the history of defaults and the percentage

of time high inflation has occurred 
� financial development of the country measured by the foreign

exchange spot and derivatives turnover/GDP.
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They find that economic and structural determinants, per capita GDP, meas-
ures of corruption and political risk, and proxies for a history of economic
mismanagement  account for most of the variation in country risk.

Techniques on how to estimate the country risk premium with yield
curves are discussed in the next section.

7.3.2 Estimating country risk premiums

To estimate country risk premiums, we estimate the spreads between the
yields of risk-free bonds issued in a foreign currency and the yields of risk-
free instruments issued in that country (Damodaran, 1998; Bernoth, von
Hagen and Schuknecht, 2004; De Estudios et al., 2003; Clark, 2002). By
doing this we ensure that credit risk does not play a role and that we get a
pure estimate of the country risk premium. The problem however, is that
this spread may be affected by a liquidity premium.

It is important to note that the same approaches as are used to estimate
credit spreads (please refer to Section 7.1) can be used to estimate coun-
try risk premiums. The only differences are in the instruments that are
used, as well as the assumptions made regarding credit quality and
liquidity.

Consider a simple example where the country risk premium for South
Africa is calculated. In this example we analyze the spread between the
South African US$-denominated bonds and the US$ Treasury strips curve.
This is done by following these steps:

� Derive a zero curve from the RSA (Republic of South Africa) US$-
denominated bonds.

� Derive a zero curve from the US$ Treasury strips.
� Interpolate these two zero curves to get values at specified tenors. The

spread between the two zero rates at each tenor is an indication of the
country risk premium.

Table 7.6 shows the information on the four RSA US$-denominated bonds.
These bonds pay semi-annual coupons. To derive the zero curve from these
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Table 7.6 Republic of South Africa US$-denominated bond information

Maturity date Bond code Coupon

17 Oct 2006 AC89 8.375
19 May 2009 AE46 9.125
25 Apr 2012 AG93 7.375
23 Jun 2017 AD62 8.5



bonds, we used a cubic spline function. The BBA Libor rates are used to
anchor the curve at the short end. The zero rates derived from the US$
Treasury strips are linearly interpolated.

Figure 7.5 shows the RSA US$-denominated and US$ Treasury strips
zero curves for 10 April 2003, with data obtained from Bloomberg. It is
interesting to see how the spread between these two curves widens as the
maturity increases.

The problem with this example is that we know these RSA US$-
denominated bonds are not very liquid, so a part of the estimated country risk
premium also captures a liquidity premium. We could estimate the liquidity
premium with one of the approaches discussed in Section 7.2; however, it
would mean that we need more liquid RSA US$-denominated instruments
which we do not have available. Another approach would be to just use
different US$ Treasury instruments and calculate a liquidity spread from
them; adjust the US$ Treasury strips curve upward with this liquidity spread;
and then calculate the country risk premium as before from the adjusted
strips curve. This means that we are assuming that the liquidity premiums
estimated from US$ Treasury instruments are the same between countries,
and this may be too large an assumption.

Usually when we estimate the country risk premium, we repeat this
analysis with a historical data series. We then get a series of country risk
premium estimates at each tenor. A descriptive statistic like the average or
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Figure 7.5 Comparison of the zero curve derived from Republic of South
Africa US$-denominated bonds, and the zero curve derived from
US$ Treasury strips



median spread calculated at each tenor is then taken to be the country risk
premium for that tenor.

An alternative way to estimate the country risk premium is to use the
relationship between domestic interest rates and foreign interest rates
discussed in Chapter 2. The interest rates from two countries are linked by
the spot and forward exchange rates, and the relationship is as follows:

(7.12)

where
Xs = spot exchange rate
Xf = forward exchange rate
if = foreign interest rate (this is a simple rate)
d = number of days in the investment period
id = domestic interest rate (this is a simple rate)
DCd = number of days in the year as specified by the daycount convention

of the domestic market 
DCf = number of days in the year as specified by the daycount convention

of the foreign market.

When the exchange rates Xs and Xf are actively traded in the market, and
the foreign interest rate if is known, we can solve for the domestic interest
rate id in (7.12). The spread between this implied domestic interest rate id
and an interest rate quoted in the domestic market with a similar tenor is an
estimate of the country risk premium. The problem with this approach is
that the forward exchange rates quoted in the market may not be liquid
enough for tenors greater than one year, which means the resulting spread
will then also have a liquidity portion.

7 . 4 CO N C LU D I N G  R E M A R K S

The ways in which credit, liquidity, and country risk premiums are
estimated are very similar. The main difference is the credit quality and
liquidity of the instruments used in the analysis.

To estimate credit spreads we mainly considered the differences between
yields on corporate and risk-free bonds with similar cash flow structures.
However we showed that credit default swaps can also be used in the
process.

When deriving liquidity premiums, we consider the spreads between
two sets of instruments with the same credit quality. We then assume that
the differences between the yields of these two sets of instruments can be
explained by a liquidity premium.
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To estimate country risk premiums, we determine the spreads between
the yields of risk-free bonds issued in a foreign currency and the yields of
risk-free instruments issued in the foreign country. The main idea is to get
rid of the credit risk issue when estimating the country risk premium. In
Section 7.3 we consider an example where a zero curve derived from South
African US$-denominated bonds is compared to a US$ Treasury strips zero
curve. The main problem, however, is that a portion of the estimated 
country risk premium can be attributed to the liquidity premium, and it is
difficult to separate it from the country risk premium.
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When any yield curve model is created, there are some risks that have to
be measured, managed and possibly be prevented.

In Section 8.1 interest rate risk management is discussed. It is important to
understand what types of interest rate risks there are and how to measure
them, because this helps to identify potential problems in a yield curve model.

Sections 8.2 and 8.3 covers operational risk and model risk respectively.
Some examples are discussed showing where these risks may occur with
respect to yield curves. In practice model risk is considered to be a 
subsection of operational risk.

Liquidity risk is discussed in Section 8.4. Some examples show how to
get a feel for the liquidity of the various instruments that are considered
when deriving a yield curve.

8 . 1 I N T E R E S T  R AT E  R I S K

8.1.1 Definition

When we have a portfolio with interest rate instruments, there are usually
three types of risks for which allowance has to be made: parallel risk, pivot
risk, and basis risk.

Parallel risk refers to the loss that a portfolio can incur when the whole
curve moves up or down by a certain number of basis points. With pivot
risk we make allowance for the fact that different parts of the yield curve
may move in different directions, for instance the short-term rates may
move down and the long-term rates may move up from one day to the next.
Finally we have to consider the situation when a traded security and its
hedge are valued from two different curves. With basis risk we allow for
the fact that these two curves may not necessarily move together. This
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means the hedge may not always be effective, which then increases the risk
of the portfolio.

8.1.2 Measuring parallel and pivot risk

There are various ways in which to measure parallel risk. A primitive way is
to stress the whole yield curve up and down, using a stress factor, to determine
the effect on the portfolio. Typically the risk manager looks at various
scenarios for the stress factor, for instance stressing the whole yield curve from
–200 bps to 200 bps in steps of 50 bps. Depending on how a portfolio is struc-
tured, a move of 50 bps may result in a bigger loss than a move of 200 bps.

However, as is discussed in Section 8.1.4, the stress factors across tenors
usually differ quite significantly. Another way to measure the risk is to consider
each of the maturity buckets individually. Each tenor on the yield curve that
corresponds to a maturity bucket is stressed individually with one basis point,
which yields a PV01 value per maturity bucket. The PV01 is the effect the one
basis point move has on the portfolio value. The idea is then to multiply the
PV01 in each bucket by the stress factor for that bucket. By setting risk limits
per maturity bucket as well as a cumulative bucket risk limit, this approach
captures parallel and pivot risk. Remember that risk limits denote the maxi-
mum amount of risk that may be taken on through normal trading operations.
The risk limits are determined by the board and senior management, and are
monitored by the risk management function (Das, 2004).

Not all instruments in a portfolio are valued off the same curve, so
typically we calculate a PV01 value for each curve in the maturity
bucket. Figure 8.1 shows an example where the value of the portfolio
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depends on three curves: a curve derived from interest rate swaps, a curve
derived from futures, and finally a curve derived from government
bonds. The PV01 for each maturity bucket for each curve is calculated as
discussed above. To determine the parallel and pivot risk of the portfolio,
we stress the PV01 of each curve in each bucket with the appropriate
stress factors. The way in which the stress factors are determined is
discussed in 8.1.4. With a risk limit per bucket, traders are forced to put
trades in the portfolio that will ensure that the bucket risk numbers
always fall within these limits.

Consider a portfolio as a complex function of a yield curve, denoted by
P(r1,...,rn) where ri denotes the interest rate at tenor i = 1,...,n. It is 
important to note that in general:

[P(r1 + 1bp,…, rn)  – P(r1,…, rn)] × SF1 ≠ P(r1 + SF1,…, rn) – P(r1,…, rn)

(8.1)

where SFi is the stress factor for bucket i.
From (8.1) it is clear that stressing a maturity bucket by one basis point,

determining the possible loss (by subtracting the actual portfolio value) and
then multiplying by the stress factor, does not give the same value as just
stressing the interest rate in the bucket by the stress factor and then calcu-
lating the possible loss. This means that the approach discussed above is
just an approximation of the risk per bucket, and will not be appropriate
when there are a lot of options in the portfolio. In such a case it may be
more appropriate to stress each bucket with the stress factor.

There are various other approaches that can be used to determine pivot
risk, sometimes also referred to as non-parallel risk. For instance Phoa
(2000) uses principal component analysis to identify the types of yield
curve shifts that occur most often.

8.1.3 Determining basis risk

When a trade and its hedge are valued off different yield curves, the two
curves may move in different directions from one day to the next. This
means that the hedge may not be effective, so that the risk of the portfo-
lio is higher. This type of scenario should be captured by the basis risk
measure.

In order to measure basis risk, we would typically look at the PV01 per
maturity bucket per yield curve as is shown by Figure 8.1. The risk
manager has to estimate the proportion of positions and their relative
hedges that may exhibit basis risk. There are various ways in which to
estimate this quantity, which will be referred to as the matched portion.
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Basis risk: approach 1

The most basic way to calculate the matched portion is to add all the positive
PV01s and negative PV01s separately across all buckets. The minimum of
the total positive and absolute of the total negative PV01s is an estimate of the
matched portion. The calculation is illustrated for the data of Figure 8.1 that
is captured in Table 8.1. The PV01s were calculated per bucket per curve as
is discussed in Section 8.1.2. To determine the matched portion we have that:

� the total positive PV01 is 600 + 700 + 800 = 2100
� the total negative PV01 is – 350 – 1 000 – 150 = –1500
� the absolute of the total negative PV01 is thus 1500

so that it follows that the matched portion = min(2100; 1500) = 1500. The
matched portion has to be stressed with a stress factor assumed to be 
appropriate.

The problem with this approach is immediately apparent. We do not
allow for different stress factors for different buckets, even though we
know in practice they are very different.
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Table 8.1 Matched portion across buckets by calculating total positive and
total negative PV01 per curve (illustrated by Figure 8.1)

Maturity bucket Futures Swap Government

O/N 200 –100 0
1 month 300 –200 0
3 month 100 100 0
6 month –150 –50 100
9 month –100 –100 150
1 year –50 –100 50
2 year –50 –200 100
3 year 0 –150 100
4 year 0 –50 100
5 year 0 100 50
6 year 0 150 –50
7 year 0 200 –100
8 year 0 100 50
9 year 0 50 50
10 year 0 –50 50

Positive PV01 600 700 800
Negative PV01 –350 –1000 –150
Matched portion 1500



Basis risk: approach 2

A more accurate way to determine basis risk is to calculate the matched
portion per maturity bucket as is shown in Table 8.2. The matched portion
is calculated as follows:

� Calculate the total positive PV01 for each bucket. This is column 5,
“Bucket positive PV01” in Table 8.2.

� Calculate the total negative PV01 for each bucket. This is column 6,
“Bucket negative PV01” in Table 8.2.

� The matched portion per bucket is then the min(bucket positive PV01;
absolute of the bucket negative PV01). This is column 7, “Bucket
matched portion” in Table 8.2.

The total matched portion is then 1050, which is obtained by adding all the
bucket matched portions in column 7. We now have two approaches avail-
able to us to determine the basis risk: we can either multiply this total
matched portion with a stress factor, or multiply each of the bucket
matched portions with a different stress factor. The latter should be more
accurate, because then we allow for a term structure of stress factors. In
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Table 8.2 Matched portion per bucket (illustrated by Figure 8.1)

Bucket Bucket Bucket
Maturity positive negative matched
bucket Futures Swap Government PV01 PV01 portion

O/N 200 –100 0 200 –100 100
1 month 300 –200 0 300 –200 200
3 month 100 100 0 200 0 0
6 month –150 –50 100 100 –200 100
9 month –100 –100 150 150 –200 150
1 year –50 –100 50 50 –150 50
2 year –50 –200 100 100 –250 100
3 year 0 –150 100 100 –150 100
4 year 0 –50 100 100 –50 50
5 year 0 100 50 150 0 0
6 year 0 150 –50 150 –50 50
7 year 0 200 –100 200 –100 100
8 year 0 100 50 150 0 0
9 year 0 50 50 100 0 0
10 year 0 –50 50 50 –50 50

Total: 1050



other words we allow for the fact that stress factors will usually differ
across buckets.

The next issue that has to be addressed is that by following the second
approach, we have PV01s calculated from three yield curves. and the basis
risk stress factors may differ significantly for different combinations of
curves. Please refer to Section 8.1.4 for a discussion on how the stress
factors are calculated.

Basis risk: approach 3

To allow for the differences in basis risk stress factors calculated 
from different combinations of yield curves, we can follow these steps to
determine the basis risk:

� Determine the biggest positive PV01 and biggest negative PV01 in
each bucket. For example, in Table 8.2 for the six-month bucket we
have the biggest positive PV01 of 100 which is contributed by the
Government curve. The biggest negative PV01 is –150 which is
contributed by the Futures curve.

� Calculate the matched portion as the minimum of the positive PV01 and
the absolute of the negative PV01. For the six-month bucket in Table 8.2
we will then have that the matched portion = min(100, 150) = 100.

� Multiply the matched portion in each bucket with the basis risk stress
factor calculated from the two curves that contributed to the matched
portion. We see that for the six-month bucket in Table 8.2 the two 
relevant curves are the Government and Futures curves.

This is the first iteration. Following the exact same procedure, we now
calculate the matched portion of the two sets of PV01s that contribute
second most to each bucket. This is done as follows:

� Determine the second biggest positive PV01 and second biggest 
negative PV01 in each bucket. For example, in Table 8.2 for the six-
month bucket we only have one positive PV01, which was used in the
previous step. This means we do not have a second biggest positive
PV01, so this value is taken to be 0. The second biggest negative PV01
is –50 which is contributed by the Swap curve.

� Calculate the matched portion as the minimum of the second biggest
positive PV01 and the absolute of the second biggest negative PV01.
For the six-month bucket in Table 8.2 we will then have that the
matched portion = min(0, 50) = 0.

� Multiply the matched portion in each bucket with the basis risk stress
factor calculated from the relative two curves’ price series.
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We continue this process until all the PV01s across all buckets have been
matched.

A possible problem with this approach is that we do not determine the
matched portions across different buckets. It may be possible that a trader
has a three-year instrument that is hedged with a two-year instrument. This
can be allowed for by following the iterative procedure described as in
approach 3 above.

We considered the example where there are only three curves, which
means that in each bucket we have a third PV01 portion that is not
matched. In this case we can consider the correlation between buckets and
then start matching the positive and negative PV01s in the two buckets that
shows the highest correlation, then the second highest correlation, and so
on, until all the PV01s have been matched across buckets and stressed with
the appropriate stress factor.

8.1.4 Calculating stress factors

Stress factors are the quantities by which we stress the various parts of the
yield curve to determine the effect different yield curve moves may have
on the value of the portfolio.

The stress factor for parallel and pivot risk is determined by calculating
the differences in the yield curve values over time. Obviously we need a
database of historical yield curves. We know that the yield curve does not
always move by the same amount at each tenor. There are various reasons
for this, for instance the liquidity of the instruments in a certain maturity
range.

To allow for the fact that rates at different tenors on the yield move by
different amounts, we divide the yield curve into maturity buckets and
determine the move in each maturity bucket. The steps to follow are:

� Decide on the appropriate maturity buckets, for instance {overnight;
one month; three month; six month; nine month; one to ten years}. The
buckets must be expressed in terms of days, for instance the one-month
rate corresponds to 30 days, the one-year rate corresponds to 360 days,
and so on, depending on the daycount convention.

� Interpolate to get values from the yield curve at each of the specified
tenors (maturity buckets). Typically the values on the yield curve may
not exactly correspond with the specified maturity buckets because of
the specific daycount conventions and business day rules that were
taken into account when the curve was derived. For instance, the one-
month rate might refer to a 30-day period today whereas tomorrow it
might refer to a 33-day period.

� Calculate the daily differences in the yield curve values at each tenor:
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di,t = ri,t – ri,t–1 (8.2)

where
di,t = daily difference at maturity bucket i for day t
ri,t = rate at maturity bucket i for day t
i = denotes the maturity bucket.

This assumes we are working with a one-day holding period. Typically
practitioners who work with a ten-day holding period would calculate ten-
day differences. A holding period refers to the period that it is assumed it
would take to get out of any deal in the specific market.

� Calculate the high percentile of the differences di,t in each bucket. This
is usually specified at the 99 percent confidence level for risk manage-
ment purposes. These percentiles are the stress factors for each of the
maturity buckets.

These stress factors capture the parallel moves at each tenor of the yield
curve as well as the fact that the different sections of the curve may not
necessarily move together: in other words this is the pivot risk. The stress
factors have to be calculated for each yield curve that is used to value the
portfolio.

The next step in the process is to determine how the different curves
move with respect to each other. This is done as follows:

� Calculate the moves at each tenor with (8.2) for each curve.
� Calculate the differences in the moves between any two curves cdi,t at

tenor i on day t, in other words:

cdi,t = dA
i,t – dB

i,t (8.3)

where dA
i,t and dB

i,t denotes the daily differences for curves Aand B respectively,
calculated from (8.2).

� Calculate the high percentile of cdi,t for each maturity bucket. These
percentiles are the stress factors to be used when we calculate basis risk.

In a situation like approach 1 discussed in Section 8.1.3, where we need
one stress factor for all the buckets, we will typically use the average of the
cdi,t values as the stress factor.

With this calculation it is obvious that if the two curves always move
together, the basis risk stress factor will be very small.
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8.1.5 Risk implications when deriving yield curves

In this section we consider various examples where we may find inappro-
priate risk numbers because of problems in the way yield curves are
derived or used.

Example 1

Say we derive a yield curve from bonds that are subject to “catastrophic”
jumps, in other words, changes in the yield curve that cannot be explained
by changes in the underlying bonds that were used to derive the curve. This
means that we may not necessarily capture actual market events when the
stress numbers are calculated. Our stress factors will be much higher than
is appropriate. By using the stress factors to determine interest rate risk we
will overestimate the actual market risk.

Example 2

Consider a situation where the yield curve is derived from coupon-paying
bonds, but does not fit the underlying bonds perfectly. We refer to this
curve as a best-fit curve. The actual changes in the bond prices will not be
accurately captured by the best-fit yield curve. By comparing the best-fit
yield curve with a perfect-fit curve, we may find very big basis risk stress
numbers. These numbers may be counterintuitive in that the practitioner
knows the two markets move together more than is shown by this basis risk
stress number.

Example 3

Consider the example where two curves are derived with the same instru-
ments out to one year, but with different instruments from thereon. A situ-
ation can arise where an instrument is valued off one curve, and its hedge
is valued off the second curve. We know that there is theoretically zero
basis risk when these two instruments have terms to maturity of less that
one year. However, the risk manager may pick up basis risk because 
the one curve may be interpolated with a cubic spline and the other with
linear interpolation. This example illustrates the importance of applying
consistent interpolation methods.

Example 4

An interesting situation occurs when we are saving the same yield curve
to two different subsystems. Say the first subsystem requires yearly rates

YIELD CURVE MODELING164



out to ten years and the second subsystem requires half-yearly rates out
to ten years. The subsystems employ the same interpolation techniques
and business day rules. Risk managers could find basis risk if they were
not aware that the curves in these two subsystems are the same. This is
because the curve with the yearly tenors has to be interpolated to obtain
the half-yearly tenors, which means we need to make an assumption
about the shape of the curve for a longer period than when we look at the
curve with the half-yearly rates. It is important that we ensure that the
tenor points correspond when deriving curves from similar instruments
and saving them to different subsystems.

8 . 2 O P E R AT I O N A L  R I S K

8.2.1 Definition

Operational risk covers a variety of risks that are not covered by market
and credit risk. The focus is on measuring the risk of financial losses due
to a failure of internal processes or systems that may arise from human
error, market conditions, or natural disasters. Please refer to Das (2004) for
a discussion on some of the definitions of operational risk as published by
various organizations.

The focus on operational risk is driven by the fact that institutions that
were required to hold capital against credit and market risk in the past are
now forced to hold additional capital against operational risk. The main
reason for this additional charge is that it is widely accepted that opera-
tional risk is something that has to be managed in financial institutions. The
need for this type of management is stressed by the occurrences of a
number of well-documented operational risk losses. There are also poten-
tially large increases in operational risks because of the increasing growth
in the financial industry (Das, 2004; Jorion, 2003).

Operational risk covers systems, personnel, legal, and regulatory risks.
In the next section operational risk with the focus on yield curve modeling
is discussed.

8.2.2 Yield curve operational risk examples

Systems risk includes processing risk. Typically this can occur as a result of:

� incorrect rates loaded into a subsystem
� delays or failures in the process of generating the yield curves
� outdated technological platforms 
� system downtime.
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Personnel risk is related to staff turnover and experience. Staff are
trained at an expense. However should they not be trained adequately,
they may not have the necessary knowledge and skills to reduce errors in
the yield curve models. These risks are discussed in more detail in
Section 8.3 under model risk. It is always important to have a back-up
person to perform key tasks, which is why most institutions have a policy
that forces each staff member to take mandatory leave during certain
periods. This ensures that key-person dependency is reduced, and in a
way it can also be seen as a type of audit process, because the back-up
person should pick up inconsistencies or possible errors.

Legal risk with respect to yield curves may occur when a contract with a
counterparty refers to a prespecified yield curve that will be used at the
contract expiry date to settle the transaction. However, an unexpected loss
may be incurred when a different yield curve is used to value the transaction.

Regulatory risk may occur when models are back-tested over time and
errors are found. These errors may lead to the regulators increasing the
capital requirements because they do not have trust in the internal systems
of the financial institution. The result of this may also be reputation risk for
that institution.

Other more practical examples of where operational risk can occur
through human error are:

� Consider a yield curve that is derived from futures prices in a spread-
sheet that contains electronic links to the published data vendor pages.
It is important for the rates administrator to ensure that the links are
rebuilt when the futures contract expires, since incorrect links may
point to invalid or outdated data, which in turn will lead to problematic
yield curve outputs.

� It may be impossible to build electronic links to a system, so the rates
of the underlying instruments have to be input manually into the yield
curve model. This increases the possibility of human error.

The main operational risk with respect to yield curve modeling is model
risk, which is discussed in detail in Section 8.3.

8 . 3 M O D E L  R I S K

8.3.1 Definition

Model risk is an aspect of operational risk, and reflects possible financial
losses owing to inaccurate or incorrect models. Das (2004) gives some
examples of model risk which include the following:
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� Inaccurate models may lead to transactions being valued incorrectly.
The financial loss is realized when transactions are closed out in the
market.

� Inaccurate models may lead to inaccurate hedges being established.
The loss from hedging errors is shown as the difference between the
hedge and the position being hedged.

� Incorrect models may lead to incorrect estimates of the risk underlying
a transaction. Examples of assumptions that lead to incorrect risk esti-
mates are assumptions regarding the distribution of price changes,
inadequate specifications of the number of risk factors, errors in risk
decomposition of positions, and inaccurate volatility/correlations.
Incorrect estimates of the risk of a portfolio may have an effect on the
capital being held against the positions, which may create solvency
risk. At a regulatory level this means that the required back-testing of
internal models will perform poorly. This can lead the regulator to
impose higher capital charges.

It is important to note that an incorrect model may not necessarily result
in a financial loss for the institution. There may be instances when the
same model is used by all market participants, even when there are
known shortcomings in the model.

In the next section we discuss model risk specifically with respect to
yield curves.

8.3.2 Yield curve model risk examples

Model risk may arise in a yield curve context due to the failure of the yield
curve model to capture actual market conditions correctly or the inappropri-
ate application of a model. There are several different types of model risk
(Das, 2004): failure in model design, implementation, input, and application.

Examples of failure in model design include:

� The failure to incorporate all relevant variables in the model through a
lack of understanding of the underlying instrument. For example when
deriving a curve from futures, the future rate has to be adjusted with a
convexity adjustment. If a convexity adjustment is not allowed for, the
level of the forward rates is not estimated adequately, and this may lead
to the incorrect valuation of the portfolio.

� Incorrect assumptions regarding variables, for instance assuming a
fixed volatility when estimating the convexity adjustment instead of
allowing for a volatility smile.

� The model may be overly complex. By adding factors to a model that
have to be estimated, we increase the complexity and uncertainty in the
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model. For example, the convexity adjustment adds more uncertainty
to the yield curve model because it has to be estimated from the
underlying risk factors that are assumed to follow specific stochastic
processes. It is usually necessary to estimate volatility and mean-
reversion parameters, which add to the complexity of the model.

� Failure to specify the correct relationship between the variables.
� A lack of understanding of trading liquidity may lead to the mis-

specification of the model. It is important to always use the most liquid
instruments available to derive a curve. These instruments must have
market quotes available daily, or distortions will be introduced into the
yield curve. It is also important to obtain rate quotes from a reputable
source, or the resulting yield curve may not be an accurate reflection of
market rates. This can lead to valuation problems and an inaccurate
representation of the risk in the transactions.

� Incorrect setup of the mathematical model when deriving a yield curve.
The yield curve model fitted to the bonds may be subject to “cata-
strophic” jumps, which means that the moves in the yield curve cannot
be explained by actual moves in the underlying instruments. This is an
indication that the yield curve model is not specified correctly to
capture actual market events.

� Failure of the model to produce an accurate yield curve. For instance,
when a descriptive yield curve model is fitted to bonds, an iterative
technique is necessary to estimate the model parameters. The opti-
mization routine may only find a local optimal value and not necessary
a globally optimal value. The starting values chosen in the optimization
routine play an important role here. This means that the process of esti-
mating parameters increases model risk, because the optimization
routine may fail.

� Incorrect assumptions regarding instruments may lead to incorrect
models. We have seen how the procedures differ when fitting yield
curves to different types of market instruments (please refer to Chapter
5). It is important to allow for the different factors like daycount
conventions, business day rules, credit and liquidity, and the quoting
convention of the instruments, as is discussed in Chapter 4.

� In Section 8.1.5 the effect that incorrect yield curve models have on the
interest rate risk of a portfolio is discussed. The errors will have an effect
not only on the stress factors (please refer to Section 8.1.4), but also on the
quantification of the risk (please refer to Sections 8.1.2 and 8.1.3). We
have seen how it is possible to pick up basis risk as a result of interpolation
techniques that are not applied consistently across subsystems.

Model risk caused by incorrect model implementation refers to failures in
software implementation, for instance programming errors. It also refers to
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failures in the process of back-testing the model under various stress
scenarios to ensure the model gives consistent results. For instance, it is
important that the yield curve model allows for public holidays. On public
holidays there may be no quotes available for certain instruments, and the
model has to allow for this. This also leads to the concept of model risk
through the failure to have correct inputs.

Finally it is important to ensure that any yield curve is used the correct
way. When the end-user does not understand the credit and liquidity qual-
ity, or the instruments from which the yield curve is derived, the curve may
be used to value instruments for which it was not intended. For example, it
is usually not appropriate to value interest rate swaps with a curve derived
from government bonds.

8.3.3 Minimizing model risk

Model risk is minimized by ensuring that all models are validated by an
independent body. It is important to note that this includes all models
developed within the organization as well as those procured from external
sources.

The model is validated by performing the following checks:
The correctness of the model has to be ensured on an ongoing basis, based

on the latest available research in the market. When there are significant
changes in the market, for instance the way a certain type of instrument is
valued, the valuation model has to be updated to reflect the changes.

Where a historic relationship is assumed in a model, it is important to
review the relationship regularly to ensure that there are no structural,
market, or economic changes over the observation period that may impact
the model’s integrity. For instance, when correlation is an input to the
model, the correlation need not necessarily be estimated daily, but it must
be updated when there are big changes in the market. Another example is
when knot points are set for a yield curve model. These knot points are
usually fixed based on the maturities of the underlying bonds. However,
these knot points have to be adjusted over time as the terms to maturity of
the underlying bonds decrease over time.

The model input has to be checked for the following:

� The data are obtained from a reliable source and available daily. A
secondary data source must always be specified. This source must then
be used in the event that the data is not available from the primary data
source, the data vendor.

� The data have to be used consistently. For instance, when the same
instrument quote is used to derive two different yield curves, it is
important to ensure that the rate is fixed for both curves at the same
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time, otherwise the risk manager may pick up incorrect basis risk.
� A central department should take responsibility for the capturing and

validation of the data (for instance the timing of closing prices). When
each department in an organization is allowed to fix its own rates, it
may be very difficult to determine a correct aggregate risk report for
the organization.

� The necessary formatting and conversion of the data has to done before
it is entered into the model. For instance, when simple rates are quoted
in the market, but the yield curve model needs continuously
compounded rates as input, the rates must be converted before input
into the model.

� The inputs to the model must be relevant and used correctly. For
instance, it is important to know whether the rates must be input as a
percentage, in other words 3 to indicate 3 percent, or whether the
model requires an input of 0.03.

As part of the validation process, it is important to authorize the purpose
for which the yield curve may be used, in other words whether it may be
used for pricing or valuation purposes; which instruments may be valued
with the model; and for which divisions it would be appropriate to use the
specific model.

To ensure model accuracy, a yield curve model can be compared with
yield curves published by an external party. For instance, we can compare
the derived swap curve with one published by a data vendor. It is also
necessary to test the model under various stress scenarios to see whether it
allows for all conceivable situations.

The documentation of all models is very important. It is important to
describe the purpose of the model (valuation, pricing, risk management);
the primary assumptions and limitations; descriptions of any revisions;
data requirements; and details of any back-testing/stress testing that may
have been conducted on the model.

The final step in minimizing model risk is to set a change control procedure
in place. All changes to existing models should be subject to rigorous testing,
and all relevant departments should approve the modifications to the model.

8 . 4 L I Q U I D I T Y  R I S K

Liquidity risk refers to the loss incurred as a result of the inability of an
instrument to trade. When there is more than one instrument available to
derive a curve, the more liquid one is usually chosen, since the resulting
yield curve is more representative of current market interest rates. Typical
indicators of the liquidity of an instrument are:
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� the amount issued (for a bond)
� turnover
� the bid/ask spread.

It is very important to include only those instruments for which prices are
actively quoted in the market by a minimum number of market makers.
Distortions may be caused in the yield curve if the current market price is
not available.

Another indication that an instrument is fairly liquid is when it is both
exchange-traded and available over-the-counter (OTC). These instruments
are usually the more standard ones, with basic documentation that is widely
accepted and understood.

8 . 5 CO N C LU D I N G  R E M A R K S

In Section 8.1 we considered the impact that incorrect yield curves may
have on the measurement of interest rate risk. The problem is that the stress
factors calculated from yield curve moves may be overstated, which means
that we will overestimate the risk of a portfolio. Consider a situation where
the performance of a trader is measured on a risk–return basis. The trader
requires a very high return for the least amount of risk, because then the
performance measure will prove the trader to be effective, and the trader
will receive greater bonuses. If the risk is overestimated on certain posi-
tions, the risk–return measure will lead the trader to not take on more of
these “risky” positions. In short, the incorrect risk measure may have an
effect on the trader’s decisions about which instruments to include in a
portfolio. Using a similar argument, a risk measure that underestimates the
risk will cause the trader’s portfolio to be more risky than expected, which
in turn may lead to great financial losses in times of stress.

We also considered various areas where operational risk and model
risk occur in yield curve models. The major portion of the risk is however
due to model risk, and in Section 8.3.3 we considered ways in which to
minimize model risk.

The issues around liquidity risk are briefly discussed in Section 8.4.
There is a more detailed discussion on how to estimate the liquidity
premium to allow for this risk in Chapter 7.
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