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. . . Dass ich erkenne, was die Welt
Im Innersten zusammenhält . . .

GOETHE

(Faust. ll 382–384)
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Preface

The theory of quantum mechanics forms the basis for our present understanding of
physical phenomena on an atomic and sometimes macroscopic scale. Today, quantum
mechanics can be applied to most fields of science. Within engineering, important sub-
jects of practical significance include semiconductor transistors, lasers, quantum optics,
and molecular devices. As technology advances, an increasing number of new elec-
tronic and opto-electronic devices will operate in ways which can only be understood
using quantum mechanics. Over the next 30 years, fundamentally quantum devices
such as single-electron memory cells and photonic signal processing systems may well
become commonplace. Applications will emerge in any discipline that has a need to
understand, control, and modify entities on an atomic scale. As nano- and atomic-scale
structures become easier to manufacture, increasing numbers of individuals will need
to understand quantum mechanics in order to be able to exploit these new fabrication
capabilities. Hence, one intent of this book is to provide the reader with a level of
understanding and insight that will enable him or her to make contributions to such
future applications, whatever they may be.

The book is intended for use in a one-semester introductory course in applied quantum
mechanics for engineers, material scientists, and others interested in understanding the
critical role of quantum mechanics in determining the behavior of practical devices.
To help maintain interest in this subject, I felt it was important to encourage the reader
to solve problems and to explore the possibilities of the Schrödinger equation. To
ease the way, solutions to example exercises are provided in the text, and the enclosed
CD-ROM contains computer programs written in the MATLAB language that illustrate
these solutions. The computer programs may be usefully exploited to explore the effects
of changing parameters such as temperature, particle mass, and potential within a given
problem. In addition, they may be used as a starting point in the development of designs
for quantum mechanical devices.

The structure and content of this book are influenced by experience teaching the
subject. Surprisingly, existing texts do not seem to address the interests or build on the
computing skills of today’s students. This book is designed to better match such student
needs.

xiii



xiv Preface

Some material in the book is of a review nature, and some material is merely an
introduction to subjects that will undoubtedly be explored in depth by those interested in
pursuing more advanced topics. The majority of the text, however, is an essentially self-
contained study of quantum mechanics for electronic and opto-electronic applications.

There are many important connections between quantum mechanics and classical
mechanics and electromagnetism. For this and other reasons, Chapter 1 is devoted to a
review of classical concepts. This establishes a point of view with which the predictions
of quantum mechanics can be compared. In a classroom situation it is also a conve-
nient way in which to establish a uniform minimum knowledge base. In Chapter 2 the
Schrödinger wave equation is introduced and used to motivate qualitative descriptions
of atoms, semiconductor crystals, and a heterostructure diode. Chapter 3 develops the
more systematic use of the one-dimensional Schrödinger equation to describe a particle
in simple potentials. It is in this chapter that the quantum mechanical phenomenon of
tunneling is introduced. Chapter 4 is devoted to developing and using the propagation
matrix method to calculate electron scattering from a one-dimensional potential of arbi-
trary shape. Applications include resonant electron tunneling and the Kronig–Penney
model of a periodic crystal potential. The generality of the method is emphasized
by applying it to light scattering from a dielectric discontinuity. Chapter 5 introduces
some related mathematics, the generalized uncertainty relation, and the concept of den-
sity of states. Following this, the quantization of conductance is introduced. The har-
monic oscillator is discussed in Chapter 6 using the creation and annihilation operators.
Chapter 7 deals with fermion and boson distribution functions. This chapter shows how
to numerically calculate the chemical potential for a multi-electron system. Chapter 8
introduces and then applies time-dependent perturbation theory to ionized impurity
scattering in a semiconductor and spontaneous light emission from an atom. The semi-
conductor laser diode is described in Chapter 9. Finally, Chapter 10 discusses the (still
useful) time-independent perturbation theory.

Throughout this book, I have made applications to systems of practical importance
the main focus and motivation for the reader. Applications have been chosen because
of their dominant roles in today’s technologies. Understanding is, after all, only useful
if it can be applied.

California A. F. J. L.
2003



MATLAB R© programs

The computer requirements for the MATLAB1 language are an IBM or 100% com-
patible system equipped with Intel 486, Pentium, Pentium Pro, Pentium4 processor or
equivalent. A CD-ROM drive is required for software installation. There needs to be
an 8-bit or better graphics adapter and display, a minimum of 32 MB RAM, and at
least 50 MB disk space. The operating system is Windows95, NT4, Windows2000, or
WindowsXP.

If you have not already installed MATLAB, you will need to purchase a copy and
install it on your computer.

After verifying correct installation of the MATLAB application program, copy the
directory AppliedQMmatlab on the CD-ROM to a convenient location in your computer
user directory.

Launch the MATLAB application program using the icon on the desktop or from the
start menu. The MATLAB command window will appear in your computer screen.

From the MATLAB command window use the path browser to set the path to the
location of the AppliedQMmatlab directory. Type the name of the file you wish to
execute in the MATLAB command window (do not include the ‘.m’ extension). Press
the enter key on the keyboard to run the program.

You will find that some programs prompt for input from the keyboard. Most pro-
grams display results graphically with intermediate results displayed in the MATLAB
command window.

To edit values in a program or to edit the program itself double click on the file name
to open the file editor.

You should note that the computer programs in the AppliedQMmatlab directory are
not optimized. They are written in a very simple way to minimize any possible confusion
or sources of error. The intent is that these programs be used as an aid to the study of
applied quantum mechanics. When required, integration is performed explicitly, and
in the simplest way possible. However, for exercises involving matrix diagonalization
use is made of special MATLAB functions.

Some programs make use of the functions, chempot.m, fermi.m, mu.m, runge4.m,
solve schM.m, and Chapt9Exercise5.m reads data from the datainLI.txt data input file.

1 MATLAB is a registered trademark of the MathWorks, Inc.
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1 Introduction

1.1 Motivation

You may ask why one needs to know about quantum mechanics. Possibly the simplest
answer is that we live in a quantum world! Engineers would like to make and control
electronic, opto-electronic, and optical devices on an atomic scale. In biology there are
molecules and cells we wish to understand and modify on an atomic scale. The same is
true in chemistry, where an important goal is the synthesis of both organic and inorganic
compounds with precise atomic composition and structure. Quantum mechanics gives
the engineer, the biologist, and the chemist the tools with which to study and control
objects on an atomic scale.

As an example, consider the deoxyribonucleic acid (DNA) molecule shown in
Fig. 1.1. The number of atoms in DNA can be so great that it is impossible to track
the position and activity of every atom. However, suppose we wish to know the effect
a particular site (or neighborhood of an atom) in a single molecule has on a chemical
reaction. Making use of quantum mechanics, engineers, biologists, and chemists can
work together to solve this problem. In one approach, laser-induced fluorescence of
a fluorophore attached to a specific site of a large molecule can be used to study the
dynamics of that individual molecule. The light emitted from the fluorophore acts as a
small beacon that provides information about the state of the molecule. This technique,
which relies on quantum mechanical photon stimulation and photon emission from
atomic states, has been used to track the behavior of single DNA molecules.1

Interdisciplinary research that uses quantum mechanics to study and control the be-
havior of atoms is, in itself, a very interesting subject. However, even within a given
discipline such as electrical engineering, there are important reasons to study quan-
tum mechanics. In the case of electrical engineering, one simple motivation is the fact
that transistor dimensions will soon approach a size where single-electron and quan-
tum effects determine device performance. Over the last few decades advances in the
complexity and performance of complementary metal-oxide–semiconductor (CMOS)

1 S. Weiss, Science 283, 1676 (1999).

1
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Fig. 1.1. Ball and stick model of a DNA molecule. Atom types are indicated.

circuits have been carefully managed by the microelectronics industry to follow what
has become known as “Moore’s law”.2 This rule-of-thumb states that the number of
transistors in silicon integrated circuits increases by a factor of 2 every 18 months. Asso-
ciated with this law is an increase in the performance of computers. The Semiconductor
Industry Association (SIA) has institutionalized Moore’s Law via the “SIA Roadmap”,
which tracks and identifies advances needed in most of the electronics industry’s tech-
nologies.3 Remarkably, reductions in the size of transistors and related technology have
allowed Moore’s law to be sustained for over 35 years (see Fig. 1.2). Nevertheless, the
impossibility of continued reduction in transistor device dimensions is well illustrated
by the fact that Moore’s law predicts that dynamic random access memory (DRAM)

2 G. E. Moore, Electronics 38, 114 (1965). Also reprinted in Proc. IEEE 86, 82 (1998).
3 http://www.sematech.org.
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Fig. 1.2. Photograph (left) of the first transistor. Brattain and Bardeen’s p–n–p point-contact
germanium transistor operated as a speech amplifier with a power gain of 18 on December 23,
1947. The device is a few millimeters in size. On the right is a scanning capacitance microscope
cross-section image of a silicon p-type metal-oxide–semiconductor field-effect transistor
(p-MOSFET) with an effective channel length of about 20 nm, or about 60 atoms.4 This image of
a small transistor was published in 1998, 50 years after Brattain and Bardeen’s device. Image
courtesy of G. Timp, University of Illinois.

cell size will be less than that of an atom by the year 2030. Well before this end-
point is reached, quantum effects will dominate device performance, and conventional
electronic circuits will fail to function.

We need to learn to use quantum mechanics to make sure that we can create the
smallest, highest-performance devices possible.

Quantum mechanics is the basis for our present understanding of physical phe-
nomena on an atomic scale. Today, quantum mechanics has numerous applications in
engineering, including semiconductor transistors, lasers, and quantum optics. As tech-
nology advances, an increasing number of new electronic and opto-electronic devices
will operate in ways that can only be understood using quantum mechanics. Over the
next 20 years, fundamentally quantum devices such as single-electron memory
cells and photonic signal processing systems may well become available. It is also
likely that entirely new devices, with functionality based on the principles of quantum
mechanics, will be invented. The purpose of this book is to provide the reader with
a level of understanding and insight that will enable him or her to appreciate and to
make contributions to the development of these future, as yet unknown, applications of
quantum phenomena.

The small glimpse of our quantum world that this book provides reveals significant
differences from our everyday experience. Often we will discover that the motion
of objects does not behave according to our (classical) expectations. A simple, but
hopefully motivating, example is what happens when you throw a ball against a wall.

4 Also see G. Timp et al. IEEE International Electron Devices Meeting (IEDM) Technical Digest p. 615,
Dec. 6–9, San Francisco, California, 1998 (ISBN 0780 3477 9).
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Of course, we expect the ball to bounce right back. Quantum mechanics has something
different to say. There is, under certain special circumstances, a finite chance that the
ball will appear on the other side of the wall! This effect, known as tunneling, is
fundamentally quantum mechanical and arises due to the fact that on appropriate time
and length scales particles can be described as waves. Situations in which elementary
particles such as electrons and photons tunnel are, in fact, relatively common. However,
quantum mechanical tunneling is not always limited to atomic-scale and elementary
particles. Tunneling of large (macroscopic) objects can also occur! Large objects, such
as a ball, are made up of many atomic-scale particles. The possibility that such large
objects can tunnel is one of the more amazing facts that emerges as we explore our
quantum world.

However, before diving in and learning about quantum mechanics it is worth spending
a little time and effort reviewing some of the basics of classical mechanics and classical
electromagnetics. We do this in the next two sections. The first deals with classical
mechanics, which was first placed on a solid theoretical basis by the work of Newton and
Leibniz published at the end of the seventeenth century. The survey includes reminders
about the concepts of potential and kinetic energy and the conservation of energy in a
closed system. The important example of the one-dimensional harmonic oscillator is
then considered. The simple harmonic oscillator is extended to the case of the diatomic
linear chain, and the concept of dispersion is introduced. Going beyond mechanics, in
the following section classical electromagnetism is explored. We start by stating the
coulomb potential for charged particles, and then we use the equations that describe
electrostatics to solve practical problems. The classical concepts of capacitance and the
coulomb blockade are used as examples. Continuing our review, Maxwell’s equations
are used to study electrodynamics. The first example discussed is electromagnetic
wave propagation at the speed of light in free space, c. The key result – that power and
momentum are carried by an electromagnetic wave – is also introduced.

Following our survey of classical concepts, in Chapter 2 we touch on the experimental
basis for quantum mechanics. This includes observation of interference phenomenon
with light, which is described in terms of the linear superposition of waves. We then
discuss the important early work aimed at understanding the measured power spectrum
of black-body radiation as a function of wavelength, λ, or frequency, ω = 2πc/λ.
Next, we treat the photoelectric effect, which is best explained by requiring that light
be quantized into particles (called photons) of energy E = --hω. Planck’s constant --h =
1.0545 × 10−34 J s, which appears in the expression E = --hω, is a small number that
sets the absolute scale for which quantum effects usually dominate behavior.5 Since
the typical length scale for which electron energy quantization is important usually
turns out to be the size of an atom, the observation of discrete spectra for light emitted
from excited atoms is an effect that can only be explained using quantum mechanics.

5 Sometimes --h is called Planck’s reduced constant to distinguish it from h = 2π --h.
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The energy of photons emitted from excited hydrogen atoms is discussed in terms
of the solutions of the Schrödinger equation. Because historically the experimental
facts suggested a wave nature for electrons, the relationships among the wavelength,
energy, and momentum of an electron are introduced. This section concludes with some
examples of the behavior of electrons, including the description of an electron in free
space, the concept of a wave packet and dispersion of a wave packet, and electronic
configurations for atoms in the ground state.

Since we will later apply our knowledge of quantum mechanics to semiconductors
and semiconductor devices, there is also a brief introduction to crystal structure, the
concept of a semiconductor energy band gap, and the device physics of a unipolar
heterostructure semiconductor diode.

1.2 Classical mechanics

1.2.1 Introduction

The problem classical mechanics sets out to solve is predicting the motion of large
(macroscopic) objects. On the face of it, this could be a very difficult subject simply
because large objects tend to have a large number of degrees of freedom6 and so, in
principle, should be described by a large number of parameters. In fact, the number
of parameters could be so enormous as to be unmanageable. The remarkable success
of classical mechanics is due to the fact that powerful concepts can be exploited to
simplify the problem. Constants of the motion and constraints may be used to reduce
the description of motion to a simple set of differential equations. Examples of constants
of the motion include conservation of energy and momentum. Describing an object as
rigid is an example of a constraint being placed on the object.

Consider a rock dropped from a tower. Classical mechanics initially ignores the
internal degrees of freedom of the rock (it is assumed to be rigid), but instead defines a
center of mass so that the rock can be described as a point particle of mass, m. Angular
momentum is decoupled from the center of mass motion. Why is this all possible? The
answer is neither simple nor obvious.

It is known from experiments that atomic-scale particle motion can be very differ-
ent from the predictions of classical mechanics. Because large objects are made up of
many atoms, one approach is to suggest that quantum effects are somehow averaged
out in large objects. In fact, classical mechanics is often assumed to be the macroscopic
(large-scale) limit of quantum mechanics. The underlying notion of finding a means to
link quantum mechanics to classical mechanics is so important it is called the corre-
spondence principle. Formally, one requires that the results of classical mechanics be
obtained in the limit --h → 0. While a simple and convenient test, this approach misses

6 For example, an object may be able to vibrate in many different ways.
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the point. The results of classical mechanics are obtained because the quantum me-
chanical wave nature of objects is averaged out by a mechanism called decoherence.
In this picture, quantum mechanical effects are usually averaged out in large objects to
give the classical result. However, this is not always the case. We should remember that
sometimes even large (macroscopic) objects can show quantum effects. A well-known
example of a macroscopic quantum effect is superconductivity and the tunneling of
flux quanta in a device called a SQUID.7 The tunneling of flux quanta is the quantum
mechanical equivalent of throwing a ball against a wall and having it sometimes tunnel
through to the other side! Quantum mechanics allows large objects to tunnel through
a thin potential barrier if the constituents of the object are prepared in a special quan-
tum mechanical state. The wave nature of the entire object must be maintained if it
is to tunnel through a potential barrier. One way to achieve this is to have a coherent
superposition of constituent particle wave functions.

Returning to classical mechanics, we can now say that the motion of macroscopic
material bodies is usually described by classical mechanics. In this approach, the linear
momentum of a rigid object with mass m is p = m · dx/dt , where v = dx/dt is the
velocity of the object moving in the direction of the unit vector x̂. Time is measured in
units of seconds (s), and distance is measured in units of meters (m). The magnitude
of momentum is measured in units of kilogram meters per second (kg m s−1), and
the magnitude of velocity (speed) is measured in units of meters per second (m s−1).
Classical mechanics assumes that there exists an inertial frame of reference for which
the motion of the object is described by the differential equation

F = dp/dt = m · d2x/dt2 (1.1)

where the vector F is the force. The magnitude of force is measured in units of newtons
(N). Force is a vector field. What this means is that the particle can be subject to a force
the magnitude and direction of which are different in different parts of space.

We need a new concept to obtain a measure of the forces experienced by the particle
moving from position r1 to position r2 in space. The approach taken is to introduce the
idea of work. The work done moving the object from point 1 to point 2 in space along
a path is defined as

W12 =
r=r2∫

r=r1

F · dr (1.2)

where r is a spatial vector coordinate. Figure 1.3 illustrates one possible trajectory for
a particle moving from position r1 to r2. The definition of work is simply the integral
of the force applied multiplied by the infinitesimal distance moved in the direction of
the force for the complete path from point 1 to point 2. For a conservative force field,
the work W12 is the same for any path between points 1 and 2. Hence, making use of

7 For an introduction to this see A. J. Leggett, Physics World 12, 73 (1999).
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r = r1

r = r2

Fig. 1.3. Illustration of a classical particle trajectory from position r1 to position r2.

Fig. 1.4. Illustration of a closed-path classical particle trajectory.

the fact F = dp/dt = m · dv/dt , one may write

W12 =
r=r2∫

r=r1

F · dr = m
∫
dv/dt · vdt = m

2

∫
d

dt
(v2)dt (1.3)

so that W12 = m(v2
2 − v2

1)/2 = T2 − T1, where the scalar T = mv2/2 is called the
kinetic energy of the object.

For conservative forces, because the work done is the same for any path between
points 1 and 2, the work done around any closed path, such as the one illustrated in
Fig. 1.4, is always zero, or∮

F · dr = 0 (1.4)

This is always true if force is the gradient of a single-valued spatial scalar field where
F = −∇V (r), since

∮
F · dr = − ∮ ∇V · dr = − ∮

dV = 0. In our expression, V (r) is
called the potential. Potential is measured in volts (V), and potential energy is measured
in joules (J) or electron volts (eV). If the forces acting on the object are conservative,
then total energy, which is the sum of kinetic and potential energy, is a constant of the
motion. In other words, total energy T + V is conserved.

Since kinetic and potential energy can be expressed as functions of the variable’s
position and time, it is possible to define a Hamiltonian function for the system, which
is H = T + V. The Hamiltonian function may then be used to describe the dynamics
of particles in the system.

For a nonconservative force, such as a particle subject to frictional forces, the work
done around any closed path is not zero, and

∮
F · dr �= 0.

Let’s pause here for a moment and consider some of what has just been introduced.
We think of objects moving due to something. Forces cause objects to move. We have
introduced the concept of force to help ensure that the motion of objects can be described
as a simple process of cause and effect. We imagine a force field in three-dimensional
space that is represented mathematically as a continuous, integrable vector field, F(r).
Assuming that time is also continuous and integrable, we quickly discover that in a
conservative force-field energy is conveniently partitioned between a kinetic and a
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potential term and total energy is conserved. By simply representing the total energy
as a function or Hamiltonian, H = T + V , we can find a differential equation that
describes the dynamics of the object. Integration of the differential equation of motion
gives the trajectory of the object as it moves through space.

In practice, these ideas are very powerful and may be applied to many problems
involving the motion of macroscopic objects. As an example, let’s consider the problem
of finding the motion of a particle mass, m, attached to a spring. Of course, we know
from experience that the solution will be oscillatory and so characterized by a frequency
and amplitude of oscillation. However, the power of the theory is that we can use the
formalism to obtain relationships among all the parameters that govern the behavior of
the system.

In the next section, the motion of a classical particle mass m attached to a spring
and constrained to move in one dimension is considered. The type of model we will be
considering is called the simple harmonic oscillator.

1.2.2 The one-dimensional simple harmonic oscillator

Figure 1.5 illustrates a classical particle mass m attached to a lightweight spring that
obeys Hooke’s law. Hooke’s law states that the displacement, x , from the equilibrium
position, x = 0, is proportional to the force on the particle. The proportionality constant
is κ and is called the spring constant. In this example, we ignore any effect due to the
finite mass of the spring by assuming its mass is small relative to the particle mass, m.

To calculate the frequency and amplitude of vibration, we start by noting that the
total energy function or Hamiltonian for the system is

H = T + V (1.5)

where potential energy is V = 1
2κx

2 = ∫ x
0 κx ′dx ′ and kinetic energy is T =

m(dx/dt)2/2, so that

H = 1

2
m

(
dx

dt

)2

+ 1

2
κx2 (1.6)

Displacement, x

Mass, mSpring constant, κ Closed system with no exchange
of energy outside the system
implies conservation of energy.

Fig. 1.5. Illustration showing a classical particle mass m attached to a spring and constrained to
move in one dimension. The displacement of the particle from its equilibrium position is x . The
box drawn with a broken line indicates a closed system.
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The system is closed, so there is no exchange of energy outside the system. There is no
dissipation, energy in the system is a constant, and

dH

dt
= 0 = m

dx

dt

d2x

dt2
+ κx

dx

dt
(1.7)

so that the equation of motion can be written as

κx + m
d2x

dt2
= 0 (1.8)

The solutions for this second-order linear differential equation are

x(t) = A cos(ω0t + φ) (1.9)

dx(t)

dt
= −ω0A sin(ω0t + φ) (1.10)

d2x(t)

dt2
= −ω2

0A cos(ω0t + φ) (1.11)

where A is the amplitude of oscillation, ω0 is the frequency of oscillation measured in
radians per second (rad s−1), and φ is a fixed phase. We may now write the potential
energy and kinetic energy as

V = 1

2
κA2 cos2(ω0t + φ) (1.12)

and

T = 1

2
mω2

0A
2 sin2(ω0t + φ) (1.13)

respectively. Total energy E = T + V = mω2
0A

2/2 = κA2/2 since sin2(θ ) +
cos2(θ ) = 1 and κ = mω2

0. Clearly, an increase in total energy increases amplitude
A = √

2E/κ =
√

2E/mω2
0, and an increase in κ , corresponding to an increase in the

stiffness of the spring, decreases A. The theory gives us the relationships among all the
parameters of the classical harmonic oscillator: κ,m, A, and total energy.

We have shown that the classical simple harmonic oscillator vibrates in a single
mode with frequency ω0. The vibrational energy stored in the mode can be changed
continuously by varying the amplitude of vibration, A.

Suppose we have a particle mass m = 0.1 kg attached to a lightweight spring with
spring constant κ = 360 N m−1. Particle motion is constrained to one dimension, and
the amplitude of oscillation is observed to be A = 0.01 m. In this case, the frequency of
oscillation is just ω0 = √

κ/m = 60 rad s−1, which is about 9.5 oscillations per second,
and the total energy in the system is E = κA2/2 = 18 mJ. We can solve the equation
of motion and obtain position, x(t), velocity, dx(t)/dt , and acceleration, d2x(t)/dt2, as
a function of time. Velocity is zero when x = ±A and the particle changes its direction
of motion and starts moving back towards the equilibrium position x = 0. The position
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Fig. 1.6. Example predictions for the classical one-dimensional harmonic oscillator involving
motion of a particle mass m attached to a lightweight spring with spring constant κ . In this case, the
spring constant is κ = 360 N m−1, particle mass, m = 0.1 kg, and the oscillation amplitude is
A = 0.01 m. (a) Illustration of the closed system showing displacement of the particle from its
equilibrium position at x = 0. (b) Kinetic energy T and potential energy V functions of position, x .
(c) Position, velocity, and acceleration functions of time, t .

x = ±A, where velocity is zero, is called the classical turning point of the motion. Peak
velocity, vmax = ±Aω0, occurs as the particle crosses its equilibrium position, x = 0. In
this case vmax = ±Aω0 = ±0.6 m s−1. Maximum acceleration, amax = ±Aω2

0, occurs
when x = ±A. In this case amax = ±Aω2

0 = ±36 m s−2. Figure 1.6 illustrates these
results.

Now let’s use what we have learned and move on to a more complex system. In the
next example we want to solve the equations of motion of an isolated linear chain of
particles, each with mass m, connected by identical springs. This particular problem
is a common starting-point for the study of lattice vibrations in crystals. The methods
used, and the results obtained, are applicable to other problems such as solving for the
vibrational motion of atoms in molecules.
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We should be clear why we are going to this effort now. We want to introduce the
concept of a dispersion relation. It turns out that this is an important way of simplifying
the description of an otherwise complex system.

The motion of coupled oscillators can be described using the idea that a given fre-
quency of oscillation corresponds to definite wavelengths of vibration. In practice, one
plots frequency of oscillation, ω, with inverse wavelength or wave vector of magnitude
q = 2π/λ. Hence, the dispersion relationship is ω = ω(q). With this relationship, one
can determine how vibration waves and pulses propagate through the system. For exam-
ple, the phase velocity of a wave is vq = ω/q and a pulse made up of wave components
near a value q0 often propagates at the group velocity,

vg = ∂ω

∂q

∣∣∣∣
q=q0

(1.14)

If the dispersion relation is known then we can determine quantities of practical
importance such as vq and vg.

1.2.3 The monatomic linear chain

Figure 1.7 shows part of an isolated linear chain of particles, each of massm, connected
by springs. The site of each particle is labeled with an integer, j . Each particle occupies
a lattice site with equilibrium position j L , where L is the lattice constant. Displacement
from equilibrium of the j-th particle is u j , and there are a large number of particles in
the chain.

Assuming small deviations u j from equilibrium, the Hamiltonian of the linear chain
is

H =
∑
j

m

2

(
du j
dt

)2

+ V0(0) + 1

2!

∑
jk

∂2V0

∂ujuk
ujuk + 1

3!

∑
jkl

∂3V0

∂ujukul
ujukul + · · ·

(1.15)

Spring constant, κ
for each spring

uj − 1 uj

j − 1 j j + 1

L

mm m

L

Fig. 1.7. Illustration of part of an isolated linear chain of particles, each of mass m, connected by
identical springs with spring constant κ . The site of each particle is labeled relative to the site, j.
Each particle occupies a lattice site with equilibrium position jL, where L is the lattice constant.
Displacement from equilibrium of the j-th particle is u j . It is assumed that there are a large number
of particles in the linear chain.
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The first term on the right-hand side is a sum over kinetic energy of each particle,
and V0(0) is the potential energy when all particles are stationary in the equilibrium
position. The remaining terms come from a Taylor expansion of the potential about
the equilibrium positions. Each particle oscillates about its equilibrium position and is
coupled to other oscillators via the potential.

In the harmonic approximation, the force constant κ jk = (∂2E0/∂u j∂uk)|0 is real and
symmetric so that κ jk = κk j , and if all springs are identical then κ = κ jk . Restricting
the sum in Eqn (1.15) to nearest neighbors and setting V0(0) = 0, the Hamiltonian
becomes

H =
∑
j

m

2

(
du j
dt

)2

+ κ

2

∑
j

(
2u2

j − u ju j+1 − u ju j−1
)

(1.16)

This equation assumes that motion of one particle is from forces due to the relative
position of its nearest neighbors.

The displacement from equilibrium at site j is u j and is related to that of its nearest
neighbor by

u j±1 = u je
±iqL (1.17)

where q = 2π/λ is the wave vector of a vibration of wavelength, λ. Using Eqn (1.16)
and assuming no dissipation in the system, so that dH/dt = 0, the equation of motion
is

m
d2u j
dt2

= κ(u j+1 + u j−1 − 2u j ) (1.18)

Second-order differential equations of this type have time dependence of the form e−iωt ,
which, on substitution into Eqn (1.18), gives

−mω2u j = κ(eiqL + e−iqL − 2)u j = −4κ sin2

(
qL

2

)
u j (1.19)

From Eqn (1.19) it follows that

ω(q) =
√

4κ

m
sin

(
qL

2

)
(1.20)

This equation tells us that there is a unique nonlinear relationship between the fre-
quency of vibration, ω, and the magnitude of the wave vector, q. This is an example of
a dispersion relation, ω = ω(q).

The dispersion relation for the monatomic linear chain is plotted in Fig. 1.8(a). It
consists of a single acoustic branch, ω = ωacoustic(q), with maximum frequency ωmax =
(4κ/m)1/2. Notice that vibration frequency approaches ω → 0 linearly as q → 0. In
the long wavelength limit (q → 0), the acoustic branch dispersion relation describing
lattice dynamics of a monatomic linear chain predicts that vibrational waves propagate
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Fig. 1.8. (a) Dispersion relation for lattice vibrations of a one-dimensional monatomic linear chain.
The dispersion relation is linear at low values of q. The maximum frequency of oscillation is
ωmax = (4κ/m)1/2. Particles have mass m = 1.0, and the spring constant is κ = 1.0. (b) Amplitude
of vibrational motion in the x direction on a portion of the linear chain for a particular mode of
frequency ω. Equilibrium position x j is indicated.

at constant group velocity vg = ∂ω/∂q. This is the velocity of sound waves in the
system.

Each normal mode of the linear chain is a harmonic oscillator characterized by
frequency ω and wave vector q. In general, each mode of frequency ω in the linear
chain involves harmonic motion of all the particles in the chain that are also at frequency
ω. As illustrated in Fig. 1.8(b), not all particles have the same amplitude. Total energy in
a mode is proportional to the sum of the amplitudes squared of all particles in the chain.

The existence of a dispersion relation is significant, and so it is worth considering
some of the underlying physics. We start by recalling that in our model there are a
large number of atoms in the linear monatomic chain. At first sight, one might expect
that the large number of atoms involved gives rise to all types of oscillatory motion.
One might anticipate solutions to the equations of motion allowing all frequencies and
wavelengths, so that no dispersion relation could exist. However, this situation does not
arise in practice because of some important simplifications imposed by symmetry. The
motion of a given atom is determined by forces due to the relative position of its nearest
neighbors. Forces due to displacements of more distant neighbors are not included.
The facts that there is only one spring constant and there is only one type of atom are
additional constraints on the system. One may think of such constraints as imposing
a type of symmetry that has the effect of eliminating all but a few of the possible
solutions to the equations of motion. These solutions are conveniently summarized by
the dispersion relation, ω = ω(q).

1.2.4 The diatomic linear chain

Figure 1.9 illustrates a diatomic linear chain. In this example we assume a periodic
array of atoms characterized by a lattice constant, L . There are two atoms per unit cell
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Spring constant, κ
for each spring

υj − 1 uj

j − 1 j j + 1

L

L/2

m1m2 m2

Fig. 1.9. Illustration of an isolated linear chain of particles of alternating mass m1 and m2 connected
by identical springs with spring constant κ . There are two particles per unit cell spaced by L/2.
One particle in the unit cell has mass m1, and the other particle has mass m2. The site of each
particle is labeled relative to the site, j . The displacement from equilibrium of particles mass m1 is
u, and for particles mass m2 it is v.

spaced by L/2. One atom in the unit cell has mass m1 and the other atom has mass
m2. The site of each atom is labeled relative to the site, j . The displacement from
equilibrium of particles mass m1 is u, and for particles mass m2 it is v. The motion of
one atom is related to that of its nearest similar (equal-mass) neighbor by

u j±2 = u je
±iqL (1.21)

where q = 2π/λ is the wave vector of a vibration of wavelength, λ. If we assume that
the motion of a given atom is from forces due to the relative position of its nearest
neighbors, the equations of motion for the two types of atoms are

m1
d2u j
dt2

= κ(v j+1 + v j−1 − 2u j ) (1.22)

m2
d2v j−1

dt2
= κ(u j + u j−2 − 2v j−1) (1.23)

or

m1
d2u j
dt2

= κ(1 + eiqL )v j−1 + 2κu j (1.24)

m2
d2v j−1

dt2
= κ(1 + e−iqL )u j − 2κv j−1 (1.25)

Solutions for u and v have time dependence of the form e−iωt, giving

−m1ω
2u j = κ(1 + eiqL )v j−1 − 2κu j (1.26)

−m2ω
2v j−1 = κ(1 + e−iqL )u j − 2κv j−1 (1.27)

or

(2κ − m1ω
2)u j − κ(1 + eiqL )v j−1 = 0 (1.28)

−κ(1 + e−iqL )u j + (2κ − m2ω
2)v j−1 = 0 (1.29)
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This is a linear set of equations with an intrinsic or (from the German word) eigen
solution given by the characteristic equation∣∣∣∣∣ 2κ − m1ω

2 −κ(1 + eiqL )

−κ(1 + e−iqL ) 2κ − m2ω
2

∣∣∣∣∣ = 0 (1.30)

so that the characteristic polynomial is

ω4 − 2κ

(
m1 + m2

m1m2

)
ω2 + 2κ2

m1m2
(1 − cos(qL)) = 0 (1.31)

The roots of this polynomial give the characteristic values, or eigenvalues, ωq .
To understand further details of the dispersion relation for our particular linear chain

of particles, it is convenient to look for solutions that are extreme limiting cases. The
extremes we look for are q → 0, which is the long wavelength limit (λ → ∞), and
q → π/L , which is the short wavelength limit (λ → 2L).

In the long wavelength limit q → 0

ω2

(
ω2 − 2κ

(
m1 + m2

m1m2

))
= 0 (1.32)

and solutions are

ω = 0 and ω =
(

2κ

(
m1 + m2

m1m2

))1/2

with the latter corresponding to both atom types beating against each other.
In the short wavelength limit q → π/L

ω4 − 2κ

(
m1 + m2

m1m2

)
ω2 + 4κ2

m1m2
= 0 (1.33)

and solutions are

ω1 = (2κ/m1)1/2

corresponding to only atoms of mass m1 vibrating, and

ω2 = (2κ/m2)1/2

corresponding to only atoms mass m2 vibrating.
With these limits, it is now possible to sketch a dispersion relation for the lattice

vibrations. In Fig. 1.10 the dispersion relation ω = ω(q) is given for the casem1 < m2,
with m1 = 0.5,m2 = 1.0, and κ = 1.0. There is an acoustic branch ω = ωacoustic(q)
for which vibration frequency linearly approaches ω → 0 as q → 0, and there is an
optic branch ω = ωoptic(q) for which ω �= 0 as q → 0.

As one can see from Fig. 1.10, the acoustic branch is capable of propagating low-
frequency sound waves the group velocity of which, vg = ∂ω/∂q, is a constant for long
wavelengths. Typical values for the velocity of sound waves in a semiconductor at room
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Fig. 1.10. Dispersion relation for lattice vibrations of a one-dimensional diatomic linear chain.
Particles have masses m1 = 0.5 and m2 = 1.0. The spring constant is κ = 1.0.
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Fig. 1.11. Lattice vibration dispersion relation along principal crystal symmetry directions of bulk
GaAs.8 The longitudinal acoustic (LA), transverse acoustic (TA), longitudinal optic (LO), and
transverse optic (TO) branches are indicated.

temperature are vg = 8.4 × 103 m s−1 in (100)-oriented Si and vg = 4.7 × 103 m s−1

in (100)-oriented GaAs.9

For the one-dimensional case, one branch of the dispersion relation occurs for each
atom per unit cell of the lattice. The example we considered had two atoms per unit cell,
so we had an optic and an acoustic branch. In three dimensions we add extra degrees of
freedom, resulting in a total of three acoustic and three optic branches. In our example,

8 Lattice vibration dispersion relations for additional semiconductor crystals may be found in H. Bilz and
W. Kress, Phonon Dispersion Relations in Insulators, Springer Series in Solid-State Sciences 10, Springer-
Verlag, Berlin, 1979 (ISBN 3 540 09399 0).

9 For comparison, the speed of sound in air at temperature 0 ◦C at sea level is 331.3 m s−1 or 741 mph.
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for a wave propagating in a given direction there is one longitudinal acoustic and one
longitudinal optic branch with atom motion parallel to the wave propagation direction.
There are also two transverse acoustic and two transverse optic branches with atom
motion normal to the direction of wave propagation.

To get an idea of the complexity of a real lattice vibration dispersion relation, con-
sider the example of GaAs. Device engineers are interested in GaAs because it is an
example of a III-V compound semiconductor that is used to make laser diodes and high-
speed transistors. GaAs has the zinc blende crystal structure with a lattice constant of
L = 0.565 nm. Ga and As atoms have different atomic masses, and so we expect the
dispersion relation to have three optic and three acoustic branches. Because the posi-
tions of the atoms in the crystal and the values of the spring constants are more complex
than in the simple linear chain model we considered, it should come as no surprise that
the dispersion relation is also more complex. Figure 1.11 shows the dispersion relation
along the principal crystal symmetry directions of bulk GaAs.

1.3 Classical electromagnetism

We now take our ideas of fields and the tools we have developed to solve differen-
tial equations from classical mechanics and apply them to electromagnetism. In the
following, we divide our discussion between electrostatics and electrodynamics.

1.3.1 Electrostatics

We will only consider stationary distributions of charges and fields. However, to obtain
results it is necessary to introduce charge and to build up electric fields slowly over
time to obtain the stationary charge distributions we are interested in. This type of
adiabatic integration is a standard approach that is used to find solutions to many
practical problems.

A basic starting point is the experimental observation that the electrostatic force due
to a point charge Q in vacuum (free space) separated by a distance r from charge −Q is

F(r) = −Q2

4πε0r2
r̂ (1.34)

where ε0 = 8.8541878 × 10−12 F m−1 is the permittivity of free space measured in
units of farads per meter. Force is an example of a vector field the direction of which,
in this case, is given by the unit vector r̂. It is a central force because it has no angular
dependence. Electrostatic force is measured in units of newtons (N), and charge is
measured in coulombs (C). We will be interested in the force experienced by an electron
with charge Q = −e = −1.6021765 × 10−19 C.

The force experienced by a charge e in an electric field is F = eE, where E is the
electric field. Electric field is an example of a vector field, and its magnitude is measured
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in units of volts per meter (V m−1). The (negative) potential energy is just the force
times the distance moved

−eV =
∫
eE · d x̂ (1.35)

Electrostatic force can be related to potential via F = −e∇V , and hence the coulomb
potential energy due to a point charge e in vacuum (free space) separated by a distance
r from charge −e is

eV (r ) = −e2

4πε0r
(1.36)

The coulomb potential is an example of a scalar field. Because it is derived from a
central force, the coulomb potential has no angular dependence and is classified as a
central-force potential. The coulomb potential is measured in volts (V) and the coulomb
potential energy is measured in joules (J) or electron volts (eV).

When there are no currents or time-varying magnetic fields, the Maxwell equations
we will use for electric field E and magnetic flux density B are

∇ · E = ρ/ε0εr (1.37)

and

∇ · B = 0 (1.38)

In the first equation, εr is the relative permittivity of the medium, and ρ is charge density.
We chose to define the electric field as E = −∇V . Notice that because electric field
is given by the negative gradient of the potential, only differences in the potential are
important. The direction of electric field is positive from positive electric charge to
negative electric charge. Sometimes it is useful to visualize electric field as field lines
originating on positive charge and terminating on negative charge. The divergence of
the electric field is the local charge density. It follows that the flux of electric field lines
flowing out of a closed surface is equal to the charge enclosed. This is Gauss’s law,
which may be expressed as∫
V

∇ · E dV =
∮
S

E · dS =
∫
V

(ρ/ε0εr)dV (1.39)

where the two equations on the left-hand side are expressions for the net electric flux
out of the region (Stokes’s theorem) and the right-hand side is enclosed charge.

Maxwell’s expression for the divergence of the magnetic flux density given in
Eqn (1.38) is interpreted physically as there being no magnetic monopoles (leaving
the possibility of dipole and higher-order magnetic fields). Magnetic flux density B is
an example of a vector field, and its magnitude is measured in units of tesla (T).
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Sometimes it is useful to define another type of electric field called the displace-
ment vector field, D = ε0εrE. In this expression, εr is the average value of the relative
permittivity of the material in which the electric field exists. It is also useful to define
the quantity H = B/µ0µr, which is the magnetic field vector where µ0 is called the
permeability of free space and µr is called the relative permeability.

1.3.1.1 The parallel-plate capacitor

Electric charge and energy can be stored by doing work to spatially separate charges Q
and −Q in a capacitor. Capacitance is the proportionality constant relating the potential
applied to the amount of charge stored. Capacitance is defined as

C = Q

V
(1.40)

and is measured in units of farads (F).
A capacitor is a very useful device for storing electric charge. A capacitor is also an

essential part of the field-effect transistor used in silicon integrated circuits and thus is
of great interest to electrical engineers.

We can use Maxwell’s equations to figure out how much charge can be stored for
every volt of potential applied to a capacitor. We start by considering a very simple
geometry consisting of two parallel metal plates that form the basis of a parallel-plate
capacitor.

Figure 1.12 is an illustration of a parallel-plate capacitor. Two thin, square, metal
plates each of area A are placed facing each other a distance d apart in such a way that
d � √

A. One plate is attached to the positive terminal of a battery, and the other plate
is attached to the negative terminal of the same battery, which supplies a voltage V . We
may calculate the capacitance of the device by noting that the charge per unit area on a
plate is ρ and the voltage is just the integral of the electric field between the plates, so

charge, +Q, and
charge density, ρ

Plate charge, −Q

Plate separation, d

Plate area, A,

Battery +V

Fig. 1.12. Illustration of a parallel-plate capacitor attached to a battery supplying voltage V . The
capacitor consists of two thin, square, metal plates each of area A facing each other a distance d
apart.
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that V = |E| × d = ρd/ε0εr. Hence,

C = Q

V
= ρA

ρd/ε0εr
= ε0εrA

d
(1.41)

where εr is the relative permittivity or dielectric constant of the material between the
plates. This is an accurate measure of the capacitance, and errors due to fringing fields
at the edges of the plates are necessarily small, since d � √

A.
We now consider the values of numbers used in a physical device. A typical

parallel-plate capacitor has d = 100 nm and εr = 10, so the amount of extra charge
per unit area per unit volt of potential difference applied is Q = CV = ε0εrV/d =
8.8 × 10−4 C m−2V−1 or, in terms of number of electrons per square centimeter
per volt, Q = 5.5 × 1011 electrons cm−2 V−1. On average this corresponds to one
electron per (13.5 nm)2 V−1. In a metal, this electron charge might sit in the first 0.5 nm
from the surface, giving a density of ∼1019 cm−3 or 10−4 of the typical bulk charge
density in a metal of 1023 cm−3. A device of area 1 mm2 with d = 100 nm and εr = 10
has capacitance C = 88 nF.

The extra charge sitting on the metal plates creates an electric field between the
plates. We may think of this electric field as storing energy in the capacitor. To figure
out how much energy is stored in the electric field of the capacitor, we need to calculate
the current that flows when we hook up a battery that supplies voltage V . The current
flow, I , measured in amperes, is simply dQ/dt = C · dV/dt , so the instantaneous
power supplied at time t to the capacitor is I V , which is just dQ/dt = C · dV/dt
times the voltage. Hence, the instantaneous power is CV · dV/dt . The energy stored
in the capacitor is the integral of the instantaneous power from a time when there is no
extra charge on the plates, say time t ′ = −∞ to time t ′ = t . At t = −∞ the voltage is
zero and so the stored energy is

�E =
t ′=t∫

t ′=−∞
CV

dV

dt ′
dt ′ =

V ′=V∫
V ′=0

CV ′dV ′ = 1

2
CV 2 (1.42)

�E = 1

2
CV 2 (1.43)

Since capacitance of the parallel-plate capacitor is C = Q/V = ε0εrA/d and the
magnitude of the electric field is |E| = V/d, we can rewrite the stored energy per unit
volume in terms of the electric field to give a stored energy density �U = ε0εr|E|2/2.
Finally, substituting in the expression D = ε0εrE, one obtains the result

�U = 1

2
E · D (1.44)
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for the energy stored per unit volume in the electric field. A similar result

�U = 1

2
B · H (1.45)

holds for the energy stored per unit volume in a magnetic field. These are important
results, which we will make use of later in this chapter when we calculate the energy
flux density in an electromagnetic wave.

Putting in numbers for a typical parallel-plate capacitor with plate separation d =
100 nm, εr = 10, and applied voltage V , gives a stored energy density per unit volume
of �U = V 2 × 4.427 × 103 J m−3, or an energy density per unit area of V 2 × 4.427 ×
10−4 J m−2.

Magnetic flux density can be stored in an inductor. Inductance, defined in terms of
magnetic flux linkage, is

L = 1

I

∫
S

B · dS (1.46)

where I is the current and S is a specified surface through which magnetic flux passes.
Inductance is measured in units of henrys (H). Putting in some numbers, one finds that
the external inductance per unit length between two parallel-plate conductors, each of
width w and separated by a distance d , is L = (µ0d/w) H m−1. Thus if d = 1 �m and
w = 25 �m, then L = 5 × 10−8 H m−1.

1.3.1.2 The coulomb blockade

Consider the case of a small metal sphere of radius r1. The capacitance associated
with the sphere can give rise to an effect called the coulomb blockade, which may be
important in determining the operation of very small electronic devices in the future.
To analyze this situation, we will consider what happens if we try to place an electron
charge onto a small metal sphere. Figure 1.13 shows how we might visualize an initially
distant electron being moved through space and placed onto the metal sphere.

Addition of an electron charge −e

D
is

ta
nc

e,
 y

Distance, x Metal sphere of capacitance C,
charge −Q, and radius r1

Fig. 1.13. Illustration indicating an electron of charge −e being placed onto a small metal sphere of
radius r1 and capacitance C .
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Metal sphere of capacitance C, 

∆E increase in energy stored on capacitor 
E

ne
rg

y,
 E

Distance, x

due to addition of single electron

Addition of an electron charge −e

charge −Q, and radius r1

Fig. 1.14. Energy–distance diagram for an electron of charge −e being placed onto a small metal
sphere of radius r1 and capacitance C . In this case, the vertical axis represents the energy stored by
the capacitor, and the horizontal axis indicates distance moved by the electron and the size of the
metal sphere. �E is the increase in energy stored on capacitor due to addition of single electron.

The same idea can be expressed in the energy–distance diagram shown in Fig. 1.14.
In this case the vertical axis represents the energy stored by the capacitor, and the
horizontal axis can be used to indicate distance moved by the electron and size of the
metal sphere.

The coulomb blockade is the discrete value of charging energy�E needed to place
an extra electron onto a capacitor. The charging energy is discrete because the electron
has a single value for its charge. The charging energy becomes large and measurable
at room temperature in devices that have a very small capacitance. Such devices are
usually of nanometer size. As an example, consider a very small sphere of metal. The
capacitance of a small sphere can be found by considering two spherical conducting
metal shells of radius r1 and r2, where r1 < r2. Assume that there is a charge +Q on
the inner surface of the shell radius r2 and a charge −Q on the outer surface of the shell
radius r1. One may apply Gauss’s law∫
V

∇ · E dV =
∮
S

E · dS =
∫
V

(ρ/ε0εr)dV (1.47)

and show that at radius r1 < r < r2 the electric flux flowing out of a closed surface is
equal to the charge enclosed, so that

Er = Q

4πε0εrr2
(1.48)

Since E = −∇V , the potential is found by integrating

V = −
r1∫

r2

Erdr = −
r1∫

r2

Q

4πε0εrr2
dr = Q

4πε0εr

(
1

r1
− 1

r2

)
(1.49)

and hence the capacitance is

C = Q

V
= 4πε0εr(

1

r1
− 1

r2

) (1.50)
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For an isolated conducting sphere of radius r1 we let r2 → ∞, so that the capacitance is

C = 4πε0εrr1 (1.51)

Since instantaneous power supplied at time t to a capacitor is just the current
dQ/dt = C · dV/dt times the voltage, it follows that the instantaneous power is
CV · dV/dt . The energy stored in the capacitor is the integral of the instantaneous
power from time t ′ = −∞ to time t ′ = t . At t = −∞ the voltage is zero, and so the
charging energy is

�E =
t ′=t∫

t ′=−∞
CV

dV

dt ′
dt ′ =

V ′=V∫
V ′=0

CV ′dV ′ = 1

2
CV 2 = Q2

2C
(1.52)

For a single electron Q = −e, so that

�E = e2

2C
= e2

8πε0εrr1
(1.53)

is the charging energy for a single electron placed onto a metal sphere of radius r1

embedded in a dielectric with relative permittivity εr. For a metal sphere with r1 = 10 nm
(20 nm diameter ∼70 atoms diameter or ∼1.8 × 105 atoms total) in a dielectric with
εr = 10 one obtains a capacitance C = 1.1 × 10−17 F and a charging energy �E =
7.2 meV. Because electron charge has a single value, one may only add an electron to
the metal sphere if the electron has enough energy to overcome the coulomb charging
energy �E . The effect is called the coulomb blockade. Very small single-electron
devices such as single-electron transistors10 and single-electron memory cells11 exploit
this effect. Obviously, in the example we considered, such a device is unlikely to
work well in practice since �E is less than room-temperature thermal energy kBT =
25 meV, where kB is the Boltzmann constant and T is the absolute temperature. This
thermal background will tend to wash out any discrete coulomb charging energy effects.
However, by decreasing the size of the metal particle and (or) reducing the relative
permittivity, the value of�E can be increased so that�E > kBT and room-temperature
operation of a coulomb blockade device becomes possible. If a metal sphere embedded
in a dielectric with εr = 10 had a radius r1 = 1 nm (2 nm diameter ∼7 atoms diameter
∼180 atoms total), then �E = 72 meV. If r1 = 1 nm and εr = 1, then �E = 720 meV.

Notice that we explicitly made use of the fact that electron charge has a single value
but that we used a continuously variable charge to derive our expression for the charging
energy, �E . One might expect a more rigorous theory to avoid this inconsistency.

So far, we have only considered static electric fields. In the world we experience very
little can be considered static. Electrons move around, current flows, and electric fields

10 M. Kenyon et al. Appl. Phys. Lett. 72, 2268 (1998).
11 K. Yano et al. Proc. IEEE 87, 633 (1999).
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change with time. The aim of classical electrodynamics is to provide a framework with
which to describe electric and magnetic fields that change over time.

1.3.2 Electrodynamics

Classical electrodynamics describes the spatial and temporal behavior of electric and
magnetic fields. Although Maxwell published his paper on electrodynamics in 1864, it
was quite some time before the predictions of the theory were confirmed. Maxwell’s
achievement was to show that time-varying electric fields are intimately coupled with
time-varying magnetic fields. In fact, it is not possible to separate magnetic and electric
fields – there are only electromagnetic fields.

There is no doubt that the classical theory of electrodynamics is one of the great
scientific achievements of the nineteenth century. Applications of electrodynamics are
so important that it is worth spending some time reviewing a few key results of the theory.

The idea that E and B are ordinary vector fields is an essential element of the
classical theory of electromagnetism. Just as with the description of large macroscopic
bodies in classical mechanics, quantum effects are assumed to average out. We may
think of the classical electromagnetic field as the classical macroscopic limit of a
quantum description in terms of photons. In many situations, there are large numbers
of uncorrelated photons that contribute to the electromagnetic field over the time scales
of interest, and so we do not need to concern ourselves with the discrete (quantum)
nature of photons.

Often, analysis of a complicated field is simplified by decomposing the field into
plane wave components. Plane waves can be represented spatially as

sin(kx) = 1

2i
(eikx − e−ikx ) (1.54)

cos(kx) = 1

2
(eikx + e−ikx ) (1.55)

eikx = cos(kx) + i sin(kx) (1.56)

where k = 2π/λ is called the wave number, which is measured in inverse meters (m−1),
and λ is the wavelength measured in units of meters (m).

Plane waves can be represented temporally by

e−iωt = cos(ωt) − i sin(ωt) (1.57)

where ω = 2π f is the angular frequency measured in radians per second (rad s−1),
f = 1/τ is the frequency measured in cycles per second or hertz (Hz), and τ is the
period measured in seconds (s).

Combining the spatial and temporal dependencies, we obtain a function for the field
at position r, which is a plane wave of the form

Aei(k·r−ωt) (1.58)
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Table 1.1.Maxwell equations

∇ · D = ρ Coulomb’s law
∇ · B = 0 No magnetic monopoles

∇ × E = −∂B
∂t

Faraday’s law

∇ × H = J + ∂D
∂t

Modified Ampère’s law

Here, A is the amplitude of the wave, which may be a complex number, andk is the wave
vector of magnitude |k| = k propagating in the k̂ direction. The fact that Eqn (1.58) is a
complex quantity is only a mathematical convenience. Only real values are measured.
Because E and B are represented by ordinary vectors, one finds the physical field by
taking the real part of Eqn (1.58).
Maxwell’s equations completely describe classical electric and magnetic fields. The

equations in SI-MKS units are given in Table 1.1. In these equations, D is called the
displacement vector field and is related to the electric field E by D = εE = ε0εrE =
ε0(1 + χe)E = ε0E + P. The displacement vector field D may also be thought of as
the electric flux density, which is measured in coulombs per square meter (C m−2). χe

is the electric susceptibility, and P is the electric polarization field. H is the magnetic
field vector, and B is the magnetic flux density. The convention is that B = µH =
µ0µrH = µ0(1 + χm)H = µ0(H + M), where µ is the permeability, µr is the relative
permeability, χm is the magnetic susceptibility, and M is the magnetization. J is
the current density measured in amperes per square meter (A m−2), and ∂D/∂t is
the displacement current density measured in amperes per square meter (A m−2). The
permittivity of free space is ε0 = 8.8541878 × 10−12 F m−1, and the permeability of
free space, measured in henrys per meter is µ0 = 4π × 10−7 H m−1. The speed of light
in free space is c = 1/

√
ε0µ0 = 2.99792458 × 108 m s−1, and the impedance in free

space is Z0 = √
µ0/ε0 = 376.73 �.

The use of vector calculus to describe Maxwell’s equations enables a very compact
and efficient description and derivation of relationships between fields. Because of this,
it is worth reminding ourselves of some results from vector calculus. When considering
vector fields a, b, c and scalar field φ, we recall that

∇ × ∇φ = 0 (1.59)

∇ · (∇ × a) = 0 (1.60)

∇ × ∇ × a = ∇(∇ · a) − ∇2a (1.61)

∇ · (a × b) = b · (∇ × a) − a · (∇ × b) (1.62)

a × (b × c) = (a · c)b − (a · b)c (1.63)
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Another useful relation in vector calculus is the divergence theorem relating volume
and surface integrals∫
V

∇ · a d3r =
∫
S

a · n ds (1.64)

where V is the volume and n is the unit-normal vector to the surface S. Stokes’s theorem
relates surface and line integrals∫
S

(∇ × a) · n ds =
∮
C

a · dl (1.65)

where dl is the vector line element on the closed loop C .
In vector calculus, the divergence of a vector field is a source, so one interprets

∇ · B = 0 in Maxwell’s equations as the absence of sources of magnetic flux density,
or, equivalently, the absence of magnetic monopoles. By the same interpretation, we
conclude that electric charge density is the source of the displacement vector field, D.

Coulomb’s law ∇ · D = ρ and the modified Ampère’s law ∇ × H = J + ∂D/∂t
given in Table 1.1 imply current continuity. To see this, one takes the divergence of the
modified Ampère’s law to give

∇ · (∇ × H) = ∇ · J + ∇ · ∂D
∂t

(1.66)

From vector calculus we know that the term on the left-hand side of Eqn (1.66) is zero,
so that

0 = ∇ · J + ∇ · ∂D
∂t

(1.67)

Finally, using Coulomb’s law to obtain an expression in terms of current density, J, and
charge density, ρ, results in

0 = ∇ · J + ∂ρ

∂t
(1.68)

This is an expression of current continuity. Physically this means that an increase in
charge density in some volume of space is caused by current flowing through the surface
enclosing the volume. The current continuity equation expresses the idea that electric
charge is a conserved quantity. Charge does not spontaneously appear or disappear, but
rather it is transported from one region of space to another by current.

To further illustrate the power of vector calculus, consider Ampère’s circuital law.
Ampère’s circuital law states that a line integral of a static magnetic field taken about any
given closed path must equal the current, I , enclosed by that path. The sign convention
is that current is positive if advancing in a right-hand screw sense, where the screw
rotation is in the direction of circulation for line integration. Vector calculus allows
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Ampère’s law to be derived almost trivially using Maxwell’s equations and Stokes’s
theorem, as follows:∮

H · dl =
∫
S

(∇ × H) · n ds =
∫
S

J · n ds = I (1.69)

Having reminded ourselves of Maxwell’s equations and the importance of vector
calculus, we now apply them to the description of light propagating through a medium.
A particularly simple case to consider is propagation of a plane wave through a dielectric
medium.

1.3.2.1 Light propagation in a dielectric medium

In a dielectric current density J = 0 because the dielectric has no mobile charge and if
µr = 1 at optical frequencies then H = B/µ0. Hence, using the equations in Table 1.1,
taking the curl of our expression of Faraday’s law and using the modified Ampère’s
law, one may write

∇ × (∇ × E) = − ∂

∂t
(∇ × B) = −µ0

∂

∂t
(∇ × H) = −µ0

∂2

∂t2
D (1.70)

The left-hand term may be rewritten by making use of the relationship ∇ × ∇ × a =
∇(∇ · a) − ∇2a, so that

∇(∇ · E) − ∇2E = −µ0
∂2

∂t2
D (1.71)

For a source-free dielectric ∇ · D = 0 (and assuming ε in the medium is not a function
of space – it is isotropic – so that ∇ · E = 0), this becomes

∇2E = µ0
∂2

∂t2
D (1.72)

∇2E(r, t) = ∂2

∂t2
µ0ε(t)E(r, t) (1.73)

where ε(t) = ε0εr(t) is the complex permittivity function that results in D(r, t) =
ε0εr(t)E(r, t). We can now take the Fourier transform with respect to time to give
a wave equation for electric field:

∇2E(r, ω) = −ω2µ0ε0εr(ω)E(r, ω) (1.74)

Since the speed of light is c = 1/
√
ε0µ0, the wave equation can be written as

∇2E(r, ω) = −ω2

c2
εr(ω)E(r, ω) (1.75)

When εr(ω) is real and positive, the solutions to this wave equation for an electric
field propagating in an isotropic medium are just plane waves. The speed of wave
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propagation is c/nr(ω), where nr(ω) = √
εr(ω) is the refractive index of the material.

In the more general case, when relative permeability µr �= 1, the refractive index is

nr(ω) =
√
εr(ω)µr(ω) =

√
ε(ω)µ(ω)

ε0µ0
(1.76)

If ε and µ are both real and positive, the refractive index is real-positive and elec-
tromagnetic waves propagate. In nature, the refractive index in a transparent material
usually takes a positive value. If one of either ε or µ is negative, the refractive index is
imaginary and electromagnetic waves cannot propagate.

It is common for metals to have negative values of ε. Free electrons of mass m
in a metal can collectively oscillate at a long-wavelength natural frequency called the
plasma frequency,ωp. In a three-dimensional gas of electrons of densityn the plasma fre-
quency isωp = (ne2/ε0m)1/2 which form = m0 and 1021 cm−3 < n < 1022 cm−3 gives
1 eV< --hωp < 4 eV. At long wavelengths a good approximation for relative permittivity
of a metal is εr (ω) = 1 − ω2

p/ω
2. At frequencies above the plasma frequency ε is

positive and electromagnetic waves can propagate through the metal. For frequencies
below ωp permittivity is negative, the refractive index is imaginary, electromagnetic
waves cannot propagate in the metal and are reflected. This is the reason why bulk metals
are usually not transparent to electromagnetic radiation of frequency less than ωp.

There is, of course, another possibility for which both ε and µ are real and negative.
While not usually found in naturally occurring materials, meta-materials, artificial
structures with behavior not normally occurring in nature, may have negative relative
permittivity and negative relative permeability simultaneously over some frequency
range. However, although it is interesting to consider the electromagnetic properties of
such material, we choose not to do so in this book.

Returning to the simple situation where relative permeability µr = 1 and the rel-
ative permittivity function εr(ω) = 1, an electric-field plane wave propagating in the
k̂-direction with real wave-vector k and constant complex vector E0 has a spatial
dependence of the form E(r) = E0eik·r. The amplitude of the wave is |E0|. The
electromagnetic field wave has a dispersion relation obtained from the wave equa-
tion which, in free space, is ω = ck. This dispersion relation is illustrated in Fig. 1.15.
When dispersion ω = ω(k) is nonlinear, phase velocity ω/k, group velocity ∂ω/∂k,
and energy velocity of waves can all be different.

If the electromagnetic wave propagates in a homogeneous dielectric medium charac-
terized by µr = 1 and a complex relative permittivity function, then ε(ω) = ε0εr(ω) =
ε0(ε′

r(ω) + ε′′
r (ω)), where ε′

r(ω) and ε′′
r (ω) are the real and imaginary parts, respec-

tively, of the frequency-dependent relative permittivity function. In this situation, the
dispersion relation shown in Fig. 1.15 is modified, and wave vector k(ω) may become
complex, giving an electric field

E(r, ω) = E0(ω)eik(ω)·r = E0(ω)ei(k
′(ω)+ik ′′(ω))k̂·r (1.77)
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Fig. 1.15. Dispersion relation for an electromagnetic wave in free space. The slope of the line is the
velocity of light.

where k ′(ω) and k ′′(ω) are the real and imaginary parts, respectively, of the frequency-
dependent wave number. The ratio of k ′(ω) in the medium and k = ω/c in free space is
the refractive index. Because in the dielectric we are considering µr = 1, the refractive
index is

nr(ω) =
√

1

2
(ε′

r(ω) +
√
ε′2

r (ω) + ε′′2
r (ω)) (1.78)

Equation (1.78) is obtained by substituting Eqn (1.77) into Eqn (1.75) and separating
the real and imaginary parts of the resulting expression.

The imaginary part of k(ω) physically corresponds to an exponential spatial decay
in field amplitude e−k

′′r due to absorption processes.
Returning to the case in which k ′′(ω) = 0 and µr = 1, the refractive index is just

nr(ω) = √
ε′

r(ω), and we have a simple oscillatory solution with no spatial decay in the
electric field:

E(r, ω) = E0e
−iωt eik(ω)·r (1.79)

and

H(r, ω) = H0e
−iωt eik(ω)·r (1.80)

for the magnetic field vector.
We proceed by recalling Maxwell’s equations for electromagnetic waves in free

space:

∇ · D = 0 (1.81)

∇ · B = 0 (1.82)

∇ × E = −∂B
∂t

(1.83)

∇ × H = ∂D
∂t

(1.84)

The first two equations are divergence equations that require that k · E = 0 and
k · B = 0. This means that E and B are perpendicular (transverse) to the direction of
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propagation k̂. In 1888 Hertz performed experiments that showed the existence of trans-
verse electromagnetic waves, thereby providing an experimental basis for Maxwell’s
theory.

There is a relationship between the electric and magnetic field vectors of trans-
verse electromagnetic waves that we can find by considering the two curl equations
(Eqn (1.83) and Eqn (1.84)). To find this relationship for electric and magnetic field
vectors in free space, we start with the plane-wave expressions for E(r, ω) and H(r, ω)
given by Eqn (1.79) and Eqn (1.80). Substituting them into the first curl equation
(Eqn (1.83)) and recalling that in free space H = B/µ0 gives

∇ × E0e
−iωt eik(ω)·r = −µ0

∂

∂t
H0e

−iωt eik(ω)·r (1.85)

ik × E0e
−iωt eik(ω)·r = iωµ0H0e

−iωt eik(ω)·r (1.86)

ik × E = iωµ0H (1.87)

Using the fact that the dispersion relation for plane waves in free space is ω = ck and
the speed of light is c = 1/

√
ε0µ0 leads us directly to

H =
√

ε0

µ0
k̂ × E (1.88)

or Bc = k̂ × E, where k̂ = k/|k| is the unit vector for k.
The importance of this result is that it is not possible to separate out an oscillating

electric or magnetic field. Electric and magnetic fields are related to each other in such
a way that there are only electromagnetic fields.

One may easily visualize an oscillating transverse electromagnetic wave by consid-
ering a plane wave. Figure 1.16 illustrates the magnetic field and the electric field for
a plane wave propagating in free space in the x-direction. The shading is to help guide
the eye.

Oscillating transverse electromagnetic waves can decay in time and in space. In
Fig. 1.17, the temporal decay of an oscillatory electric field and the spatial decay of an
oscillatory electric field are shown schematically.

kx

Hz

Ey

Direction of propagation

Transverse magnetic field

Transverse electric field

Fig. 1.16. Illustration of transverse magnetic field Hz and electric field Ey of a plane wave
propagating in free space in the x direction. The shading is to guide the eye.
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Fig. 1.17. Illustration of: (a) temporal decay of an oscillating electric field; (b) spatial decay of an
oscillating electric field.

Figure 1.17(a) illustrates temporal decay of an oscillating electric field propagat-
ing in the x direction. In this case an electric field oscillates with period τ = 5 fs,
which corresponds to frequency ω = 2π/τ = 4π × 1014 rad s−1 and a wavelength
λ = 1500 nm when observed in free space (wave number kx = 2π/λ = 4.2 × 106 m−1).
In the example, the inverse decay time constant is taken to be γ−1 = 20 fs. The function
plotted in Fig. 1.17(a) is E(t) = ŷ|E0| sin(ωt)e−γ t , where |E0| = 1 V m−1.

Figure 1.17(b) illustrates spatial decay of an oscillating electric field. In this case,
an electric field oscillates with period τ = 5 fs, which corresponds to frequency ω =
2π/τ = 4π × 1014 rad s−1. The electric field propagates in a dielectric medium charac-
terized by refractive index n = 3 and inverse spatial decay length γ−1

x = 10−4 cm. The
function plotted in Fig. 1.17(b) is E(x) = ŷ|E0| cos(kx)e−γx x , where |E0| = 1 V m−1.
Spatial decay can be independent of temporal decay as, for example, can occur in a
high-Q optical resonator.

The facts that only electromagnetic fields exist and that they can grow and decay both
spatially and temporally lead us to question how electrodynamics relates to our previous
results using electrostatics. In particular, we may ask where the magnetic field is when
there is a static electric field in, for example, a parallel-plate capacitor. The answer is
that a static electric field can only be formed by movement of charge, and hence by a
current. When a transient current flows, a magnetic field is produced. One cannot form
a static electric field without a transient current and an associated magnetic field.

1.3.2.2 Power and momentum in an electromagnetic wave

Let’s extend what we know so far to obtain the power flux in an electromagnetic wave.
This is of practical importance for wireless communication where, for example, we
might be designing a receiver for a cellular telephone. In this case, the radio frequency
electromagnetic power flux received by the cell phone antenna will help determine the
type of amplifier to be used.

The power in an electromagnetic wave can be obtained by considering the response
of a test charge e moving at velocity v in an external electric field E. The rate of work
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or power is just ev · E, where ev is a current. This may be generalized to a continuous
distribution of current density J so that the total power in a given volume is∫

Volume

d3rJ · E =
∫

Volume

(
E · (∇ × H) − E · ∂D

∂t

)
d3r (1.89)

where we have used Maxwell’s equation ∇ × H = J + ∂D/∂t . Because this is the
power that is extracted from the electromagnetic field, energy conservation requires that
there must be a corresponding reduction in electromagnetic field energy in the same
volume. Making use of the result from vector calculus E · (∇ × H) = H · (∇ × E) −
∇ · (E × H) and Maxwell’s equation ∇ × E = −∂B/∂t , we may write∫

Volume

d3rJ · E = −
∫

Volume

(
∇ · (E × H) + E · ∂D

∂t
+ H · ∂B

∂t

)
d3r (1.90)

or in differential form

E · ∂D
∂t

+ H · ∂B
∂t

= −J · E − ∇ · (E × H) (1.91)

Generalizing our previous result for energy density stored in electric fields (Eqn (1.44)
and Eqn (1.45)) to electromagnetic waves in a medium with linear response and no
dispersion, the total energy density at position r and time t is just

U = 1

2
(E · D + B · H) (1.92)

(The time averaged energy density is half this value.) After substitution into the differ-
ential expression, this gives

∂U

∂t
= −J · E − ∇ · S (1.93)

where

S = E × H (1.94)

is called the Poynting vector. The Poynting vector is the energy flux density in the
electromagnetic field. The magnitude of S is measured in units of J m−2 s−1, and
the negative divergence of S is the flow of electromagnetic energy out of the system.
The associated differential equation is just an expression of energy conservation. The
rate of change of electromagnetic energy density is given by the rate of loss due to work
done by the electromagnetic field density on sources given by −J · E and the rate of
loss due to electromagnetic energy flow given by −∇ · S.

Energy flux density is the energy per unit area per unit time flowing in the electro-
magnetic wave. The energy flux density multiplied by the area the flux is passing
through is the power (measured in W or J s−1) delivered by the electromagnetic wave.
Suppose we wish to calculate the energy per unit volume of an electromagnetic wave in
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free space. In this case, there are no sources of current, and the energy per unit volume
is just the energy flux density divided by the speed of light. Thus, we may write

U = |S|
c

(1.95)

Another expression for the Poynting vector S can be found by eliminating H from
the equation S = E × H. The energy density U is measured in units of J m−3 or,
equivalently, in units of kg m−1 s−2.

Let’s consider an electromagnetic plane wave propagating in free space for which
E(r, ω) and H(r, ω) are given by Eqn (1.79) and Eqn (1.80) respectively. H(r, ω)
is related to E(r, ω) via the relationship H = √

ε0/µ0 k̂ × E given by Eqn (1.88).
Substituting this into our expression for the Poynting vector gives

S = E × H =
√

ε0

µ0
E × k̂ × E (1.96)

We apply the result from vector calculus a × (b × c) = (a · c)b − (a · b)c, so that

S =
√

ε0

µ0
((E · E)k̂ − (E · k̂)E) (1.97)

For transverse electromagnetic waves, the second term on the right-hand side (E · k̂) =
0, and so we may write

S =
√

ε0

µ0
(E · E)k̂ (1.98)

Defining the impedance of free space12 as

Z0 =
√

µ0

ε0
= 376.73 � (1.99)

our expression for energy flux associated with an electromagnetic field in free space
becomes

S = (E · E)

Z0
k̂ (1.100)

This expression is written in the familiar form of power in standard electrical circuit
theory, V 2/R. The difference, of course, is that this is an oscillating electromagnetic
field. For monochromatic plane waves propagating in the x direction, the Poynting
vector may be written

S = |E0|2
Z0

(cos2(kx x − ωt + �phase))k̂ (1.101)

where �phase is a fixed phase. Because the time average of the cos2 term in Eqn (1.101)

12 It is often convenient to use the approximation Z0 = 120 × π�.
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is 1/2, the average power per unit area transported by this sinusoidally oscillating
electromagnetic field is just

〈S〉 = |E0|2
2Z0

k̂ (1.102)

Electromagnetic waves carry not only energy, but also momentum. Because elec-
tromagnetic waves carry momentum, they can exert a force on a charged particle. The
classical force on a test charge e moving at velocity v is just

F = e(E + v × B) (1.103)

Using Newton’s second law for mechanical motion, which relates rate of change of
momentum to force (Eqn (1.1)), it is possible to show that the momentum density in
an electromagnetic wave is proportional to the energy flux density. The proportionality
constant is the inverse of the speed of light squared, 1/c2, so that

p = E × H
c2

= S
c2

(1.104)

We could have guessed this result using dimensional analysis. The energy-flux den-
sity S is measured in units of J m−2 s−1 = kg m2 s−2· m−2 s−1, so that S/c2 is measured
in units of J m−4 s = kg m2 s−2· m−4 s = kg m s−1· m−3, which has the units of mo-
mentum per unit volume. For a plane wave, the momentum can be expressed in terms
of the energy density as

p = U

c
k̂ (1.105)

In this equation, k̂ is the unit vector in the direction of propagation of the wave and E
is the energy density. The magnitude of the momentum is just

|p| = 1

c
· |S|
c

= U

c
(1.106)

p = U

c
(1.107)

When we introduce quantum mechanics, we will make use of this expression to suggest
that if light energy is quantized then so is the momentum carried by light.

1.3.2.3 Choosing a potential

Electric and magnetic fields are related to a potential in a more complex way than
we have discussed so far. In general, Maxwell’s equations allow electric and magnetic
fields to be described in terms of a scalar potential V (r, t) and a vector potential A(r, t).
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To see why this is so, we recall from vector calculus that any vector field a satisfies
∇ · (∇ × a) = 0. Because Maxwell’s equations state ∇ · B = 0, it must be possible to
choose a vector field A for which B = ∇ × A. Using this expression for B, Faraday’s
law can now be rewritten

∇ × E = −∂B
∂t

= − ∂

∂t
∇ × A (1.108)

or

∇ ×
(
E + ∂A

∂t

)
= 0 (1.109)

Since we know from vector calculus that the curl of the gradient of any scalar field is
zero, we may equate the last equation with the gradient of a scalar field, V, where

E + ∂A
∂t

= −∇V (1.110)

In general, the scalar and vector fields are functions of space and time, so we are free
to choose functions V (r, t) and A(r, t), giving

E(r, t) = −∇V (r, t) − ∂

∂t
A(r, t) (1.111)

B(r, t) = ∇ × A(r, t) (1.112)

The exact forms used for V (r, t) and A(r, t) are usually chosen to simplify a specific
calculation. To describe this choice one talks of using a particular gauge.

Let’s see what this means in practice. Suppose we wish to consider a static elec-
tric field, E(r). Previously, we chose a gauge where E(r) = −∇V (r). An interesting
consequence of this choice is that, because the static electric field is expressed as a
gradient of a potential, the absolute value of the potential need not be known to within a
constant. Only differences in potential have physical consequences and therefore mean-
ing. Another choice of gauge is where A = −Et . In this case, we have a remarkable
degree of latitude in our choice of A, since we can add any time independent func-
tion to A without changing the electric field. Other possibilities for the gauge involve
combinations of the scalar and vector potential. If we wish to describe magnetic fields,
the possible choices of gauge are even greater. In this book we choose a gauge for its
simplicity, and we avoid the complications introduced by inclusion of magnetic fields.

1.3.2.4 Dipole radiation

When a current flows through a conductor, a magnetic field exists in space around the
conductor. This fact is described by the modified Ampère’s law in Maxwell’s equations
in Table 1.1, and it is the subject of Exercise 1.12. If the magnitude of the current varies
over time, then so does the magnetic field. Faraday’s law indicates that a changing
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Closed E-field loops Closed H-field loops

Oscillating current flow in conducting
wire forms radiating dipole element

Fig. 1.18. Illustration of a short conductor carrying an oscillating harmonic time-dependent current
surrounded by interdependent oscillating E and H fields. The oscillating current flowing up and
down the conducting wire produces electromagnetic waves which propagate in free space.

magnetic field coexists with a changing electric field. Hence, a conductor carrying
an oscillating current is always surrounded by interdependent oscillating E and H
fields. As the oscillating current changes its direction in the conductor, the magnetic
field also tries to change direction. To do so, the magnetic field that exists in space
must first try to disappear by collapsing into the conductor before growing again in
the opposite direction. Typically, not all of the magnetic field disappears before current
flows in the opposite direction. The portions of the magnetic field and its related electric
field that are unable to return to the conductor before the current starts to increase in
the opposite direction are propagated away as electromagnetic radiation. In this way,
an oscillating current (associated with acceleration and deceleration of charge in a
conductor) produces electromagnetic waves. This is illustrated in Fig. 1.18 for a short
conducting wire carrying a harmonic time-dependent current.

One may describe radiation due to changes in current in a conductor by considering
an element of length r0 carrying oscillating current I (t). An appropriate arrangement
is shown schematically in Fig. 1.19. A small length of conducting wire connects two
conducting spheres separated by distance r0 and oriented in the ẑ direction. Oscil-
latory current flows in the wire so that I (t) = I0eiωt , where measurable current is
the real part of this function. The harmonic time-dependent current is related to the
charge on the spheres by I (t) = ±dQ(t)/dt , where Q(t) = Q0eiωt . The plus sign
is for the upper sphere, and the minus sign is for the lower sphere. It follows that
I (t) = ±d(Q0eiωt )/dt = ±iωQ(t), so that Q(t) = ±I (t)/ iω. For equal and opposite
charges separated by a small distance, one may define a dipole moment for the harmonic
time-dependent source as

d = Qẑr0 = I r0ẑ
iω

(1.113)

If either the current I or the current density J is known, then we can find the other
quantities of interest, such as the total radiated electromagnetic power, Pr . To calculate



37 1.3 Classical electromagnetism

θ

z

r0

H
E

+Q

−Q

I

r

Fig. 1.19. A small length of conducting wire connects two conducting spheres oriented in the z
direction that have center-to-center spacing of r0. Oscillatory current I flows in the wire, charging
and discharging the spheres. The magnetic and electric field at position r is indicated.

the quantity Pr , we must solve for the field H or E. This is done by finding the vector
potential A.

Considering electromagnetic radiation in free space and substituting

H(r, t) = 1

µ0
∇ × A(r, t) (1.114)

into the modified Ampère’s law gives

∇ × H = 1

µ0
∇ × ∇ × A = J + ∂D

∂t
(1.115)

Since D = ε0E and E = −∇V − ∂A/∂t , we may write

∇ × ∇ × A = ∇(∇ · A) − ∇2A = µ0J + µ0ε0
∂

∂t

(
− ∇V − ∂A

∂t

)
(1.116)

∇(∇ · A) − ∇2A = µ0J − ∇
(
µ0ε0

∂V

∂t

)
− µ0ε0

∂2A
∂t2

(1.117)

∇2A − µ0ε0
∂2A
∂t2

= −µ0J − ∇
(
∇ · A + µ0ε0

∂V

∂t

)
(1.118)

The definition of vector A requires that curl and divergence be defined. While
Maxwell’s equations force adoption of the curl relationship H = (1/µ0)∇ × A, we
are free to choose the divergence. In the Lorentz gauge one lets(
∇ · A + µ0ε0

∂V

∂t

)
= 0 (1.119)

The resulting nonhomogeneous wave equation for the vector potential is

∇2A − µ0ε0
∂2A
∂t2

= −µ0J (1.120)

The solution for a harmonic time-dependent source is

A = µ0

4π

∫
volume

J
e−ikr

r
d3r (1.121)
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where the integral over the volume includes the oscillating current density J of the
source. In the equation, k = 2π/λ, where λ is the wavelength of the electromagnetic
wave. In our case, we know that the integral over J is just I r0, so that

A = ẑ
µ0

4π
I r0

e−ikr

r
(1.122)

The vector potential in the ẑ direction is related to the radial distance r and the angle
θ in spherical coordinates by

Az = Ar cos(θ ) − Aθ sin(θ ) (1.123)

Hence, the radial and angular components of the vector potential are

Ar = µ0

4π
I r0

e−ikr

r
cos(θ ) (1.124)

Aθ = µ0

4π
I r0

e−ikr

r
sin(θ ) (1.125)

Aφ = 0 (1.126)

Having found expressions for components of the vector potential in spherical coor-
dinates, one proceeds to calculate magnetic and electric fields. The magnetic field is
just H = (1/µ0)∇ × A, which in spherical coordinates is

H = 1

µ0

1

r2 sin(θ )

∣∣∣∣∣∣∣∣
r̂ rθ r sin(θ )φ̂
∂

∂r

∂

∂θ

∂

∂φ

Ar r Aθ r sin(θ )Aφ

∣∣∣∣∣∣∣∣
(1.127)

H = r̂(0 − 0) + θ (0 − 0) − φ̂
I r0k2e−ikr

4π
sin(θ )

(
1

ikr
+ 1

(ikr )2

)
(1.128)

From Eqn (1.128) one may conclude that Hφ is the only component of the magnetic
field. The electric field is found from

E = 1

iωε0
∇ × H = 1

iωε0

(
r̂

1

r sin(θ )

∂

∂θ
(Hφ sin(θ )) − θ

1

r

∂

∂r
(r Hφ)

)
(1.129)

At a large distance, one is many wavelengths from the source so that kr = 2πr/λ�1.
This is called the far-field limit. In the far-field limit, Eqn (1.128) becomes

Hφ = i I r0e−ikr

4πr
k sin(θ ) = Eθ

Z0
(1.130)

and Eqn (1.129) may be written as

Eθ = i I r0e−ikr

4πr
Z0k sin(θ ) = Z0Hφ (1.131)

Notice the consistency with the relationH = √
ε0/µ0 k̂ × E given by Eqn (1.88), and

recall that the impedance of free space is Z0 = √
µ0/ε0 = 376.73 � (from Eqn (1.99)).
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The total time-averaged radiated power Pr from a sinusoidally oscillating electromag-
netic field is just |E0|2/2Z0. Hence,

Pr = 1

2

|Eθ |2
Z0

= Z0

2
|Hφ|2 = Z0

2

φ=2π∫
φ=0

dφ

θ=π∫
θ=0

(
I r0e−ikr

4πr
k sin(θ )

)2

r2 sin(θ )dθ

(1.132)

After performing the integral one finds

Pr = Z0

12π
I r0k

2 (1.133)

Since the dispersion relation for electromagnetic radiation is ω = ck and current I is
related to the dipole moment d by I r0ẑ = iωd, the expression for Pr may be rewritten
as

Pr = Z0

12π

ω4|d|2
c2

(1.134)

This is the classical expression for total time-averaged electromagnetic radiation from
a dipole source. Sometimes one makes the approximation Z0 = 120 × π �, so that
Pr = 10ω4|d|2/c2.

1.4 Example exercises

Exercise 1.1
Two intelligent players seated at a round table alternately place round beer mats on the
table. The beer mats are not allowed to overlap, and the last player to place a mat on
the table wins. Who wins and what is the strategy?

Exercise 1.2
Visitors from another planet wish to measure the circumference of the Earth. To do
this, they run a tape measure around the equator. How many extra meters are needed if
the tape measure is raised one meter above the ground?13

Exercise 1.3
A plug can be carved to fit exactly into a square hole of side 2 cm, a circular hole of
radius r = 1 cm, and an isosceles triangular hole with a base 2 cm wide and a height
of h = 2 cm. What is the smallest and largest convex solid volume of the plug?

13 The visitors were not aware that the meter was first defined by the French Academy of Sciences in 1791 as
1/107 of the quadrant of the Earth’s circumference running from the North Pole through Paris to the equator.
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Exercise 1.4
A one-mile-long straight steel rod lies on flat ground and is attached at each end to a
fixed point. During a particularly hot day the rod expands by one foot. Assuming that
the expansion causes the rod to describe an arc of a circle between the fixed points,
what is the height above the ground at the center of the rod?

Note that one mile is 5280 feet.

Exercise 1.5
The 1925 Cole survey reported an estimate of the original dimensions of the Great
Pyramid. The square base had a perimeter of 921.46 m and the vertical apex height
was 146.73 m. What was the minimum work done in building the Great Pyramid? How
long does it take a 500-MW electric generator to deliver the same amount of work?

In your calculations you may assume that the acceleration due to gravity is g =
9.8 m s−2 and the density of the stone used is ρ = 2000 kg m−3.

Exercise 1.6
(a) The rotating blades of a helicopter push air to create the force needed to allow

the machine to fly. How much power must be generated by the motor of a 1000-kg
helicopter with blades 4 m long?

You may assume that the density of air is ρ = 1.3 kg m−3.
(b) Estimate the force exerted by a 60-mph wind impinging normally to the side of

a suspension bridge with an effective cross-section 500 ft long and 10 ft high.
(1 ft2 ≈ 9.3 × 10−2 m2 and 1 mph ≈ 0.45 × 10−2 m s−1.)

Exercise 1.7
A particle of mass m exhibits classical one-dimensional simple harmonic oscillation
of frequency ω0. What is the maximum kinetic energy of the particle, and how does it
depend upon the amplitude of oscillation?

Exercise 1.8
Consider a particle mass m attached to a lightweight spring that obeys Hooke’s law.
The displacement from equilibrium x = x0 is proportional to the force on the particle
F = −κ(x − x0), where κ is the spring constant. The particle is subject to a small
external oscillatory force in the x̂ direction so that F(t) = F1 sin(ωt).

Displacement, x

Mass, mSpring constant, κ

F(t)
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(a) Adding F(t) to the right-hand side of the equation of motion for a harmonic
oscillator

κ(x − x0) + m
d2x

dt2
= 0

and assuming x(t) = x0 + x1 sin(ωt), show that

x1(ω) = F1/m

ω2
0 − ω2

where ω2
0 = κ/m. Plot x1(ω), and interpret what happens as ω → ω0.

(b) Show that adding a damping term D · (dx/dt) to the left-hand side of the equation
of motion used in (a) changes the solution to

x1(ω) = F1/m

ω2
0 − ω2 − i(γ /2)

where γ (ω) = 2ωD/m.
Assuming that one may replace γ (ω) with a frequency-independent constant

� = γ (ω0)/ω0 = 2D/m, plot |x1(ω)|, phase, Re(x1(ω)), and Im(x1(ω)) for ω0 = 10,
� = 0.5 and � = 10. Explain the relationship between � and the line shape.

Exercise 1.9
The relative atomic mass of Ga is 69.72, the relative atomic mass of As is 74.92, and the
frequency of the longitudinal polar-optic lattice vibration in GaAs is ν = 8.78 THz in the
long-wavelength limit. Use the solutions for lattice dynamics of a linear chain developed
in Section 1.2.4 to estimate the spring constantκ . Use this value to estimateν1(= ω1/2π )
and ν2(= ω2/2π ), and then compare this with the experimentally measured values for
[100] oriented GaAs.

Exercise 1.10
Microelectromechanical systems (MEMS) feature micron-sized mechanical structures
fabricated out of semiconductor material. One such MEMS structure is a cantilever
beam shown sketched below.

The lowest-frequency vibrational mode of a long, thin cantilever beam attached at
one end is14

ω = 3.52
d

l2

√
EYoung

12ρ

where l is the length, d is the thickness, ρ is the density of the beam, and EYoung, defined
as uniaxial tensile stress divided by strain in bulk material, is Young’s modulus.

14 L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Butterworth-Heinemann, Oxford, 1986 (ISBN 0 7506
2633 X).
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Free-end displacement

Length, l

Thickness, d

amplitude, A

(a) A cantilever made of silicon using a MEMS process has dimension l =
100 �m, d = 0.1 �m, ρ = 2.328 × 103 kg m−3, and Young’s modulus EYoung =
1.96 × 1011 N m−2. Calculate the natural frequency of vibration for the cantilever.

(b) The vibrational energy of a cantilever with width w and free-end displacement
amplitude A is

wd3A2EYoung

6l3

How much vibrational energy is there in the cantilever of (a) when width w = 5 �m
and amplitude A = 1 �m?

Exercise 1.11
A chemist has developed a spherical dendrimer structure with a core that is a redox
active molecule. The charge state of an iron atom at the core can be neutral or +e.

Highly fluorescent rhodamine dye molecules, which are incorporated into the den-
drimer, can be used to sense the charged state. This works because the fluorescence
emission spectrum is sensitive to the local electric field and hence to the charged state
of the redox core.

This particular dendrimer, which is 4 nm in diameter and has a relative permittivity of
εr = 2, is placed on a flat, perfectly conducting metal sheet, which is maintained at zero
electrical potential. Calculate the force acting upon the ion core when the fluorescence
emission spectrum indicates that the iron atom is in the charged state.

Perfectly conducting metal sheet

Fe
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Exercise 1.12
The circuit shown below is energized by an input current I from a current source at
resonant frequency ω = 1/

√
LC . Here L is the inductance of the series inductor and

C is the capacitance of the series capacitor, respectively. On resonance, the Q of the
circuit is large and is given by Q = ωL/r , where r is the resistance of a series resistor.
Show that |V2| ∼ Q|V1| when resistor R is nonzero.

V1

V2

R

L

C

I

I1 I2

r

Exercise 1.13
The amplitude of magnetic flux density B in a monochromatic plane-polarized electro-
magnetic wave traveling in a vacuum is 10−6 T. Calculate the value of the total energy
density. How is the total energy density divided between the electric and magnetic
components?

SOLUTIONS

Solution 1.1
Two people take alternate turns placing beer mats on a table. The beer mats are not
allowed to overlap, and the last person to place a mat on the table wins. It should be
clear that this is a question about symmetry.

The first player to place a beer mat on the table is guaranteed to win the game if
he or she uses the symmetry of the problem to advantage. Only the first player need
be intelligent to guarantee winning. The second player must merely abide by the rules
of the game. The first player places the first beer mat in the center of the table and
then always places a beer mat symmetrically opposite the position chosen by the other
player.

Solution 1.2
Visitors from another planet run a tape measure around the Earth’s equator and, having
done so, want to know how much extra tape they would need if they raised the tape
1 m above ground level. Since the circumference of a sphere radius R is just 2πR, we
conclude that the extra length needed is only 2π = 6.28 m. Because the circumference
of a sphere is linear in the radius, the same amount of extra tape is needed independent
of the Earth’s radius.
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Solution 1.3

The plug has a circular base of radius r = 1 cm, a height of h = 2 cm, and a straight top
edge of length 2 cm. The smallest convex solid is made if cross-sections perpendicular
to the circular base and straight edge are isosceles triangles. If the cork were a cylinder
of the same height, cross-sections would be rectangles. Each triangular cross-section
is one half the area of the corresponding rectangular cross-section. Since all the trian-
gular cross-sections combine to make up the volume of the plug, the volume must be
half that of the cylinder. The cylinder’s volume is πr2h = 2π cm3, so our answer is
π cm3.

The largest convex volume is found by simply slicing the cylinder with two plane
cuts to obtain the needed isosceles triangle cross-section. The volume in this case is
(2π − 8/3) cm3.

Solution 1.4
A one-mile-long straight steel rod is on flat ground and is attached at each end to a fixed
point (one might imagine the rod is part of a rail line). The rod then expands by one
foot, causing the rod to describe an arc of a circle between the fixed points. It is our
task to find the height above the ground at the center of the rod.

This question involves large numbers (the number of feet in a mile), small numbers
(the one-foot expansion), and geometry (the arc of a circle). The best way to proceed
is to start by drawing the geometry.

θθ

x

f r

dd

d + e d + e
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In the above figure the length of the mile-long straight steel rod is 2d. The length of
the rod after expanding by one foot is 2(d + e), and the height above the ground at the
center of the rod is x . The arc of the circle has radius r . We start by writing down the
relationships among the parameters in the figure. This gives four equations, which are

r = f + x (1)

r2 = d2 + f 2 (2)

rθ = d + e (3)

sin(θ ) = d

r
(4)

Substituting Eqn (1) into Eqn (2) to eliminate f gives

r2 = d2 + (r − x)2

0 = x2 − 2r x + r2 − r2 + d2

0 = x2 − 2r x + d2 (5)

which is quadratic in x . We now need to find the value of θ . To do this, we substitute
Eqn (3) into Eqn (4) to eliminate r :

sin(θ ) = d

r
= d

(d + e)/θ
= θd

d + e

θ = d + e

d
sin(θ )

Expanding the sin(θ ) function gives

θ ∼ d + e

d

(
θ − θ3

3!
+ θ5

5!
− · · ·

)
Dividing both sides of the equation by θ and retaining terms in θ to second order gives

1 ∼ d + e

d

(
1 − θ2

6

)

so that

θ2 = 6 − 6d

d + e
= 6e

d + e

θ =
√

6e

d + e

The natural unit of length in this problem is one half mile. In this case, we set d = 1,
so that the expansion in units of one half mile is e = 1/5280. Hence,

θ =
√

6e

1 + e
∼
√

6

5280
= 0.0337 rad

and from Eqn (3)

r = d + e

θ
∼ 1

0.0337
= 29.7
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Now we can solve the quadratic Eqn (5), which is in the form

0 = ax2 + bx + c

with solution

x = −b ± √
b2 − 4ac

2a

In our case, a = 1, b = −2r and c = 1, so that

x = 59.4 ± √
59.42 − 4

2

The roots are

x1 = 59.4

x2 = 1/59.4

The solution we want is x2. Converting from units of one half mile to feet gives

x = 2640/59.4 = 44.4 ft

It is quite amazing that a one-foot expansion in an initially straight, mile-long rod
results in such a large deflection at the center of the rod. However, our estimate is
less than that obtained using the Pythagoras theorem x2 + d2 = (d + e)2, for which
x ∼ √

2de = √
2640 = 51 ft.

The reason for the relatively large displacement can be traced back to the nonlinear
equations (in this case quadratic) used to describe the physical effect. In this exercise
we evaluate the difference in the square of two almost identical large numbers.

Solution 1.5
We wish to estimate the minimum work done in building the Great Pyramid which
has a square base with a perimeter of l = 921.46 m and a vertical apex height of h =
146.73 m. The square base has side l/4 = 921.46/4 ∼ 230 m and area A = 53 000 m2.
The density of the stone used is ρ = 2000 kg m−3.

Consider distance x measured from the top of the pyramid sketched in the following
figure so that the area of a section thickness dx at position x is

A(x) = A

(
x

h

)2

where the area of the base is A. The work done is
x=h∫

x=0

ρgA

(
x

h

)2

(h − x)dx =
[
ρgA

h2

(
hx3

3
− x4

4

)]x=h
x=0

= ρgAh2

12

where g = 9.8 m s−2 is the acceleration due to gravity.
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h
x

Base area A

Area A(x) at position x

Putting in numerical values, area A = 53 000 m2, height squared h2 = 21 000 m2, and

ρgAh2

12
= 2000 × 9.8 × 5.3 × 104 × 2.1 × 104

12
∼ 1.8 × 1012 J

A 500-MW electric generator supplies 5 × 108 J s−1, so the time taken to deliver
1.8 × 1012 J is

t = 1.8 × 1012

5 × 108
= 3.6 × 103 s

There are 3600 s in an hour, so the time taken is one hour!
As a side note, for those with a general interest in ancient civilizations and their

scientific knowledge, if one divides the perimeter of the Great Pyramid by twice the
height one gets

l

2h
= 921.46

2 × 146.73
= 3.140

which is remarkably close to the value of π = 3.14159. It seems unlikely that this is
mere coincidence.

Solution 1.6
(a) We are going to estimate the power required to keep a helicopter of loaded mass
1000 kg flying. The helicopter blades are 4 m long. We are going to assume that all the
air beneath the circle of the blades is moved uniformly downward. For the helicopter
to keep flying, the force exerted by air displaced must at least counteract the force
of gravity on the 1000-kg mass of the helicopter. In classical mechanics, force is the
rate of change of momentum F = dp/dt , so we have 1000 × g = πr2vρv, where g =
9.8 m s−2 is the acceleration due to gravity, ρ = 1.3 kg m−3 is the density of air, v is
the velocity of the air, and r is the length of the helicopter blades. Hence, we have

v2 ≥ 1000g

πr2ρ

Power is the rate of change of energy, which is just

1

2
mv2 = 1

2
1000m · 1000g

πr2ρ
∼ 1000 × 1000 × 9.8

2 × π × 16 × 1.3
∼ 75 kW

This value of power can be delivered by a small engine capable of delivering about 100
horsepower (1 hp = 745.7 W). Of course, one should remember that this is a minimum
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requirement and that the engine, gearbox, rotor blades, fuel, controls, airframe, and
passengers must have a combined mass of less than 1000 kg.

(b) We use the laws of classical mechanics to estimate the force exerted by a 60-mph
wind impinging normal to the side of a suspension bridge with an effective cross-
section 500 ft long and 10 ft high. Because the density of air is given in MKS units
as ρ = 1.3 kg m−3, it makes sense to convert wind speed and the bridge cross-section
into MKS units as well.

We use 1 ft2 ∼ 9.3 × 10−2 m2 and 1 mph ∼ 0.45 m s−1. The wind strikes an area A =
500 × 10 = 5000 ft2 ∼ 465 m2. The velocity of the wind is v = 60 mph ∼ 27 m s−1.
The volume of air striking the bridge per second is V = A × v = 12555 m3 s−1. The
mass of air striking the bridge per second is M = A × v × ρ = V × ρ = 16321 kg s−1.

The force exerted on the bridge is the rate of change of momentum F = dp/dt .
We assume that the effective cross-section is calculated in such a way that the final
momentum of the air may be taken to be zero. In this case, the force is F = M × v =
16321 × 27 ∼ 440 000 N, which is about 44 tons of weight. Since F = A × ρ × v2,
force is proportional to the square of the wind speed. This means that an 85-mph gust
of wind would exert twice the force, or about 88 tons of weight.

Solution 1.7
Classical mechanics tells us how the maximum kinetic energy of the particle mass m
exhibiting one-dimensional simple harmonic oscillation of frequency ω0, depends upon
the amplitude of oscillation. The maximum velocity of the particle is vmax = ±Aω0,
so the maximum kinetic energy is

Tmax = 1

2
mv2

max = m

2
A2ω2

0 = A2 κ

2

It is apparent from this result that the maximum kinetic energy depends upon the
oscillation amplitude squared.

Solution 1.8
Consider a particle mass m attached to a lightweight spring that obeys Hooke’s law.
The displacement from equilibrium x = x0 is proportional to the force on the particle
F = −κ(x − x0), where κ is the spring constant. The particle is subject to a small
external oscillatory force in the x̂ direction such that F(t) = F1 sin(ωt).

(a) Adding F(t) to the right-hand side of the equation of motion for a harmonic
oscillator gives

κ(x − x0) + m
d2x

dt2
= F1e

−iωt

Assuming a solution of the form x(t) = x0 + x1e−iωt and substituting into the equation
of motion gives

κx1e
−iωt − mω2x1e

−iωt = F1e
−iωt
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so that

x1(ω) = F1/m

ω2
0 − ω2

, where ω2
0 = κ/m

As ω → ω0 the system goes into resonance, the oscillation amplitude increases, and
x1 → ∞. To understand this, consider the energy applied to the system by the external
force, F . If ω is not equal to ω0, then within one time period, during portions of the
time, energy is imparted to the system (spring and mass) by the force, and for the rest
of the time energy is spent by the system to move against the applied force. The applied
force and the resulting displacement are not in phase, and the amplitude (energy stored
in the system) does not build up. The overall effect is such that energy is not acquired
by the system. However, at the resonant frequency, the applied force and the resulting
displacement are in phase, and energy is continuously acquired by the system from the
external force during the complete cycle. This situation leads to a continuous build up
(to infinity) in amplitude. In practice, this does not happen, because all physical systems
have a damping term or nonlinearity that limits the oscillation amplitude at resonance
(see part (b)).

(b) Adding the damping term D · (dx/dt) to the equation of motion used in (a)
gives

κ(x − x0) + D
dx

dt
+ m

d2x

dt2
= F(t)

Assuming a solution of the form x(t) = x0 + x1e−iωt and substituting into the equation
of motion gives

κx1e
−iωt + −iωDx1e

−iωt − ω2mx1e
−iωt = F1e

−iωt

so that

x1(ω) = F1/m(
ω2

0 − ω2
)− i(γ /2)

where γ /2 = ωD/m and ω2
0 = κ/m.

Assuming one may replace γ (ω) with a frequency-independent constant � =
γ (ω0)/ω0 = 2D/m, we now plot |x1(ω)|, phase, Re(x1(ω)), and Im(x1(ω)), as
follows:

|x1(ω)| = F1/m√(
ω2

0 − ω2
)2 + (γ /2)2

Re(x1(ω)) = (F1/m) · (ω2
0 − ω2

)
(
ω2

0 − ω2
)2 + (γ /2)2

Im(x1(ω)) = (F1/m) · (γ /2)(
ω2

0 − ω2
)2 + (γ /2)2
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In the figures above we show the results for the two cases: � = 0.5 and � = 10
when ω0 = 10. The separation in frequencies (ω2 − ω1) at which the absolute value
of x1 is one half its maximum value of |x1(ω0)| = 2F1/mγ is called the full-width
half-maximum (FWHM) or linewidth. If � � ω0, the line shape is Lorentzian and
1.732 × � is the value of the FWHM. This is no longer true for an asymmetric line
shape that occurs for large values of �. An important general feature to notice is that
the real part of x1(ω) is zero at the resonance frequency ω0. This resonance is damped
by the peak in the imaginary part of x1(ω) at ω0.

If the forcing term F(t) were to suddenly cease, the particle would continue to
oscillate until all of the energy was removed by the damping term. In this time-dependent
picture, we think about the oscillating state exponentially decreasing in amplitude over
a characteristic time, τ . If � � ω0, the line shape is Lorentzian, and the lifetime, τ , is
proportional to the inverse of the FWHM.

An example of a simple harmonic oscillator is a pendulum oscillating at its resonant
frequency. This can be used to keep track of time and act as a clock. Another example
of a harmonic oscillator is an electrical circuit consisting of a capacitor (spring), an
inductor (mass), and a resistor (damping term).

It is worthwhile thinking about what would happen if the damping were negative. For
example, in a small-signal analysis, it is possible to have negative differential resistance.
If a circuit consists of a capacitor, an inductor, and a device with negative differential
resistance, it is possible to create bias conditions under which the circuit will oscillate



51 1.4 Example exercises

without any external time-dependent input. The amplitude over which the differential
resistance is negative determines the amplitude of the oscillator’s output.

Solution 1.9
Given that the relative atomic mass of Ga is 69.72, the relative atomic mass of As
is 74.92, and the frequency of the longitudinal polar-optic lattice vibration in GaAs
is ν = 8.78 THz in the long-wavelength limit, we will use the solutions for lattice
dynamics of a linear chain developed in Section 1.2.4 to estimate the spring constant κ
for the system:

κ = ω2

2

m1m2

m1 + m2
= (2π × 8.78 × 1012)2

2

69.72 × 74.92 × mp

69.72 + 74.92
= 1.10 × 1029 × mp

2
.

We now use this value to estimate ν1(= ω1/2π ) and ν2(= ω2/2π ) and to compare the
results with the experimentally measured values for [100]-oriented GaAs. The results
are

ν1 = ω1

2π
= 1

2π

(
2κ

m1

)1/2

= 1

2π

(
1.10 × 1029 × mp

69.72 × mp

)1/2

= 6.32 THz

and

ν2 = ω2

2π
= 1

2π

(
2κ

m2

)1/2

= 1

2π

(
1.10 × 1029 × mp

74.92 × mp

)1/2

= 6.10 THz

giving a ratio ν1/ν2 = 1.036. This compares quite well with the experimental values
of 7.0 THz and 6.7 THz and the ratio ν1/ν2 = 1.045.

It is quite surprising how well a simple classical diatomic linear chain model of
lattice dynamics compares with the three-dimensional vibration dispersion relation for
actual semiconductor crystals such as GaAs.

Solution 1.10
(a) The frequency of vibration of the cantilever beam shown sketched in the following
figure with dimensions l = 100 �m, d = 0.1 �m, density ρ = 2.328 × 103 kg m−3,
and Young’s modulus EYoung = 1.96 × 1011 N m−2, is found using the equation

ω = 3.52
d

l2

√
EYoung

12ρ
= 3.52 × 0.1 × 10−6

(100 × 10−6)2

√
1.96 × 1011

12 × 2.328 × 103
= 9.3 × 104 rad s−1

The frequency in hertz is f = ω/2π = 15 kHz.

Free-end displacement

Length, l

Thickness, d

amplitude, A
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(b) The vibrational energy of the cantilever in (a), with width w = 5 �m and free-end
displacement amplitude A = 1 �m is very small:

wd3A2EYoung

6l3
= 5 × 10−6 × (0.1 × 10−6)3 × (1 × 10−6)2 × 1.96 × 1011

6 × (100 × 10−6)3

= 1.63 × 10−16 J

Solution 1.11

Perfectly conducting metal sheet

− e

εr = 2

+e

−e

εr = 2

The solution to this exercise is found by considering a point charge +e placed at a
distance d from a large perfectly conducting metal sheet. No current can flow in the
conductor, so electric field lines from the charge intersect normally to the surface of the
conductor. This boundary condition and the symmetry of the problem suggest using
the method of images, in which an image charge is placed at a distance d from the
position of the sheet and opposite the original charge. The force is then calculated for
two oppositely charged point-particles separated by distance 2d and embedded in a
relative dielectric εr. The attractive force is

F = −e2

4πε0εr4d2

Putting in the numbers for this exercise, we have εr = 2 and d = 2 nm, giving

F = −(1.602 × 10−19)2

4π × 8.854 × 10−12 × 2 × 4 × (2 × 10−9)2
= −7.2 × 10−12 N

where the negative sign indicates an attractive force. A force of a few piconewtons is
very small and will have little effect on the relative position of the Fe core atom with
respect to the metal sheet.
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Solution 1.12
The circuit in the following figure is driven by an input current I from a current source
at resonant frequency ω = 1/

√
LC . We assume that on resonance the Q of the circuit

is large and is given by Q = ωL/r , where r is the value of a series resistor.

V1

V2

R

L

C

I

I1 I2

r

The solution for the current is of the form I = I1eiωt , where |I1| is the amplitude of
the current and ω = 1/

√
LC when at resonance. The impedance of the LCr part of the

circuit is

−i
ωC

+ iωL + r

which on resonance has the value

iωL − i

ωC
+ r = i(ω2LC − 1) + ωCr

ωC
= r

so the equivalent circuit consists of two resistors in parallel with an impedance seen by
the input of r R/(R + r ). Hence the voltage V1 is given by

V1 = I

(
r R

R + r

)

The modulus of this voltage is

|V1| = |I1|
(

r R

R + r

)

The impedance at V2 is Z2 = iωL + r and the voltage V2 is given by the current
I2 multiplied by Z2. The current I2 flowing through the LCr part of the circuit is
given by

I2 = I

(
R

R + r

)

so the voltage V2 is

V2 = I

(
R

R + r

)
(iωL + r )



54 Introduction

The modulus of this voltage is

|V2| = |I1|
(

R

R + r

)√
ω2L2 + r2 = |V1|

r

√
ω2L2 + r2 = |V1|

√
ω2L2

r2
+ 1

|V2| = |V1|
√
Q2 + 1 ∼ |V1|Q

This shows that the Q of the circuit can be used to amplify an oscillating voltage.

Solution 1.13
Given that the amplitude of magnetic flux density B in a monochromatic plane-polarized
electromagnetic wave traveling in a vacuum is 10−6 T, we are asked to calculate the
value of the total energy density. We know that energy density is given by

U = 1

2
ε0E

2 + 1

2µ0
B2

and that E/B = c for plane waves in a vacuum. Thus,

U = 1

2
ε0c

2B2 + 1

2µ0
B2

and because c2 = 1/ε0µ0, we have

U = 1

2µ0
B2 + 1

2µ0
B2 = 1

µ0
B2

For the magnetic field given,

U = 10−12

4π × 10−7
= 8 × 10−7 J m−3

The total energy density is divided equally between the electric and magnetic com-
ponents. The time averaged energy density is half this value.



2 Toward quantum mechanics

2.1 Introduction

It is believed that the basic physical building blocks forming the world we live in may
be categorized into particles of matter and carriers of force between matter. All known
elementary constituents of matter and transmitters of force are quantized. For example,
energy, momentum, and angular momentum take on discrete quantized values. The
electron is an example of an elementary particle of matter, and the photon is an example
of a transmitter of force. Neutrons, protons, and atoms are composite particles made up
of elementary particles of matter and transmitters of force. These composite particles
are also quantized. Because classical mechanics is unable to explain quantization, we
must learn quantum mechanics in order to understand the microscopic properties of
atoms – which, for example, make up solids such as crystalline semiconductors.

Historically, the laws of quantum mechanics have been established by experiment.
The most important early experiments involved light. Long before it was realized that
light waves are quantized into particles called photons, key experiments on the wave
properties of light were performed. For example, it was established that the color of
visible light is associated with different wavelengths of light. Table 2.1 shows the range
of wavelengths corresponding to different colors.

The connection between optical and electrical phenomena was established by
Maxwell in 1864. This extended the concept of light to include the complete elec-
tromagnetic spectrum. A great deal of effort was, and continues to be, spent gathering
information on the behavior of light. Table 2.2 shows the frequencies and wavelengths
corresponding to different regions of the electromagnetic spectrum.

2.1.1 Diffraction and interference of light

Among the important properties of light waves are the abilities of light to exhibit
diffraction, linear superposition, and interference. The empirical observation of these
phenomena was neatly summarized by the work of Young in 1803. Today, the famous
Young’s slits experiment can be performed using a single-wavelength, visible laser light

55
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Table 2.1.Wavelengths of visible light

Wavelength (nm) Color

760–622 red
622–597 orange
597–577 yellow
577–492 green
492–455 blue
455–390 violet

Table 2.2. Spectrum of electromagnetic radiation

Name Wavelength (m) Frequency (Hz)

radio >10−1 <3 × 109

microwave 10−1–10−4 3 × 109–3 × 1012

infrared 10−4–7 × 10−7 3 × 1012– 4.3 × 1014

visible 7 × 10−7– 4 × 10−7 4.3 × 1014–7.5 × 1014

ultraviolet 4 × 10−7–10−9 7.5 × 1014–3 × 1017

x-rays 10−9–10−11 3 × 1017–3 × 1019

gamma rays <10−11 >3 × 1019

Two slits in
a screen

Monochromatic
light source

Interference pattern
observed on screen
from superposition
of waves emanating
from two slits

Intensity

Position

Huygen’s
principle

Interfering
waves

Fig. 2.1. Illustration of the Young’s slits experiment. Light from a monochromatic source passing
through the slits interferes with itself, and an intensity interference pattern is observed on the
viewing screen. The interference pattern is due to the superposition of waves, for which each slit is
an effective source. Intensity maxima correspond to electric fields adding coherently (or in phase),
and intensity minima correspond to electric fields subtracting coherently.

source, a screen with two slits cut in it, and a viewing screen. Light passing through
the slits interferes with itself, and an intensity interference pattern is observed on the
viewing screen. See Fig. 2.1. The interference pattern is due to the superposition of
waves, for which each slit is an effective coherent source. Hence, the Young’s slits
interference experiment can be understood using the principle of linear superposition.
The wave source at each diffracting slit (Huygen’s principle) interferes to create an
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interference pattern, which can be observed as intensity variations on a screen. Intensity
maxima correspond to electric fields adding coherently (or in phase), and intensity
minima correspond to electric fields subtracting coherently.

Let’s explore this a little more. The linear superposition of two waves at exactly the
same frequency can give rise to interference because of a relative phase delay between
the waves. For convenience, consider two plane waves labeled n = 1 and n = 2, with
wavelength λ = 2π/k, amplitude En , phase φn , and frequency ω. We do not lose
generality by only considering plane waves, because in a linear system we can make
any wave from a linear superposition of plane waves. Mathematically, the two waves
can be represented as

E1 = e1|E1|ei(k·r−ωt)eiφ1 (2.1)

and

E2 = e2|E2|ei(k·r−ωt)eiφ2 (2.2)

respectively, where e j is the unit vector in the direction of the electric field E j .
The intensity due to the linear superposition of E1 and E2 is just

|E|2 = |E1 + E2|2 = |E1|2 + |E2|2 + 2|E1||E2| cos(φ) (2.3)

where φ = φ2 − φ1 is the relative phase between the waves. Our expression for |E|2
is called the interference equation. The linear superposition of the two waves gives a
sinusoidal interference pattern in the intensity as a function of phase delay, φ.

Plotting the interference equation for the case in which |E1| = |E2| = |E0| in
Eqn (2.3), we see in Fig. 2.2 that for φ = 0 there is an intensity maximum

Phase, φ (π)Intensity maximum at φ = 0

Intensity minimum at φ = π

0 1 2 3 4 5 6
0

1

2

3

4

In
te

ns
it

y,
 |E

|2

Fig. 2.2. The linear superposition of two waves at exactly the same frequency can give rise to
interference if there is a relative phase delay between the waves. The figure illustrates the sinusoidal
interference pattern in intensity as a function of phase delay, φ, between two equal amplitude waves.
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|E|2max = 4|E0|2 that is four times the intensity of the individual wave. An intensity
minimum |E|2min = 0 occurs when φ = π . As it stands, this interference pattern is
periodic in φ and exists over all space. In the more general case, when |E1| �= |E2|,
the interference pattern is still periodic in φ, but the intensity maximum has a value
(|E1| + |E2|)2 and the intensity minimum has a value (|E1| − |E2|)2.

As was just noted, our mathematical model predicts that the interference exists over
all space. This is a bit problematic because it seems to be at variance with our everyday
experience. Usually we do not see large variations in light intensity due to interference.
The reason is that the frequencies of the light waves are not exactly ω (i.e., are not
precisely monochromatic). There is a continuous range or spectrum of frequencies
about some average value of ω. Because the light is not exactly monochromatic, even
if the spectrum is sharply peaked at some value of frequency, there is a linewidth
associated with the spectral line typically centered at frequency ω0. The underlying
reason for a finite spectral linewidth is found by considering the temporal behavior of
the light wave. By taking the Fourier transform of the continuous spectral line, we can
obtain the temporal behavior of the wave.

As an example, suppose we have a laser with light emission at 1500 nm wavelength.
The electromagnetic field oscillates at f = 200 THz or ω0 = 2π f = 1.26 × 1015

rad s−1. If the laser is designed to put out a very fast optical pulse at time t = t0,
the frequency components in the electromagnetic field will reflect this fact. To be
specific, let’s assume that the pulse has a Gaussian shape, so that the electromagnetic
field can be written as

E j (t) = e j cos(ω0t) · e−(t−t0)2/τ 2
0 (2.4)

where τ0 is proportional to the temporal width of the pulse. The Fourier transform is a
Gaussian envelope centered at the frequency ω0:

E j (ω) = e j
τ0√

2
· e−(ω−ω0)2τ 2

0 /4 (2.5)

with a spectral power density

E∗(ω)E(ω) = τ 2
0

2
· e−(ω−ω0)2τ 2

0 /2 (2.6)

We can now figure out how the value of τ0 is related to the width of the spectral power
density. It is easy to show that the spectral power density full-width at half-maximum
(FWHM) linewidth is related to τ0 via

�ωFWHM = 2

τ0
·
√

2 ln(2) (2.7)

In our example, the laser just happens to be designed to put out a very fast optical
pulse of Gaussain shape with τ0 = 14.14 fs. The 200-THz optical field is modulated by
a Gaussian envelope to give the electric field as a function of time shown in Fig. 2.3(a).
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Fig. 2.3. (a) Illustration of a 200-THz electric field modulated by a Gaussian envelope function with
τ0 = 14.14 fs. (b) Spectral line shape centered at ω0 = 1.26 × 1015 rad s−1 corresponding to the
200-THz oscillating electric field in (a).

The spectral linewidth centered about the frequency ω0 = 2π f = 1.26 × 1015 rad s−1

is determined by the temporal modulation of the pulse. For a Gaussian pulse shape, the
FWHM of the time and frequency functions are as follows:

time domain field:

E j (t) = e j cos(ω0t) · e−(t−t0)2/τ 2
0 �tFWHM = 2τ0 ·

√
ln(2) (2.8)

frequency domain field:

E j (ω) = e j
τ0√

2
· e−(ω−ω0)2τ 2

0 /4 �ωFWHM = 4

τ0
·
√

ln(2) (2.9)

frequency domain intensity:

E∗(ω)E(ω) = τ 2
0

2
· e−(ω−ω0)2τ 2

0 /2 �ωFWHM = 2

τ0
·
√

2 ln(2) (2.10)

All oscillators have a finite spectral intensity linewidth, because they must contain
transient components from when they were originally turned on. We use the Fourier
transform to relate the time domain behavior to the frequency domain behavior.

The fact that the oscillator can only oscillate for a finite time means that the frequency
spectrum always has a finite width. This has a direct impact on the observation of
interference effects.

At a minimum, one would expect that interference effects can only be observed when
the wave and the delayed wave overlap in space. In our example, τ0 = 14.14 fs, and our
pulse has �tFWHM = 2τ0 · √ln(2) = 23.5 fs. We expect that interference between the
pulse and the delayed pulse will only be observed for delays approximately equal to or
less than �tFWHM. For a wave moving at the speed of light, this gives a characteristic
length l = �tFWHM × c, which in our case is 7 �m.
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Table 2.3. Relationship between spectral
linewidth and coherence time

Spectral intensity line shape Spectral width �ωFWHM

Gaussian 2(2π ln(2))1/2/τc

Lorentzian 2/τc

rectangular 2π/τc

In general, the idea of a characteristic time or length over which interference ef-
fects can be observed may be formalized using a correlation function. The normalized
autocorrelation function is defined as

g(τ ) = 〈 f ∗(t) f (t + τ )〉
〈 f ∗(t) f (t)〉 (2.11)

where f (t) is a complex function of time (in our case it is a wave). The value of |g(τ )|
is a measure of the correlation between f (t) and f (t + τ ), where τ is a time delay. For
classical monochromatic light, f (t) is of the form e−iωt , which gives g(τ ) = e−iωt , so
that |g(τ )| = 1. The coherence time is defined as

τc =
τ=∞∫

τ=−∞
|g(τ )|2dτ (2.12)

So if |g(τ )| = 1, the coherence time τc is infinite and the corresponding coherence
length, which is defined as lc = τc × c, is also infinite. In practice, because the wave
source is not purely monochromatic, there is a coherence length associated with the
nonmonochromaticity. The coherence length gives the spatial scale over which interfer-
ence from the linear superposition of fields can be observed. For lengths much greater
than the coherence length, the phases of different wavelength components can no longer
add to create either a maximum or minimum, and all interference effects are effectively
washed out.

The relationship between the spectral intensity linewidth �ωFWHM and the coherence
time τc for the indicated line shapes is given in Table 2.3.

In the previous few pages we have described some of the properties of light. We were
particularly interested in contributions that allow observation of interference effects,
and to this end the concept of coherence time was discussed. The reason for our interest
is that observation of interference effects between waves is a key attribute of “waviness”.
We will make use of this when we try to link the behavior of particles and waves using
a single unified approach given by quantum mechanics.

So far we have discussed light as a wave. However, there is also experimental evidence
that light can behave as a particle. Historically, experimental evidence for this came in
two stages. First, measurement of the emission spectrum of thermal light suggested that
light is quantized in energy. Second, the photoelectric effect showed that light behaves
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as a particle that can eject an electron from a metal. In the next few pages we discuss
this evidence and its interpretation in terms of quantization of light.

2.1.2 Black-body radiation and evidence for quantization of light

Experimental evidence for the quantization of light into particles called photons initially
came from measurement of the emission spectrum of thermal light (called black-body
radiation). It was the absolute failure of classical physics to describe the emission
spectrum that led to a new interpretation involving the quantization of light.

Application of classical statistical thermodynamics and electromagnetics gives the
Rayleigh–Jeans formula (1900) for electromagnetic field radiative energy density emit-
ted from a black body at absolute temperature T as

S(ω) = kBT

π2c3
ω2 (2.13)

Radiative energy density is the energy per unit volume per unit angular frequency,
and it is measured in J s m−3. Equation (2.13) predicts a physically impossible infinite
radiative energy density as ω → ∞. This divergence in radiative energy density with
decreasing wavelength is called the classical ultraviolet catastrophe. The impossibility
of infinite energy asω → ∞ was indeed a disaster (or catastrophe) for classical physics.
The only way out was to invent a new type of physics, quantum physics.

The black-body radiation spectrum was explained by Planck in 1900. He implicitly
(and later explicitly) assumed emission and absorption of discrete energy quanta of
electromagnetic radiation, so that E = --hω, where ω is the frequency of the electro-
magnetic wave and --h is a constant. This gives a radiative energy density measured in
units of J s m−3:

S(ω) =
--hω3

π2c3

1

ehω/kBT − 1
(2.14)

Equation (2.14) solves the problem posed by the ultraviolet catastrophe and agrees with
the classical Rayleigh–Jeans result in the limit of long wavelength electromagnetic
radiation (ω → 0). In both approaches, one assumes thermal equilibrium between the
radiation and the material bodies (made of atoms). Hence, the radiation has a radiative
energy density distribution that is characteristic of thermal light.

Figure 2.4 shows the energy density of radiation emitted by unit surface area into a
fixed direction from a black body as a function of frequency for three different tem-
peratures, T = 4800 K, T = 5800 K, and T = 6800 K. The Sun has a surface tempe-
rature of about T = 5800 K, and a peak in radiative energy density at visible frequency.
The figure also shows the results of plotting the classical Rayleigh–Jeans formula to
show the ultraviolet catastrophe at high frequencies.

Additional experimental evidence for the quantization of electromagnetic energy in
such a way that E = --hω comes from the photoelectric effect. The photoelectric effect
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Fig. 2.4. Radiative energy density of black-body radiation emitted by unit surface area into a fixed
direction from a black body as a function of frequency (ν = ω/2π ) for three different absolute
temperatures, T = 4800 K, T = 5800 K, and T = 6800 K. The predictions of the classical
Rayleigh–Jeans formula are also plotted to show the ultraviolet catastrophe.

also suggests that light can behave as a particle and have particle–particle collisions
with electrons. Because of its importance, we consider this next.

2.1.3 Photoelectric effect and the photon particle

When light of frequency ω is incident on a metal, electrons can be emitted from the
metal surface if --hω > eφ, where φ is the work function of the metal. +eφ is the
minimum energy for an electron to escape the metal into vacuum. In addition, such
photoelectric-effect experiments show that the number of electrons leaving the surface
depends upon the light intensity.

This evidence suggests that light can behave as a particle. As illustrated in Fig. 2.5(a),
when a particle of light is incident on a metal, the collision can cause an electron particle
to be ejected from the surface. The maximum excess kinetic energy of the electron
leaving the surface is observed in experiments to be Tmax = --hω − eφ, where --h is the

Frequency, ω

slope h

−e

0

Max. kinetic
energy, TmaxIncident light, −e

energy h

Metal

(a) (b)

ω

φ

Fig. 2.5. (a) Light of energy --hω can cause electrons to be emitted from the surface of a metal.
(b) The maximum kinetic energy of emitted electrons is proportional to the frequency of light, ω.
The proportionality constant is --h.
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slope of the curve in Fig. 2.5(b). The maximum kinetic energy of any ejected electron
depends only upon the frequency, ω, of the light particle with which it collided, and
this energy is independent of light intensity. This is different from the classical case,
which predicts that energy is proportional to light intensity (amplitude squared of the
electromagnetic wave). In the particle picture, each light particle has energy --hω, and
light intensity is given by the particle flux.

In 1905 Einstein explained the photoelectric effect by postulating that light behaves
as a particle and that (in agreement with Planck’s work) it is quantized in energy, so that

E = --hω (2.15)

where --h = 1.05492 × 10−34 J s is Planck’s constant. It is important to notice that the
key result, E = --hω, comes directly from experiment. Also notice that for --hω to have
the dimensions of energy, --h must have dimensions of J s. A quantity of this type is
called an action. The units J s can also be expressed as kg m2 s−1.

The quantum of light is called a photon. A photon has zero mass and is an example
of an elemental quantity in quantum mechanics. In quantum mechanics, one talks of
light being quantized into particles called photons.

From classical electrodynamics we know that electromagnetic plane waves carry
momentum of magnitude p = U/c, where U is the electromagnetic energy density.
This means that if a photon has energy E then its momentum is p = E/c. Because
experiment shows that light is quantized in energy so that E = --hω, it seems natural
that momentum should also be quantized. Following this line of thought, we may write
p = --hω/c or, since ω = c2π/λ = ck, photon momentum can be written as

p = --hk (2.16)

This is another key result that will be important as we continue to develop our under-
standing of quantum mechanics. We could have guessed this result from dimensional
analysis. Planck’s constant --h is measured in units of kg m2 s−1, which, if we divide by a
length, gives units of momentum. Since, for a plane wave of wavelength λ, there is only
one natural inverse length scale k = 2π/λ, it is reasonable to suggest that momentum
is just p = --hk.

To get a feel for what this quantization of energy and momentum means in practice,
let’s put in some numbers. Using the relationship E = --hω, it follows that, if we know
the energy of a photon measured in electron volts, then the photon wavelength λ in free
space measured in nanometers is given by the expression

λphoton(nm) = 1240

E(eV)
(2.17)

The energy of λ = 1000 nm wavelength light is E = 1.24 eV. Compared with room
temperature thermal energy kBT = 25 meV, the quantized energy of λ = 1000 nm
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wavelength light is large. Using the relationship p = --hk, the momentum of λ =
1000 nm wavelength light is just p = 6.63 × 10−28 kg m s−1.

Before photons were introduced, we were very successful in describing the properties
of electromagnetic phenomena using Maxwell’s equations. It seems appropriate to ask
under what circumstances one can still use the classical description rather than the
quantum description. From our experience with classical mechanics, we can anticipate
the answer. If there are a large number of incoherent photons associated with a particular
electromagnetic field, we can expect the classical description to give accurate results.
If there are very few photons or there are special conditions involving a coherent
superposition of photons, then a quantum description will be more appropriate.

By way of a practical example, let’s see what this means for wireless communi-
cation. To be specific, consider electromagnetic radiation emitted from the antenna
of a cellular telephone. This particular cell phone operates at a center frequency
f0 = 1 GHz (wavelength λ0 = 0.3 m), and the radiated power is P0 = 300 mW. As-
suming isotropic radiation, one can calculate the electric field, photon flux, and number
of photons per cubic wavelength at a distance R from the antenna. To start with,
we will consider the case R = 1 km. In the absence of absorption, at distance R the
power per unit area is decreased by a factor PR = P0/4πR2, which, when R = 1 km,
gives PR = 0.3/(4π × 106) = 24 nW m−2. The electric field is found from PR = S =
|ER|2/Z0, so ER = (PRZ0)1/2 = (P0Z0/R2)1/2. For the example, we are interested
in R = 1 km, and this gives an electric field ER = (24 × 10−9 × 377)1/2 = 3 × 10−3 V
m−1. Since the photon energy --hω = --h2π f0, we have --hω = 6.6 × 10−25 J for each
photon at frequency f0 = 1 GHz. The number of photons per second per unit area
is narea

photon = PR/--hω. In our case, this gives narea
photon = 3.6 × 1016 m−2 s−1 or, in terms

of the number of photons per cubic wavelength, n
λ3

0
photon = narea

photonλ
3
0/c = 3.3 × 106,

which is a large number. In fact, the number of photons is so large that effects due to
the discrete nature of quantized photons are, for all practical purposes, washed out.

At another extreme, one may figure out the distance at which there is approx-
imately only one photon per cubic wavelength. Under these conditions, one ex-
pects the quantized nature of the photon to play an important role in determining
how information can be transmitted over the wireless channel. Using the expres-
sion n

λ3
0

photon = narea
photonλ

2
0/ f0, which for the case of one photon per cubic wavelength

n
λ3

0
photon = 1 gives a distance of about R1 = (λ2

0P0/4π f0--hω)1/2, the result turns out to
be R1 = 1.8 × 106 m = 1800 km for our example.1 The power at this distance is a very
small number, PR1 = c--hω/λ3

0 = 7.4 × 10−15 W m−2.
It appears to be safe to state that any conventional cell phone will not need a quantum

mechanical description of the electromagnetic fields. Further, one can assume that
Maxwell’s classical equations will be of use for many practical situations that require
calculation of electromagnetic radiation fields.

1 For comparison, the equatorial radius of the Earth is 6400 km.



65 2.1 Introduction

We are left asking what the essential aspects of the quantum theory are and whether
quantum theory can be applied to other situations. Obviously, quantization of energy
and momentum, linear superposition, and interference are important. Starting with
the last two, we may question why photon particles are relatively easy to prepare so
that they show the key quantum effects of linear superposition and interference. The
reason why photons often appear as waves is that they do not scatter strongly among
themselves. This fact makes it rather simple to create photons that have a well-defined
wavelength. Photons with a well-defined wavelength have a long coherence time and
a long coherence length.

2.1.4 The link between quantization of photons and other particles

If photons are particles with energy E = --hω, wavelength λ, and quantized momentum
p = --hkphoton, then there may be other particles that are also characterized by energy,
wavelength, and momentum. The essential link between quantization of photons and
quantization of other particles such as electrons is momentum. In general, interaction
between particles involves exchange of momentum. We already know that both the
photon and the electron have momentum and that they can interact with each other. Such
interaction must involve exchange of momentum. We now make the observation that if
the photon momentum is quantized it is natural to assume that electron momentum is
quantized. The uncomfortable alternative is to have two types of momentum, quantized
momentum for photons and classical momentum for electrons!

Interaction between a photon and an electron causes momentum exchange. In a
photoelectric-effect experiment a photon with quantized momentum --hkphoton and en-
ergy E = --hω collides with an electron in a metal. The photon energy is absorbed, and
the electron is ejected from the metal. The collision process may be described using a
diagram similar to Fig. 2.6.

Experimental verification that electron momentum is quantized in a way similar to
that of photons would require showing that an electron is characterized by a wavelength.
For example, measurement of an electron on the right time or length scale might
exhibit wave-related interference effects similar to those seen for photons. Because

momentum p' = hk'electron

Photon energy h

Scattered electron
Electron energy E,
momentum p = hkelectron

energy E ' = E + h

momentum |hkphoton| = hω/c

ω,

ω

Fig. 2.6. The momentum and energy exchange between a photon and an electron may be described
in a scattering diagram in which time flows from left to right. The electron has initial wave vector
kelectron and scattered wave vector k′

electron. The quantized momentum carried by the photon is kphoton.
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electron kinetic energy is related to momentum and quantized momentum is related to
wavelength, we can estimate the wavelength λe an electron with massm0 and energy E
in free space would have. The answer is λe = 2π --h/

√
2m0E , which for an electron with

E = 1 eV gives a quite small wavelength λe = 1.226 nm. In addition, unlike photons,
electrons can interact quite strongly with themselves via the coulomb potential. If
one wished to perform an interference experiment with electrons, one would need to
prepare a beam of electrons with well-defined energy and then scatter the electrons
with a coulomb potential analogous to the slits used by Young in his experiments with
light. One may conclude that establishing the wave nature of electrons requires some
careful experiments.

2.1.5 Diffraction and interference of electrons

In 1927 Davisson and Germer reported that an almost monoenergetic beam of elec-
trons of kinetic energy E = p2/2m0 incident on a crystal of nickel gave rise to Bragg
scattering peaks for electrons emerging from the metal. As illustrated in Fig. 2.7 the
periodic array of atoms that forms a nickel crystal of lattice constant L = 0.352 nm cre-
ates a periodic coulomb potential from which the electrons scatter in a manner similar
to light scattering from Young’s slits. The observation of intensity maxima for elec-
trons emerging from the crystal showed that electrons behave as waves. The electron
waves exhibited the key features of diffraction, linear superposition, and interference.
The experiment of Davisson and Germer supported the 1924 ideas of de Broglie for
electron “waves” in atoms. An electron of momentum p = --hk (where |k| = 2π/λ) has
wavelength

λe = 2π --h
1

p
= 2π --h

1√
2m0E

(2.18)

Intensity peaks due to
superposition of scattered
electron waves

Fig. 2.7. A monoenergetic beam of electrons scattered from a metal crystal showing intensity
maxima. The periodic array of atoms that forms the metal crystal creates a periodic coulomb
potential from which electrons scatter. The observation of intensity maxima for electrons emerging
from the crystal is evidence that electrons behave as waves.
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Electrons of kinetic energy E = p2/2m0 behave as waves in such a way that

ψ(r, t) ∼ e−i(Et/h−k·r) (2.19)

where p = --hk.

2.1.6 When is a particle a wave?

From our discussion of the photoelectric effect in Section 2.1.3 it is clear that the electron
and photon sometimes appear to behave as particles and sometimes appear to behave
as waves. Other, atomic-scale entities such as neutrons and protons can also appear to
behave either as particles or waves. There appears to be a complementarity in the way
one treats their behavior. Neutrons, protons, and electrons can seem like particles, with a
mass and momentum. However, if one looks on an appropriate length or time scale, they
might exhibit the key characteristics of waves, such as superposition and interference.
Deciding which is an appropriate description depends upon the details of the experiment.
A quick analysis using waves usually, but not always, reveals the best approach. Isolated
systems with little scattering can often exhibit wave-like behavior. This is because the
states of the system are long-lived. It is easier to measure the consequences of wave-like
behavior such as superposition and interference when states are long-lived. The reason
for this is simply that coherent wave effects that last a relatively long time can be less
spectrally broadened and hence easier to interpret. In addition, long-lived states give
the experimenter more time to perform the measurement.

Obviously, when we are considering this apparent wave-particle duality, an important
scale is set by the particle wavelength and its corresponding energy.

Photon energy is quantized as E = --hω, photon mass is zero, photon momentum
is p = --hk, and photon wavelength is λ = 2π/k. The dispersion relationship for the
photon moving at the speed of light in free space is E = --hck or, more simply,
ω = ck.

Electron momentum is quantized as p = --hk, electron mass is m0 = 9.109565 ×
10−31 kg, and electron energy is E = p2/2m0. The dispersion relationship for an iso-
lated electron moving in free space is E = --h2k2/2m0. If we know the energy E of
the electron measured in electron volts, then the electron wavelength λe in free space
measured in units of nanometers is given by the expression

λe(nm) = 1.226√
E(eV)

(2.20)

This means that an electron with a kinetic energy of E = 100 eV would have a wave-
length of λe = 0.1226 nm. To measure this wavelength one needs to scatter electrons
from a structure with a coulomb potential that has a similar characteristic length scale.
A good example is a crystalline metal such as the nickel used in the Davisson and
Germer experiment.
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Similarly, other finite-mass particles, such as the neutron, have a wavelength that is
inversely related to the square root of the particle’s kinetic energy. For the neutron, we
have a free space wavelength

λn(nm) = 0.0286√
E(eV)

(2.21)

Clearly, a neutron of kinetic energy E = 100 eV has a very small wavelength λn =
0.00286 nm, which is quite difficult to observe in an experiment.

Now that we know that experiments have shown that atomic-scale particles can
exhibit wave-like behavior, it is time to investigate some of the consequences. A good
starting point is to consider the properties of atoms since atoms make up solids. However,
before we can hope to make any significant progress in that direction, we need to
develop a theory powerful enough to provide the answers to our questions about atoms.
Historically, Heisenberg introduced such a theory first. While this work, which was
published in 1925, is insightful and interesting, it does not follow our approach in this
book, and so we will not discuss it here. In 1926 Schrödinger introduced the theory
that we will use.

2.2 The Schrödinger wave equation

There is a need to generalize what we have learned thus far about the wave properties
of atomic-scale particles. On the one hand, the formalism needs to incorporate the
wave nature observed in experiments; on the other hand, the approach should, in the
appropriate limit, incorporate the results of classical physics.

We haven’t yet learned how to derive an equation to describe the dynamics of particles
with wavy character, so we will start by making some guesses. Based on our previous
experience with classical mechanics and classical electrodynamics, we will assume that
time, t , is a continuous, smooth parameter and that position, r, is a continuous, smooth
variable. To describe the dynamics of wavy particles, it seems reasonable to assume
that we will wish to find quantities such as particle position r and momentum p as a
function of time.

We know that waviness is associated with the particle, so let’s introduce a wave
function ψ that carries the appropriate information. Young’s slits experiments suggest
that such a wave function, which depends upon position and time, can be formed from
a linear superposition of plane waves. Under these conditions, it seems reasonable to
consider the special case of plane waves without loss of generality. So, now we have

ψ(r, t) = Aei(k·r−ωt) (2.22)

The fact that the wave function ψ(r, t) is a complex quantity presents a bit of a
problem. The wave function cannot be treated like an ordinary vector in classical
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electrodynamics, where one only uses complex quantities as a mathematical conve-
nience and measured quantities are the real component. As will become apparent, in
quantum mechanics the wave function is a true complex quantity, and hence it cannot be
measured directly. We cannot use ψ(r, t) to represent the particle directly, because it is
a complex number, and this is at variance with our everyday experience that quantities
such as particle position are real. The easiest way to guarantee a real value is to mea-
sure its intensity, ψ(r, t)∗ψ(r, t) = |ψ(r, t)|2. As with the Young’s slits experiment,
the intensity gives a measure of the probability of the entity’s presence in different
regions of space. The probability of finding the particle at position r in space at time
t is proportional to |ψ(r, t)|2. Recognizing that the particle is definitely in some part
of space, we can normalize the intensity |ψ(r, t)|2 so that integration over all space is
unity. This defines a probability density for finding the particle at position r in space at
time t . If we wish to find the most likely position of our wavy particle in space, we need
to weight the probability distribution with position r to obtain the average position 〈r〉.
The way to do this is to perform an integral over all space so that

〈r〉 =
∞∫

−∞
ψ∗(r, t)rψ(r, t)d3r =

∞∫
−∞

r|ψ(r, t)|2d3r (2.23)

In quantum mechanics, the average value of position is 〈r〉 and is called the expectation
value of the position operator, r.

To understand and track particle dynamics, we will need to know other quantities such
as the particle momentum, p. In quantum mechanics, particle momentum is quantized
in such a way that p = --hk, so to find the average value of momentum 〈p〉 we need to
perform an integral over all space, so that

〈p〉 =
∞∫

−∞
ψ∗(k, t)--hk ψ(k, t)d3k (2.24)

Of course, Eqn (2.24) requires that we find the function ψ(k, t). This can be done by
taking the Fourier transform of ψ(r, t). By adopting this approach, we will be changing
our description in terms of wave functions ψ(k, t) in k space to wave functions ψ(r, t)
in real space. This change in space is accompanied by a change in the form of the
momentum operator. To show how to find the momentum operator in real space, let’s
restrict ourselves to motion in the x direction only. Under these circumstances,

〈 p̂x〉 =
∞∫

−∞
ψ∗(kx )--hkx ψ(kx )dkx (2.25)

The momentum operator p̂x has a ˆ to remind us that it is a quantum operator. Notice
that for convenience we ignore the time dependence e−iωt of the wave function when
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evaluating ψ∗ψ , since the time-dependent terms cancel. Taking the Fourier transform
of ψ(kx ) to obtain ψ(x) gives

〈 p̂x〉 = 1

2π

∞∫
−∞

dkx

( ∞∫
−∞

dx ′ψ∗(x ′)eikx x
′
)

--hkx

( ∞∫
−∞

dxψ(x)e−ikx x
)

(2.26)

Integrating the far right-hand term in the brackets by parts using
∫
UV ′dx =

UV − ∫
U ′Vdx with U = ψ(x) and V ′ = e−ikx x gives

∞∫
−∞

dxψ(x)e−ikx x =
[

1

−ikx e
−ikx xψ(x)

]∞

−∞
+

∞∫
−∞

dx
1

ikx
· ∂

∂x
ψ(x)e−ikx x (2.27)

The oscillatory function in the square brackets is zero in the limit x → ±∞, so our
expression for 〈 p̂x〉 becomes

〈 p̂x〉 =
--h

2iπ

∞∫
−∞

dkx

∞∫
−∞

dx ′ψ∗(x ′)eikx x
′

∞∫
−∞

dxe−ikx x
∂

∂x
ψ(x) (2.28)

which we may rewrite as

〈 p̂x〉 = −i--h
∞∫

−∞
dx ′

∞∫
−∞

dxψ∗(x ′) · 1

2π

∞∫
−∞

dkxe
−ikx (x−x ′) · ∂

∂x
ψ(x) (2.29)

Recognizing that

1

2π

−∞∫
∞

dkxe
−ikx (x−x ′) = δ(x − x ′)

allows one to write

〈 p̂x〉 = −i--h
∞∫

−∞
dx ′

∞∫
−∞

dxψ∗(x ′)δ(x − x ′)
∂

∂x
ψ(x) (2.30)

so that finally we have

〈 p̂x〉 = −i--h
∞∫

−∞
dxψ∗(x)

∂

∂x
ψ(x) (2.31)

The important conclusion is that if p̂x = --hkx in k space (momentum space) then
the momentum operator in real space is −i--h · ∂/∂x . The momentum operator in real
space is a spatial derivative. The momentum operator and the position operator form
a conjugate pair linked by a Fourier transform. In this sense there is a full symmetry
between the position and momentum operator.
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Table 2.4. Classical variables and quantum
operators for ψ(r, t)

Description Classical theory Quantum theory

Position r r
Potential V (r, t) V (r, t)

Momentum px −i--h ∂

∂x

Energy E i--h
∂

∂t

While position and momentum are important examples of operators in quantum
mechanics, so is potential. If potential is a scalar function of position only, the quantum
mechanical operator for potential is just V (x). However, in the more general case,
potential is also a function of time, so that V (x, t).

Using what we know from classical mechanics and electrodynamics and considering
the ramifications of the Young’s slits experiment and the photoelectric effect forced
us to create the concept of particles with wavy character. These wavy particles have
quantized energy and quantized momentum. Further speculation led us to the concepts
of a particle wave function, position and momentum operators, and expectation values.

Summarizing, in quantum mechanics, every particle can be described by using a
wave function ψ(r, t), where |ψ(r, t)|2 is the probability of finding the particle in the
volume d3r at position r at time t . The wave function and its spatial derivative are
continuous, finite, and single-valued.

The wave function ψ(r, t) is not physical, because it cannot be measured. The quan-
tity that is measured, and hence physical, is |ψ(r, t)|2, or an expectation value of a
quantum operator. Quantum operators are often associated with classical variables.
Table 2.4 lists the classical variables along with the corresponding quantum operators
we have discussed thus far.

Because time is a parameter and hence not an operator, it does not appear in Table 2.4.
Time is not a dynamical variable, and so it does not have an expectation value. It is
merely a parameter that we use to measure system evolution. This fact exposes a
weakness in our theory. In Table 2.4 we have listed the energy operator for the wave
function ψ(x, t) as i--h · ∂/∂t . This cannot strictly be true since time is not an operator.
This inconsistency is a hint that there exists a more complete theory for which time is
not just a parameter. However, for the purposes of this book, we choose to ignore this
issue.

The probability of finding a particle with wave function ψ(r, t) somewhere in space
is unity. Hence, the wave function is normalized in such a way that

∞∫
−∞

ψ∗ψ d3r =
∞∫

−∞
|ψ |2 d3r = 1 (2.32)
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The average or expectation value of an operator Â is

〈Â〉 =
∞∫

−∞
ψ∗Âψ d3r (2.33)

We still need to advance our understanding if we are to describe the dynamics of
our new wavy quantum mechanical particles. What is needed is a dynamical equation.
Again, we will make use of our previous experience with classical mechanics, in which
the total energy function or Hamiltonian of a particle mass m moving in potential V is

H = T + V = p̂2

2m
+ V (2.34)

Now, all we have to do is substitute our expressions for quantum mechanical momen-
tum and potential into the equation. Because we have quantum mechanical operators
which act on wave functions in one dimension, this gives

Hψ(x, t) = −--h2

2m

∂2

∂x2
ψ(x, t) + V (x, t)ψ(x, t) (2.35)

In three dimensions, this equation is written

Hψ(r, t) = −--h2

2m
∇2ψ(r, t) + V (r, t)ψ(r, t) (2.36)

where

∇2ψ(r, t) = ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
(2.37)

Replacing the Hamiltonian with the energy operator, we have

Hψ(r, t) = i--h
∂

∂t
ψ(r, t) (2.38)

where

H =
(−--h2

2m0
∇2 + V (r, t)

)
(2.39)

is the Hamiltonian operator. The equation

(−--h2

2m
∇2 + V (r, t)

)
ψ(r, t) = i--h

∂

∂t
ψ(r, t) (2.40)

is called the Schrödinger equation. This equation can be used to describe the behavior of
quantum mechanical particles in three-dimensional space. The fact that the Schrödinger
equation is only first-order in the time derivative indicates that the wave functionψ(x, t)
evolves from a single initial condition.



73 2.2 The Schrödinger wave equation

We now consider the special case of a closed system in which energy is conserved
and potential energy is time-independent in such a way that V = V (r). For conve-
nience, we return to the one-dimensional case to show how the time and spatial parts
of the wave function may be separated out. This is done by using the method of sep-
aration of variables. If we assume the wave function can be expressed as a product
ψ(x, t) = ψ(x)φ(t), then substitution into the one-dimensional Schrödinger equation
gives

−--h2

2m

∂2

∂x2
ψ(x)φ(t) + V (x)ψ(x)φ(t) = i--h

∂

∂t
ψ(x)φ(t) (2.41)

We then divide both sides by ψ(x)φ(t), so that the left-hand side is a function of x only
and the right-hand side is a function of t only. This is true if both sides are equal to a
constant E . It follows that

Eφ(t) = i--h
∂

∂t
φ(t) (2.42)

is the time-dependent Schrödinger equation,

(−--h2

2m

∂2

∂x2
+ V (x)

)
ψ(x) = Eψ(x) (2.43)

is the time-independent Schrödinger equation in one dimension, and the constant E is
just the energy eigenvalue of the particle described by the wave function.

It is important to remember that these two equations apply when the potential may be
considered independent of time. Of course, the potential is not truly time-independent
in the sense that it must have been created at some time in the past. However, we assume
that the transients associated with this creation have negligible effect on the calculated
results, so that the use of a static potential is an excellent approximation.

The solution to the time-dependent Schrödinger equation is of simple harmonic form

φ(t) = e−iωt (2.44)

where E = --hω. Notice that Schrödinger’s equation requires the exponential form e−iωt .
Alternatives such as e+iωt or trigonometric functions such as sin(ωt) are not allowed.
Unlike oscillatory solutions in classical mechanics, Schrödinger’s equation gives no
choice for the form of the time dependence appearing in the wave function.

The solution to the time-independent Schrödinger equation is ψ(x), which is inde-
pendent of time. The wave function ψ(x, t) = ψ(x)φ(t) is called a stationary state
because the probability density |ψ(x, t)|2 is independent of time. A particle in such a
time-independent state will remain in that state until acted upon by some external entity
that forces it out of that state.
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Wave functions that are solutions to the time-independent Schrödinger equation are
normalized in such a way that

∞∫
−∞

ψ∗
n (r)ψn(r) d3r = 1 (2.45)

Here we have adopted a notation in which the integer n labels the wave function asso-
ciated with a given energy eigenvalue. n is called a quantum number. Wave functions
with different quantum numbers, say n and m, have the mathematical property of
orthogonality, so that

∞∫
−∞

ψ∗
n (r)ψm(r) d3r = 0 (2.46)

These facts may be summarized by stating that the wave functions are orthonormal or

∞∫
−∞

ψ∗
n (r)ψm(r) d3r = δnm (2.47)

where δnm is the Kronecker delta function which has the value of unity when n = m
and otherwise is zero. We will find these properties useful as we find out more about
the predictions of Schrödinger’s equation.

2.2.1 The wave function description of an electron in free space

Perhaps the simplest application of the Schrödinger wave function description of a par-
ticle is that of an electron moving unimpeded through space. To find out what the pre-
dictions of Schrödinger’s equation are, we start by writing down the time-independent
Schrödinger equation for an electron mass m0. The equation is

Hψn(r) = Enψ(r) (2.48)

or

−--h2

2m0
∇2ψn(r) + V (r)ψn(r) = Enψn(r) (2.49)

where for the case of free space we set the potential V (r) = 0. The energy eigenvalues
are En and ψn are eigenstates so that

ψn(r, t) = ψn(r)e−iωt (2.50)

The wave functions and corresponding energy eigenvalues are labeled by the quantum
number n. For an electron in free space, V (r) = 0, and so we have

En = p̂2
n

2m0
=

--h2k2
n

2m0
= --hωn (2.51)
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and

ψn(r, t) = (Aeik·r + Be−ik·r) e−iωn t (2.52)

where the first term in the parentheses is a wave of amplitude A traveling in the k
direction and the second term is a wave of amplitude B traveling in the −k direction.
The term e−iωn t gives the time dependence of the wave function. Selecting a boundary
condition characterized by B = 0, and considering the case of motion in the x direction
only, the wave function becomes

ψn(x, t) = Aeikx xe−iωn t (2.53)

To find the momentum associated with this wave function, we apply the momentum
operator to the wave function:

p̂xψn(x, t) = −i--h ∂

∂x
ψn(x, t) = --hkx · Aeikx xe−iωn t = --hkx · ψn(x, t) (2.54)

Since, in quantum mechanics, the real eigenvalue of an operator can, at least in principle,
be measured, we may safely assume that the x-directed momentum of the particle is
just px = --hkx .

From these results, we conclude that an electron with mass m0 and energy E in
free space has momentum of magnitude p = --hk = √

2m0E and a nonlinear dispersion
relation that gives Ek = --hω = --h2k2/2m0, or

ω(k) =
--hk2

2m0
(2.55)

This dispersion relation is illustrated in Fig. 2.8.
The Schrödinger equation does not allow an electron in free space to have just

any energy and wavelength; rather, the electron is constrained to values given by the
dispersion relation. Just as with the linear chain of harmonic oscillators discussed in
Section 1.2.4, the underlying reason that the dispersion relation exists is intimately
related to a type of symmetry in the structure of the equation of motion.

Wave vector, k

Fr
eq

ue
nc

y,
 ω

(k
)

Parabolic dispersion relation

0

for an electron in free space
ω(k) = hk2/2m0

Fig. 2.8. Dispersion relation for an electron in free space.
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2.2.2 The electron wave packet and dispersion

In the previous example, an electron in free space was described by traveling plane-wave
states that extended over all space but were well-defined points in k space. Obviously,
this is an extreme limit.

Suppose we wish to describe an electron at a particular average position in free
space as a sum of a number of plane-wave eigenstates. We can force the electron to
occupy a finite region of space by forming a wave packet from a continuum of plane-
wave eigenstates. The wave packet consists of the superposition of many eigenstates
that destructively interfere everywhere except in some localized region of space. For
simplicity, we start with a plane wave of momentum --hk0 in the x direction and create
a Gaussian pulse from this plane wave in such a way that at time t = 0

ψ(x, t = 0) = Aeik0xe−(x−x0)2/4�x2
(2.56)

where the amplitude is A = 1/(2π�x2)1/4, the mean position is 〈x〉 = x0, and a measure
of the spatial spread in the wave function is given by the value of �x . The probability
density at time t = 0 is just a normalized Gaussian function of standard deviation �x:

ψ∗(x, t = 0)ψ(x, t = 0) = |ψ(x, t = 0)|2 = A2e−(x−x0)2/2�x2
(2.57)

The Gaussian pulse contains a continuum of momentum components centered about the
original plane-wave momentum --hk0. To find the values of the momentum components
in the Gaussian pulse, we take the Fourier transform of the wave function ψ(x, t = 0).
This gives

ψ(k, t = 0) = 1

A
√
π
e−i(k−k0)xe−(k−k0)2�x2

(2.58)

The corresponding probability density in k space (momentum space) is given by

|ψ(k, t = 0)|2 = 1

A2π
e−(k−k0)22�x2 = 1

A2π
e−(k−k0)2/2�k2

(2.59)

where k0 is the average value of k, and a measure of the spread in the distribution
of k is given by the standard deviation �k = 1/2�x . Because the product �k�x =
1/2 is a constant, this indicates that localizing the Gaussian pulse in real space will
increase the width of the corresponding distribution in k space. Conversely, localizing
the Gaussian pulse in k space increases the width of the pulse in real space. Recognizing
that momentum p = --hk, we have

�p�x =
--h

2
(2.60)

which is an example of the uncertainty principle. Conjugate pairs of operators cannot
be measured to arbitrary accuracy. In this case, it is not possible to simultaneously
know the exact position of a particle and its momentum.
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To track the time evolution of the Gaussian wave packet, we need to follow the
time dependence of each contributing plane wave. Since each plane wave has a time
dependence of the form e−iωk t , we may write for time t > 0

ψ(k, t) = 1

A
√
π
e−i(k−k0)xe−(k−k0)2�x2

e−iωk t (2.61)

The value of ωk is given by the dispersion relation for a freely propagating electron
of mass m0 and energy Ek = --hωk = --h2k2/2m0. The Taylor expansion about k0 for the
dispersion relation is

ω(k) =
--hk2

0

2m0
+

--hk0(k − k0)

m0
+

--h(k − k0)2

2m0
(2.62)

To find the effect of dispersion on the Gaussian pulse as a function of time, we need
to take the Fourier transform of ψ(k, t) to obtain ψ(x, t). The solution is

ψ(x, t) = 1

Aπ
√

2
ei(k0x−ω0t)

∞∫
−∞

ei(k−k0)(x−x0−(hk0t/m0))e−(k−k0)2�x2(1+iht/2m0�x2)dk (2.63)

The prefactor is a plane wave oscillating at frequency ω0 = --hk2
0/2m0 and moving

with momentum --hk0 and a phase velocity vp = --hk0/2m0. In the integral, the term
ei(k−k0)(x−x0−(hk0t/m0)) shows that the center of the wave packet moves a distance --hk0t/m
in time t , indicating a group velocity for the wave packet of vg = --hk0/m0. If one
describes a classical particle by a wave packet then the velocity of the particle is given
by the group velocity of the wave packet.

The term

e−(k−k0)2�x2(1+iht/2m0�x2) (2.64)

in the integral shows that the width of the wave packet increases with time. The width
increases as

�x(t) =
(
�x2 +

--h2t2

4m2
0�x

2

)1/2

(2.65)

The wave packet delocalizes as a function of time because of dispersion. Figure 2.9
illustrates the effect dispersion has, as a function of time, on the propagation of a
Gaussian wave packet. The characteristic time �τ�x for the width of the wave packet to
double is �τ�x = 2m0�x2/--h. We can use this time to illustrate why classical particles
always appear particle-like.

Consider a classical particle of mass one gram (m = 10−3 kg) the position of which
is known to an accuracy of one micron �x = 10−6 m. Modeling this particle as a
Gaussian wave packet gives a characteristic time

�τ�x = 2m�x2

--h
= 2 × 10−3 × (10−6)2

1.05 × 10−34
= 2 × 1019 s
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|ψ|2

Time, t

Fig. 2.9. Illustration of the time evolution of a Gaussian wave packet, showing the effect of
dispersion.

This time is 6 × 1011 years, which is 30–60 times the age of the universe!2 The constant
--h sets an absolute scale that ensures that the macroscopic classical particle remains a
classical particle for all time.

We may now contrast this result with an atomic-scale entity. Consider an electron
of mass m0 = 9.1 × 10−31 kg in a circular orbit of radius aB = 0.529177 × 10−10 m
around a proton. Here we are adopting the semiclassical picture of a hydrogen atom
discussed in Section 2.2.3. The electron orbits in the coulomb potential of the pro-
ton with tangential speed 2.2 × 106 m s−1. For purposes of illustration, we assume
the electron is described by a Gaussian wave packet and that its position is know
to an accuracy of �x = 10−11 m. In this case, one obtains a characteristic time
that is

�τ�x = 2m0�x2

--h
= 2 × 9.1 × 10−31 × (10−11)2

1.05 × 10−34
= 1.7 × 10−18 s

This time is significantly shorter than the time to complete one orbit (τorbit ∼
1.5 × 10−17 s). Long before the electron wave packet can complete one orbit it has
lost all of its particle character and has completely delocalized over the circular tra-
jectory. The concept of a semiclassical wave packet describing a particle-like electron
orbiting the proton of a hydrogen atom just does not make any sense.

From our discussion, it is clear that the effect of dispersion in the wave compo-
nents of a Gaussian pulse is to increase pulse width as a function of time. This has a
profound influence on our ability to assign wave or particle character to an object of
mass, m. For a freely propagating pulse, the momenta of the plane-wave components
do not change, so the product �p�x must be increasing with time from its mini-
mum value at time t = 0. We can now write the uncertainty relation for momentum
and position more accurately as

2 The age of the universe is thought to be in the range 1 × 1010–2 × 1010 years.
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�p�x ≥
--h

2
(2.66)

This relationship controls the precision with which it is possible to simultaneously
know the position of a particle and its momentum.

2.2.3 The hydrogen atom

In addition to the case of an electron moving freely through space, we can also consider
an electron confined by a potential to motion in some local region. A very important
confining potential for an electron comes from the positive charge on protons in the
nucleus of an atom. We consider hydrogen because it consists of just one proton and one
electron. The proton has positive charge and the electron has negative charge. In 1911,
Rutherford showed experimentally that electrons appear to orbit the nucleus of atoms.
With this in mind, we start by considering a single electron moving in the coulomb
potential of the single proton in a hydrogen atom (see Fig. 2.10).

Note the use of a spherical coordinate system. The proton is at the origin and the
electron is at position r. The electron has charge −e = −1.602176 × 10−19 C and
mass m0 = 9.109381 × 10−31 kg. The proton charge is equal and opposite to that of
the electron, and the proton mass is mp = 1.672621 × 10−27 kg. The ratio of proton
mass to electron mass is mp/m0 = 1836.15.

Because the ratio of proton mass to electron mass is more than 1800, it seems rea-
sonable to think of the light electron as orbiting the center-of-mass of the heavy proton.

Classically, we think of the electron in a curved orbit similar to that sketched in
Fig. 2.11. In such an orbit, the electron is accelerating and hence must, according
to classical electrodynamics, radiate electromagnetic waves. As the electron energy
radiates away, the radius of the orbit decreases until the electron collapses into the
proton nucleus. This should all happen within a time of about 0.1 ns. Experiment
shows that the classical theory does not work! Hydrogen is observed to be stable. In
addition, the spectrum of hydrogen is observed to consist of discrete spectral lines –
which, again, is a feature not predicted by classical models.

V(r) = V(r, θ, φ) = −e2/4πε0r

θ

φ

−e

Fig. 2.10. A hydrogen atom consists of an electron and a proton. It is natural to choose a spherical
coordinate system to describe a single electron moving in the coulomb potential of the single proton.
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−e

Velocity, υ

Radius, r

Proton
Electron mass m0

Electron charge −e

Proton mass mp

Proton charge +e

Fig. 2.11. Illustration of a classical circular orbit of an electron mass m0 moving with velocity v

in the coulomb potential of a proton mass mp. This classical view predicts that hydrogen is
unstable.

−e Velocity, υ

Radius, r

Proton

(a)

(b)

−e
Velocity, υ

Electron wavelength, λe

Cut out an integer number of electron wavelengths
and wrap around in a circle as illustrated below

Fig. 2.12. (a) Illustration of electron wave propagating in free space with wavelength λe.
(b) Illustration of an electron wave wrapped around in a circular orbit about a proton. Single-
valuedness of the electron wave function suggests that only an integer number of electron
wavelengths can fit into a circular orbit of radius r .

Having established the wavy nature of the electron when traveling in free space and
when scattered, as shown in the Davisson and Germer experiment, it seems reason-
able to insist that an electron in a circular orbit must also exhibit a wavy character.
Imposing wavy character on the electron moving in a circular orbit around the proton
is interesting, because the geometry forces the wave to fold back upon itself. Since we
anticipate any wave function describing the electron to be single-valued, only integer
wavelengths can be fit into a circular orbit of a given circumference. Figure 2.12 illus-
trates the idea. In Fig. 2.12(a) we imagine cutting out an integer number, n, wavelengths
of an electron wave function moving in free space and, as shown in Fig. 2.12(b), wrap-
ping it around a circular orbit of radius r = nλe/2π , where n is a nonzero positive
integer.
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It is possible to put together an ad-hoc explanation of the properties of the hydrogen
atom using just a few postulates. In 1913, Bohr showed that the spectral properties of
hydrogen may be described quite accurately if one adopts the following rules:
1. Electrons exist in stable circular orbits around the proton.
2. Electrons may make transitions between orbits by emission or absorption of a photon

of energy --hω.
3. The angular momentum of the electron in a given orbit is quantized according to

pθ = n--h, where n is a nonzero positive integer.
Postulate 3 admits the wavy nature of the electron. Stable, long-lived orbits only

exist when an integer number of wavelengths can fit into the classical orbit. This is
analogous to the resonance or long-lived state of a plucked guitar string.

Classically, the atom can radiate electromagnetic waves when there is a net oscil-
lating dipole moment. This involves net oscillatory current flow due to the movement
of charge. However, if one associates a wavelength with the electron, then a resonance
can exist when an integer number of wavelengths can fit into the classical orbit. The
resonance may be thought of as two counter-propagating waves whose associated cur-
rents exactly cancel. In this case, there is no net oscillatory current, and the electron
state is long-lived.

The postulates of Bohr allowed many parameters to be calculated, such as the average
radius of an electron orbit and the energy difference between orbits. The following
examples demonstrate the calculations of such quantities.

2.2.3.1 Calculation of the average radius of an electron orbit in hydrogen

We start by equating the electrostatic force and the centripetal force:

−e2

4πε0r2
= −m0v

2

r
(2.67)

where the left-hand term is the electrostatic force and the right-hand term is the cen-
tripetal force. Because angular momentum is quantized, pθ = n--h = m0vrn , in which
we note that the subscript n on the radius r is due to n taking on integer values.
We may now rewrite our equation for angular momentum as m2

0v
2 = n2--h2/r2

n or
m0v

2/rn = (1/rnm0) · (n2--h2/r2
n ). Substituting into our expression for centripetal force

gives

e2

4πε0r2
n

= 1

rnm0
· n

2--h2

r2
n

(2.68)

and hence

rn = 4πε0n2--h2

m0e2
(2.69)
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is the radius of the n-th orbit. The radius of each orbit is quantized. The spatial scale is
set by the radius for n = 1, which gives

r1 = aB = 4πε0
--h2

m0e2
= 0.529177 × 10−10 m (2.70)

which is called the Bohr radius.

2.2.3.2 Calculation of energy difference between electron orbits in hydrogen

Calculation of the energy difference between orbits is important, since it will allow us
to predict the optical spectra of excited hydrogen atoms.

We start by equating the classical momentum with the quantized momentum of the
n-th electron orbit. Since the electron is assumed to exist in a stable circular orbit
around the proton, as shown schematically in Fig. 2.11, the momentum of the electron
is m0v = n--h/rn , and we have

v = n--h

m0rn
= m0e2

4πε0n2--h2
· n

--h

m0
= e2

4πε0n--h
(2.71)

for the electron velocity of the n-th orbit. The value of v for n = 1 is v = 2.2 × 106

m s−1. We now obtain the kinetic energy of the electron:

T = 1

2
m0v

2 = 1

2
m0

e4

(4πε0)2n2--h2
(2.72)

The potential energy is just the force times the distance between charges, so

V = −e2

4πε0rn
= −m0

e4

(4πε0)2n2--h2
(2.73)

Total energy for the n-th orbit is

En = T + V = −1

2
m0

e4

(4πε0)2n2--h2
(2.74)

We note that T = −V/2. The result is a specific example of the more general “virial
theorem”.

The energy difference between orbits with quantum number n1 and n2 is

En2 − En1 = m0

2

e4

(4πε0)2--h2

(
1

n2
1

− 1

n2
2

)
(2.75)

Clearly, the prefactor in this equation is a natural energy scale for the system. The
numerical value of the prefactor corresponds to n = 1 and is the lowest energy state, E1:

E1 = Ry = −m0

2

e4

(4πε0)2--h2
= −13.6058 eV (2.76)

Ry is called the Rydberg constant.
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n = 1

n = 2

n = 3
n = 4
n = 5
n = 

E = −13.606 eV

E = −3.401 eV

E = −1.512 eV
E = −0.850 eV

E = 0.0 eV

λ1 = 0.122 µm

λ  = 0.091 µm

Lyman

Balmer

λ  = 0.091 µm

λ1 = 0.656 µm

Paschen

E = −0.544 eV

Fig. 2.13. Photon emission spectra of excited hydrogen consist of a discrete number of spectral
lines corresponding to transitions from high energy levels to lower energy levels. Different groups
of characteristic emission line spectra have been given the names of those who first observed
them.

When the electron orbiting the proton of a hydrogen atom is excited to a high energy
state, it can lose energy by emitting a photon of energy --hω. Because the energy levels of
the hydrogen atom are quantized, photon emission spectra of excited hydrogen consist
of a discrete number of spectral lines. In Fig. 2.13, the emission lines correspond to
transitions from high energy levels to lower energy levels.

It is also possible for the reverse process to occur. In this case, photons with the
correct energy can be absorbed, causing an electron to be excited from a low energy
level to a higher energy level. This absorption process could be represented in Fig. 2.13
by changing the direction of the arrows on the vertical lines.

Different groups of energy transitions result in emission of photons of energy, --hω.
The characteristic emission line spectra have been given the names (Lyman, Balmer,
Paschen) of those who first observed them.

The Bohr model of the hydrogen atom is somewhat of a hybrid between classical
and quantum ideas. What is needed is a model that derives directly from quantum
mechanics. From what we know so far, the way to do this is to use the Schrödinger
equation to describe an electron moving in the spherically symmetric coulomb potential
of the proton charge.

In spherical coordinates, the time-independent solutions to the Schrödinger equation
are of the form

ψnlm(r, θ, φ) = Rn(r )�l(θ )�m(φ) (2.77)
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where we have separated out r -, θ -, and φ-dependent parts to the wave equation. The
resulting three equations have wave functions that are quantized with integer quantum
numbers n, l, and m and are separately normalized. For example, it can be shown that
the function �m(φ) must satisfy

∂2

∂φ2
�m(φ) + m2�m(φ) = 0 (2.78)

where m is the quantum number for the wave function

�m(φ) = Aeimφ (2.79)

The normalization constant A can be found from
2π∫

0

�∗
m(φ)�m(φ)dφ = 1 (2.80)

A2

2π∫
0

e−imφeimφdφ = A2

2π∫
0

dφ = 2π A2 = 1 (2.81)

A = 1√
2π

(2.82)

Hence,

�m(φ) = 1√
2π

eimφ (2.83)

It is reasonable to expect that �m(φ) should be single-valued, thereby forcing the
function to repeat itself every 2π . This happens if m is an integer. The other quan-
tum numbers are also integers with a special relationship to one another. We had
ψnlm(r, θ, φ) = Rn(r )�l(θ )�m(φ) with quantum numbers n, l, and m. The quantum
numbers that specify the state of the electron are
n = 1, 2, 3, . . .
l = 0, 1, 2, . . . (n − 1)
m = ±l, . . . ± 2,±1, 0
The principal quantum number n specifies the energy of the Bohr orbit. The quantum

numbers l and m relate to the quantization of orbital angular momentum. The orbital
angular momentum quantum number is l, and the azimuthal quantum number is m.
Because, in this theory, the energy level for given n is independent of quantum numbers
l and m, there is an n2 degeneracy in states of energy En , since

l=n−1∑
l=0

(2l + 1) = n2 (2.84)

(see Exercise 2.9).
In addition to n, l,m, the electron has a spin quantum number s = ±1/2. Electron

spin angular momentum, s--h, is an intrinsic property of the electron that arises due
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to the influence of special relativity on the behavior of the electron. In 1928, Dirac
showed that electron spin emerges as a natural consequence of a relativistic treatment
of the Schrödinger equation. We will not discuss Dirac’s equations because, in practice,
Schrödinger’s nonrelativistic equation is extraordinarily successful in describing most
of the phenomena in which we will be interested. We will, however, remember to
include the intrinsic electron spin quantum number when appropriate.

2.2.4 Periodic table of elements

The hydrogen atom discussed in Section 2.2.3 is only one type of atom. There are over
100 other atoms, each with their own unique characteristics. The incredible richness
of the world we live in can, in part, be thought of as due to the fact that there are
many ways to form different combinations of atoms in the gas, liquid, and solid states.
Chemistry sets out to introduce a methodology that predicts the behavior of different
combinations of atoms. To this end, chemists find it convenient to use a periodic table
in which atoms are grouped according to the similarities in their chemical behavior. For
example, H, Li, Na and other atoms form the column IA elements of the periodic table
because they all have a single electron available for chemical reaction with other atoms.
It is the number of electrons a given atom has available for chemical reaction that is
used by chemists to characterize groups of atoms. The rules of quantum mechanics can
help us to understand why atoms behave the way they do and why chemists can group
atoms according to the number of electrons available for chemical reaction.

2.2.4.1 The Pauli exclusion principle and the properties of atoms

It is an experimental fact that no two electrons in an interacting system can have the
same quantum numbers n, l,m, s. Each electron state is assigned an unique set of values
of n, l,m, s. This is the Pauli exclusion principle, which determines many properties
of atoms in the periodic table, including the formation of electron shells. For a given
n in an atom there are only a finite number of values of l,m, and s that an electron
may have. If there is an electron assigned to each of these values, then a complete
shell is formed. Completed shells occur in the chemically inert noble elements of the
periodic table, which are He, Ne, Ar, Kr, Xe, and Rn. All other atoms apart from H use
one of these atoms as a core and add additional electron states to incomplete subshell
states. Electrons in these incomplete subshells are available for chemical reaction with
other atoms and therefore dominate the chemical activity of the atom. This simple
version of the shell model, summarized by Table 2.5, works quite well. There are,
however, a few complications for high atomic number atoms, which we will not consider
here.

One may now use what we know to figure out the lowest-energy electronic configu-
rations for atoms. This lowest-energy state of an atom is also called the ground state.
We still use quantum numbers n and m, but replace l = 0 with s, l = 1 with p, l = 2
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Table 2.5. Electron shell states

Allowable states Allowable states
n l m 2s in subshell in complete shell

1 0 0 ±1 2 2

2 0 0 ±1 2 8

−1 ±1
1 0 ±1 6

1 ±1

3 0 0 ±1 2 18

−1 ±1
1 0 ±1 6

1 ±1

−2 ±1
−1 ±1

2 0 ±1 10
1 ±1
2 ±1

with d, and l = 3 with f . This naming convention comes from early work that labeled
spectroscopic lines as sharp, principal, diffuse, and fundamental.

For example, the electron configuration for Si(z = 14) is 1s22s22p63s23p2, where
the atomic number z is the number of electrons in the atom. In this notation, 2p6 means
that n = 2, l = 1, and there are six electrons in the 2p shell. Note that there are four
electrons in the outer n = 3 shell and that the n = 1 and n = 2 shells are completely
full. Full shells are chemically inert, and in this case 1s22s22p6 is the Ne ground state,
so we can write the ground-state configuration for Si as [Ne]3s23p2. Silicon consists
of an inert (chemically inactive) neon core and four chemically active electrons in the
n = 3 shell. In a crystal formed from Si atoms, it is the chemically active electrons in
the n = 3 shell that interact to form the chemical bonds that hold the crystal together.
These electrons are called valence electrons, and they occupy valence electron states
of the crystal. Table 2.6 illustrates this classification method.

Technologically important examples of ground-state atomic configurations include:
Al [Ne]3s23p1 group IIIB
Si [Ne]3s23p2 group IVB
P [Ne]3s23p3 group VB
Ga [Ar]3d104s2 p1 group IIIB
Ge [Ar]3d104s2 p2 group IVB
As [Ar]3d104s2 p3 group VB
In [Kr]4d105s2 p1 group IIIB
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Table 2.6. Electron ground-state for first 18 elements of the periodic table

n = 1 n = 2 n = 2 n = 3 n = 3
Atomic l = 0 l = 0 l = 1 l = 0 l = 1 Shorthand
number Element 1s 2s 2p 3s 3p notation

1 H 1 1s1

2 He 2 1s2

3 Li [He] core 1 1s22s1

4 Be 2 electrons 2 1s22s2

5 B 2 1 1s22s22p1

6 C 2 2 1s22s22p2

7 N 2 3 1s22s22p3

8 O 2 4 1s22s22p4

9 F 2 5 1s22s22p5

10 Ne 2 6 1s22s22p6

11 Na [Ne] core 1 [Ne] 3s1

12 Mg 10 electrons 2 [Ne] 3s2

13 Al 2 1 [Ne] 3s23p1

14 Si 2 2 [Ne] 3s23p2

15 P 2 3 [Ne] 3s23p3

16 S 2 4 [Ne] 3s23p4

17 Cl 2 5 [Ne] 3s23p5

18 Ar 2 6 [Ne] 3s23p6

Table 2.7 is the periodic table of elements giving the ground-state configuration for
each element along with the atomic mass.

2.2.5 Crystal structure

Classical mechanics deals with the motion of macroscopic bodies, and classical electro-
dynamics deals with the motion of electromagnetic fields in the limit of large quantum
numbers. As we apply our knowledge of quantum mechanics, we will be interested
in, among other things, the interaction of solid matter with electromagnetic fields. Be-
cause of this, we need to understand something about the properties of solids. First,
we will review how atoms are arranged spatially to form a crystalline solid. Follow-
ing this, we will briefly discuss the properties of a single crystal semiconductor.
Specifically, we will discuss a semiconductor, because of its importance for modern
technology.

Solids are made of atoms. As illustrated in Fig. 2.14, there are different ways of
arranging atoms spatially to form a solid. Atoms in a crystalline solid, for example, are
arranged in a spatially periodic fashion. Because this periodicity extends over many



Ta
bl
e
2.
7.
T
he
pe
ri
od
ic
ta
bl
e
of
el
em
en
ts

IA
N

ob
le

H
yd

ro
ge

n

H 1s
1

1.
00

79

II
A

II
IA

IV
A

V
A

V
IA

V
II

A

H
el

iu
m

H
e

1s
2

4.
00

26

L
it

hi
um

L
i

1s
2 2s

1

6.
94

1

B
er

yl
li

um

B
e

1s
2 2s

2

9.
01

22

B
or

on B
1s

2 2s
2 2p

1

10
.8

1

C
ar

bo
n

C
1s

2 2s
2 2p

2

12
.0

1

N
it

ro
ge

n

N
1s

2 2s
2 2p

3

14
.0

07

O
xy

ge
n

O
1s

2 2s
2 2p

4

15
.9

99

F
lu

or
in

e

F
1s

2 2s
2 2p

5

18
.9

98

N
eo

n

N
e

1s
2 2s

2 2p
6

20
.1

8

S
od

iu
m

N
a

[N
e]

 3
s1

22
.9

89
8

M
ag

ne
si

um

M
g

[N
e]

 3
s2

24
.3

05

II
IB

IV
B

V
B

V
IB

V
II

B
V

II
I

IB
II

B

A
lu

m
in

um

A
l

[N
e]

 3
s2 3p

1

26
.9

82

S
il

ic
on

Si
[N

e]
 3

s2 3p
2

28
.0

86

P
ho

sp
ho

ro
us

P
[N

e]
 3

s2 3p
3

30
.9

74

S
ul

fu
r

S
[N

e]
 3

s2 3p
4

32
.0

64

C
hl

or
in

e

C
l

[N
e]

 3
s2 3p

5

35
.4

53

A
rg

on

A
r

[N
e]

 3
s2 3p

6

39
.9

48

Po
ta

ss
iu

m

K
[A

r]
 4

s1

39
.0

9

C
al

ci
um

C
a

[A
r]

 4
s2

40
.0

8

S
ca

nd
iu

m

Sc
[A

r]
 3

d1 4s
2

44
.9

56

T
it

an
iu

m

T
i

[A
r]

 3
d2 4s

2

47
.9

0

V
an

ad
iu

m

V
[A

r]
 3

d3 4s
2

50
.9

42

C
hr

om
iu

m

C
r

[A
r]

 3
d5 4s

1

52
.0

0

M
an

ga
ne

se

M
n

[A
r]

 3
d5 4s

2

54
.9

38

Ir
on F
e

[A
r]

 3
d6 4s

2

55
.8

5

C
ob

al
t

C
o

[A
r]

 3
d7 4s

2

58
.9

3

N
ic

ke
l

N
i

[A
r]

 3
d8 4s

2

58
.7

1

C
op

pe
r

C
u

[A
r]

 3
d10

4s
1

63
.5

5

Z
in

c

Z
n

[A
r]

 3
d10

4s
2

65
.3

8

G
al

li
um

G
a

[A
r]

 3
d10

4s
2 4p

1

69
.7

2

G
er

m
an

iu
m

G
e

[ A
r]

 3
d10

4s
2 4p

2

72
.5

9

A
rs

en
ic

A
s

[A
r]

 3
d10

4s
2 4p

3

74
.9

22

S
el

en
iu

m

Se
[A

r]
 3

d10
4s

2 4p
4

78
.9

6

B
ro

m
in

e

B
r

[A
r]

 3
d10

4s
2 4p

5

79
.9

1

K
ry

pt
on

K
r

[A
r]

 3
d10

4s
2 4p

6

83
.8

0

R
ub

id
iu

m

R
b

[K
r]

 5
s1

85
.4

7

S
tr

on
ti

um

Sr
[K

r]
 5

s2

87
.6

2

Y
tt

ri
um Y

[K
r]

 4
d1 5s

2

88
.9

1

Z
ir

co
ni

um

Z
r

[K
r]

 4
d2 5s

2

91
.2

2

N
io

bi
um

N
b

[K
r]

 4
d4 5s

1

92
.9

1

M
ol

yb
de

nu
m

M
o

[K
r]

 4
d5 5s

1

95
.9

4

Te
ch

ne
ti

um

T
c

[K
r]

 4
d5 5s

2

98
.9

1

R
ut

he
ni

um

R
u

[K
r]

 4
d7 5s

1

10
1.

07

R
ho

di
um

R
h

[K
r]

 4
d8 5s

1

10
2.

90

Pa
ll

ad
iu

m

P
d

[K
r]

 4
d10

5s
0

10
6.

40

S
il

ve
r

A
g

[K
r]

 4
d10

5s
1

10
7.

87

C
ad

m
iu

m

C
d

[K
r]

 4
d10

5s
2

11
2.

40

In
di

um

In
[K

r]
 4

d10
5s

2 5p
1

11
4.

82

T
in Sn

[K
r]

 4
d10

5s
2 5p

2

11
8.

69

A
nt

im
on

y

Sb
[K

r]
 4

d10
5s

2 5p
3

12
1.

75

T
el

lu
ri

um

T
e

[K
r]

 4
d10

5s
2 5p

4

12
7.

60

Io
di

ne I
[K

r]
 4

d10
5s

2 5p
5

12
6.

90

X
en

on

X
e

[K
r]

 4
d10

5s
2 5p

6

13
1.

30

C
es

iu
m

C
s

[X
e]

 6
s1

13
2.

91

B
ar

iu
m

B
a

[X
e]

 6
s2

13
7.

34

L
an

th
an

um

L
a

[X
e]

 5
d1 6s

2

13
8.

91

H
af

ni
um

H
f

[X
e]

 4
f14

5d
2 6s

2

17
8.

49

Ta
nt

al
um

T
a

[X
e]

 4
f14

5d
3 6s

2

18
0.

95

Tu
ng

st
en

W
[X

e]
 4

f14
5d

4 6s
2

18
3.

85

R
he

ni
um

R
e

[X
e]

 4
f14

5d
5 6s

2

18
6.

2

O
sm

iu
m

O
s

[X
e]

 4
f14

5d
6 6s

2

19
0.

20

Ir
id

iu
m

Ir
[X

e]
 4

f14
5d

7 6s
2

19
2.

22

P
la

ti
nu

m

P
t

[X
e]

 

4f
14

5d
10

6s
0

19
5.

09

G
ol

d

A
u

[X
e]

 

4f
14

5d
10

6s
1

19
6.

97

M
er

cu
ry

H
g

[X
e]

 

4f
14

5d
10

6s
2

20
0.

59

T
ha

ll
iu

m

T
l

[X
e]

 

4f
14

5d
10

6s
2 6p

1

20
4.

37

L
ea

d

P
b

[X
e]

 

4f
14

5d
10

6s
2 6p

2

20
7.

19

B
is

m
ut

h

B
i

[X
e]

 

4f
14

5d
10

6s
2 6p

3

20
8.

98

Po
lo

ni
um

P
o

[X
e]

 

4f
14

5d
10

6s
2 6p

4

21
0

A
st

at
in

e

A
t

[X
e]

 

4f
14

5d
10

6s
2 6p

5

21
0

R
ad

on

R
n

[X
e]

 

4f
14

5d
10

6s
2 6p

6

22
2

Fr
an

ci
um

F
r

[R
n]

 7
s1

22
3

R
ad

iu
m

R
a

[R
n]

 7
s2

22
6

A
ct

in
iu

m

A
c

[R
n]

 6
d1 7s

2

22
7

R
ar

e 
ea

rt
hs

L
an

th
an

id
es

C
er

iu
m

C
e

[X
e]

 4
f2 5d

0 6s
2

14
0.

12

P
ra

se
od

ym
iu

m

P
r

[X
e]

 4
f3 5d

0 6s
2

14
0.

91

N
eo

dy
m

iu
m

N
d

[X
e]

 4
f4 5d

0 6s
2

14
4.

24

P
ro

m
et

hi
um

P
m

[X
e]

 4
f5 5d

0 6s
2

14
5

S
am

ar
iu

m

Sm
[X

e]
 4

f6 5d
0 6s

2

15
0.

35

E
ur

op
iu

m

E
u

[X
e]

 4
f7 5d

0 6s
2

15
1.

96

G
ad

ol
in

iu
m

G
d

[X
e]

 4
f7 5d

1 6s
2

15
7.

25

Te
rb

iu
m

T
b

[X
e]

 4
f9 5d

0 6s
2

15
8.

92

D
ys

pr
os

iu
m

D
y

[X
e]

 4
f10

5d
0 6s

2

16
2.

50

H
ol

m
iu

m

H
o

[X
e]

 4
f11

5d
0 6s

2

16
4.

93

E
rb

iu
m

E
r

[X
e]

 4
f12

5d
0 6s

2

16
7.

26

T
hu

li
um

T
m

[X
e]

 4
f13

5d
0 6s

2

16
8.

93

Y
tt

er
bi

um

Y
b

[X
e]

 4
f14

5d
0 6s

2

17
3.

04

L
ut

et
iu

m

L
u

[X
e]

 4
f14

5d
1 6s

2

17
4.

97

A
ct

in
id

es
T

ho
ri

um

T
h

[R
n]

 6
d2 7s

2

23
2.

04

P
ro

ta
ct

in
iu

m

P
a

[R
n]

 5
f2 6d

1 7s
2

23
1

U
ra

ni
um

U
[R

n]
 5

f3 6d
1 7s

2

23
8.

03

N
ep

tu
ni

um

N
p

[R
n]

 5
f5 6d

0 7s
2

23
7.

05

P
lu

to
ni

um

P
u

[R
n]

 5
f6 6d

0 7s
2

24
4

A
m

er
ic

iu
m

A
m

[R
n]

 5
f7 6d

0 7s
2

24
3

C
ur

iu
m

C
m

[R
n]

 5
f7 6d

1 7s
2

24
7

B
er

ke
li

um

B
k

[R
n]

 5
f7 6d

2 7s
2

24
7

C
al

if
or

ni
um

C
f

[R
n]

 5
f9 6d

1 7s
2

25
1

E
in

st
ei

ni
um

E
s

F
er

m
iu

m

F
m

M
en

de
le

vi
um

M
d

N
ob

el
iu

m

N
o

L
aw

re
nc

iu
m

L
w

 

 



89 2.2 The Schrödinger wave equation

x

y

Crystalline

(e.g., silicon (Si))

Amorphous

(e.g., silicon dioxide (SiO2))

Polycrystalline

(e.g., silicon (Si))

Fig. 2.14. Illustration of different types of solids according to atomic arrangement.

Unit vectors

are a1 and a2

Translation vector R = n1a1 + n2a2

where n1 and n2 are integers 

Ra2

a1

,

Fig. 2.15. A two-dimensional square lattice can be created by translating the unit vectors a1 and a2

through space according to R = n1a1 + n2a2, where n1 and n2 are integers.

periods, crystalline solids are said to be characterized by long-range spatial order.
The positions of atoms that form amorphous solids do not have long-range spatial
order. Polycrystalline solids are made up of small regions of crystalline material with
boundaries that break the spatial periodicity of atom positions.

2.2.5.1 Three types of solids classified according to atomic arrangement

Atoms in a crystalline solid are located in space on a lattice. The unit cell is a lattice
volume, which is representative of the entire lattice and is repeated throughout the
crystal. The smallest unit cell that can be used to form the lattice is called a primitive
cell.

2.2.5.2 Two-dimensional square lattice

Figure 2.15 shows a square lattice of atoms and a square unit cell translated by vector
R. In general, the unit vectors ai do not have to be in the x and y directions.

2.2.5.3 Three-dimensional crystals

Three-dimensional crystals are made up of a periodic array of atoms. For a given lattice
there exists a basic unit cell that can be defined by the three vectors a1, a2, and a3.
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L

L

L

x

y

z

L

L

L

(L/2)31/2

L

L

L

L/21/2L/21/2

Simple cubic

(SC)
Body-centered cubic

(BCC)
Face-centered cubic

(FCC)

Fig. 2.16. Illustration of the indicated three-dimensional cubic unit cells, each of lattice constant L .

Crystal structure is defined as a real-space translation of basic points throughout space
via

R = n1a1 + n2a2 + n3a3 (2.85)

where n1, n2, and n3 are integers. This complete real-space lattice is called the Bravais
lattice. The volume of the basic unit cell (the primitive cell) is

�cell = a1 · (a2 × a3) (2.86)

A good choice for the vectors a1, a2, and a3 that defines the primitive unit cell is due
to Wigner and Seitz. The Wigner–Seitz cell about a lattice reference point is specified
in such a way that any point of the cell is closer to that lattice point than any other.
The Wigner–Seitz cell may be found by bisecting with perpendicular planes all vectors
connecting a reference atom position to all atom positions in the crystal. The smallest
volume enclosed is the Wigner–Seitz cell.

2.2.5.4 Cubic lattices in three dimensions

Possibly the simplest three-dimensional lattice to visualize is one in which the unit cell
is cubic. In Fig. 2.16, L is called the lattice constant.

The simple cubic (SC) unit cell has an atom located on each corner of a cube side L .
The body-centered cubic (BCC) unit cell is the same as the SC but with an additional
atom in the center of the cube. Elements with the BCC crystal structure include Fe
(L = 0.287 nm), Cr (L = 0.288 nm), and W (L = 0.316 nm). The face-centered cu-
bic (FCC) unit cell is the same as the SC but with an additional atom on each face
of the cube. Elements with the FCC crystal structure include Al (L = 0.405 nm), Ni
(L = 0.352 nm), Au (L = 0.408 nm), and Cu (L = 0.361 nm). The diamond crystal
structure shown in Fig. 2.17 consists of two interpenetrating FCC lattices off-set from
each other by L(x̂ + ŷ + ẑ)/4. Elements with the diamond crystal structure include
Si (L = 0.543 nm), Ge (L = 0.566 nm), and C (L = 0.357 nm). GaAs has the zinc
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Fig. 2.17. Illustration of the diamond lattice cubic unit cell with lattice constant L . The tetrahedrally
coordinated nearest-neighbor bonds are shown. GaAs is an example of a III-V compound
semiconductor with the zinc blende crystal structure. This is the same as diamond, except that
instead of one atom type populating the lattice the atom type alternates between Ga and As.

blende crystal structure which is the same as the diamond except that instead of one
atom type populating the lattice the atom type alternates between Ga and As. Group
III-V compound semiconductors with the zinc blende crystal structure include GaAs
(L = 0.565 nm), AlAs (L = 0.566 nm), AlGaAs, InP (L = 0.587 nm), InAs (L =
0.606 nm), InGaAs, and InGaAsP.

2.2.5.5 The reciprocal lattice

Because the properties of crystals are often studied using wave-scattering experiments,
it is important to consider the reciprocal lattice in reciprocal space (also known as wave
vector space or k space). Given the basic unit cell defined by the vectors a1, a2, and a3

in real space, one may construct three fundamental reciprocal vectors, g1, g2, and g3,
in reciprocal space defined by ai · g j = 2πδi j , so that g1 = 2π (a2 × a1)/�cell, g2 =
2π (a3 × a1)/�cell, and g3 = 2π (a1 × a2)/�cell.

Crystal structure may be defined as a reciprocal-space translation of basic points
throughout the space, in which

G = n1g1 + n2g2 + n3g3 (2.87)

where n1, n2, and n3 are integers. The complete space spanned by G is called the
reciprocal lattice. The volume of the reciprocal-space unit cell is

�k = g1 · (g2 × g3) = (2π )3

�cell
(2.88)

TheBrillouin zoneof the reciprocal lattice has the same definition as the Wigner–Seitz
cell in real space. The first Brillouin zone may be found by bisecting with perpendicular
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Fig. 2.18. Illustration of the Brillouin zone for the face-centered cubic lattice with lattice constant
L . Some high-symmetry points are � = (0, 0, 0), X = (2π/L)(1, 0, 0), L = (2π/L)(0.5, 0.5, 0.5),
W = (2π/L)(1, 0.5, 0). The high-symmetry line between the points � and X is labeled �, the line
between the points � and L is �, and the line between � and K is �.

planes all reciprocal-lattice vectors. The smallest volume enclosed is the first Brillouin
zone.

As an example, consider a face-centered cubic lattice in real space. To find the
basic reciprocal lattice vectors for a face-centered cubic lattice we note that the ba-
sic unit cell vectors in real space are a1 = (0, 1, 1)(L/2), a2 = (1, 0, 1)(L/2), and
a3 = (1, 1, 0)(L/2), so that g1 = 2π (−1, 1, 1)/L , g1 = 2π (1,−1, 1)/L , and g1 =
2π (1, 1,−1)/L . Hence, the reciprocal lattice of a face-centered cubic lattice in real
space is a body-centered cubic lattice.

Figure 2.18 is an illustration of the first Brillouin zone for the face-centered cubic
lattice with lattice constant L . As may be seen, in this case the Brillouin zone is a
truncated octahedron.

2.2.6 Electronic properties of bulk semiconductors and heterostructures

The energy states of an electron in a hydrogen atom are quantized and may only take
on discrete values. The same is true for electrons in all atoms. There are discrete energy
levels that an electron in a single atom may have, and all other energy values are not
allowed.

In a single-crystal solid, electrons from the many atoms that make up the crystal
can interact with one another. Under these circumstances, the discrete energy levels of
single-atom electrons disappear, and instead there are finite and continuous ranges or
bands of energy states with contributions from many individual atom electronic states.

The lowest-energy state of a semiconductor crystal exists when electrons occupy
all available valence-band states. In a pure semiconductor crystal there is a range of
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energy states that are not allowed and this is called the energy band gap. A typical
band-gap energy is Eg = 1 eV. The band-gap energy separates valence-band states
from conduction-band states by an energy of at least Eg. In this way the semiconductor
retains a key feature of an atom – there are allowed energy states and disallowed energy
states. The existence of an electron energy band gap in a semiconductor crystal may
only be explained by quantum mechanics.

Single crystals of the group IV element Si or the group III–V binary compound GaAs
are examples of technologically important semiconductors. Semiconductor crystals
have characteristic electronic properties. Electrons are not allowed in the energy band
gap that separates valence-band electronic states in energy from conduction-band states.
A pure crystalline semiconductor is an electrical insulator at low temperature. In the
lowest-energy state, or ground state, of a pure semiconductor, all electron states are
occupied in the valence band and there are no electrons in the conduction band. The
periodic array of atoms that forms the semiconductor crystal creates a periodic coulomb
potential. If an electron is free to move in the material, its motion is influenced by the
presence of the periodic potential. Typically, electrons with energy near the conduction-
band minimum or energy near the valence-band maximum have an electron dispersion
relation that may be characterized by a parabola, ω(k) ∝ k2. The kinetic energy of the
electron in the crystal may therefore be written as Ek = --hω = --h2k2/2m∗, where m∗

is called the effective electron mass. The value of m can be greater or less than the
mass of a “bare” electron moving in free space. Because different semiconductors have
different periodic coulomb potentials, different semiconductors have different values
of effective electron mass. For example, the conduction-band effective electron mass
in GaAs is approximately m∗ = 0.07 m0, and in InAs it is near m∗ = 0.02 m0, where
m0 is the bare electron mass.

As illustrated in Fig. 2.19, at finite temperatures the electrically insulating ground
state of the semiconductor changes, and electrical conduction can take place due to
thermal excitation of a few electrons from the valence band into the conduction band.
Electrons excited into the conduction band and absences of electrons (or holes) in the
valence band are free to move in response to an electric field, and they can thereby
contribute to electrical conduction.

The thermal excitation process involves lattice vibrations that collide via the coulomb
interaction with electrons. In addition, electrons may scatter among themselves. The
various collision processes allow electrons to equilibrate to a temperature T , which is the
same as the temperature of the lattice. Electrons in thermal equilibrium have a statistical
distribution in energy that includes a small finite probability at relatively high energy.

The statistical energy distribution of electrons in thermal equilibrium at absolute
temperature T is typically described by the Fermi–Dirac distribution function

fk(Ek) = 1

e(Ek−µ)/kBT + 1
(2.89)
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Fig. 2.19. Energy–distance diagram of a semiconductor showing valence band, conduction band,
and band-gap energy Eg. Also shown is the excitation of an electron from the valence band into the
conduction band.

In this expression, the chemical potential µ is defined as the energy to place an extra
electron into the system of n electrons. fk(Ek) is the probability of occupancy of a given
electron state of energy Ek, and so it has a value between 0 and 1. The Fermi–Dirac
distribution is driven by the Pauli exclusion principle which states that identical indis-
tinguishable half-odd-integer spin particles cannot occupy the same state. An almost
equivalent statement is that the total n particle eigenfunction must be antisymmetric
(i.e., must change sign) upon the permutation of any two particles.

The distribution function for electrons in the limit of low temperature (T → 0 K)
becomes a step function, with electrons occupying all available states up to energyµT = 0

and no states with energy greater than µT= 0. This low-temperature limit is so important
that it has a special name: it is called the Fermi energy, EF. For electrons with effective
mass m∗, one may write EF = --h2k2

F/2m∗, where kF is called the Fermi wave vector.
At finite temperatures, and in the limit of electron energies that are large compared

with the chemical potential, the distribution function takes on the Boltzmann form
fk(E → ∞) = e−E/kBT . This describes the high-energy tail of an electron distribu-
tion function at finite temperatures. We will now use this fact to gain insight into the
electronic properties of a semiconductor.

As shown schematically in Fig. 2.19, a valence-band electron with enough energy
to surmount the semiconductor band-gap energy can enter the conduction band. The
promotion of an electron from the valence band to the conduction band is an example
of an excitation of the system. In the presence of such excitations, the lattice vibrations
can collide with electrons in such a way that a distribution of electrons exists in the
conduction band and a distribution of holes (absences of electrons) exists in the valence
band. The energy distribution of occupied states is usually described by the Fermi–
Dirac distribution function given by Eqn (2.89), in which energy is measured from
the conduction-band minimum for electrons and from the valence-band maximum for
holes. The concept of electron and hole distribution functions to describe an excited
semiconductor is illustrated in Fig. 2.20.

A typical value of the band-gap energy is Eg = 1 eV. For example, at room tem-
perature pure crystalline silicon has Eg = 1.12 eV. A measure of conduction-band
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Fig. 2.20. Energy–distance diagram of a semiconductor showing valence band, conduction band,
and band-gap energy Eg. The excitation of electrons from the valence band into the conduction
band creates an electron distribution function fe(Ee) in the conduction band and a hole distribution
function fh(Eh) in the valence band. Electron energy Ee is measured from the conduction-band
minimum and hole energy Eh is measured from the valence-band maximum.

electron occupation probability at room-temperature energy kBT = 25 meV can be
obtained using the Boltzmann factor. For Eg = 1 eV, this gives prob ∼ e−Eg/kBT =
e−40 = 4 × 10−18, and the resulting electrical conductivity of such intrinsic material is
not very great. Semiconductor technology makes use of extrinsic methods to increase
electrical conductivity to a carefully controlled and predetermined value.

Electrons that are free to move in the material may be introduced into the conduction
band by adding impurity atoms. This extrinsic process, called substitutional doping,
replaces atoms of the pure semiconductor with atoms the effect of which is to add mobile
charge carriers. In the case of n-type doping, electrons are added to the conduction band.
To maintain overall charge neutrality of the semiconductor, for every negatively charged
electron added to the conduction band there is a positively charged impurity atom
located at a substitutional doping site in the crystal. As the density of mobile charge
carriers is increased, the electrical conductivity of the semiconductor can increase
dramatically.

The exact amount of impurity concentration or doping level in a thin layer of
semiconductor can be precisely controlled using modern crystal growth techniques
such as molecular beam epitaxy (MBE) or metalorganic chemical vapor deposition
(MOCVD). In addition to controlling the impurity concentration profile, the same
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Fig. 2.21. Diagram to illustrate the conduction-band potential energy step �Ec and the
valence-band potential energy step �Ev created at a heterointerface between GaAs and
Al0.3Ga0.7As. The band-gap energy of the two semiconductors is indicated.

epitaxial semiconductor crystal growth techniques may be used to grow thin layers
of different semiconductor materials on top of one another to form a heterostructure.
Excellent single-crystal results may be achieved if the different semiconductors have
the same crystal symmetry and lattice constant. In fact, even nonlattice-matched semi-
conductor crystal layers may be grown, as long as the strained layer is thin and the
lattice mismatch is not too great. The interface between the two different materials is
called a heterointerface. Semiconductor epitaxial layer thickness is controllable to
within a monolayer of atoms, and quite complex structures can be grown with many
heterointerfaces.

Of course, a basic question concerns the relative position of the band gaps or “band
structure line up”. At a heterointerface consisting of material with two different band-
gap energies, part of the band-gap energy difference appears as a potential step in the
conduction band. Figure 2.21 shows a conduction-band potential energy step �Ec and a
valence-band potential energy step �Ev created at a heterointerface between GaAs and
Al0.3Ga0.7As. By carefully designing a multi-layer heterostructure semiconductor it is
possible to create a specific potential as a function of distance in the conduction band.
Typically, atomically abrupt changes are possible at heterointerfaces and more gradual
changes in potential may be achieved either by using changes in doping concentration or
by forming semiconductor alloys the band gap of which changes as a function of position
in the crystal growth direction. Figure 2.22 shows an electron microscope cross-section
image of epitaxially grown single-crystal semiconductor consisting of a sequence of
4-monolayer-thick Ge/Si layers. The periodic layered heterostructure forms a superlat-
tice that can be detected by electron diffraction measurements (Fig. 2.22, inset). The fact
that a monoenergetic electron beam creates a diffraction pattern is, in itself, both a mani-
festation of the wavy nature of electrons and a measure of the quality of the superlattice.

The use of modern crystal growth techniques to define the composition of semi-
conductor layers with atomic precision allows new types of electronic and photonic
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Fig. 2.22. High-resolution transmission electron microscope cross-section image of epitaxially
grown single-crystal layers of Ge(100) interspersed with sequences of 4-monolayer Si and
4-monolayer Ge layers. The inset electron diffraction pattern confirms the high perfection of the
superlattice periodicity. The image is taken in (400) bright field mode. Image courtesy of R. Hull
and J. Bean, University of Virginia.

devices to be designed. As we will discover in the next chapter, when devices make use
of electron motion through potentials that change rapidly on a length scale comparable
to the wavelength associated with the electron, these devices will operate according to
the rules of quantum mechanics.

2.2.6.1 The heterostructure diode

Epitaxial crystal growth techniques can be used to create a heterostructure diode. To
illustrate the current–voltage characteristics of such a diode, we will consider the special
case of a unipolar n-type device formed using the heterointerface between GaAs and
Al0.3Ga0.7As. The GaAs is heavily n-type, and the wider band-gap Al0.3Ga0.7As is more
lightly doped n-type. The lightly doped Al0.3Ga0.7As is depleted due to the presence
of a conduction-band potential energy step �Ec at the heterointerface. As shown in
Fig. 2.23, the depletion region exposes the positive charge of the substitutional dopant
atoms. The potential energy profile eV (x) and the value of the depletion width w in the
Al0.3Ga0.7As region with uniform impurity concentration n may be found by solving
Poisson’s equation ∇ · E = ρ/ε0εr (Eqn (1.37)). Considering an electric field E in one
dimension and noting that the charge density is ρ = en, this gives

∂Ex
∂x

= en

ε0εr
= − ∂2

∂x2
V (x) (2.90)

where V (x) is the potential profile of the conduction-band minimum. The potential
profile is found by integrating Eqn (2.90), and the depletion region width for a built-in
potential energy barrier eV0 = �Ec − eVn is approximately

w =
(

2ε0εr

en
V0

)1/2

(2.91)
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Fig. 2.23. Diagram of the conduction-band minimum of a unipolar n-type GaAs/Al0.3Ga0.7As
heterostructure diode. The GaAs is heavily doped, and the Al0.3Ga0.7As is lightly doped. The
conduction-band offset at the heterointerface is �Ec = 0.25 eV. The depletion region width is w.
The chemical potential µ used to describe the electron distribution under zero-bias equilibrium
conditions is shown.

Under an applied external voltage bias of Vex, Eqn (2.91) becomes

w =
(

2ε0εr

en
(V0 − Vex)

)1/2

(2.92)

In Fig. 2.23 an effective potential energy barrier of approximately eV0 always exists
for electrons trying to move left-to-right from the heavily doped GaAs into the less
doped Al0.3Ga0.7As region. This limits the corresponding current flow to a constant,
I0. However, electrons of energy Ee moving right-to-left from Al0.3Ga0.7As to GaAs
see an effective barrier e(V0 − Vex), which depends upon the applied external voltage
Vex. In a simple thermionic emission model, this contribution to current flow can have
an exponential dependence upon voltage bias because, as illustrated in Fig. 2.23, the
high-energy tail of the Fermi–Dirac distribution function has an exponential Boltzmann
form, e−Ee/kBT . Only those electrons in the undepleted Al0.3Ga0.7As region with enough
energy to surmount the potential barrier can contribute to the right-to-left electron
current. It follows that the voltage dependence of right-to-left electron current is
I0e−eVex/kBT .

The net current flow across the diode is just the sum of right-to-left and left-to-right
current, which gives

I = I0(e−eVex/nidkBT − 1) (2.93)
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Fig. 2.24. (a) Current–voltage characteristics of an ideal diode plotted on a linear scale.
(b) Current–voltage characteristics of an ideal diode. The natural logarithm of normalized current
is plotted on the vertical axis.

In this expression we have included a phenomenological factor nid, called the ideality
factor, which takes into account the fact that there may be deviations from the predictions
of the simple thermionic emission model we have used. A nonideal diode has nid > 1.
Figure 2.24 shows the predicted current–voltage characteristics of a typical diode for
the ideal case when nid = 1.

It is clear from Fig. 2.24 that a diode has a highly nonlinear current–voltage charac-
teristic. The exponential increase in current with positive or forward voltage bias and the
essentially constant current with negative or reverse voltage bias are very efficient mech-
anisms for controlling current flow. It is this characteristic exponential sensitivity of an
output (current) to an input control signal (voltage) that makes the diode such an impor-
tant device and a basic building block for constructing other, more complex, devices.

The concept of exponential sensitivity can often be used as a guide when we are
trying to decide whether a new device or device concept is likely to find practical
applications.

2.3 Example exercises

Exercise 2.1
(a) Given that Planck’s radiative energy density spectrum for thermal light is

S(ω) =
--hω3

π2c3

1

ehω/kBT − 1

show that in the low-frequency (long-wavelength) limit this reduces to the Rayleigh–
Jeans spectrum

S(ω) = kBT

π2c3
ω2
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in which the Planck constant does not appear. This is an example of the correspondence
principle, in which as --h → 0 one obtains the result known from classical mechanics.
Show that the high-frequency (short-wavelength) limit of Planck’s radiative energy
density spectrum reduces to the Wien spectrum

S(ω) =
--hω3

π2c3
e−hω/kBT

(b) Find the energy of peak radiative energy density, --hωpeak, in Planck’s expression
for S(ω), and compare the average value --hωaverage with kBT .

(c) Show that the total radiative energy density for thermal light is

Stotal = π2k4
BT

4

15c3--h3

(d) The Sun has a surface temperature of 5800 K and an average radius 6.96 × 108 m.
Assuming that the mean Sun–Earth distance is 1.50 × 1011 m, what is the peak radiative
power per unit area incident on the upper Earth atmosphere facing the Sun?

Exercise 2.2
Find the normalized autocorrelation function for a rectangular pulse of width t0 in time.
What is the coherence time of this pulse?

Exercise 2.3
Show that the de Broglie wavelength of an electron of kinetic energy E(eV) is

λe = 1.23/
√
E(eV) nm

(a) Calculate the wavelength and momentum associated with an electron of kinetic
energy 1 eV.

(b) Calculate the wavelength and momentum associated with a photon that has the
same energy.

(c) Show that constructive interference for a monochromatic plane wave of wave-
length λ scattering from two planes separated by distance d occurs when nλ =
2d cos(θ ), where θ is the incident angle of the wave measured from the plane nor-
mal and n is an integer. What energy electrons and what energy photons would you
use to observe Bragg scattering peaks when performing electron or photon scattering
measurements on a nickel crystal with lattice constant L = 0.352 nm?

Exercise 2.4
An expression for the energy levels of a hydrogen atom is En = −13.6/n2 eV, where
n is an integer, such as n = 1, 2, 3 . . . .
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(a) Using this expression, draw an energy level diagram for the hydrogen atom.
(b) Derive the expression for the energy (in units of eV) and wavelength (in units of

nm) of emitted light from transitions between energy levels.
(c) Calculate the three longest wavelengths (in units of nm) for transitions terminating

at n = 2.

Exercise 2.5
Write down a Schrödinger equation for (a) a helium atom and (b) a simple one-
dimensional harmonic oscillator with potential V (x) = κx2/2.

Exercise 2.6
In quantum mechanics the quantum of lattice vibration is called a phonon. Consider a
longitudinal polar-optic phonon in GaAs that has energy --hω = 36.3 meV, where --h is
Planck’s constant and ω is the angular frequency of the lattice vibration. Assuming a
particle mass ofm = 72 × mp, wheremp is the mass of a proton, estimate the amplitude
of oscillation of this phonon relative to the nearest-neighbor spacing. The lattice constant
of GaAs is L = 5.65 × 10−10 m.

Exercise 2.7
Consider a helium atom (He) with one electron missing. Estimate the energy difference
between the ground state and the first excited state. Express the answer in units of eV.
The binding energy of the electron in the hydrogen atom is 13.6 eV.

Exercise 2.8
If momentum p̂x = --hkx , then the expectation value of momentum for a particle de-
scribed by wave function ψ(x) can be obtained from

〈 p̂x〉 =
∫

φ∗(kx )--hkxφ(kx )dkx

where φ(kx ) is the Fourier transform of ψ(x), so that

〈 p̂x〉 = 1

2π

∞∫
−∞

dkx

( ∞∫
−∞

dx ′ψ∗(x ′)eikx x
′
)

--hkx

( ∞∫
−∞

dxψ(x)e−ikx x
)

(a) Integrating by parts and using the relation δ(x − x ′) = 1
2

∫∞
−∞ dk eik(x−x ′), show

that

〈 p̂x〉 =
∞∫

−∞
dxψ∗(x)

(
−i--h ∂

∂x

)
ψ(x)

so that one may conclude that if p̂x = --hkx in k space (momentum space) then the
momentum operator in real space is −i--h · ∂/∂x .
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(b) There is a full symmetry between the position operator and the momentum
operator. They form a conjugate pair. In real space, momentum is a differential oper-
ator. Show that in k space position is a differential operator, i--h · ∂/∂px , by evaluating
expectation value

〈x̂〉 =
∞∫

−∞
dxψ∗(x)xψ(x)

in terms of φ(kx ), which is the Fourier transform of ψ(x).
(c) The wave function for a particle in real space is ψ(x, t). Usually, it is assumed that

position x and time t are continuous and smoothly varying. Given that particle energy is
quantized so that E = --hω, show that the energy operator for the wave function ψ(x, t)
is i--h · ∂/∂t .

Exercise 2.9
In Section 2.2.3.2 it was stated that the degeneracy of state ψnlm in a hydrogen atom is
n2. Show that this is so by proving

l=n−1∑
l=0

(2l + 1) = n2

SOLUTIONS

Solution 2.1
(a) Given that Planck’s radiative energy density spectrum for thermal light is

S(ω) =
--hω3

π2c3

1

ehω/kBT − 1

we wish to show that in the low-frequency (long-wavelength) limit this reduces to the
Rayleigh–Jeans spectrum

S(ω) = kBT

π2c3
ω2

in which the Planck constant does not appear.
Expanding the exponential in the expression for radiative energy density

S(ω) =
--hω3

π2c3

1

ehω/kBT − 1

gives

ehω/kBT ∼ 1 + --hω/kBT + · · ·
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in the low-frequency limit, so that

S(ω) ∼
--hω3

π2c3

1

1 + --hω/kBT + · · · − 1
= kBT

π2c3
ω2

which is the Rayleigh–Jeans spectrum. This is an example of the correspondence prin-
ciple in which as --h → 0 one obtains the result known from classical mechanics.

In the high-frequency limit ω → ∞, so that the exponential term in S(ω) becomes
1/(ehω/kBT − 1) → e−hω/kBT . It follows that the high-frequency (short-wavelength)
limit of Planck’s radiative energy density spectrum reduces to the Wien spectrum

S(ω) =
--hω3

π2c3
e−hω/kBT

(b) To find the energy of peak radiative energy density, --hωpeak, in Planck’s expression
for S(ω), we seek

d

dω
S(ω) = d

dω

( --hω3

π2c3

1

ehω/kBT − 1

)
= 0

3--hω2

π2c3

1

ehω/kBT − 1
−

--hω2

π2c3

( --h

kBT

)
ehω/kBT

(ehω/kBT − 1)2
= 0

3--hω2

π2c3
−

--hω3

π2c3

( --h

kBT

)
ehω/kBT

ehω/kBT − 1
= 0

Dividing by --hω2/π2c3, letting x = --hω/kBT , and multiplying by (ex − 1) gives

3(ex − 1) − xex = 0

or

3(1 − e−x ) − x = 0

which we may solve numerically to give x ∼ 2.82, so that --hωpeak ∼ 2.82 × kBT . For
the Sun with T = 5800 K, this gives a peak in S(ω) at energy --hωpeak = 1.41 eV, or,
equivalently, frequency ν = 341 THz (ω = 2.14 × 1015 rad s−1).

To find an average value of z distributed as f (z) we seek 〈 f (z)〉 =∫
z f (z)dz/

∫
f (z)dz. In our case, we will be weighting the integral by the energy

--hω, so

--hωaverage =
∞∫

0

--hωS(ω)dω

/ ∞∫
0

S(ω)dω

--hωaverage =
∞∫

0

--hω
--hω3

π2c3

1

ehω/kBT − 1
dω

/ ∞∫
0

--hω3

π2c3

1

ehω/kBT − 1
dω
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Introducing x = --hω/kBT so that dx = (--h/kBT )dω,ω = x(kBT/--h), and dω =
dx(kBT/--h) gives

--hωaverage =

--h2

π2c3
· kBT

--h
·
(
kBT

--h

)4

·
∞∫

0

x4

ex − 1
dx

--h

π2c3
· kBT

--h
·
(
kBT

--h

)3

·
∞∫

0

x3

ex − 1
dx

= kBT ·

∞∫
0

x4

ex − 1
dx

∞∫
0

x3

ex − 1
dx

To solve the integrals we note that3

∞∫
0

x p−1

erx − q
dx = 1

qr p
�(p)

∞∑
k=1

qk

k p

where �(p) is the gamma function.4

For the numerator, �(p = 5) = 24, and the integral is approximately 25. For the
denominator, we use �(p = 4) = 6, and the integral is approximately 6.5. Hence,
--hωaverage ∼ kBT · (25/6.5) = 3.85kBT . We notice that the average value is greater than
the peak value. This is expected, since the function S(ω) is not symmetric.

(c) To find the total radiative energy density for thermal light Stotal(ω) we need to
integrate the expression for S(ω) over all frequencies. This gives

Stotal =
ω=∞∫
ω=0

S(ω)dω =
ω=∞∫
ω=0

--hω3

π2c3

1

ehω/kBT − 1
dω = k4

BT
4

π2c3--h3

x=∞∫
x=0

x3

ex − 1
dx

where x = --hω/kBT . The integral on the right-hand side is standard:

x=∞∫
x=0

x3

ex − 1
dx = π4

15

giving the final result

Stotal = π2k4
BT

4

15c3--h3

The fact that the total energy density is proportional to T 4 is known as the Stefan–
Boltzmann radiation law.

(d) The Sun has a surface temperature of 5800 K, so the total radiative energy density
of the Sun is

3 I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, San Diego, 1980,
p. 326 (ISBN 0 12 294760 6).

4 M. Abramowitz and I. A. Stegun, Handbook of Mathematical functions, Dover, New York, 1974, pp. 267–273
(ISBN 0 486 612724 4).
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Stotal = π2k4
BT

4

15c3--h3
= π2 × (1.3807 × 10−23)4(5800)4

15 × (3 × 108)3(1.054 × 10−34)3
= 0.857 J m−3

The average radius of the Sun is rSun = 6.96 × 108 m, and the mean Sun–Earth
distance is RSun–Earth = 1.50 × 1011 m. The peak radiative power per unit area incident
on the upper Earth atmosphere facing the Sun is given by

Stotal × c ×
(

rSun

RSun–Earth

)2

= 0.857 × (3 × 108) ×
(

6.96 × 108

1.50 × 1011

)2

= 5.5 kW m−2

To obtain the average radiation per unit area (including the Earth surface not facing the
Sun) we divide by 4 to give 1.4 kW m−2.

Solution 2.2
In this exercise we wish to find the normalized autocorrelation function for a rectangular
pulse of width t0 in time. The pulse is described by the function f (t), and the normalized
autocorrelation function is defined as

g(τ ) = 〈 f ∗(t) f (t + τ )〉
〈 f ∗(t) f (t)〉

where τ is a time delay. In our case, g(τ ) = 0, except for delays in the range −t0 ≤
τ ≤ t0, where

g(τ ) = 1

t0
(t0 + τ ) for −t0 ≤ τ ≤ 0

and

g(τ ) = 1

t0
(t0 − τ ) for 0 < τ ≤ t0

The coherence time is found using

τc =
τ=∞∫

τ=−∞
|g(τ )|2dτ =

τ=0∫
τ=−t0

1

t20
(t0 + τ )2dτ +

τ=t0∫
τ=0

1

t20
(t0 − τ )2dτ = −2

3

[
(t0 − τ )3

t20

]τ=t0

τ=0

τc = 2

3
t0

Solution 2.3
The fact that the de Broglie wavelength of an electron of kinetic energy E(eV) is given
by

λe = 1.23√
E(eV)

nm

follows directly from the electron energy dispersion relation E = --h2k2/2m, where
k = 2π/λe.
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(a) Putting in the numbers for an electron of energy 1 eV gives the wavelength of the
electron as λe (1 eV) = 1.23 nm and the momentum of the electron as

pe(1 eV) = --hk = h

λ
= 5.40 × 10−25 kg m s−1

(b) For comparison, the wavelength and momentum associated with a photon that
has the same energy may also be calculated. We start by noticing that the wavelength
of a photon is λ = c/ f = 2πc/ω. Hence, for a photon of energy E = --hω = 1 eV we
have

2π --hc
--hω

= hc

E
= 6.626 × 10−34 × 2.998 × 108

1.602 × 10−19
= λphoton(1 eV) = 1241 nm

The momentum of the photon is pphoton = --hk, so that

pphoton(1 eV) = h

λ
= 5.34 × 10−28 kg m s−1

The momentum associated with a photon of energy 1 eV is about 1000 times less
than that of an electron of energy 1 eV.

(c) A monochromatic plane wave of wavelength λ scatters from two planes separated
by distance d. As shown in the figure below, constructive interference occurs when the
extra path length nλ = 2d cos(θ ), where θ is the incident angle of the wave measured
from the plane-normal and n is an integer.

θ

d
θ

d cos(θ)

Incident wave Scattered wave

If n = 1 and θ = 0, then λ = 2d. For a nickel crystal with lattice constant L =
0.352 nm one would use a monochromatic beam of electrons with kinetic energy greater
than

Eelectron =
(

1.23

2 × L

)2

= 3.05 eV

and photons with energy greater than

Ephoton = 1241

2 × L
= 1.76 × 103 eV

to observe Bragg scattering peaks from the crystal.
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Solution 2.4
(a) Using the expression for the energy levels of a hydrogen atom En = −13.6/n2 eV,
where n is an integer such as n = 1, 2, 3 . . ., we can draw the energy level diagram
below for the hydrogen atom. The energy levels for n = 1, 2, 3, 4, 5, and ∞ are shown.
The lowest energy (ground state) corresponds to n = 1.

(b) Electrons can make transitions between the energy levels of (a) by emitting light.
The energy transitions are given by

�E = En2 − En1 = −13.6

(
1

n2
2

− 1

n2
1

)
eV

Since λ = 2πc/ω, the wavelength (in units of nm) of emitted light from transitions
between energy levels is given by

λ = ch

�E
= ch

13.6

1
1

n2
1

− 1

n2
2

= 91.163 nm
1

n2
1

− 1

n2
2

n = 1

n = 2

n = 3
n = 4
n = 5
n = 

E = −13.606 eV

E = −3.401 eV

E = −1.512 eV
E = −0.850 eV

E = 0.0 eV

E = −0.544 eV

E
ne

rg
y

(c) We now calculate the three longest wavelengths (in nm) for transitions terminating
at n = 2. We adopt the notation λnm for a transition from the quantum state labeled
by quantum number n to the quantum state labeled by m. From our solution to (b) we
have

λ32 = 656.375 nm

λ42 = 486.204 nm

λ52 = 434.110 nm
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Solution 2.5
(a) Before finding the Schrödinger equation for a helium atom we remind ourselves of
the general form of the Schrödinger equation for a time-independent potential:

−--h2

2m
∇2ψ(r, t) + V (r)ψ(r, t) = Hψ(r, t) = −

--h

i

∂

∂t
ψ(r, t)

The helium atom consists of two protons, two neutrons, and two electrons. For
helium, we have two electrons, each of mass m0, moving in the potential field of a
nucleus that has charge Z = 2e and mass M . The nucleus consists of the two protons
and two neutrons and is assumed to behave as a single-point particle. Therefore, the
Hamiltonian for the relative motion is

H = −
--h2

2µ

(∇2
1 + ∇2

2

)− Ze2

4πε0

(
1

r1
+ 1

r2

)
+ e2

4πε0r12

where µ is the reduced mass, so that µ−1 = m−1
0 + M−1. Electron 1 is a distance r1

from the nucleus, and electron 2 is a distance r2 from the nucleus. The distance between
electron 1 and electron 2 is r12. The first term on the right-hand side is the kinetic energy
of the electrons. For the second term on the right-hand side we assume that each electron
of charge −e sees the coulomb potential due to the nucleus of charge Ze = 2e. The
last term on the right-hand side is from coulomb repulsion between the two electrons.

(b) A particle mass m moving in a simple one-dimensional harmonic oscillator
potential V (x) = κx2/2 has a Hamiltonian that is just the sum of kinetic energy and
potential energy. This gives

H = −
--h2

2m

d2

dx2
+ κx2

2

Solution 2.6
In GaAs, the total energy of the longitudinal polar-optic phonon is --hωLO = 36.3 meV,
where --h is Planck’s constant. Using the classical relationship between oscillator
amplitude and energy developed in section 1.2.2, we have amplitude

A =
(

2--hωLO

m

)1/2 1

ωLO

ωLO = e--hωLO
--h

= 1.60 × 10−19 × 36.3 × 10−3

1.05 × 10−34
= 5.53 × 1013 rad s−1

We now need to estimate the mass of the particle. We note that the relative atomic
mass of Ga is 69.72 and the relative atomic mass of As is 74.92. Arbitrarily assuming
a particle mass m = 72 × mp = 72 × 1.67 × 10−27 = 1.20 × 10−25 kg gives an oscil-
lation amplitude

A =
(

2--hωLO

m

)1/2 1

ωLO
=
(

2 × 1.60 × 10−19 × 36.3 × 10−3

1.20 × 10−25

)1/2 1

5.53 × 1013

A = 5.63 × 10−12 m
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The lattice constant for GaAs, which has the zinc blende crystal structure, is
L = 5.65 × 10−10 m. The spacing between the nearest Ga and As is L

√
3/4 =

2.45 × 10−10 m, so A is approximately 5.63 × 10−2/2.45 = 0.0229 (about 2.3%) of
the nearest neighbor atom spacing or about 1% of the lattice constant L .

Solution 2.7
We wish to estimate the energy difference between the ground state and the first excited
state of a helium atom (He) with one electron missing. This is essentially the same
system as the hydrogen atom except that the nucleus now has a charge 2e.

We start by noting that the helium ion potential for an electron in the n-th orbit is

V = Ze2

4πε0rn
= −m
n2--h2

(
Ze2

4πε0

)2

where Z = 2 and Ry = − 1
2m(e2/4--hπε0)2 = −13.6 eV, so that En = (Z2/n2)Ry.

Hence, for n1 = 1 and n2 = 2 the energy difference is

En2 − En1 = 4Ry

(
1

n2
1

− 1

n2
2

)
= 4Ry

(
1 − 1

4

)
= 3Ry = 40.8 eV

This is four times the value of E2 − E1 for the hydrogen atom. The reason is that the
energy levels are proportional to Z2 for hydrogen-like ions, and in our case Z = 2.

Solution 2.8
(a) Given that linear momentum in the x direction is p̂x = --hkx , the expectation value
of momentum for a particle described by wave function ψ(x) can be obtained from
〈 p̂x〉 = ∫

φ∗(kx )--hkxφ(kx )dkx , where φ(kx ) is the Fourier transform of ψ(x), so that

〈 p̂x〉 = 1

2π

∞∫
−∞

dkx

( ∞∫
−∞

dx ′ψ∗(x ′)eikx x
′
)

--hkx

( ∞∫
−∞

dxψ(x)e−ikx x
)

Solving this integral one may show that if the momentum operator p̂x = --hkx
in k space (momentum space) then the momentum operator in real space is p̂x =
−i--h · ∂/∂x .

Integrating by parts, assuming evaluation at the limits is zero, gives

〈 p̂x〉 =
--h

2iπ

∞∫
−∞

dkx

∞∫
−∞

dx ′ψ∗(x ′)eikx x
′

∞∫
−∞

dxe−ikx x
∂

∂x
ψ(x)

Making use of the fact that a delta function can be expressed as

1

2π

∞∫
−∞

dkxe
−ikx (x−x ′) = δ(x − x ′)
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gives

〈 p̂x〉 = −i--h
∞∫

−∞
dx ′

∞∫
−∞

dxψ∗(x ′)δ(x − x ′)
∂

∂x
ψ(x)

〈 p̂x〉 = −i--h
∞∫

−∞
dxψ∗(x)

∂

∂x
ψ(x)

from which it follows that the linear momentum operator in real space is p̂x = −i--h∂/∂x .
(b) and (c) involve the same idea as expressed in (a).

Solution 2.9
In Section 2.2.3.2 the energy of the hydrogen atom in state ψnlm depends upon the
principal quantum number n but not on the orbital quantum number l or the azimuthal
quantum number m. For a given n, the allowed values of l are l = 0, 1, 2, . . . , (n − 1)
and the allowed values of m are m = ±l, . . . ,±2,±1, 0. Hence, the degeneracy of a
state with principal quantum number n is a sum over n terms:

l=n−1∑
l=0

(2l + 1) = 1 + 3 + 5 + · · · + (2n − 5) + (2n − 3) + (2n − 1)

Reordering the right-hand side as

l=n−1∑
l=0

(2l + 1) = (2n − 1) + (2n − 3) + (2n + 5) + · · · + 5 + 3 + 1

suggests one adds the two equations. Doing this gives

2
l=n−1∑
l=0

(2l + 1) = 2n + 2n + 2n + · · ·

Since there are n terms on the right-hand side, this may be written

2
l=n−1∑
l=0

(2l + 1) = n2n

and so we may conclude that the degeneracy of the state ψnlm is

l=n−1∑
l=0

(2l + 1) = n2



3 Using the Schrödinger wave equation

3.1 Introduction

The purpose of this chapter is to give some practice calculating what happens to an elec-
tron moving in a potential according to Schrödinger’s equation. There is a remarkable
richness in the type and variety of the predictions. In fact, to the uninitiated, specific
solutions to Schrödinger’s equations can be quite unexpected. For this reason alone,
one should be motivated to explore the possibilities. Getting used to the behavior of
waves can take some time, so in this chapter we want to carefully reveal some of the
key features of Schrödinger’s equation that describe the waviness of matter.

Let’s start by considering some basics. According to our approach, a particle of mass
m moves in space as a function of time in the presence of a potential. Time and space are
assumed to be smooth and continuous. The potential can cause the electron motion to
be localized to one region of space, forming what is called a bound state. The alternative
one may consider is an electron able to move anywhere in space, in which case the
electron is in an unbound state (sometimes called a scattering state).

In Section 2.2 we introduced the time-independent Schrödinger equation for a particle
of mass m in a potential V (r), which is a function of space only. The second-order
differential equation is

Hψn(r) =
(
−

--h2

2m
∇2 + V (r)

)
ψn(r) = Enψn(r) (3.1)

where H is the Hamiltonian operator, En are energy eigenvalues, and ψn(r) are
time-independent stationary states, resulting in

ψn(r, t) = ψn(r)e−iωt (3.2)

The eigenfunctionsψn(r) are found for a given potential by using the Schrödinger wave
equation and applying boundary conditions. The fact that application of boundary
conditions to the wave equation gives rise to eigenstates is a direct consequence of
the mathematical structure of the equation. One may think of the wave equation
as containing a vast number of possible solutions. The way to extract results for a
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particular set of circumstances is to specify the potential V (r) and apply boundary
conditions.

When the potential is independent of time, solutions to Schrödinger’s equation are
called stationary states. This is because the probability density for such states |ψ(r, t)|2
is independent of time. It is a little unfortunate that solutions to the time-independent
Schrödinger equation are called stationary states when, in fact, they have a time de-
pendence. If the eigenvalue has energy E = --hω, then the time dependence is of the
form e−iωt . The simplest stationary state is a bound-state standing wave in space with
energy --hω and time dependence e−iωt . This wave function is stationary in the sense
that it does not propagate a flux through space. As an example, a standing wave can be
constructed from two identical but counter-propagating traveling waves of the form
ei(kx−ωt) such that ψn = (ei(kx−ωt) + ei(−kx−ωt))/2 = cos(kx) · e−ωt . In contrast to a
standing wave, a traveling wave of the form ei(kx−ωt) carries a constant flux. Such
functions can also be solutions to the time-independent Schrödinger equation. In this
case the state is only stationary in the weaker sense that there is no time-varying flux
component.

Proper solutions to the Schrödinger wave equation require that ψn(r) and ∇ψn(r) are
continuous everywhere. To give some practice with wave functions, in the next section
we show the effect of not complying with this requirement.

3.1.1 The effect of discontinuity in the wave function and its slope

We want to show that the wave function and the spatial derivative of the wave func-
tion should be continuous. The argument we use relies on the notion that energy is a
constant of the motion and hence a well-behaved quantity. For ease of discussion, we
consider a one-dimensional wave function that is real, and we set the potential energy to
zero.

First, it will be shown that a discontinuity in a wave function would result in a
nonphysical infinite contribution to the expectation value of the particle’s kinetic energy,
T . Figure 3.1 illustrates a discontinuity in a wave function, ψ(x), at position x0.

We start our analysis by approximating ψ(x) as a piece-wise function, and then we
consider the contribution to the expectation value of kinetic energy in the limit x → x0.

Distance, x

ψ(x)

Discontinuity at position x0

Fig. 3.1. Illustration of a discontinuity in wave function ψ(x) at position x = x0. Notice that the
discontinuity is characterized by an infinite slope in the wave function.
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To first order, this gives

�〈T̂ 〉 = lim
η→∞

−--h2

2m

x0+ 1
η∫

x0− 1
η

ψ∗ d
2ψ

dx2
dx (3.3)

where η is a dummy variable. Since we have assumed ψ(x) is real-valued, the complex
conjugate is dropped. Integration by parts gives

�〈T̂ 〉 = lim
η→∞

x0+ 1
η∫

x0− 1
η

ψ

(−--h2

2m

d2ψ

dx2

)
dx

= −--h2

2m
lim
η→∞


ψ

dψ

dx

∣∣∣∣
x0+ 1

η

x0− 1
η

−
x0+ 1

η∫
x0− 1

η

(
dψ

dx

)2

dx


 (3.4)

For ψ(x) discontinuous, the term on the far right of Eqn (3.4) is infinite. To show this
we use the median value theorem for functions f (x) and g(x):

b∫
a

f (x)g(x)dx = f (ξ )

b∫
a

g(x)dx (3.5)

where a < ξ < b with f (x) = g(x) = dψ/dx , so that

x0+ 1
η∫

x0− 1
η

(
dψ

dx

)2

dx = dψ

dx

∣∣∣∣
ξ

x0+ 1
η∫

x0− 1
η

dψ

dx
dx (3.6)

x0+ 1
η∫

x0− 1
η

(
dψ

dx

)2

dx = dψ

dx

∣∣∣∣
ξ

[
ψ

(
x0 + 1

η

)
− ψ

(
x0 − 1

η

)]x0+ 1
η

x0− 1
η

(3.7)

for x0 − 1/η < ξ < x0 + 1/η. The term in the rectangular brackets is a non-zero con-
stant and within the limit η → ∞, ξ → x0, so that

x0+ 1
η∫

x0− 1
η

(
dψ

dx

)2

dx = dψ

dx

∣∣∣∣
x→x0

[
ψ

(
x0 + 1

η

)
− ψ

(
x0 − 1

η

)]x0+ 1
η

x0− 1
η

= ∞ (3.8)

because dψ/dx |x→x0 = ψ ′|x→x0 = ∞.
Hence, we conclude that the contribution to the expectation value of kinetic en-

ergy due to a discontinuity in the wave function is infinite, �〈T̂ 〉 → ∞. The infinite
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Distance, x

ψ(x)

Kink at position x0

Fig. 3.2. Illustration of a kink in wave function ψ(x) at position x = x0. Notice that the kink is
characterized by a discontinuity in the slope of the wave function.

contribution to kinetic energy comes from the infinite slope of the wave function. In
the physical world that we normally experience, there are no infinite contributions to
energy, and so a solution that includes an infinite energy term is called “unphysical”.
To avoid such an unphysical result, one requires that the wave function be continuous.

Assuming that our real wave function is continuous, we now show that a disconti-
nuity in the spatial derivative of the wave function makes a finite contribution to the
expectation value of kinetic energy. A discontinuity in the spatial derivative corre-
sponds to a kink in our wave function. We will show that the kink makes a contribution
�〈T̂ 〉 = −(--h2/2m)ψ�(ψ ′) to the expectation value of the kinetic energy, where ψ is
the wave function at the kink and �(ψ ′) is the difference between the slopes of the
wave function on the two sides of the kink. Figure 3.2 illustrates a wave function, ψ(x),
with a kink at position x0.

From our previous work, the contribution of the kink at position x0 to the expectation
value of the particle’s kinetic energy is

�〈T̂ 〉 = lim
η→∞

x0+ 1
η∫

x0− 1
η

ψ

(−--h2

2m

d2ψ

dx2

)
dx

= −--h2

2m
lim
η→∞


ψ

dψ

dx

∣∣∣∣
x0+ 1

η

x0− 1
η

−
x0+ 1

η∫
x0− 1

η

(
dψ

dx

)2

dx


 (3.9)

Since this time we know that ψ(x) is continuous, dψ/dx has finite values everywhere.
In this case the integral on the far right-hand side of Eqn (3.9) vanishes as η → ∞, and
we are left with

�〈T̂ 〉 = −--h2

2m
lim
η→∞ψ

dψ

dx

∣∣∣∣
x0+ 1

η

x0− 1
η

(3.10)

�〈T̂ 〉 = −--h2

2m

(
ψ

(
x0 + 1

η

)
ψ ′
(
x0 + 1

η

)
− ψ

(
x0 − 1

η

)
ψ ′
(
x0 − 1

η

))
(3.11)

Because ψ(x) is continuous, it follows that

ψ

(
x0 + 1

η

)
= ψ

(
x0 − 1

η

)
= ψ(x0) (3.12)
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If we let

�ψ = ψ ′
(
x0 + 1

η

)
− ψ ′

(
x0 − 1

η

)
(3.13)

then we may write

�〈T̂ 〉 = −
--h2

2m
ψ(x0)�ψ (3.14)

So we may conclude that a kink in a wave function at position x0 makes a contri-
bution to the expectation value of the kinetic energy that is proportional to the value
of the wave function multiplied by the difference in slope of the wave function at x0.
Allowing solutions to the wave function that contain arbitrary kinks would add ar-
bitrary values of kinetic energy. Rather than deal with this possibility explicitly, we
avoid it and other complications by requiring that the spatial derivative of the wave
function describing a particle moving in a well-behaved potential be continuous. This
is a significant constraint on the number and type of wave functions that are allowed.

In the theory we have developed, solutions to Schrödinger’s time-independent equa-
tion (Eqn (3.1)) must be consistent with the potential V (r). If a potential is badly
behaved and possesses a delta-function singularity, then the spatial derivative of the
wave function is discontinuous. A delta-function potential creates a kink in the wave
function. Delta-function potentials often show up in models of physical phenomena in
which the characteristic spatial curvature of the wave function is small compared with
the spatial extent of the potential (see Exercise 3.5).

It follows from our analysis that if ψ and ψ ′ are smooth and continuous, the expecta-
tion value of kinetic energy 〈T̂ 〉 is proportional to the integral over all space of the value
of the wave function multiplied by the wave function curvature. Hence, the energy of a
wave function increases if it has more “wiggles” or, equivalently, more regions of high
curvature (change in slope).

3.2 Wave function normalization and completeness

In the previous section we found some criteria for obtaining solutions to Schrödinger’s
equation. Because |ψn(r)|2d3r is simply the probability of finding a particle in state
ψn(r) in the volume element d3r at position r in space, it is also convenient to require
that eigenstates ψn(r) be normalized. This normalization requirement means that if
the particle is in state ψn(r) then integration of |ψn(r)|2 over all space yields unity.
The probability of finding the particle somewhere in space is unity. In fact, the wave
functions that appear in the time-independent Schrödinger equation

Hψn(r) =
(
−

--h2

2m
∇2 + V (r)

)
ψn(r) = Enψn(r) (3.15)
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are orthogonal and normalized. This orthonormal property can be expressed mathe-
matically as

∞∫
−∞

ψ∗
n (r)ψm(r)d3r = δnm (3.16)

where the Kronecker delta function δnm = 0 unless n = m, in which case δnn = 1. In
addition, the orthogonal wave functions ψn form a complete set, so that any arbitrary
wave function ψ(r) can be expressed as a sum of orthonormal wave functions weighted
by coefficients an in such a way that

ψ(r) =
∑
n

anψn(r) (3.17)

When we normalize the wave function, we give it dimensions. For example, if
a one-dimensional electron wave function confined to a region of space between
x = 0 and x = L is of the form ψn(x) = A sin(nπx/L), then normalization, which
requires

x=L∫
x=0

|ψn(x)|2dx = 1 (3.18)

means that |A| = √
2/L . Thus, a one-dimensional wave function has dimensions of

inverse square-root length. Because we choose to measure length in meters, this means
|A| has units m−1/2. If the wave function exists in an infinite volume, we will need a
different way to normalize it or will have to spend time figuring out how to get around
integrals that diverge. A sensible approach is to compare ratios of wave functions in
such a way that |A|2 can be interpreted as a relative particle density.

3.3 Inversion symmetry in the potential

Continuing our exploration of solutions to Schrödinger’s equation, we now look at the
influence of symmetry. The time-independent Schrödinger equation is of the Hamilton
form(
−

--h2

2m
∇2 + V (r)

)
ψn(r) = Hnψn(r) = Enψn(r) (3.19)

where H = T + V is the Hamiltonian containing the kinetic energy term −(--h2/2m)∇2

and a potential energy term V (r).
There are a number of simplifying concepts that may be used when solving problems

involving the Schrödinger equation. One is the result of symmetry that may exist in



117 3.3 Inversion symmetry in the potential

the mathematical structure of the Hamiltonian. An important example is the situation
in which there is a natural coordinate system such that V (r) has inversion symmetry,
where

V (r) = V (−r) (3.20)

In this case, the symmetry in the potential forces eigenfunctions with different eigen-
values to have either odd or even parity, i.e. ψn(r) = ±ψn(−r), where

ψn(r) = +ψn(−r) (3.21)

has even parity, and

ψn(r) = −ψn(−r) (3.22)

has odd parity. A simple symmetry in the potential energy forces wave functions to also
have a definite symmetry.

Suppose there are a pair of eigenfunctions that have the same eigenvalues and do
not obey this parity requirement – i.e., they are linearly independent. Let ψ(r) be a
function that does not obey the parity requirement. In this situation, ψ(r) and ψ(−r)
are linearly independent, so one can always construct

ψ+(r) = ψ(r) + ψ(−r) (3.23)

with even parity and

ψ−(r) = ψ(r) − ψ(−r) (3.24)

with odd parity; these do obey the required parity.
Summarizing our discussion, we anticipate that inversion symmetry in the potential

will result in wave functions with definite parity. To see what this means in practice, we
now consider an example in which an electron is placed in a potential with inversion
symmetry.

3.3.1 One-dimensional rectangular potential well with infinite barrier energy

A simple potential with inversion symmetry is a one-dimensional, rectangular potential
well with infinite barrier energy of the type illustrated in Fig. 3.3. Before we proceed,
it is necessary to decide on the natural coordinate system for the one-dimensional
potential well. In this particular case, inversion symmetry in the potential such that
V (x) = V (−x) requires that x = 0 is in the middle of the potential well.

We assume a particle of mass m is described using Schrödinger’s time-independent
equation (Eqn (3.15)). We want to solve this differential equation for the wave function
and energy eigenvalues subject to boundary condition ψ = 0 for −L/2 > x > L/2.
Such a boundary condition requires that the wave function vanish at the edge of the
potential well. Wave functions cannot penetrate into a potential barrier of infinite energy.
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Fig. 3.3. Sketch of a one-dimensional rectangular potential well with infinite barrier energy. The
width of the well is L and the potential is such that V (x) = 0 for −L/2 < x < L/2 and V (x) = ∞
for −L/2 > x > L/2.

Between x = −L/2 and x = L/2 the potential is zero and the particle wave function
is of the form given by Eqn (2.52). Ignoring any time dependence, at the x = −L/2
boundary we require

ψ(x)|x=−L/2 = Ae−ikL/2 + BeikL/2 = 0 (3.25)

and at the x = L/2 boundary we require

ψ(x)|x=L/2 = AeikL/2 + Be−ikL/2 = 0 (3.26)

Since there is only one solution for the normalized wave function, ψ(x), the deter-
minant of coefficients for the two equations (Eqn (3.25) and Eqn (3.26)) is zero:∣∣∣∣∣e

−ikL/2 eikL/2

eikL/2 e−ikL/2

∣∣∣∣∣ = e−ikL − eikL = 0 (3.27)

It follows that the boundary conditions require solutions in which sin(knL) = 0,
where knL = nπ and n is a positive nonzero integer. The corresponding wave functions
are sinusoidal and of wavelength

λn = 2L

n
(3.28)

where n is a positive nonzero integer. Expressed in terms of the wave vector we may
write

kn = n
2π

2L
= nπ

L
for n = 1, 2, 3, . . . (3.29)

and the energy eigenvalues are simply En = --h2k2
n/2m. Hence,

En =
--h2

2m
· n

2π2

L2
(3.30)
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The lowest-energy state or ground state of the system has energy eigenvalue

E1 =
--h2π2

2mL2
(3.31)

This is the zero-point energy for the bound state. There is no classical analog for zero-
point energy. Zero-point energy arises from the wavy nature of particles. This forces
the lowest-energy bound state in a confining potential to have a minimum curvature and
hence a minimum energy. One may think of this energy as a measure of how confined
the particle is in real space. In this sense, the wavy nature of particles in quantum
mechanics imposes a relationship between energy and space. A particle confined to any
region of space cannot sustain an average energy below the ground state or zero-point
energy.

Another point worth discussing is the sinusoidal nature of the eigenfunctions in the
region −L/2 > x > L/2. For a given periodicity, sinusoidal wave functions have the
lowest curvature and hence the lowest eigenenergy. In fact, for the given boundary
conditions, they are the only solution possible. We may think of Schrödinger’s second-
order time-independent differential equation and boundary conditions as excluding all
but a few wave function solutions.

Wave functions in our simple one-dimensional potential well are of either even or
odd parity. The energy levels and wave functions for the first three lowest-energy states
are

E1 =
--h2π2

2mL2
= --hω1 ψ1(x) =

(
2

L

)1/2

cos

(
π

L
x

)
(has even parity) (3.32)

E2 = 4E1 = --hω2 ψ2(x) =
(

2

L

)1/2

sin

(
2π

L
x

)
(has odd parity) (3.33)

E3 = 9E1 = --hω3 ψ3(x) =
(

2

L

)1/2

cos

(
3π

L
x

)
(has even parity) (3.34)

For an electron in the conduction band of GaAs in a potential well of width L = 20 nm
and with an effective electron mass m∗ = 0.07 × m0 the energy of the ground state is
E1 = 13.4 meV, corresponding to an angular frequency ω1 = 2 × 1013 rad s−1.

Figure 3.4(a) is a sketch of a one-dimensional, rectangular potential well with infinite
barrier energy showing energy eigenvalues E1, E2, and E3. Figure 3.4(b) sketches the
first three eigenfunctions ψ1, ψ2, and ψ3 for the potential shown in Fig. 3.4(a).

These wave functions appear to be similar to standing waves. To find the time depen-
dence of the eigenfunctions ψ(x, t) = ψ(x)φ(t), we need to solve the time-dependent
Schrödinger equation (Eqn (2.42))

Eφ(t) = i--h
∂

∂t
φ(t) (3.35)
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Fig. 3.4. (a) Sketch of a one-dimensional, rectangular potential well with infinite barrier energy
showing the energy eigenvalues E1, E2, and E3. (b) Sketch of the eigenfunctions ψ1, ψ2, and ψ3 for
the potential shown in (a).

The solutions are of the form φn(t) = e−i Ent/h = e−iωn t , where En = --hωn . Hence, the
solution for a wave function with quantum number n is

ψn(x, t) = ψn(x)e−iωn t (3.36)

which can be written as

ψn(x, t) =
(

2

L

)1/2

sin

(
kn

(
x + 2

L

))
· e−iωn t (3.37)

where kn = nπ/L is the wave vector and ωn = --hk2
n/2m is the angular frequency of

the n-th eigenstate. In Eqn (3.37) we see that the wave function ψn(x, t) consists of a
spatial part and an oscillatory time-dependent part. The frequency of oscillation of the
time-dependent part is given by the energy eigenvalue En = --hω, which we found using
the spatial solution to the time-independent Schrödinger equation. This link between
spatial and temporal solutions can be traced back to the separation of variables in
Schrödinger’s equation (Eqn (2.42) and Eqn (2.43) in Chapter 2). Such separation of
variables is possible when the potential is time independent.

3.4 Numerical solution of the Schrödinger equation

The time-independent Schrödinger equation describing a particle of massm constrained
to motion in a time-independent, one-dimensional potential V (x) is (Eqn (3.1))

Hψn(x) =
(
−

--h2

2m

d2

dx2
+ V (x)

)
ψn(x) = Enψn(x) (3.38)

To solve this equation numerically, one must first discretize the functions. A sensible
first approach samples the wave function and potential at a discrete set of N + 1 equally-
spaced points in such a way that position x j = j × h0, the index j = 0, 1, 2, . . . , N ,
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Fig. 3.5. (a) Sampling the wave function ψ(x) in such a way that the interval between sampling
points is h0. (b) Sampling the potential V (x) at equally-spaced intervals.

and h0 is the interval between adjacent sampling points. Thus, one may define x j+1 ≡
x j + h0. Such sampling of a particle wave function and potential is illustrated in Fig. 3.5.

The region in which we wish to solve the Schrödinger equation is of length L = Nh0.
At each sampling point the wave function has value ψ j = ψ(x j ) and the potential is
Vj = V (x j ). The first derivative of the discretized wave function ψ(x j ) in the finite-
difference approximation is

d

dx
ψ(x j ) = ψ(x j ) − ψ(x j−1)

h0
(3.39)

To find the second derivative of the discretized wave function, we use the three-point
finite-difference approximation, which gives

d2

dx2
ψ(x j ) = ψ(x j−1) − 2ψ(x j ) + ψ(x j+1)

h2
0

(3.40)

Substitution of Eqn (3.40) into Eqn (3.38) results in the matrix equation

Hψ(x j ) = −u jψ(x j−1) + d jψ(x j ) − u j+1ψ(x j+1) = Eψ(x j ) (3.41)

where the Hamiltonian is a symmetric tri-diagonal matrix. The diagonal matrix elements
are

d j =
--h2

mh2
0

+ Vj (3.42)

and the adjacent off-diagonal matrix elements are

u j =
--h2

2mh2
0

(3.43)

As discussed in Section 3.3.1, to find the eigenenergies and eigenstates of a particle of
massm in a one-dimensional, rectangular potential well with infinite barrier energy the
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boundary conditions require ψ0(x0) = ψN (xN ) = 0. Because the boundary conditions
force the wave function to zero at positions x = 0 and x = L , Eqn (3.41) may be written
as

(H − EI)ψ

=




(d1 − E) −u2 0 0 . . .

−u2 (d2 − E) −u3 0 . . .

0 −u3 (d3 − E) −u4 . . .
...

...
...

. . .

−uN−1 (dN−1 − E)







ψ1

ψ2

...

ψN−1




= 0

(3.44)

where H is the Hamiltonian matrix and I the identity matrix. The solutions to this
equation may be found using conventional numerical methods. Programming languages
such as MATLAB also have routines that efficiently diagonalize the tri-diagonal matrix
and solve for the eigenvalues and eigenfunctions.

In the preceding, we have considered the situation in which the particle is confined
to one-dimensional motion in a region of length L . Outside this region, the potential
is infinite and the wave function is zero. Particle motion is localized to one region of
space, so only bound states can exist as solutions to the Schrödinger equation. Because
the particle is not transmitted beyond the boundary positions x = 0 and x = L , this is
a quantum nontransmitting boundary problem.

There are, of course, other situations in which we might be interested in a region
of space of length L through which particles can enter and exit via the boundaries at
position x = 0 and x = L . When there are transmitting boundaries at positions x = 0
and x = L , then ψ0(x0) �= 0 and ψN (xN ) �= 0. In this case there is the possibility of
unbound particle states as well as sources and sinks of particle flux to consider. To deal
with these and other extensions, the quantum transmitting boundary method may be
used.1

3.5 Current flow

If one were to place an electron in the one-dimensional potential well with infinite barrier
energy we have been discussing one might reasonably expect there to be circumstances
under which it is able to move around. Of course, as a particle moves around there must
be a corresponding current flow. To understand this and to quantify any current flow

1 C. S. Lent and D. J. Kirkner, J. Appl. Phys. 67, 6353 (1990), C. L. Fernando and W. R. Frensley, J. Appl. Phys.
76, 2881 (1994), and Z. Shano, W. Porod, C. S. Lent, and D. J. Kirkner, J. Appl. Phys. 78, 2177 (1995).



123 3.5 Current flow

in quantum mechanics, we need to find the appropriate operator. To find the current
density operator, we start by making the reasonable and simplifying assumption that
the electron moves in a potential that is real.

From Maxwell’s equations or by elementary consideration of current conservation,
the change in charge density ρ is related to the divergence of current density J through

∂

∂t
ρ(r, t) = −∇ · J(r, t) (3.45)

This is the classical expression for current continuity. The time dependence of charge
density (the temporal dependence of a scalar field) is related to net current into or out
of a region of space (the spatial dependence of a vector field). For a particle of charge
e, we identify ρ = e|ψ |2, so that

∂ρ

∂t
= e

∂

∂t
(ψ∗ψ) = e

(
ψ∗ ∂ψ

∂t
+ ψ

∂ψ∗

∂t

)
(3.46)

There are two terms in the parentheses on the right-hand side of the equation that we
wish to find. To obtain these terms one makes use of the fact that the time-dependent
Schrödinger equation for a particle of mass m is

i--h
∂

∂t
ψ(r, t) =

(
−

--h2

2m
∇2 + V (r)

)
ψ(r, t) = Hψ(r, t) (3.47)

Multiplying both sides by ψ∗(r, t) gives

i--hψ∗(r, t)
∂

∂t
ψ(r, t) = −

--h2

2m
ψ∗(r, t)∇2ψ(r, t) + ψ∗(r, t)V (r)ψ(r, t) (3.48)

which, when multiplied by e/ i--h, is the first term in our expression for ∂ρ/∂t . To find
the second term one takes the complex conjugate of Eqn (3.47) and multiplies both
sides by ψ(r, t). In effect, we interchange ψ(r, t) and ψ∗(r, t) and change the sign
of i in Eqn (3.48). Now, because V (r) is real, one may write ψ∗(r, t)V (r)ψ(r, t) =
ψ(r, t)V (r)ψ∗(r, t), giving the rate of change of charge density

∂ρ

∂t
= −ψ∗ e--h

i2m
∇2ψ + ψ

e--h

i2m
∇2ψ∗ + eψ∗ψ

i--h
(V (r) − V (r)) (3.49)

∂ρ

∂t
= ie--h

2m
(ψ∗∇2ψ − ψ∇2ψ∗) = ie--h

2m
∇ · (ψ∗∇ψ − ψ∇ψ∗) = −∇ · J (3.50)

Hence, the current density operator for a particle described by state ψ is

J = − ie--h

2m
(ψ∗∇ψ − ψ∇ψ∗) (3.51)

or in one dimension

J = − ie--h

2m

(
ψ∗(x)

∂

∂x
ψ(x) − ψ(x)

∂

∂x
ψ∗(x)

)
(3.52)
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The above derivation of the current density operator requires that the potential be
real. If the potential is complex, it can have the effect of absorbing or creating particles.
This is a useful feature that helps in solving some types of problems. However, we are
not going to consider complex potentials in this book.

A point worth highlighting is the obvious symmetry in the expression for the current
operator. This symmetry has an important influence on the type of wave functions that
can carry current. We explore this in the next two sections.

3.5.1 Current in a rectangular potential well with infinite barrier energy

Initially, we are interested in finding the current carried by the lowest-energy state of
a one-dimensional, rectangular potential with infinite barrier energy and well width L .
In Section 3.3.1 we chose the one-dimensional, rectangular potential well with infinite
barrier energy to be centered at x = 0. Our calculations identified the n = 1 ground-
state energy as

E1 = --hω1 =
--h2π2

2mL2
(3.53)

and the ground-state wave function appeared as a standing wave

ψ1(x, t) =
(

2

L

)1/2

sin

(
π

L

(
x + L

2

))
· e−iω1t (3.54)

To find the current due to this state, we substitute the wave function into the expression
for the current density. The current density in this case is

J = − ie--h

2m

(
ψ∗

1 (x)
∂

∂x
ψ1(x) − ψ1(x)

∂

∂x
ψ∗

1 (x)

)
= 0 (3.55)

from which we conclude that current is not carried by a single standing wave. This
should come as no surprise, since a standing wave can be thought of as a resonance
consisting of two counter-propagating traveling waves whose individual contributions
to current flow exactly cancel each other out.

We are still left with the question of how particles are transported in the one-
dimensional potential well. The answer is that a superposition of electron states is
required. This is easily illustrated by example.

Let us consider current flow in a linear superposition state consisting of a simple
combination of the ground-state wave function, ψ1, and the first excited-state wave
function, ψ2, so that

ψ(x, t) = 1√
2

(ψ1(x, t) + ψ2(x, t)) (3.56)
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Substituting this into our expression for current density gives the result

J = −2eπ --h

mL2

(
cos

(
πx

L

)
cos

(
2πx

L

)
+ 1

2
sin

(
πx

L

)
sin

(
2πx

L

))
sin((ω2 − ω1)t)

(3.57)

This equation shows that current is carried by a superposition of stationary bound states.
The ability of a linear superposition of stationary states to carry current is due to the
symmetry embedded in the form of the current operator. We can also see how current
flows in the one-dimensional potential well as a function of time. The current has an
oscillatory time dependence, which in our particular example is given by the difference
frequency, ω2 − ω1, between the ψ1 and ψ2 eigenstates.

In the next section we consider current flow for an unbound state. In this situation
the symmetry that gave zero current for a stationary bound state is broken, and we may
evaluate the current in unbound, plane-wave traveling states.

3.5.2 Current flow due to a traveling wave

Consider the simple case of a particle with charge e and mass m that is in an unbound
state. The particle is described by a wave function that is a plane wave traveling from
left to right of the form ψ(x) = ei(kx−ωt). To calculate the current flow associated with
this state, we substitute into our expression for the current operator

Jx = − ie--h

2m

(
ψ∗(x)

∂

∂x
ψ(x) − ψ(x)

∂

∂x
ψ∗(x)

)
(3.58)

Jx = − ie--h

2m
(e−ikx · ik · eikx + eikx · ik · e−ikx ) = − ie--h

2m
· 2ik = e--hk

m
(3.59)

Since momentum in the x direction is px = mvx = --hk, the current associated with
the traveling wave may be written in the familiar form Jx = evx , where e is the particle
charge and vx is the electron velocity.

If we were to construct an electron wave function consisting of a plane wave traveling
from left to right and an identical but counter-propagating wave, then the individual
contributions to current flow exactly cancel and there is zero net current flow. The
symmetry that gives rise to zero net current flow for a superposition of two identical but
counter-propagating traveling waves is the same symmetry that creates the standing-
wave state or stationary state previously discussed in Section 3.1 and Section 3.5.1.

3.6 Degeneracy as a consequence of symmetry

Continuing our theme of symmetry, we investigate the effect symmetry in a potential
has on the number of eigenstates with the same energy. The number of states with the
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same energy eigenvalue is called the degeneracy of the state. Degeneracy is most often
a direct consequence of symmetry in the potential. In situations in which this is not
the case, the degeneracy is said to be accidental. Possibly the best way to learn about
degeneracy is by considering an example, so we will do this next.

3.6.1 Bound states in three dimensions and degeneracy of eigenvalues

To illustrate how degeneracy arises from symmetry in a potential we consider the case
of a box-shaped potential of side L the interior of which has zero potential energy and
the exterior of which has infinite potential energy.

For a potential box in three dimensions with infinite barrier energy we have

V (x, y, z) = 0 for − L

2
< x, y, z <

L

2
(3.60)

V (x, y, z) = ∞ for − L

2
> x, y, z >

L

2
(3.61)

Using the results given in Section 3.3.1 for the one-dimensional, rectangular poten-
tial well with infinite barrier energy, the energy eigenvalues for the three-dimensional
potential well are

Enx ,ny ,nz =
--h2k2

2m
=

--h2

2m

(
k2
x + k2

y + k2
z

)
(3.62)

where k2 = k2
x + k2

y + k2
z . For the box-shaped potential, it follows that

kx = nxπ

L
ky = nyπ

L
kz = nzπ

L
(3.63)

where nx , ny and nz are nonzero positive integers. The corresponding energy eigenval-
ues are

Enx ,ny ,nz =
--h2π2

2mL2

(
n2
x + n2

y + n2
z

) = n2E1,1,1 (3.64)

where the lowest energy value is

E1,1,1 = 3--h2π2

2mL2
(3.65)

The energy eigenvalues are labeled by three nonzero positive-integer quantum num-
bers that correspond to orthogonal x, y, and z eigenfunctions. Because nx , ny , and
nz label independent contributions to the total energy eigenvalue, many of these en-
ergy eigenvalues are degenerate in energy. Such degeneracy exists because different
combinations of quantum numbers result in the same value of energy. For example,
Enx=1,ny=2,nz=3 can be rearranged in a number of ways:

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)
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All six states have the same energy 14E1,1,1, and so the state is said to be six-fold
degenerate.

The lowest-energy state is the ground state, which has quantum numbers nx = ny =
nz = 1 and energy E1,1,1. Only one combination of quantum numbers has this energy,
and thus the state is nondegenerate.

The conclusion is that degeneracy of energy eigenvalues is another consequence of
symmetry in the potential. If the potential is changed in such a way that the symmetry is
broken, a new set of energy eigenvalues is created that will have a different degeneracy.
Usually, reducing or breaking the level of symmetry will reduce the degeneracy.

3.7 Symmetric finite-barrier potential

So far we have discussed states bound by a rectangular potential well with infinite
barrier energy. Bound states can also exist in a potential well with finite barrier energy.
To find out more about this situation, we next consider the case of a particle of massm in
the presence of a simple symmetric, one-dimensional, rectangular potential well of total
width 2 × L . The potential has finite barrier energy so that V (x) = 0 for −L < x < L
and V (x) = V0 elsewhere. The value of V0 is a finite, positive constant.

We proceed in the usual way by first sketching the potential and writing down the
Schrödinger equation we intend to solve. It is clear from Fig. 3.6 that any bound state
in the system must have energy E < V0. A particle with energy E > V0 will belong to
the class of continuum unbound states. The binding energy of a particular bound state
is the minimum energy required to promote the particle from that bound state to an
unbound state. At present, we are only concerned with the properties of bound states
of the system.

The time-independent Schrödinger equation for one dimension is(
−

--h2

2m

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x) (3.66)
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energy E < V0

−L 0 L Distance, x

Continuum states for
energy E > V0

Fig. 3.6. Sketch of a simple symmetric one-dimensional, rectangular potential well of width 2L .
The potential is such that V (x) = 0 for −L < x < L and V (x) = V0 elsewhere. The value of V0 is
a finite, positive constant.
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By symmetry we have ψ(x) = ±ψ(−x), and for |x | < L the wave function either has
even parity

ψ(x) = A cos(kx) (3.67)

or odd parity

ψ(x) = B sin(kx) (3.68)

The magnitude of the wave vector in Eqn (3.67) and Eqn (3.68) is

k =
√

2mE
--h2

(3.69)

For |x | > L the wave function is

ψ(x) = Ce−κ|x | (3.70)

and

κ =
√

2m(V0 − E)
--h2

(3.71)

for E < V0.
The alternative solution for Eqn (3.70), ψ = Ceκx , is not allowed because the ex-

pectation value of potential energy 〈V 〉 would have an infinite negative contribution.
In addition, our probabilistic interpretation of the bound-state wave function squared
requires

∫
ψ∗(x)ψ(x)dx to be finite. Technically, one saysψ must be square-integrable.

From Eqn (3.69) k2 = 2mE/--h2 and from Eqn (3.71) κ2 = 2m(V0 − E)/--h2, and
introducing L2K 2

0 , we have

L2K 2
0 = L2k2 + L2κ2 = (2mE + 2mV0 − 2mE)

--h2
L2 = 2mV0L2

--h2
(3.72)

It is clear that this condition relating k and κ must be satisfied when we find solutions
for ψ(x). This is an equation for a circle in the (Lκ, Lk) plane of radius:

LK0 =
√

2mV0L2

--h2
(3.73)

Since V (x) and d2ψ(x)/dx2 are finite everywhere, ψ(x) and dψ(x)/dx must be
continuous everywhere, including at x = ±L . Hence, the boundary conditions

ψ(x)|x=L+δ = ψ(x)|x=L−δ (3.74)

and

d

dx
ψ(x)

∣∣∣∣
x=L+δ

= d

dx
ψ(x)

∣∣∣∣
x=L−δ

(3.75)

lead directly to solutions of ψ(x) at x = L
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Even-parity solutions must satisfy

A cos(kL) = Ce−κL (3.76)

from Eqn (3.74), and

−k A sin(kL) = −κCe−κL (3.77)

from Eqn (3.75), so that even-parity solutions require

kL · tan(kL) = κL (3.78)

and odd-parity solutions require

kL · cot(kL) = −κL (3.79)

Solutions that simultaneously satisfy the equation for a circle of radius LK0 =√
2mV0L2/--h in the (κL , kL) plane and Eqn (3.78) or Eqn (3.79) can be found by

graphical means. One plots the equations, and solutions exist wherever the curves
intersect.

3.7.1 Calculation of bound states in a symmetric, finite-barrier potential

In this section we first consider the case of a potential well similar to that sketched in
Fig. 3.6 for which LK0 = 1. Solutions occur when the equation for a circle of radius
LK0 and Eqn (3.78) or Eqn (3.79) are simultaneously satisfied in the (κL , kL) plane.

When LK0 = 1, then V0L2 = --h2/2m, and, as shown in Fig. 3.7(a), there is one
solution with even parity.
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Fig. 3.7. Illustration of the graphical method to find the solution for a simple symmetric,
one-dimensional, rectangular potential well with finite barrier energy such that V (x) = 0 for
−L < x < L and V (x) = V0 elsewhere. In (a) the value of V0 results in 2mV0L2/--h2 = 1, and there
is one solution. In (b) the value of V0 results in 2mV0L2/--h2 = 25, and there are four solutions.
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E2 = 0.144 eV
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V0 = 0.5 eV
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V0 = 0.5 eV
m* = 0.07 × m0

E4 = 0.408 eV
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V0 = 0.5 eV
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Fig. 3.8. Sketch of the eigenfunctions ψ1, ψ2, ψ3, and ψ4 for a simple symmetric one-dimensional
rectangular potential well of total width 2 × L with finite barrier energy such that V (x) = 0 for
−L < x < L and V (x) = V0 elsewhere. Effective electron mass is m∗ = 0.07 × m0, barrier energy
is V0 = 0.5 eV, and total well width is 2 × L = 10 nm. The four bound energy eigenvalues
measured from the bottom of the potential well are E1 = 0.0367 eV, E2 = 0.144 eV,
E3 = 0.314 eV, and E4 = 0.408 eV. Because E4 is close in value to V0 the wave function ψ4 is not
well confined by the potential and so extends well into the barrier region.

When Lk0 = 5 there are four solutions, two with even parity and two with odd parity.
See Fig. 3.7(b). In this case, V0L2 = 25--h2/2m. It is clear from Fig. 3.7(b) that there
will always be at least four solutions if 2mV0L2/--h2 > (3π/2)2 or 2mV0L2/--h2 > 22.2.

To illustrate the wave functions for the bound states of an electron in a finite potential
well, they are sketched in Fig. 3.8 for the case in which 2m∗V0L2/--h2 = 23.0. Here the
effective electron mass is taken to bem∗ = 0.07 × m0, which is the value for an electron
in the conduction band of the semiconductor GaAs. In the figure, the boundaries of the
potential at position x = ±L are indicated to help identify the penetration of the wave
function into the barrier region.

We may now draw some conclusions concerning the nature of solutions one ob-
tains for a particle in our simple rectangular potential well with finite-barrier energy.
First, note that wave functions have alternating even and odd parity. This is a direct
consequence of the symmetry of the potential. Second, there is always at least one
lowest-energy state solution that is always of even parity. This result is obvious from
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our graphical solution, but again it is a consequence of the potential’s symmetry. Third,
for a finite potential well, the wave function always extends into the barrier region. This
is particularly apparent for the n = 4 state shown in Fig. 3.8. In quantum mechanics,
when a wave function penetrates a potential barrier one talks about tunneling into the
barrier. For the case of the simple potential we have been considering, tunneling always
has the effect of reducing the energy of the eigenvalue En compared with the infinite
potential well case. This reduction in energy is easy to understand if we recognize that
tunneling decreases the curvature of the wave function and hence the energy associated
with it.

We complete our analysis of a rectangular potential well with finite barrier energy
by making sure that in the limit V0 → ∞ we regain our previous expression for the
rectangular potential well with infinite barrier energy.

In the limit V0 → ∞, notice that L2K 2
0 = L2k2 + L2κ2 = 2mV0L2/--h2 → ∞. The

intersection of the circle of radius LK0 → ∞with curves defined by kL · tan(kL) = κL
and kL · cot(kL) = −κL now occurs at Lk = nπ/2, wheren = 1, 2, 3, . . . .The energy
eigenvalues are

En =
--h2

2m
· n2k2 =

--h2

2m
· n

2π2

4L2
(3.80)

This is comforting, because it is the same result previously derived in Section 3.3.1
(Eqn (3.30)) for the energy levels of a particle in a rectangular potential well with
infinite barrier energy. The only difference between Eqn (3.80) and Eqn (3.30) is the
factor 4 in the denominator, which arises from the fact that the rectangular potential
well of infinite barrier energy had a total well width of L and the finite barrier energy
potential we have been considering has total well width of 2 × L .

While the value of E1 given in Fig. 3.8 was 36.7 meV, the ground-state energy of
the same electron with effective electron mass m∗ = 0.07 × m0 but in a rectangular
potential well of width 2 × L = 10 nm with infinite barrier energy is E1 = 53.7 meV.
As we have discussed previously, this reduction in eigenenergy for the particle in a
rectangular potential well with finite barrier energy is due to the fact the wave function
can reduce its curvature by tunneling into the barrier region.

3.8 Transmission and reflection of unbound states

In this section we will explore the transmission and reflection of a particle incident on
a potential step. The classical result is that a particle of mass m is transmitted if its
energy is greater than the potential step and is reflected if its energy is less than the
potential step. The velocity of a classical particle with energy greater than the potential
step changes as it passes the step. While the corresponding change in momentum exerts
a force, the particle is still transmitted. In quantum mechanics, the situation is different,
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Fig. 3.9. Sketch of a one-dimensional potential step. In region 1 the potential energy is eV1, and in
region 2 the potential energy is eV2. The coefficients A and C correspond to waves traveling left to
right in regions 1 and 2, respectively. The coefficients B and D correspond to waves traveling right
to left in regions 1 and 2, respectively. The transition between region 1 and region 2 occurs at
position x = x0. The incident particle is assumed to have energy E > eV2.

and a particle with energy greater than the potential step is not necessarily transmitted.
The wavy nature of an unbound state ensures that it feels the presence of changes in
potential. Physically, this manifests itself as a scattering event with particle transmission
and reflection probabilities. A simple situation to consider is transmission and reflection
of unbound states from a potential step in one dimension.

Consider a particle of energy E and massm incident from the left on a step potential of
energy V0 = V2 − V1 at position x0. We will only consider the case E > V2. Figure 3.9
is a sketch of the potential energy. The one-dimensional potential step occurs at the
boundary between region 1 and region 2.

Solutions of the time-independent Schrödinger equation

((−--h2/2m)∇2 + V (x))ψ(x) = Eψ(x)

are of the form

ψ1(x) = Aeik1x + Be−ik1x for x < x0 (3.81)

and

ψ2(x) = Ceik2x + De−ik2x for x > x0 (3.82)

These equations describe left- and right-traveling waves in the two regions. The energy
of the particle in region 1 (with V1 = 0) is

E =
--h2k2

1

2m
(3.83)

so that

k1 = (2mE)1/2

--h
(3.84)

When E < V2 for the potential step shown in Fig. 3.9, k2 is imaginary. This results in
ψ2(x → ∞) = Ce−k2x |x→∞ = 0 and |A|2 = |B|2 = 1, which has the physical meaning
that the particle is completely reflected at the potential step (see Exercise 3.1).
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In general, a particle of energy E moving in a one-dimensional potential with value
Vj in the j-th region has a wave vector

k j = (2m j (E − eVj ))1/2

--h
(3.85)

For E > Vj , the wave vector k j is real, and for E < Vj the wave vector k j is imaginary.
We now have the means to calculate the scattering probability of a particle mov-

ing from region 1 to region 2 for the potential shown in Fig. 3.9. Often we will be
interested in applying our knowledge to situations involving electron transport in semi-
conductors. A complication we need to consider is that in a semiconductor the electron
scatters from the periodic potential created by crystal atoms and that the resulting dis-
persion relation gives the electron an effective mass that is different from that of a
free electron. In the case of electrons moving across a semiconductor heterostructure
interface there exists the possibility that the effective electron mass can change. Since,
in some models, it is possible for the electron to have a different effective mass in
each region, we need to consider two situations, one where m1 = m2 and one where
m1 �= m2.

3.8.1 Scattering from a potential step when m1 = m2

In this case, we assume that m j is constant through all regions.
At the boundary between regions 1 and 2 at x0 the wave functions are linked by

the constraint that the wave function ψ and the derivative dψ/dx are continuous, so
that

ψ1|x0 = ψ2|x0 (3.86)

d

dx
ψ1

∣∣∣∣
x0

= d

dx
ψ2

∣∣∣∣
x0

(3.87)

These boundary conditions and Eqn (3.81) and Eqn (3.82) give, for x0 = 0,

A + B = C + D (3.88)

A − B = k2

k1
C − k2

k1
D (3.89)

To find simple expressions for the probability amplitude in both regions we apply
initial conditions. Suppose we know that the particle is incident from the left. Then
|A|2 = 1 and |D|2 = 0, since there is no left-traveling wave in region 2. Substituting
A = 1 and D = 0 into Eqn (3.88) and Eqn (3.89) gives

1 + B = C (3.90)

1 − B = k2

k1
C (3.91)



134 Using the Schrödinger wave equation

Adding Eqn (3.90) and Eqn (3.91) gives

2 = (1 + k2/k1)C (3.92)

C = 2

(1 + k2/k1)
(3.93)

and from Eqn (3.90)

B = C − 1 = 2

(1 + k2/k1)
− 1 = (2 − 1 − k2/k1)

(1 + k2/k1)
(3.94)

B = (1 − k2/k1)

(1 + k2/k1)
(3.95)

Identifying electron velocity in the j-th region as v j = --hk j/m, the transmission
probability |C |2 and reflection probability |B|2 may be written as

|C |2 = 4

(1 + k2/k1)2
= 4

(1 + v2/v1)2
(3.96)

|B|2 = (1 − k2/k1)2

(1 + k2/k1)2
=
(
v1 − v2

v1 + v2

)2

(3.97)

Because V2 > V1, it follows that k2 < k1, so that k2/k1 < 1. It can easily be seen
that |C |2 is always bigger than 1 (hence bigger than |A|2), which means the probability
amplitude for finding the particle anywhere in region 2 is greater than the probability
of finding it anywhere in region 1. To understand this, we should consider the velocity
of the particle in each region v j = --hk j/m, where k j = √

2m(E − Vj )/--h so v1 > v2,
because V2 > V1. We know that, classically, when a particle moves faster it spends
less time at any given position and the probability of finding it in each infinitesimal
part of space dx is smaller. However, we should be very careful about this conclusion
and not confuse it with the concept of transmission and reflection that is meaningful
only when we consider probability current density. In fact, when we are dealing with
traveling waves the probability current is a more useful concept than probability itself –
as opposed to bound states, in which the opposite is true.

Before considering probability current density, it is helpful to find solutions for
transmission and reflection probability in the situation in which m1 �= m2.

3.8.2 Scattering from a potential step when m1 �= m2

In this case, we assume that m j varies from region to region. At the boundary
between regions 1 and 2 we require continuity in the wave function ψ and the derivative
(1/m j ) · dψ/dx , so that

ψ1|x0 = ψ2|x0 (3.98)

1

m1

d

dx
ψ1

∣∣∣∣
x0

= 1

m2

d

dx
ψ2

∣∣∣∣
x0

(3.99)
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Inadequacies in our model force us to choose a boundary condition that ensures con-
servation of current jx ∝ epx/m rather than dψ1/dx |x0 = dψ2/dx |x0 (more accurate
models satisfy both of these conditions).

These conditions and Eqn (3.81) and Eqn (3.82) give, for x0 = 0,

A + B = C + D (3.100)

A − B = m1k2

m2k1
C − m1k2

m2k1
D (3.101)

If we know that the particle is incident from the left, then A = 1 and D = 0, giving

1 + B = C (3.102)

1 − B = m1k2

m2k1
C (3.103)

We now solve for the transmission probability |C |2 and the reflection probability
|B|2. The result is

|C |2 = 4(
1 + m1k2

m2k1

)2 (3.104)

|B|2 =

(
1 − m1k2

m2k1

)2

(
1 + m1k2

m2k1

)2 (3.105)

Compared with Eqn (3.96) and Eqn (3.97), the ratiom1/m2 appearing in Eqn (3.104)
and Eqn (3.105) gives an extra degree of freedom in determining transmission and
reflection probability. It is this extra degree of freedom that will allow us to engineer
the transmission and reflection probability in device design. Having established this,
we now proceed to calculate probability current density for an electron scattering from
a potential step.

3.8.3 Probability current density for scattering at a step

Probability current density for transmission and reflection is different from transmission
and reflection probability. We will be interested in calculating the incident current JI,
reflected current JR, and transmitted current JT, shown schematically in Fig. 3.10.

From our work in Section 3.8.2, the solution for the wave function will be of the
form

ψ1 = Aeik1x + Be−ik1x (3.106)

ψ2 = Ceik2x + De−ik2x (3.107)
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Fig. 3.10. Sketch of a one-dimensional, rectangular potential step. In region 1 the potential energy is
V1 and particle mass is m1. In region 2 the potential energy is V2 and particle mass is m2. The
transition between region 1 and region 2 occurs at position x = x12. Incident probability current
density JI, reflected probability current density JR, and transmitted probability current density JT

are indicated.

For a particle incident from the left, we had |A|2 = 1, |D|2 = 0. Adopting the
boundary conditions

ψ1|x=0 = ψ2|x=0 (3.108)

1

m1

d

dx
ψ1

∣∣∣∣
x=0

= 1

m2

d

dx
ψ2

∣∣∣∣
x=0

(3.109)

gives reflection probability

|B|2 = (1 − m1k2/m2k1)2

(1 + m1k2/m2k1)2
(3.110)

and transmission probability

|C |2 = 4

(1 + m1k2/m2k1)2
(3.111)

We now calculate current using the current operator

J = −ie--h
2m

(ψ∗∇ψ − ψ∇ψ∗)

The incident current is

JI = e--hk1

m1
|A|2 (3.112)

The reflected current is

JR = −e--hk1

m1
|B|2 (3.113)

and the transmitted current is

JT = e--hk2

m2
|C |2 (3.114)
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The reflection coefficient for the particle flux is

Refl = −JR
JI

=
∣∣∣∣ BA

∣∣∣∣
2

=
(

(1 − m1k2/m2k1

(1 + m1k2/m2k1)

)2

(3.115)

where the minus sign indicates current flowing in the negative x direction. This is the
same as the reflection probability given by Eqn (3.105), because the ratio of velocity
terms that contribute to particle flux is unity. The transmission coefficient for the particle
flux is

Trans = JT
JI

= m1k2

m2k1

∣∣∣∣CA
∣∣∣∣
2

= 4k1k2/m1m2(
k1

m1
+ k2

m2

)2 = 1 − Refl (3.116)

where we note that Trans+ Refl = 1. The fact that Trans+ Refl = 1 is expected since
current conservation requires that the incident current must equal the sum of the trans-
mitted and reflected current.

3.8.4 Impedance matching for unity transmission across a potential step

In this section we continue our discussion of particle scattering at the potential step
shown schematically in Fig. 3.10. Suppose we want a flux transmission probability of
unity for a particle of energy E > V2 approaching the potential step from the left. Since
momentum p = --hk = mv we can identify velocity v j = --hk j/m j as the physically
significant quantity in the expression for the transmission coefficient. Substituting v j

into Eqn (3.116) gives

Trans = m1k2

m2k1

∣∣∣∣CA
∣∣∣∣
2

= m1k2

m2k1

4

(1 + v2/v1)2
= v2

v1

4

(1 + v2/v1)2
(3.117)

If Trans = 1, then Eqn (3.117) can be rewritten

1 = v2

v1

4

(1 + v2/v1)2
(3.118)

which shows that unity transmission occurs when the velocity of the particle in the
two regions is matched2 in such a way that v2/v1 = 1. In microwave transmission line
theory, this is called an impedance matching condition. To figure out when impedance
matching occurs as a function of particle energy, we start with

v2

v1
= m1k2

m2k1
= m1

m2
·
(

2m2
--h2(E − V2)

2m1
--h2(E − V1)

)1/2

=
(
m1(E − V2)

m2(E − V1)

)1/2

(3.119)

2 J. F. Müller, A. F. J. Levi, and S. Schmitt-Rink, Phys. Rev. B38, 9843 (1988) and T. H. Chiu and A. F. J. Levi,
Appl. Phys. Lett. 55, 1891 (1989).
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so that impedance matching (v2/v1 = 1) will occur when

1 = m1

m2
· E − V2

E − V1
(3.120)

or

m2

m1
= E − V2

E − V1
(3.121)

Clearly, for an electron incident on the potential step with energy E , the value of
E for which Trans = 1 depends upon the ratio of effective electron mass in the two
regions and the difference in potential energy between the steps. To see what this means
in practice, we now consider a specific example.

For a potential step of 1 eV we set V1 = 0 eV and V2 = 1 eV. We assume that
the electron mass is such that m1 = 10 × m2, so that the particle flux transmission
coefficient Trans = 1 when

m2

m1
= E − V2

E − V1
= E − 1

E
= 1

10
(3.122)

Hence the particle energy when Trans = 1 is

E = 10

9
= 1.11 eV (3.123)

When m1 = 2 × m2, the particle flux transmission coefficient Trans = 1 when

m2

m1
= E − V2

E − V1
= E − 1

E
= 1

2
(3.124)

so that the particle energy is E = 2.00 eV.
We can also calculate Trans in the limit when energy E goes to infinity. In this case

v2/v1|E→∞ =
√
m1

m2
(3.125)

and

Trans|E→∞ = lim
E→∞

(v2/v1)
4

(1 + v2/v1)2
(3.126)

For the case m1/m2 = 10

Trans|E→∞ = (
√

10)
4

(1 + √
10)2

= 0.73 (3.127)

and when m1/m2 = 2 one finds

Trans|E→∞ = (
√

2)
4

(1 + √
2)2

= 0.97 (3.128)
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Fig. 3.11. Electron flux transmission probability as a function of energy for electron motion across
the potential step illustrated in Fig. 3.10, with V2 − V1 = 1 eV. In region 1 the electron has mass
m1, and in region 2 the electron has mass m2.
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Fig. 3.12. Sketch of probability density |ψ |2 for three types of wave function. Wave function ψ1

corresponds to a particle with energy E < V2, and so it is essentially zero in region 2 far from
x = 0. Wave function ψ2 corresponds to a particle with energy E > V2. In this case, because
particle velocity is lower in region 2, the probability density in region 2 is greater than in region 1.
Wave function ψ3 corresponds to a particle of energy E > V2 that is impedance matched for
transmission across the potential step. In this situation, the velocity on either side of the potential
step is the same, as is the amplitude of ψ3.

The result of calculating electron flux transmission probability as a function of energy
for electron motion across the 1 eV potential step is shown in Fig. 3.11 for the cases
when m2 = m1,m2 = 2 × m1, and m2 = 10 × m1.

Impedance matching particle transmission at a potential step also changes the nature
of the wave function and hence the probability density. To illustrate this, Fig. 3.12 is a
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sketch of probability density |ψ |2 for three types of wave function. Wave function ψ1

corresponds to a particle with energy E < V2, and so it is essentially zero in region
2 apart from a small exponentially decaying contribution in the potential barrier near
x = 0. Wave function ψ2 corresponds to a particle with energy E > V2, which has
finite transmission probability. In this case, because particle velocity is lower in region
2, the probability density in region 2 is greater than in region 1. Wave function ψ3

corresponds to a particle of energy E > V2 that is impedance matched for transmission
across the potential step. In this situation, the velocity of the particle and the amplitude
of ψ3 are the same on either side of the potential step.

3.9 Particle tunneling

If electrons or other particles of mass m and kinetic energy E impinge on a potential
barrier of energy V0 and thickness L in such a way that E < V0, they penetrate into the
barrier, just as with the potential step considered above. If the potential barrier is thin,
there is a significant chance that the particle can be transmitted through the barrier.
This is called quantum mechanical tunneling. Tunneling of a finite mass particle is
fundamentally quantum mechanical.

Analogies are often made between tunneling in quantum mechanics and effects that
occur in electromagnetism. However, evanescent field coupling in classical electromag-
netism is merely the large photon number limit of quantum mechanical photon particle
tunneling. Tunneling is a purely quantum mechanical effect.

For electrons, the tunnel current density depends exponentially upon the barrier
thickness, L , and barrier energy, V0, and so it tends not to be important when V0L is
large.

For a particle of energy E < V0, the solution for the wave function in regions 1 and 2
contains right- and left-propagating terms with the coefficients indicated in Fig. 3.13. In
region 1, the wave function is of the form ψ1(x) = Aeikx + Be−ikx , and in region 2 the
wave function is of the form ψ2(x) = Ceκx + De−κx , where k = √

2mE/--h and κ =√
2m(V0 − E)/--h. Notice that the particle wave function has left- and right-propagating

exponentially decaying solutions inside the barrier. This is required if tunnel current is
to flow through the barrier. Because we will be considering a particle incident from the
left, in region 3 we need only consider a right-propagating wave. To find the general
solution, we require that the wave function and its derivative be continuous at x = 0
and x = L . This condition gives four equations:

A + B = C + D (3.129)

(A − B) = iκ

k
(D − C) (3.130)
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Fig. 3.13. Illustration of a particle of energy E and mass m incident on a one-dimensional,
rectangular potential barrier of energy V = V0 and thickness L . The incident wave has amplitude
A = 1, and the transmitted wave has amplitude F . Wave reflection at positions x = 0 and x = L
can give rise to resonances in transmission as a function of particle energy.

CeκL + De−κL = FeikL (3.131)

CeκL − De−κL = ik

κ
FeikL (3.132)

Since the tunneling transmission probability is |F/A|2, we proceed to eliminate
the other coefficients. Obtaining the solution we seek requires some manipulation of
equations which, to save the reader time and effort, will be reproduced here.

Adding Eqn (3.129) and Eqn (3.130) gives

2A =
(

1 − iκ

k

)
C +

(
1 + iκ

k

)
D (3.133)

Adding Eqn (3.131) and Eqn (3.132) gives

2CeκL =
(

1 + ik

κ

)
FeikL (3.134)

Subtracting Eqn (3.131) and Eqn (3.132) gives

2De−κL =
(

1 − ik

κ

)
FeikL (3.135)

Using Eqn (3.134) and Eqn (3.135) to eliminate C and D from Eqn (3.133) leads to

2A =
(

1 − iκ

k

)(
1 + ik

κ

)
F

2
eikL−κL +

(
1 + iκ

k

)(
1 − ik

κ

)
F

2
eikL+κL (3.136)

F

A
= 4kκe−ikL

(k − iκ)(κ + ik)e−κL + (k + iκ)(κ − ik)eκL
(3.137)

F

A
= 4ikκ

(−(κ − ik)2eκL + (κ + ik)2e−κL )
· e−ikL (3.138)

Dividing the top and bottom of Eqn (3.138) by κ2 gives

F

A
= 4ik/κ

(−(1 − ik/κ)2eκL + (1 + ik/κ)2e−κL )
· e−ikL (3.139)
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The magnitude squared of Eqn (3.139) is

F∗

A∗
F

A
= 16(k/κ)2

(1 + ik/κ)2((1 + ik/κ)∗)2(e−2κL + e2κL ) − ((1 + ik/κ)∗)4 − (1 + ik/κ)4

(3.140)∣∣∣∣ FA
∣∣∣∣
2

= 16(k/κ)2

(1 − ik/κ)2(1 + ik/κ)2((e−κL − eκL )2 + 2) − (1 − ik/κ)4 − (1 + ik/κ)4

(3.141)∣∣∣∣ FA
∣∣∣∣
2

= 16(k/κ)2

(1 − ik/κ)2(1 + ik/κ)2(4 sinh2(κL) + 2) − (1 − ik/κ)4 − (1 + ik/κ)4

(3.142)

Dealing with the last two terms in the parentheses in the denominator, it is easy to
check that

(1 − ik/κ)4 + (1 + ik/κ)4 = −16(k/κ)2 + 2(1 + ik/κ)2(1 − ik/κ)2 (3.143)

We now use this by substituting Eqn (3.143) into Eqn (3.142) to give∣∣∣∣ FA
∣∣∣∣
2

= (k/κ)2

1

4

(
(1 + ik/κ)2(1 − ik/κ)2

)
sinh2(κL) + (k/κ)2

(3.144)

∣∣∣∣ FA
∣∣∣∣
2

= (k/κ)2

1

4

(
1 + (k/κ)2

)2
sinh2(κL) + (k/κ)2

(3.145)

So the tunneling transmission probability is

∣∣∣∣ FA
∣∣∣∣
2

= 1

1 +
(
k2 + κ2

2kκ

)2

sinh2(κL)

(3.146)

Equation (3.146) will be of use in Chapter 4 when we derive the same result using a
different method. However, our immediate goal is to plot the probability density distri-
bution for an electron of energy E traveling left to right and incident on a rectangular
potential barrier of energy V0 in a way that E < V0. To obtain this probability dis-
tribution, we also need to find C, D, and B. Rewriting Eqn (3.134) and Eqn (3.135)
gives

C =
(

1 + iκ

k

)
F

2
eikLe−κL (3.147)

D =
(

1 − iκ

k

)
F

2
eikLeκL (3.148)
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Using Eqn (3.129), Eqn (3.130), Eqn (3.147), and Eqn (3.148) one may obtain an
expression of B that is

B = −i 1

2
FeikL × k2 + κ2

kκ
sinh(κL) (3.149)

The calculation is now complete except for normalization of the wave function.
Unfortunately, because we are dealing with traveling waves, the wave function cannot
be normalized. To understand why, consider the expression for the absolute value
squared of the wave function in regions 1, 2, and 3, which is given by the following
three equations:

|ψ1|2 = |A|2 + |B|2 + 2Re(AB∗e2ikx ) (3.150)

|ψ2|2 = |C |2e2κx + |D|2e−2κx + 2Re(CD∗) (3.151)

|ψ3|2 = |F |2 (3.152)

Normalization of the total wave function ψ requires evaluation of the integral, as
follows:

∞∫
−∞

|ψ |2dx =
0∫

−∞
(|A|2 + |B|2 + 2Re(AB∗e2ikx ))dx

+
L∫

0

(|C |2e2κx + |D|2e−2κx + 2Re(CD∗))dx +
∞∫
L

|F |2dx (3.153)

This integral is infinite, so we cannot find a value for A that satisfies the normalization
condition

∫ |ψ |2dx = 1 (Eqn (2.32)). However, one may still evaluate the relative
probability |ψ |2/|A|2 by keeping A as an unknown constant.

As an example, for an electron of energy E = 0.9 eV incident on a potential barrier of
energy V0 = 1 eV located between x = 0 nm and x = 0.5 nm, we calculate |ψ |2/|A|2.
Figure 3.14 shows results of doing this.

In Fig. 3.14 we have set A = 1 for convenience and have plotted: (a) the real part
of ψ , and (b) probability |ψ |2 with distance. Using Eqn (3.146) and plugging in the
numbers for k, κ , and L , we will find that |F/A| = |F | ∼= 0.548, so that the electron
transmission probability is |ψ3|2 = |F |2 ∼= 0.3. The probability in region 3 is a constant
with distance because the electron is described using a simple traveling wave moving
from left to right.

The description of the electron in region 1 is a little more complex. Rewriting
Eqn (3.150),

|ψ1|2 = (|A|2 + |B|2 + 2Re(AB∗e2ikx )) = 1 + |B|2 + 2|B| cos(2kx − θ ) (3.154)

where we have set A = 1 and B = |B|eiθ , with θ being a phase determined by the
boundary conditions. To obtain a numerical value for |B|, we use Eqn (3.149) and
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Fig. 3.14. (a) Real part of wave function as a function of distance for an electron of energy
E = 0.9 eV traveling from left to right and incident on a rectangular potential barrier of energy
V0 = 1 eV and width L = 0.5 nm. (b) Probability for electron in (a).

obtain |B| ∼= 0.837. It is clear from Eqn (3.154) that |ψ1|2 will oscillate with distance
between (1 + |B|)2 and (1 − |B|)2 or 3.375 and 0.027 in our numerical example. The
reason for the oscillation in electron probability in region 1 is that the incoming right-
traveling component of the wave function ψ1 with amplitude A interferes with the
left-traveling component of the wave function with amplitude B. The left-traveling
component was created when the incoming right-traveling wave function was reflected
from the potential barrier.

Region 2 has left- and right-propagating, exponentially decaying solutions of am-
plitudes C and D, respectively. These two components must exist for current to flow
through the potential barrier (see Exercise 3.1(c)).

3.9.1 Electron tunneling limit to reduction in size of CMOS transistors

Tunneling of electrons is not an abstract theoretical concept of no practical significance.
It can dominate performance of many components, and it is of importance for many
electronic devices. For example, tunneling of electrons through oxide barriers con-
tributes directly to leakage current in metal-oxide-semiconductor (MOS) field-effect
transistors (FETs). Because of this, it is a fundamental limit to the continued reduction
in size (scaling) of CMOS transistors. As one reduces gate length and minimum feature
size of such a transistor (see Fig. 3.15), one must also reduce the gate oxide thickness,
tx , to maintain device performance. This is because in simple models transconductance
is proportional to gate capacitance. For very small minimum feature sizes, the transistor
can no longer function because tx is so small that electrons efficiently tunnel from the
metal gate into the source drain channel.
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(a) (c)(b)

Fig. 3.15. (a) Scanning capacitance micrograph of the two-dimensional doping profile in a 60-nm
gate length n-type MOSFET. The effective channel length is measured to be only Leff = 30 nm.
(b) Transmission electron microscope cross-section through a 35-nm gate length MOSFET. The
channel length is only about 100 silicon lattice sites long. An enlargement of the channel region
delineated is shown in (c). The gate oxide thickness estimated from the image is only about 1.0 nm.
Images courtesy of G. Timp, University of Illinois.

SiO2, which is used as the oxide for CMOS transistors, also has a minimum thickness
due to the fact that the constituents of the oxide are discrete particles (atoms). According
to the SIA roadmap, by the year 2012 transistors will have a minimum feature size of
50 nm and a gate oxide thickness of tx = 1.3 nm, which is so thin that on average it
contains only five Si-atom-containing layers. The following generation of transistors,
with a minimum feature size of 30 nm, will have a gate oxide that is only three Si-atom
layers thick, corresponding to tx = 0.8 nm. Because there are two interfaces – one for
the metal gate and one for the channel – that are not completely oxidized, the actual
oxide may be thought of as only one atomic layer thick. This leaves a physically thin
tunnel barrier for electrons. The absence of a single monolayer of oxide atoms over a
significant area under the transistor gate could lead to undesirable leakage current due
to electron tunneling between the metal gate and the source drain channel.

The fact that SiO2 is made up of discrete atoms is a structural limit. One cannot vary
the thickness of the oxide by, say, one quarter of a monolayer because the minimum
layer thickness is, by definition, one atomic layer. These observations allow one to draw
the trivial conclusion that, in addition to tunneling, there are structural limits to scaling
conventional devices such as MOS transistors.3

To circumvent these difficulties, there is interest in developing a gate insulator for
CMOS that would allow a thicker dielectric insulator layer to be used in transistor
fabrication. For a constant gate capacitance, the way to achieve this is to increase the
value of the dielectric’s relative permittivity, εr. To see this, consider a parallel-plate
capacitor of area A. Capacitance is

C = ε0εrA

tx
(3.155)

3 M. Schulz, Nature 399, 729 (1999).
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So, for constant C and area A, increasing thickness tx requires an increase in εr. Un-
fortunately, using known material properties, there are limits to how far this approach
may be exploited. Nevertheless, there is interest in establishing a so-called high-k (cor-
responding to a high value of εr) dielectric technology4 to carry CMOS technology
beyond 2012.

3.10 The nonequilibrium electron transistor

What we know about quantum mechanical transmission and reflection of electrons at
potential-energy steps can be applied to the design of a new type of semiconductor
transistor. The device we are going to design may not be of tremendous use today, but
it does allow us to practice the quantum mechanics we have learned so for. We treat it,
therefore, as a prototype device.

We can use the techniques described in Section 2.2.6 to create a conduction-band
potential for our semiconductor transistor that operates by injecting electrons from a
lightly n-type doped, wide band-gap emitter in such a way that they have high velocity
while traversing a thin, heavily n-type doped base region. Electrons that successfully
traverse the base of thickness xB without scattering emerge as current flowing in the
lightly n-type doped collector. Figure 3.16(a) is a schematic diagram of a potential for
this double heterojunction unipolar transistor. Indicated in the figure are the emitter
current IE, base current IB, collector current IC, and voltages VBE and VCE for the
transistor biased in the common emitter configuration.

In fact, we are trying to design a nonequilibrium electron transistor (NET) that makes
use of relatively high-velocity electron transmission through the base with little or no
scattering. This type of electron motion is called extreme nonequilibrium electron trans-
port. If the distance a nonequilibrium electron travels before scattering is on average λB,
then the probability of electron transmission through the base region without scattering
is e−xB/λB . Based on these considerations alone, it is clearly advantageous to adopt a
design with a very thin base region.

To illustrate some other design considerations, Fig. 3.16(b) shows a schematic dia-
gram of the conduction band edge potential (CBmin) of an AlSb0.92As0.08/InAs/GaSb
double heterojunction unipolar NET under bias. The transistor base consists of a 10-nm-
thick epilayer of InAs with a high carrier concentration of two-dimensionally confined
electrons, n ∼ 2 × 1012 cm−2. The collector arm is a 350-nm-thick layer of Te doped
(n ∼ 1 × 1016cm−3) GaSb, and the entire epilayer structure is grown by molecular
beam epitaxy on a (001)-oriented n-type GaSb substrate.

The potential energy step at the emitter–base heterointerface is φEB = 1.3 eV, and
the potential energy step at the base–collector interface is φBC = 0.8 eV. The device can

4 D. Buchanan, IBM J. Res. Develop. 43, 245 (1999).
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Fig. 3.16. (a) Schematic diagram of a potential double heterojunction unipolar transistor. Indicated
in the figure are the emitter current IE, base current IB, collector current IC, and voltages VBE and
VCE for the transistor biased in the common emitter configuration. The solid dots indicate electrical
contacts between the transistor and the leads that connect to the batteries. (b) Schematic diagram of
the conduction band of an AlSb0.92As0.08/InAs/GaSb double heterojunction unipolar NET under
bias. The conduction-band minimum CBmin is indicated, as are the confinement energy E0 and the
Fermi energy EF of the occupied two-dimensional electron states in the InAs base. Electrons
indicated by e− are injected from the forward-biased AlSb0.92As0.08 emitter into the InAs base
region with a large excess kinetic energy. The effective electron mass near CBmin is
mInAs = 0.021 × m0 in the base and mGaSb = 0.048 × m0 in the collector.

operate at room temperature because both the emitter barrier energy φEB and collector
barrier energy φBC are much greater than the ambient thermal energy kBT ∼ 0.025 eV,
so that reverse (leakage) currents are small.

The lowest-energy bound-electron state in the finite rectangular potential well of the
transistor base is indicated as E0. At low temperatures, electrons in the potential well
occupy quantum states up to a Fermi energy indicated by EF = --h2k2

F/2m, where kF is
the Fermi wave vector.

Because emitter electrons injected into the base have high kinetic energy Ek ∼
φEB, they also have a high velocity. A typical nonequilibrium electron velocity is near
108 cm s−1, so the majority of injected electrons with a large component of momentum
in the x direction traverse the base of thickness xB = 10 nm in the very short time of
about 10 fs (assuming, of course, that one may describe an electron as a point particle
with a well-defined local velocity).

It is important to inject electrons in a narrow range of energies close to Ek. Optimum
device performance occurs when quantum reflections from φBC are minimized, and
this may only be achieved for a limited range of injection energies. Reflections from
the abrupt change in potential at φBC are minimized when the nonequilibrium electron
group velocity (the slope ∂ω/∂k at energy Ek in Fig. 3.17) is the same on either side
of the base–collector junction. As discussed in Section 3.8, this impedance-matching
condition is mInAs/mGaSb = E/(E − φBC), where mInAs and mGaSb are the effective
electron masses in the base and collector respectively. Therefore, by choosing Ek, φBC,
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Fig. 3.17. Dispersion curves for electron motion through the three materials forming the
AlSb/InAs/GaSb double heterostructure unipolar NET. The dashed line indicates the approximate
value of energy for an electron moving through the device. Electron states used in transmission of
an electron energy E through (100)-oriented semiconductor layers are near the points where the
dashed line intersects the solid curves. The value of effective electron mass near the conduction
band minimum (CBmin) in the �X direction in the AlSb emitter is close to the free-electron mass,
m0. At an energy Ek, which is above CBmin in the base and collector, the effective electron masses
are greater than their respective values near CBmin.

base and collector materials quantum reflections fromφBC may be eliminated for a small
range (∼0.5 eV) of Ek. It is worth mentioning that at a real heterojunction interface,
impedance matching also requires that the symmetry of the electron wave function in
the base and collector be similar.5

Although we know that degradation in device performance due to quantum me-
chanical reflection can be designed out of the device, there are other difficulties that
require additional thought. For example, an injected electron, with energy Ek and wave
vector k, moving in the x direction is able to scatter via the coulomb interaction into
high-energy states in the base, changing energy by an amount --hω and changing wave
vector by q. Inelastic processes of this type include the electron scattering from lattice
vibrations of the semiconductor crystal. Another possible inelastic process involves
the high-energy injected electron scattering from low-energy (thermal) electron in the
transistor base. Because these scattering processes can change the direction of travel of
the electron, they can also dramatically reduce the number of electrons that traverse the
base and flow as current in the collector. Such dynamical constraints imposed by in-
elastic scattering are quite difficult to deal with and thus make NET design a significant
task. Nevertheless, some NETs do have quite good device characteristics.

Figure 3.18 shows measured common base current gain α = IC/IE and common
emitter current gain β = IC/IB for a device maintained at a temperature T = 300 K.6

5 M. D. Stiles and D. R. Hamann, Phys. Rev. B38, 2021 (1988). If the symmetry of the electron wave function
is not matched on either side of the interface, the electron can suffer complete quantum mechanical reflection
even if the electron velocity is precisely matched!

6 A. F. J. Levi and T. H. Chiu, Appl. Phys. Lett. 51, 984 (1987).
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Fig. 3.18. (a) Room-temperature (T = 300 K) common base current gain characteristics of the
device shown schematically in Fig. 3.16(b). Curves were taken in steps beginning with an injected
emitter current of zero. The emitter area is 7.8 × 10−5 cm2, IC is collector current, and VCB is
collector base voltage bias. (b) Room-temperature common emitter current gain characteristics of
the device in (a). Curves were taken in steps of IB = 0.1 mA, beginning with an injected base
current of zero. VCE is collector emitter voltage bias. Current gain β ∼ 10. Measurement performed
with sample at temperature T = 200 K.

As may be seen in Fig. 3.18(b), the room-temperature value of β increases from β = 10
at VCE = 1.0 V to β = 17 at VCE = 3.0 V. At temperature T = 77 K (the temperature at
which nitrogen gas becomes liquid), the current gainβ = 12 atVCE = 1.0 V andβ = 40
at VCE = 3.0 V. We note that the reduction in base–collector potential barrier φBC,
with increasing collector voltage bias VCE, improves collector efficiency for incoming
nonequilibrium electrons and, in agreement with simple calculations, contributes to the
observed slope in the common emitter saturation characteristics.

It is possible to devise experiments that further explore the role of quantum mechani-
cal reflection from the abrupt change in potential φBC seen by a nonequilibrium electron
approaching the base collector heterostructure. Figure 3.19(a) shows the band diagram
for a NET device with a 15-nm-thick AlSb tunnel emitter that may be used to inject
an essentially monoenergetic beam of electrons perpendicular to the heterointerface.
After traversing the 10-nm-thick base, electrons impinge on the GaSb collector. If the
injection energy Ek is less than the base–collector barrier energy, φBC ∼ 0.8 eV, no
electrons are collected, and all the injected current IE flows in the base. For Ek > φBC,
some electrons traverse the base and subsequently contribute to the collector current IC.

An important scattering mechanism determining collector efficiency is quantum me-
chanical reflection from the step change in potential φBC. As discussed previously in
Section 3.8, this reflection is determined in part by electron velocity mismatch across
the abrupt InAs/GaSb heterointerface. For electron velocities vInAs in InAs and vGaSb

in GaSb, quantum mechanical reflection is Refl = ((vInAs − vGaSb)/(vInAs + vGaSb))2.
In this simplified example, we assume that there is no contribution to Refl from a mis-
match in the character (symmetry) of the electron wave function across the interface.
Since, in our structure, Ek ∝ VBE to within ± 0.1 eV, we may explore electron collection
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Fig. 3.19. (a) Conduction band diagram of an AlSb0.92As0.08/InAs/GaSb tunnel emitter
heterojunction unipolar NET under base emitter bias VBE and collector base bias VCB. The
conduction band minimum CBmin is indicated, as are the confinement energy E0 and the Fermi
energy EF of the occupied two-dimensional electron states in the 10-nm-thick InAs base. The
energy of a beam of electrons traversing the base and impinging on the base collector
heterostructure is controlled by varying VBE. (b) Measured ratio of the collector and emitter
currents, IC/IE, as functions of base emitter bias, VBE. The ratio IC/IE is related to the electron
transmission probability across the base–collector heterostructure.

efficiency as a function of injection energy by plotting the ratio IC/IE with base–emitter
voltage bias VBE. Typical results of such a measurement at a temperature T = 200 K
are shown in Fig. 3.19(b).7 As may be seen, for injection energy Ek less than φBC, no
electrons are collected. For Ek > φBC, the ratio IC/IE increases rapidly with decreas-
ing velocity mismatch at either side of the heterointerface. Maximum base transport
efficiency occurs for Ek ∼ 2.5 eV. With further increase in Ek, collection efficiency
decreases, and finally for Ek ∼ 2.5 eV less than 50% of electrons are collected. At en-
ergies greater than 2.5 eV, electrons are injected into electronic states above the lowest
conduction band in which both velocity and wave function character mismatch creat-
ing high quantum mechanical reflection. Hence, for Ek ≥ 2.5 eV, electron collection
efficiency decreases dramatically.

If we summarize what we have achieved so far, it becomes apparent that we now know
enough about quantum mechanics to understand much of what goes into the design of
a new type of transistor. The device operates by injecting nonequilibrium electrons that
are transported through a region of semiconductor only 10 nm thick. The existence of
extreme nonequilibrium electron transport is a necessary condition for successful device
operation. Transistor performance is improved by carefully matching the velocity across
the base–collector semiconductor heterojunction. In fact, we were able to explore the
velocity-matching condition by using quantum mechanical tunneling to inject electrons
at different energies into the base–collector semiconductor heterojunction region.

Upon reflection, you may conclude that it is quite surprising that we have been so
successful in understanding key elements of this transistor design without the need to

7 T. H. Chiu and A. F. J. Levi, Appl. Phys. Lett. 55, 1891 (1989).
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develop a more sophisticated approach. In fact, our understanding is quite superficial.
There are a number of complex and subtle issues concerning the description of nonequi-
librium electron motion in the presence of strong elastic and inelastic scattering that
you may wish to investigate at some later time. A significantly deeper understanding
of nonequilibrium electron transport is beyond the scope of this book, and so we will
not pursue that topic here.

3.11 Example exercises

Exercise 3.1
(a) Classically (i.e., from Maxwell’s equations), change in charge density, ρ, is related
to divergence of current density, J. Use this fact and the time-dependent Schrödinger
wave equation for particles of mass m and charge e to derive the current operator

J = − ie--h

2m

(
ψ∗∇ψ − ψ∇ψ∗)

(b) If a wave function can be expressed as ψ(x, t) = Aei(kx−ωt) + Bei(−kx−ωt), show
that particle flux is proportional to A2 − B2.

(c) For current to flow through a tunnel barrier, the wave function must contain both
left- and right-propagating, exponentially decaying solutions with a phase difference.
If ψ(x, t) = Aeκx−iωt + Be−κx−iωt , show that particle flux is proportional to Im(AB∗).
Hence, show that if ψ(x, t) = Be−κx−iωt particle flux is zero.

(d) Show that a particle of energy E and mass m moving from left to right in a
one-dimensional potential in such a way that V (x) = 0 for x < 0 and V (x) = V0 for
x ≥ 0 has unity reflection probability if E < eV0.

Exercise 3.2
(a) An electron in the conduction band of GaAs has an effective electron mass m∗

e =
0.07m0. Find the values of the first three energy eigenvalues, assuming a rectangular,
infinite, one-dimensional potential well of width L = 10 nm and L = 20 nm. Find an
expression for the difference in energy levels, and compare it with room-temperature
thermal energy kBT .

(b) For a quantum box in GaAs with no occupied electron states, estimate the size
below which the conduction band quantum energy level spacing becomes larger than the
classical coulomb blockade energy. Assume that the confining potential for the electron
may be approximated by a potential barrier of infinite energy for |x | > L/2, |y| >
L/2, |z| > L/2, and zero energy elsewhere.

Exercise 3.3
Electrons in the conduction band of different semiconductors have differing effec-
tive electron mass. In addition, the effective electron mass, m j , is almost never the
same as the free electron mass, m0. These facts are usually accommodated in simple
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models of semiconductor heterojunction barrier transmission and reflection by requir-
ing ψ1|0−δ = ψ2|0+δ and (1/m1) · ∇ψ1|0−δ = (1/m2) · ∇ψ2|0+δ at the heterojunction
interface. Why are these boundary conditions used? Calculate the transmission and
reflection coefficients for an electron of energy E , moving from left to right, impinging
normally to the plane of a semiconductor heterojunction potential barrier of energy V0.
The effective electron mass on the left-hand side is m1, and the effective electron mass
on the right-hand side is m2. Under what conditions will there be no reflection, even
for a step of finite barrier energy? Express this condition in terms of electron velocities
on either side of the interface.

Exercise 3.4
An asymmetric one-dimensional potential well of width L and zero potential energy has
an infinite potential energy barrier on the left-hand side and a finite constant potential
of energy V0 on the right-hand side. Find the minimum value of L for which an electron
has at least one bound state when V0 = 1 eV.

Exercise 3.5
(a) Consider a one-dimensional potential well approximated by a delta function in space
so that V (x) = −bδ(x = 0). Show that there is one bound state for a particle of mass
m, and find its energy and eigenstate.

(b) Show that any one-dimensional delta-function potential withV (x) = ±bδ(x = 0)
always introduces a kink in the wave function describing a particle of mass m.

Exercise 3.6
A nonequilibrium electron transistor (NET) of the type shown schematically in Fig. 3.16
is to be designed for use in a high-speed switching application. In this situation the
NET must have a high current drive capability. To achieve this one needs to ensure that
space-charging effects in the emitter and collector barriers are avoided. How would you
modify the design of the NET to support current densities in excess of 105 A cm−2?

Exercise 3.7
Using the method outlined in Section 3.4, write a computer program to solve the
Schrödinger wave equation for the first four eigenvalues and eigenstates of an electron
with effective mass me = 0.07 × m0 confined to a rectangular potential well of width
L = 10 nm bounded by infinite barrier potential energy.

SOLUTIONS

Solution 3.1
(a) We will use the classical expression relating the divergence of charge density to
current density to obtain an expression for the quantum mechanical current operator.
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The change in charge density ρ is related to the divergence of current density J
through

∂

∂t
ρ(r, t) = −∇ · J(r, t)

In quantum mechanics, we assume that the charge density of a particle with charge
e and wave function ψ can be written ρ = e|ψ |2, so that

∂ρ

∂t
= e

∂

∂t
(ψ∗ψ) = e

(
ψ∗ ∂ψ

∂t
+ ψ

∂ψ∗

∂t

)

We now make use of the fact that the time-dependent Schrödinger equation for a particle
of mass m moving in a real potential is

i--h
∂

∂t
ψ(r, t) =

(
−

--h2

2m
∇2 + V (r)

)
ψ(r, t) = Hψ(r, t)

Multiplying both sides by ψ∗(r, t) gives

i--hψ∗(r, t)
∂

∂t
ψ(r, t) = −

--h2

2m
ψ∗(r, t)∇2ψ(r, t) + ψ∗(r, t)V (r)ψ(r, t)

which, when multiplied by e/ i--h, is the first term on the right-hand side in our expression
for ∂ρ/∂t . To find the second term, one takes the complex conjugate of the time-
dependent Schrödinger equation and multiplies both sides by ψ(r, t). Because V (r) is
taken to be real, we have ψ∗(r, t)V (r)ψ(r, t) = ψ(r, t)V (r)ψ∗(r, t), giving the rate of
change of charge density

∂ρ

∂t
= −ψ∗ e--h

i2m
∇2ψ + ψ

e--h

i2m
∇2ψ∗ + eψ∗ψ

i--h
(V (r) − V (r))

∂ρ

∂t
= ie--h

2m
(ψ∗∇2ψ − ψ∇2ψ∗)

∂ρ

∂t
= ie--h

2m
∇ · (ψ∗∇ψ − ψ∇ψ∗) = −∇ · J

Hence, an expression for the current density operator for a particle charge e described
by state ψ is

J = − ie--h

2m
(ψ∗∇ψ − ψ∇ψ∗)

This expression has an obvious symmetry, some consequences of which we will now
explore.

(b) In this exercise we will work with a particle of mass m and charge e that is
described by a wave function ψ(x, t) = Aei(kx−ωt) + Bei(−kx−ωt), where k is real. This
aim is to show that particle flux is proportional to A2 − B2.
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Starting with the current density operator in one dimension and substituting in the
expression for the wave function gives

Jx = − ie--h

2m

(
ψ∗ ∂

∂x
ψ − ψ

∂ψ∗

∂x

)

ψ∗ ∂ψ
∂x

= (
A∗e−ikx + B∗eikx

)(
ik Aeikx − ikBe−ikx

)
ψ∗ ∂ψ

∂x
= ik|A|2 − ik A∗Be−2ikx + ikB∗Ae2ikx − ik|B|2

and

ψ
∂ψ∗

∂x
= (

Aeikx + Be−ikx
)(−ik A∗e−ikx + ikB∗eikx

)
ψ

∂ψ∗

∂x
= −ik|A|2 − ikBA∗e−2ikx + ik AB∗e2ikx + ik|B|2

so that, finally,

Jx = − ie--h

m

(
ik
(|A|2 − |B|2)) = e--hk

m

(|A|2 − |B|2)
This is not an unexpected result, since the wave function ψ(x, t) is made up of two

traveling waves. The first traveling wave Aeikx might consist of an electron probability
density ρ = |A|2 moving from left to right at velocity v = --hk/m carrying current
density j+ = ev+ρ = e--hk|A|2/m. The second travelling wave Be−ikx consists of an
electron probability density ρ = |B|2 moving from right to left at velocity v = −--hk/m
carrying current density j− = ev−ρ = −e--hk|B|2/m. The net current density is just the
sum of the currents jx = j+ + j− = e--hk(|A|2 − |B|2)/m.

(c) A particle mass of m and charge e is described by the wave function ψ(x, t) =
Aeκx−iωt + Be−κx−iωt , where κ is real. We wish to show that for current to flow through
a tunnel barrier the wave function must contain both left- and right-propagating, expo-
nentially decaying solutions with a phase difference.

As in part (b) we start with the current density operator in one dimension and sub-
stitute in the expression for the wave function. This gives

Jx = − ie--h

2m

(
ψ∗ ∂

∂x
ψ − ψ

∂ψ∗

∂x

)

ψ∗ ∂ψ
∂x

= (
A∗eκx + B∗e−κx

)(
Aκeκx − Bκe−κx

)
ψ∗ ∂ψ

∂x
= κ|A2|e2κx + κB∗A − κA∗B − κ|B|2e−2κx

and

ψ
∂ψ∗

∂x
= (

Aeκx + Be−κx
)(
A∗κeκx − B∗κe−κx

)
ψ

∂ψ∗

∂x
= κ|A|2e2κx − κAB∗ + κBA∗ − κ|B|2e−2κx
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so that

Jx = ie--h

2m
· 2κ

(
A∗B − B∗A

) = 2e--hκ

m

(
Im
(
AB∗))

To show this last equality, one starts by explicitly writing the real and imaginary
parts of the terms in the brackets(
A∗B − B∗A

) = (ARe − i AIm)(BRe + i BIm) − (BRe − i BIm)(ARe + i AIm)

Multiplying out the terms on the right-hand side gives(
A∗B − B∗A

) = AReBRe + i AReBIm − i AImBRe + AImBIm − AReBRe − i BReAIm

+ i BImARe − AImBIm

This simplifies to(
A∗B − B∗A

) = 2i AReBIm − 2i AImBRe = 2i(AReBIm − AImBRe)

Taking the imaginary part of the terms on the right-hand side allows one to add the real
terms AReBRe and AImBIm, so that the expression may be factored(
A∗B − B∗A

) = −2i(Im(AReBRe − i AReBIm + i AImBRe + AImBIm))(
A∗B − B∗A

) = −2i(Im((ARe + i AIm)(BRe − i BIm))) = 2i
(
Im
(
AB∗))

Jx = ie--h

2m
· 2κ

(
A∗B − B∗A

) = 2e--hκ

m

(
Im
(
AB∗))

The significance of this result is that current can only flow through a one-dimensional
tunnel barrier in the presence of both exponentially decaying terms in the wave function
ψ(x, t) = Aeκx + Be−κx . In addition, the complex coefficients A and B must differ in
phase. The right-propagating term Aeκx can only carry current if the left-propagating
term Be−κx exists. This second term indicates that the tunnel barrier is not opaque and
that transmission of current via tunneling is possible.

Suppose a particle of mass m and charge e is described by wave function ψ(x, t) =
Be−κx−iωt . Substitution into the expression for the one-dimensional current density
operator gives

Jx = − ie--h

2m

(
ψ∗ ∂

∂x
ψ − ψ

∂ψ∗

∂x

)
= − ie--h

2m

(
B∗e−κx (−Bκe−κx ) − Be−κx

(−B∗κe−κx
))

Jx = − ie--h

2m

(−B∗Bκe−2κx + BB∗κe−2κx
) = 0

(d) To show that a particle of energy E and mass m moving in a one-dimensional
potential in such a way that V (x) = 0 for x < 0 in region 1 and V (x) = V0 for x ≥ 0
in region 2 has unity reflection probability if E < eV0, we write down solutions of
the time-independent Schrödinger equation (−--h2∇2/2m + V (x))ψ(x) = Eψ(x). The
solutions that describe left- and right-traveling waves in the two regions are

ψ1(x) = Aeik1x + Be−ik1x for x < 0
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and

ψ2(x) = Ceik2x + De−ik2x for x > 0

When E < V0, the value of k2 is imaginary, and so k2 → ik2. The value of D is
zero to avoid a wave function with infinite value as x → ∞. The value of C is finite,
but the contribution to the wave function ψ2(x → ∞) = Ce−k2x |x→∞ = 0. Hence, we
may conclude that the transmission probability in the limit x → ∞ must be zero, since
|ψ2(x → ∞)|2 = 0. From this it follows that |A|2 = |B|2 = 1, which has the physical
meaning that the particle is completely reflected at the potential step when E < V0.

Alternatively, one could calculate the reflection probability from the square of the
amplitude coefficient for a particle of energy E and massm incident on a one-dimension
potential step

B =
(

1 − k2/k1

1 + k2/k1

)

When particle energy E < V0, the value of k2 is imaginary, so that k2 → ik2, which
gives

|B|2 = B∗B =
(

1 + ik2/k1

1 − ik2/k1

)(
1 − ik2/k1

1 + ik2/k1

)
= 1

From this one may conclude that the particle has a unity reflection probability.

Solution 3.2
(a) In this exercise we are to find the differences in energy eigenvalues for an electron
in the conduction band of GaAs that has an effective electron mass m∗

e = 0.07m0 and
is confined by a rectangular infinite one-dimensional potential well of width L with
value either L = 10 nm or L = 20 nm.

We start by recalling our expression for energy eigenvalues of an electron confined
in a one-dimensional, infinite, rectangular potential of width L:

En =
--h2

2m∗
e

· n
2π2

L2

For m∗
e = 0.07 × m0, this gives

En = n2

L2
× 8.607 × 10−37 J = n2

L2
× 5.37 × 10−18 eV

so that the first three energy eigenvalues for L = 10 nm are

E1 = 54 meV

E2 = 215 meV

E3 = 484 meV

and the differences in energy between adjacent energy eigenvalues are
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�E12 = 161 meV

�E23 = 269 meV

Increasing the value of the potential well width by a factor of 2 to L = 20 nm reduces
the energy eigenvalues by a factor of 4. The energy eigenvalues scale as 1/L2, and so
they are quite sensitive to the size of the potential well. For practical systems, we
would like �Enm to be large, typically �Enm � kBT . However, although En scales
as n2/L2, the difference in energy levels scales linearly with increasing eigenvalue, n.
For adjacent energy levels, the difference in energy increases linearly with increasing
eigenvalue, as

�En+1,n =
--h2

2me
· π

2

L2

(
(n + 1)2 − n2

) =
--h2

2me
· π

2

L2
(2n + 1)

At room temperature kBT = 25 meV. Thus for the case n = 1 we have the condition

L2 �
--h2

2me
· π2

kBT
(2n + 1) = 3--h2

2me
· π2

kBT
= 3

0.025
× 5.37 × 10−18 = 6.44 × 10−16 m2

So, for the situation we are considering, L � 25 nm.
(b) We now use the results of (a) to estimate the size of a quantum box in

GaAs with no occupied electron states at which there is a cross-over from classical
coulomb blockade energy to quantum energy eigenvalues dominating electron energy
levels.

For a one-dimensional, rectangular potential well of width L and infinite barrier
energy the eigenenergy levels are given by

Enx =
--h2

2m
· n

2
xπ

2

L2

and the differences in energy levels are

�Enx+1,nx =
--h2

2m
· π

2

L2
(2nx + 1)

Adding the energy contributions from the x, y, and z directions of the quantum box
gives energy

En =
--h2

2m
·
(
n2
x + n2

y + n2
z

)
π2

L2

so that we expect the difference in quantum energy to scale as 1/L2. Because the clas-
sical coulomb blockade energy �E = e2/2C scales as 1/L , with decreasing size there
must be a cross-over to quantum energy eigenvalues dominating electron dynamics.

For a quantum box in GaAs with no occupied electron states, a simple estimate for
the cross-over size is determined by Enx=1,ny=1,nz=1 = e2/2C . If we approximate the
capacitance as C = 4πε0εr(L/2), then
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L = 3π2--h2

2m∗
e

· 4πε0εr

e2

For GaAs, usingm∗
e = 0.07 × m0 and εr = 13.1 gives a characteristic size for the cross-

over of L = 147 nm and a ground-state energy E1 = 6.75 meV. Clearly, for quantum
dots in GaAs characterized by a size L � 150 nm, quantization in energy states will
dominate. However, if necessary, one should also be careful to include the physics
behind the coulomb blockade by calculating a quantum capacitance using electron
wave functions and a quantum coulomb blockade by self-consistently solving for the
wave functions and Maxwell’s equations.

Solution 3.3
To accommodate the fact that electrons in the conduction band of different semicon-
ductors labeled 1 and 2 have differing effective electron mass, simple models of semi-
conductor heterojunction barrier transmission and reflection require that the electron
wave function satisfy ψ1|0−δ = ψ2|0+δ and (1/m1) · ∇ψ1|0−δ = (1/m2) · ∇ψ2|0+δ at
the heterojunction interface. This ensures conservation of current across the heteroint-
erface. In this limited model, current conservation is taken to be more important than
ensuring continuity in the first spatial derivative of the wave function.

We now calculate the transmission and reflection coefficient for an electron of energy
E , moving from left to right, impinging normally to the plane of a semiconductor
heterojunction potential barrier of energy V0, where the effective electron mass on the
left-hand side is m1 and the effective electron mass on the right-hand side is m2.

At the boundary between regions 1 and 2 at position x0, we require continuity in ψ

and ∇ψ/m j , so that

ψ1|x0 = ψ2|x0

and

1

m1

d

dx
ψ1

∣∣∣∣
x0

= 1

m2

d

dx
ψ2

∣∣∣∣
x0

This leads to

A + B = C + D

and

A − B = m1k2

m2k1
C − m1k2

m2k1
D

If we know that the particle is incident from the left, then A = 1 and D = 0, giving

1 + B = C

1 − B = m1k2

m2k1
C
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Recognizing velocity v1 = --hk1/m1 and v2 = --hk2/m2 and solving for the transmission
probability |C |2 and the reflection probability |B|2 gives

|C |2 = 4(
1 + m1k2

m2k1

)2 = 4(
1 + v2

v1

)2

|B|2 =

(
1 − m1k2

m2k1

)2

(
1 + m1k2

m2k1

)2 =

(
1 − v2

v1

)2

(
1 + v2

v1

)2

From this it is clear that there is no reflection when particle velocity is the same in each
of the two regions. This is an example of an impedance-matching condition that, in this
case, will occur when particle energy E = V0/(1 − m2/m1).

It is worth making a few comments about our approach to solving this exercise. We
selected two boundary conditions to guarantee current conservation and no discontinu-
ity in the electron wave function. However, with this choice, we were unable to avoid
the possibility of kinks in the wave function. Such an approach was first discussed
by Bastard.8 Unfortunately, the Schrödinger equation cannot be solved correctly using
different effective electron masses for electrons on either side of an interface. A more
complex, but correct, way to proceed is to use the atomic potentials of atoms form-
ing the heterointerface and solve using the bare electron mass and the usual boundary
conditions

ψ |x0−δ = ψ |x0+δ

and

dψ

dx

∣∣∣∣
x0−δ

= dψ

dx

∣∣∣∣
x0+δ

A simplified version of this situation might use the Kronig–Penney potential, which
will be discussed in Chapter 4.

There are a number of additional reasons why the model we have used should only
be considered elementary. For example, the electron can be subject to other types
of scattering. Such scattering may destroy either momentum or both momentum and
energy conservation near the interface. This may take the form of diffuse electron
scattering due to interface roughness or high phonon emission probability. The presence
of nonradiative electron recombination due to impurities and traps, or, typically in direct
band-gap semiconductors, radiative processes may be important. These effects may
result in a nonunity sum of transmission and reflection coefficients (R + T �= 1).

Situations often arise in which an effective electron mass cannot be used to describe
electron motion. In this case the electron dispersion relation is nonparabolic over the

8 G. Bastard, Phys. Rev. B24, 5693 (1981).
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energy range of interest. In addition, when the character (or s, p, d, etc., symmetry)
of electron wave function is very different on both sides of potential step, the simple
approach used above is inappropriate and can lead to incorrect results.

Solution 3.4

V0

P
ot

en
ti

al
, V

(x
)

Bound states for
energy E < V0

− L 0 L Distance, x

V0

Bound states for
energy E < V0

0 L Distance, x

Symmetric potential

Asymmetric potential

−L L Distance, x

ψ (x)

1 ψ1

ψ4

ψ2

ψ3

L Distance, x0

ψ (x)

√2

ψ4

ψ2

P
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al
, V

(x
)

V

 

In this exercise, an asymmetric one-dimensional potential well of width L has an
infinite potential energy barrier on the left-hand side and a finite constant potential of
energy V0 on the right-hand side. We aim to find the minimum value of L for which
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a particle of mass m has at least one bound state. A quick way to a solution is to
compare with the results for the symmetric potential considered in Section 3.7. The
above figure sketches four bound-state wave functions for a particle of mass m in a
symmetric potential for which V0L2 = 25--h2/2m, so that LK0 = L

√
2mV0/

--h = 5. As
expected, the wave functions have alternating even and odd parity, with even parity for
the lowest energy state, ψ1.

The lower part of the above figure shows the asymmetric potential that arises when
the potential for x < 0 is infinite. Because the wave function must be zero for x < 0, the
only allowed solutions for bound states are of the forms ψ2 and ψ4 previously obtained
for the symmetric case and x > 0. These correspond to the odd-parity wave functions
that are found using the graphical method sketched below when V0L2 = 25--h2/2m, so
that LK0 = L

√
2mV0/

--h = 5.

5
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3

2

1

10 2 3 4 5 Lk

Lκ

kL
·c

ot
(k

L
) 

=
 −

κL

kL
·c

ot
(k

L
) 

=
 −

κL

π/2 π 3π/2

The lowest energy solution exists where the radius of the arc LK0 = L
√

2mV0/
--h

intersects the function kL · cot(kL) = −κL . Vanishing binding energy will occur when
the particle is in a potential so that LK0 → π/2 and k � k. This situation is sketched
below.

5

4

3

2

1

0 1 2 3 4 5 Lk

Lκ

kL
·c

ot
(k

L
) 

=
 −

κL

kL
·c

ot
(k

L
) 

=
 −

κL

π/2 π 3π/2



162 Using the Schrödinger wave equation

Since LK0 = L
√

2mV0/
--h, in the limit of vanishing binding energy L

√
2mV0/

--h ≥ π/2,
so that

L ≥ π --h/2
√

2mV0

To find the minimum value of L , we need to know the values of V0 and m. For the
case in which the step potential energy is V0 = 1 eV, the minimum value of L for an
electron is Lmin ≥ π --h/2(2mV0)1/2 ∼ 0.3 nm.

Solution 3.5
(a) Here we seek the eigenfunction and eigenvalue of a particle in a delta-function
potential well,V (x) = −bδ(x = 0), whereb is a measure of the strength of the potential.
Due to the symmetry of the potential we expect the wave function to be an even function.
The delta function will introduce a kink in the wave function. Schrödinger’s equation
for a particle subject to a delta-function potential is(−--h2

2m

d2

dx2
− bδ(x = 0)

)
ψ(x) = Eψ(x)

Integrating between x = 0− and x = 0+
x=0+∫

x=0−

(
d2

dx2
ψ(x)

)
dx =

x=0+∫
x=0−

(−2m
--h2

(E + bδ(x = 0))ψ(x)

)
dx

results in

ψ ′(0+) − ψ ′(0−) = −2mb
--h2

ψ(0)

where we have defined dψ/dx = ψ ′. One now notes that for an even function the
spatial derivative is odd, so that ψ ′(0+) = −ψ ′(0−), and one may write

ψ ′(0+) − ψ ′(0−) = 2ψ ′(0+) = −2mb
--h2

ψ(0)

This is our boundary condition.
The Schrödinger equation is (−--h2/2m)d2ψ(x)/dx2 = Eψ(x) for x > 0 and x < 0.

For a bound state we require ψ(x) → 0 as x → ∞ and ψ(x) → 0, as x → −∞ so the
only possibility is

ψ(x) = Ae−k|x |

where k =
√

2m|E |/--h2. Substituting this wave function into Schrödinger’s equation
gives −--h2k2/2m = E , but from our previous work

2ψ ′(0+) = −2Ake−kx |x=0 = −2mb
--h2

ψ(0) = −2mb
--h2

Ae−kx |x=0
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so that k = mb/--h2. Hence, we may conclude that

E = −mb2

2--h2

is the energy of the bound state.
To find the complete expression for the wave function we need to evaluate A. Nor-

malization of the wave function requires

x=∞∫
x=−∞

|ψ(x)|2dx = 1

and this gives A = √
k so that ψ(x) =

√
mb/--h2e−

mb
h2 |x |.

The spatial decay (the e−1 distance) for this wave function is just �x = 1/k =
--h2/mb. Physically, it is reasonable to use the delta-function potential approximation
when the spatial extent of the potential is much smaller than the spatial decay of the
wave function. This might occur, for example, in the description of certain single-atom
defects in a crystal.

(b) It follows from (a) that any delta function in the potential of the form V (x) =
±bδ(x = 0) introduces a kink in the wave function. To show this one integrates
Schrödinger’s equation for a particle subject to a delta-function potential(−--h2

2m

d2

dx2
± bδ(x = 0)

)
ψ(x) = Eψ(x)

between x = 0− and x = 0+ in such a way that

x=0+∫
x=0−

(
d2

dx2
ψ(x)

)
dx =

x=0+∫
x=0−

(−2m
--h2

(E ∓ bδ(x))ψ(x)

)
dx

d

dx
ψ(0+) − d

dx
ψ(0−) = ±2mb

--h2
ψ(0)

So, for finite ψ(0) and b there is always a difference in the slope of the wave functions
at ψ(0+) and ψ(0−), and hence a kink, in the wave function about x = 0. We may
conclude that a delta-function potential introduces a kink in the wave function.

Solution 3.6
To avoid space-charging effects in the emitter and collector barriers of a NET, it is
necessary to dope the emitter and collector barriers to an n-type impurity concentration
density n > j/evav, where vnv is an appropriate average electron velocity in the barrier
and j is the current density. For typical values vav = 107 cm s−1 and n > 1017 cm−3

this gives a maximum current density near j = 1.6 × 105 A cm−2.
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Solution 3.7
We would like to use the method outlined in Section 3.4 to numerically solve the
one-dimensional Schrödinger wave equation for an electron of effective mass m∗

e =
0.07 × m0 in a rectangular potential well of width L = 10 nm bounded by infinite
barrier energy.

Our solution is a MATLAB computer program which consists of two parts. The
first part deals with input parameters such as the length L , effective electron mass, the
number of discretization points, N , and the plotting routine. It is important to choose
a high enough value of N so that the wave function does not vary too much between
adjacent discretization points and so that the three-point finite-difference approximation
used in Eqn (3.40) is reasonably accurate.

Distance, x (nm)
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The second part of the computer program solves the discretized Hamiltonian
matrix (Eqn (3.44)) and is a function, solve schM, called from the main routine,
Chapt3Exercise7. The diagonal matrix element given by Eqn (3.42) has potential values
Vj = 0. The adjacent off-diagonal matrix elements are given by Eqn (3.43).

In this particular exercise the first four energy eigenvalues are E0 = 0.0537 eV,
E1 = 0.2149 eV, E2 = 0.4834 eV, and E3 = 0.8592 eV. The eigenfunctions generated
by the program and plotted in the above figure are not normalized.

The following lists an example program written in the MATLAB language. The main
program is called Chapt3Exercise7.

Listing of MATLAB program for Exercise 3.7

%Chapt3Exercise7.m
%numerical solution to Schroedinger equation for
%rectangular potential well with infinite barrier energy
clear
clf;

length = 10; %length of well (nm)
npoints=200; %number of sample points
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x=0:length/npoints:length; %position of sample points
mass=0.07; %effective electron mass
num sol=4; %number of solutions sought

for i=1:npoints+1; v(i)=0; end %potential (eV)

[energy,phi]=solve schM(length,npoints,v,mass,num sol); %call solve schM

for i=1:num sol
sprintf(['eigenenergy (',num2str(i),') =',num2str(energy(i)),'eV'])%energy eigenvalues
end

figure(1);
plot(x,v,'b');xlabel('Distance (nm)'),ylabel('Potential energy, (eV)');
ttl=['Chapt3Exercise7, m* =',num2str(mass),'m0, Length =',num2str(length),'nm'];
title(ttl);

s=char('y','k','r','g','b','m','c'); %plot curves in different colors

figure(2);
for i=1:num sol

j=1+mod(i,7);
plot(x,phi(:,i),s(j)); %plot eigenfunctions
hold on;

end
xlabel('Distance (nm)'),ylabel('Wave function');
title(ttl);
hold off;

Listing of solve schM function for MATLAB program used in Exercise 3.7

function [e,phi]=solve schM(length,n,v,mass,num sol)
% Solve Schrodinger equation for energy eigenvalues and eigenfunctions.
% [energy, phi fun]=solve sch(length,number,potential,mass,sol num)
% solves time-independent Schrodinger equation in region bounded by 0<=x<=length.
% Potential is infinite outside this region.
%
% length length of region (nm)
% n number of sample points
% v potential inside region (eV)
% mass effective electron mass
% sol num number of solutions sought
%
% e energy eigenvalue (eV)
% phi eigenfunction with eigenvalue = e
%

hbar=1.054571596; %Planck’s constant (x10ˆ34 J s)
hbar2=hbarˆ2;
echarge=1.602176462; %electron charge (x10ˆ19 C)
baremass=9.10938188; %bare electron mass (x10ˆ31 kg)
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const=hbar2/baremass/echarge; %(hbarˆ2)/(echarge*1nmˆ2*m0)
const=const/mass; %/m-effective
deltax=length/n; %x-increment = length(nm)/n
deltax2=deltaxˆ2;
const=const/deltax2;

for i=2:n
d(i-1)=v(i)+const; %diagonal matrix element
offd(i-1)=const/2; %off-diagonal matrix element

end

t1=-offd(2:n-1);
Hmatrix=diag(t1,1); %upper diagonal of Hamiltonian matrix

Hmatrix=Hmatrix+diag(t1,-1); %add lower diagonal of Hamiltonian matrix

t2=d(1:n-1);
Hmatrix=Hmatrix+diag(t2,0); %add diagonal of Hamiltonian matrix

[phi,te]=eigs(Hmatrix,num sol,'SM');%use matlab function eigs to find num sol eigenfunctions
and eigenvalues

for i=1:num sol
e(i)=te(i,i); %return energy eigenvalues in vector e

end
phi=[zeros(1,num sol);phi;zeros(1,num sol)]; %wave function is zero at x = 0 and x = length
return



4 The propagation matrix

4.1 Introduction

In the first two chapters of this book we learned about the way a particle moves in
a potential. Because in quantum mechanics particles have wavy character, this modi-
fies how they scatter from a change in potential compared with the classical case. In
Section 3.8 we calculated transmission and reflection of an unbound particle from a
one-dimensional potential step of energy eV0. The particle was incident from the left
and impinged on the potential barrier with energy E > eV0. Significant quantum me-
chanical reflection probability for the particle occurred because the change in particle
velocity at the potential step was large. This result is in stark contrast to the predic-
tions of classical mechanics in which the particle velocity changes but there is no
reflection.

In Section 3.10 we applied our knowledge of electron scattering from a step potential
to the design of a new type of transistor. The analytic expressions developed were very
successful in focusing our attention on the concept of matching electron velocities as
a means of reducing quantum mechanical reflection that can occur at a semiconductor
heterointerface. In this particular case, it is obvious that we could benefit from a model
that is capable of taking into account more details of the potential. Such a model
would be a next step in developing an accurate picture of transistor operation over
a wide range of voltage bias conditions. We need a method for finding solutions to
complicated potential structures for which analytic expressions are unmanageable.

Putting in the time and effort to develop a way of calculating electron transmission in
one dimension will also be of benefit for those wishing to understand and apply quantum
mechanics to a wide range of situations of practical importance. In this chapter, we will
introduce our approach and apply it to situations that illustrate the interference effects
of “wavy” electrons caused by scattering off changes in potential.

In the following, we would like to extend our calculation to go beyond a simple step
change in potential to a one-dimensional potential of arbitrary shape. We will do this by
approximating the arbitrary potential as a series of potential steps. The transmission and
reflection coefficients are calculated at the first potential step for a particle of energy E

167
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incident from the right. One then imagines the transmitted particle propagating to the
next potential step, where it again has a probability of being transmitted or reflected.
Associated with every potential step and free propagation to the next potential step is a
2 × 2 matrix which carries all of the amplitude and phase information on transmission
and reflection at each potential step and propagation to the next potential step. The
total one-dimensional propagation probability for a potential consisting of a number of
potential steps may be calculated by multiplying together each 2 × 2 matrix associated
with transmission and reflection at each potential step.

Before developing the method, it is useful to consider the conditions under which
this approach will not introduce significant errors. Obviously it will work very well
for a series of step potentials. The validity of the approach is a little less clear if we
extend the idea and use a series of step changes in potential to approximate a smoothly
varying potential. The errors introduced by the steps are a little difficult to quantify, but
it is usually safe to say that errors are small if spacing between steps is small compared
with the shortest particle wavelength being considered.

4.2 The propagation matrix method

Suppose an electron of energy E and mass m is incident from the left on an arbitrarily
shaped, one-dimensional, smooth, continuous potential, V (x). We can solve for a parti-
cle moving in an arbitrary potential by dividing the potential into a number of potential
steps.

One may use the propagation matrix method to calculate the probability of the
electron emerging on the right-hand side of the barrier. The problem is best approached
by dividing it into small, easy-to-understand, logical parts. In the following, the four
basic elements needed are summarized and then described sequentially in greater detail.
In the next section, a step-by-step approach to writing a computer program to calculate
transmission probability is given.

Part I summary: Calculate the propagation matrix p̂step for transmission and re-
flection of the wave function representing a particle of energy E impinging on a single
potential step. The potential step we consider is at position x j+1 in Fig. 4.1.

Part II summary:Calculate the propagation matrix p̂free for propagation of the wave
function between steps. The free propagation we consider is between positions x j and
x j+1 in Fig. 4.1. The distance of this free propagation is L j .

Part III summary: Calculate the propagation matrix for the j-th region in Fig. 4.1.
This is achieved if we multiply p̂step and p̂free to obtain the propagation matrix p j for
the j-th region of the discretized potential.

Part IV summary: Calculate the total propagation matrix p̂ for the complete poten-
tial by multiplying together the propagation matrices for each region of the discretized
potential.
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Lj = xj + 1 − xj
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potential consists of

discrete values Vj = V(xj) 

Fig. 4.1. Diagram illustrating approximation of a smoothly varying one-dimensional potential V (x)
with a series of potential steps. In this approach, the potential between positions x j and x j+1 in
region j is approximated by a value Vj . Associated with the potential step at x j and free
propagation distance L j = x j+1 − x j is a 2 × 2 matrix which carries all of the amplitude and phase
information on the particle.

Energy, E

Distance, x

eVj

eVj + 1

Region j Region j + 1

x = xj + 1

A C  DB

Fig. 4.2. Sketch of a one-dimensional potential step. In region j the potential energy is eVj and in
region j + 1 the potential energy is eVj+1. The coefficients A and C correspond to waves traveling
left to right in regions j and j + 1, respectively. The coefficients B and D correspond to waves
traveling right to left in regions j and j + 1, respectively. The transition between region j and
region j + 1 occurs at position x = x j+1.

We now proceed to describe in more detail each of the parts summarized above that
contribute to the propagation method.

Part I: The step propagation matrix
Figure 4.2 shows the detail of the potential step at position j + 1. The electron (or
particle) has wave vector

k j = (2m(E − eVj ))1/2

--h
(4.1)
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in region j , and the wave functions in regions j and j + 1 are

ψ j = A je
ik j x + Bje

−ik j x (4.2)

ψ j+1 = C j+1e
ik j+1 + Dj+1e

−ik j+1x (4.3)

Following the convention we have adopted in this book, A and C are coefficients for
the wave function traveling left to right in regions j and j + 1, respectively. B and D
are the corresponding right-to-left traveling-wave coefficients.

The two wave functions given by Eqn (4.2) and Eqn (4.3) are related to each other by
the constraint that ψ and dψ/dx must be continuous. This means that at the potential
step that occurs at the boundary between regions j and j + 1 we require

ψ j |x=x j+1 = ψ j+1|x=x j+1 (4.4)

and

dψ j

dx

∣∣∣∣
x=x j+1

= dψ j+1

dx

∣∣∣∣
x=x j+1

(4.5)

Substituting Eqn (4.2) and Eqn (4.3) into Eqn (4.4) and Eqn (4.5) gives the two equations

A je
ik j x + Bje

−ik j x = C j+1e
ik j+1x + Dj+1e

−ik j+1x (4.6)

A je
ik j x − Bje

−ik j x = k j+1

k j
C j+1e

ik j+1x − k j+1

k j
D j+1e

−ik j+1x (4.7)

It is worth mentioning that, as we have already discussed in Section 3.8.2, for semi-
conductor heterostructures with different effective electron mass, current continuity
requires that all factors (k j+1/k j ) in Eqn (4.7) be replaced with (m jk j+1/m j+1k j ).

By organizing into rows and columns the terms that contain left-to-right traveling
waves of the form eikx and right-to-left traveling waves of the form e−ikx , one may write
Eqn (4.6) and Eqn (4.7) for a potential step at position x j+1 = 0 as a matrix equation:

[
1 1
1 −1

][
A j

B j

]
=

 1 1
k j+1

k j
−k j+1

k j


[C j+1

Dj+1

]
(4.8)

Unfortunately, as it stands, this expression is not in a very useful form. We would
much prefer a simple equation of the type[
A j

B j

]
= p̂ jstep

[
C j+1

Dj+1

]
(4.9)

where p̂ jstep is the 2 × 2 matrix describing wave propagation at a potential step. To
obtain this expression, we need to eliminate the 2 × 2 matrix on the left-hand side of
Eqn (4.8). This is not difficult to do. We simply recall from basic linear algebra that the
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inverse of a 2 × 2 matrix

Â =
[
a11 a12

a21 a22

]
(4.10)

is

Â−1 = 1

det

[
a22 −a12

−a21 a11

]
(4.11)

where the determinant of Â is given by

det = a11a22 − a12a21 (4.12)

Hence, the inverse of

[
1 1
1 −1

]
is

−1

2

[−1 −1
−1 1

]
= 1

2

[
1 1
1 −1

]
, so that we may now

write

[
A j

B j

]
= 1

2

[
1 1
1 −1

] 1 1
k j+1

k j
−k j+1

k j


[C j+1

Dj+1

]
= p̂step

[
C j+1

Dj+1

]
(4.13)

where the step matrix is

p̂ jstep = 1

2




1 + k j+1

k j
1 − k j+1

k j

1 − k j+1

k j
1 + k j+1

k j


 (4.14)

This is our result for the step potential that will be used later. We continue the devel-
opment of the matrix method by considering the propagation between steps.

Part II: The propagation between steps
Propagation between potential steps separated by distance L j carries phase information
only so that ψA j e

ik j L j = ψC j and ψBj e
−ik j L j = ψDj . This may be expressed in matrix

form as[
eik j L j 0

0 e−ik j L j

][
A j

B j

]
=
[
C j+1

Dj+1

]
(4.15)

or, alternatively,[
A j

B j

]
= p̂ jfree

[
C j+1

Dj+1

]
(4.16)
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where

p̂ jfree =
[
e−ik j L j 0

0 eik j L j

]
(4.17)

Part III: The propagation matrix p j for the j-th region
Because we are dealing with probabilities, in order to find the combined effect of p̂ jfree

and p̂ jstep we simply multiply the two matrices together. Hence, propagation across the
complete j-th element consisting of a free propagation region and a step is

p̂ j = p̂ jfree p̂ jstep =
[
p11 p12

p21 p22

]
(4.18)

When we multiply out the matrices p̂ jfree p̂ jstep given by Eqn (4.17) and Eqn (4.14),
respectively, it gives us the propagation matrix for the j-th region:

p j = 1

2



(

1 + k j+1

k j

)
e−ik j L j

(
1 − k j+1

k j

)
e−ik j L j

(
1 − k j+1

k j

)
eik j L j

(
1 + k j+1

k j

)
eik j L j


 (4.19)

Notice that p11 = p∗
22 and p21 = p∗

12. This interesting symmetry, which is embedded
in the matrix, allows us to write

p̂ j =
[
p11 p12

p∗
12 p∗

11

]
(4.20)

Because we will make use of this fact later, it is worth spending some time investigating
the origin of this symmetry. In Section 4.4 the concept of time-reversal symmetry is
introduced. It is this that allows us to write Eqn (4.20).

Part IV: Propagation through an arbitrary series of step potentials
For the general case of N potential steps, we write down the propagation matrix for
each region and multiply out to obtain the total propagation matrix,

P̂ = p̂1 p̂2 . . . p̂ j . . . p̂N =
j=N∏
j=1

p̂ j (4.21)

Since the particle is introduced from the left, we know that A = 1, and if there is no
reflection at the far right then D = 0. We may then rewrite[
A
B

]
=
(

j=N∏
j=1

p̂ j

)[
C
D

]
= P̂

[
C
D

]
(4.22)
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as[
1
B

]
=
[
p11 p12

p21 p22

][
C
0

]
(4.23)

In this case, the transmission probability is simply |C |2, or

|C |2 =
∣∣∣∣ 1

p11

∣∣∣∣
2

(4.24)

Equation (4.24) is a particularly simple result. We will make use of this when we
calculate the transmission probability of a particle through an essentially arbitrary one-
dimensional potential.

4.3 Program to calculate transmission probability

To apply what we know so far about propagation of a particle through an arbitrary
potential, we need to write a computer program or algorithm. In addition, because the
exercises at the end of this chapter require a computer program, it is worth spending
time becoming familiar with the basic approach.

Since you may choose to write the program code in one of a number of possible
languages such as c, c++, f77, f90, MATLAB, and so on, in the following we will
mainly be concerned with describing how to put the building blocks together in a
natural flow.

The program calculates transmission probability for a particle of mass m incident
from the left on a one-dimensional potential profile V (x). The program uses the prop-
agation matrix method and plots the results as a function of particle energy E . To
illustrate how to put the code together we will refer to MATLAB in part because of
both its popularity and the ease with which it handles matrix multiplication.

The following is the simple six-step flow of the propagation matrix algorithm.
STEP 1. Define values of useful constants such as the square root of minus one

(eye), Planck’s constant (hbar), electron charge (echarge) and particle mass (m). As a
starting point, you may want to set your array size to 200 elements each for storing
energy values, transmission coefficient values, and potential values. In some computer
languages such as f77 you will have to dimension the size of arrays.

STEP 2. Set up the potential profile by discretizing V (x) into, for example, N = 200
values, V(i), where i is an integer index for the array.

STEP 3. For fixed-particle energy E(j), calculate wave number k(i) for each position
in the potential V(i). The wave number, which may be calculated using Eqn (4.1), can
be complex. Then create and multiply through each propagation matrix, p, for each
increment in x propagation to obtain total propagation matrix, bigP.
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MATLAB example
bigP=[1,0;0,1]; %default value of matrix bigP

for i=1:N
k(i)=sqrt(2*e*m*(E(j)-V(i)))/hbar; %wave number at each position in potential V( j)

end
for n=1:(N-1)

p(1,1)=0.5*(1+k(n+1)/k(n))*exp(-eye*k(n)*L(n));
p(1,2)=0.5*(1-k(n+1)/k(n))*exp(-eye*k(n)*L(n));
p(2,1)=0.5*(1-k(n+1)/k(n))*exp(eye*k(n)*L(n));
p(2,2)=0.5*(1+k(n+1)/k(n))*exp(eye*k(n)*L(n));
bigP=bigP*p;

end

STEP 4. Calculate the transmission coefficient, Trans, for the current value of par-
ticle energy, E(j). It is convenient to use a negative natural logarithmic scale, since
transmission probability often varies exponentially with particle energy E(j). In this
approach, we use Trans = − log(|bigP(1)|2), so that unity (maximum) transmission
corresponds to Trans = 0 and low transmission corresponds to a large numerical value.

STEP 5. Increment to the next value of particle energy E(j). If E(j) isn’t greater than
the maximum energy you wish to consider, repeat the calculation from step 3 to obtain
the next transmission coefficient for the next energy value.

STEP 6. Plot transmission coefficient data versus energy x(j) = E(j) using any
convenient graphing application.

For those interested in learning more about numerical solutions using the propa-
gation matrix method and its application to electron transport across semiconductor
heterostructures, the footnote gives a few useful references.1

4.4 Time-reversal symmetry

So far we have adopted the convention that a wavy particle incident on a potential step
at position x = x j+1 is initially traveling from left to right. As illustrated in Fig. 4.2,
the incident wave has a coefficient A, and the forward scattered wave has coefficient
C . The wave reflected at the potential step has a coefficient B, and a wave incident
traveling from right to left has coefficient D. The corresponding wave functions on
either side of the potential step are

ψ j (x, t) = (
A je

ik j x + Bje
−ik j x)e−iωt (4.25)

1 M. Steslicka and R. Kucharczyk, Vacuum 45, 211 (1994), B. Jonson and S. T. Eng, IEEE J. Quant. Electron. 26,
2025 (1990), M. O.Vassell, J. Lee, and H. F. Lockwood, J. Appl. Phys. 54, 5206 (1983), and G. Bastard, Phys.
Rev. B24, 5693 (1981).
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and

ψ j+1(x, t) = (
C j+1e

ik j+1x + Dj+1e
−ik j+1x

)
e−iωt (4.26)

If, as we have in fact assumed, the potential step is real and does not change with time,
then there is no way we can admit the existence of a solution based on a left-to-right
propagating incident wave without also allowing an associated time-reversed solution.
To see why this is so, we start by writing the time-dependent Schrödinger equation

Hψ(x, t) = i--h
∂

∂t
ψ(x, t) (4.27)

Reversing time requires changing the sign of the parameter t → −t . Performing the
sign change and taking the complex conjugate gives

Hψ∗(x,−t) = i--h
∂

∂t
ψ∗(x,−t) (4.28)

The significance of this is that Eqn (4.27) and Eqn (4.28) are the same except for the
replacement of ψ(x, t) with ψ(x,−t). This means that if ψ(x, t) is a solution then the
time-reversed solution ψ∗(x,−t) also applies. To see what effect this has, one needs
to compare the regular propagation matrix with the time-reversed case.

We start by recalling that the propagation matrix links coefficients A and B to C and
D via a matrix[
A
B

]
=
[
p11 p12

p21 p22

][
C
D

]
(4.29)

where we have arranged into rows and columns terms that contain left-to-right traveling
waves of the form eikx and right-to-left traveling waves of the form e−ikx . Since time
reversal of the wave function ψ j (x, t) = (A jeik j x + Bje−ik j x )e−iωt gives ψ∗

j (x,−t) =
(A∗

j e
−ik j x + B∗

j e
ik j x )e−iωt and does not change the energy of the system, we may write

the time-reversed form of Eqn (4.29) as[
B∗

A∗

]
=
[
p11 p12

p21 p22

][
D∗

C∗

]
(4.30)

The trick now is to take the complex conjugate of both sides and interchange rows so
that a direct comparison can be made with Eqn (4.29). This gives our time-reversed
solution as[
A
B

]
=
[
p∗

22 p∗
21

p∗
12 p∗

11

][
C
D

]
(4.31)

Comparison of Eqn (4.29) and Eqn (4.31) confirms our previous assertion

p11 = p∗
22 (4.32)
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and

p21 = p∗
12 (4.33)

This relationship may be thought of as a direct consequence of the time-reversal sym-
metry built into the Schrödinger equation when the potential is real and does not change
with time.

There are situations in which time-reversal symmetry is broken. An example is when
there is dissipation in the system. Often, dissipation can be modeled by introducing an
imaginary part to the potential in Schrödinger’s equation. However, we do not intend
to explore this here. Rather, we proceed to make use of our result to find the condition
for current conservation in a system with a real and time-independent potential.

4.5 Current conservation and the propagation matrix

Classically, the temporal change in charge density ρ is related to the spatial divergence
of current density J. The relationship between charge density and current density is
determined by conservation of charge and current. In Chapter 3 we showed that the
current density operator for an electron of charge e is given by

J = − ie--h

2m

(
ψ∗∇ψ − ψ∇ψ∗) (4.34)

Our initial focus is electron propagation in the x direction across a one-dimensional
potential step shown schematically in Fig. 4.3. We first note that the transmission
coefficient |C/A|2 and the reflection coefficients |B/A|2 are ratios, so that absolute
normalization of wave functions is not important. From Section 4.4 we know that if
the spatial part of the wave function ψ(x) is a traveling wave, then ψ∗(x) is a time-
reversed solution. The wave vector k j describes a plane wave and is real because we
are restricting our present discussion to simple traveling waves and because particle
energy E > eV2. Later, we will consider the case when E < eV2 and k j is imaginary.

Energy, E

Distance, x

eV1

eV2

Region 1 Region 2

x12 = 0

A C  DB

Fig. 4.3. Sketch of a one-dimensional potential step. In region 1 the potential energy is eV1, and in
region 2 the potential energy is eV2. The transition between region 1 and region 2 occurs at position
x = x12.
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For k j real, the wave function and its complex conjugate in region 1 and in region 2
may be expressed as

ψ1 = 1√
k1

(
Aeik1x + Be−ik1x

)
ψ∗

1 = 1√
k1

(
A∗e−ik1x + B∗eik1x

)
(4.35)

ψ2 = 1√
k2

(
Ceik2x + De−ik2x

)
ψ∗

2 = 1√
k2

(
C∗e−ik2x + D∗eik2x

)
(4.36)

Because we assume a potential energy step between regions 1 and 2, the wave vectors

k1 and k2 are, in general, different. The factor 1/
√
k j appears in the equation because if

we normalize for unit flux then |A|2 → |A|2/v1, so that A → A/
√
k1.

Applying the current density operator (Eqn (4.34)) when particle energy E > eV0

gives

J (x) = e--h

m
(|A|2 − |B|2) for x < 0 (4.37)

and

J (x) = e--h

m
(|C |2 − |D|2) for x > 0 (4.38)

Equations (4.35) and (4.36), when used with the current density operator given by
Eqn (4.34), allow us to state that current conservation requires

A∗A − B∗B = C∗C − D∗D (4.39)

In words, the net current flow left to right in region 1 must be equal to the net flow in
region 2.

The coefficients are related to each other by the 2 × 2 propagation matrix[
A
B

]
=
[
p11 p12

p21 p22

][
C
D

]
(4.40)

so that

A = p11C + p12D A∗ = p∗
11C

∗ + p∗
12D

∗ (4.41)

B = p21C + p22D B∗ = p∗
21C

∗ + p∗
22D

∗ (4.42)

For no incoming wave from the right D = 0, we can make use of Eqn (4.41) and
Eqn (4.42) and rewrite the left-hand side of Eqn (4.39) as

A∗A − B∗B = (p∗
11 p11 − p∗

21 p21)C∗C (4.43)

However, we recall that for D = 0 current conservation (Eqn (4.39)) requires

A∗A − B∗B = C∗C (4.44)
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The only nontrivial way to simultaneously satisfy Eqn (4.43) and Eqn (4.44) is if

p∗
11 p11 − p∗

21 p21 = 1 (4.45)

We now make use of the fact that p11 = p∗
22 and p21 = p∗

12, so that

p11 p22 − p12 p21 = 1 (4.46)

or, in more compact form,

det(P̂) = 1 (4.47)

This, then, is an expression of current conservation when k j is real. For imaginary
k j , Eqn (4.47) is modified to det(P̂) = ±i , where the ± depends upon whether the
incoming wave is from the left or the right.

4.6 The rectangular potential barrier

In Section 3.9 we discussed transmission and reflection of a particle incident on a
rectangular potential barrier. A number of interesting results were obtained, including
the quantum mechanical effect of tunneling. In this section, one goal is to explore the
properties of the rectangular potential barrier using the propagation matrix method.
This serves two purposes. First, we can get some practice using the propagation matrix
method. Second, we can check our results against the solutions derived in Chapter 3
and in this way verify the validity of the propagation matrix method.

Figure 4.4 is a sketch of the rectangular potential barrier we will consider. A wavy
particle incident on the barrier from the left with amplitude A sees a potential step-up
in energy of eV0 at x = 0, a barrier propagation region of length L , and a potential

L

eV0

Step

x = 0

k1
2 = k2

2 + e2mV0/h2

StepBarrier

k1 k2 k1

x = L Distance, x

P
ot

en
ti

al
 e

ne
rg

y,
 e

V
(x

)

Fig. 4.4. Sketch of the potential of a one-dimensional rectangular barrier of energy eV0. The
thickness of the barrier is L . A particle mass m incident from the left of energy E has wave vector
k1. In the barrier region, the wave vector is k2. The wave vectors k1 and k2 are related through
k2

1 = k2
2 + e2mV0/

--h2.
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step-down at x = L . A particle of energy E , mass m, and charge e has wave number
k1 outside the barrier and k2 in the barrier region 0 < x < L .

4.6.1 Transmission probability for a rectangular potential barrier

We start by considering a particle impinging on a step change in potential between two
regions in which the wave vector changes from k1 to k2 due to the potential step-up
shown in Fig. 4.3. The corresponding wave function changes from ψ1 to ψ2. Solutions
of the Schrödinger equation for a step change in potential are (Eqn (4.35) and Eqn
(4.36))

ψ1 = A√
k1
eik1x + B√

k1
e−ik1x (4.48)

ψ2 = C√
k2
eik2x + D√

k2
e−ik2x (4.49)

Of course, the wave functions ψ1 and ψ2 are related to each other by the constraint
that the wave function and its derivative must be continuous. Applying the condition
that the wave function is continuous at the potential step

ψ1|step = ψ2|step (4.50)

and that the derivative of the wave function is continuous

dψ1

dx

∣∣∣∣
step

= dψ2

dx

∣∣∣∣
step

(4.51)

gives

A√
k1

+ B√
k1

= C√
k2

+ D√
k2

(4.52)

A√
k1

− B√
k1

= k2

k1

C√
k2

− k2

k1

D√
k2

(4.53)

Rewritten in matrix form, these equations become

1√
k1

[
1 1
1 −1

][
A
B

]
= 1√

k2


 1 1
k2

k1
−k2

k1


[C

D

]
(4.54)

To eliminate the 2 × 2 matrix on the left-hand side of this equation, we must find its
inverse matrix and multiply the equation by it. The determinant of the left-hand matrix
is (−1 − 1)/k1 = −2/k1, so the inverse of the left-hand matrix is

k1

2
√
k1

[
1 1
1 −1

]
(4.55)
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Hence, we may rewrite Eqn (4.54) as

[
A
B

]
= k1

2

1√
k1

[
1 1
1 −1

] 1 1
k2

k1
−k2

k1


 1√

k2

[
C
D

]

= 1

2
√
k1k2

[
1 1
1 −1

][
k1 k1

k2 −k2

][
C
D

]
(4.56)

Multiplying out the two square matrices gives the 2 × 2 matrix describing propagation
at the step-up in potential

[
A
B

]
= 1

2
√
k1k2

[
k1 + k2 k1 − k2

k1 − k2 k1 + k2

][
C
D

]
(4.57)

Since the rectangular potential barrier consists of a step-up and a step-down, we can
make use of this symmetry and immediately calculate the 2 × 2 matrix for the step-
down by simply interchanging k1 and k2. The total propagation matrix for the rectangular
potential barrier of thickness L consists of the step-up 2 × 2 matrix multiplied by the
propagation matrix from the barrier thickness L multiplied by the step-down matrix.
Hence, our propagation matrix becomes,

P̂ = 1

2
√
k1k2

[
k1 + k2 k1 − k2

k1 − k2 k1 + k2

][
e−ik2L 0

0 eik2L

]
1

2
√
k1k2

[
k2 + k1 k2 − k1

k2 − k1 k2 + k1

]

(4.58)

P̂ = 1

4k1k2

[
(k1 + k2)e−ik2L (k1 − k2)eik2L

(k1 − k2)e−ik2L (k1 + k2)eik2L

][
k2 + k1 k2 − k1

k2 − k1 k2 + k1

]
(4.59)

To find the matrix elements of P̂ , we just multiply out the matrices in Eqn (4.59).
For example p12 becomes

p12 = −i
(
k2

2 + k2
1

)
2k1k2

sin(k2L) (4.60)

The next step we want to take is to calculate the transmission probability for a particle
incident on the barrier. We already know that the transmission of a particle incident
from the left is given by |1/p11|2, so that we will be interested in obtaining p11 from
Eqn (4.59)

p11 = (k2 + k1)(k1 + k2)e−ik2L + (k1 − k2)(k2 − k1)eik2L

4k1k2
(4.61)

p11 =
(
k2

2 + k2
1 + 2k1k2

)
e−ik2L − (

k2
1 + k2

2 − 2k1k2
)
eik2L

4k1k2
(4.62)
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p11 =
(
k2

2 + k2
1

)
(e−ik2L − eik2L )

4k1k2
+ 2k1k2(e−ik2L + eik2L )

4k1k2
(4.63)

p11 = −
(
k2

2 + k2
1

)
(eik2L − e−ik2L )

2 · 2k1k2
+ 1

2
(e−ik2L + eik2L ) (4.64)

In the following we will use this result to calculate transmission probability.

4.6.1.1 Transmission when E ≥ eV0

To take this further, we now specialize to the case in which the energy of the incident
particle is greater than the potential barrier energy. In this case E ≥ eV0, and k2 is real,
so that Eqn (4.64) becomes

p11 = −i
(
k2

2 + k2
1

)
2k1k2

sin(k2L) + cos(k2L) (4.65)

Hence the transmission probability Trans = 1/(p11 · p∗
11) is

Trans = 1

|p11|2 =
(((

k2
2 + k2

1

)
2k1k2

)2

sin2(k2L) + cos2(k2L)

)−1

(4.66)

This equation can be rearranged a little by first noting that cos2(θ ) = 1 − sin2(θ ):

Trans =
(((

k2
2 + k2

1

)
2k1k2

)2

sin2(k2L) + 1 − sin2(k2L)

)−1

(4.67)

Trans =
(

1 +
((

k2
2 + k2

1

2k1k2

)2

− 1

)
sin2(k2L)

)−1

(4.68)

Trans =
(

1 +
(
k4

1 + k4
2 + 2k2

1k
2
2 − 4k2

1k
2
2

)
(2k1k2)2

sin2(k2L)

)−1

(4.69)

Trans =
(

1 +
(
k2

1 − k2
2

2k1k2

)2

sin2(k2L)

)−1

for E ≥ eV0 (4.70)

For particle energy E ≥ eV0, this equation predicts unity transmission when
sin2(k2L) = 0. In this case, Transmax = 1 and k2L = nπ for n = 1, 2, 3, . . .. Such
resonances in transmission correspond to the situation in which the scattered waves
originating from x = 0 and x = L interfere and exactly cancel any reflection from the
potential barrier.
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4.6.1.2 Transmission when E < eV0

For E < eV0 the wave number k2 becomes imaginary. So k2 → ik2 with k2 =
(2m(E − eV0)/--h2)1/2, and we can substitute into our expression for Trans to obtain

Trans =
(

1 +
(
k2

1 + k2
2

2k1k2

)2

sinh2(k2L)

)−1

for E < eV0 (4.71)

where we have made use of the fact that sin(k j x) = (eik j x − e−ik j x )/2i, sinh(k j x) =
(ek j x − e−k j x )/2, sin(ik j x) = −i sinh(k j x), and sin2(ik j x) = −sinh2(k j x).

In this case, the particle with energy less than eV0 can only be transmitted through
the barrier by tunneling. The concept of particle tunneling is purely quantum mechan-
ical. Particles do not tunnel through potential energy barriers according to classical
mechanics.

Now we can compare the results of Eqn (4.71), which we derived using the prop-
agation matrix method, with those obtained previously in Chapter 3 and summarized
by Eqn (3.146). As anticipated, the equations are identical, so we can proceed with
increased confidence in our propagation matrix approach.

There is a great deal more that can be learned about transmission and reflection of
a particle incident on a rectangular potential barrier of energy eV0 by studying the
properties of Eqn (4.70) and Eqn (4.71). Our approach is to investigate the analytic
properties of these equations as a function of particle energy.

4.6.2 Transmission as a function of energy

Because the incident particle is often characterized by its energy, our first task is to
obtain the Trans function in terms of energy. This involves no more than finding k1 and
k2 expressed in terms of particle energy. In the barrier region, when E ≥ eV0, we have
k2 = (2m(E − eV0)/--h2)1/2, so we may write k2

2 = 2m(E − eV0)/--h2. In the nonbarrier
region, k2

1 = 2mE/--h2.

4.6.2.1 Transmission when E ≥ eV0

We now recall that for an incoming particle energy greater than the barrier energy
E ≥ eV0, and we had a transmission function given by Eqn (4.70)

Trans =
(

1 +
(
k2

1 − k2
2

2k1k2

)2

sin2(k2L)

)−1

(4.72)

Using the relations k2
1 = 2mE/--h2 and k2

2 = 2m(E − eV0)/--h2 gives

Trans =
(

1 + 1

4

(
E − (E − eV0)

E1/2(E − eV0)1/2

)2

sin2(k2L)

)−1

(4.73)
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which allows us to write

Trans(E ≥ eV0) =
(

1 + 1

4

(
e2V 2

0

E(E − eV0)

)
sin2(k2L)

)−1

(4.74)

4.6.2.2 Transmission when E < eV0

For the case when the incoming particle has energy less than the barrier energy E < eV0,
the wave vector k2 is related to particle energy E by

k2
2 = 2m(eV0 − E)

--h2
(4.75)

The transmission function given by Eqn (4.71)

Trans =
(

1 +
(
k2

1 + k2
2

2k1k2

)2

sinh2(k2L)

)−1

(4.76)

can now be expressed as

Trans(E < eV0) =
(

1 + 1

4

(
e2V 2

0

E(eV0 − E)

)
sinh2(k2L)

)−1

(4.77)

4.6.3 Transmission resonances

The behavior of particle transmission as a function of wave vector or particle energy is
particularly interesting. Previously, when E ≥ eV0, we had

Trans(E ≥ eV0) =
(

1 + 1

4

(
e2V 2

0

E(E − eV0)

)
sin2(k2L)

)−1

(4.78)

It may be shown (Exercise 4.1(a)) that Eqn (4.78) may be written as

Trans =
(

1 + 1

4
· b2(
b + k2

2L
2
) · sin2(k2L)

k2
2L

2

)−1

(4.79)

where the parameter b = 2k0L = 2meV0L2/--h2 is a measure of the “strength” of the
potential barrier.

It is also possible to calculate maxima and minima in Trans as a function of k2L or
as a function of energy E . We start by analyzing for k2L . It is clear from Eqn (4.79)
that Trans is a maximum when sin2(k2L) = 0. When this happens, Transmax = 1 and
k2L = nπ for n = 1, 2, 3, . . . .Transmax = 1 corresponds to resonances in transmission
that occur when particle-waves back-scattered from the step change in barrier potential
at positions x = 0 and x = L interfere and exactly cancel each other, resulting in zero
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reflection from the potential barrier. A resonance with unity transmission requires exact
cancellation in amplitude and phase of the coherent sum of all back-scattered waves.

The minimum of the Trans function occurs when sin2(k2L) = 1. This happens when
k2L = (2n − 1)π/2 for n = 1, 2, 3, . . . . The minimum of the Trans function may be
written (Exercise 4.1(b)) as

Transmin = 1 − b2(
2k2

2L
2 + b)2

(4.80)

or equivalently as

Transmin = 1 − e2V 2
0

(2E − eV0)2
(4.81)

Another limiting case to consider is the situation in which E → eV0 or k2L → 0. In this
situation, one may expand sin2(k2L) = k2

2L
2 + · · · and substitute into our expression

for Trans

Trans =
(

1 + 1

4
· b2(
b + k2

2L
2
) · sin2(k2L)

k2
2L

2

)−1

(4.82)

Trans(E → eV0) =
(

1 + 1

4
· b2(
b + k2

2L
2
) · k

2
2L

2

k2
2L

2

)−1∣∣∣∣∣
k2L→0

(4.83)

Trans(E → eV0) =
(

1 + b

4

)−1

= 4

4 + b
=
(

1 + emV0L2

2--h2

)−1

(4.84)

The results we have obtained are neatly summarized in Fig. 4.5. In this figure Trans,
Transmax, and Transmin are plotted as functions of k2L for an electron incident on a
rectangular potential barrier of energy V0 = 1.0 eV and width L = 1 nm. The incident
electron has energy E ≥ eV0.

One way of summarizing all the results of Section 4.6 is shown in Fig. 4.6.
Figure 4.6(a) shows the potential energy of a one-dimensional rectangular barrier
with energy eV0 and thickness L . Figure 4.6(b) shows the transmission coefficient
as a function of energy for an electron of energy E incident on the potential barrier.
In this example, the rectangular potential barrier has energy eV0 = 1.0 eV and width
L = 1 nm. For electron energy less than eV0, there is an exponential decrease in trans-
mission probability with decreasing E , because transmission is dominated by tunneling.
For electron energy greater than eV0, there are resonances in transmission which occur
when 2m(E − eV0)L/--h = nπ , where n = 1, 2, 3, . . . . At the peak of these resonances
the transmission coefficient is unity.
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for E > eV0
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Fig. 4.5. Illustration of the behavior of the functions Trans (solid line) and Transmin (broken line)
showing the limiting values Transmax and Trans(E = eV0) when an incident electron has energy
E ≥ eV0. In this example, the rectangular potential barrier has energy eV0 = 1.0 eV and width
L = 1 nm.
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Fig. 4.6. (a) Plot of potential energy as a function of position showing a one-dimensional rectangular
barrier of energy eV0 and thickness L . (b) Solid line is plot of transmission coefficient as a function
of energy for an electron of energy E incident on the potential barrier shown in (a). The broken line
is Transmin and the dotted line is a guide to the eye for unity transmission and energy eV0. In this
example, the rectangular potential barrier has energy eV0 = 1.0 eV and width L = 1 nm.
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4.7 Resonant tunneling

In the previous section, resonances with unity peak transmission probability were found
for a particle of energy E > eV0 traversing a rectangular potential barrier of energy
eV0 and width L . This occurs because on resonance a coherent superposition of back-
scattered particle-waves from step changes in potential at x = 0 and x = L exactly
cancel each other to give zero reflection from the potential barrier. A resonance with
unity transmission requires exact cancellation in amplitude and phase of the coherent
sum of all contributions to the back-scattered wave.

For particle energy E < eV0, no resonances occur and transmission is dominated by
simple quantum mechanical tunneling through the rectangular potential barrier. This
fact may be explained as being due to the exponentially reduced contribution of the
back-scattered wave from the step-change in potential at position x = L .

To obtain unity transmission probability for particle energy E < eV0, a different type
of potential must be considered. A simple example is the double rectangular potential
barrier sketched in Fig. 4.7(a). For each barrier, width is 0.4 nm, well width is 0.6 nm,
and barrier energy is 1 eV. As with the finite potential well of Section 3.7, there is
always a symmetric lowest-energy resonance associated with this symmetric potential
well. For the case we are considering, this lowest-energy resonance has energy E0 and
is indicated by a broken line in Fig. 4.7(a). The wave function associated with the
resonance at energy E0 is symmetric because the potential is symmetric. Due to the
finite width and energy of the potential barrier on either side of the potential well, there
is a finite probability that a particle can tunnel out of the potential well. Because of this,
there is a finite lifetime associated with the resonance.
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Fig. 4.7. (a) Symmetric double rectangular potential barrier with barrier width 0.4 nm, well width
0.6 nm, and barrier energy 1 eV. There is a resonance at energy E0 for an electron mass m0 in such
a potential. This resonance energy is indicated by the broken line. (b) Transmission probability of
an electron mass m0 incident from the left on the potential given in (a). There is an overall increase
in background transmission with increasing energy, and a unity transmission resonance occurs at
energy E = E0 = 357.9 meV with �FWHM = 30.7 meV.
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Figure 4.7(b) shows the transmission probability of an electron of mass m0 incident
from the left on the potential given in Fig. 4.7(a). With increasing electron energy there
is an overall smooth increase in background transmission because the effective potential
barrier seen by the electron decreases. At an incident energy E = E0 = 0.358 eV there
is a unity peak in transmission probability that stands out above the smoothly varying
electron transmission background. This peak exists because an electron incident from
the left tunnels via the resonance in the potential well at energy E0. At the resonance
peak, a coherent superposition of back-scattered particle-waves from step changes in
the potential exactly cancel to give zero reflection and unity transmission.

The resonance has a finite width in energy, because if we place a particle in the
potential well it can tunnel out. It seems natural to discuss this process in terms of a
characteristic time or lifetime for the particle. The lifetime of the resonance at energy
E0 may be calculated approximately as τ = --h/�FWHM, where �FWHM is the full width
at half maximum in the transmission peak when fit to a Lorentzian line shape.2 For the
situation depicted in Fig. 4.7(b), �FWHM is near 31 meV, giving a lifetime τ = 21 fs.
The lifetime, τ , is the characteristic response time of the system. The calculated lifetime
assumes that the resonance may be described by a Lorentzian line shape. This, however,
is always an approximation for a symmetric potential because, for such a case, the
transmission line shape is always asymmetric. The asymmetry exists because of the
overall increase in background transmission with increasing energy.

One may use modern crystal growth techniques to make a double-barrier potential
similar to that shown in Fig. 4.7(a). The potential might be formed in the conduction
band of a semiconductor heterostructure. For example, epitaxially grown AlAs may
be used to form the two tunnel barriers, and GaAs may be used to form the potential
well of an n-type unipolar diode. One expects the resonant tunneling heterostructure
diode current–voltage characteristics of such a device to be proportional to electron
transmission probability. While energy is not identical to applied voltage and current is
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Fig. 4.8. Illustration of resonant tunnel diode current–voltage characteristics. There is a peak in
current when the diode is voltage biased in such a way that electrons can resonantly tunnel through
the potential well. A region of negative differential resistance also exists for some values of Vbias.

2 See Table 2.3.
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Fig. 4.9. Measured current gain, β, with bias, VCE, for the AlAs/GaAs HBT sketched in the inset.
Lattice temperature is T = 4.2 K, emitter area is 7.8 × 10−5 cm2, and base current is IB = 0.1 mA.
The AlAs tunnel emitter is 8 nm thick, the p-type base is delta doped with a Be sheet concentration
of 6 × 1013 cm−2, the AlAs collector barrier is 5 nm thick, and emitter–collector barrier separation
is xB + xC = 40 nm. The conduction band minimum, CBmin, the valence band maximum, VBmax,
and the emitter Fermi energy, EFe, are indicated.

not identical to the transmission coefficient shown in Fig. 4.7(b), the trends are similar.
In particular, a region of negative differential resistance exists that is of interest as an
element in the design of electronic circuits. Figure 4.8 illustrates the current–voltage
characteristics of a resonant tunneling heterojunction diode. The inset is the conduction
band minimum profile under voltage bias Vbias.

In the next section we consider a heterostructure bipolar transistor with a tunnel
barrier at the emitter–base junction and a tunnel barrier at the collector–subcollector
boundary.

4.7.1 Heterostructure bipolar transistor with resonant tunnel barrier

It is possible to gain more insight into electron transport in nanoscale structures by
combining what we know about resonant tunnel devices with a heterostructure bipolar
transistor (HBT). The inset in Fig. 4.9 shows the conduction and valence band profiles
of an n–p–n AlAs/GaAs HBT with an AlAs tunnel emitter and an AlAs tunnel barrier at
the collector–subcollector interface.3 The separation between the two tunnel barriers is

3 A. F. J. Levi, unpublished.
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xB + xC = 40 nm, where xB is the thickness of the transistor base and xC is the thickness
of the collector. The p-type GaAs base region of the transistor consists of a thin two-
dimensional sheet of substitutional Be atoms of average concentration 6 × 1013 cm−2.
The value of xB is less than 10 nm and is determined by the spatial extent of the
wave function in the x direction associated with the charge carriers. The emitter and
subcollector are heavily doped n-type so that they have a Fermi energy EFe at low
temperature.

The n–p–n HBT shown in Fig. 4.9 may be viewed as a three-terminal resonant tunnel
device. The third terminal is the p-type base, which allows us to independently vary the
energy of conduction band electrons that are tunnel-injected from the emitter into the
base collector region, where resonant electron interference effects take place. Because
this is a transistor, it is possible to fix the base current and measure common-emitter
current gain β as a function of collector–emitter voltage bias VCE.

To help obtain a clear understanding of electron motion in the device without com-
plications introduced by thermal effects, it is useful to perform measurements at low
temperatures. Figure 4.9 shows the results of measuring β at a temperature T = 4.2 K.
As might be expected for a resonant tunnel structure, there are strong resonances in
β associated with quantization of energy levels in the 40-nm-thick base–collector re-
gion. This confirms that quantum mechanical reflection and resonance phenomena play
an important role in determining device performance. However, with a little thought,
limitations to both device operation and modeling soon become apparent.

It is reasonable to consider why the minima in β do not approach closer to zero.
One reason is the presence of elastic and inelastic electron scattering in the collector
and p-type base. This has the effect of breaking the coherence of the wave function
associated with resonant transport of an electron through the structure. The resulting
decoherence reduces resonant interference and introduces an incoherent background
contribution to current flow between emitter and collector.

It turns out that inelastic electron scattering presents a fundamental limit to transistor
performance. Thus, in an effort to quantify this limit as a step to designing a better
device, we might be interested in calculating the appropriate electron scattering rates.
However, in addition to various other complications, such scattering rates cannot be
evaluated independently of either VCE or VCB. This is obvious because the resonances
depend upon the potential profile and hence the voltage bias across the device.

The existence of resonant effects illustrates that base and collector may no longer
be separated, and so we cannot calculate one scattering rate for an electron traversing
the base and a separate scattering rate for the electron traversing the collector. For this
nanoscale transistor, the electron cannot be considered as a classical point-particle;
rather it is a nonlocal, truly quantum mechanical object. The electron is nonlocal in the
sense that it exists in the base and collector at the same time.

Another complication arises from the fact that any description of electron transport
in nanoscale structures should not violate Maxwell’s equations. Thus, one needs to be
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able to deal with the possibility of large dynamic space-charging effects due to quantum
mechanical reflection as, for example, occurs in a resonant tunnel diode. Not only can
elastic quantum mechanical reflections from an abrupt change in potential strongly
influence inelastic scattering rates, but dissipative processes, such as scattering from
lattice vibrations, can also, in turn, modify quantum reflection and transmission rates
in a type of scattering-driven feedback. Ultimately, what is needed is a new approach
to describing electron transport in nanoscale structures. Conventional techniques such
as classical Boltzmann and Monte Carlo methods are neither adequate nor valid ways
to model nanoscale devices of the type we have been considering.

While it is important to know something about limitations to understanding electron
transport in nanoscale devices, a detailed investigation of these and related issues is
beyond the scope of this book and so will not be considered further. Rather, in the next
section we return to the study of quantum mechanical tunneling through a potential
barrier and the phenomenon of resonant tunneling.

4.7.2 Resonant tunneling between two quantum wells

If the potential barrier separating two identical one-dimensional potential wells is of
sufficient strength to isolate the ground-state eigenfunctions, then the ground-state
eigenenergies are degenerate. This situation is depicted schematically in Fig. 4.10(a)
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Fig. 4.10. (a) Two identical isolated potential wells with width L and barrier potential energy eV0

have identical (degenerate) ground-state eigenenergies (indicated by the dotted line). The wave
functions ψ left

0 and ψ
right
0 associated with the left and right potential wells are symmetric and

centered about their respective potential wells. (b) The lowest-energy wave functions for two
identical potential wells coupled by a thin tunnel barrier are ψ0 and ψ1. The wave function ψ0 is
symmetric and has an eigenenergy E0. The wave function ψ1 is antisymmetric and has an
eigenenergy E1, which is greater in value than E0.
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for the case of rectangular potential wells each of width L and barrier energy eV0.
Each ground-state wave function ψ0 is symmetric about its potential well and has an
associated eigenenergy, E left

0 = E right
0 . The wave functions ψ left

0 and ψ
right
0 are identical

apart from a spatial translation.
Figure 4.10(b) is a sketch of what happens when the rectangular potential wells are

no longer isolated by a strong potential barrier. Particle states originally associated with
one well can interact via quantum mechanical tunneling with states in the other well.
Now, the lowest-energy wave functions for two identical potential wells coupled by
a thin tunnel barrier are ψ0 and ψ1. The wave function ψ0 is symmetric and has an
eigenenergy E0. The wave function ψ1 is antisymmetric and has an eigenenergy E1,
which is greater in value than E0. The reason E0 < E1 is that the symmetric wave
function ψ0 has less integrated change in slope multiplied by the value of the wave
function than the wave function ψ1 (see Section 3.1.1).

A particle in eigenstate ψ0 or ψ1 can be found in either quantum well because the
wave functions are spread out or delocalized across both potential wells. Tunneling
through the central barrier is responsible for this.

The coupling between the original states via tunneling breaks degeneracy and causes
splitting in energy levels �E = E1 − E0. This effect is quite general in quantum me-
chanics and so is worth studying further.

We next consider the three barriers and two potential wells sketched in Fig. 4.11(a).
As shown in Fig. 4.11(b), there are two resonances separated in energy by �E , one as-
sociated with an antisymmetric wave function and one with a symmetric wave function.
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Fig. 4.11. (a) Symmetric triple rectangular potential barriers with barrier width 0.4 nm, well width
0.6 nm, and barrier energy 1 eV. For an electron of mass m0 in such a potential, there are two
resonant states separated in energy by energy �E . The energy of each resonance is indicated by the
broken line. (b) Transmission probability of an electron mass m0 incident from the left on the
potential given in (a). There is an overall increase in background transmission with increasing
energy, and unity transmission resonances occur at energy E = 321.5 meV (�FWHM = 12.2 meV)
and E = 401.5 meV (�FWHM = 20.8 meV). The splitting in energy is �E = 80 meV.
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Each wave function may be viewed as formed from a linear combination of two lowest-
energy symmetric wave function contributions for a single potential well, one from the
left and one from the right potential well. These individual contributions are initially
considered as degenerate bound states subsequently coupled via tunneling through the
central potential barrier. The separation in energy between the two resonances �E
depends upon the coupling strength through the central potential barrier. Again, the
lowest-energy resonance in this double potential well is associated with a symmetric
wave function, and the upper-energy resonance is associated with an antisymmetric
wave function. The lowest-energy resonance has a smaller full width at half maximum
�FWHM, because the tunnel barrier seen by a particle is �E greater than the higher
energy resonance.

In Fig. 4.11, the lowest-energy resonance peak is at 0.321 eV, and the upper-energy
resonance is at 0.401 eV. The splitting in energy is �E = 80 meV.

We now explore what happens to �E as the width of the central barrier decreases.
This breaks a symmetry of the potential. According to our previous discussion, we
expect coupling between the left and right potential wells to increase as the width of
the central barrier decreases, and we also expect �E to increase. Indeed, as shown in
Fig. 4.12, this is what happens. The lowest-energy resonance peak is at 0.272 eV, and
the higher-energy resonance is at 0.456 eV. The energy splitting is now�E = 184 meV.
Notice that the energy splitting is greater than the previous example. Ultimately, as the
thickness of the middle barrier vanishes, one anticipates obtaining the result for a single
potential well of twice the original individual well width.
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Fig. 4.12. (a) Symmetric triple rectangular potential barriers with outer barrier width 0.4 nm, central
barrier width 0.2 nm, well width 0.6 nm, and barrier energy 1 eV. For an electron of mass m0 in
such a potential, there are two resonances separated in energy by energy �E . The energy of each
resonance is indicated by the broken line. (b) Transmission probability of an electron of mass m0

incident from the left on the potential given in (a). There is an overall increase in background
transmission with increasing energy, and unity transmission resonances occur at energy
E = 271.9 meV (�FWHM = 8.9 meV) and E = 455.9 meV (�FWHM = 27.5 meV). The splitting in
energy is �E = 184 meV.



193 4.7 Resonant tunneling

Distance, x (nm)

1.00.0 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
P

ot
en

ti
al

 e
ne

rg
y,

 e
V

(x
) 

(e
V

)

0.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
ne

rg
y,

 E
 (

eV
)

Transmission

1.00.40.2 0.6 0.82.0 4.0

E0

(a) (b)

Fig. 4.13. (a) Symmetric triple rectangular potential barriers with outer barrier width 0.4 nm, central
barrier width 1.1 nm, well width 0.6 nm, and barrier energy 1 eV. For an electron of mass m0 in
such a potential, there is a resonance at energy E0, indicated by the broken line. (b) Transmission
probability of an electron mass m0 incident from the left on the potential given in (a). There is an
overall increase in background transmission with increasing energy and nonunity transmission
resonance at energy E = E0 = 360.2 meV (�FWHM = 10.6 meV). The value of transmission
probability at energy E0 is 0.308.
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Fig. 4.14. (a) Three-dimensional plot of transmission coefficient for an electron of mass m0 as a
function of incident particle energy, E , and central barrier thickness for symmetric triple
rectangular potential barriers. The outer barrier width is 0.4 nm, well width is 0.6 nm, and barrier
energy is 1 eV. The localization threshold occurs when the central barrier thickness is 0.8 nm.
(b) Three-dimensional plot of (a) with transmission plotted on a negative natural logarithmic
scale.

Figure 4.13(b) is a plot of the transmission probability of an electron massm0 incident
from the left on the symmetric triple rectangular potential barriers given in Fig. 4.11(a).
There is an overall increase in background transmission with increasing energy and
nonunity transmission resonance at energy E = E0 = 360.2 meV.

Figure 4.14(a) is a three-dimensional plot of the transmission coefficient on a linear
scale for an electron of mass m0 as a function of both incident particle energy, E ,
and central barrier thickness for symmetric triple rectangular potential barriers. In
Fig. 4.14(b) particle transmission is plotted on a negative natural logarithm scale. This
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means that unity transmission corresponds to zero and low transmission corresponds to
a large number. More details in the transmission function can be seen using a logarithmic
scale.

With increasing central barrier thickness, the coupling between degenerate bound
states of the two wells decreases and the value of the energy splitting also decreases.
Eventually, the energy splitting is so small that it disappears because it becomes smaller
than the line width of an individual resonance (�E ≤ �FWHM). In the case we are
considering, this happens when the central barrier is 0.8 nm thick. For central barriers
thicker than this, the remaining resonant transmission peak has a value less than unity.
Physically, one may think of the particle trapped or localized in one of the two potential
wells with a line width determined by the escape probability via transmission through
the thin barrier. The particle escapes by tunneling through the thin barrier much more
readily than it is able to tunnel through the thick barrier. However, since transmission
through the thick barrier is required to achieve resonant transmission via the degenerate
bound states of the two potential wells, we may expect a localization threshold to occur
when the central barrier is so thick that the energy splitting is less than the width in
energy of the resonance. For central barrier thicknesses above the localization threshold,
conduction of electrons by a transmission resonance is suppressed.

One can also break the symmetry of the potential by changing barrier energy.
Figure 4.15(a) shows nonsymmetric triple rectangular potential barriers with barrier
width 0.4 nm, well width 0.6 nm, left and central barrier energies 1 eV, and right barrier
energy 0.6 eV. As indicated in Fig. 4.15(b), there is still a splitting in the resonance,
but unity transmission is not obtained.

Figure 4.16 is a detail of the transmission peak showing that neither resonant peak
of Fig. 4.15(b) has unity transmission.
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Fig. 4.15. (a) Nonsymmetric triple rectangular potential barriers with barrier width 0.4 nm,
well width 0.6 nm, left and central barrier energies 1 eV, and right barrier energy 0.6 eV.
(b) Transmission probability of an electron of mass m0 incident from the left on the potential
given in (a). There is an overall increase in background transmission with increasing energy
and nonunity transmission resonance at two energies indicated by the broken lines.
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Fig. 4.16. Detail of transmission probability of an electron of mass m0 incident from the left on the
potential given in Fig. 4.15(a). There are nonunity transmission resonance peaks at two energies.

We now know quite a lot about resonant tunneling of particles such as electrons
through various potentials. It is natural to ask if such structures can be applied for prac-
tical use. In fact, it is relatively straightforward to form band edge potential profiles sim-
ilar to Fig. 4.7(a) using semiconductor heterostructures. Called resonant tunnel diodes,
such devices were investigated in some detail during the late 1980s and early 1990s.4

Practical implementations using semiconductor structures require consideration of
asymmetry in potential when voltage bias is applied across the device. This reduces the
peak resonance transmission. In addition, for a device that passes electrical current, we
need to consider space charging effects. If electron density in the potential well is great
enough, it will distort the potential seen by an electron impinging on the barrier. For this
reason, one must often calculate transmission probability self-consistently by simulta-
neously solving Schrödinger’s equation for the electron wave functions and Poisson’s
equation for charge density. Further difficulties with design include the fact that reso-
nant tunnel diodes must have low capacitance and low series resistance if they are to
operate at high frequencies. This is particularly difficult to achieve in semiconductor
heterostructures where tunnel barrier thickness is typically on a nanometer scale. For
these and other reasons, interest in the resonant tunnel diode as a practical device has
declined. However, one can still learn more about the nature of electron transport by
studying such devices.

4.8 The potential barrier in the delta-function limit

In Section 4.6 the transmission and reflection of a particle incident on a rectangular
potential were investigated. This type of potential barrier was used in Section 4.7

4 For a survey see Heterostructures and Quantum Devices, eds. N. G. Einspruch and W. R. Frensley, Academic
Press, San Diego, 1994 (ISBN 0 12 234124 4).
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Fig. 4.17. (a) Sketch of a one-dimensional rectangular barrier of energy eV0. The thickness of
the barrier is L . A particle of mass m incident from the left of energy E has wave vector k1.
In the barrier region, the wave vector is k2. The wave vectors k1 and k2 are related via
k2

1 = k2
2 + e2mV0/

--h2. (b) Potential energy as a function of position illustrating a one-dimensional
rectangular potential barrier in the delta-function limit. An incident particle with wave vector k1

and energy E = --h2k2
1/2m has wave vector ik2 in the barrier.

to study resonant tunneling. Another important barrier we will explore is the delta-
function potential. A delta-function potential energy barrier may be considered as the
limit of a simultaneously infinite barrier energy and zero barrier width. The reason
we are interested in this is that the results are quite simple and very easy to use. Our
application will be to illustrate the behavior of electrons in periodic potentials that occur
in crystals.

One way to obtain the delta-function limit is to consider the properties of the rectan-
gular potential barrier of energy eV0 and width L that we have been analyzing in this
chapter. The delta-function limit can be reached if we allow eV0 → ∞ while L → 0.
This idea is illustrated in Fig. 4.17.

We have eV0 → ∞, L → 0, so that eV0L → constant . Because eV0 → ∞, this
means that k2 → ik2 for all incident particle energies E = --h2k2

1/2m.
Now eV0 = E − --h2k2

2/2m, and since eV0 � E one may write eV0 = −--h2k2
2/2m,

or

k2
2L = −e2mV0L

--h2
(4.85)

From our previous work (Eqn (4.65))

p11 = cos(k2L) − i

(
k2

1 + k2
2

)
2k1k2

sin(k2L) (4.86)

which we can simplify in the limit k2L → 0, so that cos(k2L) = 1 − k2
2L

2/2 + · · · = 1
and sin(k2L) = k2L − k3

2L
3/6 + · · · = k2L . This expansion allows us to rewrite

Eqn (4.86) in the limit k2L → 0 as

p11 = 1 − i

(
k2

1

2k1k2
· k2L + k2

2

2k1k2
· k2L

)
= 1 − i

(
k1L

2
+ k2

2L

2k1

)
(4.87)
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Remembering that we are interested in k2L → 0 and using Eqn (4.85)

p11 = 1 − i

(
k1L

2
+ k2

2L

2k1

)
= 1 − i

(
0 − 2emV0L

2--h2k1

)
= 1 + i

emV0L
--h2k1

(4.88)

So that in the limit k2L → 0 the expression for p11 is

p11 = 1 + i
k0

k1
(4.89)

where k0 = meV0L/--h2 is a constant.
The transmission coefficient for a particle of massm incident from the left on a delta

function potential barrier is of a simple form that does not depend exponentially on the
energy, E , of the incident particle

|C |2 =
∣∣∣∣ 1

p11

∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
1

1 + i
k0

k1

∣∣∣∣∣∣∣∣

2

= E

E +
--h2k2

0

2m

(4.90)

where the electron wave vector k1 = √
2mE/--h. Equation (4.90) is plotted as a func-

tion of energy, E , in Fig. 4.18. In this particular case, the parameter k0 is chosen so
that E0 = --h2k2

0/2m = 1 eV. As may be seen in the figure, under these circumstances
the particle has a transmission probability of 0.5 when particle energy is E = E0 =
1 eV.
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Fig. 4.18. Particle transmission probability for a delta-function barrier given by Eqn (4.90) plotted
as a function of energy E . In this example, the value of k0 is chosen so that --h2k2

0/2m = 1 eV. In this
case, the value of |C |2 = 0.5 when E = 1 eV.
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The other matrix element we need to find is p12. We recall that previously we had
from Eqn (4.60)

p12 = −i
(
k2

2 + k2
1

)
2k1k2

· sin(k2L) (4.91)

so that in the limit k2L → 0

p12 = i
k0

k1
(4.92)

Because we know from Eqn (4.32) and Eqn (4.33) that p11 = p∗
22 and p12 = p∗

21, we
now have the complete expression for the propagation matrix p̂ for a potential energy
barrier in the delta-function limit.

4.9 Energy bands: the Kronig–Penney potential

So far, we have considered a single potential step, potential well, potential barrier,
and resonant tunneling. In this section, we aim to use the propagation matrix method
to explore what happens to electron transmission and reflection in a periodic delta-
function potential. We will use this to approximate the potential seen by an electron in
a crystal.

We proceed by first considering the impact the symmetry of a periodic potential has
on electron wave functions. The first result we wish to introduce is Bloch’s theorem.
This theorem is important because it allows us to impose constraints on the type of wave
functions that are allowed to exist in periodic potentials. Following this, in Section 4.9.2,
we will show, using a model due to Kronig and Penney,5 how transmission bands and
band gaps are natural results of the presence of a periodic potential. We complete
our study of periodic potentials by showing in Section 4.10 and Exercise 4.5 how the
methods developed to describe electron motion in a crystal potential can be applied to
other seemingly unrelated problems in engineering, such as the design of multi-layer
dielectric coatings for optical mirrors.

4.9.1 Bloch’s theorem

For simplicity, let’s start by considering one-dimensional motion of an electron moving
in free space. The electron is described by a wave function ψk1 (x) = Aei(k1x−ωt) and,
as expected, the probability of finding the particle at any position in space is uniform.
No particular location in space is more or less significant than any other location. The

5 R. de L. Kronig and W. J. Penney, Proc. Royal. Soc. A130, 499 (1930).
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underlying symmetry can be expressed by saying that probability is translationally
invariant over all space.

We now introduce a periodic potential V (x) in such a way that V (x) = V (x + nL),
where L is the minimum spatial period of the potential and n is an integer. Under these
circumstances, it seems reasonable to expect that electron probability is modulated
spatially by the same periodicity as the potential. The isotropic electron probability
symmetry of free space is broken and replaced by a new probability symmetry which is
translationally invariant over a space spanned by a unit cell size of L . We might describe
electron probability that is the same in each unit cell by the function |U (x)|2. Given
this, it is clear that one is free to choose an electron wave function that is identical to
Uk(x) to within a phase factor eikx . To find the phase factor, we need to solve for the
eigenstates of the one-electron Hamiltonian

H = −--h2

2m

d2

dx2
+ V (x) (4.93)

where V (x) = V (x + nL) for integer n. The electron wave function must be a Bloch
function of the form

ψk(x) = Uk(x)eikx (4.94)

whereUk(x + nL) = Uk(x) has the same periodicity as the potential and n is an integer.
The term eikx carries the phase information between unit cells via what is called the
Bloch wave vector k.

If we wish to know how the value of an electron wave function changes from position
x to position x + L , then we need to evaluate

ψk(x + L) = Uk(x + L)eik(x+L) (4.95)

ψk(x + L) = Uk(x)eikx · eikL (4.96)

ψk(x + L) = ψk(x) · eikL (4.97)

Equations (4.94) and (4.97) are different ways of writing Bloch’s theorem. In words,
Bloch’s theorem states that a potential with period L has wave functions that can be
separated into a part with the same period as the potential and a plane-wave term eikL .

Equation (4.94) shows that electron probability |ψk(x)|2 = |Uk(x)|2 depends upon k
but only contains the cell-periodic part of the wave function.

While one can see intuitively that Bloch’s theorem must be correct, the consequences
are quite dramatic when it comes to describing electron motion. Such motion in a peri-
odic potential must involve propagation of the phase through the factor kx . Associated
with wave vector k is a crystal momentum --hk. This momentum is not the same as the
momentum of an actual electron because the Uk(x) term in Eqn (4.94) means that the
electron has a wide range of momenta. The Bloch wave function ψk(x) = Uk(x)eikx is
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not an eigenfunction of the momentum operator p̂ = −i--h∂/∂x . Crystal momentum --hk
is an effective momentum of the electron and is an extremely useful way of describing
electron motion in a periodic potential.

4.9.2 The propagation matrix applied to a periodic potential

We now move on to discuss electron motion in a periodic potential. The model we adopt
makes use of the delta-function potential and Bloch’s theorem which we developed in
Section 4.8 and Section 4.9.1, respectively. Our model can be used as an approximation
to the periodic coulomb potential which may be found in a crystal. Figure 4.19(a) is a
sketch which represents the periodic potential seen by an electron due to a periodic array
of atomic potentials. Figure 4.19(b) shows a schematic of the system we will consider.
It is a one-dimensional periodic array of delta-function potential energy barriers with
nearest-neighbor separation of L . This separation defines the unit cell of the periodic
potential. Also shown in the figure are wave amplitudes A, B,C , and D for an electron
scattering from a unit cell.

It follows from Bloch’s theorem (Eqn (4.97)) that the coefficients A, B,C , and D
are related to each other by a phase factor kL in such a way that

C = AeikL (4.98)

and

D = BeikL (4.99)
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Fig. 4.19. (a) Sketch of part of a periodic potential seen by an electron due to an array of atomic
potentials. The atom sites are indicated. The nearest-neighbor separation between barriers is L .
(b) Plot of potential energy as a function of position, showing a periodic array of one-dimensional
delta-function potential energy barriers. The nearest-neighbor separation between barriers is L .
This defines the unit cell of the periodic potential. The potential is such that V (x) = V (x + L),
where L is the spatial period. This symmetry has a direct impact on the type of allowed
eigenfunctions. The coefficients A, B,C , and D are the wave amplitudes for an electron scattering
into and out of a given cell.
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where k is the Bloch wave vector. Equations (4.98) and (4.99) may be expressed in
matrix form as[
A
B

]
= e−ikL

[
C
D

]
= p̂

[
C
D

]
(4.100)

so that[
p11 − e−ikL p12

p21 p22 − e−ikL

][
C
D

]
= 0 (4.101)

There is an interesting (nontrivial) solution to these linear homogeneous equations
if the determinant of the 2 × 2 matrix in Eqn (4.101) vanishes – i.e.,

(p11 − e−ikL )(p22 − e−ikL ) − p12 p21 = 0 (4.102)

p11 p22 + e−2ikL − p22e
−ikL − p11e

−ikL − p12 p21 = 0 (4.103)

Since p11 = p∗
22 and p12 = p∗

21, this can be rewritten

e−2ikL − 2p11e
−ikL = −p11 p22 + p12 p21 = −det( p̂) (4.104)

From current continuity det( p̂) = 1 for real k (Eqn (4.47)). We now take the real part
of both sides for terms in p:

e−2ikL − 2Re(p11)e−ikL = −1 (4.105)

Noting that e−i x = cos x − i sin x allows us to write

cos(2kL) − i sin(2kL) − 2Re(p11)(cos(kL) − i sin(kL)) = −1 (4.106)

Taking the imaginary part of this expression gives

sin(2kL) − 2Re(p11) sin(kL) = 0 (4.107)

and, noting that 2 sin(x) cos(y) = sin(x + y) + sin(x − y), if x = y we can write
2 sin x cos x = sin(2x). Equation (4.107) then becomes

2 sin(kL)(cos(kL) − Re(p11)) = 0 (4.108)

Equations (4.107) and (4.108) require cos(kL) = Re(p11), and so k can only be real if

|Re(p11)| ≤ 1 (4.109)

In general, this gives rise to bands of allowed real values of Bloch wave number k.
In the delta-function limit we had for a single barrier, p11 = (1 + i(k0/k1))

(Eqn (4.89)), where k0 = meV0L/--h2 and k1 is the wave vector outside the delta-function
barrier.

In the Kronig–Penney model of a periodic potential, we have delta-function barriers
separated by free-propagation regions of length L . The total propagation matrix for a
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cell of length L becomes

p̂ = p̂δ-barrier p̂free =




1 + i
k0

k1
i
k0

k1

−i k0

k1
1 − i

k0

k1



[
e−ik1L 0

0 eik1L

]
=
[
p11 p12

p21 p22

]
(4.110)

so the new p11 for the cell is

p11 =
(

1 + i
k0

k1

)
· e−ik1L (4.111)

We note that e−i x = cos(x) − i sin(x), so

p11 = cos(k1L) − i sin(k1L) + i
k0

k1
cos(k1L) + k0

k1
sin(k1L) (4.112)

Taking the real part gives

Re(p11) = cos(k1L) + k0L

k1L
· sin(k1L) (4.113)

Since we have the condition |Re(p11)| ≤ 1 for allowed real values of k1 (Eqn (4.108))
we may conclude that

−1 ≤ cos(k1L) + k0L
sin(k1L)

k1L
≤ 1 (4.114)

It is now possible to plot the function in Eqn (4.114) and establish regions of allowed
real values of wave number k1. This has been done in Fig. 4.20 for the case when
k0L = 20.

The allowed bands are indicated by shaded regions. Notice that regions of nonprop-
agating states, which give rise to energy band gaps, become smaller with increasing
values of k1L . The fact that the widths of forbidden bands decrease and the widths of
the allowed bands increase with increasing k1L is due mathematically to the decrease
in the amplitude of the sine term. Also apparent in Fig. 4.20 is the fact that the boundary
between the upper edge of allowed bands and the lower edge of forbidden ones occurs
at values k1L = nπ , where n is an integer n = 1, 2, 3, . . . .

Previously we found that current continuity and real Bloch wave vector k in a periodic
lattice expressed as Eqn (4.108) require

cos(kL) = Re(p11) (4.115)

For the Kronig–Penney model, p11 is given by Eqn (4.111), and the real part of p11 is
given by Eqn (4.113), so for real k1 one may relate k to k1 using the equation

cos(kL) = cos(k1L) + k0

k1
sin(k1L) (4.116)

Figure 4.21 shows the dispersion relation Ek(k) as a function of normalized Bloch wave
vector kL for a Kronig–Penney model when k0L = 80 and L = 0.15 nm.
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Fig. 4.22. Plot of dispersion relation in the reduced zone representation. Real wave vectors k have
values from k = 0 to the Brillouin zone at k = π/L . The portions of energy and wave-vector space
in which the wave vector can take on real values are indicated by the shaded regions. In regions
where there is an energy gap, Eg, wave vectors take imaginary values. In this particular case,
k0L = 80 with L = 0.15 nm.

Because the potential is periodic in L , we can redraw Ek(k) as a function of Bloch
wave vector k in the reduced zone. This is shown in Fig. 4.22.

The allowed energy bands of Fig. 4.21 may be thought of as arising from individual
resonances of all the potential wells (of width L bounded by a delta-function potential
energy barrier) that are coupled through tunneling. The finite lifetime of each resonance
due to tunneling broadens the resonance energy. There are a large number of such
resonances that overlap in energy to form a continuous allowed energy band.

Forbidden energy gap regions form where there are no resonances. At the boundary
between the allowed and forbidden gap regions, wave functions have definite symmetry.
Consider the energy gap region labelled Eg1 in Fig. 4.21 which occurs at the Brillouin
zone boundary k = π/L . The lower-energy wave function ψ lower

k=π/L with energy at the
boundary between the allowed band and the forbidden band gap is an even function
standing wave with respect to the delta-function potential. As illustrated in Fig. 4.23,
the electron density associated with this wave function is a maximum between delta-
function potential barriers. The upper-energy wave function ψ

upper
k=π/L with energy at the

boundary between the allowed band and forbidden band gap is an odd function standing
wave with respect to the delta-function potential. The electron density associated with
this wave function is a maximum at the delta-function potential barriers. The reason for
the difference in energy of these states is easy to understand. ψupper

k=π/L (x) has a significant
portion of the wave function overlap with the delta-function potential, while ψ lower

k=π/L (x)
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Fig. 4.24. Periodic array of rectangular potential barriers with energy eV0 and width Lb. The
potential wells have width Lw, and the cell repeats in distance L = Lb + Lw.

does not. Hence, the electron energy associated with ψ
upper
k=π/L (x) picks up more energy

from this overlap.
The presence of periodic potential barriers changes electron energy. If the electron

state is such that it has a node at the position of the delta-function potential, it does not
feel the presence of the potential and should have an energy that is the same as that of a
free electron. This is the case at the bottom of the band gap (ψ lower

k=π/L (x)), which is why in
Fig. 4.21 the allowed band touches the parabolic free-electron dispersion relation at this
point. The opposite is true for ψ

upper
k=π/L (x), which has an antinode at the delta-function

potential and so has energy greater than predicted by free-electron dispersion.
As a slight extension of the model we have used to describe particle motion in a

periodic potential, we can consider the case of a periodic array of rectangular potential
barriers of the type sketched in Fig. 4.24. This is the same as our previous Kronig–
Penney model, except that the delta-function potential barriers have been substituted
for rectangular potential barriers. As before, all we need to do to obtain the dispersion
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relation for particle motion in such a potential is to find propagation matrix P̂ for the
cell, evaluate the real part of p11, and apply the conditions given by Eqn (4.109) and
Eqn (4.115).

In this case, the total propagation matrix P̂ for a cell of length L with barrier width
Lb and well width Lw is the same as Eqn (4.58) but with an extra 2 × 2 matrix to
describe free propagation in the well. Hence,

P̂ = 1

4k1k2

[
e−ik1Lw 0

0 eik1Lw

][
k1 + k2 k1 − k2

k1 − k2 k1 + k2

][
e−ik2Lb 0

0 e−ik2Lb

]

×
[
k2 + k1 k2 − k1

k2 − k1 k2 + k1

]
(4.117)

For particle energy E > eV0, this gives

p11 =
(

cos(k2Lb) − i

(
k2

2 + k2
1

)
2k1k2

sin(k2Lb)

)
e−ik1Lw (4.118)

and since e−ik1Lw = cos(k1Lw) − i sin(k1Lw), it follows that

Re(p11) = cos(k2Lb) cos(k1Lw) −
(
k2

2 + k2
1

)
2k1k2

sin(k2Lb) sin(k1Lw) (4.119)

When E < eV0, then k2 → ik2, and Eqn (4.119) becomes

Re(p11) = cosh(k2Lb) cos(k1Lw) +
(
k2

2 − k2
1

)
2k1k2

sinh(k2Lb) sin(k1Lw) (4.120)

The dispersion relation can then be found using Eqn (4.115).
As expected, in the limit Lb → 0, as eV0 → ∞ (while keeping k0 = meV0Lb/

--h a
constant), Eqn (4.120) reduces to the result for the delta-function potential barrier given
by Eqn (4.113).

4.9.3 Crystal momentum and effective electron mass

The presence of a periodic potential changes the way an electron moves. There are
bands of energy described by the dispersion relation ω = ω(k) in which an electron
wave packet can propagate freely at velocity

vg = ∂

∂k
ω(k) (4.121)

There are also forbidden bands of energy, or energy band gaps, where the electron
cannot propagate freely. Clearly, the presence of a periodic potential has a dramatic
influence on the way in which one describes the motion of electrons in a crystal.

The influence a periodic potential V (x) has on the response of an electron to an
external force requires the introduction of crystal momentum. To show this, we consider
the effect of an external electric field Ex on the x component of electron motion. Our
familiarity with classical mechanics suggests that an electron subject to an external
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force −eEx causes a change in its momentum. To solve for electron motion in quantum
mechanics, we start by writing down the total Hamiltonian:

H = p̂2
x

2m
+ V (x) + eEx x (4.122)

The time-dependent Schrödinger equation (Eqn (2.39) and Eqn (2.40)) describing
the electron wave function ψ(x, t) is just

Hψ(x, t) = i--h
∂

∂k
ψ(x, t) (4.123)

For an electron in state ψ0(x, t = 0) at time t = 0 we may rewrite Eqn (4.123) as

ψ(x, t) = e−i Ht/hψ0(x, t = 0) (4.124)

which for the Hamiltonian we are considering is

ψ(x, t) = e−i( p̂
2
x/2m+V (x)+eEx x)t/hψ0(x, t = 0) (4.125)

Replacing x with (x + L) gives

ψ((x + L), t) = e−i( p̂
2
x/2m+V (x+L)+eEx (x+L))t/hψ0((x + L), t = 0) (4.126)

Using the fact thatV (x) = V (x + L) for a periodic potential, and using Bloch’s theorem
for an electron in a Bloch state, we can rewrite this as

ψ((x + L), t) = e−i( p̂
2
x/2m+V (x)+eEx x)t/he−ieEx Lt/heik(t=0)Lψ0(x, t = 0) (4.127)

and hence

ψ((x + L), t) = e−ik(t)Lψ0(x, t = 0) (4.128)

where

k(t) = −eEx t
--h

+ k(t = 0) (4.129)

The time derivative of Eqn (4.129) can be written as

d

dt
(--hk) = −eEx (4.130)

One may now conclude that the effect of an external force is to change a quantity --hk.
This is called the crystal momentum. Electrons move according to the rate of change
of crystal momentum in the periodic potential.

In analogy with classical mechanics, we expect the acceleration of a particle in a
given allowed band due to an external force to be described by

d

dt

(
d

dt
x

)
= d

dt

(
∂

∂k
ω(k)

)
= ∂2

∂k2
ω(k)

dk

dt
= 1

--h

(
∂2

∂k2
ω(k)

)
d

dt
(--hk) (4.131)

d

dt

(
d

dt
x

)
= 1

--h

(
∂2

∂k2
ω(k)

)
(−eEx ) (4.132)

where we have used Eqn (4.121) and Eqn (4.130).
The result given by Eqn (4.131) can be expressed in the usual Newtonian form of

force equals mass times acceleration if we introduce an effective mass m∗(k) for the
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particle so that

m∗(k) =
--h

∂2

∂k2
ω(k)

(4.133)

Equation (4.133) indicates that effective mass is inversely proportional to the curvature
of the dispersion relation for a given allowed band.

Usually, when discussing effective electron mass, a quantitymeff(k) is used, which is
the effective electron mass normalized with respect to the bare electron massm0, so that

m∗(k) = meff(k) × m0 (4.134)

For an electron in the conduction band of GaAs, one often uses meff = 0.07, so the
effective electron mass is m∗ = 0.07 × m0.

To illustrate how a dispersion relation influences particle group velocity and effective
particle mass, let’s assume that a dispersion relation for a particular allowed band is
described by a cosine function of wave vector k in such a way that

ω(k) = Eb

2--h
(1 − cos(kL)) = Eb

--h
sin2

(
kL

2

)
(4.135)

where Eb is the energy band width. Using this prototype dispersion relation one obtains
a group velocity

vg(k) = ∂

∂k
ω(k) = EbL

2--h
sin(kL) (4.136)

0.2 1.00.0
0.0

1.0

2.0

E
ne

rg
y,

 h
ω

(k
) 

(e
V

)

Wave vector, k (π/L)
0.60.4 0.8

1.2

1.8
1.6
1.4

0.8

0.2
0.4
0.6

0

4

8

V
el

oc
it

y,
 υ

g(
k)

 (
×1

05
m

 s
−1

)

5

7

6

1

2

3

0.2 1.00.0
−1.0

0.0

1.0

E
ff

ec
ti

ve
 m

as
s,

 m
*(

k)
/m

0

Wave vector, k (π/L)
0.60.4 0.8

0.2

0.8
0.6
0.4

−0.2

−0.8
−0.6
−0.4

(a) (b)

Fig. 4.25. (a) Electron dispersion relation ω(k) = Eb(1 − cos(kL))/2--h and group velocity vg(k) as a
function of wave vector k. Band width Eb = 2 eV, and lattice constant L = 0.5 nm. (b) Effective
electron mass m∗(k) as a function of wave vector k. The free electron mass is m0.
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and an effective particle mass

m∗(k) =
--h

m0
∂2

∂k2
ω(k)

= 2--h2

m0EbL2 cos(kL)
(4.137)

Equations (4.135), (4.136), and (4.137) are plotted in Fig. 4.25, assuming an electron
band width Eb = 2 eV and a periodic potential lattice constant L = 0.5 nm. A quite
remarkable prediction evident in Fig. 4.25(b) is the negative effective electron mass
m∗(k) for certain values of wave vector k. The physical meaning of this can be seen in
Fig. 4.25(a) – electron velocity vg(k) can decrease with increasing wave vector k.

In fact, there are many interesting aspects to electron motion in a periodic potential.
We have only touched on a few of them here.

4.9.3.1 The band structure of GaAs

So far we have considered a relatively simple model of a periodic potential. While
the electron dispersion relations of actual crystalline solids are more complex, they do
retain the important features, such as band gaps, established by our model. Figure 4.26
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Fig. 4.26. Calculated low-temperature band structure of GaAs from the � symmetry point toward
the L and X crystal symmetry points. The conduction band, heavy-hole band, light-hole band,
and split-off band are indicated. The effective electron mass near the � symmetry point is
approximately me = 0.07 × m0. The heavy-hole mass is mhh = 0.5 × m0, and the light-hole mass
is m lh = 0.08 × m0. The band gap energy Eg = 1.52 eV is indicated, as is the energy E�X

separating the minimum of the conduction band at � and the subsidiary minimum near the
X symmetry point.
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shows part of the calculated electron dispersion relation of GaAs along two of the
principal symmetry directions, �–X (or [100] direction, indicated by �) and �–L
(or [111] direction, indicated by �). GaAs has the zinc blende crystal structure with a
low-temperature lattice constant of L = 0.565 nm. There is interest in GaAs and other
III-V compound semiconductors6 because they can be used to make laser diodes and
high-speed transistors.

As may be seen in the dispersion relation of Fig. 4.26, there is a conduction band
and a valence band separated in energy by a band gap. At temperatures close to 0 K,
the band-gap energy is E0 K

g = 1.52 eV. At room temperature, this value reduces to
E300 K

g = 1.42 eV, in part because the average spacing between the atoms in the crystal
increases with elevated temperature.

4.10 Other engineering applications

The propagation matrix method can be used in a number of other engineering appli-
cations. By way of example, the problem to which we are going to apply the matrix
method involves the propagation of a one-dimensional electromagnetic wave through
an inhomogeneous dielectric medium.

At the beginning of this chapter we defined the propagation matrix via[
A
B

]
= P̂

[
C
D

]

where P̂ = p̂1 p̂2 . . . p̂i . . . p̂N and

p̂i = 1

2



(

1 + k j+1

k j

)
e−ik j L j

(
1 − k j+1

k j

)
e−ik j L j

(
1 − k j+1

k j

)
eik j L j

(
1 + k j+1

k j

)
eik j L j


 (4.138)

For the optical problem V (x) → nr(x), where nr(x) is the refractive index. As an
example, consider an electromagnetic wave of wavelength λvac = 1 �m propagating in
free space and incident on a loss-less dielectric with relative permittivity εr > 1 and
relative permeability µr = 1. The refractive index for vacuum is nvac = 1, and for the
dielectric it is nr = √

εr > 1. Example values for a dielectric refractive index are 1.45 for
SiO2 and 3.55 for Si. To find the transmission and reflection of the electromagnetic wave,
we may use the propagation matrix of Eqn (4.138) directly, only now k j → 2π/λ j ,

6 For additional information on the electronic band structure of semiconductors see M. L. Cohen and J. R.
Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, Spinger Series in Solid-State
Science 75, ed. M. Cardona, Springer-Verlag, New York, 1989 (ISBN 0 387 51391 4).
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where λ j = λvac/nr, j and λvac is the wavelength in vacuum. Hence,

p̂i = 1

2



(

1 + λ j

λ j+1

)
e−i(2πL j )/λ j

(
1 − λ j

λ j+1

)
e−i(2πL j )/λ j

(
1 − λ j

λ j+1

)
ei(2πL j )/λ j

(
1 + λ j

λ j+1

)
ei(2πL j )/λ j


 (4.139)

This may be rewritten as

p̂i = 1

2



(

1 + nr, j+1

nr, j

)
e−i(2πnr, j L j )/λvac

(
1 − nr, j+1

nr, j

)
e−i(2πnr, j L j )/λvac

(
1 − nr, j+1

nr, j

)
ei(2πnr, j L j )/λvac

(
1 + nr, j+1

nr, j

)
ei(2πnr, j L j )/λvac
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If the electromagnetic wave is incident from the left, we know that A = 1, and, assuming
no reflection at the far right, this gives D = 0. Thus,[
A
B

]
= P̂

[
C
D

]

becomes[
1
B

]
=
[
p11 p12

p21 p22

][
C
0

]

The transmission coefficient is obtained from 1 = p11C and the reflection coefficient
from B = p21C . Hence, transmission intensity is |C |2 = |1/p11|2 and reflected inten-
sity is |B|2 = |p21/p11|2.

From the preceding, it follows that reflected electromagnetic power from a step
change in refractive index for a plane wave incident from vacuum is

r = |B|2 =
∣∣∣∣kvac − k1

kvac + k1

∣∣∣∣
2

=
∣∣∣∣1 − k1/kvac

1 + k1/kvac

∣∣∣∣
2

=
(

1 − nr

1 + nr

)2

(4.141)

This is just the well-known result from standard classical optics. The reflection in
optical power r may be thought of as due to a velocity mismatch. To show this, we
recall that the velocity of light v j in an isotropic medium of refractive index nr, j is
just v j = c/nr, j . Hence, reflection due to a step change in refractive index from nr, j to
nr, j+1 is

r =
∣∣∣∣k j − k j+1

k j + k j+1

∣∣∣∣
2

=
∣∣∣∣nr, j − nr, j+1

nr, j + nr, j+1

∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
1

v j
− 1

v j+1

1

v j
+ 1

v j+1

∣∣∣∣∣∣∣∣

2

=
∣∣∣∣v j+1 − v j

v j+1 + v j

∣∣∣∣
2

(4.142)
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This is the same result we obtained in Section 3.8 for transmission of an electron energy
E over a potential step V0 where E > eV0.

We conclude this section by noting that one may use the propagation matrix method
to calculate not only transmission and reflection from a single dielectric step but also
much more complex spatial variation in refractive index, such as occurs in multi-layer
dielectric optical coatings. Exercise 4.5 makes use of the propagation matrix method
to design multi-layer dielectric mirrors for a laser.

4.11 The WKB approximation

The method used in this chapter is not the only approach to solving transmission and
reflection of particles due to spatial changes in potential. By way of example, in this
section we describe what is known as the WKB approximation. In their papers published
in 1926, Wentzel, Kramers, and Brillouin introduced into quantum mechanics what is
in essence a semiclassical method.7 In fact, their basic approach to solving differential
equations had already been introduced years earlier, in 1837, by Liouville.8

The underlying idea may be explained by noting that a particle of energy E = --hω
moving in free space has a wave function ψ(r, t) = Aei(k·r−ωt) for which the wave
vector k does not vary. If the particle now encounters a potential and the potential is
slowly varying, then one should be able to obtain a local value of k from the local
kinetic energy. For a potential that is varying slowly enough, this is usually a good
approximation, and for E > eV one may write k(r) = √

2m(E − V (r))/--h. Of course,
the phase of the wave function must also change from k · r to an integral

∫
k(r) · dr

to take into account the fact that we assume a local wave vector that is a function of
space.

To see how this works in practice, consider a particle moving in one dimension.
We assume a slowly and smoothly varying potential V (x) so that we can make the
approximation k = k(x) and integrate in the exponent of the wave function. In this
semiclassical approximation, the spatial part of the wave function is of the form

ψ(x) = a√
k(x)

· ei
∫ x k(x ′)dx ′

(4.143)

and

k(x) =
√

2m(E − eV (x))
--h

for E > eV (4.144)

k(x) = i

√
2m(eV (x) − E)

--h
for E < eV (4.145)

7 G. Wentzel, Z. Physik. 38, 518 (1926), H. A. Kramers, Z. Physik. 39, 828 (1926), and L. Brillouin, Compt. Rend.
183, 24 (1926).

8 J. Liouville, J. de Math. 2, 16, 418 (1837).
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In general, there are left- and right-propagating waves so that

ψWKB(x) = 1√
k(x)

(
Aei

∫ x k(x ′)dx ′ + Be−i
∫ x k(x ′)dx ′)

(4.146)

The accuracy of the WKB method relies on the fractional change in wave vector kx
being very much less than unity over the distance λ/4π . Obviously, at the classical
turning points, where E = eV (x) and k(x) → 0, the particle wavelength is infinite.
The way around this problem typically is achieved by using an appropriate connection
formula.

To understand more about the WKB approach, we next explore the limiting case of
low tunneling probability through an almost-opaque high-energy potential barrier.

4.11.1 Tunneling through a high-energy barrier of finite width

Consider the potential for a rectangular barrier of energy eV0 and width L depicted in
Fig. 4.27. Previously, we had a transmission coefficient for a particle of energy E , mass
m, through a rectangular barrier energy V0, which is given by Eqn (4.77).

Trans(E < eV0) = 1

1 + 1

4
· eV 2

0

E(eV0 − E)
sinh2(k2L)

(4.147)

where k2
2 = (2m(eV0 − E))/--h2 for a rectangular barrier.

Suppose the barrier is of high energy and finite width L , so that it is almost opaque
to particle transmission. Then one may write

k2L =
√

2m(eV0 − E)
--h2

· L � 1 (4.148)

We can now approximate the sinh term in Eqn (4.147) by

sinh2(k2L) =
(

1

2

(
ek2L − e−k2L

))2

∼ 1

4
e2k2L (4.149)

L
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x = 0

Barrier

k1 k2 k1
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Fig. 4.27. Sketch of the potential of a one-dimensional, rectangular barrier of energy eV0. The
thickness of the barrier is L . A particle of mass m, incident from the left, of energy E , has wave
vector k1. In the barrier region the wave vector is k2.
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so that the transmission probability becomes

Trans ∼= 1

1 + 1

16
· eV 2

0

E(eV0 − E)
e2k2L

(4.150)

Trans ∼= 16 · E(eV0 − E)

eV0
e−2k2L (4.151)

Notice that our approximations led us to an expression for transmission probability
that has no backward-traveling component, thereby violating conditions for current
flow established in Exercise 3.1(c).

The result given by Eqn (4.151) was obtained for the nearly opaque, rectangular
potential barrier. Generalizing to a nearly opaque potential barrier of arbitrary shape,
such as that shown schematically in Fig. 4.28, we adopt the WKB approximation. In
this case, the expression for transmission becomes

Trans ∼ e
−2

∫ x2
x1

√
2m(eV (x)−E)

h2 dx
(4.152)

The physical meaning of this is that eV0 has been replaced by a weighted “average”
barrier energy eVav, so that

k2L =
x2∫

x1

√
2m(eV (x) − E)

--h2
dx =

√
2m
--h2

(eVav − E) · L (4.153)
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Fig. 4.28. Plot of potential energy as a function of position showing a one-dimensional barrier of
energy eV (x). An electron of energy E , mass m, incident on the potential barrier has classical
turning points at positions x1 and x2. The distance an electron tunnels through such a barrier is
L = x2 − x1.
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4.12 Example exercises

Exercise 4.1
(a) Show for a rectangular potential barrier of energy eV0 and thickness L that trans-
mission probability for a particle of mass m and energy E ≥ eV0 moving normally to
the barrier

Trans(E ≥ eV0) =
(

1 + 1

4

(
e2V 2

0

E(E − eV0)

)
sin2(k2L)

)−1

may be written as

Trans =
(

1 + 1

4
· b2(
b + k2

2L
2
) · sin2(k2L)

k2
2L

2

)−1

where parameter b = 2k0L = 2meV0L2/--h2.
(b) Show that the function Trans in (a) has a minimum when

Transmin = 1 − b2(
2k2

2L
2 + b

)2

and that this may be rewritten as

Transmin = 1 − e2V 2
0

(2E − eV0)2

Exercise 4.2
Write a computer program in f77, MATLAB, c++, or similar software that uses the
propagation matrix method to find the transmission resonances of a particle of mass
m = 0.07 × m0 (where m0 is the bare electron mass) in the indicated one-dimensional
potentials.

(a) A double barrier potential with the indicated barrier energy and widths.

3.6 nm

eV = 1.13 eV

3 nm

Distance, x

eV = 0.5 eV

4 nm
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 e

V
(x

)

eV = 0.0 eV

(b) A parabolic potential with V (x) = (x2/L2) eV for |x | ≤ L = 5 nm and V (x) =
0 eV for |x | > L .
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What happens to the energy levels in problems (a) and (b) if m = 0.14 m0?
Your results should include: (i) a printout of the computer program you used; (ii)

a computer-generated plot of the potential; (iii) a computer-generated plot of particle
transmission as a function of incident energy for a particle incident from the left (you
may find it useful to plot this on a natural log scale); (iv) a list of energy level values
and resonant line widths.

Exercise 4.3
(a) Use your computer program developed in Exercise 4.2 to find transmission as
a function of energy for a particle mass m0 through 12 identical one-dimensional
potential barriers each of energy 10 eV, width 0.1 nm, sequentially placed every 0.5 nm
(so that the potential well between each barrier has width 0.4 nm). What are the allowed
(band) and disallowed (band-gap) ranges of energy for particle transmission through
the structure? How do you expect the velocity of the transmitted particle to vary as a
function of energy?

(b) How do these bands compare with the situation in which there are only three
barriers, each with 10 eV barrier energy, 0.1 nm barrier width, and 0.4 nm well width?

Exercise 4.4
Analyze the following problem: A particle of mass m∗ = 0.07 × m0, where m0 is
the free-electron mass, has energy in the range 0 < E ≤ 3 eV and is incident on a
potential V (x) = 2 sin2(n2πx/L) eV, for 0 ≤ x ≤ L and V (x) = 0 eV elsewhere. In
the expression for the potential, n is a nonzero positive integer, and we decide to
set L = 20 nm. What is the transmission probability of a particle incident from the
left for the case in which: (a) n = 1, and (b) n = 4? How are your results altered if
m∗ = 0.14 m0? What happens if the potential is distorted by an additional term V ′(x),
where V ′(x) = V0(1 − ((2x/L) − 1)2) eV for 0 ≤ x ≤ L and V ′(x) = 0 eV elsewhere,
so that the total potential is now V (x) = 2 sin2(n2πx/L)eV + V ′(x)? Analyze this
problem for different values of the prefactor, V0. In particular, solve for the cases
V0 = 0.1 eV and V0 = 2.0 eV when n = 4.

Your results should include: (i) a printout of the computer program you used;
(ii) a computer-generated plot of the potential; (iii) a computer-generated plot of particle
transmission as a function of incident energy for a particle incident from the left.

Exercise 4.5
(a) Use the propagation matrix to design a high-reflectivity Bragg mirror for electro-
magnetic radiation with center wavelength λ0 = 980 nm incident normal to the surface
of an AlAs/GaAs periodic dielectric layer stack consisting of 25 indentical layer-pairs.
See following figure. Each individual dielectric layer has a thickness λ/4n, with n
being the refractive index of the dielectric. Use nAlAs = 3.0 for the refractive index of
AlAs and nGaAs = 3.5 for that of GaAs. Calculate and plot optical reflectivity in the
wavelength range 900 nm < λ < 1100 nm.
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(b) Extend the design of your Bragg reflector to a two-mirror structure similar to that
used in the design of a vertical-cavity surface-emitting laser (VCSEL). See following
figure. This may be achieved by increasing the number of pairs to 50 and making
the thickness of the central GaAs layer one wavelength long. Recalculate and plot the
reflectivity over the same wavelength range as in (a). Use high wavelength resolution
to find the band width of this optical pass band filter near λ = 980 nm.

z Incident electromagnetic field, Incident electromagnetic

Center region

thickness 

λ0/nGaAs

25 indentical
dielectric
layer pairs

nAlAs

nGaAs

25 indentical
dielectric
layer pairs

25 indentical
dielectric
layer pairs

nAlAs

nGaAs

nGaAs

nAlAs

wavelength λ field wavelength λ

Bragg mirror center
wavelength λ0

VCSEL structure center
wavelength λ0

Your results should include a printout of the computer program you used and a
computer-generated plot of particle transmission as a function of incident wavelength.

Exercise 4.6
Show that the Bloch wave function ψk(x) = Uk(x)eikx is not an eigenfunction of the
momentum operator p̂ = −i--h · ∂/∂x .

Exercise 4.7
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(a) Repeat the calculation in Exercise 4.2, but now apply a uniform electric field that
falls across the double-barrier and single-well structure only, as shown in the above
figure. The right-hand edge of the 3-nm-thick barrier is at a potential −0.63 eV below
the left-hand edge of the 4-nm-thick barrier. Comment on the changes in transmission
you observe.

(b) Rewrite your program to calculate transmission of a particle as a function of
potential drop caused by the application of an electric field across the structure. Calculate
the specific case of initial particle energy E = 0.025 eV with the particle incident on
the structure from the left-hand side. Comment on how you might improve your model
to calculate the current–voltage characteristics of a real semiconductor device with the
same barrier structure.

Exercise 4.8
Using the method outlined in Section 3.4, write a computer program to solve the
Schrödinger wave equation for the first two eigenvalues and eigenstates of an electron
of massm0 confined to a double rectangular potential well sketched in the figure below.
Each well is of width 0.6 nm and they are separated by 0.4 nm. The barrier potential
energy is 1 eV.
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Exercise 4.9
Using the method outlined in Section 3.4, write a computer program to solve the
Schrödinger wave equation for the first three eigenvalues and eigenstates of an electron
with effective mass m∗

e = 0.07 × m0 confined to the periodic potential sketched in the
figure below. Each of the eight quantum wells is of width 6.25 nm. Each quantum well
is separated by a potential barrier of thickness 3.75 nm. The barrier potential energy is
1 eV.
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Relate the eigenfunctions to Bloch’s theorem (Eqn (4.94)), and identify the value of
the Bloch wave vector, k.

SOLUTIONS

Solution 4.1
(a) We start with the expression

Trans(E ≥ V0) =
(

1 + 1

4

(
e2V 2

0

E(E − eV0)

)
sin2(k2L)

)−1

Multiplying the terms in k out,

(
k2

1 = 2mE/--h2, k2
2 = 2m(E − eV0)/--h2, eV0 = (

k2
1 − k2

2

)--h2/2m
)

we get

Trans =
(

1 + 1

4

(
k4

1 + k4
2 − 2k2

1k
2
2

k2
1k

2
2

)
sin2(k2L)

)−1

and substituting for k2
1 = k2

2 + 2meV0/
--h2 gives

Trans =


1 + 1

4
·

(
k2

2 + 2meV0
--h2

)2

+ k4
2 − 2

(
k2

2 + 2meV0
--h2

)
k2

2

k2
2

(
k2

2 + 2meV0
--h2

) · sin2(k2L)




−1
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Expanding the terms in the numerator gives

2k4
2 +

(
2meV0

--h2

)
+ 2k2

2

(
2meV0

--h2

)
− 2k4

2 − 2k2
2

(
2meV0

--h2

)

so that

Trans =


1 + 1

4
·

(
2meV0

--h2

)2

(
2meV0

--h2
+ k2

2

)
k2

2

· sin2(k2L)




−1

Multiplying the second term both top and bottom by L4, so that the terms in k4
2 are

dimensionless, gives

Trans =


1 + 1

4
·

(
2meV0L2

--h2

)2

(
2meV0L2

--h2
+ k2

2L
2

)
k2

2L
2

· sin2(k2L)




−1

Substituting in the parameter b = 2k0L = 2meV0L2/--h2, which is a measure of the
“strength” of the potential barrier, gives the desired result:

Trans =
(

1 + 1

4
· b2(
b + k2

2L
2
) · sin2(k2L)

k2
2L

2

)−1

(b) We now calculate the minimum of Trans as a function of k2L or as a function
of energy E . The minimum of the Trans function occurs when sin2(k2L) = 1. When
this happens, k2L = (2n − 1)π/2 for n = 1, 2, 3, . . .. Substituting this value into the
expression obtained in (a) gives

Transmin =
(

1 + 1

4
· b2(
b + k2

2L
2
) · 1

k2
2L

2

)−1

Transmin =
(

4
(
b + k2

2L
2
)
k2

2L
2 + b2

4
(
b + k2

2L
2
)
k2

2L
2

)−1

= 4bk2
2L

2 + 4k4
2L

4

b2 + 4
(
bk2

2L
2 + k4

2L
4
)

Transmin = 4bk2
2L

2 + 4k4
2L

4 + b2 − b2(
2k2

2L
2 + b

)2 =
(
2k2

2L
2 + b

)2 − b2(
2k2

2L
2 + b

)2 = 1 − b2(
2k2

2L
2 + b

)2
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One may rewrite this in terms of energy by substituting for b = e2mV0L2/--h2 and
k2

2 = 2m((E − eV0)/--h2) to give

Transmin = 1 −

(
2meV0L2

--h2

)2

(
2 · 2m(E − eV0)

--h2
· L2 + 2meV0L2

--h2

)2 = 1 − e2V 2
0

(2(E − eV0) + eV0)2

Transmin = 1 − e2V 2
0

(2E − eV0)2

Solution 4.2
(a) We are to use the propagation matrix method to find the transmission resonances
of a particle of mass m = 0.07 × m0 (where m0 is the bare electron mass) in a one-
dimensional potential consisting of two potential energy barriers. Since the particle
mass is the same as the effective electron mass in the conduction band of GaAs, we
might imagine that the potential could be created using heterostructures in the AlGaAs
material system.
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The above figure shows the one-dimensional potential as a function of distance,
x , and calculated particle transmission as a function of particle energy, E . Particle
transmission is plotted on a linear scale. There are two well-defined resonances, one at
energy E0 and one at energy E1. To learn more about the resonances, it is a good idea
to plot transmission on a logarithmic scale.

The figure below shows the one-dimensional potential as a function of distance,
x , and calculated particle transmission as a function of particle energy, E . Particle
transmission is plotted on a negative natural logarithm scale. This means that unity
transmission is zero and low transmission corresponds to a large number.
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As indicated in the above figure, there are peaks in transmission at energy E0 =
0.182 eV and E1 = 0.608 eV. The resonance at energy E0 has a value less than either
potential barrier energy and is quite narrow in energy. This suggests that for the particle
with energy E0 the resonant state is reasonably well localized by the two potential
barriers. A measure of the lifetime of such a localized state is given by the inverse of
the width of the resonance. However, care must be taken in using a computer program
to calculate the detailed line shape of the resonance. The program we used calculates
transmission as a function of particle energy in approximately 6 meV energy increments.
For this reason, features smaller than this in energy are not accurately calculated. Using
a smaller energy increment gives more accurate results.
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In the above figure the E0 line shape has been calculated more accurately using
0.05 eV energy steps. The peak transmission is now near −ln(Trans(E0)) = 1, and the
width of the peak is near �FWHM = 0.5 meV. The lifetime of this particular state may
be calculated approximately as τ = --h/� = 1.3 ps. Transmission on resonance is not
unity (corresponding to −ln(Trans(E0)) = 0), because the potential barriers used in
this exercise are not symmetric.

You may wish to use the computer program to confirm that symmetrical potential
barriers give unity transmission on resonance. If you do so, it is worth knowing that the
exact position in energy of resonances depends upon both potential barrier width and
energy.

The E1 = 0.608 eV resonance in this exercise occurs at an energy greater than the
lowest potential barrier energy. For this reason, the particle is not well localized by the
two potential barriers, the resonance is broad in energy, and the resonance lifetime is
much shorter than the E0 resonance.

The following is an example of a computer program that can be used to cal-
culate transmission as a function of energy. The program uses a simple approach.
More sophisticated routines could be developed to optimize solutions for different
applications.

Listing of MATLAB program for Exercise 4.2(a)
%Chapt4Exercise2a.m
%transmission through asymmetric double barrier
clear
clf; %set up potential profile position L(nm), potential V(eV)

N=6; %number of samples of potential

meff=0.07; %effective electron mass (m/m0)
vb1=0.5; %first potential barrier energy (eV)
vb2=1.13; %second potential barrier energy (eV)
bx1=4.0; %first potential barrier width (nm)
bx2=3.0; %second potential barrier width (nm)
wx1=3.6; %potential well width (nm)

L=[1,1,bx1,wx1,bx2,2]*1e-9; %distance array (nm)
V=[0,0,vb1,0,vb2,0]; %potential array

Emin=pi*1e-5; %add (pi*1.0e-5) to energy to avoid divide by zero
Emax=1.4; %maximum particle energy (eV)
npoints=400; %number of points in energy plot
dE=Emax/npoints; %energy increment (eV)
hbar=1.0545715e-34; %Planck’s constant (Js)
eye=complex(0.,1.); %square root of -1
m0=9.109382e-31; %bare electron mass (kg)
m=meff*m0; %effective electron mass (kg)
echarge=1.6021764e-19; %electron charge (C)
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for j=1:npoints
E(j)=dE*j+Emin;
bigP=[1,0;0,1]; %default value of matrix bigP

for i=1:N
k(i)=sqrt(2*echarge*m*(E(j)-V(i)))/hbar; %wave number at each position in potential V( j)

end
for n=1:(N-1)

p(1,1)=0.5*(1+k(n+1)/k(n))*exp(-eye*k(n)*L(n));
p(1,2)=0.5*(1-k(n+1)/k(n))*exp(-eye*k(n)*L(n));
p(2,1)=0.5*(1-k(n+1)/k(n))*exp(eye*k(n)*L(n));
p(2,2)=0.5*(1+k(n+1)/k(n))*exp(eye*k(n)*L(n));
bigP=bigP*p;

end
Trans( j)=(abs(1/bigP(1,1)))ˆ2; %transmission probability

end

figure(1); %plot potential and transmission coefficient
Vp=[V;V];Vp=Vp(:);
dx=1e-12; %small distance increment used in potential plot
Lx(1)=1.e-9;
for i=1:N

for j=2:i
Lx(i)=L(j)+Lx(j-1); %distance, x

end
end
xp=[0,Lx(1)-dx,Lx(1),Lx(2)-dx,Lx(2),Lx(3)-dx,Lx(3),Lx(4)-dx,Lx(4),Lx(5)-dx,Lx(5),

Lx(6)]*1e9;
subplot(1,2,1),plot(xp,Vp),axis([0,xp(12),0,1.4]),xlabel('Distance, x (nm)'),ylabel('Potential

energy, V(x) (eV)');
ttl = sprintf('Chapt4Exercise2a, bx1=%3.1f bx2=%3.1f w1=%3.1f',bx1,bx2,wx1);
title (ttl);
subplot(1,2,2),plot(Trans,E),axis([0,1,0,1.4]),xlabel('Transmission coefficient'),ylabel('Energy,

E (eV)');
ttl2 = sprintf('v1=%4.2f v2=%4.2f meff=%4.2f',vb1,vb2,meff );
title (ttl2);

figure(2);
subplot(1,2,1),plot(xp,Vp),axis([0,xp(12),0,1.4]),xlabel('Distance, x (nm)'),ylabel('Potential

energy, V(x) (eV)');
title (ttl);
subplot(1,2,2),plot(-log(Trans),E),xlabel('-ln trans. coeff.'),ylabel('Energy, E (eV)');
title (ttl2);

(b) We are asked to calculate transmission through a one-dimensional potential
that is parabolic with V (x) = (x2/L2) eV for |x | ≤ L = 5 nm and V (x) = 0 eV for
|x | > L . We recognize the potential V (x) for |x | � L as that of a one-dimensional
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harmonic oscillator. The figure below shows the result of plotting the potential and
the transmission for a particle mass m = 0.07 × m0, where m0 is the bare electron
mass.
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The well-defined transmission peak resonance at energy E0 is unity (corresponding
to −ln(Trans(E0)). As in Exercise 4.2(a), this may be confirmed by using a small
energy increment when calculating transmission. The values of the two low-energy
transmission peak resonances are in the ratio E1 = 3 × E0, which is characteristic
of quantized bound-state energy levels of a particle in a one-dimensional harmonic
potential. Notice that the width in energy �FWHM of each transmission peak increases
with increasing resonance energy. The associated decrease in resonant-state lifetime
τ = --h/�FWHM arises because at greater values of resonance energy the particle finds
it easier to tunnel through the potential barrier.

If mass m is increased by a factor 2 the energy levels and the energy-level spacing
will decrease. For a rectangular potential well with infinite barrier energy the energy
levels will decrease by a factor 2 since En = --h2k2/2m. For a parabolic potential well
the energy levels will decrease by a factor 1/

√
2 (see Chapter 6 for more information

on the parabolic harmonic oscillator potential).

Solution 4.3
(a) In this exercise we modify the computer program developed as part of Exercise 4.2
to find transmission as a function of energy for an electron of mass m0 through 12
identical one-dimensional potential barriers each of energy 10 eV, width 0.1 nm, and
sequentially placed every 0.5 nm so that the potential well between each barrier has
width 0.4 nm.



226 The propagation matrix

The figure below shows the one-dimensional potential as a function of distance,
x , and calculated particle transmission as a function of particle energy, E . Particle
transmission is plotted on a negative natural logarithm scale. This means that unity
transmission is zero and low transmission corresponds to a large number.

As is clear from the figure, there are bands in energy of near unity transmission
and bands of energy where transmission is suppressed. The former correspond to
conduction bands and the latter to band gaps in a semiconductor crystal. The ap-
proximate allowed (band, Eb) and disallowed (band gap, Eg) ranges of energy for
particle transmission through the structure are indicated in the figure. One expects
particle velocity to be slow near an allowed band edge, because one doesn’t expect
a discontinuous change in velocity from allowed to disallowed states. Disallowed
states exist in the band gap where there are no propagating states and velocity is
zero. Particle velocity should be fastest for energies near the middle of the allowed
band.
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For 11 potential wells there are 11 transmission resonances, and associated with each
resonance is a width in energy. When the finite width resonances overlap, they form a
continuum transmission band.

(b) We now compare these results with the situation in which there are only three
barriers, each with 10 eV barrier energy, 0.1 nm barrier width, and 0.4 nm well width.
As may be seen in the figure below even with three potential barriers (and two potential
wells), the basic structure of allowed and disallowed energy ranges has formed. For
two potential wells, there are two transmission resonances. The resonances at higher
energy are broader because the potential barrier seen by an electron at high energy is
smaller.
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Solution 4.4
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We are asked to consider a particle mass m = 0.07 × m0 with energy in the range
0 < E ≤ 3 eV incident on a potential V (x) = 2 sin2(n2πx/L) eV, for 0 ≤ x ≤ L and
V (x) = 0 eV elsewhere. In the expression for the potential, n is a nonzero positive
integer, and we decide to set L = 20 nm. For part (a) of this exercise we set n = 1 and
calculate the transmission probability of a particle incident from the left.

We anticipate unity transmission for well-defined resonances with energy less than
the peak potential energy of 2 eV. In addition, because the potential minimum is of the
form V (x) ∼ x2, we expect low-energy transmission resonances to occur at energies
similar to those characteristic of quantized bound-state energy levels of a particle in a
one-dimensional harmonic potential.



228 The propagation matrix

The above figure shows the one-dimensional potential as a function of distance, x , and
calculated particle transmission as a function of particle energy, E . Particle transmission
is plotted on a negative natural logarithm scale.

For part (b) of this exercise, we set n = 4 and calculate the transmission probability
of a particle incident from the left.

Since L remains fixed at L = 20 nm but n = 4, the width of each well is de-
creased by a factor n. The reduction in well width increases the energy of the lowest-
energy transmission resonance. For n = 4, there are 2n = 8 peaks in the potential and
2n − 1 = 7 potential wells. Instead of there being one distinct lowest-energy transmis-
sion resonance, as occurred in part (a) when n = 1, we now expect a transmission band
formed from seven overlapping resonances.

The figure below shows the one-dimensional potential as a function of distance, x , for
the case when n = 4. Also shown is the calculated particle transmission as a function of
particle energy, E . Particle transmission is plotted on a negative natural logarithm scale.
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If the mass of the particle were increased by a factor of 2 from m = 0.07 × m0 to
a value m = 0.14 m0, we would expect the energy of transmission resonances to be
lowered and the width in energy of the transmission band to be reduced.

We now consider the case in which the potential is distorted by an additional term
V ′(x), where V ′(x) = V0(1 − ((2x/L) − 1)2) eV for 0 ≤ x ≤ L and V ′(x) = 0 eV
elsewhere, so that the total potential is now V (x) = 2 sin2(n2πx/L)eV + V ′(x). We
begin our analysis by considering the case in which V0 = 0.1 eV and n = 4.

The effect of this particular distortion on the total potential is relatively small, and so
it may be thought of as a perturbation. It adds a wide and low potential barrier of peak
energy V0 = 0.1 eV. Particles with energy less than V0 have a very low probability of
transmission. For this reason, we may expect the effect of the additional term V ′(x) to
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be a rigid shift of the original potential V (x) = 2 sin2(n2πx/L) by approximately V0.
In this situation, the solution is the same as for the original potential, except that now
all the energy levels are shifted up by V0.

The figure below shows the one-dimensional potential V (x) = 2 sin2(n2πx/L) +
V ′(x) for the case in which n = 4 and distortion parameter V0 = 0.1 eV. As may also
be seen in the figure, the calculated particle transmission as a function of particle energy,
E , is indeed shifted up in energy by approximately eV0.
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When the distortion in the potential is large, it is harder to guess the solution. Consider
the case when V0 = 2.0 eV in the expression V ′(x) = V0(1 − ((2x/L) − 1)2) eV, which
applies when 0 ≤ x ≤ L . Now the peak in the potential-energy distortion has the same
value as the maximum potential energy appearing in the original potential energy
V (x) = 2 sin2(n2πx/L) eV.
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The above figure shows the one-dimensional potential V (x) = 2 sin2(n2πx/L) +
V ′(x) for the case in which n = 4 and distortion parameter V0 = 2.0 eV. The calculated
particle transmission as a function of particle energy E is plotted on a negative natural
logarithm scale.

Some transmission resonances do not have a maximum value of unity. The distortion
in the periodic potential by the function V ′(x) breaks the exact cancellation in amplitude
and phase of the coherent sum of all back-scattered waves for some resonances. For
the same reasons discussed in Section 4.7, a localization threshold occurs when the
central barrier is so thick that the energy splitting is less than the width in energy of the
resonance. The particle escapes because it can tunnel through a thin effective barrier
much more readily than it can through the thicker central barrier that couples degenerate
bound states. The middle barrier is so thick, and tunneling is so suppressed, that there
is minimal coupling between degenerate bound states, resulting in suppressed resonant
transmission.

Solution 4.5
We wish to use the propagation matrix to design a high-reflectivity Bragg mirror for
electromagnetic radiation with center wavelength λ0 = 980 nm incident normally to the
surface of an AlAs/GaAs periodic dielectric layer stack consisting of 25 indentical layer
pairs. Each individual dielectric layer has a thickness λ/4n, where n is the refractive
index of the dielectric. We will use nAlAs = 3.0 for the refractive index of AlAs and
nGaAs = 3.5 for that of GaAs.

In part (a) of the exercise, we are asked to calculate and plot optical reflectivity in
the wavelength range 900 nm < λ < 1100 nm. In part (a) of the figure below results
of performing the calculation are shown. The mirror has a reflectivity of close to unity
over a wavelength band width �λ = 120 nm centered at λ = 980 nm.

For the VCSEL design in part (b) there is a 25 layer-pair mirror above and a 25
layer-pair mirror below a central GaAs layer which is one wavelength wide. The two
mirrors form a high-Q resonant optical cavity. Again, the reflectivity is close to unity
over a similar wavelength band width, with the addition of an optical band pass with
near unity transmission and a FWHM of 13 pm centered at wavelength λ = 980 nm.
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Listing of MATLAB program for Exercise 4.5
%Chapt4Exercise5.m
%VCSEL mirror design
clear
clf;

%'1'labels the GaAs layer and'2'labels the AlAs layer

wavelength = 980e-9; %center wavelength (m)
d1=69.5e-9; %thickness of dielectric with refractive n1 (GaAs layer)
d2=82.3e-9; %thickness of dielectric with refractive n2 (AlAs layer)
d3=277.9e-9; %thickness of dielectric with refractive n1 in center of pass-band filter
n1=wavelength/d1/4; %3.5 is refractive index of GaAs
n2=wavelength/d2/4; %3.0 is refractive index of AlAs
istep=0;
resolution=0.00005; %resolution (nm)
range=[-100:1:-2 -1:resolution:1 1:1:100]*1e-9+wavelength; %wavelength scanning range

for wavelength=range %loop to increment wavelength
istep=istep+1;
k0=2*pi/wavelength; %input from air
k1=2*pi*n1/wavelength;
k2=2*pi*n2/wavelength;

%in EM, exp(-ikz) is considered positive propagation +z direction
%Assuming light coming in perpendicularly from the lower side (-z) to upper size (+z)
%A*exp(-ik1*z)+B*exp(ik1*z)=C*exp(-ik2*z)+D*exp(-ik2*z)
%D0,D1,D2 are interface matrices
%[D0]*[input from air]=[D1]*[output to n1],
%[D1]*[input from n1]=[D2]*[output to n2]

D0=[1 1
k0 -k0];

D1=[1 1
k1 -k1];

D2=[1 1
k2 -k2];

%P1, P2, P3 are propagation matrices
%input from the below, output above material, [input from below]=[P]*[output above],
P1=[exp(i*k1*d1) 0

0 exp(-i*k1*d1)];
P2=[exp(i*k2*d2) 0

0 exp(-i*k2*d2)];
P3=[exp(i*k1*d3) 0 %for dielectric with refractive index n1 in center of

0 exp(-i*k1*d3)]; %passband filter

%Solution =
%[Input A;B]=inv(D0)*{D1*P1*inv(D1)*D2*P2*inv(D2)}*{2nd period}*{3rd}
%*..*{defect,wider n1}*. . . *{D1*P1*inv(D1)*D2*P2*inv(D2)}*D0*[output C;D]
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G1=D1*P1*inv(D1)*D2*P2*inv(D2); %for period of lower mirror
G2=D2*P2*inv(D2)*D1*P1*inv(D1); %for period of upper mirror
lower=inv(D0)*(G1ˆ25)*D1; %propagation through lower 25 layer-pairs
upper=inv(D1)*(G2ˆ25)*D0; %propagation through upper 25 layer-pairs
Total=lower*P3*upper;

r(istep)=Total(2,1)/Total(1,1); %reflected electromagnetic field
R(istep)=r(istep)*conj(r(istep)); %total reflection intensity is r × r*

lower r(istep)=lower(2,1)/lower(1,1);
lower R(istep)=lower r(istep)*conj(lower r(istep)); %total reflection

upper r(istep)=upper(2,1)/upper(1,1);
upper R(istep)=upper r(istep)*conj(upper r(istep)); %total reflection

%loop to next value of istep
end

figure(1);
plot(range,lower R);
FWHM=size(find(R<max(R)/2),2)*resolution*1e-9 %accurate only when one peak in the range
figure(2);
plot(range,R);
grid;
ylabel('Reflection');
xlabel('Wavelength (m)');
title(['Chapt4Exercise5']);
temp=['FWHM ='num2str(FWHM)'m'];
text(980e-9, 0.5, temp);

Solution 4.6
To show that the Bloch wave function ψk(x) = Uk(x)eikx is not an eigenfunction
of the momentum operator p̂ = −i--h · ∂/∂k, we operate on the wave function, as
follows:

p̂ψk(x) = −i--h ∂

∂x
Uk(x)eikx = --hkψk(x) − i--heikx

∂

∂x
Uk(x)

Clearly, the wave function is not an eigenfunction of the operator p̂, because the
right-hand side of the equation is not a real number multiplied by the wave function
ψk(x).

Solution 4.7
(a) We are asked to repeat the calculation in Exercise 4.2, but in the presence of a
uniform electric field that falls across the double-barrier and single-well structure only,
so that the right-hand edge of the 3-nm-thick barrier is at a potential −0.63 eV below
the left-hand edge of the 4-nm-thick barrier.
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It is clear from the results shown in the above figure that a low-energy resonance
exists at an energy below zero. This is possible because the applied electric field pulls
the potential well below zero potential energy.

There is a reduction in transmission near zero energy as the velocity of a particle
incident from the left tends to zero in the region before the first potential barrier.
This causes velocity mismatch to become large giving rise to large reflection and low
transmission. Such a situation can be avoided if one does not allow the incident particle
to have a kinetic energy that approaches zero.

(b) We now consider transmission of the particle as a function of potential drop
caused by the application of an electric field across the structure. Initial particle energy
is E = 0.025 eV, and the particle is incident on the structure from the left-hand side.
This value of particle energy ensures that initial particle velocity is high enough that
we don’t incur the problem with velocity mismatch that showed up in part (a).

Note that none of the resonances in the figure below approach unity transmission.
By varying barrier energy, thickness, and well width, it is possible to design a resonant
tunnel diode with a unity transmission resonance. However, such conditions can only
be achieved over a small range of applied voltage.

To apply the calculation to a situation involving the motion of electrons passing
current I through a resonant tunnel diode, one would anticipate including a number of
improvements such as: (i) self-consistently including space-charging effects by solving
Poisson’s equation and modifying the potential according to charge density in the
device, (ii) extending the calculation to include three dimensions, and (iii) including
the electron distribution function and electron scattering when calculating current flow.
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Of course, some of these improvements to the calculation are a little ambitious and
may require some original research.
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Solution 4.8
We would like to use the method outlined in Section 3.4 to numerically solve the one-
dimensional Schrödinger wave equation for an electron of mass m0 in a symmetrical
double-well structure with finite barrier potential energy.

The main computer program deals with input parameters such as the length L , the
electron mass, the number of discretization points N , and the plotting routine. Because
we use a nontransmitting boundary condition, it is important to choose L large enough
so that the wave function is approximately zero at the boundaries x0 = 0 and xN = L .
Also, a large enough value of N should be chosen so that the wave function does not vary
significantly between adjacent discretization points. This ensures that the three-point
finite-difference approximation used in Eqn (3.40) is accurate.

The main computer program calls solve schM, which was used in solution of Exer-
cise 3.7. It solves the discretized Hamiltonian matrix (Eqn (3.44)).

In this exercise, the first two energy eigenvalues are E0 = 0.3226 eV and E1 =
0.4053 eV. The separation in energy is �E = 0.0827 eV. The eigenfunctions generated
by the program and plotted in the figure below are not normalized.
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Listing of Matlab program for Exercise 4.8
%Chapt4Exercise8.m
%eigenstates of resonant tunnel barrier
%
clear
clf;
length = 5; %length of well (nm)
N=1000; %number of sample points
x=0:length/N:length; %position of sample points in potential
mass=1.00; %effective electron mass
num sol=2; %number of solutions sought
v0=1; %potential scale (eV)

v=v0.*ones(1,N+1);

%first well
for i=341:460 %well width 120*length/N = 0.6 nm

v(i)=0;
end

%barrier width 81*length/N = 0.4 nm
%second well
for i=540:659 %well width 120*length/N = 0.6 nm

v(i)=0;
end

[energy,phi]=solve schM(length,N,v,mass,num sol); %call function solve schM

for i=1:num sol
sprintf(['eigenfunction (',num2str(i),') =',num2str(energy(i)),'eV']) %energy eigenvalues
end

figure(1);
plot(x,v,'b');xlabel('Distance (nm)'),ylabel('Potential energy, (eV)');
ttl=['Chapt4Exercise8, m* =',num2str(mass),'m0, Length =',num2str(length),'nm'];
title(ttl);

s=char('y','k','r','g','b','m','c'); %plot curves in different colors

figure(2);
for i=1:num sol

j=1+mod(i,7); %select color for plot
plot(x,phi(:,i),s(j)); %plot eigenfunctions

hold on;
end
xlabel('Distance (nm)'),ylabel('Wave function');
title(ttl);
hold off;

Solution 4.9
We follow the previous exercise and write a computer program to solve the Schrödinger
wave equation for the first three eigenvalues and eigenstates of an electron with effective
massm∗

e = 0.07 × m0 confined to the periodic potential consisting of the eight quantum
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wells of width 6.25 nm, each separated by a potential barrier of thickness 3.75 nm and
with barrier potential energy 1 eV. The total width of the multiple quantum well structure
is 76.25 nm.

The energy eigenvalues for the first three eigenstates are E0 = 0.0885 eV, E1 =
0.0886 eV, and E2 = 0.0887 eV. The corresponding eigenstates, ψ0, ψ1, and ψ2, shown
in the figure below, are the first of eight states that form the lowest energy allowed band
in the periodic potential.
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According to Bloch’s theorem, states in a periodic potential are of the form ψk(x) =
Uk(x)eikx , where Uk(x) has the same periodicity as the potential and the term eikx

carries phase information via the Bloch wave vector k. It is clear from the results
shown in the above figure that Uk(x) may be approximated as a symmetric function
(let us say Gaussian) centered in each quantum well with some spatial overlap into
adjacent quantum wells. The wave function ψk(x) is then formed by modulatingUk(x)
with the sinusoidal envelope function eikx . The Bloch wave vector kn = 2π/λn takes
on the values π (n + 1)/Leff, where n = 0, 1, 2, . . . and Leff ∼ 85 nm is an effective
size for the multiple quantum well structure, which takes into account the penetration
of the wave functions into the outermost potential barriers. In this case, the envelope
functions are similar to the standing waves we have calculated previously for states in
a rectangular potential with infinite barrier energy. The figure below illustrates this for
the first three eigenfunctions.
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The eight quantum wells have eight states that form the lowest-energy allowed
band. These eight states consist of a cell periodic function Uk(x) modulated by the en-
velope function eikx , the Bloch wave vector k of which can have one of eight values
(kn = nπ/Leff, where n = 1, 2, . . . , 8).

The next allowed band is formed from eight states, each of which consists of a
new cell periodic function (this time antisymmetric) modulated by the same envelope
function eikx .



5 Eigenstates and operators

5.1 Introduction

Quantum mechanics is a very successful description of atomic-scale systems. The
simplicity of the mathematical description in terms of noncommuting linear operators
is truly remarkable. The elegant, embedded symmetries are, in themselves, aesthetically
pleasing and have been a source of inspiration for some studying this subject. Of course,
this mathematical description uses postulates to provide a logical framework with which
to make contact with the results of experimental measurements.

5.1.1 The postulates of quantum mechanics

From the material developed in the previous chapters, we may write down four assump-
tions or postulates for quantum mechanics.

5.1.1.1 Postulate 1

Associated with every physical observable is a corresponding operator Â from which
results of measurement of the observable may be deduced.

We assume that each operator is linear and satisfies an eigenvalue equation of the form
Âψn = anψn , in which the eigenvalues an are real numbers and the eigenfunctions ψn

form a complete orthogonal set in state-function space. The eigenvalues, which may
take on discrete values or exist for a continuous range of values, are guaranteed to
be real (and hence measurable) if the corresponding operator is Hermitian. We also
note that, in general, the eigenfunctions themselves are complex and hence not directly
measurable.

5.1.1.2 Postulate 2

The only possible result of a measurement on a single system of a physical observable
associated with the operator Â is an eigenvalue of the operator Â.

238
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In this way, the result of measurement is related to the eigenvalue of the mathematical
operator Â. The act of measurement on the system gives an eigenvalue an , which is
a real number. The eigenfunction associated with this eigenvalue is stationary. As a
consequence, after the measurement has been performed, the system remains in the
measured eigenstate unless acted upon by some external force.

5.1.1.3 Postulate 3

For every system there always exists a state function # that contains all of the infor-
mation that is known about the system.

The state function # contains all of the information on all observables in the system. It
may be used to find the relative probability of obtaining eigenvalue an associated with
operator Â for a particular system at a given time.

5.1.1.4 Postulate 4

The time evolution of # is determined by i--h∂#/∂t = H#,where H is theHamiltonian
operator for the system.

We recognize the time evolution of the state function as Schrödinger’s equation
(Eqn (2.40)).

The postulates of quantum mechanics are the underlying assumptions on which
the theory is built. They may only be justified to the extent that results of physical
experiments do not contradict them. The postulates, which are a connection between
mathematics and the physical aspects of the model, contain the strangeness of quantum
mechanics.

The probabilistic interpretation of measurement and the associated collapse of the
state function to an eigenfunction are physical aspects of the model that in no way
detract from the beauty of the mathematics. The correspondence principle, in which
as --h → 0 one obtains the result known from classical mechanics, is also a constraint
imposed by physics. These and other aspects of the physical model are what introduce
inconsistencies. When one talks about the weirdness of quantum mechanics, one is
usually struggling to come to terms with the physical aspects of the model and implicitly
asking for a new, more complete theory.

In this chapter, the idea is to introduce some of the mathematics used in our description
of quantum phenomena. Our approach to the mathematics is going to be pragmatic.
We are only going to introduce a concept if it is useful. We will then illustrate the idea
with an example.
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5.2 One-particle wave-function space

The probabilistic interpretation of the wave function means that |ψ(r, t)|2d3r represents
the probability of finding the particle at time t in volume d3r about the point r in space.
Physical experience suggests that it is reasonable to assume that the total probability
of finding the particle somewhere in space is unity, so that

∞∫
−∞

|ψ(r, t)|2d3r = 1 (5.1)

We require that the wave functions ψ(r, t) be defined, continuous, and differentiable.
Also, the wave functions exist in a wave-function space which is linear. The integrands
for which this equation converges are square integrable functions. This is a set called
L2 by mathematicians and it has the structure of Hilbert space.

There are analogies between an ordinary N -dimensional vector space consisting of N
orthonormal unit vectors and the eigenfunction space in quantum mechanics. They are,
for example, both linear spaces. However, an important difference becomes apparent
when one considers scalar products.

If the vector

A =
N∑
j

a ja j (5.2)

where a j is the j-th coefficient and a j is the j-th orthonormal unit vector, and similarly
the vector

B =
N∑
j

b jb j (5.3)

then the scalar product of the two vectors A and B is just

A · B =
N∑
j

a j b j (5.4)

In quantum mechanics there are wave functions such as ψA(r) and ψB(r). In this case,
the scalar product is an integral

∫
ψ∗
A(r)ψB(r)d3r . The integral is needed because

wave-function space is continuously infinite dimensional. This is one of the charac-
teristics of Hilbert space that distinguish it from an ordinary N -dimensional vector
space.
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5.3 Properties of linear operators

A linear operator Â associates with every function ψ(r) ∈ another function φ(r) in a
linear way. This associativity may be expressed mathematically as

φ(r) = Âψ(r) (5.5)

If we let the wave function ψ(r) be a linear combination ψ(r) = λ1ψ1(r) + λ2ψ2(r),
where λ1 and λ2 are numbers that weight the contribution of ψ1(r) and ψ2(r), then

Â(λ1ψ1(r) + λ2ψ2(r)) = λ1Âψ1(r) + λ2Âψ2(r) (5.6)

As an example, consider the momentum operator for a particle moving in one di-
mension. The operator is Â = p̂x = −i--h · ∂/∂x . If we let the wave function ψ(x) =
λ1ψ1(x) + λ2ψ2(x), then the expression for φ(x) in Eqn (5.5) becomes

φ(x) = −i--h ∂

∂x
(λ1ψ1(x) + λ2ψ2(x)) = −λ1i--h

∂

∂x
ψ1(x) − λ2i--h

∂

∂x
ψ2(x) (5.7)

5.3.1 Product of operators

If Â and B̂ are linear operators, then the product of operators acting upon the function
ψ(r) is

(ÂB̂)ψ(r) = Â(B̂ψ(r)) (5.8)

Equation (5.8) indicates that operator B̂ acts first upon ψ(r) to give φ(r) = B̂ψ(r).
Operator Â then acts upon the new function φ(r). The order in which operators act
upon a function is critical because, in general, ÂB̂ �= B̂Â.

To illustrate this important property, consider the one-dimensional momentum op-
erator in real space Â = p̂x = −i--h · ∂/∂x and the one-dimensional position operator
B̂ = x . Let the wave function ψ = ψ(x). Then

ÂB̂ψ(x) = −i--h ∂

∂x
(xψ(x)) = −i--hψ(x) − i--hx

∂

∂x
ψ(x) (5.9)

and

B̂Âψ(x) = −i--hx ∂

∂x
ψ(x) (5.10)

Comparing Eqn (5.9) and Eqn (5.10), we may conclude that ÂB̂ �= B̂Â. Clearly, the
order in which operators are applied is something that needs to be handled with care.
One way to determine the sensitivity of pairs of operators to the order in which a product
is applied is to evaluate the commutator.
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5.3.2 The commutator for operator pairs

The commutator for the pair of operators Â and B̂ is defined as

[Â, B̂] = ÂB̂ − B̂Â (5.11)

Mathematically, one may think of quantum mechanics as the description of physical
systems with noncommuting operators. As with matrix algebra, in general ÂB̂ �= B̂Â.

By way of an example, we consider the one-dimensional momentum operator in real
space Â = p̂x = −i--h · ∂/∂x and the one-dimensional position operator B̂ = x . These
are the same operators used in Eqn (5.9) and Eqn (5.10), which, when substituted into
Eqn (5.11) gives the commutator

[ p̂x , x] = −i--h (5.12)

The fact that the right-hand side of Eqn (5.12) is nonzero means that the pair of linear
operators we used in this particular example are noncommuting. Of course, if the
order in which the operators appear in Eqn (5.12) is interchanged, then the sign of the
commutator is reversed. In our example this gives [x, p̂x ] = −i--h.

5.3.3 Properties of Hermitian operators

The results of physical measurements are real numbers. This means that a physical
model of reality is restricted to prediction of real numbers. Hermitian operators play a
special role in quantum mechanics, because these operators guarantee real eigenvalues.
Hence, a physical system described using a Hermitian operator will provide information
on measurable quantities.

Â is a Hermitian operator if the expectation value is such that∫
(φ∗

n (r)Âψm(r))∗d3r =
∫

ψ∗
m(r)Âφn(r)d3r =

∫
(Âψm(r))∗φn(r)d3r

∫
(φ∗

n (r)Âψm(r))∗d3r =
∫

(Âφn(r)ψm(r))∗d3r

or, equivalently, in matrix notation

A∗
nm = Amn (5.13)

where the matrix elements A∗
nm = ∫

(φ∗
n (r)Âψm(r))∗d3r and Amn =∫

ψ∗
m(r)Âφn(r)d3r .

If the linear operator Â is not Hermitian, it is always possible to define a Hermitian
adjoint operator Â† in such a way that∫

φ∗(r)Â†ψ(r)d3r =
∫

(Âφ(r))∗ψ(r)d3r (5.14)
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It follows from the definition of Hermitian operators that an operator is Hermitian
when it is its own Hermitian adjoint – i.e., Â† = Â.

To show that the eigenvalues of a Hermitian operator are real and that the associated
eigenfunctions are orthogonal, we start by considering the operator Â such that Âφm =
amφm , where φm is an eigenfunction of Â and am is the corresponding eigenvalue. We
can always write

Âφn = anφn (5.15)

If we multiply both sides of Eqn (5.15) by φ∗
m and integrate over all space we obtain∫

φ∗
mÂφnd

3r = an

∫
φ∗
mφnd

3r (5.16)

Similarly, interchanging the subscripts m and n, we have∫
φ∗
n Âφmd

3r = am

∫
φ∗
nφmd

3r (5.17)

which can be rewritten as∫
(Âφn)∗φmd3r = am

∫
φ∗
nφmd

3r (5.18)

If now one takes the complex conjugate, this gives∫
φ∗
mÂφnd

3r = a∗
m

∫
φ∗
mφnd

3r (5.19)

Subtracting Eqn (5.19) from Eqn (5.16) gives

0 = (an − a∗
m)
∫

φ∗
mφnd

3r (5.20)

For the case when n = m, we have

0 = (an − a∗
n )
∫

φ∗
nφnd

3r (5.21)

Since |φn|2 is finite, an = a∗
n , and we conclude that eigenvalues of Hermitian operators

are real numbers. This is useful in quantum mechanics, because it guarantees that the
eigenvalue of a Hermitian operator results in a real measurable quantity.

For the case in which n �= m, then the integral is zero provided an �= am . Hence the
nondegenerate eigenfunctions of Hermitian operators are orthogonal to each other, and
we may write

0 =
∫

φ∗
mφnd

3r (5.22)

for n �= m.
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5.3.4 Normalization of eigenfunctions

Because eigenvalue equations involve linear operators, we may specify eigenfunctions
to within an arbitrary constant. It is convention that the constant is chosen in such a way
that the integral over all space is unity. This means that the eigenfunctions are normalized
to unity. Eigenfunctions that are orthogonal and normalized are called orthonormal.
The orthonormal properties of Hermitian operator eigenfunctions can be expressed as∫

φ∗
nφmd

3r = δnm (5.23)

where the Kronecker delta δnm = 0 if n �= m and δnm = 1 if n = m.1

5.3.5 Completeness of eigenfunctions

The eigenfunctions of a Hermitian operator can be used to expand an arbitrary function
ψ(r). This means that

ψ(r) =
∑
n

anφn(r) (5.24)

where Âφn = anφn . The expansion coefficient am is obtained by multiplying both sides
of the equation by φ∗

m(r) and integrating∫
φ∗
mψ(r)d3r =

∑
n

an

∫
φ∗
mφnd

3r (5.25)

Using the fact that
∫
φ∗
mφnd

3r = δmn , one obtains∫
φ∗
mψ(r)d3r = am (5.26)

so that am is the projection of ψ(r) on φm(r). The wave function ψ(r) is an arbi-
trary function, and

∑
n anφn(r) is the expansion of that function in terms of the unit

eigenfunctions φn(r).

5.4 Dirac notation

This is a particularly compact and efficient way to represent eigenfunctions and expec-
tation values in quantum mechanics. This notation represents individual state functions
by a ket or bra:

φ → |φ〉 ket (5.27)

φ∗ → 〈φ| bra (5.28)

1 The Kronecker delta is not to be confused with the Dirac delta function described in Appendix C-4.
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Often, a wave function φn(r) with quantum number n is represented as |n〉 and its
complex conjugate as 〈n|.

In Dirac notation, the integral over all space is defined as∫
φ∗(r)ψ(r)d3r ≡ 〈φ|ψ〉 (5.29)

where 〈 〉 is a braket (bra-ket).
The act of operating on wave function φ with operator Â is

Âφ → Â|φ〉 (5.30)

and∫
φ∗(r)Âψ(r)d3r = 〈φ|Â|ψ〉 (5.31)

is the expectation value of the operator Â.
The orthonormal condition is expressed as∫
φ∗
nφmd

3r = 〈φn|φm〉 = 〈n|m〉 = δnm (5.32)

The projection of ψ(r) on φm(r) is expressed as

am = 〈φm |ψ〉 (5.33)

and the expansion of an arbitrary state function |ψ〉 is

|ψ〉 =
∑
n

bn|n〉 (5.34)

|ψ〉 =
∑
n

(〈n|ψ〉)|n〉 =
∑
n

|n〉〈n|ψ〉 (5.35)

Hence,
∑

n |n〉〈n| = Î, where Î is the identity operator.
The Schrödinger equation(−--h2∇2

2m
+ V (r, t)

)
ψn(r, t) = Hψn(r, t) = i--h

∂

∂t
ψn(r, t) (5.36)

can be written

H |ψ〉 = i--h
∂

∂t
|ψ〉 = i--h

∣∣∣∣ ∂∂tψ
〉

(5.37)

5.5 Measurement of real numbers

In quantum mechanics, each type of physical observable is associated with a Her-
mitian operator. As mentioned in Section 5.3.3, Hermitian operators ensure that any
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eigevalue is a real quantity. In this way, the result of a measurement is a real number
that corresponds to one of the set of continuous or discrete eigenvalues for the system:

Â|n〉 = an|n〉 (5.38)

Â is a Hermitian operator, |n〉 is an eigenfunction, and an is its eigenvalue.
If there are two different physical observables with eigenvalues an and bn , respec-

tively, then there are two different associated operators Â and B̂. For a given system,
measurement of Â followed by measurement of B̂ is denoted by B̂Â, and the re-
sult may be different for ÂB̂. If the measurements interfere with each other, then the
commutator

[Â, B̂] = ÂB̂ − B̂Â �= 0 (5.39)

Measurements of position and momentum are good examples of measurements that
interfere with each other. The commutation relation for the position operator x̂ and the
momentum operator p̂x = −i--h · ∂/∂x for a particle moving in one dimension is

[x̂, p̂x ] = i--h (5.40)

The momentum and position operators do not commute. A measurement on one ob-
servable influences the value of the other. The coupling between the two observables
through the commutation relation has the physical consequence that the observable
quantities cannot be measured simultaneously with arbitrary accuracy.

So far, we have considered an example of measurements that interfere with each
other. The other possibility is that the measurements do not interfere with each other. In
this case, the operators corresponding to the measurement commute. If two operators
commute, then they possess common eigenfunctions. Since, in this case, B̂Â = ÂB̂,
we can write ÂB̂φB = B̂ÂφB = ÂbφB = bÂφB . The function ÂφB is thus an eigen-
function of B̂ with eigenvalue b. If there is only one eigenfunction of B̂ associated with
eigenvalue b, then ÂφB = cφB , where c is a constant, so that φB is an eigenfunction
of Â.

5.5.1 Expectation value of an operator

Previously, we identifiedψ∗(r)ψ(r)d3r as the probability of finding a particle in volume
element d3r at position r. The fact that we characterize the position of a particle using
probability means that we will be concerned with its statistical properties whether
tunneling or moving in free space. Fortunately, we know enough about finding solutions
to wave functions that we can explore this now.

If ψ∗(r)ψ(r)d3r is the probability of finding the particle in volume element d3r at po-
sition r, then, because it must be somewhere in space with certainty, the integral over all
space is unity. This property of normalization requires 〈ψ |ψ〉 = ∫

ψ∗(r)ψ(r)d3r = 1,
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so the expectation of finding the particle somewhere is unity. Other expectation values
can be found. Consider the Schrödinger equation

−
--h2

2m
∇2ψ(r) + V (r)ψ(r) = Eψ(r) (5.41)

Multiplying by ψ∗(r) and integrating over all space gives

−
--h2

2m

∫
ψ∗(r)∇2ψ(r)d3r +

∫
ψ∗(r)V (r)ψ(r)d3r = E

∫
ψ∗(r)ψ(r)d3r (5.42)

The first term in the integrand on the left-hand side is the local kinetic energy probability
at position r. The second term in the integrand on the left-hand side is the local potential
energy at position r. We are weighting the kinetic energy operator and potential operator
at position r with the probability that the particle is at position r. We then integrate
over all space to get the average value or expectation value. The expectation values for
kinetic energy 〈T 〉, potential energy 〈V 〉, and position 〈r〉, are

〈T 〉 = 〈ψ |T̂ |ψ〉 = −--h2

2m

∫
ψ∗(r)∇2ψ(r)d3r (5.43)

〈V 〉 = 〈ψ |V̂ |ψ〉 =
∫

ψ∗(r)V (r)ψ(r)d3r (5.44)

〈r〉 = 〈ψ |r̂|ψ〉 =
∫

ψ∗(r)rψ(r)d3r (5.45)

Given that we have defined an average value for the result of a measurement, it is
natural to consider the time evolution of the expectation value as well as the spread or
deviation from the average value when a measurement is performed many times. The
time dependence of an expectation value is considered in Section 5.5.2. The deviation
from the mean result of a measurement performed many times is called the uncertainty
in expectation value, and this is discussed in Section 5.5.3.

5.5.2 Time dependence of expectation value

To find the time dependence of an expectation value, we start by writing down the
expectation value of the operator Â:

〈Â〉 = 〈ψ |Â|ψ〉 (5.46)

The time dependence of this equation can be expressed in terms of the Schrödinger
equation (Eqn (5.37)):

−i
--h
H |ψ〉 =

∣∣∣∣∂ψ∂t
〉

(5.47)

Taking the complex conjugate of both sides gives

i
--h
〈ψ |H =

〈
∂ψ

∂t

∣∣∣∣ (5.48)
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We now find the time derivative of Eqn (5.46) using the chain rule for differentiation
and substituting in Eqn (5.47) and Eqn (5.48):

d

dt
〈Â〉 =

〈
∂ψ

∂t

∣∣∣∣Â
∣∣∣∣ψ
〉
+
〈
ψ

∣∣∣∣ ∂∂t Â
∣∣∣∣ψ
〉
+
〈
ψ

∣∣∣∣Â
∣∣∣∣∂ψ∂t

〉
(5.49)

d

dt
〈Â〉 = i

--h
〈ψ |H Â|ψ〉 − i

--h
〈ψ |ÂH |ψ〉 +

〈
ψ

∣∣∣∣ ∂∂t Â
∣∣∣∣ψ
〉

(5.50)

= i
--h
〈ψ |H Â − ÂH |ψ〉 +

〈
ψ

∣∣∣∣ ∂∂t Â
∣∣∣∣ψ
〉

d

dt
〈Â〉 = i

--h
〈[H, Â]〉 +

〈
∂

∂t
Â
〉

(5.51)

If the operator Â has no explicit time dependence, then〈
∂

∂t
Â
〉
= 0

and

d

dt
〈Â〉 = i

--h
〈[H, Â]〉 (5.52)

5.5.2.1 Time dependence of position operator of particle moving in free space

To check this result, consider a particle of mass m moving in free space in such a way
that the Hamiltonian describing motion in the x direction is

H = −
--h2

2m

d2

dx2
(5.53)

To evaluate the time dependence of the expectation value of the position operator x̂ ,
we need to find

d

dt
〈x̂〉 = i

--h
〈[H, x̂]〉 (5.54)

The commutator operating on the wave function ψ(x, t) that describes the particle
gives

i
--h

[H, x̂]ψ = −
--h2

2m

i
--h

(
d

dx

(
d

dx
· xψ

)
− x

d

dx

(
d

dx
ψ

))

= −i--h
2m

(
d

dx
ψ + d

dx

(
x
d

dx
ψ

)
− x

d

dx

(
d

dx
ψ

))
(5.55)

i
--h

[H, x̂]ψ = −i--h
2m

(
d

dx
ψ + d

dx
ψ + x

d

dx

(
d

dx
ψ

)
− x

d

dx

(
d

dx
ψ

))
= −i--h

m

d

dx
ψ

(5.56)
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Using the fact that the wave function of a free particle moving in the x direction is of
the form ψ = ei(kx x−ωt), we may conclude that

d

dt
〈x̂〉 =

--hkx
m

(5.57)

As expected, this is just the x component of momentum divided by the mass or, equiv-
alently, the speed of the particle in the x direction.

5.5.3 Uncertainty of expectation value

Here we are interested in establishing a measure of the deviation of the result of a
measurement from the mean value. Let Â be an operator corresponding to an observable
when the system is in state ψ(r). The mean (expectation) value of the observable
A is

〈Â〉 =
∫

ψ∗(r)Âψ(r)d3r (5.58)

However, we are interested in obtaining a measure of the spread in values of the
observable A. The deviations in the observable A can be defined in terms of the mean
of squares of the deviations

(�A)2 = 〈(Â − 〈Â〉)2〉 = 〈Â2 + 〈Â〉2 − 2Â〈Â〉〉
= 〈Â2〉 + 〈Â〉2 − 2〈Â〉〈Â〉 (5.59)

where 〈Â〉 is the mean of the measured value A and (�A)2 is the square of the deviations.
It follows that

�A2 = 〈Â2〉 − 〈Â〉2 (5.60)

or

�A = (〈Â2〉 − 〈Â〉2)1/2 (5.61)

We can also express this in integral form:

�A2 =
∫

ψ∗(r)Â2ψ(r)d3r −
(∫

ψ∗(r)Âψ(r)d3r

)2

(5.62)

The physical meaning of this is that 〈Â〉 is the average value of many observations
on the system, and �A is a measure of the root-mean-square (rms) deviations or spread
in the values of the measurement. Of course, there are other ways to measure a spread



250 Eigenstates and operators

in the values of a measurement. However, we chose the above approach based on rms
deviations because it is the most commonly used.

5.5.3.1 Uncertainty in expectation value of a particle confined by a one-dimensional, infinite,
rectangular potential

As usual, we start out by defining the potential in which the particle moves. Figure 5.1(a)
is a sketch of the one-dimensional potential. To simplify our expression for the eigen-
functions, we chose the position x = 0 to be the left-hand boundary of the potential, so
that

V (x) = 0 0 < x < L (5.63)

and

V (x) = ∞ elsewhere (5.64)

We wish to find the expectation value of the particle position and the uncertainty in
the position when the particle is in the n-th energy state. To solve this problem one
starts by writing down the time-independent Schrödinger equation:(
−

--h2

2m
∇2 + V (r)

)
ψn(r) = Enψn(r) (5.65)

The boundary conditions are ψn(x) = 0 at x = 0, x = L . The solutions to the wave
function are

ψn = An sin(knx) (5.66)

where kn = nπ/L and n is a nonzero positive integer n = 1, 2, 3, . . ..
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Fig. 5.1. (a) Sketch of a one-dimensional, rectangular potential well with infinite barrier energy
showing the energy eigenvalues E1, E2, and E3. (b) Sketch of the eigenfunctions ψ1, ψ2, and ψ3 for
the potential shown in (a).
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The normalization constant An is found from the normalization condition

x=L∫
x=0

ψ∗
n (x)ψn(x)dx = A2

n

x=L∫
x=0

sin2(knx)dx = 1 (5.67)

1

A2
n

=
x=L∫
x=0

(
1

2
− 1

2
cos(2knx)

)
dx =

[
x

2
+ 1

4kn
sin(2knx)

]L
0

= L

2
+ 0 (5.68)

where we used the relation 2 sin(x) sin(y) = cos(x − y) − cos(x + y). Hence, An =√
2/L , and we may write the wave function as

ψn(x) =
√

2

L
sin

(
nπx

L

)
(5.69)

To find the expectation value of x one must solve the integral

〈xn〉 =
∫

ψ∗
n (x)xψn(x)dx = A2

n

∫
x sin2(knx)dx

= A2
n

∫
x

(
1

2
− 1

2
cos(2knx)

)
dx (5.70)

Written in the form shown on the right-hand side, the integral may be found by inspec-
tion of odd and even functions to give

〈xn〉 = A2

[
x2

4

]L
0

(5.71)

Alternatively, working a little harder, we may solve Eqn (5.70) by integrating by parts
using

∫
UV ′dx = UV − ∫

U ′Vdx .
In this case, U = x and V ′ = ( 1

2 − 1
2 cos(2knx)), so that

V = x

2
− 1

4kn
sin(2knx)

and

〈xn〉 = A2
n

([
x2

2
− x

4kn
sin(2knx)

]L
0

−
∫ (

x

2
− 1

4kn
sin(2knx)

)
dx

)
(5.72)

〈xn〉 = A2
n

[
x2

2
− x

4kn
sin(2knx) − x2

4
− 1

8k2
n

cos(2knx)

]L
0

(5.73)

But kn = nπ/L and n = 1, 2, 3, . . . , so that

〈xn〉 = A2
n

(
L2

2
+ 0 − L2

4
+ 0

)
= A2

n

L2

4
(5.74)
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And, since A2
n = 2/L , we finally have

〈xn〉 = L

2
(5.75)

To check this quantum mechanical result for the average value of the position of the
particle, it makes sense to compare it with the predictions of classical mechanics. In
classical mechanics, the particle in the potential well moves at constant velocity, v, and
traverses the well in time τ = L/v. The average position x is given by

〈x〉 =
t=τ∫

t=0

vtdt

τ
= 1

2
v
τ 2

τ
= 1

2
vτ = 1

2
v
L

v
(5.76)

Hence, 〈x〉 = L/2, which is quite satisfying, since it is the same as the quantum
result.

To find the expectation value of x2 in the quantum mechanical case, we must solve

〈
x2
n

〉 = A2
n

∫
x2 sin2(knx)dx = A2

n

∫ (
x2

2
− x2

2
cos(2knx)

)
dx (5.77)

〈
x2
n

〉 = A2
n

([
x3

6
− x2

2

1

2kn
sin(2knx)

]L
0

+
∫

x

2kn
sin(2knx)dx

)
(5.78)

〈
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1
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2kn
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− 1

2kn

)
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0

+
∫
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4k2
n

cos(2knx)dx

)
(5.79)

〈
x2
n

〉 = A2
n

[
x3

6
− x2

4kn
sin(2knx) − x

4k2
n

cos(2knx) + 1

8k3
n

sin(2knx)

]L
0

(5.80)

where the second and fourth terms contribute zero, since kn = nπ/L and n =
1, 2, 3, . . .. Hence,

〈
x2
n

〉 = A2
n

(
L3

6
− L

4k2
n

)
= A2

n

(
L3

6
− L

4
· L2

n2π2

)
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n

(
L3

6
− L3

4n2π2

)
(5.81)

but A2
n = 2/L , so

〈
x2
n

〉 = L2

3
− L2

2n2π2
(5.82)
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The uncertainty in the position of the particle in the n-th state is given by the rms
deviation �xn = (〈x2

n〉 − 〈xn〉2)1/2, which we calculate using

�x2
n = 〈

x2
n

〉− 〈xn〉2 = L2

3
− L2

2n2π2
− L2

4
= L2

12

(
4 − 6

n2π2
− 3

)
(5.83)

�x2
n = L2

12

(
1 − 6

n2π2

)
(5.84)

This result is interesting, because in the limit of very high-energy eigenvalues
(n → ∞) the rms deviation in particle position approaches the classical result
�xClassical = L/

√
12. It is always a good idea to compare the predictions of quan-

tum mechanics with the classical result, as this helps us to appreciate and develop an
intuitive feel for quantum mechanics.

5.5.4 The generalized uncertainty relation

In Section 5.5.3 we considered the spread in results of measurement about some average
value. We went on to consider the specific example of finding the expectation value and
uncertainty in particle position in a one-dimensional, rectangular potential well with
infinite barrier energy.

There is another important concept in quantum mechanics that links the uncertainty
in results of measurement between a given pair of associated noncommuting operators.
The spread in results of one set of measurements associated with one operator is related
to the spread in measured values of the associated noncommuting operator. This is the
uncertainty relation, which we now discuss by considering a pair of noncommuting
operators Â and B̂.

Consider an operator Â:

〈ÂÂ†〉 ≥ 0 (5.85)

because

〈ÂÂ†〉 = 〈ψ |Â†Â|ψ〉 = 〈Âψ |Âψ〉 ≥ 0 (5.86)

from the definition of Hermitian conjugate. Or, in terms of integrals,

〈ÂÂ†〉 =
∫

ψ∗(Â†Âψ) =
∫

(Âψ)∗(Âψ) =
∫

(Âψ)2 ≥ 0 (5.87)

Noting that∫
φ∗iÂφ =

∫
(Â†φ)∗iφ = −i

∫
(Â†φ)∗φ = −

∫
(iÂ†φ)∗φ (5.88)
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we can create a linear combination Â + iB̂, so that

〈Â + iB̂〉 = 〈Â〉 + i〈B̂〉 (5.89)

and

(Â + iB̂)† = Â† − iB̂† (5.90)

If Â and B̂ are Hermitian, then (Â + iB̂)† = Â − iB̂. If one now considers an operator
(Â + iλB̂), where λ is real and Â and B̂ are Hermitian operators, then one may write

〈(Â + iλB̂)(Â + iλB̂)†〉 = 〈(Â + iλB̂)(Â† − iλB̂†)〉 ≥ 0 (5.91)

〈Â2〉 + λ2〈B̂2〉 − iλ〈ÂB̂ − B̂Â〉 ≥ 0 (5.92)

Therefore, the last term on the left-hand side 〈ÂB̂ − B̂Â〉 = [〈Â, B̂〉] must be zero or
pure imaginary. The minimum value of λ is found by taking the derivative with respect
to λ in such a way that

0 = d

dλ
(〈Â2〉 + λ2〈B̂2〉 − iλ〈ÂB̂ − B̂Â〉) (5.93)

0 = 2λmin〈B̂2〉 − i〈ÂB̂ − B̂Â〉 = 2λmin〈B̂2〉 − i[〈Â, B̂〉] (5.94)

λmin = i

2

[〈Â, B̂〉]
〈B̂2〉 (5.95)

Substituting the minimum value λmin into Eqn (5.92) gives

〈Â2〉 − [〈Â, B̂〉]2〈B̂2〉
4〈B̂2〉2

+ [〈Â, B̂〉]2

2〈B̂2〉 ≥ 0 (5.96)

so that

〈Â2〉〈B̂2〉 ≥ − [〈Â, B̂〉]2

4
(5.97)

The product of the expectation value of the square of a Hermitian operator with the
expectaion value of the square of another Hermitian operator has a minimum value that
is proportional to the square of the commutator of the two operators. To show that this
applies to the root-mean-square (rms) value we create a new set of operators in such a
way that

Â → Â − 〈Â〉 ≡ δÂ (5.98)

B̂ → B̂ − 〈B̂〉 ≡ δB̂ (5.99)

so that

〈(δÂ)2〉 = 〈(Â − 〈Â〉)2〉 = 〈Â2〉 − 〈2Â〈Â〉〉 + 〈Â〉2

= 〈Â2〉 − 〈Â〉2 = �Â2 (5.100)
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which is the rms deviation. We can relate [δÂ, δB̂] to operators Â and B̂:

[δÂ, δB̂] = ÂB̂ − Â〈B̂〉 − 〈Â〉B̂ + 〈Â〉〈B̂〉
− B̂Â + 〈B̂〉Â + B̂〈Â〉 − 〈B̂〉〈Â〉 (5.101)

[δÂ, δB̂] = ÂB̂ − B̂Â = [Â, B̂] (5.102)

Substituting δÂ and δB̂ into our previous expression 〈Â2〉〈B̂2〉 ≥ −[〈Â, B̂]2/4, we
obtain

〈δÂ2〉〈δB̂2〉 ≥ −[〈δÂ, δB̂〉]2/4 (5.103)

Using 〈δÂ2〉 = �A2 from Eqn (5.100) and the relation given by Eqn (5.102) allows us
to rewrite Eqn (5.103) as

�A2�B2 ≥ −[〈Â, B̂〉]2/4 (5.104)

or

�A�B ≥ i

2
[〈Â, B̂〉] (5.105)

which is the generalized uncertainty relation. This relationship between a conjugate pair
of noncommuting linear operators may be considered a consequence of the mathematics
that is built into our description of quantum phenomena.

As a specific example of the uncertainty relation, consider a particle moving in
one dimension. To find the uncertainty in position and momentum we let the operator
Â = p̂x = −i--h · ∂/∂x , which is the x component of the momentum operator, and
the operator B̂ = x̂ , which is the x-position operator. Then, from the commutation
relation,

[〈 p̂x , x̂〉] ≡ [ p̂x , x̂] = −i--h (5.106)

and the uncertainty relation for position and momentum operators can be found from
Eqn (5.105):

�px�x ≥ i

2
[〈 p̂x , x̂〉] = −i

2
· i--h (5.107)

�px�x ≥
--h

2
(5.108)

Suppose the particle is an electron confined to some region of space. If we perform a
measurement to determine electron position once and then repeat the measurement in a
large number of identically prepared systems containing an electron, we might obtain
a Gaussian distribution of position results with spread �x = 1 nm. The uncertainty
relation given by Eqn (5.108) means that in this case we cannot know the momentum
of the electron to an accuracy better than �p = --h/2�x = 5.27 × 10−26 kg m s−1. The
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spread in momentum has a corresponding spread in velocity, which is �v = �p/m0 =
5.7 × 104 m s−1. It is interesting to note that this value of velocity would cause a
classical particle to traverse a distance of 1 nm in just 1.7 × 10−14 s.

5.6 Density of states

So far in this chapter we have discussed some of the one-particle properties of wave-
function space. This included linearity, completeness, Hermitian operators, expectation
values, and the measurement of noncommuting conjugate pairs of operators. In this
section we will introduce the idea of a density of states in quantum mechanics. This
concept is important because we will be interested in controlling and changing the
occupation probability of certain states in a system.

5.6.1 Density of electron states

Suppose an electron is known to occupy a particular eigenstate up to a certain moment
in time. The probability of occupation may be changed at some later time by changing
the potential seen by the electron. This change in potential causes the electron to
occupy other eigenstates, which, in general, have different energy eigenvalues. One
might expect the number of distinct states available in a given energy range to have
an influence on the probability of the electron changing its state. This is one reason
why we are interested in the number of electron states per unit energy interval. Such a
density of states is a very useful quantity when calculating many different properties of
materials. As an application, we will show how the density of states leads to quantization
of electron conduction. Of course, the density of electron states is important in many
other applications. In a semiconductor laser diode, it plays a key role in determining
device behavior.

So far, we have introduced the concept of energy eigenvalues and eigenfunctions
as solutions to the time-independent Schrödinger equation. Our calculations showed
that the number of states varies per unit energy interval. This fact makes it a little
difficult to calculate the density of states (the number of states per unit energy interval).
However, instead of looking for solutions to Schrödinger’s equation in real space, we
can consider solutions in k space. When we do this, it is often trivial to calculate the
density of electron states.

As an example of how to calculate a density of states, we consider a particle free
to move in space. The particle is described by a wave function ψ(r, t) of the form
eik·re−iωt and a nonlinear dispersion relation ω = --hk2/2m. The energy of the particle
is E = --h2k2/2m. To make further progress, consider a large volume of space defined
by a cube of side L along the Cartesian coordinates x, y, and z so that volume V =
Lx L yLz = L3. We now apply periodic boundary conditions to the wave function in
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Fig. 5.2. Illustration showing periodic boundary conditions applied to wave function ψ(x) in such a
way that ψ(x) = ψ(x + Lx ).
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0

(b)(a)

2π/Lx

2π/Ly

2π/Lz

Fig. 5.3. (a) Counting particle states in k space is often easier than counting states in energy space.
In this example, the particle can move in the positive direction with velocity hk/m or in the negative
direction with velocity −hk/m. (b) The volume of k space occupied by one k state is (2π )3/L3.

such a way that ψ(x) = ψ(x + Lx ), ψ(y) = ψ(y + Ly), and ψ(z) = ψ(z + Lz). The
application of periodic boundary conditions to the wave function ψ(x) is illustrated in
Fig. 5.2. Periodic boundary conditions discretize the wave vector components in such
a way that kx = 2nxπ/Lx , ky = 2nyπ/Ly , and kz = 2nzπ/Lz , where nx , ny , and nz
are integers. Because each wave vector component is linear in the integer n, we see
in Fig. 5.3(a) that quantum states are equally spaced in k space. For this reason, it is
often easier to count particle states in k space than to count states in energy space.
As illustrated in Fig. 5.3(b), each k state takes up a volume (2π )3/L3 or (2π )3 if we
normalize to unit length.

The density of states in k space is the number of states between k and k + dk per
unit volume. For a large number of equally spaced states in k space in three dimensions,
this gives

D3(k)dk = 1

V
· L3

(2π )3
4πk2dk = 4πk2

(2π )3
dk (5.109)

where D3(k) is the density of states and the subscript 3 indicates we are referring to
three dimensions. In Eqn (5.109), we calculated the volume of a shell of radius k and
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thickness dk, divided by the volume occupied by each k state to obtain the number of
states in the shell, and divided by the volume V to obtain a density of states.

If we are considering a particle with spin, this would be included as a multiplicative
term in Eqn (5.109). For example, an electron of spin quantum number s = ±1/2 (or
eigenvalue ±--h/2) multiplies the density of states by a factor 2 because there are two
possible spin states the electron could be in.

To convert the three-dimensional density of states in k space to a density of states
in energy, we note that for a particle of mass m, energy E = --h2k2/2m and dE =
(--h2k/m)dk. Hence,

D3(E)dE = D3(k)
dk

dE
· dE = 4πk2

(2π )3

m
--h2k

· dE = 1

2π2
· km--h2

· dE (5.110)

D3(E)dE = 1

2 · 2π2

(
2m
--h2

)3/2( --h2k2

2m

)1/2

dE (5.111)

so that the density of states in three dimensions is

D3(E) = 1

4π2

(
2m
--h2

)3/2

E1/2 (5.112)

It is straightforward to show that in two dimensions

D2(E) = m

2π --h2
(5.113)

and that for one dimension

D1(E) = 1

4π

(
2m
--h2

)1/2

E−1/2 (5.114)

One may summarize the results by plotting the density of states for different dimensions.
This is done in Fig. 5.4.
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Fig. 5.4. Density of states as a function of energy plotted for one, two, and three dimensions.



259 5.6 Density of states

For a particle of mass m, the densities of states in three and one dimensions are
equal when the particle energy has a value E = π --h2/2m. At this value of parti-
cle energy, the density of states has a value m/--h2π3/2. The densities of states in
three and two dimensions are equal with value m/2π --h2 when the particle energy is
E = π2--h2/2m.

Typically, a quantum well potential formed from a semiconductor heterostructure
such as epitaxially grown thin layers of GaAs and AlGaAs has a two-dimensional
density of electron states for low-energy electrons. Quantum wells formed from het-
erostructures are of practical importance in many semiconductor devices. For example,
such quantum wells are often used as the active region of a semiconductor laser diode.
The reason for this is that the small volume of the quantum well reduces the current
needed to achieve lasing and, over some range of emission wavelengths, differential
optical gain can increase compared with bulk values.

The atomic precision with which quantum wells can be fabricated is well illustrated
in Fig. 5.5. The figure shows a transmission electron micrograph of an InGaAs quantum
well that is just three monolayers thick sandwiched between InP barrier layers. The
spots in the image represent tunnels between pairs of atoms. The minimum separation
between tunnels in InP is 0.34 nm.

A laterally patterned quantum well can be made to form a quantum wire that has a
one-dimensional density of electronic states. Structures of this type can be designed
to exhibit quantized electrical conductance. Quantized conductance is not predicted
classically and is another example of an effect that may play an important role in future
very small (scaled) electronic structures such as transistors.

In0.53Ga0.47As

Fig. 5.5. Transmission electron micrograph showing an InGaAs quantum well in cross-section that
is three monolayers thick and is sandwiched between InP barrier layers. The spots in the image
represent tunnels between pairs of atoms. The minimum separation between tunnels in InP is
0.34 nm. Image courtesy of M. Gibson, Argonne National Laboratory.
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Fig. 5.6. Area view of InP self-assembled quantum dots grown using low-pressure MOCVD on an
InAlP matrix layer lattice-matched to a GaAs substrate. As measured from AFM images, areal
density of quantum dots is 1.5 × 1010 cm−2 and dominant size is in the range of 15–20 nm for a
15-monolayer “planar-growth-equivalent” deposition time at a growth temperature of 650 ◦C.
Dominant sizes are controllable by changing the deposition time. Image courtesy of R. Dupuis,
University of Texas at Austin.

One may also extend the density of states idea to “zero dimensions”. In this case, the
states are confined by a potential in all three dimensions similar to an isolated atom.
In semiconductor devices, the structures that give rise to such a potential are called
quantum dots. An example of InP quantum dots imaged by an atomic force microscope
(AFM) is shown in Fig. 5.6. In this case most of the quantum dots have a diameter in
the range 15–20 nm.

Quantum wells, wires, and dots formed in semiconductor structures do not have
potentials with infinite barrier energies. However, there are still bound states that exist
in potential minima formed by potentials with finite barrier energy.

As an application of density of states we will now show that in one dimension electron
velocity and density of states exactly cancel to give quantized conductance.

5.6.1.1 Quantum conductance

To illustrate the quantization of electrical conductance, we consider the situation in
which current flows through a region where electrons are confined by a potential to
motion in one dimension. This is shown schematically in Fig. 5.7. The one-dimensional
conduction region created by a confining potential is attached to electrodes placed
on the left and right. We will be considering an electron moving from left to right.
The transverse electron wave number for an electron moving in the x direction is
quantized by the confining potential. Each quantized level defines a channel for electron
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Fig. 5.7. Diagram showing the top view of left- and right-hand electrodes connected via a
one-dimensional conductance region defined by a confining potential. Contours of constant
potential energy eV1 and eV2, where eV1 < eV2, are shown. Transverse electron wave number is
quantized by the confining potential.
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Fig. 5.8. At low temperatures, electrons in the left- and right-hand electrodes occupy states up to the
Fermi energy, EF. A potential energy eV applied between the left- and right-hand electrodes allows
occupied electron states in the left-hand electrode to traverse the one-dimensional region and enter
unoccupied electron states in the right-hand electrode.

transmission. In the following, we will assume that each channel is independent and
hence uncorrelated.

At low temperatures, electrons in the electrodes occupy states up to the Fermi energy,
EF. If a voltage, V , is applied between the electrodes, we expect current to flow.
As shown in Fig. 5.8, potential energy eV applied between the left- and right-hand
electrodes allows occupied electron states in the left-hand electrode to traverse the one-
dimensional region and enter unoccupied electron states in the right-hand electrode.
At first sight, one might anticipate that current is proportional to the applied voltage,
electron velocity, v, the one-dimensional transmission coefficient, T , and the one-
dimensional density of electron states, D1.

We start by evaluating v, T , and D1, which depend on electron energy E . We will as-
sume that the velocity of an electron characterized by wave vector k and massm moving
from left to right in the one-dimensional region is simply v(E) = --hk/m. The density
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of electron states in the one-dimensional region is just D1(E)dE = 2 · 2dk/2π =
2mdE/π --h2k, where electron energy E = --h2k2/2m, so that dk = mdE/--h2k. The first
factor of 2 in D1(E) is because there are two possible spins an electron can have per k
state. The second factor of 2 is because the k state can represent an electron moving to
the left or to the right. Since we only consider electrons moving from left to right, we
must remember to divide D1(E) by 2 when evaluating the current.

The current at bias V is given by the integral

I = e

EF+eV∫
EF

v(E)T (E)
D1(E)

2
dE = e

EF+eV∫
EF

1

π --h
T (E)dE (5.115)

The key point is that terms in k in the expressions for v and D1 cancel. Simpli-
fying further by only considering small voltage bias V , the transmission coefficient
T (E) → T (EF), so that this may be taken out of the integral, and current becomes
I = e2T (EF)V/π --h. In this situation, the conductance Gcond = I/V is

Gn = e2

π --h
T (EF) (5.116)

This is sometimes called the Landauer formula. Conductance Gn has a subscript n
because conductance is quantized. To see this, all one need do is consider the situation
in which the transmission coefficient has its maximum value, T (EF) = 1. In this case,
the maximum conductance per electron per spin is e2/2π --h = 1/Rk = 25.8 k�−1.2

The only way to increase conduction is to increase the number of parallel paths
an electron can take from left to right through the region between the electrodes.
Electrical conduction will then increase in a step-wise fashion to a value proportional
to the number of parallel electron paths available between the electrodes. As illustrated
in Fig. 5.9, one way to increase the number of parallel paths is to increase the width of
the one-dimensional potential channel, thereby fitting more transverse electron wave-
guide modes through. One talks of electron waveguide modes in the confining one-
dimensional potential because the wave nature of the electron suggests an analogy with
classical electromagnetic waveguides.

Conduction is not limited by electron scattering or dissipation; rather it is limited
by the quantum mechanical wavy nature of the electron. In our simple model system,
no electron scattering takes place in the one-dimensional conduction region. The one-
dimensional potential acts as a loss-less electron waveguide. Electron scattering and
power dissipation take place in the electrodes.

If one creates electronic devices such as transistors in which electrons are constrained
to move through regions comparable to the electron wavelength, it is necessary to
consider quantum conductance. The value of quantum conductance per electron per

2 The factor 2 appears because we only consider one spin state. The value of RK is known as the von Klitzing
constant (see Appendix A).



263 5.6 Density of states

P
ot

en
ti

al
 e

ne
rg

y,
 e

V
(y

)

EF

E1

0

P
ot

en
ti

al
 e

ne
rg

y,
 e

V
(y

)

Position, y

0

EF

(a)

ψ0

0

Position, y

0

ψ1

ψ0

E0

E0

(b)

Fig. 5.9. At low temperatures, electrons occupy states up to the Fermi energy, EF. For the strong
one-dimensional confining potential shown in (a) electrons occupy the lowest-energy transverse
state ψ0, which has energy E0 < EF. This limits maximum conductance per electron per spin to
25.8 k�−1. Conductance may be increased by increasing the number of parallel paths an electron
can access in traversing the confining potential. As shown in (b), one way to achieve this is to
maintain the Fermi energy while increasing the width of the one-dimensional potential channel,
thereby fitting more transverse electron waveguide modes through.

spin of only 25.8 k�−1 limits the current drive performance of small devices and hence
the speed at which these devices can operate.

From a practical point of view, it might be more productive to consider devices that
do not operate in the linear, near-equilibrium regime. In this case, one needs to adopt
a somewhat more complex description of electrical conductivity.

5.6.2 Density of photon states

Photons, like electrons, may be characterized by a wavelength, λ, or k state in which
k = 2π/λ. The three-dimensional density of states in k-space, Dopt

3 (k) follows directly
and is given by Eqn (5.109). This density of states may be expressed in terms of
angular frequency ω if we know the relationship between ω and k. Since the dispersion
of polarized light propagating in three-dimensional free space is ω = ck (where c is the
speed of light), it follows that

Dopt
3 (ω)dω = 4π

(2π )3

ω2

c2

1

c
dω = ω2

2π2c3
dω (5.117)

In general, since a photon has a spin quantum number of s = ±1 corresponding to
angular momentum eigenvalue ±--h (there are two orthogonal polarizations of light in
free space), this density of states should be multiplied by a factor of 2. Hence, the density
of photon states (or field modes) in three-dimensional free space in the frequency range
ω to ω + dω is

Dopt
3 (ω) = ω2

π2c3
(5.118)
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Fig. 5.10. Scanning electron microscope image of two-dimensional photonic crystal in plan view.
The photonic crystal is a triangular lattice of 500-nm period with 350-nm holes etched into a
0.4-�m-thick silicon layer bonded to a 2-�m-thick silica layer.

In an isotropic loss-less dielectric medium characterized by a refractive index nr,
the dispersion relation is modified to ω = ck/nr, and our expression for Dopt

3 (ω)
becomes

Dopt
3 (ω) = ω2n3

r

π2c3
(5.119)

In direct analogy with the electron density of states discussed in Section 5.6.1, there
is interest in understanding the behavior of photons in situations in which large changes
in the density of states and highly nonlinear dispersion relations exist in loss-less di-
electric and active semiconductor nanostructures. It is straightforward to show that
the photon density of states is modified by using dielectric structures that vary with
a half-wavelength period in space. Such structures are called photonic crystals3 and
belong to a larger class of meta-materials.4 For typical infrared laser light at a wave-
length near 1500 nm and an effective refractive index near 1.5, this implies periods of
approximately 500 nm and features with sizes less than this. Such nanoscale dielectrics
are easily fabricated in two dimensions using existing semiconductor fabrication tech-
niques. Figure 5.10 shows a scanning electron microscope image of a two-dimensional

3 The concept of dispersion in photonic crystals was first introduced by K. Ohtaka, Phys. Rev. B19, 5057 (1979).
For an introduction see J. D. Joannopoulos, R. D. Meade, and J. N. Winn,Photonic Crystals, Princeton University
Press, Princeton, 1995 (ISBN 0 691 03744 2).

4 Meta-materials are purely artificial structures which sometimes exhibit remarkable properties not usually found
in nature.
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photonic crystal with a triangular lattice created by etching 350-nm-diameter holes into
0.4-�m-thick single-crystal silicon. The thin silicon layer is bonded to a 2-�m-thick
layer of silica grown on a silicon substrate. Light of wavelength near 1500 nm that is
waveguided in the plane sees large periodic changes in refractive index from silicon,
with nr = 3.47, to air, with nr = 1. The periodicity in refractive index can sometimes re-
sult in dramatic changes in photon density of states, including ranges of photon energy,
called photonic band gaps, where no photons can propagate.

While the description of light propagation in periodic dielectrics is simplified by the
existence of spatial symmetry, analysis of the photon density of states in nonperiodic
nanoscale dielectrics is a significantly more challenging task.

5.7 Example exercises

Exercise 5.1
Show that, if wave functions ψ1(r) and ψ2(r) belong to the space of linear square-
integrable wave functions, the linear combination ψ(r) = λ1ψ1(r) + λ2ψ2(r), where
λ1 and λ2 are complex numbers, is also square-integrable.

Exercise 5.2
Show that the density of states for a particle of mass m confined to a two-dimensional
square potential well with infinite energy barriers is

D2(E) = m

2π --h2

and that for a similar one-dimensional square potential well is

D1(E) = 1

4π

(
2m
--h2

)1/2

E−1/2

Exercise 5.3
An electron in an infinite, one-dimensional, rectangular potential well of width L is in
the simple superposition state consisting of the ground and first excited state so that

ψ(x, t) = 1√
2

(ψ1(x, t) + ψ2(x, t))

Find expressions for:
(a) the probability density, |ψ(x, t)|2;
(b) the average particle position, 〈x(t)〉;
(c) the momentum probability density, |ψ(px , t)|2;
(d) the average momentum, 〈px (t)〉;
(e) the current flux, J (x, t).
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Exercise 5.4
In Section 5.5.3.1 we found 〈x〉, 〈x2〉, and �x2 for a particle confined by the potential
V (x) = 0 for 0 < x < L and V (x) = ∞ elsewhere. Repeat the calculation and show
that as the state number n → ∞ the average values approach those obtained from
classical mechanics. Calculate the average particle momentum 〈px〉, 〈p2

x〉, and �p2
x as

a function of state n. How does �x�p depend upon n?

Exercise 5.5
Find ψ(k) for a particle with state function ψ(x) = 1/

√
2L for |x | < L and ψ(x) = 0

for |x | > L . Show that the uncertainty (rms deviation) in its momentum �px is infinite,
and plot |ψ(k)|2 and |ψ(x)|2. Calculate the uncertainty in position, �x .

Exercise 5.6
A hydrogen atom in its ground state has electron wave function ψ0(r ) = Ae−r/r0 .
The electron is subject to a radially symmetric coulomb potential given by V (r ) =
−e2/4πε0εrr . Find the normalization constant A. Find the minimized energy expecta-
tion value 〈E0〉, and show that 〈Ekinetic〉 = −〈Epotential〉/2 (which is a result predicted by
the virial theorem). What is the value of r0, and to what does it physically correspond?
Show that the expectation value of momentum 〈p〉 = 0.

Exercise 5.7
Prove that the expectation value of the (Hermitian) momentum operator in Cartesian
coordinates is real. Show that −i--h∂/∂r is not a Hermitian operator in radial coordinates.
Show that the radial momentum operator

p̂r = −i--h 1

r

∂

∂r
r

is Hermitian.

Exercise 5.8
Consider a particle of massm in a finite, one-dimensional, rectangular potential well for
which V (x) = 0 for −L < x < L and V (x) = V0 elsewhere. The value of V0 is a finite
positive constant. Calculate the average kinetic energy of the particle ground state, and
show that the contribution from the region outside the quantum well is negative.

Exercise 5.9
What can be said about the time dependence of the expectation value an operator Â
that commutes with a Hamiltonian used to describe a physical system?

Suppose a Hamiltonian with eigenfunctionsφ1 andφ2 and corresponding eigenvalues
E1 and E2 does not commute with an operator Â. The operator Â has eigenfunctions
u1 = (φ1 + φ2)/

√
2 and u2 = (φ1 − φ2)/

√
2 and corresponding eigenvalues a1 and a2.
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At time t = 0, the system is in state ψ = u1. Show that at time t the state of the system
is ψ(t) = (φ1e−i E1t/h + φ2ei E2t/h)/

√
2, and determine how the expectation value of the

operator Â varies with time.

Exercise 5.10
Discuss the similarities and differences between classical electrodynamics and quantum
mechanics.

SOLUTIONS

Solution 5.1
To illustrate the L2 nature of space consider wave functions ψ1(r) and ψ2(r) that
belong to . In a linear space one may form the linear combination

ψ(r) = λ1ψ1(r) + λ2ψ2(r)

where λ1 and λ2 are complex numbers. To show that ψ(r) is also square-integrable, we
expand:

|ψ(r)|2 = |λ1|2|ψ1(r)|2 + |λ2|2|ψ2(r)|2 + λ∗
1λ2ψ

∗
1 (r)ψ2(r) + λ1λ

∗
2ψ1(r)ψ∗

2 (r)

The last two terms have the same modulus with an upper limit:

|λ1‖λ2|(|ψ1(r)|2 + |ψ2(r)|2)

|ψ(r)|2 is therefore smaller than a function the integral of which converges, since ψ1(r)
and ψ2(r) are square-integrable.

Solution 5.2
In this exercise, we are asked to show that the density of states for a particle of mass m
confined to a two-dimensional square potential well with infinite energy barriers is

D2(E) = m

2π --h2

and that for a similar one-dimensional square potential well is

D1(E) = 1

4π

(
2m
--h2

)1/2

E−1/2

Starting with the expression for the one-dimensional density of k states, we have

D1(k)dk = dk

(2π )

D1(E)dE = dk

dE
= m

--h2k

1

(2π )
dE = m

--h2(2π )

--hdE

(2mE)1/2
= 1

4π

(
2m
--h2

)1/2

E−1/2dE
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The density of states in two dimensions is just

D2(E)dE = D2(k)
dk

dE
dE = 2πk

(2π )2

m
--h2k

dE

D2(E)dE = m

2π --h2
dE

where we have used the fact that wave number k =
√

2mE/--h2, energy E = --h2k2/2m,
and the energy increment dE = --h2kdk/m.

Solution 5.3
An electron is in an infinite, one-dimensional, rectangular potential well of width L . The
electron is in the simple superposition state consisting of the ground and first excited
state so that

ψ(x, t) = 1√
2

(ψ1(x, t) + ψ2(x, t))

(a) To find the probability density |ψ(x, t)|2, we must first find expressions for the
wave functions ψ1(x, t) and ψ2(x, t). The first two lowest-energy wave functions for a
particle of mass m confined to an infinite potential well of width L centered at x = 0
are

ψ1(x, t) =
(

2

L

)1/2

cos

(
πx

L

)
· e−iω1t

and

ψ2(x, t) =
(

2

L

)1/2

sin

(
2πx

L

)
· e−iω2t

where En = --hωn = (--h2/2m) · (n2π2/L2) and n is a positive nonzero integer. The ex-
pression for probability density

|ψ |2 = 1

2

(
ψ1ψ

∗
1 + ψ1ψ

∗
2 + ψ2ψ

∗
1 + ψ2ψ

∗
2

)
|ψ |2 = 1

2

(|ψ1|2 + |ψ2|2 + |ψ1‖ψ2|e−i(ω1−ω2)t + |ψ1‖ψ2|ei(ω1−ω2)t
)

|ψ(x, t)|2 = 1

2

(|ψ1(x)|2 + |ψ2(x)|2 + 2|ψ1(x)‖ψ2(x)| cos((ω1 − ω2)t)
)

shows an oscillatory solution in which the average position of the particle moves from
one side of the well to the other. The sinusoidal oscillation frequency is (ω2 − ω1) =
3--hπ2/2mL2.
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(b) The average position of the particle is

〈x(t)〉 =
L
2∫

− L
2

ψ∗xψdx = 1

2

L
2∫

− L
2

(|ψ1|2 + |ψ2|2 + 2|ψ1‖ψ2| cos((ω1 − ω2)t)
)
xdx

〈x(t)〉 = 1

2

L
2∫

− L
2

(
2|ψ1‖ψ2| cos((ω1 − ω2)t)

)
xdx

〈x(t)〉 = (cos((ω1 − ω2)t))

(
2

L

) L
2∫

−L
2

x cos

(
πx

L

)
sin

(
2πx

L

)
dx

〈x(t)〉 = (cos((ω1 − ω2)t))

(
1

L

)(
2 − 2

9

)
L2

π2

〈x(t)〉 = (16L/9π2) cos((ω2 − ω1)t)

(c) The momentum probability density |ψ(px , t)|2 can be found from the Fourier
transform

ψ(px , t) = 1√
2π --h

∞∫
−∞

ψ(x, t)e−i px xdx = 1√
4π --h

( ∞∫
−∞

ψ1e
−i px xdx +

∞∫
−∞

ψ2e
−i px xdx

)

ψ(px , t)= 1√
4π --h

√
2

L

(
e−iω1t

∞∫
−∞

cos

(
π
x

L

)
e−i px xdx+e−iω2t

∞∫
−∞

sin

(
2π

x

L

)
e−i px xdx

)

|ψ(px , t)|2 = 1

2π --hL


 1

π2

L2
− p2

x

cos

(
px
L

2

)(
2
π

L
e−iω2t − 2i pxe

−iω1t

)

|ψ(px , t)|2 = 2

π --hL
×

cos

(
px L

2

)
(
π2

L2
− p2

x

)2

(
π2

L2
+ p2

x

)

(d) The average momentum of the particle is

〈px (t)〉 = −(8--h/(3L)) sin((ω2 − ω1)t)

(e) The current flux is

J(x, t)= − 2eπ --h

mL2

(
cos

(
πx

L

)
cos

(
2πx

L

)
+1

2
sin

(
πx

L

)
sin

(
2πx

L

))
sin((ω2 − ω1)t)
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Solution 5.4
The values of 〈x〉 and 〈x2〉 for a particle confined by the potential V (x) = 0 for
0 < x < L and V (x) = ∞ elsewhere are

〈x〉 = L

2

and

〈x2〉 = L2

3
− L2

2n2π2

We can now compare these results with those for a classical particle. The classical
particle moves at constant velocity v and traverses the well in time τ = L/v. Hence,
classically,

〈x〉 =
t=τ∫

t=0

vt

τ
dt = 1

2
vτ = L

2

and

〈x2〉 =
t=τ∫

t=0

(vt)2

τ
dt = 1

3
v2τ 2 = L2

3

Thus, as n → ∞ the quantum results approach the classical solution.
The average values of 〈px〉 and 〈p2

x〉 are

〈px〉 = 0〈
p2
x

〉 = 2mEn

and since

En =
--h2k2

n

2m
=

--h2n2π2

2mL2

we have

〈
p2
x

〉 = --h2n2π2

L2

Hence,

�x2 = L2

12

(
1 − 6

n2π2

)

�p2
x =

--h2π2n2

L2

�x�px =
--h√
12

(n2π2 − 6)1/2
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Solution 5.5
To find ψ(k) for a particle the state function of which is ψ(x) = 1/

√
2L for |x | < L

and ψ(x) = 0 for |x | > L , we take the Fourier transform:

ψ(k) = 1√
2π

L∫
−L

1√
2L

e−ikxdx =
[

1

2
√
πL

−1

ik
e−ikx

]L
−L

= 1√
πL

1

k
sin(kL)

|ψ(k)|2 = sin2(kL)

πLk2

The wave functions ψ(x) and ψ(k) are plotted in the following figures.
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To show that the uncertainty (rms deviation) in particle momentum �p is infinite it
is necessary to calculate 〈px〉 and 〈p2

x〉:

〈px〉 =
∞∫

−∞
ψ∗(k)--hkψ(k)dk =

--h

Lπ

∞∫
−∞

1

k
sin2(kL)dk = 0
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by symmetry, and

〈
p2
x

〉 =
∞∫

−∞
ψ∗(k)--h2k2 ψ(k)dk =

--h2

Lπ

∞∫
−∞

sin2(kL)dk =
--h2

Lπ

∞∫
−∞

(
1

2
− 1

2
cos(2kL)

)
dk

〈
p2
x

〉 = --h2

Lπ

∞∫
−∞

(
1

2
− 1

2
cos(2kL)

)
dk =

--h2

Lπ

[
k

2
− 1

4L
sin(2kL)

]∞

−∞

〈
p2
x

〉 = --h2

Lπ

(∞
2

− −∞
2

− 0 + 0

)
= ∞

�p2
x = 〈

p2
x

〉− 〈px〉2 = ∞

One understands this as |ψ(k)|2 not decreasing to zero fast enough in the limit k → ∞.
The average value of position is

〈x〉 =
L∫

−L
ψ(x)xψ(x)dx =

(
1√
2L

)2 1

2

[
x2
]L
−L = 0

and the value of 〈x2〉 is

〈x2〉 =
∫

ψ(x)x2ψ(x)dx = 1

2L

1

3

[
x3
]L
−L = 1

3L
L3 = L2

3

giving a measure of the spread in measured values of

�x2 = 〈x2〉 − 〈x〉2 = L2

3
− 0

It follows that

�x = L/
√

3

i.e. finite nonzero, so that

�x�px = ∞

Solution 5.6
A hydrogen atom in its ground state has electron wave function ψ0(r ) = Ae−r/r0 .
The electron is subject to a radially symmetric coulomb potential given by V (r ) =
−e2/4πε0εrr . We wish to find the normalization constant A, and the minimized energy
expectation value 〈E0〉, and we wish to show that

〈Ekinetic〉 = −〈Epotential〉/2
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First, we normalize the wave function. This requires

∫
ψ∗

0 (r )ψ0(r )dr =
r=∞∫
r=0

A24πr2 e−2r/r0dr = 1

Integrating by parts using
∫
UV ′ = UV − ∫

U ′V , where U = r2,U ′ = 2r, V ′ =
e−2r/r0 , and

V = −r0

2
e−2r/r0

gives

∫
r2e−2r/r0dr =

[−r2

2
e−2r/r0

]∞

0

+
∞∫

0

rr0e
−2r/r0dr

Integrating by parts again with U = r,U ′ = 1, V ′ = r0e−2r/r0, V = (−r2
0/2)e−2r/r0

gives

∫
rr0e

−2r/r0dr =
[

− rr2
0

2
e−2r/r0

]∞

0

+
∞∫

0

r2
0

2
e−2r/r0dr =

[
− r3

0

4
e−2r/r0

]∞

0

= r3
0

4

A24π
r3

0

4
= 1

A =
(

1

πr3
0

)1/2

and ψ0(r ) =
(

1

πr3
0

)1/2

e−r/r0

Energy 〈E0〉 =
∫

ψ∗
0 Hψ0d

3r

Hψ0 = 1

r2

−--h2

2m

∂

∂r
r2 ∂

∂r
ψ0 − e2

4πε0r
ψ0

Since

∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)

in spherical coordinates,

〈p2〉 = −--h2
∫

ψ∗
0 ∇2ψ0d

3r = −--h2

r2
0

∫
ψ∗

0

(−2r0

r
ψ ′(r ) + ψ(r )

)
d3r

〈p2〉 = −--h2

r2
0

∫
ψ∗

0

(−2r0

r
ψ ′(r ) + ψ(r )

)
d3r = −--h2

r2
0

∫
ψ∗

0 ψ0d
3r = −--h2

r2
0
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To calculate 〈V 〉, we note that we are using spherical coordinates:

〈V (r )〉 =
∞∫

0

A2e−2r/r0dr · −e2

4πε0r
· 4πr2dr = −4πe2A2

4πε0

∞∫
0

re−2r/r0dr

Integrating by parts U = r,U ′ = 1, V ′ = e−2r/r0, V = (−r0/2)e−2r/r0,
∫
UV ′ =

UV − ∫
U ′V

〈V (r )〉 = −4πe2A2

4πε0

([−rr0

2
e−2r/r0

]∞

0

+
∞∫

0

r0

2
e−2r/r0dr

)

〈V (r )〉 = +4πe2A2

4πε0

[
r2

0

4
e−2r/r0

]∞

0

= −4πe2A2

4πε0
· r

2
0

4

〈V 〉 = e2

4πε0r0

since A2 = 1/πr3
0 . Hence,

〈H〉 = −p2

2m
− e2

4πε0r0
=

--h2

2mr2
0

− e2

4πε0r0

Because we are at a local minimum we have

∂

∂r0
〈E0〉 = −--h2

mr3
0

+ e2

4πε0r2
0

= 0

Hence,

--h2

mr0
= e2

4πε0

and

r0 =
--h24πε0

me2

the Bohr radius, which is r0 = 0.0529177 nm, and

〈E0〉 = me4

2--h2(4π )2ε2
0

− me4

--h2(4π )2ε2
0

where we identify the first term on the right-hand side with kinetic energy and the
second term with potential energy. Hence,

〈Ekinectic〉 = 1

2
〈Epotential〉

which is the result predicted by the virial theorem. Also,

〈E0〉 = − me4

2--h2(4π )2ε2
0

= −
--h2

2mr2
0

= −13.6058 eV
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which is the Rydberg constant.
To show that 〈p〉 = 0, we apply the momentum operator p = −i--h∇. In radial coor-

dinates,

p̂r = −i--h 1

r

∂

∂r
r

〈p〉 =
∫

ψ∗(r )(−i--h∇)ψ(r )d3r

r = (x2 + y2 + z2)1/2

〈p〉 =
∑
i

∞∫
−∞

−i--hψ∗
0 (xi )

d

dxi
ψ0(xi )dxi x̂i =

∑
i

−i--hx̂i
∞∫

−∞
ψ∗

0 (xi )
d

dxi
ψ0(xi )dxi

Notice that the integral has limits ±∞. Because the ground-state wave function is of
even parity, its spatial derivative is of odd parity. We note that an even function times an
odd function is an odd function, which, for convenience, we define as �(xi ). It follows
that the integral must be zero, giving

〈p〉 =
∑
i

−i--hx̂i [�(xi )]
∞
−∞ = 0

Solution 5.7
The momentum operator is Hermitian – i.e., it must satisfy Ai j = A∗

j i or equiv-
alently (

∫
φ∗ p̂ψdr )∗ = ∫

ψ∗ p̂φdr = (
∫
p̂φ∗ψdr )∗. For simplicity, consider p̂x =

−i--h · ∂/∂x , the x component of p̂. We now have∫
φ∗ p̂∗

xψdx =
∫

p̂∗
xφ

∗ψdx or 〈φ| p̂xψ〉 = (〈 p̂xφ|ψ〉)∗

The operator p̂x can be seen to be Hermitian if we integrate by parts,
∫
UV ′dx =

UV − ∫
U ′Vdx , so

∫
φ∗ p̂xψdx = −i--h

∫
φ∗ ∂

∂x
ψdx = [−i--hφ∗ψ

]∞
−∞ + i--h

∞∫
−∞

∂φ∗

∂x
ψdx

the term [−i--hφ∗ψ]∞−∞ = 0 and

i--h

∞∫
−∞

∂φ∗

∂x
ψdx =

∫
p̂∗
xφ

∗ψdx

We have thus shown that 〈φ| p̂ψ〉 = (〈 p̂φ|ψ〉)∗, provided that the wave function φ → 0
at x ± ∞. To show that 〈 p̂〉 is real is now trivial. If ψ = φ, then 〈 p̂〉 = ∫

φ∗ p̂φdr =∫
p̂∗φ∗φ = 〈 p̂〉∗, which can only be true if 〈 p̂〉 is real. Hence, the expectation value of

the momentum operator is real.
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To show that −i--h · ∂/∂r is not Hermitian in radial coordinates, we find the expecta-
tion value by integrating by parts in radial coordinates:

r=∞∫
r=0

4πr2ψ∗
m

(
−i--h ∂

∂r

)
ψndr =

[
4πr2ψ∗

m

(
−i--h ∂

∂r
ψn

)]r=∞

r=0

−
r=∞∫
r=0

−i--hψn · ∂

∂r
(4πr2ψ∗

m)dr

The first term on the right-hand side is zero, assuming that the eigenfunction vanishes
at r = ∞, so that
r=∞∫
r=0

4πr2ψ∗
m

(
−i--h ∂

∂r

)
ψndr =

∫
i--h4πψn ·

(
r2 ∂

∂r
ψ∗
m − 2rψ∗

m

)
dr

=
∫

4πr2ψn ·
(
i--h

(
2r − ∂

∂r

)
ψm

)∗
dr

Obviously, this does not satisfy A∗
i j = A ji for a Hermitian operator.

Solution 5.8
A particle mass m is in a finite, one-dimensional rectangular potential well for which
V (x) = 0 for −L < x < L and V (x) = V0 elsewhere, and for which the value of V0 is
a finite positive constant. The expectation value of kinetic energy is

〈T̂ 〉 =
∞∫

−∞
ψ∗(x) · p̂

2

2m
· ψ(x)dx = −--h2

2m

∞∫
−∞

ψ∗(x)
d2

dx2
ψ(x)dx

For even-parity bound-state solutions, including the ground state, the spatial wave
functions in the well are of the form

ψn(x) = An cos(knx)

and in the barrier they are of the form

ψn(x) = Cne
−κn x

where the index n is an odd positive integer that labels the bound-state eigenvalue. For
eigenenergy En ,

kn =
√

2mEn/--h

and

κn =
√

2m(V0 − E)/--h
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For the ground state, n = 1 and we have an expectation value for kinetic energy that
is

〈T̂ 〉 =
--h2k2A2

m
·
x=L∫
x=0

cos2(k1x
′)dx ′ −

--h2k2C2

m
·
x=∞∫
x=L

e−2κ1x ′
dx ′

This shows that the contribution to kinetic energy from the barrier region is negative.

Solution 5.9
The time dependence of the expectation value of the operator Â is found from

d

dt
〈Â〉 =

〈
∂ψ

∂t

∣∣∣∣Â
∣∣∣∣ψ
〉
+
〈
ψ

∣∣∣∣ ∂∂t Â
∣∣∣∣ψ
〉
+
〈
ψ

∣∣∣∣Â
∣∣∣∣∂ψ∂t

〉

which may be rewritten as

d

dt
〈Â〉 = i

--h
〈ψ |H Â|ψ〉 − i

--h
〈ψ |ÂH |ψ〉 +

〈
ψ

∣∣∣∣ ∂∂t Â
∣∣∣∣ψ
〉

d

dt
〈Â〉 = i

--h
〈ψ |H Â − ÂH |ψ〉 +

〈
ψ

∣∣∣∣ ∂∂t Â
∣∣∣∣ψ
〉

where we used the fact that the Schrödinger equation is

−i
--h
H |ψ〉 =

∣∣∣∣∂ψ∂t
〉

Hence,

d

dt
〈Â〉 = i

--h
〈[H, Â]〉 +

〈
∂

∂t
Â
〉

If the Hamiltonian commutes with the operator Â, then [H, Â] = 0, and we may
conclude that

d

dt
Â =

〈
∂

∂t
Â
〉

If a Hamiltonian with eigenfunctions φ1 and φ2 and corresponding eigenvalues E1

and E2 does not commute with an operator Â, then [H, Â] �= 0. Each orthonormal
eigenfunction with quantum number n must satisfy the Schrödinger equation, so that

Enφn = i--h
∂φn

∂t
φn(t) = φn(0)e−i Ent/h

and

〈n|m〉 = δnm
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If at time t = 0 the system is in state ψ(0) = (φ1 + φ2)/
√

2, then at time t the state
is

ψ(t) = (
φ1e

−i E1t/h + φ2e
−i E2t/h

)/√
2

The expectation value of operator Â is 〈Â〉 = 〈ψ(t)|Â|ψ(t)〉, or

〈Â〉 = 1

2

∫ (
φ∗

1e
i E1t/h + φ∗

2e
i E2t/h

)
Â
(
φ1e

−i E1t/h + φ2e
−i E2t/h

)
d3r

Because we are told that the operator Â has eigenfunction

ψ(t) = (
φ1e

−i E1t/h + φ2e
−i E2t/h

)/√
2

and corresponding eigenvalue a1, it must satisfy

Âψ(t) = a1ψ(t)

It follows that the expecation value may be writen

〈Â〉 = a1

2

∫ (
φ∗

1e
i E1t/h + φ∗

2e
i E2t/h

)(
φ1e

−i E1t/h + φ2e
−i E2t/h

)
d3r

〈Â〉 = a1

2
(〈1|1〉 + 〈2|2〉 + 〈1|2〉 + 〈2|1〉) = a1

where we have adopted the notation φn = |n〉 and made use of the fact that the eigen-
functions φn are orthonormal in such a way that 〈n|m〉 = δnm . We may conclude that
in this particular system the expectation value of Â does not vary with time.

Solution 5.10
In Chapter 1 we showed that for a source-free, linear, frequency-independent, loss-
less dielectric with ε(r) = ε0(r)εr(r), and with relative magnetic permeability µr = 1,
Maxwell’s equations lead directly to a wave equation for electromagnetic fields. The
linearity allows us to separate out the time and space dependences into a set of harmonic
solutions of the form E(r, t) = E0eik·reiωt and H(r, t) = H0eik·reiωt , where we have
used complex numbers for mathematical convenience (always remembering to take the
real part to obtain the physical fields). The H and E fields in Maxwell’s equations are
real vector fields. Because the dielectric is source-free, the divergence ∇ · D = 0 and
∇ · H = 0. There are no sources or sinks of displacement (D) or magnetic fields (H).
Field configurations are built up out of plane waves that are transverse in such a way
that E0 · k = 0 and H0 · k = 0.

Since the H and E fields are related through

∇ × E = −µ0
∂H
∂t

∇ × H = ε(r)
∂E
∂t
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dividing the equation for ∇ × H by ε(r) and taking the curl gives

∇ ×
(

1

ε(r)
∇ × H(r)

)
= ∇ × ∂E(r)

∂t
= −µ0

∂2H(r)

∂t2

And since H(r, t) = H(r)eiωt , one may write

∇ ×
(

1

εr(r)
∇ × H(r)

)
= ω2µ0ε0

∂2H(r)

∂t2
=
(
ω

c

)2
∂2H(r)

∂t2

After solving this wave equation for H(r), one may obtain the transverse electric field
via

E(r) = 1

iωε(r)
∇ × H(r)

Recognizing the wave equation for H(r) as an eigenvalue problem in which the
differential operator H̃ = ∇ × (1/εr (r))∇ is analogous to the Hamiltonian used in the
Schrödinger equation gives

H̃H(r) =
(
ω

c

)2

H(r)

The eigenvectors H(r) are the field patterns of the harmonic modes oscillating at fre-
quency ω and the eigenvalues are (ω/c)2.

As with the Hamiltonian used in quantum mechanics, H̃ is a linear Hermitian operator
with real eigenvalues. In fact, comparing the electrodynamics discussed above and
quantum mechanics we find a number of similarities, but also important differences. We
should expect this because, as discussed in Section 1.3.2, classical electrodynamics is
just the macroscopic, incoherent, large-photon-number limit of the quantum treatment.
In electrodynamics H(r) is a real vector fieldwith a simple time dependence eiωt that is
used only as a mathematical convenience. When we want to find a measurable value of
H(r), we take the real part. In quantum mechanics, Schrödinger’s wave function ψ(r)
is a complex scalar field. When we want to find the value of a measured quantity, we
do not find the real part of the wave function; rather we evaluate the expectation value
of the operator Â:

〈Â〉 =
∫

ψ(r, t)Âψ(r, t)d3r

The eigenvalues of the Schrödinger wave equation are related to the oscillation fre-
quency through the energy E = --hω. In electrodynamics, eigenvalues are proportional
to ω2. In quantum mechanics, the Hamiltonian is separable if the potential is separable
(e.g., V (r) = V (x)V (y)V (z)). In electrodynamics, there is no such simplification as H̃
couples the different directions even if ε(r) is separable. In electrodynamics there is
no absolute scale. Hence, in electrodynamics we may scale our solutions from radio
waves to visible light and beyond based simply upon geometry and material parameters
such as ε(r). In quantum mechanics, there is an absolute scale, because --h �= 0. Planck’s
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constant --h sets the scale. The corresponding length scale in atomic systems is set by the
Bohr radius aB = 4πε0

--h2/m0e2 = 0.529177 × 10−10 m (or an effective Bohr radius
in materials with ε �= ε0 and me �= m0). It is on this length scale (and corresponding
energy and time scales) that quantum effects (--h �= 0) are important.

Classical electromagnetic theory uses real magnetic and electric fields coupled via
Maxwell’s equations. The magnetic and electric fields each have physical meaning.
Both fields are needed to describe both the instantaneous state and time evolution of
the system.

Quantum mechanics uses one complex wavefunction to describe both the instanta-
neous state and time evolution of the system. It is also possible to describe quantum me-
chanics using two coupled real wave functions corresponding to the real and imaginary
parts of the complex wave function. However, such an approach is more complicated.
In addition, the real and imaginary parts of the wave function have no special physical
meaning.

Time-reversal symmetry can occur in both quantum mechanics and classical elec-
trodynamics. This time-reversal symmetry exists when the system under consideration
is conservative.



6 The harmonic oscillator

6.1 The harmonic oscillator potential

We know from our experience with classical mechanics that a particle of massm subject
to a linear restoring force F(x) = −κx , where κ is the force constant, results in one-
dimensional simple harmonic motion with an oscillation frequency ω = √

κ/m. The
potential the particle moves in is quadratic V (x) = κx2/2, and so in this case the poten-
tial has a minimum at position x = 0. The idea that a quadratic potential may be used to
describe a local minimum in an otherwise more complex potential turns out to be a very
useful concept in both classical and quantum mechanics. An underlying reason why it is
of practical importance is that a local potential minimum often describes a point of sta-
bility in a system. For example, the positions of atoms that form a crystal are stabilized
by the presence of a potential that has a local minimum at the location of each atom.
If we wish to understand how the vibrational motion of atoms in a crystal determines
properties such as the speed of sound and heat transfer, then we need to develop a model
that describes the oscillatory motion of an atom about a local potential minimum. The
same is true if we wish to understand the vibrational behavior of atoms in molecules.

As a starting point of our investigation of the vibrational properties of atomic systems,
let’s assume a static potential and then expand the potential function in a power series
about the classically stable equilibrium position x0 of one particular atom. In one
dimension,

V (x) =
∞∑
n=0

= 1

n!

dn

dxn
V (x)

∣∣∣∣
x=x0

(x − x0)n (6.1)

Assuming that higher-order terms in the polynomial expansion are of decreasing im-
portance, we need only keep the first few terms:

V (x)=V (x0) + d

dx
V (x)

∣∣∣∣
x=x0

(x − x0) + 1

2

d2

dx2
V (x)

∣∣∣∣
x=x0

(x − x0)2 + · · · (6.2)

Because the atom position is stabilized by the potential, we know that the potential is
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at a local minimum, so the term in the first derivative in our series expansion about the
equilibrium position x0 can be set to zero. This leaves us with

V (x) = V (x0) + 1

2

d2

dx2
V (x)

∣∣∣∣
x=x0

(x − x0)2 + · · · (6.3)

The first term on the right-hand side of the equation, V (x0), is a constant, and so
it has no impact on the particle dynamics. The second term is just the quadratic po-
tential of a one-dimensional harmonic oscillator for which the force constant is eas-
ily identified as a measure of the curvature of the potential about the equilibrium
point:

κ = d2

dx2
V (x)

∣∣∣∣
x=x0

(6.4)

We now see the importance of the harmonic oscillator in describing the dynamics of a
particle in a local potential minimum. Very often a local minimum in potential energy
can be approximated by the quadratic function of a harmonic oscillator.

While it is often convenient to visualize the harmonic oscillator in classical terms
as illustrated in Fig. 6.1, if we are dealing with atomic-scale particles then we will
have to solve for the particle motion using quantum mechanics. As a starting point, let’s
consider the time-independent Schrödinger equation for a particle of mass m subject

Distance, x

Potential

Harmonic oscillator

energy, V(x) 

potential, κx2/2

Potential, V(x) 

Displacement, x

Mass, mForce constant, κ

Fig. 6.1. Illustration of a one-dimensional potential with a local minimum that may be
approximated by the parabolic potential of a harmonic oscillator. Also shown is a representation of
a physical system that has a harmonic potential for small displacement from equilibrium. The
classical system consists of a particle of mass m attached to a light spring with force constant κ .
The one-dimensional displacement of the particle from its equilibrium position is x .
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to a restoring force F(x) = −κx in one dimension. The equation is(−--h2

2m

d2

dx2
+ κ

2
x2

)
ψn(x) = Enψn(x) (6.5)

where the first term in the brackets is the kinetic energy and the second term is the
potential energy

eV (x) = −
x ′=x∫

x ′=0

F(x ′)dx ′ =
x ′=x∫

x ′=0

κx ′dx ′ = κ

2
x2 (6.6)

Note that we have used our definition of a scalar potential that relates force to the
potential via F(r) = −�V (r).

Our next step is to solve Eqn (6.5). However, before finding the quantized eigenstates
and eigenvalues of the harmonic oscillator, we can predict the form of the results
using our previous experience developed in Chapter 3. We start by noting that the
potential V (x) = κx2/2 has inversion symmetry in such a way that V (x) = V (−x).
A consequence of this fact is that the wave functions that describe the bound states
of the harmonic oscillator must have definite parity. In addition, we can state that the
lowest-energy state of the system (the ground state) will have even parity. With these
basic facts in mind, we now turn our effort to finding the quantum mechanical solution
for the harmonic oscillator.

6.2 Creation and annihilation operators

In classical mechanics, a particle of massmmoving in the potentialV (x) = κx2/2 oscil-
lates at frequency ω = √

κ/m, where κ is the force constant. The Hamiltonian for this
one-dimensional harmonic oscillator consists of kinetic energy and potential energy
terms such that

H = T + V = p2
x

2m
+ mω2

2
x2 (6.7)

where the x-directed particle momentum px is m · dx/dt .
In quantum mechanics, the classical momentum px is replaced by the operator

p̂ = −i--h · ∂/∂x , so that

H = p̂2
x

2m
+ mω2

2
x̂2 (6.8)

Mathematically, this equation is nicely symmetric, since the two operators p̂ and x̂ only
appear as simple squares. This immediately suggests that the equation can be factored
into two operators that are linear in p̂ and x̂ :

H = mω2

2

(
p̂2
x

m2ω2
+ x̂2

)
= mω2

2

(
x̂ + ip̂x

mω

)(
x̂ − ip̂x

mω

)
(6.9)



284 The harmonic oscillator

Defining new operators,

b̂ =
(
mω

2--h

)1/2 (
x̂ + ip̂x

mω

)
(6.10)

b̂† =
(
mω

2--h

)1/2 (
x̂ − i p̂x

mω

)
(6.11)

so that

x̂ =
( --h

2mω

)1/2 (
b̂ + b̂†

)
(6.12)

and

p̂x = i

( --hmω

2

)1/2 (
b̂† − b̂

)
(6.13)

The Hamiltonian expressed in terms of the new operators is

H =
--hω

2

(
b̂b̂† + b̂†b̂

)
(6.14)

The symmetry of this equation will both help in simplifying problem solving
and provide new insight into the quantum mechanical nature of the harmonic
oscillator.

The commutation relations for the operators b̂† and b̂ can be found by writing out
the differential form and operating on a dummy wave function. For example, to find
the commutation relation[
b̂, b̂†

] = b̂b̂† − b̂†b̂ (6.15)

we reexpress each term on the right-hand side using differential operators. This gives

(
b̂b̂†

)
ψ =

(
mω

2--h

)(
x +

--h

mω

∂

∂x

)(
x −

--h

mω

∂

∂x

)
ψ (6.16)

(
b̂b̂†

)
ψ =

(
mω

2--h

)(
x2 +

--h

mω
+

--h

mω
x

∂

∂x
−

--h

mω
x

∂

∂x
−

--h2

m2ω2

∂2

∂x2

)
ψ (6.17)

and(
b̂†b̂

)
ψ =

(
mω

2--h

)((
x −

--h

mω

∂

∂x

)(
x +

--h

mω

∂

∂x

))
ψ (6.18)

(
b̂†b̂

)
ψ =

(
mω

2--h

)(
x2 −

--h

mω
−

--h

mω
x

∂

∂x
+

--h

mω
x

∂

∂x
−

--h2

m2ω2

∂2

∂x2

)
ψ (6.19)

so that the commutation relation simplifies to just

(
b̂b̂† − b̂†b̂

)
ψ =

(
mω

2--h

)(
2--h

mω
− 2--h

mω
x

∂

∂x
+ 2--h

mω
x

∂

∂x

)
ψ = ψ (6.20)
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or, in even more compact form,[
b̂, b̂†

] = b̂b̂† − b̂†b̂ = 1 (6.21)

One can now go through the same process and obtain all the commutation relations
for the operators b̂ and b̂†. The results are

[
b̂, b̂†

] = b̂b̂† − b̂†b̂ = 1 (6.22)

[
b̂†, b̂

] = b̂†b̂ − b̂b̂† = −1 (6.23)

[
b̂, b̂

] = b̂b̂ − b̂b̂ = 0 (6.24)

[
b̂†, b̂†

] = b̂†b̂† − b̂†b̂† = 0 (6.25)

Thus, the Hamiltonian given by Eqn (6.14) may be rewritten as

H =
--hω

2

(
b̂b̂† + b̂†b̂

) =
--hω

2

(
b̂b̂† − b̂†b̂ + 2b̂†b̂

) =
--hω

2

(
1 + 2b̂†b̂

)
(6.26)

Notice that we made use of the fact that [b̂, b̂†] = b̂b̂† − b̂†b̂ = 1. Hence, the
Hamiltonian is

H = --hω

(
b̂†b̂ + 1

2

)
(6.27)

The commutation relations, the Hamiltonian, and the constraint that a lowest energy
(ground state) exists completely specify the harmonic oscillator in terms of operators.
What remains, of course, is to find the condition that expresses the fact that a ground
state exists.

6.2.1 The ground state of the harmonic oscillator

To find the ground state wave function and energy of the one-dimensional harmonic
oscillator we start with the Schrödinger equation:

Hψn = --hω

(
b̂†b̂ + 1

2

)
ψn = Enψn (6.28)

Now we multiply from the left by b̂ to give

--hω

(
b̂b̂†b̂ + b̂

2

)
ψn = Enb̂ψn (6.29)

But [b̂, b̂†] = b̂b̂† − b̂†b̂ = 1, so that b̂b̂† = 1 + b̂†b̂. Hence, Eqn (6.29) may be written

--hω

((
1 + b̂†b̂

)
b̂ + b̂

2

)
ψn = Enb̂ψn (6.30)
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Factoring out the term b̂ψn on the left-hand side of Eqn (6.30) gives

--hω

((
1 + b̂†b̂

)+ 1

2

) (
b̂ψn

) = En
(
b̂ψn

)
(6.31)

Subtracting the term --hω(b̂ψn) from both sides allows one to write

--hω

(
b̂†b̂ + 1

2

)
(b̂ψn) = (En − --hω)(b̂ψn) (6.32)

--hω

(
b̂†b̂ + 1

2

)
ψn−1 = En−1ψn−1 (6.33)

This shows that ψn−1 = (b̂ψn) is a new eigenfunction with energy eigenvalue
(En − --hω). From this we can conclude that the operator b̂ acting on the Schrödinger
equation creates a new eigenfunction with eigenenergy (En − --hω). In a similar way, it
can be shown that the operator b̂† creates a new eigenfunction ψn+1 with eigenenergy
(En + --hω).

We now know enough to define the ground state. Clearly, the operator b̂ can only be
used to reduce the energy eigenvalue of any eigenstate except the ground state. Notice
that we assume the existence of a ground state. Because there are, by definition, no
energy eigenstates with energy less than the ground state, the ground state must be
defined by

b̂ψ0 = 0 (6.34)

This, when combined with Eqn (6.22)–Eqn (6.25) and Eqn (6.27), completes our defi-
nition of the harmonic oscillator in terms of the operators b̂† and b̂.

It is now possible to use our definition of the ground state to find the ground-state
wave function. Since

b̂ =
(
mω

2--h

)1/2 (
x̂ + i p̂x

mω

)
=
(
mω

2--h

)1/2 (
x +

--h

mω

∂

∂x

)
(6.35)

our definition b̂ψ0 = 0 requires(
mω

2--h

)1/2 (
x +

--h

mω

∂

∂x

)
ψ0 = 0 (6.36)

The solution for the wave function is of Gaussian form

ψ0 = A0e
−x2mω/2h (6.37)

where the normalization constant A0 is found in the usual way from the requirement
that

∫
ψ∗

0 ψ0dx = 1. This gives

A0 =
(
mω

π --h

)1/4

(6.38)
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Notice that the ground-state wave function ψ0 for the harmonic oscillator has the
even parity we predicted earlier based solely on symmetry arguments.

To find the eigenenergy of the ground state ψ0 one substitutes Eqn (6.37) into the
Schrödinger equation for the one-dimensional harmonic oscillator:(−--h2

2m

d2

dx2
+ mω2

2
x2

)
ψ0 =

(
−--h2

2m

(
−2mω

2--h
+ 4x2

(
mω

2--h

)2
)

+ mω2

2
x2

)
ψ0 = E0ψ0

(6.39)( --hω

2
− mω2

2
x2 + mω2

2
x2

)
ψ0 = E0ψ0 (6.40)

so that the value of the ground-state energy, E0, is

E0 =
--hω

2
(6.41)

6.2.1.1 Uncertainty in position and momentum for the harmonic oscillator in the ground state

The ground-state wave function ψ0 given by Eqn (6.37) is of even parity. This symmetry
will be helpful when we evaluate integrals that give us the expectation values for position
and momentum.

We start by considering uncertainty in position �x = (〈x2〉 − 〈x〉2)1/2. To evaluate
�x , we will need to calculate the expectation values of x and of x2. This is done by
expressing the position operator and the position operator squared in terms of b̂† and b̂:

x̂ =
( --h

2mω

)1/2 (
b̂ + b̂†

)
(6.42)

x̂2 =
( --h

2mω

) (
b̂ + b̂†

)2 =
( --h

2mω

) (
b̂b̂ + b̂†b̂† + b̂b̂† + b̂†b̂

)
(6.43)

The expectation values of x and x2 in the ground state are now easy to evaluate.

〈x〉 =
∫

ψ∗
0 x̂ψ0dx = 0 (6.44)

The fact that 〈x〉 = 0 follows directly from the observation that ψ0 is an even function
and x is an odd function, so the integral must, by symmetry, be zero.

The result for 〈x2〉 is almost as straightforward to evaluate. We start by writing down
the expectation value in integral form:

〈x2〉 =
∫

ψ∗
0 x̂

2ψ0dx =
--h

2mω

∫
ψ∗

0

(
b̂b̂ + b̂†b̂† + b̂b̂† + b̂†b̂

)
ψ0dx (6.45)

The terms involving b̂ψ0 must, by definition of the ground state, be zero. The term
b̂†b̂†ψ0 creates a state ψ2 that is orthogonal to ψ∗

0 and so must contribute zero to the
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integral. This leaves the term b̂b̂†ψ0 = ψ0, which means that∫
ψ∗

0

(
b̂b̂†

)
ψ0dx =

∫
ψ∗

0 ψ0dx = 1

Hence

〈x2〉 =
--h

2mω
(6.46)

The same approach may be used to evaluate the uncertainty in momentum �px =
(〈p2

x〉 − 〈px〉2)1/2. As before, we express the momentum operator and the momentum
operator squared in terms of b̂† and b̂. The momentum operator can be written

px = i

( --hmω

2

)1/2 (
b̂† − b̂

)
(6.47)

so that

p2
x =

( --hmω

2

) (−b̂b̂ − b̂†b̂† + b̂b̂† + b̂†b̂
)

(6.48)

It follows that

〈px〉 = 0 (6.49)

and〈
p2
x

〉 = --hmω

2
(6.50)

We now have expressions for �x2 = 〈x2〉 − 〈x〉2 and �p2
x = 〈p2

x〉 − 〈px〉2, which,
because 〈x〉2 = 0 and 〈px〉2 = 0, give an uncertainty product:

�x2�p2
x = 〈x2〉〈p2

x

〉 = --h2mω

4mω
=

--h2

4
(6.51)

Taking the square root of both sides gives the uncertainty product of position and
momentum

�x�px =
--h

2
(6.52)

which satisfies the uncertainty relation �p�x ≥ --h/2.

6.2.1.2 Using the uncertainty relation to obtain the ground state energy

In this approach, we use the uncertainty relation �x�px ≥ --h/2 to calculate the min-
imum energy of a harmonic oscillator. One starts by expressing the total ground-state
energy as the sum of the potential and kinetic energy terms involving displacement �x
and momentum �px :

E = 1

2

(
κ(�x)2 + (�p)2

m

)
(6.53)



289 6.2 Creation and annihilation operators

Using the relationship �p�x ≥ --h/2 to eliminate �x , we will assumeminimum uncer-
tainty so that �p�x = --h/2. This gives

E = 1

2

(
κ--h2

4(�px )2
+ (�px )2

m

)
(6.54)

Minimizing with respect to �p,

d

d�px

(
κ--h2

4(�px )2
+ (�px )2

m

)
= − κ--h2

2(�px )3
+ 2�px

m
= 0 (6.55)

mκ--h2

4
= �p4

x (6.56)

And since κ = mω2,

m2ω2--h2

4
= �p4

x (6.57)

Hence,

Emin = 1

2

(
mω2--h2

4 · mω--h/2
+ mω--h

2m

)
= 1

2

( --hω

2
+

--hω

2

)
= 1

2
--hω (6.58)

Thus, we may conclude that the ground-state energy of the harmonic oscillator is just
E0 = --hω/2. The important physical interpretation of this result is that, according to
the uncertainty relation, this ground-state energy represents a minimum uncertainty in
the product of position and momentum.

In contrast, the lowest energy of a classical harmonic oscillator is zero. In the clas-
sical case, the minimum energy of a particle in the harmonic potential V (x) = κx2/2
corresponds to both momentum and position simultaneously being zero. In quantum
mechanics, this is impossible, since �x�px ≥ --h/2. As we have seen, the uncertainty
product between position and momentum that minimizes total energy gives the ground-
state energy E0 = --hω/2.

6.2.2 Excited states of the harmonic oscillator

What we now need to know is how to use the operators b̂† and b̂ to find the eigenstates
and eigenenergies of all the other states of the system. These nonground states are
called excited states.

Fortunately, it turns out that if we know ψ0 we can generate all other ψn using the
creation (or raising) operator b̂†. To see that this is the case, we multiply the ground
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state of the harmonic oscillator by b̂† in the Schrödinger equation:

b̂†--hω
(
b̂†b̂ + 1

2

)
ψn = b̂†Enψn = b̂†Hψn (6.59)

--hω

(
b̂†b̂†b̂ + b̂†

2

)
ψn = Enb̂

†ψn = b̂†Hψn (6.60)

Now, using the commutation relation b̂b̂† − b̂†b̂ = 1 and substituting for b̂†b̂ =
b̂b̂† − 1,

--hω

(
b̂†
(
b̂b̂† − 1

)+ b̂†

2

)
ψn = --hω

((
b̂†b̂b̂† − b̂†

)+ b̂†

2

)
ψn = Enb̂

†ψn (6.61)

--hω

((
b̂†b̂ − 1

)
b̂† + b̂†

2

)
ψn = --hω

((
b̂†b̂ − 1

)+ 1

2

)
b̂†ψn = Enb̂

†ψn (6.62)

--hω

(
b̂†b̂ + 1

2

) (
b̂†ψn

) = (En + --hω)
(
b̂†ψn

)
(6.63)

This shows that the operator b̂†, acting on the eigenstate ψn , generates a new eigenstate
(b̂†ψn) with eigenvalue energy (En + --hω).

It is now clear that b̂†, operating on ψn , increases the eigenenergy by an amount --hω,
so that the eigenenergy for the n-th state is

En = --hω

(
n + 1

2

)
(6.64)

where n is a positive integer n = 0, 1, 2, . . ..
Summarizing what we know so far, we may think of b̂† and b̂ as creation (or raising)

and annihilation (or lowering) operators, respectively, that act upon the state ψn in such
a way that

b̂†ψn = An+1ψn+1 (6.65)

and

b̂ψn = An−1ψn−1 (6.66)

where An+1 and An−1 are normalization constants, which we will now find. The way
we do this is to start by assuming that the n-th state is correctly normalized and then
find the relationship between the normalization of the n-th state and the (n + 1)-th
state. Rather than write ψn , we use the notation |n〉, and for ψ∗

n we use 〈n|. Since we
have assumed that the n-th state is normalized, we may write∫

ψ∗
nψndx = 〈n|n〉 = 1 (6.67)
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Because the state b̂†ψn = |n + 1〉 is also required to be normalized, we may write

|An+1|2
〈
b̂†n

∣∣b̂†n〉 = 1 (6.68)

where An+1 is the normalization constant we wish to find. Because b̂† is a Hermitian
operator, Eqn (6.68) may be written

|An+1|2
〈
n
∣∣b̂b̂†n〉 = |An+1|2

〈
n
∣∣(b̂b̂† − 1

)
n
〉 = |An+1|2(n + 1) 〈n|n〉 = 1 (6.69)

where we used the commutation relation b̂†b̂ = b̂b̂† − 1 (Eqn (6.23)) and the fact that
|n〉 is an eigenfunction of the Hamiltonian operator b̂†b̂. Hence,

|An+1|2 = 1

(n + 1)
(6.70)

Choosing An+1 to be real, then

An+1 = 1

(n + 1)1/2
(6.71)

or

|n + 1〉 = 1

(n + 1)1/2

∣∣b̂†n〉 (6.72)

Using this approach we may conclude that

∣∣b̂†n〉 = (n + 1)1/2 | n + 1 〉 (6.73)

and

| b̂n 〉 = n1/2 | n − 1 〉 (6.74)

Suppose we normalize the ground state in such a way that 〈0|0〉 = 1. We then can
write a generating function for the state |n〉:

|n〉 =
(
b̂†
)n

(n!)1/2
· |0〉 (6.75)

and

b̂†|n〉 =
(
b̂†
)n+1

(n!)1/2
· |0〉 = (n + 1)1/2

(
b̂†
)n+1

((n + 1)!)1/2
· |0〉 (6.76)

b̂†|n〉 = (n + 1)1/2 · |n + 1〉 (6.77)

6.2.2.1 Matrix elements

The eigenstates ψn = |n〉 of the harmonic oscillator are orthonormal, so that

〈m|n〉 = δm=n (6.78)
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In our notation, 〈n|b̂†|m〉 = ∫
ψ∗
n b̂

†ψmdx is a matrix element. It can be shown that the
matrix elements involving b̂† and b̂ only exist between adjacent states, so that〈
n
∣∣b̂†∣∣m〉 = (m + 1)1/2δm=n−1 (6.79)

〈n|b̂|m〉 = m1/2δm=n+1 (6.80)

6.2.2.2 The operator n̂

Sometimes it is convenient to define a number operator n̂ = b̂†b̂. The eigenvalue of this
operator applied to an eigenstate labeled by quantum number n is just n:

b̂†b̂|n〉 = b̂†n1/2|n − 1〉 = n1/2b̂†|n − 1〉 = n1/2(n − 1 + 1)1/2|n〉 = n|n〉 (6.81)

This operator commutes with b̂ and b̂† in the following way:

[
n̂, b̂

] = [
b̂†b̂, b

] = b̂†
[
b̂, b̂

]+ [
b̂†, b̂

]
b̂ (6.82)[

n̂, b̂†
] = [

b̂†b̂, b̂†
] = b̂†

[
b̂, b̂†

]+ [
b̂†, b̂†

]
b̂ (6.83)

However, we know from our previous work that [b̂, b̂] = 0, [b̂, b̂†] = 1, and [b̂†, b] =
−1, so that[
n̂, b̂

] = −b̂ (6.84)

and[
n̂, b̂†

] = b̂† (6.85)

Obviously, since the Hamiltonian operator for the harmonic oscillator is H =
--hω(n̂ + 1/2), the eigenfunctions of the Hamiltonian H are also eigenfunctions of the
number operator n̂.

We can summarize pictorially the results obtained so far in this chapter. In Fig. 6.2,
the ground-state energy level and excited-state energy levels near the n-th state of
the one-dimensional harmonic oscillator are shown schematically. Transition between
eigenstates of neighboring energy is achieved by applying the operators b̂† or b̂ to a
given eigenstate. The energy of the n-th eigenstate is --hω(n + 1/2), and the value of n is
found by applying the operator b̂†b̂ = n̂ to the eigenstate. The ground state ψ0 is defined
by b̂ψ0 = 0.

Classical simple harmonic oscillation occurs in a single mode of frequency ω.
The vibrational energy can be changed continuously by varying the oscillation am-
plitude. The quantum mechanical oscillator also has a single oscillatory mode char-
acterized by frequency ω but the vibrational energy is quantized in such a way that
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...
...

bψn = ψn−1

bψn = 0

b†ψn = ψn+1

En = hω(n+1/2) 

En−1  = hω(n−1/2) 

En+1 = hω(n+3/2) 

ψn

ψn+1

ψn−1

Ground state

n-th excited stateb b† ψn = nψn

E0 = hω/2 ψ0

Fig. 6.2. Diagram showing the equally spaced energy levels of the one-dimensional harmonic
oscillator. The raising or creation operator b† acts upon eigenstate ψn with eigenenergy En to form
a new eigenstate ψn+1 with eigenenergy En+1. In a similar way, the annihilation operator b acts
upon eigenstate ψn with eigenenergy En to form a new eigenstate ψn−1 with eigenenergy En−1.
Energy levels are equally spaced in energy by hw. The ground state ψ0 of the harmonic oscillator is
the single state for which bψn+1 = 0. The ground state energy is hω/2.

En = --hω(n + 1/2). If we associate a particle with each quanta --hω, then there can be
n particles in a given mode. Each n-particle state of the system is associated with a
different wave function ψn .

The manipulation of operators is similar to ordinary algebra, with the obvious ex-
ception that the order of operators must be accurately maintained. There is another
important rule. One must not divide by an operator b̂. To show this, consider the state
formed by

ψ = b̂ψ0 (6.86)

Now, if we divide both sides by b̂, then

1

b
ψ = ψ0 (6.87)

To show that Eqn (6.86) and Eqn (6.87) are inconsistent with each other, consider the
situation in which ψ0 is the ground state. In this case, ψ = b̂ψ0 = 0 by our definition of
a ground state (Eqn (6.34)). However, Eqn (6.87) states (1/b̂)ψ = ψ0 �= 0. While one
cannot multiply by 1/b̂, it is possible to multiply by an operator of the form 1/(α + b̂)
since this may be expanded as a power series in b̂.
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6.3 The harmonic oscillator wave functions

Previously, we derived expressions for the creation or raising operator b̂† and the ground-
state wave function ψ0 for the one-dimensional harmonic oscillator so that

b̂† =
(
mω

2--h

)1/2 (
x −

--h

mω

∂

∂x

)
(6.88)

and

ψ0(x) = A0e
−x2· mω

2h (6.89)

where the normalization constant for the Gaussian wave function is given by

A0 =
(
mω

π --h

)1/4

(6.90)

To simplify the notation, it is convenient to introduce a new spatial variable

ξ =
(
mω
--h

)1/2

· x (6.91)

Eqn (6.88) may now be written as

b̂† = 1√
2

((
mω
--h

)1/2

· x −
( --h

mω

)1/2
∂

∂x

)
= 1√

2

(
ξ − ∂

∂ξ

)
(6.92)

and Eqn (6.89) for the ground-state wave function becomes

ψ0(ξ ) = A0e
−ξ 2/2 (6.93)

where the normalization constant is simply

A0 =
(

1

π

)1/4

(6.94)

We can now generate the other higher-order states by using the operator b̂†. Starting
with the ground state and using Eqn (6.75) to ensure correct normalization, a natural
sequence of wave functions is created:

ψ0 (6.95)

ψ1 = b̂†ψ0 (6.96)

ψ2 = 1√
2
b̂†ψ1 = 1√

2

(
b̂†
)2
ψ0 (6.97)

ψ3 = 1√
3
b̂†ψ2 = 1√

2
√

3

(
b̂†
)2
ψ1 = 1√

3!

(
b̂†
)3
ψ0 (6.98)

ψn = 1√
n!

(
b̂†
)n
ψ0 (6.99)
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Because we know the ground-state wave function (Eqn (6.93)), it is now possible to
generate all the other excited states of the system The first few states of the system
are

ψ0 = A0e
−ξ 2/2 (6.100)

ψ1 = b̂†ψ0 = 1√
1!

1√
2

(
ξ − ∂

∂ξ

)
A0e

−ξ 2/2 = 1√
2

2ξ A0e
−ξ 2/2 = 1√

2
2ξψ0 (6.101)

ψ2 = b̂†ψ1 = 1√
2!

(
â†
)2
ψ0 = 1√

2!

1√
2

(
ξ − ∂

∂ξ

)
1√
2

2ξ A0e
−ξ 2/2

= 1√
2

1√
4

(
4ξ 2 − 2

)
ψ0 (6.102)

ψ3 = b̂†ψ2 = 1√
3!

(
â†
)3
ψ0 = 1√

3!

1√
2

(
ξ − ∂

∂ξ

)
1

2

(
4ξ 2 − 2

)
ψ0

= 1√
6

1√
8

(
8ξ 3 − 12ξ

)
ψ0 (6.103)

ψ4 = b̂†ψ3 = 1√
4!

(
â†
)4
ψ0 = 1√

24

1√
16

(
16ξ 4 − 48ξ 2 + 12

)
ψ0 (6.104)

ψ5 = b̂†ψ4 = 1√
5!

(
â†
)5
ψ0 = 1√

120

1√
32

(
32ξ 5 − 160ξ 3 + 120ξ

)
ψ0 (6.105)

Notice that the wave functions are alternately even and odd functions.
It is clear from Eqn (6.100)–Eqn (6.105) that there is a relationship between the wave

functions that can be expressed as a Hermite polynomial Hn(ξ ) so that

ψn(ξ ) = b̂†ψn−1(ξ ) = 1√
2nn!

· Hn(ξ )ψ0(ξ ) (6.106)

Learning more about Hn(ξ ) one finds that the n-th polynomial is related to the n − 1
and n − 2 polynomials via

Hn(ξ ) = 2ξHn−1(ξ ) − 2(n − 1)Hn−2(ξ ) (6.107)

The Hermite polynomials themselves may be obtained from the generating function

e−t
2+2tξ =

∞∑
n=0

Hn(ξ )

n!
tn (6.108)

or

Hn(ξ ) =
(
dn

dtn
e−t

2+2tξ

)
t=0

= (−1)neξ
2 dn

dξ n
e−ξ 2

(6.109)
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The first few Hermite polynomials are

H0(ξ ) = 1 (6.110)

H1(ξ ) = 2ξ (6.111)

H2(ξ ) = 4ξ 2 − 2 (6.112)

H3(ξ ) = 8ξ 3 − 12ξ (6.113)

H4(ξ ) = 16ξ 4 − 48ξ 2 + 12 (6.114)

H5(ξ ) = 32ξ 5 − 160ξ 3 + 120ξ (6.115)

The Schrödinger equation for the one-dimensional harmonic oscillator can be written
in terms of the variable ξ to give(
d2

dξ 2
+
(

2E
--hω

− ξ 2

))
ψn(ξ ) = 0 (6.116)

The solutions are the Hermite–Gaussian functions

ψn(ξ ) =
(

1√
π2nn!

)1/2

Hn(ξ )e−ξ 2/2 = 1√
2nn!

· Hn(ξ )ψ0(ξ ) (6.117)

where Hn(ξ ) are Hermite polynomials. These satisfy the differential equation(
d2

dξ 2
− 2ξ

d

dξ
+ 2n

)
Hn(ξ ) = 0 (6.118)

and n is related to the energy En by

En =
(
n + 1

2

)
--hω (6.119)

where n = 0, 1, 2, . . .. Alternatively, if we know the two starting functions ψ0 and ψ1

then the n-th wave function can be generated by using

ψn(ξ ) =
√

2

n

(
ξψn−1(ξ ) −

√
n − 1

2
ψn−2(ξ )

)
(6.120)

In Fig. 6.3, the wave function and probability function for the three lowest-energy states
of the one-dimensional harmonic oscillator are plotted.

6.3.1 The classical turning point of the harmonic oscillator

Consider a one-dimensional classical harmonic oscillator consisting of a particle of
mass m subject to a restoring force −κx . The frequency of oscillation is ω = √

κ/m,
and the total energy is Etotal = mω2A2/2 = κA2/2, where A is the classical amplitude
of oscillation. If we equate the total energy of the classical harmonic oscillator with the
energy of a one-dimensional quantum mechanical oscillator in the n-th state,
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Fig. 6.3. Plot of wave function and probability function for the three lowest-energy states of the
one-dimensional harmonic oscillator. Distance is measured in normalized units of ξ = x(mω/h)1/2.

we have

Etotal = κA2
n/2 = --hω

(
n + 1

2

)
(6.121)

The classical turning point for the harmonic oscillator occurs at a distance xn , corre-
sponding to the classical amplitude An . This value is just

xn = (--hω/κ)1/2(2n + 1)1/2 =
( --h

mω

)1/2

(2n + 1)1/2 (6.122)
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The eigenfunctions of the quantum mechanical harmonic oscillator extend beyond
the classical turning point. A portion of each wave function tunnels into a region of the
potential that is not accessible classically. This means that there is a finite probability
of finding the particle outside the region bounded by the potential.

Using Eqn (6.122) we see that the classical turning points for the ground state and
the first two excited states of the harmonic oscillator are

x0 =
( --h

mω

)1/2

(6.123)

x1 =
√

3

( --h

mω

)1/2

(6.124)

x0 =
√

5

( --h

mω

)1/2

(6.125)

or, in terms of the parameter ξ = (mω/--h)1/2 . x ,

ξ0 = 1 (6.126)

ξ1 =
√

3 (6.127)

ξ2 =
√

5 (6.128)

ξn = (2n + 1)1/2 (6.129)

Figure 6.4 illustrates the classical turning point ±xn for the ground state ψ0 and
the first two excited states ψ1 and ψ2 of the one-dimensional harmonic oscillator. In
the figure the potential V (x) = κx2/2, the energy levels En and the position of xn are
indicated.
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Fig. 6.4. Diagram showing the first three lowest-energy eigenfunctions of the one-dimensional
harmonic oscillator. The wave functions penetrate into the regions of the potential that are not
accessible according to classical mechanics. The classical turning points are x0, x1, and x2 for the
ground state and first two excited states of the harmonic oscillator respectively.
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The portion of an eigenstate that is outside the classically allowed region can be
used to obtain the probability of finding a particle in that region. If the particle is in a
particular eigenstate, then all that needs to be done is integrate the square of the wave
function in the classically inaccessible region.

As an example, consider a particle that is in the ground state ψ0 with eigenenergy
E0 = --hω/2. The region where V (x) > --hω/2 is not accessible classically. Rewriting
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this condition,

1

2
mω2x2 >

1

2
--hω (6.130)∣∣∣∣x

√
mω
--h

∣∣∣∣ > 1 (6.131)

|ξ | > 1 (6.132)

The probability of finding the particle in this nonclassical region is given by∫
∣∣∣x√ mω

h

∣∣∣>1

ψ∗
0 (x)ψ0(x)dx =

∫
|ξ |>1

ψ∗
0 (ξ )ψ0(ξ )dξ = 1√

π

∫
|ξ |>1

e−ξ 2
dξ = 0.157 (6.133)

where we have used the fact that the ground-state wave function written as a function
of the variable ξ (Eqn (6.91)) is (Eqn (6.93)):

ψ0(ξ ) =
(

1

π

)1/4

e−ξ 2/2 (6.134)

The numerical value of the integral in Eqn (6.133) is found from tables of values for
the error function.

The excited states of the harmonic oscillator have a reduced probability of finding
the particle in this nonclassical region. This probability decreases slowly as the energy
eigenstate increases.

Figure 6.5 illustrates the classical turning points for the wave function and probability
function of the one-dimensional harmonic oscillator. Distance is measured in normal-
ized units of ξ = (mω/--h)1/2 . x , so that the classical turning points ξn = (2n + 1)1/2

for the ground state and first two excited states are ξ0 = 1, ξ1 = √
3, and ξ2 = √

5,
respectively.

6.4 Time dependence

We know from experience gained in Chapter 3 that the probability distribution of
bound-state eigenfunctions is time-independent and cannot carry flux or current. If the
particle is in an eigenstate labeled by the positive integer quantum number n, then
ψn(x, t) = ψn(x)e−iωn t , and no current flows because |ψn(x, t)|2 is time-independent.
However, if the particle is in a linear superposition of eigenstates,

ψ(x, t) =
∑
n

anψn(x)e−iωn t (6.135)

where an is a coefficient that weights each eigenfunction, then we expect there to be a
time dependence to the spatial probability distribution of the particle.
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To investigate this more, consider a linear superposition of the ground-state and first
excited-state eigenfunctions, ψ0(x, t) and ψ1(x, t). In this case, the total wave function
describing the particle is

ψ(x, t) = a0ψ0(x)e−iωt/2 + a1ψ1(x)e−i3ωt/2 (6.136)

The energy of the n-th eigenstate is En = --hω(n + 1/2), where --hω is the energy differ-
ence between adjacent eigenstates. The coefficients a0 and a1 could be real or complex.
Complex coefficients can be viewed as adding an initial phase to the eigenstate.
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Fig. 6.6. Probability distribution at the indicated times t of a one-dimensional harmonic oscillator
superposition state. In this particular case, the superposition state consists of the ground state and
the first excited state, with equal weights and same initial phase. The probability distribution
oscillates with a period τ = 2π/ω. The oscillation frequency is ω = (κ/m)1/2, where the force
constant κ = mω2. Distance is normalized to units of ξ = x(mω/h)1/2.
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The probability density distribution for the superposition state ψ(x, t) given by
Eqn (6.136) is

|ψ(x, t)|2 = a2
0 |ψ0(x)|2 + a2

1 |ψ1(x)|2 + 2a0a1ψ0(x)ψ1(x) cos(ωt) (6.137)

where a0 and a1 have been assumed real and --hω = E1 − E0. For the special case in
which a0 = a1, we have a particularly simple expression for the probability density
distribution:

|ψ(x, t)|2 = a2
0

(|ψ0(x)|2 + |ψ1(x)|2 + 2ψ0(x)ψ1(x) cos(ωt)
)

(6.138)

The probability distribution oscillates with frequency ω, where --hω is the difference
in energy between the two eigenstates. There is a coherent superposition of ψ0 and ψ1,
with equal weight in each state giving a total wave function probability distribution and
an expectation value of position that oscillates at frequency ω. The state of the system
evolves according to a superposition of eigenfunctions. In general, unless the system
is in a pure eigenstate, the probability distribution will be a function of time.

The time evolution of Eqn (6.138) is illustrated in Fig. 6.6. The superposition state
ψ(x, t) consists of the ground state and the first excited state, with equal weights
and the same initial phase. In this case, the probability distribution |ψ(x, t)|2 for the
superposition state oscillates at frequency ω. This oscillation frequency is characterized
by a period τ = 2π/ω, whereω = √

κ/m for the force constant κ . In the figure, distance
is normalized to units of ξ = (mω/--h)1/2 . x .

It is apparent from Eqn (6.138) and Fig. 6.6 that a superposition of harmonic oscillator
eigenstates can be used to create a spatial oscillation in the probability distribution
function. If the probability distribution function describes a charged particle, such as
an electron, then such an oscillation may give rise to a dipole moment and hence to a
source of dipole radiation.

6.4.1 The superposition operator

It is possible to form an operator that creates a superposition state. This is best shown by
example. Suppose we wish to create a superposition state consisting of the ground state
of the harmonic oscillator and the first excited state so that the total wave function is

ψ = a0ψ0 + a1ψ1 (6.139)

where a0 and a1 are weights on each eigenfunction. This equation may always be
written as

ψ = (
a0 + a1b̂

†)ψ0 = a1

(
a0

a1
+ b̂†

)
ψ0 = a1

(
α + b̂†

)
ψ0 (6.140)
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This shows that by adding a number α to the operator b̂† we create a new operator of
the form (α + b̂†), which acts to create a superposition state.

6.4.2 Measurement of a superposition state

In the previous section we showed that a coherent superposition state of the one-
dimensional harmonic oscillator can dramatically alter the time dependence of proba-
bility density distributions and, by inference, the time dependence of expectation values.
If the particle described by the superposition state is charged, then measurable effects
such as dipole radiation may result.

However, one cannot directly measure a superposition state. When an energy mea-
surement is performed on the system, the only result possible is a single eigenenergy
corresponding to a single eigenfunction. These are the only measurable long-lived
(stationary) energy states of the system that can be measured. In the case of a super-
position state consisting of equal weights of the ground state ψ0 and first excited state
ψ1 of the one-dimensional harmonic oscillator, we will obtain a result with energy E0,
with probability 1/2 and energy E1, also with probability 1/2. This occurs because
the superposition state has equal weight in the states ψ0 and ψ1. By probability, we
mean that if the measurement is performed once on each of many separately prepared
systems with the same initial state, the cumulative results are proportional to proba-
bilities. After the measurement has been performed, the state of the system remains in
the measured eigenstate. This phenomenon is called the collapse of the wave function.
This mysterious behavior has to do with the nature of measurement, something that
quantum mechanics does not describe very well. Energy is quantized and we can only
measure discrete energy values. Energy measurement disturbs the system, forcing an
initially coherent superposition of eigenstates into a definite stationary eigenstate. If we
measure the probability distribution 〈ψ |ψ〉 or an expectation value such as the expecta-
tion value of position 〈ψ |x̂ |ψ〉, we find that the probability distribution is created from
a number of discrete events. Only when the measurement is performed a large number
of times, and each time on an identically prepared system, do the cumulative results
asymptotically approach the predictions of the probability distribution or expectation
value.

6.4.3 Time dependence of creation and annihilation operators

In quantum mechanics, we aim to solve the Schrödinger equation

Hψ(t) = i--h
∂

∂t
ψ(t) (6.141)

So far, we have considered the case in which operators are time-independent and the
wave functions are time-dependent. There is an alternative approach in which operators
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are time-dependent and the wave functions are time-independent. This is called the
Heisenberg representation. To understand where this alternative view comes from, we
start by noting that Eqn (6.141) can always be written

ψ(t) = e−i Ht/hψ(0) (6.142)

where ψ(0) is the initial wave function at time t = 0. While Eqn (6.142) does not
formally change anything mathematically, it does suggest a new viewpoint. Be-
cause in quantum mechanics we want to predict the outcome of experiments, we
will be interested in calculating expectation values of a time-independent operator Â
where

〈 Â〉 = 〈ψ(t)| Â|ψ(t)〉 (6.143)

Using Eqn (6.142) we can now write the expectation value as

〈 Â〉 = 〈ψ(0)|eiHt/h Âe−i Ht/h|ψ(0)〉 = 〈ψ(0)| Ã(t)|ψ(0)〉 (6.144)

where

Ã(t) = eiHt/h Âe−i Ht/h (6.145)

is a new time-dependent operator that acts on the initial wave function ψ(0) . These,
the new operators in the Heisenberg representation, are time-dependent, and the wave
functions they operate on are time-independent initial states.

Differentiating Eqn (6.145) with respect to time using the chain rule gives

d

dt
Ã(t) = i

--h
H Ã(t) − i

--h
Ã(t)H + eiHt/h

∂

∂t
Âe−i Ht/h (6.146)

and since (∂/∂t) Â = 0, we may write

d

dt
Ã(t) = i

--h
[H, Ã] (6.147)

Sometimes it is useful to know the time dependence of the operators b̂ and b̂† for the
harmonic oscillator. In the Heisenberg representation, the time development is given
by Eqn (6.145), where Â is an operator such as b̂ or b̂†. For the lowering or destruction
operator b̂, the time dependence becomes

d

dt
b̃(t) = i

--h
[H, b̂] = iω

(
b̂†b̂b̂ − b̂b̂†b̂

) = iω
[
b̂†, b̂

]
b̂ = −iωb̃(t) (6.148)

where we made use of the fact that [b̂, b̂†] = −[b̂†, b̂] = 1. The solution to the equation

d

dt
b̃(t) = −iωb̃(t) (6.149)

is simply

b̃(t) = e−iωt b̂ (6.150)
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The Hermitian conjugate of this expression is

b̃†(t) = eiωt b̂† (6.151)

Thus, the time development of the position operator

x̂ =
( --h

2mω

)1/2 (
b̂ + b̂†

)
(6.152)

becomes

x̂(t) =
( --h

2mω

)1/2 (
b̂e−iωt + b̂†eiωt

)
(6.153)

6.4.3.1 Charged particle in a harmonic potential subject to a constant electric field E

We now wish to apply what we know about the time dependence of raising and lowering
operators to find out what happens when a particle of massm and charge e in an initially
one-dimensional harmonic potential is subject to a constant applied electric field of
strength |E| in the positive x direction.

We begin by writing down the Hamiltonian for the system. This must contain con-
tributions from both the oscillator and the electric field, as follows:

H = p2

2m
+ κ

2
x2 + e|E|x (6.154)

Equation (6.154) may be rewritten in terms of the operators b̂† and b̂:

H = --hω

(
b̂†b̂ + 1

2

)
+ --hλ

(
b̂ + b̂†

)
(6.155)

where λ = e|E| (1/2m--hω)1/2 . We may now define a new set of operators

B̂ = b̂ + λ

ω
(6.156)

B̂† = b̂† + λ

ω
(6.157)

They obey

∂

∂t
B̂(t) = −iω B̂(t) (6.158)

and so they have time dependence

B̂(t) = e−iωt B̂ (6.159)

B̂†(t) = eiωt B̂† (6.160)
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The operators B̂† and B̂ obey the usual commutation relations

[
B̂, B̂†] =

[
b̂ + λ

ω
, b̂† + λ

ω

]
= 1 (6.161)

[
B̂†, B̂

] = −1 (6.162)[
B̂†, B̂†] = 0 (6.163)[
B̂, B̂

] = 0 (6.164)

The Hamiltonian for a particle of massm and charge e in a one-dimensional harmonic
potential subject to an applied electric field in the x direction may now be written in
terms of the operators B̂† and B̂:

H = --hω

((
B̂† − λ

ω

)(
B̂ − λ

ω

)
+ 1

2

)
+ --hλ

(
B̂ + B̂† − 2λ

ω

)
(6.165)

H = --hω

(
B̂† B̂ + 1

2

)
−

--hλ2

ω
(6.166)

The Schrödinger equation for this Hamiltonian is

H |n〉 =
(

--hω

(
n + 1

2

)
−

--hλ2

ω

)
|n〉 (6.167)

where the state |n〉 is related to the ground state |0〉 by

|n〉 = 1

(n!)1/2

(
B̂†)n|0〉 (6.168)

The operator for the position of the particle is

x(t) =
( --h

2mω

)1/2 (
B̂e−iωt + B̂†eiωt − 2λ

ω

)
(6.169)

Hence, the physics of the Hamiltonian describing the charged particle in a harmonic
potential subject to an electric field is relatively straightforward. The particle oscillates
at the same frequency, ω, established by the harmonic potential, but it is displaced by
a distance

x0 =
( --h

2mω

)1/2 2λ

ω
= e|E|

κ
(6.170)

from the original position. The applied electric field has strength |E| in the positive x
direction. If the sign of the electric field is changed to the negative x direction, then so is
the sign of the displacement x0. The change in equilibrium position due to application
of the electric field causes the energy levels of the system to be changed by an amount

�E = −--hλ2

ω
= −e2|E|2

2mω2
= −e2|E|2

2κ
(6.171)
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energy, V(x) 

Harmonic oscillator potential V(x) = κx2/2 before
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V(x) = − ∆E + κ(x − x0)2/2
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∆E = −e2|E|2/2κ x0 = e|E|/κ 

in the x direction 

Fig. 6.7. Illustration of the potential of a particle of mass m and charge e in a one-dimensional
harmonic potential before and after being subject to an applied constant electric field of strength |E|
in the x direction. The effect of the electric field is to shift the equilibrium position of the oscillator
to x0 and lower the potential energy by an amount �E .

The energy levels are always shifted by −λ2/ω independently of the sign of the
electric field. This is so because the extra energy stored in the potential due to a dis-
placement x0 in equilibrium position enters as x2

0 and so is positive, independent of
the direction of x0. The extra energy stored in the potential effectively removes a fixed
amount of energy from the oscillator portion of the system. Figure 6.7 illustrates these
ideas in graphical form.

6.4.3.2 Comparison with the classical result for a charged particle in a harmonic potential
subject to a constant electric field E

In the classical case, the new equilibrium position of the particle will be shifted by �x
with e|E| = κ�x , where E is the electric field in the x direction and κ is the force
constant. The total energy will be

Etotal = 1

2
κ(x + �x)2 − e|E|(x + �x)

= 1

2
κx2 + κx�x + 1

2
κ�x2 − e|E|x − e|E|�x (6.172)

Now, since e|E| = κ�x , we can write

Etotal = 1

2
κx2 + 1

2
κ�x2 − e|E|�x = 1

2
κx2 + 1

2
κ
e2|E|2
κ2

− e2|E|2
κ

(6.173)

Etotal = 1

2
κx2 + 1

2

e2|E|2
κ

− e2|E|2
κ

= 1

2
mω2x2 − e2|E|2

2mω2
(6.174)



308 The harmonic oscillator

where we used the fact that κ = mω2. With no electric field, the total energy is just

E (0)
total = 1

2
mω2x2 (6.175)

and with an applied electric field the total energy is

Etotal = E (0)
total −

e2|E|2
2mω2

(6.176)

From this we may conclude that the classical result is the same as the quantum one –
the energy is reduced by e2|E|2/2mω2.

6.5 Quantization of electromagnetic fields

In Chapter 1 we introduced the idea that in free space the total electromagnetic energy
density at position r and time t could be written

U = 1

2
(E · D + B · H) = ε0

2
|E(r, t)|2 + 1

2µ0
|B(r, t)|2 (6.177)

In free space there is no charge density, so that ∇V (r, t) = 0 and the electric and
magnetic fields can be written in terms of the vector potential A(r, t) in such a way
that E(r, t) = −(d/dt)(A(r, t)) and B(r, t) = � × A(r, t). To make connection with
the harmonic oscillator, we express vector potential in terms of its Fourier components:

A(r, t) = 1

(2π )3/2

∫
A(k, t)eik.rdk (6.178)

Substituting into our expression for energy density gives

U = ε0

2

∣∣∣∣− d

dt
(A(k, t))

∣∣∣∣
2

+ k2

2µ0
|A(k, t)|2 (6.179)

Comparing this with the energy of a particle of massm in a harmonic oscillator potential

E = p̂2

2m
+ κ

2
x̂2 (6.180)

which oscillates at frequency ω = √
κ/m, it is clear that the electromagnetic field

may be viewed as a number of harmonic oscillators of amplitude A(k, t) and frequency
ω =

√
k2/µ0ε0 = kc, where c = 1/

√
µ0ε0 is the speed of light.

We are now able to draw a rather surprising conclusion. Because the electromagnetic
field must be quantized in the same way as a harmonic oscillator, the energy density of
the electromagnetic field in vacuum is never zero and through random processes can
fluctuate. This result is a direct consequence of the fact that each electromagnetic mode
of wave vector k and amplitude A(k, t) has nonzero ground-state energy. Fluctuations
in vacuum electromagnetic field density cause spontaneous transitions from excited
electronic states of a system to lower energy states via emission of electromagnic energy.
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The quantum of the electromagnetic field is the photon. Each photon particle carries
energy --hω and integer spin quantum number s = ±1 carrying angular momentum ±--h.
Photon spin corresponds to left- or right-circular polarization of plane waves in classical
electromagnetism. All integer spin particles such as photons are classified as bosons.

6.5.1 Laser light

We have already shown that electromagnetic waves in free space can be described as
the oscillation of the vector potential A (k, t) at frequency ω =

√
k2/µ0ε0 = kc. Laser

light emission is usually dominated by a single frequency of oscillation, say ω. Each
component of the electromagnetic field obeys

∂2φ

∂t2
= −ω2φ (6.181)

This means that φ describes simple harmonic motion. Quantization of the electromag-
netic field follows naturally. The energy levels for one spatial component of the field
will be quantized so that each photon has energy --hω. The total energy due to all pho-
tons in the laser beam is E = --hω(n + 1/2), where n is the number of photons in the
electromagnetic field. Every time we add an additional photon to the system we add
additional energy, --hω. Applying the operator b̂† to a state function ψ , which describes
coherent laser light, increases the energy by --hω. Thus, we can think of b̂† as creating
a photon. In the same way, b̂ annihilates a photon. The operators b̂† and b̂ are creation
and annihilation operators for photon particles in the photon field. We may think of ψn

as a multi-particle state function because it contains n photons.
The requirement that b̂ψ0 = 0 describes the ground state, ψ0, corresponds to the idea

that the vacuum contains no photons that b̂ can annihilate. The ground-state energy --hω/2
is the energy in the electromagnetic field before the laser has been turned on. This is the
so-called vacuum energy. In this picture, the energy level En = --hω(n + 1/2) describes
the situation when n photons have been added to the vacuum.

6.5.2 Quantization of an electrical resonator

The LC circuit of Exercise 1.12 has a resonant frequency such that ω = 1/
√
LC ,

where L is an inductor andC is a capacitor placed in a series. Current flow in the circuit
oscillates in time as I (t) = I0eiωt , and electromagnetic energy is stored in the capacitor
and inductor. There are, of course, many practical applications in which such a circuit
may be used, including the production of electromagnetic radiation at the resonant
frequency ω. The circuit behaves as a harmonic oscillator with electromagnetic energy
quantized as photons in such a way that En = --hω(n + 1/2), where --hω = --h/

√
LC .

The electromagnetic energy stored in the LC circuit is the sum of the energy
in the inductor L I 2/2 and the energy in the capacitor CV 2/2. Since magnetic flux
φB = L I , charge Q = CV , and, on resonance, C = 1/Lω2, we may write the stored
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electromagnetic energy as

E = φ2
B

2L
+ Lω2Q2

2
(6.182)

Comparing this with energy of a particle of mass m in a harmonic oscillator potential
(Eqn (6.180)) the “mass” of the resonator is L, the “spring constant” is Lω2, and
we identify the coordinates p̂ = φ̂B and x̂ = Q̂. From our previous experience, we
expect operators φ̂B and Q̂ to form a conjugate pair so that φ̂B = −i--h.∂/∂ Q̂ and
[φ̂B, Q̂] = −i--h. Quantum mechanics predicts that charge and magnetic flux obey the
uncertainty relation �Q�φB ≥ --h/2 and so cannot be measured simultaneously to
arbitrary accuracy. Quantum mechanics also predicts that the minimum electromagnetic
energy in the resonant circuit is E0 = --hω/2 = --h/

√
4LC .

6.6 Quantization of lattice vibrations

The classical Hamiltonian of a linear monatomic chain in the harmonic nearest-neighbor
interaction approximation is given by Eqn (1.16) and was discussed in Section 1.2.3.
The chain consists of N particles, each of mass m and equilibrium nearest-neighbor
spacing L. The displacement from equilibrium position of the j-th particle is x j . A
vibrational normal mode of the chain is characterized by frequency ω(q) and wave
vector q = 2π/λ. We can write the Hamiltonian for the linear chain in quantum form
by first substituting the momentum operator p̂ and the displacement operator x̂ into the
classical Hamiltonian Eqn (1.16). This gives

H =
N∑
j

p̂2
j

2m
+ κ

2

N∑
j

(
2x̂2

j − x̂ j x̂ j+1 − x̂ j x̂ j−1
)

(6.183)

where the sum is over all N particles in the chain. To transform Eqn (6.183) into a more
convenient diagonal form, it is necessary to perform a canonical transformation. To do
this, one defines new operators in terms of a linear combination of displacements and
the momenta of each particle so that

b̂q = 1√
N

N∑
j

(
mωq

2--h

)1/2

· e−iq j L
(
x̂ j + i p̂ j

mωq

)
(6.184)

b̂†q = 1√
N

N∑
j

(
mωq

2--h

)1/2

· eiq j L
(
x̂ j − i p̂ j

mωq

)
(6.185)

where eiq j L is a Bloch phase factor and ωq will be chosen to diagonalize the Hamil-
tonian. The new operators, b̂†q and b̂q , which obey the usual commutation relations
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(Eqn (6.22)–Eqn (6.25)), may be used in linear combination to give

x̂ j = 1√
N

N∑
q

( --h

2mωq

)1/2

· eiq j L(b̂q + b̂†−q
)

(6.186)

p̂ j = −i√
N

N∑
q

(
m--hωq

2

)1/2

· eiq j L(b̂q − b̂†−q
)

(6.187)

Substitution of these new expressions for x̂ j and p̂ j into Eqn (6.183) results in a
Hamiltonian

H = −1

4

∑
q

--hωq
(
b̂q − b̂†−q

) (
b̂−q − b̂†q

)

+1

4

∑
q

--h

ωq

κ

m

(
b̂q + b̂†−q

) (
b̂−q + b̂†q

) (
2 − eiqL − e−iqL

)
(6.188)

Recognizing that if we choose

ω2
q = κ

m

(
2 − eiqL − e−iqL

)
(6.189)

the Hamiltonian takes on the familiar diagonal form (Eqn (6.14) and Eqn (6.27)), as
follows:

H =
∑
q

--hωq

2

(
b̂q b̂

†
q + b̂†q b̂q

)=∑
q

--hωq

(
b̂†q b̂q + 1

2

)
=
∑
q

--hωq

(
nq + 1

2

)
(6.190)

This is the sum of independent linear oscillators of frequencyω(q). Modes of vibrational
frequency ωq and wave vector q are described by the dispersion relation ω = ω(q),
which, for the case we are considering, is the same as the classical result (Eqn (1.20)).
Each quantized vibrational mode of the linear chain is made up ofN individual particles
of mass m oscillating about their equilibrium positions coupled via the interaction
potential. A lattice vibration of wave vector q = 2π/λ is quantized with energy En =
--hω(q)(n + 1/2) and contains nq = b̂†q b̂q phonons. Phonons have zero integer spin and,
like photons, are bosons.

6.7 Quantization of mechanical vibration

In this chapter we have shown that a harmonic oscillator is quantized in energy so that
in one dimension En = --hω(n + 1/2). Lattice vibrations in a crystal are quantized and
so are oscillations of small mechanical structures. As an example of a small mechanical
structure, consider the cantilever beam shown schematically in Fig. 6.8.

In Exercise 1.10 it was stated that the lowest-frequency vibrational mode of a long,
thin cantilever beam is

ω = 3.25
d

l2

√
EYoung

12ρ
(6.191)
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Free-end displacement

Length, l

Thickness, d

amplitude, A

Fig. 6.8. Cross-section of a cantilever beam of length l and thickness d with a free-end displacement
amplitude A.

where l is the length,d is the thickness,ρ is the density of the beam, and EYoung is Young’s
modulus. Classical mechanics predicts that the vibrational energy of a cantilever with
width w and free-end displacement amplitude A is

Eclassical = wd3A2EYoung

6l3
(6.192)

If one equates Eclassical with the characteristic energy of a quantized one-dimensional
harmonic oscillator --hω, then one may estimate the amplitude of oscillation of the free
end to be

A =
(

21.12 × --h × l

w × d2
√

12 × ρ × EYoung

)1/2

(6.193)

Suppose the cantilever is made of silicon by a microelectromechanical systems
(MEMS) process. In this case, we might use the bulk values for density ρ = 2.328 ×
103 kg m−3 and Young’s modulus EYoung = 1.96 × 1011 N m−2 to estimate oscillation
frequency and amplitude. Equations (6.191) and (6.193) predict that a small cantilever
structure with dimensions l = 10 �m, w = 50 nm, and d = 10 mn has a free-end os-
cillation frequency v = 148 kHz and an amplitude A = 0.0078 mn. To make sure
that low-energy vibrational motion dominates, we require temperature T ≤ --hω/kB =
7 �K.

This combination of very small vibrational amplitude and low temperature makes
direct measurement of quantized mechanical motion in a MEMS structure quite chal-
lenging. Nevertheless, it is a prediction of our quantum theory that the motion of
small mechanical structures is quantized in such a way that vibrational energy is
En = --hω(n + 1/2).

6.8 Example exercises

Exercise 6.1
A one-dimensional harmonic oscillator is in the n = 1 state, for which

ψn=1(x) = 2(2π1/2x0)−1/2(x/x0)e−0.5(x/x0)2
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with x0 = (--h/mω)1/2. Calculate the probability of finding the particle in the interval x
to x + dx . Show that, according to classical mechanics, the probability is

Pclassical(x)dx = 1

π
(A2

0 − x2)−1/2dx

for −A0 < x < A0 and zero elsewhere (A0 is the classical amplitude). With the aid
of sketches compare this probability distribution with the quantum mechanical one.
Locate the maxima for the probability distribution for the n = 1 quantum state relative
to the classical turning point. Assume that the classical amplitude, A0, is such that the
total energy is identical in both cases.

Exercise 6.2
Show that 〈b̂†n|b̂†n〉 = 〈n|b̂b̂†n〉, where b̂† is the creation operator for the harmonic
oscillator.

Exercise 6.3
A two-dimensional potential for a particle of mass m is of the form

V (x, y) = mω2(x2 + xy + y2)

Write the potential as a 2 × 2 matrix and find new coordinates u and v that diagonalize
the matrix. Find the energy levels of the particle.

Exercise 6.4
The purpose of this exercise is to show that a coherent superposition of high-quantum-
number energy eigenstates of a harmonic oscillator with a spread in energies that is
small compared with their mean energy behaves as a classical oscillator. Consider a
one-dimensional harmonic oscillator characterized by mass m and angular frequency
ω. The eigenstate of the Hamiltonian corresponding to the quantum number n is |n〉.
The time-dependent state ψ(t) of the oscillator at time t = 0 is

ψ(t = 0) = 1√
2�N

n=N+�N∑
n=N−�N

|n〉

where 1 << �N << N .
(a) Find the expectation value of position as a function of time.
(b) Compare your result in (a) with the predictions of a classical harmonic oscillator.
(c) Write a computer program that plots the n-th eigenstate |n〉 and probability 〈n|n〉

of the one-dimensional harmonic oscillator. Use Eqn (6.120) to generate the wave
function, and plot the |n = 18〉 eigenstate and its probability function.

(d) In general, a superposition wave function of the one-dimensional harmonic os-
cillator can be formed so that ψ(t) = ∑

an|n〉 e−iωn t , where an is a weighting factor that
contains amplitude and phase information for each eigenstate |n〉 andωn = ω(n + 1/2).
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However, if one assumes equal weights and a contiguous sum, then at time t = 0 the
superposition wave function

ψ(t = 0) = 1√
2�N

n=N+�N∑
n=N−�N

|n〉

represents a particle at an extreme of its motion. Use (c) and write a computer program
that plots the superposition wave function and particle probability function for the
specific case in which N = 18 and �N = 2. Compare the peak in probability with the
classical turning point for the |n = 18〉 eigenstate.

Exercise 6.5
A particle of mass m in a one-dimensional harmonic potential V (x) = mω2x2/2 is in
an eigenstate ψn(ξ ) with eigenvalue n and eigenenergy En = --hω(n + 1/2). The prob-
ability of the particle being found in the nonclassical region of the harmonic oscillator
is given by

Pnonclassical
n =

∫
|ξ |>1

ψ∗
n (ξ )ψn(ξ )dξ

where ξ = (mω/--h)1/2 · x and the classical turning point is ξn = (2n + 1)1/2.
Find the values of Pnonclassical

n for the first excited state n = 1 and for the second
excited state n = 2.

Exercise 6.6
In Section 6.2 it was shown that the creation operator b̂† and the annihilation operator
b̂ for the one-dimensional harmonic oscillator with Hamiltonian H are related to each
other through the commutation relation [b̂, b̂†] = (b̂b̂† − b̂†b̂) = 1.

Verify that the expressions for the commutation relations [b̂, b̂†], [b̂, b̂], and [b̂†, b̂†]
given in Section 6.2 are correct.

If we define a new operator n̂ = b̂†b̂, show that

H = --hω

(
n̂ + 1

2

)

and derive expressions for the commutation relations [n̂, b̂] and [n̂, b̂†].

Exercise 6.7
What are the degeneracies of the three lowest levels of a symmetric three-dimensional
harmonic oscillator? Find a general expression for the degeneracy of the n-th
level. Derive and explain the meaning of the matrix elements 〈n|b̂†|m〉 = (m +
1)1/2 δm=n−1, 〈n|b̂|m〉 = m1/2δm=n+1, and 〈m|n〉 = δmn between states m and n of a
harmonic oscillator.
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Exercise 6.8
The ground-state wave function of a particle of massm in a harmonic potential is ψ0 =
A0e−x

2/4α2
, where α2 = --h/2mω. Derive the uncertainties in position and momentum,

and show that they satisfy the uncertainty relation.

Exercise 6.9
The ground state and the second excited state of a charged particle of mass m in a one-
dimensional harmonic oscillator potential are both occupied. What is the expectation
value of the particle position x as a function of time? What happens to the expectation
value if the potential is subject to a constant electric field E in the x direction?

Exercise 6.10
Using the method outlined in Section 3.4, write a computer program to solve the
Schrödinger wave equation for the first four eigenvalues and eigenstates of an electron
with effective mass m∗

e = 0.07 × m0 confined to a parabolic potential well in such a
way that V (x) = ((x − L/2)2/(L/2)2) eV and L = 100 nm.

SOLUTIONS

Solution 6.1
Starting with a one-dimensional harmonic oscillator in the n = 1 state for which

ψn=1(x) = 2(2π1/2x0)−1/2(x/x0)e−0.5(x/x0)2

with x0 = (--h/mω)1/2, we wish to calculate the probability of finding the particle in the
interval x to x + dx . The quantum mechanical probability is

Pquantum(x)dx = |ψ1|2dx = 2

π1/2x0
(x/x0)2e−(x/x0)2

dx

The maxima in this distribution occur when

0 = d

dx
Pquantum(x)

0 = 2

π1/2x3
0

2xe−(x/x0)2 − 2

π1/2x3
0

2x(x/x0)2e−(x/x0)2

0 = 1 − x2

x2
0

so that xmax = ±x0 is the peak in the quantum mechanical probability distribution.
Classically, x(t) = A0 sinωt , where A0 is the classical amplitude of oscillation. The

energy of the classical harmonic oscillator is found from the solution to the equation
of motion

κx + m
d2x

dt2
= 0
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or the Hamiltonian

H = T + V = 1

2
m

(
dx

dt

)2

+ 1

2
κx2

where κ is the force constant and m is the particle mass. The potential energy is

V = 1

2
κA2 cos2(ω0t + φ)

and the kinetic energy is

T = 1

2
mω2

0A
2 sin2(ω0t + φ)

where φ is an arbitrary phase factor. Hence, the total energy

H = 1

2
mω2

0A
2 = 1

2
κA2

since sin2(θ ) + cos2(θ ) = 1 and κ = mω2
0.

Equating the total energy for the classical and quantum mechanical cases gives

Etotal = 1

2
mω2A2

0 = 3

2
--hω

Therefore,

A0 =
√

3--hω

mω2
=
√

--h

mω

√
3 = x0

√
3 = 1.73x0

Classically, x(t) = A0 sinωt , where A0 is the classical amplitude of oscillation and
τ = 2π/ω is the oscillation period. For any time interval during the period of oscillation
for which 0 < t < τ = 2π/ω, the oscillator will be between x and x + dx at the time

t = 1

ω
sin−1(x/A0)

Hence, the probability of finding the classical particle in the interval x to x + dx is

Pclassical(x)dx = 2dt

τ
= 2dt

2π/ω
= ωdt

π

where we note that the factor of 2 arises because the particle passes position x twice
during one oscillation period. Substituting in our expression for dt, we have

dt = dt

dx
dx = d

dx

(
1

ω
sin−1(x/A0)

)
dx = 1

ω
.

1/A0√
1 − (x/A0)2

. dx

dt = 1

ω

(
A2

0 − x2
)−1/2 · dx

so that

Pclassical(x)dx = 1

π

(
A2

0 − x2
)−1/2

dx
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Solution 6.2
We wish to show that 〈b̂†n|b̂†n〉 = 〈n|b̂b̂†n〉, where b̂† is the creation operator for the
harmonic oscillator. The fact that 〈b̂†n|b̂†n〉 = 〈n|b̂b̂†n〉 follows from the Hermitian
property of the operator b̂†. What we need to show is that 〈b̂†n|m〉 = 〈n|b̂m〉, since
|b̂†n〉 = (n + 1)1/2|n + 1〉, which we can chose to define as a new state |m〉.

We start by writing down the definition of the creation and annihilation operator for
the one-dimensional harmonic oscillator in terms of the parameter ξ = x · √mω/--h:

b̂† = 1√
2

((
mω
--h

)1/2

· x −
( --h

mω

)1/2
∂

∂x

)
= 1√

2

(
ξ − ∂

∂x

)

b̂ = 1√
2

((
mω
--h

)1/2

· x +
( --h

mω

)1/2
∂

∂x

)
= 1√

2

(
ξ + ∂

∂x

)

We will suppose that the eigenfunction ψn(ξ ) tends to zero at plus and minus infinity.
This is in fact the case for the harmonic oscillator. Now, we write 〈b̂†n|m〉 = 〈n|b̂m〉
in integral form∫ (

b̂†ψ∗
n (ξ )

)
ψm(ξ )dξ = 1√

2

∫ ((
ξ − ∂

∂ξ

)
ψ∗
n (ξ )

)
ψm(ξ )dξ

∫ (
b̂†ψ∗

n (ξ )
)
ψm(ξ )dξ = 1√

2

∫
ξψ∗

n (ξ )ψm(ξ )dξ − 1√
2

∫ (
∂

∂ξ
ψ∗
n (ξ )

)
ψm(ξ )dξ

ξ in the first term on the right-hand side is just a multiplicative factor, and so it can
be placed between the two wave functions without changing the integral. The second
integral on the right-hand side can be done by parts:

∫
UV ′dx = UV − ∫

U ′Vdx ,
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where U = ψ∗
m(ξ ), and V ′ = ∂ψn(ξ )/∂ξ . This gives∫ (

b̂†ψ∗
n (ξ )

)
ψm(ξ )dξ = 1√

2

∫
ψ∗
n (ξ )ξψm(ξ )dξ

−
(

1√
2
ψ∗
n (ξ )ψm(ξ )

)∣∣∣∣
ξ→∞

ξ→−∞
+ 1√

2

∫
ψ∗
n (ξ )

∂

∂ξ
ψm(ξ )dξ

Since we have assumed that ψn(ξ ) → 0 as ξ → ±∞, the second term on the right-
hand side is zero, leaving∫ (

b̂†ψ∗
n (ξ )

)
ψn(ξ )dξ = 1√

2

∫
ψ∗
n (ξ )

((
ξ + ∂

∂ξ

)
ψm(ξ )

)
dξ

∫ (
b̂†ψ∗

n (ξ )
)
ψm(ξ )dξ = 1√

2

∫
ψ∗
n (ξ )(b̂ψm(ξ ))dξ

or〈
b̂†n|m〉 = 〈n|b̂m〉

As a check of the algebraic formalism, we note that〈
b̂†n

∣∣b̂†n〉 = 〈
b̂†n

∣∣(n + 1)1/2
∣∣n + 1

〉 = (n + 1)〈n + 1|n + 1〉 = n + 1

and, noting that b̂b̂† = 1 + b̂†b̂, we can write〈
n
∣∣b̂b̂†n〉 = 〈

n
∣∣(1 + b̂†b̂

)
n
〉 = 1 + 〈

n
∣∣b̂†b̂n〉 = 1 + n1/2

〈
n
∣∣b̂†(n − 1)

〉 = 1 + n〈n|n〉〈
n
∣∣b̂b̂†n〉 = 1 + n

We may conclude that 〈b̂†n|b̂†n〉 = 〈n|b̂b̂†n〉, which agrees with the previous result
using integration of wave functions.

Solution 6.3
The symmetric potential V (x, y) = mω2(x2 + xy + y2) can be written as a 2 × 2
matrix

V (x, y) = m

2
ω2[x y]

[
2 1
1 2

][
x
y

]

Because the eigenvalues of the 2 × 2 matrix are 3 and 1, there must be coordinates
u and v that diagonalize the matrix to give

V (u, v) = m

2
ω2[u v]

[
3 0
0 1

][
u
v

]

Notice that the symmetric 2 × 2 matrix has been diagonalized by an orthogonal change
of variables

u = 1√
2

(x + y) and v = 1√
2

(x − y)



319 6.8 Example exercises

Multiplying out the matrix, we see that the potential is now given by

V (u, v) = m

2
ω2
(
3u2 + v2

)
and so the eigenenergy values of the particle are

Enu ,nv
=

√
3 · --hω

(
nu + 1

2

)
+ --hω

(
nv + 1

2

)

where the quantum numbers nu and nv are positive integers 0, 1, 2, . . . .

Solution 6.4
(a) The state function at time t = 0 of the one-dimensional harmonic oscillator is given
as

ψ(0) = 1√
2�N

n=N+�N∑
n=N−�N

|n〉

where 1 << �N << N . This is a coherent superposition of high-quantum-number
eigenfunctions the relative phase of which is specified at time t = 0. It follows that
the wave function evolves in time as

ψ(t) = 1√
2�N

n=N+�N∑
n=N−�N

|n〉e−i En (t/h)

ψ(t) = 1√
2�N

n=N+�N∑
n=N−�N

|n〉e−i(n+ 1
2 )ωt

since the energy of the n-th eigenfunction is En = (n + 1
2 )--hω. The position operator

x =
( --h

2mω

)1/2 (
b̂ + b̂†

)
has an expectation value given by

〈x〉 =
( --h

2mω

)1/2 〈
ψ(t)

∣∣b̂ + b̂†
∣∣ψ(t)

〉

〈x〉 =
( --h

2mω

)1/2 ∑
nn′

〈
n′∣∣b̂ + b̂†

∣∣n〉exp(i(n′ − n)ωt)

The relations b|n〉 = √
n|n − 1〉 and b̂†|n〉 = √

(n + 1)|n + 1〉 show that the matrix
element is zero unless n′ = n ± 1. Hence,

〈x〉 =
( --h

2mω

)1/2 1

2�N

n=N+�N∑
n=N−�N

(√
ne−iωt + √

n + 1eiωt
)

The summation over n is from n = N − �N to n = N + �N . However, since
1 << �N << N , one may approximate

√
n ∼= √

n + 1 ∼=
√
N . Since the sum is from
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n = N − �N to n = N + �N , there are 2�N + 1 ∼= 2�N equal terms in the sum-
mation, and thus∑
n

(√
n · e−iωt + √

n + 1 · eiωt) ≈ 2 · 2�N
√
N cos(ωt)

giving an expectation value for position

〈x〉 =
(

2--hN

mω

)1/2

cos(ωt)

(b) Classically, m
(
d2x/dt2

)+ κx = 0, where κ = mω2. This has solution for
the position coordinate x = A0 cosωt and total energy E = κx2/2 + m(dx/dt)2/2 =
mω2A2

0/2. In the quantum calculation, the energy is E ≈ (N+1/2)--hω ≈ N --hω.

Therefore, the quantum amplitude (2--hN/mω)1/2 ≈ (
2E/mω2

)1/2 = A0. Hence, the
coherent combination of a large number of energy eigenstates with a spread in energies
that is small compared with their mean energy behaves as a classical oscillator.

(c) The figure below plots the wave function ψξ and the wave function squared
|ψ(ξ )|2 for the n = 18 state of the one-dimensional harmonic oscillator. The normalized
spatial coordinate ξ = (mω/--h) · x , wherem is the particle mass and ω is the oscillation
frequency. The eigenenergy of the state ψ18(ξ ) is En=18 = (n + 1/2)--hω = 18.5 × --hω,
and the classical turning point occurs at ξn=18 = ±(2n + 1)1/2 = ±6.083.
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Listing of MATLAB program for Exercse 6.4(c)
%Chapt6Exercise4c.m
%simple harmonic oscillator wave function psi n(xi)and wave function squared |psi n(xi)|ˆ2
%xi=(m*w/hbar)*x
%using relation psi n=((2/n)ˆ0.5)*((xi*psi n-1)-((((n-1)/2)ˆ0.5)*psi n-2))
clear;
clf;
npoints=500; %(number of data points in plot) - 1
nlim=100; %arbitrary limit to value of n that can be plotted
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n=input('Input quantum index n ='); %Input from keyboard value of quantum index n
%of wave function to be plotted (n=0,1,2,3, . . . )

if n < 0; error('minimum value of n must be greater or equal to 0'); end;
if n > nlim; error('maximum value of n must be less than or equal to 100'); end;

ximax=sqrt((2*n)+1); %classical turning point
xiplot=(3/((n+1)ˆ(1/3)))+(1.2*ximax); %plot range of x-axis
deltaxi=2*xiplot/npoints; %increment in xi
Ao=(1/pi)ˆ(1/4); %normalization amplitude for n=0
An=1.1*Ao/((n+1)ˆ0.1); %fix vertical scale
xi(1)=-xiplot; %first value of xi
for j=2:1:npoints+1

xi(j)=xi(j-1)+deltaxi;
psi1(j)=Ao*exp((-xi(j)ˆ2)/2); %known n=0 ground state wave function
psi2(j)=(sqrt(2))*xi(j)*psi1(j); %known n=1 first excited-state wave function
psi(j)=psi2(j);

end
if n < 1; psi=psi1; end;

if n>=2
for ni=2:1:n

for j=2:1:npoints+1
xi(j)=xi(j-1)+deltaxi; %increment to new value of xi
psi(j)=(sqrt(2/ni))*((xi(j)*psi2(j))-((sqrt((ni-1)/2))*psi1(j)));
psi1(j)=psi2(j); %update new value of psi (n-2)
psi2(j)=psi(j); %update new value of psi (n-1)

end
end

end

figure(1);
subplot(1,2,1),plot(xi,psi);
axis([-xiplot,xiplot,-An,An]),xlabel('Distance, xi (m)'),ylabel('Wave function, psi(xi)');
ttl = sprintf('xi=(m*w/hbar)*x, n=%3.0f, E=%3.1 f hbar*w',n,n+0.5);
title (ttl);
subplot(1,2,2),plot(xi,abs(psi.ˆ2));
axis([-xiplot,xiplot,0,Anˆ2]),xlabel('Distance, xi (m)'),ylabel('Wave function squared,

|psi(xi)|ˆ2');
ttl2=sprintf('SHO classical turning point = +/- %5.3f',ximax);
title (ttl2);

(d) The figure below plots the superposition wave function

ψ(t = 0) = 1√
2�N

n=N+�N∑
n=N−�N

|n〉

and the wave function squared for the specific situation when N = 18 and �N = 2.
The total wave function is a coherent sum of five states centered on the |n = 18〉 state.
In this case, for which time t = 0, the particle may be viewed as at an extreme of its
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motion with the peak probability occurring at position ξ = 5.7, which is almost the
same as the classical turning point ξn=18 = 6.1 for the |n = 18〉 eigenstate.
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Solution 6.5

Pnonclassical
n =

∫
|ξ |>ξn

ψ∗
n (ξ )ξψn(ξ ) dξ

where ξ = (mω/--h)1/2 · x and the classical turning point is ξn = (2n + 1)1/2. For the
first excited state and the second excited state we have

ψ1(ξ ) =
(

4

π

)1/4

ξe−ξ 2/2

ψ2(ξ ) =
(

1

64π

)1/4

(4ξ 2 − 2)e−ξ 2/2

The probability of finding the particle in the nonclassical region is

Pnonclassical
1 =

∫
|ξ |>√

3

ψ∗
1 (ξ )ψ1(ξ ) dξ = 0.112

Pnonclassical
2 =

∫
|ξ |>√

5

ψ∗
2 (ξ )ψ2(ξ ) dξ = 0.095

With increasing quantum number n, the probability of finding the particle in the non-
classical region decreases.

Solution 6.6
To find [n̂, b̂] and [n̂, b̂†], we expand the expressions using n̂ = b̂†b̂ and rearrange in
terms of commutator relations we know. Hence,

[n̂, b̂] = [
b̂†b̂, b

] = b̂†b̂b̂ + (−b̂†b̂b̂ + b̂†b̂b̂
)− b̂b̂†b̂ = b̂†[b̂, b̂] + [

b̂†, b̂
]
b̂ = −b̂
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and[
n̂, b̂†

]=[
b̂†b̂, b̂†

]= b̂†b̂b̂† + (−b̂†b̂†b̂ + b̂†b̂†b̂
)− b̂†b̂†b̂= b̂†

[
b̂, b̂†

]+[b̂†, b̂†] b̂ = b̂†

where we made use of the fact that [b̂, b̂] = 0, [b̂†, b̂] = −1, [b̂†, b̂†] = −0, and
[b̂, b̂†] = 1.

Solution 6.7
The n-th energy level of the symmetric three-dimensional harmonic oscillator has en-
ergy En = (n + 3/2)--hω for which n = nx + ny + nz or n − nx = ny + nz . To find the
degeneracy of the n-th state, consider nx fixed. There are now (n − nx + 1) possibilities
for the pair {ny, nz}, which are

{0, n − nx}, {1, n − nx − 1}, . . . , {n − nx , 0}
The degeneracy of the n-th energy level is therefore

gn =
n∑

nx=0

(n − nx + 1) = (n + 1)
n∑

nx=0

1 −
n∑

nx=0

nx = (n + 1)(n + 2)

2

or

gn = (n + 2)

n!2!
= (n + 2)(n + 1)n!

2n!
= 1

2
(n + 2)(n + 1)

Solution 6.8
For the operator Â

(�A)2 = 〈(Â − 〈Â〉)2〉 = 〈Â2 + 〈Â〉2 − 2Â〈Â〉〉 = 〈Â〉2 + 〈Â〉2 − 2〈Â〉〈Â〉
Hence,

(�A)2 = 〈Â2〉 − 〈Â〉2

or

�A = (〈Â2〉 − 〈Â〉)1/2

There are two possible approaches to solving the problem: (i) one could calculate the
matrix elements by performing the integrals directly, or (ii) one can use the properties
of the raising and lowering operators of the harmonic oscillator to obtain the solution.
First approach to a solution:
�x̂2 = 〈x̂2〉 − 〈x̂〉2. We note that 〈x̂〉 = 0 from symmetry, so we need only find 〈x̂2〉.

To do so, we need to solve the integral

〈x̂2〉 =

∞∫
−∞

x2e−x
2/2α2

dx

∞∫
−∞

|ψ0|2dx
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Using the standard integral

∞∫
0

x2e−βx2
dx = 1

4β

√
π

β

and
∞∫

0

e−βx2
dx = 1

2

√
π

β

we obtain

〈x̂2〉 = �x2 = 2α2

2

α
√

2π

α
√

2π
= α2 =

--h

2mω

and we see that

A0 = (2π )−1/4α−1/2 =
(
mω

π --h

)1/4

The uncertainty in momentum is

�p2
x = 〈 p̂2

x〉 − 〈 p̂x〉2

where p̂ = −i--h∂/∂x

〈 p̂x〉 = A2
0

∞∫
−∞

e−x
2/4α2 ∂

∂x
e−x

2/4α2
dx = A2

0

∞∫
−∞

e−x
2/2α2 −2x

4α2
dx = 0

from symmetry. Hence,

�p2
x = 〈

p̂2
x

〉 = −--h2

α
√

2π

∞∫
−∞

e−x
2/4α2 ∂2

∂x2
e−x

2/4α2
dx

We note that

∂2

∂x2
e−x

2/4α2 = − 2

4α2
e−x

2/2α2 + 4x2

16α4
e−x

2/2α2

so

�p2
x = −--h2

α
√

2π


−1

α

∞∫
−∞

e−x
2/2α2

dx + 1

2α4

∞∫
0

x2e−x
2/2α2

dx




�p2
x = −--h2

α
√

2π

(−1

2α2
α
√

2π + 1

2α4

α2

2
α
√

2π

)

�p2
x = −--h2

α
√

2π

(−1

4α2
α
√

2π

)
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This gives

�p2
x =

--h2

4α2
=

--hωm

2

and so

�p2
x�x

2 =
--h2

4α2
α2 =

--h2

4
or

�px�x =
--h

2

which is the uncertainty relation.
Second approach to a solution:
We begin by noting that the ground state of the harmonic oscillator is defined by

b̂|0〉 = 0 and that 〈 j |k〉 = δ jk .
Since we have

x̂ =
( --h

2mω

)1/2 (
b̂ + b̂†

)
it follows that

〈x̂〉 =
( --h

2mω

)1/2 〈
0
∣∣(b̂ + b̂†

)∣∣0〉 = ( --h

2mω

)1/2

(〈0|b̂|0〉 + 〈0|1〉) = 0

〈x̂2〉 =
( --h

2mω

) 〈
0
∣∣(b̂b̂ + b̂†b̂† + b̂b̂† + b̂†b̂

)∣∣0〉

〈x̂2〉 =
( --h

2mω

)1/2 〈
0
∣∣(b̂b̂ + b̂†b̂† + 1 + b̂†b̂

)∣∣0〉

〈x̂2〉 =
( --h

2mω

)

and

〈x̂2〉 =
( --h

2mω

)
(1 + 2n)

for the general state |n〉.
Similarly one finds that 〈x̂〉 = 0,

〈
p̂2
x

〉 = (--hmω/2), and 〈 p̂2
x〉 = (--hmω/2)(1 + 2n) for

the general state |n〉. Hence, we have

�x2�p2
x = 〈x̂2〉〈 p̂2

x

〉 = --h2mω/4mω = --h2/4

for the ground state, or

�x2�p2
x = 〈

x̂2
〉〈 p̂2

x〉 =
--h2

4
(1 + 2n)2
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for the general state |n〉

�x�px = --h/2

for the ground state and is the minimum value given by the uncertainty relation. For
the general state |n〉, we have �x�px = --h(1 + 2n)/2.

Solution 6.9
The ground state and the second excited state of a charged particle of mass m in a
one-dimensional harmonic oscillator potential are both occupied. We wish to find the
expectation value of the particle position x as a function of time. We start by noting that
|0〉 and |2〉 have no overlap when operated on by the position operator x̂ . Hence,

〈x̂(t)〉 =
--h

2mω
〈a0〈0| + a2〈2|

∣∣b̂ + b̂†
∣∣ a0|0〉 + a2|2〉〉

〈x̂(t)〉 = |a0|2〈0|0〉 + |a2|2〈2|2〉 = 〈x〉

and we conclude that there is no time dependence for the position expectation operator.
We note that |0〉 = φ0e−ihωt/2 and |2〉 = φ2e−i5hωt/2, where φ0 and φ2 are the spatial

wave functions for the ground state and the second excited state respectively.
In the presence of a constant electric field E in the x direction, a particle of charge e

in the harmonic potential experiences a constant x-directed force e|E|, which shifts the
equilibrium position of the oscillator by �x .

The new Hamiltonian is H = p̂2/2m + κ x̂ ′ 2/2 + e|E|x ′, and the amount of the shift
is given by e|E| = κ�x , where κ = mω2 is the oscillator force constant and x ′ =
x + �x . The total energy is

Etotal = 1

2
κ(x + �x)2− e|E|(x+�x) = 1

2
κx2 + κx�x+1

2
κ�x2 − e|E|x− e|E|�x

Etotal = 1

2
κx2 + 1

2
κ�x2 − e|E|�x

since e|E| = κ�x and

Etotal = 1

2
κx2 + 1

2
κ
e2|E|2
κ2

− e2|E|2
κ

= 1

2
κx2 + 1

2

e2|E|2
κ

− e2|E|2
κ

Etotal = 1

2
mω2x2 − 1

2

e2|E|2
κ

since κ = mω2.
The oscillator frequency remains the same, but all of the energy levels are uniformly

reduced by a fixed amount

−e2|E|
2mω2
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Solution 6.10
We would like to use the method outlined in Section 3.4 to numerically solve the one-
dimensional Schrödinger wave equation for the first four eigenvalues and eigenstates
of an electron with effective mass m∗

e = 0.07 × m0 confined to a parabolic potential
well in such a way that V (x) = ((x − L/2)2/(L/2)2) eV and L = 100 nm.

Because we use a nontransmitting boundary condition, the value of L must be large
enough to ensure that the wave function is approximately zero at the boundaries x0 = 0
and xN = L . The number of sample points N should also have a large enough value to
ensure that the wave function does not vary significantly between adjacent discretization
points.

The main computer program calls solve schM, which was used in the solution of
Exercise 3.7.

In this exercise, the first four energy eigenvalues are E0 = 0.0147 eV, E1 =
0.0443 eV, E2 = 0.0738 eV, and E3 = 0.1032 eV. As expected for a harmonic os-
cillator, the separation in energy between adjacent states is independent of eigenvalue,
in this case --hω = 0.0295 eV. The eigenfunctions generated by the program and plotted
in the figure below are not normalized.
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Listing of MATLAB program for Exercise 6.10
%Chapt6Exercise10.m
%simple harmonic oscillator
clear;
clf;
length = 100; %length of well (nm)
n=400; %number of sample points
x=-length/2:length/n:length/2; %position of sample points in potential
mass=0.07; %effective electron mass
num sol=4; %number of solutions sought
v0=1; %potential scale (eV)

for i=1:n+1 %potential (eV)
v(i)=v0*(x(i)ˆ2)/((length/2)ˆ2);
end
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[energy,phi]=solve schM(length,n,v,mass,num sol);

for i=1:num sol
sprintf(['eigenfunction (',num2str(i),') =',num2str(energy(i)),'eV']) %energy eigenvalues
end

figure(1);
plot(x,v,'b');xlabel('Distance (nm)'),ylabel('Potential energy, (eV)');
title(['m* =',num2str(mass),'m0, Length =',num2str(length),'nm']);

s=char('y','k','r','g','b','m','c'); %plot curves in different colors

figure(2);
for i=1:num sol

j=1+mod(i,7);
plot(x,phi(:,i),s(j)); %plot eigenfunctions

hold on;
end
xlabel('Distance (nm)'),ylabel('Wave function');
title(['m* =',num2str(mass),'m0, Length =',num2str(length),'nm']);
hold off;



7 Fermions and bosons

7.1 Introduction

For most of this book we have considered a single particle moving in a potential. In
this chapter we will briefly examine the behavior of many identical particles. Our main
focus will be to appreciate the statistical distribution function for large numbers of
particles in thermal equilibrium.

The Hamiltonian for N particles subject to mutual two-body interactions is

H =
N∑
n

p2
n

2mn
+

N∑
n

Vn(xn) +
n>m∑
n,m

Vn,m(xn − xm) (7.1)

where n > m in the sum avoids double counting. The corresponding multi-particle
wave function obeys the Schrödinger equation

Hψ(x1, x2, x3, . . . , xN , t) = i--h
∂

∂t
ψ(x1, x2, x3, . . . , xN , t) (7.2)

where |ψ(x1, x2, x3, . . . , xN , t)|2dx1dx2dx3 . . . dxN is the probability of finding par-
ticle 1 in the interval x1 to x1 + dx1, particle 2 in the interval x2 to x2 + dx2, and so
on. The key idea is that there is a single multi-particle wave function that describes the
state of the N -particle system.

As it stands, this is a complex multi-particle, or many-body, problem that is difficult
to solve. However, if we remove the mutual two-body interactions in Eqn (7.1) then
the Hamiltonian takes on a much simpler form:

H =
N∑
n

(
p2
n

2mn
+ Vn(xn)

)
=

N∑
n

Hn (7.3)

If the potential is time-independent, then the multi-particle wave function is a product

ψ(x1, x2, x3, . . . , xN ) = ψ1(x1)ψ2(x2)ψ3(x3) · · ·ψN (xN ) =
N∏
n

ψn(xn) (7.4)

329
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that satisfies the time-independent Schrödinger equation

Hnψn(xn) = Enψn(xn) (7.5)

We may now describe the system in terms of a product of N one-dimensional solutions.

7.1.1 The symmetry of indistinguishable particles

The next key idea we need to introduce is the concept of indistinguishable particles.
Unlike in classical mechanics, where one may assign labels to distinguish mechanically
identical objects, in quantum mechanics elementary particles are indistinguishable.
This fact introduces a symmetry to a multi-particle wave function describing a system
containing many identical particles. One consequence is that the statistically most likely
energy distribution of identical indistinguishable particles in thermal equilibrium falls
into one of two classes. Identical integer-spin particles behave as bosons and half-odd-
integer-spin particles behave as fermions.

The Bose–Einstein energy distribution applies to boson particles such as photons
and phonons. Photons have spin quantum number ±1, and phonons have spin zero.

The Fermi–Dirac energy distribution applies to identical indistinguishable half-odd-
integer-spin particles, an example of which are electrons that have spin quantum number
±1/2. Such fermion particles obey the Pauli exclusion principle, which states that no
identical indistinguishable half-odd-integer-spin particles may occupy the same state.
An almost equivalent statement is that in a system of N fermion particles the total
eigenfunction must be antisymmetric (must change sign) upon the permutation of any
two particles.

To illustrate this, we start by considering just two noninteracting identical particles
which, for our convenience only, are labelled (1) and (2). The particles satisfy their
respective Hamiltonians so that

H (1)ψ(1) = E1ψ(1) (7.6)

H (2)ψ(2) = E2ψ(2) (7.7)

where E1 and E2 are energy eigenvalues. The total Hamiltonian is just the sum of
individual Hamiltonians

H = H (1) + H (2) (7.8)

with the solution characterized by

Hψ = (E1 + E2)ψ (7.9)

where E1 + E2 is the total energy in the system and ψ is the multi-particle wave
function.
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ψ1(1)ψ1(2) ψ2(1)ψ2(2)(ψ1(1)ψ2(2) + ψ1(2)ψ2(1))

|1>

|2>

Total energy E1 + E1 Total energy E1 + E2 Total energy E2 + E2

E1

E2

Fig. 7.1. Ways of arranging two identical indistinguishable particles of integer spin between two
eigenfunctions and their associated energy eigenvalues.

Because the particles are identical, we should be able to interchange (or permute)
them without affecting the total energy. If we introduce a permutation operator P12

that interchanges the identical particles (1) and (2), it follows that P12 and H commute
so that P12H = HP12, or

[P12, H ] = 0 (7.10)

It is therefore possible to choose common eigenvalues for the two operators H and P12.
For eigenvalue λ such that

P12ψ = λψ (7.11)

P12P12ψ = λ2ψ = ψ (7.12)

and so λ2 = 1 or λ = ±1. This means that the wave function ψ can only be symmetric
or antisymmetric under particle exchange. This result is due to symmetry built into the
system, namely that the particles are identical and noninteracting. The symmetric wave
functions for the two-particle system under consideration are

ψs = ψ1(1)ψ1(2) (7.13)

ψs = ψ2(1)ψ2(2) (7.14)

ψs = 1√
2

(ψ1(1)ψ2(2) + ψ1(2)ψ2(1)) (7.15)

The subscript labels the eigenstate. The particle is labeled by the number in the parenthe-
ses. Figure 7.1 illustrates the different ways of maintaining a symmetric multi-particle
wave function while distributing two identical indistinguishable particles between two
eigenfunctions |1〉 and |2〉 with eigenenergies E1 and E2, respectively. As may be seen,
a symmetric multi-particle wave function allows particles to occupy the same state of
integer spin between two energy levels.

The antisymmetric wave function ψa may be found from the determinant of the 2 × 2
matrix that describes state and particle occupation.

ψa = 1√
2

[
ψ1(1) ψ1(2)

ψ2(1) ψ2(2)

]
(7.16)
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(ψ1(1)ψ2(2) − ψ1(2)ψ (1))

Total energy E1 + E2

|1>

|2>

E1

E2

2

Fig. 7.2. The way of arranging two identical indistinguishable half-odd-integer-spin particles
between two eigenfunctions and their associated energy eigenvalues.

Here, rows label the state and columns label the particle. Equation (7.16) is an example
of a Slater determinant, which, in this case, gives

ψa = 1√
2

(ψ1(1)ψ2(2) − ψ1(2)ψ2(1)) (7.17)

Figure 7.2 illustrates the only way of arranging two identical half-odd-integer-spin
particles between two eigenfunctions and their associated energy eigenvalues.

For situations in which we wish to describe more than two identical noninteracting
fermion particles, the antisymmetric state can be found using the Slater determinant of
a larger matrix. For N particles, this gives

ψa(1, 2, . . . , N ) = 1√
N !

∣∣∣∣∣∣∣∣∣

ψ1(1) ψ1(2) · · · ψ1(N )
ψ2(1) ψ2(2) · · · ψ2(N )

...
...

ψN (1) · · · ψN (N )

∣∣∣∣∣∣∣∣∣
(7.18)

The interchange of any two particles causes the sign of the multi-particle wave
function ψa to change, since it involves the interchange of two columns. Expansion
of the determinant has N ! terms, which take into account all possible permutations of
the particles among N states. If any two single-particle eigenfunctions are the same,
then those two particles are in the same state, and it follows that the multi-particle
wave function ψa = 0, since the determinant will vanish. This fact is known as the
Pauli exclusion principle. The Slater determinant ensures that no two noninteracting
identical fermion particles can possess the same quantum numbers.

7.1.1.1 Ferminon creation and annihilation operators

In Chapter 6 it was shown that the creation and annihilation operators b̂† and b̂ could
be used to change the energy of a harmonic oscillator by one quantum of energy, --hω.
The same operators were able to generate the corresponding harmonic oscillator wave
functions. The number of boson particles in a single mode could be increased to n
by applying the operator (b̂†)n to the ground state. The number n might correspond to
the number of photons in coherent laser light emission or the number of phonons in a
vibrational mode.
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The concept of creation and annihilation operators can also be applied to multi-
particle fermion systems. It is, however, necessary to take into account the Pauli exclu-
sion principle and the antisymmetry of the wave functions. Unlike bosons, where the
number of particles in a single mode of frequency ω can be increased to an arbitrary
value n, the number of fermion particles in a given state is limited to unity by the Pauli
exclusion principle.

Suppose the occupation of a fermion state |µ〉 is zero, so that |µ = 0〉. Application of
the fermion creation operator ĉ†µ will create one fermion in that state, so that |µ = 1〉.
However, creation of an additional fermion in the same state is not allowed because of
the Pauli exclusion principle. Hence, we require(
ĉ†µ
)2|ψ〉 = 0 (7.19)

where |ψ〉 is any state of the multi-particle system. The same must be true of the fermion
annihilation operator ĉµ, so that

(ĉµ)2|ψ〉 = 0 (7.20)

Consider the sequence of operations (ĉ†µĉµ + ĉµĉ†). If the state |µ〉 is empty, the
first term is zero because ĉµ|µ = 0〉 = 0. The second term creates a fermion and then
annihilates it, so that ĉµĉ†|µ = 0〉 = |µ = 0〉, and from this we may conclude that
ĉµĉ† = 1 (this result also follows from Eqn (6.73) and Eqn (6.74)). If the state |µ〉
is occupied, then the first term is ĉ†µĉµ = 1 and the second term ĉµĉ† = 0 because of
the Pauli exclusion principle. These results suggest the existence of anticommutation
relations between fermion creation and annihilation operators. The anticommutation
relations are

{ĉµ, ĉ†µ} = ĉµĉ
†
µ + ĉ†µĉµ = 1 (7.21)

{ĉ†µ, ĉµ} = ĉ†µ, ĉµ + ĉµĉ
†
µ = 1 (7.22)

{ĉµ, ĉµ} = ĉµĉµ + ĉµĉµ = 0 (7.23)

{ĉ†, ĉ†} = ĉ†µĉ
†
µ + ĉ†µĉ

†
µ = 0 (7.24)

We use curly brackets to distinguish the anticommutation relations for fermions from
the commutation relations for bosons. The anticommutation relations are identical to the
commutation relations with the exception that we replace the minus signs in Eqn (6.22),
Eqn (6.23), Eqn (6.24), and Eqn (6.25) with plus signs. This small change in the
equations has a dramatic effect on the quantum mechanical behavior of particles in the
system. In particular, it forces the multi-particle wave functions to be antisymmetric.

Since we characterized the multi-particle wave function ψa by specifying the number
of particles in each state, it seems natural to adopt a particle number representation with
basis vectors

|n1, n2, n3, . . . , nN 〉 (7.25)
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where nµ is the number of particles in state ψµ. In mathematics, the particle number
representation is said to exist in Fock space.

If there are no particles in any of the states, then we have |0, 0, 0, . . . , 0〉. If there is
one particle in one state, then any 0 may be replaced by a 1. Likewise, if two states are
occupied, then any two 0s may be replaced with 1s, and so on.

For a total of N particles in the system, the antisymmetric wave function ψa is

ψa(x1, x2, x3, . . . , xN ) = 〈x1, x2, x3, . . . , xN |n1, n2, n3, . . . , nN 〉 (7.26)

To make use of the particle number representation, we need to be able to create and
annihilate particles in the state |nµ〉. We do this by applying either the fermion creation
operator ĉ†µ or the annihilation operator ĉµ.

The existence of the vacuum state |0〉 = |n1 = 0, n2 = 0, n3 = 0, . . . , nN = 0〉 al-
lows us to conclude that

ĉµ|nµ = 0〉 = 0 (7.27)

for all values of µ. It follows that the many-electron wave function can be written

|n1, n2, n3, . . . , nN 〉 =
∏
µ

(
ĉ†µ
)nµ|nµ = 0〉 (7.28)

where the values of nµ can only be 1 or 0 because (ĉ†µ)2 = 0 and (ĉ†µ)0 = 1. The energy
of the wave function is simply

E =
∑
µ

Eµnµ (7.29)

and the total number of fermions is found by using the number operator in such a way
that

N =
∑
µ

ĉ†µĉµ (7.30)

The annihilation operator ĉµ, acting on the many-electron wave function, gives

ĉµ|n1, . . . , nµ = 1, . . . , nN 〉 = (−1)

∑
λ<µ

nλ |n1, . . . , nµ = 0, . . . , nN 〉 (7.31)

when nµ = 1 and

ĉµ|n1, . . . , nµ = 0, . . . , nN 〉 = 0 (7.32)

when nµ = 0. The term (−1)

∑
λ<µ

nλ

in Eqn (7.31) gives a factor of −1 for each occupied
state to the left of µ. The origin of the term is best seen by considering removal of
the ψµ row in the Slater determinant (Eqn (7.18)). The required interchange of rows
introduces a factor (−1)µ−1 and the total number of electrons is reduced by one.

Likewise, the creation operator ĉ†µ, acting on the many-electron wave function, gives

ĉ†µ|n1, . . . , nµ = 1, . . . , nN 〉 = 0 (7.33)
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when nµ = 1 and

ĉµ|n1, . . . , nµ = 0, . . . , nN 〉 = (−1)

∑
λ<µ

nλ |n1, . . . , nµ = 1, . . . , nN 〉 (7.34)

when nµ = 0.
Just as we did when considering the harmonic oscillator, we may now proceed to

express the Hamiltonian and other ordinary quantum mechanical operators in terms of
Fermi creation and annihilation operators. This so-called second quantization method
is quite a powerful way of dealing with many-particle systems and, importantly, is the
common starting point for the quantum field theory description of solids.1

7.2 Fermi–Dirac distribution and chemical potential

Understanding the distribution function of particles such as electrons or photons is
of great practical significance. For example, it plays a crucial role in determining the
behavior of a semiconductor laser diode. The distribution in energy of electrons in the
conduction band and holes in the valence band of a direct band-gap semiconductor such
as GaAs determines the presence or absence of optical gain. Electrons, which have spin
of one-half, obey Fermi–Dirac statistics, and so we introduce this function first.

The Fermi–Dirac probability distribution for half-odd-integer-spin particles of en-
ergy Ek in thermal equilibrium characterized by absolute temperature T is

fk(Ek) = 1

e(Ek−µ)/kBT + 1
(7.35)

where kB is the Boltzmann constant and µ is the chemical potential. The appearance of
the chemical potential in Eqn (7.35) is due to the fact that particle number is conserved.
The chemical potential is defined as the energy needed to place an extra particle in the
system of N particles.

The fact that half-integer-spin particles are quantized according to Fermi–Dirac statis-
tics can be justified using relativistic quantum field theory along with the assumption
that the system has a lowest-energy state.2 The same theory shows that integer-spin par-
ticles are quantized according to Bose–Einstein statistics. Unfortunately, a discussion
of quantum field theory3 is beyond the scope of this book.

The total number of spin one-half electrons in three-dimensional free space is just
the integral over k states multiplied by the distribution function fk(Ek). For electrons,

1 For an introduction see H. Haken, Quantum Field Theory of Solids, North Holland, Amsterdam, 1988 (ISBN 0
444 86737 6).

2 W. Pauli, Phys. Rev. 58, 716 (1940).
3 For an introduction see J. J. Sakurai Advanced Quantum Mechanics, Addison Wesley, Reading, Massachusetts,

1967 (ISBN 0 201 06710 2).
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this gives an electron density

n =
∫

d3k

(2π )3
· 2 · fk(Ek) (7.36)

where the factor 2 appears in the integral because each electron may be in a state of
either +--h/2 or −--h/2 spin (corresponding to spin quantum number s = ±1/2).

In the low-temperature limit T → 0 K and we have f (Ek) = 1 for Ek ≤ µ and
f (Ek) = 0 for Ek > µ. This is an important limit, and so we define

µT=0 ≡ EF (7.37)

as the Fermi energy, or

EF =
--h2k2

F

2m
(7.38)

where kF is the Fermi wave vector for electrons of mass m. In a semiconductor the
mass m may often be replaced by an effective electron mass m∗. For electron density
in three dimensions of n, and taking the low-temperature limit, we may use Eqn (7.36)
to find a simple relationship between n and the Fermi wave vector kF:

nT=0 =
∫

2

(2π )3
· d3k = 2

(2π )3

kF∫
0

4πk2 sin(θ )dθdk = 2

(2π )3
· 4π

3
k3

F = k3
F

3π2
(7.39)

Hence, the Fermi wave vector in three dimensions is

kF = (3π2n)1/3 (7.40)

where kF = 2π/λF. In this case λF is the de Broglie wavelength associated with an
electron of energy EF.

To get a feel for the numbers, consider an electron carrier density n = 1018 cm−3 in
the conduction band of GaAs with effective electron mass m∗

e = 0.07 × m0, a Fermi
wave vector kF = 3.1 × 106 cm−1, a de Broglie Fermi wavelength λF = 20 nm, and a
Fermi energy EF = 52 meV. These values set a scale for a number of physical effects,
so it is worth making note of a few additional values. Table 7.1 lists values of Fermi
energy for different carrier concentrations and two representative values of effective
electron mass. The effective electron mass in the conduction band of GaAs is m∗

e =
0.07 × m0, andm∗

hh = 0.50 × m0 is the effective heavy-hole mass in the valence band of
GaAs.

The three-dimensional density of states at the Fermi energy can also be calculated
since

D3(kF) = 2 · 4πk2
F

(2π )3
= k2

F

π2
(7.41)
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Table 7.1. Fermi energy for different three-dimensional carrier concentrations

Carrier Fermi Fermi Fermi energy, Fermi energy,
concentration, wave vector, wavelength, EF (meV) EF (meV)
n (cm−3) kF(×106 cm−1) λF (nm) (m∗

e = 0.07 × m0) (m∗
hh = 0.50 × m0)

1 × 1019 6.66 9.4 241.6 33.8
1 × 1018 3.09 20.3 52.1 7.3
1 × 1017 1.44 43.8 11.2 1.6
1 × 1016 0.67 94.3 2.4 0.3

This is just Eqn (5.109) evaluated at kF and multiplied by a factor 2 to account for
electron spin. However, EF = --h2k2

F/2m, so that dEF = --h2kFdkF/m, which means that
the density of states at energy EF is

D3(EF) = k2
F

π2

m
--h2kF

= mkF
--h2π2

(7.42)

For finite temperatures whereby kBT � EF, we can perform a Taylor expansion of
Eqn (7.36) about the energy EF to give

n ∼
∫ EF

0
D3(E)dE +

(
(µ − EF)D3(EF) + π2

6
(kBT )2 dD3(EF)

dEF

)
(7.43)

Since the first term on the right-hand side is the carrier density n at a temperature of
absolute zero and n is assumed to be independent of temperature, we may write

0 ∼ (µ − EF)D3(EF) + π2

6
(kBT )2 dD3(EF)

dEF
(7.44)

Hence, the chemical potential is

µ ∼ EF − π2

6

(kBT )2

D3(EF)

dD3(EF)

dEF
(7.45)

In three dimensions, the chemical potential may be approximated to second order in
temperature as

µ ∼ EF − 1

3

(πkBT )2

4EF
(7.46)

It may be shown (see Exercise 7.2) that to fourth order in the temperature the chemical
potential in three dimensions is

µ ∼ EF − π2

12

(kBT )2

EF
− 7π4

960

(kBT )4

E3
F

(7.47)

Of course, the chemical potential at finite temperature T may be calculated numeri-
cally without the limitations associated with the Taylor expansion, and we will discuss
how to do that in the next section.
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Fig. 7.3. Chemical potential for a three-dimensional gas of electrons as a function of thermal energy
calculated using numerical integration and compared with results from second-order and
fourth-order approximations. The chemical potential µ and thermal energy kBT are normalized to
the Fermi energy, EF.

Figure 7.3 plots the exact, second-order, and fourth-order approximations of chemical
potential energy as a function of thermal energy. The axes are normalized to Fermi
energy, EF. Notice that both approximations become less accurate as kBT approaches
EF. The temperature at which the chemical potential is zero that was estimated using
Eqn (7.46) is T = √

12EF/πkB, while more accurate calculations (see Exercise 7.5)
give a temperature T = 0.9887 × EF/kB.

7.2.1 Writing a computer program to calculate the chemical potential

We wish to calculate the chemical potential for a three-dimensional electron gas of
fixed density n and temperature T . The expression for carrier density in Eqn (7.36) is
an integral over k space that we need to convert to an integral over energy. Using the
three-dimensional density of states D3(E) (Eqn (5.112)) and remembering to multiply
by 2 to take into account electron spin gives

n =
∞∫

0

D3(E) · 2 · f (E)dE = 1

2π2

(
2m
--h2

)3/2
Emax=∞∫
Emin=0

E1/2 · 1

e(E−µ)/kBT + 1
· dE

(7.48)

We will proceed by making a guess at the value of the chemical potential, use a computer
to numerically integrate Eqn (7.48), and then iterate to a better value of chemical
potential.
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First, one needs to estimate an initial value of the chemical potential. We know that
the maximum possible value is given by the Fermi energy

µmax = EF =
--h2k2

F

2m
(7.49)

where kF = (3π2n)1/3 for a three-dimensional carrier density n (Eqn (7.40)). The min-
imum possible value of the chemical potential, µmin, is given by the high-temperature
limit (T → ∞) which, for fixed particle density n, is µ/kBT → −∞. In this limit, the
Fermi–Dirac distribution function becomes

f (E)|T→∞ = 1

e(E−µ)/kBT + 1

∣∣∣∣
T→∞

= e(µ−E)/kBT (7.50)

which is the Boltzmann distribution. In the limit T → ∞, occupation probability at
energy E = 0 takes on the value eµ/kBT .

One may use classical thermodynamics to show that a three-dimensional electron
gas in this high-temperature limit has chemical potential4

µmin = kBT ln

(
n

2

(
2π --h2

mkBT

)3/2
)

(7.51)

A computer program may now be used to calculate a carrier density n′ for given
temperature T by using an initial estimate for the chemical potential µ′ = µmin +
(µmax − µmin)/2 and numerically integrating Eqn (7.48). Notice that we have to choose
a cut-off for Emax in Eqn (7.48). In practice, choosing a value Emax = EF + 15kBT
works well for most cases of interest.

If the value of n′ calculated using µ′ is less than the actual value n, then the new
best estimate for µmin = µ′. If n′ ≥ n, then µmax = µ′. A new value of µ′ can now be
calculated and the integration to calculate a new value of n′ performed again. In this
way, it is possible to iterate to the desired level of accuracy in µ. See Exercise 7.3.

To give us some experience with numerical values, Fig. 7.4(a) and (b) plots the tem-
perature dependence of chemical potential µ(T ) for the indicated carrier concentrations
and effective electron masses. A number of features are worth pointing out. First, in the
limit of low temperature (T → 0 K) the chemical potential approaches the Fermi en-
ergy, EF. With increasing temperature, the chemical potential monotonically decreases
in value, eventually taking on a negative value. Equation (7.36) can be used to find the
value of the temperature at which the chemical potential is zero (Exercise 7.5).

7.2.2 Writing a computer program to plot the Fermi–Dirac distribution

Now that we know how to calculate the chemical potential for a given carrier concen-
tration and temperature, we can plot the Fermi–Dirac distribution function. By plotting

4 L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press, Oxford, 1985 (ISBN 0 08 023039 3).
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Fig. 7.4. Calculated chemical potential for electrons of carrier concentration n with (a) effective
mass m∗ = 0.07m0 and (b) effective mass m∗ = 0.50m0 as a function of temperature T . The
broken line corresponds to chemical potential µ = 0 meV.
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Fig. 7.5. The Fermi–Dirac distribution function as a function of electron energy for carrier
concentration n = 1018 cm−3 with (a) effective electron mass m∗ = 0.07 × m0 and (b) effective
electron mass m∗ = 0.5 × m0. The distribution functions are calculated for the indicated
temperatures.

the Fermi–Dirac function for electrons in the conduction band of GaAs for different
temperatures one may clearly see its behavior.

At zero temperature with increasing electron energy there is a step-like distribu-
tion going from 1 to 0 at energy E = EF. For the situation shown in Fig. 7.5, the
Fermi energy is EF = 52 meV above the conduction-band minimum. At finite temper-
atures, the step function is smeared out in energy. The broadening of the step transi-
tion is controlled by the value of the chemical potential µ and the temperature T in
Eqn (7.35).

Notice that in the limit in which the chemical potential tends to a large negative
value (µ → −∞) the distribution function tends to a Boltzmann function. To learn
more about this high-energy tail of the distribution, it is convenient to plot the occu-
pation probability on a natural logarithmic scale. As may be seen in Fig. 7.6, when
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Fig. 7.6. Natural logarithm of Fermi–Dirac distribution as a function of electron energy for carrier
concentration (a) n = 1018 cm−3 and (b) n = 1017 cm−3 for the indicated temperatures. The
effective electron mass is m∗ = 0.07 × m0.

the occupation probability is displayed in this way, at high electron energy, it is linear
with increasing energy. This means that high-energy occupation probability scales as
a Boltzmann factor gMB(t) = e−E/kBT .

This may be confirmed by comparing Fig. 7.6(a) with Fig. 7.6(b). Here, one may see
that while for given temperature T carrier density differs by a factor of 10 and Fermi
energy by a factor of almost 5 the slope of the high-energy tail in the distribution is the
same and has the value −1/kBT .

7.2.3 Fermi–Dirac distribution function and thermal equilibrium statistics

There are a number of ways to explore the origin of the Fermi–Dirac statistical distribu-
tions. In the following, we will set out to find the statistically most likely arrangement
of a large number of particle states when the particles are in equilibrium. To figure this
out we will have to make use of a postulate that defines equilibrium:

In equilibrium, any two microscopically distinguishable arrangements of a system with
the same total energy are equally likely.

This idea means that the probability of finding the system with n1 particles in the energy
range E to E + �E is proportional to the number of microscopically distinguishable
arrangements that correspond to the same macroscopic arrangement.

To find the distribution function for identical indistinguishable particles such as
electrons that have half-odd-integer spin, we start by considering an energy level labeled
by E j for which each energy level has a degeneracy n j . We want to place a total of N
electrons into the system using the following rules:
(i) Electrons are indistinguishable, and each state can only accommodate one electron

(Pauli exclusion principle).
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(ii) The total number of electrons is fixed by the sum rule. N = ∑
j N j is a constant,

where N j is the number of electrons in an energy level E j .
(iii) The total energy of the system is fixed so that Etotal = ∑

j E j N j .
At equilibrium there is a distribution function that describes the most probable ar-

rangement of electrons as a function of energy. This is the Fermi–Dirac function by
which the probability of finding the particle at energy E j is

f (E j ) = N j

n j
(7.52)

To find this probability distribution we need to work out the number of ways in which
N j indistinguishable electrons in the energy level E j can be placed in n j states. Because
of the Pauli exclusion principle, we must have n j ≥ N j . Starting with the first particle,
there are n j states from which to choose. For the second particle there are (n j − 1)
states available, and so on, giving

n j (n j − 1) · · · (n j − N j + 1) (7.53)

The number of possible permutations of N j particles among themselves is N j !. Because
the particles are indistinguishable, these permutations do not lead to distinguishable
arrangements, so the total number of distinct arrangements with N j particles is

n j (n j − 1) · · · (n j − N j + 1)

N j !
= n j (n j − 1) · · · (n j − N j + 1)

N j !

(n j − N j )!

(n j − N j )!
(7.54)

n j (n j − 1) · · · (n j − N j + 1)

N j !
= n j !

(n j − N j )!N j !
(7.55)

The total number of ways of arranging N electrons in the multi-level system is

P =
∏
j

n j !

(n j − N j )!N j !
(7.56)

To find the most probable set of values for N j we must find an extreme value of P so
that dP = 0. Taking the logarithm of both sides,

ln(P) =
∑
j

(ln(n j !) − ln((n j − N j )!) − ln(N j !)) (7.57)

For large values of N j and n j we can use Sterling’s approximation so that ln(x!) =
x ln(x) − x . This gives

ln(P) ∼
∑
j

(n j ln(n j ) − n j − (n j − N j ) ln(n j − N j )

+ (n j − N j ) − N j ln(N j ) + N j ) (7.58)

And, because dn j = 0, the derivative is

d(ln(P)) =
∑
j

∂

∂N j
ln(P)dN j =

∑
j

(ln(n j − N j ) + 1 − ln(N j ) − 1)dN j (7.59)
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d(ln(P)) =
∑
j

(
ln

(
n j − N j

N j

))
dN j (7.60)

Finding the extremes of this function under the constraint of total energy and particle
conservation requires that

∑
j dN j = 0 and

∑
j E jdN j = 0, so that

∑
j

(
ln

(
n j − N j

N j

)
− α − βE j

)
dN j = 0 (7.61)

where α and β are Lagrange multipliers. The sum vanishes if

ln

(
n j − N j

N j

)
− α − βE j = 0 (7.62)

for all j . To find the Fermi–Dirac distribution, we need to find f (E j ) = N j/n j . Rear-
ranging Eqn (7.62) results in

ln

(
n j − N j

N j

)
= α + βE j (7.63)

Taking the exponential of both sides gives n j/N j = 1 + e(α+βE j ), so that we may write
Eqn (7.52) as

N j

n j
= f (E j ) = 1

e(α+βE j ) + 1
(7.64)

For a continuum of energy levels E j → E and

fk(Ek) = 1

e(α+βEk) + 1
(7.65)

The coefficients α and β are found from classical thermodynamics to be5 α = −µ/kBT
and β = 1/kBT , where µ is the chemical potential, kB is the Boltzmann constant, and
T is the absolute temperature. There is, therefore, agreement with the Fermi–Dirac
distribution given by Eqn (7.35).

In the limit T → ∞, the Fermi–Dirac distribution function fk(Ek)|T→∞ = e−Ek/kBT ,
which is the classical Maxwell–Boltzmann ratio (see Exercise 7.4).

7.3 The Bose–Einstein distribution function

The Bose–Einstein probability distribution for indistinguishable integer-spin particles
of energy --hω in thermal equilibrium characterized by absolute temperature T is

gBE(--hω) = 1

e(hω−µ)/kBT − 1
(7.66)

5 See any text on statistical physics, such as L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press,
Oxford, 1985 (ISBN 0 08 023039 3), or F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw
Hill, Boston, Massachusetts, 1965 (ISBN 07 051800 9).
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This distribution function applies to quantum particles such as phonons and photons.
Typically, phonon and photon numbers are not conserved, and in such circumstances
the chemical potential µ = 0, so that Eqn (7.66) reduces to

g(--hω) = 1

ehω/kBT − 1
(7.67)

As an example of the use of Eqn (7.67), recall from Section 6.5 that an electromagnetic
field may be described in terms of a number of harmonic oscillators. Each photon
contributing to the electromagnetic field is quantized in energy in such a way that
En = --hω(n + 1/2), where the factor 1/2 comes from the contribution of zero-point
energy. Assuming that the oscillators are excited thermally and are in equilibrium
characterized by an absolute temperature T , the probability of excitation into the n-th
state Pprob(n) is given by a Boltzmann factor

Pprob(n) = gMB(En)∑
n
gMB(En)

= e−En/kBT∑
n
e−En/kBT

= e−nhω/kBT∑
n
e−nhω/kBT

(7.68)

Notice that in the expression for energy En the zero-point energy term cancels out. The
sum in the denominator may be written

n=∞∑
n=0

e−nhω/kBT = 1 + e−hω/kBT
n=∞∑
n=0

e−nhω/kBT = 1

1 − e−hω/kBT
(7.69)

The probability of excitation in the n-th state becomes

Pprob(n) = (1 − e−hω/kBT )e−nhω/kBT (7.70)

and the average number of photons excited in the n-th field mode at temperature T is

g(--hω) =
n=∞∑
n=0

nPprob(n) = (
1 − e−hω/kBT

) n=∞∑
n=0

ne−nhω/kBT (7.71)

g(--hω) = (
1 − e−hω/kBT

)
e−hω/kBT

∂

∂
(
e−hω/kBT

) n=∞∑
n=0

e−nhω/kBT = e−hω/kBT

1 − e−hω/kBT
(7.72)

Thus, finally,

g(--hω) = 1

ehω/kBT − 1
(7.73)

which is in agreement with Eqn (7.67).
It follows that the average energy in excess of the zero-point energy for the electro-

magnetic field in thermal equilibrium is just --hω × g(--hω). The radiative energy density
is this average energy multiplied by the density of field modes in the frequency range ω



345 7.4 Example exercises

to ω + dω. In three dimensions and allowing for the fact that the electromagnetic field
can have one of two orthogonal polarizations, the radiative energy density is

S(ω) = 2g(--hω)--hωD3(ω) = 2--hω

e−hω/kBT − 1
· ω2

π2c3
=

--hω3

π2c3

1

e−hω/kBT − 1
(7.74)

This is Planck’s radiative energy density spectrum for thermal light discussed in
Section 2.1.2. S(ω) is measured in units of J s m−3.

7.4 Example exercises

Exercise 7.1
Calculate kF in two dimensions for a GaAs quantum well with electron density n =
1012 cm−2. What is the de Broglie wavelength for an electron at the Fermi energy?

Exercise 7.2
In this chapter we showed that for temperatures kBT � EF the chemical potential for
carriers in three dimensions may be approximated to second order in kBT as

µ ∼ EF − π2

12

(kBT )2

EF

Derive an expression for the chemical potential to fourth order in kBT .

Exercise 7.3
Write a computer program to calculate the chemical potential for n electrons per unit
volume at temperature, T . The electrons have effective mass of m∗ = 0.067 × m0.

(a) Calculate the value of the chemical potential whenn = 1018 cm−3 and T = 300 K.
Compare the results of your calculation with the expressions for µ derived from second-
order and fourth-order expansions. How do your results compare with the value of
chemical potential when T = 0 K?

(b) Repeat the calculations of (a) but now for the case in which n = 1014 cm−3. Ex-
plain why the results from the second-order and fourth-order expansions are inaccurate
in this case.

Exercise 7.4
Use the method of Section 7.2.3 to determine the classical Maxwell–Botzmann distri-
bution function gMB(E) and ratio for distinguishable identical particles.

Exercise 7.5
Find the temperature at which the chemical potential of a three-dimensional electron
gas is zero.



346 Fermions and bosons

SOLUTIONS

Solution 7.1
We wish to calculate kF in two dimensions for a GaAs quantum well with n electrons
per unit area. In two dimensions

nT=0 =
∫

2

(2π )2
d2k = 2

(2π )2

kF∫
2πkdk = 2

(2π )2
· πk2

F = 1

2π
· k2

F

where the factor 2 accounts for electron spin. Hence, in two dimensions

kF = (2πn)1/2

In GaAs with n = 1012 cm−2, we find kF = 2π/λFe = 2.5 × 106 cm−1 and λFe =
4 nm.

Solution 7.2
We wish to derive an expression for the chemical potential similar to Eqn (7.47), but
to fourth order in kBT . We proceed by noting that Eqn (7.36) is of the form

n =
E=∞∫

E=−∞
h(E) f (E)dE

where f (E) is the Fermi–Dirac function given by Eqn (7.25). Our approach is to solve
this using a Sommerfeld expansion.6 We let

κ(E) =
E=∞∫

E=−∞
h(E ′)dE ′

so that

h(E) = d

dE
κ(E)

Integration by parts gives

n =
E=∞∫

E=−∞
h(E) f (E)dE = f (E)κ(E)

∣∣E=∞
E=−∞ −

E=∞∫
E=−∞

κ(E ′)
∂

∂E ′ f (E ′)dE ′

n = −
E=∞∫

E=−∞
κ(E ′)

∂

∂E ′ f (E ′)dE ′

6 We follow the standard approach found in the book by N. Ashcroft and N. D. Mermin, Solid State Physics,
Saunders College, Philadelphia, 1976 (ISBN 0 03 049346 3).
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If h(E) is not too rapidly varying in E around µ, then κ(E) may be expanded in a
Taylor series about E ∼ µ.

κ(E) = κ(µ) + (E − µ)
d

dE
κ(E)

∣∣∣∣
E=µ

+ (E − µ)2

2!

d2

dE2
κ(E)

∣∣∣∣
E=µ

+ · · ·

+ (E − µ)n

n!

dn

dEn
κ(E)

Hence,

−
E=∞∫

E=−∞
κ(E ′)

∂

∂E ′ f (E ′)dE ′ =

−
E=∞∫

E=−∞

(
κ(E) +

n=∞∑
n=1

(E ′ − µ)n

n!

dn

dE ′n κ(E ′)
∣∣∣∣
E=µ

)
∂

∂E ′ f (E ′)dE ′

−
E=∞∫

E=−∞
κ(E ′)

∂

∂E ′ f (E ′)dE ′ = −
E=∞∫

E=−∞
κ(E ′)

∂

∂E ′ f (E ′)dE ′

−
∫ n=∞∑

n=1

(E ′ − µ)n

n!

dn

dEn
κ(E ′)

∣∣∣∣
E=µ

∂

∂E ′ f (E ′)dE ′

E=∞∫
E=−∞

h(E ′) f (E ′)dE ′ =
E=µ∫

E=−∞
h(E ′)dE ′

+
n=∞∑
n=1

E=∞∫
E=−∞

(E ′ − µ)2n

(2n)!

(
− ∂

∂E ′ f (E ′)
)

d2n−1

dE ′2n−1
h(E ′)|E ′=µdE

′

Let (E − µ)/kBT = x so that dE = kBTdx . We may now write

E=∞∫
E=−∞

h(E ′) f (E ′)dE ′ =
E=µ∫

E=−∞
h(E ′)dE ′ +

n=∞∑
n=1

an(kBT )2n d2n−1

dE ′2n−1
h(E ′)|E ′=µ

where

an =
E=∞∫

E=−∞

x2n

(2n)!

(
− d

dx
· 1

ex + 1

)
dx = 2

(
1 − 1

22n
+ 1

32n
− 1

42n
+ 1

52n
− · · ·

)

an =
(

2 − 1

22(n−1)

)
ξ (2n)

ξ (n) = 1 + 1

2n
+ 1

3n
+ 1

4n
+ · · ·

ξ (2n) = 22n−1 π2n

(2n)!
Bn
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The first few values of Bn are

B1 = 1

6
, B2 = 1

30
, B3 = 1

42
, B4 = 1

30
, B5 = 5

66

so that

ξ (2) = π2

6
and ξ (4) = π4

90
E=∞∫

E=−∞
h(E ′) f (E ′)dE ′ =

E=µ∫
E=−∞

h(E ′)dE ′ + π2

6
(kBT )2h′(µ) + 7π4

360
(kBT )4h′′′(µ) + 0(kBT )6

E=µ∫
E=−∞

h(E ′)dE ′ =
EF∫

0

h(E ′)dE ′ + (µ − EF)h(EF)

n =
EF∫

0

g(E ′)dE ′ + (µ − EF)g(EF) + π2

6
(kBT )2g′(µ) + 7π4

360
(kBT )4g′′′(µ) + 0(kBT )6

(µ − EF)g(EF) = −π2

6
(kBT )2g′(µ) −

(
7π4

360

)
(kBT )4g′′′(µ) − 0(kBT )6

g(EF) = mkF
--h2π2

= m
--h3π2

(2m)1/2E1/2
F

g′(EF) = m
--h2π2k2

F

(
2m
--h2

)3/2

E1/2
F = m

--h3π2

(2m)1/2

2
E−1/2

F

g′′(EF) = m

2--h2π2k2
F

(
2m
--h2

)3/2

E−1/2
F = −m

--h3π2

(2m)1/2

4
E−3/2

F

g′′′(EF) = m

−4--h2π2k2
F

(
2m
--h2

)3/2

E−3/2
F = m

--h3π2

3(2m)1/2

8
E−5/2

F

µ = EF − π2

6
(kBT )2 g

′(EF)

g(EF)
− 7π2

360
(kBT )4 g

′′′EF

g(EF)
− 0

(
kBT

EF

)6

Hence,

µ = EF − π2

12
(kBT )2 1

EF
− 7π2

120
(kBT )4 1

8

1

E3
F

− 0

(
kBT

EF

)6

and, finally,

µ = EF − π2

12

(kBT )2

EF
− 7π4

960

(kBT )4

E3
F

− 0

(
kBT

EF

)6
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Solution 7.3
(a) We are asked to write a computer program to calculate the chemical potential for
n electrons per unit volume at temperatures T = 0 K and T = 300 K. The electrons
have effective mass m∗ = 0.067 × m0 and carrier density n = 1018 cm−3.

We start by using our analytic expressions in the low-temperature limit. We do this
because it gives us a feel for the magnitude of the numbers we should expect when we
later consider the finite temperature case. For temperature T = 0 K, we write down
the value of the Fermi wave number kF for a carrier density n and then substitute
into the expression for the Fermi energy EF of electrons with effective electron mass
m∗ = 0.067 × m0. In three dimensions, kF = (3πn)1/3 and EF = --h2k2

F/2m∗. Putting in
the numbers gives EF = 54 meV. We will use this value to confirm that our computer
program gives the correct numbers.

We now need to write a computer program to calculate the chemical potential. We
wish to calculate the chemical potential for a three-dimensional electron gas of fixed
density n and temperature T . The expression for carrier density in Eqn (7.36) is an
integral over k space that we need to convert to an integral over energy. Using the
three-dimensional density of states D3(E) (Eqn (5.112)) gives

n =
∞∫

0

D3(E) · 2 · f (E)dE = 1

2π2

(
2m
--h2

)3/2
Emax=∞∫
Emin=0

E1/2 · 1

e(E−µ)/kBT + 1
· dE

We will proceed by making a guess at the value of the chemical potential, use a
computer to numerically integrate Eqn (7.48), and then iterate to a better value of
chemical potential.

First, one needs to estimate an initial value of the chemical potential. We know that
the maximum possible value is given by the Fermi energy

µmax = EF =
--h2k2

F

2m

where kF = (3π2n)1/3 for a three-dimensional carrier density n (Eqn (7.40)). The min-
imum possible value of the chemical potential, µmin, is given by the high-temperature
limit (T → ∞), which, for fixed particle density n, is µ/kBT → −∞. In this limit,
the Fermi–Dirac distribution function becomes

f (E)|T→∞ = 1

e(E−µ)/kBT + 1

∣∣∣∣
T→∞

= e(µ−E)/kBT

which is the Maxwell–Boltzmann distribution. One may use classical thermodynamics
to show that for a three-dimensional electron gas in this limit

µmin = kBT ln

(
n

2

(
2π --h2

mkBT

)3/2)
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The computer program can now calculate a carrier density n′ for given temperature
T using an initial estimate for the chemical potential µ′ = µmin + (µmax − µmin)/2 by
numerically integrating Eqn (7.48). Notice that we have to choose a cut-off for Emax

in Eqn (7.48). In practice, choosing a value Emax = EF + 15kBT works well in most
situations.

If the value of n′ calculated using µ′ is less than the actual value n, then the new
best estimate for µmin = µ′. If n′ ≥ n, then µmax = µ′. A new value of µ′ can now be
calculated and the integration to calculate a new value of n′ can be performed again. In
this way it is possible to iterate to a desired level of accuracy in µ.

For temperature T = 300 K, a computer program gives µT=300 K = 41.9 meV, which
may be compared with the second-order approximation

µ ∼ EF − π2

12

(kBT )2

EF

which givesµT=300 K = 44.3 meV. The agreement is quite good because thermal energy
at temperature T = 300 K is kBT = 25.8 meV and this value is enough less than the
Fermi energy, EF = 54 meV, to make the expansion quite accurate. The fourth-order
approximation,

µ ∼ EF − π2

12

(kBT )2

EF
− 7π4

960

(kBT )4

E3
F

gives a slightly more accurate result µT=300 K = 42.4 meV.
(b) When n = 1014 cm−3 the computer program gives µT=300 K = −217 meV. The

results from the second-order and fourth-order expansions are inaccurate, because now
kBT is much greater than the Fermi energy EF = 0.12 meV.

Listing of MATLAB program for Exercise 7.3
% Chapt7Exercise3.m
% uses function fermi.m
% carrier density n (cm-3), temperature kelvin (K), relative error rerr
% returns chemical potential mu1 measured in units of meV

n=1.e18; %carrier density (cm-3)
kelvin=300.0; %absolute temperature (K)
rerr=1.e-3; %relative error
m0=9.10956; %bare electron mass (kg x 10ˆ31)
m1=0.07; %effective electron mass

echarge=1.60219; %electron charge (C x 10ˆ19)
hbar=1.0545928; %Planck’s constant (J s x 10ˆ34)

kB=8.617e-5; %Boltzmann’s constant (eV K-1)

kF1=(3.0*(piˆ2.0)*n)ˆ(1/3); %Fermi wave vector (cm-1)
eF=1.e-11*((hbar*kF1)ˆ2)/(2.0*m0*m1*echarge); %Fermi energy (meV)
kBT=1000.*kelvin*kB; %thermal energy (meV)
beta=1./kBT; %inverse thermal energy (meV-1)
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mumax=eF; %maximum possible value of chemical potential
x=((n*1.e6)/2.)*(((2.e-15*pi*beta*(hbarˆ2))/(echarge*m0*m1))ˆ1.5);
mumin=(+1./beta)*log(x);

emax=eF+(15./beta); %maximum limit of integration
de=emax/1000.; %energy step

const=1.e16*((20.*echarge*m1*m0)ˆ.5)*echarge*m1*m0/((piˆ2)*(hbarˆ3));

for j=1:25
mu1=mumin+((mumax-mumin)/2.);

energy=0.0;
ainter=0.0;

%calculate carrier density n’
for i=1:1000;

energy=energy+de;
ainter=ainter+(((sqrt(energy))*de)*fermi(beta,energy,mu1));

end;
nprime=const*ainter;
% delta is relative error in carrier density

delta=(n-nprime)/n;
if((abs(delta)) < rerr)

break;
elseif(delta < 0.)

mumax=mu1;
else
mumin=mu1;

end;
end;
%print output: chemical potential mu1(meV), Fermi energy eF(meV), temperature kelvin(K)
%kBT (meV), carrier density nprime(cm-3), number of iterations j
ttl1=['chemical potential =',num2str(mu1),'meV'];
ttl2=['Fermi energy =',num2str(eF),'meV'];
ttl3=['Fermi wave vector =',num2str(kF1),'cm-1'];
ttl4=['Fermi wavelength =',num2str(lambdaF),'cm'];
ttl5=['Temperature =',num2str(kelvin),'K'];
ttl6=['kBT =',num2str(kBT),'meV'];
ttl7=['carrier density =',num2str(nprime),'cm-3'];
ttl8=['number of iterations =',num2str(j)'];
%compare with second-order mu2(meV) and fourth-order mu4(meV) expansion
ttl9=['chemical potential (second-order) =',num2str(eF-(((pi*kBT)ˆ2)/(12.*eF))),'meV'];
ttl10=['chemical potential (fourth-order) =',num2str(eF-(((pi*kBT)ˆ2)/(12.*eF))-

(7*((pi*kBT)ˆ4)/(960.*(eFˆ3)))),'meV'];
Solution =strvcat(ttl1,ttl2,ttl3,ttl4,ttl5,ttl6,ttl7,ttl8,ttl9,ttl10)
if j >= 25

'check convergence!'
end;
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Listing of fermi function for MATLAB program used in Exercise 7.3
function [fermi]=fermi(beta,energy,mu1)
% Fermi is the Fermi-Dirac function
%
x=(energy-mu1)*beta;

if(x > 180.0) %check overflow
x=180.;
end;

if(x < -180.); %check underflow
x=-180.;
end;

fermi=1./((exp(x))+1.);
return;

Solution 7.4
We seek to determine the number of microscopically distinguishable arrangements of
n1 distinguishable particles among a total of N particles. Clearly, the first particle can
be chosen from a total of N particles, the second from (N − 1) and so on, so that the
total number of choices is

N (N − 1)(N − 2) · · · (N − n1 + 1) = (N (N − 1)(N − 2) · · · (N − n1 + 1))

· (N − n1)!

(N − n1)!
= N !

(N − n1)!

We must now remember to divide by the number of ways of arranging n1 distinguish-
able particles among themselves. The result is the number of microscopic arrangements
of n1 particles in the energy range E to E + �E . Hence,

P1 = N !

n1!(N − n1)!

P2 = (N − n1)!

n2!(N − n1 − n2)!

P3 = (N − n1 − n2)!

n3!(N − n1 − n2 − n3)!

and so on. The total number of arrangements is

P(n j ) = P1P2P3 · · ·P j

= N !

n1!(N − n1)!
· (N − n1)!

n2!(N − n1 − n2)!
· (N − n1 − n2)!

n3!(N − n1 − n2 − n3)!
· · ·

P(n j ) = N !
j=∞∏
j=1

1

n j !

Since, at equilibrium, all microscopically distinguishable distributions with a fixed
number of particles and the same total energy are equally likely, it follows that the
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most probable macroscopic distribution is one in which the number of microscopically
distinguishable arrangementsP(n1, n2, . . . , n j ) is amaximum subject to the constraints
of particle conservation

f =
(

j=∞∑
j=1

n j

)
− N = 0

and conservation of total energy

g =
(

j=∞∑
j=1

E jn j

)
− Etotal = 0

Actually, it is easier to maximize a new function G = ln(P(n j )) instead of P(n j )
itself. Maximization of a function subject to constraints has been worked on a great
deal in the past, especially in the context of classical mechanics. One approach uses
the Lagrange method of undetermined multipliers. We wish to maximize the function

F(n1, n2, . . . α, β) = G(n1, n2, . . .) − α f (n1, n2, . . .) − βg(n1, n2, . . .)

and we solve for n1, n2, . . . α and β in such a way that G is a maximum. This is done
by requiring ∂F/∂n j = 0 for all j, ∂F/∂α = 0, and ∂F/∂β = 0.

Since

F = ln(P) − α

((∑
j

n j

)
− N

)
− β

((∑
j

E jn j

)
− E

)

we note that

ln(P) = ln

(
N !

j=∞∏
j=1

1

n j

)
= ln(N !) +

j=∞∑
j=1

(ln(1) − ln(n j !)) = ln(N !) +
j=∞∑
j=1

ln(n j !)

because ln(1) = 0. For large n j one may use Sterling’s formula ln(n!) ∼ n ln(n) − n
and rewrite:

ln(P) = ln(N !) +
j=∞∑
j=1

(n j ln(n j ) − n j )

We now fix j and take the derivative of F with respect to n j :

∂F

∂n j
= ∂

∂n j

(
ln(N !) +

j=∞∑
j=1

(n j ln(n j ) − n j ) − α

((∑
j

n j

)
− N

)

−β

((∑
j

E jn j

)
− E

))

0 = 0 − ln(n j ) − n j
∂

∂n j
ln(n j ) + 1 − α − βE j = ln(n j ) − n j

n j
+ 1 − α − βE j

= − ln(n j ) − α − βE j
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We now rewrite:

− ln(n j ) = α + βE j

1

n j
= eα+βE j

n j = 1

eα+βE j

which is the Maxwell–Boltzmann distribution function

gMB(E) = 1

e(E−µ)/kBT

where α = µ/kBT and β = 1/kBT may be obtained from the classical theory of gases.
This distribution specifies the probability that an available state of energy E is occupied
under equilibrium conditions.

The Maxwell–Boltzmann ratio n j/nk = 1/e(E j−Ek )β is simply e−E/kBT .

Solution 7.5
To find the temperature at which the chemical potential is zero in a three-dimensional
electron gas, we start by writing down Eqn (7.36):

n = 1

2π2

(
2m
--h2

)3/2
Emax=∞∫
Emin=0

E1/2 · 1

e(E−µ)/kBT + 1
· dE

Setting the chemical potential to zero, µ = 0, and normalizing energy to the Fermi
energy, EF, gives

n = 1

2π2

(
2m
--h2

)3/2

(EF)3/2

Emax=∞∫
Emin=0

(
E

EF

)1/2

· 1

e(E/EF)(EF/kBT ) + 1
· d
(
E

EF

)

Introducing the variable x = E/EF and the value we wish to find r = EF/kBT ,
we then make use of the fact that EF = --h2k2

F/2m (Eqn (7.38)), where kF = (3π2n)1/3

(Eqn (7.40)), which allows us to write

n = 1

2π2

(
2m
--h2

)3/2( --h2

2m

)3/2

3π2n

∞∫
0

x1/2 · 1

erx + 1
· dx

The carrier density n cancels, and after some rearrangement we are left with the
expression

3

2
=

∞∫
0

x1/2

erx + 1
· dx =

∞∫
0

x p−1

erx − q
· dx = 1

qr p
�(p)

∞∑
k=1

qk

k p
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Here, we have rewritten the integral in a familiar form7 in which�(p) is the gamma func-
tion8, p > 0, r > 0, and −1 < q < 1. In this particular, case p = 3/2, r = EF/kBT ,
and q = −1, giving

kBT

EF
=




−2

3 × �(1.5)
∞∑
k=1

−1k

k3/2




2/3

Putting in the numbers,

�(1.5) = π1/2/2 = 0.886227

and the sum

∞∑
k=1

−1k

k3/2
= −0.765147

Hence, we may conclude that the chemical potential of a three-dimensional electron
gas is always zero when temperature T is such that

kBT

EF
=
(

2

3 × 0.886227 × 0.765147

)2/3

= 0.9887

7 I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, San Diego, 1980
p. 326 (ISBN 0 12 294760 6).

8 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1974 pp. 267–273
(ISBN 0 486 61272 4).



8 Time-dependent perturbation

8.1 Introduction

Engineers who design transistors, lasers, and other semiconductor components want to
understand and control the cause of resistance to current flow so that they may better
optimize device performance. A detailed microscopic understanding of electron motion
from one part of a semiconductor to another requires the explicit calculation of electron
scattering probability. One would like to know how to predict electron scattering from
one state to another by application of a time-dependent potential. In this chapter we
will see how to do this using powerful quantum mechanical techniques.

In addition to understanding electron motion in a semiconductor we also want to
understand how to make devices that emit or absorb light. In Chapter 6 it was shown
that a superposition of two harmonic oscillator eigenstates could give rise to dipole
radiation and emission of a photon. The creation of a photon was only possible if a
superposition state existed between a correct pair of eigenstates. This leads directly
to the concept of rules determining pairs of eigenstates which can give rise to photon
emission. Such selection rules are a useful tool to help us understand the emission and
absorption of light by matter. However, the real challenge is to use what we know to
make practical devices which operate using emission and absorption of photons. This
usually requires imposing some control over atomic-scale physical processes. We will,
of course, use quantum mechanics to describe such atomic-scale processes.

Our study begins by considering electronic transitions due to an abrupt time-
dependent change in potential. We will then go on to calculate excitation of a charged
particle in a harmonic potential due to a transient electric field pulse. Following this,
we will derive important results from first-order time-dependent perturbation theory,
also known as Fermi’s golden rule, which will allow us to consider the effect of more
general time-varying potentials. As an example, we will use Fermi’s golden rule to
calculate the elastic scattering rate from ionized impurities for electrons in the con-
duction band of n-type GaAs. Such calculations are of practical importance for the
design of high-performance transistors and laser diodes. Our study will result in a

356
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number of predictions, such as the temperature dependence of conductivity and the fact
that we must take into account the response of many mobile electrons to the presence
of a scattering site. We will also learn that, by controlling the position of scatter-
ing sites on an atomic scale, the probability of elastic scattering can be dramatically
altered.

As a basic starting point, and by way of example, we would like to know how to cause
an electronic transition to take place from, say, a ground state to an excited state in a
quantum mechanical system. The key idea is application of a time-dependent potential
to change the distribution of occupied states. In principle, the change in potential could
take place smoothly or abruptly in time. To explore the influence of a time-varying
potential in a quantum system, an abrupt change in potential is considered first.

8.1.1 An abrupt change in potential

Let’s start with a familiar system. A particle of mass m is in a one-dimensional rect-
angular potential well in such a way that V (x) = 0 for 0 < x < L and V (x) = ∞
elsewhere. The energy eigenvalues are En = --h2k2

n/2m, and the eigenfunctions are
ψn = √

2/L · sin(knx), where kn = nπ/L for n = 1, 2, 3, . . .. The energy levels and
wave functions are illustrated in Fig. 8.1.

We assume that the particle is initially prepared in the ground state ψ1 with eigenen-
ergy E1. Then, at some time, say t = 0, the potential is very rapidly changed in such
a way that the original wave function remains the same but V (x) = 0 for 0 < x < 2L
and V (x) = ∞ elsewhere. This situation is illustrated in Fig. 8.2. One would like to
know what effect such a change in potential has on the expectation value of particle
energy and the probability that the particle is in an excited state of the system.

We start by finding the expectation value of particle energy after the potential well
is abruptly increased in width. We know that the energy of the particle 〈E〉 = E1 for
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Fig. 8.1. (a) Sketch of a one-dimensional rectangular potential well with infinite barrier energy
showing the energy eigenvalues E1, E2, and E3. (b) Sketch of the eigenfunctions ψ1, ψ2, and ψ3 for
the potential shown in (a).
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Fig. 8.2. (a) Sketch of a one-dimensional rectangular potential well with infinite barrier energy
showing the lowest-energy eigenvalue E1 and its associated ground-state wave function ψ1. (b) The
potential barrier at position L is suddenly moved to position 2L , resulting in a new wave function
ψ . The energy expectation value of the new state is 〈E〉 = E1.

t < 0. Since the wave function after the change in potential ψ is the same as the original
wave function ψ1 but with the addition of a constant zero value for L < x < 2L , one
might anticipate that the expectation value in energy is 〈E〉 = E1 for time t ≥ 0. It
is important to check that the kink in the wave function at position x = L does not
contribute �〈E〉 = −--h2ψ(x = L)�ψ/2m to the energy (see Section 3.1.1). Clearly,
since ψ(x = L) = 0, the kink does not make a contribution, and so it is safe to conclude
that 〈E〉 = E1 after the change in potential.

When time t ≥ 0, the new state ψ is not an eigenfunction of the system. The new
eigenfunctions of a rectangular potential well of width 2L with infinite barrier energy
are ψm = √

1/L sin(kmx), where km = mπ/2L and the index m = 1, 2, 3, . . ..
Since the state ψ is not an eigenfunction, it may be expressed as a sum of the new

eigenfunctions, so that

ψ =
∑
m

amψm (8.1)

The coefficients am are found by multiplying both sides by ψ∗
m and integrating over all

space. This overlap integral gives the coefficients

am =
∫

ψ∗
mψdx (8.2)

The effect of the overlap integral is to project out the components of the new eigenstates
that contribute to the wave function ψ . The value of |am |2 is the probability of finding
the particle in the eigenstate ψm .

To illustrate how to find the contribution of the new eigenstates to the wave function
ψ , we calculate the probability that the particle is in the new ground state ψm=1 when
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t ≥ 0. The probability is given by the square of the overlap integral, am :

a1 = 〈ψm=1|ψ〉 =
x=L∫
x=0

√
1

L
sin

(
πx ′

2L

)√
2

L
sin

(
πx ′

L

)
dx ′ (8.3)

a1 =
√

2

L

x=L∫
x=0

(
1

2
cos

(
πx ′

2L

)
− 1

2
cos

(
3πx ′

2L

))
dx ′ (8.4)

a1 =
√

2

L

[
1

2
· 2L

π
sin

((
πx ′

2L

)
− 1

2
· 2L

3π
sin

(
3πx ′

2L

))]L
0

(8.5)

a1 =
√

2

L

(
L

π
+ L

3π

)
= 4

√
2

3π
(8.6)

Hence, the probability of finding the particle in the new ground state of the system is

|a1|2 = 32

9π2
= 0.36025 (8.7)

The idea that the potential can be modified so rapidly that the wave function does not
change may seem a little extreme. However, it is possible to think of systems in which
such an approach is possible. Figure 8.3 illustrates a system in which voltage applied
to a gated semiconductor heterostructure potential well is used to control well width, L.

In this section, we have only considered a potential that changed instantaneously.
In other words, the potential energy changed much faster than the particle’s response
time. Classically, this means that the potential wall moved faster than the velocity of a
particle with energy E . If the potential wall moves at a velocity that is comparable to
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Fig. 8.3. Illustration showing use of a gate electrode to control the potential seen by an electron in
the conduction band of a semiconductor heterostructure. The line labeled CBmin is the energy of the
conduction-band minimum as a function of distance in the device. In (a) the potential well is of
width L , and in (b) the width is increased to approximately 2L by application of a gate electrode
potential Vg = Vb.
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the velocity of a particle with energy E , then our previous approach is not suitable. A
different method that goes beyond the abrupt or sudden approximation is needed.

8.1.2 Time-dependent change in potential

Consider a quantum mechanical system described by Hamiltonian H(0) and for which
we know the solutions to the time-independent Schrödinger equation. That is,

H(0)|n〉 = En|n〉 (8.8)

are known. The time-independent eigenvalues are En = --hωn , and the orthonormal
eigenfunctions are |n〉. The eigenfunction |n〉 evolves in time according to

|n〉e−iωn t = φn(x)e−iωn t (8.9)

and satisfies

i--h
∂

∂t
|n〉e−iωn t = H(0)|n〉e−iωn t (8.10)

To introduce the basic idea, at time t = 0 we apply a time-dependent change in
potential W (t) the effect of which is to create a new Hamiltonian:

H = H(0) + W (t) (8.11)

and state |ψ(t)〉, which evolves in time according to

i--h
∂

∂t
|ψ(t)〉 = (

H(0) + W (t)
)|ψ(t)〉 (8.12)

The time-dependent change in potential energy W (t) might, for example, be a step
function or an oscillatory function.

We seek solutions to the time-dependent Schrödinger equation, which includes the
change in potential (Eqn (8.12)), in the form of a sum over known eigenstates

|ψ(t)〉 =
∑
n

an(t)|n〉e−iωn t (8.13)

where an(t) are time-dependent coefficients.
Substituting Eqn (8.13) into Eqn (8.12) gives

i--h
d

dt

∑
n

an(t)|n〉e−iωn t = (
H(0) + W (t)

)∑
n

an(t)|n〉e−iωn t (8.14)

Using the product rule for differentiation (( f g)′ = ( f ′g + f g′)), one may rewrite the
left-hand side as

i--h
∑
n

((
∂

∂t
an(t)

)
|n〉e−iωn t + an(t)

(
∂

∂t
|n〉e−iωn t

))

= (
H(0) + W (t)

)∑
n

an(t)|n〉e−iωn t (8.15)
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Making use of Eqn (8.10), we notice that the terms

i--h
∑
n

an(t)
∂

∂t
|n〉e−iωn t =

∑
n

an(t)H(0)|n〉e−iωn t (8.16)

may be removed from Eqn (8.15) to leave

i--h
∑
n

|n〉e−iωn t
∂

∂t
an(t) =

∑
n

an(t)W (t)|n〉e−iωn t (8.17)

Multiplying both sides by 〈m| and using the orthonormal relationship 〈m|n〉 = δmn

gives

i--h
d

dt
am(t) =

∑
n

an(t)〈m|W (t)|n〉eiωmnt (8.18)

However, since∫
φ∗
m(x)eiωmtWφn(x)e−iωn t dx = Wmne

iωmnt (8.19)

where --hωmn = Em − En and Wmn is defined as the matrix element 〈m|W |n〉 =∫
φ∗
m(x)Wφn(x)dx , we may write

i--h
d

dt
am(t) =

∑
n

an(t)Wmne
iωmnt (8.20)

The intrinsic time dependence of each state can be factored out by introducing
different time-dependent coefficients so that cn(t) = an(t)e−i Ent/h . This is called the
interaction picture in contrast to the a-coefficient formalism that is the Schrödinger
picture.

If the change in potential is turned off at time t , then the probability that the system
can be found in a stationary state |n〉 is

Pn(t) = |an(t)|2 = |cn(t)|2 (8.21)

It is important to recognize that Eqn (8.20) is an exact result. However, the right-hand
side contains the time-dependent coefficients we want to find. At first sight, not a great
deal of progress seems to have been made. To make a little more headway, it helps to
be quite specific.

Suppose the system is initially in the ground state |0〉. Then, for times such that t < 0
one has

an(0) = cn(0) = δn0 (8.22)

We now assume that there is a constant step change in potential W (t) that is turned
on at time t = 0 for duration τ so that W (t) �= 0, ∂W (t)/∂t = 0, and W (t) = 0 for
0 > t > τ . Figure 8.4 is an illustration of this time-dependent potential.
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We are now in a position to make some qualitative statements about the time evolution
of the system subject to the time-dependent change in potential, W(t).

Before application of W (t): Time-independent, stationary-state solutions satisfy
H(0)|n〉 = En|n〉. The probability of finding the state, in this case |0〉, is assumed to be
unity.

During application of W (t): The state of the system evolves according to

|ψ(t)〉 =
∑
n

an(t)|n〉e−i Ent/h (8.23)

The time-dependent change in potential causes transitions between eigenstates of the
initial system (off-diagonal matrix elements) and can shift energy levels of the initial
eigenstates (diagonal matrix elements).

After application of W (t): Stationary-state solutions satisfy H(0)|n〉 = En|n〉. Any
time after W (t) is turned off at time t = τ there is a probability of finding the state in
any of the known initial time-independent stationary solutions. The final state of the
system may be a superposition of these eigenstates

|ψ(t)〉 =
∑
n

an(t)|n〉e−i Ent/h (8.24)

For the above example, one may visualize the perturbation as changing the population
of eigenstates and shifting energy eigenvalues. This is illustrated in Fig. 8.5.
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8.2 Charged particle in a harmonic potential

Suppose a particle of mass m0 and charge e is moving in a harmonic potential created
by the electronic structure of a molecule. We want to use what we have learned so far to
control the state of the electron in the molecule. The way we are going to proceed is to
apply a macroscopic external pulse of electric field that has a Gaussian time dependence.
While use of a macroscopic field to manipulate an atomic-scale entity may seem a little
crude, it is in fact quite a powerful way to control single electrons.

We begin by assuming that the charged particle is initially in the ground state of the
one-dimensional harmonic potential V (x) of the molecule. For convenience, we assume
that our initial condition applies at time t = −∞. As already mentioned, we have
decided to control the state of the charged particle by applying a pulse of electric field
E(t) = |E0|e−t2/τ 2 · x̂, where |E0| and τ are constants and x̂ is the unit vector in the x
direction. |E0| is the maximum strength of the applied electric field, and 2τ · √ln(2) is
the full-width-half-maximum (FWHM) of the electric field pulse. To demonstrate our
ability to control the electron state, we are interested in finding the value of τ that
gives the maximum probability of the system being in an excited state a long time after
application of the pulse.

Starting from the exact result, Eqn (8.20),

i--h
d

dt
am(t) =

∑
n

an(t)Wmne
iωmnt (8.25)

we approximate an(t) by its initial value an(t = −∞) (this approximation is called first-
order time-dependent perturbation theory). So, if the system is initially in an eigenstate
|n〉 of the Hamiltonian H(0), then an(t = −∞) = 1 and am(t = −∞) = 0 for m �= n.
There is now only one term on the right-hand side of the equation and we can write

i--h
d

dt
am(t) = an(t)Wmne

iωmnt (8.26)

Integration gives

am(t) = 1

i--h

t=∞∫
t=−∞

Wmne
iωmnt ′dt ′ (8.27)

The charged particle starts in the ground state |0〉 of the harmonic potential. The
probability of the system being in an excited state after the electrical pulse has gone
(t → ∞) is given by the sum

Pt→∞ =
∑
m �=n

|an(t = ∞)|2 (8.28)
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The matrix element for transitions from the ground state of the harmonic oscillator
in the presence of a uniform electric field is

Wmn=0 = e|E0|e−t2/τ 2〈m|x |n = 0〉 (8.29)

The only matrix element that contributes to the sum for the probability P is that which
couples the ground state to the first excited state. This is separated in energy by the
energy spacing of the harmonic oscillator which is just --hω = --h

√
κ/m0. The matrix

element is

W10 = e|E0|e−t2/τ 2

( --h

2m0ω

)1/2

〈1|b̂ + b̂†|0〉 = e|E0|e−t2/τ 2

( --h

2m0ω

)1/2

(8.30)

Hence, the probability after the electrical pulse has gone (t → ∞) is

Pt→∞ = 1
--h2

∣∣∣∣∣∣
t=∞∫

t=−∞
W10e

iω10t ′dt ′

∣∣∣∣∣∣
2

=
( --h

2m0ω

)
e2|E0|2

--h2

∣∣∣∣∣∣
t=∞∫

t=−∞
e−t

′2/τ 2
eiωt

′
dt ′

∣∣∣∣∣∣
2

(8.31)

where we note that the frequency ωmn = ω10 = ω. Completing the square in the expo-
nent in such a way that −(t ′/τ − iωτ/2)2 − ω2τ 2/4, one may write

Pt→∞ =
(
e2|E0|2
2m0

--hω

)
· e−ω2τ 2/2

∣∣∣∣∣∣
t=∞∫

t=−∞
e−(t ′/τ − iωt ′)2

dt ′

∣∣∣∣∣∣
2

(8.32)

Fortunately, the integral is standard, with the solution

t=∞∫
t=−∞

e−(t ′/τ+iωτ/2)2
dt ′ = τ

√
π (8.33)

Hence, Eqn (8.32) may be written

Pt→∞ =
(
πe2|E0|2
2m0

--hω

)
· τ 2e−ω2τ 2/2 (8.34)

The physics of how the transition is induced is illustrated in Fig. 8.6. The electric field
pulse exerts a force on the charged particle through a change in the potential energy.
We know from Chapter 6 that at any given instant that the electric field has the value
|E0|, the parabolic harmonic potential energy is shifted in position by x0 = e|E0|/κ
and reduced in energy by �E = −e2|E0|2/2κ . Transitions from the ground state are
induced by this change in potential energy.

The maximum transition probability occurs when the derivative of the probability
function with respect to the variable τ is zero (one may check that this is a maximum
by taking the second derivative):

0 = d

dτ
Pt→∞ = 2τe−ω2τ 2/2 − 2ω2τ

2
· τ 2e−ω2τ 2/2 = 2τ − ω2τ 3 (8.35)
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Hence, the maximum transition probability occurs when the value of τ is

τ =
√

2

ω
(8.36)

Suppose ω = 1012 rad s−1. Then, according to Eqn (8.36), the maximum transition
probability occurs for τ = 1.4 ps, corresponding to an electric field pulse with a FWHM
of 2.3 ps.

The value of the maximum transition probability is found by substituting Eqn (8.36)
into Eqn (8.34). This gives

Pmax =
(
πe2|E0|2
m0

--hω3

)
· e−1 (8.37)

There is an obvious difficulty with this result, since when ω → 0 or |E0| → ∞ the
maximum transition probability Pmax > 1. According to Eqn (8.37) Pmax = 1, when
ω = (πe2|E0|2 · e−1/m0

--h)1/3.
The resolution of this inconsistency is that the perturbation theory we are using only

applies when the time-dependent change in potentialW(t) is small. The assumption that
the perturbation is weak means that the probability of scattering out of the initial state
|n〉 is small, so that |am |2 � 1. This condition is simply Pmax � 1, which constrains
the value of ω and |E0| so that(
πe2|E0|2--h2

m0

)
· e−1 � --h3ω3 (8.38)

For the case we are considering, with ω = 1012 rad s−1, this results in |E0| � 5.7 ×
104 V m−1. Clearly, the lesson to be learned here is that, while perturbation theory can
be used to calculate transition rates, it is always important to identify and understand
the limitations of the calculation.
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8.3 First-order time-dependent perturabtion

While Eqn (8.20) is an exact result, we often need to make approximations if we wish to
calculate actual transition probabilities after a time-dependent change in potential W (t)
is turned on at time t > 0. One way to proceed is to approximate the values of an(t > 0)
by an(t = 0) which is the same as first-order perturbation theory. Typically, this
approach is valid when the time-dependent change in potential W (t) is small and thus
may be considered a perturbation to the initial system described by the Hamiltonian
H(0).

Consider the case in which the system is in an eigenstate |n〉 of H(0) at t ≤ 0, so
an(t = 0) = 1 and am(t = 0) = 0 for m �= n. There is now only one term on the right-
hand side of Eqn (8.20) which, for m �= n and t > 0, becomes

i--h
d

dt
am(t) = Wmne

iωmnt (8.39)

since all coefficients am(t = 0) = 0 except for an(t = 0) = 1. This means that the
matrix element Wmn couples |n〉 to |m〉 and creates the coefficient am(t) for times t > 0
and m �= n.

To find how am(t) evolves in time from t = 0, Eqn (8.39) is rewritten as an integral

am(t) = 1

i--h

t ′=t∫
t ′=0

Wmne
iωmnt ′dt ′ (8.40)

We assume that the state with eigenenergy En is not degenerate, so that the perturbed
wave function can be expressed as a sum of unperturbed states weighted by coefficients
ak(t)

ψ(x, t) =
∑
k

ak(t)e
−iωk tφk(x) (8.41)

If |am |2 � 1, then we may assume that the coefficient an(t) = 1. In this case, Eqn (8.41)
may be written as

ψ(x, t) = φn(x)e−iωn t +
∑
m �=n

1

i--h

t ′=t∫
t ′=0

Wmne
iωmnt ′dt ′ · e−iωmtφm(x) (8.42)

One should note that there is an obvious problem with normalization of the scat-
tered state given by Eqn (8.42). Clearly, in a more complete theory correction for the
normalization error must be performed self-consistently.

In a more pictorial way, depicted in Fig. 8.7, one may visualize the scattering event
using arrows to indicate initial and final states. The lengths of the arrows are a measure
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t = 0

Initial state has |an|2 = 1 Final state dominated by |an|2 = 1

Scattered final states have |am|2 ≥ 0

Fig. 8.7. Illustration of initial state with probability amplitude |an|2 = 1 and final state at time t = 0
being either the same state or a scattered state with probability amplitude |am |2 ≥ 0. The arrows
represent the k-state direction or the direction of motion of the particle. The length of the lines is
related to the probability amplitude.

of |am |2. The initial state is |n〉 with |an|2 = 1 for time t ≤ 0. After the scattering event,
a number of states are excited in such a way that |am |2 �= 0 form �= n. However, because
we have assumed that the perturbation is weak, the final states are dominated by the
state |n〉 with |an|2 = 1. The final states after scattering by a weak perturbation have
probability |am |2 ≥ 0, which may be found using

am(t) = 1

i--h

t ′=t∫
t ′=0

Wmne
iωmnt ′dt ′ (8.43)

where t is the time the perturbation is applied and Wmn is the matrix element for
scattering out of the initial state |n〉. The assumption that the perturbation is weak
means that the probability of scattering out of the initial state is small. This means that
|am |2 � 1.

8.4 Fermi’s golden rule

We already know from our previous work that a perturbing Hamiltonian brings about
transitions between eigenstates of the unperturbed Hamiltonian. If the system is initially
prepared in state |n〉 and W (t) = 0 for t ≤ 0, then up to time t = 0 the system remains
in state |n〉 with energy En . For times t > 0, we allow W (t) �= 0. Hence, for times
t = t ′ > 0 it is possible that the system is in a different state |m〉 with energy Em .

In the following we will add the probabilities of a transition to each state |m〉, so that
the total probability of a transition is proportional to time t . We will then find that the
total transition probability is

dP

dt
= 2π

--h
D(Em)|Wmn|2 (8.44)

where D(Em)dEm is the number of m states in the energy interval Em to Em + dEm .
The result assumes that the energy range is so small that both D(Em) and Wmn can be
treated as constant.
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To show how one obtains Eqn (8.44), we start with Eqn (8.20)

i--h
d

dt
am(t) =

∑
n

an(t)Wmne
iωmnt (8.45)

This may be integrated to give

am(t) = 1

i--h

t ′=t∫
t ′=0

∑
n

an(t ′)Wmne
iωmnt ′dt ′ (8.46)

where

Wmn =
∫

φ∗
m(x)Wφn(x)dx (8.47)

If we assume that an(t ′) and Wmn are slowly varying functions of time compared
with the oscillatory term ei(ωm−ωn )t ′ , then we can move them outside the integral. Under
these circumstances, the equation becomes

am(t) = 1

i--h

∑
n

an(t = 0)Wmn

t ′=t∫
t ′=0

ei(ωm−ωn )t ′dt ′ (8.48)

Assuming an initial condition in such a way that an(t ≤ 0) = 1 for only one eigen-
value and am(t ≤ 0) = 0 for m �= n, we may write

am(t) = 1

i--h
Wmn

t ′=t∫
t ′=0

ei(ωm−ωn )t ′dt ′ (8.49)

Performing the integration gives

am(t) = −Wmn
--h

[
ei(ωm−ωn )t ′

ωm − ωn

]t
0

= −Wmn
--h

(
ei(ωm−ωn )t − 1

ωm − ωn

)
(8.50)

am(t) = −Wmn
--h

· ei(ωm−ωn )t/2 ·
(
ei(ωm−ωn )t/2 − e−i(ωm−ωn )t/2

ωm − ωn

)
(8.51)

am(t) = −2Wmn
--h

· ei(ωm−ωn )t/2 · i sin((ωm − ωn)t/2)

ωm − ωn
(8.52)

so that the probability of a transition is

|am(t)|2 = 4
--h2

|Wmn|2 · sin2((ωm − ωn)t/2)

(ωm − ωn)2
(8.53)

The probability of a transition out of state |n〉 into any state |m〉 is the sum

Pn(t) =
∑
m

|am(t)|2 (8.54)
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The total probability is a sum over the final states |m〉, because it is assumed that
each state |m〉 is an independent parallel channel for a scattering process. If there are
D(E) = dN/dE states in the energy interval dE = --hdω, then the sum can be written
as an integral

Pn(t) = 4
--h2

|Wmn|2 · dN
dE

·
∫

sin2((ω − ωn)t/2

(ω − ωn)2
· --hdω (8.55)

To perform the integral, we change variables, so that x = (ω − ωn)/2, and then we
take the limit t → ∞. This gives

sin2(t x)

π t x2

∣∣∣∣
t→∞

= δ(x) (8.56)

We now note that dE/dx = 2--h, since E = --h2x . Hence, the integral can be written∫
sin2((ω − ωn)t/2)

(ω − ωn)2
· dE
dx

dx = 2--h
∫

sin2(t x) · tπ
π t4x2

dx =
--hπ t

2

∫
sin2(t x)

π t x2
dx (8.57)

so that in the limit t → ∞∫
sin2((ω − ωn)t/2)

(ω − ωn)2
· dE
dx

dx =
--hπ t

2

∫
δ(x)dx (8.58)

One may now write the probability of a transition out of state |n〉 into any state |m〉
given by Eqn (8.55) as

Pn(t) = 4
--h2

|Wmn|2 · D(E) ·
--hπ t

2
(8.59)

or

Pn(t) = 2π
--h

|Wmn|2 · D(E) · t (8.60)

We notice that the probability of a transition is linearly proportional to time. The reason
for this is embedded in the approximations we have used to obtain this result.

The transition rate is the time derivative of the probability Pn(t)

d

dt
Pn(t) = 2π

--h
|Wmn|2 · D(E) (8.61)

Recognizing dPn(t)/dt as the inverse probability lifetime τn of the state |n〉, we can
write Fermi’s golden rule:

1

τn
= 2π

--h
|Wmn|2 · D(E) (8.62)

in which the inverse lifetime 1/τn of the initial state |n〉 only depends upon the matrix
element squared coupling the initial state to any scattered state |m〉 multiplied by the



370 Time-dependent perturbation

final density of scattered states D(E). This simple expression may be used for many
calculations of practical importance.

The derivation of Fermi’s golden rule involved a number of approximations that can
limit its validity in some applications. For example, use of the t → ∞ limit implies
that the collision is completed. Hence, one should check to make sure that the per-
turbing potential is small, so that collisions do not overlap in space or time. It is also
assumed that the probability of scattering out of the initial state |n〉 is so small that
|an|2 = 1 and conservation of the number of particles can be ignored. Also, if, as will
often happen, we use a plane-wave initial state characterized by wave vector k and
a final plane-wave state characterized by wave vector k′, then the actual collision is
localized in real space, so that the use of Fourier components is justifiable. All of these
assumptions can be violated in modern semiconductor devices in which scattering can
be quite strong and nonlocal effects can become important. So, we need to proceed with
caution.

In this section we used Fermi’s golden rule to calculate the transition probability
for an electron initially in the ground state of a one-dimensional harmonic potential
of a molecule subject to an electric field pulse the strength of which has a Gaussian
time dependence. We found that changing the electric-field pulse width changes the
probability of transitions to excited states of the molecule.

In Section 8.5, we will use Fermi’s golden rule to calculate the average distance (the
mean free path) an electron travels before scattering in an n-type semiconductor with
ionized substitutional impurity concentrationn. The microscopic model we develop will
allow us to estimate the electrical mobility and electrical conductivity of the material.

In Section 8.6, Fermi’s golden rule will be used to calculate the probability of inducing
stimulated optical transitions between electronic states. Stimulated emission of light is
a key ingredient determining the operation of lasers.

8.5 Elastic scattering from ionized impurities

Establishing a method to control electrical conductivity in semiconductors is essen-
tial for many practical device applications. The performance of transistors and lasers
depends critically upon flow of current through specific regions of a semiconductor.
An important way to control the electrical conductivity of a semiconductor is by a
technique called substitutional doping.

Substitutional doping involves introducing a small number of impurity atoms into
the semiconductor crystal. Each impurity atom replaces an atom on a lattice site of the
original semiconductor crystal. In the example, we will be considering a density n of Si
donor impurity atoms that sit on Ga sites in a GaAs crystal. At each impurity site, three
of the four chemically active Si electrons are used to replace Ga valence electrons. At
low temperatures, the remaining Si electron is bound by the positive charge of the Si
donor impurity ion. In a GaAs crystal, this extra electron has an effective electron mass
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of m∗
e = 0.07m0 and its ground state is in a hydrogenic s-like electronic state

(Table 2.6). The coulomb potential seen by the electron is screened by the presence of the
semiconductor dielectric which is characterized by dielectric constant ε. The screened
coulomb potential and the low effective electron mass in the conduction band of GaAs
increase the Bohr radius (Eqn (2.70)) characterizing a hydrogenic state from

aB = 4πε0εr0
--h2

m0e2
= 0.0529 nm (8.63)

to an effective Bohr radius given by

a∗
B = 4πε0εr0

--h2

m∗
ee

2
= 10 nm (8.64)

where the use of the low-frequency relative dielectric (permittivity) constant, εr0, implies
that we are considering low-frequency processes.

In addition, the hydrogenic binding energy is reduced from its value of a Rydberg in
atomic hydrogen (see Section 2.2.3.2)

Ry = −m0

2

e4

(4πε0)2--h2
= −13.6058 eV (8.65)

to a new value (an effective Rydberg constant, Ry∗), which is given by

Ry∗ = Edonor − ECBmin = −m∗
e

2

e4

(4πε)2--h2
= Ry

(
m∗
e/m0

ε2
r0

)

= −13.6
0.07

(13.2)2
= −5.5 meV (8.66)

From Eqn (8.66) one concludes that the donor electron is only loosely bound to the
donor ion in GaAs. The reasons for this are the small effective electron mass and the
value of the dielectric constant εr0 in the semiconductor.

At finite temperatures, lattice vibrations or interaction with freely moving electrons
can easily excite the donor electron from its bound state into unbound states in the
conduction band. This ionization process is shown schematically in Fig. 8.8(a).

For temperatures for which kBT > (ECBmin − Edonor) and low impurity concentra-
tions, the loosely bound donor electron has a high probability of being excited into the
conduction band, leaving behind a positive Si+ ion core. For high impurity concentra-
tions in which there is a significant overlap between donor wave functions, electrons
can also move freely through the conduction band. In either case, the coulomb potential
due to the positive ion core acts as a scattering potential for electrons moving in the
conduction band. If we introduce a density n of Si impurities into the GaAs semiconduc-
tor to increase the number of electrons, we also increase the number of ionized impurity
sites in the crystal that can scatter these electrons.

In the remainder of this section we are going to consider the interesting question of
why it is possible to increase the conductivity of a semiconductor by increasing the
number of electrons in the conduction band through substitutional impurity doping. It
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Fig. 8.8. (a) Conduction-band minimum (CBmin) and valence-band maximum (VBmax) of a
semiconductor with band-gap energy Eg. The energy level of a donor impurity is shown. When an
electron is excited from the donor level into the conduction band, a positively charged ion core is left
at the donor site. This is called an ionized impurity. (b) An electron moving in the conduction band
in initial state k can be elastically scattered into final state k′ by the coulomb potential of an ionized
impurity. The sketch represents the trajectory of the wave vector associated with the electron.

is, after all, not yet obvious that such a strategy would work, as we have to consider the
role of electron scattering from the increased number of ionized impurity sites.

Anticipating our solution, we will assume that electrons in the conduction band can
be described by well-defined |k〉 states that scatter into final states |k′〉, transferring
momentum q in such a way that k = k′ + q. This is illustrated in Fig. 8.8(b), where an
electron moving past an ionized impurity is scattered from an initial state |k〉 to a final
state |k′〉. We expect to deal with a dilute number of impurity sites, weak scattering, and
a plane-wave description for initial and final states. On average, the distance between
scattering events is lk . This distance, called the mean free path, is assumed to be longer
than the electron wavelength. We also assume no energy transfer, so that we are in the
elastic scattering limit.

A natural question concerns the justification for using time-dependent perturba-
tion theory for an electron scattering from a static potential that has no explicit
time dependence. The answer to this question is that an expansion of a state function
belonging to one time-independent Hamiltonian in the eigenfunctions of another time-
independent Hamiltonian has time-dependent expansion coefficients. In our case, the
incident particle is described by a plane-wave state far away from the scattering center.
The final state is also described by a plane-wave state far away from the scattering
center. However, near the scattering center the particle definitely cannot be described
as a plane wave.

Electrons scatter from a state ψk = Aei(k·r) = |k〉 of energy E(k) to a final state
|k′〉 with the same energy. Fermi’s golden rule requires that we evaluate the matrix
element 〈k′|v(r )|k〉, where v(r ) is the coulomb potential. Simple substitution of initial
and final plane-wave states into this matrix element reveals that 〈k′|v(r )|k〉 = v(q),
where v(q) is the Fourier transform of the coulomb potential in real space. It is clear
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then, that we would like to find an expression for the coulomb potential in momentum
(wave vector) space.

8.5.1 The coulomb potential

The bare coulomb potential energy in real space is

v(r ) = −e2

4πε0r
(8.67)

where −e is electron charge. To obtain the potential energy in wave vector space, one
may take the Fourier transform. The result for the bare coulomb potential (see Exercise
8.2) is

v(q) = −e2

ε0q2
(8.68)

In a uniform dielectric such as an isotropic semiconductor characterized by relative
dielectric (permittivity) function εr, the term ε0 in Eqn (8.68) is replaced with ε = ε0εr.
In this case, ε is constant over real space, but the value of εr depends upon wave
vector q, so that ε = ε(q) = ε0εr(q). We expect such a dependence because many
electrons can respond to the long-range electric field components of the real-space
coulomb potential. This effect, called screening, reduces the coulomb potential for
small values of q. Because screening is embedded in ε one talks of a screened dielectric
response function, ε(q). In general, the dielectric response should also have a frequency
dependence, so that ε = ε(q, ω). However, we ignore this at present. In the following,
we simply replace a constant value of ε with ε(q). Later, we will find expressions for
the functional form of ε(q).

We now have a coulomb potential energy in wave vector space

v(q) = −e2

ε(q)q2
(8.69)

and in real space

vq(r ) = −e2

4πεqr
(8.70)

where we note, the subscript q is used because v(r ) and ε depend upon the scattered
wave vector.

The potential energy at position r, due to ion charge at position R j , is

vq(r − R j ) = −e2

4πεq|r − R j | (8.71)

which depends only upon the separation of charges.
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Fig. 8.9. Diagram illustrating the relative position r − R j of an electron at position r and the j-th
ionized impurity at position R j .

To obtain v(q), we take the Fourier transform

v(q) =
∫
d3r v(r − R j ) e

−iq·(r−R j ) (8.72)

where the integral is over all space. Clearly, in a homogeneous medium, if we determine
v(q) at one position in space, then we have determined it for all space.

8.5.1.1 Elastic scattering of electrons by ionized impurities in GaAs

We wish to estimate the elastic scattering rate for electrons in GaAs doped to
n = 1018 cm−3 due to the presence of ionized impurities. Suppose R j is the position
of the j-th dopant atom in n-type GaAs and, as shown in Fig. 8.9, we are interested
in an electron at position r. The interaction potential in real space is the sum of the
contributions from the n individual ions per cubic centimeter. Thus, the total potential
is

V (r) =
n∑
j=1

v(r − R j ) (8.73)

In wave vector space we have a sum of Fourier transforms of v(r − R j )

V (q) =
n∑
j=1

∫
d3r v(r − R j )e

−iq·r =
n∑
j=1

∫
d3r v(r − R j )e

−iq·reiq·R j e−iq·R j (8.74)

V (q) =
n∑
j=1

∫
d3r v(r − R j )e

−iq·(r−R j )eiq·R j = v(q)
n∑
j=1

e−iq·R j (8.75)

Hence, the total potential seen by the electron in the presence of n ionized impurities
per unit volume is

V (q) = v(q)
n∑
j=1

e−iq·R j (8.76)

For elastic scattering, we consider transitions between a state ψk = Aei(k·r) = |k〉 of
energy E(k) and a final state |k′〉 with the same energy. Fermi’s golden rule (the first
term in the Born series) involves evaluating the matrix element 〈k′|v(r )|k〉. Since |k〉
and 〈k′| are plane-wave states of the form e−ik·r (we have assumed that klk � 1, so the
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Fig. 8.10. (a) Diagram illustrating initial wave vector k, final wave vector k′, and transferred
momentum q. (b) For elastic scattering, the scattered angle θ is related to q by k sin(θ/2) = q/2.

mean free path lk is many electron wavelengths long), we write

〈k′|v(r )|k〉 =
∫
d3r eik

′·rv(r)e−ik·r =
∫
d3r v(r)e−i(k−k′)·r

=
∫
d3r v(r)e−iq·r = v(q) (8.77)

which is just the Fourier transform of the coulomb potential in real space. In this ex-
pression q = k − k′, since momentum conservation requires k = k′ + q. As illustrated
in Fig. 8.10, the scattering angle θ for elastic scattering (no energy loss) is such that
k sin(θ/2) = q/2.

The probability of elastic scattering between the two states is

1/τkk′ = 2π
--h

|v(q)|2δ(E(k) − E(k − q)) (8.78)

where the delta function ensures that no energy is exchanged. The total scattering rate
is a sum over all transitions, so that for a single impurity

1

τel
= 2π

--h

∫
d3q

(2π )3
|v(q)|2 δ(E(k) − E(k − q)) (8.79)

Elastic scattering from n impurities can now be calculated using

|V (q)|2 = |v(q)|2
∣∣∣∣∣
n∑
j=1

e−iq·R j

∣∣∣∣∣
2

= |v(q)|2s(q) (8.80)

where

s(q) =
∣∣∣∣∣
n∑
j=1

e−iq·R j

∣∣∣∣∣
2

(8.81)

s(q) is a structure factor that contains phase information on the scattered wave from
site R j . For n large and random R j , the sum over n random phases is n1/2, and so the
sum squared is n. It follows that if there are n spatially uncorrelated scattering sites
corresponding to random impurity positions, we expect s(q) = n. To show that this is
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so, see Exercise 8.3. For a large number of spatially random impurity positions, the
matrix element squared given by Eqn (8.80) becomes

|V (q)|2 = n|v(q)|2 (8.82)

and the total elastic scattering rate from n impurities per unit volume is

1

τel
= 2π

--h
· n
∫

d3q

(2π )3

∣∣∣∣ e2

ε(q)q2

∣∣∣∣
2

δ(E(k) − E(k − q)) (8.83)

where the integral over d3q is the final density of states.
Physically, each impurity is viewed as contributing independently, so that the scatter-

ing rate is n times the scattering rate from a single impurity atom. We can also see why
increasing the impurity concentration n does not necessarily result in a linear increase
in scattering rate 1/τel. The integral contains a matrix element squared |e2/ε(q)q2|2,
which can influence scattering rate. The 1/q2 term reflects the fact that ionized impurity
coulomb scattering is weighted toward final states with small q transfer. This means
that electrons moving in a given direction are mainly scattered by small angles without
too much deviation from the forward direction. The dielectric function ε(q) also has an
influence on scattering rate, in part because of its q dependence but also because the
function depends upon carrier concentration, n.

8.5.1.2 Correlation effects due to spatial position of dopant atoms

Thus far, we have assumed that each substitutional dopant atom occupies a random
crystal lattice site. However, the constraint that substitutional impurity atoms in a
crystal occupy crystal lattice sites gives rise to a correlation effect because double
occupancy of a site is not allowed. Suppose a fraction f of sites is occupied. In this
case, we no longer have a truly random distribution, and, for small f , the scattering
rate will be reduced by s(q) = n(1 − f ). The factor (1 − f ) reflects the fact that not
allowing double occupancy of a site is a correlation effect.

Other spatial correlation effects are possible and can, in principle, dramatically alter
scattering rates.1

8.5.1.3 Calculating electron mean free path

We wish to calculate the mean free path of a conduction-band electron in an isotropic
semiconductor that has been doped with n randomly positioned impurities. We start

1 A. F. J. Levi, S. L. McCall, and P. M. Platzman, Appl. Phys. Lett. 54, 940 (1989) and A. L. Efros, F. G. Pikus,
and G. G. Samsonidze, Phys. Rev. B41, 8295 (1990).
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from the expression for total elastic scattering rate of an electron massm∗
e and charge e

from a density of n random ionized impurities given by Eqn (8.83). Because the aim is
to evaluate the total elastic scattering rate as a function of the incoming electron energy
E , it is necessary to express the volume element d3q in terms of energy E = --h2k2/2m∗

e

and scattering angle θ . Since the material is isotropic, one may write q = 2k sin(θ/2).
It can be shown (Exercise 8.4) that

1

τel
= 2πm∗

e
--h3k3

· n ·
(

e2

4πε0

)2

·
η=1∫

η=0

dη

(εr(q))2η3
(8.84)

or, as a function of energy,

1

τel(E)
= π

(2m∗
e )1/2

· n ·
(

e2

4πε0

)2

· E−3/2 ·
η=1∫

η=0

dη

(εr(2kη))2η3
(8.85)

where η = sin(θ/2), scattered wave vector q = 2kη, and dielectric function ε(q) =
ε0εr(q).

Before estimating the value of the integral given by Eqn (8.84), we calculate the
prefactor using parameters for GaAs with n = 1018 cm−3. In this case, the conduction-
band electron has effective electron massm∗

e = 0.07m0 and Fermi wave vector in three
dimensions kF = (3π2n)1/3 = 3 × 106 cm−1. The Fermi energy is EF = --h2k2

F/2m∗
e , and

the wavelength associated with an electron at the Fermi energy is λF = 2π/kF = 20 nm
in this case.

Because we will be interested in relating the calculated elastic scattering rate to the
measured low-temperature conductivity and mobility of the semiconductor, we need
to estimate 1/τel for an electron of energy E = EF. This is because at low tempera-
tures the motion of electrons with energy near the Fermi energy determines electrical
conductivity.

The prefactor of the integral given by Eqn (8.84) is

2π
--h3

· n · e4m∗
e

(4πε0)2k3
F

= 2πnc(m∗
e/m0)

3π2n
· m0e2

4πε0
--h2

· e2

4πε0
--hc

= 2c(m∗
e/m0)

3πaBα−1
(8.86)

Putting in the numbers, we have in SI-MKS units

2c(m∗
e/m0)

3πaBα−1
= 2 × 3 × 108 × 0.07

3π × 0.53 × 10−10 × 137
= 6.14 × 1014 s−1 (8.87)

Notice that when evaluating the prefactor we used known physical values and dimen-
sionless units as much as possible. This helps us to avoid mistakes and confusion.
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To estimate the integral in Eqn (8.84), we assume that εr(q) ∼ εr0 ∼ 10, and we
approximate the integral as 1/ε2

r0 = 1/100, so that

1

τel
∼ 6.14 × 1014

ε2
r0

= 6.14 × 1012 s−1 (8.88)

The mean free path is the characteristic length lk between electron scattering events.
For elastic scattering at the Fermi energy in n-type GaAs, we have lkF = vFτel, where
Fermi velocity vF = --hkF/m∗

e = 5 × 107 cm s−1. Hence, lkF = 5 × 107/6 × 1012 =
83 nm. We can compare this length with the average spacing between impurity sites,
which is only 10 nm for an impurity concentration n = 1018 cm−3. Obviously, this
impurity concentration is not the dilute limit that we had previously assumed, since the
electron wavelength λF = 2π/kF = 20 nm is similar to the average spacing between
impurities. However, lkF > λF, so that kFlkF � 1, justifying our assumption of weak
scattering. One may also compare the average spacing between impurity sites, which
is 10 nm (many times the GaAs lattice constant L = 0.56533 nm), with the effective
Bohr radius for a hydrogenic n-type impurity

a∗
B = 4πε0εr0

--h2

m∗
ee

2
(8.89)

which, using a value εr0 = 13.2 for the low-frequency dielectric constant, gives a∗
B =

10 nm. Because a∗
B is comparable to the average spacing between impurity sites, there

should be a significant overlap between donor electron wave functions giving rise to
metallic behavior. More formally, one introduces a parameter rs that is the radius of a
sphere occupied, on average, by one electron, assuming a uniform electron density n,
divided by the effective Bohr radius, a∗

B:

rs =
(

3

4πn

)1/3

· 1

a∗
B

(8.90)

For GaAs with an impurity concentration n = 1018 cm−13, this gives rs = 0.63. Again,
because rs < 1, we expect metallic behavior. This is indeed the case, and we can use
our calculation of mean free path to estimate the electrical mobility and conductivity.

8.5.1.4 Calculating mobility and conductivity

Electron mobility is defined as

µ = eτ ∗
el/m

∗
e (8.91)

where 1/τ ∗
el is an appropriate elastic scattering rate and m∗

e is the effective electron
mass. It is usual for mobility to be quoted in CGS units of cm2 V−1 s−1. If we wish to
calculate the mobility of electrons that are characterized on average by a Fermi wave
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vector kF and a mean free path lkF , where we assume τ ∗
el = τel, then the mobility is

µ = eτel/m
∗
e = elkF/

--hkF (8.92)

Conductivity is proportional to mobility and is defined as

σ = neµ = ne2τ ∗
el

m∗
e

(8.93)

If we wish to calculate the conductivity of electrons which are characterized by a Fermi
wave vector kF and a mean free path lkF where we assume τ ∗

el = τel, then the conductivity
of the material is

σ = neµ = ne2τel

m∗
e

= ne2lkF

--hkF
(8.94)

For our particular example we can put in numbers for mobility of GaAs doped to
n = 1018 cm−3. Using CGS units,

µn = eτel/m
∗
e = 1.6 × 10−12/6 × 1012 × 0.07 × 9.1 × 10−28

= 4.1 × 103 cm2 V−1 s−1 (8.95)

As shown in Fig. 8.11, the experimentally measured value of electron mobility in bulk
n-type GaAs with carrier concentration n = 1018 cm−3 at temperature T = 300 K
is µn = 2 × 103–3 × 103 cm2 V−1 s−1. At the lower temperature of T = 77 K, the
mobility is measured to be µn = 3 × 103–4 × 103 cm2 V−1 s−1. So the agreement
between our very crude estimates and experiment is quite good.

As a next step to improve on our calculation of elastic scattering rate, 1/τel, we will
consider how electron scattering from the static distribution of ionized impurities is
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Fig. 8.11. Experimentally determined electron mobility of bulk n-type GaAs as a function of carrier
density n on a logarithmic scale for the indicated temperatures, T .
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modified due to the presence of mobile electron charge in the system. The coulomb
potential of each ionized impurity is modified, or screened, by mobile charge carriers.
Because the coulomb potential is modified, the total elastic scattering rate and its angular
dependence will also change.

8.5.2 Linear screening of the coulomb potential

Previously we have assumed that a doped semiconductor has an ionized impurity dis-
tribution that is random. The static ionized charge distribution is ρi(r), with net charge
Qi = e

∫
d3rρi (r). The total mobile charge attracted is exactly −Qi. The mobile charge

(which is considered a nearly free electron gas) is a screening charge and has its own
distribution in space given by ρs(r).

The screened potential energy from the static impurity charge and the mobile screen-
ing charge is exactly

V (r ) =
∫
d3r ′ −e2(ρi (r′) + ρs(r′))

4πε0|r − r′| (8.96)

As shown schematically in Fig. 8.12, one may imagine a pile-up of electron charge
density around the positive impurity ion. The mobile electron charge density screens
the coulomb potential due to the impurity.
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Fig. 8.12. (a) Illustration to represent the response of an electron gas to the presence of a positive
charge distribution due to an impurity ion. On average, electrons spend more time in the vicinity of
the impurity. (b) The electron density is greater than average near the positively charged impurity
ion. The impurity ion may be modeled as a point charge.

8.5.2.1 Calculating the screened potential in real space

To calculate the screened coulomb potential, let’s begin by considering an isotropic
three-dimensional free-electron gas with equilibrium time-averaged electron particle
density n0. Suppose we now place a test charge (the impurity ion) into this electron gas.
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The test charge will try to create a coulomb potential φex(r ) = −e/4πεr . However, the
response of the electron gas to the presence of the test charge is to create a new electron
particle density n(r ), which will create a new screened potential φ(r ).

We make the simplifying assumption that the relationship between the energy of an
electron at position r and its wave vector is only modified from its free-electron value
by the local potential, so that

E(k) =
--h2k2

2m
− eφ(r ) (8.97)

The assumption of a local potential can only be true for electrons localized in space
and so described (semiclassically) as wave packets. However, the electron wave pack-
ets are spread out in real space by a characteristic distance (at least 1/kF for a low-
temperature degenerate electron gas). To ensure that use of a local potential is an
accurate approximation, we must require that φ(r ) vary slowly on the scale of the wave
packet size.

The new screened potential may be written in the form

φ(r ) = 1

r
· f (r ) (8.98)

where f (r ) is a function we will determine using Poisson’s equation ∇2φ = −ρ(r )/ε,
which relates the local charge density to the local potential. The change in equilibrium
charge density is

ρ(r ) = −e(n(r ) − n0) (8.99)

where the averaged electron particle density is

n0 =
∫

d3k

(2π )3
· 2 · fk =

∫
d3k

(2π )3
· 2 · 1

e(Ek−µ)/kBT + 1
(8.100)

and the local particle density at position r is

n(r ) =
∫

d3k

(2π )3
· 2 · fk =

∫
d3k

(2π )3
· 2 · 1

e(Ek−eφ(r )−µ)/kBT + 1
(8.101)

In the expressions for n0 and n(r ), notice that fk is the Fermi–Dirac distribution
function (Eqn (7.35)) and that the factor 2 in the integral accounts for electron spin
±--h/2. Equations (8.100) and (8.101) allow us to rewrite Eqn (8.99) as

ρ(r ) = −e(n0(µ + eφ(r )) − n0(µ)) (8.102)

If the potential φ is small, then Eqn (8.102) may be expanded to first order to give

ρ(r ) = −e
(
n0(µ) + ∂n0

∂µ
· eφ(r ) − n0(µ)

)
= −e2 ∂n0

∂µ
· φ(r ) (8.103)

which shows how the change in equilibrium charge density is related to the screened
potential.
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For an isotropic, nondegenerate, three-dimensional electron gas at equilibrium, the
local change in number of carriers due to a local change in potential is given by a
Boltzmann factor, so

n = n0e
eφ/kBT (8.104)

and Poisson’s equation becomes

∇2φ(r ) = −ρ(r )

ε
= e(n − n0)

ε
= en0

ε

(
eeφ/kBT − 1

)
(8.105)

This is a nonlinear differential equation for φ(r ). To simplify the equation, we assume
that the test charge is small so that one may reasonably expect that the induced potential
should also be small. If this is true, then the exponential can be expanded to give
eeφ/kBT ∼ 1 + eφ/kBT + · · ·, so that

∇2φ(r ) ≈ e2n0

εkBT
· φ(r ) (8.106)

which is a linear differential equation for φ(r ). Substituting φ(r ) = (1/r ) · f (r ) gives

∇2φ(r ) = e2n0

εkBT
· 1

r
· f (r ) (8.107)

In spherical coordinates, the left-hand side of Poisson’s equation can be written

∇2φ(r ) = ∇2

(
1

r
· f (r )

)
= 1

r2

∂

∂r

(
r2 ∂

∂r

1

r
· f (r )

)
(8.108)

∇2φ(r ) = 1

r2

∂

∂r

(
r2

(−1

r2
· f (r ) + 1

r2

∂ f (r )

∂r

))
(8.109)

∇2φ(r ) = 1

r2

∂

∂r

(
r
∂ f (r )

∂r
− f (r )

)
= 1

r2

(
∂ f (r )

∂r
+ r

∂2 f (r )

∂r2
− ∂ f (r )

∂r

)

= 1

r

∂2 f (r )

∂r2
(8.110)

so that

∂2 f (r )

∂r2
= e2n0

εkBT
· f (r ) (8.111)

Hence, the solution for f (r ) is simply f (r ) = e−qD·r , where

q2
D = n0e2

εkBT
(8.112)

1/qD is called the Debye screening length. The Debye screening length applies to
the equilibrium, nondegenerate electron gas and scales with carrier density as

√
1/n0

and with thermal energy as
√
kBT . In this case, our screened coulomb potential in real
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space becomes

φ(r ) = −e
4πεr

· e−qD·r (8.113)

where ε = ε0εr0.
For a three-dimensional, degenerate electron system at low temperature we may

obtain the Thomas–Fermi screening length by simply identifying the Fermi energy as
the characteristic energy of the system EF = 3kBT/2. Substitution into our previous
expression for qD gives

q2
TF = 3n0e2

2εEF
(8.114)

Since EF = --h2k2
F/2m and n0 = k3

F/3π2, this expression may be rewritten as

q2
TF = kFme2

επ2--h2
(8.115)

The low-temperature Thomas–Fermi screening length 1/qTF scales with the charac-
teristic Fermi wave number as

√
1/kF. In this case, our screened coulomb potential in

real space becomes

φ(r ) = −e
4πεr

· e−qTF·r (8.116)

8.5.2.2 Calculating the screened potential and dielectric function in wave vector space

For the coulomb potential energy we had for a single ion at position r = 0

Vq (r ) = −e2

4πε0εr0r
(8.117)

This is a long-range interaction that will be screened by mobile electron charge. Suppose
there is a characteristic screening length r0. Then we approximate the screened potential
energy with a function similar to Eqn (8.113) or Eqn (8.116) so that

Vq (r ) = −e2

4πε0εr0r
· e−r/r0 (8.118)

This is a static potential energy with no time dependence. To find V (q) for this static
screened potential energy, one takes the Fourier transform:

V (q) =
∫
d3r V (r ) e−iq·r (8.119)

Leaving the integration to Exercise 8.5, the solution is

V (q) = −e2

ε0εr0
(
q2 + 1/r2

0

) (8.120)
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We now compare this with our previous expression in terms of a dielectric function

V (q) = −e2

ε(q)q2
= −e2

ε0εr0q2
(
1 + 1/q2r2

0

) (8.121)

where r0 is a characteristic screening length. It is apparent that the effect of screening is
to modify the dielectric function in such a way that ε = ε(q). For a degenerate electron
gas in the low-temperature limit one may use the Thomas–Fermi screening length such
that 1/r2

0 = q2
TF. In this case,

ε(q) = ε0εr0

(
1 + q2

TF

q2

)
(8.122)

This is the Thomas–Fermi dielectric function that, if valid for all q , describes a statically
screened, real-space potential energy of the Yukawa type

Vq (r ) = −e2

4πε0εr0r
· e−rqTF (8.123)

where

q2
TF = kFme2

επ2--h2
= kFme2

ε0εr0π2--h2
(8.124)

is the Thomas–Fermi wave number. The inverse of the Thomas–Fermi wave number
defines the length scale for screening.

To get a feel for the value of qTF, consider the semiconductor GaAs with an im-
purity concentration n = 1018 cm−3 and a conduction-band effective electron mass of
m∗

e = 0.07 m0. In this situation, qTF = 2 × 106 cm−1. This may be compared with the
Fermi wave vector, which has a value kF = (3π2n)1/3 = 3 × 106 cm−1. The fact that
1/qTF = 5 nm and 1/kF = 3 nm have comparable values is not unexpected, since they
are both a measure of highest spatial frequency that can be used by the electrons to
screen the coulomb interaction.

In Fig. 8.13(a), the Thomas–Fermi dielectric function is plotted as a function of
wave vector normalized to qTF. In Fig. 8.13(b) the Thomas–Fermi statically screened
real-space potential energy is shown, along with the bare coulomb potential energy as
a function of distance, r .

Large values of r in the real-space potential correspond to long-wavelength excita-
tions or equivalently small q scattering in wave vector space. At large values of r , there
are many conduction electrons between the impurity and the test charge. Hence, many
conduction-band electrons can respond to and effectively screen the impurity potential.
Short-wavelength or high-spatial-frequency components of the potential correspond to
small values of r in the real space potential. In this case, there are few electrons that can
respond to screen the impurity potential. High q scattering from a real-space potential
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Fig. 8.13. (a) The Thomas–Fermi screened dielectric function as a function of q/qTF and (b) the
bare-coulomb and screened-coulomb potential for the indicated values of q.

involves the incident electron getting close to the ionized impurity. When this happens,
there are fewer electrons available to screen the ion.

In general, the dielectric function will have a dynamic (or frequency-dependent) part,
so ε = ε(q, ω). However, we ignore energy exchange processes (which change electron
energy by --hω) as we consider elastic electron scattering only. There are other limitations
to our model dielectric function. For example, our discussion of Debye and Thomas–
Fermi screening adopted a semiclassical approximation that required the screened
potential to vary slowly. This approximation is not valid in the limit of r → 0 (or, equiv-
alently, large q). Substitution of the Thomas–Fermi screened coulomb potential into
Poisson’s equation predicts a screened charge density proportional to (q2

TFe
−qTF·r )/r ,

which diverges as r → 0. This deficiency may be overcome by using a different model
dielectric that does not require the screened potential to vary slowly. In one such ap-
proach, called the random phase approximation (RPA), due to Lindhard2 one exploits the
approximation that the induced charge density contributes linearly to the total potential.
The Schrödinger equation is then used to calculate the electronic wave functions self-
consistently in the presence of the new potential. However, for most calculations of prac-
tical interest (see Exercise 8.7), differences between the RPA and Thomas–Fermi results
are relatively small, and so we will continue to use the Thomas–Fermi dielectric func-
tion to calculate elastic, ionized-impurity electron scattering rates in semiconductors.

8.5.2.3 Using the Thomas–Fermi dielectric function to calculate elastic, ionized-impurity
electron scattering in GaAs

From Eqn (8.84) the elastic scattering rate is

1

τel
= 2πm

--h3k3
· n ·

(
e2

4πε0

)2

·
η=1∫

η=0

dη

(εr(q))2η3
(8.125)

2 J. Lindhard, kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 28 no. 8(1954).
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Fig. 8.14. (a) Calculated total elastic scattering rate for an electron of energy E in the conduction
band of GaAs due to the presence of the indicated random ionized impurity density. The calculation
uses the Thomas–Fermi dielectric function. (b) Elastic scattering rate as a function of scattered
angle for an electron of initial energy E = 100 meV and E = 300 meV in the conduction band of
GaAs with n = 1017 cm−3.

where η = sin(θ/2) and q = 2kη. For the Thomas–Fermi dielectric function we have
a scattering rate that is given by the expression

1

τel
= 2πm

--h3k3
· n ·

(
e2

4πε0εr0

)2

·
η=1∫

η=0

dη(
1 + q2

TF
q2

)2

η3

(8.126)

Figure 8.14(a) shows the result of using Eqn (8.126) to calculate the total elastic
scattering rate in GaAs for the indicated values of n-type impurity concentration. The
conduction band effective electron mass is taken to be m∗

e = 0.07m0, and the value
of εr0 is 13.2. The elastic scattering rate for an electron of energy E = 200 meV in
GaAs with n = 1017 cm−3 is about 2 × 1012 s−1 corresponding to a scattering time of
τ = 0.5 ps.

Figure 8.14(b) shows the calculated elastic scattering rate as a function of scattered
angle for an electron of initial energy E = 100 meV and E = 300 meV in the conduc-
tion band of GaAs with n = 1017 cm−3. It is clear that the coulomb potential favors
small-angle scattering. This is particularly true when the electron has a large value of
energy, E.

Figure 8.15 illustrates the difference in calculated elastic scattering rate as a function
of scattered angle with and without Thomas–Fermi screening for the indicated electron
energies in the conduction band of GaAs with n = 1018 cm−3.

The effect of screening is to increase the dielectric constant for small scattered wave
vector q, since

ε(q) = ε0εr0

(
1 + q2

TF

q2

)
(8.127)

This reduces the value of the integral when q is small. Small q corresponds to
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small-angle scattering since q = 2k sin(θ/2). It is small-angle scattering (or long-
wavelength excitations) that are suppressed.

Figure 8.14(a) shows that a high-energy electron scatters less than an electron of low
energy. This is typical behavior for coulomb scattering, the origin of which in this case
can be traced back to the E−3/2 term in Eqn (8.85). Using this energy dependence, it
is straightforward to show that, when elastic scattering from ionized impurities domi-
nates electron dynamics, our calculations predict that mobility has a T 3/2 temperature
dependence (see Exercise 8.6). Typically, elastic scattering from ionized impurities is
most significant at low temperatures, and so, as shown in Fig. 8.16, mobility increases
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Fig. 8.17. Illustration showing a slow-velocity electron of initial energy E and wave vector k
elastically scattered by the coulomb potential. Isotropic scattering means that the velocity of the
scattered electron is independent of the initial velocity.

with increasing temperature for T < 50 K. However, at temperatures above T = 50 K,
inelastic scattering from lattice vibrations dominates, causing a decrease in mobility
with increasing temperature. In this book, we will not develop a microscopic theory of
inelastic scattering.

8.5.2.4 Elastic electron scattering in the limit of small initial velocity

Recall that r0 is a characteristic screening length that represents the range of action of
the potential and that k is the magnitude of the initial wave vector. For a degenerate
electron gas 1/r2

0 = q2
TF, and for a nondegenerate electron gas 1/r2

0 = q2
D. If we consider

an electron with small initial velocity, then k → 0, and so kr0 � 1. The scattering
amplitude is proportional to

V (q) =
∫
d3r V (r ) e−iq·r (8.128)

In the limit kr0 � 1, then e−iq·r ∼ 1, since q = 2k sin(θ/2) and k → 0. Hence,

V (q)|k→0 =
∫
d3r V (r ) = 4π

∫
dr V (r ) · r2 (8.129)

and we may conclude that the scattering is isotropic, independent of the incident
velocity. This is illustrated in Fig. 8.17.

8.5.2.5 Elastic electron scattering in the limit of large initial velocity

For large velocity k → ∞ and so kr0 � 1. In this limit the scattering is anisotropic
into a cone �θ ∼ 1/kr0. This is illustrated in Fig. 8.18. Outside of this cone, the term
e−iq·r oscillates rapidly, and the integral of this with the slowly varying V (r ) is almost
zero. Hence, in the limit kr0 � 1

V (q)|k→∞ = 4π

r=r0∫
r=0

dr V (r ) e−iq·r · r2 (8.130)
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Fig. 8.18. Illustration showing a high-velocity electron of initial energy E and wave vector k
elastically scattered by the coulomb potential. Forward-scattering means that the velocity of the
scattered electron deviates little from the initial velocity of the electron. Electrons are
forward-scattered into a small angular cone.

8.6 Photon emission due to electronic transitions

To understand and control the emission of photons from atoms or solids, we need to
extend our knowledge to include something about the density of optical modes, light
intensity, the background energy density in thermal equilibrium, Fermi’s golden rule
for optical transitions, the occupation factor for thermally distributed photons, and the
EinsteinA andB coefficients. In the next few pages, we explore these items by example.
After completing this section, we will have the knowledge needed to consider the basic
ingredients of a laser.

8.6.1 Density of optical modes in three dimensions

For electromagnetic plane waves characterized by wave vector k, the density of optical
states in three dimensions is

Dopt
3 (k)dk = 2 · 4πk2 dk

(2π )3
= k2

π2
dk (8.131)

where the factor 2 is from the two orthogonal polarizations. This is the density of modes
per unit volume in k-space. However, in a homogeneous nondispersive medium with
refractive index nr , the wave vector k = nrω/c and dk = nrdω/c. Hence,

Dopt
3 (ω)dω = 2 · 4π

ω2n2
r

c2

dk

dω
· dω

(2π )3
= 2 · 4π

ω2n3
r

c3
· dω

(2π )3
(8.132)

Dopt
3 (ω)dω = ω2n3

r

π2c3
· dω (8.133)

is the mode density. We will use this density of optical modes to calculate the background
photon energy density at thermal equilibrium.

Notice that the density of optical modes in a medium with refractive index nr > 1 is
larger than that of free space, where nr = 1. The underlying reason for this is that light
travels more slowly in the medium.
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8.6.2 Light intensity

The Poynting vector S = E × H (Eqn (1.94)) can be used to determine the energy
flux density of a sinusoidally varying electromagnetic field. The magnitude of average
power flux is given by

|Sav| = 1

2
|E × H| = 1

2
|E0||H0| = 1

2
|E0| · ωε0

k
|E0| = 1

2
cε0 · |E0|2 (8.134)

where the factor 1/2 comes from taking the average. This is the average light intensity
of a sinusoidally oscillating electromagnetic in field free space. It follows that the
average energy density for photons in free space is

U (ω) = 1

2
ε0 · |E0|2 (8.135)

8.6.3 Background photon energy density at thermal equilibrium

The average value of radiation energy at frequency ω is given by the product of the
density of states, the occupation factor, and the energy per photon:

U (ω) = Dopt
3 (ω) · g(ω) · --hω (8.136)

We have already calculated Dopt
3 (ω), and the occupation factor for a system in thermal

equilibrium is given by the Bose–Einstein distribution function g(ω), so

U (ω) = ω2

π2c3
· 1

ehω/kBT − 1
· --hω =

--hω3

π2c3
· 1

ehω/kBT − 1
(8.137)

U (ω) is the background radiative photon energy density per unit volume per unit fre-
quency at thermal equilibrium. In an isotropic homogeneous medium with refractive
index nr, Eqn (8.137) is modified to

U (ω) =
--hω3n3

r

π2c3
· 1

ehω/kBT − 1
(8.138)

The background radiative photon energy density per unit volume per unit frequency at
thermal equilibrium in a dielectric medium with nr > 1 is always greater than in free
space, because the density of optical modes is greater (Eqn (8.133)).

8.6.4 Fermi’s golden rule for stimulated optical transitions

When deriving Fermi’s golden rule we had (Eqn (8.40))

am(t) = 1

i--h

t ′=t∫
t ′=0

Wmne
iωmnt ′dt ′ (8.139)
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where ωmn = ωm − ωn . The simplest interaction between an atomic dipole and the
oscillating electric field of a photon is by way of the dipole matrix element

Wmn = dmn · E (8.140)

where

dmn = e〈m|r|n〉 = ermn (8.141)

is the dipole and

E = E0 cos(ωt) = E0

2
(eiωt + e−iωt ) (8.142)

is the oscillating electric field.
We wish to use Fermi’s golden rule to calculate the transition rate between two states

of an atomic system due to the presence of a sinusoidally oscillating electric field. For
convenience, we consider an electric field in the z direction so that the dipole matrix
element between state |n〉 and |m〉 changes from rmn to zmn . Equation (8.139) may now
be written

am(t) = 1

i--h

e|E0|
2

zmn

t ′=t∫
t ′=0

(eiωt
′ + e−iωt

′
) · eiωmnt ′dt ′ (8.143)

am(t) = 1
--h

e|E0|
2

zmn

(
−ei(ω+ωmn )t − 1

ω + ωmn
+ e−i(ω−ωmn )t − 1

ω − ωmn

)
(8.144)

Since ω + ωmn � ω − ωmn for ω near ωmn , the first term can be set to zero:

am(t) ∼ 1
--h

e|E0|
2

zmn

(
e−i(ω−ωmn )t − 1

ω − ωmn

)
(8.145)

With this approximation,

am(t) = 1
--h

e|E0|
2

zmn
e−i(ω−ωmn )t/2

ω − ωmn

(
e−i(ω−ωmn )t/2 − ei(ω−ωmn )t/2

)
(8.146)

am(t) = i
--h
e|E0|zmn e

−i(ω−ωmn )t/2

ω − ωmn
· sin((ω − ωmn)t/2) (8.147)

Hence, the probability for a transition is

|am(t)|2 =
(
e|E0|

--h

)2

|zmn|2 sin2((ω − ωmn)t/2

(ω − ωmn)2
(8.148)

The probability of a transition to the continuum or over the complete line shape is
found by integrating over all frequency ω, so that

|am(t)|2 =
(
e|E0|

--h

)2

|zmn|2 ·
∞∫

−∞

sin2((ω − ωmn)t/2

(ω − ωmn)2
dω (8.149)
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But

∞∫
−∞

sin2(αx)

x2
dx = απ (8.150)

So, we change variables such that α = t/2 and x = (ω − ωmn), and our expression thus
becomes

|am(t)|2 =
(
e|E0|

--h

)2

|zmn|2 · π t
2

= πe2

ε0
--h2

|zmn|2U (ω) · t (8.151)

where we used Eqn (8.135) to eliminate |E0|2. For an isotropic energy density U (ω),
averaging over the three directions of polarization and differentiating with respect to
time gives the transition rate

d

dt
|am(t)|2 = πe2

3ε0
--h2

|zmn|2 ·U (ω) = B ·U (ω) (8.152)

The factor 1/3 comes from the average over polarization, and B is called the stimulated
emission rate. The probability per unit time that an atom in state |k〉 makes a transition
to any possible state | j〉 stimulated by electromagnetic radiation is

B = πe2

3ε0
--h2

|〈 j |r|k〉|2 (8.153)

8.6.5 The Einstein A and B coefficients

We already know that electromagnetic radiation can stimulate transitions between elec-
tronic states. In addition to stimulated transitions, spontaneous transitions from a high-
energy state to a lower-energy state are also possible. The existence of spontaneous
emission from an excited state is required as a mechanism to drive the system back to
thermal equilibrium. Einstein was able to show that, for a system in thermal equilibrium,
stimulated and spontaneous transition rates are related to each other.3

Consider the two-energy-level atom system illustrated in Fig. 8.19 in which op-
tical transitions take place between states |1〉 and |2〉. Under conditions of thermal
equilibrium, the rate of transition from |2〉 to |1〉 must equal that from |1〉 to |2〉, so
that

N2(B21 ·U (ω) + A) = N1B12 ·U (ω) (8.154)

where we have introduced a spontaneous transition rate A. Spontaneous transitions
occur from |2〉 to |1〉 due to vacuum fluctuations in photon density (see Section 6.5).

3 A. Einstein, Phys. Z. 18, 121 (1917).
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N2AN1B12U(ω) N2B21U(ω)

hω photon outhω photon in hω

|2>

|1>

Stimulated
by the photon
energy density U(ω)

Spontaneous
due to vacuum fluctuations
in photon density

Stimulated
by the photon
energy density U(ω)

Fig. 8.19. Energy level diagram of a two-level atom system.

In thermal equilibrium, the ratio of levels is given by a Boltzmann factor, so we may
write

B21

B12
+ A

B12 ·U (ω)
= N1

N2
= ehω/kBT (8.155)

Substituting our expression

U (ω) =
--hω3

π2c3
· 1

ehω/kBT − 1

for black-body radiation gives

B21

B12
+ A

B12
· π

2c3

--hω3
· (ehω/kBT − 1) = ehω/kBT (8.156)

which can only be true for any temperature T if (T → 0)

A

B12
· π

2c3

--hω3
= 1 (8.157)

and (T → ∞)

B21

B12
= 1 (8.158)

Hence, we obtain the Einstein relations

A =
--hω3

π2c3
· B12

B12 = B21 (8.159)

The stimulated and spontaneous transition rates are related to each other. Using
Eqn (8.153) for the stimulated emission rate 1/τstim = B, we have

B = πe2

3ε0
--h2

|〈 j |r|k〉|2 (8.160)

and it follows that the spontaneous emission rate 1/τsp = A is just

A = e2ω3

3πε0
--hc3

|〈 j |r|k〉|2 (8.161)
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It can be shown (see Exercise 8.9) that since the time dependence of spontaneous
light emission intensity from a number of excited atoms is I (t) = I (t = 0)e−At =
I (0)e−t/τsp , the associated spectral line has a Lorentzian line shape with FWHM 1/τsp =
A measured in units of rad s−1.

If light emission occurs in an isotropic, homogeneous medium characterized by
refractive index nr > 1, then the density of optical modes contributing to U (ω) (Eqn
(8.138)) increases by a factor n3

r and Eqn (8.35) is modified to

A = e2ω3n3
r

3πε0
--hc3

|〈 j |r|k〉|2 (8.162)

8.6.5.1 Estimation of the spontaneous emission coefficient A for the hydrogen
|2p〉 → |1s〉 transition
As a first application of quantum mechanical spontaneous emission, consider a hy-
drogen atom. If a hydrogen atom in free space is in an excited state with n = 2,
then quantum mechanics predicts the atom will relax to the n = 1 ground state by
spontaneous emission of a photon. This physical process limits the excited-state
lifetime on average to a time characterized by the spontaneous emission lifetime
τsp = 1/A. To estimate this value, we start with our expression for the spontaneous
emission coefficient given by Eqn (8.161). For the n = 2 to n = 1 transition the
emission wavelength is λphoton = 122 nm (Eqn (2.75)), and we calculate optical fre-
quency using ck = ω = c2π/λphoton. The dipole matrix element can be estimated as
〈 j |r|k〉 ∼ aB = 0.053 nm, where aB is the Bohr radius of the electron in a hydrogen
atom (Eqn (2.70)). Putting in the numbers gives

A = (2π )3

λ3
photon

· e2

3πε0
--h

· a2
B = 1.12 × 109 s−1 = 1

τsp
(8.163)

Hence, an estimate for the spontaneous emission time is τsp = 0.89 ns. A more detailed
calculation gives 〈 j |r|k〉 ≈ 1.12 · aB for the |2p〉 → |1s〉 transition in hydrogen, so that
τsp = 0.71 ns.

The electromagnetic wave produced by the transition takes energy from the excited
state and converts it to electromagnetic energy. Typically, the electromagnetic field
intensity decays as e−t/τsp , so that the length of a photon when τsp ∼ 1 ns is about
0.3 m.

As the electron makes its transition, the superposition of the |2p〉 and |1s〉 states
causes the hydrogen electron probability density cloud to oscillate at difference energy
--hω = �E = E2 − E1 = 10.2 eV. The oscillation in expectation value of electron po-
sition creates a dipole moment, and electromagnetic radiation is emitted at wavelength
λphoton = 2πc/ω = 0.122 �m, carrying away angular momentum of magnitude ±--h
(quantum number ±1).
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8.6.5.2 Dipole selection rules for optical transitions

The dipole matrix element d jk = e〈 j |r|k〉 (Eqn (8.141)) gives rise to a set of
rules for optical transitions at frequency ω between initial eigenstate |k〉 and final
eigenstate | j〉. Dipole radiation requires a parity difference (even-to-odd or odd-
to-even) between initial and final states to ensure oscillation in the mean posi-
tion of charge. Without oscillation in the mean position of charge, there can be no
dipole radiation. Clearly, the dipole matrix element 〈even(odd)|r |odd(even)〉 �= 0,
whereas 〈even(odd)|r |even(odd)〉 = 0 from symmetry. Hence, for quantum numbers
that sequentially alternate between odd and even parity we expect 〈 j |r |k〉 �= 0 for
j − k = odd. This type of condition is often called a dipole selection rule. Other rules
also apply. For example, energy conservation requires that the separation in energy
between initial and final states is the energy of the photon, --hω.

To illustrate a practical application of these ideas, we will now use dipole selection
rules to calculate the spontaneous emission lifetime for an excited state of an electron
in a one-dimensional, infinite, rectangular potential well.

8.6.5.3 Spontaneous emission lifetime of an electron in a one-dimensional, rectangular
potential well with infinite barrier energy

As part of the design of a laser, we wish to calculate the spontaneous emission life-
time of the first excited state for an electron confined to a one-dimensional, infinite,
rectangular potential well of width L = 12.3 nm. Figure 8.20(a) is a sketch of a one-
dimensional, rectangular potential well with infinite barrier energy showing energy
eigenvalues E1, E2, and E3. Figure 8.20(b) sketches the first three energy eigenfunctions
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Fig. 8.20. (a) Sketch of a one-dimensional, rectangular potential well with infinite barrier energy
showing the energy eigenvalues E1, E2, and E3. Spontaneous emission of a photon can occur
between two states when a dipole matrix element exists between the two states. This is the case for
ψ2 → ψ1 and ψ3 → ψ2. No dipole radiation can occur between the second excited state ψ3 and the
ground state ψ1, because the dipole matrix element is zero between states of the same parity.
(b) Sketch of the energy eigenfunctions ψ1, ψ2, and ψ3 for the potential shown in (a).
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ψ1, ψ2, and ψ3 for the potential shown in Fig. 8.20(a). In general, the eigenstates are
| j〉 = A sin(π j x/L), where j is a nonzero positive integer. Normalization requires
〈 j | j〉 = 1 giving A = √

2/L . For j odd | j〉 is of even parity, and for j even | j〉 is of
odd parity.

To help find a quick solution, we note that the de Broglie wavelength λe of an electron
measured in nanometers is related to the electron energy E measured in electron volts
through the relation

λe(nm) = 1.23

(E(eV))1/2
(8.164)

and that the wavelength of a photon λphoton measured in micrometers is related to its
energy E measured in electron volts through

λphoton(�m) = 1.24

E(eV)
(8.165)

The electron wavelength of the ground state in this potential is 2L = 24.6 nm, and
the wavelength of the first excited state is L = 12.3 nm. This gives

E1 =
(

1.23

2L

)2

=
(

1

20

)2

= 2.5 meV (8.166)

E2 =
(

1.23

2L

)2

=
(

1

10

)2

= 10 meV (8.167)

Hence, the wavelength of the emitted photon is just

λphoton = 1.24

E2 − E1
�m = 1.24

7.5 × 10−3
�m = 165.3 �m (8.168)

We now calculate the dipole matrix element x jk between two electron states | j〉 and
|k〉.

x jk = 〈 j |x |k〉 = 2

L

L∫
0

x sin( jπx/L) sin(kπx/L)dx (8.169)

x jk = 1

L

L∫
0

x(cos(( j − k)πx/L) − cos(( j + k)πx/L))dx (8.170)

where we used the fact that 2 sin(x) sin(y) = cos(x − y) − cos(x + y). Solving the
integral by parts and introducing the integer parameter m, we have



397 8.6 Photon emission due to electronic transitions

L∫
0

x cos(mπx/L)dx =
[
L

mπ
x sin

(
mπx

L

)]L
0

− L

mπ

L∫
0

sin

(
mπx

L

)
dx

=
[(

L

mπ

)2

cos

(
mπx

L

)]L
0

(8.171)

For even values of m, this gives

L∫
0

x cos(mπx/L)dx = 0 (8.172)

and for odd values of m

L∫
0

x cos(mπx/L)dx = − 2L2

m2π2
(8.173)

When m = 0, the integral is

L∫
0

x cos(mπx/L)dx = L2

2
(8.174)

Since j and k are integers, m is even if | j〉 and |k〉 have the same parity, m is odd if | j〉
and |k〉 are of different parity, and m = 0 if j = k.

In the situation we are considering, the state functions with odd integer values are of
even parity and the state functions with even integer values are of odd parity. Hence,
we may conclude the dipole matrix element

x jk = 0 (8.175)

for | j〉 and |k〉 of the same parity,

x jk = − 1

L

2L2

π2

(
1

( j − k)2
− 1

( j + k)2

)
= −2L

π2

(
( j + k)2 − ( j − k)2

( j − k)2( j + k)2

)

= −2L

π2

4 jk

( j2 − k2)2
(8.176)

for | j〉 and |k〉 of different parity, and

x jk = 1

L

2L2

π2
= L

2
(8.177)

for j = k. As shown in Fig. 8.20(a), electron transitions involving dipole radiation of
light are allowed from the first excited state to the ground state (ψ2 → ψ1) and from
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the second excited state to the first excited state (ψ3 → ψ2). However, dipole radiation
from the second excited state to the ground state (ψ3 → ψ1) does not occur, because
the dipole matrix element is zero between states of the same parity.

For the transition between the first excited state |k = 2〉 and the ground state | j = 1〉,
the states |k〉 and | j〉 are of different parity and so, using Eqn (8.176), we have the dipole
matrix element

x12 = −16L

9π2
(8.178)

The Einstein spontaneous emission rate given by Eqn (8.161) can be rewritten for light
of wavelength λphoton with units of length in nanometers and x12 in units of nanometers
as

A = 7.235 × 1017

λ3
photon

|〈 j |r |k〉|2 (8.179)

Hence, the spontaneous emission lifetime for the transition between |2〉 and |1〉 is given
by

τsp = 1

A
= λ3

photon

7.235 × 1017

1

|x12|2 = (1.65 × 105)3

7.235 × 1017
· 81π4

256 × (12.3)2
= 1.26×10−3 s

(8.180)

The frequency spectral line width is just A = 1/τsp measured in units of rad s−1.
Our results would be modified if we were to consider the same transition for an

electron in the conduction band of GaAs confined by a one-dimensional quantum
well potential of the same width L . In this case, the conduction-band electron has a low
effective electron mass ofm∗

e = 0.07m0, the effect of which is to increase the separation
in electron energy levels by a factor of 14.3 and shorten the emission wavelength to
11.5 �m compared with our calculation for a bare electron. The Einstein spontaneous
emission rate is also increased by a factor n3

r , where nr is the refractive index of
light in the semiconductor at the emission wavelength (Eqn (8.162)). For emission
wavelengths near 10 �m, the bulk refractive index for GaAs is nr ∼ 3.3, allowing us
to estimate this contribution to an increase in spontaneous emission rate of n3

r ∼ 36.
The combination of reduced emission wavelength and the presence of a medium with
refractive index nr changes the spontaneous emission lifetime in Eqn (8.180) by a factor
(m∗

e/nrm0)3 = (0.07/3.3)3 = 9.5 × 10−6, so that the spontaneous emission lifetime in
the conduction band of a GaAs rectangular potential well of width L = 12.3 nm for
wavelength λphoton = 11.5 �m is τsp = 1.2 × 10−8 s.

The design of a device that has efficient conversion of excited electron states to
photons requires placing electrons into ψ2 states. One way to achieve this is to use
tunnel injection. Figure 8.21 shows a cross-section of a GaAs/AlGaAs conduction-band
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−e
ψ2

ψ1 −e

hω photon out

Fig. 8.21. Schematic cross-section of a GaAs/AlGaAs conduction-band profile with electron tunnel
injection into ψ2 states and optical transition to ψ1 states.

profile with just such a tunnel injector. These ideas have been pursued to create a
semiconductor laser with emission at wavelength in the 10 �m range.4

8.7 Example exercises

Exercise 8.1
(a) A particle of mass m is in a one-dimensional, rectangular potential well for which
V (x) = 0 for 0 < x < L and V (x) = ∞ elsewhere. The particle is initially prepared
in the ground state ψ1 with eigenenergy E1. Then, at time t = 0, the potential is very
rapidly changed so that the original wave function remains the same but V (x) = 0 for
0 < x < 2L and V (x) = ∞ elsewhere. Find the probabilities that the particle is in the
first, second, third, and fourth excited states of the system when t ≥ 0.

(b) Consider the same situation as (a) but for the case in which at time t = 0
the potential is very rapidly changed so that the original wave function remains the
same but V (x) = 0 for 0 < x < γ L , where 1 < γ < 5, and V (x) = ∞ elsewhere.
Write a computer program that plots the probability of finding the particle in the
ground, first, second, third and fourth excited states of the system as a function of
the parameter γ .

Exercise 8.2
The coulomb potential energy in real space is

V (r ) = −e2

4πε0εr0r

where εr0 is the low-frequency dielectric constant of the isotropic medium. By taking
the Fourier transform of V (r ), show that the coulomb potential energy in wave-vector

4 For an introduction to the quantum cascade laser, see J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchi-
noson, and A. Y. Cho, Science 264, 553 (1994).
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space is

V (q) = −e2

ε0εr0q2

Exercise 8.3
Show that the structure factor is given by

s(q) =
∣∣∣∣∣
n∑
j=1

e−iq·R j

∣∣∣∣∣
2

= n

for a density of n sites at random positions R j .

Exercise 8.4
Starting from the expression for total elastic scattering rate of a particle of mass m and
charge e from a density of n ionized impurities given by

1

τel
= 2π

--h
· n
∫

d3q

(2π )3

∣∣∣∣ e2

ε(q)q2

∣∣∣∣
2

δ(E(k) − E(k − q))

show that this may be rewritten as

1

τel
= 2πm

--h3k3
· n ·

(
e2

4πε0

)2

·
η=1∫

η=0

dη

(εr (q))2η3

for an isotropic semiconductor with a density n randomly positioned ionized impurities.
In this expression ε(q) = ε0εr(q) and η = sin(θ/2), where θ is the angle between the
initial wave vector k and final wave vector (k − q) of the charged particle. Assume that
the kinetic energy of the particle is given by E = --h2k2/2m.

Exercise 8.5
Given that the screened coulomb potential energy in an isotropic medium is

Vq (r ) = −e2

4πε0εr0r
· e−r/r0

Calculate V (q) by taking the Fourier transform, and show that

V (q) = −e2

ε0εr0
(
q2 + 1/r2

0

)
Exercies 8.6
Analyze the influence on current flow (for example mobility) of conduction-band elec-
trons scattering elastically off ionized impurities in an n-doped semiconductor crystal
when:
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(a) The temperature of the crystal is increased. What do you expect to happen to the
electron mobility as a function of temperature?

(b) The positions of n ionized impurities in a single crystal plane are correlated.
Consider the case of spatial correlations arising from a net repulsion between ionized
impurity sites occurring during crystal growth and the case of net attraction (resulting
in spatial clustering of ionized impurities in the crystal).

Exercise 8.7
Write a computer program using f77, c++, MATLAB or similar software to calculate the
total elastic scattering rate 1/τel(E) of a single conduction band electron from randomly
positioned ionized impurities in ann-doped semiconductor in the low-temperature limit.
As a concrete example, use the parameters for GaAs (a) with an impurity concentration
n = 1 × 1018 cm−3 and (b) with an impurity concentration n = 1 × 1014 cm−3. The
effective electron mass near the conduction-band minimum of GaAs ism∗

e = 0.07 × m0

(where m0 is the bare electron mass), and the low-frequency dielectric constant is
εr0 = 13.2. Use the Thomas–Fermi dielectric function, and compare your results with
the RPA dielectric function, which is

εr(q) = εr0 + r0
s

x3
ξ

(
x +

(
1 − x2

4

)
ln

∣∣∣∣ x + 2

x − 2

∣∣∣∣
)

where

r0
s =

(
3

4πn

)1/3( m∗
ee

2

4πε0
--h2

)

ξ = 1

π2

(
32π2

9

)1/3

x = q

kF

In the equation, q is the scattered wave number and kF = (3π2n)1/3 is the Fermi wave
number. Calculate the scattering rate for electron energies E = 300 meV and E =
100 meV above the conduction-band minimum as a function of scattering angle θ

for both cases and discuss the significance and meaning of your results. What are the
changes to both your results and interpretation when you weight the angular integral
by a factor (1 − cos(θ ))?

Exercise 8.8
A time-varying Hamiltonian H (t ′) induces transitions from state |k〉 at time t ′ = 0
to a state | j〉 at time t ′ = t , with probability Pk→ j (t). Use first-order time-dependent
perturbation theory to show that if Pj→k(t) is the probability that the same Hamiltonian
brings about the transition from state | j〉 to state |k〉 in the same time interval, then
Pk→ j (t) = Pj→k(t).
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Exercise 8.9
A single excited state of an atom decays radiatively to the ground state. Derive the time
evolution of radiated power, P(t) for N0 atoms. Show that P(t) = No

--hω0Ae−γ t , where
--hω0 is the average photon energy and 1/γ is the radiative lifetime. The electric field
is E(t) = eE0e−γ t/2 cos(ω0t) for t ≥ 0 and E(t) = 0 for t < 0. Derive the expression
for the homogeneously broadened spectral intensity, |S(ω)|. In the limit γ � ω0, find
an expression for |S(ω)| near ω = ω0. If there are different isotopes of the atom in the
gas or Doppler shifts, how do you expect the appearance of the line shape, |S(ω)|, to
change?

Exercise 8.10
(a) What determines the selection rules for optical transitions at frequency ω between
states |k〉 and | j〉?

(b) Show that the inverse of the Einstein spontaneous emission coefficient, τ ,

1

A
= 3πε0

--hc3

e2ω3|〈 j |r |k〉|2 = τ

can be rewritten for light emission of wavelength λ from electronic transitions in a
harmonic oscillator potential as

1

A
= 45 × λ2(�m) = τ (ns)

where wavelength is measured in micrometers and time τ is measured in nanoseconds.
(c) Calculate the spontaneous emission lifetime and spectral line width for an electron

making a transition from the first excited state to the ground state of a harmonic oscillator
potential characterized by force constant κ = 3.59 × 10−3 kg s−2.

SOLUTIONS

Solution 8.1
(a) Following the solution given at the beginning of this chapter, the probability of
finding the particle in an excited state when t ≥ 0 is given by the square of the overlap
integral between the ground state ψ1 when t < 0 and the excited state when t ≥ 0. After
the change in potential the new state ψ is not an eigenfunction of the system. The new
eigenfunctions of a rectangular potential well of width 2L with infinite barrier energy
are ψm = √

1/L sin(kmx), where km = mπ/2L for m = 1, 2, 3, . . . .
Since the state ψ is not an eigenfunction, it may be expressed as a sum of the new

eigenfunctions, so that

ψ =
∑
m

amψm
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The coefficients am are found by multiplying both sides by ψ∗
m and integrating over all

space. This overlap integral gives the coefficients

am =
∫

ψ∗
mψdx

The effect of the overlap integral is to project out the components of the new eigen-
states that contribute to the wave function ψ . The value of |am |2 is the probability of
finding the particle in the eigenstate ψm .

The probability that the particle is in the new first excited state when t ≥ 0 is given
by the square of the overlap integral, a2:

a2 = 〈ψm=2|ψ〉 =
x=L∫
x=0

√
1

L
sin

(
2πx ′

2L

)√
2

L
sin

(
πx ′

L

)
dx ′

a2 =
√

2

L

x=L∫
x=0

(
1

2
− 1

2
cos

(
2πx ′

L

))
dx ′ =

√
2

L

[
x

2
+ 1

2
· L

2π
sin

(
2πx ′

L

)]L
0

a2 =
√

2

L

(
L

2
+ 0

)
= 1√

2

The probability of finding the particle in the first excited state |ψm = 2〉 is

|a2|2 = 1

2
= 0.50

We can go on to find the probability of excitation of other states. The next few are

|a3|2 = 32

25π2
= 0.129 69

|a4|2 = 0.0

|a5|2 = 32

212π2
= 0.007 352 1

That |a2|2 has the highest probability and |a4|2 is zero is a direct consequence of
symmetry imposed by the fact that in the problem the width of the potential well
exactly doubled.

(b) In this part of the exercise, the new eigenfunctions of a rectangular potential
well of width γ L with infinite barrier energy are ψm = √

2/γ L sin(kmx), where km =
mπ/γ L for m = 1, 2, 3, . . .. We will consider the situation in which γ takes on values
1 < γ ≤ 5.

As in (a), the probability of finding the particle in the eigenstate ψm when t ≥ 0 is
given by the square of the overlap integral, am :

am = 〈ψm |ψ〉 = 2

L

√
1

γ

x=L∫
x=0

sin

(
mπx ′

γ L

)
sin

(
πx ′

L

)
dx ′
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Using 2 sin(x) sin(y) = cos(x − y) − cos(x + y) to rewrite the intergrand gives

am = 1

L

√
1

γ

x=L∫
x=0

cos

((
m

γ
− 1

)
πx ′/L

)
− cos

((
m

γ
+ 1

)
πx ′/L

)
dx ′

am =
√

1

γ




sin

((
m

γ
− 1

)
π

)
(
m

γ
− 1

)
π

−
sin

((
m

γ
+ 1

)
π

)
(
m

γ
+ 1

)
π




am =
√

1

γ

(
sinc

((
m

γ
− 1

)
π

)
− sinc

((
m

γ
+ 1

)
π

))

Hence, the probability of finding the particle in the state |ψm〉 is just

|am |2 = 1

γ

(
sinc

((
m

γ
− 1

)
π

)
− sinc

((
m

γ
+ 1

)
π

))2

See the following figure.
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Solution 8.2
The bare coulomb potential energy in real space is

v(r ) = −e2

4πε0r

where e is electron charge. To obtain the potential energy in wave-vector space, one
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may take the Fourier transform

v(q) =
∫
d3r v(r ) e−iq·r = −e2

4πε0

∫
d3r

1

r
e−iq·r

v(q) = −e2

4πε0

∞∫
r=0

π∫
θ=0

1

r
e−iqr cos θ2πr2 sin θdθdr

To perform the integral over θ , it is helpful to make the change of variable cos θ = x ,
giving dx = − sin θdθ . The integral over θ becomes

π∫
θ=0

e−iqr cos θ sin θdθ = +
x=1∫

x=−1

e−iqr xdx = 1

iqr
(eiqr − e−iqr ) = 2 sin(qr )

qr

Substituting this result into our expression for v(q) gives

v(q) = −e2

4πε0

∞∫
r=0

1

r
2πr2 2 sin(qr )

qr
dr = −e2

4πε0

4π

q

∞∫
r=0

sin(qr )dr

v(q) = −e2

ε0q

(− cos(∞)

q
+ cos(0)

q

)

and, hence,

v(q) = −e2

ε0q2

since cos(∞) ≡ 0.

Solution 8.3
The structure factor for an impurity density n of ions at positions R j may be written as

s(q) =
∣∣∣∣∣
n∑
j=1

e−iq·R j

∣∣∣∣∣
2

=
n∑
j=1

e−iq·R j

n∑
k=1

eiq·Rk =
n∑
j=1

1 +
n∑
j �=k

e−iq·(R j−Rk )

The second term on the right-hand side is a pair correlation that can be written in
terms of sine and cosine functions.

s(q) = n +
n∑
j �=k

(cos(q · (R j − Rk)) + i sin(q · (R j − Rk)))

For a large number of impurities randomly positioned on lattice sites, the average value
of the sine and cosine terms is zero, and we may write

s(q) = n

It is important to remember that in small systems containing relatively few randomly
positioned impurity sites the average over the sine and cosine terms will not become
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zero. In this case, there will always be some pair correlation contributing to the structure
factor.

Solution 8.4
It is given that the total elastic scattering rate of an electron of mass m and charge e
from a density of n ionized impurities is

1

τel
= 2π

--h
· n
∫

d3q

(2π )3

∣∣∣∣ e2

ε(q)q2

∣∣∣∣
2

δ(E(k) − E(k − q))

We wish to evaluate the total elastic scattering rate of an electron with energy E , wave
vector k, and mass m, in the energy interval dE . To do this, we need to express the
volume element d3q in terms of energy E and scattering angle θ . A good way to proceed
is to remind ourselves that we are working in three-dimensional k-space and then draw
a diagram of the volume element:

θ

φ

k(kx, ky, kz)

ksin(θ)

kcos(θ)

ksin(θ)cos(φ)

ksin(θ)sin(φ)

kz

kx

ky

q

θ/2

k

k'
q

θ

k

k'

θ/2

dθ

90ο − θ/2

Radius
q sin (90ο − θ/2) = q cos (θ/2)

= 2k sin (θ/2) cos (θ/2)

kdθdk

Initial electron state

Scattered
electron
state

with electron moving
in z direction

kz

For elastic scattering in an isotropic material q = 2k sin(θ/2). The energy of the elec-
tron is E = --h2k2/2m, and momentum conservation requires k = k ′ + q. The volume
element d3q is

d3q = k sin(θ )dφ · kdθ · dk
Noting that sin(θ ) = 2 sin(θ/2) cos(θ/2), we can write

d3q = 2k · sin(θ/2) cos(θ/2)dφ · kdθ · dk
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Over the infinitesimal energy dE , this becomes

d3q = 2k · sin(θ/2) cos(θ/2)dφ · kdθ ·
(
dk

dE

)
dE

Since energy E = --h2k2/2m, we have dk/dE = m/--h2k. Substituting into our ex-
pression for d3q and integrating over φ gives

4π · km--h2
· sin(θ/2) cos(θ/2)dθdE

Substituting this into the equation for total elastic scattering rate gives

1

τel
= 2π

--h
· n ·

θ=π∫
θ=0

4πdθ

(2π )3
·
∣∣∣∣ e2

ε(q)4k2 sin2(θ/2)

∣∣∣∣
2

· km--h2
· sin(θ/2) cos(θ/2)

1

τel
= πm

--h3k3
· n · e4

16π2
·

θ=π∫
θ=0

dθ · sin(θ/2) cos(θ/2)

ε(q)2 sin4(θ/2)

so that

1

τel
= 2πm

--h3k3
· n ·

(
e2

4πε0

)2

·
θ=π∫

θ=0

d(θ/2) · cos(θ/2)

εr(q)2 sin3(θ/2)

where we have used the fact ε(q) = ε0εr(q). We now let η = sin(θ/2), so that dη =
cos(θ/2)d(θ/2). This allows us to write

1

τel
= 2πm

--h3k3
· n ·

(
e2

4πε0

)2

·
η=1∫

η=0

dη

(εr (q))2η3

which is the same as Eqn (8.84).
Since k = (2mE/--h2)1/2, we see that

1

τel
(E) = 2πm

--h3
· n ·

(
e2

4πε0

)2

·
( --h2

2mE

)3/2

·
η=1∫

η=0

dη

(εr(2kη))2η3

which may be written as

1

τel
(E) = π

(2m)1/2
· n ·

(
e2

4πε0

)2

· E−3/2

η=1∫
η=0

dη

(εr(2kη))2η3

This is just Eqn (8.85).

Solution 8.5
It is given that the screened coulomb potential energy is

Vq (r ) = −e2

4πε0εr0r
· e−r/r0
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Notice that the subscript q appearing in Vq (r ) indicates that the potential in wave-vector
space is q-dependent. To calculate the potential energy in wave-vector space, we take
the Fourier transform for the real-space potential energy. This gives

V (q) =
∫
d3r V (r ) e−iq·r

V (q) =
φ=2π∫
φ=0

dφ

θ=π∫
θ=0

dθ sin(θ )

r=∞∫
r=0

dr r2V (r ) e−iqr cos θ

V (q) = 2π

r=∞∫
r=0

dr r2V (r )

θ=π∫
θ=0

dθ sin(θ ) e−iqr cos θ

We now make the change of variables x = cos(θ ), so that dx = −sin(θ )dθ , remem-
bering that cos(π ) = −1 and cos(0) = 1:

V (q) = 2π

r=∞∫
r=0

dr r2V (r )

x=1∫
x=−1

dx e−iqr x = 2π

r=∞∫
r=0

dr r2V (r ) ·
(

1

iqr
eiqr − 1

iqr
e−iqr

)

Substituting in the function

Vq (r ) = −e2

4πε0εr0r
· e−r/r0

allows us to rewrite the integral

V (q) = −e2

2ε0εr0
· 1

iq

r=∞∫
r=0

(
e
−
(

1
r0

−iq
)
r − e

−
(

1
r0

+iq
)
r
)
dr

= −e2

2ε0εr0
· 1

iq

(
1

1
r0

− iq
− 1

1
r0

+ iq

)

V (q) = −e2

2ε0εr0
· 1

iq


 2iq

1

r2
0

+ q2


 = −e2

ε0εr0


 1

1

r2
0

+ q2


 = −e2

ε0εr0q2
(
1 + q2/r2

0

)

An alternative way to perform the integral is as follows. We start with

V (q) = 2π

r=∞∫
r=0

dr r2V (r ) ·
(

1

iqr
eiqr − 1

iqr
e−iqr

)
= 2π

r=∞∫
r=0

dr r2V (r ) · 2

qr
sin(qr )

Substituting in the function

Vq (r ) = −e2

4πε0εr0r
· e−r/r0
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gives

V (q) = −e2

ε0εr0q

r=∞∫
r=0

dr e−r/r0 · sin(qr ) = −e2

ε0εr0q
· I

where we have separated out the integral

I =
r=∞∫
r=0

dr e−r/r0 · sin(qr )

We perform this integral by parts
∫
UV ′ = UV − ∫

U ′V , where U = sin(qr ),U ′ =
q cos(qr ), V ′ = e−r/r0 , and V = −r0e−r/r0 :

I = [−r0 sin(qr )e−r/r0
]r=∞
r=0 +

r=∞∫
r=0

dr e−r/r0 · qr0 cos(qr )

The term in the square brackets is zero. Performing the remaining integral by parts
using U = cos(qr ),U ′ = −q sin(qr ), V ′ = e−r/r0 , and V = −r0e−r/r0 gives

I = [− qr2
0 cos(qr )e−r/r0

]r=∞
r=0 −

r=∞∫
r=0

dr e−r/r0 · q2r2
0 cos(qr )

I = qr2
0 − q2r2

0 I

I
(
q2r2

0 + 1
) = qr2

0

I = qr2
0

(q2r2
0 + 1)

= q

(q2 + 1/r2
0 )

We now substitute in our expression for V (q) to give

V (q) = −e2

ε0εr0q
· q(
q2 + 1/r2

0

) = −e2

ε0εr0
(
q2 + 1/r2

0

) = −e2

ε0εr0q2
(
1 + q2/r2

0

)
Solution 8.6
Mobility µ = eτ ∗/m∗ is a measure of an appropriate electron scattering time τ ∗. Con-
ductivity is related to the mobility via the relation σ = ne2τ ∗/m∗ = enµ.

(a) If elastic ionized impurity scattering dominates mobility in a bulk n-type semicon-
ductor then one would expect τ ∗ → τel where τel is the elastic scattering time given by

1

τel
(E) = π

(2m)1/2
· n ·

(
e2

4πε0

)2

· E−3/2 ·
η=1∫

η=0

dη

(εr(2kη))2η3

Hence, τel ∼ E3/2. Since, for a nondegenerate electron gas, the average energy of an
electron in thermal equilibrium is proportional to the thermal energy kBT , it follows
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that τel ∼ (kBT )3/2. When elastic ionized impurity scattering dominates mobility, one
may surmise that the mobility will increase with increasing temperature as T 3/2.

(b) Coulomb scattering is weighted to small-angle (small-q) scattering. Elastic ion-
ized impurity scattering is screened. Small-q scattering is screened most effectively. If
there are spatial correlations in the positions of ionized impurities, this can influence
the structure factor for a given q.

A net repulsion between impurities will tend to give rise to a long-range correlation
in impurity position. Long-range order will tend to move spectral weight in the structure
factor to points in the Brillouin zone of the resulting sublattice. Such order can result
in a suppression in small-q scattering.

A net attraction between impurities will tend to give rise to clusters of impurity atom
positions. In this case, there is not any long-range order, and scattering strength can
be enhanced for high-q scattering because clusters can have large effective coulomb
scattering cross-sections.

Solution 8.7

GaAs
n = 1018 cm−3

me* = 0.07 × m0

ε0r = 13.2

Elastic scattering angle, θ (degree)

160140120100806040200E
la

st
ic

 s
ca

tt
er

in
g 

ra
te

, 1
/τ

el
(×

 1
011

s−1
de

gr
ee

−1
)

GaAs
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Thomas–Fermi screening predicts a lower scattering rate (lower of each curve for a
given energy in the above figures) than the RPA model. This occurs because screening
is overestimated in the Thomas–Fermi model. In fact, in this model, screened charge
density is proportional to (q2

TFe
−qTF·r )/r , which diverges as r → 0. Notice that there

is very little difference between the two models when carrier concentration is high
and screening is very effective in reducing scattering in both models. The differences
between Thomas–Fermi and RPA are enhanced when carrier concentration is low.

Weighting the angular integral by (1 − cos(θ )) has the effect of suppressing small-
angle scattering. Such (1 − cos(θ )) weighting is used as a way to estimate the influence
scattering angle has on electrical conductivity σ = ne2τel/m∗

e . The intuitively obvious
fact that back-scattering corresponding to θ = 180◦ has a much larger effect in reducing



411 8.7 Example exercises

conductivity than small-angle scattering is quantified by using the (1 − cos(θ )) weight-
ing term when calculating elastic scattering time, τel.

Solution 8.8
The probability of a transition from state |k〉 to state | j〉 at time t is

Pk→ j (t) = |ck→ j (t)|2

and the first-order expression for ck→ j (t) is

ck→ j (t) = 1

i--h

t ′=t∫
t ′=0

〈 j |H (t ′)|k〉 · eiω jk t ′dt (1)

The coefficient c j→k(t) for the reverse transition is given by the same expression
with the indices k and j interchanged:

ck→ j (t) = 1

i--h

t ′=t∫
t ′=0

〈k|H (t ′)| j〉 · eiωk j t ′dt (2)

Since the Hamiltonian H is a Hermitian operator, it follows that 〈k|H (t ′)| j〉 =
〈 j |H (t ′)|k〉∗. Also, the change in energy due to the transition is --hωk j = Ek − E j =
−--hω jk . Therefore, the integral in Eqn (2) is the complex conjugate of the one in
Eqn (1). Hence, c j→k(t) = −(ck→ j (t))∗, giving

Pj→k(t) = |c j→k(t)|2 = Pk→ j (t)

The probability of transition between two states due to external stimulus is the same
for transitions in either direction. This result is known as the principle of detailed
balance.

Solution 8.9
There are N0 excited atoms that can radiatively decay to the ground state with an av-
erage radiative lifetime 1/γ . The rate equation for the population of excited atoms is
dN/dt = −γ N , with solution N (t) = N0e−γ t . Power radiated is the number of photons
emitted per unit time multiplied by the energy per photon, so that P(t) = N0

--hω0γ e−γ t .
We are given the electric field as a function of time E(t) = E0e−γ t/2 cos(ω0t) for
t ≥ 0,E(t) = 0 for t < 0. The spectral function, |S(ω)| = E∗(ω)E(ω)/Z0, is the Fourier
transform of the temporal electric field intensity.

We begin by calculating

E(ω) =
∞∫

0

E(t)e−iωt dt
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Substituting in the expression for E(t) and noting that cos(ω0t) = 1
2 (eiω0t + e−iω0t ),

E(ω) = E0

2

∞∫
0

e−γ t/2 · e−iωt(eiω0t + e−iω0t
)
dt

E(ω) = E0

2

∞∫
0

(
e−(γ /2+iω)t eiω0t + e−(γ /2+iω)t e−iω0t

)
dt

E(ω) = E0

2

∞∫
0

(
e−(γ /2+i(ω−ω0))t + e−(γ /2+i(ω+ω0))t

)
dt

E(ω) = E0

2

[
e−(γ /2+i(ω−ω0))t

−(γ /2 + i(ω − ω0))
+ e−(γ /2+i(ω+ω0))t

−(γ /2 + i(ω + ω0))

]∞

0

E(ω) = E0

2

(
1

γ /2 + i(ω − ω0)
+ 1

γ /2 + i(ω + ω0)

)

E(ω) = E0

2


 γ + 2iω

ω2
0 − ω2 + (γ /2)2 + iγω

2
+ iγω0

2
+ iγω

2
− iγω0

2




E(ω) = E0

2

(
γ + 2iω

ω2
0 − ω2 + (γ /2)2 + iγω

)

E(ω) = E0

(
γ /2 + iω

ω2
0 − ω2 + (γ /2)2 + iγω

)

|S(ω)| = E∗(ω)E(ω)

Z0
= |E0|2

Z0

(γ /2)2 + ω2(
ω2

0 − ω2 + (γ /2)2
)2 + (γω)2

where Z0 = √
µ0/ε0 = 376.73� is the impedance of free space.

The Lorentzian line-shape approximation may be assumed if γ → 0. A small value
of γ gives peaked |S(ω)|, so γ 2 → 0 and (ω + ω0) ∼= 2ω0 for ω near ω0. Hence,

|S(ω)| = |E0|2
Z0

ω2
0

(ω0 − ω)2(ω0 + ω)2 + (γω)2

|S(ω)| = |E0|2
Z0

ω2
0

4ω2
0

[
(ω0 − ω)2 + (γ /2)2

]
|S(ω)| = |E0|2

4Z0

1

(ω0 − ω)2 + (γ /2)2

This is in the form of a Lorentzian function. The Lorentzian function is symmetric in
frequency about ω0, but the exact solution is not. Different isotopes (distinguishable
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particles) or Doppler shifts give different contributions to peaks in spectrum and an
asymmetric line shape.

In the following we make a comparison of an exact and a Lorentzian line shape.
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The figures above show a comparison of exact and Lorentzian line shapes for different
values of γ . Note that there is very little difference between the curves when ω0 =
10, γ = 0.5, as shown in (a). γ is the full width half maximum (FWHM), and γ

determines the peak value 1/γ 2 at ω0. The differences between the exact line shape
and Lorentzian approximation are more apparent when ω0 = 10 and γ = 5 as shown
in (b). For this large γ , heavy damping case, the exact result shows that the peak in
the spectral response is shifted to a frequency above ω0 = 10, the peak value is greater
than 1/γ 2, the spectral line shape is asymmetric, but the FWHM is still close in value
to γ .

Solution 8.10
(a) Dipole radiation requires a parity difference between initial and final states
to ensure oscillation in mean position and charge. This can most easily be seen
by considering the dipole matrix element 〈even(odd)|r |odd(even)〉 �= 0, whereas
〈even(odd)|r |even(odd)〉 = 0 from symmetry. Hence, we expect 〈 j |r |k〉 �= 0 for
j − k = odd. Conservation of spin requires that the photon, which obeys boson statis-
tics, must take spin quantum number ±1 away from the system. Energy conservation
requires that the separation in energy between initial and final states is the energy of the
photon, --hω.

(b) For the harmonic oscillator, we find the matrix element using the position operator

x̂ =
( --h

2m0ω

)1/2(
b̂ + b̂†

)
Hence,

|〈 j |x |k〉|2 =
--h

2m0ω

∣∣〈 j ∣∣b̂ + b̂†
∣∣k〉∣∣2
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For spontaneous emission, we will only be considering the transition from the first
excited state to the ground state. In this situation, the matrix element squared is

|〈 j |x |k〉|2 =
--h

2m0ω

Substituting into the expression for the spontaneous emission lifetime,

1

A
= τ = 3πε0

--hc3

e2ω3|〈 j |r |k〉|2 = 3πε0
--hc32m0ω

e2--hω3
= 6πε0c3m0

e2ω2
= 3ε0λ

2cm0

2πe2

τ = 3 × 8.8 × 10−12 × λ2 × 3 × 108 × 9.1 × 10−31

2π (1.6 × 10−19)2
= 45 × 103 × λ2

which, if wavelength is measured in micrometers and time in nanoseconds, becomes

τ (ns) = 45 × λ2(�m)

(c) The force constant κ is related to oscillator frequency ω and particle mass m0

through κ = ω2m0. Given that κ = 3.59 × 10−3 kg s−2 andm0 is the bare electron mass,
the oscillator frequency is 10 THz (--hω = 41.36 meV), and the emission wavelength is
λ = 30 �m. This gives a spontaneous emission lifetime

τ (ns) = 45 × 900 ns = 40 �s



9 The semiconductor laser

9.1 Introduction

The history of the laser dates back to at least 1951 and an idea of Townes. He wanted
to use ammonia molecules to amplify microwave radiation. Townes and two students
completed a prototype device in late 1953 and gave it the name maser or microwave
amplification by stimulated emission of radiation. In 1958 Townes and Schawlow pub-
lished results of a study showing that a similar device could be made to amplify light.
The device was named a laser which is an acronym for light amplification by stimu-
lated emission of radiation. In principle, a large flux of essentially single-wavelength
electromagnetic radiation could be produced by a laser. Independently, Prokhorov and
Basov proposed related ideas. The first laser used a rod of ruby and was constructed in
1960 by Maiman.

In late 1962 lasing action in a current-driven GaAs p–n diode maintained at liquid
nitrogen temperature (77 K) was reported.1 Room-temperature operation and other
improvements followed.

Soon, telephone companies recognized the potential of such components for use in
communication systems. However, it took some time before useful devices and suitable
glass-fiber transmission media became available. The first fiber-optic telephone instal-
lation was put in place in 1977 and consisted of a 2.4-km-long link under downtown
Chicago.

Another type of laser diode suitable for use in data communication applications was
inspired by the work of Iga published in 1977.2 By the late 1990s, these vertical-cavity
surface-emitting lasers (VCSELs) had appeared in volume-manufactured commercial
products.

The largest number of semiconductor lasers is produced for compact disk (CD)
applications and digital versatile disk (DVD) video applications. Laser diodes are also
volume-manufactured for fiber-optic communication products, laser printers, and laser

1 R. Hall, G. E. Fenner, J. Kingsley, T. J. Soltys, and R. O. Carlson, Phys. Rev. Lett. 9, 366 (1962).
2 H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, Jap. J. Appl. Phys. 18, 2329 (1977).

415



416 The semiconductor laser

copiers. There is additional low-volume production of laser diodes for numerous spe-
cialty markets.

In this chapter we will be interested in various aspects of the laser, including the
mechanism by which light is amplified and the role of spontaneous emission. Because
laser diodes are made using semiconductors, we will investigate how this impacts laser
design.

The chapter concludes with a brief discussion of why the relatively simple model we
use to describe the behavior of a laser diode works so well.

9.2 Spontaneous and stimulated emission

In Chapter 8 the role emission and absorption of light have in determining transitions
between two electronic states of an atom was considered. A schematic energy-level
diagram for two states |1〉 and |2〉 showing stimulated and spontaneous processes is
presented in Fig. 9.1(a).

In a semiconductor laser diode, optical transitions take place between conduction-
band states and valence-band states. The active region where these transitions occur is
typically a direct band-gap semiconductor, examples of which include GaAs, InP, and
InGaAs. In such a semiconductor the energy minimum of the conduction band lines
up with the maximum energy of the valence band in k-space. This fact is of particular
importance for direct interaction of semiconductor electronic states with light of wave
vector kopt, because the usual dispersion relation of light ω = ckopt/nr is almost vertical
compared with the dispersion relation for electrons in a given bandω = --hk2/2mr, where
mr is an effective electron mass. Conservation of momentum during a transition from
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Fig. 9.1. (a) Schematic energy level diagram showing stimulated and spontaneous optical transitions
between two electronic energy levels. (b) Band structure of a direct band-gap semiconductor
showing valence heavy-hole band hh, conduction band e, minimum conduction-band energy CBmin,
and band-gap energy Eg. The semiconductor is doped p-type, and at low temperature the Fermi
energy is EF and the Fermi wave vector is kFhh. Electrons in the conduction band can make a
transition from a state characterized by wave vector k and energy Ek in the conduction band to
wave-vector state k energy Ek −hω in the valence band by emitting a photon of energy hω.
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occupied to unoccupied electronic states via the emission or absorption of a photon
requires, therefore, a vertical transition in k-space.

The simplest model of a direct band-gap semiconductor typically includes a heavy-
hole valence band hh with effective hole massm∗

hh and conduction band e with effective
electron mass m∗

e . In GaAs, appropriate values for the effective electron masses are
m∗

hh = 0.5 × m0 andm∗
e = 0.07 × m0. Figure 9.1(b) shows schematically spontaneous

emission of a photon of energy --hω accompanied by an electronic transition of a state
characterized by wave vector k and energy Ek in the conduction band to wave-vector
state k energy Ek − --hω in the valence band. Because the initial and final electronic
states have the same value of k, it is assumed that crystal momentum is conserved.

If we measure energy from the top of the valence band, then the energy of an electron
in the conduction band with effective electron mass m∗

e is

E2 = Eg +
--h2k2

2m∗
e

(9.1)

and the energy of an electron in the valence band with effective electron mass m∗
hh is

E1 = −
--h2k2

2m∗
hh

(9.2)

The energy due to an electronic transition from the conduction band to the valence band
is

--hω = E2 − E1 =
--h2k2

2

(
1

m∗
e

+ 1

m∗
hh

)
+ Eg (9.3)

We can define a reduced effective electron mass mr in such a way that

1

mr
= 1

m∗
e

+ 1

m∗
hh

(9.4)

In GaAs, we might usem∗
e = 0.07 × m0 andm∗

hh = 0.5 × m0, givingmr = 0.06 × m0.
Equation (9.4) allows Eqn (9.3) to be written

--hω =
--h2k2

2mr
+ Eg (9.5)

It follows that the three-dimensional density of electronic states coupled to vertical
optical transitions of energy --hω is

D3(--hω) = 1

2π2

(
2mr
--h2

)3/2

(--hω − Eg)1/2 (9.6)

If Fig. 9.1(b) is representative of the physical processes involved in an optically active
semiconductor, then we may wish to consider using Fermi’s golden rule to calculate
transition probability between electronic states. In this case, all we need to know is the
matrix element coupling the initial and final states and the density of final states.
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To make some rapid progress, we will proceed along this path. Later, we will discuss
the source of errors in our assumptions and also explain why, in practice, our approach
is so successful in describing some of the important properties of laser diodes.

First, consider a discrete two-level system inside an optical cavity that is a cube of
side L , volume V , and temperature T . Possible transitions are shown in Fig. 9.1(a).
For periodic boundary conditions, allowed optical modes are k states kn j = 2πn j/L ,
where j = x, y, z and n is an integer. The spectral density P(E) of electromagnetic
modes at a specific energy is found by multiplying the density of photon states Dopt

3 (E)
by the Bose–Einstein occupation factor for photons g(E). Since

Dopt
3 (kopt)dk = 1

V
· 2

(
L

2π

)3

4πk2
optdkopt =

(
kopt

π

)2

dkopt (9.7)

and noting that E = --hω = --hckopt in free space and dE = --hc · dkopt, we may write

Dopt
3 (E) = E2

π2--h3c3
(9.8)

giving a spectral density measured in units of number of photons per unit volume per
unit energy interval:

P(E) = Dopt
3 (E)g(E) = E2

π2--h3c3
g(E) = E2

π2--h3c3
· 1

eE/kBT − 1
(9.9)

If the electromagnetic modes exist in a homogeneous dielectric medium characterized
by refractive index nr at frequency ω, then E = --hω = --hckopt/nr. If nr = nr(ω),
then dkopt = (1/c)(nr + ω · (dnr/dω))dω. Ignoring dispersion in the refractive index
(ω · dnr/dω = 0) gives

P(E) = E2n3
r

π2--h3c3
· 1

eE/kBT − 1
(9.10)

Assuming that Fermi’s golden rule may be used to calculate transition rates between
states |1〉 and |2〉, it makes sense to define

B21 ≡ 2π
--h

|W21|2 (9.11)

where |W21|2 is the matrix element squared coupling the initial and final states. The
stimulated and spontaneous rates for photons of energy E21 = E2 − E1 become

Rstim
12 = B12P(E21) f1(1 − f2) (9.12)

Rstim
21 = B21P(E21) f2(1 − f1) (9.13)

Rspon
21 = A21 f2(1 − f1) (9.14)

where the Fermi–Dirac distribution function gives the probability of electron occupation
f1 at energy E1 and the probability of an unoccupied electron state (1 − f2) at energy E2.
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When the system is in thermal equilibrium, the rates must balance, and there is only
one chemical potential, so µ1 = µ2 = µ. If thermal equilibrium exists between the
two-level system and the electromagnetic modes of the cavity, then

Rstim
12 = Rstim

21 + Rspon
21 (9.15)

B12P(E21) f1(1 − f2) = B21P(E21) f2(1 − f1) + A21 f2(1 − f1) (9.16)

P(E21)(B12 f1(1 − f2) − B21 f2(1 − f1)) = A21 f2(1 − f1) (9.17)

P(E21) = A21 f2(1 − f1)

B12 f1(1 − f2) − B21 f2(1 − f1)
= A21( f2 − f1 f2)

B12( f1 − f1 f2) − B21( f2 − f1 f2)

(9.18)

P(E21) =
A21

(
1

f1
− 1

)

B12

(
1

f2
− 1

)
− B21

(
1

f1
− 1

) = A21

B12

(
1/ f2 − 1

1/ f1 − 1

)
− B21

(9.19)

P(E21) = A21

B12eE21/kBT

(
e−µ2/kBT

e−µ1/kBT

)
− B21

(9.20)

Since the system is in equilibrium, µ1 = µ2. Making use of Eqn (9.10) one may write

P(E21) = A21

B12eE21/kBT − B21
= Dopt

3 (E21)
1

eE21/kBT − 1
(9.21)

Because this relationship must hold for any temperature when the system is in equilib-
rium, it follows that

B12 = B21 (9.22)

A21

B12
= Dopt

3 (E21) = E2
21n

3
r

π2--h3c3
(9.23)

Note that this is derived for the case in which the electron system is in thermal equi-
librium with the electromagnetic modes of the cavity. This means that the complete
system may be characterized by a single temperature T . Equations (9.22) and (9.23)
are the Einstein relations previously discussed in Section 8.6.5.

9.2.1 Absorption and its relation to spontaneous emission

Photons of energy E = --hω incident on a two-level system can cause transitions between
two states |1〉 and |2〉 with energy eigenvalues E1 < E2. Absorption α may be defined
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as the ratio of the number of absorbed photons per second per unit volume to the number
of incident photons per second per unit area. Hence,

α = Rnet
stim

S/--hω
= Rstim

12 − Rstim
21

S/--hω
(9.24)

where S is the magnitude of the Poynting vector and S/--hω is the number of incident
photons per second per unit area. It is usual for α to be measured in units of cm−1.
Since the absorption coefficient times the photon flux is the net stimulated rate, one
may write

α = B12P(E21) f1(1 − f2) − B21P(E21) f2(1 − f1)

P(E21) · c
nr

= nr

c
· B12( f1 − f2) (9.25)

The ratio of spontaneous emission and absorption is

Rspon
21

α
= A21 f2(1 − f1)

nr

c
· B12( f1 − f2)

= A21(1 − f1)
nr

c
· B12

(
f1
f2

− 1

) =
A21

(
1

f1
− 1

)
nr

c
· B12

(
1

f2
− 1

f1

) (9.26)

Rspon
21

α
= A21e(E1−µ1)/kBT

nr

c
· B12

(
e(E2−µ2)/kBT − e(E1−µ1)/kBT

) = A21

nr

c
· B12

(
e(E2−µ2)/kBT

e(E1−µ1)/kBT
− 1

)
(9.27)

Rspon
21

α
= A21

nr

c
· B12

(
eE21/kBT e−(µ2−µ1)/kBT − 1

) (9.28)

Substituting for the ratio A21/B12 using Eqn (9.23) gives

Rspon
21

α
= c

nr
· Dopt

3 (E21) · 1

e(E21−(µ2−µ1))/kBT − 1
= E2

21n
2
r

π2c2--h3
· 1

e(E21−�µ)/kBT − 1
(9.29)

where �µ = µ2 − µ1 is the difference in quasi-chemical potential used to describe the
distribution of electronic states at energies E2 and E1, respectively. The approximation
made is that Eqn (9.23) (which was derived for the equilibrium condition �µ = 0) re-
mains valid when �µ �= 0. This is likely to be true when �µ < kBT . The relationship
between absorption and spontaneous emission for a system characterized by tempera-
ture T and difference in chemical potential �µ given by Eqn (9.29) may be rewritten
in a convenient form as

α = π2c2--h3

E2
21n

2
r

· Rspon
21

(
e(E21−�µ)/kBT − 1

)
(9.30)

Net optical gain exists when absorption α is negative. Since spontaneous emission
is always positive, the only way the value of absorption α can change sign is if the term
in parenthesis on the right-hand side of Eqn (9.30) changes sign. An easy way to see
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µ1, respectively. Sometimes it is convenient to measure electron energy Ee from the conduction
band minimum and hole energy Eh from the valence band maximum.

this is by noticing that Eqn (9.26) may be rewritten as

α =
Rspon

21 · nr

c
· B12( f1 − f2)

A21 f2(1 − f1)
(9.31)

The denominator in Eqn (9.31) is always positive, since 0 < f1 < 1 and 0 < f2 < 1.
The numerator is positive, giving positive absorption α if f1 > f2 and negative ab-
sorption (or optical gain gopt ≡ −α) if f1 < f2. The condition for optical gain is
f2 − f1 > 0, or

�µ > E21 (9.32)

This expresses the fact that the separation in quasi-chemical potentials must be greater
than the photon energy for net optical gain to exist. Equation (9.32) is called the
Bernard–Duraffourg condition.3

In a semiconductor there are not just two energy levels E1 and E2 to be considered,
but rather a continuum of energy levels in the conduction band and valence band. This is
illustrated in Fig. 9.2. Electrons in the conduction band have a Fermi–Dirac distribution
f2, and in the valence band they have a distribution f1. As was shown in Chapter 7,
for equal carrier concentrations in the conduction band and valence band at fixed
temperature, the Fermi–Dirac distribution functions f2 and f1 are different since, in
general, the quasi-chemical potentials are different. This occurs because the effective
electron mass in each band is different, giving a different density of states, and hence

3 M. G. A. Bernard and G. Duraffourg, Phys. Stat. Solidi 1, 699 (1961).
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different quasi-chemical potentials for carrier concentration n and temperature T when
calculated using Eqn (7.36).

For convenience, we are going to change the way electron energy in the conduction
and valence bands is measured. The energy of holes (absence of electrons) in the valence
band will be measured from the valence band maxima down. The energy of holes is
negative, and the distribution of holes is fh = (1 − f1). The energy of electrons in the
conduction band will be measured from the conduction band minimum up. The energy
of electrons is positive, and the distribution of electrons is fe = f2. When calculating
photon energy, --hω, for an interband transition one must remember to add the band-
gap energy, Eg. Also, the condition for optical gain previously given by Eqn (9.32)
becomes

�µe−hh > 0 (9.33)

In GaAs, we may use m∗
e = 0.07 × m0 and m∗

hh = 0.5 × m0. If temperature T =
300 K and carrier density is fixed in value at n = 1 × 1018 cm−3 in each band, then
µhh = −55 meV and µe = 39 meV (the value of µe is µ2 with energy Eg subtracted).
In this situation, �µe−hh = µ2 − µ1 − Eg = µe + µhh = −16 meV and, according to
Eqn (9.33), GaAs is absorbing for all photon energies --hω > Eg. On the other hand,
when n = 2 × 1018 cm−3 in each band and T = 300 K, the chemical potentials are
µhh = −36 meV and µe = 75 meV. Now �µe−hh = 39 meV and optical gain exists
for photon energy Eg < --hω < Eg + �µe−hh.

The total spontaneous emission rspon(--hω) for photons of energy E = --hω is the sum of
all energy levels separated by vertical transitions of energy E . Substituting Eqn (9.23)
into Eqn (9.14), using the definition of |W21|2 given by Eqn (9.11), and performing the
sum over allowed vertical k-state transitions gives

rspon(--hω) = 2π
--h

E2
21n

3
r

π2--h3c3

∑
k2,k1

|W21|2 f2(1 − f1)δ(E21 − --hω) (9.34)

where the delta function ensures energy conservation. If the matrix element W21 is
slowly varying as a function of E21, it may be treated as a constant. Converting the sum
to an integral and substituting fe = f2 and fh = (1 − f1) gives

rspon(--hω) = 2π
--h

E2
21n

3
r

π2--h3c3
|W21|2 ·

∫
d3k

(2π )3
· 2 · fe fh · δ

(
Eg +

--h2k2

2mr
− --hω

)
(9.35)

which may be written as

rspon(--hω) = 2π
--h

--h2ω2n3
r

π2--h3c3
|W21|2 · 1

2π2
·
(

2mr
--h2

)3/2

(--hω − Eg)1/2 fe fh (9.36)

In this expression, we recognize (--hω − Eg)1/2 as the energy dependence of the reduced
three-dimensional density of electronic states in Eqn (9.6).
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It follows from Eqn (9.30) that at equilibrium optical gain gopt(--hω) is related to
rspon(--hω) through

gopt(--hω) = −α(--hω) = --h

(
cπ

nrω

)2

· rspon(--hω) · (1 − e(hω−Eg−�µe−hh)/kBT
)

(9.37)

This is a useful relationship that allows us to obtain the absorption function if we know
the spontaneous emission. Note that if �µ �= 0 then the electron–hole system is out
of thermal equilibrium and our assumptions in deriving this relationship are no longer
valid. For example, nr will depend upon �µ.

We can also find optical gain directly by substituting Eqn (9.11) into Eqn (9.25)
and performing the integral over allowed initial and final electronic density of states
(Eqn (9.6)). This gives

gopt(--hω) = 2πnr

c--h
|W21|2 · 1

2π2
·
(

2mr
--h2

)3/2

(--hω − Eg)1/2( fe + fh − 1) (9.38)

9.3 Optical transitions using Fermi’s golden rule

The matrix elementW21 appearing in Eqn (9.36) and Eqn (9.38) remains to be evaluated.
This may be done by applying Fermi’s golden rule.

Consider a semiconductor illuminated with light. The interaction between an optical
electric field of the form

Eopt = E0e
i(kopt·x−ωt) (9.39)

and an electron with motion in the x direction is described by the perturbation

W = −e|E0|xei(kopt·x−ωt) (9.40)

Electron states in a crystal are Bloch functions of the form given by Eqn (4.94), so
the dipole matrix element coupling a conduction-band initial-state ψe(x) = Uek(x)eik·x

and a heavy-hole valence-band final state ψhh(x) = Uhhk′(x)eik
′·x is

Wehh = 〈ψhh|W |ψe〉 = −e|E0|
∫
U ∗

hhk′(x)Uek(x)xe−i(k
′−k−kopt)·xdx (9.41)

The term e−i(k
′−k−kopt)·x in the integral rapidly oscillates, resulting inWehh → 0 except

whenk′ − k = kopt. Since electronic states have |k| ∼ 3 × 106 cm−1 (see Table 7.1) and
|kopt| ∼ 2 × 105 cm−1 in the semiconductor, it is reasonable to set |kopt| = 0, so that
k′ = k. As discussed in Section 9.2, we may assume transitions between initial and final
electron states conserve crystal momentum and so have the same k-vector.

Finding the value of the matrix element in Eqn (9.41) requires detailed knowledge
of the Bloch wave functions involved in the transition. The calculations can be quite
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Fig. 9.3. Calculated optical gain for the indicated carrier densities, band-gap energy Eg = 1.4 eV,
temperature T = 300 K, effective electron mass m∗

e = 0.07 × m0, effective hole mass
m∗

hh = 0.5 × m0, and g0 = 2.64 × 104 cm−1 eV−1/2.

involved,4 and so we choose not to reproduce them here. Rather, we adopt a pragmatic
approach in which the coefficients, including the matrix element squared in Eqn (9.36)
and Eqn (9.38), are taken to be constants. The --h2ω2 term in Eqn (9.36) is slowly varying
and may be treated as a constant, since we will only be concerned with an energy range
of approximately �µe−hh around Eg and typically �µe−hh/Eg � 1. This allows us to
write spontaneous emission (Eqn (9.36)) as

rspon(--hω) = r0(--hω − Eg)1/2 fe fh (9.42)

where r0 is a material-dependent constant. Optical gain becomes

gopt(--hω) = g0(--hω − Eg)1/2( fe + fh − 1) (9.43)

where g0 is also a material-dependent constant. The ratio g0/r0 = π2c2/ω2n2
r . In this

simple model, the range in energy over which optical gain exists is given by the differ-
ence in chemical potential, �µe−hh.

Obviously, the use of constants r0 and g0 results in quite a crude approximation.
However, it does allow us to estimate trends, such as the temperature dependence of
gain. In fact, it turns out that to create a model of optical gain in a semiconductor
that is even qualitatively more advanced than that described in this chapter is a very
challenging task and the subject of ongoing research.

Figure 9.3 shows the result of calculating gopt(--hω) using Eqn (9.43) for the in-
dicated carrier densities, band-gap energy Eg = 1.4 eV, temperature T = 300 K,

4 For an introduction, see S. L. Chuang, Physics of Optoelectronic Devices, Wiley, New York, 1995 (ISBN 0 471
10939 8).
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effective electron mass m∗
e = 0.07 × m0, effective hole mass m∗

hh = 0.5 × m0, and
g0 = 2.64 × 104 cm−1 eV−1/2. The parameters used are appropriate for the direct band-
gap semiconductor GaAs.

According to the results shown in Fig. 9.3, there is no optical gain when carrier
density n = 1 × 1018 cm−3. As carrier density increases, optical gain first appears near
the band-gap energy, Eg = 1.4 eV. When carrier density n = 2 × 1018 cm−3, a peak
optical gain of 330 cm−1 occurs for photon energy near hω = 1.415 eV, and the gain
bandwidth is �µe−hh = 39 meV.

9.3.1 Optical gain in the presence of electron scattering

Inelastic electron scattering has the effect of broadening electron states. Because a
typical inelastic electron scattering rate 1/τin can be tens of ps−1, corresponding to
several meV broadening, this effect is significant and on the same scale as the difference
in chemical potential. A Lorentzian broadening function has an energy FWHM γk =
--h/τin, so that if τin = 25 fs then γk = 26 meV. There is a subscript k in γk because,
in general, scattering rate depends upon electron crystal momentum --hk. However, in
practice this fact is usually ignored and γk is treated as a constant.

To calculate optical gain in the presence of electron scattering, we first calculate the
spontaneous emission using the Lorentzian broadening function to simulate the effect
of electron–electron scattering. Equation (9.42) is modified to

rspon(--hω) = r0

∞∫
0

E1/2 fe fh
γk/2π

(Eg + E − --hω)2 +
(
γk

2

)2 dE (9.44)

where the factor 2π ensures proper normalization of the Lorentzian function.
Optical gain gopt as a function of photon energy --hω is then calculated using Eqn (9.37).

This ensures that optical transparency in the semiconductor occurs at a photon energy of
�µe−hh + Eg, where �µe−hh is the difference in chemical potential and Eg is the band-
gap energy. Optical transparency occurring at a different energy violates the concept of
equilibrium in thermodynamics.

Unfortunately, even this elementary consideration is often ignored in conventional
theories, which put Lorentzian broadening directly in the gain function (Eqn (9.38)).5

As illustrated in Fig. 9.4, not only does this result in optical transparency at an energy
less than �µe−hh + Eg, but it also predicts substantial absorption of sub-band-gap
energy photons.6 This is not observed experimentally!

5 For example, seeQuantumWell Lasers, ed. Peter Zory, Academic Press, San Diego, 1993 (ISBN 0 12 781890 1).
Contributions from Corzine, Yang, Coldren, Asada, Kapon, Englemann, Shieh, and Shu all explicitly and
incorrectly put Lorentzian broadening directly in the gain function.

6 For example, see S. L. Chuang, J. O’Gorman, and A. F. J. Levi, IEEE J. Quantum Electron. QE-29, 1631 (1993)
or W. W. Chow and S. W. Koch, Semiconductor Laser Fundamentals, Springer-Verlag, Berlin, 1999 (ISBN 3 540
64166 1).
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9.4 Designing a laser diode

One may exploit the existence of optical gain in a semiconductor to make a laser diode.
One might imagine constructing a p–n diode out of a direct band-gap semiconductor
such as GaAs or InGaAsP. When forward-biased to pass a current, I , electrons are
injected into the conduction band and holes into the valence band. The optically active
region of the semiconductor is where the electrons and holes overlap in real space,
so that vertical optical transitions can take place in k-space. If the density of carriers
injected into the active region is great enough, then Eqn (9.32) is satisfied and optical
gain exists for light at some wavelength in the semiconductor. There is, however, more
to designing a useful device. Among other things, we would like to ensure that a high
intensity of lasing light emission occurs at a specific wavelength.

Because a typical value of gain for an optical mode in a semiconductor laser diode
is not very large (∼500 cm−1), and in order to precisely control emission wavelength,
one typically places the active semiconductor in a high-Q optical cavity. The optical
cavity has the effect of storing light at a particular wavelength, allowing it to interact
with the gain medium for a longer time. In this way, relatively modest optical gain may
be used to build up high light intensity in a given optical mode. Electrons contributing
to injection current I are converted into lasing photons that have a single mode and
wavelength. The efficiency of this conversion process is enhanced if only one high-Q
optical-cavity resonance is in the same wavelength range as semiconductor optical gain.
Therefore, we are interested in identifying the types of high-Q optical cavity that may
be used in laser design.
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Fig. 9.5. (a) Photograph of top view of a Fabry–Perot, edge-emitting, semiconductor laser diode
showing the horizontal gold metal stripe used to make electrical contact to the p-type contact of the
diode. The n-type contact is made via the substrate. Two gold wire bonds attach to the large gold
pad in the lower half of the picture. This particular device has a multiple-quantum-well InGaAsP
active region, lasing emission at 1310 nm wavelength, and a laser threshold current of 3 mA. The
sketch shows the side view of the 300-�m-long optical cavity formed by reflection at the cleaved
semiconductor-air interface. (b) Photograph of top view of a VCSEL showing the gold
metallization used to make electrical contact to the p-type contact of the diode. Lasing light is
emitted from the small aperture in the center of the device. This VCSEL has a
multiple-quantum-well GaAs active region, lasing emission at 850 nm wavelength, and a laser
threshold current of 1 mA. (c) Scanning electron microscope image of a microdisk laser. The
semiconductor disk is 2 �m in diameter and 0.1 �m thick. This particular device has a
single-quantum-well InGaAs active region, lasing emission at 1550 nm wavelength, and an external
incident optical laser threshold pump power at 980 nm wavelength of 300 �W.

9.4.1 The optical cavity

Figures 9.5(a), (b), and (c) illustrate optical cavities into which we may place the
optically active semiconductor to form a Fabry–Perot laser, VCSEL,7 and microdisk
laser8 repectively.

The Fabry–Perot optical cavity is, at least superficially, quite easy to understand, so
we now consider that. Assuming that photons travel normally to the two mirror planes

7 K. Iga, M. Oikawa, S. Misawa, J. Banno, and Y. Kokubun, Appl. Opt. 21, 3456 (1982).
8 S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
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and in the z direction, we will be interested in finding expressions for the corresponding
longitudinal optical resonances.

9.4.1.1 Longitudinal resonances in the z direction

The Fabry–Perot laser consists of an index-guided active gain region placed within a
Fabry–Perot optical resonator.

Index guiding helps maintain the z-oriented trajectory of photons traveling perpen-
dicular to the mirror plane. Index guiding is achieved in a buried heterostructure laser
diode by surrounding the semiconductor active region with a semiconductor of lower
refractive index. Usually this involves etching the semiconductor wafer to define a nar-
row, z-oriented active-region stripe and then planarizing the etched regions by epitaxial
growth of nonactive, lower refractive index, wider band-gap semiconductor.

Optical loss for a photon inside the Fabry–Perot cavity is minimized at cavity res-
onances. Figure 9.6 shows a schematic diagram of a Fabry–Perot optical resonator
consisting of a semiconductor active-gain medium and two mirrors with reflectivity r1

and r2, respectively, forming an optical cavity of length LC. The photon round-trip time
in this cavity is tround-trip.

Suppose mirror reflectivity is such that r1 = r2 = 1. Then the Fabry–Perot cavity has
an optical mode spacing given by kLC = πm, where m = 1, 2, 3, . . . and k = ωnr/c.
The refractive index of the dielectric is nr, and c is the speed of light in vacuum. Adjacent
modes are spaced in angular frequency according to

�ω = c(km+1 − km)

nr
= cπ (m + 1 − m)

LCnr
= �ω = cπ

LCnr
= 2π� f (9.45)

This mode spacing is also called the free spectral range of the cavity.

Mirror
reflectivity, r1

Mirror
reflectivity, r2

Laser optical gain medium with

Photon round-trip time, tround-trip

Position, Position,
z = 0 z = LC

index wave guiding in z direction

Fig. 9.6. Schematic diagram of a Fabry–Perot optical resonator consisting of a semiconductor
active-gain medium and two mirrors with reflectivity r1 and r2, respectively, forming an optical
cavity of length LC.
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Measured in units of hertz

� f = c

2LCnr
= 1

tround-trip
(9.46)

where tround-trip is the round-trip time for a photon in the cavity and f = ω/2π . The
mode spacing as a function of wavelength is

�λ = λ2

2LCnr
(9.47)

The spectral intensity as a function of frequency inside a Fabry–Perot cavity pumped
by light of initial intensity I0 in the cavity is9

I ( f ) = Imax

1 +
(

2F
π

)2

sin2

(
π f

� f

) (9.48)

where F is the finesse of the optical cavity

F = πr1/2

1 − r2
(9.49)

and

Imax = I0
(1 − r )2

(9.50)

In these expressions, r is the round-trip attenuation factor for light amplitude in the
cavity. If the only optical loss is from the two mirrors with reflectivity r1 and r2,
respectively, then r = r1r2. For a loss-less dielectric with refractive index nr, the
mirror reflectivity at a cleaved dielectric-to-air interface is r1,2 = |(1 − nr)/(1 + nr)|2.
When finesse is large (F � 1), the optical line width γk is much smaller than � f and
F = � f/γopt. In this limit of F � 1, the expression for the FWHM of the resonance
becomes γopt = � f/F . The optical-Q associated with the cavity is the frequency f0
of the resonance divided by γopt, and so Q = f0/γopt.

Consider a Fabry–Perot laser diode with cavity length LC = 300 �m, an effective
refractive index nr = 3.3, and emission wavelength near λ = 1310 nm, corresponding
to a frequency f0 = 229 THz. The optical resonator has mode spacing � f = 151 GHz
or �λ = 0.867 nm. The spectral intensity as a function of frequency, when r1 = r2 =
0.286, is shown in Fig. 9.7(a). Finesse is F = 0.979. Also shown is the case in which
r1 = 0.4 and r2 = 0.8, which has a slightly improved finesse of F = 1.98. In this case
Q = f0/γopt = 4978 and γopt = 46 GHz.

Figure 9.7(b) shows the spectral intensity of a Fabry–Perot optical cavity of length
LC = 3 �m, effective refractive index nr = 3.3, mirror reflectivity r1 = r2 = 0.95, and

9 For example, see B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley and Sons, New York,
1992 (ISBN 0 471 83965 5).
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Fig. 9.7. (a) Spectral intensity as a function of frequency when r1 = r1 = 0.286 for photons inside a
Fabry–Perot resonant cavity of length LC = 300 �m and refractive index nr = 3.3. Optical
resonances are spaced by � f = 151 GHz. The vertical axis is normalized in such a way that I0 = 1
in the calculation. Also shown as the lower curve is the case in which r1 = 0.4 and r2 = 0.8. In this
case, finesse F = 1.98 and γopt = 46 GHz. At an optical frequency of f = 229 THz, this gives an
optical Q = f/γopt = 4978. (b) Spectral intensity as a function of frequency when
r1 = r2 = 0.95 for photons inside a Fabry–Perot resonant cavity of length LC = 3 �m and
refractive index nr = 3.3. Optical resonances are spaced by � f = 15.1 THz. In this case, the
finesse F = � f/γopt = 30.5 and γopt = 495 GHz. At an optical frequency of f = 242 THz, this
gives an optical Q = f/γopt = 489.

emission wavelength near λ = 1240 nm corresponding to a frequency f0 = 242 THz.
The optical resonator has resonance spacing� f = 15.1 THz or�λ = 86.7 nm. Finesse
is F = � f/γopt = 30.5, line width is γopt = 495 GHz, and optical Q = f0/γopt = 489.

9.4.1.2 Mode profile in an index-guided slab waveguide

We wish to calculate the optical mode profile in the x and y directions of the Fabry–
Perot laser diode we have been discussing. This is an index-guided structure in which
the refractive index of the active region, na, is greater than the refractive index, nc,
of the surrounding material. This usually small difference in refractive index acts to
guide light close to the active region. Confining light to the active region is important,
because only light that overlaps with the active region can experience optical gain and be
amplified. We are, therefore, interested in the fraction, �, of a Fabry–Perot longitudinal
optical resonance which overlaps with the active region.

One may proceed by using the time-independent electromagnetic wave equation,
which may be derived from Maxwell’s equations assuming no free charge and an
electromagnetic wave traveling in the z direction:

∇2E + ε(x, y)k2
0E = 0 (9.51)

where k0 = ω/c is the propagation constant in free space and ε(x, y) is the spatially
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Fig. 9.8. Slab waveguide geometry showing active region of thickness ta = y2 − y1 and optical
confinement layers. The propagation of light is in the z direction, which is into the page. Optical
intensity peaks in the active region, which has refractive index na. The refractive index of the
optical confinement layer is nc.

varying dielectric constant in the slab waveguide geometry. This has solution

E = eφ(y)ψ(x)eiβz (9.52)

where e is the electric-field unit vector andβ is the propagation constant in the dielectric.
One then solves for the optical confinement factor

� =

y2∫
y1

φ2(y)dy

∞∫
−∞

φ2(y)dy
(9.53)

by assuming that ε(x, y) varies slowly in the x direction compared with the y direction
and by adopting the effective index approximation. In essence, we solve for the simple
slab waveguide geometry depicted in Fig. 9.8, in which the thickness of the active
region is ta = y2 − y1.

Figure 9.9 shows the results of calculating the optical confinement factor of TE and
TM modes in a slab waveguide as a function of bulk active-layer thickness. The param-
eters used are typical for a laser diode with emission at λ0 = 1310 nm wavelength and
an InGaAsP active region. For a given active region thickness, the optical confinement
factor for TE polarization is greater than that for TM polarization. TE-polarized light
propagating in the z direction has its electric field parallel to the x direction and so it is
in the plane of the active-region layer.

For most Fabry–Perot laser designs that use index guiding, the ratio of active-region
thickness ta to emission wavelength λ0 is small, and one may find the confinement
factor for TE-polarized light using the approximation10

�TE = 2
(
n2

a − n2
c

)(π ta
λ0

)2

(9.54)

10 W. P. Dumpke, IEEE J. Quantum Electron. QE-11, 400 (1975).
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Fig. 9.9. Calculated optical confinement factor � for TE and TM modes in a slab waveguide as a
function of bulk active-layer thickness, ta. The lasing wave length is λ = 1310 nm the InGaAsP
active layer has refractive index na = nInGaAsP = 3.51, and the InP optical confinement layers have
refractive index nc = nInP = 3.22.

In the case of TM-polarized light, the approximation for the confinement factor is

�TM = 2
(
n2

a − n2
c

)(πncta
naλ0

)2

(9.55)

9.4.2 Mirror loss and photon lifetime

Previously, in Section 9.4.1.1, we used reflectivity r1 = r2 = 1 to calculate longitudinal
mode frequency in a Fabry–Perot resonator. In most practical situations it will be
necessary to consider the situation in which r1 �= r2 < 1. In a typical semiconductor
laser diode, the mirror facets have dielectric coatings to give power reflectivity values
r1 and r2.

We are interested in finding the rate of loss of photons, 1/τphoton, into regions other
than the active laser region. Suppose the photon density is S. Then we wish to find
S/τphoton. A simple rate equation analysis shows that photon density grows exponen-
tially in the presence of optical gain gopt = −α, so that S = S0e−2αz . Note the factor 2
because S is an intensity.

To convert optical gain to a rate, we introduce the rate of increase in optical intensity
G = 2gopt · c/nr, where nr is the effective refractive index and c is the velocity of light
in vacuum. For steady-state emission, the photons reflected back to the start in a single
round-trip time tround-trip = 2LCnr/c must have the same density. So, if S0 photons start
out from mirror r1 of the cavity, then r2S0e(G·tround-trip)/2 are reflected back from mirror r2

to grow with another pass down the laser, and r1r2S0eG·tround-trip are reflected from mirror
r1 (see Fig. 9.6). Hence, in steady state,

S0 = r1r2S0e
G·tround-trip (9.56)
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which we can rewrite by taking the logarithm of both sides:

G = 1

tround-trip
ln

(
1

r1r2

)
= c

2LCnr
ln

(
1

r1r2

)
(9.57)

Ignoring spontaneous emission, we can write down a rate equation for the photon
density

dS

dt
=
(
G − 1

τphoton

)
S = 0 (9.58)

giving Gτphoton = 1, so that

1

τphoton
= c

2LCnr
ln

(
1

r1r2

)
(9.59)

To include the possibility of additional absorption and elastic scattering of light, it is
necessary to introduce an extra photon loss term. We lump these loss-rates together as
an additional internal loss-rate 1/τinternal, so that the total photon loss-rate is

1

τphoton
= 1

τinternal
+ 1

τmirror
(9.60)

or, equivalently,

κ = αi + αm (9.61)

where αi is the internal photon loss-rate, αm is the photon mirror loss, and κ is the total
optical loss-rate.

9.4.3 The Fabry–Perot laser diode

Figure 9.10 is a sketch of a semiconductor, buried-heterostructure, Fabry–Perot laser
diode. The diagram shows the bulk-active or quantum-well region exposed at one of
the two cleaved-mirror faces. Carriers are injected into the region from the n-type sub-
strate and the p-type epitaxially grown layers from below and above the p–n junction.
Electrical contact to the diode is achieved by depositing a metal film and subsequent
alloying into a surface layer of the semiconductor.

A laser with emission at wavelength λ0 = 1310 nm can have a bulk active InGaAsP
region. The InGaAsP composition is such that its band gap is at wavelength λg =
1280 nm. Under lasing conditions various physical effects cause the lasing wavelength
to increase so that the device lases at wavelength λ0 = 1310 nm. In a typical device,
the bulk or multiple quantum-well active region is 0.12 �m thick and 0.8 �m wide. The
wafer is thinned before cleaving to form the two mirror facets. Thinning the wafer to
about 120-�m thickness helps to ensure that stress-induced irregularities are avoided
on the cleaved mirror faces. The buried heterostructure is achieved using an etching
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Fig. 9.10. Schematic diagram of a semiconductor buried-heterostructure Fabry–Perot laser diode.
The difference in refractive index between the active region and the surrounding dielectric causes
index guiding of light propagating in the z direction.

and semiconductor regrowth process. Index guiding of the λ0 = 1310 nm lasing mode
occurs because of the refractive index difference between the InGaAsP active layer with
nInGaAsP = 3.51 and the InP optical confinement layers with refractive index nInP =
3.22. For an index-guided buried heterostructure with a 0.12 �m thick and 0.8 �m
wide active region this ensures a single transverse mode and a high optical confinement
of around � = 0.25. The Fabry–Perot cavity length is LC = 300 �m. A multi-layer
dielectric mirror coating is used to increase reflectivity to 0.4 on one mirror and 0.8 on
the other. This reduces optical loss and reduces laser threshold current to a value that
is typically around 3 mA.

9.4.4 Semiconductor laser diode rate equations

To understand the operation of the semiconductor buried-heterostructure Fabry–Perot
laser diode shown schematically in Fig. 9.10 and Fig. 9.11, we need to develop a model.
The simplest approach is to use rate equations.

We will assume that there can be lasing into only one optical mode of frequency ωs .
Our calculations will not incorporate any variation in optical gain, optical loss, or carrier
density along the longitudinal (z) axis. This is equivalent to a lumped-element model.
We will adopt simple approximations for gain, spontaneous emission, and nonradia-
tive recombination. We will also assume that the conduction-band and valence-band
electrons have the same density and that they are thermalized so that they may be
characterized by a single temperature.

When considering the rate equations one needs to be very careful to define the
parameters used. It is easy to become confused and make an error. The current, I ,
injected into the diode is measured in amperes, and the volume of the active region
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Fig. 9.11. Section through a buried-heterostructure Fabry–Perot laser diode. Index guiding ensures
optical intensity is tightly confined near the active region of the device. Fabry–Perot cavity length is
LC, and mirror reflectivity is r1 at z = 0 and r2 at z = LC. When current I is injected into the diode,
the active region of volume V has carrier density n and photon density S.

into which electrons flow is V . The carrier density in the active region is n and is
measured in either m−3 or cm−3. The photon density in the optical mode of frequency
ωs is S and is measured in m−3 or cm−3. The two mirrors used to form the optical
cavity for photons in the device have reflectivities r1 and r2, respectively. Optical loss
at frequency ωs in the cavity is κ and is measured in m−1 or cm−1. In our rate equations,
we need to define the fraction of spontaneous emission, β, that feeds into the lasing
mode at frequency ωs . It turns out that this is somewhat difficult to define in an active
device. In a large Fabry–Perot device with LC = 300 �m, a typical value for β is in the
range 10−4 < β < 10−5. In devices with smaller LC, the value of β becomes larger.
Theoretically, the maximum possible value of β is near unity.

We will use rate equations to describe rates in and out of a region of interest. The
physical quantities we monitor are carrier density n, photon density S in a single optical
mode of frequency ωs , and current I as a function of time, t . Rate equations keep track
of current, carrier, and photon flow in and out of the device. The challenge is to make
sure that we don’t miss some quantity of importance.

We begin by drawing a bucket to represent the active region of the semiconductor,
see Fig. 9.12. We now imagine charge carriers supplied by a current I being poured
into the bucket at a rate so that the density of electrons per second increases as I/eV ,
where e is the electron charge and V is the volume of the active region. There are
losses or leaks in the bucket which represent mechanisms for removing electrons from
the system. Electrons can be removed by emitting a photon or by some nonradiative
process.

Because we are interested in n and S, there are two coupled rate equations that we
must solve. The first equation will describe the rate of change in carrier density dn/dt in
the device. Carrier density will increase as more current is injected, so we expect dn/dt
to have a term proportional to current I . Carriers are removed from the active region
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Fig. 9.12. Bucket model for electron rates into and out of a semiconductor active region.

of the device by nonradiative and spontaneous photon-emission carrier-recombination
processes. We expect to characterize this carrier loss by carrier lifetime τn , so that
dn/dt should be proportional to −n/τn . The negative sign reflects the fact that carriers
are removed from the system. There are also carrier losses due to stimulated photon
emission, in which an electron in the conduction band and a hole in the valence band
are removed to create a photon in the lasing mode. This stimulated emission process
influences the number of carriers via the rate −GS, where G is the optical gain and S
is the photon density in the lasing mode.

The second equation will describe the rate of change in photon density dS/dt in the
device. Photon density will increase due to the presence of optical gain, so we expect a
term proportional toGS. There will also be optical losses that can be described by a total
optical loss rate κ , giving a term −κS. Finally, there is a fraction β of total spontaneous
emission rspon feeding into the lasing mode that makes a contribution βrspon.

These considerations allow us to write down our basic coupled rate equations that
describe the behavior of the laser diode:

dn

dt
= I

eV
− n

τn
− GS (9.62)

dS

dt
= (G − κ)S + βrspon (9.63)

Equations (9.62) and (9.63) are the single-mode rate equations. In Eqn (9.62), 1/τn is
the phenomenological carrier recombination rate, where we use n/τn = Anrn + Bn2 +
Cn3, for which Anr is the nonradiative recombination rate, B is the spontaneous emission
rate and C is a higher-order term. The total spontaneous emission rate in the device is
rspon = Bn2, and the function for optical gain in a device with a bulk-active region is

Gbulk = �Gslope(n − n0)(1 − εbulkS) (9.64)

where Gslope is the differential optical gain with respect to carrier density.
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For a quantum-well active region, the optical gain function may be approximated
by

GQW = �Gconst · ln

(
n

n0

)
· (1 − εQWS) (9.65)

Note that for convenience we include the optical confinement factor� in the expressions
for gain. The carrier density needed to achieve optical transparency at frequency ωs

is n0. Both εbulk and εQW are gain saturation terms, which become important at high
optical intensities in the cavity. The gain functions we use represent fairly well the
variation of peak gain with increasing carrier density.

We are now in a position to explain the steady-state carrier density and photon
density characteristics of a laser diode as a function of injected current. First, we write
Eqn (9.62) for the steady-state case:

dn

dt
= I

eV
− n

τn
− GS = 0 (9.66)

This equation shows that in the steady state the rate of electron density injected into
the active region is exactly balanced by the removal of electrons via the recombination
rate n/τn and the optically stimulated recombination rate GS.

Now we note that, in the steady state, Eqn (9.63) is

dS

dt
= (G − κ)S + βrspon = 0 (9.67)

which may be rewritten as

S = βrspon

(κ − G)
(9.68)

It is this last equation that we can use as a starting point to explain how a laser works.
The numerator βrspon on the right-hand side of Eqn (9.68) shows that the optical output
S of the laser amplifier is fed by a small fraction of the total spontaneous emission in the
device. Because spontaneous emission is a stochastic (random) quantum mechanical
process, we may view the laser as amplifying noise. Later, in Section 9.6, we will be
interested in characterizing the noise and its impact on application of laser diodes for
fiber-optic communications.

The denominator (κ − G) on the right-hand side of Eqn (9.68) is the term respon-
sible for optical amplification and lasing emission. As electrons are injected into the
device, optical gain increases, and (κ − G) approaches zero, the amplification of spon-
taneous emission increases. This increase in photon density in the device is so great that
the stimulated carrier-recombination rate term −GS in Eqn (9.66) becomes large. As
(κ − G) continues to approach zero, the net optical amplification of spontaneous emis-
sion 1/(κ − G) becomes very large, and the stimulated recombination rate −GS
dominates Eqn (9.66). At this point, every additional electron injected by current I
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Fig. 9.13. Schematic plot of optical gain as a function of optical frequency. Lasing will occur when
optical gain approaches optical loss. This will usually occur at a resonance of the Fabry–Perot
resonator, the optical loss of which is also shown.

into the active region recombines very rapidly to create an additional photon in the
lasing mode at frequency ωs .

Figure 9.13 illustrates the situation we have just described. As optical gain approaches
a minimum in Fabry–Perot optical-cavity loss in such a way that (G − κ) → 0, it is clear
that the lasing mode will coincide with that of the Fabry–Perot resonance of frequency
ωs nearest to peak optical gain. Because in this case only one high-Q optical-cavity
resonance is in the same frequency range as semiconductor optical gain, we can expect
lasing in one optical mode at frequency ωs .

As stimulated recombination begins to dominate, light emission at frequency ωs

rapidly increases. The point at which this occurs is called the laser threshold. Associ-
ated with the laser diode threshold is a threshold current, Ith, and a threshold carrier
density, nth. For currents above the laser threshold, carrier density does not increase very
much, because the stimulated recombination rate −GS dominates the carrier dynamics
described by Eqn (9.66). The carrier density is said to be pinned above threshold. Such
carrier pinning results in a rapid linear increase in laser light output intensity with in-
creasing injection current, because every extra injected electron is converted to a lasing
photon.

The ideas we have discussed in the previous few paragraphs are illustrated in Fig. 9.14
and Fig. 9.15. Figure 9.14 shows total laser diode light output intensity L as a function
of injected current I for a device with a threshold current Ith. Figure 9.15 shows carrier
density n as a function of injected current I . As may be seen, carrier density is pinned
to a value of approximately nth when current is greater in value than Ith.
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9.5 Numerical method of solving rate equations

In the previous section, the single-mode laser diode rate equations were used to qualita-
tively predict the steady-state behavior of a laser diode. While there are many practical
applications that can make use of such steady-state characteristics, we are also inter-
ested in the high-speed, large-signal response of the device. Data transmission via an
optical fiber medium requires a photon source in which lasing light intensity is modu-
lated. A simple way to change lasing light emission is to change the injection current.
Modulating in a one-bit digital fashion, a high level of light might correspond to bi-
nary 1 and a low level of light might correspond to binary 0. To efficiently pass data in
a fiber-optic link, one would like to know how fast a laser can switch from a 1 state to
a 0 state. To answer such basic questions concerning laser performance it is necessary



440 The semiconductor laser

to resort to numerical methods that are capable of predicting the large-signal dynamic
response of a laser diode’s carrier density and laser light emission in response to rapid
changes in injection current.

Because we will be writing a computer program to solve Eqn (9.62) and Eqn (9.63),
it is worth spending some time outlining how we will proceed. The basic rules of
programing are to keep everything as simple as possible at first so that it is easy to
fix any bugs. Always display the results graphically, and carefully document your
program, so that when you return to it at a later date you can understand what you did.
In this case, particular care is taken to define all of the parameters and rescale to units
that are appropriate for the problem. We will scale time to nanoseconds and length to
nanometers.

We will integrate the coupled rate equations using the fourth-order Runge–Kutta
method to be discussed in the next section. When using this integrator, it is important
to make sure that a time step size is chosen that is appropriate for the equations. In our
case, a time step of around tstep = 1 ps is the correct value. Again, to maintain a simple
approach, the time step is fixed. More sophisticated routines with adaptive step size are
left for later consideration.

9.5.1 The Runge–Kutta method

Ordinary differential equations may always be expressed in terms of first-order differ-
ential equations. For example,

d2y

dt2
+ a(t)

dy

dt
= b(t) (9.69)

may be written as two first-order coupled differential equations

dy

dt
= f (t) (9.70)

d f

dt
= b(t) − a(t) f (t) (9.71)

We are therefore interested in the study of N coupled first-order differential equations
for the functions y j having the form

d

dt
y j (t) = f j (t, y1, . . . , yN ) (9.72)

where the right-hand side is a known function and j = 1, 2, . . . , N .
After applying boundary conditions and an initial value, we use a finite step h0 to

numerically solve the equations. For example, we might use Euler’s method

yn+1 = yn + h0 f (tn, yn) + 0
(
h2

0

)
(9.73)

to advance the solution from tn to tn+1 ≡ tn + h0. It advances the solution through an
interval h0, using only derivative information contained in f (t, y) at the beginning of
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Fig. 9.16. Illustration of fourth-order Runge–Kutta method of numerically estimating integration of
a function.

the interval. Unfortunately, the error in each step is 0(h2
0), which is only one power of

h0 smaller than the estimate function h0 f (tn, yn).
One may do better than this by first taking a trial step to the midpoint of the interval

and then using the value of both t and y at the midpoint to compute a more accurate step
across the complete interval. If we evaluate f (t, y) in such a way that first-order and
some higher-order terms cancel, we can make a very accurate numerical integrator. The
fourth-order Runge–Kutta method does just this. As illustrated in Fig. 9.16, each step
along f (t, y) is evaluated four times, once at the initial point, twice at the mid-points
and once at the trial point.

The fourth-order Runge–Kutta method is summarized by the equation

yn+1 = yn + k1

6
+ k2

3
+ k3

3
+ k4

6
+ 0(h5) (9.74)

where

k1 = h0 f (tn, yn) (9.75)

is used to evaluate at the initial point,

k2 = h0 f

(
tn + h0

2
, yn + k1

2

)
(9.76)

is used to estimate the midpoint using k1/2,

k3 = h0 f

(
tn + h0

2
, yn + k2

2

)
(9.77)

is used to estimate the midpoint using k2/2, and

k4 = h0 f (tn + h0, yn + k3) (9.78)

is used to evaluate the end point using k3.
The single-mode rate equations Eqn (9.62) and Eqn (9.63) are two coupled first-order

differential equations that can be solved using the Runge–Kutta method. However, when
we do so, care has to be taken to make sure that the estimates for trial points k1, k2, k3,
and k4 are updated using the most current values.
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Table 9.1. Fabry–Perot laser diode rate equation parameters

GaAs InGaAsP InGaAsP
850 nm 1310 nm 1550 nm

Description Parameter wavelength wavelength wavelength

Refractive index nr 3.3 4 4
Cavity length LC (cm) 250 × 10−4 300 × 10−4 500 × 10−4

Active layer thickness ta (cm) 0.14 × 10−4 0.14 × 10−4 0.14 × 10−4

Active layer width wa (cm) 0.8 × 10−4 0.8 × 10−4 0.8 × 10−4

Integration time increment tinc (s) 1 × 10−12 1 × 10−12 1 × 10−12

Nonradiative recombination
coefficient Anr (s−1) 2 × 108 2 × 108 1 × 108

Radiative recombination
coefficient B (cm3 s−1) 1 × 10−10 1 × 10−10 1 × 10−10

Nonlinear recombination
coefficient C (cm6 s−1) 1 × 10−29 1 × 10−29 5 × 10−29

Transparency carrier density n0 (cm−3) 1 × 1018 1 × 1018 1 × 1018

Optical gain-slope coefficient Gslope (cm2 s−1) 3.3 × 10−16 2.5 × 10−16 2.0 × 10−16

Gain saturation coefficient εbulk (cm3) 2 × 10−18 3 × 10−18 5 × 10−18

Spontaneous emission coefficient β 1 × 10−4 5 × 10−5 1 × 10−5

Optical confinement factor � 0.25 0.25 0.25
Mirror 1 reflectivity r1 (cm2 s−1) 0.3 0.32 0.32
Mirror 2 reflectivity r2 (cm2 s−1) 0.3 0.32 0.32
Internal optical loss αi (cm−1) 20 40 50

9.5.2 Large-signal transient response

When writing a computer program to model the behavior of a laser diode with a bulk
active gain region, we need to define the functions in the rate equations Eqn (9.62) and
Eqn (9.63), including assigning numerical values. Table 9.1 gives some typical values
for the parameters introduced in Section 9.4.4.

In Fig. 9.17, the results of calculating the large-signal response of a diode laser to a
30 mA step change in current are shown. The model uses parameters given in Table 9.1
for a laser with emission wavelength near λ0 = 1310 nm.

There are a number of characteristic features worth mentioning. First, because the
device is turned on from a zero-current state, there is a significant turn-on delay, td,
associated with the fact that it takes time to inject enough carriers to bring the device
to a lasing state. Second, as usual with coupled rate equations, there will be some
phase delay between carrier density, n, and photon density, S. The electrons lead the
photon density. This gives rise to significant photon density overshoot and relaxation
oscillations in both the optical output, S, and the carrier density, n, as the system tries
to establish steady-state conditions. This is typical of a response to a large step change
in injection current, especially if current, I , passes through the threshold value, Ith.
Relaxation oscillations limit the useful switching speed of laser diodes.
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Fig. 9.17. (a) Input step current as a function of time. Current is initially zero, increasing to 30 mA
at time t = 0.5 ns. Laser threshold is Ith = 5.7 mA. (b) Laser diode light output per mirror facet as
a function of time, showing turn-on delay, tα , and overshoot in optical light output. Mirror
reflectivity is the same for each facet. (c) Conduction-band and valence-band carrier density as a
function of time. The calculation uses parameters for an InGaAsP device as given in Table 9.1.

9.5.3 Cavity formation

The single-mode rate equations Eqn (9.62) and Eqn (9.63) can be used to learn a great
deal about the high-speed performance of a laser diode. The large-signal response
to a step change in current was investigated in Section 9.5.2, and it was found that
turn-on delay and relaxation oscillations have to be considered when evaluating the
switching speed of laser diodes. However, to some extent these effects can be mitigated
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by engineering and design. With this in mind, it seems appropriate to ask if there are
other, more fundamental, limitations to laser diode operation and switching speed. Of
course, there are and one such example is called cavity formation.

To explain this, we consider a photon inside a Fabry–Perot laser diode. The photon
cannot know it is in a Fabry–Perot resonator or at resonance until it interacts with the
mirrors. If there are no mirrors, the device is merely a light-emitting diode (LED).
Hence, lasing emission into a cavity resonance requires that the photon experience at
least one round-trip within the resonator. The device cannot behave as a laser until the
photon cavity has formed. This takes at least one photon round-trip time, which, in a
conventional Fabry–Perot laser diode, is about 10 ps.

You may ask what effect multiple photon round-trips have on the time evolution
of lasing light emission intensity and spectra. This is not particularly easy to answer,
because usually photon cavity formation is obscured by the nonlinear coupling of
the optical field with the optical gain medium. Under normal conditions, it is dif-
ficult to measure the effect of multiple round-trips on the evolution of lasing light
intensity and lasing spectra due to the short cavity round-trip time and charge car-
rier lifetime. However, by adiabatically decoupling the cavity formation (by mak-
ing a large external cavity) from other processes such as charge carrier dynamics,
experiments can be performed that explore this issue.11 The results can also be pre-
dicted using time-delayed, single-mode or multi-mode rate equations. Importantly, the
experiments show how a laser uses cavity formation to drive the device from an LED
to a laser. Surprisingly, approximately 200 photon round-trips are needed to approach
steady-state laser characteristics that are independent of the laser injection current (see
Fig. 9.18). Obtaining pure steady-state spectral behavior requires even more photon
round-trips.

9.6 Noise in laser diode light emission

The laser works by amplifying spontaneous emission. Spontaneous emission is a funda-
mentally quantum mechanical and random process. One therefore anticipates that the
light emitted from a laser diode is inherently noisy. Because fiber-optic communication
systems use intensity modulation of laser light, we will be interested in developing a
model with the aim of understanding more about intensity noise.

Figure 9.19(a) shows how intensity-modulated laser light can be used to transmit bits
of information. In this case, a high level of light is binary 1 and a low level of light is
binary 0. Because the receiver circuitry needs time to decide between high and low light
levels, data are transmitted at a well-defined rate called the bit rate, 1/τbit. A typical

11 J. O’Gorman, A. F. J. Levi, D. Coblentz, T. Tanbun-Ek, and R. A. Logan, Appl. Phys. Lett. 61, 889 (1992).
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Fig. 9.19. (a) Intensity-modulated laser light can be used to transmit bits of information in which a
high level of light is binary 1 and a low level of light is binary 0. Laser intensity noise is a source of
bit errors. (b) A continuously sampled data stream creates an eye diagram in which the eye width
and height define the area in which the receiver circuitry can minimize the probability of bit errors.

bit rate in fiber-optic communication systems is 10 Gb s−1. In this case, τbit = 100 ps
and 1010 bits of information can be transmitted through the system in one second. With
such large information capacity, one would like to minimize the chance of bit errors
due to laser intensity noise.
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If one randomly and continuously samples a data stream in time while synchronized
to the bit rate, one obtains the eye diagram shown in Fig. 9.19(b). The opening in the
center of the eye diagram is where the receiver circuitry decides between high and low
light levels. The greater the amount of intensity noise in the laser signal, the smaller the
region in which the receiver can make its decision and the greater the chance of errors.

Noise in the intensity of light output from a laser diode is characterized using a
quantity called relative intensity noise (RIN). The optical intensity S contains noise, so
that

S(t) = 〈S〉 + δS(t) (9.79)

where 〈S〉 is the time-averaged optical intensity and δS(t) is the deviation from the
average value at any given instant in time, t . The time average in the fluctuation δS(t)
is 〈δS(t)〉 = 0. The noise δS(t) may be characterized in the time domain by the auto-
correlation function

gS(τ ) = 〈δS(t)δS(t − τ )〉 (9.80)

or in the frequency domain by the noise spectral density

〈|δS(ω)|2〉 =
τ=∞∫

τ=−∞
gS(τ )e−iωt dτ = 1

t ′

∣∣∣∣
t ′→∞

∣∣∣∣∣
t ′∫

0

δS(t)e−iωt dt

∣∣∣∣∣
2

(9.81)

RIN is defined as the square of fluctuations in optical intensity noise at frequency ω

divided by the average value of optical intensity 〈S〉 = S0 squared at frequency ω, so
that

RIN(ω) = 〈|δS(ω)|2〉
〈S(ω)〉2

= 〈|δS(ω)|2〉
S2

0 (ω)
(9.82)

RIN is measured in units of either dB Hz−1 or Hz−1.
RINmay be investigated theoretically using a slight modification of the single-mode

rate equations Eqn (9.62) and Eqn (9.63) we have already developed. We use Langevin
rate equations,

dS

dt
= (G − κ)S + βrspon + Fs(t) (9.83)

and

dn

dt
= 1

eV
− n

τn
− GS + Fe(t) (9.84)

where S and N are the photon and carrier densities in the cavity, G is optical gain, κ is
optical loss, β is the spontaneous emission factor, n/τn is the carrier recombination rate,
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e is the charge of an electron, rspon accounts for spontaneous emission into all optical
modes, and V , the volume of the semiconductor active region. A source of random noise
in the rate equations is included through the terms Fs(t) and Fe(t). These are called the
Langevin noise terms. Using Eqn (9.83) and Eqn (9.84) is the simplest way to include
noise into our model of a laser diode. A slightly more detailed approach also takes
into account optical phase noise.12 In the Markovian approximation, corresponding
to instantaneous changes in Fs(t) and Fe(t), the autocorrelation and cross-correlation
functions are given by

〈Fe(t)Fe(t ′)〉 =
(
I/eV + n

τn
+ GS

)
δ(t − t ′) (9.85)

〈Fs(t)Fs(t
′)〉 = ((G + κ)S + βrspon)δ(t − t ′) (9.86)

〈Fs(t)Fe(t ′)〉 = −(GS − βrspon)δ(t − t ′) (9.87)

The Markovian approximation is guaranteed by use of δ(t − t ′). The expression
〈Fe(t)Fe(t ′)〉 is the square of Gaussian fluctuations around the mean value of n given
by the rate equation Eqn (9.62). 〈Fs(t)Fs(t ′)〉 is just the square of Gaussian fluctua-
tions around the mean value of S given by the rate equation Eqn (9.63). The cross-
correlation term 〈Fs(t)Fe(t ′)〉 shows that the rate equations for S and n are coupled
and hence correlated. The negative sign in Eqn (9.87) indicates that Fs(t) and Fe(t) are
anticorrelated.

The mean steady-state value for S is S0, and that for n is n0. The magnitude of the
Fourier component of S at RF angular frequency ω is δS(ω), and that for n is δn(ω).
Linearizing the dynamical Eqn (9.83) and Eqn (9.84) for a constant average diode
current, and neglecting gain saturation, gives

δS(ω) =
Fe(ω)

(
dG

dn
S0 + 2βBn0

)
+ Fs(ω)

(
iω + dG

dn
S0 + 1

τn
+ 1

τ ′
n

n0

)
(
iω

(
dG

dn
S0 + n

τn
+ 1

τ ′
n

n0

)
− ω2 + G

dG

dn
S0 + G2βBn0

) (9.88)

and

RIN ≡ lim(τ → ∞)
1

τ

∣∣∣∣δS(ω)

S0(ω)

∣∣∣∣
2

(9.89)

In these expressions, Fe(ω) and Fs(ω) are the Fourier components at ω of Fe(t) and
Fs(t), respectively, and 1/τ ′

n ≡ (d/dn)(1/τn).

12 For a somewhat more complete model, see M. Ahmed, M. Yamada, and M. Saito, IEEE J. Quantum Electron.
QE-37, 1600 (2001).
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Fig. 9.20. Calculated RIN as a function of frequency, f , for a Fabry–Perot laser diode with active
volume V = 300 × 2 × 0.05 �m3. The mirror reflectivity is 0.3 per facet, and the steady-state
current bias is I0 = 4 × Ith = 7.36 mA. The average photon number in the device is
S0 = 9.5 × 104, and the average carrier number is N0 = 5.9 × 107.

The cause of the peak inRIN shown in Fig. 9.20 can be traced to the pole in Eqn (9.88).
Physically it arises from fluctuations in carrier density and photon density working in
phase to amplify the response to a noise fluctuation. The origin is similar to the cause
of relaxation oscillation observed in the calculated average large-signal response of
carriers and photons shown in Fig. 9.17.

9.7 Why our model works

It is truly remarkable that the simple model we have used throughout this chapter to
describe the behavior of semiconductor lasers gives useful results. Engineers can use
this, and slightly improved versions of the model, to successfully design and optimize
the performance of laser diodes. The fact that this is so is largely accidental, and if
we wish to understand detailed physical processes in a device our lack of knowledge
becomes painfully obvious.

For example, the low-temperature energy dependence of the low-carrier-density opti-
cal absorption in GaAs is very different from the simple square-root behavior predicted
by Eqn (9.43). An electron in the conduction band is attracted by way of the coulomb
interaction to a hole in the valance band and can form a bound state called an exciton.13

Absorption due to excitons can give rise to a spectrally sharp absorption peak for pho-
tons with energy less than the semiconductor band gap. At room temperature, this peak

13 For a review of such phenomena and related issues, see the contribution by D. S. Chemla in the series Semicon-
ductors and Semimetals 58, eds. R. K. Willardson and E. R. Weber, Academic Press, New York, 1999 (ISBN
0 12 752167 5) and S. W. Koch, T. Meier, W. Hoyer, and M. Kira, Physica, E14, 45 (2002).
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is broadened by thermal processes, but still makes a contribution to absorption for
photon energies near the band-gap energy.

For carrier densities at levels necessary to achieve useful optical gain in a laser diode,
electron scattering broadens electron energy levels in the semiconductor on an energy
scale that is comparable to our measure of optical gain bandwidth, �µe−hh. In addition,
the relatively high carrier density screens the coulomb interaction. This reduces the
ability of the system to form excitons. High carrier-density can also reduce the value
of the band-gap energy.

While these and other high-carrier-density effects make it quite hard to create a
detailed physical model of optical gain in a semiconductor, they are also responsible
for the success of our naive approach. Associated with high carrier density and room-
temperature operation are energy broadening effects that quite accidently and serendip-
itously conspire to turn our simple model into something that is useful. The fact remains,
however, that while the model gives results that may be used to design lasers, the model
itself is physically incorrect.

Relying too heavily on the model can result in misunderstanding and misinterpre-
tation of device behavior. One must be careful not to draw incorrect conclusions from
such a crude model.

9.8 Example exercises

Exercise 9.1
Write a computer program to calculate spontaneous emission and optical gain in a bulk
direct band-gap semiconductor as a function of photon energy --hω using Eqn (9.42) and
Eqn (9.43). Plot your results for GaAs with carrier concentration n = j × 1018 cm−3,
where j = 1, 2, . . . , 10, temperature T = 300 K, band-gap energy Eg = 1.4 eV, and
constant g0 = 2.64 × 104 cm−1 eV−1/2.

Exercise 9.2
Repeat the calculation of Exercise 9.1, but now plot difference in chemical potential,
�µe−hh, peak optical gain, gpeak, and total spontaneous emission, rspon−total as functions
of carrier density in the range n = 1018 cm−3 to n = 1019 cm−3. What happens to these
functions if the active region is a two-dimensional quantum well?

Exercise 9.3
Plot spontaneous emission using the Lorentzian broadening function (Eqn
(9.44)) to simulate the effect of electron–electron scattering. Use the parameters
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n = 2 × 1018 cm−3, T = 300 K, Eg = 1.4 eV, ng = 3.3, γk = 15 meV and the
relationship

gopt(--hω) = −αopt(--hω) = --h

(
cπ

nrω

)2

· rspon(--hω) · (1 − e(hω−Eg−�µe−hh)/kBT
)

to calculate optical gain as a function of photon energy --hω. Assume that g0 =
2.64 × 104 cm−1 eV−1/2.

Exercise 9.4
A Fabry–Perot laser diode has a bulk active region 300 �m long, 0.8 �m wide, and
0.14 �m thick. The laser has emission at wavelength λ0 = 1310 nm, internal optical
loss of 40 cm−1, an optical confinement factor of � = 0.25, a mirror reflectivity of
0.32, and a spontaneous emission factor of β = 10−4. Optical transparency occurs
at carrier density n0 = 1018 cm−3, the refractive index of the semiconductor is nr =
4.0, and the peak optical gain at carrier density n is gopt = gslope(n − n0)(1 − εS),
where gslope = 2.5 × 10−16 cm2 s−1, ε = 5 × 10−18 cm3, and S is the photon density.

Write a computer program that uses the Runge–Kutta method described in Sec-
tion 9.5.1 to solve the rate equations for the device. Then plot: light output, L , as a
function of time; carrier density, n, as a function of time; and output power as a function
of carrier density for a step current of 20 mA. You may assume a nonradiative carrier
recombination rate Anr = 2 × 108 s−1, a radiative carrier recombination rate coeffi-
cient B = 1 × 10−10 cm3 s−1, and a nonlinear carrier recombination rate coefficient
C = 1 × 10−29 cm6 s−1.

Exercise 9.5
Modify the computer program used in Exercise 9.4 to find the steady-state laser light
output, L , and carrier density, n, as functions of diode injection current, I . Use the
device parameters given in Exercise 9.4. Plot L on both a linear and a logarithmic
scale as a function of I , and determine the laser diode threshold current, Ith. Plot
carrier density, n, as a function of current, I , and determine the carrier density at laser
threshold nth.

SOLUTIONS

Solution 9.1
The following figures show the results of calculating spontaneous emission and optical
gain in a bulk direct band-gap semiconductor as a function of photon energy --hω using
Eqn (9.42) and Eqn (9.43). In each figure, carrier concentration n = j × 1018 cm−3,
where j = 1, 2, . . . , 10, temperature T = 300 K, and band-gap energy Eg = 1.4 eV.
Optical gain gopt(--hω) is calculated using the constant g0 = 2.64 × 104 cm−1 eV−1/2.
Because g0/r0 = π2c2/ω2n2

r , it is not necessary to specify r0.
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The computer program used to calculate the above figures calls the algorithm (in
this case a function called mu which in turn uses the function fermi) developed in
Exercise 7.3 to determine the chemical potential for electrons and holes. The follow-
ing lists an example program to generate the above figures written in the MATLAB
language.

Listing of MATLAB program for Exercise 9.1
%Chapt9Exercise1.m
%plot gain and spontaneous emission as function of photon energy
%for carrier 10 different carrier densities
%uses function mu.m and fermi.m
%carrier density n(m-3), temperature kelvin(K)
%
clear
clf;

hbar=1.05457159e-34; %Planck’s constant (J s)
kB=8.61734e-5; %Boltzmann constant (eV K-1)

m0=9.109382e-31; %bare electron mass (kg)
me=0.07*m0; %effective electron mass (kg)
mhh=0.5*m0; %effective heavy hole mass (kg)
mr=1/(1/me+1/mhh); %reduced electron mass
rerr=1e-3; %relative error

Eg=1.4 %GaAs band gap energy (eV)
kelvin=300.0; %temperature (K)
kBT=kB*kelvin; %thermal energy (eV)
beta=1/kBT; %inverse thermal energy (eV-1)

for k=1:1:10

n=k*1.e18; %carrier density (cm-3)
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ncarrier=n*1e6; %convert carrier density to (m-3)
muhh=mu(mhh,ncarrier,kelvin,rerr) %call mu chemical potential function for holes (eV)
mue=mu(me,ncarrier,kelvin,rerr) %call mu chemical potential function for electrons (eV)
deltamu=mue+muhh %difference in chemical potential (eV)

const=2.64e4; %GaAs constant gives gain 330 cm-1 at n = 2e18 cm-3

deltae=0.001;

for j=1:300
Energy(j)=j*deltae; %photon energy - Eg
Ehh=(Energy(j))/(1+mhh/me); %energy in hole band
Ee=(Energy(j))/(1+me/mhh); %energy in conduction band
fhh=fermi(beta,Ehh,muhh); %call Fermi function for holes
fe=fermi(beta,Ee,mue); %call Fermi function for electrons
gain(j)=const*(Energy(j)ˆ0.5)*(fe+fhh-1);
rspon(j)=(const)*(Energy(j)ˆ0.5)*(fe*fhh);

end

figure(1)
hold on;
plot(Energy+Eg, gain);
xlabel('Photon energy, hw (eV)');
ylabel('Optical gain, g (cm-1)');

title([ 'n(min)=',num2str(1),'x 10ˆ{18} cmˆ{-3}, n(max)=',num2str(k),'x 10ˆ{18} cmˆ{-3},
me=',num2str(me / m0),', mhh=',num2str(mhh / m0),', T=',num2str(kelvin),'K, Eg=',num2str(Eg),
'eV']);

grid on;
hold off;

figure(2)
hold on;
plot(Energy+Eg,rspon,'r');
xlabel('Photon energy, hw (eV)');
ylabel('Spontaneous emission, rsp (arb.)');

title([ 'n(min)=',num2str(1),'x 10ˆ{18} cmˆ{-3}, n(max)=',num2str(k),'x 10ˆ{18} cmˆ{-3},
me=',num2str(me/m0),', mhh=',num2str(mhh / m0),', T=',num2str(kelvin),'K, Eg=',num2str(Eg),
'eV']);

grid on;
end
hold off;

Solution 9.2
Here, we basically repeat the calculation of Exercise 9.1, but now we plot difference in
chemical potential, �µe−hh, peak optical gain, gpeak, and total spontaneous emission,
rspon−total, as functions of carrier density in the range n = 1018 cm−3 to n = 1019 cm−3.
The following figures show the results of performing the calculations. Notice how
peak optical gain increases essentially linearly with increasing carrier concentration, n.
This justifies the use of the linear approximation for optical gain given by Eqn (9.64).
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The total spontaneous emission increases faster than linearly with increasing carrier
concentration, supporting the use of the approximation rspon−total = Bn2.

If the active region is a two-dimensional quantum well in place of the bulk, three-
dimensional gain medium we have been considering, the energy dependence of the
electronic density of states is altered from a E1/2 behavior to a constant. This will
change how the difference in chemical potential, �µe−hh, peak optical gain, gpeak,
and total spontaneous emission, rspon−total, depend upon carrier density. Peak gain as a
function of n can be approximated by the logarithmic function given by Eqn (9.65).
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Solution 9.3
In this exercise we use a Lorentzian broadening function to simulate the effect of
electron–electron scattering, and we plot spontaneous emission (Eqn (9.44)) for the
parameters n = 2 × 1018 cm−3, T = 300 K, Eg = 1.4 eV, ng = 3.3, γk = 15 meV. We
then use the relationship

gopt(--hω) = −αopt(--hω) = --h

(
cπ

nrω

)2

· rspon(--hω) · (1 − e(hω−Eg−�µe−hh)/kBT
)
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to calculate optical gain as a function of photon energy --hω, assuming that g0 =
2.64 × 104 cm−1 eV−1/2.

The computer program used to do this exploits what was developed in Exercise 9.1.
The additional complication is the inclusion of the Lorentzian broadening function. The
results shown in the following figures are indicative of what happens to the spontaneous
emission and gain spectra when γk is included. The peak values of both rspon and gopt

decrease and there is a low-energy tail that extends into the band-gap region.
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Solution 9.4
In this exercise we are asked to write a computer program that simulates the large-signal
response of a Fabry–Perot laser diode using the parameters provided.
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The above figures plot: light output, L , from one mirror facet as a function of time;
carrier density, n, as a function of time, t ; and output power as a function of carrier
density for a step-current of 20 mA. Notice the relaxation oscillations in both the L–t
and n–t plots. These oscillations arise from the response of the system to a large-signal
step change in current. There is a phase lag between the photons and the carriers during
the transient that can be seen in the figure that plots L–n.

The computer program is written in two parts so that the Runge–Kutta integrator can
be called from the main program.

Listing of MATLAB program for Exercise 9.4
%Chapt9Exercise4.m
%solves single-mode laser diode rate equations
%calls runge4.m which is a 4th order Runge-Kutta integrator for fixed time increment
%plots carrier density and photon density as function of time.
%gain=g=gamma*gslope*(n-n0)*(1-epsi*s)
%carrier density, n, current, I, and photon density, s, are related via
%fcn=n'=(I/ev)-(n/tau n)-(g*s)
%fcs=s'=(g-K)*s+beta*Rsp

clear;
clf;

%declare constants
hconstjs=6.626069e-34; %Planck’s constant (J s)
echargec=1.60217646e-19; %electron charge (C)
vlightcm=2.99792458e10; %velocity of light (cm s-1)

nsteps=10000; %number of time-steps
%******************** start the main program ********************************/
%assign values to parameters

ngroup=4; %refractive index
clength=3.00E-02; %cavity length (cm)
thick=1.40E-05; %thickness of active region (cm)
width=8.00E-05; %width of active region (cm)

tincrement=1.00E-12; %time increment (s)
initialn=0.00E+18; %initial value of carrier density (cm-3)

Anr=2.00E+08; %non-radiative recombination rate (s-1)
Bcons=1.00E-10; %radiative recombination coefficent (cm3 s-1)
Ccons=1.00E-29; %non-linear recombination coefficient (cm6 s-1)

n0density=1.00E+18; %transparency carrier density (cm-3)
gslope=2.50E-16; %optical gain-slope coefficient (cm2 s-1)
epsi=5.00E-18; %gain compression (cm3)
beta=1.00E-04; %spontaneous emission coefficient
gamma cons=0.25; %optical confinement factor
wavelength=1.31; %optical emission wavelength (um)
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mirrone=0.32; %optical reflectivity from first mirror
mirrtwo=0.32; %optical reflectivity from second mirror
alfa i=40; %internal optical loss (cm-1)

pstart1=2.5; %start of first current step (ns)
pstart2=3.5; %start of second current step (ns)

rioff1=0; %off value of current (mA)
rion1=20; %first step in current (mA)
rion2=20; %second step in current (mA)

%initialize sdensity, ndensity and calculate total optical loss (cm-1)
sdensity=0.0;
ndensity=initialn * 1.0e-21;

alfa m=log ( 1.0/(mirrone * mirrtwo) ) / ( 2.0 * clength );
alfasum=alfa m + alfa i;

%rescale integrator: time[ns], current[mA], length[nm] and 1nm3=1e-21cm3

echarge=echargec*1.0e9*1.0e3; %electron charge
vlight=vlightcm/1.0e9/1.0e-7; %velocity of light (m/s) to (nm s-1)

tincrement=tincrement*1.0e9;
gslope=gslope*1.0e14;
n0density=n0density*1.0e-21;

%length scale in nm.
clength=clength / 1.0e-7;
width=width / 1.0e-7;
thick=thick / 1.0e-7;

%recombination constants
Anr=Anr / 1.0e9;
Bcons=Bcons / (1.0e9*1.0e-21);
Ccons=Ccons / (1.0e9*1.0e-42);

epsi=epsi / 1.0e-21;
gslope=gslope*vlight / ngroup;
alfasum=alfasum*1.0e-7;
kappa=alfasum*vlight / ngroup;
volume=clength*width*thick;

%scale light output to mW from mirror one
tmp=hconstjs*(vlightcm*1.0e-2)/(wavelength*1.0e-6); %use m (J)
tmp=tmp*alfa m*vlightcm; %use cm (s-1)
tmp=tmp*1000.0*volume/ngroup; %use mW and nm (nm3)
lightout=tmp*(1.0-mirrone)/(2.0-mirrone-mirrtwo); %output mirror one

data(1)=gamma cons;
data(2)=gslope;
data(3)=n0density;
data(4)=epsi;
data(5)=kappa;
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data(6)=Bcons;
data(7)=Anr;
data(8)=Ccons;
data(9)=volume;
data(10)=beta;

%******************** the main integration loop ****************************

for i = 1 : 1 : nsteps
time(i) = ( double(i-1)+1.0* tincrement;
current(i) = rioff1;

if time(i)>pstart1
current(i)=rion1;

end

if time(i)>pstart2
current(i)=rion2;

end

[sdensity, ndensity]=runge4( current(i), sdensity, ndensity, tincrement, data);
carrier(i)=ndensity*1.0e21/11.0e18;
photon(i)=(lightout*sdensity);

end;

photon number=photon( nsteps - 1 )*volume / lightout %number of photon at last data point
carrier number=carrier( nsteps - 1 )*volume %number of carriers at last data point

%start plotting the time-evolution of corrent, light output and carrier density.
%injected current change in time.
figure(1);
hold on;
axis([0 time(nsteps) 0 max(current)*1.05]);
temp=['Injected current as function of time'];
title(temp,'fontsize', 12);
xlabel(['Time, t (ns)'],'fontsize', 12);
ylabel(['Current, I (mA)'],'fontsize', 12);
grid on;
plot(time,current,'r-');
hold off;

%Evolution of light output from mirror one.
figure(2);
hold on;
axis([0 time(nsteps) 0 max(photon)*1.05]);
temp=['Optical power from mirror-one as function of time'];
title(temp, 'fontsize', 12);
xlabel(['Time, t (ns)'],'fontsize', 12);
ylabel(['Power, L (mW/facet)'],'fontsize', 12);
grid on;
plot(time,photon,'r-');
hold off;
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%Evolution of carreir density.
figure(3);
hold on;
axis([0 time(nsteps) min(carrier) max(carrier)*1.05]);
temp=['Carrier density as function of time'];
title(temp,'fontsize', 12);
grid on;
xlabel(['Time, t (ns)'],'fontsize', 12);
ylabel(['Carrier density, n (10ˆ1ˆ8cmˆ-ˆ3)'],'fontsize', 12);
plot(time,carrier,'r-');
hold off;

%Light output as function of carreir density.
figure(4);
hold on;
axis([min(carrier) max(carrier)*1.05 max(photon)*1.05]);
temp=['Light output as function of carrier density'];
title(temp,'fontsize', 12);
grid on;
xlabel(['Carrier density, n (10ˆ1ˆ8cmˆ-ˆ3)'],'fontsize', 12);
ylabel(['Power, L (mW/facet)'],'fontsize', 12);
plot(carrier,photon,'r-');
hold off;

%main ends here.

Listing of runge4 function for MATLAB program used in Exercise 9.4
%*******************Runge Kutta 4-step algorithm.*************************
function [ret s, ret n]=runge4(current, sdensity, ndensity, tincrement, data)
%runge kutta 4 step algorithm
echargec =1.60217646e-19; %electron charge (Coulomb)
echarge =echargec*1.0e9*1.0e3; %electron charge
vlightcm =2.9979458e10; velocity of light [cm s-1]
vlight=vlightcm/1.0e9/1.0e-7; velocity of light [nm s-1]

%start reading parameters from the main program
gamma cons=data(1);
gslope=data(2);
n0density=data(3);
epsi=data(4);
kappa=data(5);
Bcons=data(6);
anr=data(7);
Ccons=data(8);
volume=data(9);
beta=data(10);
%finish reading parameters from the main program.
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%Runge-Kutta 4 step integrator.
temps=sdensity;
tempn=ndensity;

%photon and carrier number in the 1st step of Runge-Kutta method.
gn=gamma cons*gslope*( ndensity - n0density )*(1.0 - epsi*sdensity );
netgain=gn-kappa;

Rsp=Bcons*ndensity*ndensity;
temp=Anr*ndensity + Rsp + Ccons*ndensity*ndensity*ndensity;
ret val=current / echarge / volume - temp - gn*sdensity;
nk1=tincrement*ret val;

ret val=netgain*sdensity+ beta*Rsp;
sk1=tincrement*ret val;

ndensity=nk1*0.5+tempn;
sdensity=sk1*0.5+temps;

%photon and carrier number in the 2nd step of Runge-Kutta method.
gn=gamma cons*gslope*(ndensity - n0density)*(1.0 - epsi*sdensity );
netgain=gn-kappa;

Rsp=Bcons*ndensity*ndensity;
temp=Anr*ndensity + Rsp + Ccons*ndensity*ndensity*ndensity;
ret val=current / echarge / volume - temp - gn*sdensity;
nk2=tincrement*ret val;

ret val=netgain*sdensity+ beta*Rsp;
sk2=tincrement*ret val;

ndensity=nk2*0.5+tempn;
sdensity=sk2*0.5+temps;

%photon and carrier number in the 3rd step of Runge-Kutta method.
gn=gamma cons*gslope*( ndensity - n0density )*(1.0 - epsi*sdensity);
netgain=gn-kappa;

Rsp=Bcons*ndensity*ndensity;
temp=Anr*ndensity + Rsp + Ccons*ndensity*ndensity*ndensity;
ret val=current / echarge / volume - temp - gn*sdensity;
nk3=tincrement*ret val;

ret val=netgain*sdensity + beta*Rsp;
sk3=tincrement*ret val;

ndensity=nk3+tempn;
sdensity=sk3+temps;

%photon and carrier number in the 4th step of Runge-Kutta method.
%double gain(double freq, double sdensity, double ndensity, double Ef, double En, double beta)
gn=gamma cons*gslope*( ndensity - n0density )*(1.0 - epsi*sdensity );
netgain=gn-kappa;
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Rsp=Bcons*ndensity*ndensity;
temp=Anr*ndensity + Rsp + Ccons*ndensity*ndensity*ndensity;
ret val = current / echarge / volume - temp - gn*sdensity;
nk4=tincrement*ret val;

ret val=netgain*sdensity + beta*Rsp;
sk4=tincrement*ret val;

ret s=temps+(sk1+2.0*sk2+2.0sk3+sk4)/6.0;
ret n=tempn+(nk1+2.0*nk2+2.0nk3+nk4)/6.0;

sdensity=ret s;
ndensity=ret n;

%Runge-Kutta function ends here.

Solution 9.5
A simple way to find the steady-state L–I and n–I characteristsics of a laser diode is
to modify the computer program used in Exercise 9.4. One calculates the time domain
response to a fixed current I and waits until steady-state conditions are reached. After
recording the value of L and n for that value of I , one increases the current and repeats
the calculaton using the previous value of n as an initial condition.
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Of course, one has to know that the steady state has been achieved before recording
the values of L and n. The most straightforward approach is to simulate the device
for such a long time interval that you are sure that there are no transient effects left
in the system. For example, the time interval can be fixed at, say, 2 ns. This time is
longer than any other time scale in the system, and so should provide good steady-state
results for each value of current I . There are more efficient ways to determine if the
steady state has been reached, but they are more complicated and involve sampling a
number of values for photon intensity and determining if they are the same to within a
predetermined margin.

In the figures above light output L from one mirror facet is plotted on both linear
and logarithmic scales as a function of I . The laser diode threshold current, Ith, is
determined by linearly extrapolating the high-slope portion of the curve to L = 0.
This is best done by using the linear L–I plot. As may be seen, threshold current is
Ith = 5.7 mA. The log(L)–I curve is particularly useful for showing the behavior of
below threshold light level. Clearly, for this device, laser threshold is associated with a
very rapid change in optical output power near I = Ith.

The n–I plot shows that carrier density at threshold is nth = 2.25 × 1018 cm−3 and
that it does not increase significantly with increasing current, I . One says carrier density
is pinned above threshold.



10 Time-independent perturbation

10.1 Introduction

Often there are situations in which the solutions to the time-independent Schrödinger
equation are known for a particular potential but not for a similar but different poten-
tial. Time-independent perturbation theory provides a means of finding approximate
solutions using an expansion in the known eigenfunctions.

As an example, consider the one-dimensional, rectangular potential well with infinite
barrier energy shown in Fig. 10.1. The width of the well is L , and the potential is
V (x) = 0 for 0 < x < L and V (x) = ∞ for 0 > x > L .

The time-independent Schrödinger equation for a particle of mass m in the potential
V (x) is

Hψn(x) = −--h2

2m

∂2

∂x2
ψn(x) + V (x)ψn(x) = Enψn(x) (10.1)

The solutions to this equation have eigenfunctions

ψn(x) =
√

2

L
sin(knx) (10.2)

and eigenenergy

En =
--h2k2

n

2m
(10.3)

where

kn = nπ

L
(10.4)

and the value of n takes an integer value so that n = 1, 2, 3, . . ..
We now suppose that the potential V (x) is deformed by the presence of an additional

term W (x). In Fig. 10.1, W (x) is shown as a small curved bump. The challenge is
to find the new eigenstates and eigenvalues of the system. One approach is to use
time-independent perturbation theory.
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Fig. 10.1. Sketch of a one-dimensional, rectangular potential well with infinite barrier energy. The
width of the well is L , and the potential is V (x) = 0 for 0 < x < L and V (x) = ∞ for 0 > x > L .
The known eigenfunction for this potential can be used to obtain approximate solutions in the
presence of a “small” deformation in the potential.

10.2 Time-independent nondegenerate perturbation

To develop time-independent nondegenerate perturbation theory, we assume a Hamil-
tonian of the form

H = H (0) + W (10.5)

where H (0) is the unperturbed Hamiltonian and W is the perturbation. Formally, the
solution for the total Hamiltonain H has eigenfunctions ψn and eigenenergies En for
which

Hψn = Enψn (10.6)

The solution for the Hamiltonian H (0) has eigenfunctions ψ (0)
m and eigenenergies E (0)

m

for which

H (0)ψ (0)
m = E (0)

m ψ (0)
m (10.7)

For the situations we will consider, H (0), ψ (0)
m , and E (0)

m are known. Because the pertur-
bation W is assumed to be small, it should be possible to expand ψn and En as a power
series in W .

The perturbed eigenfunctions and eigenvalues are written

ψ = ψ (0) + λψ (1) + λ2ψ (2) + · · ·
E = E (0) + λE (1) + λ2E (2) + · · · (10.8)

where λ = 1 and is a dummy variable that we employ for keeping track of the order of
the terms in the power series that we will use. Hence,(
H (0) + λW

)(
ψ (0) + λψ (1) + · · · ) = (

E (0) + λE (1) + · · · )(ψ (0) + λψ (1) + · · · )
(10.9)
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Equating equal powers of λ gives(
H (0) − E (0)

)
ψ (0) = 0 (10.10)(

H (0) − E (0)
)
ψ (1) = (

E (1) − W
)
ψ (0) (10.11)(

H (0) − E (0)
)
ψ (2) = (

E (1) − W
)
ψ (1) + E (2)ψ (0) (10.12)(

H (0) − E (0)
)
ψ (3) = (

E (1) − W
)
ψ (2) + E (2)ψ (1) + E (3)ψ (0) (10.13)

Equation (10.10) is the zero-order solution. Equation (10.11) has the first-order correc-
tion. Equation (10.12) is to second order and so on.

By now it is clear that this theory has an important flaw. There is no self-consistent
method to decide when to terminate the perturbation series. Often, this is not a limitation,
because the high-spatial-frequency components of a potential usually decrease with
increasing frequency. However, this is not always the case, and so one must proceed
with caution.

10.2.1 The first-order correction

Because ψ (0) forms a complete set, we can expand each correction term in ψ (0). For
ψ (1), this gives

ψ (1) =
∑
n

a(1)
n ψ (0)

n (10.14)

where it is worth noting that the unperturbed solution gives

H (0)ψ (0)
m = E (0)

m ψ (0)
m (10.15)

The first-order corrected solution for the perturbedm-th eigenvalue and eigenfunction
is (Eqn (10.11))(
H (0) − E (0)

m

)
ψ (1) = (

E (1) − W
)
ψ (0)
m (10.16)

Substituting for ψ (1) gives(
H (0) − E (0)

m

)∑
n

a(1)
n ψ (0)

n = (
E (1) − W

)
ψ (0)
m (10.17)

We now multiply both sides by ψ
(0)∗
k , integrate, and make use of the orthonormal

property of eigenfunctions so that 〈i | j〉 = δi j∫
ψ

(0)∗
k H (0)

∑
n

a(1)
n ψ (0)

n − E (0)
m

∫
ψ

(0)∗
k

∑
n

a(1)
n ψ (0)

n = E (1)δkm − Wkm (10.18)

a(1)
k

(
E (0)
k − E (0)

m

) = E (1)δkm − Wkm (10.19)
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where Wkm is the matrix element
∫
ψ

(0)∗
k Wψ (0)

m = 〈k|W |m〉. Thus, for k �= m

a(1)
k = Wkm

Em − Ek
k �= m (10.20)

and for k = m

E (1) = Wmm k = m (10.21)

E (1) is the first-order correction to eigenvalue Em under the perturbation W .
We must now evaluate a(1)

m . This is done by requiring that ψ = ψ (0) + ψ (1), the
first-order corrected wave function, is normalized to unity:∫

ψ∗ψ =
∫ (

ψ (0)
m + λψ (1)

)∗(
ψ (0)
m + λψ (1)

) = 1 (10.22)∫
ψ∗ψ =

∫ (
ψ (0)
m + λ

∑
i

a(1)
i ψ

(0)
i

)∗(
ψ (0)
m + λ

∑
j

a(1)
j ψ

(0)
j

)
(10.23)

∫
ψ∗ψ = 1 + λa(1)

m + λa(1)∗
m + λ2

∑
i

a(1)
i a(1)∗

i (10.24)

Neglecting the second-order term gives a(1)
m = 0 as a solution. Hence, we may conclude

that the eigenfunction and eigenvalue to first order are

ψ = ψ (0)
m +

∑
k �=m

Wkm

Em − Ek
ψ

(0)
k

E = E (0)
m + Wmm (10.25)

10.2.2 The second-order correction

The second-order correction to the eigenfunction ψ (2) may be expanded as

ψ (2) =
∑
n

a(2)
n ψ (0)

n (10.26)

Again we note that the unperturbed solution gave

H (0)ψ (0)
m = E (0)

m ψ (0)
m (10.27)

The second-order solution for the perturbed m-th eigenvalue and eigenfunction is
(Eqn (10.12))(
H (0) − E (0)

m

)
ψ (2) = (

E (1) − W
)
ψ (1) + E (2)ψ (0)

m (10.28)
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Substituting our expansions for ψ (1) and ψ (2) in terms of ψ (0) gives

H (0)
∑
n

a(2)
n ψ (0)

n − E (0)
m

∑
n

a(2)
n ψ (0)

n = E (1)
∑
n

a(1)
n ψ (0)

n − W
∑
n

a(1)
n ψ (0)

n + E (2)ψ (0)
m

(10.29)

Multiplying both sides by ψ
(0)∗
k and integrating gives∫

ψ
(0)∗
k H (0)

∑
n

a(2)
n ψ (0)

n − E (0)
m

∫
ψ

(0)∗
k

∑
n

a(2)
n ψ (0)

n

= E (1)
∫

ψ
(0)∗
k

∑
n

a(1)
n ψ (0)

n −
∫

ψ
(0)∗
k W

∑
n

a(1)
n ψ (0)

n + E (2)
∫

ψ
(0)∗
k ψ (0)

m (10.30)

Hence,

a(2)
k

(
E (0)
k − E (0)

m

) = a(1)
k E (1) −

∑
n

a(1)
n Wkn + E (2)δmk (10.31)

10.2.2.1Second-order correction to eigenvalues (k = m)

For k = m, we have

E (2) =
∑
n

a(1)
n Wmn − a(1)

m E (1)

=
∑
n �=m

a(1)
n Wmn + a(1)

m Wmm − a(1)
m E (1) (10.32)

But from our first-order perturbation results we had E (1) = Wmm , so the second and
third terms on the right-hand side cancel and

E (2) =
∑
n �=m

a(1)
n Wmn (10.33)

Substituting for a(1)
n from our first-order perturbation results gives

E (2) =
∑
n �=m

|Wmn|2
Em − En

(10.34)

10.2.2.2Second-order coefficients a(2)
k

There are two situations we should consider – the values of a(2)
k when k �= m and when

k = m. For the case in which k �= m, we use our previous results

a(1)
n = Wnm

Em − En
(10.35)
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and

E (1) = Wmm (10.36)

Substituting into

a(2)
k

(
E (0)
k − E (0)

m

) = a(1)
k E (1) −

∑
n

a(1)
n Wkn + E (2)δmk (10.37)

gives

a(2)
k

(
E (0)
m − E (0)

k

) =
∑
n

a(1)
n Wkn − a(1)

k E (1) (10.38)

a(2)
k

(
E (0)
m − E (0)

k

) =
∑
n

WnmWkn(
E (0)
m − E (0)

n
) − E (1)Wkm(

E (0)
m − E (0)

k

) (10.39)

a(2)
k =

∑
n

WnmWkn

(Em − En)(Em − Ek)
− WmmWkm

(Em − Ek)2
k �= m (10.40)

For the case in which k = m, we find a(2)
m by using normalization of the corrected wave

function∫
ψ∗ψ =

∫ (
ψ (0)
m + λψ (1) + λ2ψ (2)

)∗(
ψ (0)
m + λψ (1) + λ2ψ (2)

) = 1 (10.41)∫
ψ∗ψ =

∫ (
ψ (0)
m + λ

∑
i

a(1)
i ψ

(0)
i + λ2

∑
i

a(2)
i ψ

(0)
i

)∗

×
(
ψ (0)
m + λ

∑
j

a(1)
j ψ

(0)
j + λ2

∑
j

a(2)
j ψ

(0)
j

)
(10.42)

∫
ψ∗ψ = 1 + λa(1)

m + λa(1)∗
m + λ2

∑
n

a(1)∗
n a(1)

n + λ2a(2)∗
m + λ2a(2)

m (10.43)

We now use the fact that a(1)
m = 0, so that

2λ2a(2)
m = −λ2

∑
n

a(1)∗
n a(1)

n (10.44)

a(2)
m = −1

2

∑
n

∣∣a(1)
n

∣∣2 (10.45)

and since a(1)
m = 0, we have for k = m

a(2)
m = −1

2

∑
n �=m

|Wmn|2
(Em − En)2

k = m (10.46)

One may now write down the eigenfunction and eigenvalue of the perturbed system to
second order. We have

E = E (0) + E (1) + E (2) (10.47)
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E = E (0)
m + Wmm +

∑
n �=m

|Wmn|2
Em − En

(10.48)

and

ψ = ψ (0) + ψ (1) + ψ (2) (10.49)

ψ = ψ (0)
m +

∑
k

a(1)
k ψ

(0)
k +

∑
k

a(2)
k ψ

(0)
k (10.50)

ψ = ψ (0)
m +

∑
k �=m

Wmk

Em − Ek
ψ

(0)
k +

∑
k �=m

((∑
n �=m

WknWmn

(Em − En)(Em − Ek)

− WmmWkm

(Em − Ek)2

)
× ψ

(0)
k − 1

2

|Wmn|2
(Em − En)2

ψ (0)
m

)
(10.51)

This completes the formal aspects of time-independent nondegenerate perturbation
theory up to second order in both the eigenvalues and eigenfunctions. It is now time to
get some practice using this formalism. In the following section we will consider the
effect a perturbing potential has on the one-dimensional harmonic oscillator.

10.2.3 Harmonic oscillator subject to perturbing potential in x

We start by considering a particle of massm and charge e moving in a one-dimensional
harmonic potential that is subject to a constant small electric field, E, in the x direction.
This is a good choice, because we have already found the exact solution in Chapter 6.
Hence, a meaningful comparison between the different approaches can be made.

To find the new energy eigenvalues and eigenfunctions for the perturbed system, one
starts by writing down the Hamiltonian

H = p2

2m
+ κ

2
x2 + W (10.52)

where spring constant κ = mω2 and perturbation is W = −e|E|x̂ . This perturbation
involves the position operator x̂ , and so we will be interested in finding matrix elements
Wnm = −e|E|xnm .

From our previous work on the harmonic oscillator, we know that the position op-
erator may be written as a linear combination of creation and annihilation operators in
such a way that x = (--h/2mω)1/2(b̂† + b̂). It follows that the matrix elements 〈n|b̂†|m〉 =
(m + 1)1/2δm=n−1 and 〈n|b̂|m〉 = m1/2δm=n+1, so that matrix elementWnm = −e|E|xnm
has only two nonzero values:

Wn,n+1 = −e|E|
( --h

2mω

)1/2

(n + 1)1/2 (10.53)
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and

Wn,n−1 = −e|E|
( --h

2mω

)1/2

n1/2 (10.54)

The unperturbed energy levels of the harmonic oscillator are

E (0)
n = --hω

(
n + 1

2

)
(10.55)

The first-order correction is given by

E (1) = Wmm = −e|E|xmm = 0 (10.56)

This is zero, since the matrix element 〈m|x |m〉 = xmm = 0. However, the second-order
correction is

E (2) =
∑
n �=m

|Wmn|2
Em − En

= e2|E|2--h

2mω

(
x2
n,n+1

−--hω
+ x2

n,n−1
--hω

)
(10.57)

E (2) = e2|E|2
2mω2

(−(n + 1) + n) = −e2|E|2
2mω2

= −e2|E|2
2κ

(10.58)

The new energy levels of the oscillator are to second order:

E = --hω

(
n + 1

2

)
− e2|E|2

2κ
(10.59)

which is the same as the exact result. Physically the particle oscillates at the same
frequency, ω, as the unperturbed case, but it is displaced a distance e|E|/mω2, and the
new energy levels are shifted by −e2|E|2/2mω2 (see Fig. 10.2).

The fact that perturbation theory gives the same result we previously obtained by an
exact calculation is a validation of our approach.

Energy eigenvalues

Energy eigenvalues of the
Hamiltonian H = H (0) + W 

E
ne

rg
y

of the Hamiltonian
H (0) are hω(n + 1/2)

are shifted in energy but have
the same energy spacing hω

Fig. 10.2. Illustration of energy eigenvalues of the one-dimensional harmonic oscillator with
Hamiltonian H (0) (left) and subject to perturbation W = −e|E|x in the potential (right). In the
presence of the perturbation, the energy levels are shifted but the energy-level spacing remains
the same.
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10.2.4 Harmonic oscillator subject to perturbing potential in x2

Following our success in calculating the energy levels for a one-dimensional harmonic
oscillator subject to a perturbation linear in x , we now consider the case of a perturbation
in x2.

As usual, we start by writing down the Hamiltonian for the complete system:

H = p2

2m
+ κ

2
x2 + W (10.60)

where spring constant κ = mω2 and the perturbation is W = κξ x2/2.
In this case, the effect of the perturbation is to change the spring constant of the

harmonic oscillator. If we set ω′2 = ω2(1 + ξ ), then

H = p2

2m
+ κ

2
x2 + κ

2
ξ x2 = p2

2m
+ mω2

2
(1 + ξ )x2 = p2

2m
+ mω′2

2
x2 (10.61)

The right-hand side of Eqn (10.61) is another harmonic oscillator. One may, therefore,
solve this exactly. The eigenvalues are

En =
(
n + 1

2

)
--hω′ =

(
n + 1

2

)
--hω(1 + ξ )1/2

=
(
n + 1

2

)
--hω

(
1 + ξ

2
− ξ 2

8
+ · · ·

)
(10.62)

where the expansion (1 + x)n = 1 + nx + n(n − 1)x2/2! + · · · has been used. The
same result may be found using perturbation theory.

The perturbation W may be written

W = κ

2
ξ x2 (10.63)

W = κ

2
ξ

--h

2mω

(
b̂† + b̂

)2 = ξ

4
--hω

(
b̂† + b̂

)2
(10.64)

W = ξ

4
--hω

(
b̂†2 + b̂2 + b̂b̂† + b†b̂

)
(10.65)

and, since b̂b̂† = b̂†b̂ + 1

W = ξ

4
--hω

(
b̂†2 + b̂2 + 2b̂†b̂ + 1

)
(10.66)

As usual, the nonzero matrix elements are easy to find. They are

〈φn|W |φn〉 = 1

2
ξ

(
n + 1

2

)
--hω (10.67)

〈φn+2|W |φn〉 = 1

4
ξ ((n + 1)(n + 2))1/2--hω (10.68)

〈φn−2|W |φn〉 = 1

4
ξ (n(n − 1))1/2--hω (10.69)
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Energy eigenvalues
Energy eigenvalues of the
Hamiltonian H = H(0) + W 

E
ne

rg
y

of the Hamiltonian
H (0) are hω(n + 1/2).

are shifted in energy and have
new energy spacing.

Fig. 10.3. Illustration of energy eigenvalues of the one-dimensional harmonic oscillator with
Hamiltonian H (0) (left) and subject to perturbation W = κξ x2/2 in the potential (right). In the
presence of the perturbation, both the energy levels and the energy-level spacing are changed. In
the figure it is assumed that ξ < 1.

Now we use these results to evaluate the energy terms up to second order:

E = E (0) + E (1) + E (2) (10.70)

En = E (0)
n + Wnn +

∑
m �=n

|Wnm |2
En − Em

(10.71)

En = E (0)
n + ξ

2

(
n + 1

2

)
--hω− ξ 2

16
(n + 1)(n + 2)

--hω

2
+ ξ 2

16
n(n − 1)

--hω

2
+ · · · (10.72)

En = E (0)
n +

(
n + 1

2

)
--hω

ξ

2
−
(
n + 1

2

)
--hω

ξ 2

8
+ · · · (10.73)

En =
(
n + 1

2

)
--hω

(
1 + ξ

2
− ξ 2

8
+ · · ·

)
(10.74)

which is the result we had before. The energy-level diagram in Fig. 10.3 illustrates the
result.

Again, perturbation theory is in good agreement with an alternative exact approach,
thereby justifying our method.

10.2.5 Harmonic oscillator subject to perturbing potential in x3

We consider a one-dimensional harmonic oscillator subject to a perturbation in x3. As
before, the way to proceed is by writing down the Hamiltonian for the complete system:

H = p2

2m
+ κ

2
x2 + W (10.75)
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Here, the spring constant κ = mω2, and the perturbation is

W = ξ x3--hω(mω/--h)3/2

Because we have factored out (--h/mω)1/2, the position operator may be written as
x = (1/2)1/2(b̂† + b̂), and since we are interested in x3, we need to find x3 ∝ (b̂† + b̂)3:(
b̂† + b̂

)3 = (
b̂†2 + b̂b̂† + b̂†b̂ + b̂2

)(
b̂† + b̂

)
(10.76)(

b̂† + b̂
)3 = (

b†3 + b̂b̂†b̂† + b̂†b̂b̂† + b̂b̂b̂† + b̂†b̂†b̂ + b̂b̂†b̂ + b̂†b̂b̂ + b̂3
)

(10.77)

Making use of the operator n̂ = b̂†b̂ and n̂ + 1 = b̂b̂†, and substituting into the equation(
b̂† + b̂

)3 = (
b̂†3 + (n + 1)b̂† + nb̂† + b̂(n + 1) + b̂†n + (n + 1)b̂ + nb̂ + b̂3

)
(10.78)

Now, exploiting the commutation relations [n, b̂] = nb̂ − b̂n = −b̂ and [n, b̂†] =
nb̂† − b̂†n = b̂† one finds(
b̂† + b̂

)3 = (
b̂†3 + nb̂† + b̂† + nb̂† + (n + 1)b̂ + b̂ + nb̂† − b̂†

+ (n + 1)b̂ + (n + 1)b̂ − b̂ + b̂3
)

(
b̂† + b̂

)3 = (
b̂†3 + 3nb̂† + 3(n + 1)b̂ + b̂3

)
(10.79)

Therefore, the perturbation is

W = ξ --hω

23/2

(
b̂†3 + 3n̂b̂† + 3(n̂ + 1)b̂ + b̂3

)
(10.80)

Hence, the only nonzero matrix elements of the perturbation W have the effect of
mixing |φn〉 with states |φn+1〉, |φn−1〉, |φn+3〉 and |φn−3〉. The matrix elements are

〈φn+3|W |φn〉 = ξ

(
(n + 3)(n + 2)(n + 1)

8

)1/2
--hω (10.81)

〈φn−3|W |φn〉 = ξ

(
n(n − 1)(n − 2)

8

)1/2
--hω (10.82)

〈φn+1|W |φn〉 = 3ξ

(
n + 1

2

)3/2
--hω (10.83)

〈φn−1|W |φn〉 = 3ξ

(
n

2

)3/2
--hω (10.84)

Using these results to evaluate the energy terms up to second order gives

En = E (0)
n + Wnn +

∑
m �=n

|Wnm |2
En − Em

(10.85)

En =
(
n + 1

2

)
--hω + 0 +

∑
m �=n

|Wnm |2
En − Em

(10.86)
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Energy eigenvalues Energy eigenvalues of the
Hamiltonian H = H (0) + W 

E
ne

rg
y

of the Hamiltonian
H (0) are hω(n + 1/2). are shifted in energy and have

new energy spacing.

Fig. 10.4. Illustration of energy eigenvalues of the one-dimensional harmonic oscillator with
Hamiltonian H (0) (left) and subject to perturbation W = ξ x3 --hω(mω/--h)3/2 in the potential (right).
In the presence of the perturbation, both the energy levels and the energy-level spacing are
changed. The effect of W is to lower the unperturbed energy levels whatever the sign of ξ . In
addition, the difference between adjacent energy eigenvalues decreases with increasing energy.

En =
(
n + 1

2

)
--hω − 15

4
ξ 2

(
n + 1

2

)2
--hω − 7

16
ξ 2--hω + · · · (10.87)

As shown in Fig. 10.4, the effect of W is to lower the unperturbed energy levels. The
energy levels are lowered whatever the sign of ξ . In addition, the difference between
adjacent energy eigenvalues decreases with increasing energy (Exercise 10.3).

10.3 Time-independent degenerate perturbation

Often, the potential in which a particle moves contains symmetry that results in eigen-
values that are degenerate. If the symmetry producing this degeneracy is destroyed by
the perturbation W , the degenerate state separates, or splits, into distinct energy levels.
This is illustrated schematically in Fig. 10.5.

We assume the Hamiltonian that describes the system is of the form

H = H (0) + W (10.88)

where H (0) is the unperturbed Hamiltonian with degenerate energy levels and W is the
perturbation. Formally, the solution for the Schrödinger equation with total Hamiltonain
H has eigenfunctions ψn and eigenenergies En , so that

Hψn = Enψn (10.89)

The solution for the Schrödinger equation using the unperturbed Hamiltonian H (0) has
eigenfunctions ψ (0)

m and degenerate eigenenergies E (0)
m so that

H (0)ψ (0)
m = E (0)

m ψ (0)
m (10.90)
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E1 = E2

E1
'

E2
'

Before perturbation

After perturbation

E
ne

rg
y

Fig. 10.5. Energy-level diagram illustrating degenerate energy eigenvalues split into separate energy
levels by the presence of a perturbing potential.

10.3.1 A two-fold degeneracy split by time-independent perturbation

If we expand the first-order corrected wave functions in terms of the unperturbed wave
functions, we obtain

ψ (1)
m =

∑
n

a(1)
mnψ

(0)
n (10.91)

and

a(1)
mn = Wmn

E (0)
m − E (0)

n

(10.92)

for the values ofm and n, for which we have degeneracy E (0)
m − E (0)

n = 0 and for which
amn is infinite. We get around this problem by diagonalizing (finding solutions) the
Hamiltonian H . We adopt the matrix formulation and use only N terms to keep the
problem tractable.

10.3.2 Matrix method

In the matrix method, the Hamiltonian is treated as a finite matrix equation. Diagonal-
ization of this matrix gives the solution to how a group of initially unperturbed states
interact via the perturbation with one another.

The matrix form of the Schrödinger equation H |a〉 = E |a〉 describing the interacting
system may be written as


H11 H12 H13 · · ·
H21 H22 H23 · · ·
H31 H32 H33 · · ·

...
...

...
. . .

HNN







a1

a2

a3
...
aN




= E




a1

a2

a3
...
aN




(10.93)

In Eqn (10.93), the matrix elements are Hmn = 〈m|H |n〉.
The approximation in the matrix method arises because we only use N terms. This

method is good for the problem of degenerate energy levels split by a perturbation.
Hence, it is sometimes called degenerate perturbation theory.



475 10.3 Time-independent degenerate perturbation

This approximation works because, first, the larger the energy separation between
states the weaker the effect of the perturbation and, second, the smaller the matrix
element Wmn = 〈m|W |n〉 the weaker the effect of the perturbation.

The matrix equation (Eqn (10.93)) may be rewritten

N∑
n=1

[Hmn − Eδmn]an = 0, m = 1, 2, . . . , N (10.94)

which has a nontrivial solution if the characteristic determinant vanishes, giving the
secular equation

∣∣∣∣∣∣∣∣∣

H11 − E H12 · · ·
H21 H22 − E · · ·

...
...

. . .

HNN − E

∣∣∣∣∣∣∣∣∣
= 0 (10.95)

10.3.2.1Matrix method for two states

As a simple example of the matrix method, consider two states. The secular equation
is

∣∣∣∣H11 − E H12

H21 H22 − E

∣∣∣∣ = 0 (10.96)

(H11 − E)(H22 − E) − H12H21 = 0 (10.97)

E2 − EH22 − EH11 + H11H22 − H12H21 = 0 (10.98)

E2 − (H22 + H11)E + H11H22 − H12H21 = 0 (10.99)

This equation is of the form ax2 + bx + c = 0, and so it has a solution x = (−b ±√
b2 − 4ac)/2a. Hence, the two new energy eigenvalues are

E = (H11 + H22) ±
√

(H11 + H22)2 − 4(H11H22 − H12H21)

2
(10.100)

E = (H11 + H22)

2
±
(
H 2

11 + H 2
22 + 2H11H22 − 4H11H22 + 4H12H21

)1/2

2
(10.101)

E± = (H11 + H22)

2
±
(

1

4
(H11 − H22)2 + H12H21

)1/2

(10.102)
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or

E± = (H11 + H22)

2
±
(

1

4
(H11 − H22)2 + |H12|2

)1/2

(10.103)

We now determine the coefficients a1 and a2. Equation (10.95) may be written as[
H11 − E H12

H21 H22 − E

][
a1

a2

]
= 0 (10.104)

Multiplying out the matrix gives two equations:

(H11 − E)a1 + H12a2 = 0 (10.105)

and

H21a1 + (H22 − E)a2 = 0 (10.106)

In addition to these two equations, there is the constraint that ψ is normalized. Hence,
we require

|a1|2 + |a2|2 = 1 (10.107)

Solving Eqn (10.105) is achieved by writing

(H11 − E)a1 = −H12a2 (10.108)

and then squaring both sides to give

(H11 − E)2|a1|2 = H 2
12|a2|2 (10.109)

Using the fact that |a2|2 = 1 − |a1|2 (Eqn (10.107)), one may write

(H11 − E)2|a1|2 = H 2
12

(
1 − |a1|2

)
(10.110)(

(H11 − E)2 + H 2
12

)|a1|2 = H 2
12 (10.111)

Hence,

|a1|2 = |H12|2
(H11 − E)2 + |H12|2 (10.112)

If we let

D2 = |H12|2 + (H11 − E)2 (10.113)

then

a1 = H12

D
(10.114)

and substituting this into Eqn (10.105) gives

a2 = −(H11 − E)a1

H12
= E − H11

D
(10.115)
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10.3.3 The two-dimensional harmonic oscillator subject to perturbation in xy

The unperturbed Hamiltonian for a particle of mass m in a two-dimensional harmonic
potential is

H (0) = p2
x + p2

y

2m
+ κ

2
(x2 + y2) (10.116)

where κ is the spring constant. Figure 10.6 illustrates the potential V (x, y).
The unperturbed Hamiltonian given by Eqn (10.116) can be rewritten in terms of

raising and lowering operators:

H (0) = --hω

(
b̂†x b̂x + 1

2
+ b̂†yb̂y + 1

2

)
= --hω

(
b̂†x b̂x + b̂†yb̂y + 1

)
(10.117)

where

x̂ =
( --h

2mω

)1/2(
b̂x + b̂†x

)
and ŷ =

( --h

2mω

)1/2(
b̂y + b̂†y

)
The eigenstates of H (0) are of the form

φnm = φn(x)φm(y) = |nm〉 (10.118)

and the eigenenergy is

Enm = --hω(n + m + 1) (10.119)

which is (n + m + 1)-fold degenerate. For example, states with energy 2--hω are two-fold
degenerate, since E10 = E01 = 2--hω. The corresponding eigenstates are |10〉 and |01〉.

Let’s consider the effect of the perturbing potential W = κ ′xy on this degeneracy
and find the two new wave functions and eigenvalues that diagonalize W . The new
wave functions are linear combinations of the unperturbed wave function, so that

ψ1 = a1φ10 + a2φ01 (10.120)

2hω

hω

V(x, y)

y

x

Fig. 10.6. Illustration of the harmonic potential in two dimensions, showing quantization energy hω
and 2hω.
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and

ψ2 = a1φ10 − a2φ01 (10.121)

The submatrix W in the basis {φ10, φ01} is

W = κ ′
[
〈10|xy|10〉 〈10|xy|01〉
〈01|xy|10〉 〈01|xy|01〉

]
= κ ′

[
W11 W12

W21 W22

]
(10.122)

The next task is to evaluate the matrix elements. For example

W12 = 〈10|xy|01〉 =
--h

2mω

〈
10
∣∣(b̂x + b̂†x

)(
b̂y + b̂†y

)∣∣01
〉

(10.123)

W12 =
--h

2mω

〈
10
∣∣b̂x b̂y + b̂†x b̂y + b̂x b̂

†
y + b̂†x b̂

†
y

∣∣01
〉 = --h

2mω

〈
10
∣∣b̂†x b̂y∣∣01

〉
(10.124)

W12 =
--h

2mω
(10.125)

and

〈10|xy|10〉 =
--h

2mω

〈
10
∣∣b̂x b̂y + b̂†x b̂y + b̂x b̂

†
y + b̂†x b̂

†
y

∣∣10
〉 = 0 (10.126)

Hence,

W =
--hκ ′

2mω

[
0 1
1 0

]
(10.127)

and the secular equation∣∣∣∣∣H11 − E H12

H21 H22 − E

∣∣∣∣∣ = 0 (10.128)

may be written as∣∣∣∣∣∣∣
−E

--hκ ′

2mω--hκ ′

2mω
−E

∣∣∣∣∣∣∣ = 0 (10.129)

which has the solutions

E = ±
--hκ ′

2mω
= ±�E

2
(10.130)

We therefore find that the perturbation separates the first excited state by an amount

2--hκ ′

2mω
=

--hκ ′

mω
= �E (10.131)

The lifting of the first excited-state degeneracy by the perturbation W = κ ′xy is illus-
trated in Fig. 10.7.
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E− = E10 − E/2

E+ = E10 + E/2

E10

Two-fold degenerate
first excited state

Degeneracy lifted by energy

∆E due to perturbation

W = κ' xy

Fig. 10.7. The two-fold degeneracy of the first excited state of the two-dimensional harmonic
oscillator is split into two energy eigenvalues by the perturbation W = κ ′xy.

The new wave functions are obtained by substituting these values into the matrix
equation

N∑
n=1

[Hnm − Eδnm]an = 0 (10.132)

For our case,
−E �E

2
�E

2
−E



[
a1

a2

]
= 0 (10.133)

If E = �E/2, then there is a solution a1 = a2. On the other hand, if E = −�E/2,
then there is a solution a1 = −a2. From this, we obtain symmetric and antisymmetric
eigenfunction states and eigenvalues. The symmetric state

ψ1 = 1√
2

(φ10 + φ01) (10.134)

has eigenenergy

E+ = �E

2
(10.135)

and the antisymmetric state

ψ2 = 1√
2

(φ10 − φ01) (10.136)

has the lower eigenenergy

E− = −�E

2
(10.137)

10.4 Example exercises

Exercise 10.1
A particle of mass m moves in a one-dimensional, infinitely deep potential well having
a parabolic bottom,

V (x) = ∞ for |x | ≥ L
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and

V (x) = ξ x2/L2 for −L < x < L

where ξ is small compared with the ground-state energy. Treat the term ξ as a pertur-
bation on the square potential well (denoting the unperturbed states as φ0, φ1, φ2, . . .

in order of increasing energy), and calculate, to first order in ξ only, the energy and the
amplitudes A0, A1, A2, A3 of the first four perturbed states.

Exercise 10.2
Calculate the energy levels of an anharmonic oscillator with potential of the form

V (x) = κ

2
x2 + ξ x3--hω

where κ is the spring constant for a harmonic potential. Show that the difference between
two adjacent perturbed levels is En − En−1 = --hω(1 − 15ξ 2(--h/mω)3n/2). A heterodi-
atomic molecule can absorb or emit electromagnetic waves the frequency of which
coincides with the vibrational frequency of anharmonic oscillations of the molecule
about its equilibrium position. For a molecule initially in the ground state, what do you
expect to observe in the absorption spectrum of the molecule?

Exercise 10.3
The potential function of a one-dimensional oscillator of massm and angular frequency
ω is V (x) = κx2/2 + ξ x4, where κ is the spring constant for a harmonic potential and
the second term is small compared with the first.

(a) Show that, to first order, the effect of the anharmonic term is to change the energy
of the ground state by 3ξ (--h/2mω)2.

(b) What would be the first-order effect of an additional x3 term in the potential?

Exercise 10.4
A particle of mass m and charge e oscillates in a one-dimensional harmonic potential
with angular frequency ω.

(a) Show, using perturbation theory, that the effect of an applied uniform electric
field E is to lower all the energy levels by e2|E|2/2mω2.

(b) Compare this with the classical result.
(c) Use perturbation theory to calculate the new ground-state wave function.

Exercise 10.5
The potential seen by an electron with effective mass m∗

e in a GaAs quantum well is
approximated by a one-dimensional rectangular potential well of width 2L in such a
way that

V (x) = 0 for 0 < x < 2L
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and

V (x) = ∞ elsewhere

(a) Find the eigenvalues En , eigenfunctions ψn , and parity of ψn .
(b) The system is subject to a perturbation in the potential energy so that V (x) =

e|E|x , where E is a constant electric field in the x direction. Find the value of the new
energy eigenvalues to first order (the linear Stark effect) for a quantum well of a width
of 10 nm subject to an electric field of 105 V cm−1. Compare the change in energy
value with thermal energy at room temperature.

(c) Find the expression for the second-order correction to the energy eigenvalues for
the perturbation in (b).

Exercise 10.6
In this chapter we solved for the first excited state of a two-dimensional harmonic
oscillator subject to perturbation W = κ ′xy. How do the three-fold degenerate energy
E = 3--hω and the four-fold degenerate energy E = 4--hω separate due to the same
perturbation?

Exercise 10.7
(a) An electron moves in a one-dimensional box of length X . Apply the periodic bound-
ary condition φ(x) = φ(x + X ) to find the electron eigenfunction and eigenvalues.

(b) Now apply a weak periodic potential V (x) = V (x + L) to the system, where
X = NL and N is a large positive integer. Using nondegenerate perturbation theory,
find the first-order correction to the wave functions and the second-order correction to
the eigenenergies.

(c) When wave vector k is close to nπ/L , where n is an integer, the result in (b) is no
longer valid. Use two-state degenerate perturbation theory to find the corrected energy
values for k = nπ ((1 + �)/L) and k ′ = nπ ((1 − �)/L), where � is small compared
with π/L .

(d) Use the results of (b) and (c) to draw the electron dispersion relation, E(k).
(e) If we choose the lowest-frequency Fourier component of the perturbative periodic

potential in part (b), then V (x) = V1 cos(πx/L). Repeat (b), (c), and (d) using this
potential.

Hint: V (x) = V0 +∑
n �=0 Vne

i2πnx/L , and choose V0 = 0.

Exercise 10.8
(a) What is the effect of applying a uniform electric field on the energy spectrum of an
atom?

(b) If spin effects are neglected, the four states of the hydrogen atom with quan-
tum number n = 2 have the same energy, E0. Show that when an electric field E
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is applied to hydrogen atoms in these states, the resulting first-order energies are
E0 ± 3aBe|E|, E0, E0.

Treat the z-directed electric field as a perturbation on the separable, orthonormal, un-
perturbed electron wave functions ψnlm(r, θ, φ) = Rn(r )�l(θ )�m(φ), where r, θ, and
φ are the standard spherical coordinates. You may use the unperturbed wave functions

ψ200 = 2

(2aB)3/2
·
(

1 − r

2aB

)
· e−r/2aB ·

(
1

4π

)1/2

ψ210 = 1√
3(2aB)3/2

· r

aB
· e−r/2aB · 1

2

(
3

π

)1/2

cos(θ )

SOLUTIONS

Solution 10.1
The eigenfunctions for a rectangular potential well of width 2L centered at x = 0 and
infinite barrier energy may be expressed in terms of sine functions. Hence,

φ(0)
n = 1√

L
sin

(
(n + 1)π (x + L)

2L

)
= 1√

L
sin(knx)

where the index n = 0, 1, 2, . . . labels the eigenstate, and

kn = (n + 1)π

2L

So, the first few eigenfunctions are

φ
(0)
0 = 1√

L
sin

(
π (x + L)

2L

)
= 1√

L
cos

(
πx

2L

)

φ
(0)
1 = 1√

L
sin

(
π (x + L)

L

)
= −1√

L
sin

(
πx

L

)

φ
(0)
2 = 1√

L
sin

(
3π (x + L)

2L

)
= −1√

L
cos

(
3πx

2L

)

φ
(0)
3 = 1√

L
sin

(
2π (x + L)

L

)
= 1√

L
sin

(
2πx

L

)

In general, the eigenvalues are

E (0)
n =

--h2k2
n

2m
=

--h2π2(n + 1)2

8mL2

So, the first few eigenvalues are

E (0)
0 =

--h2π2

8mL2

E (0)
1 =

--h2π2

2mL2
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E (0)
2 = 9--h2π2

8mL2

E (0)
3 = 2--h2π2

mL2

In the presence of the perturbation, W (x) = ξ x2/L2, the energy eigenvalues and
eigenfunctions are to first order given by

E = E (0)
m + Wmm

ψ = ψ (0)
m +

∑
k �=m

Wkm

Em − Ek
ψ

(0)
k

where the first-order correction to energy eigenvalues are the diagonal matrix elements

E (1)
m = Wmm =

〈
φm

∣∣∣∣ξ x2

L2

∣∣∣∣φm
〉

Wmm = ξ

L3

L∫
−L

sin

(
(m + 1)π (x + L)

2L

)
x2 sin

(
(m + 1)π (x + L)

2L

)
dx

Using 2 sin(x) sin(y) = cos(x − y) − cos(x + y), this integral may be written

Wmm = ξ

2L3

L∫
−L

x2

(
1 − cos

(
(m + 1)π (x + L)

L

))
dx

Wmm = ξ

2L3


2L3

3
−

L∫
−L

x2 cos

(
(m + 1)π (x + L)

L

)
dx




Solving the integral by parts
∫
UV ′dx = UV − ∫

U ′Vdx , we set

U = x2

U ′ = 2x

V ′ = cos

(
(m + 1)π (x + L)

L

)

V = L

(m + 1)π
sin

(
(m + 1)π (x + L)

L

)
∫
UV ′dx = Lx2

(m + 1)π
sin

(
(m + 1)π (x + L)

L

)∣∣∣∣
L

−L

− 2L

(m + 1)π

L∫
−L

x sin

(
(m + 1)π (x + L)

L

)
dx
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The first term on the right-hand side is zero for all integer values of m. Solving the
integral by parts again, we set

U = 2Lx

(m + 1)π

U ′ = 2L

(m + 1)π

V ′ = sin

(
(m + 1)π (x + L)

L

)

V = −L
(m + 1)π

cos

(
(m + 1)π (x + L)

L

)

−
∫
UV ′dx = 2L2x

(m + 1)2π2
cos

(
(m + 1)π (x + L)

L

)∣∣∣∣
L

−L

+ 2L2

(m + 1)2π2

L∫
−L

cos

(
(m + 1)π (x + L)

L

)
dx

−
∫
UV ′dx = 4L3

(m + 1)2π2
+ 0

so that

Wmm = ξ

2L3

(
2L3

3
− 4L3

(m + 1)2π2

)

and the first-order corrected eigenvalues are

Em = E (0)
m + Wmm =

--h2π2(n + 1)2

8mL2
+ ξ

(
1

3
− 2

(m + 1)2π2

)

Notice that in the limit m → ∞ the first-order correction to energy eigenvalues is
Wmm → ξ/3. This limit is easy to understand, since for states with large m the prob-
ability of finding the particle somewhere in the range −L < x < L is uniform. In this
case, the energy shift is given by the average value of the perturbation in the potential:

〈V (x)〉 = 1

L2

L∫
−L

ξ x2dx

/ L∫
−L

dx = 1

3
ξ

One may now interpret the term −2ξ/(m + 1)2π2, which is significant for states with
small values of m. This decrease in energy shift compared with the average value of
the potential is due to the fact that the probability of finding the particle somewhere in
the range −L < x < L is nonuniform. For low values of m, particle probability tends
to be greater near to x = 0 compared with |x | = L . Because the perturbing potential
is zero at x = 0, the first-order energy shift for states with small values of m is always
smaller than for states with large values of m.
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The first few energy levels to first order are

E0 =
--h2π2

8mL2
+ ξ

(
1

3
− 2

π2

)

E1 =
--h2π2

2mL2
+ ξ

(
1

3
− 1

2π2

)

E2 = 9--h2π2

8mL2
+ ξ

(
1

3
− 2

9π2

)

E3 = 2--h2π2

mL2
+ ξ

(
1

3
− 2

16π2

)

To find the eigenfunctions in the presence of the perturbation, we need to evaluate
the matrix elements

Wkm =
〈
φk

∣∣∣∣ξ x2

L2

∣∣∣∣φm
〉
= ξ

L3

L∫
−L

sin

(
(k + 1)π (x + L)

2L

)
x2 sin

(
(m + 1)π (x + L)

2L

)
dx

Wkm = ξ

2L3

L∫
−L

x2

(
cos

(
(k − m)π (x + L)

2L

)
− cos

(
(k + m)π (x + L)

2L

))
dx

Wkm = 8ξ
--h2

(
1

(m − n)2
− 1

(m + n)2

)

ψ1 = φ1 +
∑
m �=1

Wm1

E1 − Em
φm = φ1 +

∑
m(odd) �= 1

8ξ

π2

(
1

(m − n)2
− 1

(m + n)2

)
--h2π2

8mL2
(1 − m)2

φm

ψ2 = φ2 +
∑
m �=2

Wm2

E2 − Em
φm = φ2 +

∑
m(even) �= 2

8ξ

π2

(
1

(m − n)2
− 1

(m + n)2

)
--h2π2

8mL2
(4 − m)2

φm

ψ3 = φ3 +
∑
m �=3

Wm3

E3 − Em
φm = φ3 +

∑
m(odd) �= 3

8ξ

π2

(
1

(m − n)2
− 1

(m + n)2

)
--h2π2

8mL2
(9 − m)2

φm

Solution 10.2
The Hamiltonian for the one-dimensional harmonic oscillator subject to perturbation
W is

H = p2

2m
+ κ

2
x2 + W
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where κ = mω2. From Section 10.2.5 we have for a perturbation W =
ξ x3--hω(mω/--h)3/2

En =
(
n + 1

2

)
--hω − 15

4
ξ 2

(
n + 1

2

)2
--hω − 7

16
ξ 2--hω

which, expanding the square, may be written

En =
(
n + 1

2

)
--hω − 15

4
ξ 2

(
n2 + n + 1

4

)
--hω − 7

16
ξ 2--hω

Hence,

En−1 =
(
n − 1

2

)
--hω − 15

4
ξ 2

(
n2 − n + 1

4

)
--hω − 7

16
ξ 2--hω

so that

En − En−1 = --hω − 15

2
ξ 2n

Because, in this exercise, W did not explicitly contain the factor (mω/--h)3/2, we need
to put this back in. Since ξ appears as a squared term, the inverse of the factor (mω/--h)3/2

is also squared to give

En − En−1 = --hω

(
1 − 15

2
ξ 2

( --h

mω

)3

n

)

The absorption spectrum of an anharmonic diatomic molecule initially in the ground
state will consist of a series of absorption lines with energy separation between adjacent
lines that decreases with increasing energy. The absorption lines will be at energy

En − E0 = n--hω − 15

4
ξ 2

(
n2 + n + 1

4

)
--hω − 1

16
ξ 2--hω

and the wavelength is given by λ = --hc/(En − E0).

Solution 10.3
(a) Using the position operator x = (--h/2mω)1/2(b̂† + b̂), one may express the pertur-
bation as

W = ξ x4 = ξ

( --h

2mω

)2(
b̂† + b̂

)4

W = ξ

( --h

2mω

)2(
b̂† + b̂

)(
b†3 + b̂b̂†b̂† + b̂†b̂b̂† + b̂b̂b̂† + b̂†b̂†b̂ + b̂b̂†b̂ + b̂†b̂b̂ + b̂3

)

W = ξ

( --h

2mω

)2(
b†4 + b̂†b̂b̂†b̂† + b̂†b̂†b̂b̂† + b̂†b̂b̂b̂† + b̂†b̂†b̂†b̂ + b̂†b̂b̂†b̂ + b̂†b̂†b̂b̂

+ b̂†b̂3 + b̂b̂†3 + b̂b̂b̂†b̂† + b̂b̂†b̂b̂† + b̂b̂b̂b̂† + b̂b̂†b̂†b̂ + b̂b̂b̂†b̂ + b̂b̂†b̂b̂ + b̂4
)
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Energy eigenvalues in first-order perturbation theory couple the same state, so only
symmetric terms with two b̂† and two b̂ will contribute.

Wnn = ξ

( --h

2mω

)2(
(n + 1)(n + 2) + (n + 1)2 + n2 + n(n − 1) + 2n(n + 1)

)

Wnn = ξ

( --h

2mω

)2(
6n2 + 6n + 3

)
so, to first order,

En = --hω

(
n + 1

2

)
+ ξ

( --h

2mω

)2(
6n2 + 6n + 3

)
and the new ground state is

En = --hω

(
n + 1

2

)
+ 3ξ

( --h

2mω

)2

(b) There is no first-order correction for a perturbation in x3, because it cannot couple
to the same state (there are always an odd number of operators b̂† or b̂).

Solution 10.4
(a) The solution follows that already given in this chapter.

(b) The new energy levels of the oscillator are to second order

E = --hω

(
n + 1

2

)
− e2|E|2

2κ

which is the same as the exact result. Physically, the particle oscillates at the same
frequency, ω, as the unperturbed case, but it is displaced a distance of e|E|/mω2, and
the new energy levels are shifted by −e2|E|2/2mω2.

(c) The ground-state wave function of the unperturbed harmonic oscillator is

ψ0(x) =
(
mω

π --h

)1/4

e−x
2mω/2h

After the perturbation, it is

ψ0(x) =
(
mω

π --h

)1/4

e
− mω

2h

(
x− e|E|

mω2

)2

The result using second-order perturbation theory

ψ = ψ (0)
m +

∑
k �=m

Wmk

Em − Ek
ψ

(0)
k

+
∑
k �=m

((∑
n �=m

WknWmn

(Em − En)(Em − Ek)
− WmmWkm

(Em − Ek)2

)
ψ

(0)
k − 1

2

|Wmn|2
(Em − En)2

ψ (0)
m

)

only approximates the exact solution.



488 Time-independent perturbation

Solution 10.5
(a) It is given that the potential seen by an electron with effective mass m∗

e in a GaAs
quantum well is approximated by a one-dimensional, rectangular potential well of width
2L in such a way that

V (x) = 0

for 0 < x < 2L and

V (x) = ∞
elsewhere. We find the eigenfunctions and eigenvalues by solving the time-independent
Schrödinger equation

H (0)ψ (0)
n = E (0)

n ψ (0)
n

where the Hamiltonian for the electron in the potential is

H (0) = p2

2m∗
e

+ V (x)

The solution for the eigenfunctions is

ψ (0)
n = 1√

L
sin

(
nπx

2L

)
n = 1, 2, . . .

and the parity of the eigenfunctions is even for odd-integer and odd for even-integer
values of n.

The solution for the eigenvalues is

E (0)
n =

--h2k2
n

2m∗
e

=
--h2n2π2

8m∗
e L

2

where

kn = n2π

2.2L
= nπ

2L

(b) First-order correction to energy eigenvalues is

E (1)
n = 〈n|V |n〉 = 〈n|e|E|x |n〉 = Vnn = e|E|

L

x=2L∫
x=0

x sin2

(
nπx

2L

)
dx

Using the relation 2 sin(x) sin(y) = cos(x − y) − cos(x + y) with x = y = nπx/2L
allows us to rewrite the integrand, giving

Vnn = e|E|
2L

x=2L∫
x=0

x

(
1 − cos

(
nπx

L

))
dx

Vnn = e|E|
2L

[
x2

2

]x=2L

x=0

= e|E|L
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which is the linear Stark effect. The energy-level shift for an electric field E = 105 V
cm−1 in the x direction across a well of width 2L = 10 nm is

�E = 107 × 5 × 10−9 = 50 meV

At temperature T = 300 K and for an energy splitting �E > kBT = 25 meV one
may assume that the Stark effect produces a large-enough change in energy eigenvalue
to be of potential use in a room-temperature device.

(c) The new energy levels to second order are found using

En = E (0)
n + E (1)

n + E (2)
n

where

E (1)
k = Vkk

and

E (2)
k =

∑
j �=k

Vkj Vjk

E (0)
k − E (0)

j

The second-order matrix elements are the off-diagonal terms

Vkj = 〈k|V | j〉 = 〈k|e|E|x | j〉 = e|E|
L

x=2L∫
x=0

x sin

(
kπx

2L

)
sin

(
jπx

2L

)
dx

Using the relation 2 sin(x) sin(y) = cos(x − y) − cos(x + y) with x = kπx/2L and
y = jπx/2L allows us to rewrite the integrand, giving

Vkj = e|E|
2L

x=2L∫
x=0

x

(
cos

(
(k − j)πx

2L

)
− cos

(
(k + j)πx

2L

))
dx

For (k ± j) odd we integrate by parts, using UV ′dx = UV − ∫
U ′Vdx with U = x

and V ′ = cos((k ± j)πx/2L). This gives

Vkj = e|E|
2L

(
4L2(cos((k − j)π ) − 1)

π2(k − j)2
− 4L2(cos((k + j)π ) − 1)

π2(k + j)2

)

Vkj = −4e|E|L
π2

(
1

(k + j)2
− 1

(k − j)2

)
= −16e|E|L

π2

k j

(k2 − j2)2

For (k ± j) even, symmetry requires that

Vkj = 0

So, the perturbing potential only mixes states of different parity.
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Solution 10.6
A two-dimensional harmonic oscillator with motion in the x–y plane is subject to
perturbationW = κ ′xy. We are asked to find how the three-fold degenerate energy E =
3--hω and the four-fold degenerate energy E = 4--hω separate due to this perturbation.

Separation of variables x and y allows us to write the unperturbed Hamiltonian as

H (0) =
--hω

2m

(
p2
x + p2

y

)+ κ

2

(
x2 + y2

) = --hω
(
b̂†x b̂x + b̂†yb̂y + 1

)
where x̂ = √--h/2mω · (b̂x + b̂†x ) and ŷ = √--h/2mω · (b̂y + b̂†y). The eigenstates are of
the form ψ (0)

nm = φ(0)
n (x)φ(0)

m (y) = |nm〉, and the energy eigenvalues are

Enm = --hω (n + m + 1)

where n andm are positive integers. States with eigenenergy 3--hω are E02, E11, and E20,
and so they are three-fold degenerate. To find the effect of the perturbation W = κ ′xy,
we start by writing the total Hamiltonian:

H = H (0) + W = --hω
(
b̂†x b̂x + b̂†yb̂y + 1

)+
--hκ ′

2mω

(
b̂x + b̂†x

)(
b̂y + b̂†y

)
This has eigenfunction solutions that are linear combinations of the unperturbed eigen-
states so that

#1 = a1ψ1 + a2ψ2 + a3ψ3

The coefficients an may be found by writing the Schrödinger equation in matrix form
〈02|H |02〉 〈02|H |11〉 〈02|H |20〉
〈11|H |02〉 〈11|H |11〉 〈11|H |20〉
〈20|H |02〉 〈20|H |11〉 〈20|H |20〉




a1

a2

a3


 = E


a1

a2

a3




The diagonal terms have a value that is the unperturbed eigenvalue 3--hω. To show this,
consider

〈02|H |02〉 = --hω
〈
02
∣∣b̂†x b̂x + b̂†yb̂y + 1

∣∣02
〉+ --hκ ′

2mω

〈
02
∣∣b̂x b̂y + b̂†x b̂y + b̂x b̂

†
y + b̂†x b̂

†
y

∣∣02
〉

The first term on the right-hand side has value 3--hω, and the second term on the right-
hand side is zero. Because the perturbation W is linear in x and y, only the off-diagonal
terms adjacent to the diagonal are finite. For example,

〈11|H |02〉 = --hω
〈
11
∣∣b̂†x b̂x + b̂†yb̂y + 1

∣∣02
〉+ --hκ ′

2mω

〈
11
∣∣(b̂x + b̂†x

)(
b̂y + b̂†y

)∣∣02
〉

The first term on the right-hand side is zero, leaving

〈11|H |02〉 =
--hκ ′

2mω

〈
11
∣∣b̂x b̂y + b̂†x b̂y + b̂x b̂

†
y + b̂†x b̂

†
y

∣∣02
〉 = --hκ ′

2mω

〈
11
∣∣b̂†x b̂y∣∣02

〉
Recalling that |b̂†n〉 = (n + 1)1/2|n + 1〉 (Eqn (6.73)) and |b̂n〉 = n1/2|n − 1〉
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(Eqn (6.74)) allows us to conclude that

〈11|H |02〉 =
--hκ ′

2mω

〈
11
∣∣b̂†x b̂y∣∣02

〉 =
√

2--hκ ′

2mω

〈
11
∣∣b̂†x ∣∣01

〉 =
√

2--hκ ′

2mω
〈11|11〉 =

√
2--hκ ′

2mω

It follows that


3--hω

√
2--hκ ′

2mω
0√

2--hκ ′

2mω
3--hω

√
2--hκ ′

2mω

0

√
2--hκ ′

2mω
3--hω





a1

a2

a3


 = E


a1

a2

a3




All we need to do now is find the eigenvalues of the matrix. The solutions are

E1 = 3--hω

E2 = 3m--hω2 − --hκ ′

mω

E3 = 3m--hω2 + --hκ ′

mω

The corresponding eigenfunctions are given by the coefficients
a1

a2

a3


 = 1√

2


−1

0
1





a1

a2

a3


 = 1

2


 1
−√

2
1





a1

a2

a3


 = 1

2


 1√

2
1




We may follow a similar procedure to find how the four-fold degenerate levels
of a two-dimensional harmonic oscillator with motion in the x–y plane subject to
perturbation W = κ ′xy change. The perturbed Schrödinger equation matrix is


4--hω

√
3--hκ ′

2mω
0 0√

3--hκ ′

2mω
4--hω

--hκ ′

mω
0

0
--hκ ′

mω
4--hω

√
3--hκ ′

2mω

0 0

√
3--hκ ′

2mω
4--hω






a1

a2

a3

a4


 = E



a1

a2

a3

a4
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which has eigenvalues

E1 = 8m--hω2 − 3--hκ ′

2mω

E2 = 8m--hω2 − --hκ ′

2mω

E3 = 8m--hω2 + --hκ ′

2mω

E4 = 8m--hω2 + 3--hκ ′

2mω

The corresponding eigenfunctions are given by the coefficients

a1

a2

a3

a4


 = 1

2
√

2




−1√
3

−√
3

1






a1

a2

a3

a4


 =

√
3

2
√

2




1
−1/

√
3

−1/
√

3
1






a1

a2

a3

a4


 =

√
3

2
√

2




−1
−1/

√
3

1/
√

3
1






a1

a2

a3

a4


 = 1

2
√

2




1√
3√
3

1




Solution 10.7
(a) Here, we are interested in an electron of mass m that in the unperturbed state is free
to move in a one-dimensional box of length X with periodic boundary conditions. In
this situation, the potential is zero and the solution to the time-independent Schrödinger
equation gives eigenfunctions that are plane waves of the formψk(x) = Aeikx . Applying
the periodic boundary conditions to the eigenstates, ψ(x) = ψ(x + X ), gives eik·X = 1
and kn = 2nπ/X for integer n in such a way that n = 1, 2, 3, . . . . Hence, the energy
eigenvalues are E = --h2k2

n/2m.
(b) To find solutions to the time-independent Schrödinger equation in the presence

of a periodic potential V (x) = V (x + L), where X = NL and N is a large integer,
we will treat the potential as a perturbation. The potential can be decomposed into its
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Fourier components, so that

V (x) = V0 +
∑
n �=0

Vne
i2πnx/L = V0 +

∑
n �=0

Vne
i2πnNx/X

Setting V0 = 0 and recalling that (1/2π )
∫
e−i(k−k

′)xdx = δ(k − k ′), the first-order cor-
rection to the eigenenergies is

E (1)
n = Wnn = 2n2π2

mX2
+

∞∫
−∞

A2
∑
k �=0

Vke
i2πkNx/Xdx = 0

The new eigenstates are to first order

φn = φ(0)
n +

∑
m �=n

Wmn

E (0)
m − E (0)

n

φ(0)
m

φn = Aei2πnx/X +
∑
m �=n

mX2A2
∞∫

−∞

∑
k �=0

Vkei2πkNx/Xei2π (n−m)x/Xdx

2π2(m2 − n2)
Aei2mπx/X

where nonzero contributions occur for n − m = −kN , allowing us to write

φn = Aei2πnx/X +
∑
k �=0

mN 2A3Vk
πkN (2n − kN )

ei2π (n+kN )x/X

The second-order correction to the eigenenergy is

E (2)
n =

∑
m �=n

|Wmn|2
E (0)
m − E (0)

n

φ(0)
m =

∑
m �=n

mX2A4

∣∣∣∣∣
∞∫

−∞

∑
k �=0

Vkei2πkNx/Xei2π (n−m)x/Xdx

∣∣∣∣∣
2

2π2(m2 − n2)

which is nonzero if n − m = −kN , so

E (2)
n =

∑
k �=0

mN 2A4V 2
k

πkN (2n − kN )

(c) When k → nπ/L , the denominator in the previous equation approaches zero.
Nondegenerate perturbation theory can no longer be used. To gain some insight into the
situation, we use two-state degenerate perturbation theory to find the corrected energy
values for k = nπ ((1 + �)/L) and k ′ = nπ ((1 − �)/L), where � is small compared
with π/L . In this case, the perturbed Hamiltonian matrix is


--h2k2

2m
A2Vn

A2Vn
--h2k2

2m



[
a1

a2

]
= E

[
a1

a2

]
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The new eigenenergies (the eigenvalues of the matrix) are

E1,2 =
--h2(k2 + k ′2) ±√

16m2V 2
n A

4 + --h4(k2 + k ′2)2

4m
or

E1,2 =
--h2n2π2(1 + �2) ± 2L2

√
--h4n4π4�2

L4
+ A4m2V 2

n

2L2m

(d) The following figure sketches the dispersion relation we might anticipate for
electrons perturbed by a periodic potential. The parabolic dispersion of a free electron
is modified to include band gaps of value Eg at wave vectors ±nπ/L .

E
ne

rg
y,

 E
(k

)

Eg1

0

Wave vector, k

π/L 2π/L

Eg2

−π/L−2π/L

(e) If we choose the lowest-frequency Fourier component of the perturbative periodic
potential in part (b), then V (x) = V1 cos(πx/L) = −2UG cos(Gx), where G = 2π/L
is the reciprocal lattice vector. The following figure sketches the potential.

2UG

−2UG

+L  Distance, x0

P
ot

en
ti

al
, V

(x
)

Each oscillation of V (x) is one “cell” of the crystal. If the electron is displaced by nL ,
where n is an integer, and L is the oscillation period, then the electron must find itself
in an identical environment. A perfectly periodic crystal looks the same to a particle
displaced by nL .

The unperturbed wave function is ψk(x) = A0eikx . The wave functions are plane
waves in the absence of the periodic potential perturbation. We impose a periodic
boundary condition ψk(x + X ) = ψk(x), where X = NL is the length of the crystal.
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Hence, we can now normalize

ψk(x) = |k〉 = 1√
X
eikx

where k = (n/N )G and n = 0,±1,±2, . . . .

H11 = H22 = E0 =
--h2k2

2m

is the unperturbed energy.
To evaluate H12 and H21 we find the matrix element

H12 = 〈k1|V |k2〉

H12 =
X∫

0

ψk1
∗(x)Vψk2 (x)dx =

X∫
0

1√
X
e−ik1x · −2UG cos(Gx) · 1√

X
eik2xdx

H12 = −UG

X

X∫
0

e−ik1x
(
eGx + e−Gx

)
eik2xdx = −UG

X

X∫
0

(
ei(k2−k1+G)x + ei(k2−k1−G)x

)
dx

We note that the definition of the delta function is δ(x − x ′) = (1/2π )
∫ ∞
−∞e

iy(x−x ′)dy.
Our periodic boundary condition requires that H12 = 0, unless, e.g., k2 − k1 =

±G = ±2π/L , in which case the integral is a Dirac delta function. Hence, the ma-
trix element connecting two arbitrary plane-wave states |k1〉 and |k2〉 is zero unless

H12 = H21 = −UG · δ(k2 − k1 = ±G)

For the case in which k is near ±G/2, it is useful if we rewrite

k− = k1 = −G

2
+ k ′

k+ = k2 = G

2
+ k ′

so that

ψ(x) = eik
′x · (a+ei

G
2 x + a−e−i

G
2 x
)

is the perturbed wave function and |k+〉 and |k−〉 are the unperturbed wave functions.
If we consider the limit k = ±G/2, then we set k ′ = 0 and k1 = −k2 = −G/2. There

is a degeneracy at the unperturbed energy

H11 = H22 = E0 =
--h2k2

2m
=

--h2G2

8m

H21 = H12 =
〈
− G

2

∣∣∣∣V
∣∣∣∣G2

〉
= −UG
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The secular equation for this problem is∣∣∣∣∣H11 − E H12

H21 H22 − E

∣∣∣∣∣ = 0

which has solution

E± = (H11 + H22)

2
±
(

1

4
(H11 − H22)2 + H12H21

)1/2

Since H11 = H22 and H12H21 = U 2
G

E± = E0 ±UG

The following figure illustrates the effect the lowest-frequency Fourier component
of the periodic potential has on electron dispersion.

E
ne

rg
y,

 E
(k

)

E0 + UG

E0 = h2G2 / 8m

E0 − UG

2UG

Unperturbed dispersion,

Energy shift due to first-order correction is zero, but there is a

shift in energy in second order.

Wave number, kk = π/Lk = −π/L 

E = h2k2 / 2m

0

The following few sketches illustrate the effect the lowest-frequency Fourier com-
ponent of the periodic potential has on electron dispersion at G/2.

Free electron E = hk/2m parabolic dispersion relation.

Apply periodic perturbation V(x) = −2Gcos(Gx),

where G = 2/L with L the “lattice” constant and

G the reciprocal lattice vector.

E
ne

rg
y,

 E
(k

)

Wave vector, k

0
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E
ne

rg
y,

 E
(k

)
Bloch’s theorem for periodic potential.

ψk(x + L) = ψk(x) exp(ikL)

G = 2/L

Hence, Ek = Ek + G. In general Ek = Ek + nG

where n = 0, 1, 2, 3 ...

0
Wave vector, k

G/2 G

E
ne

rg
y,

 E
(k

)
E

ne
rg

y,
 E

(k
)

2UG

Degeneracy of two parabolas at k = G/2
is split by energy 2UG.

0

Wave vector, k

G/2 G

Net result of perturbation on free-electron
parabolic dispersion relation.

2UG

0

Wave vector, k

G/ 2 G

Solution 10.8
(a) We are asked to predict the effect that applying a uniform electric field has on the
energy spectrum of an atom. It is reasonable to expect that the atom is in its lowest-
energy ground state. Using perturbation theory, the perturbation due to an electric field
applied in the z direction is W = e|E|z, and the matrix element between the ground
state and the first excited state isW01 = e|E|〈0|z|1〉 = e|E|z01. The matrix element is the
expectation value of the position operator, and so it is at most of the order of the size
of an atom ∼10−8 cm. Maximum electric fields in a laboratory are ∼106 V cm−1 on a
macroscopic scale. Transitions can only take place between energy levels that differ at
most by the potential difference induced by the field – i.e., ∼10−2 eV. This will not be
enough to induce transitions between principal quantum numbers n, but may break the
degeneracy between states with different l belonging to the same n. The simple theory



498 Time-independent perturbation

of the atom in Section 2.2.3.2 indicated that the degeneracy of an electronic state ψnlm

in the hydrogen atom is determined by the principal quantum number n to be n2 since

l=n−1∑
l=0

(2l + 1) = n2

In our assessment of the influence an electric field has on the energy levels of an atom,
it was assumed that the electric field at the atom is the same as the macroscopic field.
However, on a microscopic scale, electric fields can be dramatically enhanced locally
depending on the exact geometry.

(b) If we ignore the effects of electron spin, the time-independent Schrödinger
equation for an electron in the hydrogen atom is

H (0)ψ = E (0)ψ

which has the solutions

ψnlm(r, θ, φ) = Rn(r )�l(θ )�m(φ) = |nlm〉
The principal quantum number n specifies the energy of a state, the orbital quan-
tum number is l = 0, 1, 2, . . . , (n − 1), and the azimuthal quantum number is m =
±l, . . . ,±2,±1, 0.

The electron states specified by nlm are n2 degenerate, and each state has definite
parity. For n = 2, there are four states with the same energy. They are |200〉, |21 − 1〉,
|210〉, and |211〉.

We now apply an electric field E and seek solutions to the time-independent
Schrödinger equation(
H (0) + W

)
ψ = Eψ

where, taking the electric field to be in the z direction, we have

W = e|E|ẑ
Because the degeneracy of the n = 2 state is 4, we wish to find solutions to the 4 × 4
matrix

N=4∑
k=1

[Hjk − Eδ jk]ak = 0

The solutions are given by the secular equation∣∣∣∣∣∣∣∣∣

〈200|W |200〉 − E 〈200|W |21 − 1〉 〈200|W |210〉 〈200|W |211〉
〈21 − 1|W |200〉 〈21 − 1|W |21 − 1〉 − E 〈21−1|W |210〉 〈21 − 1|W |211〉
〈210|W |200〉 〈210|W |21 − 1〉 〈210|W |210〉 − E 〈210|W |211〉
〈211|W |200〉 〈211|W |21−1〉 〈211|W |210〉 〈211|W |211〉−E

∣∣∣∣∣∣∣∣∣
= 0
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The diagonal matrix elements are zero, because the odd parity of z forces the integrand
to odd parity:

e|E|〈nlm|ẑ|nlm〉 = e|E|
∫

ψ∗
nlm ẑψnlmd

3r = 0

The perturbation is in the z direction which in spherical coordinates only involves
r and θ via the relation z = r cos(θ ). Hence, because the eigenfunctions are separable
into orthonormal functions of r, θ , and φ in such a way that

ψnlm(r, θ, φ) = Rn(r )�l(θ )�m(φ)

it follows that the matrix elements between states with different m for a z-directed
perturbation are zero. This is because states described by �m(φ) are orthogonal, and the
perturbation in z has no φ dependence. Hence, the only possible nonzero off-diagonal
matrix elements are those that involve states with the same value of m:

〈200|W |210〉 = 〈210|W |200〉 = e|E|ψ∗
210ẑψ200d

3r

The wave functions are

ψ200 = 2

(2aB)3/2
·
(

1 − r

2aB

)
· e−r/2aB ·

(
1

4π

)1/2

which has even parity, and

ψ210 = 1√
3(2aB)3/2

· r

aB
· e−r/2aB · 1

2

(
3

π

)1/2

cos(θ )

which has angular dependence and odd parity. Using z = r cos(θ ), we now calculate
the matrix element

e|E|
∫

ψ∗
210ẑψ200d

3r = eaB|E|
32π

∞∫
−∞

r4

(
2 − r

aB

)
· e−r/2aBdr

π∫
0

cos2(θ ) sin(θ )dθ

2π∫
0

dφ

e|E|
∫

ψ∗
210ẑψ200d

3r = −3e|E|aB

To solve the integral, we used

∞∫
0

rne−r/aBdr = n!an+1
B

The secular equation may now be written∣∣∣∣∣∣∣∣∣

−E 0 −3e|E|aB 0
0 −E 0 0

−3e|E|aB 0 −E 0
0 0 0 −E

∣∣∣∣∣∣∣∣∣
= 0



500 Time-independent perturbation

This has four solutions±3aBe|E|, 0, 0, so that the new first-order corrected energy levels
are E = E (0) ± 3aBe|E|, E (0), E (0). This partial lifting of degeneracy in hydrogen due
to application of an electric field is called the Stark effect.

The effect of applying an electric field is to break the symmetry of the potential and
partially lift the degeneracy of the state. For the states for which degeneracy is lifted, it
is as if the atom has an electric dipole moment of magnitude 3e|E|aB.

To find the wave functions for the perturbed states, we need only consider the 2 × 2
matrix that relates |200〉 and |210〉:[

0 −3e|E|aB

−3e|E|aB 0

]

This has eigenfunctions

ψ+ = 1√
2

(ψ210 − ψ200) with eigenvalue E+ = E (0) + 3e|E|aB

and

ψ− = 1√
2

(ψ210 − ψ200) with eigenvalue E− = E (0) − 3e|E|aB

Because the eiegnfunctions |200〉 and |210〉 are of different parity, the eigenfunctions
ψ+ and ψ− are of mixed parity.
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Physical values

SI-MKS1,2

Speed of light in free space c = 2.99792458 × 108 m s−1

Planck’s constant --h = 6.58211889(26) × 10−16 eV s
--h = 1.054571596(82) × 10−34 J s

Electron charge e = 1.602176462(63) × 10−19 C
Electron mass m0 = 9.10938188(72) × 10−31 kg
Neutron mass mn = 1.67492716(13) × 10−27 kg
Proton mass mp = 1.67262158(13) × 10−27 kg
Boltzmann constant kB = 1.3806503(24) × 10−23 J K−1

kB = 8.617342(15) × 10−5 eV K−1

Permittivity of free space ε0 = 8.8541878 × 10−12 F m−1

Permeability of free space µ0 = 4π × 10−7 H m−1

Speed of light in free space c = 1/
√
ε0µ0

Avagadro’s number NA = 6.02214199(79) × 1023 mol−1

Bohr radius aB = 0.52917721(19) × 10−10 m

aB = 4πε0
--h2

m0e2

Inverse fine-structure constant α−1 = 137.0359976(50)

α−1 = 4πε0
--hc

e2

A.1 Constants in quantum mechanics

In this book, we have assumed that Planck’s constant, the speed of light in free space,
the value of the electron charge, etc., may be treated as constants. Notice, however, that
this Appendix is titled “Physical values” and not “Physical constants”. The reason for
this is that we have no way to prove theoretically or experimentally that, for example,
Planck’s constant does in fact have the same value in all parts of space or that it has
been the same over all time. On the contrary, there seems to be some tentative evidence

1 See http://physics.nist.gov/constants.
2 The number in parentheses is one standard deviation uncertainty in the last two digits.
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that the values of these constants may have changed with time.3 However, because
of the way SI defines some units of measure and the use of quantum mechanics to
find relationships between quantities, some physical values are absolute (there is no
uncertainty in their value). Examples include: the speed of light, c; the permittivity of
free space, ε0; and the permeability of free space, µ0.

A.2 The MKS and SI units of measurement

To ensure uniform standards in commercial transactions involving weights and mea-
sures and to facilitate information exchange within the science and technology com-
munity, it is useful to agree on a system of units of measurement. The foundation
of our measurement system may be traced to the creation of the decimal metric
method during the time of the French Revolution (1787–1799). An important step
in the development of our standardized system of measurement occurred in 1799
when physical objects representing the meter and the kilogram where placed in the
Archives de la République in Paris, France. In 1874, the British Association for the
Advancement of Science (BAAS) introduced a system of measurement called CGS
in which the centimeter is used for measurement of distance, the gram for mass,
and the second for time. This was rapidly adopted by the main-stream experimen-
tal physical science community. Then, in 1901, Giorgi suggested that if the met-
ric system of meters for distance, kilograms for mass, and seconds for time were
used instead of centimeter, gram, and second, a consistent system of electromag-
netic units could be developed. This meter, kilogram, second approach is called the
MKS system, and it was adopted by the International Electro-technical Commission
in 1935.

Of course, there are other units that should also be defined, such as force, energy,
and power. Recognizing this need, in 1948 the General Conference on Weights and
Measures introduced a number of units, including the newton for force, the joule for
energy, and the watt for power. The newton, joule, and watt are named after scientists.
The first letter of each name serves as the abbreviation for the unit and is written in
upper case.

Internationally agreed upon units of measure continue to evolve over time. In 1960,
the General Conference on Weights and Measures extended the MKS scheme using
seven basic units of measure from which all other units may be derived. Called Système
Internationale d’Unités, it is commonly known as SI.

3 J. K. Webb, M. T. Murphy, V. V. Flambaum, V. A. Dzuba, J. D. Barrow, C. W. Churchill, J. X. Prochaska, and
A. M. Wolfe, Phys. Rev. Lett. 87, 091301/1-4(2001).
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The seven basic units of measure are:

m The meter for length
kg The kilogram for mass
s The second for time
A The ampere for current
cd The candela for light intensity
mol The mol for the amount of a substance
K The kelvin for thermodynamic temperature

The definition of these and derived units often seems a little arbitrary and, in some
cases, has changed with time.

Themeter (symbol m) is the basic unit of length in SI. One meter is equal to approxi-
mately 39.37 inches. The meter was first defined by the French Academy of Sciences in
1791 as 1/107 of the quadrant of the Earth’s circumference running from the North Pole
through Paris to the equator. In 1889, the International Bureau of Weights and Measures
defined the meter as the distance between two lines on a particular standard bar of 90
percent platinum and 10 percent iridium. In 1960, the definition of the meter changed
again and it was defined as being equal to 1650763.73 wavelengths of the orange-red
line in the spectrum of the krypton-86 atom in a vacuum. The definition of the meter
changed yet again in 1983, when the General Conference on Weights and Measures
defined the meter as the distance traveled by light in a vacuum in 1/299792458 of one
second. This definition of the meter in terms of the speed of light has the consequence
that the speed of light is an exact quantity in SI.

The kilogram (symbol kg) is the basic unit of mass in SI. It is equal to the mass of
a particular platinum–iridium cylinder kept at the International Bureau of Weights and
Measures laboratory (Bureau International des Poids at Mesures or BIPM) at Sèvres,
near Paris. Today, the BIPM kilogram is the only SI unit that is based on a physical
object (sometimes called an artifact). The cylinder was supposed to have a mass equal to
a cubic decimeter of water at its maximum density. The cylinder was later discovered
to be 28 parts per million too large. Unfortunately, since the same mass of water at
maximum density defines the liter, one liter is 1000.028 cm3. Compounding this lack
of elegance, in 1964 the General Conference on Weights and Measures redefined the
liter to be a cubic decimeter while, at the same time recommending that the unit not
be used in work requiring great precision. To make connection to the imperial unit of
weight, the pound is now defined as being exactly 0.45359237 kg.

The second (symbol s) is the basic unit of time in SI. The second was defined
as 1/86400 of the mean solar day, which is the average period of rotation of the
Earth on its axis relative to the Sun. In 1956, the International Committee on Weights
and Measures defined the ephemeris second as 1/31556925.9747 of the length of
the tropical year for 1900. This definition was ratified by the General Conference on
Weights and Measures in 1960. In 1964, the International Committee on Weights and
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Measures suggested a second be defined as 9192631770 periods of radiation from the
transition between the two hyperfine levels of the ground state of the cesium-133 atom
when unperturbed by external fields. In 1967, this became the official definition of the
second in SI.

The ampere (symbol A) is the basic unit of electric current in SI. The ampere corre-
sponds to the flow of one coulomb of electric charge per second. A flow of one ampere
is produced in a resistance of one ohm by a potential difference of one volt. Since 1948,
the ampere has been defined as the constant current that, if maintained in two straight
parallel conductors of infinite length of negligible circular cross-section and placed one
meter apart in a vacuum, would produce between these conductors a force equal to
2 × 10−7 newton per meter of length.

The candela (symbol cd) is the unit of luminous intensity in SI. The candela replaces
the international candle. One candela is 0.982 international candles. One candela is
defined as the luminous intensity in a given direction of a source that emits monochro-
matic radiation of frequency 540 × 1012 Hz and has a radiant intensity in that same
direction of 1/683 watt per steradian.

The mol (symbol mol) is defined as the amount of substance containing the same
number of chemical units (atoms, molecules, ions, electrons, or other specified entities
or groups of entities) as exactly 12 grams of carbon-12. The number of units in a mol,
also known as Avogadro’s number, is 6.022141 × 1023.

The kelvin (symbol K) is the unit for thermodynamic temperature in SI. Absolute
zero temperature (0 K) is the temperature at which a thermodynamic system has the
lowest energy. It corresponds to −273.16 on the Celsius scale and to −459.67 on the
Fahrenheit scale. The kelvin is defined as 1/273.16 of the triple point of pure water.
The triple point of pure water is the temperature at which the liquid, solid, and gaseous
forms can be maintained simultaneously.

Another absolute temperature scale used by engineers in the United States of America
is the Rankine scale. Although the zero point of the Rankine scale is also absolute zero,
each rankine is 5/9 of the kelvin.

The newton (symbol N) is the unit of force in SI. It is defined as that force necessary
to provide a mass of one kilogram with an acceleration of one meter per second per
second. One newton is equal to a force of 100000 dynes in the CGS system, or a force
of about 0.2248 pound in the foot-pound-second.

The joule (symbol J) is the unit of energy in SI. It is equal to the work done by a force
of one newton acting through one meter. It is also equal to one watt-second, which is
the energy dissipated in one second by a current of one ampere through a resistance of
one ohm. One joule is equal to 107 ergs in CGS.

The watt (symbol W) is the unit of power in SI. One watt is equal to one joule of
work per second, 1/746 horsepower, or the power dissipated in an electrical conductor
carrying one amp over a potential drop of one volt.



505 Physical values

A.3 Other units of measurement

While SI has been in use for many years, there are still a number of other schemes that
you may find in the scientific literature. One of the more common is CGS (centimeter,
gram, second). For reference, the list of physical values is given below.

CGS

Speed of light c = 2.99792458 × 1010 cm s−1

Planck’s constant --h = 6.58211889(26) × 10−16 eV s
--h = 1.054571596(82) × 10−27 erg s

Electron charge e = 1.602176462(63) × 1012 erg eV−1

Electron mass m0 = 9.10938188(72) × 10−28 g
Neutron mass mn = 1.67492716(13) × 10−24 g
Proton mass mp = 1.67262158(13) × 10−24 g
Boltzmann constant kB = 1.3806503(24) × 10−16 erg K−1

kB = 8.617342 × 10−5 eV K−1

Bohr radius aB = 0.5291772083(19) × 10−8 cm

aB =
--hc

m0e2

Inverse fine-structure constant α−1 = 137.0359976(50)

α−1 =
--hc

e2

In addition to internationally agreed upon units of measurement, theorists sometimes
adopt a short-hand notation in which Planck’s constant is unity. You may also find
occasions when the speed of light is set to unity.

A.4 Use of quantum mechanical effects to define units of measure

Over the years there has been a trend to try to use the properties of atoms and quantum
mechanical phenomena to define units of measure. In the 1960s the second was de-
fined using radiation from the transition between the two hyperfine levels of the ground
state of the cesium-133 atom. Such radiation is, of course, quantum mechanical in ori-
gin. More recently, the macroscopic quantum phenomena of both Josephson tunneling
and the quantum Hall effect have been used to precisely define voltage and resistance
values, respectively. In 1988, the International Committee on Weights and Measures
adopted the Josephson constant, KJ, and the von Klitzing constant, RK, for electri-
cal measurements. The Josephson constant (KJ = e/π --h = 483597.898(19) GHz V−1)
relates frequency and voltage by way of the ac Josephson effect. The von Klitzing con-
stant (RK = 2π --h/e2 = 25, 812.807572(95)�) is the unit of resistance in the integer
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quantum Hall effect. This leads directly to an expression for Planck’s constant,
--h = 2/πK 2

J RK.
In the future, it may be possible to use the Einstein expressions for energy E = mc2

and E = --hω to eliminate the need for a physical BIPM artifact in France to define the
kilogram mass in SI. If this approach were used, then Planck’s constant would become
an exact quantity. The definition of one kilogram would define Planck’s constant as
--h = c2/ω in SI.



Appendix B

Coordinates and trigonometry

B.1 Coordinates

θ

φ

r

r(x, y, z)

rsin(θ)

rcos(θ)

rsin(θ)cos(φ)

rsin(θ)sin(φ)

z

x

y

The position of a point particle in three-dimensional Euclidian space is given by the
vector r(x, y, z) in Cartesian coordinates, where x, y, and z are measured in the x̂, ŷ,
and ẑ unit-vector directions, respectively. In spherical coordinates, the position vector
is r(r, θ, φ), where r, θ , and φ are the radial and two-angular coordinates, respectively.
The relationship between the two coordinate systems is given by

x = r sin(θ ) cos(φ)

y = r sin(θ ) sin(φ)

z = r cos(θ )

The value of r is related to Cartesian coordinates through

r2 = x2 + y2 + z2

B.2 Useful trigonometric relations

Functions of real variable x Hyperbolic functions of complex variable z

sin(x) = 1

2i

(
eix − e−i x) sinh(z) = 1

2

(
ez − e−z)

cos(x) = 1

2

(
eix + e−i x) cosh(z) = 1

2

(
ez + e−z)
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eix = cos(x) + i sin(x)

e−i x = cos(x) − i sin(x)

cos2(x) + sin2(x) = 1 cosh2(z) − sinh2(z) = 1

2 sin(x) cos(y) = sin(x + y) + sin(x − y)

2 cos(x) cos(y) = cos(x + y) + cos(x − y)

2 sin(x) sin(y) = cos(x − y) − cos(x + y)

sin(x ± y) = sin(x) cos(y) ± cos(x) sin(y)

cos(x ± y) = cos(x) cos(y) ∓ sin(x) sin(y)

tan(x ± y) = tan(x) ± tan(y)

1 ∓ tan(x) tan(y)

1 + tan2(x) = sec2(x) = 1

cos2(x)

1 + cot2(x) = cosec2(x) = 1

sin2(x)

sech(z) = 1

cosh(z)
cosech(z) = 1

sinh(z)

sin−1(z) = −i ln
(
i z + (

1 − z2
)1/2

)
sinh−1(z) = ln

(
z + (

z2 + 1
)1/2

)
cos−1(z) = −i ln

(
z + (

z2 − 1
)1/2

)
cosh−1(z) = ln

(
z + (

z2 − 1
)1/2

)
tan−1(z) = i

2
ln
i + z

i − z
tanh−1(z) = 1

2
ln

1 + z

1 − z

For the triangle illustrated in the following figure:

a

sin(A)
= b

sin(B)
= c

sin(C)

a2 = b2 + c2 − 2bccos(A)

A

C

B

ab

c

where A is the angle opposite side a, etc.
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Expansions, integrals, and mathematical
relations

C.1 Expansions and series

The Taylor expansion for a smooth function f (x) about x0 is

f (x) =
n=∞∑
n=−∞

1

n!
· f (n)(x0) · (x − x0)n

Sine and cosine functions expand as

sin(x) = x − x3

3!
+ x5

5!
− · · · cos(x) = 1 − x2

2!
+ x4

4!
− · · ·

and the Taylor expansion for an exponential is

ex = 1 + x + x2

2!
+ x3

3!
+ · · ·

If |x | < 1 then

log(1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · ·

A Maclaurin expansion is a special case of the Taylor expansion in which x0 = 0.
Binomial theorem

(1 ± x)n = 1 ± nx + n(n − 1)

2!
x2 ± n(n − 1)(n − 2)

3!
x3 + · · ·

Stirling’s formula

log(n!) ∼= n log(n) − n for n � 1
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C.2 Differentiation

The chain rule for the product of two differentiable functions f (x) and g(x) may be
expressed as:

d

dx
(( f (x)g(x))) = ( f (x)g(x))′ =

(
d

dx
( f (x))

)
g(x) + f (x)

(
d

dx
(g(x))

)
d

dx
(( f (x)g(x))) = ( f (x))′g(x) + f (x)(g(x))′

If the ratio of two differentiable functions f (x) and g(x) takes on the indeterminate
form 0/0 at postion x = x0, then one can show, using a Taylor expansion, that

f (x)

g(x)

∣∣∣∣
x→x0

=
d

dx
f (x)

d

dx
g(x)

∣∣∣∣∣∣∣
x→x0

which is L’Hospital’s rule.

C.3 Integration

If an integrand may be written as the product of two functions, UV ′, where ′ indicates
a derivative, it is often useful to consider the method of integration by parts, for which∫
UV ′dx = UV − ∫

U ′Vdx .
Useful standard integrals include:∫
cos(x)dx = sin(x)∫
sin(x)dx = − cos(x)

∫ (
1

x

)
dx = ln(x)

∫
axdx = ax

ln(a)∫
sinh(x)dx = cosh(x)∫
cosh(x)dx = sinh(x)

∞∫
0

e−ax
2
dx = 1

2

√
π

a

∞∫
0

xe−ax
2
dx = 1

2a
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∞∫
0

x2e−ax
2
dx = 1

4

√
π

a3

∞∫
0

x4e−ax
2
dx = 1

2a2

∞∫
0

x4ex

(ex − 1)2
dx = 4π4

15

∞∫
0

x3

(ex − 1)2
dx = π4

15

∞∫
0

x p−1

erx − q
dx = 1

qr p
�(p)

∞∑
k=1

qk

k p
for p > 0, r > 0,−1 < q < 1

C.4 The Dirac delta function

In one dimension:
∞∫

−∞
δ(x − x ′)dx = 1 and δ(x − x ′) =

∞∫
−∞

dk

2π
eik(x−x ′)

In three dimensions:
∞∫

−∞
dr3δ(r − r′) = 1 and δ(r − r′) =

∞∫
−∞

d3k

(2π )3
eik·(r−r′)

Other expressions of the delta function in one dimension are:

δ(x − x ′) =
∞∫

0

1

π
cos(k(x − x ′))dk

δ(x − x ′) = 1

π
lim
η→∞

sin(η(x − x ′))
x − x ′

δ(x − x ′) = 1

π
lim
η→∞

2 sin2(η(x − x ′)/2)

η(x − x ′)2

δ(x − x ′) = 1

π
lim
ε→∞

ε

(x − x ′)2 + ε2
= 1

π
lim
ε→∞

1

(x − x ′) + iε

C.5 Root of a quadratic equation

The roots of ax2 + bx + c = 0 are

x = −b ± √
b2 − 4ac

2a
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C.6 Fourier integral

F(k) = 1√
2π

x=∞∫
x=−∞

f (x)e−ikxdx

f (x) = 1√
2π

k=∞∫
k=−∞

F(k)eikxdk

Examples

F(k) = 1√
2π

is a constant that gives f (x) = δ(x)

F(k) = (2π )1/2δ(k + a) gives f (x) = e−iax , where a is real.

F(k) = 1

|k| gives f (x) = 1

|x | .

F(k) = a(2/π )1/2

a2 + k2
is a Lorentzian function that gives f (x) = e−a|x | where a > 0.

F(k) =
(
a
√

2
)−1

e−k
2/4a2

is a Gaussian function that gives f (x) = e−a
2x2

,where a>0.

C.7 Correlation functions

f (t) = 〈E∗
1 (t)E2(t + τ )〉 =

τ=∞∫
τ=−∞

E∗
1 (t)E2(t + τ )dτ and F(ω) = E∗

1 (ω)E2(ω)

g(1)(τ ) = 〈E∗(t)E(t + τ )〉
〈E∗(t)E(t)〉

g(2)(τ ) = 〈E∗(t)E∗(t + τ )E(t + τ )E(t)〉
〈E∗(t)E(t)〉2
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Linear algebra

D.1 Matrices

Inverse of matrix A =
[
a11 a12

a21 a22

]
is A−1 = 1

|A|

[
a22 −a12

−a21 a11

]
, so that AA−1 = I,

where I is the identity matrix.
The determinant of a 2 × 2 matrix is |A| = a11a22 − a12a21. For a 3 × 3 matrix,

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


. Expanding along the first column gives

|A| = a11

∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣− a21

∣∣∣∣∣a12 a13

a32 a33

∣∣∣∣∣+ a31

∣∣∣∣∣a12 a13

a22 a23

∣∣∣∣∣ = a11M11 − a21M21 + a31M31

where Mik is the minor of the element aik .
In general, the determinant of an n × n matrix A = ∑n

i,k aik is

|A| =
n∑

k=1

(−1)i+kaikMik

where (i = 1, 2, . . . , n). The inverse is

A−1 = 1

|A|

[
n∑
i,k

(−1)i+kMki

]

where (−1)i+kMki is the cofactor.
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Vector calculus and Maxwell’s equations

E.1 Vector calculus

Cartesian coordinates (x, y, z)

∇V = x̂
∂V

∂x
+ ŷ

∂V

∂y
+ ẑ

∂V

∂z

∇ · A = ∂Ax
∂x

+ ∂Ay
∂y

+ ∂Az
∂z

∇ × A =




x̂ ŷ ẑ
∂

∂x

∂

∂y

∂

∂z
Ax Ay Az




= x̂
(
∂Az
∂y

− ∂Ay
∂z

)
+ ŷ

(
∂Ax
∂z

− ∂Az
∂x

)
+ ẑ

(
∂Ay
∂x

− ∂Ax
∂y

)

∇2V = d2V

dx2
+ d2V

dy2
+ d2V

dz2

Spherical coordinates (r, θ, φ)

∇V = r̂
∂V

∂x
+ θ̂

1

r

∂

∂θ
(V ) + φ̂

1

r sin(θ )

∂

∂φ
(V )

∇ · A = 1

r2

∂

∂r
(r2Ar ) + 1

r sin(θ )

∂

∂θ
(Aθ sin(θ )) + 1

r sin(θ )

∂Aφ

∂φ

∇ × A = 1

r2 sin(θ )

∣∣∣∣∣∣∣∣∣

r̂ r θ̂ r sin(θ )φ̂
∂

∂r

∂

∂θ

∂

∂φ

Ar r Aθ r sin(θ )Aφ

∣∣∣∣∣∣∣∣∣

514



515 Vector calculus and Maxwell’s equations

∇ × A = r̂
r sin(θ )

(
∂

∂θ
Aφ sin(θ ) − ∂Aθ

∂φ

)
+ θ̂

r

(
1

sin(θ )

∂Ar
∂φ

− ∂

∂r
(r Aφ)

)

+ φ̂

r

(
∂

∂r
(r Aθ ) − ∂Ar

∂θ

)

∇2V = 1

r2

∂

∂r

(
r2 ∂V

∂r

)
+ 1

r2 sin(θ )

∂

∂θ

(
sin(θ )

∂V

∂θ

)
+ 1

r2 sin(θ )

∂2V

∂φ2

Useful vector relationships for the vector fields a, b, and c are

∇ · (∇ × a) = 0

∇ × ∇ × a = ∇(∇ · a) − ∇2a

∇ · (a × b) = b · (∇ × a) − a · (∇ × b)

a × (b × c) = (a · c)b − (a · b)c

a · b × c = b · c × a = c · a × b

Other useful relations in vector calculus are thedivergence theorem relating volume
and surface integrals∫
V

∇ · ad3r =
∫
S

a · n ds

where n is the unit-normal vector to the surface S and Stokes’s theorem, which relates
surface and line integrals∫
S

(∇ × a) · n ds =
∮
C

a · dl

where dl is the vector line element on the closed loop C.

E.2 Maxwell’s equations

In SI-MKS units

∇ · D = ρ Coulomb’s law.

∇ · B = 0 No magnetic monopoles.

∇ × E = −∂B
∂t

Faraday’s law.

∇ × H = J + ∂D
∂t

Modified Ampere’s law.

Current continuity requires that ∇ · J + ∂ρ/∂t = 0 and in these equations B = µH
and D = εE = ε0(1 + χe)E = ε0E + P.
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In SI units, the permittivity of free space is ε0 = 8.8541878 × 10−12 F m−1 exactly,
and the permeability of free space is µ0 = 4π × 10−7 H m−1.

In Gaussian or CGS units, Maxwell’s equations take on a different form. In this
case

∇ · D = 4πρ where D = εE = (1 + 4πχe)E = E + 4πP

∇ · B = 0

∇ × E = −1

c

∂B
∂t

∇ × H = 4π

c
J + 1

c

∂D
∂t



Appendix F

The Greek alphabet

F.1 The Greek alphabet

A α alpha = a
B β beta = b
� γ gamma = g
� δ delta = d
E ε epsilon = e
Z ζ zeta = z
H η eta = e
� θ theta = th (th)
I ι iota = i
K κ kappa = k
� λ lambda = l
M µ mu = m
N ν nu = n
' ξ xi = x (ks)
( π pi = p
P ρ rho = r
� σ sigma = s
T τ tau = t
Y υ upsilon = u
� φ phi = pf ( f )
X χ chi = kh (hh)
# ψ psi = ps
� ω omega = o
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Index

Absorption 419
Ampère’s law 25
Angular

frequency 24
momentum 81, 84

Annihilation operator 303
Anti-commutation 333
Atom

electron ground state 87
hydrogen 79
shell states 86

Autocorrelation function 60

Balmer 83
Band 92

conduction 93
GaAs 208
gap 93
line up 96
structure 96
valence 92

Bernard-Duraffourg condition
421

Black-body radiation 61
Bloch

function 199, 423
theorem 198
wave vector 199

Bohr
effective radius 371, 378
radius 82

Boltzmann distribution 339
Bose–Einstein distribution 343
Boson 330
Bound state 111
Boundary conditions 111
Bra 244
Bragg scattering peak 66
Brillouin zone 91

Capacitor 19
Carrier pinning 438

Cavity
finesse 429
formation 443
optical 418
round-trip time 428

Centripetal force 81
Chemical potential 335

computer program 338
Classical

electromagnetism 16
mechanics 5
turning point 296
variables 71

CMOS 1, 144
Coherence

length 60
time 60

Collapse of the wave function 239, 303
Commutation relation 285
Commutator 242
Conduction band 93
Conductivity 379
Conjugate pair 70, 76
Correlation 60

due to spatial position of dopant atoms
376

function 60
Correspondence principle 5, 100, 239
Coulomb

blockade 21
law 26
potential 18, 373
screened potential 371

Creation operator 283
Crystal

Brillouin zone 91
cubic lattice 90
diamond structure 90
GaAs 210
momentum 206
photonic 264
reciprocal lattice 91
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519 Index

structure 87
zinc blende structure 90

Current
continuity 26
operator 123

Davisson 66
de Broglie wavelength 336
Debye screening 382
Degenerate 126
Delta function 495

potential barrier 196
Density of states 256

electrons 256, 417
photon 263, 389

Dielectric
light propagation in 27
relative permittivity 371, 373
response function 373

Diffraction
electron 66
light 55

Diode
heterostructure 97
laser 415
light-emitting 444

Dipole
radiation 35
selection rule 395

Dirac
delta function 495
notation 244

Dispersion
acoustic branch 12, 15
diatomic linear chain 15
electron 76
light 28
monatomic linear chain 12
optic branch 15

Displacement vector 19, 26
Distribution

Boltzmann 339
Bose-Einstein 343
Fermi-Dirac 335, 421

Divergence theorem 25
Doping 370

Effective Bohr radius 371
Eigenfunction 111
Eigenvalue 73

of Hermitian operator 243
Einstein

A and B coefficients 392
relations 393

Elastic scattering
by ionized impurities 374

Elastic scattering rate 370
Electric

field 17
susceptibility 25

Electrodynamics 24
Electromagnetic

energy flux density 32
momentum 34
radiation 36
transverse wave 30
wave 28
wave equation 27

Electron
conductivity 379
dispersion 75
effective mass 93
gound state in atoms 87
in free space 74
mobility 378
shell states 86
spin 84
wave packet 76
waveguide 263

Electrostatics 17
Energy

charging 22
density 20
eigenvalue 73
kinetic 7
potential 7

Epitaxy 95
Equation of motion 9
Equilibrium statistics 341
Excitation 384, 387, 403
Excited states

harmonic oscillator 281
Exciton 448
Expectation value 72, 247

time dependence 247
uncertainty 247

Eye diagram 446

Fabry-Perot 427
laser diode 433

Faraday’s law 25
Fermi

energy 336
wave vector 336

Fermi’s golden rule 369
optical transitions 389, 423
stimulated optical transitions 390

Fermi-Dirac distribution 335, 421
computer program 339

Fermion 330
anti-commutation 333
creation and annihilation operator 332



520 Index

Finesse 429
Fock space 334
Force 6

centripetal 81
conservative 7
electrostatic 17, 81
transmitters of 55

Frequency 24
angular 24

Gain
current 148
optical 420, 423, 432

Gauss’s law 18, 22
Germer 66
Ground state 285

atom 87
Group velocity 28, 77

Hamiltonian 7
operator 72

Harmonic oscillator 8, 281
classical turning point 296
diatomic linear chain 13
excited states 289
ground state 285
Hamiltonian 283
in constant electric field 306
monatomic linear chain 11
one-dimensional 8
perturbation in xy 468
potential 281
time dependence 300
wave function 294

Heisenberg representation 304
Hermitian 238, 242
Hertz 30
Heterostructure 96

diode 97
interface 96

Holes 94, 417, 422
Huygen’s principle 56
Hydrogen

spontaneous emission rate 394
Hydrogen atom 79

Bohr 81

Impedance
matching 137
of free space 25, 33

Impurity
substitutional 95

Index guiding 430
Index-guided slab waveguide 430
Inductance 21
Interaction picture 361

Interference
electrons 66
equation 57
of light 55

Ket 244
Kinetic energy 7
Kronecker delta 74, 244
Kronig-Penney potential 198

Landauer formula 262
Langevin rate equations 446
Laser 415

cavity formation 443
design 426
noise 444
rate equations 434
relaxation oscillation 442
threshold current 438
transient response 442
turn-on delay 442

Lattice
cubic 90
reciprocal 91
vibration 310
vibration in GaAs 16–17

LED 444
Leibniz 4
Light 55

black-body 61
dispersion 28
emitting diode 444
intensity 390
photoelectric effect 62
quantization 61
Rayleigh-Jeans formula 61
thermal 61, 389
ultraviolet catastrophe 61
visible wavelengths 56

Lindhard 385
Line width 58, 60
Linear operator 240
Localization threshold 194
Lyman 83

Magnetic
field vector 19, 25
flux density 18, 25
susceptibility 25

Markovian approximation 447
Maser 415
Matrix element 361, 391, 418, 465,

474
Maxwell’s equations 25
MBE 95
Mean free path 372, 376
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Measurement 245
superposition state 303

Meta-material 28, 264
Mirror loss 432
Mobility 378
MOCVD 95
Molecular beam epitaxi 95
Momentum

electromagnetic 34
electron 75
exchange 65
of particle mass m 6
photon 63

Moore’s Law 2

Newton 4
Nonequilibrium electron transistor

146
Nonradiative recombination 436
Normalization 244

Operator
annihilation 283
creation 283
current 122
expectation value 69, 246
Hamiltonian 72
Hermitian 242
linear 241
number 292
product 241
quantum 71
superposition 301

Optical cavity 427
Fabry-Perot 427
high-Q 426

Optical confinement factor 431
Optical gain 420, 423, 432

with electron scattering 425
Orthogonal 74, 238
Orthonormal 74, 244

Particle
elementary 55
photon 62

Paschen 83
Pauli exclusion principle 85
Periodic table of elements 88
Permiability 19

relative 19
Permittivity 17

relative 20
Permutation operator 331
Perturbation

matrix 474
nondegenerate time-independent 463

time-dependent 366
time-independent 462, 473

Phase velocity 28, 77
Photoelectric effect 62
Photon 63
photon

lifetime 432
Photonic crystal 264
Planck’s constant 4, 63
Plane wave 24
Postulates of quantum mechanics 238
Potential

degeneracy due to symmetry 125
energy 7
gauge 35
harmonic oscillator 281
inversion symmetry 116
Kronig-Penney 198
rectangular finite barrier 127
rectangular infinite barrier 117
step 132
Yukawa 384

Poynting vector 32
Probability density 69
Propagation matrix 168

computer program 173
current conservation 176
periodic potential 200
rectangular potential barrier 178

Q 426, 429
Quantization 61

angular momentum 81, 84
electrical resonator 309
electromagnetic field 308
lattice vibrations 310
light 61
mechanical vibration 311
particle 65
photon 62, 65

Quantum
conductance 260
dot 260
well 259
wire 259

Radiation
black-body 61
diople 35

Random phase approximation 385
Rate equations 434

Langevin 446
numerical solution 439

Rayleigh-Jeans formula 61
Reciprocal lattice 91
Refractive index 28, 428
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Relative
dielectric constant 371, 373
permiability 19
permittivity 19, 373

Relative intensity noise (RIN) 446
Resonant transmission 183
Resonant tunneling 186

between quantum wells 190
bipolar transistor 187

Runge-Kutta method 440
Rutherford 79
Rydberg constant 82

effective 371

Scattering
elastic 370
ionized impurity 370

Schrödinger equation 68, 239
numerical solution 120
time-dependent 73
time-independent 73

Schrödinger picture 361
Screening 380

Debye 382
linear 380
Thomas-Fermi 383

Second quantization 335
Secular equation 475
Selection rules for optical transitions

395
Semiconductor 92

band gap 93
effective electron mass 93
GaAs 93, 210
heterointerface 96
heterostructure 92
optical gain 436
Si 86, 93
valence band 93

Shell states 86
Slater determinant 332
Spectral line width 60
Spin 84
Spontaneous emission 270, 416

electron lifetime in a potential well
394

factor 436
hydrogen 394
rate 392

Stark effect 489
Stationary state 73, 112
Stimulated emission 416
Stokes’s theorem 26
Structure factor 375
Substitutional doping 95, 370
Superposition state

harmonic oscillator 302

Symmetry
indistinguishable particles 330
time-reversal 174

Thomas-Fermi
screening 383

Threshold current 438
Time-dependent perturbation

abrupt change in potential 357
Fermi’s golden rule 369
first-order 366

Time-independent
degerate perturbation 473
nondegenerate perturbation 463

Time-reversal symmetry 174
Transistor

CMOS 1, 144
FET 144
nonequilibrium 146
single-electron 23

Transition rate 369
Transmission

at potential step 133
current density 135
impedance matching 137
resonance 183
tunneling 142

Tunnel 140
current 140
delta function potential barrier 195
resonant 186
wave function 144

Unbound state 111
Uncertainty

generalized 253
harmonic oscillator 287
principle 76
relation 78

Vacuum fluctuation 308
Valence band 93
VCSEL 415
Vector

calculus 26
potential 34
Poynting 32

Velocity
group 28, 77
phase 28, 77

Virial theorem 82, 274

Wave
number 24
vector 25

Wave equation
electric field 27
Schrödinger 68
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Wave function 68
completeness 115,

244
discontinuity 112
harmonic oscillator 294
kink 114
normalization 115

Wigner-Seitz cell 90
Work 6

Young’s slits 55
Yukawa potential 384

Zinc blende 90
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