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All appearance indicates neither a total exclusion nor
a manifest presence of divinity, but the presence of a God
who hides himself. Everything bears this character.

Pascal’s Pensées, 555.
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Preface

The last thing one settles in writing a book is what one should put in first.
Pascal’s Pensées, 19

In 1902 Jacques Hadamard introduced the term well-posed problem. His
definition, an abstraction from the known properties of the classical problems of
mathematical physics, had three elements:

Existence: the problem has a solution
Uniqueness: the problem has only one solution

Continuity: the solution is a continuous function of the data.

Much of the research into theoretical physics and engineering before and
after 1902 has concentrated on formulating problems, with properly chosen initial
and/or boundary conditions, so that their solutions do have these characteristics:
the problems are well posed.

Over the years it began to be recognized that there were important and
apparently sensible questions that could be asked that did not fall into the
category of well-posed problems. They were eventually called ill-posed problems.
Many of these problems looked like a classical problem except that the roles of
known and unknown quantitites had been reversed: the data, the known, were
related to the outcome, the solution of a classical problem; while the unknowns
were related to the data for the classical problem: they were thus called inverse
problems, in contrast to the direct classical problems. (Later reflection suggested
that the choice of which to be called direct and which to be called inverse was
partly a historical accident.) For completeness, one should add that not all
such inverse problems are ill-posed, and not all ill-posed problems are inverse
problems! This book is about inverse problems in vibration, and many of these
problems are ill-posed because they fail to satisfy one or more of Hadamard’s
criteria: they may not have a solution at all, unless the data are properly chosen;
they may have many solutions; the solution may not be a continuous function
of the data, in particular, as the data are varied by small amounts, it can leave
the feasible region in which there is one or more solutions, and enter the region
where there is no solution.

xi



xii Preface

Classical vibration theory is concerned, in large part, with the infinitesimal
undamped free vibration of various discrete or continuous bodies. This book is
concerned only with such classical vibration theory. One of the basic problems
in this theory is the determination of the natural frequencies (eigenfrequencies
or simply eigenvalues) and normal modes of the vibrating body. A body that is
modelled as a discrete system of rigid masses, rigid rods, massless springs, or as
a finite element model (FEM) will be governed by an ordinary matrix differential
equation in time ¢ with constant coefficients. It will have a finite number of
eigenvalues, and the normal modes will appear as vectors, called eigenvectors. A
body that is modelled as a continuous system will be governed by a set of partial
differential equations in time and one or more spatial variables. It will have an
infinity of eigenvalues, and the normal modes will be functions, eigenfunctions,
of the space variables.

In the context of classical theory, inverse problems are concerned with the
construction of a model of a given type, i.e., a mass-spring system, a string,
etc., that has given eigenvalues and/or eigenvectors or eigenfunctions, i.e., given
spectral data. In general, if some such spectral data are given, there can be
no system, a unique system, or many systems, having these properties. In the
original, 1986, edition of this book, we were concerned exclusively with a stricter
class of inverse problems, the so-called reconstruction problems. Here the data
are such that there is only one vibrating system of the specified type which
has the given spectral properties. In this new edition we have widened the
scope of our study to include inverse problems that do not fall under this strict
classification.

Before describing what the book is, we first say what it is not: it is not
a book about computation. In Engineering, the almost universal approach to
inverse problems is through least squares: find a system which minimizes the
distance between the predicted and desired behaviours. While the early studies
were examples of brute force, there is now an established and rigorous discipline
governing such approaches, based on the work of Tikhonov, Morozov etc. See for
example Kirsch (1996). We do not refer to any of this work in this book. Rather,
we are concerned with basic analysis, qualitative properties, whether a problem
has one or more solutions, etc. There are occasions when one method that we
describe, that should theoretically lead to the construction of a solution, is found
in practice to be ill-conditioned, and this has led to another, better behaved,
procedure; in such a case we have presented both methods and discussed why
one fails while the other succeeds; see for example Section 4.3. Because we
are concerned with fundamental analysis, the range of physical systems that we
can consider is relatively narrow; essentially it is confined to the basic elements
of structures, rods, beams and membranes, and excludes structures composed
of combinations of these elements. This restriction in scope is understandable;
indeed, until the introduction of the finite element method and high-speed large-
memory computing, the only direct vibration problems that could be solved were
those involving those same structural elements in isolation. The study of inverse
problems is at an earlier stage of evolution than that of direct problems.
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The book falls into two parts: Chapters 1-9 are concerned with discrete
systems, Chapter 10-14 with continuous systems.

Matrix analysis is the language of discrete systems, and it is developed, as
needed, in Chapters 1 and 3. Thus, Chapter 1 provides the basic definitions
and introduces quadratic forms, minimax theorems, eigenvalues, etc. Chapter 2
provides the basic physics of the vibrating systems that are analysed. Chapter
3 lays out the classical analysis of Jacobi matrices, the matrices that appear in
the simplest kinds of vibrating systems, in-line sequences of masses connected
by springs. Chapter 4 concerns inverse problems for Jacobi matrices. Chapter
5 provides an introduction to more general discrete systems, and the language
of graph theory that is needed to analyse them.

Inverse problems in vibration are concerned with constructing a vibrating
system of a particular type, e.g., a string, a beam, a membrane, that has speci-
fied (behavioural) properties. The system so constructed must be realistic: its
defining parameters, masses, lengths, stiffnesses, etc., must be positive. Signs,
positive and negative, lie at the heart of any deep discussion of inverse problems.
Chapter 6, on Positivity, introduces the mathematics relating to different kinds
of matrices: positive, totally positive, oscillatory, etc. This mathematics, due
to Fekete, Perron, Gantmacher, Krein and others, was first applied to vibrating
systems by Gantmacher and Krein in their classic Oscillation Matrices and Ker-
nels and Small Oscillations of Mechanical Systems (1950), that has just recently
(2002) been reprinted by the American Mathematical Society.

Sometimes the data that are supplied are insufficient to identify a unique
vibrating system; there is then a family of systems having the specified properties
- an isospectral family. Chapter 7 describes how one can form such isospectral
families, and be sure that each member of the family has the necessary positivity
properties. There are essentially two ways of forming families: algebraic, and
differential. The former uses a carefully chosen rotation to go from one member
to another. The latter uses the idea of isospectral flow; a matrix can flow, under
so-called Toda flow along a path so that it retains the same eigenvalues and at
the same time retains a particular structure and particular positivity properties.

Chapter 8 is concerned with one particular type of vibrating system: a beam
vibrating in flexure. This problem had been a severe stumbling block in the
early history of inverse problems.

Chapter 9 completes the first part of the blook with a study of modes, i.e.,
normal modes, and nodes. This analysis depends heavily on the positivity study
of Chapter 6.

The second part of the book, Chapters 10-14, is concerned with continuous
systems. The problems appear in two related forms, differential equations and
integral equations. The integral equations, which use the Green’s function for
the system, are the easier to analyse, for it is the Green’s function, Gantmacher
and Krein’s kernel, that has the all-important positivity properties. Moreover,
the Green’s function operator appearing in the integral equation is a concrete
example of a positive compact self-adjoint operator in a Hilbert space, so that
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we may immediately make use of the well-developed theory of such operators,
as described in Chapter 10.

Chapter 11 uses this theory, and the fundamental Gel’fand-Levitan transfor-
mation operator, to provide solutions to some inverse problems for the Sturm-
Liouville equation. This equation, which appears in three related forms, is the
governing equation for the vibrating string and rod. The Chapter describes
the classical approach, as well as some recent techniques that are more readily
adaptable to computation.

Chapter 12 discusses families of isospectral continuous systems. Chapter
13 applies the Gel'fand-Levitan transformation to the inverse problem for the
continuous Euler-Bernoulli beam.

Chapter 14 is a short (too short) study of inverse nodal problems. While
it is difficult in practice to measure a vibration mode, it is comparatively easy
to locate the nodes of a particular mode. There is now a considerable body
of research, due primarily to McLaughlin and Hald, that focuses on what nodal
data is sufficient to identify, say, the mass distribution on a vibrating string,
rod, or membrane, and how one can construct such a vibrating system from a
knowledge of some nodes of some modes. Section 14.4 briefly reports on this
research.

The book concludes with another short chapter on damage identification.

The history of mathematics and the physical sciences leads to an important
far-reaching conclusion: the study of one topic can throw light on many other
topics, even on some which at first seem have no connection with the original
topic. The study of inverse problems in vibration provides a clear example of
this connectedness. On the one hand, there are topics in inverse problems that
are illumined by knowledge in other fields, notably linear algebra and opera-
tor theory; on the other hand the study of inverse vibration problems throws
light on the classical direct problems by highlighting the fundamental qualitative
properties of solutions.

A remark on the quotations from Pascal’s Pensées is in order. I used the
translation by W.F. Trotter that appeared in Everyman’s Library, published by
J.M. Dent & Sons in 1956. My copy is dated 26th April 1957 and contains an
8d (old pence) ticket for the London Transport bus No. 73 from Euston Road to
Stoke Newington, reminding me that the Pensées were my daily bus reading to
and from my ‘digs’ when I was Assistant Lecturer in Mathematics at University
College London. I chose the Pensées for the chapter captions because it is clear
from his writings that Pascal considered the search for God to be an inverse
problem. His comments on the place of reason, heart and will in seeking a
solution of the problem, though sometimes enigmatic, are as deep and relevant
in 2004 as they were in 1654. I hope that these excerpts from the Pensées will
whet readers’ appetites for Pascal’s writings.

The caption for Chapter 11 reminds me that many people have contributed
to this book. Some were acknowledged in the Preface to the first edition. This
new edition contains material taken from papers written with graduate students
Brad Willms, Mohamed Movahheddy, Hongmei Zhu and with colleagues Brian
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Davies, Josef Leydold, Peter Stadler and Antonino Morrassi. In addition to
these, I have freely taken from papers by numerous colleagues worldwide, as
referenced in the bibliography.

Parts of the book were read at the proof stage by Antonino Morrassi, Maeve
McCarthy, Oscar Rojo and Michele Dilena. I thank them for pointing out many
errors and shortcomings, some of which I have managed to correct.

The book was typed by Tracy Taves. Thank you for your stamina and your
attention to detail. Colin Campbell helped us out with his understanding of
the idiosyncracies of LaTeX.

Finally, T acknowledge the patience and understanding of my wife, Joyce,
who saw me immersed in books in my study for years on end.

George Carrier once remarked that the aim of mathematics is insight, not
numbers. It is the author’s wish that this book will provide insight into the
many interconnected topics in mathematics, physics and engineering that ap-
pear in the study of inverse problems in vibration.

G.M.L. Gladwell
Waterloo, Ontario
March, 2004



Chapter 1

Matrix Analysis

It is a bad sign when, on seeing a person, you remember his book. !
Pascal’s Pensées

1.1 Introduction

The book relies heavily on matrix analysis. In this Chapter we shall present
the basic definitions and properties of matrices, and provide proofs of some
important theorems that will be used later. Since matrix analysis now has an
established position in Engineering and Science, it will be assumed that the
reader has had some exposure to it; the presentation in the early stages will
therefore be brief. The reader may supplement the treatment here with standard
texts.

1.2 Basic definitions and notation

We use the word iff to mean ‘if and only if’. A matriz is a rectangular array
of real or complex numbers together with a set of rules that specify how the
numbers are to be manipulated.

A matrix A is said to have order m x n if it has m rows and n columns.
The set of all real matrices, i.e., matrices with real entries, of order m x n, is
sometimes denoted by R™ * ™. Following Horn and Johnson (1985) [183], we
use the simpler notation My, ,,, and say A € M,, . We write

! Blaise Pascal (1623-1662) lived among the French intelligentia, and in that context it was
a bad sign; one should be known for more than just a book one had written. When the first
edition of this book was being translated into Chinese, the translator objected, for in 20th
century China, it would be a good sign. If you met someone you knew who had written a
book, you would mention it immediately!
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a11 a12 T A1n

a9o1 a e a
A= 2 22 2n

m1l  Am2 e Qmn

The entry in row ¢ and column j is a;;, and A is often written simply as
A= (aij).

Two matrices A, B are said to be equal if they have the same order m X n,
and if
aij:bij, (2:1,2,,m,j:1,2,,n),

Then we write
A =B.

The transpose of the matrix A is the n x m matrix AT, whose rows are the
columns of A. We note that the transpose of AT is A; we say that A and AT
are transposes (of each other), and write this

(AT)T = A.

For example

are transposes.

If m = n then the m X n matrix A is said to be a square matrix of order n:
A € M, ,; we abbreviate M, ,, to M,; thus A € M,,. A square matrix that is
equal to its transpose is said to be symmetric; in this case

A=AT,
or alternatively
Qj5 = Qg (Z,] = 1,2,...,71).
The set of real symmetric matrices of order n is denoted by S,,. The matrix
1 29
A=|2 4 6
9 6 3

is symmetric. The square matrix A is said to be diagonal if it has non-zero
entries only on the principal diagonal running from top left to bottom right. We
write

ail 0 0 0
o 0 as2 0 0 o .
A= 0 0 as - 0 = diag(ai1,a22,...,0nn)-
0 0 0 - apn
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The unit matrix of order n is
I=1,= diag(1,1,...,1).

The elements of this matrix are denoted by the Kronecker delta

_J 1 i=y
0ij = { 0 itj (1.2.1)
The zero matrix of order m x n is the matrix with all its m x n entries zero.

A matrix with 1 column and n rows is called a column vector of order n, and
is written
z1
Z2
X = : ={x1,29,...,Tpn}.

Tn

The set of all such real vectors constitutes a linear vector space that we denote
by V,.
The transpose of a column vector is a row vector, written

xT = [x1,29,...,2,).

Two matrices A, B may be added or subtracted iff they have the same order
m X n. Their sum and difference are matrices C and D respectively of the same
order m X n, the elements of which are

Cij = aij +biy , dij = ai; — by

We write,
C=A+B, D=A-B.

The product of a matrix A by a number (or scalar) k is the matrix kA with
elements ka;;.
Two matrices A and B can be multiplied in the sense AB only if the number
of columns of A is equal to the number of rows of B. Thus if A has order m X n,
B has order n x p then
AB =C,

where C has order m x p. We write

A(m xn)x B(nxp)=C(mxp). (1.2.2)

The element in row ¢ and column j of C is ¢;;, and is equal to the sum of the
elements of row 7 of A multiplied by the corresponding elements of column j of
B. Thus

Cij = ai1b1j + ainQj + ...+ ambnj = Zaikbkj, (123)
k=1
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and for example

[231} éf_}g_[1711}
1 6 7 10 21 -6 8 9 7

The most important consequence of this definition is that matrix multiplication
is (in general) non-commutative, i.e.,

AB + BA.

Indeed, if A is (m xn) and B is (n x p) then BA cannot be formed at all unless
m = p. Even when m = p, the two matrices are not necessarily equal, as is
shown by the example

Ao ol e[t
0 L (1.2.4)
as-[0 omac] AT

In addition, this definition implies that there are divisors of zero; i.e., there can
be non-zero matrices A, B such that

AB =0.
An example is provided by
11 1 17 (00
2 2 -1 =1 |10 0]
The product of A(m x n) and a column vector x(n x 1) is a column vector
y(m x 1) with elements
Y; = A;171 + ajoxo + ...+ ainTy 5 (Z = 1, 2, ‘e ,m). (125)
This means that the set of m equations

1121 + a1222 + ... + A1 Ty = Y1,
2171 + Q22T2 + ... + 2Ty = Y2,

......................... (1.2.6)
Am1T1 + Q222 + ... + AynTn = Ym,
may be written as the single matrix equation
ai; a2 A1n x1 Y1
az1 a2 - a?n 96.2 _ y’2 7 (1.2.7)
aml  Am2 Amn Ty Ym

or
Ax=y. (1.2.8)



1. Matrix Analysis 5

The product of an (n x 1) column vector x and its transpose x7 (1 x n) is an
n X n symmetric matrix

2

7 T1X2 s T1Tp
2
xxT = | 727 ™2 S (1.2.9)
2
ITndi Tpky - Ty

On the other hand, the product of x7(1 x n) and x(n x 1) is a (1 x 1) matrix,
i.e., a scalar
xTx =a? + a2 +... +22. (1.2.10)

This quantity, which is positive iff the z; (assumed to be real) are not all zero,
is called the square of the Ly morm of x, i.e.,

|2 =x"x, [|x||= (2% +2%+...+22)3. (1.2.11)
The scalar (or dot) product of x and y is defined to be
x'y = y"x =1y +22y2 + .. + Tnyn. (1.2.12)
Two vectors are said to be orthogonal if
xTy =0. (1.2.13)

It has been noted that matrix multiplication is non-commutative. This holds
even if the matrices are square (see (1.2.4)) or symmetric, as illustrated by

EHIE R R R R R

This example, which shows that the product of two symmetric matrices is not
(necessarily) symmetric, hints also that there might be a relation between the
products AB and BA. This result is sufficiently important to be called:

Theorem 1.2.1

(AB)T =BT AT, (1.2.15)
so that when A, B, are symmetric, then
(AB)T = BA. (1.2.16)

Proof. Consider the element in row 4, column j on each side of (1.2.15).
Suppose A is (m x n), B is (n x p), then AB is m x p and (AB)? is p x m.
Then

(AB))ij = (AB)ji = > ajibri,
k=1
and
(BTAT);; = (rowiof BT) x ( column j of AT)
= ( column i of B) x (row j of A)
= 2ot brigjry W
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Exercises 1.2

1. If

find a square matrix B such that AB = 0. Show that if ag3 is changed
then the only possible matrix B would be the zero matrix.

2. Show that, whatever the matrix A, the two matrices AAT and ATA are
symmetric. Are these two matrices equal?

3. Show that if A, B are square and of order n, and A is symmetric, then
BAB? and BT AB are symmetric.

4. Show that if A, B, C can be multiplied in the order ABC, then (ABC)? =
CTBTAT.
5. If x is complex, then its Lo norm is defined by
[IxI1* = 1 ]? + 2] 4.+ [z
Show that
[Ix[]* = x"x

where x* = X7, the complex conjugate transpose of x.

1.3 Matrix inversion and determinants

In this section we shall be concerned almost exclusively with square matrices.
The determinant of a (square) matrix A, denoted by det(A) or |A|, is defined
to be

det(A) = |A] =D+ a1, a2, ni,, ; (1.3.1)

where the suffices i1,41,...,7, are a permutation of the numbers 1,2,3,...,n;
the sign is + if the permutation is even, and — if it is odd, and the summation is
carried out over all n! permutations of 1,2,3,...,n. We note that each product
in the sum contains just one element from each row and just one element from
each column of A. Thus for 2 x 2 and 3 x 3 matrices respectively

AL M2 g agy — arsan
a1 (22 ’
a a a (1.3.2)
11 012 a13
51 Gy (93 | = 11022033 + @12023G31 + (13021632
—Qa11G23032 — (12021033 — (13022031
a3z1 G32 as3
The permutation i1,1%2,...,%, is even or odd according to whether it may be

obtained from 1,2, ..., n by means of an even or an odd number of interchanges,
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respectively. Thus 1,3,2,4 and 2, 3, 1,4 are respectively odd and even permuta-
tions of 1,2, 3,4 because

(1,2,3,
(1,2,3

We now list some of the properties of determinants.

)

4) — (1,3,2,4),
4)

(2,1,3,4) — (2,3,1,4).

—
, —

Lemma 1.3.1 If two rows (or columns) of A are interchanged, the determinant
retains its numerical value, but changes sign.

If the new matrix is called B then
bi; =ag, byy=a1;, bji=aj , (j=3,4,...,n)

and
det(B) = Z + b1i1b2i2 b3i3 e bni”y
= D& a,01i,0345 - - Qi
= D F 15,02i, 0345 - Cpi,, -
But if 41,42, 3, ..., i, is even (odd) then ig, 41,3, ..., i, is odd (even), so that
each term in det(B) appears in det(A) (and vice versa) with the opposite sign,
so that det(B) = —det(A).

Lemma 1.3.2 If two rows (columns) of A are identical then det(A) = 0.

If the two rows (columns) are interchanged, then, on the one hand, det(A)
is unchanged, while on the other, Lemma 1.3.1, det(A) changes sign. Thus
det(A) = —det(A) and hence det(A) = 0.

Lemma 1.3.3 If one row (column) of A is multiplied by k then the determinant
s multiplied by k.

Each term in the expansion is multiplied by k.
Lemma 1.3.4 If two rows (columns) of A are proportional, then det(A) = 0.
This follows from Lemmas 1.3.1, 1.3.3.

Lemma 1.3.5 If one row (column) of A is added to another row (column) then
the determinant is unchanged.

If the matrix B is obtained, say, by adding row 2 to row 1 then
bi; = ay; +ag, bjy=a;, j=2,3,...,n.
Thus
det(B) = > = bii,b2iyb3ig - - bni,, =
= > % (a1i, + a2, )a2i,a3i, - - ni,,,
= >+ a14,02i,03i; - Gpi, £ 024, 02i,03i5 - Qni,,
and the first sum is det(A) while the second, having its first and second rows
equal is zero.
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Lemma 1.3.6 If a linear combination of rows (columns) of A is added to an-
other row (column) then the determinant is unchanged.

This follows directly from Lemma 1.3.5. We may now prove

Theorem 1.3.1 If the rows (columns) of A are linearly dependent then det(A) =
0.

Proof. Denote the rows by al’,al’ ... al. By hypotheses, there are scalars

1
€1,C,...,Cp not all zero, such that
T T T
cia; +cgay + -+ cya, =0.

There is a ¢; not zero; let it be ¢,,. Then

n

—ay, = ) (ci/em)al.

i=1

i#m
If the sum on the right is added to row m of A, the new matrix has a zero row,
so that its determinant, which by Lemma 1.3.6 is det(A), is zero m

Before proving the converse of this theorem, we need some more notation. A

minor of order p of a matrix A is the determinant of a (square) submatrix of A
formed by taking elements from p rows i1, 42, ...,%, and p columns ji, jo, . .., Jp.
We denote the minor by

A(ilviQa R 7ip; jlaj?a cee 7jp)

Thus if
2 1 3
A=| -1 2 4 (1.3.3)
1 0 7
then
2 1

A(1;1) =2, AQZLm:’ ‘:a A(1,2;2,3) = —2.

-1 2

There is an important special case. The minor of order n—1 obtained by deleting
the ith row and jth column of A is denoted by d;;. Thus for the A in (1.3.3),

N 2 4 . -1 4
a11='0 7‘214, auz‘ 1 7‘

- 1L s = ‘ ‘ —

The minors a;; occur in the expansion of a determinant: for the determinant in
(1.3.2) we may write

det(A) = 6111(@22@33 - a23a32) - @12(021033 - C123@31) + 013(6121&32 - a22a31)
(1.3.4)
= a11G11 — 12812 + a13013
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This is called the expansion of det(A) along the first row. Thus for A in (1.3.3)
we have
33=2x14—1x (—11) +3 x (—2).

The coefficients G117, —d12,a13 in (1.3.4) are called the cofactors of ai1,a12,a13
respectively, and are denoted by A11, A12, A13 respectively. Thus we write (1.3.4)
as
det(A) = ai1An +apdie +a134s3
ailr a2 a3 (1.3.5)
= | a21 a2 a3
asz1 G32 as3

If we take the cofactors of the first row and multiply them by the elements of
another row, say the second row, then we get zero:

a1 Az G23
a1 G2 Q3 | = a1 Ai1 + axAiz + azzAiz3 =0 (1.3.6)
as1 G32 033

The determinant on the left is zero because it has two rows equal. These two
results, (1.3.5) and (1.3.6), are special cases of

Theorem 1.3.2

S andje = det(A)d; (1.3.7)
k=1
Z Ak,-akj = det(A)c;ij (138)
k=1

where 6,5 is defined in (1.2.1).

Proof. When ¢ = j, so that d;; = 1, these equations merely state the
definition of a cofactor. When i # j they state that the determinant of a matrix
with two rows (or columns) equal, is zero m

Now compare equation (1.3.7) with (1.2.3). If we define a matrix B such
that

bej = Aji (1.3.9)

then we can write (1.3.7) as
Z aikbkj = det(A)éij (1.3.10)
k=1

which, in matrix terms, states that

AB = det(A)I (1.3.11)
Likewise, (1.3.8) may be written

BA = det(A)L (1.3.12)
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The matrix B is called the adjoint (or adjugate) of A and is denoted by adj(A).
Thus equation (1.3.11), (1.3.12) state that

A adj(A) = adj(A)A = det(A)L (1.3.13)
We are now in a position to prove the converse of Theorem 1.3.1, namely

Theorem 1.3.3 If det(A) = 0, then the rows (columns) of A are linearly de-
pendent.

Proof. We prove the result for the columns. That for the rows may be
proved likewise. We will prove it by induction on n. It certainly holds, trivially,
when n = 1, for then det(A) = a11. Let a;, as,...,a, be the columns of A, and
suppose det(A) = 0. Fither each set of n — 1 vectors selected from ay, as, ... a,
is a linearly dependent set, in which case the complete set is linearly dependent
as required, or there is a set of n — 1 vectors, which without loss of generality
we may take to be aj,as,...a,_1, which is linearly independent. Now imagine
creating a set of vectors by, bs, ..., b,_1 by deleting the ith row of each of the
vectors aj,as,...,a,_1. For at least one value of ¢ the set by,bs,...,b,_1
must be linearly independent. By the inductive hypothesis, the (n—1) x (n—1)
determinant formed from these vectors must be non-zero; at least one of the
terms by, in equation (1.3.10) is non-zero. If det(A) = 0, equation (1.3.10)
states that

n
Z aib; =0 i,7=1,2,....n (1.3.14)
k=1

Since ax = {a1k, ask, - - -, ank }, we may write the n equations (1.3.14) obtained

by taking j =1,2,...,n, as

n
Z brjar =0 j=1,2,...,n. (1.3.15)
k=1

For at least one value of j, not all the by; are zero; the columns a;,as,...,a,

are linearly dependent m
Theorem 1.3.4 The matrix equations
Ax=0, yT'A=0
have non-trivial solutions x and y respectively iff det(A) = 0.

Proof. The theorem is a corollary of Theorem 1.3.3. If a3, as,...,a, are
the columns of A, then

Ax = J[aj,ag,...,a,{x1,22,...,Tpn}
= x1a1 +2x2a9 + -+ xpay.
We can find z1,...,z,, not all zero, such that

xria; +reas + - +ana, =0
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iff a;,as,...,a, are linearly dependent. By Theorem 1.3.3 this happens iff
det(A) = 0. This happens in turn iff the rows of A are linearly dependent, i.e.,
yTA = 0 has a non-trivial solution m

Theorem 1.3.5 If A, B are square matrices of order n then
det(AB) = det(A).det(B)

The proof of this result is left to Ex. 1.3.3.

The square matrix A is said to be singular if det(A) = 0, non-singular or
invertible if det(A) # 0. Theorem 1.3.4 shows that if A is non-singular, then
the equation Ax = 0 has only the trivial solution x = 0. Ex. 1.3.5 extends this
result: if A is non-singular, then the matrix equations AS = 0, TA = 0 have
only the trivial solutions S = 0, T = 0; when A is non-singular there are no
divisors of zero.

The matrix R is said to be an inverse of A if AR =1

Theorem 1.3.6 If A has an inverse, it is unique, and RA =1.
Proof. Suppose AR = 1. Theorem 1.3.5 shows that
det(A).det(R) = det(I) =1 (1.3.16)

so that det(A) # 0: A is non-singular. If R;, Ry were two inverses, then
AR; =1 = AR,, so that A(R; — R2) = 0. But A is non-singular, so that
R; — Ry, =0: Ry =R;. Now if AR =1 then ARA = A ie, A(RA-I)=0.
But A is non-singular, so that RA —I1=0,ie., RA=1 m

Theorem 1.3.6 shows that if A has an inverse, then A is non-singular. The
logical negative of this statement is that if A is singular it does not have an
inverse. We now prove the converse.

Theorem 1.3.7 If A is non-singular, then it has an inverse.

Proof. If A is non-singular, then det(A) # 0, and equation (1.3.13) may be
written
AR=RA =1, (1.3.17)

where R = adj(A)/det(A) m
If A is non-singular, its unique inverse is denoted by A~!. We have

AATT=ATTA=1 (1.3.18)

Theorem 1.3.8 The equation
Ax=Db (1.3.19)

either has a unique solution, if A is non-singular; or if A is singular, it has a
solution only for certain b.
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Proof. If A is non-singular then
x=A"1(Ax)=A"'b
is the unique solution. If A is singular, then there is one (or more) y such that
yTA =o0.

Then
y'(Ax) =y"b =0

so that (1.3.19) has a solution only if b is orthogonal to any y which satisfies
yTA = 0. If A is singular then Ax = 0 has one or more solutions x1,Xa, . . ., X,
so that if x( is one solution satisfying Axg = b, then

m
X =Xg + Z CiX; (1.3.20)
i=1
is also a solution for arbitrary ci,co,...,cn, B

Note that trying to solve Ax = b by actually finding the inverse of A,
is an extremely wasteful and clumsy procedure. Finding A~! is equivalent to
solving Ax = b for all possible b, not just for the given b. Techniques for
solving Ax = b form the subject matter of numerical linear algebra, for which
see Bishop, Gladwell and Michaelson (1965) [33] or Golub and Van Loan (1983)
[135]. Note also that we have not in fact shown how to find one solution x if B
is in fact orthogonal to all solutions of y7 A = 0; this too is covered in numerical
linear algebra.

In numerical linear algebra the starting point of almost all the procedures
for solving linear equations such as (1.3.19), whether A is square or not, or of
finding determinants, is Gaussian elimination. This is a systematic reduction of
an array (a;;) to (usually) upper triangular form by subtracting multiples of one
equation from another. Lemma 1.3.6 shows that the determinant of coefficients
is unchanged under such an operation.

The application of Gaussian elimination to the equations

T, + 3Ty + 223 = 6
2:E1 + 51‘2 + 6$3 = 13
3x1+4xo+Txs = 14

would proceed as follows; only the coefficients need be retained:

1 3 2 : 6 — 1 3 2 : 6 — 1 3 2 6
2 5 6 : 13 0 -1 2 : 1 0 -1 2 1
3 47 14 0 -5 1 : -4 0 0 -9 : =9

The determinant of A is 1 x (—=1) x (=9) = 9. The last of the new equations
gives —9x3 = —9, x3 = 1; when substituted in the new second equation this
gives —xo =1 —2x3 = —1, o = 1; then ©; + 3+ 2 = 6 gives x; = 1.
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Exercises 1.3

1. Show that if A is upper (lower) triangular, i.e., a;; = 0 if j > i(j < 1),
then
det(A) = 011022 ...0nnp-

2. If
1 3 2
A=1|2 5 6
3 47
find A~!. Verify that AA™' = A~TA =1.
3. Prove that if A, B are square matrices of order n, then
det(AB) = det(A).det(B).

Hint: consider the 2n x 2n matrix

o-[4 2]

Show that det(C) = det(A). det(B). Now subtract multiples of rows (n+1)
to 2n from rows 1 to n to delete all elements in the top left quarter of C.
The elements in the top right quarter will be those of —AB.

4. Use Gaussian elimination to solve the equations

T, 4+ 229 +4x3+8x4 = -9
To 4+ 3x3+2x4 = 1

T, 4 2x9 + dx3 + 624 = -3
-1+ 3z +4x3+ T2y = —10

5. Show that if A is non-singular, then the matrix equations AS = 0 and
TA = 0 have only the trivial solution S = 0, T = 0, respectively.

1.4 Eigenvalues and eigenvectors

If A and C are square matrices of order n then the equation
Cx = MAx (1.4.1)

will have a non-trivial solution x (i.e., one for which ||x|| # 0) iff the matrix
C — )\A is singular, i.e., the scalar \ satisfies the determinantal or characteristic
equation

det(C — MA) = 0. (1.4.2)

The roots of this equation are called the eigenvalues of the matrix pair (C, A);
they may be real or complex. If \ is an eigenvalue, a vector x satisfying (1.4.1)
is called an eigenvector corresponding to A.
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In many mathematical texts, attention is focused almost exclusively on the
case when A = I. In this case ) is said to be an eigenvalue of C. The problem
(1.4.1) is called the generalised eigenvalue problem. In Mechanics there are
many problems in which two matrices, C, A appear, and it will be convenient
to develop the theory for this case.

The eigenvalue theory for general, i.e., not necessarily symmetric matrices
C, A, is extremely complicated. (See Ex. 1.4.8). However, for all, or almost all,
the problems encountered in this book, the matrices C, A have special properties:
they are real and symmetric, and one at least is positive definite, defined as
follows.

Suppose A is real and symmetric, and x is a real n X 1 column vector. The
quantity x” Ax is a scalar. Written in full it is

xT'Ax = allx%+2a12m1x2—|—~ . ~+2a1n$1xn+aggx%+- 4209, ToTy+ -—I—annxi.

(1.4.3)
This is called a quadratic form. In many physical applications the kinetic energy
and the potential energy of a mechanical system may be expressed as quadratic
forms in the generalised velocities or displacements, respectively. The kinetic
energy of a system is always positive, unless all the generalised velocities are
zero. This leads us to a definition. The matrix A is said to be positive definite if
||x|| # 0 implies xT Ax > 0. (Clearly, if ||x|| =0, so that z; =0 =23 = ... 2,
then xTAx = 0.) If A satisfies the weaker condition, that ||x|| # 0 implies
xTAx > 0, i.e., there is a vector x such that ||x|| # 0 and xT Ax = 0, then A is
said to be positive semi-definite. We will find later that the matrix associated
with the potential energy of an unanchored system is positive semi-definite; there
is a vector x corresponding to a rigid body displacement of the system, for which
the potential (or strain) energy is zero.

Theorem 1.4.1 If C, A are real and symmetric, and A is positive definite, then
the eigenvalues and eigenvectors of (1.4.1) are real.

Proof. Suppose A, x possibly complex, and with ||x|| # 0, are an eigenpair
of (1.4.1), multiply both sides by x* = %7 to obtain

x*Cx = \x*Ax (1.4.4)

The quantities x*Ax and x*Cx are both real. This is so because x*Ax, for
instance, is a scalar, and therefore equal to its own transpose. Thus

a=x"Ax = (x*Ax)T =xTATx = xTAx = (x*Ax) =a

but if @ = a, then a is real. Similarly, x*Cx is real. Moreover, if ||x|| # 0, i.e.,
at least one element in x is not zero, then a is strictly positive, i.e., a > 0. For
let x = u + iv where u, v are real, then

x*Ax = (uT —ivh)A(u+iv) =uTAu+i{fu” Av — v Au} + v Av.
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But since x*Ax is real, the imaginary term is zero, and thus
x*Ax =ul’Au+ v Av > 0.

The inequality is strict because either at least one element of u is non-zero, in
which case uTAu > 0; or if u = 0, at least one element of v is non-zero, in
which case v’ Av > 0.
Now return to equation (1.4.4); x*Cx and x*Ax are both real and x*Ax is
positive. Hence
A =x"Cx/x"Ax

is real. Since A is real, the vector x, obtained by solving a set of simultaneous
linear equations with real coefficients, is real. Therefore, x* = x7, and we can
write
A=xTCx/xTAx. =

This ratio is often called, and we will call it, the Rayleigh Quotient corre-
sponding to equation (1.4.1). (It was Lord Rayleigh (Rayleigh (1894) [290])
who, in his classical treatise Theory of Sound used this quotient to take the first
steps towards the variational treatment of eigenvalues. We discuss this further
in Chapter 2.) We write

Ar = R(x) = xTCx/x" Ax (1.4.5)

Ex. 1.4.7 shows the necessity of having one of the matrices A, C, positive
definite.

The conditions which must be satisfied if a (symmetric) matrix A is to be
positive definite or positive semi-definite may be expressed in terms of the prin-
cipal minors of A. A principal minor of order p of a matrix A (symmetric or

not) is a determinant of a submatrix formed from p rows i1,49,...,4, and the
same p columns 41,19, ...,4,. Thus for A in (1.3.3),
’ 2 1|2 3|2 4 _f é Z
-1 2 17 0o 7 10 7

are all principal minors. In the notation of Section 1.3, a principal minor is
A(il,ig, ce ,ip; il, 7:2, ey Zp)

There is a special notation for the leading principal minors of A, these are
as follows:

a1l a2

Dy =ai1, Dy =
21  QA22

... Dy=|A| = det(A). (1.4.6)

Now we may state

Theorem 1.4.2 The symmetric matricx A is positive definite iff the leading
principal minors (D;)} are all positive. A will be positive semi-definite iff
(D)}t >0, D, =0.
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This will not be proved until Chapter 5. Note that since D,, = det(A), this
states that a positive-definite matrix is non-singular, and a positive semi-definite
matrix is singular.

We may now refine Theorem 1.4.1 to give

Theorem 1.4.3 If C, A are real and symmetric and A is positive definite then
equation (1.4.1) will have n real eigenvalues, although they need not be distinct.
If C is positive definite they will be positive, if C is positive semi-definite they
will be non-negative.

Proof. Equation (1.4.2) may be expanded in terms of the coefficients ¢;; —
Aa;j; the result is an nth degree polynomial equation for A, namely

A) = det(C—AA) = Ao+ AA+ LN+ + AN =0, (1.4.7)

Most of the coefficients AA; are complicated functions of a;; and c¢;;, but the first
and last may be easily identified, namely

Do = det(C), A, =(-1)" det(A). (1.4.8)

Since A is positive-definite, det(A) > 0 so that A, # 0. This means that
equation (1.4.7) is a proper equation of degree n with n roots (\;)7. This proves
the first part of the Theorem. If C is positive-definite, then both numerator and
denominator of the Rayleigh Quotient (1.4.5) will be positive, so that (\;)7 > 0.
If C is only positive semi-definite, then the numerator of the Rayleigh Quotient
is only positive or zero (i.e., non-negative), so that the \; are non-negative.
Moreover, since AjAz... A, = (—)"LDo/AD, = det(C)/ det(A) equation (1.4.7)
will have at least one zero root when det(C) =0 m

Under the conditions of Theorem 1.4.3 the eigenvalues (\;)} may be labelled
in increasing order:

0< A <A< ... .< A, (1.4.9)

Theorem 1.4.4 Eigenvectors u;, u; corresponding to two different eigenvalues
Xis Nj(Ai # X)) of the symmetric matriz pair (C, A) are orthogonal w.r.t. both
A and to C, i.e.,

u} Au; = 0 = u! Cu;. (1.4.10)
Proof. By definition

Cu; = \iAu;, Cu; = \jAu;. (1.4.11)

T.

Transpose the first equation and multiply it on the right by uj;

multiply the

second equation on the left by ul, to obtain
(ufClu; = Xi(uf Ay,

u/ (Cuj) = Ajuf(Auy)



1. Matrix Analysis 17

Subtract these two equations to yield
(>\i — Aj)uiTAuj =0.

But A; — \; # 0, so that ul Au; = 0, and hence u Cu; =0. =
Premultiplying equation (1.4.11) by ul" we find

C; = uiTCui = /\lulTAul = )\iai (1412)

Sometimes, we will normalise an eigenvector u; w.r.t. A; then a; = 1,¢; = A;.
An important corollary of this result is

Theorem 1.4.5 If the symmetric matriz pair (C,A) has distinct eigenvalues
(N)T, and A is positive-definite, then the eigenvectors u; are linearly indepen-
dent, and therefore span V,,, the space of n-vectors.

Proof. The eigenvectors u; are linearly independent; for suppose
ajug + agus + -+ - + au, = 0;
multiplying by ul’ A we have
ar(uf Auy) + ap(ul Auy) + -+ + o, (uf Au,) = 0.

But ul’Au; = 0 if i # j, so that only the ith term in this equation is non-zero,
and hence
a;i(ul Au;) = 0.

Since A is positive definite, u’ Au; > 0 and «; = 0; all the (a;)} are zero; the
u; are linearly independent. Any vector ueV,, may be written uniquely as

n
u=> oju (1.4.13)
j=1
where
a; = u;-FAu/u;‘-FAuj. [ | (1.4.14)

In this book we are not concerned with methods for computing eigenvalues
and eigenvectors. A simple treatment of the classical techniques may be found
in Bishop, Gladwell and Michaelson (1965) [33]. A comprehensive account of
modern techniques is given by Golub and Van Loan (1983) [135]. The classical
treatise on the symmetric eigenvalue problem is Parlett (1980) [264]. We are
concerned only with the qualitative properties of eigenvalues.

Exercises 1.4

1. If
1 -1
-1 2 -1
A= -1 2 -1

-1 1

show that A is positive semi-definite. For what x is Ax = 07
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. Show that A~! is positive definite iff A is positive definite.

. Verify the conditions given in Theorem 1.4.2 for A to be positive definite,

when n = 2, by writing

xTAx = allx% + 2a122129 + a22x§
2 2
aiiazz—a 2
all{(ﬂ"‘iﬁ) + ( a2 12)%}-

Extend the analysis to n = 3.

. Find the eigenvalues and eigenvectors of the pair

2 -1 0 1
c=|-1 2 -1|, A= 1
0 -1 2 1

Hint: replace the eigen-equation by the equivalent recurrence relation
—Zp_1+(2—A)z,—x,41 = 0 with appropriate end conditions for r = 1,7 =
3, and seek a solution of the form z,, = Acosrf + Bsinrf. Generalise this
result.

. Show that if n = 3, A is symmetric, and Dy, Ds, D3 of equation (1.4.6) are

all positive, then all the principal minors of A are positive. Hint: write
a1 det(A) as a 2 X 2 determinant with elements which are minors of A of

order 2. This is a particular case of a general result, see e.g., Gantmacher
(1959) [97].

. Show that the real symmetric matrix A has positive eigenvalues iff it is

positive-definite.

. Take

1 -1 -1 -1
=L ol a-[a ]
The eigenvalues are not real. Where does the argument used in the proof
of Theorem 1.4.1 break down?

0 1 1 0
o-[43] =[5 ]
Show that equation (1.4.1) has only one eigenvalue and one eigenvector,

so that the eigenvectors do not span the space V5. This is the kind of
difficulty attending the non-symmetric eigenvalue problem.

. Take



Chapter 2

Vibrations of Discrete
Systems

Our nature consists in motion; complete rest is death.
Pascal’s Pensées, 129

2.1 Introduction

The formulation and solution of the equations governing the motion of a discrete
vibrating system, i.e., one which has a finite number of degrees of freedom, have
been fully considered elsewhere. See for example, Bishop and Johnson (1960)
[34], Bishop, Gladwell and Michaelson (1965) [33], Meirovich (1975) [234]. In
this chapter we shall give a brief account of those parts of the theory that will
be needed for the solution of inverse problems.

Throughout this book we shall be concerned with the infinitesimal vibration
of a conservative system about some datum configuration, which will usually be
an equilibrium position.

Before embarking on a general discussion we shall first formulate the equa-
tions of motion for some simple vibrating systems.

2.2 Vibration of some simple systems
Figure 2.2.1 shows a vibrating system consisting of n masses connected by lin-
ear springs of stiffnesses (k,)7. The whole lies in a straight line on a smooth

horizontal table and is excited by forces (F.(¢))}.
Newton’s equations of motion for the system are

Myt = Fr 4+ 0,01 —0,., 7=1,2,....n—1, (2.2.1)

My = Fy — Oy, (2.2.2)

19
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where - denotes differentiation with respect to time. Hooke’s law states that the
spring forces are given by

O =kp(up —up—q), "=1,2,...,n. (2.2.3)

If the left hand end is pinned then
ug = 0. (2.2.4)
Forced vibration analysis concerns the solution of these equations for given
forcing functions F.(t). Free vibration analysis consists in finding solutions to the

equations which require no external excitation, i.e., F.(t) =0, r = 1,2,...,n,
and which satisfy the stated end conditions.

k2 kn

_/\/\/__/ __________ o

m m m
1 2 n

Figure 2.2.1 - n masses connected by springs

The system shown in Figure 2.2.1 has considerable engineering importance.
It is the simplest possible discrete model for a rod vibrating in longitudinal mo-
tion. Here the masses and stiffnesses are obtained by lumping the continuously
distributed mass and stiffness of the rod. Equations (2.2.1) - (2.2.4) also describe
the torsional vibrations of the system shown in Figure 2.2.2., provided that the
Uy, k., m, are interpreted as torsional rotations, torsional stiffnesses and mo-
ments of inertia respectively. Such a discrete system provides a simple model
for the torsional vibrations of a rod with a continuous distribution of inertia and
stiffness.

There is a third system which is mathematically equivalent to equations
(2.2.1) - (2.2.4). This is the transverse motion of the string shown in Figure
2.2.3 which is pulled taut by a tension T and which is loaded by masses (m,)}.
(But note that the string shown in Figure 2.2.3 has its right hand end fized,
rather than free, as in Figures 2.2.1 and 2.2.2. In order to simulate a string
with a free end, the last segment of the string must be attached to a massless
ring that slides on a smooth vertical rod.) If in accordance with the assumption
of infinitesimal vibration, the string departs very little from the straight line
equilibrium position, then the equation governing the motion of mass m, may
be derived by considering Figure 2.2.4.
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Figure 2.2.2 - A torsionally vibrating system

Figure 2.2.3 - n masses on a taut string

Figure 2.2.4 - The forces acting on the mass m,.
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Newton’s equation of motion yields

mptl, = F.+Tsino.41—Tsina, , (2.2.5)
= F+ 07‘+1 =0, ’

where, for small deflections, we may take sin v, = a.,
0, =Ta, =kp(ur —up_1), kr=T/L,..

In order to express equations (2.2.1) - (2.2.3) in matrix form we use (2.2.3)
to obtain

myi, = F, + kr+1ur+1 - (kr+1 + kr)ur +krup_q s My Uy, = F, —kpu, +kpun_1 5

which yields

mo iy k1 + ko —ko 0 0 0 uy
iy |y —ko ko +ky —kz - 0 0 up
= iim 0 0 0 cee —kn  kn un

This equation may be written
Mi+Ku=F (2.2.8)

where the matrices M, K are called respectively the inertia (or mass) and the
stiffness matrices of the system. Note that both M and K are symmetric; this
is a property shared by the matrices corresponding to any conservative system.
We note also that both M, K are positive-definite. In this particular example
the matrix M is diagonal while K is tridiagonal, i.e., its only non-zero elements
are on the principal diagonal, and the two neighbouring diagonals, called the
codiagonals.

Equation (2.2.3) can also be constructed by introducing 8 = {61,0s,...,0,}
and noting that

0, ) 1 0 0 uy
0 ! -1 1 0
'2 = k2 e UI2
. 0 - ... 0
0., kn 0 1 Up,

which will be written
6 =KE"u , (2.2.9)
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where
1 -1 0 0 111 1
0 1 -1 0 01 1 --- 1
E= E = (2.2.10)
0 1 -1 000 -+ 1
0 0 1 000 1

and K = diag(ki, ko, ..., ky).
Using the matrix E, we may write equation (2.2.1) - (2.2.2) in the form

Mii— —-E6+F |
so that on using (2.2.9) we find

Mii + EKE u=F, (2.2.11)

and 7
K =EKE . (2.2.12)
For free vibration analysis there are two important end conditions. The right
hand end may be free, in which case there is no restriction on the (u;)?, or it
may be fized, in which case u,, = 0.

Exercises 2.2

1. Verify that the stiffness matrix in equation (2.2.7) satisfies the conditions
of Theorem 1.4.2. Obtain a proof that applies to principal minors of any
order 7, such that 1 <17 <n.

2. Consider the multiple pendulum of Figure 2.2.5.

m

n

Figure 2.2.5 - A compound pendulum made up of n inextensible strings
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Show that the kinetic and potential energies of the system for small oscilla-
tions are given by

2T = miy3 +mal3 + ... +muy2,
2 2 2
2V = 01 zi +O'2 (92;291) ++0n (yn*g’n—l)

)

where o, =g > _ ms.

2.3 Transverse vibration of a beam

Figure 2.3.1 shows a simple discrete model for the transverse vibration of a beam;
it consists of n 4 2 masses (m,)™; linked by massless rigid rods of lengths (¢, )
which are themselves connected by n rotational springs of stiffnesses (k,)7. The
mass and stiffness of the beam, which are actually distributed along the length,
have been lumped at n + 2 points.

The discrete system is governed by a set of four first-order difference equa-
tions, which may be deduced from Figure 2.3.2.

Figure 2.3.1 - A discrete model of a vibrating beam
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Figure 2.3.2 - The configuration around m,

For small displacements, the rotations are
0r = (Ur —ur—1)/lr, 7=0,1,...,n.

If the rth spring has rotational stiffness k,, then the moment 7, needed to
produce a relative rotation 6,1 — 6, of the two rigid rods on either side of m,
is

Tr = kr+1(9r+1 *91”) , r=0,1,...,n—1

Equilibrium of the rod linking m,. and m,.;1 yields the shearing forces
¢, = (Tr —7Tp31)/lry1, T=-1,0,...,n—1,
while Newton’s equation of motion for mass m,. is
Myl = ¢, — oy, 7=-10,...,n.

Here ¢_,, ¢, and 7_;, 7, denote external shearing forces and bending moments,
respectively, applied to the ends.
Suppose that the left hand end is clamped so that

U—1 = 0= Ug,
then only the masses (m,)} move, and the governing equations may be written

6 =L 'ETq, (2.3.2)

r=KE 0, (2.3.3)
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¢=L"'Er—/('Te,, (2.3.4)
Mii = —E¢ + ¢, e,, (2.3.5)
where u = {uy,uz,...,un}, 0={01,02,...,0,}, T={70,7T1,.,Tn-1},

¢ =A{bg, P15, bp_1}, K=diag(k,), L = diag(¢,), M = diag(m,),
e, ={0,0,...,0,1} and E is given in equation (2.2.10).
Equations (2.3.2) - (2.3.5) may be combined to give

Mii + Ku = ¢,e, + £, '7,Ee,, (2.3.6)

where
K = EL'ERE’ L ET. (2.3.7)

This equation has the same general form as equation (2.2.8). We note that
M and K are again symmetric and positive-definite, M being diagonal, and K
being pentadiagonal.

2.4 Generalised coordinates and Lagrange’s equa-
tions: the rod

The idea that a discrete system is one composed of a finite number of masses
connected by springs is unnecessarily restrictive. The general concept is that
of a system whose motion is specified by n generalised coordinates (g.)} that
are functions of time ¢ alone. The systems considered in Sections 2.2, 2.3 are
indeed discrete in this sense and the generalised coordinates corresponding to
the system in Figure 2.2.1 are (u,)}. However, the more general concept would
also cover, for instance, a model of a non-uniform longitudinally vibrating rod
constructed by using the finite element method (see for example, Zienkiewicz
(1971) [343]), Strang and Fix (1973) [311].

In such a model, shown in Figure 2.4.1, the rod is first divided into n+1 ele-
ments. In the rth element, shown in Figure 2.4.2., the longitudinal displacement
y(x,t) is taken to have a simple linear form.

y(xvt) = yr(t)(l - 5) + y7"+1(t)§ , T Sx < Tr+1, (241)

where
§=(z—=)/tr,

runs from 0 at the left hand end of the element to 1 at the right. Equations
(2.4.1) with » = 0,1,...,n express the displacement at every point of the rod
in terms of the n + 2 generalised coordinates (y,.)5 ™. When the end conditions
are imposed there will be, as before, only n coordinates (y, ).



2. Vibrations of Discrete Systems 27

Figure 2.4.1 - A rod divided into elements

X

,
r+1

Figure 2.4.2 - One element of the rod

When the finite element method is used, it is not possible to set up the
equations of motion by using Newton’s equations of motion, for there is no actual
‘mass’ to which forces are applied. Instead we may use Lagrange’s equations.
For a conservative system with kinetic energy T and potential or strain energy
V', which are functions of n coordinates (¢, )7, Lagrange’s equations state that

4T or v
dt " 9q; g 0q,

=Qr, (r=12,...,n). (2.4.2)

Here @, is the generalised force corresponding to ¢, in the sense that the work
done by external forces acting on the system when the system is displaced from
a configuration specified by (g,)} to one specified by (g, + d¢,)7, is

oW, = Xn: Qréqr-
r=1
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For the system shown in Figure 2.2.1 the kinetic and potential energies are
T IS mit . V=LY kg - (243)
27,:1 rdr 2r:1rr+ r) <
and @, = F,.(t). Thus

oT . ov
S5 = el o = (U = o) + sy — ),

and equation (2.4.3) yields (2.2.1).
For the finite element model of Figure 2.4.1, the kinetic and potential energies
of the system will be
1

¥/
T=: / Spli(a, H)2dz,

1/ dy 2
V=g /0 SIS (a, 1),

where S(x), p(z), E(x) are the (possibly variable) cross-sectional area, density
and Young’s modulus of the rod. On inserting the assumed form of y(z,t) given
in (2.4.1) we find

n 1
T= % ZO /0 S(xr + L) p(r + &) [9r (1 = €) + Grr1€]2CrdE, (2.4.4)

n 1
V= %Z /0 S(@r + L&) E(wr + £:E)[yr1 — yr]26 1 dE. (2.4.5)
r=1

On carrying out the integrations, perhaps numerically if S(x), p(x), E(x) are
variable, we may write

1 n+1 n+1
T = 3 Z Z Moy sYrYs, (2.4.6)

r=0 s=0

1 n+1 n+1
V= ) Z Z Krsyrys. (2.4.7)

r=0 s=0

If the rod is fixed at both ends, then

Yo = 0= Yn+1, (248)

so that all the sums in (2.4.6), (2.4.7) run from 1 to n. In this case

FoJ A ) oV
ayr = meys, 8_% = Z_; krsts;

s=1
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and equation (2.4.2) yields the following equation for free vibration:

n n
D mesfis + Y krsys =0, (r=1,2,...,n).
s=1 s=1

This equation may, as before, be condensed into the matrix equation
My+Ky=0 (2.4.9)

We note that, for the rod with the kinetic and potential energies given by
(2.4.6), (2.4.7), the matrices M, K are symmetric, tridiagonal matrices with
sign properties. They are tridiagonal because m,.s, ks are zero unless r = s
or r = s £ 1. The sign properties may be deduced from (2.4.4), (2.4.5): the
codiagonal elements m; .41, m,,—1 of M are positive, while k, 1,k ,—1 are
negative. Thus

a1 b C1 —dy
—di ¢

bnfl _dnfl
bnfl Gp _dnfl Cn

(2.4.10)

These sign properties of M, K will later be shown to have important implications
for the qualitative properties of a vibrating rod.

On the basis of these examples we now pass to the general case. For a con-

servative system with generalised coordinates (g,-)} which specify small displace-

ments from a position of stable equilibrium, the kinetic and potential energies

will have the form ,
1 n n ) )
T = 5; Sz::lmrsqrqs, (2.4.11)

V= % S0 krstrgs, (2.4.12)
r=1 s=1

where the matrices M = (m,s) and K = (k;.s) are symmetric, in that
My = Mys, Ksr = Kps.
The equations governing free vibration may be written
Mg + Kq = 0. (2.4.13)
We note that equations (2.4.11), (2.4.12) may be written

1 1
T= §qTMq, V= 5qTKq. (2.4.14)
It is not possible for any arbitrarily chosen symmetric matrix M to be an

inertia matrix, because the kinetic energy T is an essentially positive quantity,
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i.e., it is always positive except when each of the ¢, is zero, in which case it is
zero. Thus M must be positive definite (see Section 1.4).

The restrictions on the matrix K are slightly less severe since, although the
strain energy will always be positive or zero, it will actually be zero if the system
has a rigid-body displacement. Notice, for example, that the V' of (2.4.5) will
be zero if y is the rigid body displacement

Yo=Y1 =" =Yn = Ynt1-

This will be a possible displacement of the system in Figure 2.2.1 only if both
ends are free. We conclude that if the system is not constrained so that one
point is fixed, then K is positive semi-definite.

Exercises 2.4

1. Use equations (2.4.4), (2.4.5) to evaluate the mass and stiffness matrices
for a uniform rod in longitudinal vibration subject to the end conditions
(2.4.8).

2. Use the form (2.4.5) of the strain energy of the rod to show that the stiffness
matrix K for a rod fixed at the left and free at the right has the form

[ k1 + ko —ko
—ko kot ks —ks

T _knfl
_kn—l kn

2.5 Vibration of a membrane and an acoustic
cavity

Over the last three or four decades, computational vibration analysis has de-
veloped to such an extent that it can analyse the vibration of almost anything:
rods, beams, plates, trusses, steel and concrete buildings, bridges, aircraft, and
so on. Inverse vibration analysis in the strict form we consider in this book can
hope to encompass only comparatively simple structures: strings, rods, beams,
membranes and acoustic cavities and, even now, inverse problems for membranes
and cavities are still open; all we can do is find some qualitative properties of
the vibration. The vibrations of a membrane and of an acoustic cavity are
mathematically similar: both involve just one scalar quantity, the transverse
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displacement u(x,y), for the membrane under unit tension; the excess pressure
p(z,y, z), for the acoustic cavity. Both are governed by a wave equation
0u 0? 0?

+ = (2.5.1)

pu=pga BT gat e

for a membrane with mass density p(z,y), and

9%p 0? 02 0?

A — 1L A:_ RN e 2.5.2
P=Pae 522 "o T o (2:52)

for the acoustic cavity.
To set up the finite element model FEM of a membrane we consider the

energies
1
T:—// puldxdy, (2.5.3)
2 D

V:%//D(Vu)2dxdy. (2.5.4)

The simplest FEM is based on triangulation. For an arbitrary triangular element
Py, P>, P; as shown in Figure 2.5.1, we take

u(z,y) =a+bx+cy (2.5.5)

P
N\ u
2

1 3
L J u u \J
1 3

Figure 2.5.1 - A triangular finite element
If u takes the values ui,us,us at the vertices Py, Py, P3 respectively, then
u; = a+bx; +cy;, i=1,2,3. (2.5.6)

We can solve these equations for a, b, c and hence express T, V for one element,
ie., T, V., as quadratic forms

T, = —0l M., (2.5.7)



32 Chapter 2

1
V., = §uZKeue (2.5.8)
with coefficients which are functions of the coordinates (x;,y;),s = 1,2,3. We
are not particularly interested in the magnitudes of the coefficients; we are more
interested in their signs.

First we investigate the elements of K.. Equation (2.5.8) give

A = wui(y2 —y3) +u2(ys — y1) +us(y1 — y2)
e = ui(xg —x3) +us(xs — x1) + us(z1 — z2)
where
1 T Y1
A=|1 z2 yz |=2area(PPyP3).
1 z3 ys

Since (u)? = b + ¢2, the coefficient of, say, ujus in V, is

—{ (w3 — 21)(23 — 22) + (y3 —y1)(y3 — 12)}/|A] = —|PLP3[.| P Ps| cosy/| Al

Users of finite element methods have found that compact, i.e., acute angled,
triangles give more accurate computational results than elongated triangles that
have an obtuse angle.

If the triangle has all its angles acute, then ki . and ka3 ¢, k31, are all neg-
ative: K. has the sign pattern

_|_ —

K, = (2.5.9)

(=

+

To find the signs of the coefficients in T, it is convenient to write (2.5.7)
in terms of the areal coordinates , ¢,(x,y), of the triangle; if P is an arbitrary
point of the triangle, then

U(iﬂ,y) = uld)l(xa y) + u2¢2(x,y) + U3¢3(5L',y)

where

area(P P, Ps) area(PPsPy) area( PP, P)

1 = area(P; P P3)’ 92 = area(P) P P3)’ 93 = area( P Py P3)

as shown in Figure 2.5.2.
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(x,»)
P P

1

Figure 2.5.2 - P; P, P is split into three triangles

Since ¢, @5, ¢ are all positive when P is inside the triangle P, P, Ps, all the
coefficients in T, are positive: M, has the form

M, = (2.5.10)

++ +
++ +
++ 4

Now we assemble the element matrices to form the global mass and stiffness
matrices. The membrane is replaced by an assembly of triangles /\; with vertices
P; and edges P;P; as shown in Figure 2.5.3. The boundary condition u = 0 is
imposed on the outer vertices labelled ‘0’.

0 0 0 0

Figure 2.5.3 - An assembly of triangular elements
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P

2

Figure 2.5.4 - The angles between outward drawn normals to the faces are all
obtuse

For this particular configuration, the matrices A, C have the sign patterns

+ o+ + + + - - -
+ + + + + - + - - -
_ + o+ - _ -+ -
M= | - , K= Lo . (2.5.11)
+ o+ + + + - - -+ -
+ + + + - - - +

We note that if 4 # j, then m;; > 0, k;; < 0 iff P;, P; are the ends of an edge
P;P; of the mesh.

The finite element analysis of a 3D- acoustic cavity proceeds in a similar way.
The elements are taken to be tetrahedra, and the pressure p(z,y, z) is taken as

p(z,y,2) =a+br+cy+dz (2.5.12)

in each tetrahedron. Now it is found Zhu (2000) [342], Gladwell and Zhu (2002)
[131] that if the angles between the normals to the faces are all obtuse, as shown
in Figure 2.5.4, then the element mass and stiffness matrices have the form

+ + - - -
+ -+ - -

K. = : 2.5.1
k=] T T (2.5.13)

+ - - - 4+

M, =

+

++ 4+
+ 4+ +
+ 4+ +

This means that when the matrices are assembled they have the same kind of
sign pattern as before: if ¢ # j then m;; > 0, k;; < 0 iff P;P; is an edge of the
mesh.
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Applying Lagrange’s equation to the energies

1 1
T = §ﬁTMﬁ, V= §uTKu

we find the equation governing the vibration as

Mii 4+ Ku = 0. (2.5.14)

2.6 Natural frequencies and normal modes

The matrix equation (2.4.13) represents a set of second order equations with
constant coefficients. Following usual practice we seek the solution in the form

q1 a1
a=| ? | =] " sinwt+¢) (2.6.1)
QTL ‘rTL

where the constants z,, frequency w and phase angle ¢ are to be determined.
When q has the form (2.6.1), then

4= —w?q=—wxsin(wt + ¢), (2.6.2)
so that equation (2.4.13) demands that
(K- MM)x =0, \=uw’ (2.6.3)

This is the eigenvalue equation (1.4.1) and, since M is positive-definite and
K is either positive semi-definite or positive-definite, the whole of the analysis
developed in Section 1.4 can be used here. Thus the equation has n eigenvalues
(A7} satisfying

0< A < e <o < Ay, (264)

and n corresponding eigenvectors (x;)7 satisfying

The frequencies w; = ()\i)% are called the natural frequencies of the system, and
the eigenvectors are called the normal or principal modes. Note the distinction
between x;, a scalar, and x;, a vector.

In order to become acquainted with the properties of natural frequencies and
normal modes we shall consider the system specified by equation (2.2.7) and, to
simplify the algebra, shall assume that

(m)} =m, (k)] =k (2.6.6)
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In this case the eigenvalue equation may be written

2—-X -1 0 0 1
-1 2-X -1 ... 0 To
. . . . . =0, (2.6.7)
0 2—-X -1 Tpo1
0 -1 1—A T
where
A = mw?/k. (2.6.8)

To solve for the x,, we use the idea suggested in Exercise 1.4.4, namely to write
(2.6.7) as the recurrence relation

21+ 2=-Nzp, —2,41 =0, (r=1,2,...,n). (2.6.9)

The first of equations (2.6.7) may be written in this form if z( is taken to be
zero; this may be interpreted as stating that the left hand mass (mg) is fixed. On
the other hand, the last of equations (2.6.7) may be written in the form (2.6.9)
if 41 is taken to be equal to x,. Thus the end conditions for the recurrence
(2.6.9) are

o =0=12p11 — Tp. (2.6.10)

The recurrence relation has the general solution
xr = A cosrd + B sinrd, (2.6.11)

where, on substitution into (2.6.9) we find that  must satisfy

cos(r —1)0 +cos(r+1)0 = 2cosfcosrd = (2 — ) cosrb,
sin(r —1)0 +sin(r + 1) = 2cosfsinrd = (2 — \)sinrb,
ie.,
2cosf =2 — A

The end conditions will be satisfied if and only if
A=0=sin(n+ 1) —sinnd = 2cos[(n + 1/2)0]sin6/2,

so that the possible values of 6 are

(2i —OH)m .
=0 =" (;=1.92 ...
K2 2n + 1 ) (’L i k) 7n)7
while the corresponding values of A\ are
2 —Dm
XNi=2-2 9i=4~'2(—. 2.6.12
cos sin [2(2n m 1)] ( )
Thus, in the ith mode, the displacement amplitude of the rth mass is
2i—1
x, =sinrf; = sin[w]. (2.6.13)

(2n+1)
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The modes for the case n = 4, which are shown in Figure 2.6.1, exhibit properties
that are held by all eigenvectors of a tridiagonal matrix (such as that in (2.6.7)),
namely

0
\
;AT o 1 ]
. \ .
A0 \ 7N .
, i// V4| \ \\\ / \.‘ /,’
A S ;/ 7 ‘\ \ 2 \\ / \ /
KAl 3 N \ ’
7,0
/,’/./ \‘ \\ 3 AN ‘/ /'/
v AN / \ \ 7
7 '\ Y /
7 4 \ \ / \\ >‘
\ \ N
. \ / - ;N\
\ \ AN /
\ \ ,/ N / \‘
\ ) \ L/ K
L / \
‘\ / / N\ \
\ ° K / \\
N/ / \
N /
\ \/' . / \\
AN J/ AN
\ / N 4 \
/! RN / \\
\ / ./ \
\‘, \

-\‘/:
°
Figure 2.6.1 - The modes of the spring-mass system for n =4

For a proof of the convergence of this class of discrete models to the contin-
uous beam, and for an estimate of the discretisation error on frequencies and
mode shapes, see Davini (1996) [74].

(a) the ith mode crosses the axis (¢ — 1) times - the zeros at the ends are not
counted;

(b) the nodes (points where the mode crosses the axis) of the ith mode interlace
those of the neighbouring ((¢ — 1)th and (i + 1)th) modes.

If instead of being free at the right hand end, the system were pinned there,
then the analysis would be unchanged except that the end conditions would be

xo=0=zy,. (2.6.14)
In this case 6 would have to satisfy
sinnd =0

so that
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and the corresponding eigenvalues, which we will label (A?)7~!, would be

A0 = 4sin2(%). (2.6.15)

In the ith mode, the rth displacement amplitude is

rim

yr = sin(r¢;) = Sin[7]. (2.6.16)

The two sets of eigenvalues (\;)} and (\))7~! are related in a way which will be
found to be general for problems of this type (see equation (2.9.10)), namely

0<A <Al < <A1 <A <A, (2.6.17)
Exercises 2.6

1. Consider the beam system of Figure 2.3.1 in the case when (m;)"; =
m, (k)¢ =k, (¢;)§ = €. Show that the recurrence relation linking the
(u,)87% may be written

Up—g — dUup_1 + (6 — Nty — dttpy1 + tUpp2 =0
where A = mw?¢? /k. Seek a solution of the recurrence relation of the form
U = Acosrf + Bsinrf + C coshr¢ + Dsinhr¢

and find 6, ¢ so that the end conditions u_1 = 0 = vy = Up_1 = Un
are satisfied. Hence find the natural frequencies and normal modes of
the system; i.e., a clamped-clamped beam. A physically more acceptable
discrete approximation of a beam is considered in detail by Gladwell (1962)
[103] and Lindberg (1963) [215].

2.7 Principal coordinates and receptances

Theorem 1.4.5 states that the vectors (x;)} span the space of n-vectors, so that
any arbitrary vector q(t) may be written

q(t) = pixi + paxXa + -+ + ppXn. (2.7.1)

This may be condensed into the matrix equation

q= Xp, (2.7.2)
where X is the nxn matrix with the x; as its columns i.e., x; = {14, T2i, . . ., Tni }.
The coordinates p1,po, - .., Pn, called the principal coordinates, will in general

be functions of ¢; they indicate the extent to which the various eigenvectors x;
participate in the vector q. The energies T,V take particularly simple forms



2. Vibrations of Discrete Systems 39

when q is expressed in terms of the principal coordinates. For equation (2.7.2)
implies
q = Xp, (2.7.3)
so that . )
T = 5(Xp)"M(Xp) = 5p" (X"MX)p. (2.7.4)

But the element in row i, column j of the matrix X" MX is simply x Mx; and
according to (1.4.12) this is zero if ¢ # j, a; if i = j. Thus

XTMX = diag(ay,as,...,a,), (2.7.5)
so that
T_l{a 52 1 qops 4+ - - - a, P2 2.7.6
= glaipi +azps + - anp}- (2.7.6)
Similarly
1
V= §pT(XTKX)p (2.7.7)
and
XTKX = diag(A a1, Asaz, ... \pay) (2.7.8)
so that 1
V= 5{)\1a1pf + Aoaopi + - Aanp’}. (2.7.9)

Equations (2.7.6), (2.7.9) show that the search for eigenvalues and eigenvectors
for a symmetric matrix pair (M, K) is equivalent to the search for a coordinate
transformation q — p which will simultaneously convert two quadratic forms
q“Mq and q7Kq to sums of squares.

We shall now use the principal coordinates to obtain the response of a sys-
tem to sinusoidal forces. Equations (2.4.2) and (2.4.14) show that the equation
governing the response to generalised forces (Q,.)} is

Mg+ Kag=Q (2.7.10)
where q = {q1,q2,.-.,qn}. If the forces have frequency w and are all in phase,
then Q and q may be written

Q = Psin(wt + ¢), q = xsin(wt + ¢). (2.7.11)

In this case equations (2.6.1) - (2.6.2) yield
(K — A\M)x = ®. (2.7.12)
To solve this equation we express x in terms of the eigenvectors x;, so that
X = MX1 + MaXg + -+ TpX, = X, (2.7.13)

where 71, 7o, . . ., T, are the amplitudes of the principal coordinates p1, ps, - .., Dn-
Substitute (2.7.13) into (2.7.12) and multiply the resulting equation by X7T'; the
result is

XT(K - M)X7=X"® =E. (2.7.14)
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But now the matrix of coefficients of the set of N equations for the unknowns
M1, M, ..., Ty is diagonal, and the ith equation is simply

<)\1 — )\)aﬂri = Ei,
so that

=.
—1

ai()\i — )\) ’

In order to interpret this result we consider the response to a single generalised
force Q. In this case

(2.7.15)

T, =

Q= ®=4{00,...,9.0,...,0}, E=®.{xr1,%r2,...,Trn}
(I)rxri

ai()\i — )\) ’

T, =

and the sth displacement amplitude is:

n
Ty = mes,- = oD, (2.7.16)
i=1
where
= Trilsq
s = . 2.7.17
Qs ; al()\z — /\) ( )

The quantity a,sis the receptance Bishop and Johnson (1960) [34] giving the
amplitude of response of g5 to a unit amplitude generalised force @),.. The fact
that a,.s is symmetric, i.e.,

Ors = Qgy (2.7.18)

is a reflection of the reciprocal theorem which holds for forced harmonic excita-
tion.

Exercises 2.7
1. Use the orthogonality of the (x;)} w.r.t the inertia matrix to show that

XZTMq = PiQ;.

2.8 Rayleigh’s Principle

Consider a conservative system with generalised coordinates (g,)} vibrating with
harmonic motion given by (2.6.1). Its kinetic and potential energies will be
1

T = §qTMq = w? cos? wtTy,
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V= %qTKq =sin? wtVj,
where 1 1
Ty = §XTMX, W = §XTKX. (2.8.1)
Since the system is conservative,
T4V = const.,

so that
w? cos? wtTy + (1 — cos® wt)Vy = const.,

and therefore

UJQTO = Vo.
This we may write as
\— Vo xTKx
T Ty xTMx'

If the system is vibrating freely at frequency w, then w must be one of the natural

frequencies and x the corresponding eigenvector. If w = w;, then A = \;, x = x;
and

xIKx;

e X?MXZ‘

(2.8.2)

which agrees with equation (1.4.5).
Rayleigh’s Principle states that the stationary values of the Rayleigh Quotient

xTKx

AR = xTMx

(2.8.3)
viewed as a function of the components (x,)}, occur when X is an eigenvector
X;. The corresponding stationary value of Agr is A;.

Proof. Rayleigh’s Principle has a long history - see for example Temple and
Bickley (1933) [322] or Washizu (1982) [330]. We shall state the proof in a
number of ways because each is instructive. First consider Ar as a ratio of Vj
and Ty and write down the partial derivative of this quotient w.r.t. x,.. We
have

Ty
= Mp1T1 + Mp2Ta + - - - + My Ty,
oz,
%
- = krlxl + kr2$2 +---+ krnxna
ox,

and

oz, Ty’ To Oz, T_gaxr T

ox, R oz,

so that, on inserting the expressions for 0V, /0z, and 0Ty/0z, we obtain just
the rth row of the matrix equation (2.6.3) with Ag in place of \. The complete

0 Vo, 10V Vool 1{8% )\c’)To}
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set of n equations which state that V; /T is stationary w.r.t. all the (z,)} is the
matrix equation (2.6.3) which is satisfied when x is an eigenvector x; and X is
the corresponding eigenvalue A;.

Now express the energies in terms of principal coordinates. If

p; = m;sin(wt + @),

then equations (2.7.6), (2.7.9) show that

1
Th = §{a17rf—|—a27rg—|—~--+an7ri},

1
Vo= 3 {)\160171'% + >\2@27T§ + -+ )\na/nﬂ-i} .

Since M is assumed to be positive definite, there is no loss in generality in taking
each a; = 1, then

B M7 4 X3 4 -+ A2
- mtmt T

AR : (2.8.4)

so that, in particular,

()\2 —)\1)7'('% + -+ (>\n — /\1)71'%

A — A\ =
o T

(2.8.5)

Since the )\; are labelled in increasing (or non-decreasing) order, the quantities
Ai —A1,t=2,3,...,n are non-negative, and so

AR > A1

If A1 is strictly less than Ay then equality occurs only when 7o = 0 = ... =
Tn, i.€., when the system is vibrating in its first principal mode. Equation
(2.8.5) states the important property that whenever values are taken for (z,)7,
the values of the Rayleigh quotient will always be greater than A; and (when
A1 < A2) will be equal to Ay only if the ratios z1 : @2 : ...z, correspond to those
of the first eigenvector x11,xo1,...Tn1. Equation (2.8.5) shows that A is the
global minimum of Agr, and it may be proved in an exactly similar way that

Ar < An, (2.8.6)

so that A, is the global maximum of Ag.
If )\; is an intermediate eigenvalue, so that A\; < A; < A,, then

- 23211(/\1 - )‘j)W? + Z;'L:i+l()‘j - )‘i)W?
Ap— A = L - : (2.8.7)

In this case Ar will not be strictly less nor strictly greater than \; for variations
of the m;; Ag has a saddle point in the ith mode (7; = 0,5 # ). However, for
computational purposes it is important that the difference between Ag and \;
depends on the squares of the quantities 7;. This means that if x is ‘nearly’
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in the ith mode, so that the m; with j # ¢ are much smaller than 7;, i.e.,
mi ~ 1,m; = 0(¢), then Ag — \; = 0(e?).

Since M is positive definite, x’Mx > 0, and the problem of finding the
stationary values of the Rayleigh quotient Ar given by equation (2.8.3) is equiv-
alent to finding the stationary values of xT Kx subject to the restriction that
xT"Mx = 1. This in turn is equivalent to finding the stationary values of

F=xTKx — \&xTMx, (2.8.8)

subject to x’Mx = 1. Here ) acts as a Lagrange parameter. Note that

8F n n
oz, =2 Z krsts — 2X ; MysTs,

s=1

so that the set of equations 9F/9dx, = 0 yields equation (2.6.3), viz.
(K- \M)x=0. m
2.9 Vibration under constraint

The concept of a system vibrating under constraint is important in the solution
of inverse problems. Suppose a system has generalised coordinates (g, )7, but
they are constrained to satisfy a relation

f(Q17qQ7~"7qn) =0.
For small vibrations about ¢; = 0 = ... = g,, this relation may be replaced by
qu =diq1 +doga + ...+ dng, =0,

where

of
dr = aqT (Q17 q23 PR ’qn)|q1:0:q2:“~:¢hﬂ

Two of the most important constraints will correspond to a certain g, being
zero, or two, ¢, and g, being equal. Now suppose that the system is vibrating
with frequency w, where w? = )\, and

q = xsinwt.

Rayleigh’s Principle states that the (natural frequencies)? will be the stationary
values of F, given in equation (2.8.8) but now subject to the further constraint

x'd = 0. (2.9.1)
Thus we must find the stationary values of

F = x"Kx — \&x"Mx — 2vx’d, (2.9.2)
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where v is another Lagrange parameter (the 2 is inserted purely for convenience).
The equations OF/0x, = 0 now yield

Kx — A\AMx —vd = 0. (2.9.3)

By comparing this with equation (2.7.12) we see that vd is a generalised force;
it is the force required to maintain the constraint (2.9.1).

In order to analyse equation (2.9.3) we express x in terms of principal coor-
dinates, using equation (2.7.13). Then

KX7m — AMX7m —vd = 0. (2.9.4)
Multiply throughout by X7 and use equations (2.7.5) and (2.7.8) which show

that both X”MX and XTKX will be diagonal matrices; the rth row of the
resulting equation is

Ar@p T — Aapm. — Vb =0, r=1,2,... n, (2.9.5)
where
b=X"d. (2.9.6)
Equations (2.9.5) yield
vb
R — 2.9.7
T O — ) (29.7)
which, when substituted in the constraint (2.9.1); i.e.,
xT'd=7TXTd = 7Tb =0, (2.9.8)
yields the frequency equation
B\ = —Lt —=0. 2.9.
*) Zai()\i—)\) 0 (2:9.9)

=1

The form of this equation has important consequences. Consider first the
case in which none of the b; is zero. The coefficients (b? /a;)} will all be positive
and the graph of B(\) against A will have the form shown in Figure 2.9.1. Since
B(A; +0) is very large negative, B(\;11 — 0) is very large positive, and B(}\) is
steadily increasing between \; and \;; 1, B(\) will have just n— 1 zeros, (\})? !,
that interlace the \; in the sense that

AN <A< Aix1,(i=1,2,...,n—1). (2.9.10)
This inequality may be interpreted as follows: if a linear constraint is applied

to a system, each natural frequency increases (or, more precisely, does not de-
crease), but does not exceed the next natural frequency of the original system.
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B(4)

)
gy g
S g

Figure 2.9.1 - The eigenvalues of a constrained system interlace the original
etgenvalues

If all the b; are non-zero then the inequalities in (2.9.10) are strictly obeyed.
Now, however, suppose some of the b; are zero; in particular consider the con-
straint

m =0, (2.9.11)

for which (b;)5 = 0. In this case (m;)} are the principal coordinates of the
system and the corresponding eigenvalues are

No=Niy1, (i=1,2,...,n—1). (2.9.12)

If the constraint is
m; =0, 1<7<mn,

then the principal coordinates are w1, 72, ..., Tj—1,Tj4+1,..., Ty, SO that
X=X, i=12....0-LN =Ny, i=4j+1,...,n—1

If the constraint is (2.9.8) and some particular b; is zero, then equation (2.9.5)
shows that
e _J 1 a=y
7“‘5”—{ 0 i#)

is a solution corresponding to A = A;. This means that a constraint (2.9.8)
with b; = 0 does not affect the jth principal mode. Figure 2.9.2 shows the form
of B(A) when by = 0. The graph may a) pass to the left of A2, in which case
Mo < A2, Ay, = Ao; or b) pass to the right, in which case A}, = Aa, Ao, > Aa.

If two constraints are applied, then the constrained system will have n — 2
cigenvalues (\/)7~? satisfying

X< <Ny, (=1,2,...,n—2),
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where )\ are the eigenvalues of the system subject to one of the constraints.
Thus
>\i§>\;’§>\;/§/\2+1§>\i+2a (1217277’”‘_2)

or
A SN < Xiga, (i=1,2,...,n—2). (2.9.13)

B(4)

\

(=]
g

\\(\,\N
P
e
RN

Figure 2.9.2 - The form of B()\) when by = 0; either a) N} < A2, \y = Ay or b)
/\/1 = )\2,)\/2 > Ao

2.10 Iterative and independent definitions of
eigenvalues

In this section we take a closer look at the eigenvalues of (2.6.3) in relation to
the Rayleigh Quotient

xTKx
- xTMx’
We assume that K is symmetric (it may or may not be positive semi definite)
and that M is positive definite. The importance of the latter assumptions is
that the denominator of (2.10.1) is never zero and always positive for all x # 0.

First, we note that A\g is a homogeneous function of x in the sense that

Ar(ex) = Ag(x), ¢ # 0.

This means that we can always scale any x so that the denominator of (2.10.1)
is unity, i.e.,

AR (2.10.1)

xTMx = 1. (2.10.2)

The vectors x with this property constitute a closed and bounded subspace
D; C V,,. Now consider the Rayleigh Quotient on Dy; it is

Ar = xTKx. (2.10.3)
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This is a continuous function of the variables z1, zs, . .., z,, on the closed bounded
region D; so that, by Weierstrass’ Theorem on continuous functions, it attains
its minimum value on Dy, i.e., for some vector x € D;. (Recall the definition of
a closed set S: if {y;} is a convergent sequence in S then its limit lim; .. y; =y
is also in S.) There may be more than one such minimizing vector, but there is
always at least one, which we denote by x;. The corresponding minimum value
of Ag we denote by A\;. We have the result

A1 = min xTKx = x7 Kx;. (2.10.4)

xeD,

Having found x; and A1, we set up a new minimum problem: finding the mini-
mum of xTKx on the subspace Dy of D; that consists of vectors x orthogonal to
X1, i.e., X satisfying x” Mx; = 0. This subspace is again closed and bounded so
that by Weierstrass’ Theorem there is a vector xo € Dy which minimizes x7 Kx
on Ds; the minimum value is As. We have

A2 = min x7Kx = x2 Kxo, (2.10.5)

x€Do
and xJMxy = 1, xMx; = 0. Since Ay is the minimum of x’Kx on Ds, a
subspace of D1, Ao cannot be less than A\, i.e.; Ao > Aq.
Proceeding in this way we find a set of vectors x; and numbers A;, (i =

1,2,...,n) such that

A = mi}} xTKx = xI Kx;, (2.10.6)
xeD;
T M. — J 1 =17,
x; Mx; —{ 0 it] (2.10.7)

and )\1 S/\Q <... S/\n

This procedure is iterative: we cannot set up the minimizing problem that
gives Ao until we have found x;, and generally we cannot set up the minimizing
problem that gives A; until we have found x3,xs,...,x;_1. There is another
procedure in which we can find any \;,x; without first finding x1,xo2,...,X;_1;
this is called the independent or minimax procedure.

In the independent procedure we start as before:

A\ = min x'Kx = X?le.
xeDy

Now we return to the analysis of Section 2.9 relating to vibration under a con-
straint. The inequality (2.9.10) shows that if none of the (b;)} is zero, then
the first constrained eigenvalue, A7, is strictly less than As. Equations (2.9.11),
(2.9.12) show that if the constraint is 73 = 0, then A\] = A3. The quantity m;
is the amplitude of the component of x; in x, and on premultiplying equation
(2.7.13) by xTK we see that

xTKx = mx1 Mx; = 7. (2.10.8)

Thus m; = 0 means that x is orthogonal to x; w.r.t. the matrix M; this is the
constraint which yields the maximum value of A\, namely \,.
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Thus
max min x'Kx = \y (2.10.9)

d x€D;
xLd

where x 1. d means x”Md = 0; the d which maximizes the minimum is x;.
We may now extend this analyses to higher eigenvalues by using (2.9.13);
thus

max min x! Kx = \g,
di,dy x€D1

x1ldj,dg
and generally
max min  xTKx = \jq1. (2.10.10)
dl,dg,...,di xeDy

Again, the d’s that maximize the minimum in the general case are d; = x1,ds =
X2y e ey dn,]_ = Xn—1-

The minimax definition of eigenvalues seems to have been noted first by
Fischer (1905) [88]. The iterative and independent definitions of eigenvalues
are discussed at length in Courant and Hilbert (1953) [64], and in the more
specialised volume Gould (1966) [151]. The motivation for Gould’s book was
the search for lower bounds for eigenvalues; discretising methods like the finite
element method almost always lead to upper bounds.

Exercises 2.10

1. Examine the arguments in Sections 2.9, 2.10 in the case when two eigen-
values are equal, e.g., \; = Ao.

2. Use the minimax procedure to show that if stiffness is added to a system,
i.e., the stiffness matrix is changed from K to K’, and x"K'x > x"Kx
for all x € V,,, then none of the eigenvalues of the system decreases. Why
can you prove this result only for A\; by using the iterative definition?
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Jacobi Matrices

Let no one say that I have said nothing new; the arrangement of the subject is
new.
Pascal’s Pensées, 22

3.1 Sturm sequences

In this Chapter we will analyse the properties of the eigenvalues and eigenvec-
tors of systems with the special tridiagonal mass and stiffness matrices met in
Chapter 2. We will start by considering systems like that for the system in
Figure 2.2.1, for which the mass matrix is diagonal and the stiffness matrix is
tridiagonal, with negative codiagonal. At the end of the section we will show
that many of the results may be generalised to apply to systems like that in
(2.4.10) in which the mass matrix is tridiagonal with positive codiagonal. The
most important property of the eigenvalues of such systems is that they are
simple, i.e., distinct (Theorem 3.1.3). Thus

A <A< ... < A\

If %, is the rth eigenvector, then as r increases, the eigenvectors oscillate more
and more (Theorem 3.3.1) in such a way that the zeros of x, interlace those of the
neighbouring x,_; and x,41 (3.3.4). We shall now establish these and other
results. Throughout the next few Chapters, we redevelop analysis originally
established by Gantmacher and Krein (1950) [98]. Their book was republished
in 2002..

We start with a definition:

Definition 3.1.1 A Jacobi matriz is a positive semi-definite symmetric tridi-
agonal matriz with (strictly) negative codiagonal.

Note: Different authors define a Jacobi matrix in different ways; some choose
the codiagonal to be strictly positive.

49
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Now we consider the equation
(K-—XM)x=0 (3.1.1)

where K is a Jacobi matrix. First, we suppose that M is a (strictly) positive
diagonal matrix, as in (2.2.7), and we reduce (3.1.1) to standard form.
Take
M = diag(mq, ma, ..., my)

and write M = D?, where

=

D= dz'ag(dl,dg,. .. ,dn), dl =m;

i
introduce the vector u related to x by
u=Dx, x=D"'u
and premultiply (3.1.1) by D~ to obtain
D YK - AD?*)D 'u=0,

ie.,

(J—A)u=0, (3.1.2)
where

J=D'KD % (3.1.3)

The matrix J, like K, is a Jacobi matrix, and has the same eigenvalues as the
system (3.1.1). We write

al —b1 0 0
—b1 a9 —b2 0
J=1| . e . (3.1.4)
_bnfl
—bp—1 anp

The analysis now centres on the leading principal minors (see (1.4.6)) of the
matrix J — A\I. We define

ap — A —b1

Po=1, PP(A\) =a1 =\, P(\) = b ay— A ,etc. (3.1.5)
so that finally
P, (\) = det(J — AI). (3.1.6)
The minors satisfy the three-term recurrence relation
Pri1(A) = (arp1 — AP (N) = 2P 1 (N\), r=1,2,...,n—1, (3.1.7)
which enables us to calculate Ps, P3, ..., P, successively from Py, P;. Since

the zeros of any P.()) are the eigenvalues of the truncated symmetric matrix
obtained by retaining just the first » rows and columns of J, they are all real.
We now prove:
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Theorem 3.1.1 Ifb? >0 (r =1,2,...,n—1), then the (P.(\)§ form a Sturm
sequence, the defining properties of which are

1. Py(A) has everywhere the same sign (Py(A) = 1).

2. When P, () vanishes, P,11(A) and P._1(\) are non-zero and have opposite
signs.

Proof. In order to establish property 2 we note first that two successive P,
cannot be simultaneously zero - i.e., for the same A = \°. For if Pyy;(\°) =
0 = Py(A\°) then equation (3.1.7) shows that P,_1(A\’) = 0, so that finally we
must have P; and Py zero; but Py(A\”) = 1, which yields a contradiction.

The latter part of property 2 now follows directly from (3.1.7). m

Before proceeding further we must define the sign change function s,()).
This is the integer-valued function equal to the cumulative number of sign-
changes in the sequence Py, Py(A\), Po(N), ..., P-(A). Thus if

2 -1 0
J=| -1 3 -2,
0 -2 4
then,
P = 1, PN =-A+2,
Py(A) = M =5A+5, Ps(\) = X349\ — 21\ 4 12.

For A\ = 0 the sequence of values is 1, 2, 5, 12. Since there is no change of sign
in the sequence, each s,(0) = 0. For A = 3 the sequence is 1, -1, -1, 3, so that
81(3) = 52(3) = 1, 83(3) = 2.

Theorem 3.1.2 s,.(\) changes only when X\ passes through a zero of the last
polynomial, P,.()\).

Proof. Clearly, s,.(\) can change only when A passes through a zero of one
of the Ps(A), (s < r); it therefore suffices to prove that s,.(A\) does not change
at all when A passes through a zero of an intermediate P()\), (s < r). Suppose
P,(A\°) =0, where 1 < s < 7, then P,_;(A\°) and P, (\°) will be both non-zero
and have opposite signs. The signs of the triad P,_;(\°), Ps(A?), Psy1(\°) are
therefore +0 - or - 0+. Suppose the first to be the case, so that Ps()) increases
as \ passes through \°, (the other possibility may be handled similarly). Then
for values of X sufficiently close to A’ and less than A° the signs are + - -,
while for values of \ sufficiently close and greater than \° the signs are + +
-, Thus, whether X is greater than or less than A° there is just one change
of sign in the triad of values of Ps_1()), Ps(A\), Psy1(A). In other words the
triad of polynomials Ps_1()\), Ps()\), Psy1(A) will not contribute any change
to s.(\) as X passes through A’ But no other members of the sequence will
contribute any change to s,(A) as A passes through A (unless A is a zero of
another P;()), |t —s| > 2, in which case again there will be no change in s,.()))
so that s,(A) will not change at all. m

Clearly, s,(\) is not well defined when P,.(\) = 0.
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Theorem 3.1.3 The zeros of P.()\), are simple, i.e., distinct. In addition, if
P.(\%) # 0 and s,(\°) = k, then P.(\) has k zeros less than \°.

Proof. Since Ps(\) = (=)*A% + -+, all P,()\) will be positive for sufficiently
large negative A, i.e., A < a, so that s.(a) = 0: « may be taken to be zero if
J is positive definite. On the other hand, for sufficiently large positive A, i.e.,
A > f, the Ps(\) will alternate in sign, so that s,.(8) = r. Now since s,(X)
can increase only when A passes through a zero of P,.()\), all the zeros of P.())
must be distinct. For if A\” were a zero of even multiplicity then s,.(\) would
not increase at all as A passed through A°, while $r(A) would increase only by
unity if A’ were a zero of odd multiplicity. The second part of the theorem now
follows immediately. m

Corollary 3.1.1 The eigenvalues of a Jacobi matrixz are distinct.

Corollary 3.1.2 The number of zeros of P-(\) satisfying o < A < B is equal to
S’I‘(B) - Sr(a)'

Corollary 3.1.3 If \° is a zero of P.()\) then, as X passes from X— to N0+
the sign of Pr._1(A\)P.(X) changes from + to -, and s.()\) increases by unity.

Theorem 3.1.4 Between any two neighbouring zeros of P.(\) there lies one
and only one zero of P._1()\), and one and only one zero of Pr11(\).

Proof. Let p;, uy be the two neighbouring zeros. Suppose, for the sake of
argument that P.(u;—) > 0, then P.(u;4) < 0 and P-(5—) < 0. By Corollary
3.1.3, P—1(py+) > 0 and P._1(puy—) < 0, so that P._1(A) changes sign between
w1+ and po—, and therefore has at least one zero in (g, fig).

Now property 2 of Sturm sequences shows that P.y1(p;) and Pr_1(u;), (4
1,2) have opposite signs. Thus P41 (p1+) <0, Pry1(pe—) > 0so that Pryq(A)
has at least one zero in (uq,ps). Now suppose, if possible, that P._1()\) (or
P-11(X\)) had two (or more) zeros in (uq, o) then P.(A) would have a zero in
(141, 119), contrary to the hypothesis that p;, py are neighbouring zeros. m

This theorem is usually stated in the form: the eigenvalues of successive
principal minors interlace each other.

3.2 Orthogonal polynomials

There is an intimate connection between Jacobi matrices and orthogonal poly-
nomials. In this section we outline some of the basic properties of orthogonal
polynomials.

Two polynomials p(x), ¢(z) are said to be orthogonal w.r.t. the weight
function w(z) > 0 over an interval (a,b) if

b
(pq) = / w(@)p(z)g(z)dz = 0. (3.2.1)
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A familiar example is provided by the Laguerre polynomials (L, (z))5°, i.e.,
Lo(z) =1, Li(z) =2 — 1, Lo(x) =2 — 4z +2,...

which are orthogonal w.r.t. the weight function e~ over (0, ), i.e.,

/OO e " Lyp(x) Ly (z)dz =0, m # n.
0

One of the important properties of such polynomials is that they satisfy a three-
term recurrence relation. The relation for the L,(x), for example, is

Loyi(z) = (x —2r — 1)L (z) — 2L, _1(x).

In this section we shall be concerned, not with a continuous orthogonality
relation of the form (3.2.1), but with a discrete orthogonality relation

(p,q) = Zwip(&)q(&) =0; (w;)} > 0. (3.2.2)

where (&;)} are n points, satisfying £; < & < -+ <¢,,.

To introduce the concept formally we let P,, denote the linear space of poly-
nomials of order n, i.e., the set of all polynomials p(x) with degree k < n, with
real coefficients. On this space (,) acts as an inner product since it is positive
definite, bilinear and symmetric, i.e.,

L (p,p) = [pll* > 0 if p(z) # 0

2. (ap,q) = a(p,q), (p+q,7r) = (p,7) + (¢,7)
3. (p,a) = (a¢:p)

In addition

4. (zp,q) = (p,zq)

We now prove

Theorem 3.2.1 There is a unique sequence of monic polynomials, i.e., (g;(x))§
such that q;(z) has degree i and leading coefficient (of x*) unity, which are or-
thogonal with respect to the inner product (,), i.e., for which

(¢i,9;) =0, i #j.

Proof. The ¢;(z) may be constructed by applying the familiar Gram-
Schmidt orthogonalisation procedure to the linearly independent polynomials
(z)6~". Thus

i—1
qo = ]-7 qz(x) =x"— Zaijqj(x)v (Z = 1727 ceey— 1)7
7=0
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where
(¢i,q;) = (2, q5) — ij(g5,95) =0
so that

Qij = (xzvqj)/||qj|‘27 j=0,1,...,i—-1. m
We note that the polynomial

Qn(x) = H(l‘ - fz)

is the monic polynomial of degree n in the sequence. It is orthogonal to (g;)g~ 1,
in fact it is orthogonal to all functions, since ¢,(¢;) =0, i =1,2,...,n

The Gram-Schmidt procedure does not provide a computationally convenient
means for computing the ¢;; instead we use Forsythe (1957) [90].

Theorem 3.2.2 The monic polynomials (¢;) satisfy a three-term recurrence
relation of the form

QZ(:E) = (.’E - O‘i)qifl(x) - 51271(11’72(1.)7 i = 17 27 s (323)
with the initial values
g-1(z) =0, go(z) =1. (3.2.4)
Proof. ¢;(z)—xq;—1(z)is a polynomial of degree (i—1). It may therefore be
expressed in terms of (the linearly independent - see Ex. 3.2.1) qo,q1,---,¢i—1-
Thus
¢i(w) — 2q;i—1(x) = coqo + c1q1 + -+ + Ci—1Gi-1- (3.2.5)

Take the inner product of this equation with ¢;(z), (j =0,1,...,7 — 1) thus

(¢i,45) — (gi-1,2q;) ch ., 45) = ¢jllay1, (3.2.6)

where the second term on the left has been rewritten by using property 4, above.
But if j = 0,1,...,% — 1, then the first term on the left is zero, and if j =
0,1,...,7 — 3, then xg; has degree at most ¢ — 2 and so is orthogonal to ¢;_;.
Thus ¢; =0if j =0,1,2,...,% — 3 and there only two terms ¢;_; and c¢;_3 on
the right of (3.2.5) i.e.,

¢i(x) —xqi—1(x) = ci—2qi—2(x) + ci—1¢i—1 (). (3.2.7)

Moreover equation (3.2.6) gives
a;=—cio1 = (gi-1,2¢1)/ g1 (3.2.8)

Ci—2 = _(Qi—laxqi—Q)/Hqi—QHQ'
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But xq;_2 is a monic polynomial of degree ¢ — 1; it may therefore be expressed
in the form

l‘QifQ( =dq;— 1 + Z dj QJ

so that
(qi—l,fUQi—Q) = ||Qi—1||2

and thus ¢;_o is negative and equal to _512717 where

Bi = llaill/llgi-l. u (3.2.9)

Equations (3.2.3), (3.2.4) with (3.2.8), (3.2.9) enable us to compute the poly-
nomials {g;}7 ™! step by step. Thus with ¢_; = 0, go = 1 we first compute o
from (3.2.8); this substituted into (3.2.3) gives ¢1. Now we compute g, 5; and
find g2, etc.

In inverse problems we will need to express the weights w; in terms of the
polynomials g,—1 and g,. For this we note that if f(z) is any polynomial in
P,_1, i.e., of degree n — 2 or less, then

(qn—1, f Zwlqn 1 (&) =0.
But if such a combination
zn:mif(fi)» mi = wign-1(§;)
i=1
is zero for any f(x) in P,_; then
Zngz 0, (k=0,1,...,n—2),

since each z* is in P,_1, i.e.,

1 1 1 o1 nm;
51 62 53 e gn m2
Bm=| & & & - & =0 (3.2.10)
n—2 n—2 n—2 n—2
1 2 3 fn i Mn, |

It is shown in Ex. 3.2.2 that this equation has the solution

m; =/ []'& - &) (3.2.11)
j=1
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Apart from the arbitrariness of the factor ~, this is the unique solution. The
prime means that the term j = ¢ is omitted. Now since

Qn(g) = H(g - gj)v (3212)

Jj=1

we have
n

Q;L(éi) = H /(fi - gj)v
j=1
where the prime on the left denotes differentiation!
Returning to equation (3.2.11) we can deduce that, for some =,

mi = wign-1(&;) = /4, (&), i =1,2,...,n.

Since the {g;}§ satisfy the three-term recurrence relation (3.2.3) it follows,
by the arguments used in Section 3.1, that the zeros of ¢, (z) and ¢,,—1(z) must
interlace and therefore (Ex. 3.2.3) ¢n,—1(§;)q,,(§;) > 0. This means that the
weights

w; = ’Y/{Qn—l(gi)q;z(fi)} (3.2.13)

are positive.

This equation is important: it means that if the monic polynomials
qn (&), gn-1(&) are given, and if their zeros interlace, then they may be viewed as
the nth and (n— 1)th members, respectively, of a sequence of monic polynomials
orthogonal w.r.t. the weights w; given by (3.2.13), and the points {&,;}}.

Exercises 3.2
1. Show that if the polynomials {qi}lg, k < n, are orthogonal w.r.t. the inner-

product (3.2.2), then they are linearly independent. Hence deduce that
any polynomial p(x) of degree k— 1 may be expressed uniquely in the form

k—1
p(z) = Z ¢;q; (%),

and that gx(x) is orthogonal to each polynomial of degree k — 1.

2. Show that if the Vandermonde determinant A is defined by

5% 5% 58—1
A= 51 52 U gnfl s
g
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then L )
n—1 j— n—

=1 TI¢ - =1/]]
j=2 k=1 j=1

where
-1

:f[ 116, —<o-

i=2 k=1

<.

Hence deduce (3.2.11).

3. The zeros {&;}7 of ¢, (x), and {€;}7" of q,_1(z) must satisfy &; < & <
§o <+ <&y <&, Show that (=)"7'q,(§;) > 0, (=)"gn-1(§;) >0
and hence q;,(£;)gn-1(£;) > 0.

3.3 Eigenvectors of Jacobi matrices

In this section we establish some properties of the eigenvectors of Jacobi matrices,
in preparation for the solution of ‘inverse mode problems’. We return to the
analysis of Section 3.1 and prove

Theorem 3.3.1 The sequence (ur;)r—; for the jth eigenvector has exactly j—1
sign reversals.

Proof. The u, ; are determined from equation (3.1.2) for A = A;; this may
be written

—br_1tr—1,j + (ar — Aj)Upj — bptpy1 =0, (r=1,2,...,n) (3.3.1)
where ug ;, uny1,; are interpreted as zero, i.e.,
u0,j = 0 = Upt1,5- (3.3.2)
Choose an arbitrary b, > 0 and put
V1 = U1, V2 =biUa, ..., Unt1 = b1bo - bpUng
and multiply equation (3.3.1) by b1bs - - - b,.—_1 to obtain
—b2_ o1+ (ar — Aj)vr — 01 =0, (r=1,2,...,n). (3.3.3)
On comparing this equation with (3.1.7) we see that it has the solution
vo=0, =1 v=PFP_1(N), (r=12,...,n+1)

which because of P, ();) = 0, satisfies the end-condition v,4+1 = 0.
Thus,
Up; = (biba -+ be_1) " Pe_1 (), (3.3.4)
and since \; lies between the (j—1)th and jth zeros of P,,_1(X), s,—1(A\;) = j—1.
[
Before establishing further properties of the eigenvectors we introduce the
concept of a u-line.
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Definition 3.3.1 Let u = {uj,us,...,uny1} be a vector. We shall define the
u-line as the broken line in the plane joining the points with coordinates

Tr =71, Y =Up, (r=12,...,n+1).
Thus, between (z,,y,) and (241, yr+1), y(z) is defined by
yx)=r+1—2)ur+ (x —r)upgr1, (r=1,2,...,n),

as shown in Figure 3.3.1.
Now return to Theorem 3.3.1. For arbitrary (real) A the sequence given by

Ug = 07 ur()\) = ul(ble c br—l)ilpr—l()‘)v (7”' = 13 27 SN+ 1)3

satisfies the recurrence (3.3.1) for r = 1,2,...,n. (It will satisfy the last
equation with wu,+1 = 0 iff P,(A\) = 0.) For arbitrary A, the vector u(\) =
{ur(N), ..., unt1(N\)} defines a u(\)— line. We now investigate the nodes of this
line, i.e., the points = at which y(x) = 0. First we note that if u,.(A) =0, i.e.,
P._1(\) = 0, then P.(\) and P._5(}), i.e., w41 and w,_1, will have opposite
signs, so that the u(A)— line will cross the z-axis at = r. Secondly, if u,
and u,;1 have opposite signs, then y(z) has a node between r and r + 1. This
implies that the u();)— line has exactly j nodes, exzcluding the left hand end
where ug = 0, but including the right hand end. Moreover, if A; < A < Ajyq,
then the u(A)— line will have exactly j nodes, again excluding the left hand end
where ug = 0. Table 3.3.1 shows the signs of u,. for the whole range of A-values,
for the case n = 3. The last line in the table shows the number of nodes in the
u(A). Figure 3.3.1 shows the form of the u(X) for the starred values of A. We
now establish an identity which will enable us to prove further results concerning
the eigenvectors.

Figure 8.3.1 - The uw(\)— lines for \*—, and \** — ——.
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Table 3.53.1 -The signs of w, for different values of A
A

(D P D WD VAR S
wo o+ + + + + o+ o+
u2 + + 4+ 0 - - -
us + + 0 - - 0 4+
uy + 0 - - 0 + 0

0 1 1 1 2 2 3

Consider the solutions u,v of the equations (3.3.1) corresponding to A, u
respectively. Suppose that ug = 0 = vy and that some positive value has been
assigned to b,. Then

—br_1Up—1 + apty — bptipr1r = Aup, (r=1,2,...,n)

—br_1Up—1 + @pUr — bpr1 = o, (r=1,2,...,n).

Eliminating a, from these equations, we find

brtr - brfltrfl = (M — )\)(ST — Srfl) (335)
where
by = Up 10 — UpUpi1, Sp = Zuivi (3.3.6)
i=1
so that on summing over r =p,p+1,...,¢ (1 <p < ¢ < n), we obtain
btg — bp—1tp—1 = (1 — A)(8q — Sp—1)- (3.3.7)

In particular, if p = 1, so that ug =0 = vy =ty = so,
bgtg = (1L — N)sq. (3.3.8)
‘We now prove

Theorem 3.3.2 If A < p, then between any two nodes of the u(X\) - line there
is at least one node of the u(p) - line.

Proof. Let o, f(a < ) be two neighbouring nodes of the u-line and suppose
that

p—1<a<p ¢q<B<qg+1, (p<Lq),

so that
Yo, X) = (p— @yt + (@ —p+ Lu, = 0, (3.3.9)
y(B,A) = (g +1 = Blug + (B~ qJugt1 =0 (3.3.10)
and y(z,A) # 0 for a < © < . For the sake of definiteness suppose that
y(xz,A) > 0 for o < & < B, then up, upy1,...,uq are all positive. We now need

to prove that y(z, u) has a zero between o and 3. Suppose y(x, 1) has no such
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zero, that is, it has the same sign for o < z < . Without loss of generality we
can assume that
y(z, 1) >0 for a <z < S.

that is y(o, ) > 0,y(8, ) > 0 and vp, vpy1,. .., vq are all positive. Thus,
(p—a)vp—1+ (a—p+1)v, >0, (3.3.11)

(q+1—=B)vg+ (B — q)vgs1 >0, (3.3.12)
and on eliminating a between (3.3.9), (3.3.11), and S between (3.3.10), (3.3.12)
we deduce that ¢, > 0, ¢, <0. On the other hand, sq—s,-1 = Z;I:p u;v; >0,
so that the LHS of (3.3.7) is non-positive, while the RHS is positive, providing

a contradiction. If we had assumed y(z,pn) < 0 for a« < z < 3, the we would
have found the LHS of (3.3.5) non-negative and the RHS negative. m

Theorem 3.3.3 As \ increases continuously, then the nodes of the u(\) - line
shift continuously to the left.

Proof. Let a;(\),az(A),... be the nodes of the u(\) - line, and suppose
0 < ag(p),as(p),. .. are the nodes of the u(u) - line. We need to prove that

ar(p) < ar(X)

for all those values of r corresponding to the u(A) - line. Since, by Theorem
3.3.2, there is a least one of the o, (1) between any two of the a,.(A), it is sufficient
to prove that

a1(p) < aqn(N) =z

Suppose if possible that oy () > x and that

g<zx<g+1 (1<qg<n)

then all uy,us,...,uq and vy, v9,...,v, will be positive while
(@+1-2)ug+ (- qugtr = 0
(g+1-=z)vg+ (2= Qugyr > 0

which imply ¢, < 0. On the other hand s, > 0, which, when used with (3.3.8),
provides a contradiction. m

Table 3.3.1 shows how the first node of u(\) appears at the right hand end
(n+1) when A = A\ and gradually shifts to the left, how the second zero appears
when A = \q, etc.

Theorem 3.3.4 The nodes of two successive eigenvectors interlace.

Proof. Let the eigenvectors correspond to A; and Aj11. The nodes of the
u(\;) and u(Ajy1) - lines are (c-(A;))._; and (a,(A\j41))/E] respectively; and

r=1 r=1

a;(Aj) = aj41(Aj41) = n+ 1. Theorem 3.3.3 shows that o (A\j11) < a1(}j),
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while Theorem 3.3.2 applied to the two zeros a;_1(\;) and «oj(\;) = n+1 shows
that o;(Aj+1) > aj—1(A;). These two inequalities imply that the only possible
ordering of the nodes is

0 < 041(/\]‘+1) < Oél()\j) < 042()\j+1) <o < Oéj,1(>\j) (3313)
< (N), <o) =an(yp) =n+l. W

The derivation of certain other important properties of the eigenmodes will
be deferred until Section 5.7, where properties of an oscillatory matrix will be
used. See Gladwell (1991a) [119] for some related results.

Exercises 3.3

1. Show that the first and last components of any eigenvector of a Jacobi
matrix must be non-zero.

2. Show that if the matrix J of (3.1.4), with negative off-diagonal elements
has an eigenpair \;,u;, then the corresponding matrix J* with positive
off-diagonal elements, has eigenpair \;, Zu; where Z is given by Z = diag
(1,—1,1,---(=)""1). This means that the eigenvector corresponding to
the smallest eigenvalue, A1, has n—1 sign changes, while that corresponding
to A, has none. Show that if the eigenvalues of J* are numbered in reverse,
ie, A1 > Ay > -+ > )\, >0, then Theorem 3.3.1 remains valid.

3.4 Generalised eigenvalue problems

In Section 2.4 we showed that the eigenvalue problem for a finite element model
of a vibrating rod could be reduced to a generalised eigenvalue problem

(K- AM)u =0 (3.4.1)

where K, M were both symmetric tridiagonal matrices, K having negative co-
diagonal and M having positive codiagonal. If M is positive definite, and K is
positive semi-definite (i.e., K is a Jacobi matrix), then the analysis of Chapter
1 shows that the eigenvalues are non-negative. Under these conditions we may
prove that the solutions of (3.4.1) share the properties of the eigenvalue prob-
lem in normal form i.e., equation (3.1.7). In particular, we can show that the
eigenvalues of (3.4.1) are distinct and that the sequence (u, ;)I_; for the jth
eigenvector has exactly j — 1 sign reversals. To obtain these results we need to
return to the analysis in Section 3.1 onwards and see what changes have to be
made.

We start with the principal minors of the matrix K — AM, using the notation
of (2.4.10):

C1 — )\a1 —d1 — )\bl
—dl—)\bl 02_>\a2 Tt
(3.4.2)

Py(A) =1, Pi(A)=c1—Aai, Pr(\) =
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so that finally
P, () = det(K — AM).

The minors satisfy the three-term recurrence relation
Pri1(A) = (cri1 — Aapi1) Pr(N) — (dy 4+ Abp)2Pr1(N). (3.4.3)

The argument used in Section 3.1, 3.3 was based on the fact that the sequence of
principal minors defined by (3.1.5), (3.1.7) was a Sturm sequence. The sequence
defined by (3.4.2), (3.4.3) however, is not a Sturm sequence. For if P.(\) = 0,
then P.y1(\) = —(d, + \b,.)2P._1()\), and if it happens that d,. + \b,. = 0,
then P,11(A\) would be zero, and not, as required by condition 2 of Theorem
3.1.1, of opposite sign to P._1(\). Now we make the crucial observation, that
if we restrict attention to A > 0, then the P,(\) do form a Sturm sequence
because b,.,d, being positive, eliminates the possibility that d,. + \b, = 0. If
we assume that M is positive definite and K is positive semi-definite, then all
the eigenvalues A, will be non-negative and we may proceed as before. Thus
Theorem 3.1.1 holds provided that A > 0, and Theorem 3.1.2 holds. The proof
of Theorem 3.1.3 must be slightly changed. In the expansion of Ps()\) in powers
of A\ we have

Ps(>\) :CX370+CJ4371)\—|-...+O¢S,3)\8. (344)
The first term, a0, is the sth principal minor of K and, since K is positive semi-
definite, as 0 > 0 for s =1,2,...,n—1 and ay, ¢ > 0; since Ps(0) = a5 ¢ we have

$r(0) = 0. The last term in (3.4.4), is a5 s = (—)® * (the sth principal minor of
M), so that for sufficiently large A, i.e., A > 8, s,(8) = r. The remainder of the
proof of Theorem 3.1.1, the corollaries 1-3 and Theorem 3.1.4 follow as before.

We need to make small changes in the proof of Theorem 3.3.1. The u, ; are
determined from the equations

—(drf1 + )\jbrfl)urij + (CT — )\jar)ur’j — (dr + Ajbr)uTHJ =0 (3.4.5)

forr=1,2,...,n, where ug ; = 0 = Up41,j-
Put d, + A\;b, = e,, choose an arbitrary e,, > 0, and put

VI =U1,; U2 =€1,U ... Uptl = €1€2...ExUn41
and multiply equation (3.4.5) by ejes...e,.—1 to obtain
—e2 v+ (cp — Aj@r)Up — U1 =0 7=1,2,...,n.
On comparing this with (3.4.3) we see that it has the solution
vo=0,uv1 =10, =P_1(N;),(r=12,...,n+1).

Again, we conclude that s,_1()\;) =7 — L.
We may make similar changes to the proofs of Theorems 3.3.2-3.3.4.

Exercises 3.4

1. Make appropriate changes in the proofs of Theorems 3.3.2-3.3.4.
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Inverse Problems for Jacobi
Systems

People are generally better persuaded by the reasons which they themselves
have discovered than by those which have come into the minds of others.
Pascal’s Pensées, 10

4.1 Introduction

Research on these inverse problems began in the former Soviet Union, with the
work of M.G. Krein. It appears that his primary interest was in the qualitative
properties of the solutions of, and the inverse problems for, the Sturm-Liouville
equation (see Chapter 10), and the discrete problems were studied because such
problems were met in any approximate analysis of Sturm-Liouville problems.
Krein’s early papers Krein (1933) [198], Krein (1934) [199] concern the theory of
Sturm sequences, while the Supplement to Gantmacher and Krein (1950) [98],
Gantmacher and Krein (2002) and Krein (1952) [202] make use of the theory of
continued fractions developed by Stieltjes (1918) [310]. Krein sees his results as
giving mechanical interpretations of Stieltjes’ analysis.

Consider the simple system shown in Figure 4.1.1a.

kz k] k2

Figure 4.1.1 - The system is a) free and b) fized at the right hand end

If mqy, ma, k1, ko are given, then the analysis of Chapter 2 shows how we can
find the two natural frequencies, wy,ws of the system: \; = w?, Ay = w3 are the

63
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eigenvalues of the equation

kl + kz - )\ml —kz U1 _
ko Ky — A ] [ s } =0. (4.1.1)
The eigenvalues are the roots of the determinant:
AN = mymad? — {kamy + (k1 + ko)ma I\ + kiko = 0. (4.1.2)

Now consider the inverse problem. First it is clear that if one set of values
my, Mo, k1, ko has been found that yield specified eigenvalues A1, A2, and if a >
0, then amy,ams, ak,,aks will be another set yielding the same eigenvalues:
there are not four quantities to be found, only three ratios my : mo : ky : ko.
Knowing these ratios, we would need one more quantity, for instance the total
mass m = my + mg, or the total stiffness k given by 1/k = 1/ky + 1/ka, to find
the absolute values of the four quantities mq, mo, k1, ks.

But even knowing two eigenvalues A1, A2, we cannot find the three ratios; we
need one more piece of information. One possible piece is the single eigenvalue
A = w* of the system obtained by fixing ms, as shown in Figure 4.1.1b. This
is

Zowt Btk (4.1.3)
mi
The sum and product of the roots A1, Ay of equation (4.1.2) are
k k1 +k k ki1 +k
At Ay = oy + (k1 + 2)m2:_2+(1+ 2) (4.1.4)
mi1Mmeo ma mi
kik
My = ——=2 (4.1.5)
mimso
Subtracting (4.1.3) from (4.1.4) we obtain
k2 *
LA W VN (4.1.6)
mso
and then (4.1.5) gives
k1 A1
—_— = 4.1.
El Wy (4.1.7)
and finally (4.1.3) gives
k k A1 - - A"
AR M N e M) — X)) (4.1.8)
mq mq A1+ A — A A+ A — A

The general theory of vibration under constraint (Section 2.9) states that A\; <
A" < Ag, so that all the quantities on the right hand sides of (4.1.6)-(4.1.8) are
positive: the solution is realistic. The theory presented in this Chapter provides
various generalisations of this analysis to a lumped-mass system made up of n
masses. The Chapter falls into three parts: a discussion of inverse problems for
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a Jacobi matrix; mass-spring realisations of these problems; generalisations and
variants of these problems.

Exercises 4.1

1. Show that if u;,us are the eigenvectors of (4.1.1), normalised so that
u;fFMuj = d;j, then the equation giving the eigenvalue \* is

2 2
U3 1 U3 o

YRS Vs

so that knowing A* is equivalent to knowing Ut U 1.

2. Show that for the system of Figure 4.1.1, the system of given stiffness k,
(1/k = 1/k1 + 1/k3), and least mass m = my + mg, is found for

A =214 A2 — VA .

3. Show that for a taut string with tension 7" and unit length with just one
concentrated mass m located at a distance ¢; from the left hand end, /5
from the right, the frequency w is given by

ki+ks—2dm=0

where
by + 0y =1.

Hence find the system of least mass having a given frequency w = v/\.
This suggests the problem of finding a string of least mass having concen-
trated masses (m;)} separated by distances ¢1, 45, ..., ¢,+1, where Z;:rll 4;
= 1. Barcilon and Turchetti (1980) [23] considered this problem in a wider
context, but did not find a closed form solution for the discrete problem.

4.2 An inverse problem for a Jacobi matrix

It was shown in Section 3.1 that the (natural frequencies)? of a lumped mass
system may be obtained as the eigenvalues of a Jacobi matrix

ap  —b
—b1  az  —by
| - - (4.2.1)
0 0 Ap—1 _bn—l
0 0 _bn—l Qp,

If the system is connected, i.e., the stiffnesses between masses are strictly posi-
tive, then the codiagonal elements —b; are strictly negative.
The basic theorem is
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Theorem 4.2.1 There is a unique Jacobi matriz J having specified eigenvalues
(\i)T, where
0< A <A< <Ay (4.2.2)

and with normalised eigenvectors (u;)T having non-zero specified values (u1;)} or
(uns)7 of their first or last components respectively; recall that u; = {u14, ugi,. ..,

(We recall Ex. 3.3.1, that the first and last components of an eigenvector of
a Jacobi matrix are both non-zero.)

Proof. The theorem is at once an existence (there is ...) and a uniqueness
(... a unique) theorem. We shall prove existence by actually constructing a
matrix, and will do so by using the so-called Lanczos algorithm; the algorithm
demonstrates that J is unique. This algorithm has the advantage that numeri-
cally it is well conditioned. An independent proof that the matrix is unique is
left to Ex. 4.2.2. The proof will be presented for the case in which (u1;)} are
specified.

The eigenvectors u; satisfy

Jui = )\Z—ui (423)
Use the column vectors (u;)7 to construct a square matrix U : U = [ug, ug, ..., u,).
The orthonormality conditions u;fruj = 0;; yield

U'U=1

This means that U7 is the inverse of U : U is an orthogonal matrix. But if
UTU =1, then Theorem 1.3.6 states that UU” =TI also. Now put U7 = X,
then UUT = XTX = I. But this means that the columns of X, like the columns

of U, are orthonormal. Call the columns (x;)¥, so that X = [x1,X2,...,X,],
then
XzTXj = 5”

The reason why we have introduced the vectors x; is that

x1 = {z11, %21, .., To1 } = {u11, %12, ..., UIn } (4.2.4)

is given as part of the data.
Now we proceed to rewrite the eigenvalue equations (4.2.3) as equations for
the x;. The set of equations (4.2.3) for ¢ = 1,2,...,n, may be written

JU =UA. (4.2.5)
Thus, on transposing we find
XJ = AX. (4.2.6)
Written in full, this equation is
a; —b
[X1,X2y ..., Xp) —h e —b2 = A[X1,X2,.. ., Xp]. (4.2.7)

_bnfl Gnp
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Take this equation column by column. The first column is
a1X1] — bi1xg = AXj. (4.2.8)
Premultiply this by x7, using x7x; =1, x¥x, = 0;
alexl =a) = x{/\xl.
Now rewrite equation (4.2.8) as
bi1xo = a1X1 — AX1 = Zo.

The vector z, is known, because a1, x1, A are all known. The vector x5 is to be
a unit vector, so that
bl[x2|| = b1 = [[z2]]-

and xo = z/b;. Having found aq,b1,x2 we proceed to the next column of
(4.2.7):
—b1x1 + aoXo — box3 = AXsg

Again, premultiplying by x2 we find as = xI Ax,, and then
box3 = aoXo — b1X1 — AXo = 273

so that
bal|xa|| = b2 = ||z3]|, x3=123/b3

and so on. This procedure is called the Lanczos algorithm; see Lanczos (1950)
[203], Golub (1973) [132], Golub and Van Loan (1983) [135] and Kautsky and
Golub (1983) [192]. It produces a matrix J and at the same time constructs
the columns (x;)} which yield X = U7.

Actually, what we have described is an inverse version of the original Lanczos
algorithm.  This original algorithm solved the following problem: Given a
symmetric matrix A and a vector x; such that x7 x; = 1, compute a symmetric
tridiagonal matrix J and an orthogonal matrix X = [x1,Xa,...,X,] such that
A =XJIXT. In our use of the algorithm, we start with A = A.

We have defined a Jacobi matrix as a positive semi-definite symmetric tridi-
agonal matrix with strictly negative codiagonal. If the spectrum (\;)} satisfies
the inequalities (4.2.2), so that A\; > 0, then the J constructed by the Lanczos
algorithm from A = A will be a Jacobi matrix. =

Exercises 4.2
1. Show that the vectors x; constructed in the Lanczos algorithm satisfy
x!x; =0i; 4,j=12,...,n

even though this orthogonality is apparently established only for |i—j| < 1.



68 Chapter 4

2. Show that there cannot be two distinct Jacobi matrices J and J’' with
o(J) = 0(J’) and with the same values of the first components (u1;)} of
their normalised eigenvectors.

3. Rewrite the procedure described in equation (4.2.5) on, to solve the original
Lanczos problem.

4.3 Variants of the inverse problem for a Jacobi
matrix

First, we introduce some notation. Suppose A € M,,. The set of eigenvalues
of A, the spectrum of A is denoted by o(A). If A is symmetric, i.e., A € S,,
then o(A) is a sequence of real numbers (A;)7, where Ay <Ay < Az--- < A, If
M, K € S, then the set of eigenvalues of equation (3.1.1) is denoted by (M, K);
again it is a sequence of real numbers (\;)} satisfying A; < Ay <--- <\,

See Kautsky and Golub (1983) [192], deBoor and Saff (1986) [76] for a dis-
cussion that places the Jacobi matrix problem in a wider context. Friedland
and Melkman (1979) [94] discuss the inverse eigenvalue problem in the context
of non-negative matrices.

If A € S, the matrix obtained by deleting the ith row and column of A is
called a truncated matrix. It will sometimes be denoted by Aj;; its eigenvalues
will be denoted o(A;).

Now suppose that A € S, is a Jacobi matrix J, then its eigenvalues will be

distinct, and the eigenvalues o(J1) = (;)7 " will strictly interlace (\;)7}, i.e.,

0< A <y <Ag <o < g < Ay (4.3.1)

The problem of reconstructing J from o(J) and o(J;) seems to have been studied
first by Hochstadt (1967) [173]. He proved that there is at most one matrix J
with the required property. Hochstadt (1973) [176] attempted to construct this
unique Jacobi matrix, but he did not show that his method would always lead to
real values of the codiagonal elements b;. Hald (1976) [160] presented another
construction and showed that, in theory, it would always work provided that the
eigenvalues satisfied the interlacing condition (4.3.1). In practice, however, the
construction was found to break down due to loss of significant figures. Hald also
showed that Hochstadt’s construction will always lead to real b; provided that
(4.3.1) holds. Gray and Wilson (1976) [154] presented an alternative, inductive
construction of J. An independent uniqueness proof was given by Hald (1976)
[160].

In this section we shall present two methods for constructing J. The first
relies on the theory of orthogonal polynomials described in Section 3.2. The
second, which will later be generalised to inverse problems for band matrices,
relies on the Lanczos algorithm described in Section 4.2.

Note that we have chosen to define a Jacobi matrix so that it is positive
semi-definite. Many of the results require only the interlacing of the A’s and
the p’s, without any restriction on positivity.
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The first method is best described by supposing that o(J) = (A\;)7 and
o(3,) = (u;)7 ™" are known, and satisfy (4.3.1). Remember that J,, is obtained
by deleting the nth row and column of J. Now we form monic polynomials
p;(A\), rather than the polynomials P;(\) in equation (3.1.5). We form two

polynomials
n n—1

) =TI =2, s =TT~ ) (43.2)

=1 i=1

The polynomials are the nth and (n — 1)th monic polynomials of the sequence
of monic polynomials with weights given by equation (3.2.13), i.e.,

wi = 7/{Pn-1(Ai)pn (M)} (4.3.3)

and points (\;)7. In addition, they are the nth and (n — 1)th principal minors
of the matrix (A\I — J). The polynomials p,.()) therefore satisfy

Pr(A) = (A —a.)pr_1(\) — b2_1pr_a(N). (4.3.4)

Hald’s method of reconstructing J is as follows: he starts from p,(\), pr—1()\)
and constructs p,_2(\), and in the process finds a,, and b,,_1, by synthetic di-
vision. Then from p,_1(X), pp—2(A) he constructs p,_5(A\) and finds a,—; and
bn—2, and so on. The process is inherently unstable because the polynomials
Pn—2,Pn—3,---,p1 are found by successively cancelling the leading terms in the
preceding pair of polynomials; the process becomes unstable because of cancel-
lation of leading digits.

de Boor and Golub (1978) [75] proceed quite differently. Having found the
weights w; by using (4.3.3), they construct the polynomials in the natural order
by using the analysis of Section 3.2, i.e.,

p-1(A) =0, po(A) =1 (4.3.5)
pr(A) = (A= ar)pr—1(A) = 021 pra(N), (4.3.6)
with the numbers a,, b, computed by

(prflu)‘prfl) _ Hpr”
el 7 el

r=12....,n—1 (4.3.7)

Gy =

This process is numerically stable.

The only major difficulty encountered by de Boor and Golub lay in the
computation of the weights w;. In seeking to overcome this difficulty, they used
the reflection of J about its second diagonal. The matrix

00 ... 1
T = ' (4.3.8)
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is orthogonal and symmetric, so that T2 = I. It reverses the order of the rows
and the columns of J, i.e., it transforms J into

Gnp, _bnfl
_bnfl an—1 _bn72

J=TiT=| - . (4.3.9)
_bl

—b1 aq

If, therefore, the elements of J are denoted by @, b, then

Gr = Qp1—r, by = by

The leading principal minors of A\ —J are the trailing principal minors of \I —J;
we denote them by p,.(A\). We prove

Theorem 4.3.1 Fori=1,2,...,n
Pr1(N)Pr—1(A;) = (biba ... by_1)? = b2

Proof. For once we step out of sequence, and use the notation we will
introduce in Section 6.2. Let a denote the sequence {2,3,...,n — 1}, then

pnfl(Ai) = B(Ot U 1), ﬁnfl(ki) = B(Ot U n)

Using Sylvester’s theorem (Corollary 2 of Theorem 6.2.2), with B(«a) as pivotal
block, we obtain

B - B(aU1) B(aUl;aUn)
0= B(a)det(B) = B(aUl;aUn) B(aUn)
ie.,
0=pn1(A)Pn-1(Ni) = (b1ba...bp1)* m
This result means that the polynomials P, (), Drn—1(N),...,D51(A\),Po(A) are
the monic polynomials related to the weights

- _ Pa1(h) (4.3.10)

ﬁn—l(Al)ﬁ'/n,()\l) p;L(Az)
These weights are more easily constructed than those in (4.3.3). In this proce-
dure, the terms in the matrix J are computed in the order a1, by, @s, . .., bp_1, Gn,
i.e., in the order a,,bp—1,an—1,...,b1,a1.

The second method of constructing J is due to Golub and Boley (1977) [133].
See also de Boor and Saff (1986) [76]. It relies on the fact that, once we know
o(J) and o(J;) we may compute the vector x; of first components of the eigen-
vectors of J; these are the data needed for construction by the Lanczos algorithm
of Section 4.2. We can carry out the analysis for an arbitrary symmetric matrix

Wy
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A € S, rather than a Jacobi matrix. Barcilon (1978) [19] concentrated on the
eigenvectors corresponding to \; and g, rather than using the p; to find the
quantities x;1; his subsequent analysis did not lend itself to computation.

If A € S, then the eigenvalues of A; are the stationary values of u” Au
subject to u’u = 1 and the constraint u; = 0, i.e., u’e; = 0. Thus they are
the stationary values of

f=u"Au—uu-2vu'e, (4.3.11)
where e; = {1,0,...,0} and A, v are Lagrange parameters. The condition that
f be stationary yields

Au—)u—ve; =0. (4.3.12)

Since the eigenvectors u; of A span V,,, we may write
n
u=> au;, (4.3.13)
i=1

and then
n n
Au= Z o Au; = Z Aoy ug,
i=1 i=1

so that (4.3.12) becomes

n

Z()\l — )\)aiui = rvey,

i=1

and the orthogonality condition u;frui = 0,5 gives

— T, _ —
()\j — )\)Oéj = I/uj €1 = VU1; = VT,

where we have used (4.2.4). Substituting for «; in (4.3.13) we find

- Ti1
— 4.3.14
u u; N ( )
and the condition u; = 0, and uy; = z;1, yields the eigenvalue equation
2
a)” _ (4.3.15)

We note that if A is a Jacobi matrix, none of the coefficients z;; will be zero
(Ex. 3.3.1). The analysis of Section 2.9 shows that the roots (u;)} ™" of this
equation will then strictly interlace the (\;)}, as in (4.3.1).

Since x1 = {z11,%21,...,Tn1} and x; is the first column of the orthogonal
matrix X = U7, we have |[x1]|> =1 = """, (:1)?, so that we have the identity

-~ (za)? 1 (s — N
= Ai i X [T (i —A) (4.3.16)

i=1
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(Note that, for large A, both sides approach —1/A.) On multiplying (4.3.16)
through by (A; — A) and then putting A = A\; we find

n—1

o
M7 i=1,2,...,n (4.3.17)
Hj:l ()‘j - )‘i)

where’ indicates that the term j = 4 has been omitted. The interlacing condition
ensures that the right hand side of (4.3.17) is strictly positive for each ¢ =
1,2,...,n. This equation thus yields x;.

We stress the importance of the analysis in equations (4.3.11)-(4.3.17). It
shows that if A is an arbitrary symmetric matrix, then o(A) and o(A;) de-
termine the vector x; of first components of the normalised eigenvectors of A.
Conversely, 0(A) and x; determine o(Aq).

There is a third inverse problem which appears in a number of contexts.
Given two strictly increasing sequences (A;)} and (A])} with

(za)? =

0< A < AT <A <A< <A < A, (4.3.18)

determine J € S,, such that o(J) = (A7, and o(J*) = (A])}, where J* =
(a7 —a1)E11 +J. (The matrix J* differs from J only in the 1,1 position.)

Suppose A € S, is an arbitrary symmetric matrix, and that A* differs from
A only in the 1,1 position, i.e., A* = A + (a] ; — a1,1)E; 1. We will show that
o(A) and o(A*) determine x;. The eigenvalue equation for A* is

A*u=)u (4.3.19)

which we write
Au+(aj; —ay1)uie; = \u

Write N
u= Zaiui, (4.3.20)
i=1

so that equation (4.3.19) becomes

n
E /\iaiui CLI 1 —a1,1 u1e1 A E a;u;,
i=1

and therefore,
(A= Xi)a; = (a7 1 — a1,1)uruy;,
which when substituted into (4.3.20), yields

n
Uy,4U4

LY

u= (ail —a11)u1

Equating the first components on each side of their equation, we have

n 2

* Ly
1= (al}l — 0/1’1) E 3 :1}\"
i=1 '
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where ;1 = uy;. The roots of this equation are (A})7, so that

1 (a] ~_th oy (A 4321
_(a1,1—a1,1);>\_)\i—£[1 N, (4.3.21)

and therefore

)
(aiy —a)ah = =) [ < : ?) : (4.3.22)

By comparing the traces of A and A* we see that

n

ai—ars =Y (Aj =) >0, (4.3.23)
j=1

Thus, equation (4.3.22) expresses (z;1)? in terms of o(A) and o(A*), and the
interlacing condition (4.3.18) insures that (x;1)? will be positive. If we know
that A is a Jacobi matrix then, of course, we can use the Lanczos algorithm to
determine it. Note that nowhere in the analysis do we need the restriction that
A1 is non-negative; only the strict interlacing is needed.

A matrix A is said to be persymmetric if it is symmetric, and also symmetric
about the second diagonal, the one going from top right to bottom left. Thus
A is persymmetric if A given by (4.3.9) satisfies

A =A. (4.3.24)
If A is tridiagonal and persymmetric, then
Gr = Gpi1—ry, br =bp_p. (4.3.25)

The final inverse problem considered here concerns the reconstruction of a
persymmetric Jacobian matrix. Now we need only one spectrum, not two. We
prove

Theorem 4.3.2 There is a unique persymmetric Jacobi matriz J with o(J) =
(N)T, satisfying 0 < A\p < Ag < -+ < Ay

Proof. The simplest proof is perhaps to show that if the eigenvalues (\;)}
are known, then it is possible to find the weights for the construction of the
orthogonal polynomials p,.(A). Indeed if J is persymmetric then the minor
pr(A) is equal to p,(A). But then Theorem 4.3.1 shows that

[pn—l()\i)]2 = b27 Le., pn—1(>\z’) ==b
so that equation (4.3.10) yields
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Since the signs of p/,(\;) will alternate with ¢, then so must the signs in (4.3.26)
if the w; are to be positive. The magnitude of b is irrelevant to the construction
of the p.(A). See Hochstadt (1979) [182] for another variant of this inverse
eigenvalue problem. m

Exercises 4.3

1. Show that if B = A\, I —J, then
B(1,2,...,n—1; 2,3,....n) = (=)" Ybiby...b,_1.

2. Show that the x;; computed from (4.3.22) do satisfy
n
fol =1
i=1

3. If you like using a computer, then try to reconstruct a Jacobi matrix using
Hald’s method, or that of de Boor and Golub. Start with the matrix J
with

a;=2, b=1 i=12,....,.n—-1;, a,=2.

Set up recurrence relations to give (\;)} and (1;)7 " and use these as data

to reconstruct J.

4.4 Reconstructing a spring-mass system; by end
constraint

We may divide the problem of reconstructing an in-line spring-mass system into
three stages:

i) Formulate the problem as an inverse eigenvalue problem for a Jacobi matrix
J.

ii) Solve this problem and find J.
iii) Recover the mass and stiffness matrices M and K from J.

Stage i) was discussed in Section 3.1; we repeat the analysis here. For an
in-line system, the frequency equation governing free vibration is

(K — AM)y = 0. (4.4.1)

For the system shown in Figure 4.4.1 the matrices K and M are given explicitly
in (2.2.7). We write M = D?, where D = diag(d;,da, ..., d,), put Dy = u and
reduce (4.4.1) to

(J=Au=0, (4.4.2)

where
J=D'KD % (4.4.3)
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Stage ii) was the subject of Section 4.3. Given the spectra of the systems
in Figure 4.4.1a) and b), i.e., o(J) = (A} and o(J1) = (i;)7 ", we construct
x1, the vector of first components of the eigenvectors u; of (4.4.2), and then
construct J by using the Lanczos algorithm of Section 4.2.

k, ky

k, k,

)

Figure 4.4.1 - Two possible ways of constraining the end of a fized-free system

It remains to consider Stage iii). By using the explicit form of K in equation
(2.2.7) we can verify that if

e={1,1,...,1}, (4.4.4)

then
Ke = {k1,0,0,...,0}. (4.4.5)

Physically, this equation states that a static force k; applied to mass m, will
extend the first spring by unit amount and at the same time displace all the
remaining masses ms, ms, . .., M, by unit amount to the right, as if everything
to the right of m, were a rigid body. Since K = DJD we have

DJDe = DID{1,1,...,1} = {k1,0,0,...,0},



76 Chapter 4

ie.,

Jd =J3{dy,ds,....dy} = {k1/dr,0,0,...,0}. (4.4.6)

(Note that D = diag(dy,ds,...,d,), while d = {dy,ds,...,d,}.) We need to
be sure that d so calculated will be a strictly positive vector. We prove

Theorem 4.4.1 IfJ € S, is a non-singular Jacobi matriz, then I~ is a strictly
positive matriz, meaning that each element of I~ is strictly positive; we write
this 371 > 0.

Proof. We use induction. Write

a —bT
J:[_]lo 3, } b = {b1,0,...,0}.

We will have achieved our goal if we can show that if Jfl > 0 then J=! > 0.

Suppose
hi kT
-1 _ 1
A
then
JJ_l_ al —bT h1 kT o 1 0
Tl -b k H| [0 1
so that

bkl +J H=1, —bh +J;k=0.

Since J is a non-singular Jacobi matrix, it is positive definite; so therefore is
J~1 by Ex. 1.4.2; therefore hy > 0, and so k = Jl_lbhl > 0. (Note that the
product of J fl, which is strictly positive by hypothesis, and the non-negative
non-zero vector b, is strictly positive.) Therefore,

H=J "k +J;' >0

(Note that since Jfl > 0, all we need in order to prove that H > 0, is that
bk? >0, i.e., k > 0; actually though, k > 0.) Thus H > 0,k > 0 and h; >0
sothat J71 > 0. m

We may now return to equation (4.4.6). Take the unique reconstructed
non-singular J and solve

Jx = J{z1,292,...,2,} = {1,0,...,0} =ey.

The solution x is strictly positive: x > 0. Thus the solution of equation (4.4.6)
is
d = cx,

for some as yet unknown ¢ > 0. The total mass of the system is

n n
m=Y m=y di =ld|]” = |Ix||*.
i=1 i=1
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Thus, knowing m and ||x||?, we can find ¢ > 0 and d, and thus D. Then
K = DJD, and because K satisfies (4.4.5), it necessarily (Ex. 4.4.1) has the

form K — EKE' given in equation (2.2.12), where K = diag(ky, ka, ..., k).
This completes the reconstruction.

The reconstruction from the spectra of a) and ¢) proceeds along similar lines;
we merely renumber the masses starting from the right (Ex. 4.4.2).

This reconstruction may be used in a reversed situation: it shows that any
non-singular Jacobi matrix J may be expressed uniquely as

J=D 'EKE D!, (4.4.7)

where D, K are strictly positive diagonal matrices and ||D|| = 1; this corresponds
to m =1 in equation (4.4.6).

Now we consider the fixed-fixed case shown in Figure 4.4.2a; there is essen-
tially only one constraint we can apply, to m,,, as shown in Figure 4.4.2b).

kl kz kn+l
m1 _/\/\/\_ m2 cee m
a)
" i b,
.Y, I I Nl
b)

Figure 4.4.2 - A fixed-fized system, and a constrained system
We start our analysis as before. The stiffness matrix for the system in a) is

ki+ky  —ko
—ks ko + ks —k3
K = : : : : (4.4.8)
—k,
_kn kn + kn+1
Knowing the spectra (A\;) and (;)7 " of the systems a) and b) we can construct
J =D KD ! where again M = D2. Now however

K{1,1,...,1} = {k1,0,0,...,0,kny1} : (4.4.9)
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this states that in order to produce unit static displacements of the masses, we
must apply two forces, k; at my and k, 41 at m,. Thus

DJD{I, 1,..., 1} =kie; + knyien
so that
Jd = J{dl, da,..., dn} = (kl/d1)61 + (kn+1/dn)e,L. (4410)

First, consider the equation
Jy =e,. (4.4.11)

simple algebra shows that the solution is
Y; = bibi—i-l . bn—lpi—l/]Dia (4412)

where P; is the ith leading principal minor of J (see equation (1.4.6). Since J
is positive definite, equation (4.4.12) confirms that the solution y is positive, as
predicted by Theorem 4.4.1. We can find the solution of

Jx=e (4.4.13)

in a similar way (Ex. 4.4.3); all we need here is that, according to Theorem
4.4.1,x > 0.
Using x and y we may write the solution of (4.4.10) as

d= (k’l/d1>X + (kn+1/dn)y (4414)
In particular,

dn = (kl/dl)wn"'(kn-&-l/dn)yn

kl kn+1 Pn—l
— . 4.4.15
&t (44.15)

But P, = [/, \i and P, =[]/} s, so that we can write equation (4.4.15)
as n—1

My, — kn+1 Hzn:]_ i _ kldnxn

Hi:l Ai d

Now consider this equation. The system in Figure 4.4.2a) has 2n+1 parameters.
Choose one of the parameters, and divide the remaining 2n parameters by it;
we obtain 2n ratios. The two spectra (\;)} and (u;)7 ™' provide 2n — 1 ratios,
so one more ratio is needed. The chosen parameter is merely a scaling factor;
the total mass, or alternatively one individual mass, say m,, would determine
it. If we take m,, as known, then equation (4.4.16) states that the required 2nth

ratio, k,41/m, must be chosen so that

(4.4.16)

Fut iy A (4.4.17)

0< L0
M T2
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This inequality was first pointed out by Nylen and Uhlig (1997a) [253]. Once
we have chosen k,,1/m,, satisfying this inequality, then equation (4.4.16) deter-
mines k; /dy, since x,, is known, and d,, = mé. With ky41/d, and k1 /d; known,
equation (4.4.14) gives d and hence D and K = D='JD~'. The reconstruction
is complete.

The third system is free-free, as shown in Figure 4.4.3a); constraining m; we
obtain the fixed-free system in Figure 4.4.3b).

ky ke

m NN o L o V]

b)
Figure 4.4.3 - A constraint is applied to a free-free system

The pair is essentially the same as the pair in Figure 4.4.1, with k; = 0. The
analysis starts as before; the only difference is that the lowest frequency of a) is
A1 = 0. Still, from o(J) and o(J1) we can construct J uniquely, but now J will
be singular, i.e., positive semi-definite.

The stiffness matrix K of system a) will satisfy

K{1,1,...,1} =0. (4.4.18)
Now we need a result like Theorem 4.4.1 which covers the case when J is singular.
It is

Theorem 4.4.2 If J is a singular Jacobi matrix then the equation Jx = 0 has
a unique strictly positive solution x satisfying ||x|| = 1.

The proof is straightforward; see Ex. 4.4.4.
Now we may complete the reconstruction. We take J and write K = DJD,
then (4.4.18) becomes
Ke = DJDe =DJd = 0.

Thus d = cx where x is governed by Theorem 4.4.2, and if the total mass m =1,
then ¢ = 1. This gives d and hence D and

K = DJD = EKE’
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where K = diag(ky,ka, ..., ky). Again, we can use this result to show that an
arbitrary singular Jacobi matrix may be written

J=D 'EKE D' (4.4.19)

where now K has first diagonal entry zero.

Exercises 4.4

1. Show that if Ke = kje;, and E~! is given by (2.2.10), then KE T is
bidiagonal and E-'KE ™7 is diagonal.

2. Reconstruct the system of Figure 4.4.1a) from the spectra (\;)7 and (u;)} !

of a) and c) respectively.

3. Use the solution (4.4.12) of equation (4.4.11), and the transformation from
J to J given in (4.3.9) to find the solution to equation (4.4.13).

4. Provide a constructive proof of Theorem 4.4.2, by writing x in terms of
the principal minors of J.

5. Suppose that the eigenvalues ()\;)} of the system in Figure 4.4.2a are
known, as are the eigenvalues (\})7 when the stiffness k,,; is replaced
by some unknown stiffness & ;. Show that there is a one-parameter
family of systems, each member of which has the stated eigenvalues.

6. Show that if J is a non-singular Jacobi matrix, then its inverse C = J ~1
has the form

U1v1 U1V2 Lo ULYy
C— U1V U2V ... UV
U1V  UVUp ... UpUp

ie.,

e = 1 W 1< j
E U;V; ’LZ]

and that (u;)T, (v;)} are strictly positive, and satisfy

Ul U2 U
b G- g

v T vz Un

This result is quoted in Gantmacher and Krein (1950) [98], but may have
been known earlier.
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4.5 Reconstruction by using modification

The simplest way to modify a system is to attach a spring at a free end, thus
going from the system in Figure 4.5.1a) to that in Figure 4.5.1b). (We have
renumbered the masses so that the spring is attached at my.)

m1 _/\/\/\_ m2 N — n/fq _/\/\/\_
kO kl kn
M e T M

Figure 4.5.1 - A spring is added to the system

This is an example of the analysis of Section 4.3. The spectra for a) and
b) are o(J) = (\)7 and o(J*) = (A\])7 respectively. Because we have added

i

stiffness to the system, we have A} > \;, as in (4.3.21).

i) Use the trace condition to find

n

ai—ar =Y (\F =)

i=1
ii) Use a1 = k1/mq and af = (k1 + ko)/ma to find ko/mq = af — a;.

iii) Use aj —a; and equation (4.3.22) to find 22, and hence x; = {z11, 721, ...,
xnl}.

iv) Use the Lanczos algorithm to find J.

v) Use a variant of the analysis given in Section 4.4 to untangle K and M
from J.

As an alternative modification we may add mass to the system, specifically
a mass mj to mi. In this case it is easier to work initially with the original
equation (4.4.1) than with the reduced equation (4.4.2). Again, we start with
the free-fixed system of Figure 4.5.1a. The eigenvalue problem for a) is

Ky, = \\My,.
That for the modified system is
Ky = \M"y, (4.5.1)
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where M* = M + mJE; ;. Since we have added mass to the system, the
eigenvalues must satisfy

0<AT <A <o <AL < A (4.5.2)

Express y as a combination of the y;:
n
y = Z a;yi, (4.5.3)
i=1

then
n n
Ky = ZaiKyi = Z Aio; My,
i=1 i=1

and
n

M*y = Z%‘Myi +miE1y,
i=1

so that equation (4.5.1) becomes
n n
Z AioMy,; = A ZaiMyi + AmiE; 1y.
i=1 i=1
Premultiply both sides by yj , using the orthonormality condition y; ™My, = 045
Oéj)\j = ij)\ —+ )\m*{yljyl,

and on substituting for ¢ in (4.5.3) and equating the first elements of the vectors
on each side, we find

ot S )? 454
_mlzx_x (4.5.4)
i=1 "

In order to use this equation to obtain the first components u1; of the eigenvectors
u; of the reduced equation, for use in the Lanczos equation, we need to express
y1; in terms of uy;. The equation Dy = u gives diy1; = u1; = x;1 that we may

write (4.5.4) as
~ (wq1)? mj
1= = —.
O‘Z NN YT

Since the roots of the equation are (A])} we have

ZEzl ?:1 )\;F - A
1-)a Z N H?—l((/\z— — /\)). (4.5.5)

Equating both sides for A = 0 and A — oo, we have

1= H(/\ /i), 1+o¢2x11—c.

i=1
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The interlacing condition (4.5.2) gives
c= [N/
i=1

The orthonormality condition gives Y 1, 2% = 1, so that mj/m; =a=c—1 >
0. Finally, multiplying (4.5.5) throughout by A; — A and then putting A = \;

we find N .
“Nioxh =[] —A H (Aj — i) (4.5.6)

The interlacing condition (4.5.2) ensures that z2 > 0. Now we use x; in the
Lanczos algorithm, and the untangling procedure as before.

There are still more ways in which to obtain second spectrum, for which see
Nylen and Uhlig (1997a) [253], Nylen and Uhlig (1997b) [254]. Ram (1993) [276]
supposes that the system of Figure 4.5.1 is modified by adding both a mass m
to my and a spring kg. He makes use of some simple but powerful results found
in Ram and Blech (1991) [277].

We close this section by supposing that an oscillating force F'sin wt is applied
to the free end of the spring-mass system of Figure 4.5.1a). The matrix equation
governing the response y sin wt is

(K- M)y = Fe.
Write

n
y = Z QiYi,
i=1

where y; is the ith eigenvector, normalised so that

yi My; = 4.
We obtain
(Ai = Na; = Fys,
and hence "
Z 1’Ly2
so that
=F . 5.
n=FL NS (4.5.7)

When the eigenvalue problem is reduced to standard, J, form, then Dy = u, so
that diy1; = u1; = x;1 so that we may write

n 2

_ FZ T3

m A —
L)

(4.5.8)
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where, as usual, x; = {x11, Z21,...,Zn1} is the vector of first components of the
eigenvectors of J.

The quantity y,/F is called the frequency response function, specifically the
frequency response function for the displacement y; due to a unit force applied
at y;. This function may also be identified as a direct receptance for y;, as
described, for instance, in Bishop and Johnson (1960) [34]. The two spectra
o(J) = ()} and o(Jy) = (w;)}~ " are the poles and zeros of the response
function. The interlacing of these two spectra may thus be interpreted as the
interlacing of the poles and zeros of the response function, a result which is well
known in control theory. The result of Section 4.3 may thus be stated as follows:
the response function, and specifically its poles and zeros, uniquely determines
the matrix J. As we have seen, once we know J and the form of the stiffness
matrix K, we may untangle M and K from J. See Gladwell and Gbadeyan
(1985) [106] for an alternative treatment.

An experimental - theory study of the problem of reconstructing a spring-
mass system from frequency response data for an actual system may be found
in Gladwell and Movahhedy (1995) [123] and Movahhedy, Ismail and Gladwell
(1995) [242].

4.6 Persymmetric systems

It was shown in Section 4.3 that a persymmetric Jacobi matrix J can be recon-
structed uniquely from its eigenvalues. We shall now consider some physical
problems relating to persymmetric matrices. Figure 4.6.1 shows a system of 2n
masses connected by (2n + 1) springs and fixed at each end. Suppose that the
system is symmetrical about the mid point, so that

My = Mapn4+1—r, kr = k2n+1,T, (’I“ = 1, 2, ce ,n). (461)

The odd numbered principal modes of the system will be symmetrical about the
mid-point; they will thus be the principal modes of one half (say the left-hand
half) of the system with the mid-point of the system free, as in Figure 4.6.2(a).
Thus the odd numbered eigenvalues A1, As, ..., Aa,_1 of the complete system
will be the eigenvalues of the left-hand half under the conditions fixed-free, i.e.,

/\21‘_1 = /\i7 i = 1,2,...,72. (462)

kl k2 k2n k2n+l

N R AVANE N AVAN

2n-1 2n

Figure 4.6.1 - A symmetrical system with 2n-masses
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On the other hand, the even-numbered principal modes of the system will
be antisymmetrical about the mid-point so that the even-numbered eigenvalues
N2, A4, - -, Ao Will be the eigenvalues of the left-hand half under the condition
fixed-fixed, as in Figure 4.6.2(b).

(V= v/

ANEANEAN
N~

.
£
<

(b)
Figure 4.6.2(a) The odd numbered modes are symmetrical, (b) The even
numbered ones are antisymmetrical.

Thus
Na; 2)\:, 1= 1,2,...,’[1. (463)

This means that the left-hand half, and hence the whole system may be uniquely
constructed, using the analysis of Section 4.4 from the eigenvalues A1, ..., Aop
and the total mass.

Figure 4.6.3 shows a symmetrical system with 2n — 1 masses and 2n springs.
Now the odd-numbered symmetrical modes will be the modes of the left-hand
half with (m.,/2) at the end and free there, as in Figure 4.6.4(a). On the other
hand, the even-numbered, antisymmetrical modes will be the modes of left-hand
half with m,, fixed as in Figure 4.6.4(b). Thus

/\21',1 == )\i, 1= 1, 2, ey Ny (464)

/\21':/111'7 22172a7n_1 (465)
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kl kZ an

1 (X

Figure 4.6.3 - A symmetrical system with 2n — 1 masses.

A AL AN
IAVAAvAAvas:

(a)

A %\v/\k

(b)
Figure 4.6.4 - (a) The odd numbered modes are symmetrical. (b) The even
numbered modes are antisymmetrical.

NN

4.7 Inverse generalised eigenvalue problems

In this section we consider how we can reconstruct a finite element model from
spectral data.
The eigenvalue problem is

(K — AM)y =0, (4.7.1)

where as in (2.4.10), both K and M are symmetric tridiagonal, K with negative
codiagonal, M with positive codiagonal. Since one spectrum is insufficient even
to reconstruct one tridiagonal matrix, it is certainly insufficient to reconstruct
two. We therefore assume Gladwell (1999) [127] that M can be written in terms
of K:

M=D?-cK, ¢>0, (4.7.2)
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where D is an as yet undetermined diagonal matrix with positive entries, and ¢
is an arbitrary positive number. Since K has negative codiagonal, M will have
positive codiagonal. Now

K-AM = K-AD?-cK)=(1+c\K— AD?
= 1+ MN{K-vD?}, v=X(1+c\).

Thus (4.7.1) reduces to
(K —vD?y =0, (4.7.3)

which, as in Section 3.1, we can reduce to
(J—=vDu=0, (4.7.4)

where J =D 'KD ! and u=D"ly.

Suppose that (4.7.1) has specified eigenvalues (A;)}, where \; > 0, then J
has eigenvalues (v;)} where v; = A\;/(1 4+ ¢)\;) > 0, showing that J, and thus K,
is positive semi-definite. The matrix M can be written

M =D(I - cJ)D (4.7.5)

and the matrix I — ¢J has eigenvalues 1 — cv; = 1/(1 + ¢);) > 0, showing that
M is positive definite.

To reconstruct J we need a second spectrum. If the eigenvalues of (4.7.1)
under the constraint u, = 0 are (u;)7~", then the eigenvalues of (4.7.4) under

the same constraint will be o; = p;/(1 + cp;). We note that the interlacing
A<y <A< < g < Ay (4.7.6)
yields the interlacing
V1 <01 <V < < 0opo1 < Vp. (4.7.7)

Having found J, we need to find D so that K = DJD satisfies the characteristic
stiffness equation (4.4.9). This can be done exactly as in Section 4.4. Gladwell
(1999) [127] finds wider families of systems with the given spectra. See Ram and
Gladwell (1994) [289] for a different approach to reconstructing a finite element
model of a rod.

4.8 Interior point reconstruction

Suppose, following Gladwell and Willms (1988) [113], we have a spring-mass
system with n masses, under some end conditions, as in Figure 4.8.1(a). (We
exclude the free-free condition at this stage.) If a sinusoidal force F'sinwt is
applied to mass my,4+1, where 0 < m < n — 1, then the response at mass m,, 1
may be calculated as in equation (4.5.7):

n

(mm 1,i)2
i=1
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The poles of this response function are the eigenvalues (A;)} of the whole system,
A. The zeros of the response function will be the eigenvalues of the system
constrained so that x,,+1 = 0, i.e., they will be eigenvalues of the systems, B,
on the left, or C, on the right, of z,,+1, as shown in Figure 4.8.1(b). Different
ways of assigning the eigenvalues of the constrained system to the two subsystems
B and C will lead to different reconstructed systems. When this assignment
has been made, then we know the eigenvalues (\;)7, (u;)7* and (v;)} of systems
A, B, C respectively; p = n—m—1. Within themselves these sets of eigenvalues
must be distinct. There are two cases.

a) The constrained system has no double eigenvalues. That is, all the
(u;)and (v;)% are distinct; if they are arranged in ascending order and
relabelled (fi;)7 ™!, they will satisfy

A<y <Ao< < iy < Ap;

this is equivalent to the statement that no eigenvector x; of J has a node
at Tpyy1, i€, Typy1,; #FO0foralli=1,2,...,n.

b) Two members of a pair (y1;,vy) are identical; now there is an 4 such that
A = Hj = Vi; this will occur iff @,,,41,; = 0. There can be more than one
such pair.

To analyse the situation we suppose that the eigenvalue equation (4.4.1) has
been reduced to normal form, (4.4.2), and we partition J as

m 1 P
_m B —b,, 0
I= BT aps -l | (4.8.1)
P 0 —cm+1 C
where bl = {0,0,...,b,}, ¢l = {bm1,0,0,...,0}.
kl k2 kn
ml m2 LN nzl
a)
kl km+l kn
m A LN IL/\/\ N
m+ n
b)

Figure 4.8.1 - The mass mu,+1 s constrained.
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Now we consider the principal minors of A —J. We denote the leading
principal minors by p;(A) and the trailing principal minors by ¢;(A). The Laplace
expansions of p,(A) = det(AI — J) using the first m and first m + 1 rows are

Pn(N) = PN pr1(A) = 02 pm—1(N)ap(N), (4.8.2)
prrb-i-l(/\)qp()‘) - b%H»lpm()‘)QP—l(/\)' (483)
We know that
pn()\) :H(A_Al)7 pm(/\) = H()\_llfj), qp()\) = H(/\_Vk)’
i=1 j=1 k=1

and thus equation (4.8.2), (4.8.3) give
Palt;) = =Y pm—1 (1) ap (117), (4.8.4)

pn(Vk) = _bzn—o—lpﬂ”L(Vk)qul(Vk)' (4'8~5)

In case (a), all the quantities appearing in the latter equations are non-zero,
so that, apart from the factors b2, and b2, 11, these equations yield pm_l(uj) and
gp—1(vk), respectively. These quantities are just what is needed to compute the
matrices B and C, respectively, using Forsythe’s algorithm in Section 3.2. The
weights (w;), for B are given by

b2, (w)y = b2 pmo1(1t;)/0h (1),
= —pa(;)/ [P (185) 5 (1)), (4.8.6)

while those for C are

b72n 1(wk)0 = m+14p 1(” )/ ( )
i - —pn?m/['( P (1] (487)

To verify that the weights (w;);, are positive, we suppose that p; has s Vs to
its left, and p — s to its right; then vjs < p; <vjisi1. If a number x may be
written 2 = (—1)"¢, where ¢ > 0, then we say sgn(z) =n. Now we can easily
verify that

sgnlpn(1)s Pr(t;), @p(p)l = [0 —j—s,m —j,p— s

so that . .
sgn(w;)y = 1+ —j—s)+(m—j)+p—s
= 2n—2j —2s = even

so that (w;), > 0; we may prove similarly that (wy). > 0.

Thus B may be reconstructed uniquely. At the end, p,,—1(A) will be known,
and so the p,,—1(p;) will be known. Any one of these values may be substituted
into (4.8.4) to yield b2,. The matrix C and b2, 41 may be found in a similar
manner.
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In case (b) there is a common factor A — A\; = A — pi; = A — vy, in each of the
equations (4.8.2) and (4.8.3). Cancel this factor and then put A = \;. Since

Pmi1(A) = (A= amy1)Pm(A) — b?npm—l(A):
Gr1(A) = (A =am1)gp(N) — bgn—&-lqz)—l(/\)a
we have )
pm+1(,uj) = _bmpmfl(ﬂj)v
Gr1(vr) = —=bhi1dp1(Vk),

and thus both equations (4.8.2) and (4.8.3) reduce to

(i) = =051 (1)@ (k) = 312 (1) 0p—1 (V). (4.8.8)

This is the single equation that replaces the pair of equations (4.8.4) and (4.8.5)
for the common eigenvalue. Using (4.8.6) and (4.8.7), we may write (4.8.8) as

We = ~0, 00/ [ (1) ()] = B2 0300+ B (), (48.9)

and we note that W; is a positive quantity. Now we proceed as follows to find the
family of Jacobi matrices having the specified eigenvalues. Choose « € (0, %)
and put

b2, (w;j)p = Wicos® a, b2, (wy). = W;sin® a.

If there is more than one triple of common eigenvalues, then this procedure may
be followed for each. Combine these weights with those corresponding to the
distinct eigenvalues, and compute B and C. At the final stage p,,—1(\) and
@p—1(X) will be known, so that b2, and b2, ,; may be found from equations (4.8.4)
and (4.8.5) for one of the distinct eigenvalues, and there will be at least one, as
before.

There is an alternative procedure which elucidates the situation in which
one or more triples A;, u;, v are equal, and which uses the Lanczos algorithm.
Express the eigenvalue problem for J in (4.8.1) in terms of the normalised eigen-
vectors (y;)7* and (z;)} of B and C respectively. Thus

m p

X = im(ijYj) + Zmy1€myr + jp(X: QkZk)
j=1 k=1

where I, = [16”] and J p= [I(l] The eigenvalue problem becomes

)\ - /,L]_ _81 i [ pl ]
A= Hom —Sm Pm
=S$1  tt =Sm A—Qmy1  —t1 o =ty Tm+1 | =0
—tl A — U1 q1
L —tp A—vp | 4 |
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where
sj = bmym,j, t = bmt121,k- (4.8.11)
Thus
(A /J'j) — S$jTm+1 _O j:1727"'ama
()\fz/k)qk —tpTm+1 =0, k=1,2,...,p,
so that

m 82- P t2
m _)\i J k m 7;:0, .:1,..., .
{CL +1 +J:ZI)\Z*,LL] +;)\ika}x +1, 1 n

In case (a) Typmy1, # 0;i=1,2,...,n, so that

t% _ —pn(N)
PR B w7 MONTREY (48.12)

which yields

9 _pn(,UJj) 9 *pn(l/k)
2=yl o2 Pk (4.8.13)
T ()’ P (vi)
for j = 1,2,...,m;k = 1,2,...,p, in agreement with (4.8.6), (4.8.7). Now
b2, b2, 11 may be Computed from
b= 53, bhi= Ztk (4.8.14)
j=1

With (ym,, ;)7 and (z1,%)} known, from equations (4.8.11)-(4.8.14), B and C may
be computed by using the Lanczos algorithm.

In case (b), suppose that there are r > 1 triples {Xig, /14, Vkq}, ¢ = 1,2,...,7
such that Ay = p;, = vig, then

S?q + tiq
=1

j=1

has, as its m+p—7r+1 = n — 2 roots, the n — r non-degenerate \;. In equation
(4.8.15), *means that the degenerate triples are omitted. Now the separate s3
and ¢7, and the values W, = s?q + tiq for the degenerate modes will be known.
Thus as before
s?q + tﬁq =Wy, s?q = W, cos® ay, tiq = W,sin® o

where W, is defined as in (4.8.9). With the «, chosen, the s?q and t%q are all
known. Equation (4.8.14) yields b2, and b2, ,, as functions of the parameters
{ag}7 (and note that b2, + b2, is invariant) so that the (ym, ;)7 and (21,;)} are
known, and B and C may be calculated from the Lanczos algorithm.
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An alternative approach to the interior reconstruction problem may be found
in Nylen and Uhlig (1997a) [253].

The mass-spring models considered in this chapter are very similar to the
shear building model used extensively by Takewaki and his coworkers. They
have formulated various hybrid inverse problems in which part of a structure
is given and part is yet to be found in order to yield a structure with specified
spectral (eigenvalue or modal) properties. Full, definitive description of these
problems and their use in structural design may be found in the monograph
Takewaki (2000) [321]. Among the original papers most closely related to the
concerns of this chapter are the following: Takewaki and Nakamura (1995)
[317], Takewaki, Nakamura and Arita (1996) [318] and Takewaki and Nakamura
(1997) [319], Takewari (1999) [320].



Chapter 5

Inverse Problems for Some
More (General Systems

Words differently arranged have a different meaning, and meanings differently
arranged have different effects.
Pascal’s Pensées, 23

5.1 Introduction: graph theory

The inverse problems considered in Chapter 4 are special, simply because Jacobi
matrices are special matrices. In this chapter we will consider some slightly more
general problems but must admit that there are still only a few problems that
we have been able to solve.

The special feature of a Jacobi matrix is its structure: it is tridiagonal,
with strictly negative codiagonal. (It is also positive semi-definite, but that is
another matter.) The structure of the matrix J in equation (4.4.2) is related
to the structures of K and M in (4.4.1); K is tridiagonal while M is diagonal.
The structures of K and M, in turn, derive from the structure of the system, an
in-line mass system, to which they belong. K, the stiffness matrix, relates to
the stiffnesses, the connectors, between masses. K is tridiagonal because each
interior mass m; 2 < ¢ < n — 1 is connected only to its immediate neighbours
m;—1 and m;1; the end masses m; and m,, each have just one neighbour ms or
m,, respectively. The natural tool for describing and analysing the structure of
a system is graph theory.

This is not the place to prove any theorems in graph theory, but it is useful to
introduce some of the basic concepts. A graph G is a set of vertices, connected
by edges. The set of vertices is called the vertexr set, and is denoted by V; the
set of edges is called the edge set, £. Figure 5.1.1 shows a graph. This is
actually an example of a simple, undirected graph. It is simple because there
is at most one edge connecting any two vertices; the edge connecting vertices
and j is denoted by (4,7). The graph is undirected because there is no preferred

93
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direction associated with an edge. Henceforth, the terms graph will be used to
mean a simple, undirected graph.
The adjacency matriz A of a graph G is the symmetric matrix defined by

a;;j = 1 iffi#jand (z,5) €€,
= 0 otherwise. (5.1.1)

The adjacency matrix for the graph in Figure 5.1.1 is

01 1 00

1 0 1 0
A=|1 10 1 1

00 1 01

00 1 10

1

4
3

5
Figure 5.1.1 - A graph.

With any symmetric matrix A we may associate a graph; the rule is
if i # j then (¢,7) € € iff a;; # 0. (5.1.2)

Using this rule we see that the graph associated with a Jacobi matrix is an
(unbroken) path, as in Figure 5.1.2. The path is clearly one of the simplest
graphs.

*——eo—o
1 2 3 n—-1 n

Figure 5.1.2 - The graph associated with a Jacobi matriz

Another simple graph is a star on n vertices, shown in Figure 5.1.3.

3

n

n-1
Figure 5.1.3 - A star on n vertices
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A (symmetric) bordered diagonal matrix B has a star on n vertices as its
associated graph.

aq i)l N l;n,1
b a

B=| (5.1.3)
67171 Qnp

A periodic Jacobi matrix is one of the form

aq bl bn
b1 a9 bg
Jpor = . (5.1.4)
bnfl
b’n bn—l Ganp,

It is tridiagonal except for the terms b,, in the top right and bottom left. The
underlying matrix is a ring on n vertices as shown in Figure 5.1.4.

Figure 5.1.4 - A ring on n vertices

The graph associated with a pentadiagonal matrix, such as occurred in Sec-
tion 2.3 in the analysis of the vibration of a beam, is a strut, as shown in Figure
5.1.5.

2 4 oo e n_2 n

Figure 5.1.5 - The strut on n (even) vertices is the underlying graph of a
pentadiagonal matrix
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The graph associated with a 2 x 2 block tridiagonal matrix is also a strut,
but now one with double connections, as shown in Figure 5.1.6.

1 3 n-3 r.—l
j J [ n[2 n

Figure 5.1.6 - The graph underlying a 2 x 2 block tridiagonal matrix

The graphs shown in Figs. 5.1.1-5.1.6 are all connected graphs: there is a
chain consisting of a sequence of edges connecting any one vertex to any other
vertex. Note that the intersections of the diagonals in Figure 5.1.6 are not
vertices of the graph.

The graphs shown in Figure 5.1.7a), b) are disconnected.

1 3

4 5
a)

1 4
/3<\
7 5

b)

Figure 5.1.7 - Renumbering does not essentially change a graph

In order to test whether the underlying graph of a given (symmetric) matrix
is connected or not, we note that renumbering the vertices of a graph does not
change the essential character of a graph; the graphs a) and b) in Figure 5.1.7 are
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essentially the same. Renumbering the vertices of a graph leads to a rearranging
of the rows and of the columns of any (symmetric) matrix based on that graph.
When a graph is disconnected, it may be partitioned, as in Figure 5.1.7a) into a
set of connected subgraphs. Then we can always rearrange the numbering, as
in b) so that vertex numbers in any one connected subgraph form a consecutive
sequence. The adjacency matrices of the graphs a) and b) are

00010 0 10 0 0
0010 1 1 0/0 0 0
Al=l0 100 1|, A=|0 0[0 1 1
1000 0 0 0ol1 0 1
01100 0 0ol1 1 0

We see, in this example, that when the vertices are renumbered so that each
connected subgraph has consecutive numbering, then the adjacency matrix splits
into two separate submatrices: such a (symmetric) matrix is said to be reducible.
A symmetric matrix A is said to be irreducible iff it cannot be transformed to

the form
B|O

by any rearrangement of rows and columns. If it is reducible, then it can be
transformed to the form (5.1.5), and of course B and C may perhaps themselves
be reduced further. Note: The concepts of connectedness of a directed graph,
and the corresponding concept of irreducibility of a general (not necessarily
symmetric) matrix, are more complex than those described here. See Horn and
Johnson (1985) [183] Section 6.2.21.

Now we may state the general result.

Theorem 5.1.1 The (symmetric) matriz A is irreducible iff its underlying graph
1s connected.

It is easy to check that if a spring (other than k) is removed from a spring
mass system such as that in Figure 4.4.1, then the underlying graph becomes
disconnected, and the stiffness matrix becomes reducible.

A tree is a special kind of connected graph: one which has no circuits. Now
there is a unique chain of edges connecting any one vertex to any other. The
path and the star are both trees, but a ring, see Figure 5.1.4, is not a tree. A
connected graph has one or more spanning trees. If G is a connected graph with
vertex set V, then a spanning tree S of G is a maximal tree with the vertex set
V; if any more edges in £ were added to S then it would cease to be a tree: it
would have a circuit. Figure 5.1.8 shows three possible spanning trees for the
graph G in Figure 5.1.1.
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2 5 2 5 2 5
Figure 5.1.8 - Three spanning trees for the graph in Figure 5.1.1.

It may be proved that all the spanning trees of a given graph G have the
same number of edges.

Nabben (2001) [243], in a wide ranging paper, discusses Green’s matrices for
trees.

5.2 Matrix transformations

In the first part of this book we are concerned very largely with matrix eigenvalue
problems. One of the basic questions we face is this: ‘What operations, i.e.,
transformations, may we apply to a matrix, or a matrix pair, which will leave
its eigenvalues unchanged, i.e., invariant?” We now discuss this question.

Suppose C, A € M,,. The set of matrices C — AA is called the matriz pencil
based on the pair (C, A). As stated in Section 1.4, the eigenvalues of the pair
(C, A) are the values of A for which the equation

(C—=XA)x=0
has a non-trivial solution x € V,,. The eigenvalues are the roots of
det(C — MA) = 0.
Suppose P, R € M,, are constant matrices, i.e., they are independent of A\. Since
det(PCR — APAR) = det(P) - det(C — AA) - det(R)

we may deduce that if P, R are non-singular, so that det(P) # 0, det(R) # 0,
then
det(PCR — APAR) = 0 iff det(C — AA) =0,

so that the transformation ‘premultiply by P, and postmultiply by R’ leaves the
eigenvalues invariant. The transformation is called an equivalence transforma-
tion. It is a special equivalence relation (Ex. 5.2.1).

In general, an equivalence (transformation) will transform a symmetric pencil
into an unsymmetric pencil. Those which preserve symmetry are characterised
by

P=R". (5.2.1)
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An equivalence changes a pencil A — Al into PAR — APR. If it is to change
A — )\l into B — AI, then we must choose P, R so that PR =1, i.e.,

P=R . (5.2.2)

An equivalence with this property is called a similarity (transformation). An
equivalence which satisfies both (5.2.1) and (5.2.2) is called a rotation or an
orthogonal transformation. We reserve the symbol Q to denote the ‘P’ of such
a transformation. Equations (5.2.1), (5.2.2.) show that

QQT =QTqQ=T1: (5.2.3)

Q is an orthogonal matrixz; the matrices U and X in Section 4.2 were orthogonal
matrices. We recall that the columns (rows) of an orthogonal matrix are mu-
tually orthogonal, and each column (row) has norm 1; if Q = [q1,q2,-- -, qn],
then

quqj = (Sij. (524)

If n = 2, an orthogonal matrix has the form

sinf  cosf (5.2.5)

Q= [ cosf —sinf }
When n = 2, the eigenvalue problem relates to a plane, and this Q corresponds
to a rotation of the x,y axes through an angle 6 about the z-axis.

It is difficult to write down the most general expression for an orthogonal
matrix in M,,. Instead, we use the fact that a product of orthogonal matrices
is itself orthogonal (Ex. 5.2.3).

There is a particularly simple and powerful orthogonal matrix which can be

constructed by making a rank-one change to the identity matrix:
Q=1 2uxx" (5.2.6)
will be orthogonal if

QQ" = (I—2uxx")(I—2uxx")
= I—dpxx? +4p2(xTx)(xxT) =1,

i.e., if p is chosen so that
p=1/xTx. (5.2.7)

Such a transform is called a Householder transformation; note that Q in (5.2.6)
is symmetric, i.e., Q = Q.

Householder transformations are used in various contexts; one is the reduc-
tion of a symmetric matrix to tridiagonal form, as we now describe.

Suppose Q is given by (5.2.6), and A € S,,. We wish to choose Q, i.e., find x,
so that the transformed matrix QAQ = B has zero elements in its first row and
column, except for the first two, by1,b12. First consider the postmultiplication
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by Q, and use the abbreviation p;, for row 1 of a matrix. With Q given by
(5.2.6), we have

C = AQ = A —2u(Ax)xT
p(C) = pi(AQ) = pi(A)—2u(py A)X)XT

Thus ¢1; = a1; — 2p(p (A)X)z;, i =1,2,...,n.
‘We now choose
Ty = A14, ) 23,4,...,TL. (528)

Then C14 :O7 223,4,7nlf
2u(p;(A)x) = 1. (5.2.9)

This gives one equation for the remaining unknowns x1,x2. Now carry out the
premultiplication:

QAQ =B =QC =C —2ux(x"C),
so that
p1(B) = p1(C) — 2p; (x)(x" C).

Thus if the premultiplication is not to change the zero elements in the first row
of C, we must choose £1 = 0. Now equations (5.2.7)-(5.2.9), give

2(a12wy + ajg + -+ ai,) =25+ (afs + - +ai,),

which yields

To = Q12 + S, (5210)
where .
S =Y ai, (5.2.11)
i=2
Thus the required x is
X = {0, a2 :|:S, a13,...,a1n} (5212)

and for numerical purposes we choose the sign of S to be that of a;s.
This is the basic Householder transformation; it reduces an arbitrary sym-
metric A to a matrix

a1 bT
B= { b B, ] , (5.2.13)
where b = bje;. This completes the first step in the reduction to tridiagonal
form. Now we apply another Householder transformation to the submatrix
B, using a new x with x1 = 0 = 5. This second transformation will leave
ai1, b, b” unchanged, and will eliminate all but the first two elements of the first
row and column of B;. After n—2 applications, the matrix becomes tridiagonal.
Once the matrix has been reduced to tridiagonal form, its eigenvalues can easily
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be located by using the sign count function s.(A) of Section 3.1. Details on
the numerical implementation of this reduction may be found in Bishop, Glad-
well and Michaelson (1965) [33] (Chapter 9), Golub and Van Loan (1983) [135]
Section 8.2.

We make two comments. Because 21 = 0, the Q in (5.2.6) may be written

Q= [ (1) 221 } ; (5.2.14)

where Q) is an orthogonal matrix in M,,_;. This has an important consequence.
Not only does the transformation preserve o(A), i.e., c(A) = o(B), but also
o(Ay1) =o(By).

Secondly, we can use a trivial modification of the Householder transformation
to reduce a general symmetric matrix A to, say, pentadiagonal, form. We take

x=190,0,a13 = S,a14,...,a11} (5.2.15)

where S? = " sa?,. This transformation preserves o(A),o(A1),0(Aq2),
where the last denotes the spectrum of A with rows and columns 1 and 2 re-
moved.

Exercises 5.2

1. An equivalence relation, ‘a is related to b’, written aRb, has three defining
properties:

o reflexivity, aRa
o symmetry, if aRb then bRa
o transitivity, if aRb and bRc, then aRc

A set of elements related by an equivalence relation is called an equivalence
class. Use the joint operation ‘premultiply by P and postmultiply by R’ (with
P, R non-singular) to define an equivalence relation and an equivalence class for
matrix pairs (C, A).

2. Show that the transformation B = QAQT defines an equivalence relation
and a corresponding equivalence class.

3. Show that if Qi, Q2 are orthogonal, then so is Q;Qs. Show by coun-
terexample that if Qp, Q2 are symmetric, then Q;Q> is not necessarily
S0.

4. Show that if x is given by (5.2.11), then p in (5.2.7) is given by 25(S +
app)p = 1.

5. Verify that the Q obtained as a result of n — 2 successive Householder
transformations has the form (5.2.14).
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5.3 The star and the path

In Section 5.1 we noted that the graph associated with a bordered diagonal
matrix (5.1.3) is a star on n vertices, as in Figure 5.1.3. There is a particularly
simple inverse eigenvalue problem connected with a bordered diagonal matrix
B: construct B so that o(B) = (\;)}, o(B1) = (1;)7 . The usual variational
arguments show that the two spectra must interlace, at least in a loose sense:

M<p <A< <y g < A (5.3.1)
For simplicity we assume that the ()7~ " are distinct:
Hy < g <or < - (5.3.2)

We write B in the form (5.1.3), i.e.,

aq BT
B = ~ .0,
[b M] (5:3.3)

where M is diagonal, and b = {131, bo, ..., B,L_l}. Clearly, we can make 0(B;) =
()7~ by taking M = diag(jiy, fig, - - - ft,_1)- The trace condition gives

n n—1
ar =Y A=Y i (5.3.4)
i=1 i=1
Now consider the eigenvector equations for B:

I;ivl + (,LLi—A)Ui_H =0, +=12,...,n—1,
(a1 — )\)’Ul + Z?:_ll bivi—o—l = 0,

which give the eigenvalue equation

n—1 62
A—ay — =
' ; My
This is to have roots (\;)7, so that
g, T (A= \)
A—ay =Y ——=21=t (5.3.5)
TAm TS ()

and hence n
- Hj:1(#z‘ =)

1 )
H;il (Hi - ,Uj)
where, as usual, / denotes i # 7; the interlacing condition (5.3.1) yields b2 > 0.

We can choose the sign of b; to be + or -. Because we have assumed that
the p,; are distinct, a given p,; can coincide only with its neighbours A; or A;11.

i=1,2,...,n—1, (5.3.6)




5. Inverse Problems for Some More General Systems 103

Equation (5.3.6) shows that b; = 0 iff ; coincides with either of these two \’s.
If b; = 0, then the edge (1,i + 1) is absent from the underlying graph.

Having constructed the bordered diagonal matrix B, we have a new way to
construct a tridiagonal J such that o(J) = (\)}, o(J1) = ()} ' we can
apply Householder transformations to B to get J. On account of Ex. 5.2.5, the
transformation will have the form

1 0 ag BTI[1 0] [ a1 el
[ 0 Q ] [ b M ] [ 0 Qf } B [ bie;  Jv |’ (5:3.7)
or equivalently
1 0 ay blef 1 0 _ ai E’T
[ 0 Qf } [ bier  Jy 0 Q| | b M| (5:3.8)

On carrying out the multiplication, we find
Q73,Q =M, Qfbe; =b. (5.3.9)

The first equation shows that the eigenvectors of J; are the columns of Q;: the
1th eigenvector is

9 = {916, @245 - - - q(n—l),i}- (5.3.10)

The second equation shows that, apart from the factor by, the vector b is the
vector of first components of the eigenvectors of Jy:

B:51{(1117(]12,-~-7(11,n—1}~ (5.3.11)

Thus, apart from the factor by, b is the vector x; needed for the construction
of J; from the Lanczos algorithm of Section 4.2. The factor by is given by
by = [|b]].

Note the difference between (5.3.6) and (4.3.17): the former, according to
(5.3.11), gives the first components of the eigenvectors of Jy; the latter gives the
first components of the eigenvectors of J.

Sussman-Fort (1982) [312] discusses connections between the inverse eigen-
value problems for Jacobi and bordered matrices.

Exercises 5.3
1. Explore what happens to J when one or more of the \’s coincides with a

.

5.4 Periodic Jacobi matrices

In Section 5.1 we showed that the graph underlying a periodic Jacobi matrix is
a ring on n vertices.The following analysis is due to Ferguson (1980) [87] and
Boley and Golub (1984) [35], Boley and Golub (1987) [36].
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A vperiodic Jacobi matrix J,., has 2n terms, (a;,b;)7. We show how to
construct Jpe, from o(Jper) = (A7, 0(Jper1) = (11;)7 " and one extra piece of
data:

B ="b1by...b,. (5.4.1)

It is convenient to consider two matrices, the original matrix Jpe, of (5.1.4), and
another matrix J,., with b, replaced by —b,. We suppose o(J,..) = (A, )15

per

clearly there are relations between the A;” and the A;. The A; and p; will again
n—1

interlace as in (5.3.1), as will the A;” and p,; again we suppose that the (p,;)]
are distinct, i.e., (5.3.2) holds.

We start by constructing two bordered diagonal matrices, B from (A;)} and
()71, B~ from (A7) and (u;)7~'. They will have the form

ai b7 _ a; b T
B = ~ B = Al . .42

Here a;,b will be given by (5.3.4), (5.3.6), and a;, b~ will be obtained from
(5.3.4), (5.3.6) by replacing \; by A; .

Since 0(Jper) = 0(B) and (Jper,1) = 0(B1), Jper and B are related by an
orthogonal transformation of the form

B=| % L I a bief +buel_, |[1 O
b M 0 Qf || bier+bnen A, 0 Q

where e; = {1,0,...,0}, e,—1 ={0,0,...,1} are in V,,_; and similarly

B = C}l_ =" = 1.0 ap ble{ - bneg;fl 10 .
b~ M 0 Q;lr blel - bnen—l A1 0 Ql

The subblocks of these equations corresponding to b and b~ are

]? = Q?(blel + bnen—l)
b~ = Q{(blel - bnen—l)

which on addition and subtraction give

o= 2b1Q?e1 =2b1x3
o= anQ{en—l = 2bnxn—1

+

o TH
o TH

where, as in (5.3.9), x; is the first column of Q7 and x,_; is the (n — 1)th
column. If we know b and b, then these equations give b; and b, (up to sign)
since ||x1]| =1 = ||xn—1]|]- Once we have aq,b1 and x; we may compute Jper 1
from the Lanczos algorithm as before.

However, in finding B and B~ specifically in finding b and b, we assumed
that we knew both the (X\;)} and the (A\;)}. We complete the analysis by
showing that we can in fact find b~ from the (\;)? and S in (5.4.1).
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The periodic Jacobi matrix J,e, differs from a regular Jacobi matrix only in
the presence of the entries b, in the corners. This means that det(AI—J,.,) and

det(AI — J_,.) will differ from the nth principal minor p,(A) only by quadratic
terms in b,,. In fact
detA\I—=Jper) = I (A=X) = pa(N) —birp_2(N) — 2
det(\I=J..,) = [[LiA=A7) = pa(N) = birn—2(N) +28
where 7,,_5 is the principal minor taken from rows and columns 2,3,...,n — 1.

Subtacting these two equations, we find

n

[T =x) = ﬁ(A — i) +48.

i=1 i=1

This means that we can express (lA)J_)2 in terms of (A\;)7 and (u;)} "
» _ H?:1(Mj =) _ H?:1(Mj — i) +4p3

( ‘_)2 - n—1 - n—1
! Hi:l '(Mj — i) Hi:l '(Mj — 1)
n—1

But this expression is not automatically non-negative if the (\;)7 and (p,;)]
satisfy the interlacing condition. We must examine this more closely. Suppose
first that 5 = 0. The expression is certainly non-negative, and actually positive
if the X’s and p’s strictly interlace. If they strictly interlace then, from continuity
considerations we can conclude that, for each value of j, the expression will be
non-negative for § lying in a closed interval [—e;, f;] around zero, e; > 0, f; > 0.
This means that all the (bj_)2 will actually be non-negative in the intersection
of these closed intervals. For (8 in this intersection the problem as posed, has a
solution; for 8 outside this interval it has no (real) solution. Boley and Golub
(1987) [36] present an algorithm to compute J e, in this way. See also Boley and
Golub (1984) [35]. Xu (1998) [339] provides a detailed analysis of the problem
and shows (Theorem 2.8.3) that there is a solution iff

Sl = Akl 2 2801+ (~1) ) (5.4.3)
k=1

for all j = 1,2,...,n — 1. Note that if (\;)} and (u;)} "' are given, then the
inequality (5.4.3) provides an upper bound for 8. Andrea and Berry (1992) [9]
provide a completely different approach to the problem via continued fractions.

5.5 The block Lanczos algorithm

In Section 5.1, we exhibited Figs. 5.1.5 and 5.1.6, and showed that the matrices
underlying these graphs were pentadiagonal or block tridiagonal. In order to
develop methods for solving inverse problems for such systems, we need a block
version of the fundamental Lanczos algorithm described in Section 4.2.
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First we recall the original scalar version: Given a symmetric matrix A, and
a vector x1, compute a Jacobi matrix J as in equation (4.2.1) and an orthogonal
matrix X = [x1,Xa,...,X,] such that A = XJIXT,

The algorithm proceeds by using the two equations

J=XTAX, AX=XJ, (5.5.1)
alternately. Thus the (1,1) term in (5.5.1a) gives
a; = foxl
and the first column of (5.5.1b) gives
Axy = ar1x; — bixo,

which we rewrite as

b1X2 = a1X1 — AX1 = Z2, (552)
which gives

bl:||Z2||7 X2=Z2/b1.
Now the (2,2) term in J gives az = xJ Axy, and the second column of (5.5.1b)
is

Axo = —b1X1 + as9X9 — baxs
which we rewrite as
boxs = —b1X1 + a9X9 — AXy = 273
which gives
by = ||zs]|, x3=23/by

and so on.
We now construct a block version of these equations, following

Boley and Golub (1987) [36]. We start with a symmetric matrix A € S,, and
suppose n = ps for some integer s. We will reduce A to a block tridiagonal
matrix J, where

A, BT

-B; A -BT

J= ) ) . (5.5.3)

_Bs—l As

Here A4,..., A, are symmetric, i.e., in Sy, and the B, are upper triangular
matrices in M,. We assume that in addition to A, we are given p orthonormal
vectors (x;)7 € V,, which form the columns of X; = [x1,X2,...,Xp] € M, .
The matrix X; therefore satisfies X7 X; = 1.
The aim of the procedure is to construct J and an orthogonal matrix X =
[X1,Xs,...,X] such that
A =XJX".
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Just as in the scalar Lanczos process, we consider the two equations
J=XTAX, AX=XJ. (5.5.4)
The first p x p block of the first equation gives
A, = XTAX,
while the first n x p block of the second gives
AX; =X;A; — XoBy

which we rewrite as
X2B1 = X1A1 — AX1 = ZQ.

In the scalar version we had b1xs = zo, from which we immediately concluded
that by = ||z2||, and hence x5 = z5/b;. In the block version we have constructed
Z; € M, and we wish to write it as XoBq. Write X = [y1,¥2,...,¥p|, Z2 =
(21,22, ...,2,] and

b11 b12 e blp
B1 _ b22 R bgp
bpp

then finding (y;)} and the elements of B; is essentially a Gram-Schmidt process:
finding orthonormal combinations of the vectors (z;)]. Thus

bi1y1 = z; implies by; = *||z1||, y1 =21/b11 (5.5.5)
and then
bi2y1 + bay2 = 22
gives
b1z = y?Zz, baoy2 = z2 — b12y1 = w2
so that

bao = E[|wa||, y2 = wa/by etc. (5.5.6)

The Gram-Schmidt process is closely related to the QR algorithm. The de-
composition XoB; = Z» involves writing Z, as the product of Xy which is in
M,, », but which satisfies X2 X5 = I,, and an upper triangular matrix By € M,,.
Because X3 is not simply an orthogonal matrix in M, the usual QR algorithm
has to be modified to effect the decomposition.

Now we can proceed as before. We have found Xg, so that

A, = XTAX,

and
AX, = -X BT + X,A; — X3B,
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so that
X3By = —X BT + X,A;, — AXy, =75

from which X3, Bs may be found, as before, by Gram-Schmidt. Note that
different choices for the square roots, as in (5.5.5) and (5.5.6) will lead to different
matrices J. Boley and Golub (1987) [36] present a detailed algorithm for the
process.

Further studies on the block-Lanczos algorithm have been carried out by
Underwood (1975) [325] and Golub and Underwood (1977) [134]. See also
Mattis and Hochstadt (1981) [222]. A completely different and highly efficient
procedure for the solution of band matrix inverse problems has been developed
by Biegler-Konig (1980) [28], Biegler-Konig (1981a) [29], Biegler-Konig (1981b)
[30], Biegler-Konig (1981c) [31]. See also Gragg and Harrod (1984) [153] for
a procedure based on Rutishauser’s algorithm; they explore the connections to
a number of other problems. See also Gladwell and Willms (1989) [114] and
Friedland (1977) [92], Friedland (1979) [93], and particularly, Chu (1998) [58].

5.6 Inverse problems for pentadiagonal matrices

We could pose an inverse eigenvalue problem for a general symmetric matrix
with 2p 4+ 1 bands, as in Boley and Golub (1987) [36]. Instead, we will confine
ourselves to the case p = 2, a pentadiagonal matrix A. The pentadiagonal case
occurs in the inverse problem for a vibrating beam, but we shall defer considering
the beam until we have discussed positivity in Chapter 6; the pentadiagonal
matrix giving the stiffness matrix of the beam has a very special form; certain
terms in it must be positive, and others must be negative. In this section we
will not be concerned with these matters of sign.
Suppose we are given

o(A) = (N7, o(A1) = ()77, o(Arn) = ()77, (5.6.1)

where, as before, 0(A; 2) denotes the spectrum of A, 2 when its first two rows
and columns are removed. Clearly the eigenvalues must interlace; and for
simplicity we assume that the interlacing is strict.

A <py <A <o < ppoq < Ap, (5.6.2)
<V < fg <o < VUpoog <y, 1. (5.6.3)

Our aim is to construct A such that (5.6.1) holds. We write

_ al bT
A= [ b A, ] (5.6.4)

where only the first two components of the vector b are non-zero. We denote
the eigenvector matrix of A by Q, and of A; by Q™) so that

QTAQ=1, Q""A,QW =M. (5.6.5)
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The eigenvectors of A are therefore q;, where Q = [q1,q2, ..., q,] while those
of Aj are ql(-l)7 where Q) = [qgl)7 qgl), e, ngl_)l].
We start by constructing a bordered diagonal matrix, as in Section 5.3:

B=— [ a BT ] (5.6.6)

such that o(B) = (A7, and (M) = (y;)7"*. The term a; is given by the

trace: )
a =3 Ni— > i (5.6.7)
i=1 i=1
while b is given by (5.3.6):

H?:1(lh‘ - )
H;l;l " — /~Lj)

Now, following equation (5.3.8) we relate A to

. . i )
B:[%&}:HQ“”H% ZlH(l)Qu)} (5.6.9)

As in (5.3.9), we have

(b;)? = — : (5.6.8)

QWb =b (5.6.10)

Now however, in contrast to the situation in Section 5.3, b is not just a multiple
of e1, so that b does not give the vector of first components of the eigenvectors
of A;. But we can use the analysis of Section 4.3 to obtain the first components
of the eigenvectors of A and Aj:

n—1 n—2
2 = Hj:l (1 — i) (q(l))g _ Hj:l (v — ;)
L= oy 1) = -
o Ie T =) [0 /(i — 1)
To apply the block Lanczos algorithm to construct A we need not just the

vector x; of first components of eigenvectors of A, but also x5 of second com-
ponents, making up X3 = [x1,%2] € M,, 2. Partition the vector q;:

. (5.6.11)

qi = [ i ] yi € V1. (5.6.12)
Yi

Since q; is the ith eigenvector of A, and A is given by (5.6.4), we may write
a; bT q1i q1i
Y : 5.6.13
[ b A, } [ Vi } [ Vi ( )

q1ib + A1y = Ny,

so that



110 Chapter 5

Now premultiply by QM7 to obtain
Qb+ Q" Ay = ,,QW Ty, (5.6.14)

But equation (5.6.10) gives QTb = b, and equation (5.6.5b) gives le)TAl =
MQWT | so that equation (5.6.14) gives

q1ib = —(M - A, 1) QW 7y,

and hence )
yi = —q: QW (M — \I)~'b.

We need just the first term in y;; it is

n—1 q(l)i)
i = —qu Y —> ; , i=1,2,...,n. (5.6.15)
= Hi — Ad

Since Bj is given by (5.6.8), and ¢, qg) are given by (5.6.11), this equation yields
Y1:, and hence X2 = {y11,Y12, - - -, Y1n}-

Exercises 5.6

1. Verify that the vector x5 given by (5.6.15) is indeed orthogonal to x;, as
required.

2. Extend the procedure described in this section to the general case of a
2p + 1 band matrix.

5.7 Inverse eigenvalue problems for a tree

The inverse eigenvalue problems for a path and a star are particular examples of a
general problem. Both the path, as shown in Figure 5.1.2, and the star, in Figure
5.1.3, are trees, as defined in Section 5.1. The matrices corresponding to these
trees are a Jacobi matrix J, or, as we will choose here, a sign-reversed Jacobi
matrix A = J, and a bordered diagonal matrix respectively. In both problems,
two spectra were specified, namely o(A) = (X))}, and o(A,1) = (i;)7*; the
second spectrum corresponded to the eigenvectors u set to zero at a prescribed
vertex, vertex 1. In both cases the two spectra had to satisfy the Cauchy

interlacing inequalities
AM<p <A< <y < A (5.7.1)

In both cases also, if the inequalities (5.7.1) were all strict, the matrix A was
irreducible, and the corresponding graph G was connected.

The purpose of this section is to serve as an introduction to an important
paper by Duarte (1989) [81]. This paper reviews the history of inverse eigenvalue
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problems for trees, and establishes a general result. We will present analysis
covering the simpler parts of the general case. As we will do sometimes in
Chapter 6, Duarte labels eigenvalues in decreasing order, and we do the same.
Specifically, we will show that if G is a tree on n vertices V, and if two spectra
(N)7,(u;)7~t are given, satisfying

AL >y > Ao > g > Ay >0, (5.7.2)

then we can find a symmetric matrix A € S, on G such that 0 = o(A) =
)7, o1 =0(A) = ()}t We take the strict interlacing and the positiv-
ity condition for simplicity; Duarte relaxes these conditions.

We start by observing that the two cases that we have considered so far, the
path (Jacobi), and star (bordered diagonal), have common features. First, we
note that the entries of the constructed matrices may be considered as functions
of the data o,0;. Secondly, we note that in both matrices there are n? —n —
2(n — 1) = n? — 3n + 2 constant functions, which in fact are all zero. This

suggests the following questions:
1. Can the constant functions appearing in A be other than the zero function?
2. Can the number of these constant functions be increased?

The answer to the first question is NO. For if A € S,, has eigenvalues (\;)7
with maximum modulus A, then (Ex. 5.7.1) |a;;| < A, so that A can have no
fixed entry, independent of the eigenvalues, other than zero. To answer the
second question we note that if the inequalities (5.7.2) hold, then A must be
irreducible. For if A were reducible, i.e., after possibly renumbering the vertices,

it could be written
B 0
a=[0 el

then A and A,; (which after renumbering, would be A,;) would have a common
eigenvalue, a situation that is precluded by (5.7.2). Thus A is irreducible and G
is connected. Now we note that A must be positive definite so that no diagonal
term a;; can be zero. The maximum number of zero entries will be attained for
matrices whose graph is a tree, and this number is precisely n? — 3n + 2 (Ex.
5.7.2). Thus the answer to the second question is NO also.

Having answered these questions, we proceed to the analysis. We start by
considering a tree G, choose a vertex of V, label it 1, and see the effect of deleting
vertex 1 - this is the graph corresponding to deleting row 1 and column 1 of A.
First, we need a symbol, A, to denote the set of m vertices j of G which are
connected to vertex 1. Now we use G’ to denote the graph obtained from G by
deleting vertex 1. Figure 5.7.1 shows two examples. In Figure 5.7.1a, where
vertex 1 is at the end of a path, N'= {2} and G’ is the connected graph with
vertices {2,3,4,5,6}. In Figure 5.7.1b, N' = {2,4} and G’ has two connected
components, one on either side of vertex 1; we call these G5, G} respectively. In
general, G’ will have m connected components which we label Q;., j € N; the
corresponding matrix A ; will have m irreducible components.
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G S S S S 5 S S G S S

I N S - 3
a) b)

Figure 5.7.1 - Deleting vertex 1 from a path.

Figure 5.7.2 shows another example, a star. Now N = {2,3,4,5} and G’ has
4 connected components: G; = {j}, j=2,3,4,5.

5
»
1 4 °4
([ ]
° 3
2 3 2

Figure 5.7.2 - Deleting the centre of a star.

Finally, we need a symbol for the graph obtained by deleting vertex j € N
from G7; we call it G/'. Figure 5.7.3 shows these subgraphs for the graphs G’ in
Figure 5.7.1.

r————o—o—© [} o
3 4 5 6 3 5 6
gl/ g/l gIl
2 2 4
a) b)

Figure 5.7.3 - The subgraphs G for the graphs G'.

Note that for the star, the vertex set of g;.’ is empty because the vertex set
of G} is {j}.

Having established notation that allows us to see what happens when we
delete a vertex of a graph, we need to consider the two sets of eigenvalues, and
how these relate to the matrix A. To do this we first return to two examples we
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have already treated, those corresponding to deleting an end vertex of a path,
and the centre of a star.

First, the path with end vertex 1. The eigenvalues (\)7 and (p;)} " are the
zeros of the trailing monic principal minors, P/ (), P! _,()\) respectively, and, in
the notation of equation (4.3.4), these are linked by

Pr(N) = (A —a1)P,_1(A) = biP,_5(N). (5.7.3)

We note that the graphs corresponding to P),, P, _,, P! _, are precisely G,G’ = G}
and G” = GY; in fact P,, P/ _,, P! _, are the characteristic polynomials A of A,
and of the submatrlces of A on G’ and GJ:

F(A) = AA), Poa(V) =AAG), Pra(d) = AA(G).

We note also that a; = a11,b; = a12 and N = {2}. This means that we can
write (5.7.3) as

AA)=(A—an) A =Y al; A (A(G))). (5.7.4)
JEN

Now consider the star. The equation corresponding to (5.7.3) is equation
(5.3.5):

n—1 7

b? =N

RPN S VGO (5.7.5)
i=1 A= [l (A= Mj)

To rewrite this in the same notation as (5.7.4), we note that for a star on

m + 1 = n vertices, with the centre labelled 1, N' = {2,3,...,m + 1}, a1 =

a1, b; =ai 41, so that

AA) =N —an) A(AG) - > af; [ AAWG). (5.7.6)

JEN  kEN\S

Note that we have assigned the m = n — 1 pu’s to the m connected components
of G’ so that p; is assigned to G;,,, 4 =1,2,...,m. Note also that although
the first terms on the right of (5.7.4), (5.7.6) are identical, the second terms are
different. For the star, the vertex set of G is empty.

Parter (1960) [265] obtained a general result which embraces the particular
cases (5.7.4) and (5.7.6):

Lemma 5.7.1 A(A) = (\-a11) A(A(G) -5 4% AAG) Teen, AA(GL)
with the convention that A(A(GY)) = 1 4f, as for the star, the vertex set of G is empty.

Lemma 5.7.1, like the corresponding result (5.7.5) for the star, is effectively
a partial fraction expansion. In the general case, it is

A(A(G)))

Sa@y " AV EEE)

(5.7.7)
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where we have used the fact that G’ has m separate connected components Q;,
so that
AAG) = [T AA©G)).
JEN

Equation (5.7.7) provides the basis for an inductive argument: deleting vertex
1 of G splits G’ into m components G}, and G} bears the same relation to G} as
G’ does to G. This means that if we can effect the reconstruction of A on the
components G; of G’ from data referring to G/ and G, then we can reconstruct
the whole of A.

Now since G is itself a tree, and G is obtained by deleting vertex j from
g’, the roots of A(A(GY)) should interlace the roots of A(A(G})), just as the y;
interlace the \;, i.e., (5.7.2). But equation (5.7.7) gives A(A(GY)) as a result
of the partial fraction expansion. We are given

n

AA) = F) =TT =M, (5.7.8)
=1
AA@G)) = g0 = T ). (5.7.9)
=1

Now we must assign the n — 1 u’s among the m components g;. Suppose g;
has v; vertices then we must split the indices {1,2,...,n — 1} into m sets, so
that if 7 € N then G’ is assigned v; indices. This is equivalent to grouping the
terms in g(\) into m terms g;(\), where g;(\) has degree v;:

g\ =TT 9.

JEN

This means that we must check to see if, when f(A)/g()\) is expanded into
partial fractions, as
) hi(A)
——L=X—a-— Y ==, (5.7.10)
9(N) jeZN 1 9;(N)
where h;(\) is a monic polynomial with deg(h;) < deg(g;), and if the X’s and
p's interlace as in (5.7.2), then y; is positive, and the zeros of h;(A) and g;(\)

interlace. To do this, it is best to change back into a form like Lemma 5.7.1 by
multiplying throughout by g(\):

FO) = =a)g\) = yihi(Nu;(N)

JEN

where u;(A) = g(A\)/g;(A). We note that

u(A) = [T =)

SEQ
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where @ consists of {1,2,...,n — 1} less those indices which are assigned to g;.
Choose j € N and suppose that ., f1,.,,, are two successive zeros of g;(A), then,

since g(p,.) = 0 = g(#,1,), we have

f(Mr) = _yjhj (Mr)uj (Mr)
f(Mrer) = Y hj (Mrer)uj (Iu"r+p)'

We need to show that f;(\) has a zero between p,. and p,.,, i.e., that h;(u,.),
h;j(#,,) have opposite signs. The terms (j, — i) and (p,.4, — 1) appearing in
u;(p,.) and w;(p,.,,) will have the same sign except for those p; lying between
Prgp and p,; these are p — 1 such p’s, with indices r +p —1,...,r + 2,7 + 1.

Thus
podd ; wj(u,),u;(ursp) have the same sign

peven ; wj(u,),uj(uryp) have opposite signs.

By assumption f(\) has just one zero between any two successive p’s; thus

podd ; f(u,), f(i,,,) have opposite signs
peven ; f(u,), f(i,4,) have the same sign.

Combining these results, we see that h;(s,) and h;(g,,) must have opposite
signs.

Now we check that y; is positive. Suppose v; = ¢, and the roots of g;(\)
and h;(\) are (p,,)] and (V)P respectively, where

Hay 2 Vay 2 Poy > 0 2 Vag_y > Hag-

Then

&
—
=
[
—.

@
Il
s
-
Il
-

()\_Mai)7 hj()\):H()\_Vai)

=
Nt
I
—-

s
I
—

(A=)

and suppose a1 = r, so that

n

Fug) = T = 2)-

=1

Now Ay, Ag, ..., A\ are all greater than p,., so that the sign of f(p,.) is (—)". All
the v,, are smaller than g, so that hj(p,) > 0. Finally

uj(/’(’r) = H(/’[’r - /’Lz)

where the sum is taken over those ¢ € {1,2,...,n — 1}/{a1,as,...,a4}. But
for the sign we need to consider only those p; > p,.; there are r — 1 of these, so
that the sign of u;(p,) is (—=)"~'. Thus y; > 0.
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This yields the first stage in the construction of A: take f(\), g(A\) and form
the partial fraction expansion (5.7.10); a1; = a, a1; = (y;)*/?, while the zeros
of g;(A) and h;(X) are the eigenvalues of the components of A,;.

Figure 5.7.1 shows an example of a tree.

4 5 7
Figure 5.7.4 - A tree on 9 vertices.

The matrix has the form

X X X
X X X X X
X X
X X
A= X X
X X X X
X X
X X X
X X

In stage 1, A,; has two components; we find a11,a12,a16 and we find new data
which will allow us to construct the star on vertices {2,3,4,5}, and the star-
path on vertices {6,7,8,9}. To carry out the second stage we can, if we choose,
relabel each of the connected components so that 2 — 1 and 6 — 1.

We have assumed that the data for constructing A is two strictly interlacing
spectra. However, as with the path and the star, it is possible to use one
spectrum o(A) = ()} and the first coefficients uy;, ¢ = 1,2,...,n of the
normalised eigenvectors of A, instead. We recall the result proved for a general
matrix A € S,,, namely that the eigenvalues of A,; are the zeros of

3 (“i")x —0.

i=1 v

>

Further discussion of, and reference to, eigenvalue problems related to trees may
be found in Nylen and Uhlig (1994) [252].

Further references to the vast literature on inverse eigenvalue problems may
be found in Gladwell (1986a) [107], Gladwell (1996) [124], Nocedal and Over-
ton (1983) [251], Friedland, Nocedal and Overton (1987) [95], Ikramov and



5. Inverse Problems for Some More General Systems 117

Chugunov (2000) [184], Xu (1998) [339], Chu (1998) [58] and Chu and Golub
(2001) [59].

Exercises 5.7

1. Show that if the eigenvalues A; of A € S, have maximum modulus A, then
la;j| < Aforalli,j=1,2,...,n.

2. Show that if A € S,, is a matrix on G, then the maximum number of (non-
diagonal) zero entries in A is attained when G is a tree, and is n? — 3n + 2.

3. Construct an algorithm to form A from (X\;)7, (i;)T, given the structure
of G. Use it to construct A on the graph G of Figure 5.7.4. Take
() =1{1,3,5,7,9,11,13,15,17}, {115 = {2,4,6,8,10,12,14,16}. As
a check, find the eigenvalues of A and Aj.



Chapter 6
Positivity

There are then two kinds of intellect: the one able to penetrate acutely and
deeply into the conclusions of given premises, and this is the precise intellect;
the other able to comprehend a great number of premises without confusing
them, and this is the mathematical intellect.

Pascal’s Pensées, 2

6.1 Introduction

The basic eigenvalue analysis of real symmetric matrices was discussed in Chap-
ter 1. The eigenvalue properties described there are shared by all positive-
definite (or semi-definite) matrices. This Chapter, which may be missed on a
first reading, provides proofs of some of the results which were used in Chap-
ter 1. Foremost among these are Theorem 6.3.1, that if A € S,,, then it has
n real eigenvectors which are orthonormal, and thus span V,; and Theorem
6.3.7 that provides necessary and sufficient conditions for the matrix A to be
positive-definite.  Signs, positive or negative, provide the recurring theme for
this Chapter, and hence our choice for the Chapter heading: positivity.

In Chapter 3 we focussed our attention on a narrower class, Jacobi ma-
trices, and found that they had additional eigen-properties: they had distinct
eigenvalues and, with increasing i, the eigenvector u; became increasingly os-
cillatory, meaning that there was an increasing number of sign changes among
the elements wy;, g, ..., Up;. It will be shown in this Chapter that many
of the eigen-properties of such matrices are shared by a wider class of so-
called oscillatory matrices. Actually, there are twin classes of matrices, os-
cillatory and sign-oscillatory, as described in Section 6.5. If A is oscillatory,
and Z = diag(1,—1,1,...,(=)""1), then A = ZAZ is sign-oscillatory, and vice
versa. The Jacobi matrix J of equation (3.1.4) is actually sign-oscillatory.
These matrices were introduced and extensively studied by Gantmacher and
Krein (1950) [98], see also Gantmacher (1959) [97]. The matrices appearing in
lumped-mass or finite element models of strings, rods and beams are all oscilla-

118
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tory or sign-oscillatory; this Chapter serves as reference material for the study
of oscillatory matrices.

The theorem upon which the whole of the analysis of oscillatory matrices
depends, is Perron’s theorem (Theorem 6.5.1). This relates to a strictly positive
matrix, one that has all its elements strictly positive, and states that such a
matrix has one eigenvalue, the greatest in magnitude, that is real and positive;
the corresponding eigenvector has all its coefficients strictly positive.

The matrices appearing in mechanics are usually not strictly positive; such
matrices appear in Economics and Operational Analysis. Instead, the matrices
are oscillatory. (See the precise definition in Section 6.6.1.) In order to apply
Perron’s theorem to such matrices, we need two essential steps. First, if A
is oscillatory, then B = A"~! is totally positive (TP). This term, which is
introduced in Section 6.6.1, means that not only all the elements of B are strictly
positive, but also all the minors (Section 6.2) of B. Note that the eigenvalues of
B are the (n — 1)th powers, A7 !, of the eigenvalues of A, while its eigenvectors
are the eigenvectors of A. The other step that is needed is the introduction
of the concept of a compound matrix (Section 6.2). The compound matrix
A, is formed from all the N = (Z) pth-order minors of A. The important
Binet-Cauchy Theorem, Theorem 6.2.3, shows (Ex. 6.3.1) that the eigenvalues
of A, are simply products of p eigenvalues of A. The argument then runs
as follows. Suppose A is oscillatory, then B = A"~! is TP, and hence, for
p=1,2,...,n, B, is strictly positive (not TP). The first conclusion (Theorem
6.10.1) is that the eigenvalues of A are positive and distinct, like those of J or
J.

Before beginning the analysis proper, we point out a notational matter which
must be understood if confusion is to be avoided. In Chapter 3, in dealing
with a Jacobi matrix J, a positive semi-definite tridiagonal matrix with negative
codiagonal, the eigenvalues were labelled in increasing order, i.e., 0 < A1 < Ao <
-+« < Ap. The eigenvectors then became increasingly oscillatory, as described
in Theorem 3.3.1. In Ex. 3.3.2, it was pointed out that if the eigenvalues of
J=17J Z. a positive semi-definite tridiagonal matrix with positive codiagonal
(an oscillatory matrix if it is actually non-singular, i.e., positive-definite) are
labelled in decreasing order, i.e., Ay > Ao > --- > \,, > 0, then the eigenvectors
still satisfy Theorem 3.3.1. In this Chapter, in dealing with oscillatory matrices,
we shall keep the same ordering, i.e., A\ > Ao > --- > A, > 0. Theorem 6.10.2
is a generalisation of Theorem 3.3.1.

6.2 Minors

Suppose A € M,,. To gain some insight into the structure of A, and into the
relative sizes of its elements, we introduce the concept of a minor. A minor of
order p of the matrix A is the determinant constructed from the elements of A
in p different rows and p different columns. Thus, the elements of A themselves
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a11 a3

are minors of order 1, while det(A) is the only minor of order n; a3, P
21 Q23

and det(A) are all minors of A.

Following Ando (1987) [4] we let @, with 1 < p < n, denote the set
of strictly increasing sequences a of p integers aq, v, ..., o, taken from w =
{1,2,...,n}. The complement o’of « is the increasingly arranged sequence
{1,2,...,n}\a = w\a, so that &/ € Qn_prn. When a € Qpn, S € Qqn and
a N B = 0, their union, a U B, should always be rearranged increasingly to
become an element of @, ,,(r = p+gq). We will often use two special sequences:
0=0(p)={1,2,...,p}and ¢ = ¢(p) = {n—p+1,...,n}, and their complements
0 =60p) ={p+1,...,n}, ¢ =¢'(p) ={1,2,...,n—p}. When the argument
is omitted in 0 or ¢, it will be understood to be p.

The submatrix formed from rows « and columns 3 of A is denoted by A[«|f];
Ala|a] is written Afa]. The minor of A taken from rows a and columns f is
denoted by A(a; 3); thus

Aay,B,  Qai,By, -+ Qag,B,
Ale; B) = | Mofn fozts Go2by | (6.2.1)
Aoy, Qap,By -+ - aapvﬂp

The minor A(w; @) is abbreviated to A(a).
The cofactor of a;;, introduced in Section 1.3, is a minor with a sign attached
to it:
Ag; = (=) Hay, (6.2.2)

where
dij = A(i/;j/), (623)

and ' ={1,2,...,i—1,i+1,...,n}=w\i, J ={1,2,...,5—1,5+1,...,n} =
w\J; Gi; is sometimes called the minor of a;;.

If A € M,, then we can form a new matrix A = (@;;) from the minors of
elements of A. We may prove

Theorem 6.2.1 Let A = (Gij), then the minors of A are given by
A(a; B) = (det(A))" T A(a; B).

Proof. Consider the theorem for « = = 6; the general case may be
obtained by a suitable rearrangement of the rows and columns. Since a;; =
(—)"*7 A;;, we may write

A11 A12 - Alp

Agl A22 . Agp

B=A(a; 8) = (6.2.4)

Ap Ay ... Ay
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Multiplying this by det(A), and writing the determinant in (6.2.4) as that of an
n X n matrix, we find

A1 A1z - Alp Ay pir oo Al
A1 Agz ... Agp Az pi1 .. Azp al] alz ... aip
. . . . . . . ag] ag2 ... a2y
A A .. A A L. A . . ce .
B -det(A) =det S SR SO Y S )
. aAnl An2 --- ann
0 0 e 0 0 . 1
so that on using equation (1.3.10) we obtain
det(A) 0 . 0 .. 0
0 det(A) o 0 ... 0
B-det(A) = det(A) 0 . 0
A1p+1  A2,p+1 o Ap+1,p+1 -+ Gnptl
QA1n a2n PN Ap+1.n ce QApn

= (det(A))"A(e; ')

so that the theorem holds when det(A) # 0. Continuity considerations show
that the theorem also holds when det(A) =0. m

One of the implications of this theorem is that when det(A) = 0, the rank
of A is at most 1, meaning that all the rows of A are multiples of each other,
as are all the columns. There is another corollary

Corollary 6.2.1
det(A) = (det(A))" .

There is another way to form a matrix from minors of a given matrix. Sup-
pose A € M, and 1< p < n, and put a = 0(p) := {1,2,...,p}. We can define
bij by

bij:A(QUi,HUj), i,jzp-l-l,p—l-?,...,n.

The matrix B € M,,_,. Thus, if p =2 and

1 2 3 4

01 -1 2 -5 -1
A= 9 1 4 1 ,thenB[_2 2}.

1 0 3 2

The matrix B is called a bordered matrix; the indices 7,5 border 6.
Sylvester’s Theorem on bordered determinants is

Theorem 6.2.2 Suppose A € M,, 1 < p < mn, b = AO Ui, 0Uj) for
i,j=p+1,p+2,...,n, and B = (b;;), then

det(B) = B(6;0') = (A(0;0))" P det(A).



122 Chapter 6

Proof. Theorem 6.2.1, with p replaced by n—p—1, and a = {p+1,...,r—
Lr+1,...,n}=0\r, B={p+1,...,s—1,5+1,...,n} = 0'\s, shows that

Ao B) = (det(A)" P 2ABUT0U s)

RIS = (6:23)
The Corollary of Theorem 6.2.1 shows that if C = (¢;s)p;1, then
det(C) = (A(0';0'))" 71 (6.2.6)
But according to (6.2.5),
det(©) = f(@’; 9/)(det(A)()7(::i;)2()$;§)) (62.7)
= det(B)(det(A))
and from Theorem 6.2.1
A(0';0) = (det(A))" P71 A(6;0) (6.2.8)

so that on substituting (6.2.8) into (6.2.6) we find
det(C) = (det(A))(n*pfl)Q(A(e;9))n—p—1

which, on comparison with (6.2.7), yields the required result when det(A) # 0.
Continuity considerations show that the theorem still holds when det(A) = 0.
]

Corollary 6.2.2 Ifa,5 € Qsn, 0Na=0, 6NB =0, then
B(a; ) = (A(6:0))° " A0 U ;0 U B).
Corollary 6.2.3 Suppose o, 8 € Qp,n. and
bij = A(aUd;8UJ)
Jori=a,+1,...,n; j=0,+1,...,n and 7,0 € Qqn with v, > ay, 61 > B,
then
B(v:0) = (A(a; 8))* T A(a Uv; BU9).

This is the general form of Sylvester’s Theorem. For a proof, see
Gantmacher (1959) [97], Vol. I, p. 32.
We now introduce the powerful Binet-Cauchy Theorem.

Theorem 6.2.3 If A € My, ;, B€ My, and C=AB, a € Qpm, 5 € Qpn
then

Cla; B) =Y A(;7)B(v; 8) (6.2.9)

where the sum extends to all v € Qyp .



6. Positivity 123

The theorem is a generalisation of the formula for c;;, namely

k
Cij = Y ipby;.
p=1

The proof may be found in Gantmacher (1959) [97], Vol. I, p. 9.

The importance of the Binet-Cauchy Theorem lies in its application to com-
pound matrices, which we now define.

Suppose first that A is square, i.e., A € M,,. We shall define the compound
matrix A,. Consider all the sequences o € @, ,,; there are

()

such sequences. For given n,p, the N sequences may be arranged in ascending
order 1,2,...,N. This may be done by associating with the sequence o =
{a1, @2, ...,a,} the number with digits aq, ag, ..., o, in the base of d = N 4 1.
This procedure associates a specific index s = s(a) with each sequence «; s lies
in the range 1 < s < N. Thus, when n = 5, p = 3, we have N = 10, and
the combinations are 123, 124, 125, 134, 135, 145, 234, 235, 245, 345. Thus
s(124) = 2, while s(245) = 9. The element ay, of A, is then given by
Ast = A(Oé, B)

where s = s(@), ¢t = s(B).
Although we shall not need it in this book, a compound matrix can be defined
for a rectangular matrix A € M, ,. Now

.APEMMJV, M(m>, N(n>
p p

and ag is given by (6.2.9) for & € Qp m, B € Qpn. The Binet-Cauchy Theorem
now states

Theorem 6.2.4 If A € M,,, B € M ,, C=AB and p <min(m,k,n), then

C,=A,B,.
Proof. The equation (6.2.9) may be written

k
Crs = Z Qrt bts
t=1

where r = s(a), s =s(8), t =s(v). =

Corollary 6.2.4 If A € M,, is non-singular then the pth order compound ma-
triz of A1 is the inverse of the pth order compound matriz of A.

Proof. Let B = A~!, then AB = I implies A,B, = Z, so that B, =
(A4,)". =
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Exercises 6.2

1.

If A € M, is non-singular, then equation (1.3.20) shows that its inverse
R = A~! has elements

rij = Aji/ det(A) = (=) a;/ det(A).
Use Theorem 6.2.1 to show that if o, 8 € @ »n then
det(A)R(o; B) = (=)' A(; 8))

where

P
= (om+ B8,
m=1

CIE0={1,2,...,ptand ¢ = {n—p+1,...,n} then A(6;¢) and A(¢;0) are

called the pth order corner minors of A. Use Ex. 6.2.1 to show that the
corner minors of R are given by

det(A) - R(0,¢) = (—)'A(0'; ¢),

where t = r(p+1). Note that A(6;¢’) is an (n — p)th order corner minor
of A.

. Equations (1.3.7), (1.3.8) are a particular case of Laplace’s expansion of a

determinant,
det(A) =) (=) A(a; B)A(c; B)

where oo € @, is fixed, the sum is taken over all 8 € Q,, and t =
b (am + B,,). Establish this result and show that there is a similar
expansmn with § fixed and « varying over Qpn.

. Suppose A € M,,. Use the Binet-Cauchy theorem to show that the pth

compound matrix of A™ is (A,)™, i.e.,

(A™)p = (Ap)™ = A"

. Use the Binet-Cauchy theorem to show that if Q is an orthogonal matrix,

then so is @, the pth compound matrix of Q.

. If B = A™, write the minors of B in terms of the minors of A; use the

notation (6.2.9) to show that
=Y A(NAMY) AR B)

where the sum is over all ;v ...4/(m=1D ¢ Qpn-
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6.3 A general representation of a symmetric ma-
trix
We begin with two theorems.

Theorem 6.3.1 If A € S, then A has n real eigenvectors forming an ortho-
normal system.

Theorem 6.3.2 To each m-fold eigenvalue Ay of A € S,,, there correspond m
linearly independent eigenvectors.

In Section 1.4 we showed that the eigenvectors corresponding to distinct
eigenvalues are orthogonal. This means that if all the eigenvalues of A are
distinct, then it has n orthogonal eigenvectors which may be scaled so that they
are orthonormal. It sufficies to prove Theorem 6.3.2.

Proof. Suppose that Ag is an m-fold eigenvalue of A, i.e., A(\) = det(A—AI)
has A\g as an m-fold root, and that B = A — A\¢I has rank p, so that the equation

Bu=(A-)XI)u=0 (6.3.1)

has r = n — p linearly independent solutions. We need to prove that r = m.
Now

A(N) det(A — )\I) = det(B —(A=X)I)

= Yino()N'T(A=Xo)' G=n—1
where Tj is the sum of the jth-order principal minors of B, and 7o = 1. But B
has rank p, so that 7,, =0 =1,_1 = --- = T)41 and therefore

AN =x(A=X20){Tp — A =Xo)Tp—1+--- £ (A= Xo)PTo},

so that m > r. It is sufficient to prove that T,, # 0, for then A()) will have a
r-fold root, i.e., m = r. Without loss of generality we may assume that the first
p rows of B are linearly independent, so that any row of B may be expressed as
a linear combination of the first p rows, i.e.,

p
blj: E Cik:bk:j7 ivj:172a"'7na
k=1

which may be written
B = CBy, (6.3.2)

where C € M, ,, and By € M, ,, is formed from the first p rows of B. Now
apply the Binet-Cauchy Theorem 6.2.3 to (6.3.2):

B(o; 8) = Y Ca;7)Bo(7; ). (6.3.3)
But C has only p columns, and similarly By has only p rows, and they are the
rows 1,2,...,p of B. Thus, there is only one term in the expansion (6.3.3):

B(a; 8) = C(e; 0)B(6; ), (6.3.4)
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where 0 = {1,2,...,p}. Similarly
B(5;6) = C(5; 0)B(0; 6). (6.3.5)

But B is symmetric, so that B(3;60) = B(0; ), and thus, on combining (6.3.4),
(6.3.5), we have
B(a; 6) = Cla; 0)C(5; 0)B(0; ). (6.3.6)

All the minors on the left cannot vanish, since then B would have rank less than
p; we must have B(0;6) # 0. But then (6.3.6) with 8 = « gives

B(a;a) = (C(e; 0))*B(6;0).

This means that all the pth order principal minors of B have the same sign, and
one at least, B(6; ) is non-zero. Thus T}, their sum, must be non-zero. Hence
m=r. ®

We may now assert that if A € S,,, then it has n eigenvalues (\;)} and n
orthonormal eigenvectors (u;)?. This means that

Au;, = \u;, i=1,2,...,n,
which may be combined to yield
AU=UA, UU'=UTU=1 (6.3.7)
and this may be transformed to
A = UAUT. (6.3.8)

This is a most important representation of a symmetric matrix.

Exercises 6.3

1. Apply the Binet-Cauchy Theorem, in the form of Theorem 6.2.4, to equa-
tion (6.3.7) to show that the eigenvalues of A, are all the products A;, As,
A

iy
2. Show that the eigenvectors of A, are the columns of the compound matrix
U,.

6.4 Quadratic forms
Suppose A € S, then

A(x,x) = xTAx = ay12? + 2a02 09 + - - + 2ap, p—1%Tn—1Tn + Unnt?  (6.4.1)

is called the quadratic form associated with A. One of our aims in this section
is to find necessary and sufficient conditions for A to be positive definite (PD),
ie., A(x,x) > 0 for all x # 0.
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First, we consider a number of different ways of expressing A(x,x). Let

Ai(x) = Zaij%‘, 1=1,2,...,n,
j=1

then

A(x,x) = Z ;A (x).

This yields

an az 0 a1, Ai(x)
a21 a22 ce A2n, A (X)

. =0,
an1 an2 e Ann An (X)
Al (X) A2 (X) T An (X) A(X7 X)

since the last column is a combination of the first n columns, and

Theorem 6.4.1 If det(A) # 0, then

ail a2 T a1n Ay (x)
_1 asi asy - Gan  As(x)
A X,X — . . . .
( ) det(A) an1 an2 ce Qnn An (X)
Ai1(x) Aa(x) -0 Ap(x) 0

Proof. Expand the zero determinant (6.4.4) along its last row.

Now we introduce the quantities

A air Qa2
XI(X) = Al(X),X2(X) = Z; A;Eg ,X3(X) = | G21 Q22
aszi asz

etc., up to X, (x), and prove

(6.4.2)

(6.4.3)

(6.4.4)

(6.4.5)

A1(x)
Aa(x)
Az(x)

(6.4.6)

Theorem 6.4.2 If 0 = {1,2,...,p} and D, = A(0;0) # 0, p=1,2,...,n

then the (X, (%))} are linearly independent.

Proof. We see that Xi(x) = Y 7_, a1z, while Xo(x) = 327 y(an1a2; —

as1a1;)x;, and generally

X,(x) = Dpzp, + terms in zpiq,. .., Ty.

Thus we see that in the reversed sequence X, (x), X,,—1(%X), ..., X1(x

), each term

involves one more x; than the previous one. This means that the (X;(x))} can

all be simultaneously zero iff all the (z;)} are zero. m
This leads us to an important expression for A(x,x) given by
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Theorem 6.4.3 (Jacobi). If Dy =1, 0 = {1,2,...,p} and D, = A(0;0) #
0, p=1,2,...,n then
n
(Xp(x))?
A(x,x) = —_— (6.4.7)
; DyDy—s
Note that, on account of Theorem 6.4.2, this equation expresses A(x,x) as

a sum of multiples of squares of linearly independent combinations of the (z;)7.
Proof. Put Py =0, and

ail a2 e aip Ay (x)
az1 a2 e azp Aa(x)
P,(x,x) = . . e . . (6.4.8)
apl1 ap2 T App Ap(x)
Ai(x) Ax(x) -+ Ap(x) 0

and find the recurrence relation linking P, and P,_1. P,(x,x) is the determinant
of a symmetric matrix C € S,41, i.e.,

Bp(x,x) = C(0(p+1);0(p + 1)).
Apply Theorem 6.2.2 to this, letting
by =CO(p—1)Ud; O(p—1)Uj), i,j=p,p+1
then

det(B) = bppbpt1,p+1 — bppr1bpt+1p
0(9(;— f); 0(p —E)). B(e(p +1);6(p+1)) (649)

But b,, = Dy, bpti1p+1 = Ppo1(x,%X), bpp_1 = bp_1,p, = Xp(x) while C(0(p —
1);6(p— 1)) = Dp_1, C(B(p+1);0(p+ 1)) = Py(x,x). Thus, equation (6.4.9)
gives

D,P,_1(x,x) — Xz(x) = D,_1P,(x,x)

or, since the D), are non-zero

_PP(Xa X) _PP*I (Xa X) sz (X)
= =1,2,...,n. 4.1

Now Theorem (6.4.1) states that

A(x,x) = 7_3}5:’ x)

so that on summing equation (6.4.10) from 1 to n and using Py = 0 we find the
required sum (6.4.7). m

Theorem 6.4.4 Suppose A € S,,, then A is PD iff D; >0, i=1,2,... n.
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Proof. First we prove that if A is PD, then det(A) > 0. Since A € S, it
has, by the Corollary to Theorem 6.3.2, n eigenvalues (\;)} and n orthonormal
eigenvectors (u;)7 such that Au; = \ju;. Thus \; = ul Au; = A(u;,w;) > 0
and therefore det(A) = [[i, A > 0, i.e., D, > 0.

If A is PD, then the matrix obtained by deleting the last j rows and columns
of A is PD, for j =1,1,...,n — 1. Therefore, their determinants are positive,
ie., (Dn_;)7' > 0. We have proved that if A is PD, then (D;)} > 0.

Now suppose that (D;)7 > 0, then equation (6.4.7) shows that A(x,x) > 0,
for the (X;(x))} can be simultaneously zero only if x =0. Thus A is PD. =

Corollary 6.4.1 If A € S,, is PD, then all the principal minors A(a;a) =
Ala), o € Qppn, p=1,2,...,n, are positive.

If A € S, is merely positive semi-definite (PSD), then the leading principal
minors, and indeed all the principal minors are non-negative. We prove

Theorem 6.4.5 If A € S, is PSD and, for some p satisfyingl <p <n, D, =
A(6;0) = 0, then every principal minor bordering D,, is zero. In particular, the
leading principal minors Dq, p < g <n, are zero.

We prove that the D, are zero, and leave the remaining result to an Exercise.
Proof. There are two cases:
i) p=1, then D; = a;; =0, and

implies (a1;)7 = 0, so that (D,)} = 0; in this case x; does not appear in A(x, x)
at all.

ii) a1 # 0 and, for somep, 1 <p<n-1, D, #0, Dpy1 =0. (Ifp=n—-1,
there is nothing further to prove; we may therefore take p < n —1.)

We introduce bordered determinants

bij:A(eUi;QUj), i,j=p+1,...,n

and form B = (b;;);,1- By Sylvester’s identity (Corollary to Theorem 6.2.2),
ifo; >pand o € Qrp, 7 <n —p, then

B(oza) = (A(6;0)" A0 Ua;0 U Q)

so that B is PSD. Since bp41,p+1 = Dpt1 = 0, the matrix falls under case 1 and
ifg>p+1, r=q—p-—1, a={p+1,...,q}, then

0= B(a; ) = {A(0(p); 0(p)) }" A(6(q); 0(q))

so that A(0(p); 0(p)) = D, # 0 implies A(6(q);60(q)) = Dy =0. m
This theorem implies that if A € S, is PSD, then, for some p, 1 < p <
n, (l)z)zl7 > 07 (Di)g+1 =0.
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Exercises 6.4

1. Show that A € S, is PD iff its eigenvalues (\;)} are positive; it is PSD iff
its eigenvalues are non-negative.

2. Show that if A € S, is PSD then A is singular, and that x” Ax = 0 iff
Ax =0.

3. Show that if A € S, is PSD and if a;; = 0 for some ¢ satisfying 1 <i < n,
then a;; = 0 for j = 1,2,...,n. This means that if a;; = 0 then x; does
not appear in x7 Ax.

4. Show that if A € §,, is PSD and has rank r then it has a positive principal
minor of order r.

These examples are merely a selection of properties of PD and PSD matrices
to be found in Chapter 7 of Horn and Johnson (1985) [183].

6.5 Perron’s theorem

Most matrices appearing in classical vibration problems are symmetric. It is
therefore known that they have real eigenvalues, and a complete set of ortho-
normal eigenvectors. Often the matrices are PD, so that their eigenvalues, in
addition to being real, are positive. However, the whole theory relating to os-
cillatory matrices depends on a basic result relating to a class of not necessarily
symmetric matrices, as we now describe.

We recall some definitions. If a vector x has all its elements positive (non-
negative) we shall say x > 0 (> 0) and shall say that x is positive (non-negative).
If x,y are in V,, then x > y is equivalent to x —y > 0. The matrix A € M,, is
said to be positive (non-negative) if a;; >0 (> 0) for all ¢,j =1,2,...,n.

Up to this point the only norm we have used for a vector x € V,, is the
Fuclidean, or so-called Ly norm:

n

xll2 = (3 |zif?)2. (6.5.1)

i=1
We can define the Ly norm of a matrix A € M,,:

n

1Az = (Y layl?)?. (6.5.2)

4,j=1

The norm is variously called the Frobenius norm, Schur norm or Hilbert-Schmidt
norm.
We will need another norm, the L; norm:

Ix[l = |, (6.5.3)
=1
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Al =D lagl- (6.5.4)
i,j=1
A norm is like a distance; as such it must satisfy various fundamental conditions,
for which see Ex. 6.5.1. For a definitive and extensive study of vector and matrix
norms, see Horn and Johnson (1985) [183], Section 5.6.
We may now prove Perron’s theorem, following Bellman (1970) [25].

Theorem 6.5.1 (Perron). Suppose A € M,, and A > 0. Then A has
a unique eigenvalue p which has greatest absolute value.  This eigenvalue is
positive and simple, and its associated eigenvector can be taken to be positive.
The eigenvalue p is often called the Perron root of A.

Proof. Let S(\) be the set of all non-negative A for which there exist non-
negative x such that
Ax > Ix. (6.5.5)

We shall consider only L;-normalised vectors x, i.e., such that |[x||; = >, z; =
1. (Since x > 0, |z;| = z;.) This therefore excludes the zero vector. If x
satisfies (6.5.5), then Ex. 6.5.2 shows that

Al < [[Ax[[y < [[Af]-[x]]1, (6.5.6)

so that 0 < XA < ||A][;. This shows that the set S(\) is bounded. It is clearly
not empty, because A is positive. The bounded set S(\) has a least upper
bound; let it be Ag. Let A1, g, ... be a sequence of X’s in S(\) converging to
Ao, and x; a corresponding sequence of x’s satisfying Ax; > A\;x;. The set of
all x such that ||x||; = 1 is closed and bounded; therefore, the sequence {x;}
contains a convergent sequence {x,,} converging to a non-negative vector xg
satisfying ||xo||1 = 1, and (Ex. 6.5.3)

AX() Z )\0X0. (657)

This means that A9 € S(A). We shall now show that equality holds in (6.5.7),
and we do so by reduction to a contradiction.
Let
d:AX()*)\()XOZO

and suppose one of the d;, say dj, is positive. Put
Yi = xio + (dj/2X0)0i;
then the ith row of Ay — A\gy is
e; = di + a;;d;/(2X0) — djdi;/2 > 0.
Now let A = Ag + min;(e; /y;), then A > Ay, and

Ay -y = e—(A— Xy
= e—min;(e;/y;)y >0’
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This states that A € S(\), and that ) is greater than the least upper bound, Ay,
of S(A). This contradiction implies that there is equality in equation (6.5.7),
ie.,
AXO = )\0X0. (658)
Thus Ag is an eigenvalue and x( is an eigenvector, and xq is necessarily positive
(Ex. 6.5.4). We will show that Ag is the required Perron root.
Suppose that there is another eigenvalue A, possibly complex, such that |A| >

Ao, with z # 0 being an associated eigenvector, so that Az = Az. Let |z| denote
the vector with elements |21],|22], ..., |2n|, then we deduce that

A |z| = |Az| < Alz|. (6.5.9)

But then the maximum property of Ao implies [A| < Ao, and hence |[A| = A.
Now the argument used earlier shows that equality holds in equation (6.5.9),
ie.,

Alz| = Xolz|, |z|>0.

But then
|Az| = Alz| (6.5.10)

and (Ex. 6.5.5) this can hold only if z = c¢w, where ¢ is complex and w is
positive; and this implies that A is positive, i.e., A = A\g. We now show that xq
and w, both positive and both eigenvectors corresponding to \g, are equivalent.
Put y = x¢p — ew, and take

e = min(zio/w;) = xjo/wj,
then y is a non-negative eigenvector corresponding to A\ with y; = 0, so that

aj1y1 + ajoy2 + - + ajnyn =0,

and since a;j; > 0 for ¢ = 1,2,...,n we must have y = 0. Thus xg = ew so
that A\g is a simple eigenvalue. Thus Ay has all the properties asserted for the
Perron root p. m

Exercises 6.5
1. A vector norm must satisfy three conditions:

a) [|x||] >0, and ||x]|=0if x=0

b) [lex|[ = |ef - [|x]]

o) x+yll < I[xI[+lyll

Show that both the L; and the Ly norm satisfy these conditions.

2. Show that A € M,,, x € V,,, then

lAx[[1 < [[A]]1 - [[x]]1-
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3. Verify that the vector x¢ will in fact satisfy the inequality (6.5.7).

4. Show that if x is a non-negative eigenvector of a positive matrix A € M,
then x > 0. This has the following logical negative consequence:

if A>0, x>0, Ax =Xx
and z; =0 for some i = 1,...,n, then x = 0.

5. Show that if A € M, is positive, then equation (6.5.10) can hold only if
z = cw, where c is complex and w > 0.

6.6 Totally non-negative matrices

Suppose A € M,,. The matrix A is said to be positive (see Section 6.5), written
A >0, if a;; > 0foralli,j =1,2,...,n. Total positivity concerns all the
minors of A, (see Section 6.2) not just its elements. If A € M, ,, we say that
Ais

1. TN (totally non-negative) if all the minors of A are non-negative;

If A € M, we say that A is

2. NTN (non-singular and totally non-negative) if A is non-singular and
TN;

3. TP (totally positive) if all the minors are (strictly) positive;

4. O (oscillatory) if A is TN, and a power, A™, is TP.

Note that some authors, including ourselves in Gladwell (1986b) [108], use
totally positive (TP) instead of totally non-negative (TN), and strictly totally
positive (STP) instead of totally positive (TP). Also, in Gladwell (1986b) [108],
following Gantmacher and Krein (1950) [98], we used completely instead of to-
tally; completely positive now has a quite different connotation. Reader, beware
of these subtle distinctions!

The concept of an oscillatory (or oscillation) matrix was effectively introduced
by Gantmakher and Krein in the 1930’s, see Gantmacher and Krein (1950) [98].
It was developed further by Gantmacher (1959) [97]. The concept of total
positivity had arisen much earlier than this, e.g., Fekete (1913) [86]; it was
first systematically explored by Karlin (1968) [190] in his book Total Positivity,
Volume 1. (Volume 2 has never appeared!) Ando (1987) [4] reviews its history
and proves important new results. All the concepts, total positivity, oscillatory,
etc., arise in the study of in-line systems, rods, beams, splines, Sturm-Liouville
differential equations, etc.

The study of total positivity involves the delicate treatment of inequalities.
Here are two typical examples, which the reader may verify:
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i) ifa>0o0rd>0; b>0and ¢c>0; and

a b
‘ d’>0,
then a > 0 and d > 0;
ii) ifa>0o0rd>0; b>0and ¢ > 0; and
a b
c d'ZO

then a > 0 and d > 0.

The concept of total positivity is similar to positive-definiteness, but there
are important differences between the two concepts: positive definiteness applies
only to symmetric matrices, TP applies to any matrices in M,,; the condition
for positive-definiteness involves only the principal minors, while TP involves all
the minors. Clearly, if A € S, is TN then it is PSD; if it is TP then it is PD;
but the converses of these results are false. (Ex. 6.6.1). There is a theorem
like Theorem 6.4.5 for matrices which are TN:

Theorem 6.6.1 If A € M,, and A is TN, and A has a zero principal minor,
then every minor bordering it is also zero.

Proof. For simplicity we confine our attention to the leading principal mi-
nors; this restriction can be removed at the expense of some complication in the
argument. As in Theorem 6.4.5, there are two cases:

1) Dy = aj; = 0. We assert that this implies that either (a;1)} = 0 or
(a1;)7 = 0. If this were not true, then we could find a;; > 0 and a;; > 0 for
some i, j satisfying 2 <i <n, 2 <j <n. But then

= —a;1015 < 0,

which contradicts the statement that A is TN. Thus if a;; = 0 then either the
first row of A or the first column of A must be zero. (See also Ex. 6.6.2.)

2) a1 #0. Then for some p(1 < p <n —1) we have D, # 0, D, = 0.
(Again, if p = n — 1, there is nothing further to prove.) We introduce bordered
determinants

bij ZA(QUZ,QUJ) ’i,j =p+1,...,n
and form the matrix B = (b;;);, ;- By Sylvester’s identity (Corollary 6.2.3), if
@, B € Qrn, a1 >p, f; > p, then

B(o; ) = (A(6;0))" A0 U a; 0 U B)

so that B is TN. Since bpy1p+1 = Dpy1 = 0, the matrix falls under case 1. If
g>p+l,anda=8={p+1,...,q}, then

B(as o) = (A(0(p); 0(p)))* "~ A(0(q); 0(q)) = 0.
But since D, = A(0(p); 6(p)) # 0, we have D, =0. m
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Theorem 6.6.2 If A € M,, and A is NTN, then all its principal minors are
positive.

Proof. If any principal minor were zero, then, by Theorem 6.6.1, D, =
det(A) would be zero, but A is non-singular, so that det(A) # 0 (in fact
det(A) >0). m

Corollary 6.6.1 If A € S,, is NTN, then A is PD.

If A € M, is NTN, then we know that some elements of A are strictly
positive, in particular, by Theorem 6.6.2, the diagonal elements a;;. We now
prove an important result which shows that A will have a so-called staircase
structure. We first introduce some definitions.

Let p = {p1,p2,--.,pn} be a sequence of integers from {1,2,...,n}. Then
p is a staircase sequence if py < ps <---<pp,andp; >iforalli=1,2,...,n.
Thus p = {2,3,3,5,5} is a staircase sequence.

Suppose p and ¢ are staircase sequences. A matrix A € M, is said to
be a p, g-staircase matriz if a;; = 0 when j > p; or ¢ > ¢;. Suppose p =
{2,3,3,5,5}, ¢ =1{2,4,5,5,5} then

a11r a2
Ga21 Q22 a23
A= azy a33

a42 Q43 Q44 Q45
as53 Aas54 G55

is a p, g-staircase matrix. The characteristic of a staircase matrix is that if an
element in the upper (lower) triangle is zero then all elements to the right (left)
and above (below) are zero. Clearly, if A € S, then p = ¢; we say A is a
p-staircase matrix. We are now ready for

Theorem 6.6.3 If A € M,, is NTN, it is a staircase matriz.

Proof. The elements in the upper and lower triangles may be dealt with
separately; we consider just the upper triangle.
Suppose j > 1 and a;; = 0. If £ > j, then

>0, Cl,ij:O, ajj>0, a;x >0

imply a;r = 0; all elements to the right of a;; are also zero. Now consider the
terms {as;, @i i+1,- - -, Qin} in the ith row. The first is positive; there is therefore
a least index m, with ¢ < m < n, such that a;; = 0 for j > m; call this index
Di;pi = L.

Now suppose j > ¢ and a;; = 0. If £ < then

Qs Akj

>0 a:=0. as >0 >0
a;  ay | & s Qg , @iy > U, ag; =2
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imply ar; = 0. Thus a;; = 0 and k < ¢ implies ar; = 0. Thus j > p; implies
ar; =0, i.e., j > p; implies 7 > pi; pr < p;. Thus p is a staircase sequence, and
the upper triangle of A is a staircase. =

Theorem 6.6.4 If A € M, is TN and 1 < p

A(G(p);i(p))-A(H'(p);G’(p))» Recall that 6(p)
1,...,n}.

< n ) <
{1,2,....p}, 0'(p) = {p+

Proof. On account of Theorem 6.6.1 we may assume without loss of gener-
ality that all the principal minors are positive, for if any were zero, then the in-
equality would be satisfied trivially because then by Theorem 6.6.1, det(A) = 0.
The theorem is true for n = 2 since

A(6(2);0(2)) = arra22 — ai2a21 < ajias.

We prove the theorem by induction, and assume that it holds for matrices of
order n — 1 or less. We introduce the matrix B of Theorem 6.6.1:

bij=AOU0Uj), i,j=p+1,...,n.

and

B(0';0") (6;0))" P~ A(6(n); 6(n))

(A
= (Dp)n_p_an
which we reverse to give
D, = B(#':6)/(D,) .
Since B[0'|0'] is of order n — p < n — 1, the inductive hypothesis applies to it:
B(0;0') < bps1p41B(0'(p+1);0'(p + 1))

and thus
Dy < by B (p+1):6 (p + 1)) /(D). (6.6.1)

Applying Sylvester’s identity again, we have
B(O0'(p+1):0'(p+1)) = (A(6:0)" " Az )

where o = 0U &' (p+1) = {1,2,...,p,p +2,...,n} which when combined with
(6.6.1) and byt1 pr1 = Dpy1 gives

Dp < Dpa(Dy)" P2 A(as ) /(Dy) P

< Dy A(a;a)/D, (6.6.2)

Now we use the inductive hypothesis again to give
Ao ) < Dp A(0'(p+1);0'(p+ 1))
which, when combined with (6.6.2) gives
AO(n); 0(n)) < AB(p+1);0(p + 1) A0 (p + 1);6'(p + 1))

which shows that the result holds for matrices of order n. ®m
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Corollary 6.6.2 If A € M,, is TN then
D, <apa...ap, 1<p<n.

Theorem 6.6.4 is expressed as a result concerning principal minors of a TN
matrix A, but since any square matrix taken from a subset of rows and columns
of such an A is also TN we can state

Corollary 6.6.3 If A € M, is TN, 3,7 € Qqn, and B,y € 0(p) = 6 (i.e.,
By Vg < p); then
A(BUO;yUE) < A(B;7) A0 6).

Similarly, if 8,7 € Qq.n, and 8,7 € 0'(p) = 8’ (i.e., 81,7, > p+ 1), then
A0 U B;0U ) < A(B;7)A(6;0).
See Ando (1987) [4] for generalisations of this result.

Theorem 6.6.5 Suppose A € M,, ,, is TN. If A has p linearly dependent rows,
labelled by o € Qp,m with a1 = 1, , = m, of which the first p—1, labelled o\a,
and the last p—1, labelled a\ay, are linearly independent (l.i.), then A has rank
p—1.

Proof. Clearly, the rank of A is at least p — 1; we show that it is not greater
than p — 1, i.e., it is exactly p — 1.

The linearly dependent rows are specified by o = {@1,@2,...,a,}. Ifp>n,
then rank (A) < n < p, so that rank (A) = p — 1. Take p <n. The row a,
may be expressed in terms of rows ai,aq, ..., 0p_1:

p—1
Qa,,j = chaaw i=12,...,n, (6.6.3)
k=1

and since rows a\a; are l.i., ¢; # 0. Since rows a\ey, are Li., there is B0 e
Qp—1,n such that A(a\ap; 8°) > 0. On substituting for a,, ; from (6.6.3) we
find
Ala\ai; 8%) = (=)Per A(a\ay; 8°).

Therefore A(a\ay;3%) # 0, but this minor is non-negative and therefore it is
strictly positive; therefore (—)?cq > 0.

Now suppose ¢ € & then @, < g < a,11 for some index r satisfying 1 < r <
p—1. If 8 € Qpn then, on substituting for a,, ;, as before, we find

A((a\a) Ugs B) = ()P erA((a\ay) U g B). (6.6.4)

The inequality (—)Pc; > 0 implies that the minors on either side of (6.6.4) have
opposite signs. But both are non-negative so that both are zero. Since § is an
arbitrary member of @, ,, this means that any row ¢ € o’ may be expressed as
a linear combination of the rows a\a, or equivalently of a\c,. Thus the rank
of Aisp—1. m

We now prove a corollary of this result, but since its truth is not immediately
clear, we state it as
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Theorem 6.6.6 If A € M,,,, is TN and there exist & € Qp m, B € Qpn such
that vy = 1,ap =m, 8y = 1,6, =n and

Ala; B) = 0, A(a\ay; B\B,) >0, A(a\a; 8\By) >0
then A has rank p — 1.

Proof. Apply Theorem 6.6.5 to the matrix with rows {1,2,...,m} and
columns B of A. It has p linearly dependent rows «, of which the first p — 1,
a\ay, and the last p—1, a\a1, are linearly independent. Therefore, it has rank
p—1, so that its p columns are linearly dependent. These columns are columns
of A, and so are rows of A”. Now apply Theorem 6.6.5 to AT. TIts rows 3 are
linearly dependent, while the first p —1, 5\, and last p — 1, 8\ 3y, are linearly
independent. Therefore, by Theorem 6.6.5, A” has rank p—1; A has rank p— 1.
[

Exercises 6.6

1. Exhibit A € Sy which is PD but not TN.

2. Use Theorem 6.6.3 to prove that if A is NTN and ay, > 0, a,1 > 0, then
A is a (strictly) positive matrix. Markham (1970) [221] stated this result
for oscillatory A, but NTN is sufficient. Find even weaker conditions for
the result to hold. (See Gladwell (1998) [126].) See Gasca and Pena
(1992) [99] for related work.

6.7 Oscillatory matrices

We introduced four terms at the beginning of Section 6.6: TN, NTN, TP and
O. In this section we are concerned with the last, oscillatory. We note that
TN is weaker than NTN, which in turn is weaker than TP. O is by definition
stronger than N'TN; it is weaker than TP because

2 1
A=1]1 2 1 (6.7.1)
1 2
is O because
5 4 1
A’2=1|4 6 4
1 4 5

is TP, but A itself is not TP. Note that if A™ is TP, then A is necessarily
non-singular. We can therefore define A to be O, if A is TN and A™ is TP.
We will show later that if A € S,,, A is PD, and tridiagonal with positive co-
diagonal, then A is O. Clearly though, the class of oscillatory matrices is much
larger than this. We will first obtain some preliminary results which will allow
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us to characterise oscillatory matrices. It is oscillatory matrices, and not TP
matrices, which appear in applications to inverse problems.

We have defined an oscillatory (O) matrix as a TN matrix which is such that
a power A™ is TP. Using this definition, we cannot easily check whether a TN
matrix is O. Our principal aim in this section is to obtain an easily applicable
test for A to be O. As a first step we prove

Theorem 6.7.1 If A € M, is O, then any principal submatriz B € M, formed
by deleting successive rows and columns of A is O.

Proof. Clearly, any principal submatrix is TN; the question is whether it is
O. It is sufficient to show that B = A;, obtained by deleting the first row and
column of A is O.

We use Ex. 6.2.6, deduced from the Binet-Cauchy Theorem (equation (6.2.9)),
to obtain the minors of a power of a matrix in terms of the minors of the original
matrix. Suppose that A™ = C is TP, and consider the minors of D = B™.
We retain the original numbering of rows and columns, so that B = (a;;)5.

Then if o, B € Qp n, and oy > 2, 51 > 2, we have

D(a; 8) = Y Al M)A(y ;7@ ARGV ) (6.7.2)

where the sum is taken over all sequences v(1),v(2) ~(m=1) ¢ Qp.n with
A >94=12 ..., m-1.
Now consider the corresponding minors of C = A™: C(1Uaq;1Up); we have

ClUa;1UB) =Y A1 Ua;6M)AGY;6@) .. A 10p)  (6.7.3)

where the sum is taken over all sequences 5(1); (5(2), cee §m=1 ¢ Qp+1,n- Since
C is TP, each of its minors must be positive; this implies that for at least one set
sM: 5@ 50" the product on the right of (6.7.3) must be positive; this
implies that each of the minors entering that product must be strictly positive,
for they are all non-negative. Now if § € Qp41,n, it may be written do Uy, where
v € Qpn and y; > 2. This means that with the particular set 5(1), ce §m=1 ¢
Qp+1,n for which all the terms in (6.7.3) are positive, one may associate a set
A G A= Qp,n which appears in the product (6.7.2). Now we use
Corollary 2 of Theorem 6.6.3; it shows that for this particular choice of ('y(i))’l’“1
all the minors on the right of (6.7.2) must be positive, for if one were zero, say
the first, then

)

A(lU 6(()1) uyW) < al,éénA(aW(l)) =0

contrary to the fact that the minor on the left is positive. We conclude that
one product in the sum on the right of (6.7.2) is positive; D = B™ is TP; B is
O. =
We defined a principal minor of A as A(a;a) = A(a). We now define
a quasi-principal minor. The minor A(«; ) is said to be quasi-principal if
o, B € Qprn and
1<ag,B8) <ag, By <+ <ay,B,<n (6.7.4)
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and
lon — B1] <1, |a2—ﬁ2|§1,...,|ap—,8p|§1. (6.7.5)

Thus a principal minor is also a quasi-principal minor.
The statement aq,5; < agz, 8, means that each of o; and g is less than
each of ap and (5, but there is no ordering of a; and 3;, nor of o and f,; thus

o < g, 01 < 52, 51 < (g, Bl < 52.

The minors
A(1,3;2,3), A(1,3;1,3), A(1,2;1,3)

are all quasi-principal, but A(1,2;2,3) is not.
Note that for A given in (6.7.1), and this matrix A is O, all these quasi-
principal minors are positive. This is a particular case of

Theorem 6.7.2 If A € M,,, A is NTN and a; ;11 > 0, ajy1, > 0 fori =
1,2,...,n—1, then all the quasi-principal minors of A are positive.

Proof. We will use induction on the order, p, of the minors. The first order
quasi-principal minors are the diagonal terms a;;, which are positive because of
Corollary 6.6.2; and a; ;+1 and a;41;, which are positive by the statement of the
theorem. Suppose then that all the quasi-principal minors of order p — 1 are
positive. We will prove that all those of order p are positive. For suppose this
were not true, so that

A(a17a27"'7ap;51,627"'761)) =0

where the indices satisfy the inequalities (6.7.4), (6.7.5). But then

A(alaa% cee 7O‘p—1561752a cee 7ﬁp—1)

and
A(a27 Qasz, ..., ap; 52,533 e 7ﬁp)

will be quasi principal minors of order p—1, and so positive. Now Theorem 6.6.6
states that the matrix with rows a1, a; +1, ..., and columns 3, 3, +1,..., 8,
has rank p—1. Let h = max(aq, 3,), then it follows from the inequalities (6.7.4),
(6.7.5), that

o, By <h; ap,B,2h+p—1

Therefore, the minor A(h,h+1,...,h+p—1) is a pth order minor of a matrix
with rank p — 1, and so is zero. But this minor is a principal minor of A, and
Theorem 6.6.4 shows that det(A) = 0; but A is NTN and thus non-singular.
This contradiction implies that all the quasi-principal minors of A are positive.
[

We are now in a position to prove the important

Theorem 6.7.3 If A € M, is NTN then it is O iff a; ;41 > 0, aj+1,; > 0 for
i=1,2,....n—1.
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Proof. We first prove that if it is O, then a; ;41 > 0, a;41, > 0. Ifitis O
then Theorem 6.7.1 states that the matrix

B=— Qi Q541
Q41,4 Ai41,04+1

is O, so that D = B" is TP for some m. But if say a;;+1 =0 then d; ;41 =0,
whatever the value of m. Similarly, if a;41; = 0, then d;y1;, = 0. Thus
Qi i+1 > 0 and Ajt1,4 > 0.

We must now prove that if a; ;41 >0, a;y1, >0forali=1,2,...,n—1,
then there is a power of A which is TP. We shall show that A»~! is TP. We
shall use Theorem 6.7.2, which states that the quasi-principal minors of A are
positive. We recall the result used in Theorem 6.7.1, that a minor of B = An~!
is a sum of products of n — 1 minors of A. We need to show that the sum
corresponding to a particular minor B(a; ) has at least one positive term in it.
First, we note that if B(«; ) > 0 for one particular value of m, then it will be
positive for m +1 also, and thus for all subsequent m; for since C = A™+! = A.
A™ = AB, the Binet-Cauchy expansion for the minor C(a; ) will contain the
term A(a;a) B(a;8). This is positive because, by Theorem 6.6.2, the principal
minors of A are positive.

This implies that, to show that B(a;3) > 0 holds for B = A"l it is
sufficient to show that for some m satisfying 1 < m < n — 1 the expansion
for B(a;B) will contain one product consisting entirely of quasi-principal mi-
nors. The problem is essentially how we can step from the sequence « to
the sequence § through intermediate sequences v, 42 . . 4("=1) guch that
Ala;y D), A(yD; @) A(ym=D): B) are all quasi-principal. Take an exam-
ple. Suppose p =3, a={1,2,3} and 5 = {3,5,6}; we step as follows:

{1,2,3} — {2,3,4} — {3,4,5} — {3,5,6}.

The required exponent m is the number of steps needed to go from « to 5, and
this is

D= pax lae — Bl (6.7.6)
The quantity D (3 in the example) may be viewed as the distance D(«, 3)
between two sequences (see Ex. 6.7.2). If A(«, ) is quasi-principal then
D(a, ) < 1; if A(w; B) is quasi-principal but not principal, then D(a, 8) = 1.
The greatest distance between two sequences o, 8 € Qp 5, is n — p; it occurs for
instance when

a={1,2,...,p}, B={n—-p+Lin—p+2,...,n};

this in turn is maximized when p = 1, i.e., « = {1}, 8 = {n}. We conclude that
if m =n — 1, then the Binet-Cauchy expansion for any minor of B will contain
one product consisting entirely of quasi-principal minors of A; B is TP; A is O.
[

We conclude this section by analyzing how oscillatory matrices relate to the
Jacobi matrices which occupied our attention in earlier chapters. We defined a
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Jacobi matrix in Section 3.1: J € S,, J is PSD, and J has negative co-diagonal.
J is clearly not O, but

Theorem 6.7.4 IfJ is PD, then A =J = ZJZ is O.

Proof. We recall that Z = diag(1, —1,1,...,(—)"1), so that in the notation
of equation (3.1.4),
@iit1 = Q1,4 = b; > 0.

According to Theorem 6.7.3 it is sufficient to show that A = J is TN. Consider
a minor A(«;8). There are three cases:

1) a=p, then A(a;a) > 0 since A is PD.

2) d(a,p) =1, i.e., A(a; B) is quasi-principal, thus it may be expressed as a
product of principal minors and b’s; A(«, ) > 0.

3) d(a,B) > 1, then A(a;8)=0. =

For A = J only the quasi-principal minors are positive; the others are zero.
If A € M,, then A = ZAZ is called the sign-reverse of A.

Theorem 6.7.5 Suppose A € M,,. A is NTN, TP, O iff (A)~! is NTN, TP,
O respectively.

Proof. We recall from Section 1.3, that A~! = R, where 7;; = A;;/ det(A),
where A;; is given by A;; = (=)t a;;. 'This means that it is sufficient to show
that A is NTN, TP or O iff A = (;;) is NTN, TP, O. But Theorem 6.2.1 shows
immediately that A is NTN or TP iff A is NTN or TP respectively. If A is O
then a; ;41 and a;41,; are given by Theorem 6.2.1 as quasi-principal minors of
A, and so are positive; A is O; and vice versa, if A is O, then so is A. m

If A is oscillatory we shall say that A is sign-oscillatory (SO). This implies,
in particular, that a non-singular Jacobi matrix is SO.

Corollary 6.7.1 If A is SO, then A1 is O.
Exercises 6.7

1. Why is it not sufficient to define A to be O if, for some m, A™ is TP?
Exhibit an example of A € M, such that A2 is TP but A is not TN.

2. Show that the distance D(«, () satisfies the basic conditions for a distance:
D(e, 8) 2 0; D(a, 8) =0 iff o = f;
D(a,7) < D(a, B) + D(B,7).

3. Show that if A € M, is tridiagonal, then it is O iff
a) its principal minors are non-negative

b) aiiy1 >0, aj41; >0fori=1,2,...,n—-1

c¢) it is non-singular.
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4. We say that a tridiagonal matrix A as described in Ex. 6.7.3 has half-
bandwidth 1; it has 1 diagonal above, and 1 below, the principal diagonal.
Show that if 1 <p <mn — 1 then AP has half-bandwidth p.

5. Show that if a; ;41 # 0, a;y1,; # 0, then a tridiagonal matrix A may be
symmetrized by using diagonal matrices, i.e., we can find diagonal C,D
so that CAD is symmetric. Show that this means that an oscillatory
tridiagonal matrix may be symmetrized to a J matrix by using positive
diagonals C,D, i.e., CAD = J.

Suppose A, B € M,,. Show that if A, B are TN, then so is C = AB.
Show that if A, B are O, then so is C = AB.
Show that if A € M,, is O then A,,_; is O.

Show that if A = J~! then A, which is O by Theorem 6.7.5, is actually
a (strictly) positive matrix, i.e., it is full. Note that by Ex. 6.6.2, it is
sufficient to show that ay, > 0.

© o N e

10. Show that if A is O, then the indices of its staircase structure (Section
6.6) satisfy p;, > i1 +1, ¢; > j+ 1.

11. Show that if A has eigenvalues \; and eigenvectors u;, then B = (13;)*1
has eigenvalues p;, = 1/, and eigenvectors v = Zw;, where l = n+1—k.

12. Exhibit counterexamples to show that if A is one of TN, TP or O, then a
compound matrix A, need not have the same property.

6.8 Totally positive matrices

The matrix A € M, is TP if all its minors are positive. This is equivalent to
the statement that all the compound matrices A, p=1,2,...,n, are (strictly)
positive. There are

P—n2+(g>2+<§)2+...+(nﬁl)2+1 (6.8.1)

elements to be checked. Using a result due to Fekete (1913) [86], Ando (1987)
[4] proved that one need check only a much smaller set of minors.
As in Section 6.2, let @), denote the set of strictly increasing sequences

a={ai,a,...,ap} chosen from 1,2,...,n. We write
p—1
d(a) = Z(%‘H —a; —1)
i=1
and note that if & € @, then d(a) =0iff 41 =, +1fori=1,2,...,p—1;
ie., d(a) =0iff a1,a9,...,q, consists of consecutive integers. We define Q%n

as the subset of Q. consisting of those a with d(a) = 0. Following Theorem
2.5 of Ando (1987) [4] we have
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Theorem 6.8.1 A € M, is TP if A(a; 8) > 0 for alla, 8 € Q%n,k‘ =1,2,...,n.
Proof. Let us prove that
Ala; 8) >0 for o, 8 € Qi  k=1,2,...,n (6.8.2)

by induction on k. When k = 1, this is trivial because Qg = @} ,,. Assume
that (6.8.2) is true with k—1(k > 2) in place of k. First fix e € Qp,,, with d(c) =
0,ie,a€e Q%n, and let us prove (6.8.2) with this a by induction on £ = d(f3).
When ¢ = 0 this follows by the assumption of the theorem. Suppose A(a;d) > 0
for all minors whenever 6 € Qi and d(0) < £ —1, with ¢ > 1. Take 8 € Qkn
with d(8) = £. Then there is a p such that 8, < p < f;,d(r U{B;,p}) <l -1
and d(7 U{p, 5,}) < —1 where 7 = {B,,05,...,0,_1}- Now use the identity
((1.39) of Ando (1987) [4])

Alw; T U{pHAlas 7 U {8y, By }) = Alw; 7 U {B1}) A(a; 7 U Ap, B })

for any w € Qg—1,n» with w C a. It follows from the induction assumptions that
the right hand side is positive, as is A(w; 7 U {p}), so that A(e; 7 U{5,,8,}) =
A(a; 8) > 0. This proves (6.8.2) for o € Qy,, with d(a) = 0. Apply the same
argument row wise to conclude that (6.8.2) is generally true. m

We may use precisely the same argument to prove the

Corollary 6.8.1 Suppose A € M,,. If all minors A(a;3) > 0 for o, €
Qk—1,n, and A(e; ) > 0 for a,p € ngn, then, A(c; B) > 0 for all a, 8 € Q-

This result mirrors the test for a matrix A € S,, to be PD; to show that A
is PD, it is sufficient to show that the leading principal minors Dy, Ds, ..., D,
are all positive. The importance of the result lies in the fact that, with it, the
number of minors to be checked for positivity is much smaller than that given
by (6.8.1).

The test in Theorem 6.8.2 determines whether an arbitrary matrix A € M,
is TP. If it is known that A is TN, then one needs to check only a very small
number of minors for strict positivity to determine whether A is TP, as stated
in

Theorem 6.8.2 If A € M,, is TN, then it is TP if its corner minors are posi-
tive.

Proof. The corner minors are the minors
A(L,2,....p;n—p+1,...,n), An—p+1,...,n;1,2,...,p),

p=1,2,...,n. The result follows immediately from Theorem 6.6.6 and The-
orem 6.8.1.  Consider a minor A(a; ) with o, € Q%n. Suppose a =
{i,i+1,...;0+k=1}, e {j,i+1,....,5+k—=1}. Ifi> jthen A(x; )
is a principal minor of the corner submatrix A(n —p+1,...,n;1,2,...,p) with
p =n— (i —j). This submatrix is NTN, so that, by Theorem 6.6.6, its
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principal minors are positive. If i < j, then A(a; ) is a principal minor of
A(L,2,...,p;mn—p+1,...,n) with p =n — (j —4). Since A(a; ) > 0 for all
NGRS Q(,i’n, k=1,2,...,n, Theorem 6.8.1 states that A is TP. m

Exercises 6.8

1. Show that if A is NTN and B is TP, then AB and BA are TP.

2. Show that if p;; = exp[—k(i — j)?], then P = (p;;) is TP. See Section 7 of
Ando (1987) [4].

3. Use Ex. 6.8.3 to show that a NTN matrix A may be approximated arbi-
trarily closely, in the L; norm (see (6.5.4)) by the TP matrix B = PAP.
(Again, see Section 7 of Ando (1987) [4].)

6.9 Oscillatory systems of vectors

Before discussing the eigenproperties of totally positive matrices, we need to
analyse some sign properties of vectors.

Let uy,us,...,u, be a sequence of real numbers. If some of them are zero
we may assign them arbitrarily chosen signs. We can then compute the number
of sign changes in the sequence. This number may change, depending on the
choice of signs for the zero terms. The greatest and least values of this number
are denoted by SF and S respectively, where u = {u,uz, ..., u,}.

If S =S, , we speak of an ezact number of sign changes in the sequence,

u>
and denote this by Sy. Clearly this case can occur only when

1. ug,u, #0

2. when u; = 0 for some ¢ satisfying 2 < i < n —1, then u;_ju;41 <0, i.e.,
u;—1 and u;41 are both non-zero, and have opposite signs. In this case Sy
is the number of sign changes when the zero terms are removed.

We say that a system of vectors ug = {u1g, uog, .- tnk}, k=1,2,...,p, is
an oscillatory system if, for any (c)] with

p
> >0, (6.9.1)
k=1
the vector
p
u= Z CrU (6.9.2)
k=1

satisfies S < p — 1. Clearly, we need only consider p < n. Taking p =1 we
see that S =0, i.e., u; > 0; for p =2, S§ < 1, etc.
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Theorem 6.9.1 The necessary and sufficient condition for the system (uy)} to
be an oscillatory system is that all the minors

U(a;0)
be different from zero, and have the same sign, for
a€Qpn, 0=A{1,2,...,p}.

Proof. The minors in question are

Uloa,@o,...,0p;1,2,...,D). (6.9.3)
Remember that a1, as, . . ., o, refer to components of the vectors, while 1,2,...,p
refer to the vector index k. The theorem states that when p = 1, w11, u21, ..., Un1

must all be non-zero and have the same sign; this is certainly equivalent to
SH =0. For p =2, it states that

U1,21,2)=| " "2y, s1,2) =] 2
U1 U2 uz1 U32
LU —1,n;1,2) = Yn-1,1 Un-12 ,
Un,1 Un,2

are all non-zero and have the same sign.
We first prove the necessity. If a minor (6.9.3) were to vanish, then we could
find numbers (cx)7, not all zero, such that

p
D ko, k=0 j=1,2,...,p. (6.9.4)
k=1

But then the vector u given by (6.9.2) would have p zero terms

ua1:0:ua2:-~-:uap

so that, by Ex. 6.9.1, ST >p>p—1.

In order to show that the minors all have the same sign it is sufficient to
show that all minors U(a;6) for « next to 6 in the sense D(a;0) = 1, (see
equation (6.7.6)) all have the same sign. These are the minors (U;)], where
Uj=U(aW;0) and M) = {2,3,...,p+1}, o) ={1,2,...,5—1,5+1,....p+
1}, 7 = 2,3,...,p. These must all have the same sign as Upy1 = U(6;6).
Introduce a vector u,,1 such that

(=Y Up1, i=7
Uip+1 = (=P, i=p+1 . (6.9.5)
0 otherwise

Then

UL,2,...,p+151,2,...,p+1) = (=) (=)P M upgr pra Upsr+ (=) 1 pa U } = 0
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so that we can find (c;)2"", not all zero, such that

p+1
> eruir=0,i=1,2,...,p+1.
k=1

But then the vector (6.9.2) will have coordinates
Uy = —Cpp1lUipt1 ¢=1,2,...,p+ 1

The quality c,41 cannot be zero, for then u would have p + 1 zero terms and
hence S} > p. Choose ¢yt so that cpr1Up+1 > 0, then, according to (6.9.5),
()] =0, uj = (=Vepr1Uppr, (i)l =0, upsr = (=)PepaUj. I Uj, Uppr
had opposite signs, then u; would have the sign of (—)7, and wu,;; would have
the sign of (—)P*!. This means that we can assign the signs of the zero u; so
that, for all i = 1,2,...,p+ 1, u; has the sign of (—)*. But then S} = p. This
proves the necessity.

Now we prove the sufficiency. Suppose that all the minors (6.9.3) were non-
zero and had the same sign, which we may take to be positive. We will prove
St < p—1, by assuming the contrary, i.e., S > p. If that were so we could
find p + 1 components uq,, Uasy, - - - » Ua,, Such that

Uo,; Ve <0, 7 =1,2,...,p. (6.9.6)

The (uq, )} cannot be simultaneously zero, for then the (cx)f, not all zero, would
satisfy equation (6.9.4), the determinant of which is not zero.
Now consider the zero determinant

ual,l ua1,2 ce ual,p Uery
U’az,l ’LLOCZ2 N U’Otz,p Uy -0
- b
Uapir UYapraz -0 UYaprr, Uapi

and expand it along its last column

p+1

+14k . =
E Ugy, (—)P Ular, o, ..., 001, 0t1,...,0p4151,2,...,p) = 0.
k=1

But this is impossible because the minors are all positive and, by (6.9.6), the
quantities (—)*u,, all have the same sign, and are not zero. This completes
the proof. m

Exercises 6.9

1. Consider the real sequence uj,us,...,u,. Show that if (u;)? = 0 then
S, =0,SF =n—1. Show also that if p(0 < p < n) of the u; are zero
then

Sy, <n—-p—-landp<SI<n-1

while if p(1 < p < n) successive u; are zero then Sf — Sy > p.
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6.10 Eigenproperties of TN matrices

Since TN matrices are not necessarily symmetric we cannot immediately as-
sume that their eigenvalues are real; to do so we must make use of their special
properties.

Theorem 6.10.1 The eigenvalues of an TP matriz are positive and distinct.

Proof. Suppose that A € M,, has eigenvalues Ay, Ag, ..., Ay, possibly com-
plex. We order them in decreasing modulus, i.e., so that [A1| > || > -+ > |\, ].
Since A is TP, it is positive; Perron’s theorem (Theorem 6.5.1) states that A; is
positive and A; > |Az|. Since A is TP, the compound matrix A, is positive; its
eigenvalues are the products \;A;,7,5 =1,2,...,n. It too has a positive eigen-
value, greater in magnitude than any other; it must be A\; Ay so that A\ Ay > 0
and A\ Ay > [AMAg]. Thus Ay > 0 and Ay > |A3]. Now we consider A3 and
deduce that Ay AsA3 > 0 and A Ao A3 > |)\1)\2>\4|, i.e., Az > 0 and A3 > |)\4|, and
soon. W

Corollary 6.10.1 The eigenvalues of an oscillatory matrix are positive and dis-
tinct.

Proof. Forif A € M,, is O, then B = A™ is TP for all m > n—1. But if the
eigenvalues of A are (\;)7, those of B are yu; = A"; since p; > fig > -+ > p,, > 0,
and A; >0, we have Ay > Ao > - > A, >0. m

We now show that the eigenvectors of an oscillatory matrix behave exactly
like those of a J matrix, i.e., like those of a Jacobi matrix when the ordering of
the eigenvalues is reversed (see the comment at the end of Section 6.1).

Theorem 6.10.2 Suppose A € M, is O, and has eigenvalues (\;)} satisfying
Al > A > o> Ay > 0. Let ug, = {uig, usk, .., unkt be an eigenvector
corresponding to Ai; it is unique apart from a factor. Let

q q
u=> cup, » g >0 (6.10.1)
k=p k=p

then the number of sign changes among the components of u for differing (cy.)}
satisfies
p—1<S, <SH<qg-1 (6.10.2)

Proof. Since the eigenvectors of A are also the eigenvectors of A™, and
since A™ is TP for some m < n — 1, we lose no generality by assuming that A
is TP.

Suppose 1 < ¢ < n, a = {i1,i2,...,iq} € Qqmn, 0 = {1,2,...,¢q}. Then
the minors U(a; 0) are the coordinates of the eigenvector of the compound ma-
trix A, corresponding to the maximum eigenvalue M\Ay...\,. By Perron’s
theorem all the components of this eigenvector have the same sign. If the
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sign of the ¢g-th set of minors is E, then, by multiplying the vectors (uy)} by
Ey,E5/Ey, ..., E,/FE, 1 respectively, we can make

U(;0) >0 ¢=1,2,...,n.

Theorem 6.9.1 now shows that S < ¢ — 1.

To prove the second part of the theorem we put B = (A)’l. Theorem 6.7.5
shows that if A is TP, then so is B, and Ex. 6.7.11 shows that it has eigenvalues
pr, = 1/); and eigenvectors v, = Zu;, where  =n+ 1 —k. Thus

Vi = {1k, Voky -+ oy Vi b = {uar, —u2p, usgs - (4)" g}

The result already proved shows that the number of sign interchanges in

n+l—p q
v = E Cnt1-kVi = Z E au
k=n+1—q l=p

satisfies S < n—1. But since v; = (—)""'u; we have S} +S; =n —1 so that
Sy>p—1. m

Corollary 6.10.2 The vector u = uy has exactly k — 1 sign changes. (S; =
SH=k-1).

Corollary 6.10.3 u,; # 0, so that u, may be chosen so that up > 0.
The argument used in this theorem leads directly to

Corollary 6.10.4 For each p such that 1 < p <n, the minors U(aq, g, . .., ap;
1,2,...,p), have the same sign for all o € Qp .

The minors of Corollary 6.10.4 relate to components aq, oo, ..., ap of the
first p eigenvectors. We now prove a result in which components and eigenvalue
indices are reversed; this theorem will play a vital role in the inverse problem
for the discrete vibrating beam (Chapter 8). Before stating the theorem we
repeat comments we have made on the relation between oscillatory (O) and
sign-oscillatory (SO) matrices.

If A is O, with eigenvalues (\;)} ordered so that Ay > Ay > -+ > X, > 0,
then its eigenvectors (ug)} satisfy Theorem 6.10.2 so that, in particular, uy has
exactly k — 1 sign changes. If A is SO and we label its eigenvalues (A\;)} in
reverse order, i.e., so that 0 < Ay < A2 < --- < Ay, then its eigenvectors (ug)7
again satisfy Theorem 6.10.2, so that, in particular, ug has k — 1 sign changes.
We will phrase the final theorem of this section for an SO matrix.

Theorem 6.10.3 If A € M, is SO, with eigenvalues (\;)} satisfying 0 < Ay <
Ao < -+ o < Ay, then its eigenvectors (u;)} may be chosen so that

U(¢; o) > 0. (6.10.3)

foro={n—p+1ln—p+2,...,n} and each o € Qp ,,.
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Proof. The analysis of Section 6.3 (See Ex. 6.3.2) shows that U(¢; «) is the
last component of the eigenvector of the compound matrix A, corresponding
to the sth eigenvalue Ao, Aoy, -+ -5 Aa,, Where s = s(ay, a2, ...,0;). The more
general statement of Theorem 6.10.3 is that all the elements U(¢; ) have the
same sign, which is thus the sign for the case p =1, i.e., for u,;.

The proof is by induction on p. Corollary 6.10.3 shows that u,; # 0. Choose
Up; > 0 for i =1,2,...,n; the theorem then holds for p = 1. Suppose the result
holds for p. Corollary 6.10.2 shows that u; has ¢ — 1 sign changes, so that
(=) 'uy; > 0. Choose (¢;)?™" so that

i+p i+p

u= E cjuy, E ;>0
j=i j=i

and

Up—pt1 =0=Up_pro ="+ = Uy,

using the choice
¢j=(=)"U(@B\j) j=ii+1....i+p

where 8 ={i,i+1,...;i+p},o={n—p+1,...,n}.
The vector u has the form

u={ui,uz,...,Up—p,0,0,...,0}
and has first element
Ul = CUL; + Cip1UL,i+1 + *° CippUi itp-
Since, by hypothesis, the result is true for p, the coefficients c; satisfy (—)7c;4; >
0; this and the inequality (=) ~1uy ;1 ; > 0, yield (=) ¢;q u1,i+; > 0, so that
(=)*~'u; > 0. By Theorem 6.10.2,
i—1<8; <SF<p+i—1
and since the last p elements of u are zero, there must be exactly i — 1 sign
changes in the first n — p elements of u; but (—)*~!u; > 0, so that the last
non-zero element, u,_,, must be positive, i.e.,
Un—p=Un—pn—p+1,...,n0,i+1,...,i4+p) >0, i+p<n.
This shows that all (p+1)th order minors with consecutive indices ¢,i+1,...,i+p

are positive, and Theorem 6.8.1 shows that all (p+1)th order minors are positive.
]
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Exercises 6.10

1. Show that if u;,u;4; are eigenvectors of an O or SO matrix A € M,,
then wn—1jUn j+1 — Un—1,j41Un,; is non-zero and has the same sign for
i=1L2,...,n—1.

2. Show that the proof used in Theorem 6.10.3 may be used to show that if
A € M, is O with eigenvalues (\;)} satisfying 0 < A, < Ap—1 < --+ < Aq,
then its eigenvalues (u;)}? may be chosen so that

U(¢;) >0
foro={n—p+1,...,nand each « € Qp .

3. The matrix

—= N
—_ N =
— N =

1

2

is O. Use the recurrence method described in Section 2.6 to find its eigen-
values (\;)], labelled so that 0 < Ay < A3 < Ay < A1, and its eigenvectors.
[Note: the eigenvectors may be written explicitly in terms of z = sin (%)
and z = sin (2£).] Choose the signs of the eigenvectors so that they obey
Corollary 6.10.4. Make a different choice so that they obey Ex. 6.10.2.

4. If u is an eigenvector of A € M,,, and T is the reversing matrix given in
equation (4.3.8), then v = Ty is an eigenvector of B = TAT corresponding
to the same eigenvalue A. Use this result, and Ex. 6.10.2, to show that if
Bis O, then V(p,p—1,...,L;01,...,,) > 0.

6.11 wu-line analysis

We recall the concept of a u-line corresponding to the vector u = {uy, us, ..., uy},
from Section 3.3: it is the broken line made up on the links joining the points
with coordinates (z,y) = (i,u;), so that

u(@x)=(0C+1—z)u; + (x — Dujyr, 1 <x <i+1.

Theorem 6.11.1 Let u; be an eigenvector corresponding to eigenvalue Ay of
an oscillatory matriz A.  The corresponding uy-line, u*)(z) has no links on
the x-axis, and has just k — 1 nodes, i.e., simple zeros where u'®) (z) changes
Sign.

Proof. A link of a u-line can lie along the z-axis only if two successive
u; are zero, but this is precluded by the Corollary to Theorem 6.10.2. Since
Su = k — 1, the u-line has just £ — 1 nodes. =
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Corollary 6.11.1 If o, 8 are successive nodes of a uy-line, then | — 3| > 1.

Theorem 6.11.2 The u-lines corresponding to two successive eigenvectors of
an oscillatory matriz cannot have a common node.

Proof. Suppose, if possible, that «*)(a) = 0 = u*+1) (), and put
u(x) = cu® (z) — uF+(2).
Theorem 6.10.2 shows that
k—1<8, <Sf<k. (6.11.1)

The Corollary to Theorem 6.11.1 shows that u(® (z) and u(**+)(z) will both
be non-zero in (a,a + 1].  Choose 7 so that @« < v < a+ 1, and put ¢ =
u* ) (y) /u®) (v). Then u(z) will have two zeros, o,y such that o < v < a+1;
it must therefore have a link along the x-axis, means that two successive u; must
vanish. According to Ex. 6.9.1 this means that S — S; > 2, contradicting
(6.11.1). m

Theorem 6.11.3 The nodes of u-lines corresponding to two successive eigen-
vectors g, ugy1 of an oscillatory matrix interlace.

Proof. Suppose that o, are two successive nodes of the uyyi-line, then
u* D (a) = 0 = u*+t1(3) and f — a > 1. Suppose if possible that the u-line
has no node in («, 8). Without loss of generality we may assume that

u® (z) > 0 in [o, 8], «*V(z) > 0in (a, 8).
Put
w(x) = cu® (z) — uF+ (z)
then
k—1<8, <S8t <k. (6.11.2)

For sufficiently large ¢, u(z) > 0 in [, 5]. Decrease ¢ to a certain value ¢y at
which u(z) first vanishes at least once, at a point 7 in [a, 8]. Clearly ¢y > 0 and

uo(z) = cou® (z) — u* D (z)

does not vanish at « or §, so that o < v < 8. Thus ug(z) > 0 in [a, 5] and
uo(y) = 0. The broken line ug(z) cannot have a complete link on the z-axis,
for then, as in Theorem 6.11.2, it would be zero at two successive ug(i) and
St —Sa, > 2, contradicting (6.11.2). Since ug(y) = 0, and uo(x) is positive on
either side of 7, v must be a break-point of the ug(x) line, say 4, so that

uo(i — 1) > 0, U,Q(Z) =0, UQ(i + 1) >0

and again S{ — S, > 2, contradicting (6.11.2). We conclude that between
any two nodes of u*+1)(z) there must be at least one node of u®)(z). But
u®)(z) has only k — 1 nodes, while u**)(z) has k nodes. Thus u*)(z) has
no more than one node between two nodes of u*+1)(z), i.e., it has exactly one
node there; the two sets of nodes interlace. m



Chapter 7

Isospectral Systems

We view things not only from different sides, but with different eyes; we have
no wish to find them alike.
Pascal’s Pensées, 124

7.1 Introduction

We will say that two systems are isospectral if they have the same eigenvalues.
(Some authors use the term cospectral.) In our context a ‘system’ is charac-
terised by a symmetric matrix A € S,,, or perhaps by two symmetric matrices
M, K € S,. In the notation of Section 4.3, two matrices A, B € S,, are said to
be is isospectral if

c(A) =o(B) (7.1.1)
and two systems (M, K) and (M’, K') are said to be isospectral if
o(M,K) = oc(M',K’). (7.1.2)

We recall that if M, M’ are positive definite, then we may reduce the problem
to (7.1.1).

In Section 5.2, when discussing matrix transformations, we showed that if Q
is an orthogonal matrix, i.e., one satisfying

QQ"=Q"Q=I (7.1.3)

and if
B = QAQ" (7.1.4)

then A and B are isospectral. The converse is true: if A and B € S, are

isospectral, then they are related by (7.1.4) for some Q. To prove this, we may

use the general representation of a symmetric matrix given in the Corollary to
n

Theorem 6.3.2.  Suppose A,B € S,, have the same eigenvalues (\;)?. Put
A =diag(A1, A2, ..., \n), then

A=UAUT andB=VAVT

153
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where both U and V are orthogonal. Thus
B = vUul.uAUT.UVT = vU". A UV".

But since U, V are orthogonal, sois Q = VU’ (Ex. 5.2.2). Thus B = QAQ”.
We recall Ex. 5.2.2, that this transformation defines an equivalence class, an
1sospectral family of matrices.

This means that, from a purely mathematical viewpoint, the problem of
characterizing isospectral systems governed by a single matrix is solved: the
matrices A and B are linked by some orthogonal matrix Q. However, this
result is insufficient for applications to vibrating systems. For there we are
concerned with vibrating systems of a particular type, as described for instance
in Section 5.1. It may easily be verified that if the matrix A has a particular
form, in the sense that it relates to a particular graph G, and if Q is an arbitary
orthogonal matrix, then B will not necessarily have the same form, i.e., relate
to the same graph G. In practice, the conditions on the system matrix are even
more stringent; there are conditions on the signs of matrix elements.

This is the question we address in this Chapter: given one system, specified
by A or (M, K), with the matrices having some particular form, specified by a
graph G, and perhaps some sign conditions, how can we find other systems B
or (M/,K’) satisfying the same conditions? We do not seek just an isospectral
family, but a special isospectral family (i.e., a subfamily), the members of which
share certain special characteristics. So far, the results which have been obtained
relate to comparatively simple systems. We start our quest by considering the
concept of isospectral flow.

7.2 Isospectral flow

Suppose A € S, has eigenvalues (\;)} and eigenvectors (u;)7, then equation

(6.3.8) states that if U = [uy, ug,...,u,] and A = diag(\i, A, ..., \n), then
A=UAUT, UUT=UTU=1L (7.2.1)

Now suppose that U depends on a single parameter ¢, and that U(t), and hence
A(t) varies in such a way that the eigenvalues, and hence A, remain invariant.
Using - to denote d/dt, we have
A = UAU +UAUT (122)
— (UAUDYUUY) + (U ) (U ATT). -

On differentiating the second equation in (7.2.1) we find
UU +UU =0

so that on writing
S=UU (7.2.3)
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we find .
UU =-Ss=¢87, (7.2.4)

and we can write equation (7.2.2) as
A =AS-SA. (7.2.5)

This is the differential equation governing isospectral flow. We note from equa-
tion (7.2.4) that the matrix S is skew symmetric. We note also that the
differential equation governing U is

U=--SU,

and that because S is skew symmetric and A is symmetric, A, given by (7.2.5)
is symmetric.

We may apply this analysis in reverse. Suppose S(t) is a skew symmetric
matrix, and let U(¢) be the solution of the equation

U(t) = -S(HU(#), U(0) = Uo
where Uy is an orthogonal matrix, then
(uTu)y =vfu+uvfu=uTsu-ulsu=o.

But since U Uy =1, UT(¢)U(t) =1 for all ¢; U(¢) is orthogonal.
Now, with this S(¢) and U(¢) we consider the equation

where Ag = Uy A UJ. We have

UTAU + UTAU + UTAU
— UTSAU + UT(AS —SA)U - UTASU =0

(UTAU)*

so that
UTAU = UJ AU = A.

Equation (7.2.5) provides a way in which to construct a one-dimensional
family, i.e., a trajectory, of isospectral systems, and we will explore its use later.
At this point however, we will discuss the connection between equation (7.2.5)
and matrix factorisation.

One of the basic procedures of numerical linear algebra is the Gram-Schmidt
procedure for orthogonalisation: given a set of vectors (a;)]* € V,,, construct a
set of orthonormal vectors (q;)] € V,, by forming combinations of the a;. The
Gram-Schmidt procedure gives a way to factorise a non-singular matrix A € M,,.
Since A is non-singular, its columns are linearly independent, and so span V,,;
the Gram-Schmidt procedure will yield n orthonormal vectors (q;)} spanning
V,.; we obtain the factorisation by writing the a;’s in terms of q’s. Let

A =Jaj,as,...,a,),
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then we choose (q;)7 so that
m
am:ZTkak, m=12...,n,
k=1

which we may assemble to give

@11 Q12 ... Qin qgi1 q12 ... (Qin Tin Ti2 ... Tin
az1 Q2 ... Q2p _ g21 Q22 ... (Qon 22 ... Tan
- b
an1 An2 ceo Qpp dn1 dn2 o+ QGnn Tnn
ie.,
A =QR. (7.2.6)

The q; and the r’s are found in Theorem 3.2.1:

ri = |lail], qi =ai/ri,
T2 =qfas, 722 =||lag —7r12qi1|], Q2= (a2 —r12q1)/722,

etc. We note that the diagonal terms r;; are positive.
One of the basic results related to the QR factorisation is that if

A =QR, then A’ =RQ = Q" (QR)Q = QTAQ (7.2.7)

which means that A’, obtained by reversing the factors Q and R, is isospectral
to A. One of the ways in which QR algorithm is used in numerical linear
algebra is to use it to form a sequence of matrices A, A’, A”,... by continually
reversing factors:

A=QR, A’ =RQ=QR, A"=RQ =Q'R’,... (7.2.8)

Under certain conditions, the sequence converges to an upper triangular matrix
or, if A is symmetric, to a diagonal matrix composed of the eigenvalues. We
will use the basic reversal (7.2.7) and the sequence (7.2.8), in this book, but we
are not interested in the convergence properties of the sequence, for which see
Golub and Van Loan (1983) [135].

We now show that, for a special choice of the skew symmetric matrix S, we
may relate the sequence (7.2.8) to an isospectral flow. In doing so we will have
to retrace some of the steps we have already taken.

Suppose A € S, and that AT is its strict upper triangle, i.e.,

ai2 A1n

ass ... A92n
AT = , (7.2.9)

An—1,n
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then A may be written

A = At 4+ AFT + diag(an, aso, ..., an")
= AT — AT 4 2AY +diag(aiy,ass, ..., an,) (7.2.10)
— S+R
where S = AT — A* is skew-symmetric and R = 2A* +diag(ai1, a9, - . ., Gnp)

is upper triangular. We note that any symmetric matrix has this unique de-
composition into a skew-symmetric matrix and an upper triangular matrix.
We now start to retrace our steps:

Lemma 7.2.1 Suppose S is skew symmetric, and let Q be the solution to the
problem

Q=Qs, Q()=I (7.2.11)

then Q is an orthogonal matriz.

Proof.

QQ' +QQ’
= QSQ+Qs"QT=Q(s+87)Q” =o.
Since Q(0)QT(0) =1, we have Q(#)QT =1. m

(QQ")*

Lemma 7.2.2 Let A(t) be the solution of the problem
A=AS—SA A(0)=A,, (7.2.12)
then A(t) = QT (t)AoQ(t), where Q(t) is as in Lemma 7.2.1.
Proof. Let Z(t) = Q(t)A(t)QT(¢), then
Z = QAQ' +QAQ" +QAQ"
QSAQT + Q(AS —SA)QT + QASTQT
QA(S +STQT =o.

This shows that
Z(t) = Z(0) = A(0) = Ao
so that
QAQT = Ap,ie, A=QTA)Q. m
The orthogonal matrix Q was introduced as ‘the solution to the differen-
tial equation (7.2.11)’.  We now show that we may identify it through a QR
factorisation:

Lemma 7.2.3 If the matriz exp(tAg) has the QR-decomposition
exp(tAog) = Q(t)R(¢), (7.2.13)

then Q(t) satisfies equation (7.2.11), and A(t) = QT (¢t)A¢Q(t) is the solution
of (7.2.12).
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Proof. Here )
t
exp(tAg) =T+ tAg + EA(Q) +... (7.2.14)

is the solution of the equation

X(t) = AoX(t), X(0)=T1
Taking derivatives of both sides of (7.2.13), we find
(QR). - QR + QR = A(] eXp(tA(]) = A0QR

so that . .
Q+QRR = A0Q,

and
. . -1 N

Q'Q+RR  =QTAQ=A(t). (7.2.15)

But A(t) is a symmetric matrix, Q is orthogonal, so that QTQ is skew symmet-
.1

ric, and RR  is upper triangular: equation (7.2.15) gives the unique decom-
position of A as the sum of a skew-symmetric and an upper triangular matrix,
ie.,

QTQ _ AJrT _A+ =S,
On the other hand

A = Q"AQ+QTAQ
(Q7AQ)(QTQ) +(QTQ)(QTAQ)
= AS-SA

and A(0) = Ay. But this means that A satisfies the same differential equation
as A, and has the same initial value, Ag;
At)=A1)=QTAQ. m
We may now state

Theorem 7.2.1 Suppose A(t) is the solution to the differential equation (7.2.12).
Fork=1,2,... suppose

exp(A(k — 1)) = QxR

then
exp(A(k)) = RpQy
where Qr = Q(k), R = R(k).

Proof. Lemmas 7.2.2 and 7.2.3 show that
A(t) = Q" AQ(t)

and

exp(tA(0)) = QH)R(t) (7.2.16)
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SO

R(1)Q(t) QT (1)(Q)R(1)Q(t)

= QT(t)exp(tAo)Q(t).

Now consider

ep(tA() = exp(QT(1)1ANQ(D) (r2.17)
T 2
= I+QTtAOQ+W+...
(Q"tA,Q)(Q"tAQ)

= I+QTtAQ+ o 4.
2 A2

2A
= Q(I+tAo+—"+)Q

= QT exp(tAo)Q = R(1)Q(?).

This means that, taking ¢t = 1 in (7.2.16), we have

exp(A(0)) = QiR

and taking ¢t =1 in (7.2.17),
expA(1l) =R1Q; = QzRy etc. m

We describe this result by saying that the solutions of (7.2.12) at inte-
gral times 0,1,2,... give the iterates in the QR-sequence (7.2.8) starting from
exp(A(0)) = exp Ag = Q1R.

We conclude this section with a note on the historical development of the
theory of isospectral flow.

The analysis had its beginnings in the investigation of the so-called Toda
lattice, Toda (1970) [324], a set of n particles constrained to move on a line un-
der exponential repulsive forces. Symes (1980) [315], Symes (1982) [316] gives
references to the roots of the problem in Physics, and establishes the theory,
basically as described above, for the particular case encountered in the Toda
lattice, that A is a Jacobi matrix. The analysis for a Jacobi matrix was devel-
oped further by Nanda (1982) [245], Nanda (1985) [246] and by Deift, Nanda
and Tomei (1983) [77]. The generalisation of the theory to an arbitrary complex
non-symmetric matrix is due to Chu (1984) [57]. Watkins (1984) [331] gives
a survey of the general theory, and its extension to other matrix factorisations
such as LR (lower triangular matrix L, multiplied by upper triangular matrix
R) or the Cholesky factorisation LL”. Chu and Norris (1988) [60] explore the
connection between isospectral flows and abstract matrix factorisations.

Most of this research is concerned with the connection between isospectral
flow and the procedures used in numerical linear algebra; this is not our concern
in this book. Rather, we are interested in isospectral flow as a way of construct-
ing isospectral systems, as we will show in later sections of this Chapter.

We will take up the topic of isospectral flow in Section 7.6 after we have
considered algebraic procedures for obtaining isospectral systems.
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7.3 Isospectral Jacobi systems

We follow Gladwell (1995) [121] and start our discussion by considering the
particular case of the spring-mass system shown in Figure 4.4.2a and reproduced
as Figure 7.3.1.

k2 kn kn+l

Figure 7.8.1 — An in-line spring-mass system

The governing equation is

(K — AM)y = 0, (7.3.1)
where
ki+ke  —ke 0 ...0
K — —ko  ko+ks —ks ...0 7 (7.3.2)
0 UV S
M = diag(mqy,ma, ..., my,). (7.3.3)

We will assume that the chain of masses and springs is unbroken, so that
(k) >0, (m;)} >0.

There are three particular cases:
(S) supported; k1 > 0, kpiq >0
(C) cantilever; ky >0, kpt1 =0
(F) free; k1 =0, kpy1 =0

If two systems, 1 and 2, are isospectral then, in the notation of Section 4.3,

o(Mp,Kq) = oc(M2,Ks). (7.3.4)

There are two almost trivial ways of obtaining an isospectral pair. First, if
¢ > 0, then
o(eM, cK) = o(M, K).

Secondly, if we physically turn the system around and renumber the masses and
springs from the left, then we will not change the eigenvalues. Renumbering
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is equivalent to pre- and post-multiplying by the matrix T of equation (4.3.8).
Thus (7.3.4) will hold if

M, =TM,; T, K;=TK;T. (7.3.5)

To obtain non-trivial isospectral pairs, we reduce (7.3.1) to standard form.
We write
M=D? Dy=u, J=D'KD! (7.3.6)

so that
(J=A)u=0. (7.3.7)

First, consider a cantilever system. Now as in (4.4.7), K may be factorised
as
K =ERE', K =diag(ki, ks,... kn),

and 7
J=D'EKE D (7.3.8)

To obtain an isospectral pair, we need

Lemma 7.3.1 If A,B € M, then AB and BA have the same eigenvalues,
except perhaps for zero.

Proof. Suppose A # 0 is an eigenvalue of AB, so that, for some x #
0, ABx = Ax. Since A # 0 and x # 0, we have Bx # 0. Now B(ABx) =
BA(Bx) = ABx, so that Bx is an eigenvector of BA corresponding to the eigen-
value \. We have proved that any non-zero eigenvalue of AB is an eigenvalue
of BA. Now reverse the roles of A and B to complete the proof. m

Write K = F2, so that

J= (D 'EF)(FE'D™}). (7.3.9)

Now apply the Lemma: the eigenvalues of J are non-zero (in fact, positive) so
that if
J' = (FE'D)(D'EF), (7.3.10)

then
a(J) =a(J).

To form a spring-mass system corresponding to J’ we reverse the reduction to
standard form, and write

(J = X)u=0
as

(ETM™'E - AK')v=0, v=Fu (7.3.11)

This is the eigenvalue equation for a reversed cantilever, We may verify this by
noting that
TET =ET, T?=1,
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and thus
TE'M'Ev = TE'T-TM 'T.-TET:Tv

— EKET.Tv,
so that we may write equation (7.3.11) as

(K - A\M°)Tv =0,

where .

K’ —EK'E’, KO=TM 'T, M°=TK 'T.
This system relates to a cantilever with

o_ . -1 0_ -1 .
ki=m, i, my =k, ., i=12,....n,

and
o(M° K% = o(M,K).

This pair was pointed out by Ram and Elhay (1995a) [285]. See also Ram and
Elhay (1998) [287].

In the analysis we have just described, we started with a system specified
by M, K and formed the Jacobi matrix J = D *KD~!. This passage from
a spring mass system to a Jacobi matrix is unique, but starting from a given
Jacobi matrix we may construct an infinite family of spring mass systems, as we
will now show.

The stiffness matrix K of (7.3.2) has the property

K{1,1,1,...,1} = {k1,0,...,0,kny1}; (7.3.12)

this equation states that in order to move all the masses statically to the right
by unit displacement, we must apply forces k; and k,41 to masses my and m,,
respectively.  We follow the analysis developed in Section 4.4. Since J =
D 'KD ™! we have K = DJD so that equation (7.3.12) yields

J{dy,dy,...,dpy} = {k1d; "0, ... kpiady b

Thus in order to find a spring-mass system we must take J and find a solution
to the equation

Jd ={a,0,...,0,8} d={dy,ds,...,dn} (7.3.13)

where « > 0, 8 >0, a+8 > 0. IfJis non-singular, then Theorem 4.4.1 ensures
that d > 0. Thus to construct a spring-mass system we may choose «, 5 to be
arbitrary non-negative constants, not both zero. This is equivalent to choosing
arbitrary spring stiffnesses k; and k,1; for when we solve equation (7.3.13) we
find

]{?1 = d1a7 kn+1 = dnﬁ, (7314)

we have a two-parameter family of isospectral systems. If we demand that the
reconstructed system be a cantilever, so that § = 0 = k, 11, then the solution is
essentially unique; we can make it unique by taking m; =1 or Z?:l m; = 1.
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If J is singular we use Theorem 4.4.2, which ensures that there is a positive
solution of
Jd=0 (7.3.15)

and then construct K = DJD, M = D?; again the system is essentially unique.

We now discuss two different ways of constructing families of isospectral
Jacobi matrices. We let M(A1, Ag, ..., A,) denote the set of Jacobi matrices J
such that o(J) = (A;)}. The first follows directly from the analysis of Section
4.3: we can reconstruct J uniquely from o(J) = ()\;)} and the vector x; of first
components of the normalised eigenvectors u; of J. We know that these first
components x11,T21,...,T,1 are all non-zero, so that we can take them to be
all positive, and they satisfy

x{x1=1=a} +23 + +a2,. (7.3.16)

This means that each J € M may be associated with a point P = (11, 221, .. .,
Zn1) in the (strictly) positive orthant of the unit n-sphere. (In more precise
terms, M is a smooth (n — 1)-dimensional manifold diffeomorphic to the strictly
positive orthant of the unit n-sphere.)
The second way uses QR factorisation, as discussed in Section 7.2. Suppose
A € S, and p is not an eigenvalue of A. Then A — uI is non-singular, and so
may be factorised:
A —uI=QR. (7.3.17)

Here Q is an orthogonal matrix, and R is upper triangular with positive diagonal
terms r;;; this factorisation (7.3.17) is unique. Now form the matrix A’ from
the equation

A’ — ul = RQ. (7.3.18)

Equations (7.3.17), (7.3.18) define a transformation G, : A — A'.
The matrix A’ is symmetrical, and is isospectral to A:

A= I+RQ=Q"(1I+QR)Q = QTAQ. (7.3.19)
We now prove
Theorem 7.3.1 If A is a Jacobi matriz, then so is A’.

Proof. We first show that if A is tridiagonal, then so is A’.
Equations (7.3.17), (7.3.18) give

RA =R(uI+QR) = (uI+ RQR = A'R. (7.3.20)

This relation between A and A’ is fundamental, and is often more instructive
than (7.3.17), (7.3.18) or (7.3.19). Consider the 7,j term in the products on
either side of (7.3.20), and take i > j:

Zrikakaza;krkj, j=1,2,....n—1;i=4,j+1,...,n.  (7.3.21)
k=1 k=1
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Since R is upper triangular, r;; is non-zero only for £k = 4,¢+ 1,...,n. Since
A is tridiagonal, ay; is non-zero only for k = j —1,7,5 +1. Thus the product
on the left is non-zero only for k running from ¢ to j + 1; it is identically zero
if i > 7+ 2. Since R is upper triangular, the index k on the right runs from
k=1,2,...,5. Thus

J+1

J
Z TikOkj = Z WigThj- (7.3.22)
k=i k=1

In particular therefore
J
»dyry =0, j=1,2,...n-2i=j+2,...,n (7.3.23)
k=1

Taking j = 1 we find aj};71; = 0, and since 111 > 0,

Now take j = 2:
T2 4 Aoraa =0, i=4,...,n.

But a}; = 0 for these values, and 72 > 0, so that

a.=0, j=12..n—-2%i=j+2,...,n (7.3.24)

Thus A’ has only one non-zero diagonal below the principal diagonal. But A’
is symmetric, so that it is tridiagonal.

To show that if A is Jacobi, then so is A’ we return to equation (7.3.22).
Since A’ is tridiagonal, we can rewrite (7.3.22) as

Jj+1 J
Zﬁ‘kakg‘ = Z Qg Thj- (7.3.25)
k=i k=i—1

Take ¢ = j + 1, then each sum has just one term:
Tiiai71_1 = a;ﬂ_lri_lﬂ;_l, ’L = 2, ey (7326)

if a; ;1 is positive (negative) then soisa;, ;. m
:

We now suppose A = J, a Jacobi matrix, and prove

Theorem 7.3.2 The operator G,, is commutative when applied to Jacobi matri-
ces.
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Proof. Consider the relation between the eigenvectors of J and J’. Suppose
u is a normalised eigenvector of J:

Ju = Ay,

then

JQ™u = (QTIQ)Q"u = Q"Ju=AQ"y,
so that u/ = QTu is a normalised eigenvector of J’.  We may express this
eigenvector in another way. Since

Ju=(QR + pI)u = Au,

we have
QRu = (A — p)u,
or R
W' =Qu= 5 _“M. (7.3.28)

This equation shows that the last component of the eigenvector u; may be taken
to be
M =l

This shows that, under the operation G,,, the last components of the eigenvectors
are simply multiplied by two terms: one, ry,, (1), independent of ¢, and the other
|A\i —p|~t. This means that the last components of the normalised eigenvectors
of either of the matrices in (7.3.27) will be proportional to

(7.3.29)

Unig

e 7.3.30
N Al 7] (7.3.30)

Since they are proportional, and the sum of the squares of each set is unity, the
two sets must be the same. But a Jacobi matrix is uniquely determined by its
eigenvalues and the last components of its normalised eigenvectors. Therefore,
(7.3.27) holds, and G, is commutative. m

We prove a stronger result in Theorem 7.4.2.

Theorem 7.3.3 If A,B € M, then we can find a unique set (u;)7 ™" such that
g < iy < oo < puy,_q and

gMgM e g/"'n—lA = B. (7331)

Proof. It is sufficient to show that we can pass from one set of last com-
ponents (un;)} to any other set (v,;)} in n — 1 G, operations. But equation
(7.3.29) shows that this is equivalent to choosing fiq, fig, - - - , fi,,_1 such that

n—1
Unj

=1 |Ai — Mj|

X Uni, ©t=1,2,...,n.
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This is equivalent to choosing the polynomial

n—1

PO =K [[(A—ny)

j=1

such that
|[P(\)| = uni/vni, i=1,2,...,n.

If we choose the (u;)7" so that
A< <A< < g < Ay (7.3.32)
then _
P()\Z) = (—)n_’um/vm, 1= 1,2,...,77,.

But there is a unique such polynomial P()) of degree n — 1, taking values of
opposite signs at n points \;, and it will have n — 1 roots p, satisfying (7.3.32).
]

Corollary 7.3.1 IfG,A = B, then we can find (1;)7 " such thatG, G, ...G. .
B = A, and hence find g;l.

Corollary 7.3.2 We can find (u1;)7* such that

glhg#Q e g/’Ln—IA =A.

Exercises 7.3

1. Consider the case (F'), in which k; = 0 = k,4;. Use Lemma 7.3.1 to
obtain a cantilever which has the same eigenvalues as the original system
apart from the zero eigenvalue corresponding to the rigid body mode.

2. Construct a formal inductive proof of equation (7.3.24).

7.4 Isospectral oscillatory systems

In Section 7.3 we considered the operator G,, defined by equations (7.3.17) and
(7.3.18).  We showed, amongst other things, that if J is tridiagonal, then so
is J /5 if ajy14 < 0 (> 0), then aj,; < 0 (> 0). We recall from Section 6.6
that a positive-definite (symmetric) tridiagonal matrix with positive co-diagonal
is a particular example of an oscillatory matrix, as defined at the beginning of
Section 6.6, and characterised by Theorem 6.7.3. This means that if A is a
symmetric tridiagonal oscillatory matrix, p is not an eigenvalue of A, and the
diagonal elements of R are positive, then the operations

A—uI=QR (7.4.1)



7. Isospectral Systems 167

A’ — I = RQ (7.4.2)

yield a new matrix A’ that is symmetric, tridiagonal and oscillatory. Following
Gladwell (1998) [126] we will now state that this is a special case of a general
result:

Theorem 7.4.1 Suppose A € S, let P denote one of the properties NTN, O,
TP, let A’ be defined from equations (7.4.1), (7.4.2). A’ has property P iff A
has property P.

This Theorem states that A’ is NTN iff A is NTN, A’ is O iff A is O, and
A’ is TP iff A is TP. Implicit in the theorem is the condition that the diagonal
elements of R, which are necessarily non-zero because A — pI is non-singular,
are chosen to be positive.

The two conditions, that A is symmetric (A € S,,), and u is not an eigenvalue
of A, are essential, as we now show by counterexamples.

Take p = 0 and

2 a
A:[l 2] (7.4.3)
then

q - LJ2 R L[5 2042
AR ’ NALREEY,

1 2—|—2a 4a—1

4 — —_
A = 5[ 4 — —a)]

Ifa = %, A is O and TP, A’ is not even TN; when ¢ = 0, A is NTN and A’ is
not TN.

The condition that p is not an eigenvalue is essential. For when a = 1 the
matrix A in (7.4.3) is O and TP, and its eigenvalues are \; = 3, Ay = 1. (Recall
that when we consider oscillatory matrices we label the eigenvalues in decreasing
order.) Take p =1, then

1
TN
/ B 2c 2c —c | |2
A —pl = [0 oHc c ]_{0
The matrix A’ in (7.4.4) is not oscillatory.

In general, if A € S,, is O then its eigenvalues are distinct (Corollary to
Theorem 6.10.1). This means that if y = Aj, for some k, then A — pI has rank
n—1 and 7,, = 0, but no other r;; is zero. Thus the last row of A’ — uI will be
identically zero, in particular aim_l =0, so that, by Theorem 6.7.3, A’ cannot
be O.

The proof of Theorem 7.4.1 requires delicate treatment of inequalities. It
may be found in Gladwell (1998) [126] and will not be reproduced here. We

(7.4.4)
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merely give some hints on the proof. First, it relies on an earlier result of Cryer
(1973) [66] for the case p = 0. See also Cryer (1976) [67] Cryer’s results may
be used to show that if A (not necessarily symmetric) is NTN,; O or TP, and
A = LU where L(U) is lower (upper) triangular, then A’= UL is NTN, O or
TP respectively. Since A is PD we may replace QR factorisation for the case
1= 0 by two successive Cholesky LL” factorisations:

A=L LT B=LIL, =L,LT A'=LIL,.

We write
Q=L L, =L;"L,, R=LILT,

and note that
QQ" =LiL; "(L;L ) =1,

so that Q is orthogonal. Now

A L,L = (L, L; ")(L{LY) = QR,
A’ = LIL, = (LILT)(L;"Ly) = RQ.

If A has property P, then Cryer’s result shows that B has property P, and then
again A’ has property P.
The proof also relies on the Binet-Cauchy Theorem. Equation (7.3.20) states
that
RA = A'R, (7.4.5)

so that the Binet-Cauchy Theorem 6.2.4 gives
R,A, = A;’Rp. (7.4.6)
We now prove

Lemma 7.4.1
Rp(A™), = (.A'm)p’Rp, m=1,2,... (7.4.7)

Proof. The Binet-Cauchy Theorem gives
(A™), = (A" = A7

and similarly (A™), = A)". By equation (7.4.6), the result holds for m = 1.
Suppose it holds for one value, m, then

AR, A (AR,
= A(RI'A,) = (AR,)AT

= (RpA,)AT =R, AT

the result holds for m+1. m
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Equations (7.4.5)-(7.4.7) generally yield complicated relations between the
elements of A and A’, A, and A;,, but for some important special cases the
relations are simple. Consider equation (7.4.5) in element form:

n J
Z ik = Z k- (7.4.8)
k=1 k=1
If ¢ =n and j = 1, there is only one term in each sum:

TrnGnl = GpyT11- (7.4.9)

The hypothesis of Theorem 7.4.1 is that A is NTN (at least). Ex. 6.6.1 states
that if A is NTN and a,; > 0, then A is a positive matrix (strictly positive,
but not TP!). 1In fact, a,; > 0 is the first of the conditions in Theorem 6.8.2
for a (symmetric) NTN matrix to be TP: a,; is the first of the corner minors of
A, as discussed in Theorem 6.8.2. The general corner minor is A(¢;6) where
0={1,2,...,p}, p={n—p+1,...,n}. Thisis the corner element N,1 in the
matrix A,. Thus equation (7.4.6) gives

Tnepil - TanA(9;0) = A'(¢;0)r11 ... 1pp (7.4.10)

so that A’(¢;0) > 0 iff A(¢;60) > 0. This result, combined with some delicate
reasoning, shows that A’ is TP iff A is TP.

To show that A’ is TN iff A is TN, we use a result due to Ando (1987) [4],
that a TN matrix may be approximated arbitrarily closely, in, say, the L; norm,
by a TP matrix. Finally, to show that A’ is O iff A is O we use Lemma 7.4.1.
That shows that the corner minors of A’ are positive iff the corner minors of
A™ are positive. So if A is O, it is NTN, and therefore, A’ is NTN. Again, if A
is O, A™ is TP for some m < n — 1, its corner minors are positive, so therefore
are those of A’™; A'™ is TP; A’ is O.

We conclude from Theorem 7.4.1 that the operator G, maintains the proper-
ties NTN, O, TP (and SO also) invariant, provided of course that A is symmetric,
1 is not an eigenvalue of A, and R has positive diagonal.

In Section 6.6 we showed (Theorem 6.6.3) that an NTN matrix is a staircase
matrix. We now prove

Theorem 7.4.2 Suppose A € S, is NTN and is a p-staircase matriz, then
A = GuA is also a p-staircase matriz.

Proof. Since A’ is NTN, it is a staircase matrix, say a p’-staircase.
The fundamental relation (7.3.21) gives

Pj J
D rikan; =Y ahri;. (7.4.11)
k=1 k=1

We use induction to prove p’j =pj,j=12,...,n. Take j =1. If¢> pq, the
L.H.S. is zero, so that a};r1; = 0; p} <p;. If i = p; then

/
TiiQi1 = Q31711
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so that aj; > 0; p{ = p1. Suppose that p; = p; for j = 1,2,...,m — 1. If
j=mand i > p, in (7.4.11) then

> iy =0. (7.4.12)
k=1

But since A’ is a staircase, ¢ > p,, implies i > p, = p) for k =1,2,...,m — 1,
so that there is only one term, the last, in the sum (7.4.12); af,, = 0. Thus
P, < pm. Now take j =m, i = p,,, then

m
/
TiiQim = § Qi Thm -
k=1

If p.y, > pm—1, then there is only one term, the last, on the right, and

/
TiiQim = GjTmm

so that p/,, = pm. If ppy = pm—1, then the inequalities p/, > pl, 1, o, < Pm
imply pl,, = pm. Arbenz and Golub (1995) [12] show that staircase patterns are
effectively the only ones invariant under the symmetric QR algorithm. m

In Theorem 7.3.2 we showed that the operator G,, applied to a Jacobi matrix
was commutative. We now show a stronger result.

Theorem 7.4.3 The operator G,, is commutative.

Proof. We need to show that G, G,, = G,,G,,. Consider the operations
gulA = Al, gH2A1 = AQ; QHQA = Ag, gulAg = A4Z

A-pI=QR;, A — i, I=R1Qq,

A — I = QoRo, Ay — I = RoQpo;

A —pl=QsR3, Az — pI=RsQs,

Az — i I=QuRy, Ay —pI=Ry4Qu.
These equations give

Ay — ol = QT (A — 11,1)Q; = Q2R,

ie.,
Q! QsR3Q; = Q:Ro, (7.4.13)
As —pI= Qg(A - 1D)Q3 = Q4Ry,

ie.,
Qi QiR.1Qs = QuRy. (7.4.14)
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Equations (7.4.13), (7.4.14) give

Q:R; = QIQ:R:QT,
QR = QQR.Q7,

and on multiplying these together, we find

(Q1Q2R2Q7)(Q1R1) = (Q3Q4R4Q1)(QsR3),

or
Q1 Q2R2R; = Q3QsR4R.

Now Q1Q2, Q3Q4 are orthogonal matrices while RoRy and R4R3 are upper
triangular with positive diagonal. But a non-singular matrix has a unique
factorisation QR (with positive diagonal). Therefore,

Q1Q2 = Q3Q4, RoRi =R4Rs,
so that, since

As = QIA3Q:=QiQIAQ,Qs
Ay = QIAIQ:=QIQTAQQ:

we have Ay, = A;. =

7.5 Isospectral beams

We set up the eigenvalue problem for the (cantilever) beam in Section 2.3:

Ky = \My
where o
K = EL'EKE L 'E7, (7.5.1)
M = D?, D = diag(dy,ds, ...,d,). (7.5.2)

As usual, we reduce the problem to standard form:
Au = )u,

where
A=D'KD (7.5.3)

First, we obtain a simple isospectral system by using Lemma 7.3.1. Write
K =F?, F =diag(fi, f2,- -, fn)
then we may write A as

A = (D'EL'EF) - (FE'L'ETD™!).
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Now apply Lemma 7.3.1; the eigenvalues of A are non-zero (in fact, positive) so
that if

A’ = (FE'L'ETD!). (D"'EL'EF)

then
a(A’) =co(A).

To form a discrete beam corresponding to A’ we reverse the reduction to
standard form, and write

Alv =)\
as
Ky =My’ (7.5.4)
where
K =E'L'ETK'EL'E (7.5.5)
K=M"! M=K (7.5.6)

This is the eigenvalue equation for a reversed cantilever, as we may verify just
as we did for the spring-mass system in Section 7.3: we operate on (7.5.4) by
the reversing matrix T. Thus,

TK'T - Ty = \TM'T - Ty,

where
TK'T = TE'T.TL!T.-TE’T.TK'T.TET.-TL 'T.TET
EL 'EK'ETL-°E7 = K",
(7.5.7)
The new cantilever is related to the old by
k =myti B =laivr, m) =kt (7.5.8)

To construct a family of isospectral beams, we use the operator G,, defined
by equations (7.4.1), (7.4.2). We carry out the following steps:

i) start with a beam, defined by K,L,M = D2.

ii) construct A asin (7.5.1)-(7.5.3). A is symmetric, pentadiagonal, and sign-
oscillatory.

iii) choose p, not an eigenvalue of A, and form A’ = G,A; A’ also is symmetric,
pentadiagonal and sign-oscillatory.

iv) factorise A’ = (D/)~'K'(D’)~! and form M’ = (D')?, K’ = E(L')"'EK ET
(L) 1ET.
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The only step which needs to be completed is iv). We must show that the
new symmetric pentadiagonal sign-oscillatory matrix A’ may be factorised as in
(7.5.1)-(7.5.3), with some new positive diagonal matrices D', K’,L/.  We first
give the gist of the procedure, and afterwards show that it will always work.

The new matrix A’ is related to the new mass and stiffness matrices K', M’ =
D’? by equation (7.5.3). We start, as we did with the spring mass system in
Section 7.3, by considering simple static deflection of the beam, as shown in
Figure 7.5.1. We apply forces f1, —f2 at masses 1 and 2 so that all the masses
have unit deflection. The force-deflection equation is

K'{1,1,...,1} = {f1,—f2,0...,0}.
But A’ = D'"'K'D'"!, so that K’ = D’A’D’, and thus
D'A'{d},d,,...,d} ={f1,—f2,0...,0}

and
Al{dlladéw“vd/n}:{917_92a0~~'70} (759)

where ¢; = f;/d}, 1 =1,2.

T
£

Figure 7.5.1 - Two forces f1,—fa2, are required to produce unit deflections.

The matrix A’ is SO, so that, by Theorem 6.7.5, B’ = (A’)~! is O. The
solution of (7.5.9) is

d; =blig1 —biago, i =1,2,...,n. (7.5.10)

Take g1 = 1; we now show that if go is small enough, so that d, is positive, then
all the d} will be positive. For if 0 < go < b/, /b4, then

di > biy — sl /b
= (bi1bho — bisbl1) /by > 0,

n

because B’ is O. We will show later that b},,b;, are strictly positive for i =
1,2,...,n, so that the d} are strictly positive. Assuming that this is true for
the moment, we have now found d’ satisfying (7.5.9) for some g; = 1,92 > 0.
The vector d’ is the first column of the matrix D’E~7; E~lis given in equation
(2.2.10).

We now show that the matrix

C'=E 'DADET (7.5.11)
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is a Jacobi matrix. Suppose

! / /
a; —by 1
/ / / /
—b ay  —by Co
/ / ! / /
A= a —by a3 =ty
/ / !
Cn_2 _bnf 1 Qp

then A’'D’E~7 has just one diagonal below the principal diagonal; that diagonal
has elements —go, —cjd}, —chdh, ..., —c,,_od!, 5. The matrix E-'D’ is upper
triangular, so that C' = E"'D/(A’'D’E~7T) also will have just one diagonal
below the principal diagonal. But C’ is symmetric, so that it will also have just
one diagonal above the principal diagonal: it is a symmetric tridiagonal matrix
with co-diagonal

—dbga, = dydy, —chdydy, . .., —cl_odl, _odl,. (7.5.12)
Denote the matrix obtained by deleting rows and columns 1,2,...,7 — 1 of

A’ by Aj and let d; = {0,0,...,0,d},d},,,...,d;}, then the diagonal elements
of C’ may be written

C;Z = d{LTA;d;’ i = 17 2’ A 7n' (7-5.13)

To show that C’ is a Jacobi matrix, we need to show that it is PSD. Actually,
since the original A was PD, the new A’ is PD, and so is C’, because

xI'C'x = (XTE_lD’)A’(D'E_Tx)
= yTA'y >0.

We have constructed a Jacobi matrix C’ from A’. We now use the result
obtained in (4.4.7) for the factorisation of a Jacobi matrix. In changed notation
we may write

C' = (L) 'EK'ET(L) !, (7.5.14)
so that on combining (7.5.11) and (7.5.14) we find

A = (D) 'EWL)'EK'EY(L)'ET(D) L, (7.5.15)

as required.

We now examine this procedure. We must show that the terms b}, b}, are
strictly positive, and that the terms ¢} in the last band of A’, which appear in
the codiagonal of C’ are positive. To verify these matters we must return to
the G, algorithm, specifically to equations (7.4.5)-(7.4.9). The terms b,1, b,
are elements of B = A~! and B’ = (A’)~! respectively.

Taking inverses of the terms on each side of equation (7.4.5) we find

R 'B'=BR™ (7.5.16)
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and on equating the n, 1 terms we find

b = byt (7.5.17)

nn“nl —

The original A is given by equations (7.5.1)-(7.5.3), so that
B=A"'=DE "LE K 'E'LE"'

so that, with E~1 given by equation (2.2.10), it is clear that b,; > 0 and thus
equation (7.5.17) gives b/; > 0.
We now show that b/, > 0. The matrix B’ is known to be oscillatory; it is
thus TN so that the minor B’(1,n;1,2) > 0; thus
‘blﬂ Do | b b, — oty > 0 (7.5.18)
/ = 0110n2 1912 2 U, -0

/ n n

nl n2

and b),; > 0, by >0, b}y > 0, imply b/, > 0. We apply a similar argument to

nl

show that b}; > 0, b}, > 0:

/ / / /
' b/ul Ii)’“ >0, 7> 2 ‘ b}z (l))’“ >0,49>3 (7.5.19)
n n n nt

imply b}, > 0, b, > 0 respectively. We have proved that the procedure will
always yield a vector d’ which is strictly positive. Further discussion and results
may be found in Gladwell (2002b) [130].

Exercises 7.5

1. Show that there is a 2-parameter system of isospectral beams correspond-
ing to simple scaling, i.e., in which all the masses are scaled by the same
factor, the stiffnesses by another, and the lengths by a third one.

2. The argument used in (7.5.17), (7.5.18) is due to Markham (1970) [221].
Show that if B is O, and an element b;; with ¢ > j, i.e., an element in the
lower triangle, is zero,then all the elements below and to the left of b;; are
also zero. This implies that if B is O, then it has staircase structure, as
discussed at the end of Section 7.4.

Also, if b,1; > 0 and by,, > 0, then B is a strictly positive matrix.

7.6 Isospectral finite-element models

In Section 2.4 we showed that a finite-element model of a rod in longitudinal
vibration had tridiagonal mass and stiffness matrices, the former with positive
codiagonal, the latter with negative. The explicit form of the stiffness matrix
was given in Ex. 2.4.2. In this section, following Gladwell (1998) [126], Gladwell
(1999) [127], we consider how we can find a finite-element system M', K’ for a
rod which is isospectral to a given finite-element system M, K for a rod. We
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first consider a simple way of constructing an isospectral family M’, K’, and
then consider a procedure that will yield a large family. See Gladwell (1997)
[125] for an earlier attempt to solve this problem.

For simplicity we consider a cantilever rod, i.e., one that is fixed at the left,
free at the right. The eigenvalue equation is

(K — AM)y = 0. (7.6.1)

Instead of working with K and M, we will work with K = ZKZ and M;
both these are tridiagonal with positive codiagonal, i.e., they are oscillatory (O).
We factorise them as

K=AA", M=BB7, (7.6.2)

where relying on Cryer (1973) [66], we know that A, B are lower bidiagonal with
positive codiagonals. When reduced to normal form, the equation (7.6.1) is

(G = A)u=0, (7.6.3)
where G = B-'KB 7, ie, G= ]~3_II~{]~37T is O:
G =B 'AATBT. (7.6.4)

Thus one way to obtain an isospectral system M’, K’ is to find lower bidiagonal
C, D with positive codiagonals such that

K =cc?, M =DD7, (7.6.5)
and _ _ _ _
G=B'AA"BT=D"'cc’D 7. (7.6.6)
This holds iff _ _
B 'A=D"'C. (7.6.7)

Straightforward algebra shows that this implies
Cii = Vi, diy = viby, 1 =1,2,....n (7.6.8)
Cit1,i = Vit1Gi+1,i, dit15 = Vit1Dit1,4, 1=2,3,...,m—1 (7.6.9)
where (v;)} are arbitrary positive constraints, and
ai1da1 + bi1ca1 = v2(a11ba1 + ag1b11) = vap. (7.6.10)
The general, positive, solution of (7.6.10) is
o1 = vopsin® 0/by1, do1 = vapcos? 0/ary, (7.6.11)

where 0 < 0 < 7/2. This provides an (n + 1)-parameter family of matrices
M, K’ specified by the (n + 1) parameters (v;)7 and 6.
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~ =T
Unless the parameters v; are chosen properly, the new matrix K’ = CC
will not have the form of a stiffness matrix of a cantilever finite element model
of arod. Such a matrix, with K’ given in Ex. 2.4.2 has the defining property

K'{1,1,1,...,1} = {k,,0,0,...,0}. (7.6.12)
Equation (7.6.8)-(7.6.11) show that C has the form
C = NCy, N =diag(vy,va,...,0,)
and Cy depends only on #. Thus
K = NC,CIN
so that equation (7.6.12) yields
NC,CIN{1,1,...,1} = {K},0,...,0},

ie.,

éoég{vl,vg, cee ,Un} = {k”l/vl,O, . ,0} (7613)

Since éoég is a non-singular Jacobi matrix, i.e., it is SO, its inverse is positive.
Thus, equation (7.6.13) yields positive (v;)}, apart from a single positive factor.
To obtain a wider family we use the general theory of Section 7.4: we form

G’ from
G- uI=QR, G' - I =RQ, (7.6.14)

so that G’ is O. We must show that if G can be factorised as in (7.6.4), then
G’ can be factorised in the form

G' =D 'cc’™D 7, (7.6.15)

where C, D are lower bidiagonal with positive codiagonals. _
To establish the band forms, we consider how G was constructed: G =

B'KB T or K= B&B'. This we can write as H= GB', K = BH. The
equation BH = K is

> bikhig = kij. (7.6.16)
k=1

But K is tridiagonal, so that k;; = 0fori =1,2,...,.n—-2; j=14+2,...,n.
The matrix B is lower bidiagonal, so that (7.6.16) gives

biiothiij +bichi; =0, i=1,2....n—2 j=i+2,...,n
Thus, taking ¢ = 1 we find
buhi; =0 j=34,....n
but taking ¢ = 2 in (7.6.16) we have

barhij +bashoj =0 j=4,5,...,n
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so that
b22h2j =0 j=4,5,...,n

and generally

hij=0 i=12,...,n—2 j=i+2,...,n (7.6.17)

~ T
Now consider H = GB , which is equivalent to

n
hij =Y Gikbjk
k=1
and when combined with (7.6.17), this gives
§1¢,j—1bj,j—1 +gijbjj =0 = 1,2,...77?,7 2, j :Z+2,,Tl

Since g;; = (=)t 9ij, and G is symmetric, we may write these equations as

gj—1,1 gj1
gj—1,2 g2

bj7.7'_1 ,j = bjj _J 5 ] = 3, 4, ey N (7618)
9j—1,j-2 9j,5—2

We will show that these equations mean that the compound matrix G, of
2 x 2 minors of G has a pattern of zeros like that shown in Figure 7.6.1. Starting
from its left hand end, the first n — 3 terms in the last row of G5 are

Gn—-1,n;1,2), Gn—1,n;1,3)...G(n—1,n;1,n — 2).

Figure 7.6.1 - The rectangles in the lower left and upper right are zeros.
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These are all zero, for, by (7.6.18) with j = n,

Gn—1,n;1,k) = gn-1,1 Gn—1k | _ 0, k=2,....,n—2
gn,1 In,k
has its two rows proportional. Now we investigate the first n — 4 terms in the
penultimate row of Gs:

Gn—2,n;1,2), G(n—2,n;1,3)...G(n — 2,n;1,n — 3).
To show that these are all zero we consider the zero determinant

In—21 Gn—-21 YGn—2k
In—-11 Yn-1,1 Gn-1k | =0
9n1 Ini Ink

and expand it along its first column to give

gn—?,lG(n - 13 n; 17 k) - gn—l,lG(n - 27 n; la k) + gan(n - 27 n— 1; ]-7 k) =0.
(7.6.19)
However, G given by (7.6.4) is a full matrix with all positive terms so that
if any two of the minors in (7.6.19) are zero, then so is the third. But if
k=2,3,...,n— 3 then the first is zero, and (7.6.19) with j = n — 1 shows that
the third is zero, and thus the second is also.
Proceeding in this way we find that G(4,5;1,k) = 0 for 3 < i < j, k =

2,...,5— 1. This provides a non-increasing pattern of zeros for the columns of
G- in the lower triangle. Now the equation
R2G2 = GoRo (7.6.20)

shows that G} has a precisely corresponding pattern, and by tracing the steps in
the analysis we can conclude that G’ can be factorised just like G.
We obtain one factorisation

G' =D;'c,ciD T, (7.6.21)
and then note that equivalently
G =D'cc'D”

where
C=NCy, D=ND,

and N is an arbitrary diagonal matrix. Now we choose N, as before, to make

~ ~T
K’ = CC have the form of a stiffness matrix.

Exercises 7.6

1. Use equation (7.6.19) to verify that G, and G/, have precisely the same
staircase patterns, and so show that G’ may be factorised as (7.6.21).
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7.7 Isospectral flow, continued
In Section 7.2 we obtained the isospectral flow equation
A =AS-SA, (7.7.1)

which governs the isospectral evolution of a symmetric matrix A; S is a skew
symmetric matrix. In this section we investigate whether the pattern of zero and
non-zero elements in A, and the pattern of signs of elements of A, are invariant
in this flow. We will restrict our attention to a few types of matrices which
appear in vibration problems since the general problem is extremely complicated.
Ashlock, Driessel and Hentzel (1997) [13], in a very general discussion of Toda
flow, show amongst many results, that staircase patterns are the only patterns
that remain invariant under Toda flow. Their paper has a valuable summary of
the pertinent literture.
We start with tridiagonal A and take S = ATT — A7 ie.,

ap  —b
—b1 a9 —b2
A= , (7.7.2)
_bnfl
L —bp—1 Qp |
0 4 !
—-b1 0 +b
S:
: +bn—1
L 7bn_1 0 m

Now AS — SA is also tridiagonal, so that A retains its tridiagonal form, and
a; =202 | — 202, by = (aip1 —a)by, i=1,2,...,n (7.7.3)

where bg, b,, are taken to be zero.

We examine the signs of the diagonal and codiagonal elements. The flow
is isospectral so that if 0(A(0)) = (\;)} and all the \; are positive, then A(¢),
like A(0) will be positive definite; a; > 0, @ = 1,2,...,n. For given i, b;(t)
satisfies b;(t) = f()bi(t), where f(t) = aj+1(t) — a;(t). This has the solution
bi(t) = Cexp(F(t)), where F(t) = fot f(t)dt. Now f(t) is bounded for all ¢, so
that b;(t) retains the sign of C' = b;(0). Thus b;(¢) is >, <,= 0, depending on
whether b;(0) is >, <,= 0. We conclude that each codiagonal term retains the
sign it had when ¢ = 0. In particular, if the signs of the codiagonal terms are all
positive, i.e., A(0) is O, or negative, i.e., A(0) is SO, then A(¢) is correspondingly
O or SO.



7. Isospectral Systems 181

Before generalizing this analysis, we introduce some notation. The matrix
S in (7.7.2) is clearly related to A; it may be written as a so-called Hadamard
product:

0 +b ap  —b;
7()1 0 +b2 7b1 a2 71)2
+bn,1 _bnfl
_bnfl 0 _bnfl an,
_ 0 1 -
+1 0 -1
o (7.7.4)
i +1 0 |

The Hadamard product is quite distinct from the usual matrix product. It is
defined only for two matrices A, B of the same size, i.e., A,B € M,, ,, and is
given by the pairwise product of corresponding elements. If C = A o B, then
cij = aijbj, for i =1,2,...,m; j =1,2,...,n. Thus the matrix S in (7.7.4)
may be written S = A oY, where

0 -1
+1 0 -1
Y = (7.7.5)
+1 0
is itself a skew-symmetric matrix. (Clearly, if A is symmetric and Y is skew-
symmetric, then A oY is skew-symmetric.)

This brings us to the next example, in which A is a periodic Jacobi matrix;
now we take

aq —bl —bn 0 -1 +].
—b1 ay —by +1 0 -1
A: 7Y:
. —b_1 o~
—bp—1 Qp -1 +1 0
(7.7.6)

It is easy to verify (Ex. 7.7.2) that A retains its form under the flow (7.7.1)
with S = A oY, and that all the a; and b; retain their signs.

We note in passing that for tridiagonal matrices we have two ways to form
an isospectral family: using the operator G, of Section 7.3, or by using the
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isospectral flow equation with S given by (7.7.2). The periodic Jacobi form
is not invariant under G,, and it is not clear that there is a factorisation and
reversal operation under which it is invariant. The only algebraic way to form an
isospectral family seems to be to use the spectrum (A;)} and a second spectrum
(p;)7~" and reconstruct the matrix as in Section 5.4. For the periodic case, the
isospectral flow equation with S given in (7.7.6), provides a conceptually simpler
procedure.

There is a second comment. We showed in Section 7.3 that we can pass
from any one Jacobi matrix J to any other isospectral Jacobi matrix J' in n —1
operations G,,. It is doubtful that isospectral flow, with S given by (7.7.2), will
lead from one J to any other isospectral J’ (see Ex. 7.7.7).

We will now show following Gladwell (2002) [129] that this permanence of
sign of a tridiagonal matrix under the Toda flow (7.7.1) is a special case of the
permanence of the total positivity properties NTN, TP, O, SO under Toda flow.
We recall from Section 6.8 that it is the positivity of the corner minors of A
that is crucial in determining whether a TN matrix A is TP. We first prove a
theorem regarding the flow of these corner minors under the Toda flow (7.7.1).

Theorem 7.7.1 Suppose A € S, satisfies (7.7.1), with S = A*T — A+ B =
A™ ¢, =DB(1,2,...,p; n—p+1,...,n), then c,(t) satisfies

n

P
ép = ( Z ajj — Zajj)cp, p=12...,n. (7.7.7)
, =

Proof. Denote the pth order corner matrix of B by B,,, and suppose that
its columns are by, by, ...,b,. Thus

T
bj = [bn—p+1js bn-pi2js- s bnal

Ex. 7.7.3 shows that B satisfies

B = BS - SB,
with S = AT — A*, so that
Jj—1 n
bij = (aii — a;;)bi; — 2 Zajkbik +2 Z aibrj,
k=1 k=i+1
and
j—1
bj = ajjb]‘ — QZajkbk + ij, (778)
k=1

where C € M), is given by

ag, k=1,
Cik = 2a;, k=1+1,...,n
0 otherwise
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fori,k=n—p+1,...,n.
Now ¢, = det(b1, bs,...,b,), so that

p
ép = det(by,by,..., bj_1, bj, bji1,...,by). (7.7.9)
j=1

Consider the sums obtained by inserting each of the three terms in E)j from
(7.7.8) into (7.7.9). The first gives

p
— E ajjcp.
Jj=1

The second gives zero because it is merely a combination of the first 7 — 1
columns; the third may be written
n
Zj:n—p-‘,—l ajjcp. W
We now prove

Theorem 7.7.2 Let P denote one of the properties TN, NTN, TP, O, SO. If
A(0) € S, has property P, then A(t), given as the solution of (7.7.1) with
S =ATT — AT has the same property P.

Proof. Suppose first that A(0) is TP. The corner minors ¢, of A(t) are
thus positive when t = 0; they satisfy

ép = f(t)ep

where
n

P

= > ay—y a
j=n—p+1 Jj=1

is bounded: |f(¢)| < tr(A(t)) = tr(A(0)).

This implies that these corner minors remain positive.

At t = 0, all the minors of A are positive. By continuity, therefore, all
the minors are positive in some open interval (a,b) around ¢ = 0. Suppose if
possible that one or more of the minors became zero at ¢ = b.  A(b) would
be NTN and its corner minors would be positive, so that, by Theorem 6.8.2, it
would be TP. This contradiction implies that A(t) is TP for all ¢.

Now suppose that A(0) is TN. By Ando’s result, given in Ex. 6.8.3, A(0)
may be approximated arbitrarily closely in the L; norm by a TP matrix

C(0,k) =P(k)A(0)P(k)
where
P(k) = (pij), pij = exp[—k(i — j)*].
We now suppose C(t, k) is the solution of

C(t, k) = C(t, k)S(t, k) — S(t, k)C(t, k)
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where
S(t,k) = CtT(t, k) — C*(t, k).
By our previous argument, C(¢, k) is TP for all ¢ and all k, and since (Ex. 7.7.3)

[|A(t) — C(t, k)|| = O(exp(—k)), (7.7.10)
we have
Jim C(t, k) = At) : (7.7.11)

the minors of A(t) are the limits, as k — oo, of the (positive) minors of C(t, k);
all the minors of A(t) are non-negative: A(t) is NTN.

Finally, suppose A(0) is O. It is NTN and so, by the previous result, A(t)
is NTN. When ¢ = 0, the minors of (A(0))™ = B(0) are strictly positive for
m >n — 1. The corner minors of B(t) = (A(t))™ remain positive. (Ex. 7.7.3)
B(¢) is then NTN, with positive corner minors; B(t) is TP; A(t) is O.

It now follows trivially that if A(0) is SO, then so is A(t). m

We can immediately apply this result to obtain other isospectral mass re-
duced stiffness matrices for the discrete beam. Starting from A(0) in equation
(7.5.3), we can form A(t); A(t), like A(0), will be SO. Ex. 7.7.5 shows that the
corner minors of B(t) = A~!(¢) will be strictly positive, and Ex. 7.7.6 shows
that the elements in the outer diagonal of A(¢) will be positive. These are the
results needed for the reconstruction of M/, K’ L’ from A(t).

Markham (1970) [221] shows that an oscillatory (or sign-oscillatory) matrix
must have staircase form. It may be verified (Ex. 7.7.4) that the isospectral
flow with S = ATT — AT preserves such staircase forms. In particular, one
may show that the outermost elements of the staircase retain their signs: if they
are strictly positive (negative) when ¢ = 0, they will remain strictly positive
(negative).

Exercises 7.7
1. Write S = A*T — A+ as a Hadamard product S = Ao Y.

2. Verify that if Y is given in (7.7.6), then A in (7.7.6) retains its form under
the flow (7.7.1).

3. Establish the results (7.7.10), (7.7.11).

4. Show that the isospectral flow (7.7.1) with 8 = A*T — A% preserves
staircase forms; these include block banded forms, with no holes.

5. Show that B = A~ satisfies the same isospectral flow equation (7.7.1),
i.e., B=BS — SB, and that the corner minors of B satisfy (7.7.7).

6. Show that if A has half-bandwidth r, so that a;; = 0 if [¢ — j| > r, then
the elements in the outdiagonal of A retain their signs.

7. Find two isospectral matrices J,J’ with the property that one cannot flow
from J to J’ in a Toda flow with S given by equation (7.7.2).



Chapter 8

The Discrete Vibrating
Beam

A thinking reed - It is not from space that I must seek my dignity, but from
the government of my thought. I shall have no more if I possess worlds. By
space the universe encompasses and swallows me up like an atom; by thought I
comprehend the world.

Pascal’s Pensées, 348

8.1 Introduction

In this Chapter we shall present in detail the solution of the inverse problem
for the discrete spring-mass model of a vibrating beam discussed in Section
2.3. This model is important because it is the simplest model - it is in effect a
finite-difference approximation - for a beam with continously distributed mass.
See Gladwell (1991) [116] for a qualitative discussion of the customary finite
element model of a beam. The inverse problem for a continuous beam will be
considered in Chapter 13. The inverse problem for a discrete beam was first
considered by Barcilon (1976) [18], Barcilon (1979) [20], Barcilon (1982) [21].
He established that the reconstruction of such a system would require three
spectra, corresponding to three different end conditions. The necessary and
sufficient conditions for these spectra to correspond to a realizable system, one
with positive masses, lengths and stiffnesses, were derived by Gladwell (1984)
[104].

Two papers by Sweet (1969) [313], Sweet (1971) [314] consider the discrete
model of a beam obtained by using the so-called ‘method of straight lines’; he
shows that the coefficient matrix obtained in this procedure is (similar to) an
oscillatory matrix. See also Gladwell (1991b) [117].

The plan of the Chapter is as follows. In Section 8.2 we show that the
(squares of the) natural frequencies of the system are the eigenvalues of an oscil-
latory matrix. This means that the eigenvalues are distinct and the eigenvectors

185
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u; have all the properties derived in Section 6.10. It is found also that not only
u;, but also 8;, T;, ¢;, the slopes, moments and shearing forces, have these same
properties (Theorem 8.2.2 and Ex. 8.2.1). Theorem 8.2.2 derives an additional
result, that the beam always bends away from the axis at a free end. In Section
8.4 the oscillatory properties of the eigenvectors are used in the ordering of the
natural frequences of the system corresponding to different end conditions. In
Section 8.5 it is shown that while it is possible to take three spectra as the data
for the reconstruction, it is better to take one spectrum, that corresponding to a
free end, and the end values u,;, 0,,; of the normalised eigenvectors, as the basic
data. In this way, the conditions on the data may be written as determinantal
inequalities. In Section 8.6, a procedure for inversion is presented and it is
shown that the conditions (Theorem 8.5.1), which were put forward earlier, are
in fact sufficient to ensure that all the physical parameters, masses, lengths and
stiffnesses, will be positive. In Section 8.7 a numerical procedure, based on the
Block Lanczos algorithm, is described for the actual computation of the physical
parameters.

8.2 The eigenanalysis of the cantilever beam
The equations governing the response of the discrete beam were derived in Sec-
tion 2.3. Equation (2.3.6) shows that vibration with frequency w is governed
by the equation

AMu = Ku - ¢,.e, — l;lTnEen7 A =w?
where E is given in equation (2.2.10), e,, = {0,0,...,1}, and ¢,, and 7,, are the
bending moment and shearing force applied at the free end. This means that

the free vibrations satisfy
AMu = Ku, (8.2.1)

which may be reduced to standard form
Av =)v (8.2.2)
by the substitutions
M=D? v=Du, A=D'KD . (8.2.3)
Theorem 8.2.1 The matrix A is sign-oscillatory.
Proof. Equation (2.3.7) shows that
K = EL"'ERE' L'E”

where L, K are diagonal matrices with positive elements.
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We recall, from Section 6.7, that a matrix A is said to be sign-oscillatory
(SO) if A = ZAZ, with Z = diag(1,—1,...,(=)""1), is oscillatory (O). The

matrix

1 1
1

is NTN (see the beginning of Section 6.6). Also, Ex. 6.7.6 shows that B =
]:]L_lf) is NTN, as is its transpose, and hence also K = EKBT, and A =
D_lfiDil. Now, according to Theorem 6.7.3, to show that A is oscillatory, it
is sufficient to show that a;11,; >0, ¢=1,2,...,n—1. This is easily verified.
Thus A is O, and A is sign-oscillatory. m

Theorem 8.2.1 has important consequences. It means that the eigenvalues
(A\i)7 are distinct (Corollary to Theorem 6.10.1), that the last element, u,; of
each eigenvector u; of equation (8.2.1) may be chosen to be (strictly) positive
(Corollary to Theorem 6.10.2); note that equation (8.2.3) gives v; = dju;, so
that v,, > 0 implies u,, > 0; and the uj; will satisfy the inequalities (6.10.3). We
now prove

Theorem 8.2.2 The vectors (0;)} are the eigenvectors of a sign-oscillatory
matric.

Proof. Since 8 = L~'E7u and thus u = E-TLO, we have
AMu = \ME7L6 = Ku = EL"'EKE ' L~ 'ET(E-TL9)
so that 7
MLE'ME"L)0 = EKE 0
or
AGO=HO, G 'HO=)6.

The matrix G is O, so that (G™!) is O (Theorem 6.7.5). H is SO, so that H
is O. Therefore, by Ex. 6.7.7, (G’lfl) is O, and thus G™'H is SO. m

Theorem 8.2.2 means that the 8; must satisfy all the requirements for the
eigenvectors of an SO matrix, e.g., 6,; # 0. We now show that, for the
particular SO matrix governing the beam, if the u,, ; are chosen so that u, ; > 0,
so that all the minors w,, ; of Theorem 6.10.3 are positive, then 6, ;, and hence
all the corresponding minors

Vn,s - @(n_p+ 17n_p+27"'7n;i1»i27"',ip)
will be positive. It is sufficient to prove

Theorem 8.2.3 Each eigenvector of the cantilever beam satisfies uy, j0n ; > 0.
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Proof. Choose u; so that u, ; > 0. There is an index r (1 <r <n—1)
such that

1) u;; >0, =7, r+1,...,n,

11) Ur—1,5 S 0.

Note that when j = 1, then » = 1; we have ug; = 0.

Thus HTJ = (’U,T’j — ur,m‘)/lr > 0.

Now, since

¢j = )\jEflMuj
then, because of the form of E~! given in equation (2.2.10), we have
¢;; >0 i=r—1...,n—1

But
T; = E71L¢j
so that, again,
Ti,j >0 i=r—1,...,n—1.
Now consider the equation linking the 6; and 7;, namely
0i+1 — 91 = ki_-i-llTi

and sum from r to n — 1 to obtain

n—1

Ong = Orj = Y kizh7Tij >0

i=r

so that 6, ; > 0. m
Theorem 8.2.2, while showing that the 8 are eigenvectors of a sign-oscillatory

matrix, shows that u; and 8; must both have precisely j — 1 sign changes. This
means that the first mode u; will steadily increase, i.e.,

0<U1,1 <uz1 <...<Up1,

as shown in Figure 8.2.1, while the j-th mode (j > 1) will have j — 1 portions
that are convex towards the axis, and one final portion that bends away from
the axis, as shown in Figure 8.2.2.

Figure 8.2.1 - The first mode steadily increases
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/>

Figure 8.2.2 - The end of the mode bends away from the axis
Exercises 8.2

1. Show that 7; and ¢; are eigenvectors of the equations

MK'r = E'L'E"M 'EL'Er
ALETK'E"'L¢ = E"M 'E¢

and that each is the eigenvector of a sign-oscillatory matrix.

8.3 The forced response of the beam

The equation governing the response to an end shearing force and bending mo-
ment is equation (2.3.6), which for vibration of frequency w becomes

AMu = Ku — ¢, e, — I, '7,Ee,. (8.3.1)

Since the eigenvectors u; of the clamped-free beam span V,,, and are orthogonal
w.r.t. M and K we may write

n
u = E a;ay,
j=1

and find
Q= (d)nun,j + Tngn,j)/()‘j - )‘)7
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where the modes are normalised so that

T
uj Muk = 5jko

Thus
g A J/\JF_T)\ Sy (8.3.2)
j=1 !
and on multiplying through by L='E” we find
S (Pntn,j + Tnbn,j)
0=>" ;_ — 229, (8.3.3)
i=1 /

These two equations completely characterise the forced response of the beam. In
the terminology of Bishop and Johnson (1960) [34], equations (8.3.2), (8.3.3) give
the end receptances for the beam: the displacement (slope) at one coordinate i
due to a unit shearing force or bending moment at the end. In particular, for
the end displacement and slope we have

Up, = ad, + ' Ty, (8.3.4)
0, =a'¢, +a" T, (8.3.5)
where

- (un j)2 ’ zn: Up ]enj
a= ol = | (8.3.6)

2205 -2 27

" o_ . (en,j)2

o = % A (8.3.7)

8.4 The spectra of the beam

Now suppose that the left hand end of the beam remains clamped while the
conditions at the right hand end are varied. The possible end conditions and
eigenvalues, (eigenfrequency)?, are as follows:

free bp=0=1, (M)
sliding 0, =0=0¢, (o)7 "
anti-resonant u, =0 = ¢,
or ()t
0,=0=1,
pinned U =0="7n (p;)7""

clamped Uy =0="0, (v,)72
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Note that the anti-resonant frequencies are those at which the application of
an end bending moment produces no end displacement; we will show that there
are n — 1 such frequencies, and that they are also the frequencies at which the
application of an end shearing force produces no end rotation.

We will now relate the various eigenvalues to the receptances derived in
Section 8.3. We first state

Theorem 8.4.1 If (p;)T >0 and 21 < 2 < ... < xp, then the equation

fo) =3 o =0
j=1""

has n — 1 real zeros §; satisfying
T < fj < Tj41-

Proof. In each interval (zj,z;1), f(z) is strictly increasing from —oo to
400, and will cross the z-axis just once. m

We now substitute the end conditions in the receptance equations (8.3.6),
(8.3.7), starting with the sliding condition;

Zn: M =0 has zeros (o;)7 " (8.4.1)
Aj— A

Jj=1

Making use of Theorem 8.2.3 we may state

n

n en j -
Z % =0 has zeros (1)1, (8.4.2)
j=1 "

and

—~

Un ;)
P

=0 has zeros (i;)} " (8.4.3)

J

n

=

To find the relative positions of the eigenvalues we need

Theorem 8.4.2 Suppose (p;)} >0, (g;)7 >0, 1 <z2 < ... < Ty,

n

OEDY xjpj_' — @)=Y xq—_x

J=1

and that (€;)7 7", (,)7~" are the zeros of f(x), g(x) respectively. Ifp;qi—piq; >
0 fori>jthen&, >mn, fori=1,2,....,.n—1.

Proof. .
) o _ Piq; — Pj4i
pig(x) — qif(x) ; Er——
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Put z = ¢, so that z; < {; < x;11, and divide the sum into two parts, thus

ijZ pz‘]] pz‘]] ijZ

pig(&;) = o ¢,

Jj=1 J=i+1
Under the stated conditions, each of the numerators and denominators on the
right will be positive, so that g(¢;) > 0, i.e., g(z) has already become positive
when f(z) has just become zero, i.e., {; > ;. ®

Note that, as in the discussion of positivity in Chapter 6, it is sufficient to
have p;jgj+1 — pj+1q; > 0 for j =1,2,...,n — 1, for then p;q; — pig; > 0 for all
i > j. The converse of Theorem 8.4.2 is not true - see Ex. 8.4.1.

We now apply this Theorem, first to o; and v;. Take p; = uy, ;05 ; and

- 931 Nt then Pjqi —Ppiq; = enﬁign,j (un,jen,i - un,ien,j) = en,ienﬁj (un,iunfl,j -
un’jun 1,4)/ln. To show that this is positive, we use Theorem 6.10.3 with
p=2, i1 =7, 1o =1; it gives

Un—-1,7 Un—-1,
Un,j Un,i

>0

for ¢ > j, and thus v; > 0;,. We find in an exactly similar way that p;, > v;.
Finally, since the clamped conditions may be obtained by applying the extra
constraint #,, = 0 to the pinned condition, the usual theory of vibration under
constraint gives v, > u;.

This gives the following ordering;:

O< M <o1 <1 < g < (717)‘2) <09 <Vo < g < (’72,)\3) < "'(’771727)‘7171)

<Ol < Vpet < Py < Ap. (8.4.4)

Note that the relative position of v; and A;41 is (so far) indeterminate; in nu-
merical experiments it was always found that v; > Ajy1. See Gladwell (1985)
[105], Gladwell (1991b) [117].

Exercises 8.4

1. Construct a counterexample to show that the converse of Theorem 8.4.2
is false. Take n = 37 (x17x2)$3) = (17477)3 (p17p2,p3) = (47174)3
(q1,92,93) = (5,1,7). Find &;,&5,m1, 7, and show that g(&;) > 0, g(&,) >
0, so that §; >y, §o > 19, but p1g2 — p2q1 <0, p2gs — p3g2 > 0.

2. Show that if p; > 0, ¢; > 0, pjgjy1 —pj4+1q; > 0for j =1,2,...,n -1,
then p;q; — pig; > 0 for all 4 > j. Compare with Theorem 6.8.1.

3. Use equations (8.4.2), (8.4.3) to deduce that

g2 G 1= (0 — \)
" H;Ll:1(>‘j - )‘i)
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’LL2 o €2 H] l(lu’j Z)
" H?/:1()‘j - Ai)

where / denotes j # i, and ¢y, ¢ are constants.

4. Develop an intuitive argument to show that o; < p,; by considering a
clamped-clamped beam made up of two identical cantilevers of length ¢/2
welded together at their free ends.

5. The eigenvalues (7y;)7 ™2 are the (frequency)? values for which the applica-
tion of a force and moment at the free end produce u,, =0 =60,,. Use the
equations (8.3.4)-(8.3.7) to show that the v, are the roots of

i (Un,i0nj = tngOni)* _
(i =) (X = A)

ij=1

8.5 Conditions on the data for inversion

In the inverse eigenvalue problem for the beam it is required to construct a beam
with given eigenvalues. Barcilon showed (for his model) that the beam cannot
be uniquely determined from two spectra, and attempted to prove that it could
be so determined (apart from a scale factor) from three properly chosen spectra.
His procedure (in our notation) was to start from (A, v4, p;)} (and note that he
had n of each of the v;, u;, not n — 1 as in the model of Figure 2.3.1) satisfying

)\1<V1<u1<)\2...)\n<1/n<un

and compute the frequencies (o;)} and (v;)7~" (again note that he had n of the
o; and n — 1 of 7,;) using some recurrence relations. For his model it was not
possible to prove that the eigenvalues o;,; so computed satisfied the complete
set of inequalities (similar to (8.4.4)). He had to place subsidiary conditions on
(Ai, V4, ;)7 in order for the inequalities to be satisfied. His second step was a
stripping procedure for computing the parameters ln, kn, My, of the last segment,
and for computing the corresponding eigenvalues (A], v}, i)}~ ! of the truncated
system obtained by deleting the last segment. The [,,k,,m, were all found
to be positive but, even with the extra conditions on the (A, v;, p;)T, it was
not possible to prove that the new (starred) eigenvalues satisfied the necessary
orderings, which meant that if the stripping procedure were continued, negative
masses, stiffnesses or lengths might be encountered at some stage. He concluded
that further conditions must be placed on the data, preferably conditions which
could be applied ab initio, so eliminating the need for checks at each stage of
the stripping procedure. We shall now state such conditions and construct a
new stripping procedure.

The spectra, from which will be drawn the data for the inverse problem, may
be divided into three parts:

©) )P (1) (o vep)i ™ (1) (7)1
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Suppose that (i) is given. Each spectrum which is given from (ii) then deter-
mines, to within an arbitrary multiplier, the set of coefficients (6, ;)?, (u,i0n )
or (un,;)? respectively, from the eigenvalue equations (8.4.1)-(8.4.3); see Ex.
8.4.3 and an analogous result for uy, ;0,;. If any two of the spectra in (ii) are
given, then the two sets of coefficients yield the third set, and hence the third
spectrum. (Note that since uy, 0, > 0, there is no ambiguity in taking the
square root of u?HOZH) However, if two given spectra, say (v;)7 ' and (u;)7
satisfy the appropriate ordering, v; < p,, then the third set (ai)ll*l need not
satisfy its appropriate ordering, o; < v;. Two counterexamples are provided in
Ex. 8.5.1, 8.5.2, and these clearly show that the ordering requirements on the
two given spectra e.g., v; < u,;, are insufficient for the existence of a real model,
with positive I;, k;, m;; they do not even ensure the ordering of the remaining

spectrum. We now prove the fundamental

Theorem 8.5.1 A necessary condition for the existence of a real (i.e., positive)
model corresponding to data sets (A, Un i, 0n:)7 is that the matric P € My41 .,
given by

Un,1 Un,2 .. Un,n

an,l 9n,2 e an,n
P= Alun,l >\2un,2 e Anun,n
)\len,l )\2977,,2 e )\nen,n
)\%un,l )\gumg o )\iunvn

should have all its minors are positive. Note that the last row of P is
;un’l )\Sumg . /\:Lun}n
or
A?[‘Gn,l A;0n,2 cee )\:len,n
according to whether n is even or odd respectively, and r = [n/2].

Proof. Because of the repetitive nature of the rows of P, Theorem 6.8.1
shows that all the minors will be positive iff

P(1,2,...,p; 4,i+1,...,i+p—1)>0 P(2,3,...,p+1; ¢,i+1,...,i+p—1) >0
(8.5.2)
forp=1,2,...,nandi=1,2,...,n—p+1.
The proof follows directly from Theorem 6.10.3, for

Un—1,i Un—1,i+1

Umn—1,n; i,i+1) = > 0.

Un,i Un,i4+1

But the recurrence w,_1 = u, — [,,0,, yields

U(n . 1, n; i, i+ 1) _ Un,i — lirzen,i Un,i+1 — lnen,i+1

Un,i Un,it+1

Unp,i  Un,i+1

=1,P(1,2; i,i+1)>0

= 1,

Oni  Onjit1
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which we write in abbreviated notation as
[Un—1,Un] = [tn — 1nOn, un] = lpun, 0n] = 1, P(1,2; 4,9+ 1).

Similarly, the relations between the w;,8;,7;,¢; in Section 2.3 and Theorem
6.10.3 applied to the #; (note that Theorem 8.2.2 shows that 6; is an eigenvector
of an SO matrix) give
0 < [Gn—la an] = [gn - kr,len—hen] = _kgl[Tn—lyen]
= kM [00-1,0,]) = =k, laoma[Mun, 0,
= kom0, Aug) =k Hama P(2,3; 0,0+ 1).
Proceeding in this way we may relate the minors occurring in Theorem 6.10.3,
for U or ©, to those appearing in P. Thus
Un—-2n—1,n; i,i+1,i+2) = P, 2P(1,2,3; i,i+1,i+2)
On—2,n—1,n; i,i+1,i+2) = Qn-oP(2,3,4; i,i+1,i+2)
where
Pn72 = krgll%lnflmn, Qn72 = k»;lkrgill%lnflmnmnfl

and generally
Un—p+1ln—p+2,....n; i,i+1,...;i+p—1) =
P pt1P(1,2,...,p; 4,i+1,i+p—1) (8.5.3)

On—p+1ln—p+2,....n; 4,i+1,...,i+p—1)=
Qn-pt1P(2,3,...,p+1; 4,0+ 1,...;i+p—1) (8.5.4)
where, as will be important in our discussion later, P,_p41 and Qn—p+1 are
products of the m;,l;,k; fori=n—p+2,...,n. A
It will be shown below that the condition that P is TP is also sufficient for
the existence of a real model.

Exercises 8.5

1. Construct a counterexample to show that A\, < v; < p, < Aip1 does
not imply A\, < o5 < v; < p; < Ap1.  Take n = 3, (A, A2, A3) =
(1,4,7), (us1,usz2,us3) = (2,1,2) so that (pq,ue) = (2,5). Take 631 =
3/2, 032 =1 and find 63 3 so that vy < pq, Vo < fy, 01 < py but oo > .

2. With the same A; and us3 ; data, but with 05 1 = 1, find 03 5 so that o1 < pq,
02 < [y, Vo < [iy, but v1 > py.

3. Take n = 3,up; = 1,0,1 = 1,A\1 = 1, and find two sets of values of
0 2 and 6, 3, A2, A3 so that the positivity conditions of Theorem 8.5.1 are
fulfilled and v; < A in one case, 7; > Az in the other. This proves that
the relative positions of v, and A;y; are indeterminate.
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8.6 Inversion by using orthogonality

In this section we show how the system parameters may be found, at least in the-
ory, from the eigenvalue data, and establish necessary and sufficient conditions
on the data for the system parameters to be positive.

Suppose that we are given (A;, un 4, 60,,:)7 for a cantilever beam, so that
Tni=0= ¢, ;. Wewill show that we can construct a beam, and that if the data
satisfy the condition stated in Theorem 8.5.1, then all the system parameters
will be positive.

We start with the system equation

AiMu; = Ku;,,
and, as usual, put U = [ug,ug,...,u,], A =diag(A1, \a,...,A). Then
MUA = KU, (8.6.1)
and the orthogonality of the u; w.r.t. K, M yields
U'MU =1, UTKU = A. (8.6.2)

The first of these equations gives

M~ =UU7, (8.6.3)
so that
1 n
— = ()% j=1.2,...,n. (8.6.4)
mj =

Since (uy ;)T are known, we have found
1 n
—= 2(%1)? (8.6.5)

The matrix UU7 is diagonal; its term 7,5 — 1 is

n
E UjiUj—1,5 = 0,
i=1

which, with u;_1 = u; — [;0; gives

n

D (i) =1y ugibi =0,
=1

=1

and using (8.6.4) we find

1 n
Zuj’lﬂj,i, (866)
=1

mjl;
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which with j = n, yields [,,.
The next step is the determination of k,. For this we need the explicit
expression for K:

K = EL 'EKE L 'E”.

This gives A
K !'=ETL'ETK'EL'E. (8.6.7)

Now we use the second of equations (8.6.2) to give
K '=Uua"'U"
which, when substituted in (8.6.7), gives
K ! =ET(L'ETU)AY(UTEL )E.

But
©=1001,0,,...,0,] =L 'ETU
so that A
K '=EToA'0TE

which yields
1 05— 05-14)°

- = — - i=1,2,...,n.
kj . A,L ) .7 ) ) ’n
i=1
But 0]-,1- — 93;171' = k‘jilijl)i so that
n
N (T)?
ki = ;:1 = (8.6.8)

Now take j =mn, then 7,—1,; = ln¢,_1 ; = lnmnAiuy i, so that

n

ko =m% 10Y Ailun)?, (8.6.9)
i=1

Having found my,[, and k, we now state the steps in the algorithm to
reconstruct the system.

i) set j =n.
ii) W is0n,i,Tni =0 = ¢, , are known from data.

ili) compute m;,1; from equations (8.6.5), (8.6.6).

uj—1i = uj;— b4,
iv) compute ¢;_1; = &;; +miNu;,, .
Tji—1i = Tiitlioj_1,

v) compute k; from (8.6.8).
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Vl) compute 93;1’7; = 9]"1‘ — ijl}i/k’j-
vii) set j =4 — 1. If j > 1 go to iii), otherwise stop.

We note that the quantities (uy i, 85.,;)7 will be known only to within arbi-
trary multiplying factors. If a second, primed, set is related to the first by

u;»)i = QUj i, 9;’1 = ﬁ@jﬂ‘, (8610)
then the algorithm yields
mj = m;/a?, Ky = k;/B%, I = al;/ B, (8.6.11)

or ) )
17 72
mil  myl

i kjj, j=1,2....n (8.6.12)
Equations (8.6.11), (8.6.12) define the equivalence class of systems corresponding
to the given data. The validity of this inversion procedure is based on

Theorem 8.6.1 The total positivity of the matrix P of Theorem 8.5.1 is neces-
sary and sufficient for the existence of a real (positive) model having three given
spectra, i.e., (N} and two of (o4, v, ;)7

Proof. The necessity was proved in Theorem 8.5.1. We prove the sufficiency.
Consider the equations

M !'=uu?, e=L"'E'U
and construct the matrix
B=L'E"TM! =L 'ETUUT = U7

Now form the pth compound matrix equation by using the Binet-Cauchy The-
orem:

—1eT -1 T 4T
B,=L eI M =elul.

Since L, ! and M, ! are diagonal matrices, and each principal minor of S;;F is
unity, the bottom right-hand element of B,, is

n

bvv = J[ (male)” ZVNSUNS, (8.6.13)

k=n—p+1

where the notation is as in Section 6.2.

We now proceed by induction. Suppose that conditions (8.5.2) are satis-
fied, and that {,,,l,—1,...,ln—pt2 are all positive. Each Uy s and Vy s may
be expressed, as in equations (8.5.3), (8.5.4), as a product of terms involving

1 . s . . .
mj, kj , which are all positive, and terms involving l,,,lp—1,...,ln—p+2 Which
are positive by hypothesis. Each such Vs, Un, s is thus positive. Therefore,
equation (8.6.13) shows that [,,_,11 > 0. But {, > 0, so that all [; are positive.
| ]
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8.7 A numerical procedure for the inverse prob-
lem

The algorithm described in Section 8.6 has primarily theoretical value. It shows
that if the data satsify the conditions in Theorem 8.5.1, then the system para-
meters constructed by the algorithm will be positive. However, starting as it
does from the free end and computing the successive model parameters, the al-
gorithm suffers from the same kind of ill conditioning that was encountered in
the inverse problem for the rod in Section 4.3.

To obtain a reliable numerical procedure we use the Block Lanczos algo-
rithm described in Section 5.5. To use this algorithm, we reduce the governing
equation (8.2.1) to standard form

Aq=)q

where
A=D'KD!, M=D? q=Du.

To apply the Block-Lanczos algorithm to the pentadiagonal matrix A (p = 2),
we use the algorithm starting from the free end (n) rather than the fixed end
(1). Thus we need the vectors x1, X3 containing the nth and (n — 1)st terms of
the normalised eigenvectors of A:

X1 = {Qn,la dn,2,- - - 7Qn,n}
X2 = {Qn—l,laq”—l,27~-~7Qn—1,n}-
Now
qn,i = dnun,i
-1 = dno1Un—1,; =dp_1{un; —1,0n,;}.

Equation (8.6.5) gives m,,, and d,, = m%. Equation (8.6.6) gives l,, and hence
un—1,; and then equation (8.6.4) with j = n — 1 gives m,_1. Thus the data
(Niytn,iy0n)t give the vectors X1, X which are needed for the Block Lanczos
algorithm.

Now suppose that we have computed

A=D'KD!

from the Block Lanczos algorithm. We must now untangle A to give K and M.
We do this rather like we did it for the rod, in Section 4.4: we use the static
behaviour of the system, as we did in Section 7.5.

First, we apply external static forces fi, fo to masses 1 and 2, and deform
the system as shown in Figure 8.7.1.
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Figure 8.7.1 - Two static forces are needed to deflect all the masses by the same
amount

For this configuration u = {1,1,...,1}, so that q = {d;,da,...,d,}. The
static equation is
Ku=f= {fl,—fg,o,...,()}

ie.,
DADu = f
or
Ad = {d; ' f1,—dy ' f>,0,...,0}.

Consider this equation. We know A, and we know the last two components
dp—1,d,. But A is pentadiagonal so that, knowing d,,_1,d,, we can compute
dp—_2,...,d1, and find dflfhd;lfg and hence f1, fo.

Having found the masses (m; = d?), we find the lengths. We apply a single

force k:llfl at mq and find
W= {l,l oyl a4}

as shown in Figure 8.7.2.

Figure 8.7.2 - One static force will deflect the beam as a straight line

Now the equation
Ku’ = {ki7%,0,...,0}

yields
Af{dyly,da(ly +12),. . dn(ly + - 1)} = {dy " ke71,0,.. 0,0}, (8.7.1)
This means that if we invert the equation
Ax=1{1,0,...,0}

we will find
di(ly + 1o+ 1) = cxy, c=dy kalt
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This yields the [;, and the theory of Section 8.6 shows that they will all be
positive if the data satisfies the conditions of Theorem 8.6.1.

The last step is to find the k;. Using the form of E~! in equation (2.2.10),
we may write equation (8.7.1) as

ADETL{1,1,...,1} = {d; *k11;1,0,...,0}

ie.,

LE'DADETL{1,1,...,1} = {k1,0,...,0}

and then as in Section 4.4, we deduce that
LE'DADE 'L = EKE"

which gives K. The reconstruction is complete.



Chapter 9

Discrete Modes and Nodes

Memory is necessary for all the operations of reason.
Pascal’s Pensées

9.1 Introduction

The emphasis in all the preceding chapters has been on eigenvalues, and on
reconstructing a system from eigenvalue data. In this chapter we turn our
attention to eigenvectors. In Sections 9.2, 9.3 we consider the question of
constructing a Jacobi matrix that has one or more given eigenvectors, and then
go on to constructing a spring mass system from such data. In Section 9.4
we comment on the more difficult problems of constructing a discrete vibrating
beam from eigenmode data. Up to this point, all the systems are basically
in-line systems, so that the underlying matrices are band matrices, and either
oscillatory or sign-oscillatory. In the remaining sections, we widen our study
and see what can be said about eigenvectors and their signs, i.e., about modes
and nodes, for the equation

(K — A\M)u = 0, (9.1.1)

where K, M relate to some simple 2-D and 3-D systems, specifically membranes
and acoustic cavities. We do not yet have any results about constructing M, K
from eigenvector data in this case; the properties of the eigenvectors do how-
ever provide necessary conditions on the eigenvector data for the masses and
stiffnesses of the underlying system to be positive.

Note that in the 2-D and 3-D problems, we will use N to denote the order
of the system, and n to label a particular eigenvalue.

202
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9.2 The inverse mode problem for a Jacobi ma-
trix
In this section we consider the problem of constructing a Jacobi matrix that

has one or more specified eigenvectors. Following Vijay (1972) [329], Gladwell
(1986¢) [109] we prove

Theorem 9.2.1 The vector u is an eigenvector of a Jacobi matriz iff ST = Sy .

Proof. We recall the definitions of S, S, from Section 6.9. The necessity,
i.e., only if, follows from Theorem 6.10.2. To prove sufficiency, i.e., if, we need
to show first that if S} = S then we can find (a;)} >0, (b;)7~" > 0, such that

(a1 — )\)ul — b1u2 = 0,
—b;_qu;—1 + ((J,Z‘ — /\)Uz —biujy1=0,1=2,3,...,n—1 (921)
—bp—1Un—1 + (an, — Nu, =0.

First, suppose that (u;)} # 0, then we may take (b;)} ' =1, a; = A +¢;, ¢; =

(ui—1 + wit1)/ui, 1 =1,2,...,n where ug = 0 = up41. Thus, the matrix
C1 -1
-1 C2 -1
C =
-1
-1 ¢,

satisfies Cu = 0, and A = M + C. The matrix C, having strictly negative
codiagonal, will have distinct eigenvalues (k;)7, one of which will be zero because
C is singular. The matrix A will have eigenvalues (A+£;)¥, so that if A is chosen
so that
A2 max (—r;)
1<i<n

then A, having non-negative eigenvalues, will be PSD; A will be a Jacobi matrix.

What happens when one of the u; is zero? The condition S = S, implies
uy # 0, u, # 0. Suppose u,, = 0 for just one m satisfying 1 < m < n, then
Um—1, Um+1 Will be non-zero and have opposite signs, so that w,,—1 Upm4+1 < 0.
The mth line of equation (9.2.1) is

br—1Um—1 + bptmy1 =0
so that a.,, bym—1, by may be taken so that
A =\, b1 =1, by = —Up—1 /U1
The remaining b; may be chosen so that

b)) =1, (b)r =bm
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and then
a; =A+¢i, ¢ =0, ¢; =bi(ui—1 +uiy1)/u;, 1 £ m

and again ug = 0 = u,41. Now we construct

C1 —b1
—bl C2 —bz

*bn—l
_bnfl Cn

which satisfies Cu = 0. Now A = M + C, where ) is chosen as before.
This argument may easily be generalised to the case when two or more (non-
consecutive) u; are zero. W

The next Theorem relates to two given vectors.

Theorem 9.2.2 Suppose u,v € V,,, and define s;,t; as in equation (3.3.6).
The necessary and sufficient conditions for u,v to be eigenvectors of a Jacobi
matrix corresponding to two eigenvalues A, ji, unspecified apart from the ordering
A<, are

(a) S =54, S§ =57
(b) s, =0
(c) either s; =0=t; or s;t; >0 fori=1,2,...,n.

Proof. The conditions are necessary, for Corollary 6.10.2 yields (a). The
orthogonality condition u’v = 0 yields (b), while equation (3.3.8) yields (c).
Note that a) implies that uy,v; are not zero, so that s; = ujv; # 0. Hence,
sit1 > 0. Also, s, = 0 implies s,—1 = —u,v,; again a) implies that wu,,v,
are not zero so that s,_1t,—1 > 0. Without loss of generality, we may take
u; >0, v; > 0.

The conditions are interesting because they imply that v has more sign
changes than u, i,e., Sy, > Sy. To see this, we argue as in Theorems 3.3.2, 3.3.3.
First, suppose that the first zero of the u-line is a;(\) = z, and of the v-line,
aq(p). We prove ag (1) < ag(A). Suppose if possible that aq(p) > a1(A) = z,
and that ¢ < a3(\) < ¢+ 1 (1 < ¢ <n—1), then all (u;)? and (v;)? will be
positive, while

(q+1= )iy + (@ —qugss = 0
(g+1-=z)vg+ (= Qugyr = 0

which imply ¢, < 0. On the other hand, s, > 0, which, when used with (3.3.8),
provides a contradiction.
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Now we show that there is a zero of the v-line between any two consecutive
nodes of the u-line. Let o, B(av < ) be two neighbouring nodes of the u-line
and suppose that

p—1<a<p, g<p<q+1 (p<q)

so that
(p—a)up—1+ (@—p+1u,=0 (9.2.2)
(g+1—=PBug+ (B — qugr1 =0 (9.2.3)
and up, Upt1, - .., Uq have the same sign, say positive. Suppose the v-line had
no zero in (a, ), and without loss of generality, were positive there. Then
Up, Up+1, - - -, Vg Would be all positive, while
(p—a)vp1+(e—p+1v, >0 (9.2.4)
(g+1—=PB)vg+ (8= q)vg+1 > 0. (9.2.5)

On eliminating a between (9.2.2), (9.2.4), and 8 between (9.2.3), (9.2.5), we
find t,—1 > 0, t; < 0, which, with (c) imply s,—1 > 0, s, < 0 and therefore
8¢ —8p—1 < 0. But 54 —sp_1 = Zg:p u;v; > 0, a contradiction. We can show
similarly (Ex. 9.2.1) that the v-line has a node to the right of the last node of
the u-line: the v-line has more nodes than the u-line.

Now we proceed to the construction. First, suppose that s;t; > 0 for ¢ =

1,2,...,n — 1, then equations (3.3.1), (3.3.6), (3.3.8) show that

A (=) {vim+1 + sy (Vi_1Uig1 — Ui—1Vi41) }
ti ti—1t;

bi - (M — )\)(Sl/tz)

Where ¢ = 2,...,n — 1 in the first formula, i =1,...,n — 1 in the second. The
two remaining quantities a4, a,, are given by

%)

51U2 Uy = A\ — (,U/ _ )\) Sn—1Un—1 )

=)\ - A
“ +n )t1u1 ’ tn—1Un

We may write these equations in the form
a; =M+ (p—Nei, b= (p—N)d;.
We note that the b; are positive. Now
A=)+ (p—NC

where
&1 —dy

—di
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Thus C, having non-zero codiagonal, will have distinct eigenvalues (k;)7. Thus
A will have eigenvalues A (pu—A)rk;, and A will be PSD if A+ (p—A) min(k;) > 0.
The slight modifications to the argument which must be made if an s; is zero,
are left to the exercises.

Exercises 9.2

1. Show that the conditions (a), (b), (c) of Theorem 9.2.2 imply that the
v-line will have a node to the right of the last node of the u-line.

2. Show that if two consecutive s; are zero, i.e., S;,—1 =0 =8, (2 <m <
n — 2) then u,, = 0 = v, and deduce that three consecutive s; cannot be
Z€ro.

3. Show that if s, = 0 but s,,_1 # 0, then b,, may be chosen arbitrarily,
e.g., by, = p— A. Find a replacement for a,.

4. Modify the argument to cover the case s,,—1 =0 = sp.

9.3 The inverse problem for a single mode of a
spring-mass system

We recall from Section 2.2 that the eigenmodes u; of the system of Figure 2.2.1
are the eigenvectors of the equation

EKE' u=\Mu. (9.3.1)

The matrix M1 (EKET) is sign-oscillatory (SO), so the analysis of Section 6.10

- T
applies to the eigenvectors u;. (Note that M~'EKE" is not symmetric, but
the analysis of SO and O matrices does not depend on symmetry.)
Write w; = u; — u;_1 so that, with ug = 0,

w=E"u, u=E Tw.
Equation (9.3.1) may be written
(ETM'E)Kw = \w

and again the matrix on the left is SO. This means that the vectors w; will
have the properties listed in Section 6.10 for the eigenvectors of an SO matrix.

We first prove two theorems regarding the shape of the vector u;. The first is
a simple analogue of the maximum principle which appears in elliptic equations.

Theorem 9.3.1 An eigenmode of (9.53.1) cannot have an interior negative max-
mum or an tnterior positive minimum.
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Proof. Suppose 2 <i <n —1. The ith line of (9.3.1) is
kiw; — kip1wipr = Amgug.

Suppose u has a relative maximum at u;. Then u; > w;—1, u; > u;y1, SO
that w; > 0, w;11 < 0, and hence u; > 0. In fact, since w;, w;+1 cannot be
simultaneously zero, u; > 0. m

Theorem 9.3.2 Two neighbouring u; can be equal only at a relative maximum
or minimum.

Proof. Suppose u; = u;—1, then w; = 0, so that w;_1,w;+1 are non-zero and
have opposite signs, i.e.,

(i1 — ui—2)(Uip1 —u;) <0

or equivalently
(ui — ui_g)(ui - Ui+1) > 0.

This implies that w;(= u;_1) is either strictly greater or strictly less than its
neighbours u;_o and u;y1: there is a relative maximum or minimum at u;. ®

The theorems show (Ex. 9.3.1) that u; will have j — 1 portions which bend
toward the axis, and a final portion which bends away from the axis, as shown
in Figure 9.3.1.

Figure 9.3.1 - The jth mode of a spring-mass system

Theorem 9.3.3 The necessary and sufficient conditions for u to be the jth
mode of a spring-mass system in the fized-free configuration are that

(@) Sy =5. =Sy =95 =i—1,
(b) wywy > 0.

Proof. The necessity of these conditions has already been established. To
prove sufficiency, we first note that no two of u;,u;_1,w; can be simultaneously
zero; now we construct a system.
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The mode will have a shape like that shown in Figure 9.3.1. Thus wu; will
start positive, and will increase (u; > 0,w; > 0), until an index r, the first for
which

ur >0, w, >0, wryq <O0.

Then u; will decrease (u; > 0,w; < 0) until an index s, the first for which
us >0, ug41 <0, ws <O0.

Now u; will continue to decrease (u; < 0,w; < 0) until an index ¢, the first for
which
’LLt<0, thO, wt+1>0

and then proceed to increase again.
The governing equation (9.3.1) may be written

Kw = A\AE"'Mu.

Since E~! is given by equation (2.2.10), we have

kw; = )\kauk = \o;. (9.3.2)
k=1

This shows that we should take the u;, and choose m; so that w; and o; have
the same sign.

For the construction, we must choose (m;)7 > 0 so that the following condi-
tions hold:

(i) o, >0, with o, = 0 iff w,, = 0; then 0; = 0, + Zz;i myug >0

(ii) o441 <0;theno; <Ofori=r+1,...,s

(i) oy <0, with oy =0 iff wy =0; then o; <Ofori=s+1,...,t—1

(IV) Ot+1 > 0,

and so on. Finding (m;)} with these properties is essentially a linear pro-
gramming problem. It yields a set of o; having the same sign as w;. If w; # 0,
then k; is given by equation (9.3.2), while if a particular w; is zero, k; may be
given an arbitrary positive value. m

The question of reconstructing a spring-mass system from modal data was
considered by Porter (1970) [267], Porter (1971) [268], but he did not discuss the
necessary or sufficient conditions on the modes for the masses and stiffnesses to
be positive.

Exercises 9.3

1. Show that the jth mode of a fixed-free spring-mass system will have j — 1
portions which bend toward the axis, and a final portion which bends away
from the axis.

2. Construct a spring-mass system with 7 masses that has third mode u =
{1,2,1,-1,-2,—-1,1}.
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9.4 The reconstruction of a spring-mass system
from two modes

The construction described in Section 9.3 is far from unique. In this section,
following Gladwell (1986¢) [109], we shall show that, provided certain conditions
are satisfied, there is essentially a unique system for which two given modes are
eigenmodes.

We first provide a counterexample to show that even if u, v separately satisfy
the conditions of Theorem 9.3.3, there may be no system for which they are both
eigenmodes, corresponding to two eigenvalues A, u, respectively, with A < pu.
Write

w=E"u, z=ETv

and suppose
u=1{1,3,6}, w=1{1,2,3}, v={1,-1,4}, z={1,-2,5}.
The governing equations are

)\ml = kl - 2]6'2, 3)\m2 = 2k’2 - 3k3, 6)\m3 = 3]6'3
umy = kl + 2]€2, —HUmo = 72]132 — 5]€3, 4um3 = 5]{13

so that
" 5 _ 2ky + bks

3N 6 2ky —3ks
i.e., 2ko = —45k3, which is unrealizable.
In order to derive the conditions on the modes, we formalize the elimination
procedure used in this counterexample.
The recurrence relations are

)\miui = k:z-wi - ki+1wi+1, 1= 1, 2, e, — 1 (941)
mm;v; = kizi — k’iJrlZiJrl, 1= 1, 2, ey — 1 (942)
and
AUy, = knWy, MUy = kpZn. (9.4.3)
Thus,

L Un  Zn

We know that one of the conditions will have to be S = Sy = S = S, and
correspondingly S = S, = S} =S, . These will entail that w,, v, wy, 2, will
all be non-zero and may be chosen to have the same sign, say positive. The
condition p > A then demands

A Wyn  Up

(9.4.4)

Uy Zn — VpWy > 0. (9.4.5)
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Eliminating k;, k;+1 in turn from equations (9.4.1), (9.4.2) we find

mi(Auizg — pojw;) = kip1(Wizipr — Wig12;)

mi(Auizip1r — poiwip1) = ki(wizigr — Wit12;)

so that on substituting A/u from (9.4.4) we find

Amp; = kip1wnvnri,  Aimigq; = kjwnvar; (9.4.6)
where
Pi = UiUpWnZi — UpUiWiZn
q; = UVpWnpZi+1 — UpUiWit12n
Ty = WiZi41 — Wi41%4-

Thus we may state

Theorem 9.4.1 The necessary and sufficient conditions for u,v to be eigen-
modes of a (fized-free) spring-mass system for some eigenvalues A\, (A < p),
are

Su=8w <S5 =5,

a

b) v,w, >0

C) UpZp — Vpw, >0

)
)
)
d) for each i, 1 <i <n-—1, the three quantities p;, q;,r; have the same strict
sign or are all identically zero; this sign need not be the same for all 1.

Proof. The necessity of the conditions has already been demonstrated. If
the conditions hold, and none of the triplets is zero, then equations (9.4.6), for
i=1,2,...,n—1, give the 2(n — 1) ratios

ma/ki, mi/ke; ma/ka, mafks;. . imp_1/kn_1, my_1/kn.

The final equations (9.4.3), (9.4.4) are left for the ratios m,, /k, and A/p. Thus
if we choose say A and m,, then the system is uniquely determined. If a triplet
Dk, qk, 'k 1 identically zero then my, ki, may be chosen arbitrarily (positive).
We note (Ex. 9.4.1) that the conditions a)-c) preclude the triples py, g1, 71,
Or Ppn—1,Gn—1,7n—1 from being zero. m
In the particular case in which the eigenvalues are consecutive, the conditions
may be made sharper, to give

Theorem 9.4.2 The necessary and sufficient conditions for u,v to be eigen-
modes corresponding to consecutive eigenvalues of the spring-mass system are
that

a) vpw, >0
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b) upzn — vpwy >0

L>o.

C) (pi7 Gis T‘i);_li

Proof. The necessity of a) and b) follow from (9.4.4) and (9.4.5). The
necessity of (r;)?~* > 0 is established in Gladwell (1985a) [109]; equation (9.4.6)
then shows that (p;, qi)?fl > 0. The sufficiency of the conditions follows as
before. m

Exercises 9.4

1. Show that conditions a)-c) of Theorem 9.4.1 imply p; < 0. Show also that
the assumption (pp—1,¢n—1,7n—1) = 0 leads to a contradiction.

2. Construct a spring-mass system with first and second modes u = {1, 3, 6, 10,
15}, v={-1,-4,-2,1,5}.

9.5 The inverse mode problem for the vibrating
beam

In this section, we consider the questions of whether and how we may construct
a discrete model of a beam, as described in Section 2.3, from a single mode
u. As could be expected, this question is considerably more difficult than the
corresponding question for a rod. Since the question was definitively answered in
Gladwell, Willms, He and Wang (1989) [115], we will merely state the principal
results obtained there.

We recall that the eigenvalue problem for the cantilever beam may be ob-
tained from equation (2.3.6):

Ku=EL'EKE L 'ETu = \Mu. (9.5.1)

The matrix K is a pentadiagonal SO matrix, so that the eigenvalues are simple,
and the eigenvector u; = u has sign count Sy, = j — 1. As with the rod, we can
easily show (Ex. 9.5.1) that

@=L 'ETu, r=KE 0, ¢ =L 'Er (9.5.2)

are also eigenvectors of SO matrices, so that Sg = S+ = Sy = j — 1 also.
We note that although 6 can be formed only when the lengths [; are known,
0 and the difference ETu will have the same sign count. In considering the
construction problem we shall in fact assume that the (I;)} are given, and seek
to construct (k;,m;)7.

In order to find conditions that must be satisfied by the eigenmodes we need
some preliminary results.
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Lemma 9.5.1 If u is not identically zero, and Sg = j — 1, (j > 1), then there
is an index k and indices (q;)] such that 1 < q1 < 2 < ... < q; < n and
(=)F+i=ly, >0 fori=1,2,...,5. Conversely, if there exist k and (qz)]1 such
that (=) 1= tu,, >0 fori=1,2,...,5, then Sgy >j — 1.

Proof. Take ¢; as the index of the first non-zero u;, and let (—)* = sign(ug, );

then (—)*u,, > 0. Take g2 as the index of the first u; with sign opposite to u,,
then (—)*+1u,, > 0, and so on. For example, in the sequence 0,1*,0,-4*,2*,0,3,-
5%, S = 3, so that j = 4 and the ¢; are the indices of the starred entries; that
is, (q1,q2,43,q4) = (2,4,5,8). If S; = j—1, then we can find (g;)]. Conversely,
if we can find (qi){, then S; must be at least j — 1. It may be that S; is even
larger; in any case S; >j—1. m

Lemma 9.5.2 If v=ETu, then S; > S;.

Proof. Note that v = ui, vo = us —u1,...,v, = U, —Up—1. Suppose that
S, =j—1. Choose k and (¢;)] as in Lemma 9.5.1. Then

(f)kvql = () ug >0 A
(_)kﬂflvq (_)k+1(u(h —Ug—1) = (‘)kJr%luqi >0,0=2,...,J

i

so that, by Lemma 9.5.1, S >j—1. m

Lemma 9.5.3 If v =ETu, then Sf > S. The proof, following similar lines
to that of Lemma 9.5.2, is given in Gladwell, Willms, He and Wang (1989)
[115].

We may now use these Lemmas to prove

Theorem 9.5.1 Ifl; >0, i =1,2,...,n, w = ETL'ETu, and Sy, = Sy =
J—1, then Sg = j — 1. In addition, if m; > 0, k; > 0, i = 1,...,n, then
S¢ =Sr=j-1.

Proof. We note that w has the same sign properties as 7 (see (9.5.2)).

Now 6 = L~'ETu, so that by Lemma 9.5.2, Sg = Sq =j—1 Onthe

other hand, w = E”6, so that, by Lemma 9.5.3, S; < St =j—1. Therefore,

Sér <j—-1<5,, so that Sé = Sér = Sg = j — 1. This proves the first part.
Now consider the converse. Clearly Lemmas 9.5.2, 9.5.3 hold if ET is replaced
by EA(ET is the forward difference operator, E the backward operator). Since
7 = Kw, we have S7 = Sy if (k;)7 > 0. Lemma 9.5.2 applied to ¢ = L™'ET
shows that S(; > S87 =7 —1. Lemma 9.5.3 applied to AMu = E¢ shows that
S(;gslj:j—l. Therefore,j—lgs(;gsz)gj—lsothatsd,:j—l. [

Suppose that two vectors u, w are given. The necessary and sufficient condi-
tions that they should be related in the sense w = ETL~'E”u for some positive

diagonal L is that the vectors @ = E-7w and v = ETu should be related by
v = LO. This means that 0; = 22:1 wg and v; = u; — u;—1 must be positive,
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zero or negative in step, that is 6;v; > 0 with 6; = 0 iff v; = 0. If 6; # 0 then
l; =v;/0;; if 0; = 0, then l; is arbitrary. If u, 8, w are so related, then Theorem
9.5.1 shows that Sy = Sy = j — 1 implies Sg = j — 1.

We now state

Theorem 9.5.2 Let u,0,w relate to the jth mode of the cantilever beam. Let
(gisTiy8:)] be the sets of indices for u,0,w respectively, as in Lemma 9.5.1.
Then

(i) g1 <ri<qi, mii1<s<r, i=2,3,...,7,
(i) s, <qi, ©1=2,3,...,jand $; > ¢;i—2+2, 1=3,...,7,

(iil) if ug—1 =0, then r; < qi; if 0r,—1 = 0, then s; < 7;; in either of these
cases, therefore, s; < q;,

(iv) if ws,—1 =0, then 8; > ¢;—2+2, i=3,...,5.

Note: This theorem and Lemmas 9.5.2, 9.5.3 may be considered as codifica-
tions and extensions of a discrete form of Rolle’s Theorem. They give precision
to the intuitively obvious statement, that there must be at least one change of
sign in the first differences 6, w (that is, the derivatives) between any changes
of sign of u, @ respectively. The formal proof is given in Gladwell, Willms, He
and Wang (1989) [115]. We may now state

Theorem 9.5.3 Suppose that u and positive (1;)} are given. The necessary
and sufficient conditions for them to correspond to the jth mode of a cantilever
beam are that

Su=Sw=j—1, where w =ETL'ETu.

Proof. The conditions have already been shown to be necessary. We may
prove that they are sufficient by actually constructing a set of (k;,m;)} which
are all positive.

The governing equation (9.5.1) may be written

AMu = E¢, ¢ =L 'EKw.
We may write this as
Kw=E 'Ly, ¢=\E 'Mu

and because E~! has the form (2.2.10), we have

kiwi = I =Ti, ¢, =AY myup (9.5.3)
k=1 k=1

which imply

Ti:’ri—i-l"_liqsia d)i:ngHl—l—)\miui, i:1,2,...,n,
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with ¢, 1 =0=T,41.

We give the construction procedure for the simplest case: j = 1. Algorithms
and examples relating to the general case may be found in
Gladwell, Willms, He and Wang (1989) [115].

When j = 1 all the (u;, w;)} will be positive. The (m;)? and A may be
assigned arbitrary positive values; equation (9.5.3b) gives (¢,)? which, when
substituted in (9.5.3a), yield (7;)7. Then k; = 7;/w;, so that the (k;)} are
uniquely determined. m

Exercises 9.5

1. Show that if u is the jth eigenvector of (9.5.1), then 6,7, ¢ are also jth
eigenvectors of SO matrices.

9.6 Courant’s nodal line theorem

We now start our discussion of the properties of eigenvectors of a class of systems
that includes discrete models of membranes and acoustic cavities. Since the
results we obtain are discrete analogues of results relating to continuous systems,
we will start by discussing these, principally Courant’s Nodal Line Theorem
(CNLT), which relates to the Dirichlet eigenfunctions u(x) of elliptic differential
equations. It is well-known that such problems have positive eigenvalues with
infinity as the only limit point; we label them so that

0<A <A <... (9.6.1)

Now the eigenvalues need not be distinct. If A\, has multiplicity r we label the
eigenvalues so that

)\n,1 < )\n = >\n+1 == >\n+7‘71 < )\n+r' (962)

CNLT (Courant and Hilbert (1953) [64], Chapter VI, Section 6.) is a theorem
of wide applicability with a remarkably simple proof based on the minimax
property of the Rayleigh quotient. It relates to the Dirichlet eigenfunctions of
elliptic partial differential equations, the simplest and most important of which
is the Helmholtz equation

Au+Apu=0, x€D. (9.6.3)
The Dirichlet boundary condition is
u(x) =0, xe€dD. (9.6.4)

Here Aw is the Laplacian, p(x) is positive and bounded, and D is a domain
in R™ (m-dimensional Euclidian space). Equations (9.6.3), (9.6.4) govern the
spatial eigenmodes of a vibrating membrane with fixed boundary in R?; and
acoustic standing waves in R3.
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The nodal set of u(x) is defined as the set of points x such that u(x) = 0. Tt
is known (Cheng (1976) [53]) that for D C R™, the nodal set of an eigenfunction
of (9.6.3), (9.6.4) is locally composed of hypersurfaces of dimension m—1. These
hypersurfaces cannot end in the interior of D, which implies that they are either
closed, or begin and end on the boundary. In particular, therefore, in the plane
(m = 2), the nodal set of the eigenfunction u(x) of (9.6.3), (9.6.4) is made up of
continuous curves, called nodal lines, which are either closed, or begin and end
on the boundary.

CNLT states that each eigenfunction u,(x) corresponding to A, divides D,
by its nodal set, into at most n subdomains, called nodal domains, or the more
informative sign domains, in which w,(x) has one sign. We recall proofs of
two versions of CNLT so that we can indicate later how the continuous and
discrete results differ from each other. We express the analysis in variational
form. Define

(u,v)Dz/ Vu.Vudx, [u7v]D:/ puvdx.
D D

Here V = (% o ..., %) is the grad operator, and

17 8(1327.

/D.dxz///D.../.dxlde...dxm.

The fundamental theorem for the Rayleigh quotient

(ua U)D

A =
f [ua u]D

: (9.6.5)

is that if w is orthogonal to the first n — 1 eigenmodes of (9.6.3), (9.6.4), i.e.,
[w,w;]p =0, i=1,2,...,n—1,

then Ag > A, with equality iff u(x) = u,(x). We first prove a weak version of
CNLT:

Theorem 9.6.1 Suppose the eigenvalues \; of (9.6.3), (9.6.4) are ordered as
in (9.6.5), and u,(x) is an eigenfunction corresponding to A,. If A, has mul-
tiplicity v > 1, so that (9.6.2) holds, then u,(x) has at most n +r — 1 sign
domains.

Proof. Suppose u,(x) has p sign domains D; such that J!_, D; = D.

Define )
‘ | Biup(x xeD;
wi(x) = { 0 otherwise

and take

v(x) = Zciwi(x), ZCZQ =1. (9.6.6)
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Since the D; are disjoint, (w;(x))}] are orthogonal. Scale the w;, that is, choose
the 3;, so that [w;, w;]p = 1, then

Since w;(x) satisfies (9.6.3) with A = A, on D;, and w;(x) = 0 on 9D;, the
divergence theorem gives

(wi,wi)p, = /szw Vw;dx
D

= / {div(w; Vw;) —w; A w; pdx
D

/ wi%dx—l—/\n/ pwfdx =An.
op; On D;

Thus (v,v)p = Y0, 2 (wi,wi)p, = Y, ctAn = Ap, so that Ag = X\,. But
we may choose (¢;)} so that [v,u;]p =0, i=1,2,...,p— 1, and hence, for
that choice, Rayleigh’s principle states that Ap > A,. Thus A\, < A,. Since
An < Angr, we have Ay < Ay sothatp<n+r, p<n+r—-1. n

Note that this proof does not require D to be connected. Note also that if A,
is simple, so that » = 1, then the Theorem states that u,(x) has at most n sign
domains. We need to strengthen the result for multiple eigenvalues, reducing
the upper bound n+r — 1 to n.

To reduce the upper bound in this way we need what is called a unique
continuation theorem. Loosely speaking, what such a theorem states is that
if a solution of (9.6.3) is identically zero in a finite region of D then it is zero
throughout D; the only way that it can be continued from the zero patch is
by taking it identically zero. (Specifically, for those who have a functional
analysis background, Jerison and Kenig (1985) [188] proved that if any solution
u € H}(D) of the weak version of (9.6.3) vanishes on a non-empty open subset
of a connected domain D, then u =0 in D.) Using this result we can prove

Theorem 9.6.2 Suppose D is connected, the eigenvalues of (9.6.3), (9.6.4) are
ordered as in (9.6.5), and u,(X) is an eigenfunction corresponding to A,, then
un(X) has at most n sign domains.

Proof. Suppose u,(x) has p > n sign domains. Define the w;(x) as before,

and define v(x) by (9.6.6) with ¢,41 = 0 = -+ = ¢, so that v(x) = 0 on
Dyi1,...,D,.  Again we have Ag = ), and we may choose (¢;)] so that
[v,uilp = 0, ¢ = 1,2,...,n — 1. Thus v(x) is an eigenfunction of (9.6.3),

(9.6.4.), but it is identically zero on D, ;1 and hence, by the unique continuation
theorem, it is identically zero on D. This contradiction implies p < n. =

We note that the theorem, which is due to Herrmann (1935) [171] and
Pleijel (1956) [266], implies that if D is connected, then \; is simple, i.e., A\; < As.
For any eigenfunction u(x) can have at most one sign domain, i.e., it has the
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same sign throughout D. There cannot be two functions u, v, which are of one
sign in a connected domain D and are orthogonal to each other.

Theorem 9.6.3 Theorem 9.6.2 holds even if D is not connected.

Proof. Suppose D consists of ¢ connected domains (Dy){. Label the eigen-

values )\Ek) of each Dy, increasingly, and suppose the corresponding eigenfunctions
are ugk) (x). Now assemble the eigenvalue sequences {)\Ek)}, k=1,2,...,q; 1 =
1,2,... into one non-decreasing sequence {\;} to give the eigenvalues of D. The

corresponding eigenfunctions of D are

(k)
, )y (x) on Dy
(%) { 0 elsewhere.

The ordinal number j of a given /\Ek) in this sequence will satisfy 5 > ¢. Theorem

9.6.2 for Dy, states that ugk)(x) has no more than ¢ sign domains on Dy, so that
u;j(x) will have no more than j sign domains on Dy, and it will be zero elsewhere.
]

9.7 Some properties of FEM eigenvectors

Our aim in the next few sections is to obtain discrete versions of Theorems 9.6.1-
9.6.3. In a first step towards achieving this aim, we discuss some properties of
eigenvectors of finite element models. We return to the analysis of Section 2.5
and suppose that we are dealing with a FEM model of a membrane with fixed
boundary using linear interpolation over acute angled triangles, or correspond-
ingly of an acoustic cavity using linear interpolation over tetrahedra with obtuse
angles between normals to faces. In each of these models, the FEM mesh yields
a set of vertices connected by edges to form a graph. There are two kinds of
vertices, boundary vertices, where v = 0 because of the boundary conditions,
and the remainder. These non-boundary vertices are those that appear in the
analysis; they form a graph G on N vertices P; € V with edge set £. The FEM
analysis yields two matrices K, M on G with the properties that if ¢ # j then

kij <0, mij >0 if (Pi7Pj) e€ }

kij =0, my; =0  otherwise. (9.7.1)

Note that if (P;, P;) € £, we say that P;, P; are adjacent vertices, and we write
P; ~ P;. The analysis will revolve around nodal vertices, i.e., vertices P; where
u; = 0. We first prove

Theorem 9.7.1 Under conditions (9.7.1), a non-boundary nodal vertex of an
eigenvector of (9.1.1) cannot have neighbours that are all of one sign.

Proof. Suppose P;, a non-boundary vertex, is nodal, i.e., u; = 0. The ith
line of (9.1.1) is

Z(kw - )\mij)uj = 0, (972)
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where the sum is over those j(# ¢) for which P; ~ P;; for those j, k;j —Am;; < 0.
If u; > 0(< 0) for all such j, with at least one inequality strict, then the left-hand
side of (9.7.2) would be strictly negative (positive), which is a contradiction. m

This theorem implies that a non-boundary nodal vertex must either have
both positive and negative neighbours, or all nodal neighbours. We may extend
this statement to say that a set of nodal vertices of an eigenvector must have
positive and negative neighbours: it must separate positive and negative vertex
sets. If G is connected, so that K and M are irreducible (see Busacker and
Saaty (1965) [46], then we can say more: if an eigenvector u is non-negative
then it must be strictly positive. Such an eigenvector must correspond to the
lowest eigenvalue, which must therefore be simple: there cannot be two positive
eigenvectors u, v which are orthogonal w.r.t. M: A\; < As.

There is an important mazimum principle for the p.d.e. (9.6.3): a solution
u(x) cannot have an interior positive minimum or an interior negative maxi-
mum (Protter and Weinburger (1984) [271]). To state the discrete version of
this principle, we must divide the non-boundary vertices of a FEM mesh into
two subsets: vertices adjacent to boundary vertices, that we call near-boundary
vertices; the remainder, that we term interior vertices.

Theorem 9.7.2 If G is connected, and (9.7.1) holds, an eigenvector of (9.1.1)
cannot have a local positive minimum or a local negative maximum at an interior
vertewr.

Proof. By definition, an interior vertex is adjacent only to non-boundary
vertices. It is therefore a vertex of an interior element, i.e., an element that
has no vertices on the boundary. Because of the way in which it is formed, by
(2.5.6), the stiffness matrix K, of an interior element admits a rigid-body mode,
{1,1,1} for a triangular mesh, {1,1,1,1} for a tetrahedral mesh. If P, is an
interior vertex, all the elements to which P; belongs are interior elements. This
means that after assembling the K. to form K we may deduce that, if P; is an
interior vertex, then ) k;; = 0, where again the sum is taken over all j such
that P; ~ P;. The ith line of (9.1.1) is

0= Zkijuj — )\mijuj,

so that
Suppose that there is a local positive minimum at an interior vertex P;, so that
u; > 0 and u; —u; > 0 for all j such that P; ~ P;, and either the first inequality
is strict, or the second inequality is strict for at least one j such that P; ~ P;.
(We need the connectedness of G to be sure that every vertex P; does have a
neighbour.) The first sum on the left is non-positive, while the second sum is
zero; the sum on the right is non-negative; one of the two sides, left or right, is
non-zero This is impossible.

This theorem relates to the eigenvectors of (9.1.1), but we can immediately
reword it to apply to FEM eigenfunctions obtained by linear interpolation from
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the vertex values. An eigenfunction obtained by linear interpolation can have
local maxima and minima only at the vertices of the mesh. We conclude that an
eigenfunction cannot have a local positive minimum or a local negative maximum
at an interior vertex. Loosely speaking, we may say that a mode may have waves,
but not dimples.

One of the mainstays of the theory related to (9.6.3) is the unique continu-
ation theorem. It was this that allowed us to reduce the upper bound on the
number of sign domains for eigenfunctions of (9.6.3), (9.6.4), from n+r—1 to n.
There is no straightforward discrete analogue of unique continuation; there is an
analogue, as described in Lemma 9.9.2, but it is not straightforward. Figure
9.7.1 shows an example of a FEM eigenmode with zero patches. If the matrices
K and M are symmetrical about the z-and y-axes, then there will be a mode
that is antisymmetrical about both axes, so that the vertex values must have
the signs shown. There are four completely zero triangles in the centre, and
four other pairs of zero triangles, but the eigenmode is not identically zero.

N

N

NN

Figure 9.7.1 - An eigenvector can have one or more zero (shaded) polygons

Even though there is no straightforward discrete analogue of unique contin-
uation, we can still obtain discrete analogues of Theorem 9.6.1, 9.6.2. First, we
need to find the discrete FEM counterparts of the sign domains of the contin-
uous theorems. There are two distinct ways of looking at the piecewise linear
function u obtained from an eigenvector of (9.1.1): looking at the values w;, and
particularly at the signs of u;, at the vertices P; of G; looking at the subregions
with piecewise straight boundaries on which the linearly interpolated u(x) has
one sign, either loosely, u(x) > 0 (< 0) or strictly, u(x) > 0 (< 0).

Consider the first way. The FEM mesh defines a graph G with N vertices
P;. A FEM vector u € Vi associates a value u; and in particular a sign +,
0, or -, to each vertex P; of G. We may connect the (strictly) positive vertices
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by edges of £ to form maximal connected subgraphs of G, called strong positive
sign graphs. We may do the same with the negative vertices, to form strong
negative sign graphs. In this way, we can partition the graph G into disjoint
strong positive and strong negative sign graphs, and zero vertices. Figure 9.7.2
shows a graph with 2 strong positive and 2 strong negative sign graphs, each of
which has just one vertex. Alternatively, we may partition G into weak positive
and weak negative sign graphs, by forming maximal connected subgraphs of non-
negative, and non-positive vertices, respectively. The graph in Figure 9.7.2 has
just one weak positive sign graph, and one weak negative sign graph; these weak
sign graphs overlap.

+ 0 -

Figure 9.7.2 - The graph has two strong positive and two strong negative sign
graphs; it has just one weak positive, and one weak negative sign graph

Two sign graphs 51,52, strong or weak, are said to be adjacent if there are
vertices P, € S1, P> € Sy such that P; ~ P,. We need the following simple but
important property:

Lemma 9.7.1 If two different sign graphs are adjacent, then they have opposite
signs.

Proof. If they had the same sign then one at least would not be maximal.
]

Note that while two adjacent strong sign graphs are disjoint, two adjacent
weak sign graphs may overlap.

Now consider the second way; looking at the signs of the piecewise linear
‘eigenfunction’ interpolated from the vertex values u; of an eigenvector u. This
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‘eigenfunction’ is defined on a domain with piecewise straight (in R?) or piecewise
plane (in R?) boundary, that may be some approximation to an original domain
D. We are not concerned with how good the approximation is, nor are we
concerned with convergence or taking a ‘sufficiently fine’ mesh. Thus, we will
simply call the FEM domain D, and forget that there might have been some
other original domain with perhaps curved boundary. The domain D may be
divided, like the graph G, into strong sign subdomains, D;, on which u(x) has
one strict sign, and on the boundaries of which u(x) = 0. Each of these domains
will be polygonal in R?, polyhedral in R3. In particular, the nodal places of u in
R? will be piecewise straight lines, either closed or beginning and ending on the
boundary, or nodal polygons, as in Figure 9.7.1. In R? they will be piecewise
plane surfaces which are either closed or begin and end on the boundary, or
polyhedra. Instead of using strong sign domains, we may use weak; they too
will have piecewise straight or piecewise plane boundaries. A weak positive and
a weak negative sign domain may overlap.

For triangular or tetrahedral meshes corresponding to linear interpolation,
there is a clear correspondence between the sign graphs on the one hand and the
sign domains on the other. For each strong or weak, positive or negative sign
domain there is exactly one strong or weak, positive or negative, sign graph.
This means that we can count the number of sign domains by counting the
number of sign graphs.

We note however, that the rectangular FEM mesh which is sometimes used
in R? does not have such simple properties. Inside a rectangle, u(z,y) has a
bilinear interpolation

u(z,y) =p+ qr +ry + szy.

Now all four vertices of the rectangle are neighbours of each other, in the sense
that all the off-diagonal entries in the element matrices are non-zero. This is
why we show the vertices of the rectangle joined by the diagonals as well as by
the sides, as in Figure 9.7.3. (But the intersection of the diagonals is not a
vertex of the graph.)

Figure 9.7.3 - A rectangular finite element; each vertex is connected to all the
others
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It may be shown for this mesh that the element mass matrix is strictly
positive, and that the off-diagonal entries of the element stiffness matrix are
strictly negative iff the sides a,b of the rectangle satisfy 1/v2 < a/b < V/2,
i.e., if the rectangle is not too thin. There is a similar result (Ex. 9.7.1) for a
rectangular box mesh in R3. Thus, under these conditions, the matrices K, M
for the whole mesh will satisfy the inequalities (9.7.1). This means that we
can apply the results of the analysis below to the sign graphs of a rectangular
mesh, but as the example in Figure 9.7.4 shows, we cannot extend them to the
sign domains. Figure 9.7.4 shows a mesh made up of nine square elements.
The vertices A and B are adjacent and have the same sign, so that they belong
to the same sign graph. However, because nodal lines in an element are now
hyperbolic, and not straight, A and B lie in different sign domains; there is an
intervening negative sign doman between them.

Figure 9.7.4 - Vertices A and B are adjacent, but belong to different sign
domains

Exercises 9.7

1. Find the conditions on the ratios of the dimensions of a rectangular box
so that the stiffness matrix based on linear interpolation of the assumed
modes

17‘/’U’y’ Z7yz7 Zx’xy’xyz

has the sign property (9.7.1).

9.8 Strong sign graphs

The discussion in Section 9.7 should have made it clear that we can study the
sign properties of an eigenvector on a graph G as a problem in its own right,
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that is, without considering the problem as arising from a FEM model. We will
do this and, to simplify the analysis, we will consider the eigenvalue in standard
form, namely

(A=X)u=0 (9.8.1)

under the following assumption: if 4 # j then
Qij =0 Zf(P“Pj) ¢(€, Q5 <0 ’Lf(P“P]) eé. (982)

We will then show at the end that all the results hold for (9.1.1) under the
condition (9.7.1). In this section, we will understand sign graph to mean strong
sign graph. The theorem we are about to prove regarding the number of sign
graphs is a discrete analogue of Theorem 9.6.1. In order to prove it, we need to
set up a procedure mimicking that used in Theorem 9.6.1, and prove a Lemma,
following Davies, Gladwell, Leydold and Stadler (2001) [71].

Suppose u is an eigenvector of (9.8.1) in the eigenspace of A,,. Suppose u
has m sign graphs S;, ¢« = 1,2,...,m. Define m vectors w;, ¢ = 1,2,...,m,

such that
w4 u on S;
"1 0 otherwise.

Explicitly, let w; = {w;1,wiz2,...,w;n}. Then w;; = u; if P; € S;, and
w;,; = 0 otherwise. Thus
m
u = Zwl
i=1

Now form

m
v = ZCiWi~ (9.8.3)
i=1

Using straightforward algebra, we may verify (Ex. 9.8.1) Duval and Reiner’s
Lemma (Duval and Reiner (1999) [82]).

Lemma 9.8.1
m 1 m
vIAv — My = ; wl(Au— ) — 3 iJXZ:l(ci —c;)*wl Aw;.

This leads to

Theorem 9.8.1 Any eigenvector corresponding to A, has at most n+r—1 sign
graphs.

Here the governing equation is (9.8.1), A satisfies (9.8.2), the (\,)Y are
ordered as in (9.6.1), and A,, has multiplicity r, so that (9.6.2) holds.

Proof. Since none of the w; is identically zero and they are disjoint, their
linear span has dimension m. It follows that there are real constants (c;)™, not

70
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all zero, such that v is non-zero and is orthogonal to the first (m—1) eigenvectors
(u))7" of A, ie.,

viuj =0, j=1,2,...,m— 1.
Without loss of generality we can take vI'v = 1. Therefore, by the minimax
theorem (Section 2.10) we have

vIiAv > \,,. (9.8.4)

Now use Lemma 9.8.1 with A = \,,, u = u,,. We find

1 m
vIAv-), = -3 > (i —c)*wl Aw;. (9.8.5)

ij=1

We will show that the sum on the right is non-negative. A term w; Aw; is
non-zero only if w;, w; correspond to adjacent sign graphs; adjacent sign graphs
have opposite signs (Lemma 9.7.1); adjacent sign graphs are disjoint. This
means that any non-zero product w? Aw; involves only negative, off-diagonal
entries in A; therefore

WEAW, = (£)()) = +
Therefore, equation (9.8.5) gives
vIAv—\, <0. (9.8.6)

This combined with (9.8.4) states that A\, < A,. Since A\, < A\,4,, we have
Am < Apgry e, m<n+r—1. =m

Note that we cannot deduce that the inequality in (9.8.6) is strict, because
¢; — ¢; might be zero for all those pairs ¢,j for which WZTAWJ' was (strictly)
positive.

As we stated earlier, Theorem 9.8.1 is a discrete counterpart of CNLT in
the form of Theorem 9.6.1. Various researchers attempted to reduce the bound
n+r—1. Friedman (1993) [96] gave the example of a star on N vertices to
show that the bound could not be reduced, as in Theorem 9.6.2, to n. For
the star, the second eigenvalue of the so-called Laplacian matrix (Ex. 9.8.2)
has multiplicity N — 2, and has an eigenvector with N — 1 sign graphs. If
therefore N — 1 > 2, i.e., N > 4, then a second eigenvector has more than
2 sign graphs. In spite of this counterexample, Duval and Reiner (1999) [82]
attempted to reduce the bound to n; the error in their logic is pinpointed in Zhu
(2000) [342]; essentially their error lay in thinking that the inequality in (9.8.6)
could be made strict. Comments on partly erroneous results put forward by
Friedman (1993) [96] and van der Holst (1996) [326] may be found in Davies,
Gladwell, Leydold and Stadler (2001) [71].

We note that the distinction between the bounds n+r—1 and n appears only
when r > 1, i.e., A, is multiple. Following Gladwell and Zhu (2002) [131] we
now show that although it is not possible to reduce the bound n+r—1 when A,, is
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multiple, it is possible to construct r orthogonal vectors (u;)?™ !, spanning the

eigenspace of \,,, such that u; has at most j sign graphs, j = n,n+1,...,n+r—1.
In fact, it is possible to go further and construct r linearly independent (but not
necessarily orthogonal) vectors spanning the eigenspace of \,, such that each
of them has at most n sign graphs. We introduce the notation SG(u) for the
number of sign graphs of u.

Theorem 9.8.2 Under the conditions stated in Theorem 9.8.1, if u is an eigen-
vector corresponding to A, and SG(u) = m > n, then in the notation of (9.8.3)

we may find
n
VvV = E CjW;
Jj=1

such that v is an eigenvector corresponding to A,, and SG(v) < n.

Proof. We can choose c;, not all zero, such that v is orthogonal to (u;)} !
By the minimax theorem A > A,,. By Lemma 9.8.1, A\g < A\,. Thus Ag = A\,
and v is an eigenvector corresponding to A,. By its construction, SG(v) < n.
]

We denote a normalised v so formed, by v = T((w;)}, (w;)7!). This v
may not be unique; there is always a non-trivial set (c;)7, but it need not be
unique.

Note that in Theorem 9.6.2, for the continuous CNLT, we suppose that the
eigenfunction u,(x) has more than n sign domains, and we construct a pur-
ported eigenfunction v(x) orthogonal to (u;(x))} ™!, but zero in D,,;1; then we
use unique continuation of an eigenfunction on a connected domain D to show
that v(x) = 0 in D; this contradicted the hypothesis that v(x) was an eigen-
function, i.e., not trivial. In the discrete case we start with an eigenvector u,,
with SG(u,) = m > n, and construct another v with SG(v) < n; the new
eigenvector has at least one zero sign graph, but it is an eigenvector, and there
is no contradiction involved.

We may now prove

Theorem 9.8.3 Suppose the conditions stated in Theorem 9.8.1 hold. If \,
is an eigenvalue of multiplicity r, then we may find r orthonormal eigenvectors
(u;)"+7=1 corresponding to A, such that SG(u;) < j, j=n,n+1,...,n+r—1.

Proof. The r-dimensional eigenspace V' of A, has an orthonormal basis
(vj)rtr=1. Theorem 9.8.1 states that SG(v;) < n+r—1forj =n,n+1,...,n+
r—1. If SG(v,) < n, take u,, = v,,; otherwise SG(v,) > n. In this case if
(w;)", (m > n) are the sign graph vectors of v,,, take w,, = T'((w;)7; (u;)}™ 1),
so that SG(u,) < n. We now proceed by induction. Suppose we have
constructed orthonormal vectors u,,up41,...,up4s—1(1 < s < r) such that
SG(u;) < j, for j=nn+1,....,n+s—1. We show how to construct
U,;,. First, find a new orthonormal basis (u;)7*~%, (x;)rto~" for V. If
SG(xpts) < n+ s, then take u,ys = X,1s; otherwise SG(X,ts) > n + 8;
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in this case, if (w;)7"(m > n + s) are the sign graph vectors of x,s, take
Uy s = T((w])}”‘s (w;)7~1). We may proceed in this way to find (u;)7+ ~*
such that SG(u;) <j. m

We now strengthen this result and prove

Theorem 9.8.4 Suppose the conditions stated in Theorem 9.8.1 hold, and that
An 15 an eigenvalue with multiplicity v, and eigenspace V.  There is a basis
(w))7t" =t for V such that SG(u;) < n.

Proof. We proceed much as in Theorem 9.8.3. We construct u,, as before,
and then use induction: we suppose that we have found a basis (uj)’lH'S_l,
(x;)ntr=! for V such that SG(u;) <nfor j =n,n+1,...,n+s— 1, and we
show how to construct u,4s. If SG(xp4s) < n, then u, s = X,45; otherwise
SG(xpts)=n+t, 1<t< r — 1. In this case, let W be the space spanned by
the sign graph vectors (w;)] " of x,,44: if w € W, then w = Z“f{ c;w; = We.
Let Y be the subspace of W orthogonal to (uj)1 ; Y is not empty because
Xpis = Z;let w; €Y. IfyeY, then y = Wc and uJTy = uJTWc =0, j=
1,2,...,n—1. Of these n — 1 constraints on the ¢;, m < n —1 are independent;
they may be written Bc = 0, where B € M,;, ,4¢. Then the matrix B has m
linearly independent columns which, by suitably renumbering the w;, may be
taken as the first m. Thus Bc = 0 may be written

[B1,B2] {2] =0, (9.8.7)

where B; € M), is non-singular, Bs € M, nit—m,

c1 ={c1,¢2,...¢m}, ca={Cma1,---;Cntt}

The solution space of (9.8.7) is spanned by the n 4+t —m solutlons obtained by

taking cé % = Oik, 1 =m+1,...,n+1t, and then solving for c; ) Bach such

choice gives a vector y; = Wc(z), these vectors are linearly independent and
they span Y; by construction SG(y;) <m+1 < n. At least one of the y;, say
¥p, must be linearly independent of (u;)""*~1, for x,,45 € Y is, by construction,
linearly independent of (u;)"**~1. Take u,1s =y, then SG(u,45) <n. We
may proceed in this way to find (u;)?™ ! such that SG(u;) <n. m

We conclude this section by dlscussmg some other implications of Lemma
9.8.1.

Suppose that u is an eigenvector corresponding to a multiple eigenvalue A,
so that Au = A,u. Suppose that SG(u) = m > n, and v given by (9.8.3) has
been computed so that it is orthogonal to (uj)?fl. Then, as we showed before,
v is also an eigenvector corresponding to ., i.e., Av = \,v. Then Lemma
9.8.1 with A = \,, demands

m

Z (c; — cj)2w;‘Fij =0. (9.8.8)
ij=1
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But, as we showed earlier, WiTAWj > 0, with strict inequality iff S;,S; are
adjacent. Equation (9.8.8) implies that if S;,S; are adjacent, then ¢; = ¢;.
This means that if one sign graph, 5;, is omitted in the construction of v from
the sign graphs of u (i.e., ¢; = 0), then any sign graph S; adjacent to S; must
also be omitted (¢; = ¢; = 0). On the other hand, if one sign graph S; is
included in v, then any other sign graph S; adjacent to S; must be included,
and must be included with the same weight as S; : ¢; = ¢;. This means that in
the construction of v from the sign graphs of u, any connected graph composed
of sign graphs of u must either be included or excluded as a whole. This leads
to

Theorem 9.8.5 Suppose the conditions stated in Theorem 9.8.1 hold. Suppose
that u, an eigenvector corresponding to A, has more than n sign graphs, so that
SG(u) =n+g, g >1. These sign graphs may be grouped into g + s mutually
disjoint connected graphs (C;){"°, and s > 1.

Proof. If s < 1, i.e.,, s <0, then there are at most g connected graphs C;.
If we form a non-trivial eigenvector from the n + g, sign graphs of u, by deleting
g of them, at least one S; from each C;, then none of the C; will appear; v will
be identically zero. This contradiction implies s > 1. m

This theorem has a number of corollaries:

(i) If u has m = n+g sign graphs, then a connected component C; can contain
at most n sign graphs. For if one contained n + 1 sign graphs, then there
would be at most 1 + (n 4+ g —n — 1) = g connected components. This
provides a somewhat restricted counterpart of Theorem 9.6.2.

(ii) If there are n sign graphs in one component C;, and n > 2, then g > 2.
For if n sign graphs are in one component Cj, they must constitute an
eigenvector; so too will the remaining n+ g —n = ¢ sign graphs. If n > 2,
an eigenvector, being orthogonal to u;, must have at least two sign graphs;
g=>2.

(iii) If G is connected and u, has no zeros then, whether \,, is simple or multi-
ple, SG(u,) < n. For if there are no zero vertices then all the sign graphs
fall into one component.

Exercises 9.8

1. Establish Duval and Reiner’s Lemma 9.8.1.

2. Consider the star on N vertices with a1; = N — 1, a;; = 1, a; = —1,
i=2,...,N. Show that its eigenvalues are 0,1, N.
Show that the second eigenvalue has multiplicity N — 2, and that there is
an eigenvector corresponding to Ao with N — 1 sign graphs.

3. Construct N — 2 orthogonal eigenvectors of Ay for the star in Ex. 9.8.2
such that u; has just j sign graphs, j =2,3,...,N — 1.
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4. For the same star, construct /N — 2 linearly independent eigenvectors u,;
such that each has just 2 sign graphs.

9.9 Weak sign graphs

In order to obtain a proper discrete analogue of Theorem 9.6.2, we must consider
weak sign graphs.

Lemma 9.9.1 Suppose 51,82 are adjacent weak sign graphs. There is a pair
of vertices Py, Py such that Py € 81, Py € S\S1 (i-e., Py is in S, but not in
81) (l?’LdPl NPQ.

Proof. Without loss of generality, assume S; is weak positive and Ss is weak
negative. If S1,8s are disjoint, then by the definition of adjacency, there exist
P, € 81, P, € S; such that P, ~ Py; because Sy,S, are disjoint, Py € So\Si.
Otherwise, S1, S, have a non-empty intersection S N Se.  S; N Sy is a strict
subgraph of G so that not all vertices P, € S1NSs can be interior vertices in the
sense described in Section 9.7. Any boundary vertex P; will have the required
property: for such a P;, there will be a vertex P, such that P, ~ P;, and us < 0,
ie., P, e 82\81. ]

Now suppose u, an eigenvector corresponding to A,, has m > n weak

sign graphs S;. We define w;, i« = 1,2,...,m as before, and we choose
ci, © = 1,2,...,m, not all zero, to make v given by (9.8.3) orthogonal to
u, i = 1,2,...,m —1. We prove a continuation result for the coefficients

¢; that is a discrete analogue of the unique continuation principle for eigenfunc-
tions.

Lemma 9.9.2 Suppose m > n, and two of the weak sign graphs S1 and Sz of u
are adjacent, then co = c;.

Proof. Without loss of generality we may suppose that S; is weak positive
and S, is weak negative. We proceed as in the derivation of equation (9.8.8).
The minimax theorem implies v Av > \,,,, and Lemma 9.8.1 implies v Av <
An, and

Z (ci —cj)*wi Aw; = 0. (9.9.1)
ij=1
Now use Lemma 9.9.1. If §; and Sy are disjoint, then there is a pair P, P,
such that P € §;, P, € S; and Py ~ Py; thus uy > 0, us <0, a2 < 0. Thus
wi Awy > ujajpus > 0, and (9.9.1) implies ¢; = c,.
Otherwise S1, S, overlap. Since v Av < \,, v, like u, is in the eigenspace
of \,, and therefore so is

m

Z=cu—Vv= Z(Cl —cj)w;.

=1
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By definition w;; = 0 unless P; € §;. Choose P; and P> as in Lemma 9.9.1:
PresSn 82 implies Uy = O, i.e., Wi 1 = 0 for all j, so that z; = 0.
Since z is in the eigenspace of \,,, we have

m

)\nZ = Az = Z(Cl — Cj)AWj,

j=1
so that .
Anz1 =0 = 377 (a1 —¢;)(Aw;)q,
N
= Yililer —¢) Xite ariw,
where we have used w;; = 0. The term ay;, for ¢ > 2, is zero unless P; ~ P.

Since u; = 0, all such P; are in S; or S3. The sum in (9.9.2) is therefore over
j =2 only:

(9.9.2)

N
O = (Cl — 62) Zaliwg’i.
1=2

Since S, is weak negative, aj;we; > 0 for ¢ = 2,..., N: each term in the
sum is non-negative. Since P; ~ P, we have a15 < 0; since Py € S»\Sy,
W2 = Uz < 0, so that

N
Zauwzz‘ > aiguz > 0,
i=2

and hence ¢c; =cy. =
We are now in a position to establish

Theorem 9.9.1 If G is connected, any eigenvector corresponding to A\, has at
most n weak sign graphs.

Proof. Suppose, if possible, that u has m weak sign graphs S;, : = 1,2,...,m,
and m > n. At least one of the coefficients ¢;, say c¢;, is non-zero. Since
n > 1, we have m > 2. Since G is connected, S; must be adjacent to at
least one other weak sign graph, which we label S3. Lemma 9.9.2 states that
co = c¢;. If m > 3, one of 81,8, must be adjacent to one of the remain-
ing sign graphs S;, i = 3,...,m, say S3, otherwise G would not be connected.
Therefore c3 = ¢co = ¢; by Lemma 9.9.2. In m — 1 steps, we conclude that
Cm = Cm—1 = -+ = Cy = 1. Hence v =cju. But v was constructed so that
it was orthogonal to u; for ¢ = 1,2,...,m — 1; if m > n, v is orthogonal to u,
contradicting v = c;ju. Therefore, m <n. m

9.10 GGeneralisation to M, K problems
The proof of Theorem 9.8.1, on strong sign graphs, hinges on two fundamental

results: Courant’s minimax theorem, and Duval and Reiner’s Lemma 9.8.1.
Theorem 9.9.1 on weak sign graphs, uses these two, and Lemmas 9.9.1, 9.9.2.
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All these intermediate steps may be generalised to give results for the problem
(9.1.1), in which K is PSD, M is PD, and K, M satisfy (9.7.1).

Thus, since M is PD, the minimax theorem holds for the Rayleigh quotient
vIKv/vI'Mv. Duval and Reiner’s Lemma 9.8.1 may be generalised to read

Lemma 9.10.1

m 1 m
vI(K - \M)v = ; Awl (K — AM)u — B ijzz:l(ci —¢;)*wl(K — \M)w;.

Since K is PSD and M is PD, the eigenvalues \; are non-negative. This
means that when w;, w; correspond to adjacent sign graphs

w (K= AM)w; = (£){(=) = (H)}(F) = +.

All the arguments used to establish Theorems 9.8.1, 9.9.1 proceed as before with
A replaced by K — AM.

Exercises 9.10

1. Establish Lemma 9.10.1.



Chapter 10

Green’s Functions and
Integral Equations

Mathematicians who are only mathematicians have exact minds, provided all
things are explained to them by means of definitions and axioms; otherwise
they are inaccurate and unsufferable, for they are only right when the
principles are quite clear.

Pascal’s Pensées

10.1 Introduction

In this and the following two chapters we shall be concerned with the vibration of,
and the inverse problems for, three systems with continuously distributed mass:
the taut vibrating string, and the rod in longitudinal or torsional vibration. In
this section we state the governing differential equation. In Section 10.2 we
introduce the Green’s function and reformulate the eigenvalue problem giving
the natural frequencies as an integral equation. In Section 10.3 we recall the
relevant spectral theory for compact self-adjoint operators on a Hilbert space,
and in Section 10.4 we apply it to the Green’s function integral equation. This
chapter thus serves as introductory material for the study of inverse problems
in Chapter 11.

The equation governing the free (infinitesinal, undamped) vibration of a taut
string having unit tension, mass per unit length p?(z), vibrating with frequency
w is

v () + N\p?(x)v(z) = 0, (10.1.1)

where A = w? and’ = d/dx. We denote the mass per unit length by p?(x), rather
than by p(x), to indicate that it is positive, and to avoid continual repetition of
p'/?(z). The end conditions will be assumed to be

v'(0) — hv(0) =0 ='(1) + Ho(1), (10.1.2)

231
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where h, H > 0 and h, H are not both zero. This means that the ends x =
0, x = 1 are attached to fixed supports by the use of springs having stiffnesses
h, H respectively. Of course a real (physical) string cannot have a ‘free’ end in
the straightforward sense. However, we can simulate a free end by attaching
the end to a device that moves transversely in such a way that the slope of the
string at the end remains zero.

The free longitudinal vibrations of a thin straight rod of cross-sectional area
A(z), density p and Young’s modulus F are governed by the equation

(A(x)w'(z)) + MA(z)w(z) = 0, (10.1.3)
where A = pw?/E. The end conditions are
w'(0) — hw(0) =0 = w'(1) + Hw(1), (10.1.4)

where again h, H > 0 and h, H are not both zero.
The free torsional vibrations of a thin straight rod of second moment of area
J(x), density p and shear modulus G are governed by the equation

(J(z)0'(x)) + AJ(z)0(z) = 0, (10.1.5)
where A\ = pw?/G. The end conditions are
6'(0) — hO(0) =0 = 6'(1) + HO(1). (10.1.6)

There is clearly a one-one correspondence (E, A, p,v) — (G, J, p,0) between
the longitudinal and torsional systems, but we now show that, by means of a
transformation of variables, all these systems may be reduced to the same basic
equation.

In equation (10.1.3) introduce a new variable £, where

(z) =1/A(z), w(z)=0v(£). (10.1.7)

Then A(z)w'(z) = A(z)9(£)€' (z) = 0(€), where - = d/d¢. Hence A(Aw') = 4,
and equation (10.1.3) becomes

(&) + Ap?(€)v(€) =0, (10.1.8)
with p(¢) = A(x). If

T dt boat
§(z) = /O mv 1= /0 m (10.1.9)
then the end conditions (10.1.4) become
0(0) — hA(0)v(0) =0 =0(1) + HA(1)v(1). (10.1.10)

Since A(z) is positive and bounded, equation (10.1.8) has the same form as
(10.1.1), and equation (10.1.10) has the same form as (10.1.2). This means that
we may concentrate our attention on equations (10.1.1),(10.1.2).
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We showed that equation (10.1.3) could be transformed into (10.1.1) by a
simple change of variable. If we assume further smoothness in A(z), that it has
a second derivative, then we may transform (10.1.3) into another equation which
is often viewed as the standard form, the so-called Sturm-Liouville equation.

In equation (10.1.3) put

then

(Aw') = [A(f~ly = f'f 2y
= AfTW (AT - AP - (AP )y

Choose the function f to make the terms in 3’ vanish:

(AfY —Af f2=Af—2Af 72 ie., (Af2) =0or f = A2

Then
(Aw') + Mw = fy" — f'y + Afy =0
y" (@) + [\ = q(@)ly(z) = 0, (10.1.11)
where
q(z) = f"(2)/ f (). (10.1.12)

We note that since (10.1.3) may be transformed into (10.1.1), the latter may
be transformed into (10.1.11). In fact if

v(@) =y(&)/f(&), f(&)=p"(), £(x)=f*) (10.1.13)
then ) B
v =0f2 = fy— fy, v" = f2(fi— fy)
and
v+ X% = fA(fi— fy) + Ay =0
so that
§(6) + A —q(§)]y(&) =0, (10.1.14)
where }
q(&) = f(&)/f(E). (10.1.15)

If p(z) is continuous in [0,1] then equation (10.1.1) shows that v(z) has a
continuous second derivative. If p(z) has a simple discontinuity at = £ then
v'(z) is continuous while v”(z) has a discontinuity at x = &:

r=E&+ r =&+
=6~ x=E&

If p(x) therefore is piecewise continuous in (0,1) then v”(x) is piecewise contin-
uous also.

v () —v(€)p*(z) (10.1.16)
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To show that any eigenvalues of (10.1.1), (10.1.2) must be real and positive
we may argue as follows: suppose A, possibly complex, is an eigenvalue, and
v(x) a corresponding eigenfunction. Multiply (10.1.1) by v(z) and integrate

over (0,1):
1 1
/ v"vdx + )\/ p*vtds = 0.
0 0

Integrate the first term by parts and use the end conditions (10.1.2):

1 1
/ V' dx + hv(0)v(0) + Hu(1)v(1) = A/ prutdz. (10.1.17)
0 0

The terms on the left are real; the integral on the right is real and positive; A is
real. The sum on the left can be zero only when hv(0) = 0 = Hv(1). There are
two cases to consider i) h, H > 0, in this case v(0) = v'(0) = v(1) = v'(1) so that
v(z) = 0, and there is no eigenfunction v(z). 1ii) h = 0 = H, in this case the
supports have no stiffness, and there is an eigenvalue A = 0 with eigenfunction
v(x) = constant. This is called a rigid-body mode. Apart from this case, any
eigenvalue is strictly positive.

Any eigenvalues must be simple, for if u(z),v(x) were two different eigen-
functions corresponding to the same eigenvalue A, then

o (x)v(z) — u(x)v”(z) =0,

- o' (z)v(z) — u(x)v’(x) = Constant.

But at « = 0, the end condition (10.1.2) gives
4 (0)v(0) — u(0)v'(0) = 0.
Thus

and u(z),v(x) are proportional.
Suppose v1(z), v2(z) are eigenfunctions of (10.1.1), (10.1.2) corresponding to
different eigenvalues A1, Ao. Then

vy + MpPur =0 = vy + Aap?ug
and
1 1
/ (vll/v2 - UIQIUI)dm + (A — >\2)/ P2U1’U2dx =0.
0 0
But

1
/ (v{vg — vivy)dx = [vjve — vévl](l) =0
0

on account of the end conditions, and hence, since \; — Ay # 0, v; and vy are
orthogonal in the sense

1
/ p2’U1’U2d£U =0.
0
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We have shown that if equations (10.1.1), (10.1.2) have eigenvalues then
they will satisfy
0<A <A< (10.1.18)

with equality only as stated above. The corresponding eigenfunctions v;(x) will
be orthogonal; they may be normalised so that

1
/ pPvivjde = 6;;. (10.1.19)
0

We have shown that the differential equation we are studying may be pre-
sented in three different forms: (10.1.1), (10.1.3) or (10.1.11). For vibration pur-
poses the fundamental equations are the first two: (10.1.1) for the taut string;
(10.1.3) for the rod. Equation (10.1.11), called the Sturm-Liouville equation, is
introduced as a standard mathematical form because it is easier to analyse, par-
ticularly for the asymptotic form of the eigenvalues, and for the inverse problem.
Equation (10.1.11) is the one that has been studied by most pure mathemati-
cians, but in our study of vibration problems, we must always remember that it
is a secondary equation.

In this chapter, we will study some of the basic properties of the equations,
particularly the so-called spectral theory. In Chapter 11 we will study some
inverse problems: how to reconstruct the functions p(x), A(z) or ¢(z), appearing
respectively in the three forms of the equation.

In the spectral theory there are six main topics:

i) The existence of an infinite sequence of real distinct eigenvalues with only one
limit point, +00. For equations (10.1.1) and (10.1.3) these are all positive
apart perhaps for the first, which is zero when h =0 = H.

ii) The completeness of eigenfunctions on [0,1].

iii) The asymptotic form of the eigenvalues and the so-called norming constants.
iv) The interlacing of eigenvalues corresponding to different end constants h, H.
v) The oscillatory properties of eigenfunctions: how many nodes they have.

vi) The interlacing of nodes of neighbouring eigenfunctions.

Each of these topics may be studied in various ways, but there are basically
just two avenues of approach: through the study of the differential equation itself;
by converting the differential equation to an integral equation and studying that.

Of the six topics, the most difficult is undoubtedly ii), the completeness of the
eigenfunctions. In their recent monograph, Levitan and Sargsjan (1991) [212]
study completeness by reducing (10.1.11) to an integral equation and then using
a variety of approaches to establish completeness. We will approach topics i) and
ii) differently, in a way that mimics somewhat the matrix approach to discrete
problems, by starting from (10.1.1), converting it to an eigenvalue problem for
an integral operator, and establishing the necessary functional analysis. This
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approach takes more pages than Levitan and Sargsjan’s, but we believe it has
merit.

For the establishment of the asymptotic form of the eigenvalues we will start
from (10.1.11).

Topics v) and vi), nodes and interlacing, were studied by Sturm in his original
work. The classical treatment, beautifully presented, may be found in Ince
(1927) [185]. Levitan and Sargsjan follow Sturm’s approach. We will use
the total positivity properties of the integral equation, following the lines of
Gantmacher and Krein (1950) [98].

There are two ways to normalise the governing equations and to number the
eigenvalues; both have their own advantages and disadvantages, and we shall
therefore use both, at different times; we label them V| for vibration, and .S, for
Sturm-Liouville.

V: the governing equation is (10.1.1) or (10.1.3), the equation holds for x €
[0,1]; the end conditions are (10.1.2) or (10.1.4); the eigenvalues are la-
belled (\;)5°, the eigenfunctions (v;(z))5°.

S: the governing equation is (10.1.11), the equation holds for x € [0,7]; the end
conditions are

y'(0) — hy(0) = 0 = ¢/ (7) + Hy(r);

the eigenvalues are labelled (X;)§° and the eigenfunctions (y;(z))§°.

Thus we will use V' for the analysis in Sections 10.2-10.8 based on the Green’s
function approach to equation (10.1.11). We will use S for the study of the
asymptotic form of the eigenvalues in Section 10.9, and for the analysis of the
inverse problems for the Sturm-Liouville equation (10.1.11) in Chapter 11.
Exercises 10.1

1. Show that the eigenvalues and eigenfunctions of (10.1.1) for p = 1 and the
end conditions (10.1.2) are given by

A=w? wp=a,+B,+(n—-1m, n=12...
where
ay, = arctan(h/wy), B, = arctan(H/w,,)

and
Yn = cos(wpx —ap), n=1,2...
Hence, show that w,, is an increasing function of h and H and that, when

h, H are positive, there is just one eigenvalue w,, in each of the intervals
((n—1m,nm), n=12,...

2. Consider various special cases of Ex. 10.1.1. Thus,

a) h=0=H, thenw, = (n—1)mr, mn=1,2,... Note: in this case, that
was considered earlier, there is a zero eigenvalue with eigenfunction
Y1 = 1.
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b) h=0, H =oo,thenw,=(n—1/2)r, y,=cosw,x
c) h=o00, H =o0,thenw, =nnr, y,=-snw,x

d) h, H finite, then for large n

wn(n1)7r+((si_—g7)r+0<%).

Note that this expression indicates that it would be an advantage to
label the eigenvalues Ag, A1, ... rather than A\j, Ao, ...

3. Explore how the end conditions change as one equation of (10.1.1), (10.1.3),
(10.1.11) is changed to another. Note that the basic equations for vibration
purposes are (10.1.1), (10.1.2) and (10.1.3), (10.1.4) in which h, H are non-
negative. Note particularly that if (10.1.3) is changed to (10.1.1), i.e.,
to (10.1.8), the end conditions retain the same form; compare (10.1.10)
and (10.1.2). But when (10.1.1) or (10.1.3) is changed to the standard
form (10.1.11) the end conditions change: v'(0) — hv(0) = 0 becomes
9(0) — ky(0) = 0, and h > 0 does not imply k > 0.

10.2 Green’s functions

The idea of a Green’s function is perhaps most easily introduced by considering
the static deflection of a string with fixed ends due to a distributed load f(z).
The governing equation is

—v"(x) = f(x) (10.2.1)

and the end conditions are v(0) = 0 = v(1). If instead of a distributed load we
consider a single unit concentrated load at « = s, then the string will be straight
on each side of x = s, and have a discontinuity in its slope at x = s, as shown
in Figure 10.2.1.

0 s 1
Figure 10.2.1 - The plucked string.

Thus
<zx<
v(z) = { Az, 0szss (10.2.2)
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Equilibrium of the two portions gives

dv
dx

xr = s+ — 1

T =8s— ’

so that, on using (10.2.2), we find A+ B = 1. Continuity yields As = B(1 —s)
so that
A=(1-s), B=s.

We call the resulting deflection G(z, s); thus

[ z(1-s), 0<z<s,
G(x,s)—{ s(l—2), s<z<l. (10.2.3)

To obtain the deflection of the string under the action of the distributed load
f(x) we combine the actions of the concentrated forces f(s)ds at the locations
s; thus

1
v(x):/o G(z,s)f(s)ds. (10.2.4)

Clearly, we may generalise this procedure, and define a Green’s function for
the general end conditions (10.1.2). We introduce two solutions of v"(z) = 0:
¢(z) satisfying the condition ¢'(0) — h¢(0) = 0; ¥(x) satisfying o' (1) + Hi(1) =
0. Since

¢ () = 0=1v"(x),

we have ¢(z)y" (z) — ¢"(z)(z) = 0, which on integrating gives ¢(z)y'(x) —
¢ (z)(x) = const. We choose this constant as -1, so that

d(@)y' () — ¢ (2) () = —1, (10.2.5)
and define S()(s), 0<z<
z)Y(s), 0<x<s,
G(z,s) = { s(s)(x), s<z<l, (10.2.6)
then G(z, s) is continuous at x = s, while
Z—G(x,s) v Si_ =-1
Note that o) A(L+ ha)
x = + hx
$(z) = B(+H(1—1)) } (102.7)
where

AB =1/(h+ H + hH),

and the conditions h > 0, H > 0, h + H > 0 ensure that the denominator in
(10.2.7) is positive.
We note that the Green’s function is symmetric, i.e.,

G(z,s) = G(s,x). (10.2.8)
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and that the functions ¢(x), ¢ (z) are positive, ¢(x) increasing while ¢ (z) de-
creasing. In fact, (10.2.5) shows that ¢(z)/¢(z) is an increasing function of
x. There is thus a clear parallel between the Green’s function and the Green’s
matriz introduced in Section 10.5.

For our purposes, the most important use of the Green’s function is that it
reduces the free vibration problem (10.1.1), (10.1.2) to an eigenvalue problem
for an integral equation:

1
v(z) = )\/ p*(5)G(x, s)v(s)ds. (10.2.9)
0
With the changes of variable
u(z) = p(x)v(z), K(z,s) = p(x)p(s)G(z,s), (10.2.10)

we may transform (10.2.9) into the symmetric equation

1
/0 K(x,s)u(s)ds = pu(z), (10.2.11)

in which K(z,s) = K(s,z), and = 1/\.

There is a well established body of theory for such integral equations, which
we now recall. The theory relates to a compact, self-adjoint linear operator in a
separable Hilbert space. In Section 10.3 we summarize the theory regarding the
spectrum of such an operator, and in Section 10.4 we apply it to the operator
equation (10.2.11).

Exercises 10.2

1. Find the solutions of (Aw’) = 0, ¢(x) satisfying (10.1.4a), and ¢ (z) sat-
isfying (10.1.4b), and make

A(@){p(@)¢'(z) — ¢'(2)1p(2)} = —1
and hence write (10.1.3) as an integral equation

w(z) = )\/Ow A(s)G(z, s)w(s)ds.

2. Show that if v(z) satisfies
v+ Ap?v =0 v(0)=0=1'(1)

and p(z) has a continuous first derivative, then u = v’ satisfies (p~2u')" +
Au =0, v'(0) =0=wu(l). Hence show that u(z) satisfies

u(z) = )\/0 K(x,s)u(s)ds
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where )
K(z,s) :/ P’ (t)dt, =T = max(z,s).

+

3. Show that if w(x) satisfies
(Aw") + Mw =0, w(0)=0=w'(1), A>1,

then v = Aw’ satisfies (Bv')' 4+ ABv = 0 where B = 1/A4, v/(0) =0 = v(1).
Hence, show that

v(z) = /\/0 G(z,s)B(s)v(s)ds

where

G(z,s) = /1 A(t)dt, zT = max(x,s).

+

10.3 Some functional analysis

In the first edition of this book, in order to prove the existence of eigenvalues
and eigenfunctions for the integral equation, i.e., operator equation, (10.2.11) we
referred the reader to the classical treatment of integral equations in Courant and
Hilbert (1953) [64]. Instead, in this edition, we sketch the functional analysis
approach to existence by providing the reader with a sign-posted journey through
parts of the book Functional Analysis by Lebedev, Vorovich and Gladwell (1996)
[205]. We refer to definitions and theorems in that book by the abbreviations
Def. and Th. respectively.

The journey starts with the definition of a metric space X, Def. 2.1.4: a
set of elements governed by a distance metric d(x,y) satisfying certain distance
axioms. After defining an open ball or e-neighbourhood of a point xg € X, Def.
2.2.1, we define an open set in X as one in which every point is an interior point.
Then, after defining limit points Def. 2.2.3, we define a closed set as one that
contains all its limit points, Def. 2.2.6. We define the closure S of a set S as
the set obtained by adding to S all its limit points, and say, Def. 2.2.7, that §
is dense in a set T'if S O T.

The journey continues through metric spaces, to give the metric space ver-
sions of limit of a sequence, Def. 2.4.1; Cauchy sequence, Def. 2.4.2; and com-
plete metric space, Def. 2.5.1: a metric space in which every Cauchy sequence
has a limit. The definitions Def. 2.6.1, 2.6.2 and the completion theorem Th.
2.6.1 explain how any metric space may be completed.

The definition of an operator is given in

Definition 10.3.1 Let X and Y be metric spaces. A correspondence Ar =
y, € € X, y €Y is called an operator from X into Y, if to each x € X there
corresponds no more than one y € Y. The set of all those x € X for which
there exists a corresponding y € Y is called the domain of A and denoted by
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D(A); the set of all y arising from x € X is called the range of A and denoted
by R(A). Thus
RA)={yeY; y=Az, z€ X}.

We say that A is an operator on D(A) into Y, or on D(A) onto R(A). We
also say that R(A) is the tmage or map of D(A) under A. The null space of
A, denoted by N(A), is the set of all x € X such that Ax = 0.

A functional, Def. 2.7.2 is defined as an operator from X to the real numbers
R, or complex numbers C. The definition of a continuous operator Def. 2.7.3
is the straightforward analogue of continuity of an ordinary function.

The journey now passes to linear spaces (Section 2.8) over R or C, with the
property that if z,y € X then Az + py € X; when equipped with a norm || - ||,
they become normed linear spaces, Def. 2.8.1. After defining a subspace, Def.
2.8.4, we define closed subspace Def. 2.8.5, linear dependence and independence
Def. 2.8.6; and dimension, Def. 2.8.8.

We carry the notion of an operator in a metric space over and define a linear
operator, Def. 2.9.2, in a normed linear space as one that satisfies A(A\x + py) =
AA(z)+pA(y); define a continuous linear operator, and the norm of a continuous
linear operator from X to Y by (Th. 2.9.1)

Azx
ja) = sup LAl
ven(a) ||7llx

(10.3.1)

A is continuous, or bounded, iff || Al is finite.

The concepts of metric, d(x,y), and norm, ||x||, generalise the notions of
distance and magnitude in R?, respectively. We now pass to an inner product
space X in which an inner product (x,y) is defined for every pair z,y € X. This
inner product satisfies the axioms

P1l: (z,z) >0, and (x,2) =0 iff x = 0;
P2: (z,y) = (7,2);
P3: (Az + py, z) = Az, 2) + pu(y, 2).

Here, A, i € C and the overbar in P2 denotes complex conjugate. In a real
inner product space, P2 is replaced by

P2: (z,y) = (y,z).
In an inner product space we may define a norm by
1/2

[|z]| = (2, )

That this does in fact provide a norm in the usual sense follows from the Cauchy-
Schwarz inequality (Th. 2.12.1)

(@, ) < [l - [lyll, (10.3.2)
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with equality when = # 0, y # 0, iff x = A\y.

For an inner product space X we may define the terms orthogonal and ortho-
normal: x and y are orthogonal if (x,y) = 0; a system {gx} C X is orthonormal
if

1 m=mn,

We may easily extend the concepts of closed and complete to inner product
spaces, and we call a complete inner product space a Hilbert space H, Def.
2.12.5.

The concept of orthogonality leads to the idea of the orthogonal decomposition
of a Hilbert space into a closed subspace M and its orthogonal complement
N = M+*; if x € H, then  may be written

x=m+n, meM, mneN. (10.3.4)

Clearly, a closed subspace of a Hilbert space is itself a Hilbert space.

This leads to Riesz’s representation theorem Th. 4.3.3, which states that any
continuous (i.e., bounded) linear functional F'(z) on H may be expressed as an
inner product:

F(z) = (z, f) for every z € H, (10.3.5)

and | ||| = ||£1]

We now define a separable Hilbert space H, Def. 4.1.3, one that contains
a countable (enumerable) dense subset {f,}. From such a sequence we may,
by the usual Gram-Schmidt procedure, construct an orthonormal set {g;} that
is dense in H; this will be a complete orthonormal system in the sense that if
x € H and € > 0 are given, there is a finite linear combination of the g; such
that

n
e =) argel| < e (10.3.6)
k=1

In this case any z € X has a unique representation

= Zakgk, a = (z, gr), (10.3.7)
k=1

and Parseval’s equality holds:
|z||? = Z |ou|?. (10.3.8)
k=1

It may be argued that almost all existence proofs in Functional Analysis
rely on the concept of a compact set in a metric space. The concept compact
is similar to, but must be sharply distinguished from, the concepts closed and
complete. In brief, S C X is closed if it contains all its limit points; X is
complete if every Cauchy sequence in S has a limit point in S. A set S C X
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is compact Def. 6.1.1 if every sequence {z, } in S contains a subsequence {x,, }
which converges to a point z € S.

The classical Bolzano- Weierstrass Theorem (Th. 1.1.2) states that in a finite-
dimensional space e.g., RV, a set S is compact iff it is closed and bounded. This
result is false for general metric spaces. To be precise, a compact set S C X is
closed and bounded, but a closed and bounded set is compact only if the space
X is finite-dimensional.

In order to find a criterion for compactness of a set .S in an infinite-dimensional
metric space we must generalise the classical Heine-Borel Theorem; This uses
the concept of an e-covering.

Definition 10.3.2 Let X be a metric space, and suppose S C X. A finite set
of N balls B(xy,€) with x, € X and € > 0 is said to be a finite e-covering of
S, if every element of S lies inside one of the balls B(xy,,¢), i.e.,

N
S C U B(xy,€).
n=1

The set of centers {x,} of a finite e-covering is called a finite e-net for S.

Definition 10.3.3 Let X be a metric space. A set S C X is said to be totally
bounded if it has a finite e-covering for every € > 0.

Hausdorff’s compactness criterion is now

Theorem 10.3.1 Let X be a complete metric space. A set S C X is compact
iff it is closed and totally bounded.

In a compact set the points are, as the word compact suggests, close together;
the centers z,, form a network, and each point in S is near one of the x,,.

Having the concept of a compact set, we may introduce the idea of a compact
(linear) operator.

Definition 10.3.4 Let X,Y be metric spaces. A linear operator from X toY
is said to be compact if it maps the unit ball into a compact set in Y .

Note that the map of the unit ball may not itself be a compact set; it is in
a compact set. We say that it is precompact, meaning that it may be made
compact by closing it: its closure is compact.

If the range of a linear operator A is finite-dimensional, we say that A is
a finite-dimensional operator. The Bolzano-Weierstrass Theorem then implies
that a finite-dimensional operator is compact. We may now use Hausdorft’s
compactness criterion to obtain a wider class of compact operators.

Theorem 10.3.2 Let X,Y be metric spaces, and suppose Y is complete. If the
sequence of compact linear operators {A,} from X to'Y converges uniformly to
A, then A is compact.
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Proof. Uniform convergence means [[A—A, || — 0. Let S be the unit ball in
X. Choose € > 0, and then choose A, so that ||[Az — A,z|| < e/3 for all x € S.
The operator A,, is compact; therefore the map A, (S) of A,, is precompact; its
closure is compact. Therefore, by Th. 6.2.1, it is totally bounded; there is a
finite set {z1,22,...,2Zm} C S such that every point in A4, (S) lies in a ball of
radius £/3 around one of A,x1, Ap2a,..., Apty. Choose z € S, then choose i
so that

[|Apz — Apzi|| < e/3

then
||Az— Az;|| < ||Ax— Apx+||Anx — Apzi||+||Anx; — Ax;|| < e/3+e/34+¢/3 =e¢.

This means that the set A(S) is totally bounded and therefore, again by Th.
6.2.1, precompact. (Note that we need Y to be complete.) Thus A is compact.
]

Having introduced one concept, compact, we now introduce another, self-
adjoint. To do so we suppose from now on that A is a continuous linear operator
on a Hilbert space H i.e., from H to H; wesay A € B(H,H). If x,y € H, then
G(z) = (Az,y) is a continuous functional on H; therefore, there is an g € H
such that (Az,y) = (x,g). Clearly, g depends linearly on y, and in fact is the
map of y under a new continuous operator A*, called the adjoint of A; thus
g = A*y and

(Az,y) = (z, A%y). (10.3.9)

If A* = A, then A is said to be self-adjoint. If A is self-adjoint, the functional
F(z) = (Az, )
is real valued, because
F(z) = (As, ) = (2, Av) = (Az,7) = F().

This functional is extremely important because, if A € B(H, H) is self-adjoint,
then there are two ways to write ||A||, one from (10.3.1), namely

[|All = sup || Az]| for [lz|| =1 (10.3.10)

and another involving F'(z), namely

1Al = sup | F(z)| = sup |(Az, )| for ||z|| = 1. (10.3.11)
We denote
sup{F(z)} = M, inf{F(x)} =m, for ||z|| = 1. (10.3.12)
Clearly,
Al = sup(|M], |ml]). (10.3.13)

We are now in a position to define an eigenvalue of an operator A € B(H, H).
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Definition 10.3.5 Suppose A € B(H,H). The scalar p is called an eigen-
value of A if there is a non-zero x € H such that Ax = px; x is called an
eitgenvector corresponding to .

Note that we use pu, rather than A, to denote an eigenvalue, so that we can use
A = 1/p to denote an eigenvalue of the differential equation (10.1.1). Clearly,
any eigenvalue of a self-adjoint operator must be real, for Az = px implies
(Az,x) = p(z,x). See also Ex. 10.3.1.

Theorem 10.3.3 If A € B(H, H) is self-adjoint and p is not an eigenvalue of
A, then R(A — ul) is dense in H.

Proof. We need to show that the closure of R(A — pl) is H. This is
equivalent to saying that if z is orthogonal to all (A — pl)x, then z = 0. If this

were so then
0 = ((A-plz) = (Z,ALE) — iz, )
= (A-pl)z )

for all x € H. But, on taking v = (A — l)z, we find (A — gl)z =0. If z is
not zero, this states that i is an eigenvalue of A. But A is self-adjoint so that
[ is real, i.e., i = u; @ is an eigenvalue of A, contrary to hypothesis. m

We now generalise the concept of an eigenvalue and introduce the concept of
the spectrum of an operator.

Definition 10.3.6 Suppose A € B(H,H). The spectrum of A, denoted by
o(A), is the set of all complex numbers p such that A — ul does mot have a
bounded inverse. The resolvent set p(A) is the complement of o, i.e., p = C\o.

We recall that if A € B(H, H) then ||Az|| < ||A]] - ||z||; if A is to have a
bounded inverse then ||Az|| > k||z|| for some k& > 0. We prove

Lemma 10.3.1 If A € B(H,H) and ||Ax|| > k||z|| for all x € H and some
k>0, then R(A) is closed.

Proof. Suppose {z,} C H and Az, — y. The sequence {Azx,} is a Cauchy
sequence, and so therefore is {x,} because ||z, — z,|| < ||Az, — Az,||/k.
Since H is complete, there is € H such that z,, — z. By continuity we have
Az, — Az, so that y = Az, i.e.,, y € R(A) : R(A) is closed. m

We may now characterise the resolvent set of a self-adjoint operator.

Theorem 10.3.4 Suppose A € B(H, H) is self-adjoint, then p € p(A) iff ||(A—
wz|| > E||z|| for all z € H and some k > 0.

Proof. If 1 € p(A), then (A — pI) has a bounded inverse, so that
[1(A = )] - [[a]

e, [|(A—pl)zl| > [|(A—pI)7H|7* [l
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Conversely, if ||(A— pl)z|| > k||z|| for all z € H, then Theorem 10.3.3 states
that R(A — pl) is dense in H, while Lemma 10.3.1 states that R(A — pul) is
closed. Thus R(A — ul) = H, and ||(A — pl)z|| > k||z|| states that (A — ul)
has a bounded inverse, i.e., u € p(4). B

We now show that if A € B(H, H) self-adjoint then its spectrum is real,
non-empty, and lies within the interval [m, M].

Theorem 10.3.5 If A € B(H, H) is self-adjoint, then o(A) is a non-empty
subset of [m, M|, and m, M € o(A).

Proof. First we prove that the spectrum is real. For suppose yu = a+if3, 5 #
0, then for all z € H,

(A —pDz||> = (Az —ax —iBx, zglx—ax—iﬁx)
1(A — ad)a|[* + 57|«
Bl 2.

Theorem 10.3.4 shows that u € p(A). Thus if p € 0(A) then g must be real.
We now show that if g < m, then p € p(A4). We have, on the one hand,

Vvl

(A= pD)z,2) < ||(A— pl)z|| - [|z]]
and, on the other

(A= pl)z,z) (Az,z) —ull}xll2 > ml|a|* = pllx|?

> (m— )zl

so that
(A = ph)z]| = (m — p)||z[|
so that Theorem 10.3.4 shows that u € p(A). We can show similarly that if
> M, then p € p(A). We have thus shown that, if o(A) exists, it must lie in
[m, M].
We now show that M € o(A). By the definition of sup, there is a sequence
{zn} such that ||z,|| = 1, and (Az,,z,) — M. Therefore,

1(A = MI)a,||*

(Az, — Mz, Az, — Mx,)

|Azp|[> = 2M (A, 2,) + M2 ||y |2
M? — 2M (A, ) + M2

2M(M — (Azy,x,)) — 0.

INIA I

Thus M, and similarly m, are in o(A). =

So far, we have shown that a self-adjoint operator A € B(H, H) has a non-
empty real spectrum that lies in [m, M]. Now we suppose that, in addition to
being self-adjoint, A is a compact operator. In that case the spectrum consists
entirely of eigenvalues, apart perhaps from zero. This is given in

Theorem 10.3.6 If A € B(H, H) is self-adjoint and compact and if p € o(A)
and p # 0, then p is an eigenvalue of A.
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Proof. If p € o(A) then, by definition, A — uI does not have a bounded
inverse. There is therefore (Ex. 10.3.3) a sequence {x,, } such that ||z,|| = 1 and
Azp, — px, — 0asn — oo. Since A is compact it maps {z,} into a precompact
set. This means that there is a subsequence {z,, } such that Az,, — y € H.
We then have

Lny = M_l[Axnk = (Azy, — pzn,)] — ply
and therefore, since A is continuous,
wy = lim Az, = Ay.
k—o0

Since ||z,|] = 1 and p # 0 we have ||y|| # 0, so that y is an eigenvector
corresponding to p. ®

Since we have already proved that m, M € o(A), we now know that, provided
m, M are not zero, and if A is not zero, one of them at least must be non-zero
because of (10.3.13), m and M are eigenvalues of A: a non-zero compact self-
adjoint operator has at least one real eigenvalue.

Having shown that A has at least one eigenvalue, we now prove

Theorem 10.3.7 A non-zero compact self-adjoint operator in a Hilbert space

H has a finite or infinite sequence of orthonormal eigenvectors x1, o, ... corre-
sponding to non-zero eigenvalues fiy, fo, - .. (|pg| > g > ...).
Proof. By Theorem 10.3.6 there is an eigenvector x1, with ||z1|] = 1, Az; =

1121, where
i = £ sup|(Az,2)], ol = 1

q is either m or M, and |uq| = || 4]].

Rename the Hilbert space Hi, the operator as Ai, let M; be the space
spanned by z1, and decompose H; into Hy and M; as in equation (10.3.4). The
space Hs is a Hilbert space. If x € Hy, then Ajx € Hsy, for

(Arz, 1) = (z, Ayz1) = (@, 1y 21) = py (@, 21) = 0.
This means that we may define a new operator Ay in Hs, by
Asx = Al.’lj, r € Hs.

This operator is called the restriction of Ay to Hs; it is clearly a self-adjoint
compact linear operator in the Hilbert space Hs. If this operator is not identi-
cally zero we may apply Theorem 10.3.6 to it, and find an eigenvector x5 such
that

AQZEQ = HoXT2, HSEQH =1.

Since x2 € Ha, we have (z2,21) = 0 and, for ||z|| = 1,

lua| = sup [(Arz,z)| < sup (A1, 2)| = [p]-
r€H> reH,



248 Chapter 10

We now continue this process; we let M5 be the space spanned by x5, decompose
Hy into Hz and Ms, call As the restriction of As to Hs, and find an eigenvalue
15 and eigenvector z3, and so on.

Generally

.| = Sup |(Az, z)| = [(Azg, zp)|, ||zl =1 = [[ax]]. (10.3.14)
TcE€Hy

]
Either the process stops after a finite number of steps or it continues indef-

initely. In the former case there is an integer n for which the restriction A,
of Ay to Hy,41 is identically zero, i.e.,

sup |(Az,z)] =0, |lz||=1. (10.3.15)
rEH 11
In this case we obtain a finite sequence of orthonormal eigenvectors x1, za,. . ., Ty,.

The latter case is the subject of

Theorem 10.3.8 Suppose A € B(H, H) is a self-adjoint compact operator. If
A has an infinity of eigenvalues, they are enumerable with zero being the only
limit point.

Proof. The procedure described in Theorem 10.3.7 produces a sequence of
eigenvalues piy, fio, ... such that |p;| > |ue| > -+, and corresponding sequence
of orthonormal eigenvectors z1,x2,... Consider all those eigenvalues satisfy-
ing |u| > c. If there is an infinite sequence x1, 2, ... corresponding to such
eigenvalues, then

||Ax"” - AanQ = HI’L"L'T’”L - /“LnanQ = |I’L77L|2 + |I’L7L|2 Z 202 (10316)

But since A is compact, the sequence {Az,} must have a convergent subse-
quence; this contradicts (10.3.16). Hence there is at most a finite set of eigen-
vectors corresponding to eigenvectors satisfying |u| > ¢. The eigenvalues may be
enumerated by placing their absolute values in the intervals (1, 00), (1/2,1], (1/3,
1/2],...; there is a finite number in each of this enumerable set of intervals; the
eigenvalues can have zero as their only limit point. m

Theorem 10.3.9 Let A € B(H,H) be a compact self-adjoint operator with
eigenvalues ; ordered so that |uq| > |uq| > -+, and corresponding orthonormal

eigenvectors x1,%sa,... The eigenvectors {x;} are complete in the range of A,
i.e., for every f = Ah, h € H, the Parseval equality

AP =D I @)l (10.3.17)
k=1

holds.
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Proof. First, suppose the process described in Theorem 10.3.7 stops. Take
f = Ah, and consider

=h=Y (hz)z (10.3.18)
k=1

Wehave (g,z;) =0, k=1,2,...,n,s0that g € H,; and hence z = g/||g]|
satisfies (10.3.15) so that ||Azx|| =0, i.e., Ag = 0. Thus

0=Ag = Ah-— ;Zzl(h, zp) Az, = Ah — Y 1 (Ah, zy)zg
= f=2 k= (i )Tk,

so that

Now consider the case in which the process does not stop. There is an enumer-
able sequence of eigenvalues {u,;} with zero as limit point.

Choose € > 0 and then choose N so that if n > N, then |u,|? < e. Take
n > N. Suppose f = Ah and consider g given by (10.3.18); g € H,, so that

|| Agl|
T < -
91l i

Thus
AgI| < [ppial gl < gl IR,
so that, as before

n 2

| Agll* = Hf — > (frzn)ax

k=1

< |t P10

or equivalently

0 < If1? = D1 20 < | - NIRIIP < ellnlf?
k=1

which implies Parseval’s equality

SR Az = f]) -

We now obtain another result by making a further assumption concerning
A; thus we introduce

Definition 10.3.7 A self-adjoint continuous linear operator A in a Hilbert space
H is called strictly positive if (Az,z) > 0 for all x € H and (Az,x) = 0 iff
z=0.

For a strictly positive, compact, self-adjoint operator in a Hilbert space the
process described in Theorem 10.3.7 can stop only if H itself is finite dimensional.
This leads to
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Theorem 10.3.10 Let A be a strictly positive compact self-adjoint operator in
an infinite dimensional Hilbert space H. There is an orthonormal system {x,}
which is a basis for H, and A has the representation

Ax = Z Ak (T, zr)xg.
k=1

Proof. Let y € H and consider

n

Ynt1 =Yy — Y (Y, xk)T,s
k=1

where {z} is the orthonormal sequence of eigenvectors, as in Theorem 10.3.9.
It is easy to show that {y,} is a Cauchy sequence. We wish to prove that its
limit is zero. Assume that it is not, i.e., y, — z # 0. Since y,+1 € Hp11 We

have
(AYni1,Ynt1)

[y l?
But p,, — 0 as n — oo so that passage to the limit gives

(42, 2)

12112

2
S :U“n-&-l'

:O’

which is a contradiction since A is strictly positive. Therefore, z = 0 and
o0
Y= Z(ya xk)xka ye Ha
k=1

so that {zj} forms a basis for H, and moreover

Ay = Z;?;(%%)Axk = 220:1 uk(y,xk)xk. [ |

This theorem shows that one can have a strictly positive compact self-adjoint
operator only in a separable Hilbert space.

Corollary 10.3.1 Under the condition of Theorem 10.3.10 we can introduce a
norm
lll|a = (Az,2)"/?

and a corresponding inner product

(z,y)a = (Az,y).
The completion of H with respect to this norm is called H 4.
Exercises 10.3

1. Show that eigenvectors x and y, corresponding to two different eigenvectors
of a self-adjoint operator A, are orthogonal, i.e., (z,y) = 0.
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2. Show that the operator A~! is bounded on R(A) iff there is a constant
¢ > 0, such that, if z € D(A), then ||Ax|| > ¢||z||

3. Use Ex. 10.3.2 to show that A~! is unbounded iff there is a sequence {z,, }
such that ||z,|| =1, ||Az,|| — 0.

4. Show that a compact self-adjoint operator is strictly positive iff its eigen-
values are positive.

10.4 The Green’s function integral equation

We must now exhibit the integral operator
1
Au =/ K(z,s)u(s)ds (10.4.1)
0

as a stricly positive, self-adjoint, compact operator in a separable Hilbert space.
In order to make this identification we need some results about functions.

We start with the space of continuous functions on the closed interval [0, 1].
We call this C[0,1]. The fundamental result about a function f(z) € C[0,1] is
that f(z) is bounded on [0, 1], and actually attains its upper bound. We may
thus form a normed linear space from C10, 1] by using the norm

[ fllee = sup |f(z)]. (10.4.2)
z€[0,1]

Convergence of a sequence of function { f,,(z)} in the norm (10.4.2) is uniform
convergence. Weierstrass’ Theorem on uniform convergence states that a uni-
formly Cauchy sequence {f,(z)}, i.e., a Cauchy sequence in the norm (10.4.2),
of uniformly continuous functions on [0, 1] converges to a uniformly continuous
function. This translates into the statement that C[0, 1] under the norm (10.4.2)
is complete.

We may introduce another norm on C/[0, 1]:

1/2

1£1lz = { / 1(f(:r))2dz} . (10.4.3)

The example in Ex. 10.4.1 shows that C[0,1] is not complete under this norm.
However, we may use the completion theorem, and complete this space. We
may make the space an inner-product space by using the inner product

(f.9) = / f(2)g(x)da. (10.4.4)

We call this complete inner-product space, i.e., Hilbert space, L?(0,1). Here L
stands for Lebesgue. Remember that while the elements of C[0, 1] are uniformly
continuous functions, the elements of L?(0,1) are equivalence classes of Cauchy
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sequences of uniformly continuous functions. The space L?(0, 1) is known to be
separable (Th. 4.1.4).
Now we start to examine the operator A from L?(0, 1) to L?(0, 1), defined by

Au:/o K(x,s)u(s)ds
where
K(z,s) = p(z)p(s)G(z,s) (10.4.5)

and G(z, s) is given in (10.2.6).
The operator A is self-adjoint in L?(0, 1) because K (z, s) is symmetric.
Now we examine the continuity of the operator. Suppose first that p(x) €
C0,1], then K(z,s) € C([0,1] x [0, 1]) so that K(z, s) is bounded on the square,
ie., K(z,s) <M and

| Aulloo = sup [Au| <M sup [u] = Ml[u|o,

z€[0,1] z€[0,1]

so that ||A]| < M: A is continuous.
Now examine continuity in L?(0,1). We have

| Aul P = /01 {/01 K<x,s)u(s)ds}2da:.

Again, if K(z,s) € C([0,1] x [0,1]) then K(z,s) < M and
1

| Aul|? < M2 / (u(s))?ds < M?|[u]
0

so that A is continuous. Now suppose that p(z) € L?(0,1).
Since K(z,s) = p(x)p(s)G(x,s), and G(z,s) € C([0,1] x [0,1]) we have
|G(z,s)] < M and
K (z,5)| < p(z)p(s)M.

Thus 2

Il < 2% [ ) { / 1 p(s)u(s)ds} .

The Schwarz inequality (10.3.2) gives

{/o1 g (8)“(5>d3} < /0 R )s /0 u2(s)ds,

| Aulf* < MZ[[p]|*]u] .

2

so that

Thus
||| < M|p]?,
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and A is continuous.

In order to prove that A is compact we note that if a function f(x,s) is con-
tinuous on the unit square, i.e., f € C([0,1]x[0, 1]), then it may be approximated
uniformly by a finite sum of the form

n

> ai(@)Bis).

i=1

The Green’s function G(z, s) is continuous on the unit square, and is symmetric
in z and s. Thus there are functions {a;(x)}$° such that, given € > 0, we can
find N so that if n > N then

n

sup |G(z, s) — Zai(a:)ai(sﬂ <kg,

i=1
for (z,s) € ([0,1] x [0,1]). This means that if

n

Ku(z,s) = p(x)p(s) Y ai()ai(s),

i=1

and

1
Anu:/ K, (z,s)u(s)ds,
0

then A, is a finite-dimensional operator, and thus compact. If p € L?(0,1)
then A is the limit of a sequence of compact linear operators {4, }, and is thus
compact by Theorem 10.3.1.

Reader, congratulations if you have read and followed thus far. We have
tried to provide a sign-posted journey; clearly, we have not proved every step,
but we had no intention of doing that. We could have taken a short cut by
merely stating that ‘it can be shown that A is compact’, but we hope that the
route we have taken has been more pleasant and instructive.

What can we conclude from our study? If p(z) € L?(0,1), the integral
equation has a finite or enumerable sequence of positive eigenvalues pi, fio, . ..
satisfying |pq| > |ug] > ---, and a corresponding set of eigenfunctions {u;}§°
which are orthonormal under the L?(0,1) norm. However, this result is not as
satisfying as we would like, because the eigenfunctions, being in L?(0, 1), are not
functions in the ordinary sense, but equivalence classes of Cauchy sequences of
functions in C[0,1]. Can we say anything more about them?

First, we note that if u satisfies (10.2.11) then v satisfies (10.2.9) where,
remember that we now switch A\ — 1/u. Thus, the eigenvalues \; of (10.2.9)
satisfy 0 < |[A1] < |A2] < ... Actually, we proved earlier that the A; are distinct
and positive, i.e., they satisfy (10.1.18): 0 < A; < A2 < ... We have not yet
shown that there is an infinity of eigenvalues, nor have we shown, in the Green’s
function analysis, that they are distinct; we will eventually do this.
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We may write (10.2.9) as

v(z) = )\/0 p(s)G(z, s)u(s)ds. (10.4.6)

If p € L*(0,1) and u € L?(0,1) then the integrand in (10.4.6) is integrable in s
and uniformly continuous in z, so that the left hand side, v(x), is continuous:
v(z) € C[0,1], and we may properly speak of an eigenfunction. If p € CJ0,1]
then v(x) actually has a continuous second derivative, and satisfies equation
(10.1.1), for on using the form of G(z,s) given in (10.2.6) we see that

T 1
o(z) = () / P (5)0(5)0(s)ds + Ap(x) / Alsyi(s)u(s)ds  (1047)

so that )
v(0) = Ap(0) [y p*(s)ib(s)v(s)ds

v(l) = fo v(s)ds.
Now, differentiating (10.4.7), which we can do because all the integrands are
continuous, we find

V() = M(@) [y p*(s)(s)v(s)ds + (@) p* (x)d(w)v(x)

+ ) [ p v(s)ds — o(x)p*(x)y(x)v ().
Thus )
v'(0) = Ag'(0) [y p2(s)¢(s)v(s)ds = hv(0)

V(1) = M) fy o2 (s)(s)v(s)ds = —Hu(l).
Thus v(z) satisfies the stated end conditions. On differentiating a second time,
using ¢ (z) = 0 = ¢"(z), we find

V(@) = M@y (z) — ¢ (2)¢(2))p* (z)v(2)
and on account of (10.2.5), this is
v (z) + Ap?(2)v(z) = 0.
Exercises 10.4

1. Consider the sequence {f,(z)} in CI0, 1]:

Show that {f,(x)} is a Cauchy sequence under the L? norm (10.4.3), but
{fn(z)} converges to

which is not in C[0,1]. Hence C[0, 1] is not complete under the L? norm.
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10.5 Oscillatory properties of Green’s functions

In Section 10.4 we showed that when h > 0, H > 0, h+ H > 0, the integral
equation (10.2.9) has eigenvalues \; satisfying 0 < |[A| < |Ag| < ...; if there are
an infinity of them, then

On the other hand, in Section 10.4, we showed that the eigenvalues of the (equiv-
alent) equation (10.1.1) are positive and distinct, i.e.,

D<A <X<....

This means that the Green’s function G(z, s) must have some special properties
which lead to the eigenvalues being distinct; we now discuss these properties.
We start by defining the interval I, as follows:

I = [0,1]if h, H are finite
= (0,1] if h = oo, H is finite
= [0,1) if h is finite, H = oo
= (0,1)if h=o0 = H.

Note that when h = oo, the end condition u/(0) — hu(0) = 0 becomes u(0) = 0,
i.e., the end = = 0 is fixed. This means that I is the set of movable points in
[0,1]. Equations (10.2.6), (10.2.7) show that

G(z,s) > 0forz,s € [0,1]
> 0forz,sel.

We now introduce the concept of an oscillatory kernel.

Definition 10.5.1 If0 < 21 < 29 < -+ < xp, < 1, and x = [21,Z2,...,Tp],
then we say x € Q. If x1,x, € I then we say x € Z. A kernel K(z,s) on
[0,1] x [0,1] is said to be oscillatory if

i) K(z,s)>0forx,sel
ii) K(x;s) >0 for x,s € Q
i) K(x;x)>0 forxe@

Here
K(z1,81) K(z1,s2) - K(x1,5n)
K(x;s) = K(x?,sl) K(.’E.Q,SQ) K(m?,sn)
K(xvusl) K(xny'SQ) K(xnasn)

and take note of Ex. 10.5.1 which shows that iil) must necessarily hold for x € 7.

Theorem 10.5.1 A kernel K(x,s) is oscillatory iff the matriv A = (a;;) =
(K (x;,x5)) is an oscillatory matriz for any x € .
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Proof. Suppose the kernel is oscillatory then, in the notation of Section 6.2,
if()( = (ii,ig,. . .77;1,), ﬂ = (jl,jg,. .. ,jp) then

Al B) = K(x%s%) > 0

where xgzxik, sgzmjk, k=1,2,...,p. Thus A is TN. Now

b b
a;ip1 = K(xi,zip1) >0, aip1, = K(ziq1,2:) >0

while
det(A) = K(x;x) > 0.

Thus A satisfies the three conditions for it to be oscillatory: it is TN, the
terms next to the principal diagonal are positive, and it is non-singular. We
may reverse this argument to show that if A is oscillatory then K(z,s) is an
oscillatory kernel. m

Note that in addition to being oscillatory, A is a strictly positive matrix for
x,s €.

We now show that the Green’s function G(z,s) defined in (10.2.6), (10.2.7)
is an oscillatory kernel. To do so we recall the definition of a Green’s matriz.

Definition 10.5.2 The matrizc G = (g;;) is called a Green’s matriz if

o aibj, 7 S j,
g” B ajbi, ZZ j,

where (a;)7, (b;)7 C R.
Note that G is symmetric.
Theorem 10.5.2 If o = (4;,%2,...,%p), 8= (j1,72,.--,Jp) then
P

G<a;ﬁ) = G, H

r=2

ak, ap
br, b

r—1

bl,, (10.5.1)

rot
where Ky, = min(im, jm), bm = Max(im, jm), provided that im, jm < tm+t1, Jm-+1-
Recall that this means that
I <fm+l,  m <Jm+ls  Im <lm+t1l, JIm < Jm+l-

Proof. If iy <5 but j; > io, then the first two rows of the minor are

Giv,51 Givga -+ Yivgp
Giz,j1 Gizgz -+ Yiagp
but these are
ailbjl, ailbh, e ailbjp

aiybj,  abi, oo ag,by
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and are thus proportional, so that the minor is zero. Similarly, if j; < jo < iy,
the first two columns will be proportional and the minor zero. Thus, we may
assume max(i1, j1) < min(iz, j2). Suppose further, for definiteness, that i < j,
(otherwise the argument proceeds with the first two columns), then the first two
row are

aklbllv ailbjz? cee a’ilbjp
ajy biy, iy bjz» cee Gy bjp
so that the terms in columns 2,3,...,p are proportional. Multiplying row 2

by a;, /a;, and subtracting it from the first, we find the only non-zero term, the
first in the first row, to be

Ak, bll — Qi Gy bi2/a‘i2 = Ok bll — Qky allbkz /akz
Ak A, ap,
kg ka bl1

so that
akg ap
by

1

G(a; 8) = ax, by

—G(a\ir; B\J1)

ko

from which the theorem follows by induction. m

Theorem 10.5.3 The Green’s matriz G is TN iff all (a;)7, (b;)} have the same
strict sign and

a1 ag an,
— < =< < =, 10.5.2
by — by — b, (05 )

Moreover, G will be oscillatory iff (a;)}, (b;)} have the same strict sign and
aq a9 (07%%
— =< 10.5.3
bl b2 bn ( )
Proof. There is no loss in generality in assuming that all (a;)7, (b;)} are
positive. It was shown in Theorem 10.5.2 that a minor is zero unless

i1, 1 <t2,J2 < v <lp,Jp.

Each of the second order determinants in (10.5.1) is non-negative iff

ali_ aki .
_1§_7 1=1,2,...,p
bli—l b,

This is exactly the condition (10.5.2). G is TN and g¢;;+1 > 0, giy1; > 0,
so that the only condition to be fulfilled for G to be oscillatory is that it must
be non-singular. Thus each second order determinant in the factorisation of
G(a; f) must be positive, which is (10.5.3). m

Corollary 10.5.1 Let ¢(z),9¥(x) be continuous in [0,1] and

P(x)(s),

0<xr<s<,
K(x’s)_{gb(s)z/}(ac), 0= szmel

/\ I
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If p(z)(z) > 0 in (0,1) and ¢(x)/1(z) is an increasing function of = in (0,1)
then
K(x;8) >0 forx,s € Q.
If p(x)p(x) > 0 in I, and ¢(z)/v(x) is a strictly increasing function of © in I,
then
K(x;8) >0

iff x,s €T and 1,81 < 2,89 < +++ < T, Sp.

Theorem 10.5.4 The Green’s function G(z,s) given by (10.2.5), (10.2.6) is
oscillatory and a minor G(x;8) > 0 iff x,8 € Z and 1,81 < T2,82 < -+ <
'7"7L7STL'

Proof. Equation (10.2.7) shows that ¢(z)y(z) > 0in I. Equation (10.2.5)

yields
/ /

4 [ole)] _ deptel dop't) Ly

dx [1)(x) [¢(x)] [¢(2)]
so that ¢(z) /v (x) is strictly increasing in I, and thus the result follows from the
Corollary 10.5.1. =

In order to ascertain the meaning of the oscillatory character of the Green’s

function, consider a string under the action of n concentrated forces (F;)7 applied
normal to the string at n points (s;)} in I. The displacement is

n

u(z) = Z G(z,s:)F;.

i=1

Thus G(z,s) > 0 (condition i) of Definition 10.5.1) means that the displacement
due to a single force F occurs ‘in the same direction’ as the force.

To see the meaning of condition iii) of Definition 10.5.1 we note that the
strain energy of the string under the action of the n forces is

so that condition iii) states that U is positive definite (for forces applied at
movable points, i.e., in I).
The essential nature of an oscillatory kernel is evidenced in

Theorem 10.5.5 Under the action of n forces (F;)} the displacement u(x) of
the string can change its sign no more than n — 1 times.

Proof. Suppose that forces (F;)} are applied at points (s;)} where s € 7.
If s; > 0, then

n

u(@) = ¢(x) Y Fi(si), 0<z<si,

i=1
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so that u(z) is of one sign in [0, s1]. If

Z Fi(si) =
im1

then u(x) is identically zero in [0,s]. Otherwise, it is of one sign, and can be
zero only at x = 0, and that only if the string is fixed at z = 0, i.e., h = oc.
In the interval [s;,sj+1], j=1,2,...,n—1,

u(@) = (@)} Fid(si) + (@ Z Fyj(s

i=j+1

Since ¢(x),1(x) are linearly independent, the displacement u(x) is identically

zero in [sj, sjq1] iff
n

Y Fig(si) =0= > Fip(si).
i=1 i=j+1
If this is not the case then u(z) can have at most one zero in [s;, s;41]. For if

there were two, say &, 7 such that s; < & <n < s;41 then ¥(&)p(n) —v(n)p(§) =
0, contradicting the fact that ¢(x)/1(x) is a strictly increasing function.
Finally, if s,, <z <1 then

) ) Fio(si)

so that again u(x) has one sign. It is identically zero if

n

> Fig(si) =0,

i=1
otherwise it can be zero only at x = 1, and that only if H = co. We conclude
that u(z) can change sign at most n — 1 times, at most once in each of
<51;82]7 [52a83]a"' [Snflvsn) |

Exercises 10.5

1. Continuity of the minor in ii) of Definition 10.5.1 shows that it will be
non-negative for (z;)7, (s;)7 satisfying 0 < 21 < 23 < -+ < @, < 1
and 0 < $1 < 89 < --- < 8, < 1. Use Theorem 6.6.5 to show that iii)
necessarily holds for x € 7.

10.6 Oscillatory systems of functions

In this section we shall derive some basic results that are needed to establish
further properties of the eigensolutions.
Let (¢,(z))} be a sequence of functions defined on an interval I, ([0, 1], (0, 1],

[0,1), or (0,1)).
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Theorem 10.6.1 The necessary and sufficient condition for the functions (¢;(x))}
to be linearly dependent is that

d1(z1)  Pi(z2) oo Dy(wn)
da(
®n

) dalrs) o byl
(1) 6u(m2) ... Gulan)

T
x
O(x1,22,...,2n;1,2,...,m) =

be zero for any (z,)} € 1.

Proof. The condition is necessary. For if the functions (¢,(x))} are linearly
dependent then there are constants (¢;)7, not all zero, such that

Zci(bi(ac) =0forz el
i=1
This means that for any (z,)7 € I we have
> edi(x,) =0, r=1,2,...,n, (10.6.1)
i=1

Since the (¢;)} are not all zero, the determinant of coefficients in (10.6.1) must
be zero.

We prove sufficiently by induction. If n = 1, then ® = 0 states that
¢1(x1) =0 for any =1 € I, i.e., ¢,(z) =0 for x € I.

Suppose therefore that

D(x1,29,...,25;1,2,...,n) =0 for all (z;)} € I.

We need to prove that the (¢;(x))} are linearly dependent. Assume that
(¢;(x))7~" are linearly independent (for if they were dependent then so would
the (¢,(z))} be), then there are (z,)7 ' € I such that

b(x1,29,...,2p-1;1,2,...,n—1) #0. (10.6.2)
But then, for all x €
O(z1,22,...,Tp-1,2;1,2,...,n) =0.

Expand this determinant along its last column; the result has the form (10.6.1)
in which ¢, being the determinant (10.6.2), is not zero. ®

Definition 10.6.1 A sequence of continuous functions (¢,(x))} is said to con-
stitute a Chebyshev sequence on I if, for any set of real constants (c;)t, not
all zero, the function

¢(z) = chi(m)

does not vanish more than n — 1 times on I.
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Theorem 10.6.2 The sequence (¢;(x))7 is a Chebyshev sequence on I iff
D = P(x;0)
maintains strictly fixed sign for x € Z; 0 denotes (1,2,...,n).

Proof. If & =0 for some x € 7 then, and only then, will the equation

Zcicéi(xr) =0 r=1,2,...,n

i=1

has a non-zero solution (¢;)?, i.e., the function ¢(z) will have n different zeros.
On the other hand, since Z is a connected subset of RY and @ is a continuous
function, the fact that ® # 0 in Z means that ® has strictly fixed sign on Z.
Without loss of generality we may take ® > 0. m

Definition 10.6.2 A sequence of continuous (¢;(x))3° will be called a Markov
sequence in I if, for each n = 1,2,... the sequence (¢;(x))} is a Chebyshev
sequence.

Theorem 10.6.2 shows that (¢,(x))$° is a Markov sequence iff, forn = 1,2, ..,
D(x1,29,...,2,51,2,...,n)

has the same strict sign for any x € 7.
We now explore the nature of the zeros of a combination

o(x) = ch¢z(x)a 2612 >0
i=1 i=1

of continuous functions ¢,(z) in a Chebyshev sequence. By definition, ¢(z) has
at most n — 1 zeros in I. We may divide these zeros into three groups: s simple
nodes in (0, 1), d double nodes in (0,1), and p end-zeros at 0 or 1 if these are
in I. In any two-sided vicinity of a simple node &, there are points z1, s such
that r1 < £ < x5 and

d(z1)p(z2) < 0.

In any two-sided vicinity of a double node 7, there are points x1,xo such that
r1 <1n <z and

p(z1)d(x2) > 0.
The statement that (¢;(x))} form a Chebyshev sequence means that

s+d+p<n-—1.

‘We now establish
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Theorem 10.6.3 If the continuous functions (¢,(x))} form a Chebyshev se-
quence on I, then
s+2d+p<n-1

i.e., in the estimate of the number of zeros, each double node may be counted
twice.

of. Let (x;)7 € I satisfy 21 < 22 < -+ < Xy, If &(zx) # 0 for
,2,...,m, then the maximum number of sign changes in the sequence
(¢(xk))T" occurs if, for some integer h (either 0 or 1)

() *p(x) >0, k=1,2,...,m.

If some ¢(zy) are zero we may assign signs, + or -, to them and obtain different
sign change counts for the sequence (¢(xy))7"; the sign change count will be
maximum, m — 1, if for some integer h (either 0 or 1)

() *p(xp) >0, k=1,2,...,m.

A set of m points with this property is said to have property Z.
Consider some examples. Figure 10.6.1 shows ¢(z) with a zero at 1 =0 €
I=10,1) and two simple nodes in (0,1).

Figure 10.6.1 - ¢(x) has 2 simple nodes.
The points (z;)} € I have property Z. (Note that we are not interested in
the value of ¢(1) since 1 isnot in I.) Heres=2, p=land m=4=s+p+1.
Now suppose also that ¢(x) has a double node at x4, as in Figure 10.6.2,
with I = [0, 1).

Figure 10.6.2 - ¢(x) has 2 simple nodes and one double node.
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The points (z;)$ € I have property Z. Here s =2, d =1 and m = 6 =
s+2d+p+1.
In general, if ¢(x) has s simple nodes, d double nodes and p end zeros, then
we may find
m=s+2d+p+1

points with property Z.
Suppose, if possible, that s + 2d + p > n, then we may find n 4+ 1 points
(z;)7" with property Z, i.e.,

() *p(xp) >0, E=1,2,...,n+1. (10.6.3)

Since ¢(x) is a linear combination of (¢;)7, the functions ¢y, dq,...,¢,, ¢ =
¢, 41 are linearly dependent. Therefore, by Theorem 10.6.1,

®(1,2,...,n+ Lz1,22,...,Tn41) = 0.

Expand this zero determinant along its last row; we get

n+1

Z(f)’”rk“gb(mk)@(l, 2 ME, Xy e ey BTy Tt 1y - -y Tpy) = O.
k=1

Since (¢;(z))} form a Chebyshev sequence, the determinants in this equation
have the same strict sign, by Theorem 10.6.2. Moreover, by the assumption
(10.6.3), the terms (—)"***1¢(z;) have the same (loose) sign. This means that
o(xz) =0 for k =1,2,...,n+ 1, but this is impossible: since the (¢,)7 form
a Chebyshev system, ¢(x) has at most n — 1 zeros. We conclude that m < n,
ie,s+2d+p<n—1. =

We now introduce an extra condition on the function {¢;(x)}5°, that they
are orthonormal, and prove the fundamental

Theorem 10.6.4 If {¢;(z)}° is a Markov sequence of continuous functions
on I, and the ¢;(x) are orthonormal with respect to some inner product, i.e.,

(@i, 9;) = 0ij then
1) ¢,(x) has no zeros in I.

2) ¢,(x) has i — 1 simple nodes and no other zeros in I.

k , k
3) ¢(z) = Zi:j cidi (), 1<5<k, Zi:j sz >0
has not less than j — 1 simple nodes in (0,1), and not more than k — 1
zeros in I; in the notation of Theorem 10.6.3, s +2d+p < k — 1.

Proof. Note that 1) and 2) are particular cases of 3), and all that is left to
be proved in 3) is that ¢(x) has not less than j — 1 simple nodes.

The functions (¢,)7° form a Markov sequence. This means that if 0 < z1 <
To < -+ < xpy <1, then

D(x1,x9,...,2,51,2,...,n)
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has fixed sign, which we may take to be positive. Let (;); be the simple nodes
of ¢(x) in (0,1) and define
1/}('7") = @(51752’ e 753’33; 1727' -y S + 1)

Ifx>¢&; then (x) >0. IfE, <z <, 1, p=12,...,8—1

Y(x) = (=) PP(&1,89, -, T € ppas 5 €3 1,2, s+ 1),

while if x < £,

Y(x) = (=)°P(x,&q,...,8:1,2,...,8+1).

Thus v (z) changes sign as x passes through each node; ¢ (z) has just s zeros,

the s simple nodes (§;);. These are the same simples nodes as ¢(x). Therefore,

(¢, ¢) # 0.

But ¢ is a combination of (¢,)i* while ¢ is a combination of (c;bz)é“, these
combinations must overlap, i.e., s+1>3j, s>j—1. m

Theorem 10.6.5 Under the conditions of Theorem 10.6.4, the simple nodes of
¢;(x) and ¢; 1 (x) interlace.

Proof. Any combination
¢ (x) = ciy(x) + cip141(x), G+ >0

has either ¢ — 1 or ¢ zeros in (0,1), and all these zeros are simple nodes. (s >
i—1, s+2d+p <iimply d =0 and either s =i—1, p=0orl;ors =1, p= 0.)
Suppose the nodes of ¢, (z) are (£;)}; write {, =0, £, ;1 = 1, so that

0=¢§ <& <& <=1

and consider
Y(z) = ¢i($)/¢z‘+1($)~

In each of the intervals (£;,£,,1), j = 0,...,7 the function () is continuous,
since ¢, () is non-zero. We now show that ¢(x) is monotonic in each of these
intervals.  Suppose, if possible, that ¥ (z) were not monotonic in an interval
(§;,€41). Then there would exist points x1, 22,73 such that §; < z; < @3 <
x3 < &1 and P(w1) — P(x2), P(w2) — P(w3) have opposite signs. Without
loss of generality we may assume (1) < ¥(x2), ¥(z3) < 1(x2). The function
¥(z), being continuous in [z1, z3], assumes its maximum value in [x1,z3]. This
maximum must occur at an interior point, xg, of [r1,x3] since ¥(z1), ¥ (z3) are
both less than (x2). Therefore,

Y(x) — Y(zo) <0 for all x € [x7, 3]
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and thus

P(x) = ¢ (@){Yh(x) — ¥(z0)} = ¢4(2) — P (T0) P11 ()

retains it sign in the neighbourhood of its zero, xy. This contradicts the state-
ment that ¢(z) has only smlple nodes. Hence 9 () is monotonic in each interval

(€j>€j+l) J=01,.

We now consider the behaviour of ¢(x) near one of the nodes (€;)j of ¢, (x).
Since (z) is monotonic in each of the intervals (§;,£,41), j =0,...,4, the limits

lim +(z) = Ly, hm U’( ) =L

will exist for all j = 1,2,...,4; they may be finite of infinite. If {; is not a node
of ¢;(z) then L; and Lo will be infinite and have opposite signs. We will show
that this is the only case that can occur.

Suppose that £, is a node of ¢;(z), as well as of ¢; 1 (x). Then Ly,Ls may be
finite or infinite but will at least have the same sign. Suppose, without loss of
generality that ¢(z) is monotonic increasing in (£;_;,§;). If 1(z) is monotonic
decreasing in (§j, §j+1) there are five possible cases, shown in Figure 10.6.3:

a) Ly =00, Ly =00
b) Li =00, Lo finite
c) L1 = finite, Ly = 00
) Ly finite, Ly = Ly
e) L finite, Ly # Ly

o,

a) b) ) d) )

Figure 10.6.3 - v(z) is monotonic decreasing in (§;,6;41)-

If ¢)(x) is monotonic increasing in (£ &5 +1) there are just three possible cases
shown in Figure 10.6.4:

f) L1 = OO,L2 finite
g) L1 ﬁnite, L2 = Ll
h) L1 ﬁnite, L2 # L1
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5) g) h)

Figure 10.6.4 - ¥(z) is monotonic increasing in (£;,€;41)-

In all but cases a), d) there is a line y = h, shown, such that ¢ (z) crosses
this line as = passes through £;. Thus 9 (x) — h changes sign at z = §; and thus

¢(x) = ¢ (2)(P(2) — h) = ¢i(x) — hoy s (2)

retains its sign as x passes through its zero ¢;, contradicting the statement that
all the zeros of ¢(z) are simple nodes.
Now take case d), suppose L; = Ly = h, and consider the function

oz, f) = ¢i+1($)(¢(35) —f) = ¢;(z) - f¢i+1($)

when f = h, ¢(z, h) has either i — 1 or 4 nodes. Now take f = h—e = h/, where
€ > 0. We may find 1,23 such that §; ; <z <& <x2 < &4y P(w1) =
1/1(.%‘2) =M.

Since ¢;,;(x) retains its sign and v¢(x) — b’ changes its sign as = passes
through 7 and x5, these points are nodes of ¢(x,h’). Thus ¢(z, f) acquires
two new nodes as f passes from h to h — €, but this is impossible since ¢(z, h)
and ¢(x, h') both have either ¢ — 1 or ¢ nodes.

We conclude that if §; is a node of ¢;(z) then the only possibility is a). But
this means that all the limits Ly, Ly for j = 1,2,...,% must be infinite; ¥ (x)
must assume all values in each interval (£;,£,,1), j =1,2,...,i —1; ¥(x) must
have a node in each, and so too must ¢;(z). But ¢,(x) has just ¢ — 1 nodes, so
none of the (£;)} can be nodes of ¢;(z): case a) cannot occur; ¥ (x) must be
monotonic increasing in all the intervals (fj, fjﬂ), 7 =0,1,...,7, or monotonic
decreasing in all of them; the nodes of ¢;(z) and ¢; () interlace. m

10.7 Perron’s Theorem and compound kernels

Our aim in this section is to show that the eigenfunction v;(z) of the integral
equation (10.2.9) form a Markov sequence. Following the discussion of total
positivity in Chapter 6, we base our analysis on continuous versions of Perron’s
Theorem and the Cauchy-Binet Theorem. Just as the matrix version of Perron’s
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Theorem holds for arbitrary positive (square) matrices, not just symmetric ones,
so there is a continuous version holding for arbitrary (not necessarily symmetric)
positive kernels. However, the proof of the theorem of the arbitrary, non-
symmetric, case is beyond the scope of this book. We will therefore state the
theorem for the general case but prove it only for the symmetric case, which is
in fact all we need. We have

Theorem 10.7.1 If the continuous kernel K(x,s) satisfies
K(xz,s) >0, K(z,z) >0, x,s € (0,1)

then the eigenvalue of A1 of the integral equation

u(z) = )\/0 K(x,s)u(s)ds (10.7.1)

which has smallest absolute value is positive and simple; the corresponding eigen-
function uy(x) has no zero in (0,1).

Proof. In Section 10.3 we showed that a non-zero self-adjoint compact
operator A has at least one, non-zero, eigenvalue

pw= sup (Az,x).
[lzl[=1

When translated into the language of the integral equation (10.7.1), this states
that the equation (10.7.1) has an eigenvalue \; satisfying

1 e { F(u) } , (10.7.2)

A |[ul|?
where
1 .1
F(u) = / / K(z, s)u(x)u(s)dzds,
0o Jo
and
1
]2 :/ u2(z)dz.
0
This maximum is actually achieved by w;(x) which satisfies

up(x) = )\1/0 K(z,s)ui(s)ds. (10.7.3)

Now consider w1 (x) = |uj(x)|. Clearly ||w]||*> = |Ju1||* while F(w) > F(uy),
which means that w;(z) is also an eigenfunction, satisfying (10.7.3), i.e.,

wy (z) = )\1/0 K(z,s)wi(s)ds. (10.7.4)
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Suppose that u;(z) had an isolated zero for some £ € (0,1). On the basis of
K(&,€) > 0 and the continuity of K, we have K(,s) > 0, wy(s) > 0 for some
interval (£,£+¢€), e > 0. Thus, at &, the left hand side of (10.7.4) is zero, while
the right hand side is positive; this is a contradiction. A zero interval in wu;(x)
may be