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All appearance indicates neither a total exclusion nor
a manifest presence of divinity, but the presence of a God
who hides himself. Everything bears this character.

Pascal’s Pensées, 555.
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Preface

The last thing one settles in writing a book is what one should put in first.
Pascal’s Pensées, 19

In 1902 Jacques Hadamard introduced the term well-posed problem. His
definition, an abstraction from the known properties of the classical problems of
mathematical physics, had three elements:

Existence: the problem has a solution

Uniqueness: the problem has only one solution

Continuity: the solution is a continuous function of the data.

Much of the research into theoretical physics and engineering before and
after 1902 has concentrated on formulating problems, with properly chosen initial
and/or boundary conditions, so that their solutions do have these characteristics:
the problems are well posed.
Over the years it began to be recognized that there were important and

apparently sensible questions that could be asked that did not fall into the
category of well-posed problems. They were eventually called ill-posed problems.
Many of these problems looked like a classical problem except that the roles of
known and unknown quantitites had been reversed: the data, the known, were
related to the outcome, the solution of a classical problem; while the unknowns
were related to the data for the classical problem: they were thus called inverse
problems, in contrast to the direct classical problems. (Later reflection suggested
that the choice of which to be called direct and which to be called inverse was
partly a historical accident.) For completeness, one should add that not all
such inverse problems are ill-posed, and not all ill-posed problems are inverse
problems! This book is about inverse problems in vibration, and many of these
problems are ill-posed because they fail to satisfy one or more of Hadamard’s
criteria: they may not have a solution at all, unless the data are properly chosen;
they may have many solutions; the solution may not be a continuous function
of the data, in particular, as the data are varied by small amounts, it can leave
the feasible region in which there is one or more solutions, and enter the region
where there is no solution.

xi



xii Preface

Classical vibration theory is concerned, in large part, with the infinitesimal
undamped free vibration of various discrete or continuous bodies. This book is
concerned only with such classical vibration theory. One of the basic problems
in this theory is the determination of the natural frequencies (eigenfrequencies
or simply eigenvalues) and normal modes of the vibrating body. A body that is
modelled as a discrete system of rigid masses, rigid rods, massless springs, or as
a finite element model (FEM) will be governed by an ordinary matrix di erential
equation in time with constant coe cients. It will have a finite number of
eigenvalues, and the normal modes will appear as vectors, called eigenvectors. A
body that is modelled as a continuous system will be governed by a set of partial
di erential equations in time and one or more spatial variables. It will have an
infinity of eigenvalues, and the normal modes will be functions, eigenfunctions,
of the space variables.

In the context of classical theory, inverse problems are concerned with the
construction of a model of a given type, i.e., a mass-spring system, a string,
etc., that has given eigenvalues and/or eigenvectors or eigenfunctions, i.e., given
spectral data. In general, if some such spectral data are given, there can be
no system, a unique system, or many systems, having these properties. In the
original, 1986, edition of this book, we were concerned exclusively with a stricter
class of inverse problems, the so-called reconstruction problems. Here the data
are such that there is only one vibrating system of the specified type which
has the given spectral properties. In this new edition we have widened the
scope of our study to include inverse problems that do not fall under this strict
classification.

Before describing what the book is, we first say what it is not: it is not
a book about computation. In Engineering, the almost universal approach to
inverse problems is through least squares: find a system which minimizes the
distance between the predicted and desired behaviours. While the early studies
were examples of brute force, there is now an established and rigorous discipline
governing such approaches, based on the work of Tikhonov, Morozov etc. See for
example Kirsch (1996). We do not refer to any of this work in this book. Rather,
we are concerned with basic analysis, qualitative properties, whether a problem
has one or more solutions, etc. There are occasions when one method that we
describe, that should theoretically lead to the construction of a solution, is found
in practice to be ill-conditioned, and this has led to another, better behaved,
procedure; in such a case we have presented both methods and discussed why
one fails while the other succeeds; see for example Section 4.3. Because we
are concerned with fundamental analysis, the range of physical systems that we
can consider is relatively narrow; essentially it is confined to the basic elements
of structures, rods, beams and membranes, and excludes structures composed
of combinations of these elements. This restriction in scope is understandable;
indeed, until the introduction of the finite element method and high-speed large-
memory computing, the only direct vibration problems that could be solved were
those involving those same structural elements in isolation. The study of inverse
problems is at an earlier stage of evolution than that of direct problems.



Preface xiii

The book falls into two parts: Chapters 1-9 are concerned with discrete
systems, Chapter 10-14 with continuous systems.

Matrix analysis is the language of discrete systems, and it is developed, as
needed, in Chapters 1 and 3. Thus, Chapter 1 provides the basic definitions
and introduces quadratic forms, minimax theorems, eigenvalues, etc. Chapter 2
provides the basic physics of the vibrating systems that are analysed. Chapter
3 lays out the classical analysis of Jacobi matrices, the matrices that appear in
the simplest kinds of vibrating systems, in-line sequences of masses connected
by springs. Chapter 4 concerns inverse problems for Jacobi matrices. Chapter
5 provides an introduction to more general discrete systems, and the language
of graph theory that is needed to analyse them.

Inverse problems in vibration are concerned with constructing a vibrating
system of a particular type, e.g., a string, a beam, a membrane, that has speci-
fied (behavioural) properties. The system so constructed must be realistic: its
defining parameters, masses, lengths, sti nesses, etc., must be positive. Signs,
positive and negative, lie at the heart of any deep discussion of inverse problems.
Chapter 6, on Positivity, introduces the mathematics relating to di erent kinds
of matrices: positive, totally positive, oscillatory, etc. This mathematics, due
to Fekete, Perron, Gantmacher, Krein and others, was first applied to vibrating
systems by Gantmacher and Krein in their classic Oscillation Matrices and Ker-
nels and Small Oscillations of Mechanical Systems (1950), that has just recently
(2002) been reprinted by the American Mathematical Society.

Sometimes the data that are supplied are insu cient to identify a unique
vibrating system; there is then a family of systems having the specified properties
- an isospectral family. Chapter 7 describes how one can form such isospectral
families, and be sure that each member of the family has the necessary positivity
properties. There are essentially two ways of forming families: algebraic, and
di erential. The former uses a carefully chosen rotation to go from one member
to another. The latter uses the idea of isospectral flow ; a matrix can flow, under
so-called Toda flow along a path so that it retains the same eigenvalues and at
the same time retains a particular structure and particular positivity properties.

Chapter 8 is concerned with one particular type of vibrating system: a beam
vibrating in flexure. This problem had been a severe stumbling block in the
early history of inverse problems.

Chapter 9 completes the first part of the blook with a study of modes, i.e.,
normal modes, and nodes. This analysis depends heavily on the positivity study
of Chapter 6.

The second part of the book, Chapters 10-14, is concerned with continuous
systems. The problems appear in two related forms, di erential equations and
integral equations. The integral equations, which use the Green’s function for
the system, are the easier to analyse, for it is the Green’s function, Gantmacher
and Krein’s kernel, that has the all-important positivity properties. Moreover,
the Green’s function operator appearing in the integral equation is a concrete
example of a positive compact self-adjoint operator in a Hilbert space, so that
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we may immediately make use of the well-developed theory of such operators,
as described in Chapter 10.
Chapter 11 uses this theory, and the fundamental Gel’fand-Levitan transfor-

mation operator, to provide solutions to some inverse problems for the Sturm-
Liouville equation. This equation, which appears in three related forms, is the
governing equation for the vibrating string and rod. The Chapter describes
the classical approach, as well as some recent techniques that are more readily
adaptable to computation.
Chapter 12 discusses families of isospectral continuous systems. Chapter

13 applies the Gel’fand-Levitan transformation to the inverse problem for the
continuous Euler-Bernoulli beam.
Chapter 14 is a short (too short) study of inverse nodal problems. While

it is di cult in practice to measure a vibration mode, it is comparatively easy
to locate the nodes of a particular mode. There is now a considerable body
of research, due primarily to McLaughlin and Hald, that focuses on what nodal
data is su cient to identify, say, the mass distribution on a vibrating string,
rod, or membrane, and how one can construct such a vibrating system from a
knowledge of some nodes of some modes. Section 14.4 briefly reports on this
research.
The book concludes with another short chapter on damage identification.
The history of mathematics and the physical sciences leads to an important

far-reaching conclusion: the study of one topic can throw light on many other
topics, even on some which at first seem have no connection with the original
topic. The study of inverse problems in vibration provides a clear example of
this connectedness. On the one hand, there are topics in inverse problems that
are illumined by knowledge in other fields, notably linear algebra and opera-
tor theory; on the other hand the study of inverse vibration problems throws
light on the classical direct problems by highlighting the fundamental qualitative
properties of solutions.
A remark on the quotations from Pascal’s Pensées is in order. I used the

translation by W.F. Trotter that appeared in Everyman’s Library, published by
J.M. Dent & Sons in 1956. My copy is dated 26th April 1957 and contains an
8d (old pence) ticket for the London Transport bus No. 73 from Euston Road to
Stoke Newington, reminding me that the Pensées were my daily bus reading to
and from my ‘digs’ when I was Assistant Lecturer in Mathematics at University
College London. I chose the Pensées for the chapter captions because it is clear
from his writings that Pascal considered the search for God to be an inverse
problem. His comments on the place of reason, heart and will in seeking a
solution of the problem, though sometimes enigmatic, are as deep and relevant
in 2004 as they were in 1654. I hope that these excerpts from the Pensées will
whet readers’ appetites for Pascal’s writings.
The caption for Chapter 11 reminds me that many people have contributed

to this book. Some were acknowledged in the Preface to the first edition. This
new edition contains material taken from papers written with graduate students
Brad Willms, Mohamed Movahheddy, Hongmei Zhu and with colleagues Brian
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Davies, Josef Leydold, Peter Stadler and Antonino Morrassi. In addition to
these, I have freely taken from papers by numerous colleagues worldwide, as
referenced in the bibliography.
Parts of the book were read at the proof stage by Antonino Morrassi, Maeve

McCarthy, Oscar Rojo and Michele Dilena. I thank them for pointing out many
errors and shortcomings, some of which I have managed to correct.
The book was typed by Tracy Taves. Thank you for your stamina and your

attention to detail. Colin Campbell helped us out with his understanding of
the idiosyncracies of LaTeX.
Finally, I acknowledge the patience and understanding of my wife, Joyce,

who saw me immersed in books in my study for years on end.
George Carrier once remarked that the aim of mathematics is insight, not

numbers. It is the author’s wish that this book will provide insight into the
many interconnected topics in mathematics, physics and engineering that ap-
pear in the study of inverse problems in vibration.

G.M.L. Gladwell
Waterloo, Ontario

March, 2004



Chapter 1

Matrix Analysis

It is a bad sign when, on seeing a person, you remember his book. 1

Pascal’s Pensées

1.1 Introduction

The book relies heavily on matrix analysis. In this Chapter we shall present
the basic definitions and properties of matrices, and provide proofs of some
important theorems that will be used later. Since matrix analysis now has an
established position in Engineering and Science, it will be assumed that the
reader has had some exposure to it; the presentation in the early stages will
therefore be brief. The reader may supplement the treatment here with standard
texts.

1.2 Basic definitions and notation

We use the word i to mean ‘if and only if’. A matrix is a rectangular array
of real or complex numbers together with a set of rules that specify how the
numbers are to be manipulated.
A matrix is said to have order × if it has rows and columns.

The set of all real matrices, i.e., matrices with real entries, of order × , is
sometimes denoted by R × . Following Horn and Johnson (1985) [183], we
use the simpler notation and say A . We write

1Blaise Pascal (1623-1662) lived among the French intelligentia, and in that context it was
a bad sign; one should be known for more than just a book one had written. When the first
edition of this book was being translated into Chinese, the translator objected, for in 20th
century China, it would be a good sign. If you met someone you knew who had written a
book, you would mention it immediately!

1



2 Chapter 1

A =

11 12 · · · 1

21 22 · · · 2

· · ·

1 2 · · ·

·

The entry in row and column is , and A is often written simply as

A = ( )

Two matrices A B are said to be equal if they have the same order × ,
and if

= ( = 1 2 ; = 1 2 );

Then we write
A = B

The transpose of the matrix A is the × matrix A , whose rows are the
columns of A. We note that the transpose of A is A; we say that A and A
are transposes (of each other), and write this

(A ) = A

For example

A =

·
1 2 4
2 6 7

¸
A =

1 2
2 6
4 7

are transposes.
If = then the × matrix A is said to be a square matrix of order :

A ; we abbreviate to ; thus A . A square matrix that is
equal to its transpose is said to be symmetric; in this case

A = A

or alternatively
= ( = 1 2 )

The set of real symmetric matrices of order is denoted by . The matrix

A =
1 2 9
2 4 6
9 6 3

is symmetric. The square matrix A is said to be diagonal if it has non-zero
entries only on the principal diagonal running from top left to bottom right. We
write

A =

11 0 0 · · · 0
0 22 0 · · · 0
0 0 33 · · · 0
0 0 0 · · ·

= diag( 11 22 )
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The unit matrix of order is

I = I = diag(1 1 1)

The elements of this matrix are denoted by the Kronecker delta

=

½
1 =
0 6=

(1.2.1)

The zero matrix of order × is the matrix with all its × entries zero.
A matrix with 1 column and rows is called a column vector of order , and

is written

x =

1

2

...
= { 1 2 }

The set of all such real vectors constitutes a linear vector space that we denote
by .
The transpose of a column vector is a row vector, written

x = [ 1 2 ]

Two matrices A B may be added or subtracted i they have the same order
× . Their sum and di erence are matrices C and D respectively of the same

order × , the elements of which are

= + =

We write,
C = A+B D = A B

The product of a matrix A by a number (or scalar) is the matrix A with
elements .
Two matrices A and B can be multiplied in the sense AB only if the number

of columns of A is equal to the number of rows of B. Thus if A has order × ,
B has order × then

AB = C

where C has order × . We write

A( × )× B( × ) = C( × ) (1.2.2)

The element in row and column of C is , and is equal to the sum of the
elements of row of A multiplied by the corresponding elements of column of
B. Thus

= 1 1 + 2 2 + + =
X
=1

(1.2.3)
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and for example

·
2 3 1
1 6 7

¸ 1 2 1 0
0 1 1 0
1 0 2 1

=

·
1 7 1 1
6 8 9 7

¸

The most important consequence of this definition is that matrix multiplication
is (in general) non-commutative, i.e.,

AB 6= BA

Indeed, if A is ( × ) and B is ( × ) then BA cannot be formed at all unless
= . Even when = , the two matrices are not necessarily equal, as is

shown by the example

A =

·
1 1
0 1

¸
B =

·
1 0
1 1

¸

AB =

·
0 1
1 1

¸
BA =

·
1 1
1 2

¸ (1.2.4)

In addition, this definition implies that there are divisors of zero; i.e., there can
be non-zero matrices A B such that

AB = 0

An example is provided by·
1 1
2 2

¸ ·
1 1
1 1

¸
=

·
0 0
0 0

¸

The product of A( × ) and a column vector x( × 1) is a column vector
y( × 1) with elements

= 1 1 + 2 2 + + ( = 1 2 ) (1.2.5)

This means that the set of equations

11 1 + 12 2 + + 1 = 1

21 1 + 22 2 + + 2 = 2

· · · · · · · · · · · · · · · · · · · · · · · · ·

1 1 + 2 2 + + =

(1.2.6)

may be written as the single matrix equation

11 12 · · · 1

21 22 · · · 2

· · · · · ·

1 2 · · ·

1

2

·
=

1

2

·
(1.2.7)

or
Ax = y (1.2.8)
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The product of an ( × 1) column vector x and its transpose x (1× ) is an
× symmetric matrix

xx =

2
1 1 2 · · · 1

2 1
2
2 · · · 2

· · · · · ·

1 2 · · · 2

(1.2.9)

On the other hand, the product of x (1× ) and x( × 1) is a (1× 1) matrix,
i.e., a scalar

x x = 2
1 +

2
2 + + 2 (1.2.10)

This quantity, which is positive i the (assumed to be real) are not all zero,
is called the square of the 2 norm of x, i.e.,

||x||2 = x x ||x|| = ( 2
1 +

2
2 + + 2 )

1
2 (1.2.11)

The scalar (or dot) product of x and y is defined to be

x y = y x = 1 1 + 2 2 + + (1.2.12)

Two vectors are said to be orthogonal if

x y = 0 (1.2.13)

It has been noted that matrix multiplication is non-commutative. This holds
even if the matrices are square (see (1.2.4)) or symmetric, as illustrated by·

1 2
2 2

¸ ·
1 1
1 1

¸
=

·
1 1
0 0

¸ ·
1 1
1 1

¸ ·
1 2
2 2

¸
=

·
1 0
1 0

¸
(1.2.14)

This example, which shows that the product of two symmetric matrices is not
(necessarily) symmetric, hints also that there might be a relation between the
products AB and BA. This result is su ciently important to be called:

Theorem 1.2.1
(AB) = B A (1.2.15)

so that when A, B, are symmetric, then

(AB) = BA (1.2.16)

Proof. Consider the element in row , column on each side of (1.2.15).
Suppose A is ( × ), B is ( × ), then AB is × and (AB) is × .
Then

((AB) ) = (AB) =
X
=1

and
(B A ) = ( row of B )× ( column of )

= ( column of B)× ( row of )
=

P
=1 ¥
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Exercises 1.2

1. If

A =
1 2 3
2 3 5
3 5 8

find a square matrix B such that AB = 0. Show that if 33 is changed
then the only possible matrix B would be the zero matrix.

2. Show that, whatever the matrix A, the two matrices AA and A A are
symmetric. Are these two matrices equal?

3. Show that if A, B are square and of order , and A is symmetric, then
BAB and B AB are symmetric.

4. Show that ifA,B,C can be multiplied in the orderABC, then (ABC) =
C B A .

5. If x is complex, then its 2 norm is defined by

||x||2 = | 1|
2 + | 2|

2 + + | |2

Show that
||x||2 = x x

where x = x̄ , the complex conjugate transpose of x.

1.3 Matrix inversion and determinants

In this section we shall be concerned almost exclusively with square matrices.
The determinant of a (square) matrix , denoted by det(A) or |A|, is defined
to be

det(A) = |A| =
X

± 1 1 2 2 · · · ; (1.3.1)

where the su ces 1 1 are a permutation of the numbers 1 2 3 ;
the sign is + if the permutation is even, and if it is odd, and the summation is
carried out over all ! permutations of 1 2 3 . We note that each product
in the sum contains just one element from each row and just one element from
each column of A. Thus for 2× 2 and 3× 3 matrices respectively¯̄̄
¯ 11 12

21 22

¯̄̄
¯ = 11 22 12 21

¯̄̄
¯̄̄ 11 12 13

21 22 23

31 32 33

¯̄̄
¯̄̄ = 11 22 33 + 12 23 31 + 13 21 32

11 23 32 12 21 33 13 22 31

(1.3.2)

The permutation 1 2 is even or odd according to whether it may be
obtained from 1 2 by means of an even or an odd number of interchanges,
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respectively. Thus 1 3 2 4 and 2 3 1 4 are respectively odd and even permuta-
tions of 1 2 3 4 because

(1 2 3 4) (1 3 2 4)
(1 2 3 4) (2 1 3 4) (2 3 1 4)

We now list some of the properties of determinants.

Lemma 1.3.1 If two rows (or columns) of A are interchanged, the determinant
retains its numerical value, but changes sign.

If the new matrix is called B then

1 = 2 2 = 1 = ( = 3 4 )

and
det(B) =

P
± 1 1 2 2 3 3 · · ·

=
P
± 2 1 1 2 3 3 · · ·

=
P
± 1 2 2 1 3 3 · · ·

But if 1 2 3 is even (odd) then 2 1 3 is odd (even), so that
each term in det(B) appears in det(A) (and vice versa) with the opposite sign,
so that det(B) = det(A).

Lemma 1.3.2 If two rows (columns) of A are identical then det(A) = 0.

If the two rows (columns) are interchanged, then, on the one hand, det(A)
is unchanged, while on the other, Lemma 1.3.1, det(A) changes sign. Thus
det(A) = det(A) and hence det(A) = 0.

Lemma 1.3.3 If one row (column) of A is multiplied by then the determinant
is multiplied by .

Each term in the expansion is multiplied by .

Lemma 1.3.4 If two rows (columns) of A are proportional, then det(A) = 0.

This follows from Lemmas 1.3.1, 1.3.3.

Lemma 1.3.5 If one row (column) of A is added to another row (column) then
the determinant is unchanged.

If the matrix B is obtained, say, by adding row 2 to row 1 then

1 = 1 + 2 = = 2 3

Thus

det(B) =
P
± 1 1 2 2 3 3 · · · =

=
P
± ( 1 1 + 2 1) 2 2 3 3 · · ·

=
P
± 1 1 2 2 3 3 · · · ±

P
2 1 2 2 3 3 · · ·

and the first sum is det(A) while the second, having its first and second rows
equal is zero.
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Lemma 1.3.6 If a linear combination of rows (columns) of A is added to an-
other row (column) then the determinant is unchanged.

This follows directly from Lemma 1.3.5. We may now prove

Theorem 1.3.1 If the rows (columns) ofA are linearly dependent then det(A) =
0.

Proof. Denote the rows by a1 a2 a . By hypotheses, there are scalars
1 2 not all zero, such that

1a1 + 2a2 + · · ·+ a = 0

There is a not zero; let it be . Then

a =
X
=1
6=

( )a

If the sum on the right is added to row of A, the new matrix has a zero row,
so that its determinant, which by Lemma 1.3.6 is det(A), is zero
Before proving the converse of this theorem, we need some more notation. A

minor of order of a matrix A is the determinant of a (square) submatrix of A
formed by taking elements from rows 1 2 and columns 1 2 .
We denote the minor by

( 1 2 ; 1 2 )

Thus if

A =
2 1 3
1 2 4
1 0 7

(1.3.3)

then

(1; 1) = 2 (1 2; 1 2) =

¯̄̄
¯ 2 1

1 2

¯̄̄
¯ = 5 (1 2; 2 3) = 2

There is an important special case. The minor of order 1 obtained by deleting
the th row and th column of A is denoted by ˆ . Thus for the A in (1.3.3),

ˆ11 =

¯̄̄
¯ 2 4
0 7

¯̄̄
¯ = 14 ˆ12 =

¯̄̄
¯ 1 4

1 7

¯̄̄
¯ = 11 ˆ13 =

¯̄̄
¯ 1 2

1 0

¯̄̄
¯ = 2

The minors ˆ occur in the expansion of a determinant: for the determinant in
(1.3.2) we may write

det(A) = 11( 22 33 23 32) 12( 21 33 23 31) + 13( 21 32 22 31)
(1.3.4)

= 11ˆ11 12ˆ12 + 13ˆ13
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This is called the expansion of det(A) along the first row. Thus for A in (1.3.3)
we have

33 = 2× 14 1× ( 11) + 3× ( 2)

The coe cients ˆ11 ˆ12 ˆ13 in (1.3.4) are called the cofactors of 11 12 13

respectively, and are denoted by 11 12 13 respectively. Thus we write (1.3.4)
as

det(A) = 11 11 + 12 12 + 13 13

=

¯̄̄
¯̄̄ 11 12 13

21 22 23

31 32 33

¯̄̄
¯̄̄ (1.3.5)

If we take the cofactors of the first row and multiply them by the elements of
another row, say the second row, then we get zero:¯̄̄

¯̄̄ 21 22 23

21 22 23

31 32 33

¯̄̄
¯̄̄ = 21 11 + 22 12 + 23 13 = 0 (1.3.6)

The determinant on the left is zero because it has two rows equal. These two
results, (1.3.5) and (1.3.6), are special cases of

Theorem 1.3.2 X
=1

= det(A) (1.3.7)

X
=1

= det(A) (1.3.8)

where is defined in (1.2.1).

Proof. When = , so that = 1, these equations merely state the
definition of a cofactor. When 6= they state that the determinant of a matrix
with two rows (or columns) equal, is zero
Now compare equation (1.3.7) with (1.2.3). If we define a matrix B such

that
= (1.3.9)

then we can write (1.3.7) as

X
=1

= det(A) (1.3.10)

which, in matrix terms, states that

AB = det(A)I (1.3.11)

Likewise, (1.3.8) may be written

BA = det(A)I (1.3.12)
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The matrix B is called the adjoint (or adjugate) of A and is denoted by (A).
Thus equation (1.3.11), (1.3.12) state that

A (A) = (A)A = det(A)I (1.3.13)

We are now in a position to prove the converse of Theorem 1.3.1, namely

Theorem 1.3.3 If det(A) = 0, then the rows (columns) of A are linearly de-
pendent.

Proof. We prove the result for the columns. That for the rows may be
proved likewise. We will prove it by induction on . It certainly holds, trivially,
when = 1, for then det(A) = 11. Let a1 a2 a be the columns of A, and
suppose det(A) = 0. Either each set of 1 vectors selected from a1 a2 a

is a linearly dependent set, in which case the complete set is linearly dependent
as required, or there is a set of 1 vectors, which without loss of generality
we may take to be a1 a2 a 1, which is linearly independent. Now imagine
creating a set of vectors b1 b2 b 1 by deleting the th row of each of the
vectors a1 a2 a 1. For at least one value of the set b1 b2 b 1

must be linearly independent. By the inductive hypothesis, the ( 1)×( 1)
determinant formed from these vectors must be non-zero; at least one of the
terms in equation (1.3.10) is non-zero. If det(A) = 0, equation (1.3.10)
states that X

=1

= 0 = 1 2 (1.3.14)

Since a = { 1 2 }, we may write the equations (1.3.14) obtained
by taking = 1 2 , as

X
=1

a = 0 = 1 2 (1.3.15)

For at least one value of , not all the are zero; the columns a1 a2 a

are linearly dependent

Theorem 1.3.4 The matrix equations

Ax = 0 y A = 0

have non-trivial solutions x and y respectively i det(A) = 0.

Proof. The theorem is a corollary of Theorem 1.3.3. If a1 a2 a are
the columns of A, then

Ax = [a1 a2 a ]{ 1 2 }
= 1a1 + 2a2 + · · ·+ a

We can find 1 , not all zero, such that

1a1 + 2a2 + · · ·+ a = 0
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i a1 a2 a are linearly dependent. By Theorem 1.3.3 this happens i
det(A) = 0. This happens in turn i the rows of A are linearly dependent, i.e.,
y A = 0 has a non-trivial solution

Theorem 1.3.5 If A B are square matrices of order then

det(AB) = det(A) det(B)

The proof of this result is left to Ex. 1.3.3.
The square matrix A is said to be singular if det(A) = 0, non-singular or

invertible if det(A) 6= 0. Theorem 1.3.4 shows that if A is non-singular, then
the equation Ax = 0 has only the trivial solution x = 0. Ex. 1.3.5 extends this
result: if A is non-singular, then the matrix equations AS = 0 TA = 0 have
only the trivial solutions S = 0 T = 0; when A is non-singular there are no
divisors of zero.
The matrix R is said to be an inverse of A if AR = I.

Theorem 1.3.6 If A has an inverse, it is unique, and RA = I.

Proof. Suppose AR = I. Theorem 1.3.5 shows that

det(A) det(R) = det(I) = 1 (1.3.16)

so that det(A) 6= 0: A is non-singular. If R1 R2 were two inverses, then
AR1 = I = AR2, so that A(R1 R2) = 0. But A is non-singular, so that
R1 R2 = 0: R2 = R1. Now if AR = I then ARA = A, i.e., A(RA I) = 0.
But A is non-singular, so that RA I = 0, i.e., RA = I
Theorem 1.3.6 shows that if A has an inverse, then A is non-singular. The

logical negative of this statement is that if A is singular it does not have an
inverse. We now prove the converse.

Theorem 1.3.7 If A is non-singular, then it has an inverse.

Proof. If A is non-singular, then det(A) 6= 0, and equation (1.3.13) may be
written

AR = RA = I (1.3.17)

where R = (A) det(A)
If A is non-singular, its unique inverse is denoted by A 1. We have

AA 1 = A 1A = I (1.3.18)

Theorem 1.3.8 The equation

Ax = b (1.3.19)

either has a unique solution, if A is non-singular; or if A is singular, it has a
solution only for certain b.



12 Chapter 1

Proof. If A is non-singular then

x = A 1(Ax) = A 1b

is the unique solution. If A is singular, then there is one (or more) y such that

y A = 0

Then
y (Ax) = y b = 0

so that (1.3.19) has a solution only if b is orthogonal to any y which satisfies
y A = 0. IfA is singular thenAx = 0 has one or more solutions x1 x2 x ,
so that if x0 is one solution satisfying Ax0 = b, then

x = x0 +
X
=1

x (1.3.20)

is also a solution for arbitrary 1 2

Note that trying to solve Ax = b by actually finding the inverse of A,
is an extremely wasteful and clumsy procedure. Finding A 1 is equivalent to
solving Ax = b for all possible b, not just for the given b. Techniques for
solving Ax = b form the subject matter of numerical linear algebra, for which
see Bishop, Gladwell and Michaelson (1965) [33] or Golub and Van Loan (1983)
[135]. Note also that we have not in fact shown how to find one solution x0 if B
is in fact orthogonal to all solutions of y A = 0; this too is covered in numerical
linear algebra.
In numerical linear algebra the starting point of almost all the procedures

for solving linear equations such as (1.3.19), whether A is square or not, or of
finding determinants, is Gaussian elimination. This is a systematic reduction of
an array ( ) to (usually) upper triangular form by subtracting multiples of one
equation from another. Lemma 1.3.6 shows that the determinant of coe cients
is unchanged under such an operation.
The application of Gaussian elimination to the equations

1 + 3 2 + 2 3 = 6
2 1 + 5 2 + 6 3 = 13
3 1 + 4 2 + 7 3 = 14

would proceed as follows; only the coe cients need be retained:

1 3 2 : 6 1 3 2 : 6 1 3 2 : 6
2 5 6 : 13 0 1 2 : 1 0 1 2 : 1
3 4 7 : 14 0 5 1 : 4 0 0 9 : 9

The determinant of A is 1 × ( 1) × ( 9) = 9. The last of the new equations
gives 9 3 = 9 3 = 1; when substituted in the new second equation this
gives 2 = 1 2 3 = 1 2 = 1; then 1 + 3 + 2 = 6 gives 1 = 1.
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Exercises 1.3

1. Show that if A is upper (lower) triangular, i.e., = 0 if ( ),
then

det(A) = 11 22

2. If

A =
1 3 2
2 5 6
3 4 7

find A 1. Verify that AA 1 = A 1A = I.

3. Prove that if A B are square matrices of order , then

det(AB) = det(A) det(B)

Hint: consider the 2 × 2 matrix

C =

·
A 0

I B

¸

Show that det(C) = det(A) det(B). Now subtract multiples of rows ( +1)
to 2 from rows 1 to to delete all elements in the top left quarter of C.
The elements in the top right quarter will be those of AB.

4. Use Gaussian elimination to solve the equations

1 + 2 2 + 4 3 + 8 4 = 9

2 + 3 3 + 2 4 = 1

1 + 2 2 + 5 3 + 6 4 = 3

1 + 3 2 + 4 3 + 7 4 = 10

5. Show that if A is non-singular, then the matrix equations AS = 0 and
TA = 0 have only the trivial solution S = 0 T = 0, respectively.

1.4 Eigenvalues and eigenvectors

If A and C are square matrices of order then the equation

Cx = Ax (1.4.1)

will have a non-trivial solution x (i.e., one for which ||x|| 6= 0) i the matrix
C A is singular, i.e., the scalar satisfies the determinantal or characteristic
equation

det(C A) = 0 (1.4.2)

The roots of this equation are called the eigenvalues of the matrix pair (C A);
they may be real or complex. If is an eigenvalue, a vector x satisfying (1.4.1)
is called an eigenvector corresponding to .
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In many mathematical texts, attention is focused almost exclusively on the
case when A = I. In this case is said to be an eigenvalue of C. The problem
(1.4.1) is called the generalised eigenvalue problem. In Mechanics there are
many problems in which two matrices, C A appear, and it will be convenient
to develop the theory for this case.
The eigenvalue theory for general, i.e., not necessarily symmetric matrices

C A, is extremely complicated. (See Ex. 1.4.8). However, for all, or almost all,
the problems encountered in this book, the matricesC A have special properties:
they are real and symmetric, and one at least is positive definite, defined as
follows.
Suppose A is real and symmetric, and x is a real × 1 column vector. The

quantity x Ax is a scalar. Written in full it is

x Ax = 11
2
1+2 12 1 2+· · ·+2 1 1 + 22

2
2+· · ·+2 2 2 +· · ·+ 2

(1.4.3)
This is called a quadratic form. In many physical applications the kinetic energy
and the potential energy of a mechanical system may be expressed as quadratic
forms in the generalised velocities or displacements, respectively. The kinetic
energy of a system is always positive, unless all the generalised velocities are
zero. This leads us to a definition. The matrix A is said to be positive definite if
||x|| 6= 0 implies x Ax 0. (Clearly, if ||x|| = 0, so that 1 = 0 = 2 = ,
then x Ax 0.) If A satisfies the weaker condition, that ||x|| 6= 0 implies
x Ax 0, i.e., there is a vector x such that ||x|| 6= 0 and x Ax = 0, then A is
said to be positive semi-definite. We will find later that the matrix associated
with the potential energy of an unanchored system is positive semi-definite; there
is a vector x corresponding to a rigid body displacement of the system, for which
the potential (or strain) energy is zero.

Theorem 1.4.1 If C A are real and symmetric, and A is positive definite, then
the eigenvalues and eigenvectors of (1.4.1) are real.

Proof. Suppose x possibly complex, and with ||x|| 6= 0, are an eigenpair
of (1.4.1), multiply both sides by x = x̄ to obtain

x Cx = x Ax (1.4.4)

The quantities x Ax and x Cx are both real. This is so because x Ax, for
instance, is a scalar, and therefore equal to its own transpose. Thus

= x Ax = (x Ax) = x A x̄ = x Ax̄ = (x Ax) = ¯

but if = ¯, then is real. Similarly, x Cx is real. Moreover, if ||x|| 6= 0, i.e.,
at least one element in x is not zero, then is strictly positive, i.e., 0. For
let x = u+ v where u v are real, then

x Ax = (u v )A(u+ v) = u Au+ {u Av v Au}+ v Av
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But since x Ax is real, the imaginary term is zero, and thus

x Ax = u Au+ v Av 0

The inequality is strict because either at least one element of u is non-zero, in
which case u Au 0; or if u 0, at least one element of v is non-zero, in
which case v Av 0.
Now return to equation (1.4.4); x Cx and x Ax are both real and x Ax is

positive. Hence
= x Cx x Ax

is real. Since is real, the vector x, obtained by solving a set of simultaneous
linear equations with real coe cients, is real. Therefore, x = x , and we can
write

= x Cx x Ax

This ratio is often called, and we will call it, the Rayleigh Quotient corre-
sponding to equation (1.4.1). (It was Lord Rayleigh (Rayleigh (1894) [290])
who, in his classical treatise Theory of Sound used this quotient to take the first
steps towards the variational treatment of eigenvalues. We discuss this further
in Chapter 2.) We write

= (x) = x Cx x Ax (1.4.5)

Ex. 1.4.7 shows the necessity of having one of the matrices A C, positive
definite.
The conditions which must be satisfied if a (symmetric) matrix A is to be

positive definite or positive semi-definite may be expressed in terms of the prin-
cipal minors of A. A principal minor of order of a matrix A (symmetric or
not) is a determinant of a submatrix formed from rows 1 2 and the
same columns 1 2 . Thus for A in (1.3.3),

¯̄̄
¯ 2 1

1 2

¯̄̄
¯
¯̄̄
¯ 2 3
1 7

¯̄̄
¯
¯̄̄
¯ 2 4
0 7

¯̄̄
¯
¯̄̄
¯̄̄ 2 1 3

1 2 4
1 0 7

¯̄̄
¯̄̄

are all principal minors. In the notation of Section 1.3, a principal minor is
( 1 2 ; 1 2 ).
There is a special notation for the leading principal minors of A, these are

as follows:

1 = 11 2 =

¯̄̄
¯ 11 12

21 22

¯̄̄
¯ = |A| = det(A) (1.4.6)

Now we may state

Theorem 1.4.2 The symmetric matrix A is positive definite i the leading
principal minors ( )1 are all positive. A will be positive semi-definite i
( ) 1

1 0 = 0.
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This will not be proved until Chapter 5. Note that since = det(A), this
states that a positive-definite matrix is non-singular, and a positive semi-definite
matrix is singular.
We may now refine Theorem 1.4.1 to give

Theorem 1.4.3 If C A are real and symmetric and A is positive definite then
equation (1.4.1) will have real eigenvalues, although they need not be distinct.
If C is positive definite they will be positive, if C is positive semi-definite they
will be non-negative.

Proof. Equation (1.4.2) may be expanded in terms of the coe cients
; the result is an th degree polynomial equation for , namely

4( ) = det(C A) 40 +41 +42
2 + · · ·+4 = 0 (1.4.7)

Most of the coe cients 4 are complicated functions of and , but the first
and last may be easily identified, namely

40 = det(C) 4 = ( 1) det(A) (1.4.8)

Since A is positive-definite, det(A) 0 so that 4 6= 0. This means that
equation (1.4.7) is a proper equation of degree with roots ( )1 . This proves
the first part of the Theorem. If C is positive-definite, then both numerator and
denominator of the Rayleigh Quotient (1.4.5) will be positive, so that ( )1 0.
If C is only positive semi-definite, then the numerator of the Rayleigh Quotient
is only positive or zero (i.e., non-negative), so that the are non-negative.
Moreover, since 1 2 = ( ) 40 4 = det(C) det(A) equation (1.4.7)
will have at least one zero root when det(C) = 0
Under the conditions of Theorem 1.4.3 the eigenvalues ( )1 may be labelled

in increasing order:
0 1 2 (1.4.9)

Theorem 1.4.4 Eigenvectors u u corresponding to two di erent eigenvalues
( 6= ) of the symmetric matrix pair (C A) are orthogonal w.r.t. both

A and to C, i.e.,

u Au = 0 = u Cu (1.4.10)

Proof. By definition

Cu = Au Cu = Au (1.4.11)

Transpose the first equation and multiply it on the right by u ; multiply the
second equation on the left by u , to obtain

(u C)u = (u A)u
u (Cu ) = u (Au )
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Subtract these two equations to yield

( )u Au = 0

But 6= 0, so that u Au = 0, and hence u Cu = 0.
Premultiplying equation (1.4.11) by u we find

u Cu = u Au = (1.4.12)

Sometimes, we will normalise an eigenvector u w.r.t. A; then = 1 = .
An important corollary of this result is

Theorem 1.4.5 If the symmetric matrix pair (C A) has distinct eigenvalues
( )1 , and A is positive-definite, then the eigenvectors u are linearly indepen-
dent, and therefore span , the space of -vectors.

Proof. The eigenvectors u are linearly independent; for suppose

1u1 + 2u2 + · · ·+ u = 0;

multiplying by u A we have

1(u Au1) + 2(u Au2) + · · ·+ (u Au ) = 0

But u Au = 0 if 6= so that only the th term in this equation is non-zero,
and hence

(u Au ) = 0

Since A is positive definite, u Au 0 and = 0; all the ( )1 are zero; the
u are linearly independent. Any vector u may be written uniquely as

u =
X
=1

u (1.4.13)

where
= u Au u Au ¥ (1.4.14)

In this book we are not concerned with methods for computing eigenvalues
and eigenvectors. A simple treatment of the classical techniques may be found
in Bishop, Gladwell and Michaelson (1965) [33]. A comprehensive account of
modern techniques is given by Golub and Van Loan (1983) [135]. The classical
treatise on the symmetric eigenvalue problem is Parlett (1980) [264]. We are
concerned only with the qualitative properties of eigenvalues.

Exercises 1.4

1. If

A =

1 1
1 2 1

1 2 1
1 1

show that A is positive semi-definite. For what x is Ax = 0?
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2. Show that A 1 is positive definite i A is positive definite.

3. Verify the conditions given in Theorem 1.4.2 for A to be positive definite,
when = 2, by writing

x Ax = 11
2
1 + 2 12 1 2 + 22

2
2

= 11

½³
1 + 12

11

´2
+
³

11 22
2
12

2
11

´
2
2

¾

Extend the analysis to = 3.

4. Find the eigenvalues and eigenvectors of the pair

C =
2 1 0
1 2 1
0 1 2

A =
1
1
1

Hint: replace the eigen-equation by the equivalent recurrence relation
1+(2 ) +1 = 0 with appropriate end conditions for = 1 =

3, and seek a solution of the form = cos + sin . Generalise this
result.

5. Show that if = 3, A is symmetric, and 1 2 3 of equation (1.4.6) are
all positive, then all the principal minors of A are positive. Hint: write
11 det(A) as a 2× 2 determinant with elements which are minors of A of
order 2. This is a particular case of a general result, see e.g., Gantmacher
(1959) [97].

6. Show that the real symmetric matrix A has positive eigenvalues i it is
positive-definite.

7. Take

C =

·
1 1
1 1

¸
A =

·
1 1
1 1

¸
The eigenvalues are not real. Where does the argument used in the proof
of Theorem 1.4.1 break down?

8. Take

C =

·
0 1
0 0

¸
A =

·
1 0
0 1

¸

Show that equation (1.4.1) has only one eigenvalue and one eigenvector,
so that the eigenvectors do not span the space 2. This is the kind of
di culty attending the non-symmetric eigenvalue problem.
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Vibrations of Discrete
Systems

Our nature consists in motion; complete rest is death.
Pascal’s Pensées, 129

2.1 Introduction

The formulation and solution of the equations governing the motion of a discrete
vibrating system, i.e., one which has a finite number of degrees of freedom, have
been fully considered elsewhere. See for example, Bishop and Johnson (1960)
[34], Bishop, Gladwell and Michaelson (1965) [33], Meirovich (1975) [234]. In
this chapter we shall give a brief account of those parts of the theory that will
be needed for the solution of inverse problems.
Throughout this book we shall be concerned with the infinitesimal vibration

of a conservative system about some datum configuration, which will usually be
an equilibrium position.
Before embarking on a general discussion we shall first formulate the equa-

tions of motion for some simple vibrating systems.

2.2 Vibration of some simple systems

Figure 2.2.1 shows a vibrating system consisting of masses connected by lin-
ear springs of sti nesses ( )1 . The whole lies in a straight line on a smooth
horizontal table and is excited by forces ( ( ))1 .
Newton’s equations of motion for the system are

¨ = + +1 = 1 2 1 (2.2.1)

¨ = (2.2.2)

19
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where · denotes di erentiation with respect to time. Hooke’s law states that the
spring forces are given by

= ( 1) = 1 2 (2.2.3)

If the left hand end is pinned then

0 = 0 (2.2.4)

Forced vibration analysis concerns the solution of these equations for given
forcing functions ( ). Free vibration analysis consists in finding solutions to the
equations which require no external excitation, i.e., ( ) 0 = 1 2 ,
and which satisfy the stated end conditions.

k k
1 2

m
1

m
2

m
n

kn

u
1

u
2

u
n

Figure 2.2.1 - masses connected by springs

The system shown in Figure 2.2.1 has considerable engineering importance.
It is the simplest possible discrete model for a rod vibrating in longitudinal mo-
tion. Here the masses and sti nesses are obtained by lumping the continuously
distributed mass and sti ness of the rod. Equations (2.2.1) - (2.2.4) also describe
the torsional vibrations of the system shown in Figure 2.2.2., provided that the

are interpreted as torsional rotations, torsional sti nesses and mo-
ments of inertia respectively. Such a discrete system provides a simple model
for the torsional vibrations of a rod with a continuous distribution of inertia and
sti ness.
There is a third system which is mathematically equivalent to equations

(2.2.1) - (2.2.4). This is the transverse motion of the string shown in Figure
2.2.3 which is pulled taut by a tension and which is loaded by masses ( )1 .
(But note that the string shown in Figure 2.2.3 has its right hand end fixed,
rather than free, as in Figures 2.2.1 and 2.2.2. In order to simulate a string
with a free end, the last segment of the string must be attached to a massless
ring that slides on a smooth vertical rod.) If in accordance with the assumption
of infinitesimal vibration, the string departs very little from the straight line
equilibrium position, then the equation governing the motion of mass may
be derived by considering Figure 2.2.4.
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Figure 2.2.2 - A torsionally vibrating system
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Figure 2.2.3 - masses on a taut string
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Figure 2.2.4 - The forces acting on the mass
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Newton’s equation of motion yields

¨ = + sin +1 sin (2.2.5)

= + +1 (2.2.6)

where, for small deflections, we may take sin = ,

= = ( 1) =

In order to express equations (2.2.1) - (2.2.3) in matrix form we use (2.2.3)
to obtain

¨ = + +1 +1 ( +1+ ) + 1 ¨ = + 1

which yields

1
2

.
.
.

·
¨1
¨2
·

¨

¸
+

·
1 + 2 2 0 · · · 0 0

2 2 + 3 3 · · · 0 0
· · · · · · · ·

0 0 0 · · ·

¸·
1
2
·

¸

=

·
1
2
·

¸
(2.2.7)

This equation may be written

Mü+Ku = F (2.2.8)

where the matrices M K are called respectively the inertia (or mass) and the
sti ness matrices of the system. Note that both M and K are symmetric; this
is a property shared by the matrices corresponding to any conservative system.
We note also that both M K are positive-definite. In this particular example
the matrixM is diagonal while K is tridiagonal, i.e., its only non-zero elements
are on the principal diagonal, and the two neighbouring diagonals, called the
codiagonals.
Equation (2.2.3) can also be constructed by introducing = { 1 2 }

and noting that

1

2

·
·

=

1

2

·

1 0 0
1 1 0
· · ·
0 · 0
0 · 1

1

2

·
·

which will be written

= K̂E u (2.2.9)
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where

E =

1 1 0 · · · 0
0 1 1 · · · 0
· · · · ·
0 · · · 1 1
0 · · · 0 1

E 1 =

1 1 1 · · · 1
0 1 1 · · · 1
· · · · ·
0 0 0 · · · 1
0 0 0 · · · 1

(2.2.10)

and K̂ = ( 1 2 ).
Using the matrix E, we may write equation (2.2.1) - (2.2.2) in the form

Mü = E +F

so that on using (2.2.9) we find

Mü+EK̂E u = F (2.2.11)

and
K = EK̂E (2.2.12)

For free vibration analysis there are two important end conditions. The right
hand end may be free, in which case there is no restriction on the ( )1 , or it
may be fixed, in which case = 0.

Exercises 2.2

1. Verify that the sti ness matrix in equation (2.2.7) satisfies the conditions
of Theorem 1.4.2. Obtain a proof that applies to principal minors of any
order , such that 1 .

2. Consider the multiple pendulum of Figure 2.2.5.
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Figure 2.2.5 - A compound pendulum made up of inextensible strings
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Show that the kinetic and potential energies of the system for small oscilla-
tions are given by

2 = 1 ˙
2
1 + 2 ˙

2
2 + + ˙2

2 = 1

2
1

1
+ 2

( 2 1)
2

2
+ + ( 1)

2

where =
P

= .

2.3 Transverse vibration of a beam

Figure 2.3.1 shows a simple discrete model for the transverse vibration of a beam;
it consists of +2 masses ( ) 1 linked by massless rigid rods of lengths ( )0
which are themselves connected by rotational springs of sti nesses ( )1 . The
mass and sti ness of the beam, which are actually distributed along the length,
have been lumped at + 2 points.

The discrete system is governed by a set of four first-order di erence equa-
tions, which may be deduced from Figure 2.3.2.
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0

Figure 2.3.1 - A discrete model of a vibrating beam



2. Vibrations of Discrete Systems 25

r

r + 1

θ
r + 1r

r u
r

•
r

m
r

r − 1

r − 1

r

Figure 2.3.2 - The configuration around

For small displacements, the rotations are

= ( 1) = 0 1

If the th spring has rotational sti ness , then the moment needed to
produce a relative rotation +1 of the two rigid rods on either side of
is

= +1( +1 ) = 0 1 1

Equilibrium of the rod linking and +1 yields the shearing forces

= ( +1) +1 = 1 0 1

while Newton’s equation of motion for mass is

¨ = 1 = 1 0

Here 2 and 1 denote external shearing forces and bending moments,
respectively, applied to the ends.
Suppose that the left hand end is clamped so that

1 = 0 = 0

then only the masses ( )1 move, and the governing equations may be written

= L 1E u (2.3.2)

= K̂E (2.3.3)
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= L 1E 1 e (2.3.4)

Mü = E + e (2.3.5)

where u = { 1 2 } = { 1 2 } = { 0 1 1}
= { 0 1 1} K̂ = ( ) L = ( ) M = ( )

e = {0 0 0 1} and E is given in equation (2.2.10).
Equations (2.3.2) - (2.3.5) may be combined to give

Mü+Ku = e + 1 Ee (2.3.6)

where

K = EL 1EK̂E L 1E (2.3.7)

This equation has the same general form as equation (2.2.8). We note that
M and K are again symmetric and positive-definite, M being diagonal, and K
being pentadiagonal.

2.4 Generalised coordinates and Lagrange’s equa-
tions: the rod

The idea that a discrete system is one composed of a finite number of masses
connected by springs is unnecessarily restrictive. The general concept is that
of a system whose motion is specified by generalised coordinates ( )1 that
are functions of time alone. The systems considered in Sections 2.2, 2.3 are
indeed discrete in this sense and the generalised coordinates corresponding to
the system in Figure 2.2.1 are ( )1 . However, the more general concept would
also cover, for instance, a model of a non-uniform longitudinally vibrating rod
constructed by using the finite element method (see for example, Zienkiewicz
(1971) [343]), Strang and Fix (1973) [311].
In such a model, shown in Figure 2.4.1, the rod is first divided into +1 ele-

ments. In the th element, shown in Figure 2.4.2., the longitudinal displacement
( ) is taken to have a simple linear form.

( ) = ( )(1 ) + +1( ) +1 (2.4.1)

where

= ( )

runs from 0 at the left hand end of the element to 1 at the right. Equations
(2.4.1) with = 0 1 express the displacement at every point of the rod
in terms of the +2 generalised coordinates ( ) +1

0 . When the end conditions
are imposed there will be, as before, only coordinates ( )1 .



2. Vibrations of Discrete Systems 27

Figure 2.4.1 - A rod divided into elements

r

x
r x

r 1

Figure 2.4.2 - One element of the rod

When the finite element method is used, it is not possible to set up the
equations of motion by using Newton’s equations of motion, for there is no actual
‘mass’ to which forces are applied. Instead we may use Lagrange’s equations.
For a conservative system with kinetic energy and potential or strain energy
, which are functions of coordinates ( )1 , Lagrange’s equations state that

(
˙
) + = ( = 1 2 ) (2.4.2)

Here is the generalised force corresponding to in the sense that the work
done by external forces acting on the system when the system is displaced from
a configuration specified by ( )1 to one specified by ( + )1 , is

=
X
=1
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For the system shown in Figure 2.2.1 the kinetic and potential energies are

=
1

2

X
=1

˙2 =
1

2

X
=1

( +1 )2 (2.4.3)

and = ( ). Thus

˙
= ˙ = ( +1 ) + 1( 1)

and equation (2.4.3) yields (2.2.1).
For the finite element model of Figure 2.4.1, the kinetic and potential energies

of the system will be

=
1

2

Z
0

[ ˙( ))]2

=
1

2

Z
0

[ ( )]2

where ( ) ( ) ( ) are the (possibly variable) cross-sectional area, density
and Young’s modulus of the rod. On inserting the assumed form of ( ) given
in (2.4.1) we find

=
1

2

X
=0

Z 1

0

( + ) ( + )[ ˙ (1 ) + ˙ +1 ]
2 (2.4.4)

=
1

2

X
=1

Z 1

0

( + ) ( + )[ +1 ]2 1 (2.4.5)

On carrying out the integrations, perhaps numerically if ( ) ( ) ( ) are
variable, we may write

=
1

2

+1X
=0

+1X
=0

˙ ˙ (2.4.6)

=
1

2

+1X
=0

+1X
=0

(2.4.7)

If the rod is fixed at both ends, then

0 = 0 = +1 (2.4.8)

so that all the sums in (2.4.6), (2.4.7) run from 1 to . In this case

˙
=
X
=1

˙ =
X
=1
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and equation (2.4.2) yields the following equation for free vibration:

X
=1

¨ +
X
=1

= 0 ( = 1 2 )

This equation may, as before, be condensed into the matrix equation

Mÿ+Ky = 0 (2.4.9)

We note that, for the rod with the kinetic and potential energies given by
(2.4.6), (2.4.7), the matrices M K are symmetric, tridiagonal matrices with
sign properties. They are tridiagonal because are zero unless =
or = ± 1. The sign properties may be deduced from (2.4.4), (2.4.5): the
codiagonal elements +1 1 of M are positive, while +1 1 are
negative. Thus

M =

1 1

1 2
. . .

. . .
. . . 1

1

K =

1 1

1 2
. . .

. . .
. . . 1

1

(2.4.10)
These sign properties ofM K will later be shown to have important implications
for the qualitative properties of a vibrating rod.
On the basis of these examples we now pass to the general case. For a con-

servative system with generalised coordinates ( )1 which specify small displace-
ments from a position of stable equilibrium, the kinetic and potential energies
will have the form

=
1

2

X
=1

X
=1

˙ ˙ (2.4.11)

=
1

2

X
=1

X
=1

(2.4.12)

where the matrices M = ( ) and K = ( ) are symmetric, in that

= =

The equations governing free vibration may be written

Mq̈+Kq = 0 (2.4.13)

We note that equations (2.4.11), (2.4.12) may be written

=
1

2
q̇ Mq̇ =

1

2
q Kq (2.4.14)

It is not possible for any arbitrarily chosen symmetric matrix M to be an
inertia matrix, because the kinetic energy is an essentially positive quantity,
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i.e., it is always positive except when each of the ˙ is zero, in which case it is
zero. ThusM must be positive definite (see Section 1.4).
The restrictions on the matrix K are slightly less severe since, although the

strain energy will always be positive or zero, it will actually be zero if the system
has a rigid-body displacement. Notice, for example, that the of (2.4.5) will
be zero if y is the rigid body displacement

0 = 1 = · · · = = +1

This will be a possible displacement of the system in Figure 2.2.1 only if both
ends are free. We conclude that if the system is not constrained so that one
point is fixed, then K is positive semi-definite.

Exercises 2.4

1. Use equations (2.4.4), (2.4.5) to evaluate the mass and sti ness matrices
for a uniform rod in longitudinal vibration subject to the end conditions
(2.4.8).

2. Use the form (2.4.5) of the strain energy of the rod to show that the sti ness
matrix K for a rod fixed at the left and free at the right has the form

=

1 + 2 2

2 2 + 3 3

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 1

1

2.5 Vibration of a membrane and an acoustic
cavity

Over the last three or four decades, computational vibration analysis has de-
veloped to such an extent that it can analyse the vibration of almost anything:
rods, beams, plates, trusses, steel and concrete buildings, bridges, aircraft, and
so on. Inverse vibration analysis in the strict form we consider in this book can
hope to encompass only comparatively simple structures: strings, rods, beams,
membranes and acoustic cavities and, even now, inverse problems for membranes
and cavities are still open; all we can do is find some qualitative properties of
the vibration. The vibrations of a membrane and of an acoustic cavity are
mathematically similar: both involve just one scalar quantity, the transverse
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displacement ( ), for the membrane under unit tension; the excess pressure
( ), for the acoustic cavity. Both are governed by a wave equation

4 =
2

2
4 =

2

2
+

2

2
(2.5.1)

for a membrane with mass density ( ), and

4 =
2

2
4 =

2

2
+

2

2
+

2

2
(2.5.2)

for the acoustic cavity.
To set up the finite element model FEM of a membrane we consider the

energies

=
1

2

Z Z
˙2 (2.5.3)

=
1

2

Z Z
(5 )2 (2.5.4)

The simplest FEM is based on triangulation. For an arbitrary triangular element
1 2 3 as shown in Figure 2.5.1, we take

( ) = + + (2.5.5)

u
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u
1

u
3

P
3

P
1

P
2 •

••

Figure 2.5.1 - A triangular finite element

If takes the values 1 2 3 at the vertices 1 2 3 respectively, then

= + + = 1 2 3 (2.5.6)

We can solve these equations for and hence express for one element,
i.e., , as quadratic forms

=
1

2
u̇ M u̇ (2.5.7)
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=
1

2
u K u (2.5.8)

with coe cients which are functions of the coordinates ( ) = 1 2 3. We
are not particularly interested in the magnitudes of the coe cients; we are more
interested in their signs.

First we investigate the elements of K . Equation (2.5.8) give

4 = 1( 2 3) + 2( 3 1) + 3( 1 2)
4 = 1( 2 3) + 2( 3 1) + 3( 1 2)

where

4 =

¯̄̄
¯̄̄ 1 1 1

1 2 2

1 3 3

¯̄̄
¯̄̄ = 2 area( 1 2 3)

Since (5 )2 = 2 + 2, the coe cient of, say, 1 2 in is

{( 3 1)( 3 2) + ( 3 1)( 3 2)} |4| = | 1 3| | 2 3| cos |4|

Users of finite element methods have found that compact, i.e., acute angled,
triangles give more accurate computational results than elongated triangles that
have an obtuse angle.

If the triangle has all its angles acute, then 12 and 23 31 are all neg-
ative: K has the sign pattern

K =
+

+
+

(2.5.9)

To find the signs of the coe cients in , it is convenient to write (2.5.7)
in terms of the areal coordinates , ( ), of the triangle; if is an arbitrary
point of the triangle, then

( ) = 1 1( ) + 2 2( ) + 3 3( )

where

1 =
area( 2 3)

area( 1 2 3)
2 =

area( 3 1)

area( 1 2 3)
3 =

area( 1 2)

area( 1 2 3)

as shown in Figure 2.5.2.
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Figure 2.5.2 - 1 2 3 is split into three triangles

Since 1 2 3 are all positive when is inside the triangle 1 2 3, all the
coe cients in are positive: M has the form

M =
+ + +
+ + +
+ + +

(2.5.10)

Now we assemble the element matrices to form the global mass and sti ness
matrices. The membrane is replaced by an assembly of triangles4 with vertices
and edges as shown in Figure 2.5.3. The boundary condition = 0 is

imposed on the outer vertices labelled ‘0’.

0
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0 0 0 0

0

0

000

1
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4 5 6

Figure 2.5.3 - An assembly of triangular elements
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Figure 2.5.4 - The angles between outward drawn normals to the faces are all
obtuse

For this particular configuration, the matrices A C have the sign patterns

M =

+ + + +
+ + + + +

+ + +
+ + +
+ + + + +

+ + + +

K =

+
+

+
+

+
+

(2.5.11)

We note that if 6= , then 0 0 i are the ends of an edge
of the mesh.

The finite element analysis of a 3D- acoustic cavity proceeds in a similar way.
The elements are taken to be tetrahedra, and the pressure ( ) is taken as

( ) = + + + (2.5.12)

in each tetrahedron. Now it is found Zhu (2000) [342], Gladwell and Zhu (2002)
[131] that if the angles between the normals to the faces are all obtuse, as shown
in Figure 2.5.4, then the element mass and sti ness matrices have the form

M =

+ + + +
+ + + +
+ + + +
+ + + +

K =

+
+

+
+

(2.5.13)

This means that when the matrices are assembled they have the same kind of
sign pattern as before: if 6= then 0 0 i is an edge of the
mesh.
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Applying Lagrange’s equation to the energies

=
1

2
u̇ Mu̇ =

1

2
u Ku

we find the equation governing the vibration as

Mü+Ku = 0 (2.5.14)

2.6 Natural frequencies and normal modes

The matrix equation (2.4.13) represents a set of second order equations with
constant coe cients. Following usual practice we seek the solution in the form

q =

1

2

·
=

1

2

·
sin( + ) (2.6.1)

where the constants , frequency and phase angle are to be determined.
When q has the form (2.6.1), then

q̈ = 2q = 2x sin( + ) (2.6.2)

so that equation (2.4.13) demands that

(K M)x = 0 = 2 (2.6.3)

This is the eigenvalue equation (1.4.1) and, since M is positive-definite and
K is either positive semi-definite or positive-definite, the whole of the analysis
developed in Section 1.4 can be used here. Thus the equation has eigenvalues
( )1 satisfying

0 1 2 · · · (2.6.4)

and corresponding eigenvectors (x )1 satisfying

(K M)x = 0 (2.6.5)

The frequencies = ( )
1
2 are called the natural frequencies of the system, and

the eigenvectors are called the normal or principal modes. Note the distinction
between , a scalar, and x , a vector.
In order to become acquainted with the properties of natural frequencies and

normal modes we shall consider the system specified by equation (2.2.7) and, to
simplify the algebra, shall assume that

( )1 = ( )1 = (2.6.6)
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In this case the eigenvalue equation may be written

2 1 0 · · · 0
1 2 1 0
· · · · · · ·
0 · · · 2 1
0 · · · 1 1

1

2

·

1

= 0 (2.6.7)

where
= 2 (2.6.8)

To solve for the we use the idea suggested in Exercise 1.4.4, namely to write
(2.6.7) as the recurrence relation

1 + (2 ) +1 = 0 ( = 1 2 ) (2.6.9)

The first of equations (2.6.7) may be written in this form if 0 is taken to be
zero; this may be interpreted as stating that the left hand mass ( 0) is fixed. On
the other hand, the last of equations (2.6.7) may be written in the form (2.6.9)
if +1 is taken to be equal to . Thus the end conditions for the recurrence
(2.6.9) are

0 = 0 = +1 (2.6.10)

The recurrence relation has the general solution

= cos + sin (2.6.11)

where, on substitution into (2.6.9) we find that must satisfy

cos( 1) + cos( + 1) = 2 cos cos = (2 ) cos

sin( 1) + sin( + 1) = 2 cos sin = (2 ) sin

i.e.,
2 cos = 2

The end conditions will be satisfied if and only if

= 0 = sin( + 1) sin = 2 cos[( + 1 2) ] sin 2

so that the possible values of are

= =
(2 1)

2 + 1
( = 1 2 )

while the corresponding values of are

= 2 2 cos = 4 sin2[
(2 1)

2(2 + 1)
] (2.6.12)

Thus, in the th mode, the displacement amplitude of the th mass is

= sin = sin[
(2 1)

(2 + 1)
] (2.6.13)
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The modes for the case = 4, which are shown in Figure 2.6.1, exhibit properties
that are held by all eigenvectors of a tridiagonal matrix (such as that in (2.6.7)),
namely

•

•

•
•

•

•
•

•

•

•

•

•

•
4

3

2

1

Figure 2.6.1 - The modes of the spring-mass system for = 4

For a proof of the convergence of this class of discrete models to the contin-
uous beam, and for an estimate of the discretisation error on frequencies and
mode shapes, see Davini (1996) [74].

(a) the th mode crosses the axis ( 1) times - the zeros at the ends are not
counted;

(b) the nodes (points where the mode crosses the axis) of the th mode interlace
those of the neighbouring (( 1)th and ( + 1)th) modes.

If instead of being free at the right hand end, the system were pinned there,
then the analysis would be unchanged except that the end conditions would be

0 = 0 = (2.6.14)

In this case would have to satisfy

sin = 0

so that

= = = 1 2 1
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and the corresponding eigenvalues, which we will label ( 0) 1
1 , would be

0 = 4 sin2(
2
) (2.6.15)

In the th mode, the th displacement amplitude is

= sin( ) = sin[ ] (2.6.16)

The two sets of eigenvalues ( )1 and (
0) 1
1 are related in a way which will be

found to be general for problems of this type (see equation (2.9.10)), namely

0 1
0
1 · · · 1

0
1 (2.6.17)

Exercises 2.6

1. Consider the beam system of Figure 2.3.1 in the case when ( ) 1 =
( )1 = ( )0 = . Show that the recurrence relation linking the

( ) +2
0 may be written

2 4 1 + (6 ) 4 +1 + +2 = 0

where = 2 2 . Seek a solution of the recurrence relation of the form

= cos + sin + cosh + sinh

and find so that the end conditions 1 = 0 = 0 = 1 =
are satisfied. Hence find the natural frequencies and normal modes of
the system; i.e., a clamped-clamped beam. A physically more acceptable
discrete approximation of a beam is considered in detail by Gladwell (1962)
[103] and Lindberg (1963) [215].

2.7 Principal coordinates and receptances

Theorem 1.4.5 states that the vectors (x )1 span the space of -vectors, so that
any arbitrary vector q( ) may be written

q( ) = 1x1 + 2x2 + · · ·+ x (2.7.1)

This may be condensed into the matrix equation

q = Xp (2.7.2)

whereX is the × matrix with the x as its columns i.e., x = { 1 2 }.
The coordinates 1 2 , called the principal coordinates, will in general
be functions of ; they indicate the extent to which the various eigenvectors x
participate in the vector q. The energies take particularly simple forms
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when q is expressed in terms of the principal coordinates. For equation (2.7.2)
implies

q̇ = Xṗ (2.7.3)

so that

=
1

2
(Xṗ) M(Xṗ) =

1

2
ṗ (X MX)ṗ (2.7.4)

But the element in row , column of the matrix X MX is simply x Mx and
according to (1.4.12) this is zero if 6= if = . Thus

X MX = ( 1 2 ) (2.7.5)

so that

=
1

2
{ 1 ˙

2
1 + 2 ˙

2
2 + · · · ˙2} (2.7.6)

Similarly

=
1

2
p (X KX)p (2.7.7)

and
X KX = ( 1 1 2 2 ) (2.7.8)

so that

=
1

2
{ 1 1

2
1 + 2 2

2
2 + · · ·

2} (2.7.9)

Equations (2.7.6), (2.7.9) show that the search for eigenvalues and eigenvectors
for a symmetric matrix pair (M K) is equivalent to the search for a coordinate
transformation q p which will simultaneously convert two quadratic forms
q Mq and q Kq to sums of squares.
We shall now use the principal coordinates to obtain the response of a sys-

tem to sinusoidal forces. Equations (2.4.2) and (2.4.14) show that the equation
governing the response to generalised forces ( )1 is

Mq̈+Kq = Q (2.7.10)

where q = { 1 2 }. If the forces have frequency and are all in phase,
then Q and q may be written

Q = sin( + ) q = x sin( + ) (2.7.11)

In this case equations (2.6.1) - (2.6.2) yield

(K M)x = (2.7.12)

To solve this equation we express x in terms of the eigenvectors x , so that

x = 1x1 + 2x2 + · · · x = X (2.7.13)

where 1 2 are the amplitudes of the principal coordinates 1 2 .
Substitute (2.7.13) into (2.7.12) and multiply the resulting equation by X ; the
result is

X (K M)X = X = (2.7.14)
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But now the matrix of coe cients of the set of equations for the unknowns
1 2 is diagonal, and the th equation is simply

( ) =

so that

=
( )

(2.7.15)

In order to interpret this result we consider the response to a single generalised
force . In this case

Q = {0 0 0 0} = { 1 2 }

=
( )

and the th displacement amplitude is:

=
X
=1

= (2.7.16)

where

=
X
=1

( )
(2.7.17)

The quantity is the receptance Bishop and Johnson (1960) [34] giving the
amplitude of response of to a unit amplitude generalised force . The fact
that is symmetric, i.e.,

= (2.7.18)

is a reflection of the reciprocal theorem which holds for forced harmonic excita-
tion.

Exercises 2.7

1. Use the orthogonality of the (x )1 w.r.t the inertia matrix to show that

x Mq =

2.8 Rayleigh’s Principle

Consider a conservative system with generalised coordinates ( )1 vibrating with
harmonic motion given by (2.6.1). Its kinetic and potential energies will be

=
1

2
q̇ Mq̇ = 2 cos2 0
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=
1

2
q Kq =sin2 0

where

0 =
1

2
x Mx 0 =

1

2
x Kx (2.8.1)

Since the system is conservative,

+ =

so that
2 cos2 0 + (1 cos2 ) 0 =

and therefore
2
0 = 0

This we may write as

=
0

0
=
x Kx

x Mx

If the system is vibrating freely at frequency , then must be one of the natural
frequencies and x the corresponding eigenvector. If = , then = , x = x
and

=
x Kx

x Mx
(2.8.2)

which agrees with equation (1.4.5).
Rayleigh’s Principle states that the stationary values of the Rayleigh Quotient

=
x Kx

x Mx
(2.8.3)

viewed as a function of the components ( )1 , occur when x is an eigenvector
x . The corresponding stationary value of is .
Proof. Rayleigh’s Principle has a long history - see for example Temple and

Bickley (1933) [322] or Washizu (1982) [330]. We shall state the proof in a
number of ways because each is instructive. First consider as a ratio of 0

and 0 and write down the partial derivative of this quotient w.r.t. . We
have

0
= 1 1 + 2 2 + · · ·+

0
= 1 1 + 2 2 + · · ·+

and

(
0

0
) =

1

0

0 0
2
0

0
=
1

0

½
0 0

¾

so that, on inserting the expressions for 0 and 0 we obtain just
the th row of the matrix equation (2.6.3) with in place of . The complete
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set of equations which state that 0 0 is stationary w.r.t. all the ( )1 is the
matrix equation (2.6.3) which is satisfied when x is an eigenvector x and is
the corresponding eigenvalue .
Now express the energies in terms of principal coordinates. If

= sin( + )

then equations (2.7.6), (2.7.9) show that

0 =
1

2

©
1
2
1 + 2

2
2 + · · ·+

2
ª

0 =
1

2

©
1 1

2
1 + 2 2

2
2 + · · ·+

2
ª

SinceM is assumed to be positive definite, there is no loss in generality in taking
each = 1, then

=
1
2
1 + 2

2
2 + · · ·+

2

2
1 +

2
2 + · · ·+

2
(2.8.4)

so that, in particular,

1 =
( 2 1)

2
2 + · · ·+ ( 1)

2

2
1 +

2
2 + · · ·+

2
(2.8.5)

Since the are labelled in increasing (or non-decreasing) order, the quantities
1 = 2 3 are non-negative, and so

1

If 1 is strictly less than 2 then equality occurs only when 2 = 0 = =
, i.e., when the system is vibrating in its first principal mode. Equation

(2.8.5) states the important property that whenever values are taken for ( )1 ,
the values of the Rayleigh quotient will always be greater than 1 and (when
1 2) will be equal to 1 only if the ratios 1 : 2 : correspond to those
of the first eigenvector 11 21 1. Equation (2.8.5) shows that 1 is the
global minimum of , and it may be proved in an exactly similar way that

(2.8.6)

so that is the global maximum of .
If is an intermediate eigenvalue, so that 1 , then

=

P 1
=1( ) 2 +

P
= +1( ) 2

2
1 +

2
2 + · · ·+

2
(2.8.7)

In this case will not be strictly less nor strictly greater than for variations
of the ; has a saddle point in the th mode ( = 0 6= ). However, for
computational purposes it is important that the di erence between and
depends on the squares of the quantities . This means that if x is ‘nearly’
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in the th mode, so that the with 6= are much smaller than , i.e.,
1 = 0( ), then = 0( 2).

Since M is positive definite, x Mx 0, and the problem of finding the
stationary values of the Rayleigh quotient given by equation (2.8.3) is equiv-
alent to finding the stationary values of x Kx subject to the restriction that
x Mx = 1. This in turn is equivalent to finding the stationary values of

x Kx x Mx (2.8.8)

subject to x Mx = 1. Here acts as a Lagrange parameter. Note that

= 2
X
=1

2
X
=1

so that the set of equations = 0 yields equation (2.6.3), viz.
(K M)x = 0.

2.9 Vibration under constraint

The concept of a system vibrating under constraint is important in the solution
of inverse problems. Suppose a system has generalised coordinates ( )1 , but
they are constrained to satisfy a relation

( 1 2 ) = 0

For small vibrations about 1 = 0 = = , this relation may be replaced by

q d = 1 1 + 2 2 + + = 0

where

= ( 1 2 )| 1=0= 2= =

Two of the most important constraints will correspond to a certain being
zero, or two, and , being equal. Now suppose that the system is vibrating
with frequency , where 2 = , and

q = x sin

Rayleigh’s Principle states that the (natural frequencies)2 will be the stationary
values of , given in equation (2.8.8) but now subject to the further constraint

x d = 0 (2.9.1)

Thus we must find the stationary values of

F = x Kx x Mx 2 x d (2.9.2)



44 Chapter 2

where is another Lagrange parameter (the 2 is inserted purely for convenience).
The equations = 0 now yield

Kx Mx d = 0 (2.9.3)

By comparing this with equation (2.7.12) we see that d is a generalised force;
it is the force required to maintain the constraint (2.9.1).
In order to analyse equation (2.9.3) we express x in terms of principal coor-

dinates, using equation (2.7.13). Then

KX MX d = 0 (2.9.4)

Multiply throughout by X and use equations (2.7.5) and (2.7.8) which show
that both X MX and X KX will be diagonal matrices; the th row of the
resulting equation is

= 0 = 1 2 (2.9.5)

where

b = X d (2.9.6)

Equations (2.9.5) yield

=
( )

(2.9.7)

which, when substituted in the constraint (2.9.1); i.e.,

x d X d b = 0 (2.9.8)

yields the frequency equation

( )
X
=1

2

( )
= 0 (2.9.9)

The form of this equation has important consequences. Consider first the
case in which none of the is zero. The coe cients ( 2 )1 will all be positive
and the graph of ( ) against will have the form shown in Figure 2.9.1. Since
( + 0) is very large negative, ( +1 0) is very large positive, and ( ) is

steadily increasing between and +1 ( ) will have just 1 zeros, ( 0) 1,
that interlace the in the sense that

0
+1 ( = 1 2 1) (2.9.10)

This inequality may be interpreted as follows: if a linear constraint is applied
to a system, each natural frequency increases (or, more precisely, does not de-
crease), but does not exceed the next natural frequency of the original system.
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• • •••

B( )λ

λ
2

λ
1

λ
n

λ

λ•
1

λ•
n − 1

0

Figure 2.9.1 - The eigenvalues of a constrained system interlace the original
eigenvalues

If all the are non-zero then the inequalities in (2.9.10) are strictly obeyed.
Now, however, suppose some of the are zero; in particular consider the con-
straint

1 = 0 (2.9.11)

for which ( )2 = 0. In this case ( )2 are the principal coordinates of the
system and the corresponding eigenvalues are

0 = +1 ( = 1 2 1) (2.9.12)

If the constraint is
= 0 1

then the principal coordinates are 1 2 1 +1 , so that

0 = = 1 2 1; 0 = +1 = + 1 1

If the constraint is (2.9.8) and some particular is zero, then equation (2.9.5)
shows that

=

½
1 =
0 6=

is a solution corresponding to = . This means that a constraint (2.9.8)
with = 0 does not a ect the th principal mode. Figure 2.9.2 shows the form
of ( ) when 2 = 0. The graph may a) pass to the left of 2, in which case
0
1 2

0
2 = 2; or b) pass to the right, in which case

0
1 = 2

0
2 2.

If two constraints are applied, then the constrained system will have 2
eigenvalues ( 00) 2

1 satisfying

0 00 0
+1 ( = 1 2 2)
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where 0 are the eigenvalues of the system subject to one of the constraints.
Thus

0 00 0
+1 +2 ( = 1 2 2)

or
00

+2 ( = 1 2 2) (2.9.13)

B( )λ

0 λ
1

• • λ
2

λ
3

′λ
2b

′λ
1a

a b

• ••

Figure 2.9.2 - The form of ( ) when 2 = 0; either a)
0
1 2

0
2 = 2 or b)

0
1 = 2

0
2 2.

2.10 Iterative and independent definitions of
eigenvalues

In this section we take a closer look at the eigenvalues of (2.6.3) in relation to
the Rayleigh Quotient

=
x Kx

x Mx
(2.10.1)

We assume that K is symmetric (it may or may not be positive semi definite)
and that M is positive definite. The importance of the latter assumptions is
that the denominator of (2.10.1) is never zero and always positive for all x 6= 0.
First, we note that is a homogeneous function of x in the sense that

( x) = (x) 6= 0

This means that we can always scale any x so that the denominator of (2.10.1)
is unity, i.e.,

x Mx = 1 (2.10.2)

The vectors x with this property constitute a closed and bounded subspace
1 . Now consider the Rayleigh Quotient on 1; it is

= x Kx (2.10.3)
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This is a continuous function of the variables 1 2 on the closed bounded
region 1 so that, by Weierstrass’ Theorem on continuous functions, it attains
its minimum value on 1, i.e., for some vector x 1. (Recall the definition of
a closed set : if { } is a convergent sequence in then its limit lim =
is also in .) There may be more than one such minimizing vector, but there is
always at least one, which we denote by x1. The corresponding minimum value
of we denote by 1. We have the result

1 = min
x 1

x Kx = x1Kx1 (2.10.4)

Having found x1 and 1, we set up a new minimum problem: finding the mini-
mum of x Kx on the subspace 2 of 1 that consists of vectors x orthogonal to
x1, i.e., x satisfying x Mx1 = 0. This subspace is again closed and bounded so
that by Weierstrass’ Theorem there is a vector x2 2 which minimizes x Kx

on 2; the minimum value is 2. We have

2 = min
x 2

x Kx = x2Kx2 (2.10.5)

and x2Mx2 = 1 x2Mx1 = 0. Since 2 is the minimum of x Kx on 2, a
subspace of 1 2 cannot be less than 1, i.e., 2 1.
Proceeding in this way we find a set of vectors x and numbers ( =

1 2 ) such that
= min
x

x Kx = x Kx (2.10.6)

x Mx =

½
1 =
0 6=

(2.10.7)

and 1 2 .
This procedure is iterative: we cannot set up the minimizing problem that

gives 2 until we have found x1, and generally we cannot set up the minimizing
problem that gives until we have found x1 x2 x 1. There is another
procedure in which we can find any x without first finding x1 x2 x 1;
this is called the independent or minimax procedure.
In the independent procedure we start as before:

1 = min
x 1

x Kx = x1Kx1

Now we return to the analysis of Section 2.9 relating to vibration under a con-
straint. The inequality (2.9.10) shows that if none of the ( )1 is zero, then
the first constrained eigenvalue, 1, is strictly less than 2. Equations (2.9.11),
(2.9.12) show that if the constraint is 1 = 0, then 1 = 2. The quantity 1

is the amplitude of the component of x1 in x, and on premultiplying equation
(2.7.13) by x1K we see that

x1Kx = 1x1Mx1 = 1 (2.10.8)

Thus 1 = 0 means that x is orthogonal to x1 w.r.t. the matrix M; this is the
constraint which yields the maximum value of 1, namely 2.
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Thus
max
d

min
x 1
x d

x Kx = 2 (2.10.9)

where x d means x Md = 0; the d which maximizes the minimum is x1.
We may now extend this analyses to higher eigenvalues by using (2.9.13);

thus
max
d1 d2

min
x 1

x d1 d2

x Kx = 3

and generally
max

d1 d2 d

min
x 1

x d1 d2 d

x Kx = +1 (2.10.10)

Again, the d’s that maximize the minimum in the general case are d1 = x1 d2 =
x2 d 1 = x 1.
The minimax definition of eigenvalues seems to have been noted first by

Fischer (1905) [88]. The iterative and independent definitions of eigenvalues
are discussed at length in Courant and Hilbert (1953) [64], and in the more
specialised volume Gould (1966) [151]. The motivation for Gould’s book was
the search for lower bounds for eigenvalues; discretising methods like the finite
element method almost always lead to upper bounds.
Exercises 2.10

1. Examine the arguments in Sections 2.9, 2.10 in the case when two eigen-
values are equal, e.g., 1 = 2.

2. Use the minimax procedure to show that if sti ness is added to a system,
i.e., the sti ness matrix is changed from K to K0, and x K0x x Kx

for all x , then none of the eigenvalues of the system decreases. Why
can you prove this result only for 1 by using the iterative definition?
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Jacobi Matrices

Let no one say that I have said nothing new; the arrangement of the subject is
new.

Pascal’s Pensées, 22

3.1 Sturm sequences

In this Chapter we will analyse the properties of the eigenvalues and eigenvec-
tors of systems with the special tridiagonal mass and sti ness matrices met in
Chapter 2. We will start by considering systems like that for the system in
Figure 2.2.1, for which the mass matrix is diagonal and the sti ness matrix is
tridiagonal, with negative codiagonal. At the end of the section we will show
that many of the results may be generalised to apply to systems like that in
(2.4.10) in which the mass matrix is tridiagonal with positive codiagonal. The
most important property of the eigenvalues of such systems is that they are
simple, i.e., distinct (Theorem 3.1.3). Thus

1 2

If x is the th eigenvector, then as increases, the eigenvectors oscillate more
and more (Theorem 3.3.1) in such a way that the zeros of x interlace those of the
neighbouring x 1 and x +1 (3.3.4). We shall now establish these and other
results. Throughout the next few Chapters, we redevelop analysis originally
established by Gantmacher and Krein (1950) [98]. Their book was republished
in 2002..
We start with a definition:

Definition 3.1.1 A Jacobi matrix is a positive semi-definite symmetric tridi-
agonal matrix with (strictly) negative codiagonal.

Note: Di erent authors define a Jacobi matrix in di erent ways; some choose
the codiagonal to be strictly positive.

49
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Now we consider the equation

(K M)x = 0 (3.1.1)

where K is a Jacobi matrix. First, we suppose that M is a (strictly) positive
diagonal matrix, as in (2.2.7), and we reduce (3.1.1) to standard form.
Take

M = diag( 1 2 )

and write M = D2, where

D = diag( 1 2 ) =
1
2

introduce the vector u related to x by

u = Dx x = D 1u

and premultiply (3.1.1) by D 1 to obtain

D 1(K D2)D 1u = 0

i.e.,
(J I)u = 0 (3.1.2)

where
J = D 1KD 1 (3.1.3)

The matrix J like K, is a Jacobi matrix, and has the same eigenvalues as the
system (3.1.1). We write

J =

1 1 0 0

1 2 2 0
. . .

. . .
. . .

. . .
. . .

. . . 1

1

(3.1.4)

The analysis now centres on the leading principal minors (see (1.4.6)) of the
matrix J I. We define

0 = 1 1( ) = 1 2( ) =

¯̄̄
¯ 1 1

1 2

¯̄̄
¯ etc. (3.1.5)

so that finally
( ) = det(J I) (3.1.6)

The minors satisfy the three-term recurrence relation

+1( ) = ( +1 ) ( ) 2
1( ) = 1 2 1 (3.1.7)

which enables us to calculate 2 3 successively from 0 1. Since
the zeros of any ( ) are the eigenvalues of the truncated symmetric matrix
obtained by retaining just the first rows and columns of J, they are all real.
We now prove:
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Theorem 3.1.1 If 2 0 ( = 1 2 1), then the ( ( ))0 form a Sturm
sequence, the defining properties of which are

1. 0( ) has everywhere the same sign ( 0( ) 1).

2. When ( ) vanishes, +1( ) and 1( ) are non-zero and have opposite
signs.

Proof. In order to establish property 2 we note first that two successive
cannot be simultaneously zero - i.e., for the same = 0. For if +1(

0) =
0 = ( 0) then equation (3.1.7) shows that 1(

0) = 0, so that finally we
must have 1 and 0 zero; but 0(

0) = 1, which yields a contradiction.
The latter part of property 2 now follows directly from (3.1.7).
Before proceeding further we must define the sign change function ( ).

This is the integer-valued function equal to the cumulative number of sign-
changes in the sequence 0 1( ) 2( ) ( ). Thus if

J =
2 1 0
1 3 2
0 2 4

then,

0 = 1 1( ) = + 2

2( ) = 2 5 + 5 3( ) =
3 + 9 2 21 + 12

For = 0 the sequence of values is 1, 2, 5, 12. Since there is no change of sign
in the sequence, each (0) = 0. For = 3 the sequence is 1, -1, -1, 3, so that
1(3) = 2(3) = 1 3(3) = 2.

Theorem 3.1.2 ( ) changes only when passes through a zero of the last
polynomial, ( ).

Proof. Clearly, ( ) can change only when passes through a zero of one
of the ( ) ( ); it therefore su ces to prove that ( ) does not change
at all when passes through a zero of an intermediate ( ) ( ). Suppose
( 0) = 0, where 1 , then 1(

0) and +1(
0) will be both non-zero

and have opposite signs. The signs of the triad 1(
0) ( 0) +1(

0) are
therefore +0 - or - 0+. Suppose the first to be the case, so that ( ) increases
as passes through 0, (the other possibility may be handled similarly). Then
for values of su ciently close to 0 and less than 0 the signs are + - -,
while for values of su ciently close and greater than 0 the signs are + +
-. Thus, whether is greater than or less than 0 there is just one change
of sign in the triad of values of 1( ) ( ) +1( ). In other words the
triad of polynomials 1( ) ( ) +1( ) will not contribute any change
to ( ) as passes through 0. But no other members of the sequence will
contribute any change to ( ) as passes through 0 (unless 0 is a zero of
another ( ) | | 2, in which case again there will be no change in ( ))
so that ( ) will not change at all.
Clearly, ( ) is not well defined when ( ) = 0.
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Theorem 3.1.3 The zeros of ( ), are simple, i.e., distinct. In addition, if
( 0) 6= 0 and ( 0) = , then ( ) has zeros less than 0.

Proof. Since ( ) = ( ) + · · · , all ( ) will be positive for su ciently
large negative , i.e., , so that ( ) = 0: may be taken to be zero if
J is positive definite. On the other hand, for su ciently large positive , i.e.,

, the ( ) will alternate in sign, so that ( ) = . Now since ( )
can increase only when passes through a zero of ( ), all the zeros of ( )
must be distinct. For if 0 were a zero of even multiplicity then ( ) would
not increase at all as passed through 0, while ( ) would increase only by
unity if 0 were a zero of odd multiplicity. The second part of the theorem now
follows immediately.

Corollary 3.1.1 The eigenvalues of a Jacobi matrix are distinct.

Corollary 3.1.2 The number of zeros of ( ) satisfying is equal to
( ) ( ).

Corollary 3.1.3 If 0 is a zero of ( ) then, as passes from 0 to 0+
the sign of 1( ) ( ) changes from + to -, and ( ) increases by unity.

Theorem 3.1.4 Between any two neighbouring zeros of ( ) there lies one
and only one zero of 1( ), and one and only one zero of +1( ).

Proof. Let 1 2 be the two neighbouring zeros. Suppose, for the sake of
argument that ( 1 ) 0, then ( 1+) 0 and ( 2 ) 0. By Corollary
3.1.3, 1( 1+) 0 and 1( 2 ) 0, so that 1( ) changes sign between

1+ and 2 , and therefore has at least one zero in ( 1 2).
Now property 2 of Sturm sequences shows that +1( ) and 1( ) ( =

1 2) have opposite signs. Thus +1( 1+) 0 +1( 2 ) 0 so that +1( )
has at least one zero in ( 1 2). Now suppose, if possible, that 1( ) (or
+1( )) had two (or more) zeros in ( 1 2) then ( ) would have a zero in

( 1 2), contrary to the hypothesis that 1 2 are neighbouring zeros.
This theorem is usually stated in the form: the eigenvalues of successive

principal minors interlace each other.

3.2 Orthogonal polynomials

There is an intimate connection between Jacobi matrices and orthogonal poly-
nomials. In this section we outline some of the basic properties of orthogonal
polynomials.
Two polynomials ( ) ( ) are said to be orthogonal w.r.t. the weight

function ( ) 0 over an interval ( ) if

( )

Z
( ) ( ) ( ) = 0 (3.2.1)
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A familiar example is provided by the Laguerre polynomials ( ( ))0 , i.e.,

0( ) = 1 1( ) = 1 2( ) =
2 4 + 2

which are orthogonal w.r.t. the weight function over (0 ), i.e.,Z
0

( ) ( ) = 0 6=

One of the important properties of such polynomials is that they satisfy a three-
term recurrence relation. The relation for the ( ), for example, is

+1( ) = ( 2 1) ( ) 2
1( )

In this section we shall be concerned, not with a continuous orthogonality
relation of the form (3.2.1), but with a discrete orthogonality relation

( )
X
=1

( ) ( ) = 0; ( )1 0 (3.2.2)

where ( )1 are points, satisfying 1 2 · · · .
To introduce the concept formally we let P denote the linear space of poly-

nomials of order , i.e., the set of all polynomials ( ) with degree , with
real coe cients. On this space (,) acts as an inner product since it is positive
definite, bilinear and symmetric, i.e.,

1. ( ) || ||2 0 if ( ) 6= 0

2. ( ) = ( ) ( + ) = ( ) + ( )

3. ( ) = ( )

In addition

4. ( ) = ( )

We now prove

Theorem 3.2.1 There is a unique sequence of monic polynomials, i.e., ( ( ))0
such that ( ) has degree and leading coe cient (of ) unity, which are or-
thogonal with respect to the inner product (,), i.e., for which

( ) = 0 6=

Proof. The ( ) may be constructed by applying the familiar Gram-
Schmidt orthogonalisation procedure to the linearly independent polynomials
( ) 1

0 . Thus

0 = 1 ( ) =
1X

=0

( ) ( = 1 2 1)
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where
( ) = ( ) ( ) = 0

so that
= ( ) || ||2 = 0 1 1

We note that the polynomial

( ) =
Y
=1

( )

is the monic polynomial of degree in the sequence. It is orthogonal to ( ) 1
0 ;

in fact it is orthogonal to all functions, since ( ) = 0 = 1 2 .
The Gram-Schmidt procedure does not provide a computationally convenient

means for computing the ; instead we use Forsythe (1957) [90].

Theorem 3.2.2 The monic polynomials ( )0 satisfy a three-term recurrence
relation of the form

( ) = ( ) 1( )
2
1 2( ) = 1 2 (3.2.3)

with the initial values

1( ) = 0 0( ) = 1 (3.2.4)

Proof. ( ) 1( ) is a polynomial of degree ( 1). It may therefore be
expressed in terms of (the linearly independent - see Ex. 3.2.1) 0 1 1.
Thus

( ) 1( ) = 0 0 + 1 1 + · · ·+ 1 1 (3.2.5)

Take the inner product of this equation with ( ) ( = 0 1 1) thus

( ) ( 1 ) =
1X

=0

( ) = || ||2 (3.2.6)

where the second term on the left has been rewritten by using property 4, above.
But if = 0 1 1, then the first term on the left is zero, and if =
0 1 3, then has degree at most 2 and so is orthogonal to 1.
Thus = 0 if = 0 1 2 3 and there only two terms 1 and 2 on
the right of (3.2.5) i.e.,

( ) 1( ) = 2 2( ) + 1 1( ) (3.2.7)

Moreover equation (3.2.6) gives

= 1 = ( 1 1) || 1||
2 (3.2.8)

2 = ( 1 2) || 2||
2
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But 2 is a monic polynomial of degree 1; it may therefore be expressed
in the form

2( ) = 1( ) +
2X

=0

( )

so that
( 1 2) = || 1||

2

and thus 2 is negative and equal to
2
1, where

= || || || 1|| ¥ (3.2.9)

Equations (3.2.3), (3.2.4) with (3.2.8), (3.2.9) enable us to compute the poly-
nomials { } 1

1 step by step. Thus with 1 = 0 0 = 1 we first compute 1

from (3.2.8); this substituted into (3.2.3) gives 1. Now we compute 2 1 and
find 2, etc.
In inverse problems we will need to express the weights in terms of the

polynomials 1 and . For this we note that if ( ) is any polynomial in
P 1, i.e., of degree 2 or less, then

( 1 )
X
=1

1( ) ( ) = 0

But if such a combination

X
=1

( ) = 1( )

is zero for any ( ) in P 1 then

X
=1

= 0 ( = 0 1 2)

since each is in P 1, i.e.,

Bm =

1 1 1 · · · 1

1 2 3 · · ·
2
1

2
2

2
3 · · · 2

· · · · ·
2

1
2

2
2

3 · · · 2

1

2

3

· · ·
·

= 0 (3.2.10)

It is shown in Ex. 3.2.2 that this equation has the solution

=
Y
=1

0( ) (3.2.11)
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Apart from the arbitrariness of the factor , this is the unique solution. The
prime means that the term = is omitted. Now since

( ) =
Y
=1

( ) (3.2.12)

we have

0 ( ) =
Y
=1

0( )

where the prime on the left denotes di erentiation!
Returning to equation (3.2.11) we can deduce that, for some ,

1( ) = 0 ( ) = 1 2

Since the { }0 satisfy the three-term recurrence relation (3.2.3) it follows,
by the arguments used in Section 3.1, that the zeros of ( ) and 1( ) must
interlace and therefore (Ex. 3.2.3) 1( ) 0 ( ) 0. This means that the
weights

= { 1( ) 0 ( )} (3.2.13)

are positive.
This equation is important: it means that if the monic polynomials
( ), 1( ) are given, and if their zeros interlace, then they may be viewed as

the th and ( 1)th members, respectively, of a sequence of monic polynomials
orthogonal w.r.t. the weights given by (3.2.13), and the points { }1 .

Exercises 3.2

1. Show that if the polynomials { }0 , are orthogonal w.r.t. the inner-
product (3.2.2), then they are linearly independent. Hence deduce that
any polynomial ( ) of degree 1 may be expressed uniquely in the form

( ) =
1X

=0

( )

and that ( ) is orthogonal to each polynomial of degree 1.

2. Show that if the Vandermonde determinant 4 is defined by

4 =

¯̄̄
¯̄̄
¯̄̄
¯

1 1 · · · 1

1 2 · · · 1
2
1

2
2 · · · 2

1

· · · · · · · · · · · ·
2

1
2

2 · · · 2
1

¯̄̄
¯̄̄
¯̄̄
¯
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then

4 =
1Y

=2

1Y
=1

( ) =
1Y

=1

( )

where

=
Y
=2

1Y
=1

( )

Hence deduce (3.2.11).

3. The zeros { }1 of ( ), and { } 1
1 of 1( ) must satisfy 1 1

2 · · · 1 . Show that ( ) 0 ( ) 0 ( ) 1( ) 0
and hence 0 ( ) 1( ) 0.

3.3 Eigenvectors of Jacobi matrices

In this section we establish some properties of the eigenvectors of Jacobi matrices,
in preparation for the solution of ‘inverse mode problems’. We return to the
analysis of Section 3.1 and prove

Theorem 3.3.1 The sequence ( ) =1 for the th eigenvector has exactly 1
sign reversals.

Proof. The are determined from equation (3.1.2) for = ; this may
be written

1 1 + ( ) +1 = 0 ( = 1 2 ) (3.3.1)

where 0 +1 are interpreted as zero, i.e.,

0 = 0 = +1 (3.3.2)

Choose an arbitrary 0 and put

1 = 1 2 = 1 2 +1 = 1 2 · · · +1

and multiply equation (3.3.1) by 1 2 · · · 1 to obtain

2
1 1 + ( ) +1 = 0 ( = 1 2 ) (3.3.3)

On comparing this equation with (3.1.7) we see that it has the solution

0 = 0 1 = 1 = 1( ) ( = 1 2 + 1)

which because of ( ) = 0, satisfies the end-condition +1 = 0.
Thus,

= ( 1 2 · · · 1)
1

1( ) (3.3.4)

and since lies between the ( 1)th and th zeros of 1( ) 1( ) = 1

Before establishing further properties of the eigenvectors we introduce the
concept of a u-line.
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Definition 3.3.1 Let u = { 1 2 +1} be a vector. We shall define the
u-line as the broken line in the plane joining the points with coordinates

= = ( = 1 2 + 1)

Thus, between ( ) and ( +1 +1) ( ) is defined by

( ) = ( + 1 ) + ( ) +1 ( = 1 2 )

as shown in Figure 3.3.1.
Now return to Theorem 3.3.1. For arbitrary (real) the sequence given by

0 = 0 ( ) = 1( 1 2 · · · 1)
1

1( ) ( = 1 2 + 1)

satisfies the recurrence (3.3.1) for = 1 2 . (It will satisfy the last
equation with +1 = 0 i ( ) = 0.) For arbitrary , the vector u( ) =
{ 1( ) +1( )} defines a ( ) line. We now investigate the nodes of this
line, i.e., the points at which ( ) = 0. First we note that if ( ) = 0, i.e.,

1( ) = 0, then ( ) and 2( ), i.e., +1 and 1, will have opposite
signs, so that the ( ) line will cross the -axis at = . Secondly, if
and +1 have opposite signs, then ( ) has a node between and + 1. This
implies that the ( ) line has exactly nodes, excluding the left hand end
where 0 = 0, but including the right hand end. Moreover, if +1,
then the ( ) line will have exactly nodes, again excluding the left hand end
where 0 = 0. Table 3.3.1 shows the signs of for the whole range of -values,
for the case = 3. The last line in the table shows the number of nodes in the
( ). Figure 3.3.1 shows the form of the ( ) for the starred values of . We
now establish an identity which will enable us to prove further results concerning
the eigenvectors.

•

•

•

•

•

•

•
Figure 3.3.1 - The ( ) lines for , and .



3. Jacobi Matrices 59

Table 3.3.1 -The signs of for di erent values of
0 1 2 3

1 + + + + + + +
2 + + + 0 - - -
3 + + 0 - - 0 +
4 + 0 - - 0 + 0

0 1 1 1 2 2 3

Consider the solutions u v of the equations (3.3.1) corresponding to
respectively. Suppose that 0 = 0 = 0 and that some positive value has been
assigned to . Then

1 1 + +1 = ( = 1 2 )

1 1 + +1 = ( = 1 2 )

Eliminating from these equations, we find

1 1 = ( )( 1) (3.3.5)

where

= +1 +1 =
X
=1

(3.3.6)

so that on summing over = + 1 (1 ), we obtain

1 1 = ( )( 1) (3.3.7)

In particular, if = 1, so that 0 = 0 = 0 = 0 = 0,

= ( ) (3.3.8)

We now prove

Theorem 3.3.2 If , then between any two nodes of the ( ) - line there
is at least one node of the ( ) - line.

Proof. Let ( ) be two neighbouring nodes of the -line and suppose
that

1 + 1 ( )

so that
( ) ( ) 1 + ( + 1) = 0 (3.3.9)

( ) ( + 1 ) + ( ) +1 = 0 (3.3.10)

and ( ) 6= 0 for . For the sake of definiteness suppose that
( ) 0 for , then +1 are all positive. We now need
to prove that ( ) has a zero between and . Suppose ( ) has no such
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zero, that is, it has the same sign for . Without loss of generality we
can assume that

( ) 0 for

that is ( ) 0 ( ) 0 and +1 are all positive. Thus,

( ) 1 + ( + 1) 0 (3.3.11)

( + 1 ) + ( ) +1 0 (3.3.12)

and on eliminating between (3.3.9), (3.3.11), and between (3.3.10), (3.3.12)
we deduce that 1 0, 0. On the other hand, 1 =

P
= 0,

so that the LHS of (3.3.7) is non-positive, while the RHS is positive, providing
a contradiction. If we had assumed ( ) 0 for , the we would
have found the LHS of (3.3.5) non-negative and the RHS negative.

Theorem 3.3.3 As increases continuously, then the nodes of the ( ) - line
shift continuously to the left.

Proof. Let 1( ) 2( ) be the nodes of the ( ) - line, and suppose
0 1( ) 2( ) are the nodes of the ( ) - line. We need to prove that

( ) ( )

for all those values of corresponding to the ( ) - line. Since, by Theorem
3.3.2, there is a least one of the ( ) between any two of the ( ), it is su cient
to prove that

1( ) 1( ) =

Suppose if possible that 1( ) and that

+ 1 (1 )

then all 1 2 and 1 2 will be positive while

( + 1 ) + ( ) +1 = 0

( + 1 ) + ( ) +1 0

which imply 0. On the other hand 0, which, when used with (3.3.8),
provides a contradiction.
Table 3.3.1 shows how the first node of ( ) appears at the right hand end

( +1) when = 1 and gradually shifts to the left, how the second zero appears
when = 2, etc.

Theorem 3.3.4 The nodes of two successive eigenvectors interlace.

Proof. Let the eigenvectors correspond to and +1. The nodes of the
( ) and ( +1) - lines are ( ( )) =1 and ( ( +1))

+1
=1 respectively; and

( ) = +1( +1) = + 1. Theorem 3.3.3 shows that 1( +1) 1( ),
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while Theorem 3.3.2 applied to the two zeros 1( ) and ( ) +1 shows
that ( +1) 1( ). These two inequalities imply that the only possible
ordering of the nodes is

0 1( +1) 1( ) 2( +1) · · · 1( ) (3.3.13)

( +1) ( ) = +1( +1) = + 1 ¥

The derivation of certain other important properties of the eigenmodes will
be deferred until Section 5.7, where properties of an oscillatory matrix will be
used. See Gladwell (1991a) [119] for some related results.

Exercises 3.3

1. Show that the first and last components of any eigenvector of a Jacobi
matrix must be non-zero.

2. Show that if the matrix J of (3.1.4), with negative o -diagonal elements
has an eigenpair u , then the corresponding matrix J with positive
o -diagonal elements, has eigenpair Zu where Z is given by Z =
(1 1 1 · · · ( ) 1). This means that the eigenvector corresponding to
the smallest eigenvalue, 1, has 1 sign changes, while that corresponding
to has none. Show that if the eigenvalues of J are numbered in reverse,
i.e., 1 2 · · · 0, then Theorem 3.3.1 remains valid.

3.4 Generalised eigenvalue problems

In Section 2.4 we showed that the eigenvalue problem for a finite element model
of a vibrating rod could be reduced to a generalised eigenvalue problem

(K M)u = 0 (3.4.1)

where K M were both symmetric tridiagonal matrices, K having negative co-
diagonal andM having positive codiagonal. IfM is positive definite, and K is
positive semi-definite (i.e., K is a Jacobi matrix), then the analysis of Chapter
1 shows that the eigenvalues are non-negative. Under these conditions we may
prove that the solutions of (3.4.1) share the properties of the eigenvalue prob-
lem in normal form i.e., equation (3.1.7). In particular, we can show that the
eigenvalues of (3.4.1) are distinct and that the sequence ( ) =1 for the th
eigenvector has exactly 1 sign reversals. To obtain these results we need to
return to the analysis in Section 3.1 onwards and see what changes have to be
made.
We start with the principal minors of the matrix K M, using the notation

of (2.4.10):

0( ) = 1 1( ) = 1 1 2( ) =

¯̄̄
¯ 1 1 1 1

1 1 2 2

¯̄̄
¯
(3.4.2)
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so that finally
( ) = det(K M)

The minors satisfy the three-term recurrence relation

+1( ) = ( +1 +1) ( ) ( + )2 1( ) (3.4.3)

The argument used in Section 3.1, 3.3 was based on the fact that the sequence of
principal minors defined by (3.1.5), (3.1.7) was a Sturm sequence. The sequence
defined by (3.4.2), (3.4.3) however, is not a Sturm sequence. For if ( ) = 0,
then +1( ) = ( + )2 1( ), and if it happens that + = 0,
then +1( ) would be zero, and not, as required by condition 2 of Theorem
3.1.1, of opposite sign to 1( ). Now we make the crucial observation, that
if we restrict attention to 0, then the ( ) do form a Sturm sequence
because being positive, eliminates the possibility that + = 0. If
we assume that M is positive definite and K is positive semi-definite, then all
the eigenvalues will be non-negative and we may proceed as before. Thus
Theorem 3.1.1 holds provided that 0, and Theorem 3.1.2 holds. The proof
of Theorem 3.1.3 must be slightly changed. In the expansion of ( ) in powers
of we have

( ) = 0 + 1 + + (3.4.4)

The first term, 0, is the th principal minor ofK and, sinceK is positive semi-
definite, 0 0 for = 1 2 1 and 0 0; since (0) = 0 we have
(0) = 0. The last term in (3.4.4), is = ( ) (the th principal minor of

M), so that for su ciently large , i.e., ( ) = . The remainder of the
proof of Theorem 3.1.1, the corollaries 1-3 and Theorem 3.1.4 follow as before.
We need to make small changes in the proof of Theorem 3.3.1. The are

determined from the equations

( 1 + 1) 1 + ( ) ( + ) +1 = 0 (3.4.5)

for = 1 2 , where 0 = 0 = +1 .
Put + = , choose an arbitrary 0, and put

1 = 1 2 = 1 2 +1 = 1 2 +1

and multiply equation (3.4.5) by 1 2 1 to obtain

2
1 1 + ( ) +1 = 0 = 1 2

On comparing this with (3.4.3) we see that it has the solution

0 = 0 1 = 1 = 1( ) ( = 1 2 + 1)

Again, we conclude that 1( ) = 1.
We may make similar changes to the proofs of Theorems 3.3.2-3.3.4.

Exercises 3.4

1. Make appropriate changes in the proofs of Theorems 3.3.2-3.3.4.
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Inverse Problems for Jacobi
Systems

People are generally better persuaded by the reasons which they themselves
have discovered than by those which have come into the minds of others.

Pascal’s Pensées, 10

4.1 Introduction

Research on these inverse problems began in the former Soviet Union, with the
work of M.G. Krein. It appears that his primary interest was in the qualitative
properties of the solutions of, and the inverse problems for, the Sturm-Liouville
equation (see Chapter 10), and the discrete problems were studied because such
problems were met in any approximate analysis of Sturm-Liouville problems.
Krein’s early papers Krein (1933) [198], Krein (1934) [199] concern the theory of
Sturm sequences, while the Supplement to Gantmacher and Krein (1950) [98],
Gantmacher and Krein (2002) and Krein (1952) [202] make use of the theory of
continued fractions developed by Stieltjes (1918) [310]. Krein sees his results as
giving mechanical interpretations of Stieltjes’ analysis.
Consider the simple system shown in Figure 4.1.1a.

k k
1 2

m
1

m
2

k k
1 2

m
1

m
2

Figure 4.1.1 - The system is a) free and b) fixed at the right hand end

If 1 2 1 2 are given, then the analysis of Chapter 2 shows how we can
find the two natural frequencies, 1 2 of the system: 1 =

2
1 2 =

2
2 are the

63
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eigenvalues of the equation·
1 + 2 1 2

2 2 2

¸ ·
1

2

¸
= 0 (4.1.1)

The eigenvalues are the roots of the determinant:

4( ) 1 2
2 { 2 1 + ( 1 + 2) 2} + 1 2 = 0 (4.1.2)

Now consider the inverse problem. First it is clear that if one set of values
1 2 1 2 has been found that yield specified eigenvalues 1 2, and if

0, then 1 2 1 2 will be another set yielding the same eigenvalues:
there are not four quantities to be found, only three ratios 1 : 2 : 1 : 2.
Knowing these ratios, we would need one more quantity, for instance the total
mass = 1 + 2, or the total sti ness given by 1 = 1 1 + 1 2, to find
the absolute values of the four quantities 1 2 1 2.
But even knowing two eigenvalues 1 2, we cannot find the three ratios; we

need one more piece of information. One possible piece is the single eigenvalue
=

2

of the system obtained by fixing 2, as shown in Figure 4.1.1b. This
is

=
2

=
1 + 2

1
(4.1.3)

The sum and product of the roots 1 2 of equation (4.1.2) are

1 + 2 =
2 1 + ( 1 + 2) 2

1 2
=

2

2
+
( 1 + 2)

1
(4.1.4)

1 2 =
1 2

1 2
(4.1.5)

Subtracting (4.1.3) from (4.1.4) we obtain

2

2
= 1 + 2 (4.1.6)

and then (4.1.5) gives
1

1
=

1 2

1 + 2
(4.1.7)

and finally (4.1.3) gives

2

1
=

1

1
=

1 2

1 + 2
=
( 1)( 2 )

1 + 2
(4.1.8)

The general theory of vibration under constraint (Section 2.9) states that 1

2, so that all the quantities on the right hand sides of (4.1.6)-(4.1.8) are
positive: the solution is realistic. The theory presented in this Chapter provides
various generalisations of this analysis to a lumped-mass system made up of
masses. The Chapter falls into three parts: a discussion of inverse problems for
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a Jacobi matrix; mass-spring realisations of these problems; generalisations and
variants of these problems.

Exercises 4.1

1. Show that if u1 u2 are the eigenvectors of (4.1.1), normalised so that
u Mu = , then the equation giving the eigenvalue is

2
2 1

1
+

2
2 2

2
= 0

so that knowing is equivalent to knowing 2 2 : 2 1.

2. Show that for the system of Figure 4.1.1, the system of given sti ness ,
(1 = 1 1 + 1 2), and least mass = 1 + 2, is found for
= 1 + 2 1 2.

3. Show that for a taut string with tension and unit length with just one
concentrated mass located at a distance 1 from the left hand end, 2

from the right, the frequency is given by

1 + 2 = 0

where

= 1 + 2 = 1

Hence find the system of least mass having a given frequency = .
This suggests the problem of finding a string of least mass having concen-
trated masses ( )1 separated by distances 1 2 +1, where

P +1
=1

= 1. Barcilon and Turchetti (1980) [23] considered this problem in a wider
context, but did not find a closed form solution for the discrete problem.

4.2 An inverse problem for a Jacobi matrix

It was shown in Section 3.1 that the (natural frequencies)2 of a lumped mass
system may be obtained as the eigenvalues of a Jacobi matrix

J =

1 1

1 2 2

· · · · ·
0 0 1 1

0 0 1

(4.2.1)

If the system is connected, i.e., the sti nesses between masses are strictly posi-
tive, then the codiagonal elements are strictly negative.
The basic theorem is
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Theorem 4.2.1 There is a unique Jacobi matrix J having specified eigenvalues
( )1 , where

0 1 2 · · · (4.2.2)

and with normalised eigenvectors (u )1 having non-zero specified values ( 1 )1 or
( )1 of their first or last components respectively; recall that u = { 1 2

}.

(We recall Ex. 3.3.1, that the first and last components of an eigenvector of
a Jacobi matrix are both non-zero.)
Proof. The theorem is at once an existence (there is ...) and a uniqueness

(... a unique) theorem. We shall prove existence by actually constructing a
matrix, and will do so by using the so-called Lanczos algorithm; the algorithm
demonstrates that J is unique. This algorithm has the advantage that numeri-
cally it is well conditioned. An independent proof that the matrix is unique is
left to Ex. 4.2.2. The proof will be presented for the case in which ( 1 )1 are
specified.
The eigenvectors u satisfy

Ju = u (4.2.3)

Use the column vectors (u )1 to construct a square matrixU : U = [u1 u2 u ].
The orthonormality conditions u u = yield

U U = I

This means that U is the inverse of U : U is an orthogonal matrix. But if
U U = I, then Theorem 1.3.6 states that UU = I also. Now put U = X,
thenUU = X X = I. But this means that the columns ofX, like the columns
of U, are orthonormal. Call the columns (x )1 , so that X = [x1 x2 x ],
then

x x =

The reason why we have introduced the vectors x is that

x1 = { 11 21 1} = { 11 12 1 } (4.2.4)

is given as part of the data.
Now we proceed to rewrite the eigenvalue equations (4.2.3) as equations for

the x . The set of equations (4.2.3) for = 1 2 , may be written

JU = U (4.2.5)

Thus, on transposing we find
XJ = X (4.2.6)

Written in full, this equation is

[x1 x2 x ]

1 1

1 2 2

· · · ·

1

= [x1 x2 x ] (4.2.7)
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Take this equation column by column. The first column is

1x1 1x2 = x1 (4.2.8)

Premultiply this by x1 , using x1 x1 = 1 x1 x2 = 0;

1x1 x1 = 1 = x1 x1

Now rewrite equation (4.2.8) as

1x2 = 1x1 x1 = z2

The vector z2 is known, because 1 x1 are all known. The vector x2 is to be
a unit vector, so that

1||x2|| = 1 = ||z2||

and x2 = z2 1. Having found 1 1 x2 we proceed to the next column of
(4.2.7):

1x1 + 2x2 2x3 = x2

Again, premultiplying by x2 we find 2 = x2 x2, and then

2x3 = 2x2 1x1 x2 = z3

so that

2||x3|| = 2 = ||z3|| x3 = z3 3

and so on. This procedure is called the Lanczos algorithm; see Lanczos (1950)
[203], Golub (1973) [132], Golub and Van Loan (1983) [135] and Kautsky and
Golub (1983) [192]. It produces a matrix J and at the same time constructs
the columns (x )1 which yield X = U .
Actually, what we have described is an inverse version of the original Lanczos

algorithm. This original algorithm solved the following problem: Given a
symmetric matrix A and a vector x1 such that x1 x1 = 1, compute a symmetric
tridiagonal matrix J and an orthogonal matrix X = [x1 x2 x ] such that
A = XJX . In our use of the algorithm, we start with A = .
We have defined a Jacobi matrix as a positive semi-definite symmetric tridi-

agonal matrix with strictly negative codiagonal. If the spectrum ( )1 satisfies
the inequalities (4.2.2), so that 1 0, then the J constructed by the Lanczos
algorithm from A will be a Jacobi matrix.

Exercises 4.2

1. Show that the vectors x constructed in the Lanczos algorithm satisfy

x x = = 1 2

even though this orthogonality is apparently established only for | | 1.
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2. Show that there cannot be two distinct Jacobi matrices J and J0 with
(J) = (J0) and with the same values of the first components ( 1 )1 of
their normalised eigenvectors.

3. Rewrite the procedure described in equation (4.2.5) on, to solve the original
Lanczos problem.

4.3 Variants of the inverse problem for a Jacobi
matrix

First, we introduce some notation. Suppose A M . The set of eigenvalues
of A, the spectrum of A is denoted by (A). If A is symmetric, i.e., A ,
then (A) is a sequence of real numbers ( )1 , where 1 2 3 · · · . If
M K , then the set of eigenvalues of equation (3.1.1) is denoted by (M K);
again it is a sequence of real numbers ( )1 satisfying 1 2 · · · .
See Kautsky and Golub (1983) [192], deBoor and Sa (1986) [76] for a dis-

cussion that places the Jacobi matrix problem in a wider context. Friedland
and Melkman (1979) [94] discuss the inverse eigenvalue problem in the context
of non-negative matrices.
If A , the matrix obtained by deleting the th row and column of A is

called a truncated matrix. It will sometimes be denoted by A ; its eigenvalues
will be denoted (A ).
Now suppose that A is a Jacobi matrix J, then its eigenvalues will be

distinct, and the eigenvalues (J1) = ( ) 1
1 will strictly interlace ( )1 , i.e.,

0 1 1 2 · · · 1 (4.3.1)

The problem of reconstructing J from (J) and (J1) seems to have been studied
first by Hochstadt (1967) [173]. He proved that there is at most one matrix J
with the required property. Hochstadt (1973) [176] attempted to construct this
unique Jacobi matrix, but he did not show that his method would always lead to
real values of the codiagonal elements . Hald (1976) [160] presented another
construction and showed that, in theory, it would always work provided that the
eigenvalues satisfied the interlacing condition (4.3.1). In practice, however, the
construction was found to break down due to loss of significant figures. Hald also
showed that Hochstadt’s construction will always lead to real provided that
(4.3.1) holds. Gray and Wilson (1976) [154] presented an alternative, inductive
construction of J. An independent uniqueness proof was given by Hald (1976)
[160].
In this section we shall present two methods for constructing J. The first

relies on the theory of orthogonal polynomials described in Section 3.2. The
second, which will later be generalised to inverse problems for band matrices,
relies on the Lanczos algorithm described in Section 4.2.
Note that we have chosen to define a Jacobi matrix so that it is positive

semi-definite. Many of the results require only the interlacing of the ’s and
the ’s, without any restriction on positivity.
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The first method is best described by supposing that (J) = ( )1 and
(J ) = ( ) 1

1 are known, and satisfy (4.3.1). Remember that J is obtained
by deleting the th row and column of J. Now we form monic polynomials
( ), rather than the polynomials ( ) in equation (3.1.5). We form two

polynomials

( ) =
Y
=1

( ) 1( ) =
1Y

=1

( ) (4.3.2)

The polynomials are the th and ( 1)th monic polynomials of the sequence
of monic polynomials with weights given by equation (3.2.13), i.e.,

= { 1( ) 0 ( )} (4.3.3)

and points ( )1 . In addition, they are the th and ( 1)th principal minors
of the matrix ( I J). The polynomials ( ) therefore satisfy

( ) = ( ) 1( )
2
1 2( ) (4.3.4)

Hald’s method of reconstructing J is as follows: he starts from ( ) 1( )
and constructs 2( ), and in the process finds and 1, by synthetic di-
vision. Then from 1( ) 2( ) he constructs 3( ) and finds 1 and

2, and so on. The process is inherently unstable because the polynomials
2 3 1 are found by successively cancelling the leading terms in the

preceding pair of polynomials; the process becomes unstable because of cancel-
lation of leading digits.
de Boor and Golub (1978) [75] proceed quite di erently. Having found the

weights by using (4.3.3), they construct the polynomials in the natural order
by using the analysis of Section 3.2, i.e.,

1( ) = 0 0( ) = 1 (4.3.5)

( ) = ( ) 1( )
2
1 2( ) (4.3.6)

with the numbers computed by

=
( 1 1)

|| 1||2
=

|| ||

|| 1||
= 1 2 1 (4.3.7)

This process is numerically stable.
The only major di culty encountered by de Boor and Golub lay in the

computation of the weights . In seeking to overcome this di culty, they used
the reflection of J about its second diagonal. The matrix

T =

0 0 1
1

·
1 0

(4.3.8)
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is orthogonal and symmetric, so that T2 = I. It reverses the order of the rows
and the columns of J, i.e., it transforms J into

J̄ = TJT =

1

1 1 2

. . .
. . .

. . .
. . .

. . . 1

1 1

(4.3.9)

If, therefore, the elements of J̄ are denoted by ¯ ¯ then

¯ = +1
¯ =

The leading principal minors of I J̄ are the trailing principal minors of I J;
we denote them by ¯ ( ). We prove

Theorem 4.3.1 For = 1 2

1( )¯ 1( ) = ( 1 2 1)
2 = 2

Proof. For once we step out of sequence, and use the notation we will
introduce in Section 6.2. Let denote the sequence {2 3 1}, then

1( ) = ( 1) ¯ 1( ) = ( )

Using Sylvester’s theorem (Corollary 2 of Theorem 6.2.2), with ( ) as pivotal
block, we obtain

0 = ( ) det(B) =

¯̄̄
¯ ( 1) ( 1; )

( 1; ) ( )

¯̄̄
¯

i.e.,
0 = 1( )¯ 1( ) ( 1 2 1)

2

This result means that the polynomials ¯ ( ) ¯ 1( ) 1̄( ) 0̄( ) are
the monic polynomials related to the weights

=
2

¯ 1( ) 0̄ ( )
=

1( )
0 ( )

(4.3.10)

These weights are more easily constructed than those in (4.3.3). In this proce-
dure, the terms in the matrix J are computed in the order ¯1 ¯1 ¯2 ¯

1 ¯ ,
i.e., in the order 1 1 1 1.
The second method of constructing J is due to Golub and Boley (1977) [133].

See also de Boor and Sa (1986) [76]. It relies on the fact that, once we know
(J) and (J1) we may compute the vector x1 of first components of the eigen-
vectors of J; these are the data needed for construction by the Lanczos algorithm
of Section 4.2. We can carry out the analysis for an arbitrary symmetric matrix
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A , rather than a Jacobi matrix. Barcilon (1978) [19] concentrated on the
eigenvectors corresponding to and , rather than using the to find the
quantities 1; his subsequent analysis did not lend itself to computation.
If A , then the eigenvalues of A1 are the stationary values of u Au

subject to u u = 1 and the constraint 1 = 0, i.e., u e1 = 0. Thus they are
the stationary values of

= u Au u u 2 u e1 (4.3.11)

where e1 = {1 0 0} and are Lagrange parameters. The condition that
be stationary yields

Au u e1 = 0 (4.3.12)

Since the eigenvectors u of A span , we may write

u =
X
=1

u (4.3.13)

and then

Au =
X
=1

Au =
X
=1

u

so that (4.3.12) becomes

X
=1

( ) u = e1

and the orthogonality condition u u = gives

( ) = u 1 = 1 = 1

where we have used (4.2.4). Substituting for in (4.3.13) we find

u =
X
=1

1u (4.3.14)

and the condition 1 = 0, and 1 = 1, yields the eigenvalue equation

X
=1

( 1)
2

= 0 (4.3.15)

We note that if A is a Jacobi matrix, none of the coe cients 1 will be zero
(Ex. 3.3.1). The analysis of Section 2.9 shows that the roots ( ) 1

1 of this
equation will then strictly interlace the ( )1 , as in (4.3.1).
Since x1 = { 11 21 1} and x1 is the first column of the orthogonal

matrix X = U , we have ||x1||2 = 1 =
P

=1( 1)
2, so that we have the identity

X
=1

( 1)
2

=

Q 1
=1 ( )Q
=1( )

(4.3.16)
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(Note that, for large , both sides approach 1 .) On multiplying (4.3.16)
through by ( ) and then putting = we find

( 1)
2 =

Q 1
=1 ( )Q 0
=1 ( )

= 1 2 (4.3.17)

where 0 indicates that the term = has been omitted. The interlacing condition
ensures that the right hand side of (4.3.17) is strictly positive for each =
1 2 . This equation thus yields x1.
We stress the importance of the analysis in equations (4.3.11)-(4.3.17). It

shows that if A is an arbitrary symmetric matrix, then (A) and (A1) de-
termine the vector x1 of first components of the normalised eigenvectors of A.
Conversely, (A) and x1 determine (A1).
There is a third inverse problem which appears in a number of contexts.

Given two strictly increasing sequences ( )1 and ( )1 with

0 1 1 2 2 · · · (4.3.18)

determine J such that (J) = ( )1 , and (J ) = ( )1 , where J =
( 1 1)E1 1 + J. (The matrix J di ers from J only in the 1,1 position.)
Suppose A is an arbitrary symmetric matrix, and that A di ers from

A only in the 1,1 position, i.e., A = A+ ( 1 1 1 1)E1 1. We will show that
(A) and ( ) determine x1. The eigenvalue equation for A is

A u = u (4.3.19)

which we write
Au+ ( 1 1 1 1) 1e1 = u

Write

u =
X
=1

u (4.3.20)

so that equation (4.3.19) becomes

X
=1

u + ( 1 1 1 1) 1e1 =
X
=1

u

and therefore,
( ) = ( 1 1 1 1) 1 1

which when substituted into (4.3.20), yields

u = ( 1 1 1 1) 1

X
=1

1 u

Equating the first components on each side of their equation, we have

1 = ( 1 1 1 1)
X
=1

2
1
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where 1 = 1 . The roots of this equation are ( )1 , so that

1 ( 1 1 1 1)
X
=1

2
1 =

Y
=1

µ ¶
(4.3.21)

and therefore

( 1 1 1 1)
2
1 = ( )

Y
=1

0

µ ¶
(4.3.22)

By comparing the traces of A and A we see that

1 1 1 1 =
X
=1

( ) 0 (4.3.23)

Thus, equation (4.3.22) expresses ( 1)
2 in terms of (A) and (A ), and the

interlacing condition (4.3.18) insures that ( 1)
2 will be positive. If we know

that A is a Jacobi matrix then, of course, we can use the Lanczos algorithm to
determine it. Note that nowhere in the analysis do we need the restriction that
1 is non-negative; only the strict interlacing is needed.
A matrix A is said to be persymmetric if it is symmetric, and also symmetric

about the second diagonal, the one going from top right to bottom left. Thus
A is persymmetric if Ā given by (4.3.9) satisfies

Ā = A (4.3.24)

If A is tridiagonal and persymmetric, then

= +1 = (4.3.25)

The final inverse problem considered here concerns the reconstruction of a
persymmetric Jacobian matrix. Now we need only one spectrum, not two. We
prove

Theorem 4.3.2 There is a unique persymmetric Jacobi matrix J with (J) =
( )1 , satisfying 0 1 2 · · · .

Proof. The simplest proof is perhaps to show that if the eigenvalues ( )1
are known, then it is possible to find the weights for the construction of the
orthogonal polynomials ( ). Indeed if J is persymmetric then the minor
( ) is equal to ¯ ( ). But then Theorem 4.3.1 shows that

[ 1( )]2 = 2 i.e., 1( ) = ±

so that equation (4.3.10) yields

= ± 0 ( ) (4.3.26)
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Since the signs of 0 ( ) will alternate with , then so must the signs in (4.3.26)
if the are to be positive. The magnitude of is irrelevant to the construction
of the ( ). See Hochstadt (1979) [182] for another variant of this inverse
eigenvalue problem.
Exercises 4.3

1. Show that if B = I J, then

(1 2 1; 2 3 ) = ( ) 1
1 2 1

2. Show that the 1 computed from (4.3.22) do satisfy

X
=1

2
1 = 1

3. If you like using a computer, then try to reconstruct a Jacobi matrix using
Hald’s method, or that of de Boor and Golub. Start with the matrix J
with

= 2 = 1 = 1 2 1; = 2

Set up recurrence relations to give ( )1 and ( ) 1
1 and use these as data

to reconstruct J.

4.4 Reconstructing a spring-mass system; by end
constraint

We may divide the problem of reconstructing an in-line spring-mass system into
three stages:

i) Formulate the problem as an inverse eigenvalue problem for a Jacobi matrix
J.

ii) Solve this problem and find J.

iii) Recover the mass and sti ness matricesM and K from J.

Stage i) was discussed in Section 3.1; we repeat the analysis here. For an
in-line system, the frequency equation governing free vibration is

(K M)y = 0 (4.4.1)

For the system shown in Figure 4.4.1 the matrices K andM are given explicitly
in (2.2.7). We writeM = D2, where D = ( 1 2 ), put Dy = u and
reduce (4.4.1) to

(J I)u = 0 (4.4.2)

where
J = D 1KD 1 (4.4.3)
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Stage ii) was the subject of Section 4.3. Given the spectra of the systems
in Figure 4.4.1a) and b), i.e., (J) = ( )1 and (J1) = ( ) 1

1 , we construct
x1, the vector of first components of the eigenvectors u of (4.4.2), and then
construct J by using the Lanczos algorithm of Section 4.2.
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Figure 4.4.1 - Two possible ways of constraining the end of a fixed-free system

It remains to consider Stage iii). By using the explicit form of K in equation
(2.2.7) we can verify that if

e = {1 1 1} (4.4.4)

then
Ke = { 1 0 0 0} (4.4.5)

Physically, this equation states that a static force 1 applied to mass 1 will
extend the first spring by unit amount and at the same time displace all the
remaining masses 2 3 by unit amount to the right, as if everything
to the right of 1 were a rigid body. Since K = DJD we have

DJDe = DJD{1 1 1} = { 1 0 0 0}
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i.e.,
Jd = J{ 1 2 } = { 1 1 0 0 0} (4.4.6)

(Note that D = ( 1 2 ), while d = { 1 2 }.) We need to
be sure that d so calculated will be a strictly positive vector. We prove

Theorem 4.4.1 If J is a non-singular Jacobi matrix, then J 1 is a strictly
positive matrix, meaning that each element of J 1 is strictly positive; we write
this J 1 0.

Proof. We use induction. Write

J =

·
1 b

b J1

¸
b = { 1 0 0}

We will have achieved our goal if we can show that if J 1
1 0 then J 1 0.

Suppose

J 1 =

·
1 k

k H

¸
then

JJ 1 =

·
1 b

b J1

¸ ·
1 k

k H

¸
=

·
1 0

0 I

¸
so that

bk + J1H = I b 1 + J1k = 0

Since J is a non-singular Jacobi matrix, it is positive definite; so therefore is
J 1, by Ex. 1.4.2; therefore 1 0, and so k = J 1

1 b 1 0. (Note that the
product of J 1

1 , which is strictly positive by hypothesis, and the non-negative
non-zero vector b, is strictly positive.) Therefore,

H = J 1
1 bk + J 1

1 0

(Note that since J 1
1 0, all we need in order to prove that H 0, is that

bk 0, i.e., k 0; actually though, k 0.) Thus H 0 k 0 and 1 0
so that J 1 0.
We may now return to equation (4.4.6). Take the unique reconstructed

non-singular J and solve

Jx = J{ 1 2 } = {1 0 0} = e1

The solution x is strictly positive: x 0. Thus the solution of equation (4.4.6)
is

d = x

for some as yet unknown 0. The total mass of the system is

=
X
=1

=
X
=1

2 = ||d||2 = 2||x||2



4. Inverse Problems for Jacobi Systems 77

Thus, knowing and ||x||2, we can find 0 and d, and thus D. Then
K = DJD, and because K satisfies (4.4.5), it necessarily (Ex. 4.4.1) has the

form K = EK̂E given in equation (2.2.12), where K̂ = ( 1 2 ).
This completes the reconstruction.
The reconstruction from the spectra of a) and c) proceeds along similar lines;

we merely renumber the masses starting from the right (Ex. 4.4.2).
This reconstruction may be used in a reversed situation: it shows that any

non-singular Jacobi matrix J may be expressed uniquely as

J = D 1EK̂E D 1 (4.4.7)

whereD K̂ are strictly positive diagonal matrices and ||D|| = 1; this corresponds
to = 1 in equation (4.4.6).
Now we consider the fixed-fixed case shown in Figure 4.4.2a; there is essen-

tially only one constraint we can apply, to , as shown in Figure 4.4.2b).
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Figure 4.4.2 - A fixed-fixed system, and a constrained system

We start our analysis as before. The sti ness matrix for the system in a) is

K =

1 + 2 2

2 2 + 3 3

· · · ·

+ +1

(4.4.8)

Knowing the spectra ( )1 and ( ) 1
1 of the systems a) and b) we can construct

J = D 1KD 1 where again M = D2. Now however

K{1 1 1} = { 1 0 0 0 +1} : (4.4.9)
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this states that in order to produce unit static displacements of the masses, we
must apply two forces, 1 at 1 and +1 at . Thus

DJD{1 1 1} = 1e1 + +1e

so that

Jd = J{ 1 2 } = ( 1 1)e1 + ( +1 )e (4.4.10)

First, consider the equation
Jy = e (4.4.11)

simple algebra shows that the solution is

= +1 1 1 (4.4.12)

where is the th leading principal minor of J (see equation (1.4.6). Since J
is positive definite, equation (4.4.12) confirms that the solution y is positive, as
predicted by Theorem 4.4.1. We can find the solution of

Jx = e1 (4.4.13)

in a similar way (Ex. 4.4.3); all we need here is that, according to Theorem
4.4.1, x 0.
Using x and y we may write the solution of (4.4.10) as

d = ( 1 1)x+ ( +1 )y (4.4.14)

In particular,

= ( 1 1) + ( +1 )

=
1

1
+

+1 1 (4.4.15)

But =
Q

=1 and 1 =
Q 1

=1 , so that we can write equation (4.4.15)
as

+1

Q 1
=1Q
=1

=
1

1
(4.4.16)

Now consider this equation. The system in Figure 4.4.2a) has 2 +1 parameters.
Choose one of the parameters, and divide the remaining 2 parameters by it;
we obtain 2 ratios. The two spectra ( )1 and ( ) 1

1 provide 2 1 ratios,
so one more ratio is needed. The chosen parameter is merely a scaling factor;
the total mass, or alternatively one individual mass, say , would determine
it. If we take as known, then equation (4.4.16) states that the required 2 th
ratio, +1 must be chosen so that

0
+1

Q
=1Q 1
=1

(4.4.17)
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This inequality was first pointed out by Nylen and Uhlig (1997a) [253]. Once
we have chosen +1 satisfying this inequality, then equation (4.4.16) deter-

mines 1 1, since is known, and =
1
2 . With +1 and 1 1 known,

equation (4.4.14) gives d and hence D and K = D 1JD 1. The reconstruction
is complete.
The third system is free-free, as shown in Figure 4.4.3a); constraining 1 we

obtain the fixed-free system in Figure 4.4.3b).
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Figure 4.4.3 - A constraint is applied to a free-free system

The pair is essentially the same as the pair in Figure 4.4.1, with 1 = 0. The
analysis starts as before; the only di erence is that the lowest frequency of a) is
1 = 0. Still, from (J) and (J1) we can construct J uniquely, but now J will
be singular, i.e., positive semi-definite.
The sti ness matrix K of system a) will satisfy

K{1 1 1} = 0 (4.4.18)

Now we need a result like Theorem 4.4.1 which covers the case when J is singular.
It is

Theorem 4.4.2 If J is a singular Jacobi matrix then the equation Jx = 0 has
a unique strictly positive solution x satisfying ||x|| = 1.

The proof is straightforward; see Ex. 4.4.4.
Now we may complete the reconstruction. We take J and write K = DJD,

then (4.4.18) becomes
Ke = DJDe = DJd = 0

Thus d = cx where x is governed by Theorem 4.4.2, and if the total mass = 1,
then = 1. This gives d and hence D and

K = DJD = EK̂E



80 Chapter 4

where K̂ = ( 1 2 ). Again, we can use this result to show that an
arbitrary singular Jacobi matrix may be written

J = D 1EK̂E D 1 (4.4.19)

where now K̂ has first diagonal entry zero.

Exercises 4.4

1. Show that if Ke = 1e1, and E 1 is given by (2.2.10), then KE is
bidiagonal and E 1KE is diagonal.

2. Reconstruct the system of Figure 4.4.1a) from the spectra ( )1 and ( ) 1
1

of a) and c) respectively.

3. Use the solution (4.4.12) of equation (4.4.11), and the transformation from
J to J̄ given in (4.3.9) to find the solution to equation (4.4.13).

4. Provide a constructive proof of Theorem 4.4.2, by writing x in terms of
the principal minors of J.

5. Suppose that the eigenvalues ( )1 of the system in Figure 4.4.2a are
known, as are the eigenvalues ( )1 when the sti ness +1 is replaced
by some unknown sti ness +1. Show that there is a one-parameter
family of systems, each member of which has the stated eigenvalues.

6. Show that if J is a non-singular Jacobi matrix, then its inverse C = J 1

has the form

C =

1 1 1 2 1

1 2 2 2 2

· · ·

1 2

i.e.,

=

½

and that ( )1 , ( )1 are strictly positive, and satisfy

1

1

2

2
· · ·

This result is quoted in Gantmacher and Krein (1950) [98], but may have
been known earlier.
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4.5 Reconstruction by using modification

The simplest way to modify a system is to attach a spring at a free end, thus
going from the system in Figure 4.5.1a) to that in Figure 4.5.1b). (We have
renumbered the masses so that the spring is attached at 1.)
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Figure 4.5.1 - A spring is added to the system

This is an example of the analysis of Section 4.3. The spectra for a) and
b) are (J) = ( )1 and (J ) = ( )1 respectively. Because we have added
sti ness to the system, we have , as in (4.3.21).

i) Use the trace condition to find

1 1 =
X
=1

( )

ii) Use 1 = 1 1 and 1 = ( 1 + 0) 1 to find 0 1 = 1 1.

iii) Use 1 1 and equation (4.3.22) to find 2
1, and hence x1 = { 11 21

1}.

iv) Use the Lanczos algorithm to find J.

v) Use a variant of the analysis given in Section 4.4 to untangle K and M
from J.

As an alternative modification we may add mass to the system, specifically
a mass 1 to 1. In this case it is easier to work initially with the original
equation (4.4.1) than with the reduced equation (4.4.2). Again, we start with
the free-fixed system of Figure 4.5.1a. The eigenvalue problem for a) is

Ky = My

That for the modified system is

Ky = M y (4.5.1)
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where M = M + 1E1 1. Since we have added mass to the system, the
eigenvalues must satisfy

0 1 1 · · · (4.5.2)

Express y as a combination of the y :

y =
X
=1

y (4.5.3)

then

Ky =
X
=1

Ky =
X
=1

My

and

M y =
X
=1

My + 1E1 1y

so that equation (4.5.1) becomes

X
=1

My =
X
=1

My + 1E1 1y

Premultiply both sides by y , using the orthonormality condition y My = :

= + 1 1 1

and on substituting for in (4.5.3) and equating the first elements of the vectors
on each side, we find

1 = 1

X
=1

( 1 )
2

(4.5.4)

In order to use this equation to obtain the first components 1 of the eigenvectors
u of the reduced equation, for use in the Lanczos equation, we need to express
1 in terms of 1 . The equation Dy = u gives 1 1 = 1 = 1 that we may
write (4.5.4) as

1 =
X
=1

( 1)
2

= 1

1

Since the roots of the equation are ( )1 we have

1
X
=1

( 1)
2

=

Q
=1( )Q
=1( )

(4.5.5)

Equating both sides for = 0 and , we have

1 =
Y
=1

( ) 1 +
X
=1

2
1 =
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The interlacing condition (4.5.2) gives

=
Y
=1

( ) 1

The orthonormality condition gives
P

=1
2
1 = 1, so that 1 1 = = 1

0. Finally, multiplying (4.5.5) throughout by and then putting =
we find

2
1 =

Y
=1

( )
Y
=1

0( ) (4.5.6)

The interlacing condition (4.5.2) ensures that 2
1 0. Now we use x1 in the

Lanczos algorithm, and the untangling procedure as before.
There are still more ways in which to obtain second spectrum, for which see

Nylen and Uhlig (1997a) [253], Nylen and Uhlig (1997b) [254]. Ram (1993) [276]
supposes that the system of Figure 4.5.1 is modified by adding both a mass
to 1 and a spring 0. He makes use of some simple but powerful results found
in Ram and Blech (1991) [277].
We close this section by supposing that an oscillating force sin is applied

to the free end of the spring-mass system of Figure 4.5.1a). The matrix equation
governing the response y sin is

(K M)y = e1

Write

y =
X
=1

y

where y is the th eigenvector, normalised so that

y My =

We obtain
( ) = 1

and hence

y =
X
=1

1 y

so that

1 =
X
=1

2
1 (4.5.7)

When the eigenvalue problem is reduced to standard, J, form, then Dy = u, so
that 1 1 = 1 = 1 so that we may write

1 =
1

X
=1

2
1 (4.5.8)
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where, as usual, x1 = { 11 21 1} is the vector of first components of the
eigenvectors of J.
The quantity 1 is called the frequency response function, specifically the

frequency response function for the displacement 1 due to a unit force applied
at 1. This function may also be identified as a direct receptance for 1, as
described, for instance, in Bishop and Johnson (1960) [34]. The two spectra
(J) = ( )1 and (J1) = ( ) 1

1 are the poles and zeros of the response
function. The interlacing of these two spectra may thus be interpreted as the
interlacing of the poles and zeros of the response function, a result which is well
known in control theory. The result of Section 4.3 may thus be stated as follows:
the response function, and specifically its poles and zeros, uniquely determines
the matrix J. As we have seen, once we know J and the form of the sti ness
matrix K, we may untangle M and K from J. See Gladwell and Gbadeyan
(1985) [106] for an alternative treatment.
An experimental - theory study of the problem of reconstructing a spring-

mass system from frequency response data for an actual system may be found
in Gladwell and Movahhedy (1995) [123] and Movahhedy, Ismail and Gladwell
(1995) [242].

4.6 Persymmetric systems

It was shown in Section 4.3 that a persymmetric Jacobi matrix J can be recon-
structed uniquely from its eigenvalues. We shall now consider some physical
problems relating to persymmetric matrices. Figure 4.6.1 shows a system of 2
masses connected by (2 + 1) springs and fixed at each end. Suppose that the
system is symmetrical about the mid point, so that

= 2 +1 = 2 +1 ( = 1 2 ) (4.6.1)

The odd numbered principal modes of the system will be symmetrical about the
mid-point; they will thus be the principal modes of one half (say the left-hand
half) of the system with the mid-point of the system free, as in Figure 4.6.2(a).
Thus the odd numbered eigenvalues 1 3 2 1 of the complete system
will be the eigenvalues of the left-hand half under the conditions fixed-free, i.e.,

2 1 = = 1 2 (4.6.2)

m
1

k1 k2

m
2

m
2 1n

k2n

m
2n

k2 1n

...

Figure 4.6.1 - A symmetrical system with 2 -masses
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On the other hand, the even-numbered principal modes of the system will
be antisymmetrical about the mid-point so that the even-numbered eigenvalues
2 4 2 will be the eigenvalues of the left-hand half under the condition
fixed-fixed, as in Figure 4.6.2(b).

(a)

(b)

Figure 4.6.2(a) The odd numbered modes are symmetrical, (b) The even
numbered ones are antisymmetrical.

Thus

2 = = 1 2 (4.6.3)

This means that the left-hand half, and hence the whole system may be uniquely
constructed, using the analysis of Section 4.4 from the eigenvalues 1 2

and the total mass.
Figure 4.6.3 shows a symmetrical system with 2 1 masses and 2 springs.

Now the odd-numbered symmetrical modes will be the modes of the left-hand
half with ( 2) at the end and free there, as in Figure 4.6.4(a). On the other
hand, the even-numbered, antisymmetrical modes will be the modes of left-hand
half with fixed as in Figure 4.6.4(b). Thus

2 1 = = 1 2 (4.6.4)

2 = = 1 2 1 (4.6.5)
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m
1

k1 k2

m
n

m
2 1n

k2n

....

Figure 4.6.3 - A symmetrical system with 2 1 masses.

(a)

(b)
Figure 4.6.4 - (a) The odd numbered modes are symmetrical. (b) The even

numbered modes are antisymmetrical.

4.7 Inverse generalised eigenvalue problems

In this section we consider how we can reconstruct a finite element model from
spectral data.
The eigenvalue problem is

(K M)y = 0 (4.7.1)

where as in (2.4.10), both K andM are symmetric tridiagonal, K with negative
codiagonal,M with positive codiagonal. Since one spectrum is insu cient even
to reconstruct one tridiagonal matrix, it is certainly insu cient to reconstruct
two. We therefore assume Gladwell (1999) [127] thatM can be written in terms
of K:

M = D2 K 0 (4.7.2)
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where D is an as yet undetermined diagonal matrix with positive entries, and
is an arbitrary positive number. Since K has negative codiagonal,M will have
positive codiagonal. Now

K M = K (D2 K) = (1 + )K D2

= (1 + ){K D2} = (1 + )

Thus (4.7.1) reduces to
(K D2)y = 0 (4.7.3)

which, as in Section 3.1, we can reduce to

(J I)u = 0 (4.7.4)

where J = D 1KD 1 and u = D 1y.
Suppose that (4.7.1) has specified eigenvalues ( )1 , where 0, then J

has eigenvalues ( )1 where = (1+ ) 0, showing that J, and thus K,
is positive semi-definite. The matrixM can be written

M = D(I J)D (4.7.5)

and the matrix I J has eigenvalues 1 = 1 (1 + ) 0, showing that
M is positive definite.
To reconstruct J we need a second spectrum. If the eigenvalues of (4.7.1)

under the constraint = 0 are ( ) 1
1 , then the eigenvalues of (4.7.4) under

the same constraint will be = (1 + ). We note that the interlacing

1 1 2 · · · 1 (4.7.6)

yields the interlacing

1 1 2 · · · 1 (4.7.7)

Having found J, we need to find D so that K = DJD satisfies the characteristic
sti ness equation (4.4.9). This can be done exactly as in Section 4.4. Gladwell
(1999) [127] finds wider families of systems with the given spectra. See Ram and
Gladwell (1994) [289] for a di erent approach to reconstructing a finite element
model of a rod.

4.8 Interior point reconstruction

Suppose, following Gladwell and Willms (1988) [113], we have a spring-mass
system with masses, under some end conditions, as in Figure 4.8.1(a). (We
exclude the free-free condition at this stage.) If a sinusoidal force sin is
applied to mass +1, where 0 1, then the response at mass +1

may be calculated as in equation (4.5.7):

+1 =
X
=1

( +1 )
2
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The poles of this response function are the eigenvalues ( )1 of the whole system,
. The zeros of the response function will be the eigenvalues of the system
constrained so that +1 = 0, i.e., they will be eigenvalues of the systems, ,
on the left, or , on the right, of +1, as shown in Figure 4.8.1(b). Di erent
ways of assigning the eigenvalues of the constrained system to the two subsystems
and will lead to di erent reconstructed systems. When this assignment

has been made, then we know the eigenvalues ( )1 ( )1 and ( )1 of systems
respectively; = 1. Within themselves these sets of eigenvalues

must be distinct. There are two cases.

a) The constrained system has no double eigenvalues. That is, all the
( )1 and ( )1 are distinct; if they are arranged in ascending order and
relabelled (˜ ) 1

1 , they will satisfy

1 ˜1 2 · · · ˜ 1 ;

this is equivalent to the statement that no eigenvector x of J has a node
at +1, i.e., +1 6= 0 for all = 1 2 .

b) Two members of a pair ( ) are identical; now there is an such that
= = ; this will occur i +1 = 0. There can be more than one

such pair.

To analyse the situation we suppose that the eigenvalue equation (4.4.1) has
been reduced to normal form, (4.4.2), and we partition J as

J =

1

1
B b 0

b +1 c +1

0 c +1 C

(4.8.1)

where b = {0 0 } c +1 = { +1 0 0 0}.

m
1

k 1 k2

m
2

m
n

kn

...

a)

m
1

k1

... m
n

m
m 1

k m 1 kn

b)
Figure 4.8.1 - The mass +1 is constrained.
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Now we consider the principal minors of I J. We denote the leading
principal minors by ( ) and the trailing principal minors by ( ). The Laplace
expansions of ( ) = det( I J) using the first and first + 1 rows are

( ) = ( ) +1( )
2

1( ) ( ) (4.8.2)

= +1( ) ( ) 2
+1 ( ) 1( ) (4.8.3)

We know that

( ) =
Y
=1

( ) ( ) =
Y
=1

( ) ( ) =
Y
=1

( )

and thus equation (4.8.2), (4.8.3) give

( ) = 2
1( ) ( ) (4.8.4)

( ) = 2
+1 ( ) 1( ) (4.8.5)

In case (a), all the quantities appearing in the latter equations are non-zero,
so that, apart from the factors 2 and 2

+1, these equations yield 1( ) and
1( ), respectively. These quantities are just what is needed to compute the

matrices B and C, respectively, using Forsythe’s algorithm in Section 3.2. The
weights ( ) for B are given by

2 ( ) = 2
1( ) 0 ( )

= ( ) [ 0 ( ) ( )]
(4.8.6)

while those for C are

2
+1( ) = 2

+1 1( ) 0 ( )
= ( ) [ 0 ( ) ( )]

(4.8.7)

To verify that the weights ( ) are positive, we suppose that has ’s to
its left, and to its right; then + + +1. If a number may be
written = ( 1) , where 0, then we say ( ) = . Now we can easily
verify that

[ ( ) 0 ( ) ( )] = [ ]

so that
( ) = 1 + ( ) + ( ) +

= 2 2 2 =

so that ( ) 0; we may prove similarly that ( ) 0.
Thus B may be reconstructed uniquely. At the end, 1( ) will be known,

and so the 1( ) will be known. Any one of these values may be substituted
into (4.8.4) to yield 2 . The matrix C and 2

+1 may be found in a similar
manner.
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In case (b) there is a common factor = in each of the
equations (4.8.2) and (4.8.3). Cancel this factor and then put = . Since

+1( ) = ( +1) ( ) 2
1( )

+1( ) = ( +1) ( ) 2
+1 1( )

we have
+1( ) = 2

1( )

+1( ) = 2
+1 1( )

and thus both equations (4.8.2) and (4.8.3) reduce to

0 ( ) = 2
1( ) 0 ( ) 2

+1
0 ( ) 1( ) (4.8.8)

This is the single equation that replaces the pair of equations (4.8.4) and (4.8.5)
for the common eigenvalue. Using (4.8.6) and (4.8.7), we may write (4.8.8) as

= 0 ( ) [ 0 ( ) 0 ( )] = 2 ( ) + 2
+1( ) (4.8.9)

and we note that is a positive quantity. Now we proceed as follows to find the
family of Jacobi matrices having the specified eigenvalues. Choose (0 2 )
and put

2 ( ) = cos2 2 ( ) = sin2

If there is more than one triple of common eigenvalues, then this procedure may
be followed for each. Combine these weights with those corresponding to the
distinct eigenvalues, and compute B and C. At the final stage 1( ) and

1( ) will be known, so that 2 and 2
+1 may be found from equations (4.8.4)

and (4.8.5) for one of the distinct eigenvalues, and there will be at least one, as
before.
There is an alternative procedure which elucidates the situation in which

one or more triples are equal, and which uses the Lanczos algorithm.
Express the eigenvalue problem for J in (4.8.1) in terms of the normalised eigen-
vectors (y )1 and (z )1 of B and C respectively. Thus

x = Ĩ (
X
=1

y ) + +1e +1 + J̃ (
X
=1

z )

where Ĩ =
£
I

0

¤
and J̃ =

£
0
I

¤
. The eigenvalue problem becomes

1 1

. . .
...

1 · · · +1 1 · · ·

1 1

...
. . .

1

...

+1

1

...

= 0

(4.8.10)
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where
= = +1 1 (4.8.11)

Thus
( ) +1 = 0 = 1 2
( ) +1 = 0 = 1 2

so that

{ +1 +
X
=1

2

+
X
=1

2

} +1 = 0 = 1

In case (a) +1 6= 0; = 1 2 , so that

+1 +
X
=1

2

+
X
=1

2

=
( )

( ) ( )
(4.8.12)

which yields

2 =
( )

0 ( ) ( )
2 =

( )

( ) 0 ( )
(4.8.13)

for = 1 2 ; = 1 2 , in agreement with (4.8.6), (4.8.7). Now
2 2

+1 may be computed from

2 =
X
=1

2 2
+1 =

X
=1

2 (4.8.14)

With ( )1 and ( 1 )1 known, from equations (4.8.11)-(4.8.14), B and C may
be computed by using the Lanczos algorithm.
In case (b), suppose that there are 1 triples { } = 1 2

such that = = , then

( ) +1 +
X
=1

2

+
X
=1

2

+
X
=1

2 + 2

(4.8.15)

has, as its + +1 = 2 roots, the non-degenerate . In equation
(4.8.15), means that the degenerate triples are omitted. Now the separate 2

and 2 , and the values = 2 + 2 for the degenerate modes will be known.
Thus as before

2 + 2 = 2 = cos2 2 = sin2

where is defined as in (4.8.9). With the chosen, the 2 and 2 are all
known. Equation (4.8.14) yields 2 and 2

+1 as functions of the parameters
{ }1 (and note that

2 + 2
+1 is invariant) so that the ( )1 and ( 1 )1 are

known, and B and C may be calculated from the Lanczos algorithm.
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An alternative approach to the interior reconstruction problem may be found
in Nylen and Uhlig (1997a) [253].
The mass-spring models considered in this chapter are very similar to the

shear building model used extensively by Takewaki and his coworkers. They
have formulated various hybrid inverse problems in which part of a structure
is given and part is yet to be found in order to yield a structure with specified
spectral (eigenvalue or modal) properties. Full, definitive description of these
problems and their use in structural design may be found in the monograph
Takewaki (2000) [321]. Among the original papers most closely related to the
concerns of this chapter are the following: Takewaki and Nakamura (1995)
[317], Takewaki, Nakamura and Arita (1996) [318] and Takewaki and Nakamura
(1997) [319], Takewari (1999) [320].



Chapter 5

Inverse Problems for Some
More General Systems

Words di erently arranged have a di erent meaning, and meanings di erently
arranged have di erent e ects.

Pascal’s Pensées, 23

5.1 Introduction: graph theory

The inverse problems considered in Chapter 4 are special, simply because Jacobi
matrices are special matrices. In this chapter we will consider some slightly more
general problems but must admit that there are still only a few problems that
we have been able to solve.
The special feature of a Jacobi matrix is its structure: it is tridiagonal,

with strictly negative codiagonal. (It is also positive semi-definite, but that is
another matter.) The structure of the matrix J in equation (4.4.2) is related
to the structures of K and M in (4.4.1); K is tridiagonal while M is diagonal.
The structures of K andM, in turn, derive from the structure of the system, an
in-line mass system, to which they belong. K, the sti ness matrix, relates to
the sti nesses, the connectors, between masses. K is tridiagonal because each
interior mass 2 1 is connected only to its immediate neighbours

1 and +1; the end masses 1 and each have just one neighbour 2 or
respectively. The natural tool for describing and analysing the structure of

a system is graph theory.
This is not the place to prove any theorems in graph theory, but it is useful to

introduce some of the basic concepts. A graph G is a set of vertices, connected
by edges. The set of vertices is called the vertex set, and is denoted by V; the
set of edges is called the edge set, E . Figure 5.1.1 shows a graph. This is
actually an example of a simple, undirected graph. It is simple because there
is at most one edge connecting any two vertices; the edge connecting vertices
and is denoted by ( ). The graph is undirected because there is no preferred

93
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direction associated with an edge. Henceforth, the terms graph will be used to
mean a simple, undirected graph.
The adjacency matrix A of a graph G is the symmetric matrix defined by

= 1 i 6= and ( ) E
= 0 otherwise

¾
(5.1.1)

The adjacency matrix for the graph in Figure 5.1.1 is

=

0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 1
0 0 1 1 0

3

1

2

4

5

Figure 5.1.1 - A graph.

With any symmetric matrix A we may associate a graph; the rule is

if 6= then ( ) E i 6= 0 (5.1.2)

Using this rule we see that the graph associated with a Jacobi matrix is an
(unbroken) path, as in Figure 5.1.2. The path is clearly one of the simplest
graphs.

...
31 2 n 1 n

Figure 5.1.2 - The graph associated with a Jacobi matrix

Another simple graph is a star on vertices, shown in Figure 5.1.3.

3

1

2

n

4

n 1

Figure 5.1.3 - A star on vertices
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A (symmetric) bordered diagonal matrix B has a star on vertices as its
associated graph.

B =

1
ˆ
1

ˆ
1

ˆ
1 2

·
. . .

ˆ
1

(5.1.3)

A periodic Jacobi matrix is one of the form

J =

1 1

1 2 2

. . .
. . .

. . .
. . .

. . . 1

1

(5.1.4)

It is tridiagonal except for the terms in the top right and bottom left. The
underlying matrix is a ring on vertices as shown in Figure 5.1.4.

31
2

n

Figure 5.1.4 - A ring on vertices

The graph associated with a pentadiagonal matrix, such as occurred in Sec-
tion 2.3 in the analysis of the vibration of a beam, is a strut , as shown in Figure
5.1.5.

...

...

31

2 n4 n 2

n 3 n 1

Figure 5.1.5 - The strut on (even) vertices is the underlying graph of a
pentadiagonal matrix
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The graph associated with a 2 × 2 block tridiagonal matrix is also a strut,
but now one with double connections, as shown in Figure 5.1.6.

...

...

31

2 n4 n 2

n 3 n 1

Figure 5.1.6 - The graph underlying a 2× 2 block tridiagonal matrix

The graphs shown in Figs. 5.1.1-5.1.6 are all connected graphs: there is a
chain consisting of a sequence of edges connecting any one vertex to any other
vertex. Note that the intersections of the diagonals in Figure 5.1.6 are not
vertices of the graph.
The graphs shown in Figure 5.1.7a), b) are disconnected.

31

54

2

a)

41

52

3

b)
Figure 5.1.7 - Renumbering does not essentially change a graph

In order to test whether the underlying graph of a given (symmetric) matrix
is connected or not, we note that renumbering the vertices of a graph does not
change the essential character of a graph; the graphs a) and b) in Figure 5.1.7 are
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essentially the same. Renumbering the vertices of a graph leads to a rearranging
of the rows and of the columns of any (symmetric) matrix based on that graph.
When a graph is disconnected, it may be partitioned, as in Figure 5.1.7a) into a
set of connected subgraphs. Then we can always rearrange the numbering, as
in b) so that vertex numbers in any one connected subgraph form a consecutive
sequence. The adjacency matrices of the graphs a) and b) are

1 =

0 0 0 1 0
0 0 1 0 1
0 1 0 0 1
1 0 0 0 0
0 1 1 0 0

2 =

0 1 0 0 0
1 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0

We see, in this example, that when the vertices are renumbered so that each
connected subgraph has consecutive numbering, then the adjacency matrix splits
into two separate submatrices: such a (symmetric) matrix is said to be reducible.
A symmetric matrix A is said to be irreducible i it cannot be transformed to
the form

A =

·
B 0

0 C

¸
(5.1.5)

by any rearrangement of rows and columns. If it is reducible, then it can be
transformed to the form (5.1.5), and of course B and C may perhaps themselves
be reduced further. Note: The concepts of connectedness of a directed graph,
and the corresponding concept of irreducibility of a general (not necessarily
symmetric) matrix, are more complex than those described here. See Horn and
Johnson (1985) [183] Section 6.2.21.

Now we may state the general result.

Theorem 5.1.1 The (symmetric) matrixA is irreducible i its underlying graph
is connected.

It is easy to check that if a spring (other than 1) is removed from a spring
mass system such as that in Figure 4.4.1, then the underlying graph becomes
disconnected, and the sti ness matrix becomes reducible.

A tree is a special kind of connected graph: one which has no circuits. Now
there is a unique chain of edges connecting any one vertex to any other. The
path and the star are both trees, but a ring, see Figure 5.1.4, is not a tree. A
connected graph has one or more spanning trees. If G is a connected graph with
vertex set V, then a spanning tree S of G is a maximal tree with the vertex set
V; if any more edges in E were added to S then it would cease to be a tree: it
would have a circuit. Figure 5.1.8 shows three possible spanning trees for the
graph G in Figure 5.1.1.
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3

1

5

4

2

3

1

2 5

4 1

2 5

4

3

Figure 5.1.8 - Three spanning trees for the graph in Figure 5.1.1.

It may be proved that all the spanning trees of a given graph G have the
same number of edges.
Nabben (2001) [243], in a wide ranging paper, discusses Green’s matrices for

trees.

5.2 Matrix transformations

In the first part of this book we are concerned very largely with matrix eigenvalue
problems. One of the basic questions we face is this: ‘What operations, i.e.,
transformations, may we apply to a matrix, or a matrix pair, which will leave
its eigenvalues unchanged, i.e., invariant?’ We now discuss this question.
Suppose C A . The set of matrices C A is called the matrix pencil

based on the pair (C A). As stated in Section 1.4, the eigenvalues of the pair
(C A) are the values of for which the equation

(C A)x = 0

has a non-trivial solution x . The eigenvalues are the roots of

det(C A) = 0

Suppose P R are constant matrices, i.e., they are independent of . Since

det(PCR PAR) = det(P) · det(C A) · det(R)

we may deduce that if P R are non-singular, so that det(P) 6= 0 det(R) 6= 0,
then

det(PCR PAR) = 0 i det(C A) = 0

so that the transformation ‘premultiply by P, and postmultiply by R’ leaves the
eigenvalues invariant. The transformation is called an equivalence transforma-
tion. It is a special equivalence relation (Ex. 5.2.1).
In general, an equivalence (transformation) will transform a symmetric pencil

into an unsymmetric pencil. Those which preserve symmetry are characterised
by

P = R (5.2.1)
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An equivalence changes a pencil A I into PAR PR. If it is to change
A I into B I, then we must choose P R so that PR = I, i.e.,

P = R 1 (5.2.2)

An equivalence with this property is called a similarity (transformation). An
equivalence which satisfies both (5.2.1) and (5.2.2) is called a rotation or an
orthogonal transformation. We reserve the symbol Q to denote the ‘P’ of such
a transformation. Equations (5.2.1), (5.2.2.) show that

QQ = Q Q = I : (5.2.3)

Q is an orthogonal matrix ; the matrices U and X in Section 4.2 were orthogonal
matrices. We recall that the columns (rows) of an orthogonal matrix are mu-
tually orthogonal, and each column (row) has norm 1; if Q = [q1 q2 q ],
then

q q = (5.2.4)

If = 2, an orthogonal matrix has the form

Q =

·
cos sin
sin cos

¸
(5.2.5)

When = 2, the eigenvalue problem relates to a plane, and this Q corresponds
to a rotation of the axes through an angle about the -axis.
It is di cult to write down the most general expression for an orthogonal

matrix in . Instead, we use the fact that a product of orthogonal matrices
is itself orthogonal (Ex. 5.2.3).
There is a particularly simple and powerful orthogonal matrix which can be

constructed by making a rank-one change to the identity matrix:

Q = I 2 xx (5.2.6)

will be orthogonal if

QQ = (I 2 xx )(I 2 xx )
= I 4 xx + 4 2(x x)(xx ) = I

i.e., if is chosen so that
= 1 x x (5.2.7)

Such a transform is called a Householder transformation; note that Q in (5.2.6)
is symmetric, i.e., Q = Q
Householder transformations are used in various contexts; one is the reduc-

tion of a symmetric matrix to tridiagonal form, as we now describe.
SupposeQ is given by (5.2.6), andA . We wish to chooseQ, i.e., find x,

so that the transformed matrix QAQ = B has zero elements in its first row and
column, except for the first two, 11 12. First consider the postmultiplication
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by Q, and use the abbreviation 1, for row 1 of a matrix. With Q given by
(5.2.6), we have

C = AQ = A 2 (Ax)x

1(C) = 1(AQ) = 1(A) 2 ( 1(A)x)x

Thus 1 = 1 2 ( 1(A)x) = 1 2 .
We now choose

= 1 = 3 4 (5.2.8)

Then 1 = 0 = 3 4 if

2 ( 1(A)x) = 1 (5.2.9)

This gives one equation for the remaining unknowns 1 2. Now carry out the
premultiplication:

QAQ = B = QC = C 2 x(x C)

so that

1(B) = 1(C) 2 1(x)(x C)

Thus if the premultiplication is not to change the zero elements in the first row
of C, we must choose 1 = 0. Now equations (5.2.7)-(5.2.9), give

2( 12 2 +
2
13 + · · ·+

2
1 ) =

2
2 + (

2
13 + · · ·+

2
1 )

which yields
2 = 12 ± (5.2.10)

where
2 =

X
=2

2
1 (5.2.11)

Thus the required x is

x = {0 12 ± 13 1 } (5.2.12)

and for numerical purposes we choose the sign of to be that of 12.
This is the basic Householder transformation; it reduces an arbitrary sym-

metric A to a matrix

B =

·
11 b

b B1

¸
(5.2.13)

where b = 1e1. This completes the first step in the reduction to tridiagonal
form. Now we apply another Householder transformation to the submatrix
B1, using a new x with 1 = 0 = 2. This second transformation will leave
11 b b unchanged, and will eliminate all but the first two elements of the first
row and column of B1. After 2 applications, the matrix becomes tridiagonal.
Once the matrix has been reduced to tridiagonal form, its eigenvalues can easily
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be located by using the sign count function ( ) of Section 3.1. Details on
the numerical implementation of this reduction may be found in Bishop, Glad-
well and Michaelson (1965) [33] (Chapter 9), Golub and Van Loan (1983) [135]
Section 8.2.
We make two comments. Because 1 = 0, the Q in (5.2.6) may be written

Q =

·
1 0
0 Q1

¸
(5.2.14)

whereQ1 is an orthogonal matrix in 1. This has an important consequence.
Not only does the transformation preserve (A), i.e., (A) = (B), but also
(A1) = (B1)
Secondly, we can use a trivial modification of the Householder transformation

to reduce a general symmetric matrix A to, say, pentadiagonal, form. We take

x = {0 0 13 ± 14 1 } (5.2.15)

where 2 =
P

=3
2
1 . This transformation preserves (A) (A1) (A1 2),

where the last denotes the spectrum of A with rows and columns 1 and 2 re-
moved.

Exercises 5.2

1. An equivalence relation, ‘ is related to ’, written , has three defining
properties:

• reflexivity,

• symmetry, if then

• transitivity, if and , then

A set of elements related by an equivalence relation is called an equivalence
class. Use the joint operation ‘premultiply by P and postmultiply by R’ (with
P R non-singular) to define an equivalence relation and an equivalence class for
matrix pairs (C A).

2. Show that the transformation B = QAQ defines an equivalence relation
and a corresponding equivalence class.

3. Show that if Q1 Q2 are orthogonal, then so is Q1Q2. Show by coun-
terexample that if Q1 Q2 are symmetric, then Q1Q2 is not necessarily
so.

4. Show that if x is given by (5.2.11), then in (5.2.7) is given by 2 ( +

12) = 1.

5. Verify that the Q obtained as a result of 2 successive Householder
transformations has the form (5.2.14).
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5.3 The star and the path

In Section 5.1 we noted that the graph associated with a bordered diagonal
matrix (5.1.3) is a star on vertices, as in Figure 5.1.3. There is a particularly
simple inverse eigenvalue problem connected with a bordered diagonal matrix
B: construct B so that (B) = ( )1 (B1) = ( ) 1

1 . The usual variational
arguments show that the two spectra must interlace, at least in a loose sense:

1 1 2 · · · 1 (5.3.1)

For simplicity we assume that the ( ) 1
1 are distinct:

1 2 · · · 1 (5.3.2)

We write B in the form (5.1.3), i.e.,

B =

·
1 b̂

b̂ M

¸
(5.3.3)

whereM is diagonal, and b̂ = {ˆ1 ˆ2 ˆ
1}. Clearly, we can make (B1) =

( ) 1
1 by takingM = ( 1 2 1). The trace condition gives

1 =
X
=1

1X
=1

(5.3.4)

Now consider the eigenvector equations for B:

ˆ
1 + ( ) +1 = 0 = 1 2 1

( 1 ) 1 +
P 1

=1
ˆ

+1 = 0

which give the eigenvalue equation

1

1X
=1

ˆ2
= 0

This is to have roots ( )1 , so that

1

1X
=1

ˆ2
=

Q
=1( )Q 1
=1 ( )

(5.3.5)

and hence

ˆ2 =

Q
=1( )Q0 1

=1 ( )
= 1 2 1 (5.3.6)

where, as usual, 0 denotes 6= ; the interlacing condition (5.3.1) yields ˆ2 0.
We can choose the sign of ˆ to be + or -. Because we have assumed that
the are distinct, a given can coincide only with its neighbours or +1.
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Equation (5.3.6) shows that ˆ = 0 i coincides with either of these two ’s.
If ˆ = 0, then the edge (1 + 1) is absent from the underlying graph.
Having constructed the bordered diagonal matrix B, we have a new way to

construct a tridiagonal J such that (J) = ( )1 (J1) = ( ) 1
1 : we can

apply Householder transformations to B to get J. On account of Ex. 5.2.5, the
transformation will have the form·

1 0

0 Q1

¸ ·
1 b̂

b̂ M

¸ ·
1 0

0 Q1

¸
=

·
1 1e1

1e1 J1

¸
(5.3.7)

or equivalently·
1 0

0 Q1

¸ ·
1 1e1

1e1 J1

¸ ·
1 0

0 Q1

¸
=

·
1 b̂

b̂ M

¸
(5.3.8)

On carrying out the multiplication, we find

Q1 J1Q1 =M Q1 1e1 = b̂ (5.3.9)

The first equation shows that the eigenvectors of J1 are the columns of Q1: the
th eigenvector is

q = { 1 2 ( 1) } (5.3.10)

The second equation shows that, apart from the factor 1, the vector ˆ is the
vector of first components of the eigenvectors of J1:

b̂ = 1{ 11 12 1 1} (5.3.11)

Thus, apart from the factor 1 b̂ is the vector x1 needed for the construction
of J1 from the Lanczos algorithm of Section 4.2. The factor 1 is given by
1 = ||b̂||.
Note the di erence between (5.3.6) and (4.3.17): the former, according to

(5.3.11), gives the first components of the eigenvectors of J1; the latter gives the
first components of the eigenvectors of J.
Sussman-Fort (1982) [312] discusses connections between the inverse eigen-

value problems for Jacobi and bordered matrices.

Exercises 5.3

1. Explore what happens to J when one or more of the ’s coincides with a
.

5.4 Periodic Jacobi matrices

In Section 5.1 we showed that the graph underlying a periodic Jacobi matrix is
a ring on vertices.The following analysis is due to Ferguson (1980) [87] and
Boley and Golub (1984) [35], Boley and Golub (1987) [36].
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A periodic Jacobi matrix J has 2 terms, ( )1 . We show how to
construct J from (J ) = ( )1 , (J 1) = ( ) 1

1 and one extra piece of
data:

= 1 2 (5.4.1)

It is convenient to consider two matrices, the original matrix J of (5.1.4), and
another matrix J with replaced by . We suppose (J ) = ( )1 ;
clearly there are relations between the and the . The and will again
interlace as in (5.3.1), as will the and ; again we suppose that the ( ) 1

1

are distinct, i.e., (5.3.2) holds.
We start by constructing two bordered diagonal matrices, B from ( )1 and

( ) 1
1 , B from ( )1 and ( ) 1

1 . They will have the form

B =

·
1 b̂

b̂ M

¸
B =

·
1 b̂

b̂ M

¸
(5.4.2)

Here 1 b̂ will be given by (5.3.4), (5.3.6), and 1 b̂ will be obtained from
(5.3.4), (5.3.6) by replacing by .
Since (J ) = (B) and (J 1) = (B1), J and B are related by an

orthogonal transformation of the form

B =

·
1 b̂

b̂ M

¸
=

·
1 0
0 Q1

¸ ·
1 1e1 + e 1

1e1 + e 1 A1

¸ ·
1 0

0 Q1

¸

where e1 = {1 0 0} e 1 = {0 0 1} are in 1 and similarly

B =

·
1 b̂

b̂ M

¸
=

·
1 0

0 Q1

¸ ·
1 1e1 e 1

1e1 e 1 A1

¸ ·
1 0

0 Q1

¸

The subblocks of these equations corresponding to b̂ and b̂ are

b̂ = Q1 ( 1e1 + e 1)

b̂ = Q1 ( 1e1 e 1)

which on addition and subtraction give

b̂+ b̂ = 2 1Q1 e1 = 2 1x1

b̂ b̂ = 2 Q1 e 1 = 2 x 1

where, as in (5.3.9), x1 is the first column of Q1 and x 1 is the ( 1)th
column. If we know b̂ and b̂ , then these equations give 1 and (up to sign)
since ||x1|| = 1 = ||x 1||. Once we have 1 1 and x1 we may compute J 1

from the Lanczos algorithm as before.
However, in finding B and B , specifically in finding b̂ and b̂ , we assumed

that we knew both the ( )1 and the ( )1 . We complete the analysis by
showing that we can in fact find b̂ from the ( )1 and in (5.4.1).
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The periodic Jacobi matrix J di ers from a regular Jacobi matrix only in
the presence of the entries in the corners. This means that det( I J ) and
det( I J ) will di er from the th principal minor ( ) only by quadratic
terms in . In fact

det( I J ) =
Q

=1( ) = ( ) 2
2( ) 2

det( I J ) =
Q

=1( ) = ( ) 2
2( ) + 2

where 2 is the principal minor taken from rows and columns 2 3 1.
Subtacting these two equations, we find

Y
=1

( ) =
Y
=1

( ) + 4

This means that we can express (ˆ )2 in terms of ( )1 and ( ) 1
1 :

(ˆ )2 =

Q
=1( )Q 1
=1

0( )
=

Q
=1( ) + 4Q 1
=1

0( )

But this expression is not automatically non-negative if the ( )1 and ( ) 1
1

satisfy the interlacing condition. We must examine this more closely. Suppose
first that = 0. The expression is certainly non-negative, and actually positive
if the ’s and ’s strictly interlace. If they strictly interlace then, from continuity
considerations we can conclude that, for each value of , the expression will be
non-negative for lying in a closed interval [ ] around zero, 0 0.
This means that all the ( )2 will actually be non-negative in the intersection
of these closed intervals. For in this intersection the problem as posed, has a
solution; for outside this interval it has no (real) solution. Boley and Golub
(1987) [36] present an algorithm to compute J in this way. See also Boley and
Golub (1984) [35]. Xu (1998) [339] provides a detailed analysis of the problem
and shows (Theorem 2.8.3) that there is a solution i

X
=1

| | 2 (1 + ( 1) +1) (5.4.3)

for all = 1 2 1. Note that if ( )1 and ( ) 1
1 are given, then the

inequality (5.4.3) provides an upper bound for . Andrea and Berry (1992) [9]
provide a completely di erent approach to the problem via continued fractions.

5.5 The block Lanczos algorithm

In Section 5.1, we exhibited Figs. 5.1.5 and 5.1.6, and showed that the matrices
underlying these graphs were pentadiagonal or block tridiagonal. In order to
develop methods for solving inverse problems for such systems, we need a block
version of the fundamental Lanczos algorithm described in Section 4.2.
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First we recall the original scalar version: Given a symmetric matrix A, and
a vector x1, compute a Jacobi matrix J as in equation (4.2.1) and an orthogonal
matrix X = [x1 x2 x ] such that A = XJX .
The algorithm proceeds by using the two equations

J = X AX AX = XJ (5.5.1)

alternately. Thus the (1,1) term in (5.5.1a) gives

1 = x1Ax1

and the first column of (5.5.1b) gives

Ax1 = 1x1 1x2

which we rewrite as
1x2 = 1x1 Ax1 = z2 (5.5.2)

which gives
1 = ||z2|| x2 = z2 1

Now the (2,2) term in J gives 2 = x2Ax2, and the second column of (5.5.1b)
is

Ax2 = 1x1 + 2x2 2x3

which we rewrite as

2x3 = 1x1 + 2x2 Ax2 = z3

which gives
2 = ||z3|| x3 = z3 2

and so on.
We now construct a block version of these equations, following

Boley and Golub (1987) [36]. We start with a symmetric matrix A and
suppose = for some integer . We will reduce A to a block tridiagonal
matrix J, where

J =

A1 B1
B1 A2 B2

. . .
. . .
B 1 A

(5.5.3)

Here A1 A are symmetric, i.e., in , and the B are upper triangular
matrices in . We assume that in addition to A, we are given orthonormal
vectors (x )1 which form the columns of X1 = [x1 x2 x ] .
The matrix X1 therefore satisfies X1X1 = I .
The aim of the procedure is to construct J and an orthogonal matrix X =

[X1 X2 X ] such that
A = XJX
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Just as in the scalar Lanczos process, we consider the two equations

J = X AX AX = XJ (5.5.4)

The first × block of the first equation gives

A1 = X1AX1

while the first × block of the second gives

AX1 = X1A1 X2B1

which we rewrite as
X2B1 = X1A1 AX1 = Z2

In the scalar version we had 1x2 = z2, from which we immediately concluded
that 1 = ||z2||, and hence x2 = z2 1. In the block version we have constructed
Z2 and we wish to write it as X2B1. Write X2 = [y1 y2 y ] Z2 =
[z1 z2 z ] and

B1 =

11 12 1

22 2

then finding (y )1 and the elements of B1 is essentially a Gram-Schmidt process:
finding orthonormal combinations of the vectors (z )1. Thus

11y1 = z1 implies 11 = ±||z1|| y1 = z1 11 (5.5.5)

and then

12y1 + 22y2 = z2

gives

12 = y1 z2 22y2 = z2 12y1 = w2

so that

22 = ±||w2|| y2 = w2 22 etc. (5.5.6)

The Gram-Schmidt process is closely related to the QR algorithm. The de-
composition X2B1 = Z2 involves writing Z2 as the product of X2 which is in

, but which satisfies X2X2 = I , and an upper triangular matrix B1 .
Because X2 is not simply an orthogonal matrix in , the usual QR algorithm
has to be modified to e ect the decomposition.
Now we can proceed as before. We have found X2, so that

A2 = X2AX2

and
AX2 = X1B1 +X2A2 X3B2
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so that
X3B2 = X1B1 +X2A2 AX2 = Z3

from which X3 B2 may be found, as before, by Gram-Schmidt. Note that
di erent choices for the square roots, as in (5.5.5) and (5.5.6) will lead to di erent
matrices J. Boley and Golub (1987) [36] present a detailed algorithm for the
process.
Further studies on the block-Lanczos algorithm have been carried out by

Underwood (1975) [325] and Golub and Underwood (1977) [134]. See also
Mattis and Hochstadt (1981) [222]. A completely di erent and highly e cient
procedure for the solution of band matrix inverse problems has been developed
by Biegler-König (1980) [28], Biegler-König (1981a) [29], Biegler-König (1981b)
[30], Biegler-König (1981c) [31]. See also Gragg and Harrod (1984) [153] for
a procedure based on Rutishauser’s algorithm; they explore the connections to
a number of other problems. See also Gladwell and Willms (1989) [114] and
Friedland (1977) [92], Friedland (1979) [93], and particularly, Chu (1998) [58].

5.6 Inverse problems for pentadiagonal matrices

We could pose an inverse eigenvalue problem for a general symmetric matrix
with 2 + 1 bands, as in Boley and Golub (1987) [36]. Instead, we will confine
ourselves to the case = 2, a pentadiagonal matrix A. The pentadiagonal case
occurs in the inverse problem for a vibrating beam, but we shall defer considering
the beam until we have discussed positivity in Chapter 6; the pentadiagonal
matrix giving the sti ness matrix of the beam has a very special form; certain
terms in it must be positive, and others must be negative. In this section we
will not be concerned with these matters of sign.
Suppose we are given

(A) = ( )1 (A1) = ( ) 1
1 (A1 2) = ( ) 2

1 (5.6.1)

where, as before, (A1 2) denotes the spectrum of A1 2 when its first two rows
and columns are removed. Clearly the eigenvalues must interlace; and for
simplicity we assume that the interlacing is strict.

1 1 2 · · · 1 (5.6.2)

1 1 2 · · · 2 1 (5.6.3)

Our aim is to construct A such that (5.6.1) holds. We write

A =

·
1 b

b A1

¸
(5.6.4)

where only the first two components of the vector b are non-zero. We denote
the eigenvector matrix of A by Q, and of A1 by Q(1) so that

Q AQ = Q
(1)
1 A1Q

(1) =M (5.6.5)
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The eigenvectors of A are therefore q , where Q = [q1 q2 q ] while those

of A1 are q
(1), where Q(1) = [q

(1)
1 q

(1)
2 q

(1)
1].

We start by constructing a bordered diagonal matrix, as in Section 5.3:

B =

·
1 b̂

b̂ M

¸
(5.6.6)

such that (B) = ( )1 , and (M) = ( ) 1
1 . The term 1 is given by the

trace:

1 =
X
=1

1X
=1

(5.6.7)

while b̂ is given by (5.3.6):

(ˆ )2 =

Q
=1( )Q 1
=1

0( )
(5.6.8)

Now, following equation (5.3.8) we relate A to

B =

·
1 b̂

b̂ M

¸
=

·
1 0
0 Q(1)

¸ ·
1 b

b A1

¸ ·
1 0
0 Q(1)

¸
(5.6.9)

As in (5.3.9), we have
Q(1) b = b̂ (5.6.10)

Now however, in contrast to the situation in Section 5.3, b is not just a multiple
of e1, so that b̂ does not give the vector of first components of the eigenvectors
of A1. But we can use the analysis of Section 4.3 to obtain the first components
of the eigenvectors of A and A1:

2
1 =

Q 1
=1 ( )Q
=1

0( )
(
(1)
1 )2 =

Q 2
=1 ( )Q 1
=1

0( )
(5.6.11)

To apply the block Lanczos algorithm to construct A we need not just the
vector x1 of first components of eigenvectors of A, but also x2 of second com-
ponents, making up X1 = [x1 x2] 2. Partition the vector q :

q =

·
1

y

¸
y 1 (5.6.12)

Since q is the th eigenvector of A, and A is given by (5.6.4), we may write·
1 b

b A1

¸ ·
1

y

¸
=

·
1

y

¸
(5.6.13)

so that
1 b+A1y = y
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Now premultiply by Q(1) to obtain

1 Q
(1) b+Q

(1)
1 A1y = Q(1) y (5.6.14)

But equation (5.6.10) gives Q(1) b = b̂, and equation (5.6.5b) gives Q(1)
1 A1 =

MQ(1) , so that equation (5.6.14) gives

1 b̂ = (M I)Q(1) y

and hence
y = 1 Q

(1)(M I) 1b̂

We need just the first term in y ; it is

1 = 1

1X
=1

(1)
1
ˆ

= 1 2 (5.6.15)

Since ˆ is given by (5.6.8), and 1
(1)
1 are given by (5.6.11), this equation yields

1 , and hence x2 = { 11 12 1 }.

Exercises 5.6

1. Verify that the vector x2 given by (5.6.15) is indeed orthogonal to x1, as
required.

2. Extend the procedure described in this section to the general case of a
2 + 1 band matrix.

5.7 Inverse eigenvalue problems for a tree

The inverse eigenvalue problems for a path and a star are particular examples of a
general problem. Both the path, as shown in Figure 5.1.2, and the star, in Figure
5.1.3, are trees, as defined in Section 5.1. The matrices corresponding to these
trees are a Jacobi matrix J, or, as we will choose here, a sign-reversed Jacobi
matrix A = J̃, and a bordered diagonal matrix respectively. In both problems,
two spectra were specified, namely (A) = ( )1 , and (A 1 ) = ( ) 1

1 ; the
second spectrum corresponded to the eigenvectors u set to zero at a prescribed
vertex, vertex 1. In both cases the two spectra had to satisfy the Cauchy
interlacing inequalities

1 1 2 · · · 1 (5.7.1)

In both cases also, if the inequalities (5.7.1) were all strict, the matrix A was
irreducible, and the corresponding graph G was connected.
The purpose of this section is to serve as an introduction to an important

paper by Duarte (1989) [81]. This paper reviews the history of inverse eigenvalue
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problems for trees, and establishes a general result. We will present analysis
covering the simpler parts of the general case. As we will do sometimes in
Chapter 6, Duarte labels eigenvalues in decreasing order, and we do the same.
Specifically, we will show that if G is a tree on vertices V, and if two spectra
( )1 ,( ) 1

1 are given, satisfying

1 1 2 · · · 1 0 (5.7.2)

then we can find a symmetric matrix A on G such that (A) =
( )1 1 (A 1 ) = ( ) 1

1 . We take the strict interlacing and the positiv-
ity condition for simplicity; Duarte relaxes these conditions.
We start by observing that the two cases that we have considered so far, the

path (Jacobi), and star (bordered diagonal), have common features. First, we
note that the entries of the constructed matrices may be considered as functions
of the data 1. Secondly, we note that in both matrices there are 2

2( 1) = 2 3 + 2 constant functions, which in fact are all zero. This
suggests the following questions:

1. Can the constant functions appearing inA be other than the zero function?

2. Can the number of these constant functions be increased?

The answer to the first question is NO. For if A has eigenvalues ( )1
with maximum modulus , then (Ex. 5.7.1) | | , so that A can have no
fixed entry, independent of the eigenvalues, other than zero. To answer the
second question we note that if the inequalities (5.7.2) hold, then A must be
irreducible. For ifA were reducible, i.e., after possibly renumbering the vertices,
it could be written

A =

·
B 0
0 C

¸
then A and A 1 (which after renumbering, would be A ) would have a common
eigenvalue, a situation that is precluded by (5.7.2). Thus A is irreducible and G
is connected. Now we note that A must be positive definite so that no diagonal
term can be zero. The maximum number of zero entries will be attained for
matrices whose graph is a tree, and this number is precisely 2 3 + 2 (Ex.
5.7.2). Thus the answer to the second question is NO also.
Having answered these questions, we proceed to the analysis. We start by

considering a tree G, choose a vertex of V, label it 1, and see the e ect of deleting
vertex 1 - this is the graph corresponding to deleting row 1 and column 1 of A.
First, we need a symbol, N , to denote the set of vertices of G which are
connected to vertex 1. Now we use G0 to denote the graph obtained from G by
deleting vertex 1. Figure 5.7.1 shows two examples. In Figure 5.7.1a, where
vertex 1 is at the end of a path, N = {2} and G0 is the connected graph with
vertices {2 3 4 5 6}. In Figure 5.7.1b, N = {2 4} and G0 has two connected
components, one on either side of vertex 1; we call these G02 G

0
4 respectively. In

general, G0 will have connected components which we label G0 N ; the
corresponding matrix A 1 will have irreducible components.
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1 2 3 4 5 6 3 2 1 4 5 6

2 3 4 5 6 3 2 4 5 6

a) b)

Figure 5.7.1 - Deleting vertex 1 from a path.

Figure 5.7.2 shows another example, a star. Now N = {2 3 4 5} and G0 has
4 connected components: G0 = { } = 2 3 4 5.

1

23

4

5

2
3

4

5

Figure 5.7.2 - Deleting the centre of a star.

Finally, we need a symbol for the graph obtained by deleting vertex N
from G0 ; we call it G00. Figure 5.7.3 shows these subgraphs for the graphs G0 in
Figure 5.7.1.

3 4 5 6 5 6

a) b)

3

222 222 444

Figure 5.7.3 - The subgraphs G00 for the graphs G0.

Note that for the star, the vertex set of G00 is empty because the vertex set
of G0 is { }.
Having established notation that allows us to see what happens when we

delete a vertex of a graph, we need to consider the two sets of eigenvalues, and
how these relate to the matrix A. To do this we first return to two examples we

G G G
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have already treated, those corresponding to deleting an end vertex of a path,
and the centre of a star.
First, the path with end vertex 1. The eigenvalues ( )1 and ( ) 1

1 are the
zeros of the trailing monic principal minors, 0 ( ) 0

1( ) respectively, and, in
the notation of equation (4.3.4), these are linked by

0 ( ) = ( 1)
0
1( )

2
1

0
2( ) (5.7.3)

We note that the graphs corresponding to 0 0
1

0
2 are precisely G G

0 G02
and G00 G002 ; in fact

0 0
1

0
2 are the characteristic polynomials 4 of A,

and of the submatrices of A on G0 and G002 :

0 ( ) = 4(A) 0
1( ) = 4(A(G

0)) 0
2( ) = 4(A(G

00
2 ))

We note also that 1 = 11 1 = 12 and N = {2}. This means that we can
write (5.7.3) as

4(A) = ( 11)4 (A(G
0))

X
N

2
1 4 (A(G

00)) (5.7.4)

Now consider the star. The equation corresponding to (5.7.3) is equation
(5.3.5):

1

1X
=1

ˆ2
=

Q
=1( )Q 1
=1 ( )

(5.7.5)

To rewrite this in the same notation as (5.7.4), we note that for a star on
+ 1 = vertices, with the centre labelled 1, N = {2 3 + 1}, 1 =

11
ˆ = 1 +1, so that

4(A) = ( 11)4 (A(G
0))

X
N

2
1

Y
N\

4(A(G0 )) (5.7.6)

Note that we have assigned the = 1 ’s to the connected components
of G0 so that is assigned to G0+1 = 1 2 . Note also that although
the first terms on the right of (5.7.4), (5.7.6) are identical, the second terms are
di erent. For the star, the vertex set of G00 is empty.
Parter (1960) [265] obtained a general result which embraces the particular

cases (5.7.4) and (5.7.6):

Lemma 5.7.1 4(A) = ( 11)4(A(G
0))

P
N

2

1 4(A(G
00)).

Q
N\ 4(A(G

0 ))

with the convention that 4(A(G00)) = 1 if, as for the star, the vertex set of G00 is empty.

Lemma 5.7.1, like the corresponding result (5.7.5) for the star, is e ectively
a partial fraction expansion. In the general case, it is

4(A)

4(A(G0))
= 11

X
N

2
1

4(A(G00))

4(A(G0 ))
(5.7.7)
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where we have used the fact that G0 has separate connected components G0 ,
so that

4(A(G0)) =
Y
N

4(A(G0 ))

Equation (5.7.7) provides the basis for an inductive argument: deleting vertex
1 of G splits G0 into components G0 , and G00 bears the same relation to G0 as
G0 does to G. This means that if we can e ect the reconstruction of A on the
components G0 of G0 from data referring to G00 and G0 , then we can reconstruct
the whole of A.
Now since G0 is itself a tree, and G00 is obtained by deleting vertex from

G0 , the roots of 4(A(G00)) should interlace the roots of 4(A(G0 )), just as the
interlace the , i.e., (5.7.2). But equation (5.7.7) gives 4(A(G00)) as a result
of the partial fraction expansion. We are given

4(A) = ( ) =
Y
=1

( ) (5.7.8)

4(A(G0)) = ( ) =
1Y

=1

( ) (5.7.9)

Now we must assign the 1 ’s among the components G0 . Suppose G0

has vertices then we must split the indices {1 2 1} into sets, so
that if N then G0 is assigned indices. This is equivalent to grouping the
terms in ( ) into terms ( ), where ( ) has degree :

( ) =
Y
N

( )

This means that we must check to see if, when ( ) ( ) is expanded into
partial fractions, as

( )

( )
=

X
N

( )

( )
(5.7.10)

where ( ) is a monic polynomial with deg( ) deg( ), and if the ’s and
’s interlace as in (5.7.2), then is positive, and the zeros of ( ) and ( )
interlace. To do this, it is best to change back into a form like Lemma 5.7.1 by
multiplying throughout by ( ):

( ) = ( ) ( )
X
N

( ) ( )

where ( ) = ( ) ( ). We note that

( ) =
Y
( )
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where consists of {1 2 1} less those indices which are assigned to .
Choose N and suppose that + are two successive zeros of ( ), then,
since ( ) = 0 = ( + ), we have

( ) = ( ) ( )
( + ) = ( + ) ( + )

We need to show that ( ) has a zero between and + , i.e., that ( )
( + ) have opposite signs. The terms ( ) and ( + ) appearing in
( ) and ( + ) will have the same sign except for those lying between

+ and ; these are 1 such ’s, with indices + 1 + 2 + 1.
Thus

odd ; ( ) ( + ) have the same sign
even ; ( ) ( + ) have opposite signs.

By assumption ( ) has just one zero between any two successive ’s; thus

odd ; ( ) ( + ) have opposite signs
even ; ( ) ( + ) have the same sign.

Combining these results, we see that ( ) and ( + ) must have opposite
signs.
Now we check that is positive. Suppose = , and the roots of ( )

and ( ) are ( )1 and ( ) 1
1 respectively, where

1 1 2
· · · 1

Then

( ) =
Y
=1

( ) ( ) =

1Y
=1

( )

( ) =
Y
=1

( )

and suppose 1 = , so that

( ) =
Y
=1

( )

Now 1 2 are all greater than , so that the sign of ( ) is ( ) . All
the are smaller than so that ( ) 0. Finally

( ) =
Y
( )

where the sum is taken over those {1 2 1} { 1 2 }. But
for the sign we need to consider only those ; there are 1 of these, so
that the sign of ( ) is ( ) 1. Thus 0.
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This yields the first stage in the construction of A: take ( ) ( ) and form
the partial fraction expansion (5.7.10); 11 = 1 = ( )1 2, while the zeros
of ( ) and ( ) are the eigenvalues of the components of A 1.
Figure 5.7.1 shows an example of a tree.

1

7

3

4 5

2

9
8

6

Figure 5.7.4 - A tree on 9 vertices.

The matrix has the form

=

In stage 1, A 1 has two components; we find 11 12 16 and we find new data
which will allow us to construct the star on vertices {2 3 4 5}, and the star-
path on vertices {6 7 8 9}. To carry out the second stage we can, if we choose,
relabel each of the connected components so that 2 1 and 6 1.
We have assumed that the data for constructing A is two strictly interlacing

spectra. However, as with the path and the star, it is possible to use one
spectrum (A) = ( )1 and the first coe cients 1 = 1 2 of the
normalised eigenvectors of A, instead. We recall the result proved for a general
matrix A , namely that the eigenvalues of A 1 are the zeros of

X
=1

( 1 )
2

= 0

Further discussion of, and reference to, eigenvalue problems related to trees may
be found in Nylen and Uhlig (1994) [252].
Further references to the vast literature on inverse eigenvalue problems may

be found in Gladwell (1986a) [107], Gladwell (1996) [124], Nocedal and Over-
ton (1983) [251], Friedland, Nocedal and Overton (1987) [95], Ikramov and
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Chugunov (2000) [184], Xu (1998) [339], Chu (1998) [58] and Chu and Golub
(2001) [59].

Exercises 5.7

1. Show that if the eigenvalues of A have maximum modulus , then
| | for all = 1 2 .

2. Show that if A is a matrix on G, then the maximum number of (non-
diagonal) zero entries in A is attained when G is a tree, and is 2 3 +2.

3. Construct an algorithm to form A from ( )1 ( )1 , given the structure
of G. Use it to construct A on the graph G of Figure 5.7.4. Take
{ }91 = {1 3 5 7 9 11 13 15 17} { }81 = {2 4 6 8 10 12 14 16}. As
a check, find the eigenvalues of A and A1.



Chapter 6

Positivity

There are then two kinds of intellect: the one able to penetrate acutely and
deeply into the conclusions of given premises, and this is the precise intellect;
the other able to comprehend a great number of premises without confusing

them, and this is the mathematical intellect.
Pascal’s Pensées, 2

6.1 Introduction

The basic eigenvalue analysis of real symmetric matrices was discussed in Chap-
ter 1. The eigenvalue properties described there are shared by all positive-
definite (or semi-definite) matrices. This Chapter, which may be missed on a
first reading, provides proofs of some of the results which were used in Chap-
ter 1. Foremost among these are Theorem 6.3.1, that if A , then it has
real eigenvectors which are orthonormal, and thus span ; and Theorem

6.3.7 that provides necessary and su cient conditions for the matrix A to be
positive-definite. Signs, positive or negative, provide the recurring theme for
this Chapter, and hence our choice for the Chapter heading: positivity.
In Chapter 3 we focussed our attention on a narrower class, Jacobi ma-

trices, and found that they had additional eigen-properties: they had distinct
eigenvalues and, with increasing , the eigenvector u became increasingly os-
cillatory, meaning that there was an increasing number of sign changes among
the elements 1 2 . It will be shown in this Chapter that many
of the eigen-properties of such matrices are shared by a wider class of so-
called oscillatory matrices. Actually, there are twin classes of matrices, os-
cillatory and sign-oscillatory, as described in Section 6.5. If A is oscillatory,
and Z = (1 1 1 ( ) 1), then Ã = ZAZ is sign-oscillatory, and vice
versa. The Jacobi matrix J of equation (3.1.4) is actually sign-oscillatory.
These matrices were introduced and extensively studied by Gantmacher and
Krein (1950) [98], see also Gantmacher (1959) [97]. The matrices appearing in
lumped-mass or finite element models of strings, rods and beams are all oscilla-

118
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tory or sign-oscillatory; this Chapter serves as reference material for the study
of oscillatory matrices.

The theorem upon which the whole of the analysis of oscillatory matrices
depends, is Perron’s theorem (Theorem 6.5.1). This relates to a strictly positive
matrix, one that has all its elements strictly positive, and states that such a
matrix has one eigenvalue, the greatest in magnitude, that is real and positive;
the corresponding eigenvector has all its coe cients strictly positive.

The matrices appearing in mechanics are usually not strictly positive; such
matrices appear in Economics and Operational Analysis. Instead, the matrices
are oscillatory. (See the precise definition in Section 6.6.1.) In order to apply
Perron’s theorem to such matrices, we need two essential steps. First, if A
is oscillatory, then B = A 1 is totally positive (TP). This term, which is
introduced in Section 6.6.1, means that not only all the elements of B are strictly
positive, but also all the minors (Section 6.2) of B. Note that the eigenvalues of
B are the ( 1)th powers, 1, of the eigenvalues of A, while its eigenvectors
are the eigenvectors of A. The other step that is needed is the introduction
of the concept of a compound matrix (Section 6.2). The compound matrix
A is formed from all the =

¡ ¢
th-order minors of A. The important

Binet-Cauchy Theorem, Theorem 6.2.3, shows (Ex. 6.3.1) that the eigenvalues
of A are simply products of eigenvalues of A. The argument then runs
as follows. Suppose A is oscillatory, then B = A 1 is TP, and hence, for
= 1 2 B is strictly positive (not TP). The first conclusion (Theorem

6.10.1) is that the eigenvalues of A are positive and distinct, like those of J or
J̃.

Before beginning the analysis proper, we point out a notational matter which
must be understood if confusion is to be avoided. In Chapter 3, in dealing
with a Jacobi matrix J, a positive semi-definite tridiagonal matrix with negative
codiagonal, the eigenvalues were labelled in increasing order, i.e., 0 1 2

· · · . The eigenvectors then became increasingly oscillatory, as described
in Theorem 3.3.1. In Ex. 3.3.2, it was pointed out that if the eigenvalues of
J̃ = ZJZ, a positive semi-definite tridiagonal matrix with positive codiagonal
(an oscillatory matrix if it is actually non-singular, i.e., positive-definite) are
labelled in decreasing order, i.e., 1 2 · · · 0, then the eigenvectors
still satisfy Theorem 3.3.1. In this Chapter, in dealing with oscillatory matrices,
we shall keep the same ordering, i.e., 1 2 · · · 0. Theorem 6.10.2
is a generalisation of Theorem 3.3.1.

6.2 Minors

Suppose A . To gain some insight into the structure of A, and into the
relative sizes of its elements, we introduce the concept of a minor. A minor of
order of the matrix A is the determinant constructed from the elements of A
in di erent rows and di erent columns. Thus, the elements of A themselves
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are minors of order 1, while det(A) is the only minor of order ; 13

¯̄̄
¯ 11 13

21 23

¯̄̄
¯

and det(A) are all minors of A.
Following Ando (1987) [4] we let , with 1 , denote the set

of strictly increasing sequences of integers 1 2 taken from =
{1 2 }. The complement 0of is the increasingly arranged sequence
{1 2 }\ = \ , so that 0 . When and

= 0, their union, should always be rearranged increasingly to
become an element of ( = + ). We will often use two special sequences:
= ( ) = {1 2 } and = ( ) = { +1 }, and their complements
0 = 0( ) = { +1 } 0 = 0( ) = {1 2 }. When the argument
is omitted in or it will be understood to be .
The submatrix formed from rows and columns ofA is denoted byA[ | ];

A[ | ] is written A[ ]. The minor of A taken from rows and columns is
denoted by ( ; ); thus

( ; ) =

¯̄̄
¯̄̄
¯̄

1 1 1 2 1

2 1 2 2 2

· · ·

1 2

¯̄̄
¯̄̄
¯̄ (6.2.1)

The minor ( ; ) is abbreviated to ( ).
The cofactor of , introduced in Section 1.3, is a minor with a sign attached

to it:

= ( ) + ˆ (6.2.2)

where

ˆ = ( 0; 0) (6.2.3)

and 0 = {1 2 1 + 1 } = \ 0 = {1 2 1 + 1 } =
\ ; ˆ is sometimes called the minor of .

If A , then we can form a new matrix Â = (ˆ ) from the minors of
elements of A. We may prove

Theorem 6.2.1 Let Â = (ˆ ), then the minors of Â are given by

ˆ( ; ) = (det(A)) 1 ( 0; 0)

Proof. Consider the theorem for = = ; the general case may be
obtained by a suitable rearrangement of the rows and columns. Since ˆ =
( ) + , we may write

= ˆ( ; ) =

¯̄̄
¯̄̄
¯̄

11 12 1

21 22 2

· · ·

1 2

¯̄̄
¯̄̄
¯̄ (6.2.4)
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Multiplying this by det(A), and writing the determinant in (6.2.4) as that of an
× matrix, we find

· det(A) =det

11 12 1 1 +1 1

21 22 2 2 +1 2
· · · · ·

1 2 +1
0 0 0 1 0

.
.
.

0 0 0 0 1

·

11 12 1
21 22 2
· · ·

1 2

so that on using equation (1.3.10) we obtain

· det(A) =

¯̄̄
¯̄̄
¯̄̄
¯

det(A) 0 0 0
0 det(A) 0 0

det(A) 0 0

1 +1 2 +1 +1 +1 +1

1 2 +1

¯̄̄
¯̄̄
¯̄̄
¯

= (det(A)) ( 0; 0)

so that the theorem holds when det(A) 6= 0. Continuity considerations show
that the theorem also holds when det(A) = 0.
One of the implications of this theorem is that when det(A) = 0, the rank

of Â is at most 1, meaning that all the rows of Â are multiples of each other,
as are all the columns. There is another corollary

Corollary 6.2.1

det(Â) = (det(A)) 1

There is another way to form a matrix from minors of a given matrix. Sup-
pose A and 1 , and put = ( ) := {1 2 }. We can define
by

= ( ) = + 1 + 2

The matrix B . Thus, if = 2 and

A =

1 2 3 4
0 1 1 2
2 1 4 1
1 0 3 2

then B =

·
5 1
2 2

¸

The matrix B is called a bordered matrix; the indices border .
Sylvester’s Theorem on bordered determinants is

Theorem 6.2.2 Suppose A 1 = ( ) for
= + 1 + 2 , and B = ( ), then

det(B) = ( 0; 0) = ( ( ; )) 1 det(A)
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Proof. Theorem 6.2.1, with replaced by 1, and = { +1
1 + 1 } = 0\ = { + 1 1 + 1 } = 0\ , shows that

= ˆ( ; ) = (det(A)) 2 ( ; )

= (det(A)) 2 (6.2.5)

The Corollary of Theorem 6.2.1 shows that if C = ( ) +1, then

det(C) = ( ˆ( 0; 0)) 1 (6.2.6)

But according to (6.2.5),

det(C) = ( 0; 0)(det(A))( 2)( )

= det(B)( det(A))( 2)( ) (6.2.7)

and from Theorem 6.2.1

ˆ( 0; 0) = ( det(A)) 1 ( ; ) (6.2.8)

so that on substituting (6.2.8) into (6.2.6) we find

det(C) = ( det(A))( 1)2( ( ; )) 1

which, on comparison with (6.2.7), yields the required result when det(A) 6= 0.
Continuity considerations show that the theorem still holds when det(A) = 0.

Corollary 6.2.2 If = 0 = 0, then

( ; ) = ( ( ; )) 1 ( ; )

Corollary 6.2.3 Suppose and

= ( ; )

for = + 1 ; = + 1 and with 1 1 ,
then

( ; ) = ( ( ; )) 1 ( ; )

This is the general form of Sylvester’s Theorem. For a proof, see
Gantmacher (1959) [97], Vol. I, p. 32.
We now introduce the powerful Binet-Cauchy Theorem.

Theorem 6.2.3 If A B and C = AB
then

( ; ) =
X

( ; ) ( ; ) (6.2.9)

where the sum extends to all .
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The theorem is a generalisation of the formula for , namely

=
X
=1

The proof may be found in Gantmacher (1959) [97], Vol. I, p. 9.
The importance of the Binet-Cauchy Theorem lies in its application to com-

pound matrices, which we now define.
Suppose first that A is square, i.e., A . We shall define the compound

matrix A . Consider all the sequences ; there are

=

µ ¶
=

!

!( )!

such sequences. For given , the sequences may be arranged in ascending
order 1 2 . This may be done by associating with the sequence =
{ 1 2 } the number with digits 1 2 in the base of = +1.
This procedure associates a specific index = ( ) with each sequence ; lies
in the range 1 . Thus, when = 5 = 3, we have = 10, and
the combinations are 123, 124, 125, 134, 135, 145, 234, 235, 245, 345. Thus
(124) = 2, while (245) = 9. The element a of A is then given by

a = ( ; )

where = ( ) = ( ).
Although we shall not need it in this book, a compound matrix can be defined

for a rectangular matrix A . Now

A =

µ ¶
=

µ ¶

and a is given by (6.2.9) for , . The Binet-Cauchy Theorem
now states

Theorem 6.2.4 If A , B , C = AB and min( ), then

C =A B

Proof. The equation (6.2.9) may be written

c =
X
=1

a b

where = ( ) = ( ) = ( ).

Corollary 6.2.4 If A is non-singular then the th order compound ma-
trix of A 1 is the inverse of the th order compound matrix of A.

Proof. Let B = A 1, then AB = I implies A B = I so that B =
(A ) 1.
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Exercises 6.2

1. If A is non-singular, then equation (1.3.20) shows that its inverse
R = A 1 has elements

= det(A) = ( ) + ˆ det(A)

Use Theorem 6.2.1 to show that if then

det(A) ( ; ) = ( ) ( 0; 0)

where

=
X
=1

( + )

2. If = {1 2 } and = { +1 } then ( ; ) and ( ; ) are
called the th order corner minors of A. Use Ex. 6.2.1 to show that the
corner minors of R are given by

det(A) · ( ) = ( ) ( 0; 0)

where = ( +1). Note that ( 0; 0) is an ( )th order corner minor
of A.

3. Equations (1.3.7), (1.3.8) are a particular case of Laplace’s expansion of a
determinant,

det(A) =
X
( ) ( ; ) ( 0; 0)

where is fixed, the sum is taken over all and =P
=1( + ). Establish this result and show that there is a similar

expansion with fixed and varying over .

4. Suppose A . Use the Binet-Cauchy theorem to show that the th
compound matrix of A is (A ) , i.e.,

(A ) = (A ) =A

5. Use the Binet-Cauchy theorem to show that if Q is an orthogonal matrix,
then so is Q , the th compound matrix of Q.

6. If B = A , write the minors of B in terms of the minors of A; use the
notation (6.2.9) to show that

( ; ) =
X

( ; ) ( ; 0) ( 0( 1); )

where the sum is over all ; 0 0( 1) .
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6.3 A general representation of a symmetric ma-
trix

We begin with two theorems.

Theorem 6.3.1 If A , then A has real eigenvectors forming an ortho-
normal system.

Theorem 6.3.2 To each -fold eigenvalue 0 of A , there correspond
linearly independent eigenvectors.

In Section 1.4 we showed that the eigenvectors corresponding to distinct
eigenvalues are orthogonal. This means that if all the eigenvalues of A are
distinct, then it has orthogonal eigenvectors which may be scaled so that they
are orthonormal. It su cies to prove Theorem 6.3.2.
Proof. Suppose that 0 is an -fold eigenvalue ofA, i.e.,4( ) = det(A I)

has 0 as an -fold root, and that B = A 0I has rank , so that the equation

Bu (A 0I)u = 0 (6.3.1)

has = linearly independent solutions. We need to prove that = .
Now

4( ) = det(A I) = det(B ( 0)I)
=

P
=0( ) ( 0) =

where is the sum of the th-order principal minors of B, and 0 = 1. But B
has rank , so that = 0 = 1 = · · · = +1 and therefore

4( ) = ±( 0) { ( 0) 1 + · · · ± ( 0) 0}

so that . It is su cient to prove that 6= 0, for then 4( ) will have a
-fold root, i.e., = . Without loss of generality we may assume that the first
rows of B are linearly independent, so that any row of B may be expressed as

a linear combination of the first rows, i.e.,

=
X
=1

= 1 2

which may be written
B = CB0 (6.3.2)

where C , and B0 is formed from the first rows of B. Now
apply the Binet-Cauchy Theorem 6.2.3 to (6.3.2):

B( ; ) =
X

C( ; )B0( ; ) (6.3.3)

But C has only columns, and similarly B0 has only rows, and they are the
rows 1 2 of B. Thus, there is only one term in the expansion (6.3.3):

B( ; ) = C( ; )B( ; ) (6.3.4)
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where = {1 2 }. Similarly

B( ; ) = C( ; )B( ; ) (6.3.5)

But B is symmetric, so that B( ; ) = B( ; ) and thus, on combining (6.3.4),
(6.3.5), we have

B( ; ) = C( ; )C( ; )B( ; ) (6.3.6)

All the minors on the left cannot vanish, since then B would have rank less than
; we must have B( ; ) 6= 0. But then (6.3.6) with = gives

B( ; ) = (C( ; ))2B( ; )

This means that all the th order principal minors of B have the same sign, and
one at least, B( ; ) is non-zero. Thus , their sum, must be non-zero. Hence
= .
We may now assert that if A , then it has eigenvalues ( )1 and

orthonormal eigenvectors (u )1 . This means that

Au = u = 1 2

which may be combined to yield

AU = U UU = U U = I (6.3.7)

and this may be transformed to

A = U U (6.3.8)

This is a most important representation of a symmetric matrix.

Exercises 6.3

1. Apply the Binet-Cauchy Theorem, in the form of Theorem 6.2.4, to equa-
tion (6.3.7) to show that the eigenvalues of A are all the products 1 2

.

2. Show that the eigenvectors ofA are the columns of the compound matrix
U .

6.4 Quadratic forms

Suppose A , then

(x x) x Ax = 11
2
1 + 2 12 1 2 + · · ·+ 2 1 1 + 2 (6.4.1)

is called the quadratic form associated with A. One of our aims in this section
is to find necessary and su cient conditions for A to be positive definite (PD),
i.e., (x x) 0 for all x 6= 0.
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First, we consider a number of di erent ways of expressing (x x). Let

(x) =
X
=1

= 1 2 (6.4.2)

then

(x x) =
X
=1

(x) (6.4.3)

This yields ¯̄̄
¯̄̄
¯̄̄
¯

11 12 · · · 1 1(x)

21 22 · · · 2 2(x)
· · · · · · ·

1 2 · · · (x)

1(x) 2(x) · · · (x) (x x)

¯̄̄
¯̄̄
¯̄̄
¯
= 0 (6.4.4)

since the last column is a combination of the first columns, and

Theorem 6.4.1 If det(A) 6= 0, then

(x x) =
1

det(A)

¯̄̄
¯̄̄
¯̄̄
¯

11 12 · · · 1 1(x)

21 22 · · · 2 2(x)
· · · · · · ·

1 2 · · · (x)

1(x) 2(x) · · · (x) 0

¯̄̄
¯̄̄
¯̄̄
¯

(6.4.5)

Proof. Expand the zero determinant (6.4.4) along its last row.
Now we introduce the quantities

1(x) = 1(x) 2(x) =

¯̄̄
¯ 11 1(x)

21 2(x)

¯̄̄
¯ 3(x) =

¯̄̄
¯̄̄ 11 12 1(x)

21 22 2(x)

31 32 3(x)

¯̄̄
¯̄̄

(6.4.6)
etc., up to (x), and prove

Theorem 6.4.2 If = {1 2 } and = ( ; ) 6= 0 = 1 2
then the ( (x))1 are linearly independent.

Proof. We see that 1(x) =
P

=1 1 , while 2(x) =
P

=2( 11 2

21 1 ) , and generally

(x) = + terms in +1

Thus we see that in the reversed sequence (x) 1(x) 1(x), each term
involves one more than the previous one. This means that the ( (x))1 can
all be simultaneously zero i all the ( )1 are zero.
This leads us to an important expression for (x x) given by
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Theorem 6.4.3 (Jacobi). If 0 = 1 = {1 2 } and D = ( ; ) 6=
0 = 1 2 then

(x x) =
X
=1

( (x))2

1
(6.4.7)

Note that, on account of Theorem 6.4.2, this equation expresses (x x) as
a sum of multiples of squares of linearly independent combinations of the ( )1 .
Proof. Put 0 = 0, and

(x x) =

¯̄̄
¯̄̄
¯̄̄
¯

11 12 · · · 1 1(x)

21 22 · · · 2 2(x)
· · · · · · ·

1 2 · · · (x)

1(x) 2(x) · · · (x) 0

¯̄̄
¯̄̄
¯̄̄
¯

(6.4.8)

and find the recurrence relation linking and 1. (x x) is the determinant
of a symmetric matrix C +1, i.e.,

(x x) = ( ( + 1); ( + 1))

Apply Theorem 6.2.2 to this, letting

= ( ( 1) ; ( 1) ) = + 1

then

det(B) = +1 +1 +1 +1

= ( ( 1); ( 1)) ( ( + 1); ( + 1))
(6.4.9)

But = +1 +1 = 1(x x) 1 = 1 = (x) while ( (
1); ( 1)) = 1 ( ( + 1); ( + 1)) = (x x). Thus, equation (6.4.9)
gives

1(x x)
2(x) = 1 (x x)

or, since the are non-zero

(x x)
=

1(x x)

1
+

2(x)

1
= 1 2 (6.4.10)

Now Theorem (6.4.1) states that

(x x) =
(x x)

so that on summing equation (6.4.10) from 1 to and using 0 = 0 we find the
required sum (6.4.7).

Theorem 6.4.4 Suppose A , then A is PD i 0 = 1 2 .
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Proof. First we prove that if A is PD, then det(A) 0. Since A , it
has, by the Corollary to Theorem 6.3.2, eigenvalues ( )1 and orthonormal
eigenvectors (u )1 such that Au = u . Thus = u Au = (u u ) 0
and therefore det(A) =

Q
=1 0 i.e., 0.

If A is PD, then the matrix obtained by deleting the last rows and columns
of A is PD, for = 1 1 1. Therefore, their determinants are positive,
i.e., ( ) 1

1 0. We have proved that if A is PD, then ( )1 0.
Now suppose that ( )1 0, then equation (6.4.7) shows that A(x x) 0,

for the ( (x))1 can be simultaneously zero only if x = 0. Thus A is PD.

Corollary 6.4.1 If A is PD, then all the principal minors ( ; ) =
( ) = 1 2 , are positive.

If A is merely positive semi-definite (PSD), then the leading principal
minors, and indeed all the principal minors are non-negative. We prove

Theorem 6.4.5 If A is PSD and, for some satisfying 1 =
( ; ) = 0, then every principal minor bordering is zero. In particular, the
leading principal minors , are zero.

We prove that the are zero, and leave the remaining result to an Exercise.
Proof. There are two cases:
i) = 1, then 1 = 11 = 0, and¯̄̄

¯ 11 1

1

¯̄̄
¯ = 2

1 0

implies ( 1 )1 = 0, so that ( )1 = 0; in this case x1 does not appear in (x x)
at all.
ii) 11 6= 0 and, for some 1 1 6= 0 +1 = 0. (If = 1,

there is nothing further to prove; we may therefore take 1.)
We introduce bordered determinants

= ( ; ) = + 1

and form B = ( ) +1. By Sylvester’s identity (Corollary to Theorem 6.2.2),
if 1 and , then

( ; ) = ( ( ; )) 1 ( ; )

so that B is PSD. Since +1 +1 = +1 = 0, the matrix falls under case 1 and
if + 1 = 1 = { + 1 }, then

0 = ( ; ) = { ( ( ); ( ))} ( ( ); ( ))

so that ( ( ); ( )) = 6= 0 implies ( ( ); ( )) = = 0.
This theorem implies that if A is PSD, then, for some 1
( )1 0 ( ) +1 = 0.



130 Chapter 6

Exercises 6.4

1. Show that A is PD i its eigenvalues ( )1 are positive; it is PSD i
its eigenvalues are non-negative.

2. Show that if A is PSD then A is singular, and that x Ax = 0 i
Ax = 0.

3. Show that if A is PSD and if = 0 for some satisfying 1 ,
then = 0 for = 1 2 . This means that if = 0 then does
not appear in x Ax.

4. Show that if A is PSD and has rank then it has a positive principal
minor of order .

These examples are merely a selection of properties of PD and PSD matrices
to be found in Chapter 7 of Horn and Johnson (1985) [183].

6.5 Perron’s theorem

Most matrices appearing in classical vibration problems are symmetric. It is
therefore known that they have real eigenvalues, and a complete set of ortho-
normal eigenvectors. Often the matrices are PD, so that their eigenvalues, in
addition to being real, are positive. However, the whole theory relating to os-
cillatory matrices depends on a basic result relating to a class of not necessarily
symmetric matrices, as we now describe.
We recall some definitions. If a vector x has all its elements positive (non-

negative) we shall say x 0 ( 0) and shall say that x is positive (non-negative).
If x y are in then x y is equivalent to x y 0. The matrix A M is
said to be positive (non-negative) if 0 ( 0) for all = 1 2 .
Up to this point the only norm we have used for a vector x is the

Euclidean, or so-called 2 norm:

||x||2 = (
X
=1

| |2)
1
2 (6.5.1)

We can define the 2 norm of a matrix A M :

||A||2 = (
X
=1

| |2)
1
2 (6.5.2)

The norm is variously called the Frobenius norm, Schur norm or Hilbert-Schmidt
norm.
We will need another norm, the 1 norm:

||x||1 =
X
=1

| | (6.5.3)
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||A||1 =
X
=1

| | (6.5.4)

A norm is like a distance; as such it must satisfy various fundamental conditions,
for which see Ex. 6.5.1. For a definitive and extensive study of vector and matrix
norms, see Horn and Johnson (1985) [183], Section 5.6.
We may now prove Perron’s theorem, following Bellman (1970) [25].

Theorem 6.5.1 (Perron). Suppose A M and A 0. Then A has
a unique eigenvalue which has greatest absolute value. This eigenvalue is
positive and simple, and its associated eigenvector can be taken to be positive.
The eigenvalue is often called the Perron root of A.

Proof. Let ( ) be the set of all non-negative for which there exist non-
negative x such that

Ax x (6.5.5)

We shall consider only 1-normalised vectors x, i.e., such that ||x||1 =
P

=1 =
1. (Since x 0, | | = .) This therefore excludes the zero vector. If x
satisfies (6.5.5), then Ex. 6.5.2 shows that

||x||1 ||Ax||1 ||A||1 ||x||1 (6.5.6)

so that 0 ||A||1. This shows that the set ( ) is bounded. It is clearly
not empty, because A is positive. The bounded set ( ) has a least upper
bound; let it be 0. Let 1 2 be a sequence of ’s in ( ) converging to
0, and x a corresponding sequence of x’s satisfying Ax x . The set of
all x such that ||x||1 = 1 is closed and bounded; therefore, the sequence {x }
contains a convergent sequence {x } converging to a non-negative vector x0
satisfying ||x0||1 = 1, and (Ex. 6.5.3)

Ax0 0x0 (6.5.7)

This means that 0 ( ). We shall now show that equality holds in (6.5.7),
and we do so by reduction to a contradiction.
Let

d = Ax0 0x0 0

and suppose one of the , say , is positive. Put

= 0 + ( 2 0)

then the th row of Ay 0y is

= + (2 0) 2 0

Now let = 0 +min ( ), then 0, and

Ay y = e ( 0)y
= e min ( )y 0
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This states that ( ), and that is greater than the least upper bound, 0,
of ( ). This contradiction implies that there is equality in equation (6.5.7),
i.e.,

Ax0 = 0x0 (6.5.8)

Thus 0 is an eigenvalue and x0 is an eigenvector, and x0 is necessarily positive
(Ex. 6.5.4). We will show that 0 is the required Perron root.
Suppose that there is another eigenvalue , possibly complex, such that | |

0, with z 6= 0 being an associated eigenvector, so that Az = z. Let |z| denote
the vector with elements | 1| | 2| | |, then we deduce that

| | |z| = |Az| A|z| (6.5.9)

But then the maximum property of 0 implies | | 0, and hence | | = 0.
Now the argument used earlier shows that equality holds in equation (6.5.9),
i.e.,

A|z| = 0|z| |z| 0

But then
|Az| = A|z| (6.5.10)

and (Ex. 6.5.5) this can hold only if z = w, where is complex and w is
positive; and this implies that is positive, i.e., = 0. We now show that x0
and w, both positive and both eigenvectors corresponding to 0, are equivalent.
Put y = x0 w, and take

= min( 0 ) = 0

then y is a non-negative eigenvector corresponding to 0 with = 0, so that

1 1 + 2 2 + · · ·+ = 0

and since 1 0 for = 1 2 we must have y = 0. Thus x0 = w so
that 0 is a simple eigenvalue. Thus 0 has all the properties asserted for the
Perron root .

Exercises 6.5

1. A vector norm must satisfy three conditions:

a) ||x|| 0, and ||x|| = 0 i x = 0
b) || x|| = | | · ||x||
c) ||x+ y|| ||x||+ ||y||
Show that both the 1 and the 2 norm satisfy these conditions.

2. Show that A x , then

||Ax||1 ||A||1 · ||x||1
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3. Verify that the vector x0 will in fact satisfy the inequality (6.5.7).

4. Show that if x is a non-negative eigenvector of a positive matrix A ,
then x 0. This has the following logical negative consequence:

if A 0 x 0 Ax = x

and = 0 for some = 1 , then x = 0.

5. Show that if A is positive, then equation (6.5.10) can hold only if
z = w, where is complex and w 0.

6.6 Totally non-negative matrices

Suppose A . The matrix A is said to be positive (see Section 6.5), written
A 0, if 0 for all = 1 2 . Total positivity concerns all the
minors of A, (see Section 6.2) not just its elements. If A , we say that
A is

1. TN (totally non-negative) if all the minors of A are non-negative;

If A , we say that A is

2. NTN (non-singular and totally non-negative) if A is non-singular and
TN ;

3. TP (totally positive) if all the minors are (strictly) positive ;

4. O (oscillatory) if A is TN, and a power, A , is TP.

Note that some authors, including ourselves in Gladwell (1986b) [108], use
totally positive (TP) instead of totally non-negative (TN), and strictly totally
positive (STP) instead of totally positive (TP). Also, in Gladwell (1986b) [108],
following Gantmacher and Krein (1950) [98], we used completely instead of to-
tally; completely positive now has a quite di erent connotation. Reader, beware
of these subtle distinctions!
The concept of an oscillatory (or oscillation) matrix was e ectively introduced

by Gantmakher and Krein in the 1930’s, see Gantmacher and Krein (1950) [98].
It was developed further by Gantmacher (1959) [97]. The concept of total
positivity had arisen much earlier than this, e.g., Fekete (1913) [86]; it was
first systematically explored by Karlin (1968) [190] in his book Total Positivity,
Volume 1. (Volume 2 has never appeared!) Ando (1987) [4] reviews its history
and proves important new results. All the concepts, total positivity, oscillatory,
etc., arise in the study of in-line systems, rods, beams, splines, Sturm-Liouville
di erential equations, etc.
The study of total positivity involves the delicate treatment of inequalities.

Here are two typical examples, which the reader may verify:
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i) if 0 or 0; 0 and 0; and¯̄̄
¯

¯̄̄
¯ 0

then 0 and 0;

ii) if 0 or 0; 0 and 0; and¯̄̄
¯

¯̄̄
¯ 0

then 0 and 0.

The concept of total positivity is similar to positive-definiteness, but there
are important di erences between the two concepts: positive definiteness applies
only to symmetric matrices, TP applies to any matrices in ; the condition
for positive-definiteness involves only the principal minors, while TP involves all
the minors. Clearly, if A is TN then it is PSD; if it is TP then it is PD;
but the converses of these results are false. (Ex. 6.6.1). There is a theorem
like Theorem 6.4.5 for matrices which are TN:

Theorem 6.6.1 If A , and A is TN, and A has a zero principal minor,
then every minor bordering it is also zero.

Proof. For simplicity we confine our attention to the leading principal mi-
nors; this restriction can be removed at the expense of some complication in the
argument. As in Theorem 6.4.5, there are two cases:
1) 1 = 11 = 0. We assert that this implies that either ( 1)1 = 0 or

( 1 )1 = 0. If this were not true, then we could find 1 0 and 1 0 for
some satisfying 2 2 . But then¯̄̄

¯ 11 1

1

¯̄̄
¯ = 1 1 0

which contradicts the statement that A is TN. Thus if 11 = 0 then either the
first row of A or the first column of A must be zero. (See also Ex. 6.6.2.)
2) 11 6= 0. Then for some (1 1) we have 6= 0 +1 = 0.

(Again, if = 1, there is nothing further to prove.) We introduce bordered
determinants

= ( ; ) = + 1

and form the matrix B = ( ) +1. By Sylvester’s identity (Corollary 6.2.3), if
1 1 , then

( ; ) = ( ( ; )) 1 ( ; )

so that B is TN. Since +1 +1 = +1 = 0, the matrix falls under case 1. If
+ 1, and = = { + 1 }, then

( ; ) = ( ( ( ); ( ))) 1 ( ( ); ( )) = 0

But since = ( ( ); ( )) 6= 0, we have = 0.
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Theorem 6.6.2 If A and A is NTN, then all its principal minors are
positive.

Proof. If any principal minor were zero, then, by Theorem 6.6.1, =
det(A) would be zero, but A is non-singular, so that det(A) 6= 0 (in fact
det(A) 0).

Corollary 6.6.1 If A is NTN, then A is PD.

If A is NTN, then we know that some elements of A are strictly
positive, in particular, by Theorem 6.6.2, the diagonal elements . We now
prove an important result which shows that A will have a so-called staircase
structure. We first introduce some definitions.
Let = { 1 2 } be a sequence of integers from {1 2 }. Then
is a staircase sequence if 1 2 · · · and for all = 1 2 .

Thus = {2 3 3 5 5} is a staircase sequence.
Suppose and are staircase sequences. A matrix A is said to

be a -staircase matrix if = 0 when or . Suppose =
{2 3 3 5 5} = {2 4 5 5 5} then

=

11 12

21 22 23

32 33

42 43 44 45

53 54 55

is a -staircase matrix. The characteristic of a staircase matrix is that if an
element in the upper (lower) triangle is zero then all elements to the right (left)
and above (below) are zero. Clearly, if A , then = ; we say A is a
-staircase matrix. We are now ready for

Theorem 6.6.3 If A is NTN, it is a staircase matrix.

Proof. The elements in the upper and lower triangles may be dealt with
separately; we consider just the upper triangle.
Suppose 1 and = 0. If , then¯̄̄

¯
¯̄̄
¯ 0 = 0 0 0

imply = 0; all elements to the right of are also zero. Now consider the
terms { +1 } in the th row. The first is positive; there is therefore
a least index , with , such that = 0 for ; call this index
; .
Now suppose and = 0. If then¯̄̄

¯
¯̄̄
¯ 0 = 0 0 0
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imply = 0. Thus = 0 and implies = 0. Thus implies
= 0, i.e., implies ; . Thus is a staircase sequence, and

the upper triangle of A is a staircase.

Theorem 6.6.4 If A is TN and 1 , then ( ( ); ( ))
( ( ); ( )) ( 0( ); 0( )). Recall that ( ) = {1 2 } 0( ) = { +
1 }.

Proof. On account of Theorem 6.6.1 we may assume without loss of gener-
ality that all the principal minors are positive, for if any were zero, then the in-
equality would be satisfied trivially because then by Theorem 6.6.1, det(A) = 0.
The theorem is true for = 2 since

( (2); (2)) = 11 22 12 21 11 22

We prove the theorem by induction, and assume that it holds for matrices of
order 1 or less. We introduce the matrix B of Theorem 6.6.1:

= ( ; ) = + 1

and
( 0; 0) = ( ( ; )) 1 ( ( ); ( ))

= ( ) 1

which we reverse to give

= ( 0; 0) ( ) 1

Since B[ 0| 0] is of order 1, the inductive hypothesis applies to it:

( 0; 0) +1 +1 ( 0( + 1); 0( + 1))

and thus
+1 +1 ( 0( + 1); 0( + 1)) ( ) 1 (6.6.1)

Applying Sylvester’s identity again, we have

( 0( + 1); 0( + 1)) = ( ( ; )) 2 ( ; )

where = 0( + 1) = {1 2 + 2 } which when combined with
(6.6.1) and +1 +1 = +1 gives

+1( ) 2 ( ; ) ( ) 1

+1 ( ; )
(6.6.2)

Now we use the inductive hypothesis again to give

( ; ) ( 0( + 1); 0( + 1))

which, when combined with (6.6.2) gives

( ( ); ( )) ( ( + 1); ( + 1)) ( 0( + 1); 0( + 1))

which shows that the result holds for matrices of order .
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Corollary 6.6.2 If A is TN then

11 22 1 .

Theorem 6.6.4 is expressed as a result concerning principal minors of a TN
matrix A, but since any square matrix taken from a subset of rows and columns
of such an A is also TN we can state

Corollary 6.6.3 If A is TN, , and ( ) = (i.e.,
), then

( 0; 0) ( ; ) ( 0; 0)

Similarly, if , and 0( ) = 0 (i.e., 1 1 + 1), then

( ; ) ( ; ) ( ; )

See Ando (1987) [4] for generalisations of this result.

Theorem 6.6.5 Suppose A is TN. If A has linearly dependent rows,
labelled by with 1 = 1 = , of which the first 1, labelled \ ,
and the last 1, labelled \ 1, are linearly independent (l.i.), then A has rank

1.

Proof. Clearly, the rank of A is at least 1; we show that it is not greater
than 1, i.e., it is exactly 1.
The linearly dependent rows are specified by = { 1 2 }. If ,

then rank (A) , so that rank (A) = 1. Take . The row
may be expressed in terms of rows 1 2 1:

=

1X
=1

= 1 2 (6.6.3)

and since rows \ 1 are , 1 6= 0. Since rows \ are l.i., there is 0

1 such that ( \ ; 0) 0. On substituting for from (6.6.3) we
find

( \ 1;
0) = ( ) 1 ( \ ; 0)

Therefore ( \ 1;
0) 6= 0, but this minor is non-negative and therefore it is

strictly positive; therefore ( ) 1 0.
Now suppose 0 then +1 for some index satisfying 1
1. If then, on substituting for , as before, we find

(( \ 1) ; ) = ( ) +1 1 (( \ ) ; ) (6.6.4)

The inequality ( ) 1 0 implies that the minors on either side of (6.6.4) have
opposite signs. But both are non-negative so that both are zero. Since is an
arbitrary member of , this means that any row 0 may be expressed as
a linear combination of the rows \ 1, or equivalently of \ . Thus the rank
of A is 1.
We now prove a corollary of this result, but since its truth is not immediately

clear, we state it as
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Theorem 6.6.6 If A is TN and there exist such
that 1 = 1 = 1 = 1 = and

( ; ) = 0 ( \ ; \ ) 0 ( \ 1; \ 1) 0

then A has rank 1.

Proof. Apply Theorem 6.6.5 to the matrix with rows {1 2 } and
columns of A. It has linearly dependent rows , of which the first 1,
\ , and the last 1, \ 1, are linearly independent. Therefore, it has rank
1, so that its columns are linearly dependent. These columns are columns

of A, and so are rows of A . Now apply Theorem 6.6.5 to A . Its rows are
linearly dependent, while the first 1, \ , and last 1, \ 1, are linearly
independent. Therefore, by Theorem 6.6.5, A has rank 1; has rank 1.

Exercises 6.6

1. Exhibit A 2 which is PD but not TN.

2. Use Theorem 6.6.3 to prove that if A is NTN and 1 0, 1 0, then
A is a (strictly) positive matrix. Markham (1970) [221] stated this result
for oscillatory A, but NTN is su cient. Find even weaker conditions for
the result to hold. (See Gladwell (1998) [126].) See Gasca and Pena
(1992) [99] for related work.

6.7 Oscillatory matrices

We introduced four terms at the beginning of Section 6.6: TN, NTN, TP and
O. In this section we are concerned with the last, oscillatory. We note that
TN is weaker than NTN, which in turn is weaker than TP. O is by definition
stronger than NTN; it is weaker than TP because

A =
2 1
1 2 1
1 2

(6.7.1)

is O because

A2 =
5 4 1
4 6 4
1 4 5

is TP, but A itself is not TP. Note that if A is TP, then A is necessarily
non-singular. We can therefore define A to be O, if A is TN and A is TP.
We will show later that if A , A is PD, and tridiagonal with positive co-
diagonal, then A is O. Clearly though, the class of oscillatory matrices is much
larger than this. We will first obtain some preliminary results which will allow
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us to characterise oscillatory matrices. It is oscillatory matrices, and not TP
matrices, which appear in applications to inverse problems.
We have defined an oscillatory (O) matrix as a TN matrix which is such that

a power A is TP. Using this definition, we cannot easily check whether a TN
matrix is O. Our principal aim in this section is to obtain an easily applicable
test for A to be O. As a first step we prove

Theorem 6.7.1 If A is O, then any principal submatrix B formed
by deleting successive rows and columns of A is O.

Proof. Clearly, any principal submatrix is TN; the question is whether it is
O. It is su cient to show that B = A1, obtained by deleting the first row and
column of A is O.
We use Ex. 6.2.6, deduced from the Binet-Cauchy Theorem (equation (6.2.9)),

to obtain the minors of a power of a matrix in terms of the minors of the original
matrix. Suppose that A = C is TP, and consider the minors of D = B .
We retain the original numbering of rows and columns, so that B = ( )2 .
Then if and 1 2 1 2, we have

( ; ) =
X

( ; (1)) ( (1); (2)) ( ( 1); ) (6.7.2)

where the sum is taken over all sequences (1) (2) ( 1) with
( ) 2, = 1 2 1.
Now consider the corresponding minors of C = A : (1 ; 1 ); we have

(1 ; 1 ) =
X

(1 ; (1)) ( (1); (2)) ( ( 1); 1 ) (6.7.3)

where the sum is taken over all sequences (1); (2) ( 1)
+1 . Since

C is TP, each of its minors must be positive; this implies that for at least one set
(1); (2) ( 1), the product on the right of (6.7.3) must be positive; this
implies that each of the minors entering that product must be strictly positive,
for they are all non-negative. Now if +1 , it may be written 0 , where

and 1 2. This means that with the particular set (1) ( 1)

+1 for which all the terms in (6.7.3) are positive, one may associate a set
(1) ( 1) which appears in the product (6.7.2). Now we use
Corollary 2 of Theorem 6.6.3; it shows that for this particular choice of ( ( )) 1

1 ,
all the minors on the right of (6.7.2) must be positive, for if one were zero, say
the first, then

(1 ;
(1)
0

(1))
1

(1)
0

( ; (1)) = 0

contrary to the fact that the minor on the left is positive. We conclude that
one product in the sum on the right of (6.7.2) is positive; D = B is TP; B is
O.
We defined a principal minor of A as ( ; ) ( ). We now define

a quasi-principal minor. The minor ( ; ) is said to be quasi-principal if
and

1 1 1 2 2 · · · (6.7.4)
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and
| 1 1| 1 | 2 2| 1 | | 1 (6.7.5)

Thus a principal minor is also a quasi-principal minor.
The statement 1 1 2 2 means that each of 1 and 1 is less than

each of 2 and 2, but there is no ordering of 1 and 1, nor of 2 and 2; thus

1 2 1 2 1 2 1 2

The minors
(1 3; 2 3) (1 3; 1 3) (1 2; 1 3)

are all quasi-principal, but (1 2; 2 3) is not.
Note that for A given in (6.7.1), and this matrix A is O, all these quasi-

principal minors are positive. This is a particular case of

Theorem 6.7.2 If A , A is NTN and +1 0 +1 0 for =
1 2 1, then all the quasi-principal minors of A are positive.

Proof. We will use induction on the order, , of the minors. The first order
quasi-principal minors are the diagonal terms , which are positive because of
Corollary 6.6.2; and +1 and +1 , which are positive by the statement of the
theorem. Suppose then that all the quasi-principal minors of order 1 are
positive. We will prove that all those of order are positive. For suppose this
were not true, so that

( 1 2 ; 1 2 ) = 0

where the indices satisfy the inequalities (6.7.4), (6.7.5). But then

( 1 2 1; 1 2 1)

and
( 2 3 ; 2 3 )

will be quasi principal minors of order 1, and so positive. Now Theorem 6.6.6
states that the matrix with rows 1 +1 and columns 1 1+1
has rank 1. Let = max( 1 1), then it follows from the inequalities (6.7.4),
(6.7.5), that

1 1 ; + 1

Therefore, the minor ( + 1 + 1) is a th order minor of a matrix
with rank 1, and so is zero. But this minor is a principal minor of A, and
Theorem 6.6.4 shows that det(A) = 0; but A is NTN and thus non-singular.
This contradiction implies that all the quasi-principal minors of A are positive.

We are now in a position to prove the important

Theorem 6.7.3 If A is NTN then it is O i +1 0 +1 0 for
= 1 2 1.
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Proof. We first prove that if it is O, then +1 0 +1 0. If it is O
then Theorem 6.7.1 states that the matrix

B =

·
+1

+1 +1 +1

¸

is O, so that D = B is TP for some . But if say +1 = 0 then +1 = 0,
whatever the value of . Similarly, if +1 = 0, then +1 = 0. Thus

+1 0 and +1 0.
We must now prove that if +1 0 +1 0 for all = 1 2 1,

then there is a power of A which is TP. We shall show that A 1 is TP. We
shall use Theorem 6.7.2, which states that the quasi-principal minors of A are
positive. We recall the result used in Theorem 6.7.1, that a minor of B = A 1

is a sum of products of 1 minors of A. We need to show that the sum
corresponding to a particular minor ( ; ) has at least one positive term in it.
First, we note that if ( ; ) 0 for one particular value of , then it will be
positive for +1 also, and thus for all subsequent ; for since C = A +1 = A.
A = AB, the Binet-Cauchy expansion for the minor ( ; ) will contain the
term ( ; ) ( ; ). This is positive because, by Theorem 6.6.2, the principal
minors of A are positive.
This implies that, to show that ( ; ) 0 holds for B = A 1, it is

su cient to show that for some satisfying 1 1 the expansion
for ( ; ) will contain one product consisting entirely of quasi-principal mi-
nors. The problem is essentially how we can step from the sequence to
the sequence through intermediate sequences (1) (2) ( 1) such that
( ; (1)) ( (1); (2)) ( ( 1); ) are all quasi-principal. Take an exam-
ple. Suppose = 3 = {1 2 3} and = {3 5 6}; we step as follows:

{1 2 3} {2 3 4} {3 4 5} {3 5 6}

The required exponent is the number of steps needed to go from to , and
this is

= max
1

| | (6.7.6)

The quantity (3 in the example) may be viewed as the distance ( )
between two sequences (see Ex. 6.7.2). If ( ) is quasi-principal then
( ) 1; if ( ; ) is quasi-principal but not principal, then ( ) = 1.

The greatest distance between two sequences is ; it occurs for
instance when

= {1 2 } = { + 1 + 2 };

this in turn is maximized when = 1, i.e., = {1} = { }. We conclude that
if = 1, then the Binet-Cauchy expansion for any minor of B will contain
one product consisting entirely of quasi-principal minors of A; B is TP; A is O.

We conclude this section by analyzing how oscillatory matrices relate to the
Jacobi matrices which occupied our attention in earlier chapters. We defined a
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Jacobi matrix in Section 3.1: J , J is PSD, and J has negative co-diagonal.
J is clearly not O, but

Theorem 6.7.4 If J is PD, then A = J̃ = ZJZ is O.

Proof. We recall that Z = (1 1 1 ( ) 1), so that in the notation
of equation (3.1.4),

+1 = +1 = 0

According to Theorem 6.7.3 it is su cient to show that A J̃ is TN. Consider
a minor ( ; ). There are three cases:
1) = , then ( ; ) 0 since A is PD.
2) ( ) = 1, i.e., ( ; ) is quasi-principal, thus it may be expressed as a

product of principal minors and ’s; ( ) 0.
3) ( ) 1, then ( ; ) = 0.
For A = J̃ only the quasi-principal minors are positive; the others are zero.
If A , then Ã = ZAZ is called the sign-reverse of A.

Theorem 6.7.5 Suppose A . A is NTN, TP, O i (Ã) 1 is NTN, TP,
O respectively.

Proof. We recall from Section 1.3, that A 1 = R, where = det(A),
where is given by = ( ) + ˆ . This means that it is su cient to show
that A is NTN, TP or O i Â = (ˆ ) is NTN, TP, O. But Theorem 6.2.1 shows
immediately that A is NTN or TP i Â is NTN or TP respectively. If A is O
then ˆ +1 and ˆ +1 are given by Theorem 6.2.1 as quasi-principal minors of
A, and so are positive; Â is O; and vice versa, if Â is O, then so is A.
If Ã is oscillatory we shall say that A is sign-oscillatory (SO). This implies,

in particular, that a non-singular Jacobi matrix is SO.

Corollary 6.7.1 If A is SO, then A 1 is O.

Exercises 6.7

1. Why is it not su cient to define A to be O if, for some , A is TP?
Exhibit an example of A 2 such that A2 is TP but A is not TN.

2. Show that the distance ( ) satisfies the basic conditions for a distance:

( ) 0; ( ) = 0 i = ;

( ) ( ) + ( ).

3. Show that if A is tridiagonal, then it is O i

a) its principal minors are non-negative

b) +1 0 +1 0 for = 1 2 1

c) it is non-singular.
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4. We say that a tridiagonal matrix A as described in Ex. 6.7.3 has half-
bandwidth 1; it has 1 diagonal above, and 1 below, the principal diagonal.
Show that if 1 1 then A has half-bandwidth .

5. Show that if +1 6= 0 +1 6= 0, then a tridiagonal matrix A may be
symmetrized by using diagonal matrices, i.e., we can find diagonal C D

so that CAD is symmetric. Show that this means that an oscillatory
tridiagonal matrix may be symmetrized to a J̃ matrix by using positive
diagonals C D, i.e., CAD = J̃.

6. Suppose A B . Show that if A B are TN, then so is C AB.

7. Show that if A B are O, then so is C AB.

8. Show that if A is O then A 1 is O.

9. Show that if A = J 1 then A, which is O by Theorem 6.7.5, is actually
a (strictly) positive matrix, i.e., it is full. Note that by Ex. 6.6.2, it is
su cient to show that 1 0.

10. Show that if A is O, then the indices of its staircase structure (Section
6.6) satisfy + 1 + 1.

11. Show that if A has eigenvalues and eigenvectors u , then B = (Ã) 1

has eigenvalues = 1 and eigenvectors v = Zu , where = +1 .

12. Exhibit counterexamples to show that if A is one of TN, TP or O, then a
compound matrix A need not have the same property.

6.8 Totally positive matrices

The matrix A is TP if all its minors are positive. This is equivalent to
the statement that all the compound matrices A = 1 2 , are (strictly)
positive. There are

= 2 +

µ
2

¶2
+

µ
3

¶2
+ +

µ
1

¶2
+ 1 (6.8.1)

elements to be checked. Using a result due to Fekete (1913) [86], Ando (1987)
[4] proved that one need check only a much smaller set of minors.
As in Section 6.2, let denote the set of strictly increasing sequences
= { 1 2 } chosen from 1 2 . We write

( ) =

1X
=1

( +1 1)

and note that if , then ( ) = 0 i +1 = +1 for = 1 2 1;
i.e., ( ) = 0 i 1 2 consists of consecutive integers. We define 0

as the subset of consisting of those with ( ) = 0. Following Theorem
2.5 of Ando (1987) [4] we have
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Theorem 6.8.1 is TP if ( ; ) 0 for all 0 = 1 2 .

Proof. Let us prove that

( ; ) 0 for = 1 2 (6.8.2)

by induction on . When = 1, this is trivial because = 0 . Assume
that (6.8.2) is true with 1( 2) in place of . First fix with ( ) =
0, i.e., 0 , and let us prove (6.8.2) with this by induction on = ( ).
When = 0 this follows by the assumption of the theorem. Suppose ( ; ) 0
for all minors whenever and ( ) 1, with 1. Take
with ( ) = . Then there is a such that 1 ( { 1 }) 1
and ( { }) 1 where = { 2 3 1}. Now use the identity
((1.39) of Ando (1987) [4])

( ; { }) ( ; { 1 }) = ( ; { 1}) ( ; { })

for any 1 with . It follows from the induction assumptions that
the right hand side is positive, as is ( ; { }), so that ( ; { 1 })
( ; ) 0. This proves (6.8.2) for with ( ) = 0. Apply the same
argument row wise to conclude that (6.8.2) is generally true.
We may use precisely the same argument to prove the

Corollary 6.8.1 Suppose . If all minors ( ; ) 0 for

1 , and ( ; ) 0 for 0 , then, ( ; ) 0 for all .

This result mirrors the test for a matrix A to be PD; to show that A
is PD, it is su cient to show that the leading principal minors 1 2

are all positive. The importance of the result lies in the fact that, with it, the
number of minors to be checked for positivity is much smaller than that given
by (6.8.1).
The test in Theorem 6.8.2 determines whether an arbitrary matrix A

is TP. If it is known that A is TN, then one needs to check only a very small
number of minors for strict positivity to determine whether A is TP, as stated
in

Theorem 6.8.2 If A is TN, then it is TP if its corner minors are posi-
tive.

Proof. The corner minors are the minors

(1 2 ; + 1 ) ( + 1 ; 1 2 )

= 1 2 . The result follows immediately from Theorem 6.6.6 and The-
orem 6.8.1. Consider a minor ( ; ) with 0 . Suppose =
{ + 1 + 1}, { + 1 + 1}. If then ( ; )
is a principal minor of the corner submatrix ( + 1 ; 1 2 ) with
= ( ). This submatrix is NTN, so that, by Theorem 6.6.6, its
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principal minors are positive. If , then ( ; ) is a principal minor of
(1 2 ; + 1 ) with = ( ). Since ( ; ) 0 for all

0 , = 1 2 , Theorem 6.8.1 states that is TP.

Exercises 6.8

1. Show that if A is NTN and B is TP, then AB and BA are TP.

2. Show that if = exp[ ( )2], then P = ( ) is TP. See Section 7 of
Ando (1987) [4].

3. Use Ex. 6.8.3 to show that a NTN matrix A may be approximated arbi-
trarily closely, in the 1 norm (see (6.5.4)) by the TP matrix B = PAP.
(Again, see Section 7 of Ando (1987) [4].)

6.9 Oscillatory systems of vectors

Before discussing the eigenproperties of totally positive matrices, we need to
analyse some sign properties of vectors.
Let 1 2 be a sequence of real numbers. If some of them are zero

we may assign them arbitrarily chosen signs. We can then compute the number
of sign changes in the sequence. This number may change, depending on the
choice of signs for the zero terms. The greatest and least values of this number
are denoted by +

u and u respectively, where u = { 1 2 }.
If +

u = u , we speak of an exact number of sign changes in the sequence,
and denote this by u. Clearly this case can occur only when

1. 1 6= 0

2. when = 0 for some satisfying 2 1, then 1 +1 0, i.e.,
1 and +1 are both non-zero, and have opposite signs. In this case u

is the number of sign changes when the zero terms are removed.

We say that a system of vectors u = { 1 2 } = 1 2 , is
an oscillatory system if, for any ( )1 with

X
=1

2 0 (6.9.1)

the vector

u =
X
=1

u (6.9.2)

satisfies +
u 1. Clearly, we need only consider . Taking = 1 we

see that +
u1
= 0, i.e., u1 0; for = 2 +

u 1, etc.
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Theorem 6.9.1 The necessary and su cient condition for the system (u )1 to
be an oscillatory system is that all the minors

( ; )

be di erent from zero, and have the same sign, for

= {1 2 }

Proof. The minors in question are

( 1 2 ; 1 2 ) (6.9.3)

Remember that 1 2 refer to components of the vectors, while 1 2
refer to the vector index . The theorem states that when = 1, 11 21 1

must all be non-zero and have the same sign; this is certainly equivalent to
+
u = 0. For = 2, it states that

(1 2; 1 2) =

¯̄̄
¯ 11 12

21 22

¯̄̄
¯ (1 3; 1 2) =

¯̄̄
¯ 11 12

31 32

¯̄̄
¯

( 1 ; 1 2) =

¯̄̄
¯ 1 1 1 2

1 2

¯̄̄
¯

are all non-zero and have the same sign.
We first prove the necessity. If a minor (6.9.3) were to vanish, then we could

find numbers ( )1, not all zero, such that

X
=1

= 0 = 1 2 (6.9.4)

But then the vector u given by (6.9.2) would have zero terms

1 = 0 = 2 = · · · =

so that, by Ex. 6.9.1, +
u 1.

In order to show that the minors all have the same sign it is su cient to
show that all minors ( ; ) for next to in the sense ( ; ) = 1, (see
equation (6.7.6)) all have the same sign. These are the minors ( )1, where
= ( ( ); ) and (1) = {2 3 +1} ( ) = {1 2 1 +1 +

1} = 2 3 . These must all have the same sign as +1 = ( ; ).
Introduce a vector u +1 such that

+1 =
( ) +1 +1 =
( ) +1 = + 1

0 otherwise
(6.9.5)

Then

(1 2 +1; 1 2 +1) = ( ) +1{( ) +1 +1 +1 +1+( ) +1 } = 0
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so that we can find ( ) +11 , not all zero, such that

+1X
=1

= 0 = 1 2 + 1

But then the vector (6.9.2) will have coordinates

= +1 +1 = 1 2 + 1

The quality +1 cannot be zero, for then u would have + 1 zero terms and
hence +

u . Choose +1 so that +1 +1 0, then, according to (6.9.5),
( ) 1

1 = 0 = ( ) +1 +1 ( ) +1 = 0 +1 = ( ) +1 . If +1

had opposite signs, then would have the sign of ( ) , and +1 would have
the sign of ( ) +1. This means that we can assign the signs of the zero so
that, for all = 1 2 + 1, has the sign of ( ) . But then +

u = . This
proves the necessity.
Now we prove the su ciency. Suppose that all the minors (6.9.3) were non-

zero and had the same sign, which we may take to be positive. We will prove
+
u 1, by assuming the contrary, i.e., +

u . If that were so we could
find + 1 components 1 2 +1 such that

+1 0 = 1 2 (6.9.6)

The ( )1 cannot be simultaneously zero, for then the ( )1, not all zero, would
satisfy equation (6.9.4), the determinant of which is not zero.
Now consider the zero determinant¯̄̄

¯̄̄
¯̄

1 1 1 2 1 1

2 1 2 2 2 2

· · · ·

+1 1 +2 2 +1 +1

¯̄̄
¯̄̄
¯̄ = 0

and expand it along its last column

+1X
=1

( ) +1+ ( 1 2 1 +1 +1; 1 2 ) = 0

But this is impossible because the minors are all positive and, by (6.9.6), the
quantities ( ) all have the same sign, and are not zero. This completes
the proof.

Exercises 6.9

1. Consider the real sequence 1 2 . Show that if ( )1 = 0 then

u = 0 +
u = 1. Show also that if (0 ) of the are zero

then

u 1 and +
u 1

while if (1 ) successive are zero then +
u u .
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6.10 Eigenproperties of TN matrices

Since TN matrices are not necessarily symmetric we cannot immediately as-
sume that their eigenvalues are real; to do so we must make use of their special
properties.

Theorem 6.10.1 The eigenvalues of an TP matrix are positive and distinct.

Proof. Suppose that A has eigenvalues 1 2 , possibly com-
plex. We order them in decreasing modulus, i.e., so that | 1| | 2| · · · | |.
Since A is TP, it is positive; Perron’s theorem (Theorem 6.5.1) states that 1 is
positive and 1 | 2|. Since A is TP, the compound matrix A2 is positive; its
eigenvalues are the products = 1 2 . It too has a positive eigen-
value, greater in magnitude than any other; it must be 1 2 so that 1 2 0
and 1 2 | 1 3|. Thus 2 0 and 2 | 3|. Now we consider A3 and
deduce that 1 2 3 0 and 1 2 3 | 1 2 4|, i.e., 3 0 and 3 | 4|, and
so on.

Corollary 6.10.1 The eigenvalues of an oscillatory matrix are positive and dis-
tinct.

Proof. For ifA is O, then B = A is TP for all 1. But if the
eigenvalues ofA are ( )1 , those ofB are = ; since 1 2 · · · 0,
and 0, we have 1 2 · · · 0.
We now show that the eigenvectors of an oscillatory matrix behave exactly

like those of a J̃ matrix, i.e., like those of a Jacobi matrix when the ordering of
the eigenvalues is reversed (see the comment at the end of Section 6.1).

Theorem 6.10.2 Suppose A is O, and has eigenvalues ( )1 satisfying

1 2 · · · 0. Let u = { 1 2 } be an eigenvector
corresponding to ; it is unique apart from a factor. Let

u =
X
=

u
X
=

2 0 (6.10.1)

then the number of sign changes among the components of u for di ering ( )
satisfies

1
u

+
u

1 (6.10.2)

Proof. Since the eigenvectors of A are also the eigenvectors of A , and
since A is TP for some 1, we lose no generality by assuming that A
is TP.
Suppose 1 = { 1 2 } = {1 2 }. Then

the minors ( ; ) are the coordinates of the eigenvector of the compound ma-
trix A corresponding to the maximum eigenvalue 1 2 . By Perron’s
theorem all the components of this eigenvector have the same sign. If the
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sign of the -th set of minors is then, by multiplying the vectors (u )1 by
1 2 1 1 respectively, we can make

( ; ) 0 = 1 2

Theorem 6.9.1 now shows that +
u 1.

To prove the second part of the theorem we put B = (Ã) 1. Theorem 6.7.5
shows that if A is TP, then so is B, and Ex. 6.7.11 shows that it has eigenvalues
= 1 and eigenvectors v = Zu , where = + 1 . Thus

v = { 1 2 } = { 1 2 3 ( ) 1 }

The result already proved shows that the number of sign interchanges in

v =

+1X
= +1

+1 v = Z
X
=

u

satisfies +
v 1. But since v = ( ) 1 we have +

v + u = 1 so that

u 1.

Corollary 6.10.2 The vector u = u has exactly 1 sign changes. ( u =
+
u
= 1).

Corollary 6.10.3 6= 0, so that u may be chosen so that 0.

The argument used in this theorem leads directly to

Corollary 6.10.4 For each such that 1 , the minors ( 1 2 ;
1 2 ), have the same sign for all .

The minors of Corollary 6.10.4 relate to components 1 2 of the
first eigenvectors. We now prove a result in which components and eigenvalue
indices are reversed; this theorem will play a vital role in the inverse problem
for the discrete vibrating beam (Chapter 8). Before stating the theorem we
repeat comments we have made on the relation between oscillatory (O) and
sign-oscillatory (SO) matrices.
If A is O, with eigenvalues ( )1 ordered so that 1 2 · · · 0,

then its eigenvectors (u )1 satisfy Theorem 6.10.2 so that, in particular, u has
exactly 1 sign changes. If A is SO and we label its eigenvalues ( )1 in
reverse order, i.e., so that 0 1 2 · · · , then its eigenvectors (u )1
again satisfy Theorem 6.10.2, so that, in particular, u has 1 sign changes.
We will phrase the final theorem of this section for an SO matrix.

Theorem 6.10.3 If A is SO, with eigenvalues ( )1 satisfying 0 1

2 · · · , then its eigenvectors (u )1 may be chosen so that

( ; ) 0 (6.10.3)

for = { + 1 + 2 } and each .
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Proof. The analysis of Section 6.3 (See Ex. 6.3.2) shows that ( ; ) is the
last component of the eigenvector of the compound matrix A corresponding
to the th eigenvalue 1 2 , where = ( 1 2 ). The more
general statement of Theorem 6.10.3 is that all the elements ( ; ) have the
same sign, which is thus the sign for the case = 1, i.e., for .
The proof is by induction on p. Corollary 6.10.3 shows that 6= 0. Choose
0 for = 1 2 ; the theorem then holds for = 1. Suppose the result

holds for . Corollary 6.10.2 shows that u has 1 sign changes, so that
( ) 1

1 0. Choose ( ) +1 so that

u =

+X
=

u

+X
=

2 0

and

+1 = 0 = +2 = · · · =

using the choice

= ( ) ( ; \ ) = + 1 +

where = { + 1 + } = { + 1 }.
The vector u has the form

u = { 1 2 0 0 0}

and has first element

1 = 1 + +1 1 +1 + · · · + +

Since, by hypothesis, the result is true for , the coe cients satisfy ( ) +

0; this and the inequality ( ) + 1
1 + 0, yield ( ) 1

+ 1 + 0, so that
( ) 1

1 0. By Theorem 6.10.2,

1 u

+
u + 1

and since the last elements of u are zero, there must be exactly 1 sign
changes in the first elements of u; but ( ) 1

1 0, so that the last
non-zero element, , must be positive, i.e.,

= ( + 1 ; + 1 + ) 0 +

This shows that all ( +1)th order minors with consecutive indices +1 +
are positive, and Theorem 6.8.1 shows that all ( +1)th order minors are positive.
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Exercises 6.10

1. Show that if u u +1 are eigenvectors of an O or SO matrix A ,
then 1 +1 1 +1 is non-zero and has the same sign for
= 1 2 1.

2. Show that the proof used in Theorem 6.10.3 may be used to show that if
A is O with eigenvalues ( )1 satisfying 0 1 · · · 1,
then its eigenvalues (u )1 may be chosen so that

( ; ) 0

for = { + 1 and each .

3. The matrix

=

2 1
1 2 1
1 2 1
1 2

is O. Use the recurrence method described in Section 2.6 to find its eigen-
values ( )41, labelled so that 0 4 3 2 1, and its eigenvectors.
[Note: the eigenvectors may be written explicitly in terms of = sin

¡
5

¢
and = sin

¡
2
5

¢
.] Choose the signs of the eigenvectors so that they obey

Corollary 6.10.4. Make a di erent choice so that they obey Ex. 6.10.2.

4. If u is an eigenvector of A , and T is the reversing matrix given in
equation (4.3.8), then v = Ty is an eigenvector ofB = TAT corresponding
to the same eigenvalue . Use this result, and Ex. 6.10.2, to show that if
is O, then ( 1 1; 1 ) 0

6.11 u-line analysis

We recall the concept of a u-line corresponding to the vector u = { 1 2 },
from Section 3.3: it is the broken line made up on the links joining the points
with coordinates ( ) = ( ), so that

( ) = ( + 1 ) + ( ) +1 + 1

Theorem 6.11.1 Let u be an eigenvector corresponding to eigenvalue of
an oscillatory matrix A. The corresponding u -line, u( )( ) has no links on
the -axis, and has just 1 nodes, i.e., simple zeros where u( )( ) changes
sign.

Proof. A link of a u-line can lie along the -axis only if two successive
are zero, but this is precluded by the Corollary to Theorem 6.10.2. Since

u = 1, the u-line has just 1 nodes.
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Corollary 6.11.1 If are successive nodes of a u -line, then | | 1.

Theorem 6.11.2 The u-lines corresponding to two successive eigenvectors of
an oscillatory matrix cannot have a common node.

Proof. Suppose, if possible, that ( )( ) = 0 = ( +1)( ), and put

( ) = ( )( ) ( +1)( )

Theorem 6.10.2 shows that

1 u

+
u (6.11.1)

The Corollary to Theorem 6.11.1 shows that ( )( ) and ( +1)( ) will both
be non-zero in ( + 1]. Choose so that + 1, and put =
( +1)( ) ( )( ). Then ( ) will have two zeros, such that +1;
it must therefore have a link along the -axis, means that two successive must
vanish. According to Ex. 6.9.1 this means that +

u u
2, contradicting

(6.11.1).

Theorem 6.11.3 The nodes of u-lines corresponding to two successive eigen-
vectors u u +1 of an oscillatory matrix interlace.

Proof. Suppose that are two successive nodes of the u +1-line, then
( +1)( ) = 0 = ( +1)( ) and 1. Suppose if possible that the u -line
has no node in ( ). Without loss of generality we may assume that

( )( ) 0 in [ ] ( +1)( ) 0 in ( )

Put
( ) = ( )( ) ( +1)( )

then
1 u

+
u (6.11.2)

For su ciently large , ( ) 0 in [ ]. Decrease to a certain value 0 at
which ( ) first vanishes at least once, at a point in [ ]. Clearly 0 0 and

0( ) = 0
( )( ) ( +1)( )

does not vanish at or , so that . Thus 0( ) 0 in [ ] and
0( ) = 0. The broken line 0( ) cannot have a complete link on the -axis,
for then, as in Theorem 6.11.2, it would be zero at two successive 0( ) and
+
u0 u0

2, contradicting (6.11.2). Since 0( ) = 0, and 0( ) is positive on
either side of , must be a break-point of the 0( ) line, say , so that

0( 1) 0 0( ) = 0 0( + 1) 0

and again +
u0 u0

2, contradicting (6.11.2). We conclude that between
any two nodes of ( +1)( ) there must be at least one node of ( )( ). But
( )( ) has only 1 nodes, while ( +1)( ) has nodes. Thus ( )( ) has
no more than one node between two nodes of ( +1)( ), i.e., it has exactly one
node there; the two sets of nodes interlace.
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Isospectral Systems

We view things not only from di erent sides, but with di erent eyes; we have
no wish to find them alike.

Pascal’s Pensées, 124

7.1 Introduction

We will say that two systems are isospectral if they have the same eigenvalues.
(Some authors use the term cospectral.) In our context a ‘system’ is charac-
terised by a symmetric matrix A , or perhaps by two symmetric matrices
M K . In the notation of Section 4.3, two matrices A B are said to
be is isospectral if

(A) = (B) (7.1.1)

and two systems (M K) and (M0 K0) are said to be isospectral if

(M K) = (M0 K0) (7.1.2)

We recall that if M M0 are positive definite, then we may reduce the problem
to (7.1.1).
In Section 5.2, when discussing matrix transformations, we showed that if Q

is an orthogonal matrix, i.e., one satisfying

QQ = Q Q = I (7.1.3)

and if
B = QAQ (7.1.4)

then A and B are isospectral. The converse is true: if A and B are
isospectral, then they are related by (7.1.4) for some Q. To prove this, we may
use the general representation of a symmetric matrix given in the Corollary to
Theorem 6.3.2. Suppose A B have the same eigenvalues ( )1 . Put
= ( 1 2 ), then

A = U U and B = V V

153
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where both U and V are orthogonal. Thus

B = VU U U UV = VU A UV

But sinceU, V are orthogonal, so isQ = VU , (Ex. 5.2.2). Thus B = QAQ .
We recall Ex. 5.2.2, that this transformation defines an equivalence class, an
isospectral family of matrices.
This means that, from a purely mathematical viewpoint, the problem of

characterizing isospectral systems governed by a single matrix is solved: the
matrices A and B are linked by some orthogonal matrix Q. However, this
result is insu cient for applications to vibrating systems. For there we are
concerned with vibrating systems of a particular type, as described for instance
in Section 5.1. It may easily be verified that if the matrix A has a particular
form, in the sense that it relates to a particular graph G, and if Q is an arbitary
orthogonal matrix, then B will not necessarily have the same form, i.e., relate
to the same graph G. In practice, the conditions on the system matrix are even
more stringent; there are conditions on the signs of matrix elements.
This is the question we address in this Chapter: given one system, specified

by A or (M K), with the matrices having some particular form, specified by a
graph G, and perhaps some sign conditions, how can we find other systems B
or (M0 K0) satisfying the same conditions? We do not seek just an isospectral
family, but a special isospectral family (i.e., a subfamily), the members of which
share certain special characteristics. So far, the results which have been obtained
relate to comparatively simple systems. We start our quest by considering the
concept of isospectral flow.

7.2 Isospectral flow

Suppose A has eigenvalues ( )1 and eigenvectors (u )1 , then equation
(6.3.8) states that if U = [u1 u2 u ] and = ( 1 2 ), then

A = U U UU = U U = I (7.2.1)

Now suppose that U depends on a single parameter , and that U( ), and hence
A( ) varies in such a way that the eigenvalues, and hence , remain invariant.
Using · to denote , we have

Ȧ = U U̇ + U̇ U

= (U U )(UU̇ ) + (U̇U )(U U )
(7.2.2)

On di erentiating the second equation in (7.2.1) we find

U̇U +UU̇ = 0

so that on writing

S = UU̇ (7.2.3)
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we find
U̇U = S = S (7.2.4)

and we can write equation (7.2.2) as

Ȧ = AS SA (7.2.5)

This is the di erential equation governing isospectral flow. We note from equa-
tion (7.2.4) that the matrix S is skew symmetric. We note also that the
di erential equation governing U is

U̇ = SU

and that because S is skew symmetric and A is symmetric, Ȧ, given by (7.2.5)
is symmetric.
We may apply this analysis in reverse. Suppose S( ) is a skew symmetric

matrix, and let U( ) be the solution of the equation

U̇( ) = S( )U( ) U(0) = U0

where U0 is an orthogonal matrix, then

(U U)• = U̇ U+U U̇ = U SU U SU = 0

But since U0U0 = I U ( )U( ) = I for all ;U( ) is orthogonal.
Now, with this S( ) and U( ) we consider the equation

Ȧ( ) = A( )S( ) S( )A( ) A(0) = A0

where A0 = U0 U0 . We have

(U AU)• = U̇ AU+U ȦU+U AU̇

= U SAU+U (AS SA)U U ASU = 0

so that
U AU = U0A0U0 =

Equation (7.2.5) provides a way in which to construct a one-dimensional
family, i.e., a trajectory, of isospectral systems, and we will explore its use later.
At this point however, we will discuss the connection between equation (7.2.5)
and matrix factorisation.
One of the basic procedures of numerical linear algebra is the Gram-Schmidt

procedure for orthogonalisation: given a set of vectors (a )1 , construct a
set of orthonormal vectors (q )1 by forming combinations of the a . The
Gram-Schmidt procedure gives a way to factorise a non-singular matrixA .
Since A is non-singular, its columns are linearly independent, and so span ;
the Gram-Schmidt procedure will yield orthonormal vectors (q )1 spanning
; we obtain the factorisation by writing the a ’s in terms of q’s. Let

A = [a1 a2 a ]
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then we choose (q )1 so that

a =
X
=1

q = 1 2

which we may assemble to give

11 12 1

21 22 2

· · ·

1 2

=

11 12 1

21 22 2

· · ·

1 2

11 12 1

22 2

· · ·

i.e.,

A = QR (7.2.6)

The q and the ’s are found in Theorem 3.2.1:

11 = ||a1|| q1 = a1 11

12 = q1 a2 22 = ||a2 12q1|| q2 = (a2 12q1) 22

etc. We note that the diagonal terms are positive.
One of the basic results related to the QR factorisation is that if

A = QR then A0 RQ = Q (QR)Q = Q AQ (7.2.7)

which means that A0, obtained by reversing the factors Q and R, is isospectral
to A. One of the ways in which QR algorithm is used in numerical linear
algebra is to use it to form a sequence of matrices A A0 A00 by continually
reversing factors:

A = QR A0 = RQ = Q0R0 A00 = R0Q0 = Q00R00 (7.2.8)

Under certain conditions, the sequence converges to an upper triangular matrix
or, if A is symmetric, to a diagonal matrix composed of the eigenvalues. We
will use the basic reversal (7.2.7) and the sequence (7.2.8), in this book, but we
are not interested in the convergence properties of the sequence, for which see
Golub and Van Loan (1983) [135].
We now show that, for a special choice of the skew symmetric matrix S, we

may relate the sequence (7.2.8) to an isospectral flow. In doing so we will have
to retrace some of the steps we have already taken.
Suppose A , and that A+ is its strict upper triangle, i.e.,

A+ =

12 1

23 2

. . .

1

(7.2.9)
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then A may be written

A = A+ +A+ + ( 11 22 )
= A+ A+ + 2A+ + ( 11 22 )
= S+R

(7.2.10)

where S = A+ A+ is skew-symmetric and R = 2A++ ( 11 22 )
is upper triangular. We note that any symmetric matrix has this unique de-
composition into a skew-symmetric matrix and an upper triangular matrix.
We now start to retrace our steps:

Lemma 7.2.1 Suppose S is skew symmetric, and let Q be the solution to the
problem

Q̇ = QS Q(0) = I (7.2.11)

then Q is an orthogonal matrix.

Proof.

(QQ )• = Q̇Q +QQ̇

= QSQ+QS Q = Q(S+ S )Q = 0

Since Q(0)Q (0) = I, we have Q( )Q = I.

Lemma 7.2.2 Let A( ) be the solution of the problem

Ȧ = AS SA A(0) = A0 (7.2.12)

then A( ) = Q ( )A0Q( ), where Q( ) is as in Lemma 7.2.1.

Proof. Let Z( ) = Q( )A( )Q ( ), then

Ż = Q̇AQ +QȦQ +QAQ̇

= QSAQ +Q(AS SA)Q +QAS Q

= QA(S+ S )Q = 0

This shows that
Z( ) = Z(0) = A(0) = A0

so that
QAQ = A0 i.e., A = Q A0Q

The orthogonal matrix Q was introduced as ‘the solution to the di eren-
tial equation (7.2.11)’. We now show that we may identify it through a QR
factorisation:

Lemma 7.2.3 If the matrix exp( A0) has the QR-decomposition

exp( A0) = Q( )R( ) (7.2.13)

then Q( ) satisfies equation (7.2.11), and A( ) = Q ( )A0Q( ) is the solution
of (7.2.12).
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Proof. Here

exp( A0) = I+ A0 +
2

2
A2
0 + (7.2.14)

is the solution of the equation

Ẋ( ) = A0X( ) X(0) = I

Taking derivatives of both sides of (7.2.13), we find

(QR)• = Q̇R+QṘ = A0 exp( A0) = A0QR

so that
Q̇+QṘR

1
= A0Q

and
Q Q̇+ ṘR

1
= Q A0Q = Â( ) (7.2.15)

But Â( ) is a symmetric matrix, Q is orthogonal, so that Q Q̇ is skew symmet-

ric, and ṘR
1
is upper triangular: equation (7.2.15) gives the unique decom-

position of Â as the sum of a skew-symmetric and an upper triangular matrix,
i.e.,

Q Q̇ = Â+ Â+ = Ŝ

On the other hand

˙̂
A = Q A0Q̇+ Q̇ A0Q

= (Q A0Q)(Q Q̇) + (Q̇ Q)(Q A0Q)

= ÂŜ ŜÂ

and Â(0) = A0. But this means that Â satisfies the same di erential equation
as A, and has the same initial value, A0;

Â( ) = A( ) = Q A0Q

We may now state

Theorem 7.2.1 SupposeA( ) is the solution to the di erential equation (7.2.12).
For = 1 2 suppose

exp(A( 1)) = Q R

then
exp(A( )) = R Q

where Q = Q( ) R = R( ).

Proof. Lemmas 7.2.2 and 7.2.3 show that

A( ) = Q A0Q( )

and
exp( A(0)) = Q( )R( ) (7.2.16)
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so
R( )Q( ) = Q ( )(Q( )R( ))Q( )

= Q ( ) exp( A0)Q( )

Now consider

exp( A( )) = exp(Q ( ) A0Q( )) (7.2.17)

= I+Q A0Q+
(Q A0Q)

2

2!
+ · · ·

= I+Q A0Q+
(Q A0Q)(Q A0Q)

2!
+ · · ·

= Q (I+ A0 +
2A2

0

2!
+ · · · )Q

= Q exp( A0)Q = R( )Q( )

This means that, taking = 1 in (7.2.16), we have

exp(A(0)) = Q1R1

and taking = 1 in (7.2.17),
expA(1) = R1Q1 = Q2R2 etc.

We describe this result by saying that the solutions of (7.2.12) at inte-
gral times 0 1 2 give the iterates in the QR-sequence (7.2.8) starting from
exp(A(0)) = expA0 = Q1R1.
We conclude this section with a note on the historical development of the

theory of isospectral flow.
The analysis had its beginnings in the investigation of the so-called Toda

lattice, Toda (1970) [324], a set of particles constrained to move on a line un-
der exponential repulsive forces. Symes (1980) [315], Symes (1982) [316] gives
references to the roots of the problem in Physics, and establishes the theory,
basically as described above, for the particular case encountered in the Toda
lattice, that A is a Jacobi matrix. The analysis for a Jacobi matrix was devel-
oped further by Nanda (1982) [245], Nanda (1985) [246] and by Deift, Nanda
and Tomei (1983) [77]. The generalisation of the theory to an arbitrary complex
non-symmetric matrix is due to Chu (1984) [57]. Watkins (1984) [331] gives
a survey of the general theory, and its extension to other matrix factorisations
such as LR (lower triangular matrix L, multiplied by upper triangular matrix
R) or the Cholesky factorisation LL . Chu and Norris (1988) [60] explore the
connection between isospectral flows and abstract matrix factorisations.
Most of this research is concerned with the connection between isospectral

flow and the procedures used in numerical linear algebra; this is not our concern
in this book. Rather, we are interested in isospectral flow as a way of construct-
ing isospectral systems, as we will show in later sections of this Chapter.
We will take up the topic of isospectral flow in Section 7.6 after we have

considered algebraic procedures for obtaining isospectral systems.
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7.3 Isospectral Jacobi systems

We follow Gladwell (1995) [121] and start our discussion by considering the
particular case of the spring-mass system shown in Figure 4.4.2a and reproduced
as Figure 7.3.1.

m
n

k n 1k k
1 2

m
1

m
2
...

kn

Figure 7.3.1 — An in-line spring-mass system

The governing equation is

(K M)y = 0 (7.3.1)

where

K =

1 + 2 2 0 0

2 2 + 3 3 0
· · ·
0 + +1

(7.3.2)

M = ( 1 2 ) (7.3.3)

We will assume that the chain of masses and springs is unbroken, so that

( )2 0 ( )1 0

There are three particular cases:

(S) supported; 1 0 +1 0

(C) cantilever; 1 0 +1 = 0

(F) free; 1 = 0 +1 = 0

If two systems, 1 and 2, are isospectral then, in the notation of Section 4.3,

(M1 K1) = (M2 K2) (7.3.4)

There are two almost trivial ways of obtaining an isospectral pair. First, if
0, then

( M K) = (M K)

Secondly, if we physically turn the system around and renumber the masses and
springs from the left, then we will not change the eigenvalues. Renumbering
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is equivalent to pre- and post-multiplying by the matrix T of equation (4.3.8).
Thus (7.3.4) will hold if

M2 = TM1T K2 = TK1T (7.3.5)

To obtain non-trivial isospectral pairs, we reduce (7.3.1) to standard form.
We write

M = D2 Dy = u J = D 1KD 1 (7.3.6)

so that
(J I)u = 0 (7.3.7)

First, consider a cantilever system. Now as in (4.4.7), K may be factorised
as

K = EK̂E K̂ = ( 1 2 )

and
J = D 1EK̂E D 1 (7.3.8)

To obtain an isospectral pair, we need

Lemma 7.3.1 If A B , then AB and BA have the same eigenvalues,
except perhaps for zero.

Proof. Suppose 6= 0 is an eigenvalue of AB, so that, for some x 6=
0 ABx = x. Since 6= 0 and x 6= 0, we have Bx 6= 0. Now B(ABx) =
BA(Bx) = Bx, so that Bx is an eigenvector ofBA corresponding to the eigen-
value . We have proved that any non-zero eigenvalue of AB is an eigenvalue
of BA. Now reverse the roles of A and B to complete the proof.
Write K̂ = F2, so that

J = (D 1EF)(FE D 1) (7.3.9)

Now apply the Lemma: the eigenvalues of J are non-zero (in fact, positive) so
that if

J0 = (FE D 1)(D 1EF) (7.3.10)

then
(J0) = (J)

To form a spring-mass system corresponding to J0 we reverse the reduction to
standard form, and write

(J0 I)u = 0

as
(E M 1E K̂ 1)v = 0 v = Fu (7.3.11)

This is the eigenvalue equation for a reversed cantilever, We may verify this by
noting that

TET = E T2 = I
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and thus
TE M 1Ev = TE T ·TM 1T ·TET ·Tv

= EK̂
0
E ·Tv

so that we may write equation (7.3.11) as

(K0 M0)Tv = 0

where
K0 = EK̂

0
E K̂0 = TM 1T M0 = TK̂

1
T

This system relates to a cantilever with

0 = 1
+1

0 = 1
+1 = 1 2

and
(M0 K0) = (M K)

This pair was pointed out by Ram and Elhay (1995a) [285]. See also Ram and
Elhay (1998) [287].
In the analysis we have just described, we started with a system specified

by M K and formed the Jacobi matrix J = D 1KD 1. This passage from
a spring mass system to a Jacobi matrix is unique, but starting from a given
Jacobi matrix we may construct an infinite family of spring mass systems, as we
will now show.
The sti ness matrix K of (7.3.2) has the property

K{1 1 1 1} = { 1 0 0 +1}; (7.3.12)

this equation states that in order to move all the masses statically to the right
by unit displacement, we must apply forces 1 and +1 to masses 1 and
respectively. We follow the analysis developed in Section 4.4. Since J =
D 1KD 1 we have K = DJD so that equation (7.3.12) yields

J{ 1 2 } = { 1
1

1 0 +1
1}

Thus in order to find a spring-mass system we must take J and find a solution
to the equation

Jd = { 0 0 } d = { 1 2 } (7.3.13)

where 0 0 + 0. If J is non-singular, then Theorem 4.4.1 ensures
that d 0. Thus to construct a spring-mass system we may choose to be
arbitrary non-negative constants, not both zero. This is equivalent to choosing
arbitrary spring sti nesses 1 and +1; for when we solve equation (7.3.13) we
find

1 = 1 +1 = ; (7.3.14)

we have a two-parameter family of isospectral systems. If we demand that the
reconstructed system be a cantilever, so that = 0 = +1, then the solution is
essentially unique; we can make it unique by taking 1 = 1 or

P
=1 = 1.
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If J is singular we use Theorem 4.4.2, which ensures that there is a positive
solution of

Jd = 0 (7.3.15)

and then construct K = DJD,M = D2; again the system is essentially unique.
We now discuss two di erent ways of constructing families of isospectral

Jacobi matrices. We letM( 1 2 ) denote the set of Jacobi matrices J
such that (J) = ( )1 . The first follows directly from the analysis of Section
4.3: we can reconstruct J uniquely from (J) = ( )1 and the vector x1 of first
components of the normalised eigenvectors u of J. We know that these first
components 11 21 1 are all non-zero, so that we can take them to be
all positive, and they satisfy

x1 x1 = 1 =
2
11 +

2
21 + · · ·+

2
1 (7.3.16)

This means that each J M may be associated with a point = ( 11 21

1) in the (strictly) positive orthant of the unit -sphere. (In more precise
terms,M is a smooth ( 1)-dimensional manifold di eomorphic to the strictly
positive orthant of the unit -sphere.)
The second way uses QR factorisation, as discussed in Section 7.2. Suppose

A and is not an eigenvalue of A. Then A I is non-singular, and so
may be factorised:

A I = QR (7.3.17)

HereQ is an orthogonal matrix, andR is upper triangular with positive diagonal
terms ; this factorisation (7.3.17) is unique. Now form the matrix A0 from
the equation

A0 I = RQ (7.3.18)

Equations (7.3.17), (7.3.18) define a transformation G : A A0.
The matrix A0 is symmetrical, and is isospectral to A:

A0 = I+RQ = Q ( I+QR)Q = Q AQ (7.3.19)

We now prove

Theorem 7.3.1 If A is a Jacobi matrix, then so is A0.

Proof. We first show that if A is tridiagonal, then so is A0.
Equations (7.3.17), (7.3.18) give

RA = R( I+QR) = ( I+RQ)R = A0R (7.3.20)

This relation between A and A0 is fundamental, and is often more instructive
than (7.3.17), (7.3.18) or (7.3.19). Consider the term in the products on
either side of (7.3.20), and take :

X
=1

=
X
=1

0 = 1 2 1; = + 1 (7.3.21)
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Since R is upper triangular, is non-zero only for = + 1 . Since
A is tridiagonal, is non-zero only for = 1 + 1. Thus the product
on the left is non-zero only for running from to + 1; it is identically zero
if + 2. Since R is upper triangular, the index on the right runs from
= 1 2 . Thus

+1X
=

=
X
=1

0 (7.3.22)

In particular therefore

X
=1

0 = 0 = 1 2 2; = + 2 (7.3.23)

Taking = 1 we find 0
1 11 = 0, and since 11 0,

0
1 = 0 = 3

Now take = 2:
0
1 12 +

0
2 22 = 0 = 4

But 0
1 = 0 for these values, and 22 0, so that

0
2 = 0 = 4

Proceeding in this way we find

0 = 0 = 1 2 2; = + 2 (7.3.24)

Thus A0 has only one non-zero diagonal below the principal diagonal. But A0

is symmetric, so that it is tridiagonal.
To show that if A is Jacobi, then so is A0 we return to equation (7.3.22).

Since A0 is tridiagonal, we can rewrite (7.3.22) as

+1X
=

=
X
= 1

0 (7.3.25)

Take = + 1, then each sum has just one term:

1 =
0

1 1 1 = 2 : (7.3.26)

if 1 is positive (negative) then so is 0
1.

We now suppose A = J, a Jacobi matrix, and prove

Theorem 7.3.2 The operator G is commutative when applied to Jacobi matri-
ces.

G G J = G G J (7.3.27)
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Proof. Consider the relation between the eigenvectors of J and J0. Suppose
u is a normalised eigenvector of J:

Ju = u

then
J0Q u = (Q JQ)Q u = Q Ju = Q u

so that u0 = Q u is a normalised eigenvector of J0. We may express this
eigenvector in another way. Since

Ju = (QR+ I)u = u

we have
QRu = ( )u

or

u0 = Q u =
Ru

(7.3.28)

This equation shows that the last component of the eigenvector u0 may be taken
to be

0 =
( )

| |
(7.3.29)

This shows that, under the operation G , the last components of the eigenvectors
are simply multiplied by two terms: one, ( ), independent of , and the other
| | 1. This means that the last components of the normalised eigenvectors
of either of the matrices in (7.3.27) will be proportional to

| || |
(7.3.30)

Since they are proportional, and the sum of the squares of each set is unity, the
two sets must be the same. But a Jacobi matrix is uniquely determined by its
eigenvalues and the last components of its normalised eigenvectors. Therefore,
(7.3.27) holds, and G is commutative.
We prove a stronger result in Theorem 7.4.2.

Theorem 7.3.3 If A B M, then we can find a unique set ( ) 1
1 such that

1 2 · · · 1 and

G
1
G

2
G

1
A = B (7.3.31)

Proof. It is su cient to show that we can pass from one set of last com-
ponents ( )1 to any other set ( )1 in 1 G operations. But equation
(7.3.29) shows that this is equivalent to choosing 1 2 1 such that

1Y
=1
| |

= 1 2
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This is equivalent to choosing the polynomial

( ) =
1Y

=1

( )

such that
| ( )| = = 1 2

If we choose the ( ) 1
1 so that

1 1 2 · · · 1 (7.3.32)

then
( ) = ( ) = 1 2

But there is a unique such polynomial ( ) of degree 1 taking values of
opposite signs at points , and it will have 1 roots satisfying (7.3.32).

Corollary 7.3.1 If G A = B, then we can find ( ) 1
1 such that G

1
G

2
G

1

B = A, and hence find G 1.

Corollary 7.3.2 We can find ( ) 1
1 such that

G
1
G

2
G

1
A = A

Exercises 7.3

1. Consider the case ( ), in which 1 = 0 = +1. Use Lemma 7.3.1 to
obtain a cantilever which has the same eigenvalues as the original system
apart from the zero eigenvalue corresponding to the rigid body mode.

2. Construct a formal inductive proof of equation (7.3.24).

7.4 Isospectral oscillatory systems

In Section 7.3 we considered the operator G defined by equations (7.3.17) and
(7.3.18). We showed, amongst other things, that if J is tridiagonal, then so
is J 0; if +1 0 ( 0), then 0

+1 0 ( 0). We recall from Section 6.6
that a positive-definite (symmetric) tridiagonal matrix with positive co-diagonal
is a particular example of an oscillatory matrix, as defined at the beginning of
Section 6.6, and characterised by Theorem 6.7.3. This means that if A is a
symmetric tridiagonal oscillatory matrix, is not an eigenvalue of A, and the
diagonal elements of R are positive, then the operations

A I = QR (7.4.1)
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A0 I = RQ (7.4.2)

yield a new matrix A0 that is symmetric, tridiagonal and oscillatory. Following
Gladwell (1998) [126] we will now state that this is a special case of a general
result:

Theorem 7.4.1 Suppose A , let denote one of the properties NTN, O,
TP, let A0 be defined from equations (7.4.1), (7.4.2). A0 has property i A

has property .

This Theorem states that A0 is NTN i A is NTN, A0 is O i A is O, and
A0 is TP i A is TP. Implicit in the theorem is the condition that the diagonal
elements of R, which are necessarily non-zero because A I is non-singular,
are chosen to be positive.
The two conditions, thatA is symmetric (A ), and is not an eigenvalue

of A, are essential, as we now show by counterexamples.
Take = 0 and

A =

·
2
1 2

¸
(7.4.3)

then

Q =
1

5

·
2 1
1 2

¸
R =

1

5

·
5 2 + 2
0 4

¸

A0 =
1

5

·
12 + 2 4 1
4 2(4 )

¸

If = 1
5 , A is O and TP, A0 is not even TN; when = 0, A is NTN and A0 is

not TN.
The condition that is not an eigenvalue is essential. For when = 1 the

matrix A in (7.4.3) is O and TP, and its eigenvalues are 1 = 3 2 = 1. (Recall
that when we consider oscillatory matrices we label the eigenvalues in decreasing
order.) Take = 1, then

A I =

·
1 1
1 1

¸
=

· ¸ ·
2 2
0 0

¸
=

1

2
(7.4.4)

A0 I =

·
2 2
0 0

¸ · ¸
=

·
2 0
0 0

¸
A0 =

·
3 0
0 1

¸

The matrix A0 in (7.4.4) is not oscillatory.
In general, if A is O then its eigenvalues are distinct (Corollary to

Theorem 6.10.1). This means that if = for some , then A I has rank
1 and = 0, but no other is zero. Thus the last row of A0 I will be

identically zero, in particular 0
1 = 0, so that, by Theorem 6.7.3, A0 cannot

be O.
The proof of Theorem 7.4.1 requires delicate treatment of inequalities. It

may be found in Gladwell (1998) [126] and will not be reproduced here. We
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merely give some hints on the proof. First, it relies on an earlier result of Cryer
(1973) [66] for the case = 0. See also Cryer (1976) [67] Cryer’s results may
be used to show that if A (not necessarily symmetric) is NTN, O or TP, and
A = LU where L(U) is lower (upper) triangular, then A0= UL is NTN, O or
TP respectively. Since A is PD we may replace QR factorisation for the case
= 0 by two successive Cholesky LL factorisations:

A = L1L1 B = L1 L1 = L2L2 A0 = L2 L2

We write
Q = L1L2 = L1 L2 R = L2 L1

and note that
QQ = L1L2 (L2 L

1
1 ) = I

so that Q is orthogonal. Now

A = L1L1 = (L1L2 )(L2 L1 ) = QR

A0 = L2 L2 = (L2 L1 )(L1 L2) = RQ

If A has property , then Cryer’s result shows that B has property , and then
again A0 has property .
The proof also relies on the Binet-Cauchy Theorem. Equation (7.3.20) states

that
RA = A0R (7.4.5)

so that the Binet-Cauchy Theorem 6.2.4 gives

R A =A0R (7.4.6)

We now prove

Lemma 7.4.1

R (A ) = (A0 ) R = 1 2 (7.4.7)

Proof. The Binet-Cauchy Theorem gives

(A ) = (A ) =A

and similarly (A0 ) = A0 . By equation (7.4.6), the result holds for = 1.
Suppose it holds for one value, , then

A0( +1)R = A0 (A0 R )

= A0 (R A ) = (A0R )A

= (R A )A =R A +1;

the result holds for + 1.
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Equations (7.4.5)-(7.4.7) generally yield complicated relations between the
elements of A and A0, A and A0 , but for some important special cases the
relations are simple. Consider equation (7.4.5) in element form:

X
=1

=
X
=1

0 (7.4.8)

If = and = 1, there is only one term in each sum:

1 =
0
1 11 (7.4.9)

The hypothesis of Theorem 7.4.1 is that A is NTN (at least). Ex. 6.6.1 states
that if A is NTN and 1 0, then A is a positive matrix (strictly positive,
but not TP!). In fact, 1 0 is the first of the conditions in Theorem 6.8.2
for a (symmetric) NTN matrix to be TP: 1 is the first of the corner minors of
A, as discussed in Theorem 6.8.2. The general corner minor is A( ; ) where
= {1 2 } = { +1 }. This is the corner element 1 in the

matrix A . Thus equation (7.4.6) gives

+1 ( ; ) = 0( ; ) 11 (7.4.10)

so that 0( ; ) 0 i ( ; ) 0. This result, combined with some delicate
reasoning, shows that A0 is TP i A is TP.
To show that A0 is TN i A is TN, we use a result due to Ando (1987) [4],

that a TN matrix may be approximated arbitrarily closely, in, say, the 1 norm,
by a TP matrix. Finally, to show that A0 is O i A is O we use Lemma 7.4.1.
That shows that the corner minors of A0 are positive i the corner minors of
A are positive. So if A is O, it is NTN, and therefore, A0 is NTN. Again, ifA
is O, A is TP for some 1, its corner minors are positive, so therefore
are those of A0 ; A0 is TP; A0 is O.
We conclude from Theorem 7.4.1 that the operator G maintains the proper-

ties NTN, O, TP (and SO also) invariant, provided of course thatA is symmetric,
is not an eigenvalue of A, and R has positive diagonal.
In Section 6.6 we showed (Theorem 6.6.3) that an NTN matrix is a staircase

matrix. We now prove

Theorem 7.4.2 Suppose A is NTN and is a -staircase matrix, then
A0 = G A is also a -staircase matrix.

Proof. Since A0 is NTN, it is a staircase matrix, say a 0-staircase.
The fundamental relation (7.3.21) gives

X
=1

=
X
=1

0 (7.4.11)

We use induction to prove 0 = = 1 2 . Take = 1. If 1, the
L.H.S. is zero, so that 0

1 11 = 0;
0
1 1. If = 1 then

1 =
0
1 11



170 Chapter 7

so that 0
1 0; 0

1 = 1. Suppose that 0 = for = 1 2 1. If
= and in (7.4.11) then

X
=1

0 = 0 (7.4.12)

But since A0 is a staircase, implies = 0 for = 1 2 1,
so that there is only one term, the last, in the sum (7.4.12); 0 = 0. Thus
0 . Now take = = , then

=
X
=1

0

If 1, then there is only one term, the last, on the right, and

= 0

so that 0 = . If = 1, then the inequalities 0 0
1

0

imply 0 = . Arbenz and Golub (1995) [12] show that staircase patterns are
e ectively the only ones invariant under the symmetric QR algorithm.
In Theorem 7.3.2 we showed that the operator G applied to a Jacobi matrix

was commutative. We now show a stronger result.

Theorem 7.4.3 The operator G is commutative.

Proof. We need to show that G
1
G

2
= G

2
G

1
. Consider the operations

G
1
A = A1 G

2
A1 = A2; G 2

A = A3 G
1
A3 = A4:

A 1I = Q1R1 A1 1I = R1Q1

A1 2I = Q2R2 A2 2I = R2Q2;

A 2I = Q3R3 A3 2I = R3Q3

A3 1I = Q4R4 A4 1I = R4Q4

These equations give

A1 2I = Q1 (A 2I)Q1 = Q2R2

i.e.,
Q1Q3R3Q1 = Q2R2 (7.4.13)

A3 1I = Q3 (A 1I)Q3 = Q4R4

i.e.,
Q3Q1R1Q3 = Q4R4 (7.4.14)
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Equations (7.4.13), (7.4.14) give

Q3R3 = Q1Q2R2Q1

Q1R1 = Q3Q4R4Q3

and on multiplying these together, we find

(Q1Q2R2Q1 )(Q1R1) = (Q3Q4R4Q3 )(Q3R3)

or
Q1Q2R2R1 = Q3Q4R4R3

Now Q1Q2, Q3Q4 are orthogonal matrices while R2R1 and R4R3 are upper
triangular with positive diagonal. But a non-singular matrix has a unique
factorisation QR (with positive diagonal). Therefore,

Q1Q2 = Q3Q4 R2R1 = R4R3

so that, since

A4 = Q4A3Q4 = Q4Q3AQ4Q3

A2 = Q2A1Q2 = Q2Q1AQ1Q2

we have A4 = A2.

7.5 Isospectral beams

We set up the eigenvalue problem for the (cantilever) beam in Section 2.3:

Ky = My

where
K = EL 1EK̂E L 1E (7.5.1)

M = D2 D = ( 1 2 ) (7.5.2)

As usual, we reduce the problem to standard form:

Au = u

where
A = D 1KD 1 (7.5.3)

First, we obtain a simple isospectral system by using Lemma 7.3.1. Write

K̂ = F2 F = ( 1 2 )

then we may write A as

A = (D 1EL 1EF) · (FE L 1E D 1)
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Now apply Lemma 7.3.1; the eigenvalues of A are non-zero (in fact, positive) so
that if

A0 = (FE L 1E D 1) · (D 1EL 1EF)

then

(A0) = (A)

To form a discrete beam corresponding to A0 we reverse the reduction to
standard form, and write

A0u0 = u0

as

K0y0 = M0y0 (7.5.4)

where

K0 = E L 1E K̂0EL 1E (7.5.5)

K̂0 =M 1 M0 = K̂ 1 (7.5.6)

This is the eigenvalue equation for a reversed cantilever, as we may verify just
as we did for the spring-mass system in Section 7.3: we operate on (7.5.4) by
the reversing matrix T. Thus,

TK0T ·Ty0 = TM0T ·Ty0

where

TK0T = TE T ·TL 1T ·TE T ·TK̂
0
T ·TET ·TL 1T ·TET

= EL 0EK̂
0
E L 0E =K0

(7.5.7)
The new cantilever is related to the old by

0 = 1
+1

0 = +1
0 = 1

+1 (7.5.8)

To construct a family of isospectral beams, we use the operator G defined
by equations (7.4.1), (7.4.2). We carry out the following steps:

i) start with a beam, defined by K̂ L M = D2.

ii) construct A as in (7.5.1)-(7.5.3). A is symmetric, pentadiagonal, and sign-
oscillatory.

iii) choose , not an eigenvalue ofA, and formA0 = G A; A0 also is symmetric,
pentadiagonal and sign-oscillatory.

iv) factoriseA0 = (D0) 1K0(D0) 1 and formM0 = (D0)2 K0 = E(L0) 1EK̂
0
E

(L0) 1E .
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The only step which needs to be completed is iv). We must show that the
new symmetric pentadiagonal sign-oscillatory matrix A0 may be factorised as in
(7.5.1)-(7.5.3), with some new positive diagonal matrices D0 K̂0 L0. We first
give the gist of the procedure, and afterwards show that it will always work.
The new matrixA0 is related to the new mass and sti ness matricesK0 M0 =

D02 by equation (7.5.3). We start, as we did with the spring mass system in
Section 7.3, by considering simple static deflection of the beam, as shown in
Figure 7.5.1. We apply forces 1 2 at masses 1 and 2 so that all the masses
have unit deflection. The force-deflection equation is

K0{1 1 1} = { 1 2 0 0}

But A0 = D0 1K0D0 1, so that K0 = D0A0D0, and thus

D0A0{ 0
1

0
2

0 } = { 1 2 0 0}

and
A0{ 0

1
0
2

0 } = { 1 2 0 0} (7.5.9)

where = 0 = 1 2

f
1

f
2

Figure 7.5.1 - Two forces 1 2, are required to produce unit deflections.

The matrix A0 is SO, so that, by Theorem 6.7.5, B0 (A0) 1 is O. The
solution of (7.5.9) is

0 = 0
1 1

0
2 2 = 1 2 (7.5.10)

Take 1 = 1; we now show that if 2 is small enough, so that 0 is positive, then
all the 0 will be positive. For if 0 2

0
1

0
2, then

0 0
1

0
2
0
1

0
2

= ( 01
0
2

0
2
0
1)

0
2 0

because B0 is O. We will show later that 0
1

0
2 are strictly positive for =

1 2 , so that the 0 are strictly positive. Assuming that this is true for
the moment, we have now found d0 satisfying (7.5.9) for some 1 = 1 2 0.
The vector d0 is the first column of the matrix D0E ;E 1is given in equation
(2.2.10).
We now show that the matrix

C0 = E 1D0A0D0E (7.5.11)
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is a Jacobi matrix. Suppose

A0 =

0
1

0
1

0
1

0
1

0
2

0
2

0
2

0
1

0
2

0
3

0
3

0
3

. . .
. . .

. . .
0

2
0

1
0

then A0D0E has just one diagonal below the principal diagonal; that diagonal
has elements 2

0
1
0
1

0
2
0
2

0
2
0

2. The matrix E 1D0 is upper
triangular, so that C0 E 1D0(A0D0E ) also will have just one diagonal
below the principal diagonal. But C0 is symmetric, so that it will also have just
one diagonal above the principal diagonal: it is a symmetric tridiagonal matrix
with co-diagonal

0
2 2

0
1
0
1
0
3

0
2
0
2
0
4

0
2
0

2
0 (7.5.12)

Denote the matrix obtained by deleting rows and columns 1 2 1 of
A0 by A0 and let d0 = {0 0 0 0 0

+1
0 }, then the diagonal elements

of C0 may be written

0 = d0 A0d0 = 1 2 (7.5.13)

To show that C0 is a Jacobi matrix, we need to show that it is PSD. Actually,
since the original A was PD, the new A0 is PD, and so is C0, because

x C0x = (x E 1D0)A0(D0E x)
= y A0y 0

We have constructed a Jacobi matrix C0 from A0. We now use the result
obtained in (4.4.7) for the factorisation of a Jacobi matrix. In changed notation
we may write

C0 = (L0) 1EK̂
0
E (L0) 1 (7.5.14)

so that on combining (7.5.11) and (7.5.14) we find

A0 = (D0) 1E(L0) 1EK̂
0
E (L0) 1E (D0) 1 (7.5.15)

as required.
We now examine this procedure. We must show that the terms 0

1
0
2 are

strictly positive, and that the terms 0 in the last band of A0, which appear in
the codiagonal of C0 are positive. To verify these matters we must return to
the G algorithm, specifically to equations (7.4.5)-(7.4.9). The terms 1

0
1

are elements of B A 1 and B0 (A0) 1 respectively.
Taking inverses of the terms on each side of equation (7.4.5) we find

R 1B0 = BR 1 (7.5.16)
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and on equating the 1 terms we find

1 0
1 = 1

1
11 (7.5.17)

The original A is given by equations (7.5.1)-(7.5.3), so that

B = A 1 = DE LE K̂ 1E 1LE 1

so that, with E 1 given by equation (2.2.10), it is clear that 1 0 and thus
equation (7.5.17) gives 0

1 0.
We now show that 0

2 0. The matrix B0 is known to be oscillatory; it is
thus TN so that the minor B0(1 ; 1 2) 0; thus¯̄̄

¯ 0
11

0
12

0
1

0
2

¯̄̄
¯ = 0

11
0
2

0
1
0
12 0 (7.5.18)

and 0
1 0 0

12 0 0
11 0 imply 0

2 0. We apply a similar argument to
show that 0

1 0 0
2 0:¯̄̄

¯ 0
1

0

0
1

0

¯̄̄
¯ 0 2;

¯̄̄
¯ 0

2
0

0
2

0

¯̄̄
¯ 0 3 (7.5.19)

imply 0
1 0 0

2 0 respectively. We have proved that the procedure will
always yield a vector d0 which is strictly positive. Further discussion and results
may be found in Gladwell (2002b) [130].

Exercises 7.5

1. Show that there is a 2-parameter system of isospectral beams correspond-
ing to simple scaling, i.e., in which all the masses are scaled by the same
factor, the sti nesses by another, and the lengths by a third one.

2. The argument used in (7.5.17), (7.5.18) is due to Markham (1970) [221].
Show that if B is O, and an element with , i.e., an element in the
lower triangle, is zero,then all the elements below and to the left of are
also zero. This implies that if B is O, then it has staircase structure, as
discussed at the end of Section 7.4.

Also, if 1 0 and 1 0, then B is a strictly positive matrix.

7.6 Isospectral finite-element models

In Section 2.4 we showed that a finite-element model of a rod in longitudinal
vibration had tridiagonal mass and sti ness matrices, the former with positive
codiagonal, the latter with negative. The explicit form of the sti ness matrix
was given in Ex. 2.4.2. In this section, following Gladwell (1998) [126], Gladwell
(1999) [127], we consider how we can find a finite-element system M0 K0 for a
rod which is isospectral to a given finite-element system M K for a rod. We
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first consider a simple way of constructing an isospectral family M0 K0, and
then consider a procedure that will yield a large family. See Gladwell (1997)
[125] for an earlier attempt to solve this problem.
For simplicity we consider a cantilever rod, i.e., one that is fixed at the left,

free at the right. The eigenvalue equation is

(K M)y = 0 (7.6.1)

Instead of working with K and M, we will work with K̃ = ZKZ and M;
both these are tridiagonal with positive codiagonal, i.e., they are oscillatory (O).
We factorise them as

K̃ = AA M = BB (7.6.2)

where relying on Cryer (1973) [66], we know that A B are lower bidiagonal with
positive codiagonals. When reduced to normal form, the equation (7.6.1) is

(G̃ I)u = 0 (7.6.3)

where G̃ = B 1KB , i.e., G = B̃ 1K̃B̃ is O:

G = B̃ 1AA B̃ (7.6.4)

Thus one way to obtain an isospectral systemM0 K0 is to find lower bidiagonal
C D with positive codiagonals such that

K̃0 = CC M0 = DD (7.6.5)

and
G = B̃ 1AA B̃ = D̃ 1CC D̃ (7.6.6)

This holds i
B̃ 1A = D̃ 1C (7.6.7)

Straightforward algebra shows that this implies

= = = 1 2 (7.6.8)

+1 = +1 +1 +1 = +1 +1 = 2 3 1 (7.6.9)

where ( )1 are arbitrary positive constraints, and

11 21 + 11 21 = 2( 11 21 + 21 11) = 2 (7.6.10)

The general, positive, solution of (7.6.10) is

21 = 2 sin2 11 21 = 2 cos2 11 (7.6.11)

where 0 2. This provides an ( + 1)-parameter family of matrices
M0 K0 specified by the ( + 1) parameters ( )1 and .
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Unless the parameters are chosen properly, the new matrix K0 = C̃C̃

will not have the form of a sti ness matrix of a cantilever finite element model
of a rod. Such a matrix, with K0 given in Ex. 2.4.2 has the defining property

K0{1 1 1 1} = { 0
1 0 0 0} (7.6.12)

Equation (7.6.8)-(7.6.11) show that C has the form

C =NC0 N = ( 1 2 )

and C0 depends only on . Thus

K0 =NC̃0C̃0N

so that equation (7.6.12) yields

NC̃0C̃0N{1 1 1} = { 0
1 0 0}

i.e.,
C̃0C̃0 { 1 2 } = { 0

1 1 0 0} (7.6.13)

Since C̃0C̃0 is a non-singular Jacobi matrix, i.e., it is SO, its inverse is positive.
Thus, equation (7.6.13) yields positive ( )1 , apart from a single positive factor.
To obtain a wider family we use the general theory of Section 7.4: we form

G0 from
G I = QR G0 I = RQ (7.6.14)

so that G0 is O. We must show that if G can be factorised as in (7.6.4), then
G0 can be factorised in the form

G0 = D̃ 1CC D̃ (7.6.15)

where C D are lower bidiagonal with positive codiagonals.
To establish the band forms, we consider how G was constructed: G̃ =

B 1KB or K = BG̃B . This we can write as H = G̃B K = BH. The
equation BH =K is X

=1

= (7.6.16)

But K is tridiagonal, so that = 0 for = 1 2 2; = + 2 .
The matrix B is lower bidiagonal, so that (7.6.16) gives

1 1 + = 0 = 1 2 2; = + 2

Thus, taking = 1 we find

11 1 = 0 = 3 4

but taking = 2 in (7.6.16) we have

21 1 + 22 2 = 0 = 4 5
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so that
22 2 = 0 = 4 5

and generally

= 0 = 1 2 2; = + 2 (7.6.17)

Now consider H = G̃B , which is equivalent to

=
X
=1

˜

and when combined with (7.6.17), this gives

˜ 1 1 + ˜ = 0 = 1 2 2; = + 2

Since ˜ = ( ) + , and G is symmetric, we may write these equations as

1

1 1

1 2

...
1 2

=

1

2

...
2

= 3 4 (7.6.18)

We will show that these equations mean that the compound matrix G2 of
2×2 minors ofG has a pattern of zeros like that shown in Figure 7.6.1. Starting
from its left hand end, the first 3 terms in the last row of G2 are

( 1 ; 1 2) ( 1 ; 1 3) ( 1 ; 1 2)

Figure 7.6.1 - The rectangles in the lower left and upper right are zeros.
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These are all zero, for, by (7.6.18) with = ,

( 1 ; 1 ) =

¯̄̄
¯ 1 1 1

1

¯̄̄
¯ = 0 = 2 2

has its two rows proportional. Now we investigate the first 4 terms in the
penultimate row of G2:

( 2 ; 1 2) ( 2 ; 1 3) ( 2 ; 1 3)

To show that these are all zero we consider the zero determinant¯̄̄
¯̄̄ 2 1 2 1 2

1 1 1 1 1

1 1

¯̄̄
¯̄̄ = 0

and expand it along its first column to give

2 1 ( 1 ; 1 ) 1 1 ( 2 ; 1 ) + 1 ( 2 1; 1 ) = 0
(7.6.19)

However, G given by (7.6.4) is a full matrix with all positive terms so that
if any two of the minors in (7.6.19) are zero, then so is the third. But if
= 2 3 3 then the first is zero, and (7.6.19) with = 1 shows that

the third is zero, and thus the second is also.
Proceeding in this way we find that ( ; 1 ) = 0 for 3 =

2 1. This provides a non-increasing pattern of zeros for the columns of
G2 in the lower triangle. Now the equation

R2G2 = G
0
2R2 (7.6.20)

shows that G02 has a precisely corresponding pattern, and by tracing the steps in
the analysis we can conclude that G0 can be factorised just like G.
We obtain one factorisation

G0 = D̃ 1
0 C0C0 D̃ (7.6.21)

and then note that equivalently

G0 = D̃ 1CC D̃

where
C =NC0 D =ND0

and N is an arbitrary diagonal matrix. Now we choose N, as before, to make

K0 = C̃C̃ have the form of a sti ness matrix.

Exercises 7.6

1. Use equation (7.6.19) to verify that G2 and G
0
2 have precisely the same

staircase patterns, and so show that G0 may be factorised as (7.6.21).
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7.7 Isospectral flow, continued

In Section 7.2 we obtained the isospectral flow equation

Ȧ = AS SA (7.7.1)

which governs the isospectral evolution of a symmetric matrix A; S is a skew
symmetric matrix. In this section we investigate whether the pattern of zero and
non-zero elements in A, and the pattern of signs of elements of A, are invariant
in this flow. We will restrict our attention to a few types of matrices which
appear in vibration problems since the general problem is extremely complicated.
Ashlock, Driessel and Hentzel (1997) [13], in a very general discussion of Toda
flow, show amongst many results, that staircase patterns are the only patterns
that remain invariant under Toda flow. Their paper has a valuable summary of
the pertinent literture.
We start with tridiagonal A and take S = A+ A+, i.e.,

A =

1 1

1 2 2

. . .
. . .

. . .
. . .

. . . 1

1

(7.7.2)

S =

0 + 1

1 0 + 2

. . .
. . .

. . .
. . .

. . . + 1

1 0

Now AS SA is also tridiagonal, so that A retains its tridiagonal form, and

˙ = 2 2
1 2 2 ˙ = ( +1 ) = 1 2 (7.7.3)

where 0 are taken to be zero.
We examine the signs of the diagonal and codiagonal elements. The flow

is isospectral so that if (A(0)) = ( )1 and all the are positive, then A( ),
like A(0) will be positive definite; 0 = 1 2 . For given ( )
satisfies ˙ ( ) = ( ) ( ), where ( ) = +1( ) ( ). This has the solution
( ) = exp( ( )), where ( ) =

R
0
( ) . Now ( ) is bounded for all , so

that ( ) retains the sign of = (0). Thus ( ) is = 0, depending on
whether (0) is = 0. We conclude that each codiagonal term retains the
sign it had when = 0. In particular, if the signs of the codiagonal terms are all
positive, i.e.,A(0) is O, or negative, i.e.,A(0) is SO, thenA( ) is correspondingly
O or SO.



7. Isospectral Systems 181

Before generalizing this analysis, we introduce some notation. The matrix
S in (7.7.2) is clearly related to A; it may be written as a so-called Hadamard
product :

0 + 1

1 0 + 2

. . .
. . .

. . .
. . .

. . . + 1

1 0

=

1 1

1 2 2

. . .
. . .

. . .
. . .

. . . 1

1

0 1
+1 0 1

. . .
. . .

. . .
. . .

. . . 1
+1 0

(7.7.4)

The Hadamard product is quite distinct from the usual matrix product. It is
defined only for two matrices A B of the same size, i.e., A B , and is
given by the pairwise product of corresponding elements. If C = A B, then
= , for = 1 2 ; = 1 2 . Thus the matrix S in (7.7.4)

may be written S = A Y, where

Y =

0 1
+1 0 1

. . .
. . .

. . .
. . .

. . . 1
+1 0

(7.7.5)

is itself a skew-symmetric matrix. (Clearly, if A is symmetric and Y is skew-
symmetric, then A Y is skew-symmetric.)
This brings us to the next example, in which A is a periodic Jacobi matrix;

now we take

A =

1 1

1 2 2

. . .
. . .

. . .
. . .

. . . 1

1

Y =

0 1 +1
+1 0 1

. . .
. . .

. . .
. . .

. . . 1
1 +1 0

(7.7.6)
It is easy to verify (Ex. 7.7.2) that A retains its form under the flow (7.7.1)
with S = A Y, and that all the and retain their signs.
We note in passing that for tridiagonal matrices we have two ways to form

an isospectral family: using the operator G of Section 7.3, or by using the
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isospectral flow equation with S given by (7.7.2). The periodic Jacobi form
is not invariant under G , and it is not clear that there is a factorisation and
reversal operation under which it is invariant. The only algebraic way to form an
isospectral family seems to be to use the spectrum ( )1 and a second spectrum
( ) 1

1 and reconstruct the matrix as in Section 5.4. For the periodic case, the
isospectral flow equation with S given in (7.7.6), provides a conceptually simpler
procedure.
There is a second comment. We showed in Section 7.3 that we can pass

from any one Jacobi matrix J to any other isospectral Jacobi matrix J0 in 1
operations G . It is doubtful that isospectral flow, with S given by (7.7.2), will
lead from one J to any other isospectral J0 (see Ex. 7.7.7).
We will now show following Gladwell (2002) [129] that this permanence of

sign of a tridiagonal matrix under the Toda flow (7.7.1) is a special case of the
permanence of the total positivity properties NTN, TP, O, SO under Toda flow.
We recall from Section 6.8 that it is the positivity of the corner minors of A
that is crucial in determining whether a TN matrix A is TP. We first prove a
theorem regarding the flow of these corner minors under the Toda flow (7.7.1).

Theorem 7.7.1 Suppose A satisfies (7.7.1), with S = A+ A+, B =
A , = (1 2 ; + 1 ), then ( ) satisfies

˙ = (
X

= +1

X
=1

) = 1 2 (7.7.7)

Proof. Denote the th order corner matrix of B by B , and suppose that
its columns are b1 b2 b . Thus

b = [ +1 +2 ]

Ex. 7.7.3 shows that B satisfies

Ḃ = BS SB

with S = A+ A+, so that

˙ = ( ) 2

1X
=1

+ 2
X
= +1

and

ḃ = b 2

1X
=1

b +Cb (7.7.8)

where C is given by

=
=

2 = + 1
0 otherwise
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for = + 1 .
Now = det(b1 b2 b ), so that

˙ =
X
=1

det(b1 b2 b 1 ḃ b +1 b ) (7.7.9)

Consider the sums obtained by inserting each of the three terms in ḃ from
(7.7.8) into (7.7.9). The first gives

X
=1

The second gives zero because it is merely a combination of the first 1
columns; the third may be writtenP

= +1

We now prove

Theorem 7.7.2 Let denote one of the properties TN, NTN, TP, O, SO. If
A(0) has property , then A( ), given as the solution of (7.7.1) with
S = A+ A+ has the same property .

Proof. Suppose first that A(0) is TP. The corner minors of A( ) are
thus positive when = 0; they satisfy

˙ = ( )

where

( ) =
X

= +1

X
=1

is bounded: | ( )| (A( )) = (A(0)).
This implies that these corner minors remain positive.
At = 0, all the minors of A are positive. By continuity, therefore, all

the minors are positive in some open interval ( ) around = 0. Suppose if
possible that one or more of the minors became zero at = . A( ) would
be NTN and its corner minors would be positive, so that, by Theorem 6.8.2, it
would be TP. This contradiction implies that A( ) is TP for all .
Now suppose that A(0) is TN. By Ando’s result, given in Ex. 6.8.3, A(0)

may be approximated arbitrarily closely in the 1 norm by a TP matrix

C(0 ) = P( )A(0)P( )

where
P( ) = ( ) = exp[ ( )2]

We now suppose C( ) is the solution of

Ċ( ) = C( )S( ) S( )C( )
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where
S( ) = C+ ( ) C+( )

By our previous argument, C( ) is TP for all and all , and since (Ex. 7.7.3)

||Ȧ( ) Ċ( )|| = (exp( )) (7.7.10)

we have
lim C( ) = A( ) : (7.7.11)

the minors of A( ) are the limits, as , of the (positive) minors of C( );
all the minors of A( ) are non-negative: A( ) is NTN.
Finally, suppose A(0) is O. It is NTN and so, by the previous result, A( )

is NTN. When = 0, the minors of (A(0)) = B(0) are strictly positive for
1. The corner minors of B( ) = (A( )) remain positive. (Ex. 7.7.3)

B( ) is then NTN, with positive corner minors; B( ) is TP; A( ) is O.
It now follows trivially that if A(0) is SO, then so is A( ).
We can immediately apply this result to obtain other isospectral mass re-

duced sti ness matrices for the discrete beam. Starting from A(0) in equation
(7.5.3), we can form A( ); A( ), like A(0), will be SO. Ex. 7.7.5 shows that the
corner minors of B( ) = A 1( ) will be strictly positive, and Ex. 7.7.6 shows
that the elements in the outer diagonal of A( ) will be positive. These are the
results needed for the reconstruction of M0 K0 L0 from A( ).
Markham (1970) [221] shows that an oscillatory (or sign-oscillatory) matrix

must have staircase form. It may be verified (Ex. 7.7.4) that the isospectral
flow with S = A+ A+ preserves such staircase forms. In particular, one
may show that the outermost elements of the staircase retain their signs: if they
are strictly positive (negative) when = 0, they will remain strictly positive
(negative).

Exercises 7.7

1. Write S = A+ A+ as a Hadamard product S = A Y.

2. Verify that if Y is given in (7.7.6), then A in (7.7.6) retains its form under
the flow (7.7.1).

3. Establish the results (7.7.10), (7.7.11).

4. Show that the isospectral flow (7.7.1) with S = A+ A+ preserves
staircase forms; these include block banded forms, with no holes.

5. Show that B = A 1 satisfies the same isospectral flow equation (7.7.1),
i.e., Ḃ = BS SB, and that the corner minors of B satisfy (7.7.7).

6. Show that if A has half-bandwidth , so that = 0 if | | , then
the elements in the outdiagonal of A retain their signs.

7. Find two isospectral matrices J J0 with the property that one cannot flow
from J to J0 in a Toda flow with S given by equation (7.7.2).



Chapter 8

The Discrete Vibrating
Beam

A thinking reed - It is not from space that I must seek my dignity, but from
the government of my thought. I shall have no more if I possess worlds. By

space the universe encompasses and swallows me up like an atom; by thought I
comprehend the world.
Pascal’s Pensées, 348

8.1 Introduction

In this Chapter we shall present in detail the solution of the inverse problem
for the discrete spring-mass model of a vibrating beam discussed in Section
2.3. This model is important because it is the simplest model - it is in e ect a
finite-di erence approximation - for a beam with continously distributed mass.
See Gladwell (1991) [116] for a qualitative discussion of the customary finite
element model of a beam. The inverse problem for a continuous beam will be
considered in Chapter 13. The inverse problem for a discrete beam was first
considered by Barcilon (1976) [18], Barcilon (1979) [20], Barcilon (1982) [21].
He established that the reconstruction of such a system would require three
spectra, corresponding to three di erent end conditions. The necessary and
su cient conditions for these spectra to correspond to a realizable system, one
with positive masses, lengths and sti nesses, were derived by Gladwell (1984)
[104].
Two papers by Sweet (1969) [313], Sweet (1971) [314] consider the discrete

model of a beam obtained by using the so-called ‘method of straight lines’; he
shows that the coe cient matrix obtained in this procedure is (similar to) an
oscillatory matrix. See also Gladwell (1991b) [117].
The plan of the Chapter is as follows. In Section 8.2 we show that the

(squares of the) natural frequencies of the system are the eigenvalues of an oscil-
latory matrix. This means that the eigenvalues are distinct and the eigenvectors

185
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u have all the properties derived in Section 6.10. It is found also that not only
u , but also , the slopes, moments and shearing forces, have these same
properties (Theorem 8.2.2 and Ex. 8.2.1). Theorem 8.2.2 derives an additional
result, that the beam always bends away from the axis at a free end. In Section
8.4 the oscillatory properties of the eigenvectors are used in the ordering of the
natural frequences of the system corresponding to di erent end conditions. In
Section 8.5 it is shown that while it is possible to take three spectra as the data
for the reconstruction, it is better to take one spectrum, that corresponding to a
free end, and the end values of the normalised eigenvectors, as the basic
data. In this way, the conditions on the data may be written as determinantal
inequalities. In Section 8.6, a procedure for inversion is presented and it is
shown that the conditions (Theorem 8.5.1), which were put forward earlier, are
in fact su cient to ensure that all the physical parameters, masses, lengths and
sti nesses, will be positive. In Section 8.7 a numerical procedure, based on the
Block Lanczos algorithm, is described for the actual computation of the physical
parameters.

8.2 The eigenanalysis of the cantilever beam

The equations governing the response of the discrete beam were derived in Sec-
tion 2.3. Equation (2.3.6) shows that vibration with frequency is governed
by the equation

Mu =Ku e 1 Ee = 2

where E is given in equation (2.2.10), e = {0 0 1}, and and are the
bending moment and shearing force applied at the free end. This means that
the free vibrations satisfy

Mu =Ku (8.2.1)

which may be reduced to standard form

Av = v (8.2.2)

by the substitutions

M = D2 v = Du A = D 1KD 1 (8.2.3)

Theorem 8.2.1 The matrix A is sign-oscillatory.

Proof. Equation (2.3.7) shows that

K = EL 1EK̂E L 1E

where L K̂ are diagonal matrices with positive elements.
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We recall, from Section 6.7, that a matrix A is said to be sign-oscillatory
(SO) if Ã = ZAZ, with Z = (1 1 ( ) 1), is oscillatory (O). The
matrix

Ẽ =

1 1
1 1

. . .
. . .
1 1

1

is NTN (see the beginning of Section 6.6). Also, Ex. 6.7.6 shows that B̃ =

ẼL
1
Ẽ is NTN, as is its transpose, and hence also K̃ = B̃K̂B̃ , and Ã =

D 1K̃D
1
. Now, according to Theorem 6.7.3, to show that Ã is oscillatory, it

is su cient to show that ˜ +1 0 = 1 2 1. This is easily verified.
Thus Ã is O, and A is sign-oscillatory.
Theorem 8.2.1 has important consequences. It means that the eigenvalues

( )1 are distinct (Corollary to Theorem 6.10.1), that the last element, of
each eigenvector u of equation (8.2.1) may be chosen to be (strictly) positive
(Corollary to Theorem 6.10.2); note that equation (8.2.3) gives = , so
that 0 implies 0; and the will satisfy the inequalities (6.10.3). We
now prove

Theorem 8.2.2 The vectors ( )1 are the eigenvectors of a sign-oscillatory
matrix.

Proof. Since = L 1E u and thus u = E L , we have

Mu = ME L =Ku = EL 1EK̂E L 1E (E L )

so that
(LE 1ME L) = EK̂E

or
G =H G 1H =

The matrix G is O, so that (G̃ 1) is O (Theorem 6.7.5). H is SO, so that H̃
is O. Therefore, by Ex. 6.7.7, (G̃ 1H̃) is O, and thus G 1H is SO.
Theorem 8.2.2 means that the must satisfy all the requirements for the

eigenvectors of an SO matrix, e.g., 6= 0. We now show that, for the
particular SO matrix governing the beam, if the are chosen so that 0,
so that all the minors of Theorem 6.10.3 are positive, then , and hence
all the corresponding minors

V = ( + 1 + 2 ; 1 2 )

will be positive. It is su cient to prove

Theorem 8.2.3 Each eigenvector of the cantilever beam satisfies 0.
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Proof. Choose so that 0. There is an index (1 1)
such that
i) 0 = + 1 ,
ii) 1 0.
Note that when = 1, then = 1; we have 0 1 = 0.
Thus = ( 1 ) 0.
Now, since

= E 1Mu

then, because of the form of E 1 given in equation (2.2.10), we have

0 = 1 1

But
= E 1L

so that, again,
0 = 1 1

Now consider the equation linking the and , namely

+1 = 1
+1

and sum from to 1 to obtain

=
1X

=

1
+1 0

so that 0.
Theorem 8.2.2, while showing that the are eigenvectors of a sign-oscillatory

matrix, shows that u and must both have precisely 1 sign changes. This
means that the first mode u1 will steadily increase, i.e.,

0 1 1 2 1 1

as shown in Figure 8.2.1, while the -th mode ( 1) will have 1 portions
that are convex towards the axis, and one final portion that bends away from
the axis, as shown in Figure 8.2.2.

Figure 8.2.1 - The first mode steadily increases
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Figure 8.2.2 - The end of the mode bends away from the axis

Exercises 8.2

1. Show that and are eigenvectors of the equations

K̂ 1 = E L 1E M 1EL 1E

LE K̂ 1E 1L = E M 1E

and that each is the eigenvector of a sign-oscillatory matrix.

8.3 The forced response of the beam

The equation governing the response to an end shearing force and bending mo-
ment is equation (2.3.6), which for vibration of frequency becomes

Mu =Ku e 1 Ee (8.3.1)

Since the eigenvectors u of the clamped-free beam span , and are orthogonal
w.r.t. M and K we may write

u =
X
=1

u

and find
= ( + ) ( )
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where the modes are normalised so that

u Mu =

Thus

u =
X
=1

( + )u
(8.3.2)

and on multiplying through by L 1E we find

=
X
=1

( + )
(8.3.3)

These two equations completely characterise the forced response of the beam. In
the terminology of Bishop and Johnson (1960) [34], equations (8.3.2), (8.3.3) give
the end receptances for the beam: the displacement (slope) at one coordinate
due to a unit shearing force or bending moment at the end. In particular, for
the end displacement and slope we have

= + 0 (8.3.4)

= 0 + 00 (8.3.5)

where

=
X
=1

( )2 0 =
X
=1

(8.3.6)

00 =
X
=1

( )2
(8.3.7)

8.4 The spectra of the beam

Now suppose that the left hand end of the beam remains clamped while the
conditions at the right hand end are varied. The possible end conditions and
eigenvalues, (eigenfrequency)2, are as follows:

free = 0 = ( )1

sliding = 0 = ( ) 1
1

anti-resonant = 0 =
or ( ) 1

1

= 0 =

pinned = 0 = ( ) 1
1

clamped = 0 = ( ) 2
1
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Note that the anti-resonant frequencies are those at which the application of
an end bending moment produces no end displacement; we will show that there
are 1 such frequencies, and that they are also the frequencies at which the
application of an end shearing force produces no end rotation.
We will now relate the various eigenvalues to the receptances derived in

Section 8.3. We first state

Theorem 8.4.1 If ( )1 0 and 1 2 , then the equation

( ) =
X
=1

= 0

has 1 real zeros satisfying

+1

Proof. In each interval ( +1), ( ) is strictly increasing from to
+ , and will cross the -axis just once.
We now substitute the end conditions in the receptance equations (8.3.6),

(8.3.7), starting with the sliding condition;

X
=1

( )2
= 0 has zeros ( ) 1

1 (8.4.1)

Making use of Theorem 8.2.3 we may state

X
=1

= 0 has zeros ( ) 1
1 (8.4.2)

and X
=1

( )2
= 0 has zeros ( ) 1

1 (8.4.3)

To find the relative positions of the eigenvalues we need

Theorem 8.4.2 Suppose ( )1 0, ( )1 0, 1 2 ,

( ) =
X
=1

( ) =
X
=1

and that ( ) 1
1 , ( ) 1

1 are the zeros of ( ), ( ) respectively. If
0 for then for = 1 2 1.

Proof.

( ) ( ) =
X
=1



192 Chapter 8

Put = , so that +1, and divide the sum into two parts, thus

( ) =
1X

=1

+
X
= +1

Under the stated conditions, each of the numerators and denominators on the
right will be positive, so that ( ) 0, i.e., ( ) has already become positive
when ( ) has just become zero, i.e., .
Note that, as in the discussion of positivity in Chapter 6, it is su cient to

have +1 +1 0 for = 1 2 1, for then 0 for all
. The converse of Theorem 8.4.2 is not true - see Ex. 8.4.1.
We now apply this Theorem, first to and . Take = and
= 2 , then p = ( ) = ( 1

1 ) . To show that this is positive, we use Theorem 6.10.3 with
= 2 1 = 2 = ; it gives¯̄̄

¯ 1 1

¯̄̄
¯ 0

for , and thus . We find in an exactly similar way that .
Finally, since the clamped conditions may be obtained by applying the extra
constraint = 0 to the pinned condition, the usual theory of vibration under
constraint gives .
This gives the following ordering:

0 1 1 1 1 ( 1 2) 2 2 2 ( 2 3) ( 2 1)

1 1 1 (8.4.4)

Note that the relative position of and +1 is (so far) indeterminate; in nu-
merical experiments it was always found that +1. See Gladwell (1985)
[105], Gladwell (1991b) [117].

Exercises 8.4

1. Construct a counterexample to show that the converse of Theorem 8.4.2
is false. Take = 3, ( 1 2 3) = (1 4 7), ( 1 2 3) = (4 1 4),
( 1 2 3) = (5 1 7). Find 1 2 1 2 and show that ( 1) 0, ( 2)
0, so that 1 1, 2 2, but 1 2 2 1 0, 2 3 3 2 0.

2. Show that if 0, 0, +1 +1 0 for = 1 2 1,
then 0 for all . Compare with Theorem 6.8.1.

3. Use equations (8.4.2), (8.4.3) to deduce that

2 =
1

Q 1
=1 ( )Q 0
=1( )
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2 =
2

Q
=1( )Q 0
=1( )

where 0 denotes 6= , and 1, 2 are constants.

4. Develop an intuitive argument to show that by considering a
clamped-clamped beam made up of two identical cantilevers of length 2
welded together at their free ends.

5. The eigenvalues ( ) 2
1 are the (frequency)2 values for which the applica-

tion of a force and moment at the free end produce = 0 = . Use the
equations (8.3.4)-(8.3.7) to show that the are the roots of

X
=1

( )2

( )( )
= 0

8.5 Conditions on the data for inversion

In the inverse eigenvalue problem for the beam it is required to construct a beam
with given eigenvalues. Barcilon showed (for his model) that the beam cannot
be uniquely determined from two spectra, and attempted to prove that it could
be so determined (apart from a scale factor) from three properly chosen spectra.
His procedure (in our notation) was to start from ( )1 (and note that he
had of each of the , not 1 as in the model of Figure 2.3.1) satisfying

1 1 1 2

and compute the frequencies ( )1 and ( ) 1
1 (again note that he had of the

and 1 of ) using some recurrence relations. For his model it was not
possible to prove that the eigenvalues so computed satisfied the complete
set of inequalities (similar to (8.4.4)). He had to place subsidiary conditions on
( )1 in order for the inequalities to be satisfied. His second step was a
stripping procedure for computing the parameters of the last segment,
and for computing the corresponding eigenvalues ( ) 1

1 of the truncated
system obtained by deleting the last segment. The were all found
to be positive but, even with the extra conditions on the ( )1 , it was
not possible to prove that the new (starred) eigenvalues satisfied the necessary
orderings, which meant that if the stripping procedure were continued, negative
masses, sti nesses or lengths might be encountered at some stage. He concluded
that further conditions must be placed on the data, preferably conditions which
could be applied ab initio, so eliminating the need for checks at each stage of
the stripping procedure. We shall now state such conditions and construct a
new stripping procedure.
The spectra, from which will be drawn the data for the inverse problem, may

be divided into three parts:
(i) ( )1 ; (ii) ( ) 1

1 ; (iii) ( ) 2
1 .
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Suppose that (i) is given. Each spectrum which is given from (ii) then deter-
mines, to within an arbitrary multiplier, the set of coe cients ( )2 ( )
or ( )2 respectively, from the eigenvalue equations (8.4.1)-(8.4.3); see Ex.
8.4.3 and an analogous result for . If any two of the spectra in (ii) are
given, then the two sets of coe cients yield the third set, and hence the third
spectrum. (Note that since 0, there is no ambiguity in taking the
square root of 2 2 .) However, if two given spectra, say ( ) 1

1 and ( ) 1
1

satisfy the appropriate ordering, , then the third set ( ) 1
1 need not

satisfy its appropriate ordering, . Two counterexamples are provided in
Ex. 8.5.1, 8.5.2, and these clearly show that the ordering requirements on the
two given spectra e.g., , are insu cient for the existence of a real model,
with positive ; they do not even ensure the ordering of the remaining
spectrum. We now prove the fundamental

Theorem 8.5.1 A necessary condition for the existence of a real (i.e., positive)
model corresponding to data sets ( )1 is that the matrix P +1

given by

P =

1 2

1 2

1 1 2 2

1 1 2 2
2
1 1

2
2 2

2

· · ·

should have all its minors are positive. Note that the last row of P is

1 1 2 2

or

1 1 2 2

according to whether is even or odd respectively, and = [ 2].

Proof. Because of the repetitive nature of the rows of P, Theorem 6.8.1
shows that all the minors will be positive i

(1 2 ; +1 + 1) 0 (2 3 +1; +1 + 1) 0
(8.5.2)

for = 1 2 and = 1 2 + 1.
The proof follows directly from Theorem 6.10.3, for

( 1 ; + 1) =

¯̄̄
¯ 1 1 +1

+1

¯̄̄
¯ 0

But the recurrence 1 = yields

( 1 ; + 1) =

¯̄̄
¯ +1 +1

+1

¯̄̄
¯

=

¯̄̄
¯ +1

+1

¯̄̄
¯ = (1 2; + 1) 0
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which we write in abbreviated notation as

[ 1 ] = [ ] = [ ] = (1 2; + 1)

Similarly, the relations between the in Section 2.3 and Theorem
6.10.3 applied to the (note that Theorem 8.2.2 shows that is an eigenvector
of an SO matrix) give

0 [ 1 ] = [ 1
1 ] = 1[ 1 ]

= 1 [ 1 ] = 1 [ ]

= 1 [ ] = 1 (2 3; + 1)

Proceeding in this way we may relate the minors occurring in Theorem 6.10.3,
for or , to those appearing in . Thus

( 2 1 ; + 1 + 2) = 2 (1 2 3; + 1 + 2)

( 2 1 ; + 1 + 2) = 2 (2 3 4; + 1 + 2)

where
2 =

1 2
1 2 =

1 1
1
2

1 1

and generally

( + 1 + 2 ; + 1 + 1) =

+1 (1 2 ; + 1 + 1) (8.5.3)

( + 1 + 2 ; + 1 + 1) =

+1 (2 3 + 1; + 1 + 1) (8.5.4)

where, as will be important in our discussion later, +1 and +1 are
products of the for = + 2 .
It will be shown below that the condition that P is TP is also su cient for

the existence of a real model.

Exercises 8.5

1. Construct a counterexample to show that +1 does
not imply +1. Take = 3, ( 1 2 3) =
(1 4 7) ( 3 1 3 2 3 3) = (2 1 2) so that ( 1 2) = (2 5). Take 3 1 =
3 2 3 2 = 1 and find 3 3 so that 1 1 2 2 1 1 but 2 2.

2. With the same and 3 data, but with 3 1 = 1, find 3 3 so that 1 1,
2 2, 2 2, but 1 1.

3. Take = 3 = 1 1 = 1 1 = 1, and find two sets of values of
2 and 3, 2 3 so that the positivity conditions of Theorem 8.5.1 are

fulfilled and 1 2 in one case, 1 2 in the other. This proves that
the relative positions of and +1 are indeterminate.
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8.6 Inversion by using orthogonality

In this section we show how the system parameters may be found, at least in the-
ory, from the eigenvalue data, and establish necessary and su cient conditions
on the data for the system parameters to be positive.
Suppose that we are given ( )1 for a cantilever beam, so that
= 0 = . We will show that we can construct a beam, and that if the data

satisfy the condition stated in Theorem 8.5.1, then all the system parameters
will be positive.
We start with the system equation

Mu =Ku

and, as usual, put U = [u1 u2 u ] = ( 1 2 ). Then

MU =KU (8.6.1)

and the orthogonality of the u w.r.t. K M yields

U MU = I U KU = (8.6.2)

The first of these equations gives

M 1 = UU (8.6.3)

so that
1
=
X
=1

( )2 = 1 2 (8.6.4)

Since ( )1 are known, we have found

1
=
X
=1

( )2 (8.6.5)

The matrix UU is diagonal; its term 1 is

X
=1

1 = 0

which, with 1 = gives

X
=1

( )2
X
=1

= 0

and using (8.6.4) we find
1

=
X
=1

(8.6.6)
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which with = , yields .
The next step is the determination of . For this we need the explicit

expression for K:

K = EL 1EK̂E L 1E

This gives
K̂ 1 = E L 1E K 1EL 1E (8.6.7)

Now we use the second of equations (8.6.2) to give

K 1 = U 1U

which, when substituted in (8.6.7), gives

K̂ 1 = E (L 1E U) 1(U EL 1)E

But
= [ 1 2 ] = L 1E U

so that
K̂ 1 = E 1 E

which yields
1
=
X
=1

( 1 )
2

= 1 2

But 1 = 1
1 so that

=
X
=1

( 1 )
2

(8.6.8)

Now take = , then 1 = 1 = , so that

= 2 2
X
=1

( )2 (8.6.9)

Having found and we now state the steps in the algorithm to
reconstruct the system.

i) set = .

ii) u 0 are known from data.

iii) compute from equations (8.6.5), (8.6.6).

iv) compute
1 =

1 = +

1 = + 1

v) compute from (8.6.8).
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vi) compute 1 = 1 .

vii) set = 1. If 1 go to iii), otherwise stop.

We note that the quantities ( )1 will be known only to within arbi-
trary multiplying factors. If a second, primed, set is related to the first by

0 = 0 = (8.6.10)

then the algorithm yields

0 = 2 0 = 2 0 = (8.6.11)

or
0 02

0 =
2

= 1 2 (8.6.12)

Equations (8.6.11), (8.6.12) define the equivalence class of systems corresponding
to the given data. The validity of this inversion procedure is based on

Theorem 8.6.1 The total positivity of the matrix P of Theorem 8.5.1 is neces-
sary and su cient for the existence of a real (positive) model having three given
spectra, i.e., ( )1 and two of ( ) 1

1 .

Proof. The necessity was proved in Theorem 8.5.1. We prove the su ciency.
Consider the equations

M 1 = UU = L 1E U

and construct the matrix

B L 1E M 1 = L 1E UU = U

Now form the th compound matrix equation by using the Binet-Cauchy The-
orem:

B = L 1E M 1 = U

Since L 1 andM 1 are diagonal matrices, and each principal minor of E is
unity, the bottom right-hand element of B is

=
Y

= +1

( ) 1 =
X
=1

V U (8.6.13)

where the notation is as in Section 6.2.
We now proceed by induction. Suppose that conditions (8.5.2) are satis-

fied, and that 1 +2 are all positive. Each U and V may
be expressed, as in equations (8.5.3), (8.5.4), as a product of terms involving

1, which are all positive, and terms involving 1 +2 which
are positive by hypothesis. Each such V , U is thus positive. Therefore,
equation (8.6.13) shows that +1 0. But 0, so that all are positive.
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8.7 A numerical procedure for the inverse prob-
lem

The algorithm described in Section 8.6 has primarily theoretical value. It shows
that if the data satsify the conditions in Theorem 8.5.1, then the system para-
meters constructed by the algorithm will be positive. However, starting as it
does from the free end and computing the successive model parameters, the al-
gorithm su ers from the same kind of ill conditioning that was encountered in
the inverse problem for the rod in Section 4.3.
To obtain a reliable numerical procedure we use the Block Lanczos algo-

rithm described in Section 5.5. To use this algorithm, we reduce the governing
equation (8.2.1) to standard form

Aq = q

where

A = D 1KD 1 M = D2 q = Du

To apply the Block-Lanczos algorithm to the pentadiagonal matrix A ( = 2),
we use the algorithm starting from the free end ( ) rather than the fixed end
(1). Thus we need the vectors x1 x2 containing the th and ( 1)st terms of
the normalised eigenvectors of A:

x1 = { 1 2 }

x2 = { 1 1 1 2 1 }

Now

=

1 = 1 1 = 1{ }

Equation (8.6.5) gives , and =
1
2 . Equation (8.6.6) gives and hence

1 and then equation (8.6.4) with = 1 gives 1. Thus the data
( )1 give the vectors x1 x2 which are needed for the Block Lanczos
algorithm.
Now suppose that we have computed

A = D 1KD 1

from the Block Lanczos algorithm. We must now untangle A to give K andM.
We do this rather like we did it for the rod, in Section 4.4: we use the static
behaviour of the system, as we did in Section 7.5.
First, we apply external static forces 1 2 to masses 1 and 2, and deform

the system as shown in Figure 8.7.1.
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Figure 8.7.1 - Two static forces are needed to deflect all the masses by the same
amount

For this configuration u = {1 1 1}, so that q = { 1 2 }. The
static equation is

Ku = f = { 1 2 0 0}

i.e.,
DADu = f

or
Ad = { 1

1 1
1

2 2 0 0}

Consider this equation. We know A, and we know the last two components
1 . But A is pentadiagonal so that, knowing 1 , we can compute
2 1, and find

1
1 1

1
2 2 and hence 1 2.

Having found the masses ( = 2), we find the lengths. We apply a single

force 1
1

1 at 1 and find

u0 = { 1 1 + 2 1 + 2 + · · · }

as shown in Figure 8.7.2.

Figure 8.7.2 - One static force will deflect the beam as a straight line

Now the equation
Ku0 = { 1

1
1 0 0}

yields

A{ 1 1 2( 1 + 2) ( 1 + · · · )} = { 1
1 1

1
1 0 0} (8.7.1)

This means that if we invert the equation

Ax = {1 0 0}

we will find
( 1 + 2 + · · · ) = = 1

1 1
1

1
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This yields the , and the theory of Section 8.6 shows that they will all be
positive if the data satisfies the conditions of Theorem 8.6.1.
The last step is to find the . Using the form of E 1 in equation (2.2.10),

we may write equation (8.7.1) as

ADE L{1 1 1} = { 1
1 1

1
1 0 0}

i.e.,
LE 1DADE L{1 1 1} = { 1 0 0}

and then as in Section 4.4, we deduce that

LE 1DADE L = EK̂E

which gives K̂. The reconstruction is complete.



Chapter 9

Discrete Modes and Nodes

Memory is necessary for all the operations of reason.
Pascal’s Pensées

9.1 Introduction

The emphasis in all the preceding chapters has been on eigenvalues, and on
reconstructing a system from eigenvalue data. In this chapter we turn our
attention to eigenvectors. In Sections 9.2, 9.3 we consider the question of
constructing a Jacobi matrix that has one or more given eigenvectors, and then
go on to constructing a spring mass system from such data. In Section 9.4
we comment on the more di cult problems of constructing a discrete vibrating
beam from eigenmode data. Up to this point, all the systems are basically
in-line systems, so that the underlying matrices are band matrices, and either
oscillatory or sign-oscillatory. In the remaining sections, we widen our study
and see what can be said about eigenvectors and their signs, i.e., about modes
and nodes, for the equation

(K M)u = 0 (9.1.1)

where K M relate to some simple 2-D and 3-D systems, specifically membranes
and acoustic cavities. We do not yet have any results about constructingM K

from eigenvector data in this case; the properties of the eigenvectors do how-
ever provide necessary conditions on the eigenvector data for the masses and
sti nesses of the underlying system to be positive.

Note that in the 2-D and 3-D problems, we will use to denote the order
of the system, and to label a particular eigenvalue.

202
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9.2 The inverse mode problem for a Jacobi ma-
trix

In this section we consider the problem of constructing a Jacobi matrix that
has one or more specified eigenvectors. Following Vijay (1972) [329], Gladwell
(1986c) [109] we prove

Theorem 9.2.1 The vector u is an eigenvector of a Jacobi matrix i +
u = u .

Proof. We recall the definitions of +
u u from Section 6.9. The necessity,

i.e., only if, follows from Theorem 6.10.2. To prove su ciency, i.e., if, we need
to show first that if +

u = u then we can find ( )1 0 ( ) 1
1 0, such that

( 1 ) 1 1 2 = 0

1 1 + ( ) +1 = 0 = 2 3 1

1 1 + ( ) = 0
(9.2.1)

First, suppose that ( )1 6= 0, then we may take ( ) 1
1 = 1 = + =

( 1 + +1) = 1 2 where 0 = 0 = +1. Thus, the matrix

C =

1 1
1 2 1

. . .
. . .

. . .
. . .

. . . 1
1

satisfies Cu = 0, and A = I + C. The matrix C, having strictly negative
codiagonal, will have distinct eigenvalues ( )1 , one of which will be zero because
C is singular. The matrixA will have eigenvalues ( + )1 , so that if is chosen
so that

max
1

( )

thenA, having non-negative eigenvalues, will be PSD;A will be a Jacobi matrix.
What happens when one of the is zero? The condition +

u = u implies
1 6= 0 6= 0. Suppose = 0 for just one satisfying 1 , then

1 +1 will be non-zero and have opposite signs, so that 1 +1 0.
The th line of equation (9.2.1) is

1 1 + +1 = 0

so that 1 may be taken so that

= 1 = 1 = 1 +1

The remaining may be chosen so that

( ) 1
1 = 1 ( ) =
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and then

= + = 0 = ( 1 + +1) 6=

and again 0 = 0 = +1. Now we construct

C =

1 1

1 2 2

. . .
. . .

. . .
. . .

. . . 1

1

which satisfies Cu = 0. Now A = I + C, where is chosen as before.
This argument may easily be generalised to the case when two or more (non-
consecutive) are zero.
The next Theorem relates to two given vectors.

Theorem 9.2.2 Suppose u v , and define as in equation (3.3.6).
The necessary and su cient conditions for u v to be eigenvectors of a Jacobi
matrix corresponding to two eigenvalues , unspecified apart from the ordering

, are

(a) +
u = u

+
v = v

(b) = 0

(c) either = 0 = or 0 for = 1 2 .

Proof. The conditions are necessary, for Corollary 6.10.2 yields (a). The
orthogonality condition u v = 0 yields (b), while equation (3.3.8) yields (c).
Note that a) implies that 1 1 are not zero, so that 1 = 1 1 6= 0. Hence,
1 1 0. Also, = 0 implies 1 = ; again a) implies that
are not zero so that 1 1 0. Without loss of generality, we may take
1 0 1 0.
The conditions are interesting because they imply that v has more sign

changes than u, i,e., v u. To see this, we argue as in Theorems 3.3.2, 3.3.3.
First, suppose that the first zero of the u-line is 1( ) = , and of the v-line,
1( ). We prove 1( ) 1( ). Suppose if possible that 1( ) 1( ) = ,
and that 1( ) + 1 (1 1), then all ( )1 and ( )1 will be
positive, while

( + 1 ) + ( ) +1 = 0

( + 1 ) + ( ) +1 0

which imply 0. On the other hand, 0, which, when used with (3.3.8),
provides a contradiction.
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Now we show that there is a zero of the v-line between any two consecutive
nodes of the u-line. Let ( ) be two neighbouring nodes of the u-line
and suppose that

1 + 1 ( )

so that
( ) 1 + ( + 1) = 0 (9.2.2)

( + 1 ) + ( ) +1 = 0 (9.2.3)

and +1 have the same sign, say positive. Suppose the v-line had
no zero in ( ), and without loss of generality, were positive there. Then

+1 would be all positive, while

( ) 1 + ( + 1) 0 (9.2.4)

( + 1 ) + ( ) +1 0 (9.2.5)

On eliminating between (9.2.2), (9.2.4), and between (9.2.3), (9.2.5), we
find 1 0 0, which, with (c) imply 1 0 0 and therefore

1 0. But 1 =
P

= 0, a contradiction. We can show
similarly (Ex. 9.2.1) that the v-line has a node to the right of the last node of
the u-line: the v-line has more nodes than the u-line.
Now we proceed to the construction. First, suppose that 0 for =

1 2 1, then equations (3.3.1), (3.3.6), (3.3.8) show that

= + ( )

½
+1
+ 1

( 1 +1 1 +1)

1

¾
= ( )( )

Where = 2 1 in the first formula, = 1 1 in the second. The
two remaining quantities 1 are given by

1 = + ( )
1 2

1 1
= ( )

1 1

1

We may write these equations in the form

= + ( ) = ( )

We note that the are positive. Now

A = I+ ( )C

where

C =

1 1

1 2
. . .

. . .
. . . 1

1
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Thus C, having non-zero codiagonal, will have distinct eigenvalues ( )1 . Thus
A will have eigenvalues +( ) , andA will be PSD if +( )min( ) 0.
The slight modifications to the argument which must be made if an is zero,
are left to the exercises.

Exercises 9.2

1. Show that the conditions (a), (b), (c) of Theorem 9.2.2 imply that the
v-line will have a node to the right of the last node of the u-line.

2. Show that if two consecutive are zero, i.e., 1 = 0 = (2
2) then = 0 = , and deduce that three consecutive cannot be

zero.

3. Show that if = 0 but 1 6= 0, then may be chosen arbitrarily,
e.g., = . Find a replacement for .

4. Modify the argument to cover the case 1 = 0 = .

9.3 The inverse problem for a single mode of a
spring-mass system

We recall from Section 2.2 that the eigenmodes of the system of Figure 2.2.1
are the eigenvectors of the equation

EK̂E u = Mu (9.3.1)

The matrixM 1(EK̂E ) is sign-oscillatory (SO), so the analysis of Section 6.10

applies to the eigenvectors u . (Note that M 1EK̂E is not symmetric, but
the analysis of SO and O matrices does not depend on symmetry.)
Write = 1 so that, with 0 = 0,

w = E u u = E w

Equation (9.3.1) may be written

(E M 1E)K̂w = w

and again the matrix on the left is SO. This means that the vectors w will
have the properties listed in Section 6.10 for the eigenvectors of an SO matrix.
We first prove two theorems regarding the shape of the vector u . The first is

a simple analogue of the maximum principle which appears in elliptic equations.

Theorem 9.3.1 An eigenmode of (9.3.1) cannot have an interior negative max-
imum or an interior positive minimum.
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Proof. Suppose 2 1. The th line of (9.3.1) is

+1 +1 =

Suppose has a relative maximum at . Then 1 +1, so
that 0 +1 0, and hence 0. In fact, since +1 cannot be
simultaneously zero, 0.

Theorem 9.3.2 Two neighbouring can be equal only at a relative maximum
or minimum.

Proof. Suppose = 1, then = 0, so that 1 +1 are non-zero and
have opposite signs, i.e.,

( 1 2)( +1 ) 0

or equivalently
( 2)( +1) 0

This implies that (= 1) is either strictly greater or strictly less than its
neighbours 2 and +1: there is a relative maximum or minimum at .
The theorems show (Ex. 9.3.1) that u will have 1 portions which bend

toward the axis, and a final portion which bends away from the axis, as shown
in Figure 9.3.1.

Figure 9.3.1 - The th mode of a spring-mass system

Theorem 9.3.3 The necessary and su cient conditions for u to be the th
mode of a spring-mass system in the fixed-free configuration are that

(a) +
u = u =

+
w = w = 1,

(b) 1 1 0.

Proof. The necessity of these conditions has already been established. To
prove su ciency, we first note that no two of 1 can be simultaneously
zero; now we construct a system.
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The mode will have a shape like that shown in Figure 9.3.1. Thus will
start positive, and will increase ( 0 0), until an index , the first for
which

0 0 +1 0

Then will decrease ( 0 0) until an index , the first for which

0 +1 0 0

Now will continue to decrease ( 0 0) until an index , the first for
which

0 0 +1 0

and then proceed to increase again.
The governing equation (9.3.1) may be written

K̂w = E 1Mu

Since E 1 is given by equation (2.2.10), we have

=
X
=1

= (9.3.2)

This shows that we should take the , and choose so that and have
the same sign.
For the construction, we must choose ( )1 0 so that the following condi-

tions hold:
(i) 0 with = 0 i = 0; then = +

P 1
= 0

(ii) +1 0; then 0 for = + 1
(iii) 0, with = 0 i = 0; then 0 for = + 1 1
(iv) +1 0,
and so on. Finding ( )1 with these properties is essentially a linear pro-

gramming problem. It yields a set of having the same sign as . If 6= 0,
then is given by equation (9.3.2), while if a particular is zero, may be
given an arbitrary positive value.
The question of reconstructing a spring-mass system from modal data was

considered by Porter (1970) [267], Porter (1971) [268], but he did not discuss the
necessary or su cient conditions on the modes for the masses and sti nesses to
be positive.

Exercises 9.3

1. Show that the th mode of a fixed-free spring-mass system will have 1
portions which bend toward the axis, and a final portion which bends away
from the axis.

2. Construct a spring-mass system with 7 masses that has third mode u =
{1 2 1 1 2 1 1}.
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9.4 The reconstruction of a spring-mass system
from two modes

The construction described in Section 9.3 is far from unique. In this section,
following Gladwell (1986c) [109], we shall show that, provided certain conditions
are satisfied, there is essentially a unique system for which two given modes are
eigenmodes.
We first provide a counterexample to show that even if u v separately satisfy

the conditions of Theorem 9.3.3, there may be no system for which they are both
eigenmodes, corresponding to two eigenvalues , respectively, with .
Write

w = E u z = E v

and suppose

u = {1 3 6} w = {1 2 3} v = {1 1 4} z = {1 2 5}

The governing equations are

1 = 1 2 2 3 2 = 2 2 3 3 6 3 = 3 3

1 = 1 + 2 2 2 = 2 2 5 3 4 3 = 5 3

so that

3
=
5

6
=
2 2 + 5 3

2 2 3 3

i.e., 2 2 = 45 3, which is unrealizable.
In order to derive the conditions on the modes, we formalize the elimination

procedure used in this counterexample.
The recurrence relations are

= +1 +1 = 1 2 1 (9.4.1)

= +1 +1 = 1 2 1 (9.4.2)

and
= = (9.4.3)

Thus,

= · (9.4.4)

We know that one of the conditions will have to be +
u = u =

+
w = w, and

correspondingly +
v = v =

+
z = z . These will entail that will

all be non-zero and may be chosen to have the same sign, say positive. The
condition then demands

0 (9.4.5)
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Eliminating +1 in turn from equations (9.4.1), (9.4.2) we find

( ) = +1( +1 +1 )

( +1 +1) = ( +1 +1 )

so that on substituting from (9.4.4) we find

= +1 = (9.4.6)

where

=

= +1 +1

= +1 +1

Thus we may state

Theorem 9.4.1 The necessary and su cient conditions for u v to be eigen-
modes of a (fixed-free) spring-mass system for some eigenvalues ( ),
are

a) u = w v = z

b) 0

c) 0

d) for each , 1 1, the three quantities have the same strict
sign or are all identically zero; this sign need not be the same for all .

Proof. The necessity of the conditions has already been demonstrated. If
the conditions hold, and none of the triplets is zero, then equations (9.4.6), for
= 1 2 1, give the 2( 1) ratios

1 1 1 2; 2 2 2 3; ; 1 1 1

The final equations (9.4.3), (9.4.4) are left for the ratios and . Thus
if we choose say and then the system is uniquely determined. If a triplet

is identically zero then may be chosen arbitrarily (positive).
We note (Ex. 9.4.1) that the conditions a)-c) preclude the triples 1 1 1,

or 1 1 1 from being zero.
In the particular case in which the eigenvalues are consecutive, the conditions

may be made sharper, to give

Theorem 9.4.2 The necessary and su cient conditions for u v to be eigen-
modes corresponding to consecutive eigenvalues of the spring-mass system are
that

a) 0
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b) 0

c) ( ) 1
1 0

Proof. The necessity of a) and b) follow from (9.4.4) and (9.4.5). The
necessity of ( ) 1

1 0 is established in Gladwell (1985a) [109]; equation (9.4.6)
then shows that ( ) 1

1 0. The su ciency of the conditions follows as
before.

Exercises 9.4

1. Show that conditions a)-c) of Theorem 9.4.1 imply 1 0. Show also that
the assumption ( 1 1 1) = 0 leads to a contradiction.

2. Construct a spring-mass system with first and secondmodesu= {1 3 6 10
15} v = { 1 4 2 1 5}.

9.5 The inverse mode problem for the vibrating
beam

In this section, we consider the questions of whether and how we may construct
a discrete model of a beam, as described in Section 2.3, from a single mode
u. As could be expected, this question is considerably more di cult than the
corresponding question for a rod. Since the question was definitively answered in
Gladwell, Willms, He and Wang (1989) [115], we will merely state the principal
results obtained there.
We recall that the eigenvalue problem for the cantilever beam may be ob-

tained from equation (2.3.6):

Ku EL 1EK̂E L 1E u = Mu (9.5.1)

The matrix K is a pentadiagonal SO matrix, so that the eigenvalues are simple,
and the eigenvector u = u has sign count u = 1. As with the rod, we can
easily show (Ex. 9.5.1) that

= L 1E u = K̂E = L 1E (9.5.2)

are also eigenvectors of SO matrices, so that = = = 1 also.
We note that although can be formed only when the lengths are known,
and the di erence E u will have the same sign count. In considering the

construction problem we shall in fact assume that the ( )1 are given, and seek
to construct ( )1 .
In order to find conditions that must be satisfied by the eigenmodes we need

some preliminary results.
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Lemma 9.5.1 If u is not identically zero, and u = 1, ( 1), then there
is an index and indices ( )1 such that 1 1 2 and

( ) + 1 0 for = 1 2 . Conversely, if there exist and ( )1 such
that ( ) + 1 0 for = 1 2 , then

u
1.

Proof. Take 1 as the index of the first non-zero , and let ( ) = ( 1);
then ( ) 1 0. Take 2 as the index of the first with sign opposite to 1 ,
then ( ) +1 2 0, and so on. For example, in the sequence 0,1*,0,-4*,2*,0,3,-
5*,

u
= 3, so that = 4 and the are the indices of the starred entries; that

is, ( 1 2 3 4) = (2 4 5 8). If u = 1, then we can find ( )1. Conversely,
if we can find ( )1, then u must be at least 1. It may be that u is even
larger; in any case u 1.

Lemma 9.5.2 If v = E u, then v u .

Proof. Note that 1 = 1 2 = 2 1 = 1. Suppose that

u = 1. Choose and ( )1 as in Lemma 9.5.1. Then

( ) 1 = ( ) 1 0

( ) + 1 = ( ) +1( 1) ( ) + 1 0 = 2

so that, by Lemma 9.5.1, v 1.

Lemma 9.5.3 If v = E u, then +
v

+
u
. The proof, following similar lines

to that of Lemma 9.5.2, is given in Gladwell, Willms, He and Wang (1989)
[115].

We may now use these Lemmas to prove

Theorem 9.5.1 If 0 = 1 2 , w = E L 1E u, and u = w =
1, then = 1. In addition, if 0 0 = 1 , then
= = 1.

Proof. We note that w has the same sign properties as (see (9.5.2)).
Now = L 1E u, so that by Lemma 9.5.2, u = 1. On the

other hand, w = E , so that, by Lemma 9.5.3, + +
w
= 1. Therefore,

+ 1 , so that = + = = 1. This proves the first part.

Now consider the converse. Clearly Lemmas 9.5.2, 9.5.3 hold if E is replaced
by E (E is the forward di erence operator, E the backward operator). Since
= K̂w, we have = w if ( )1 0. Lemma 9.5.2 applied to = L 1E

shows that = 1. Lemma 9.5.3 applied to Mu = E shows that
+ +

u = 1. Therefore, 1 + 1 so that = 1.

Suppose that two vectors u w are given. The necessary and su cient condi-
tions that they should be related in the sense w = E L 1E u for some positive
diagonal L is that the vectors = E w and v = E u should be related by
v = L . This means that =

P
=1 and = 1 must be positive,
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zero or negative in step, that is 0 with = 0 i = 0. If 6= 0 then
= ; if = 0, then is arbitrary. If u w are so related, then Theorem

9.5.1 shows that u = w = 1 implies = 1.
We now state

Theorem 9.5.2 Let u w relate to the th mode of the cantilever beam. Let
( )1 be the sets of indices for u w respectively, as in Lemma 9.5.1.
Then

(i) 1 1 = 2 3 ,

(ii) = 2 3 and 2 + 2 = 3 ,

(iii) if 1 = 0, then ; if 1 = 0, then ; in either of these
cases, therefore, ,

(iv) if 1 = 0, then 2 + 2 = 3 .

Note: This theorem and Lemmas 9.5.2, 9.5.3 may be considered as codifica-
tions and extensions of a discrete form of Rolle’s Theorem. They give precision
to the intuitively obvious statement, that there must be at least one change of
sign in the first di erences w (that is, the derivatives) between any changes
of sign of u respectively. The formal proof is given in Gladwell, Willms, He
and Wang (1989) [115]. We may now state

Theorem 9.5.3 Suppose that u and positive ( )1 are given. The necessary
and su cient conditions for them to correspond to the th mode of a cantilever
beam are that

u = w = 1, where w = E L 1E u

Proof. The conditions have already been shown to be necessary. We may
prove that they are su cient by actually constructing a set of ( )1 which
are all positive.
The governing equation (9.5.1) may be written

Mu = E = L 1EK̂w

We may write this as

K̂w = E 1L = E 1Mu

and because E 1 has the form (2.2.10), we have

=
X
=

= =
X
=

(9.5.3)

which imply

= +1 + = +1 + = 1 2
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with +1 = 0 = +1.
We give the construction procedure for the simplest case: = 1. Algorithms

and examples relating to the general case may be found in
Gladwell, Willms, He and Wang (1989) [115].
When = 1 all the ( )1 will be positive. The ( )1 and may be

assigned arbitrary positive values; equation (9.5.3b) gives ( )1 which, when
substituted in (9.5.3a), yield ( )1 . Then = , so that the ( )1 are
uniquely determined.

Exercises 9.5

1. Show that if u is the th eigenvector of (9.5.1), then are also th
eigenvectors of SO matrices.

9.6 Courant’s nodal line theorem

We now start our discussion of the properties of eigenvectors of a class of systems
that includes discrete models of membranes and acoustic cavities. Since the
results we obtain are discrete analogues of results relating to continuous systems,
we will start by discussing these, principally Courant’s Nodal Line Theorem
(CNLT), which relates to the Dirichlet eigenfunctions (x) of elliptic di erential
equations. It is well-known that such problems have positive eigenvalues with
infinity as the only limit point; we label them so that

0 1 2 (9.6.1)

Now the eigenvalues need not be distinct. If has multiplicity we label the
eigenvalues so that

1 = +1 = · · · = + 1 + (9.6.2)

CNLT (Courant and Hilbert (1953) [64], Chapter VI, Section 6.) is a theorem
of wide applicability with a remarkably simple proof based on the minimax
property of the Rayleigh quotient. It relates to the Dirichlet eigenfunctions of
elliptic partial di erential equations, the simplest and most important of which
is the Helmholtz equation

4 + = 0 x (9.6.3)

The Dirichlet boundary condition is

(x) = 0 x (9.6.4)

Here 4 is the Laplacian, (x) is positive and bounded, and is a domain
in R ( -dimensional Euclidian space). Equations (9.6.3), (9.6.4) govern the
spatial eigenmodes of a vibrating membrane with fixed boundary in R2; and
acoustic standing waves in R3.
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The nodal set of (x) is defined as the set of points x such that (x) = 0. It
is known (Cheng (1976) [53]) that for R , the nodal set of an eigenfunction
of (9.6.3), (9.6.4) is locally composed of hypersurfaces of dimension 1. These
hypersurfaces cannot end in the interior of , which implies that they are either
closed, or begin and end on the boundary. In particular, therefore, in the plane
( = 2), the nodal set of the eigenfunction (x) of (9.6.3), (9.6.4) is made up of
continuous curves, called nodal lines, which are either closed, or begin and end
on the boundary.
CNLT states that each eigenfunction (x) corresponding to divides ,

by its nodal set, into at most subdomains, called nodal domains, or the more
informative sign domains, in which (x) has one sign. We recall proofs of
two versions of CNLT so that we can indicate later how the continuous and
discrete results di er from each other. We express the analysis in variational
form. Define

( ) =

Z
x [ ] =

Z
x

Here = (
1 2

) is the grad operator, and

Z
· x =

Z Z Z Z
· 1 2

The fundamental theorem for the Rayleigh quotient

=
( )

[ ]
(9.6.5)

is that if is orthogonal to the first 1 eigenmodes of (9.6.3), (9.6.4), i.e.,

[ ] = 0 = 1 2 1

then , with equality i (x) = (x). We first prove a weak version of
CNLT:

Theorem 9.6.1 Suppose the eigenvalues of (9.6.3), (9.6.4) are ordered as
in (9.6.5), and (x) is an eigenfunction corresponding to . If has mul-
tiplicity 1, so that (9.6.2) holds, then (x) has at most + 1 sign
domains.

Proof. Suppose (x) has sign domains such that
S

=1 = .
Define

(x) =

½
(x) x

0 otherwise

and take

(x) =
X
=1

(x)
X
=1

2 = 1 (9.6.6)
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Since the are disjoint, ( (x))1 are orthogonal. Scale the , that is, choose
the , so that [ ] = 1, then

[ ] =
X
=1

2[ ] =
X
=1

2 = 1

Since (x) satisfies (9.6.3) with = , on , and (x) = 0 on , the
divergence theorem gives

( ) =

Z
· x

=

Z
{ ( ) 4 } x

=

Z
x+

Z
2 x =

Thus ( ) =
P

=1
2( ) =

P
2 = , so that = . But

we may choose ( )1 so that [ ] = 0 = 1 2 1, and hence, for
that choice, Rayleigh’s principle states that . Thus . Since

+ , we have + so that + + 1.
Note that this proof does not require to be connected. Note also that if

is simple, so that = 1, then the Theorem states that (x) has at most sign
domains. We need to strengthen the result for multiple eigenvalues, reducing
the upper bound + 1 to .
To reduce the upper bound in this way we need what is called a unique

continuation theorem. Loosely speaking, what such a theorem states is that
if a solution of (9.6.3) is identically zero in a finite region of then it is zero
throughout ; the only way that it can be continued from the zero patch is
by taking it identically zero. (Specifically, for those who have a functional
analysis background, Jerison and Kenig (1985) [188] proved that if any solution

1
0 ( ) of the weak version of (9.6.3) vanishes on a non-empty open subset

of a connected domain , then 0 in .) Using this result we can prove

Theorem 9.6.2 Suppose is connected, the eigenvalues of (9.6.3), (9.6.4) are
ordered as in (9.6.5), and (x) is an eigenfunction corresponding to , then
(x) has at most sign domains.

Proof. Suppose (x) has sign domains. Define the (x) as before,
and define (x) by (9.6.6) with +1 = 0 = · · · = , so that (x) 0 on

+1 . Again we have = , and we may choose ( )1 so that
[ ] = 0 = 1 2 1. Thus (x) is an eigenfunction of (9.6.3),
(9.6.4.), but it is identically zero on +1 and hence, by the unique continuation
theorem, it is identically zero on . This contradiction implies .
We note that the theorem, which is due to Herrmann (1935) [171] and

Pleijel (1956) [266], implies that if is connected, then 1 is simple, i.e., 1 2.
For any eigenfunction 1(x) can have at most one sign domain, i.e., it has the
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same sign throughout . There cannot be two functions , which are of one
sign in a connected domain and are orthogonal to each other.

Theorem 9.6.3 Theorem 9.6.2 holds even if is not connected.

Proof. Suppose consists of connected domains ( )1. Label the eigen-

values ( ) of each increasingly, and suppose the corresponding eigenfunctions

are ( )
(x). Now assemble the eigenvalue sequences { ( )

} = 1 2 ; =
1 2 into one non-decreasing sequence { } to give the eigenvalues of . The
corresponding eigenfunctions of are

(x) =

½
( )
(x) on
0 elsewhere.

The ordinal number of a given ( ) in this sequence will satisfy . Theorem

9.6.2 for states that ( )
(x) has no more than sign domains on , so that

(x) will have no more than sign domains on , and it will be zero elsewhere.

9.7 Some properties of FEM eigenvectors

Our aim in the next few sections is to obtain discrete versions of Theorems 9.6.1-
9.6.3. In a first step towards achieving this aim, we discuss some properties of
eigenvectors of finite element models. We return to the analysis of Section 2.5
and suppose that we are dealing with a FEM model of a membrane with fixed
boundary using linear interpolation over acute angled triangles, or correspond-
ingly of an acoustic cavity using linear interpolation over tetrahedra with obtuse
angles between normals to faces. In each of these models, the FEM mesh yields
a set of vertices connected by edges to form a graph. There are two kinds of
vertices, boundary vertices, where = 0 because of the boundary conditions,
and the remainder. These non-boundary vertices are those that appear in the
analysis; they form a graph G on vertices V with edge set E . The FEM
analysis yields two matrices K M on G with the properties that if 6= then

0 0 if ( ) E
= 0 = 0 otherwise.

¾
(9.7.1)

Note that if ( ) E , we say that are adjacent vertices, and we write
. The analysis will revolve around nodal vertices, i.e., vertices where

= 0. We first prove

Theorem 9.7.1 Under conditions (9.7.1), a non-boundary nodal vertex of an
eigenvector of (9.1.1) cannot have neighbours that are all of one sign.

Proof. Suppose , a non-boundary vertex, is nodal, i.e., = 0. The th
line of (9.1.1) is X

( ) = 0 (9.7.2)
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where the sum is over those (6= ) for which ; for those , 0.
If 0( 0) for all such , with at least one inequality strict, then the left-hand
side of (9.7.2) would be strictly negative (positive), which is a contradiction.
This theorem implies that a non-boundary nodal vertex must either have

both positive and negative neighbours, or all nodal neighbours. We may extend
this statement to say that a set of nodal vertices of an eigenvector must have
positive and negative neighbours: it must separate positive and negative vertex
sets. If G is connected, so that K and M are irreducible (see Busacker and
Saaty (1965) [46], then we can say more: if an eigenvector u is non-negative
then it must be strictly positive. Such an eigenvector must correspond to the
lowest eigenvalue, which must therefore be simple: there cannot be two positive
eigenvectors u v which are orthogonal w.r.t. M: 1 2.
There is an important maximum principle for the p.d.e. (9.6.3): a solution

(x) cannot have an interior positive minimum or an interior negative maxi-
mum (Protter and Weinburger (1984) [271]). To state the discrete version of
this principle, we must divide the non-boundary vertices of a FEM mesh into
two subsets: vertices adjacent to boundary vertices, that we call near-boundary
vertices; the remainder, that we term interior vertices.

Theorem 9.7.2 If G is connected, and (9.7.1) holds, an eigenvector of (9.1.1)
cannot have a local positive minimum or a local negative maximum at an interior
vertex.

Proof. By definition, an interior vertex is adjacent only to non-boundary
vertices. It is therefore a vertex of an interior element, i.e., an element that
has no vertices on the boundary. Because of the way in which it is formed, by
(2.5.6), the sti ness matrix K of an interior element admits a rigid-body mode,
{1 1 1} for a triangular mesh, {1 1 1 1} for a tetrahedral mesh. If is an
interior vertex, all the elements to which belongs are interior elements. This
means that after assembling the K to form K we may deduce that, if is an
interior vertex, then

P
= 0, where again the sum is taken over all such

that . The th line of (9.1.1) is

0 =
X

so that X
( ) + (

X
) =

X
(9.7.3)

Suppose that there is a local positive minimum at an interior vertex , so that
0 and 0 for all such that , and either the first inequality

is strict, or the second inequality is strict for at least one such that .
(We need the connectedness of G to be sure that every vertex does have a
neighbour.) The first sum on the left is non-positive, while the second sum is
zero; the sum on the right is non-negative; one of the two sides, left or right, is
non-zero This is impossible.
This theorem relates to the eigenvectors of (9.1.1), but we can immediately

reword it to apply to FEM eigenfunctions obtained by linear interpolation from
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the vertex values. An eigenfunction obtained by linear interpolation can have
local maxima and minima only at the vertices of the mesh. We conclude that an
eigenfunction cannot have a local positive minimum or a local negative maximum
at an interior vertex. Loosely speaking, we may say that a mode may have waves,
but not dimples.
One of the mainstays of the theory related to (9.6.3) is the unique continu-

ation theorem. It was this that allowed us to reduce the upper bound on the
number of sign domains for eigenfunctions of (9.6.3), (9.6.4), from + 1 to .
There is no straightforward discrete analogue of unique continuation; there is an
analogue, as described in Lemma 9.9.2, but it is not straightforward. Figure
9.7.1 shows an example of a FEM eigenmode with zero patches. If the matrices
K and M are symmetrical about the -and -axes, then there will be a mode
that is antisymmetrical about both axes, so that the vertex values must have
the signs shown. There are four completely zero triangles in the centre, and
four other pairs of zero triangles, but the eigenmode is not identically zero.

0

+

−

0

0

0

0

+

−

Figure 9.7.1 - An eigenvector can have one or more zero (shaded) polygons

Even though there is no straightforward discrete analogue of unique contin-
uation, we can still obtain discrete analogues of Theorem 9.6.1, 9.6.2. First, we
need to find the discrete FEM counterparts of the sign domains of the contin-
uous theorems. There are two distinct ways of looking at the piecewise linear
function obtained from an eigenvector of (9.1.1): looking at the values , and
particularly at the signs of , at the vertices of G; looking at the subregions
with piecewise straight boundaries on which the linearly interpolated (x) has
one sign, either loosely, (x) 0 ( 0) or strictly, (x) 0 ( 0).
Consider the first way. The FEM mesh defines a graph G with vertices
. A FEM vector u associates a value and in particular a sign +,

0, or -, to each vertex of G. We may connect the (strictly) positive vertices
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by edges of E to form maximal connected subgraphs of G, called strong positive
sign graphs. We may do the same with the negative vertices, to form strong
negative sign graphs. In this way, we can partition the graph G into disjoint
strong positive and strong negative sign graphs, and zero vertices. Figure 9.7.2
shows a graph with 2 strong positive and 2 strong negative sign graphs, each of
which has just one vertex. Alternatively, we may partition G into weak positive
and weak negative sign graphs, by forming maximal connected subgraphs of non-
negative, and non-positive vertices, respectively. The graph in Figure 9.7.2 has
just one weak positive sign graph, and one weak negative sign graph; these weak
sign graphs overlap.

+
0

0

0 0
0

−

− +

Figure 9.7.2 - The graph has two strong positive and two strong negative sign
graphs; it has just one weak positive, and one weak negative sign graph

Two sign graphs 1 2, strong or weak, are said to be adjacent if there are
vertices 1 1 2 2 such that 1 2. We need the following simple but
important property:

Lemma 9.7.1 If two di erent sign graphs are adjacent, then they have opposite
signs.

Proof. If they had the same sign then one at least would not be maximal.

Note that while two adjacent strong sign graphs are disjoint, two adjacent
weak sign graphs may overlap.
Now consider the second way; looking at the signs of the piecewise linear

‘eigenfunction’ interpolated from the vertex values of an eigenvector u. This
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‘eigenfunction’ is defined on a domain with piecewise straight (in 2) or piecewise
plane (in 3) boundary, that may be some approximation to an original domain
. We are not concerned with how good the approximation is, nor are we

concerned with convergence or taking a ‘su ciently fine’ mesh. Thus, we will
simply call the FEM domain , and forget that there might have been some
other original domain with perhaps curved boundary. The domain may be
divided, like the graph G, into strong sign subdomains, , on which (x) has
one strict sign, and on the boundaries of which (x) = 0. Each of these domains
will be polygonal in R2, polyhedral in R3. In particular, the nodal places of in
2 will be piecewise straight lines, either closed or beginning and ending on the

boundary, or nodal polygons, as in Figure 9.7.1. In 3 they will be piecewise
plane surfaces which are either closed or begin and end on the boundary, or
polyhedra. Instead of using strong sign domains, we may use weak ; they too
will have piecewise straight or piecewise plane boundaries. A weak positive and
a weak negative sign domain may overlap.
For triangular or tetrahedral meshes corresponding to linear interpolation,

there is a clear correspondence between the sign graphs on the one hand and the
sign domains on the other. For each strong or weak, positive or negative sign
domain there is exactly one strong or weak, positive or negative, sign graph.
This means that we can count the number of sign domains by counting the
number of sign graphs.
We note however, that the rectangular FEM mesh which is sometimes used

in R2 does not have such simple properties. Inside a rectangle, ( ) has a
bilinear interpolation

( ) = + + +

Now all four vertices of the rectangle are neighbours of each other, in the sense
that all the o -diagonal entries in the element matrices are non-zero. This is
why we show the vertices of the rectangle joined by the diagonals as well as by
the sides, as in Figure 9.7.3. (But the intersection of the diagonals is not a
vertex of the graph.)

Figure 9.7.3 - A rectangular finite element; each vertex is connected to all the
others



222 Chapter 9

It may be shown for this mesh that the element mass matrix is strictly
positive, and that the o -diagonal entries of the element sti ness matrix are
strictly negative i the sides of the rectangle satisfy 1 2 2,
i.e., if the rectangle is not too thin. There is a similar result (Ex. 9.7.1) for a
rectangular box mesh in R3. Thus, under these conditions, the matrices K M

for the whole mesh will satisfy the inequalities (9.7.1). This means that we
can apply the results of the analysis below to the sign graphs of a rectangular
mesh, but as the example in Figure 9.7.4 shows, we cannot extend them to the
sign domains. Figure 9.7.4 shows a mesh made up of nine square elements.
The vertices and are adjacent and have the same sign, so that they belong
to the same sign graph. However, because nodal lines in an element are now
hyperbolic, and not straight, and lie in di erent sign domains; there is an
intervening negative sign doman between them.

− 2

B

A

− 1

1

1

Figure 9.7.4 - Vertices and are adjacent, but belong to di erent sign
domains

Exercises 9.7

1. Find the conditions on the ratios of the dimensions of a rectangular box
so that the sti ness matrix based on linear interpolation of the assumed
modes

1

has the sign property (9.7.1).

9.8 Strong sign graphs

The discussion in Section 9.7 should have made it clear that we can study the
sign properties of an eigenvector on a graph G as a problem in its own right,
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that is, without considering the problem as arising from a FEM model. We will
do this and, to simplify the analysis, we will consider the eigenvalue in standard
form, namely

(A I)u = 0 (9.8.1)

under the following assumption: if 6= then

= 0 ( ) E 0 ( ) E (9.8.2)

We will then show at the end that all the results hold for (9.1.1) under the
condition (9.7.1). In this section, we will understand sign graph to mean strong
sign graph. The theorem we are about to prove regarding the number of sign
graphs is a discrete analogue of Theorem 9.6.1. In order to prove it, we need to
set up a procedure mimicking that used in Theorem 9.6.1, and prove a Lemma,
following Davies, Gladwell, Leydold and Stadler (2001) [71].
Suppose u is an eigenvector of (9.8.1) in the eigenspace of . Suppose u

has sign graphs S = 1 2 . Define vectors w = 1 2 ,
such that

w =

½
u on S
0 otherwise.

Explicitly, let w = { 1 2 }. Then = if and
= 0 otherwise. Thus

u =
X
=1

w

Now form

v =
X
=1

w (9.8.3)

Using straightforward algebra, we may verify (Ex. 9.8.1) Duval and Reiner’s
Lemma (Duval and Reiner (1999) [82]).

Lemma 9.8.1

v Av v v =
X
=1

2w (Au u)
1

2

X
=1

( )2w Aw

This leads to

Theorem 9.8.1 Any eigenvector corresponding to has at most + 1 sign
graphs.

Here the governing equation is (9.8.1), A satisfies (9.8.2), the ( )1 are
ordered as in (9.6.1), and has multiplicity , so that (9.6.2) holds.
Proof. Since none of the w is identically zero and they are disjoint, their

linear span has dimension . It follows that there are real constants ( ) , not



224 Chapter 9

all zero, such that v is non-zero and is orthogonal to the first ( 1) eigenvectors
(u ) 1

1 of A, i.e.,
v u = 0 = 1 2 1

Without loss of generality we can take v v = 1. Therefore, by the minimax
theorem (Section 2.10) we have

v Av (9.8.4)

Now use Lemma 9.8.1 with = , u = u . We find

v Av =
1

2

X
=1

( )2w Aw (9.8.5)

We will show that the sum on the right is non-negative. A term w Aw is
non-zero only if w w correspond to adjacent sign graphs; adjacent sign graphs
have opposite signs (Lemma 9.7.1); adjacent sign graphs are disjoint. This
means that any non-zero product w Aw involves only negative, o -diagonal
entries in A; therefore

w Aw = (±)( )( ) = +

Therefore, equation (9.8.5) gives

v Av 0 (9.8.6)

This combined with (9.8.4) states that . Since + , we have
+ , i.e., + 1.

Note that we cannot deduce that the inequality in (9.8.6) is strict, because
might be zero for all those pairs for which w Aw was (strictly)

positive.
As we stated earlier, Theorem 9.8.1 is a discrete counterpart of CNLT in

the form of Theorem 9.6.1. Various researchers attempted to reduce the bound
+ 1. Friedman (1993) [96] gave the example of a star on vertices to

show that the bound could not be reduced, as in Theorem 9.6.2, to . For
the star, the second eigenvalue of the so-called Laplacian matrix (Ex. 9.8.2)
has multiplicity 2, and has an eigenvector with 1 sign graphs. If
therefore 1 2, i.e., 4, then a second eigenvector has more than
2 sign graphs. In spite of this counterexample, Duval and Reiner (1999) [82]
attempted to reduce the bound to ; the error in their logic is pinpointed in Zhu
(2000) [342]; essentially their error lay in thinking that the inequality in (9.8.6)
could be made strict. Comments on partly erroneous results put forward by
Friedman (1993) [96] and van der Holst (1996) [326] may be found in Davies,
Gladwell, Leydold and Stadler (2001) [71].
We note that the distinction between the bounds + 1 and appears only

when 1, i.e., is multiple. Following Gladwell and Zhu (2002) [131] we
now show that although it is not possible to reduce the bound + 1 when is
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multiple, it is possible to construct orthogonal vectors (u ) + 1, spanning the
eigenspace of , such that u has at most sign graphs, = +1 + 1.
In fact, it is possible to go further and construct linearly independent (but not
necessarily orthogonal) vectors spanning the eigenspace of , such that each
of them has at most sign graphs. We introduce the notation (u) for the
number of sign graphs of u.

Theorem 9.8.2 Under the conditions stated in Theorem 9.8.1, if u is an eigen-
vector corresponding to , and (u) = , then in the notation of (9.8.3)
we may find

v =
X
=1

w

such that v is an eigenvector corresponding to , and (v) .

Proof. We can choose , not all zero, such that v is orthogonal to (u ) 1
1 .

By the minimax theorem . By Lemma 9.8.1, . Thus =
and v is an eigenvector corresponding to . By its construction, (v) .

We denote a normalised v so formed, by v = ((w )1 (u )
1

1 ). This v
may not be unique; there is always a non-trivial set ( )1 , but it need not be
unique.
Note that in Theorem 9.6.2, for the continuous CNLT, we suppose that the

eigenfunction (x) has more than sign domains, and we construct a pur-
ported eigenfunction (x) orthogonal to ( (x)) 1

1 , but zero in +1; then we
use unique continuation of an eigenfunction on a connected domain to show
that (x) 0 in ; this contradicted the hypothesis that (x) was an eigen-
function, i.e., not trivial. In the discrete case we start with an eigenvector u
with (u ) = , and construct another v with (v) ; the new
eigenvector has at least one zero sign graph, but it is an eigenvector, and there
is no contradiction involved.
We may now prove

Theorem 9.8.3 Suppose the conditions stated in Theorem 9.8.1 hold. If
is an eigenvalue of multiplicity , then we may find orthonormal eigenvectors
(u ) + 1 corresponding to , such that (u ) = +1 + 1.

Proof. The -dimensional eigenspace of has an orthonormal basis
(v ) + 1. Theorem 9.8.1 states that (v ) + 1 for = +1 +

1. If (v ) , take u = v ; otherwise (v ) . In this case if
(w )1 ( ) are the sign graph vectors of v , take u = ((w )1 ; (u )

1
1 ),

so that (u ) . We now proceed by induction. Suppose we have
constructed orthonormal vectors u u +1 u + 1(1 ) such that
(u ) , for = + 1 + 1. We show how to construct

u + . First, find a new orthonormal basis (u ) + 1, (x ) + 1
+ for . If

(x + ) + , then take u + = x + ; otherwise (x + ) + ;
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in this case, if (w )1 ( + ) are the sign graph vectors of x + , take
u + = ((w ) +

1 ; (u ) + 1
1 ). We may proceed in this way to find (u ) + 1

1

such that (u ) .
We now strengthen this result and prove

Theorem 9.8.4 Suppose the conditions stated in Theorem 9.8.1 hold, and that
is an eigenvalue with multiplicity , and eigenspace . There is a basis

(u ) + 1
1 for such that (u ) .

Proof. We proceed much as in Theorem 9.8.3. We construct u as before,
and then use induction: we suppose that we have found a basis (u ) + 1

1 ,
(x ) + 1

+ for such that (u ) for = + 1 + 1, and we
show how to construct u + . If (x + ) , then u + = x + ; otherwise
(x + ) = + , 1 1. In this case, let be the space spanned by

the sign graph vectors (w ) +
1 of x + : if w , then w =

P +
=1 w =Wc.

Let be the subspace of orthogonal to (u ) 1
1 ; is not empty because

x + =
P +

=1w . If y , then y =Wc and u y = u Wc = 0 =
1 2 1. Of these 1 constraints on the , 1 are independent;
they may be written Bc = 0, where B + . Then the matrix B has
linearly independent columns which, by suitably renumbering the w , may be
taken as the first . Thus Bc = 0 may be written

[B1 B2]

·
c1

c2

¸
= 0 (9.8.7)

where B1 is non-singular, B2 + ,

c1 = { 1 2 } c2 = { +1 + }

The solution space of (9.8.7) is spanned by the + solutions obtained by

taking ( )
2 = = + 1 + , and then solving for c( )1 . Each such

choice gives a vector y = Wc( ); these vectors are linearly independent and
they span ; by construction (y ) + 1 . At least one of the y , say
y , must be linearly independent of (u ) + 1, for x + is, by construction,
linearly independent of (u ) + 1. Take u + = y , then (u + ) . We
may proceed in this way to find (u ) + 1 such that (u ) .
We conclude this section by discussing some other implications of Lemma

9.8.1.
Suppose that u is an eigenvector corresponding to a multiple eigenvalue ,

so that Au = u. Suppose that (u) = , and v given by (9.8.3) has
been computed so that it is orthogonal to (u ) 1

1 . Then, as we showed before,
v is also an eigenvector corresponding to , i.e., Av = v. Then Lemma
9.8.1 with = demands

X
=1

( )2w Aw = 0 (9.8.8)



9. Discrete Modes and Nodes 227

But, as we showed earlier, w Aw 0, with strict inequality i are
adjacent. Equation (9.8.8) implies that if are adjacent, then = .
This means that if one sign graph, , is omitted in the construction of v from
the sign graphs of u (i.e., = 0), then any sign graph adjacent to must
also be omitted ( = = 0). On the other hand, if one sign graph is
included in v, then any other sign graph adjacent to must be included,
and must be included with the same weight as : = . This means that in
the construction of v from the sign graphs of u, any connected graph composed
of sign graphs of u must either be included or excluded as a whole. This leads
to

Theorem 9.8.5 Suppose the conditions stated in Theorem 9.8.1 hold. Suppose
that u, an eigenvector corresponding to has more than sign graphs, so that
(u) = + , 1. These sign graphs may be grouped into + mutually

disjoint connected graphs (C ) +1 , and 1.

Proof. If 1, i.e., 0, then there are at most connected graphs C .
If we form a non-trivial eigenvector from the + , sign graphs of u, by deleting
of them, at least one from each C , then none of the C will appear; v will

be identically zero. This contradiction implies 1.
This theorem has a number of corollaries:

(i) If u has = + sign graphs, then a connected component C can contain
at most sign graphs. For if one contained +1 sign graphs, then there
would be at most 1 + ( + 1) = connected components. This
provides a somewhat restricted counterpart of Theorem 9.6.2.

(ii) If there are sign graphs in one component C , and 2, then 2.
For if sign graphs are in one component C , they must constitute an
eigenvector; so too will the remaining + = sign graphs. If 2,
an eigenvector, being orthogonal to u1, must have at least two sign graphs;

2.

(iii) If G is connected and u has no zeros then, whether is simple or multi-
ple, (u ) . For if there are no zero vertices then all the sign graphs
fall into one component.

Exercises 9.8

1. Establish Duval and Reiner’s Lemma 9.8.1.

2. Consider the star on vertices with 11 = 1 = 1 1 = 1
= 2 . Show that its eigenvalues are 0 1 .

Show that the second eigenvalue has multiplicity 2, and that there is
an eigenvector corresponding to 2 with 1 sign graphs.

3. Construct 2 orthogonal eigenvectors of 2 for the star in Ex. 9.8.2
such that u has just sign graphs, = 2 3 1.



228 Chapter 9

4. For the same star, construct 2 linearly independent eigenvectors u
such that each has just 2 sign graphs.

9.9 Weak sign graphs

In order to obtain a proper discrete analogue of Theorem 9.6.2, we must consider
weak sign graphs.

Lemma 9.9.1 Suppose S1 S2 are adjacent weak sign graphs. There is a pair
of vertices 1 2 such that 1 S1 2 S2\S1 (i.e., 2 is in S2, but not in
S1) and 1 2.

Proof. Without loss of generality, assume S1 is weak positive and S2 is weak
negative. If S1 S2 are disjoint, then by the definition of adjacency, there exist
1 S1 2 S2 such that 1 2; because S1 S2 are disjoint, 2 S2\S1.
Otherwise, S1 S2 have a non-empty intersection S1 S2. S1 S2 is a strict
subgraph of G so that not all vertices 1 S1 S2 can be interior vertices in the
sense described in Section 9.7. Any boundary vertex 1 will have the required
property: for such a 1, there will be a vertex 2 such that 2 1, and 2 0,
i.e., 2 S2\S1.
Now suppose u, an eigenvector corresponding to , has weak

sign graphs S . We define w = 1 2 as before, and we choose
= 1 2 , not all zero, to make v given by (9.8.3) orthogonal to

u = 1 2 1. We prove a continuation result for the coe cients
that is a discrete analogue of the unique continuation principle for eigenfunc-

tions.

Lemma 9.9.2 Suppose , and two of the weak sign graphs S1 and S2 of u
are adjacent, then 2 = 1.

Proof. Without loss of generality we may suppose that S1 is weak positive
and S2 is weak negative. We proceed as in the derivation of equation (9.8.8).
The minimax theorem implies v Av , and Lemma 9.8.1 implies v Av

, and X
=1

( )2w Aw = 0 (9.9.1)

Now use Lemma 9.9.1. If S1 and S2 are disjoint, then there is a pair 1 2

such that 1 S1 2 S2 and 1 2; thus 1 0 2 0 12 0. Thus
w1Aw2 1 12 2 0, and (9.9.1) implies 1 = 2.
Otherwise S1 S2 overlap. Since v Av , v, like u, is in the eigenspace

of , and therefore so is

z = 1u v =
X
=1

( 1 )w
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By definition = 0 unless S . Choose 1 and 2 as in Lemma 9.9.1:
1 S1 S2 implies 1 = 0, i.e., 1 = 0 for all , so that 1 = 0.
Since z is in the eigenspace of , we have

z = Az =
X
=1

( 1 )Aw

so that
1 = 0 =

P
=1( 1 )(Aw )1

=
P

=1( 1 )
P

=2 1
(9.9.2)

where we have used 1 = 0. The term 1 , for 2, is zero unless 1.
Since 1 = 0, all such are in S1 or S2. The sum in (9.9.2) is therefore over
= 2 only:

0 = ( 1 2)
X
=2

1 2

Since S2 is weak negative, 1 2 0 for = 2 : each term in the
sum is non-negative. Since 1 2 we have 12 0; since 2 S2\S1,
2 2 = 2 0, so that X

=2

1 2 12 2 0

and hence 1 = 2.
We are now in a position to establish

Theorem 9.9.1 If G is connected, any eigenvector corresponding to has at
most weak sign graphs.

Proof. Suppose, if possible, that u has weak sign graphs S = 1 2 ,
and . At least one of the coe cients , say 1, is non-zero. Since

1, we have 2. Since G is connected, S1 must be adjacent to at
least one other weak sign graph, which we label S2. Lemma 9.9.2 states that
2 = 1. If 3, one of S1 S2 must be adjacent to one of the remain-
ing sign graphs S , = 3 , say S3, otherwise G would not be connected.
Therefore 3 = 2 = 1 by Lemma 9.9.2. In 1 steps, we conclude that

= 1 = · · · = 2 = 1. Hence v = 1u. But v was constructed so that
it was orthogonal to u for = 1 2 1; if , v is orthogonal to u,
contradicting v = 1u. Therefore, .

9.10 Generalisation to M K problems

The proof of Theorem 9.8.1, on strong sign graphs, hinges on two fundamental
results: Courant’s minimax theorem, and Duval and Reiner’s Lemma 9.8.1.
Theorem 9.9.1 on weak sign graphs, uses these two, and Lemmas 9.9.1, 9.9.2.
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All these intermediate steps may be generalised to give results for the problem
(9.1.1), in which K is PSD, M is PD, and K M satisfy (9.7.1).
Thus, since M is PD, the minimax theorem holds for the Rayleigh quotient

v Kv v Mv. Duval and Reiner’s Lemma 9.8.1 may be generalised to read

Lemma 9.10.1

v (K M)v =
X
=1

2w (K M)u
1

2

X
=1

( )2w (K M)w

Since K is PSD and M is PD, the eigenvalues are non-negative. This
means that when w w correspond to adjacent sign graphs

w (K M)w = (±){( ) (+)}( ) = +

All the arguments used to establish Theorems 9.8.1, 9.9.1 proceed as before with
A replaced by K M.

Exercises 9.10

1. Establish Lemma 9.10.1.



Chapter 10

Green’s Functions and
Integral Equations

Mathematicians who are only mathematicians have exact minds, provided all
things are explained to them by means of definitions and axioms; otherwise

they are inaccurate and unsu erable, for they are only right when the
principles are quite clear.

Pascal’s Pensées

10.1 Introduction

In this and the following two chapters we shall be concerned with the vibration of,
and the inverse problems for, three systems with continuously distributed mass:
the taut vibrating string, and the rod in longitudinal or torsional vibration. In
this section we state the governing di erential equation. In Section 10.2 we
introduce the Green’s function and reformulate the eigenvalue problem giving
the natural frequencies as an integral equation. In Section 10.3 we recall the
relevant spectral theory for compact self-adjoint operators on a Hilbert space,
and in Section 10.4 we apply it to the Green’s function integral equation. This
chapter thus serves as introductory material for the study of inverse problems
in Chapter 11.
The equation governing the free (infinitesinal, undamped) vibration of a taut

string having unit tension, mass per unit length 2( ), vibrating with frequency
is

00( ) + 2( ) ( ) = 0 (10.1.1)

where = 2 and 0 . We denote the mass per unit length by 2( ), rather
than by ( ), to indicate that it is positive, and to avoid continual repetition of
1 2( ). The end conditions will be assumed to be

0(0) (0) = 0 = 0(1) + (1) (10.1.2)

231
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where 0 and are not both zero. This means that the ends =
0 = 1 are attached to fixed supports by the use of springs having sti nesses

respectively. Of course a real (physical) string cannot have a ‘free’ end in
the straightforward sense. However, we can simulate a free end by attaching
the end to a device that moves transversely in such a way that the slope of the
string at the end remains zero.
The free longitudinal vibrations of a thin straight rod of cross-sectional area
( ), density and Young’s modulus are governed by the equation

( ( ) 0( ))0 + ( ) ( ) = 0 (10.1.3)

where = 2 . The end conditions are

0(0) (0) = 0 = 0(1) + (1) (10.1.4)

where again 0 and are not both zero.
The free torsional vibrations of a thin straight rod of second moment of area

( ), density and shear modulus are governed by the equation

( ( ) 0( ))0 + ( ) ( ) = 0 (10.1.5)

where = 2 . The end conditions are

0(0) (0) = 0 = 0(1) + (1) (10.1.6)

There is clearly a one-one correspondence ( ) ( ) between
the longitudinal and torsional systems, but we now show that, by means of a
transformation of variables, all these systems may be reduced to the same basic
equation.
In equation (10.1.3) introduce a new variable , where

0( ) = 1 ( ) ( ) = ( ) (10.1.7)

Then ( ) 0( ) = ( ) ˙( ) 0( ) = ˙( ), where · . Hence ( 0)0 = ¨,
and equation (10.1.3) becomes

¨( ) + 2( ) ( ) = 0 (10.1.8)

with ( ) = ( ). If

( ) =

Z
0 ( )

1 =

Z 1

0 ( )
(10.1.9)

then the end conditions (10.1.4) become

˙(0) (0) (0) = 0 = ˙(1) + (1) (1) (10.1.10)

Since ( ) is positive and bounded, equation (10.1.8) has the same form as
(10.1.1), and equation (10.1.10) has the same form as (10.1.2). This means that
we may concentrate our attention on equations (10.1.1),(10.1.2).
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We showed that equation (10.1.3) could be transformed into (10.1.1) by a
simple change of variable. If we assume further smoothness in ( ), that it has
a second derivative, then we may transform (10.1.3) into another equation which
is often viewed as the standard form, the so-called Sturm-Liouville equation.
In equation (10.1.3) put

( ) = ( ) ( )

then

( 0)0 = [ ( 1 0 0 2 )]0

= 1 00 + {( 1)0 0 2} 0 ( 0 2)0

Choose the function to make the terms in 0 vanish:

( 1)0 0 2 = 0 1 2 0 2 i.e., ( 2)0 = 0 or = 1 2

Then
( 0)0 + 00 00 + = 0

or
00( ) + [ ( )] ( ) = 0 (10.1.11)

where
( ) = 00( ) ( ) (10.1.12)

We note that since (10.1.3) may be transformed into (10.1.1), the latter may
be transformed into (10.1.11). In fact if

( ) = ( ) ( ) ( ) = 1 2( ) 0( ) = 2( ) (10.1.13)

then
0 = ˙ 2 = ˙ ˙ 00 = 2( ¨ ¨ )

and
00 + 2 2( ¨ ¨ ) + 4 1 = 0

so that
¨( ) + [ ( )] ( ) = 0 (10.1.14)

where
( ) = (̈ ) ( ) (10.1.15)

If ( ) is continuous in [0,1] then equation (10.1.1) shows that ( ) has a
continuous second derivative. If ( ) has a simple discontinuity at = then
0( ) is continuous while 00( ) has a discontinuity at = :

00( )

¯̄̄
¯ = +

=
= ( ) 2( )

¯̄̄
¯ = +

=
(10.1.16)

If ( ) therefore is piecewise continuous in (0,1) then 00( ) is piecewise contin-
uous also.
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To show that any eigenvalues of (10.1.1), (10.1.2) must be real and positive
we may argue as follows: suppose , possibly complex, is an eigenvalue, and
( ) a corresponding eigenfunction. Multiply (10.1.1) by ( ) and integrate
over (0,1): Z 1

0

00 +

Z 1

0

2 = 0

Integrate the first term by parts and use the end conditions (10.1.2):Z 1

0

0 0 + (0) (0) + (1) (1) =

Z 1

0

2 (10.1.17)

The terms on the left are real; the integral on the right is real and positive; is
real. The sum on the left can be zero only when (0) = 0 = (1). There are
two cases to consider i) 0, in this case (0) = 0(0) = (1) = 0(1) so that
( ) 0, and there is no eigenfunction ( ). ii) = 0 = , in this case the
supports have no sti ness, and there is an eigenvalue = 0 with eigenfunction
( ) = constant. This is called a rigid-body mode. Apart from this case, any
eigenvalue is strictly positive.
Any eigenvalues must be simple, for if ( ) ( ) were two di erent eigen-

functions corresponding to the same eigenvalue , then

00( ) ( ) ( ) 00( ) = 0

i.e.,
0( ) ( ) ( ) 0( ) = Constant.

But at = 0, the end condition (10.1.2) gives

0(0) (0) (0) 0(0) = 0

Thus
0( ) ( ) ( ) 0( ) = 0

and ( ) ( ) are proportional.
Suppose 1( ) 2( ) are eigenfunctions of (10.1.1), (10.1.2) corresponding to

di erent eigenvalues 1 2. Then

00
1 + 1

2
1 = 0 =

00
2 + 2

2
2

and Z 1

0

( 00
1 2

00
2 1) + ( 1 2)

Z 1

0

2
1 2 = 0

But Z 1

0

( 00
1 2

00
2 1) = [ 01 2

0
2 1]

1
0 = 0

on account of the end conditions, and hence, since 1 2 6= 0, 1 and 2 are
orthogonal in the sense Z 1

0

2
1 2 = 0
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We have shown that if equations (10.1.1), (10.1.2) have eigenvalues then
they will satisfy

0 1 2 · · · (10.1.18)

with equality only as stated above. The corresponding eigenfunctions ( ) will
be orthogonal; they may be normalised so thatZ 1

0

2 = (10.1.19)

We have shown that the di erential equation we are studying may be pre-
sented in three di erent forms: (10.1.1), (10.1.3) or (10.1.11). For vibration pur-
poses the fundamental equations are the first two: (10.1.1) for the taut string;
(10.1.3) for the rod. Equation (10.1.11), called the Sturm-Liouville equation, is
introduced as a standard mathematical form because it is easier to analyse, par-
ticularly for the asymptotic form of the eigenvalues, and for the inverse problem.
Equation (10.1.11) is the one that has been studied by most pure mathemati-
cians, but in our study of vibration problems, we must always remember that it
is a secondary equation.
In this chapter, we will study some of the basic properties of the equations,

particularly the so-called spectral theory. In Chapter 11 we will study some
inverse problems: how to reconstruct the functions ( ) ( ) or ( ), appearing
respectively in the three forms of the equation.
In the spectral theory there are six main topics:

i) The existence of an infinite sequence of real distinct eigenvalues with only one
limit point, + . For equations (10.1.1) and (10.1.3) these are all positive
apart perhaps for the first, which is zero when = 0 = .

ii) The completeness of eigenfunctions on [0,1].

iii) The asymptotic form of the eigenvalues and the so-called norming constants.

iv) The interlacing of eigenvalues corresponding to di erent end constants .

v) The oscillatory properties of eigenfunctions: how many nodes they have.

vi) The interlacing of nodes of neighbouring eigenfunctions.

Each of these topics may be studied in various ways, but there are basically
just two avenues of approach: through the study of the di erential equation itself;
by converting the di erential equation to an integral equation and studying that.
Of the six topics, the most di cult is undoubtedly ii), the completeness of the

eigenfunctions. In their recent monograph, Levitan and Sargsjan (1991) [212]
study completeness by reducing (10.1.11) to an integral equation and then using
a variety of approaches to establish completeness. We will approach topics i) and
ii) di erently, in a way that mimics somewhat the matrix approach to discrete
problems, by starting from (10.1.1), converting it to an eigenvalue problem for
an integral operator, and establishing the necessary functional analysis. This
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approach takes more pages than Levitan and Sargsjan’s, but we believe it has
merit.
For the establishment of the asymptotic form of the eigenvalues we will start

from (10.1.11).
Topics v) and vi), nodes and interlacing, were studied by Sturm in his original

work. The classical treatment, beautifully presented, may be found in Ince
(1927) [185]. Levitan and Sargsjan follow Sturm’s approach. We will use
the total positivity properties of the integral equation, following the lines of
Gantmacher and Krein (1950) [98].
There are two ways to normalise the governing equations and to number the

eigenvalues; both have their own advantages and disadvantages, and we shall
therefore use both, at di erent times; we label them , for vibration, and , for
Sturm-Liouville.

V: the governing equation is (10.1.1) or (10.1.3), the equation holds for
[0 1]; the end conditions are (10.1.2) or (10.1.4); the eigenvalues are la-
belled ( )1 , the eigenfunctions ( ( ))1 .

S: the governing equation is (10.1.11), the equation holds for [0 ]; the end
conditions are

0(0) (0) = 0 = 0( ) + ( );

the eigenvalues are labelled ( )0 and the eigenfunctions ( ( ))0 .

Thus we will use for the analysis in Sections 10.2-10.8 based on the Green’s
function approach to equation (10.1.11). We will use for the study of the
asymptotic form of the eigenvalues in Section 10.9, and for the analysis of the
inverse problems for the Sturm-Liouville equation (10.1.11) in Chapter 11.
Exercises 10.1

1. Show that the eigenvalues and eigenfunctions of (10.1.1) for = 1 and the
end conditions (10.1.2) are given by

= 2 = + + ( 1) = 1 2

where
= arctan( ) = arctan( )

and
= cos( ) = 1 2

Hence, show that is an increasing function of and and that, when
are positive, there is just one eigenvalue in each of the intervals

(( 1) ) = 1 2

2. Consider various special cases of Ex. 10.1.1. Thus,

a) = 0 = , then = ( 1) = 1 2 Note: in this case, that
was considered earlier, there is a zero eigenvalue with eigenfunction
1 = 1.
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b) = 0 = , then = ( 1 2) = cos

c) = = , then = = sin

d) finite, then for large

= ( 1) +
( + )

( 1)
+ 0

µ
1
3

¶

Note that this expression indicates that it would be an advantage to
label the eigenvalues 0 1 rather than 1 2

3. Explore how the end conditions change as one equation of (10.1.1), (10.1.3),
(10.1.11) is changed to another. Note that the basic equations for vibration
purposes are (10.1.1), (10.1.2) and (10.1.3), (10.1.4) in which are non-
negative. Note particularly that if (10.1.3) is changed to (10.1.1), i.e.,
to (10.1.8), the end conditions retain the same form; compare (10.1.10)
and (10.1.2). But when (10.1.1) or (10.1.3) is changed to the standard
form (10.1.11) the end conditions change: 0(0) (0) = 0 becomes
˙(0) (0) = 0, and 0 does not imply 0.

10.2 Green’s functions

The idea of a Green’s function is perhaps most easily introduced by considering
the static deflection of a string with fixed ends due to a distributed load ( ).
The governing equation is

00( ) = ( ) (10.2.1)

and the end conditions are (0) = 0 = (1). If instead of a distributed load we
consider a single unit concentrated load at = , then the string will be straight
on each side of = , and have a discontinuity in its slope at = , as shown
in Figure 10.2.1.

0 s 1

Figure 10.2.1 - The plucked string.

Thus

( ) =

½
0

(1 ) 1
(10.2.2)
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Equilibrium of the two portions gives¯̄̄
¯ = +

=
= 1

so that, on using (10.2.2), we find + = 1. Continuity yields = (1 )
so that

= (1 ) =

We call the resulting deflection ( ); thus

( ) =

½
(1 ) 0
(1 ) 1

(10.2.3)

To obtain the deflection of the string under the action of the distributed load
( ) we combine the actions of the concentrated forces ( ) at the locations
; thus

( ) =

Z 1

0

( ) ( ) (10.2.4)

Clearly, we may generalise this procedure, and define a Green’s function for
the general end conditions (10.1.2). We introduce two solutions of 00( ) = 0:
( ) satisfying the condition 0(0) (0) = 0; ( ) satisfying 0(1)+ (1) =
0. Since

00( ) = 0 = 00( )

we have ( ) 00( ) 00( ) ( ) = 0, which on integrating gives ( ) 0( )
0( ) ( ) = . We choose this constant as -1, so that

( ) 0( ) 0( ) ( ) = 1 (10.2.5)

and define

( ) =

½
( ) ( ) 0
( ) ( ) 1

(10.2.6)

then ( ) is continuous at = , while

( )

¯̄̄
¯ = +

=
= 1

Note that
( ) = (1 + )
( ) = (1 + (1 ))

¾
(10.2.7)

where
= 1 ( + + )

and the conditions 0 0 + 0 ensure that the denominator in
(10.2.7) is positive.
We note that the Green’s function is symmetric, i.e.,

( ) = ( ) (10.2.8)
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and that the functions ( ) ( ) are positive, ( ) increasing while ( ) de-
creasing. In fact, (10.2.5) shows that ( ) ( ) is an increasing function of
. There is thus a clear parallel between the Green’s function and the Green’s
matrix introduced in Section 10.5.
For our purposes, the most important use of the Green’s function is that it

reduces the free vibration problem (10.1.1), (10.1.2) to an eigenvalue problem
for an integral equation:

( ) =

Z 1

0

2( ) ( ) ( ) (10.2.9)

With the changes of variable

( ) = ( ) ( ) ( ) = ( ) ( ) ( ) (10.2.10)

we may transform (10.2.9) into the symmetric equationZ 1

0

( ) ( ) = ( ) (10.2.11)

in which ( ) = ( ), and = 1 .
There is a well established body of theory for such integral equations, which

we now recall. The theory relates to a compact, self-adjoint linear operator in a
separable Hilbert space. In Section 10.3 we summarize the theory regarding the
spectrum of such an operator, and in Section 10.4 we apply it to the operator
equation (10.2.11).

Exercises 10.2

1. Find the solutions of ( 0)0 = 0, ( ) satisfying (10.1.4a), and ( ) sat-
isfying (10.1.4b), and make

( ){ ( ) 0( ) 0( ) ( )} = 1

and hence write (10.1.3) as an integral equation

( ) =

Z
0

( ) ( ) ( )

2. Show that if ( ) satisfies

00 + 2 = 0 (0) = 0 = 0(1)

and ( ) has a continuous first derivative, then = 0 satisfies ( 2 0)0 +
= 0 0(0) = 0 = (1). Hence show that ( ) satisfies

( ) =

Z 1

0

( ) ( )
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where

( ) =

Z 1

+

2( ) + = max( )

3. Show that if ( ) satisfies

( 0)0 + = 0 (0) = 0 = 0(1) 1

then = 0 satisfies ( 0)0+ = 0 where = 1 0(0) = 0 = (1).
Hence, show that

( ) =

Z 1

0

( ) ( ) ( )

where

( ) =

Z 1

+

( ) + = max( )

10.3 Some functional analysis

In the first edition of this book, in order to prove the existence of eigenvalues
and eigenfunctions for the integral equation, i.e., operator equation, (10.2.11) we
referred the reader to the classical treatment of integral equations in Courant and
Hilbert (1953) [64]. Instead, in this edition, we sketch the functional analysis
approach to existence by providing the reader with a sign-posted journey through
parts of the book Functional Analysis by Lebedev, Vorovich and Gladwell (1996)
[205]. We refer to definitions and theorems in that book by the abbreviations
Def. and Th. respectively.
The journey starts with the definition of a metric space , Def. 2.1.4: a

set of elements governed by a distance metric ( ) satisfying certain distance
axioms. After defining an open ball or -neighbourhood of a point 0 , Def.
2.2.1, we define an open set in as one in which every point is an interior point.
Then, after defining limit points Def. 2.2.3, we define a closed set as one that
contains all its limit points, Def. 2.2.6. We define the closure ¯ of a set as
the set obtained by adding to all its limit points, and say, Def. 2.2.7, that
is dense in a set if ¯ .
The journey continues through metric spaces, to give the metric space ver-

sions of limit of a sequence, Def. 2.4.1; Cauchy sequence, Def. 2.4.2; and com-
plete metric space, Def. 2.5.1: a metric space in which every Cauchy sequence
has a limit. The definitions Def. 2.6.1, 2.6.2 and the completion theorem Th.
2.6.1 explain how any metric space may be completed.
The definition of an operator is given in

Definition 10.3.1 Let and be metric spaces. A correspondence =
is called an operator from into , if to each there

corresponds no more than one . The set of all those for which
there exists a corresponding is called the domain of and denoted by
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( ); the set of all arising from is called the range of and denoted
by ( ). Thus

( ) = { ; = }

We say that is an operator on ( ) into , or on ( ) onto ( ). We
also say that ( ) is the image or map of ( ) under . The null space of
, denoted by ( ), is the set of all such that = 0.

A functional , Def. 2.7.2 is defined as an operator from to the real numbers
R, or complex numbers C. The definition of a continuous operator Def. 2.7.3
is the straightforward analogue of continuity of an ordinary function.
The journey now passes to linear spaces (Section 2.8) over R or C, with the

property that if then + ; when equipped with a norm || · ||,
they become normed linear spaces , Def. 2.8.1. After defining a subspace, Def.
2.8.4, we define closed subspace Def. 2.8.5, linear dependence and independence
Def. 2.8.6; and dimension, Def. 2.8.8.
We carry the notion of an operator in a metric space over and define a linear

operator , Def. 2.9.2, in a normed linear space as one that satisfies ( + ) =
( )+ ( ); define a continuous linear operator, and the norm of a continuous

linear operator from to by (Th. 2.9.1)

|| || = sup
( )

|| ||

|| ||
(10.3.1)

is continuous, or bounded, i || || is finite.
The concepts of metric, ( ), and norm, || ||, generalise the notions of

distance and magnitude in R3, respectively. We now pass to an inner product
space in which an inner product ( ) is defined for every pair . This
inner product satisfies the axioms

P1: ( ) 0, and ( ) = 0 i = 0;

P2: ( ) = ( );

P3: ( + ) = ( ) + ( ).

Here, C and the overbar in P2 denotes complex conjugate. In a real
inner product space, P2 is replaced by

P20: ( ) = ( )

In an inner product space we may define a norm by

|| || = ( )1 2

That this does in fact provide a norm in the usual sense follows from the Cauchy-
Schwarz inequality (Th. 2.12.1)

|( )| || || · || || (10.3.2)
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with equality when 6= 0 6= 0, i = .
For an inner product space we may define the terms orthogonal and ortho-

normal : and are orthogonal if ( ) = 0; a system { } is orthonormal
if

( ) = =

½
1 =
0 6=

(10.3.3)

We may easily extend the concepts of closed and complete to inner product
spaces, and we call a complete inner product space a Hilbert space , Def.
2.12.5.
The concept of orthogonality leads to the idea of the orthogonal decomposition

of a Hilbert space into a closed subspace and its orthogonal complement
= ; if , then may be written

= + (10.3.4)

Clearly, a closed subspace of a Hilbert space is itself a Hilbert space.
This leads to Riesz’s representation theorem Th. 4.3.3, which states that any

continuous (i.e., bounded) linear functional ( ) on may be expressed as an
inner product:

( ) = ( ) for every (10.3.5)

and || || = || ||.
We now define a separable Hilbert space , Def. 4.1.3, one that contains

a countable (enumerable) dense subset { }. From such a sequence we may,
by the usual Gram-Schmidt procedure, construct an orthonormal set { } that
is dense in ; this will be a complete orthonormal system in the sense that if

and 0 are given, there is a finite linear combination of the such
that

||
X
=1

|| (10.3.6)

In this case any has a unique representation

=
X
=1

= ( ) (10.3.7)

and Parseval’s equality holds:

|| ||2 =
X
=1

| |2 (10.3.8)

It may be argued that almost all existence proofs in Functional Analysis
rely on the concept of a compact set in a metric space. The concept compact
is similar to, but must be sharply distinguished from, the concepts closed and
complete. In brief, is closed if it contains all its limit points; is
complete if every Cauchy sequence in has a limit point in . A set
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is compact Def. 6.1.1 if every sequence { } in contains a subsequence { }
which converges to a point .
The classical Bolzano-Weierstrass Theorem (Th. 1.1.2) states that in a finite-

dimensional space e.g., R , a set is compact i it is closed and bounded. This
result is false for general metric spaces. To be precise, a compact set is
closed and bounded, but a closed and bounded set is compact only if the space
is finite-dimensional.
In order to find a criterion for compactness of a set in an infinite-dimensional

metric space we must generalise the classical Heine-Borel Theorem; This uses
the concept of an -covering.

Definition 10.3.2 Let be a metric space, and suppose . A finite set
of balls ( ) with and 0 is said to be a finite -covering of
, if every element of lies inside one of the balls ( ), i.e.,

[
=1

( )

The set of centers { } of a finite -covering is called a finite -net for .

Definition 10.3.3 Let be a metric space. A set is said to be totally
bounded if it has a finite -covering for every 0.

Hausdor ’s compactness criterion is now

Theorem 10.3.1 Let be a complete metric space. A set is compact
i it is closed and totally bounded.

In a compact set the points are, as the word compact suggests, close together;
the centers form a network, and each point in is near one of the .
Having the concept of a compact set, we may introduce the idea of a compact

(linear) operator.

Definition 10.3.4 Let be metric spaces. A linear operator from to
is said to be compact if it maps the unit ball into a compact set in .

Note that the map of the unit ball may not itself be a compact set; it is in
a compact set. We say that it is precompact, meaning that it may be made
compact by closing it: its closure is compact.
If the range of a linear operator is finite-dimensional, we say that is

a finite-dimensional operator. The Bolzano-Weierstrass Theorem then implies
that a finite-dimensional operator is compact. We may now use Hausdor ’s
compactness criterion to obtain a wider class of compact operators.

Theorem 10.3.2 Let be metric spaces, and suppose is complete. If the
sequence of compact linear operators { } from to converges uniformly to
, then is compact.
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Proof. Uniform convergence means || || 0. Let be the unit ball in
. Choose 0, and then choose so that || || 3 for all .

The operator is compact; therefore the map ( ) of is precompact; its
closure is compact. Therefore, by Th. 6.2.1, it is totally bounded; there is a
finite set { 1 2 } such that every point in ( ) lies in a ball of
radius 3 around one of 1 2 . Choose , then choose
so that

|| || 3

then

|| || || +|| ||+|| || 3+ 3+ 3 =

This means that the set ( ) is totally bounded and therefore, again by Th.
6.2.1, precompact. (Note that we need to be complete.) Thus is compact.

Having introduced one concept, compact, we now introduce another, self-
adjoint. To do so we suppose from now on that is a continuous linear operator
on a Hilbert space i.e., from to ; we say ( ). If , then
( ) = ( ) is a continuous functional on ; therefore, there is an

such that ( ) = ( ). Clearly, depends linearly on , and in fact is the
map of under a new continuous operator , called the adjoint of ; thus
= and

( ) = ( ) (10.3.9)

If = , then is said to be self-adjoint. If is self-adjoint, the functional

( ) = ( )

is real valued, because

( ) = ( ) = ( ) = ( ) = ( )

This functional is extremely important because, if ( ) is self-adjoint,
then there are two ways to write || ||, one from (10.3.1), namely

|| || = sup || || for || || = 1 (10.3.10)

and another involving ( ), namely

|| || = sup | ( )| = sup |( )| for || || = 1 (10.3.11)

We denote

sup{ ( )} = inf{ ( )} = for || || = 1 (10.3.12)

Clearly,
|| || = sup(| | | |) (10.3.13)

We are now in a position to define an eigenvalue of an operator ( ).



10. Green’s Functions and Integral Equations 245

Definition 10.3.5 Suppose ( ). The scalar is called an eigen-
value of if there is a non-zero such that = ; is called an
eigenvector corresponding to .

Note that we use , rather than , to denote an eigenvalue, so that we can use
= 1 to denote an eigenvalue of the di erential equation (10.1.1). Clearly,

any eigenvalue of a self-adjoint operator must be real, for = implies
( ) = ( ). See also Ex. 10.3.1.

Theorem 10.3.3 If ( ) is self-adjoint and is not an eigenvalue of
, then ( ) is dense in .

Proof. We need to show that the closure of ( ) is . This is
equivalent to saying that if is orthogonal to all ( ) , then = 0. If this
were so then

0 = ( ( ) ) = ( ) ¯( )
= (( ¯ ) )

for all . But, on taking = ( ¯ ) , we find ( ¯ ) = 0. If is
not zero, this states that ¯ is an eigenvalue of . But is self-adjoint so that
¯ is real, i.e., ¯ = ; is an eigenvalue of , contrary to hypothesis.
We now generalise the concept of an eigenvalue and introduce the concept of

the spectrum of an operator.

Definition 10.3.6 Suppose ( ). The spectrum of , denoted by
( ), is the set of all complex numbers such that does not have a
bounded inverse. The resolvent set ( ) is the complement of , i.e., = C\ .

We recall that if ( ) then || || || || · || ||; if is to have a
bounded inverse then || || || || for some 0. We prove

Lemma 10.3.1 If ( ) and || || || || for all and some
0, then ( ) is closed.

Proof. Suppose { } and . The sequence { } is a Cauchy
sequence, and so therefore is { } because || || || || .
Since is complete, there is such that . By continuity we have

, so that = , i.e., ( ) : ( ) is closed.
We may now characterise the resolvent set of a self-adjoint operator.

Theorem 10.3.4 Suppose ( ) is self-adjoint, then ( ) i ||(
) || || || for all and some 0.

Proof. If ( ), then ( ) has a bounded inverse, so that

||( ) 1|| · || ||

i.e., ||( ) || ||( ) 1|| 1 · || ||.
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Conversely, if ||( ) || || || for all , then Theorem 10.3.3 states
that ( ) is dense in , while Lemma 10.3.1 states that ( ) is
closed. Thus ( ) = , and ||( ) || || || states that ( )
has a bounded inverse, i.e., ( ).
We now show that if ( ) self-adjoint then its spectrum is real,

non-empty, and lies within the interval [ ].

Theorem 10.3.5 If ( ) is self-adjoint, then ( ) is a non-empty
subset of [ ], and ( ).

Proof. First we prove that the spectrum is real. For suppose = + 6=
0, then for all ,

||( ) ||2 = ( )
= ||( ) ||2 + 2|| ||2

2|| ||2

Theorem 10.3.4 shows that ( ). Thus if ( ) then must be real.
We now show that if , then ( ). We have, on the one hand,

(( ) ) ||( ) || · || ||

and, on the other

(( ) ) = ( ) || ||2 || ||2 || ||2

( )|| ||2

so that
||( ) || ( )|| ||

so that Theorem 10.3.4 shows that ( ). We can show similarly that if
, then ( ). We have thus shown that, if ( ) exists, it must lie in

[ ].
We now show that ( ). By the definition of sup, there is a sequence

{ } such that || || = 1, and ( ) . Therefore,

||( ) ||2 = ( )
= || ||2 2 ( ) + 2|| ||2

2 2 ( ) + 2

2 ( ( )) 0

Thus , and similarly , are in ( ).
So far, we have shown that a self-adjoint operator ( ) has a non-

empty real spectrum that lies in [ ]. Now we suppose that, in addition to
being self-adjoint, is a compact operator. In that case the spectrum consists
entirely of eigenvalues, apart perhaps from zero. This is given in

Theorem 10.3.6 If ( ) is self-adjoint and compact and if ( )
and 6= 0, then is an eigenvalue of .
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Proof. If ( ) then, by definition, does not have a bounded
inverse. There is therefore (Ex. 10.3.3) a sequence { } such that || || = 1 and

0 as . Since is compact it maps { } into a precompact
set. This means that there is a subsequence { } such that .
We then have

= 1[ ( )] 1

and therefore, since is continuous,

= lim =

Since || || = 1 and 6= 0 we have || || 6= 0, so that is an eigenvector
corresponding to .
Since we have already proved that ( ), we now know that, provided
are not zero, and if is not zero, one of them at least must be non-zero

because of (10.3.13), and are eigenvalues of : a non-zero compact self-
adjoint operator has at least one real eigenvalue.
Having shown that has at least one eigenvalue, we now prove

Theorem 10.3.7 A non-zero compact self-adjoint operator in a Hilbert space
has a finite or infinite sequence of orthonormal eigenvectors 1 2 corre-

sponding to non-zero eigenvalues 1 2 (| 1| | 2| ).

Proof. By Theorem 10.3.6 there is an eigenvector 1, with || 1|| = 1 1 =

1 1, where

1 = ± sup |( )| || || = 1

1 is either or , and | 1| = || ||.
Rename the Hilbert space 1, the operator as 1, let 1 be the space

spanned by 1, and decompose 1 into 2 and 1 as in equation (10.3.4). The
space 2 is a Hilbert space. If 2, then 1 2, for

( 1 1) = ( 1 1) = ( 1 1) = 1( 1) = 0

This means that we may define a new operator 2 in 2, by

2 = 1 2

This operator is called the restriction of 1 to 2; it is clearly a self-adjoint
compact linear operator in the Hilbert space 2. If this operator is not identi-
cally zero we may apply Theorem 10.3.6 to it, and find an eigenvector 2 such
that

2 2 = 2 2 || 2|| = 1

Since 2 2, we have ( 2 1) = 0 and, for || || = 1,

| 2| = sup
2

|( 1 )| sup
1

|( 1 )| = | 1|
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We now continue this process; we let 2 be the space spanned by 2, decompose
2 into 3 and 2, call 3 the restriction of 2 to 3, and find an eigenvalue

3 and eigenvector 3, and so on.
Generally

| | = sup |( )| = |( )| || || = 1 = || || (10.3.14)

Either the process stops after a finite number of steps or it continues indef-
initely. In the former case there is an integer for which the restriction +1

of 1 to +1 is identically zero, i.e.,

sup
+1

|( )| = 0 || || = 1 (10.3.15)

In this case we obtain a finite sequence of orthonormal eigenvectors 1 2 .
The latter case is the subject of

Theorem 10.3.8 Suppose ( ) is a self-adjoint compact operator. If
has an infinity of eigenvalues, they are enumerable with zero being the only

limit point.

Proof. The procedure described in Theorem 10.3.7 produces a sequence of
eigenvalues 1 2 such that | 1| | 2| · · · , and corresponding sequence
of orthonormal eigenvectors 1 2 Consider all those eigenvalues satisfy-
ing | | . If there is an infinite sequence 1 2 corresponding to such
eigenvalues, then

|| ||2 = || ||2 = | |2 + | |2 2 2 (10.3.16)

But since is compact, the sequence { } must have a convergent subse-
quence; this contradicts (10.3.16). Hence there is at most a finite set of eigen-
vectors corresponding to eigenvectors satisfying | | . The eigenvalues may be
enumerated by placing their absolute values in the intervals (1 ) (1 2 1] (1 3
1 2] ; there is a finite number in each of this enumerable set of intervals; the
eigenvalues can have zero as their only limit point.

Theorem 10.3.9 Let ( ) be a compact self-adjoint operator with
eigenvalues ordered so that | 1| | 2| · · · , and corresponding orthonormal
eigenvectors 1 2 The eigenvectors { } are complete in the range of ,
i.e., for every = , the Parseval equality

|| ||2 =
X
=1

|( )|2 (10.3.17)

holds.
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Proof. First, suppose the process described in Theorem 10.3.7 stops. Take
= , and consider

=
X
=1

( ) (10.3.18)

We have ( ) = 0 = 1 2 , so that +1 and hence = || ||
satisfies (10.3.15) so that || || = 0, i.e., = 0. Thus

0 = =
P

=1( ) =
P

=1( )
=

P
=1( )

so that

=
X
=1

( )

Now consider the case in which the process does not stop. There is an enumer-
able sequence of eigenvalues { } with zero as limit point.
Choose 0 and then choose so that if , then | |2 . Take
. Suppose = and consider given by (10.3.18); so that

|| ||

|| ||
| +1|

Thus
|| || | +1| || || | +1| || ||

so that, as before

|| ||2 =

¯̄̄
¯̄
¯̄̄
¯̄ X

=1

( )

¯̄̄
¯̄
¯̄̄
¯̄
2

| +1|
2|| ||2

or equivalently

0 || ||2
X
=1

|( )|2 | +1| · || ||
2 || ||2

which implies Parseval’s equalityP
=1 |( )|2 = || ||2

We now obtain another result by making a further assumption concerning
; thus we introduce

Definition 10.3.7 A self-adjoint continuous linear operator in a Hilbert space
is called strictly positive if ( ) 0 for all and ( ) = 0 i
= 0.

For a strictly positive, compact, self-adjoint operator in a Hilbert space the
process described in Theorem 10.3.7 can stop only if itself is finite dimensional.
This leads to
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Theorem 10.3.10 Let be a strictly positive compact self-adjoint operator in
an infinite dimensional Hilbert space . There is an orthonormal system { }
which is a basis for , and has the representation

=
X
=1

( )

Proof. Let and consider

+1 =
X
=1

( )

where { } is the orthonormal sequence of eigenvectors, as in Theorem 10.3.9.
It is easy to show that { } is a Cauchy sequence. We wish to prove that its
limit is zero. Assume that it is not, i.e., 6= 0. Since +1 +1 we
have

( +1 +1)

|| +1||2
2
+1

But 0 as so that passage to the limit gives

( )

|| ||2
= 0

which is a contradiction since is strictly positive. Therefore, = 0 and

=
X
=1

( )

so that { } forms a basis for , and moreover

=
P

=1( ) =
P

=1 ( )

This theorem shows that one can have a strictly positive compact self-adjoint
operator only in a separable Hilbert space.

Corollary 10.3.1 Under the condition of Theorem 10.3.10 we can introduce a
norm

|| || = ( )1 2

and a corresponding inner product

( ) = ( )

The completion of with respect to this norm is called .

Exercises 10.3

1. Show that eigenvectors and , corresponding to two di erent eigenvectors
of a self-adjoint operator , are orthogonal, i.e., ( ) = 0.
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2. Show that the operator 1 is bounded on ( ) i there is a constant
0, such that, if ( ), then || || || ||.

3. Use Ex. 10.3.2 to show that 1 is unbounded i there is a sequence { }
such that || || = 1 || || 0.

4. Show that a compact self-adjoint operator is strictly positive i its eigen-
values are positive.

10.4 The Green’s function integral equation

We must now exhibit the integral operator

=

Z 1

0

( ) ( ) (10.4.1)

as a stricly positive, self-adjoint, compact operator in a separable Hilbert space.
In order to make this identification we need some results about functions.
We start with the space of continuous functions on the closed interval [0 1].

We call this [0 1]. The fundamental result about a function ( ) [0 1] is
that ( ) is bounded on [0 1], and actually attains its upper bound. We may
thus form a normed linear space from [0 1] by using the norm

|| || = sup
[0 1]

| ( )| (10.4.2)

Convergence of a sequence of function { ( )} in the norm (10.4.2) is uniform
convergence. Weierstrass’ Theorem on uniform convergence states that a uni-
formly Cauchy sequence { ( )}, i.e., a Cauchy sequence in the norm (10.4.2),
of uniformly continuous functions on [0 1] converges to a uniformly continuous
function. This translates into the statement that [0 1] under the norm (10.4.2)
is complete.
We may introduce another norm on [0 1]:

|| ||2 =

½Z 1

0

( ( ))2
¾1 2

(10.4.3)

The example in Ex. 10.4.1 shows that [0 1] is not complete under this norm.
However, we may use the completion theorem, and complete this space. We
may make the space an inner-product space by using the inner product

( ) =

Z 1

0

( ) ( ) (10.4.4)

We call this complete inner-product space, i.e., Hilbert space, 2(0 1). Here
stands for Lebesgue. Remember that while the elements of [0 1] are uniformly
continuous functions, the elements of 2(0 1) are equivalence classes of Cauchy
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sequences of uniformly continuous functions. The space 2(0 1) is known to be
separable (Th. 4.1.4).
Now we start to examine the operator from 2(0 1) to L2(0 1), defined by

=

Z 1

0

( ) ( )

where
( ) = ( ) ( ) ( ) (10.4.5)

and ( ) is given in (10.2.6).
The operator is self-adjoint in 2(0 1) because ( ) is symmetric.
Now we examine the continuity of the operator. Suppose first that ( )
[0 1] then ( ) ([0 1]× [0 1]) so that ( ) is bounded on the square,

i.e., ( ) and

|| || = sup
[0 1]

| | sup
[0 1]

| | = || ||

so that || || : is continuous.
Now examine continuity in 2(0 1). We have

|| ||2 =

Z 1

0

½Z 1

0

( ) ( )

¾2

Again, if ( ) ([0 1]× [0 1]) then ( ) and

|| ||2 2

Z 1

0

( ( ))2 2|| ||2

so that is continuous. Now suppose that ( ) 2(0 1).
Since ( ) = ( ) ( ) ( ), and ( ) ([0 1] × [0 1]) we have

| ( )| and
| ( )| ( ) ( )

Thus

|| ||2 2

Z 1

0

2( )

½Z 1

0

( ) ( )

¾2
The Schwarz inequality (10.3.2) gives

½Z 1

0

( ) ( )

¾2 Z 1

0

2( )

Z 1

0

2( )

so that
|| ||2 2|| ||4|| ||2

Thus
|| || || ||2
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and is continuous.
In order to prove that is compact we note that if a function ( ) is con-

tinuous on the unit square, i.e., ([0 1]×[0 1]), then it may be approximated
uniformly by a finite sum of the form

X
=1

( ) ( )

The Green’s function ( ) is continuous on the unit square, and is symmetric
in and . Thus there are functions { ( )}1 such that, given 0, we can
find so that if then

sup | ( )
X
=1

( ) ( )|

for ( ) ([0 1]× [0 1]). This means that if

( ) = ( ) ( )
X
=1

( ) ( )

and

=

Z 1

0

( ) ( )

then is a finite-dimensional operator, and thus compact. If 2(0 1)
then is the limit of a sequence of compact linear operators { }, and is thus
compact by Theorem 10.3.1.
Reader, congratulations if you have read and followed thus far. We have

tried to provide a sign-posted journey; clearly, we have not proved every step,
but we had no intention of doing that. We could have taken a short cut by
merely stating that ‘it can be shown that is compact’, but we hope that the
route we have taken has been more pleasant and instructive.
What can we conclude from our study? If ( ) 2(0 1), the integral

equation has a finite or enumerable sequence of positive eigenvalues 1 2

satisfying | 1| | 2| · · · , and a corresponding set of eigenfunctions { }0
which are orthonormal under the 2(0 1) norm. However, this result is not as
satisfying as we would like, because the eigenfunctions, being in 2(0 1), are not
functions in the ordinary sense, but equivalence classes of Cauchy sequences of
functions in [0 1]. Can we say anything more about them?
First, we note that if satisfies (10.2.11) then satisfies (10.2.9) where,

remember that we now switch 1 . Thus, the eigenvalues of (10.2.9)
satisfy 0 | 1| | 2| Actually, we proved earlier that the are distinct
and positive, i.e., they satisfy (10.1.18): 0 1 2 We have not yet
shown that there is an infinity of eigenvalues, nor have we shown, in the Green’s
function analysis, that they are distinct; we will eventually do this.
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We may write (10.2.9) as

( ) =

Z 1

0

( ) ( ) ( ) (10.4.6)

If 2(0 1) and 2(0 1) then the integrand in (10.4.6) is integrable in
and uniformly continuous in , so that the left hand side, ( ), is continuous:
( ) [0 1], and we may properly speak of an eigenfunction. If [0 1]
then ( ) actually has a continuous second derivative, and satisfies equation
(10.1.1), for on using the form of ( ) given in (10.2.6) we see that

( ) = ( )

Z
0

2( ) ( ) ( ) + ( )

Z 1
2( ) ( ) ( ) (10.4.7)

so that
(0) = (0)

R 1
0

2( ) ( ) ( )

(1) = (1)
R 1
0

2( ) ( ) ( )

Now, di erentiating (10.4.7), which we can do because all the integrands are
continuous, we find

0( ) = 0( )
R
0

2( ) ( ) ( ) + ( ) 2( ) ( ) ( )

+ 0( )
R 1 2( ) ( ) ( ) ( ) 2( ) ( ) ( )

Thus
0(0) = 0(0)

R 1
0

2( ) ( ) ( ) = (0)

0(1) = 0(1)
R 1
0

2( ) ( ) ( ) = (1)

Thus ( ) satisfies the stated end conditions. On di erentiating a second time,
using 00( ) = 0 = 00( ), we find

00( ) = ( ( ) 0( ) 0( ) ( )) 2( ) ( )

and on account of (10.2.5), this is

00( ) + 2( ) ( ) = 0

Exercises 10.4

1. Consider the sequence { ( )} in [0 1]:

( ) =

½ 1
4

1 1
1
4 0 1

Show that { ( )} is a Cauchy sequence under the 2 norm (10.4.3), but
{ ( )} converges to

( ) =
1
4

which is not in [0 1]. Hence [0 1] is not complete under the 2 norm.
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10.5 Oscillatory properties of Green’s functions

In Section 10.4 we showed that when 0 0 + 0, the integral
equation (10.2.9) has eigenvalues satisfying 0 | 1| | 2| ; if there are
an infinity of them, then

0 | 1| | 2|

On the other hand, in Section 10.4, we showed that the eigenvalues of the (equiv-
alent) equation (10.1.1) are positive and distinct, i.e.,

0 1 2

This means that the Green’s function ( ) must have some special properties
which lead to the eigenvalues being distinct; we now discuss these properties.
We start by defining the interval , as follows:

= [0 1] if are finite
= (0 1] if = , is finite
= [0 1) if is finite, =
= (0 1) if = =

Note that when = , the end condition 0(0) (0) = 0 becomes (0) = 0,
i.e., the end = 0 is fixed. This means that is the set of movable points in
[0 1]. Equations (10.2.6), (10.2.7) show that

( ) 0 for [0 1]
0 for

We now introduce the concept of an oscillatory kernel.

Definition 10.5.1 If 0 1 2 · · · 1, and x = [ 1 2 ],
then we say x . If 1 then we say x I. A kernel ( ) on
[0 1]× [0 1] is said to be oscillatory if

i) ( ) 0 for I
ii) (x; s) 0 for x s
iii) (x;x) 0 for x
Here

(x; s) =

¯̄̄
¯̄̄
¯̄

( 1 1) ( 1 2) · · · ( 1 )
( 2 1) ( 2 2) · · · ( 2 )
· · · · · ·

( 1) ( 2) · · · ( )

¯̄̄
¯̄̄
¯̄

and take note of Ex. 10.5.1 which shows that iii) must necessarily hold for x I.

Theorem 10.5.1 A kernel ( ) is oscillatory i the matrix = ( ) =
( ( )) is an oscillatory matrix for any x I.
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Proof. Suppose the kernel is oscillatory then, in the notation of Section 6.2,
if = ( 2 ) = ( 1 2 ) then

( ; ) = (x0; s0) 0

where 0 = 0 = = 1 2 . Thus A is TN. Now

+1 = ( +1) 0 +1 = ( +1 ) 0

while
det(A) = (x;x) 0

Thus A satisfies the three conditions for it to be oscillatory: it is TN, the
terms next to the principal diagonal are positive, and it is non-singular. We
may reverse this argument to show that if A is oscillatory then ( ) is an
oscillatory kernel.
Note that in addition to being oscillatory, A is a strictly positive matrix for

x s I.
We now show that the Green’s function ( ) defined in (10.2.6), (10.2.7)

is an oscillatory kernel. To do so we recall the definition of a Green’s matrix.

Definition 10.5.2 The matrix G = ( ) is called a Green’s matrix if

=

½

where ( )1 ( )1 R.

Note that G is symmetric.

Theorem 10.5.2 If = ( 2 ) = ( 1 2 ) then

( ; ) = 1

Y
=2

¯̄̄
¯ 1

1

¯̄̄
¯ (10.5.1)

where = min( ) = max( ), provided that +1 +1.

Recall that this means that

+1 +1 +1 +1

Proof. If 1 2 but 1 2, then the first two rows of the minor are

1 1 1 2 1

2 1 2 2 2

but these are
1 1 1 2 1

2 1 2 2 2
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and are thus proportional, so that the minor is zero. Similarly, if 1 2 1,
the first two columns will be proportional and the minor zero. Thus, we may
assume max( 1 1) min( 2 2). Suppose further, for definiteness, that 2 2

(otherwise the argument proceeds with the first two columns), then the first two
row are

1 1 1 2 1

1 2 2 2 2

so that the terms in columns 2 3 are proportional. Multiplying row 2
by 1 2 and subtracting it from the first, we find the only non-zero term, the
first in the first row, to be

1 1 1 1 2 2 = 1 1 1 1 2 2

= 1

2

¯̄̄
¯ 2 1

2 1

¯̄̄
¯

so that

( ; ) =
1

¯̄̄
¯ 2 1

2 1

¯̄̄
¯ · 1

2

( \ 1; \ 1)

from which the theorem follows by induction.

Theorem 10.5.3 The Green’s matrix G is TN i all ( )1 ( )1 have the same
strict sign and

1

1

2

2
· · · (10.5.2)

Moreover, G will be oscillatory i ( )1 ( )1 have the same strict sign and

1

1

2

2
· · · (10.5.3)

Proof. There is no loss in generality in assuming that all ( )1 ( )1 are
positive. It was shown in Theorem 10.5.2 that a minor is zero unless

1 1 2 2 · · ·

Each of the second order determinants in (10.5.1) is non-negative i

1

1

= 1 2

This is exactly the condition (10.5.2). G is TN and +1 0 +1 0,
so that the only condition to be fulfilled for G to be oscillatory is that it must
be non-singular. Thus each second order determinant in the factorisation of
( ; ) must be positive, which is (10.5.3).

Corollary 10.5.1 Let ( ) ( ) be continuous in [0 1] and

( ) =

½
( ) ( ) 0 1
( ) ( ) 0 1
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If ( ) ( ) 0 in (0 1) and ( ) ( ) is an increasing function of in (0 1)
then

(x; s) 0 for x s

If ( ) ( ) 0 in , and ( ) ( ) is a strictly increasing function of in ,
then

(x; s) 0

i x s I and 1 1 2 2 · · ·

Theorem 10.5.4 The Green’s function ( ) given by (10.2.5), (10.2.6) is
oscillatory and a minor (x; s) 0 i x s I and 1 1 2 2 · · ·

.

Proof. Equation (10.2.7) shows that ( ) ( ) 0 in . Equation (10.2.5)
yields ·

( )

( )

¸
=

0( ) ( ) ( ) 0( )

[ ( )]2
=

1

[ ( )]2
0 in

so that ( ) ( ) is strictly increasing in , and thus the result follows from the
Corollary 10.5.1.
In order to ascertain the meaning of the oscillatory character of the Green’s

function, consider a string under the action of concentrated forces ( )1 applied
normal to the string at points ( )1 in . The displacement is

( ) =
X
=1

( )

Thus ( ) 0 (condition i) of Definition 10.5.1) means that the displacement
due to a single force occurs ‘in the same direction’ as the force.
To see the meaning of condition iii) of Definition 10.5.1 we note that the

strain energy of the string under the action of the forces is

=
1

2

X
=1

( ) =
1

2

X
=1

X
=1

( )

so that condition iii) states that is positive definite (for forces applied at
movable points, i.e., in ).
The essential nature of an oscillatory kernel is evidenced in

Theorem 10.5.5 Under the action of forces ( )1 the displacement ( ) of
the string can change its sign no more than 1 times.

Proof. Suppose that forces ( )1 are applied at points ( )1 where s I.
If 1 0, then

( ) = ( )
X
=1

( ) 0 1
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so that ( ) is of one sign in [0 1]. If

X
=1

( ) = 0

then ( ) is identically zero in [0 ]. Otherwise, it is of one sign, and can be
zero only at = 0, and that only if the string is fixed at = 0, i.e., = .
In the interval [ +1] = 1 2 1,

( ) = ( )
X
=1

( ) + ( )
X
= +1

( )

Since ( ) ( ) are linearly independent, the displacement ( ) is identically
zero in [ +1] i X

=1

( ) = 0 =
X
= +1

( )

If this is not the case then ( ) can have at most one zero in [ +1]. For if
there were two, say such that +1 then ( ) ( ) ( ) ( ) =
0, contradicting the fact that ( ) ( ) is a strictly increasing function.
Finally, if 1 then

( ) = ( )
X
=1

( )

so that again ( ) has one sign. It is identically zero if

X
=1

( ) = 0

otherwise it can be zero only at = 1, and that only if = . We conclude
that ( ) can change sign at most 1 times, at most once in each of

( 1 2] [ 2 3] [ 1 )

Exercises 10.5

1. Continuity of the minor in ii) of Definition 10.5.1 shows that it will be
non-negative for ( )1 , ( )1 satisfying 0 1 2 · · · 1
and 0 1 2 · · · 1. Use Theorem 6.6.5 to show that iii)
necessarily holds for x I.

10.6 Oscillatory systems of functions

In this section we shall derive some basic results that are needed to establish
further properties of the eigensolutions.
Let ( ( ))1 be a sequence of functions defined on an interval , ([0 1] (0 1]

[0 1) or (0 1)).
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Theorem 10.6.1 The necessary and su cient condition for the functions ( ( ))1
to be linearly dependent is that

( 1 2 ; 1 2 )

¯̄̄
¯̄̄
¯̄

1( 1) 1( 2) 1( )

2( 1) 2( 2) 2( )
· · ·
( 1) ( 2) ( )

¯̄̄
¯̄̄
¯̄

be zero for any ( )1 .

Proof. The condition is necessary. For if the functions ( ( ))1 are linearly
dependent then there are constants ( )1 , not all zero, such that

X
=1

( ) = 0 for

This means that for any ( )1 we have

X
=1

( ) = 0 = 1 2 (10.6.1)

Since the ( )1 are not all zero, the determinant of coe cients in (10.6.1) must
be zero.
We prove su ciently by induction. If = 1, then = 0 states that

1( 1) = 0 for any 1 , i.e., 1( ) 0 for .
Suppose therefore that

( 1 2 ; 1 2 ) = 0 for all ( )1

We need to prove that the ( ( ))1 are linearly dependent. Assume that
( ( )) 1

1 are linearly independent (for if they were dependent then so would
the ( ( ))1 be), then there are ( ) 1

1 such that

( 1 2 1; 1 2 1) 6= 0 (10.6.2)

But then, for all

( 1 2 1 ; 1 2 ) = 0

Expand this determinant along its last column; the result has the form (10.6.1)
in which , being the determinant (10.6.2), is not zero.

Definition 10.6.1 A sequence of continuous functions ( ( ))1 is said to con-
stitute a Chebyshev sequence on if, for any set of real constants ( )1 , not
all zero, the function

( ) =
X
=1

( )

does not vanish more than 1 times on .
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Theorem 10.6.2 The sequence ( ( ))1 is a Chebyshev sequence on i

(x; )

maintains strictly fixed sign for x I; denotes (1 2 ).

Proof. If = 0 for some x I then, and only then, will the equation

X
=1

( ) = 0 = 1 2

has a non-zero solution ( )1 , i.e., the function ( ) will have di erent zeros.
On the other hand, since I is a connected subset of R and is a continuous
function, the fact that 6= 0 in I means that has strictly fixed sign on I.
Without loss of generality we may take 0.

Definition 10.6.2 A sequence of continuous ( ( ))1 will be called aMarkov
sequence in if, for each = 1 2 the sequence ( ( ))1 is a Chebyshev
sequence.

Theorem 10.6.2 shows that ( ( ))1 is a Markov sequence i , for = 1 2 ,

( 1 2 ; 1 2 )

has the same strict sign for any x I.
We now explore the nature of the zeros of a combination

( ) =
X
=1

( )
X
=1

2 0

of continuous functions ( ) in a Chebyshev sequence. By definition, ( ) has
at most 1 zeros in . We may divide these zeros into three groups: simple
nodes in (0 1), double nodes in (0 1), and end-zeros at 0 or 1 if these are
in . In any two-sided vicinity of a simple node , there are points 1 2 such
that 1 2 and

( 1) ( 2) 0

In any two-sided vicinity of a double node , there are points 1 2 such that
1 2 and

( 1) ( 2) 0

The statement that ( ( ))1 form a Chebyshev sequence means that

+ + 1

We now establish



262 Chapter 10

Theorem 10.6.3 If the continuous functions ( ( ))1 form a Chebyshev se-
quence on , then

+ 2 + 1

i.e., in the estimate of the number of zeros, each double node may be counted
twice.

Proof. Let ( )1 satisfy 1 2 · · · . If ( ) 6= 0 for
= 1 2 , then the maximum number of sign changes in the sequence

( ( ))1 occurs if, for some integer (either 0 or 1)

( ) + ( ) 0 = 1 2

If some ( ) are zero we may assign signs, + or -, to them and obtain di erent
sign change counts for the sequence ( ( ))1 ; the sign change count will be
maximum, 1, if for some integer (either 0 or 1)

( ) + ( ) 0 = 1 2

A set of points with this property is said to have property .
Consider some examples. Figure 10.6.1 shows ( ) with a zero at 1 = 0
[0 1) and two simple nodes in (0,1).

x
2

x
3

x
4

x
1= 0 1

Figure 10.6.1 - ( ) has 2 simple nodes.
The points ( )41 have property . (Note that we are not interested in

the value of (1) since 1 is not in .) Here = 2 = 1 and = 4 = + +1.
Now suppose also that ( ) has a double node at 4, as in Figure 10.6.2,

with [0 1).

x
2

x
3

x
4

x
1

x
5

x
6

Figure 10.6.2 - ( ) has 2 simple nodes and one double node.
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The points ( )61 have property . Here = 2 = 1 and = 6 =
+ 2 + + 1.
In general, if ( ) has simple nodes, double nodes and end zeros, then

we may find
= + 2 + + 1

points with property .
Suppose, if possible, that + 2 + , then we may find + 1 points

( ) +1
1 with property , i.e.,

( ) + ( ) 0 = 1 2 + 1 (10.6.3)

Since ( ) is a linear combination of ( )1 , the functions 1 2 =

+1 are linearly dependent. Therefore, by Theorem 10.6.1,

(1 2 + 1; 1 2 +1) = 0

Expand this zero determinant along its last row; we get

+1X
=1

( ) + +1 ( ) (1 2 ; 1 2 1 +1 ) = 0

Since ( ( ))1 form a Chebyshev sequence, the determinants in this equation
have the same strict sign, by Theorem 10.6.2. Moreover, by the assumption
(10.6.3), the terms ( ) + +1 ( ) have the same (loose) sign. This means that
( ) = 0 for = 1 2 + 1, but this is impossible: since the ( )1 form
a Chebyshev system, ( ) has at most 1 zeros. We conclude that ,
i.e., + 2 + 1.
We now introduce an extra condition on the function { ( )}1 , that they

are orthonormal, and prove the fundamental

Theorem 10.6.4 If { ( )}1 is a Markov sequence of continuous functions
on , and the ( ) are orthonormal with respect to some inner product, i.e.,
( ) = then

1) 1( ) has no zeros in .

2) ( ) has 1 simple nodes and no other zeros in .

3) ( ) =
P

= ( ) 1
P

=
2 0

has not less than 1 simple nodes in (0,1), and not more than 1
zeros in ; in the notation of Theorem 10.6.3, + 2 + 1.

Proof. Note that 1) and 2) are particular cases of 3), and all that is left to
be proved in 3) is that ( ) has not less than 1 simple nodes.
The functions ( )1 form a Markov sequence. This means that if 0 1

2 · · · 1, then

( 1 2 ; 1 2 )
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has fixed sign, which we may take to be positive. Let ( )1 be the simple nodes
of ( ) in (0,1) and define

( ) = ( 1 2 ; 1 2 + 1)

If then ( ) 0. If +1 = 1 2 1

( ) = ( ) ( 1 2 +1 ; 1 2 + 1)

while if 1,

( ) = ( ) ( 1 ; 1 2 + 1)

Thus ( ) changes sign as passes through each node; ( ) has just zeros,
the simple nodes ( )1. These are the same simples nodes as ( ). Therefore,

( ) 6= 0

But is a combination of ( ) +11 while is a combination of ( ) ; these
combinations must overlap, i.e., + 1 1.

Theorem 10.6.5 Under the conditions of Theorem 10.6.4, the simple nodes of
( ) and +1( ) interlace.

Proof. Any combination

( ) = ( ) + +1 +1( )
2 + 2

+1 0

has either 1 or zeros in (0,1), and all these zeros are simple nodes. (
1 +2 + imply = 0 and either = 1 = 0 or 1; or = = 0.)

Suppose the nodes of +1( ) are ( )1; write 0 = 0 +1 = 1, so that

0 = 0 1 · · · +1 = 1

and consider
( ) = ( ) +1( )

In each of the intervals ( +1) = 0 the function ( ) is continuous,
since +1( ) is non-zero. We now show that ( ) is monotonic in each of these
intervals. Suppose, if possible, that ( ) were not monotonic in an interval
( +1). Then there would exist points 1 2 3 such that 1 2

3 +1 and ( 1) ( 2) ( 2) ( 3) have opposite signs. Without
loss of generality we may assume ( 1) ( 2) ( 3) ( 2). The function
( ), being continuous in [ 1 3], assumes its maximum value in [ 1 3]. This
maximum must occur at an interior point, 0, of [ 1 3] since ( 1) ( 3) are
both less than ( 2). Therefore,

( ) ( 0) 0 for all [ 1 3]
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and thus

( ) = +1( ){ ( ) ( 0)} = ( ) ( 0) +1( )

retains it sign in the neighbourhood of its zero, 0. This contradicts the state-
ment that ( ) has only simple nodes. Hence ( ) is monotonic in each interval
( +1) = 0 1 .

We now consider the behaviour of ( ) near one of the nodes ( )1 of +1( ).
Since ( ) is monotonic in each of the intervals ( +1) = 0 , the limits

lim ( ) = 1 lim
+
( ) = 2

will exist for all = 1 2 ; they may be finite of infinite. If is not a node
of ( ) then 1 and 2 will be infinite and have opposite signs. We will show
that this is the only case that can occur.

Suppose that is a node of ( ), as well as of +1( ). Then 1, 2 may be
finite or infinite but will at least have the same sign. Suppose, without loss of
generality that ( ) is monotonic increasing in ( 1 ). If ( ) is monotonic
decreasing in ( +1) there are five possible cases, shown in Figure 10.6.3:

a) 1 = 2 =

b) 1 = 2 finite

c) 1 = finite, 2 =

d) 1 finite, 2 = 1

e) 1 finite, 2 6= 1

a) b) c) d ) e)

Figure 10.6.3 - ( ) is monotonic decreasing in ( +1).

If ( ) is monotonic increasing in ( +1) there are just three possible cases
shown in Figure 10.6.4:

f) 1 = 2 finite

g) 1 finite, 2 = 1

h) 1 finite, 2 6= 1
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f ) g) h)
Figure 10.6.4 - ( ) is monotonic increasing in ( +1).

In all but cases a), d) there is a line = , shown, such that ( ) crosses
this line as passes through . Thus ( ) changes sign at = and thus

( ) = +1( )( ( ) ) = ( ) +1( )

retains its sign as passes through its zero , contradicting the statement that
all the zeros of ( ) are simple nodes.
Now take case d), suppose 1 = 2 = , and consider the function

( ) = +1( )( ( ) ) = ( ) +1( )

when = ( ) has either 1 or nodes. Now take = = 0, where
0. We may find 1 2 such that 1 1 2 +1 ( 1) =

( 2) =
0.

Since +1( ) retains its sign and ( ) 0 changes its sign as passes
through 1 and 2, these points are nodes of ( 0). Thus ( ) acquires
two new nodes as passes from to , but this is impossible since ( )
and ( 0) both have either 1 or nodes.
We conclude that if is a node of ( ) then the only possibility is a). But

this means that all the limits 1 2 for = 1 2 must be infinite; ( )
must assume all values in each interval ( +1) = 1 2 1; ( ) must
have a node in each, and so too must ( ). But ( ) has just 1 nodes, so
none of the ( )1 can be nodes of ( ): case a) cannot occur; ( ) must be
monotonic increasing in all the intervals ( +1) = 0 1 , or monotonic
decreasing in all of them; the nodes of ( ) and +1( ) interlace.

10.7 Perron’s Theorem and compound kernels

Our aim in this section is to show that the eigenfunction ( ) of the integral
equation (10.2.9) form a Markov sequence. Following the discussion of total
positivity in Chapter 6, we base our analysis on continuous versions of Perron’s
Theorem and the Cauchy-Binet Theorem. Just as the matrix version of Perron’s
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Theorem holds for arbitrary positive (square) matrices, not just symmetric ones,
so there is a continuous version holding for arbitrary (not necessarily symmetric)
positive kernels. However, the proof of the theorem of the arbitrary, non-
symmetric, case is beyond the scope of this book. We will therefore state the
theorem for the general case but prove it only for the symmetric case, which is
in fact all we need. We have

Theorem 10.7.1 If the continuous kernel ( ) satisfies

( ) 0 ( ) 0 (0 1)

then the eigenvalue of 1 of the integral equation

( ) =

Z 1

0

( ) ( ) (10.7.1)

which has smallest absolute value is positive and simple; the corresponding eigen-
function 1( ) has no zero in (0,1).

Proof. In Section 10.3 we showed that a non-zero self-adjoint compact
operator has at least one, non-zero, eigenvalue

= sup
|| ||=1

( )

When translated into the language of the integral equation (10.7.1), this states
that the equation (10.7.1) has an eigenvalue 1 satisfying

1

1
= max

½
( )

|| ||2

¾
(10.7.2)

where

( ) =

Z 1

0

Z 1

0

( ) ( ) ( )

and

|| ||2 =

Z 1

0

2( )

This maximum is actually achieved by 1( ) which satisfies

1( ) = 1

Z 1

0

( ) 1( ) (10.7.3)

Now consider 1( ) = | 1( )|. Clearly || ||2 = || 1||2 while ( ) ( 1),
which means that 1( ) is also an eigenfunction, satisfying (10.7.3), i.e.,

1( ) = 1

Z 1

0

( ) 1( ) (10.7.4)
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Suppose that 1( ) had an isolated zero for some (0 1). On the basis of
( ) 0 and the continuity of , we have ( ) 0, 1( ) 0 for some

interval ( + ), 0. Thus, at , the left hand side of (10.7.4) is zero, while
the right hand side is positive; this is a contradiction. A zero interval in 1( )
may be ruled out similarly. This means that any eigenfunction corresponding to
1 must have the same sign in (0,1). There cannot be two mutually orthogonal
eigenfunctions which maintain fixed sign in (0,1) so that 1 must be simple and
positive. The proof is thus complete if we can show that if is a negative
eigenvalue of (10.7.1) then | | 1.
Let ( ) be a normalised eigenfunction corresponding to , so that

( ) =

Z 1

0

( ) ( )

and therefore

| ( )| | |

Z 1

0

( )| ( )| (10.7.5)

The function ( ), being orthogonal to 1( ), cannot retain one sign in (0,1) so
that there must be strict inequality in (10.7.5). Therefore

| ( )| | |

Z 1

0

( )| ( )|

and thus
(| | | |) | | (| |)

But, by (10.7.2)
(| | | |) 1 (| |)

so that | | 1: 1 is the eigenvalue of smallest modulus and is positive and
simple.
Starting from a kernel ( ) on [0 1]× [0 1] we may use the minors intro-

duced in Section 10.5 to define a compound kernel (x s) defined on ¯ × ¯,
where ¯ is the -dimensional simplex

0 1 2 · · · 1

If x is an interior point of ¯ then

0 1 2 · · · 1 so that x Q

The place of the Cauchy-Binet Theorem is taken by

Theorem 10.7.2 If three kernels ( ) ( ) ( ) defined on [0 1] ×
[0 1] are related by

( ) =

Z 1

0

( ) ( ) [0 1]



10. Green’s Functions and Integral Equations 269

then

(x; s) =

Z
¯

(x; t) (t; s) t x s ¯

where the integration is taken over the simplex ¯.

Proof. The result follows immediately from splitting the integral over the
-dimensional [0 1]× [0 1]× [0 1] into ! integrals over simplices 0 1

2 · · · 1.

Theorem 10.7.3 If ( )1 and ( ( ))1 are eigenvalues and corresponding eigen-
functions of (10.7.1), then

(x) =

Z
¯

(x; s) (s) s (10.7.6)

where

= 1 2 (s) = (s; ) = ( 1 2 ) and 1 1 2 · · ·

Proof. Equation (10.7.1) shows that
(x; ) = 1 2

R
¯ (x; s)u(s; ) s

We may now extend Perron’s Theorem to equation (10.7.3).

Theorem 10.7.4 If the continuous kernel ( ) satisfies

(x; s) 0 (x;x) 0 x s Q

then the eigenvalue of (10.7.3) which has smallest modulus is positive and simple;
the corresponding eigenfunction (x) has no zero in Q.

Proof. The proof in the situation in which (x; s) is symmetric is the
analogue of that in Theorem 10.7.1.
Now we may prove

Theorem 10.7.5 If the continuous kernel ( ) satisfies

(x; s) 0 (x;x) 0 x s I

then all the eigenvalues of equation (10.7.1) are positive and simple, i.e., 0

1 2 · · · , and the corresponding eigenfunctions form a Markov sequence
in .

Proof. Order the eigenvalues of (10.7.1) so that | 1| | 2| · · · then the
eigenvalue of (10.7.3) that has smallest modulus is 1 2 . Thus Theorem
10.7.4 states that

a) 1 2 0 b) 1 2 | 1 2 1 +1|
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for all = 2 3 . Thus in turn we have the following: 1 0 1

| 2| 1 2 0 and thus 1 2 1 2 | 1 3| = 1| 3| 1 2 3 0
and thus 2 3, and so on. Theorem 10.7.3 and 10.7.4 shows that the
eigenfunction corresponding to the lowest eigenvalue, namely

(x; ) = ( 1 2 ; 1 2 )

has no zeros in , and in fact has fixed sign on I, and this is the necessary and
su cient condition for the sequence ( ) to form a Markov sequence on .
Note that we have shown that if ( ) is an oscillatory kernel then the

corresponding operator is a strictly positive (compact self-adjoint linear) op-
erator. Thus, Theorem 10.3.9 applies, and the eigenfunctions form a complete
orthonormal system in .
Let us now consider the application of these results to the integral equation

governing the vibrations of the string. We recall that we wrote this equation in
two ways, namely (10.2.9) and (10.2.11); these are

( ) =

Z 1

0

2( ) ( ) ( )

and

( ) =

Z 1

0

( ) ( )

Suppose that ( ) is piecewise continuous on [0,1] then, as we showed earlier,
( ), the actual (amplitude of the) string vibration is continuous while ( ) is
piecewise continuous.
The Theorems we have proved in this section were phrased in terms of a

continuous kernel ( ), but clearly this is unnecessarily restrictive. We used
the continuity of ( ) because we assumed that only ( ) 0, ( ) 0.
It was continuity which allowed us to extend ( ) 0 to ( ) 0 for
near . If, as for the string, we have ( ) = ( ) ( ) ( ) 0 for ,
we do not need to invoke continuity. A similar argument applies to Theorem
10.7.4. We have (x; s) 0 when x s I and 1 1 2 2 · · · .
We may thus conclude that (x; ) has fixed sign on I, and hence the cor-

responding minor (x; ) formed from the ( ) of equation (10.2.9) has fixed
sign on I; the ( ) form a Markov sequence on .
Since the ( ) form a Markov sequence, they have the properties established

in Section 10.6: ( ) has exactly 1 simple nodes in (0,1), and the nodes of
( ) and +1( ) interlace. Figure 10.7.1 shows typical shapes of a string with

end conditions (0) = 0 = 0(1). Note that we may simulate the ‘free’ end
condition 0(1) = 0, by passing the string through a slider at = 1 that keeps
the string horizontal there. See Section 2.2. Alternatively, we may simulate
a free end by viewing just the left hand half of a symmetrical string stretched
between 0 and 2, and considering just the symmetrical modes; these will satisfy
0(1) = 0. The modes are qualitatively like the modes sin{( 1 2) } of a
uniform string.
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0 1

u x2( )

u x3( )

u x1( )

Figure 10.7.1 - Typical modes of a string under the conditions (0) = 0 = 0(1).

10.8 The interlacing of eigenvalues

In Section 2.9, when discussing vibration under constraint, we used a varia-
tional formulation of the matrix eigenvalue problem and, in order to discuss how
eigenvalues change under constraint, we used Courant’s minimax theorem. This
theorem may be extended to a self-adjoint compact operator in Hilbert space.
For simplicity we assume that is positive definite.
In Section 10.3 we found the greatest eigenvalue of as

1 = sup ( ) = ( 1)

where
( ) = ( ) || ||2 (10.8.1)

Then we decomposed = 1 into 1, the space spanned by 1, and its or-
thogonal complement 2 : 1 = 1 + 2, and found

2 = sup
2

( ) = ( 2)

Generally,

+1 = sup
+1

( ) = ( +1)

where is the space spanned by 1 2 , and = + +1. This
is the iterative procedure for finding the eigenvalues.



272 Chapter 10

The corresponding minimax procedure is as follows:

1 = sup ( ) = ( 1)

Now take 1 , let 1 be the space spanned by 1, and decompose as
= 1 + 2. Then

2 = inf
1

sup
2

( ) = ( 2)

Generally, let be the space spanned by 1 2 , and = + +1,
then

+1 = inf sup
+1

( ) = ( +1)

The advantage possessed by the minimax form over the iterative form is
seen most clearly when it is required to order the eigenvalues of two di erent
operators , 0. If it is known that

( 0 ) ( )

so that
0( ) = ( 0 ) || ||2 ( )

then

0
+1 = inf sup

+1

0( ) inf sup
+1

( ) = +1 : (10.8.2)

the eigenvalues of 0 are greater than or equal to those of ; we can compare the
eigenvalues because the infs and sups are taken over the same subspaces. By
contrast, in the iterative scheme, the subspace +1 is related to the operator:
it is the subspace orthogonal to the space spanned by the previously found
eigenvectors 1 2 .
If in addition

( 0 ) ( ) = ( )2 (10.8.3)

for some 0 and , then we can say more. Equation (10.8.3) implies

( ) = 0( ) if ( ) = 0

Thus
= inf

1

sup ( ) = inf
0

sup
0
+1

0( )

where 0 is the space spanned by the arbitrary 1 2 1.and , and =
0 + 0

+1. But this inf cannot be less than that taken over , so that

0
+1 (10.8.4)

The inequalities (10.8.2), (10.8.4) imply that the eigenvalues of and 0 inter-
lace in the sense

0
1 1

0
2 2 · · ·
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We now apply this theory to the eigenvalues of the string under di erent end
conditions. When translated into the language of integral equations, equation
(10.8.1) becomes

( ) =

Z 1

0

Z 1

0

( ) ( ) ( )

Z 1

0

2( )

where
( ) = ( ) ( ) ( )

and ( ) is given by (10.2.6), ( ) ( ) by (10.2.7). Since ( ) depends
on we write it as ( ). Simple algebra shows that

( 0) ( ) = 1(
0)(1 + )(1 + )

and

( 0 ) ( ) = 2(
0)(1 + (1 ))(1 + (1 ))

where

1( + 0 + 0)( + + ) = 1 = 2(
0 + + 0 )( + + )

This imples that

( 0) ( ) = 1(
0)( 1)

2 || ||2

and
( 0 ) ( ) = 2(

0)( 2)
2 || ||2

where

1( ) = (1 + ) ( ) 2( ) = (1 + (1 )) ( )

and

( ) =

Z 1

0

( ) ( )

Remembering that must be replaced by 1 , we may now apply the previous
theory as follows:

a) if 0 then
( ) ( 0) +1( ) (10.8.5)

b) if 0 then
( ) ( 0 ) +1( ) (10.8.6)

if 0 and 0 then, by combining a) and b) we find

( ) ( 0 ) ( 0 0)
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and

( ) ( 0 ) ( 0 0) +1(
0 ) +2( ) (10.8.7)

Note that we have used loose inequalities throughout, but in general the inequal-
ities will be strict, as we now show.
We obtained these interlacing results by using the Green’s function formula-

tion of the eigenvalue problem. There is another approach using a variational
formulation for the original di erential equation (10.1.1). The eigenvalue prob-
lem (10.1.1), (10.1.2) is equivalent to finding the stationary values of

( )

Z 1

0

[ 0( )]2 + 2(0) + 2(1)

subject to

( 2 )

Z 1

0

2( ) 2( ) = 1 (10.8.8)

The following argument may be made rigorous.
We introduce a Lagrange parameter and consider

( ) = ( ) ( 2 )

Then

lim
0

( + ) ( )

2
=

Z 1

0

0 0 + (0) (0) + (1) (1)

Z 1

0

2

Integrate the first term by parts, rearrange the terms, and equate the whole to
zero: Z 1

0

( 00 + 2 ) [ 0(0) (0)] (0) + [ 0(1) + (1)] (1) = 0

This will be zero for all variations ( ) only if ( ) satisfies (10.1.1) and (10.1.2).
Suppose that { ( )}1 are the eigenvalues and eigenfunctions of (10.1.1),

(10.1.2), normalised so that

( 2 ) =

Then Z 1

0

0 ( ) 0 ( ) = [ ( ) 0 ( )]10 +

= (0) (0) (1) (1) + (10.8.9)

Now consider the variational problem for equation (10.1.1) under the end con-
ditions

0(0) 0 (0) = 0 = 0(1) + (1) (10.8.10)
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where 0 . This is the problem of finding the stationary values of

0( ) =

Z 1

0

[ 0( )]2 + 0 2(0) + 2(1)

subject to (10.8.8). Expand ( ) in terms of the eigenfunctions ( );

( ) =
X
=1

( )

Now use the integral (10.8.9) to get

0( ) =
X
=1

2 + ( 0 ) 2(0) (10.8.11)

The equations giving the values of that make 0( ) stationary are

+ ( 0 ) (0) (0) = 0 = 1 2

i.e.,
= ( 0 ) (0) (0) ( )

so that the condition

(0) =
X
=1

(0)

gives

1 = ( 0 )
X
=1

2 (0)
(10.8.12)

This is the analogue of equation (4.3.21), and immediately gives the strict form
of (10.8.6):

( ) ( 0 ) +1( ) (10.8.13)

The end values, (0), cannot be zero unless = , i.e., the end = 0 is fixed;
this case is excluded by 0 . We may employ a similar procedure to get the
strict form of (10.8.5).

Exercises 10.8

1. Derive the expression (10.8.11) for the functional 0( ).

2. If ( 0 )1 are the eigenvalues of (10.1.1) subject to (10.8.10), i.e., 0 =
( 0 ), show that

1 ( 0 )
X
=1

2 (0)
=
Y
=1

µ 0 ¶



276 Chapter 10

and hence deduce that

( 0 ) 2(0) = ( 0 )
Y
=1

0

µ 0 ¶

where 0 denotes 6= .

3. How should the infinite product be interpreted so that, with 0 , the
interlacing (10.8.13), i.e., 1

0
1 2 , yields positive values of

2 (0). These examples show that knowing ( 0 )1 we may compute
the so-called norming constants ( )1 = ( 2(0))1 ; conversely, knowing
( )1 ), we may compute (

0 )1 . See Elhay, Gladwell, Golub and
Ram (1999) [85] for further discussion of eigenvector-eigenvalue relations
like (10.8.12).

10.9 Asymptotic behaviour of eigenvalues and
eigenfunctions

For the solution of inverse problems in Chapter 11 we shall need to know the as-
ymptotic behaviour of the eigenvalues and eigenfunctions ( ), and norming
constants for large . To examine this behaviour it is convenient to suppose that
( ) in equation (10.1.1) or ( ) in equation (10.1.3), are su ciently smooth
that the equation (10.1.1) or (10.1.3) may be transformed to the Sturm-Liouville
form (10.1.11) with ( ) [0 ]. We now use the numbering convention S
described in Section 10.1.
First, we need an existence uniqueness theorem. This is provided by Titch-

marsh (1962) [323].

Theorem 10.9.1 If ( ) [0 ] then, for any there exists a unique solution
( ) of (10.1.14) such that (0 ) = sin 0(0 ) = cos . For any fixed
[0 ], ( ) is an entire function of .

[Note: Here is taken to be complex variable; an entire function of a complex
variable is one that has no poles in the finite -plane.]
On the basis of this theorem we denote the solution of

00( ) + ( ( )) ( ) = 0 (10.9.1)

satisfying the condition

(0 ) = 1 0(0 ) = (10.9.2)

by ( ). We assume that is finite and that ( ) [0 ].
Write = 2, then (10.9.1) may be written

00( ) + 2 ( ) = ( ) ( )
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Treating the right hand side as a forcing function, we may use the so-called
Duhamel solution

( ) = cos + sin + 1

Z
0

sin ( ) ( ) ( ) (10.9.3)

where = 1 = . In this equation we can treat as a complex variable
and can obtain an estimate for ( ) for large | |:

Lemma 10.9.1 Let = + . Then there exists 0 0 such that for | | 0

( ) = cos +

µ
exp | |

| |

¶
(10.9.4)

uniformly with respect to in [0 ].

Proof. Put ( ) = exp(| | ) ( ), then it follows from (10.9.3) that

( ) = (cos + 1 sin ) exp( | | )+ 1

Z
0

sin ( ) exp( | |( )) ( ) ( )

(10.9.5)
Let = max0 | ( )|, then equation (10.9.5) gives

1 +
| |

| |
+
| |

Z
0

| ( )|

Thus µ
1 +

| |

| |

¶ µ
1

1

| |

Z
0

| ( )|

¶
provided that the denominator is positive, that is, provided that

| |

Z
0

| ( )|

For such ,
| ( )| exp(| | )

so that on substituting this into the integral (10.9.3) we find (10.9.4).
We may now use the estimate (10.9.4) to estimate the eigenvalues of (10.9.1)

subject to
0(0) (0) = 0 = 0( ) + ( ); (10.9.6)

we assume that , like , is finite. In Section 10.1 we showed that the eigen-
values are real; we may therefore take = 0 in (10.9.4) and find

( ) = cos + ( 1)

The eigenvalues are the solutions of

0( ) + ( ) = 0 (10.9.7)
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which for large | | becomes

sin + (1) = 0 (10.9.8)

which clearly has solutions near to integers for large . There is in fact only
one solution near any large integer for, on di erentiating (10.9.8) with respect
to , (which is justified because (10.9.8) is actually (10.9.7) which is an analytic
function of ) we find

cos + (1)

which is not zero near a large integer. We conclude that the eigenvalues which
are arranged in the order

0 1 2

eventually become positive and near the square of an integer.
To obtain a precise estimate of the eigenvalues we use

Rouché’s Theorem If ( ) and ( ) are analytic within and on a closed con-
tour and | ( )| | ( )| on , then ( ) and ( )+ ( ) have the same
number of zeros inside .

To apply this theorem we take ( ) = sin ( ) + ( ) = 0( ) +
( ), and take to be a circle with centre , radius + 1

2 , in the -plane.
Then for large enough , | ( )| | ( )| on , so that ( ) and ( ) + ( )
have the same number of zeros inside .
The eigenvalues are real, and both ( ) and ( )+ ( ) are even functions

of . This means that the zeros, , will lie on the real axis, = ± if 0;
or on the imaginary axis, = ±

p
| | if 0. The number of eigenvalues is

therefore 1
2 (number of zeros of ( ) + ( )) = 1

2 (number of zeros of ( )).
But the zeros of ( ) are ±0 ±1 ± ; there are 2 + 2, so that there are
+ 1 eigenvalues inside . We conclude that

= + (1) (10.9.9)

We may now make this estimate more precise by substituting (10.9.9) in
(10.9.8). Put = + , then

( + ) sin( ) + (1) = 0

so that
sin( ) = ( 1) i.e., = ( 1)

This means that, for largep
= + ( 1) (10.9.10)

We continue to examine this estimate. We can write (10.9.3) and its deriv-
ative as

( ) = cos {1 1
1( )}+

1 sin { + 2( )} (10.9.11)
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0( ) = cos { + 2( )} sin {1 1
1( )} (10.9.12)

where

1( ) =

Z
0

sin ( ) ( ) (10.9.13)

2( ) =

Z
0

cos ( ) ( ) (10.9.14)

Thus

1( ) = (1) 2( ) =
1

2

Z
0

( ) + (1) (10.9.15)

and
( ) = cos + ( 1) (10.9.16)

0( ) = sin + { +
1

2

Z
0

( ) } cos + (1) (10.9.17)

so that (10.9.7) may be written

cos sin + (1) = 0 (10.9.18)

where

=
1
µ

+ +
1

2

Z
0

( )

¶
(10.9.19)

Equation (10.9.18) gives

tan = 1 + ( 1)

so that on putting = + as before, we find

tan = 1 + ( 1)
= 1 + ( 1)

= = + 1 + ( 1)
(10.9.20)

We now consider the asymptotic form of the eigenfunctions. Equations
(10.9.11), (10.9.15) give

( ) = cos + 1 sin +
1

2
1 sin

Z
0

( ) + ( 1)

Substituting for from (10.9.20), we find

( ) = cos 1 sin + 1 sin + 1

2

1 sin
R
0
( ) + ( 1)

= cos + 1 ( ) sin + ( 1)
(10.9.21)
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where

( ) = +
1

2

Z
0

( ) (10.9.22)

To derive the asymptotic expression for the normalised eigenfunctions, we
compute the integral

2 =

Z
0

2( ) =

Z
0

{cos2 + 1 ( ) sin 2 } + ( 1)

Since ( ) is di erentiable,Z
0

( ) sin 2 = ( 1)

so that
2 =

2
+ ( 1) (10.9.23)

and the normalised eigenfunction is

( ) =
( )

=

r
2
{cos + 1 ( ) sin }+ ( 1) (10.9.24)

So far we have assumed only that ( ) is continuous. If we assume that ( )
has a bounded derivative, then the terms in (10.9.15) are ( 1); for exampleZ

0

sin 2 ( ) =

·
cos 2

2
( )

¸
0

+
1

2

Z
0

cos 2 0( ) = ( 1)

In this case the terms (1), ( 1) in equations (10.9.17)-(10.9.24) may be re-
placed by ( 1) and ( 2) respectively.
Now consider the case in which = , is finite. The end condition at
= 0 is (0) = 0, and the solution of (10.9.1) satisfying the condition

(0 ) = 0 0(0 ) = 1 (10.9.25)

is

( ) = 1 sin + 1

Z
0

sin ( ) ( ) ( ) (10.9.26)

and we can show as before (see Ex. 10.9.1) that

( ) = 1 sin + ( 2) (10.9.27)
0( ) = cos + ( 1) (10.9.28)

This means that the second end condition, (10.9.7), has the form

cos + ( 1) = 0

which has solutions near + 1
2 :

= +
1

2
+ (10.9.29)
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We write ( ) and 0( ) as before:

( ) = 1 sin {1 + 2( )}
1 cos 1( ) (10.9.30)

0( ) = cos {1 + 2( )}+ sin 1( ) (10.9.31)

where

1( ) =

Z
0

sin ( ) ( ) (10.9.32)

2( ) =

Z
0

cos ( ) ( ) (10.9.33)

Since ( ) has the form (10.9.27), we have

1( ) =
1

2
1

Z
0

( ) + ( 1) (10.9.34)

2( ) = ( 1) (10.9.35)

and

0( )+ ( ) = cos + 1{ +
1

2

Z
0

( ) } sin + ( 1) (10.9.36)

Putting = + 1
2 + we find, as before, that

= +
1

2
+

+ 1
2

+ ( 1) (10.9.37)

where

=
1
µ

+
1

2

Z
0

( )

¶
(10.9.38)

Similarly, if is finite and = , then

= +
1

2
+

+ 1
2

+ ( 1) (10.9.39)

where

=
1
µ

+
1

2

Z
0

( )

¶
(10.9.40)

Finally, consider the case = , = , so that the end conditions are the
Dirichlet conditions

(0 ) = 0 = ( )

Substituting from (10.9.27) we find that the second condition is

1 sin + ( 2) = 0

For large , there are as many zeros inside the circle of radius + 1
2 as there

are zeros of 1 sin ; there are 2 such zeros: ±1 ±2 ± . Thus

= + 1 +
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and we find, as before, that

= + 1 +
+ 1

+ ( 1) (10.9.41)

where

=
1

2

Z
0

( ) (10.9.42)

Again, if ( ) has a bounded derivative, then the terms ( 1) in (10.9.37),
(10.9.39), (10.9.41) may be replaced by ( 2). [Note: there are several small
errors in Levitan and Sargsjan (1991) [212], as there undoubtedly are in this
book; in their equation (2.19) in Section 1.2.4 should be + 1.]
A historical notes is in order. In the many papers on asymptotic estimates,

many di erent assumptions are made regarding the smoothness of ( ): it is
continuous; it has a bounded derivative; it has a piecewise continuous derivative;
it has a continuous derivative; etc. It is known that if ( ) is continuous it need
not have a derivative at all; there is a pathological function that is continuous
in [0 ] but is di erentiable nowhere. However, in the older treatments, e.g.,
Ince (1927) [185], and some of the Soviet literature, it is assumed implicitly that
if ( ) is said to be continuous, then it has a derivative but that this derivative
is not necessarily continuous; it is piecewise continuous. Similarly, if ( ) is
said to have continuous derivative then it has a piecewise continuous ( +1)th
derivative.
One of the most extensive studies of asymptotic estimates of the Sturm-

Liouville spectrum was carried out by Hochstadt (1961) [172], who used a variant
of the WKBmethod. He supposes that the mean value of ( ) is zero. Equation
(10.9.1) may be reduced to this form by writing it as

00( ) + (
2

( )) ( ) = 0 (10.9.43)

where

2

= 2 ¯ ( ) = ( ) ¯ ¯=
1
Z
0

( ) (10.9.44)

When are finite, and ( ) is twice continuously di erentiable, he shows that

( 2 )̄
1
2 = + 0

1 + 1
3 + ( 4) (10.9.45)

where

0 =
+

1 = 1 2 (10.9.46)

1 =
1

8

½Z
0

[ ( )]
2

+ 0( ) 0(0) + 4 (0) + 4 ( )

¾
(10.9.47)

2 =

µ
+

¶
2

+
1

3

µ
3 + 3

¶
(10.9.48)
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Note that 1 = 0 when ( ) = , i.e., ( ) = 0.
Hochstadt also considered the various special cases in which or are

infinite. See also Fix (1967) [89], Pőschel and Trubowitz (1987) [269] and
Rundell (1997) [294].
Equation (10.9.45) may be written

= + 0
1 + 1

3 + ( 4) (10.9.49)

where

0 =
1
µ

+ +
1

2

Z
0

( )

¶
= (10.9.50)

1 = 1
1

8
¯2

1

2
0¯ (10.9.51)

where 1 is given by equation (10.9.46).
Equation (10.9.49) gives

= 2 + 2 0 + 0
2 + ( 3) (10.9.52)

where 0 =
2
0 + 2 1.

Equation (10.9.23) gives a first asymptotic estimate of the so-called norming
constants

= 2(0) =
[ (0 )]2

2
: =

2
+ ( 2) (10.9.53)

Levitan (1987) [211] shows that if ( ) is twice continuous by di erentiable
then

=
2
(1 + 0

2 + ( 3) (10.9.54)

Suppose ( )0 ( )0 are the eigenvalues of (10.9.1) corresponding to the
end conditions

0(0) 1 (0) = 0 = 0( ) + ( ) (10.9.55)
0(0) 2 (0) = 0 = 0( ) + ( ) (10.9.56)

so that
1
2 = + 0

1 + 1
3 + ( 4)

1
2 = + 0

0
1 + 0

1
3 + ( 4)

After a long derivation based on Ex. 10.8.2, (with the change of numbering from
V to S) Levitan shows that

0 =
2

6
( 0

0
0)
2 + 0 +

0
1 1
0
0 0

(10.9.57)

where

= 0 0 +
X
=1

[( ) 2( 0
0
0)] (10.9.58)
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We note that (10.9.52) shows that this series converges.
Note that equation (10.9.54) is important for stating the asymptotic form of
, and not for the actual expression (10.9.54) for 0, i.e., as a way of finding
; the result in Ex. 10.8.2 (with the change of numbering from V to S) shows

how to find = 2(0) from two spectra. McNabb, Anderssen and Lapwood
(1976) [233] discuss the asymptotics of the eigenvalues when there are one or
two discontinuities in the potentials.

Exercises 10.9

1. Show that when = ,

( 2 )̄
1
2 = +

1

2
+ 0( +

1

2
) 1 + 1

3 + ( 4)

where 0 = 1 = 1 2,

1 =
1

8

½Z
0

[ ( )]2 + 4 ( ) + 0(0) + 0( )

¾

2 =

µ ¶3
+
1

3

3

10.10 Impulse responses

Consider a rod of density , Young’s modulus , cross section ( ) and length
1, free at = 0 and fixed at = 1. Suppose that at time 0 = 0 the rod is at
rest, and is then set in motion by a force ( 0) applied at the end = 0. The
governing equations are

( )
2

02
=

µ
( )

¶
(10.10.1)¯̄̄

¯
=0

= ( 0)

(1 0) = 0 0 0

( 0) = 0 =
0
( 0) 0 1

Instead of real time 0 we use the scaled time = 0 =
p

, and put
( ) = ( 0) . We may replace the end force ( ) by a distributed loading
( ) over a small interval (0 ), so that

( ) = lim
0

µ
( )
¶
= ( ) ( )

so that equation (10.10.1) becomes

( )
2

2
=

µ
( )

¶
+ ( ) ( ) (10.10.2)
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Take the Laplace transform of this equation, and put

( ) =

Z
0

exp( ) ( ) ( ) =

Z
0

exp( ) ( )

to obtain
2 ( ) ( ) = ( ( ) 0)0 + ( ) ( ) (10.10.3)

The solution of this equation that satisfies the end condition (1 ) = 0 may
be written

( ) = ( ) ( )

so that, by the convolution theorem

( ) =

Z
0

( ) ( ) (10.10.4)

where ( ) is the inverse Laplace transform of ( ), i.e.,

( ) =
1

2

Z
( ) exp( )

where is a line ( + ) lying to the right of the singularities of
( ). The function ( ) is called the (displacement) impulse response

function. Clearly, when ( ) is a unit impulse, i.e., ( ) = ( ), then equation
(10.10.4) shows that ( ) = ( ).
If ( 2 ( ))0 are the (scaled) eigenvalues and normalised eigenfunctions

of the free-fixed rod, i.e.,

( ( ) 0 ( ))0 + 2 ( ) ( ) = 0

0 (0) = 0 = (1)

then we may expand ( ) in the form

( ) =
X
=1

( ) ( )

so that equation (10.10.3) becomes

X
=1

( 2 + 2 ) ( ) ( ) ( ) = ( ) ( )

Multiplying though by ( ) and integrating over (0,1), using orthogonality and
the result Z 1

0

( ) ( ) = (0)

we obtain
( 2 + 2 ) ( ) = ( ) (0)
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and

( ) =
X
=1

(0) ( )
2 + 2

for which the inverse is

( ) =

P (0) ( ) sin 0

0 0

(10.10.5)

For a uniform rod

( ) = 2 cos

·
(2 1)

2

¸
=
(2 1)

2

so that

( ) =
4X

=1

cos
h
(2 1)

2

i
sin
h
(2 1)

2

i
(2 1)

i.e.,

( ) =
1

2

½ ·
( + )

2

¸ ·
( )

2

¸¾
(10.10.6)

where

( ) =
4X

=1

sin(2 1)

2 1
(10.10.7)

Now ( ) is discontinuous at 0 ± ±2 , and

( ) = ( ) (10.10.8)

(Gradshteyn and Ryzhik (1965), 1.4421)
From equation (10.10.8) we may deduce the behaviour of the rod subjected

to an impulse at = 0. Thus if , then + 2 2, so that·
( + )

2

¸
= 1

·
( )

2

¸
= 1

and ( ) = 0. This may be interpreted as showing that the e ect of the
impulse moves along the rod with scaled speed 1, i.e., real speed , and the
rod is at rest for . Analysis of the partial di erential equation (10.10.2)
shows that this result is true even when ( ) is not uniform (Courant and
Hilbert (1962)). For the uniform rod, behind the initial disturbance, i.e., for

+ 2 we have ( ) = 1 2. When the disturbance reaches the end
= 1 and starts to return we have·

( + )

2

¸
= 1

·
( )

2

¸
= 1
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so the step 1 2 which had stretched from = 0 to = 1 is annihilated starting
from = 1. So the process continues indefinitely.
Sometimes it is convenient to use velocity and (scaled) stress as variables,

i.e.,

( ) = ( ) = ( ) (10.10.9)

then equation (10.10.2) may be written

( ) = + ( ) ( ) ( ) = (10.10.10)

and the velocity ( ) is given by

( ) =

Z
0

ˆ( ) ( ) (10.10.11)

where
ˆ( ) = ( ) (10.10.12)

must be interpreted as a generalised function.
Equation (10.10.5) shows that

ˆ( ) =

½ P
=1 (0) ( ) cos( ) 0

0 0
(10.10.13)

and thus

ˆ(0 ) =
X
=1

2 (0) cos( ) 0

For the uniform rod, therefore

ˆ(0 ) =

(
2
P

=1 cos
h
(2 1)

2

i
0

0 0

We note that (Gradshteyn and Ryzhik (1965), 1.4421)Z
ˆ(0 ) =

Z
0

ˆ(0 ) =
4X

=1

sin[(2 1) 2]

2 1

= 1 (0 2)

so that for 0 2,
ˆ(0 ) = ( )

For larger values of , ˆ(0 ) may be evaluated by using its periodicity, ˆ(0 +

2) = ˆ(0 ). For a non-uniform rod it can be shown that

ˆ(0 ) = ( ) + ( ) (10.10.14)

where ( ) is continuously di erentiable. (See Ex. 10.10.2).
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Exercises 10.10

1. Show that ( ) given in (10.10.6) satisfies

( + ) = ( ) ( + 2 ) = ( )

and hence show that

( ) = ( )| | ( + 1)

2. Show that if the rod is such that its eigenvalues and eigenfunctions
( ) satisfy

=
(2 1)

2
[ (0)]2 = 2 = + 1

then its impulse response may be written in the form (10.10.14), where

( ) =
X
=1

½
[ (0)]2 cos( ) 2 cos

(2 1)

2

¾



Chapter 11

Inversion of Continuous
Second-Order Systems

Certain authors, speaking of their works, say, "My book," "My commentary,"
"My history," etc. They resemble middle class people who have a house of

their own, and always have "My house" on their tongue. They would do better
to say, "Our book," "Our commentary," "Our history," etc., because there is in

them usually more of other people’s than their own.
Pascal’s Pensées, 43

11.1 A historical review

It was shown in Section 10.1 that the Sturm-Liouville equation can appear in
three di erent forms. The one preferred by pure mathematicians seems to be
(10.1.14):

00( ) + [ ( )] ( ) = 0 (11.1.1)

In vibration problems, the equation

00( ) + 2( ) ( ) = 0 (11.1.2)

appears in the transverse vibrations of a taut string, while

( ( ) 0( ))0 + ( ) ( ) = 0 (11.1.3)

occurs in the longitudinal or torsional vibrations of a thin straight rod of cross
section ( ).
As with all inverse problems (see Parker (1977) [263]), the introduction of

Newton (1983) [249], Sabatier (1978) [295], Sabatier (1985) [298], Groetsch
(1993) [155], Groetsch (2000) [156] or Kirsch (1996) [193] there are three as-
pects to the inverse problem:

289
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i) existence, i.e., mathematically, is there a function ( ), ( ) or ( ), or
physically, is there a vibrating system, with the required properties?

ii) uniqueness, i.e., is there only one system with these properties?

iii) construction, i.e., how can we construct one or more systems from the given
data?

These questions, which are closely related, have been gradually elucidated
over the past seventy years. In this chapter we will use the numbering convention
S given in Section 10.1, unless we state otherwise.
Ambarzumian (1929) [3] considered the question of uniqueness in a special

case. He considered equation (11.1.1) with the symmetrical end conditions

0(0) = 0 = 0( ) (11.1.4)

and the equation
00( ) + ( ) = 0

with the same end conditions. He showed that if the two systems have the
same spectrum ( )0 , where = 2, then ( ) is identically zero. Note that
he considered symmetrical end conditions, so that only one spectrum is needed.
His proof has a defect in that it relies on a perturbation method which requires
( ) to be small.
The fundamental paper on the inverse problem for the equation (11.1.1) is

Borg (1946) [39]. He showed that if ( ) is symmetric, i.e.,

( ) = ( ) (11.1.5)

then the spectrum of equation (11.1.1) corresponding to the end conditions
(11.1.4), or to the (Dirichlet) end conditions

(0) = 0 = ( ) (11.1.6)

determines ( ) uniquely. This validates Ambarzumian’s earlier result. (See
also Hochstadt and Kim (1970) [174].)
It is important to bear in mind a fundamental feature of equations (11.1.1)-

(11.1.3); if the system is symmetrical about the mid-point = 1 2, and the end
conditions are symmetrical also then in general one spectrum corresponding to
one set of end conditions is su cient to determine it. If it is not symmetrical
then two spectra, corresponding to two di erent end conditions at one end, are
required. In this connection, Gottlieb (1986) [138] constructs some interesting
counterexamples. Recall that a uniform string fixed at both ends, i.e., a violin
string, has natural frequences that are all multiples of 1; we say that the
spectrum (in , not ) is harmonic. It is this property that makes the violin
a musical instrument: the overtones of a string are all octaves above the fun-
damental tone. A harmonic spectrum is a special case of a uniformily spaced
spectrum; here +1 = constant. The uniform string is special in the sense
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that it has a harmonic spectrum. = ( + 1) = 0 1 2 for fixed-fixed
ends, and a harmonic spectrum = ( +1 2) = 0 1 2 for fixed-free ends
(see the note on a free end at the beginning of Section 10.1). Gottlieb (1986)
[138] constructs piecewise uniform strings with one step that have one harmonic
spectrum, either for fixed-fixed or fixed-free ends. (see Section 12.4.) In each
case the other spectrum is uniformly spaced but not harmonic. His analysis
thus highlights the need to consider two spectra to ensure uniqueness.
Borg also considered equation (11.1.1) for two sets of end conditions; one set

cos (0) + sin 0(0) = 0 = cos ( ) + sin 0( ) (11.1.7)

and the other

cos (0) + sin 0(0) = 0 = cos ( ) + sin 0( ) (11.1.8)

that di er only at the end = , i.e., 6= . He showed that if sin = 0 = sin ,
so that (11.1.8) is equivalent to (11.1.6), and sin 6= 0, then two interlacing
spectra (as in Section 10.8) determine a unique nonsymmetric function ( ). If
sin sin 6= 0, then ( ) is uniquely determined by two spectra that are short
of the first eigenvalue 0 of the first spectrum corresponding to (11.1.7).
Borg’s results were extended and simplified by Levinson (1949) [207]. He

proved that if the spectra of (11.1.1) for each of the end conditions (11.1.7),
(11.1.8) are given, and if sin( ) 6= 0, that is if (11.1.7), (11.1.8) are not iden-
tical, then ( ) is uniquely determined. (Remember that this means that there
is not more than one ( ), not that there is at least one ( ).) This result was
extended by Hochstadt (1973) [175], Hochstadt (1975a) [177] who considered the
extent to which ( ) was determined when some eigenvalues correspond-
ing respectively to the end conditions (11.1.7), (11.1.8), were unknown; see also
Hald (1978a) [162], Barcilon (1974c) [16] and further references given there.
For the symmetrical case, Levinson showed that if it is known that (11.1.5)

holds almost everywhere in (0 ), and if + = , i.e., = in (11.1.2), then
( ) is uniquely determined by the spectrum for the end conditions (11.1.7).
This result includes Borg’s results for (11.1.4) ( = 0 = ) and (11.1.6) ( =
= ) as special cases.
Marchenko (1950) [218], Marchenko (1952) [219], Marchenko (1953) [220]

made these results a little sharper. He showed that if ( ) 1(0 ) and
sin( ) 6= 0, then the spectra of (11.1.1) corresponding to (11.1.7), (11.1.8)
determine ( ) and tan tan tan uniquely. A full account of the unique-
ness theorem may be found in Levinson (1949) [209]. Further results may be
found in Hochstadt (1973) [175], Hochstadt (1975b) [178], Hochstadt (1976)
[179], Hochstadt (1977) [180], Hochstadt and Lieberman (1978) [181], Sabatier
(1979a) [296], Sabatier (1979b) [297], Hald (1984) [165], Seidman (1985) [301],
McLaughlin (1986) [228] and Levitan (1987) [211], Kirsch (1996) [193].
These results are all concerned with uniqueness. Basically, they all state

that it is not possible to find more than one function ( ) corresponding to two
spectra. However, it was shown in Chapter 10 that the eigenvalues of (11.1.1),
(11.1.7), and of (11.1.1), (11.1.8) have a number of specific properties, e.g., they
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interlace, and they have the asymptotic form (10.9.22) if are finite, or one
of the others listed in Section 10.9 if or is infinite. The question is therefore
what are su cient conditions for two sets of numbers ( )0 and ( )0 to be
the spectra of equation (11.1.1) corresponding to two sets of end conditions, like
(11.1.7), (11.1.8). The conditions will, of course, depend on what conditions we
demand of ( ).
We note that, when viewed as a purely mathematical problem, this prob-

lem is very di cult, as an inspection of the literature will immediately verify.
However, the di culties arise because it is assumed that the data consist of two
infinite sequences, either ( )0 or perhaps ( )0 , where ( )0 are the
norming constants introduced in Section 10.8. In practical inverse vibration
problems, it is not possible to measure more than a (small) finite number of
frequencies. In that case we find that the su cient conditions are that the
eigenvalues are positive (they are the squares of the natural frequencies) and
interlace as discussed in Section 10.8. We make a few remarks on the mathe-
matical problem for the sake of completeness.
Levitan (1964b) [210] proved the following result. Let ( )0 ( )0 be sets

of real numbers satisfying

0 0 1 1 (11.1.9)

1
2 = + 0

1 + 1
2 + ( 3) (11.1.10)

1
2 = + 0

0
1 + 0

1
2 + ( 3) (11.1.11)

where 0 6= 0
0. Then there exists an equation of the form (11.1.1) with a

continuous real valued function ( ) and real numbers 0 such that ( )0
is the spectrum of (11.1.1) subject to

0(0) (0) = 0 = 0( ) + ( ) (11.1.12)

( )0 is the spectrum subject to

0(0) 0 (0) = 0 = 0( ) + ( ) (11.1.13)

and
0
0 0 = (

0 ) (11.1.14)

Note that the asymptotic form (11.1.10) was obtained in Section 10.9 by assum-
ing that ( ) had a bounded derivative, and that the explicit expressions for
1 given in equation (10.9.51)-(10.9.53), were obtained under the assumption
that ( ) was twice continuously di erentiable, although actually it would have
been su cient to assume that 00( ) was, say, piecewise continuous, or even just
bounded. We showed in Section 10.9 that if it is assumed only that ( ) was

continuous, then the asymptotic form of
1
2 was (10.9.20). Thus we note that

the su cient conditions (11.1.10), (11.1.11) are stronger than the necessary con-
dition (10.9.20). As Levitan (1964b) [210] shows, there is a similar mismatch
between necessary and su cient conditions if it is required that ( ) have, say,
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continuous derivatives. See Levitan and Sargsjan (1991) [212] and references
given there.
Levitan’s result is a refinement of results contained in the final section of

Gel’fand and Levitan (1951) [100]. In that paper the data for the inverse

problem are ( )0 and the norming constants ( )0 . They showed that if
1
2

had the asymptotic form (11.1.10), and had the asymptotic form (10.9.54),
then there exists a continuous function ( ) for which ( )0 are the spectral
constants corresponding to (11.1.12). Note that there are various special cases
of these results corresponding to or being infinite.
After these few remarks on su cient conditions, we come to the third ques-

tion: How does one construct ( ) from the given data? Here the fundamental
paper is Gel’fand and Levitan (1951) [100]. They show that ( ) and the con-
stants are uniquely determined from ( )0 . They develop a procedure
for reconstructing ( ) based on an earlier paper by Marchenko (1950) [218]; we
describe a modified form of this procedure in this chapter.
Three papers by Krein (1951a) [200], Krein (1951b) [201], Krein (1952) [202],

considered the question of uniqueness, existence and reconstruction for the taut
string (equation (11.1.2)). He used his theory of the extension of positive definite
functions. His results were generally stated without proof, and his methods have
been used only by a few later authors; see Gopinath and Sondhi (1971) [137],
and Landau (1983) [204].
Gopinath and Sondhi (1970) [136], in considering the determination of the

shape of the human vocal tract from accoustical measurements, encountered
Webster’s horn equation (10.10.10), and devised two methods for its inversion.
The first is in the spirit of Gel’fand and Levitan, and can be replaced by the
analysis of Section 11.6. The second is set in the time domain and relies on the
impulse response described in Section 10.10. This formulation was improved
and extended by Gopinath and Sondhi (1971) [137] and is described in Section
11.11. A recent review of the vocal tract inverse problem was given by Sondhi
(1984) [309]. The interconnections between all the various procedures for the
inversion of second-order problems have been analysed by Burridge (1980) [45];
he pays particular attention to the case in which the cross-sectional area function
( ) is discontinuous. See also Hald (1984) [165].
One of the early strands of research into actually constructing the potential

in a Sturm-Liouville problem, used some finite di erence/finite element approx-
imation to the governing equation. One of the di culties that had to be faced
was that the eigenvalues derived from a discrete approximation diverge, with in-
creasing mode number, from those predicted by the di erential equation. Paine
and his colleagues made a detailed study of this problem. See Paine and de
Hoog (1980) [258], Paine, de Hoog and Andersen (1981) [259], Paine (1982)
[256], Paine (1984) [257], Andrew and Paine (1985) [10], Andrew and Paine
(1986) [11]. A study of inverse problems for Sturm-Liouville systems modelled
as discrete (Jacobi) systems was carried out by Andersson (1970) [5]; he did not
have the results on inverse problems for Jacobi matrices at his disposal. See also
Barcilon (1974a) [14]. Hald (1972) [159] made a detaled study of the problem,
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later Hald (1977) [161] paid particular attention to the Sturm-Liouville problem
with symmetric potential. Hald (1978b) [163] discussed the discrete system ob-
tained by applying the Rayleigh-Ritz procedure to the continuous problem, and
considered the limiting case in which the number of terms in the Fourier series
expansions of ( ) tends to infinity. A modern version of such an approxima-
tion procedure may be found in Section 11.9. Barcilon (1983) [22] attempted
to derive the (continuous) density of the string from the known solution to the
inverse problem for the discrete system, but his procedure does not lend itself
to computation. A straightforward and comparitively simple solution of the
inverse Sturm-Liouville system for a rod, using a piecewise uniform model, is
given in Section 12.1.

11.2 Transformation operators

The fundamental step in the elucidation of all three aspects, uniqueness, exis-
tence and reconstruction, is the introduction of the Gel’fand-Levitan-Marchenko
transformation operator. This operator relates the solution of one Sturm-
Liouville equation to another.
Consider two equations, a base equation

00( ) + ( ( )) ( ) = 0 0 (11.2.1)

subject to the single boundary condition

0(0) (0) = 0 (11.2.2)

and another equation

00( ) + ( ( )) ( ) = 0 0 (11.2.3)

subject to another boundary condition

0(0) 0 (0) = 0 (11.2.4)

We seek an operator of the form

( ) = ( ) +

Z
0

( ) ( ) (11.2.5)

that transforms a solution of (11.2.1), (11.2.2) into a solution of (11.2.3), (11.2.4).
Di erentiation of (11.2.5) gives

0( ) = 0( ) + ( ) ( ) +

Z
0

( ) ( )

where

( ) = ( )
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A second di erentiation gives

00( ) = 00( ) +
( )

( ) + ( ) 0( ) + ( ) ( ) +

Z
0

( ) ( )

This is the first term in (11.2.3). The last term is

( ) ( ) = ( ) ( ) +

Z
0

( ) ( ) ( )

This leaves the second term:

( ) = ( ) +
R
0

( ) ( )

= ( ) +
R
0

( ){ ( ) ( ) 00( )}

We evaluate the last integral in this expression by parts twice:Z
0

( ) 00( ) = [ ( ) 0( ) ( ) ( )]0 +

Z
0

( ) ( )

Collect the terms in these equations to write (11.2.3); the result is as follows:

00( ) + ( ( )) ( ) +
( )

( ) + ( ) 0( )

+ ( ) ( ) [ ( ) 0( ) ( ) ( )] ==0

+

Z
0

{ ( ) ( ) + ( ( ) ( )) ( )} ( )

Now use the facts that ( ) satisfies (11.2.1), and that

( ) + ( ) =
( )

to obtain½
2 ( )

+ ( ) ( )

¾
( ) + ( 0) 0(0) ( 0) (0) +

Z
0

{ ( ) ( ) + ( ( ) ( )) ( )} ( )

This equation is satisfied identically by taking

( ) ( ) + ( ( ) ( )) ( ) = 0 0 (11.2.6)

( ) =
1

2
( ( ) ( )) 0 (11.2.7)

( 0) 0(0) ( 0) (0) = 0 0 (11.2.8)
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Now we examine the boundary conditions at = 0. Clearly

(0) = (0) 0(0) = 0(0) + (0 0) (0) (11.2.9)

If 0 are finite then (0) 6= 0, 0(0) = (0) imply

( 0) ( 0) = 0 0 (11.2.10)

and
0(0) = ( + (0 0)) (0)

so that
(0 0) = 0 (11.2.11)

and hence, with (11,2,7),

( ) = 0 +
1

2

Z
0

( ( ) ( )) (11.2.12)

Note that if = , so that (0) = 0, then equation (11.2.8) implies

( 0) = 0 0 (11.2.13)

and ( ) satisfies (0) = 0, i.e., 0 = . In that case equation (11.2.12) is
replaced by

( ) =
1

2

Z
0

( ( ) ( )) (11.2.14)

With this kernel ( ), the equation (11.2.5) transforms a solution of
(11.2.1), (11.2.2) into a solution of (11.2.3), (11.2.4).

11.3 The hyperbolic equation for ( )

The kernel ( ) = ( ) satisfies the hyperbolic equation (11.2.6), i.e.,

+ ( ( ) ( )) = 0 0 (11.3.1)

in the upper triangle OIC shown in Figure 11.3.1. The characteristics for this
equation are the lines ± = . The kernel has the value (11.2.12), i.e.,

( ) = 0 +
1

2

Z
0

( ( ) ( )) (11.3.2)

on the characteristic = , and satisfies the condition (11.2.10), i.e.,

( 0) ( 0) = 0 0 (11.3.3)

on the -axis.
First we discuss how ( ) may be continued to the lower triangle OID so

that the boundary condition (11.3.3) is satisfied. There are three cases:
i) h = 0. Now ( 0) = 0 so that we continue ( ) to the lower triangle as
an even function of , i.e.,

( ) = ( );
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0

y
C

D

I
x

x = π

x y= −

x y=

Figure 11.3.1 - 0 in the upper triangle .

then

( ) = 0 +
1

2

Z
0

( ( ) ( ))

ii) h = . Now ( 0) = 0 so that we continue ( ) as an odd function of
, i.e.,

( ) = ( )

so that, according to (11.2.14),

( ) = ( ) =
1

2

Z
0

( ( ) ( ))

iii) h is finite and not zero. Define

( ) = exp( ) ( ) (11.3.4)

then
( 0) = ( 0) ( 0) = 0

This means that we should continue ( ) as an even function of . The values
of ( ) on the characteristics are

( ) = ( ) = exp( ) ( )

where ( ) is given by (11.2.12). Since ( ) satisfies (11.3.1), ( )
satisfies

2 ( ) + ( ( ) ( ) 2) = 0 (11.3.5)
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throughout the triangle OCD, i.e., 0 | | . Here

( ) =

½
+1 0
1 0

and ( ) = ( ).

The equations (11.3.1), (11.3.5) are hyperbolic partial di erential equations.
The existence and uniqueness properties of such equations are the subject matter
of treatises on p.d.e.’s. In keeping with the philosophy of this book, we shall
not assume that the reader is acquainted with these properties, and will derive
them ab initio.

There are two fundamental questions regarding the p.d.e.’s (11.3.1) and
(11.3.5): what boundary data lead to a unique solution? How can we find
this unique solution from the boundary data? It transpires that there are two
kinds of suitable boundary data, giving rise to two problems:

The Goursat problem in which is given on the characteristics = ± .

The Cauchy problem in which and are given on the side CD, i.e., on
= .

In both these cases we can reduce the solution of the p.d.e. to the solution
of a Volterra integral equation, and we can show that this equation has a unique
solution.

The Goursat problem

We first consider cases i) and ii); the governing equation is equation (11.3.1).

Stokes’ theorem in 2-D is

Z Z µ
2 1

¶
=

Z
1 + 2 (11.3.6)

where is the boundary of the region , traversed counter-clockwise.

Apply this theorem to the rectangle in Figure 11.3.2, with 1 =

2 = . Then

2 1
= = ( )

where

( ) = ( ) ( )

The L.H.S. of equation (11.3.6) is thus

Z Z
( ) ( ) (11.3.7)
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A

0

B

Q

P

η = const

ξ = const

ξ = 0

η = 0

Figure 11.3.2 - The rectangle .

where is the rectangle . The R.H.S. of equation (11.3.6) is made up
of four line integrals, along + + + . To evaluate these integrals,
it is convenient to introduce the so-called characteristic coordinates

=
1

2
( + ) =

1

2
( ) (11.3.8)

Equivalently,
= + = (11.3.9)

The partial derivates in these coordinates are

= + = +

= + =

Consider the integral along

1 =

Z
1 + 2

On , = = , so that = = , and 1 + 2 =
( ) = , so that

1 =

Z
= [ ] = ( ) + ( )
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On , = = = , so that

2 =

Z
= [ ] = ( ) ( )

Similarly
3 = ( ) ( ) 4 = ( ) ( )

Thus the R.H.S. of (11.3.6) is

2 ( ) 2 ( ) 2 ( ) + 2 ( )

since has coordinates (( + ) 2 ( + ) 2) and has coordinates
( ) 2 ( ) 2, we find

( ) = (( + ) 2 ( + ) 2)) + (( ) 2 ( ) 2)

(0 0) +
1

2

Z Z
( 0 0) ( 0 0) 0 0 (11.3.10)

This equation expresses ( ) as a sum of two parts: the first, comprising the
first three terms, is made up of data on the characteristics; the second is an
integral over the rectangle .
In the characteristic coordinates, equation (11.3.10) is

( + ) = ( ) + ( ) (0 0)

+
1

2

Z
0

(Z
0

( + ) ( + )

)
(11.3.11)

which has the form of a Volterra integral equation. We note that when =
0 ( ) = ( ); when = ( ) = ( ) and (0 0) = 0.
Equation (11.3.11) has a unique solution for given data on the characteristics.

For if there were two solutions, then their di erence, = 1 2, would satisfy

( ) =
1

2

Z
0

(Z
0

( + ) ( + )

)
(11.3.12)

The classical way to show that this equation has only the trivial solution is as
follows. The function is bounded: | | 2 . This means that = | |
satisfies

( ) ( )

where

( ) =

Z
0

Z
0

( + )

Suppose 0 , and 0 , then

( ) ( )
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so that
( ) 2 ( )

If ( ) is not identically zero in [0 ] × [0 ], then this inequality is clearly
impossible if 2 1. Choose 0 so that 2

0 1, then ( ) 0 in
[0 0]× [0 0]. Now suppose ( ) [0 2 0]× [0 2 0], then for ( ) outside
[0 0]× [0 0] we have

( ) ( 2 0 2 0)

so that
( 2 0 2 0) ( 2 0 2 0)(2

2
0

2
0)

which, with 2
0 1, provides a contradiction. By continuing this argument

inductively we deduce that ( ) = 0, i.e., ( ) = 0.
The extension of this argument to case iii), when is finite but not zero, is

a little complicated but not essentially di cult. Proceeding exactly as before
we find the equation corresponding to (11.3.10) to be

( ) = (( + ) 2 ( + ) 2) + (( ) 2 ( ) 2)

(0 0) +
1

2

Z Z
( 0 0) ( 0 0) 0 0

Z Z
( 0) 0 0 (11.3.13)

where
( ) = ( ) ( ) + 2 (11.3.14)

and ( ) = ( ). Again we can use Stokes’ theorem to write the last term as
a sum of line integrals; see Ex. 11.3.1.
The resulting equation is again a Volterra integral equation with a unique

solution.
The Cauchy problem
We proceed as in the Goursat problem, but now apply Stokes’ theorem to

the triangle in Figure 11.3.3.

0

C

D

A x y( , )π π+ −

B x y( , )π π − +

P

0

C

D

A x y( , )π π+ −

B x y( , )π π − +

P

Figure 11.3.3 - The triangle when a) + and b) + .
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In cases i) and ii) the R.H.S. of equation (11.3.6) is (11.3.7) while the L.H.S. is
the sum of line integrals along + + . Now

1 =
R

1 + 2 =
R

2 =
R

1 + 2 =
R

= [ ] = ( ) ( )

3 =
R

1 + 2 =
R

= [ ] = ( ) ( )

This yields the Volterra integral equation

2 ( ) = ( + ) + ( + )

Z +

+

( ) +

Z Z
( 0 0) ( 0 0) 0 0 (11.3.15)

where now is the triangle . Again, in case iii) there is an extra termZ Z
( ) 0 0 (11.3.16)

to be added to the R.H.S. of (11.3.15). This is given in Ex. 11.3.3.
In all cases ( ) is given as the solution of a Volterra integral equation;

the solution is uniquely determined by the values of and on the line ,
i.e., = , .
We now show how the uniqueness of solution of the hyperbolic equation for
( )may be used to show the uniqueness of an inverse problem for the Sturm-

Liouville equation.

Exercises 11.3

1. Show that the integral in (11.3.13) may be written

=

Z Z
( ) = 2

Z
0

( 0)

Z
( + ) +

Z
0

( + )

+

Z
0

( + ) +

Z
0

( ) +

Z
0

( )

2. Show that the integral in (11.3.16) may be written

=

Z Z
( ) =

Z
( + )

Z
( + ) +

Z
( + ) 2

Z
+

( 0)
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when 0 + and

=

Z Z
( ) =

Z
( + )

Z
( + )

when 0 + .

11.4 Uniqueness of solution of an inverse prob-
lem

With the uniqueness results of Section 11.3 we are now in a position to show
that the potential ( ) in (11.2.1) is uniquely determined by two spectra corre-
sponding to two di erent conditions at one end of (0 ).

Theorem 11.4.1 Suppose that there were two potentials ( ), ( ) [0 ]
with the following properties:
i) 00 + ( ) = 0 0(0) 1 (0) = 0 =

0( ) + 1 ( )
has spectrum ( )0 ;
ii) 00 + ( ) = 0 0(0) 1 (0) = 0 =

0( ) + 0
1 ( )

has spectrum ( )0 ;
iii) 00 + ( ) = 0 0(0) 2 (0) = 0 =

0( ) + 2 ( )
has spectrum ( )0 ;
iv) 00 + ( ) = 0 0(0) 2 (0) = 0 =

0( ) + 0
2 ( )

has spectrum ( )0 .
If 2 6= 0

2, then ( ) = ( ), 1 = 2, 1 = 2,
0
1 =

0
2.

Proof. First we use the known asymptotic forms for the eigenvalues. Equa-
tion (10.9.20) states that p

= + 1 + ( 1)

where

=
1
( + +

1

2

Z
0

( ) )

Thus, since i) and iii) have the same spectrum

1 + 1 +
1

2

Z
0

( ) = 2 + 2 +
1

2

Z
0

( ) (11.4.1)

and because ii) and iv) have the same spectrum

1 +
0
1 +

1

2

Z
0

( ) = 2 +
0
2 +

1

2

Z
0

( ) (11.4.2)

Now we transform a solution ( ) of i) corresponding to the eigenvalue ,
into a solution ( ) of iii) with the same eigenvalue:

( ) = ( ) +

Z
0

( ) ( )
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and, according to (11.2.11), (11.2.12), we have

(0 0) = 2 1 (11.4.3)

( ) = 2 1 +
1

2

Z
0

( ( ) ( )) (11.4.4)

We examine the boundary condition at = :

( ) = ( ) +
R
0

( ) ( )

0 ( ) = 0 ( ) + ( ) ( ) +
R
0

( ) ( )

so that

0 ( ) + 2 ( ) = 0 ( ) + 1 ( ) + { ( ) + 2 1} ( )

+

Z
0

{ ( ) + 2 ( )} ( )

Now 0 ( ) + 1 ( ) = 0, and equations (11.4.1), (11.4.4) show that

( ) + 2 1 = 0 (11.4.5)

Thus Z
0

{ ( ) + 2 ( )} ( ) = 0 (11.4.6)

But the { } form a complete orthogonal set on (0 ), so that

( ) + 2 ( ) = 0 (11.4.7)

Applying the same argument to ii) and iv), we find

( ) + 0
2 ( ) = 0 (11.4.8)

and, since 2 6= 0
2 by hypothesis,

( ) = 0 = ( ) (11.4.9)

This holds for 0 , and therefore also for . But in Section
11.3 we showed that if ( ) satisfies this condition, then ( ) 0 in
0 | | . Now equation (11.2.7) implies ( ) = ( ), (11.4.3) implies
1 = 2, (11.4.5) implies 1 = 2, (11.4.2) implies 0

1 =
0
2.

In this proof we have assumed that 1 2 1 2
0
1

0
2 are all finite, but

the argument may easily be adapted to the situation in which some of these are
infinite.
As we noted in the historical review, if it is known that ( ) is symmetric

about 2 , i.e., ( ) = ( ), then ( ) is uniquely determined from one
spectrum corresponding to symmetrical end conditions, i.e., = . For since
the governing equation (11.1.1) and the end conditions

0(0) (0) = 0 = 0( ) + ( ) (11.4.10)
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are invariant under the transformation , the solutions of (11.1.1)
satisfying (11.4.10) must satisfy ( ) = ± ( ). Since the lowest eigenfunction
0( ) can have no zero in (0 ), the even eigenfunctions must satisfy 0( 2 ) = 0,
while the odd ones must satisfy ( 2 ) = 0. This means that the given spectrum
( )0 must split into two: ( 2 )0 corresponding to

0(0) (0) = 0 = 0(
2
)

and ( 2 +1)0 corresponding to

0(0) (0) = 0 = (
2
)

We thus have two spectra which will uniquely determine ( ) on [0 2 ]; the sym-
metry then gives ( ) on [ 2 ]. For other uniqueness theorems, see McLaughin
(1986) [228], McLaughlin and Rundell (1987) [230].
The literature on uniqueness and existence of solutions of inverse problems for

the various forms of equations (11.1.1)-(11.1.3) is so vast that one can only make
some pointers to the literature. Hald (1984) [165] is useful for a review of the
early research. Other studies of problems with discontinuous ( ), in (11.1.1) or
( ), in (11.1.3) include Willis (1985) [334], Kobayashi (1988) [197], Andersson
(1988a) [6], (1988b) [7], Coleman and McLaughlin (1993a) [62], (1993b) [63].

11.5 The Gel’fand-Levitan integral equation

The transformation operator introduced in equation (11.2.5) transforms a solu-
tion ( ) of equation (11.2.1) subject to the single end condition (11.2.2) into
a solution ( ) of a new equation (11.2.3) subject to the single end condition
(11.2.4). But, as in Section 11.4, we require more of the transformation: that
it produce a complete orthonormal set (c.o.s.) of eigenfunctions for the new
equation (11.2.3) subject to two end conditions, at 0 and .
Denote the unique solution of (11.2.1), (11.2.2) satisfying (0) = by ( ).

The eigenfunction ( ) of (11.2.1) subject to the end conditions

0(0) (0) = 0 = 0( ) + ( ) (11.5.1)

is therefore
( ) = ( (0)) (11.5.2)

We are going to construct new orthonormal eigenfunctions ( ) of (11.2.3) sub-
ject to end conditions

0(0) 0 (0) = 0 = 0( ) + 0 ( ) (11.5.3)

from equation (11.2.5). We denote the new eigenvalues by ( )0 and write

( ) = ( (0)) (11.5.4)

( ) = ( ) +

Z
0

( ) ( ) (11.5.5)
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Note that ( ) is the solution of equation (11.2.1), (11.2.2) for = , while
( ) is to be the th orthonormal eigenfunctions of equation (11.2.3) subject

to (11.5.3).
The eigenfunctions { }0 of the base problem do form a c.o.s. on (0 ).

This means that if 2(0 ), then

|| ||2
Z
0

[ ( )]2 =
X
=0

2 (11.5.6)

where

= ( ) =

Z
0

( ) ( ) (11.5.7)

This implies also that if 2(0 ), then

( ) =

Z
0

( ) ( ) =
X
=0

where = ( ).
The eigenfunctions { }0 are to form a c.o.s. on (0 ), so that

|| ||2 =
X
=0

02 (11.5.8)

where 0 = ( ). Equation (11.5.5) shows that

= + (11.5.9)

where is the operator defined by

=

Z
0

( ) ( ) (11.5.10)

Now

( ) =

Z
0

½Z
0

( ) ( )

¾
( )

and on interchanging the order of integration we see that

( ) =

Z
0

½Z
( ) ( )

¾
( )

The adjoint operator is defined by

( ) = ( )

so that

=

Z
( ) ( ) (11.5.11)
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Return to equation (11.5.9); we can write

0 = ( ) + ( )

so that the equation

0 =
X
=0

02
X
=0

2

can be written

0 =
X
=0

{( )2 + 2( )( ) + ( )2 ( )2} (11.5.12)

Put = then, since 2(0 ), we have

( )
X
=0

( )( ) = 0

and this is equivalent to

( )
X
=0

( )( ) = 0 (11.5.13)

Similarly

( )
X
=0

( )2 = 0

is equivalent to

( )
X
=0

( )2 = 0 (11.5.14)

Now form the combined equation (11.5.12) + 2*(11.5.13) + (11.5.14) and
group the terms to get

0 = 1 + 2 + 3 + 4 (11.5.15)

where
1 =

P
=0{( )2 ( )2}

2 = 2
P

=0{( )( ) ( )( )}

3 =
P

=0{( )2 ( )2}

4 = 2( ) + ( )

In order to represent these products of integrals as multiple integrals we use the
simple identityZ

0

( )

Z
0

( ) =

Z
0

Z
0

( ) ( ) +

Z
0

Z
0

( ) ( )
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obtained by dividing the square (0 )× (0 ) into two triangles. This yields

1 = 2
R
0

R
0
( ) ( ) ( )

2 = 2
R
0

R
0
( ) ( )

R
0

( ) ( )

+2
R
0

R
0
( ) ( )

R
0

( ) ( )

3 = 2
R
0

R
0
( ) ( )

R
0

( )
£R
0

( ) ( )
¤

4 = 2
R
0

R
0
( ) ( ) ( ) + 2

R
0

R
0

R
0

( ) ( )

where

( ) =
X
=0

{ ( ) ( ) ( ) ( )} (11.5.16)

so that equation (11.5.15) givesZ
0

Z
0

( ) ( )

½
( ) +

Z
0

( ) ( )

¾
= 0 (11.5.17)

where

( ) = ( ) +

Z
0

( ) ( ) + ( ) (11.5.18)

Since ( ) is an arbitrary function in 2(0 ), equation (11.5.17) implies

( ) +

Z
0

( ) ( ) = 0 0 (11.5.19)

For fixed , this is a homogeneous Volterra integral equation for ( ), and we
may argue exactly as in Section 11.3 that its only solution is ( ) = 0, for
0 . Thus

( ) +

Z
0

( ) ( ) + ( ) = 0 0 (11.5.20)

This is the Gel’fand-Levitan integral equation for ( ). Note that for fixed
, (11.5.19) is a Volterra equation for ( ); on the other hand, for fixed ,
(11.5.20) is a Fredholm equation for ( ).
There is one matter in this analysis that needs to be examined: the conver-

gence of the series in equation (11.5.16). There are two ways to approach this
question: examine the asymptotic form of the terms in the series and find the
conditions under which the series is convergent; make an assumption that will
obviate the question by turning the infinite series into a finite one. We shall
follow the latter course.
We started this section by taking a base problem consisting of equation

(11.2.1) and end conditions (11.5.1); the c.o.s. of eigenfunctions of this problem
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is { }0 . We then used the operator to construct a new c.o.s. of eigen-
functions { }0 for a new problem. The orthonormal eigenfunctions were
constructed from the solutions = ( (0)) of the base equation (11.2.1)
with = , and with initial conditions (0) = (0), 0 (0) = (0). Now
we introduce the Truncation Assumption

= (0) = (0) for = + 1

This means that, for = + 1

( ) = ( (0)) = ( (0)) = ( )

so that

( ) =
X
=0

{ ( ) ( ) ( ) ( )} (11.5.21)

We now prove

Theorem 11.5.1 Let ( ) be given by (11.5.21), and suppose that ( )
is continuous in , 0 , for each fixed , 0 . Then there
exists at most one solution of equation (11.5.20).

Proof. We need to show that the homogeneous Fredholm integral equation

( ) +

Z
0

( ) ( ) = 0 0 (11.5.22)

has only the zero solution. Multiply (11.5.22) by ( ) and integrate from 0 to
to obtain Z

0

[ ( )]2 +

Z
0

Z
0

( ) ( ) ( ) = 0 (11.5.23)

The function

( ) =

½
( ) 0
0

is in 2(0 ), so that

Z
0

[ ( )]2 =

Z
0

[ ( )]2 =
X
=0

2

where

=

Z
0

( ) ( ) =

Z
0

( ) ( )

On the other hand

Z
0

Z
0

( ) ( ) ( ) =
X
=0

( 2 2 ) =
X
=0

( 2 2 )
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where

=

Z
0

( ) ( ) =

Z
0

( ) ( )

and we have used ( ) = ( ) for to give = for .
Equation (11.5.23) now gives X

=0

2 = 0

that is
= 0 = 0 1

We must show that this implies ( ) = 0. This is equivalent to showing that
= 0, = 1 2 implies = 0, = 0 1 2 Now

= ( ) =
X
=0

= 0 1 2 (11.5.24)

where = ( ). If , then = and = , so that
= 0 implies = 0. Thus the sum in (11.5.24) is over = 0 1 , and

we have the + 1 equations

0 =
X
=0

= 0 1

If there is a pair 0 0 such that 0 = 0 then equation (11.5.24) with = 0

gives 0 = 0 so that, when 6= 0, the term with = 0 may be omitted. This
means that we need consider only those for which 6= . Renumber
these 0 1 0. We need to show that these 0 + 1 equations have only the
trivial solution, i.e., their determinant of coe cients is not zero.
The equations

00 + ( ) = 0 = 00 + ( )

yield
( ) = 00 00

so that
( ) = [ 0 0 ]0

Since and satisfy the same condition at = 0, we have

( ) = (11.5.25)

where
= 0 ( ) + ( ) = ( )

Both are non-zero, and thus the determinant of coe cients is

det( ) =

0Y
=1

det(1 ( ))



11. Inversion of Continuous Second-Order Systems 311

and it may easily be shown (Ex. 11.5.1) that this is non-zero when, as we know,
6= 0 for all .

We have proved that, under the Truncation Assumption (TA), the Gel’fand-
Levitan integral equation has at most one solution. In fact it is a degenerate
integral equation with a solution of the form

( ) =
X
=0

{ ( ) ( ) ( ) ( )} (11.5.26)

On substituting (11.5.26) into (11.5.20) and equating multiples of ( ) ( )
to zero we find

( ) +
X
=0

{ ( ) ( ) ( ) ( )}+ ( ) = 0 (11.5.27)

( ) +
X
=0

{ ( ) ( ) ( ) ( )}+ ( ) = 0 (11.5.28)

for = 0 1 , where

( ) = ( ) =
R
0

( ) ( )

( ) =
R
0

( ) ( )

( ) = ( ) =
R
0

( ) ( )

We may verify (Ex. 11.5.2) that these equations do have a unique solution, as
stated by Theorem 11.5.1.
When we first introduced the transformation operator in Section 11.2, we

showed that ( )must satisfy the hyperbolic di erential equation (11.2.6). In
this section we showed that ( ) must satisfy the integral equation (11.5.20).
In order to relate these two equations we note (Ex. 11.5.3) that ( ) given
by (11.5.21) satisfies the hyperbolic equation

( ) ( ) + ( ( ) ( )) ( ) = 0 (11.5.29)

It is not di cult to show (Ex. 11.5.4) that if satisfies (11.5.20) then it satisfies
the di erential equation (11.2.6), where ( ) is given by (11.2.7)

Exercises 11.5

1. Show that if 6= for all = 0 1 , then the matrix =
( ) = (1 ( )) is non-singular.

2. Show that the equations (11.5.27), (11.5.28) have a unique solution. Hint:
consider the homogeneous equations obtained by omitting ( ) ( );
multiply the first by ( ), the second by ( ) and add the equations
for = 0 1 .
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3. Show that if ( ) is given by (11.5.21) then it satisfies equation (11.5.29).

4. Show that if ( ) satisfies equation (11.5.20) then

( ) +

Z
0

( ) ( ) + [ ( 0) (0 ) ( 0) (0 )] = 0

where

( ) ( ) ( ) + ( ( ) ( )) ( )

and ( ) is related to ( ) by equation (11.2.7). Show that the term in
square brackets is zero, and hence, by Theorem 11.5.1, ( ) = 0 for
0 ; this is equation (11.2.6).

5. Show that the solutions of equations (11.5.26), (11.5.27) may be written

( ) = { ( ) +
R
0

( ) ( ) } = ( )

( ) = { ( ) +
R
0

( ) ( ) }

11.6 Reconstruction of the Sturm-Liouville sys-
tem

First, we recapitulate what we have achieved in this chapter so far. We have
shown that by starting with one system

00( ) + ( ( )) ( ) = 0 (11.6.1)

0(0) (0) = 0 = 0( ) + ( ) (11.6.2)

with eigenvalues ( )0 and c.o.s. of eigenfunctions ( )0 we may, by introduc-
ing the operator , form a new system

00( ) + ( ( )) ( ) = 0 (11.6.3)

0(0) 0 (0) = 0 = 0( ) + 0 ( ) (11.6.4)

with eigenvalues ( )0 and c.o.s. of eigenfunctions ( )0 given by equation
(11.2.5). In order to find the new system we need the ( )0 and the end values
( (0))0 of the eigenfunctions ( ) which are yet to be found.
We can find these, as in Section 10.8, from two spectra of equation (11.6.3),

( )0 corresponding to the end conditions (11.6.4), and ( )0 corresponding
to

0(0) 0
1 (0) = 0 =

0( ) + 0 ( )

Changing equation (10.8.12) to the numbering system we find that ( )0 are
the roots of

1 = ( 0
1

0)
X
=0

2 (0)
(11.6.5)
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The Truncation Assumption allows us to write this

1 = ( 0
1

0)

(X
=0

2 (0)
+

X
= +1

2 (0)
)

(11.6.6)

This gives + 1 equations

1 = ( 0
1

0)

(X
=0

2 (0)
+

X
= +1

2 (0)
)

= 0 1

(11.6.7)
for the + 1 quantities { (0)}0 . As in Ex. 11.5.1, the determinant of
coe cients is not zero. To check that the 2 (0) are indeed positive, we write
(11.6.6) as

1 ( 0
1

0)

(X
=0

2 (0)
( )

)
=
Y
=0

µ ¶
( ) (11.6.8)

where for definiteness we take 0
1

0. The functions ( ) ( ) are positive
for 0 , and the interlace according to

0 0 1 · · · (11.6.9)

Multiplying (11.6.8) throughout by ( ) and then putting = we find

( 0
1

0) 2 (0) = ( )
Y
=0

0

µ ¶
( ) (11.6.10)

so that the interlacing gives 2 (0) 0.
Taking an arbitrary value of 0

1 has the disadvantage that the
2 (0) depend

on 0
1 and

0. If 0
1 = , then equation (11.6.6) takes the simpler form

X
=0

2 (0)
+

X
= +1

2 (0)
= 0 (11.6.11)

This yields X
=0

2 (0)
= ( ) = 0 1 (11.6.12)

for 2 (0), = 0 1 .
We are now ready to proceed to the reconstruction. We need to find

( ) 0 0 such that the first + 1 eigenvalues of (11.6.3), (11.6.4) are the
specified ( )0 , and the first +1 end values of the normalised eigenfunctions
are ( (0))0 . We take the following steps:
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Step 1: Choose a base system (11.6.1), (11.6.2), and find { ( )}0 { ( )}0
given by (11.5.2), (11.5.4) respectively. Under the Truncation Assumption,
the values of +1 +2 , which are not part of the data, are taken
to be +1 +2 respectively. We must therefore choose the base
system so that +1. The simplest choice for the base system
would be to take ( ) = 0, and each to be 0 or . If for example
= 0 = then (11.6.1), (11.6.2) reduce to

00 + = 0 (11.6.13)

0(0) = 0 = ( ) (11.6.14)

and

( ) =

r
2
cos

µ
+
1

2

¶
=

µ
+
1

2

¶2
(11.6.15)

= (0) cos = 2 (11.6.16)

This choice for a base system would therefore be appropriate provided
that

¡
+ 3

2

¢2
, i.e.,

¡
+ 3

2

¢
. Since the are to be the

eigenvalues of some system, they must have the asymptotic form
given in Section 10.9. Depending on the end conditions, they must there-
fore have the form (10.9.20), (10.9.39) or (10.9.41); in any of these cases,¡

+ 3
2

¢
for large enough . If of course had the form (10.9.41),

then it would be more appropriate to take = = , so that 0 = .

Step 2: Form ( ) given by (11.5.21) and solve equations (11.5.27), (11.5.28)
for { ( ) ( )}0 .

Step 3: Form ( ) from equation (11.5.26).

Step 4: Form ( ) from equation (11.2.7).

Step 5: Find 0 from equation (11.2.11).

Step 6: Find 0.

For this final step we proceed as follows. Since ( ) = , equation
(11.5.28) gives X

=0

( ) + ( ) = 0

where, as in (11.5.23), = ( ). Di erentiating (11.5.28) w.r.t. and
putting = , we find

X
=0

0 ( ) + ( ) ( ) + 0 ( ) = 0
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Now use Ex. 11.5.5, which shows that ( ) = ( ), and the fact that
0 ( ) + ( ) = 0, to give

X
=0

{ 0 ( ) + ( ( )) ( )} = 0

But det( ) 6= 0, so that

0 ( ) + ( ( )) ( ) = 0 (11.6.17)

This means
0 = ( ) (11.6.18)

Apart from the introduction of the Truncation Assumption, the analysis
described in this chapter so far is the classical Gel’fand-Levitan inversion of the
Sturm-Liouville equation. While the method has great theoretical value, it
is impractical; the stumbling block is Step 2, the solution of the equations for
( ) ( ), and the subsequent steps 3,4 which give ( ) by di erentiating
( ).
In Section 11.9 we describe other methods that use the partial di erential

equation satisfied by ( ).

Exercises 11.6

1. Show that equation (11.2.12), (11.6.18) imply

0 1
µ

0 + 0 +
1

2

Z
0

( )

¶
=

1
µ

+ +
1

2

Z
0

( )

¶

Since we took = for = +1 , this equation must hold; see the
asymptotic form (10.9.22).

11.7 An inverse problem for the vibrating rod

The inversion procedure that we have described so far has been for the Sturm-
Liouville equation (11.2.1). As we have already pointed out, this is not the
basic equation for vibrating systems. In this section, at the risk of repetition,
we show how the ideas behind the inversion may be adapted to the rod
equation (11.1.3).
We start with a base problem

( ( ) 0( ))0 + ( ) ( ) = 0 0 (11.7.1)

write ( ) = 2( ), and scale the independent variable so that 0 .
The eigenfunctions ( ) of (11.7.1) subject to some end conditions yet to be
described, are orthonormal with weight function 2( ), i.e.,Z

0

2( ) ( ) ( ) =
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so that the functions

( ) = ( ) ( ) = 0 1 (11.7.2)

form a c.o.s. Provided that ( ) 2(0 ) ( ) = ( ) ( ) satisfies

00 + ( ) = 0 (11.7.3)

where
( ) = 00( ) ( ) (11.7.4)

Suppose that the end condition at = 0 is

0(0) (0) = 0 (11.7.5)

then the corresponding end condition for ( ) is

(0) 0(0) + ( 0(0) (0)) (0) = 0

Without loss of generality we may choose the base system so that

(0) = 1 0(0) (0) = 0 (11.7.6)

This means ( ) is the solution of (11.7.3) for = 0, that satisfies the end
condition (11.7.5) and (0) = 1, and the base rod is free at = 0.
The rod that is to be constructed is governed by

( ( ) 0( ))0 + ( ) ( ) = 0 0 (11.7.7)

Write ( ) = 2( ) ( ) = ( ) ( ), then

00 + ( ) = 0 (11.7.8)

where
( ) = 00( ) ( ) (11.7.9)

We now use the operator to link to :

( ) = ( ) +

Z
0

( ) ( ) (11.7.10)

i.e.,

( ) ( ) = ( ) ( ) +

Z
0

( ) ( ) ( ) (11.7.11)

As we know from Section 11.2, this operator transforms the solution of (11.7.3)
satisfying (0) = 1, and (11.7.5), into a solution of (11.7.8) satisfying (0) = 1
and

0(0) ( + (0 0)) (0) = 0 (11.7.12)

This last condition is equivalent to

(0) 0(0) + { 0(0) ( + (0 0) (0)} (0) = 0 (11.7.13)
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If we choose the new system so that

(0) = 1 0(0) ( + (0 0) (0) = 0 (11.7.14)

then 0(0) = 0: the new rod is free at = 0. In this case ( ) is the solution
of (11.7.8) for = 0 satisfying the conditions (11.7.14). Thus ( ) is related to
( ) by equation (11.7.10):

( ) = ( ) +

Z
0

( ) ( ) (11.7.15)

In particular, if we choose = 0 ( ) = 1, then

( ) = 1 +

Z
0

( ) (11.7.16)

The remainder of the analysis is as before: ( ) satisfies

( ) +

Z
0

( ) ( ) + ( ) = 0 0 (11.7.17)

where

( ) = ( ) ( )
X
=0

( ( ) ( ) ( ) ( )) (11.7.18)

Here ( ) = ( ) ( ) is the solution of (11.7.3) with = satisfying
(0) = (0), 0 (0) = (0). This means that (0) = (0), 0 (0) = 0.

Here ( )0 are the eigenvalues of the new system and (0) is the end value of
the corresponding normalised eigenfunction ( ), and ( ) is the normalised
eigenfunction of (11.7.1).
Again we must choose the base system so that +1. If we make the

choice ( ) = 1 = 0 = then this means = ( + 3
2).

The solution of equation (11.7.17) has the form

( ) = ( ) ( )
X
=0

{ ( ) ( ) ( ) ( )}

where ( ) ( ) satisfy

( ) +
X
=0

{ ( ) ( ) ( ) ( )}+ ( ) = 0 (11.7.19)

( ) +
X
=0

{ ( ) ( ) ( ) ( )}+ ( ) = 0 (11.7.20)
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and

( ) =

Z
0

2( ) ( ) ( ) ( ) =

Z
0

2( ) ( ) ( )

( ) =

Z
0

2( ) ( ) ( )

We note that ( ) = .
It is important to note that the ( ) generated by the construction procedure

will always be positive. We show this by supposing that ( 0) = 0 for some
0 [0 ] and arriving at a contradiction. By analogy with Ex. 11.5.5, we have

( ) ( ) = { ( ) +

Z
0

( ) ( )} (11.7.21)

( ) ( ) = { ( ) +

Z
0

( ) ( )} (11.7.22)

where ( ) = ( 1) ( ) = ( 2), and ( ) denotes the
solution of (11.7.3) for (0) = , satisfying (11.7.5). But if are solutions
of (11.7.3), then ( ) ( ) ( ) ( ) given by (11.7.21), (11.7.22), are solutions
of (11.7.8). Thus

( ) ( ) = ( ) ( 1)

( ) ( ) = ( ) ( 2)

where ( ) denotes the solution of (11.7.7) satisfying (0) = 0(0) =
0. Note that ( 1) is an unnormalised eigenfunction of the new system.
This means that if ( 0) = 0, then ( 0) = 0 = ( 0) for = 0 1 ,
and hence, from equations (11.7.19), (11.7.20), ( 0) = 0 = ( 0), for =
0 1 . But ( ) is the th eigenfunction of the base system, and when
= 0 0( ) has no zero in [0 ], except possibly at = when = .

Therefore, the only possibility is 0 = = , and then ( ) = 0 =
0 1 also. This means that ( )0 are eigenvalues of the base problem
and = = 0 1 . This contradiction implies ( 0) 6= 0. Since
(0) = 1 and ( ) is continuous, we must have ( ) 0 for [0 ].
To conclude this section we return to the end conditions. The base problem,

in the form (11.7.3), has end conditions

0(0) (0) = 0 = 0( ) + ( )

In terms of , these are

0(0) = 0 = ( ) 0( ) + ( 0( ) + ( )) ( )

where we have taken 0(0) = (0). The end condition for the form of
the new problem are

0(0) 0 (0) = 0 = 0( ) + 0 ( )
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In terms of , these are

0(0) = 0 = ( ) 0( ) + ( 0( ) + ( ( ) ( )) ( )

where we have used (11.6.18) to give 0 = ( ).
We note that while the choices (11.7.6), (11.7.14) for ( ) ( ), make the

analysis straightforward, it is not necessary to make these choices. Again, if
we know the eigenvalues of the new rod for the end = 0 free and fixed, then
we can find ( (0))0 as in Section 11.6. For examples of reconstruction, see
Gladwell and Dods (1987) [111]. See also Andersson (1988a) [6], (1988b) [7] for
a detailed study of the inverse problem for equation (11.7.1), see Knobel and
Lowe (1993) [195]. For the case in which ( ) is rough, see Coleman (1989)
[61], Coleman and McLaughlin (1993a) [62], (1993b) [63].

11.8 An inverse problem for the taut string

In Section 10.1, we showed how the three forms of the Sturm-Liouville equation,
(10.1.1), (10.1.3) and (10.1.11) were related. In approaching the taut string, it
is somewhat easier to start from (10.1.3), the rod, rather than from the standard
form (10.1.11). We recall part of the analysis in Section 10.1, and make a few
changes in the way we normalise variables.
Suppose ( ) satisfies equation (11.7.1), i.e.,

( ( ) 0( ))0 + ( ) ( ) = 0 (11.8.1)

and the end conditions

0(0) (0) = 0 = 0( ) + ( )

Scale ( ) so that Z
0 ( )

=

and introduce a new variable by the equation

=

Z
0 ( )

so that 0 , and 0( ) = 1 ( ). Put

( ) = ( ) ( ) = ( )

then ( ) 0( ) = ˙( ), and equation (11.8.1) becomes

¨( ) + 2( ) ( ) = 0

The end conditions become

˙(0) (0) (0) = 0 = ˙( ) + ( ) ( )
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We note that the new spring constants are scaled versions (0) ( ) of the
old, but that the end conditions

0(0) = 0 = ( ) (0) = 0 = ( ) (11.8.2)

remain invariant:
˙(0) = 0 = ( ) (0) = 0 = ( ) (11.8.3)

This means that, under either of these two sets of end conditions, the string has
the same eigenvalues as the rod, and in particular the asymptotic forms of the
eigenvalues are the same.
If therefore we are given two sequences of eigenvalues ( )0 ( )0 which

purport to be the eigenvalues of a taut string under the two sets of end conditions
(11.8.2), we must first scale them, (e ectively to find the length, , of the string
to which they correspond) so that they correspond to a string of length . They
will then have the asymptotic forms

= [( +
1

2
) ]2 + = [( + 1) ]2 +

Given ( )0 ( )0 , we then find the end values (0) of the normalised
eigenfunctions from the fact that

X
=0

2(0)
= 0

has roots ( )0 . We use this in truncated form, as in Section 11.6 to find
( (0))0 . We note thatZ

0

2( ) 2( ) =

Z
0

( ) 2( ) = 1

and (0) = (0). This means that we have the data needed to find the new
rod ( ) as in (11.7.7).
We now reverse the analysis given at the beginning of this section. Thus we

scale ( ) so that Z
0 ( )

=

and then introduce a new variable by

=

Z
0 ( )

0

The new mass density of the string is

( ) = ( )
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11.9 Some non-classical methods

In this section we explain in general terms the theory behind some recent ap-
proximate methods for inverting the Sturm-Liouville equation. The theory is
largely due to Rundell and Sacks (1992a) [292], Rundell and Sacks (1992b) [293];
see also Lowe, Pilant and Rundell (1992) [216] and Rundell (1997) [294]. The
distinguishing feature of the methods is that they rely on the hyperbolic equation
satisfied by ( ), rather than on the Gel’fand Levitan integral equation.
We start by recalling analysis from Section 11.2 onwards. The base problem

is
00 + ( ) = 0 0 (11.9.1)

0(0) (0) = 0 = 0( ) + ( ) (11.9.2)

The eigenfunctions ( )0 of this problem form a c.o.s. This means that if

( ) =
X
=0

( )

then
= ( )

Suppose that ( )0 is a new spectrum and, in the notation of (11.5.4),

( ) = ( 1)

If we expand ( ) in terms of these functions:

( ) =
X
=0

( )

then we can find the from

= ( ) =
X
=0

( ) =
X
=0

= 0 1 (11.9.3)

We showed in equation (11.5.25) that

( ) = ( 0 ( ) + ( )) ( )

The end value, ( ), is not zero; we are assuming that is finite. As in
Section 11.5, if 0

0( ) + 0( ) = 0 for some 0, then 0 is an eigenvalue of
the base system with 0( ) being a (not necessarily normalised) eigenfunction;
i.e., 0( ) = 0( ). In that case, equation (11.9.3) with = 0 yields

0 = 0 and there are just 1 equations for the remaining . In any case,
we can solve equation (11.9.3) for 0 1 . This is the first result we will
use.
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In the classical method we suppose first that we have two spectra of a
equation with (unknown) potential ( ) corresponding to two sets of end

conditions
( )0 for 0(0) 0 (0) = 0 = 0( ) + 0 ( )

( )0 for 0(0) 0
1 (0) = 0 =

0( ) + 0 ( ) (11.9.4)

Note that the conditions at = are the same, while those at = 0 are di erent.
We then used equation (11.6.6), or preferably (11.6.11), to find the end values
( (0))0 corresponding to (11.9.4). (Of course we introduced the Truncation
Assumption, so that we had to find only ( (0))0 .) We then introduced the
operator and found ( ) so that the normalised eigenfunctions ( ( ))0
corresponding to (11.9.4) were given by

( ) = ( (0))

( ) = ( ) +

Z
0

( ) ( )

The particular ( ) that transforms ( ( ))0 into a c.o.s. ( ( ))0 is the
solution of the Gel’fand-Levitan integral equation (11.5.20). The potential ( )
is given by

( ) = ( ) +
2 ( )

and the values of 0 0 are given by (11.2.11) and (11.6.18):

0 = + (0 0) 0 = ( )

Rundell and Sacks proceed di erently. They suppose that we are given two
spectra ( )0 ( )0 corresponding to a equation

00 + ( ) = 0 (11.9.5)

under two sets of end conditions that di er at = (not at 0 as in the classical
approach):

( )0 for 0(0) 0 (0) = 0 = 0( ) + 0
1 ( ) (11.9.6)

( )0 for 0(0) 0 (0) = 0 = 0( ) + 0
2 ( ) (11.9.7)

Now we find ( ) so that

( ) = ( 1)

( ) = ( ) +

Z
0

( ) ( )

give (unnormalised) eigenfunctions of (11.9.5) corresponding to the end condi-
tions (11.9.6), while

( ) = ( 1)

( ) = ( ) +

Z
0

( ) ( )
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gives (unnormalised) eigenfunctions of (11.9.5) corresponding to the end condi-
tions (11.9.7). Note that ( ) will be given by the theory of Section 11.2,
not by that of Section 11.5. This means that ( ) will satisfy the hyperbolic
equation (11.2.6) and the boundary condition (11.2.10).
The basic theory of Section 11.2 states that the transformation operator

transforms a solution of the base equation (11.9.1) satisfying (11.9.2a) into a
solution of (11.9.5) and (11.9.6a). This means that ( ( ))0 will be eigenfunc-
tions of (11.9.5) corresponding to the end conditions (11.9.6) if

0 ( ) + 0
1 ( ) = 0 = 0 1 (11.9.8)

Similarly ( ( ))0 will be eigenfunctions of (11.9.5) corresponding to the end
conditions (11.9.7) if

0 ( ) + 0
2 ( ) = 0 = 0 1 (11.9.9)

The problem is therefore to find a solution of the hyperbolic equation (11.2.6)
that satisfies equations (11.9.8), (11.9.9). Before considering how to do this we
make some preliminary simplifications.
If the given sequences ( )0 ( )0 are indeed the spectra of some

equation (11.9.5) corresponding to (11.9.6), (11.9.7) respectively, then they must
have one of the asymptotic forms listed in Section 10.9: (10.9.47) if 0 is finite;
Exercise 10.9.1 if 0 = . Assume for the sake of argument that 0 = then,
by examining the sequences we can recover ¯ from either of the two equations

lim

½
( )̄

1
2 ( +

1

2
)

¾
= 0 = lim

½
( )̄

1
2 ( +

1

2
)

¾
(11.9.10)

With this ,̄ form ( ) = ( ) ¯ as in (10.9.44). The starred system has
eigenvalues = ,̄ = ¯ corresponding to (11.9.6), (11.9.7) respec-
tively. We note that even if the equation (11.9.5) was derived from a physical
system with positive eigenvalues, and the limits show that will eventually
exceed ,̄ there is no guarantee that all the starred quantitites will be
positive.
We now consider the reduced, i.e., starred, system and drop the asterisks.
We showed in Section 11.2 that if 0 = , then we must take a base system

with = . Then ( 0) = 0 0 so that ( ) is continued as
an odd function of into the lower triangle in Figure 11.3.1. For simplicity we
take ( ) = 0, so that equation (11.2.14) gives ( ) = 0. We choose = 0
so that the base system is

00 + = 0 0 (11.9.11)

(0) = 0 = 0( )

with eigenvalues =
¡
+ 1

2

¢2
= 0 1 , and eigenfunctions

( ) =

r
2
sin

µ
+
1

2

¶
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We define ( ) as the solution of (11.9.11) satisfying

(0 ) = 0 0(0 ) = 1

This means that if = | |
1
2 , then

( ) =
sin

if 0;
sinh

if 0

We now define

( ) = ( ) = 0 1

( ) = ( ) = 0 1

and construct ( ) ( ), the eigenfunctions of (11.6.3) corresponding to
(11.9.6), (11.9.7) respectively, by using the transformation operator ( ):

( ) = ( ) +

Z
0

( ) ( ) (11.9.12)

( ) = ( ) +

Z
0

( ) ( )

Now consider the equation (11.9.8). Equation (11.9.12) gives

( ) = ( ) +

Z
0

( ) ( )

and
0 ( ) = 0 ( ) +

Z
0

( ) ( ) + ( ) ( )

But

0 = 0 ( )+ 0
1 ( ) = 0 ( )+ 0

1 ( )+

Z
0

{ ( )+ 0
1 ( )} ( )

(11.9.13)
This equation gives the inner products of the function 1( ) = ( ) +
0
1 ( ) with respect to the ( ). But knowing these we can use the analysis

leading to (11.9.3) to find the inner products with respect to (sin ) +1
1 , because

sin is the solution of the base problem under the Dirichlet conditions (0) =
0 = ( ). Proceeding in exactly the same way for the second spectrum ( )0 ,
we can find the inner products of the function 2( ) = ( ) + 0

2 ( )
with respect to ( ( ))0 , and hence to (sin ) +1

1 . By taking multiples of
1( ) and 2( ) we find

( ) =
+1X
=1

sin ( ) =
+1X
=1

sin (11.9.14)

Note that these expansions give ( 0) = 0 = ( ) and ( 0) = 0, as
required (recall that ( 0) 0), but they make ( ) = 0 which is an
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unnecessary restriction. We recall that when = ( ) is an odd function
of , and the expansions (11.9.14) are odd in .
Now return first to equation (11.2.7) which states

( ) =
2 ( )

(11.9.15)

and then to equation (11.3.15) which expresses ( ) in terms of and on
the line = , and an integral over the triangle of Figure 11.3.3. When
= the triangle is as shown in Figure 11.9.1, so that equation (11.3.15) gives

2 ( ) = ( 2 ) + ( )

Z
2

( )

+

Z ½Z
2

( ) ( )

¾

),(B

)2,( xA

),( xx
P

0

Figure 11.9.1 - The triangle when = .

We have no space to refer to the many other numerical methods, see for
example Brown, Samko, Knowles and Marletta (2003) [41]. On di erentiating
w.r.t. we find

2 ( )
= 2 ( 2 ) + 2 ( 2 ) 2

Z
( ) ( 2 )

This equation provides the basis for an iterative solution to the problem. Putting

( ) = 2 ( 2 ) + 2 ( 2 )
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we use the equation in the form

+1( ) = ( ) 2

Z
( ) ( 2 ) (11.9.16)

to obtain a new value of ( ) from an existing one. Treating the R.H.S. of
(11.9.16) as the result of operating on by an operator , we have

+1 =

The potential ( ) is thus sought as a fixed point of the mapping .
The actual numerical implementation is not our primary concern; for that

see, say, Rundell (1997) [294]. In principle we can proceed as follows:

Step 1: Start from some initial approximation, for example 0( ) = ( ). Put
= 0.

Step 2: Solve the Cauchy problem

= 0

with given by (11.9.14) on = . This can be done using standard
numerical procedures.

Step 3: Form +1( ) from equation (11.9.16). Put = +1 and return to
step 2 until convergence is achieved.

11.10 Some other uniqueness theorems

The fundamental uniqueness theorem in Section 11.4 showed that the potential
( ) and the end constants were uniquely determined by two spectra. The
crucial step in the analysis was that the completeness of the eigenfunctions meant
that equation (11.4.6) implied ( ) = 0 = ( ) for 0 . But this
is the Cauchy data for the hyperbolic equation (11.2.6); since the data is zero,
( ) = 0 for 0 , and ( ) = ( ) 1 = 2 and 1 = 2.
The fundamental uniqueness theorem uses two spectra corresponding to two

di erent end constants at one end. We now show that if just one spectrum is
known, then there are various other sets of auxiliary data which will lead to a
unique system. As in Section 11.4, we phrase the uniqueness theorem in terms
of general end conditions, i.e., end constants that are neither zero nor infinite.
The special cases in which one or both are zero or infinite may be covered by
straightforward modifications of the argument.

Theorem 11.10.1 Suppose that there were two potentials ( ) ( ) [0 ]
with the following properties:

i) 00 + ( ) = 0 0(0) 1 (0) = 0 =
0( ) + 1 ( ) has the spectrum

( )0 and eigenfunctions ( ( ))0 ;
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ii) 00 + ( ) = 0 0(0) 2 (0) = 0 = 0( ) + 2 ( ) has the same
spectrum ( )0 and eigenfunctions ( ( ))0 ;
and one of the following properties holds:

iii) ( )
(0) =

( )
(0) = 0 1 2

iv)
0 ( )
0 (0) =

0 ( )
0 (0) = 0 1 2

v)
2 ( )R

0
2 ( )

=
2 ( )R

0
2 ( )

= 0 or = 0 1 2

vi)
02 ( )R

0
2 ( )

=
02 ( )R

0
2 ( )

= 0 or = 0 1 2

vii) ( ) = ( ) ( ) = ( ) 1 = 1 2 = 2

then ( ) = ( ) 1 = 2 1 = 2.

Proof. ( ) is related to ( ) by

( ) = ( ) +

Z
0

( ) ( ) (11.10.1)

so that

0 ( ) = 0 ( ) + ( ) ( ) +

Z
0

( ) ( ) (11.10.2)

(0) = (0)
0 (0) 2 (0) = 0 (0) 1 (0) + { (0 0) + 1 2} (0)
0 ( ) + 2 ( ) = 0 ( ) + 1 ( ) + { ( ) + 2 1} ( )

+

Z
0

{ ( ) + 2 ( )} ( ) (11.10.3)

Since i) and ii) have the same spectrum,

1 + 1 +
1

2

Z
0

( ) = 2 + 2 +
1

2

Z
0

( )

but

( ) = 2 1 +
1

2

Z
0

{ ( ) ( )}

so that (0 0) + 1 2 = 0 = ( ) + 2 1.
Since 0 ( ) + 2 ( ) = 0 = 0 ( ) + 1 ( ), equation (11.10.3) implies
( ) + 2 ( ) = 0 as in (11.4.7).
Now bring in the extra information:
iii) Since (0) = (0), we have ( ) = ( ) and thus, from (11.10.1),Z

0

( ) ( ) = 0 = 0 1 2
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and ( ) = 0, so that ( ) = 0, and the conclusion follows as before.
iv) Expressing 0 ( ) and 0 (0) in terms of , we find, after some manip-

ulations, that

( 1 2 2 1) (0) ( ) = 0 (0)

Z
0

( ) ( )

Let , then the Riemann-Lebesque Lemma states that

lim

Z
0

( ) ( ) = 0

Thus 1 2 2 1 = 0, and ( ) = 0, and we proceed as before.
v) We need to get an expression for

R
0

2 ( ) = .
We show that two eigenfunctions satisfying i) are orthogonal, i.e.,

R
0

( )
( ) = 0 by taking the two equations

00 + ( ) = 0 = 00 + ( )

multiplying the first by , the second by , subtracting the resulting equations
and integrating over (0 ). To find , we need to take the equation 00 + (
) = 0 for and for another infinitesimally close to it. We proceed as
follows.
Let = ( ) be the solution of

00 + ( ) = 0 0(0) 1 (0) = 0 (0) = (11.10.4)

Then, on letting • = , we find

˙ 00 + ( ) ˙ + = 0 ˙ 0(0) 1
˙ (0) = 0 ˙ (0) = 0 (11.10.5)

Multiplying (11.10.4a) by ˙ , (11.10.5a) by , subtracting and integrating over
(0 ), and putting = , so that = , we find

[ ˙ 0 ˙ 0 ]0 =

Z
0

2

At the lower limit, the L.H.S. is zero, at the upper limit it is

( ˙
0
( ) + 1

˙ ( )) ( ) =

Z
0

2 ( ) (11.10.6)

We may carry out the same calculation for ( ), and find

( ˙
0
( ) + 2

˙ ( )) ( ) =

Z
0

2 ( ) (11.10.7)

Since ( ) is independent of , equations (11.10.1), (11.10.2) when di eren-
tiated w.r.t. , give

˙ 0 ( ) + 2
˙ ( ) = ˙ 0 ( ) + 1

˙ ( ) (11.10.8)
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Thus v) with (11.10.6), (11.10.7) yield

2 ( )
2 ( )

=
( )

( )
= 0 1

If = 0, then (0) = (0) yields ( ) = ( ); if = , then again
( ) = ( ). But if ( ) = ( ), then equation (11.10.1) shows thatZ

0

( ) ( ) = 0

so that ( ) = 0, and we proceed as before.
vi) On using (11.10.6)-(11.10.8) we find

02( )
02( )

=
( )

( )

If = 0, then the L.H.S. is 2
2

2
1. Thus

( ) = ( ) +

Z
0

( ) ( ) =
¡
2
2

2
1

¢
( )

Again, ( ) = 0. If = , then ( ) =
¡

2
1

2
2

¢
( ) and again

( ) = 0.
vii) The potential and the end conditions are invariant under the transfor-

mation . Thus, all the eigenfunctions must be either symmetric or
antisymmetric about = 2 . More precisely 2 ( ) 2 ( ) are symmetric while

2 +1( ) 2 +1( ) are antisymmetric. Thus

( )

(0)
= ±1 =

( )

(0)

so that this is a special case of iii).
Corresponding to each of the sets of auxiliary data in iii)-vii) we may devise

a way to estimate ( ) and ( ) for 0 . We may then proceed
as in Section 11.9 to construct the potential.
Hochstadt and Lierberman (1978) [181] considered the problem of determin-

ing ( ) in [0 2 ] from knowledge of ( ) in [ 2 ] and one spectrum, say that
for the Dirichlet end conditions (0) = 0 = ( ). The non-classical method
described in Section 11.9 lends itself well to this problem.
Suppose the Dirichlet spectrum is ( )0 ; it must have the asymptotic form

(10.9.41), i.e.,

= = + 1 +
+ 1

+ ( 1)

where

=
1

2

Z
0

( )
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is known.

Without loss of generality we take ( ) = 0 in the base problem. Let ( )
be the solution of

00 + = 0 (0) = 0 0 (0) = 1

and let

( ) = ( ) +

Z
0

( ) ( )

The equation ( ) = 0 is

( ) +

Z
0

( ) ( ) = 0

which yields ( ) 0 . The kernel satisfies ( 0) = 0, and

( ) =
1

2

Z
0

( ) =
1

2

Z
0

( )
1

2

Z
( )

Since is known, and ( ) is known for 2 , so is ( ).

We need to recall the arguments we used in Section 11.3. We considered the
Goursat problem in which ( ) is known on the two characteristics = ± ,
for 0 , and we showed that ( ) is uniquely determined. Under
Dirichlet conditions the kernel ( ) = ( ) is an odd function of , so that
( 0) = 0. The uniqueness result is therefore that ( ) is determined in

the region 0 if it is known on the two parts = 0 0 ; and
= for 0 , of the boundary.

But we can argue just as in Section 11.3 that if ( ) is known, as indicated
by the asterisks on the two parts = 0 and 2 = of
the boundary of the shaded region in Figure 11.10.1a, then it is known in that
region. That means that we can find ( ) on the third part of the boundary:
= , 2 . Now consider the new shaded region in Figure 11.10.1b.

The kernel is known on the two parts = 0, = for 2 , of the
boundary, again indicated by asterisks; therefore it is known throughout that
shaded region, and therefore ( 2 ) and ( 2 ) are known for 0 2 .
Finally, we consider a Cauchy problem for the shaded region in Figure 11.10.1c;
and are known on = 2 , so that is known throughout. Thus ( )

is known for 0 2 , and

( ) =
2 ( )
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Figure 11.10.1 - Boundary value problems on 3 triangles.

11.11 Reconstruction from the impulse response

In this section we describe analysis, derived by Gopinath and Sondhi, by which
( ) can be reconstructed from the impulse response ˆ(0 ) of Section 10.10.
See Gopinath and Sondhi (1970) [136], (1971) [137], Sondhi and Gopinath (1971)
[308] and Sondhi (1984) [309]. Suppose a unit impulse is applied to the free
end, = 0, at time = 0. It is intuitively clear that the response ˆ(0 ) at
the end of the rod at time is independent of the shape of the rod for ,
where = 2. This is because any e ect on ˆ(0 ) due to the shape for
would not be felt until after time , the time taken for a disturbance moving with
(scaled) speed 1 to reach = and return. Sondhi and Gopinath demonstrate
the converse, namely that knowledge of ˆ( ) for 0 2 is su cient (and
necessary) for the determination of ( ) for 0 1.
The solution is based upon the following observation. Suppose the rod is

at rest at time = , i.e., ( ) = 0 = ( ), for 0 1, and a force is
applied at the free end = 0. At time = + the rod will still be at rest
for , because the scaled wave speed is 1. Integrating the first of equations
(10.10.10), we obtain

( )[ ( )] + = ( ) ( + ) =

Z +

and on a second integration, w.r.t. , we find

Z
0

( ) ( + ) =

Z +

(0 ) (11.11.1)

If now, for every , we could find a force (0 ) such that ( + ) = 1 for
0 then, for that case, equation (11.11.1) would give

Z
0

( ) =

Z +

(0 ) (11.11.2)
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t

a

a

a x0

Figure 11.11.1 - The region in the plane.

Thus the integral of ( ), and hence ( ), would be determined as a function
of . We now show that such a force exists, and can be determined from a
knowledge of ˆ(0 ).
If ( ) ( ) satisfy equation (10.10.10), then so do ( ) ( ) and,

by superposition
( ) = ( ) + ( )
( ) = ( ) ( )

Trivially, ( ) = 2 ( ) = 0 is such a solution. The analysis of the Cauchy
Problem in Section 11.3 states that this is the unique solution in the triangular
region in Figure 11.11.1 which satisfies the conditions (0 ) = 2 (0 ) = 0, for

. Thus if (0 ) is such that (0 ) = 2 (0 ) = 0 for ,
then everywhere in the triangle, ( ) = 2 ( ) = 0. In particular, when
= 0, ( 0) = 2 ( 0) = 2 implies ( 0) = 1; this gives the ( ) required in
equation (11.11.2) if 0 is taken to be . To find the required pressure (0 ),
we note that since the rod is rest at = , equation (10.10.11) gives

(0 ) =

Z
ˆ(0 ) (0 )

so that if (0 ) + (0 ) = 2 then

Z
ˆ(0 ) (0 ) +

Z
ˆ(0 ) (0 ) = 2
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The solution of this equation depends on ; we therefore write

(0 ) := ( )

Now using the fact that (0 ) is even in , and that equation (10.10.14) yields

ˆ( ) = ( ) + ( )

we find

( ) +
1

2

Z
(| |) ( ) = 1 (11.11.3)

Once ( ) is known, equation (11.11.2) givesZ
0

( ) =

Z
0

( )

Equation (11.11.3) may be written in operator form

( + ) ( ) = 1

Sondhi and Gopinath show that if ˆ( ) is the impulse response of an actual rod,
then the operator + will be positive definite, so that equation (11.11.3)
will have a unique solution. They show moreover that the corresponding ( )
will be positive, provided that it is continuous. In addition, they show that
if + is positive definite, then there is a rod (i.e., an ( )) which has this
impulse response.
We now apply the procedure to the problem of Section 11.6, i.e., the recon-

struction of a rod which has, from some index on, the same eigenvalues and end
values of nomalised eigenfunctions, as the uniform rod, i.e.,

= 0 (0) = 0(0) = + 1 + 2

where
0 =

(2 + 1)

2
[ 0(0)]2 = 2

In this case ( ) is given by Ex. 10.10.2, and the kernel (| |) is degenerate.
Since ( ) is even in , we may write equation (11.11.3) as

( ) +
1

2

Z
0

{ (| |) + (| + |)} ( ) = 1 0 (11.11.4)

Now the kernel is

( ) = 1
2{ (| |) + (| + |)}

=
P

=0{[ (0)]2 cos cos [ 0(0)]2 cos 0 cos 0 }

Since the kernel is degenerate, the solution may be found by a straightforward
matrix inversion. Thus equation (11.11.4) gives

( ) = 1 +
X
=0

{ ( )[ (0)]2 cos ( )[ 0(0)]2 cos 0 }
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and on substituting this into equation (11.11.4) we find

+

Z
0

cos +
X
=0

( ) = 0

+

Z
0

cos 0 +
X
=0

( ) = 0

where
= [ (0)]2

R
0
cos cos

= [ 0(0)]2
R
0
cos cos 0

= [ 0(0)]2
R
0
cos 0 cos 0

Once ( ) has been found, ( ) may be computed from equation (11.11.2).
This completes the inversion.
This analysis has intimate connections to the whole area of inverse scattering;

see for example Burridge (1980) [45],Bube and Burridge (1983) [43], Landau
(1983) [204], Bruckstein and Kailath (1987) [42], Chadan and Sabatier (1989)
[52]. Further references may be found in Gladwell (1993) [120].



Chapter 12

A Miscellany of Inverse
Problems

Symmetry is what we see at a glance; based on the fact that there is no reason
for any di erence, and based also on the face of man; whence it happens that

symmetry is only wanted in breadth, not in height or depth.
Pascal’s Pensées, 28

12.1 Constructing a piecewise uniform rod from
two spectra

All the uniqueness proofs and construction algorithms described in Chapter 11
relate to the construction of a continuous system (i.e., continuous ( ) ( )
or ( )). The basic data is two infinite sequences which may be two spectra
corresponding to di erent end conditions, or one spectrum and some auxiliary
data, as in Theorem 11.10.1. If two finite data sets are given then they are
either complemented by using the Truncation Assumption, as in Section 11.5, or
the system is approximated numerically, as in Section 11.9. In this section we
show how a piecewise uniform rod may be constructed so that it has precisely
two given finite spectra; we do not use the Truncation Assumption. Andersson
(1990) [8] was the first to provide a constructive algorithm; we follow the analy-
sis given in Gladwell (1991c) [118], which places Andersson’s algorithm in the
context of inversion algorithms in seismology and transmission line theory, see
Bube and Burridge (1983) [43], Bruckstein and Kailath (1987) [42] and Gladwell
(1993) [120].
Andersson considered a vibrating rod, i.e., equation (11.1.3), viz.

( ( ) 0( ))0 + 2 ( ) ( ) = 0 (12.1.1)

subject to the end conditions

i) 0(0) = 0 = 0( ); ii) (0) = 0 = 0( ); (12.1.2)

335
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these correspond to free-free and fixed-free ends respectively. He showed that
if there were given + 1 frequencies ( )0 satisfying

0 = 0 1 = 2 (12.1.3)

and such that the even were eigenvalues for equation (12.1.1) for i), the odd
for ii), then there exists a unique rod with piecewise constant ( ), such that

( ) = ( 1)4 4 = 1 2 (12.1.4)

where 4 = 1 = 1, as shown in Figure 12.1.1.

0 1 2 1n n

Figure 12.1.1 - A stepped rod with segments.

In seismology and transmission line theory, a medium with parameters that
are constant over equal intervals of depth 4, such as (12.1.4), is called a Goupil-
lard medium. In transmission line theory, as in most inverse scattering problems,
the data do not relate to eigenvalues; there are no eigenvalues, or so-called bound
states. Instead the data refer to the response to an input. One way of expressing
the data uses the reflected wave ( ) at equal intervals 24, due to an incoming
wave ( ) also sampled at intervals 24. One of the fundamental questions is
to ask whether a given reflected wave and incoming wave actually correspond
to a Goupillard medium. This is the question: ‘Are the data realisable?’ The
realisability criterion can be phrased by introducing the -transforms, ( ) and
( ), or ( ) and ( ), and defining the left-reflection function

( ) =
( )

( )

and then putting

1( ) =
1 ( )

The realizability criterion is

( 1) sup
| | 1

| 1( )| 1 (12.1.5)
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Schur (1917) [300] constructed an algorithm to test whether a function 1( )
satisfies (12.1.5), that is, is bounded by 1 on the unit disc. The algorithm
is based on the fundamental see Gilbarg and Trudinger (1977) [102] Maximum
Modulus Principle:
The maximum modulus of a function ( ) (of the complex variable = + )

which is regular (holomorphic) in a closed region, always lies on the boundary
of that region.
Note that ( ) is said to have a maximum modulus at 0 if | ( 0)| | ( )|

for all in some neighbourhood | 0| of 0. An important corollary of
the principle is that if ( ) has a maximum modulus at an interior point 0 of
a region in which it is regular, then ( ) = ( 0) throughout the region.
Schur’s algorithm is based on the fact that if | | 1, then

=
1 ¯

(12.1.6)

maps | | 1 onto | | 1, and | | = 1 onto | | = 1. His algorithm is based on
the recurrence

( ) =
1
•

1( )

1 ¯ 1( )
= 2 3 (12.1.7)

where = 1(0). Suppose ( 1) 1. There are two possibilities: either
| | = 1, in which case the condition ( 1) 1 and the maximum modulus
principle forces 1( ) = , so that the sequence terminates at 1( ); or
| | 1, in which case ( ) 1. Thus the condition (12.1.5) used with
the recurrence (12.1.7) leads to a finite or infinite sequence 2 3 with the
property | | 1, where the inequality is strict except possibly for the last one.
We note in particular that if ( 1) = 1, then ( ) = 1 for all , and if the
sequence terminates at = + 1, it will do so with | | = 1.
Now we formulate the vibration problem so that we obtain a recurrence of

the form (12.1.6). First we replace equation (12.1.1) by two coupled first-order
equations, namely

0( ) = ( ) ( ) 0( ) = ( ) ( )

Note that ( ) = ( ) 0( ), so that it is ( ) and ( ) that are continuous at
a point at which ( ) is discontinuous. Put ( ) = { ( )}

1
2 and define down

and up quantities

=
1

2
( + 1 ) =

1

2
( 1 ) (12.1.8)

These satisfy the equations

0 = + 0 1 0 = + 0 1

so that if ( ) = constant, then 0 = 0 and

0 = 0 =
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which have the solutions

= 0 exp( ) = 0 exp( ) (12.1.9)

Suppose ( ) has the form (12.1.4). Define the quantities

= ( 4+) = ( 4+) = ( 4 ) = ( 4 ) (12.1.10)

where + or - indicates a value just to the right or left of 4, respectively.
Equations (12.1.9) show that

= exp( 4) 1 = exp( 4) 1

Put exp( 4) =
1
2 , then· ¸

=

· 1
2 0

0
1
2

¸ ·
1

1

¸
(12.1.11)

Let

H =
1

2

· 1

1

¸

then equation (12.1.8) and the continuity of and across a discontinuity of
( ) give ·

1

1

¸
=H

·
1

1

¸ ·
1

1

¸
=H 1

·
1

1

¸

so that ·
1

1

¸
=H H 1

1

·
1

1

¸
(12.1.12)

The matrix =H H 1
1 may be written

=
1
·

1
1

¸
(12.1.13)

where

= (1 2)
1
2 = ( 1 ) ( 1 + ) (12.1.14)

We can combine equations (12.1.11), (12.1.12) to obtain· ¸
=

· 1
2 0

0
1
2

¸ ·
1

1

¸
(12.1.15)

Put = ( ), then equation (12.1.15) gives

( ) =
1
•

1( )

1 1( )
(12.1.16)
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which, since is real ( = ¯ ), is precisely Schur’s recurrence (12.1.7).
Before considering the inverse problem of reconstructing the cross-sections
from the spectra, we consider the simpler problem of computing the spectra

from the cross-sections.
Suppose we are given ( )1 , with 1 = 1, and we wish to find the eigenvalues

corresponding to the end conditions i) and ii). Suppose the rod is vibrating
with frequency and the condition 0( ) = 0 is satisfied, then without loss of
generality we can take ( ) = 1; then = 0, = 1, so that = 2 =
and ( ) = 1. The values of (0) = 0, (0) = 0 are related to 0 0 by

0 =
1

2
{ 0 0 +

1
0 0} 0 =

1

2
{ 0 0

1
0 0}

so that

2
0

0

0
=

0 + 0

0 0
=

1
2

1 +
1
2

1
1
2

1

1
2

1

(12.1.17)

=
1 + ( )

1 ( )

where
( ) = 1( ) (12.1.18)

In the forward problem, we are given ( ) = 1 and we are given the ( )2
with | | 1. We may thus compute 1( ) 2( ) 1 using the recur-
rence (12.1.16) in its reverse form:

1( ) =
( ) +

1 + ( )
= 1 2 (12.1.19)

The mapping of ( ) onto 1( ) has the form (12.1.6). Thus the region
| ( )| 1 is mapped onto | 1( )| 1, and | ( )| = 1 is mapped onto
| 1( )| = 1. But ( ) = 1, so that each ( ( ))1 has | ( )| = 1 when
| | = 1, i.e., when is real. Thus the function = ( ) maps | | 1 onto
| | 1, and | | = 1 onto | | = 1. When ( ) is expressed in terms of it has
the form

( ) = 1( ) 1( ) (12.1.20)

where 1( ) 1( ) are polynomials of degree 1. Thus ( ) maps the
circle | | = 1 into itself times.
Equation (12.1.19) shows that if ( 1) = 1 ( ), then 1(

1) =
1 1( ). But ( 1) = 1 = 1 ( ), so that indeed

( 1) = 1 ( ) = 1 2 (12.1.21)

and hence
( 1) = 1 ( ) (12.1.22)
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The mapping of | | = 1 into itself caused by ( ) produces two sets of
points on | | = 1 of significance, namely

A = { ; | | = 1 and ( ) = 1}
B = { ; | | = 1 and ( ) = 1}

The points in A correspond to values of for which, according to (12.1.17),
0 = 0; the values give values of which are eigenvalues of i). Similarly the
values on B give 0 = 0, so that corresponds to an eigenvalue of ii). The

known interlacing of these two sets of eigenvalues means that the points of A
and B will interlace on the circle | | = 1 Equation (12.1.22) shows that if
is a member of either set, then 1 = ¯ is a member of the same set. Figure
12.1.2 shows the arrangement of the two sets when = 2 and = 3. Since
(1) = 1, the recurrence (12.1.19) shows that (1) = 1 for = 1 1.

Thus (1) = 1 : 1 is in A. On the other hand ( 1) = ( 1) , so that
( 1) = ( 1) : 1 is in A if is even, in B if is odd. It may easily be
verified that there are + 1 values of in A B which satisfy

0 arg( ) (12.1.23)

If these points are = exp( ), where 0 = 0 1 = , then
= (24) = (2 ), so that 0 = 0 1 = (2 ). These

points , other than = ±1, yield 1 points ¯ = 1 on the lower half of the
circle. Thus the system also has the eigenvalues

+ = 4 = 0 1 (12.1.24)

Since = exp(2 4) is a periodic function of with period 4, each value
of gives rise to an infinite sequence of eigenvalues with equal spacing 4,
and each 1 gives another such sequence. Thus the system not only has the
eigenvalues ( )20 , but also

+ =
4

+ = 0 1 if is even (12.1.25)

+ =
4

+ = 0 1 if is odd. (12.1.26)

Now consider the inverse problem, that of determining the from the spec-
trum. We are given + 1 eigenvalues satisfying (12.1.3). We must use
them to construct ( ) and hence 1( ), and then find the which will lead
eventually to ( ) = 1.
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2N 3N

Figure 12.1.2 - The members of (×) and (°) interlace on the circle

First consider the case in which is even: = 2 . Of the + 1 = 2 + 1
eigenvalues, + 1 are even, corresponding to i), are odd, corresponding to
ii). The set A consists of 2 points: 0 = 1 2 = 1, and the 1
pairs 2

1
2 = 1 2 1. The 2 odd ’s in B occur in pairs

2 1
1

2 1 = 1 2 . Thus equation (12.1.17) gives

2
0 0

0
=
1 + ( )

1 ( )
=

C
Q

=1( 2 1)(
1

2 1)

( 2 1)
Q 1

=1 ( 2 )(
1

2 )
(12.1.27)

so that ( ) = 1 when is a root of the denominator, and ( ) = 1 when
is a root of the numerator. The constant C must be chosen so that (0) = 0,
i.e., C = 1; the numerator of ( ) will thus have no constant term, while the
highest powers of 2 , in the denominator will cancel, so that ( ) will have the
form (12.1.20). Denote the right hand side of equation (12.1.27) by ( ), so
that

1 + ( )

1 ( )
= ( ) = (12.1.28)

The function will map the open, connected region D = { : | | 1} into
an open, connected region in the -plane. When | | = 1 we can easily verify
that ( ) given by (12.1.27) satisfies ( ) = ( ), so that ¯ = : lies on
the imaginary axis. The function maps = 0 onto = 1 so that we may
conclude that maps | | 1 into the right hand half plane i.e., if | | 1, then
R{ ( )} 0; if | | = 1, Then R{ ( )} = 0. Since the given eigenvalues ,
corresponding to i) and ii) interlace, the members of A and B interlace, then as
we proceed counterclockwise around | | = 1 starting at = 1, the points of A
and B are mapped successively onto the point at infinity and the origin in the
-plane. Equation (12.1.28) implies

( ) =
( ) 1

( ) + 1
=

1

+ 1

But if R( } = 0, then | 1| | + 1|, so that | ( )| 1. We conclude
that ( ), and hence by the Schwarz lemma, 1( ), is bounded by 1 on the unit
disc.
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Now apply Schur’s algorithm to produce a sequence ( ( ))1 . The form of
( ) given by (12.1.27) leads to a form

1( ) = 1( ) 1( ) (12.1.29)

with real coe cients. Therefore, all will be real. Equation (12.1.27) shows
that ( ) has the properties

( 1) = 1 ( ) (1) = 1

Therefore 1(
1) = 1 1( ), and 1(1) = 1. Equation (12.1.16) now shows

that
( 1) = 1 ( ) (1) = 1 = 1 2 (12.1.30)

because the statement is true for = 1. Thus ( ) will have the form

( ) = ( ) ( ) = 1 2 (12.1.31)

so that the sequence will terminate with ( ) = 1 as required, and the will
satisfy

1 1 = 2 3 ; +1 = 1 (12.1.32)

Since 1 = 1 by assumption, these lead to a unique set of finite, positive
( )1 as required. We stress that the single condition (12.1.5) ensures the
existence of the satisfying (12.1.32).
For computational purposes, Schur’s algorithm leads to a recurrence relation

for the coe cients in the polynomials ( ) and ( ). Let

( ) =
X
=0

( ) =
X
=0

Equation (12.1.27) yields the values of and ( = 0 1 )
from data. Equation (12.1.31) states that

= = 0 1

so that the sequences { }0 and { }0 consist of the same numbers,
in opposite orders.
The recurrence (12.1.16) yields

= +1 0 +1 0

= +1 +1 +1 +1 = 0 1
= +1 +1 = 0 1

In its simplest terms, the algorithm has three steps; we have adapted the
procedure of Kailath and Lev-Ari (1987) [189]:

I. Take the coe cients of 1( ) from equation (12.1.27) and construct 0

2 :

G0 =

·
0 1 1

1 2 0

¸
= 1
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II. Compute = 0 1 and construct

G0
1 =

·
1 2

2 1

¸
G0 =

·
0 0

0
0
1

0
3

0
2

0
2

0
3 · 0

0 0

¸

III. Shift the top row of the matrix formed in II to the left and delete the last
column to form 1 2 1:

G1 =

·
0
0

0
1

0
2

0
2

0
3

0
0

¸

and go to step I.

Bruckstein and Kailath (1987) [42] showed that Schur’s algorithm is compu-
tationally stable and e cient.
Note that by making minor changes in the analysis (See Ex. 12.1.2) we can

construct a Goupillard model of a rod from interlacing eigenvalues 0 1

2 = (2 ) corresponding to the end conditions

i) 0(0) = 0 = ( ), odd ii) (0) = 0 = ( ), even (12.1.33)

However, it is not possible to use the essentially algebraic method described here
to construct the from the eigenvalues 0 1 2 corresponding
to the general end condition

0(0) = 0 = 0( ) + ( ); (0) = 0 = 0( ) + ( )

This is because will appear in the analysis as itself, and not just in the form
exp(2 4).
It is possible to modify the analysis (see Ex. 12.1.2) so that it can be applied

to a piecewise uniform string, governed by equation (10.1.1), but now the model
will consist of a string with density 2( ) satisfying ( ) = 2, 1 ,
where 2 ( 1) = constant, = 1 2 .

Exercises 12.1

1. Make the necessary modifications to the analysis of this section so that it
applies to the case of odd. Take = 2 1. Show that A consists
of 0 = 1 and 1 pairs 2

1
2 = 1 2 1, and B consists of

2 1 = 1 and 1 pairs 2 1
1

2 1 = 1 2 1. Hence show
that

2
0 0

0
=
1 + ( )

1 ( )
= C

+ 1

1
•

1Y
=1

( 2 1)(
1

2 1

( 2 )(
1

2 )

where again (0) = 0 implies = 1.

2. Make the necessary changes so that it applies to (12.1.33).
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3. For the string governed by (10.1.1) with ( ) = 2( ), the appropriate up
and down quantities are given by (12.1.8), where now

0( ) = ( ) 0( ) = 4( ) ( )

Note that it is and 0, i.e., that are continuous at discontinuities of
( ). Show that

0 = 2 + 0 1 0 = 2 + 0 1

and that when =const,

= 0 exp(
2 ) = 0 exp(

2 )

This means that we must choose intervals of uniformity so that 2 (

1) =const. Now when the have been found, one must also find the
points of discontinuity.

12.2 Isospectral rods and the Darboux transfor-
mation

We denote the spectrum of the rod governed by the equation

( 0)0 + = 0 (12.2.1)

and the end conditions

(0) 0(0) (0) = 0 = ( ) 0( ) + ( ) (12.2.2)

by ( ). If two such rods have the same spectrum i.e.,

( 1 1 1) = ( 2 2 2) (12.2.3)

we say that they are isospectral.
The simplest, almost trivial, pair of isospectral rods is obtained by physically

turning the rod and restraints around so that

2( ) = 1( ) 2 = 1 2 = 1

This will have no e ect on the spectrum, so that

( ( ) ) = ( ( ) ) (12.2.4)

To avoid complications we shall henceforth assume that ( ) = 2( ) is a
positive, twice continuously di erentiable function of . This is unnecessarily
restrictive, but at this time we are not interested in discussing the finer points
of analysis. We leave it to the reader to see what regularity conditions are
su cient for various points of the analysis.
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To obtain the next simplest pair we note that if satisfies (12.2.1), then
= 0 satisfies

( 1 0)0 + 1 = 0

which is precisely (12.2.1) with replaced by 1. Now consider the end
conditions. We have

= 0 0 =

Thus if the original rod is a cantilever, with (0) = 0 = 0( ), then the new rod
satisfies 0(0) = 0 = ( ), so that it is a reversed cantilever. The cantilever
cannot have a zero eigenvalue so that we conclude

( 0) = ( 1 0 )

and using (12.2.4) we deduce also that

( ( ) 0) = ( 1( ) 0)

This is a result that has been known for many years, see Eisner (1967) [83],
Benade (1976) [26], and was recently pointed out again by Ram and Elhay
(1995) [285]; they examined many other interesting dualities.
If the original rod is free, so that 0(0) = 0 = 0( ), then (0) = 0 = ( ),

so that the new rod is supported. But the free rod has a zero eigenvalue with
eigenfunction = 1, for which = 0. Thus the zero eigenvalue will not appear
in the spectrum for the supported rod. We conclude that

0( 0 0) = ( 1 )

where 0 indicates that the zero eigenvalue has been omitted.
To conduct a more systematic search for isospectral pairs, we reduce (12.2.1)

to standard Sturm-Liouville form, as in Section 10.1. Write

= 2 = (12.2.5)

then
0 = 2 0 = 0 0 (12.2.6)

so that (12.2.1) reduces to the Sturm-Liouville form

00 + ( ) = 0 (12.2.7)

where
00 = 0 (12.2.8)

For given or , there is a unique , but for given there are many .
This allows us to obtain further isospectral sets. Although rather obvious,
and observed already in Bernoulli and Euler, the indeterminacy introduced by
the Liouville transformation in the inverse eigenvalue problem seems to have
been systematically studied first by Hochstadt (1975a) [177]. He proved that
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classical uniqueness theorems for Sturm-Liouville problems hold, modulo a Li-
ouville transformation: if 0 is one a corresponding to a given , then variation
of parameters gives the general solution

( ) = 0( )

½
0 + 1

Z
0

2
0( )

¾
0 1 constant

The normalization condition (0) = 1, gives 0 = 1, so that

( ) = 0( )

½
1 + 1

Z
0

2
0( )

¾
(12.2.9)

The constant 1 must be chosen so that 0 for 0 ; this happens
i

1 + 1 0, where =

Z
0

2
0( )

(12.2.10)

If 0 are solutions of (12.2.1) corresponding to the same , then

0 0 = =

A simple calculation shows that if 0 satisfies the conditions

0(0)
0
0(0) 0 0(0) = 0 = 0( )

0
0( ) + 0 0( ) (12.2.11)

then satisfies (12.2.2) with

= 0 1 = 0(1 + 1 ) + 1 0( ) (12.2.12)

where is given by (12.2.10). Thus, provided that 1 satisfies

0 1 0 0 =
0

+ 0( )
(12.2.13)

we have a one-parameter family of rods with positive spring constraints:

( ) = ( 0 0 0)

In particular, if 0 = = 0, then = = , and

( ) = ( 0 )

provided only that 1 satisfies (12.2.10).
In a series of papers, Isaacson and Trubowitz (1983) [186], Isaacson, McKean

and Trubowitz (1984) [187], Dahlberg and Trubowitz (1984) [68], Trubowitz and
his co-workers have given a complete characterisation of the isospectral potentials
( ) for the Sturm-Liouville problem (12.2.7) with di erent sets of boundary
conditions. Coleman and McLaughlin (1993a) [62], Coleman and McLaughlin
(1993b) [63] extended this analysis to equation (12.2.1) with Dirichlet boundary
conditions. In this section we have a more modest aim: to show how to obtain
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families of rods isospectral to a given one, following Gladwell and Morassi (1995)
[122].
The analysis is based on the fundamental result that if and are two

linear operators then + and + have the same eigenvalues except
perhaps for . For if + has eigenvalue then there is a 6= 0 such that
( + ) = . Thus = ( ) , so that 6= implies 6= 0. Now
( ) = ( ) = ( ) , i.e., ( + ) = ( ). Since 6= 0,

is an eigenvalue of + .
To apply this to our situation we factorise the operator

2 + = ( + )( ) = 2 0 2

Thus = 0 + 2 + . Put = 0 , so that = ( 00 ) + . This means that
satisfies

00 + ( ) = 0 (12.2.14)

Now satisfies
00 + ( ) = 0 (12.2.15)

then
0 = ( 2 + ) = {( + )( ) + } = 0

so that = ( ) satisfies

{( )( + ) + } = 0

i.e., ( 2 + 0 2 + ) = 0. Write this as

00 + ( ) = 0 (12.2.16)

where
= 0 + 2 + = 2 0 = 2( )00 (12.2.17)

We can interpret this analysis, called the Darboux Lemma or the Darboux
Transformation, after Darboux (1882) [69], Darboux (1915) [70], in various ways.
We can say that, starting from one system with potential and solution , we
can find another system with potential and solution

= ( ) = 0
0

=
[ ]

(12.2.18)

where the bracket is defined by

[ ] := 0 0 (12.2.19)

Alternately we can say that, given two solutions, of (12.2.15), and of
(12.2.14), we can form a solution of (12.2.16) given by (12.2.18), where is
related to by (12.2.17).
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Note that 6= . It may be shown (Ex. 12.2.1) that, when = , the
general solution of (12.2.16) is

=
1
µ
1 +

Z
0

2( )

¶
= constant (12.2.20)

Suppose that we have a rod ( ) with spectrum { }0 corresponding to
end conditions (12.2.2). Transforming to Sturm-Liouville form, we have a set
of eigenfunctions satisfying

00 + ( ) = 0 (12.2.21)

where is given by (12.2.8), and the end conditions

0 (0) (0) = 0 = 0 ( ) + ( ) (12.2.22)

where
= + 0(0) (0) = 0( ) ( ) (12.2.23)

In particular the zeroth eigenfunctions 0 will satisfy

00
0 + ( 0 ) 0 = 0 (12.2.24)

Taking = 0, = 0 we deduce that

=
1

0
[ 0 ] (12.2.25)

is a solution of
00 + ( ) = 0 (12.2.26)

where
= 2( 0)

00 (12.2.27)

We can use this result only if 0 is positive in 0 . This will be the
case if are finite. Since 0 satisfying the same conditions (12.2.22),
will satisfy

(0) = 0 = ( ) (12.2.28)

This means that the eigenfunction of the new Sturm-Liouville system will satisfy
Dirichlet end conditions. We must now find a function ( ), or in fact a family
of such ( ) corresponding to .
The original S-L system was (12.2.7). As we showed earlier, there is a family

of rods with cross sections ( ) = 2( ), associated with this . If 0( ) is one
such, then each member of the family may be written

( ) = 0( )

½
1 + 1

Z
0

2
0( )

¾
(12.2.29)
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We note that if 1 satisfies (12.2.10), then ( ) will be positive throughout [0 ];
otherwise ( ) will change sign once in [0 ]. All the ( ) will satisfy (12.2.8).
On replacing by 0 in the preceding analysis, we find that

=
1

0
[ 0 ] (12.2.30)

satisfies 00 = 0. For this to correspond to a proper rod, it must have one
sign throughout [0 ]. First, we show that ( ) can have at most one zero in
any interval in which ( ), given by (12.2.29) is of one sign. For suppose ( )
had two such zeros, 1 2( 1 2) in such an interval, then by Rolle’s theorem,
[ 0 ]0 must be zero at an intermediate point. But

[ 0 ]0 = ( 0
0 0

0 )
0 = 0

00 00
0 = 0 0 6= 0

which is a contradiction.
There are two cases:

i) , given by (12.2.29) is positive throughout [0 ]. Now 0, 1 + 1 0
(see 12.2.10)). Now can have at most one zero in [0 ], and so it will
have no zero if it has the same sign at 0 and . A simple calculation shows
that

(0) = (0) ( ) = ( ) (12.2.31)

Since are related to 0 0 by (12.2.12), ( ) will have one sign
throughout if

1 0 or
1

1 0 (12.2.32)

where 0 is given by (12.2.13).

ii) ( ), given by (12.2.29) has one zero in [0 ]. Now ( ) = 0 for some
[0 ], and 1 1 . Since ( ) = 1 0( ) 0, ( ) will have the

same sign throughout i (0) 0 ( ) 0, i.e., if 1 0. But since
1 1 , this is satisfied automatically. We conclude that (12.2.29),
(12.2.30) provide a proper rod with fixed end conditions if 1 0 or
1 0. Note that in both cases the intermediate system specified by
( ) will not be proper because the inequalities (12.2.13) will not be
satisfied.

Note that the restriction 6= in the original analysis relating to +
and + , means that the new rod ( ), with fixed ends, will not have the
eigenvalue 0, so that

0( 0 0 0) = ( ) (12.2.33)

where the prime indicates that 0 has been deleted.
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If the original rod is free ( 0 = 0 = 0), then 0 = 0 and 0 = . Now
equation (12.2.20) states that the general solution of 00 = 0 is

=
1
µ
1 +

Z
0

2( )

¶
(12.2.34)

This will be positive in [0 ] provided 1 +
R
0

2( ) 0. Again

0( 0 0 0) = ( ) (12.2.35)

We now show that , and = given by (12.2.25), are in fact the
( 1)th eigenvalue and eigenfunction of the rod. First, we show that there
is a zero of between two zeros of . If 1 2 are two consecutive zeros of
, then

0 = [ 0 ]| 2

1
=

Z
2

1

( 0
00 00

0 ) = ( 0 )

Z
2

1

0

But 0 has constant sign throughout [0 ], so that must change sign, and
have a zero, between 1 and 2. Now we show that there is a zero of between
consecutive zeros of . This follows from (12.2.25), namely

= 0
0
0

0

when = 0 = 0 . But 0 has opposite signs at successive zeros of .
Thus changes sign, and therefore has a zero, between zeros of . We
conclude that the zeros of and interlace. But has zeros in (0 )
while (0) = 0 = ( ). Therefore has ( 1) zeros in (0 ); it is the
( 1)th eigenfunction. We may thus rewrite (12.2.33) as

( 0 0 0) = 1( ) (12.2.36)

The foregoing analysis breaks down where 0 has a zero at an end, as it
does when one or other end of the original rod is fixed. For such cases, and to
eliminate the 0 in (12.2.33), we must modify the analysis of reversing the order
of the factors in the di erential equation twice. Crum (1955) [65] has a di erent
approach to finding pairs of solutions to the Sturm-Liouville equation.

Exercises 12.2

1. Show that the general solution of equation (12.2.16) is given by equation
(12.2.20).

2. Equation (12.2.36) states that the ( 1)th eigenvalue of one rod is equal
to the th eigenvalue of another. This means that the ( 1)th eigenvalue
of (12.2.26) is equal to the th of (12.2.21). Examine the asymptotic forms
of the two spectra as given by equations (10.9.19), (10.9.20) to show that
they are consistent with this statement.



12. A Miscellany of Inverse Problems 351

12.3 The double Darboux transformation

Suppose we have a rod 0( ) with spectrum { }0 corresponding to end con-
ditions (12.2.2). Transforming to S-L form, we have a set of eigenfunctions
satisfying

00 + ( ) = 0

and some end conditions

0 (0) (0) = 0 = 0 ( ) + ( )

as before. We now choose a particular eigenvalue and eigenfunction ;
does not need to be zero. Thus satisfies 00 + ( ) = 0. Applying
the Darboux lemma, we find a non-trivial solution

=
1
[ ] 6= (12.3.1)

of
00 + ( ) = 0 (12.3.2)

where
= 2( )00 (12.3.3)

On the other hand, the second part of the Darboux lemma, equation (12.2.20),
states that the general solution of the equation

00 + ( ) = 0 (12.3.4)

is

=
1
µ
1 +

Z
0

2 ( )

¶
(12.3.5)

We now apply the Darboux lemma to equations (12.3.2), (12.3.4), and deduce
that if 6= , then

=
1
[ ] (12.3.6)

is a non-trivial solution of

00 + ( ) = 0 (12.3.7)

where

= 2( )00

= 2( ( ))00 (12.3.8)

We now examine and . First, we note that equation (12.3.5) gives

= 1 +

Z
0

2 ( ) (12.3.9)
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If has been normalised so that
R
0

2 ( ) = 1, then will be positive,
and so will be continuous, if 1. We now evaluate : it is

=
1
( 0 0 ) = 0

0

But equation (12.3.1) shows that

0 =
00 00 0

= ( )
0

so that

= ( )
( )

( )

But since (0) = 0,

=
0 0

=
1
Z
0

( 00 00 )

=
( )

Z
0

This means that has a factor ( ), so that is we define

0 =

and use (12.3.9) to give , we find

0 =

R
0

( ) ( )

1 +
R
0

2 ( )
(12.3.10)

We see that this is a non-trivial solution of (12.3.7) even when in that equation
is equal to . It may also be shown (Ex. 12.3.1) that 0 is normalised so thatR
0
[ 0( )]2 = 1.
Now we must find the corresponding rods. We started with a rod with ( )

satisfying
00 = 0 (12.3.11)

Applying the Darboux lemma to this equation and 00 +( ) = 0 we find
that

=
1
[ ] (12.3.12)

satisfies
00 = 0 (12.3.13)

Now apply the Darboux lemma to this equation and (12.3.5), and we find that

=
1
[ ] (12.3.14)
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satisfies
00 = 0 (12.3.15)

We can find as we found 0 :

( ) = ( )
( )[ ]

{1 +
R
0

2 ( ) }
(12.3.16)

Note that just as ( ) is one solution of (12.3.11), and ( ) is one solution of
(12.3.13), so ( ) is one solution of (12.3.15); other solutions may be found as in
Section 12.2, see equation (12.2.9).
We now consider whether ( ) is of one sign in [0 ]. Suppose the end

conditions for the original rod were (12.2.2), i.e.,

(0) 0(0) 1 (0) = 0 = ( ) 0( ) + 1 ( )

Equations (12.2.5), (12.2.6) show that these transform to

[ ](0) 1 (0) (0) = [ ]( ) + ( ) ( )

so that the end values of ( ) given by (12.3.16) satisfy

(0)

(0)
= 1 +

1
2 (0)
2(0)

= 0 (12.3.17)

( )

( )
= 1

1
2 ( )

(1 + ) 2( )
= 1 (12.3.18)

Note that unless the original rod is fixed ( (0) = 0), or free ( = 0) at the left
hand end, the new ( ) will not be normalised so that (0) = 1. We now show
that if 1 then 0 and 1 are both positive. Let be the th mode of
the original rod; then ( 0 )0 + = 0 so that

=
R
0

2 =
R
0

( 0 )0

= [ ( 0 )]0 +
R
0

02

= 1
2 (0) + 1

2 ( ) +
R
0

02

so that 1
2 (0) + 1

2 ( ) and hence

0

(1 + ) 1
2 (0) + 1

2 ( )
0

1

(1 + ) 1
2 (0) + 1

2 ( )

(1 + )
0

These inequalities hold provided that 2 (0) and 1
2 ( ) are not both zero,

i.e., provided that at most one end of the rod is free ( 1 or 1 is zero) or fixed
( (0) or ( ) is zero).
We now have a one-parameter family of rods ( ) = ( ) defined for

[0 ] 1; each member of the family is positive at = 0 and = and,
when = 0, ( 0) = ( ) is positive for [0 ]. To show that ( ) must
be positive for all [0 ] 1, we use the following deformation lemma.
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Lemma 12.3.1 Let 0 1, be a family of real valued functions on
, which is jointly continuously di erentiable in and . Suppose that

for every , has a finite number of zeros in [ ], all of which are simple, and
has boundary values with signs that are independent of . Then 0 and 1 have
the same number of zeros in [ ].

This is a slightly extended version of Lemma 3 in Pőschel and Trubowitz
(1987) [269] (p. 41); they simply supposed that has boundary values that are
independent of , but it may easily by seen that their proof holds if only the
signs of these boundary values are independent of .
It may easily be seen that ( ) can have only a finite number of zeros, and

that these must be simple (Ex. 12.3.2), so that the lemma implies that ( ),
like ( 0) = ( ), must have no zeros, and thus be positive, for [0 ], and

1. We may use the deformation lemma to show that ( ) is positive for
the limiting cases in which each end of the rod is either free or supported.
We now examine the end conditions for the new rod. The eigenfunctions of

the new rod are = 0 .
A tedious, but straightforward calculation shows that the new rod has end

conditions

(0) 0(0) 2 (0) = 0 = ( ) 0( ) + 2 ( )

where ( ) = 2( ), and

2 = 0 1 2 = 1 1

Thus

( 1 1) = ( 2 2)

and in particular

( 0 0) = ( 0 0)

and

( ) = ( )

It must be remembered, of course, that the particular that is formed from a
given depends on the end conditions corresponding to the original rod, and
the value of that is chosen in the Darboux transformation.
Exercises 12.3

1. Show that 0 given by (12.3.10) is normalised so that

Z
0

[ 0( )]2 = 1

2. Show that the zeros of ( ) given by (12.3.16) are simple.
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12.4 Gottlieb’s research

H.P.W. Gottlieb has been carrying out research into various vibrating systems
- rods, strings, beams, membranes, plates, etc. - amongst other matters, since
1984. In this section we briefly describe some of these researches, those related
to strings, rods and beams.
We start by considering one of his early papers, Gottlieb (1986) [138], which

builds on earlier papers by Levinson (1976) [208] and Sakata and Sakata (1980)
[299]. We made a comment about Gottlieb (1986) [138] in Section 11.1; Got-
tlieb’s work was motivated by the fact, central to the analysis of Chapter 11,
that two spectra, corresponding to two di erent conditions at one end of the
string, are needed to determine the string density uniquely.
Consider the string shown in Figure 12.4.1, with a density 2( ) that has one

step, at = 0.

1

2

0 )1(

Figure 12.4.1 - A stepped string.

For fixed ends, at and (1 ), the end and continuity conditions are

( ) = 0 = (1 ) [ ]0 = 0 = [
0]0

Thus

( ) =

½
1( ) for [ 0]

2( ) for [0 1 ]

where
00
1 +

2
1

2
1 = 0 =

00
2 +

2
2

2
2

Thus
1( ) = sin{ 1 ( + )}

2( ) = sin{ 2 (1 )}

so that the continuity conditions at = 0 give

sin( 1 ) = sin{ 2 (1 )}

1 cos( 1 ) = 2 cos{ 2 (1 )}

This gives the frequency equation

2 sin( 1 ) cos{ 2 (1 )}+ 1 sin{ 2 (1 )} cos( 1 ) = 0 (12.4.1)
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This is the frequency equation for the general case of a string with one step, as
shown in Figure 12.4.1. Gottlieb examines the special case in which

1 = 2(1 ) (12.4.2)

Now (12.4.1) reduces to

( 1 + 2) sin(2 1 ) = 0

which has the spectrum

= (2 1 ) = 1 2 (12.4.3)

The spectrum is harmonic: = 1. To compare this spectrum with that
of a uniform string of uniform density 2, fixed at = 1 , we note that
the governing equations are

00 + 2 2 = 0 ( ) = 0 = (1 )

so that
= sin{ ( + )}

where
sin( ) = 0

Now
= = 1 2 (12.4.4)

If = 2 1 , then the two spectra, (12.4.3) and (12.4.4) are identical.
To distinguish between the two strings, we must examine their spectra for

fixed-free ends. Now (Ex. 12.4.1) the frequency equation for the stepped string
is

cos(2 1 ) = ( 2 1) ( 2 + 1) (12.4.5)

so that the spectrum is uniformly spaced, but not harmonic. The frequency
equation for the uniform string is cos = 0, with harmonic spectrum =
( 1

2 ) , = 1 2
Gottlieb (1986) [138] considers other strings, and extends his analysis to

multi-segment strings, some with harmonic spectra, in Gottlieb (1987a) [139].
For the special case (12.4.2), the discontinuous string in Figure 12.4.1 is

isospectral to the uniform string, for fixed-fixed ends. In Gottlieb (1988a)
[141] and the somewhat simpler paper Gottlieb (2002) [149], Gottlieb examines
continuous isospectral strings, as we now describe. Start with a string governed
by

00( ) + ( ) ( ) = 0 (12.4.6)

with fixed ends at 0,1, so that

(0) = 0 = (1) (12.4.7)
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We seek transformations to a new coordinate and new displacement ,
that preserve the structural form of the governing equation, and the fixed end
conditions. Let

= ( ) ( ) = ( ) ( ) (12.4.8)

where ( ) is some positive non-singular function of . We wish to find ( )
and ( ), so that the new displacement satisfies

¨( ) + ( ) ( ) = 0 (12.4.9)

where ( ) is some new density, dual to the density function ( ), and · = .
Now

0 = = · = 0 ˙ = 0( ˙ + ˙ )

and

00 = 00( ˙ + ˙ ) + ( 0)2( ¨ + 2 ˙ ˙ + ¨ )
= ( 0)2¨ + ( 00 + 2( 0)2 ˙ ) ˙ + ( 00 ˙ + ( 0)2¨)

(12.4.10)

To maintain the form of the equations, one must have

00 ˙ + ( 0)2¨ = 0 (12.4.11)

00 + 2( 0)2 ˙ = 0 (12.4.12)

Equation (12.4.11) may be written ( 0 ˙ )0 = 0; and since 0 ˙ = 0, we have
00 = 0 and

( ( )) = + (12.4.13)

Equation (12.4.12) implies

00 2 + 2( 0)2 ˙ = 0

i.e., ( 0 2)0 = 0, so that 0 = 2, i.e.,

=
( + )2

( ) =
( + )

+

The requirements that (0) = 0 and (1) = 1 give

= =

so that on taking = 1 we find

=
1 + (1 )

=
(1 + )

1 +
=
1 +

1 +
; (12.4.14)

clearly, we must take 1. Now (12.4.10) gives

( ) = ( ( )) 02 = ˙2 ( ( ))
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and since ˙ = (1 + ) (1 + )2 we have

( ) =
(1 + )2

(1 + )4

µ
(1 + )

1 +

¶
(12.4.15)

The relation between the solutions ( ) and ( ) is

( ) =
(1 + )

1 +

µ
(1 + )

1 +

¶
(12.4.16)

We stress that the system (12.4.9) with fixed end conditions is isospectral to
(12.4.6), (12.4.7), for all values of 1.
The transformation from one coordinate to another, , has a group struc-

ture. First we note that if = (1+ )
1+ , then = 1+ (1 ) =

(1+ 0)
1+ 0 where

0 = (1 + ): thus, if a characterises then a 0 characterises .
Note that if 0 = (1 + ) then = 0 (1 + 0), and that 1 implies
0 1 and vice versa. This shows that each transformation has an inverse.
Now consider a product of transforms. Suppose

1 =
(1 + 1) 2

1 + 1 2
2 =

(1 + 2) 3

(1 + 2 3)

then

1 =
(1 + 1 + 2 + 1 2) 3

1 + ( 1 + 2 + 1 2) 3
=
(1 + 1 2) 3

1 + 1 2 3

where
1 2 = 1 + 2 + 1 2 = 2 + 1 + 2 1 (12.4.17)

We note that
(1 + 1 2) = (1 + 1)(1 + 2) (12.4.18)

so that 1 1 2 1 implies 1 2 1: the product of two transformations
is a transformation, and (12.4.17) shows that the product is commutative. There
is an identity transformation, = 0, and the associative property holds (Ex.
12.4.2): the transformations form a group, a one-parameter Lie group.
Now consider the density functions. When and are linked by (12.4.15)

then we say that is the dual of with respect to . Since 1+ = 1 (1+ 0 )
and 1 + = 1 (1 + 0), we can rewrite (12.4.15) as

( ) =
(1 + 0)2

(1 + 0 )4

µ
(1 + 0)

1 + 0

¶

This shows that is the dual of with respect to 0. We may express this
symbolically as

= ( ) = ( 0)

and now we may verify (Ex. 12.4.3) that if

2 = ( 1 1) 3 = ( 2 2) then 3 = ( 1 1 2) (12.4.20)
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This means that the dual w.r.t. 2 of the dual of 1 w.r.t. 1 is just another
dual of 1, with respect to 1 2.
Gottlieb (1986) [138] provides some examples. For the simplest, we start

with ( ) = 1, then
( ) = (1 + )2 (1 + )4 (12.4.21)

Both these systems have spectrum = 2 , where

= = 1 2

for fixed-fixed ends. The eigenfunctions are

( ) = sin( ) ( ) =
(1 + )

1 +
sin

½
(1 + )

1 +

¾

and we note that while the nodes of the former are the equidistant points

= = 1 2 1

the nodes of the latter are

= { + ( )} = 1 2 1

Gottlieb calls (12.4.21) the Borg density because it was discussed by Borg (1946)
[39]. Another example is given in Ex. 12.4.4. Gottlieb (1987b) [140] studied
isospectral beams. In the notation of Section 13.7, his analysis is as follows.
Start with the governing equation (13.1.4):

2

2

µ
( )

2

2

¶
= ( ) ( ) (12.4.22)

and introduce a new variable = ( ) so that (12.4.22) reduces to the standard
form

4 ( )
4
+

µ
( )

¶
+ ( ) ( ) = ( ) (12.4.23)

As in Section 13.7 we write

( ) =

µ
( )

( )

¶ 1
4

2( ) = ( ( ) 3( ))
1
4

so that
( ) = 2( ) 1( ) ( ) = 2( ) 3( )

where

= ( ) (12.4.24)

In terms of , equation (12.4.22) is

( ( 2( 0)0)0)0 = 2 2 (12.4.25)
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where 0 = . Put
( ) = ( ) { ( ) ( )}

then
0 = ( 0 ) (12.4.26)

2( 0)0 = { 00 ( + ) 0 ( 0 ) } (12.4.27)

( 2( 0)0)0 = { 000 00 (2 0 + ) 0 + ( 00 + ) } (12.4.28)

( ( 2( 0)0)0)0 = { 0 + ( 0)0 + } (12.4.29)

where
0

=
0

= = + = 0 + 2

= 3 0 2 = ( 00 + )0 + ( 00 + ) (12.4.30)

This means that the transformed system (12.4.23) will correspond to a uni-
form beam if = 0 = . We will of course have to check which, if any, of the
end conditions are preserved. The only end condition that is preserved in all
cases is the clamped condition:

= 0 = = = 0 =

Equations (12.4.30) shows that one solution of = 0 = is given by =
0 = . Since (12.4.26), (12.4.28) show that, when = 0 = ,

0 = 0 ( 2( 0)0)0 = 000

any such solution will preserve a sliding-end condition. We explore this solution:
= ( )0 so that = 0 implies = constant; = 00 , so that = 0 implies
( ) = + , where are constants. The coordinate transformation becomes

= ( + ) 1

so that
( + )2

2
= +

We choose the constants so that = 0 1 correspond respectively to = 0 1:

1 + = (1 + )
1
2 1 + = (1 + )

1
2

The original beam is given by

( ) = 0(1 + )
3
2 ( ) = 0(1 + )

1
2

As we noted earlier, this beam will have the same spectrum as a uniform beam
for clamped-clamped and clamped-sliding end conditions.
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Another solution is given by ( ) = constant. Now = so that = 0
implies 2 0+ 2 = 0, and thus 00+ 0 = 0 and 00+ = 00+ ( 0+ 2) = 0

so that = 0. Now 2 0 + 2 = 2 00 02 2 = 0 and = ( + )2. Since
= we have

( ) = 0( + )4 ( ) = 0( + )4

Other examples are given in the exercises. Gottlieb (1987b) [140] studies many
other cases in detail; see also Abrate (1995) [1].
Gottlieb has studied isospectral membranes and plates in Gottlieb (1988)

[142], Gottlieb (1991) [144], Gottlieb (1992b) [146], Gottlieb (1993) [147], Got-
tlieb (2000) [148], Gottlieb (2004a) [150]. In a recent paper, Gottlieb showed
that the only mappings of the mapping that transform the membrane equation
onto another membrane equation are conferral mappings.

Exercises 12.4

1. Set up the frequency equation for the stepped string in Figure 12.4.1 for
fixed-free end conditions and obtain (12.4.5); find .

2. Show that the product of transformations defined by (12.4.14) is associa-
tive, i.e., (1 2) 3 = 1 (2 3).

3. Verify (12.4.17).

4. Show that if ( ) = (1 + ) , then

( ) = (1 + )2(1 + ) (1 + ) +4

where = + + .

5. Show that in the special case = 2 = 0, the dual string is just the
original string turned around, i.e., ( ) = {1 + (1 )} 2.

6. The composition law for the transformation group is (12.4.17). Show that
if = (1+ ) then the composition law becomes additive: 1 2 = 1+ 2.

7. Another possible solution of (12.4.30) is given by = 0 00 = . Explore
this solution.

8. Explore solutions of = 0 = by seeking = 0 = 0 where
= + , and are to be determined.

12.5 Explicit formulae for potentials

We discussed at length in Chapters 10, 11 what spectral data are necessary to
determine the potential in Sturm-Liouville equation. By potential we mean
either ( ) in (10.1.14), ( ) (or 2( )) in (10.1.8) or ( ) in (10.1.3). In
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general, as we have found, there is no explicit formula for a potential; rather, it
is found after a long process involving integral and/or di erential equations. In
this section we describe some explicit formulae that have been found for various
particular cases. We will give few derivations since these are generally very
lengthy; instead we will make references to the original papers.
We start with Gel’fand and Levitan (1953) [101]. They considered equa-

tion (10.1.14) under the free-free end condition 0(0) = 0 = 0(1), with ( )
1(0 1) and Z 1

0

( ) = 0 (12.5.1)

They showed that if ( )1 denote the eigenvalues of (10.1.14), and ( )1 are
the corresponding eigenvalues of the same equation with ( ) 0, i.e.,

00( ) = ( ) 0(0) = 0 = 0(1)

then X
=1

( ) =
1

4
( (0) + (1)) (12.5.2)

Halberg and Kramer (1960) [158] extended this result to the end conditions

0(0) (0) = 0 = 0(1) + (1) (12.5.3)

If are finite, then (12.5.2) holds; if is finite and = , then

X
=1

( ) =
1

4
( (0) (1)); (12.5.4)

if = , is finite, then

X
=1

( ) =
1

4
( (1) (0)); (12.5.5)

and if = = (the ends are fixed) then

X
=1

( ) =
1

4
( (0) + (1)) (12.5.6)

Barcilon (1974d) [17] gives an alternative derivation of these results. Note that
all these formulae give a sum or di erence of values of at the end points as a
function of the e ect of on the eigenvalues.
Barcilon (1983) [22] examined the string equation (10.1.8) and considered

the eigenfunctions for a part of the string; we change his formulation somewhat.
Barcilon first proves
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Theorem 12.5.1 Let ( )1 be the spectrum of

00 + = 0 (12.5.7)

(0) = 0 = (1) (12.5.8)

and ( )1 the spectrum of
00 + = 0

(0) = 0 = 0(1) (12.5.9)

If the function ( ) is continuous and bounded away from zero, then

(1) =
1

1

Y
=1

2

+1

(12.5.10)

We may make a (rather weak) check on this by considering the case 1
(Ex. 12.5.1).
Now we consider the string with ends at 0 and , and find the spectra by

simply scaling the coordinate so that the string occupies (0 1). This gives the

Corollary 12.5.1 If ( ( ))1 and { ( )}1 are the spectra of (12.5.7) for the
end conditions (0) = 0 = ( ), (0) = 0 = 0( ) respectively, then

( ) =
1

2
1( )

Y
=1

[ ( )]2

+1( ) ( )
(12.5.11)

Barcilon’s formula (12.5.11) involves two spectra, for two di erent end con-
ditions at . Pranger (1989) [270] expresses ( ) in terms of just one spectrum
{ ( )} for (12.5.7) subject to (0) = 0 = ( ). He shows that if

( ) =
X
=1

{ ( )} 1 (12.5.12)

if ( ) is positive, has a continuous first derivative, and has a second derivative
in 2, then ( ) is given by the remarkable explicit formula

( ) =

µ
2

2
+
2

¶
( ) (12.5.13)

Gottlieb (1992a) [145] considers some examples and counter-examples of this
formula. First, if ( ) 1, then ( ) = ( )2 so that

( ) =
2

2

X
=1

1
2

and substitution into (12.5.13) recovers ( ) = 1. See also Ex. 12.5.2. Prager
considers some other explicit formulae.
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Gottlieb (1992a) [145] also considers some cases of discontinuous ( ) to show
that, as Pranger himself thought, his formula holds under wider conditions than
he assumed.

Exercises 12.5

1. Take 1 in (12.5.7) and find the eigenvalues and for (12.5.7)
subject to (12.5.8) and (12.5.9) respectively. Check that equation (12.5.10)
gives (1) = 1. [Use the identity

Y
=1

µ
1

1

4 2

¶
=
2

given in 0.2622 in Gradshteyn and Ryzhik (1965) [152]]

2. The string with density given by (12.4.21), i.e.,

( ) = (1 + )2 (1 + )4 0 1

is isospectral to the uniform string. Use the scaling = to find ( )
and hence recover ( ) from equation (12.5.13).

12.6 The research of Y.M. Ram et al.

For the whole of his scientific career, Ram’s research has been related, more or
less, to some aspect of inverse problems, interpreted in a loose sense. Since
much of this work does not fit neatly into just one category, we have chosen to
devote this section to it. It is impossible to do justice to it in so short a space
and therefore we limit our treatment to the questions that he and his colleagues
asked and the methods they used to answer them. We limit our attention to
those papers related to undamped vibrating systems.
One of the earliest papers is Ram, Braun and Blech (1988) [272]. This

paper is in the tradition of modal analysis, see, for example, Berman (1984) [27].
They ask the following question: for a system with unknown mass and sti ness
matricesM and K, but with its first eigenmodes and eigenvalues known from
modal testing, how can one find approximations to the first eigenmodes and
eigenvalues of a modified system M + M K + K? They show that upper
bounds to the eigenvalues are given by the eigenvalue problem

( + K )x = (I+ M )x (12.6.1)

They illustrate their analysis by an example of a vibrating beam. The bounds
obtained in this paper were upper bounds to the eigenvalues of the modified
structure because they were found as stationary values of the Rayleigh quotient
in a constrained subspace. Ram and Braun (1990a) [273] obtain both upper
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and lower bounds by judicious use of the independent definition of eigenvalues
discussed in Section 2.10, and the fact that decreasing (increasing) the sti ness,
i.e., the strain energy, of a structure, decreases (increases) the eigenvalues. They
show moreover that both the upper and lower bounds that they obtain are
optimal. This paper gives the clearest introduction to the search for upper
and lower bounds. In Ram and Braun (1990b) [274] they extend their results
to obtain upper and lower bounds to eigenvalues, not necessarily the lowest
, by using Lehman’s optimal interval (see Parlett (1980) [264], pp. 198-202).
In Ram, Blech and Braun (1990) [275], this analysis is placed in an abstract
matrix setting and related to previous matrix analytical results. Braun and
Ram (1991) [40] give various examples of the application of this analysis. Ram
and Blech (1991) [277] prove a nice result regarding the addition of an oscillator
of sti ness and mass to a vibrating system with a single spatial direction of
motion: the eigenvalues of the original system that are less than increase,
while those greater than decrease. They introduce their analysis with the
example given in Ex. 12.6.1.

Ram and Braun (1991) [278] apply the analysis derived in Ram, Braun and
Blech (1988) [272] to the inverse problem: find M K to give a specified spec-
trum. They apply their result to some simple examples. See also Ram and
Braun (1993) [280] for more examples.

Ram and Caldwell (1992) [279] consider the reconstruction of a spring mass
system with a single direction of motion in which the masses are not simply
in-line, as in Jacobi systems, but form a multiply connected system. The data
consist of various spectra obtained by anchoring one or more of the masses to
the ground. The solution obtained is not unique; note that the graph of the
system is not a tree, as in the system considered by Duarte (1989) [81], and
described in Section 5.7.

We have already referred to Ram (1993) [276] in Section 4.5. He applies
the result in Ram and Blech (1991) [277]to the situation when an oscillator of
sti ness and mass is attached to the free end of an in-line mass-spring
system. Ram and Gladwell (1994) [289] consider a finite element model of a
vibrating string, for which both the sti ness and the mass matrices are tridi-
agonal, and show that both these matrices may be constructed from a single
eigenvalue and two eigenvectors. Since this method is extremely sensitive to
error, they also use overdetermined data. Ram (1994a) [281] discusses the recon-
struction of the mass-spring model of a beam in transverse vibration described
in Section 2.3 from three eigenvectors, one eigenvalue and the total mass and
length of the beam. Unfortunately, no criteria are given for deciding whether
the mode/eigenvalue data will lead to a realistic model; see Gladwell, Willms,
He, and Wang (1989) [115] for a discussion of this matter. In Ram (1994b) [282]
he returns to the idea introduced in Ram and Blech (1991) [277] to enlarge a
spectral gap: to modify a system so that the modified eigenvalues +1 satisfy

+1 +1. He shows that this may be accomplished by judiciously
adding two oscillators, 1 1 and 2 2 with 1 1 +1 and 2 2 .
Certain specific conditions, which he states, must be satisfied.
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In Ram (1994c) [283] he considers the continuous model for an axially vi-
brating rod, in the form

( 0)0 + = 0 (12.6.2)

and shows that and may be reconstructed from two eigenvalues, the corre-
sponding eigenmodes and the total mass of the rod. He states the conditions on
the given modes that ensure that ( ) ( ) will be positive, and gives a number
of examples.
Ram and Elhay (1995a) [285] attempt a di cult problem, the reconstruction

of the mass and sti ness matrices, M K of a system from modal and spec-
tral data, on the assumption that M K are symmetric band matrices. This
construction procedure still leaves many important questions open for further
research.
Ram and Elhay (1996) [284] consider the theory of dynamic absorbers, and

their use in dynamic modification problems.
In the important paper, Sivan and Ram (1997) [306], the authors confront

the realisation that the mass and sti ness matrices for a given kind of system
will have a specific form. They consider the forms associated with a general
mass-spring system as in Ram and Caldwell (1992) [279]; the mass matrix is
diagonal, while the sti ness matrix has negative (or non-positive) o -diagonal
elements and is diagonally dominant.
They start with raw spectral data =diag( 1 2 ) and modal data
. In theory, the mass and sti ness matrices M K should satisfy

M = I K =

so that, in theory
M = 1 K = 1

But in general, the given matrices will not yield a diagonalM, or K with
the required positivity properties. They therefore pose the problem of finding

, near, in some sense, to , such that M K, computed from (12.6.3)
do have the correct form. They divide the problem into two parts:

Problem 12.6.1 Given , determine such thatM = 1 is a positive
diagonal matrix, and minimises || ||.

Problem 12.6.2 Given and , determine which minimises || ||,
such that K = 1 has the required form.

They give algorithms for solving both these problems. This paper provides
a promising starting point for realistic construction procedures.
Ram and Elhay (1998) [287] is related to isospectral Jacobi systems, and

contains a novel fixed-point approach to constructing a particular Jacobi matrix.
Sivan and Ram (1999) [307] return to the analysis of Ram and Braun (1991)

[278]. They start from the equations K = M and partition
into

= [ 1| 2] =

·
1

2

¸
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where 1 1 are given. They pose the problem of finding
˜
1 = 1W, and ˜1 = (˜ ) and mass and sti ness matrices M̃ = M +

M̂ K̃ =K+ K̂ to minimise the norm of

= (M̃) 1 2(K̃˜ 1 M̃˜
1
˜
1)

and apply their analysis to some simple spring mass problems. The great-
est problem to be overcome is that of ensuring that the matrices M̃ K̃ have
prescribed forms.
Burak and Ram (2001) [44] treat the eigenvalue equation (K M)u = 0

by writing both K andM as sums

K =
X

K M =
X

M

where K M are matrices with fixed elements that reflect the connectivity, the
graph, of the system, and are unknown parameters. When the system is
an in-line mass-spring system, the parameters may be obtained from two modes
and an eigenvalue, as in Ram and Gladwell (1994) [289].
Ram and Elishako (2004) [288] return to the problem of reconstructing a

rod cross-sectional area from a mode, for both discrete and continuous models.
For the continuous model, the governing equation is (10.1.3):

( ( ) 0( ))0 + ( ) ( ) = 0

They concentrate on the problem of finding ( ) when ( ) is a polynomial ,
and discuss particular low order polynomials for the fundamental and the first
few overtones of a free-free rod.
In conclusion, we note that the research conducted by Ram and his colleagues

demonstrates the complexity of inverse problems: the data must be available
from testing or elsewhere, the construction algorithms must be robust, and the
model that is constructed must be realistic - it should satisfy all the necessary
positivity and connectivity constraints.
Ram and his colleagues have made important advances in many diverse as-

pects of these matters; in spite of this there is still ample opportunity for more
research in fulfilling all the requirements of a satisfactory solution to the many
inverse problems that arise in vibration theory.

Exercises 12.6

1. Consider a uniform taut spring of unit length, fixed at = 0, free at = 1
(the end = 1 is attached to a massless ring that slides at right angles to
the string). Find its eigenvalues. Now replace the slider by an oscillator
of mass and sti ness . Show that the eigenvalues increase,
while those with decrease.



Chapter 13

The Euler-Bernoulli Beam

There is enough light for those who only desire to see, and enough obscurity
for those who have a contrary disposition.

Pascal’s Pensées, 430

13.1 Introduction

The free undamped infinitesimal vibrations, of frequency , of a thin straight
beam of length are governed by the Euler-Bernoulli equation

2

2

µ
( )

2 ( )
2

¶
= ( ) 2 ( ) 0 (13.1.1)

Here is Young’s modulus, is the density, both assumed constant; ( ) is
the cross-sectional area at section , ( ) is the second moment of this area
about the axis through the centroid at right angles to the plane of vibration (the
neutral axis). We put

= ( ) = ( ) ( ) =
( )

( )
( ) =

( )

( )
(13.1.2)

= ( ) 4 2 ( ( )) (13.1.3)

where [0 ]. Equation (13.1.1) then becomes

( ( ) 00( ))00 = ( ) ( ) 0 1 (13.1.4)

where 0 = . From now on we will use rather than for the dimensionless
independent variable. Both ( ) and ( ) are positive, i.e.,

( ) 0 ( ) 0 [0 1]

We shall assume throughout that ( ) ( ) 2[0 1]; they are twice continu-
ously di erentiable in [0 1].

368
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For a beam, the most common end-conditions are

free : 00 = 0 = 000 (13.1.5)

pinned : = 0 = 00 (13.1.6)

sliding : 0 = 0 = ( 00)0 (13.1.7)

clamped : = 0 = 0 (13.1.8)

There are certain combinations of these end conditions which allow movement
of the beam as a rigid body:

free-free : = 1 and = (13.1.9)

free-sliding : = 1 (13.1.10)

sliding-sliding : = 1 (13.1.11)

Note that the free-free beam has two rigid-body modes . The two which are
given above are not orthogonal, but a combination + can be found that is
orthogonal to the first, = 1. (Ex. 13.1.1).
The ends may be restrained by translational and rotational spring devices.

In this case the end conditions are

( ( ) 00( ))00 + 1 (0) = 0 = ( ( ) 00( ))01 2 (1) (13.1.12)

(0) 00(0) 1
0(0) = 0 = (1) 00(1) + 2

0(1) (13.1.13)

Here 1 2 are the translational and 1 2 are the rotational sti nesses. The
conditions (13.1.5)-(13.1.8) correspond respectively to = 0 = ; = = 0;
= 0 = ; = = . We shall say that the system groverned by equations

(13.1.4), (13.1.12), (13.1.13) is positive if

1 + 2 0 1 + 2 0 (13.1.14)

Since 1 2 1 2 0, this means that one of 1 2 and one of 1 2 must be
strictly positive; this rules out rigid-body modes.
Papanicalaou (1995) [261] considers spectral theory for a periodic beam; we

do not discuss this.

Theorem 13.1.1 The Euler-Bernoulli operator

B ( ( ) 00( ))00

is self-adjoint, i.e.,
(B ) = ( B )

under the end conditions (13.1.12), (13.1.13).

Proof. (B ) ( B ) =
R 1
0
{( 00)00 ( 00)00 } =

[( 00)0 00 0 ( 00)0 + 00 0]10.
Under any of the conditions (13.1.12), (13.1.13), the bracketed term is zero

at each end.
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Theorem 13.1.2 Eigenvalues of an Euler-Bernoulli system are non-negative,
and are positive i the system is positive.

Proof. Suppose ( ) is an eigenfunction of equation (13.1.4) corresponding
to , then

B =

Thus (B ¯) = ( ¯). But (B ¯) = ( B¯) = (¯ B ) = (¯ ) =
¯( ¯) = ¯( ¯). Thus = ¯ and is real. Now

(B ) = [( 00)0 00 0]10 +

Z 1

0

( 00)2

so that

( ) = 1
2(0) + 2

2(1) + 1[
0(0)]2 + 2[

0(1)]2

+

Z 1

0

( 00)2 (13.1.15)

Since ( ) is an eigenfunction, ( ) 0. There can be a zero eigenvalue only
if the right hand side of (13.1.15) is identically zero. The integral is zero only
if 00( ) 0, i.e., ( ) = + . Each of the other terms must be separately
zero, so that

1
2 = 0 = 2( + )2 = 1

2 = 2
2 (13.1.16)

Suppose 1 2 1 2 are finite. Equation (13.1.16) implies that either 1 =
0 = 2, in which case the system is not positive, or = 0. If = 0, then either
1 = 0 = 2, in which case the system is not positive; or = 0, in which case
( ) 0, so that ( ) is not an eigenfunction. We conclude that if 1 2 1 2

are finite, then the eigenvalues are positive only if the system is positive. The
cases when one or more of the are infinite, may be considered similarly
(Ex. 13.1.2).
Before introducing the Green’s function in general, we consider the special

case of a cantilever beam, i.e., a beam clamped at = 0, free at = 1. If a unit
concentrated load (made dimensionless as in (13.1.2)) is applied to the beam at
= (0 1), then the deflection ( ) and its first two derivatives will be

continuous in [0 1], while its third derivative will have a jump discontinuity at
= . Equilibrium demands

[( ( ) 00( ))0] = +
= = 1

The end conditions at = 1, namely

00(1) = 0 = 000(1)

then yield

( ( ) 00( ))0 =

½
1 0
0 1
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and

( ) 00( ) =

½
0

0 1

Thus
0( ) =

Z
0

0

( )

( )

where 0 = min( ), so that the displacement, i.e., the Green’s function ( ),
is

( ) =

Z
0

0

( )( )

( )
(13.1.17)

Under general end-conditions of the form (13.1.12), (13.1.13), the Green’s func-
tion has the following properties:
1. ( ) is, for fixed , a continuous function of , and satisfies the end-

conditions (13.1.12), (13.1.13).
2. Except at , the first four derivatives of ( ) w.r.t. are continuous

in [0 1]. At = , the third derivative has a jump discontinuity given by

· µ
( )

2 ( )
2

¶¸ = +

=

= 1 (13.1.18)

3. ( ) = 0 for 0 and 1.

Theorem 13.1.3 The Green’s function is symmetric, i.e., ( ) = ( ).

Proof. See Ex. 13.1.3.

Theorem 13.1.4 If ( ) is piecewise continuous then

( ) =

Z 1

0

( ) ( ) (13.1.19)

is a solution of
B = ( ) (13.1.20)

and satisfies the end conditions (13.1.12), (13.1.13). Conversely, if ( ) satis-
fies (13.1.20) and the end conditions (13.1.12), (13.1.13), then it can be repre-
sented by (13.1.19).

This follows immediately from the properties (1)-(3).
The construction procedure used for the cantilever beam can be generalised.

It can be shown (Ex. 13.1.5) that

( ) =

½
( ) ( ) + ( ) ( ) 0
( ) ( ) + ( ) ( ) 1

(13.1.21)

where ( ) ( ) are linearly independent solutions of B = 0 satisfying the
end-conditions at = 0, while ( ) ( ) are linearly independent solutions of
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B = 0 satisfying the end-conditions at = 1. Note that for (13.1.17) these
functions are

( ) =

Z
0

( )

( )
( ) =

Z
0

( )

( )
( ) = ( ) = 1

(13.1.22)
Theorem 13.1.4 allows us to replace the di erential equation (13.1.4) and

end-conditions (13.1.12), (13.1.13) by the integral equation

( ) =

Z 1

0

( ) ( ) ( ) (13.1.23)

Exercises 13.1

1. 1 1 = 1 and 1 2 = + will be orthogonal rigid-body modes of a
free-free beam if Z 1

0

( ) 1 1( ) 1 2( ) = 0

Show that when ( ) is symmetrical about = 1
2 , i..e., ( ) = (1 ),

then 1 2( ) = ( 1
2).

2. Show that eigenfunctions ( ) ( ) of (13.1.4), (13.1.12), (13.1.13) cor-
responding to di erent eigenvalues are orthogonal, i.e.,

( ) =

Z 1

0

( ) ( ) ( ) =

Show also that

( 00 00) =

Z 1

0

( ) 00( ) 00( ) =

3. Show that the Green’s function ( ) for (13.1.4) under the end-conditions
(13.1.12), (13.1.13) is symmetric.

4. Show that the Green’s function for a pinned-pinned beam is

( ) =

½ Z 1 (1 )2

( )

¾
+

½
(1 )

Z
0

2

( )
+

Z 1 (1 )

( )

¾
(1 )

when . Identify for this ( ). Show that ( ) 0
when (0 1), and that ( ) = ( ) satisfies 0(0) 0 0(1) 0.

5. Establish (13.1.21). Use the fact that ( ) = ( ) has the forms

( ) =

½
( ) ( ) + ( ) ( ) 0
( ) ( ) + ( ) ( ) 1

Now use the facts that 0 00 are continuous at while the third deriv-
ative has the jump given by (13.1.18).
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13.2 Oscillatory properties of the Green’s func-
tion

First we prove some preliminary results.

Theorem 13.2.1 Under the end conditions (13.1.12), (13.1.13) for finite pos-
itive 1 2 1 2, the Green’s function ( ) = ( ) for 0 1 satisfies

0( ) := ( ( ) 00( ))0 =

½
0

1 1
(13.2.1)

where 0 1.

Proof. Properties (2) and (3) of the Green’s function imply that (13.2.1)
hold for some ; we prove that 0 1.
Consider the values of ( ) ( ) 00( ). The end conditions (13.1.13)

preclude the case in which (0) 0 and (1) 0, for then 0(0) 0, 0(1) 0
so that 00( 0) 0, i.e., ( 0) 0 for some 0 (0 1). But ( ) is linear
in each of (0 ) and ( 1), so that ( ) 0, 0( ) = ( ( ) (0)) 0,

0( +) = ( (1) ( )) (1 ) 0, and therefore [ 0( )]+ 0, contradicting
(13.1.18).
Secondly, if 0 or 1, i.e., if 0( ) has the same weak sign throughout

[0 1], then the case (0) 0, (1) 0 is excluded. For then ( ) 0
throughout [0 1], while the end conditions yield 0(0) 0, 0(1) 0 which
contradicts 00( ) 0 for all [0 1]. Clearly, ( ) 0 is excluded.
Suppose 0, so that 0( ) 0, [0 1], then (0) 0, (1) 0, since

all other cases are excluded. Thus, the end condition (13.1.13) yields 0(0) 0,
0(1) 0 and, since ( ) is piecewise linear, we may argue as before that
0( ) 0 for all [0 1]. But 0(0) 0, 0(1) 0 and the end condition
(13.1.12) imply (0) 0, (1) 0 contradicting 0( ) 0 for all [0 1]. The
case 0( ) 0 is excluded by (13.1.18).
If 1 then 0( ) 0, [0 1] and (0) 0, (1) 0 and the end

conditions yield 0(0) 0, 0(1) 0 and, as before, 0( ) 0 for [0 1]. But
now (0) 0, (1) 0, which is again contradictory.
We conclude that 0 1.

Corollary 13.2.1 ( ) cannot have the same sign throughout [0 1].

Proof. If ( ) 0, [0 1], then (0) 0 and (1) 0, which
has been excluded. If ( ) 0 then (0) 0, (1) 0 so that the end
conditions (13.1.13) yield 0(0) 0, 0(1) 0 which contradicts ( ) 0.
In this Theorem and Corollary, we have assumed that 1 2 1 2 are finite

and positive, but the results still hold even if some or all of them are infinite,
and 1 + 2 0 1 + 2 0, i.e., provided the system is positive. See Ex.
13.2.1.
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Theorem 13.2.2 Under the end conditions (13.1.12), (13.1.13), the Green’s
function satisfies

( ) 0 [0 1] (13.2.2)

( ) 0 (13.2.3)

Proof. Here has the same meaning as in Chapter 10: it is [0 1] if 1 2

are finite, (0 1] if 1 = , i.e., (0) = 0, etc.
Theorem 13.2.1 and the Corollary show that ( ) cannot have the same sign

throughout [0 1]; there is one zero to the left of and/or one zero to the right.
If ( ) = ( ), then the three possible forms of 0( ) ( ) 0( ) ( ) are
shown in Figure 13.2.1.

Figure 13.2.1 - The formation of the Green’s function, showing 0( ) ( )

0( ) ( ) in [0 1].
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In anticipation of the next result, we recall a classical theorem and prove a
refinement.

Theorem 13.2.3 (Rolle) Suppose ( ) is continuous in [ ] and di erentiable
in ( ). If ( ) = 0 = ( ) then ( ) such that 0( ) = 0, i.e., 0( )
has a zero place in ( ). We need the following refinement.

Theorem 13.2.4 Suppose ( ) is continuous in [ ] and di erentiable in ( ).
If ( ) = 0 = ( ) and ( ) is not identically zero in [ ], then 0( ) has a
nodal place in ( ).

We recall that ( ) is said to have a node at if in any two-sided vicinity of
there are points 1 2 such that 1 2 and ( 1) ( 2) 0. Alternatively
( ) can have a nodal interval [ ] such that in any two-sided vicinity of [ ]
there are points 1 2 such that 1 2 and ( 1) ( 2) 0.
Proof. Since ( ) is continuous in [ ], it assumes its maximum and min-

imum values in [ ]. Since ( ) is not identically zero, one of these must be
non-zero. Without loss of generality we may suppose that it is the maximum;
it will therefore be assumed at one or more points ( ), or in an interval
[ ] ( ). In the former case is a node of 0( ), in the latter [ ] is a
nodal place.

Theorem 13.2.5 Suppose ( ) 0( ) are continuous in [ ], and 0( ) has
nodes ( )1 such that = 0 1 2 · · · +1 = , then the function
( ) has at most one zero place in each of the intervals [ 1] [ 1 2] [ ]
+1 in all. If ( ) 0( ) 0 then ( ) has no zero in [ 1], while if ( ) 0( )
0 it has no zero in [ ]. The satisfaction of each of these inequalities thus
reduces the number of zero places of ( ) by 1.

Proof. The first part follows from Theorem 13.2.4: if ( ) had two ze-
ros in [ +1], then

0( ) would have a nodal place in ( +1), contrary to
hypothesis.
For the second we note that if ( ) 0( ) 0 then ( ) 0( ) 0 for [ 1).

The mean value theorem states that for every [ 1] there is a ( )
such that

( ) ( ) = ( )[ ( ) + ( ) 0( )] 0

Thus ( ) has no zero in [ 1]. Similarly, if ( ) 0( ) 0 then ( ) has no
zero in [ ].

Corollary 13.2.2 If instead of being continuous and having nodes at ( )1 ,
0( ) is continuous and of one sign in each of the intervals [ 1) ( 1 2) ( ],
and has jumps and may thus change sign only at ( )1 , then the results concern-
ing ( ) still hold.

We are now ready for

Theorem 13.2.6 Under the action of forces ( )1 acting at ( )1 , where
0 1 2 · · · 1, the beam can reverse its sign at most 1 times.
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Proof. We assume that the beam is a positive system, as described in Section
13.1. First, we assume that 1 2 1 2 are positive, 1 0 and 1. The
deflection of the beam is

( ) =
X
=1

( )

and because of (13.1.18) it satisfies

0( ) =
0 [0 1)

( +1) = 1 1
( 1]

where

= 0 +
X
=1

= 1 2

Thus 0( ) has the property stated in the Corollary to Theorem 13.2.5, so that
( ) has at most +1 zero places, at most one in each of [0 1] [ 1 2] [ 1].

Thus ( ), and therefore 00( ), has at most + 1 nodes in (0 1), so that by
Theorem 13.2.5, 0( ) has at most +2 nodes and ( ) has at most +3 nodes
in (0 1).
Now consider the sequences

0(0) (0) 0(0) (0) and 0(1) (1) 0(1) (1)

i.e.,

1 (0) 1
0(0) 0(0) (0) and 2 (1) 2

0(1) 0(1) (1)

First, suppose that (0) 0(0) (1) 0(1) are all non-zero, then equation (13.1.13)
shows that

0(0) 00(0) 0 and 0(1) 00(1) 0

But then Theorem 13.2.5 states that 0( ) has at most nodes, ( ) has at
most + 1 nodes. Now

0(0) (0) = 1 1
0(0) (0)

0(1) (1) = 2 2
0(1) (1)

so that either 0(0) (0) 0 or 0(0) (0) 0 and either 0(1) (1) 0 or
0(1) (1) 0. If one of the left hand inequalities is satisfied the ( ) has one
less node than before, while if one of the right hand inequalities is satisfied then
( ) has one less node. Thus in any case ( ) has at most 1 nodes.
A detailed consideration of special cases is left to the exercises, but in the

typical case 1 = 0, 1 finite and non-zero, we may argue as follows. 0(0) = 0,
so that 0( ) 0 in [0 1], ( ) = 1

0(0) in [0 1], so that ( ) has no node
in [0 1]; 00(0) 0(0) 0 so that the remainder of the argument holds.
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Theorem 13.2.6 holds the key to the proof that the Green’s function is an
oscillatory kernel. However, in order to prove this, we must continue the in-
vestigation of oscillatory systems of functions started in Section 10.5. First, we
introduce

Definition 13.2.1 The function ( ) is said to reverse its sign times in the
interval , and this is denoted by = , if there are + 1 points ( ) +11 in
such that 1 2 · · · +1 and

( ) ( +1) 0 = 1 2 + 1

and there do not exist + 2 points with this property. Evidently, if ( ) is
continuous in [0 1] and = , then ( ) has nodal places in (0 1).

Before going further we state a basic composition formula. Suppose { ( )}1
are continuous in [0 1], ( ) is continuous in [0 1]× [0 1],

( ) =

Z 1

0

( ) ( )

then

(x; ) =

Z Z Z Z
(x; s) (s; ) s (13.2.4)

where is the simplex defined by 0 1 2 · · · 1,

(x; ) = det( ( )) = ( 1 2 ; 1 2 )
(x; s) = det( ( ))
(s; ) = det( ( )) = ( 1 2 ; 1 2 )

s = 1 2 , and = {1 2 }.

Theorem 13.2.7 Suppose ( ) is continuous in [0 1] and 1. If
( ) is a continuous kernel with the property

(x; s) 0 for x; s

then

( ) =

Z 1

0

( ) ( )

does not vanish more than 1 times in [0 1].

Proof. is defined in Definition 10.5.1.
By assumption there are + 1 points { )0 such that 0 = 0 1 · · ·
= 1 and ( ) has one sign and is not identically zero on each interval ( 1 ),

1 2 . Put

( ) =

Z
1

( ) ( )
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then

( ) =
X
=1

( )

and for all ( )1 such that 0 1 2 · · · 1 we have (Ex. 13.2.2)

(x; ) =

Z
1

Z
1

0

(x; s) ( 1) ( 2) ( ) s (13.2.5)

The integrand is not identically zero and its non-zero values have one and the
same sign, so that (x; ) is strictly of one sign, and hence the ( ( ))1 form
a Chebyshev sequence (Definition 10.6), and ( ) does not vanish more than

1 times in [0 1].
An important kernel that satisfies the conditions of Theorem 13.2.7 is pro-

vided by

( ) =
2
exp{ ( )2 2}

This kernel has a remarkable property. Suppose ( ) [0 1], and define

( ) =

Z 1

0

( ) ( ) (13.2.6)

If we define ( ) = 0 for 1, then

( ) = 2
R
0
exp{ ( )2 2} ( )

= 2
R
0
exp( 2) ( + )

and

lim
0
( ) =

2
Z
0

exp( 2) ( ) = ( ) (13.2.7)

Using this kernel we may prove

Theorem 13.2.8 Let { ( )}1 be linearly independent functions in [0 1], and
define

( ) =
X
=1

( )

The necessary and su cient conditions for 1 in [0 1] for all not all
zero, is that

(x; ) ( 1 2 ; 1 2 ) x

should have fixed sign, i.e., one and the same sign for those points for which it
is not zero.
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Proof. If for certain not all zero, 1 and

( ) =

Z 1

0

( ) ( )

then Theorem 13.2.7 shows that

( ) =
X
=1

( )

vanishes in [0 1] not more than 1 times.
Conversely, equation (13.2.7) shows that if ( ) vanishes not more than
1 times, then 1. Thus 1 for all , not all zero, i

{ ( )}1 form a Chebyshev system in [0 1], i.e., i

(x; ) := det( ( ))

has strictly fixed sign when x . If (x; ) has strictly fixed sign, then

(x; ) = lim
0

(x; )

will have strictly fixed sign. On the other hand, since the { ( )}1 are linearly
independent, will not be identically zero. Thus (13.2.4) with = shows
that if has fixed sign, then will have fixed sign.
We have now established all the results needed to prove

Theorem 13.2.9 The Green’s function of a positive Euler-Bernoulli system is
oscillatory.

Proof. There are three conditions to be fulfilled in the Definition 10.5.1.
Theorem 13.2.2 yields i), the argument via strain energy yields iii). It remains
to prove ii). Theorem 13.2.5 states that if

( ) =
X
=1

( )

then 1. Put ( ) = ( ), then, since the { ( )}1 are linearly
independent, Theorem 13.2.8 states that

( 1 2 ; 1 2 ) = (x; s) 0

for x s . This is ii)
The following theorem states which of the determinants in ii) are zero and

which are non-zero; it is the analogue of Theorem 10.5.4 for the beam

Theorem 13.2.10 (x; s) 0 i x s I and +2 and +2 for
= 1 2 2.
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Proof. The first condition is necessary; for if one of 1 1 is not in I,
e.g., 1 = 0, then ( 1 ) = 0 for = 1 2 and the determinant is zero.
Now suppose there is an index such that 1 2 and +2.

Then for = + 1 and = 1 2 + 2. Consider entries in
the submatrix taken from rows +1 and columns 1 2 + 2 of the
matrix ( ( )). Since for each entry, equation (13.1.21) shows that

( ) = ( ) ( ) + ( ) ( )

so that the matrix will have rank 2. If = 3, then = 1 and the submatrix
is the complete matrix which has rank 2, and therefore has zero determinant.
If 4, then we evaluate the × determinant using Laplace’s expansion
with minors of order + 2 taken from the first + 2 columns; each such minor,
having +2 3 rows, will be zero, so that the determinant will be zero. Thus

+2 is necessary for (x; s) to be positive, and so similarly is +2.
Now we prove the su ciency. Suppose x s I. +2, and +2

for = 1 2 2. We will prove the determinant is positive by in-
duction. When = 1, the results holds, by Theorem 13.2.2. Suppose
that, if possible, it holds for 1, but not for , i.e., there exist ( 0)1 (

0)1
in and satisfying 0

+2
0 0

+2 for = 1 2 2 such that
( 0
1

0
2

0 ; 0
1

0
2

0 ) = 0, but ( 0
1

0
2

0
1;

0
1

0
2

0
1) 0

and ( 0
2

0
3

0 ; 0
2

0
3

0 ) 0. Now choose arbitrary points ( )1 ( )1
such that

0
1 1 2 · · · 0 0

1 1 2 · · · 0

and renumber ( )1 (
0)1 increasingly as (

0)21 . The 2 ×2 matrix ( ( 0 0))
is TN and the minors corresponding to ( 0)1 and (

0)1 fit the criteria of Theorem
6.6.6. Therefore, the matrix has rank 1, so that

( 1 2 ; 1 2 ) = 0 (13.2.8)

There are two cases: 3 and = 2. In the first case 0
1

0
3

0

and 0
1

0
3

0 imply that the intervals ( 0
1

0 ) and ( 0
1

0 ) overlaps.
We may therefore take = for = 1 2 , so that (13.2.8) yields
( 1 ; 1 ) = 0 contradicting condition iii) of Definition 10.5.1.
If = 2, equation (13.2.8) states that ( 1 2 ; 1 2) = 0 for all 1 2 1 2

satisfying 0
1 1 2

0
2

0
1 1 2

0
2. Without loss of generality we

can take 0
2

0
1, so that 1 1 2 2 1 2 and

( 1 2 ; 1 2) =

¯̄̄
¯ ( 1) ( 1) + ( 1) ( 1) ( 1) ( 2) + ( 1) ( 2)
( 2) ( 1) + ( 2) ( 1) ( 2) ( 2) + ( 2) ( 2)

¯̄̄
¯

=

¯̄̄
¯ ( 1) ( 1)
( 2) ( 2)

¯̄̄
¯ •
¯̄̄
¯ ( 1) ( 1)
( 2) ( 2)

¯̄̄
¯ = 0

One or other of the factors in this equation must be zero. Suppose that for
some 1 2 the second factor is not zero, then the first must be zero for all



13. The Euler-Bernoulli Beam 381

1 2 such that 0
1 1 2

0
2. But that means that ( ) ( ) are

proportional, contradicting the fact that there are linearly independent solutions
of ( 00)00 = 0 satisfying the end conditions at = 0. Similarly, if the first
factor is not zero for some 1 2, then the second must be identically zero, which
again is impossible. Hence, we have arrived at a contradiction. The stated
conditions are su cient to ensure that ( 1 2 ; 1 2 ) 0.

Exercises 13.2

1. Establish Theorem 13.2.1 when some of the are 0 or , but the
system is still positive.

2. Verify equation (13.2.4) in the case = 2. Show that

( 1 2; 1 2) =
R 1
0

R 1
0

( 1 2; 1 2) ( 1) ( 2) 2 1

= 1
210

R 1
0

R 1
0

( 1 2; 1 2) ( 1 2; 1 2) 2 1

=
R 1
0

R
1

0
( 1 2; 1 2) ( 1 2; 1 2) 2 1

3. Establish equation (13.2.5) for = 2.

4. Verify the Corollary of Theorem 13.2.5.

5. Establish Theorem 13.2.6 when some of the are 0 or , but the
system is still positive.

13.3 Nodes and zeros for the cantilever beam

For the cantilever beam the governing equations are

( ( ) 00( ))00 = ( ) ( ) (13.3.1)

(0) = 0 = 0(0) 00(1) = 0 = 000(1) (13.3.2)

The theory of Section 13.2 shows that the Green’s function for the beam is an
oscillatory kernel on = (0 1], so that the eigenvalues ( )1 are distinct, and
the eigenfunctions ( ( ))1 have properties (1)-(3) stated in Theorem 10.6.4.
We need to strengthen this classical result. To do so, we suppose, as in

Section 13.1 that ( ) ( ) 2[0 1], and put ( ) = ( ) 00( ). Equation
(13.3.1)-(13.3.2) show that ( ) satisifies

( ( ) 00( ))00 = ( ) ( ) (13.3.3)

00(0) = 000(0) (1) = 0 = 0(1) (13.3.4)

where ( ) = 1 ( ), ( ) = 1 ( ). Thus ( ) is an eigenfunction of a
reversed cantilever on (0 1), and is thus an eigenfunction of an oscillatory kernel
on [0 1).
We now state
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Theorem 13.3.1 If { ( )}1 are the eigenfunctions of a cantilever beam, then

1. 1( )
0
1( ) have no zeros in (0 1],

2. ( ) 0( ) have ( 1) nodes in (0 1) and no other zeros in (0 1],

3. If

( ) =
X
=

( ) 1
X
=

2 0

then ( ) and 0( ) have not less than ( 1) nodes and not more that
( 1) zeros in (0 1],

4. ( ) := ( ) 00( ) and 0( ) have the properties 2) and 3) on [0 1).

Proof. The stated properties of ( ) ( ) follow from Theorem 10.6.4.
We verify those for 0( ) 0( ).
1) 0

1(0) = 0; if
0
1( 0) = 0 for some 0 (0 1], then Rolle’s Theorem 13.2.3

states that there is a (0 0) such that
0
1( ) = 0, contradicting the fact that

1( ) has no zero in [0 1).
2) ( ) has 1 nodes ( ) 1

1 in (0 1) and a zero at 0 = 0. By
Theorem 13.2.4, 0

1( ) has 1 nodes ( ) 1
1 satisfying 1 1 =

1 1; it also has a zero at = 0. If 0( ) has any other zero in (0 1] then
00( ) would have more than 1 zeros in (0 1], contradicting 4) for .
3) The part relating to the 0( ) may be proved in a similar way. See Ex.

13.3.1.
4) This follows because ( ) is an eigenfunction of the reversed cantilever.

Theorem 13.3.2 If ( ) is an eigenfunction of a cantilever beam then
(1) 0(1) 0.

Proof. Theorem 13.3.1 shows that (1) 0(1) 0 6= 0; we show that (1)
and 0(1) have the same sign. The Green’s function for the cantilever is given
in equation (13.1.17), and

( ) =

Z 1

0

( ) ( ) ( )

so that

( ) =

Z 1

0

( )
( ) ( )

Since

( ) =

Z min( )

0

( )

( )

we find that

[ 0(1)]1 =

Z 1

( )

½Z
( ) ( )

( )

¾
(13.3.5)
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Suppose is the largest zero of ( ); it will be a node if 2, and 0 if = 1.
Since (1) 0, we have 0( ) 0, and thus ( ) 0 for ( 1]. Thus
equation (13.3.5) yields

0(1) 0( ) 0

so that 0(1) 0.

Corollary 13.3.1 If ( ) is an eigenfunction of a cantilever beam then
(0) 0(0) 0.

Exercises 13.3

1. Establish the part 3) of Theorem 13.3.1 relating to 0( ).

13.4 The fundamental conditions on the data

We are now in a position to prove the fundamental

Theorem 13.4.1 Suppose ( ) ( ) has derivatives of all orders, (This restric-
tion can be relaxed but it is su cient for our purposes.) then the infinite matrix

=

1 2 3

1 2 3

1 1 2 2 3 3

1 1 2 2 3 3
2
1 1

2
2 2

2
3 3

...

is TP. Here := (1) := 0(1), and the ( ) have been chosen so that
(1) 0.

Before starting the proof proper, we give the gist of the argument in a simple
case.
Consider the determinant

( ) =
2( ) 3( ) 4( )

2 3 4

2 3 4

;

since this may be written

( ) =
4X
=2

( )

Theorem 13.3.1 states that it has at least one node in (0 1), and at most 3 zeros
in (0 1]. In fact, since (1) = 0 = 0(1) = 00(1) = 000(1), it has a fourfold zero
at = 1. Since Theorem 13.3.1 does not state how to count such a multiple
zero, we must consider the zeros of 0( ) and 00( ). We know that ( ) has
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one node in (0 1) and has zeros at 0 and 1. Suppose ( ) had two zeros 1 2

in (0 1). By using Theorem 13.2.3 we deduce that

0( ) has zeros 0 1 2 3 1

( ) : = 00( ) has zeros 1 2 3 4 1

But ( ) =
P4

=2 ( ) and, by part 4) of Theorem 13.3.1, ( ) has at
most 3 zeros in [0 1). This is a contradiction; ( ) has just one zero, a node,
in (0 1).
Now ( ) has exactly 1 changes of sign in (0 1), so that (1) 0 implies

( ) 1 (0+) 0. We will eventually prove the Theorem by induction on the
order of the minors. Suppose therefore that all the 2×2 minors of are positive
then, since

( ) 2(0+) 0 ( )2 3(0+) 0 ( )3 4(0+) 0

we see by expanding the determinant ( ) along its first row that ( ) (0+) 0
and hence (1 ) 0. Now expand ( ) for small in a Taylor series about
= 1:

(1 ) =
4

4!
0 (1) + ( 5)

so that

1 (1) =

¯̄̄
¯̄̄ 2 2 3 3 4 4

2 3 4

2 3 4

¯̄̄
¯̄̄ =

¯̄̄
¯̄̄ 2 3 4

2 3 4

2 2 3 3 4 4

¯̄̄
¯̄̄ 0

We may treat

( ) =

¯̄̄
¯̄̄ 0

2( )
0
3( )

0
4( )

2 3 4

2 2 3 3 4 4

¯̄̄
¯̄̄

in exactly the same way: ( ) has just one zero, a node, in (0 1); 0(1) 0
implies ( ) 1 0(0+) 0, ( ) (0+) 0 and hence (1 ) 0. But

(1 ) =
4

4!
0 (1) + ( 5)

and

1 (1) =

¯̄̄
¯̄̄ 2 3 4

2 2 3 3 4 4

2 2 3 3 4 4

¯̄̄
¯̄̄ 0

We now generalise this analysis to provide a formal proof of the theorem.
Proof. We use the Corollary to Theorem 6.8.2 to prove the theorem by

induction on the order of the minors. All minors of order 1 are positive; assume
that all minors of order are positive; we will prove that all minors of order +1
involving consecutive rows and columns are positive. Because of the repetitive
nature of the rows of , it is su cient to consider just two types of minors:
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those beginning with +1 , and those beginning with +1 .
As we showed in the example, both may be treated in a similar way; we consider
just the first.
Consider

( ) =

¯̄̄
¯̄̄
¯̄̄

( ) +1( ) · · · ( )

+1 · · ·

+1 · · ·
...

... · · ·
...

¯̄̄
¯̄̄
¯̄̄ =

X
=

( )

Take = + . If is even, i.e., = 2 , then the last row is 1 1 ;
if is odd, i.e., = 2 1, then the last row is 1 1 . Theorem
13.3.1 states that ( ) has at least ( 1) nodes in (0 1), and at most ( 1)
zeros in (0 1]. Suppose is even, then ( ) has a zero of multiplicity 2
at 1. Suppose ( ) had zeros in (0 1), where 1. Thus ( )
has zeros 0 1 2 1; 0( ) has zeros 0 1 +1 1; ( ) has zeros
1 2 +2 1. Now introduce the notation

1 :=
0

2 :=
1( ) 00

3 := (
1 00)0 4 := ( 1 00)00

then equation (13.3.3) states that 4 = . Now extend this notation: if
= 4 + then := ( 4 ) so that = ( 4 ) = . Clearly

we may deduce from Theorem 13.2.3, that there is a zero of +1 between any
two zeros of . Now we can extend our study of zeros.

( ) has zeros 1 2 +2 1

1 ( ) has zeros 1 2 +2 1

2 ( ) has zeros 0 2 +2 1

3 ( ) has zeros 0 2 +3 1

4 ( ) has zeros 1 +4 1 etc.

In each 4-cycle, two zeros appear at = 0, for 4 +2 and 4 +3. Thus
4 4 has + 2 zeros in [0 1). But 4 = , so that

4 4=
X
=

1

and hence, by part 4) of Theorem 13.3.1, 4 4 can have at most 1 =
+ 2 1 zeros in [0 1). Therefore, + 2 + 2 1, and 1 so

that = 1 : ( ) has just 1 zeros, all nodes, in (0 1).
We continue the argument as in the example. Assume that all minors of
of order are positive. Since (1) 0, we have ( ) 1 (0+) 0 and by

expanding ( ) along its first row we find ( ) 1 (0+) 0, and hence since
( ) has just 1 changes of sign in (0 1), (1 ) 0. We now expand (1 )
for small :

(1 ) =
2

(2 )!
2 (1) + ( 2 +1)
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so that

2 (1) =

¯̄̄
¯̄̄
¯̄

+1

+1

· · ·
2
+1 +1

¯̄̄
¯̄̄
¯̄ 0

This is a minor of order ( +1) in . Since all the other cases may be analysed
in a similar way, we deduce that all the minors of involving ( +1) consecutive
rows and columns are positive; the Corollary to Theorem 6.8.1 states that is
TP.

Exercises 13.4

1. Establish the generalisation of the argument used with ( ) is equation
(13.4.1).

13.5 The spectra of the beam

Suppose that the beam of equation (13.1.1) specified by length , cross-section
( ), and second moment of area ( ), is transformed into one of length ,
cross-section ( ), second moment ( ), where

= ( ) = ( ) ( ) = ( ) = (13.5.1)

then the spectra of the new beam under any combination of the end conditions
(13.1.5)-(13.1.8) will be the same as those of the original beam provided that

4 = (13.5.2)

With this relationship, equation (13.5.1) defines a two-parameter family os
isospectral beams.
Now consider a beam, clamped at = 0, and acted on by a concentrated

static force and bending moment at its free end = . The deflection is
given by

( ( ) 00( ))00 = 0 (13.5.3)

subject to

(0) = 0 = 0(0) ( ( ) 00( ))0 = = ( ) 00( ) = (13.5.4)

so that

( ) =

Z
0

( )( )

( )
+

Z
0

( )

( )
(13.5.5)

and the end displacement and slope are given by

( ) = 2 + 1
0( ) = 1 + 0
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where the receptances are given by

=

Z
0

( )

( )
= 0 1 2

For the transformed beam the receptances will be

=
+1

= 0 1 2

We conclude that equation (13.5.2) and any two of the four equations

= = = 0 1 2 (13.5.6)

demand that = 1 = = , so that the beams are identical.
We now use the results of Section 13.4 to order the eigenvalues for a beam

clamped at = 0 and subject to di erent end conditions at = 1. (We shall
work with the dimensionless equation (13.1.4) and use the numbering 1,2,3,. . . )
Consider the variational problem of finding the stationary values of the functional

( ) =
1

2

Z 1

0

( )( 00( ))2
2

Z 1

0

( ) 2( ) (1) 0(1) (13.5.7)

Replace by + and find := ( + ) ( ); after two integrations by
parts we find

=

Z 1

0

{( 00)00 } + [ (1) 00(1) ] 0(1)

[( ( ) 00( ))0 =1 + ] (1) (13.5.8)

so that the displacement that makes stationary satisifes equation (13.1.4) and
the end conditions

(1) 00(1) = ( ( ) 00( ))0 =1 = (13.5.9)

i.e., it is the displacement of the cantilever due to the concentrated static force
and moment applied at = 1. We now use the eigenfunctions ( ( ))1

of the cantilever to find an alternative expression for this displacement. The
eigenfunctions of the cantilever are complete in 2(0 1). Write

( ) =
X
=1

( )

and use Ex. 13.1.3 to give

( ) =
1

2

X
=1

2

2

X
=1

2
X
=1

{ + }
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where = (1), = 0(1) and the eigenfunctions have been normalised so
that Z 1

0

( ) 2( ) = 1

( ) will be stationary if

( ) = +

i.e.,

( ) =
X
=1

( + )
( )

This yields the end receptances 1 10 01 010 of the beam with the prop-
erties

( ) = 1 + 10
0( ) = 01 + 010 ;

1 =
X
=1

( )
10 =

X
=1

( )
(13.5.10)

01 =
X
=1

0( )
010 =

X
=1

0( )
(13.5.11)

We now use these expressions to obtain equations for the eigenvalues of the beam
corresponding to various conditions at = 1.
The eigenvalues of the clamped-pinned beam are the values of 2 for which

the application of an end force alone (i.e., = 0) produces no end dis-
placement, i.e., (0) = 0. They are thus the roots of the equation 11 = 0,
i.e., X

=1

2

= 0 (13.5.12)

We will denote them by ( )1 . Since 0, they satisfy

+1 = 1 2

Similarly, the eigenvalues ( )1 of the clamped-sliding beam are the values of
2 for which alone (i.e., = 0) produces no end slope, i.e., 0(1) = 0. They
are the roots of 1010 = 0, i.e.,

X
=1

2

= 0 (13.5.13)

and since 0, they satisfy

+1 = 1 2
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The anti-resonant eigenvalues ( )1 are those at which alone produces no
slope, or equivalently alone produces no displacement; they are the roots of
110 = 0, i.e., X

=1

= 0 (13.5.14)

Since 0 (Theorem 13.3.2), they satisfy

+1 = 1 2

We can order by using Theorem 8.4.2 and the total positivity of the
matrix in Theorem 13.4.1: 0 for gives the ordering

(13.5.15)

Since the clamped end condition may be obtained by adding another con-
straint 0(1) = 0 to the pinned condition, and alternatively by adding the con-
straint (1) = 0 to the sliding condition, the clamped-clamped eigenvalues ( )1
will satisfy

+1 +1

Putting all these inequalities together we find

1 1 1 1 ( 2 1) 2 2 2 ( 3 2) (13.5.16)

As with the discrete beam (see Ex. 8.5.3) the relative position of and +1 is
indeterminate. Tables 7.2(b), (c) of Bishop and Johnson (1960) [34] show that
for the uniform beam 1 2 2 3 3 4, etc. and that thereafter and
+1 are vertically identical.
In order to find the asymptotic forms of the eigenvalues corresponding to

di erent end conditions we use the WKB approach, see for example Carrier,
Krook and Pearson (1966) [49], p. 291. First we make a change of independent
variable:

=

Z
0

µ
( )

( )

¶ 1
4

and write

( ) =

µ
( )

( )

¶ 1
4

2( ) = ( 3( ) ( ))
1
4

then

= =

µ
( )

( )

¶ 1
4

= ( )

and

( )
2

2
= ( ) ( )

µ
( )

¶
= 2( )

µ
( )

¶
Thus equation (13.3.1) becomesµ µ

2

µ ¶¶¶
= 3 2
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since = 3 2. Thus putting 0 = we find

( ( 2( 0)0)0)0 = 2 2 0 (13.5.17)

where

=

Z 1

0

µ
( )

( )

¶ 1
4

(13.5.18)

The new end conditions are

(0) = 0 = 0(0) (13.5.19)

( 0)0( ) = 0 = ( 2( 0)0)0( ) (13.5.20)

Now suppose that is large positive, put = 4 and expand the left hand
side of equation (13.5.17) to give

2( ) 0 ( )+2 ( ) 0( ) 000( )+ 1( )
00( )+ 2( )

0( ) = 4 2( ) ( ) (13.5.21)

where
= 1 =

00 + 2 00 + 2 0 0
2 = ( (

2 0)0)0

For large it will be the first two terms of (13.5.21) that will be dominant.
We look for a solution having the form

( ) = exp

µZ
( 1( ) + 2( ))

¶

After substituting this into (13.5.21) and retaining only the terms involving 4

and 3 we find

4
1 = 1

2(6 2
1

0
1 + 4

3
1 2) + 2

0 3
1 = 0

so that 1 = ±1 ± and 2 2 +
0 = 0, i.e., exp( 2( )) =

1
2 ( ).

There are thus four solutions corresponding to the four values of 1, and we
may write

( ) =
1
2 ( ){ cos + sin + cosh + sinh } (13.5.22)

Apart from the factor
1
2 ( ), this has exactly the same form as that for a

uniform beam, so that for large the eigenvalue equation will be the same as
for a uniform beam of equivalent length . Thus, for the cantilever the four
end conditions (13.5.19); (13.5.20) will yield the eigenvalue equation
Bishop and Johnson (1960) [34], p. 382)

cos cosh + 1 = 0 (13.5.23)

so that
cos = sech ' 2 exp( )
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and
' (2 1)

2
= 1 2

or
' (2 1)4 4 (16 4)

In a similar way we find

' (4 + 1)4 4 (256 4)
' ( 1)4 4 4

' (4 1)4 4 (256 4)
' (2 + 1)4 4 (16 4)

We note that these do obey the interlacing conditions (13.5.15), and that '

+1. Note also that, taking account of the change of notation, the values of
agree with those given by Barcilon (1982) [21]; his values of 2 2 (our

) are incorrect.

Exercises 13.5

1. Verify the statement (13.5.2).

2. Carry out the integration from equations (13.5.3), (13.5.4) to (13.5.5).

3. Derive the expression for in equation (13.5.7) by replacing by + ,
in (13.5.6), neglecting the second order terms and integrating by parts
twice.

4. Show that the asymptotic form for the eigenvalue equation for the clamped-
clamped beam is cos cosh 1 = 0, and use this equation and (13.5.23)
to show that for large is alternately greater and less than +1.

13.6 Statement of the inverse problem

Inverse problems for the vibrating Euler-Bernoulli beam seem to have been stud-
ied first by Niordson (1967) [250]. He was not concerned with the reconstruc-
tion of a unique beam from su cient data, in the sense to be described below.
Rather, he was concerned with constructing a beam in a class having arbi-
trary parameters so that it would have specified eigenvalues which would be
perturbations on the eigenvalues of the uniform cantilever beam.
The proper study of the inverse problem for the vibrating Euler-Bernoulli

beam began with the work of Barcilon. He realised that there are three questions
to be answered. First, what spectral (and other) data are required to deter-
mine the properties (cross-sectional area ( ), second moment of area ( )) of
the beam? In Barcilon (1974b) [15], Barcilon (1974c) [16] he showed that three
spectra, corresponding to three di erent end conditions, are required. Secondly,
what are the necessary and su cient conditions on the data to ensure that the
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beam properties will be realistic, i.e., ( ) 0 ( ) 0? Barcilon battled
with this question in Barcilon (1982) [21], but it was not fully answered until
Gladwell (1986d) [110]. Thirdly, how can the beam be reconstructed? Bar-
cilon (1976) [18] answered this question for the case in which the spectra were
small perturbations on these for the uniform beam, but a proper reconstruction
procedure was not available until McLaughlin (1984b) [227].
As a result of the analysis described in Section 13.5 we may state that

there is only a two-parameter family of beams which have three given spec-
tra { }1 (or { }1 or { }1 ). The particular member in
the family may be found as in (13.5.1). The spectra { }1 will have to
satisfy certain conditions, amongst which will be some asymptotic ones. The
argument of Section 13.5 shows that to be given { }1 and some appro-
priate asymptotic conditions in equivalent to being given { }1 and some
other asymptotic conditions. We can, and shall, circumvent the asymptotic
conditions with the way in which the problem is posed in practice - that only
( )1 are given, while the remainder are chosen so that

( ) +1 = ( ) +1 (13.6.1)

where the quantities relate to a known beam which, without loss of generality,
may be taken to be a uniform beam.
In this case, equation (13.5.12), for example, may be written

X
=1

2 X
=1

2

+
X
=1

2

= 0 (13.6.2)

The infinite sum is an end receptance of the uniform beam and may be expressed
in closed form, in fact Bishop and Johnson (1960) [34] if = 1, then

X
=1

2

=
cos sinh sin cosh

4 3(cos cosh + 1)
=

1
4

Thus, the statement that (13.6.2) is satisfied by = ( )1 yields simultaneous
linear equations for ( 2)1 . The first set of necessary conditions is therefore as
follows:

1) 6= , 6= for all = 1 2 . Those ensures that the matrix of
coe cients in the equations for ( 2)1 in non-singular, and the right hand
sides are well-defined.

2) the solution ( 2)1 must be positive. (See Ex. 13.6.1) Similarly, if the
( 2)1 are to be determined from equation (13.5.13) then we need

3) 6= , 6= for all = 1 2

4) the solution ( 2)1 must be positive.
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Provided that these conditions are satisfied, i.e., ( )1 may be found, then
we shall show that the positivity of the minors of of Theorem 13.4.1, which
has been shown to be necessary, is also a su cient condition for the construction
of a unique realistic beam.
The analysis shows that three properly chosen spectra are required to re-

construct a beam uniquely. Gottlieb (1987b) [140] made an exhaustive study
of beams that have one or two spectra in common, and/or in common with a
uniform beam, for various combinations of end conditions. His study thus high-
lights the need for three (properly chosen) spectra. See also Gottlieb (1988)
[142].

Exercises 13.6

1. By retaining (13.6.2) in the form

X
=1

2

= 0

show that 2 0 if the roots of (13.6.2) interlace the , i.e.,
+1 = 1 2 .

13.7 The reconstruction procedure

The procedure is essentially the same as that described in Chapter 11 for the
vibrating rod, and is due to McLaughlin (1976) [223], McLaughlin (1978) [224],
McLaughlin (1981) [225], McLaughlin (1984a) [226], McLaughlin (1984b) [227].
Papanicalaou and Kravvaritis (1997) [262] consider the special case, ( ) ( ) =
1; in this case the problem can e ectively be reduced to a second order problem.
See also Gladwell (1991d) [119]. We use a transformation operator as described
in Section 11.3.
We suppose that we wish to construct a cantilever beam, i.e., functions ( )

and ( ), such that the equation

( ( ) 00( ))00 = ( ) ( ) (13.7.1)

subject to the end conditions

(0) = 0 = 0(0) 00(1) = 0 = 000(1) (13.7.2)

has specified eigenvalues ( )1 , and has eigenfunctions ( ( ))1 , normalised
w.r.t. ( ), i.e., such thatZ 1

0

( ) ( ) ( ) = = 1 2

which have specified values of ( (1) 0(1))1 .
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First make a change in the independent variable similar to that used in
Section 13.5:

=

Z 1µ ( )

( )

¶ 1
4

(13.7.3)

and write

( ) =

µ
( )

( )

¶ 1
4

2( ) = ( 3( ) ( ))
1
4 (13.7.4)

( ) = ( ) ( ) (13.7.5)

then equation (13.7.1) becomes

( ( 2( 0)0)0)0 2 2 = 0 0 (13.7.6)

where 0 and

=

Z 1

0

µ
( )

( )

¶ 1
4

(13.7.7)

while the end conditions become

( 0)0(0) = 0 = ( 2( 0)0)0(0) (13.7.8)

( ) = 0 = 0( ) (13.7.9)

Without loss of generality, we assume that (0) = 1 = (0).
Just as with the Sturm-Liouville reconstruction, we introduce a base problem

( 0(
2
0( 0

0)0)0)0 2
0
2
0 = 0 (13.7.10)

( 0
0)0(0) = 0 = ( 20( 0

0)0)0(0) (13.7.11)

( ) = 0 = 0( ) (13.7.12)

where 0( ) 0( ) are known (e.g., 0( ) = 1 = 0( )) 0(1) = 1 = 0(0), and
0( ) = 0( ) 0( ). This base problem has a certain set of eigenvalues ( 0)1
and its eigenfunctions 0( ), normalised so thatZ

0

2
0( )

0( ) 0 ( ) = = 1 2 (13.7.13)

will have end values ( 0(0) 00(0))1 .
For given values we may define a unique function

( ; ) ( ) (13.7.14)

which is the solution of equation (13.7.10) satisfying

(0) = 0(0) = ( 0
0)0(0) = 0 = ( 20(

0)0)0(0) (13.7.15)

Clearly
( ; 0 0(0) 00(0)) = 0( ) (13.7.16)
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The eigenfunctions { 0( )}1 are orthogonal with weight function 2
0( ), as

shown by equation (13.7.13). The eigenfunctions { ( )}1 of equations (13.7.6)-
(13.7.9) are to be orthogonal w.r.t. 2( ), i.e.,Z

0

2( ) ( ) ( ) = = 1 2 (13.7.17)

Therefore, following (11.3.5) we construct (13.7.6) so that the solution (13.7.16)
of equation (13.7.10) is transformed into a solution of equation (13.7.6) satisfying

(0) = 0(0) = ( 0)0(0) = 0 = ( 2( 0)0)0(0) (13.7.18)

by means of the equation

( ) ( ) = 0( ) ( ) +

Z
0

( ) 2
0( ) ( ) (13.7.19)

The eigenfunctions of equations (13.7.6)-(13.7.9) will be

( ) = ( ; ( )| =0
0( )| =0)

and we note that

( )| =0 = ( )| =1
( )
¯̄̄
¯
=0

=
( )
¯̄̄
¯
=1

If the eigenvalues and end values (0), 0(0) (with variables ) are chosen
so that

= 0 (0) = 0(0) 0(0) = 00(0) = + 1

then the system { ( )}1 will form a complete orthogonal set with weight 2( )
i ( ) satisfies the analogue of equation (11.5.20), i.e.,

( ) +

Z
0

2
0( ) ( ) ( ) + 0( ) ( ) = 0 0 (13.7.20)

where

( ) =
X
=1

{ ( ) ( ) 0( ) 0( )} (13.7.21)

and
( ) = ( ; (0) 0(0))
0( ) = ( 0 0(0) 00(0)) 0( )

We note that
( ; 0 1 0) = 1 ( ; 0 1 0) = 1

so that equation (13.7.19) gives

( ) = 0( ) +

Z
0

( ) 2
0( ) (13.7.22)
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On the other hand, if

( ) =

Z
0 ( )

0( ) =

Z
0 0( )

(13.7.23)

then
( ; 0 0 1) = ( ) ( ; 0 0 1) = 0( )

so that

( ) ( ) = 0( ) 0( ) +

Z
0

( ) 2
0( ) 0( ) (13.7.24)

The reconstruction procedure is thus as follows:

• solve equation (13.7.20) for ( )

• find ( ) ( ) from equations (13.7.22), (13.7.24)

• find ( ) ( ) from equations (13.7.4), (13.7.5)

• find ( ) ( ) from equations (13.7.3), (13.7.4).

To justify this procedure we need to verify that when ( ) ( ) are given by
(13.7.22), (13.7.24) then

1) ( ) ( ) are well-defined and positive, and ( ) is an increasing function.

2) ( ) satisfies the end conditions at = 0.

3) ( ) satisfies the di erential equation (13.7.6).

4) ( ) satisfies the end conditions at = .

We shall consider these points in the order 2,3,4,1.
Equation (13.7.22) yields (0) = 0(0) = 1, while equation (13.7.19) yields

(0) (0) = (0) = 0(0) (0) = (0) = . On di erentiating equation (13.7.22)
we obtain

0(0) = 0
0(0) + (0 0)

while on di erentiating equation (13.7.19) we find

0(0) (0) + (0) 0(0) = 0
0(0) (0) + 0(0)

0(0) + (0 0) 2
0(0) (0)

which yields
0(0) = 0(0) =

By continuing this di erentiation we may establish the remainder of 2) and 3).
As in Section 11.5, the solution of equation (13.7.20) has the form

( ) =
X
=1

{ ( ) ( ) ( ) 0( )} (13.7.25)
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where ( ) ( ) satisfy

( ) ( ) + ( ) +
X
=1

{ ( ) ( )} = 0 (13.7.26)

( ) 0( ) + ( ) +
X
=1

{ ( ) ( )} = 0 (13.7.27)

where

( ) =

Z
0

2
0( ) ( ) ( ) ( ) =

Z
0

2
0( ) ( ) 0( )

( ) =

Z
0

2
0( )

0( ) 0( )

In considering point 4) we need to discuss two cases, and . For
the first we note than on subsituting (13.7.25) into (13.7.19) and using (13.7.27)
we may deduce

( ) ( ) = ( ) = 1 2 (13.7.28)

But equation (13.7.27) with = and the orthogonality conditions ( ) =
( 0( ) are normalised eigenfunctions of the base problem) yield

X
=1

( ) ( ) = 0 (13.7.29)

since 0( ) = 0. Thus if C = ( ( )) is non-singular, and ( ) 6= 0, then

( ) = 0 = ( )

On di erentiating (13.7.27) we find, under the same proviso, that

0( ) = 0 = 0 ( ) = 1 2

We shall return to the proviso, ( ) 6= 0, later.
When , then ( ) = 0( ) = 0( ) = 0, so that equation (13.7.19)

yields

( ) ( ) =

Z
0

( ) 2
0( )

0( )

so that on substituting for ( ) from equation (13.7.25) we find

( ) ( ) =
X
=1

{ ( )

Z
0

2
0( ) ( ) 0( ) ( )

Z
0

2
0( )

0( ) 0( ) }

But since , 0( ) is orthogonal to all of { 0( )}1 . Therefore, again, if
( ) = 0 = 1 2 and ( ) 6= 0, then ( ) = 0. The satisfaction of
0( ) = 0 may be verified similarly (Ex. 13.7.3).
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We now discuss point 1). The first step is the determination of ( ) ( )
from equations (13.7.26), (13.7.27). The argument used in Section 11.5 shows
that the matrix of coe cients in these equations is non-singular unless = .
Thus there remains only the case = . Then the matrix of coe cients in
(13.7.26), (13.7.27) takes the form

A =

·
I+B C

C 0

¸

so that detA = (detC)2. Thus detC 6= 0 is a necessary and su cient condition
for the ( ) ( ), and hence ( ), to be well-defined. We now enquire as to
when and whether ( ) 0. Suppose ( ) = 0 for some [0 ], then (13.7.28)
and the similar equation

( ) 0( ) = ( ) ( ; 0 0(0) 00(0)) = ( ) = 1 2

show that ( ) = 0 = ( ) = 1 2 and hence, on account of (13.7.26),
(13.7.27), 0( ) ( ) = 0 = 0( )

0( ) = 1 2 . But 0( ), correspond-
ing to an actual beam, is always positive, and the only common zero of the 0( ),
is = . Thus the only possible zero of ( ) is = . At = , equation
(13.6.27) reduces to X

=1

( ) ( ) = 0

so that if detC( ) 6= 0 then ( ) = 0 = 1 2 . Then (13.6.26)
reduces to

0( ) ( )
X
=1

( ) ( ) = 0 = 1 2 (13.7.30)

Equations (13.7.22), (13.7.25) yield

( ) = 0( )
X
=1

( )

Z
0

2
0( )

0( ) (13.7.31)

Put

C = ( ( )) g = [ 1( ) ( )] v = [ 1( ) ( )]

then (13.7.30) becomes
0( )v = Cg

so that on multiplying (13.7.31) by v we have

( )v = 0( )v Hg = 0( )(C H)g

where

=

Z
0

2
0( )( ( ) ( )) 0( ) =
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Thus
( )v = 0( )Eg

This means that if E is non-singular then ( ) 6= 0. If C and E are non-singular
then all the stated operations may be carried out to obtain ( ) ( ) and hence
( ) ( ). Since ( ) ( ) are never zero, and (0) (0) = (0) = 1, ( ) ( ) are
always positive, and hence ( ) ( ) 0.
Lowe (1993) [217] considers a special case of equation (13.7.1) in which ( ) =

[ ( )]2, and uses a construction based on a Fourier series for ( ).

Exercises 13.7

1. Verify the transformation of equations (13.7.1), (13.7.2) to (13.7.6)-(13.7.9).
Show that the conditions (13.7.8) are equivalent to

0(0) 00(0) 00(0) 0(0) = 0 = 0(0) 000(0) 000(0) 0(0)

2. Show that if ( ) satisfies

0
0(0)

00(0) 00
0 (0)

0(0) = 0 = 0
0(0)

000(0) 000
0 (0)

0(0)

then satisfies the conditions in Ex. 13.7.1.

3. We established ( ) = 0 = 0( ) for ; establish them for .

13.8 The total positivity of matrix P is su cient

In Section 13.4 we showed that the eigenvalues ( )1 and end values of a
cantilever beam make the infinite matrix P of Theorem 13.4.1 totally positive.
In Section 13.7 we found some su cient conditions for the reconstruction of an
actual beam from such data. We now show that the total positivity of the
matrix P is not only necessary but su cient.
It was shown in Section 13.7 that the reconstruction will proceed provided

that the matrices C and E are non-singular. Here

=

Z
0

2
0( ) ( ) 0( )

=

Z
0

2
0( )

0( )[ ( ) ( )]

and = 1 2 . Suppose, if possible, that C were singular. Its rows will
be linearly dependent, i.e., there are multipliers ( )1 , not all zero, such that

X
=1

= 0 = 1 2
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Thus Z
0

2
0( )

(X
=1

( )

)
0( ) = 0 = 1 2 (13.8.1)

But since the { 0( )}1 , being the eigenfunctions of the base problem, form a
complete orthogonal set with weight function 2

0( ), equation (13.8.1) means that
the sum in the integrand is a linear combination of the remaining { 0( )} +1.
Thus

( ) :=
X
=1

( ) +
X
= +1

0( ) = 0

In particular, ( ) and all its derivatives must be zero at = 0, the free end.
Consider the case 0( ) 1 0( ). Now

( )| =0 = ( )| =1 =

( ) 0( )| =0 = 0( )| =0 =
( )
| =1 =

while equation (13.7.10) gives

(0) = (0) = (0) =

Thus
( )
(0) = 0 =

0( )
(0) for = 2 3; 6 7;

so that ( )(0) is identically zero for these values of . The equations obtained
by setting ( )(0) to zero for the remaining values 0 1; 4 5; are therefore

X
=1

= 0
X
=1

= 0 = 0 1 2 (13.8.2)

and here we have used the fact that 0 = , 0 = for = + 1 But
the matrix of coe cients for equations (13.8.2) is just the matrix P of Theorem
13.4.1, and every minor of P is positive so that P has infinite rank. Thus all
the are zero, contradicting the assumed signularity of C. Thus C is non-
singular. When 0( ) 0( ) are not identically unity, the rows of the matrix are
linear combinations of the rows of P, so that the conclusion still follows.
A similar argument shows that if E is singular then there are multipliers

( )1 , not all zero, such that

( ) :=
X
=1

{ ( ) (0)}+
X
= +1

0( ) = 0

i..e.,

0( ) =
X
=1

0( ) +
X
= +1

00( ) = 0
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When 0( ) = 1 = 0( ), the matrix of coe cients for the equations obtained
by setting ( )(0) to zero for = 1; 4 5; 8 9; is just the matrix formed from
rows 2 3 of matrix P. We conclude that the are identically zero and that
E is non-singular. We conclude that the total positivity of the matrix P is a
necessary and su cient condition for the reconstruction of a realistic beam.
Note that this conclusion is subject to the condition (13.6.1), and that the

total positivity of the matrix P ensures only that ( ) ( ) will be positive;
they may still vary wildly along the beam, and in this case the vibration of the
beam will not be governed by the Euler-Bernoulli equation, which applies only
to slender beams, i.e., ones for which ( ) ( ) do not di er much from the
values of a uniform beam. If the beam is not uniformly slender, i.e., if

=
max ( )

min( ( ))
=
max ( )

min( ( ))
[0 1]

are not nearly unity, then the vibration of the beam is a ected by thickness
e ects, and the simple Euler-Bernoulli model is inadequate. See Gladwell, Eng-
land and Wang (1987) [112]. Note also that experimental studies of the natural
frequencies of even a slender uniform beam show that the natural frequencies
start to depart from the classical Euler-Bernoulli values after about the fourth
or fifth frequency. This means that although the study of the inverse problem
yields valuable insights into the behaviour of the Euler-Bernoulli beam, it must
in many ways be considered as an academic exercise, and should be used only to
find a beam in which the departures from the uniform beam is small and only
a very few frequencies are to be changed, and that only by small amounts. For
such problems, perturbation methods combined with least squares approaches
form an alternative avenue; but such numerical methods are outside the purview
of this book.



Chapter 14

Continuous Modes and
Nodes

If there were no obscurity, man would not be sensible of his corruption; if there
were no light, man would not hope for a remedy.

Pascal’s Pensées, 585

14.1 Introduction

Throughout most of the preceding chapters, the emphasis has been placed on
eigenvalues; in this chapter, we turn our attention to eigenmodes and, in partic-
ular, to the nodes of eigenmodes. We will find that, in contrast to inverse eigen-
value problems, there are no easily stated inverse nodal problems. There are
some uniqueness results pertaining to nodes, most of which are due to McLaugh-
lin and Hald; there are also some approximate solution of inverse nodal problems,
again mostly due to McLaughlin and Hald; both of these topics are studied in
Section 14.4. It should, however, be stated from the outset that it is impossible
to do justice either to these uniqueness results or to the approximate solutions in
the space available in this chapter; all we can do is to give an introduction to the
published papers, discuss the methods used and some of the results obtained.
We take this opportunity to point out a fundamental di erence between

eigenvalues and nodes of a continuous system, and consequently between inverse
eigenvalue and inverse nodal problems. Eigenvalues are global quantities; they
are properties of the system as a whole. By contrast, a node, in particular the
position of a node, is related to the properties of the system around that node;
it is a local property.
We begin our discussion of modes and nodes by making reference to Sturm’s

Theorems relating to the nodes of a second order equation. These theorems
have wide applicability, are easily proved, and yield valuable insight into the
properties of the solutions of Sturm-Liouville systems. Sturm’s original results

402
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appeared in 1836. The most complete account was given by Bôcher (1917) [37].
A detailed account also appears in Chapter X of Ince (1927) [185].

14.2 Sturm’s Theorems

In Section 10.1 we introduced three equations, (10.1.1), (10.1.3) and (10.1.11)
that appear in vibration problems. These equations all contain the frequency
parameter , and they must all be complemented by end conditions in order to
yield a well-posed eigenvalue problem. Sturm’s Theorems may be formulated
for a wider class of equations that includes (10.1.1), (10.1.3) and (10.1.11), and
apply to the equation without regard for end conditions.
Consider the equation

( 0)0 + = 0 (14.2.1)

and suppose that ( ) 0( ) and ( ) are continuous and ( ) 0 through-
out an interval [ ]. These conditions are unnecessarily restrictive; we could
suppose, say, that they were piecewise continuous with a finite number of points
of discontinuity, or even in a wider class. We leave such niceties to the interested
reader.
For the starting point of our discussion, we note that if ( ) is a continuous

solution of (14.2.1) and ( ) = 0 = 0( ) for some [ ], then is identically
zero. If have derivatives of all orders then ( ) = 0 = 0( ) implies 00( ) =
0 = 000( ) , so that the Taylor expansion of ( ) is identically zero. If only

0 are continuous then we may reach the same conclusion by converting
(14.2.1) into an integral equation. Alternatively, we may approximate
arbitrary closely by ˜( ) ˜( ) that do have derivatives of all orders, and reach
the same conclusion.
From this result, we may deduce that every zero (node) of a solution of

(14.2.1) is simple: if ( ) = 0, then 0( ) 6= 0 and crosses the axis at = .
We may deduce also that no continuous solution of (14.2.1) can have an

infinity of nodes in [ ]. For if there were an infinity of nodes then, by the
Bolzano-Weierstrass Theorem, they would have at least one limit point [ ]
and we can show (Ex. 14.2.1) that, at , not only ( ) = 0 but 0( ) = 0 : 0.
Now suppose that are two solutions of (14.2.1), so that

( 0)0 + = 0 = ( 0)0 +

Multiplying the first by , the second by , subtracting and rearranging, we find

( ( 0 0))0 = 0

so that
( 0 0) = constant = (14.2.2)

Since, by hypothesis, ( ) 0, the constant is zero i the Wronskian, 0 0,
is zero, i.e., i the solutions are proportional, i.e., = . Henceforward, we
will say that two solutions are the same if = , di erent if there is no
such that = . From this we may immediately deduce
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Theorem 14.2.1 Two di erent solutions of (14.2.1) cannot have a common
zero.

Proof. ( ) = 0 = ( ) implies = 0 in (14.2.2)

Theorem 14.2.2 The nodes of two real di erent solutions of (14.2.1) separate
each other.

Proof. First note that it is necessary to include the word ‘real’ in the
statement because

( ) = cos + sin

a solution of 00 + = 0, has no nodes on the real axis.
Now suppose one solution of (14.2.1), , has two nodes 1 2 [ ], and

is a second, di erent, solution. By Theorem 14.2.1, ( 1) ( 2) 6= 0. Suppose
( ) has no node in ( 1 2), then it must have the same sign in [ 1 2], say pos-
itive. That means that = ( ) ( ) is continuous, has a continous derivative
in [ 1 2], and is zero at the ends 1 and 2. Therefore, by Rolle’s Theorem,
0( ) = 0 for some ( 1 2). But

0 =
0 0

2

The numerator of this expression is the Wronskian, which is not zero because
are di erent, and the denominator is 2, which is positive by hypothesis.

Thus, 0 6= 0 throughout ( 1 2). This contradiction implies that has a node
in ( 1 2).

Corollary 14.2.1 If are two di erent solutions of (14.2.1), then the num-
bers of nodes of in any interval [ ] [ ] cannot di er by more than
one.

Theorems 14.2.1, 14.2.2 concern two di erent solutions of the same equation
(14.2.1); the next results concern the solutions of two di erent equations.

Theorem 14.2.3 Suppose ( ) is a solution of

( 0)0 + 1 = 0

and ( ) is a solution of
( 0)0 + 2 = 0

where 1 2 in [ ] and 1( ) 2( ) for some [ ], then ( ) has a
node between any two nodes of ( ).

Proof. Suppose 1 2 are consecutive nodes of , and suppose, if possible,
that has no node in ( 1 2). With no loss in generality, we may assume that
( ) ( ) 0 in ( 1 2). The equations ( 0)0 + 1 = 0 ( 0)0 + 2 = 0
yield, as before,

( 0)0 + ( 0)0 = ( 2 1)
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so that
( ( 0 0))0 = ( 2 1)

which, on integration, gives

[ ( 0 0)] 2

1
=

Z
2

1

( 2 1) (14.2.3)

Since ( 1) = 0 = ( 2) the L.H.S. is

( 1) ( 1)
0( 1) + ( 2) ( 2)

0( 2)

Since ( ) 0 in ( 1 2) we have 0( 1) 0 0( 2) 0 so that 0.
can be zero only if ( 1) = 0 = ( 2) in which case the Wronskian of

and is zero, and are the same solution in [ 1 2], andZ
2

1

( 2 1) = 0

Since 0 in ( 1 2) and 1 2 are continuous, this forces 1 = 2 in
( 1 2). Otherwise, 0, and 1 2 implies that the R.H.S. of (14.2.3) is
non-negative ( 0). This contradiction implies that ( ) has a node between
1 and 2.
Picone extended Sturm’s Theorem 14.2.3 to give

Theorem 14.2.4 Suppose ( ) is a solution of

( 1
0)0 + 1 = 0

and ( ) is a solution of
( 2

0)0 + 2 = 0

where 1 2 0 1 2 in [ ] and 1( ) 2( ) 1( ) 2( ) for
some [ ]. Then ( ) has a node between any two nodes of ( ).

Proof. Picone wrote

³
( 1

0
2

0)
´0
= ( 2 1)

2+( 1 2)
02+ 2

µ
0

0
¶2

(14.2.4)

Suppose, as before, that 1 2 are two consecutive nodes of , that ( ) 0 in
( 1 2) so that 0( 1) 0 0( 2) 0. Suppose has no node in ( 1 2) and
that ( 1) ( 2) 0. On integrating (14.2.4) over ( 1 2) we find

h
( 1

0
2

0)
i

2

1

=

Z
2

1

( 2 1)
2 +

Z
2

1

( 1 2)
02 +

Z
2

1

2

µ
0

0
¶2

(14.2.5)
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The L.H.S. is zero because ( 1) = 0 = ( 2) while the R.H.S. is positive. This
contradiction implies that has a node in ( 1 2). The L.H.S. is still zero even
if ( ) is zero at one or both of 1 2. For if ( ) is zero, say, at 1 then

lim
1

=
0( 1)
0( 1)

so that
lim

1

h
( 1

0
2

0)
i
= ( 1 2)

0| 1 = 0

Note that, in exceptional cases, discussed in Ex. 14.2.2, the R.H.S. may be zero,
in which cases we must modify our conclusion slightly.
We may use Picone’s formula (14.2.4) to prove two separation theorems. The

first is

Theorem 14.2.5 Suppose ( ) is the solution of

( 1
0)0 + 1 = 0 (14.2.6)

subject to
( ) = 0( ) = 0 (14.2.7)

and ( ) is the solution of

( 2
0)0 + 2 = 0

subject to
( ) = 0( ) = 0

We make the following assumptions:

1) 1 2 0 1 2 in [ ].

2) 0 are not both zero, nor are 0.

3) If 6= 0, then
1( )

0
2( )

0

which implies 6= 0.

4) The identity 1 0 = 2 is not satisfied in any finite part of [ ].

If ( ) has nodes in ( ], then ( ) has at least nodes in ( ], and the
th node of ( ) is less than the th node of ( ).
Proof. Let 1 2 be the nodes of ( ) in ( ], so that

1 2 · · ·

Sturm’s Theorem 14.2.4 states that ( ) has a node between any two consecutive
nodes +1. The Theorem holds therefore if we can show that ( ) has a
node between and 1.
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If ( ) is zero at the left hand end point, then, by Theorem 14.2.4, ( ) has
a node between and 1. We therefore suppose that 6= 0, so that condition
3) implies 6= 0. Integrate the Picone formula (14.2.4) between and 1,
assuming that ( ) has no node in ( 1); it is

h
( 1

0
2

0)
i

1

= 2( )

µ
1( )

0
2( )

0¶

which, by condition 3), is negative. The integral of the R.H.S. of (14.2.4) is
positive. This contradiction implies that ( ) has a node between and 1.
This theorem allows us to deduce what happens to the nodes of ( ), the

solution of equations (14.2.6), (14.2.7) when ( ) decreases continuously and
( ) increases continuously, while and 0 are kept invariant: each new node

enters at = and moves towards = .

Exercises 14.2

1. Suppose ( ) has an infinity of nodes in [ ] with limit point . Use the
Mean Value Theorem to show that 0( ) = 0.

2. Explore how the R.H.S. of (14.2.5) can actually be zero. Show that one
can ensure that it is not zero by imposing the condition that 1 and 2

are not identically zero in any finite part of ( ).

3. See how the nodes of 00 + 2 = 0 (0) = 0(0) = 0 in [0 1] travel
from 1 towards 0 as increases.

14.3 Applications of Sturm’s Theorems

Sturm’s Theorems describe what happens to a node of a solution of equation
(14.2.1) when ( ) or ( ) change. In this section we look at the inverse
question: what can we deduce about changes in ( ) ( ) from changes in
nodal positions?
First, consider the taut string governed by equation (10.1.1), namely

00 + 2 = 0 (14.3.1)

Recall that = 2, 2( ) is the mass per unit length, and that the end conditions
are

0(0) (0) = 0 = 0(1) + (1)

Equation (14.3.1) has the form (14.2.1) with

( ) = 1 ( ) = 2( )

Consider what happens when a small mass is removed from the string at some
interior point . We can imagine that the mass is removed continuously over
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a small interval ( + ). Removal of mass increases (or at least does
not decrease) the natural frequency. Denote the new natural frequency by

=
2

, the new mass distribution by
2

( ), and let be the solution of

00 +
2

= 0

subject to
0(0) (0) = 0 = 0(1) + (1)

Suppose has a node (0 ], and apply Theorem 14.2.5 to [0 ]. In
that interval 1 = 2, = and 1 =

2 2 = 2. Thus has a node
(0 ], and . If has nodes ( )1 (0 ] then has at

least nodes ( )1 (0 ], and . Thus nodes to the left of
move to the left. By physically turning the string around, we see that nodes
to the right of + will move to the right: the nodes move away from . We
note that the result holds if mass is removed over any interval, small or not.
(But the theorem does not yield information about the movement of nodes in
the interval.) Also, if mass is added rather than removed then the nodes will
move toward the added mass.
We may draw a conclusion regarding the inverse question: if nodes move

away from (toward) an interval, then mass has been removed (added) in that
interval. This holds only for one interval; if there are two or more intervals in
which mass is removed (added), then there will be interaction between the two
e ects.
Note that in Theorem 14.2.5, and in our analysis in this section, we predicted

the movement of nodes to the left of by considering only the solution of
the di erential equation and the left-hand end conditions

(0) = 0(0) =

We can make a crude estimate of the amount of mass added or removed in
a small interval if we can identify two neighbouring nodes 1 2 of a mode with
frequency , such that after the mass is added, the node 1 moves to the right
to 1, and 2 to the left, to 2, the frequency decreases to . Suppose that
the original mass per unit length between 1 and 2 was constant, 2, and that
after the mass is added it is ( + )2. Since 1 2 are consecutive nodes of the
initial mode

( 2 1) =

and similarly
( + )( 2 1) =

This means that, knowing 2 1 2 1 and we may find ( + ) :

+
= ·

2 1

2 1

1

For a slightly more challenging problem, let us consider the e ect of point
damage to a rod in longitudinal vibration, following Gladwell and Morassi (1999)
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[128]. Recall that for an undamaged rod with cross-sectional area ( ), the
governing equations are (10.1.3), (10.1.4):

( 0)0 + = 0 (14.3.2)

0(0) (0) = 0 = 0(1) + (1) (14.3.3)

We note that the ‘sti ness’ term, ( 0)0, has the same distribution, , as the
‘inertia’ term . If the rod is damaged by a small notch at = , then the
sti ness will be seriously a ected while the inertia term will be almost una ected.
For this reason, we model the notch as a spring so that, at ,

[ 0( )] = 0 (14.3.4)

[ ( )] = ( ) 0( ) (14.3.5)

where [ ( )] := ( +) ( ). The undamaged rod corresponds to ,
i.e., = 1 0. We may show, as expected, that the natural frequencies are
increasing functions of , i.e., decreasing functions of . We may find the first
order variation of the natural frequencies with by taking

( ) = 0( ) + ( ) = 0 +

in (14.3.2)-(14.3.5). We find that

( 0
0)
0 + 0 0 = 0 (14.3.6)

( 0)0 + 0 + 0 = 0 (14.3.7)

[ 0( )] = 0 (14.3.8)

[ ( )] = ( ) 0
0( ) (14.3.9)

Multiplying (14.3.6) by , (14.3.7) by 0 and subtracting, and then integrating
from 0 to 1, using (14.3.3), we find

( ( ) 0
0( ))

2 +

Z 1

0

2
0 = 0

which, with the normalising conditionZ 1

0

2
0 = 1

gives
= ( ( ) 0

0( ))
2 (14.3.10)

This equation shows how the natural frequencies change with . We now show
how the modes, and particularly the nodes, change with . To do that, we use
Theorem 14.2.4 again. We consider the portion of the rod to the left of ; there
the displacement is given by the solution of (14.3.2) and the first of equations
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(14.3.3) with = 0 + 0. We identify 2 with the undamaged case
( 2 = 0 ) and 1 with the damaged case ( 1 = ). According to Theorem
14.2.5, the nodes corresponding to 2 lie to the left of those corresponding to
1. That is, due to the damage, nodes move toward the damage.
We now determine the first order change in the positions of the nodes. To

do this, we estimate the first order changes in the nodes of to the left of .
This means that we are looking at the first order change in the solution of

( 0)0 + = 0
0(0) (0) = 0

Note that we write the dependent variable as to emphasize that we are not
looking to an eigenmode, just at the solution satisfying the left-hand end condi-
tion. This solution is uniquely determined apart from an arbitrary multiplicative
constant. Put

= 0 + = 0 +

and find
( 0)0 + 0 + 0 = 0 (14.3.11)

0(0) (0) = 0 (14.3.12)

To solve these equations we use the method of variation of parameters: we write
= 0 . After some manipulation, we find that this will satisfy (14.3.11),

(14.3.12) if
( 2

0
0)0 + 2

0 = 0
0(0) = 0

Thus
2
0
0 +

Z
0

2
0 = 0 (14.3.13)

If 0 is a node of 0, then the corresponding node of is 0 + where, to
first order,

0 = ( 0 + ) = 0( 0 + ) + ( 0)
= 0( 0) +

0
0( 0) + ( 0)

Thus
= ( 0)

0
0( 0) (14.3.14)

Now ( ) = 0( ) ( ), and since 0( ) 0 as 0, we must have ( )
as 0. We must therefore evaluate ( 0) by writing ( ) = 1 ( ) and
using l’Hôpital’s rule:

( 0) = lim
0

0( )

( )
=

0
0( 0)
0( 0)

Putting = 1 in (14.3.13) we find

2
0( )

2( )
0( ) +

Z
0

2
0 = 0
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and on taking the limit 0, we find

( 0)

µ 0
0( 0)
0( 0)

¶2
0( 0) +

Z
0

0

2
0 = 0 (14.3.15)

To find the change in a node of a mode, we put 0( ) = 0( ) and combine
(14.3.15) with (14.3.14) and (14.3.10) to give

= [ ( ) 0
0( )]

2

Z
0

0

2
0 ( ( 0)[

0
0( 0)]

2) (14.3.16)

as the change in the position of the node, from 0 to 0+ ; as expected, 0.
In the particular case of a uniform free-free rod, for which = 1 0 =
2cos[( 1) ] = 1 2 we find that the th mode moves from 0 =

(2 1) (2 2) = 1 1, to 0 + where

= 0 sin
2[( 1) ]

The corresponding changes for nodes to the right of are

= (1 0) sin
2[( 1) ]

These results show that, for a given mode, the changes in node positions increase
as the node, 0, approaches the damage position. The proportional changes for
those nodes to the left of 0, and for those to the right, (1 0), are
the same for each node; they depend only on the position of the notch. This
means that to find the position of the damaged point we look for two nodes of a
mode that have moved towards each other; the notch lies between these nodes.
An experimental study based on these results may be found in Gladwell and

Morassi (1999) [128], which also gives references to the related literature.

14.4 The research of Hald and McLaughlin

Both Ole Hald and Joyce McLaughlin have been studying inverse problems,
amongst other topics, for many years, and we have referred to their individual
researches on numerous occasions already. In this section we make a brief report
on their joint work on inverse nodal problems.
Inverse nodal problems di er from the inverse eigenvalue problems that form

the subject matter of most of this book, in many subtle ways. We have already
noted that while an eigenvalue, a natural frequency, reflects the properties of
a system as a whole, a nodal position relates to the properties of the system
near the node. But there are other di erences, di erences in the paths from
data to system properties. When the data consist of eigenvalues (and maybe
some norming constants) there is usually some algorithm that gives the exact
values of a set of parameters defining the properties of a unique system which
has this spectral data. In contrast, any researcher approaching an inverse nodal
problem soon realises that nodal positions, the totality of nodal positions for all
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the principal modes, provide too much data. For example, for a string fixed at its
ends, the first mode has no node, the next has one, and so on; the first modes
have a total of ( 1) 2 nodes. Somehow we must make a choice: choose
all the nodes of one mode, or choose one node from each mode, for example.
Clearly, di erent choices will yield di erent models. The situation is made more
complex because a continuous system, like a string, has an infinity of modes, and
thus of nodes. From a mathematical point of view it would be reassuring to
know that if one chose nodes of more and more modes in a particular way, then
the resulting systems would converge in some sense to a unique system, and that
one could give numerical estimates of the error one would make by using a finite
number, , of properly chosen nodes.
There are thus three distinct parts to the ‘solution’ of an inverse nodal prob-

lem: finding an approximate system which has given nodal positions for certain
mode(s); establishing that if any infinity of nodes, chosen in a certain way, is
given, there is no more than one vibrating system, of a specified type, that has
these nodes for certain of its modes; constructing bounds for the error in trun-
cating the infinite set of nodes at a certain number . The first part is relatively
simple; Hald and McLaughlin provide a number of algorithms for the various
types of Sturm-Liouville system described in Section 10.1. The other two parts
are di cult, and require a daunting array of analytical tools; we shall therefore
content ourselves with giving the gist of the methods used and theorems proved;
the interested reader may consult the original papers that are readily available.
Our starting point is a fundamental paper by McLaughlin alone, McLaughlin

(1988) [231]. This deals with part 2 of the problem, uniqueness. McLaughlin
considers the Sturm-Liouville equation (10.1.14) with Dirichlet end conditions:

00 + ( ) = 0 (14.4.1)

(0) = 0 = (1) (14.4.2)

where 2(0 1).
First recall that if 1 2 are two potentials with 2 = 1 + , where is a

constant, then noting that

2 = ( ) 1

we see that the eigenvalues of the two problems di er by while the eigenfunc-
tions, and thus the nodes of the eigenfunctions, remain the same. This means
that nodal information alone can yield only to within an arbitrary additivie
constant: any uniqueness theorem related to nodal information must contain the
added information Z 1

0
1( ) =

Z 1

0
2( ) (14.4.3)

McLaughlin proves that if two potentials 1 2 satisfy (14.4.3), and if the eigen-
functions ( 1 ) ( 2 ) have a common set of nodes that is dense in (0,1)
(see Section 10.3 for the definition of dense), then 1 = 2 in 2(0 1). The gist
of the proof is as follows.
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First consider (14.4.1), (14.4.2) with 0. The eigenvalues are =
( )2 = 1 2 ; the eigenfunctions are ( ) = (0 ) = sin ; the nodes
of ( ) are (0) = = 1 2 ( 1). Note that 1( ) has no node.
Now group the numbers 2,3,4,. . . as follows: 2;4,3;8,7,6,5;. . . This is equiv-

alent to writing

= 2 +1 ; = 0 1 2 ; = 0 1 2 1 (14.4.4)

The ( + 1)th node of the th node is

+1(0) = ( + 1) (2 +1 ) (14.4.5)

and the set of numbers +1(0) for = 0 1 2 ; = 0 1 2 1 is
dense in (0,1); the numbers are 1

2 ;
1
4

2
3 ;

1
8

2
7

3
6

4
5 ; The uniqueness result is

Theorem 14.4.1 Let 1 2
2(0 1), and consider the eigenvalue problems

00 + ( ) = 0

(0) = 0 = (1)

= 1 2. For each 2, suppose that the positions of the nodes, chosen
according to (14.4.5) satisfy

( 1) = ( 2) = 2 3

and that Z 1

0
1( ) =

Z 1

0
2( )

then 1 = 2 in
2(0 1).

McLaughlin contrasts this inverse nodal problem with inverse eigenvalue
problems for the Sturm-Liouville equation, and recalls that two spectra, cor-
responding to two di erent end conditions at one end (or some equivalent data,
e.g., norming constants) are needed to determine . She comments ‘what can
be shown. . . is that the position of one node, albeit judiciously chosen, for each
eigenfunction, 2, is more than enough data to determine uniquely (apart
from a constant). It seems then that the nodal positions in some sense contain
“more” information about this potential than either a set of eigenvalues or a
set of norming constants.’
While McLaughlin (1988) [231] was concerned only with part 2, uniqueness,

Hald and McLaughlin (1989) [167] consider all three aspects, approximation,
uniqueness and error bounds. They consider a generic equation with free end
conditions:

( 0)0 + 2 2 = 0 (14.4.6)
0(0) = 0 = 0(1) (14.4.7)

If 1, this is the string equation (10.1.1) (with density 2). If 2, this is
the rod equation (10.1.3) with 2.
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One problem that they consider is the string ( 1) with free ends. They
construct a string with piecewise constant density as follows. Suppose the nodes
of the th ( 2) mode ( ) are ( ) 1

1 , where 0 1 2 1

1. Consider ( ) in an interval ( 1 ). In that interval ( ) is the
fundamental mode of the string fixed at the ends 1 and , and is the
fundamental frequency; in (0 1)(( 1 1)) it is the fundamental mode for a
string free at 0, fixed at 1 (fixed at 1, free at 1). Suppose, therefore, that
the non-uniform string is replaced by a string with uniform density 2 in the
interval ( 1 ) = 1 where 0 = 0 = 1. For the th (2 1)
part of the string, the governing equation is

00 + 2 2 = 0

( 1) = 0 = ( )

so that
( ) = sin{ ( 1) ( 1)}

and
= ( ( 1)) = 2 1 (14.4.8)

For the first segment (0 1) we have the end conditions 0(0) = 0 = ( 1) so
that

( ) = cos( (2 1))

and

1 = (2 1) (14.4.9)

Similarly for the last segment ( 1 1),

= (2 (1 1)) (14.4.10)

This is the approximation in the specific case 1, and the end conditions
(14.4.7). If the end conditions are (0) = 0 = (1), then equation (14.4.8) holds
for = 1 also.
Hald and McLaughlin present similar algorithms to compute approximations

to and in other cases, and for the Sturm-Liouville potential . For the
rod equation, in which = 2, they first find a potential , and then reverse
the transformation leading to (10.1.14) to find ( ). They also point out a
fundamental di erence between the nodes of the string equation (10.1.3) and
the rod equation or the Sturm-Liouville equation (10.1.14): a perturbation of
in the string equation may cause (relatively) large changes in the nodal positions;
by contrast a perturbation in ( ) or may cause only miniscule changes in the
nodes of a high mode. They comment, “. . . the information in the nodal positions
which we use to approximate the. . . impedance function ( ( )) sits much deeper
in the data than the information about the density (of the string).”
These remarks concern the part of the solution, the approximate construc-

tion. The greater part of Hald and McLaughlin (1989) [167] concerns error
bounds and uniqueness theorems. For the simple case of the string with free
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ends, for instance, they show that the procedure outlined above gives a second
order approximation to the density at the mid points of the interior intervals,
i.e., (( + 1) 2) = but only a first order approximation for the two end
intervals. They give precise error bounds which show how the rate of conver-
gence with increasing depends on the smoothness of the density. They present
numerous case studies here and also in Hald and McLaughlin (1988) [166].
The uniqueness results that they obtain are generalisations of those found in

McLaughlin (1988) [231], a typical one is

Theorem 14.4.2 Let 1, and suppose that the second derivative of is
integrable. Then is uniquely determined (up to a multiplicative constant) by
any dense set of nodes.

In Hald andMcLaughlin (1998) [169] they return to the inverse nodal problem
and develop a theory governing approximation, uniqueness and error bounds for
(14.4.6), subject to Dirichlet end conditions, when and are functions of
bounded variation.
Hald and McLaughlin (1996) [168] deal with inverse nodal problems for non-

uniform rectangular membranes. Space does not allow us to consider these
problems. We simply note that they pose two di culties.
Consider a uniform rectangular membrane with sides vibrating with fixed

edges. Its eigenvalues are

= 2 =

µ
2

2
+

2

2

¶
2

If = and 2 is rational, then there will be multiple eigenvalues, and one
can find eigenvalues with multiplicity exceeding any stated number. If 2 is
irrational, each eigenvalue will be distinct, but one can find two eigenvalues
as close as one wishes. This closeness poses problems in the search for error
bounds.
The second di culty relates to the shape of nodal domains, regions bounded

by nodal lines. For the uniform rectangular membrane the nodal domains
are themselves rectangles; the eigenfunction corresponding to divides the
rectangle into equal rectangles, as shown in Figure 14.4.1a. However, if the
membrane density is perturbed from its uniform value, then the nodal domains
may change dramatically, as shown in Figure 14.4.1b. This complicates the
search for an approximation to the density; one would like to have a situation
which is a generalisation of that for the string; the perturbed nodal domain is
roughly a rectangle. One could then assume that the density was constant
over that rectangle, and use the fact that the eigenfunction is the fundamental
eigenfunction on the region bounded by the nodal lines. The major contribution
of Hald and McLaughlin (1996) [168] is that they show how both these di culties
may be overcome and how one can find good approximations to the density,
and how to obtain uniqueness theoreoms. McLaughlin (2000) [232] reconsiders
inverse problems for a rectangular membrane. She considers three di erent



416 Chapter 14

approaches to the problem: in the first, the data consists of mode shape level
sets and frequencies; in the second, it consists of frequencies and boundary
mode shape measurements; in the third, the data consists of frequencies for four
di erent boundary value problems. Local existence, and uniqueness results are
established together with numerical results for approximate solutions.

a) b)

Figure 14.4.1 - Nodal domains change from rectangles to irregular figures.



Chapter 15

Damage Identification

Chance gives rise to thoughts, and chance removes them; no art can keep or
acquire them. A thought has escaped me. I wanted to write it down. I write

instead, that it has escaped me.
Pascal’s Pensées, 585

15.1 Introduction

As we mentioned in the Preface, the identification of damage in a vibrating
structure from changes in vibratory behaviour is an inverse problem in a loose
interpretation of the term. Since such damage identification has potentially
important practical value, it is appropriate for it to be included in any treatment
of inverse problems but, since it is essentially an application of inverse techniques
and must be combined with numerical methods, it is only of marginal relevance
in this book which, as we stated in the Preface, is concerned primarily with
theoretical and qualitative matters. We will therefore confine our remarks in
this Chapter to a survey of the literature, and an examination of the methods
used, the assumptions that are made, and the conlusions that may be drawn
regarding damage identification in certain simple cases.
We begin our discussion with some statements that may be grasped intu-

itively:
If a structure is damaged, its vibratory behaviour will change.
By vibratory behaviour we mean the response of a structure to time-varying

forces. We will assume thta the structure is undamped so that we may speak
about frequency response, the response of the structure to sinusoidal forces with
a specific frequency . As usual, we focus our attention on the natural fre-
quencies and corresponding principal mode shapes of the structure; these may
be obtained (at least in theory) by applying standard modal analysis techniques
to the frequency responses at various points of the structure. Thus, we make
the following statement:

417
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The vibratory behaviour of a structure may be characterised by its natural
frequencies and corresponding principal mode shapes.
On the other hand
Structural damage may be characterised by its locations, intensities and types;

we thus refer to a damage pattern.
Strictly speaking, a structure is said to be damaged when it undergoes a

change that reduces its sti ness, or more generally reduces its strain energy.
Under this definition, damage reduces the natural frequencies of the structure,
or at least does not increase them. We shall loosen this definition and define
damage as a (small) change in the structure; this would include (positive or
negative) changes in sti ness or in mass.
Now consider the ‘simple’ forward problem: Given a specified structure, find

the changes in vibratory behaviour brought about by specified damage.
The solution of this forward problem depends critically on there being models

for the undamaged and damaged structures, from which the natural frequencies
and mode shapes may be extracted using established methods. It is known
that, under certain conditions, this problem may be well posed: specific damage
will cause a unique set of changes to the natural frequencies and mode shapes;
and these changes will be continuous functions of the damage parameters.
However, almost all the inverse problems, in which one tries to find the

damage (i.e., its locations, intensities and types) which gave rise to specified
behavioural changes, are ill-posed. Specifically, there may be no damage pattern
(whether damage is interpreted strictly or loosely) that would give rise to a
certain set of behavioural changes; or there may be more than one pattern that
would produce the same set of behavioural changes; and there is no guarantee
that the damage parameters will be continuous functions of the behavioural
changes.
The fact that there may be more than one damage pattern giving rise to

specific changes in natural frequencies is a consequence of the fact that natural
frequencies are global constructs - they depend on the complete structure, its
distribution of mass and sti ness, and the way in which it is supported. It
is sometimes possible to identify a damage pattern because a specific damage
pattern will a ect di erent frequencies by di ering amounts. We may make this
statement precise. Suppose it is known that a structure is damaged just at one
location, but the location, , and magnitude, , are unknown. Generally, for
small , the change in the th frequency, , will have the form

= ( ) : (15.1.1)

it depends linearly on , and non-linearly on the position. Thus, if the position,
, is known, then the change, , in one frequency, may be enough to determine
(provided that ( ) is known). If is unknown, then we consider the ratio

of the changes to two frequencies:

=
( )

( )
(15.1.2)
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Thus, if the form of ( ) is known as a function of , then it may be possible to
find the value of corresponding to a given value of .
In any particular case, it will be necessary to determine whether there is no,

one, or more than one value(s) of satisfying (15.1.2) If (one or more values
of) is known, then may be found from (15.1.1). Clearly, if the damage
is not restricted to one location, then the identification procedure will be very
complicated.
We divide our discussion into two parts: damage identification in rods, and

in beams.

15.2 Damage identification in rods

For a rod in longitudinal vibration, we model damage as a crack that stays
open; following Freund and Herrmann (1976) [91] or Cabib, Freddi, Morassi and
Percivale (2001) [47] we model such a crack as a longitudinal spring of sti ness
, and write 1 = . In one of the early papers, Adams, Cawley, Pye and
Stone (1978) [2] (see also Cawley and Adams (1979) [50]; and Hearn and Testa
(1991) [170] for references to engineering studies) considered a damaged one-
dimensional system (a generalised rod) modelled as two parts and , linked
by a spring of sti ness . If := ( ) and := ( ) are direct
receptances (Bishop and Johnson (1960) [34]) of and at = , then the
usual receptance analysis gives the frequency equation of the damaged system
as

( ) + ( ) + = 0

Thus, if = 0 + = 0 + , where 0 0 are undamaged
frequencies then

( ) + ( ) = ( 0 ) + ( 0 ) +

{ ( ) + ( )}| = 0

The first term is zero because 0 is a natural frequency of the undamaged system
( = 0). Thus,

{ ( ) + ( )}| = 0 + = 0

which may be rearranged in the form (15.1.1). Narkis (1994) [247] used this
approach for a uniform free-free rod. For a general rod, the perturbation analysis
of Section 14.3 shows that if = 2 then

= = = ( ( ) 0 ( ))2 (15.2.1)

Morassi (2001) [237] made extensive use of this result. He showed that the
problem of determining the location from changes in two natural frequencies
is generally ill-posed: if the system is symmetrical, then damage at any one of a
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set of symmetrical points will produce identical changes in natural frequencies.
Even if the system is not symmetrical, damage at di erent locations can still
produce identical changes in two natural frequencies.
Morassi (2003) [238] obtains particular results for uniform rods under various

end conditions and determines situations in which the knowledge of
does, and does not, uniquely determine the location . Thus, for example, for
a rod under free end conditions, he defines

=
2 2 2

The th ( 1) mode shape is ( ) = 2 cos( ) so that (15.2.1) gives

= 2 2 2 sin2( )

so that
= sin2( )

Now use the trigonometric identities to deduce that

sin2(2 ) = (2 sin cos )2

= 4 sin2 4 sin4

and hence
(4 2 ) = 4( )2

so that the amount and location of the damage are given by

=
1 2 (4 )

sin2 =

Similarly, he shows that and sin2 may be uniquely determined from +1

and , defined as

+1 =
+1

2( + 1)2 2
=
2 2 2

(15.2.2)

where is the th natural frequency of the rod when it is supported at both
ends. (Ex. 15.2.1).
Morassi and Dilena (2002) [239] analyse the analogous problem of determin-

ing the magnitude and location of a point mass attached to a thin rod from
its e ect on the natural frequencies. Morassi (1997) [236] sets up the problem
of crack detection in a rod as an inverse problem in the spirit of Chapter 11,
following Hald (1984) [165]. He shows that the position of the crack is uniquely
determined from the asymptotic form of the spectrum. Biscontin, Morassi and
Wendel (1998) [32] study the asymptotic form of the spectrum for a uniform
free-free rod of unit length with a spring of sti ness at = . The eigenvalues
(= 2), are the roots of

( ) = sin sin (1 ) sin (15.2.3)
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We can study two kinds of asymptotics, for large or small. For the
two parts of the rod are firmly joined together: the rod is an undamped free-free
rod with eigenvalues = = 0 1 2 For large , i.e., small = 1 ,
the th eigenvalue is = + where (Ex. 15.2.2)

= ( ) sin sin (1 )

This is the kind of small change that we have been observing in the analysis
above. For small , the asymptotic form is centred about = 0; now the rod
splits into two free-free rods, one of length , the other 1 ; there are two
branches

1 = 1 2 = 2 (1 )

We now perturb these branches and seek eigenvalues of the form = 1 +

1 = 2 + 2 and find (Ex. 15.2.2), to first order, that

1 = 1 ( 1 ) 2 = 1 ( 2 )

This gives the asymptotic form of the two branches as

1 = 1 +
1
+

³
1
1

´
2 = 2

(1 ) + 2
+

³
1
2

´
Biscontin et al. found experimental evidence of two such branches in some steel
rods.
Our discussion so far has focused on the identification of damage from its

e ect on natural frequencies. We discussed the e ect on nodal positions, for
a rod, in Section 14.3. This is essentially a qualitative result which could be
a useful adjunct in an experimental/numerical study, see Gladwell and Morassi
(1999) [128].
Wu and Fricke (1989) [335], Wu and Fricke (1990) [336] and Wu and Fricke

(1991) [337] discuss the problem of finding one or more small blockages in a duct.

Exercises 15.2

1. Consider a uniform rod of unit length under supported ( ) and free ( )
end conditions. Define +1 as in (15.2.2). Show that if the damage,
, is located at = , then

= +1 + cos[2( + 1) ] = 1 +
2

1 + +1

2. Set up the eigenvalue equation (15.2.3) for the uniform free-free rod, gov-
erned by the equation

00 + 2 = 0 0(0) = 0 = 0(1)
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when there is a spring of sti ness connecting the parts to the left and
right of = (see equation (14.3.5)). Establish the asymptotic forms for
the eigenvalues for small and large in a uniform duct by using measured
eigenfrequency shifts.

15.3 Damage identification in beams

A number of early papers, including Cawley and Adams (1979) [50], Hearn
and Testa (1991) [170] used a sensitivity analysis based on the general discrete
equation

(K M)u = 0 (15.3.1)

Suppose the sti ness and mass matrices are perturbed to K + K M + M,
respectively, and the solution is u+ u + . Then

(K+ K ( + )(M+ M))(u+ u) = 0

and, to first order, this is

(K M)u+ (K M) u+ ( K M)u Mu = 0

so that on premultiplying by u and using (15.3.1) and u Mu = 1, we find

= u Ku u Mu

In particular, if there is only a change in the sti ness of the structure, then

= u Ku (15.3.2)

This equation shows that if the changes in K are known, then the changes in
natural frequencies may be found. One way to solve the inverse problem is
to compute the changes in the various frequencies produced by changes in each
element of a finite element model of the structure, in turn, and then determine
which element change yields a set of frequency changes closest (either by in-
spection or in some least squares sense) to that found or specified. Cawley
and Adams (1979) [50], Yuen (1985) [341], Morassi and Rovere (1997) [241], Ve-
stroni and Capecchi (1996) [327], Vestroni and Capecchi (2000) [328] follow this
general approach. See Shen and Taylor (1991) [304] for a careful and detailed
engineering study of the problem, treated in a least squares form. See also
Liang, Hu and Choy (1992a) [213], Liang, Hu and Choy (1992b) [214], Davini,
Gatti and Morassi (1993) [72], and Cerri and Vestroni (2000) [51], and Capecchi
and Vestroni (1999) [48].
There are a number of papers that discuss, in many di erent ways, how a

crack in a flexurally vibrating beam should be modelled, including Freund and
Herrmann (1976) [91], Chondros and Dimarogonas (1980) [55], Gudmundson
(1982) [157], Christides and Barr (1984) [54], Shen and Pierre (1990) [303],
Rizos, Aspragathos and Dimarogonas (1990) [291], Ostachowicz and Krawczuk
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(1991) [255], Chondros, Dimarogonas and Yao (1998) [56], and other papers
cited in these. The simplest model of a crack is a rotational spring of sti ness
; see Chondros and Dimarogonas (1980) [55], Narkis (1994) [247], or Boltezar,
Strancar and Kuhelj (1998) [38]. All these researchers approach the problem
in their own ways; typically Boltezar et al. set up the frequency equation for
a uniform beam with a crack, modelled as a rotational spring of sti ness , at
an interior location , and find the value of that will yield the same sti ness
deduced from the measured (actually numerically predicted) changes in the

first six natural frequencies. See Wu (1994) [338] for a di erent approach, and
Natke and Cempel (1991) [248] for a review of the subject.
Following Morassi (1993) [235] we set up a perturbation analysis for a beam

with a rotational spring of sti ness at location , when := 1 = is
small. We follow the lines laid out for the rod in Section 13.1. The beam is
governed by equation (13.1.4), the end conditions (13.1.12), (13.1.13), and the
jump conditions at = :

[ ] = 0 = [ 00] = [( 00)0] ( ) 00( ) = [ 0]

where, as usual, [ ] := ( +) ( ).
Writing

( ) = 0( ) + ( ) = 0 +

in (13.1.4) we find
( 00)00 = 0 0 (15.3.1)

( 00)00 = 0 + 0 (15.3.2)

where both 0 and satisfy the end conditions (13.1.12), (13.1.13), and satisfies
the jump conditions

[ ] = 0 = [ 00] = [( 00)0] [ 0] = ( ) 00
0( )

Multiplying (15.3.2) by 0, (15.3.1) by , subtracting and integrating over (0,1),
using the end and jump conditions, we find (Ex. 15.3.1) that

= ( ( ) 00
0( ))

2 (15.3.3)

so that the change in the th natural frequency is

= ( ( ) 00 ( ))2 (15.3.4)

Morassi (1993) [235] noted that this shows that the change in (= 2 ) is
proportional to the potential energy stored at location in the undamaged beam;
also, it is proportional to the square of the curvature of the undamaged beam at
. Morassi (2003) [238] uses (15.2.4) just as he used the corresponding equation
(15.2.1) for the rod. He shows for instance that the severity and location of the
damage in a uniform simply-supported beam is uniquely determined (except for
symmetry) by the changes in the th and 2 th frequencies. An alternative
identification is provided by the changes in the th frequency of the beam under
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simply supported boundary conditions and the ( +1)th frequency of the beam
under sliding-sliding end conditions. See Ex. 15.3.2. Clearly, he uses these
conditions because they are the only ones for which the modes are simple sines
or cosines; in the general case the modes involve both sinusoidal and hyperbolic
terms. The procedure could easily be generalised to a consideration of the
changes of frequencies under other end conditions. Morassi and Rollo (2001)
[240] use (15.3.4) to estimate the positions of two cracks in a simply supported
beam.

There have been a few papers devoted to damage identification from other
e ects, namely curvature, mode shape and nodal positions. Thus, Pandey,
Biswas and Samman (1991) [260] noted that the curvature of a principal mode
of a damaged beam increased in a region localised about the damaged zone;
this was di erent from simply the change in a mode shape, which generally was
not localised about the damaged zone, see Rizos, Aspragathos and Dimarogonas
(1990) [291]. Pandey et al used this curvature e ect to locate damage.

Dilena and Morassi (2002) [80] and Dilena (2003) [78] make a systematic
study to see whether the conclusion of Gladwell and Morassi (1999) [128], for a
rod, that nodes move toward the damage location, could be generalised to apply
to a flexurally vibrating beam. The result for the rod follows from Sturm’s
theorems, as described in Section 14.3. The vibration modes of a beam are
governed by the fourth order equation (13.1.4), and not by the simple second
order equation (14.3.2) for the rod. As Leighton and Nehari (1958) [206] showed
in their massive authoritative discussion of oscillatory properties of fourth order
equations, there are no simple extensions of Sturm’s results to such equations.
There are points, called conjugate points, and it may be proved that conjugate
points move toward damage, but conjugate points have no clear physical inter-
pretation. To corroborate this conclusion, Dilena and Morassi (2002) [80] found
counterexamples: nodes do not always move toward the damage location.

The simplest counterexample is shown in Figure 15.3.1, adapted from Dilena
and Morassi (2002) [80]. Figure 15.3.1(a) shows the first (proper) bending
mode (i.e., mode 3) of a free-free beam. It has two nodes 1 and 2. Figure
15.3.1(b) shows the sign of the change in position 1 due to damage of magnitude
(measured in some way) and position . We note that the sign depends almost

entirely on . The node 1 is roughly 0 · 2; the figure shows that if 0 · 41
then the node moves to the left (negative), while if 0 · 41 it moves to the
right (positive). That means that when is in (0 · 2 0 · 41) the node moves the
‘wrong’ way. Figure 15.3.1(c) shows that there is a similar interval near the
second node in which damage causes the node to move the ‘wrong’ way. For
a corresponding axially vibrating rod the sign change would occur at the node:
if the damage is to the left of the (undamaged rod) node, the node will move
left (negative); to the right it will move right (positive). For a beam it appears
that one may state that damage ‘far away’ from a node causes the node to move
toward the damage. Dilena and Morassi (2002) [79] extend their analysis to
higher modes, and find that there is a di erence in the e ects of damage on the
so-called external and internal nodes; an external node is an extreme node, one
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nearest an end of the rod. They complement their study with experimental
tests.

( )a

( )b

( )c

s

s

d

d

0 1

1 2

00. 0 2. 0 4. 0 6. 08. 10.

0 0. 0 2. 0 4. 0 6. 08. 10.

Figure 15.3.1 - When the damage is in the unshaded (shaded) region the node
moves to the left (right).

Exercises 15.3

1. Derive equation (15.3.4) for the change in eigenvalue due to damage (=
1 ) at

2. Find the change in the th eigenvalue of a simply-supported, and of a
sliding-sliding uniform beam brought about by a rotational spring of sti -
ness at = .
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