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Building and Using Dynamic Interest Rate Models
Ken Kortanek and Vladimir Medvedev

Structured Equity Derivatives: The Definitive Guide to Exotic Options and Structured Notes
Harry Kat

Advanced Modelling in Finance Using Excel and VBA
Mary Jackson and Mike Staunton

Operational Risk: Measurement and Modelling
Jack King

Interest Rate Modelling
Jessica James and Nick Webber



_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

____________ An Arbitrage Guide to Financial Markets ____________

Robert Dubil



Copyright # 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (þ44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except under the terms of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency
Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of
the Publisher. Requests to the Publisher should be addressed to the Permissions Department,
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,
England, or emailed to permreq@wiley.co.uk, or faxed to (þ44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as
trademarks. All brand names and product names used in this book are trade names, service
marks, trademarks or registered trademarks of their respective owners. The Publisher is not
associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold on the understanding that the Publisher is not engaged
in rendering professional services. If professional advice or other expert assistance is required,
the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Dubil, Robert.
An arbitrage guide to financial markets / Robert Dubil.
p. cm.—(Wiley finance series)
Includes bibliographical references and indexes.
ISBN 0-470-85332-8 (cloth : alk. paper)
1. Investments—Mathematics.. 2. Arbitrage. 3. Risk. I. Title. II. Series.
HG4515.3.D8 2004
332.6—dc22 2004010303

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-85332-8

Project management by Originator, Gt Yarmouth, Norfolk (typeset in 10/12pt Times)
Printed and bound in Great Britain by T.J. International Ltd, Padstow, Cornwall
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

http://www.wileyeurope.com
http://www.wiley.com


To Britt, Elsa, and Ethan





_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

____________________________________________________________________________________________________________________________________________ Contents ____________________________________________________________________________________________________________________________________________

1 The Purpose and Structure of Financial Markets 1

1.1 Overview 1
1.2 Risk sharing 2
1.3 The structure of financial markets 8
1.4 Arbitrage: Pure vs. relative value 12
1.5 Financial institutions: Asset transformers and broker-dealers 16
1.6 Primary and secondary markets 18
1.7 Market players: Hedgers vs. speculators 20
1.8 Preview of the book 22

Part One SPOT 25

2 Financial Math I—Spot 27

2.1 Interest-rate basics 28
Present value 28
Compounding 29
Day-count conventions 30
Rates vs. yields 31

2.2 Zero, coupon and amortizing rates 32
Zero-coupon rates 32
Coupon rates 33
Yield to maturity 35
Amortizing rates 38
Floating-rate bonds 39

2.3 The term structure of interest rates 40
Discounting coupon cash flows with zero rates 42
Constructing the zero curve by bootstrapping 44

2.4 Interest-rate risk 49
Duration 51
Portfolio duration 56



Convexity 57
Other risk measures 58

2.5 Equity markets math 58
A dividend discount model 60
Beware of P/E ratios 63

2.6 Currency markets 64

3 Fixed Income Securities 67

3.1 Money markets 67
U.S. Treasury bills 68
Federal agency discount notes 69
Short-term munis 69
Fed Funds (U.S.) and bank overnight refinancing (Europe) 70
Repos (RPs) 71
Eurodollars and Eurocurrencies 72
Negotiable CDs 74
Bankers’ acceptances (BAs) 74
Commercial paper (CP) 74

3.2 Capital markets: Bonds 79
U.S. government and agency bonds 83
Government bonds in Europe and Asia 86
Corporates 87
Munis 88

3.3 Interest-rate swaps 90
3.4 Mortgage securities 94
3.5 Asset-backed securities 96

4 Equities, Currencies, and Commodities 101

4.1 Equity markets 101
Secondary markets for individual equities in the U.S. 102
Secondary markets for individual equities in Europe and Asia 103
Depositary receipts and cross-listing 104
Stock market trading mechanics 105
Stock indexes 106
Exchange-traded funds (ETFs) 107
Custom baskets 107
The role of secondary equity markets in the economy 108

4.2 Currency markets 109
4.3 Commodity markets 111

5 Spot Relative Value Trades 113

5.1 Fixed-income strategies 113
Zero-coupon stripping and coupon replication 113
Duration-matched trades 116
Example: Bullet–barbell 116
Example: Twos vs. tens 117

viii Contents



Negative convexity in mortgages 118
Spread strategies in corporate bonds 121
Example: Corporate spread widening/narrowing trade 121
Example: Corporate yield curve trades 123
Example: Relative spread trade for high and low grades 124

5.2 Equity portfolio strategies 125
Example: A non-diversified portfolio and benchmarking 126
Example: Sector plays 128

5.3 Spot currency arbitrage 129
5.4 Commodity basis trades 131

Part Two FORWARDS 133

6 Financial Math II—Futures and Forwards 135

6.1 Commodity futures mechanics 138
6.2 Interest-rate futures and forwards 141

Overview 141
Eurocurrency deposits 142
Eurodollar futures 142
Certainty equivalence of ED futures 146
Forward-rate agreements (FRAs) 147
Certainty equivalence of FRAs 149

6.3 Stock index futures 149
Locking in a forward price of the index 150
Fair value of futures 150
Fair value with dividends 152
Single stock futures 153

6.4 Currency forwards and futures 154
Fair value of currency forwards 155
Covered interest-rate parity 156
Currency futures 158

6.5 Convenience assets—backwardation and contango 159
6.6 Commodity futures 161
6.7 Spot–Forward arbitrage in interest rates 162

Synthetic LIBOR forwards 163
Synthetic zeros 164
Floating-rate bonds 165
Synthetic equivalence guaranteed by arbitrage 166

6.8 Constructing the zero curve from forwards 167
6.9 Recovering forwards from the yield curve 170

The valuation of a floating-rate bond 171
Including repo rates in computing forwards 171

6.10 Energy forwards and futures 173

Contents ix



7 Spot–Forward Arbitrage 175

7.1 Currency arbitrage 176
7.2 Stock index arbitrage and program trading 182
7.3 Bond futures arbitrage 187
7.4 Spot–Forward arbitrage in fixed-income markets 189

Zero–Forward trades 189
Coupon–Forward trades 191

7.5 Dynamic hedging with a Euro strip 193
7.6 Dynamic duration hedge 197

8 Swap Markets 199

8.1 Swap-driven finance 199
Fixed-for-fixed currency swap 200
Fixed-for-floating interest-rate swap 203
Off-market swaps 205

8.2 The anatomy of swaps as packages of forwards 207
Fixed-for-fixed currency swap 208
Fixed-for-floating interest-rate swap 209
Other swaps 210
Swap book running 210

8.3 The pricing and hedging of swaps 211
8.4 Swap spread risk 217
8.5 Structured finance 218

Inverse floater 219
Leveraged inverse floater 220
Capped floater 221
Callable 221
Range 222
Index principal swap 222

8.6 Equity swaps 223
8.7 Commodity and other swaps 224
8.8 Swap market statistics 225

Part Three OPTIONS 231

9 Financial Math III—Options 233

9.1 Call and put payoffs at expiry 235
9.2 Composite payoffs at expiry 236

Straddles and strangles 236
Spreads and combinations 237
Binary options 240

9.3 Option values prior to expiry 240
9.4 Options, forwards and risk-sharing 241
9.5 Currency options 242
9.6 Options on non-price variables 243

x Contents



9.7 Binomial options pricing 244
One-step examples 244
A multi-step example 251
Black–Scholes 256
Dividends 257

9.8 Residual risk of options: Volatility 258
Implied volatility 260
Volatility smiles and skews 261

9.9 Interest-rate options, caps, and floors 264
Options on bond prices 265
Caps and floors 265
Relationship to FRAs and swaps 267
An application 268

9.10 Swaptions 269
Options to cancel 270
Relationship to forward swaps 270

9.11 Exotic options 272
Periodic caps 272
Constant maturity options (CMT or CMS) 273
Digitals and ranges 273
Quantos 274

10 Option Arbitrage 275

10.1 Cash-and-carry static arbitrage 275
Borrowing against the box 275
Index arbitrage with options 277
Warrant arbitrage 278

10.2 Running an option book: Volatility arbitrage 279
Hedging with options on the same underlying 279
Volatility skew 282
Options with different maturities 284

10.3 Portfolios of options on different underlyings 284
Index volatility vs. individual stocks 285
Interest-rate caps and floors 286
Caps and swaptions 287
Explicit correlation bets 288

10.4 Options spanning asset classes 289
Convertible bonds 289
Quantos and dual-currency bonds with fixed conversion rates 290
Dual-currency callable bonds 291

10.5 Option-adjusted spread (OAS) 291
10.6 Insurance 292

Long-dated commodity options 293
Options on energy prices 294
Options on economic variables 294
A final word 294

Contents xi



Appendix CREDIT RISK 295

11 Default Risk (Financial Math IV) and Credit Derivatives 297

11.1 A constant default probability model 298
11.2 A credit migration model 300
11.3 Alternative models 301
11.4 Credit exposure calculations for derivatives 302
11.5 Credit derivatives 305

Basics 306
Credit default swap 306
Total-rate-of-return swap 307
Credit-linked note 308
Credit spread options 308

11.6 Implicit credit arbitrage plays 310
Credit arbitrage with swaps 310
Callable bonds 310

11.7 Corporate bond trading 310

Index 313

xii Contents



___________________________________________________________________________________________________________________________________________________________________________ 1 __________________________________________________________________________________________________________________________________________________________________________

The Purpose and Structure of

________________________________________________________________________________________________________ Financial Markets ________________________________________________________________________________________________________

1.1 OVERVIEW

Financial markets play a major role in allocating wealth and excess savings to produc-
tive ventures in the global economy. This extremely desirable process takes on various
forms. Commercial banks solicit depositors’ funds in order to lend them out to busi-
nesses that invest in manufacturing and services or to home buyers who finance new
construction or redevelopment. Investment banks bring to market offerings of equity
and debt from newly formed or expanding corporations. Governments issue short- and
long-term bonds to finance construction of new roads, schools, and transportation net-
works. Investors—bank depositors and securities buyers—supply their funds in order to
shift their consumption into the future by earning interest, dividends, and capital gains.
The process of transferring savings into investment involves various market

participants: individuals, pension and mutual funds, banks, governments, insurance
companies, industrial corporations, stock exchanges, over-the-counter dealer networks,
and others. All these agents can at different times serve as demanders and suppliers of
funds, and as transfer facilitators.
Economic theorists design optimal securities and institutions to make the process of

transferring savings into investment most efficient. ‘‘Efficient’’ means to produce the
best outcomes—lowest cost, least disputes, fastest, etc.—from the perspective of secur-
ity issuers and investors, as well as for society as a whole. We start this book by
addressing briefly some fundamental questions about today’s financial markets. Why
do we have things like stocks, bonds, or mortgage-backed securities? Are they outcomes
of optimal design or happenstance? Do we really need ‘‘greedy’’ investment bankers,
securities dealers, or brokers soliciting us by phone to purchase unit trusts or mutual
funds? What role do financial exchanges play in today’s economy? Why do developing
nations strive to establish stock exchanges even though often they do not have any
stocks to trade on them?
Once we have basic answers to these questions, it will not be difficult to see why

almost all the financial markets are organically the same. Like automobiles made by
Toyota and Volkswagen which all have an engine, four wheels, a radiator, a steering
wheel, etc., all interacting in a predetermined way, all markets, whether for stocks,
bonds, commodities, currencies, or any other claims to purchasing power, are built
from the same basic elements.
All markets have two separate segments: original-issue and resale. These are

characterized by different buyers and sellers, and different intermediaries. They
perform different timing functions. The first transfers capital from the suppliers of
funds (investors) to the demanders of capital (businesses). The second transfers
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capital from the suppliers of capital (investors) to other suppliers of capital (investors).
The original-issue and resale segments are formally referred to as:

. Primary markets (issuer-to-investor transactions with investment banks as inter-
mediaries in the securities markets, and banks, insurance companies, and others in
the loan markets).

. Secondary markets (investor-to-investor transactions with broker-dealers and ex-
changes as intermediaries in the securities markets, and mostly banks in the loan
markets).

Secondary markets play a critical role in allowing investors in the primary markets to
transfer the risks of their investments to other market participants.

All markets have the originators, or issuers, of the claims traded in them (the original
demanders of funds) and two distinctive groups of agents operating as investors, or
suppliers of funds. The two groups of funds suppliers have completely divergent
motives. The first group aims to eliminate any undesirable risks of the traded assets
and earn money on repackaging risks, the other actively seeks to take on those risks in
exchange for uncertain compensation. The two groups are:

. Hedgers (dealers who aim to offset primary risks, be left with short-term or second-
ary risks, and earn spread from dealing).

. Speculators (investors who hold positions for longer periods without simultaneously
holding positions that offset primary risks).

The claims traded in all financial markets can be delivered in three ways. The first is an
immediate exchange of an asset for cash. The second is an agreement on the price to be
paid with the exchange taking place at a predetermined time in the future. The last is a
delivery in the future contingent on an outcome of a financial event (e.g., level of stock
price or interest rate), with a fee paid upfront for the right of delivery. The three market
segments based on the delivery type are:

. Spot or cash markets (immediate delivery).

. Forwards markets (mandatory future delivery or settlement).

. Options markets (contingent future delivery or settlement).

We focus on these structural distinctions to bring out the fact that all markets not only
transfer funds from suppliers to users, but also risk from users to suppliers. They allow
risk transfer or risk sharing between investors. The majority of the trading activity in
today’s market is motivated by risk transfer with the acquirer of risk receiving some
form of sure or contingent compensation. The relative price of risk in the market is
governed by a web of relatively simple arbitrage relationships that link all the markets.
These allow market participants to assess instantaneously the relative attractiveness of
various investments within each market segment or across all of them. Understanding
these relationships is mandatory for anyone trying to make sense of the vast and
complex web of today’s markets.

1.2 RISK SHARING

All financial contracts, whether in the form of securities or not, can be viewed as
bundles, or packages of unit payoff claims (mini-contracts), each for a specific date
in the future and a specific set of outcomes. In financial economics, these are referred to
as state-contingent claims.



Let us start with the simplest illustration: an insurance contract. A 1-year life insur-
ance policy promising to pay $1,000,000 in the event of the insured’s death can be
viewed as a package of 365 daily claims (lottery tickets), each paying $1,000,000 if
the holder dies on that day. The value of the policy upfront (the premium) is equal
to the sum of the values of all the individual tickets. As the holder of the policy goes
through the year, he can discard tickets that did not pay off, and the value of the policy
to him diminishes until it reaches zero at the end of the coverage period.
Let us apply the concept of state-contingent claims to known securities. Suppose you

buy one share of XYZ SA stock currently trading at c¼ 45 per share. You intend to hold
the share for 2 years. To simplify things, we assume that the stock trades in increments
of c¼ 0.05 (tick size). The minimum price is c¼ 0.00 (a limited liability company cannot
have a negative value) and the maximum price is c¼ 500.00. The share of XYZ SA can be
viewed as a package of claims. Each claim represents a contingent cash flow from
selling the share for a particular price at a particular date and time in the future. We
can arrange the potential price levels from c¼ 0.00 to c¼ 500.00 in increments of c¼ 0.05 to
have overall 10,001 price levels. We arrange the dates from today to 2 years from today
(our holding horizon). Overall we have 730 dates. The stock is equivalent to
10,001� 730, or 7,300,730 claims. The easiest way to imagine this set of claims is as
a rectangular chessboard where on the horizontal axis we have time and on the vertical
the potential values the stock can take on (states of nature). The price of the stock today
is equal to the sum of the values of all the claims (i.e., all the squares of the chessboard).
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Table 1.1 Stock held for 2 years as a chessboard of contingent claims in two dimensions: time
(days 1 through 730) and prices (0.00 through 500.00)

500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00
499.95 499.95 499.95 499.95 499.95 499.95 499.95 499.95
499.90 499.90 499.90 499.90 499.90 499.90 499.90 499.90
499.85 499.85 499.85 499.85 499.85 499.85 499.85 499.85

. . .
60.35 60.35 60.35 60.35 60.35 60.35 60.35 60.35
60.30 60.30 60.30 60.30 60.30 60.30 60.30 60.30
60.25 60.25 60.25 60.25 60.25 60.25 60.25 60.25
60.20 60.20 60.20 60.20 60.20 60.20 60.20 60.20
60.15 60.15 60.15 60.15 60.15 60.15 60.15 60.15
60.10 60.10 . . . 60.10 60.10 60.10 . . . 60.10 60.10 60.10
60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 Stock
60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 price
59.95 59.95 59.95 59.95 59.95 59.95 59.95 59.95 S
59.90 59.90 59.90 59.90 59.90 59.90 59.90 59.90
59.85 59.85 59.85 59.85 59.85 59.85 59.85 59.85
59.80 59.80 59.80 59.80 59.80 59.80 59.80 59.80

. . .
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 2 . . . 364 365 366 . . . 729 730

Days



A forward contract on XYZ SA’s stock can be viewed as a subset of this rectangle.
Suppose we enter into a contract today to purchase the stock 1 year from today for
c¼ 60. We intend to hold the stock for 1 year after that. The forward can be viewed as
10,001� 365 rectangle with the first 365 days’ worth of claims taken out (i.e., we are left
with the latter 365 columns of the board, the first 365 are taken out). The cash flow of
each claim is equal to the difference between the stock price for that state of nature and
the contract price of c¼ 60. A forward carries an obligation on both sides of the contract
so some claims will have a positive value (stock is above c¼ 60) and some negative (stock
is below c¼ 60).
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Table 1.2 One-year forward buy at c¼ 60 of stock as a chessboard of contingent claims. Payoff in
cells is equal to S � 60 for year 2. No payoff in year 1

0.00 0.00 0.00 0.00 440.00 440.00 440.00 500.00
0.00 0.00 0.00 0.00 439.95 439.95 439.95 499.95
0.00 0.00 0.00 0.00 439.90 439.90 439.90 499.90
0.00 0.00 0.00 0.00 439.85 439.85 439.85 499.85

0.00 0.00 0.00 0.00 0.35 0.35 0.35 60.35
0.00 0.00 0.00 0.00 0.30 0.30 0.30 60.30
0.00 0.00 0.00 0.00 0.25 0.25 0.25 60.25
0.00 0.00 0.00 0.00 0.20 0.20 0.20 60.20
0.00 0.00 0.00 0.00 0.15 0.15 0.15 60.15
0.00 0.00 . . . 0.00 0.00 0.10 . . . 0.10 0.10 60.10
0.00 0.00 0.00 0.00 0.05 0.05 0.05 60.05 Stock
0.00 0.00 0.00 0.00 0.00 0.00 0.00 60.00 price
0.00 0.00 0.00 0.00 �0.05 �0.05 �0.05 59.95 S
0.00 0.00 0.00 0.00 �0.10 �0.10 �0.10 59.90
0.00 0.00 0.00 0.00 �0.15 �0.15 �0.15 59.85
0.00 0.00 0.00 0.00 �0.20 �0.20 �0.20 59.80

0.00 0.00 0.00 0.00 �59.55 �59.55 �59.55 0.45
0.00 0.00 0.00 0.00 �59.60 �59.60 �59.60 0.40
0.00 0.00 0.00 0.00 �59.65 �59.65 �59.65 0.35
0.00 0.00 0.00 0.00 �59.70 . . . �59.70 �59.70 0.30
0.00 0.00 0.00 0.00 �59.75 �59.75 �59.75 0.25
0.00 0.00 0.00 0.00 �59.80 �59.80 �59.80 0.20
0.00 0.00 0.00 0.00 �59.85 �59.85 �59.85 0.15
0.00 0.00 0.00 0.00 �59.90 �59.90 �59.90 0.10
0.00 0.00 0.00 0.00 �59.95 �59.95 �59.95 0.05
0.00 0.00 0.00 0.00 �60.00 �60.00 �60.00 0.00

1 2 . . . 364 365 366 . . . 729 730

Days



An American call option contract to buy XYZ SA’s shares for c¼ 60 with an expiry 2
years from today (exercised only if the stock is above c¼ 60) can be represented as a
8,800� 730 subset of our original rectangular 10,001� 730 chessboard. This time, the
squares corresponding to the stock prices of c¼ 60 or below are eliminated, because they
have no value. The payoff of each claim is equal to the intrinsic (exercise) value of the
call. As we will see later, the price of each claim today is equal to at least that.
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Table 1.3 American call struck at c¼ 60 as a chessboard of contingent claims. Expiry 2 years.
Payoff in cells is equal to S � 60 if S > 60

440.00 440.00 440.00 440.00 440.00 440.00 440.00 500.00
439.95 439.95 439.95 439.95 439.95 439.95 439.95 499.95
439.90 439.90 439.90 439.90 439.90 439.90 439.90 499.90
439.85 439.85 439.85 439.85 439.85 439.85 439.85 499.85

0.35 0.35 0.35 0.35 0.35 0.35 0.35 60.35
0.30 0.30 0.30 0.30 0.30 0.30 0.30 60.30
0.25 0.25 0.25 0.25 0.25 0.25 0.25 60.25
0.20 0.20 0.20 0.20 0.20 0.20 0.20 60.20
0.15 0.15 0.15 0.15 0.15 0.15 0.15 60.15
0.10 0.10 . . . 0.10 0.10 0.10 . . . 0.10 0.10 60.10
0.05 0.05 0.05 0.05 0.05 0.05 0.05 60.05 Stock
0.00 0.00 0.00 0.00 0.00 0.00 0.00 60.00 Price
0.00 0.00 0.00 0.00 0.00 0.00 0.00 59.95 S
0.00 0.00 0.00 0.00 0.00 0.00 0.00 59.90
0.00 0.00 0.00 0.00 0.00 0.00 0.00 59.85
0.00 0.00 0.00 0.00 0.00 0.00 0.00 59.80

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.45
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40
0.00 0.00 0.00 0.00 0.00 . . . 0.00 0.00 0.35
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 2 . . . 364 365 366 . . . 729 730

Days



Spot securities (Chapters 2–5), forwards (Chapters 6–8), and options (Chapters 9–10)
are discussed in detail in subsequent chapters. Here we briefly touch on the valuation of
securities and state-contingent claims. The fundamental tenet of the valuation is that if
we can value each claim (chessboard square) or small sets of claims (entire sections of
the chessboard) in the package, then we can value the package as a whole. Conversely,
if we can value a package, then often we are able to value smaller subsets of claims
(through a ‘‘subtraction’’). In addition, we are sometimes able to combine very dis-
parate sets of claims (stocks and bonds) to form complex securities (e.g., convertible
bonds). By knowing the value of the combination, we can infer the value of a subset
(bullet bond).

In general, the value of a contingent claim does not stay constant over time. If the
holder of the life insurance becomes sick during the year and the likelihood of his death
increases, then likely the value of all claims increases. In the stock example, as informa-
tion about the company’s earnings prospects reaches the market, the price of the claims
changes. Not all the claims in the package have to change in value by the same amount.
An improvement in the earnings prospects for the company may be only short term.
The policyholder’s likelihood of death may increase for all the days immediately
following his illness, but not for more distant dates. The prices of the individual
claims fluctuate over time, and so does the value of the entire bundle. However, at
any given moment of time, given all information available as of that moment, the sum
of the values of the claims must be equal to the value of the package, the insurance
policy, or the stock. We always restrict the valuation effort to here and now, knowing
that we will have to repeat the exercise an instant later.

Let us fix the time to see what assumptions we can make about some of the claims in
the package. In the insurance policy example, we may surmise that the value of the
claims for far-out dates is greater than that for near dates, given that the patient is alive
and well now, and, barring an accident, he is relatively more likely to take time to
develop a life-threatening condition. In the stock example, we assigned the value of c¼ 0
to all claims in states with stock exceeding c¼ 500 over the next 2 years, as the likelihood
of reaching these price levels is almost zero. We often assign the value of zero to claims
for far dates (e.g., beyond 100 years), since the present value of those payoffs, even if
they are large, is close to zero. We reduce a numerically infinite problem to a finite one.
We cap the potential states under consideration, future dates, and times.

A good valuation model has to strive to make the values of the claims in a package
independent of each other. In our life insurance policy example, the payoff depends on
the person dying on that day and not on whether the person is dead or alive on a given
day. In that setup, only one claim out of the whole set will pay. If we modeled the
payoff to depend on being dead and not dying, all the claims after the morbid event
date would have positive prices and would be contingent on each other. Sometimes,
however, even with the best of efforts, it may be impossible to model the claims in a
package as independent. If a payoff at a later date depends on whether the stock
reached some level at an earlier date, the later claim’s value depends on the prior
one. A mortgage bond’s payoff at a later date depends on whether the mortgage has
not already been prepaid. This is referred to as a survival or path-dependence problem.
Our imaginary, two-dimensional chessboards cannot handle path dependence and
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we ignore this dimension of risk throughout the book as it adds very little to our
discussion.
Let us turn to the definition of risk sharing:

Definition Risk sharing is a sale, explicit or through a side contract, of all or some of
the state-contingent claims in the package to another party.

In real life, risk sharing takes on many forms. The owner of the XYZ share may decide
to sell a covered call on the stock (see Chapter 10). If he sells an American-style call
struck at c¼ 60 with an expiry date of 2 years from today, he gives the buyer the right to
purchase the share at c¼ 60 from him even if XYZ trades higher in the market (e.g., at
c¼ 75). The covered call seller is choosing to cap his potential payoff from the stock at
c¼ 60 in exchange for an upfront fee (option premium) he receives. This is the same as
exchanging the squares corresponding to price levels above c¼ 60 (with values between
c¼ 60 and c¼ 500) for squares with a flat payoff of c¼ 60.
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Table 1.4 Stock plus short American call struck at c¼ 60 as a chessboard of contingent claims.
Payoff in cells is equal to 60 if S > 60 and to S if S < 60

60.00 60.00 60.00 60.00 60.00 60.00 60.00 500.00
60.00 60.00 60.00 60.00 60.00 60.00 60.00 499.95
60.00 60.00 60.00 60.00 60.00 60.00 60.00 499.90
60.00 60.00 60.00 60.00 60.00 60.00 60.00 499.85

. . .

60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.35
60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.30
60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.25
60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.20
60.00 60.00 . . . 60.00 60.00 60.00 . . . 60.00 60.00 60.15
60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.05 Stock
60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 price
59.95 59.95 59.95 59.95 59.95 59.95 59.95 59.95 S
59.90 59.90 59.90 59.90 59.90 59.90 59.90 59.90
59.85 59.85 59.85 59.85 59.85 59.85 59.85 59.85
59.80 59.80 59.80 59.80 59.80 59.80 59.80 59.80

. . . . . . . . .

0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.30 0.30 0.30 0.30 0.30 . . . 0.30 0.30 0.30
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 2 . . . 364 365 366 . . . 729 730

Days



Another example of risk sharing can be a hedge of a corporate bond with a risk-free
government bond. A hedge is a sale of a package of state-contingent claims against a
primary position which eliminates all the essential risk of that position. Only a sale of a
security that is identical in all aspects to the primary position can eliminate all the risk.
A hedge always leaves some risk unhedged ! Let us examine a very common hedge of a
corporate with a government bond. An institutional trader purchases a 10-year 5%
coupon bond issued by XYZ Corp. In an effort to eliminate interest rate risk, the trader
simultaneously shorts a 10-year 4.5% coupon government bond. The size of the short
is duration-matched to the principal amount of the corporate bond. As Chapter 5
explains, this guarantees that for small parallel movements in the interest rates, the
changes in the values of the two positions are identical but opposite in sign. If interest
rates rise, the loss on the corporate bond holding will be offset by the gain on the
shorted government bond. If interest rates decline, the gain on the corporate bond
will be offset by the loss on the government bond. The trader, in effect, speculates
that the credit spread on the corporate bond will decline. Irrespective of whether
interest rates rise or fall, whenever the XYZ credit spread declines, the trader gains
since the corporate bond’s price goes up more or goes down less than that of the
government bond. Whenever the credit standing of XYZ worsens and the spread
rises, the trader suffers a loss. The corporate bond is exposed over time to two dimen-
sions of risk: interest rates and corporate spread. Our chessboard representing the
corporate bond becomes a large rectangular cube with time, interest rate, and credit
spread as dimensions. The government bond hedge eliminates all potential payoffs
along the interest rate axis, reducing the cube to a plane, with only time and credit
spread as dimensions. Practically any hedge position discussed in this book can be
thought of in the context of a multi-dimensional cube defined by time and risk axes.
The hedge eliminates a dimension or a subspace from the cube.

Interest-rate
level

S
p
re
a
d

Time

Figure 1.1 Reduction of one risk dimension through a hedge. Corporate hedged with a
government.

1.3 THE STRUCTURE OF FINANCIAL MARKETS

Most people view financial markets like a Saturday bazaar. Buyers spend their cash to
acquire paper claims on future earnings, coupon interest, or insurance payouts. If they
buy good claims, their value goes up and they can sell them for more; if they buy bad
ones, their value goes down and they lose money.
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When probed a little more on how markets are structured, most finance and econom-
ics professionals provide a seemingly more complete description, adding detail about
who buys and sells what and why in each market. The respondent is likely to inform us
that businesses need funds in various forms of equity and debt. They issue stock, lease-
and asset-backed bonds, unsecured debentures, sell short-term commercial paper, or
rely on bank loans. Issuers get the needed funds in exchange for a promise to pay
interest payments or dividends in the future. The legal claims on business assets are
purchased by investors, individual and institutional, who spend cash today to get more
cash in the future (i.e., they invest). Securities are also bought and sold by governments,
banks, real estate investment trusts, leasing companies, and others. The cash-for-paper
exchanges are immediate. Investors who want to leverage themselves can borrow cash
to buy more securities, but through that they themselves become issuers of broker or
bank loans. Both issuers and investors live and die with the markets. When stock prices
increase, investors who have bought stocks gain; when stock prices decline, they lose.
New investors have to ‘‘buy high’’ when share prices rise, but can ‘‘buy low’’ when
share prices decline. The decline benefits past issuers who ‘‘sold high’’. The rise hurts
them since they got little money for the previously sold stock and now have to deliver
good earnings. In fixed income markets, when interest rates fall, investors gain as the
value of debt obligations they hold increases. The issuers suffer as the rates they pay on
the existing obligations are higher than the going cost of money. When interest rates
rise, investors lose as the value of debt obligations they hold decreases. The issuers
gain as the rates they pay on the existing obligations are lower than the going cost of
money.
In this view of the markets, both sides—the issuers and the investors—speculate on

the direction of the markets. In a sense, the word investment is a euphemism for
speculation. The direction of the market given the position held determines whether
the investment turns out good or bad. Most of the time, current issuers and investors
hold opposite positions (long vs. short): when investors gain, issuers lose, and vice
versa. Current and new participants may also have opposite interests. When equities
rise or interest rates fall, existing investors gain and existing issuers lose, but new
investors suffer and new issuers gain.
The investor is exposed to market forces as long as he holds the security. He can

enhance or mitigate his exposure, or risk, by concentrating or diversifying the types of
assets held. An equity investor may hold shares of companies from different industrial
sectors. A pension fund may hold some positions in domestic equities and some
positions in domestic and foreign bonds to allocate risk exposure to stocks, interest
rates, and currencies. The risk is ‘‘good’’ or ‘‘bad’’ depending on whether the investor is
long or short on exposure. An investor who has shorted a stock gains when the share
price declines. A homeowner with an adjustable mortgage gains when interest rates
decline (he is short interest rates) as the rate he pays resets lower, while a homeowner
with a fixed mortgage loses as he is ‘‘stuck’’ paying a high rate (he is long interest rates).
While this standard description of the financial markets appears to be very compre-

hensive, it is rather like a two-dimensional portrait of a multi-dimensional object. The
missing dimension here is the time of delivery. The standard view focuses exclusively on
spot markets. Investors purchase securities from issuers or other investors and pay for
them at the time of the purchase. They modify the risks the purchased investments
expose them to by diversifying their portfolios or holding shorts against longs in the
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same or similar assets. Most tend to be speculators as the universe of hedge securities
they face is fairly limited.

Let us introduce the time of delivery into this picture. That is, let us relax the
assumption that all trades (i.e., exchanges of securities for cash) are immediate. Con-
sider an equity investor who agrees today to buy a stock for a certain market price, but
will deliver cash and receive the stock 1 year from today. The investor is entering into a
forward buy transaction. His risk profile is drastically different from that of a spot
buyer. Like the spot stock buyer, he is exposed to the price of the stock, but his
exposure does not start till 1 year from now. He does not care if the stock drops in
value as long as it recovers by the delivery date. He also does not benefit from the
temporary appreciation of the stock compared with the spot buyer who could sell the
stock immediately. In our time-risk chessboard with time and stock price on the axes,
the forward buy looks like a spot buy with a subplane demarcated by today and 1 year
from today taken out. If we ignore the time value of money, the area above the current
price line corresponds to ‘‘good’’ risk (i.e., a gain), and the area below to ‘‘bad’’ risk
(i.e., a loss). A forward sell would cover the same subplane, but the ‘‘good’’ and the
‘‘bad’’ areas would be reversed.

Market participants can buy and sell not just spot but also forward. For the purpose
of our discussion, it does not matter if, at the future delivery time, what takes place is an
actual exchange of securities for cash or just a mark-to-market settlement in cash (see
Chapter 6). If the stock is trading at c¼ 75 in the spot market, whether the parties to a
prior c¼ 60 forward transaction exchange cash (c¼ 60) for stock (one share) or simply
settle the difference in value with a payment of c¼ 15 is quite irrelevant, as long as the
stock is liquid enough so that it can be sold for c¼ 75 without any loss. Also, for our
purposes, futures contracts can be treated as identical to forwards, even though they
involve a daily settlement regimen and may never result in the physical delivery of the
underlying commodity or stock basket.

Let us now further complicate the standard view of the markets by introducing the
concept of contingent delivery time. A trade, or an exchange of a security for cash,
agreed on today is not only delayed into the future, but is also made contingent on a
future event. The simplest example is an insurance contract. The payment of a benefit
on a $1,000,000 life insurance policy takes place only on the death of the insured
person. The amount of the benefit is agreed on and fixed upfront between the policy-
holder and the issuing company. It can be increased only if the policyholder pays
additional premium. Hazard insurance (fire, auto, flood) is slightly different from life
in that the amount of the benefit depends on the ‘‘size’’ of the future event. The greater
the damage is, the greater the payment is. An option contract is very similar to a hazard
insurance policy. The amount of the benefit follows a specific formula that depends on
the value of the underlying financial variable in the future (see Chapters 9–10). For
example, a put option on the S&P 100 index traded on an exchange in Chicago pays the
difference between the selected strike and the value of the index at some future date,
times $100 per point, but only if the index goes down below that strike price level. The
buyer thus insures himself against the index going down and the more the index goes
down the more benefit he obtains from his put option, just as if he held a fire insurance
policy. Another example is a cap on an interest rate index that provides the holder with
a periodic payment every time the underlying interest rate goes above a certain level.
Borrowers use caps to protect themselves against interest rate hikes.
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Options are used not only for obtaining protection, which is only one form of risk
sharing, but also for risk taking (i.e., providing specific risk protection for upfront
compensation). A bank borrower relying on a revolving credit line with an interest
rate defined as some spread over the U.S. prime rate or the 3-month c¼ -LIBOR (London
interbank offered rate) rate can sell floors to offset the cost of the borrowing. When the
index rate goes down, he is required to make periodic payments to the floor buyer
which depends on the magnitude of the interest rate decline. He willingly accepts that
risk because, when rates go down and he has to make the floor payments, the interest he
is charged on the revolving loan also declines. In effect, he fixes his minimum borrowing
rate in exchange for an upfront premium receipt.
Options are not the only packages of contingent claims traded in today’s markets. In

fact, the feature of contingent delivery is embedded in many commonly traded secur-
ities. Buyers of convertible bonds exchange their bonds for shares when interest rates
and/or stock prices are high, making the post-conversion equity value higher than the
present value of the remaining interest on the unconverted bond. Issuers call their
outstanding callable bonds when interest rates decline below a level at which the
value of those bonds is higher than the call price. Adjustable mortgages typically
contain periodic caps that prevent the interest rate and thus the monthly payment
charged to the homeowner from changing too rapidly from period to period. Many
bonds have credit covenants attached to them which require the issuing company to
maintain certain financial ratios, and non-compliance triggers automatic repayment or
default. Car lease agreements give the lessees the right to purchase the automobile at the
end of the lease period for a pre-specified residual value. Lessees sometimes exercise
those rights when the residual value is sufficiently lower than the market price of the
vehicle. In many countries, including the U.S., homeowners with fixed-rate mortgages
can prepay their loans partially or fully at any time without penalty. This feature allows
homeowners to refinance their loans with new ones when interest rates drop by a
significant enough margin. The cash flows from the original fixed-rate loans are thus
contingent on interest rates staying high. Other examples abound.
The key to understanding these types of securities is the ability to break them down

into simpler components: spot, forward, and contingent delivery. These components
may trade separately in the institutional markets, but they are most likely bundled
together for retail customers or original (primary market) acquirers. Not uncommonly,
they are unbundled and rebundled several times during their lives.

Proposition All financial markets evolve to have three structural components: the
market for spot securities, the market for forwards and futures, and the contingent
securities market which includes options and other derivatives.

All financial markets eventually evolve to have activity in three areas: spot trading for
immediate delivery, trading with forward delivery, and trading with contingent forward
delivery. Most of the activity of the last two forms is reserved for large institutions
which is why most people are unaware of them. Yet their existence is necessary for the
smooth functioning of the spot markets. The trading for forward and contingent
forward delivery allows dynamic risk sharing for holders of cash securities who trade
in and out of contracts tied to different dates and future uncertain events. This risk
sharing activity, by signaling the constantly changing price of risk, in turn facilitates the
flow of the fundamental information that determines the ‘‘bundled’’ value of the spot
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securities. In a way, the spot securities that we are all familiar with are the most
complicated ones from the informational content perspective. Their value reflects all
available information about the financial prospects of the entity that issued them and
expectations about the broad market, and is equal to the sum of the values of all state-
contingent claims that can be viewed as informational units. The value of forwards and
option-like contracts is tied to more narrow information subsets. These contracts have
an expiry date that is short relative to the underlying security and are tailored to specific
dimension of risk. Their existence allows the unbundling of the information contained
in the spot security. This function is extremely desirable to holders of cash assets as it
offers them a way to sell off undesirable risks and acquire desirable ones at various
points in time. If you own a bond issued by a tobacco company, you may be worried
that legal proceedings against the company may adversely affect the credit spread and
thus the value of the bond you hold. You could sell the bond spot and repurchase it
forward with the contract date set far into the future. You could purchase a spread-
related option or a put option on the bond, or you could sell calls on the bond. All of
these activities would allow you to share the risks of the bond with another party to
tailor the duration of the risk sharing to your needs.

1.4 ARBITRAGE: PURE VS. RELATIVE VALUE

In this section, we introduce the notion of relative value arbitrage which drives the
trading behavior of financial firms irrespective of the market they are engaged in.
Relative arbitrage takes the concept of pure arbitrage beyond its technical definition
of riskless profit. In it, all primary market risks are eliminated, but some secondary
market exposures are deliberately left unhedged.

Arbitrage is defined in most textbooks as riskless, instantaneous profit. It occurs
when the law of one price, which states that the same item cannot sell at two different
prices at the same time, is violated. The same stock cannot trade for one price at one
exchange and for a different price at another unless there are fees, taxes, etc. If it does,
traders will buy it on the exchange where it sells for less and sell it on the one where it
sells for more. Buying Czech korunas for British pounds cannot be more or less
expensive than buying dollars for pounds and using dollars to buy korunas. If one
can get more korunas for pounds by buying dollars first, no one will buy korunas for
pounds directly. On top of that, anyone with access to both markets will convert
pounds into korunas via dollars and sell korunas back directly for pounds to realize
an instantaneous and riskless profit. This strategy is a very simple example of pure
arbitrage in the spot currency markets. More complicated pure arbitrage involves
forward and contingent markets. It can take a static form, where the trade is put on
at the outset and liquidated once at a future date (e.g., trading forward rate agreements
against spot LIBORs for two different terms, see Chapter 6), or a dynamic one, in which
the trader commits to a series of steps that eliminate all directional market risks and
ensures virtually riskless profit on completion of these steps. For example, a bond
dealer purchases a callable bond from the issuer, buys a swaption from a third party
to offset the call risk, and delta-hedges the rate risk by shorting some bullet swaps. He
guarantees himself a riskless profit provided that neither the issuer nor the swaption
seller defaults. Later chapters abound in detailed examples of both static and dynamic
arbitrage.
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Definition Pure arbitrage is defined as generating riskless profit today by statically or
dynamically matching current and future obligations to exactly offset each, inclusive of
incurring known financing costs.

Not surprisingly, opportunities for pure arbitrage in today’s ultra-sophisticated
markets are limited. Most institutions’ money-making activities rely on the principle
of relative value arbitrage. Hedge funds and proprietary trading desks of large financial
firms, commonly referred to as arb desks, employ extensively relative arbitrage tech-
niques. Relative value arbitrage consists of a broadly defined hedge in which a close
substitute for a particular risk dimension of the primary security is found and the law of
one price is applied as if the substitute was a perfect match. Typically, the position in
the substitute is opposite to that in the primary security in order to offset the most
significant or unwanted risk inherent in the primary security. Other risks are left
purposely unhedged, but if the substitute is well chosen, they are controllable (except
in highly leveraged positions). Like pure arbitrage, relative arbitrage can be both static
and dynamic. Let us consider examples of static relative arbitrage.
Suppose you buy $100 million of the 30-year U.S. government bond. At the same

time you sell (short) $102 million of the 26-year bond. The amounts $100 and $102 are
chosen through ‘‘duration matching’’ (see Chapters 2 and 5) which ensures that when
interest rates go up or down by a few basis points the gains on one position exactly
offset the losses on the other. The only way the combined position makes or loses
money is when interest rates do not change in parallel (i.e., the 30-year rates change
by more or less than the 26-year rates). The combined position is not risk-free; it is
speculative, but only in a secondary risk factor. Investors hardly distinguish between
30- and 26-year rates; they worry about the overall level of rates. The two rates tend to
move closely together. The relative arbitrageur bets that they will diverge.
The bulk of swap trading in the world (Chapter 8) relies on static relative arbitrage.

An interest rate swap dealer agrees to pay a fixed coupon stream to a corporate cus-
tomer, himself an issuer of a fixed-rate bond. The dealer hedges by buying a fixed
coupon government bond. He eliminates any exposure to interest rate movements as
coupon receipts from the government bond offset the swap payments, but is left with
swap spread risk. If the credit quality of the issuer deteriorates, the swap becomes
‘‘unfair’’ and the combined position has a negative present value to the dealer.
Dynamic relative arbitrage is slightly more complicated in that the hedge must be

rebalanced continuously according to very specific computable rules. A seller of a 3-
year over-the-counter (OTC) equity call may hedge by buying 3- and 6-month calls on
the exchange and shorting some of the stock. He then must rebalance the number of
shares he is short on a daily basis as the price of those shares fluctuates. This so-called
delta hedge (see Chapters 9–10) eliminates exposure to the price risk. The main
unhedged exposure is to the implied volatility differences between the options sold
and bought. In the preceding static swap example, the swap dealer may elect not to
match the cash flows exactly on each swap he enters into; instead, he may take positions
in a small number of ‘‘benchmark’’ bonds in order to offset the cash flows in bulk. This
shortcut, however, will require him to dynamically rebalance the portfolio of bonds.
This book explains the functioning of financial markets by bringing out pure and

relative value arbitrage linkages between different market segments. Our examples
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appear complicated as they involve futures, options, and other derivatives, but they all
rely on the same simple principle of seeking profit through selective risk elimination.

Definition Relative value arbitrage is defined as generating profit today by statically or
dynamically matching current and future obligations to nearly offset each other, net of
incurring closely estimable financing costs.

To an untrained eye, the difference between relative value arbitrage and speculation is
tenuous; to a professional, the two are easily discernible. A popular equity trading
strategy called pairs trading (see Chapter 5) is a good case in point. The strategy of
buying Pfizer (PFE) stock and selling GlaxoSmithKline (GSK) is pure speculation. One
can argue that both companies are in pharmaceuticals, both are large, and both with
similar R&D budgets and new drug pipelines. The specific risks of the two companies,
however, are quite different and they cannot be considered close substitutes. Buying
Polish zlotys with British pounds and selling Czech korunas for British pounds is also
an example of speculation, not of relative value arbitrage. Polish zlotys and Czech
korunas are not close substitutes. An in-between case, but clearly on the speculative
side, is called a basis trade. An airline needing to lock in the future prices of jet fuel,
instead of entering into a long-term contract with a refiner, buys a series of crude oil
futures, the idea being that supply shocks that cause oil prices to rise affect jet fuel in the
same way. When prices increase, the airline pays higher prices for jet fuel, but profits
from oil futures offset those increases, leaving the total cost of acquiring jet fuel
unchanged. Buying oil futures is appealing as it allows liquidating the protection
scheme when prices decline instead of rising or getting out halfway through an increase.
This trade is not uncommon, but it exposes the airline to the basis risk. When supply
shocks take place at the refinery level not the oil delivery level, spot jet fuel prices may
increase more rapidly than crude oil futures.

Most derivatives dealers espouse the relative value arbitrage principle. They sell
options and at the same time buy or sell the underlying stocks, bonds, or mortgages
in the right proportions to exactly offset the value changes of the sold option and the
position in the underlying financial asset. Their lives are, however, quite complicated in
that they have to repeat the exercise every day as long as the options they sold are alive,
even if they do not sell additional options. This is because the appropriate proportions
of the underlyings they need to buy or sell change every day. These proportions or
hedge ratios depend on changing market factors. It is these market factors that are the
secondary risks the dealers are exposed to. The dynamic rebalancing of the positions
serves to create a close substitute to the options sold, but it does not offset all the risks.

Relative value arbitrage in most markets relies on a building block of a static or
dynamic cash-and-carry trade. The static version of the cash-and-carry trade (intro-
duced in Chapters 6–7) consists typically of a spot purchase (for cash) and a forward
sell, or the reverse. The dynamic trade (introduced in Chapter 9), like in the preceding
option example, consists of a series of spot purchases or sales at different dates and a
contingent payoff at the forward date. The glue that ties the spot and the forward
together is the cost of financing, or the carry, of the borrowing to buy spot or
lending after a spot sale. Even the most complicated structured derivative transactions
are combinations of such building blocks across different markets. When analyzing
such trades, focusing on institutional and market infrastructure details in each
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market can only becloud this basic structure of arbitrage. This book clarifies the essence
of such trades by emphasizing common elements. It also explains why most institutions
rely on the interaction of dealers on large trading floors to take advantage of inter-
market arbitrages. The principle of arbitrage is exploited not only to show what
motivates traders to participate in each market (program trading of stock index
futures vs. stock baskets, fixed coupon stripping in bonds, triangular arbitrage in
currencies, etc.), but also what drives the risk arbitrage between markets (simultaneous
trades in currencies in money markets, hedging mortgage servicing contracts with swap
options, etc.).
Many readers view no-arbitrage conditions found in finance textbooks as strict mathe-

matical constructs. It should be clear from the above discussion that they are not
mathematical at all. These equations do not represent the will of God, like those
pertaining to gravity or thermodynamics in physics. They stem from and are continu-
ously ensured by the most basic human characteristic: greed. Dealers tirelessly look to
discover pure and relative value arbitrage (i.e., opportunities to buy something at one
price and to sell a disguised version of the same thing for another price). By executing
trades to take advantage of the temporary deviations from these paramount rules, they
eliminate them by moving prices back in line where riskless money cannot be made and,
by extension, the equations are satisfied.
In this book, all the mathematical formulae are traced back to the financial transac-

tions that motivate them. We overemphasize the difference between speculation and
pure arbitrage in order to bring out the notion of relative value arbitrage (sometimes
also referred to as risk arbitrage). Apart from the ever-shrinking commissions, most
traders earn profit from ‘‘spread’’—a reward for relative value risk arbitrage. A swap
trader, who fixes the borrowing rate for a corporate client, hedges by selling Treasury
bonds. He engages in a relative value trade (swaps vs. government bonds) which
exposes him to swap spread movements. A bank that borrows by opening new checking
deposits and lends by issuing mortgages eliminates the risk of parallel interest rate
movements (which perhaps affect deposit and mortgage rates to the same degree),
but leaves itself exposed to yield curve tilts (non-parallel movements) or default risk.
In all these cases, the largest risks (the exposure to interest rate changes) are hedged out,
and the dealer is left exposed to secondary ones (swap spread, default).
Most forms of what is conventionally labeled as investment under our definition

qualify as speculation. A stock investor who does not hedge, or risk-share in some
way, is exposed to the primary price risk of his asset. It is expected in our lives that,
barring short-term fluctuations, over time the value of our assets increases. The
economy in general grows, productivity increases, and our incomes rise as we acquire
more experience. We find ourselves having to save for future consumption, family, and
retirement. Most of the time, often indirectly through pension and mutual funds, we
‘‘invest’’ in real estate, stocks, and bonds. Knowingly or not, we speculate. Financial
institutions, as their assets grow, find themselves in the same position. Recognizing that
fact, they put their capital to use in new products and services. They speculate on their
success. However, a lot of today’s institutional dealers’ trading activity is not driven by
the desire to bet their institutions’ capital on buy-low/sell-high speculative ventures.
Institutional traders do not want to take primary risks by speculating on markets to go
up or down; instead, they hedge the primary risks by simultaneously buying and selling
or borrowing and lending in spot, forward, and option markets. They leave themselves
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exposed only to secondary ‘‘spread’’ risks. Well-managed financial institutions are
compensated for taking those secondary risks. Even the most apt business school
students often misunderstand this fine distinction between speculation and relative
value arbitrage. CEOs often do too. Nearly everyone has heard of the Barings, IG
Metallgesellschaft, and Orange County fiascos of the 1990s. History is filled with
examples of financial institutions gone bankrupt as a result of gambling.

Institutional trading floors are designed to best take advantage of relative arbitrage
within each market. They are arranged around individual trading desks, surrounded by
associated marketing and clearing teams, each covering customers within a specific
market segment. Trading desks that are likely to buy each other’s products are
placed next to each other. Special proprietary desks (for short, called prop or arb
desks) deal with many customer desks of the same firm or other firms and many
outside customers in various markets. Their job is to specifically focus on relative
value trades or outright speculation across markets. The distinction between the two
types of desks—customer vs. proprietary—is in constant flux as some markets expand
and some shrink. Trading desks may collaborate in the types of transactions they
engage in. For example, a money market desk arranges an issuance of short-term
paper whose coupon depends on a stock index. It then arranges a trade between the
customer and its swap desk to alter the interest rate exposure profile and between the
customer and the equity derivatives desk to eliminate the customer’s exposure to equity
risk. The customer ends up with low cost of financing and no equity risks. The dealer
firm lays off the swap and equity risk with another institution. Hundreds of such
intermarket transactions take place every day in the dealing houses in London, New
York, and Hong Kong.

Commercial banks operate on the same principle. They bundle mortgage, car loan,
or credit card receipts into securities with multiple risk characteristics and sell the
unwanted ones to other banks. They eliminate the prepayment risk in their mortgage
portfolios by buying swaptions from swap dealers.

1.5 FINANCIAL INSTITUTIONS: ASSET TRANSFORMERS

AND BROKER-DEALERS

Financial institutions can be broadly divided into two categories based on their raison
d’être:

. Asset transformers.

. Broker-dealers.

The easiest way to identify them is by examining their balance sheets. Asset transfor-
mers’ assets have different legal characteristics from their liabilities. Broker-dealers may
have different mixes on the two sides of the balance sheet, but the categories tend to be
the same.

An asset transformer is an institution that invests in certain assets, but issues liabil-
ities in the form designed to appeal to a particular group of customers. The best
example is a commercial bank. On the asset side, a bank issues consumer (mortgage,
auto) and business loans, invests in bonds, etc. The main form of liability it issues is
checking accounts, saving accounts, and certificates of deposit (CDs). Customers
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specifically desire these vehicles as they facilitate their day-to-day transactions and often
offer security of government insurance against the bank’s insolvency. For example, in
the U.S. the Federal Deposit Insurance Corporation (FDIC) guarantees all deposits up
to $100,000 per customer per bank. The bank’s customers do not want to invest directly
in the bank’s assets. This would be quite inconvenient as they would have to buy and
sell these ‘‘bulky’’ assets frequently to meet their normal living expenditures. From a
retail customer’s perspective, the bank’s assets often have undesirably long maturity
which entails price risk if they are sold quickly, and they are offered only in large
denominations. In order to attract funding, the bank repackages its mortgage and
business loan assets into liabilities, such as checking accounts and CDs, which have
more palatable characteristics: immediate cash machine access, small denomination,
short maturity, and deposit insurance. Another example of an asset transformer is a
mutual fund (or a unit investment trust). A mutual fund invests in a diversified portfolio
of stocks, bonds, or money market instruments, but issues to its customers small
denomination, easily redeemable participation shares (unit trust certificates) and
offers a variety of services, like daily net asset value calculation, fund redemption
and exchange, or a limited check-writing ability. Other large asset transformers are
insurance companies that invest in real estate, stocks, and bonds (assets), but issue
policies with payouts tied to life or hardship events (liabilities). Asset transformers
are subject to special regulations and government supervision. Banks require bank
charters to operate, are subject to central bank oversight, and must belong to deposit
insurance schemes. Mutual fund regulation is aimed at protecting small investors (e.g.,
as provided for by the Investment Company Act in the U.S.). Insurance companies
rates are often sanctioned by state insurance boards. The laws in all these cases set
specific forms of legal liabilities asset transformers may create and sound investment
guidelines they must follow (e.g., percentage of assets in a particular category). Asset
transformers are compensated largely for their role in repackaging their assets with
undesirable features into liabilities with customer-friendly features. That very activity
automatically introduces great risks into their operations. Bank liabilities have much
shorter duration (checking accounts) than their assets (fixed-rate mortgages). If interest
rates do not move in parallel, the spread they earn (interest differential between rates
charged on loans and rates paid on deposits) fluctuates and can be negative. They
pursue relative value arbitrage in order to reduce this duration gap.
Broker-dealers do not change the legal and functional form of the securities they own

and owe. They buy stocks, currencies, mortgage bonds, leases, etc. and they sell the
same securities. As dealers they own them temporarily before they sell them, exposing
themselves to temporary market risks. As brokers they simply match buyers and sellers.
Broker-dealers participate in both primary sale and secondary resale transactions. They
transfer securities from the original issuers to buyers as well as from existing owners to
new owners. The first is known as investment banking or corporate finance, the latter as
dealing or trading. The purest forms of broker-dealers exist in the U.S. and Japan where
laws have historically separated them from other forms of banking. Most securities
firms in those two countries are pure broker-dealers (investment banking, institutional
trading, and retail brokerage) with an addition of asset-transforming businesses of asset
management and lending. In most of continental Europe, financial institutions are
conglomerates commonly referred to as universal banks as they combine both functions.
In recent years, with the repeal of the Glass–Steagal Act in the U.S. and the wave of
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consolidations taking place on both sides of the Atlantic, U.S. firms have the possibility
to converge more closely to the European model. Broker-dealers tend to be much less
regulated than asset transformers and the focus of laws tends to be on small investor
protection (securities disclosure, fiduciary responsibilities of advisers, etc.).

Asset transformers and broker-dealers compete for each other’s business. Securities
firms engage in secured and unsecured lending and offer check-writing in their broker-
age accounts. They also compete with mutual funds by creating bundled or indexed
securities designed to offer the same benefits of diversification. In the U.S., the trading
on the American Stock Exchange is dominated by ETFs (exchange-traded funds),
HOLDRs (holding company despositary receipts), Cubes, etc., all of which are de-
signed to compete with index funds, instead of ordinary shares. Commercial banks
securitize their credit card and mortgage loans to trade them out of their balance
sheets. The overall trend has been toward disintermediation (i.e., securitization of pre-
viously transformed assets into more standardized tradeable packages). As burdensome
regulations fall and costs of securitization plummet, retail customers are increasingly
given access to markets previously reserved for institutions.

1.6 PRIMARY AND SECONDARY MARKETS

From the welfare perspective, the primary role of financial markets has always been to
transfer funds between suppliers of excess funds and their users. The users include
businesses that produce goods and services in the economy, households that demand
mortgage and consumer loans, governments that build roads and schools, financial
institutions, and many others. All of these economic agents are involved in productive
activities that are deemed economically and socially desirable. Throughout most of
history, it was bankers and banks who made that transfer of funds possible by accept-
ing funds from depositors and lending them to kings, commercial ventures, and others.
With the transition from feudalism to capitalism came the new vehicles of performing
that transfer in the form of shares in limited liability companies and bonds issued by
sovereigns and corporations. Stock, bond, and commodity exchanges were formed to
allow original investors in these securities to efficiently share the risks of these instru-
ments with new investors. This in turn induced many suppliers of funds to become
investors in the first place as the risks of holding ‘‘paper’’ were diminished. ‘‘Paper’’
could be easily sold and funds recovered. A specialized class of traders emerged who
dealt only with trading ‘‘paper’’ on the exchanges or OTC. To them paper was and is
faceless. At the same time, the old role of finding new productive ventures in need of
capital has shifted from bankers to investment bankers who, instead of granting loans,
specialized in creating new shares and bonds for sale to investors for the first time. To
investment bankers, paper is far from faceless. Prior to the launch of any issue, the main
job of an investment banker or his corporate finance staff, like that of a loan banker, is
to evaluate the issuing company’s business, its financial condition and to prepare a
valuation analysis for the offered security.

As we stated before, financial markets for securities are organized into two segments
defined by the parties to a securities transaction:

. Primary markets.

. Secondary markets.
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This segregation exists only in securities, not in private party contracts like OTC
derivatives. In private contracts, the primary market issuers also tend to be the second-
ary market traders, and the secondary market operates through assignments and
mark-to-market settlements rather than through resale.
In primary markets, the suppliers of funds transfer their excess funds directly to the

users of funds through a purchase of securities. An investment banker acts as an
intermediary, but the paper-for-cash exchange is between the issuing company and
the investor. The shares are sold either publicly, through an initial public offering or
a seasoned offering, or privately through a private placement with ‘‘qualified investors’’,
typically large institutions. Securities laws of the country in which the shares are sold
spell out all the steps the investment bank must take in order to bring the issue to
market. For example, in the U.S. the shares must be registered with the Securities and
Exchange Commission (SEC), a prospectus must be presented to new investors prior to
a sale, etc. Private placements follow different rules, the presumption being that large
qualified investors need less protection than retail investors. In the U.S. they are
governed by Rule 144-A which allows their subsequent secondary trading through a
system similar to an exchange.
In secondary markets, securities are bought and sold only by investors without the

involvement of the original user of funds. Secondary markets can be organized as
exchanges or as OTC networks of dealers connected by phone or computer, or a
hybrid of the two. The Deutsche Börse and the New York Stock Exchange (NYSE)
are examples of organized exchanges. It is worth noting however that exchanges differ
greatly from each other. The NYSE gives access to trade flow information to human
market-makers called specialists to ensure the continuity of the market-making in a
given stock, while the Tokyo Stock Exchange is an electronic market where continuity
is not guaranteed, but no dealer can earn monopoly rents from private information
about buys and sells (see Chapter 4). Corporate and government bond trading (see
Chapter 3) are the best examples of OTC markets. There, like in swap and currency
markets, all participants are dealers who trade one on one for their own account. They
maintain contact with each other over a phone and computer network, and jointly
police the fair conduct rules through industry associations. For example, in the OTC
derivatives markets, the International Swap Dealers Association (ISDA) standardizes
the terminology used in quoting the terms and rates, and formalizes the documentation
used in confirming trades for a variety of swap and credit derivative agreements. The
best example of a hybrid between an exchange and an OTC market is the NASDAQ in
the U.S. The exchange is only virtual as participants are connected through a computer
system. Access is limited to members only and all members are dealers.
Developing countries strive to create smooth functioning secondary markets. They

often rush to open stock exchanges even though there may only be a handful of com-
panies large enough to have a significant number of dispersed shareholders. In order to
improve the liquidity of trading, nascent exchanges limit the number of exchange seats
to very few, the operating hours to sometimes only one per day, etc. All these efforts are
aimed at funneling all buyers and sellers into one venue. This parallels the goals of the
specialist system on the NYSE. Developing countries’ governments strive to establish a
well-functioning government bond market. They start by issuing short-term obligations
and introduce longer maturities as quickly as the market will have an appetite for
them.
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The main objective in establishing these secondary trading places is to lower the cost
of raising capital in the primary markets by offering the primary market investors a
large outlet for risk sharing. Unless investors are convinced that they can easily get in
and out of these securities, they will not buy the equities and bonds offered by the
issuers (local businesses and governments) in the first place. This ‘‘tail wag the dog’’
pattern of creating secondary markets first is very typical not only for lesser developed
nations, but is quite common in introducing brand new risk classes into the market-
place. In the late 1980s, Michael Milken’s success in selling highly speculative high-yield
bonds to investors relied primarily in creating a secondary OTC market by assuring
active market-making by his firm Drexel Burnham Lambert. Similarly, prior to its
collapse in 2002, Enron’s success in originating energy forwards and contingent con-
tracts was driven by Enron’s ability to establish itself as a virtual exchange of energy
derivatives (with Enron acting as the monopolist dealer, of course). In both of these
cases, the firms behind the creation of these markets failed, but the primary and
secondary markets they started remained strong, the high-yield market being one of
the booming high performers during the tech stock bubble collapse in 2000–02.

1.7 MARKET PLAYERS: HEDGERS VS. SPECULATORS

According to a common saying, nothing in life is certain except death and taxes. No
investment in the market is riskless, even if it is in some way guaranteed. Let us
challenge some seemingly intuitive notions of what is risky and what is safe.

Sparkasse savers in Germany, postal account holders in Japan, U.S. Treasury Bill
investors, for most intents and purposes avoid default risk and are guaranteed a pos-
itive nominal return on their savings. T-Bill and CD investors lock in the rates until the
maturity of the instruments they hold. Are they then risk-free investors and not spec-
ulators? They can calculate in advance the exact dollar amount their investment will
pay at maturity. After subtraction of the original investment, the computed percentage
return will always be positive. Yet, by locking in the cash flows, they are forgoing the
chance to make more. If, while they are holding their CD, short-term or rollover rates
increase, they will have lost the extra opportunity return they could have earned. We are
hinting here at the notion of opportunity cost of capital common in finance.

Let us consider another example. John Smith uses the $1,000 he got from his uncle to
purchase shares in XYZ Corp. After 1 year, he sells his shares for $1,100. His annual
return is 10%. Adam Jones borrows $1,000 at 5% from his broker to purchase shares in
XYZ Corp. After 1 year, he sells his shares for $1,100. His annual return is 10% on
XYZ shares, but he has to pay 5%, or $50, interest on the loan, so his net return is 5%.
Should we praise John for earning 10% on his capital and scold Adam for earning only
5%? Obviously not. Adam’s cost of capital was 5%. So was John’s! His was the
nebulous opportunity cost of capital, or a shadow cost. He could have earned 5%
virtually risk-free by lending to the broker instead of investing in risky shares. So his
relative return, or excess return, was only 5%. In our T-Bill or CD example, one can
argue that an investor in a fixed-rate CD is a speculator as he gambles on the rates not
increasing prior to the maturity of his CD. The fact that his net receipts from the CD at
maturity are guaranteed to be positive is irrelevant. There is nothing special about a 0%
threshold for your return objective (especially if one takes into account inflation).
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In the context of this book, all investors who take a position in an asset, whether by
borrowing or using owned funds, and the asset’s return over its life is not contractually
identical to the investor’s cost of capital, will be considered speculators. This definition
is only relative to some benchmark cost of capital. In this sense both Adam and John
speculate by acquiring shares whose rate of return differs from their cost of capital of
5%. An outright CD investment is speculative as the rate on the CD is not guaranteed
to be the same as that obtained by leaving the investment in a variable rate money
market account. A homeowner who takes out a fixed-rate mortgage to finance a house
purchase is a speculator even though he fixes his monthly payments for the next 30
years! When he refinances his loan, he cancels a prior bet on interest rates and places a
new one. In contrast, an adjustable rate mortgage borrower pays the fair market rate
every period equal to the short-term rate plus a fixed margin.
Most financial market participants can be divided into two categories based on

whether their capital is used to place bets on the direction of the market prices or
rates or whether it is used to finance holdings of sets of transactions which largely
offset each other’s primary risks: speculators and hedgers.
Speculators are economic agents who take on explicit market risks in order to earn

returns in excess of their cost of capital. The risks they are exposed to through their
investments are not offset by simultaneous ‘‘hedge’’ transactions. Hedgers are economic
agents who enter into simultaneous transactions designed to have offsetting market
risks in such a way that the net returns they earn are over and above their cost of
capital. All arbitrageurs, whether pure or relative, are hedgers. They aim to earn nearly
risk-free returns after paying all their financing costs. A pure arbitrageur’s or strict
hedger’s returns are completely risk-free. A relative arbitrageur’s returns are not risk-
free; he is exposed to secondary market risks.
All ‘‘investors’’ who use their capital to explicitly take on market risks are specula-

tors. Their capital often comes in the form of an outside endowment. Mutual funds
obtain fresh funds by shareholders sending them cash. Pension funds get capital from
payroll deductions. Insurance companies sell life or hazard policies and invest the
premiums in stocks, bonds, and real estate. Individual investors deposit cash into
their brokerage accounts in order to buy, sell, or short-sell stocks and bonds. In all
these cases, the ‘‘investors’’ use their funds (i.e., sacrifice their cost of capital) to bet on
the direction of the market they invest in. They ‘‘buy’’ the services of brokers and
dealers who facilitate their investment strategies. In order to help these investors
improve the precision of the bets they take, broker-dealers who are hedgers by
nature invent new products that they ‘‘sell’’ to investors. These can be new types of
bonds, warrants and other derivatives, new classes of shares, new types of trusts, and
annuities. Often, the division of the players into speculators and hedgers is replaced by
the alternative terms of:

. Buy-side participants.

. Sell-side participants.

Buy-side players are investors who do not originate the new investment vehicles. They
choose from a menu offered to them by the sell-side players. The sell-siders try to avoid
gambling their own capital on the explicit direction of the market. They want to use
their capital to finance the hedge (i.e., to ‘‘manufacture’’ the new products). As soon
as they ‘‘sell’’ them, they look to enter into a largely offsetting trade with another
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counterparty or to hedge the risks through a relative arbitrage strategy. Often the
sell-sider’s hedge strategies are very imperfect and take time to arrange (i.e., when
sell-siders act as speculators). The hedger/speculator compartmentalization is not
exactly equivalent to sell/buy-side division. Sell-siders often act as both hedgers and
speculators, but their mindset is more like that of the hedger (‘‘to find the other side of
the trade’’). Buy-siders enter into transactions with sell-siders in order to get exposed to
or alter how they are exposed to market risks (‘‘to get in on a trade’’).

We use quotes around the words ‘‘buy’’ and ‘‘sell’’ to emphasize that the sell-sider
does not necessarily sell a stock or bond to a buy-sider. He can just as well buy it. But
he hedges his transaction while the buy-sider does not.

Geographically, the sell-side resides in global financial centers, like New York or
London, and is represented by the largest 50 global financial institutions. The buy-side
is very dispersed and includes all medium and smaller banks with mostly commercial
business, all mutual and pension funds, some university endowments, all insurance
companies, and all finance corporations. The buy/sell and hedger/speculator distinc-
tions have recently become blurred. Larger regional banks in the U.S. which have
traditionally been buy-side institutions started their own institutional trading busi-
nesses. They now offer security placement and new derivative product services to
smaller banks and thrifts. In the 1990s, some insurance companies established sell-
side trading subsidiaries and used their capital strength and credit rating to compete
vigorously with broker-dealers. Most of these subsidiaries have the phrase ‘‘Financial
Products’’ inserted in their name (e.g., Gen Re Financial Products or AIG FP).

One type of company that can be by design on both the buy- and sell-side is a hedge
fund. Hedge funds are capitalized like typical speculators (read: investment companies),
similar to mutual funds, but without the regulatory protection of the small investor. Yet
almost all hedge fund strategies are some form of relative value arbitrage (i.e., they are
hedges). The original capital is used only to acquire leverage and to replicate a hedge
strategy as much as possible. Most hedge funds have been traditionally buy-siders.
They have tended not to innovate, but to use off-the-shelf contracts from dealers.
Sometimes, however, hedge funds grow so large in their market segment that they
are able to wrest control of the demand and supply information flow from the
dealers and are able to sell hedges to the dealers, effectively becoming sellers of
innovative strategies. In the late 1990s, funds like Tiger, AIM, or LTCM, sometimes
put on very large hedged positions, crowding dealers only into speculative choices as the
supply of available hedges was exhausted by the funds. The early 2000s have seen the
return of hedge funds to their more traditional buy-side role as the average size of
the fund declined and the number of funds increased dramatically.

1.8 PREVIEW OF THE BOOK

Most financial markets textbooks are organized by following markets for different types
of securities: stocks, money markets, bonds, mortgages, asset-backed securities, real
estate trusts, currencies, commodities, etc. This is analogous to reviewing the car
industry alphabetically by make, starting with Acura, Audi, and BMW and ending
with Volkswagen and Volvo. This book is arranged structurally to emphasize the
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common features of all the segments, analogous to describing the engines first, then
chassis and body, and ending with safety features and interior comforts. This allows the
reader to fully understand the internal workings of the markets, rather than learning
about unimportant institutional details. The book is divided into four parts:

. Part I: Spot—trading in cash securities for immediate delivery, arbitrage through
spot buying, and selling of like securities that trade at different prices.

. Part II: Forwards—futures and forward contracts for future delivery of the under-
lying cash assets, arbitrage through static cash-and-carry (i.e., spot buy or sell),
supplemented by borrow or lend against a forward sell or buy).

. Part III: Options—derivative contracts for contingent future delivery of the under-
lying cash assets, arbitrage through dynamic cash-and-carry, or delta-hedge (i.e.,
continuous rebalancing of the cash-and-carry position).

. Appendix: Credit Risk—default-risky delivery (spot, forward, or contingent), arbit-
rage through all three strategies using default-risky assets against default-free assets.

The first three represent the fundamental building blocks present in any market. Each
part is defined by the delivery time and form of transactions. Each has its own internal
no-arbitrage rules (law of one price) and each is related to the other two by another set
of no-arbitrage rules (static and dynamic cash-and-carry equations). As we will show,
all the no-arbitrage rules, player motivations, and trade strategies of each segment in
markets for different securities (stocks, bonds, etc.) are strikingly similar.
The appendix of the book is dedicated to credit risks that cut across all three

dimensions of financial markets. This part enjoys the lightest treatment in the book
and contains only one chapter (Chapter 11) covering both the math and descriptions.
This is because most modeling of credit risks tends to be mathematically advanced. It
relies on the already complex option-pricing theory. Like options, credit risks deal with
contingent delivery. However, the condition for payoff is not a tractable market price or
rate movement, but rather a more esoteric concept of the change in the credit quality of
the issuer (as evidenced by a ratings downgrade or default), which in turn depends on
mostly unhedgeable variables (legal debt covenants, earnings performance, debt–equity
ratios, etc.).
Each of the three parts of the book starts with a chapter containing a technical

primer, followed by more descriptive chapters containing applications of the analytics
in arbitrage-based trading strategies. The primers, labeled Financial Math I, II, and III,
are intensely analytical, but at a mathematically low level. We avoid using calculus and
instead rely on numerical examples of real financial transactions. This should help not
only novice readers, but also readers with science backgrounds, who often follow the
equations, but often find it difficult to relate them to actual money-making activities.
The main quantitative tool used is cash flow discounting, supplemented by some
rudimentary rate and price conventions. Chapter 2, ‘‘Financial Math I’’, contains a
brief summary of present value techniques. It offers definitions of rates and yields, and
introduces the concept of a yield curve used to perform cash flow discounting. It
then develops no-arbitrage equations for bond, stock, and currency markets. Chapter
6, ‘‘Financial Math II’’, describes the mechanics of futures and forwards trading in
commodities, interest rates, equities, and currencies. It then presents no-arbitrage rules
that link forwards and futures back to spot markets. These rely on cost-of-carry
arguments. Chapter 6 also develops further the concept of the yield curve by
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showing how forwards are incorporated into it. Chapter 9, ‘‘Financial Math III’’, starts
with basic payoff diagrams and static arbitrage relationships for options. It then
describes the details of option valuation models that rely on the notion of dynamic
cash-and-carry replication of option payoffs. It draws the fundamental distinction
between hedgers who manufacture payoffs and speculators who bet on future out-
comes. It offers analytical insights into money-making philosophies of derivatives
traders. The chapter covers stock, currency, and interest rate options.

The ‘‘Financial Math’’ primer chapters are followed by survey chapters that delve
deeper into the specifics of markets for different securities. These describe the players,
the role of these markets in the savings–investment cycle, and the special conventions
and nomenclature used. They offer sketchy but insightful statistics. They also rely on
the knowledge contained in the primers to further develop detailed arbitrage strategies
that are considered ‘‘benchmark’’ trades in each market. These are presented mostly as
pure arbitrages; their relative value cousins are not difficult to imagine and some are
also described. In Chapter 3, we survey spot fixed income markets. We go over money
markets securities (under 1 year in maturity) which enjoy the most liquidity and
turnover. We cover government and corporate bond markets. We touch on swaps,
mortgage securities, and asset-backed securities. In Chapter 4, we describe the
markets for equities, currencies, and commodities. Stock markets are most likely the
most familiar to all readers, so we focus on more recent developments in cross-listings,
basket trading and stock exchange consolidations. Chapter 5 uses the mathematical
concepts of Chapter 2 and applies them to the spot securities described in Chapters 3
and 4. It presents pure arbitrage and relative value trades for different bond segments,
equities, and currencies. It covers speculative basis trades in commodities. In Part II,
following the primer on futures and forwards, Chapter 7 focuses on the cash-and-carry
arbitrage and its various guises in currencies (covered interest rate parity), equities
(stock index arbitrage) and bond futures (long bond futures basis arbitrage). It also
extends the concept of hedging the yield curve using Eurocurrency strip trading and
duration matching. Chapter 8 is devoted entirely to swap markets that represent spot
and forward exchanges of streams of cash flows. These streams are shown to be
identical to those of bonds and stocks rendering swaps as mere repackagings of other
assets. This chapter combines the analytical treatment of swap mechanics with some
more descriptive material and market statistics. In Part III, following the options
primer, Chapter 10 describes a few forms of options arbitrage, admittedly in rather
simplistic terms, but it also extends the option discussion to multiple asset classes and
option-like insurance contracts. Part IV contains one chapter on credit risk and its
relationship to fixed income assets described in prior chapters.

Clearly, the most important, but also the most quantitative chapters in the book are
all the primers (Chapters 2, 6, 9, and 11). Readers interested only in the mechanics of
markets can read those in sequence and then use other chapters as reference material.
For readers interested in the details of various markets, the order of study is very
important, particularly in Parts II and III. The descriptive chapters rely heavily on
the knowledge contained in their Financial Math primers. This is less so in Part I,
where, apart from Chapter 5, we focus more on the description of basic securities
and market infrastructure and less on arbitrage.

We hope our audience finds this book as contributing significantly to their deep
understanding of today’s global financial marketplace.
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____________________________________________________________________________________________________________________________________________ Part One ____________________________________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________________________________________________ Spot _____________________________________________________________________________________________________________________________________________________________





___________________________________________________________________________________________________________________________________________________________________________ 2 __________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________________________ Financial Math I—Spot __________________________________________________________________________________

Cash flow discounting is the basis of all securities valuation. The fundamental value of a
stock is equal to the present value of all the dividends and capital gains the owner will
be entitled to in the future. The fundamental value of a bond is equal to the present
value of all the interest payments and principal repayment the owner will receive over
the life of the bond. These cash flows may be known in advance (principal of a
government bond) or uncertain (capital gains on the stock). Market participants may
disagree in their estimates of the amounts. But the basic technique is always the same.
Once you have determined the future cash flows, all you do is apply an appropriate
interest rate to discount them to today. That rate reflects both the cost of money and
the degree of uncertainty about the exact amount of the flows. The sum of all the
discounted cash flows for a security (i.e., the present value) is what you should be
willing to pay for that security (i.e., the price).
The main premise of discounting is the concept of the time value of money. Money

can be rented to a bank to earn interest. Money can be rented from a bank by agreeing
to pay interest. You would always pay less than $100 today for a promise of $100 in the
future. This is not only because of a risk of the promise, but also because it would cost
you less than $100 today to buy an investment that, with interest earned, would
produce $100 in the future. Whether you use owned funds or borrowed funds to
purchase an investment is not important. If you use borrowed funds you pay explicit
interest. If you spend owned funds, you forgo the interest that you could have earned.
This forgone interest is commonly referred to as an opportunity cost and it is as real a
cost as the interest paid on borrowed funds.
College textbooks apply the notion of time value of money to single and multiple

cash flow securities, like stocks and bonds, as well as capital-budgeting projects. We will
devote a page to the review of that material; the reader is encouraged to study it more if
necessary. Implicitly, many textbooks restrict themselves to using only one type of
interest rate: the discount rate or a zero-coupon rate. That is, to compute the present
value of each cash flow, they assume that interest compounds and accrues annually over
the life of the cash flow and is due once at the end. This is just the tip of the iceberg.
Interest can accrue and be paid according to many conventions. It may compound at
one frequency (quarterly), but be paid at another (annually). The calendar for intra-
year calculations may assume actual or even numbers of days per month or year. The
rate of interest may be different for different future dates. Cash flows may not be due at
even intervals. The complications abound.
To make sense of them, we review common compounding and day-count conven-

tions and then we look at three main arrangements, dating back to Phoenician times, of
how interest can be earned and paid:



. Zero-coupon (discount or add-on), with no intervening interest cash flows.

. Coupon, with periodic fixed or variable interest payments.

. Amortizing, with periodic interest payments and partial principal repayments.

Typically, textbooks dealing with capital budgeting cover the first arrangement, fixed-
income books the second, and mortgage books the third, reflecting where the different
forms of interest are most common. The rates quoted on these three different bases are
not directly comparable with each other, even after conversion to the same day-count
and periodicity. However, the three are mathematically related and can be computed
from each other through arbitrage arguments.

2.1 INTEREST RATE BASICS

We start with present values (PVs), compounding rules, and day-count conventions.

Present value

Suppose you earn interest on $500 at 5%. How much will you have in 1 year? The
answer is $500 plus 5% of $500, or 500ð1þ 0:05Þ ¼ $525. How much will you have if
you invest $500 for 2 years? In year 1, your investment will accrue to $525, but, in year
2, you will earn interest on interest. You will get $525 plus 5% of $525, where each $525
is equal to 500ð1:05Þ. That is, after 2 years, you will have 500ð1:05Þ þ 0:05 � 500ð1:05Þ ¼
500ð1:05Þ2 ¼ $551:25. Generally, if you invest PV0 today at interest rate r for n years,
your investment will have a future value of:

FV ¼ PV0ð1þ rÞn

Let us reverse the question. How much would you have to invest today so that at an
interest rate of 5% it would accrue to $500 2 years from today? Now, $500 is the future
value and we need to solve for PV0 in the above equation to get:

PV0 ¼ 500

ð1þ 0:05Þ2 ¼ $453:51

If you had easy access to borrowing and lending at 5%, you would be indifferent
between $453.51 today and $500 2 years from today. You could convert one into the
other at a known conversion ratio. In general, we can write an expression for the present
value (PV) of a single future cash flow as:

PV0 ¼ FV � 1

ð1þ rÞn

The expressions ð1þ rÞn and 1

ð1þ rÞn are referred to as future value interest factors and

present value interest factors, respectively, for a rate r and a number of periods n.
Graphically, we can present our situation as:

0
Today

1 2 3 n� 1 n

PV0 FV
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Now suppose we ask a slightly more difficult question. How much would you have to
invest today in an account paying 5% interest, so that you could withdraw from the
account $500 every year for the next 4 years? The first withdrawal is 1 year from today
and there is no money left in the account after the last withdrawal 4 years from today.
Graphically, we can present this situation as:

To solve, we can imagine that, if we had money today, we could divide it into four
separate investments each generating a $500 cash flow at different times. That is, we
could divide it into these amounts:

PV0 ¼ 500 � 1

1þ r
þ 500 � 1

ð1þ rÞ2 þ 500 � 1

ð1þ rÞ3 þ 500 � 1

ð1þ rÞ4
The total amount to be invested today is:

PV0 ¼ 500

�
1

1þ r
þ 1

ð1þ rÞ2 þ
1

ð1þ rÞ3 þ
1

ð1þ rÞ4
�
¼ $1,772:98

A constant cash flow (CF) over n periods starting one period from today is referred to
as an ordinary annuity. Its present value is:

PV0 ¼ CF

�
1

1þ r
þ 1

ð1þ rÞ2 þ � � � þ 1

ð1þ rÞn
�

and the expression in brackets is referred to as a present value annuity factor at a rate r
for a number of periods (years) n.
The present value of a stream of cash flows can be interpreted as today’s value of the

promise of the entire future stream. It is an amount that would make one indifferent
between (1) receiving it in one lump sum of PV0 today and (2) in the form of a cash flow
stream in the future.

Compounding

When interest compounds intra-year instead of year to year, the calculations become a
little more complicated.

Annual example

On June 1, we invest c¼ 1,000 in a 1-year certificate of deposit (CD) yielding 3.25%. On
June 1 of next year, we will get 1,000ð1þ 0:0325Þ ¼ c¼ 1,032.500.

Quarterly example

Suppose instead, on June 1, we invest c¼ 1,000 in a 3-month CD yielding 3.25%. How
much will we get on the due date of September 1?
The first thing we need to keep in mind is that the rate of interest is always stated per

annum. The rate of 3.25% (p.a.) as quoted, first has to be de-compounded to obtain the

0 1 2 3

PV0 ¼ ?

4

500500 500 500
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interest rate per quarter. This can be done by dividing the rate by the number of interest
periods per year. Once we have done that, the answer becomes simply
1,000ð1þ 0:0325=4Þ ¼ c¼ 1,008.125.

Quarterly rollover example

Suppose we invest c¼ 1,000 for a total of 1 year by first investing it in a 3-month CD. We
assume that CD rates do not change over the next year and we roll over the principal
plus interest every 3 months into new CDs yielding 3.25% (p.a.). Our reinvestment
dates are: September 1, December 1, and March 1. The final maturity is June 1. How
much will we get a year from today? The answer is a compound formula of
1,000ð1þ 0:0325=4Þ4 ¼ c¼ 1,032.898. We will get c¼ 1,000 principal and c¼ 32.898 in total
interest.

Equivalent annual rate

We define the equivalent annual rate (EAR), in the CD example equal to 3.2898%, as
the rate that would have had to be offered on an annual investment to generate the
same amount of interest over 1 year as the compound investment at a quoted rate. If we
denote the quoted rate by r in percent per annum, and the number of compounding
periods per year as m, then the relationship between the quoted rate r and the EAR is:

ð1þ r=mÞm ¼ 1þ EAR

For example, for a semi-annual rate m ¼ 2, while for a monthly compounded rate
m ¼ 12. When comparing yields on investments of different compounding frequency,
we convert the stated rates to EARs. As we will see, even that is not enough.

Day-count conventions

Each fixed-income market has its own quote and day-count convention. Our examples
were simplified so that for quarterly periods we divided the stated rates by 4. Implicitly,
we were using what is called a 30/360 day-count convention. A day-count convention is a
commonly accepted method of counting two things: the number of days within the
interest calculation period and the number of days in a year. Under the 30/360 con-
vention all months are assumed to have exactly 30 days and each year has 360 days, so
that each 3-month period represents exactly one-quarter of a year. In the above calcula-
tions, the division by 4 and raising to the power of 4 were shortcuts for multiplying the
quoted rates by 90/360 (i.e., computing the actual interest rate per 90-day period) and
raising the gross de-compounded return (the one-plus-interest expression) to the power
of 360/90 (i.e., compounding it as many times as there are periods). In the rollover
example, we could have written 1,000ð1þ 0:0325 � 90=360Þ360=90 ¼ c¼ 1,032.898. We also
should have amended the EAR definition to:

�
1þ r � dayscalc

daysyear

�daysyear=dayscalc

¼ 1þ EAR
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where dayscalc is the number of days in the interest calculation period and daysyear is the
assumed number of days in a year.1

Many deposits, notably LIBOR (London interbank offered rate)-based Eurodollars,
use an Act/360 day-count convention. For our 3-month (June 1–September 1) CD, the
Act/360 convention means that the numerator is the actual number of calendar days in
the interest period, and in the denominator we assume that a year has exactly 360 days,
and not 365 or 366 as it may be. On September 1, our 3-month CD would return the
principal and interest worth 1,000ð1þ 0:0325 � 92=360Þ ¼ c¼ 1,008.306. The 1-year
(June–June) rollover strategy would pay:

1; 000

�
1þ 0:0325 � 92

360

��
1þ 0:0325 � 91

360

��
1þ 0:0325 � 90

360

��
1þ 0:0325 � 92

360

�

¼ C=1; 033:361

as there are 92, 91, 90, and 92 days, respectively, in each 3-month reinvestment period.
The EAR is equal to 3.3361%. LIBOR-based sterling deposits use an Act/365 basis,
where we compute the actual number of days in the interest calculation period, but
always assume 365 days per year even if it happens to be 366.
Let us consider one last ‘‘wrinkle’’. Suppose we deposit money on June 1 for the

period ending December 15. How much will we get back on the due date if we are
earning 3.38% quarterly compounded on an Act/360 basis? The following expression
describes our accrual on a c¼ 1,000 investment:

1; 000

�
1þ 0:0338 � 92

360

��
1þ 0:0338 � 91

360

��
1þ 0:0338 � 14

360

�
¼ C=1; 018:593

Most commonly used day-count conventions include Act/365, Act/Act, Act/360 and 30/
360. Government bond markets typically follow one of the first two, money markets
follow the third, and corporate bond markets use the last one. There are exceptions to
these rules, and OTC derivatives markets can follow ‘‘wrong’’ conventions for different
underlying securities. Many unsuspecting investors have been burnt in the past by
ruthless dealers playing day-count tricks!
In this book, except when explicitly noted, we will assume the simple 30/360

convention. We will end up with more familiar divisions by 4, 2 or 1 for quarterly,
semi-annual, and annual periods.

Rates vs. yields

Throughout the text, we use the word rate to denote the interest percentage that is
typically explicitly stated and is used in a convention to compute the actual monetary
amount of interest paid to the holder of a security. We will use the word yield to denote
the interest percentage earned on the amount invested. The market sometimes uses the
two interchangeably, but they should not be. A bond with a 5% coupon rate selling at
par (price equal to 100% of the face value) yields 5%. A bond with a 5% coupon rate
selling below par (price less than 100% of face) yields more than 5% as the buyer has to
spend less than the principal value of the bond.
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The definition of EAR has the word rate in it, even though it is more akin to a yield,
because EAR is typically computed upfront, using a stated rate and assuming a
purchase at par. In the above examples, if the 1-year c¼ 1,000 CD with a quarterly
rate of 3.25% were purchased for c¼ 990, then the quarterly equivalent yield (QEY)
could be defined implicitly by the equality 990ð1þQEY=4Þ ¼ c¼ 1,032.50.

The investor would be said to earn a yield of QEY ¼ 17:7% on a c¼ 990 investment. A
bond-equivalent yield (BEY) is the yield earned on buying an investment at its market
price and collecting the cash flows as defined by the stated rate, but restated in a
frequency convention of the bond market (e.g., semi-annual in the U.S. and the
U.K. but annual in some continental European markets). That is, it is an annual
equivalent yield (AEY) or semi-annual equivalent yield (SAEY), grossed up or down
from a yield expressed in a natural frequency of the investment. The quarterly yield on
the CD in our example could be grossed up to arrive at a semi-annual bond-equivalent
yield by pretending that the CD is rolled over for another quarterly period; that is:

ð1þQEY=4Þ2 ¼ ð1þ SAEY=2Þ

2.2 ZERO, COUPON, AND AMORTIZING RATES

Next we review the distinction between zero, coupon, and amortizing rates. Zeros are
the purest form of discounting rates in the sense that they translate directly any future
cash flow into its present value. A stream of cash flows is discounted by applying an
appropriate zero rate to each cash flow to compute its present value and then by
summing the individual present values to obtain the present value of the entire
stream. This can be done using one of the blended rates: coupon or amortizing. In
that case, however, while the present value of the stream may be correct, the present
value of each individual cash flow is not, as it has the wrong rate applied to it. The
blended rate is imaginary; there is no investment accruing interest at that rate to
generate any one of the cash flows in the stream. Let us go into more detail.

Zero-coupon rates

All the examples so far involved zero-coupon rates2 (commonly referred to as discount
rates as they can be used directly in cash flow discounting). These are earned on
investments for which the accrued interest is received only once with the principal
repayment on the maturity date. The investment does not generate any intermediate
coupon interest cash flows (i.e., it has a zero coupon). The 3-month CD investment was
a zero-coupon investment over one quarter. The 1-year rollover strategy consisted of
four consecutive quarterly zero-coupon investments. The investor received no cash
flows during the entire year. All interest and principal were fully reinvested every
quarter. Graphically, the simplest way to present a zero-coupon rate is as follows:

0
0

1
m

2
2m

3
3m

n� 1 n
nm

PV0 CF� ð1þ r=mÞnm ¼
Years

Sub-annual periods, if any
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Notice the absence of any intervening cash flows between today and the future date
t ¼ nm. The 1-year rollover strategy has zero net intervening cash flows as both the
principal and interest are fully reinvested each quarter. This is shown in the following
picture (þ denotes an inflow, � denotes an outflow):

Zero-coupon interest can accrue on either an add-on or a discount basis. The distinc-
tion here is only of the form, not of substance. In the add-on case, the investment is
purchased for a full face value, which is a multiple of some round number, and interest
accrues based on the principal equal to the face value of the security. In our retail CD,
the investor deposited c¼ 1,000 and received, 3 months later, the principal and interest
worth of c¼ 1,008.306. In contrast, most short-term securities sell at a discount from face
value, and the interest rate is only implied by the ratio of the round-numbered
face value and the purchase price of the security. For example, the price of 99.05
for a 3-month U.S. Treasury Bill is expressed as percent of par. For a T-Bill promising
to repay exactly $10,000 in 3 months, the investor pays $9,905. The implied yield
on a 30/360 basis he earns can be obtained by solving the expression
9905ð1þ r � 90=360Þ ¼ 9905ð1þ r=4Þ ¼ 10; 000 for r ¼ 3:8364%. Similarly, a buyer of
a 6-month U.S. T-Bill paying 98.1179 would compute his implied yield by solving in the
expression 98:1179ð1þ r=2Þ ¼ 100 for r ¼ 3:8364%. Even though the two T-Bills have
the same 3.8364% yield, they are not truly comparable: one matures in 3 months, the
other in 6. Depending on at what rate we can reinvest the 3-month T-Bill, we could end
up with more or less than the principal and interest on the six-month T-Bill in 6 months.
Assuming no change in rates, we can use EAR as a comparison tool. To obtain EARs,
we compute the yields each investment earns if it is rolled over at its original yield for a
total holding period of 1 year.

EAR3m ¼ ð1þ 0:038364=4Þ4 � 1 ¼ ð100=99:05Þ4 � 1 ¼ 3:8920%

EAR6m ¼ ð1þ 0:038364=2Þ2 � 1 ¼ ð100=98:1179Þ2 � 1 ¼ 3:8732%

Alternatively, we could compute the semi-annual equivalent of the 3-month rate by
following the logic behind EAR but only over a 6-month horizon. The equivalent
semi-annual rate (ESR) of the stated 3-month rate, r3m ¼ 3:8364%, would satisfy the
equation ð1þ r3m=4Þ2 ¼ 1þ ESR=2. This is the essence of the BEY whose precise
definition varies by market. Let us re-emphasize that, upfront, the realized yield on
any rollover strategy is not known, as the reinvestment rate can change. The equivalent
yield calculation relies on the unrealistic assumption that the reinvestment rate is
known and will not change.

Coupon rates

The word coupon comes from a physical piece of paper bond investors used to clip off
the bond to send to the bond issuer (borrower) to claim their periodic interest receipt.
Today, only some Eurobonds come in bearer form with physical coupons. All U.S.

�P0

0

þP3m þ I3m
�P3m � I3m

3 months

þP6m þ I6m
�P9m � I9m

þP9m þ I9m
�P9m � I9m þP12m þ I12m

6 months 9 months 12 months
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government and corporate bonds and all European government bonds are registered
and often exist only ‘‘virtually’’ as computer entries of the owners’ names and
addresses. But the way interest is paid on bonds is the same as ever. Once or twice a
year, depending on the coupon frequency stated on the bond, the owners receive a cash
flow equal to the coupon rate times the face value of the bond they hold multiplied by
the appropriate day-count fraction.

Let us consider an example. On June 30, 2004 an investor purchases a 10-year bond
with a face value of £2,500 and a stated annual coupon rate of 4.5%. The maturity date
is June 30, 2014 and coupons accrue from June 30 to June 30. On June 30 of each year
between 2005 and 2014, the bond holder receives interest payments equal to
2,500 � 0:045 ¼ £112.50. Additionally, on June 30, 2014 he receives his principal of
£2,500 back. The actual CFs from the bond are portrayed in the following picture:

Most commonly, CFs are represented as percentages of par, as in the following
normalized picture:

The main difference between a coupon bond and a zero-coupon bond is the stream of
4.5% or £112.50 cash flows in years 2005–2014. These are not simply accrued and rolled
up until the final maturity date, but physically paid out. A zero holder would only
receive one large payment at maturity, on June 30, 2014, which would consist of the
face value repayment of £2,500 and a 10-year accumulation of interest.

Coupon yields and rates can be expressed on a variety of compounding and day-
count bases, typically following a particular convention. The bond debenture contract
(fine print) always states clearly how the interest is accrued and paid. But the legal
language can be far from plain English. The stated rate is always annualized and needs
to be de-compounded. For example, a 6% quarterly bond does not pay a coupon equal
to 6% of the face value every 3 months; rather, it pays a coupon close to but not
necessarily identical to 1.5% of the face value every 3 months. On a 30/360 day-
count basis, it is exactly 1.5%. On any other basis, the numerator and the denominator
of the day count may not result in an exact division by 4 for all periods. The only thing
really ‘‘fixed’’ is the stated rate; the dollar interest payment may change each period. At
least the language is consistent: the percentage rate is always expressed on a per annum
basis and must be adjusted by the compounding frequency to get the periodic cash flow.
A 3-year 4.5% semi-annual coupon bond would have the coupon cash flows of
4:5=2 ¼ 2:25% every 6 months and principal repayment flow of 100 in 36 months:

Notice that the 3-year 4.5% semi-annual coupon bond can be viewed as an ordinary
annuity of 2.25 over six periods and a one-time cash flow of 100 six periods from the
purchase date. When computing the present value of the bond, it is convenient to break

112.50 112.50 112.50 112.50 112.50 112.50 112.50 112.50 112.50 2,612.50
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it down into these two components. Suppose the interest rate with which to discount all
the cash flows is 5% semi-annual. To get the value of the bond, we would set up the
following equation:

PV0 ¼ 2:25�
1þ 0:05

2

�þ 2:25�
1þ 0:05

2

�
2
þ 2:25�

1þ 0:05

2

�
3
þ 2:25�

1þ 0:05

2

�
4

þ 2:25�
1þ 0:05

2

�
5
þ 102:25�

1þ 0:05

2

�
6

which, collecting terms for the annuity component and the principal repayment
component, looks like this:

PV0 ¼ 2:25
1�

1þ 0:05

2

�þ 1�
1þ 0:05

2

�2 þ 1�
1þ 0:05

2

�3 þ 1�
1þ 0:05

2

�4 þ 1�
1þ 0:05

2

�5

0
BBB@

þ 1�
1þ 0:05

2

�6

1
CCCAþ 100�

1þ 0:05

2

�6

The value in this case is PV0 ¼ 98:6230 which is less than 100. We used a yield of 5.00%
to discount the cash flows of a bond with a coupon rate of 4.5%. If the bond sells in the
market for 98.6230, then the 5.00% is the bond’s yield to maturity (see below).
Zero-coupon bonds are special cases of coupon bonds with the coupon rate equal to

0. However, they should be viewed as fundamentally different from their coupon
cousins. Later in this chapter, we show how we can build a set of zero yields from
coupon yields and vice versa, but before that let us attempt to define what a yield on a
coupon instrument is.

Yield to maturity

A holding period return (HPR) is a theoretical single yield earned on purchasing an
investment for a given price, receiving cash flows from it, if any, over some known
holding period and selling it at some known price at the end of that period. That is, the
knowns are:

. Purchase price.

. Intermediate cash flows.

. Sale price.

In computing a yield over a holding horizon, one could make an assumption that the
cash flows obtained from the investment have been re-invested at different rates. For
HPRs, the reinvestment rate is assumed to be constant and equal to the HPR, but the
holding period may be different from the maturity of the instrument (e.g. a 2-year

Financial Math I—Spot 35



holding period for a 5-year bond or a 3-year holding period for a stock with infinite
maturity). HPRs can be expressed on any compounding and day-count basis.

A yield to maturity (YTM) is a holding period return over a holding period equal to
the maturity of the instrument. All the cash flows are assumed to have been received
and reinvested at the rate equal to the holding period return. The assumption that the
instrument is held to maturity also ensures that the sale price is equal to the face value.
YTMs can be expressed on any compounding and day-count basis. Most dealers
convert non-native YTMs to a bond-equivalent basis which, in the U.S., is defined as
the SAEY on an Act/Act (governments) or 30/360 (corporates) basis, and, in most of
Europe, as the AEY on an Act/Act basis. We illustrate the concepts of a holding period
return and a YTM through some examples.3

Suppose 2 years ago you purchased a 2-year discount (zero-coupon) bond for 91.00.
Today it matures and you receive 100.00 back. What semi-annual YTM have you
earned? We solve for the implied zero rate r such that 91:00ð1þ r=2Þ4 ¼ 100. We get
r ¼ 4:7716%. The YTM on a zero-coupon bond is equal to the zero rate itself as the
zero, by definition, has no reinvestment. Now let us look at the coupon bond.

Suppose 2 years ago you purchased a 2-year 4% semi-annual coupon bond for
99.0538. Today it matures and you receive 100.00 back. What semi-annual YTM
have you earned? Let us examine the cash flows promised by the bond. We had an
outflow of $99.0538 upfront, four inflows of 0:04 � 100 � 1

2
¼ $2:00 on each coupon date

and an inflow of $100 on the final date (today).
Textbooks offer the following definition of YTM: YTM is equal to an interest rate

such that if we discount all the cash flows from the bond at that rate, then the obtained
present value is equal to the price of the bond. This follows the logic of how we solve for
the YTM. The cash flows can be portrayed as:

To discount all the cash flows at some rate r to today, we would set up the following
equation:

PV0 ¼ 2:00�
1þ r

2

�þ 2:00�
1þ r

2

�2 þ 2:00�
1þ r

2

�3 þ 102:00�
1þ r

2

�4

Then we would solve for r such that the present value is equal to the initial investment
PV0 ¼ 99:0538. We could use a financial calculator (solving for the equivalent notion of
the internal rate of return, or IRR), use a polynomial root finder, or solve by trial and
error in a spreadsheet. (For example, we would try 4% and 5% as two possible
solutions: the first would result in a PV > 99, the second in a PV < 99. We could
then try a rate between 4% and 5% to get closer to the true value of 99.0538. And

0

2.00 2.00 2.00 (100þ 2.00)

6m 12m 18m 24m
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need to make here, and in fact throughout the entire book, a distinction between the dirty price and the clean price. When a
coupon bond is purchased between coupon payment dates, the buyer pays the seller the so-called dirty price, which includes
an allowance for the interest that has accrued between the last coupon date and the purchase date. The seller is entitled to that
interest, but by surrendering the bond, he has no possibility to collect it. The buyer will receive it included in the whole
coupon payment on the next coupon date. The so-called clean price is equal to the dirty price minus the accrued interest.



so on.) We can verify that the solution is r ¼ 4:5% by substituting 4.5 for the rate and
solving to get 99.0538 as the PV.
The calculation mechanics hide the true nature of YTM as a ‘‘blended’’, or

‘‘average’’, yield actually earned on the investment. Let us imagine that we have a
money-market account that pays a semi-annually compounded rate r ¼ 4:5% on any
deposits into it. Suppose 2 years ago we deposited into that account $99.0538. On each
coupon date, we withdrew $2.00 from the account. At maturity, we withdrew $100. We
can show that if the interest rate the money-market account paid on any balances left in
it was equal to the computed YTM of 4.5%, then we could make the withdrawals and
end up with no balance in the account at the end.
We deposit $99.0538 into the account. At 4.5% semi-annually, 6 months later we

have at our disposal 99:0538

�
1þ 0:045

2

�
¼ 101:2825. Of that, we pay ourselves $2.00.

We redeposit the remaining $99.2825 for another 6 months at 4.5% semi-annually to

get 99:2825

�
1þ 0:045

2

�
¼ 101:5164 in 12 months. We pay ourselves $2.00 and rede-

posit the remaining $99.5164 for another 6 months at 4.5% semi-annually to get

99:5164

�
1þ 0:045

2

�
¼ 101:7555 in 18 months. We pay ourselves $2.00 and redeposit

the remaining $99.7555 for another 6 months at 4.5% semi-annually to get

99:7555

�
1þ 0:045

2

�
¼ 102:00 in 24 months. We withdraw $102.00 and close the

account with a balance of $0.00. We repeated the wording of ‘‘reinvesting for
another 6 months at 4.5% semi-annually’’ to stress the following point:

Conclusion 1 YTM is the assumed constant reinvestment rate over the life of the
bond.

There is another interpretation of YTM. Suppose we divide the original sum of
$99.0538 into four separate investments:

. A 6-month CD of $1.9560 yielding 4.5% semi-annually compounded.

. A 12-month CD of $1.9129 yielding 4.5% semi-annually compounded.

. An 18-month CD of $1.8709 yielding 4.5% semi-annually compounded.

. A 24-month CD of $93.3140 yielding 4.5% semi-annually compounded.

The reader should convince himself that the CD investments will accrue to $2.00, $2.00,
$2.00, and $102 at their respective maturity dates (i.e., their cash flows will match
exactly those of the coupon bond). This leads us to the following point:

Conclusion 2 YTM is the single zero-coupon investment rate for the maturity dates
corresponding to all the cash flows over the life of the bond.

That is if all the term zero rates to different dates are assumed equal! In reality, both the
reinvestment rates and the term rates are not likely to be constant or equal to each
other. If we were to divide our $99.0538 into four different amounts in order to replicate
the cash flows of the coupon bond, these amounts would have to be invested using the
actual zero-coupon rates (term lending rates) in the market. The investment amounts
would all be different from the ones arrived at using the YTM for discounting. YTM is
a fictitious rate. It is a mathematical construct. It is the average rate earned over the life
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of the bond held to maturity given the price paid. That is why we called it ‘‘blended’’ or
‘‘average’’.

Amortizing rates

Another way of earning interest, in addition to zero and coupon rates, is through
amortizing interest rates. Some bonds and most mortgage loans follow this arrange-
ment. Like the fixed coupon bond issuer, the amortizing rate borrower agrees to
constant periodic cash flows over the life of the loan. But each cash flow consists of
an interest portion and a principal repayment portion so that the borrower does not
have to repay the entire principal at the maturity of the loan. Instead, he repays it piece
by piece with each periodic payment. To distinguish the amortizing loan from a coupon
loan, the latter is often referred to as a balloon loan and the principal repayment at
maturity as the balloon payment.

The best example of an amortizing rate loan is a 30-year fixed-rate mortgage. It
consists of 360 equal monthly payments (30 years� 12 months each). The mortgage
borrower obtains the full amount of the loan upfront with which he pays for a piece of
real estate. The monthly payments cover both the interest on the loan and the repay-
ment of the principal. Financial calculators and computer spreadsheets offer built-in
functions to compute the constant monthly payment. They can also help construct the
so-called amortization table which breaks down each payment into its interest and
principal components. What is immediately clear from such a table is that over time
the interest portion of the level payment decreases while the principal portion increases
as the loan is paid down. This is obvious as each month interest is paid on the
decreasing outstanding principal (i.e., the yet-to-be-repaid part), not the original
amount of the loan. Interest and principal portions balance each other in such a way
that the total payment remains constant.

An amortization schedule for a mortgage looks quite complicated. We can easily lose
sight of the simple nature of the amortizing loan. It is nothing but an ordinary textbook
annuity. Let us illustrate this point on an example. Consider a 2-year, 4.5%, semi-
annual interest amortizing loan of $100. The repayment consists of four equal payments
in 6, 12, 18, and 24 months such that the PV of those payments is equal to the face value
of the loan. These can be portrayed as:

To solve for the constant payment of cash flow (CF) we have to set up the following
equation:

100 ¼ CF�
1þ 0:045

2

�þ CF�
1þ 0:045

2

�
2
þ CF�

1þ 0:045

2

�
3
þ CF�

1þ 0:045

2

�
4

and we can group the terms:

100 ¼ CF
1�

1þ 0:045

2

�þ 1�
1þ 0:045

2

�
2
þ 1�

1þ 0:045

2

�
3
þ 1�

1þ 0:045

2

�
4

0
BB@

1
CCA

0 6m 12m 18m 24m
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to see that the expression in parentheses is a 4-period annuity factor with an interest
rate 2.25% per period. The solution is: CF ¼ 26:4219.
Let us also illustrate the logic of interest and principal component calculation. For

the first 6 months the interest portion is
0:045

2
� 100:00 ¼ 2:25. The remainder

26:4219� 2:2500 ¼ 24:1719 goes toward the principal reduction. Right after the first
payment, the outstanding principal is equal to 100:0000� 24:1719 ¼ 75:8281.
Interest for the period starting in 6 months and ending in 12 months is equal to

0:045

2
� 75:8281 ¼ 1:7061. The outstanding principal gets reduced by 26:4219� 1:7061 ¼

24:7158 to 75:8281� 24:7158 ¼ 51:1123.

Interest for the period starting in 12 months and ending in 18 months is equal to
0:045

2
� 51:1123 ¼ 1:1500. The outstanding principal gets reduced by 26:4219� 1:1500 ¼

25:2719 to 51:1123� 25:2719 ¼ 25:8404.

Interest for the period starting in 18 months and ending in 24 months is equal to
0:045

2
� 25:8404 ¼ 0:5814. The outstanding principal is reduced by 26:4219� 0:5814 ¼

25:8405 to 25:8404� 25:8405 ¼ 0:0001 � 0:0000. The loan balances are summarized in
Table 2.1.

Table 2.1 Amortization table, $100 loan, maturity 2 years, 4.5% semi-annual rate

Period Start principal Payment Interest portion Principal portion End principle

1 100.0000 26.4219 2.2500 24.1719 75.8281
2 75.8281 26.4219 1.7061 24.7158 51.1123
3 51.1123 26.4219 1.1500 25.2719 25.8405
4 25.8405 26.4219 0.5814 25.8405 0.0000

Floating-rate bonds

So far, we have considered only bonds with interest rates that are known in advance.
Zero, coupon, or amortizing rates uniquely determine the cash flows a bond will pay
over its life to maturity. Many bonds, however, pay cash flows that are not known in
advance, but are instead tied to some interest rate index. The cash flows of these bonds
can be present-valued only by use of rollover arguments. As a way of introduction to
valuation of securities with unknown cash flows, we consider a floating rate bond.
Suppose ABC Inc. issues a 5-year $100 annual coupon bond. The coupon for each

annual interest period will be set equal to the 1-year interest rate in effect at the
beginning of that interest period and will be paid at the end of the interest period.
The first coupon to be paid in 1 year is set today, at the time of the issue. The second
coupon rate will be set 1 year from today and paid 2 years from today. It will be set
equal to the then prevailing 1-year interest rate. The third coupon will be set 2 years
from today and paid 3 years from today, and so on. How much will investors pay for
such a bond?
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In order to answer that question, we make a few observations. The coupon for each
interest period will be ‘‘fair’’. It will change every year and it will reflect the cost of
‘‘renting’’ money for that year. The timing of the coupon-setting process corresponds to
a sequence of new 1-year loans. On such loans, the rate would be set at the beginning of
the year and paid at the end (i.e., it would be known in advance). The floating rate bond
is equivalent to a revolving loan. Each year, ABC can be viewed as paying off a 1-year
bond issued a year earlier and refinancing with a new issue of a 1-year bond.

We can use these observations to recursively deduce the price of the floating rate
bond. Consider owning the 5-year bond 4 years from today, just after a coupon
payment. The bond has 1 year left and the rate set is equal to ~xx4�5. The present
value of your remaining cash flow 1 year hence is:

P4 ¼ 100þ ~xx4�5 � 100
1þ ~xx4�5

¼ 100

That is, on an investment of $100, you will be paid a rate ~xx4�5, which is also the 1-year
discount rate at that time. Knowing that the bond will be worth 100 in year 4, the value
of the bond in year 3 will be equal to the discounted value of the coupon of ~xx3�4 � 100
set then, to be paid 1 year hence, plus the $100 you will be able to sell the bond for 1
year hence. That is, the price 3 years from today will be:

P3 ¼ ~xx3�4 � 100þ P4

1þ ~xx3�4
¼ ~xx3�4 � 100þ 100

1þ ~xx3�4
¼ 100

The recursive argument continues all the way to year 1 for which the interest rate is
known and equal to the 1-year discount rate.

Today, the price of the floating rate bond is equal to 100. That price will stay close to
par throughout the life of the bond deviating only slightly inside the interest periods
and returning to par right after each coupon payment.4

2.3 THE TERM STRUCTURE OF INTEREST RATES

At any given moment, zero rates, coupon rates, and amortizing rates are not equal to
each other. Within the same category, interest rates for different maturities are not
equal to each other. Not only are the different rates not equal to each other, but
they also change all the time!

A graph of market interest yields against their maturities is called the term structure
of interest rates, or the yield curve. The graph is a snapshot of the market YTMs for a
given moment in time. What is plotted on the y-axis is yields and not rates as the first
definition may misleadingly imply. The x-axis contains maturities relative to the date of
the graph (e.g., 6 months from today, 1 year from today, 5 years from today, etc.). The
yields can be on any day-count/compounding basis, but this is most commonly dictated
by convention.

As there are many types of interest rates, there are many term structures. Bonds for
different issuers which represent the different credit quality of the issuers can be
grouped into rating categories. In that sense, we can talk about the BBþ term structure
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or the A� term structure. Even for each issuer, we can have many term structures as
each bond may be collateralized differently. For example, U.S. municipalities issue
either general obligation bonds, guaranteed by the general credit of the municipality,
or revenue bonds, guaranteed by the revenues of a particular project like highway tolls.
The two categories may enjoy different credit spreads and overall interest rates even for
the same maturity. Abstracting from all these credit issues, generally, we look at two
types of term structures:

. The term structure of discount rates (i.e., zeros).

. The term structure of par rates (i.e., yields on coupon bonds that trade close to par).

In the U.S., the most commonly watched term structure is that of on-the-run T-Bills.
These are newly issued T-Bills, notes, and bonds with a few standard maturities.
Because they are newly issued, they trade very close to par as the coupon rate is set
close to the market yield, and they are very liquid as there is great interest in them
among investors. On September 18, 2002 the Treasury yields in Table 2.2 were
reported.

Table 2.2 U.S. Treasury bonds

Maturity Yield Yesterday Last week Last month

3 Month 1.54 1.55 1.56 1.52
6 Month 1.56 1.57 1.60 1.57
2 Year 1.95 1.98 2.15 2.20
5 Year 2.88 2.88 3.12 3.37
10 Year 3.81 3.81 4.05 4.28
30 Year 4.71 4.72 4.87 5.04

Source: http://bonds.yahoo.com/rates.html on September 18, 2002.

From this information we can produce the term structures for the four dates on one
graph as in Figure 2.1.
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Figure 2.1 The term structure of treasury rates on September 18, 2002.

The graph illustrates how the par Treasury rates for different maturities had risen prior
to September 18, 2002, but perhaps not equally; the greatest absolute increase being in
the long end of the curve.
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On any given date the slope of the curve can be smooth, jagged, humped, etc., as it
reflects real market variables. A few shapes are of interest: upward sloping, downward
sloping (inverted), or flat. These do not have precise definitions except as implied by the
names. Market analysts and economists often aver that the shape of the yield curve
predicts the economic cycle to follow. For example, upward sloping is purported to
signal expansion; inverted, or downward, sloping a recession; and inverted with a high
short rate perhaps a currency crisis. We show some examples in Figure 2.2.
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Figure 2.2 Yield curve shapes.

The Treasury yield curve blends discount (i.e., non-coupon-paying) T-Bills with
coupon-paying Treasury notes and bonds. This is done for completeness as there are
no 3-month coupon-paying Treasuries. For consistency, all rates are expressed as semi-
annual bond equivalents.

Although most yield curves found in the press are those for coupon par instruments,
the most useful one is the term structure of zero-coupon interest rates, commonly
referred to as the discount curve, or the zero curve. Almost all trading desks compute
the zero curve relevant for their market, because it allows them to simply read off the
rates that must be used for discounting cash flows scheduled for different dates. When
faced with valuing a new bond in the market, a quantitative analyst working for the
desk determines each cash flow of the bond and discounts it using the zero rate corre-
sponding to the date of the cash flow. We explain in the next few sections why that is the
correct procedure. We also explain how to construct the discount curve from observed
market yields.

Discounting coupon cash flows with zero rates

Let us consider the following:

Problem We are considering buying c¼ 100 of a 4-year, 6%, annual coupon bond
issued by a German company XYZ GmbH. The cash flows on the bond can be depicted
as:

6:00þ 100:00 ¼ 106:00

4y

6.00

3y

6.00

2y

6.00

0 1y

42 An Arbitrage Guide to Financial Markets



Suppose we also observe that XYZ GmbH has four other zero-coupon bonds out-
standing. Their maturities and yields are summarized in Table 2.3.

Table 2.3 XYZ GmbH’s maturities and yields

Maturity Zero yield

1 5.00
2 5.75
3 6.10
4 6.50

How much would we be willing to pay for the coupon bond?

Solution Suppose, instead of buying the coupon bond, we bought four zero coupons
issued by XYZ GmbH, each with the face value and maturity matching the cash flows
of the coupon bond:

. For the 1-year zero with a face value of c¼ 6.00 we would pay
6

ð1þ 0:05Þ ¼ 5:7143:

. For the 2-year zero with a face value of c¼ 6.00 we would pay
6

ð1þ 0:0575Þ2 ¼ 5:3653:

. For the 3-year zero with a face value of c¼ 6.00 we would pay
6

ð1þ 0:061Þ3 ¼ 5:0235:

. For the 4-year zero with a face value of c¼ 106.00 we would pay
6

ð1þ 0:065Þ4 ¼ 82:3963:

The total we would spend would be c¼ 98.50. Since the cash flows from the four invest-
ments match exactly those of the coupon bond, we can argue that we would be willing
to pay c¼ 98.50 for the coupon bond.

YTM relationship The YTM on the coupon bond happens to be ytm ¼ 6:4374%.
That is, if we discount each cash flow at 6.4374% instead of their respective discount
rates we would get the following answers:

. For the 1-year zero
6

ð1þ 0:064374Þ ¼ 5:6371:

. For the 2-year zero
6

ð1þ 0:064374Þ2 ¼ 5:2962:

. For the 3-year zero
6

ð1þ 0:064374Þ3 ¼ 4:9759.

. For the 4-year zero
6

ð1þ 0:064374Þ4 ¼ 82:5901.

The sum equals c¼ 98.50. But the four ‘‘present values’’ obtained in this way are totally
fictitious. That is, they do not represent the amounts we would have to pay for real
securities. We had obtained those by discounting at the zero rates of the four real
discount bonds.
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Once we know the discount rates for any maturity, we know how to discount cash flows
for any coupon or amortizing bond. This is because we can replicate the cash flows of
that bond with real zero-coupon securities. The discounting is not a mathematical
equation, but a reflection of a replicating strategy. Obtaining a zero curve greatly
simplifies the analysis of any new security.

In reality, many issuers tend to only issue coupon securities (i.e., zero rates are not
observed directly in the market). What can we do when this is the case?

Constructing the zero curve by bootstrapping

The discount curve can be obtained by a process known as a zero bootstrap. This takes
as given the par coupon rates observed in the market and sequentially produces the zero
rates one by one from the shortest to the longest maturity, just like lacing boots. A
bootstrap looks messy on paper, but setting it up in a spreadsheet requires no skill. The
only confusion usually has to do with day-count conventions. We will describe the
process for annual rates.

Problem We observe the following annual coupon bonds that XYZ GmbH has
outstanding in the market. These are newly issued bonds and some old bonds that
originally had much longer maturities.

Table 2.4 XYZ GmbH’s annual coupon bonds

Maturity Coupon Price

1 5.10 100.0952
2 5.60 99.7618
3 6.10 100.0962
4 6.00 98.4993

Can we deduce what the zero curve for XYZ GmbH is given this market information?

Solving for the 1-year zero rate Let us first look at the 1-year bond. There is only one
cash flow from this bond equal to c¼ 105.10 at maturity. This can be depicted as:

Let us compare this with the 1-year c¼ 100 face value zero-coupon bond whose single
cash flow can be depicted as:

Investors would be indifferent between the 1-year 5.1% coupon bond with a face value
of c¼ 100 and a 1-year zero-coupon bond with a face value of c¼ 105.10. Both investments
would have the same single cash flow of c¼ 105.10 in 1 year. Both are in fact pure
discount bonds with a face value of c¼ 105.10. The coupon bond is just labeled

105.10

0 1y

100

1 1y
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‘‘coupon’’ as that is presumably how it was originally issued. If the zero-coupon bond
came in denominations of c¼ 0.10, investors could simply ask for 1,051 such ‘‘bondlets’’
to replicate the 1-year coupon bond. Given that the coupon bond and the zero-coupon
bond are perfect substitutes for each other, they must have the same yield. We can
easily compute the yield on the 1-year coupon bond implied in its market price by
solving the following equation for z1:

100:0952 ¼ 105:10

ð1þ z1Þ
The solution is z1 ¼ 5%. Any cash flow payable by XYZ GmbH in 1 year should be
discounted by 5%, because it could be replicated by holding the appropriate face value
of the 1-year coupon bond. In other words, any 1-year discount bond issued by XYZ
GmbH would have to yield 5%, because it could be replicated by holding the appro-
priate face value of the 1-year coupon bond.
The first step in the bootstrap is typically simple, because the shortest maturity

coupon bond may not have any intervening coupons left.

Solving for the 2-year zero rate Let us examine the 2-year coupon bond. It has a
coupon rate of 5.60% and it sells for c¼ 99.7618. From that information, we can
depict its cash flows as:

From the first step of the bootstrap, we know that we can compute the PV of the 1-year
cash flow by applying the discount rate z1 ¼ 5%. That is, we can get:

PVðCF1Þ ¼ 5:60

ð1þ 0:05Þ ¼ 5:3333

We also know that the total PV of the bond equal to its current price is c¼ 99.7618. So
the present value of the second cash flow must be the difference:

PVðCF2Þ ¼ 99:7618� 5:3333 ¼ 94:4285

If the bond could be separated and sold as two separate strips, then the first one with
the face value of c¼ 5.60 would sell for c¼ 5.3333 and the second one with the face value of
c¼ 105.60 would sell for c¼ 94.4285. We can solve for the discount yield implied in the
price of the 2-year strip by solving the following equation for z2:

94:4285 ¼ 105:60

ð1þ z2Þ2
to get z2 ¼ 5:75%. If XYX GmbH had a 2-year zero outstanding, then it would have to
yield 5.75%; otherwise, investors could replicate its cash flow of c¼ 100 in 2 years by
buying the appropriate face value of the second strip.

The arbitrage argument But suppose that the 2-year coupon bond cannot be separated
and sold as two strips. Can we still claim that the 2-year discount rate should be 5.75%?
This is actually the crux of the argument.

105.60

2y

5.60

0 1y
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Suppose an investor wants to enter into a strategy in which a payment of c¼ 105.60 in
2 years is promised to her by XYZ GmbH (i.e., she wants to replicate the non-existent
second strip or synthetically create a 2-year zero). She could do it by entering into the
following two trades simultaneously:

. Buying c¼ 100 face value of the 2-year, 5.60% coupon bond for c¼ 99.7618.

. Shorting c¼ 5.60 face value of a 1-year zero for which she would receive c¼ 5.3333.

Her net investment is c¼ 94.4285. Her cash flows can be portrayed as:

This matches exactly the 2-year strip. Thus, a 2-year zero investment can be synthetic-
ally replicated by going long a 2-year coupon bond and short a 1-year zero-coupon
bond. Any 2-year zero-coupon bond issued by XYZ GmbH would have to yield at least
5.75%; otherwise, nobody would buy it. All investors would simply enter into synthetic
replicating strategies.

Furthermore, if XYZ GmbH did issue a 2-year zero and it yielded more than 5.75%,
all investors would buy that zero and simultaneously construct a short 2-year strip with
offsetting cash flows, thereby locking in riskless profits. The strategy could be summar-
ized as the following three trades:

. Buy the 2-year zero with a face value of c¼ 105.60 for less than c¼ 94.4285 (i.e., yielding
more than 5.75%).

. Short c¼ 100 face value of the 2-year, 5.60% coupon bond to receive c¼ 99.7618.

. Buy c¼ 5.60 face value of a 1-year zero by paying c¼ 5.3333.

In the short coupon bond transaction, the investor would borrow the bond from a third
party, sell it in the market for its current price, but would be obligated to replace the
coupons and principal repayment cash flows to the bond lender. The last two trades—
short coupon bond and long 1-year zero—would bring a cash inflow of c¼ 94.4285 today.
If the first one—long 2-year zero—costs less than c¼ 94.4285 to enter into, then the
arbitrageur would have a positive cash flow today. Her future obligations would be
matched at every point in time as shown below:

Long 2-year coupon

Short 1-year zero

Net

5.60

(5.60)

105.60

105.60

2y0 1y

Long 2-year zero

Short 2-year coupon

Long 1-year zero

Net

(5.60)

5.60

0

105.60

(105.60)

0

2y0 1y
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All she would have to do in the future is to collect the receipts on her 1-year and 2-year
zero investments and use them to satisfy her coupon obligations to the lender of the
bond. She would not be the only one pursuing this arbitrage strategy. All investors
would immediately pursue strategies like this one, driving the price of the newly issued
2-year zero up and its rate down to the 5.75% level. It is also possible that the 2-year
coupon rate might be driven up and the 1-year zero rate down at the same time. All
three instruments would have to find a level at which arbitrage would be prevented and
we could safely apply our bootstrap math.
One lesson from all of this is that the no-arbitrage principle requires that all instru-

ments be freely traded and both longs and shorts allowed. Our example also presumes
that the bid–ask spread (i.e., the difference in the prices at which the bonds are offered
to be bought and sold) is very narrow (we assumed a spread of zero). Illiquid markets
with wide bid–ask spreads also follow arbitrage rules, but the spread has to be explicitly
taken into account to compute arbitrage bands around mid-market prices and rates. In
liquid markets, the standard procedure is to use mid-market rates to compute the
implied mid-market zero rate and then adjust it to bid or ask.

Solving for the 3-year zero rate Let us examine the 3-year coupon bond. It has a
coupon rate of 6.10% and it sells for c¼ 100.0962. From that information, we can
depict its cash flows as:

We have solved for z1 ¼ 5% and z2 ¼ 5:75%, and we know how to discount the first
two cash flows of the bond:

PVðCF1Þ ¼ 6:10

ð1þ 0:05Þ ¼ 5:8095

PVðCF2Þ ¼ 6:10

ð1þ 0:0575Þ2 ¼ 5:4547

We also know that the total present value of the bond equal to its current price is
c¼ 100.0962. So the present value of the third cash flow must be the difference:

PVðCF3Þ ¼ 100:0962� ð5:8095þ 5:4547Þ ¼ 88:8320

If the bond could be separated and sold as three separate strips, then:

. The 1-year strip with the face value of c¼ 6.10 would sell for c¼ 5.8095.

. The 2-year strip with the face value of c¼ 6.10 would sell for c¼ 5.4547.

. The 3-year strip with the face value of c¼ 106.10 would sell for c¼ 88.8320.

We can solve for the discount yield implied in the price of the 3-year strip by solving the
following equation for z3:

88:8320 ¼ 106:10

ð1þ z3Þ3

to get z3 ¼ 6:10%. If XYX GmbH had a 3-year zero outstanding, then it would have to
yield 6.10%. It is a pure coincidence that the 3-year zero rate, or the 3-year zero yield, is

106.10

3y

6.10

2y

6.10
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equal to the 3-year coupon rate of the particular bond we used. The 3-year coupon yield
is not equal to 6.10% as the bond sells for a price higher than the par of 100. If XYX
GmbH were to issue another 3-year coupon bond and wanted to sell it at par, then its
coupon would have to be set below 6.10%. We will come back to this point after the
completion of the bootstrap.

The arbitrage argument Let us again show that the 3-year zero of 6.10% is not just a
product of a mathematical procedure, but that market forces (i.e., real human behavior)
will guarantee that level. We assume that the 1- and 2-year zero-coupon bonds issued by
XYZ GmbH are actively traded in the market or they can be created synthetically by
taking simultaneous positions in existing coupon bonds and zero bonds.

Suppose an investor wants to enter into a strategy in which a payment of c¼ 106.10 is
promised to her by XYZ GmbH (i.e., she wants to synthetically create a 3-year zero
with a face value of c¼ 106.10). She could do it by entering into the following three trades
simultaneously:

. Buying c¼ 100 face value of the 3-year, 6.10% coupon bond for c¼ 100.0962.

. Shorting c¼ 6.10 face value of a 1-year zero for which she would receive c¼ 5.8095.

. Shorting c¼ 6.10 face value of a 2-year zero for which she would receive c¼ 5.4547.

Her net investment is c¼ 88.8320. Her cash flows can be portrayed as:

This matches exactly the 3-year strip. Any 3-year zero-coupon bond issued by XYZ
GmbH would have to yield at least 6.10%; otherwise, nobody would buy it. All
investors would simply enter into this synthetic replicating strategy with existing bonds.

Again, we can also argue the yield on a new 3-year zero could not be higher than
6.10%. Suppose that XYZ GmbH did issue a 3-year zero yielding more than 6.10%. All
investors would buy that zero and at the same time construct a synthetic short 3-year
zero with offsetting cash flows to lock in riskless profits. The strategy could be summar-
ized as the following four trades:

. Buy the 3-year zero with a face value of c¼ 106.10 for less than c¼ 88.8320 (i.e., yielding
more than 6.10%).

. Short c¼ 100 face value of the 3-year, 6.10% coupon bond to receive c¼ 100.0962.

. Buy c¼ 6.10 face value of a 2-year zero by paying c¼ 5.4547.

. Buy c¼ 6.10 face value of a 1-year zero by paying c¼ 5.8095.

In the short coupon bond transaction, the investor would borrow the bond from a third
party, sell it in the market for its current price, but would be obligated to replace the
coupons and principal repayment cash flows to the bond lender. The last three trades—

Long 3-year coupon

Short 1-year zero

Short 2-year zero

Net

6:10

(6.10)

6.10

(6.10)

106.10

106:10

0 1y 2y 3y
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short coupon bond, long 2-year zero, and long 1-year zero—would bring a cash inflow
of c¼ 88.8320 today. If the first one—long 3-year zero—costs less than c¼ 88.8320 to enter
into, then the arbitrageur would have a positive cash flow today. Her future obligations
would be matched at every point in time and can be depicted as:

In the future, she would simply collect the receipts from her 1-, 2-, and 3-year zero
investments and use them to satisfy her coupon obligations to the lender of the 3-year
coupon bond. Again, she would not be the only one pursuing this arbitrage strategy. All
investors would immediately do the same, driving the price of the new 3-year zero up
and its rate down to the 6.10% level. They might also force the yields on the other
bonds to adjust to a level at which arbitrage would not be possible.

2.4 INTEREST RATE RISK

A vast majority of coupon bonds are issued at par or at a price close to par. Practically,
what that implies is that at the time of issue the coupon rate is set close to the prevailing
market yield. Zero-coupon bonds are sold at a discount from par, and the discounted
price reflects the market yield. After the issue, all bond prices fluctuate with market
yields. The coupon rate set at the time of issue does not change and the cash flows it
defines do not change; neither do the dates of the cash flows. But as yields required by
investors change, so do the discounted values of those cash flows. This phenomenon is
normally portrayed as a downward-sloping concave relationship between the price of a
bond and the YTM on the bond.
Consider a 12-year, 10%, semi-annual coupon bond yielding 10% semi-annually and

let us assume a face value of $100. The bond pays $5 every 6 months for the next 12
years and returns the principal of $100 12 years from today. The price of the bond
today, equal to the discounted value of its cash flows, is equal to:

P ¼ 10=2

ð1þ 0:10=2Þ þ
10=2

ð1þ 0:10=2Þ2 þ � � � þ 10=2

ð1þ 0:10=2Þ24 þ
100

ð1þ 0:10=2Þ24

¼ 5

ð1þ 0:05Þ þ
5

ð1þ 0:05Þ2 þ � � � þ 5

ð1þ 0:05Þ24 þ
100

ð1þ 0:05Þ24
and, miraculously, to 100! If we set the denominator yield used to discount cash flows
equal to the coupon rate, then the price will always come out equal to par. This can also
be seen through a recursive argument. Six months prior to maturity (i.e., 111

2
years from

Long 3-year zero

Short 3-year coupon

Long 2-year zero

Long 1-year zero

Net

(6.10)

6:10

0

(6.10)

6.10

0

106.10

(106.10)

0

0 1y 2y 3y
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now) the bond price is equal to the discounted value of the principal and last coupon
received at maturity, or:

P11:5 ¼ 105

1þ 0:05
¼ 100

Twelve months prior to maturity (i.e., 11 years from now) the bond price is equal to the
discounted value of the next coupon and what the bond can be sold for the next period;
that is:

P11 ¼ 5þ P11:5

1þ 0:05
¼ 105

1þ 0:05
¼ 100

and so on.
Now suppose that the market yield on a 12-year bond changes to 8% semi-annual.

The new price of the 10% coupon bond is:

P ¼ 5

ð1þ 0:04Þ þ
5

ð1þ 0:04Þ2 þ � � � þ 5

ð1þ 0:04Þ24 þ
100

ð1þ 0:04Þ24 ¼ 115:25

That is, in order to receive an above-market coupon of 10%, an investor would have to
pay an above-par price. Conversely, if the market yield on a 12-year bond changes to
12% semi-annual, the price will drop to:

P ¼ 5

ð1þ 0:06Þ þ
5

ð1þ 0:06Þ2 þ � � � þ 5

ð1þ 0:06Þ24 þ
100

ð1þ 0:06Þ24 ¼ 87:45

Plotting the relationship between the price of the bond and its yield, we would get
Figure 2.3:

Figure 2.3 Price–yield graph for 12-year, 10%, semi-annual coupon bond.

Note that there is a maximum price for the bond. If the yield drops to 0, then the value
of the bond will be equal to the sum of its cash flows, or:

P ¼ 5

ð1þ 0Þ þ
5

ð1þ 0Þ2 þ � � � þ 5

ð1þ 0Þ24 þ
100

ð1þ 0Þ24 ¼ 220

The price for the bond approaches 0 asymptotically as the interest rate goes to infinity.
Most of the time, we are somewhere in the middle. The graph is a convex (bowed to
below) curve due to the nature of compound interest. This can also be seen from the
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fact that the change in price is not symmetric. When the yield went down by 2%, the
price changed by 15.25; when the yield went up by 2%, the price changed by �12:55.

Observations An increase in market yield lowers the price of the bond; a decrease in
market yield raises the price of the bond; the price–yield relationship is convex; interest
rate fluctuations are a source of price risk for bond holders.

What does the magnitude of that risk depend on? Three factors come to mind:

. Time to maturity—other things being equal, the longer the maturity of the bond, the
larger the price swings are for the same change in interest rates. This can be seen by
repeating our exercise for a 16-year, 10%, semi-annual coupon bond. At a yield of
10% semi-annual, the bond prices to par, at 8% to 117.87 and at 12% to 85.92. A
change in the rate used for discounting the cash flows has a greater impact for a
longer bond due to the compound interest effect on later cash flows.

. Coupon rate—other things being equal, the lower the coupon rate of the bond, the
larger the price swings are for the same change in interest rates. The intuition is
similar to the time to maturity argument. The principal repayment’s weight in the
overall present value is greater for a low coupon bond than for a high coupon bond.
Therefore, a change in the discount rate affects a low coupon bond dispropor-
tionately more.

. Coupon frequency—other things being equal, the less frequently the coupons on the
bond are paid, the larger the price swings are for the same change in interest rates.
Monthly bonds bring the coupons closer to today than annual coupon bonds and,
hence, are less sensitive to the discount rate change.

From the above, we can deduce that zero-coupon bonds have the greatest interest rate
risk of all bonds with the same maturity, as there is only one cash flow at maturity.
Floating-rate bonds have virtually no interest rate sensitivity as their prices always

return to par after coupon payments. Their price may deviate from par on a non-coupon
date only to the extent that the first coupon rate that has been set is different from the
discount rate for that first coupon. For example, today’s 9-month (discount) rate may be
different from a 12-month rate set 3 months ago for the current 1-year coupon period.
All future coupons will be set at ‘‘fair’’ rates and have a present value of 100.
To compare the riskiness of bonds with different characteristics (maturities, coupon

rates, and coupon frequencies), we require a metric of interest rate sensitivity. The most
commonly used interest rate risk metrics are duration and convexity. Both of these
measures are local in nature. They are summary statistics that describe the sensitivity of
the bond’s price to small changes in yields away from the current level. They are not
appropriate for large market moves and they are not global in nature: the duration of
the bond when yields are at 5% can be vastly different from the duration of the same
bond when yields are at 8%. Fixed income portfolio managers dealing with hundreds or
thousands of bonds with different maturities, coupons, or issuers routinely use duration
and convexity measures to select bonds for their portfolios.

Duration

The universe of bonds, even for the same issuer, can be enormous. Imagine the bonds
our XYZ GmbH might have outstanding on any given day: a 5-year, semi-annual, 4%
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coupon bond; a 71
4
-year, annual, 3% bond with next coupon due in 3 months; a 6-year

zero-coupon; or a 4-year bond whose coupon starts at 3.5% but increases by 0.75% each
year. How do we choose which bond to invest in or which one to sell out of a portfolio?

Investors compare bonds that have different characteristics by using the notion of
duration. In its original form, as described by Macaulay,5 duration D is defined as the
present value-weighted average time to the bond’s cash flows. The largest cash flow for
a bond is the principal repayment at maturity. But the bond may also provide sub-
stantial coupons prior to maturity. The duration measure takes into account the final
repayment and any interim flows of all cash flows in computing an average time of the
cash flows, which is often much shorter than the maturity of the bond. In the averaging,
the cash flows are weighted by their contribution to the total present value of the bond.
Duration is defined by Macaulay in terms of time or years. We can say that a bond has,
for example, a duration of 3.45 years or that another bond has a duration of 7.29 years,
and we can compare bonds based on that number. As we will show, this is a very
intuitive measure.

Duration has also another, more interesting interpretation: modified duration is the
relative sensitivity of the bond price to a unit yield change. That unit can be 1%, but a
preferred unit of yield change is 1 basis point, or 0.01%. For example, if a bond has a
modified duration of 6.94 and the yield to maturity increases by 1 basis point, then the
price of the bond will decrease approximately by 6.94 basis points. Modified duration is
thus defined as the percentage change in the price divided by the change in yield, or:

ModD ¼ �DP=P
Dy

As it turns out, duration and modified duration are closely related through the follow-
ing formula:

ModD ¼ D

1þ y

n

where n is the number of compounding periods per year for the yield y. Note that the
denominator is close to one, and duration and modified duration are roughly the same.
Often traders talk only of one duration, quoting exclusively the modified duration
numbers as these reflect the local riskiness of bonds. But it is important to understand
the intuitive Macaulay meaning of duration.

Let us consider an example of a 6-year, 7%, semi-annual coupon bond yielding 8%.
That is, a $100 face value bond pays $3.50 at the end of each 6-month period and
returns the principal of $100 in 6 years. Table 2.5 presents the logic of the Macaulay
duration calculation. Columns 1 and 2 contain times and cash flows. Column 3 contains
discount factors for each cash flow based on the yield of 8% semi-annual. Column 4
computes the present value of each cash flow with the sum of all present values at the
bottom. The essence of the duration computation is columns 5 and 6. Column 5
presents the percentage that the present value of each cash flow represents in the
total value of the bond. Each percentage can be construed as the weight of that cash
flow in the total in today’s dollars. Lastly, column 6 multiplies those weights by the
times to the cash flows to arrive at a weighted-average time to cash flows.
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Table 2.5 Macaulay duration calculation logic

Maturity in years: 6
Coupon: 7.00
Yield: 8.00

Time CF DF PV %PV t�%PV

0.5 3.5 0.961 538 3.365 385 3.53 0.017 7
1 3.5 0.924 556 3.235 947 3.40 0.034 0
1.5 3.5 0.888 996 3.111 487 3.26 0.049 0
2 3.5 0.854 804 2.991 815 3.14 0.062 8
2.5 3.5 0.821 927 2.876 745 3.02 0.075 5
3 3.5 0.790 315 2.766 101 2.90 0.087 1
3.5 3.5 0.759 918 2.659 712 2.79 0.097 7
4 3.5 0.730 690 2.557 416 2.68 0.107 3
4.5 3.5 0.702 587 2.459 054 2.58 0.116 1
5 3.5 0.675 564 2.364 475 2.48 0.124 0
5.5 3.5 0.649 581 2.273 533 2.39 0.131 2
6 103.5 0.624 597 64.645 79 67.83 4.069 7

Total 95.307 46 100.00 4.972 0

Figure 2.4 is yet another way to present the concept graphically. Each block represents
the percentage of present value recovered through each cash flow. The height of the
block is taken from the appropriate row of column 5.

Figure 2.4 PV weights of bond’s cash flows.

The weighted-average time to the cash flows, using the block heights as the weights, is
equal to 4.968. That number is also the approximate percentage change of the price
corresponding to a 1% change in yield.
The Macaulay concept is extremely intuitive. With a little experience, we can guess

bond durations fairly accurately. Here are some heuristics:

. All other things being equal, the longer the maturity, the longer the duration (i.e., the
blocks in our graph extend further out and so the weighted time to the repayment is
longer).
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. The larger the coupon, the shorter the duration (i.e., the higher the coupon blocks,
the less weight is assigned to the principal repayment and the smaller the weighted
average).

. The greater the frequency of the coupons, the shorter the duration (i.e., as more
blocks are closer to today).

All three of these correspond closely to the heuristics behind the interest rate risk of
bonds. Here are two more observations:

. The duration of a zero-coupon bond is equal to its maturity.

. Floating rate bonds have very short durations equal to the next coupon date.

Let us now examine the more practical meaning of duration, that of the interest rate
sensitivity applied to our example bond. The 6-year, 7%, semi-annual coupon bond
yielding 8% is valued at 95.3075. We computed the Macauley duration to be 4.9720.
The modified duration is then:

ModD ¼ 4:9720

1þ 0:08

2

¼ 4:7807

If the yield on the bond were to increase from 8.00% to 8.15% (i.e., by 0.15%, or 15
basis points), then the price of the bond should decrease by 4.7807� 0.15, or 0.7171%.
Based on the starting value of 95.3075, this translates into a change to 94.6240. Mathe-
matically, this can be expressed as:

Pnew ¼ P½1þ ð�ModDÞDy�
¼ 95:3075½1þ ð�4:7807Þð0:15Þ� ¼ 94:6240

An exact calculation of the value of the bond assuming an 8.15% yield produces the
discounted value of the bond’s cash flows equal to 94.6270. In the case of a small
change in the yield, duration was a very good approximation to the change in the
value of the bond. This would not be so if the yield change considered were large. In
the extreme case of the yield going down to 0 (i.e., a yield change of 8%), multiplying
that change by 4.7807 gives the predicted change in the bond price of 38.2456% of the
current value, or $36.4509. Duration would predict that the bond price would increase
to $131.7584. Yet we know that at a zero discount rate the value of the bond is equal to
a simple sum of its cash flows or $142.

What went wrong? Duration is a local measure. It is the first derivative of the price
with respect to the yield. Thus, it is a linear approximation based on a line that is
tangent to a polynomial curve, the true price–yield relationship. This is represented in
Figure 2.5.
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Figure 2.5 Price–yield relationship.

Later we show how the duration-based linear approximation can be improved with the
use of convexity.
Most computer applications do not compute duration the way we presented it in

Table 2.5. Rather, they revalue the bond using the yield a small number of basis points
above and a small number of basis points below the current YTM, and then they divide
the change in the bond’s value by the combined size of the yield change ‘‘blip’’. That is,
they compute the sensitivity of price to yield directly. Let us denote the value of the
bond with a yield blipped up by dy basis points as Pþdy and the value of the bond with a
yield blipped down by dy basis points as P�dy. Then duration can be computed
numerically by dividing the percentage price change by the total change in yield, or as:

ModD ¼ �ðPþdy � P�dyÞ=P
2dy

In our case the two values can be easily arrived at using a financial calculator or a
spreadsheet. For example, using the yield of 8.02 we get Pþ2 ¼ 95:216 39, and using the
yield of 7.98 we get P�2 ¼ 95:39864. The duration is thus computed as:

ModD ¼ �ð95:216 39� 95:398 64Þ=95:307 46
2 � 0:0002 ¼ 4:7806

Of course, we could use a smaller yield change or adjust the centering in the numerator.
Note that the estimate is off by 0.0001 due to the fact that we used a large blip of 2 basis
points. The smaller the blip used, the smaller the error. We encourage the reader to
repeat the calculation by using a 1 basis point or a 0.5 basis point yield change.
The numerical procedure of computing duration is very general and works also for

the most complex bonds with embedded options, for which expected cash flows may
change as we vary the yield.
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Portfolio duration

Duration is very popular with managers of large bond portfolios. This is due to its one
very attractive property: the duration of a portfolio is equal to the weighted average of
the durations of individual bonds. The weight for each bond is simply the proportion of
the portfolio invested in that bond. This property is a direct result of the fact that
durations are first derivatives of the bond values with respect to yields and that first
derivatives are additive. Let us look at an example.

Consider the following portfolio of bonds:

Investment Investment Coupon Maturity Duration
($ million) (%)

400 20 6.50 12 9.54
900 45 5.75 10 7.23
700 35 5.25 6 4.85

2,000 100 6.86

Duration ¼ 0:20 � 9:54þ 0:45 � 7:23þ 0:35 � 4:85 ¼ 6:859:

The interpretation of the portfolio duration is the same as that for individual bonds
with the qualification that the duration of the portfolio is the sensitivity of the value of
the portfolio with respect to a parallel shift in yield to maturities. In the case of the
portfolio represented in the above table, this could translate into the following state-
ment: if the YTM on each bond in the portfolio decreased by 7 basis points, then the
value of the portfolio would increase by 6.859� 7, or 48.013 basis points. In dollars,
that is equal to an increase of 0.004 801 3� $2 billion, or $9,602,600. By knowing one
statistic about the portfolio—its duration—the manager can predict the value change
for the entire portfolio very accurately for small changes in yields!

Often, bond managers engage in what is called duration matching, or portfolio
immunization. These terms refer to a conscious selection of bonds to be added to the
portfolio in order to reduce the duration of the portfolio to 0 (i.e., to eliminate all
interest rate risk). This is done by selecting the right amount of bonds to be shorted or
by buying bonds with negative duration. Sometimes, managers do not attempt to
eliminate risk completely, but rather to ‘‘shorten’’ (decrease) or ‘‘lengthen’’ (increase)
the duration of a portfolio by reshuffling the allocations to various bonds. Many
managers of corporate bond portfolios short government bonds with the same duration
to eliminate exposure to interest rates, leaving themselves with pure credit spread
exposure. Commercial banks engage in a form of portfolio immunization, by trying
to decrease the duration of their assets (auto and home loan portfolios) and increase the
duration of their liabilities (move depositors to long-term certificates of deposit, or
CDs).

Note, in the above example, that if the YTMs do not change in parallel (e.g., some
change by 8 basis points and others by 6 basis points), then the estimate based on
portfolio duration will be somewhat inaccurate. However, an estimate obtained by
summing the products of the changes in yields for all bond times will have individual
durations that are still very accurate. This is still much easier than revaluing all bonds.
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Convexity

Convexity is often used to improve the accuracy of the duration approximation to the
change in value of the bond. It is important to include it in the approximation for:

. Large changes in YTM.

. Bonds whose price–yield relationship is highly non-linear (e.g., bonds with em-
bedded options, some mortgage-backed securities).

Convexity is equal to half the second derivative of bond price with respect to the yield,
and as such it measures the average rate of change in the slope of the tangent duration
line. Numerically, it can be computed as the following difference formula:

C ¼ 1

2
� ðPþdy þ P�dy � 2PÞ=P

ðdyÞ2
We already have all the ingredients to compute convexity for our example bond. Let us
plug the numbers into the formula to get:

C ¼ 1

2
� ð95:216 39þ 95:398 64� 2 � 95:307 46Þ=95:307 46

ð0:0002Þ2 ¼ 14:4270

The convexity number measures the average change in the duration per dy basis
points.6 It tells us to what extent the true price–yield curve deviates from the linear
approximation. What we are mostly interested in is in improving that approximation.
In order to do that, we need to multiply the convexity by the relevant yield change Dy to
obtain the change in the duration over that entire yield change. This may explain the
logic behind the following duration-cum-convexity approximation formula for the
bond price change:

Pnew ¼ P½1þ ðModDþ C � DyÞDy�
The percentage price change in the bond value per unit of yield comes from two
sources: the duration, which for most bonds will underestimate the magnitude of the
change following a straight line, and the convexity that will correct for that under-
estimation by reducing the absolute value of the duration. Using the numbers for our
example bond, we get:

Pnew ¼ 95:307 46½1þ ð�4:7806þ 14:4270 � 0:0015Þ � 0:0015� ¼ 95:6271

We have improved our estimate considerably and are almost spot on! Recall the true
value of the bond at a yield of 8.15% was 95.6270.
Convexity is widely used as a summary statistic to describe large bond portfolios.

Typically, durations and convexities are computed for several possible yield increments
relative to today’s level (e.g., �50, �25, 0, þ25, þ50 basis points). It is important to
remember, however, that convexities, unlike durations, are not additive and are com-
puted by blipping entire portfolios and revaluing all the bonds in them. Just like with
durations, managers engage in immunization strategies with respect to convexities by
adding negatively convex bonds or reshuffling portfolio allocations to reduce or
increase the convexity of the overall portfolio.
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Other risk measures

Duration and convexity calculations as described so far assume that the underlying
cash flows of the bond do not change; only the YTM does. Yet the cash flows of bonds
with embedded options often change as the yields change (e.g., a ‘‘blip’’ in the yield on a
callable bond may trigger a call provision). In those cases, we can compute alternative
measures of effective duration and convexity where the changed cash flows are explicitly
taken into account when computing the blipped values Pþdy and P�dy. We should,
however, bear in mind that those values are not computed through simple discounting,
but, rather, with the use of an option-pricing model. As such they take into account
other inputs, the most important of which is the volatility of the yield.

The volatility of the yield enters into the analysis in a different way too. Imagine a
portfolio of two corporate bonds both with the same maturity and both trading at par.
But one of the bonds has a much higher coupon reflecting the lower credit quality of its
issuer. Is it realistic to assume that the yields on the bonds will move in parallel or is it
more realistic to assume that the riskier bond’s yield will fluctuate proportionately
more? The volatility of the yield refers precisely to that concept. Computing portfolio
durations may be of little help in this case. Rather, we may prefer to compute individual
durations and scale the assumed yield movements by the respective yield volatilities to
arrive at portfolio value change approximations for more realistic yield movements.

Lastly, let us define the concept of the price value of a basis point, which is closely
related to duration. Unlike duration, which is expressed in relative terms, the price
value of a basis point (PVBP) measures the absolute value of the change in price of
a bond per unit of yield change; that is, it is defined as:

PVBP ¼ �DP
Dy

and can be approximated by:

PVBP ¼ �ðPþdy � P�dyÞ=10,000
2dy

In our bond example, it could be computed as:

PVBP ¼ �ð95:216 39� 95:398 64Þ=10,000
2 � 0:0002 ¼ 0:0456

and is defined in dollars. The interpretation of PVBP is that 1 basis point change in the
yield causes $0.0456 change in the value of the bond with a face value of $100. For par
bonds, modified durations and PVBPs scaled by 1/100 are identical since percentage
changes and absolute value changes are the same if P ¼ 100.

2.5 EQUITY MARKETS MATH

The main difference between the bond math and the stock math is the degree of
uncertainty about the cash flows. For most bonds, coupons and principal repayments
are guaranteed by the issuer. Unless the issuer defaults, the cash flows are known in
advance. Because of that, we are able to construct very strict relationships between the
different bonds of the same issuer and argue, using the arbitrage principle, that related
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yields must be certain numbers. We do not have to invoke any assumptions about the
issuer’s business, the company’s management style, or the growth prospects for its
portfolio of investments to compute what price we should pay for a bond or what
yield we are earning given the price.
This is not the case with stocks. A company is under no obligation to pay dividends.

If and when it returns cash to its shareholders, whether in the form of dividends or
capital gains, is not known in advance. It is hard to discount cash flows if we do not
know them. Even if we assume that we do, then what rate of discount should we apply?
The principle of cash flow discounting requires that the rate used reflects the uncer-
tainty of the cash flows. Equity holders get paid only after debt holders do. So the
discount rate must be higher than that applied to bonds. What equity holders get paid
depends on the company’s success. Presumably, the greater the potential payoff in its
investments, the greater the risk of these projects. Thus the value of the stock will
depend on the subjective growth estimates for the company’s projects. Given this
uncertainty about both the cash flows and the discount rate, we will be able to
compute the rate of return on the stock, knowing its price or the fair value of the
stock assuming the discount rate, but not both. In addition, each relative valuation
method will depend on the assumption about future profitability of the company’s
projects. Given all these uncertainties, the math applied will be much simpler than
that for bonds, and, paradoxically, complicating it will not make things more accurate.
There is one more point of view to bear in mind. The value of the company’s assets is

equal to the value of its equity plus the value of its debt. So if we know the value of all
the assets, why do we have to make profitability assumptions when valuing stocks and
not when valuing bonds? Aren’t the two supposed to add up to a known value?
There are two related ways to answer that question. The first, an option-theoretic

point, is that we never really know the value of the assets until the company gets
liquidated or acquired. The accounting book value is of very little help; rather, it is
more realistic to view the value of the debt as known. After all, we can discount the
value of all future debt obligations. The discount rates can be easily gleaned from bond
yields and rates quoted on bank debt. In this way, the equity value can be looked on as
equivalent to a call option on the company’s assets after creditors have been paid off.
That is, it can be written as a payoff for the call with a strike price equal to the value of
the debt:

Equity ¼ Max½Assets�Debt; 0�

The related second point is that perhaps the debt value is not so well known. After all,
when the credit quality of the company declines and bonds get downgraded, the yield
spreads over the risk-free rates can fluctuate and with them so can the value of the debt.
Thus, although for risk-free government debt all the discounting machinery is well
established, for risky corporate debt it is not so simple. Even if the value of assets is
known, both equity and debt values can fluctuate with the prospects of the company.
This point becomes very clear when we consider hybrid securities like convertible debt.
It becomes even clearer when we consider companies close to bankruptcy, where the
possibility that debt holders will soon become equity holders is very real. Add to that
the uncertainty in the value of the assets (how much is the Starbucks brand worth?) and
the point is made.
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A dividend discount model

Let us start by assuming that we know the rate that we should apply to discount the
company’s future cash flows. Perhaps we examined the company’s business plan and
compared it with that of other similar ventures. Perhaps we used the standard capital
asset-pricing model (CAPM)7 which related the discount rate for the stock to the rate
on risk-free government obligations and a market risk premium. In any case, we have
determined the appropriate rate r, which we will assume to remain constant over time.

We want to buy one share of ABC Corp. ABC will pay a dividend of D1 dollars a
year from today and, at that point, we will be able to sell the stock for P1 dollars. Then
the present value of the cash flows today (i.e., the fair price for the stock, P0) is equal to:

P0 ¼ D1 þ P1

1þ r

D1 could be 0 here. Also note that we may not know the value P1 that we will be able to
sell the share for 1 year from today. However, we can argue that tomorrow’s purchaser
will expect to earn a return of r percent on the stock over the following year. In other
words, he will pay the discounted value of next year’s dividend and sale price; that is:

P1 ¼ D2 þ P2

1þ r
Today’s fair value for the share is:

P0 ¼ D1

1þ r
þD2 þ P2

ð1þ rÞ2
We can extend the argument to a potential purchaser at the end of year 2, and so on, to
get a general formula:

P0 ¼ D1

1þ r
þ D2

ð1þ rÞ2 þ
D3

ð1þ rÞ3 þ � � � þDn þ Pn

ð1þ rÞn
We would have gotten the same result if we had assumed that we did not intend to sell
the stock after 1 year, but that we were going to hold it for n years, collect all
intervening dividends, if any, and then sell only at the end of year n. That is, the
formula does not depend on our, or anyone else’s, holding horizon n. It does not
depend on who will hold the stock over the next n years. It also does not depend on
whether the company pays any dividends at all (i.e., whether any of the Di’s are non-
zero) or whether all potential gains come from price appreciation. We can also extend
the argument to infinity to obtain the price as the sum of all future discounted cash
flows:

P0 ¼ D1

1þ r
þ D2

ð1þ rÞ2 þ
D3

ð1þ rÞ3 þ � � � þ Dn

ð1þ rÞn þ � � �

Note that if no one believed that the company would ever pay anything, then the price
would be 0. That is, if everyone agrees that the company will never be profitable, then
no one would invest in it. This is different from believing that the company would never
pay any dividends. After all, value can come from price appreciation only, and we argue
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that price appreciation reflects all potential future cash flows from the company. The
owners could always force liquidation after n years to get Pn.
ABC’s sister company, ABC-NoGrowth Corp., pays a constant non-zero dividend D

(i.e., Di ¼ D for all i ). The dividend discount equation simplifies to the perpetuity
formula:

P0 ¼ D

r

A more attractive sister company, ABC-ConstGrowth Corp., expects its dividends to
grow at a constant rate g. The dividend discount equation simplifies to the growing
perpetuity formula:

P0 ¼ D1

r� g

Lastly, ABC-NonConstGrowth Corp.’s dividends are uneven for the first n years and
grow at rate g afterwards. We can discount the first n years of dividends individually
and then apply the constant growth formula, correcting by the discount factor for n
years, by writing:8

P0 ¼ D1

1þ r
þ D2

ð1þ rÞ2 þ � � � þ Dn

ð1þ rÞn þ
1

ð1þ rÞn
Dnð1þ gÞ

r� g

Let us look at some numerical examples. We assume that the discount rate investors
apply to the ABC companies is 15%. If ABC-NoGrowth pays a $6 dividend per share
every year, the fair value for its stock is:

P0 ¼ 6

0:15
¼ $40

ABC-ConstGrowth is expected to pay a $6 dividend next year, but its dividends are
expected to increase by 5% every year (i.e., the dividends are expected to be D1 ¼ 6,
D2 ¼ 6:30, D3 ¼ 6:615, . . . , D10 ¼ 9:308, . . . , and so on). The fair value for its stock
will be:

P0 ¼ 6

0:15� 0:05
¼ $60

For ABC-NonConstGrowth, let us assume that it will pay a constant dividend of $6 for
the first 3 years and then that dividend will grow by 5%. The price of its stock will be:

P0 ¼ 6

1:15
þ 6

ð1:15Þ2 þ
6

ð1:15Þ3 þ
1

ð1:15Þ3
6 � 1:05

0:15� 0:05
¼ $55:12

Implicit in these price calculations is the assumption that each company will be able to
maintain a particular stream of dividends. For example, ABC-NoGrowth will not have
to grow its dividends, while ABC-ConstGrowth will have to be able to maintain the 5%
growth in dividends for ever. Does this mean that ABC-ConstGrowth must necessarily
be a ‘‘growth’’ company and ABC-NoGrowth has no growth?
So far all we have considered were cash flows distributed to investors in the form of

dividends or capital gains, not company earnings.
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Let us think of our ABC companies as manufacturing operations. Imagine both
ABC-NoGrowth and ABC-ConstGrowth invest the same amount in plant and equip-
ment. It is hard to imagine that ABC-NoGrowth would be able to maintain a steady
dividend without replacing and modernizing its equipment. Its earnings before depre-
ciation must grow just to keep the dividend constant. Its earnings net of depreciation
can be constant as long as it pays out all of its earnings as dividends. In that case the
dividend payout ratio d is 100% and the earnings retention (plowback) ratio is 0%. The
stock price can also be calculated as:

P0 ¼ E1

r

Suppose, instead of paying a dividend next year, ABC-NoGrowth decides that it will
reinvest the dividend in existing operations. What must its return on investment (ROI)
be just to keep investors equally happy? Supposing the dividend is skipped only once,
we can write the discounted value of the company’s cash flows as:

40 ¼ 1

1þ r
P1 ¼ 1

1þ r

E1ð1þ ROIÞ
r

We apply the perpetuity formula 1 year from today and then discount the fair value 1
year from today back to today. It is easy to see that the ROI must be equal to the
discount rate investors apply to the company’s cash flows (i.e., ROI ¼ r). It can also be
easily shown that it does not matter for how long the company decides to reinvest
earnings, instead of paying them out as dividends. If the company decides to reinvest
earnings for 2 years and then pay them out as dividends, then the fair value formula
would simply reflect that:

40 ¼ 1

ð1þ rÞ2 P2 ¼ 1

ð1þ rÞ2
E1ð1þ ROIÞ2

r

In particular, if the company decides never to pay any dividends, then it must ensure
that the reinvested earnings always yield a return that is at least equal to the discount
rate.

Next we show that the same logic applies to ABC-ConstGrowth, except that it must
ensure that its reinvested earnings not only return the discount yield, but also that the
return on that return grows at rate g! Recall that, even before the company decides to
skip dividends, investors expect growth in the distributed cash flows.

Let us consider a scenario where ABC-ConstGrowth decides that it will not pay out
its earnings E1 in the form of dividends D1 1 year from now. Instead, it will reinvest
those earnings in projects yielding the return on investment equal to ROI . We would
like to use the same valuation trick as before by applying a growing perpetuity formula
1 year from today and then discount it by one period back to today. That is, we would
like to write:

P0 ¼ 1

1þ r
P1 ¼ 1

1þ r

E1ð1þ ROIÞ
r� g

In order for investors to continue to be willing to pay $60 for the stock, we need
ROI ¼ r and for the year 2 earnings E2 ¼ E1ð1þ ROIÞ to continue to grow at rate g.
This implies that the production base that yielded year 1 earnings E1 must grow at rate r
and it must sustain the growth of those earnings E1 at the rate g. But it must also
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sustain the growth in the earnings on earnings E1 � ROI at the rate g. The growing
perpetuity formula assumes that the entire numerator grows at the rate g for ever.
If ABC-ConstGrowth decides to reinvest next year’s earnings of $6, then that re-

investment must be in projects at least as good as the current ones. That is, they must
guarantee not just a return of future value of $6, but also generate future growth in the
earnings on those reinvestments at the rate of 5% per year. So, in year 2 the payout
must be 6ð1þ 0:15Þ, or D2 ¼ $6:90, and then, growing at 5%, it must be D3 ¼ $7:245,
D4 ¼ $7:607, and so on.
In general, if a company decides not to distribute earnings in the form of dividends,

the projects that it invests these retained earnings in (i.e., new businesses it goes into)
must be at least as good as the current base investment (i.e., they must guarantee
additional perpetual growth at the rate g). If the company always reinvests its earnings,
then all future reinvestments must guarantee that growth rate. This argument also
applies to partial reinvestments where a fraction equal to the dividend payout ratio d
is paid out in the form of dividends and the remainder 1� d is ‘‘plowed back’’.

Observation A growth company is not simply one whose earnings grow, but one for
which any new investment, whether in the form of retained earnings or additional
capital, is expected to produce new earnings that will grow at a rate at least equal to
the return on its current earnings.

That is a tall order especially if the current market price already assumes that the
growth will continue for ever.

Beware of P/E ratios

Price/Earnings (P/E) ratios are a popular metric for valuing stocks. They are intuitive as
they indicate how much per $1 of earnings investors pay in a stock price. Consider two
more ABC sisters. ABC-Value Corp.’s shares trade at $40 and the company is expected
to earn $6 per share. ABC-Growth Corp.’s shares trade at $60 and the company is
expected to earn $6 per share. A P/E enthusiast would compute a P/E ratio for ABC-
Value Corp. to be 6.67 (40 divided by 6) and for ABC-Growth Corp. to be 10 (60
divided by 6). These could be interpreted to mean that investors pay a lot more per
dollar of earnings for the ABC-Growth shares. Should they then sell ABC-Growth and
buy ABC-Value?
Simply computing the P/E ratio does not offer any clues as to what is expected to

happen to those earnings. It may be that ABC-Value is simply our ABC-NoGrowth
company, which replaces its production base only to return a level stream of dividends,
while ABC-Growth is our ABC-ConstGrowth company, which, in addition to depre-
ciation replacement, offers sustained growth in earnings. It is easy to imagine ABC-
Value to be a mature company with stable earnings, but no growth prospects, and
ABC-Growth as a young entrant into a new, rapidly expanding industry. Why would
one not invest in the latter? After all, its growth rate may even exceed that imputed in its
share price, while ABC-Value may fail to deliver the steady earnings it has produced so
far. The situation could easily be reversed: ABC-Growth’s assumed growth may not live
up to its expectations, while ABC-Value may enter growth businesses. What determines
the value of a stock is not only its current earnings, but also the earnings growth
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prospects and the riskiness of the overall business as summarized by its capitalization
(discount) rate. None of these factors remain constant and there are many less tangible
ones (management, state of industry, economy, etc.).

It is even harder to defend the use of more complicated ratios, like price/earnings/
growth (PEG), popularized in the late 1990s during the technology boom. These
purported to allow comparisons among companies with tiny current earnings, but
enormous ‘‘growth’’ prospects. For these companies, P/E ratios are unappetizingly
large, but if divided by large growth rates they become supposedly manageable and
meaningful. Let us simply offer an extreme example: How much would you be willing to
pay for a brilliant idea of a brilliant product in someone’s head?: no earnings, but high
potential growth?

2.6 CURRENCY MARKETS

Currencies are commodities like gold, oil, or wheat. A c¼ 20 note can be, without any
loss of value, replaced by 20 c¼ 1 coins. Normally, the price of commodities is quoted in
terms of a monetary unit per a commonly used quantity of commodity, like bushel,
barrel, or metric ton. We rarely ask the question in reverse: for example, how many
barrels of oil can $1 buy? Foreign exchange (FX) or currency rates are special in that
they are often quoted both ways: £1 sterling may cost U.S.$1.5 or U.S.$1 may cost
£0.6667. Expressing the price in pounds per dollar is equivalent to fixing it to the
reciprocal in dollars per pound. The other feature distinguishing currencies from
other commodities is that we often want to know the cross-ratio. We are rarely inter-
ested in how many barrels of oil 20 bushels of wheat can buy. However, when returning
to the U.K. from a vacation in Mexico, we may want to know how many pounds the
leftover 300 pesos will get even though the exchange rate may be quoted in pesos per
dollar.

Let us review quote conventions and some potential issues. In what follows, we use
the easily recognizable three-letter currency codes as adopted by the payment clearing
system SWIFT. Most currencies around the world are quoted with respect to a vehicle
currency, which is one of the major hard currencies (e.g., USD, GBP, or EUR). A
currency can be quoted in European terms (i.e., in currency per dollar) or in American
terms (i.e., dollars per currency). Most former Commonwealth currencies (AUD, NZD,
etc.) and the euro follow the latter convention. Most others (e.g., CHF, JPY, HKD)
follow the former. Remembering this is only important when observing quotes or
percentage appreciation rates that are not labeled; this text follows the notation in
which a spot foreign exchange rate X is labeled with the terms in square brackets or
as a superscript. The terms describe the ‘‘pricing currency’’ in the numerator and the
‘‘priced currency’’ in the denominator. This is analogous to everyday supermarket
pricing where £1.50 per 1 loaf of bread can be written as £1.50/loaf. That is, the
price in £/loaf is 1.50. In the same way, the price of 1.5 dollars per pound sterling is
written as:

XUSD=GBP ¼ X

�
USD

GBP

�
¼ 1:50

The readers should be aware that confusing notations abound in the market, where a
cable rate may be written as GBP/USD (i.e., with the base currency coming first)
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followed by a number like 1.65 which obviously means 1.65 USD/GBP and not the
other way around.
For any two currencies, the FX rate in currency 1 per unit of currency 2 uniquely

determines the FX rate in currency 2 per unit of currency 1 (i.e., X ½Curr1=Curr2� ¼
1=X½Curr2=Curr1�). In our example:

X

�
GBP

USD

�
¼ 1

X

�
USD

GBP

� ¼ 0:6667

Most FX rates are quoted to four decimal places, except when the whole number is
large, then they are quoted to two decimal places (e.g., a JPY/USD quote may be
119.23). Often, the quotation units follow a convention and are dropped. This may
lead to misinterpretation of appreciation statistics. Consider the following table which
is similar to many you see in the press:

Currency changes against the USD as of XX/XX/2003

Last Change %Change

AUD 0.5457 �0.0014 �0.3
EUR 1.0205 �0.0020 �0.2
CHF 1.6844 �0.0030 �0.2

Does this mean that all the listed currencies depreciated against the dollar? On the
contrary, the CHF, quoted as CHF/USD, has actually appreciated as it takes 0.0030
fewer Swiss francs to buy $1 than it did yesterday, while the other two currencies, AUD
and EUR, may have in fact depreciated.
Another confusion comes with the percentage change statistic. If the AUD costs

USD 0.5457 today and it cost 0.5471 yesterday, then we can compute the percentage
depreciation as:

%DXUSD=AUD ¼ �0:0014=0:5471 ¼ �0:002 559 ¼ �0:2559%

as shown in the table. Does this mean that the USD has appreciated by 0.2559%?
Absolutely not. Today the USD costs:

XAUD=USD ¼ 1=XAUD=USD ¼ 1=0:5457 ¼ 1:832 509

Yesterday it cost:

XAUD=USD ¼ 1=XAUD=USD ¼ 1=0:5471 ¼ 1:827 819

or AUD 0.004689 more. The percentage change in the value of the USD expressed in
AUD is then:

%DXAUD=USD ¼ 0:004 689=1:827 819 ¼ 0:002 566 ¼ 0:2566%

The simple explanation is that the percentage change is not equal to the negative of the
percentage change in the reciprocals. Over longer periods of time the differences can be
greater.
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Additional complications arise when looking at analysts’ mean forecasts of currency
rates. Suppose that currently:

XUSD=AUD ¼ 0:75, or, equivalently, XAUD=USD ¼ 1 1
3

Suppose half the analysts polled predict the rate to go to XUSD=AUD ¼ 0:50 (i.e.,
XAUD=USD ¼ 2) and the other half to XUSD=AUD ¼ 1:00 (i.e., XAUD=USD ¼ 1). On
average, in USD/AUD terms, they predict the rate to be 0.75 (i.e., no appreciation).
At the same time, using reciprocals, on average they predict the rate in AUD/USD
terms to be 1.5 (i.e., a USD appreciation from 1 1

3
). We can come up with examples

where, on average, both currencies may be expected to appreciate at the same time! The
main lesson from these examples is that we always need to be aware of what quotation
terms are assumed when interpreting statements about appreciation or depreciation.

The main law governing spot currency trading is the law of one price. In the inter-
dealer market, all spot FX rates have to be in line with each other in such a way that
buying one currency through a vehicle is no cheaper/more expensive than buying it
directly. The rule, of course, does not apply to retail markets. If we observe in New
York XJPY=USD ¼ 118:50 and XHKD=USD ¼ 7:80, and at the same moment a dealer in
Tokyo quotes XJPY=HKD ¼ 15:02, we can profit because in New York 1HKD costs JPY
15.192. The law of one price is violated, as the same commodity, the HKD, trades at
two different prices at the same time. We can buy it where it is cheaper and sell it where
it is more expensive.

If we had JPY1,000,000 and used it to purchase HKD 66,577.8961 in Tokyo, then in
New York sold the HKD 66,577.8961 for USD 8,535.6277 and sold the USD
8,535.6277 for JPY 1,011,471.88, we would make an instant profit of JPY 11,471.88.
This triangular arbitrage would be possible because HKD is cheap in the direct (cross)
market in Tokyo relative to the indirect market in New York. Dealers in New York
would sell dollars for yen, convert the yen into HK dollars in Tokyo, and, with HK
dollars, buy back US dollars in New York. All dealers would transact in the same
direction. The USD-into-JPY trade would drive up the yen, the JPY-into-HKD trade
would drive up HKD relative to JPY, and the HKD-into-USD trade would drive the
USD up against the HKD. Most likely all three quotes would change until the yen price
of HK dollars is the same in New York and Tokyo. More discussion of triangular
arbritrage is provided in Chapter 5.

In all of the above, we ignore the transaction costs in the form of a bid–ask spread. In
reality, we need to modify the computed amounts by considering that we would sell at
the bid and buy at the ask. Instead of simply one FX cross-rate, we need to compute its
bid and ask. The principle remains the same.

The law of one price binds hundreds of possible currency combinations together. As
soon as one FX quote changes in the market, many others follow.
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___________________________________________________________________________________________________________________________________________________________________________ 3 __________________________________________________________________________________________________________________________________________________________________________

___________________________________________________________________________________ Fixed Income Securities ___________________________________________________________________________________

To finance their activities, governments, financial, and non-financial corporations raise
debt funds by borrowing from financial institutions, like banks, or by issuing securities
in the financial markets. Securities are distributed in the primary markets, where they
are sold directly from borrowers to investors, sometimes with the help of an investment
bank. They are traded among investors in the secondary markets. Securities markets
can be, in general, divided into money and capital markets. Money market instruments
are those whose maturities are less than 1 year. Capital market instruments are those
whose maturities are more than 1 year; they include preferred and common stocks
whose maturities are infinite. This division is largely artificial and due to different
legal requirements.
In this chapter, we review the spot markets for debt securities, also called fixed

income securities. Debt contracts typically have a stated maturity date and pay interest
defined through a coupon rate or a coupon formula. They include a variety of money
market instruments and long-maturity securities, like straight bonds, asset-backed debt,
and mortgage-backed securities. They also include spot-starting swaps and other non-
securities (Chapter 8 covers swaps in detail). These may be private derivative contracts,
but because of their fungible nature are frequently created simultaneously with bonds in
order to change the nature of the issuer’s liabilities.
The review of each product is brief. We outline the main features of each instrument

and the structure of the market. We provide recent growth statistics with breakdowns
by types, currencies, etc., to provide a feel for the richness of the markets. For product
details, readers are referred to the many voluminous ‘‘handbooks’’ available in book-
stores. For market statistics, readers are referred to the publications of the U.S. Federal
Reserve, Bank for International Settlements, International Swaps Dealers Association,
rating agencies, and other industry sources.

3.1 MONEY MARKETS

Money market securities are debt instruments of high credit quality issuers with
maturities up to 1 year. They have short durations, low convexities, and very low
default probabilities. Most are issued by governments, and prominent financial and
non-financial corporations. They are very liquid. They trade in large denominations in
the over-the-counter (OTC) markets with many buyers and sellers present at all times.
We describe the markets for the following instruments: U.S. Treasury Bills (T-Bills) and
U.S. federal agency discount notes, short-term municipal securities, Fed Funds (U.S.),
bank overnight refinancing (Europe), repurchase agreements (repos), Eurocurrency



deposits, commercial paper, and other (negotiable certificates of deposit, or CDs,
banker’s acceptances).

U.S. Treasury Bills

About one-fifth of all U.S. government marketable debt is in the form of T-Bills, which
are book-entry (no paper security) discount (zero-coupon, issued at a discount from
par) securities issued by the U.S. Treasury and initially distributed by a handful of
primary dealers who participate in auctions conducted by the New York Federal
Reserve Bank, similar in format to those for Treasury notes and bonds. They trade
in the most active and liquid market (i.e., they can be easily sold and bought prior to
maturity).

In the secondary market, T-Bills are not quoted in terms of prices, nor are they
quoted in terms of meaningful yields. The quoting convention they follow, the Act/
360 discount yield basis, derives its logic from percentage rebates of list prices and is
most unappealing. We review this bizarre code.

On April 23, 2003 some T-Bill prices were quoted in the Wall Street Journal as
follows:

The bid/asked discount yields of 1.13/1.12 quoted on the June 19 T-Bill are not real
yields, but strange shorthand for prices. Normally, we would want to compute a raw
yield earned on a security as ðPend � PbeginÞ=Pbegin, where Pbegin is the purchase price and
Pend is a redemption price. Unfortunately, the T-Bill convention assumes something
more akin to: ðPend � PbeginÞ=Pend . T-Bills are sold at a discount from par, and so
Pend ¼ 100. The annualized discount yield is defined as:

ydisc ¼ ð100� PÞ
100

� 360
Act

where Act represents the actual number of days to maturity. So, if we know the
maturity of the T-Bill and the quoted discount yield ydisc, we can figure out the price
by solving for:

P ¼ 100� 100 � ydisc � Act
360

Using the asked discount yield for the June 19 T-Bill, this translates into:

P ¼ 100� 100 � 0:0112 � 57=360 ¼ 99:8227

The T-Bill is offered for a price of 99.8227% of the face value. Once we have the price,

MATURITY

May 15 03
Jun 19 03

BID

1.12
1.13

ASKED

1.11
1.12

CHG

. . .
�0.01

ASK
YLD

1.13
1.14

DAYS TO
MAT

22
57
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we can compute the real yield (on an Act/365 basis) on a purchase of the T-Bill. We
divide the numerator by the purchase price Pbegin instead of the sale price Pend :

y ¼ 100� P

P
� 365
Act

¼ 100� 99:8227

99:8227
� 365
57

¼ 0:0114 ¼ 1:14%

The result (1.14%) is what is reported in the last column as the ask yield.
Many money market instruments, which we review next, follow the same discount

yield-based rather than price-based quotation convention.

Federal agency discount notes

The U.S. government has sponsored several agencies whose job is to pursue public
policy goals that include housing, education, or farming support. The agencies are
set up as governmental units or public corporations. A few enjoy full, and most
enjoy implicit credit guarantee of the U.S. government.1 The mortgage support
agencies, like Federal Home Loan Banks, the Federal Home Loan Mortgage
Corporation (Freddie Mac), the Federal National Mortgage Association (Fannie
Mae), or the Government National Mortgage Association (Ginnie Mae), issue their
own short- and long-term debt obligations and buy, from commercial banks, mortgage
loans that conform to certain standardized norms. This replenishes the banks’ funds
and allows them to issue new loans. The agencies also sell to investors mortgage-backed
bonds in various forms in order to reduce their balance sheets. The Student Loan
Marketing Association (Sallie Mae) and the Farm Credit Banks perform similar
useful functions for the student loan and farming markets.
The agencies often seek short-term funding by issuing agency discount notes (discos).

These notes resemble T-Bills: they are quoted the same way using discount yields, they
have similar maturities, and they are sold at a discount from par. Today, there are over
$100 billion of these notes sold through a small circle of U.S. broker-dealers. Most
investors hold them to maturity ensuring nearly risk-free return. The trading in them is
thin with the spreads above T-Bill yields reflecting both the relative lack of liquidity and
minimal credit risk. The main buyers are money market mutual funds and commercial
banks.

Short-term munis

State and local governments in the U.S. issue short-term securities of two kinds:
interest-bearing and discount notes. The interest-bearing notes typically have variable
rates tied to T-Bills. The spreads over T-Bills on both types are negative to reflect their
tax-exempt status. Like their long-term counterparts, both can be unsecured general
obligation securities (GOs are backed by the credit of the municipality) or revenue
securities (backed by revenue from specific projects). Revenue paper is generally
riskier. Trading is thin (most are held to maturity) and credit varies greatly.
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In Europe, regional authorities, state-run organizations, and sometimes cities issue
short- and long-term bonds. They do rely, to a greater extent than their U.S. counter-
parts, on intermediaries and typically negotiate loans directly from banks.

Fed Funds (U.S.) and bank overnight refinancing (Europe)

Despite its name, the Fed Funds (FFs) market is administered solely by private finan-
cial institutions and is largely unregulated by the U.S. government. The core of the
market has been the trading of excess reserves by commercial banks that must satisfy
reserve requirements set by the central bank against their deposits. Banks with excess
reserves lend them as overnight funds to banks short of cash reserves. The market
comprises any funds in reserve accounts at the Federal Reserve Bank. These are used
not only to satisfy the stated reserve ratio, but also to clear securities and wire transac-
tions in the U.S. These include purchases and sales of commercial paper, banker’s
acceptances, T-Bills, etc., as well as U.S. Treasury bonds and notes. Settlement
occurs through an immediate transfer of funds that can be used to effect other transac-
tions the same day.

Trading in FFs involves overnight borrowing and lending of claims on cash depos-
ited at the Federal Reserve. A borrower of cash is called an FF buyer, a lender is an FF
seller. It is an interbank market; only commercial banks are permitted to hold balances
at the Fed. Over 10% of the daily volume is attributed to banks acting on behalf of non-
banks. Banks act as dealers and trade FFs either directly (� 60%) or through brokers
(� 40%), like Prebon, Garvin, or Noonan. FF loans are unsecured; there is no protec-
tion against default. About 75% of transactions are overnight, the rest are term FFs of
up to 6 months.

The FF rate is set by the transacting banks. However, it is also the main tool used by
the central bank to control the money supply. Cash owned by banks is subject to a
money multiplier in the process of credit creation. The Federal Reserve, not being a
party to any of the FF transactions, attempts to affect the FF rate through Federal
Open Market Committee (FOMC) announcements, followed by open market opera-
tions. In their eight meetings throughout the year, the Fed governors state their pre-
ferred level for the FF rate, and on the next day back their words with actions by
directing the manager of the open market operations desk in New York to buy or sell
securities for cash, thereby injecting or removing cash from the economy. These secur-
ities transactions are done outright (permanent) or as system repos (temporary). Most
of the time, the mere statement from the Fed alters the rate banks charge each other.
But it is worthwhile remembering that the real influence is indirect through open market
securities transactions. On rare occasions, like in the days after September 11, 2001, in
order to ensure liquidity the Fed flooded the market with cash (in effect causing the FF
rate to drop dramatically) by buying securities.

In Europe, the European System of Central Banks (ESCB) conducts refinancing
operations. Banks trade funds to satisfy reserve requirements, charging each other an
overnight rate. The volume-weighted average of all overnight unsecured lending trans-
actions initiated within the Eurozone by a particular panel of banks (with the highest
volume) is known as Eonia.
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Repos (RPs)

Legally, repos, or repurchase agreements (RPs), are simultaneous spot sales of market-
able securities and (forward) repurchases of the same securities at a pre-specified (higher)
price at a later date. Economically, they are borrowings: a sale results in a cash inflow
and the subsequent repurchase in a larger cash outflow. The difference is the interest on
this collateralized loan. The arrangement is typically over-collateralized through an
upfront haircut. That is, the amount borrowed is less than the market value of the
collateral. The borrower (i.e., the seller/repurchaser) is said to enter a repo; the party
to the other side of the transaction (i.e., the buyer/forward reseller or the lender) is said
to be enter a reverse repo. The interest rate is quoted as simple interest on an Act/360
basis. Since the collateral is composed of marketable securities (Treasuries in the U.S.,
government bonds in Europe), the biggest users of the repo market, on both sides, are
broker-dealers (followed by banks) as they have access to the collateral. For broker-
dealers, the repo market is the primary source of funds ( just like FFs for banks). Central
banks use repo markets to conduct monetary policy through open market operation.
Municipal governments with seasonal cash flows use repo markets to temporarily invest
their cash balances in credit risk-free assets. Repos can be overnight or term with the
longest reverse maturity dates up to 1 year. Sometimes the repo is open, which means it is
automatically renewed every day until one party decides to close it down.
For broker-dealer firms, repos are the primary means of financing the inventory and

covering short positions. But almost every dealer firm also uses the repo market to run a
matched book, by taking on repos and reverse repos with the same maturity, and
capturing the spread between the funds lent (reverse repos with non-dealers) and
borrowed (repos with dealers and non-dealers). The principle at work here is simple
arbitrage of lending at a higher rate than borrowing. Theoretically, the collateral in a
matched book should be of the same quality on both sides; practically, part of the
spread may come from mismatched collateral. Dealers often use repo brokers to identify
parties willing to enter reverse repos (from the dealer’s perspective).
The biggest repo market by far is in the U.S, but the European repo market has

grown considerably. It is close to EUR 3.4 billion, with 88.8% collateralized by govern-
ment bonds and over 50% being cross-border transactions, as of the end of 2002,
according to the International Securities Market Association (ISMA).

Table 3.1 European RPs

By area By currency By collateral
(%) (%) (%)

Domestic 42.9 EUR 77.2 Germany 28.9
Eurozone 24.0 GBP 10.0 Italy 18.5
Non-Eurozone 26.4 USD 7.7 France 10.7
Anonymous ATS 6.7 DDK, SEK 2.0 Spain 6.9

JPY 2.2 Belgium 5.3
Other 0.8 Other Eurozone 5.3

U.K. 10.8
DKK, SEK 2.3
U.S. 2.6
Other 7.7
Unknown 0.9

Source: ISMA, European Repo Market Survey, December, 2002.
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More than 75% of the Euro RPs are denominated in euros, with close to 30% of the
collateral coming from Germany. Close to 40% of repos are arranged directly between
two parties and slightly less brokered by repo brokers. Legally, more than 75% of the
Euro market are standard repos and close to 90% of them have a fixed rate.

Table 3.2 European RPs

By arrangement By contract type By collateral
(%) (%) (%)

Direct bilateral 39.5 Classic repo 79.5 Fixed rate 89.7
Voice-brokered 36.5 Documented sell/buyback 10.8 Floating rate 7.0
ATS 16.8 Undocumented sell/buyback 9.7 Open 3.3
Direct tri-party 7.3

Source: ISMA, European Repo Market Survey, December, 2002.

Historically, most repos have been overnight. Recently, term repos with maturitites up
to 1 month have gained prominence, accounting for around 50% of the market. Of the
overall lending activities collateralized by financial assets, RPs represent over 85% of
volume. The market is moderately concentrated with the top 10 dealers accounting for
about 50% of transactions and the top 30 dealers accounting for close to 90% of
transactions.

Table 3.3 European RPs

Lending collateralized by financial assets RP Concetration
(%) (%)

Repo 86.4 Top ten dealers 50.9
Securities lending 13.6 Top 11–20 22.1

Top 21–30 14.6
Rest 12.4

Source: ISMA, European Repo Market Survey, December, 2002.

Eurodollars and Eurocurrencies

A Eurocurrency is a currency deposited to earn interest outside its country of
origin. U.S. dollars held in banks outside of the U.S. (not necessarily in Europe) are
called Eurodollars (EDs). Euroeuros are euro deposits outside the Eurozone (say, in
Japan). The main center of activity is London. The size of the market is largely
unknown, but estimated at over $2 trillion outstanding (known to be greater than
any other money market), and dominated by EDs. Based on the volume of futures
trading, the ED represents close to 90% of the daily transaction activity of the entire
money market.
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Figure 3.1 U.S. Treasury and private instruments in the dollar money market, daily average
transactions (in billions of U.S. dollars and percentages): (a) T-Bill and Eurodollar futures
transactions; (b) Eurodollar turnover as a percentage of money market activity (including cash
market transactions in T-Bills).
Data from Federal Reserve Bank of New York (FRBNY), FOW TRADE, and BIS calculations. Source: R. N. McCauley,

Benchmark tipping in the money and bond markets, BIS Quarterly Review, March, 2001. Reproduced with permission from

Bank for International Settlements.

Since Eurocurrency transactions exist outside the authority of any national govern-
ment, they are free from regulation and intervention.2 The origin of the market dates
back to the Soviet deposits of U.S. dollars in Paris and London (rather than in the U.S.)
in the 1950s, Arab deposits of dollars in Europe after the Suez War of 1956 and the
recycling of ‘‘petrodollars’’ in the 1970s. The U.S. and Japan allowed their domestic
banks to participate in the ED and Euroyen markets through International Banking
Facilities (IBFs) and Japanese offshore markets, respectively. Today, the Eurocurrency
market is the foundation of all swap and all Eurobond activity, the scene of the greatest
innovations in finance. Free of regulation, deposits are traded actively around the clock
with ED and other Eurocurrency futures markets alternating between London,
Chicago, and Singapore. The spot deposit rate, quoted on an Act/360 basis for
dollar deposits, is determined daily by a rate fixing of the most active London banks
at 11 a.m. GMT.3 The settlement is same-day through a clearing system called CHIPS
which competes with the same-day settlement procedure of the Fedwire. Swaps based
on EDs commonly take two London business days to settle (e.g., a 90-day deposit of
today would start earning interest 2 days from today and end earning interest 92 days
from today). For spot deposits (i.e., placed today), the maximum maturity tends to be
12 months with the most common one being 3 months, for all currencies. Many broker-
dealers, money center banks, and large institutional investors participate in both
the spot and forwards market on both sides (i.e., as lenders and borrowers). In the

(a) (b)
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institutional market, deposits can be arranged as time (fixed maturity), placements
(overnight), or as call money (no maturity, withdrawn at will).

The spread between the 3-month ED deposit rate and the T-Bill rate is known as the
TED spread. It reflects the difference in the default probability of the average credit
quality of ED market participants and the risk-free rate (the same way the swap spread
does). Presumably, it also reflects the supply and demand for unrestricted deposits (i.e.,
the relative demand for borrowing vs. lending). The TED spread varies over time and
spikes up in times of economic uncertainty.

Figure 3.2 Spread between U.S. Treasury and private yields (in basis points). The TED spread is
measured as the monthly average of the spread between the 3-month T-Bill and ED rates.
Data from Datastream and BIS calculations. Source: R. N. McCauley, Benchmark tipping in the money and bond markets,

BIS Quarterly Review, March, 2001. Reproduced with permission from Bank for International Settlements.

Negotiable CDs

Certificates of deposit (CDs) similar to those offered to retail customers are traded
among institutional investors in most major currencies. Banks post daily current
rates on an Act/360 basis for denominations larger than the equivalent of $100,000.
Institutional investors typically buy them at a discount from par and can trade them
prior to maturity, though they rarely do.

Bankers’ acceptances (BAs)

BAs are a popular form of export and import finance. They originate when banks
guarantee time drafts open on behalf of importers who promise to pay for goods on
their receipt. Exporters often sell them at a discount prior to their due date and they
become de facto obligations of the guaranteeing bank.

Commercial paper (CP)

CP represents unsecured promissory notes issued in large denominations by large, well-
known corporations, with maturities ranging from a few days to 9 months. These are
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sold directly to investors (direct placement paper) or through dealers (dealer-directed
paper). Issuers must be sufficiently known to the investing public to access the market
directly. Direct paper is typically sold by the salesforce of financing arms or finance
subsidiaries of large corporations, like GE Capital or GMAC in the U.S. The 9-month
maturity limit is an artifact of a U.S. registration exemption. CP represents about 25%
of all commercial and industrial lending in the developed world. Significantly more than
half of the CP is issued in the U.S. where the secondary market is not active. The Euro
CP market maturities are shorter (up to 180 days), but more active in secondary
trading. Foreign issuers favor the U.S. domestic market where they constitute about
50% over the ED markets where the interest rates are slightly higher. Financial regula-
tions in parts of Europe make it less attractive or impossible for foreign borrowers to
issue paper. The volume of offerings tends to be cyclical. The largest holders of CP are
retail money market mutual funds. CP is quoted on a discount yield basis (360-day
year) similar to U.S. T-Bills.
Until the 1980s, there were only three CP markets: the U.S., Canada, and Australia.

The U.S. CP still accounts for nearly 77% of the global CP outstanding, with 50–75%
of new issuance. Net issuance fluctuates dramatically year to year.

Figure 3.3 Domestic and international net issuance of commercial paper (in billions of U.S.
dollars). Data on domestic issuance for the first quarter of 2001 are preliminary.
Data from Euroclear and national authorities. Source: B. H. Cohen and E. M. Remolona, Overview: Are markets looking

beyond the slowdown? BIS Quarterly Review, June, 2001. Reproduced with permission from Bank for International

Settlements.

According to the U.S. Federal Reserve, as of August, 2000 the global outstandings
totaled $1,538 billion, around 40% of that being asset-backed CP. The dynamic
growth in the issuance of asset-backed CP (collateralized by revenue from specific
assets) is a relatively recent phenomenon which has been brought about by the thirst
for low-cost, short-term capital and the entry into the CP market of lower credit quality
issuers.
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Figure 3.4 Exhibit 1—monthly global CP outstandings, January, 1994–August, 2000, outstand-
ings double in 5 years amid rising interest rates.
Data from Board of Governors of the Federal Reserve System. Source: Global Credit Research, October, 2000 and

Commercial Paper Defaults and Rating Transitions, 1972–2000. Copyright Moody’s Investors Service, Inc. and/or its

affiliates. Reprinted with permission. All rights reserved.

The Euro CP market nearly tripled in the latter part of the 1990s to about $268 billion
by 2000. It continues to enjoy extraordinary growth. The third largest, the Japanese CP
market, stagnated by the end of the 1990s to the equivalent of about $152 billion.
Figures 3.5–3.7 show the growth of CP in Europe, non-U.S., and nascent markets.

Figure 3.5 Exhibit 2—Euro CP outstandings, market nearly triples in 5 years.
Data from Bank for International Settlements. Source: Global Credit Research, October, 2000 and Commercial Paper

Defaults and Rating Transitions, 1972–2000. Copyright Moody’s Investors Service, Inc. and/or its affiliates. Reprinted

with permission. All rights reserved.
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Figure 3.6 Exhibit 3—CP outstandings by country in major non-U.S. markets, worldwide CP
markets generally enjoy steady growth.
Source: Global Credit Research, October, 2000 and Commercial Paper Defaults and Rating Transitions, 1972–2000.



Figure 3.7 Exhibit 4—CP outstandings by country in Nascent markets, European and Latin
American entrants spur growth. Outstandings for 2000 are preliminary estimates.
Source: Global Credit Research, October, 2000 and Commercial Paper Defaults and Rating Transitions, 1972–2000. Copyright

Moody’s Investors Service, Inc. and/or its affiliates. Reprinted with permission. All rights reserved.

About 35% of the CP is issued by non-bank financial institutions. They are followed by
industrial corporations (17%) and banks (12%)

Figure 3.8 Exhibit 5—Moody’s rated CP by sector (as of August 1, 2000; 2,071 ¼ 100%), bank
and non-bank financial institutions dominate market. ‘‘Other’’ segment includes retail, media,
sovereign, transportation and hotel, gaming and leisure.
Source: Global Credit Research, October, 2000 and Commercial Paper Defaults and Rating Transitions, 1972–2000. Copyright

Moody’s Investors Service, Inc. and/or its affiliates. Reprinted with permission. All rights reserved.

Close to half of Euro CP is unrated, whereas most issues in the U.S. are rated either by
S&P or Moody’s. In Europe there are fewer rating categories, ranging from prime 1 to
prime 3 for investment grade issues and non-prime for non-investment grade. The
correspondence to Moody’s bond ratings is shown in Figure 3.9.
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Figure 3.9 Exhibit 6—Moody’s short-term vs. long-term ratings.
Source: Global Credit Research, October, 2000 and Commercial Paper Defaults and Rating Transitions, 1972–2000.

Reproduced with permission from Bank for International Settlements.

At the time of issuance, 80% of CP is rated prime 1 and 17% is rated prime 2. As issues
age (i.e., approach maturity) the probability of default decreases, resulting in the fact
that the vast majority (88.9%) of outstanding CP is rated prime 1. No more than 11
issuers per year have ever defaulted prior to the year 2000. The frequency of defaults by
country and industry reflects the composition of the CP market. The U.S., Sweden, and
Mexico-domiciled issuers lead the country default table, while financials, industry, and
utility issuers lead the sector default category.

The spread between prime 1- and prime 2-rated issues has remained relatively stable
over time. In general, it has followed the economic business cycle, spiking up dramatic-
ally during economic downturns. The frequency of downgrades has been an excellent
leading indicator of increases in CP defaults.

Figure 3.10 U.S. CP spreads (30-day yields, in basis points, at month-end): (a) spreads over
LIBOR; (b) relative spread.
Data from Bloomberg, Datastream, and BIS calculations. Source: B. H. Cohen and E. M. Remolona, Overview: Are markets

looking beyond the slowdown? BIS Quarterly Review, June, 2001. Reproduced with permission from Bank for International

Settlements.
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The credit quality of CP relative to EDs depends on the ratings of the CP issues or
issuers relative to the average credit quality of the interbank participants of the ED
market, believed to be approximately AA. The spread over LIBOR (London interbank
offered rate) of prime 1 issuers is normally negative, reflecting their high quality. The
spread of prime 2 issuers is positive. Both spreads are somewhat volatile over time,
reflecting changes in the overall economic conditions relative to those of money center
banks. In the early 2000s, spreads on lower quality CP shot up as many issuers faced a
difficult short-term financing environment that forced them to resort to bank financing.
This caused the divergence of the perceived default probabilities between the A1 and A2
categories.

3.2 CAPITAL MARKETS: BONDS

The global bond market is enormous. The total amount outstanding is close to $40
trillion with three-quarters of that amount in domestic and one-quarter in international
bond markets. U.S. and European financial institutions are the biggest issuers in both
segments. In recent years, the net issuance (i.e., the excess of the amount issued over the
amount retired) has reached close to $3 trillion. Two-thirds of that amount is issued in
domestic bond markets and one-third in international bond markets. Governments are
the biggest issuers in both domestic and international markets, representing over one-
half of all the new issues.
The U.S. and Japanese governments issue almost exclusively in domestic markets,

while emerging markets governments and international organizations issue pre-
dominantly in international markets. European governments issue in both. The total
indebtedness (public and private) of U.S. and European residents continues to grow.
The U.S. experienced a brief reduction in debt in the late 1990s, but with new govern-
ment deficits in the early 2000s debt issuance returned to its previous levels. Domestic
private debt issuance exploded in the U.S. in the late 1990s, with non-bank financial
institutions and corporations leading the charge and more than twice offsetting any
reductions in government debt. In Europe, banks and telecom corporations did most of
the borrowing. In the 1990s, Europeans became the keenest to issue international
private debt, overtaking the U.S. in the market for international bonds. This was the
result of further integration of European capital markets and an explosion of cross-
border issuance. The issuance of international bonds by U.S. residents also increased
dramatically.
Japan’s net issuance has been almost flat in recent years. Banks retired debts and

corporations added little domestic bond financing to their balance sheets. The pace of
issuance by the government of Japan has, however, accelerated, overtaking the U.S.
and Europe to become the largest government issuer in the world.
During the same time, emerging economies experienced continued development of

their securities markets. East Asian countries worked through their debt burdens. Bank
financing in Asia declined, while debt securities issuance remained flat. Latin America
increased its indebtedness to the rest of the world, mostly through restructuring of old
and the issuance of new debt securities. The emerging economies of Europe continued
to experience capital inflows. Government and private debt markets continued to
absorb a portion of that inflow.
Figures 3.11–3.14 contain statistics for domestic and international bond markets.
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Figure 3.11 Domestic debt securities—amounts outstanding: (a) all issuers; (b) financial institu-
tions; (c) corporate issuers; (d) governments.
Source: BIS securities statistics (see http://www.bis.org/publ/qcsv0306/anx....csv with file numbers 12 through 16).

Reproduced with permission from Bank for International Settlements.

(b)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

B
il
li
o

n
s
 o

f 
U

.S
. 
d

o
ll
a
r
s

(c)

0

500

1000

1500

2000

2500

3000

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

B
il
li
o

n
s
 o

f 
U

.S
. 
d

o
ll
a
r
s

(d)

0

2000

4000

6000

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002B
il
li
o

n
s
 o

f 
U

.S
. 
d

o
ll
a
r
s

European Union United States Japan Others



Fixed Income Securities 81

(d)

0

50

100

150

200

250

300

350

400

450

500

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year

B
il
li
o

n
s
 o

f 
U

.S
. 
d

o
ll
a
r
s

European Union United States Japan Others

Figure 3.12 International debt securities by nationality of issuer—amounts outstanding; (a) all
issuers; (b) financial institutions; (c) corporate issuers; (d) governments.
Source: BIS securities statistics (see http://www.bis.org/publ/qcsv0306/anx....csv with file numbers 12 through 16. Reproduced

with permission from Bank for International Settlements).
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Figure 3.13 Net issuance of domestic and international bonds and notes (in billions of U.S.
dollars), by country of residence: (a) U.S.; (b) Europe (EU 15 countries, Norway, Switzerland,
and Turkey); (c) Japan.
Source: R. McCauley and E. Remolona, Special feature: Size and liquidity of government bond markets, BIS Quarterly

Review, November, 2000. Reproduced with permission from Bank for International Settlements.
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Figure 3.14 International bank and securities financing in emerging economies (in billions of
U.S. dollars): (a) Asia and Pacific; (b) Latin America and Caribbean; (c) Europe. Data from Bank
of England, Capital DATA, Euroclear, ISMA, Thomson financial securities data, national data,
BIS locational banking statistics.
Source: B. H. Cohen and E. M. Remolona, Overview: Are markets looking beyond the slowdown? BIS Quarterly Review,

June, 2001. Reproduced with permission from Bank for International Settlements.

U.S. government and agency bonds

The U.S. Treasury has over $4 trillion in total debt outstanding, of which $2.3 is
marketable and actively traded in an OTC market. The securities are considered
default-free (the government can print money to pay off debt). The only entity that
can jeopardize that status is the U.S. Congress itself, which it did in 1995 when it
refused to issue new debt to retire the old. More than two-thirds of the newly issued
Treasuries are bought by non-U.S. residents. The Treasury market serves as the
risk-free benchmark to other markets (corporate bonds, swaps, etc.). Unlike T-Bills,
Treasury notes, with maturities of 2–7 years, and bonds, with maturities of 10–30 years,
are quoted in terms of prices with 1/32 as the tick (supplemented with a ‘‘þ’’ as the half-
tick 1/64). The whole number is separated from the /32 fraction by a colon or a dash
(e.g., 100:27, or 100-27), but sometimes misleadingly by a decimal (100.27). Prices are
commonly converted to semi-annual bond equivalent yields on an Act/356 basis.
Current benchmark issues, closest to the 2-, 5-, 10- and 30-year maturities that are
most actively traded, are called on-the-run Treasuries and are normally boldfaced.
Treasury notes and bonds pay semi-annual coupon interest. Treasury STRIPs
(separated coupons or principals off original Treasuries sold as individual securities,
or separate trading of registered interest and principal of securities) trade as zero-
coupon instruments sold at a discount from par. On April 23, 2003 some U.S.
Treasuries and STRIPs were quoted in the Wall Street Journal as follows:

Government Bonds & Notes

RATE
4.250
5.375

U.S. Treasury STRIPS
MATURITY
Feb 09

MATURITY
MO/YR
Nov 03n
Feb 31

TYPE
ci

BID
101:21
107:04

BID
82:11

ASKED
101:22
107:05

ASKED
82:14

CHG
�1
�3

CHG
�1

ASK
YLD
1.19
4.90

ASK
YLD
3.35

Fixed Income Securities 83



The T-Bond paying 5.375% coupon semi-annually (i.e., 2.6875% every 6 months) and
maturing in February of 2031 is offered at a price equal to 107 5

32 percent of par to yield
4.90% semi-annual Act/365 equivalent.

At any given time there may be well over a hundred different old and new issues being
quoted and traded. The on-the-run issues comprise the bulk of the trading and are
referred to simply by maturity (e.g., the 2-year or the 10-year). Off-the-runs are referred
to by stating the month and year of maturity and the coupon rate. The issues con-
sidered current (on-the-run) change as new notes and bonds are sold by the U.S.
Treasury following an auction calendar published well in advance. In fact, new on-
the-runs start trading even a few days before they are auctioned for the first time (i.e.,
even before the coupon rate is known). They trade on a yield basis and appear on dealer
screens as when issued (WI) securities. As soon as they are auctioned (and the coupon
rate is known) and dealers have them in their inventory, the yield is converted to price.
This process allows a smooth repositioning by hedgers (e.g., swap traders) from old
issues into new ones. Hedgers are often balanced. Some buy new issues; some short
them. Long-term investors (e.g., insurance companies or bond funds) typically buy up
old issues to hold to maturity. The comparison of the yields on the WIs and old on-the-
runs is the first indication of whether the auction may be over- or undersubscribed. A
WI is said to trade rich if the yield on it is lower (future price higher) than that on the
relevant current on-the-run.

The U.S. Treasury publishes a schedule (calendar and amounts) of auctions for all
new notes and bonds. Two types of bids are accepted: competitive (large, based on
price/yield) and non-competitive (based on quantity limited to $1 million). At each
auction, winning competitive bidders do not pay the price they bid, but the cutoff
stop price arrived at by subtracting from the total the amount of non-competitive
bids and competitive bids arranged from the lowest to the highest yield until all
bonds are sold. This is called a single-price Dutch auction.

As described in Chapter 2, coupon securities are packages of zero-coupon securities.
U.S. Treasuries are packages of STRIPs. Mechanically, STRIPs are created by separat-
ing all coupon payments from notes and bonds. For example, 21 STRIPs can be created
from a 10-year semi-annual bond: 20 coupon payments and principal. They are then
traded as separate securities with their own CUSIP (identification) numbers. Yields on
coupon bonds and STRIPs are bound by a strict arbitrage relationship.

Let us review these on a simplified example with perfectly even semi-annual periods.
Suppose you observe that the 3-year 5% note has a yield to maturity (YTM) of
5.3653% (i.e., its price is 99.00). Suppose also that the 6-, 12-, and 18-month STRIPs
yield 5.25%, and the 30- and 36-month STRIPs yield 5.37%. Can the 24-month
STRIPs yield 5.5%? No, its yield will be given by the equation for the price of the
coupon bond with coupons discounted at the zero rates; that is:
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and so it will be equal to x ¼ 5:2665%. This must be so; otherwise, arbitrage profits
could be made. If, for example, it were to yield 5.5%, all traders would buy all the seven
STRIPs with face values of 2.50 and 100, in effect reconstituting the purchase of a
coupon bond, and short the 5% coupon. This would yield a riskless profit, as the
sum of the prices paid for the STRIPs would be less than 99.00.
Synthetic Treasuries with any maturity and any coupon can be created through a

similar process. Suppose there were no 12% Treasury notes with 71
2
-year maturity. A

dealer can create one by putting together a portfolio of STRIPs and coupons. The yield
on the combined synthetic security would be governed by the same arbitrage principle.
Synthetic forwards can also be created by combining bought long-term Treasuries with
shorted short-term ones. For example, buying a $100 million 12-year 6% coupon,
shorting a $100 million 3-year 6% coupon, and buying a 3-year $100 million STRIP
is equivalent to buying a security that starts paying 3% coupons 31

2
years from today

and ends with the last coupon and principal 12 years from today (i.e., is a 3-year-by-12-
year forward).
Arbitrage is the principle behind building a Treasury curve. The Treasury zero curve

is a schedule of zero-coupon rates (or discount factors) paid by the U.S. government for
any maturity between now and the maturity of the longest Treasury in existence. These
rates are used to discount cash flows and to compute a price on any other bond issued
by or collateralized by U.S. Treasuries. Any such bond can be synthesized by a portfo-
lio of coupons and STRIPs. Similar to the Treasury zero curve, we can build a Treasury
par curve (i.e., a schedule of YTMs on par coupon Treasuries). The curve is used as a
benchmark for quoting bonds (munis, mortgages, or corporates).
Treasuries are the most common security underlying a repo contract. To the lender,

often it does not matter whether the collateral is the 2-year or the 5-year on-the-run.
That is why most repos yield the same general repo yield. Sometimes, they go special,
which means, because the underlying Treasuries are in demand (to own), the repo
lender (buying securities to resell tomorrow) will lend funds at a rate much lower
than on other repos. That rate may even be zero. Dealers vie to own liquidity-squeezed
Treasuries in order to be able to lower their cost of (borrowing) funds by repoing them.
The special nature of some notes and bonds enters into the arbitrage equations when
constructing synthetic spot or forward Treasuries.
In the mid-1990s the U.S. government started issuing Treasury inflation-protected

securities (TIPS). The TIPS coupon is set to reflect a real rate of return. The principal
accrues based on the annual measure of inflation. TIPS are designed to provide a
perfect purchasing power hedge. Curiously, their volume of trading is rather low.
In addition to the U.S. Treasury, federally sponsored agencies issue bonds to

finance activities in a few politically preferred sectors. These government-sponsored
enterprises (GSEs) were described in the money market review. They issue uncollater-
alized debentures as well as mortgage-backed securities (collateralized by mortgage
pools with common characteristics). Some agencies, like Fannie Mae, in addition to
bullet bonds, also issue callable bonds. Several agencies follow a calendar of
issuance (or reopening of old issues) of large bullet bonds with 2-, 5-, 10-, and 30-
year maturities, similar to that of U.S. Treasury on-the-runs. These are called bench-
mark bonds for Fannie Mae and the Federal Home Loan Banks or reference bonds for
Freddie Mac. Today, the volume of the agency bonds traded rivals that of the U.S.
Treasuries.
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Government bonds in Europe and Asia

National government bond markets in Europe and Japan follow a structure similar to
that of the U.S. Primary dealers participate in auctions and then distribute bonds to
institutional and retail investors. The auction procedures vary a little. While France and
Germany follow the single-price Dutch auction based on a published calendar, the
Bank of England uses an ad hoc auction system, where the maturity and the total
amounts of the securities are announced only at the time of the auction. This allows
greater borrowing flexibility and leads to less yield volatility in the markets, as old issues
are not dumped in favor of new known ones prior to an auction. Some governments use
a multiple-price Dutch auction similar to that used in the U.S. prior to the 1990s where
competitive bids are awarded at the actual bid yield. Several governments, like the
U.K., the Netherlands, and the U.S. have also used a tap system by reopening old
issues at auctions. Many governments do not issue a great variety of maturities of
bonds. In Germany and Japan, the longest benchmarks are 10-year bonds with no
intervening, liquid on-the-runs. Several governments issue inflation-linked securities.
In the U.K., index-linked gilts have coupons and final redemption amounts linked to
the retail price index (RPI); Canadian and Australian governments have issued bonds
linked to national inflation indices. The U.K. government also issues short-term bonds
called convertibles which give the holder the right to convert to longer maturity bonds.

Government bonds around the world have easily recognizable nicknames. Among
the major ones, U.K. bonds are called gilts and German bonds are referred to as bunds.
These serve as benchmarks for pricing corporate bonds and swaps in the national
markets and nearby (Swiss swaps are priced off bunds).

Secondary government bond markets around the world differ substantially in terms
of their liquidity. The turnover ratio is the greatest in the U.S. where more bonds are
traded every day than the total amount outstanding. The U.S. also enjoys the smallest
bid–ask spreads (less than 3 basis points). By contrast, the Swedish, Swiss, and French
markets trade with spreads of 10 or more basis points.

Figure 3.15 Size and liquidity.
Data from Salomon Smith Barney; H Inouc. The structure of government securities markets in G10 countries: Summary of

questionnaire results. Market Liquidity: Research Findings and Selected Policy Implications, May, 1999, Committee on the

Global Financial System, Basel; R. McCauley and E. Remolona, Special feature: Size and liquidity of government bond

markets, BIS Quarterly Review, November, 2000. Reproduced with permission from Bank for International Settlements.
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Figure 3.16 Estimated net issuance of government bonds in 2000 as a proportion of outstanding
debt.
Data from Salomon Smith Barney; JP Morgan; and R. McCauley and E. Remolona, Special feature: Size and liquidity of

government bond markets, BIS Quarterly Review, November, 2000. Reproduced with permission from Bank for Inter-

national Settlements.

In any given year, the policies of central governments as to the overall new issuance
and its composition differ across countries. For example, in the early 2000s, while the
governments of Australia, Sweden and the U.S. were paying off their debts and short-
ening the maturity of their overall debt, Japan, France, and Spain were stepping up new
issuance.

Corporates

Most corporate bonds are term or bullet bonds (i.e., they pay interest for a term of years
and repay the principal at maturity). Most have final maturity dates of up to 30 years.
The bond indenture may specify early redemption provisions serially, through a refund-
ing, or a call. Bonds not collateralized by property, equipment, or specific revenue are
called debentures. In case of default, they enjoy seniority over bank debt. They can also
be subordinated (i.e., offer the least creditor protection relative to bank debt or senior
bonds). Bond information services generally classify bonds into four categories: util-
ities, transportations, industrials, and financials. Prior to issue, most U.S. bonds and
more than 50% of European bonds are rated by rating agencies like S&P’s and
Moody’s with the familiar letter codes starting from AAA or Aaa, respectively, all
the way down to C and D. The top four grades: prime, upper medium, medium, and
lower medium, spanning S&P ratings above BB, are referred to as investment-grade
bonds, the rest as noninvestment-grade, high-yield, or junk bonds (all synonyms). Rating
agencies publish credit watch lists with bonds reviewed for potential upgrades or down-
grades.
The origin of the modern junk bond market goes back to the 1980s which ushered in

original-issue high-yield bonds. These were rated junk from the beginning and for
issuers they represented convenient longer term alternatives to private bank loans or
being shut off from credit. To alleviate the cash flow problems of junk or leverage
buyout issuers, these bonds have often been issued with deferred or step-up coupons.
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Traditionally, the largest corporate bond market has been the domestic bond sector,
particularly in the U.S., where the domicile of the issuer, the currency, and the country
of issue are the same. Rapidly growing is the Eurobond sector, where investors simul-
taneously come from several countries, the currency of issue is outside its home
jurisdiction and bonds may be issued in unregistered form. Like domestic bonds,
they are sometimes listed on an exchange, but most trade OTC. Borrowers are often
non-financials, banks, and sovereign states. The currency of choice has traditionally
been the U.S. dollar, but its share has steadily declined. Only some Eurobonds are Euro
straights with normal fixed coupons: many have innovative coupon structures, like
zeros, deferreds, or step-ups; many are dual-currency (coupon and principal currencies
are not the same); some are convertible or exchangeable, and some have detachable
stock and debt or currency warrants. Non-U.S. banks often issue dollar floating-rate
Eurobonds, sometimes capped or collared, and sometimes with drop-locks (i.e., auto-
matic conversions to fixed).

Medium-term notes (MTNs) are corporate debt instruments, both in the U.S. and
Eurobond markets, offered continuously to investors by a program agent with matu-
rities anywhere from 9 months to 30 years. Most MTNs are not underwritten, but
distributed on a best efforts basis. Coupon structures are very innovative, both with
fixed and floating-rate features. Many MTNs are structured (i.e., they are coupled with
derivatives to provide the most appealing payoff structures, like inverse floating
coupons). With an MTN, the borrower has the flexibility to issue highly customized
debt and can do so as needed, under a previously announced and shelf-registered
program. The only drawback may be the cost of registration and distribution.

Corporate bonds for different maturities trade at different rates. A corporate bond
rate for a given maturity reflects the cost of borrowing/lending funds risklessly (govern-
ment rate) plus an allowance for issuer default and other demand and supply issues
(spread). Corporate spreads have their own term structure and are quoted relative to
the same maturity government security or swap rate. The shape of the par coupon curve
typically follows, but is not necessarily similar to the shape of the government bond
curve. Corporate spreads in the late 1990s and early 2000s reached their historical
highs, reflecting the deteriorating credit quality and exploding leverage ratios of
private issuers. This has been true for all investment-grade rating categories. During
the same period, the spreads between the highest and lowest rating increased. The
spreads relative to benchmark swap rates also increased.

Munis

In the U.S., the primary driver behind the popularity of municipal bond (muni ) finance
is the exemption of the interest received from federal income taxes. The exemption
applies to interest income (not capital gains) on obligations of all municipalities
below the federal level (i.e., states, cities, utility and highway authorities, counties,
etc.). From an individual investor’s perspective, the yield on a muni can remain attrac-
tive at a level substantially lower than that of a corporate or a Treasury. Muni yields are
frequently converted to taxable equivalent using the following formula:

ytax�equiv ¼ ymuni

1� �m
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Figure 3.17 Corporate and government bond spreads, month-end data. Bond index yields
against 10-year swap rates (in basis points), except for historical U.S. yields (in %).
Data from Bloomberg, Merrill Lynch, and national data. Source: B. H. Cohen and E. M. Remolona, Overview: Are markets

looking beyond the slowdown? BIS Quarterly Review, June, 2001. Reproduced with permission from Bank for International

Settlements.

where �m is an individual’s marginal tax bracket. Municipal bonds are most popular
with high-net-worth individuals.
In the U.S., the financing of schools, police, and infrastructure projects is highly

decentralized and often obtained at a local level. Governments at low levels are
forced to finance their own activities, expecting little help from state or federal institu-
tions. This contributes to the great proliferation of issuers. For example, Bloomberg’s
database lists close to 60,000 active issuers.
Municipalities finance periodic funding imbalances and long-term projects using two

main kinds of bonds: general obligation (GOs) and revenue. GOs are backed by the
issuer’s unlimited taxing power. Revenue bonds are backed by revenues from specific
projects (highway tolls, water authority fees).
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All municipal bonds are exempt from registration requirements. Munis can be issued
as serial bonds, with pre-specified redemptions prior to final maturity, or as term bonds,
but often with sinking bond provisions. Many are callable. Shorter term notes up to 3
years, issued in anticipation of tax, grant, revenue, or bond fund inflows, are respec-
tively labeled tax-, grant-, revenue-, and bond-anticipation notes (TANs, GANs,
RANs, and BANs). Like corporates, munis are rated on their default likelihood by
S&P and Moody’s using the same letter codes. It is worth noting however that many
newer hybrid bonds’ default provisions have not been tested in court and there may be
no prior precedents of investors’ recovery claims.

Primary market issuance procedures parallel those of the corporate bonds. Typically,
large and small issues are underwritten by large and small investment banks, or
privately placed with small groups of institutional investors. Their sales are announced
in The Bond Buyer. The secondary market is widespread but not deep. Large brokerage
firms trade in general names (nationally recognized municipal issuers), while smaller
ones trade in local credits, both posting their inventory offerings over the Internet.
Given the variety of issuers and bond types, most munis are quoted on a yield-to-call
(YTC) or yield-to-maturity (YTM) basis, rather than price. This allows comparisons
across all bonds of the same issuer and across issuers.

Occasionally, muni yields exceed Treasury yield, despite their tax advantage. This
happens during periods when many large issues hit the market simultaneously. This
sharply increases the supply of bonds and causes muni spreads to widen. In the summer
of 2004, $15 billion of California bonds hit the market at the same time as other states
and cities issued their own bonds in order to deal with their own budget deficits.

3.3 INTEREST-RATE SWAPS

Unlike securities markets where a piece of paper originally sold by an issuer changes
hands between unrelated third parties, swaps are customized private contracts with
each party exposed to the default risk of the other. Every time a swap is entered
into, a new contract between two new counterparties is initiated. However, because
swap conventions are so well established and because they are priced in the dealer
market to reflect the average credit quality of the counterparty (i.e., uniformly), they
are highly fungible (substitutable). Institutional counterparties willing to get out of
previously established swaps can unwind the transactions not only with the original
dealer, but frequently by auctioning off their side to other dealers as well. This involves
a payment or receipt of the current mark-to-market, easily established by polling
dealers, and an assignment of the swap. An unwind or assignment are not quite as
simple as a purchase or sale of a security, but nowhere near as difficult as a break-up of
a non-standard private contract. The main feature stopping the swaps from enjoying
the liquidity of government bonds is their degree of customization and legal credit
issues. At the same time, their volume has increased so dramatically in recent years
as to rival the amount outstanding of the government bonds (summarized in Figures
3.18 and 3.19). This is true in terms of total swaps outstanding as well as daily cash and
futures turnover, where swap-related transactions represent nearly half of the dollar
market.
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Figure 3.18 Interest rate swaps, notional amounts outstanding (in trillions of U.S. dollars): (a)
by currency; (b) by counterplay; (c) by maturity (includes forward rate agreements, which
account for approximately 15% of the total notional amount outstanding).
Reproduced with permission from Bank for International Settlements.

Figure 3.19 U.S. treasury and other instruments in the dollar bond market, daily average
transactions (in billions of U.S. dollars and percentages): (a) treasury futures and swap transac-
tions; (b) swap and non-Treasury transactions as a percentage of bond market activity (bond
market activity includes swap transactions. Treasury cash and futures turnover, and turnover of
U.S. dollar-denominated agencies, Eurobonds and global bonds).
Data from Cedel, FRBNY, national central banks, Euroclear, FOW TRACE, ISDA, BIS estimates. Source: R. N.

McCauley, Benchmark tipping in the money and bond markets, BIS Quarterly Review, March, 2001. Reproduced with

permission from Bank for International Settlements.

When governments were paying off national debts in the early 2000s, swaps replaced
government bonds as de facto benchmarks for pricing other securities. This was par-
ticularly true for maturities where government bond markets were thin or did not exist,
like the 11-year to 25-year maturity segment of the U.S. market, and is still true in some
segments, like the Japanese market past the 10-year maturity point.
An interest-rate swap is an exchange between two counterparties of streams of cash-

flows, typically resembling coupon streams of bonds. In a plain vanilla swap, one side is
fixed, the other floating. The two parties agree on the final maturity of the swap (e.g., 10
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years), the notional principal (e.g., $100 million), the interest rate for the fixed leg of
the swap (e.g., 6%) to be paid on that notional principal, the floating rate index
(e.g., 3-month LIBOR), the spread on top of it (e.g., þ25 basis points) to be received
on the notional principal, and the frequency and the day-count convention of both sides
of the payments. The language of buying or selling a swap, like in securities, is never
used. Instead, one party, called a fixed rate payer or simply a payer, pays fixed and
receives floating interest amounts, while the other, called the receiver, does the opposite.
The principal amount is referred to as the notional, as it can be thought of as a face
value of two exchanged notional (i.e., fictitious) bonds. The notional in interest rate
swaps is never exchanged as it is a wash (the same principal is paid and received). No
spread over the floating side is called index flat. Paying fixed on a swap is economically
equivalent to shorting a fixed coupon bond, reimbursing the lender of the shorted bond
for missed coupons and principal, and with the proceeds buying a floating rate bond
and receiving coupons and the principal on it. As the principals of both sides of the
swap are the same, exchanging them at the end is not necessary. Swap settlement
convention is 2 business days, and LIBOR fixings for the floating interest payments
are 2 days, prior to the start of the accrual period, paid at the end of the accrual
period.

Swaps are often done on the back of bond issues. In a low interest rate period like the
early 2000s, investors tend to prefer floating rate bonds in the hope that as interest rates
go up they can benefit. Imagine Coca-Cola issuing a $1 billion floating coupon bond,
but the company really wants a fixed rate liability to focus on making syrup(!) and not
on market speculation. Coca-Cola can issue a floating rate bond and enter into an
interest rate swap with a dealer like Citibank paying fixed and receiving floating,
with dates of payments exactly matching the coupon dates on its bond. The floating
receipts from the swap would then exactly offset its payments of the bond coupons,
leaving Coca-Cola with a fixed-rate liability. Often, swaps are done well into a life of a
bond to lock in a gain or hedge against (read: speculate on) future rate movements.
Suppose several years after issuing the floating rate bond, rates have actually declined.
Coca-Cola can swap into fixed and pay a fixed rate lower than it would have had it
swapped immediately. Many swaps are unrelated to bond issuance.

Normally, on-market swaps are entered into with no money changing hands upfront.
The fixed rate (or the floating rate spread) is adjusted such that the present value of the
payments is equal to the present value of the receipts. Market-making dealers compete
on the spread they quote over a benchmark for the fixed rate of the swap against
LIBOR flat. In the final negotiations, that translates into a specific fixed rate written
into the swap’s documentation. But swaps can also be customized to match specific rate
targets. In that case, depending on whether the agreed-on fixed rate is higher or lower
than the currently quoted swap rate for a given maturity, there may be a payment or
receipt of the present value of the swap by the dealer. Such swaps are called off-market
swaps.

Many swaps are not plain vanilla. The simplest example is when a rate paid on either
side of the swap does not conform to its standard, like semi-rate paid annually. Other
examples involve floating-for-floating swaps, where both sides are floating but off dif-
ferent indices (LIBOR vs. FF rate), or zero-coupon swaps, where one side only accrues
but does not pay until a certain date. Chapter 4 also describes currency swaps, some-
times called cross-currency swaps, where the pay side of the swap is in one currency and
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the receive side in another. These can be fixed-for-floating, fixed-for-fixed, floating-for-
floating or even multicurrency, referring to the types of payments and receipts.
We will defer the discussion of swap valuation to Chapters 6 and 8. Here we go

through a simple example of the cash flows of a plain vanilla swap in U.S. dollars. Let
us pretend that we are Citibank and, on August 19, 2003, we are entering into a 2-year
$100 million swap to pay 6% semi-annually on a 30/360 basis and receive 3-month
LIBOR quarterly on an Act/360 basis. Dollar swap settlement is 2 business days, so the
fixed payments will roll on May 21 and August 21, and the floating receipts will roll on
November 21, February 21, May 21 and August 21, based on LIBOR fixings 2 business
days prior to those dates.4 Consider Table 3.4 which is full of relevant information. In
columns 1 and 2, we have the set dates and LIBORs we observe over the life of the
swap, columns 3 and 4 contain the start and end dates for the quarterly interest accrual
period of the floating side of the swap. For simplicity, we assume in column 5 that, in
each quarterly interest accrual periods running from August 21 to November 21 and
from May 21 to August 21, there are exactly 93 days and, in each of the other accrual
periods, there are exactly 92 days. In real life, we would have to count the actual days.
Also, if any of the LIBOR set dates were not a business day, we would have to take
LIBOR from 1 day prior or refer to the swap documentation. The semi-annual accrual
periods for the fixed leg of the swap are not shown, as each simply includes two
quarterly periods of the floating side (i.e., they run from 21 August to 21 February
and from 21 February to 21 August).

Table 3.4 A 2-year $100 million interest-rate swap on August 19, 2003. Pay 6% semi 30/360,
receive 3-month LIBOR Act/360

Set date LIBOR Accrual period No. Floating cash flows Fixed cash flows
—————————— days —————————— ——————————
Start date End date Pay date Amount Pay date Amount

19-Aug-03 5.00 21-Aug-03 21-Nov-03 93 21-Nov-03 1,291,667
19-Nov-03 5.10 21-Nov-03 21-Feb-04 92 21-Feb-04 1,303,333 21-Feb-04 3,000,000
19-Feb-04 5.50 21-Feb-04 21-May-04 92 21-May-04 1,405,556
19-May-04 5.60 21-May-04 21-Aug-04 93 21-Aug-04 1,446,667 21-Aug-04 3,000,000
19-Aug-04 6.00 21-Aug-04 21-Nov-04 93 21-Nov-04 1,550,000
19-Nov-04 6.20 21-Nov-04 21-Feb-05 92 21-Feb-05 1,584,444 21-Feb-05 3,000,000
19-Feb-05 6.10 21-Feb-05 21-May-05 92 21-May-05 1,558,889
19-May-05 5.90 21-May-05 21-Aug-05 93 21-Aug-05 1,524,167 21-Aug-05 3,000,000

Floating leg cash flows (columns 6 and 7) are based on LIBOR sets 2 days prior to the
start of the interest accrual period and are received on the end date of the accrual period
(i.e., in arrears), the same way a floating rate bond would pay. Note that the first
LIBOR is known at the time of the swap; the rest, shown in italics, are not known
until the actual set dates. For the first interest period, we take:

100; 000; 000 � 0:0500 � 93=360 ¼ 1; 291; 667
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Fixed rate leg cash flows are all based on the same quoted 6% rate and are paid on the
end dates of the semi-annual interest period, the same way a fixed coupon bond would
pay. For each period, we take:

100; 000; 000 � 0:0600 � 180=360 ¼ 3; 000; 000

For an on-market swap, the present value of the fixed cash flows is equal to the
present value of the floating cash flows, where we substitute today’s forward 3-month
rates for the unknown future LIBOR sets. We explain the logic of that arbitrage
condition in Chapters 6 and 8.

Like bonds, swaps for different maturities trade at different rates and reflect the cost
of borrowing/lending funds risklessly (government rate) plus an allowance for counter-
party default and other transaction-related issues (spread). Swap spreads have their
own term structure and are quoted relative to the same maturity government security.
The shape of the swap (par coupon) curve typically follows, but is not necessarily
similar to, the shape of the government bond curve. Swap spreads in the late 1990s
and early 2000s reached their historical highs, reflecting the deteriorating credit quality
of an average counterparty.

Figure 3.20 Yield curves for interest rate swaps (in percentages): (a) U.S. dollar; (b) euro;
(c) yen.
Data from Bloomberg. Source: B. H. Cohen and E. M. Remolona, Overview: Are markets looking beyond the slowdown?

BIS Quarterly Review, June, 2001.

3.4 MORTGAGE SECURITIES

Mortgage-backed securities (MBSs) are obligations of an issuing agency or a financial
institution fully collateralized by the stream of interest and principal payments of the
underlying mortgage pool. Traditional mortgages in the U.S. have been fixed interest
fully amortized loans with level monthly payments. These give borrowers the right and
incentives to prepay the loan prior to its maturity which is typically 30 years (less often
15). To understand the mechanics and risks of this segment of fixed income markets, it
is useful to review the basics of real estate financing.

A purchaser of a house, after supplying a down payment from his own funds (typic-
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ally 20% but often less) obtains a significant portion of the funds (the loan-to-value
ratio) needed from the original lender of funds, the mortgage originator. The originator
makes money by charging an origination fee and other fees and by selling the mortgage
in the secondary market to a larger financial institution for a higher price. This allows
the originator to replenish his funds to make new loans. The new owner of the mortgage
loan may outsource the collection of the monthly payments to the originator or a third
party by paying a servicing fee. The mortgage investor buys many similar loans. He has
an incentive to further sell the collected pool of mortgages in order to be able to acquire
new loans (otherwise, he would quickly run out of funds to invest). He assembles pools
of mortgages according to government agency guidelines and sells them to agencies for
the purposes of securitization or issues collateralized securities directly to investors. The
only spoiler in this process can be the homeowner himself who has the right to prepay
the mortgage partially (by sending more money each month) or completely (e.g., by
selling the property). He does so especially when interest rates drop and he can re-
finance at a lower rate. But the homeowner is not an efficient refinancer and he prepays
for unique reasons too (e.g., inheritance); in a pool of mortgages there will be some that
pay off fast, some that pay off slowly. In general, the prepayment speed will increase as
interest rates go down. The prepayment speed is measured by a standard unit called a
PSA (public securities association): 100% PSA means that a pool prepays at a rate of
6% per year if the mortgages are over 30 months old or by a percentage, starting at 0%
all the way to 6%, increasing by 0.2% for the first 30 months, that percentage reflecting
the fact that newly issued mortgages rarely prepay.
The securitization of mortgages takes two basic forms. The first stage is to issue pass-

through certificates. Pools of similar mortgages (by geography, size, type of dwelling,
etc.) are placed in a trust entity and certificates entitling holders to a proportional share
of monthly receipts are sold (98% of pass-throughs are created by the agencies, the rest
by financial institutions). As homeowners prepay their loans, particularly in a low
interest rate environment, the effective duration of mortgages shrinks with investors
receiving larger amounts in the early years of the pass-through and next to nothing
toward the end. The greatest risk of a mortgage security is this implicit call option sold
to homeowners. This entails contraction risk if prepayments speed up or extension risk
if they slow down relative to baseline PSA. The default risk is minimal as all underlying
loans are mortgages with full recourse rights of the lender to foreclose and sell the
property.
In order to create securities that enjoy the default protection of mortgages but are

relatively immune to prepayment risks, the second stage of securitization involves the
issuance of collateralized mortgage obligations (CMOs). Pass-throughs are put in a
trust, and several distinct tranches of bonds with fixed coupons are issued. The sum
of the face values of all the tranches is equal to the face value of the collateral
pass-through. However, monthly payments received from the collateral are sliced and
allocated to the tranches in the order of pre-assigned priority. For example, in a
sequential-pay CMO, all interest payments are allocated equally to all tranches based
on the assigned principal, but all the principal payments go first to paying off tranche A,
then B, etc. Tranches C and D may not receive principal payments until later years. The
effective duration of the tranches depends greatly on the speed of prepayments. Early
tranches enjoy extension risk protection. Later tranches enjoy prepayment risk protec-
tion, but also face the most uncertainty as to the timing of principal retirement.
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A common variation on the sequential pay CMO structure is one with an added
residual accrual tranche called a Z bond. The accrual tranche initially does not receive
current coupon interest. Instead, interest is accrued and added to the principal to be paid
when the tranche starts receiving distributions. Another variation ensuring a greater
stability of the average life of a bond is a CMO that includes a planned amortization
class (PAC) bond as the first tranche and the support of companion classes as the other
tranches. In this CMO, payments are diverted from the companion classes to ensure that
the PAC class follows a pre-specified principal repayment schedule based on a stated
PSA percentage. This protects against both contraction and extension risk of the PAC
class, with most of the risk shifted to the companion classes.

MBSs also trade in stripped forms, most often as interest-only (IOs) and principal-
only (POs). Similarly to the sequential and PAC CMOs, pass-throughs are put in a trust
that issues certificates entitling holders to the portions of the monthly payments separ-
ately relating to interest and principal. Thus an IO holder receives the coupon interest
portion only, calculated on an ever-declining principal, and, if prepayments speed up,
the total sum of receipts may be lower than the original amount paid for the IO. On the
other hand, if prepayments are slow, the IO holder may receive payments for the full
maturity of the mortgages. The unique feature of an IO is that its value rises as interest
rates rise, which slows the prepayments. POs are sold at a discount from face value and
benefit from interest rate declines that speed up prepayments. Their values are highly
interest rate-sensitive.

The valuation of MBSs is a mix of PV calculations and statistics. The statistics part
relates to prepayment modeling, which involves estimation from past history of home-
owner responses to financial and non-financial variables. As we mentioned before, the
homeowner has the right to prepay equivalent to the right to call the loan at par (like an
issuer of a callable bond). In most models, it is assumed that the homeowner compares
the rate on his mortgage to the 7- or 10-year rate on U.S. Treasury, which is the
benchmark for 30-year fixed rate mortgages. However, more often than not the home-
owner does not exercise this option as soon as it is optimal to do so. He may have just
refinanced, refinancing may be costly, or the homeowner may have other family issues.
Sometimes, the homeowner exercises early (e.g., when his family relocates and the
property is sold). Even if the mortgagee is interest rate-sensitive and tends to exercise
as rates decline, he may take other factors into account, like the last date of refinance,
the rate change not the level, rates on alternative mortgage structures, etc. Homeowners
also vary in some individual characteristics, like age, income, location, type of property,
etc. Even when a statistical model of prepayments is constructed, the valuation of an
MBS typically involves more than present value discounting of cash flows based on
estimated principal. Because the principal itself is not interest rate-level but path-
dependent, the valuation involves a Monte Carlo or tree simulation, or some other
valuation technique similar to option pricing. The excess yield spread over a static
present valuing is referred to as an option-adjusted spread of an MBS. It is at best an
estimate value of the implicit options held by the homeowner.

3.5 ASSET-BACKED SECURITIES

Similar to MBSs, asset-backed securities (ABSs) are securities collateralized by receipts
from other underlying assets. The most popular are home equity loans, student loans,
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auto loans, credit card debt, and, lately, other bonds, like high-yield, distressed debt,
and emerging market bonds. The underlying securities or loans, which can be amortiz-
ing or not, are placed in a trust or a special purpose vehicle (SPV). Often the SPV is
over-collateralized as a form of internal credit enhancement. Interest rate paid on ABSs
can be fixed or floating, reflecting the nature of collateral. The structure can be pay-
through, analogous to MBS pass-throughs, where each ABS represents a fractional
interest in the cash flows of the collateral, or tranched with one senior and several
subordinated tranches. Almost all ABSs are subject to prepayment risks. Home-
equity ABSs have published prospectus prepayment curves (PPCs) similar to PSA
schedules. Auto loan ABSs are measured in terms of absolute prepayment speed
(ABS). Auto loan-backed ABSs are issued by subsidiaries of auto manufacturers,
banks, and finance companies. Many student loan ABSs enjoy at least fractional
government default protection. Credit card receivable-backed ABSs, sold by banks,
retailers, and travel companies, are structured as master trusts of principal and
finance charge receivables. The issuer sells several series from the same trust, often
by randomly selecting accounts. Credit card ABSs are non-amortizing due to a lock-
out period provision. During the lock-out the principal repayments are reinvested in
additional receivables.
The U.S. has the largest ABS market, but the last 5 years have seen an explosive

growth of the market in Europe. A new but growing segment is the corporate asset-
backed market, originating mainly in the U.K. The largest asset used for backing,
reflecting its large market value, is commercial real estate, accounting for 32% of the
total. But the market enjoys a wide variety of assets used for backing, including
equipment and auto leases, aircraft leases, trade receivables, and others.
Short-term ABS spreads have historically exceeded long-term spreads, reflecting the

expected relative price stability of the longer term assets backing the bonds. While
unsecured borrowing spreads for European corporates have increased and become
increasingly variable, due to the credit problems of the issuers, ABS spread averages
have remained relatively stable.

Figure 3.21 The increasing prominence of corporate-related securitization in Europe.
Reproduced with permission from Ganesh Rajendra (Managing Director, Global Markets Research, Deutsche Bank AG)

and White Page, author and publisher, respectively, of The Use of Securitization as an Alternative Funding Tool for

European Corporates.
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Figure 3.23 Spreads in the unsecured bond market and ABS market compared.
Rproduced with permission from Ganesh Rajendra (Managing Director, Global Markets Research, Deutsche Bank AG) and

White Page, author and publisher, respectively, of The Use of Securitization as an Alternative Funding Tool for European

Corporates.

One category of ABS that has emerged only in the last 10 years is the collateralized debt
obligation (CDO), known in its two guises: a collateralized bond obligation (CBO) and
collateralized loan obligation (CLO). A CBO is backed by a diversified pool of high-
yield or emerging market bonds; a CLO is backed by a pool of bank loans or distressed
debt. An asset manager sponsoring the CDO for arbitrage or balance sheet reasons
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asset type (1999–2001 cumulative).
Reproduced with permission from Ganesh Rajendra (Managing Director, Global Markets Research, Deutsche Bank AG)

and White Page, author and publisher, respectively, of The Use of Securitization as an Alternative Funding Tool for European

Corporates.



typically sells three tranches of certificates in the order of cash flow claim: senior,
mezzanine, and subordinate equity. The funds obtained from the sale of certificates
are used during the ramp-up period to acquire collateral. The division allows the senior
tranche to obtain a rating that is higher than the average of the underlying collateral.
The pool is managed to generate the requisite cash flows during the life of the CDO.

Fixed Income Securities 99





___________________________________________________________________________________________________________________________________________________________________________ 4 __________________________________________________________________________________________________________________________________________________________________________

________________________ Equities, Currencies, and Commodities ________________________

Spot markets in securities other than fixed income are simpler and more complex at the
same time. The underlying mathematics are much simpler because these securities do
not normally involve multiple cash flows (a currency does not pay coupons like a bond)
and there are few or no close substitutes that can be repackaged to create a stock, a
currency, or a commodity (like coupon bonds with zeros). Each spot currency or stock
is unique and its value cannot be mathematically related to that of another currency or
stock. There is no stated maturity value, and thus there is much greater uncertainty
about the future redemption price. Because they rely on estimates of future economic
variables, cash flow-discounting techniques for valuing stocks or commodities are at
best good approximations of the fundamental value. Current market prices are not
strict functions of those cash flows the way bond prices are of coupon streams. At
best, they are educated guesses based on economic analyses of supply and demand,
growth assumptions, and a lot of other subjective measures. The upshot is that the
discounting techniques are relatively simple, but imprecise, as they rely on a lot of
uncertain economic variables.

4.1 EQUITY MARKETS

Secondary stock trading around the world is arranged to force buyers and sellers of
each stock into one marketplace in order to discover the best price for the stock. The
bottleneck design ensures that all relevant information about the stocks reflected in the
bid and offered prices flows into one place. This helps establish the price that reflects the
balance of all demand and supply for the stock. It also guarantees maximum liquidity
of trading, allowing traders and investors to buy and sell nearly instantaneously and
with minimal transaction costs. The bottleneck can be designed in two ways: one is
through a physical exchange; the other is through a virtual exchange which is really a
network of dealers linked by phones and computers. The first typically creates a greater
concentration of supply and demand, while the second offers more competition.
Primary equity sale works roughly the same around the world. New issuers of stock

contact investment bankers who help them navigate through the regulatory process and
help them sell the stock certificates to investors. In most countries new shares have to be
registered with a national government regulator to ensure a minimal level of informa-
tion disclosure. The stock is then offered to investors as a fully underwritten issue or on
a best efforts basis. In the former, the investment banking firm buys the entire issue and
then sells it to investors out of its own inventory. In the latter, the investment-banking
firm does not take all the resale risk. Instead, it only sells as much of the issue as it can.



The process is the same whether the issues are offered in an initial public offering (IPO),
where new companies sell stock for the first time, or in a seasoned equity offering
(SEO), where well-established firms distribute additional shares to new investors. The
flip side of the primary market is the repurchase of shares by the original issuers, or a
buyback. This is done in the secondary market, but is normally preceded by an
announcement of a buyback program. Buybacks permanently reduce the number of
shares circulated among investors.

Compared with markets for bonds, commodities, or derivatives, equity markets are
well understood by novice investors. We focus on some interesting recent developments.

Secondary markets for individual equities in the U.S.

The largest and most important secondary market for individual equities is the New
York Stock Exchange (NYSE). The NYSE processes about 1.4 billion shares every day
and derives its strength from a unique setup based on specialist trading posts. The floor
of the NYSE consists of trading booths, each trading in a handful of stocks assigned to
them. In order to provide the maximum liquidity of trading (force buyers and sellers to
meet at one bottleneck spot), each stock is assigned to only one booth and one author-
ized dealer for that stock—the specialist sitting in the booth. Most orders arrive
through and are electronically matched by a SuperDot computer system. The rest
come from the crowd of brokers gathered around each post. Unmatched limit and
stop orders are entered into the limit order book maintained by the specialist. They
are prioritized based on their size and best execution price. The specialist is in a unique
position to see who wants to buy and sell and at what prices. Since 2002, the crowd has
been allowed to see the total size and price for each bid and offer. The specialist enjoys a
monopoly power to trade for his own account by observing the flow of trading in the
limit order book. For the privilege of being able to profit from knowing the flow of buy
and sell orders for his stock, the monopolist is obligated to ‘‘maintain fair and orderly
market’’ (i.e., sometimes lose money when trading imbalances occur). He is a market
maker and must post bid and offer prices at all times. He is forced to trade when he may
not want to. This ensures the continuity of the price and reasonable depth of quotes. It
may seem unfair to allow the specialist to profit at the expense of public investors, and
recent scandals over the abuse of monopoly power by specialists may force the NYSE
to re-examine its reluctance to adopt a dealer model. The specialist’s monopoly profit is
the price for continuous price discovery. The Tokyo Stock Exchange is the best example
of where machines sometimes fail to deliver. All buyers and sellers are forced to submit
orders into the same limit order book. Market participants have electronic access to it
(they can see the size and the identity of the bidders and sellers), but if at any given time
there are no market orders and no seller wishes to trade at a price equal to the highest
bid, then no trading occurs. At the NYSE, the specialist must step in to trade.

There are disadvantages to this arrangement. With the advent of decimal trading
(quoting prices in dollars and cents as opposed to eighths and sixteenths of dollars) and
more importantly the reduction of the tick size (minimum price increment) to 1 cent,
specialists have had incentives to front-run investors by showing prices only 1 cent
better than the best bid or offer. Front-running tips the balance of fairness away
from the investor and in favor of the specialist. The NYSE has had to police the
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specialists more to ensure that the tradeoff of monopoly profits for continuous price
making is balanced.
NYSE, also called the ‘‘Big Board’’, lists over 2,000 U.S. and foreign stocks. The

American Stock Exchange, the AMEX or the ‘‘Curb’’, lists about 700 mostly smaller
companies (in terms of market cap), but has become known for its innovation in
warrants and a variety of standardized stock baskets. Both the NYSE and the
AMEX are physical exchanges based on a single market-maker auction. In contrast,
the U.S. over-the-counter (OTC) market called NASDAQ, owned and operated by the
National Association of Securities Dealers (NASD), has no single physical location and
is based on multiple market-makers who quote and trade shares through a computer-
ized automatic quotation system (�AQ). There are well over 4,000 stocks listed on the
two tiers of the NASDAQ (national and small-cap). Just like the physical exchanges,
the NASD maintains listing requirements (albeit less stringent and costly), yet the
NASDAQ stocks are referred to as ‘‘unlisted’’. All NASDAQ members are dealers
(i.e., they trade for their own account, and many trade the same stocks). They are
obligated to continuously display firm bids and offers good for 1,000 shares and,
when hit, trade at those quotes with other members. The practice common on
NASDAQ, but not permitted on the exchanges, is the internalization of many customer
trades. The dealer may execute customer orders acting as a principal and not show the
order to other dealers. This takes liquidity away from the central market which is
already, by design, fragmented. The positive of this setup over the single auction
specialist is the competition multiple dealers provide. This may not be enough to
compensate for the shortcomings of diminished liquidity as evidenced in NASDAQ’s
wider bid–ask spreads relative to NYSE.
The vast majority of OTC issues (about 8,000) not listed on NYSE, AMEX, or

NASDAQ trade on the OTC Bulletin Board (most) or on the electronic version of
old ‘‘Pink Sheets’’ (penny stocks). Both of these are reported by the NASD. In addition,
in the so-called ‘‘third market’’, exchange-listed stocks trade OTC via a system similar
in functionality to and operated by the NASD.
Since the 1990s, a fourth market has emerged in the form of for-profit brokers’

networks. To avoid exchange commissions, customers can meet directly in fully elec-
tronic markets maintained by third parties. These can be either electronic communica-
tions networks (ECNs) or crossing networks. ECNs operate within the NASDAQ
system (representing 30% of volume) as widely disseminated electronic limit order
books. Subscribers link to them to anonymously post quotes and execute trades. The
largest ECNs include Instinet, Island, and Archipelago. ECNs are economical ways to
handle small retail orders. Crossing networks are designed for institutional investors.
They match buyers and sellers directly by aggregating orders for execution as a batch at
a specified time. They are popular with mutual funds.

Secondary markets for individual equities in Europe and Asia

Lacking a single, integrated market for equity capital, European companies list on
national exchanges or cross-list on several European exchanges. The London Stock
Exchange (LSE) has struggled to maintain its lead in having the most international
equities traded on its floor (about 20% of issues). The trading mechanism includes both
an order book and multiple market makers. Dealers are linked through a screen

Equities, Currencies, and Commodities 103



quotation system, but matched bids and offers in FTSE 100 shares are executed auto-
matically. Any appropriately capitalized firm can compete as a dealer in multiple stocks
on the LSE. The order-matching book of the LSE is known as the SETS and the dealer
quotation system as the SEAQ. In Germany, stock trading is concentrated on the
Deutsche Börse which combines floor and electronic transacting. Buyers and sellers
must submit their trades through a bank represented on the Börse. Stock trades are
considered banking transactions according to the German universal bank tradition.
The exchange operates three segments: the official market, the regulated market, and
the Neuer Markt for smaller companies. Xetra is the electronic order-matching system
operated as the central limit order book. All European countries operate national
exchanges. Recently, competition among them has forced many to seek alliances as
each tries to become the continent’s dominant one. Euronext combines the Amsterdam,
Brussels, Lisbon, and Paris exchanges and is second to LSE in the number of inter-
national stocks listed. Spain’s exchange lists most companies in Europe, mostly domes-
tic. Not a single European exchange is based on the specialist posts. Only Amsterdam
affords that status to some dealers (Montreal and Toronto also have single-auction
market-makers). Most are based on a competitive dealer principle. This means, for
example, that London dealers may take larger positions in stocks than dealers in New
York. This is not so in Paris because the automated trade systems do not afford enough
anonymity to block trading firms. Clearing of trades in Europe is fragmented along
national lines and contributes to the high cost of executing transactions.

The Japanese stock market, over 120 years old, consists of six exchanges, the domi-
nant one being the Tokyo Stock Exchange (TSE). Over 1,800 domestic TSE shares are
classified, based primarily on size, into two sections, the majority being traded in the
first section. In the continuous-auction TSE market, the ‘‘Saitori’’ intermediaries, who
are not allowed to trade for their own account, maintain the computerized central
book. They match orders based on price priority and time precedence and rely on an
open outcry to solicit new orders. All securities must be traded by an authorized dealer.
The three major dealing firms are Nomura, Nikko, and Daiwa.

In China, the principal exchanges exist in Shanghai and Shenzen. They trade class A
shares denominated in the nonconvertible yuan and class B shares denominated in U.S.
dollars and HK dollars, respectively. In 2001, the government permitted the ownership
of B shares by Chinese nationals via hard currency accounts and allowed state-owned
companies to sell B shares. However, property rights and accounting rules have
continued to hamper trading in B shares. In addition, companies are tied strongly to
the Chinese economy trade on the Hong Kong exchange. They are often referred to as
H shares.

Depositary receipts and cross-listing

As of 2001, there were more than 1,800 sponsored depositary receipts (DRs) from
almost 80 countries1 traded around the world. Depositary receipts are claims to
shares of foreign companies. In the U.S., American depositary receipts (ADRs) are
created by a bank, like the Bank of New York, by accumulating shares of foreign
companies. The claims on those shares, one for one, are then traded on the stock
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exchanges as if they were shares of domestic stocks. They are convenient for investors;
they trade in U.S. dollars, their dividends are paid in dollars, and they can be bought
and sold in the U.S. market lowering the legal risk and cost. DRs can be sponsored by a
foreign company actively seeking listing and selecting one authorized depositary bank
or non-sponsored (i.e., created by any bank). Legally, a DR holder may give up voting
and pre-emptive rights. Creation of DRs allows companies around the world to cross-
list on several national exchanges in order to tap new sources of capital. For example,
large Swiss or Dutch multinationals choose to have their shares traded simultaneously
on their small domestic exchanges, as well as in London and in New York.

Stock market trading mechanics

In most markets around the world, investors can enter several types of orders. The most
important are market orders and limit orders. Market orders are orders to buy at the
current offer price and to sell at the current bid price a given number of shares of stock.
The number of shares is normally specified in terms of whole lots (normally 100 or
1,000 shares). The customer specifies just the ticker symbol of the security and the
quantity to be bought or sold. The price at which he will buy/sell is that currently
quoted when the order arrives on the floor of the exchange or is posted on an ECN.
The market order is executed immediately against existing limit and market orders.
Limit orders are orders to buy or sell a specified quantity of a stock at a price equal to or
better than a specified limit. Thus, in a limit order, the customer must specify the price
at which he is willing to trade.
For example, a limit order may read ‘‘Buy 200 shares of IBM at 76.75.’’ If there are

other customers’ orders in the book to buy IBM at 77, they will be executed ahead of
the limit order at 76.75 as they enjoy a price priority. If there are no better bids and the
lowest offer is to sell at 77.25, then the limit order at 76.75 will not be executed until a
market sell order or another limit sell order at 76.75 or lower are entered into the order
book.
All orders can have additional instructions like ‘‘good for the day’’, ‘‘good till

canceled’’, all or nothing, etc. In most markets, orders are entered into a central
book and prioritized based on price. The highest bid is waiting to be executed first,
then the second highest bid, etc. The lowest offer is waiting to be executed first, then the
second lowest offer, etc. The time of the order arrival has only secondary precedence
(i.e., only for orders at the same price). This priority arrangement contributes to
achieving the smallest spread between the lowest offer and the highest bid. The size
of the spread is a measure of market liquidity, and the cost of trading is as real as any
explicit commission, fee, or duty. For large institutions, anonymity is of paramount
importance in minimizing impact costs. A large block for sale by a well-known dealer
may cause the selling price to drop and thus lead to lower total proceeds. The upstairs
market in New York attempts to alleviate the impact of block trades that constitute
about 50% of all volume on the NYSE. There, block traders (minimum 10,000 shares)
arrange transactions directly with each other, with only the unmatched balance exe-
cuted through the floor crowd.
There are also explicit costs of trading stocks, like commissions and clearing fees.

Often these cover ‘‘free’’ services customers get from brokers, like access to research
reports and trade data. These are commonly referred to as ‘‘soft dollar’’ payments as
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they are hidden in trading fees. Regulators, like the Securities and Exchange Commis-
sion (SEC) in the U.S. or the Financial Services Authority (FSA) in the U.K., limit the
types of implicit perquisites investors can obtain in this manner. In the OTC markets,
market makers offer cash payments to brokerages with access to customer trades. This
entices brokerages to send all their orders to a select few market makers in order to
accumulate commission rebates. This practice is commonly referred to as payment for
order flow. It continues to be controversial as it provides perverse incentives for brokers
to send orders to markets with the highest level of these ‘‘kick-backs’’ as opposed to
those with the best execution price. It can be argued that they contribute to unjustifiably
high bid–ask spreads. It can also be argued that they represent a fair payment for access
to information flow. It is doubtful that cost benefits are passed on to retail customers.

Stock indexes

Investors around the globe follow stock markets with the help of stock indexes. Today,
some of them are household names: Dow Jones, S&P 500, and NASDAQ in the U.S.,
FTSE 100 in the U.K., CAC-40 in France, DAX in Germany, Nikkei 225 in Japan,
Hang Seng in Hong Kong, All Ords in Australia, to name a few. Stock indexes reflect
the price movement of diversified baskets of stocks in each national market. Most are
capitalization weighted (notable exceptions are the Dow Jones in the U.S. and the
Nikkei 225 in Japan which are price-weighted) to ensure proper weighting (by size)
of all companies in the basket. Sometimes the baskets are not as diversified as most
believe. The Dow Jones and DAX reflect only 30 stocks. The Nikkei has 225 stocks.
The CAC-40 has only 40. In most markets, better alternatives exist, but are less
popular. In the U.S., the Wilshire 5000, Russell 1000 and 2000 indexes are broader
indexes. In Japan, TOPIX includes all first-section TSE stocks. There is also a variety of
index indicators covering major world regions. The most widely used of those are the
Morgan Stanley Capital International and Financial Times World Indexes that divide
the world into logical economic regions roughly based on continental boundaries.
These are calculated in local as well as major currencies.

The publishing of indexes is a business run by private companies or exchanges. Often
companies vie to be included in some indexes in a belief that doing so increases the
liquidity of their stocks. Index companies charge fees to bond and warrant issuers and
derivatives dealers for referencing the index names in settlement documents of con-
tracts. Indexes are a basis for many futures and options contracts, both exchange and
OTC-traded. There have been hundreds of principal-protected bond issues whose
coupons are linked to stock indexes that have been sold to retail investors in Europe
and the U.S. in the last 10 years. There are hundreds of mutual funds that compete on
passively replicating the indexes at the lowest cost.

A capitalization-weighted, or cap-weighted, index is created by computing a weighted
average price of a basket of stocks with all stocks included in the index taken in
proportion to their total market value (stock price� the number of shares outstanding),
initially divided by some constant number to normalize the index. Every day as the
price of each stock changes the index value will change as a result of the price change
itself and indirectly of the total market capitalization change. Funds, attempting to
replicate indexes, continuously monitor the proportions of their holdings, even though
they are largely self-adjusting. It is important to note that even though the S&P 500 is a
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cap-weighted index of the 500 largest U.S. companies, their inclusion in the index is not
automatic: rather, it is decided by a selection committee run by Standard and Poor’s.

Exchange-traded funds (ETFs)

Until a few years ago, small investors hoping to replicate the performance of a stock
index could only buy index mutual funds. The largest one of these in the U.S. is the
Vanguard Equity Index 500 (ticker: VFINX). The fund itself could be bought and sold
directly from Vanguard at the end-of-the-day net asset value (NAV). The NAV of a
fund is calculated by taking the total value of all the holdings using the market prices at
the close of a business day (4 p.m. New York time) and dividing it by the number of
shares issued by the fund. The portfolio manager for VFINX would try to replicate the
performance of the S&P 500 index, charging only minimal running costs subtracted
from the value of the holdings in the calculation of the NAV. Recently, funds similar in
objective to index mutual funds started trading directly on the exchanges. The AMEX
lists over 100 such funds. These ETFs can be bought and sold like ordinary stocks
throughout the day in the secondary market (investor-to-investor). Each share repre-
sents a mini closed-end (trust) fund representing a claim to a basket of stocks resem-
bling the targeted index. The funds are run by depositary banks (the State Street Bank
sponsors S&P 500 Depositary Receipts, or SPDRs) or asset management companies
(Barclays Capital sponsors iShares), including those managing traditional open-end
mutual funds (Vanguard). The institutions charge stated management fees reflected
in the current prices of the funds. The most popular ETFs are ‘‘Cubes’’ (ticker:
QQQ), ‘‘Spyders’’ or SPDRs (SPY), and ‘‘Diamonds’’ (DIA) replicating the perform-
ance of NASDAQ 100, S&P 500, and the Dow, respectively. There are other index
ETFs, like iShares-Russell 2000 (IWM), and foreign stock and sector ETFs, like
iShares-MSCI Japan (EWJ) or Select Sector SPDR-Financial (XLF).
In Europe, after an initial run by investment banks to create a variety of

ETFs, the industry underwent a consolidation, reflecting the low-cost nature of the
business.

Custom baskets

The most widely popular custom baskets in the U.S. are HOLDRS (pronounced
‘‘Holders’’, short for holding company depositary receipts) traded on the AMEX. A
HOLDR is a depositary receipt issued by a trust representing ownership interests in the
common stock or ADRs of companies involved in a particular industry, sector, or
group. HOLDRs allow investors to own a diversified group of stocks in one investment
(like mutual funds or ETFs). The composition of a HOLDR is specified in a prospectus
and typically consists of 20–50 stocks. As of May 2003, the following HOLDRs were
traded on the AMEX:
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Table 4.1 AMEX-listed HOLDRs

Name Symbol

B2B Internet BHH
Biotech BBH
Broadband BDH
Europe 2001 EKH
Internet architecture IAH
Internet HHH
Internet infrastructure IIH
Market 2000þ MKH
Oil service OIH
Pharmaceutical PPH
Regional bank RKH
Retail RTH
Semiconductor SMH
Software SWH
Telecom TTH
Utilities UTH
Wireless WMH

Source: The AMEX website: www.amex.com/holdrs/prodInf

HOLDRs can be disassembled by their owners. For a small fee, investors can turn them
in and obtain individual shares underlying each ‘‘mini-trust’’.

In addition to exchange-traded baskets designed for retail investors, brokers execute
buy and sell orders from large investment companies on very customized, one-off
baskets. Institutions transmit the composition of the basket to be traded. The basket
may contain stocks from different exchanges. Brokers then execute program trades (buy
or sell orders for a group of at least 15 stocks with a total market value of at least $1
million, sent electronically to the SuperDot computer of the NYSE) or ‘‘work the
orders’’ according to customer instructions (e.g., trade the order throughout the day
on the NASDAQ in an attempt to get the best price or to find buyers). The competition
is based on speed and execution costs which often run at less than 3 cents per share in
the U.S. Program trading is also used for an index arbitrage strategy involving index
futures contracts (see Chapter 7).

The role of secondary equity markets in the economy

One of the main reasons regulators around the globe endeavor to establish and main-
tain orderly stock exchanges is their role in facilitating the flow of capital from savers to
new productive ventures (businesses), even though exchanges do not participate in that
process directly. Most stock market regulation is aimed at investor protection which
includes financial disclosure, fraud prevention, and protection of the property rights of
small investors. Exchanges are ‘‘used merchandise’’ markets in that capital flows from
investor to investor. None of it goes to companies that issue shares to finance manu-
facturing or service businesses. That initial transfer of capital takes place in the IPO or
SEO market. There, newly issued shares are sold to investors. Stock exchanges
indirectly play three paramount roles in this process. First, the original IPO or SEO
investors know that they will not be stuck with their investments for ever. They can
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share their risk by selling their stakes to others. By going to a broad market with many
buyers and sellers, they are reasonably assured to get a fair price for their shares.
Second, the exchanges provide fair price discovery not only for investors, but also
for the issuers. Companies often contemplate share buybacks or seasoned offerings
as ways of shrinking or expanding the equity capital invested in their businesses. The
secondary equity markets provide a way of estimating the cost of that capital in
the same way that bond markets offer a way of discovering the interest rate on the
company’s debt. The third role for exchanges is as a risk-sharing mechanism for venture
capital firms who use IPOs as their exit strategies. Their incentives to invest would be
much reduced if the only exit available were to find other private investors.

4.2 CURRENCY MARKETS

The currency or foreign exchange (FX) markets are borderless. Spot and forwards
trading takes place around the globe 24 hours a day. FX trades OTC (i.e., via a
phone and computer network of dealers scattered in various locations around the
world). As of 2001, the global turnover amounted to over $1 billion per day, of
which 33% occurred in the U.K., 17% in the U.S., 10% in Japan, 7% in Singapore,
6% in Germany, 5% in Switzerland, and most of the rest in the developed nations of
Europe and Australasia. About one-third of the daily turnover is spot trading, the rest
is short-term currency swaps and outright forwards. During the day, trading volume
shifts slowly westward through three zones: Australasia, Europe, and North America.
The market has two segments: the wholesale or interbank market, dominated by over
100 international banks and some of the largest investment banks, and the retail market
in which international banks trade with their customers. Two vendors, Reuters and
EBS, are leaders in currency quote systems for the wholesale market. Most of daily
volume of trading in the interbank market can be attributed to speculation and
arbitrage. Inventory adjustments and central bank interventions represent only a
small part. Clearing takes place via a private Brussels-based SWIFT (Society for
Worldwide Interbank Financial Telecommunications) system or a combination of the
CHIPS (Clearing House Interbank Payments System) network and Fedwire for U.S.
dollar payments. Spot settlement in FX markets is 2 days hence, except for USD/CAD
which is 1 day.
The U.S. dollar continues to be the dominant currency in the world. As of 2001, 90%

of all FX transactions involved the U.S. dollar on one side, 38% involved the euro, and
23% the Japanese yen. Most currencies are quoted in European terms (i.e., in foreign
currency per dollar). British Commonwealth currencies and the euro are quoted in
American terms (i.e., in dollars per currency). With some exceptions, currencies are
quoted to four decimal places except for larger numbers which are quoted to two. The
first widely known significant digits, called the big figure, are often skipped. Only the
small figure or points are quoted. For example, an FX rate of [USD/GBP] 1.4556,
would be quoted on the phone as 56, with both parties knowing the implicit 1.45.
The standard quote size for major hard currencies in the interbank market is $10
million referred to as ‘‘10 dollars’’.
Currency quotes are prices. Normally, the price of a good is expressed in terms of

currency per unit of the good. Potatoes may be priced in dollars per pound or euros per
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kilo. Rarely does one see potato prices expressed in terms of how many kilos 1 euro
buys. With currencies, the pricing good and the priced good are both currencies, and
the price can be expressed both ways. In Chapter 2, we introduced the notation of spot
quotes as X ’s followed by the quotation terms in square brackets (e.g., euros per U.S.
dollar as [EUR/USD]) or as superscripts. Currencies can be easily converted from
American terms into European terms and vice versa by taking reciprocals. For
example, if one day the British pound (GBP) is quoted as: X ½USD=GBP� ¼
XUSD=GBP ¼ 1:5000, which means that one pound buys 1.50 dollars, then that neces-
sarily means that X ½GBP=USD� ¼ XGBP=USD ¼ 1=1:50 ¼ 0:6667 (i.e., 1 dollar buys
0.6667 pounds sterling). In general:

X ½CURR1=CURR2� ¼ 1=X½CURR2=CURR1�
The conversions are easy, but can be confusing. Suppose X ½CHF=USD� ¼ 1:7200. How
many dollars will 300 francs buy? Since we want the quote in dollars per franc, we need
to invert the quote and multiply by the number of francs:

300 � X ½USD=CHF � ¼ 300 � 1

X ½CHF=USD� ¼ 300 � 1

1:7200
¼ 174:42

300 francs buys 174.42 dollars.
Like any market, FX trading is subject to a bid–ask spread. We are all familiar with

the most egregious example of that from the airport currency counters. Suppose for the
USD/GBP you observe: 1.4556/1.4782. But, which is the bid and which the offer?
Ignoring commissions, the counter will buy pounds for 1.4556 dollars apiece and sell
pounds for 1.4782 dollars apiece. So 1.4556 is a bid for pounds and 1.4782 is the ask or
offer for pounds. But, 1.4556 is also an offer for dollars: when the counter buys pounds,
it automatically sells dollars. Similarly, the 1.4782 is also a bid for dollars.

Bank trading rooms are organized into major currency desks and cross-desks. The
former deal in yen, euros, etc. against the dollar. The latter quote cross rates, which are
FX rates directly of non-dollars against non-dollars (e.g., CHF against JPY). Emerging
economies’ currencies are normally traded against the dollar, but cross-trading against
the euro can be just as significant, depending on the region (e.g., PLZ/EUR). Triangular
arbitrage (described in Chapter 5) ensures that cross rates stay in line with FX rates
against the dollar or another major. Apart from triangular arbitrage performed by
cross traders and currency arbitrage desks and inventory adjustment trading due to
customer flows through the major currency desks, the rest of trading is dominated by
speculation. Dealers interpret macroeconomic data and take positions on future FX
rate changes. This is quite different from bond market dealers making profits off the
bid–ask spread on customer flows. Cash bond markets are characterized by flow
trading; currency markets are distinctly speculative with less customer flow. Occasion-
ally, central banks attempt to manipulate FX markets through two types of interven-
tions: sterilized, where currency-for-bonds transactions offset currency-for-currency
flows, or unsterilized, with only the latter. In recent years, the central banks of
developed economies have engaged in very little intervention, as the predominant
macroeconomic orthodoxy has been to allow free-floating and only to use moral
suasion (i.e., issuing deliberate public statements to be widely (mis-?) interpreted by
the markets). The central banks of non-major currencies, on the other hand, have tried
a variety of other tools aimed at stabilizing their FX rates, mostly falling into the
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categories of pegging or exchange controls. The most common exchange control
arrangement is to limit the amount of FX that can be exchanged at the official rate
to a specified amount, sometimes tied to the level of export earnings of the owner.
Often, weaker currencies are pegged to a major or a basket of major currencies with the
central bank intervening if the market rate deviates too much from the desired target
rate. A popular arrangement in the emerging economies in the 1990s was a currency
board (Hong Kong, Argentina, Brazil) where local currency notes were issued at a fixed
ratio against a pool of foreign exchange held by a monetary authority and are freely
exchangeable into it. Currency traders watch closely the performance of these and other
arrangements against the real flows of FX and take speculative positions through spot
and forwards currency and money markets.

4.3 COMMODITY MARKETS

Spot commodity markets are comprised of networks of dealers who buy, store, and sell
commodities and their derivatives. Many commodities come in a variety of quality
grades. Some are integrated with futures markets and have financial speculators in
them; some are not integrated with futures and have mostly industrial buyers and
sellers. All are governed by the specifics of the production process involved in delivering
the commodity to the market. Let us review spot trading in commodities with a view
toward its relationship to futures markets.
Metals range from precious (gold, silver, platinum) to industrial (copper, aluminum).

Some have both uses (palladium, platinum). Metals are relatively homogeneous. As a
consequence, the metals markets are liquid. They trade through a network of OTC
dealers, similar to the FX market, or on some exchanges (London Metal Exchange).
Petroleum product markets are dominated by producers, not dealers, and are very

complex. Products trade at many stages of the production cycle. There is an active
market for oil and gas reserves in the ground. Participants are diversified petroleum
companies as well as companies purely owning reserves. There is an active market for
crude oil and gas extracted from the ground. Participants are oil companies, refiners,
and end-users, as well as some investment banks for speculative purposes. There are
very active markets in final products, such as gasoline, propane, and heating oil. The
pricing power for crude oil rests with the Organization of Petroleum Exporting
Countries (OPEC), with Saudi Arabia playing the role of a swing producer because
it holds 50% of world’s proven reserves and has large production overcapacity. Oil
production and refined product delivery can be subject to frequent supply shocks.
Futures markets in petroleum products can be seasonal and do reflect the convenience
value of owning the spot commodity.
Grain markets are dominated by grain elevators who act as dealers and buy, sell, and

store grains. The futures markets serve as the benchmarks for spot prices, quoted at a
premium or discount to futures, depending on the season and production conditions.
Soybeans are crushed to obtain soybean oil for use as fats in human food and soybean
meal for use as a protein supplement in animal feeds. Prices are quoted directly by the
producers of the two products.
Cattle and pork trade both as livestock and livestock products. Livestock can be

traded in different stages of production. Cattle is traded at feeder weight (up to 800
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pounds, roughly 1-year-old below optimal slaughter weight) or as fat cattle (�1,200
pounds). Similarly, hogs trade as feeder hogs or later as market hogs. Relative prices at
different stages vary dependent on the cost of feeds and other factors. Both cattle and
hogs are slaughtered evenly throughout the year. This renders the futures contract to
trade at no convenience value.

In recent years, an active spot and futures market has developed in electricity, as
governments throughout the world started deregulating electricity markets (Scandina-
via, North America, the U.K. and continental Europe). The deregulation consisted of
separating electricity generators from electricity transmitters and relaxing the pre-
viously tight price controls. Often, governments have been unwilling to give up some
price controls. The result has been a lively and sometimes chaotic market for spot
electricity. The product itself is uniform (there are no quality grades), but it is not
storable. This automatically means that the generators must maintain an overcapacity
to be able to deliver during peak times. This also means that demand and supply
conditions during peak and off-peak times are completely different. Buyers and
sellers must engage in what is called load-matching. Any delivery contract is extremely
specific in terms of the quantities to be delivered at different times of the day, different
times of the week, and the number of days per month guaranteed for on- and off-peak.
In many cases, the arrangements are complicated by obsolete and overly regulated
delivery networks. Most electrical grids suffer from natural bottlenecks (California–
Oregon Border, or COB and Palo Verde, Arizona, or PV) and man-made bottlenecks
(New Jersey–Pennsylvania separated from the Midwest by regulation and national
grids in Europe). All of these factors contribute to the very high volatility of electricity
prices (and recently a few, large blackouts in the U.S. and Europe). While the long-term
cost of generation depends greatly on the price of fossil fuels (for the most part oil and
gas), the short-term supply conditions often lead to great deviations from that.

In later chapters, we show how the spot prices of commodities are linked to futures
prices through the cost of carry and convenience yields. We also cover more interesting
aspects of electricity futures trading.
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___________________________________________________________________________________________________________________________________________________________________________ 5 __________________________________________________________________________________________________________________________________________________________________________

_____________________________________________________________________ Spot Relative Value Trades ____________________________________________________________________

Relative value trades in spot markets are relatively simple in concept. They rely on
speed of execution as they often take advantage of temporary mispricing of assets
relative to each other. They are self-correcting in that the very transactions that
exploit mispricings also eliminate them by pushing prices in line with each other. In
many instances, their success depends on the existence of lesser informed traders or
institutional and retail customers who are less price-sensitive. Some are pure arbitrages,
but more often than not they rely on relative value principle and result in small
secondary risks, like yield curve (YC) exposure, commodity basis risk, or market-
neutral sector risk. We review them not in the order of simplicity, but rather in the
sequence of the last two chapters.

5.1 FIXED INCOME STRATEGIES

We start with relative value trades which exploit the fact that coupon securities can be
viewed as packages of zero-coupon securities and the whole must be equal to the sum of
the parts (in terms of the present value, or PV, of the components).

Zero-coupon stripping and coupon replication

Zero-coupon stripping and coupon replication are most widely used in government
bond markets around the world. Corporate bond traders with access to security
lending may also engage in coupon replication, but limit the application of this strategy
to the highest rated bonds of very large issuers because they may be additionally
exposed to default or corporate spread risk.
The most basic zero-vs.-coupon arbitrage is executed in the U.S. Treasuries and

STRIPs (separated coupons or principals off original Treasuries sold as individual
securities) markets. The issuer of all securities is the same, the U.S. government. All
securities are default-free and easily marginable (i.e., both coupons and zero-coupons
can be shorted). Let us examine how we would screen for the possibility of arbitrage
and how we would execute riskless trades to earn sure profit. We assume none of the
securities is on special (i.e., no rebate is charged for borrowing and shorting through a
repo; in other words, repoing). Consider the following set of quotes (semi-annual bond
equivalents on a 30/360 basis, prices in decimals) for STRIP (zero) yields and coupon
bond prices:



Table 5.1 Zero-coupon and coupon bond rates and prices

Maturity Zero Coupon rate Coupon price
(years) (yield)

0.5 3.5000 3.50 100.0000
1 3.5931 3.60 100.0073
1.5 3.7281 3.75 100.0362
2 3.7903 3.80 100.0263
2.5 3.8817 3.85 99.7642
3 4.1386 4.00 99.6646

From the coupon bond prices and given the coupon rates, we can compute the yields-
to-maturity (YTMs) implied for the six coupon bonds following the formulae of
Chapter 2. YTMs are defined as the single yields used to discount the cash flows of
each bond to get the price (zero yields are not used in these calculations). We add the
yield column to the table of quotes:

Table 5.2 Zero-coupon and coupon bond rates, prices, and yields

Maturity Zero Coupon
(years) (yield) ——————————————————————

Rate Price Yield

0.5 3.5000 3.50 100.0000 3.5000
1 3.5931 3.60 100.0073 3.5925
1.5 3.7281 3.75 100.0362 3.7250
2 3.7903 3.80 100.0263 3.7863
2.5 3.8817 3.85 99.7642 3.9500
3 4.1386 4.00 99.6646 4.1200

We can also discount the cash flows of each coupon bond by applying the appropriate
zero yields to the coupon cash flows and principal cash flows to compute the theoretical
price and then the theoretical YTM of each coupon bond, assuming the zeros are priced
correctly (zero yields used). We replace the ‘‘Price’’ and ‘‘Yield’’ columns in the table
with their theoretical equivalents:

Table 5.3 Theoretical prices and yields of coupon bonds computed by discounting cash flows
with zero-coupon rates

Maturity Zero Coupon
(years) (yield) ——————————————————————

Rate Price Yield

0.5 3.5000 3.50 100.0000 3.5000
1 3.5931 3.60 100.0073 3.5925
1.5 3.7281 3.75 100.0362 3.7250
2 3.7903 3.80 100.0263 3.7863
2.5 3.8817 3.85 99.9410 3.8750
3 4.1386 4.00 99.6646 4.1200

We notice that the theoretical price and yield of the 2.5-year 3.85% coupon note is
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different from that actually quoted in the market. The 2.5-year trades cheap. Its price is
lower than what it should be relative to the zeros; or, it may be that one of the zeros,
specifically the 2.5-year one, trades rich relative to the coupon. We are not making a
statement as to which is overpriced and which is underpriced by some absolute stan-
dard. The theoretical prices we computed were strictly for the purpose of discovering
arbitrage.
One correct strategy in this case will involve buying the 2.5-year coupon and shorting

five different STRIPs (zeros) ranging in maturity from 0.5 to 2.5 years. The face value of
each zero shorted would be equal to 1.925 (semi-annual coupon of 3.85/2), except for
the last one whose face value would be 101.925 per 100 face value of the coupon
bought. The amounts are summarized in Table 5.4:

Table 5.4 Proceeds from shorting five STRIPs with face values matching the cash flows of the
2.5-year coupon bond

Maturity Zero Face value Price received
(years) (yield)

0.5 3.5000 1.925 1.8919
1 3.5931 1.925 1.8777
1.5 3.7281 1.925 1.8212
2 3.7903 1.925 1.7857
2.5 3.8817 101.925 92.5847

Total 99.9412

The total amount received from the shorts is greater than the price paid for the 2.5-year
maturity 3.85% coupon, by 99:9412� 99:7642 ¼ 0:1770, or 17.7 basis points. On a
$100 million face value trade, this amounts to $177,000. There is no risk to the trade
as the received coupon payments will cover exactly the return of the zero principals to
the lenders of the securities. The only risk may be call risk if one of the STRIP shorts
cannot be rolled over in an overnight repo market.
This is not the only arbitrage strategy that can be executed based on the quotes:

another may be to buy the 2.5-year, 3.85 coupon, sell a shorter coupon, and buy and
sell some zeros. For example, we can short the 2-year 3.80 coupon, combined with small
shorted strips of 0.5- to 2-year zeros (with principal equal to $3.85 million minus $3.80
million divided by 2, i.e., $25,000), short a $101.925 million 2.5-year STRIP, and buy a
2-year $100 million STRIP to offset the principal of the 2-year coupon note. This will
work because all zeros and coupons with maturities equal to or less than 2 years in our
example are fairly priced relative to each other. So, they are costless substitutes. The
only consideration for the trader is the availability of the components and the total bid–
ask spread paid to execute all the transactions.
The coupon-stripping strategy is an example of a static strategy. Once all the initial

transactions are executed, the trader simply collects the coupons and principals from
the longs when they come due and allocates them to the shorts. All future cash flows
match up exactly. There are no additional trades to be done. The profit is made upfront
from the difference between monies received from the shorts and monies paid on the
longs. We can simply wait for the last cash flow to consider the profit fully realized. The
only time we may consider unwinding the entire trade would be if, during the life of
the strategy, the total mark-to-market on the strategy, net of additional transaction
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costs, becomes positive, due to new relative mispricing of the components. That can be
a source of additional profit.

Duration-matched trades

Another way of arbitraging spot bond markets is through dynamic strategies of dura-
tion matching. In some cases, the secondary speculative component is the difference in
bond convexities if one intends to profit from parallel yield curve movements. More
often, convexities may also be matched and profit is earned as duration- and convexity-
matched bond positions adjust differently to non-parallel yield curve movements.
(Chapter 2 offers definitions and explains the economic meaning of duration and
convexity.) Typically, the relative arbitrageur selects a primary bond (or bonds)
which is bought/shorted and hedges it by shorting/buying other bonds with the dura-
tion of the hedges equal in absolute value to that of the primary bond. This ensures that
the speculation is not directly on the level of interest rates. The trader profits or loses
due to parallel movements through a convexity mismatch (second-order variable) and/
or due to non-parallel yield curve movements even if the convexities are matched. The
strategy is dynamic. The cash flows on the trade positions do not match. The trader
does not intend to hold the positions to maturity, but only until he realizes a desired
level of profit. He dynamically adjusts the duration match as interest changes.

Example: Bullet–barbell

Let us illustrate with a bullet–barbell combination, originally designed as a hedge
strategy aimed at immunizing against parallel yield curve movements. Here we show
how a duration- and convexity-matched bullet–barbell strategy profits from non-
parallel movements.

Suppose we buy $116.460 million of a 5-year note with the modified duration of 3.22
and convexity of 0.33. That is, a 1 bp (basis point) increase in yield will cause a 3.22 bp
decrease in value using the straight-line approximation minus a 0.33 bp correction for a
curvilinear quadratic approximation term. At the same time, we short a barbell (two
bonds, short-maturity and long-maturity): a $48.885 million 2-year note with the dura-
tion of 1.68 and convexity of 0.12, and a $42.507 million 10-year note with the duration
of 6.89 and convexity of 0.76. As can be seen from Table 5.5, the face value amounts
have been chosen so that the portfolio is duration-neutral and close to convexity-
neutral.

Table 5.5 Long 5-year bullet, short 2–10 barbell

Bond Face value Duration Convex $ Duration $ Convexity
per bp per bp

2-year (48,885,000) 1.68 0.12 8,213 (587)
5-year 116,460,000 3.22 0.33 (37,500) 3,843
10-year (42,507,000) 6.89 0.76 29,287 (3,231)

Total (0) 26

The 2-year bond position will gain (lose) $8,213 per 1 bp increase (decrease) in the
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YTM, the 5-year will lose (gain) $37,500 per 1 bp increase (decrease) in the YTM, and
the 10-year will gain (lose) $29,287 per 1 bp increase (decrease) in the YTM. Overall, if
all three YTMs move (up or down) in parallel by 1 bp, or a few bp, the portfolio will not
make or lose money. (Over a larger movement in yields, the portfolio will make a tiny
amount of money as it is lightly convex.)
The portfolio will profit/lose from non-parallel yield curve movements. If the yield

curve steepens (i.e., the 2–10-year yield curve differential increases by 10 bp), the
portfolio will gain over $105,000. If the yield curve flattens by 10 bp, the portfolio
will lose roughly the same amount. The portfolio will also profit or lose, if the yield
curve twists. For example, if the 2-year and 10-year yields decline by 5 bp, but the 5-year
yields decline by 10 bp, the portfolio will gain $187,501. The two scenarios are summar-
ized in Table 5.6 which shows the sources of profits in each case.

Table 5.6 Long 5-year bullet, short 2–10 barbell—profit from yield curve (YC)

Bond Duration YC steepens YC twists
————————————— —————————————
Move (bp) $ Profit Move (bp) $ Profit

2-year 1.68 5 41,063 �5 (41,063)
5-year 3.75 10 (375,001) �10 375,001
10-year 6.89 15 439,310 �5 (146,437)

Total 105,372 187,501

Example: Twos vs. tens

One of the simplest and most common strategies to benefit from non-parallel yield
curve movements is a duration-matched twos–tens trade in which the arbitrageur
goes long 2-year notes and short 10-year notes, if he intends to profit from a steepening
of the yield curve, or vice versa (i.e., short 2 years and long 10 years) if he intends to
profit from a flattening. In this strategy, it is much more difficult to eliminate convexion
risk, so there is normally some residual primary interest rate risk.
Suppose we want to profit from a yield curve flattening. We short $61.3 million of 2-

year notes and we buy $14.947 of 10-year notes. We choose the amounts to eliminate
interest rate risk (i.e., we match the duration of the short and the long).

Table 5.7 Short twos–long tens

Bond Face value Duration Convex $ Duration $ Convexity
per bp per bp

2-year (61,300,000) 1.68 0.12 10,298 (736)
10-year 14,947,000 6.89 0.76 (10,298) 1,136

Total (0) 400

If all yields (2-year and 10-year) rise in parallel by 10 bp, then the 2-year position will
gain close to $103,000 and the 10-year position will lose the same amount. However, if
the yield curve flattens (i.e., 2-year yields rise by more, or drop by less, than 10-year
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yields), then the strategy will make a profit. In Table 5.8, 2-year yields rise by 10 bp,
while 10-year yields rise only by 5 bp, resulting in a 5 bp flattening. The strategy gains
$51,492. At this point, the trader may choose to close out both positions. If an even
greater flattening is anticipated, the trader may choose to rematch the durations or
leave them slightly mismatched to ride the strategy longer.

Table 5.8 Short twos–long tens

Bond Duration YC moves parallel YC flattens
————————————— —————————————
Move (bp) $ Profit Move (bp) $ Profit

2-year 1.68 10 10,984 10 102,984
10-year 6.89 10 (102,985) 5 (3,51,492)

Total (1) 51,492

If both yields have risen, then the durations of both bonds have decreased. Given the
original convexity numbers, the duration of the 2-year notes will have changed to 1.662
and that of the 10-year to 6.852. Duration rematching can be accomplished, for
example, by shorting additional $0.101 million 2-year notes and leaving the 10-year
position unchanged.

Table 5.9 Short twos–long tens—duration rematch

Bond Face value Duration $ Duration
per bp

2-year (61,401,000) 1.668 10,242
10-year 14,947,000 6.852 (10,242)

Total 0

Another yield curve flattening of 5 bp will now result in a profit of $51,208, while a
parallel move will result in no value change.

Negative convexity in mortgages

Because of the prepayment risk, the management of fixed-rate mortgages and mort-
gage-backed securities (MBSs) is particularly risky. A duration-matched portfolio
makes or loses money not only for large movements in yields, but sometimes for
small parallel movements when yield curve movement leads to an acceleration or
deceleration or prepayments. The change in the speed of prepayments causes the
durations to become mismatched and the interest rate sensitivities of the various
bonds in the portfolio to diverge. Mortgage bond durations are calculated for a
given speed of prepayments. The latter is measured in PSAs. (PSA stands for the
Public Securities Association, but it is commonly used as a unit of prepayment
speed, as defined by the Association.). As current PSAs change, so do the durations
and interest rate sensitivities. In addition, the changes are not symmetric. Downward
movements in the yield curve may accelerate prepayments by more than upward move-
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ments will slow them down. There are many reasons for such a situation. One com-
monly considered factor is the past history of curve movements. If interest rates have
not changed much in the past and started coming down only recently, a large wave of
refinancings (and thus prepayments) may be unleashed. On the other hand, if interest
rates have been coming down rather steadily in the past, a further drop may actually
lead to a slowdown in prepayments as there may now be fewer mortgages to be
refinanced. These issues are most acute with highly structured MBSs (like IOs, or
interest-onlys, and POs, or principal-onlys) and are the main focus of statistical pre-
payment modeling done by most mortgage-dealing firms.
The crux of the matter is the potential negative convexity of fixed-rate mortgages. For

a non-mortgage bullet bond, as interest rates come down the price and the duration of
the bond increase. For a mortgage bond, the price may increase but the duration may
decrease. To understand that recall from Chapter 2 that one interpretation of duration
is the present value-weighted average time to the bond’s cash flows. For bullet bonds, as
rates decrease, the present value of far cash flows increases relative to near ones. The
PV-weighted average time to the repayment of the bond (i.e., the duration) increases. In
the extreme, when rates are zero, the duration is at a maximum and it is a cash flow-
and not PV-weighted average time measure. Conversely, as interest rates rise, the PV of
far cash flows including the principal, if any, declines more relative to the near cash
flows and duration contracts. In the extreme, when rates go infinite, duration is zero.
The same intuitions apply to mortgages to the extent that they are coupon-paying,

fixed-income instruments and prepayment speeds do not change. As interest rates
decline, the PV of a given far cash flow from a mortgage increases more than that of
a near one. But, if the prepayment speed increases, there may be fewer far cash flows
and more near cash flows. The overall duration of the bond, instead of increasing, may
actually decline. Consider a bond backed by a ‘‘pool’’ of two identical 15-year mort-
gages. As interest rates decline, the PV of the cash flows scheduled for years 10–15
increases more than that of the cash flows scheduled for years 1–5 (due to the power of
compound interest). The PV-weighted average time to the repayment of the mortgage
bond increases. But now suppose that the owner of the second mortgage decides to pay
down her principal in order to avoid paying a now high interest rate. This moves the far
cash flows to today. The PV-weighted average time for the entire pool declines; so does
the sensitivity of the price of the pool-backed bond to interest-rate changes. The
opposite is true for an interest rate increase. In that case, prepayments slow down,
extending the bond’s duration even though the PVs of far cash flows decline. The
extreme case of this negative convexity is found in PO STRIPs of MBSs where the
owner is entitled to the principal portion of monthly mortgage payments coming from
the pool. As rates decline, a PO holder may be swamped with principal prepayments,
practically extinguishing his bond and exposing him to the reinvestment risk at the now
lower interest rates.
Some structured MBSs exhibit negative duration. The owner of the IO STRIP is

entitled to the interest portion of mortgage payments. As rates decline and prepayment
speeds increase, promised future interest never materializes and the PV of the cash flows
decreases.
Mortgage bond portfolio managers are normally long on mortgage bonds and short

on hedges. The hedges include government or agency bonds. The two sides can be
duration-matched in an attempt to immunize against explicit interest rate risk. But
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duration matching is quite tricky in this case. At a given assumed prepayment speed,
the portfolio may appear duration-neutral. But long mortgage bonds (negatively
convex) combined with short governments (positively convex when owned, but here
shorted, hence negatively convex) may lead to particularly short-convexity portfolios.
These make money if PSAs do not change, but lose a lot of money when they do.
Mortgage traders may resort to callable bonds or swaptions as hedges. Buying call swap
options offsets the options implicitly sold to the homeowners in the pool. The hedge
may be the best we can do, but may be highly imperfect as it depends on future rate
levels, and not their histories or other macroeconomic and personal factors leading to
mortgage refinancings.

The negative convexity of mortgages can be used to our advantage in a variety of
yield curve strategies. Consider a twos–tens curve-flattening strategy. Suppose in addi-
tion to the 2-year and 10-year government notes we include in the portfolio some
mortgage bonds backed by a pool of 30-year mortgages that are currently prepaying
at some PSA rate such that the duration of these bonds is close to that of the 10-year
government note. Their convexities, instead of being very similar to those of the 10-year
notes, are actually negative because of the negative prepayment effect. Instead of short-
ing 2-years and buying 10-years, we short 2-years, buy 10-years, and buy mortgage
bonds with face amounts chosen to zero out the overall convexity, as in Table 5.10.

Table 5.10 Short twos–long tens and mortgages

Bond Face value Duration Convex $ Duration $ Convexity
per bp per bp

2-year (61,300,000) 1.68 0.12 10,298 (736)
10-year 10,600,000 6.89 0.76 (7,303) 806
Mortgages 4,524,000 6.62 �0.15 (2,995) (68)

Total — 2

We are still immunized to parallel yield curve movements, and we still make the same
amount of $51,493 on a 5-bp yield curve flattening, but we have no exposure to non-
parallel movements.

Table 5.11 Short twos–long tens and mortgages: Hedge performance

Bond Duration YC moves parallel YC flattens
———————————— ————————————
Move (bp) $ Profit Move (bp) $ Profit

2-year 1.68 10 102,984 10 102,984
10-year 6.89 10 (73,034) 5 (36,517)
Mortgages 6.62 10 (19,949) 5 (14,974)

Total 1 51,493

We do have rebalancing to do if we want to continue the flattening strategy with a
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duration match. Convexity will continue to be close to 0. The summary of the rebalan-
cing statistics is shown in Table 5.12.

Table 5.12 Short twos–long tens and mortgages—duration rematch

Bond Duration $ Duration $ Convexity
per bp per bp

2-year (61,520,000) 1.668 10,262 (738)
10-year 10,600,000 6.852 (7,263) 806
Mortgages 4,524,000 6.6275 (2,998) (68)

Total 0 (0)

Spread strategies in corporate bonds

Corporate bond trading at broker-dealer firms has two components: inventory trading
due to customer flows and spread arbitrage. The first is similar to government bond
trading and focuses on the bid–ask spread for the more liquid issues. As customers call
with buy and sell orders, dealers trade out of their inventory, earning profit simply by
charging more than paying for the same bonds, or their close substitutes (e.g., same
issuer, different maturity, and coupon). The line between flow trading and spread
arbitrage gets blurred as the definition of a substitute is expanded to include bonds
of other issuers, but of the same credit quality. Dealers then accumulate bonds of one
type and are short of another, staying neutral with respect to interest rate risk. This
either happens naturally as flows become unbalanced or it is by design in order to
benefit from spread movements. Let us give some examples of the latter.

Example: Corporate spread widening/narrowing trade

Suppose we are a corporate bond dealer and we believe that the spread between A-rated
bonds and government securities is going to narrow. We believe that this will be a
consequence of the sparsity of new corporate issuance which will limit the supply of
the bonds. Our view on interest rates overall is neutral.
In order to benefit from the anticipated narrowing of the spread, we can buy A-rated

corporate bonds and short governments with the same maturity. We match the dura-
tions of the long and the short by choosing the face amounts appropriately. This is
summarized in Table 5.13.

Table 5.13 Long corporate, short government

Bond Face value Duration Convex $ Duration $ Convexity
per bp per bp

10-year government (45,210,000) 6.89 0.76 31,150 (3,436)
10-year A-rated corporate 50,000,000 6.23 0.56 (31,150) 2,800

Total (0) (636)
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Let us consider what will happen to the position as the spread between the yield on the
A-rated bond and the government bond narrows. This can occur in a variety of ways.
One scenario is that both yields rise, but the A yield rises by less than that of the
government bond. Suppose the respective yield changes are 30 bp and 50 bp, resulting
in a narrowing of 20 bp.

Table 5.14 Long corporate, short government—rates rise by 30 bp (corporate) and 50 bp
(government)

Bond Duration Yield move (50 bp) Spread move (�20 bp)
——————————— ——————————
Move (bp) $ Profit Move (bp) $ Profit

10-year government 6.89 50 1,557,485 0 —
10-year A-rated corporate 6.23 50 (1,557,500) �20 623,000

Total (16) 623,000

The change in the value of the portfolio due to the overall interest rate increase is nil.
This result is ensured by the duration match. There is, however, a substantial profit of
$623,000 which is due to the narrowing of the spread.

This strategy can be combined with a small outright bet on rates to form a speculative
position. Spread widening often occurs during broad rate increases, and narrowing
during rate declines. Suppose we want to bet on the scenario that the spread narrowing
is going to follow a general rate decline. We can mismatch the durations slightly to
leave ourselves net long. We can short fewer government bonds.

Table 5.15 Long corporate, short government—mismatch

Bond Face value Duration Convex $ Duration $ Convexity
per bp per bp

10-year government (40,000,000) 6.89 0.76 27,560 (3,040)
10-year A-rated corporate 50,000,000 6.23 0.56 (31,150) 2,800

Total (3,590) (240)

This will earn additional profit if rates overall decline, but will hurt our profit if rates
increase. We still benefit from the narrowing of the spread.

Table 5.16 Long corporate, short government—spread narrows

Bond Duration Yield move (50 bp, 30 bp) Yield move (�30 bp, �50 bp)
——————————— ——————————————
Move (bp) $ Profit Move (bp) $ Profit

10-year government 6.89 50 1,378,000 �30 (826,800)
10-year A-rated corporate 6.23 30 (934,500) �50 1,557,500

Total 443,500 730,700
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If the spread narrows by 20 bp while yields rise, our profit will shrink from $623,000 to
$443,500. If the spread narrows while yields decline, our profit will increase to $730,700.
The difference between the new profit levels and the original matched strategy is all due
to net duration exposure to interest rates.

Example: Corporate yield curve trades

The duration-matched spread widening/narrowing strategy can be considered specula-
tive. The bet is not outright on interest rates, but on the corporate spread which can be
highly volatile at times, resulting in large profits or losses on the government-hedged
corporate portfolio.
A finer trade is a bet on the spread between different maturity points of the corporate

spread for a given category of issuers. In this case, the dealer is interest rate-neutral and
corporate spread-neutral, but speculates that the difference between the corporate
spread for 10-year maturities and 2-year maturities will change.
Suppose that currently the spread between A-rated issues and governments is 30 bp

for 2-year maturities and 70 bp for 10-year maturities. We believe the 40-bp difference is
going to increase, reflecting improved default prospects in the short run relative to the
longer run. We do not have a view on interest rates in general or corporate spreads in
general. This time we will match durations of corporates and governments for each
maturity segment and across the segments. This is accomplished in the following way.

Table 5.17 Corporate spread steepening trade

Bond Face value Duration Convex $ Duration $ Convexity
per bp per bp

2-year government (166,875,000) 1.68 0.12 28,035 (2,003)
2-year A-rated corporate 183,235,000 1.53 0.13 (28,035) 2,382
10-year government 40,700,000 6.89 0.76 (28,042) 3,093
10-year A-rated corporate (45,000,000) 6.23 0.56 28,035 (2,520)

Total (7) 953

The strategy is immune to parallel and non-parallel yield curve movements. It is also
immune to parallel corporate spread movements. It only makes money if the difference
between the 10-year and 2-year spread increases (i.e., the corporate spread curve
steepens). It loses the same amount if the difference decreases.

Table 5.18 Corporate spread steepening trade

Bond Duration 0 bp steepening 20 bp steepening
——————————— —————————————
Move (bp) $ Profit Move (bp) $ Profit

2-year government 1.68 10 280,350 10 280,350
2-year A-rated corporate 1.53 10 (280,350) 10 (280,350)
10-year government 6.89 20 (560,846) 20 (560,846)
10-year A-rated corporate 6.23 20 560,700 40 1,121,400

Total (146) 560,554
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In Table 5.18, a yield curve steepening of 10 bp results in no profit, but the same yield
curve steepening combined with a steepening of the corporate spread curve of 20 bp
results in a profit of $560,554.

Example: Relative spread trade for high and low grades

The spread between low investment grade and high investment grade issues can be quite
variable. In order to benefit from the relative value trades between these two categories
we can design trades similar to the strategies described in the previous two subsections,
where the role of the government bond is played by the high-grade category. The
philosophy of the trade is the same. We show one example of such a trade.

Suppose we believe that the spreads between low-grade and high-grade issues will
narrow and that the spread for the 10-year maturity point is going to narrow more than
that for the 2-year point. We have no view on government yields, the spreads between
high grade issues and governments, or the 10-year–2-year spread for each category
alone.

Table 5.19 Low-grade–high-grade spread trade

Bond Face value Duration Convex $ Duration $ Convexity
per bp per bp

2-year AAA-rated corporate 149,196,000 1.68 0.12 (25,065) 1,790
2-year A-rated corporate (183,235,000) 1.53 0.13 28,035 (2,382)
10-year AAA-rated corporate (45,000,000) 6.89 0.76 31,005 (3,420)
10-year A-rated corporate 45,000,000 6.23 0.56 (28,035) 2,520)

Total 5,940 (1,492)

We mismatch durations by about the same amount for each maturity category. The size
of the mismatch reflects our view on overall tens–twos spread narrowing, and we go
long 10-year relative spreads and short 2-year relative spreads. We make money when
the relative spread between As and AAAs narrows and the 10-year spread narrows
more.

Table 5.20 Low-grade–high-grade spread trade

Bond Duration 30 bp A–AAA-rated þ10 bp flattening
narrowing

—————————— ———————————
Move (bp) $ Profit Move (bp) $ Profit

2-year AAA-rated corporate 1.68 30 (751,948) 30 (751,948)
2-year A-rated corporate 1.53 0 — 0 —
10-year AAA-rated corporate 6.89 30 930,150 30 930,150
10-year A-rated corporate 6.23 0 — �10 280,350

Total 178,202 458,552

When relative spreads narrow by 30 bp across the maturity spectrum, we make
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$178,202. When, in addition, the 10-year spread narrows by 10 bp more (i.e., 40 bp), we
make $458,552.

5.2 EQUITY PORTFOLIO STRATEGIES

Benchmarking in equity markets commonly refers to strategies aimed at outperforming
a stock index. The performance of a portfolio is measured in terms of excess returns
over those of the index. The objective is not necessarily to have positive returns, but to
have the largest excess return (the index itself could have a negative return) over a target
horizon (i.e., the objective is to beat the index).
Market-neutral hedge funds often go long a selected portfolio and short the index

portfolio (in cash or futures markets) in order to make an explicit outperformance
profit. If the underlying long portfolio is closely related to the index, then sometimes
it is cheaper to net all individual longs against the shorts and to long/short the net
positions. The market-neutral hedge fund can be highly leveraged as the value of longs
and short is approximately equal and the capital required to maintain the position is
minimal.
Lacking a concept like duration in fixed income markets, in equities relative value

arbitrageurs rely on statistical measures of market exposure to match longs against real
or benchmarked shorts. This is accomplished with the use of a ‘‘market model’’ where
each stock is considered as having exposure to a set of factors. In the classic capital-
asset pricing model (CAPM),1 familiar from college finance textbooks, there is only one
such factor and it is the market index itself. The benchmark market portfolio has a
factor loading of 1, and the stocks’ loadings (betas) are estimated using a regression on
market returns.
Suppose we compute the monthly returns on MSFT and on the S&P 500 index for

the period of Jan-1995 through Dec-2002 and plot them on a scatter diagram, as in
Figure 5.1. Each dot represents the returns for MSFT and S&P 500 for a given month.
Also suppose we then run a linear regression of MSFT on S&P 500 to fit a straight line
through the scatter. The slope of the line is the beta of MSFT and is supposed to tell us
how MSFT stock will perform as a function of S&P. For the 95-02 period, the monthly
return on MSFT is related to the monthly return on S&P 500 through the following
equation of the line:

~rrMSFT ¼ 0:915 599%þ 1:588 493 � ~rrS&P500

As can be seen from the plot, the historical data points do not lie on a straight line;
rather, they are scattered around the line defined by the regression results. This means
that MSFT returns may be driven by factors other than the general uncertainty of
stocks portrayed by the market index.
A California company, BARRA, has popularized a more complicated, macro-

economic factor-based model, in which each stock’s and the index’s return are functions
of several factors (stock market index, spread between 2-year and 10-year bond, real
estate index, etc.), allowing us to come up with factor loadings through a multiple
regression (a subplane in a multi-dimensional scatter space). In a more abstract
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Arbitrage Pricing Theory, or APT, model, factors are defined only implicitly, but the
loadings can be estimated through a principal component decomposition. Most market
models relate the return on any stock ~rr to a set of k factors and can be written as:

~rr ¼ b0 þ b1 ~ff1 þ b2 ~ff2 þ � � � þ bk ~ffk þ ~""

Each stock has a unique set of factor loadings, ðb0, b1, b2, . . . , bkÞ, which can be
estimated from historical data. Once we know the set of returns on the factors,
ð ~ff1, ~ff2, . . . , ~ffkÞ, we automatically know the return on each stock. Over time, the
errors from this assumption are assumed to cancel out, E½~""� ¼ 0.

The role of the model in all cases is to estimate the co-movement of the portfolio with
the benchmark, similar to the way duration predicts the price change of the bond as a
result of a yield change. Here one statistic is not enough. For each stock, unique factor
loadings are used to predict the change in the price of the stock as a function of the
factor changes. Similarly, the factor loadings for the benchmark are used to estimate
the change in the benchmark as a function of the factors. This way of approaching the
problem ensures that we have some ex ante measure of how the portfolio is related
(matched or mismatched) to the benchmark. It also allows quantification of the com-
parison of two completely different portfolios to each other and to a benchmark in
terms of factor overloading and underloading.

Example: A non-diversified portfolio and benchmarking

Suppose we are managing a portfolio consisting of 15 U.S. stocks. (There are many
mutual funds specializing in 15- to 30-stock portfolios.) The portfolio is somewhat
diversified to eliminate large specific risks (exposures to single stocks), but much less
than a broad market index. Suppose our performance is judged against the S&P 500
index.

Let us use a model, stylized on the Fama–French2 setup popular in academic
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literature, to explain long-term stock returns. Three factors are assumed to affect the
variability of a stock’s return: the market index, firm size (small is better) and book-to-
market value (high book/market value ratio is better), both relative to the average. The
firm size factor is defined as the return on a zero-net-investment portfolio long on small
and short on large stocks. The book-to-market factor is defined as the return on a zero-
net-investment portfolio long on high book-to-market (value) and short on low book-
to-market (growth) stocks. The S&P 500 index has factor loadings of (1, 0, 0). The S&P
returns vary one for one with the first factor. They are unrelated to the second and
third, as the last two are defined in terms of the average and the S&P is the average. A
stock with factor loadings (0.88, 0.12, �0.08) varies less than one-for-one with the S&P
500, is positively correlated with small firms’ returns and negatively correlated with high
book-to-market value stocks. In any given period, knowing the realizations of the
factors, we are able to compute the forecast returns of the 15 stocks in the portfolio
and the benchmark index. The model is used to construct the equivalent of a duration
match, by picking stock in such proportions as to eliminate the exposure to all three
factors in a market-neutral strategy or to match the factor loadings of the benchmark
portfolio in a benchmark outperformance strategy.
Table 5.21 contains an example of a $16,200,000 portfolio of 15 stocks benchmarked

against the S&P 500 index. With 15 stocks, there are many ways to eliminate exposure
to the three factors. We choose the proportions in each stock, so that the net dollar
exposure to each factor matches that of the benchmark: in this case (1, 0, 0).

Table 5.21 Long a 15-stock portfolio—Short S&P 500 index. Stock amounts chosen to eliminate
factor exposures

Stock Factor loadings $ Position $ Exposure Profit from factor move
————————— ——————————————— ————————————
1 2 3 1 2 3 5.00% 1.00% �2.00%

1 0.78 0.12 �0.22 1,800,000 1,404,000 216,000 (396,000) 70,200 2,160 7,920
2 0.81 0.07 �0.08 1,700,000 1,377,000 119,000 (136,000) 68,850 1,190 2,720
3 1.17 0.02 0.06 1,600,000 1,872,000 32,000 96,000 93,600 320 (1,920)
4 1.21 �0.04 0.20 1,330,000 1,609,300 (52,500) 266,00 80,465 (525) (5,320)
5 1.25 �0.08 0.18 1,400,000 1,750,000 (112,000) 252,000 87,500 (1,120) (5,040)
6 0.84 0.11 0.07 1,300,000 1,092,000 143,000 91,000 54,600 1,430 (1,820)
7 0.87 0.04 �0.08 1,200,000 1,044,000 48,000 (96,000) 52,200 480 1,920
8 0.90 �0.07 �0.15 1,150,000 1,035,000 (80,500) (172,500) 51,750 (805) 3,450
9 1.07 �0.10 0.11 500,000 535,000 (50,000) 55,500 26,750 (500) (1,110)
10 1.21 �0.17 0.18 900,000 1,089,000 (153,000) 162,000 54,450 (1,530) (3,240)
11 1.34 0.33 �0.10 800,000 1,075,700 264,00 (80,000) 53,785 2,640 1,600
12 1.49 0.11 �0.15 700,000 1,043,000 77,000 (105,000) 52,150 770 2,100
13 0.93 �0.11 0.14 600,000 558,000 (66,000) 84,000 27,900 (660) (1,680)
14 0.64 �0.33 0.11 500,000 320,000 (165,000) 55,000 16,000 (1,650) (1,100)
15 0.99 �0.55 �0.19 400,000 396,000 (220,000) (76,000) 19,800 (2,200) 1,520

Index 1.00 0.00 0.00 (16,200,000) (16,200,000) — — (810,000) — —

Total — (0) — — (0) 0

We show that for any move in the market the portfolio is immunized (i.e., it will
perform just like the index). Suppose the market overall moves up by 5% over the
investment horizon. At the same time, small stocks outperform large by 1% and the
growth stocks outperform value stocks by 2%. Our portfolio gains $810,000 which
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matches the 5% index performance and we have no exposure to the firm size or book-
to-market value factors.

Example: Sector plays

There are a few commercial providers of return databases and optimization software
aimed at performing portfolio selection in a factor-based model (e.g., BARRA,
CRISP). These can be used in benchmark matching or other quantitative arbitrage
strategies. These techniques may also be combined with and aid in the fundamental
stock research within an asset management company. In that case, we use the statis-
tically obtained factor loadings to choose investments to immunize against market
factors, but opt to reallocate the thus-prescribed amounts in favor of positively eval-
uated stocks (through fundamental analysis). The resulting mismatch in the loadings
provides a measure of exposure to the risk factors. The optimization software allows us
to select portfolios not only with target exposures to the underlying predefined risk
factors, but also with a particular relationship to other portfolios (e.g., industrial
sectors). This is accomplished through what is called factor rotation. The logic is the
following. If we know the exposure of our portfolio to the factors and we know the
exposure of another portfolio to the factors, then we are able to determine the necessary
reallocation of our portfolio to obtain the same exposure to the factors as that of the
other portfolio. If the comparison portfolio is identical to an industrial sector or a
benchmark, we are able to define our portfolio in terms of the exposures to that
sector or benchmark, and not only the factors.

Suppose we want to construct a 15-stock portfolio whose exposure is roughly equal-
weighted to sector 1 (telecom), sector 2 (semiconductor), and sector 3 (software). The
easiest way to do this is to use a factor model, define each sector in terms of factor
exposures, and match the factor exposure of our portfolio to that of the sectors. As
there are 15 stocks and 3 factors, there are many solutions to this problem. Often we
insist that certain stocks be included and allocated some dollar minimum (e.g., for
liquidity reasons). One solution is given in Table 5.22. In principle, this is identical to
the benchmarking exercise. The procedure allows us to claim that our portfolio has the
same performance profile as a portfolio with weights 50/162 in sector 1, 58/162 in sector
2, and 54/162 in sector 3. Instead of in terms of macroeconomic factors, we are able to
define risk in more familiar terms: telecom, semiconductor, and software. Notice that
we can define the target any way we want. For example, the target can be long telecom–
short semiconductor; or we can define the target as long S&P 500 with 10% overweight
in telecom and 10% underweight in semiconductor. The method is quite general in that
we can construct sector spread portfolios, underweighted portfolios, etc. All we need to
do first is to decompose the target into the factor exposures and then match those
through optimized stock selections.

One word of caution is that equity models rely on statistics. Models based on
different factors may come up with different proportions of the same stocks, given
the same target. This is the main difference between the statistics of equity approaches
and the mathematics of fixed income.
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Table 5.22 Matching a 15-stock portfolio to a portfolio equal-weighted in three industrial
sectors. Stock positions chosen to eliminate factor exposures

Stock Factor Loadings $ Position $ Exposure Profit from factor move
———————— —————————————— ————————————
1 2 3 1 2 3 5.00% 1.00% �2.00%

1 0.78 0.12 �0.22 1,800,000 1,404,000 216,000 (396,000) 70,200 2,160 7,920
2 0.81 0.07 �0.08 1,700,000 1,377,000 119,000 (136,000) 68,850 1,190 2,720
3 1.17 0.02 0.06 1,600,000 1,872,000 32,000 96,000 93,600 320 (1,920)
4 1.21 �0.04 0.20 1,330,000 1,609,300 (52,500) 266,000 80,465 (525) (5,320)
5 1.25 �0.08 0.18 1,400,000 1,750,000 (112,000) 252,000 87,500 (1,120) (5,040)
6 0.84 0.11 0.07 1,300,000 1,092,000 143,000 91,000 54,600 1,430 (1,820)
7 0.87 0.04 �0.08 1,200,000 1,044,000 48,000 (96,000) 52,200 480 1,920
8 0.90 �0.07 �0.15 1,150,000 1,035,000 (80,500) (172,500) 51,750 (805) 3,450
9 1.07 �0.10 0.11 500,000 535,000 (50,000) 55,500 26,750 (500) (1,110)
10 1.21 �0.17 0.18 900,000 1,089,000 (153,000) 162,000 54,450 (1,530) (3,240)
11 1.34 0.33 �0.10 800,000 1,075,700 264,000 (80,000) 53,785 2,640 1,600
12 1.49 0.11 �0.15 700,000 1,043,000 77,000 (105,000) 52,150 770 2,100
13 0.93 �0.11 0.14 600,000 558,000 (66,000) 84,000 27,900 (660) (1,680)
14 0.64 �0.33 0.11 500,000 320,000 (165,000) 55,000 16,000 (1,650) (1,100)
15 0.99 �0.55 �0.19 400,000 396,000 (220,000) (76,000) 19,800 (2,200) 1,520

Sector 1 1.20 0.06 0.03 (5,000,000) (6,000,000) (300,000) (150,000) (300,000) (3,000) 3,000
Sector 2 0.87 �0.05 �0.02 (5,800,000) (5,070,000) 300,000 116,000 (253,500) 3,000 (2,320)
Sector 3 0.95 0.00 �0.01 (5,400,000) (5,130,000) — 34,000 (256,500) — (680)

Total — — — — (0) —

5.3 SPOT CURRENCY ARBITRAGE

Spot currency trading is dominated by speculation on the future direction of foreign
exchange (FX) rates. Only a small component of trading is related to inventory adjust-
ments of large wholesalers executing FX transactions on behalf of their correspondent
banks and retail customers. The speculation is mostly macroeconomics-driven both in
the short and long run. Bank economists and central bank watchers disseminate
arriving economic data and their commentary to the trading desks, and currency
traders take bets on the effect of the information on FX rate movements.
At the same time, an important activity called triangular arbitrage, introduced in

Chapter 2, takes place on the cross-currency desks. This activity ensures that FX
rates, whether quoted relative to a vehicle or directly, stay in line with each other.
Triangular arbitrage is an artifact of the essence of an FX quote as a price of money
in terms of other money. With so many monies around, opportunities in the wholesale
market arise when a currency may become relatively cheap when purchased with one
currency, but not with another. Our description of the strategy will be static in that we
will assume that all quotes arrive at the same time. In reality, the arbitrage may be less
than perfect as traders acquire one currency for another in anticipation of being able to
sell it for another. Thus often there will be a time lapse between a purchase and a sale.
The principle of arbitrage may be used to aid in setting up very short-timed speculative
positions. In our illustration of pure triangular arbitrage, we ignore transaction costs
and assume that we can transact at mid-prices (i.e., there is no bid–ask spread). In the
interbank market, although the bid–ask spread is very small (of the order of the third
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decimal place), it is not insignificant and it is the source of most of the trading profit for
large institutions. It often renders a lot of triangular strategies unprofitable.

Suppose we observe that in New York the dollar/euro FX rate is [USD/EUR] 1.1235
and the yen/dollar rate stands at [JPY/USD] 119.03. At the same time, in London the
yen/euro cross rate is at [JPY/EUR] 132.85. How can we profit?

First, let us determine the yen price of the euro in New York. One euro costs 1.1235
dollars and each dollar costs 119.03 yen. So, 1 euro can fetch 1.1235� 119.03 ¼ 133.73
yen. This is more than the 132.85 that it can fetch in London. The same good, the euro,
sells for two different prices. If we can buy and sell it in both places, we would like to
buy the euro in London and sell the euro in New York. Suppose we are endowed with
EUR 1,000,000. We sell the euros in New York for dollars to get:

1,000,000½EUR� � 1:1235½USD/EUR� ¼ USD 1,123,500

We then sell the dollars for yen to get:

1,123,500½USD� � 119:03½JPY/USD� ¼ JPY 133,730,205

Lastly, in London we sell the yen for euros in the cross-market to get:

133,730,205[JPY]/132.85½JPY � EUR� ¼ EUR 1,006,626

and we end up with an instant profit of EUR 6,626. If we could, we would want to do
this transaction in much larger size; and everyone else would want to copy it.

The strategy is self-correcting. All three transactions in it act to move the FX rates in
line with each other. The sale of euros for dollars will increase the supply of euros and
tend to reduce the price of euros in dollars (e.g., to [USD/EUR] 1.1185). The sale of
dollars for yen will reduce the price of dollars in terms of yen (e.g., to 118.83). Overall
this will decrease the indirect value of the euro in New York to [JPY/EUR] 132.91. If, at
the same time, the yen value of the euro increases in the cross market in London as a
result of the third transaction (the purchase of euros), then the arbitrage opportunity
will disappear. In the dynamic world of currency trading, where FX rates change every
instant, the opportunity of triangular arbitrage may depend on the speed of execution
and a bit of luck.

The principle of triangular arbitrage is used by wholesalers in executing customer
cross-transactions and competing for retail business. Suppose a Polish trading company
is looking to exchange PLZ 5,000,000 into Swiss francs. The company obtains from a
money bank indirect quotes of [PLZ/EUR] 4.3545/4.3615 and [CHF/EUR] 1.1492/
1.1505. In exchanging PLZ into CHF, the company would have to incur two bid–ask
spreads, resulting in the following effective market quotes: [PLZ/CHF] 3.7849/3.7952
(bid for CHF: 4.3545/1.1505; offer of CHF: 4.3615/1.1492). By calling several money
banks, the company can put them in competition to give up some of the profit. If a
bank were willing to do the more liquid CHF/EUR transaction at the mid of [CHF/
EUR] 1.1499, then it could offer the Polish company a lower price for purchasing Swiss
francs of [PLZ/CHF] 3.7929. The wholesaler that maintains large inventories of CHF
and EUR, but not PLZ, gives up the profit on the CHF/EUR leg, but still ends up with
a profit on the PLZ/CHF leg of the trade. The customer gets a lower effective cost of
exchanging PLZ into CHF.

130 An Arbitrage Guide to Financial Markets



5.4 COMMODITY BASIS TRADES

Commodity basis trades are often entered into by non-financial institutions whose
business depends on commodity prices. These trades can be executed with the use of
futures markets, but are governed by spot principles. The futures contract is used not
because of the economics of the strategy, but mainly out of convenience and may be a
source of additional risk. The trade is normally a hedge for revenues or costs. Large
commodity dealers execute similar strategies for speculative reasons.
Consider a small experimental heating solutions company. Its heaters use specialized

fuel similar to heating oil, but more refined, to supply heat to customers at fixed pre-
contracted rates. If the cost of the fuel it uses goes up, its profits will suffer. The
company wants to eliminate the price risk of the specialty fuel. However, the specialized
fuel is not widely traded, but the standard #2 heating oil is.
Let us assume that the price of the specialty fuel is equally volatile as that of the #2

heating oil. A 10% rise in the price of the heating oil is accompanied by a 10% rise in
the specialty fuel price. Suppose that, currently, heating oil trades spot at $0.85 per
cubic meter and the specialty fuel trades at $1.34. The company needs 50 million cubic
meters of the fuel. Let us also assume that there is an active heating oil futures market
and the price of a 6-month contract is equal to $0.05 more than the spot price, due to
financing costs and storage conditions (i.e., $0.90). The size of the contract is 1 million
cubic meters. The company cannot use heating oil, but it can use the market for heating
oil as a hedge.
The difference between the price of the specialty fuel and the heating oil, equal to 1.34

minus 0.85, or $0.49, is called a basis. The existence of a basis will lead to a hedge ratio
that is not one for one, similar to a hedge of two bonds with different durations. Let us
denote the heating oil futures contract size, or the multiplier, as m ¼ 1,000,000, the
price of the hedge instrument as H ¼ 0:85, the absolute basis as B ¼ 0:49, and the
percentage basis as b ¼ 0:49=0:85 ¼ 57:65%. In order to hedge its cost exposure,
the company buys:

50 �HþB

H
¼50 � ð1þbÞH

H
¼50 � 1:34

0:85
¼78:90

or, rounding, 79 heating oil contracts. Notice that on a per-contract basis, the hedge
ratio will be more or less than unity depending on whether the basis b is positive or
negative.
Suppose the price of specialty fuel increases by 15%, which translates into a potential

cost increase of 50,000,000 � 1:34 � ð0:15Þ ¼ $10,050,000, and that the percentage basis
holds (i.e., the heating oil price increases also by 15% from $0.85 to $0.9775). The
futures price, assuming a constant futures basis, rises from $0.90 to $1.0275. The
company’s gain on the long contracts is:

79(1,000,000)(1.0275� 0:9000) ¼ 10,072,500

The precise setup of the hedge depends on whether we believe that the relative or
absolute basis holds. It also depends on the assumed relationship of futures to spot
for the hedge instrument. The hedge is designed to work for any increase in the price of
the underlying cost determinant.

Spot Relative Value Trades 131



Commodity trading houses use the concept of a basis to set up speculative trades with
one commodity bought and another shorted. The basis is the hedge ratio used in
determining the relative proportions of the trade. In this application, the basis is
used as a statistical concept, akin to the relationship of stock returns to factors
through loadings, rather than a mathematical one, akin to the duration in bonds.
Current basis is compared with historical basis levels estimated using the price
history of the underlying and hedge instruments. It cannot be computed by discounted
cash flow arguments.
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_________ Financial Math II—Futures and Forwards _________

The greatest misconception about the futures and forward markets is that they predict
the prices of commodities or other financial instruments in the future while spot
markets, separately, establish their value now. In this view, corn can trade at one
price today and at a totally different price for a 6-month delivery, presumably reflecting
future supply conditions (e.g., poor crops due to a drought). While it is true that future
demand and supply conditions enter the equation, what is important to note is that they
are joint determinants of both futures and spot prices. If everyone expects the drought
that will drive up the price of the corn over the next 6 months, then why wouldn’t some
enterprising farmers buy up the corn now and pay for storing it in a silo, to sell it at a
profit at a later date, resulting in a bid-up spot price today?
The fact is that spot and forward prices are tied together through a cost-of-carry

relationship. The futures price must always be equal to the spot price grossed up by the
cost of financing to purchase the commodity now and storing it, net of any cash flows
from holding the commodity. Thus, if there is an expectation of any impending supply
shocks, their impact is automatically translated not just into futures and forwards, but
into spot prices as well.
The cost of carry is defined as the cost of financing and storing a commodity or a

financial instrument net of any cash flows accruing from the instrument between now
and some future date. In the spot–forward analysis, that future date is the delivery date
of the forward contract or the expiry date of the futures. A cash-and-carry transaction
consists of borrowing funds and purchasing an asset today, paying for storing it and
potentially receiving cash flows from it (dividends or coupons) between today and a
future date. A reverse cash-and-carry transaction consists of short selling an asset and
lending the proceeds today, compensating the lender of the asset for storage costs
and cash flows from the asset between today and a future date. The cash-and-carry
argument is fundamental for establishing a fair value of futures and forwards.
A forward contract is defined as a contract to buy and sell an asset at a price agreed

on today, but for a delivery at some future date. On the delivery date, the seller of the
asset delivers the asset and receives cash for it. Today, no asset or cash changes hands.
The two parties only agree on the sale price. The seller of the asset is said to go short,
the buyer of the asset is said to go long on the forward contract. A futures contract is
analogous to a forward contract in that there is a buyer and a seller of some underlying
commodity and that they agree on a future price (or other variable) today. Subsequent
to that agreement, at the end of each day, they exchange cash flows equal to the
movement in the price of that commodity (or in the movement of the variable) times
a multiplier. The process is referred to as marking-to-market; the settlement cash flows
are referred to as the variation margin. On the futures expiry date, the futures price of



the commodity is set equal to the current spot (by definition), so that the net cumulative
variation margin exchanged between the expiry date and the original date is equal to the
difference between that future spot price and the original agreed-on price. This elabo-
rate mechanism allows farmers to lock in the sale price of a future crop. The farmer sells
futures contracts at today’s futures price. By the time of the futures expiry, the farmer
will have received or paid the amount equal to the difference between today’s futures
price and the then prevailing spot price. When he sells his crop spot, the marking-to-
market cash flows compensate him for any difference between that spot and the original
futures price, so that effectively he sells for the original futures price. This was the
original purpose of organizing the futures markets in Chicago in the mid-1800s.
Since then, futures markets expanded geographically around the world and product-
wise to cover non-commodity prices (like bonds and stock indices) as well as non-prices
(like interest rates and atmospheric temperature readings).

Futures contracts on non-price variables, like temperature readings, are the best
examples to study, because they expose the contracts for what they really are: bets
on future outcomes. In that aspect, they are very similar to horse racing and sporting
event bookmaking. In the latter, an underlying event’s outcome will be revealed on a
given future date. Today, buyers and sellers can agree through a trading mechanism on
today’s mean expectation of the outcome. If more people believe that team A will win
against team B they will push up the spread in team A’s favor until the spread reflects
the mean number of points by which team A is expected to beat team B. As information
arrives in the market between now and the event date, the spread will vary reflecting the
changing expectation of the betting public. Sports betting does not provide for auto-
matic marking to market. It is rather like a forward market with dealers willing to close
out bets prior to maturity at the current mark.

A futures contract on the temperature, like the one traded on the Chicago Mercantile
Exchange (CME), is very similar to a soccer match bet. When the soccer match ends, its
outcome is revealed. When the expiry month ends, the temperature readings in a given
location have been observed. Homes and apartments require heating when the tem-
perature outside is low. A heating degree day (HDD) is defined as the number of days in
a given month when the temperature falls below 65�F times the difference between 65�F
and the actual temperature reading on a given day. On the CME, contracts are traded
for several U.S. cities and several winter months. Buyers of the futures contracts can bet
that the actual HDDs in a particular month is above a certain number (the spread),
while sellers believe that the actual number of heating days will be below that implied
by today’s spread. The contract has a multiplier of $100 per HDD which translates the
differences between HDDs into dollars of payout. Suppose today two parties enter into
a 3-month expiry futures contract at a ‘‘price’’ of 52HDDs. One party goes long (buys)
one contract, the other goes short (sells) one contract. Each day until expiry, the parties
will exchange cash flows equal to today’s closing futures price minus yesterday’s times
the multiplier. For example, if the next day’s price is 56HDDs, then the long party will
pay and the short party will receive ð56� 52Þ � $100 ¼ $400. They will continue ex-
changing cash flows until the expiry date. On that date, the last cash flow will be
exchanged equal to that day’s closing price, equal to the actual number of HDDs in
the expiry month on which they had bet in the first place minus the previous day’s price
times the multiplier. Because all the intermediate cash flows will wash, the total sum of
all the cash flows received by the long party and paid by the short party since inception
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will be equal to the difference between the actual number of HDDs during the expiry
month and the original bet price of 52HDDs times the multiplier. If the result is
negative, then the long party will have paid and the short party received. Similar
futures contracts trade for all major U.S. cities based on cooling degree days (CDDs)
defined analogously to HDDs.
Stock index futures contracts work exactly the same way. Buyers bet that an index (a

number, not a price of anything) will go up and sellers that the index will go down. The
payout is equal to the value of the index less the bet price, times a multiplier specified by
the exchange (e.g., $250 per point of the S&P 500 index per futures contract). Private
forward contracts analogous to futures contracts may be easily established between
two parties. There is no marking to market (intermediate cash flows) for forwards.
Instead, there is only one settlement at the end, equal to the final price minus the bet
(forward) price, times the notional amount of the contract (the multiplier). For most
liquid financial instruments, an intermediate settlement may occur if requested by one
party.
Apart from the marking to market which is automatic with futures and only if

mutually agreed to with forwards, there is one more fundamental difference between
the two vehicles: credit exposure. Futures are typically traded on an exchange that
operates a clearinghouse. When two parties enter into a futures trade, even though
they must find each other on the floor and agree on the price, legally each transacts not
with the other, but with the clearinghouse that guarantees the payments. Neither party
is exposed to the other in case one defaults on its obligations. The clearinghouse’s
guarantee is backed by a good faith futures margin each party and other parties
maintain with it. The existence of a clearinghouse also enables parties to close out
contracts with counterparties other than the original one as each transaction is a
zero-sum game with the same number of longs as shorts and each is a legal transaction
between a party and the clearinghouse. Futures contracts are standardized as to
maturity dates and contract amounts (multipliers). Forwards can be custom-tailored,
but each party bears credit exposure to the other because they are private contracts
between two parties.
Futures exchanges in the U.S. typically have physical trading floors and the method

of trading is referred to as open outcry. The biggest electronic futures exchange is
operated by EUREX which after years of operating in Europe debuted successfully
in the U.S. in February of 2004 competing head to head with the Chicago Board of
Trade (CBT) in the U.S. bond contract. Both forms, physical or electronic, operate a
clearinghouse that mitigates credit exposure and allows closing positions with any
participant. The only real difference is that on an electronic exchange the bids and
offers are displayed and transactions are entered into on computer screens rather
than by people gesturing to each other.
Despite being bets on future events, futures and forwards perform a very important

risk-sharing function. Parties unwilling to take the risk of future price or interest rate
changes or the risk of changing raw material costs due to temperature variations can
lock in future spot prices at today’s futures and forward prices. They do not have to
wait to see what future spot prices will obtain. They can lock in their cost of
borrowing or lending, or the price they pay for coffee or oil. They cannot lock
that cost at any level, but only at that equal to today’s price in the forwards or
futures market.
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In turn, the forward price is tied to the spot price through the cost of carry. Suppose
we think of the S&P 500 index level as the price of a tiny basket of 500 stocks in the
proportions represented in the index and that we want to lock in a price of acquiring
250 of such baskets at a future date. We do not want to own the baskets today, but we
want to know for sure at what price we can buy them 3 months from today. By going
long 1 futures contract (the multiplier is equal to $250 per index point), we are transfer-
ring the price risk to the short party. If the index value is higher on the purchase date we
will have received cash flows from the futures contract, compensating us exactly for the
price increase. If the index value is lower, we will have paid into the futures contract
giving up any potential savings we could have gained. At what price are we going to be
able to lock in the purchase price 3 months hence? The answer is price equal to today’s
index value adjusted for the cost of borrowing money between now and the futures
expiry date. This follows from a simple arbitrage relationship. Instead of going long 1
futures contract, we could borrow an amount of money equal to 250 times today’s value
of the index and purchase the baskets today. On the expiry date we have to return the
borrowed cash, which is equivalent to a known cash outflow and a stock inflow, the
same as in the future purchase of the index. The cost of carry is thus the financing cost
of pre-purchasing the underlying commodity in the futures contract, net of any cash
flows. In the case of the stock index, the extra cash flows are positive to us in the form of
intermediate dividends earned on the component stocks, which reduces our cost of
carry (interest cost minus the cash flows).

6.1 COMMODITY FUTURES MECHANICS

Let us consider an example of a corn contract traded on the CBT. As reported in the
Wall Street Journal on Thursday, October 25, 2001, the December 2001 delivery corn
settled at 2061

2
cents per bushel. Each contract represents a claim on 5,000 bushels of

corn.

Table 6.1 Grain and oilseeds futures prices for Thursday, October 25, 2001

Contract month Open High Low Settle Open interest

Corn (CBT) 5,000 bushels (cents per bushel):

Nov01 2013
4

2021
2

2011
2

202 2,429
Dec01 206 2071

2
2051

2
2061

2
211,016

Jan02 211 2121
4

2101
2

211 680
Mar02 2183

4
2201

4
2181

4
219 112,379

. . .

Soybean meal (CBT) 100 tons (in $ per ton):

Dec01 157.50 161.80 157.50 161.30 46,639
Jan02 156.00 159.20 154.50 158.60 20,156
Mar02 153.30 156.20 153.10 155.50 15,653

Source of data: Wall Street Journal, October 26, 2001.

The multiplier in the contract is $50 per 1 cent change in the futures price (5,000 bushels,
but the price is in 0.01 of a dollar).
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Suppose we buy one December contract (car) at the close price of 2061
2
and observe

the following December settlement prices on the following two business days:

Friday, October 26, 2001 207.30
Monday, October 29, 2001 206.80

Let us also assume that corn closed at 210.00 cents per bushel on the December expiry
date (third Friday in December) which was also the spot price for corn on that day.
This equivalence is assured because any outstanding long contract at expiry is a con-
tract to purchase corn with a spot delivery from the short party.
Here is how marking to market works. At the time we ‘‘bought’’ the contract, our

broker on the exchange floor found a seller and agreed to the transaction. We did not
receive any corn and we did not pay cash for any corn. We merely agreed on the size of
the transaction (1 car) and the price (206.5). Since we bought the contract at the close,
after the close on Thursday we did not pay or receive any cash flows (if the contract is
bought in the middle of the day and the close price is different from the transaction
price, marking to market starts the same day). We bought one contract and the price
goes up on Friday. On Friday after the close of the market, we receive from the
clearinghouse a variation margin check for:

ð207:30� 206:50Þ � 50 ¼ $40

The clearinghouse has received a check for $40 from a short party. On Monday, the
price goes down, so we compute our cash flow as:

ð206:80� 207:30Þ � 50 ¼ $� 25

After the close of the market we send a check to the clearinghouse for $25 (which is
forwarded to a short). Our net variation margin after 2 days is equal to $15 (¼ 40� 25).
Notice that this amount is also equal to the close price on Monday minus the original
futures purchase price times the multiplier:

ð206:80� 206:5Þ � 50 ¼ $15

as Friday’s close price of 207.30 washes out. It will be true for any day until expiry that
the net variation margin, or the cumulative total sum of all the cash flows, will be equal
to that day’s close price minus the original price times the multiplier. On the expiry
date, with the corn price at 210.00, our net variation margin will be equal to:

ð210:00� 206:5Þ � 50 ¼ $175

Suppose we are a popcorn maker and the original purpose of entering into the long
corn contract was for us to lock in a purchase price of 2061

2
cents per bushel for 5,000

bushels of corn, our main raw material. Did we accomplish that? On the expiry date we
purchase corn in the spot market for 210 cents per bushel. The total we pay is:

5,000� 2:10 ¼ $10,500

At the same time we have collected $175 from our hedge strategy, so that our net cost
was $10,325. That cost translates into:

$10,325 net total/5,000 bushels ¼ 2:065 ¼ 206 1
2
per bushel
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Had the price of corn gone to 200 cents per bushel by December, we would have still
locked in our price of 20612 since we would have collected from the long futures contract:

ð200:00� 206:50Þ � 50 ¼ $� 325

so that our cost of acquiring corn spot inclusive of the futures loss would have been the
same:

5,000� 2:00þ 325 ¼ $10,325

(i.e., 2061
2
cents per bushel). In fact, no matter at what price corn would end up in

December, our cost would be 2061
2
cents. We would be happy with the hedge if the spot

price in December is higher than the original futures price (as we would save). We
would be unhappy if the spot price of corn in December is lower, as we would have
foregone a potential savings. Hedging in futures can be viewed as a two-way insurance
strategy. If the price moves as you anticipated (relative to the lock-in value), you get
reimbursed; if the price moves in the opposite direction, you reimburse someone else.
You lock in a cash flow, but you do not eliminate the possibility of a mark-to-market
loss. In that sense, locking future cash flows can be viewed as speculation.

Let us test our understanding of the mechanics of commodity futures by answering
the following questions related to the same excerpt from the Wall Street Journal:

Q1. What is the multiplier for soybean meal?
Q2. If you sell 5 cars of Mar02 soybean meal futures at 155.50 and tomorrow the price

goes to 158, what is your cash flow (variation margin)?
Q3. If at expiry in March, soybean meal trades at 160, what is your net variation

margin?
Q4. What sale price did you lock in on the sale of 500 tons?

Here are the answers:

A1. Each contract is for 100 tons of soybean meal and prices are in $/ton, so the
multiplier is 100.

A2. If we shorted 5 contracts at the close on Thursday at 155.50 and the next day the
price went down, then we lost money (i.e., had a negative cash flow, or variation
margin) for that day of:

ð�5Þ � 158� 155:50Þ � 100 ¼ $� 1,250

A3. If the price at expiry is 160, then between October and March we have accumu-
lated a net variation margin of:

ð�5Þ � ð160� 155:50Þ � 100 ¼ $� 2,250

A4. If we sell 500 tons of soybean meal at $160/ton for $80,000 and we lost $2,250 on
futures, then the total price per ton we locked in is:

ð80,000� 2,250Þ=500 ¼ $155:50

The word multiplier is not commonly used with commodity futures. Instead, we refer to
the contract size (i.e., the amount of commodity represented in each contract). Contract
size can always be translated into a multiplier. We use the latter exclusively to make the
understanding of the next sections easier and to emphasize that futures contracts can be
written on any variable (e.g., index, temperature, interest rate) whose changes have to
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be translated into dollars to settle the variation margin every day. With non-price
variables, the multiplier is explicitly defined.

6.2 INTEREST-RATE FUTURES AND FORWARDS

Overview

Most interest rate-related futures contracts around the world are defined based on
actual or artificial bond prices, not directly on interest rates. For example, on the
LIFFE in London, the long gilt contract is defined on GBP 500,000 face value of the
long bond of the U.K. government. On the EUREX, one 10-year Euro-Bund futures
contract represents EUR 100,000 of the euro-denominated bond of the German gov-
ernment. Like spot, bond futures prices are quoted as a percentage of par value. In
Chicago, on the CBT, one Treasury Bond contract represents USD 100,000 face value
of a 30-year Treasury bond. The futures price is quoted as a percentage of par value
(with fractions in 32nds). To compute the variation margin for a given day, we first
have to translate it to a straight percentage and then multiply by the size of the contract.
For example, if we shorted five contracts at 112-03 and the price changed to 112-27,
then we would have a loss, or a negative variation margin amount, of:

ð�5Þ�ð112 27
32
�112 3

32
Þ% of 100,000 ¼ ð�5Þ � ð0:75=100Þ�100,000 ¼ $�3,750

Note that the multiplier, as defined before, is in this case equal to 1,000. A 0.75 change
in the price represents $750 variation margin per contract. If we wanted to speculate
directly on a specific size of an interest rate change and not a bond price change, we
would have to scale our bet based on the current duration of the underlying bond. To
bet on an interest rate increase of 1% for $1,000,000 face value of bonds, one would
have to short [(1/Duration)� 10] bond contracts. As interest rates increase by 1% the
value of each of the 10 contracts representing $100,000 face value, for a total of
$1,000,000 par value, would decrease by 1 times the duration number of points, pro-
ducing the desired dollar gain.
All U.S. Treasury bond and note contracts, and many other government bond

contracts, are defined not on one underlying bond, but on a set satisfying certain
maturity and coupon criteria (e.g., close in maturity and coupon to the 30-year 6%
mark). The short party to the contract is given an option to choose which of the eligible
bonds to deliver to the long party on the futures expiry date. The short party is also
given additional timing options that complicate the analysis of these contracts. The
reason behind this complication is to ensure the liquidity of the delivery instruments
which are considered fungible.
Besides the government bond futures for the benchmark issues in each market (U.S.,

U.K., Bunds in Germany, JGBs in Japan), the most popular futures contracts are those
written on Eurocurrency deposits. The contract with the most turnover in the world is
that on the 3-month Eurodollar deposit rate (i.e., the 3-month USD LIBOR). It is
traded on the CME and is fungible with the same contract traded on the SIMEX in
Singapore. Similarly, contracts are traded on yen- and euro-denominated Eurodeposits
as well as other Eurocurrencies. Next we review the somewhat peculiar mechanics of
Eurocurrency futures.
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Eurocurrency deposits

Recall from Chapter 3 that a Eurodollar deposit (a ‘‘depo’’) is a non-negotiable, U.S.
dollar-denominated, interest-bearing loan on deposit outside of the U.S. regulators’
reach. The interest rate is fixed and quoted on an Act/360 basis and paid as add-on
interest at the end. There is a variety of terms available ranging from overnight,
tomorrow/next day, 1 day, and so on, all the way to 12 months. The most popular
one is a $1,000,000 3-month deposit with a 2-London-business-day settlement. Euro-
dollar lending rates are fixed daily by the group of London banks most active in this
market in the form of a London interbank offered rate (LIBOR), widely published by
all financial services and newspapers; the bid on borrowed funds is referred to as
LIBID, but rarely quoted. The LIBOR rate is the benchmark rate for unrestricted 3-
month deposits and swap payments’ settlements. The Eurodollar market is the largest
global money market by volume outstanding and turnover. The interest mechanics
work as follows. Suppose on Thursday, October 25, 2001 you called a bank to
borrow Eurodollars at the interest rate of 2.31% for a term of 3 months. Your
interest accrual period ran from Monday, October 29, 2001, to Tuesday, January 29,
2002. This reflects the customary 2 business day settlement period. Assuming there were
92 days in the period, your payment of interest and principal on January 29, 2002 was
equal to:

1,000,000� ð1þ 0:231� 92=360Þ ¼ $1,005,903:33

In the following, we will ignore the 2-day settlement delay. We will pretend that a 3-
month deposit arranged today starts today and ends 3 months later. Actually, it would
start 2 days after today and end 3 months after that. We will also assume that 3 months
equals exactly 90 days.

Eurodollar futures

The Chicago Mercantile Exchange (CME) Eurodollar contract was designed to allow
locking in the rate paid or received on a $1,000,000 3-month Eurodollar (ED) deposit
starting on the futures expiry date and ending 90 days later. To that end, it is quoted on
an artificial price basis. The futures ‘‘price’’ is defined only for the expiry date as:

F ¼ 100� L

where L is the 3-month LIBOR rate. Note that on the expiry date, F is not the price of a
$1,000,000 deposit or even the price of a discount instrument promising to pay 100 at L
percent interest 3 months later. Instead, on the expiry date, L ¼ 100� F . Every day we
can interpret 100� F as the LIBOR rate L that can be locked in on that day for a
forward deposit starting on the futures expiry date. For example, a price of 97.69 means
that a rate of 2.31% can be locked in. The stated size of the contract of $1,000,000 is
also somewhat misleading unless we know from the fine print that the multiplier is
$2,500 per point or $25 per basis point. Let us consider some real quotes as of the
close of day on Thursday, October 25, 2001.
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Table 6.2 Interest rate futures prices for Thursday, October 25, 2001

Contract month Open High Low Settle Open interest

Eurodollar (CME) $1 million (in points of 100%)

Nov01 97.79 97.83 97.78 97.81 41,554
Dec01 97.81 97.87 97.80 97.85 836,180
Jan02 97.86 97.88 97.86 97.87 7,080
Mar02 97.71 97.80 97.71 97.77 628,766
Jun02 97.41 97.51 97.41 97.48 588,920
Sep02 96.98 97.12 96.98 97.09 398,280
Dec02 96.50 96.63 96.47 96.60 378,297
Mar03 96.14 96.25 96.14 96.24 243,043
. . .

Euroyen (CME) Y¼100 million (in points of 100%)
Dec01 99.91 99.91 99.91 99.91 19,080
. . .

Source of data: Wall Street Journal, October 26, 2001.

The June 2002 contract closed at 97.48. That contract covers a forward deposit starting
on June 19, 2002 and ending on September 19, 2002. The implied forward rate for that
deposit is 100� 97:48 ¼ 2:52%. The spot LIBOR rate on October 25, 2001 was 2.31%.
For simplicity let us assume that there are exactly 90 days in the June 19–September 19
period.
Suppose at the close on Thursday, we go long on one ED contract and over the

following two business days we observe these futures prices:

Friday, October 26, 2001 97.44
Monday, October 29, 2001 97.55

Our variation margin on one long contract would be:

October 26, 2001 ð1Þ � ð9744� 9748Þ � 25 ¼ $� 100
October 29, 2001 ð1Þ � ð9755� 9744Þ � 25 ¼ $275

We dropped the decimals to convert from points (bp) to basis points and then used the
multiplier in $/bp. Our net variation margin as of Monday would be $175 which also
could be computed simply from the Monday close price and the original price as:

ð1Þ � ð9,755� 9,748Þ � 25 ¼ $175

Locking in a deposit rate

We consider two scenarios for LIBOR as of June 19, 2002.

LIBOR ¼ 3% First suppose that on June 19, 2002 the 3-month LIBOR rate is
3.00%. That automatically means that the last futures price is F ¼ 100� L ¼
100:00� 3:00 ¼ 97:00, and our net variation margin over the October–June period is:

ð1Þ � ð9,700� 9,748Þ � 25 ¼ $� 1; 200
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Suppose the original reason that we had entered into the long contract was to lock in
the rate of 2.52% we would earn on a $1,000,000 90-day deposit, and as planned on
June 19 we deposit $1,000,000 at 3.00%. Our interest on that deposit will be:

1; 000; 000� 0:03� 90=360 ¼ $7; 500

Including our loss of $1,200 on the futures contract, our effective interest rate earned is:

ð7,500� 1,200Þ=1,000; 000� ð360=90Þ ¼ ð6,300Þ=1,000,000 � ð360=90Þ ¼ 2:52%

LIBOR ¼ 2% If the LIBOR rate on June 19 is 2.00%, then the last futures price on
that day is F ¼ 100� L ¼ 100:00� 2:00 ¼ 98:00, and our net variation margin over the
October–June period is:

ð1Þ � ð9,800� 9,748Þ � 25 ¼ $1,300

If on June 19 as intended we deposit $1,000,000 at 2.00%, our interest on that deposit
will be:

1,000,000� 0:02� 90=360 ¼ $5,000

Including our gain of $1,300 on the futures contract, our effective interest earned is
again:

ð5,000þ 1,300Þ=1,000,000x� ð360=90Þ ¼ ð6,300Þ=1,000,000 � ð360=90Þ ¼ 2:52%

In fact, no matter what LIBOR is on June 19, our effective interest rate earned inclusive
of the futures gain/loss is $6,300, or 2.52%. If we had wanted to lock in the rate on a
$25 million deposit, we would have had to buy 25 contracts. Next let us look at an
example of a borrower of Eurodollars.

Locking in a borrowing rate

On October 25, 2001 you want to lock in an interest rate on a $20 million loan starting
on June 19, 2002 and ending on September 19, 2002. You can lock in a rate of 2.52%
(but not any other rate) by shorting 20 ED contracts and waiting to borrow spot on
June 19.

LIBOR ¼ 3% If on June 19 the 3-month LIBOR is at 3.00% and the futures price is
at 97.00, then you have a positive total cash flow from your futures contracts:

ð�20Þ � ð9,700� 9,748Þ � 25 ¼ $24,000

You borrow $20 million at 3.00% to incur interest cost on the loan of:

20,000,000� 0:03� ð90=360Þ ¼ $150,000

Including your futures gain your effective borrowing rate is:

ð150,000þ24,000Þ=20,000,000�ð360=90Þ¼ð126,000Þ=1,000,000�ð360=90Þ¼2:52%

LIBOR ¼ 2% If, instead, on June 19 LIBOR is at 2.00% and the futures price is at
98.00, then you have a negative total cash flow from your futures contracts:

ð�20Þ � ð9,800� 9,748Þ � 25 ¼ $26,000
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You borrow $20 million at 2.00% to incur interest cost on the loan of:

20,000,000� 0:02� ð90=360Þ ¼ $100,000

Including your futures gain your effective borrowing rate is:

ð100,000þ26,000Þ=20,000,000�ð360=90Þ¼ð126,000Þ=1,000,000�ð360=90Þ¼2:52%

So, we lock in a rate of 2.52% no matter where Libor ends up on June 19. Let us
provide another application of Eurodollar contracts, that of a lending or borrowing
extension at a guaranteed rate through a rollover or bundling strategy.

Loan extension

Suppose a London bank quotes a rate of 2.38% on deposits for the 237-day period
starting on October 25, 2001 through June 19, 2002. You have excess funds of $600
million that you want to deposit through December 19, 2002. Using the ED futures
contracts, your strategy is the following:

. Deposit $600 million spot @ 2.38%.

. Do long Jun02 ED futures @ 97.48 and Sep02 ED futures @ 97.09 today to lock in
reinvestment rates.

. As the spot deposit matures in June, reinvest in a 3-month deposit at the then-
prevailing spot LIBOR rate.

. As the June deposit matures in September, reinvest in a 3-month deposit at the then-
prevailing spot LIBOR rate.

We need to compute the number of June and September futures contracts we are going
to enter into. Our spot deposit will by June 19 accrue to:

$600,000,000½1þ 0:0238ð237=360Þ� ¼ $609,401,000

So, we need to guarantee a reinvestment rate for the June–September period for that
amount. We do that by going long 609 June02 ED contracts at 97.48. This ensures that
including any gain or loss on the futures, we will reinvest at 2.52%. By September 19,
2002 our reinvested deposit will accrue to:

$609,401,000½1þ 0:0252ð92=360Þ� ¼ $613,325,542

Now, to lock in the rate of 2.91%, inclusive of any futures gain or loss, for the
September–December period, we will go long 613 Sep02 ED contracts at 97.09. This
will ensure that by December 19 we can expect to withdraw from our deposit account:

613,325,542½1þ 0:0291ð91=360Þ� ¼ $617,837,063

We have effectively locked in a rate of (17,837,063/600,000,000)(360/420) ¼ 2.5482%
on an Act/360 basis for the entire period from October 25, 2001 through December 19,
2002. To lock in a borrowing rate we would have computed the same amounts, but we
would have had to short futures. Also notice that in our strategy we assumed that we
roll the interest over in the way money market accounts do when investors select
reinvestment of interest and dividends. Had we chosen to ‘‘consume’’ accrued interest
in the form of cash withdrawals along the way, the number of futures contracts to be
shorted would have been a constant 600.
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It is easy to show that no matter what future spot LIBORs are, the rollover strategy
produces the desired result subject to a small error due to the fact that we cannot buy
fractional ED contracts as required by our calculations.

Certainty equivalence of ED futures

It is important to notice one fundamental relationship governing the Eurocurrency
futures contracts. An investor expecting to have excess funds available for deposit on
June 19, 2002 has two choices: to wait till June and invest the funds at the then-
prevailing LIBOR rate (i.e., to bear the risk that the 3-month deposit rate will
change between now and then) or to lock in the rate by buying ED futures. He
cannot choose the rate that he can lock in; a seller has to agree to it too. (The rate is
thus determined in the ED futures market.) It costs the investor nothing to enter into the
futures contracts. He merely needs to agree on the number of contracts and the price
with a futures seller.

Instead of buying futures, the investor could call a bank and ask the bank to quote a
rate on a forward 3-month deposit starting on June 19. The bank would have to quote
2.52%. If the bank were to quote more, the investor could arbitrage the bank by
agreeing to the banks higher rate and shorting futures. This would earn him certain
positive cash flows on June 19. If the bank were to quote less than 2.52%, the investor
would go to the futures market to buy contracts and could again try to arbitrage the
bank by trying to borrow from the bank at the quoted rate. The important observation
here is that the bank and the investor must be indifferent between the uncertain future
spot rate or today’s known rate implied in the futures price, as it costs nothing to
convert one into the other. This relationship will prove of paramount importance
when valuing forward rate agreements and swap contracts whose one leg contains a
string of LIBOR-dependent cash flows. Although the future LIBORs are unknown
today, the present value of these cash flows will be computed by replacing the
unknown future LIBORs by today’s forward rates or those implied in today’s
futures contracts. We can say that the market places a value on the unknown June
19 LIBOR. It equates it to a known rate of 2.52%. That rate is not determined in the
spot market, but by the demand for and supply of deposits in a separate market for
delivery of funds in the future.

Let us show one example of arbitrage forcing the rate of 2.52% to prevail in the bank
market. Suppose we find a bank that offers a rate of 2.64% on June–September
deposits. We agree to deposit $1,000,000 with a delivery of June 19. At the same
time, we short one ED contract to guarantee a borrowing rate of 2.52%. On June
19, we borrow $1,000,000 in the spot deposit market at the then-prevailing LIBOR
and we deposit that $1,000,000 at our bank at a rate of 2.64%. We know that no matter
what LIBOR is on June 19, our cost of borrowing is guaranteed to be 2.52%, assuming
for simplicity exactly 90 days. If LIBOR is 2.00%, we lose $1,300 on futures and pay
$5,000 in interest, making it a total of $6,300. If LIBOR is 3.00%, we gain $1,200 on
futures, but pay $7,500 in interest, again making it a total of $6,300, which is equivalent
to 2.52%. The bank guarantees to pay us:

1,000,000 ½1þ 0:0264ð90=360Þ� ¼ $1,006,600

So we earn $6,600 and we pay only $6,300, ensuring a $300 profit.
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Borrowers and lenders in the Eurodollar market can share the risk of future interest
rates with other investors by locking their funding rates in the futures and forward
markets. If they desire to lock in rates different from those quoted in the futures, then
they have to compensate or are compensated for the present value of the difference
between their desired rate and the certainty equivalents quoted in those markets times
the appropriate day-count fraction.

Forward-rate agreements (FRAs)

In the over-the-counter (OTC) forward markets, the equivalent of the Eurocurrency
futures contract is a forward-rate agreement (FRA). FRAs (pronounced ‘‘frahs’’) are
more flexible than futures in that they can be entered into for any future dates and for
any notional principal amount. The disadvantage is there is no credit risk mitigation by
a clearinghouse, as they are private contracts between two private parties. In order to
unwind them, the two original parties have to agree on the mark-to-market value.
Many of these issues are addressed by the use of contracts standardized by an inter-
national industry association. These provide for netting for credit purposes (cash
inflows and outflows for all contracts with the same counterparty are netted in case
of default and only the net amount is exposed to default) and using reference dealers in
case the two parties cannot agree on the mark-to-market value for the unwinds of
previous transactions. FRAs can be arranged by mutual agreement for any future
dates. Standard maturities are quoted daily on financial screens by larger dealers.
These are listed for different start and end date combinations, relative to today,
using the convention of ‘‘start month� end month’’. For example, in the quotes:

1� 4 2.75/2.76
2� 5 2.82/2.83
3� 6 2.84/2.85

the ‘‘2� 5’’ contract is bid at 2.82 and offered at 2.83. In this case, 2� 5 means a
contract with a start date of exactly 2 months from today and the end date of
exactly 5 months from today (plus the number of days to settlement1). Just like the
futures contract, the FRA allows us to lock in a borrowing or lending rate for a future
3-month period for indicated dates. The convention is for the dates to be defined
relative to today’s date. In the futures markets, these are defined absolutely in terms
of actual calendar dates. Other standard forward periods are quoted in the market, for
1-, 6-, and 12-month intervals (e.g., 2� 3 or 1� 7), following deposit maturity dates in
the Eurodollar, Euroeuro, or Euroyen markets. The language convention in the FRA
market differs from that in the futures in that a dealer does not go long or short, but
quotes the rates he is willing to ‘‘pay’’ or ‘‘receive’’ on the FRA. This is similar to the
convention used in interest rate swap markets.
Let us describe the exact mechanics of a FRA contract. A FRA is equivalent to a

cash-settled fixed-for-floating swaplet (i.e., a swap with only one rate set and only one
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exchange of cash flows on the pay date; see Chapter 8 for swap definitions). One party
agrees to pay and the other agrees to receive a fixed rate of interest applied to a notional
principal amount over a 3-month period in exchange for receiving (the other party
paying) a floating rate equal to the spot 3-month LIBOR rate on the forward start
date, applied to the same principal amount. The pay and receive amounts are netted,
present-valued by the spot LIBOR on the forward start date, and settled in cash on that
date. Suppose on March 19, 2002 we entered into a 3� 6 FRA to pay 2.52% on
$20,000,000. The start date of the forward is June 19 and the end date September 19.
The amount the ‘‘FRA payer’’ will pay to the ‘‘FRA receiver’’ is defined as:

20,000,000� ½ð2:52� LÞ=100� � ðAct=360Þ � ½1=ð1þ L� Act=36,000Þ�
The payment has the difference between the agreed-on rate and LIBOR applied to the
notional principal, scaled by the appropriate day-count fraction, and multiplied by
the present value factor for 3 months. The payment is computed on June 19, when
the LIBOR rate L is revealed, and remitted 2 business days later on June 21. The cash
flow can be positive or negative depending on the LIBOR rate on June 19 relative to the
upfront forward rate.

Suppose both parties wait till June 19 to observe the then-prevailing spot 3-month
LIBOR to turn out to be 3.00%. The settlement cash flow is then computed as:

20,000,000� ½ð2:52� 3:00Þ=100� � ð92=360Þ � ½1=ð1þ 0:03� 92=360Þ� ¼ $� 24,346:68

The FRA payer would thus receive a check for $24,346.68 from the FRA receiver. This
is almost exactly the $24,000 that the seller of 20 ED futures contracts would receive in
the form of net variation margin by June 19. The difference is that the FRA cash flow is
(1) computed for 92 days and not for 90, as with a $25 multiplier, (2) it is present-valued
by 3 months (from the end date to the start date), and (3) it is received all at once on
June 19, instead of over time in the form of daily variation margin checks. For short
forward start dates, the difference between forwards and futures is negligible. For
longer forward start dates, 2 years and beyond, the difference grows and the two
rates start diverging. The difference between the quoted FRA and futures rates for
the same dates is referred to as futures convexity and is largely due to the timing
mismatch of the cash flows causing futures to be price–yield convex instruments relative
to forwards. This is analogous to viewing bonds as having a convex price–yield relation-
ship and forwards as having a straight-line relationship to forward yields. The futures
convexity charge can be quite large (in the order of several tens of basis points for 5- to
7-year futures) if the interest rate volatility between now and the expiry date is high.

It is easy to compute in our example that if the LIBOR rate ends up at 2.00 on June
19, then the FRA payer will have to send a check to the FRA receiver for the amount
of:

20,000,000� ½ð2:52� 2:00Þ=100� � ð92=360Þ � ½1=ð1þ 0:02� 92=360Þ� ¼ 26,442:63

which is close to the $26,000 we computed in the ED futures example, except for a small
difference due to the same factors. We can conclude that, just like the ED futures
contract, the FRA allows us to lock in a net borrowing/lending rate for a future
period by simply matching the principal amount and choosing the correct side of the
contract. The FRA payer locks in a borrowing rate, while the FRA receiver locks in the
lending or deposit rate. The easiest way to remember which side is which is to think of
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borrowing as issuing a bond and paying a fixed rate on it, hence locking in a borrowing
rate requires paying on the FRA or selling futures. The latter can be thought of as
selling a forward discount bond. We can think of lending as buying a bond and receiving
a fixed rate on it, hence locking in a lending rate requires receiving on the FRA or
buying futures. The latter can be thought of as buying a forward discount bond.

Certainty equivalence of FRAs

We use the term certainty equivalence to mean that the market determines today a fixed
rate at which it is indifferent to exchange (i.e., willing to exchange at no charge) future
known cash flows for future unknown cash flows based on future spot deposit rates.
The certainty equivalence of FRAs is even more obvious than that of the ED futures,
simply by looking at the settlement formula. The formula reflects the exchange of the
forward rate known today for a future LIBOR rate, not known until the start of the
forward interest accrual period. The exchange of the rates is applied to the same
notional principal and scaled by the appropriate day-count fraction. It is present-
valued by 3 months to correct for the fact that, normally, interest is computed at the
beginning of the accrual period, but paid at the end, whereas the FRA settles at the
beginning of the period. The correction is exact, not approximate, since we apply
the correct 3-month LIBOR rate as of the beginning of the accrual period (i.e., the
rate at which we could borrow/lend against cash flows occurring 3 months later). The
certainty equivalence of future spot LIBOR to today’s forward rate comes from the fact
that the FRA settlement formula is agreed on today, but with no cash changing hands
today. That is, the two parties to an FRA are indifferent between the two rates.
We will come back to the certainty equivalence of futures and forwards later in this

chapter when we discuss their relationship to spot zero instruments.

6.3 STOCK INDEX FUTURES

There are futures contracts traded on all major stock indexes around the world. In
Chicago and New York, futures contracts are traded on a variety of U.S. stock indexes
ranging from the most popular S&P 500 to the broad Russell 2000. The CME trades
also a Nikkei 225 contract. In Europe, there are futures on the FTSE 100 on LIFFE,
CAC-40 on MATIF, DAX on EUREX, and a variety of others.
All stock index futures are defined with the use of a multiplier that converts the

points of the index into a currency of denomination. The CAC-40 futures on
MATIF are defined as c¼ 10 times the index. The FTSE 100 contracts on LIFFE are
£10 times the index. The Mini-NASDAQ 100 contract on the CME is $20 times the
index. An interesting one is the Nikkei 225 on the CME which is defined as $5 times the
index. While the other examples convert an index into its ‘‘home’’ currency, the Nikkei
contract converts it into a ‘‘foreign’’ currency. This is not as peculiar as we might think.
The outcome of a Real Madrid vs. Juventus soccer match is converted into British
pounds by a London bookmaker and into euros by an Irish one. The outcome of a
sporting event cannot be traded in the spot market, neither can a stock index. However,
financial dealers can buy and sell baskets of stocks in their home currency in the exact
proportions of the index, creating synthetic spot trading in the index (they cannot buy
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the Nikkei stocks for dollars). This has implications for the spot–futures price relation-
ship through the cost of carry.

On July 22, 2003 the Wall Street Journal reported the following futures settlement
prices for the S&P 500 index equal to 978.80 (spot) as of the close of the previous day,
Monday, July 21, 2003:

S&P 500 Index (CME)—$250� index
Sep03 978.00
Dec03 976.10
Mar04 974.20

On that same day, the U.S. dollar LIBOR rates stood at:

1-month 1.100 0%
3-month 1.110 0%
6-month 1.120 0%
12-month 1.211 25%

To simplify the analysis, we will use a continuously compounded rate of 1.13% for all
expiry dates (1.1293% is the continuously compounded equivalent of the 6-month rate
of 1.12% on an Act/360 basis assuming 182 days).

Locking in a forward price of the index

The index futures market allows investors to lock in a price at which they can buy or sell
a basket of stocks represented in the index. Today’s value of an index of 978.80 can be
thought of as a $978.80 price of a basket of 500 stocks bought in very small quantities
but in the right proportions. By going long one December futures contract we can lock
in today the price of acquiring 250 such baskets on the expiry date in December (using
the multiplier of $250 per index point). The argument here is similar to that used above
for soybean meal. The net variation margin will compensate us for any loss or take
away any gain we may face as a result of the price difference between the future spot
price and today’s futures price.

Suppose we go long one December contract at 976.10 and on the December expiry
date the spot index value is 1,000.00. Our net variation margin will be an inflow of:

250� ð1,000:00� 976:10Þ ¼ $5,975

If in December we buy 250 baskets at $1,000 per basket we will pay $250,000, which
combined with a savings of $5,975 will yield a price per basket of:

ð250,000� 5,975Þ=250 ¼ $976:10

Fair value of futures

Let us now review the theory of futures pricing based on arbitrage, which can be found
in finance textbooks. This states that, for an asset that can be stored at no cost and
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which does not yield any cash flows, the futures price F must be equal to the spot price
S plus the cost of financing the purchase of the underlying asset spot between the spot
date and the expiry date; that is:

F ¼ S þ ðFinancingÞ

Equivalently, this is equal to the spot price that is future-valued to the expiry date. This
theoretical futures price is commonly referred to as fair value. For an asset whose
purchase can be financed till expiry with a loan rate of LIBOR L, the definition
translates into the following intra-year equation:

F ¼ S

�
1þ L� Act

360

�

Note that the right-hand side has two components: S, the spot price, and SL� Act

360
, the

interest cost on borrowing the amount S till expiry. Using an equivalent continuously
compounded rate r, the equation is often written as:

F ¼ Sert

where t is the time to maturity in years (e.g., t ¼ 1
2
for 6 months). Recall from Chapter 2

that when using continuous rates the discrete rate ð1þ rÞn expressions get replaced by
ert). The theoretical futures price expression, which simply reflects the cost of carry, is
guaranteed by an arbitrage or a synthetic replication argument.
Let us numerically illustrate the replication argument. Suppose today’s value of an

index is 978.80; this can be thought of as a $978.80 price of a basket of 500 stocks
bought in the right proportions. We want to replicate exactly the cash flows of one
futures contract with a multiplier of $250 per index point and expiry of 3 months. The
continuously compounded rate at which we can borrow or lend funds is equal to
1.13%. Instead of going long one futures contract, we can do the following:

. We borrow 978.80� 250 ¼ $244,700 at a rate of 1.13%.

. We purchase 250 baskets of stocks in the index (i.e., 250 times the numbers of shares
represented in one basket) at a cost of 978.80� 250 ¼ $244,700.

This results in a zero net cash flow today. On the futures expiry date:

. We pay off the principal and interest on the loan with a cash outflow of:

250� Se0:0113�ð1=4Þ ¼ 244,700e0:0113�ð1=4Þ ¼ $245,392:25

. We sell the stock baskets at the spot index price per basket St on the expiry date and
receive cash for them.

Our net cash flow on the expiry date is: 250� St � $245,392:25.
Assuming that the entire net variation margin is received/paid on the expiry date,

going long one futures contract can be seen to be equivalent to the above strategy, in
that it results in a net cash inflow equal to 250� St, unknown today, minus 250 times
some amount of dollar amount, equal to the original futures price. If there exists a
futures market, then traders will have a choice of engaging in the above replicating
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strategy or going long futures. The two options must yield the same cash flows at all
dates (spot and future), otherwise people would choose only the one with a higher net
cash inflow. By equating the two, we get that:

250� St � $245,392:25 ¼ 250� ðSt � FÞ

The left-hand side is the cash flow for the replicating strategy on the expiry date, and
the right-hand side is the definition of the net variation margin. This yields us the
posited futures–spot equation and the futures price of:

F ¼ 978:80e0:013�ð1=4Þ ¼ 981:57

Thus we have shown that a long futures contract can be replicated through a cash-and-
carry transaction. That is, a buyer of futures, in effect, does not need the futures market;
he can accomplish the same by buying the underlying asset in the spot market,
combined with a credit market transaction (borrowing). In order for the fair value
relationship to hold, we must show that the seller of futures does not need the
futures market either, in that he can guarantee the same spot and future cash flows
as the redundant futures contract by short selling the underlying asset spot and lending
in a credit market. This is called a reverse cash-and-carry strategy. For pure assets like
stocks, this is quite easy. The amounts are the same; only the direction of the transac-
tions is the opposite (short the asset and lend to earn interest).

Instead of the replication argument, we can also use a direct arbitrage argument by
considering and refuting two alternative cases: (1) F > 981:57 and (2) F < 981:57.
Suppose that (1) is true. Then we can profit by buying stock baskets using the replicat-
ing strategy and shorting futures. The replication strategy will lock in the price of
acquiring each basket on the expiry date at a price of $981.57 (the loan repayment
value divided by the number of baskets). Meanwhile the futures price will lock in a
higher price of selling each basket resulting in sure profit. Everyone would try to pursue
this trade, forcing the futures price down or the spot price up. The opposite strategy will
be taken in case (2). We would go long futures, short the baskets at 978.80 spot, and
lend money at a rate of 1.13%. We would lock in a forward sale price of 981.57 per
basket through the replication strategy and a lower price of acquiring them in the
futures market, resulting in sure profit.

Fair value with dividends

The fair value equation must be amended for stock index futures to reflect the fact that
some of the stocks in the index may pay dividends. In the replicating strategy, this
means that the guaranteed cost of acquiring the baskets on the expiry date, by buying
them spot and holding them till futures expiry, will be lower by the amount of dividends
received between now and expiry. In other words, the cost of financing the purchase
now will be equal to the interest charge less any dividends received:

F ¼ S þ ðFinancingÞ � ðDividendsÞ
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There are two ways of including dividends into the fair value or cost-of-carry equation,
depending on our confidence in the future dividend estimates. For shorter expiries, we
can typically predict very accurately the dollar amounts and the dates of the dividends
D. In this case, we can present-value them to today, subtract them from the spot price,
and future-value the net amount that must be borrowed to purchase the stock basket.
This logic can be represented as:

F ¼ ½S � PVðDÞ�ert

For longer expiries, we may feel more confident, assuming that the dividend rate will be
a constant or at least a predictable percentage of the stock price. Assuming we express
that rate as a continuously compounded and annualized rate d, we can subtract it from
the interest charge like this:

F ¼ Seðr�dÞt

Suppose that, in the above replicating strategy example, over the next 3 months we
expect to receive dividends whose present value we estimate to be $4 per basket. Then
we can borrow 250� $4 less, or:

978:80� 250� 4� 250 ¼ $243,700

and use the $1,000 in present value from expected dividends in addition to the borrowed
funds of $243,700 to acquire 250 baskets at $978.80 per basket for a total cost of
$244,700. The future payoff will still be the same. But, now, the futures break-even
price that will make us indifferent between synthetic replication and futures will be
lower to reflect the lower cost of replication by acquiring the securities spot:

F ¼ ð978:80� 4Þe0:0113�ð1=4Þ ¼ 977:56

Instead, suppose that, in the above replicating strategy example, over the next 3
months, we expect a continuously compounded, annualized dividend yield of
1.6371% per basket. Then we can also borrow less than in the no-dividend case. The
futures break-even price or fair value becomes:

F ¼ 978:80eð0:0113�0:016371Þ�ð1=4Þ ¼ 977:56

Notice in our examples that the $4 present value was chosen to be equivalent to the
1.6371% continuous rate. The choice of the form of the fair value equation depends on
our confidence in which is a more reliable estimate of the dividend payout: the PV
amount or the dividend yield.

Single stock futures

In the early 2000s, following the lifting of a ban on such products by U.S. regulators,
futures contracts on narrow indexes (custom baskets and exchange-traded funds, or
ETFs) and single stocks began trading on the OneChicago (ONE) and NASDAQ
LIFFE (NQLX) futures exchanges.2 As of late 2003, there were close to 100 single
stock futures contracts traded on each of the exchanges and fewer than 100 narrow
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index futures altogether. Each futures contract represents 100 shares of a stock (or
ETF) delivered on a stated expiry date. There are only two or at most three sequential
expiry dates available, but the market is growing. Single stock futures compete directly
with a lucrative OTC forward market in which dealers quote forward bids and asks on
individual stocks to institutional investors.

The Wall Street Journal of July 22, 2003 quoted the following futures prices for
eBay’s stock (ticker: EBAY) on the ONE exchange as of the close of the previous
day (EBAY closed at 111.06):

OPEN HIGH LOW SETTLE CHG VOL OPEN INT
Aug 109.43 111.00 109.43 111.11 �0.96 302 800
Sept 109.91 111.00 109.91 111.20 �0.87 138 1,243

Note that the increasing prices for farther maturities reflect a positive cost of carry for
EBAY (no dividend and positive interest rate). Volume and open interest are still quite
low compared with major contracts, like the S&P 500, and they tend to be even lower
for some lesser known custom indexes.

6.4 CURRENCY FORWARDS AND FUTURES

As on stock indexes and commodities, there are futures contracts on currencies traded
on major futures exchanges in the U.S., Europe, and Asia. The unique feature in
currency trading is that the market is dominated by OTC forwards, rather than stan-
dardized futures, and that a significant share of the volume of transactions (about 30%
as opposed to less than 5% in other markets, the rest being interbank or dealer-to-
dealer activity) is linked directly to retail demand of non-financial corporations, manag-
ing their foreign exchange (FX) exposure. Outright forwards represent only 7% of the
total volume, but forwards are packaged with spots or forwards for other dates to form
short-term currency swaps, which are the main instruments traded in pure non-spot FX
transactions.

Spot and forward FX rates are quoted continuously in the interbank market and are
observable on many financial screens, like Bloomberg or Reuters. Normally, only
forwards for standard maturities of 1-, 3-, 6-, and 12-months may be displayed, but
forwards for customized expiry dates, potentially all the way out to 10-years, can be
easily arranged on most major currencies. Transaction sizes are large with $10 million
being a basic lot.

On August 7, 2003 a UBS website3 contained the following quotes for the USD/EUR
market:
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Table 6.3 UBS FX forwards EUR/USD for August 7, 2003

Type Expiry date Points Bid Ask Time

Spot 1.1374 1.1381 19:31:00
ON 08.08.2003 �0.36/�0.33 1.1374 1.1381 15:49:00
TN 11.08.2003 �1.06/�1 1.1373 1.1380 18:42:00
SN 12.08.2003 �0.34/�0.31 1.1374 1.1381 04:43:00
SW 18.08.2003 �2.3/�2.21 1.1372 1.1379 19:31:00
2W 25.08.2003 �4.63/�4.48 1.1369 1.1377 19:03:00
1M 11.09.2003 �12.5/�7.5 1.1361 1.1374 13:41:00
2M 14.10.2003 �23.2/�18.2 1.1351 1.1363 15:08:00
3M 12.11.2003 �32.3/�27.3 1.1342 1.1354 18:19:00
4M 11.12.2003 �41.4/�36.4 1.1333 1.1345 19:31:00
5M 12.01.2004 �50.5/�45.5 1.1323 1.1336 19:12:00
6M 11.02.2004 �58.9/�53.9 1.1315 1.1327 19:29:00
9M 11.05.2004 �82.27/�77.27 1.1292 1.1304 19:32:00
1Y 11.08.2004 �103.22/�98.22 1.1271 1.1283 19:32:00
2Y 11.08.2005 �151/�136 1.1223 1.1245 19:30:00
3Y �130/�96 1.1244 1.1285 19:27:00
4Y �53/�7 1.1321 1.1374 19:00:00
5Y 53/111 1.1427 1.1492 19:12:00

http://quotes.ubs.com/quotes/Language=E then click on Forex/Banknotes and Forwards USD.
Copyright UBS 1998–2003. All rights reserved. ON ¼ Overnight, TN ¼ Tomorrow/next, SN ¼ Spot/next, SW ¼ Spot/week.

Valid quotes go out 2 years (3-, 4-, and 5-year quotes were not updated that day) and all
forwards are related to the spot quotes of USD/EUR 1.1374/81 (bid/ask) through
forward points. These are decimals to be added to the significant digits of the spot
rate. For USD/EUR, there are four significant digits after the decimal. For example,
to arrive at the 9-month forward bid, we have to take the forward points of �82:27,
which are shorthand for �0.008 227, and add that to the spot bid of 1.1374 to get
1.1292. Dealers shout only the forward points to each other over the phone. Just like
spot, the USD/EUR forwards are quoted here in American terms (i.e., with USD being
the pricing currency of the ‘‘commodity’’ EUR). In this example, the EUR can be said
to be trading at a forward discount as forward prices of EUR in dollars are lower than
spot prices (all points are negative). Alternatively, the USD is trading at a forward
premium. What is special for currencies is that assets underlying the forward contracts
are currencies themselves. Quotes and points measuring the premium/discount magni-
tudes can thus be inverted easily to suit the viewpoint of the customer. This dual nature
of FX rates also has implications for the cost-of-carry arbitrage link between spot and
forward FX.

Fair value of currency forwards

The fair value equation for currency forwards is analogous to that for stocks and stock
indexes. It reflects the cash-and-carry argument. Currency forwards are redundant
contracts; they can be synthesized from spot FX and interest rate transactions.
Instead of locking in the FX rate at which we can exchange USD into EUR 3
months from today through a forward contract, we can borrow funds in USD today
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and buy the target currency, EUR, in the spot market. But just like stocks that generate
cash yields in the form of dividends, the target currency, EUR, can generate a cash yield
in the form of an interest accrual on a 3-month investment in a risk-free asset denomi-
nated in EUR. With stocks the dividend accrues automatically over the carry period
once they are purchased. With currencies, we invest idle cash denominated in the target
currency in a short-term deposit with a maturity equal to the forward expiry date. In 3
months we have an inflow of EUR from the deposit and an outflow of USD for the
repayment of the USD borrowing. On the spot date, the cash flows in both currencies
net to zero. Dollars are borrowed and used completely to purchase euros; euros are
bought, but immediately deposited. The three simultaneous spot transactions (borrow
USD, exchange USD into EUR, and lend EUR) replicate exactly the redundant
forward. The cost-of-carry link between forward and spot FX rates, both expressed
in terms of units of currency FX1 per unit of currency FX2, can in general be written as
follows:

F

�
FX1

FX2

�
¼ S

�
FX1

FX2

�
þ ðFinancing in FX1Þ � ðFinancing in FX2Þ

Note that the last term in this equation is equivalent to the dividend term in the stock
index futures fair value. We show the discrete interest rate version of that equation in
the next section. For interest compounded continuously in both currencies, the cost-of-
carry link between forward and spot FX rates reduces to:

F

�
Currency1

Currency2

�
¼ S

�
Currency1

Currency2

�
eðrCurrency1�rCurrency2 Þt

The cash-and-carry arbitrage spot–forward link for currencies is referred to by financial
economists as covered interest rate parity.

Covered interest-rate parity

Suppose we observe that today’s JPY/EUR spot FX rate stands at 100. At the same
time, 1-year deposit rates are 2% in yen and 4% in euros. The covered interest rate
parity (CIRP) principle states that the 1-year forward rate must be equal to:

F

�
JPY

EUR

�
¼ S

�
JPY

EUR

�
� 1þ rJPY

1þ rEUR
¼ 100

1:02

1:04
¼ 98:0769

This is guaranteed as long as borrowing and lending in each currency is unrestricted
and there are no FX controls. The argument is replication or arbitrage. In the replica-
tion strategy, we can synthesize a long forward by borrowing in yen, selling yen spot for
euros, and investing idle euros till the expiry. We can synthesize a short forward by
borrowing in euros, selling euros spot for yen, and investing idle yen till the expiry. If
both sides of the forward can do it on their own synthetically, then the forward is a
redundant contract. The forward rate agreed on by both parties must reflect the cost of
the replication strategy.

The arbitrage argument underscores the fact that the forward FX rate of 98.0769 is
not just a mathematical fiction, but will be ensured by dealers seeking riskless profit.
Suppose a dealer quotes a forward of 98.0000. This is lower than the theoretical CIRP
rate. The interpretation can be that the EUR can be bought for less in the forward
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market than through a spot-and-carry transaction. The arbitrage strategy will thus
involve buying euros forward and selling them spot. In order to offset FX cash
flows, we will have to borrow euros today, agree to pay interest on the borrowing,
and deliver the borrowed euros to the spot FX transaction. We will deposit the
obtained yen, earn interest on the deposit, and deliver the yen from the maturing
deposit into the forward FX contract to sell yen for euros. Let us say that an
‘‘errant’’ dealer quoted the forward of 98.0000 for the maximum size of EUR
10,000,000. Here is how we profit:

. Borrow EUR 9,615,384.62 at a rate of 4% for 1 year.

. Spot sell EUR 9,607,843.14 at JPY/EUR 100 for JPY 960,784,313.73.

. Deposit JPY 960,784,313.73 at a rate of 2% for 1 year.

. Enter into a forward contract to sell JPY 980,000,000 at a rate of JPY/EUR 98 for
EUR 10,000,000.

Net cash flows in yen are zero as we purchase yen in the spot FX market and immedi-
ately lend out the entire purchase. In euros we borrowed more than we sold in the spot
FX market, resulting in a positive cash flow of EUR 7,541.48. In 1 year, we have net
zero cash flows in both currencies:

. We collect the yen deposit, which accrued to: 960,784,313.73� 1.02 ¼ JPY
980,000,000.

. Deliver JPY 980,000,000 to the forward contract to receive EUR 10,000,000.

. Pay off the borrowing, which accrued to: 9,615,384.62� 1.04 ¼ 10,000,000.

We keep the EUR 7,541.48 as riskless profit. Note that by going long the forward to
purchase euros we are bidding the price of euros in yen up, and by selling euros spot we
are putting a downward pressure on spot euro and bidding up spot yen. We are also
putting an upward pressure on EUR deposit rates and downward pressure on JPY
deposit rates. All these four effects would tend to bring the prices into a parity with
respect to each other as defined by the CIRP. The most obvious effect is that the errant
dealer may adjust his forward quote up after seeing our demand for forward euros. The
reader should be able to determine how to profit, had the dealer erred in the opposite
direction and shown a forward rate higher than that posited by the CIRP.
The CIRP equation for intra-year periods needs to be amended to reflect the account-

ing for interest using money market rates. For example, for 3-month strategies using
LIBOR rates the JPY/EUR example would look like this:

F

�
JPY

EUR

�
¼ S

�
JPY

EUR

�
�

1þ LJPY
Act

360

1þ LEUR
Act

360

Let us apply the logic of that equation to the FX rates for August 7, 2003 as quoted by
UBS in Table 6.3. The spot ask FX rate is USD/EUR 1.1374 bid and USD/EUR 1.1381
ask. Within the same UBS site, we could find the 3-month LIBOR rates: 1.14 for USD
and 2.1613 for EUR. We will ignore the fact that LIBOR quotes and FX quotes may
not be from the same exact time of the day. Using 97 as the actual number of days
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between August 7 and November 12, the stated expiry of the 3-month FX forward, we
obtain the fair forward bid rate:

F

�
USD

EUR

�
¼ 1:1374�

1þ 0:0114
97

360

1þ 0:021 613
97

360

¼ 1:1343

and for the fair ask rate:

F

�
USD

EUR

�
¼ 1:1381�

1þ 0:0114
97

360

1þ 0:021 613
97

360

¼ 1:1350

The actual forward bid–ask quotes of USD/EUR 1.1342/1.1354 contain a wider spread,
reflecting the potential mark-up charged by UBS for unsolicited orders. They also
ensure that on August 7, 2003 we could not have ‘‘picked UBS off’’ to earn riskless
profit. The interbank market has already arbitraged out all riskless profit opportunities
ensuring that the cash-and-carry CIRP holds!

Currency futures

Currency futures trade on two U.S. exchanges. On the CME, all currency pairs are
against the U.S. dollar with foreign currency as the underlying commodity and the
dollar as the pricing currency; on the FINEX, there are a few cross-pairs, all against the
euro, with the euro as the underlying commodity and the other currency as the pricing
currency of denomination. Contract sizes are large by retail standards, but relatively
small by wholesale market standards. For example, on July 22, 2003 the Wall Street
Journal reported the following settlement prices for the previous business day:

LIFETIME OPEN
OPEN HIGH LOW SETTLE CHG HIGH LOW INT

Japanese yen (CME)—Y¼12,500,000 ($ per Y¼)
Sept .8437 .8471 .8432 .8448 �0.0010 .8815 .8220 81,966
Dec .8478 .8486 .8465 .8471 �0.0010 .8915 .8350 20,435
Est vol 8,659; vol Fri 19,005; open int 102,436, �4,422

. . .
Euro/US dollar (CME)—c¼ 125,000 ($ per c¼ )
Sept 1.1239 1.1338 1.1226 1.1326 .0057 1.1896 .8780 92,581
Dec 1.1265 1.1310 1.1213 1.1299 .0057 1.1860 .9551 1,550
Mr04 1.1218 1.1270 1.1218 1.1275 .0057 1.1795 1.0425 253
Est vol 33,046; vol Fri 41,304; open int 94,456, �2,557

On that same day, the spot FX rate for USD/EUR was 1.1347, and the U.S. dollar and
euro LIBOR rates stood at:

Dollar Euro
1-month 1.1000% 2.1205%
3-month 1.1100% 2.12275%
6-month 1.1200% 2.10938%
12-month 1.21125% 2.11313%
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We can use the CIRP equation:

F

�
USD

EUR

�
¼ S

�
USD

EUR

�
�
1þ LUSD

Act

360

1þ LEUR
Act

360

to come up with the fair value of the futures. Using interpolated interest rates for 2-, 5-,
and 8-month expiries, we get for September:

F

�
USD

EUR

�
¼ 1:1347�

1þ 0:011 050 0
2

12

1þ 0:021 216 25
2

12

¼ 1:13278

For all three delivery months we compute:

Sept 1.13278
Dec 1.13003
Mr04 1.12754

Note that LIBOR rates and futures settlement prices are not from the same times
(LIBOR settles from 3p.m. GMT and futures 3 p.m. CDT), so our calculation produces
a small error (which is the greatest for the shortest maturity). All numbers are within
the low and the high for the day.
Let us briefly review the mechanics of daily settlement for currency futures. These are

identical to those for commodities with the currency in the denominator treated as the
underlying commodity. Suppose on July 21 we entered into five long December USD/
JPY contracts right at the close at .8471. Note that for JPY, the .8471 price is in dollars
per 100 yen, or it is shorthand for .008471 in USD/JPY, which is equivalent to JPY/
USD 118.05. Suppose by the next day the JPY/USD settlement rate changed to 119.25,
or equivalently to USD/JPY .008386 or USD/100JPY .8386. We have a negative cash
flow in the form of a variation margin settlement of:

5� 12,500,000ð0:8386� 0:8471Þ=100 ¼ $� 5,328:48

The multiplier for the price as stated in the contract is thus 125,000. Note that for the
USD/EUR contract, the multiplier is simply equal to the size of the contract, which is
100,000 as the price is stated in dollars per 1 euro. It can be shown in a manner
analogous to the commodity arguments that going long five December JPY contracts
allowed us to lock in an exchange rate of 118.05 on JPY 62,500,000 for delivery on
December 19, 2003. The net variation margin accumulated by that expiry date will
offset any difference between the spot FX rate on that date and the original rate of
118.05 on the purchase of JPY 62,500,000.

6.5 CONVENIENCE ASSETS—BACKWARDATION

AND CONTANGO

Financial assets, like stocks, gold, fixed income instruments, and currencies, are ex-
amples of pure assets. They are held purely for investment purposes. Investors are
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indifferent between holding the assets themselves and claims on them. For example,
most stock investors hold shares in their brokerage accounts in street name. They rarely
ask for stock certificates in order to exercise their voting rights. What matters to them is
that they receive dividends and that they are able to sell their positions on demand. In
the meantime, brokerage houses are free to lend these shares to others who can then
short-sell them. As long as there are people holding these assets for investment purposes
(i.e., they are long these assets), there will be no restrictions on short sales and no
additional costs to shorting. For pure assets, both cash-and-carry and reverse cash-
and-carry strategies are executable and at approximately the same cost. This is perhaps
the most obvious with currencies where a purchase of one currency automatically
means a sale of another. For pure assets, the general form of the fair value equation
looks like this:

F ¼ S þ ðFinancingÞ þ ðStoringÞ � ðCash yieldÞ
where Financing ¼ interest paid on funds used to purchase the asset spot or interest
earned on proceeds from a short sale of the asset spot; Storing ¼ storage cost equal to 0
for most financial assets except gold; and Cash yield ¼ dividends or coupon interest
from the underlying asset (e.g., dividends from stocks and interest from currencies or
bonds). We have already seen some specific guises of this equation.

Most agricultural, energy, and metal commodities are not pure, but rather con-
venience assets. Holders of these commodities own them not only for investment
purposes, but to be used in production. Any disruption in that production may be
costly. There may thus be an additional value, which varies from user to user, to
owning the physical asset. That value, called a convenience yield, can be most easily
viewed as an additional cash yield or dividend; the owner of the asset has a valuable
insurance policy that his business will not be disrupted. When lending out the asset to
be shorted spot by someone else, the owner has to be compensated for the loss of this
convenience. The reverse cash-and-carry strategy may not be executable at all or may
lead to very high costs. The general fair value equation for futures and forwards has to
be amended to include the convenience yield, which reflects the implicit value of the
convenience benefit to the marginal investor in the market (the most willing to lend the
asset out in sizable quantity):

F ¼ S þ ðFinancingÞ þ ðStoringÞ � ðCash yieldÞ � ðConvenience yieldÞ
For most commodities, the convenience yield tends to be large resulting in subsequent
futures prices to be smaller than the previous ones and the spot price. This is called
normal backwardation. There are many economic explanations for the predominance of
backwardation in commodity futures, the most popular being that most hedgers are
producers of commodities who tend to short futures at a discount to fair value in order
to compensate speculators for accepting the risk.

There are times when the convenience value is small relative to the financing cost net
of storage, resulting in a situation where futures prices increase with maturity. This is
called a contango. Note that financial assets are more likely to be in this category as
long as the cost of financing exceeds any cash yield. There are also special situations
leading to a contango (e.g., resolutions of wars, expectations of new supply lines, etc.).
We can also come up with examples of contangos due to negative convenience yields,
like holding wheat right before a plentiful harvest.
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6.6 COMMODITY FUTURES

Most commodities in the world are priced in U.S. dollars. The exchanges for rare
agricultural or mineral products, or for local physical delivery points, can be scattered
around the world (e.g., groundnuts and safflower oil in Mumbai, or olein in Jakarta),
but by far the main centers for futures trading are Chicago, New York, and London.
On the exchanges, producers and users of commodities can hedge their price risks in
agricultural, petroleum, and metal commodities. While only a small percentage of
trading activity (5%) is related to hedging and the rest is related to speculation, the
existence of speculators is fundamental for price risk sharing. In each commodity
market, there tends to be an imbalance of economic power between producers and
users which is filled by the speculators. The most typical situation in a commodity
market is normal backwardation whereby futures prices decrease with the contract
maturity date due to a convenience yield of owning the physical asset. On July 22,
2003 the Wall Street Journal reported the following information for the crude oil
futures traded on the NYMEX exchange:

LIFETIME OPEN
OPEN HIGH LOW SETTLE CHG HIGH LOW INT

Crude oil, light sweet (NYM)—1,000 bbl ($ per bbl)
Aug 32.00 32.10 31.25 31.78 �0.18 32.35 21.16 45,102
Sept 31.05 31.17 30.33 30.83 �0.20 31.53 21.05 190,648
Oct 30.52 30.64 29.95 30.40 �0.09 30.93 20.55 55,331
Nov 30.03 30.05 29.50 29.93 �0.01 30.40 20.70 28,262
. . .
Dc07 23.80 23.80 23.80 24.04 þ0.18 24.20 19.50 2,590
Est vol 191,187; vol Fri 156,891; open int 536,775, þ11,528.

On that date, West Texas Intermediate Oil traded spot at 31.98. Let us use the estimate
for financing cost based on LIBOR as in the stock index futures example (i.e., 1.13%
continuously compounded) and assume that storage costs run $2 per barrel per year.
This is equivalent to 6.10% continuously compounded. We can compute the fair value
of futures without the convenience yield using a continuous formula:

Ffair ¼ Seðr�syÞt

where sy ¼ storage cost expressed as continuous yield give-up. We can also back out
the convenience yield, by solving for cy such that:

Factual ¼ Seðr�sy�cyÞt

Applying the formula for 1-, 2-, 3-, and 4-month delivery periods we get the following
results:

Table 6.4 Fair values and convenience yields for
NYMEX oil futures as of July 22, 2003

Month Fair cy

Aug 31.85
Sep 31.72 17.00
Oct 31.59 15.30
Nov 31.45 14.90
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The results show a pretty substantial convenience yield value for the near months. As
this number is difficult to determine from fundamentals and dominates the easily
estimatable financing and storage costs, it renders the spot–futures and futures–
futures cash-and-carry arbitrage highly speculative. The convenience yield drops with
maturity to less than 3.5% for the December 2007 contract (using r ¼ 3:13), reflecting
the fact that futures–futures arbitrage involving farther months is mostly financial
(borrowing for Dec 2007 and lending for Dec 2006 or vice versa), with future conve-
nience value severely discounted at this point.

On July 22, 2003, the news of the day was a substantial drop in coffee prices as
expectations of frost affecting the August crop in Brazil faded. Traders dumped coffee
in the spot markets. This resulted in a contango for coffee prices which were reported to
be:

LIFETIME OPEN
OPEN HIGH LOW SETTLE CHG HIGH LOW INT

Coffee (CSCE)—37,500 lb (cents per lb)
July 60.00 60.00 60.00 59.15 �3.15 79.00 55.80 201
Sept 62.85 63.00 59.70 60.25 �2.95 80.50 57.30 44,656
Dec 65.25 65.40 62.00 62.85 �2.75 81.50 59.50 13,222
. . .
Dc04 73.50 73.50 73.00 72.55 �2.25 80.50 71.50 1,490
Est vol 16,058; vol Fri 6,298; open int 69, 251, �343.

Assuming zero storage costs, the September–July price difference reflected the con-
venience yield of minus 9.92%.

6.7 SPOT–FORWARD ARBITRAGE IN INTEREST RATES

In this section, we show how futures and forwards can be used in lieu of spot zero-
coupon instruments in zero-vs.-coupon strategies of coupon stripping and replication.
This leads us directly to establish tight arbitrage relationships between interest rate
futures/forwards and coupon and zero-coupon spot rates.

Recall from Chapter 2 that purchases and sales of zeros can be synthesized from
purchases and sales of coupon instruments, and vice versa. For example, the purchase
of a 3-year semi-annual coupon bond can be replicated by the purchase of six zero-
coupon bonds, with face values equal to the coupon amounts and maturities matched
to the coupon dates, and one zero-coupon bond matched with the principal repayment.
We argued that the price of such a package of zero-coupon securities must be identical
to that of the coupon instrument. Similarly, we argued that any zero-coupon instru-
ment can be replicated by the right combination of coupon instruments and other zeros.
For the remainder of this section we will restrict our focus to the relationship of zeros to
forwards and futures, and skip the obvious extension of the arbitrage equations of
coupon instruments as packages of zeros and, thus, by extension as functions of
forwards and futures. We also defer the discussion of credit spread issues by assuming
that zero-coupon bonds, spot and futures LIBOR deposits, forwards, and futures are
all entered into between parties of the same credit quality.
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Synthetic LIBOR forwards

We start with a rather concocted example that will lead us later to more advanced
topics. Suppose a customer appears at the ABC Bank to ensure that the bank will lend
him $100 million 1 year from today for 1 year. The customer is willing to let the rate on
the loan float for 1 year. He will be charged the spot rate 1 year from today and will
repay the principal and interest based on that rate at the end of the interest-accrual
period 2 years from today. The bank, in order to ensure the availability of funds as
provided for by the contract with the customer, may choose to engage in the following
strategy with third parties (assume a simple day-count):

. Borrow for 2 years at today’s 2-year zero-coupon rate of 6.5163%.

. Lend for 1 year at today’s 1-year zero-coupon rate of 6.0000%.

Let us compute the face values of the borrowing and lending by working backwards:

. In order to have $100 million on hand 1 year from today, ABC will have to lend
today:

100,000,000� ½1=ð1þ 0:06Þ� ¼ $94,339,622:64

. ABC will have to borrow that amount for 2 years (i.e., it will have to agree to repay
in 2 years):

94,339,622:64� ð1þ 0:065163Þ2 ¼ $107,035,114:80

By borrowing $94,339,622.64 today for 2 years at 6.5163% to repay $107,035,114.80 in
2 years and lending $94,339,622.64 today for 1 year at 6.0000% to receive $100,000,000
in 1 year, the bank locks in a certain cost of borrowing funds. That cost is equal to the
rate r such that:

100,000,000� ð1þ rÞ ¼ 107,035,114:80

We solve to get r ¼ 7:0351%. In 1 year’s time, when the customer comes to collect the
promised $100 million, ABC agrees to charge him the then-prevailing LIBOR. So, for
the accrual period, the bank will pay a rate of 7.0351 to a third party and receive
LIBOR from the customer. This set of cash flows is equivalent to entering a 12� 24
FRA as a payer of fixed on $100 million. If the FRA market did not exist, then LIBOR
forwards could with some effort be synthesized by borrowing and lending in the zero
market for the right terms.
In our example, the bank had two other choices:

. Do nothing; wait till 1 year from today, borrow at LIBOR, and provide the funds to
the customer at LIBOR at a complete wash (i.e., net zero cash flows today, 1 year
from today, and 2 years from today).

. Lock in the lending rate to the customer, by entering a 12� 24 FRA to receive fixed
on $100 million against 12-month LIBOR; the LIBOR received from the customer
would then offset that paid into the FRA and the bank would net receive fixed on the
loan-cum-FRA bundle.

In the latter case, the rate fixed in the FRA would have to be 7.0351% in order for the
bank to have net zero cash flows at all three points in time.
We can extend the preceding example to show that any forward lending (receiving on

a FRA) can by synthesized in the zero-coupon market by borrowing for the short term
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and lending for the long. That strategy is equivalent to an outflow (repayment of the
borrowing) on the forward start date and an inflow (receipt of the deposit plus interest)
on the forward end date (i.e., a loan (out)). The mathematics of the synthetic FRA for
simple annual periods reflect the spot borrowing and lending:

ð1þ zn1Þn1ð1þ fn1�n2Þn2�n1 ¼ ð1þ zn2Þn2
where zn is a spot borrowing/lending rate and fn1�n2

is an n1 � n2 FRA rate. In the
above example, we had n1 ¼ 1 year, n2 ¼ 2 years. The equation looked like this:

ð1þ 0:060 000Þð1þ f1�2Þ ¼ ð1þ 0:065 163Þ2

Solving, we get f1�2 ¼ 0:070 351. To determine a forward rate for the period of 2 years
starting in 3 years knowing the 3-year zero and the 5-year zero, we would have to solve
for f3�5:

ð1þ z3Þ3ð1þ f3�5Þ2 ¼ ð1þ z5Þ5

The equations are more complicated for intra-year periods and when the right day-
counts are used, but in a predictable way. For example, suppose that we know a 6-
month zero compounded quarterly z6 and a 9-month zero compounded quarterly z9,
both on an Act/360 basis. Then the 6� 9 forward could be derived from:�
1þ z6 � Act0�3

360

��
1þ z6 � Act3�6

360

��
1þ f6�9 � Act6�9

360

�

¼
�
1þ z9 � Act0�3

360

��
1þ z9 � Act3�6

360

��
1þ z9 � Act6�9

360

�

where we substitute the correct number of days in each interest compounding period.

Synthetic zeros

We can reverse the above relationships to synthesize zeros from forwards. If a 3� 6
forward pay is a combination of a long 3-month zero (lending) and a short 6-month
zero (borrowing), then we can also construct a long 6-month zero (lending for the long
term), by a long 3-month zero (lending for the short term) and receiving on a forward
(guaranteeing the lending rate for the intervening 3� 6 period).

Suppose a customer of the ABC Bank requests a $100 million spot loan for a 2-year
period. ABC charges 6.00% on 1-year loans (equal to its own cost of borrowing funds
for 1 year). It also realizes that 12� 24 FRAs are quoted at 7.0351%. What rate should
it charge the customer?

In order to write its customer a check for $100 million today in exchange for a 2-year
IOU, ABC can borrow funds for 1 year at 6.00% and can lock in the rate on a rollover
of that borrowing at 7.0351% by paying fixed on a FRA or shorting ED futures. The
borrowed $100 million will have to be repaid in 1 year with:

100,000,000� ð1þ 0:06Þ ¼ $106,000,000

ABC can agree to pay 7.0351% on a 12� 24 FRA with a notional principal of $106
million or short 106 12-month ED futures contracts (the futures strategy translates in
reality to a string of 3-month LIBOR futures with expiries in 12, 15, 18, and 21
months). In 1 year’s time, in order to repay the original $100 1-year borrowing, ABC
will have to borrow $106 million for one year at the then-prevailing 12-month LIBOR
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rate. But, we know from our previous discussion that no matter what the 12-month
LIBOR is 1 year from today, ABC will have been guaranteed a net interest charge at the
rate of 7.0351%. Thus its borrowing will accrue over the second year to:

106,000,000ð1þ 0:070 351Þ ¼ $113,457,206

In order for the ABC Bank to break even, it has to charge its customer on a 2-year spot
loan of $100 million a rate z2 such that:

100,000,000� ð1þ z2Þ2 ¼ 113,457,206

Solving, we get z2 ¼ 6:5163%.
The above relationships hold for zeros and forwards of all maturities, whether short

or long. We can use that fact to construct synthetic zeros in a variety of different ways.
If a 2-year zero can be constructed using a 1-year zero and a 1-year-by-2-year forward,
then a 3-year zero can be constructed either as:

. A 2-year zero and a 2-year-by-3-year forward.

. Or a 1-year zero, a 1-year-by-2-year forward and a 2-year-by-3-year forward.

Let us continue with the numerical example. Suppose that prior to signing the 2-year
loan agreement, our customer changes his mind and asks for a 3-year $100 million loan
instead. ABC can turn to the 24� 36 FRA market, currently trading at 7.4674%, to
lock in the rate for the forward 1-year period starting in 2 years on a $113,457,206
principal. It will have to borrow that amount in the spot market, but its net rollover rate
will be guaranteed. In order to satisfy its borrowing repayment 3 years from today, it
will have to receive from its customer exactly:

113,457,206� ð1þ 0:074 674Þ ¼ $121,929,528:70

That means, it will quote today a 3-year zero-coupon rate z3 such that:

100,000,000� ð1þ z3Þ3 ¼ 121,929,528:70

or z3 ¼ 6:8324%. The rollover strategy for the first 2 years is at the bank’s discretion.
ABC can either:

. Borrow $100 million in the 2-year zero market at 6.5163%.

. Or borrow $100 million in the 1-year zero market at 6.00% and roll it over in the
1-year-by-2-year forward market at 7.0351%.

The result will be the same: $113,457,206 owed after 2 years. This will be rolled over at
the guaranteed (upfront) rate of 7.4674% for the third year.
It should be clear by now that any zero can be synthesized by a zero of shorter

maturity and a string of forwards for the intervening period.

Floating-rate bonds

A floating-rate bond is a bond whose coupon is not known in advance, but is tied to the
future performance of an index or a rate. In the standard floating-rate bond, the
coupon accrual period is matched to the maturity of the short-term interest rate used
to determine the coupon. The short-term rate is set at the beginning of each coupon
period and the coupon based on that rate is paid at the end of the coupon period. The
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coupon payment is computed as the set rate times the face value of the bond times the
appropriate day-count fraction. Compared with a fixed rate bond, the valuation of the
floating rate bond may appear difficult as we do not know the cash flows of the bonds in
advance. However, the forward certainty equivalence principle makes valuation of most
floating rate bonds straightforward.

Let us consider a 10-year, $100 face value, annual coupon bond whose floating rate is
tied to the 12-month LIBOR. The coupon rate is known only for the first year as it is
based on today’s 12-month deposit rate. The rate for the second year, not known today,
will be based on the LIBOR rate 1 year from today and paid 2 years from today. The
rate for the third year, not known today, will be based on the LIBOR rate 2 years from
today and paid 3 years from today. And so on. There are two ways to look at this bond
today, exactly 1 year prior to the next cash flow.

One is to recognize that a floating rate bond is equivalent to an artificial rollover
strategy. The issuer borrows $100 for 1 year. The fair rate on that borrowing is today’s
LIBOR which is set to be today’s coupon for the first year. In 1 year’s time, the issuer
borrows $100 again for 1 year in order to repay the original loan of $100 obtained at
time zero for 1 year. He also pays the coupon interest equal to time zero LIBOR. The
rate set for year 2 is equal to the 1-year LIBOR 1 year from today which is a fair rate for
a new 1-year loan. The issuer then proceeds with rolling over the loan every year, each
time at a new, fair, 1-year rate. Each year, right after the loan is rolled over, the value of
the issuer’s IOU for the next year is equal to $100. He promises to repay the principal of
$100 and the interest on that principal set at that time; this is to be paid a year later. The
total discounted back by 1 year at the prevailing 1-year rate is $100.

Another way to look at the floating rate bond is to recognize that both the issuer and
the buyer of the bond have the option to lock in, at no cost, the uncertain cash flows of
the bond into their certainty equivalents through the FRA market or the ED futures
market. A buyer of the bond could convert the unknown future LIBOR payments into
fixed cash flows, which would most likely be different each year, but known in advance
and equal to today’s FRA rates spanning the respective coupon periods. Using the
numbers from our previous example, the investor can lock in the following coupon
payments for the first 3 years:

. For year 1, today’s LIBOR or zero rate of 6.00%.

. For year 2, the 1-year-by-2-year forward rate of 7.0351%.

. For year 3, the 2-year-by-3-year forward rate of 7.4674%.

And so on. A floating rate bond is thus equivalent to a bond for which the coupon rates
are fixed today, but vary each period. If the floating rate bond has a spread (i.e., is
quoted as, say, LIBOR plus 1.5%), then such floating rate bond is equivalent to a sum
of two fixed coupon bonds: one with varying coupons equal to the forward rates and
one with all coupons equal to the spread of 1.5%, net of the short zero to offset the
double-counted principal.

Synthetic equivalence guaranteed by arbitrage

The equivalence of spot zero strategies with synthetic forwards leads to the following
summary of important findings:
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. The payoff on a Eurocurrency forward (FRA) contract can be synthetically repli-
cated by borrowing and lending the appropriate amounts in the zero-coupon market.

. Since forwards and futures are almost perfect substitutes, the payoff on a Euro-
currency futures contract can be synthetically replicated by borrowing and lending
the appropriate amounts in the zero-coupon market.

. Given the forward and futures certainty equivalence and that the market places no
cost on converting future spot to today’s futures or forwards, a bank will not charge
the customer for locking in the future unknown loan rate.

. Longer term zero rates can be costlessly synthesized from shorter-term zeros and
intervening forwards.

. Longer term zero rates can be costlessly synthesized from shorter-term zeros and
intervening futures.

. Coupons, zeros, floating-rate bonds, forwards and futures are all synthetic equiva-
lents of the appropriate combinations of longs and shorts with each other (i.e., all
can be replicated at no cost with packages of the other instruments).

. The possibility of arbitrage profits ensures that the mathematical relationships
implied in the above statements hold.

6.8 CONSTRUCTING THE ZERO CURVE FROM FORWARDS

In Chapter 2, we showed how quotes for coupon bonds can be used sequentially to
compute discount rates for present value calculations through a process called a zero
curve bootstrap. In this section, we revisit the construction of the zero curve, this time
with the use of futures and forwards. Like before, we will use observed quotes in
chronological order in order to create a set of rates or, alternatively, discount
factors, appropriate for computing the present values of cash flows set for future
dates. This is a fundamental task in any valuation process of not only money market
instruments, bonds, structured securities and swap derivatives, but also in equity,
currency and commodity forwards and options.
The great insight of Chapter 2 was that coupon securities are packages of zeros. Let

us assume semi-annual coupons. By knowing the yield on a 6-month coupon we
automatically know the rate for a 6-month zero. A 12-month coupon was a package
of two zeros: one with 6-month maturity and a face value equal to the 6-month coupon
cash flow, and one with 12-month maturity and a face value equal to the 12-month
coupon cash flow plus the principal. If we knew the ‘‘blended’’ yield on the coupon
security and the yield on the first zero in the package, then we could back out the yield
on the second zero, since the price of the package had to equal the sum of the parts.
Similarly by knowing the price of and the yield on a 18-month coupon security and
previously computed yields of the 6- and 12-month zeros, we could back out the yield
on the 18-month zero. We could continue like that all the way to the coupon bond with
the longest maturity, creating a set of zero-coupon yields. Using zero yields, we could
then discount cash flows scheduled for any future dates and compute the prices of any
fixed income security.
The coupon bootstrap is typically used in constructing the curve for dates past the

1-year or 5-year point to the 30-year point. It is considered too crude for shorter
maturities, as our first observation point is 6 months out for U.S. semi-annual
coupon bonds and often 12 months out for European and Canadian markets where
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bonds typically pay coupons annually. A forwards- or futures-based bootstrap for
shorter dates dovetails nicely with the coupon bootstrap further out. It provides
liquid futures points every 3 months for 10 years for U.S. markets (CME ED
futures) and liquid futures points every 3 months out to the 3-year or 5-year mark
for the pound and the euro. Finer observations can be obtained from 1-month LIBOR
futures and FRAs whose dates do not correspond to the futures calendar. The choice of
where the two methods meet, the short bootstrap based on forwards, and the long
bootstrap based on coupons depends on the relative liquidity of the instruments
used. Their liquidity ensures that packages can be easily constructed to create synthetic
securities. That is, it ensures that the whole process is not just a mathematical exercise,
but a market reality guaranteed by potential arbitrage. Let us turn to the details of the
forwards/futures-based bootstrap of the zero curve.

We are going to proceed in a manner similar to the coupon case. We will use the first
zero rate known and then forwards and/or futures with ever-increasing start and end
dates to construct a discount curve of zero-coupon yields or discount factors. As it is
good practice to avoid confusion with day-counts, we will compute discount factors
and not yields for different dates. Discount factors, which are present value equivalents
of $1 received on a given future date, are unambiguous. Any rate with an arbitrary
maturity, compounding, and day-count can be recovered from them.

We use the futures quotes from the October 25, 2001Wall Street Journal. In addition,
we use three spot zero rates as starting points for our curve. The maturities of these spot
rates match the expiry of the first three futures contracts (i.e., November, December,
and January). We will only use the November and January quote to compute discount
factors for November and January, and for periods extending 3 months after that (i.e.,
February and April). The December spot will be used to compute the discount factors
for December and for all periods ending in 3-month intervals following the quarterly
futures expiries of March, June, September, and December. For simplicity, we assume
that the LIBORs implied in the futures contracts are for forward deposits spanning
roughly 3 months from the futures expiry to the next contract’s expiry, and not for
90-day deposits as assumed by the $25 multiplier. The quote information is summarized
in Table 6.5.

Table 6.5 Spot LIBORs and futures prices for October 25, 2001. Discount factors computed for
forward start dates and for spot date to forward end date

Start date End date Days in Actual Yield Forward Spot discount
forward period quote (Act/360) discount factor factor

Spot
15-Oct-01 21-Nov-01 37 2.05 2.05 0.997 897 0.997 897
15-Oct-01 19-Dec-01 65 2.12 2.12 0.996 187 0.996 187
15-Oct-01 16-Jan-02 93 2.15 2.15 0.994 477 0.994 477

Futures
21-Nov-01 19-Feb-02 90 97.81 2.19 0.994 555 0.992 464
19-Dec-01 20-Mar-02 91 97.85 2.15 0.994 595 0.990 802
16-Jan-02 19-Apr-02 93 97.87 2.13 0.994 528 0.989 034
20-Mar-02 19-Jun-02 91 97.77 2.23 0.994 395 0.985 248
19-Jun-02 18-Sep-02 91 97.48 2.52 0.993 670 0.979 012
18-Sep-02 18-Dec-02 91 97.09 2.91 0.992 698 0.971 863
18-Dec-02 19-Mar-03 91 96.60 3.40 0.991 479 0.963 582
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We are given three zero yields: 2.05, 2.12, and 2.15. We are also given futures quotes.
These allow locking in the rates for the periods starting on the futures expiry date and
ending 3 months later. We compute the actual number of days in each forward period
spanned by the futures quote and the yield implied for each of those periods as 100
minus the futures price. We also compute forward discount factors (the first three
using the spot zero rates are actually spot factors with the start date equal to the spot
date of today). These are present values as of the start date of $1 received on the end
date using the futures-implied yield. The logic follows from arbitrage as we would be
able to synthesize a $1 face value loan for the forward period by locking in the rate in
the futures, and borrowing or lending at future LIBOR. From forward discount
factors we can compute spot discount factors that are present values as of today,
October 25, 2001, of $1 received on the end date. These are products of appropriate
forward discount factors spanning successive periods. For example, the spot discount
factor of 0.979 012 for September 18, 2002 is the product of the spot factor of
0.996 187 for December, the forward factor of 0.994 595 for December–March, the
forward factor of 0.994 395 for March–June and the forward factor of 0.993 670 for
June–September. From the discount factors we are able to recover discount rates
based on any convention. As is traditional, we show the continuously compounded
yields (also unambiguous) which have the nice property that the spot continuous yield
is an average of the appropriate forwards. We also show simple interest Act/360
yields.

Table 6.6 Continuous and simple yields implied by the computed spot discount factors

End date Days from spot Spot discount factor Continuous yield Simple yield

(Act/360)

21-Nov-01 37 0.997 897 2.0763 2.0500

19-Dec-01 65 0.996 187 2.1453 2.1200

16-Jan-02 93 0.994 477 2.1738 2.1500

19-Feb-02 127 0.992 464 2.1741 2.1525

20-Mar-02 156 0.990 802 2.1620 2.1423

19-Apr-02 186 0.989 034 2.1637 2.1459

19-Jun-02 247 0.985 248 2.1961 2.1822

18-Sep-02 338 0.979 012 2.2906 2.2833

18-Dec-02 429 0.971 863 2.4283 2.4295

19-Mar-03 520 0.963 582 2.6040 2.6166

Note that by definition the first three simple yields match the inputs.
We have thus constructed the yield curve for the first 520 days. It should be clear that

we could have substituted FRAs for futures or used them in addition to futures for
some of the in-between dates. We also could have used more coupon instrument dates
or know spot points. The result is the graph of the zero-coupon yield curve for October
25, 2001 (Figure 6.1).
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Figure 6.1 Zero-coupon curve.

Once we have the yield curve, the valuation of fixed income securities with no options
embedded in them becomes trivial. Suppose someone offers us a structured note prom-
ising to pay $3,500 twice, 182 days from today and 365 days from today, plus the
principal of $100,000. How much would we pay for it?

Since we do not have the exact discount factors for 182 days and 365 days, we use the
arithmetic interpolation of the continuous yields to obtain these two factors. For 182
days, we use the rates for 156 days and 186 days to get the interpolated yield of 2.1635,
which translates into a discount factor of 0.989 270. For 365 days, we use the rates for
338 days and 429 days to get the interpolated yield of 2.3314, which translates into a
discount factor of 0.976 955. The present value of the note’s cash flows is then equal to:

3,500 � 0:989 270þ ð3,500þ 100,000Þ � 0:976 955 ¼ $104,577:33

We would be willing to pay 104.5773 of the face value for the note.

6.9 RECOVERING FORWARDS FROM THE YIELD CURVE

Once the yield curve is constructed (i.e., we have obtained a set of discount factors for
all future dates), we can not only value securities with known future cash flows, but also
those whose cash flows float with LIBOR rates (floating rate bonds, inverse floaters,
leveraged floaters, etc.). We can do that because we can recover the forwards implied by
the yield curve and substitute them for future unknown LIBORs using the certainty
equivalence argument. Since all future spot LIBORs can be costlessly converted to
today’s forwards, the present value of an artificial security with forwards substituted
for the unknown future LIBORs must be the same as that of the actual security with
unknown cash flows.
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The valuation of a floating-rate bond

Let us consider the following example. On October 25, 2001 we are offered a 1-year
floating rate note with a face value of $200,000 whose quarterly coupon is equal to the
3-month LIBOR. The coupon payment dates are January 25, April 25, July 25, and
October 25, 2002, set 3 months prior. How much are we willing to pay for it? The
analysis of the bond is summarized in Table 6.7.
For the given set and pay dates, we compute the numbers of days from spot and the

number of days in each accrual period. We interpolate the continuous yields and
compute the interpolated present value (PV) factors to each set and pay date. From
each pair of PV factors, we can compute the implied LIBOR set (i.e., today’s forward 3-
month LIBOR) for the set date. These are obtained from the arbitrage equation:

PVð$ on pay dateÞ ¼ PVð$ on set dateÞ � 1

1þ fset date�pay date
Act

360

Each cash flow is set, based on the implied LIBOR forward on the set date, to be equal
to:

200,000� fset date�pay date � Act

360

and paid on the pay date, 3 months later. We can then compute the PV of each cash
flow by multiplying each cash flow by the discount factor to the pay date. We sum the
PVs to obtain the price of the note. This turns out to be exactly $200,000. This should
be no surprise given our previous argument about the nature of the floating rate note as
a revolving loan always worth par.

Including repo rates in computing forwards

This generic arbitrage analysis is very general and applies to all credit markets. There is,
however, one situation where the analysis has to be modified to take into account
special repos (repurchase agreements) that render forward replication strategies more
expensive. Recall from the discussion of the U.S. Treasury market in Chapter 3 that
supply and demand forces may make a bond scarce, which means that a lender of funds
through a reverse repo (buyer of securities to resell tomorrow) will sometimes lend
funds at a zero interest rate just to be able to temporarily own the desired bond. His
resale price will include a rebate that will make it equal to today’s purchase price, thus
earning him no interest.
Let us consider a simplified numerical example. Assume that a 1-year zero yielding

6% enjoys general repo while a 2-year zero yielding 6.5% is expected to be on special
for the next month. You want to replicate a 1-year-by-2-year forward deposit by buying
the 2-year zero and shorting the 1-year zero. If neither bond were on special, then we
could lock in a rate f12�24 such that:

ð1þ 0:06Þð1þ f12�24Þ ¼ ð1þ 0:065Þ2

Financial Math II—Futures and Forwards 171



T
a
b
le

6
.7

O
n
e-
y
ea
r
fl
o
a
ti
n
g
-r
a
te

b
o
n
d
,
q
u
a
rt
er
ly

co
u
p
o
n
s,
fa
ce

v
a
lu
e:

$
2
0
0
,0
0
0

S
et

d
a
te

P
a
y
d
a
te

D
a
y
s
fr
o
m

D
a
y
s
fr
o
m

D
a
y
s

In
te
rp
o
la
te
d

P
V

fa
ct
o
r
to

P
V

fa
ct
o
r
to

Im
p
li
ed

L
IB

O
R

C
F

o
n
p
a
y

P
V

o
f
C
F

sp
o
t
to

sp
o
t
to

co
n
ti
n
u
o
u
s

se
t
d
a
te

p
a
y
d
a
te

se
t

d
a
te

se
t
d
a
te

p
a
y
d
a
te

y
ie
ld

to
p
a
y

d
a
te

2
5
-O

ct
-0
1

2
5
-J
a
n
-0
2

0
9
2

9
2

2
.1
7
2
8

1
.0
0
0
0
0
0

0
.9
9
4
5
3
8

2
.1
4
8
9

1
,0
9
8
.3
4

1
,0
9
2
.3
4

2
5
-J
a
n
-0
2

2
5
-A

p
r-
0
2

9
2

1
8
2

9
0

2
.1
6
3
5

0
.9
9
4
5
3
8

0
.9
8
9
2
7
0

2
.1
3
0
2

1
,0
6
5
.0
8

1
,0
5
3
.6
5

2
5
-A

p
r-
0
2

2
5
-J
u
l-
0
2

1
8
2

2
7
3

9
1

2
.2
2
3
1

0
.9
8
9
2
7
0

0
.9
8
3
5
1
0

2
.3
1
7
0

1
,1
7
1
.3
8

1
,1
5
2
.0
6

2
5
-J
u
l-
0
2

2
5
-O

ct
-0
2

2
7
3

3
6
5

9
2

2
.3
3
1
4

0
.9
8
3
5
1
0

0
.9
7
6
9
5
5

2
.6
2
5
2

2
0
1
,3
4
1
.7
8

1
9
6
,7
0
1
.9
4

S
u
m

o
f
P
V
s
¼

2
0
0
,0
0
0
,0
0

C
F
¼

ca
sh

fl
o
w

a
n
d
P
V
¼

p
re
se
n
t
v
a
lu
e.



or f12�24 ¼ 7:0024%. Alternatively, we can write this in terms of discount security prices
as:

1

ð1þ 0:06Þ
1

ð1þ f12�24Þ ¼
1

ð1þ 0:065Þ2
The interpretation of the last equation can be that $1 of principal and interest to be
received 2 years from today can be guaranteed by spending 1=ð1þ 0:065Þ2 on a 2-year
bond or by spending ½1=ð1þ 0:06Þ�½1=ð1þ f12�24Þ� on a 1-year bond to be rolled over
into 1=ð1þ f12�24Þ of a 1-year-by-2-year forward bond after 1 year. However, in order
to own the 2-year zero we have to give up interest for 1 month. That is equivalent to
paying a higher price for the 2-year bond today and is equal to the non-special value
that we have grossed up plus the lost interest fraction; that is:

1

ð1þ 0:06Þ
1

ð1þ f12�24Þ ¼ ð1þ 0:065Þ1=12 1

ð1þ 0:065Þ2
The forward that we can really lock in to the market is f12�24 ¼ 6:4423%.
When including special repo situations, calculations can get quite complicated,

especially when dealing with coupon securities and trying to compute their forward
prices, which themselves are packages. However, nowhere in this more complicated
analysis should the principle of arbitrage be violated. We need to be careful to
include in the mathematics any repo rebates that would have to be given when replicat-
ing a forward. The ‘‘specialness’’ of repo cuts both ways: the forward depositor (lender)
locks in a lower forward rate; and the borrower does likewise because he uses the hotly
desired security as collateral in a repo transaction. The equations above hold for both
forward lenders and forward borrowers.

6.10 ENERGY FORWARDS AND FUTURES

In addition to crude oil and gas products and their refined derivatives, like gasoline and
heating oil, and with the deregulation of electricity markets in the developed world, the
last 5 years have seen the emergence of energy forwards and futures trading for delivery
of electric power to specific points on national grids. Forwards and futures contracts on
electric power inherit certain features from the somewhat complicated spot markets. In
the U.S., these trade on both a firm and a non-firm basis, depending on whether power
interruptions are guaranteed by liquidating damages or not. They trade for peak and
non-peak periods which divide each 24-hour period into 16 hours of heavy demand and
8 hours of light demand. In Europe, electricity markets trade for base load and peak
load periods, the latter being 8 : 00–20 : 00 CET. In addition, geography plays a role as
national grids have natural gridlock points. For example, in the U.S., power to Cali-
fornia is delivered through a limited number of access points, like the California–
Nevada or California–Arizona borders. Each market may have its own ‘‘convenience
yield’’ issues determined by local deregulation rules concerning power generation and
transmission. In some OTC cases, there are also options embedded in the contracts
giving the short party choices pertaining to the timing of the energy delivery. This can
potentially lead to price manipulation attempts (as claimed in the 2001 Enron scandals
in the U.S.). Most exchange contracts are cash-settled. To prevent settlement price
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disputes, exchanges have special provisions for the final futures settlement price. For
example, EUREX contracts are settled based on the spot prices for base and peak loads
over the entire delivery month. The NYNEX 40-MW contracts for the Pennsylvania–
Maryland–New Jersey hub settle based on the arithmetical average of prices over the
peak days during the delivery month. The COB (California–Oregon border) and PV
(Palo Verde, Arizona) contracts call for 432MWh delivered at the rate of 1MWh per
hour during 16 peak hours spread over 27 non-Sunday days. While such tight standard-
ization is desirable for liquidity and price stability, it often means that the futures
contracts may not be the best hedge instruments for power generators and transmitters
who face specific local conditions. That is, perhaps, why the market is dominated by
customized OTC contracts. These are arranged through a small number of players who
act almost like exchanges (before its collapse, Enron established itself as such an
exchange).

Studies show that futures prices do in fact converge to the spot prices for the delivery
points on the grid by the expiry month. That is, at least one part of the cost-of-carry
equation is satisfied: the financing cost; this, inclusive of the convenience yield, goes
down to zero. But studies also show that hedging with futures does not reduce the
volatility of the average price paid, especially if hedgers take basis risk between the
actual delivery point and time, and the contract specifications. This is because both spot
and futures prices are highly variable at all times. Power suppliers can only reduce this
risk by trading off the stability of long-term contracts for higher overall cost, supple-
mented with some futures hedging.
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___________________________________________________________________________________________________________________________________________________________________________ 7 __________________________________________________________________________________________________________________________________________________________________________

________________________________________________________________________________ Spot–Forward Arbitrage _______________________________________________________________________________

The cash-and-carry trade is arguably the most important principle linking spot and
forward markets for all securities. Its essence lies in going long a synthetic forward
and short a real forward, or short a synthetic forward and long a real forward. The
synthetic side of the trade relies on cash flow replication through a spot position
combined with borrowing or lending. A synthetic long forward is constructed using a
spot purchase and a spot borrowing transaction. A synthetic short forward is con-
structed using a spot sale and a spot lending transaction. For example, a forward
purchase of a bond is replicated by borrowing money to buy the bond now and
repaying the borrowing at a future date. A forward sale of a stock is replicated by
selling the stock now and investing the proceeds at some interest rate. A forward
commodity purchase is constructed by borrowing the money to buy the commodity
now and paying for storing it between now and a future date. The synthetic side, which
mimics the forward completely, is traded against the forward; the sides are chosen
based on the relative costs of the two. The trade is viable until the costs are the same
and money cannot be made; that is, when the markets adjust to follow the mathe-
matical cost-of-carry formulae we have laid out: spot and forward foreign exchange
(FX) rates fall in line with (borrowing and lending) markets; spot stock indexes
(baskets) and index futures adjust to rates for borrowing and lending against equity
collateral; coupon bonds, zeros, forward bond sales and purchases, and forward deposit
rates fall in line with spot and repo (repurchase agreement) rates.
The cash-and-carry building blocks can also be combined to perform forward–

forward arbitrage where the cost-of-carry is locked in today, but for forward periods.
This can be viewed as two cash-and-carry transactions in opposite directions combined
in one package (with spots canceling out). The forward–forward mechanism strength-
ens the arbitrage relationships between various markets as the forward replication is
performed using not just spots, but also other forwards, and the spot replication can be
performed by using an entire menu of forwards on the same underlying cash instru-
ment. For example, stock index arbitrage cannot only tie the spot value of the index to
the index futures price through borrowing/lending markets, but also index futures of
different maturities to each other through forward borrowing/lending transactions,
executed in the forward rate agreement (FRA) or Eurocurrency markets.
In this chapter, we use the mathematics of Chapter 6 to identify cash-and-carry

arbitrage in a variety of markets. We start with currencies where the synthetic
forward always combines spot with both borrowing and lending. We cover a simpler
case of stock index arbitrage where the synthetic forward combines spot with either
borrowing or lending, and the other part is replaced by dividends. We describe a similar
case of bond futures arbitrage where dividends are replaced by coupons. We also
forward trades that link zeros and coupons. All four of these trades are benchmark
cases in their own markets. Relative value trades deviate from these pure arbitrage cases



due to imperfect synthetic replication or basis risk on one side of the trade. We devote
two short sections to dynamic hedging with a Eurodollar strip and via duration match-
ing. The latter are examples of imperfect replication through continuous rebalancing
and as such are relative value strategies. In those cases, a series of risks (e.g., exposure
to many points on the yield curve) is reduced to its main components (e.g., only the
2-year and the 10-year point) and hedged as such. This is expedient and involves smaller
transaction costs, but requires rebalancing over time and leads to a tracking error. It is
the most common method for hedging large fixed income portfolios.

7.1 CURRENCY ARBITRAGE

To review the spot–forward currency arbitrage based on the covered interest rate parity
(CIRP) principle, let us use the data for USD and EUR as of August 13, 2003.1 Here
are our quotes.

FX rates [USD/EUR] FX (CME) futures (settle)
Bid/Ask Mid

Spot 1.1308/1.1315 1.131 15
1m (18-Sep) 1.1296/1.1307 1.130 05 Sept (19-Sep) 1.1300
2m (20-Oct) 1.1285/1.1297 1.129 1
3m (18-Nov) 1.1276/1.1288 1.128 2
4m (18-Dec) 1.1267/1.1279 1.127 3 Dec (19-Dec) 1.1272
5m (20-Jan) 1.1257/1.1269 1.126 3
6m (18-Feb) 1.1249/1.1261 1.125 5 Mr04 (19-Mar) 1.1248
9m (18-May) 1.1224/1.1236 1.123 0
1y (18-Aug) 1.1202/1.1214 1.120 8
2y (18-Aug) 1.1172/1.1193 1.118 25

We also have the following LIBOR (London interbank offered rate) (ask) rates:

Dollar (UBS&WSJ) Euro (UBS) Euro (WSJ)
1-month 1.100 0% 2.144 76% 2.115 38
2-month 1.120 0% 2.157 43%
3-month 1.130 0% 2.162 12% 2.132 50
4-month 1.148 75% 2.169 98%
5-month 1.168 75% 2.182 4%
6-month 1.180 0% 2.188 73% 2.158 75
12-month 1.36% 2.281 64% 2.250 38

Let us just check a few CIRP equations of the form:

FN-month

�
USD

EUR

�
¼ S

�
USD

EUR

�
�
1þ LN-month

USD

Act0�N

360

1þ LN-month
EUR

Act0�N

360
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where LN-month
CURR is an N-month LIBOR for currency CURR, and Act0�N is the number

of days between month 0 (i.e., today) and the end of month N, which is the maturity of
the forward for the implied borrowing/lending transactions. For FX forwards with 3-
and 6-month expiries, we get:

F 3m ¼ 1:131 15
1þ 0:011 300� 97

360

1þ 0:021 6212� 97

360

¼ 1:128 023

F 6m ¼ 1:131 15
1þ 0:011 800� 189

360

1þ 0:021 8873� 189

360

¼ 1:125 228

Ideally, we would want to write two separate equations for each maturity: one assuming
a spot bid for euros, a lending rate for euros (i.e., London interbank bid rate or LIBID,
not LIBOR), and a borrowing rate for dollars (i.e., a LIBOR which is ask); and another
assuming a spot ask for euros, a borrowing rate for euros (LIBOR) and a lending rate
for dollars (LIBID), as these would precisely reflect our synthetic forwards. This would
produce bid and ask quotes for the synthesized forwards and would define a no-
arbitrage zone. For simplicity, we assume that we can trade at mid-rates (averages of
bids and asks), whether buying or selling, or borrowing or lending.
The calculated fair value forward rates fall within the actual forward quotes, reflect-

ing no arbitrage. Now suppose that the dealer changes the quotes for 3- and 6-month
forwards to mid-rates of:

Spot 1.131 15 (Size: EUR 100,000,000)
3m 1.129 7 (Size: EUR 50,000,000)
6m 1.124 0 (Size: EUR 50,000,000)

Note that for the 3-month quote the fair value of 1.128 023 is well below the actual
quote of 1.1297. That means that in the forward market euros are rich (expensive
relative to synthetic). This sets the direction of our arbitrage: we will want to sell
euros forward. To match the flows, we use circular thinking. In order to sell euros 3
months forward, we need to deposit them today to earn interest. In order to deposit
them today, we need to buy them spot by selling dollars. In order to sell dollars spot, we
need to borrow them. If we borrow dollars today, we will have to repay the principal
and interest 3 months from today. By selling euros forward, we will obtain dollars to
repay the borrowing. That completes the circle. Now all we have to do is to compute the
amounts in such a way that we have net zero cash flows in both currencies 3 months
from today and such that we have a positive cash flow in one or both currencies today.
Suppose we are a New York dealer and want to earn profit in dollars. We compute the
amounts by working backwards from the forward transaction whose size is limited by
the quote size of EUR 50,000,000 (we would like that size to be unlimited to make the
most money!). Today, we enter into the following contracts:

. Sell EUR 50,000,000 3-month forward at EUR/USD 1.1297 for USD 56,485,000.
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. Deposit (lend) EUR 49,710,401.51 at 2.16212% for 3 months, since

50,000,000=(1þ 0:021 621 2� 97=360) ¼ 49,710,401:51

. Borrow USD 56,313,540.91 at 1.13% for 3 months, since

56,485,000=(1þ 0:0113� 97=360) ¼ 56,313,540:91

. Sell USD 56,229,920.66 spot at USD/EUR 1.13115 to buy EUR 49,710.401.51 in
order to cover the EUR deposit.

In 3 months’ time, we have zero net cash flows in both currencies:

. The EUR deposit accrues with interest to EUR 50,000,000 and is withdrawn to
deliver to the forward contract.

. The USD 56,485,000 obtained from the forward contract is used to pay off the
accrued loan liability of exactly that amount.

Today, we have a zero net cash flow in euros, but a positive cash flow in dollars:

. The EUR 49,710,401.51 purchased spot is deposited for 3 months.

. We borrow USD 56,313,540.91, but sell spot for euros only which gives us USD
56,229,920.66, resulting in a profit of USD 83,620.25.

The flow of the transactions is portrayed in Figure 7.1 (þ is a cash inflow, � is an
outflow).

Figure 7.1 Spot–Forward currency arbitrage based on covered interest-rate parity for 3 months.

Note that a dealer based in Europe would have spot-exchanged all of the borrowed
USD 56,313,540.91 into EUR 49,784,326.49 and lent out the same EUR 49,710,401.51,
resulting in a net profit of EUR 73,924.98. Also note that the fact that we are lending in
EUR with a higher interest rate and borrowing in USD with a lower interest rate is
coincidental here and in and of itself did not determine the direction of the transactions.
It was strictly the comparison of the fair value forward to the actual forward. The next
example will make that point clear.

Let us now create profit out of the 6-month quote. The fair value of 1.125 228 is well
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above the actual quote of 1.1240. That means that in the forward market euros are
cheap relative to the synthetic strategy. This time we will want to buy euros forward. In
order to sell dollars 6 months forward, we need to deposit them today to earn interest.
In order to deposit them today, we need to buy them spot by selling euros. In order to
sell euros spot, we need to borrow them. If we borrow euros today, we will have to
repay the principal and interest 6 months from today. By selling dollars forward, we
will obtain euros to repay the borrowing. Again we work backwards from the FX
forward to have net zero cash flows in both currencies 6 months from today and to
have a positive cash flow in one or both currencies today.
The flow of the transactions for a New York dealer locking in profit in dollars is

portrayed in Figure 7.2 (þ is a cash inflow, � is an outflow).

Figure 7.2 Spot–Forward currency arbitrage based on covered interest-rate parity for 6 months.

The borrowing and lending amounts are computed, like in the 3-month example, by
taking the present values of the forward amounts at the respective interest rates, i.e.:

50,000,000=(1þ 0:021 887 3� 189=360) ¼ 49,431,985:34

56,200,000=(1þ 0:011 800 0� 189=360) ¼ 55,853,984:57

The spot FX transaction results in dollars in excess of the amount needed to deposit,
resulting in a profit of USD 61,005.65. (Here a European dealer would have spot-
exchanged a smaller amount of euros needed to generate exactly USD 55,853,984.57
required for deposit, leaving himself with a profit in euros.)
Note that in this example the arbitrageur borrows in the high interest rate currency,

the euro, and lends in the low interest rate currency, the dollar. Although this may seem
counterintuitive, this yield loss is already taken into account in the fair value equations
which consider the total cost of synthesizing forward dollars and euros. Based on that,
euros turn out to be expensive and dollars cheap. The dealer synthesizes an outflow of
euros and an inflow of dollars (i.e., a forward sale of euros for dollars), and offsets these
flows with a transaction in the forward market in the opposite direction. In the process
of creating the synthetic forward, he borrows in euros and lends dollars, locking in a
yield loss. He is more than compensated for that loss by the difference between the
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actual and the synthetic forward. Going in the other direction would lock in a riskless
loss of the same amount.

Note also that both American and European dealers would perform the same trans-
actions, selling euros spot and buying them forward, as well as borrowing euros and
lending dollars for 6 months. All would exert pressure on the FX and interest rates to
move into parity with each other. The very attempt to lock in profit may eliminate its
possibility.

Let us now illustrate forward–forward arbitrage with FX rates. Suppose that there
are no arbitrage opportunities in the interest rate market. That is, based on our spot
LIBOR quotes, 3� 6 FRAs are quoted 1.228 976% for U.S. dollars and 2.203 947% for
euros. We obtain these numbers by solving for f3�6 in the following fair value equation
for interest rates applied to both currencies:�

1þ L3m
Act0�3

360

��
1þ f3�6

Act3�6

360

�
¼ 1þ L6m Act0�6

360

For dollars, we have:

f3�6 ¼ 360

92

1þ 0:0118� 189

360

1þ 0:0113� 97

360

� 1

0
B@

1
CA ¼ 0:012 289 76

and for euros we have:

f3�6 ¼ 360

92

1þ 0:021 587 5� 189

360

1þ 0:021 325 0� 97

360

� 1

0
B@

1
CA ¼ 0:022 039 47

We assume that we can lock in borrowing and lending rates in both currencies at these
levels. Suppose also that we get quotes for 3- and 6-month FX forwards:

Spot 1.131 15 (Size: EUR 100,000,000)
3m 1.129 7 (Size: EUR 50,000,000)
6m 1.124 0 (Size: EUR 50,000,000)

We have already computed fair value forwards using the CIRP link to the spot. These
were 1.128 023 and 1.125 228. We can also write a 3-month-by-6-month forward CIRP
link with n ¼ 3 and N ¼ 6 in the following way:

FN-month

�
USD

EUR

�
¼ Fn-month

�
USD

EUR

�
�

1þ f USD
n�N

Actn�N

360

1þ f EUR
n�N

Actn�N

360

We can synthesize the 6-month FX forward with a strategy involving a 3-month FX
forward and forward borrowing/lending in the two currencies. Relative to the quoted 3-
month FX forward, the fair value of the 6-month forward should be:

F6m ¼ 1:1297�
1þ 0:012 289 76

92

360

1þ 0:022 039 47
92

360

¼ 1:126 901
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(i.e., much higher than the actual 6-month forward of 1.1240). The price of the euro in
dollars for the delivery in 6 months synthesized from a 3-month forward and deposit
transactions is higher than the actual forward price. To profit, we will buy euros
through the actual 6-month forward and sell them forward synthetically. Like before,
this sets the circular direction of all transactions.
To buy euros (sell dollars) 6 months forward, we will need to deposit dollars 3

months from today for 3 months. To supply dollars to the deposit, we will buy
dollars by selling euros 3 months forward. We will borrow euros forward 3 months
from today for 3 months. We will earn interest on the deposited dollars and pay interest
on the borrowed euros. We can lock in those rates in today’s FRA markets (or further
synthesize the forward loan in each currency by two offsetting spot deposit transactions
for 3 and 6 months). All the contracts are entered into today, and the profit is locked in
3 months from today.

Figure 7.3 Forward–Forward currency arbitrage based on covered interest-rate parity in 3
months for 3 months.

Against the anticipated profit of USD 144,596.48, we can borrow today in the Euro-
dollar market the amount 144,596:48=(1þ 0:011 300� 97=360) ¼ 144,157:56. This
borrowing locks in a profit of USD 144,157.56 today.
In Figure 7.3, we lend dollars forward at 1.228 976% and borrow euros forward at

2.203 947%. In reality, we will lend dollars in 3 months at the then-prevailing 3-month
LIBOR rate, but we lock in the net interest rate by contracting today to receive
fixed 1.228 976% on a 3� 6 dollar FRA. Similarly, we will borrow euros at the then-
prevailing LIBOR rate, but we lock in the net interest rate by contracting today to pay
fixed 2.203 947% on a 3� 6 euro FRA. Each FRA is written for the principal amount
computed above as the borrowing/lending amount 3 months from today.
As before, all dealers will enter into the same trades causing the FX and money rates

to fall in line. The spot–forward and the forward–forward arbitrage will act in the same
direction, further strengthening the CIRP relationships (and eliminating the very arbi-
trage opportunities).
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7.2 STOCK INDEX ARBITRAGE AND PROGRAM TRADING

Stock index arbitrage follows the same cost-of-carry logic as CIRP-based currency
arbitrage. The only difference is that the role of foreign currency lending/borrowing
is played here by the anticipated stock dividends. To profit from a situation of futures
price exceeding its fair value we short actual futures contracts and synthesize a long
futures position: we borrow cash by agreeing to pay interest, we buy a basket of stocks
to mimic the performance of the index, and we earn dividends on holding the basket to
the maturity date. We match the amounts involved in such a way that we have zero net
cash flows on the futures expiry date and a positive cash flow today. To profit from a
situation of futures price being below its fair value, we reverse the strategy. We buy
actual futures contracts and synthesize a short futures position. We short an index-
mimicking basket by borrowing the physical assets (i.e., stocks), we invest the proceeds
from the short sale at an interest, and we reimburse the lender of the stocks for the cash
dividends until the maturity date.

We will illustrate this using the same July 21, 2003 data as in Chapter 6. Let us recall
that with the S&P 500 index equal to 978.80 at the close of the day, the futures
settlement prices were:

S&P 500 index (CME)—$250� index
Sep03 978.00
Dec03 976.10
Mar04 974.20

and the U.S. dollar LIBOR rates stood at:

1-month 1.100 0%
3-month 1.110 0%
6-month 1.120 0%
12-month 1.211 25%

We consider the September contract with 2 months left to expiry. We use an inter-
polated LIBOR rate of 1.105% and 60 as the number of days left to the September 19
expiry date. We also assume that if we were to spend exactly $978.80 to buy the 500
stocks represented in the index in the proportions as defined by the index (admittedly
this would mean buying very tiny amounts of each stock, but we will deal with much
larger dollar amounts so that everything will scale up to realistic numbers), then, over
the holding period between today and September 19, we would accumulate dividends
from the constituent stocks in the amount of D ¼ $2.50 as of September 19.2 We can
compute the fair value of the futures to reflect the cash-and-carry strategy as:

F ¼ S � D

1þ L� Act

360

0
B@

1
CA�

�
1þ L� Act

360

�
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dividends are assumed to be reinvested and are thus included in the index itself.



and specifically in our case:

F ¼ 978:80� 2:50

1þ 0:011 05� 60

360

0
B@

1
CA�

�
1þ 0:011 05� 60

360

�
¼ 978:1026

Analogously to investing in a LIBOR deposit in a foreign currency, we can think of the
$2.50 total dividend as ‘‘interest’’ earned on holding stock. Note that the $2.50 is a
precise estimate based on the schedule of dividend payments announced by each
company in the index for the period from July 21 to September 19. This number
might vary throughout the year as each company would follow its own calendar of
ex-dividend dates. These may or may not coincide with the calendar year. Over longer
holding horizons, say a few years, we may be less confident about our future dividend
estimates. In that case, it is more common to be certain about dividend yields than
dollar amounts (dollar amounts are likely to grow over many years as stock prices
grow). To illustrate working with dividend yields, we can convert the $2.50 amount to a
yield d on a discount instrument with a face value equal to the current price of the share
(i.e., $978.80) sold today for the current price of the share, $978.80, minus the present
value of the anticipated dividends. Dividend yield d can be defined on any day-count or
compounding basis, including continuous. Here we use an Act/365 basis. The dividend
yield d must thus satisfy the following equation:

S � D

1þ L� Act

360

0
B@

1
CA�

�
1þ d � Act

365

�
¼ S

or specifically in our case:

978:80� 2:50

1þ 0:011 05� 60

360

0
B@

1
CA�

�
1þ d � 60

365

�
¼ 978:80

Solving, we get d ¼ 1:554 881%. By defining the dividend yield in this manner, we can
rewrite the fair value equation for stock and stock index futures to look analogous to
that based on CIRP for currencies:

F ¼ S
1þ L� Act

360

1þ d � Act

365

Substituting the numbers we get as before:

F ¼ 978:80
1þ 0:011 050 00� 60

360

1þ 0:015 548 81� 60

365

¼ 978:1026

The actual September futures price is 978.00. Comparing the fair value to the actual
price, we can make the following statement. The S&P 500 basket can be bought for
delivery in September for $978.00 by going long September futures; this is cheaper than
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by synthesizing the purchase with the use of spot equity markets and the money
markets for borrowing against stock collateral. In order to profit, we will want to
buy stocks forward (i.e., by going long in the futures and sell stock through a synthetic
futures contract). To maximize our profit, we would want to buy as many futures
contracts as possible at the ‘‘unfairly low’’ price of 978.00 and short as many baskets
as possible at the ‘‘unfairly rich’’ synthetic forward price of the basket of 978.1026,
based on the spot index value of 978.80. By attempting this strategy, we would most
likely drive the futures price up and the spot index basket price down to bring the two in
line with the cost-of-carry equation. With shorting 500 stocks we would inevitably
encounter thin markets in some of the component stocks so that our realized index
value (average actual sale price of the basket) may already be lower than the published
index value. This is why the speed of execution and size of orders sent to the floor of the
exchange matter so much for spot–futures arbitrageurs.

Let us now determine the amounts of the transactions for one futures contract with a
multiplier of $250 per index point. As with currencies, we will work backwards by
matching future cash amounts and stock flows first, leaving ourselves with profit today:

. Go long one futures contract to lock in a price of buying 250 stock baskets forward
for

250� 978:00 ¼ $244,500

. We reimburse the lender of the stocks for lost dividends on the forward date

250� 2:50 ¼ $625

. The total (principal and interest) we need to receive from a deposit on a forward date
is thus

244,500þ 625 ¼ $245,125

. This means we can lend (invest) today

245,125=ð1þ 0:011 05� 60=360Þ ¼ $244,674:39

. We short-sell 250 index baskets at $978.80 each for $244,700.

This leaves us with a zero net cash and stock flow on the forward date (futures expiry):

. We buy the stocks back at the then-current spot price (say $980.35), but we have net
variation margin flow (of 980:35� 978:00¼ $2.35 per basket); our net cost of acquir-
ing the baskets is exactly the original futures price of $978.00 times the number of
baskets, 250, or $244,500. This, together with the dividend reimbursement of $625, is
paid for in full by the maturing LIBOR deposit.

. The stocks purchased in the open market are returned to the lender of the stock.

Today, we have a positive cash flow of $25.61, equal to the excess of our proceeds from
the short sale over the amount we lend to the LIBOR deposit. Stocks are borrowed and
sold (short) in the market leaving us with no net stock flow.

We summarize the amounts in the now-familiar Figure 7.4:
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Figure 7.4 Stock index futures arbitrage.

Let us now show an arbitrage strategy for the situation where the fair price is lower
than the futures price. Suppose that on July 21, 2003 the September S&P 500 futures
settle at 978.30 and we are able to short contracts right at that price. Since the fair value
of 978.1026 is lower than the actual of 978.30, we would want to go short futures and
long synthetic forwards. We compute the amounts backwards by matching flows:

. Go short one futures contract to lock in a price of buying 250 stock baskets forward
for

250� 978:30 ¼ $244,575

. We will receive dividends on the forward date

250� 2:50 ¼ $625

. Total (principal and interest) that we can repay on an interest deposit on a forward
date is thus

244,575þ 625 ¼ $245; 200

. This means we can borrow today

245,200=ð1þ 0:011 05� 60=360Þ ¼ $244,749:25

. We buy 250 index baskets at $978.80 each for $244,700.

This leaves us with a zero net cash and stock flow on the forward date (futures
expiry):

. We sell the stocks held at the then-current spot price (say, $980.35), but we have net
variation margin flow of (�1)� (980.35� 978.00)¼ $�2:35 per basket. Our net cost
of selling the baskets is exactly the original contracted futures price of $978.00 times
the number of baskets, 250, or the total of $244,500. This, together with the received
dividends of $625, is used to pay off the maturing LIBOR borrowing.

Today, we have a positive cash flow of $49.25, equal to the excess of LIBOR borrowing
over the purchase price of the stocks. Stocks are purchased and deposited in our
account to earn dividends, leaving us with no net stock flow.
Again we summarize the amounts in a diagram (Figure 7.5):
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Figure 7.5 Stock index futures arbitrage with dividends.

Note that the above discussion is simpler in the case of individual stock futures, like
those on eBay’s shares. We do not need to trade a whole basket of stocks, but simply a
certain number of shares of the same stock (100 shares of eBay per one futures con-
tract). The borrowing/lending amounts are arrived at analogously to the index case,
working backwards from the forward amounts.

Stock index arbitrage is primarily executed with the use of program trading. A dealer
continuously computes the fair value of futures, adjusting it for his estimated execution
cost. The latter is related to the speed of execution, the depth of the market in each
constituent stock, and the dealer’s own settlement costs. If the program is slow, the
realized price of each basket traded may be different from the one assumed in the fair
value calculation. The dealer’s estimated profit must exceed all these costs. A dealer
may at times resort to mildly speculative tricks of the trade, like sending some orders as
market and some as limit, front-running the anticipated moves in the futures price, etc.,
in order to beat his costs. A dealer may also take on what is called a tracking, or
correlation risk. Instead of sending a program order for all stocks in the index (500
for S&P 500), he may trade in only a subset of the stocks. This can be justified on two
grounds. Defensively, as some stocks may have thinner markets (fewer bids and offers)
and the price concessions or markups when trying to replicate the index may be large.
Offensively, the dealer, based on fundamental research, deletes stocks from the program
believing that his imperfect basket will outperform the prescribed one. For example, if a
stock is rated ‘‘sell’’, the dealer may want to exclude it from a buy program. Exclusions
may also be driven by external factors, like regulation. A broker-dealer engaged in an
investment banking transaction (bond or stock issue) with a particular company may be
prohibited from transacting in the company’s stock (the stock may be placed ‘‘on the
restricted list’’ to prevent new issue price manipulation).

Program trades can also be netted. If an SPX transaction calls for spot basket sales,
but a Dow futures strategy calls for spot basket purchases, the two can be netted to
yield a net basket sale. This may happen especially when the dealer takes on a tracking
error risk.

The risks of program trading—stock index arbitrage and customer program
execution—are related to external execution risks and deliberate risk taking. External
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execution risks are always present and are amplified during large market dislocations,
like market crashes. When stocks fall rapidly, it is much easier to sell futures than to sell
500 different stocks, some of which may trade on different exchanges. At that moment,
the futures price is a more reliable determinant of the spot fair value than vice versa.
This is also true for after-hours trading (e.g., right before cash markets open). TV
commentators make predictions for the stock market openings based on this reversed
fair value calculation, by knowing the current futures price. For example, at 9 : 20 EST
in New York, the U.S. stock markets are closed but the futures are not. By computing
the fair value of spot, using the reverse cash-and-carry argument, we can make a
prediction about the stock market opening 10 minutes later.
Deliberate risk taking by assuming a tracking error is a form of relative value trading,

or quasi-arbitrage. This case should be viewed as two separate strategies, futures
against the correct basket and the correct basket against the simplified tracking
basket. The former should result in sure profit, the latter can be a source of profit or
loss. When performing index arbitrage or customer program execution, dealers compete
with each other not only on pure execution costs, but also on this extra ‘‘skill’’ of
outperforming the market. Bids for customer programs submitted by large dealers
often reflect their perceived advantage in a market segment in which the program is
concentrated. The dealer may be a large-volume market-maker or possess superior
execution technology (high speed of execution and error control).

7.3 BOND FUTURES ARBITRAGE

Bond futures arbitrage is a classic example of a cash-and-carry trade described in
professional fixed income textbooks. Yet it is quite a bit more complicated than its
currency and stock index counterparts. There are two reasons for this. First, the
computation of the forward price of the bond relies on the reinvestment rate for the
intermediate coupon accrual or receipt (between now and futures maturity) and, more
importantly, the repo rate for the bond. And since the repo market tends to be very
short-term (overnight or a few days), the actual repo interest paid/received on lending/
borrowing the bond may not be known in advance unless we can negotiate a term repo
to the futures maturity. Second, most bond futures have delivery and timing options
embedded in them which afford the short-futures party the right to choose a bond to be
delivered from a long list of eligible bonds and the timing of the settlement. These
options may result in a mismatch between the bond chosen for the synthetic cash-
and-carry strategy and the actual bond delivered to the futures contract, resulting in
an unknown profit or loss at expiry.
Let us take a close look at the U.S. long-bond contract traded on the CBT (Chicago

Board of Trade). In order to prevent a squeeze on any one bond, the contract specifies
that the deliverer of the bonds on the expiry date may choose from a list of eligible
bonds of similar maturity (minimum 15 years). The long party receives a bond with a
face value of $100,000 and pays an invoice price equal to the final futures settlement
price times a conversion factor3 for the bond delivered (plus accrued interest), just as if
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the quantity of the delivered bond were different. The conversion factor is the percen-
tage price of the bond computed at an artificial yield of 6%. (A bond priced at 6% to
10916

32
has a conversion factor of 1.0950.) This is meant to make all bonds close sub-

stitutes of an artificial 6% par bond and of each other (i.e., to have the same value). In
reality it does not, making some bonds more likely to be delivered (i.e., cheaper) than
others.4

The most common, albeit not the best, way to determine which of the eligible bonds
is the cheapest-to-deliver (CTD) is to compute each bond’s basis. The basis for a given
bond is the difference between the actual price of the bond in the market and the futures
price times the conversion factor for that bond:

Basis in ticks ¼ (Bond price� Futures price� Conversion factor)� 32

The higher the basis, the costlier it is for the short-futures party to purchase the bond in
the market and sell it through futures for the settlement price times the factor. A better
way to determine the CTD is to find the highest repo rate implied in purchasing a bond
and selling futures.5 The amount of futures sold is equal to the conversion factor for the
cash-and-carry bond. The cash-futures trade is equivalent to lending cash/borrowing
the bond in the repo market.

Once we have decided on the CTD, the mechanics of the bond–futures arbitrage are
analogous to stock futures. Similar to dividends received between the spot date and the
futures expiry date, we have to account for the coupon accrual between those two dates.
The fair value of the futures can be written as:

Ffair ¼ 1

CvFactor
�
�
B�

�
1þ r� Act

360

�
� FV(Accr)

�

where the future value of the bond’s spot price B is taken using the repo rate r.
We subtract the future value of the accrual, Accr, to reflect the portion of the
coupon accrued by the bond holder between now and expiry (i.e., the difference
between the accrued interest on the expiry date and accrued interest on the spot
date). The treatment varies if there is an actual coupon received in the interim
period. The conversion factor, CvFactor, scales the number of futures contracts in
the cost-of-carry relationship.

We will dispense with an actual numerical example here only to state that the cash-
and-carry arbitrage can take two forms. If the fair value is lower than the actual futures
price, we go long the basis (i.e., purchase a deliverable cash bond, financing it in the repo
market, and sell a factor-weighted number of futures). If the fair value exceeds the
futures price, we go short the basis, by shorting the bond, receiving the repo interest,
and buying a factor-weighted number of futures contracts. We match the amounts for
the expiry date. Without using numbers, we can summarize the long-basis trade in
Figure 7.6:
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Figure 7.6 Bond futures arbitrage.

7.4. SPOT–FORWARD ARBITRAGE

IN FIXED INCOME MARKETS

In Chapter 6, we described the linkages between the zero and coupon instruments of the
spot market and the forwards and futures on deposit rates. We covered the synthetic
replication of spots from forwards and vice versa as well as the bootstrap of the zero-
coupon curve from forwards. In addition, in Chapter 2, we covered the bootstrap of the
zero-coupon curve from the spot coupon bonds. If any of the synthetic structures
described in these linkages do not result in the same exact financing rates as their
actual counterparts, temporary riskless profit opportunities arise.

Zero–Forward trades

Suppose we observe the following set of zero rates and a set of FRA rates (Table 7.1) on
a given day, all on a 30/360 basis.

Table 7.1 Spot and forward zero-coupon rates

Zero rates FRAs
(semi except *) (semi)

3 month* 2.454 47
6 month 2.500 0
1 year 2.520 0 6� 12 2.5400
18 month 2.550 0 12� 18 2.6100
2 year 2.575 0 18� 24 2.6030
30 month 2.594 6 24� 30 2.7200
3 year 2.621 3 30� 36 2.7550
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We use the familiar no-arbitrage condition for all successive zero rates (ignoring the
3-month rate): �

1þ zn

2

�
n=6

¼
�
1þ zn�6

2

�
n=6�1

�
1þ fn�1�n

2

�

where zn is a zero rate with a maturity of n months and fn�1�n is an FRA rate with a
start maturity of n� 1 months and end maturity of n months. For example, for the 18-
month zero, we use:�

1þ z18

2

�
3

¼
�
1þ z12

2

�
2
�
1þ f12�18

2

�
¼

�
1þ 0:0252

2

�
2
�
1þ 0:0261

2

�

resulting in a fair 18-month zero of z�18 ¼ 2:55%. This happens to be equal to the actual
18-month zero of 2.55%. But when we apply the equation one more time to compute
the fair 2-year zero, we get z�24 ¼ 2:5632% instead of the actual 2-year zero of 2.575%.
We have discovered an arbitrage opportunity. We cannot claim that the 2-year zero is
‘‘unfair’’ or ‘‘too high’’. We could just as easily claim that the 1-year zero and the
12� 18 FRA are ‘‘too low’’, producing a low synthetic rate. We are simply observing
that the 2-year zero can be manufactured from other instruments, or synthesized, to
yield less than the actual 2-year zero-coupon bond.

In our example, we have only one ‘‘misquote’’, and it happens to be the 2-year zero.
This can be verified by checking alternative ways of synthesizing zeros. The 30-month
zero rate could be synthesized from the 2-year zero and the 24� 30 FRA. It can also be
synthesized from a 1-year zero, 12� 18, 18� 24, and 24� 30 FRA, or any other
combination of lower maturity zeros and forwards. By performing the calculations
for all these combinations, we will discover that the only one that produces a rate
not equal to the actual is the one involving the 2-year zero. All the others will yield a
fair 30-month zero rate of exactly 2.5946%. The same is true for the 36-month zero
rate.

We can structure several distinct arbitrage strategies. All strategies will involve
lending at the 2-year rate of 2.575% and synthetic borrowing through a combination
of zeros and forwards. One example is to borrow for 3 years at 2.6213% and shorten
the borrowing maturity to 2 years, by receiving on the 24� 30 FRA at 2.72% and on
the 30� 36 FRA at 2.755%. The simplest strategy is to:

. Lend for 24 months by buying a 2-year zero yielding 2.575%.

. Borrow for 18 months by selling an 18-month zero yielding 2.55%.

. Extend the borrowing for another 6 months by agreeing to pay 2.603% on an
18� 24 FRA.

We match the amounts for future dates, leaving us with a borrowed amount in excess of
the lent amount as riskless profit. The limiting factor is the depth of the quotes. Suppose
that at most we can buy $100 million face value of the 2-year zero. We compute the rest
of the numbers working backwards from $100 million:

. The notional principal on the 18� 24 FRA will be 100,000,000/(1þ 0.026 03/2) =
$98,715,221.39.

. That will also be the face value of the 18-month zero for which we will receive

98,715,221:39=(1þ 0:0255=2)3 ¼ $95,033,648:12
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. The 2-year zero with a $100 million face value, yielding 2.575%, will cost us

100,000,000=ð1þ 0:025 75=2Þ4 ¼ $95,011,591:39

All cash flows in the future are matched. When the 18-month borrowing of
$98,715,221.39 matures we will pay it off by borrowing that amount in the 6-month
LIBOR market at the then-prevailing rate. However, by signing the 18� 24 FRA today
(to pay fixed) we are guaranteeing the effective rate on that borrowing (our net cost
including the FRA settlement amount) to be 2.603%. We will thus owe exactly $100
million in 2 years. That is exactly the face value of the 2-year zero-coupon we are
investing in today. Our riskless profit from the strategy is $22,056.73. The strategy is
a disguised cash-and-carry trade where we buy a 2-year bond in the cash market and
carry (finance) it by borrowing for 18 months. Against that we sell forward bonds by
agreeing to pay fixed. The same strategy executed with Eurodollar (ED) futures on 6-
month LIBOR, instead of FRAs, would involve selling 98.715 contracts at 97.397 (i.e.,
100.000� 2.603). We discuss in the next sections how the actual ED futures on 3-month
LIBOR are used in locking rates.

Coupon–Forward trades

To the extent that coupon bonds are packages of zero-coupon bonds and we have just
shown that zero-coupon bonds are packages of forwards, we can construct a two-layer
strategy involving coupon bonds traded against forwards. The arbitrage can arise when
coupons are mispriced relative to zeros, but we prefer to use forwards or futures, or
when coupons are mispriced relative to forwards. We discover the latter when we
observe par coupon rates, construct the discount curve, and discover that the latter
does not agree with the forwards and futures. Let us look at this case more closely.
Suppose that we obtain the following quotes (Table 7.2), all semi-annual on a 30/360

basis:

Table 7.2 Spot coupon and forward zero rates

Coupon rates FRAs
(semi) (semi)

6 month 2.5000
1 year 2.5199 6� 12 2.5400
18 month 2.5495 12� 18 2.6100
2 year 2.5628 18� 24 2.6030

Using the par coupon rates, we bootstrap the semi-annual zero-coupon (discount curve)
as described in Chapter 2. That is, the subsequent zero rates are backed out using the
following no-arbitrage equation:

cn=2

(1þ z6=2)
þ cn=2

(1þ z12=2)2
þ � � � þ cn=2

(1þ zn=2)n=6
þ 100

(1þ zn=2)n=6
¼ 100

with the first zero with a 6-month maturity being automatically equal to the first par
rate (i.e., Z6 ¼ 2:50% (( c6 ¼ 2:50)). For example, the 12-month zero is obtained
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from:

cn=2

(1þ z6=2)
þ cn=2

(1þ z12=2)2
þ 100

(1þ z12=2)2
¼ 2:5199=2

(1þ 0:0250=2)
þ 2:5199=2

(1þ z12=2)2
þ 100

(1þ z12=2)2
¼100

and so on. By following this procedure, we come up with the following (Table 7.3) set of
zeroes (FRAs repeated for completeness):

Table 7.3 Synthetic spot zeros and actual forward zeros

Zero rates FRAs
(semi) (semi)

6 month 2.5000
1 year 2.5200 6� 12 2.5400
18 month 2.5500 12� 18 2.6100
2 year 2.5750 18� 24 2.6030

As this happens to be the same as in the previous section, we can conclude that the 2-
year zero synthesized from coupon rates is too high relative to the 2-year zero synthe-
sized from forwards. Our strategy will involve lending at the high 2.575% rate for 2
years against borrowing at the 2.5632% rate for 2 years. Let us again assume $100
million as the principal of the synthetic 2-year zero. The first part of the strategy
remains the same. We:

. Borrow for 18 months by selling $98,715,221.39 face value of an 18-month zero
yielding 2.55% for $95,033,648.12.

. And extend the borrowing for another six months by agreeing to pay 2.603% on
$98,715,221.39 of an 18� 24 FRA.

This ensures that we will owe exactly $100 million in 2 years’ time. Against that, we
have to lend synthetically $95,011,591.39 on a zero basis for 2 years in the coupon
market. We:

. Buy $100 million face value of the 2-year 2.5628% par coupon bond and strip the
coupons.

. Sell 2.5628/2¼ $1.2814 face value of a 6-month zero (synthetic or real) yielding
2.50%.

. Sell 2.5628/2¼ $1.2814 face value of a 12-month zero (synthetic or real) yielding
2.52%.

. Sell 2.5628/2¼ $1.2814 face value of a 18-month zero (synthetic or real) yielding
2.55%.

. And sell 2.5628/2¼ $1.2814 face value of a 24-month zero (synthetic or real) yielding
2.575%.

Each sold zero, if synthetic, would involve additional trades in shorter maturity
coupons.

Exercise Assume that the sold zeros are synthesized from coupons. Refer to Chapter 2
to compute face amounts and the cost today. Verify that the total cost, netted against
the purchase of the $100 million 2-year coupon bond, is $95,011,591.39.
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7.5 DYNAMIC HEDGING WITH A EURO STRIP

The arbitrage strategies described in the last two sections when applied to longer
maturities can easily involve a large number of securities. A dealer executing many
trades back and forth a day might have to enter into hundreds of largely offsetting
synthetic hedges. This can be cumbersome and result in significant transaction costs. In
this and the next section, we describe two methods of reducing the dimensionality of the
hedge problem. We pretend that all securities, no matter what their maturities or
coupon structures, can be perfectly represented as sets of sensitivities to a few
common building blocks. The idea is analogous to our chessboard of contingent
claims of Chapter 1. All securities are viewed as subsets of the entire board, with
some squares overlapping and some not. Furthermore, the board consists of perhaps
only as few as 20 squares. Because of this oversimplification, the replication is not going
to be perfect. The hedge will deteriorate over time and will have to be continuously
rebalanced. But it will be extremely simple. In this section, the set of canonical hedges is
defined as the set of all ED futures contracts. In the following section, it is a set of a few
selected benchmark bonds. These dynamic hedging techniques are used widely by swap,
corporate bond, mortgage bond, and all option traders. The only thing different in each
case is the set of building blocks.
Let us consider the common way of dealing with short-term swaps. The technique is

called blipping the curve (i.e., blipping the ED futures inputs). This starting point is the
zero-coupon (discount) curve, obtained by bootstrapping the ED futures. ED futures
are assumed to be the most basic building blocks for all complex instruments; we can
synthesize all other instruments from ED futures. If a resultant synthesized instrument
yields a rate different from the actual one, then that rate can be viewed as ‘‘wrong’’ and
arbitrage exists. However, instead of computing the exact amount of each ED contract
needed for the synthetic side of the trade at the outset, the last step involves the
computation of the sensitivities (durations) of the instrument to a small change in
each ED futures rate, taken one at a time. Each time the ED rate is perturbed, or
blipped, the zero curve is rebootstrapped and the value of the synthetic is recomputed.
The present value changes relative to the base case (i.e., the sensitivities determine the
amount of futures to be entered into as hedges).
Suppose we have an opportunity similar to the one described previously, except we

only observe the following (Table 7.4):

Table 7.4 Spot zero rates and ED futures prices

Zero rates ED futures
(semi except *)

3 month* 2.454 47 3 month 97.47
6 month 2.500 0 6 month 97.47
1 year 2.520 0 9 month 97.47þ
18 month 2.550 0 12 month 97.40
2 year 2.5750 15-month 97.40
30 month 2.594 6 18-month 97.41
3 year 2.621 3 21 month 97.40
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where 97.47þmeans 97.475. ED futures allow us to lock in borrowing and lending rates
equal to 100 minus the ED price, quarterly compounded, for 3-month forward periods
starting on the futures expiry dates. By using the first zero rate with the maturity of 3
months and the futures rates starting with the 3-month futures rate (which locks in the
rate of 100� 97.47¼ 2.53% for the 3� 6 period) and using all the subsequent futures
rates, we can compute, using the familiar recursive formula from Section 6.7; with
n ¼ 3, 6, . . . , 24:

�
1þ zn

4

�n=3

¼
�
1þ zn�3

4

�n
3
� 1�

1þ fn�3�n

4

�

the following set (Table 7.5) of quarterly compounded synthetic zero rates and their
semi-annual equivalent rates:

Table 7.5 Actual and synthetic zero rates

Zero rates Actual Synthetic Synthetic
semi semi quarterly

3 month 2.454 47
6 month 2.5000 2.5000 2.492 2
9 month 2.504 8
12 month 2.5200 2.5177 2.509 9
15 month 2.527 9
18 month 2.5500 2.5480 2.539 9
21 month 2.547 1
24 month 2.5750 5.5618 2.553 7

We added the actual semi-annual zero rates in the first column. The biggest discrepancy
between the actuals and the synthetics is in the 24-month maturity.

Let us attempt the usual static arbitrage first. To profit, we borrow for 2 years in the
synthetic market (by borrowing for 3 months and locking in the rates for the rollover
borrowings in the futures market) at 2.5618% and lend in the actual zero market (by
buying a 2-year zero) at 2.575%. We borrow more than we lend for the same face value
(today’s discounted value of $1 to be received 2 years from today would be higher using
the lower synthetic rate than that using the higher actual rate) locking in a sure profit.
On the face value of $100 million that profit would be:

100,000; 000=(1þ 0:025 618=2)4 � 100,000,000=(1þ 0:025 750=2)4 ¼ $24,707:60

As before, we work backwards from the $100,000,000 at 2 years to compute the
principal, or equivalently the number of contracts, for each ED futures by discounting
sequentially at the implied forward rate. The results are summarized in Table 7.6:
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Table 7.6 Face amounts for forward borrowing

Period Borrow at Face at No. of
start time end time cars

0� 3 95,036,299 95,619,458
3� 6 95,619,458 96,224,251 95.62
6� 9 96,224,251 96,832,870 96.22
9� 12 96,832,870 97,444,127 96.83
12� 15 97,444,127 98,077,514 97.44
15� 18 98,077,514 98,715.018 98.08
18� 21 98,715,018 99,354,198 98.72
21� 24 99,354,198 100,000,000 99.35

We reborrow the amounts shown in the first column at the start of each period to pay
off the loan maturing from the immediately preceding period at the then-prevailing 3-
month rate, but we have locked in the net borrowing cost equal to that implied by
today’s futures prices by shorting futures today. Against this synthetic borrowing
strategy, we buy a 2-year zero yielding 2.575% with a face value of $100,000,000 for
$95,011,591.39.
Let us now illustrate dynamic arbitrage with the same replicating instruments. The

essence of the curve-blipping method is that instead of statically locking in the profit
today, we commit to a dynamic strategy over the life of the trade. The dynamic strategy
means selling a strip of futures today and rehedging (buying back some or selling more)
every day between now and the maturity of the trade (2 years). Dynamic rehedging will
generate profits and losses over time. The present value (PV) of the difference between
the spot trade in the actual security and the sum of all the profits/losses over time is
equal to the computed lockable profit. We book a paper profit today, but we realize it
over time.
Let us take a 2-year zero trade and compute the sensitivity of the value of the 2-year

zero to a 1 basis point (bp) change in the 12-month ED price (¼ rate). Before the blip
the ED rate is 97.40. We assume that the synthetic zero rates are fair. The fair value of
$100 million to be received at 2 years is thus $95,036,298.99. Now let us perturb the 12-
month ED price to be 97.39 and recompute the set of synthetic zero rates. These
become (Table 7.7):

Table 7.7 Synthetic zero rates with a 1 bp
blip to the 12-month ED price

Zero rates Actual Synthetic Synthetic
semi semi quarterly

3 month 2.4545
6 month 2.5000 2.5000 2.4922
9 month 2.5048
12 month 2.5200 2.5177 2.5099
15 month 2.5299
18 month 2.5500 2.5496 2.5416
21 month 2.5485
24 month 2.5750 2.5631 2.5549
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The fair value of $100 million to be received at 2 years changes to $95,033,938.48. The
dollar sensitivity of the 2-year zero price to the 1 bp blip is $2,360.51. Given that each
futures contract has a sensitivity of $25 per 1 bp, if we short 2,360.51/25¼ 94.42 con-
tracts today we will have immunized the value of our 2-year zero to a 1-bp change in the
12� 15 forward rate.

We perform the same sequence of calculations for each futures contract, one at a
time, arriving at a set of futures contract amounts to be shorted. That is, for each
contract, we blip the futures price by �0:01, we reconstruct the zero curve, we
revalue the 2-year zero with the face value of $100,000,000, take the difference
between its new blipped value and the original value of $95,036,298.99, and divide
the resultant dollar sensitivity by $25 to get the number of futures to be traded. The
final result is given in Table 7.8:

Table 7.8 Hedge of a 2-year zero with an ED futures strip

Futures Recalculated Sensitivity No. of
blipped PV of 2-year cars

zero

3m 95,033,938 2,361 94.44
6m 95,033,938 2,361 94.44
9m 95,033,938 2,361 94.44
12m 95,033,938 2,361 94.42
15m 95,033,938 2,361 94.42
18m 95,033,938 2,361 94.42
21m 95,033,938 2,361 94.42

Just like in the static lock-in arbitrage strategy, at the outset we would short an entire
strip of ED futures with the amounts shown and sell a 3-month zero (to buy the 2-year
zero). But we would also commit to perform the same blipping procedure every time
futures prices change (for simplicity assume every day) for the next 2 years. Each time
we would compute a new set of contract numbers, compare it with the previous set, and
make adjustments to our positions by trading contracts that need rebalancing. The
logic is that we are buying the actual 2-year zero unfairly cheaply to yield 2.575%,
and dynamic trading will result in cumulating the profit from converging to the fair
value. The convergence is guaranteed by maturity when the 2-year’s price will be 100.

With the simple cash-and-carry trade like ours, the dynamic hedge will not be very
dynamic. We start by shorting futures in the amounts very close to those computed in
the static lock-in. The subsequent adjustments are most likely going to be negligible and
our daily profits/losses close to 0. In essence, we are immunizing against fair movements
in the value of the actual 2-year (due to interest rate changes), incurring no profits or
losses, and waiting for the 2-year to adjust its value in the market up to the fair level.
Once that happens, our long position will gain in value more than the dynamic hedge
will lose. We can then lift the hedge, sell the zero, and walk away with the profit. (Of
course, it can be that the 2-year will not adjust, but the hedge will adjust down, resulting
in profit coming from the short side.) Sometimes we have to wait for the full adjustment
all the way to maturity.

The blipping method explained here would rarely be used with a one-off, statically
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lockable cash-and-carry arbitrage. However, for large swap or bond portfolios, with
non-coinciding maturity and coupon dates, complex coupon formulae, and mismatched
day-count conventions and coupon frequencies, it is a convenient way of reducing the
number of hedge instruments to a bare minimum and to ensure that intermediate points
on the yield curve are hedged. As the blipping and hedging is performed with a small set
of instruments, the replication requires adjustment over time.
The computation of ED sensitivities is also a way of characterizing disparate port-

folios in the same terms. Different portfolios, reduced to the same set of sensitivities,
can be compared as to their exposure to different points on the yield curve. This is a
more detailed characterization than that obtained by portfolio duration calculations
(here we have price values of basis points, or PVBPs, to all quarterly points of the yield
curve).
The discussion in Chapter 9 will make it clear that the blipping method is a version of

the dynamic delta-hedge used by option dealers applied to simpler non-contingent
securities.

7.6 DYNAMIC DURATION HEDGE

A dynamic duration hedge is a simplified version of the strip hedge, relying on the same
principle. We illustrate it by considering a rather obvious example. We get quotes on
par coupon bond yields from a dealer:

5-year 3.00%
7-year 5.00%
10-year 3.00%

Clearly the 7-year seems to be an obvious candidate for purchasing and the 5-year and
10-year for shorting. To profit, first we compute the durations of the bonds. Let us
assume that they are the following:

5-year 4.3
7-year 6.1
10-year 8.5

To be precise we would want to compute the duration of the 7-year in terms of its
sensitivity to the 5-year and the 5� 10 forward and then reconstitute it in terms of the
duration with respect to the 5-year and the 10-year. Let us ignore non-parallel curve
movements.
We buy $100 million of the 7-year. This position will change in value by 6.1 bp per

1 bp change in yields in the opposite direction. Based on the computed durations we
short $90.5 million of the 5-year and $26 million of the 10-year resulting in zero net
sensitivity to yield changes (Table 7.9):
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Table 7.9 Duration hedge of a 7-year bond with 5- and 10-year bonds

Bond Duration Face Sensitivity

5-year 4.3 �90.5 �3.89
7-year 6.1 100 6.10
10-year 8.5 �26 �2.21

The next day, as yields change, we recompute the durations and the face amounts so
that we are left with no exposure to yield changes. Every day we realize a net profit or
loss on the portfolio which is close to 0 since the portfolio is immunized against yield
curve movements. We are buying time waiting for a big adjustment in yields. This can
be by the 7-year moving down to yield 3%, realizing a big net gain in our long position,
or the 5- and/or 10-years moving up to yield closer to 5%, realizing a big net gain in our
short positions. If the movement is not big but gradual, we keep holding the position,
rebalancing continuously. Over time we accumulate a profit.
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___________________________________________________________________________________________________________________________________________________________________________ 8 __________________________________________________________________________________________________________________________________________________________________________

________________________________________________________________________________________________________________________ Swap Markets _______________________________________________________________________________________________________________________

A swap is an agreement to exchange two streams of cash flows: one paid and one
received. These streams can be customized to suit the parties involved. Usually, they
are designed to resemble coupon interest streams on bonds. As such, the swap is a
synthetic exchange of two non-identical securities. The value of the swap is equal to the
difference in the values of the two securities. A swap can also be dissected one cash flow
exchange at a time and defined as a set of interest rate or currency forwards packaged
together to create bond-like coupon exchanges (swaplets). From this perspective,
forwards (future cash flow exchanges) are the building blocks for swaps, and the
value of the swap is equal to the sum of the present values of all the exchanges. The
valuation of swaps can be made simple or difficult depending on how cleverly we exploit
this dual nature of swaps.
To make things easy, we do not immediately jump to definitions, but instead start

this chapter with common applications of swaps in corporate finance decisions. We turn
to flow diagrams to abstract from the details of cash flow computation. We begin with
the starkest example of a currency swap, where the two cash flow streams are in two
different currencies. We define a plain vanilla interest swap, the most common type of
swap, where the two streams are in the same currency, but one is based on a fixed rate
and the other on a floating rate. Then we discuss the pricing and hedging of swaps. The
pricing involves computing the present values of both sides of the swap. The hedging is
done by blipping the underlying discount curves and computing the sensitivities and
hedge ratios with respect to a set of predefined hedge instruments. Once we understand
the pricing basics, we look at more complicated applications of swaps, where they are
combined with each other to form complex bonds or they combine asset classes as in
equity swaps (synthetic exchanges of bonds for stock baskets). We end with swap
market statistics. These show the enormous growth of swap markets in the last 20
years. By some measures, swaps now represent the largest segment of all financial
markets.

8.1 SWAP-DRIVEN FINANCE

A corporation that has decided to raise new debt finance faces many choices. It can go
to the bank to get a credit line or a revolving loan. The bank (or a syndicate of banks)
will set the maximum amount the corporation can borrow and the final maturity of its
commitment. Every month or quarter, the corporation will be able to draw the amount
of funds equal to the limit amount or less. If it chooses to draw the funds, it will agree to
pay an interest rate tied to the short-term borrowing rate, like Prime in the U.S.



domestic credit market or LIBOR in the Eurocurrency market, plus a spread reflecting
the corporation’s credit rating. The corporation will also pay a small fee per month or
quarter for the unused amount of funds, simply for the fact that the bank stands ready
to provide the funds on demand (commitment fee). From the bank’s perspective, this
arrangement will entail that, any time the corporation draws the loan, the bank will
turn to money markets to borrow short term to fund it. If the corporation reduces the
level of funds used, the bank will repay the borrowed funds. If the corporation keeps
borrowing, the bank will roll over its obligations and borrow new funds. The interest
rate that the corporation is charged and the bank incurs in the money market floats
month to month or quarter to quarter, depending on rollover rates.

Instead of going to the bank, the corporation may decide to issue bonds directly in
the credit markets with the help of an investment banker. Here the corporation faces a
few choices. It can issue a fixed coupon bond or a floating coupon bond in the domestic
market. It can issue a fixed or a floating coupon bond in a foreign market. It can issue a
bond with a complicated, formula-driven coupon structure or zero-coupon, formula-
driven, principal structure. Apart from the corporation’s exact timing and cash flow-
matching needs, the structure of the debt will depend on the relative cost of the
alternatives.

Suppose a French company, in desperate need of new money, has borrowed heavily
in France in the past and French investors are not demanding new bonds; but American
investors are demanding new bonds and are willing to accept an interest rate 10 bp
lower than on comparable credits, simply to be able to diversify their risks. Suppose the
Americans want a floating coupon bond because they perceive their interest rates low
by historical standards and want to be able to benefit from potential rises in interest
rates. Ideally, the company would like to borrow fixed in France as most of its cash
flows are relatively constant and most of its customers pay in euros. Can the company
benefit from the American appetite, but have its liabilities tailored to its needs?

Enter the swap market. The company can sell U.S. dollar-denominated floating
coupon bonds in the U.S. and enter into a floating dollar–fixed euro currency swap
with a global bank, matching the dates of swap cash flows to the bond coupon dates.

More often than not, the process will work in reverse. Large corporations are on a
continuous hunt to discover cheap sources of finance, whether they need it or not. The
relative cheapness depends on swap rates offered to convert the available source
(floating dollar) into a desirable one (fixed euro). The attractiveness of the swap rates
may make the new issuance desirable, potentially to retire previously issued debt at a
higher cost. This is referred to as swap-driven finance.

Fixed-for-fixed currency swap

A U.K.-based company wants to issue new debt with a maturity of 5 years to finance an
expansion of its American operations. The company is relatively unknown in the U.S.
and there is not much demand currently for its debt in the U.S. markets. The company
is expecting that the funds to repay the new debt issue would come from its North
American operations.

Suppose the current exchange rate is $1.50/£ and the company’s credit rating is AA
(i.e., the same as that reflected in swap rates). The company needs to raise $150 million
now. We observe the following zero-coupon interest rates in the U.S. and U.K. (rates
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are usually quoted annual in the U.K. and semi-annual in the U.S., we show both
equivalents):

Table 8.1 Zero rates in the U.K. and U.S.

Term Zero rates Zero rates
—————————————— ———————————————
U.K. semi U.S. semi U.K. annual U.S. annual

6m 3.000 000 2.200 000 3.022 500 2.212 100
1y 3.200 000 2.450 000 3.225 600 2.465 006
18m 3.400 000 2.700 000 3.428 900 2.718 225
2y 3.600 000 2.950 000 3.632 400 2.971 756
30m 3.800 000 3.200 000 3.836 100 3.225 600
3y 4.000 000 3.450 000 4.040 000 3.479 756
42m 4.200 000 3.700 000 4.244 100 3.734 225
4y 4.400 000 3.950 000 4.448 400 3.989 006
54m 4.600 000 4.200 000 4.652 900 4.244 100
5y 4.800 000 4.450 000 4.857 600 4.499 506

By the arbitrage arguments of Chapter 2 imply that if the company were to issue 5-year
coupon bonds and wanted to sell them at par, it would have to offer the following
coupon rates:

Table 8.2 Five-year bond coupon rates

U.K. U.S.

Semi 4.722 118 4.359 746
Annual 4.780 222 4.409 975

Suppose that investors do not demand U.S. dollar bonds from the company. If the
company were to issue them, they would demand rates higher than 4.359 746% semi.
The company can obtain dollar financing at that rate by issuing U.K. bonds and
swapping their cash flows into dollars. The company issues £100 million face value
of 4.780 222% annual coupon bonds (or 4.722 118% semi). For the 5-year 4.780 222%
bond, it receives from investors £100 million; the bonds sell at par. This obligates the
company to the following set of coupon payments:

Table 8.3 GBP payments

1y 4.780 222
2y 4.780 222
3y 4.780 222
4y 4.780 222
5y 104.780 222

The company exchanges the £100 million received from the sale of the bonds into $150
million at today’s exchange rate of $1.50/£. At the same time, the company enters into a
swap agreement with a financial institution to exchange a stream of GBP-denominated
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cash flows for a stream of USD-denominated cash flows. Specifically, it agrees to the
following schedule of cash flows:

Table 8.4 Five-year fixed $-fixed £ swap

Receive in GBP Pay in USD

1y 4.780 222 6.614 962
2y 4.780 222 6.614 962
3y 4.780 222 6.614 962
4y 4.780 222 6.614 962
5y 104.780 222 156.614 962

The swap receipts are identical to the coupon and principal payments owed on the
bonds and will offset with each other, leaving the company with zero net GBP cash
flows. The USD payments are equivalent to 4.409 975% coupon and principal pay-
ments on a $150-million face value bond.

The dealer will not charge anything (or pay anything) to enter into this swap with the
company because the present value of the USD stream is equal to $150 million (based
on the fair par coupon rate in USD) and the present value of the GBP stream is equal to
£100 million (based on the fair par coupon rate in GBP), as each is the present value of
a par coupon bond and the two present values are equal to each other based on today’s
exchange rate of $1.50/£.

With the bond and the swap in place, the company’s net obligations are identical to
those of a USD $150-million, 5-year, 4.409 975% annual coupon bond. The net of the
transactions is summarized in the following diagram.

Figure 8.1 Summary of the net of transactions.

The receipts from the swap counterparty are passes to the bond investors. What is left is
the dollar obligation in the form of a dollar coupon stream and principal payment at
the end.

Note that the scheduled swap cash flows for year 5 consist on both sides of the swap
of the regular coupon interest and the principal repayment. The company’s coupon
cash flow is £4.780 22 million on the receive side and $6.614 962 (4.409 975% on $150
million) on the pay side. The principal exchange is £100 million on the receive side for
$150 million on the pay side. In currency swaps, the principal exchange at the end of the
swap is standard, unless specifically deleted in the swap agreement. In interest rate
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swaps, the principal exchange never takes place as it is in the same currency and is an
exact zero-flow offset.
Technically, even though swaps can be easily customized to customers’ needs, they

follow certain conventions. In our example, if the company wanted to replicate a dollar
bond exactly which would have had semi-annual coupons, as is common with U.S.
corporate bonds, it would have most likely issued a GBP bond and swapped it into a
GBP–USD, fixed–fixed swap with annual GBP receipts and semi-annual USD pay-
ments. For the swap to have been par (i.e., be entered into with no compensating
payment by either counterparty), the swap’s USD rate would have to be set at
4.359 746% semi-annual, instead of 4.409 975% annual. Thus the company would
have ended up with annual GBP cash flows on the receive side, which it would have
passed on to its bondholders, and semi-annual USD cash flows on the pay side, its net
liability. The cash flows would have been as follows (Table 8.5).

Table 8.5 Five-year fixed $–fixed £ swap

Receive in GBP Pay in USD

6m 3.269 809
1y 4.780 222 3.269 809
18m 3.269 809
2y 4.780 222 3.269 809
30m 3.269 809
3y 4.780 222 3.269 809
42m 3.269 809
4y 4.780 222 3.269 809
54m 3.269 809
5y 104.780 222 153.269 809

For many counterparties, currency swaps are a way of speculating on currency rates
and interest rate differentials. By swapping into dollars, the company may be gambling
that the dollar is going to weaken so that the GBP value of its USD liabilities is going to
decrease. It may also be fearing that the interest rate differential between the rates in the
U.K. and in the U.S. may decrease without an offsetting currency move, so the
company wants to lock it in today.

Fixed-for-floating interest-rate swap

Let us alter the above example to present a rationale for interest-rate swaps: different
cost of capital in floating and fixed rate markets in the same currency. Our U.K.
company now wants to issue new fixed rate debt with a maturity of 5 years to
finance an expansion of its U.K. operations into a government contract business.
The funds to repay the new debt issue would come from these new operations. The
company knows the schedule of government payments it is to receive. The company has
previously used bank loans and floating rate debt to match its liabilities to the general
state of the economy. Investors are comfortable evaluating the company’s floating rate
debt. The company reckons that if it were to issue fixed rate debt it would have to pay a
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premium in the form of a coupon rate above that for corporations with a similar credit
rating. The solution is to issue a floating rate bond and swap it into a fixed rate liability.

The company issues a 5-year, £100 million bond whose annually adjusted interest
rate is equal to 12-month LIBOR (London interbank offered rate). Recall from prior
chapters that such a floating rate bond prices to par as long as each coupon rate is set at
the beginning of the interest accrual period and each interest payment is made at the
end of the accrual period. This is because the bond is equivalent to an annually
revolving loan where the loan is regranted every year at the then-prevailing 1-year
rate. The company thus receives £100 million (par or face value) for the bond.

The company also enters into a £100-million, notional principal, fixed-for-floating
interest rate swap whereby it agrees to receive an annual floating coupon stream equal
to LIBOR and pay an annual 4.780 222% fixed rate coupon stream. The flows are
summarized in Figure 8.2.

Figure 8.2 Summary of flows.

The company’s LIBOR coupon flows, to the bond holders and from the swap counter-
party, are unknown in advance. But they will offset each other exactly. The fixed
payments on the swap and the face value repayment to the bondholders leave the
company with a net liability equivalent to a fixed rate bond.

Viewing the swap as an exchange of two bonds, all the floating rate coupon receipts
on the swap plus £100 million received once in year 5 represent an asset priced to par
today. The 4.780 222% fixed coupon payments on the swap and the £100 million paid
once to the counterparty in year 5 represent a liability priced to par today. No payment
to or receipt from the dealer is needed today to compensate for the difference in the
present values. The one-time £100-million flows cancel each other and are not made.
The remaining flows, floating on the receive side and fixed on the pay side, constitute
the swap.

Fixed and floating rate cash flows do not have to have the same periodicity. Often
their structure is determined by market convention. So is the day-count used to
compute the exact flows. In our example, it is more likely that the floating rate bond
and the floating interest receipts on the swap would be quarterly, while the fixed coupon
on the swap would be semi-annual or annual for GBP-denominated bonds and swaps.
In the U.S., the fixed coupon would typically be semi-annual while the floating coupon
would be set and paid quarterly. In the U.S., the fixed coupon would use a 30/360 day-
count while the floating LIBOR side would use Act/360. The quoted semi-annual swap
rate would reflect these conventions. Swaps following a market convention for a given
currency’s interest rates are labeled plain vanilla.

For many counterparties, interest rate swaps are a way of speculating on interest
rates. By swapping into fixed, the company may be gambling that the 5-year rates are
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going to rise, so it wants to lock the rate in today. (We could also view a decision not to
swap as a gamble on the rates going down.)

Off-market swaps

Both prior examples assumed no exchange of any compensatory cash flow upfront.
That was due to the fact that the bond issue and the swap occurred at the same time and
the rates on the swap were set to equal current market rates. This need not be the case.
Bond issuers can choose to come to the swap market at any time to alter the structure of
their liabilities back and forth between fixed and floating and one currency vs. another.
This may be because of their internal cash flow needs or because they want to speculate
on the direction of currency and interest rates.
Suppose our U.K. company with American operations issued a 5-year, £100-million,

4.780 222% fixed rate GBP bond a year ago. At that time, the company converted the
£100 million proceeds into $150 million to invest in the project, but as it anticipated the
widening of the interest rate differential between the U.K. and U.S. it left the bond issue
unswapped. Suppose today the foreign exchange (FX) rate is still $1.5/£, but interest
rates in the U.K. have risen by 50 basis points (bp) while interest rates in the U.S. stayed
the same, as in Table 8.6.

Table 8.6 New zero rates in the U.K. and U.S.

Term Zero rates Zero rates
—————————————— ———————————————
U.K. semi U.S. semi U.K. annual U.S. annual

6m 3.500 000 2.200 000 3.530 625 2.212 100
1y 3.700 000 2.450 000 3.734 225 2.465 006
18m 3.900 000 2.700 000 3.938 025 2.718 225
2y 4.100 000 2.950 000 4.142 025 2.971 756
30m 4.300 000 3.200 000 4.346 225 3.225 600
3y 4.500 000 3.450 000 4.550 625 3.479 756
42m 4.700 000 3.700 000 4.755 225 3.734 225
4y 4.900 000 3.950 000 4.960 025 3.989 006
54m 5.100 000 4.200 000 5.165 025 4.244 100
5y 5.300 000 4.450 000 5.370 225 4.499 506

These rates imply that the 4-year par swap rates in the U.K. and the U.S. are:

Table 8.7 Four-year bond coupon rates

U.K. U.S.

Semi 4.849 306 3.898 814
Annual 4.910 531 3.939 253

The company enters into a 4-year GBP–USD fixed–fixed swap. The principal is £100
million on the receive side and $150 million on the pay side. The coupon on the receive
side is not the current on-market 4.910 531% rate. Rather, the company asks the
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counterparty to match the bond coupon rate of 4.780 222% which is now off-market
(i.e., unfair). As it is willing to accept a rate that is lower than the fair market rate, the
company will have two choices (the dealer should be indifferent as to which one it
chooses). One will be to pay the current on-market USD rate on the pay side of the
swap, but receive a one-time payment from the dealer to compensate the company for
the present value differential. The other choice is to receive no payment today, but to
pay a lower USD rate on the pay side of the swap. Let us examine each choice.

Receive an upfront payment for an off-market swap with a positive PV

The payment will be equal to the present value of the difference between the 4-year par
swap rate and the off-market 4.780 222% rate. Using the above zero rates:

Table 8.8 Present value of coupon differences (on- vs. off-market)

Payment difference Present value

1y 0.130 309 0.125 618
2y 0.130 309 0.120 150
3y 0.130 309 0.114 024
4y 0.130 309 0.107 369

Sum of present values 0.467 161

this turns out to be £467,161. This number is also equivalent to £100 million, which is
the value of a 4-year 4.910 531% par coupon bond, minus £99.532 839, which is the
value of a 4-year 4.780 222% coupon bond:

Table 8.9 Present value of the off-market bond’s cash flows

Payments Present value

1y 4.780 222 4.608 143
2y 4.780 222 4.407 538
3y 4.780 222 4.182 810
4y 104.780 222 86.334 348

Sum of present values 99.532 839

The present value of the USD side remains $150 million, which is equivalent to £100
million.

Receive nothing upfront and pay a lower USD rate

Instead of being taken out, the £467,161 can be used to lower the present value of the
USD side of the swap by $700,742. That is, the company will pay a USD coupon rate
such that the present value of those payments and the principal repayment will be equal
to $149.299 258 million.
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Table 8.10 Present value of the cash flows of a $150 million
3.812 193% coupon bond

Payments Present value

1y 5.718 289 5.580 724
2y 5.718 289 5.392 993
3y 5.718 289 5.160 597
4y 155.718 289 133.164 944

Sum of present values 149.299 258

The coupon rate is 3.812 193%. Note that the rate is lower than the par rate of
3.939 253% by 0.127 060%, which is not equal to the 0.130 309% U.K. rate differential.
The company need not stop here. It could take out £467,161 or lock in its USD

coupon to a low rate of 3.812 193%, and then further swap into floating USD by
entering into a 4-year USD fixed-for-floating interest rate swap. This additional step
would leave it with a floating dollar liability for the remainder of the term or until it
decided to swap again. If the company decided to take £467,161 out of the currency
swap, then it would enter into an interest rate swap to receive a par rate of 3.939 253%
in USD and to pay LIBOR flat. If it did not take any money out and locked in an off-
market 3.812 193% in USD on the fixed–fixed currency swap, then it could enter into a
USD interest rate swap to receive 3.812 193% and pay LIBOR minus a spread whose
present value in today’s terms is equal to $700,742. The same dealer could offer a
combined package of the two swaps in one GBP fixed–USD floating currency swap.

8.2 THE ANATOMY OF SWAPS AS PACKAGES

OF FORWARDS

So far we have viewed swaps as exchanges of two fictitious bonds. In the fixed–fixed
currency swap, it was an exchange of a fixed rate bond in one currency for a fixed rate
bond in another currency. In a plain vanilla interest rate swap, it was an exchange of a
fixed rate bond for a floating rate bond in the same currency. In a fixed–floating
currency swap, it was an exchange of a fixed rate bond in one currency for a floating
rate bond in another currency. If the fictitious bonds’ coupons were set to match market
par rates, then the exchanges were made with no upfront payments. If one or both of
the exchanged bonds’ coupons were not set to par rates, then the swap was off-market
with a potential upfront payment or coupon adjustment to compensate for the devia-
tion of the present value of the bonds from par.
Instead of treating swaps as exchanges of streams of cash flows, we will now look at

each cash flow exchange. In this light, we will treat swaps as strings of consecutive
forward contracts. For market swaps, each forward may be off-market, but the total
sum of the mark-to-markets (MTMs) (present values) of the component forwards will
sum to zero. For all swaps, the present value of the swap will be equal to the sum of the
MTMs of the building block forwards. This way of looking at swaps will invoke
the same arbitrage relationships as when we built coupon bonds from forward-rate-
agreements (FRAs) and FX forwards from deposits.
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Fixed-for-fixed currency swap

Let us examine the currency swap entered into by our U.K.-based company with
American operations. The cash flows on the swap are given in Table 8.11:

Table 8.11 Five-year fixed $–fixed £ swap

Receive in GBP Pay in USD

1y 4.780 222 6.614 962
2y 4.780 222 6.614 962
3y 4.780 222 6.614 962
4y 4.780 222 6.614 962
5y 104.780 222 156.614 962

The forward FX rates the company is locking in are equal to the coupon ratios for the
coupon related flows and to the original spot $1.50/£ rate for the final principal
exchange:

Table 8.12 Forward FX rates locked in for coupon and
principal exchanges

Receive in GBP Pay in USD FX forward $/£

1y 4.780 222 6.614 962 1.383 819
2y 4.780 222 6.614 962 1.383 819
3y 4.780 222 6.614 962 1.383 819
4y 4.780 222 6.614 962 1.383 819
5y 4.780 222 6.614 962 1.383 819
5y 100.000 000 150.000 000 1.500 000

These are not real forwards quoted by anyone. The real forwards that would be quoted
can be arrived at using the spot rate and pairs of zero-coupon rates in the covered
interest rate parity (CIRP) relationship. Using these actual FX forward quotes, we can
calculate the GBP equivalent of the USD payments that can be locked in today, the net
GBP cash flow for each future date that can be locked in today, and thus the MTM on
each forward cash flow exchange locked in the swap. The MTM is the amount the
company would have to pay upfront if it were to enter into each GBP-for-USD cash
flow exchange separately in the FX forward market.

Table 8.13 Swap MTM broken down to individual FX forward MTMs

Receive in Pay in CIRP: FX £ equivalent £ equivalent FX forward
GBP USD forward $/£ of $ outflow received–paid MTM in £

1y 4.780 222 6.614 962 1.488 948 4.442 710 0.337 512 0.326 965 523
2y 4.780 222 6.614 962 1.480 936 4.466 743 0.313 479 0.291 888 597
3y 4.780 222 6.614 962 1.475 898 4.481 991 0.298 231 0.264 820 891
4y 4.780 222 6.614 962 1.473 784 4.488 421 0.291 801 0.245 177 133
5y 4.780 222 6.614 962 1.474 561 4.486 054 0.294 168 0.232 057 754
5y 100.000 000 150.000 000 1.474 561 101.725 158 �1.725 158 �1.360 909 897

Sum of MTMs 0.000 000
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The sum of all the MTMs is equal to 0. The 5-year swap can be viewed as a package of
six forwards to sell USD forwards for GBP forwards with the amounts set by the swap
cash flow schedule as shown in the table. Each forward is off-market (i.e., it has a non-
zero PV). The first five have a positive PV to the company. Any dealer willing to take
the other side would have to be compensated by upfront receipts of the MTMs of the
forwards. For example, for year 1 the company is to receive £4.780 222 million and pay
$6.614 962 million, which at today’s forward FX rate is equivalent to £4.442 710
million. Thus the company is scheduled to receive a bargain positive flow of
£0.337 512 million. It would have to compensate a dealer by paying him the present
value of that amount or £0.326 966 million. The same logic applies to the rest of the
flows. The last component forward is a large negative PV contract: the company is to
receive £100 million and pay £101.725 158 million. To accept that, the company would
have to be paid £1.360 910 million. Today, the net of all settlements of off-market
forwards is 0.

Fixed-for-floating interest rate swap

Let us turn to the interest rate swap entered into by our U.K. company that issued a
floating rate bond to investors. To convert its liabilities to fixed, the company agreed to
the following schedule of cash flows.

Table 8.14 Pay fixed–receive floating GBP swap

Receive in GBP: Pay in GBP
12-month LIBOR� 100 million
——————————————
Set at time Paid at time

1y 0 1 4.780 222
2y 1 2 4.780 222
3y 2 3 4.780 222
4y 3 4 4.780 222
5y 4 5 4.780 222

Taking each cash flow exchange at a time, an agreement to receive a floating rate set
and paid in such a way in exchange for paying a fixed rate at the end of the interest
accrual period is equivalent to an FRA. Even though we do not know the future cash
flows (e.g., the third one will be known in 2 years to be paid in 3 years), we know the
equivalent fixed rate that an FRA dealer would let us eliminate that uncertainty into at
no cost. That rate is the forward 1-year rate for the interest accrual period. We can
compute the market forward rates for each period as equivalent to floating rate receipts.
Then we can proceed in a way analogous to what we did with the currency swap. We
can compute the differences between the forward-equivalent receipts and the scheduled
fixed rate payments, and mark-to-markets on these fixed–fixed exchanges by discount-
ing the differences to today. These amounts are how much the company would have to
pay a dealer to enter into the exchanges of floating-for-fixed (the floating-for-fixed
forward costs nothing as that is a fair FRA, but the fixed forward for fixed
4.780 222% has a non-zero PV).
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Table 8.15 Swap MTM broken down to individual FRA MTMs

Receive in GBP Pay in GBP Forward rate: Equivalent MTM: PV of
zero PV equivalent received–paid differences
of LIBOR receipts

1y LIBOR set at 0 4.780 222 3.225 600 �1.554 622 �1.506 043
2y LIBOR set at 1 4.780 222 4.040 803 �0.739 419 �0.688 493
3y LIBOR set at 2 4.780 222 4.860 016 0.079 794 0.070 855
4y LIBOR set at 3 4.780 222 5.683 244 0.903 022 0.758 737
5y LIBOR set at 4 4.780 222 6.510 494 1.730 272 1.364 944

Sum of MTMs 0.000 000

The sum of the MTMs is 0.
Another way to look at this swap is to recognize that each LIBOR receipt balanced

against a fixed forward rate payment has a zero MTM (fair FRA). The remainder of the
fixed payment to be made over the forward has value to the swap parties. For example,
for the second year the receipt of the floating LIBOR set one year from today to be paid
1 year later is covered by £4.040 803 million out of the total of £4.780 222 million paid.
The excess of £0.739 419 paid to the swap counterparty 2 years from today can be
settled today by an immediate receipt of £0.688 493. The same logic applies to all five
exchanges. In early years, these have a negative PV to the company; in the last 3 years,
they have a positive PV to the company as the forward equivalent of floating receipts
greatly exceeds scheduled fixed payments.

The interest rate swap can thus be viewed as a package of off-market FRAs settled
through a set of upfront payments summing up to 0 or a package of on-market FRAs
and a string of discount bonds with face values equal to the differences between the
stated fixed rate and the forward rates.

Other swaps

It can be stated in general that any swap, currency, interest rate or other can be viewed
as a package of forwards with consecutive maturity dates. The forwards in the swap are
off-market, and the sum of the MTMs is equal to the PV of the swap. If the swap is an
on-market or a par swap, then the sum of the MTMs on the constituent forwards is
equal to zero.

Swap book running

An interest rate swap dealer may trade many swaps a day paying fixed on some and
receiving fixed on others. Similarly, a currency swap dealer may, in any given currency,
pay on some swaps and receive on others. Both will deal with hundreds of pay and
receive dates, a variety of quoted rates, on- and off-market, several day-counts, etc.
Some pays and receives offset each other partially and some are for similar dates. The
dealers are only left with residual positions to expose them to interest rate or currency
risks.

At the time of each swap, recognizing that swaps are synthetic packages of forwards,
dealers can eliminate their exposure by entering into reverse synthetic transactions in
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the forward markets. For example, a fixed rate payer on an interest rate swap may enter
into a string of FRAs on which he agrees to receive a fixed rate. The dealer makes a
profit on the swap by charging a few basis points running (i.e., offering to pay a few
basis points less on the fixed side of the swap) over the cost of his replicating strategy.
This covers the risk that if he is slow to execute the reverse transaction, the zero and
forward rates that he uses to compute the swap rate may run away from him and he
may have to transact at less advantageous terms when executing the offsetting
synthetics. The dealer has to transact in offsetting synthetics every time he enters into
a swap. This is very unwieldy and costly.
Suppose a dealer has a portfolio of two swaps: a pay-fixed swap maturing on

December 15, 2014, with coupon dates on June 15 and December 15, and a receive-
fixed swap maturing on December 3, 2014, with coupon dates June 3 and December 3.
If hedged through replication, the dealer would have to enter a lot of nearly offsetting
FRAs with close but not identical roll dates.
To avoid the execution costs (bid–ask spreads) that static replications would entail

and to reduce the dimensionality of the problem, most dealers choose to run their books
using dynamic hedging with a small group of most liquid instruments. The dealer
computes his net PV sensitivities resulting from these two swaps or, in general, from
thousands of swaps on his books to a set of common inputs, typically Eurocurrency
futures and government bonds. The dealer then hedges with that reduced set of instru-
ments. This way, all swaps are approximated as constructed from the same building
blocks. On a daily basis, the PV changes of all the swaps taken together will be exactly
offset by the sum of the PV changes of the selected set of hedge instruments held in
quantities determined by the sensitivities (duration-like hedge ratios).
The building blocks are not perfect (only the exact static replication would have

been), and so this approach requires daily rebalancing of the hedge. The rebalancing
consists of computing new sensitivities and adjusting the quantities of the hedge instru-
ments held by buying more of some and selling more of some. The advantage of
avoiding thousands of bid–ask spreads on FRAs or futures is enormous. This is
reflected in the very tight market-making quotes of dealers in the institutional
markets. In a way, they compete with each other by showing the tightest bid–ask
spread that reflects their lowest costs of manufacturing the swaps.
Another great advantage to this approach is in risk definition. The risk of a swap

portfolio can be described with respect to a reduced set of hedge instruments.

8.3 THE PRICING AND HEDGING OF SWAPS

Swap rates always reflect the cost of replicating strategies. We have already shown how
the rate on a currency swap and an interest rate swap is determined using quoted zero
rates. In reality, to reflect the actual process of hedging the swaps, the pricing of a swap
typically requires one other initial step: that is the building of the zero curve from the
rates on the hedge instruments.
Here is the thinking process behind the selection of liquid hedge instruments. Zero-

coupons reflecting swap parties’ credits are generally traded only for maturities less
than 1 year. These are Eurocurrency (LIBOR) deposits that trade freely in both direc-
tions (i.e., borrowing and lending at tight spreads). Maturities longer than 1 year have
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to be synthesized from Eurocurrency futures or FRAs. This is achievable with the use
of liquid futures or forwards for up to 10 years for the U.S. dollar, 5 years for the euro,
and 2 years for the Japanese yen, the Swiss franc, and a few other currencies. Beyond
that, dealers rely on the existence of long-term government bonds that can be bought
and shorted at tight spreads. These bonds reflect the credit rating of the sovereigns, and
not swap parties, and thus require a ‘‘plug’’ of a swap spread which itself is continu-
ously determined in the market.

We illustrate the process of pricing a U.S. interest rate swap, its execution, and the
subsequent hedging involved.

Suppose in September of 2003, a New York dealer is contacted by ABC Corp. to
provide a quote on a 5-year, $200-million notional principal, interest rate swap where
ABC will pay the dealer a fixed rate, semi-annually, and will receive a floating rate of
3-month LIBOR. This is a plain vanilla swap.

Suppose at the time the dealer is faced with the following set of rates on the ‘‘building
blocks’’. These are taken for this illustration from the September 26, 2003 issue of the
Wall Street Journal.

Table 8.16 US ‘‘building block’’ rates taken from the Wall Street Journal, Friday,
September 26, 2003

Eurodollar (CME) US Treasury issues
————————————————————
Maturity Coupon Yield

Dec03 98.83 9/30/2005 1.625 1.657
Mar04 98.75 9/15/2008 3.125 3.030
Jun 98.51 8/15/2013 4.25 4.099
Sep 98.19 2/15/1931 5.375 5.000
Dec 97.77
Mar05 97.35 Money rates
Jun 96.96 3-month LIBOR 1.1400%
Sep 96.65
Dec 96.35
Mar06 96.10
Jun 95.87
Sep 95.65
Dec 95.44
Mar07 95.25
Jun 95.08
Sep 94.92
Dec 94.77
Mar08 94.64
Jun 94.51
Sep 94.41
Dec 94.31
Mar09 94.22
Jun 94.14
Sep 94.07
Dec 94.00

We assume that Eurodollar (ED) expiry dates correspond to the swap roll dates. If not,
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we would interpolate. First, we need to determine the forward rates that can be locked
in for future 3-month periods. If we had FRAs, we could use those directly. Here we do
not. We must correct the forward rates implied in the ED futures prices by what is
called a futures convexity adjustment. The correction takes into account the fact that
the MTM settlement on the futures takes place at a constant dollar amount per 1-bp
change in the interest rate every day until the futures expiry, while on a FRA the
adjustment is a one-time event on the FRA start date: the longer the expiry date,
the bigger the adjustment, and the greater the volatility of the short-term discount
rate, the greater the deviation of the MTM present value from that of the forward.1

The ultimate check if the adjustment is correct is the comparison to FRA rates, if
available.
From the money market and futures (or forward) inputs we build the zero-coupon

curve. That is, we compute the discount factors to a sequence of future dates (3 months,
6 months, . . ., 60 months). We also show the set of quarterly compounded zero rates to
those dates.

Table 8.17 Zero-coupon curve derived from ED futures

Forward period time 100ED Convexity FRA rate Zero rate Discount factors
(months from today) adjustment (to end time) (to end time)
—————————
Start End

0 3 1.140 1.140 000 0.997 158 1
3 6 1.17 0.000 1.170 1.155 000 0.994 249 9
6 9 1.25 �0.008 1.242 1.183 998 0.991 172 3
9 12 1.49 �0.016 1.474 1.256 479 0.987 533 3
12 15 1.81 �0.024 1.786 1.362 327 0.983 143 5
15 18 2.23 �0.032 2.198 1.501 485 0.977 770 7
18 21 2.65 �0.040 2.610 1.659 657 0.971 432 1
21 24 3.04 �0.048 2.992 1.825 959 0.964 219 7
24 27 3.35 �0.056 3.294 1.988 810 0.956 344 2
27 30 3.65 �0.064 3.586 2.148 245 0.947 846 8
30 33 3.90 �0.072 3.828 2.300 660 0.938 861 9
33 36 4.13 �0.080 4.050 2.446 149 0.929 451 2
36 39 4.35 �0.088 4.262 2.585 540 0.919 652 3
39 42 4.56 �0.096 4.464 2.719 426 0.909 502 2
42 45 4.75 �0.104 4.646 2.847 578 0.899 059 7
45 48 4.92 �0.112 4.808 2.969 826 0.888 381 3
48 51 5.08 �0.120 4.960 3.086 624 0.877 500 3
51 54 5.23 �0.128 5.102 3.198 326 0.866 448 8
54 57 5.36 �0.136 5.224 3.304 687 0.855 278 8
57 60 5.49 �0.144 5.346 3.406 508 0.843 998 8

The interpretation of the results is that we know the present value of $1 received or
paid on any future date as simply an outcome of a static strategy to replicate that
receipt/payment (through lending/borrowing for 3 months and locking in the
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refinancing rate by buying/selling a strip of ED futures with all intermediate
maturities).

We are now ready to price the 5-year swap with a fixed semi-annual rate. ‘‘Pricing the
swap’’ here means determining the fixed semi-annual coupon coupon rate that would
make a 5-year semi-annual bond have a value of par. The bond would have 10 equal
coupon cash flows, first paid 6 months from today and last 5 years from today and one
principal cash flow in 5 years. We want to determine what coupon rate divided by two
would produce the 10 coupon cash flows so that the sum of their present values together
with the present value of the principal cash flow at the end would equal to 100. We have
already determined the discount rates and factors for all the semi-annual dates. All we
need to do is to pick a rate and discount cash flows based on it. We can easily verify that
the rate of 3.3636% is the desired coupon rate. The cash flow discounting is portrayed
in the following table.

Table 8.18 PV of 3.3636% coupon bond using derived zero rates

Zero rate Discount factors Par swap rate ¼ 3.3636
(to end time) (to end time) ——————————————

Cash flow PV of cash flow

1.140 000 0.997 158 1
1.155 000 0.994 249 9 1.6818 1.6721
1.184 664 0.991 167 4
1.257 978 0.987 518 5 1.6818 1.6608
1.364 726 0.983 114 2
1.504 816 0.977 722 1.6818 1.6443
1.663 938 0.971 359 6
1.831 202 0.964 119 1 1.6818 1.6215
1.995 023 0.956 211 2
2.155 433 0.947 677 4 1.6818 1.5938
2.308 828 0.938 652 2
2.455 132 0.929 202 2 1.6818 1.5627
2.595 214 0.919 365
2.729 692 0.909 177 7 1.6818 1.5291
2.858 358 0.898 698 9
2.981 055 0.887 985 3 1.6818 1.4934
3.098 249 0.877 070 2
3.210 303 0.865 985 6 1.6818 1.4564
3.316 980 0.854 783 6
3.419 085 0.843 472 7 101.6818 85.7658

Sum ¼ 100.0000

The dealer quotes ABC Corp. a fixed rate of 3.39%. ABC accepts and the swap is done.
ABC Corp. has agreed to pay a fixed rate of 3.39 semi to receive a floating 3-month
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LIBOR. The dealer computes his profit relative to his estimated cost of manufacture as
2.64 bp running, or 12.28 bp upfront; that is:

0:001 228� 200,000,000 ¼ $245,639

This comes from repricing the swap using the agreed-on rate.

Table 8.19 PV of 3.39% coupon bond using derived zero rates

Zero rate Discount factors Par swap rate ¼ 3.3900
(to end time) (to end time) ——————————————

Cash flow PV of cash flow

1.240 000 0.997 158 1
1.155 000 0.994 249 9 1.6950 1.6853
1.184 664 0.991 167 4
1.257 978 0.987 518 5 1.6950 1.6738
1.364 726 0.983 114 2
1.504 816 0.977 722 1.6950 1.6572
1.663 938 0.971 359 6
1.831 202 0.964 119 1 1.6950 1.6342
1.995 023 0.956 211 2
2.155 433 0.947 677 4 1.6950 1.6063
2.308 828 0.938 652 2
2.455 132 0.929 202 2 1.6950 1.5750
2.595 214 0.919 365
2.729 692 0.909 177 7 1.6950 1.5411
2.858 358 0.898 698 9
2.981 055 0.887 985 3 1.6950 1.5051
3.098 249 0.877 070 2
3.210 303 0.865 985 6 1.6950 1.4678
3.316 980 0.854 783 6
3.419 085 0.843 472 7 101.6950 85.7770

Sum ¼ 100.1228
Profit ¼ 0.1228

In order for the dealer to realize this profit, he will need to manufacture the swap at the
estimated cost. That is, he will have to hedge the PV change on the swap so that every
time rates change the PV change on the swap will be exactly offset by the change in the
PVs of the hedge instruments held. Immediately after or at the time of the swap, the
dealer has to sell a strip of futures. The amounts are computed by blipping the curve
one instrument at a time. Let us change the price of the first ED Dec03 contract by
�0:01 to 98.82. We rebuild the zero curve and reprice the swap. The change in the
present value of the swap in dollars divided by $25 gives us the number of December
contracts that need to be sold to hedge the swap.
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Table 8.20 PV of 3.39% coupon bond using zero rates derived by blipping Dec03 ED contract

Forward period time 100ED Convexity FRA rate Zero rate Discount factors Par swap rate ¼ 3.3900 0.026
(months from today) adjustment (to end time) (to end time) ——————————
————————— Cash flow PV of
Start End cash flow

0 3 1.140 1.140 000 0.997 158 1
3 6 1.18 0.000 1.180 1.160 000 0.994 225 1 1.6950 1.6852
6 9 1.25 �0.006 1.244 1.187 998 0.991 142 7
9 12 1.49 �0.012 1.478 1.260 479 0.987 493 9 1.6950 1.6738
12 15 1.81 �0.018 1.792 1.366 727 0.983 089 6
15 18 2.23 �0.024 2.206 1.506 484 0.977 697 6 1.6950 1.6572
18 21 2.65 �0.030 2.620 1.665 369 0.971 335 4
21 24 3.04 �0.036 3.004 1.832 454 0.964 095 1.6950 1.6341
24 27 3.35 �0.042 3.308 1.996 137 0.956 187 4
27 30 3.65 �0.048 3.602 2.156 435 0.947 653 8 1.6950 1.6063
30 33 3.90 �0.054 3.846 2.309 739 0.938 628 8
33 36 4.13 �0.062 4.068 2.455 968 0.929 179 1 1.6950 1.5750
36 39 4.35 �0.070 4.280 2.595 986 0.919 342 1
39 42 4.56 �0.078 4.482 2.730 409 0.909 155 1.6950 1.5410
42 45 4.75 �0.086 4.664 2.859 027 0.898 676 5
45 48 4.92 �0.094 4.826 2.981 683 0.887 963 2 1.6950 1.5051
48 51 5.08 �0.102 4.978 3.098 840 0.877 048 3
51 54 5.23 �0.110 5.120 3.210 862 0.865 964 1.6950 1.4678
54 57 5.36 �0.118 5.242 3.317 510 0.854 762 3
57 60 5.49 �0.126 5.364 3.419 588 0.843 451 6 101.6950 85.7748

Original
Sum ¼ 100.1203 100.1228

PV change in % of par (0)
PV change in $ (4,991)

No. of cars (200)

Next, we return the Dec03 futures value back to 98.83 and change the price of the
Mar04 contract by �0:01 to 98.74. We rebuild the curve and reprice the swap. The
change in the present value of the swap in dollars divided by $25 gives us the number of
Mar04 contracts that need to be sold to hedge the swap.

Table 8.21 PV of 3.39% coupon bond using zero rates derived by blipping Mar04 ED contract

Forward period time 100ED Convexity FRA rate Zero rate Discount factors Par swap rate ¼ 3.3900 0.026
(months from today) adjustment (to end time) (to end time) ——————————
————————— Cash flow PV of
Start End cash flow

0 3 1.140 1.140 000 0.997 158 1
3 6 1.17 0.000 1.170 1.155 000 0.994 249 9 1.6950 1.6853
6 9 1.26 �0.006 1.254 1.187 997 0.991 142 7
9 12 1.49 �0.012 1.478 1.260 478 0.987 493 9 1.6950 1.6738
12 15 1.81 �0.018 1.792 1.366 726 0.983 089 7
15 18 2.23 �0.024 2.206 1.506 484 0.977 697 7 1.6950 1.6572
18 21 2.65 �0.030 2.620 1.665 369 0.971 335 4
21 24 3.04 �0.036 3.004 1.832 454 0.964 095 1 1.6950 1.6341
24 27 3.35 �0.042 3.308 1.996 137 0.956 187 4
27 30 3.65 �0.048 3.602 2.156 435 0.947 653 8 1.6950 1.6063
30 33 3.90 �0.054 3.846 2.309 739 0.938 628 8
33 36 4.13 �0.062 4.068 2.455 968 0.929 179 1 1.6950 1.5750
36 39 4.35 �0.070 4.280 2.595 986 0.919 342 1
39 42 4.56 �0.078 4.482 2.730 409 0.909 155 1.6950 1.5410
42 45 4.75 �0.086 4.664 2.859 027 0.898 676 5
45 48 4.92 �0.094 4.826 2.981 682 0.887 963 2 1.6950 1.5051
48 51 5.08 �0.102 4.978 3.098 840 0.877 048 3
51 54 5.23 �0.110 5.120 3.210 862 0.865 964 1.6950 1.4678
54 57 5.36 �0.118 5.242 3.317 509 0.854 762 3
57 60 5.49 �0.126 5.364 3.419 588 0.843 451 7 101.6950 85.7748

Original
Sum ¼ 100.1204 100.1228

PV change in % of par (0)
PV change in $ (4,906)

No. of cars (196)
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We return the Mar04 futures value back to 98.75 and change the price of the Jun04
contract by �0:01. We continue the process, each time rebuilding the curve and re-
pricing the swap. We observe the changes in the present value of the swap. We divide
these by $25 to get the number of all contracts that need to be sold to hedge the swap.
Starting with Sep08 the PV changes will be 0. The results are summarized in Table 8.22.

Table 8.22 Summary of results (EDs on the CME)

Hedge No. of cars Hedge No. of cars Hedge No. of cars

Dec03 �200 Dec �185 Dec �172
Mar04 �196 Mar06 �182 Mar08 �169
Jun �196 Jun �182 Jun �169
Sep �193 Sep �179 Sep 0
Dec �192 Dec �179 Dec 0
Mar05 �189 Mar07 �175 Mar09 0
Jun �189 Jun �175 Jun 0
Sep �185 Sep �172 Sep 0

Dec 0

We also compute the hedge for the change in the spot LIBOR. A 1bp blip in the 3-
month spot rate results in a swap PV change of $�4,992, which is equivalent to �200
contracts. Trading in spot deposits can be costly, so dealers normally hedge this part
with the first available ED contract as a proxy for spot (a serial October contract if
available, or stack on top of the other December contracts) or leave it unhedged.

Table 8.23 Additional hedge
(ED on the CME)

Hedge No. of cars

Oct03 �200

Each day after the inception of the swap and every time interest rates change dramatic-
ally, the dealer will repeat the entire exercise to compute the new hedge amounts and
trade the appropriate number of contracts to ensure that his holdings are equal to the
currently computed hedge. Every day the profits and losses on the futures will exactly
offset the PV changes on the swap. As the swap ages and actual cash flows drop off,
fewer maturities of the futures will be held. Daily adjustments to the positions will be
small, but over time all hedges will be liquidated.

8.4 SWAP SPREAD RISK

Swap spread is defined as the difference between the par rate on a swap of a given
maturity and the yield on a risk-free government security with the same maturity. In
our example above, the fair 5-year swap rate was 3.3636% while the 5-year yield on the
5-year U.S. Treasury was 3.03. The 5-year swap spread in this case was 33.4 bp. Dealers
continuously quote the spreads over governments they are willing to pay (bid) and
receive (ask) on swaps with all standard maturities. The spread is quoted on the
same basis as the governments (e.g., semi-annual 30/360 in the U.S., semi-annual
Act/365 in the U.K, annual Act/Act for German Bunds and French OATs). The



assumption is that the underlying government rates are quite variable while the spreads
are not, so it is convenient to quote just the ‘‘add-ons’’. But at the time a swap is
executed, the actual swap rate is agreed on. In the U.S., all annual maturities up to
15 years plus the 30-year are shown routinely on financial screens. All other maturities
are quoted on request. In the U.K., maturities up to 5 years and the 10-year are quoted
routinely. In Japan, maturities up to 2 years and the 10-year are quoted routinely. The
availability of the hedge instruments dictates which maturities are considered liquid
enough to make markets in.

Swap spread risk refers to the possibility that the PV of the swap will not be offset by
the PV change in the underlying hedge instruments because those instruments are
government securities with no default premium allowed for in the yield. Let us illustrate
this by extending the above example.

Suppose the dealer had quoted the 5-year spread of 33/36. ABC Corp. accepted the
offer and agreed to pay 36 bp over the current 5-year Treasury note yielding 3.03% (i.e.,
3.39%). The dealer could have chosen to hedge the 5-year receive-fixed swap, by short-
ing the 5-year government note. He would have had to compute the change in the value
of the swap and the change in the price of the 5-year note resulting from a 1-bp change
in the yield to maturity. The ratio of these two sensitivities would have given him the
amount of the 5-year note to be shorted. The procedure would be repeated every day
ensuring that swap PV changes would be offset by Treasury PV changes. This would
only be true if yields on swaps moved one for one with yields on Treasuries (i.e., only if
there were no swap spread changes). If the 5-year swap spread were to rise, resulting in
the swap yield moving up by more than the Treasury yield or the swap yield moving
down by less than the Treasury yield the dealer would incur a loss.

The ED hedge chosen by the dealer for the 5-year swap did not expose him to the
spread risk, because ED contracts reflect the same credit as swaps (i.e., they implicitly
include a default premium).

Most dealers get naturally exposed to swap spread risk on swaps with long matur-
ities. Eurocurrency contracts are neither available nor liquid enough, and dealers have
no choice but to use government securities as hedges. Governments are also more
convenient as they require one trade instead of many, potentially saving cost and
effort. For that reason and for speculative reasons, dealers choose them for swaps
with shorter maturities, too.

A dealer computes and monitors closely his exposure to swap spreads of all matu-
rities. Often he actively seeks out swaps that might reduce those exposures by offering
tighter spreads for the desired maturity. Swap spread risk is the secondary risk swap a
dealer is left with after hedging the primary interest rate risk. It can be his strategic
advantage or disadvantage when competing with other dealers. It is the main risk of a
well-run swap book.

8.5 STRUCTURED FINANCE

Just as forwards and zeros can be viewed as building blocks for swaps, swaps can be
viewed as building blocks for structured bonds. We showed in the swap-driven finance
examples how one liability can be turned into another with the use of swaps: fixed into
floating, one currency into another, etc. In those situations, corporations use swaps at
the time of or subsequent to a bond issuance to match the demand of their bond
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investors to their own funding needs. This wizardry can take advanced forms by
combining several swaps with each other and with options to create highly complicated
bond structures (we discuss option pricing later). The driver here is investor demand for
a particular exposure scenario. The issuer’s objective is simply a lower cost of financing.

Inverse floater

As the first example we consider an inverse floater. This is a bond whose coupon payout
is equal to a formula of some fixed rate minus a short-term floating rate. Such coupon
structure is often demanded during times of low rate volatility, a steep yield curve, and
when investors expect the short-term rates to decrease. The pricing is attractive then, as
forwards increase with maturity.
Using the rate inputs as of September 26, 2003 an investor may be offered by ABC

Corp. a 5-year bond whose quarterly coupon is equal to:

6:52� LIBOR3m

Let us explain this structure in a diagram.

Figure 8.3 An inverse floating bond.

On the issue date ABC sells the inverse floater bonds with a coupon of 6:52� L3m for
100. It enters into a swap with a notional principal of 200 to receive 3.36 and pay L3m

on the same dates (times the appropriate day-count). At the same, it buys a cap for
which it pays upfront or over time the equivalent of 8 bp running. The cap provides
protection for the scenario that L3m is above 6.52 on any coupon date. In those cases,
the option dealer who provided the cap will compensate ABC for the difference. If L3m

stays below 6.52, ABC will receive nothing. ABC nets 12 bp running which reduces its
cost of funding. The swap dealer makes a profit on the swap (paying 3.36 while the fair
rate is 3.3636); the option dealer makes a profit on the cap. The investor gets a desired
coupon formula, paying well above today’s 1.14 LIBOR. To make the cash flows clear,
let us examine two scenarios.
First, assume that on some coupon date L3m is 1.25 (i.e., lower than 6.52). The bond

holder coupon is 5.27. ABC receives 3.36 on the two swaps (i.e., a total of 6.72). It pays
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0.08 out of that for the cap and keeps 0.12. With the remainder, equal to 6.52, it pays
1.25 twice on the two swaps and 5.27 to the bond holders (i.e., it pays exactly
L3m ¼ 1:25 minus the 0.12 it kept).

Next, assume that L3m is 8.50 (i.e., higher than 6.52) on some coupon date. The bond
holder coupon is 0. ABC receives 3.36 on the two swaps (i.e., a total of 6.72). It pays
0.08 out of that for the cap and keeps 0.12. The remainder is equal to 6.52, but ABC
also collects 1.98 on the cap. It pays the sum of the two, equal to 8.50, on the first swap
and another 8.50 out of its own pocket on the other swap.

The net financing cost to ABC is L3m minus 0.12 irrespective of the level of L3m on
any coupon date. The coupon on the bond looks attractive to most investors who do
not believe in short-term rates going up from the currently low level. The fixed portion
of the coupon reflects double the current term swap rate net of the cost of the cap. Cap
protection tends to be cheap as it has a high strike price. In most cases, the swap and the
option dealer are the same, providing the issuer with a competitive quote on the entire
behind-the-scenes part of the deal (in our case the 3.36 swap level is very close to the fair
level and the dealer makes most of his profit on the cap).

Leveraged inverse floater

The leveraged inverse floater combines three or more swaps and a cap into a single
bond. Consider the following quarterly coupon formula offered by ABC to its investors:

9:80� 2� L3m

It is easy to see that, compared with the leveraged floater, all we need to do is to add
another swap and lower the strike on the cap. Here is the summary diagram.

Figure 8.4 A leveraged inverse floating bond.

The structure works for everyone involved. The investors’ coupon on day 1 is
9:80� 2� 1:14 ¼ 7:52, which is very attractive compared with the alternatives of
3.36 fixed or L3m floating. The dealer sells a cap and enters into a profitable swap
with a notional principal equal to three times that on the bond. The issuer gets
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L3m � 10 bp financing. The investors bear the risk in this structure that short rates
increase rapidly, which would sharply reduce or potentially eliminate the coupon
payout.2

Capped floater

A capped floater is a bond whose coupon is floating but capped. The investor gives up
potentially increased coupon payouts for a larger coupon now. The issuer desires
reduced cost of financing. This structure is simpler than an inverse floater.
Suppose investors demand a floating rate. For a little extra spread on top of the

floating rate, they are willing to give up upside potential. If ABC needs floating rate
financing, then it can simply sell the cap embedded into the coupon formula to the
dealer and use the proceeds to enhance the coupon offered. If ABC needs fixed rate
financing, then it can purchase a cap and swap the floating rate on the bond into a fixed
liability. The next diagram shows this more complicated scenario.

Figure 8.5 A capped floating bond.

The investor’s coupon is L3m plus 8 bp, but no more than 6.00. ABC get financing equal
to 3.35 fixed. The swap dealer receives the ask side of the fixed rate, 3.39, and pays
LIBOR. The option dealer buys a cap. If LIBOR on any coupon date is below 5.92, the
cap does not pay. ABC simply passes the L3m coupon it receives on the swap to the
bond holders, enhanced by 8 bp out of the 12 bp it receives as the payment for the cap.
If LIBOR on a coupon date is greater than 5.92, say 7.00, the situation is only a little
more complicated. ABC receives 7.00 from the swap dealer and passes 6.00 to the bond
holders. It also receives 0.12 from the cap dealer. Out of the 1.12 total, it pays
7:00� 5:92 ¼ 1:08 on the cap back to the option dealer, leaving it with 0.04 which
reduces its net fixed rate liability.

Callable

Fixed rate bonds, floating rate bonds, and all the structured bonds can be issued in a
callable form. In this case, ABC has the right to call the bonds from the bond holders at
par or a price specified in advance in a call schedule. ABC can choose to retain that
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right (in which case it will bear the cost of a higher coupon demanded by the investors)
or sell it to the dealer (in which case the dealer will cover that cost, leaving ABC with a
straight fixed rate liability). The choice depends on ABC’s needs and on the deal’s
pricing. If interest rates are currently volatile, the dealer will be willing to pay a lot
for the call right, potentially reducing ABC’s fixed financing cost in a significant way.

Range

A range bond pays a coupon that depends on how many days during the interest
accrual period a floating rate stayed within a pre-specified range. In this case, the
issuer simply desires low cost of floating financing. It offers investors an enhanced
floating (LIBOR plus spread) or fixed coupon rate for each day the floating rate
does not leave the range bounds. Investors get no interest rate accrual for days when
the rate goes outside the range. They are betting that the rate will not jump up and/or
down. The range can have upper or lower bounds or both. The coupon formula might
read as follows:

L3m þ 100 bp but only for days where 0:75 < L3m < 2:75

The range option embedded in the coupon is sold to an option dealer in exchange for
the spread and some extra that reduces the issuer’s financing. This is similar to a capped
floater except the option is a lot more complicated from the dealer’s perspective.

Index principal swap

A structure attractive to mortgage bond investors who want the enhanced yield of a
prepayment-exposed investment, but want to limit the unpredictability of prepayments
is called an index principal swap (IPS) or index-amortizing swap (IAR). As is often the
case, this structure is driven by this specific investor demand, while the issuer simply
wants reduced floating financing. The issuer issues a bond with a formula coupon and
principal to the bond holders, but reverses the cash flows of the bond by entering into
an IPS with a dealer.

The swap is a fixed-for-floating swap, except the notional principal of the swap
changes over time. To compute the principal for each period, one takes the principal
as of the last period times one minus a percentage taken from an amortization table that
might look like this:

Rate Percent of notional
amortized

3 0
2 50
1 100

Suppose the last period’s principal was 100 and the index rate L3m of this period is
1.14%. We use 1.14 to interpolate between 1 and 2 in the table to obtain the notional
percentage equal to 93%. This period, the new notional principal used to compute
interest flows on both sides of the swap is equal to the last principal times 100 minus
the amortized percentage of 93, or 0.07. The new principal is thus 7.
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This procedure is intended to mimic the prepayment behavior of fixed rate mort-
gages. As rates go down, homeowners refinance their mortgages. Mortgage bonds’
principals are reduced. Similarly, IPS bonds principals will be reduced, but based on
a pre-specified amortization table rather than the actual behavior of homeowners who
often do not refinance optimally.
The IPS was first popularized in the mid-1990s in the U.S. where over 50% of

morgages are fixed, with no prepayment penalties, and a large securitized mortgage
bond market exists.

8.6 EQUITY SWAPS

Some investors desire equity market exposure in a bond form. This can be accom-
plished by defining the formula for a bond coupon payout as the appreciation of the
stock index over the accrual period times the principal of the bond and times the
appropriate day-count fraction. In this case, the issuer of the bond desires a low cost
of financing that has nothing to do with equities. The dealer packages the bond by
entering into an equity swap with the issuer. In the equity swap, every coupon period,
the dealer pays the stock index appreciation on a notional principal of the swap and
receives a floating interest rate (e.g., LIBOR) times the appropriate day-count fraction
times the same notional principal. The stock return each period is passed on to the bond
holders in the form of a bond coupon. The LIBOR-based interest is the issuer’s net cost
of financing. The structure naturally includes an at-the-money option given that the
coupon paid to the bond holder cannot be negative. Alternatively, the bond holder gets
a fixed rate plus only a predefined portion of the appreciation combined with out-of-
the-money options. The option is paid for by the bond holder through a reduced
coupon formula (negative spread).
Here is a diagram for an S&P 500 index-based coupon assuming the (European) put

cost is 1.3% running. SPX stands for the percentage change in the S&P 500 for the
coupon year. The investor receives the excess of SPX over 2%, floored at zero.

Figure 8.6 An S&P 500-linked coupon bond.

Let us distinguish two scenarios. First, let us look at SPX> 2% (e.g., SPX ¼ 14%). The
investor gets a 12% coupon. ABC receives 14% on the swap, pays 1.8% for the put,
receives no payout from the put, and keeps 0.20%, which reduces its floating financing
cost. Second, let us look at SPX< 2% (e.g., SPX ¼ 0.5%). The investor gets a 0%
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coupon. ABC receives 0.5% on the swap and 1.5% payout from the put, pays 1.8% for
the put, and keeps 0.20%, which reduces its floating financing cost. Similarly, if SPX
turns out negative for the year, the bond holder gets no coupon and ABC keeps a
0.20% reduction in its financing cost.

The pricing on the swap works as long as we can show, similarly to what we have
established for the fixed-for-floating par swap, that the SPX-for-L3m swap is fair (i.e., it
has a zero PV).

This follows directly from the cash-and-carry relationship for stock index futures.
The equity swap can be viewed as a string of 1-year synthetic forward (or futures)
contracts. In our case, from the dealer’s perspective, the swap’s cash flows—pay
SPX, receive LIBOR—are equivalent to a string of short index forwards or reverse
cash-and-carry transactions. In the reverse cash-and-carry transaction, the dealer
borrows a basket of stocks, sells the stocks short, and invests the proceeds to earn
LIBOR. At the end of the year, he covers the short by buying the basket in the spot
market. The initial sale and subsequent repurchase of stocks are equivalent to paying
out the appreciation on the basket. The interest on short-sale proceeds is equivalent to
receiving floating LIBOR. In order to hedge the string of short forwards packaged into
the swap, the dealer has to hedge by doing the opposite (i.e., he has to receive the SPX
appreciation and pay LIBOR). He does that by entering each year into a 1-year cash-
and-carry. He borrows the principal to pay LIBOR. He buys the stocks at the beginning
of each year and liquidates them on each coupon payout date. The profits on stocks are
passed to ABC to satisfy the swap obligation. The LIBOR receipt from ABC covers the
borrowing cost. Each year the dealer repeats the exercise for the following year. (In
reality, on the coupon pay date, the dealer liquidates only the appreciated part of the
holdings and pays the proceeds to ABC and holds the rest for the following year.)

8.7 COMMODITY AND OTHER SWAPS

There are parallels of equity swaps that involve other asset classes. They are always
fixed income hybrids in that one side of the swap is a floating interest rate stream, while
the other is some other asset return stream. A common example is a commodity swap,
potentially linked to a bond issuance, whose coupon payout is a formula based on a
percentage change in the price of a commodity over the coupon period. Structures sold
in the past 10 years have involved oil, gold, and a variety of financial assets (e.g.,
weather-related contracts, total-rate-of-return contracts). Many have been partly
hedgeable with existing exchange-traded or over-the-counter (OTC) forward and
futures structures. All have been statically replicable with cash-and-carry purchases
of the underlying assets against borrowing in the LIBOR markets.

Increasingly, dealers push the envelope of innovation by looking to secondary and
unhedgeable variables on which to write swaps. One such variable is the historical
volatility of an interest rate or a price; another is the inflation rate in an economy.
There is no market in volatility or inflation forwards; one side of the swap cannot be
synthetically replicated or dynamically hedged. The trading of such products is more
akin to bookmaking and insurance sales than to swap trading. In most cases, risk
management relies on book-matching or diversification. If both sides of the trade can
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be found and the dealer can find two counterparties willing to take the opposite sides of
swap, then the dealer simply extracts the bid–ask spread on the bet the way a book-
maker does on a sporting event. If the offsets are not identical, then the dealer tries to
diversify the risks across the events and calendar dates, in effect pooling unhedgeable
risks the way an insurer does.

8.8 SWAP MARKET STATISTICS

The global OTC derivatives market is enormous. According to a paper in the BIS
Quarterly Review of June 2003 titled ‘‘International banking and financial market
developments’’, the total notional principal outstanding reached over $140 trillion by
the end of 2002.
The biggest category is interest rate derivatives accounting for over $100 trillion. Of

that, euro-denominated interest rate swaps accounted for over $30 trillion and U.S.
dollar-denominated swaps for under $25 trillion. The vast majority of swaps are under
5 years of maturity, with only 20% over that mark. That, however, includes aged long-
term swaps. The maturity differential is also related to the availability of hedge instru-
ments in various currencies.

Table 8.24 Notional amounts outstanding of OTC derivatives by risk category and instrument
(in billions of U.S. dollars)

Dec. 1998 Dec. 1999 Dec. 2000 Dec. 2001 Dec. 2002

Foreign exchange 18,011 14,344 15,666 16,748 18,469
Outright forwards and FX swaps 12,063 9,593 10,134 10,336 10,723
Currency swaps 2,253 2,444 3,194 3,942 4,509
Options 3,695 2,307 2,338 2,470 3,238

Interest rate contracts 50,015 60,091 64,668 77,568 101,699
Forward-rate agreements 5,756 6,775 6,423 7,737 8,792
Interest-rate swaps 36,262 43,936 48,768 58,897 79,161
Options 7,997 9,380 9,476 10,933 13,746

Equity-linked contracts 1,488 1,809 1,891 1,881 2,309
Forwards and swaps 146 283 335 320 364
Options 1,342 1,527 1,555 1,561 1,944

Commodity contracts 415 548 662 598 923
Gold 182 243 218 231 315
Other commodities 233 305 445 367 608
Forwards and swaps 137 163 248 217 402
Options 97 143 196 150 206

Other 10,389 11,408 12,313 14,384 18,337

Total contracts 80,318 88,202 95,199 111,178 141,737

Source: http://www.bis.org/publ/qcsv0306/anx1920a.csv

Most single-currency interest rate swaps and FX derivatives were dealer-to-dealer or
dealer-to-other financial institution.
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Table 8.25 Notional amounts outstanding of OTC single-currency interest rate derivatives by
instrument and counterparty (in billions of U.S. dollars)

Dec. 1998 Dec. 1999 Dec. 2000 Dec. 2001 Dec. 2002

Forward rate agreements 5,756 6,775 6,423 7,737 8,792
With reporting dealers 2,848 3,790 3,035 3,658 4,579
With other financial institutions 2,384 2,596 2,851 2,955 3,540
With non-financial costumers 523 389 537 1,124 673

Swaps 36,262 43,936 48,768 58,897 79,161
With reporting dealers 18,310 23,224 24,447 27,156 36,321
With other financial institutions 13,971 16,849 20,131 25,197 34,383
With non-financial costumers 3,980 3,863 4,190 6,545 8,457

Options 7,997 9,380 9,476 10,933 13,746
With reporting dealers 3,283 3,503 4,012 4,657 5,781
With other financial institutions 3,435 4,566 4,066 4,358 5,684
With non-financial costumers 1,279 1,310 1,399 1,918 2,281

Total contracts 50,015 60,091 64,668 77,568 101,699
With reporting dealers 24,442 30,518 31,494 35,472 46,681
With other financial institutions 19,790 24,012 27,048 32,510 43,607
With non-financial costumers 5,783 5,562 6,126 9,586 11,411

Source: http://www.bis.org/publ/qcsv0306/anx21a21b.csv

Table 8.26 Notional amounts outstanding of OTC FX derivatives by instrument and counter-
party (in billions of U.S. dollars)

Dec. 1998 Dec. 1999 Dec. 2000 Dec. 2001 Dec. 2002

Outright forwards and FX swaps 12,063 9,593 10,134 10,336 1,072
With reporting dealers 5,203 3,870 4,011 3,801 431
With other financial institutions 5,084 4,123 4,275 4,240 436
With non-financial costumers 1,777 1,600 1,848 2,295 204

Currency swaps 2,253 2,444 3,194 3,942 450
With reporting dealers 565 651 881 1,211 141
With other financial institutions 1,024 1,072 1,410 1,674 190
With non-financial costumers 664 721 904 1,058 118

Options 3,695 2,307 2,338 2,470 323
With reporting dealers 1,516 871 838 900 110
With other financial institutions 1,332 908 913 842 133
With non-financial costumers 847 529 588 728 80

Total contracts 18,011 14,344 15,666 16,748 1,846
With reporting dealers 7,284 5,392 5,729 5,912 683
With other financial institutions 7,440 6,102 6,597 6,755 760
With non-financial costumers 3,288 2,850 3,340 4,081 403

Source: http://www.bis.org/publ/qcsv0306/anx1920a.csv

Most single-currency interest rate swaps and FX derivatives were dealer-to-dealer or
dealer-to-other financial institution.
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Figure 8.8 Interest rate swaps, notional amounts outstanding (in trillions of U.S. dollars): (a) by
currency; (b) by counterparty; and (c) by maturity. The latter includes FRAs, which in December,
2002 accounted for approximately 6% of the total notional amount outstanding.
From BIS Quarterly Review, June, 2003, ‘‘International banking and financial market developments’’.

While dealer-to-dealer trades offset some risks, exchange-traded short-term interest
rate futures, and in particular Eurocurrency (Eurodollar, Euroeuro, Euroyen, etc.)
contracts, remain the main hedge instrument of choice for the residual exposure on
most swaps under 5 years (under 10 years in the U.S.). This is evidenced in the
continuing growth in the turnover of those contracts among other futures and
options, representing around $100 trillion worth of contracts per quarter. These are
split equally between the dollar and the euro-denominated interest rate contracts.
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Figure 8.7 Notional amounts outstanding by broad risk category ($ trillions) and gross market
values by broad risk category ($ trillions). { Estimated positions of non-regular reporting institu-
tions.
Source: BIS



Figure 8.9 Turnover of exchange-traded futures and options, quarterly date (in trillions of U.S.
dollars): (a) by contract type and (b) by region.
Sources: FOW TRADE data, Futures Industry Association, BIS calculations. From BIS Quarterly Review, June, 2003,

‘‘International banking and financial market developments’’. Reprinted with permission from BIS.

For long-term swaps, spot long-term government bonds are the main hedge instru-
ments. While the turnover of the note and bond futures has increased in the U.S.,
this has not been the case universally. Swap hedgers have always preferred spot
bonds to futures in order to avoid delivery and embedded option risk.

Figure 8.10 Turnover in government bond contracts, quarterly futures contract turnover (in
trillions of U.S. dollars): (a) U.S.; (b) Germany; and (c) Japan and the U.K.
Sources: FOW TRADE data, Futures Industry Association, BIS calculations. From BIS Quarterly Review, June, 2003,

‘‘International banking and financial market developments’’. Reprinted with permission from BIS.

The post-technology boom era of the early 2000s has ushered in very low short-term
interest rates, resulting in fairly steep swap yield curves for most currencies, even in
Japan where interest rates on all maturities have remained under 1%.
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Figure 8.11 Swap yield curves (in percentages): (a) U.S. dollar; (b) euro; and (c) yen.
Note: For 3-, 6-, and 12-month U.S. dollar and yen maturities, LIBOR; for 3- and 6-month euro maturities, euro deposit

rates. Source: Bloomberg. From BIS Quarterly Review, June, 2003, ‘‘International banking and financial market develop-

ments’’. Reprinted with permission from BIS.
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______________________________________________________________ Financial Math III—Options ______________________________________________________________

Options are bets on the direction of prices of securities, interest, and currency rates,
index levels, and non-financial variables. There are two types of participants in the
options markets. Speculators (here called by their proper name, but euphemistically
referred to as investors in cash markets for stocks or bonds) buy or sell options and wait
for the desired outcome at maturity (a price rise or a rate drop). When their bets prove
right, they get a payout; when their bets prove wrong, they do not get a payout or have
to make one themselves. The dealers, or market-makers, do not take outright bets on
the direction of underlying securities. They buy and sell bet tickets, and then manu-
facture the payouts for the holders of those tickets. Their risk is that they may over- or
underestimate the cost of the manufacture of the payoffs on the bets that they sold or
bought. If they estimate that cost correctly, they always earn a profit, whether prices go
up or down, by simply charging a small margin over the cost.
This chapter has two central ideas.
The first is that there is a big difference between option dealers and insurance sellers

or sports bookmakers. Option dealers buy and sell bets whose payoffs depend on the
prices or rates of instruments that themselves can be bought and sold throughout the
life of the option. Insurance companies and bookmakers sell bets on the outcomes of
future events (earthquakes, floods, fires, soccer games). They cannot trade in these
events; they can only adjust the odds (payoff) or premiums (prices of bets) they offer
to reflect the demand and supply for bets. An option dealer who sold a bet that the
stock will go up can buy the stock so that if indeed the stock goes up he can profit from
the appreciation and pass the gain on to the option (bet) buyer. In contrast to a static
cash-and-carry trader who buys the asset once and locks in financing once, the option
dealer does it dynamically. This means that, as the stock rises more, he buys more of it,
and when it falls he sells it, expecting not to have to pay on the sold bet. This is what we
will refer to as manufacturing the payoff of the options and what is commonly known
as delta-hedging. The cost of this manufacture depends directly on how volatile the
underlying stock or interest rate is. The more it moves up and down, the more it costs
the dealer to manufacture the desired payoff by the option expiry time. The important
point is that the dealer does not speculate on the direction of the stock price.1 If he sells
a bet on the stock going down, he shorts the shares to benefit from the price going down
so that he can pass the benefit to the bet buyer. He computes the cost of selling more
shares as they go down and buying them back as they go up. His profit is the margin he

1 Most dealers actually do. The market is so competitive that making profit solely through delta-hedging is very hard. Most
dealers use their knowledge of demand and supply flows to their advantage. This extra profit comes on top of revenue from
customer flow.



charges over what he expects the cost of financing the purchases and sales will be.2 Once
he sells an option, he follows a ‘‘recipe’’ of how to manufacture the payoff. We will
present the recipe in detail.

The second, related idea is that speculators and dealers in the options markets do not
act the same way. The dealer manufactures the payoff by actively trading the underlying
asset while the option is alive. He does not care which way the asset price or rate goes,
but he is busy accumulating gains (or losses) which by the expiry date are equal to what
he pays to (receives from) the speculator. The speculator buys (or sells) the bet from the
dealer in order to profit from his view, similar to the way the homeowner purchases an
insurance policy in order to ‘‘profit’’ from a fire in his house. The speculator acquires a
directional bet and engages in no further trading. He waits for the outcome to materi-
alize. If he is right, he gets (or pays) a payout specified as some formula that depends on
the outcome. For example, if he owns a call option, he gets the excess of the stock price
over some level (strike price).

The central idea here is that the price of the bet the speculator buys from the dealer
does not depend on the subjective probability or the expected value of the outcome, but
only on the dealer’s cost of manufacture. The latter fluctuates with the perceived
volatility of the underlying asset. Sometimes bets may seem cheap, sometimes dear,
relative to the hoped-for future payoff. When the speculator is right in his prediction
about the event and comes to receive his payoff, the dealer has manufactured that
payoff through the dynamic hedge strategy (i.e., has accumulated a profit exactly
equal to the promised payoff). When the speculator is wrong and is not owed any
payoff, the dealer has also manufactured that payoff. He has dynamically traded the
underlying asset, in the process losing the entire amount of money received for the bet
upfront, except for his extra margin (i.e., accruing a zero profit). No matter what
happens, at option expiry or payout time, the dealer has on hand the exact amount
the speculator demands.

Options are redundant securities in the sense that their payoffs can be replicated
through dynamic trading strategies. As such, they are not needed. The profit the
dealer earns can be thought of as a charge for convenience of having the ready security,
so that the speculator does not have to manufacture it himself. This is just like the
markup for ready-made clothes bought off the rack so that we do not have to tailor
them individually. Redundant does not mean useless, however. Options allow very
complicated risk-sharing schemes for investors. Let us remember that the primary
function of securities markets is to channel savings (excess funds) to where they are
needed, whether in productive ventures (ownership shares of small and large businesses)
or housing construction (mortgage loans). In order for the original investors (or on
their behalf, for banks or brokers) to be willing to put their money in those investments,
they need to know that they can sell their participation on open markets. That is why
we have stock exchanges and bond markets (see Chapter 1). Having options further
strengthens that process. Original investors know that they will be able to sell part of
their risk in a stock by selling a limited-time bet to give up the upside over a certain
desired level or by buying put options to protect the value of their investments in case
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they go sour. The best analogy is the decision to purchase a house for $1 million
knowing that we can also buy fire and flood insurance, or borrow money against the
house in case of dire need. Without these possibilities, spending $1 million on a house
would be a much rarer occurrence.
This chapter is organized as follows.We start with optionmarkets terminology, payoff

diagrams, and static arbitrage parities. In Section 9.7, we turn to the binomial option
pricing model, the most intuitive way of presenting the dynamic replication argument
and the hedge recipe approach, as trading takes place at discrete times, the way it does in
reality. We tie the binomial model to its celebrated continuous-time cousin, the Black–
Scholes model. We discuss the residual risks (vega, volatility skew, gamma) of hedged
option portfolios. At the end of the chapter, we turn to standard interest rate options.
These, like swaps within spot and forward markets, represent a huge and fast-growing
component of the options markets; yet most readers are only familiar with basic stock
option examples. We also discuss some more common, exotic payoffs.

9.1 CALL AND PUT PAYOFFS AT EXPIRY

Tickets sold by national and state lotteries around the world are bets on a set of
numbers. The payoff is a fixed monetary amount if the lottery ticket buyer is right in
choosing the right combination. Such bets are called binary or digital. It does not matter
how ‘‘close’’ to the right combination the better is, all that matters is whether he is right
or wrong in guessing five or six numbers.
Most common options sold in financial markets work a little differently. The bettor

can also be ‘‘right’’ or ‘‘wrong’’, but the ‘‘more right’’ he is, the bigger his payoff is. A
call option on the price of an asset (e.g., stock) pays on the expiry date the greater of
zero and the difference between that asset’s price and a pre-specified strike price (bet
level). If we want to bet that the price of ABC will go over $60 per share, we buy a call
struck at 60. If the price on the expiry date is 67, we get $7; if the price is 74, we get $14.
If the price is below 60, whether at 40 or 50, we get nothing. A put option on a price of
an asset pays on the expiry date the greater of zero and the difference between a pre-
specified strike price and that asset’s price. If we want to bet that the price of ABC will
go under $60 per share, we buy a put struck at 60. If the price on the expiry date is 47,
we get $13; if the price is 54, we get $6. If the price is above 60, whether at 65 or 80, we
get nothing. We graph the payoff the buyer of the option (bet) gets as a function of the
underlying asset’s price in the following payoff diagrams.

Figure 9.1 Payoff on a call and a put at expiry.
K ¼ Strike price; S ¼ Spot price at expiry.
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Options that pay only at expiry are called European; those that pay prior to and on the
expiry date are called American. Neither notion has any connection to a location.

At any given time, there may be options trading on the same underlying asset price
(event), but with different strikes and expiry dates. On the exchanges, options follow a
certain schedule of dates and strikes. Over the counter (OTC), they can be arranged for
any payoff date and strike (bet level). The intrinsic value of an option is defined as the
payoff the option would have if it were immediately exercisable based on today’s price
of the underlying asset. Options with a positive intrinsic value are called in-the-money;
options with no intrinsic value are called out-of-the-money; options whose strike price is
equal to the asset price are called at-the-money. Note that options cannot have a
negative intrinsic value. If the better is wrong he simply does not exercise his option
and gets no payoff.

Most individual stock options and many others have a physical settlement provision;
that is, they are not pure bets, but give the holders (buyers) the right to buy (call) or sell
(put) the asset to the option writer (seller) at the strike price on (or prior to) the expiry
date. This is tantamount to receiving the payoffs as described above. For example, a 60
call, when the price is 67, gives the holder the right to buy the stock from the writer for
60 (a private transaction). Once bought, the holder can sell the stock immediately for 67
in the spot market (open market), realizing a profit of 7. A 60 put, when the price is 47,
gives the holder the right to sell the stock to the writer for 60 (a private transaction). To
deliver, the holder can buy the stock immediately for 47 in the spot market (open
market), realizing a profit of 13. Many options written on non-price financial variables
(stock indices, interest rates, etc.) are settled in cash. The settlement features of options
are similar to futures that can also have cash settlement or physical settlement. We
always need to check contract provisions for both, as they may not follow the same
rules.

9.2 COMPOSITE PAYOFFS AT EXPIRY

Long and short positions in calls and puts can be combined to achieve a narrowly
tailored bet on the range of the asset price in the future. It is important to realize that
speculators can both buy (hold) and sell (write) options. They can combine long and
short positions. Here are some examples.

Straddles and strangles

Suppose we believe that between now and the expiry date, the price of ABC, currently
60, is going to jump dramatically, but we do not know which way. Suppose we buy a
put struck at 55 and a call struck at 65. This is called a 55–65 strangle.

On the expiry date, if the price is very low or very high we get a payoff; if the price
stays between 55 and 65 we get nothing. If the price is 30 at expiry, we collect 25 on the
55 put and nothing on the 65 call. If the price is 80, we collect nothing on the 55 put and
15 on the 65 call. If the price is 62, we get nothing on both options.

Because we bought both options, we incurred an upfront cost of the bet. So our profit
is reduced by the total price of the options. An option price is called a premium (like
with insurance).
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Next suppose that we believe that on the expiry date the price of ABC is going to stay
around 62. To give ourselves some room for error, we sell a 60–65 strangle (60 put and
65 call) and receive premiums for both options. If we are right and the price does not go
below 60 or above 65, we get to keep the total premium and make no payoff; if we are
wrong we have to make a payout on one of the options. The payoffs on the long 55–65
strangle and short 60–65 strangle are shown in Figure 9.2.

Figure 9.2 Strangle payoffs at expiry.

A strangle where the call strike and the put strike are the same is called a straddle. Short
straddles and strangles are bets that the price will not fluctuate much from some level.
Long strangles and straddles are bets that the price will move away from the anticipated
level.
Note that it is not the direction of the position, long or short, which distinguishes the

speculator from the dealer, but it is their actions after the bet is arranged and paid for.
The speculator statically waits for the payout; the dealer manufactures it through
dynamic trading.

Spreads and combinations

Another set of popular speculative strategies includes call and put spreads. These
combine long and short positions in options of the same type.
A long call spread consists of a long low-strike call and a short high-strike call.

Suppose we believe that ABC’s price will rise by expiry, but will not exceed 80. We
can buy a 65 call and sell an 80 call. Any outcome between 65 and 80 will yield an
increasing payoff; we will have given up any increase at and above 80. If the stock ends
up at 76, we will collect 11 from the 65 call and we will pay nothing on the 80 call. If the
stock ends up at 88, we will collect 23 from the 65 call, but we will pay 8 on the 80 call,
leaving us with 15, the maximum payoff from the strategy reached at 80. Below 65 both
options are worthless.
A long put spread consists of a long high-strike put and a short low-strike put.

Suppose we believe that ABC’s price will drop by expiry, but not below 35. We can
buy a 55 put and sell a 35 put. Any outcome between 35 and 55 will yield an increasing
payoff; we will have given up any increase below 35. If the stock ends up at 46, we will
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collect 9 from the 55 put and we will pay nothing on the 35 put. If the stock ends up at
28, we will collect 27 from the 55 put, but we will pay 7 on the 35 put, leaving us with
20, the maximum payoff from the strategy reached at 35. Above 55 both options are
worthless.

The payoffs on the long 65–80 call spread and short 35–55 put spread are shown in
Figure 9.3.

Figure 9.3 Spread payoffs at expiry.

We can package puts and calls into other combinations. If we sell a low-strike put and
buy a high-strike call, we will have no payout over a wide intermediate range of prices
(but perhaps a net premium received), we will benefit on the upside, and pay out on the
downside.

Options can also be combined to form calendar spreads. In this case, we buy an
option with one expiry date and sell an option with the same (or different) strike, but
with a different expiry date. For example, if we believe that ABC’s price might first go
up but then come down, we can buy a call with short maturity and sell one with a longer
maturity. Or if we believe that neither option will ever pay, we may want to sell the
more expensive (longer) one and buy the cheaper (shorter) one to pocket the difference.

Options can be combined with long and short positions on the underlying asset and
in leveraged proportions.

A buy–write is a strategy where we buy the stock and sell a high strike call. As the
stock rises, we are exposed to the possibility that it will rise above the strike of the call.
At that level, we will forgo any further appreciation in the stock as we will be forced to
pay out on the call. If we believe that the stock will appreciate over time but not rapidly,
we can opt to sell a string of calls with increasing strikes and maturities. We collect lots
of premium and hope that the options never pay off. This strategy is popular with asset
managers (e.g., insurance companies) who naturally hold long portfolios of stocks and
want to gain extra income for some extra risk. The strategy is called covered call writing.

In a leveraged buy–write, we buy the stock and sell two calls with the same strike and
the same maturity. If the stock price rises above the bet level we may lose any of the
prior appreciation we have gained.

The payoffs on a long, 80-strike buy–write and a 2-to-1 leveraged version of that are
shown in Figure 9.4.

238 An Arbitrage Guide to Financial Markets



Figure 9.4 Buy–write payoffs at expiry (stock at 60).

We can also combine a put with a long stock position to obtain protection against the
stock falling. The strategy works for holders of concentrated wealth (e.g., private stocks
of wealthy families) who cannot or do not want to sell their holdings. If we are afraid
that ABC’s price may drop below 50, we can buy a 50 put to protect our long stock
position. To reduce the cost of the protection we can sell a 40 put.
Options help with investment-timing decisions. Suppose we researched ABC’s stock

and consider it a solid long-term investment. Based on our analysis, we would like to
buy it at 56 or below, but the price has run up to 60. The stock is highly volatile in the
short run. Suppose we sell (write) a 60 put for 5. If the stock continues to go up, at least
we collected 5; we have to chase the stock up, but we enjoy a defrayment of cost. If the
stock goes down to 57, we will be exercised against, having to pay 3. Our net profit is 2
and we can use it to buy the stock, effectively paying 55. If the stock goes down even
further to 50, we pay out 10. This leaves us with a loss of 5, but we can buy the stock for
50, effectively paying 55.
The payoffs on a 50 put-protected stock and a long, 40–50 put-protected stock are

shown in Figure 9.5.

Figure 9.5 Payoffs on put-protected stock at expiry (stock at 60).
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Binary options

OTC, we can purchase options with fixed monetary payoffs. Suppose we pay 3 to get
20, if ABC’s stock goes to or above 70, or we pay 2 to get 20, if ABC’s stock goes down
to 50 but not below 40. The payoffs on these two options are in the following diagrams.
Binary options are more common with interest rates, where a version of them is called a
range.

Figure 9.6 Payoffs on binary options at expiry (stock at 60).

9.3 OPTION VALUES PRIOR TO EXPIRY

In all the above diagrams we showed the payoff of the options on the expiry date. Prior
to expiry the option value will have to be higher than the present value (PV) of the
payoff and in most cases even higher than the intrinsic value (equal to the payoff
computed with today’s stock price). For American options, which can be exercised
immediately, this should be obvious. We can always exercise the option for its intrinsic
value, so the value cannot be lower than that. Then there is a possibility of an even
greater payoff. For European options, the argument is a little more subtle. For options
on assets with no intermediate payouts, it can be shown that European calls should not
be exercised early and are thus equally valuable as American calls.3 American puts may
be optimal to be exercised early and so the European options price can be lower than its
American version.

In general, the value of the option prior to expiry can be represented as a line above
the intrinsic value bound.

Figure 9.7 Value of a call and a put prior to expiry.
K ¼ Strike price; S ¼ Spot price now.
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Option prices observe certain obvious arbitrage rules. A higher strike call will always be
worth less than a lower strike call with the same expiry. If ABC’s stock is at 60, then a
70 call will be worth more than an 80 call because the 70 call will always pay more than
an 80 call. If the stock ends up at 75, the 70 call will pay 5 while the 80 call will pay
nothing. The two will pay the same only if they both pay nothing. A lower strike put
will be always worth less than a higher strike put with the same maturity. The reasoning
is analogous to the call case.
An option with a longer maturity will always be worth at least as much as an

otherwise identical option with a shorter maturity. If the options have the same
strikes, then their intrinsic values will be the same, but the longer option will allow
more time for the underlying asset to move to generate a higher payoff. The analogy is
the insurance policy comparison between short- and long-term coverage. Since long-
term coverage allows for a greater possibility of a payoff, it will cost more. Insurance
has a similarly asymmetric payoff. It pays nothing if the desired event does not take
place, no matter how ‘‘close’’ to it we got; on the other side, the payoff depends on how
deep in-the-money we get. It is only one side of the probability distribution that
determines the value of the policy.
We will discover a few more arbitrage rules later.

9.4 OPTIONS, FORWARDS, AND RISK SHARING

Suppose we buy a European call and sell a European put on the same asset. Suppose
that we also search among all possible strike prices and find one strike price K , such
that the premium on the call struck at K that we buy is exactly paid for by the premium
on the put struck at K that we sell. Let us examine the payoff of our strategy at expiry
for physical-settle options.
If S � K , then the call option is in-the-money and we buy the stock for the amount

K. If S � K , then the put option is in-the-money. We are exercised against, and we buy
the stock for the amount K . By buying the call and selling the put, we are in effect
agreeing to buy the stock for the amount K on the expiry date. In a cash settle case, this
means that no matter whether the stock price is above or below the strike price, our
payoff is S � K on the expiry date.
Our strategy is equivalent to entering a long forward on the stock. Net, we pay

nothing today, and on a future date we deliver the sum of money K for one share of
the stock. The forward is on-market (zero PV upfront).
If we were slightly less careful in our search for the perfect strike and, instead, picked

one at random, but made sure that the strike on the long call is the same as the strike on
the short put, then we would have in effect entered into an off-market forward with the
mark-to-market value (PV) equal to the difference between the premium on the call and
that on the put.

Call � Put ¼ Forward

We can think of the forward value of the stock as the median separating two possibility
regions for the future stock price. The long call covers the part of the region to the right
of the strike (i.e., with stock values greater than the strike). The short put covers the
part of the region to the left of the strike (i.e., with stock values lower than the strike).
Traders can synthesize forwards from options or they can enter into forwards and

Financial Math III—Options 241



synthesize options by selling off the undesirable probability regions. For example, to
synthesize a call a dealer may enter into a forward and buy a put to offset the short put
implicit in the forward. To synthesize a put, a dealer may enter into a short forward and
buy a call to offset the short call implicit in the short forward.

This is an advanced way of risk arbitrage. The prices of calls and puts have to be in
line with on- and off-market forwards and futures. The arbitrage is executable by
combining futures and options on the same underlying asset and choosing to buy the
side that is cheaper relative to the other.

This is also an advanced way of broad risk sharing. When a stock is bought in an IPO
providing capital to a growing business, the buyer may not think much of options and
forwards. He does, however, appreciate the existence of a secondary market for stocks
(stock exchange), so that he can sell the stock when he no longer wants to bear the risk
of the stock. The person he sells to may, however, be an option player who wants the
stock, but only for a certain amount of time or only in a certain scenario. The fact that
he can customize his participation in the stock may be the main reason that he
purchases the stock. He does not buy another stock that does not have options
trading on it, because that would force him into an all-or-nothing risk.

9.5 CURRENCY OPTIONS

Options on currencies work the same way as options on other assets. However, just like
in spot and forward foreign exchange (FX) rates, we need to be careful to distinguish
the pricing currency (numerator) and the priced one (denominator). With other assets,
this is natural: the underlying price and the strike price of a stock option are expressed
in dollars per share of ABC’s stock. We are never interested in inverting the price or the
strike to know how many shares per dollar we can buy. With currencies we often do.
Because of that, each currency option (i.e., its strike rate) can be defined in two different
ways (e.g., in yen per dollar and in dollar per yen). To keep things straight, one should
think of the denominator currency as the underlying asset and the numerator currency
as a price unit.

Let us consider a call option on the U.S. dollar with a strike of 110 Japanese yen per
dollar (think of the dollar as the underlying asset) with one call covering $1,000 (think
of dollars as shares and each call is on 1,000 shares). If the dollar’s price rises above
Y¼110, the holder gets a payoff, otherwise not. The payoff, as with any call is equal to the
difference between the spot price of the underlying asset S (i.e., the spot FX rate in Y¼/$)
on the expiry date minus the strike K , or nothing, times the number of units of the
underlying asset (principal amount or size). That is, just like with any call, it is:

CallJPY=USD ¼ SizeUSD �MaxðSJPY=USD � KJPY=USD; 0Þ
where both S and K are in Y¼/$. The payoff is denominated in Y¼. If the spot FX rate at
expiry is Y¼117, we get Y¼7 times the 1,000 unit size, or Y¼7,000, equivalent to
$59.829 059 83 at the Y¼/$117 FX rate; if the spot FX rate at expiry is Y¼102, we get
nothing. A physical-settle version of this option would be the right to buy 1,000 dollars
for Y¼110 a piece, which would be exercised only if the spot value of the dollar is greater
than Y¼110. But the right to buy the dollar is automatically equivalent to the right to sell
the yen.
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The call on the dollar struck at Y¼/$110 is also a put on the yen struck at 1/110 ¼ $/
Y¼0.009 090 91. If the size of the call is 1,000 dollars, then the size of the put is Y¼110,000
(converting using the strike FX rate):

CallUSD=JPY ¼ SizeJPY �MaxðKUSD=JPY � SUSD=JPY ; 0Þ
When the value of the yen goes down to $0.008 547 01 (i.e., the spot FX rate moves to
Y¼/$117), we get a payout of 0.009 090 91�0.008 547 01 ¼ $0.000 543 90 per unit of yen.
This times the size of the option, 110,000 units of yen, gives us the total payoff of
$59.829 059 83, which is the same as Y¼7,000 at the Y¼/$117 FX rate. When the spot FX
rate goes up to $/Y¼0.009 803 92 (i.e., Y¼/$102), we get nothing.

Call on currency1 ¼ Put on currency2
Size converted at the strike FX rate (strike rate inverted)

This rule is true for all currency options, standard or not.

9.6 OPTIONS ON NON-PRICE VARIABLES

Options can be written on any variable, not just a price of some asset. Suppose we write
a put option on the temperature reading in Paris on July 15, 2008 with a strike
temperature of 23�C. We need to define how the outcome of the event will be translated
into a monetary payoff. With stocks or currencies, this is automatic. Once we know the
size of the option, say 100 shares or £62,500, the payoff is equal to the price difference
per unit times the size. With options written on non-price variables, we have to define a
number that translates the units of the non-price variable into money. Once we specify a
multiplier of c¼ 500 per one degree centigrade, the definition of our option is complete. If
the temperature in Paris on the expiry date is 17�C, our put option pays 23� 17 ¼ 6
times 500, or c¼ 3,000. If the temperature is 26�C, the put pays nothing.
The first, most common example of a non-price variable is a stock index. A stock

index is not a price of anything, but a normalized number designed to track the
percentage changes in a particularly defined basket of stocks. The basket changes
over time as some stocks come in and some are removed. Consider the Nikkei 225
index. In order to define a payoff of an option we need to translate the index points into
yen. For example, we may specify that an 11,000 call will pay the difference between the
index value and strike level times Y¼10,000, or 0, whichever is greater. So if the index hits
11,078.23 on the expiry date of the call, the holder would get:

ð11,078:23� 11,000Þ �Y¼10; 000 ¼ Y¼782,300

Note that the multiplier need not be specified in what seems natural. Suppose a U.S.
investor wants exposure to the Japanese stock market, but does not want to bear
currency risk. We could define the multiplier in dollars per Nikkei point (e.g., $250
per point). The holder would then get:

ð11,078; 23� 11,000Þ � $250 ¼ $19,557:50

(For a dealer, this dollar option is much harder to hedge. The yen option is hedged by
buying stocks in the right proportions, using the multiplier to define the yen amounts to
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be spent on shares. The dollar option involves additional currency exposure as yen
gains and losses on the stocks have to be translated into dollars at a fictitious one-for-
one fixed rate.)

Another non-price-based option example is an interest rate. Options can be written
on the price of a bond, in which case we only need to specify the face value of the bond
as the size. But options can also be written directly on the interest rate, whether spot or
forward. The rate cannot be bought or sold (only an instrument whose value depends
on it), so we cannot specify a ‘‘size’’. But we can specify a multiplier, say as $100 per
1 basis point (bp) of the difference between the underlying rate and the strike rate.
(Hedging may be difficult. The option fixes a linear yield–payout relationship; the price–
yield relationship for the hedged instrument is non-linear, so a $1 price change does not
translate to a 1% yield change.)

Sometimes an interest-rate-based option’s multiplier is implicit. A cap is a multi-
period ‘‘call’’ option on a short-term rate which consists of several caplets. Each
caplet provides a payment for one interest accrual period equal to 0 or the difference
between the rate and a strike, whichever is greater, times the notional principal amount
times the appropriate day-count. A 5-year, $100 million 4% cap on the 3-month U.S.
dollar LIBOR (London interbank offered rate) consists of 20 caplets, one for each
subsequent 3-month period. Caplet 9’s payout will be based on the greater of zero
and the difference between the 3-month LIBOR 2 years from today and 4%, and
will take place 3 months later (i.e., in 2 years and 3 months); this is designed to
mimic the way swaps and floating rate bonds pay. The multiplier for each caplet is
equal to $100 million times the day-count for the relevant 3-month interest period (e.g.,
Act/360). Suppose 2 years from today LIBOR sets at 4.34%. The payout on the cap for
that interest period assuming it has 92 days will be:

$100,000,000� ð4:34%� 4%Þ � 92=360 ¼ $86,888:89

The multiplier on the cap changes slightly for each period as the day-count fraction
changes.

9.7 BINOMIAL OPTIONS PRICING

The option premium charged by a dealer reflects his cost of manufacturing the payoff.
The dealer sells (or buys) the option, then borrows or lends money, and takes a partial
position in the underlying asset. By the expiry time, his hedge is worth exactly the same
as the payoff on the option he owes or receives. We will illustrate the mechanics of
payoff manufacturing with increasingly more revealing examples of binomial trees.4 All
examples use stocks, but are equally applicable to other traded assets.

One-step examples

We use the following assumptions for Examples 1–3. The underlying stock sells cur-
rently for S ¼ $50 a share. The expiry of the option is 1 year from today (or one period
with no trading in the underlying between now and expiry). The dealer sells the option,
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collects the premium, and then follows a set of instructions. For Examples 1, 2a, and 3a,
we also assume that the dealer can borrow or lend money at no interest. On the expiry
date, one period from today, the stock can take on two values Sup ¼ $70 or Sdn ¼ $20.
The dealer believes that the up probability is 1

4
and the down probability is 3

4
. He takes

the following steps:

(1) Given the potential stock outcomes Sup ¼ $70 or Sdn ¼ $20 for the up and down
states tomorrow and given today’s stock price of S ¼ $50, the dealer computes a
number:

q ¼ S � Sdn

Sup � Sdn

We will refer to q as the risk-neutral5 probability of the up state and to 1� q as the
risk-neutral probability of the down state. These are the only probability-like
numbers that the dealer uses in his weighted average calculations, not his subjective
beliefs 1

4
and 3

4
(he could easily be wrong). The risk-neutral probability q has no

meaning outside the context of this six-step procedure (i.e., it is not a real prob-
ability of anything). In our examples, we compute q to be:

q ¼ 50� 20

70� 20
¼ 3

5
¼ 0:60

(2) Given the strike level K and the potential stock outcomes Sup ¼ $70 or Sdn ¼ $20
for the up and down states, he assigns the call payoffs Cup and Cdn, or put payoffs
Pup or Pdn, for the corresponding states of nature in the expiry period.

(3) He computes the premium on the option by taking the average of the future option
outcomes weighted by the risk-neutral probabilities of the states; that is:

C ¼ qCup þ ð1� qÞCdn or P ¼ qPup þ ð1� qÞPdn

(4) He computes a hedge number

D ¼ Cup � Cdn

Sup � Sdn
or D ¼ Pup � Pdn

Sup � Sdn

which tells him how many shares of stock he needs to hold (buy or sell) today.
(5) He buys/sells the prescribed number of shares by paying/receiving D� S. He uses

the collected premium in the purchase or sale. If necessary, he borrows/lends D� S
minus the option premium, so that his cash position today is 0.

(6) He liquidates his hedge one period from today when the state of nature is revealed
(i.e., the stock either goes up or down). He uses the proceeds to settle his borrow-
ing/lending and to pay the agreed-on payoff to the option buyer.

We will show that if he faithfully follows steps 1–5, then in step 6 he will always have on
hand the exact amount of money demanded by the option holder, no matter what
happens to the stock price. He will not have used his subjective beliefs to gamble on
the direction of the stock.
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In our illustrations, we will place all the computed numbers diagrams with nodes like
this. Next to today’s stock price of S ¼ 50, we will show all the numbers from steps 1–5
(i.e., q, D, the option premium C or P, the cost of shares D� S, and the amount of
borrowing/lending D� S � C or D� S � P). Next to the potential future stock prices
Sup and Sdn, we will show the corresponding value of the option Cup (or Pup) and Cdn (or
Pdn), the value of the stock position held from the previous step D� Sup and D� Sdn,
and the cash position carried over from the previous step.

Figure 9.8 A binomial node. Current stock price S ¼ 50.

Example 1 (Binary lottery, zero interest rate) John Dealer sells a binary ‘‘call’’ option
on the stock that pays $10 if the stock ends up at or above $60 or nothing if it ends up
below $60 one period from today. John’s calculations are shown in Figure 9.9.

Figure 9.9 A binary call with payoff C ¼ 10 if S > 60, otherwise zero.

The risk-neutral probability q ¼ 0:60. The call payoffs 1 year from today are 10 if the
stock is at 70 or 0 if the stock is at 20. So he sells the call for:

C ¼ 0:60ð$10Þ þ 0:40ð$0Þ ¼ $6

Given his hedge ratio:

D ¼ 10� 0

70� 20
¼ 1

5
¼ 0:20

he buys 0.20 shares for 0.20� 50, or $10. Since he collected only $6 for the option, he
borrows 10� 6 ¼ $4.

One period later, if the stock is at $70, his stock position is worth 0:20� 70 ¼ $14. He
liquidates it, pays $10 on the option, and repays the borrowing of $4. If the stock is at
$20, his stock position is 0:20� 20 ¼ $4. He liquidates it, pays nothing on the option,
and repays his borrowing of $4. Collecting the premium of $6 on day 1 has allowed
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John to manufacture the payoff he is obligated to make irrespective of whether the
stock goes up or down.

Example 2a (call struck at 55, zero interest rate) John Dealer sells a standard call
option on the stock struck at $55. At expiry, the call pays the value of the stock (i.e., Sup

or Sdn) minus the strike (K ¼ 55) if the stock ends up at or above $55 or nothing if it
ends up below $55 one period from today. John’s calculations are as follows.

Figure 9.10 A call struck at 55. Payoff C ¼ maxðS � 55, 0Þ. Zero interest rate.

The call payoffs are 15 if the stock is at 70 or 0 if the stock is at 20. So he sells the call
for:

C ¼ 0:60ð$15Þ þ 0:40ð$0Þ ¼ $9

Given his hedge ratio:

D
15� 0

70� 20
¼ 3

10
¼ 0:30

he buys 0.30 shares for 0.30� 50 or $15. Since he collected only $9 for the option, he
borrows 15� 9 ¼ $6.
One period later, if the stock is at $70, his stock position is worth 0:30� 70 ¼ $21. He

liquidates it, pays $15 on the option, and repays the borrowing of $6. If the stock is at
$20, his stock position is 0:30� 20 ¼ $6. He liquidates it, pays nothing on the option,
and repays his borrowing of $6.

Example 3a (put struck at 55, zero interest rate) John Dealer sells a standard put
option on the stock struck at $55. At expiry, the put pays the strike (K ¼ 55) minus the
stock value (Sup or Sdn) if the stock ends up at or below $55 or nothing if it ends up
above $55 one period from today. John’s calculations are as follows.

Figure 9.11 A put struck at 55. Payoff P ¼ maxðS � 55, 0Þ. Zero interest rate.
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The put payoffs are 0 if the stock is at 70 or 35 if the stock is at 20. So he sells the put
for:

P ¼ 0:60ð$0Þ þ 0:40ð$35Þ ¼ $14

Given his hedge ratio:

D ¼ 0� 35

70� 20
¼ � 7

10
¼ �0:70

he shorts 0.70 shares to collect 0.70� 50, or $35. Since he collected $14 for the option,
he places the combined proceeds 35þ 14 ¼ $49 in a deposit (i.e., lends).

One period later, if the stock is at $70, his stock position is worth
�0:70� 70 ¼ �$49. He liquidates it. He uses the $49 from the deposit to buy the
stock back and return it to the lender. He pays nothing on the option. If the stock is
at $20, his stock position is �0:70� 20 ¼ �$14. He uses the $49 from the deposit to
liquidate the stock position ($14) and to pay $35 on the option.

Let us make a few observations. Once the payoff on the option is defined, the rest is a
mechanical adherence to a recipe. The recipe covers all potential payoff structures—
binary, standard, or any other exotic—as well as both puts and calls and both bought
and sold options. The actions for the dealer who buys the option, instead of selling,
would be analogous. They are completely determined by his hedge ratio D. A positive
delta means long stock; a negative one means short stock. The borrowing and lending
simply balances the cash position resulting from the price of the D amount of stock and
the premium on the option.

Let us now demonstrate that the recipe works with only slight modifications when we
do not make the unrealistic assumption that the financing interest rate is 0. Here are the
amendments:

(1) The formula for q is changed by replacing today’s S with its future value equivalent
(i.e., the forward). Recall that the forward is equal to the value of S multiplied by a
future value factor, equal to 1 plus the interest rate r for 1 year. For fractions of a
year, or special compounding and day-count conventions, it needs to be amended
appropriately. For an annual period it is:

q ¼ Sð1þ rÞ � Sdn

Sup � Sdn

In our example, we assume that r ¼ 10% and compute q to be:

q ¼ 50ð1:1Þ � 20

70� 20
¼ 7

10
¼ 0:70

(2) No change.
(3) We compute the premium on the option by taking the average of the future option

outcomes weighted by the risk-neutral probabilities of the states, present-valued to
today; that is:

C ¼ 1

1þ r
½qCup þ ð1� qÞCdn� or P ¼ 1

1þ r
½qPup þ ð1� qÞPdn�

(4) through (6) No change, but we have to remember about interest paid or earned on
borrowing or lending when carrying over the cash position from the previous step.
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Let us repeat the standard call and put example with a financing cost of 10%.

Example 2b (call struck at 55, 10% interest rate) John Dealer sells a standard call
option on the stock struck at $55. At expiry, the call pays the value of the stock (i.e., Sup

or Sdn) minus the strike (K ¼ 55) if the stock ends up at or above $55 or nothing if it
ends up below $55 one period from today. John’s calculations are as follows.

Figure 9.12 A call struck at 55. Payoff C ¼ maxðS � 55, 0Þ. 10% interest rate.

The call payoffs are still 15 if the stock is at 70 or 0 if the stock is at 20. But he sells the
call for:

C ¼ 1

1:1
½0:70ð$15Þ þ 0:30ð$0Þ� ¼ $9

6

11
¼ $9:54545

Given his hedge ratio:

D ¼ 15� 0

70� 20
¼ 3

10
¼ 0:30

he buys 0.30 shares for 0.30� 50, or $15. Since he collected only $9 6
11
for the option, he

borrows 15� 9 6
11
¼ $5 5

11
.

One period later, if the stock is at $70, his stock position is worth 0:30� 70 ¼ $21. He
liquidates it, pays $15 on the option, and repays the borrowing, which has by now
accrued to $6 (5 5

11
� 1:1) at the 10% interest rate. If the stock is at $20, his stock

position is 0:30� 20 ¼ $6. He liquidates it, pays nothing on the option, and repays
his borrowing and interest of $6.

Example 3b (put struck at 55, 10% interest rate) John Dealer sells a standard put
option on the stock struck at $55. At expiry, the put pays the strike (K ¼ 55) minus the
stock value (Sup or Sdn) if the stock ends up at or below $55 or nothing if it ends up
above $55 one period from today. John’s calculations are as follows.

Figure 9.13 A put struck at 55. Payoff P ¼ maxð55� S, 0Þ. Zero interest rate.
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The put payoffs are unchanged: 0 if the stock is at 70 or 35 if the stock is at 20. He sells
the put for:

P ¼ 1

1:1
½0:70ð$0Þ þ 0:30ð$35Þ� ¼ $9

6

11
¼ $9:54545

Given his hedge ratio:

D ¼ 0� 35

70� 20
¼ � 7

10
¼ �0:70

he shorts 0.70 shares to collect 0.70� 50, or $35. Since he collected $9 6
11
for the option,

he places the combined proceeds 35þ 9 6
11
¼ $44 6

11
in a deposit (i.e., he lends).

One period later, if the stock is at $70, his stock position is worth
�0:70� 70 ¼ �$49. He liquidates it. He uses the $49 (44 6

11
� 1:1) from the deposit,

which has accrued interest in the meantime, to buy the stock back and return it to the
lender. He pays nothing on the option. If the stock is at $20, his stock position is
�0:70� 20 ¼ �$14. He uses the $49 from the deposit and interest to liquidate the
stock position ($14) and to pay $35 on the option.

Let us make a few more observations. First, the hedge ratios are the same as in the
zero interest case, but the borrowing/lending grows period to period and makes a
difference in the final apportioning of the proceeds at expiry.

Second, a positive interest rate raised the price of the call and lowered the price of the
put (Examples 2b and 3b relative to 2a and 3a). This is because a call seller borrows
money to buy stock thereby incurring a cost, while a put seller lends money after
shorting a stock accruing interest. So the cost of manufacturing the final payoff in-
creases for the short-call hedger and decreases for the short-put hedger.

Third, the price of the call and the put in our example was the same (Examples 2b
and 3b). This was not a coincidence. The strike price on both options was equal to $55.
This is the forward price of the stock for delivery on the expiry date, equal to the spot
price of the stock $50 times a future value factor reflecting the cost of carry (i.e.,
50� (1þ 0:10) ¼ $55).

This confirms our prior assertion, before we knew anything about option pricing,
that a call and a put struck at a forward will have the same cost, so that we can
manufacture the forward by buying a call and selling a put struck at the forward price.

Let us further show that the last property will hold no matter how volatile the stock is
between now and expiry. Suppose that, instead of potential outcomes of $70 or $20, the
stock is perceived to have potential outcomes of Sup ¼ $80 or Sdn ¼ $15. The stock is
more volatile and is thus riskier. We follow our recipe using an interest rate of 10%.
The forward value of the stock is still the same $55.

Example 2c (call struck at 55, 10% interest rate) John Dealer’s calculations are as
follows.

Figure 9.14 A call struck at 55. Payoff C ¼ maxðS � 55, 0Þ. 10% interest rate. Higher volatility.
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He sells the option for $13.986, a lot more than before, to reflect the increased
expected value of the payoff.

Example 3c (put struck at 55, 10% interest rate) John Dealer’s calculations are as
follows.

Figure 9.15 A put struck at 55. Payoff P ¼ maxð55� S, 0Þ. 10% interest rate. Higher volatility.

Again, he sells the option for $13.986, a lot more than before (Examples 2c and 3c
relative to 2b and 3b), to reflect the increased expected value of the payoff.
In both examples, he sells the call for the same price as the put (Examples 2c and 3c).

It will always be true that if the perceived riskiness of the underlying asset increases,
both calls and puts will increase in value, but the price of a call struck at a forward will
always be equal to the price of a put struck at a forward. This is because the forward
does not have anything to do with the volatility of the stock, it simply reflects the cost of
carry. A long-call–short-put position, equivalent to the forward, must carry a net zero
premium (an on-market forward costs nothing to enter into).
What we have also shown is that, while the subjective probabilities of the stock

outcomes are irrelevant, the volatility, or the potential dispersion of the outcomes, is
not. The more volatile the stock is, the higher are the premiums on standard calls and
puts (Examples 2c and 3c relative to 2b and 3b). This reflects the asymmetric nature of
their payoffs. A more volatile stock means that the payoff when the option is in-the-
money is likely to be larger, while when the option is out-of-the-money the payoff is still
the same constant zero. Thus the expected value of the payoff is higher if the volatility is
higher.

A multi-step example

Let us now demonstrate the full dynamic process of hedging an option (i.e., manufac-
turing its payoff). We consider a put struck at K ¼ 54, an interest rate r ¼ 2:6% per
period (i.e., already de-compounded), and a stock price currently at 50, and follow the
dynamics shown in Figure 9.16:
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Figure 9.16 A binomial tree. Current stock price S ¼ 50.

For example, an option with 3 months to expiry might be divided into monthly steps.
Over the first month, the stock can go up to 60 or down to 35 (the actual probability of
each step is irrelevant). If the stock went down to 35 during the first month, then it can
go up to 45 or down to 20 over the second month, etc. For clarity, we will drop the
arrows for the rest of the exposition.

We follow the same logic as used in the one-step examples for each subtree. We first
compute the risk-neutral probability:

q ¼ Sð1þ rÞ � Sdn

Sup � Sdn

for all subtrees. For example, for the subtree emanating from the 45 point, we have:

q ¼ 45ð1þ 0:026Þ � 30

55� 30
¼ 0:6468

We also determine the payoff of the option at expiry. For example, when the stock price
is 45, the payoff would be 54� 45 ¼ $9. We place the q’s and the final payoffs in the
diagram.

Figure 9.17 A binomial tree. Current stock price S ¼ 50. Put payoff P ¼ maxð54� S, 0Þ. Com-
puted q’s and final payoffs.

252 An Arbitrage Guide to Financial Markets



As in the one-step examples, we sweep through the tree backward to determine the
premium on the option today. We use the same equation as before for each node:

C ¼ 1

1þ r
½qCup þ ð1� qÞCdn� or P ¼ 1

1þ r
½qPup þ ð1� qÞPdn�

We start with the second-to-last date and consider the subtrees emanating from all three
points. We compute put values for all three states: 70, 45, and 20. For the $45 state we
compute:

P ¼ 1

1þ 0:026
½0:6468 � 0þ ð1� 0:6468Þ � 24� ¼ 8:2620

For the $20 state we compute:

P ¼ 1

1þ 0:026
½0:6208 � 24þ ð1� 0:6208Þ � 49� ¼ 32:6316

We place the values on the tree diagram. We go to one date before the one just
computed and calculate the put values for each node (60 and 35) on this date, using
the same equation linking a node on a given date to two future nodes. For example, for
the $35 state we get:

P ¼ 1

1þ 0:026
½0:6364 � 8:2620þ ð1� 0:6364Þ � 32:6316� ¼ 16:6889

We proceed recursively like this until we obtain today’s value of the put P ¼ $7:3881.

Figure 9.18 A binomial tree for a put struck at 54. Computed q’s, final payoffs and premiums.

Next, we demonstrate that no matter which route the stock price takes between today
and 3 months from today, the hedge will work perfectly.
For each node, we compute the hedge number:

D ¼ Cup � Cdn

Sup � Sdn
or D ¼ Pup � Pdn

Sup � Sdn

which tells us how many shares we should hold at that node. In our put example, all
deltas will be negative or 0 to reflect the fact that we will short shares. For example, for
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the $35 state 1 month from today the delta is:

D ¼ 8:2620� 32:6316

45� 20
¼ �0:9748

Again we place all the deltas in the diagram.

Figure 9.19 A binomial tree for a put struck at 54. Added D’s for all nodes.

Depending on the route the stock takes, all trades are now determined by the differences
between deltas at subsequent nodes. The lending amounts are determined too by the
cash position at each node. Let us go through the tree forward, following one hypo-
thetical path.

Suppose the stock price from today’s level of $50 goes down to $35 1 month from
today, then to $45 2 months from today, and ends up at $30 3 months from today. In
order to hedge our position, we are required to short 0.5588 shares today. This will
result in proceeds of 0:5588� 50 ¼ $27:9406. We deposit that and the premium re-
ceived from selling the put (i.e., a total of 27:9406þ 7:3881 ¼ $35:3287) in an
account earning 2.6% per month.

Figure 9.20 Today’s node with S ¼ 50, P ¼ 7:3881, D ¼ �0:5588. Proceeds from short sale
27.9406. Total lending 35.3287.

The following month the price goes down to $35. Based on our new delta of �0:9748,
we need to short an additional 0:9748� 0:5588 ¼ 0:4159 shares. This results in
proceeds of 0:4159� 35 ¼ $14:5590. Meanwhile, our prior lending accrued to
35.3287� (1þ 0.026) ¼ 36.2473. We relend the sum of the two (i.e., 14.5590þ
36.2473 ¼ $50.8063) for another month at 2.6%. Note that the borrowing/lending
amount can also be found by subtracting the put value at a node, 16.6889, from the
value of the share holding, �0:9748� 35 ¼ $� 34:1174 (i.e., �34:1174� 16:6889 ¼
$� 50:8063Þ:
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Figure 9.21 Month 1’s node with S ¼ 50, D ¼ �0:9748.

The following month, the stock price increases to $45. Based on our new delta of
�0:9600, we need to buy back 0:9748� 0:9600 ¼ 0:0148 shares. This costs us
0.0148� 45 ¼ $0.6653. We take that amount from the maturing deposit which has
accrued to 50.8063� (1þ 0.026) ¼ $52.1273. We relend the remainder 52:1273�
0:6653 ¼ $51:4620 for another month at 2.6%. Again, the borrowing/lending amount
can be found by subtracting the put value at a node, 8.2620, from the value of the
shareholding, �0:9600� 45 ¼ $� 43:2000 (i.e., �43:2000� 82620 ¼ $� 51:4620).

Figure 9.22 Month 2’s node with S ¼ 45, D ¼ �0:9600.

We proceed to the final step. The stock goes down to $30. We collect the deposit with
accrued interest (i.e. 51.4620� (1þ 0.026) ¼ $52.8000). We buy back the shorted shares
for 0.9600� 30 ¼ $28.8000 and pay $24 to the put holder. We are left with no stock
position, no borrowing or lending position, and our put obligation is satisfied.

Figure 9.23 Final month’s node with S ¼ 30. Payoff of 24.

We can trace any other path through the tree to see that the result would be identical:
we would end up with no stock, no cash, and we would have made a payout on the put,
if any was required. The summary of all the calculations is portrayed in the completed
diagram.

Figure 9.24 A complete binomial tree for a put struck at 54, including premiums, D’s, totals
shorted and totals lent.

Financial Math III—Options 255



The procedure of computing the q’s, sweeping backward to get the option value
upfront, and sweeping forward to compute the required hedges and borrowing/
lending positions works for all standard calls and puts, digital options, barrier
options, American exercise style, and many other options. In all of these cases, the
only thing that changes is the recursive computations of the option value during the
backward sweep. For example, for American options that can be exercised early, we
have to amend the option value for any given node to see if the immediate exercise value
is not greater than the unexercised value; that is:

C ¼ Max

�
1

1þ r
½qCup þ ð1� qÞCdn�;S � K

�

or

P ¼ Max

�
1

1þ r
½qPup þ ð1� qÞPdn�;K � S

�

This is very easy to implement in any computer code or spreadsheet.

Black–Scholes

The well-known Black–Scholes6 equation for calls and puts is a continuous general-
ization of the binomial approach. There are at least two improvements there: first, the
stock price, looking forward from one date to the next, can take on a continuum of
values, not just two; and, second, there is a continuum of dates, not just month to
month or day to day. The equation computes the present value of a hedge strategy
where the rebalancing occurs instant by instant and over minute price changes. The
overriding principle of payoff manufacturing remains the same. An option payoff is
replicated by a position in a stock combined with borrowing or lending. The stock and
bond position is adjusted continuously and for infinitesimal value changes. The value of
the option today is equal to the cash required to start this dynamic hedge process. For
options on a non-dividend-paying stock, it is equal to:

C ¼ SNðd1Þ � Ke�rTNðd2Þ
P ¼ Ke�rTNð�d2Þ � SNð�d1Þ

where d1 ¼
lnðS=KÞ þ ðrþ �2=2ÞT

�
ffiffiffiffi
T

p , d2 ¼ d1 � �
ffiffiffiffi
T

p
, r is a continuously compounded

interest rate, and T is time to maturity (in years). The formula provides an explicit link
between the annual volatility of the stock return � and the value of the option. In the
Black–Scholes model, the continuously compounded return on the stock over an in-
finitesimal interval dt is assumed to be normally distributed. What this means is that,
instead of the stock price taking on potentially only two values when moving from time
t to time tþ dt, the stock can take on a continuum of values such that the continuously
compounded return on the stock over that interval, lnðStþdt=StÞ, has a standard devia-
tion of �

ffiffiffiffiffi
dt

p
. This is portrayed in Figure 9.25.

256 An Arbitrage Guide to Financial Markets

6 Fischer Black and Myron Scholes, ‘‘The pricing of options and corporate liabilities’’, Journal of Political Economy, 81,
637–659, May/June, 1973. The model is also attributed to Robert C. Merton, ‘‘Theory of rational option pricing’’, Bell
Journal of Economics and Management Science, 4, 141–183, Spring, 1973.



Figure 9.25 The probability density for stock price outcomes under log-normal distribution.

The probability mass curve in the graph is not the normal bell curve but rather that of a
log-normal. The minimal stock price is 0, the maximal price is1. The percentage return
is normal and would have a bell-shaped curve.
The inclusion of price volatility in arriving at the value of the option was implicit in

our binomial trees, where the width of each branch depended on the variability of the
stock. If we set:

u ¼ e�
ffiffiffiffi
Dt

p
; d ¼ 1=u; q ¼ erDt � d

u� d

then it is easy to show that our binomial model with a time step of Dt is just a discrete
approximation of and will converge to the Black–Scholes equation7 as we shorten Dt
(i.e., increase the number of rehedging times in the tree). That is why we chose to
present the binomial approach to option pricing first, rather than go the continuous
equation route. The discrete model is intuitive and more general, as it allows American
exercise options to be valued; the continuous approach relies on a stochastic calculus
argument. The two can be made equivalent to each other. That is, they come up with
the same answer to the premium and hedge ratios.

Dividends

The inclusion of dividends in option pricing is straightforward, assuming that dividends
are a known cash payout between now and the option expiry. Their effect on option
prices should be intuitive. Because they are an outflow of value from the stock, they
reduce the potential future outcomes for the stock. As such, their impact is to decrease
the call values and to increase the put values. This can also be argued by considering the
delta hedge. The call writer shorts less of the stock, and the put writer buys more of
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the stock, because when they adjust the hedge the stock price will have been reduced by
the amount of the dividends, whether the stock has gone up or down.

There are two ways to correct option valuation for dividends, depending on whether
their amount is known in dollars or as a percentage of the stock price (analogously to
the forward discussion in Chapter 6). Consider dividends paid at a constant continuous
rate �. In the Black–Scholes model, the inclusion of dividends is accomplished8 by
multiplying each occurrence of the stock price S by the continuous compounding
term e��T . In the binomial model, the correction is the same. Each node’s stock
value is reduced by the amount of accrued dividends. We change the definitions of
the upstate and the downstate to u ¼ e��Dtþ�

ffiffiffiffi
Dt

p
, d ¼ e��Dt��

ffiffiffiffi
Dt

p
.

9.8 RESIDUAL RISK OF OPTIONS: VOLATILITY

Can anything go wrong with the hedge? If the dealer adheres strictly to the algorithm
and as long as the stock follows one of the considered paths, then the answer is no.
And, if the Black–Scholes model considers a continuum of paths, doesn’t the algorithm
consider all possible paths? Unfortunately, the answer is no.

The range of possible outcomes considered is determined by the assumed volatility of
the stock. Volatility is the square root of variance. Variance is the expected value of
squared deviations of the stock’s return from the mean return over a given period. The
Black–Scholes model requires volatility as an input. It then considers all the stock price
paths that are within a certain range bounded by the volatility. That is, stock price
movements period to period are restricted not to jump discontinuously. Graphically,
this can be portrayed as all the paths within an expanding cylinder of outcomes, with
the greatest density of paths close to the center. The edges of the cylinder are not
binding, but the probability of outcomes outside or far from the center is minuscule
(i.e., we assume a bell-shaped normal curve for the path of stock returns).

Figure 9.26 Stock price paths for constant �. Paths are bound not to jump discontinuously.
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In the binomial setup, volatility translates directly to the width of the span of potential
outcomes. Thus a 30% annual volatility may translate into a 70–20 span as in Example
2b and a 40% volatility may result in a wider span of 80–15 as in Example 2c.
If a dealer underestimates the actual volatility the stock will experience during the life

of the option, then he will discover that he has sold the option too cheaply. The
premium he has charged will not cover the cost of the replicating strategy. In the
Black–Scholes model, that means the dealer should have used a higher volatility
input. In the binomial model, the assumed span should have been wider. Note that
the dealer is not asked to predict the really unpredictable (i.e., whether the stock will go
up or down), but only the slightly unpredictable (i.e., whether the stock will move little
or a lot between now and expiry).
Let us see in our binomial model what happens if the seller of a 55 call underestimates

volatility. Suppose he uses the model as in Example 2b, describing potential outcomes
as 70 and 20. He charges $9 6

11
for the call and borrows $5 5

11
. With the total amount of

$15 he buys the prescribed 0.3000 shares at $50 a share. But the stock proves more
volatile (i.e., it attains either 80 or 15). The dealer will lose money whether the stock
goes up or down. Here is the diagram.

Figure 9.27 Example 2b revisited: mis-hedge.

If the stock goes up to 80, the 0.3 shares are worth $24, but the dealer owes $25 to
the option holder and $6 on his borrowing. If the stock goes down to $15, the 0.3
shares are worth $4.50, but the dealer owes $0 to the option holder and $6 on his
borrowing.
The primary risk of any option dealer is not the direction the underlying asset may

take, but the exposure to volatility of the underlying asset. A sold option results in a
short-volatility position. If the actual volatility of the underlying asset increases, the
dealer loses money; if it decreases, the dealer makes money. A bought option results
in a long-volatility position. If the actual volatility of the underlying asset increases, the
dealer makes money; if it decreases, the dealer loses money. The sensitivity of an option
to the volatility input is called the vega of the option. The unit is the dollar change in the
value of the option per 1% change in volatility. The vega of an option depends on the
maturity of the option, the strike level relative to the current underlying asset’s price (in-
the-moneyness), and the interest rate. In general, the longer the time to expiry the higher
the vega, as there is more time to lose money on mis-hedging. Also, the closer the
option is to the money the greater the vega. Deep in-the-money options and deep out-
of-the-money options have low vegas.
Option portfolios can be described as long or short volatility, too. A long-volatility

portfolio may contain bought and sold options, but the majority are bought. The

Financial Math III—Options 259



‘‘majority’’ here means that the net vega position in terms of net dollar sensitivity of the
portfolio to a 1% change in the volatility (long-vega options minus short-vega options)
is positive. A short-volatility portfolio has a net negative vega. With many bought and
sold options in the portfolio, the overall vega of the portfolio changes over time and as
the price of the underlying asset fluctuates.

The vega of an option is related to another ‘‘Greek’’: the gamma. The latter relates to
the change in the delta of the option per unit of underlying price change. The higher the
gamma, the more the delta hedge needs to be adjusted as a result of an underlying price
change. High-gamma options are considered risky given that the required change in the
delta hedge may be difficult to execute quickly and without a loss.9 The vega (and the
gamma) risk of an option portfolio cannot be hedged with positions in the underlying
asset, but only through option positions. A position in a stock does not have any vega
or gamma exposure; hence it cannot offset any option exposure. Only another option
can.

Implied volatility

Running an option book is a bit of a chicken-and-egg game. In order to price the
options we buy and sell, we need the volatility input into a pricing model (Black–
Scholes, binomial, other). Different volatility assumptions will result in different
hedge ratios (i.e., positions in the underlying assets). Suppose we have somehow
guessed the right input, priced all the options, computed the hedges, and bought or
shorted the right net number of shares, bonds, or currency underlying the options in
our portfolio. Our portfolio is now free of directional risk. Whether the underlying asset
price goes up or down, we do not show any profit or loss.

But how do we guess the volatility input? We could perform a statistical analysis of
the past movements in the asset’s price and compute the standard deviation of the
returns on the asset. This historical volatility could then be input into the model.
However, that would be tantamount to betting that the historical level of price varia-
tion will continue into the future. A better way is to try to get at the market’s current
consensus of the future price volatility. Where can we obtain that? In the option prices
other people charge.

Before we use the model to price our portfolio, we examine currently quoted option
prices. Dealers who quote these prices include their estimates of future volatility as
input into the same models to calculate their manufacture costs. We can back out what
those estimates are by using our model to see what volatility input yields the prices that
they quote. This implied volatility can then be input into our own model to price and
hedge our portfolio.

Using implied volatility is always superior to using historical volatility as an input
into an option model. This is because we can actually trade the options priced using
implied volatilities. After all, we obtain those implied volatilities from actual option
quotes. We can use those options to eliminate our vega risk. Suppose our portfolio is
long-volatility and market-neutral. That is, we have bought more options than we sold,
but we bought or shorted enough of the underlying asset to eliminate the directional
risk. We compute the sensitivity of our portfolio to a 1% change in the volatility input
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and sell new options at the quoted prices by choosing the amount sold so that those
options have the same sensitivity to a 1% volatility change. We also neutralize the
directional risk of the newly sold options. Now our combined portfolio is directional
risk-free and vega risk-free!
The only way for a hedger to make money from trading options is to charge/pay for

options more/less than the fair value. That is, the hedger’s profit comes purely from the
bid–ask spread and not from speculation on any explicit (price, rate) or implicit
(volatility) market variable. Most dealers do not offset their vega risk completely and
thus can be considered arbitrageurs in first-order risk (directional) and speculators in
second-order risk (volatility). They can offset their volatility risk but choose not to as
that would eat into their profits.
The only time we may consider using historical volatilities as inputs is when there are

no options being quoted for expiries similar to the options in our portfolio. This is
typical for very long-term options.

Volatility smiles and skews

In the Black–Scholes model, there is only one volatility input. This means that volatility
is constant over time. This is actually not a big problem and can be easily rectified. We
can assume that volatility changes over time. We can then substitute a vector of
volatilities, indexed by time, for a single number. In the binomial setup, this translates
into considering different widths for the tree branches as we move through time steps
(left to right). A bigger problem is associated with the fact that in the Black–Scholes
model we also assume that volatility is constant across different price levels (up and
down in the tree). We can fix that by considering different branch widths across states.
After all the ‘‘fixes’’, using perhaps a whole matrix of volatility inputs, the tree will most
likely fall apart as different nodes will not recombine and the tree will more likely look
like our graph made up of separate price paths. This can still be handled by more
complicated numerical methods. But what if, in reality, prices jump discretely and by
more than the normal distribution for return would allow, and what if they jump
differently at different levels and different times? What if the volatility itself is random?
An option valuation model is never perfect. It is a simplification of potential price or

rate movements. The total scope of those movements is constrained by probabilistic
assumptions about price paths and volatility structure. Paths close to the mean may be
assumed more likely than those away from the mean. Paths may be assumed contin-
uous (i.e., prices do not jump discretely). Volatility may be assumed constant in time,
returns, or prices and unrelated to the price levels. There may be other unrealistic model
features. In stock and currency models, the stock price or the FX rate may be assumed
to fluctuate, but interest rates may not be. In interest rate option models, all rates may
be assumed to move in parallel or close to parallel. These simplifications are introduced
to make the math of the models tractable.
For these and perhaps many other reasons, it is well known that options on the

same underlying asset may require different volatility inputs for different strikes and
expiries.
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First, consider the implied volatilities as published on October 17, 2003 by the
Federal Reserve for at-the-money currency options as of the end of the previous
month.

Table 9.1 Implied volatility rates for foreign currency options* (September 30, 2003)

1 week 1 Month 2 Month 3 Month 6 Month 12 Month 2 Year 3 Year

EUR 12.6 11.8 11.6 11.4 11.4 11.3 11.2 11.2

JPY 14.3 12.5 11.6 10.8 10.3 10.1 10.0 9.9

CHF 12.7 11.9 11.7 11.5 11.5 11.5 11.5 11.4

GBP 10.3 9.8 9.6 9.4 9.3 9.3 9.4 9.4

CAD 10.1 9.7 9.5 9.4 9.1 8.9 8.9 8.8

AUD 13.2 12.3 11.9 11.4 11.1 11.0 10.9 10.8

GBPEUR 8.3 7.8 7.7 7.6 7.6 7.5 7.5 7.3

EURJPY 12.8 11.6 11.1 10.7 10.5 10.3 11.6 10.3

*This release provides survey ranges of implied volatility mid-rates for at-the-money options as of 11:00 a.m.
The quotes are for contracts of at least $10 million with a prime counterparty. This information is based on
data collected by the Federal Reserve Bank of New York from a sample of market participants and is
intended only for informational purposes. The data were obtained from sources believed to be reliable but this
bank does not guarantee their accuracy, completeness, or correctness. For background information on the
release, see page VBGROUND.FRB http://www.ny.frb.org/markets implied.txt
Reproduced with permission of Federal Reserve Bank of New York (http://www.newyorkfed.org/markets/
impliedvolatility.html)

For each currency, the implied volatilities change with the expiry date. Generally, they
decrease as the time to expiry increases. This implies that dealers estimate different
replication costs for short options than for long options. This phenomenon perhaps
has to do with the distinction between the realized and implied volatility and mean
reversion. Short-term at-the-money options will require constant rebalancing as the
hedge ratio computed between now and expiry will fluctuate. For longer term
options, the hedge ratio day-to-day is going to change much less (longer time to
expiry may make the present value of payoff less variable); therefore, while the
actual volatility of the FX rate per day may be the same over a short period as over
the long period, the dealer’s ‘‘realized’’ volatility will be lower. The dealer will perform
the buy-high-sell-low unprofitable trades less frequently. Therefore, his cost of manu-
facture or the premium will be lower. This will result in a lower computed implied
volatility. Mean reversion refers to the possibility that, while FX rates fluctuate un-
predictably in the short run, they tend to oscillate around long-term trend lines and the
further they deviate from the trend lines the more they are pulled toward them (i.e.,
volatility depends on the level of rates). As option models cannot take all of these
possibilities into account, they can be ‘‘fixed’’ by lowering the implied volatility for
long-term options to reflect the lower cost of manufacture.

Consider another example of the computation of implied volatilities, as of October
15, 2003; this time for options on the S&P 500 index futures expiring December 18,
2003.
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Table 9.2 December futures on the S&P 500

Strike Implied volatility Implied delta Vega
——————————— ——————————— (ticks)
Call Put Call Put

975 20.81 20.49 0.79 �0.2 1.24
980 20.48 20.21 0.78 �0.21 1.29
985 20.18 19.95 0.76 �0.23 1.34
990 19.91 19.72 0.75 �0.25 1.39
995 19.59 19.43 0.73 �0.26 1.44
1000 19.36 19.16 0.71 �0.28 1.49
1005 19.07 18.91 0.69 �0.3 1.53
1010 18.79 18.66 0.67 �0.32 1.57
1015 18.52 18.42 0.65 �0.34 1.61
1020 18.19 18.12 0.63 �0.36 1.65
1025 17.92 17.87 0.61 �0.38 1.68
1030 17.76 17.68 0.58 �0.41 1.71
1035 17.53 17.48 0.56 �0.43 1.73
1040 17.29 17.27 0.53 �0.46 1.74
1045* 17.04 17.04 0.51 �0.48 1.75
1050 16.88 16.91 0.48 �0.51 1.75
1055 16.65 — 0.45 �0.54 1.74
1060 16.46 16.54 0.43 �0.56 1.73
1065 16.3 — 0.4 �0.59 1.7
1070 16.12 16.19 0.37 �0.62 1.67
1075 15.91 16.02 0.34 �0.65 1.62
1080 15.81 — 0.32 �0.67 1.57
1085 15.75 — 0.29 �0.70 1.52
1090 15.62 — 0.27 �0.72 1.45
1095 15.53 — 0.24 �0.75 1.39
1100 15.43 15.64 0.22 �0.77 1.32

December futures ¼ 1044.50, days ¼ 47, at-the-money volatilities ¼ 17.06%, interest rate ¼ 6.50%. Source:
http://www.pmpublishing.com/volatility/sp.html#StandardDeviations

Figure 9.28 S&P 500 implied volatility skew (December 18, 2003). Puts with strikes below 1045;
calls with strikes above 1045.
Source: http://www.pmpublishing.com/volatility/sp.html#StandardDeviations.
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The at-the-money level is 1044.50 (¼ current value of the index). Calls/Puts with strikes
higher/lower than that level are called out-of-the-money, and with strikes lower/higher
than that level they are called in-the-money. The table shows the implied volatilities for
different strike levels. As a general rule they decrease as the strike level increases in a
half-smile fashion as shown on the enclosed graph (for very high strikes they start
increasing again slightly). This relationship of implied volatilities to strikes is generally
referred to as a volatility smile or volatility skew. It is a reflection of all the simplifications
we cited above. It can, for example, be explained by the fact that as prices drop they
tend to drop and fluctuate by more than assumed by the standard model (volatility is
higher at lower price levels), and as prices increase they tend to increase more gradually
without big jumps (volatility is lower as prices increase). The existence of volatility skew
introduces additional risk to option portfolios. Options on the same underlying and
with the same maturities, but with different strike prices, are not good hedges for each
other. Hedging with imperfect substitutes carries basis risk (similar in a way to that of
hedging one commodity with another, e.g. jet fuel with oil). Explicit modelling of the
volatility skew allows dealers to minimize the tertiary risk to relative volatility changes
across strikes. They involve relating different, implied volatilities through a postulated
mathematical function, itself often assumed not to change over time.

Table 9.1 also shows the delta for each option sold, in units of futures contracts to be
bought/shorted per one option, as well as its vega, in ticks (index points) per 1%
volatility change.

9.9 INTEREST RATE OPTIONS, CAPS, AND FLOORS

The modeling of options on interest rates is more complicated than those on equity
prices, commodity prices, or FX rates. There are several reasons for that. First and
foremost is that interest rates are not prices of assets that can be bought and sold.
Imagine in our binomial example that, instead of stock prices, we place the rate on a
10-year bond on the nodes of the tree. We build the tree using the right volatility and
follow our recipe to a tee. Now we try to hedge using the recipe’s prescriptions. We want
to dynamically trade the underlying asset so that the dollar changes in our hedge
position exactly offset the changes in the value of the option over its entire life. In the
stock example, the delta of the option told us how many shares of the asset to buy or
sell. In the commodity case, that would be the amount of the commodity; in the
currency case, that would be the amount of foreign or domestic currency. As the
price of the stock, commodity, or currency changed by one dollar, the value of our
hedge position changed exactly by delta times one dollar. The complication with interest
rates is that we cannot buy an interest rate. We can buy the 10-year bond whose price
(PV of cash flows) depends on the rate, but not the rate itself. Suppose we try to
outsmart the option model and we buy or sell some amount of the bond corresponding
to the ‘‘amount’’ of the rate we were supposed to buy or sell as our delta. The hedge will
not work because the relationship between bond price changes and rate changes is non-
linear (duration is not constant in yield). As the rate changes, what seemed like the right
amount of the bond to buy will prove to be slightly wrong, but will not be equally
wrong, depending on whether the yield goes up or down. The dollar value change in the
hedge will not be equal to the delta times 1 bp change in the rate. This convexity feature
of the interest rate instruments can be partly overcome by the use of non-convex futures
instruments. A Eurocurrency contract is the best example. Its value (variation margin
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settlement) is a constant monetary amount per 1 bp change in the interest rate change.
But the application of non-convex instruments can only help in a limited number of
cases. Most spot or forward rates on which options are written will be themselves
complicated functions of the intermediate futures. The 10-year bond as an asset can
be synthesized from shorter spot rates and lots of intermediate forwards. The 10-year
par rate will still be a very non-linear function of those rates or forward prices.
The second important complication for interest rate options is that interest rates are

not independent of each other. If the 10-year par rate can be synthesized from 40
quarterly forward rates, then do we have to take into account the volatilities of all
those rates and their correlations? Our binomial nodes then have 40 variables on them.
And, then, how do we come up with all the volatility and correlation inputs? It was hard
enough with a single stock, let alone with tens of interrelated rates.
The solution is often a reduced-form model with only one or two variables driving

the uncertainty in the model. All other rates are then assumed to be deterministic
functions of that one state variable, whose implied volatility structure we are confident
about (i.e., we can calibrate from other existing options). If the model has two state
variables, then we must be able to observe enough prices for other options so that we
can not only back out implied volatilities for both state variables, but also the correla-
tions between the two (in a process analogous to the implied volatility computations).
The assumption of one or only two state variables is clearly unrealistic, but most of the
time this is the best we can do. Often, this is accurate enough. But because the math
behind models like these becomes quite complicated, only experts can tell whether we
are close enough to the true value of the option and the true hedge ratios.

Options on bond prices

Suppose we buy a call option on a price, not a rate, of a specific 5-year bond struck at
102. Can we price the option by assuming some volatility of the bond price and
construct our binomial tree? Unless the option expiry is super-short, the answer is
still probably no.
Bond prices do not fluctuate like stock prices. First, each bond has a maximum price

equal to the sum of the coupons and principal (when the yield is 0, the present value
boils down to a simple sum as all discount factors are equal to 1). Second, the bond
price must be equal to the face value by maturity. In a way, the bond price is pulled
toward that known final value. This constrains how much the bond price can fluctuate.
A bond with little time to maturity cannot move much, even if the yield changes
dramatically. Stocks or commodity stock prices do not have maturities and hence
predetermined maturity prices.
Hence even options written on bond prices, not rates, may require a rate-driven

valuation model with attendant complications as described above.

Caps and floors

Caps and floors are packages of options, calls, and puts, correspondingly, on the same
underlying (mostly short-term) interest rate with sequential expiry dates. The vast
majority of caps and floors have the 3-month LIBOR as their underlying rate. The
expiry dates on the options, called caplets or floorlets, follow a quarterly or semi-annual
schedule, typically matched to the maturity of the underlying rate, starting with im-
mediate expiry and ending with the last expiry date being one period prior to the stated
maturity of the cap. For example, a 5-year cap on 3-month LIBOR struck at 4.5%



consists of 20 caplets with expiries of 0 months, 3 months, 6 months, 9 months, and so
on, all the way to 57 months. The payouts on the options are delayed by 3 months (i.e.,
made in arrears); the last payout is on the maturity date of the cap (i.e., in 60 months).
The payoff on each caplet is equal to the greater of 0 and the difference between the
underlying LIBOR rate on the expiry date and the strike rate of 4.5% times the day-
count fraction on an Act/360 basis for the period covered by the LIBOR rate. A floor is
a ‘‘put’’ equivalent of a cap. That is, the payoff of each floorlet is equal to the greater of
0 and the difference between the strike rate of 4.5% and the underlying LIBOR rate on
the expiry date times the same day-count fraction. All these details are designed to
match the swap market conventions, since caps and floors are viewed as natural supple-
ments to swaps. Let us illustrate our 4.5% cap and 4.5% floor by assuming some
hypothetical LIBOR rates (in column 2) for future option expiry dates (called set
dates), and day counts for the subsequent 3-month period until the pay dates. The
principal amount is $100,000,000.

Table 9.3 Five-year, 4.5%, $100 million cap and floor on 3-month LIBOR (dates in months
from today)

Set date LIBOR Cap Floor Pay date
——————————————— ———————————————
Max(L� K , 0) Days Payout Max(K � L, 0) Days Payout

0 4.50 0 91 0 0 91 0 3
3 4.20 0 91 0 0.3 91 75,833 6
6 4.81 0.31 92 79,222 0 92 0 9
9 5.20 0.7 90 175,000 0 90 0 12
12 5.40 0.9 89 222.500 0 89 0 15
15 5.55 1.05 91 265,417 0 91 0 18
18 5.83 1.33 92 339,889 0 92 0 21
21 6.21 1.71 91 432,250 0 91 0 24
24 6.43 1.93 90 482,500 0 90 0 27
27 6.11 1.61 92 411,444 0 92 0 30
30 5.73 1.23 91 310,917 0 91 0 33
33 5.32 0.82 91 207,278 0 91 0 36
36 5.17 0.67 89 165,639 0 89 0 39
39 4.85 0.35 92 89,444 0 92 0 42
42 4.62 0.12 91 30,333 0 91 0 45
45 4.33 0 91 0 0.17 91 42,972 48
48 4.02 0 89 0 0.48 89 118,667 51
51 3.78 0 92 0 0.72 92 184,000 54
54 3.66 0 91 0 0.84 91 212,333 57
57 3.21 0 90 0 1.29 90 322,500 60

The buyer of the cap benefits if spot LIBOR rates on future dates exceed 4.5%. The
buyer of the floor benefits if spot LIBOR rates on future dates are below 4.5%. Typic-
ally, the first caplet and floorlet are deleted, unless specifically stated to the contrary
(i.e., technically we have 19 optionlets). Caps can be viewed as protection against
interest rate increases, while floors can be viewed as protection against interest rate
declines.

The at-, in-, and out-of-the money terminology for caps and floors is a little different
from stock options; there, we usually had only one option, here we have many. A cap or
floor is said to be (struck) at-the-money if the strike price is chosen to be the swap rate
of the same maturity as the maturity of the cap. Correspondingly, we can talk about
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in-the-money or out-of-the-money caps and floors, depending on whether their strike is
greater or less than the swap rate. The statement applies on an aggregate basis, not to
individual optionlets. In our illustration, if the 5-year swap rate on an Act/360 basis is
5%, then our cap would be called in-the-money (as the swap rate is higher than the
strike), even though based on today’s LIBOR the caplets are really at-the-money and,
on a forward basis, some caplets may be out-of-the-money. Our floor would be out-of-
the-money as the swap rate is above the strike.

Relationship to FRAs and swaps

We have shown before that a swap is a package of forward-rate agreements (FRAs). A
5-year quarterly swap can be viewed as a package of 20 FRAs with subsequent matu-
rities. The start date of each FRA matches one set date of the swap, and the end date of
the FRA matches the pay date of the swap corresponding to the given set date. The first
FRA is 0� 3, the next 3� 6, and so on. The last one is 57� 60.
Instead of dissecting swaps along set and pay dates, we can dissect them along rate

levels. A pay-fixed swap can be viewed as a long cap and a short floor. Similarly, each
constituent FRA can be viewed as a long-caplet and short-floorlet position. Suppose we
buy a $100 million 5-year cap struck at 4.5% and sell a $100 million 5-year floor struck
at 4.5%. When LIBOR exceeds the strike, the payoff on the floor is 0 and the payoff on
the cap is equal to LIBOR minus the fixed rate of 4.5%. This is equivalent to a receipt
of LIBOR and payment of fixed 4.5%. When LIBOR is below the strike, the payoff on
the cap is 0 and the liability on the floor is equal to the fixed rate of 4.5% minus
LIBOR. This is equivalent to a receipt of LIBOR and payment of fixed 4.5% (i.e.,
no matter where LIBOR sets, the cash flows are equivalent to those of a swap with a
fixed rate of 4.5%). Table 9.4 summarizes the situation.

Table 9.4 Five-year, 4.5%, $100 million cap, floor, and swap (dates in months from today)

Set date LIBOR Days Long cap Short floor Pay date Swap
—————————————— ——————————————— ————————————————————

Max(L� K, 0) Payout Max(K � L, 0) Payout Receive Pay Net

0 4.50 91 0 0 0 0 3 1,137,500 1,137,500 0
3 4.20 91 0 0 0.3 �75,833 6 1,061,667 1,137,500 �75,833
6 4.81 92 0.31 79,222 0 0 9 1,299,222 1,150,000 79,222
9 5.20 90 0.7 175,000 0 0 12 1,300,000 1,125,000 175,000
12 5.40 89 0.9 222,500 0 0 15 1,335,000 1,112,500 222,500
15 5.55 91 1.05 265,417 0 0 18 1,402,917 1,137,500 265,417
18 5.83 92 1.33 339,889 0 0 21 1,489,889 1,150,000 339,889
21 6.21 91 1.71 432,250 0 0 24 1,569,750 1,137,500 432,250
24 6.43 90 1.93 482,500 0 0 27 1,607,500 1,125,000 482,500
27 6.11 92 1.61 411,444 0 0 30 1,561,444 1,150,000 411,444
30 5.73 91 1.23 310,917 0 0 33 1,448,417 1,137,500 310,917
33 5.32 91 0.82 207,278 0 0 36 1,344,778 1,137,500 207,278
36 5.17 89 0.67 165,639 0 0 39 1,278,139 1,112,500 165,639
39 4.85 92 0.35 89,444 0 0 42 1,239,444 1,150,000 89,444
42 4.62 91 0.12 30,333 0 0 45 1,167,833 1,137,500 30,333
45 4.33 91 0 0 0.17 �42,972 48 1,094,528 1,137,500 �42,972
48 4.02 89 0 0 0.48 �118,667 51 993,833 1,112,500 �118,667
51 3.78 92 0 0 0.72 �184,000 54 966,000 1,150,000 �184,000
54 3.66 91 0 0 0.84 �212,333 57 925,167 1,137,500 �212,333
57 3.21 90 0 0 1.29 �322,500 60 802,500 1,125,000 �322,500
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Each row is a dissection of a FRA into a cap and a floor. The sum of the rows is equal
to the swap. Each column group is a dissection of the swap into a long cap and short
floor. The net receipt on the swap is identical to the net of the cap and floor positions:

Cap struck at K � Floor struck at K ¼ Swap with fixed rate K

Suppose that we do not pick the strike rate randomly. Instead we select it in such a way
that the premium we pay on the cap is equal to the premium we receive on the floor (i.e.,
we have no net cash flow upfront). What swap would have no net cash flow upfront? A
par swap or an on-market swap. We can thus conclude the following:

Capðwith K ¼ Swap rateÞ � Floorðwith K ¼ Swap rateÞ ¼ Par swap

Recall the analogous relationship for stock options struck at the forward. We showed
that as implied volatilities increased the values of the calls and puts, both struck at the
forward, increased by the same amount as their payoff was still equivalent to the
forward. The same is true for caps and floors. In order to conform to the constraint
of arbitrage, if prices of caps struck at the swap rate increase (due to implied volatility
rise), the prices of floors struck at the swap rate must also increase by the same amount.
The pricing assumptions do not change the payout on the combined position, which is
still equivalent to an on-market swap. These considerations are the basis for the in-the-
moneyness language for caps and floors as defined above.

We can construct swaps out of caps and floors and vice versa. A cap can be viewed as
a combination of a pay-fixed swap and a long floor position. A floor can be viewed as a
combination of a long cap position and a receive-fixed swap.

An application

Bond issuers often combine a long cap position with a floating-rate bond. This ensures
that the coupon payments on the bond do not exceed a certain desired level.

Figure 9.29 An issuer of a floating rate bond caps interest liability of 4.5%.

Suppose a company issues a 5-year bond paying quarterly floating coupons equal to
LIBOR. The company also buys from a dealer a cap struck at 4.5%. If LIBOR on any
coupon set date exceeds 4.5%, the company’s net obligation will stay at 4.5%. If
LIBOR on any coupon date is below 4.5%, the company takes advantage of the
floating nature of the issue and pays less than 4.5%. Its net obligation is thus the
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lower of the two: LIBOR or 4.5%. The hypothetical cash flows are summarized in
Table 9.5.

Table 9.5 Five-year, $100 million floating rate bond and 4.5% cap (dates in months from today)

Set date LIBOR Days Long cap Floating bond Pay date Net
——————————— coupon
Max(L� K, 0) Payout

0 4.50 91 0 0 �1,137,500 3 �1,137,500
3 4.20 91 0 0 �1,061,667 6 �1,061,667
6 4.81 92 0.31 79,222 �1,229,222 9 �1,150,000
9 5.20 90 0.7 175,000 �1,300,000 12 �1,125,000
12 5.40 89 0.9 222,500 �1,335,000 15 �1,112,500
15 5.55 91 1.05 265,417 �1,402,917 18 �1,137.500
18 5.83 92 1.33 339,889 �1,489,889 21 �1,150,000
21 6.21 91 1.71 432,250 �1,569,750 24 �1,137,500
24 6.43 90 1.93 482,500 �1,607,500 27 �1,125,000
27 6.11 92 1.61 411,444 �1,561,444 30 �1,150,000
30 5.73 91 1.23 310,917 �1,448,417 33 �1,137,500
33 5.32 91 0.82 207,278 �1,344,778 36 �1,137,500
36 5.17 89 0.67 165,639 �1,278,139 39 �1,112,500
39 4.85 92 0.35 89,444 �1,239,444 42 �1,150,000
42 4.62 91 0.12 30,333 �1,167,833 45 �1,137,500
45 4.33 91 0 0 �1,094,528 48 �1,094,528
48 4.02 89 0 0 �993,833 51 �993,833
51 3.78 92 0 0 �966,000 54 �966,000
54 3.66 91 0 0 �925,167 57 �925,167
57 3.21 90 0 0 �802,500 60 �802,500

For months 9–45, when LIBOR exceeds 4.5%, the company effectively pays a 4.5%
rate times the appropriate day-count.
A mirror image application of a long floor position is on the investment side.

Suppose a portfolio manager owns a floating rate bond and fears that as rates come
down her income from the bond will decline. She can purchase a floor struck at the
desired level to maintain her income at or above that level. In the discussion of swaps,
we also showed additional uses of caps and floors in structured finance.

9.10 SWAPTIONS

Swaptions are options to enter into a swap. Unlike a cap or floor with a series of expiry
dates for all optionlets, a swaption has one expiry date. Once the holder exercises a
swaption, he will pay and receive multiple cash flows, like on a swap. Exercise can be
European-style (once at expiry only), American-style (once any time prior to or on
expiry date), or Bermudan-style (once on any swap date prior to or on the expiry date).
For example, a 3-into-7, $10 million, European call swaption struck at 5% gives the
owner the right to receive a fixed 5%, against floating LIBOR, on a $100 million 7-year
swap. If the option is exercised on the expiry date, which is 3 years from today, the swap
would start on that day and end 7 years later. The same swaption can be referred to as
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3-year-10-year-final swaption to imply that the exercise right is in 3 years and the final
maturity of the swap is in 10 years. A Bermudan or American version would be
exercisable between today and 3 years from today, not just 3 years from today, and
the swap would start immediately at exercise and end 10 years from today. The ‘‘3-into-
7’’ language is rarely used with American and Bermudan options; the ‘‘3-year-10-year-
final’’ language is preferable (if the option is exercised in 2 years, the swap will last 8
years).

Calls are options to receive (fixed) on the swap; puts are options to pay (fixed) on the
swap. The call/put terminology corresponds to the view of swaps as exchanges of
bonds. A receive-fixed swap can be thought of as a bought fixed-rate bond and a
sold floating-rate bond, or a bought fixed-rate bond financed by a revolving loan.
So, a call swaption is like an option to buy a fixed-rate bond, just like a call is an
option to buy a stock. A put swaption is an option to sell a fixed-rate bond (i.e., the
option to pay a fixed rate on an obligation, and to receive a floating financing rate).

Options to cancel

Swaptions can be packaged with swaps to provide options to cancel the swap. Suppose
we pay a fixed rate of 4.5% on a 10-year quarterly swap and we receive 3-month
LIBOR. Suppose also our swap counterparty sells us a 5-into-5 call swaption struck
at 4.5. The call gives us the right to receive 4.5% on a 5-year swap starting 5 years from
today. But if we exercise the call, then we will exactly offset the remaining cash flows on
the existing 10-year swap.

Figure 9.30 A 5-into-5 call swaption packaged with a 10-year swap.

The call swaption, which we defined as the right to enter a swap to receive fixed, can
also be defined as the right to cancel a pay-fixed swap. The ‘‘call’’ language thus
conforms to the call provisions on fixed coupon bonds. Analogously, the ‘‘put’’
notion for swaptions corresponds to the right of the fixed coupon bond holders to
put the bonds back to the issuer at par.

Relationship to forward swaps

From the above construction, we should also be able to see the following relationship:

Call swaption� Put swaption ¼ Forward swap
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where Forward swap is defined as a swap with the first set date in the future (and not
today).
Suppose we buy a 5-into-5 call struck at 4.5% and sell a 5-into-5 put struck at 4.5%.

If 5-year swap rates are low in 5 years, say at 3%, then we will exercise our call right to
receive fixed 4.5% (above market). The holder of the put we sold will not exercise.
Alternatively, if 5-year swap rates are high in 5 years, say at 6%, then the holder of the
put we sold will exercise his right to pay fixed 4.5% (below market). We will not exercise
our call. His exercise decision will force us to receive fixed 4.5%. Thus no matter what
swap rates are in 5 years, we will enter into a 5-year swap at that time. Viewed from
today, this is a forward swap. It starts at a future known date and ends at a future
known date, and the fixed rate on it is agreed on today.
In addition, if instead of 4.5% we choose the strike rate in such a way that the

premium paid for the call equals that received for the put, then the sure forward
swap will be arranged at no cost to either party (i.e., it will be a par forward swap).
This relationship will be true no matter what the level of implied volatilities used by

dealers as inputs into their pricing models, as the static arbitrage constraint will not
change.
Swaptions can be synthesized from forward swaps and other swaptions. A call is

equivalent to a forward receive-fixed swap and a put swaption. A put is equivalent to a
forward pay-fixed swap and a call swaption.
Swaptions can also be viewed as one-time options on long (swap) rates. Note that, in

the above discussion, we decided that the call holder will exercise when future swap
rates are lower than the strike. This guarantees that the present value of the swap he
chooses to exercise into is positive (i.e., he has a positive payoff). This is true because
the LIBOR leg part of the swap (equivalent to the floating-rate bond) always prices
(present-values) to par, and the positive PV will come from the discounted value of the
differences between the strike and the actual lower fair swap rate (i.e., the bond with a
fixed coupon equal to the strike will price above par). If the fair rate were equal to the
strike, the fixed bond with a coupon equal to the strike would also price to par. So the
payoff of the call can be viewed as the difference between the strike and the fair swap
rate times the day-count-corrected annuity factor (sum of discount factors for all swap
payment dates):

Call ¼ Max½0;K � Swap rate� � Annuity factor

Put ¼ Max½0;Swap rate� K � � Annuity factor

Swaptions and caps and floors are also related, but not so simply. Both types of options
are ways of dissecting swaps (i.e., share the risk of the swap with other players). Caps
and floors can be forward starting to make them look identical to swaptions in terms of
start and end dates. But caps and floors dissect swaps on the floating side, while
swaptions do so on the fixed side. Caps and floors are packages of several mini-
options on each swaplet (FRA), while swaptions are one-time options on the entire
swap. The two are related for the following reason: the long (forward) swap rate, which
is the underlying rate for the swaption, is a package of forward-starting swaplets
(FRAs). That one rate can be exchanged costlessly into a series of short-term fixed
rates (equal to FRA rates for the respective pay periods) or further into unknown
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floating-rate payments (as on-market FRAs cost nothing to enter into). A long cap and
short floor position is equivalent to those floating-rate payments.

Because of these interrelationships between long and short rates, we can claim that
the prices of swaptions and caps and floors are interrelated, as are their implied
volatilities. The modeling of these relationships is extremely hard.

9.11 EXOTIC OPTIONS

The term ‘‘exotic options’’ applies to all non-standard options (i.e., with payoffs not
defined like those for calls and puts) traded OTC. Exotic options include digital, or
binary, options (fixed point payoffs irrespective of how far into the money the option
is), barrier options, like knock-ins or knock-outs (the price or rate has to hit or avoid
certain barriers prior to expiry for the payoff formula to even apply), as well as a whole
variety of options that are difficult to price because the primary risk in them is not easily
hedgeable. We will not attempt a complete listing of the exotics. Instead, we focus on
some very popular structures that at first appear to be quite simple. But, they are
anything but simple.

Periodic caps

Consider a fairly standard provision of an adjustable mortgage. The interest rate
changes once a year based on some floating index, but the rate is guaranteed not to
change by more than 2% per year or 6% total over the lifetime. The mortgagee has in
effect issued a floating-rate bond to finance a house purchase. Every year, the interest
rate he pays is based on the cost of funds for that year (set at the beginning of the year
based on some 1-year money rate). Next year the rate adjusts up or down. But the rate
is guaranteed not to go up by more than 2% year to year. So if the index changes from
3% to 6%, the homeowner’s rate increases only by 2% instead of 3%. The option the
homeowner holds is not a standard call option on a rate or a cap. The strike on
the option changes every year and is based on last year’s rate and last year’s strike.
If the following year the index changes from 6% to 9%, the mortgage rate again only
goes up by 2% and only from the already ‘‘unfairly’’ low last year’s level that did not
reflect a full index increase at that time. Mortgage banks that want to protect them-
selves against income lost due to these imbedded options purchase periodic caps from
dealers. Periodic caps pay the difference between the mortgage rate (with the options)
and the fully indexed floating rate (without the options). The resetting strike feature
changes the probability of payoff relative to a straight call. It also changes how the
payoff can be manufactured. The dealer-hedger cannot compute the delta on the option
until he knows the strike. Thus it is not the implied volatility over the entire life of the
option that determines the cost of manufacturing, but it is the sequence of future
implied volatilities on shorter 1-year options. This is true with the caveat that previous
strikes also carry over as in our example. The cost of payoff manufacturing has thus a
known component (stickiness of the strike) and some unknown component (future
annual-rate differences). The premium quoted will reflect the subjective bet on the
future path of implied volatilities.
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Constant maturity options (CMT or CMS)

Constant maturity options are caps or floors with long-term government (CMT) or swap
rates (CMS) as the underlying variables, but with the day-count and frequency of
payoff like that of a short rate. A 5-year quarterly cap on a 10-year rate struck at
6% pays the greater of 0 and the difference between the 10-year rate and the strike
every quarter for the next 10 years. The day-count used for the payoff calculations is
that of a given quarter. The payoff is made in arrears, just as the case is for a simple cap.
The only difference between a straight cap and a CMS cap is that, instead of comparing
LIBOR to the strike, we compare the 10-year swap rate to the strike. Why does this
pose problems?
The simple answer is: convexity. With a standard cap, the hedge instrument is a 3-

month LIBOR deposit, a forward, or a futures on it. While these may be non-linear
instruments (i.e., the PV of the position changes as the rate changes, but not as a fixed
monetary amount per 1 bp rate change), the non-linearity is nowhere near as great as
that of longer term instruments and can be fairly easily corrected for. With CMS rates,
as we compute the delta per 1 bp move and then translate it through duration into a
dollar holding of the underlying bond, our hedge will always be imperfect and differ-
ently so on the up- and downsides. These hedging errors will magnify, the longer the
hedge. On a 5-year maturity option, they can be very large. The CMT options have the
added difficulty of swap spread exposure.
We can argue that these instruments are more similar to swaptions than to caps.

Recall that a swaption was a bet on a future long-term rate. The payoff was multiplied
by the appropriate annuity factor, reflecting the final maturity of the underlying swap.
Here, a CMS cap can be seen as a series of swaptions with increasing maturities and
with payoffs multiplied by an ‘‘inappropriate’’ annuity factor, one for a cap instead of
for a swaption. Because that annuity factor is correct for swaptions, they can be hedged
easily with their underlying instruments (i.e., forward swaps), which in turn can be
synthesized from long long-maturity swaps and short short-maturity swaps. CMS
caps produce a hedge error from the mismatch of the actual annuity factor with that
of the underlying forward swap.

Digitals and ranges

A digital option is an option with a fixed monetary payoff, if a price or rate breaches a
certain strike level. A range is a compound version of a digital option where the under-
lying price or rate has to breach one level but not go over or under another level (i.e., it
has to end up within a predetermined range). These structures are popular in commod-
ity, FX, and interest rate markets. In interest rate markets, they are typically packaged
into cap- or floor-like serial forms with short-term LIBOR rates as the underlyings
and range levels changing period to period. These options are not difficult to price
theoretically, but they pose a risk of low-probability events with highly uncertain
hedge outcomes.
Suppose we sold an FX range that pays $1 if the USD/EUR rate is within 1.10 and

1.20. We price the option using a binomial tree and have followed the hedge recipe. We
come to 1 day prior to expiry. The spot USD/EUR FX rate stands at 1.20. If it ticks up
by tomorrow, we will owe nothing to the option holder. If it ticks down we will owe $1
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(everything). There is no effective hedge strategy that will produce the desired payoff: $0
or $1. We have to gamble. At the time the option was sold, this knife-edge event had
effectively a zero probability. In a standard call or put, these events do not occur
because the size of the payoff changes monotonically with the level of the rate, allowing
us to adjust the hedge. Here it jumps from 0 to everything over a practically non-
existent move in the underlying.

Quantos

Quantos are options whose payoffs are defined in non-native currencies. A seemingly
standard put option on the FTSE 100, whose payoff is in constant U.S. dollars per
point of the index, is quite a bit more complicated than that whose payoff is defined in
British pounds. In the latter case, the hedge is obvious. The seller of the put shorts the
stocks in the index. The total change in their value in pounds dynamically produces the
pound payoff at expiry. The quanto version of the option forces the dealer into an
additional currency hedge as the pound payoff needs to be guaranteed in dollars. In
addition, the two hedges are interrelated: as the potential payoff in dollars rises because
of the FTSE change, the underlying stock hedges pound value may over- or under-
compensate for a possible FX rate change when the hedge is liquidated and the payoff
made.

The quanto label can be added to almost any option. A popular equity option that
pays the best of several national indices (say, S&P 500, Nikkei 225, and FTSE 100) is
often quantoed into one desired currency, say the euro.
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______________________________________________________________________________________________________________________________________________________________________ 10 ______________________________________________________________________________________________________________________________________________________________________

____________________________________________________________________________________________________________ Option Arbitrage ____________________________________________________________________________________________________________

We review relative value strategies with options. We start with static cash-and-carry
trades where the arbitrage principles are the same as with non-option products, but we
exploit the relative mispricing of forwards as long call–short put positions. This
happens frequently when one or more options needed to synthetically replicate a
forward can be acquired very cheaply as parts of more complex securities. Next we
consider dynamic arbitrage strategies where the underlying market risk is hedged out
and the trade is a relative value bet on secondary risk. The secondary risk involved can
be a relative play on two related, but not identical implied volatilities: correlation risk
or spread. We end with dynamic strategies spanning several asset classes and some
exotic examples with truly unhedgeable risks.
To readers interested in options, our treatment of dynamic option strategies will most

likely seem wanting. We only sketch out some basic trades. Relative value arbitrage in
options can get very complicated. The residual risks can be significant, unhedgeable,
and their understanding may require math knowledge that goes beyond the scope of
this book. They can be defined in terms of exposures to volatility skews, to correlations,
to local vs. term volatilities (i.e., period to period vs. total end dispersion), often in
second- and third-order derivative terms. They can also involve tradeoffs between
exposures from different markets, stock price correlation with interest rates, credit
spread correlation with interest rates, or interest rates with currency rates. Our goal
for this chapter is limited to highlighting the risks of some benchmark trades.

10.1 CASH-AND-CARRY STATIC ARBITRAGE

To make clear the static arbitrage principle, we start with a simple financing trade:
borrowing or lending against a known, non-contingent cash flow constructed by com-
bining several contingent payoffs.

Borrowing against the box

The borrowing-against-the-box strategy can be employed with options on any under-
lying: stocks, currencies, commodities, etc. The idea is very simple. If a long call–short
put position is equal to a long forward and a short call–long put position is equal to a
short forward then by combining four options with the same expiries into a synthetic
long forward at one price with a synthetic short forward at another, we can generate a
sure payoff at the expiry day. If the net premium (today) for the four options is positive
(an inflow), then the payoff at expiry is an outflow and the strategy is equivalent to



borrowing. If the net premium is paid (outflow) and the payoff is an inflow, then the
strategy is equivalent to lending. The arbitrage consists of trying to lock in through this
strategy a higher lending, or lower borrowing rate than our own cost of financing.

Let us consider a stock option case using the multi-step pricing model from Chapter
9. We employ a three-step binomial to price four 3-month options with the inputs as
before. Stock currently trades at 50; the interest rate is 2.6% per month (de-
annualized). The forward stock price for delivery 3 months from today can be com-
puted as 54.0023. We sell a 50 call and buy a 50 put (short synthetic forward at 50). We
buy a 55 call and sell a 55 put (long synthetic forward at 55). As each synthetic forward
is off-market, the net premium is non-zero. Table 10.1 summarizes our position.

Table 10.1 Borrowing against the box

Position Strike Option Premium

Short 55 Put 7.6497
Long 55 Call �6.7259
Long 50 Put �6.3419
Short 50 Call 10.0475

————

Net 4.6294

Let us consider the payoff. If the stock at expiry is 45, the calls are worthless, we pay 10
on the 55 put, and receive 5 on the 50 put; our net is an outflow of 5. If the stock is at
72, the puts are worthless, we receive 17 on the 55 call, and pay 22 on the 50 call; our net
is an outflow of 5. If the stock is at 52, we pay 3 on the 55 put, the 55 call and the 50 put
are worthless, and we pay 2 on the 50 call; our net is an outflow of 5. No matter where
the stock ends up at expiry, out net cash flow will be an outflow of 5. So, we traded a net
inflow of 4.6294 today for a net outflow of 5 three months from today. What interest
rate is implied in this synthetic borrowing of 4.6294? From:

4:6294ð1þ rÞ3 ¼ 5:0000

we compute the rate to be 2.6% per month. This is exactly what we assumed for valuing
the four options.

Suppose we have an investment opportunity to earn 3.2% per month on comparable
risk. That is, we know that if we invest:

5:0000=ð1þ 0:032Þ3 ¼ 4:549 157

the investment will accrue to exactly 5.0000. We synthetically borrow 4.6294 and invest
4.5492; our net profit today is 0.0803. When the investment matures in 3 months, we
collect 5 and distribute it appropriately to the option claimants. The only risk we are
facing is that of default on our investment. If, for some reason, the investment fails to
produce 5, we will not be able to meet our obligations under the option contracts. We
have statically eliminated any market risk of stock fluctuations by choosing a combina-
tion of options with a known payoff. We do not have any market risk of interest rate
fluctuations, because we are not going to hedge the options (i.e., we are not going to
finance any stock positions). We are simply left with default risk.
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Index arbitrage with options

Recall from Chapter 7 that stock index arbitrage consisted of either a long index futures
position against a short spot basket with lending or a short index futures position
against a long spot basket with borrowing to buy the basket. The direction of the
trade depended on the fair value calculation for the futures, and the spot basket plus
money market transaction was equivalent to a synthetic forward. Here we are going to
exploit the put–call parity of Chapter 9 to construct the forward. Since the long forward
position is equivalent to a long call and short put position (both struck at the forward),
we will be able to perform a static cash-and-carry by transacting in options upfront and
trading them against futures or basket positions.
Suppose, as in the previous example, that the stock index trades at 50 and the interest

rate is 2.6% per month. The 3-month futures contract on the index trades at its theo-
retical fair value of 54.0023. So we cannot make money trading futures against spot.
Using our option-pricing model, we value calls and puts struck at the forward (i.e., at
54.0023). We get 7.3887 for the put and 7.3887 for the call. We notice that we can buy
the put in the market for 7.39 (the asking price), and we have a customer willing to pay
7.42 for the call. One simple strategy is to sell the call to the customer for 7.42 and try to
offset that by buying it in the market for less. But suppose the market is wide at 7.38/
7.42 (i.e., the asking price is 7.42): we can still profit by establishing a synthetic short
forward in the options and either going long futures or establishing a synthetic long
forward in the cash markets (buying stock and financing the purchase at 2.6%). Let us
consider the first choice.
We sell a call for 7.42 to the customer and buy a put for 7.39 in the market, both

struck at 54.0023. We go long one futures contract with the same expiry at 54.0023
(assuming contract sizes or multipliers on the options and futures are the same). Our
net premium is 0.03 which is also our net profit. If the stock (and the futures) ends up at
62 at expiry, we owe 7.9977 to the call owner, our put is worthless, and we collect 7.9977
in the futures variation margin.
If the stock ends up at 50, we owe nothing on the call, we collect 4.0023 on the put, and

we have lost 4.0023 in the futures variation margin. The second choice is a little more
complicated. We sell the call for 7.42 and buy a put for 7.39 to collect a premium of 0.03.
We borrow money at 2.6% per month to buy the underlying stocks for 50. In 3 months
we sell the stock basket (inflow) and repay 54.0023 (outflow). This, as we have shown
before, is equivalent to the cumulative variation margin on the long futures position. The
short call–long put option position has the opposite payoff equivalent to the cumulative
variation margin on the short futures: the inflow of the strike price and the outflow of
the value of the stock. The future cash flow is 0. Today’s cash flow is 0.03.
Analogous strategies can be employed with commodity and currency options. We

compare the cost of replicating a forward position through options to the actual
forwards/futures or their synthetic equivalents in cash positions.
Options are sometimes used in index arbitrage in an attempt to better time program

execution and to recoup transaction costs. Suppose we want to go long futures and
short synthetic in large size. Selling a basket spot may take time and make force us to
sell many stocks at the bid. Suppose, instead of buying futures, we leg into the trade by
buying a call and sending a sell order. If stock prices tick up, we may be able to get
better execution on the program and still sell the put at the desired price. If bids in the
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cash market weaken, we may still be able to hit them and sell the put at a better price.
Of course, the opposite could easily happen. Legging into a trade is always a small bet
on the execution costs.

Warrant arbitrage

Issuers in some markets often attach warrants to their bonds in order to make the
bonds more attractive to investors. Warrants are call options that give the holders the
right to buy the shares of the issuing company at a predetermined strike price. The only
difference between warrants and standard calls is that the shares to be sold on exercise
of the options will be newly issued. This is possible in a warrant contract because the
writer of the option is also the issuer of the stock.1 Often these ‘‘bond sweeteners’’ come
free or close to free.

There are two distinct cases here. We illustrate the first with a fairly common situa-
tion with Japanese industrial bonds in the early 1990s.

A Samurai Co. issues a 3-year bond to investors. The bond has a warrant attached
that allows investors to buy Samurai stock for Y¼50 a share in 3 years. The yield on the
Samurai bond is less than that on Samurai’s straight bonds to reflect the value of
attached warrants. We discover, by comparing the present value (PV) of the bond’s
coupons and principal with the PV of similar bullet bonds, that the yield give-up (i.e.,
the cost of acquiring the warrant) is equal to Y¼1. When we price a 3-year call using the
Black–Scholes or binomial model we compute the fair price of the warrant as Y¼10.0475.
One way to profit would be to buy the bond with the warrant, detach the warrant, and
try to find buyers for the warrant at a premium close to the fair value. But other buyers
may have acquired the warrants at a low cost just like we have.

Here is the simplest strategy. We short the stock today. We collect Y¼50 from the
short sale and invest the proceeds at 2.6%. In 3 months we have:

50ð1þ 0:026Þ3 ¼ Y¼54:0023

If the stock ends up in-the-money, say at 60, we exercise the warrant by buying the stock
at 50 and returning the stock to the lender on our short. We pocket Y¼4.0023. If the stock
ends up out-of-the-money, say at 45, we buy it back in the market for 45, return it to
the lender on the short, and pocket Y¼9.0023. The minimum we will make is Y¼4.0023.

In the 1990s, many outstanding warrant bonds issued by Japanese industrial com-
panies offered this static arbitrage opportunity. The trade consisted of acquiring the
warrants which often had many years left to maturity, shorting the stocks, and waiting
to collect. The only problem with pursuing the strategy was the availability of the stock
for shorting. Only those with access to large long-term holdings of the stock could
execute the strategy. Insurance companies that held the stocks as investments lent them
out, but often charged significant stock borrow fees. If in our example the borrow fee
for the entire time to maturity were set to Y¼6, then the strategy was not risk-free. It lost
Y¼1.9877 if the warrant ended in-the-money.

Let us briefly describe the second case. We elaborate on this case when we discuss
convertible bonds later in this chapter.

Instead of gambling to make Y¼4.0023 or more depending on where the stock ends up
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(minus any stock borrow fees), can we somehow lock in the difference between the
computed fair value of Y¼10.0475 and the cost of the warrant of Y¼1? The answer is yes,
but again only by shorting the stock.
In the static case we shorted one full share per warrant. This time, we short only the

delta number of shares (close to half a share) and adjust the amount of shorting
throughout the life of the warrant (i.e., we dynamically replicate the payoff of the
warrant through a delta hedge). Our cash flows at expiry will be matched. The start
of the delta hedge at the outset generates an inflow (short sale minus the money lending)
of Y¼10.0475. We spend Y¼1 on the warrant and keep Y¼9.0475. The only thing that
complicates things is again the stock borrow fee which is non-zero, but lower than in
the static case (we start shorting only half the amount). The way the borrow fee is taken
into account is to treat it like additional dividends in the option-pricing model. When
we short stock we have to compensate the lender of the stock for the lost dividend. The
stock loan fee is paid on top of that just for the privilege of using the stock. We have to
use an amended version of the Black-Scholes model to compute the warrant’s fair value
and all the deltas now and in the future.

10.2 RUNNING AN OPTION BOOK:

VOLATILITY ARBITRAGE

We explained in Chapter 9 that an option dealer hedges out the net price or rate risk of
his option portfolio. He does this by faithfully following a delta-hedge recipe. He
computes the exposures of all options to the underlying asset or assets (i.e., price
sensitivities to a unit change in the underlying prices or rates), nets these across
options, and takes the opposite positions in the underlying assets. Every day as the
prices of stocks, currencies, and commodities or the rates on bonds change, the mark-
to-market change on the options is exactly offset by the change in the value of the
hedging assets. The dealer has to rebalance that portfolio daily to ensure that, as
conditions change, the hedge assets will continue to offset the value of the option
portfolio.
We also explained that the only risk the dealer is left with is that of the mismatch

between the implied volatility used as an input into the pricing and hedging model and
the actual volatility of the hedge assets. For example, if the dealer has a net short
position in options (i.e., a net negative vega position) and the underlying asset prices
fluctuate more than he had assumed, then his hedge will have a tracking error. It is
important to realize that this error is small relative to the completely unhedged position.
At the same time, if the option portfolio is very large, it can amount to substantial
losses over time.
The dealer’s job can be viewed as having two parts: one is fairly mechanical and

involves computing the exposures every day and rebalancing the hedge portfolio
according to a recipe; the other part is dynamic and involves forecasting the path of
the volatility of the assets and taking pre-emptive action.

Hedging with options on the same underlying

The only perfect hedge for an option is another option. If we have an option position
that is already hedged in the underlying asset, the only way we can offset the volatility
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exposure of that position is by buying or selling another option with a similar vega. We
will illustrate this principle using our one-step binomial applied to a three-option
example.

Suppose as an option dealer, we have lots of bought and sold options in our
portfolio, all written on the same underlying stock. The net exposure of that portfolio
can be summarized as equivalent to a short 1-year call option struck at 60 and two short
1-year put options struck at 50. We assume the current stock price is 50 and the interest
rate is 10%. The up and down states, which reflect the current implied volatility, are 70
and 20 as before. We price the options using those inputs and also using the 80–15
inputs, reflecting a higher implied volatility. The results are as follows.

Figure 10.1 Pricing options with two volatility inputs to get the vega.

We have one short call in the portfolio worth 6.3636 and two short puts each worth
8.1818. The vega of the options is equal to the difference between the price under the
increased implied volatility assumption minus that under the current one. (In reality,
stock options traders plug the inputs into their Black–Scholes models and revalue the
options using an implied volatility increased by 1% to determine their vega exposure.)
For the call, we have:

11:1888� 6:3636 ¼ $4:8252

and for the put:

12:2378� 8:1818 ¼ $4:0559

We also show the deltas for each option: 0.20 for the call and -0.60 for the put. Suppose
our portfolio is delta-hedged so that our combined option-and-hedge holdings are:
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Table 10.2 Delta and vega of the position

Position Security Unit PV PV Unit delta Delta Unit vega Vega

�1 60 Call 6.3636 �6.36364 0.20 �0.2 4.8252 �4.82517
�2 50 Put 8.1818 �16.3636 �0.60 1.2 4.0559 �8.11189
�1.00 Stock 50 �50 1 �1 0 0

——————— —— —————
Net �72.7273 0 �12.9371

Since our combined delta from the three options was 1.0, we short one share to hedge
the option exposure (we should have bought 0.20 to hedge the call and shorted 0.60 to
hedge each put). We have a net vega exposure of �12.94 (i.e., if the volatility increases
as expected, the short options will provide us with a mark-to-market loss of 12.94).
In order to hedge the volatility risk, we look for positive vega exposures in the

market. Suppose we can buy 55 puts in the market for 9.30. We use our pricing
model to verify.

Figure 10.2 Computing the vega of the 55 put.

We apply the model twice with different volatility inputs to compute the vega of the 55
put to be:

13:986� 9:5455 ¼ 4:4406

We also notice that the puts are cheap relative to their fair value. We decide to hedge by
buying some 55 puts. How many? We need to offset 12.94 in volatility exposure; so,
given the vega of each put of 4.4406, we need to buy 2.9134 puts. But if we buy 2.9134
puts, then we need to delta-hedge them by buying:

2:9134� 0:70 ¼ 2:0394

shares. Our combined portfolio now looks like this:
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Table 10.3 Delta and vega of the hedged position

Position Security Unit PV PV Unit delta Delta Unit vega Vega

�1 60 Call 6.3636 �6.363 64 0.20 �0.2000 4.8252 �4.825 17
�2 50 Put 8.1818 �16.363 6 �0.60 1.2000 4.0559 �8.111 89
2.9134 55 Put 9.5455 27.809 73 �0.70 �2.0394 4.4406 12.937 13
1.04 Stock 50 51.968 5 1 1.0394 0 0

————— ———— —————

Net 57.050 96 0.0000 0.000 1

If the volatility changes, the change in the value of the extra puts will offset the change
in the value of the original options in our portfolio. Notice that this will work for a
variety of volatility changes (i.e., even if the volatility decreases instead of increasing).

Volatility skew

Our primary risk (to the change in the price of the stock) and our secondary risk (to the
change in the volatility of the stock price) are now eliminated. Is our portfolio risk-free?

No, our portfolio can still make or lose money if the implied volatilities on the
different options change differently. We are left with a tertiary risk of relative volatility
changes. Theoretically, this should not happen as the underlying asset for all options is
the same and so it can have only one true volatility. But our model is not perfect. In
particular, it assumes that volatilities do not change! It also assumes that volatilities are
the same for any asset price. The volatility skew intends to correct for that by assigning
slightly different volatilities for different strikes of the options (something we did not
do).

Let us illustrate what happens when a dealer fails to include the skew in hedge
calculations. We focus solely on the vega. We use the data from Chapter 9 for Decem-
ber, 2003 S&P 500 index futures options as of October 15, 2003. With the index at 1045,
we show the implied volatilities for strikes between 1030 and 1075, and a fitted regres-
sion line Vol ¼ 57:638� 0:0388 � Strike.

Figure 10.3 Volatility skew of S&P 500 (fitted vs. actual).
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In Table 10.4, we illustrate what happens to a dealer who does not take the volatility
skew into account. We assume that we start with the index at 1045 and compute the at-
the-money volatility to be 17%. We own 100 options struck at-the-money at 1045. We
hedge the volatility risk by selling options struck at 1030, 1065, and 1070. If we do not
include the skew, then we will assume the options with out-of-the-money and in-the-
money strikes have the same volatility. We compute their vegas using that volatility;
this is how we come up with the number of options to be sold to hedge. If we take the
skew into account, then we come up with a different set of vegas (those in the original
data) and different numbers of options to be sold. We also show what happens as the
market moves. Suppose the index goes down to 1040. We assume that the implied
volatilities and the vegas do not change for the same percentage of in-the-moneyness.
In our case, that translates, for example, into the 1050 option having now the same
implied volatility as the 1055 option had before the move. We see that a dealer unaware
of the skew continues to think that he is hedged and does not rebalance, while a dealer
aware of the skew sees that he is no longer vega-hedged and will most likely sell more
options.

What we did not show in Table 10.4 is that not only will the volatility risk be mis-
hedged, but also the deltas will be computed using the wrong � input. The dynamic
delta hedge will result in daily unexplained profit or loss (i.e., the change in the delta
position in the stock will not match the change in the value of the options).

Most professional skew models do not rely on a simple regression model like ours to
modify the volatilities used in computing prices and hedge ratios in a Black–Scholes
model. Rather, they internalize the volatilities as stock level-dependent within one
option-pricing model, used with the same inputs, to price all options with different
strikes. This is equivalent to having different volatilities on different branches of our
binomial trees in the up and down direction. This ensures the consistency of both delta
(stock position) and vega (option position) hedges.

Options with different maturities

The comments about options with different strikes apply to options with different
maturities. The implied volatilities of options on the same underlying, but with different
maturities, are not the same and will change differently over the life of our portfolio.
Dealers find it very hard to hedge long-expiry options with short-expiry options even
though that is what they are most often asked to do by customers who can buy short-
term options on the exchanges and come to dealers for longer term or more complicated
bets. The implied volatilities on long and short options can be quite different. Longer
options’ deltas are also less volatile, so the hedge with short options requires more
trading of the underlying. Dealers find themselves trading off the transaction costs of
this strategy against potential benefits of the hedge.

10.3 PORTFOLIOS OF OPTIONS ON

DIFFERENT UNDERLYINGS

If a portfolio contains options written on different underlying assets—some on bonds,
some on stocks, and some on currencies—then each option has to be delta-hedged
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separately. But the notion of ‘‘different underlying’’ need not be so clear-cut. We
consider a few cases where underlying assets are different, but at the same time
similar. In these cases, the underlying assets are not completely independent of each
other; they exhibit co-movement. Their volatilities can be postulated to be statistically
or mathematically related.

Index volatility vs. individual stocks

Instead of a portfolio of options all written on the same stock, suppose we have a
portfolio of options on a variety of stocks. Each option is delta-hedged with a position
in its own underlying stock. Can we do anything about volatility exposure?
The only method that will work well is what we already described in the previous

section. We have to find vega offsets for options on different underlyings one at a time.
Buying options on Intel in order to hedge vega exposure on Microsoft can be a
dangerous game. Ideally, we need to find options on Microsoft. But hedging all ex-
posures separately can be prohibitively expensive. We may soon find out that we have
to pay ask prices well above fair values on a multitude of individual options, incurring
an instant mark-to-market loss. So, to hedge a portfolio of options we may be tempted
to look for an option on the entire portfolio or an index option.
Suppose we have bought and sold a variety of options on 35 individual stocks in the

S&P 100 index. We have a net short-vega exposure. So our thinking is that when the
implied volatilities of the individual options rise and we stand to lose money, we can
protect ourselves by buying an option with the same vega on the entire index. To a
limited extent, this may work; but, in general, it will amount to a substantial bet on the
correlation structure of the index. If the stocks in the index are highly positively
correlated (say, they are from the same country or industry), then most likely as
some stocks increase the others increase and as some stocks decline the others
decline too. So the average volatility of the stocks is related to the volatility of the
index. But the change in average volatility may not be so clearly reflected in the change
of index volatility if the stocks in the index are not highly positively correlated; this is
what we are trying to hedge. The hedge breaks down when the average volatility of the
stock changes by 2%, while index volatility changes by 1%. We can try to estimate that
differential and adjust for it, but the game is risky.
The strategy of hedging individual options with basket (index) options is highly

speculative. The situation is similar to that with volatility skew exposure across
strikes and maturities. While we know how to translate a volatility input into an
option value and a delta (Black–Scholes model), we do not know the exact relationship
between the volatilities within the skew (regression?). All the options within the skew
are on the same underlying asset and therefore, over large movements of the under-
lying’s price, they have to be highly correlated. Because of this high correlation, as we
argued, the average volatility in the skew portfolio will move closely with the volatility
of any option close to the money. This need not be the case with options on different
stocks relative to average volatility and relative to the option on a basket: the reason the
hedge is more speculative in this case.
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Interest rate caps and floors

Portfolios of caps, floors, and certain exotic options can all be viewed as all options on
short-term interest rates with different maturities. The short-term rates may be 1-, 3-,
and 6-month LIBOR (London interbank offered rate) or other short rates (e.g., in the
U.S., Fed Funds rate or T-Bill rate) related through a ‘‘spread’’. Each cap and each
floor is a portfolio of caplets and floorlets seemingly on the same underlying rate (say,
3-month LIBOR). But is the 3-month deposit today the same asset as a 3-month deposit
4 years from today? The implied volatilities in the caplets of increasing maturities can be
different and change differently over time. But they are related.

The procedure of cap volatility curve calibration, which relies on bootstrapping, is
portrayed in Figure 10.4. Suppose we view the spot 3-month LIBOR as a random asset
similar to a stock, subject to a volatility parameter moving through time, or a binomial
tree. We observe caplet prices with 3-month, 6-month, 9-month, etc. maturities. From
the 3-month caplet price we can back out an implied volatility. We can then consider
the 6-month caplet. We let LIBOR fluctuate for the first 3 months with a volatility as
computed in step 1, and then we imply what the volatility for the following 3 months
would have to be so that the model price of the caplet would match the actual price. We
then consider the 9-month caplet using the first two volatilities, for 0–3 months and for
3–6 months, and implying the 6–9 month one. In a binomial tree model we are effec-
tively computing different volatilities for different time steps (left to right).

Figure 10.4 Cap volatility calibration. Term vs. local volatility.

Computed volatilities are often referred to as local volatilities or forward–forward
volatilities. The single volatilities that would be required in a model to obtain the
true prices are referred to as term volatilities. These represent the total width of the
dispersion for a given point in time. Local volatilities represent the dispersion relative to
the previous step. In Figure 10.4, we deliberately included one odd outcome, where the
term volatility shrinks relative to a prior period. This is not unusual. We often find that
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long-term volatilities are lower than short-term ones. What that necessarily implies is
that the local volatility for that period is negative or, alternatively, that the model has
mean-reversion (i.e., outcomes are constrained from above and below).
The simplest procedure to deal with the volatility exposure for a cap portfolio is to

disassemble it into caplets and compute the term vega exposures of all the options to a
set of benchmark caplets with different maturities. These can then be combined to form
a set of benchmark caps, those with the most liquidity in the inter-dealer market. We
can then see where the bulk of the exposure is and design the start date and end date of
caps or floors that would hedge the computed exposure. An analysis of an average
strike for each caplet also helps select the strike of the hedging cap to minimize skew
risk.

Caps and swaptions

We might think that the logic of cap and floor-only portfolios can apply to hedging
entire, fixed income derivative portfolios. After all, swaptions are options on longer-
term rates, and long-term rates can be replicated from forwards on short rates. So,
swaption and cap volatilities should be closely related. This could not be further from
the truth. The yield curve changes continuously. Long and short rates do not move
together and are not equally volatile. A long par rate is a function of short-term rates
over time. However, the volatility of the long rate is a function not only of the implied
volatilities of forward short rates, but also the correlations between them. The best
analogy here is with stock index volatility relative to individual stock volatilities.
Hedging caps with swaptions and vice versa suffers from the same problems (i.e., it
is a bet on the correlation structure of the rates). As much as it is clear with indices and
stocks, the issues in swaptions and caps are often befuddled because the pricing models
in interest rates are very complicated and at the same time not complicated enough.
They try to capture all the synthetic static arbitrage relationships between rates
(coupons vs. zero-coupons, short vs. long) while simplifying the volatility structure to
one or at most two factors (i.e., they are arbitrage-free, but perhaps only one-factor).
The simplification often leads to the omission of the rate correlation structure. Even a
seemingly complicated model with both local and term volatilities can be one-factor if
the only thing driving rate movement is the short-term rate. Any long-term rate for any
node on a model tree is simply an arbitrage-free deterministic outcome of a present-
value calculation conditioned on being at that node. Model purists often object to any
violations of no-arbitrage rules. Yet allowing some arbitrages might allow easier multi-
factor modeling which can then capture the calculation of the exposure to correlations.
That knowledge allows us to design more complicated spread hedges consisting of both
caps and swaptions with the same combined volatility and correlation exposure as the
underlying portfolio.
At the present time, many dealers combine the delta hedges (in the underlying

deposits, futures, and bonds) for cap and swaption portfolios, but run the volatility
risk on cap and swaption portfolios separately, hedging the first (caps) exclusively with
options on short-term rates (caps) and the latter (swaptions) with options on long-term
rates (swaptions or CMSs/CMTs). They monitor the total vega of each portfolio and
do so relative to each other. Frequently, they leave the vega of each part, viewed
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separately, unhedged, betting on the convergence or divergence of cap and swaption
volatilities.

Explicit correlation bets

Option traders in many markets buy and sell bets whose primary risk (after delta-
hedging the underlying) is the correlation risk. These bets are known as spread
options or best-of options.

In equity markets, option sellers offer spread options on the difference between the
prices of two stocks or indices; that is, the payoff is defined as:

Max½Stock1 � Stock2 � Strike; 0�
If the two underlyings are stock indices for two different national markets, then these
options may be offered with quanto features. A different structure, exposing the dealer
to the correlation between stocks or indices, has a ‘‘best-of ’’ payoff:

Max½Index1 � Strike; Index2 � Strike; Index3 � Strike; 0�
The owner of such a ‘‘call’’ is entitled to the return on the best of three indices. Apart
from the current levels of the indices, the primary variable driving the price of the
option is not the volatility of the indices, but their correlation structure. Similar
spread structures can be written on two or more currency rates.

In commodity markets, option traders typically offer spread structures on two seem-
ingly related commodity prices. These can be, for example, oil price and jet fuel price.
Customers (airlines) demand such options to hedge the price volatility of the inputs into
their business cost structure ( jet fuel). As futures contracts on the commodity of interest
may not exist ( jet fuel), they hedge with proxy instruments (oil) by incurring basis risk.
The spread structures allow them to close the hedging gap. But structures like these may
leave the dealer with a speculative rather than a hedged position, if one or both assets in
the basis do not have futures contracts on them. The dealer’s job is then to protect
himself by running a matched or diversified book.

In interest rates, the most common version of the spread option is that written on two
different points on the yield curve. The payoff may then read:

Max½10-year rate� 5-year rate� Strike; 0�
or

Max½5-year rate� 10-year rate� Strike; 0�
The first option can be thought of as a bet on the steepening of the yield curve, or a
‘‘steepener’’, as it pays when the par 10-year coupon rate rises by more that the par 5-
year coupon rate (or declines by less). The second option is a ‘‘flattener’’. It pays when
the yield curve flattens (i.e., the 10-year rate rises by less than the 5-year rate).

In all these cases, the correlation exposure is unhedgeable unless there exist spot or
forward instruments on the spread itself. The delta hedge can be easily constructed by
buying one asset and shorting the other, but more often than not it provides insufficient
protection against unpredictable relative moves.
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10.4 OPTIONS SPANNING ASSET CLASSES

There exist cash securities and related derivatives that cannot be neatly classified as
belonging to equity, fixed income, or currency markets. They present holders with
unique risks of the interaction of prices of and secondary exposures to assets in different
markets.
There are assets that appear to belong to this group, but when dissected are actually

structured securities built from separate components. A bond with an equity warrant
attached to it is really two separate assets that have nothing to do with each other, even
though the yield on the bond part may be lower to cover the cost of the warrant. The
two components can, however, be priced and hedged separately. A structured bond
whose coupons are tied to the performance of a stock index, rather than an interest rate,
can be easily decomposed into a string of stock index forwards or options and a set of
zero-coupon bonds. Each can be priced separately to give the total price of the package,
but each is then hedged separately.
However, there are certain assets that cannot be dissected into separate components.

Convertible bonds

The most common example of a security spanning asset classes is a convertible bond.
When the embedded option is exercised, the bond is tendered. The holder gives up the
right to further coupon interest in exchange for shares. His decision to exercise, while
most often is prompted by the rise in the stock price which makes the exercise value
(stock) greater than the value of the unexercised bond, can be prompted by the decline
in value of the bond coupon stream due to interest rise. The embedded equity option
cannot be priced as a straight call. In addition, a convertible bond may be callable,
which makes the evaluation of the bond even more complex. The call provision fre-
quently allows the issuer to force reluctant bond holders to exercise the equity option. If
the intrinsic value of the equity option is above par, then the holder would, upon
exercise, receive shares valued at more than par (a call by the issuer at par will
prompt the holder to exercise in order to avoid the loss of value). The issuer’s decision
to call bonds may be driven not by equity considerations, but by a decline in interest
rates and the desire to refinance debt at lower rates.
These considerations have to be taken into account in the pricing/hedging model. The

volatilities and the correlation structure of the stock price and the interest rate(s) have
to be modeled explicitly. The daily rebalancing of the hedges also has to take into
account the movement in all related asset classes. A change in interest rates may
entail a change in the position in the underlying stock and vice versa.
We describe the valuation problem for convertibles with the following diagram of a

two-dimensional binomial tree. The first dimension is the interest rate, and we have up
and down nodes based on its volatility. The other dimension is the stock price, and we
have up and down nodes based on its volatility. We also have another condition that
binds all the nodes: the correlation of the interest rate and the stock.
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Figure 10.5 Two-dimensional pricing grid for convertibles.

We omit the math of setting up the tree. The main logic of the valuation is that, as we
sweep backward in the tree, we apply the exercise condition in order to compute the
value of the convertible bond on that node. The condition compares the exercise value
of the bond (number of shares into which it is exercisable times the price) with the
discounted expected value of the forward nodes. This is where the interaction of the
stock price and the interest rate takes place. The discounted expectation includes all
future coupon payments discounted to today (and all future possibilities of exercise).
The delta with respect to the stock and the delta with respect to the interest rate that
come up from the model are the product of the interaction of the two random variables.
The model price of the convertible is equal to the amount needed to start the dynamic
hedge (to be rebalanced until the maturity of the convertible), where the hedge consists
of positions in the stock and in a purely interest rate-sensitive instrument (e.g., a bullet
bond).

What the convertible model highlights is that, in practice, portfolios of bonds con-
vertible into different stocks are hedged with baskets of stock and a variety of interest
rate-sensitive instruments. Each bond has a delta with respect to its stock and a delta
with respect to interest rates. Stock deltas call for hedges in the underlying stocks, while
interest rate deltas call for hedges in bonds. The latter actually involve hedges in risk-
free as well spread-sensitive bonds (i.e., interest rate deltas can be broken down into
exposures to pure interest rates as well as corporate spreads).

More importantly, all the deltas are related to each other. A change in interest rates
may require the hedger to change his stock position, and a change in the stock prices
may require the hedger to change his bond position. The greatest danger of the hedging
scheme is that the real movements in stocks and rates do not reflect the assumed
statistical correlation in the model and the hedge slips (i.e., results in extra profit or
loss).

Quantos and dual-currency bonds with fixed conversion rates

Any multi-currency bond that gives the holder a right to receive coupon interest in the
currency of his choosing, with the foreign exchange (FX) conversion rate which is
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predetermined, exposes the issuer to intertwined interest rate and currency risks. If,
during the life of a bond, the value of a currency declines, the bond holder may choose
to have interest paid in that currency to take advantage of the rate originally contracted
for and not equal to the current market rate. The risk here is the same as in quanto
options where a payoff is translated into a non-native currency. A stock index quanto
call gives the owner the payoff of a stock index not in the currency of the stocks in the
index, but in another currency at a fixed rate. The writer-hedger of the option is exposed
to the correlation of the FX rate and the index level. As the index increases his FX
hedge may increase.

Dual-currency callable bonds

A single-currency callable bond is equivalent to a straight bullet bond and a call
swaption. The exercise of the call swaption leads to cash flows that exactly offset
those on the bond, effectively canceling the bond. The issuer normally issues a callable
bond and sells the swaption to a dealer, the sole purpose of the structure being a lower
cost of capital.
A single-currency callable bond in one currency swapped into another currency or a

dual-currency bond with conversion rights which is callable carries the correlation risk
between the FX rate and long interest rates in the two currencies.

10.5 OPTION-ADJUSTED SPREAD (OAS)

Many bonds have options embedded in them. They are sold as packages of bullet bonds
and options. Sometimes these options are physically separable, as in warrant bonds.
Sometimes they are not physically separable, but the components can be treated separ-
ately for valuation and hedge calculation purposes. A callable bond gives the issuer the
right to call (repay) the bonds prior to maturity at par (or another call price). The buyer
of the bond cannot be sure when he will be repaid the principal (at the latest at
maturity) and how many coupon payments he will get. Even though this option is
embedded, it can be treated separately. A callable bond can be viewed as a bullet
bond plus a call swaption with the strike equal to the coupon of the bond sold by
the bond holder to the issuer. When the bond is called, the remainder of the cash flows
(which will be 0) can be constructed from the coupons on the bullet bond and the
exactly offsetting payoff on the swaption. A puttable bond gives the holder the right
to put (redeem) the bonds back to the issuer at par (or another put price). A puttable
bond can be viewed as a bullet bond plus a put swaption sold by the issuer to the bond
holder. Callable bonds and puttable bonds can be priced and hedged by looking at their
components separately and netting the prices and deltas.
What if the bond is both callable and puttable? Then the options cannot be treated

separately, because the decision to call depends on whether the bond has been put and
on the future possibilities of being put. Vice versa, the decision to put depends on prior
and future decisions to call. The two are intertwined. This is identical to the convertible
bond situation where the decision to exercise the conversion option depends on future
share prices and interest rates together. In Chapter 8, we discussed structured finance
with the use of derivatives like swaps and caps. A callable inverse floater is an example
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of a bond with embedded options that are not separable. The inverse floater’s coupon
contains a cap protection as the coupon rate cannot fall below 0. On top of that, the
issuer can call the entire package and his decision will depend on whether the caps are
to be exercised or not.

In these and other examples, the embedded options are dealt with using the right
pricing model (i.e., one that does not separate the components, but values and com-
putes delta hedges for the whole package). To provide information to investors, dealers
often compute and quote measures of optionality in bonds. The option-adjusted spread
(OAS) is defined as the difference between the yield on the structured bond minus the
yield the bond would have if all the embedded options (whether separable or not) were
eliminated.2 For example, for a convertible bond, the OAS is equal to the yield on the
convertible minus the yield on an equivalent straight bullet bond with the same matur-
ity. OASs are quoted for most bonds we have already mentioned.

They are also very popular in mortgage-backed securities (MBSs). Let us consider the
simplest example of an MBS: a fixed-coupon pass-through. A pass-through is a bond
whose coupon stream matches the payment stream of the underlying pool of mort-
gages. Each month a pass-through holder receives coupon and principal repayments.
The biggest risk of fixed-coupon pass-throughs is the embedded option sold by the
lender (bond holder) to the borrower (mortgagee). Any homeowner has the right to
prepay the mortgage by paying it in full (e.g., when selling the property) or sending
extra checks to reduce the principal. Each homeowner may have his own reasons for
prepaying, but, in general, he will tend to prepay when interest rates are low (in order to
refinance). The pass-through owner will be subject to the totality of the prepayment
decisions coming from the entire pool. The embedded option is equivalent to a call
swaption held by the homeowners who can call their loans prior to maturity. The
option is not exercised optimally as soon as interest rates go down, as it depends on
the sum of individual decisions.

Just as callable bonds have OASs quoted on them, so do MBSs. This allows investors
to compare the level of uncertainty about the timing of the cash flows, all subsumed
into one summary statistic. We need to remember that this statistic, however, hides a lot
of detail about the exact reasons for exercising the embedded options. This is particu-
larly important for MBSs where the prepayment speeds are just estimates. In contrast,
true callables and convertibles are exercised rationally whenever the exercised value
exceeds the unexercised value.

Just like large bond portfolios, which are often characterized by average duration
and convexity numbers, portfolios of bonds with embedded options can be described by
average OASs on like securities. These however are not additive and cannot be used to
come up with heuristic hedges. Individually, they provide crude clues to volatility
exposure.

10.6 INSURANCE?

The last section of this chapter is devoted to the discussion of financial contracts that
look like other financial options; but, because they are truly unhedgeable, they are more
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akin to insurance products than options. Insurance companies do not hedge their risks;
they cannot take positions in underlying assets as most of the bets they sell are on
events. Instead, they manage the risks through diversification and reserve management.
They avoid higher probability events or accident-prone individuals; they spread risks
across ages, sexes, types of liability, geography, etc.; and they build reserves in good
years to use in years with high payouts. They do not manufacture payoffs the way
option dealers do. Option dealers look to find underlying positions that dynamically
traded can eliminate most risks. Sometimes that is not possible and they venture into
insurance-like bets. This is an ever-growing segment of the market as financial engineers
push the envelope of financial innovation.
We start with the simple example of an option-insurance borderline case of long-term

options.

Long-dated commodity options

Suppose we sell a standard call option on the price of petroleum. Let us choose Brent
crude oil whose current spot price is $28 a barrel and set the strike price equal to $35.
The hedging of commodity options with spot trading is impractical and expensive.

Buying oil outright would lead to high storage costs and could only be done for a
limited quantity. If we had sold a put, we would have to short oil spot which would be
impossible. The standard way to deal with these problems is to buy or sell futures with
the same maturity as the option expiry. The futures will converge to spot by the expiry
date, and so the futures is the perfect hedge tool. It can be bought and shorted, and
rebalanced quickly and with minimal transaction costs.
We set the expiry of the call option we sell to be 10 years. However, futures contracts

go out at most 2 years. We are subject to unexpected supply shock risks that drive a
wedge between the fair value of futures without the convenience yield and the actual
price. Oil futures are subject to normal backwardation as we explained before. That is,
each futures contract price deviates from its fair value based on today’s spot, the
financing cost and storage costs, and the convenience yield markup, reflecting no
assurance of delivery of a physical commodity. So if we dynamically hedge with the
traded futures, our cost of manufacturing the payoff will be a function of the conve-
nience yield which fluctuates in an unpredictable fashion. Any supply shocks (war,
supply gaps) will exacerbate the fluctuations of the futures price from fair value.
None of this would matter if we had a 10-year futures contract, except for the potential
‘‘jumpiness’’ of its price. But because there is no 10-year contract, we have to hedge
with 1- or 2-year contracts which will be subject to different convenience yields. We will
roll over the hedges on their expiry, or earlier, into new 1- or 2-year contracts (this is
also called stacking). In addition, the realized volatility of the spot price over 10 years
may be much lower than the volatility of the hedge. The estimated manufacture cost
based on a hedge rollover assumption (with implied volatility) will be just as inaccurate
as the cost based on the spot price (with historical volatility or some other estimate). In
effect, if we engage in the hedge, we are taking an outright bet on the convenience yields
and historical volatility; if we do not engage in the hedge, we are taking a bet on the oil
price itself. Often both choices are equally risky.

Option Arbitrage 293



Options on energy prices

Another example of unhedgeable options—options on electricity prices—comes from
the world of commodities as well. This time the spoiler is the fact that electricity cannot
be stored easily and has to be delivered to a specific point on the grid. While the
capacity to generate the spot product may exist, the ability to deliver it may not.

Suppose we sell an option on the spot price of electricity delivered to Los Angeles on
a specific date at a specific peak time. We hedge with short-term futures contracts on the
price of electricity at the California–Arizona border. In deregulated or partially deregu-
lated markets, electricity prices for two different points on the grid are not good
substitutes of each other. While they may appear to reflect the spot price of the same
commodity, the supply conditions (weather-related demand, grid overload, local gen-
eration failures, etc.) may cause the prices to diverge dramatically. In short, a true hedge
instrument does not exist. Although we may euphemistically refer to hedging with a
substitute as ‘‘basis risk’’, we may not have a hedge at all. Not only is there no
assurance of the convergence of the two prices, the two may fluctuate differently.

Options on economic variables

Dealers are sometimes pushed by their customers to buy or sell options on economic
variables like the inflation rate, GDP level, or unemployment rate. Financial institu-
tions that have sold client contracts with indexed payoffs (pension, health insurance)
have indirect, but natural aggregate demand for such structures. Although the payoffs
on such products, for example:

Max½U.S. consumer price index� 2%; 0�
may look like those of standard call and put options, these are not options at all; they
are essentially unhedgeable bets. Unless the dealer can find the other side of the trade to
transfer the risk to (i.e., to reduce his role to a matched-book dealer—read: a broker),
he is an insurance provider. Any hedge relying on some ‘‘basis risk’’ will be faulty. A
macroeconomic model may provide a statistical relationship between the underlying
rate (inflation) and some instruments (stock index, real estate index, long bond rate)
which can be traded. The model will be unstable and, as a result, of limited use.

A final word

How are such products different from the previously covered spread options? The main
difference is that here there is no underlying price or rate, while the spread option has
two rates or prices of well-defined underlying assets. The basis risk of insurance-like
products may sometimes be no larger than the correlation risk of the seemingly hedge-
able options. In most cases, common sense is all that is needed to separate dynamic
arbitrage from outright speculation.

294 An Arbitrage Guide to Financial Markets



__________________________________________________________________________________________________________________________________________ Appendix __________________________________________________________________________________________________________________________________________

___________________________________________________________________________________________________________________________________ Credit Risk __________________________________________________________________________________________________________________________________





______________________________________________________________________________________________________________________________________________________________________ 11 ______________________________________________________________________________________________________________________________________________________________________

Default Risk (Financial Math IV) and

_________________________________________________________________________________________________________ Credit Derivatives _________________________________________________________________________________________________________

Up to now, we have assumed that all interest-bearing securities were default-free. The
prices (present values) of deposits, bonds, and swaps varied as interest rate changed, but
the cash flows promised from these contracts, even those unknown at the outset
(LIBOR-indexed interest), were sure to be received at the scheduled dates. Alterna-
tively, for securities with non-guaranteed cash flows (stock dividends), we have assumed
that the interest rate charged reflected the riskiness of the investment. For some transac-
tions, we assumed that the interest rate reflected the quality of the collateral (repos) or
the credit standing of the guarantor (lending against the box). In most of the discussion
so far, we ignored any issues related to compensation for the risk of default (i.e., willful
non-performance on the contract).
It is, however, very important to understand how the possibility of default is factored

into the yields on fixed income securities. In general, the yield on any interest-bearing
security can be decomposed into two parts. The first reflects the general cost of funds
for a given maturity (short maturity vs. long maturity) and type (zero, coupon, or
amortizing interest). This is due to supply and demand forces in money and capital
markets for given maturity ranges. The second reflects the possibility that the issuer of
the security will fail to pay one or all of the promised cash flows. This can be due to the
short-term liquidity problems of the issuer or due to bankruptcy. Credit-rating agencies
spend countless resources researching and analyzing all relevant information to assess
that probability of failure to perform. The prices of fixed income securities change as a
result of changes in either of the two components. In most of this chapter, we will
assume that the first component does not change (i.e., default-free interest rates stay the
same). The only part that changes is that due to the changing probability of default.
The default risk of the issuer is reflected in a credit spread. The credit spread is defined

as the difference between the yield on a default-risky security and a default-free security
of the same maturity and type. Any security issued by the government of the currency
of denomination can be used as a default-free benchmark. One simply matches the
maturity of the reference rate to the given security. For example, if the yield to maturity
(YTM) on a 5-year U.S. dollar-denominated coupon bond issued by ABC Corp. is
6.35% and the YTM on a 5-year U.S. Treasury is 5.84%, then the credit spread for
5-year ABC bonds is said to be 51 basis points (bp).
This chapter consists of two main parts: sections 11.1–11.4 cover the mathematics

(Financial Math IV) related to default risk; and Sections 11.5–11.7 provide an overview
of credit markets arbitrage, particularly with the use of credit derivatives. We start our



discussion of credit spread by developing a simple model of how a probability of default
translates into spread.

11.1 A CONSTANT DEFAULT PROBABILITY MODEL

Let us examine a 3-year annual bond issued by ABC Corp. The bond carries a 5%
coupon. We also observe the following rates on default risk-free securities.

Table 11.1 Rates of default-free bonds

Risk-free
—————————————————————

Year Forward yield Zero yield Par yield

1 2.50 2.500 000 2.500 000
2 2.75 2.624 924 2.623 305
3 3.00 2.749 797 2.745 279

Suppose we assume that the probability that ABC will go bankrupt over the next year is
0.11%. We further assume that if ABC goes bankrupt then not only will it not pay the
5% coupon due in 1 year, but it will also fail to pay any coupons after that. If, however,
ABC survives the first year, then the probability that it will go bankrupt in the second
year will again be 0.11%. If ABC fails in year 2, then it will fail to pay the coupon in
year 2 and the coupon and principal in year 3. If it survives year 2, then it will again face
the probability of default of 0.11% for year 3. For each year the survival probability is
constant at 99.89%.

What follows is that the cumulative survival probability up to any given time (or
year) n is equal to 0.9989n. What also follows is that the expected present value (PV) of
any coupon payment is equal to the cumulative survival probability times the promised
cash flow (CF) times a discount factor (DF), where the discount factor is computed
using default-free rates. This is because if ABC does not survive to pay a given cash flow
then its PV is equal to 1 minus the cumulative probability of survival times 0 as the cash
flow times some discount factor, or 0. The analysis is summarized in Table 11.2.

Table 11.2 PV of ABC’s bond in a default probability model

Year CF Probability of Cumulative Risk-free PV
default per year survival probability ———————————
(%) Zero rate (%) DF

1 5 0.11 0.998 90 2.5000 0.975 610 4.8727
2 5 0.11 0.997 80 2.6249 0.949 499 4.7371
3 105 0.11 0.996 70 2.7498 0.921 843 96.4745

Sum PV ¼ 106.0842

Yield ¼ 2.8550%

Risk-free yield ¼ 2.7417%
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The promised cash flows in years 1, 2, and 3 are 5, 5, and 105, respectively. We use the
risk-free zero rates to discount the cash flows if they are received. The PV of each cash
flow is the expected value computed as the weighted average of two possibilities: the
first, weighted by the cumulative survival probability, is the PV of receiving the cash
flow; and, the second, weighted by the remaining probability mass, is 0 (i.e., the PV of
not receiving a cash flow). The price is 106.0842. Given that price, we can back out the
YTM on the bond to be 2.8550%. Given the risk-free zero-coupon rates, we can
compute the default-free yield on 3-year coupon bonds as 2.7417%. The credit on
ABC’s bond is 0.1133%.
Suppose ABC’s rating changes to ‘‘junk’’ and the perceived probability of default

changes to 10% per year.

Table 11.3 PV of ABC’s bond after a credit downgrade

Year CF Probability of Cumulative Risk-free PV
default per year survival probability ———————————
(%) Zero rate (%) DF

1 5 10.00 0.900 00 2.5000 0.975 610 4.3902
2 5 10.00 0.810 00 2.6249 0.949 499 3.8455
3 105 10.00 0.729 00 2.7498 0.921 843 70.5625

Sum PV ¼ 78.7982

Yield ¼ 14.1562%

Risk-free yield ¼ 2.7417%

The promised cash flows do not change, but their expected value does. The new price is
78.7982. The YTM on ABC bonds increases to 14.1562%, and the credit spread is now
11.4145%.
Our model can incorporate a deterministic scenario of changing credit quality.

Suppose we believe that, while the probability of default for year 1 is 0.11%, it will
increase to 6% in year 2 and 8% in year 3. We recomputed the cumulative survival
probabilities, and the rest proceeds as before.

Table 11.4 PV of ABC’s bond assuming known credit deterioration

Year CF Probability of Cumulative Risk-free PV
default per year survival probability ———————————
(%) Zero rate (%) DF

1 5 0.11 0.998 90 2.5000 0.975 610 4.8727
2 5 6.00 0.938 97 2.6249 0.949 499 4.4577
3 105 8.00 0.863 85 2.7498 0.921 843 83.6150

Sum PV ¼ 92.9454

Yield ¼ 7.7238%

Risk-free yield ¼ 2.7417%
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The YTM on the bond changes to 4.9821%.
In the last three examples, we showed how an estimate of default probabilities

translates into the credit spread through the calculation of the bond price as the
expected present value of the scheduled cash flows, where the expectation is weighted
by the probabilities of receiving the cash flows. Next, we consider a model with more
complicated changes to the credit quality of the issuer.

11.2 A CREDIT MIGRATION MODEL

The term ‘‘credit migration’’ refers to the possibility that the probability of default for a
given future period depends on the default risk of the bond during the previous period.
That is, if we think that a bond is likely to be upgraded from A to AA or likely to be
downgraded from A to BBB over the next year, the probability of default for the
following year will depend on whether the bond was upgraded or downgraded. In
this approach, we consider the probabilities not only of default, but more gradual
changes to the bond’s credit rating, and the path of those changes. We can also take
into account the changing nature of the subsequent probabilities of upgrades and
downgrades.

Let us examine the following scenario. ABC has the probability of default over the
next year of 0.20%. We postulate that the annual default probability for year 2 will
change to 0.10% with a probability of 30% or to 0.70% with a probability of 70%. The
30–70 probabilities of period-to-period changes in the issuer’s credit rating are referred
to as transitional probabilities. Now, depending on where we end up in year 2, we will
assume different transition probabilities for years 2–3 and different default probabilities
for year 3. If we end up at 0.10% for year 2, then we postulate that the annual default
probability for year 2 will change to 0.05% with a probability of 25% or to 0.30% with
a probability of 75%. If we end up at 0.70% for year 2, then we postulate that the
annual default probability for year 2 will change to 0.30% with a probability of 30% or
to 3.00% with a probability of 70%. This way we can model a non-linear path toward
credit trouble and a migration from one credit category to the next over time.

We use a decision tree similar to the binomial tree for options to depict our scenario
(ours will be recombinant, but it does not have to be). On each node, we mark the
probability of default for the year starting at that node and ending next year. We show
transitional probabilities of going up or down. We also show the scheduled cash flow
for the next period. The PV displayed at each node is the discounted expected value of
the cash flow to be received next period, cumulated with the expected value of the
subsequent period’s cash flow which is probability-weighted and discounted. Graphic-
ally, each node n is represented as:

Figure 11.1 A node of a credit migration tree.
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where

PVn ¼ ð1�DefProbnÞ½CFnþ1 þ ðTransProbup � PVup þ TransProbdn � PVdnÞ�=ð1þ rn;nþ1Þ
We sweep backward through the tree to compute the expected value of all cash flows
under our transitional and survival assumptions.

Figure 11.2 ABC’s bond in a credit migration model with transitional probabilities.

Today’s price of the ABC bond is 104.14 and the YTM is 3.5217%.
Note that our tree does not rely on any hedging argument. It is just a convenient

graphical tool for computing weighted averages given conditional default and transition
probabilities. It only coincidentally resembles option-pricing trees which are discrete
approximations of price dynamics.

11.3 ALTERNATIVE MODELS

Credit migration can, of course, be a lot more complicated and depend not just on
previous default probabilities, as in our model, but on other (state) variables. The latter
can be market-general (e.g., interest rates or economic indicators) or issuer-specific
(e.g., financial ratios, legal structure). Any model has to be a vast statistical approxima-
tion of the reality of defaults.
One particularly well-known and highly qualitative model is that used by credit-

rating agencies. S&P’s and Moody’s assign issuers to credit quality categories with
different likelihoods of default. The agencies provide past default statistics. They also
painstakingly analyze all relevant financial information to determine a forward-looking
forecast of an issuer’s ability to repay cash flows. This includes public financial dis-
closure as well as general industry and economic data. We can refer to that as an expert
opinion model.
An interesting option-theoretic alternative is offered by a San Francisco-based

company called KMV. The approach is based on the observation that the stock of
any given company is a de facto call option on the total value of the firm with a strike
price equal to the value of the debt. If we know the total value of the assets of the
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company and the total value of the shares outstanding, then in effect we know the value
of the underlying price and the value of the option. If we can further assess the volatility
of the underlying assets, then, from the option-pricing model, we can back out the
strike price (the value of the debt) of the option (the equity). That, in turn, can be
converted to the YTM and the credit spread. It can also be converted to a forward-
looking forecast of default probability. KMV claims to have superior out-of-sample
predictive power for the defaults. The enormous value added by the company’s service
lies in extremely thorough data collection process for all debt issues and a very rigorous
treatment. The approach relies on a hedging argument which, while quite impossible to
implement, does offer the implied self-consistent market consensus estimate of future
defaults, in the same way as the implied volatility does for future price paths (here we
are interested in the implied strike and its subcomponents though).

11.4 CREDIT EXPOSURE CALCULATIONS

FOR DERIVATIVES

Credit risk refers to the possibility that some cash flows that we have been promised
may not be paid to us. In general, the magnitude of credit risk depends on two factors:
the size of the cash flows owed to us and the default probability of the counterparty to
the transaction. A loan with twice the face value issued to the same borrower has twice
the credit risk. The same loan issued to two different borrowers may have different
credit risks as the default probabilities of the two borrowers may be different. The price
of a credit-sensitive bond compensates the owner for both factors. Credit spread
implied in the bond’s yield takes into account the probability of default. The yield is
then used in cash flow discounting: the greater the cash flows, the greater the PV
reduction due to credit spread.

The notion of credit exposure refers to estimation of the size of the cash flows subject
to default (i.e., it only considers the first factor). In many cases, most notably in
derivative contracts, cash flows are floating or contingent on market events and are
not known in advance. They have to be forecast. Forecasting is a very risky business.
This renders credit exposure calculations a very inexact science. All that we can do is try
to come up with a metric of the relative riskiness of different assets based on the size of
the exposed cash flows. Once that size is defined for a security, it can be cumulated with
other securities of or contracts with the same counterparty to come up with the total
size of cash flows exposed to the default of that counterparty. A bank performing such
a computation can then set a limit on the exposure it is willing to take. It can define a
credit line limit for a given counterparty to regulate the business behavior of its traders
by inducing them to or preventing them from engaging in a particular type of deal in
order to manage the concentration of credit risks. From that perspective, it is a very
useful, albeit inexact, business policy tool.

Credit exposure can be defined in many different ways. For example, credit exposure
on a loan issued to a customer can be defined in future value terms as the interest and
principal cash flows we have been promised on some future dates or as some kind of a
single PV concept. For bonds, credit exposure can be defined as the future cash flows
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from the bond or their total PV. The latter definition will not lend itself to easy
aggregation across other securities and contracts of the same issuer.
When applying the concept of credit exposure to forwards, options, and other

derivatives, and depending on the structure of the transaction, the cash flows due to
be received may not be defined in advance. Consider a long position in an option. If the
option ends up in-the-money on the expiry date, then we are owed a cash flow; if it ends
up out-of-the-money, then we are not owed a cash flow. Does this mean that if the
option is currently out-of-the-money we do not have any credit risk? No, we bought the
option, hoping that we might get a cash flow from it. There is a non-zero probability of
a positive cash flow if the option is not worthless. We do have credit exposure to the
party that sold us the option. If we used the simple logic of discounting cash flows using
a credit spread-corrected yield, as we can do with loans and bonds, all out-of-the-
money options would have no computed credit exposure. So how else can we define
credit exposure?
The answer is not simple. Whatever we do will have to be based on some probabilistic

assumptions about how prices or rates are going to move (i.e., our subjective estimate
of market risk). It will have to rely on some guesswork. We will have to estimate the
expected value or a confidence interval value of the cash flows we are due. Whatever we
do will be just a guess or, more technically, a subjective estimate of some random
variable. But, we get to choose what variable we want to estimate: the mean, a con-
fidence interval cutoff, or something else.
The most important principle in credit exposure calculations is consistency. We want

to treat assets and securities that are essentially the same equally. The credit exposure
on a receive-fixed swap should not be any different from the net exposure on a long
fixed coupon bond and a short floating-rate bond. The credit exposure on a forward
zero should not be any different from the credit exposure on two spot zeroes: one long
and one short. We also want the credit exposure on otherwise identical contracts
entered into with different counterparties to be identical. After all, the objective is to
compute the exposure first and then apply the credit rating of the counterparty to
decide whether we are comfortable with it. Lastly, we have to be careful to define
credit limits consistently with the definition of exposure we adopt.
Many forwards and derivatives are exchanges of cash flows, and we need to separate

the cash flows that we owe from the cash flows that we are owed. We do not have any
credit exposure on the first; we have credit exposure on the latter. But is our exposure
equal to the full value of the cash flows that we are owed? Suppose we entered into a
1-year foreign exchange (FX) forward to sell GBP 100,000,000 for USD 150,000,000.
Our expected cash flows are an outflow of GBP 100,000,000 and an inflow of USD
150,000,000. What if the counterparty to our FX forward defaults and on the maturity
date fails to deliver USD 150,000,000. We certainly are not going to rush to deliver our
pound sterling obligation under the contract. If the exchange rate moves against us and
the counterparty defaults, we will choose not to pay either; if the exchange rate moves
in our favor, we will have lost a positive cash flow.
One way to define credit exposure would be as a one-sided confidence interval cutoff

of the amount to be owed to us. Suppose today’s 1-year forward FX rate is USD1.50/
GBP and the volatility (standard deviation) of the rate is 2%. Based on the bell curve,
68% of the probability lies within �1 standard deviation, or �2%, of the central value
which we will assume is equal to the forward and 90% of the probability mass lies
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within two standard deviations or �4%. The two standard deviation points are
thus:

1:50ð1� :04Þ ¼ 1:44 and 1:50ð1þ 0:04Þ ¼ 1:56

At those points, the net cash flows in USD owed to us would be:

At 1.44 150,000,000� 100,000,000� 1:44 ¼ USD 6,000,000

At 1:56 150,000,000� 1,000,000� 1:56 ¼ USD � 6,000,000

We can define the 1.44 point as the 95% confidence interval cutoff. Based on our
estimate of volatility, there is a 5% chance that the rate would be at 1.44 and below.
At 1.44 we are owed USD 6,000,000. We can define that as our credit exposure in future
value terms. We can also discount that amount to today to come up with the credit
exposure in PV terms. Coincidentally, this would also be the 95% value-at-risk1

number. Note that if we did not use a confidence interval measure, but simply
defined the credit exposure in terms of its expected value, then our FX forward and,
in fact, all on-market forwards would have zero credit exposures.

Let us provide another example. This time we look at an interest-rate swap. Suppose
we have entered into a 5-year annual interest-rate swap to pay 5.5884% fixed against
12% LIBOR (London interbank offered rate), on a notional principal of GBP
100,000,000. Currently, the 12-month forward, spot zero, and par swap interest rates
for different terms, stated in months from today, are as follows:

Table 11.5 Current rates

Forwards Maturity Zeros Maturity Swap

0� 12 5.000 000 12 5.000 000 12 5.0000
12� 24 5.500 000 24 5.249 703 24 5.2433
24� 36 5.761 423 36 5.420 001 36 5.4066
36� 48 6.000 000 48 5.564 702 48 5.5426
48� 60 5.800 000 60 5.611 720 60 5.5884

Our swap is on-market (i.e., it has a zero PV). How much money is at risk of default?
Again we can try to determine a 95% confidence interval measure by considering
scenarios where money is owed to us at the five payment dates. We assume that
forwards are unbiased predictors of future LIBORs. Suppose the normal volatility of
LIBOR rates is 2% per year. This will have to be scaled up by the appropriate number
of years to set times. We will be owed money when LIBOR exceeds the fixed rate, since
we are paying fixed. We consider two standard deviations up from the forwards.
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Table 11.6 Credit exposure calculation using a two-standard-deviation interval

Time in months Forward Volatility 95% cutoff Cash flows Net CF Credit PV credit
——————— LIBOR ———————————— exposure exposure
Set Pay Fixed Floating

0 12 5.0000 0.00 5.00 (5,588,397) 5,000,000 (588,397)
1 24 5.5000 2.00 5.72 (5,588,397) 5,720,000 131,603 131,603 118,802
2 36 5.7614 4.00 6.22 (5,588,397) 6,222,336 633,940 633,940 541,102
3 48 6.0000 6.00 6.72 (5,588,397) 6,720,000 1,131,603 1,131,603 911,212
4 60 5.8000 8.00 6.73 (5,588,397) 6,728,000 1,139,603 1,139,603 867,347

Total 2,438,463

We compute LIBOR rates that correspond to the 95% interval. We compute the cash
flows based on those projected LIBOR rates as well as fixed cash flows. We net the two
to get the amounts owed. If positive, we define those as our credit exposures. We also
compute the credit exposure in PV terms. The interpretation of that PV number of
£2,438,463 is that, based on predicted market movements and in particular the two
standard deviation movements, we stand to lose that amount in today’s pounds in case
of default. It should be said that discounting is not preferred here; it is better to know
cash flows at risk for all future dates.
All of the above suggested methods are not based on solid science (i.e., the computed

amounts cannot be locked in, arbitraged, paid, or received). They should be viewed
simply as ‘‘risk scores’’ for relative exposure comparisons among products and counter-
parties. They have no strict monetary interpretation. We cannot even be completely
sure that a larger credit exposure number means greater credit risk due to a larger cash
flow being exposed.

11.5 CREDIT DERIVATIVES

Credit derivatives, like other derivatives that transfer price or interest rate risk between
parties, are structured finance products designed to transfer risk arising from a credit
event between two parties (e.g., they may provide exposure to or protection from the
default of an issuer). Credit derivatives are forward-like products in that there is a
future date and the payout is defined as a net of two flows, at least one of which is
credit-related. More often, credit derivatives are option-like products in that there is a
trigger event that can take place over a time period and the payout is contingent on the
event having taken place. If the event, which can be a default, restructuring, or a credit-
rating downgrade, occurs, the credit derivative has a payoff. If the event does not occur,
the credit derivative pays nothing.
Similarly to standard options, the payoff of a credit derivative does not have to be

fixed, but it can depend on the ‘‘severity’’ or ‘‘size’’ of the event. The ‘‘severity’’ is
similar in concept to the notion of credit exposure (i.e., it measures the size of the
cash flows lost due to default). This is closely related to the recovery value of the
defaulted security. The payoff can also depend on other market variables (prices and
rates).
Credit derivatives are very complex credit management tools offering lots of flex-

ibility, but often carrying additional market and credit risks. Their main appeal lies in
allowing two parties to transfer the credit risk of a third party. This risk-sharing
arrangement can be for a specific time period or can be demarcated by credit events.
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Until credit derivatives started trading in the 1990s, the only credit risk management
tools at the disposal of bankers were a direct renegotiation with a borrower, diversifica-
tion of the loan portfolio, or an outright sale of a loan. Credit derivatives allowed the
credit profile of a loan portfolio across many dimensions to be customized: length of
exposure, selling of some exposure but not all, correlating exposures by blending
exposures to like risks, relating the size of loan protection to other market variables, etc.

Basics

Let us consider a default protection option. The buyer of the option gets a payout if a
specified issuer defaults on or prior to some date. The buyer pays a premium as for any
option or insurance product. The default is defined in terms of a reference security. The
default event is said to take place if the issuer of the reference security fails to pay
coupon or any other cash flows specified by the reference security contract. More often
than not, the reference security is a bond. If the issuer of the bonds fails to pay on the
bond, for the purposes of the default option the default has taken place and the option
has a payoff. The payoff is then defined as some amount (say, par) minus the recovery
value. The recovery value is defined as the price of the defaulted reference security in the
aftermarket. For example, if the bond falls in default, but trades at 60 in the after-
market, the payoff on the option may be defined as 100 minus 60, or 40. The presump-
tion is that the buyer of the protection owns the bond and can recover 60 by selling the
bond, and is only compensated for the lost value.

Credit default swap

A default protection option is most often packaged as a credit default swap in which the
premium is paid periodically as opposed to all upfront. The term of the credit protec-
tion and premium payment, called the maturity of the swap, is specified at the outset.
As long as the premium continues to be paid, the protection is in place. This is similar
to a term life insurance contract without any cancellation rights on both sides.

Let us illustrate. The Kool Kredit Bank has a portfolio of loans to different corpora-
tions. Kool Kredit is worried about one particular loan to ABC Corp. which has five
more years to maturity. ABC also has some bonds outstanding. Bonds and loans carry
cross-default provisions. Kool Kredit selects one of these bonds as a reference security
for the default swap it intends to enter into with a credit derivative dealer. In case of
ABC’s default, the reference security is thought to stand to lose approximately the same
percentage of value as the Kool Kredit’s loan to ABC.

Figure 11.3 Credit default swap used as insurance against loan default (BRef is the value of the
reference bond).

If ABC defaults, then the value of the loan to Kool Kredit will decline from par (100) to
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the PV of any cash flows post-default. The value of the reference bond will also decline
to the PV of any cash flows post-default (i.e., the recovery of the bond). Kool Kredit
will receive the difference between par and the recovery value. If Kool Kredit actually
owned the reference bond and not the loan, then the credit derivative could have been
structured even more simply with a physical-settle provision. Kool Kredit would have
the right to put the bond to the dealer in exchange for par. In the slightly more complex
mark-to-market arrangement, the recovery value must be defined very clearly. The
recovery is typically defined as the bid or mid-price of the bond in the aftermarket.
To avoid disputes, an additional provision may be inserted in the contract, specifying
that five dealers may be polled to ascertain the bond’s aftermarket value.
The International Swaps and Derivatives Association’s (ISDA) master documents

govern the language of credit derivative contracts. They specifically define the reference
entity (reference security), obligation (loan or bond provisions), credit event, and refer-
ence obligation. Most trade confirmations include a materiality clause aimed at
excluding technical defaults with no change in the reference security’s value from the
definition of a credit event.

Total-rate-of-return swap

Total-rate-of-return swaps allow banks to obtain default or value loss protection for
loans on their books and a subsidy to their cost of funding in exchange for giving up the
total return on a loan. The protection-buying bank essentially gives up any cash flows
from the loan without having to sell the loan or canceling the loan with the borrower.
The protection-selling investor gains access to the return on the loan without having to
find his own customers, but bears the risk of default or any event leading to a loss of
value of the reference security and has to pay spread over LIBOR as compensation.
Total return swaps are perfect examples of credit risk sharing where banks can diminish
their exposure to the credit standings of certain borrowers, while non-bank investors
can gain exposure and return on loans to certain borrowers.
As an illustration, consider Kool Kredit Bank: instead of buying into a credit default

swap, it enters into a total return swap with an investor or dealer. Kool Kredit does not
have to involve ABC in the transaction. It agrees to pay any interest and any apprecia-
tion in the value of ABC’s loan to the dealer. The dealer agrees to pay Kool Kredit
LIBOR plus a spread and any depreciation in the value of the reference loan. In effect,
the dealer’s compensation for providing credit protection is the difference between the
interest on ABC’s loan passed on to him and the spread over LIBOR he pays. The swap
may terminate on any payment exchange date or on a pre-specified credit event. At that
point, the two parties would enter into a settlement based on the mark-to-market (par
minus the recovery value) of ABC’s loan which serves as the reference security for the
swap.

Figure 11.4 Total-rate-of-return swap (BRef is the value of the reference bond).
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The total return swap bundles credit protection with an exchange-of-interest-accrual
formula. Credit protection is wide-ranging as the protection provider compensates for
any loss of value on the reference security.

Credit-linked note

A credit-linked note is a debt security whose principal repayment depends on the value
of a third-party reference security. In case of third-party default, the defaulted security
is passed on to the investor in lieu of principal. The enhanced interest rate of the credit-
linked note reflects the implicit sale of credit protection by the investor. The issuer of
the note is typically a trust set up by a bank arranging the sale of the note. The trust
uses the proceeds from the sale of the note to invest in risk-free securities to guarantee
the principal of the note if the third party does not default. If the third party defaults,
the note is redeemed early at the recovery value of the reference security.

The investor gains a much enhanced interest rate, but bears all the risk of default.
The arranging bank acquires protection for its loan or bond portfolio. In case of default
of the underlying issuer, the bank receives the excess of the value of the securities held
by the trust over the recovery value of the reference security.

Figure 11.5 Credit-linked note (BRef is the value of the reference bond).

The credit-linked note bundles a credit default swap with a standard bond obligation.
The credit protection premium paid by the arranging bank is passed on to the investor
in the form of an enhanced coupon. The protection payout is passed from investors to
the bank at redemption. If there are no credit events associated with the reference
security, the investor gets a periodic coupon and par at maturity.

Credit spread options

Credit spread options offer payout dependent on the yield differential between default-
risky securities and reference benchmarks. The payout is not contingent on any par-
ticular credit event. Most credit spread options are structured as put options on the
price. The holder of a credit spread option has the right to sell a particular corporate
bond at a contingent strike price. The strike price is computed to be the value the
corporate bond would have to have on the expiry date so that its YTM would be
equal to the YTM on the reference, default-free security plus a spread strike. For
example, the buyer of a spread option on ABC’s 5-year note struck at a spread
strike of 50 bp over the 5-year U.S. Treasury note will face either of two possibilities
on the expiration date. If the spread between the YTM on the ABC bond and the
Treasury is less than 50 bp, the option expires worthless. If the spread exceeds 50 bp, he
sells the ABC bond to the option writer. The price he receives is equal to the PV of the
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cash flows from the ABC bond discounted at the yield equal to the 5-year Treasury
yield plus 50 bp.
Let us illustrate numerically. Suppose 1 year ago we purchased a 1-year European

option on the spread between ABC’s 6-year bond paying a 5% coupon semi-annually
and the 5-year U.S. Treasury issue struck at 55 bp. The principal (face) amount was
$100 million. At that time, the ABC bond yielded 5.75% (semi) to price at 96.2392. The
reference Treasury off which we were going to calculate the yield spread between the
two bonds had not been issued. The then-current 5-year Treasury paying a 5.25% semi-
annual coupon yielded 5.23% and priced at 100.1019. The option was described as 3 bp
out-of-the-money since the spread at the time of the option purchase was 52 bp. A
month ago, the U.S Treasury auctioned off a new 5-year note with a coupon of
5.125%. This note will be used to determine the payoff on the spread option.
Suppose the now 5-year ABC bond is yielding 5.68%. The current market price is

97.0759. The new 5-year Treasury is yielding 5.04% and prices to 100.3716. The yield
spread between the two bonds at 64 bp is higher than the strike spread of 55 bp. We will
exercise our option to sell the bond at 55 bp over Treasuries (i.e., at a yield of 5.59%).
Computing the price of the ABC bond at that yield we obtain 97.4571. Since we can buy
the bond for 97.0759 on the open market, the payoff on the option to us is:

ð97:4571� 97:0759Þ=100 � $100,000,000 ¼ $381,153

Suppose instead that the now 5-year ABC bond is yielding 6.23%. The current market
price is 94.7846. The new 5-year Treasury is yielding 5.59% and prices to 97.9958. The
yield spread between the two bonds (again at 64 bp) is higher than the strike spread of
55 bp. We will exercise our option to sell the bond at 55 bp over Treasuries (i.e., at a
yield of 6.14%). Computing the price of the ABC bond at that yield we obtain 95.1551.
Since we can buy the bond for 94.7846 on the open market, the payoff on the option to
us is:

ð95:1551� 94:7846Þ=100 � $100,000,000 ¼ $370,528

The option payout in the two scenarios is not identical, but almost the same. This is
because it can be viewed as purely a bet on the spread between the two bonds grossed
up by the duration of the bond under consideration. For the last scenario, the duration
of the bond computed by blipping the yield from 6.14 to 6.15 is 4.1254. The payout on
the option is based on 9 bp (64� 55). So using the duration approximation, the total
payout is:

0:041 254 � 9 � $100,000,000 ¼ $371,289

Note that nowhere in the calculations did we use the actual price of the Treasury. By
comparing the two examples we can also see that the payout is independent of whether
interest rates in general go up or down. The only relevant factor is the yield spread
between the chosen bond and the reference risk-free security. To emphasize that, spread
options are sometimes written by fixing the duration multiplier and defining the payout
only with yields.
The fundamental difference between credit spread options and other credit deriva-

tives is that credit events do not explicitly drive the payout, but are rather implicitly
incorporated in the payout through a spread differential. The greater the possibility of
default of the underlying bond, the greater the spread over risk-free assets is and thus
the greater the payout on the spread option is.
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Credit options can also be written not on specific underlying bonds, but on the
averages of bond yields in a given credit category. These may be used by potential
future issuers to hedge against general spread increases till the time of issuance.

11.6 IMPLICIT CREDIT ARBITRAGE PLAYS

We briefly revisit some of the previously described arbitrage relationships to focus on
credit considerations. We take the perspective of a corporate debt issuer whose objec-
tive is to obtain the lowest cost of financing in the capital market.

Credit arbitrage with swaps

Let us assume that a U.K.-based corporation has a choice of issuing debt in the U.K. or
in Australia. Five-year swap rates are 5% in the U.K. and 7% in Australia. Given the
corporation’s credit rating, the debt can be issued at 60 bp over swap rates in the U.K.
Suppose that credit perceptions are different in Australia and the corporation finds
investors there willing to accept 45 bp over the swap rates. The corporation would
prefer sterling-denominated debt as most of its operations are in the U.K., but the
cost differential may push it to do the following.

The U.K. corporation issues a 5-year AUD-denominated bond with a coupon rate of
7.45%. The bond sells at par. The corporation converts the proceeds into GBP to
finance its operations. It also enters into a fixed–fixed currency swap receiving 7.45%
in AUD and paying 5% plus a margin in GBP. Given the current swap rates, the
margin is likely to be a little over 45 bp, but much less than the 60 bp U.K. investors
demand. The corporation benefits by obtaining financing at lower cost.

Callable bonds

A U.K.-based corporation currently trades at 80 bp over U.K. government gilts. It
believes that 10-year gilt rates will stay at the current 5% level or come down over
the next 3 years. It strongly believes that its own credit rating is likely to improve
dramatically as it has several new products in the pipeline. The corporation issues
10/2 callable bonds. The bonds have a 10-year final maturity, but can be called at
par starting 2 years from today. The YTM on the bonds is 5.95% which is higher
than a straight 10-year bullet yield of 5.80%. Suppose 2 years later the credit rating
of the corporation improves as predicted to 40 bp over gilts, but gilt rates have stayed at
5%. The corporation may decide to call the bonds and issue new bullet notes at a 5.4%
yield. Its overall cost of financing over the 10-year period will be lower than if it had
issued bullet bonds at the outset. In fact, the improved credit rating would have made
bullet bonds more expensive to retire early as their price would have increased.

11.7 CORPORATE BOND TRADING

The objective of most banking operations, apart from earning fee income for services, is
to acquire funds at the lowest possible cost and earning the highest possible rates on its
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investments. The funds are obtained by offering checking, savings, and certificate of
deposit (CD) accounts to retail customers or by borrowing in the wholesale markets
through overnight interbank or repurchase agreement (repo) markets. Investments
include a variety of consumer and business loans. In this process, banks face two
types of risks. The first is the duration mismatch; financing is likely to be short-term,
while the investments are likely to be long-term. This then leads to reinvestment and
liquidity risk. The second major risk is that of credit exposure to the default by
borrowers.
In order to diversify the credit exposure beyond a bank’s traditional customer base,

the bank may turn to the corporate bond market. This offers exposure to a wider
variety of credits and potentially seniority over loans, but comes at the cost of a
lower yield.
Corporate bond-trading operations generate two types of profit. The first is simply

from inventory turnover through market-making. By charging higher ask prices, paying
lower bid prices, market makers pocket the spread. This is not without risk as they hold
an inventory of bond positions: those bought for sale and those short-sold for repur-
chase. This may at times be riskier than stock dealing as corporate bond markets are
only liquid for a limited number of better known issuers. The financing required for
market making is equal to the financing cost of net inventory plus any margins
required. The second type of profit from corporate bond trading comes from credit
arbitrage. Credit arbitrage can be implicit or explicit. The first has to do with being net
long corporate bonds in the bank’s bond portfolio against the general financing from
the bank’s treasury. Simply by buying bonds the bank is likely to make money in the
same way that the bank makes money on its loan portfolio, relative to the cheap
financing from deposit taking and overnight operations. This is an easy way to generate
profit, but is subject to the same duration and liquidity risk as all the rest of the banking
operation. The explicit type of credit arbitrage in corporate bond trading comes from
relative value trades within the bond portfolio.
Relative value arbitrage with corporate bonds can take on many forms. It can consist

of longs on one credit vs. shorts on another, if we believe that the first will improve and
the second will deteriorate. It can consist of longs or shorts on a credit vs. a position in
a government security, if we believe that the credit spread over government securities
will go down or up. It can also consist of sector and industry tilting of the portfolio, if
we believe that the average spread on one industry is going to move differently relative
to that on another industry. Relative value arbitrage may also seek to exploit bond
maturity selection and reflect a view on the movement of the corporate spreads over
time, individually or in aggregate.
In all these strategies, the important factor distinguishing outright speculation from

speculative relative arbitrage is whether the portfolio is hedged against the general
movement of interest rates or not. This is done implicitly through duration matching
of the relative components of the strategy or explicitly by using government securities.
Most corporate bond trading around the world is a cash business. Forwards on

corporate bonds are rare and options exist only in the embedded form. Theoretically,
there is nothing stopping the markets to evolve to include both forwards and options.
Curiously, this has not happened yet. Also surprising is the limited use of credit
derivatives by corporate bond traders even though the reference securities underlying
many of the derivatives come from the corporate bond markets. Likely, this has to do
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with the skills gap between that required of a cash bond trader and that of a quanti-
tative derivatives structurer. Also, most corporate bond trading is rarely linked to loan
trading even though the two markets have to do with the same risk factors and their
integration could lead to better credit diversification. Many banks obtain a bird’s-eye
view of the total credit exposure at the corporate level through some sort of ‘‘credit
metrics’’, but choose not to combine lending and bond trading as the infrastructure in
the two markets is different. This is clearly far from optimal.
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