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Preface

Almost no one bears the ceaseless variability of the mid-latitude atmosphere without

a firm opinion and at least some degree of interest. The parade of weather systems

that are continuously developed and extinguished over this part of the globe ensures

that its denizens never need to wait long for unmistakable, and sometimes dramatic,

changes in the local weather. For the physical scientist with an interest in (or, as is most

often the case for us, the captivated, a fascination with) the weather, the unsurprising,

yet still remarkable, fact is that this variability is governed by the basic laws of physics

first articulated by Newton centuries ago. The exact manner by which those laws

are brought to bear upon an analysis of the dynamics of the atmospheric fluid has,

especially in the last 100 years, become a separate branch of physics. This book is

dedicated to providing an introduction to the physical and mathematical description

of mid-latitude atmospheric dynamics accessible to any student possessing a solid

background in classical physics and a working knowledge of calculus.

When one begins to wade through the average textbook, one often gets the sense

that the author has poured everything he/she knows into the text without regard

for whether it is all necessary to accomplish the educational goals of the book. My

many years of teaching this material to hundreds of students have provided me

with two main motivations for writing this textbook. First, students have invariably

complained that the available textbooks are difficult to employ as study tools, often

skipping steps in mathematical derivations and thus, on occasion, contributing more

to frustration than to edification. They often wonder how the subject matter can seem

so clear in lectures and then so confusing that night in the library. Second, there is

no other currently available text that serves as a concise primer in the application of

elementary dynamics to the central problems of modern synoptic–dynamic meteo-

rology: the diagnosis of vertical motion, fronts and frontogenesis, and the dynamics

of the cyclone life cycle from both the ω-centric and potential vorticity perspectives.

In this book I have attempted to remedy both of these shortcomings by presenting

an introduction to atmospheric dynamics and its application to the understanding of

mid-latitude weather systems in a penetrating conceptual and detailed mathematical

fashion. The conversational tone of the book is meant to render its reading akin to

attending a lecture given by someone who is profoundly excited by the subject matter.

ix
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x PREFACE

It is hoped that this tone will increase the likelihood that the book will serve as a

genuine study guide for students as they navigate through a first course in this subject.

The first five chapters of the book are specifically targeted at junior-level under-

graduates who are taking a first course in atmospheric dynamics. Chapter 1 provides

a review of relevant mathematical tools while Chapter 2 considers the fundamental

and apparent forces at work on a rotating Earth. Chapter 3 examines the fundamen-

tal conservation laws of mass, momentum, and energy producing, along the way,

the continuity equation, the equations of motion, and the energy equation. Once

developed, the equations of motion are simplified in Chapter 4 through a variety

of approximations thus lending insight into basic flow characteristics of the mid-

latitude atmosphere. The relationship between circulation, vorticity, and divergence

in fluids is examined in Chapter 5 where the quasi-geostrophic system of equations

is also introduced.

The last four chapters are targeted toward those students who might subsequently

take a course in synoptic–dynamic meteorology in which a significant laboratory

component would be a necessary complement. The diagnosis of vertical motions is

undertaken in Chapter 6. The meso-synoptic dynamics of the frontal zones that char-

acterize mid-latitude cyclones are considered in Chapter 7 where the examination of

frontogenesis and its relationship to transverse vertical circulations is presented in

both the quasi- and semi-geostrophic frameworks. Chapter 8 explores the dynamics

of the life cycle of mid-latitude cyclones, thus providing a particularly relevant focus

for synthesis of the prior chapters. Finally, Chapter 9 provides an introduction to

the use of potential vorticity diagnostics for examining the life cycle of mid-latitude

cyclones. Much of the material comprising the text comes from years of lecture notes

from three distinct courses in the Department of Atmospheric and Oceanic Sciences

at the University of Wisconsin–Madison. Both components of the text would be

suitably challenging to first-year graduate students with little prior background in

meteorology or atmospheric dynamics.

Throughout the text, the emphasis is on conceptual understanding, the develop-

ment of which for any given topic always precedes the application of mathematical

formalism. I recognize that a level of intimacy with the mathematics is necessary

but I am certain that it is not sufficient to produce a penetrating understanding

of mid-latitude dynamics. Such understanding is, instead, the offspring of a mar-

riage between a conceptual, intuitive sense of the physics of the phenomenon and

the corresponding mathematical description of it. At the end of each chapter sev-

eral problems, characterized by varying degrees of difficulty, are included to assist

the student in reinforcing knowledge of the subject matter and in developing solid

problem-solving skills. Solutions to selected problems are included at the end of the

chapters as well. Complete solutions to all problems are included in a separate Solu-

tion Manual available from the publisher. Also included at the end of each chapter is

an annotated bibliography designed to point the interested student toward seminal

or other sources. A more complete, though by no means exhaustive, bibliography

can be found at the end of the book.
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1
Introduction and Review
of Mathematical Tools

Objectives

The Earth’s atmosphere is majestic in its beauty, awesome in its power, and com-

plex in its behavior. From the smallest drops of dew or the tiniest snowflakes to the

enormous circulation systems known as mid-latitude cyclones, all atmospheric phe-

nomena are governed by physical laws. These laws can be written in the language of

mathematics and, indeed, must be explored in that vernacular in order to develop a

penetrating understanding of the behavior of the atmosphere. However, it is equally

vital that a physical understanding accompany the mathematical formalism in this

comprehensive development of insight. In principle, if one had a complete under-

standing of the behavior of seven basic variables describing the current state of the

atmosphere (these will be called basic state variables in this book), namely u, v , and

w (the components of the 3-D wind), T (the temperature), P (the pressure), φ (the

geopotential), and q (the humidity), then one could describe the future state of the

atmosphere by considering the equations that govern the evolution of each variable.

It is not, however, immediately apparent what form these equations might take. In

this book we will develop those equations in order to develop an understanding of

the basic dynamics that govern the behavior of the atmosphere at middle latitudes

on Earth.

In this chapter we lay the foundation for that development by reviewing a number

of basic conceptual and mathematical tools that will prove invaluable in this task.

We begin by assessing the troubling but useful notion that the air surrounding us

can be considered a continuous fluid. We then proceed to a review of useful math-

ematical tools including vector calculus, the Taylor series expansion of a function,

centered difference approximations, and the relationship between the Lagrangian and

Eulerian derivatives. We then examine the notion of estimating using scale analysis

and conclude the chapter by considering the basic kinematics of fluid flows.

Mid-Latitude Atmospheric Dynamics Jonathan E. Martin
C© 2006 John Wiley & Sons, Ltd.
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2 INTRODUCTION AND REVIEW OF MATHEMATICAL TOOLS

1.1 Fluids and the Nature of Fluid Dynamics

Our experience with the natural world makes clear that physical objects manifest

themselves in a variety of forms. Most of these physical objects (and every one of

them with which we will concern ourselves in this book) have mass. The mass of an

object can be thought of as a measure of its substance. The Earth’s atmosphere is one

such object. It certainly has mass1 but differs from, say, a rock in that it is not solid. In

fact, the Earth’s atmosphere is an example of a general category of substances known

as fluids. A fluid can be colloquially defined as any substance that takes the shape of its

container. Aside from the air around us, another fluid with which we are all familiar

is water. A given mass of liquid water clearly adopts the shape of any container into

which it is poured. The given mass of liquid water just mentioned, like the air around

us, is actually composed of discrete molecules. In our subsequent discussions of the

behavior of the atmospheric fluid, however, we need not concern ourselves with the

details of the molecular structure of the air. We can instead treat the atmosphere as a

continuous fluid entity, or continuum. Though the assumption of a continuous fluid

seems to fly in the face of what we recognize as the underlying, discrete molecular

reality, it is nonetheless an insightful concept. For instance, it is much more tenable

to consider the flow of air we refer to as the wind to be a manifestation of the motion

of such a continuous fluid. Any ‘point’ or ‘parcel’ to which we refer will be properly

considered as a very small volume element that contains large numbers of molecules.

The various basic state variables mentioned above will be assumed to have unique

values at each such ‘point’ in the continuum and we will confidently assume that the

variables and their derivatives are continuous functions of physical space and time.

This means, of course, that the fundamental physical laws governing the motions

of the atmospheric fluid can be expressed in terms of a set of partial differential

equations in which the basic state variables are the dependent variables and space

and time are the independent variables. In order to construct these equations, we

will rely on some mathematical tools that you may have seen before. The following

section will offer a review of a number of the more important ones.

1.2 Review of Useful Mathematical Tools

We have already considered, in a conceptual sense only, the rather unique nature of

fluids. A variety of mathematical tools must be brought to bear in order to construct

rigorous descriptions of the behavior of these fascinating fluids. In the following

section we will review a number of these tools in some detail. The reader familiar

with any of these topics may skip the treatments offered here and run no risk of

confusion later. We will begin our review by considering elements of vector analysis.

1 The Earth’s atmosphere has a mass of 5.265 × 1018 kg!
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1.2 REVIEW OF USEFUL MATHEMATICAL TOOLS 3

Figure 1.1 The 3-D representation of a vector, �A. The components of �A are shown along the coordinate

axes

1.2.1 Elements of vector calculus

Many physical quantities with which we are concerned in our experience of the

universe are described entirely in terms of magnitude. Examples of these types of

quantities, known as scalars, are area, volume, money, and snowfall total. There are

other physical quantities such as velocity, the force of gravity, and slopes to topography

which are characterized by both magnitude and direction. Such quantities are known

as vectors and, as you might guess, any description of the fluid atmosphere necessarily

contains reference to both scalars and vectors. Thus, it is important that we familiarize

ourselves with the mathematical descriptions of these quantities, a formalism known

as vector analysis.2

Employing a Cartesian coordinate system in which the three directions (x , y, and

z) are mutually orthogonal (i.e. perpendicular to one another), an arbitrary vector,
�A, has components in the x , y, and z directions labeled Ax , Ay , and Az , respectively.

These components themselves are scalars since they describe the magnitude of vectors

whose directions are given by the coordinate axes (as shown in Figure 1.1). If we

denote the direction vectors in the x , y, and z directions as î , ĵ , and k̂, respectively

(where the ˆ symbol indicates the fact that they are vectors with magnitude 1 in the

respective directions – so-called unit vectors), then

�A = Ax î + Ay ĵ + Azk̂ (1.1a)

is the component form of the vector, �A. In a similar manner, the component form

of an arbitrary vector �B is given by

�B = Bx î + By ĵ + Bzk̂. (1.1b)

2 Vector analysis is generally considered to have been invented by the Irish mathematician Sir William
Rowan Hamilton in 1843. Despite its enormous value in the physical sciences, vector analysis was met with
skepticism in the nineteenth century. In fact, Lord Kelvin wrote, in the 1890s, that vectors were ‘an unmixed
evil to those who have touched them in any way . . vectors . . have never been of the slightest use to any creature’.
Remember, no matter how great a thinker one may be, one cannot always be right!
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4 INTRODUCTION AND REVIEW OF MATHEMATICAL TOOLS

Figure 1.2 (a) Vectors �A and �B acting upon a point O. (b) Illustration of the tail-to-head method for

adding vectors �A and �B. (c) Illustration of the parallelogram method for adding vectors �A and �B

The vectors �A and �B are equal if Ax = Bx , Ay = By , and Az = Bz . Furthermore,

the magnitude of a vector �A is given by∣∣∣ �A
∣∣∣ = (

A2
x + A2

y + A2
z

)1/2
(1.2)

which is simply the 3-D Pythagorean theorem and can be visually verified with the

aid of Figure 1.1.

Vectors can be added to and subtracted from one another both by graphical

methods as well as by components. Graphical addition is illustrated with the aid of

Figure 1.2. Imagine that the force vectors �A and �B are acting at point O as shown

in Figure 1.2(a). The total force acting at O is equal to the sum of �A and �B . Graph-

ical construction of the vector sum �A + �B can be accomplished either by using the

tail-to-head method or the parallelogram method. The tail-to-head method involves

drawing �B at the head of �A and then connecting the tail of �A to the head of the re-

drawn �B (Figure 1.2b). Alternatively, upon constructing a parallelogram with sides
�A and �B , the diagonal of the parallelogram between �A and �B represents the vector

sum, �A + �B (Figure 1.2c).

If we know the component forms of both �A and �B , then their sum is given by

�A + �B = (Ax + Bx )î + (Ay + By) ĵ + (Az + Bz)k̂. (1.3a)

Thus, the sum of �A and �B is found by simply adding like components together. It is

clear from considering the component form of vector addition that addition of vectors

is commutative ( �A + �B = �B + �A) and associative (( �A + �B) + �C = �A + ( �B + �C )).

Subtraction is simply the opposite of addition so �B can be subtracted from �A by

simply adding − �B to �A. Graphical subtraction of �B from �A is illustrated in Figure 1.3.

Notice that �A − �B = �A + (− �B) results in a vector directed from the head of �B to the

head of �A (the lighter dashed arrow in Figure 1.3). Component subtraction involves

Figure 1.3 Graphical subtraction of vector �B from vector �A
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1.2 REVIEW OF USEFUL MATHEMATICAL TOOLS 5

Figure 1.4 (a) Vectors �A and �B with an angle α between them. (b) Illustration of the relationship

between vectors �A and �B (gray arrows) and their cross-product, �A × �B (bold arrow). Note that �A × �B
is perpendicular to both �A and �B

subtracting like components and is given by

�A − �B = (Ax − Bx )î + (Ay − By) ĵ + (Az − Bz)k̂. (1.3b)

Vector quantities may also be multiplied in a variety of ways. The simplest vector

multiplication involves the product of a vector, �A, and a scalar, F . The resulting

expression for F �A is given by

F �A = F Ax î + F Ay ĵ + F Azk̂, (1.4)

a vector with direction identical to the original vector, �A, but with a magnitude F

times larger than the original magnitude.

It is also possible to multiply two vectors together. In fact, there are two different

vector multiplication operations. One such method renders a scalar as the product

of the vector multiplication and is thus known as the scalar (or dot) product. The

dot product of the vectors �A and �B shown in Figure 1.4(a) is given by

�A · �B = |A| |B | cos α (1.5)

where α is the angle between �A and �B . Clearly this product is a scalar. Using this

formula, we can determine a less mystical form of the dot product of �A and �B . Given

that �A = Ax î + Ay ĵ + Azk̂ and �B = Bx î + By ĵ + Bzk̂, the dot product is given by

�A · �B = (Ax î + Ay ĵ + Azk̂) · (Bx î + By ĵ + Bzk̂) (1.6)

which expands to the following nine terms:

�A · �B = Ax Bx (î · î) + Ax By(î · ĵ ) + Ax Bz(î · k̂)

+Ay Bx ( ĵ · î) + Ay By( ĵ · ĵ ) + Ay Bz( ĵ · k̂)

+Az Bx (k̂ · î) + Az By(k̂ · ĵ ) + Az Bz(k̂ · k̂).

Now, according to (1.5), î · î = ĵ · ĵ = k̂ · k̂ =1 since the angle between like unit

vectors is 0◦. However, the dot products of all other combinations of the unit vectors

are zero since the unit vectors are mutually orthogonal. Thus, only three terms survive

out of the nine-term expansion of �A · �B to yield

�A · �B = Ax Bx + Ay By + Az Bz. (1.7)
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Given this result, it is easy to show that the dot product is commutative ( �A · �B =
�B · �A) and distributive ( �A · ( �B + �C ) = �A · �B + �A · �C ).

Two vectors can also be multiplied together to produce another vector. This vector

multiplication operation is known as the vector (or cross-)product and is signified

�A × �B .

The magnitude of the resultant vector is given by

|A| |B | sin α (1.8)

where α is the angle between the vectors. Note that since the resultant of the cross-

product is a vector, there is also a direction to be discerned. The resultant vector is in

a plane that is perpendicular to the plane that contains �A and �B (Figure 1.4b). The

direction in that plane can be determined by using the right hand rule. Upon curling

the fingers of one’s right hand in the direction from �A to �B , the thumb points in

the direction of the resultant vector, �A × �B , as shown in Figure 1.4(b). Because the

resultant direction depends upon the order of multiplication, the cross-product has

different properties than the dot product. It is not commutative ( �A × �B �= �B × �A;

instead �A × �B = − �B × �A) and it is not associative ( �A × ( �B × �C ) �= ( �A × �B) × �C )

but it is distributive ( �A × ( �B + �C) = �A × �B + �A × �C ).

Given the vectors �A and �B in their component forms, the cross-product can be

calculated by first setting up a 3 × 3 determinant using the unit vectors as the first

row, the components of �A as the second row, and the components of �B as the third

row:

�A × �B =
∣∣∣∣∣∣

î ĵ k̂

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ . (1.9a)

Evaluating this determinant involves evaluating three 2 × 2 determinants, each one

corresponding to a unit vector î , ĵ , or k̂. For the î component of the resultant

vector, only the components of �A and �B in the ĵ and k̂ columns are considered.

Multiplying the components along the diagonal (upper left to lower right) first, and

then subtracting from that result the product of the terms along the anti-diagonal

(lower left to upper right) yields the î component of the vector �A × �B , which equals

(Ay Bz − Az By)î . The same operation done for the k̂ component yields (Ax By −
Ay Bx )k̂. For the ĵ component, the first and third columns are used to form the

2 × 2 determinant and since the columns are non-consecutive, the result must

be multiplied by –1 to yield −(Ax Bz − Az Bx ) ĵ . Adding these three components

together yields

�A × �B = (Ay Bz − Az By)î + (Az Bx − Ax Bz) ĵ + (Ax By − Ay Bx )k̂. (1.9b)

Vectors, just like scalar functions, can be differentiated as long as the rules of vector

addition and multiplication are obeyed. One simple example is Newton’s second law
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(which we will see again soon) that states that an object’s momentum will not change

unless a force is applied to the object. In mathematical terms,

�F = d

dt
(m �V) (1.10)

where m is the object’s mass and �V is its velocity. Using the chain rule of differentiation

on the right hand side of (1.10) renders

�F = m
d �V
dt

+ �V dm

dt
or �F = m �A + �V dm

dt
(1.11)

where �A is the object’s acceleration. Exploitation of the second term of this expansion

is what made Einstein famous!

Let us consider a more general example. Consider a velocity vector defined as
�V = uî + v ĵ + wk̂. In such a case, the acceleration will be given by

d �V
dt

= du

dt
î + u

dî

dt
+ dv

dt
ĵ + v

d ĵ

dt
+ dw

dt
k̂ + w

dk̂

dt
. (1.12)

The terms involving derivatives of the unit vectors may seem like mathematical

baggage but they will be extremely important in our subsequent studies. Physically,

such terms will be non-zero only when the coordinate axes used to reference motion

are not fixed in space. Our reference frame on a rotating Earth is clearly not fixed and

so we will eventually have to make some accommodation for the acceleration of our

rotating reference frame. Thus, all six terms in the above expansion will be relevant

in our examination of the mid-latitude atmosphere.

The last stop on the review of vector calculus is perhaps the most important one

and will examine a tool that is extremely useful in fluid dynamics. We will often

need to describe both the magnitude and direction of the derivative of a scalar field.

In order to do so we employ a mathematical operator known as the del operator,

defined as

∇ = ∂

∂x
î + ∂

∂y
ĵ + ∂

∂z
k̂. (1.13)

If we apply this partial differential del operator to a scalar function or field, the

result is a vector that is known as the gradient of that scalar. Consider the 2-D

plan view of an isolated hill in an otherwise flat landscape. If the elevation at each

point in the landscape is represented on a 2-D projection, a set of elevation con-

tours results as shown in Figure 1.5. Such contours are lines of equal height above

sea level, Z . Given such information, we can determine the gradient of elevation,

∇ Z, as

∇ Z = ∂ Z

∂x
î + ∂ Z

∂y
ĵ .

Note that the gradient vector, ∇ Z, points up the hill from low values of elevation

to high values. At the top of the hill, the derivatives of Z in both the x and y
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Figure 1.5 The 2-D plan view of an isolated hill in a flat landscape. Solid lines are contours of elevation

(Z ) at 50m intervals. Note that the gradient of Z points from low to high values of the scalar Z

directions are zero so there is no gradient vector there. Thus the gradient, ∇ Z,

not only measures magnitude of the elevation difference but assigns that magnitude

a direction as well. Any scalar quantity, �, is transformed into a vector quantity, ∇�,

by the del operator. In subsequent chapters in this book we will concern ourselves

with the gradients of a number of scalar variables, among them temperature and

pressure.

The del operator may also be applied to vector quantities. The dot product of ∇
with the vector �A is written as

∇ · �A =
(

∂

∂x
î + ∂

∂y
ĵ + ∂

∂z
k̂

)
· (Ax î + Ay ĵ + Azk̂)

∇ · �A =
(

∂ Ax

∂x
+ ∂ Ay

∂y
+ ∂ Az

∂z

)
(1.14)

which is a scalar quantity known as the divergence of �A. Positive divergence physically

describes the tendency for a vector field to be directed away from a point whereas

negative divergence (also known as convergence) describes the tendency for a vector

field to be directed toward a point. Regions of convergence and divergence in the

atmospheric fluid are extremely important in determining its behavior.

The cross-product of ∇ with the vector �A is given by

∇ × �A =
(

∂

∂x
î + ∂

∂y
ĵ + ∂

∂z
k̂

)
× (Ax î + Ay ĵ + Azk̂). (1.15a)
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The resulting vector can be calculated using the determinant form we have seen

previously,

∇ × �A =

∣∣∣∣∣∣∣∣
î ĵ k̂

∂

∂x

∂

∂y

∂

∂z
Ax Ay Az

∣∣∣∣∣∣∣∣ (1.15b)

where the second row of the 3 × 3 determinant is filled by the components of ∇ and

the third row is filled by the components of �A. This vector is known as the curl of �A.

The curl of the velocity vector, �V , will be used to define a quantity called vorticity

which is a measure of the rotation of a fluid.

Quite often in a study of the dynamics of the atmosphere, we will encounter

second-order partial differential equations. Some of these equations will contain

a mathematical operator (which will operate on scalar quantities) known as the

Laplacian operator. The Laplacian is the divergence of the gradient and so takes the

form

Laplacian = ∇ · (∇F ) = ∇2 F =
(

∂2 F

∂x2
+ ∂2 F

∂y2
+ ∂2 F

∂z2

)
. (1.16)

It is also possible to combine the vector �A with the del operator to form a new

operator that takes the form

�A · ∇ = Ax

∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z

and is known as the scalar invariant operator. This operator, which can be used with

both vector and scalar quantities, is important because it is used to describe a process

known as advection, a ubiquitous topic in the study of fluids.

1.2.2 The Taylor series expansion

It is sometimes convenient to estimate the value of a continuous function, f (x),

about the point x = 0 with a power series of the form

f (x) =
∞∑

n=0

anxn = a0 + a1x + a2x2 + · · · + anxn. (1.17)

The fact that this can actually be done might appear to be an assumption so we

must identify conditions for which this assumption is true. These conditions are

that (1) the polynomial expression (1.17) passes through the point (0, f (0)) and

(2) its first n derivatives match the first n derivatives of f (x) at x = 0. Implicit in

this second condition is the fact that f (x) is differentiable at x = 0. In order for

these conditions to be met, the coefficients a0, a1,. . . , an must be chosen properly.

Substituting x = 0 into (1.17) we find that f (0) = a0. Taking the first derivative of
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(1.17) with respect to x and substituting x = 0 into the resulting expression we get

f ′(0) = a1. Taking the second derivative of (1.17) with respect to x and substituting

x = 0 into the result leaves f ′′(0) = 2a2, or f ′′(0)/2 = a2. If we continue to take

higher order derivatives of (1.17) and evaluate each of them at x = 0 we find that, in

order that the n derivatives of (1.17) match the n derivatives of f (x), the coefficients,

an, of the polynomial expression (1.17) must take the general form

an = f n(0)

n!
.

Thus, the value of the function f (x) at x = 0 can be expressed as

f (x) = f (0) + f ′(0)x + f ′′(0)

2!
x2 + f ′′′(0)

3!
x3 + · · · + f n(0)

n!
xn. (1.18)

Now, if we want to determine the value of f (x) near the point x = x0, the above

expression can be generalized into what is known as the Taylor series expansion of

f (x) about x = x0, given by

f (x) = f (x0) + f ′(x0)(x − x0) + f ′′(x0)

2!
(x − x0)2 + · · · + f n(x0)

n!
(x − x0)n.

(1.19)

Since the dependent variables that describe the behavior of the atmosphere are all

continuous variables, use of the Taylor series to approximate the values of those

variables will prove to be a nifty little trick that we will exploit in our subsequent

analyses. Most often we consider Taylor series expansions in which the quantity

(x − x0) is very small in order that all terms of order 2 and higher in (1.19), the

so-called higher order terms, can be effectively neglected. In such cases, we will

approximate the given functions as

f (x) ≈ f (x0) + f ′(x0)(x − x0).

1.2.3 Centered difference approximations to derivatives

Though the atmosphere is a continuous fluid and its observed state at any time

could theoretically be represented by a continuous function, the reality is that actual

observations of the atmosphere are only available at discrete points in space and

time. Given that much of the subsequent development in this book will arise from

consideration of the spatial and temporal variation of observable quantities, we must

consider a method of approximating derivative quantities from discrete data. One

such method is known as centered differencing3 and it follows directly from the

prior discussion of the Taylor series expansion.

3 Centered differencing is a subset of a broader category of such approximations known as finite differenc-
ing.
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Figure 1.6 Points x1 and x2 defined with respect to a central point x0

Consider the two points x1 and x2 in the near vicinity of a central point, x0, as

illustrated in Figure 1.6. We can apply (1.19) at both points to yield

f (x1) = f (x0 − �x) = f (x0) + f ′(x0)(−�x) + f ′′(x0)

2!
(−�x)2 + · · ·

+ f n(x0)

n!
(−�x)n (1.20a)

and

f (x2) = f (x0 + �x) = f (x0) + f ′(x0)(�x) + f ′′(x0)

2!
(�x)2 + · · ·

+ f n(x0)

n!
(�x)n. (1.20b)

Subtracting (1.20a) from (1.20b) produces

f (x0 + �x) − f (x0 − �x) = 2 f ′(x0)(�x) + 2 f ′′′(x0)
(�x)3

6
+ · · ·. (1.21)

Isolating the expression for f ′(x0) on one side then leaves

f ′(x0) = f (x0 + �x) − f (x0 − �x)

2�x
− f ′′′(x0)

(�x)2

6
− · · ·

which, upon neglecting terms of second order and higher in �x , can be approximated

as

f ′(x0) ≈ f (x0 + �x) − f (x0 − �x)

2�x
. (1.22)

The foregoing expression represents the centered difference approximation to f ′(x)

at x0 accurate to second order (i.e. the neglected terms are at least quadratic in �x).

Adding (1.20a) to (1.20b) gives a similarly approximated expression for the second

derivative as

f ′′(x0) ≈ f (x0 + �x) − 2 f (x0) + f (x0 − �x)

�x2
. (1.23)

Such expressions will prove quite useful in evaluating a number of relationships we

will encounter later.
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1.2.4 Temporal changes of a continuous variable

The fluid atmosphere is an ever evolving medium and so the fundamental vari-

ables discussed in Section 1.1 are ceaselessly subject to temporal changes. But what

does it really mean to say ‘The temperature has changed in the last hour’? In the

broadest sense this statement could have two meanings. It could mean that the

temperature of an individual air parcel, moving past the thermometer on my back

porch, is changing as it migrates through space. In this case, we would be con-

sidering the change in temperature experienced while moving with a parcel of air.

However, the statement could also mean that the temperature of the air parcels

currently in contact with my thermometer is lower than that of air parcels that

used to reside there but have since been replaced by the importation of these colder

ones. In this case we would be considering the changes in temperature as mea-

sured at a fixed geographic point. These two notions of temporal change are clearly

not the same, but one might wonder if and how they are physically and mathe-

matically related. We will consider a not so uncommon example to illustrate this

relationship.

Imagine a winter day in Madison, Wisconsin characterized by biting northwest-

erly winds which are importing cold arctic air southward out of central Canada.

From the fixed geographical point of my back porch, the temperature (or poten-

tial temperature) drops with the passage of time. If, however, I could ride along

with the flow of the air, I would likely find that the temperature does not change

over the passage of time. In other words, a parcel with T = 270◦K passing my

porch at 8 a.m. still has T = 270◦K at 2 p.m. even though it has traveled nearly

to Chicago, Illinois by that time. Therefore, the steady drop in temperature I observe

at my porch is a result of the continuous importation of colder air parcels from Canada.

Phenomenologically, therefore, we can write an expression for this relationship we’ve

developed:

Change with Time Change with Time Rate of Importation

Following an Air = at a Fixed − of Temperature by

Parcel Location Movement of Air.

(1.24)

This relationship can be made mathematically rigorous. Doing so will assist us later in

the development of the equations of motion that govern the mid-latitude atmosphere.

The change following the air parcel is called the Lagrangian rate of change while

the change at a fixed point is called the Eulerian rate of change. We can quantify the

relationship between these two different views of temporal change by considering an

arbitrary scalar (or vector) quantity that we will call Q. If Q is a function of space

and time, then

Q = Q(x, y, z, t)
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and, from the differential calculus, the total differential of Q is

d Q =
(

∂ Q

∂x

)
y,z,t

dx +
(

∂ Q

∂y

)
x,z,t

dy +
(

∂ Q

∂z

)
x,y,t

dz +
(

∂ Q

∂t

)
x,y,z

dt

(1.25)

where the subscripts refer to the independent variables that are held constant

whilst taking the indicated partial derivatives. Upon dividing both sides of (1.25)

by dt, the total differential of t which represents a time increment, the resulting

expression is

d Q

dt
=

(
∂ Q

∂t

)
dt

dt
+

(
∂ Q

∂x

)
dx

dt
+

(
∂ Q

∂y

)
dy

dt
+

(
∂ Q

∂z

)
dz

dt
(1.26)

where the subscripts on the partial derivatives have been dropped for convenience.

The rates of change of x , y, or z with respect to time are simply the component

velocities in the x , y, or z directions. We will refer to these velocities as u, v , and w and

define them as u = dx/dt, v = dy/dt, and w = dz/dt, respectively. Substituting

these expressions into (1.26) yields

d Q

dt
=

(
∂ Q

∂t

)
+ u

(
∂ Q

∂x

)
+ v

(
∂ Q

∂y

)
+ w

(
∂ Q

∂z

)
(1.27)

which can be rewritten in vector notation as

d Q

dt
=

(
∂ Q

∂t

)
+ �V · ∇ Q (1.28)

where �V = uî + v ĵ + wk̂ is the 3-D vector wind. The three terms in (1.27) involving

the component winds and derivatives of Q physically represent the horizontal and

vertical transport of Q by the flow. Thus, we see that d Q/dt corresponds to the

Lagrangian rate of change noted in (1.24). The Eulerian rate of change is represented

by ∂ Q/∂t. The rate of importation by the flow (recall it was subtracted from the

Eulerian change on the RHS of (1.24)) is represented by − �V · ∇ Q (minus the dot

product of the velocity vector and the gradient of Q). In subsequent discussions in

this book, − �V · ∇ Q will be referred to as advection ofQ. Next we show that the

mathematical expression − �V · ∇ Q actually describes the rate of importation of Q

by the flow.

Consider the isotherms (lines of constant temperature) and wind vector shown

in Figure 1.7. The gradient of temperature (∇T) is a vector that always points from

lowest temperatures to highest temperatures as indicated. The wind vector, clearly

drawn in Figure 1.7 so as to transport warmer air toward point A, is directed opposite

to ∇T . Recall that the dot product is given by �V · ∇T = | �V ||∇T | cos α where α is

the angle between the vectors �V and ∇T . Given that the angle between �V and ∇T

is 180◦ in Figure 1.7, the dot product �V · ∇T returns a negative value. Therefore,

the sign of �V · ∇T does not accurately reflect the reality of the physical situation de-

picted in Figure 1.7 – that is, that importation of warmer air is occurring at point A.
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Figure 1.7 Isotherms (dashed lines) and wind vector �V (filled arrow) surrounding point A. The thin

black arrow is the horizontal temperature gradient vector

Thus, we define temperature advection, a measure of the rate (and sign) of im-

portation of temperature to point A, as − �V · ∇T . The physical situation depicted in

Figure 1.7, therefore, is said to be characterized by positive temperature (or warm air)

advection.

To round out this discussion, we now return to the example that motivated the

mathematical development: measuring the temperature change on my back porch.

Rearranging (1.28) and substituting T (temperature) for Q we get(
∂T

∂t

)
= dT

dt
− �V · ∇T

which shows that the Eulerian (fixed location) change is equal to the sum of the

Lagrangian (parcel following) change and advection. In the prior example we imag-

ined a temperature drop at my back porch. We also surmised that the temperature

of individual air parcels did not undergo any change as the day wore on. Thus, the

advective change at the porch must be negative – there must be negative temperature

advection, or cold air advection (i.e. − �V · ∇T < 0), occurring in Madison on this

day. Clearly, the situation of northwesterly winds importing cold air southward out

of Canada fits the bill.

1.3 Estimating with Scale Analysis

In many fluid dynamical problems, it is convenient and insightful to estimate which

physical terms are likely to contribute most to a particular process under study. For

instance, in assessing the threat to coastal property in Hawaii in the face of a major

tsunami, it is not likely that the ambient wind speed will figure into the problem in

any significant way. In the development of the equations of motion in subsequent

chapters, a variety of physical processes will be confronted, each of which has some

bearing on the behavior of the fluid atmosphere. At many junctures, however, we will

attempt to simplify those equations by estimating the magnitude of the mathematical

terms that comprise them. A formal process known as scale analysis is employed in
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such an exercise. Here we illustrate, with a very simple example, the power of scale

analysis as an analytical tool.

Imagine you are charged with filling an Olympic-sized swimming pool with water.

Your boss wants to know how long it will take to get the job done and asks you for

an estimate of the completion time. In order to make a reasonable approximation,

you need to know a number of physical characteristics of the problem. You certainly

need to know the volume of the pool and the flow rate you can expect from the hose

you will use to fill the pool. You might want to know if there are cracks in the pool

walls through which seepage might occur. Though it is surely physically relevant,

you probably guess that you needn’t concern yourself with the evaporation rate of

water from the surface of the filling pool.

All four of the above-mentioned physical characteristics can be measured with

varying degrees of accuracy. The volume is likely to be a fairly accurate measurement

as is the flow rate from the hose. Seepage rate and evaporation rates, however, are

likely to be quite difficult to measure accurately. Imagine we do, in fact, make some

measurements of each of these characteristics, assigning an estimated (but charac-

teristic) rate to each of the last three. The flow rate is found to be approximately

100 m3 h−1, the evaporation rate 0.001 m3 h−1, the seepage rate 0.000 01 m3 h−1. It is

clear upon comparison of the three that the flow rate is the most important process

(it is five to seven orders of magnitude larger than the others). Therefore, we could

say that, subject to some small amount of error, the time needed to fill the pool is

equal to

tfill ≈ Volume of the Pool

Flow Rate
.

We will achieve a similar simplification of the equations of motion by similarly

estimating the scale of various terms that appear in those equations.

1.4 Basic Kinematics of Fluids

As can be readily discerned from inspection of any satellite animation of clouds or

water vapor, the wind field varies in the x and y directions. Therefore, there are x and

y derivatives of the horizontal wind components, u and v . In fact, there are only four

such derivatives: ∂u/∂x and ∂u/∂y along with ∂v/∂x and ∂v/∂y. Let us consider

all possible sums of these four derivatives with the stipulation that each sum must

include a derivative of u with respect to one direction and a derivative of v with

respect to the other. Under this condition there are only four independent, linear

combinations of x and y derivatives of the horizontal wind, namely ∂u/∂x ± ∂v/∂y

and ∂v/∂x ± ∂u/∂y. We will now consider what these derivative combinations

describe about the fluid flow and we will do it by considering Taylor series expansions

of the functions u(x ,y) and v(x ,y). Since u and v are continuous functions of x and y
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space, the expansion of each about some arbitrary point in space (say (x ,y) = (0, 0))

becomes

u(x, y) = u0 +
(

∂u

∂x

)
0

x +
(

∂u

∂y

)
0

y +
(

∂2u

∂x2

)
0

x2

2

+
(

∂2u

∂y2

)
0

y2

2
+ Higher Order Terms (1.29a)

v(x, y) = v0 +
(

∂v

∂x

)
0

x +
(

∂v

∂y

)
0

y +
(

∂2v

∂x2

)
0

x2

2

+
(

∂2v

∂y2

)
0

y2

2
+ Higher Order Terms. (1.29b)

If we neglect the terms of order 2 and greater (the so-called higher order terms),

which is eminently defensible because they are generally very small, we have

u − u0 =
(

∂u

∂x

)
0

x +
(

∂u

∂y

)
0

y (1.30a)

v − v0 =
(

∂v

∂x

)
0

x +
(

∂v

∂y

)
0

y (1.30b)

where we have written u(x, y) and v(x, y) more conveniently as u and v , respectively.

Returning to our four independent linear combinations of x and y derivatives

of the wind field, we next assign names to each combination. We will let ∂u/∂x +
∂v/∂y = D where D is the divergence. We will let ∂u/∂x − ∂v/∂y = F1 where

F1 is the stretching deformation. We will let ∂v/∂x + ∂u/∂y = F2 where F2 is

the shearing deformation. Finally, we will let ∂v/∂x − ∂u/∂y = ζ where ζ is the

vorticity. Given these definitions, we can rewrite (1.30a) and (1.30b) in terms of

these quantities as

u − u0 = 1

2
(D + F1)x − 1

2
(ζ − F2)y = 1

2
(Dx + F1x − ζ y + F2 y) (1.31a)

v − v0 = 1

2
(ζ + F2)x + 1

2
(D − F1)y = 1

2
(ζ x + F2x + Dy − F1 y). (1.31b)

By assuming that u0 and v0 (the u and v velocities at our arbitrary origin point) are

both zero we can quite readily use the expressions (1.31a) and (1.31b) to investigate

what each of the four derivative fields looks like physically. We will consider each

quantity in isolation even though, in nature, they all can occur simultaneously in a

given observed flow.
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Figure 1.8 A field of pure, positive vorticity (ζ = 1 )

1.4.1 Pure vorticity

In order to examine what a flow with pure positive vorticity looks like, we use (1.31a)

and (1.31b) and set D, F1, and F2 equal to zero while letting ζ = 1. In such a case,

(1.31a) and (1.31b) become u = − 1
2

y and v = 1
2

x . Employing a Cartesian grid we

plot u and v for the case of pure vorticity at a number of points in Figure 1.8. We find

that a field of pure positive vorticity (recall that we set ζ = 1) describes a circular,

counterclockwise flow about the origin.

1.4.2 Pure divergence

An example of pure positive divergence occurs in a flow when ζ , F1, and F2 are all

equal to zero while D = 1. In such a case, (1.31a) and (1.31b) become u = 1
2

x and

v = 1
2

y, respectively. Figure 1.9 illustrates the resulting flow field: a fluid moving in

all directions away from the origin, at speeds proportional to the distance from the

origin. Such a picture is consistent with the colloquial sense of the word ‘divergence’.

Notice that if we had assumed a value of D = −1 instead, we would get fluid moving

toward the origin – consistent with the colloquial sense of the word ‘convergence’. In

fact, we will refer to negative divergence as convergence quite often in our subsequent

studies.

1.4.3 Pure stretching deformation

Pure stretching deformation is obtained by setting D, ζ , and F2 equal to zero while

F1 =1. In this case, (1.31a) and (1.31b) become u = 1
2

x and v = − 1
2

y, respectively.



0470864648c01 JWBK072/Martin February 24, 2006 9:35 Char Count= 0

18 INTRODUCTION AND REVIEW OF MATHEMATICAL TOOLS

Figure 1.9 A field of pure, positive divergence (D = 1)

Figure 1.10 demonstrates that the resulting flow field is stretched along the x-axis

and compressed along the y-axis. In fact, these two axes have special names: the

flow is stretched along the axis of dilatation while it is compressed along the axis of

contraction. It is important to distinguish between deformation and convergence

as they are commonly confused. If we consider the area of a fluid element bounded

by curve C embedded within a field of pure convergence (Figure 1.11a) we see

immediately that the area will become progressively smaller under the influence of

the convergent flow. If the same fluid parcel were placed in a field of pure stretching

deformation, however, the shape of the originally square fluid element would be

Figure 1.10 A field of pure, positive stretching deformation (F 1 = 1). The dark solid lines are stream-

lines of the deformation field. The x -axis serves as the axis of dilatation and the y-axis is the axis

of contraction
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Figure 1.11 (a) A fluid element in a field of pure convergence. The lighter square represents the

initially square element. Note that the area of the fluid element is decreased in a field of convergence.

(b) A fluid element in a field of pure stretching deformation. The original square is deformed into a

rectangle whose area is the same as that of the square

deformed into a rectangle while preserving its area (Figure 1.11b). The proof that the

area is unchanged is left to the reader as an exercise. This essential physical distinction

between convergence and deformation (specifically, confluence) is made manifest to

the driver of an automobile using an entrance ramp to a highway. The flow of traffic is

confluent (i.e. resembles the flow in the vicinity of the x-axis in Figure 1.10) between

the entrance ramp and the highway but it is certainly not convergent. If it were, the

number of accidents would be staggering!

1.4.4 Pure shearing deformation

Pure shearing deformation is obtained by letting F2 = 1 while setting D, ζ , and

F1 equal to zero. By doing so, (1.31a) and (1.31b) become u = 1
2

y and v = 1
2

x .

The resulting flow field (Figure 1.12) looks like the stretching deformation rotated

counterclockwise by 45◦. So, how do we tell the difference between the stretch-

ing and shearing deformations and is the difference even important physically?

It turns out that most often we are concerned with the total deformation with-

out regard to the separate expressions for F1 and F2. The total deformation is

given by

F = (
F 2

1 + F 2
1

)1/2 (1.32)

where F represents the resultant magnitude of what appears to be a deformation

vector with components, F1 and F2. It is clear that with a rotation of 45◦ of the

coordinate axes, we can transform F1 = 1 into F ′
1 = 0 and F2 = 0 into F ′

2 = 1.
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Figure 1.12 A field of pure, positive shearing deformation (F 2 = 1). The dark solid lines are stream-

lines of the deformation field. The axes of dilatation and contraction are indicated by the dashed lines

Thus, deformation is rotationally variant. In fact, if one rotates the coordinate axes

by the angle

θ = 1

2
tan−1

(
F2

F1

)
(1.33)

then the resultant deformation has its axis of dilatation at an angle θ counterclockwise

from the original x-axis. It is clear that any rotation of the x- and y-axes will have no

effect whatever on the vorticity or divergence. As a result, these two properties of the

flow are known as rotationally invariant or Galilean invariant. This characteristic

vests the vorticity and divergence with considerable power in explaining the behavior

of fluids, as we will see.

1.5 Mensuration

Before we embark upon our investigation of the forces that govern the behavior of

the fluid atmosphere, we must explicitly lay out the units with which we will measure

the quantities of interest. Throughout the remainder of the text we will employ the

Système Internationale (SI) units shown in Table 1.1.

Table 1.1 Standard SI units

Property Name Symbol

Length Meter m

Mass Kilogram kg

Time Second s

Temperature Kelvin K
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Table 1.2 Important SI derived units

Property Name Symbol

Frequency Hertz Hz (s−1)

Force Newton N (kg m s−2)

Pressure Pascal Pa (N m−2)

Energy Joule J (N m)

Power Watt W (J s−1)

Additionally, a number of derived quantities will be referenced throughout our

study and they are shown in Table 1.2.

Despite the fact that we will refer to temperature in ◦C (or occasionally in ◦F when

using an older diagram to illustrate a point), it is important to remember to use SI

units in all calculations you may have to make.

Selected References

A complete reference list is provided in the Bibliography at the end of the book.

Spiegel, M. R., Vector Analysis and an Introduction to Tensor Analysis, is an outstanding, concise

text on vector calculus with nearly 500 solved problems.

Thomas and Finney, Calculus and Analytic Geometry, provides additional detail on the Taylor series

and fundamental calculus.

Hess, Introduction to Theoretical Meteorology, discusses the basic kinematics of fluids.

Saucier, Principles of Meteorological Analysis, is another fine reference on kinematics.

Problems

1.1. Let �A = ∇φ = 8xî + 3y2 ĵ . If you know that φ(1, 1) = 8 and φ(0, 1) = 4, derive a

functional expression for φ(x, y).

1.2. Prove the vector identities in (a) – (c) letting �V = uî + v ĵ + wk̂ and ∇ = ∂

∂x
î +

∂

∂y
ĵ + ∂

∂z
k̂:

(a) ∇ · (∇ × �V) = 0

(b) ( �V · ∇) �V = (1/2)∇( �V · �V) − �V × (∇ × �V)

(c) ∇ · ( f �V) = f (∇ · �V) + �V · ∇ f

(d) Prove that k̂ × (k̂ × �A) = − �A where �A = A1 î + A2 ĵ .

(e) Use the ‘right hand rule’ to verify (d) graphically.

1.3. The symbol �A �B stands for the projection of vector �A onto vector �B . In other words,
�A �B represents the component of �A that is parallel to �B . Derive an expression for �A �B in

terms of the vectors �A and �B .

1.4. Show that a field of pure deformation (i.e. the combination of both components, F1

and F2) has no divergence and no vorticity.
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1.5. Consider Figure 1.1A which shows isotherms (dashed lines) in fields of pure vorticity,

pure convergence (negative divergence), and deformation. The vector ∇T has both

magnitude and direction.

(a) (b) (c)

∇θ∇θ ∇θ

Figure 1.1A

(a) Do you think the vorticity can change both the direction and magnitude of ∇T ?

Does the orientation of the isotherms affect the answer to the first question?

Explain.

(b) Do you think the convergence can change both the direction and magnitude of

∇T ? Does the orientation of the isotherms affect the answer to the first question?

Explain.

(c) Do you think the deformation can change both the direction and magnitude of

∇T ? Does the orientation of the isotherms affect the answer to the first question?

Explain.

1.6. Consider a fluid element with area, A = δx δy.

(a) Derive an expression for the time rate of change of this area, d A/dt. (Hint:

d

dt
(δF ) = δ

(
d F

dt

)
where F is any variable.)

(b) What kinematic field is represented by

1

A

d A

dt
?

Defend your choice.

(c) Describe (with a word) the type of flow that will result in a decrease in A. Defend

your choice with a diagram and accompanying explanation.

1.7. Find the angle between the surfaces 2x2 − y2 + z2 = 9 and 3z = x2 − 4y2 + 5 at the

point (2, 1, −2).

1.8. If ∇φ = 2xyz2 î + x2z2 ĵ + 2x2 yzk̂, find φ(x, y, z) if φ(1, −2, 2) = 4.

1.9. Prove that ∇2(αβ) = α∇2β + 2∇α · ∇β + β∇2α where αgnd β are scalar functions.

1.10. An automobile equipped with a thermometer is heading southward at 100 km h−1,

bound for a location 300 km away. During transit, the temperature drops to −5◦C at

the origin. If the temperature at departure was measured to be 0◦C and the tempera-

ture tendency measured along the journey is +5◦C h−1, what temperature should the

travelers expect at their destination?
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1.11. Demonstrate that �A · ( �B × �C) = − �B · ( �A × �C).

1.12. A car is driving straight southward, past a service station, at 100 km h−1. The surface

pressure decreases toward the southeast at 1 Pa km−1. What is the pressure tendency

at the service station if the pressure measured by the car is decreasing at a rate of

50 Pa/3 h?

1.13. Imagine a stably stratified, steady-state flow in which temperature (T) is conserved.

What must be the relationship between horizontal advection of T and vertical motion?

Give a physical explanation of this relationship.

Solutions

1.1. φ(x, y) = 4x2 + y3 + 3

1.7. α = 46.06◦

1.8. φ(x, y, z) = x2 yz2 + 12

1.10. The temperature at the destination will be 15◦C.

1.12. The pressure falls at a rate of 87.38 Pa h−1.

1.13. w = − �V ·∇T
(∂T/∂z)
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2
Fundamental and Apparent Forces

Objectives

The fluid atmosphere is a physical object and its motion is therefore governed by

the laws of physics. From among these laws, Newton’s second law states that the rate

of change of momentum of an object (i.e. its acceleration) equals the sum of all the

forces acting on that object:

d(Momentum)

dt
=

∑
Forces Acting on the Object.

This powerful statement is valid only for motions measured in a non-accelerating

coordinate system – one that is fixed in space. Such a coordinate system is known as

an inertial frame of reference. The most convenient x , y, and z coordinates by which

we measure motions on Earth refer to a grid based upon latitude and longitude (for

the x and y coordinate directions) and elevation above sea level (for the z coordinate

direction). Since the Earth rotates on its axis and revolves around the Sun, this

Earth-based x , y, and z coordinate system undergoes constant acceleration. This fact

is easily proven using a globe. After finding your location on the globe, consider the

fact that what you view at that location as the immutable direction east is, in fact,

constantly changing direction (to an observer fixed in space) as the Earth rotates on

its axis. Thus our Earth-based coordinates are non-inertial (i.e. accelerating). This

being the case, Newton’s second law can only be applied to the motion of objects on

Earth if we correct for the acceleration of our coordinate system.

The collection of forces required to adequately represent Newton’s second law on

the rotating Earth can therefore be split into two broad categories. The first of these

includes forces that would affect objects even in the absence of rotation, the so-called

fundamental forces. The most important of these fundamental forces are (1) the

pressure gradient force, (2) the gravitational force, and (3) the frictional force, all

of which we will investigate in this chapter. The other group of forces that we must

Mid-Latitude Atmospheric Dynamics Jonathan E. Martin
C© 2006 John Wiley & Sons, Ltd.
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consider in a full treatment of Newton’s second law arises from the need to correct

for the acceleration of our terrestrial coordinate system. We will refer to such forces

as apparent forces. Two important apparent forces to be investigated in this chapter

are (1) the centrifugal force and (2) the Coriolis force. We begin this examination by

considering the fundamental forces.

2.1 The Fundamental Forces

Understanding the fundamental forces is essential to gaining insight into the behavior

of the fluid atmosphere. Most people have a solid intuitive feel for the gravitational

and friction forces since both are so widely recognized as manifest in our daily

experience. As it turns out, the effects of the often less familiar pressure gradient

force are equally ubiquitous and readily detectable. We begin our examination of the

fundamental forces by considering the nature of this pressure gradient force.

2.1.1 The pressure gradient force

In order to examine the pressure gradient force (PGF) we will consider the pres-

sure exerted by the atmosphere on sides A and B of the infinitesimal fluid element

illustrated in Figure 2.1. The pressure exerted on sides A and B arises from the fact

Figure 2.1 The pressure forces acting on the sides of an infinitesimal fluid element. The sides A and

B are referenced in the text and the forces acting on those sides are indicated by the black arrows. The

forces on other sides are indicated by the gray arrows
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that random molecular motions compel molecules to strike the sides. Each time a

molecule strikes the side of the fluid element, a certain amount of momentum is

transferred to that side. The total momentum transfer is the sum of all the individ-

ual momentum transfers. The total momentum transferred each second defines the

force exerted by the atmosphere on the side of the fluid element. Dividing this total

force by the area of the side of the fluid element defines the pressure that is exerted

on that side. The volume of the fluid element is given by V = δx δy δz and its mass is

given byM = ρδx δy δz where ρ is the density of the fluid. Let us define the pressure

at the center of the fluid element to be p(x0, y0, z0) = p0. Assuming the pressure

is continuous, we can use a Taylor series expansion to determine the pressure on

sides A and B:

pA = p0 + ∂p

∂x

(
δx

2

)
+ Higher Order Terms (2.1a)

pB = p0 − ∂p

∂x

(
δx

2

)
+ Higher Order Terms. (2.1b)

Now, the x-direction pressure force acting on side A has magnitude pA ×
(Area of A) and is directed toward the center of the infinitesimal fluid element.

Thus, this force can be expressed as

F Ax
= −

(
p0 + ∂p

∂x

δx

2

)
δy δz. (2.2a)

By similar reasoning, the x-direction pressure force acting on side B is given by

FBx
=

(
p0 − ∂p

∂x

δx

2

)
δy δz (2.2b)

so that the net x-direction pressure force acting on the fluid element is

Fx = F Ax
+ FBx

= −∂p

∂x
δx δy δz. (2.3)

Thus, the net force per unit mass acting in the x direction on the fluid element is

Fx

M
= − 1

ρ

∂p

∂x
. (2.4)

Similar expressions can be derived in exactly the same way for the y- and z-direction

components of the pressure gradient force per unit mass. Therefore, the total pressure

gradient force per unit mass can be expressed as

�F
M

= − 1

ρ
∇ p. (2.5)

2.1.2 The gravitational force

Newton’s law of universal gravitation says that any two elements of mass in the

universe attract each other with a force proportional to their masses and inversely
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Figure 2.2 Two masses, M and m, used to illustrate Newton’s law of universal gravitation. The vector

�r is the position vector directed from the center of mass of M to the center of mass of m

proportional to the distance between their centers of mass. This is represented sym-

bolically, with the aid of the illustration in Figure 2.2, as

�F g = −G Mm

r 2

(�r
r

)
(2.6)

where G = 6.673 × 10−11 N m2 kg −2 is the universal gravitational constant, and M

pulls m toward its center. For a fluid parcel of the atmosphere, M is the mass of the

Earth and m is the mass of the fluid parcel. Thus, we can express the gravitational

force per unit mass as

�F g

m
= −G M

r 2

(�r
r

)
. (2.7)

Many applications in atmospheric dynamics use height above sea level (Z ) as the

vertical coordinate. This suggests that a parcel of air at a high elevation in the atmo-

sphere might experience a smaller gravitational force than one located at sea level

(i.e. nearer the center of gravity of the Earth). Though this conjecture is strictly true,

the difference is very small from the surface to any level in the troposphere (lowest

10–12 km of the atmosphere) and we use a constant value of the gravitational force,

g ∗
0 , where

g ∗
0 = −G M

a2

(�r
r

)
(2.8)

with a being the radius of the Earth, as a consequence. It is left to the reader to

demonstrate that this is an entirely reasonable simplification.

2.1.3 The frictional force

Most of us have some conceptual understanding of friction and its effect on the

behavior of solids. A textbook, for instance, that is pushed across a table feels the effect

of the friction between itself and the tabletop and begins to decelerate immediately.

In fact, the only reason the textbook does not continue to slide along the table for
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ever is that a force, the friction force, is applied opposite to its motion. The frictional

force in this simple example is quantified in terms of a coefficient of friction which

is a measure of the resistance to motion that results from pushing the book over

the table. This simplistic view of friction has to be modified when one considers the

frictional force acting on a fluid parcel. Fluids, being collections of discrete atoms

or molecules, are subject to internal friction among these particles which cause the

fluid to resist the tendency to flow. We will try to gain some insight into the nature

of this resistance and how to express the physics in mathematical terms.

Another analogy here may help set the stage for our more formal exploration of

friction in fluids. Nearly all of us have, at one time or another, experienced traffic on

a multi-lane highway. Generally cars in such traffic may pass other cars in a passing

lane (on the left in North America) while passing on the right (in the cruising lanes)

is discouraged. Occasionally, a driver who has just used the passing lane will decide

to move to the adjacent cruising lane, in which the average speed is lower. When

this happens, the passer’s car imports high momentum into the cruising lane, often

upsetting the smooth flow of traffic. A similar disruption occurs when a driver enters

the passing lane at an insufficient speed. In the worst case (i.e. when a number of

passers decide to change lanes simultaneously), the rapid flux of momentum from

the passing lane to the cruising lane can cause a slowdown of the entire flow of

traffic. If one considers the individual cars in this example as molecules in a fluid

flow, one can see that momentum transfer between layers of a fluid (accomplished by

molecules or clumps of molecules) may lie at the conceptual heart of fluid friction.

Consider, for instance, the situation depicted in Figure 2.3 in which a plate, moving

at speed u0, is placed atop a column of fluid with depth, l . The top layer of fluid moves

at the velocity of the plate while the fluid at the bottom of the column has zero motion.

Thus, a shearing stress exists in the fluid and a force must be exerted on the plate

in order that it be kept moving at speed u0 along the top surface of the fluid. The

requisite force is proportional to u0 since a greater force will be required for a greater

speed. Additionally, since molecules of fluid that reside at the bottom of the column

Figure 2.3 Flow beneath a moving plate illustrating 1-D, steady-state, viscous shear flow. The top

plate, at height z = l , is moving across the top of the fluid with speed u0 while the bottom plate is fixed.

The vertical shear of the flow speed is indicated with arrows between the plates
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can influence the movement of the plate through momentum transport in the fluid

column, the requisite force is also inversely proportional to the depth of the fluid. The

force is also proportional to the area of the plate since a larger plate makes contact

with more fluid than a smaller one. The actual force required to keep the plate moving

can therefore be written as F = μAu0/ l , where μ is the dynamic viscosity coefficient

measured empirically and expressed in kg m−1 s−1. If we represent the vertical shear

within the fluid as δu/δz = u0/ l , then the force can be expressed as

F = μA
δu

δz
. (2.9a)

Here F represents the x-direction force required to overcome the viscous effect of the

vertical shear of the x-direction velocity component. Hence, as δz → 0, the shearing

stress, or viscous force per unit area, is given by

τzx = μ
∂u

∂z
, (2.9b)

where the subscript ‘zx’ indicates that this is the component of the shearing stress (in

the x direction) that arises from the vertical shear (z) of the x-direction (x) velocity

component. From the molecular viewpoint, a molecule moving to smaller z (i.e.

toward the bottom of the fluid column) transports high momentum that it acquired

from the motion of the plate to the surrounding fluid. Thus, there is a net downward

transport of x-direction momentum and this momentum transport per unit time

per unit area is the shearing stress, τzx .

The prior example considered the steady movement of a plate across the top

of a fluid column. In nature, viscous forces result from non-steady shear flows. In

recognition of this fact, let us consider the volume element depicted in Figure 2.4

which represents the case of non-steady, 2-D shear flow in a fluid of constant den-

sity. Analogous to our treatment of the pressure gradient force, we expand the

Figure 2.4 Illustration of the x component of the vertical shearing stress on a fluid element
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shearing stress in a Taylor series in order to determine its value at the top and bottom

(z-direction) facing sides of the volume element. The stress acting across the upper

boundary on the fluid below it can be approximated as

τzx + ∂τzx

∂z

δz

2
(2.10a)

while the stress acting across the bottom boundary on the fluid below it can be

approximated as

τzx − ∂τzx

∂z

δz

2
. (2.10b)

According to Newton’s third law, this stress must be equal and opposite to the stress

acting across the bottom boundary on the fluid above it. Since we are interested in

the net stress acting on the volume element in Figure 2.4, we want to sum the forces

that act on fluid within the volume element. Thus, we find that the net viscous force

on the volume element acting in the x direction is given by(
τzx + ∂τzx

∂z

δz

2

)
δxδy −

(
τzx − ∂τzx

∂z

δz

2

)
δxδy = ∂τzx

∂z
δxδyδz. (2.11a)

Dividing this expression by the mass of volume element, ρδxδyδz, we have the

viscous force per unit mass arising from the vertical shear of the x-direction motion:

1

ρ

∂τzx

∂z
= 1

ρ

∂

∂z

(
μ

∂u

∂z

)
. (2.11b)

If μ is constant, (2.11b) can be simplified to

1

ρ

∂

∂z

(
μ

∂u

∂z

)
= υ

∂2u

∂z2
(2.12)

where υ = μ/ρ is known as the kinematic viscosity coefficient and has an empiri-

cally determined value of 1.46 × 10−5 m2 s−1.

Analogous derivations can be performed to determine the viscous stresses acting

in the other directions. The resulting frictional force components per unit mass in

the x , y, and z directions are

Fr x = υ

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
Fr y = υ

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)
(2.13)

Fr z = υ

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)
.

For the lowest 100 km of the atmosphere, υ is so small that molecular viscosity

is entirely negligible except within a few millimeter of the Earth’s surface where the

vertical shear is very large (on the order of 103 s−1!). Above about 10 mm we need
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an entirely separate treatment of fluid friction in which it is useful to conceptualize

eddies as discrete ‘blobs’ of fluid which move around like molecules and transfer

momentum toward or away from the surface of the Earth in a manner analogous

to molecules in molecular viscosity. A mixing length, defined as the average length

through which an eddy can travel before mixing out its momentum, can be defined

by analogy to the mean free path for molecular diffusion. With this adjustment, the

dissipative effects of small-scale turbulence can be represented by defining an eddy

viscosity coefficient so that

1

ρ

∂τzx

∂z
≈ K

∂2u

∂z2
(2.14)

where K is the eddy viscosity coefficient.

2.2 Apparent Forces

In expressing his first law, Sir Isaac Newton states: ‘Every body persists in its state

of rest or of uniform motion in a straight line unless it is compelled to change that

state by forces impressed on it.’ In other words, a mass in uniform motion relative

to a coordinate system fixed in space will remain in uniform motion in the absence

of any forces. Any motion relative to a coordinate system fixed in space is known as

inertial motion and the reference frame in which that motion is measured is known

as an inertial reference frame. Most of us live at a single location long enough to

become accustomed to thinking of north, south, east, and west as fixed directions. In

reality, however, the direction I call ‘north’ at Madison, Wisconsin is not the same, as

viewed from the perspective of a space traveler orbiting Earth, as the ‘north’ known

to a resident of Jakarta, Indonesia. If one considers the intersection of latitude and

longitude lines on a globe as the intersections of a Cartesian x and y grid describing

the Earth, then it is clear that since the Earth rotates, this coordinate system is

accelerating and thus provides us Earthlings with a non-inertial reference frame. It

might appear that given our non-inertial reference frame we are not able to apply

Newton’s laws of motion to motion relative to the Earth. Of course, this is not true,

but we do have to make some correction for the non-inertial nature of the reference

frame by which we measure all such motion. We will make the necessary corrections

by introducing the centrifugal and Coriolis forces, the so-called ‘apparent forces’.

But first, it is instructive to consider physically why the coordinate system matters

at all. We can do this by considering application of Newton’s laws to experiments

conducted inside a closed elevator car.

In the first case, let us imagine that the car is stationary or moving with a constant

velocity, �V . Under such conditions imagine that a weight is dropped within the mov-

ing car. Upon making the appropriate measurements and calculations, you would

determine that the weight had fallen toward the floor of the car with a measurable,

constant acceleration of 9.81 m s−2. This acceleration would be observed relative to
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the walls and floor of the elevator car in a Cartesian coordinate system defined by the

dimensions of the elevator car. In such a case, an observer in the elevator car would

note complete agreement between the results of the experiment and Newton’s laws

of motion since the constant velocity elevator car provides an inertial reference frame

for this experiment.

In the second case, we remotely observe the elevator car falling freely through

the elevator shaft. If a similar weight is dropped within the car the weight appears

to remain suspended in mid-air, at a constant elevation above the floor of the car.

Measured relative to the coordinate frame of the car, the weight has zero accel-

eration even though to us remote observers it is clearly accelerating toward the

ground at a rate of 9.81 m s−2. Viewed from inside the car, Newton’s laws seem to fail

here, but this is because the coordinate system itself is accelerating and is therefore

non-inertial.

The latitude/longitude coordinate system on a rotating Earth is also accelerating

and so we have to take that acceleration into account in order to apply Newton’s laws

accurately to objects moving relative to that Earth-based coordinate system.

2.2.1 The centrifugal force

Each of us is located a certain distance from the axis of rotation of the Earth. De-

pending upon the exact distance, we are rotating around that axis at a very high,

but constant speed (at Madison, Wisconsin that speed is 330 m s−1!). Each of us

is, therefore, not unlike the ball on the end of the string depicted in Figure 2.5. The

speed of the ball is constant, equal to the rotation rate, ω, times the radius of rotation,

r (r = |�r |). The direction of the ball changes continuously, however, and so, as viewed

from the perspective of the ball, there is a uniform acceleration directed toward the

axis of rotation equal to

d �V
dt

= −ω2�r . (2.15)

This acceleration is called the centripetal acceleration and is caused by the force of

the string pulling on the ball. Suppose you are on the ball and rotating with it. From

Figure 2.5 The rotating ball on a string experiences an inward-directed centripetal acceleration,

indicated by the dark arrow. To the observer on the ball, a compensating centrifugal force, indicated by

the gray arrow, must be included to describe accurately motions on the ball itself
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Figure 2.6 Relationship between the centrifugal force, gravitation (g*), and effective gravity (g). The

effect of the centrifugal force is to deform the Earth’s shape into an oblate spheroid on which the local

vertical direction is perpendicular to effective gravity as shown

your perspective the ball is stationary but, in reality, a centripetal acceleration is still

being exerted upon it. In order for a person on the ball to apply Newton’s laws under

this condition, an apparent force that exactly balances the true centripetal force must

be included in the physics; this apparent force is known as the centrifugal force.

In order to balance the centripetal acceleration, the centrifugal acceleration is

directed outward along the radius of rotation and is given by

CEN = ω2�r . (2.16)

As depicted in Figure 2.6, on a rotating Earth, the centrifugal force affects the vertical

force balance. When the centrifugal force and gravitational forces (g ∗) are added, the

result is called effective gravity (g ) and is given by

g = g ∗ + �2 �R (2.17)

where � is the rotation rate of the Earth and �R is the position vector from the

axis of rotation to the object in question. Note that effective gravity, thus defined, is

directed perpendicular to the local tangent of the surface of the Earth – not necessarily

toward the center of the Earth. In fact, since �2 �R is directed away from the axis of

rotation, g is not directed toward the center of the Earth except at the poles and the

equator! Were the Earth a perfect sphere, this fact would result in the existence of

a horizontal, equatorward-directed component of gravity. The relatively malleable

crust of the Earth has long since responded to this circumstance and adopted its

oblate spheroidal shape with an equatorial radius some 21 km larger that its polar
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radius. Given such a slightly distorted shape, the local vertical direction everywhere

on Earth is defined parallel to g . The centrifugal force component of effective gravity

is an example of the effect of rotation on objects at rest with respect to the Earth-based

rotating frame of reference. In order to apply Newton’s laws accurately to the motion

of objects relative to that rotating frame an additional apparent force, the Coriolis

force, must be considered.

2.2.2 The Coriolis force

Consider a dynamics field experiment in which one student takes a position on

a merry-go-round and another student takes a position some distance above the

ground in an adjacent tree. The merry-go-round is set spinning and a ball is pushed

from the center of the merry-go-round toward the spinning student. From the van-

tage point of the tree, the motion of the ball appears as a straight line, as it should

since a uniform force was administered to it. But from the perspective of the rotating

frame, the ball appears to accelerate in a curved path, away from the observer in a

direction opposite to the direction of rotation. Upon consulting each other’s notes,

the students conclude that an apparent force, arising from the rotation of the merry-

go-round, deflects the ball from its path. This apparent force is the Coriolis force.

How can the Coriolis force be quantified on the rotating Earth?

Suppose a hockey puck is given an impulse in the eastward direction on a frozen,

frictionless Earth. Under these circumstances, the puck is rotating faster than the

solid Earth beneath it so that, for its latitude, the centrifugal force acting on the puck

will be increased to

CEN =
(
� + u

R

)2 ⇀

R = �2 �R + 2�u
�R
R

+ u2 �R
R2

(2.18)

where u/R represents the incremental change in rotation rate resulting from the

eastward impulse. The first term on the RHS of (2.18) is the already familiar cen-

trifugal force, included in effective gravity. The second and third terms, however, are

deflecting forces acting outward along �R (perpendicular to the axis of rotation). For

normal synoptic-scale motions on Earth, u � �R (remember, �R = 330 m s−1 at

Madison), allowing neglect of the third term to hardly compromise the result. The

remaining term, 2�u �R/R (the excess centrifugal force), represents the Coriolis force

resulting from relative motion parallel to a latitude circle. This Coriolis force has two

components as suggested by Figure 2.7. The vertical and horizontal components are

given by

dw

dt
= 2�u cos φ and

dv

dt
= −2�u sin φ, (2.19)

respectively, where φ is the latitude. Using a shorthand in which f , the so-called

Coriolis parameter, is given by f = 2� sin φ, we can rewrite the horizontal compo-

nent of the Coriolis force resulting from relative zonal motion as dv/dt = −fu . We see
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Figure 2.7 For east to west relative motions on Earth, the Coriolis force arises as excess centrifugal

force

that given an eastward (westward) directed impulse, the Coriolis force will deflect

the object to the south (north), or to the right of its original path, in the northern

hemisphere (where φ is positive by convention).

What happens if we consider the hockey puck moving equatorward relative to

the Earth? In the absence of applied forces, it must conserve angular momentum

(� �R2). Upon being pushed equatorward in the northern hemisphere, the radius

of rotation of the puck begins to increase. Consequently, an anti-rotational relative

motion develops in order to conserve angular momentum. We can quantify this

simple physics by considering a balance between the initial angular momentum of

the puck and its angular momentum after displacement equatorward toward larger �R.

(Note that displacement toward larger �R also occurs if the puck is compelled to move

in the relative vertical direction.) If we let δu signify the induced westward motion

at the new radius of rotation, �R + δR, then conservation of angular momentum is

given by

� �R2 =
(

� + δu

R + δR

)
( �R + δR)2. (2.20a)

Expansion of (2.20a) yields

� �R2 =
(

� + δu

R + δR

)
( �R2 + 2 �RδR + δR2). (2.20b)



JWBK072/Martin-c02 JWBK072/Martin February 23, 2006 23:58 Char Count= 0

2.2 APPARENT FORCES 37

Since δR (and δu) are so small, we will neglect the products of such differential terms

so that (2.20b) becomes

� �R2 =
(

� + δu

R + δR

)
( �R2 + 2 �R δR) (2.20c)

or

� �R2 = � �R2 + 2� �R δR +
�R2δu

R + δR
(2.20d)

which reduces to

2� �RδR = −
�R2δu

R + δR
or 2� �R δR = − �Rδu. (2.20e)

In the end, we find that

δu = −2� δR. (2.21)

The incremental zonal velocity δu can be induced by both meridional (i.e. north/

south) motion or by vertical motion as illustrated in Figure 2.8. The incremental

radius of rotation, δR, has components in the vertical and meridional directions. By

the similar triangles in Figure 2.8, we see that sin φ = δR/−δy and cos φ = δR/δz.

Thus, for meridional motions,

δu = −2�(−δy sin φ) = 2� sin φ(δy). (2.22a)

Figure 2.8 Illustration of the effect of vertical and meridional motions on the radius of rotation, �R .

Upward and equatorward displacements produce an incremental increase in �R , indicated by δ �R
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As can be seen in Figure 2.8, however, δy = aδφ, so (2.22a) can be rewritten as

δu = 2� sin φaδφ. (2.22b)

If we divide both sides of (2.22b) by the incremental δt and take the limit as δt → 0,

we get

du

dt
= 2� sin φ

(
a

dφ

dt

)
. (2.23a)

Since adφ/dt = v and f = 2� sin φ, (2.23a) can be rewritten as

du

dt
= f v . (2.23b)

It is clear from (2.23b) that equatorward motion in the northern hemisphere (v < 0)

will induce a westward-directed zonal motion in accord with our physical intuition

in the face of angular momentum conservation. Such a circumstance implies that the

Coriolis force, in this instance, again compels an object to the right of its intended

path.

Considering Figure 2.8, and (2.21), we see that for vertical motions

δu = −2� cos φδz. (2.24a)

Once again, dividing both sides by δt and taking the limit as δt → 0 results in

du

dt
= −2� cos φ

(
dz

dt

)
or

du

dt
= −2� cos φw . (2.24b)

Thus, the full expression for the Coriolis force arising from meridional motions is

given by

du

dt
= f v − 2� cos φw (2.25)

while the full 3-D Coriolis force is given by

du

dt
= f v − 2� cos φw

dv

dt
= − f u (2.26)

dw

dt
= 2� cos φu.

The Coriolis parameter, f = 2� sin φ, is worth some special consideration before

we leave this subject. The Coriolis parameter’s dependence on latitude squares with

our intuitive sense that the effect of rotation does indeed vary with latitude. We notice

that the Coriolis parameter is identically zero at the equator and is a maximum at

the poles. Since the Coriolis force is an apparent force arising from the acceleration

of our Earth-based coordinate system, assigning a value for �, the rotation rate, is

rather more involved than you might think.
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Figure 2.9 Illustration of the rotation of Earth on its axis with respect to its revolution around the

Sun. The thick black line represents the Earth’s revolution while the curved thin arrow represents the

rotation. Gray shading is the plane of the ecliptic

The solar day represents the amount of time between successive local noontimes

(i.e. moments at which the Sun in highest in the sky at a given location) and is 24 h

long. As shown in Figure 2.9, the Earth revolves around the Sun in a counterclockwise

fashion as viewed from above the plane of the ecliptic. Even if the Earth were not

rotating on its axis, the revolution would provide one rotation each year – from east

to west! In addition, during the year the Earth rotates (from west to east) through

365.25 solar days. Thus, as viewed from the perspective of the distant, fixed stars, the

Earth must actually rotate 366.25 times (from west to east) on its axis in one year’s

time. Each rotation with respect to the fixed stars is therefore completed in

(365.25 solar days) × (24 · 3600 s solar day−1)

366.25 rotations
= 86 156.09 s rotation−1,

the length of the sidereal day. In order to apply Newton’s laws accurately, we have to

correct for the acceleration of our Earth-based coordinate system as viewed from the

perspective of the fixed stars. Thus, � is determined using the length of the sidereal

day as

� = 2π

86 156.09 s
= 7.292 × 10−5 s −1.

Finally, it is important to note that since the Coriolis force always acts perpen-

dicular to the motion vector, it can do no work on the moving particle since work

is the scalar product of a force and a vector distance. Thus, the Coriolis force can

only change the direction of motion but cannot initiate motion in an object at rest.

We have now considered all the forces necessary to formulate the equations of mo-

tion on the rotating Earth from which we will investigate the fluid dynamics of the
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mid-latitude atmosphere. We will see in the next chapter that these equations are

simply an expression of the conservation of momentum in the fluid atmosphere.

Selected References

Holton, An Introduction to Dynamic Meteorology, provides a thorough discussion and derivation

of the fundamental and apparent forces.

Hess, Introduction to Theoretical Meteorology, offers similar material conveyed lucidly.

Problems

2.1. So long as it is shallow, water is a fluid with constant density. Use this fact to help solve

the following problem.

(a) Develop a relationship for the horizontal pressure gradient force in terms of

depth (h) of water in a shallow container.

A cylindrical tank of water is set on a turntable. The radius of the tank is r0 and

the depth of the water is z0.

(b) The turntable is turned on (with rotation rate ω) and the system is allowed to

equilibrate. Derive an expression for the height of the water surface, h, as a function

of radius.

(c) Express h(r ) in terms of z0 (Hint: consider the volume of fluid in the container.)

(d) If r0 = 1 m, what rotation rate is required to raise the water level on the outer edge

of the tank to h = 2z0?

2.2. A baseball player at 30◦N latitude throws a ball northward a horizontal distance of 75 m

in 2 s. In what direction, and by how much, is the ball deflected laterally as a result of

the rotation of the Earth?

2.3. Given the picture in Figure 2.1A, prove that α = β.

α
a cosφ

β

i

i + δi
i

Figure 2.1A

2.4. While taking an eastbound train to work, a passenger of fixed mass finds that she weighs

542 N. On the way home she weighs herself again while the train is at full speed and

finds she weighs 543 N. If she works 50 km from home, how long is her commute if she

lives at 40◦S? (You may assume that the average speed of the train is its full speed.)
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2.5. On a typical day in the middle latitudes, the density of the air at sea level is approximately

1.25 kg m−3. What would the sea-level pressure difference over a distance of 100 km have

to be in order that the horizontal pressure gradient force be equal to the vertical pressure

gradient force? Is this possible on Earth?

2.6. A projectile is fired vertically upward with a velocity w0 from a point on Earth. Express

the westward displacement experienced by the projectile in terms of latitude, w0, and

the rotation rate of the Earth.

2.7. What is the radius of the orbit of an equatorial, geosynchronous Earth satellite (i.e. one

that remains above the same spot on Earth)?

2.8. An object at rest on the equator experiences three accelerations: one toward the center

of the Earth because the Earth rotates, one toward the Sun because the Earth revolves

around the Sun in a nearly circular orbit, and one toward the center of our galaxy. If the

distance from the Earth to the Sun is 150 × 106 km and the period of the Sun’s rotation

about the galactic center is 2.5 × 108 year at a distance of 2.4 × 1017 km, compare the

magnitudes of these three accelerations. Does this comparison justify assigning the

value � = 7.292 × 10−5 s−1 for the Earth’s rotation rate?

2.9. Imagine that a geosynchronous meteorological satellite at 90◦W must be moved to

105◦W in an emergency deployment. (a) Does the satellite’s orbital radius need to be

increased or decreased to accomplish this task? Explain. (b) If the deployment must

be completed in 3 h, calculate the exact change required to the satellite’s orbital radius

during deployment.

2.10. At a certain station the surface wind has a speed of 15 m s−1 and is directed across the

isobars from high to low pressure at an angle α = 25◦. Assuming the flow is balanced,

calculate the magnitude of the horizontal pressure gradient and the frictional forces per

unit mass. Assume the station is located at 40◦N.

2.11. Is there any place on Earth at which the atmospheric flow can be the result of a balance

between friction and the pressure gradient force? Justify your answer.

2.12. Assume Jupiter is a sphere with a radius of 71 500 km. Calculate the angle between

the gravitational force (�g ∗) and the gravity force (�g ) vectors near the top of the Jovian

atmosphere as a function of latitude. Jupiter makes one rotation every 9 h 48 min 36 s.

Solutions

2.1. (a) PGF x = −g ∂h
∂x

(b) h = h0 + ω2r 2

2g
(c) h(r ) = z0 + ω2

2g

(
r 2 − r 2

0

2

)
(d) ω = 2

√
g z0

2.2. x = 0.547 cm

2.4. 10 minutes, 18 seconds
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2.5. ∂p = 12 262.5 hPa, physically impossible on Earth.

2.6. x = 4�w 3
0

3g 2 cos φ

2.7. z = 35 804 km

2.8. 3.369 × 10−2 m s−2, 5.946 × 10−3 m s−2, 1.522 × 10−8 m s−2

2.9. (a) Increase in orbital radius (b) �z = 1058.78 km

2.10. F = 6.557 × 10−4 m s−2 and PGF = 1.551 × 10−3 m s−2

2.11. At the equator.

2.12. α ≈ (1.1316) sin 2φ

g
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3
Mass, Momentum, and Energy:
The Fundamental Quantities
of the Physical World

Objectives

Study of the physical world tends to be focused on the quantities known as mass, mo-

mentum, and energy. The behavior of the atmosphere is no exception to this rule. In

this chapter we will investigate the manner in which these quantities and their various

interactions serve to describe the building blocks of a dynamical understanding of

the atmosphere at middle latitudes. We must first consider the distribution of mass

in the atmosphere and the force balance that underlies this distribution. A number

of insights concerning the vertical structure of the atmosphere proceed directly from

this understanding.

Beginning with Newton’s second law, we will construct expressions for the con-

servation of momentum in the three Cartesian directions. These expressions are

commonly known as the equations of motion and will serve as the fundamental set

of physical relationships for all subsequent inquiry in this book. Scale analysis of

the horizontal equations of motion will reveal that a simple diagnostic relationship

between the mass and momentum fields, geostrophy, characterizes the mid-latitude

atmosphere on Earth. Finally, employing these equations of motion we will develop

expressions for the conservation of mass and the conservation of energy. We begin

by considering the distribution of mass in the atmosphere.

3.1 Mass in the Atmosphere

For our purposes, we shall define mass as the measure of the substance of an object

and make that measurement in kilograms (kg). Though it was not clear to ancient

Mid-Latitude Atmospheric Dynamics Jonathan E. Martin
C© 2006 John Wiley & Sons, Ltd.
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thinkers like Aristotle,1 the atmosphere has mass. In fact the Earth’s atmosphere has a

mass of 5.265 × 1018 kg! The pressure exerted by this object decreases with increasing

distance away from the surface as the depth of the fluid decreases. As a consequence,

there is a vertical pressure gradient force given by

PGFvertical = − 1

ρ

∂p

∂z
k̂ (3.1)

which compels atmospheric fluid from higher pressure (near the surface) to lower

pressure (above the surface) and so is directed upward. The fact that the atmosphere

does not race away into space under this forcing is a consequence of the fact that there

is also the force of effective gravity acting on the fluid parcel, pulling it downwards.

This force is given by

Gravity = −g k̂. (3.2)

The sum of the vertical pressure gradient force and gravity is zero for an atmosphere

at rest. In mathematical terms

0 =
(

−g − 1

ρ

∂p

∂z

)
k̂

or, after rearranging the terms and dropping the k̂ designation for notational

simplicity,

∂p

∂z
= −ρg . (3.3)

This expression is known as the hydrostatic equation and represents a fundamental

balance characteristic of the Earth’s atmosphere: namely, that the vertical pressure

gradient force is perfectly balanced by gravity. Though strictly true only for an at-

mosphere at rest (hence the static portion of the name), this hydrostatic balance is

obeyed to great accuracy under nearly all conditions in the Earth’s atmosphere.

In order to construct a vertical equation of motion we must take account of all the

forces with components in the local vertical direction. The vertical pressure gradient

force and gravity (combined in the hydrostatic balance) comprise the largest fraction

of these forces. Surely friction, slight though it may be, will also affect motions in

the vertical direction. Also, we have already shown that there is a vertical Coriolis

acceleration induced by zonal motions. Thus, we can write a first approximation to

the vertical equation of motion as

dw

dt
= − 1

ρ

∂p

∂z
− g + �F z + (2� cos φ)u. (3.4)

1 The theories of the ancient Greek natural philosopher Aristotle (384–322 bc) held sway in many disciplines
for nearly 2000 years! He reputedly conducted an experiment to determine the weight of air. Undoubtedly using
a crude scale, he ‘filled’ a leather bag with air, weighed it, and then compared that measurement to the weight
of an ‘empty’ leather bag. Noting no difference between the two, he concluded that air had no weight.
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Figure 3.1 The amount of mass between any two isobaric surfaces is the same regardless of the

thickness of the layer

3.1.1 The hypsometric equation

Consider the unit area column of atmosphere contained between pressure levels

1000 and 500 hPa shown in Figure 3.1. Since pressure is defined as force per unit

area, we have isolated in that column an atmospheric mass sufficient to exert 500 hPa

of pressure. Such a slab of the atmosphere has a unique mass whether it extends

from 1000 to 500 hPa or from 812 to 312 hPa. In fact, the mass of this column can

be precisely calculated as

Mass = (500 hPa) ×
(

100 N m−2

hPa

)
× (1 m2) ×

(
1

9.81 m s−2

)
= 5102.04 kg .

Though the mass of a 500 hPa, unit area slab of the atmosphere is unique, its depth

might be different from one day to the next. We will refer to this geometric depth as

the thickness between two isobaric surfaces. Clearly, if the thickness varies, then so

does the volume of the unit area slab. The variation of the volume of the slab dictates

that the density of the air contained within the slab varies as well: less (more) dense air

corresponding to a greater (smaller) thickness. By the ideal gas law, less (more) dense

air will correspond to a higher (lower) column average virtual temperature, T v .2

Thus, column average virtual temperature should have a bearing on the thickness

between two isobaric levels.

Combining the hydrostatic equation with the ideal gas law provides convincing

evidence to support this supposition. Recall that the ideal gas law can be written as

p = ρ Rd Tv where p is the pressure, ρ is the density, Rd is the gas constant for dry

2 See Appendix A for a discussion and derivation of virtual temperature, Tv .
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air,3 and Tv is the virtual temperature. Using this expression, the hydrostatic equation

can be rewritten as

∂p

∂z
= − pg

Rd Tv

(3.5a)

which can be rearranged into

− Rd Tv

g
∂ ln p = ∂z. (3.5b)

If we integrate this expression between pressure levels p1 and p2 (p1 >p2) at which

the heights are z1 and z2 (z2 > z1) we get

−
p2∫

p1

Rd Tv

g
∂ ln p =

z2∫
z1

∂z. (3.5c)

Inverting the order of integration on the LHS of (3.5c) yields

p1∫
p2

Rd Tv

g
∂ ln p =

z2∫
z1

∂z

which can be integrated to give

Rd T v

g
ln

(
p1

p2

)
= z2 − z1 = �z (3.6)

where T v is the pressure-weighted, column average virtual temperature, given by

T v =

p1∫
p2

Tv∂ ln p

p1∫
p2

∂ ln p

.

The foregoing expression is known as the hypsometric equation and it quantifies

and verifies our suspicion regarding the influence of column average temperature on

the thickness of an isobaric column.

We can express the hypsometric equation (and, therefore, the hydrostatic equation

also) in terms of a quantity called geopotential, �. The geopotential is defined as the

work required to raise a unit mass a distance dz above sea level. It quantifies the work

(per unit mass) that is done against gravity in doing so. Mathematically, therefore,

geopotential is given as d� = gdz. Employing this expression, we can rewrite the

3 Rd has a value of 287 J kg−1K−1 and is equal to the universal gas constant (R∗ = 8.3143 ×
103 J K−1 kmol−1) divided by the molecular weight of the atmospheric mixture (28.97 kg kmol−1). ‘Dry’ air
refers to the mixture without the variable water vapor included.
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hydrostatic equation as

∂p = −ρ∂� or
∂�

∂p
= −α = − Rd Tv

p
.

Correspondingly, the hypsometric equation can also be written as

Rd T v ln

(
p1

p2

)
= �2 − �1 = ��.

We will often refer to geopotential height (Z) in subsequent discussions. The geopo-

tential height is simply given by

Z = �

g0

(3.7)

where g0 is the global average gravity at sea level (9.81 m s−2). Thus, geometric height

(z) and Z are just about equal in the troposphere.

There are several important applications of the hydrostatic and hypsometric equa-

tions that have a bearing on the analysis and understanding of mid-latitude weather

systems. One of the most common analysis products used to characterize and un-

derstand the weather is a sea level pressure map. This is a map on which isobars

of sea-level pressure are contoured in an attempt to identify and characterize the

major circulation systems in a given location at a given time. In geographical regions

characterized by high terrain, such as the Rocky Mountains of North America or

the high steppe of Mongolia, the elevation is so far above sea level that use of the

station pressure (i.e. the pressure actually measured with a barometer at the station)

does not effectively contribute to this goal. In such regions the hypsometric equation

can be used to calculate a reduced sea-level pressure (i.e. an estimate of what the

sea-level pressure would be were the surface elevation 0 m). Consider the following

example.

The station pressure at St Louis, Missouri (STL), a city close to sea level, on a certain

day is measured to be 995 hPa. Meanwhile, the station pressure at Denver, Colorado

(DEN), whose elevation is 1609 m above sea level, is measured at 825 hPa. There is

not a horizontal pressure difference of 180 hPa between STL and DEN. Most of the

observed pressure difference is a consequence of the vertical variation of pressure. By

reducing the station pressure to sea level at DEN, we attempt to discover how much

of the observed pressure difference actually is a horizontal pressure difference.

We begin with the hypsometric equation,

Rd T v

g
ln

(
p1

p2

)
= z2 − z1 = �z

with z2 = zDEN and z1 = 0 (the geometric height at sea level). Correspondingly,

p2 = pSTA at DEN (observed station pressure) and p1 = pSLP at DEN (the desired value we

will calculate as sea level pressure at DEN). Finally, T v represents the average column

temperature between sea level at DEN and the station elevation. This is clearly a
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fictitious quantity but we can estimate it by assuming the standard atmosphere lapse

rate (6.5 K km−1) throughout the fictitious column. Rearranging the hypsometric

equation using the given definitions we have

g zDEN

Rd T v

= ln

(
pSLP at DEN

pSTA at DEN

)
. (3.8a)

Taking anti-logs of both sides yields(
pSLP at DEN

pSTA at DEN

)
= e

g zDEN

Rd T v

so that

pSLP at DEN = pSTA at DEN e
g zDEN

Rd T v . (3.8b)

The above expression is known as the altimeter equation and is the standard ex-

pression for reducing station pressure to sea level. Supposing that the surface Tv

at Denver is 20◦C, we find that the reduced sea-level pressure at Denver would be

998.6 hPa. This value can be usefully compared to the sea-level pressure at St Louis

on a synoptic weather chart.

The hypsometric equation can also be used to gain insights into the large-scale

structure of mid-latitude weather systems. If, for instance, we consider the thickness

between 1000 and 500 hPa at a given station, then (3.6) becomes

�z = Rd T v

g
ln

(
1000

500

)
= Rd T v

g
ln(2) = 20.3 T v . (3.9)

Thus, a change of 60 m in the 1000–500 hPa thickness corresponds to a 2.96◦C mean

temperature change. This fact implies that pressure drops off more rapidly with

height in a cold column of air than in a warm column. The ramifications of this fact

are illustrated in Figure 3.2. in which a cold core cyclone is depicted in a vertical

cross-section. Since the air column in the middle of the cyclone is colder relative to

its surroundings at all levels, the thickness in that column is smaller than anywhere

else. Consequently, the horizontal pressure gradient force, directed inward toward

the center of the cyclone, increases in magnitude with increasing height. Thus, cold

core cyclones, like those that populate the mid-latitudes on Earth, intensify with

height. This characteristic of mid-latitude cyclones will prove to be a major influence

on the dynamics of the cyclone life cycle.

Now that we have acquired a perspective on the distribution of mass in the at-

mosphere, we turn to an investigation of the basic conservation laws that govern its

behavior. The atmosphere, like all physical systems, obeys the laws of conservation of

energy and mass, as well as the slightly more restrictive conservation of momentum.

We begin by considering the conservation of momentum.
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Figure 3.2 Vertical cross-section through a cold core cyclone. ‘Warm’ and ‘Cold’ refer to the column

average temperatures in the three columns. Solid lines are isobars, thin dashed lines are the 0.5 km and

5 km elevation lines. The thick arrows represent the PGF, which is much larger at the top black dots. ‘L’

is the location of the lowest sea-level pressure

3.2 Conservation of Momentum: The Equations of Motion

Newton’s second law is a statement of the conservation of momentum:

d

dt
(m �V) =

∑
Forces Acting on a Parcel,

but it is strictly true, as we have already considered, only in an inertial frame of

reference. Since we will find it most convenient to use the x , y, and z coordinates

fixed to Earth for our descriptions of motions, and these coordinates are accelerat-

ing, we have to relate the Lagrangian derivative of a vector in an inertial frame to

the corresponding Lagrangian derivative in a rotating frame. Let �A be an arbitrary

vector whose Cartesian components in an inertial frame are

�A = Ax î + Ay ĵ + Azk̂

and whose components in a coordinate frame rotating with an angular velocity ��
are

�A = A′
x î ′ + A′

y ĵ ′ + A′
z k̂′.

Now, let da
�A/dt be the total derivative of �A in the inertial (absolute) frame, ex-

pressed as

da
�A

dt
= d Ax

dt
î + d Ay

dt
ĵ + d Az

dt
k̂.
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Notice that in the inertial frame the coordinate directions î , ĵ , and k̂ are unchanging.

Taking the same derivative in the rotating frame, however, yields

da
�A

dt
= d A′

x

dt
î ′ + d A′

y

dt
ĵ ′ + d A′

z

dt
k̂′ + A′

x

dî ′

dt
+ A′

y

d ĵ ′

dt
+ A′

z

dk̂′

dt

which can be rewritten as

da
�A

dt
= d �A

dt
+ A′

x

dî ′

dt
+ A′

y

d ĵ ′

dt
+ A′

z

dk̂′

dt
(3.10)

given that

d �A
dt

= d A′
x

dt
î ′ + d A′

y

dt
ĵ ′ + d A′

z

dt
k̂′

where d �A/dt represents the rate of change of �A following the relative motion in the

rotating frame.

The derivatives dî ′/dt, dĵ ′/dt, and dk̂′/dt on the RHS of (3.10) represent the rates

of change of the unit vectors î ′, ĵ ′, and k̂′ that arise because the coordinate system is

accelerating. It is important to note that each of these derivative terms describes only

the change in direction of the unit vectors since, by definition, the vector magnitudes

are always equal to one. Thus, full expressions for these derivatives are achieved upon

describing the change in direction experienced by each of the unit vectors as a result

of rotation of the Earth.

Figure 3.3(a) illustrates a view of the change of î ′ as viewed from the North Pole.

The rotation vector, ��, points upward out of the page. By similar triangles, we find

that δî ′ = î ′δθ . Now, upon dividing both sides of this equality by the amount of

time (δt) it takes to rotate through δθ degrees, and taking the limit of the resulting

Figure 3.3 (a) View from the North Pole of the change in the î unit vector (δî ) and (b) cross-sectional

view of the same vector, δî . �Ω is the rotation vector
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Figure 3.4 View from the North Pole of the change in the ĵ unit vector (δ ĵ ). �Ω is the rotation vector

expression as δt → 0, we get

lim
δî ′

δt
δt→0

=
∣∣∣∣dî ′

dt

∣∣∣∣ =
∣∣∣∣î ′ dθ

dt

∣∣∣∣ =
∣∣∣î ′ ��

∣∣∣ (3.11)

so the magnitude of the vector dî ′/dt is equal to | ��|. It is clear from Figure 3.3(b),

however, that the vector dî ′/dt is directed inward toward the axis of rotation. Know-

ing that dî ′/dt is a vector that is both perpendicular to î
′
and has magnitude | ��|, we

find that its full expression is given by

dî ′

dt
= �� × î ′. (3.12)

Similar relationships exist for d ĵ ′/dt and dk̂′/dt as can be seen in Figures 3.4 and

3.5. Consequently, we can rewrite the last three terms on the RHS of (3.10) as

A′
x

dî ′

dt
= A′

x ( �� × î ′) = �� × (A′
x î ′),

A′
y

d ĵ ′

dt
= A′

y( �� × ĵ ′) = �� × (A′
y ĵ ′), and

A′
z

dk̂′

dt
= A′

z( �� × k̂′) = �� × (A′
z k̂′),

so that

A′
x

dî ′

dt
+ A′

y

d ĵ ′

dt
+ A′

z

dk̂′

dt
= �� × (A′

x î ′ + A′
y ĵ ′ + A′

z k̂′) = �� × �A. (3.13)

As a result, (3.10) can be rewritten as

da
�A

dt
= d �A

dt
+ �� × �A (3.14)
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Figure 3.5 View from the North Pole of the change in the k̂ unit vector (δk̂). �Ω is the rotation vector

for any vector �A. This expression describes the relationship between the total deriva-

tive of a vector in inertial coordinates and its associated derivative in a coordinate

system rotating with angular velocity ��.

Employing (3.14), let us now find a relationship between the absolute velocity of

an air parcel ( �U a ) and the velocity of the same air parcel relative to Earth ( �U ). We can

do this by applying (3.14) to the position vector �r (where �r is a vector perpendicular

to the axis of rotation with magnitude equal to the distance from the surface of the

Earth to the axis of rotation), for a parcel of air on Earth:

da�r
dt

= d�r
dt

+ �� × �r . (3.15a)

By definition, da�r/dt = �U a and d�r/dt = �U so the desired relationship is simply

�U a = �U + �� × �r (3.15b)

which states that the absolute velocity of an object on the rotating Earth is equal to

the sum of its velocity relative to the Earth ( �U ) and the velocity of the rotating Earth

itself ( �� × �r ).

Now if we reapply the previous result to the vector �U a we get

da
�U a

dt
= d �U a

dt
+ �� × �U a . (3.16a)

Substituting (3.15b) for �U a above yields

da
�U a

dt
= d

dt
( �U + �� × �r ) + �� × ( �U + �� × �r )

= d �U
dt

+ �� × d�r
dt

+ �� × �U + �� × �� × �r . (3.16b)
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Since d�r/dt = �U and �� × �� × �r = −�2�r , this can be simplified to

da
�U a

dt
= d �U

dt
+ 2 �� × �U − �2�r . (3.17)

Equation (3.17) states that the Lagrangian acceleration in an inertial system is equal to

the sum of (1) the Lagrangian change of relative �U , plus (2) the Coriolis acceleration

from relative motion in the relative frame, plus (3) centripetal acceleration resulting

from the rotation of the coordinates. Recalling Newton’s second law and the fact that

we will consider the pressure gradient force, the frictional force, and gravitational

force as the only real forces acting on the atmospheric fluid, we find that

da
�U a

dt
= d �U

dt
+ 2 �� × �U − �2�r = − 1

ρ
∇ p + �g ∗ + �F

or, upon rearranging terms,

d �U
dt

= −2 �� × �U − 1

ρ
∇ p + �g + �F (3.18)

where the centripetal force has been combined with the gravitational force (�g ∗) in

the gravity term (�g ). This expression states that the acceleration following the relative

motion in a rotating reference frame is equal to the sum of (1) the Coriolis force,

(2) the pressure gradient force, (3) effective gravity, and (4) the friction force. This is a

major result but it remains in vectorial form only – a form not particularly amenable

to analysis. Since the Earth is nearly a sphere, it will turn out to be quite convenient

to recast this vector expression into spherical coordinates.

3.2.1 The equations of motion in spherical coordinates

Spherical coordinates treat the three dimensions in terms of longitude, latitude,

and geometric height above sea level (λ, φ, z) using unit vectors î , ĵ , and k̂ in

the description of motions. The relative velocity vector becomes �V = uî + v ĵ + wk̂

where the components are defined as

u ≡ a cos φ
dλ

dt
, v ≡ a

dφ

dt
, and w ≡ dz

dt

where a is the radius of the Earth.4 Distances in the zonal and meridional directions

are given by dx = a cos φdλ and dy = adφ, respectively. It is important to note

that this coordinate system is not a Cartesian system because the unit vectors are

not constant; they are, in fact, functions of position on Earth. A simple way of

conceptualizing this fact is to consider that all longitude lines converge at the pole.

Therefore, the direction ‘north’ is not pointed in the same absolute direction at every

4 Formally, a should be replaced with (r + a) where r is the distance above sea level and a is the radius of
the Earth. However, for all tropospheric, and nearly all atmospheric, applications, r 
 a so we simply use a .
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longitude on Earth. This position dependence must be taken into account when the

acceleration vector is expanded into its components

d �V
dt

= du

dt
î + dv

dt
ĵ + dw

dt
k̂ + u

dî

dt
+ v

d ĵ

dt
+ w

dk̂

dt
. (3.19)

We now must determine expressions for the last three terms on the RHS of (3.19).

Beginning with dî/dt, we simply expand it like any other total derivative to get

dî

dt
= ∂ î

∂t
+ u

∂ î

∂x
+ v

∂ î

∂y
+ w

∂ î

∂z
. (3.20)

We know that ∂ î/∂t = 0 as there is no local change in the coordinate direction

(i.e. at any given location, east always points in the same direction). The î direction

experiences no change as one moves north or south along a given longitude line,

nor as one moves up or down in elevation so that ∂ î/∂y and ∂ î/∂z are both zero.

However, as we saw already in Figure 3.3(a), the î direction does change as one moves

along a latitude circle so that (3.20) can be simplified to

dî

dt
= u

δî

δx
. (3.21)

The problem becomes one of determining the magnitude and direction of ∂ î/∂x .

We can make this determination by considering a horizontal cross-section viewed

from the North Pole as shown in Figure 3.6. It is evident that δx = a cos φδλ and

that |δî | = |î |δλ = δλ since î has unit magnitude. Therefore,∣∣∣∣ δî

δx

∣∣∣∣ = δλ

a cos φδλ
= 1

a cos φ
(3.22a)

with δî directed toward the axis of rotation. Thus, we must split δî into components

in order to determine the direction (in terms of λ, φ, z) of δî/δx . With the help

Figure 3.6 Illustration of the derivative δî
δx



JWBK072-c03 JWBK072/Martin March 7, 2006 21:3 Char Count= 0

3.2 CONSERVATION OF MOMENTUM 55

Figure 3.7 The northward and vertical components of δî

of Figure 3.7, we see that δî has components in the ĵ and −k̂ directions. The ĵ

component is a function of sin φ while the −k̂ component is a function of cos φ. We

find, therefore, that

δî

δx
= (sin φ ĵ − cos φk̂)

a cos φ
(3.22b)

so that, taking the limit as δx → 0,

dî

dt
= u(sin φ ĵ − cos φk̂)

a cos φ
. (3.22c)

Next we consider the component form of d ĵ/dt. Once again, this term must be

expanded like any other Lagrangian derivative into

dĵ

dt
= ∂ ĵ

∂t
+ u

∂ ĵ

∂x
+ v

∂ ĵ

∂y
+ w

∂ ĵ

∂z
. (3.23)

As was the case with î , there is no local time derivative of ĵ nor is there any change

in ĵ resulting from a change in elevation. There are, however, changes in ĵ that arise

from changing position in the x or y direction. Figure 3.8(a) illustrates the geometry

involved in determining ∂ ĵ/∂x . The hypotenuse β of the lightly shaded triangle is

given by β = a/tan φ since sin φ = (a cos φ)/β. Knowing this dimension, the darker

shaded triangle, shown independently in Figure 3.8(b), can be used to find ∂ ĵ/∂x . It

is clear from Figure 3.8(b) that δx = (a/tan φ)δα and that δĵ = ĵδα with δĵ directed

in the −x direction. Thus, ∣∣∣∣δ ĵ

δx

∣∣∣∣ = tan φ

a
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Figure 3.8 Illustration of the x variation of the unit vector ĵ . (a) A 3-D view of the plane on which ĵ
sits (darker shading). Dark-shaded triangle in (a) is illustrated in (b)

or, taking the limit as δx → 0 and incorporating the direction,

∂ ĵ

∂x
= − tan φ

a
î . (3.24)

Figure 3.9 illustrates the dependence of ĵ on the y direction. We find that δy =
aδφ and that |δ ĵ | = | ĵδφ| = δφ. Thus, |δ ĵ/δy| = 1/a with δ ĵ directed in the −k̂

Figure 3.9 The y-direction dependence of ĵ
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direction. Again, taking the limit of this expression as δy → 0 yields

∂ ĵ

∂y
= − 1

a
k̂ (3.25)

which, combined with (3.23) and (3.24), results in an expression for dĵ/dt:

dĵ

dt
= −u tan φ

a
î − v

a
k̂. (3.26)

Finally, we turn to dk̂/dt and, recognizing that k̂ has no local time derivative nor

any vertical derivative, obtain that

dk̂

dt
= u

∂ k̂

∂x
+ v

∂ k̂

∂y
. (3.27)

Figure 3.10 illustrates the x-direction dependence of k̂. Since the triangle of interest

represents a cross-section originating at the center of the Earth, we find that δx =
aδλ and that |δk̂| = |k̂δλ| = δλ directed in the positive x direction. Consequently,

|δk̂/δx| = 1/a which leads to the differential expression

∂ k̂

∂x
= 1

a
î . (3.28)

Using a cross-section like that shown in Figure 3.9, but concentrating on the change

in k̂ over the distance δy, yields the expression ∂ k̂/∂y = (1/a) ĵ . Thus, a complete

expression for dk̂/dt is given by

dk̂

dt
= u

a
î + v

a
ĵ . (3.29)

Figure 3.10 The x -direction dependence of the unit vector k̂
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Combining (3.22c), (3.26), and (3.29) we can rewrite (3.19) in its fully expanded

component form as

d �V
dt

=
(

du

dt
− uv tan φ

a
+ uw

a

)
î +

(
dv

dt
+ u2 tan φ

a
+ vw

a

)
ĵ

+
(

dw

dt
− u2 + v2

a

)
k̂. (3.30)

This expression describes only the spherical coordinate components of the La-

grangian derivative of the relative motion. Recall that our vector expression for

the equations of motion (3.18) included reference to the pressure gradient, Coriolis,

gravity, and friction forces. In order to obtain a complete component expansion of

the equations of motion in spherical coordinates we must expand the force terms as

well.

The Coriolis force term is given by −2 �� × �U . Figure 3.11 demonstrates that the

rotation vector, ��, is perpendicular to the x direction and so has components only in

the positive ĵ and positive k̂ directions. Considering the trigonometry in Figure 3.11,

it is clear that the k̂ component of �� has magnitude � sin φ while the ĵ component

has magnitude � cos φ. Thus, the component expansion of the Coriolis force term

can be determined by assessing the following determinant:

−2 �� × �U =
∣∣∣∣∣∣

î ĵ k̂

0 −2� cos φ −2� sin φ

u v w

∣∣∣∣∣∣ = −(2� cos φw − 2� sin φv)î

− 2� sin φu ĵ + 2� cos φuk̂. (3.31)

Figure 3.11 Partition of the rotation vector, �Ω, into its vertical and meridional components
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The component form of the pressure gradient force is given by

− 1

ρ
∇ p = − 1

ρ

∂p

∂x
î − 1

ρ

∂p

∂y
ĵ − 1

ρ

∂p

∂z
k̂. (3.32)

Gravity, which acts downward in the local vertical direction, is represented by

�g = −g k̂ (3.33)

while friction can be represented as

�F = Fx î + Fy ĵ + Fzk̂. (3.34)

Combining (3.30), (3.31), (3.32), (3.33), and (3.34) and separating the component

expression we get the three component equations of motion for flow on the rotating

Earth:

du

dt
− uv tan φ

a
+ uw

a
= − 1

ρ

∂p

∂x
+ 2� sin φv − 2� cos φw + Fx (3.35a)

dv

dt
+ u2 tan φ

a
+ vw

a
= − 1

ρ

∂p

∂y
− 2� sin φu + Fy (3.35b)

dw

dt
− u2 + v2

a
= − 1

ρ

∂p

∂z
− g + 2� cos φu + Fz. (3.35c)

The various terms in (3.35) involving 1/a arise from the non-flatness of the Earth

and are consequently known as curvature terms. Each of the curvature terms is

quadratic in the dependent variables (u, v, w) and is thus non-linear and presents

difficulty in analysis. It will soon be demonstrated, however, that these curvature

terms are entirely negligible in any discussion of the dynamics of mid-latitude weather

systems. However, even in the absence of these particular non-linear terms, the

remaining elements of (3.35) also contain non-linear elements since, for instance, in

the expansion of du/dt we get

du

dt
= ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
.

The underlined terms are also clearly quadratic in (u, v, w). These terms are

known as the advective acceleration terms and they are comparable to the local

acceleration term (in this case, ∂u/∂t). The presence of such non-linear advection

processes is one reason why dynamic meteorology is so fascinating (and difficult)!

The equations of motion (3.35) are a complicated set of expressions and it is

logical to inquire whether or not they can be simplified. The answer is yes and

we will use the method of scale analysis, introduced in Chapter 1, to accomplish

this simplification. In order to do so, we must first assign observationally based

characteristic values for the set of variables involved in the equations of motion.

Considering just the horizontal velocity, which appears in (3.35) as both u and v ,
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Table 3.1 Characteristic scales of the various terms in the horizontal equations of motion

1 2 3 4 5 6 7

x equation
du

dt
−2� sin φv 2� cos φw

uw

a
−uv tan φ

a
− 1

ρ

∂p

∂x
Fx

y equation
dv

dt
2� sin φu

uv

a

u2 tan φ

a
− 1

ρ

∂p

∂y
Fy

Scales
U 2

L
f0U f0W

U W

a

U 2

a

δp

ρL

νU

H2

Magnitude (m s−2) 10−4 10−3 10−6 10−8 10−5 10−3 10−12

we know from observations that characteristically the horizontal velocity at middle

latitudes is not as small as 1 m s−1 nor is it as large as 100 m s−1. Therefore, a char-

acteristic scale for the horizontal velocity is something close to 10 m s−1. Performing

a similar analysis for the other variables in (3.35) results in the following reasonable

set of characteristic values for the relevant variables:

U ∼ 10 m s−1 characteristic horizontal velocity

W ∼ 1 cm s−1 characteristic vertical velocity

L ∼ 106 m characteristic length scale of synoptic-scale features

H ∼ 104 m characteristic depth (i.e. depth of the troposphere)

δp

ρ
∼ 103 m2 s−2 characteristic horizontal pressure fluctuation

L

U
∼ 105 s characteristic time scale.

Of the above values, the one that seems most foreign is the characteristic horizontal

pressure fluctuation. If the characteristic length scale of synoptic-scale features is

106 m, what this variable says is that the ratio of the pressure difference between

adjacent synoptic-scale features is characteristically of order 1000 Pa (10 mb).5 The

density of the air is order 1 kg m−3, so the characteristic ratio across the size of a

typical synoptic-scale disturbance is ∼1000 m2 s−2. Given such characteristic values,

we are able to estimate the scale of all terms appearing in (3.35). Since our entire

analysis is designed to uncover a simplification of (3.35) that is valid for mid-latitude

synoptic-scale disturbances, we will assume a latitude (φ0) of 45◦ implying that a

characteristic Coriolis parameter is given by f0 = 2� sin φ0 = 2� cos φ0
∼= 10−4 s−1.

Table 3.1 lists the approximate magnitude of each term in (3.35) based upon the

characteristic scales just described. Note that the friction term is represented by (2.7)

and so involves ν, the kinematic viscosity coefficient, in its formulation. Recall that

this parameter has a value of ∼1.5 × 10−5 m2 s−1 at sea level.

It is clear from Table 3.1 that with scaling appropriate for mid-latitude synoptic-

scale motions, only two terms in the horizontal equations of motion are of order

5 This is consistent with synoptic experience in which the pressure difference between adjacent sea-level
high- and low-pressure centers is not as small as 1 hPa nor as large as 100 hPa!



JWBK072-c03 JWBK072/Martin March 7, 2006 21:3 Char Count= 0

3.2 CONSERVATION OF MOMENTUM 61

Figure 3.12 Illustration of the force balance resulting in the geostrophic wind, Vg . Arrow PGF repre-

sents the pressure gradient force and arrow COR represents the Coriolis force. The thin dashed lines are

isobars and H and L represent regions of high and low pressure, respectively

10−3 or larger: the pressure gradient force and Coriolis force terms. This result im-

plies that, as a first approximation to the full equations of motion (3.35), we can

consider the PGF and Coriolis force terms to be in approximate balance with one

another. This balance is known as the geostrophic balance and it represents the

fundamental diagnostic balance for mid-latitude synoptic-scale flow. What kind

of flow does this geostrophic balance describe? We can get some insight into this

question by considering the balance of forces involved. Consider the set of sea-level

isobars depicted in Figure 3.12. As we noted in Chapter 2, the PGF vector is al-

ways directed from high to low pressure, perpendicular to the isobars as depicted

in Figure 3.12. In order that there be a force balance between the pressure gradi-

ent and Coriolis forces, the Coriolis force vector must be equal and opposite to the

PGF vector as depicted. Since Figure 3.12 represents a hypothetical situation in the

northern hemisphere, we know that the Coriolis force must be directed perpen-

dicular to the motion of the air parcel and to the right. Consequently, as shown in

Figure 3.12, the resulting geostrophic wind flows parallel to the isobars. Were the

isobars more closely spaced in the horizontal, the magnitude of the PGF vector would

be larger and a correspondingly larger Coriolis force would be required to achieve

geostrophic balance. Therefore, the resulting geostrophic wind, though still oriented

parallel to the isobars, would be of larger magnitude as well. Thus, to a fairly high

degree of accuracy, the wind field (a vector quantity of great importance) can be

uniquely specified by a 2-D representation of the scalar quantity, pressure. The mid-

latitude atmosphere on Earth need not have been so accommodating to our desire

for simplicity, but it is! Let us now examine the mathematical expression for the

geostrophic wind.

Considering (3.35a) and (3.35b) we can write component expressions for the

geostrophic balance as

− f vg = − 1

ρ

∂p

∂x
or vg = 1

ρ f

∂p

∂x
(3.36a)
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and

f ug = − 1

ρ

∂p

∂y
or ug = − 1

ρ f

∂p

∂y
. (3.36b)

We see from (3.36) that the zonal (meridional) component of the geostrophic wind

depends on the corresponding meridional (zonal) gradient of pressure in accord

with our previous physical examination. In vector form, (3.36) becomes

�V g = − 1

ρ f

∂p

∂y
î + 1

ρ f

∂p

∂x
ĵ = 1

ρ f
k̂ × ∇p (3.37)

which clearly demonstrates that the geostrophic wind ( �V g ) must always be parallel

to the isobars (i.e. perpendicular to ∇p) with a magnitude dependent on the inverse

of density, the inverse of the Coriolis parameter, as well as the magnitude of the

pressure gradient. Some other conclusions regarding the nature of the geostrophic

flow can also be determined from (3.37). For a given magnitude of pressure gradient,

the resulting geostrophic wind will be larger at lower latitude where the Coriolis

parameter is smaller. However, the geostrophic balance cannot be considered at the

equator (or very near it either) as at such low latitudes, the inverse of the Coriolis

parameter becomes very large and the resulting �V g no longer bears a resemblance to

the actual wind, �V . For mid-latitude flow, however, the geostrophic wind is usually

within 10–15% of the observed wind. This observation does not imply that the mid-

latitude atmosphere has a predilection for this simple balance, it instead testifies to

the enormity of the two forces, PGF and COR, at middle latitudes.

Given that geostrophy is a balance between the PGF and Coriolis forces, we might

inquire under what conditions is geostrophic balance met? Note that in (3.36) there

is no reference to du/dt or dv/dt. As a consequence, the geostrophic wind is only

strictly valid in regions of zero wind acceleration. Since the wind is a vector quantity,

with magnitude and direction, if either of those properties is changed over time, the

wind has been accelerated. Thus, two broad categories of flow in the atmosphere

will violate the geostrophic balance: those characterized by (1) wind speed changes

along the flow, and/or (2) wind direction changes along the flow. Figure 3.13 is a

randomly selected northern hemisphere analysis of isobars and isotachs (lines of

constant wind speed) at 9 km elevation. It is immediately clear that regions of along-

flow speed variation and/or along-flow curvature are so numerous as to be the

rule rather than the exception. The along-flow speed changes are most prominent

in the vicinity of the local wind speed maxima known as jet streaks. Along-flow

direction changes are most obvious in the vicinity of troughs and ridges in the

pressure field. These locations, as we will show presently, are commonly associated

with sensible weather in the form of circulation systems, clouds, and precipitation.

The degree of departure from geostrophic balance that characterizes these regions

can be assessed by considering the difference between the actual wind at a location

and the calculated geostrophic wind at the same point. This difference is known as the
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Figure 3.13 Isobars and isotachs at 9 km elevation from the National Center for Environmental

Prediction’s Global Forecast System initialization at 0000 UTC 23 February 2004. The isobars are

labeled and contoured every 5 hPa and the isotachs are shaded every 10 m s−1 starting at 30 m s−1

ageostrophic wind, �V ag , and is defined mathematically as

�V ag = �V − �V g . (3.38)

We can introduce some prognostic power to our simplified versions of (3.35) by

retaining the next largest order terms from Table 3.1: namely, du/dt and dv/dt. The

resulting expressions are

du

dt
= f v − 1

ρ

∂p

∂x
(3.39a)

dv

dt
= − f u − 1

ρ

∂p

∂y
. (3.39b)

If we now substitute (3.36) into (3.39) we get

du

dt
= f v − f vg = f (v − vg ) = f vag (3.40a)

dv

dt
= − f u + f ug = − f (u − ug ) = − f uag (3.40b)
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Table 3.2 Characteristic scales for the terms in the vertical equation of motion

1 2 3 4 5 6

dw

dt
−2� cos φu

−(u2 + v2)

a
− 1

ρ

∂p

∂z
−g Fz

Characteristic scales
U W

L
f0U

U 2

a

p

ρH
g

νW

H2

Magnitudes (m s−2) 10−7 10−3 10−5 10 10 10−15

which can be written in vector form as

d �V
dt

= − f k̂ × �V ag . (3.41)

This expression clearly shows that the ageostrophic flow is associated with regions

of Lagrangian acceleration of the wind. In the next section we will demonstrate why

this ageostrophic wind is of such vital importance to understanding the dynamics of

the mid-latitude atmosphere.

Given that geostrophic balance is such a strong constraint in the middle latitudes,

there are many settings in which the ageostrophic wind is a very small portion of the

actual wind. Therefore, it would be convenient if there were some easy way to charac-

terize a flow to determine if it is likely to be nearly in geostrophic balance. Physically,

a given flow will be nearly in geostrophic balance if the Lagrangian acceleration term

(du/dt or dv/dt) is small compared to the Coriolis force term, as suggested by our

scaling and Table 3.1. Recalling that the acceleration term is represented as U 2/L

and the Coriolis force is scaled as f0U , then the ratio of these two accelerations is

given by

Lagrangian Accel.

Coriolis Accel.
= U 2/L

f0U
= U

f0 L
. (3.42)

Notice that this ratio is non-dimensional (i.e. it is just a number without units)

and that if it is less than 0.1 for a given flow it testifies to the fact that the Coriolis

acceleration is at least 10 times larger than the Lagrangian acceleration. In such a case,

it is quite reasonable to approximate the flow as nearly geostrophic. The ratio defined

in (3.42) is known as the Rossby number (R0), after the famous atmospheric/oceanic

scientist Carl Gustav Rossby.6 We will hereafter often refer to flows that are nearly in

geostrophic balance as low-R0 flows. High-R0 flows will, conversely, be characterized

as rather far from geostrophic balance.

Thus far we have discussed the results of a scaling of the horizontal equations of

motion. A similar exercise must now be performed on (3.35c), the vertical equation

of motion. Table 3.2 shows the characteristic scales of the various terms in (3.35c)

6 Carl Gustav Rossby (1898–1957) was a Swedish–American scientist who founded the first meteorology
department in the United States at the Massachusetts Institute of Technology (MIT) in 1928. Rossby uncovered
many of the basic principles of modern dynamical meteorology during the decades of the 1930s and 1940s.
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along with their usual magnitudes for mid-latitude weather systems. Even more

robustly than was the case for the horizontal equations, the vertical equation of

motion is dominated by two terms: the vertical PGF and gravity. We have already

seen that these two vertical forces are combined in the hydrostatic balance. Thus, a

formal scaling of the equations of motion for mid-latitude synoptic-scale motions

renders the following fundamental statement regarding the nature of the mid-latitude

atmosphere on Earth:

To a first order, the mid-latitude atmosphere on Earth is in hydrostatic

and geostrophic balance.

3.2.2 Conservation of mass

Imagine trying to fill a small basin with water from a hose. If there is a leak in the

basin then one needs to know both the inflow rate from the hose as well as the outflow

rate through the leak in order to accurately gauge the filling rate. If the inflow rate is

suddenly increased while the outflow rate remains the same it is simple to conclude

that the mass of water in the basin will increase. If we designate the mass of water in

the basin as Mw , then a simple expression of the mass continuity equation becomes

∂ Mw

∂t
= Inflow Rate − Outflow Rate.

We can think of a slightly more abstract representation of this idea, illustrated in

Figure 3.14, by considering an infinitesimal cube, fixed in space, through which air

flows. The x-direction mass flux (i.e. the product of the x-direction velocity and the

density of the fluid) at the center of the cube is given by ρu. Upon expanding this

Figure 3.14 Schematic of x-direction flow through a cube fixed in space. The rate of mass flux is given

by the product ρu. Accumulation of mass at the center point occurs when the inflow rate exceeds the

outflow rate
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function in a Taylor series about the center point we find that the rate of mass inflow

through side A of the cube is given by[
ρu − ∂

∂x
(ρu)

δx

2

]
δyδz (3.43a)

while the rate of mass outflow through side B of the cube is given by[
ρu + ∂

∂x
(ρu)

δx

2

]
δyδz. (3.43b)

Now, just as in our simple example above, the rate of accumulation of mass (as a

result of x-direction flow) inside the infinitesimal cube must be equal to the inflow

rate minus the outflow rate. Using (3.43) this is expressed as

∂ Mx

∂t
=

[
ρu − ∂

∂x
(ρu)

δx

2

]
δyδz −

[
ρu + ∂

∂x
(ρu)

δx

2

]
δyδz

= − ∂

∂x
(ρu)δxδyδz (3.44)

where Mx represents the rate of mass accumulation in the cube resulting from x-

direction mass flux divergence. Similar expressions representing the rates of mass

accumulation in the cube resulting from y- and z-direction mass flux divergences

are given by

∂ My

∂t
= − ∂

∂y
(ρv)δxδyδz and

∂ Mz

∂t
= − ∂

∂z
(ρw)δxδyδz

so that the net rate of mass accumulation in the cube is represented as

∂ M

∂t
= −

[
∂

∂x
(ρu) + ∂

∂y
(ρv) + ∂

∂z
(ρw)

]
δxδyδz. (3.45)

By definition, the net mass accumulation rate per unit volume is equal to the Eulerian

rate of change of the density. Thus, dividing (3.45) by the volume of the cube (δxδyδz)

yields

∂ρ

∂t
= −

[
∂

∂x
(ρu) + ∂

∂y
(ρv) + ∂

∂z
(ρw)

]
= −∇ · (ρ �V). (3.46)

The expression above is known as the mass divergence form of the mass continuity

equation. An alternative form of this expression arises by recalling that

∇ · (ρ �V) = ρ∇ · �V + �V · ∇ρ

so that (3.46) becomes

∂ρ

∂t
+ �V · ∇ρ + ρ∇ · �V = 0 or

1

ρ

dρ

dt
+ ∇ · �V = 0 (3.47)

which is known as the velocity divergence form of the mass continuity equation.
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This exact same relationship can be derived for a cube of fixed mass, δM, but vary-

ing dimensions δx, δy, and δz. Given that the mass in this example is fixed, then

d(δM)/dt = 0 or

d(ρδxδyδz)

dt
= 0 = dρ

dt
δxδyδz + ρ

d(δx)

dt
δyδz + ρ

d(δy)

dt
δxδz + ρ

d(δz)

dt
δxδy

(3.48a)

by the chain rule. Now

lim
δx→0

d(δx)

dt
= ∂u

with similar expressions applying for the last two time derivatives in (3.48a). There-

fore, dividing both sides of (3.48a) by the volume of cube gives

dρ

dt
+ ρ

∂u

∂x
+ ρ

∂v

∂y
+ ρ

∂w

∂z
= dρ

dt
+ ρ∇ · �V = 0 (3.48b)

which can be easily rearranged into (3.47).

It is instructive at this point to consider the implications of (3.47) for the fluid

atmosphere. A fluid in which individual parcels experience no change of density

following the motion (i.e. dρ/dt = 0) is known as an incompressible fluid. Con-

versely, a compressible fluid is one in which the density can change along a parcel

trajectory. As you might guess, the atmosphere is a compressible fluid, but for many

atmospheric phenomena the compressibility is not a major physical consideration.

In such cases, the mass continuity equation becomes a statement of zero velocity

divergence. We will see later that choice of a different vertical coordinate will render

the continuity equation in a much simpler, unapproximated form.

3.3 Conservation of Energy: The Energy Equation

The law of conservation of energy states that the sum of all energies in the universe is

constant. This is a valuable piece of knowledge but there are many different kinds of

energies manifest in the atmosphere including kinetic energy, potential energy, latent

heat energy, and radiant energy to name a few. Of all these types, radiant energy from

the Sun is the source of nearly all of the total energy in the atmosphere/ocean system.

When solar radiation is absorbed at the Earth’s surface and in the atmosphere it

appears as internal energy, made manifest as a temperature change. Given the many

other kinds of energy involved in the atmosphere/ocean system, one of the major

problems in the atmospheric sciences is determining how this internal energy is

converted into the other forms of energy.

We can get some insights into the nature of the energies in the atmosphere by

taking the dot product of the acceleration vector, d �V/dt, with the velocity vector,
�V . This operation is the mathematical equivalent of multiplying the component
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equations of motion (3.35a, b, and c) by their respective component velocities (u, v ,

and w). The resulting expressions are

1

2

d(u2)

dt
− u2v tan φ

a
+ u2w

a
= −u

ρ

∂p

∂x
+ 2� sin φuv − 2� cos φuw + uFx

(3.49a)

1

2

d(v2)

dt
+ u2v tan φ

a
+ v2w

a
= − v

ρ

∂p

∂y
− 2� sin φuv + v Fy (3.49b)

1

2

d(w 2)

dt
− w(u2 + v2)

a
= −w

ρ

∂p

∂z
− g w + 2� cos φuw + w Fz. (3.49c)

Summing the component expressions (3.49) together we note that all of the Coriolis

and curvature terms sum to zero resulting in

d

dt

[
(u2 + v2 + w 2)

2

]
= − 1

ρ
�V · ∇ p − g w + �V · �F . (3.50)

The LHS term in (3.50) represents the rate of change of the total kinetic energy (per

unit mass) of the flow and so is a rate of work term. The first term on the RHS of (3.50)

is pressure advection divided by density. When the velocity vector is directed across

isobars from high to low (low to high) pressure, (3.50) shows that kinetic energy is

produced (consumed). Note that if the flow were purely geostrophic, �V · ∇ p would

vanish. This term is often referred to as the pressure work term and describes the

rate of work done by the ageostrophic flow across isobars.

By definition, w = dz/dt, so that −gw can be rewritten as

−g w = −g
dz

dt
= −dφ

dt

where φ is the geopotential, a measure of the work required to raise a unit mass a

distance, z, above sea level. It is instructive, therefore, to rewrite (3.50) as

d

dt

[
(u2 + v2 + w 2)

2
+ φ

]
= − 1

ρ
�V · ∇ p + �V · �F (3.51)

where the LHS represents the sum of the kinetic and potential energies per unit mass

of an atmospheric parcel. The last term on the RHS of (3.51) represents the energy

dissipated by the action of the friction force ( �F ). Note that since �V and �F are almost

always opposite one another, the product �V · �F will be negative and the total kinetic

and potential energies of the parcel will decrease in the presence of friction in accord

with physical intuition.

Since (3.51) is derived from the equations of motion it deals only with mechanical

forms of energy and is therefore referred to as the mechanical energy equation. In

order to include thermal energy we must include the first law of thermodynamics in
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the form

Q̇ = cv

dT

dt
+ p

dα

dt
(3.52)

where Q̇ represents the diabatic heating rate, cv is the specific heat of dry air at

constant volume (717 J kg−1 K−1), and α is the specific volume. This expression

relates the important fact that absorption of solar radiation (represented by Q̇) can

be converted to both internal energy (in the form of a temperature increase) or

mechanical energy made manifest in expansion work (represented by the expansion

term, dα/dt). By rearranging (3.51) as

0 = d

dt

[
(u2 + v2 + w 2)

2
+ φ

]
+ 1

ρ
�V · ∇ p − �V · �F

we can add zero to both sides of (3.52) to yield

Q̇ = cv

dT

dt
+ p

dα

dt
+ d

dt

[
(u2 + v2 + w 2)

2
+ φ

]
+ 1

ρ
�V · ∇ p − �V · �F . (3.53)

Noting that (1/ρ) �V · ∇ p is equal to α(dp/dt − ∂p/∂t), and that

p
dα

dt
+ α

dp

dt
= d

dt
(pα),

we can regroup terms and rewrite (3.53) as

Q̇ = d

dt

[
(u2 + v2 + w 2)

2
+ φ + cv T + pα

]
− α

∂p

∂t
− �V · �F (3.54)

which is known as the energy equation. This relationship implies that if the flow

is frictionless ( �F = 0), adiabatic (Q̇ = 0), and steady state (∂p/∂t = 0), then the

quantity

(u2 + v2 + w 2)

2
+ φ + cv T + pα

is constant. This is a special case of Bernoulli’s7 equation for an incompressible flow

in which the quantity

(u2 + v2 + w 2)

2
+ φ + pα = Constant.

This relationship suggests that for an atmosphere at rest, any increase in elevation

results, unsurprisingly, in a decrease in the hydrostatic pressure. If the atmosphere is

in motion, however, a larger pressure difference will result over the same elevation

interval since the difference, in this case, is a difference in the dynamic pressure. For

7 Daniel Bernoulli (1700–1782) was a Swiss mathematician and fluid dynamicist. Though from an illustrious
family of mathematicians, he studied medicine at his father’s insistence and discovered a means to measure blood
pressure that was used until the dawn of the twentieth century. When he was 25, Catherine the Great appointed
him Professor of Mathematics at the Imperial Academy of St Petersburg where Leonhard Euler became one of
his first students. He developed the fluid dynamical equation that bears his name at the age of 30.
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Figure 3.15 Flow over a hill illustrating the effect of dynamic pressure. Thin lines are streamlines of

the flow – the closer the streamlines in the vertical, the greater the flow speed. Since u2 > 0, p2 is less

than the hydrostatic pressure at height z

flow over the hill in Figure 3.15, as the air rises over the hill, the speed of the flow

increases. Thus, the pressure difference between the top and the bottom of the hill

(p2 − p1) must be larger than their hydrostatic pressure difference because the wind

speed is higher at the top than at the bottom of the hill (u2 > u1).

Two additional relationships of meteorological consequence arise from further

consideration of aspects of the energy equation. First, an illuminating alternative

expression for the first law of thermodynamics arises from combining (3.52) and the

ideal gas law. Differentiating the gas law with respect to time yields

p
dα

dt
+ α

dp

dt
= R

dT

dt
. (3.55a)

Substituting for pdα/dt (from (3.55a)) in (3.52), and recalling that c p = cv + R,

yields

c p

dT

dt
− α

dp

dt
= Q̇. (3.55b)

If we then divide (3.55b) by T , noting that α/T = R/p, we get

c p

d ln T

dt
− R

d ln p

dt
= Q̇

T
(3.55c)

where Q̇/T is known as the entropy. If the entropy is constant with time, then we

have an isentropic process and, consequently,

c p

d ln T

dt
− R

d ln p

dt
= 0. (3.55d)

Integration of (3.55d) from a given p and T to a reference pressure, p0, and a reference

temperature, θ , defines what is known as the potential temperature. We begin by

noting that

θ∫
T

c pd ln T =
p0∫

p

Rd ln p

which yields

c p(ln θ − ln T) = R(ln p0 − ln p).
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Rearranging the above expression and taking anti-logs results in

θ

T
=

(
p0

p

) R
c p

or θ = T

(
p0

p

) R
c p

, (3.56)

known as the Poisson equation.

Physically, θ is the temperature a parcel of air would have if it were adiabatically

compressed (or expanded) from its original pressure, p, to a reference pressure, p0

(usually 1000 hPa). Every air parcel has a unique value of θ and that value is conserved

for adiabatic processes (i.e. conditions in which the entropy does not change). For

this reason, lines of constant θ are often referred to as isentropes and flow along

surfaces of constant potential temperature is known as isentropic flow.

Finally, if we take the log differential of (3.56) with respect to height (z) we get

∂ ln θ

∂z
= ∂ ln T

∂z
+ R

c p

(
∂ ln p0

∂z
− ∂ ln p

∂z

)
. (3.57a)

Since p0 is a constant, its derivative is zero and (3.57a) can be rewritten as

1

θ

∂θ

∂z
= 1

T

∂T

∂z
− R

c p p

∂p

dz
. (3.57b)

Substituting for ∂p/dz from the hydrostatic equation yields

1

θ

∂θ

∂z
= 1

T

∂T

∂z
+ Rρg

c p p
. (3.57c)

Finally, with the help of the gas law and some rearranging, (3.57c) can be written as

T

θ

∂θ

∂z
= ∂T

∂z
+ g

c p

(3.57d)

which yields an expression for the dry adiabatic lapse rate (�d ). If θ is constant

with height (i.e. the lapse rate is dry adiabatic), then −∂T/∂z = �d = g/c p =
9.8◦C km−1. When ∂θ/∂z is non-zero, the lapse rate (� = −∂T/∂z) is given by

� = �d − T

θ

∂θ

∂z
. (3.58)

Based upon (3.58), there are three conditions for stability that can be assessed. First,

when ∂θ/∂z > 0, then � < �d which corresponds to a statically stable stratification.

In such an environment, a lifted parcel of dry air (which must cool at the dry adiabatic

rate) will always be cooler than its new environment. Second, when ∂θ/∂z = 0, then

� = �d and the stratification is said to be neutral and a lifted parcel of dry air will

always have the same temperature as its new surroundings. Finally, when ∂θ/∂z < 0,

then � > �d which corresponds to an absolutely unstable stratification. In such a

case, a lifted parcel of dry air will always be warmer than its new surroundings and

will, therefore, freely convect.

In the statically stable case just described, a lifted parcel, being colder than its

environment upon being lifted, will be forced back downward to its original level

once the impulse that forced it to rise is exhausted. A series of oscillations about that
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original level will ensue. The frequency of these buoyancy oscillations is dependent

on the restoring force that compels them. In this case, the restoring force (per unit

volume) is the product of gravity and the density difference between the displaced

parcel and its environment.

If we let δz be the vertical displacement of an air parcel about its original level,

then Newton’s second law tells us that

Fz

Mass
= dw

dt
= d2(δz)

dt2
. (3.59a)

Letting ρ (ρ ′) and T (T ′) be the density and temperature of the environment (parcel)

and assuming that the pressures of the parcel and the environment are always equal,

then the restoring force (per unit volume) for a displaced parcel is given by

Fz

Volume
= −(ρ ′ − ρ)g . (3.59b)

Thus, the restoring force per unit mass for the displaced parcel can be written as

Fz

Mass
= − (ρ ′ − ρ)g

ρ ′ . (3.59c)

Employing the gas law allows this expression to be rewritten as

Fz

Mass
= −

(
1

T ′ − 1

T

)
g T ′ = −g

(
T − T ′

T

)
. (3.59d)

Now we can say that (T − T ′) is equal to (�d − �)δz since the dry parcel cools

at the dry adiabatic lapse rate and must be compared to the environment whose

temperature changes at a rate described by �. Therefore, the restoring force per unit

mass can be written as

Fz

Mass
= − g

T
(�d − �)δz (3.59e)

so that (3.59a) becomes a second-order, ordinary differential equation

d2(δz)

dt2
+ g

T
(�d − �)δz = 0 (3.60)

whose solution describes a buoyancy oscillation with period 2π/N where

N =
[ g

T
(�d − �)

]1/2

or, substituting from (3.58),

N =
[

g

θ

∂θ

∂z

]1/2

. (3.61)

N is known as the Brunt–Väisälä frequency and has units of s−1. It is clear from (3.61)

that for the condition of neutrality alluded to earlier (i.e. ∂θ/∂z = 0), N = 0 and
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there is no buoyancy oscillation physically consistent with a neutral displacement.

For the statically stable case (i.e. ∂θ/∂z > 0), N > 0 and buoyancy oscillations are

observed. For the absolutely unstable case (i.e. ∂θ/∂z < 0), N is imaginary and in

perturbation theory such a case corresponds to a growing disturbance. Physically,

this is consistent with the fact that in an absolutely unstable stratification, a lifted

parcel of dry air will always be warmer than its environment and therefore, according

to (3.59), experience an upward-directed buoyancy force without interruption. It is

important to note that instances of absolute instability are exceedingly rare and, even

when they do exist, are very short-lived as the atmosphere mixes rapidly toward

neutrality in such instances.

Selected References

Hess, Introduction to Theoretical Meteorology, offers an alternative perspective on accelerating

reference frames.

Holton, An Introduction to Dynamic Meteorology, provides discussion of many of the same issues.

Brown, Fluid Mechanics of the Atmosphere, provides illuminating discussion of the energy equation.

Acheson, Elementary Fluid Dynamics, discusses many of the same issues.

Problems

3.1. Assume that air flows over a broad building 10 m high. The flow is in steady state and

the density is constant (ρ = 1.3 kg m−3) through this depth of the atmosphere. The

observed speed at ground level is 5 m s−1 while on the rooftop it is 9 m s−1.

(a) What is the pressure difference, in hPa, between the ground and roof level?

(b) How much of this pressure difference is purely hydrostatic?

(c) What is the magnitude and direction of the non-hydrostatic pressure gradient force

vector generated by these circumstances?

In all of the above, you may neglect the vertical variation in temperature.

3.2. (a) Prove that the divergence of the geostrophic wind is given by

∇ · �V g = −Vg (cot φ/a)

where a = radius of the earth and φ is latitude.

(b) Explain why (physically) this is true. (Hint: recall that the magnitude of the Coriolis

force depends on wind speed.)

(c) Calculate the divergence of the geostrophic wind at 43◦N at a point where |vg | =
20 m s−1.

3.3. The perturbation ocean surface height (POSH) is defined as the height of the local ocean

surface above or below mean sea level (which is 0 meters). Suppose a sophisticated

satellite instrument is built that can measure the local POSH to an accuracy of 1 cm. A
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plot of the measurements taken on a certain day is given in Figure 3.1A (solid lines are

contours of POSH in cm).

Figure 3.1A

If �r = 500 km and ρw = 1000 kg m−3 (density of ocean water):

(a) What is the magnitude of the atmospheric pressure gradient just above the ocean

surface?

(b) What is the departure from mean sea-level atmospheric pressure at A in Figure 3.1A?

(c) Calculate the velocity (speed and direction) of the geostrophic flow in the raised

water surface at the indicated points.

(d) Is this geostrophic flow cyclonic or anticyclonic? Defend your answer.

(e) What type of surface-layer ocean circulation would develop beneath an atmospheric

anticyclone? Explain your answer. (The surfacelayer is the top few meters of the

ocean).

3.4. Derive a relationship for the height of a given pressure surface (P) in terms of the

pressure (P0) and temperature (T0) at sea level assuming that the temperature decreases

uniformly with height at a rate of � ◦C km−1.

3.5. The vector form of the frictionless, horizontal equation of motion is

d �V
dt

= − 1

ρ
∇ p − f k̂ × �V

(a) Expand this vector expression into its x and y components.

(b) Show that the vector ageostrophic wind can be expressed as

k̂

f
× d �V

dt
= �V ag

Consider the 300 mb jet streak shown in Figure 3.2A (the solid lines are isotachs,

lines of constant wind speed).

(c) Draw the ageostrophic winds at each of the shaded circles. Explain your work.

(d) Indicate the locations of upper-level divergence and convergence of the horizontal

wind field. Explain.
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J

x
y

60 ms-1

40 ms-1

Figure 3.2A

3.6. The temperature decreases at a constant rate from 1000 to 500 hPa. At Madison, the

500 hPa temperature is −30◦C and the 1000–500 hPa thickness is 5180 m. What is the

1000 hPa temperature at Madison? (R = 287 J kg−1 K−1, g = 9.8 m s−2).

3.7. During winter, Rapid City, South Dakota can witness remarkable temperature inver-

sions as a consequence of its proximity to the Black Hills and its position in the center

of the continent. It is not uncommon to find surface temperatures near −30◦C as cold,

arctic air funnels southward at the ground, while at the same time the temperature 100 m

above the surface may be as warm 10◦C as a result of strong downslope flow in the lee of

the Black Hills. Calculate the frequency of a buoyancy oscillation in such an inversion

layer. What might be some sensible weather consequences of such a circumstance?

3.8. A 1 m2 column of air in the 1000–850 hPa layer is subjected to 3 × 106 J of heating.

What is the change in the 850 hPa geopotential height if the 1000 hPa height tendency

is zero? (The specific heat of air at constant pressure c p = 1004 J kg−1 K−1).

3.9. Over low-elevation stations in the central United States, the likelihood of frozen or

liquid precipitation in a winter storm is often assessed by considering the 1000–500 hPa

thickness. The critical value at these locations for equal chances of snow or rain is

5400 m. Explain why this value is a reasonable one to choose. What are some possible

problems with relying on this parameter to guide a precipitation-type forecast? Propose

and defend an alternative thickness-based parameter for making this forecast.

3.10. By how much does the relative speed of a westward-directed parcel of air (moving at

−2 m s −1) change if that parcel is moved from the equator to 30◦N? Could the upper

tropospheric outflow of equatorial thunderstorms be related to the presence of the so-

called subtropical jet stream at 30◦N? Explain.

3.11. Assume astronomers discover a new planet with a characteristic horizontal velocity scale

(at middle latitudes), and a rotation rate equal to Earth’s. How small would a planet

have to be in order that the effect of curvature term on the flow would be comparable

to the Coriolis force?

3.12. Show that the continuity equation for a fluid of variable density can be written as

1

V

dV

dt
= ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

where V is the volume of the fluid parcel.
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3.13. The potential density (D) is a useful diagnostic parameter defined as the density that

an air parcel would have if it were adiabatically compressed or expanded to 1000 hPa.

Derive an expression for D. Show that the product of the potential temperature (θ) and

the potential density (i.e. Dθ) is a constant.

Solutions

3.1. (a) 131.04 Pa (b) 127.4 Pa (c) 0.28 m s−2 directed upward

3.2. (c) −3.367 × 10−6 s−1

3.3. (a) 1.96 × 10−2 Pa m−1 (b) −98.1 hPa (c) 0.23 m s−1 (d) Anticyclonicallly

(e) Cyclonically

3.6. 267.7 K

3.7. 0.121 s−1

3.8. �z = 9.29 m

3.10. 133.79 m s−1

3.11. a = 105 m
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4
Applications of the Equations
of Motion

Objectives

In the previous chapter we derived expressions for the equations of motion as well as

the continuity of mass. The present chapter will concentrate on illustrating various

simple applications of these equations to observable phenomena in the mid-latitude

atmosphere. Many of the applications of the equations of motion, in particular, will

be greatly simplified by first recasting the expressions in one of three new Cartesian

coordinate systems. The first two use pressure ( p) or potential temperature (θ) as the

vertical coordinate and are known as isobaric or isentropic coordinates, respectively.

Upon transforming the equations to these new coordinate systems we will illustrate

the utility of each with some examples. Next, by combining the geostrophic and

hydrostatic balances, we will find that the vertical shear of the geostrophic wind

is directly linked to the magnitude of the horizontal temperature gradient in the

thermal wind relationship.

Finally, we shall adopt a third new Cartesian coordinate system, known as natural

coordinates, in which we employ the direction of the flow at each point in the fluid

as the basis for defining the horizontal directions. We will use this natural coordinate

perspective to examine a number of additional balanced flows including inertial,

cyclostrophic, and gradient balances. Applications of each of these balances will also

be considered. We begin by transforming the equations of motion and the continuity

equation into isobaric coordinates.

4.1 Pressure as a Vertical Coordinate

Recall that in height coordinates, the vector form of the frictionless horizontal mo-

mentum equation is

d �V
dt

= − 1

ρ
∇ p − f k̂ × �V .

Mid-Latitude Atmospheric Dynamics Jonathan E. Martin
C© 2006 John Wiley & Sons, Ltd.
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In order to recast this expression in isobaric coordinates we must convert the pressure

gradient force term into an equivalent expression in isobaric coordinates. This is done

most easily by considering the differential (dp) on a constant pressure surface:

(dp)p =
(

∂p

∂x

)
y,z

dxp +
(

∂p

∂y

)
x,z

dyp +
(

∂p

∂z

)
x,y

dz p (4.1a)

where the subscripts indicate differentiation carried out holding the subscripted

variable constant. Now, since there is no change in pressure on an isobaric (i.e.

constant pressure) surface, then (dp)p = 0 so that

0 =
(

∂p

∂x

)
y,z

dxp +
(

∂p

∂y

)
x,z

dyp +
(

∂p

∂z

)
x,y

dz p. (4.1b)

Next, we expand dz p as a function of x and y to yield

0 =
(

∂p

∂x

)
y,z

dxp +
(

∂p

∂y

)
x,z

dyp +
(

∂p

∂z

)
x,y

[(
∂z

∂x

)
y,p

dxp +
(

∂z

∂y

)
y,p

dyp

]
which can be rearranged into

0 =
[(

∂p

∂x

)
y,z

+
(

∂p

∂z

)
x,y

(
∂z

∂x

)
y,p

]
dxp

+
[(

∂p

∂y

)
x,z

+
(

∂p

∂z

)
x,y

(
∂z

∂y

)
y,p

]
dyp. (4.1c)

Since this statement is true for all dx and dy, the terms in square brackets in (4.1c)

must both be zero. Hence,(
∂p

∂x

)
y,z

= −
(

∂p

∂z

)
x,y

(
∂z

∂x

)
y,p

and

(
∂p

∂y

)
x,z

= −
(

∂p

∂z

)
x,y

(
∂z

∂y

)
y,p

.

(4.1d)

With the help of the hydrostatic equation, these expressions become

−
(

∂p

∂x

)
y,z

= −ρg

(
∂z

∂x

)
y,p

and −
(

∂p

∂y

)
x,z

= −ρg

(
∂z

∂y

)
y,p

. (4.1e)

Dividing both sides of (4.1e) by ρ yields

− 1

ρ

(
∂p

∂x

)
z

= −g

(
∂z

∂x

)
p

= −
(

∂φ

∂x

)
p

− 1

ρ

(
∂p

∂y

)
z

= −g

(
∂z

∂y

)
p

= −
(

∂φ

∂x

)
p

where, for convenience, we have dropped the subscripts x and y on the LHS

derivatives. The LHS expressions represent the height coordinate versions of the
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x- and y-direction pressure gradient force terms. Thus, the RHS expressions rep-

resent the x- and y-direction pressure gradient force terms in isobaric coordinates.

Therefore, the isobaric coordinate expression for the pressure gradient force in vector

form is

P G F p = −∇pφ (4.2)

where

∇p = ∂

∂x
î + ∂

∂y
ĵ .

The isobaric coordinate form of the pressure gradient force involves no reference to

density and is therefore much more amenable to operational use. The removal of

density from the expression for the pressure gradient force is a major advantage of

isobaric coordinates and provides the motivation for their use.

With the result in (4.2), the vector form of the horizontal equation of motion can

be rewritten as

d �V
dt

= −∇pφ − f k̂ × �V (4.3)

where, importantly,

d

dt
= ∂

∂t
+ u

∂

∂x
î + v

∂

∂y
ĵ + ω

∂

∂p
k̂.

The component velocity in the last term, ω, is equal to

ω = dp

dt
(4.4)

and is a measure of vertical velocity in units of hPa s−1 (or, more commonly in

operations, μbar s−1, where 1 μb = 10−3 hPa).

By neglecting the horizontal acceleration vector, a new expression for the

geostrophic balance arises from (4.3): namely,

f k̂ × �V = −∇pφ. (4.4a)

Taking −k̂ × (4.4a) and dividing by f on both sides yields an expression for the

geostrophic wind in isobaric coordinates,

�V g = k̂

f
× ∇pφ. (4.4b)

Without reference to ρ, (4.4b) provides a much simpler expression for calculating

the geostrophic wind from observations. The simplicity is illustrated in Figure 4.1

which shows an example of the 500 hPa geopotential height contours and actual wind

vectors from the middle latitudes. The geostrophic wind is parallel to the geopotential

height contours with a magnitude dependent on the magnitude of ∇pφ. For the most
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Figure 4.1 The 500 hPa geopotential height and winds at 0000 UTC 23 February 2004. Geopotential

height is labeled in dam (deca meters) and contoured every 6 dam. Winds are represented as flags

pointing into the direction from which the wind is coming. Speed of the winds is indicated by the barbs

on the flags as: half barb, less than 5 m s−1; full barb, 5 m s−1; pennant, 25 m s−1

part, the actual wind is close to the geostrophic wind with notable exceptions being

in regions of wind speed maxima and strong curvature.

Another consequence of the simplicity of (4.4b) is that, so long as we consider f

to be constant, then

∇ · �V g = ∇ ·
(

k̂

f
× ∇pφ

)
= ∇ ·

(
− 1

f

∂φ

∂y
î + 1

f

∂φ

∂x
ĵ

)
= 1

f

[
∂

∂x

(
−∂φ

∂y

)
+ ∂

∂y

(
∂φ

∂x

)]
= 1

f

(
− ∂2φ

∂x ∂y
+ ∂2φ

∂x ∂y

)
= 0 (4.5)
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so that the geostrophic wind is non-divergent. This is an extremely important prop-

erty of the geostrophic wind and its importance for understanding mid-latitude

weather systems will be amplified when we examine the continuity equation in iso-

baric coordinates.

Rather than transform the continuity equation from height to pressure coor-

dinates, we will derive the isobaric form of the continuity equation by consider-

ing a control volume (δV = δx δy δz) as before. Using the hydrostatic equation

(δp = −ρgδz) we can rewrite δV as

δV = −δx δy δp

ρg
.

Let us adopt the Lagrangian perspective that the mass of the control volume (given

by δM = ρδV = −δx δy δp/g ) does not change following the parcel. Then the rate

of change of mass (per unit mass) is given by

1

δM

d(δM)

dt
= 0 = −g

δx δy δp

d

dt

(−δx δy δp

g

)
. (4.6a)

Applying the chain rule to the RHS of (4.6a) yields

1

δx δy δp

[
d(δx)

dt
δy δp + d(δy)

dt
δx δp + d(δp)

dt
δx δy

]
= 0. (4.6b)

Since, as we saw before,

d(δx)

dt
= δu,

d(δy)

dt
= δv, and

d(δp)

dt
= δω,

(4.6b) can be simplified to

∂u

∂x
+ ∂v

∂y
+ ∂ω

∂p
= 0 (4.7)

as δx, δy, and δp approach zero. This is the isobaric form of the continuity equation.

This form of the continuity equation is much simpler than the height coordinate

version ((3.46) and (3.47)) since, similar to the isobaric expression for the pressure

gradient force, density does not appear in it.

A simple rearrangement of (4.7) produces

∇ · �V h = ∂u

∂x
+ ∂v

∂y
= −∂ω

∂p
(4.8a)

which relates the fact that the horizontal divergence on an isobaric surface is directly

related to the vertical motion (ω), a variable of exceptional importance in creating

the sensible weather. If we know the vertical (p-direction) distribution of horizontal

divergence in an atmospheric column, then we can determine the vertical motion

distribution in that column as well. Consider the hypothetical situation depicted in

Figure 4.2 in which horizontal convergence of air occurs near the surface (∇ · �V h < 0)
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Figure 4.2 Illustration of the vertical distribution of divergence associated with upward vertical motion.

The divergence values are measured on isobaric surfaces and ω < 0 corresponds to ascent

and horizontal divergence of air occurs at the top of the column (∇ · �V h > 0). In

accord with the continuity of mass, such a circumstance must be accompanied by

upward vertical motion in the intervening column of air. Integrating (4.8a) with

respect to pressure yields

pt∫
ps

(
∂u

∂x
+ ∂v

∂y

)
∂p = −

pt∫
ps

∂ω (4.8b)

or

(∇ · �V h)pt
− (∇ · �V h)ps

= −[ωpt
− ωps

]. (4.8c)

There can be no vertical motion precisely at ground level, so ωps
= 0. Since (∇ ·

�V h)pt
− (∇ · �V h)ps

> 0, we find that ωpt
< 0 (i.e. there is upward vertical motion at

the top of the hypothetical column) as we suspected.

Another useful physical insight arises from (4.8a) by considering the horizontal

wind as the sum of its geostrophic and ageostrophic components. By substituting
�V h = �V g + �V ag into (4.8a) we get

∇ · �V h = ∇ · (�V g + �V ag ) = ∇ · �V g + ∇ · �V ag = −∂ω

∂p
. (4.9a)

Recall from (4.5) that so long as f is constant, the geostrophic wind is non-divergent

so that (4.9a) becomes

∇ · �V ag = −∂ω

∂p
(4.9b)

which states that the divergence of the ageostrophic wind determines the distribution

of vertical motion in the atmosphere. Thus, it is the ageostrophic wind that is entirely

responsible for the distribution of cyclones, anticyclones, clouds, and precipitation
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in the atmosphere. The ramifications of this statement are profound. Despite the fact

that the mid-latitude atmosphere is predominantly in geostrophic balance, all of the

important weather with which we are confronted develops as a direct result of the

often relatively small ageostrophic portion of the wind.

Finally, we can quite easily express the thermodynamic energy equation in isobaric

coordinates by writing the first law of thermodynamics in pressure coordinates as

c p

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ ω

∂T

∂p

)
− αω = Q̇. (4.10a)

Rearranging the LHS and dividing by c p yields(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
−

(
α

c p

− ∂T

∂p

)
ω = Q̇

C p

(4.10b)

which can be rewritten as(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
− σpω = Q̇

C p

(4.10c)

where

σp =
(

α

c p

− ∂T

∂p

)
is a measure of the static stability in isobaric coordinates. If an atmospheric flow is

assumed to be (1) adiabatic (Q̇ = 0), (2) steady state (∂T/∂t = 0), and (3) stably

stratified (σp > 0), then (4.10c) can be written in a physically illuminating manner

as

(−�V h · ∇T)

−σp

= ω. (4.11)

This expression states that the horizontal temperature advection is related to the ver-

tical motion such that warm (cold) air advection is associated with upward (down-

ward) vertical motions. The cyclone depicted in Figure 4.3 illustrates that these

relationships, though based upon some troubling assumptions (most notably the

steady-state assumption), do tend to be observed in the real mid-latitude atmo-

sphere. For this reason meteorologists are often very interested in the sign of the

horizontal temperature advection.

4.2 Potential Temperature as a Vertical Coordinate

Though adopting pressure as a vertical coordinate simplifies a number of the basic

equations by removing reference to density, air parcels are no more constrained

to remain on an isobaric surface than they are to remain on a geometric height

surface. In many applications it is desirable to choose potential temperature (θ) as

the vertical coordinate since (1) for statically stable stratifications, θ is a monotonic
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Figure 4.3 The 700 hPa temperature advection and vertical motion at 0000 UTC 23 February 2004.

Solid (dotted) lines indicate positive (negative) temperature advection labeled in units of 10−4 K s−1

and contoured every 2(−2) × 10−4 K s−1 starting at 2(−2) × 10−4 K s−1. Vertical motion (omega) is

shaded dark (light) gray where ωω< − 5μμ bar s−1(ωω> 5μμbar s−1)

function of height, and (2) for adiabatic processes air parcels are required to remain

on the same θ surface. This second characteristic means that for adiabatic flow, the

θ surface is an actual material surface along which air parcels must move. In this

section we will briefly outline the basic equations in a coordinate system that uses θ

as the vertical coordinate, the so-called isentropic coordinate system. We begin with

a transformation of the pressure gradient force into isentropic coordinates.

We can convert the pressure gradient force term into isentropic coordinates by

considering the differential (dp) on a surface of constant θ :

dpθ =
(

∂p

∂x

)
y,z,t

dxθ +
(

∂p

∂y

)
x,z,t

dyθ +
(

∂p

∂z

)
x,y,t

dzθ +
(

∂p

∂t

)
x,y,z

dtθ

(4.12a)

where, as in (4.1a), the subscripts refer to the differentiation carried out holding that

variable constant. We will consider the x-direction pressure gradient force here and

so we divide each term in (4.12a) by dxθ to yield(
dp

dx

)
θ

=
(

∂p

∂x

)
y,z,t

+
(

∂p

∂z

)
x,y,t

(
dz

dx

)
θ

(4.12b)
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since the terms (dy/dx)θ and (dt/dx)θ have no physical meaning. With the aid of

the hydrostatic equation we can write(
dp

dx

)
θ

=
(

∂p

∂x

)
y,z,t

− ρg

(
dz

dx

)
θ

(4.12c)

which can be rearranged in order to isolate the x-coordinate expression for the

pressure gradient force as

− 1

ρ

(
∂p

∂x

)
y,z,t

= − 1

ρ

(
dp

dx

)
θ

− g

(
dz

dx

)
θ

. (4.12d)

In order to proceed we must consider an expression for −(1/ρ)(dp/dx)θ which can

be done by evaluating the x-direction log differential of the Poisson equation (3.56)

given by

d ln θ

dx
= d ln T

dx
+ R

c p

(
d ln 1000

dx
− d ln p

dx

)
. (4.13a)

It is clear that d ln 1000/dx = 0, so that the above expression can be written as

1

θ

dθ

dx
= 1

T

dT

dx
− R

c p p

dp

dx
(4.13b)

where all derivatives are taken on an isentropic surface. In that case, dθ/dx is iden-

tically zero and we can isolate an expression for −(1/ρ)(dp/dx)θ as

− 1

ρ

(
dp

dx

)
θ

= − c p p

ρ RT

(
dT

dx

)
θ

= −c p

(
dT

dx

)
θ

. (4.13c)

Substituting the above expression into (4.12d) we get

− 1

ρ

(
∂p

∂x

)
y,z,t

= −c p

(
dT

dx

)
θ

− g

(
dz

dx

)
θ

= − ∂

∂x
(c p T + φ)θ (4.14)

where (c p T + φ)θ is known as the Montgomery streamfunction or Montgomery

potential, often denoted as 
M . An analogous expression can be derived for the y

direction so that the horizontal pressure gradient force in isentropic coordinates is

represented by

P G F = −∇θ
M. (4.15)

We are now able to formulate the horizontal equation of motion in isentropic coor-

dinates as

d �V θ

dt
= −∇θ
M − f k̂ × �V θ + �Fθ (4.16)

where the Lagrangian operator is defined as

d

dt
= ∂

∂t
+ uθ

∂

∂x
+ vθ

∂

∂y
+ dθ

dt

∂

∂θ
.
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It is clear from the last term in the preceding expression that only diabatic heating

can compel a parcel to move in the ‘vertical’ (i.e. θ) direction.

Next, we consider the hydrostatic balance in isentropic coordinates. As has been

the case in the other coordinate systems we have thus far examined, we begin by

taking the ‘vertical’ derivative of the Montgomery potential to get

∂
M

∂θ
= c p

∂T

∂θ
+ g

∂z

∂θ
. (4.17)

Using the height coordinate expression for the hydrostatic equation along with the

chain rule we have

∂p

∂θ

∂θ

∂z
= −ρg

which can be expressed as

g
∂z

∂θ
= − 1

ρ

∂p

∂θ
= − RT

p

∂p

∂θ
. (4.18)

Substituting (4.18) into the RHS of (4.17) and dividing by c p T yields

1

c p T

∂
M

∂θ
= 1

T

∂T

∂θ
− R

c p p

∂p

∂θ
. (4.19)

Logarithmically differentiating the Poisson equation with respect to θ gives

1

θ

∂θ

∂θ
= 1

T

∂T

∂θ
− R

c p p

∂p

∂θ
(4.20)

and so the LHSs of (4.19) and (4.20) can be equated:

1

c p T

∂
M

∂θ
= 1

θ

∂θ

∂θ
= 1

θ
.

Thus, the final expression for ∂
M/∂θ , the hydrostatic equation in isentropic coor-

dinates, is

∂
M

∂θ
= c p T

θ
. (4.21)

Given that isentropic coordinates are monotonic in height under statically stable

conditions, the distance between successive isentropic surfaces can be measured

either as a geometric height interval or as a pressure interval. The advantage of

making this measurement in terms of a pressure interval is that the measurement

can then be converted into an increment of mass. Consider the cube of air depicted

in Figure 4.4. The amount of mass in the volume element δx δy δθ is equal to

δM = −δp

(
δx δy

g

)
= −δp

δθ

(
δx δy δθ

g

)
(4.22)

where the minus sign arises from the fact that p varies in the opposite sense as θ

in the vertical direction (i.e. p decreases in the same direction as θ increases). By
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Figure 4.4 Infinitesimal cube of air in isentropic coordinates. Since θ is monotonic with height in a

stably stratified atmosphere, θ1 and θ2 (θ1 > θ2) occur at different pressures. Note that θ1 > θ2

analogy to (4.6) we can express the continuity of mass as

1

δM

d

dt
(δM) = 0 =

[ −g

δx δy δθ

(
δθ

δp

)]
d

dt

[
−δp

δθ

(
δx δy δθ

g

)]
. (4.23a)

Since g is a constant this can be rewritten as(
−δθ

δp

) (
1

δx δy δθ

) [
d

dt

(
−δp

δθ

)
δx δy δθ +

(
−δp

δθ

)
δy δθ

d

dt
(δx)

+
(

−δp

δθ

)
δx δθ

d

dt
(δy) +

(
−δp

δθ

)
δx δy

d

dt
(δθ)

]
= 0. (4.23b)

Consistent with prior definitions,

d

dt
(δx) = δu,

d

dt
(δy) = δv, and

d

dt
(δθ) = δ

(
dθ

dt

)
.

Employing these definitions and taking the limit as the dimensions δx , δy, and δθ

approach zero, (4.23b) can be simplified to

∂θ

∂p

d

dt

(
∂p

∂θ

)
+ ∂u

∂x
+ ∂v

∂y
+ ∂

∂θ

(
dθ

dt

)
= 0. (4.23c)

Multiplying by ∂p/∂θ and expanding the total derivative yields

∂

∂t

(
∂p

∂θ

)
= −u

∂

∂x

(
∂p

∂θ

)
− v

∂

∂y

(
∂p

∂θ

)
−

(
∂p

∂θ

)
∇ · �V θ −

(
∂p

∂θ

)
∂

∂θ

(
dθ

dt

)
(4.24)

which is the continuity equation in isentropic coordinates. The term on the LHS

of (4.24), (∂/∂t)(∂p/∂θ), represents a measure of the local rate of change of mass.

The first and second terms on the RHS of (4.24) represent the horizontal advection

of mass on isentropic surfaces. The third term, the divergence term, describes the

effect of horizontal divergence on the mass distribution. Convergence (divergence) in

isentropic coordinates increases (decreases) the amount of mass contained between

two θ surfaces. Finally, the fourth term on the RHS of (4.24) is the diabatic heating
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Figure 4.5 Isobaric topography of the 305 K potential temperature surface at 0000 UTC 23 February

2004. Thick solid lines are isopleths of Montgomery streamfunction labeled in m2 s−2 and contoured

every 10 m2 s−2. Thin dashed lines are isobars labeled in hPa and contoured every 50 hPa. The thick

dashed line indicates the leading edge of negative pressure advection; to the north and east of that line

positive pressure advection prevails

term which suggests that vertical gradients in diabatic heating, by changing the

distance between isentropic surfaces, can contribute to local changes in the mass

distribution. We will take advantage of the isentropic form of the continuity equation

again in our discussion of potential vorticity.

Before leaving this brief introduction to isentropic coordinates, it is important

to point out one of the most common applications of this coordinate system. We

have already seen that the Montgomery streamfunction can be used to define a

geostrophic ‘horizontal’ flow on an isentropic surface. Unlike isobaric surfaces, which

are quasi-horizontal, isentropic surfaces can have considerable slope in the vertical.

A simple means of portraying that slope on an isentropic surface is to plot the

isobaric topography of the isentropic surface as shown in Figure 4.5. It is easy to

identify regions on the example isentropic surface where the geostrophic flow is

directed upward (downward) toward lower (higher) pressures. Thus, it would seem

that pressure advection on an isentropic surface gives some indication of the sign

of the vertical motion. We can, in fact, investigate this intriguing relationship by
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considering the Lagrangian derivative of pressure on an isentropic surface:

dp

dt
= ω = ∂p

∂t
+ u

∂p

∂x
+ v

∂p

∂y
+ dθ

dt

(
∂p

∂θ

)
(4.25)

where all the derivatives are taken on an isentropic surface. Under adiabatic condi-

tions, the last term on the RHS of (4.25) can be neglected. We find, however, that

an additional assumption needs to be made in order that pressure advection (the

middle two terms on the RHS of (4.25)) alone can determine the sign of the vertical

motion – that is, the pressure distribution has to be in steady state (i.e. ∂p/∂t = 0).

This condition is not often met in the atmosphere as the structure of an individual

weather system is continually changing and, therefore, so is the topography of its

numerous isentropic surfaces. Despite this difficulty, it is often possible to determine

the sign of the vertical motion correctly by considering the pressure advection on an

isentropic surface.

Finally, consider the 700 hPa isobar on the 305 K isentropic surface depicted in

Figure 4.5. The Poisson equation involves temperature, pressure, and θ . Thus, there is

a unique value of temperature at 700 hPa that corresponds to 305 K (namely, 275.4 K).

Thus, the 700 hPa isobar on the 305 K isentropic surface corresponds exactly to the

275.4 K isotherm on the 700 hPa isobaric surface! This simple example leads us to a

simple rule:

An isobar on an isentropic surface is equivalent

to an isotherm on an isobaric surface.

Thus, the diagnostic of pressure advection on an isentropic surface is very similar

to that of temperature advection on an isobaric surface. As a consequence, it is not

unusual for synoptic meteorologists to give a rough diagnosis of the vertical motion

in a mid-latitude weather system by considering the sign of the temperature advec-

tion. This diagnostic is limited in precisely the same way as the pressure advection

diagnostic we just considered with respect to Figure 4.5. It is only valid for adiabatic,

steady-state conditions in which the static stability is positive. This last characteristic

of the adiabatic method for diagnosing vertical motions in the isobaric coordinate

system is buried in the monotonic assumption that underlies the use of isentropic

coordinates. We will see in later chapters that much more satisfying diagnostics of the

vertical motion in mid-latitude weather systems arise from more stringent dynamical

considerations.

4.3 The Thermal Wind Balance

Recall that the hypsometric equation (3.6) suggested that the thickness between two

isobaric surfaces is smaller in a cold column of air than in a warm column. Consider

a hypothetical example in which a cold column and a warm column are horizontally

juxtaposed, as in Figure 4.6. The distance between the 1000 and 800 hPa surfaces must

be larger in the warm air than the cold so that the 800 hPa surface slopes downward
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Figure 4.6 Vertical cross-section across a region of horizontal temperature contrast. Solid black lines

are isobars. Dashed gray lines are elevation contours. The lack of PGF at Z = 0 km leads to ‘Zero wind’

there. At 5.5 km in the same vertical column there is a large geostrophic wind into the page, signified

by the gray ‘X’ in the circle. The vertical shear of the geostrophic wind is signified by the darker ‘X’ in

the center of the column

toward the cold air as illustrated. Similarly, the distance between the 800 and 500 hPa

surfaces must be larger in the warm air than the cold and so the 500 hPa surface slopes

even more dramatically downward toward the cold air. Thus, we find that the slope of

the isobaric surfaces increases with increasing height in the presence of a horizontal

contrast in column average temperature. Of course, the slope of an isobaric surface

is equivalent to the existence of a geopotential gradient along that surface since the

geopotential difference is simply g�z. We now know that the pressure gradient

force on an isobaric surface is related to the geopotential gradient on that surface.

Thus, the increased slope to the isobaric surfaces in Figure 4.6 also means that the

magnitude of the horizontal pressure gradient force increases with increasing height.

Consequently, the geostrophic wind must be increasing with increasing height as well.

Therefore, there is a physical relationship between the vertical shear of the geostrophic

wind (i.e. the manner in which the geostrophic wind changes with height) and the

horizontal temperature gradient. We now explore the mathematical description of

this relationship by first considering the hydrostatic equation in isobaric coordinates.

Recall that the hydrostatic equation is given by ∂p/∂z = −ρg . This is easily re-

arranged into

g∂z

∂p
= − 1

ρ
= − RT

p
(4.26a)

and, since g∂z = ∂φ, it can be expressed as

∂φ

∂p
= − RT

p
, (4.26b)
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Figure 4.7 (a) Graphical depiction of the thermal wind vector obtained by subtracting the 1000 hPa

geostrophic wind from the 500 hPa geostrophic wind. (b) Illustration of the relationship between the

thermal wind vector and the 1000–500 hPa thickness isopleths. Dashed lines are 500 hPa geopotential

heights, dotted lines are 1000 hPa geopotential heights, and the solid black lines are of 1000–500 hPa

thickness. All isopleths are labeled in m and contoured every 60 m

the isobaric form of the hydrostatic equation. Now, the vertical derivative (in isobaric

coordinates) of the geostrophic wind relationship (�V g = (k̂/ f ) × ∇φ) is

∂ �V g

∂p
= k̂

f
× ∇ ∂φ

∂p
. (4.27a)

Substituting for ∂φ/∂p from (4.26b) yields

∂ �V g

∂p
= k̂

f
× ∇ − RT

p
=

(−R

f p

)
k̂ × ∇T (4.27b)

confirming the physics depicted in Figure 4.6: that the vertical shear of the geostrophic

wind is directly related to the horizontal temperature gradient. Based upon this

temperature gradient dependence, the vertical shear of the geostrophic wind is known

as the thermal wind. The component form of (4.27b) yields

∂ug

∂p
= R

f p

∂T

∂y
and

∂vg

∂p
= − R

f p

∂T

∂x
. (4.28)

Returning to Figure 4.6, we find that ∂T/∂x > 0 and therefore ∂vg /∂p < 0 which

is consistent with an increase in vg with height as depicted. In graphical form, the

thermal wind vector is simply the vector difference between the geostrophic wind at

some upper level in the atmosphere and the geostrophic wind at some lower level, as

shown in Figure 4.7(a). Consequently, the thermal wind vector (�V T ) is actually best

represented by �V T = −∂ �V g /∂p. From (4.27a) it is clear that the thermal wind vector

will be parallel to isopleths of thickness, with lower thickness to its left (right) in the

northern (southern) hemisphere (Figure 4.7b). Given this physical relationship, it

is possible to determine the sign of the column-averaged geostrophic temperature

advection simply by knowing the direction of the thermal wind.
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Figure 4.8 Depiction of geostrophic winds veering with height in the northern hemisphere. The thick

black arrow is the column-averaged geostrophic wind. Solid lines are isopleths of 1000–500 hPa thick-

ness. The column-averaged wind is clearly directed across thickness isopleths from large values to low

values, indicative of column-averaged geostrophic warm air advection

Consider, for instance, the situation depicted in Figure 4.8 in which the geostrophic

wind direction veers (turns clockwise) with height. The thermal wind vector, as

represented by the thick arrow, is given by �V T = �V g500
− �V g1000

. Assuming the situation

is occurring in the northern hemisphere, the thickness isopleths must be drawn as

in Figure 4.8. The column-averaged geostrophic temperature advection is given by

−�V g · ∇T or − �V g · ∇
(

−∂φ

∂p

)
(4.29)

where �V g is the column-averaged geostrophic wind (�V g = (�V g500
+ �V g1000

)/2) and

the column-averaged temperature is related to the thickness by the hypsometric

equation. Thus, we find that under these circumstances the average geostrophic wind

is directed across the thickness isopleths from higher values to lower values, indicating

column-averaged geostrophic warm air advection. Therefore, simple knowledge of

the vertical distribution of the geostrophic wind at a point can be used to determine

a portion of the temperature tendency in the vicinity of that point.

Another clear application of the thermal wind relationship that has a bearing

on the structure and behavior of mid-latitude weather systems is consideration of

the mid-latitude jet stream. The jet stream is a core of high-speed winds located

at the top of the troposphere as shown in Figure 4.9(a). Given that the winds are

predominantly geostrophic at middle latitudes, a large fraction of the total wind in

the jet is described by the geostrophic wind. A vertical cross-section of geostrophic

winds through the mid-latitude jet stream is shown in Figure 4.9(b). Note that

there is considerable vertical shear of the geostrophic wind from ∼700 to 350 hPa.

The thermal wind relationship demands that this vertical shear be accompanied
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by a horizontal temperature contrast. Figure 4.9(b), which also shows the vertical

cross-section of potential temperature through the jet stream core, illustrates that a

significant horizontal temperature contrast is present through the entire troposphere

and lower stratosphere. Such a temperature contrast is characteristic of the fronts

within extratropical cyclones. Figure 4.9(a) shows where the jet stream is located in

relation to an associated extratropical cyclone. Notice that the jet streak, the local

portion of the broader jet stream, is in the vicinity of the surface cold front. This is,

of course, not an accident but a mandate since the large vertical geostrophic shears

associated with the jet streak must be associated with a large horizontal temperature

contrast such as the one that characterizes the cold frontal zone. This is one reason

that the position of the jet stream is so important in the discussion of mid-latitude

weather systems.

From a broader perspective, the thermal wind relationship also has important

dynamical consequences for the general circulation of the atmosphere. Given that

the Earth is an oblate spheroid, it is not heated evenly by the Sun: the equatorial

regions are warmer than the polar regions. As a consequence, there is a pole to

equator temperature contrast in both hemispheres so that time-averaged thickness

isopleths ring the Earth like latitude lines with a poleward-directed temperature

gradient vector. The thermal wind relationship mandates that this thermal contrast

be reflected by the presence of westerly vertical shear in both hemispheres. Thus, the

fundamental fact that mid-latitude weather systems move from west to east on Earth

is a direct consequence of the uneven heating of the Earth by the Sun combined with

the primacy of the thermal wind balance at middle latitudes.

Finally, the thermal wind relationship forms the cornerstone of modern dynami-

cal meteorology as well as the first-order balance for the flow in the middle latitudes

on Earth. This latter point is a direct consequence of the fact that the mid-latitude

atmosphere is, to first order, geostrophically and hydrostatically balanced. The com-

bination of these balances into the thermal wind balance will provide us with a

powerful diagnostic tool for understanding the structure, dynamics, and evolution

of mid-latitude weather systems in subsequent chapters.

4.4 Natural Coordinates and Balanced Flows

It is probably clear by this point in our investigation of dynamics that, despite the

potential for great complication, the gross behavior of the mid-latitude atmosphere

can be understood in terms of relatively simple approximate force balances. Addi-

tional insight into the variety of simple force balances relevant to understanding the

atmosphere can be achieved by idealizing the flow as steady state and purely horizon-

tal (i.e. without vertical motions). Despite the unrealistic nature of these idealizations,

important new insights arise through entertaining these simplifications.

In this section, we will again consider the frictionless equation of motion

d �V
dt

= −∇pφ − f k̂ × �V (4.30)
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Figure 4.10 Schematic illustrating the relationship between the horizontal flow and the natural coor-

dinate unit vectors, t̂ and n̂. The gray dotted line is a streamline in flow parallel to geopotential height

contours

but in a Cartesian coordinate system based upon the orientation of the fluid flow. Such

a system is known as natural coordinates and it will prove to be very useful in these

investigations. One might wonder why should we bother with yet another coordinate

transformation? The motivation for the adoption of natural coordinates lies in the

advantage it produces in describing the acceleration term in (4.30). Acceleration is a

vector quantity so it can be the result of (1) a change in flow speed, or (2) a change

in flow direction, resulting from curvature in the flow. Upon expanding (4.30) in

a system of natural coordinates, these aspects of acceleration can be considered

separately, thus providing considerable physical insight.

We begin the transformation by defining the natural coordinate system as a Carte-

sian coordinate system based upon a set of orthogonal unit vectors t̂, n̂, and k̂. As

illustrated in Figure 4.10, t̂ is oriented parallel to the horizontal velocity vector at

each point, n̂ is oriented normal to the horizontal flow at each point such that it is

positive to the left of the flow direction, and k̂ is directed upward. In this natural coor-

dinate system the velocity vector, �V , is written as �V = Vt̂ where V is the magnitude

of the velocity vector and can be expressed as V = ds/dt where s is a measure of the

distance in the t̂ direction. The acceleration, d �V/dt, is therefore given by

d �V
dt

= d

dt
(Vt̂) = t̂

dV

dt
+ V

dt̂

dt
. (4.31)

We next need to develop an expression for the rate of change of direction, dt̂/dt.

This direction change is dependent on the presence of flow curvature as illustrated

←
Figure 4.9 (a) The 300 hPa isotachs of the geostrophic wind at 0000 UTC 23 February 2004. Isotachs

are labeled in m s−1 and contoured every 10 m s−1 beginning at 55 m s −1. Heavy arrows indicate the

direction of the wind. Vertical cross-section along line A–B shown in (b). Light gray L and frontal symbols

indicate position of surface cyclone at this time. (b) Vertical cross-section of geostrophic isotachs and

potential temperature along line A–B in (a). Isotachs are solid black lines labeled and contoured as in (a).

Gray dashed lines are isentropes labeled in K and contoured every 5 K. Note that the region of maximum

vertical shear is also the region of maximum horizontal temperature gradient throughout the troposphere
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Figure 4.11 The rate of change of the natural coordinate vector t̂ following the motion. R is the radius

of curvature of the parcel trajectory

in Figure 4.11. In order to describe this curvature, we adopt the convention that the

radius of curvature of parcel trajectories (i.e. R = radius of curvature following the

parcel motion) will be positive when n̂ is directed toward the center of the curva-

ture. Thus, R > 0 for counterclockwise flow and R < 0 for clockwise flow. For the

schematic given in Figure 4.11 we see that δs = Rδψ and, by similarity, δt̂ = ∣∣t̂∣∣ δψ .

Equating the expressions for δψ from both expressions we get

δψ = δs

R
= δt̂∣∣t̂∣∣ = δt̂ (4.32)

since t̂ is a unit vector. Notice that as δs → 0, δt̂ is parallel to n̂ so that

lim
δs→0

δt̂

δs
= dt̂

ds
=

(
1

R

)
n̂ = n̂

R
. (4.33a)

Therefore,

dt̂

dt
= dt̂

ds

ds

dt
=

(
n̂

R

)
V =

(
V

R

)
n̂ (4.33b)

since V = ds/dt by definition. Thus, we can rewrite (4.31) as

d �V
dt

= dV

dt
t̂ + V 2

R
n̂ (4.34)

which demonstrates that the acceleration following the motion is the sum of (1) the

rate of change of the speed of the air parcel, and (2) its centripetal acceleration arising

from curvature in the flow.

Since the Coriolis force acts normal to the flow it must be in the n̂ direction. In

the northern hemisphere, the Coriolis force acts to the right of the motion, so in
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the −n̂ direction. Thus, we represent the Coriolis force as COR = −( f V)n̂. In the

southern hemisphere, the Coriolis force acts to the left of the motion, the n̂ direction.

Given that latitude is positive (negative) in the northern (southern) hemisphere, by

convention, the same expression for the Coriolis force

− f k̂ × �V = −( f V)n̂ (4.35)

is applicable in the southern hemisphere. The pressure gradient force has components

in both the along-flow (t̂) and across-flow (n̂) directions so it can be rewritten as

−∇pφ = −
(

∂φ

∂s
t̂ + ∂φ

∂n
n̂

)
. (4.36)

Thus, the frictionless equation of motion (4.31) can be rewritten in natural coordi-

nates as (
dV

dt
t̂ + V 2

R
n̂

)
= −

(
∂φ

∂s
t̂ + ∂φ

∂n
n̂

)
− ( f V)n̂ (4.37)

which can be split into its along-flow component

dV

dt
= −∂φ

∂s
(4.38a)

and its across-flow component;

V 2

R
+ f V = −∂φ

∂n
. (4.38b)

For motion parallel to geopotential height contours, ∂φ/∂s = 0 (i.e. there is no

change in φ in the along-flow direction), and the speed of the flow is constant. In

this case, the flow can be classified into a number of simple categories based upon

the relative contributions of the three terms in (4.38b), the n̂-component equation

of motion.

4.4.1 Geostrophic flow

Recall that in considering the n̂ equation of motion we are implicitly considering a

flow in which the speed is constant. If we further consider a perfectly straight flow,

then |R| = ∞. In such a case, only the Coriolis and pressure gradient forces remain

from (4.38b) so that

f V = −∂φ

∂n
. (4.39a)

Accordingly, the flow is in geostrophic balance and the geostrophic wind is ex-

pressed as

Vg = − 1

f

∂φ

∂n
. (4.39b)
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4.4.2 Inertial flow

Occasionally a fluid may be compelled to move by something other than a pressure

gradient force internal to the fluid. A simple example of this is the initiation of

fluid flow in a body of water. Quite commonly such motions (known as currents)

are generated by the influence of the wind stress upon the surface of the water.1 In

such cases, the pressure gradient force is zero implying that the geopotential field is

horizontally uniform on an isobaric surface. Thus only forces arising from the inertia

of the fluid remain in the governing equations and the n̂ equation of motion reduces

to a balance between the centrifugal and Coriolis forces

V 2

R
+ f V = 0. (4.40a)

The resulting motion is known as inertial motion. Solving (4.40a) for R, the radius

of curvature of parcel trajectories characteristic of such inertial motion, yields

R = − V

f
. (4.40b)

Thus, so long as R is fairly small (as is nearly always the case since V is small for

such motions), the trajectories of purely inertial motions follow circular, anticyclonic

paths. Given that the parcel speeds are constant (i.e. ∇φ = 0), the amount of time

needed to trace out a circle of radius R is

t = Distance Covered by Parcel in a Circular Path

Speed of the Parcel

=
∣∣∣∣2π R

V

∣∣∣∣ =
∣∣∣∣ 2π R

−R f

∣∣∣∣ =
∣∣∣∣2π

f

∣∣∣∣ . (4.41a)

Of course, this amount of time is, by definition, the period of a single oscillation of

this inertial motion. Thus, we can rewrite (4.41a) as

P = 2π

2� sin φ
= π

� sin φ
. (4.41b)

The numerator in (4.41b) refers toπ radians, equivalent to half of a complete rotation,

while � is the rotation rate of the Earth (1 rotation per sidereal day). Thus, (4.41b)

can be expressed as

P = π

� sin φ
=

(
1/2 rotation

1 rotation/day

)
1

sin φ
= 1/2day

sin φ
(4.41c)

known as the half-pendulum day. An example of evidence for inertial motion in

the ocean is given in Figure 4.12 which illustrates the kinetic energy spectrum in the

1 There are, however, very few, if any, examples of motion initiated in the atmosphere in the absence of an
atmospheric pressure gradient force.
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Figure 4.12 Power spectrum of kinetic energy (KE) at 30 m in the ocean near Barbados (13◦N). Such

a plot of KE per unit frequency interval vs. frequency illustrates the partition of total KE into oscillations

of different periods. Two strong peaks are evident: the twice-daily tides and the inertial frequency. (After

Warsh et al. 1971. Reproduced with permission of the American Meteorological Society)

ocean for a location near 13◦N. It is clear that two prominent spikes in kinetic energy,

the results of two prominent modes of fluid flow at that location, occur in association

with (1) the twice-daily (semi-diurnal) tides, and (2) an inertial oscillation with a

period of nearly 2 days. Using (4.41c) at 13◦N we find that the period of the inertial

oscillation there is P = 2.2 days.

4.4.3 Cyclostrophic flow

There are a number of circumstances under which the Coriolis force may exert very

little influence on balanced motions. On Earth, fluid flows located at low latitudes

and/or of small horizontal scale will not be influenced significantly by the Coriolis

force. Extraterrestrially, some of the planets in the Solar System (i.e. Venus and

Titan) have slow rotation rates which render the Coriolis force weak. Under any such

circumstances, the n̂ equation of motion reduces to a balance between the centrifugal

force and the pressure gradient force

V 2

R
= −∂φ

∂n
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Figure 4.13 Illustration of the force balance in cyclostrophic flow. The pressure gradient force (PGF)

and centrifugal force (CEN) are represented by the shaded and open arrows, respectively, while the wind

vector is indicated by the bold black arrow. The signs of both the radius of curvature and the geopotential

height gradients are also given for (a) cyclonic flow (b) anticyclonic flow

which can be solved for V to yield

V =
(

−R
∂φ

∂n

)1/2

. (4.42)

The balance between the centrifugal and pressure gradient forces is known as

cyclostrophic balance and V is, therefore, the cyclostrophic wind. Given that there

is no Coriolis force involved in the cyclostrophic balance, and that the centrifugal

force is always directed outward from the center of rotation, there is no preference

for cyclonic or anticyclonic flow around a region of low geopotential as illustrated

in Figure 4.13.

Note that the cyclostrophic balance is a valid approximation provided that the

centrifugal force (V 2/R) is much larger than the Coriolis force ( f V). Making this

comparison in the form of a ratio of forces yields

V 2/R

f V
= V

f R
.

Recall that V/ f R is called the Rossby number. Thus, cyclostrophic balance is the

preferred balance for large-Rossby-number flows. Tornadoes can be reasonably ap-

proximated as very small-scale, circular vortices with tangential wind speeds of the

order of 100 m s−1 not more than 1000 m from the center of the vortex. If such a

tornado occurs in the central plains of North America, where the latitude is ∼40◦N

( f ≈ 10−4 s−1), then the Rossby number for such a flow is

Ro = V

f R
= 100 m s −1

(10−4s −1)(1000 m)
= 1000



JWBK072c04 JWBK072/Martin February 23, 2006 23:58 Char Count= 0

4.4 NATURAL COORDINATES AND BALANCED FLOWS 101

Figure 4.14 Infrared satellite images (NASA) of the Venusian cloud tops taken by Pioneer Venus over

a 4 day period in April 1979: (a) 16 April 1979; (b) 17 April 1979; (c) 18 April 1979; (d) 19 April

1979. The thick dashed lines trace the Y-shaped feature in the Venusian clouds that circles the planet

every 4 days, evidence of the super-rotation of the Venusian atmosphere

which certainly qualifyies as very large. Thus, the high wind speeds observed in

tornadoes are, to a first order, in cyclostrophic balance. Consistent with this con-

clusion, anticyclonically spinning tornadic vortices are occasionally observed. The

much smaller and less violent dust devils and small water spouts that share charac-

teristics of tornadic storms exhibit even less preference for cyclonic or anticyclonic

rotation, occurring frequently in both varieties.

Two striking examples of cyclostrophically balanced flows exist on other planets

in the Solar System. The planet Venus has a period of rotation of 243 Earth days

and it rotates east to west! Consequently, the stratospheric winds in the Venusian

atmosphere are directed from east to west but these winds are in excess of 100 m s−1,

circumnavigating the planet in 4 days as illustrated in Figure 4.14. Since such wind

speeds far exceed the angular speed of the solid planet beneath them, the Venusian

atmosphere is said to be super-rotating, a still poorly understood circumstance. The

Rossby number of such a flow is

V

f R
≈ 100 m s −1

(10−7s −1)(∼ 107m)
≈ 100.

Saturn’s largest moon, Titan, takes nearly 16 Earth days to rotate once and so it

also has a very small Coriolis force. The stratospheric winds remotely sensed by the
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Figure 4.15 Solution tree for the gradient wind relationship

Voyager spacecraft are on the order of 100 m s−1. Consequently, the Rossby number

is ∼10 and the flow is in approximate cyclostrophic balance.

4.4.4 Gradient flow

Cursory examination of a randomly selected 500 hPa analysis of geopotential height

and winds, such as in Figure 4.1, illustrates that, even in the face of variable flow

curvature, horizontal, frictionless flow nearly parallel to the geopotential height

lines is the rule rather than the exception at middle latitudes. Such flow is known

as gradient flow and it is a balance between the pressure gradient force, the Coriolis

force, and the centrifugal force arising from the flow curvature. As such, the gradient

wind equation is simply the n̂ equation of motion:

V 2

R
+ f V = −∂φ

∂n
.

This expression is quadratic in V so, using the quadratic formula, we find that

V = − f ± √
f 2 − 4(1/R)(∂φ/∂n)

(2/R)
= − f R

2
±

(
f 2 R2

4
− R

∂φ

∂n

)1/2

. (4.43)

This complicated-looking expression has a number of mathematically possible solu-

tions, not all of which correspond to physical reality. In order to isolate the physically

relevant solutions, we must first determine how many mathematical solutions ex-

ist. There will be both a positive and a negative root to (4.43), each of which has

a solution for both ∂φ/∂n > 0 and ∂φ/∂n < 0. Each of those four solutions has

solutions for both R > 0 and R < 0. Thus, there are a total of eight mathematically

possible solutions for (4.43) as illustrated schematically in Figure 4.15. In order to be

a physically relevant solution, however, V must be a positive real number. We begin

our investigation of the solution tree in Figure 4.15 by considering cases in which

∂φ/∂n > 0.
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Figure 4.16 Force balance for an anomalous low in the northern hemisphere. The pressure gradient,

Coriolis, and centrifugal forces are represented by PGF, CO, and CEN, respectively

(a) Solutions for ∂φ/∂n > 0, R > 0

Under the condition of ∂φ/∂n > 0 andR > 0 there are both positive and negative

roots. Since the product −R∂φ/∂n < 0 under the given conditions, the radical in

(4.43) is rendered less than f R/2. Whether this radical is added to (positive root)

or subtracted from (negative root) the leading − f R
2

term in (4.43), the resulting

expression for V is negative and so both solutions are unphysical.

(b) Solutions for ∂φ/∂n > 0, R < 0

Under the given conditions, the product −R∂φ/∂n > 0 so the radical in (4.43)

will be greater than | f R|/2. Also, since R < 0, the leading − f R/2 term is posi-

tive. Thus, the positive root produces a positive V and corresponds to a physical

solution. The character of the flow associated with this solution is illustrated in Fig-

ure 4.16. In the northern hemisphere R < 0 implies clockwise (anticyclonic) flow

so n̂ must be directed outward from the center of rotation. Given that ∂φ/∂n > 0,

there must be a geopotential minimum at the center of rotation (i.e. the distur-

bance is a low-pressure system). Consequently, the pressure gradient force is di-

rected inward as is the Coriolis force (which must act to the right of the wind).

The centrifugal force is always directed outward from the center of rotation and

must be large enough, in this case, to balance the other two forces. Since this

case illustrates gradient wind balance achieved with a clockwise flow around a

region of low pressure, it is known as the anomalous low. Though it represents

a physically possible solution, it is, as you might suspect, rarely observed in na-

ture. Recalling that under these conditions the radical term in (4.43) is greater than

| f R|/2, the negative root produces a negative V . This corresponds to an unphysical

solution.
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Figure 4.17 Force balance for a regular low in the northern hemisphere. The pressure gradient,

Coriolis, and centrifugal forces are represented by PGF, CO, and CEN, respectively

(c) Solutions for ∂φ/∂n < 0, R > 0

Under the given conditions, the product −R∂φ/∂n > 0 so the term in the radical of

(4.43) will be larger than f R/2. Upon adding this to the leading − f R/2 term, the

positive root returns a positive V corresponding to a physical solution illustrated in

Figure 4.17. Once again considering flow in the northern hemisphere, R > 0 implies

counterclockwise (cyclonic) flow around the center of rotation so that n̂ is directed

inward. Given ∂φ/∂n < 0, the flow rotates around a minimum in geopotential. Thus,

the pressure gradient force is directed toward the center of rotation and is balanced

by outward-directed Coriolis and centrifugal forces. Such cyclonic flow around a

region of low geopotential characterizes the commonly observed regular low. In the

negative root, the radical is subtracted from − f R/2 yielding a negative V which

corresponds to an unphysical solution.

(d) Solutions for ∂φ/∂n < 0, R < 0

Under these conditions, the product −R∂φ/∂n < 0. Depending on the magnitude of

this product, the term in the radical of (4.43) could be less than zero, in which case the

solution (positive or negative root) would be imaginary and consequently unphysical.

If the radical term is not negative, it is certainly less than f R/2 but greater than zero.

In that case, the solution for the positive root is V ≥ − f R/2 which is positive

since R < 0. Thus, the positive root corresponds to the physical solution illustrated

in Figure 4.18 in which clockwise (anticyclonic in the northern hemisphere) flow

around the center of rotation occurs. Given that ∂φ/∂n < 0, the center of the rotation

must be a maximum in geopotential height and the pressure gradient force is directed

outward along with the centrifugal force. The result is a clockwise flow around the

region of high geopotential, a seemingly regular circumstance. The nature of the force
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Figure 4.18 Force balance for an anomalous high in the northern hemisphere. The pressure gradient,

Coriolis, and centrifugal forces are represented by PGF, CO, and CEN, respectively

balance in this case, however, suggests otherwise. Since this case is characterized by

V ≥ − f R/2, then it is also true that

V 2

R
≥ − f V

2
or 2

V 2

R
≥ − f V (4.44)

which states that the Coriolis force is less than twice the centrifugal force. This implies

that the centrifugal force must be larger than the pressure gradient force, a condition

that earns this particular version of the gradient wind balance the title anomalous

high.

Finally, provided that the radical term in (4.43) is real, if it is subtracted from

− f R/2, then V ≤ − f R/2 which is positive given that R < 0. This corresponds to

a physical solution in the northern hemisphere in which clockwise (anticyclonic)

flow around the center of rotation occurs as illustrated in Figure 4.19. The center of

the rotation must be a maximum in geopotential since ∂φ/∂n < 0, so the solution

again describes anticyclonic flow around a region of high geopotential. In this case,

however, the outward-directed pressure gradient force is larger than the centrifugal

force and the solution is therefore known as the regular high.

Recall that the existence of both the anomalous and regular highs is impossible

unless ( f 2 R2/4 − R∂φ/∂n)1/2 ≥ 0. This condition can be rewritten as f 2 R2/4 ≥
R∂φ/∂n. If we consider the absolute values of R and ∂φ/∂n, then∣∣∣∣∂φ

∂n

∣∣∣∣ ≤ |R| f 2

4
(4.45)

suggesting that there is a constraint on the magnitude of the pressure gradient force

in the vicinity of high-pressure systems such that at small radius from the center, the
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Figure 4.19 Force balance for a regular high in the northern hemisphere. The pressure gradient,

Coriolis, and centrifugal forces are represented by PGF, CO, and CEN, respectively

pressure gradient must become very small, eventually vanishing at the center of the

high. There is no such constraint on regions of low pressure. This stark difference

is often made manifest on sea-level pressure analyses such as the one shown in

Figure 4.20. Notice how amorphous the isobaric pattern becomes near the anticyclone

and how different that is from the isobaric field around the cyclone. This is more

than an intellectual curiosity, of course, as the weak pressure gradient near the center

of the anticyclone dictates that the winds will be light to non-existent in its vicinity.

Such large-scale conditions can lead to the production of devastating sensible weather

events such as very low overnight temperatures in winter and fog formation at any

time of year.

Daily perusal of upper tropospheric geopotential height and sea-level pressure

analyses demonstrates that surface cyclones (anticyclones) are invariably located

downstream (i.e. to the east) of an upper-level trough (ridge) axis. This characteristic

distribution can be explained through consideration of the gradient wind balance

combined with the continuity of mass. Returning to (4.38b) and substituting for

−∂φ/∂n from the definition of the geostrophic wind,

Vg = − 1

f

∂φ

∂n
,

the gradient wind balance can be rewritten as

V 2

R
+ f V − f Vg = 0. (4.46a)

Thus, a ratio of the geostrophic wind to the gradient wind is given by

Vg

V
= 1 + V

f R
= 1 + Ro (4.46b)
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Figure 4.21 Dark arrows represent the along-flow ageostrophic winds in a 500 hPa northern hemi-

sphere trough–ridge couplet. Regions of relatively high and low geopotential height are represented by

H and L, respectively. Regions of middle tropospheric convergence and divergence of the ageostrophic

winds are represented by the shaded C and D, respectively

demonstrating that for (1) cyclonic flow (R > 0), the geostrophic wind is larger than

the gradient wind, and for (2) anticyclonic flow (R < 0), the geostrophic wind is

smaller than the gradient wind. If one considers the gradient wind to be the real wind

then the ageostrophic wind is given by

Vag = V − Vg = − V 2

f R

and is parallel to the full wind at every point. Since the real wind is better described by

the gradient wind than the geostrophic wind in regions of flow curvature, we can say

that the real flow through troughs is subgeostrophic, whereas it is supergeostrophic

through ridges as illustrated in the schematic 500 hPa flow shown in Figure 4.21.

Notice that the ageostrophic winds at this level diverge downstream (i.e. to the right)

of the trough axis and converge upstream of it. Now, the continuity equation requires

that the divergence aloft on the downstream side of the trough axis be accompanied

by surface convergence and upward vertical motion in the intervening column. This

upward vertical motion is responsible for the production of the clouds, precipitation,

and sea-level pressure minimum associated with the surface cyclone. Conversely,

the convergence aloft upstream of the trough axis (or, equivalently, downstream of

the ridge axis) must be accompanied by surface divergence and downward vertical

motion in the intervening column. This downward vertical motion is responsible for

the generally clear skies and sea-level pressure maximum associated with the surface

anticyclone.

4.5 The Relationship between Trajectories and Streamlines

Throughout this discussion we have been making reference to the radius of curvature

(R) in formulating the centrifugal force (V 2/R). In considering the gradient wind

balance we are, of course, considering the balance of forces acting on an individual
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Figure 4.22 Streamlines and trajectories in an eastward-moving upper trough. Thin solid lines rep-

resent streamlines of the flow at some initial time while the dashed lines represent streamlines at some

later time. The bold arrows (AD, AC, and AB) represent the trajectories of air parcels moving slower

than the wave, at the same speed as the wave, and faster than the wave, respectively

parcel of air. Therefore, our expression for R has represented the radius of curvature

of the path of an individual air parcel, a parcel trajectory. The geopotential height

lines on a typical 500 hPa analysis are related to the gradient wind direction but

are, in fact, streamlines of that flow – not trajectories. It is therefore important to

delineate clearly the physical distinction between streamlines and trajectories. We

can do so by first defining each term. Streamlines will be considered lines that are

everywhere parallel to the instantaneous wind velocity. Trajectories will be considered

lines that describe the actual path of an individual air parcel through space and time.

It is clear that both streamlines and trajectories will have a radius of curvature. The

difference between the two is illustrated in Figure 4.22. Assuming that the shape

of the wave in Figure 4.22 does not change as the wave progresses eastward, then

the radius of curvature of the streamlines, Rs , is constant. Note, however, that the

radius of curvature of the trajectory (Rt , what we have been referring to as R) for

a parcel of air originally located at the base of the trough depends upon the speed

of the parcel with respect to the speed of the wave through which it is moving. It is

evident that this dependence can give the parcel not only different magnitudes of Rt

but even different signs as compared to Rs ! The distinction between Rs and Rt can

be described mathematically as well with the aid of Figure 4.23. From the picture it

is clear that

δs = Rδβ or
δβ

δs
= 1

R
(4.47a)

where β is the angular direction of the wind, s is a measure of the distance along the

path, and R is the radius of curvature. Now, a trajectory represents the rate of change
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Figure 4.23 Illustration of the relationship between the change in the direction of the wind, δβ, and

the radius of curvature, R

of wind direction following the parcel so for a trajectory the Lagrangian derivative

is appropriate and

dβ

ds
= 1

Rt

. (4.47b)

A streamline represents the local rate of change of the wind direction so that for a

streamline

∂β

∂s
= 1

Rs

. (4.47c)

Since V = ds/dt by definition, we have

dβ

dt
= dβ

ds

ds

dt
= V

Rt

(4.47d)

representing the change in direction following a parcel. This Lagrangian change in

direction can also be expressed as

dβ

dt
= ∂β

∂t
+ V

∂β

∂s
= ∂β

∂t
+ V

Rs

. (4.47e)

Equating these two expressions for dβ/dt yields

∂β

∂t
= V

(
1

Rt

− 1

Rs

)
(4.48)

which describes the local rate of change of direction. The practical use of (4.48) is

limited because a small time increment between observations is necessary to make a

reasonable estimate of∂β/∂t. Despite this operational limitation, (4.48) does confirm

the intuitive suspicion that when the local rate of change of the wind direction is zero,

then trajectories and streamlines coincide. In other words, in a steady-state flow the

trajectories and streamlines of the flow are the same thing, but this is a very special

case. In summary, it is important to bear in mind that in any application of (4.38b)

that includes reference to the centrifugal force term, R represents Rt , not Rs .



JWBK072c04 JWBK072/Martin February 23, 2006 23:58 Char Count= 0

PROBLEMS 111

Selected References

Bluestein, Synoptic-Dynamic Meteorology in Midlatitudes, Volume I, provides discussion on bal-

anced flows.

Hess, Introduction to Theoretical Meteorology, offers further discussion on balanced flows and

isobaric coordinates.

Palmén and Newton, Atmospheric Circulation Systems, is another fine reference for this material.

Holton, An Introduction to Dynamic Meteorology, discusses balanced flows and natural coordinates.

Sutcliffe and Godart (1942) is the seminal reference on isobaric analysis.

Montgomery (1937) derives the isentropic streamfunction that bears his name.

Carlson, Mid-Latitude Weather Systems, provides an in-depth discussion of the use of isentropic

coordinates.

Problems

4.1. Imagine that a hockey puck is given an initial horizontal impulse on an infinite, flat,

frictionless ice surface at 45◦N.

(a) What force(s) act(s) on the puck after the initial impulse? Explain.

(b) Draw a picture that illustrates the path of the puck under these conditions. Explain

your drawing.

(c) Under the influence of the force(s) mentioned in (a), does the speed of the puck

ever change during this path? Explain your answer.

(d) Using the x and y equations of motion appropriate for the given situation, derive

a functional expression for the position (x,y) of the puck. (Hint: recall that u =
dx/dt and v = dy/dt.)

(e) What is the period of oscillation of this motion assuming the puck does not stray

far from 45◦ N? Show your work.

4.2. Hurricanes are axisymmetric disturbances (i.e. their structure is symmetric about the

center). An Atlantic hurricane is located over the Caribbean Sea (latitude 26◦N). Bal-

anced wind speeds of 60 m s−1 are found, at 950 mb, at a station 200 km from the center.

(a) What is the Rossby number of the flow associated with this storm? Explain your

reasoning.

(b) Based upon your answer to (a), what terms in the n̂ natural coordinate equation of

motion are balanced in this flow? Explain.

(c) If the 950 mb geopotential height at the station is 367 m, what is the sea-level

pressure at the eye of the hurricane? Show your work.

(d) Derive an expression for the ageostrophic wind in such a storm in terms of f , the

pressure gradient force, and the radius of curvature (R).

(e) Calculate the ageostrophic wind speed at the station. How large would the radius of

the hurricane have to be before the flow around it were in approximate geostrophic

balance? Explain.

4.3. (a) Prove (both graphically and mathematically) that the following statement is true:

The advection of the 1000–500 mb thickness by the 1000 mb geostrophic wind is exactly

equal to the advection of the 1000–500 mb thickness by the 500 mb geostrophic wind.
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(b) Derive an expression for the column-averaged geostrophic temperature advection

in an isobaric layer stretching from P1 to P2(where P2 < P1) in terms of the geopo-

tential at P1 and P2.

4.4. It is a sunny afternoon at Station X. The pressure decreases to the northeast at a rate

of 5 hPa/100 km. The temperature increases to the west at a rate of 5◦C/100 km. The

local temperature change is −0.5◦C/ day−1. In which hemisphere is Station X located?

Defend your answer. (Hint: you may assume small Rossby number at Station X.)

4.5. Suppose that a vertical column of the atmosphere at 43◦N is initially isothermal from

900 to 500 hPa. The geostrophic wind is 10 m s−1 from the south at 900 hPa, 10 m s−1

from the west at 700 hPa, and 10 m s−1 from the south at 500 hPa. Calculate the mean

horizontal temperature gradients in the two layers 900–700 hPa and 700–500 hPa. Com-

pute the rate of advective temperature change in each layer. If the thickness between

600 and 800 hPa remains constant at 2.25 km, how long would this advection pat-

tern have to persist in order to establish a dry adiabatic lapse rate in the 600–800 hPa

layer?

4.6. (a) With reference to the thermal wind relationship and some basic properties of the

Earth’s radiation budget, explain why the mean tropospheric vertical wind shear is

westerly on Earth.

(b) Using a simple illustration, explain why the direction of this vertical shear is the

same in both the northern and southern hemispheres.

4.7. The planet Uranus is characterized by low-Rossby-number flow and has a rotation rate

slightly faster than Earth’s. It also rotates on its axis at 83◦ to the plane of the ecliptic.

(This means that for one-half of the Uranian ‘year’ the North Pole is pointed directly

at the Sun.)

(a) Based on the above information, what is the predominant force balance for the

winds in the Uranian troposphere?

(b) If you could fly a jetplane in the Uranian troposphere during this half of the year,

would it be faster to travel from west to east or from east to west? Explain your choice.

4.8. (a) Physically explain (with reference to horizontal forces) why the wind speed is sub-

geostrophic in a trough and supergeostrophic in a ridge.

(b) Using the n̂ equation of motion

V 2

R
+ f V = −∂φ

∂n

show that the relationship described in (a) is independent of hemisphere.

4.9. A surface cyclone and a surface anticyclone are shown schematically in Figure 4.1A. Also

shown (in dashed lines) are the 1000–850 mb column-averaged isotherms associated

with each feature. Explain why the cyclone becomes more intense with height and the

anticyclone does not.
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Figure 4.1A

4.10. You have the misfortune of being shipwrecked on a small island in the central Pacific

Ocean (latitude 40◦N). On a certain day you observe the clouds at three distinct levels in

the atmosphere. The lowest-level clouds are moving from north to south. The middle-

level clouds are moving from west to east. The upper-level clouds are also moving from

north to south. Assume all the clouds are propelled by geostrophic winds. How will the

lapse rate over the island change as the day progresses? Explain your answer.

4.11. A vertical coordinate system known as sigma coordinates is used in many numerical

prediction models including the Pennsylvania State University/NCAR MM5. Sigma is

defined as

σ = (p/ps )

where p is the pressure and ps is the surface pressure. Derive an expression for the

horizontal pressure gradient force in σ coordinates.

4.12. On a certain day in Madison, WI (latitude 41◦N) it is observed that the horizontal

pressure gradient is the same at sea level (1005 hPa) as it is at 850 hPa. The thickness in

the 1005–850 hPa layer is 1367 m and the temperature at 1005 hPa is 11◦C.

(a) If the geostrophic wind speed at 850 hPa is 35 m s−1, what is the geostrophic wind

speed at 1005 hPa?

(b) If the kinetic energy generation per unit mass at sea level is 2 × 10−2J s−1, what is

the cross-isobar angle at that level?

(c) What is the magnitude of the frictional drag force at sea level?

(d) How far would one have to travel from Madison to find a sea-level pressure that is

10 hPa lower than it is at Madison?

4.13. (a) Imagine a sunny day on which the flow is steady and without vertical motions and

the temperature is constant. If the heating rate is 730 J kg−1 h−1, what are the sign

and magnitude of the horizontal temperature advection?

(b) If the isotherms are oriented east–west and it is 3◦C colder 100 km north of you,

what is the wind speed if it is blowing from the WNW (from 290◦)?

4.14. The temperature at 700 hPa in Auckland, New Zealand is −5◦C. If the local lapse rate

near the 700 hPa level is 5 K km−1, the temperature is increasing at a rate of 1.5 K h−1,

the wind is northeasterly at 15 m s−1, and the temperature increases toward the north
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by 4 K for every 150 km, compute the vertical velocity at 700 hPa assuming the flow is

adiabatic.

4.15. The geostrophic wind has a magnitude of 35 m s−1 near Sapporo, Japan (latitude 45◦ N)

on a given day. If the Rossby number is 0.4 and the wind is changing direction locally

at a rate of 10◦ h−1, what is the radius of curvature of the streamlines of the flow?

4.16. Recall from Problem 3.2 that the divergence of the geostrophic wind is not zero if one

accounts for the variation of the Coriolis parameter with latitude. For a typical mid-

latitude trough at 300 hPa, sketch the distribution of upward and downward vertical

motions that would arise from considering just the divergence of the geostrophic wind.

Explain your answer based upon the continuity equation. Does this distribution of ver-

tical motions conform with or contradict what is characteristically observed in nature?

Explain.

4.17. The following wind data (direction and speed) were received from 50 km to the east,

north, west, and south of a station, respectively: 90◦, 10 m s−1; 120◦, 4 m s−1; 90◦,

8 m s−1; 60◦, 4 m s−1.

(a) Calculate the approximate horizontal divergence at the station.

(b) Suppose the given wind speeds were all in error by ±10%. What would be the

percentage error in the calculated horizontal divergence in the worst case?

(c) Does the answer in (b) suggest why horizontal divergence is not usually a measured

quantity? What is the reasoning behind your answer?

Solutions

4.1. (e) 16.92 h

4.2. (a) 4.69 (c) 940.25 hPa (d) Vag = 1
f

∂φ

∂n
− f R

2
+ ( f 2 R2

4
− R ∂φ

∂n
)0.5

(e) 341.41 m s−1

4.5. 25 hours, 21 minutes, 7 seconds

4.11. PGFσ = −RT∇ ln ps − ∇φ

4.12. (a) 26.19 m s−1 (b) 14.81◦ (c) 323.625 km

4.13. (a) −0.727 K h−1 (b) 19.68 m s−1

4.14. 0.347 m s−1

4.15. −3457.16 km

4.17. (a) 2 × 10−5s−1 (b) 110%
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5
Circulation, Vorticity,
and Divergence

Objectives

The atmosphere is characterized by the ubiquitous presence of a variety of swirling

fluid eddies. Indeed, this observational fact prompted us in the previous chapter to

consider the effects of flow curvature on some simple force balances. In the mid-

latitude atmosphere the most important of these many eddies is the large-scale

cyclone, also known as the synoptic-scale cyclone. The surface analysis illustrated

in Figure 5.1(a) clearly demonstrates that in the northern hemisphere the winds

circulate around the center of lowest pressure in a counterclockwise fashion over

an enormous geographical area. Conversely, the surface winds circulate clockwise

over an equally large area around the center of the northern hemisphere surface

high-pressure system depicted in Figure 5.1(b). The ubiquity of large-scale, rotating

disturbances in the mid-latitude atmosphere compels us to understand better the

nature of fluid rotation and the resulting circulation of these eddies. In this chapter

we will investigate the physical quantities known as circulation and vorticity, both

of which serve to quantify the fluid rotation. Along the way we will encounter the in-

triguing quantity known as potential vorticity, the subject of more detailed inquiry

in Chapter 9. By formally deriving a vorticity equation, we will find that changes in the

vorticity (which, of course, relate to changes in the intensity of the fluid rotation) are

inextricably linked to divergence in the fluid. By continuity, the presence of divergence

in the fluid implies vertical motions as well. Thus, we will find that understanding

the distribution and time tendency of the vorticity is fundamental to understanding

the mid-latitude cyclone and its life cycle. Finally, given that the mid-latitude atmo-

sphere is in approximate thermal wind balance, we will consider approximations

to the vorticity and thermodynamic energy equations appropriate for low-Rossby-

number flow. In so doing, we will encounter a system of equations known as the

quasi-geostrophic system. This important set of relationships will serve as the foun-

dation for inquiry in the second half of the book. We begin by defining the circulation.

Mid-Latitude Atmospheric Dynamics Jonathan E. Martin
C© 2006 John Wiley & Sons, Ltd.
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Figure 5.1 (a) Sea-level pressure analysis at 0000 UTC 19 February 2004 from NCEP’s Eta model.

Solid lines are isobars labeled in hPa and contoured every 4 hPa. Arrows are near surface winds greater

than 10 m s−1. Note the obvious counterclockwise rotation of the winds about the sea-level pressure

minimum. (b) As in (a) but for 0000 UTC 8 July 2004. Arrows are near surface winds greater than

5 m s−1. Note the obvious clockwise rotation of the winds about the sea-level pressure maximum

116
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Figure 5.2 Illustration of the means by which circulation around a closed fluid contour is calculated.

Symbols are referenced in the text

5.1 The Circulation Theorem and its Physical Interpretation

Imagine a tank of water with a small radius, R, in which the water is initially perfectly

still. If some tangential velocity is imposed along the outside edge of the tank (i.e. a

torque is applied to the fluid as it is stirred) then the water will clearly acquire some

rotation and its angular momentum will increase. Imagine further that a stirring

machine is able to move a paddle along the outside edge of the tank at a constant

velocity, V . If this stirring paddle is dragged through only one-fourth of the circum-

ference of the tank before being removed a certain amount of circulation of the water

results. If the paddle is dragged through half of the circumference, a greater amount

of circulation results. A still greater amount of circulation would be observed in the

water if the paddle were dragged through the entire circumference of the tank. This

simple thought experiment exposes a physical relationship that lies at the heart of the

notion of fluid circulation: that is, the circulation imparted to a fluid is related not

only to the tangential velocity imparted to the fluid, but also to the distance through

which that velocity acts. More formally, we define the circulation, C , around a fluid

element with finite area as the line integral, around the fluid element, of the tangential

velocity. In formal mathematical terms circulation is expressed as

C =
∮

�V · �dl =
∮

|V | cos α · �dl (5.1)

where �dl represents the displacement vector along the edge of the fluid element as

illustrated with the aid of Figure 5.2. By convention, the integration in (5.1) pro-

ceeds in a counterclockwise fashion so that C > 0 (C < 0) corresponds to cyclonic

(anticyclonic) rotation in the northern hemisphere with the situation opposite in

the southern hemisphere. Naturally, (5.1) can be rewritten in (x ,y) Cartesian coor-

dinates as

C =
∮

(U dx + Vdy) (5.2)
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where it is understood that U and V represent the tangential velocities around a fluid

element in the x and y directions, respectively.

As mentioned previously, it is changes in the circulation that we are most interested

in when studying the atmosphere since these changes ultimately manifest themselves

as intensifications of the high- and low-pressure systems that deliver the sensible

weather. Therefore, it is useful to consider the Lagrangian derivative of (5.1) as

dC

dt
= d

dt

(∮
�V · �dl

)
=

∮ [
d

dt
( �V · �dl)

]
. (5.3a)

By the chain rule, (d/dt)( �V · �dl) can be expressed as

d

dt
( �V · �dl) = d �V

dt
· �dl + �V · d( �dl)

dt
(5.3b)

and since �dl is a displacement vector, d( �dl)/dt = d �V so that

d

dt
( �V · �dl) = d �V

dt
· �dl + �V · d �V . (5.3c)

Substituting (5.3c) into (5.3a), the rate of change of circulation becomes

dC

dt
=

∮
d �V
dt

· �dl +
∮

�V · d �V . (5.4)

The second term on the RHS of (5.4) can be written as∮
�V · d �V = 1

2

∮
d( �V 2) = 0

since the integration is around a closed fluid element. Now, if we employ the absolute

acceleration, d �V a/dt, in (5.4), then

dCa

dt
=

∮
d �V a

dt
· �dl .

We can take advantage of the fact that only the pressure gradient force and the

gravitational force influence absolute acceleration so that

dCa

dt
=

∮ (
− 1

ρ
∇ p − ∇�

)
· �dl = −

∮ ∇ p

ρ
· �dl −

∮
∇� · �dl (5.5)

where ∇� = −g k̂ on a constant height surface and so represents the gravitational

force. Noting that the vertical component of the displacement vector, �dl , is simply

dz (i.e. �dl · k̂ = dz), then

∇� · �dl = −g dz = −d�

and

−
∮

∇� · �dl =
∮

d� = 0
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since d� is a perfect differential and therefore no net work against gravity is done,

regardless of the path taken, if a particle ends up where it began. Consequently, (5.5)

can be expressed as

dCa

dt
= −

∮ ∇ p

ρ
· �dl = −

∮
dp

ρ
(5.6)

since ∇ p · �dl = dp. The term on the LHS of (5.6) describes the Lagrangian rate

of change of the fluid’s rotation so that (5.6) represents the fluid analog of angu-

lar acceleration in solid bodies. In the dynamics of solid bodies only torques can

produce angular acceleration. Consequently, the term on the RHS of (5.6), known

as the solenoid term, is the fluid equivalent of a torque. In general, the solenoid

term is not zero. In certain environments, however, the density (ρ) is a function

only of pressure (i.e. ρ = ρ(p)). In such cases, the isobars and isosteres (lines of

constant density) are coincident everywhere. This condition is known as barotropy

and such a fluid is a barotropic fluid. In a barotropic fluid, the ideal gas law implies

that

dp = RTdρ

so that

−
∮

dp

ρ
=

∮
RTdρ

ρ
=

∮
RTd ln ρ = 0 (5.7)

since, in that case, the solenoid term becomes the closed line integral of the exact

differential, d ln ρ. Thus, in a barotropic fluid, the absolute circulation is conserved

following the parcel, a result known as Kelvin’s circulation theorem.

The mid-latitude atmosphere, however, nearly always is best characterized as a

baroclinic fluid, one in which horizontal density (temperature) contrasts can exist

on isobaric surfaces (i.e. density is not solely a function of pressure). Thus, most

often the isobaric and isopycnal (constant density) surfaces intersect each other as

illustrated in Figure 5.3, a schematic vertical cross-section of the pressure/density

distribution in the vicinity of a land/sea boundary where the density is higher over

the sea than over the land. Since the thickness is lower in the colder column over

the sea, even if the pressure is the same near the surface, the isobaric surfaces slope

downward toward the sea at higher levels while the isopycnals slope downward

toward the warmer land. The intersection of the isobars and isopycnals in Figure 5.3

forms a series of parallelograms which are called solenoids, hence the name for

the term under investigation. For the environment depicted in Figure 5.3, we can

determine the Lagrangian rate of change of the absolute circulation by evaluating

−dp/ρ around the indicated closed path. Movement from A to B occurs on an

isobaric surface so there is no contribution to the closed line integral from that

portion of the path. Moving from B to C, dp is negative so the contribution to

the integral is positive. Another isobaric surface is encountered from C to D with a

corresponding lack of contribution to the circulation change. Finally, from D to A
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dp is positive so that a negative contribution is made to the circulation change. Since

the average density from B to C is less than it is from D to A, and density appears

in the denominator of the RHS of (5.6), the positive contribution (B to C) is larger

than the negative contribution (D to A) resulting in a net increase in the circulation

around the indicated counterclockwise path. Thus, in this example, a circulation will

develop in which lighter fluid is made to rise and heavier fluid is made to sink. The

effect of this circulation will be to tilt the isopycnals into an orientation in which

they are more nearly parallel with the isobars – that is, toward the barotropic state in

which subsequent circulation change would be zero. Such a circulation also lowers

the center of mass of the entire fluid system and thus reduces the potential energy of

that system. The motions that actually accomplish this reduction of potential energy

represent a certain amount of kinetic energy. Thus, the resulting circulation is one

which converts the potential energy present in the horizontal density contrast into

the kinetic energy of the fluid motions involved in the redistribution of mass. It is

important to note that the circulation theorem describes only the Lagrangian rate

of change of the circulation, not the circulation itself. Thus, our result in Figure 5.3

conveys only that the solenoid term contributes to an increase in the circulation.

If a background circulation were already present in the environment portrayed in

Figure 5.3, then the solenoid contribution would have to be added to that circulation

in order to determine the net circulation in that environment. Any circulation that

moves in the same (opposite) direction, as it compelled to do by the solenoid term,

is known as a direct (indirect) solenoidal circulation.

Figure 5.3 Illustration of the land/sea boundary and the solenoid of isobars and isosteres in its vicinity.

Discussion of the circulation tendency around the closed loop ABCD is given in the text
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Figure 5.4 Latitude–longitude box around which the Earth’s circulation is calculated in the text. The

lengths of sides A and B are indicated. The rotation of the Earth is from λ to λ+ δλ

Thus far we have only discussed the nature of the absolute circulation. Naturally, for

the purposes of understanding fluids on Earth, it is much more relevant to consider

the relative circulation. In order to do so, we must first calculate the circulation that

results from the rotation of the Earth and then subtract it from the RHS of (5.6). The

velocity around a latitude circle on the spherical Earth is equal to

�V = ��R

where R = a cos φ. Thus, the westerly motion resulting from rotation of the Earth is

U = �a cos φ. (5.8)

Now we calculate the circulation around the latitude–longitude box shown in

Figure 5.4. In spherical coordinates, a length element in the zonal (east–west) di-

rection is given by dx = a cos φδλ where λ is longitude. Since the rotation of the

Earth contributes no meridional (north–south) motion to the box, only sides A and

B figure into the calculation of the circulation. Thus, the circulation resulting from

the Earth’s rotation can be written as

Ce =
∮

U · �dl = UA(dx)A − UB (dx)B

= [�a cos(φ − δφ)][a cos(φ − δφ)]δλ

− [�a cos(φ + δφ)][a cos(φ + δφ)]δλ

= �a2[cos(φ − δφ)]2δλ − �a2[cos(φ + δφ)]2δλ. (5.9)

Using the trigonometric identities

cos(a − b) = cos a cos b + sin a sin b and cos(a + b)

= cos a cos b − sin a sin b
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(5.9) can be rewritten as

Ce = �a2[(cos φ cos δφ + sin φ sin δφ)2]δλ

− �a2[(cos φ cos δφ − sin φ sin δφ)2]δλ. (5.10)

Carrying out the quadratic operations and adding like terms results in

Ce = 4�a2 cos φ sin φ cos δφ sin δφδλ. (5.11)

Now, the area of the box in Figure 5.4 is given by

A = (a cos φδλ) × (2aδφ) = 2a2 cos φδφδλ. (5.12a)

If we consider an infinitesimal box in which δφ and δλ approach zero, then

lim
δφ→0

cos δφ = 1and lim
δφ→0

sin δφ = δφ

so that (5.12a) can be expressed as

A = 2a2 cos φ sin δφδλ. (5.12b)

Combining (5.11) and (5.12b) we see that the circulation resulting from the Earth’s

rotation, Ce , is given by

Ce = 2� sin φ × A (5.13)

so that

dCe

dt
= 2� sin φ

d A

dt
. (5.14)

Combining (5.14) with (5.6) we arrive at an expression for the Lagrangian rate of

change of the relative circulation, Crel:

dCrel

dt
= dCa

dt
− dCe

dt
= −

∮
dp

ρ
− 2� sin φ

d A

dt
. (5.15)

This expression is known as the Bjerknes circulation theorem and it can be applied

to realistic flows quite readily.

5.2 Vorticity and Potential Vorticity

Circulation is an important characteristic of fluids as demonstrated in the prior

section. Unfortunately, it is not particularly amenable to simple measurement as one

needs to sum tangential velocities around the outer edge of a discrete collection of

fluid elements in order to arrive at this macroscopic measure of the rotation of the

fluid. In Section 1.3 we considered the vorticity as a kinematic property of fluids. As it

turns out, the vorticity physically represents a microscopic measure of the rotation in

a fluid and, as you may recall from that discussion, is particularly easy to formulate.

In this section we explore the relationship between vorticity and circulation in an

attempt to interrogate further the nature of rotation in fluids.
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The vorticity is a vector quantity defined as the curl (cross-product) of the velocity

vector. The absolute vorticity, therefore, is given by �υa = ∇ × �V a while the relative

vorticity is given by

�υ = ∇ × �V =
(

∂w

∂y
− ∂v

∂z

)
î +

(
∂u

∂z
− ∂w

∂x

)
ĵ +

(
∂v

∂x
− ∂u

∂y

)
k̂ (5.16)

in Cartesian coordinates. A large fraction of the rotating fluid systems with which

we are interested exhibit rotation in the horizontal plane (i.e. mid-latitude cyclones,

hurricanes, tornadoes). Consequently, dynamic meteorology is most often, though

not exclusively, interested in the vertical component of the absolute and relative

vorticities. These are generally expressed as

η = k̂ · �υa = k̂ · ∇ × �V a (5.17a)

and

ζ = k̂ · �υ = k̂ · ∇ × �V = ∂v

∂x
− ∂u

∂y
(5.17b)

for the absolute and relative vorticities, respectively. Clearly, the relative vorticity is a

much simpler quantity to measure than the circulation as it involves just derivatives

of the observed horizontal wind field. But is there a physical relationship between

circulation and vorticity?

Consider the tiny fluid element depicted in Figure 5.5. The velocity on side A is

given by u while the velocity on side D is given by v . By expanding u and v in a

Taylor series, we can get expressions for the velocities on sides C and B as well. With

expressions for the velocities on each side of the fluid element, we are in a position

to calculate the circulation about that element. Since, by convention, we integrate

Figure 5.5 Schematic illustrating the calculation of vorticity around an infinitesimal fluid element with

Area = δxδy. See text for explanation
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around the element in a counterclockwise fashion we find that the circulation is

given by

C =
∮

udx + vdy = (u)δx +
(

v + ∂v

∂x
δx

)
δy −

(
u + ∂u

∂y
δy

)
δx − (v)δy

=
(

∂v

∂x
− ∂u

∂y

)
δxδy. (5.18)

Since the area of the fluid element is δxδy, we find that, in the limit as δxδy → 0,

the relative vorticity is simply the relative circulation divided by the area of the fluid

element. Therefore, recalling Figure 5.4 and (5.13), the Earth’s vorticity is given by

VorticityEarth = Ce

A
= 2� sin φ(A)

A
= 2� sin φ = f (5.19)

so that the vertical component of the absolute vorticity (the sum of the relative

vorticity and the Earth’s vorticity) is given by

η =
(

∂v

∂x
− ∂u

∂y

)
+ f. (5.20)

We can further examine the physical relationship between circulation and vorticity

with the aid of Figure 5.6 which portrays a closed fluid element of finite area. If

we subdivide the area into a large number of tiny squares (like squares A and B),

and then calculate the circulation around each tiny square, an interesting result

arises. The side common to A and B contributes the same incremental circulation to

both squares but with opposite sign since the integration must proceed in opposite

directions. Thus, only the circulation about the outer edges of the two adjoining

squares need be considered when summing the total circulation of the squares. If a

larger number of even smaller squares are drawn within the closed fluid element in

Figure 5.6, cancellation of the shared segments among those squares will still occur.

Therefore, only the sides of the squares that run along the outside contour of the fluid

element will contribute to the circulation. If we shrink the area of the squares to zero

Figure 5.6 Circulation around the shaded fluid element can be represented by summing the circulations

around a series of squares such as A and B. Note that the circulation around the combined rectangle AB

is comprised of only the contributions from the periphery of AB. The gray arrows, on the side common

to both A and B, contribute oppositely to the circulation and therefore cancel
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(i.e. δxδy → 0), then we can exactly fit any closed fluid element with a collection of

such tiny squares. In that case, the total circulation around the fluid element is the

sum of the circulations of each infinitesimally tiny square (point vortices, measured

by the vorticity) added up over the area of the fluid element. This relationship can

be represented by the 2-D form of Stokes’ Theorem,∮
(udx + vdy) =

∫∫
Area

(
∂v

∂x
− ∂u

∂y

)
∂x∂y (5.21)

where the LHS is the circulation around the fluid element and the RHS is the integral

of vorticity over the area enclosed by the curve. A slightly more general way to express

this equality is ∮
�V · �dl =

∫∫
A

(∇ × �V) · n̂ d A (5.22)

where n̂ signifies that the summation involves only the component of the vorticity

normal to the fluid element.

Though a moving fluid may conform to a nearly infinite set of possible flow

configurations, only two broad types are actually associated with vorticity. Defense

of this statement is difficult to mount using the Cartesian expression for vorticity.

However, consideration of the vertical component of vorticity in natural coordinates

offers compelling proof of this simplifying assertion while lending additional insight

into the nature of vorticity. Consider the flow parallel to the streamlines in Figure 5.7.

In order to develop an expression for the vertical component of vorticity, we need

to calculate the circulation around the indicated box and divide by its area. As we

have seen before, only the sides of the box aligned along streamlines will contribute

Figure 5.7 Infinitesimal fluid loop in natural coordinates. Heavy solid arrows are streamlines of the

flow. The shaded parallelogram has Area = δsδn. The angular change of the flow direction over a

distance δs , is given by δβ
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to the circulation. If the velocity of the flow on the bottom edge of the box is V , then

a Taylor series expansion of V across the streamline channel yields V + (∂V/∂n)δn

for the velocity on the top edge of the box. Note that the velocities on the top and

bottom edge of the box are in the same direction. The length element on the bottom

half of the box is given by δs + d(δs ) where d(δs ) is the change in δs that results

from the fact that the flow in Figure 5.7 is curved. This change in the length element

is directly related to the change in direction of the flow as d(δs ) = δβδn so that the

length element on the bottom of the box is given by δs + δβδn. The contribution to

circulation from the bottom half of the box is, therefore, V(δs + δβδn). The length

element on the top side of the box is δs so the contribution to the circulation on that

side of the box is

−
(

V + ∂V

∂n
δn

)
δs

where the negative sign is compelled by the fact that the integration must proceed in

the counterclockwise direction. Summing these two contributions to the circulation

we obtain

C =
∮

�V · �dl = V(δs + δβδn) −
(

V + ∂V

∂n
δn

)
δs

= Vδs + Vδβδn − Vδs − ∂V

∂n
δnδs

= Vδβδn − ∂V

∂n
δnδs . (5.23)

Given that vorticity is the circulation divided by the area, as the area tends to zero

we have

ζ = lim
δnδs→0

(
C

δnδs

)
= Vδβδn

δnδs
− ∂V

∂n

δnδs

δnδs
= V

∂β

∂s
− ∂V

∂n
. (5.24)

Recall from our prior investigation of the relationship between trajectories and

streamlines that the angular change in the streamflow as measured along the flow is

proportional to the radius of curvature of the streamlines themselves (i.e. ∂β/∂s =
1/Rs ). Therefore, we can rewrite (5.24) as

ζ = V

Rs

− ∂V

∂n
(5.25)

which suggests that the vertical vorticity is the sum of two components: (1) the

variation of the flow speed normal to the direction of the flow, −∂V/∂n, known as

shear vorticity, and (2) variation of the flow direction along a streamline, V/Rs ,

known as curvature vorticity. The mid-latitude atmosphere is full of examples of

both types of vorticity as shown in Figure 5.8. A straight jet streak (Figure 5.8a) is the
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Figure 5.8 (a) The 300 hPa isotachs (solid lines) and wind vectors associated with a straight jet

at 0000 UTC 12 November 2003 from NCEP’s Eta model analysis. Isotachs are labeled in m s−1 and

contoured every 10 m s−1 starting at 50 m s−1. Olny wind vectors greater than 40 m s−1 are shown.

Paddlewheels indicate the sense of the vorticity on the north and south sides of the jet. (b) The 300 hPa

geopotential heights (solid lines) and 50 m s−1 isotach (shaded) associated with a region of anticyclonic

curvature at 0000 UTC 14 November 2003 from NCEP’s Eta model analysis. Geopotential heights

are labeled in dam and contoured every 12 dam. Gray paddlewheels indicate the turning of the wind

direction associated with curvature in the flow resulting in anticyclonic vorticity (indicated by the dark

paddlewheel)

127
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canonical example of a feature characterized by shear vorticity. It is easy to imagine

that a fluid element on the north side of the jet flow in Figure 5.8(a) (represented

by the paddlewheel) will be compelled to spin counterclockwise as the flow speed

increases to the south of the element. Conversely, a fluid element placed on the

south side of that jet will be compelled to flow clockwise as the flow to the north

increases in speed. Flow of nearly constant speed through a region of curvature is

illustrated in Figure 5.8(b). As parcels progress through the ridge, the upper end of

the paddlewheel is forced to traverse a greater distance than the lower end (just as a

runner on the outside lane of a track runs a greater distance around the bend in the

track). Thus, the paddlewheel is forced to spin clockwise consistent with negative

curvature vorticity.

If, for a moment, we consider flow on isentropic surfaces, a rather remarkable

relationship between the rotation of a fluid column and its depth presents itself.

Recall that the Poisson equation defines potential temperature as θ = T( p0/p)
R/cp

where p0 = 1000 hPa. If we substitute for T from the ideal gas law we obtain

θ = p

ρ R

(
p0

p

)R/cp

or ρ Rθ = p
(R/cp )

0 p1−(R/cp).

Since c p − R = cv , the foregoing expression can be written as

ρ = p
(R/cp )

0 p(cv/cp)

Rθ
(5.26)

showing that for flow on isentropic surfaces (whereθ is constant), density is a function

of pressure only, so the flow is barotropic. Therefore, on isentropic surfaces there are

no solenoids so the circulation theorem (5.15) becomes

dC

dt
= −2� sin φ

d A

dt
or

d

dt
(C + 2� sin φ A) = 0. (5.27)

Since ζ = C/A, then (5.27) can be written as

d

dt
[(ζθ + f )A] = 0. (5.28)

Thus, the product (ζθ + f )A is constant in adiabatic flow on isentropic surfaces,

where ζθ is the relative vorticity measured on an isentropic surface. Now, recall that

the amount of mass in an air column contained between two θ surfaces is directly

related to the isobaric depth of the column, −δp, since −δp = F /A = (δM)g/A.

Mass continuity demands that this amount of mass be conserved. Consequently, we

can express the cross-sectional area, A, of the column as

A = −g
δM

δp
.
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But this is not amenable to measurement since it is not practical to have to measure

the mass in the column. We can, however, rewrite this expression equivalently as

A = −g

(
δM

δθ

δθ

δp

)
.

Since both δM and δθ are conserved in adiabatic flow, then their ratio is constant so

that

A = −g

(
δθ

δp

)
× Constant.

Taking the limit as δθ, δp → 0 and using (5.28) we obtain

(ζθ + f )

(
−g

∂θ

∂p

)
= Constant. (5.29)

The above quantity is known as potential vorticity and it is a conserved quantity

for parcels in adiabatic flow. Just as potential temperature refers to the fact that

the temperature of a parcel of air can be changed upon adiabatic expansion or

compression, the potential vorticity refers to the fact that a parcel’s vorticity can

be changed by (1) changing latitude ( f ), and/or (2) changing the static stability

(−∂θ/∂p). In a so-called homogeneous fluid (one in which density is constant),

such as a shallow tank of water, the expression for potential vorticity is even simpler.

In such a fluid, there are no pressure–density solenoids and the cross-sectional area

of a column of the fluid is given by

A = δMg

p
= δMg

ρgδz
= Constant

δz

since the density is constant and hydrostatic balance applies. Thus, for a shallow body

of water (5.28) suggests that

(ζ + f )

δz
= Constant = P Vshallow water (5.30)

where ζ is the relative vorticity measured on a surface of constant geometric height.

The above relation provides clear physical insight into the nature of this potential

vorticity (PV): it is the ratio of the absolute vorticity to the depth of the vortex. If

the depth of a rotating column is increased (decreased) by vertical stretching (com-

pression), then the absolute vorticity of the column must also increase (decrease) in

order that PV be conserved. Considering (5.29) and a column of air confined between

two isentropes, we see that this is also the case for the isentropic flow wherein the

depth of the vortex is measured in terms of the static stability, the isobaric separation

between adjacent isentropes. Though it seems physically rather curious that the ratio

of the vortex strength to vortex depth ought to be a conservative property of fluids,

the conservation of PV provides powerful constraints on the behavior of our fluid

atmosphere. Consider, for example, a column of air moved adiabatically eastward

across the crest of the Rocky Mountains of western North America as illustrated in
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Figure 5.9 Schematic illustration of a fluid column crossing the Rocky Mountains of North America.

Parcel A, confined between the 312 and 315 isentropes, is carried across the crest of the mountains

by the flow, indicated by the bold arrow, at time T = 0. Upon crossing the ridge, the flow subsides

and forces a separation between the bounding isentropes (T = T1). Subsidence warming and vorticity

increases in the lower troposphere result in the lee of the barrier

Figure 5.9. As the column heads eastward over the Great Plains, the isobaric depth of

the column increases. The consequent decrease in static stability requires an atten-

dant increase in the absolute vorticity in order that PV be conserved. The increase in

absolute vorticity is manifest in the characteristic leeside trough that forms in the lee

of the Rockies under episodes of strong cross-mountain flow (Figure 5.10a). A ver-

tical cross-section through a Rocky Mountain leeside trough (Figure 5.10b) clearly

demonstrates that the static stability is greatly reduced in the lee as a consequence of

column stretching. Characteristically, the leeside trough axis is coincident with the

axis of warmest air near the surface, a direct result of the adiabatic warming produced

by the subsidence manifest in the vertical separation of isentropes. We will further

investigate both PV and cyclogenesis in Chapter 9.

5.3 The Relationship between Vorticity and Divergence

As is the case with most quantities in meteorology, we are interested in the time ten-

dency of the vorticity. Such a relationship is obtained by manipulating the equations

of motion. Though the effects of friction could be included, for simplicity we will

begin with the frictionless equations of motion in height coordinates:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− f v = − 1

ρ

∂p

∂x
(5.31a)

and

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ f u = − 1

ρ

∂p

∂y
. (5.31b)
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Figure 5.10 (a) Sea-level isobars and 750 hPa potential temperature in the central United States at

0000 UTC 27 December 2004. Thick solid lines are isobars labeled in hPa and contoured every 4 hPa.

Dashed lines are isentropes labeled in K and contoured every 2 K. Thick dashed line indicates the axis of

the leeside pressure trough. Vertical cross-section along A–B is shown in (b). (b) Vertical cross-section

(along line A–B in (a)) of potential temperature. Solid lines are isentropes labeled in K and contoured

every 2 K. Note the region of weak stratification in the immediate lee of the Rocky Mountains

131
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Next, we take ∂/∂y of (5.31a) and subtract that from ∂/∂x of (5.31b). Using the

definition of the vertical component of the relative vorticity,

ζ =
(

∂v

∂x
− ∂u

∂y

)
,

the result becomes

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
+ w

∂ζ

∂z
+ (ζ + f )

(
∂u

∂x
+ ∂v

∂y

)
+

(
∂w

∂x

∂v

∂z
− ∂w

∂y

∂u

∂z

)
+ u

d f

dx
+ v

∂ f

∂y
= 1

ρ2

(
∂ρ

∂x

∂p

∂y
− ∂ρ

∂y

∂p

∂x

)
.

(5.32)

Now, since

d f

dt
= ∂ f

∂t
+ u

∂ f

∂x
+ v

∂ f

∂y
+ w

∂ f

∂z

and f varies only with y, then d f /dt = v ∂ f /∂y and (5.32) can be rewritten as

d(ζ + f )

dt
= −(ζ + f )

(
∂u

∂x
+ ∂v

∂y

)
−

(
∂w

∂x

∂v

∂z
− ∂w

∂y

∂u

∂z

)
+ 1

ρ2

(
∂ρ

∂x

∂p

∂y
− ∂ρ

∂y

∂p

∂x

)
(5.33)

which is the vorticity equation in height coordinates. This relationship states that

the rate of change of the absolute vorticity is given by the sum of the three terms on

the RHS of (5.33): (1) the divergence term, (2) the tilting term, and (3) the solenoid

term. We now investigate each of these terms independent of the others, beginning

with the divergence term.

If only horizontal divergence acts in the fluid, then the vorticity equation becomes

d(ζ + f )

dt
= −(ζ + f )

(
∂u

∂x
+ ∂v

∂y

)
.

As illustrated in Figure 5.11(a), when divergence occurs in a fluid (i.e. (∂u/∂x +
∂v/∂y) > 0) then the area enclosed by a fluid ring increases with time. Consequently,

the absolute vorticity becomes more anticyclonic with time, provided that it was

originally cyclonic (as is almost always the case on the synoptic scale). Physically, this

result is related to the fact that the circulation of the fluid element must be conserved

(in the absence of solenoids). Since vorticity is the ratio of circulation to area, if the

area increases through horizontal divergence, then the vorticity must decrease.

The converse is true for a fluid characterized by convergence as illustrated in

Figure 5.11(b). Horizontal convergence (i.e. (∂u/∂x + ∂v/∂y) < 0) will produce a

cyclonic tendency in the vorticity consistent with the shrinking of the area enclosed

by the fluid element and the consequent increase in the ratio of circulation to area.

The effect of the divergence term is the fluid analog of a figure skater whose rate
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Figure 5.11 (a) Illustration of the effect of divergence (D) on vorticity. Original fluid ring is lightly

shaded and bordered by the large circulation arrows. Fluid ring at some later time is darkly shaded and

bordered by smaller circulation arrows. (b) As for (a) but for conditions of horizontal convergence (C)

of rotation increases (decreases) when she pulls (extends) her arms to (from) her

side, decreasing (increasing) the radius of rotation. Since no torques are applied to

the skater, the smaller (larger) radius of rotation requires a larger (smaller) angular

velocity. So, in the end, we can say that

Convergence spins up cyclonic vorticity.

Divergence spins up anticyclonic vorticity.
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There are profound implications to these statements with regard to mid-latitude

weather systems. Surface low-pressure centers are characterized by convergence and

thus tend to be foci for the production of low-level cyclonic vorticity. Just the opposite

is true for surface anticyclones.

We can investigate the nature of the tilting term by imagining that no divergence

or solenoids exist. In such a hypothetical case, (5.33) becomes

d(ζ + f )

dt
= −

(
∂w

∂x

∂v

∂z
− ∂w

∂y

∂u

∂z

)
=

(
∂w

∂y

∂u

∂z
− ∂w

∂x

∂v

∂z

)
.

Recall that (ζ + f ) describes only the vertical component of the absolute vorticity

vector. Thus, there are rotations about the other two Cartesian axes. For instance,

consider the effect of the westerly vertical wind shear that characterizes the middle

latitudes on Earth. As illustrated in Figure 5.12, such vertical shear compels the

paddlewheel to spin counterclockwise as viewed from the positive y-axis. Every

parcel of air aligned along the y-axis will be compelled to spin in the same direction

so that a tube of air aligned along the y-axis will possess this positive y-component

vorticity. Now, if there is a gradient of vertical motion in the y direction, such that

∂w/∂y > 0, then the northern end of the rotating tube will ascend while the southern

end will subside. Consequently, a component of the counterclockwise rotation of the

tube will be projected onto the z-axis. In other words, the vertical component of the

vorticity, originally zero, will gradually acquire positive values through the action

of tilting the horizontal vortex tube into the vertical. If you mimic the rotation and

vertical motion distribution illustrated in Figure 5.12 by spinning your pencil and

lifting and depressing the appropriate ends, you can easily demonstrate the effect of

the tilting term for yourself. Mathematically, it is clear that both ∂u/∂z and ∂w/∂y

Figure 5.12 Illustration of the effect of vertical shear on horizontal vorticity. Gray shaded arrows

represent the westerly winds at two different levels. The paddlewheel is compelled to turn in the indicated

direction as is the light gray shaded tube of air aligned along the y-axis. Open arrows represent differential

upward and downward vertical motions along the y-axis. The combined effect of the vertical gradient of

u and the horizontal gradient of w on the vertical vorticity (via the tilting term) is explained in the text
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are positive in Figure 5.12; thus the tilting term is positive as well, leading to an

increase in the vertical component of the absolute vorticity.

Finally, it may be unsurprising, given the physical connection between circulation

and vorticity, that a solenoid term arises out of the vorticity equation. Solenoids act

to rearrange the mass in a fluid into the lowest potential energy state. As it turns

out, the solenoid term in (5.33) is the microscopic equivalent of the solenoid term

in the circulation theorem. This is easily proven by applying Stokes’ Theorem to the

solenoid term in the expression for circulation,

−
∮

dp

ρ
= −

∮
αdp = −

∮
α∇ p · �dl = −

∫∫
A

∇ × (α∇ p) · k̂ d A. (5.34a)

Since ∇ × (α∇ p) = ∇α × ∇ p and the k̂ component of ∇α × ∇ p is

(∇α × ∇ p) · k̂ = 1

ρ2

(
∂ρ

∂x

∂p

∂y
− ∂ρ

∂y

∂p

∂x

)
(5.34b)

we can see that the solenoid term in the vorticity equation is equal to the solenoid

term in the circulation theorem (5.34a) divided by the area of the fluid element, con-

sistent with the fact that C/A = ζ . The solenoid term shows that given appropriate

horizontal configurations of p and ρ, vorticity can be produced. Let us consider

the configuration of p and ρ that would characterize cold air advection by the

zonal geostrophic wind in the northern hemisphere (Figure 5.13). Imagining that no

divergence or tilting is occurring, then the stated conditions render (5.33) as

d(ζ + f )

dt
= 1

ρ2

(
∂ρ

∂x

∂p

∂y

)
.

Figure 5.13 Configuration of isobars (solid lines) and isosteres (dashed lines) characterizing

geostrophic cold air advection in the northern hemisphere. Bold arrows represent the geostrophic wind.

The induced solenoidal circulation is represented by the thick gray circle with arrows
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It is clear that ∂ρ/∂x < 0 and ∂p/∂y < 0 for this case. Thus, the solenoid term will

generate cyclonic vorticity. The cyclonic vorticity will tend to rotate the isosteres until

they are parallel with the isobars in a configuration in which high pressure corre-

sponds to high density and vice versa. Such a configuration of isobars and isosteres

represents the state of this fluid system in which ∇T is minimized, representing its

lowest potential energy state. Though the physical nature of the solenoid term is

tenable, it is not particularly amenable to measurement since it involves knowledge

of the density. In prior applications we have adopted pressure as a vertical coordinate

and seen that reference to density disappears from some of the basic equations. Use

of pressure coordinates to formulate the vorticity equation will eliminate the trou-

blesome solenoid term since dp = 0 on isobaric surfaces. Thus, we next formulate

the vorticity equation in pressure coordinates in the hope of obtaining a simpler

relationship.

In order to derive the vorticity equation in isobaric coordinates we proceed exactly

as we did when first deriving it in height coordinates. The frictionless equations of

motion in isobaric coordinates are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ ω

∂u

∂p
− f v = −∂φ

∂x
(5.35a)

and

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ ω

∂v

∂p
+ f u = −∂φ

∂y
(5.35b)

since the vertical wind is ω, the vertical derivative is ∂/∂p, and the pressure gradient

force is represented as −∇pφ in isobaric coordinates. As before, we take ∂/∂y of

(5.35a) and subtract it from ∂/∂x of (5.35b). After some algebra and substituting

ζ = (∂v/∂x − ∂u/∂y), we get

∂ζ

∂t
= − �V · ∇(ζ + f ) − ω

∂ζ

∂p
− (ζ + f )(∇ · �V) + k̂ ·

(
∂ �V
∂p

× ∇ω

)
(5.36)

which ascribes local changes in the absolute vorticity (since ∂ f /∂t = 0) to (1) hori-

zontal advection, (2) vertical advection, (3) the divergence term, and (4) tilting. As

you might guess, the physical interpretation of the last two terms on the RHS of

(5.36) is identical to the interpretation given to those encountered in (5.33). The two

leading terms on the RHS of (5.36) have a familiar physical interpretation as they

both describe advection.

Earlier we found that applying scale analysis to the complicated equations of mo-

tion lent us insight into the fundamental balances that characterize the atmospheric

flow at middle latitudes. Equations (5.33) and (5.36) are complicated expressions as

well and, therefore, we might find it useful to apply a scale analysis to them. We will

do so by applying the same basic scalings as we used in Chapter 3 (Section 3.2.2).
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Upon doing so we find that the relative vorticity scales as

ζ =
(

∂v

∂x
− ∂u

∂y

)
≈ U

L
∼ 10−5s −1

and, since f0 = 10−4 s−1, then ζ/ f0 ≈ U/ f0 L ≡ Ro = 10−1 suggesting that for

synoptic-scale motions the relative vorticity is an order of magnitude smaller than

the planetary vorticity. This implies, in turn, that for mid-latitude synoptic-scale

motions, the divergence term can be approximated as

− (ζ + f )(∇ · �V) ≈ − f (∇ · �V).

Given these initial scalings, the terms in (5.32) can be scaled as

∂ζ

∂t
, u

∂ζ

∂x
, v

∂ζ

∂y
≈ U 2

L 2
≈ 10−10s −1

w
∂ζ

∂z
≈ WU

H L
≈ 10−11s −1

v
∂ f

∂y
≈ Uβ ≈ 10−10s −1

f (∇ · �V) ≈ f0U

L
≈ 10−9s −2

(
∂w

∂x

∂v

∂z
− ∂w

∂y

∂u

∂z

)
≈ 10−11s −1

1

ρ2

(
∂ρ

∂x

∂p

∂y
− ∂ρ

∂y

∂p

∂x

)
≈ 10−11s −1.

It should be noted that in the last three terms, which involve the sum of horizontal

derivatives (or the sum of their products), it is quite possible that the two parts of

the expression might partially cancel leaving the magnitude of the sum smaller than

the typical scaling might suggest. For instance, both

∂w

∂x

∂v

∂z
and − ∂w

∂y

∂u

∂z

scale exactly the same way. Their actual values, however, might be such that their

sum in the tilting term is smaller than that typical scale. Given the foregoing list, in

which vorticity advections, local vorticity tendency, and divergence are the leading

order terms, we find that it simply must be the case that the divergence be smaller

than its scale in order that the leading terms can satisfy an approximate balance. In

other words, since the advection terms are of order 10−10 s−1, and f0 = 10−4 s−1, the
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divergence term must scale as

(∇ · �V) ≈ 10−6 s−1.

Therefore, for synoptic-scale, mid-latitude motions in the atmosphere, the fore-

going scale analysis suggests that the vorticity equation can be approximated as

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
= dhζ

dt
= − f

(
∂u

∂x
+ ∂v

∂y

)
(5.37)

where the operator dh/dt is given by

dh

dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
.

Equation (5.37) suggests that the Lagrangian rate of change of the absolute vorticity

following the horizontal motion on the synoptic scale is largely a consequence of the

generation or destruction of vorticity through horizontal divergence. It is important

to note that near the centers of typical mid-latitude cyclones, in which the relative

vorticity often far exceeds the planetary vorticity, the fundamental scaling that led

to (5.37) does not apply. Therefore, the problem of mid-latitude cyclogenesis will

require consideration of additional physical processes in order to provide useful

diagnostic and prognostic information.

The presence and centrality of horizontal divergence in (5.37) suggests that an

important set of relationships exists in fluids. The rotation of a fluid depends upon

the presence of divergence in that fluid. The presence of divergence in that fluid

requires, by continuity, that the fluid also possesses regions of upward and downward

motions. In the atmospheric fluid, those upward and downward motions, and the

attendant adiabatic warming and cooling that goes along with them, are associated

with phase changes of the water substance and the delivery of our sensible weather.

In the next section of this chapter we will use a scale analysis similar to that applied

in the present discussion to construct a set of approximate relationships that will be

used to exploit the physical interrelation of temperature, vorticity, and divergence.

The resulting set of equations will provide the basis for the second half of the book

in which a detailed understanding of mid-latitude weather systems is developed.

5.4 The Quasi-Geostrophic System of Equations

We have thus far derived expressions for Newton’s second law, mass continuity, and

energy conservation as they pertain to the motions of the atmosphere in terms of

(1) the equations of motion, (2) the continuity equation, and (3) the thermodynamic

energy equation, respectively. In this section we will make appropriate simplifications

of these relationships in order to develop a fairly simple system of equations which we

can exploit to gain physical insight into the nature of mid-latitude weather systems

and the mid-latitude synoptic-scale flow. We will pursue the development of these
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equations using an isobaric coordinate system because such a system, as we have

already seen, eliminates the need to consider density. The underlying simplifying

assumption that will guide this development is the fact that the fundamental balances

constraining the behavior of the mid-latitude atmosphere on Earth are geostrophic

balance (in the horizontal) and hydrostatic balance (in the vertical). As we have

already seen, these two separate balances are combined in the thermal wind balance,

which, consequently, represents the essential balance constraining motions in the

mid-latitude atmosphere. If we further assume, consistent with the scale analysis we

performed in Section 3.2, that the friction force is not a primary consideration for

synoptic-scale flows, then the approximate equations of motion are

du

dt
= −∂φ

∂x
+ f v and

dv

dt
= −∂φ

∂y
− fu, (5.38)

the hydrostatic equation is

∂φ

∂p
= −α = − RT

p
, (5.39)

the continuity equation is

∇ · �V h + ∂ω

∂p
= 0, (5.40)

and the thermodynamic energy equation is

∂T

∂t
+ �V h · ∇T − Spω = Q̇

c p

(5.41)

where Sp = −T∂ ln θ/∂p. We will ‘condense’ these five expressions (some of which

are already approximated) into a set of two that satisfy a scale analysis appropriate

for the mid-latitude synoptic-scale flow. We begin by recognizing that the behavior

of the horizontal flow, represented by the set (5.38), can also be represented by the

isobaric vorticity equation, (5.36), repeated here for convenience:

∂ζ

∂t
= − �V · ∇(ζ + f ) − ω

∂ζ

∂p
− (ζ + f )(∇ · �V) + k̂ ·

(
∂ �V
∂p

× ∇ω

)
.

We have already shown through scale analysis that the vertical advection and twisting

terms can be neglected for the motions we are considering here. We found that we

can additionally neglect ζ compared to f in the divergence term. We can also simplify

the advection of planetary vorticity by considering a Taylor series expansion of the

Coriolis parameter about a fixed latitude, φ0. Since there is only y-direction variation

in f , we need only consider d f/dy in this expansion. Lettingβ = d f/dy = 2� cos φ0,

the expression for the Coriolis parameter can be written as

f = 2� sin φ0 + 2� cos φ0 y = f0 + βy (5.42)
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where y = 0 at the latitude φ0. There is useful simplifying information in (5.42) since

the ratio of the two terms in the expansion scales as

βL

f0

≈ cos φ0 L

sin φ0a
≈ L

a
.

Thus, when the latitudinal scale of the motions (represented by L ) is much smaller

than the radius of the Earth – a condition that is nearly always met for synoptic-

scale, mid-latitude motions – then we can assign the constant value f0 to the Coriolis

parameter except where it is differentiated in the advection term in (5.36), in which

case we can assign the constant value β to d f/dy. Physically, the rationale for this

simplification is that if the motions are constrained to a small enough latitudinal

range (L 	 a), then variation of the Coriolis parameter is negligible. The motion

can be thought of as occurring on a hypothetical plane, tangent to the Earth at latitude

φ0, where no variation of the Coriolis parameter occurs. For this reason, adoption

of the assumptions arising from (5.42) is known as the beta-plane approximation.

Returning now to the approximated vorticity equation (5.37),

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
= dhζ

dt
= − f

(
∂u

∂x
+ ∂v

∂y

)
,

if we further simplify it by (1) assuming that the horizontal advection is accomplished

by the geostrophic winds, and (2) that the relative vorticity can be described by the

geostrophic relative vorticity, we have

∂ζg

∂t
+ ug

∂ζg

∂x
+ vg

∂ζg

∂y
= dg ζ

dt
= − f0

(
∂u

∂x
+ ∂v

∂y

)
(5.43)

where the operator

dg

dt
= ∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
.

Since the geostrophic relative vorticity, ζg , can be written as

ζg = ∂vg

∂x
− ∂ug

∂y
= ∂

∂x

(
1

f0

∂φ

∂x

)
− ∂

∂y

(
− 1

f0

∂φ

∂y

)
= 1

f0

∇2φ, (5.44)

the entire LHS of (5.43) can be expressed in terms of the geopotential. Note that we

did not replace the horizontal velocities on the RHS of (5.43) with their geostrophic

counterparts since, for constant Coriolis parameter, the geostrophic wind is non-

divergent. Using (5.40), we see that

− f0

(
∂u

∂x
+ ∂v

∂y

)
= f0

∂ω

∂p
.

Thus, (5.43) can be written as

∂ζg

∂t
= − �V g · ∇ζg + f0

∂ω

∂p
(5.45)
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which is known as the quasi-geostrophic vorticity equation.

From (5.39) we see that

T = − p

R

∂φ

∂p

so that (5.41) can be rewritten as

p

R

[
∂

∂t

(
−∂φ

∂p

)
+ �V h · ∇

(
−∂φ

∂p

)]
− Spω = Q̇

c p

. (5.46)

Recalling that ds/dt = Q̇/T describes the rate of change of entropy, (5.46) can be

written as

∂

∂t

(
−∂φ

∂p

)
+ �V h · ∇

(
−∂φ

∂p

)
− σω = α

c p

ds

dt
(5.47)

where

σ = RSp

p
= −α

∂ ln θ

∂p
.

We will refer to σ as the static stability parameter, noting that in a statically stable

atmosphere ∂θ/∂p < 0 so that σ > 0. As we did with the vorticity equation, we will

approximate the horizontal wind as geostrophic and also assume that the diabatic

heating is negligible. Under those restrictions, the thermodynamic energy equation

becomes

∂

∂t

(
−∂φ

∂p

)
= − �V g · ∇

(
−∂φ

∂p

)
+ σω. (5.48)

Note that this expression states that the rate of change of temperature (since −∂φ/∂p

is directly related to temperature on isobaric surfaces) is the difference between

the advective tendency and the adiabatic warming or cooling produced by vertical

motions. Our neglect of diabatic heating is only valid so long as the most significant

temperature changes occur as a result of either of the two processes represented

on the RHS of (5.48). This is never actually the case but it is not a paralyzingly

incorrect assumption for synoptic-scale motions in the mid-latitudes. In the context

of extratropical cyclone development, in which latent heating plays a significant role,

the appropriateness of this assumption erodes considerably.

The combination of (5.45) and (5.48) represents the two simplified expressions

which we sought at the beginning of this section. Since the geostrophic wind, the

geostrophic vorticity, and (though it may not seem obvious) σ can all be written in

terms of the geopotential, (5.45) and (5.48) represent a set of two equations with

two unknowns (φ and ω). In subsequent chapters we will manipulate this pair of

expressions to compute the geopotential tendency (∂φ/∂t) and the vertical motion

(ω) given only the instantaneous field of geopotential at a variety of levels in the

atmosphere. Amazingly, this implies that much of the behavior of the geostroph-

ically and hydrostatically balanced mid-latitude atmosphere can be diagnosed or
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predicted without direct measurement of the velocity field! It is easy to see why these

two expressions, which constitute the quasi-geostrophic system of equations, sit at

the very epicenter of modern dynamical meteorology. The lion’s share of equation

development has now been completed. In the rest of this book, we will use these ba-

sic tools to develop physical understanding of the behavior of mid-latitude weather

systems. It is a thrilling ride that will amply reward the discipline and patience you

have invested in our endeavor to this point!

Selected References

Acheson, Elementary Fluid Dynamics, provides a solid introduction to vorticity.

William and Elder, Fluid Physics for Oceanographers and Physicists, does the same.

Hess, Introduction to Theoretical Meteorology, offers the most accessible introductory discussion of

vorticity and its relation to circulation.

Eliassen (1984) provides an elegant overview of the development of the quasi-geostrophic system

of equations.

Bleck (1973) discusses potential vorticity at a reasonably introductory level.

Problems

5.1. (a) Derive an expression for the isobaric, geostrophic relative vorticity in terms of φ.

(b) Demonstrate that, in the northern hemisphere, this expression describes positive

relative vorticity for regions of cyclonic curvature of streamlines and negative rel-

ative vorticity for regions of anticyclonic curvature.

(c) An equivalent barotropic environment is one in which geopotential height lines

are everywhere parallel to isotherms or thickness isopleths. If such an environment

is characterized by cyclonic vorticity, is the geostrophic relative vorticity of larger

magnitude at 500 hPa or at 900 hPa? Explain your reasoning with a picture and an

appeal to the governing equations.

5.2. A cylindrical column of air at 30◦N with radius 100 km expands to twice its original

radius. The air is initially at rest.

(a) Calculate the circulation about this column after expansion.

(b) What is the relative vorticity after expansion? Explain.

(c) How is the result of this problem consistent with the vorticity equation? What

physical process, implicit in this problem, is a powerful mechanism for changing

the relative vorticity?

5.3. Recall that we concluded that horizontal divergence was so subject to error when

calculated from observations that we could not ‘measure’ it with any confidence

(Problem 4.17). Vertical vorticity is, like divergence, a first derivative of the horizontal

wind field. Can you suggest a reason why calculations of relative vorticity based on

observed, mid-latitude winds are not as prone to error as calculations of divergence?
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5.4. Some people believe the Earth is flat. If it really were, and it still rotated with rotation

rate �, what value would the Coriolis parameter (i.e. the planetary vorticity) have?

5.5. A square 800 km on each side is embedded in an easterly flow (i.e. westward-moving

air) that decreases in magnitude toward the north at a rate of 10 m s−1 per 400 km.

(a) What is the circulation about the square? Show your work.

(b) What is the mean relative vorticity in the square? Show two methods of arriving at

this answer.

5.6. A cylinder (rotating counterclockwise) is filled with different color fluids as shown in

Figure 5.1A. The inner radius is 2 m and the outer radius is 4 m. The tangential velocity

distribution is given by the function V = A/r where A = 10 m2 s−1.

Figure 5.1A

(a) What is the average vorticity in the annulus filled with dark gray fluid? (Show your

work).

(b) What is the average vorticity of the light gray fluid? Explain.

(c) Verify this result by using the natural coordinate form of vorticity at r = 3 m (the

average radius of the annulus).

5.7. For geostrophic, steady-state flow with constant Coriolis parameter ( f0) show that

∂ω

∂p
= ∇ ·

( �V g ζg

f0

)
.

5.8. Imagine the first major winter storm of the year has just visited the central United

States. The storm delivered heavy snow to northern Nebraska but no accumulation to

southern Nebraska. In the wake of the storm, a broad surface anticyclone has settled
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over the region. In the absence of any significant pressure gradient force over the state,

a persistent northerly surface flow develops over southern Nebraska. Why? Will this

northerly flow have an appreciable diurnal cycle? Why or why not?

5.9. An atmospheric column initially sitting atop the Chilean Andes (elevation 5000 m,

latitude 40◦S) stretches to 10 km and has zero relative vorticity. If westerly flow advects

that column down the east slopes of the Andes into the Pampa of Argentina (elevation

1000 m) what will its relative vorticity be assuming the flow is barotropic?

5.10. Under what precise conditions can curved, geostrophic flow have zero relative vorticity?

Explain. Draw schematic diagrams to illustrate your answer.

5.11. A popular tale suggests that the spin of the ‘bathtub vortex’ is determined by the Earth’s

rotation. In order to evaluate this proposition, consider a situation in which a small

drain is opened in the center of a large tank of initially still water. After a certain time,

t, the tangential velocity 1 centimeter from the drain axis is observed to be 0.5 cm s−1.

The tank is located at 45◦N.

(a) If only the Earth’s rotation was responsible for the observed swirl, and if friction

can be neglected, what was the initial radial distance of the fluid ring observed at 1

cm radius at time t?

(b) Suppose that instead of being initially motionless, the water had a small, initial,

clockwise swirl. At the initial radial distance calculated in (a), how large would the

tangential velocity of this swirl have to have been in order to reverse the spin of the

drain vortex?

(c) What can be concluded about the veracity of this popular tale?

5.12. A pair of cyclonic and anticyclonic vortices are observed in the atmosphere at 43◦N. Both

vortices have the same area-averaged value of relative vorticity (|ζ | = 1 × 10−5 s−1).

Suppose that a uniform horizontal convergence and divergence associated with the

cyclonic and anticyclonic vortices, respectively, persists during an entire day with equal

magnitudes (|∇ · �V | = 2 × 10−6 s−1).

(a) Estimate the respective changes in ζ as a consequence of this circumstance.

(b) It is observed that departures from mean sea-level pressure are larger in magnitude

for extreme cyclones than for extreme anticyclones. Does the result in (a) suggest

a dynamical reason for this asymmetry? Explain.

Solutions

5.1. (a) ζg = 1
f
∇2φ

5.2. (a) −6.872 × 106 m2 s−1 (b) −5.469 × 10−5 s−1

5.4. 2�



JWBK072c05 JWBK072/Martin February 23, 2006 23:59 Char Count= 0

SOLUTIONS 145

5.5. (a) −1.6 × 107 m2 s−1 (b) −2.5 × 10−5 s−1

5.6. (a) 5 s−1 (b) 0

5.9. −7.5 × 10−5 s−1

5.10. Rs = Vg

∂Vg /∂n

5.11. (a) 0.985 m (b) −5.07 × 10−5 m s−1

5.12. (a) ζt = 3.06 × 10−5 s−1 for the cyclone and ζt = −2.29 × 10−5 s−1 for the

anticyclone
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6
The Diagnosis of Mid-Latitude
Synoptic-Scale Vertical Motions

Objectives

Regions of upward vertical motion are often associated with clouds and precipitation

since rising air cools by expansion. This cooling increases the relative humidity of the

air which can eventually lead to condensation and cloud formation. Regions of rising

air are also often associated with mass divergence in an atmospheric column and,

consequently, surface pressure falls and cyclogenesis. Regions of downward vertical

motion are often cloud free as air dries and warms upon being compressed as it sinks

to higher pressure. Mass convergence into an atmospheric column, characteristic of

regions of downward vertical motion, results in surface pressure rises and surface

anti-cyclogenesis. As a result of the fundamental nature of these relationships, it is

not an exaggeration to say that determination of where, when, and to what degree

the air is rising or sinking is of fundamental importance for accurately diagnosing

the current weather or predicting its future state. In this chapter we will investigate

a number of different methods for diagnosing synoptic-scale vertical motions in

typical mid-latitude weather systems.

Some of these diagnostic methods will derive from careful consideration of the

ageostrophic wind vector itself. Several others (the Sutcliffe development theorem as

well as the traditional and �Q-vector forms of the quasi-geostrophic omega equation)

will arise from simultaneously solving the quasi-geostrophic vorticity and thermo-

dynamic energy equations for the vertical motion, ω, and will make reference only

to the instantaneous mass distribution. Taken together, the collection of diagnostics

to be developed in this chapter will provide us with a formidable set of tools for un-

derstanding the synoptic-scale behavior of mid-latitude weather systems. We begin

our investigation by considering the ageostrophic wind.

Mid-Latitude Atmospheric Dynamics Jonathan E. Martin
C© 2006 John Wiley & Sons, Ltd.
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6.1 The Nature of the Ageostrophic Wind: Isolating
the Acceleration Vector

Recall that the geostrophic wind is non-divergent on an f plane. In fact, under such

conditions only departures from geostrophy contribute to horizontal divergence and,

through the continuity of mass, to vertical motions as shown in (4.9). For this reason

it is extremely important to examine means by which the ageostrophic motions in

the mid-latitude atmosphere might be diagnosed. We begin with the frictionless

equation of motion

d �V
dt

= − f k̂ × �V − ∇φ, (6.1)

and take the vertical cross-product of this expression to obtain

k̂

f
× d �V

dt
= k̂

f
× (− f k̂ × �V) − k̂

f
× ∇φ. (6.2a)

The right hand rule dictates that k̂ × k̂ × �A = − �A, and �V g = (k̂/ f ) × ∇φ, so

k̂

f
× d �V

dt
= �V − �V g = �V ag . (6.2b)

The famous British meteorologist R. C. Sutcliffe1 reasoned that surface pressure

falls resulted from vertical differences in mass divergence in a column. Larger mass

divergence aloft than at the surface resulted in surface pressure falls and vice versa for

surface pressure rises. Such differences in divergence could be related to differential

accelerations at the surface and aloft through application of (6.2b). Thus, Sutcliffe

argued that isolation of the acceleration vector could give insights into the sense of the

vertical motion in an atmospheric column. Before presenting the elegant theory of

Sutcliffe (1939), let us endeavor to isolate the acceleration vector, and its ageostrophic

consequences, in two rather simple cases. These cases correspond to the two broad

classes of circumstances in which geostrophic balance is violated: the presence of

along-flow speed change and curvature in the flow.

The canonical synoptic example of along-flow speed change is the isolated jet

streak. Shown in Figure 6.1 is the isotach distribution associated with an isolated

wind speed maximum at 300 hPa in the northern hemisphere. The dashed line drawn

perpendicular to the jet axis divides the jet into the so-called entrance region to its

left and the exit region to its right. A parcel of air located on the western edge of the

entrance region (indicated by the solid circle in Figure 6.1) would quite obviously

experience an acceleration in the direction of the flow at that location. Hence, the

1 R. C. Sutcliffe (1904–1991) received his Ph.D. in statistics but found employment with the British Meteo-
rological Office in 1927. He worked with the famous Tor Bergeron while in Malta where he opined that weather
forecasting was scarcely worthy of description as a scientific activity. He was among the first, and greatest,
atmospheric scientists to insist that weather forecasting and diagnosis should proceed from the equations of
motion. This insistence led to what might be considered the first major breakthrough in modern synoptic–
dynamic meteorology and his most famous contribution, ‘A contribution to the problem of development’
(Sutcliffe 1947).
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Figure 6.1 The 300 hPa isotachs (solid lines) and wind vectors associated with a straight jet at 0000

UTC 12 November 2003 from NCEP’s Eta model analysis. Isotachs are labeled in m s−1 and contoured

every 10 m s−1 starting at 50 m s−1. Only wind vectors greater than 40 m s−1 are shown. Thick black

arrows indicate the direction of the acceleration vector d �V /dt at the entrance region (solid black circle)

and exit regions (open circle) of the jet. The gray shaded arrow is the resultant ageostrophic wind

vector, �V ag , at both locations. C and D represent the locations of 300 hPa ageostrophic convergence

and divergence, respectively

vector d �V/dt points eastward toward the center of the jet streak. Consequently, the

ageostrophic wind vector, �V ag , points northward at the indicated point. The result of

this distribution of ageostrophic winds in the entrance region of the jet is that there

is convergence of air at 300 hPa to the north of the indicated position and divergence

of air at 300 hPa to the south of the indicated position. Given that 300 hPa is nearly at

the top of the troposphere, upper-level divergence (convergence) is associated with

upward (downward) vertical motion in the intervening column and so a thermally

direct vertical circulation generally exists in the entrance region of a straight jet streak.

A parcel of air located on the eastern edge of the exit region (indicated by the open

circle in Figure 6.1) would quite obviously experience a deceleration in the direction

opposite the flow at that location. Hence, the vector d �V/dt points westward toward

the center of the jet streak. Consequently, the ageostrophic wind vector, �V ag , points

southward at the indicated point. The result of this distribution of ageostrophic

winds in the exit region of the jet is that there is convergence of air at 300 hPa to the

south of the indicated position and divergence of air at 300 hPa to the north of the

indicated position. Upward vertical motion occurs in the column beneath the upper

divergence maxima and, thus, a thermally indirect vertical circulation generally exists

in the exit region of a straight jet streak.

Curvature in the flow is also a circumstance that violates the geostrophic assump-

tion. Consider flow through an upper tropospheric trough–ridge couplet where the
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Figure 6.2 Schematic upper tropospheric trough–ridge wave train in which the speed of the flow is

the same everywhere. Thick black arrows represent the acceleration vectors, d �V /dt, at the indicated

points determined graphically by finite differencing between adjacent wind arrows (in gray and labeled as

described in the text). Gray shaded arrows represent resultant ageostrophic winds, �V ag , at the indicated

points. Convergence and divergence are indicated by C and D, respectively

wind speed is constant and everywhere parallel to the geopotential height lines as

shown in Figure 6.2. Under such circumstances, the acceleration of the wind will

be entirely a consequence of directional changes. Thus, between points A and B in

Figure 6.2, a southwestward-directed acceleration is required to turn the wind from

westerly at point A to northwesterly at point B. There is no direction change between

points B and C and, thus, no acceleration vector. A northeastward-directed acceler-

ation is required to turn the northwesterly wind at point C to a westerly direction

at point D. In order to turn the westerly at point D to a southwesterly at point E, a

northwestward-directed acceleration is required. No change in direction exists be-

tween points E and F but a change from southwesterly at F to westerly at point G

requires a southeastward-directed acceleration as shown. Given the four accelera-

tion vectors drawn in Figure 6.2, it is simple to draw the ageostrophic winds in this

trough–ridge couplet. The ageostrophic winds clearly converge on the western side

of the upper trough (on its upstream side) leading to downward vertical motion in

the column in that location. Meanwhile, the divergence of the ageostrophic winds on

the downstream side of the upper trough is associated with upward vertical motions

in the column in that location. This result provides a first insight into the physical

reason why inclement weather is often found downstream of upper-level trough axes

while clear skies are often found downstream of upper-level ridge axes. This basic

relationship lies at the heart of understanding the distribution of sensible weather in

the middle latitudes.

6.1.1 Sutcliffe’s expression for net ageostrophic divergence in a column

Having examined the distribution of the ageostrophic winds in these canonical syn-

optic examples, let us now turn our attention to the insightful work of Sutcliffe
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(1939). We begin by considering the surface wind �V 0, the wind at some upper tro-

pospheric level, �V , and the vertical shear between the two layers, �V s . Based upon

these simple definitions, it is clear that �V = �V 0 + �V s and therefore

d �V
dt

= d �V 0

dt
+ d �V s

dt
(6.3)

where

d

dt
= ∂

∂t
+ �V · ∇

is the Lagrangian operator used to describe d �V/dt. Given these definitions, (6.3)

can be expanded into

d �V
dt

= ∂ �V 0

∂t
+ ( �V 0 + �V s ) · ∇ �V 0 + d �V s

dt
. (6.4)

Alternatively, (6.4) can be written as

d �V
dt

= ∂ �V 0

∂t
+ �V 0 · ∇ �V 0 + �V s · ∇ �V 0 + d �V s

dt
. (6.5)

Recognizing that the first two terms on the RHS of (6.5) describe the acceleration of

the wind at the surface, (d �V/dt)0, an expression for the differential acceleration in

the layer arises:

d �V
dt

−
(

d �V
dt

)
0

= �V s · ∇ �V 0 + d �V s

dt
. (6.6)

This expression relates the fact that if there is shearing over the surface wind ( �V s ·
∇ �V 0) or a change in the shear vector (d �V s /dt) then there must be a difference

in acceleration between the upper tropospheric wind and the surface wind. Based

upon (6.2b), this implies that there must be some net divergence in the column

and therefore, by continuity, vertical motions. Let us now examine the physical

significance of the two terms on the RHS of (6.6). As we will do with every other

diagnostic expression, we will consider the effect of each term in isolation, beginning

with the shearing over the surface wind.

(a) Shearing over the surface wind: d �V/dt − (d �V/dt)0 = �V s · ∇�V 0

Our expression begins by first expanding this term into its full component form

given by

�V s · ∇ �V 0 =
(

us

∂u0

∂x
+ vs

∂u0

∂y

)
î +

(
us

∂v0

∂x
+ vs

∂v0

∂y

)
ĵ . (6.7)

Figure 6.3 depicts a schematic sea-level pressure minimum and some 1000–500 hPa

thickness contours. Considering the value of this term at the center of the low-pressure
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Figure 6.3 Sea-level isobars (solid lines) and 1000–500 hPa thickness (dashed lines) near a devel-

oping surface low-pressure center in the northern hemisphere. Thin dark arrows represent the sea-level

geostrophic winds. The thick black arrow represents �V s .∇ �V 0. The gray shaded arrow represents the dif-

ference between the upper-level and surface ageostrophic wind, �V agU
− �V ag L

. Net column convergence

and divergence are indicated by C and D, respectively

center greatly reduces the mathematical complexity of applying (6.7). We will assume

that the winds are geostrophic everywhere, which dictates that a thermal wind vector

be directed along the positive y-axis in the northern hemisphere. At the center of the

low, therefore, there is no x-direction vertical shear so that us = 0. It is also clear that

there is no ∂v0/∂y at the center of the low-pressure center. Thus, (6.7) reduces to

�V s · ∇ �V 0 = vs

∂u0

∂y
î

for the scenario illustrated in Figure 6.3. We have already found that vs is positive

in this case. We now discern that ∂u0/∂y is negative so that the product vs ∂u0/∂y

is negative. Consequently, the vector �V s · ∇ �V 0 points in the negative x direction as

indicated. Since �V s · ∇ �V 0 represents the acceleration at the top of the column minus

the acceleration at the bottom of the column, taking the vertical cross-product of �V s ·
∇ �V 0 indicates the direction of the column-differential ageostrophic wind. Figure 6.3

shows that, in this case, there is greater ageostrophic divergence (convergence) aloft

than at the surface north (south) of the surface low implying ascent (descent) in that

location. The surface cyclone will propagate toward the net column mass divergence

(i.e. in the direction of the ascending air) as only mass divergence and ascending air
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will be associated with sustained pressure falls at the surface. Application of similar

reasoning to the case of a surface anticyclone (a recommended exercise for the reader)

leads us to a general statement: the sea-level pressure perturbation will propagate in

the direction of the thermal wind.

(b) Rate of change of the shear vector: d �V s/dt

Figure 6.4(a) shows some 1000–500 hPa thickness isopleths along with the thermal

wind vector in the layer in the northern hemisphere at some time T = 0. Some

time later (T = T1), the horizontal thickness gradient has been increased by some

agency in the atmosphere such as confluent horizontal flow. The result of such an

increase in the baroclinicity is a larger thermal wind, still directed to the north as

shown in Figure 6.4(b). If we assume the winds are everywhere geostrophic, then

the difference in the thermal wind vectors in Figures 6.4(a) and 6.4(b) represents a

change in the shear vector and can be represented by the expression d �V s /dt so long

as the change has been measured following an individual air parcel. Thus, d �V s /dt

is directed in the positive y direction. The vertical cross-product of d �V s /dt (which

Figure 6.4 Illustration of the effect of the rate of change of shear term, d �V s/dt, from (6.6). Dashed

lines are 1000–500 hPa thickness contours whose gradient increases in magnitude from time T = 0

to time T = T1. The increase in effected by horizontal confluence, represented by the thin black arrows

in (a). The thin gray arrow represents �V s , the thermal wind shear. At T = T 1, the thermal wind is

larger and the bold black arrow in (b) represents the Lagrangian change in the shear, d �V s/dt. The gray

shaded arrow in (b) represents the difference between upper-level and near surface ageostrophic wind,
�V agU

− �V ag L
. Net column convergence and divergence are indicated by C and D, respectively
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points directly toward the low thicknesses in Figure 6.4b) represents the column-

differential ageostrophic wind for this example. The column of air on the warm (cold)

side of the thickness gradient experiences greater divergence (convergence) aloft than

at the surface and so it rises (sinks). Thus we find that anytime the horizontal flow acts

to increase the thickness (or temperature) gradient, the response is the development

of a thermally direct vertical circulation in which warm air rises and cold air sinks.

Conversely, any systematic relaxation of the horizontal gradient of temperature by

the action of the horizontal flow induces a thermally indirect vertical circulation.

This physical insight, a direct consequence of the fact that the rate of change of

the shear vector produces divergence in the column, is central to the dynamics of

frontogenesis, a topic we will explore in great detail in Chapter 7.

6.1.2 Another perspective on the ageostrophic wind

We now turn our attention to a more formal expansion of the ageostrophic wind

relationship (6.2b) which, recall, stated that

�V ag = k̂

f
× d �V

dt
.

The Lagrangian derivative in the preceding expression can be expanded so that

�V ag = k̂

f
×

(
∂ �V
∂t

+ �V · ∇ �V + ω
∂ �V
∂p

)
. (6.8)

The three terms on the RHS of (6.8) represent three contributions to the total

ageostrophic wind: (1) the local wind tendency component, (2) the inertial ad-

vective component, and (3) the convective component. If we substitute �V g for �V
everywhere in (6.8) then

�V ag = k̂

f
×

(
∂ �V g

∂t
+ �V g · ∇ �V g + ω

∂ �V g

∂p

)
. (6.9)

Our aim in this development is to diagnose the synoptic-scale vertical motion by first

isolating the distribution of the ageostrophic wind. As is clear from (6.9), diagnosis

of the convective component of the ageostrophic wind requires a priori knowledge

of the vertical motion. Thus, it is not feasible to perform the intended diagnosis on

the convective component. For this reason we will consider only the first two terms

on the RHS of (6.9) in the foregoing analysis, starting with the local wind tendency

component.

The local wind tendency component of the ageostrophic wind ( �V ag T
) can be

related to geopotential height or pressure changes since

�V ag T
= k̂

f
× ∂ �V g

∂t
= k̂

f
× ∂

∂t

(
k̂

f
× ∇φ

)
= − 1

f 2
∇ ∂φ

∂t
(6.10a)
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on pressure surfaces or

k̂

f
× ∂ �V g

∂t
= − 1

ρ f 2
∇ ∂p

∂t
(6.10b)

on height surfaces. This component of the ageostrophic wind is known as the

isallobaric wind as a result of its dependence on the gradient of isallobars (lines

of constant pressure tendency, ∂p/∂t). Knowledge of the isallobaric wind, like any

component of the ageostrophic wind, only tells us about the distribution of vertical

motion when we know its divergence. Thus, we are most interested in the divergence

of the isallobaric wind, given by

∇ · �V isal = − 1

f 2
∇2 ∂φ

∂t
(6.11a)

on pressure surfaces or

∇ · �V isal = − 1

ρ f 2
∇2 ∂p

∂t
(6.11b)

on height surfaces. It is left as an exercise to show that pressure (or geopotential) falls

are associated with convergence of the isallobaric wind while pressure (or geopoten-

tial) rises are associated with divergence of the isallobaric wind.

The inertial–advective component ( �V I A ) of the ageostrophic wind is given by

�V I A = k̂

f
×

[(
ug

∂ug

∂x
+ vg

∂ug

∂y

)
î +

(
ug

∂vg

∂x
+ vg

∂vg

∂y

)
ĵ

]
. (6.12)

A number of different cases can be used to illustrate the effect of this term. Here we will

examine two starting with the case of upper tropospheric diffluent flow illustrated

in Figure 6.5(a). At the point in question, the expression in (6.12) is considerably

simplified by the fact that the value of vg at the point is identically zero. Additionally,

there is no value of ∂vg /∂x there. Thus, the expression (6.12) reduces to

�V I A = k̂

f
× ug

∂ug

∂x
î .

Noting that ug > 0 and ∂ug /∂x < 0 at the indicated point, ug ∂ug /∂x points in the

negative x direction. Thus, the inertial advective wind, �V I A, points in the negative

y direction as indicated in Figure 6.5(a). As a consequence, there is upper-level

divergence to the north of the indicated point and upper-level convergence to the

south of it. Thus, the air will rise in the column to the north and sink in the column

to the south. This pattern is precisely the same thermally indirect vertical circulation

at the jet exit region that we diagnosed earlier.

We can also employ (6.12) to consider the effect of flow curvature on ageostrophy

and vertical motions. A northern hemispheric 500 hPa ridge is shown schematically

in Figure 6.5(b). If we imagine a case in which the magnitude of the geostrophic flow

does not vary across the indicated points, then considerable simplification of (6.12)

results. At the central point in Figure 6.5(b) it is clear that there is no value of vg .
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Figure 6.5 (a) Inertial advective wind, �V I A , in diffluent horizontal flow in the northern hemisphere.

Solid lines are geopotential height at some upper tropospheric level (such as 300 hPa). Arrows are

labeled as described in the text. Upper-level convergence and divergence of the inertial advective wind

are represented by C and D, respectively. (b) Inertial advective wind through an upper-level ridge axis in

the northern hermisphere. Lines labeled as in (a). Thin arrows represent the geostrophic flow through

the ridge. See text for explanation

There is also no value for the derivative ∂ug /∂x at that point. Thus, (6.12) reduces to

�V I A = k̂

f
× ug

∂vg

∂x
ĵ

for the situation illustrated in Figure 6.5(b). At the crest of the ridge ug is positive

and ∂vg /∂x is negative so that ug ∂vg /∂x points in the negative y direction. Conse-

quently, the inertial advective wind, �V IA, points in the direction of the geostrophic

flow through the ridge. This analysis has demonstrated the familiar fact that the

flow through a ridge axis is supergeostrophic and that this circumstance arises as
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a result of the inertial advective component of the ageostrophic wind. The reader

should consider the arguments made for confluent and cyclonically curved flow, re-

spectively. Now that we have spent a good deal of effort considering vertical motions

that arise from the divergence of the ageostrophic wind (i.e. ∇ · (k̂/ f × d �V/dt)) we

will move toward a related expression first derived by Sutcliffe in 1947.

6.2 The Sutcliffe Development Theorem

Sutcliffe made a refinement to his earlier theory (1939) by adopting the geostrophic

assumption. Starting with the vector identity �A · �B × �C = −�B · �A × �C , Sutcliffe

reasoned that the divergence of the ageostrophic wind was closely related to changes

in the vertical component of vorticity. In mathematical terms,

−∇ · k̂ × d �V
dt

= k̂ · ∇ × d �V
dt

. (6.13)

Using the frictionless equations of motion in the x and y directions, the RHS of (6.13)

becomes

∂

∂x

(
dv

dt
= −∂φ

∂y
− f u

)
− ∂

∂y

(
du

dt
= −∂φ

∂x
+ f v

)
(6.14)

Letting

d

dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
, ζ = ∂v

∂x
− ∂u

∂y
, and η = ζ + f,

(6.14) is a form of the vorticity equation2

dη

dt
= d(ζ + f )

dt
= −(ζ + f )∇ · �V (6.15)

showing that vorticity changes are a result of divergence in the fluid. Next, Sutcliffe

expanded this expression into its components

∂(ζ + f )

∂t
+ �V · ∇(ζ + f ) + ω

∂(ζ + f )

∂p
= −(ζ + f )∇ · �V (6.16)

and assumed that (1) the vorticity and horizontal winds are geostrophic, (2) the ver-

tical advection of vorticity is negligible, and (3) the relative vorticity can be neglected

in the divergence term.3 This yielded a simplified form of (6.16)

∂(ζg + f )

∂t
+ �V g · ∇(ζg + f ) = − f0∇ · �V (6.17a)

2 It is derived in the manner of (5.36) but since we have neglected vertical advection (ω∂/∂p) in the
expression for the Lagrangian derivative, (6.15) contains no tilting term.

3 These assumptions are precisely those that led to the quasi-geostrophic vorticity equation (5.43).
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which can be rewritten as

1

f
∇2 ∂φ

∂t
+ �V g · ∇(ζg + f ) = − f0∇ · �V (6.17b)

since ζg = (1/ f )∇2φ. Now if we consider the differences in divergence between the

top and bottom of an air column, we can rewrite (6.17b) as

f0(∇ · �V − ∇ · �V 0) = − �V g · ∇(ζg + f ) + �V g0
· ∇(ζg0

+ f ) − 1

f
∇2 ∂φ′

∂t
(6.18)

where

∂φ′

∂t
= ∂φ

∂t
− ∂φ0

∂t

represents the rate of change of thickness in the column. Thus, (6.18) demonstrates

that vertical motion is related to (1) the change in the vertical distribution of vorticity

by advection, and (2) the Laplacian of variation in the temperature field.

Considering the thickness tendency term first we find that since

∂φ′

∂t
= dφ′

dt
− �V · ∇φ′ − ω

∂φ′

∂p

A B C

there are three physical processes that can lead to a local change in thickness: (1)

diabatic heating (A), (2) horizontal advection (B), and (3) vertical advection (adi-

abatic temperature changes) (C). If only diabatic heating were acting in the col-

umn, then ∂φ′/∂t > 0 so that −∇2(∂φ′/∂t) > 0 and upward vertical motion would

result according to (6.18). Conversely, diabatic cooling is associated with down-

ward vertical motion. Adiabatic effects result from the very vertical motions we

are trying to diagnose so the vertical advection term is difficult to interpret in

this simplified framework and will therefore be neglected as it was in the vorticity

equation (6.17a).

Let us consider horizontal advection as a means of producing the local thickness

tendency. In such a case, the last term on the RHS of (6.18) could be written as

− 1

f
∇2 ∂φ′

∂t
= 1

f
∇2

(
ūg

∂φ′

∂x
+ v g

∂φ′

∂y

)
(6.19)

where the overbars denote column-averaged geostrophic winds. Substituting from

the thermal wind equation ( f v ′
g = ∂φ′/∂x and − f u′

g = ∂φ′/∂y) yields

− 1

f
∇2 ∂φ′

∂t
= ∇2(ug v ′

g − v g u′
g ). (6.20a)
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This expression can be rearranged to yield

− 1

f
∇2 ∂φ′

∂t

=
(

ūg

∂

∂x
+ v g

∂

∂y

) (
∂v ′

g

∂x
− ∂u′

g

∂y

)
+

(
ug

∂

∂y
− v g

∂

∂x

) (
∂u′

g

∂x
+ ∂v ′

g

∂y

)
−

(
u′

g

∂

∂x
+ v ′

g

∂

∂y

) (
∂v g

∂x
− ∂ug

∂y

)
−

(
u′

g

∂

∂y
− v ′

g

∂

∂x

) (
∂ug

∂x
+ ∂v g

∂y

)
(6.20b)

so long as certain products of derivatives, i.e. terms such as

∂ug

∂x

∂v ′
g

∂x
,

are neglected.4 Such terms are known as deformation terms and we will consider the

consequences of their neglect later in this chapter. The second and fourth terms on

the RHS of (6.20b) contain odd mixed derivatives of the divergence of the thermal

wind (second term) and the divergence of the layer mean geostrophic wind (fourth

term). Both of these quantities are zero and so (6.20b) can be further reduced to

− 1

f
∇2

(
∂φ′

∂t

)
= ( �V g · ∇)ζ ′

g − ( �V ′
g · ∇)ζ g . (6.21)

Additional simplification arises by employing our definitions of the mean geostrophic

wind in the layer ( �V g = ( �V g + �V g0
/2)), thermal wind in the layer ( �V ′

g = �V g −
�V g0

), along with similar vertical average and vertical difference terms for the

geostrophic vorticity (ζ g = (ζg + ζg0
)/2) and ζ ′

g = ζg − ζg0
). In this case, (6.21)

becomes

− 1

f
∇2

(
∂φ′

∂t

)
= �V g0

· ∇ζg − �V g · ∇ζg0
. (6.22)

This last expression describes only the contribution to net column divergence (via

thickness tendencies) made by horizontal advection. So, we must substitute (6.22)

into (6.18) to get

f0(∇ · �V − ∇ · �V 0) = − �V g · ∇(ζg + f ) + �V g0
· ∇(ζg0

+ f )

+ �V g0
· ∇ζg − �V g · ∇ζg0

.

4 The full expansion of ∇2(ug v ′
g ), for instance, involves expanding ∂2(ug v ′

g )/∂x2 which, by the chain rule,

is equal to

∂

∂x

[
∂

∂x
(ug v ′

g )

]
= ∂

∂x

[
ug

∂v ′
g

∂x
+ v ′

g

∂ug

∂x

]
= ug

∂2v ′
g

∂x2
+ 2

∂ug

∂x

∂v ′
g

∂x
+ v ′

g

∂2ug

∂x2
.

The first and third terms of this expression are found in (6.20b), but the product of derivatives term is not.
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This expression can be reduced to

f0(∇ · �V − ∇ · �V 0) = −( �V g − �V g0
) · ∇(ζg0

+ ζg + f ),

or finally,

f0(∇ · �V − ∇ · �V 0) = − �V ′ · ∇(ζg0
+ ζg + f ) (6.23)

which states that synoptic-scale upward (downward) vertical motions, the result of

greater divergence (convergence) aloft than near the surface in any air column, are

forced by cyclonic (anticyclonic) vorticity advection by the thermal wind! This is a

remarkable result and represented one of the first operationally applicable theoretical

results in the history of synoptic–dynamic meteorology. Consider the fact that given

geopotential height analyses at two different isobaric levels, say 1000 and 500 hPa,

it is easy to calculate graphically the distribution of thickness isopleths, parallel to

which flows the thermal wind, �V ′. Since ζg = (1/ f )∇2φ, it is equally simple to ac-

quire a quick sense of the geostrophic vorticity at both levels. Thus, with just the

geopotential height distribution at two levels, a theoretically solid basis for estimat-

ing the synoptic-scale vertical motion is offered by (6.23). Figure 6.6 illustrates the

utility and ease of application of the Sutcliffe development theorem. Of course, the

actual vertical motion distribution (Figure 6.6c) in any given storm is considerably

more complicated than what might be expected from the Sutcliffe development term

(Figure 6.6b) but the gross features are nicely captured by the simple approximated

expression in (6.23).

6.3 The Quasi-Geostrophic Omega Equation

An alternative path to a diagnostic equation for synoptic-scale vertical motions arises

from considering the quasi-geostrophic vorticity and thermodynamic energy equa-

tions. Recall that these expressions are given by

∂ζg

∂t
= − �V g · ∇(ζg + f ) + f0

∂ω

∂p
(6.24a)

and

∂

∂t

(
−∂φ

∂p

)
= − �V g · ∇

(
−∂φ

∂p

)
+ σω, (6.25a)

respectively. Since the geostrophic relative vorticity can be expressed as the Laplacian

of geopotential, this pair of equations can be rewritten as

1

f0

∇2

(
∂φ

∂t

)
= − �V g · ∇(ζg + f ) + f0

∂ω

∂p
(6.24b)

− ∂

∂p

(
∂φ

∂t

)
= − �V g · ∇

(
−∂φ

∂p

)
+ σω. (6.25b)
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Figure 6.6 (a) The 300–700 hPa thickness (dashed lines) and the sum ζg300
+ ζg700

+ f (shaded) at

0000 UTC 13 November 2003. Thickness is labeled in dam and contoured every 6 dam. Geostrophic vor-

ticity is labeled in 10−5 s−1 and contoured every 8 × 10−5 s−1 starting at 36 × 10−5 s−1. (b) Advection

of the sum ζg300
+ ζg700

+ f by the 300–700 hPa thermal wind labeled in 10−9 m kg−1 and contoured

every 16 × 10−9 m kg−1 starting at 8 × 10−9 m kg−1. Vorticity and thickness from (a) are shown lightly

in the background. (c) The 500 hPa vertical motion at 0000 UTC 13 November 2003. Vertical motion is

labeled in μbar s−1 (dPa s−1) and contoured every 2 μbar s−1 with dark (light) shading corresponding

to upward (downward) vertical motion

In order to eliminate the time derivatives in both expressions, we take f0∂/∂p of

(6.24b) and ∇2 of (6.25b) to get

∂

∂p
∇2

(
∂φ

∂t

)
= f0

∂

∂p
[− �V g · ∇(ζg + f )] + f 2

0

∂2ω

∂p2
(6.24c)

− ∂

∂p
∇2

(
∂φ

∂t

)
= ∇2

[
− �V g · ∇

(
−∂φ

∂p

)]
+ σ∇2ω. (6.25c)

The sum of these two expressions yields

0 = f0

∂

∂p
[− �V g · ∇(ζg + f )] + f 2

0

∂2ω

∂p2
+ ∇2

[
− �V g · ∇

(
−∂φ

∂p

)]
+ σ∇2ω,
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which can be rearranged into

σ

(
∇2 + f 2

0

σ

∂2

∂p2

)
ω = f0

∂

∂p
[ �V g · ∇(ζg + f )] + ∇2

[
�V g · ∇

(
−∂φ

∂p

)]
,

(6.26)

known as the quasi-geostrophic omega equation. What does this expression mean?

First, note that only derivatives in space exist in (6.26) so that it is a diagnostic equation

for ω in terms of the instantaneous geopotential height field. The value of such an

expression is that we can obtain from it a measure of ω that is not dependent on

accurate observations of the wind. It is a rather complicated-looking expression so

we will need to consider what physical meaning the mathematics contains.

The term on the LHS of (6.26), despite its complicated-looking nature, is essentially

a 3-D Laplacian term. If we assume that the vertical motion field displays a sinusoidal

vertical profile (which turns out to be a very solid assumption) then ∂2ω/∂p2∝ −ω.

Also, since the Laplacian is a second-derivative operator, a local maximum (min-

imum) in ∇2ω implies a local minimum (maximum) in ω itself. Thus, whenever

the RHS of (6.26) is found to be positive (negative), then ∇2ω is positive (negative)

implying that ω is negative (positive), corresponding to upward (downward) vertical

motion.

The first term on the RHS of (6.26) physically represents the vertical deriva-

tive (−∂/∂p) of geostrophic vorticity advection (− �V g · ∇(ζg + f )). Thus, if an

environment is characterized by geostrophic cyclonic vorticity advection increasing

(decreasing) with height, then this term is positive (negative) implying that the en-

vironment will be characterized by upward (downward) vertical motion. Note the

physical similarity between this term and the role of differential geostrophic vorticity

advection in the Sutcliffe development theorem (6.18). Consider the schematic in

Figure 6.7. Since geostrophic vorticity near the surface high and low is concentrated

at those locations and the circulations are nearly closed at that level, the geostrophic

vorticity advection near the surface is rather small. Geostrophic vorticity advection

above the surface low, however, is large and positive so that that column experiences

upward-increasing cyclonic vorticity advection and, hence, upward vertical motion.

Geostrophic vorticity advection above the surface high is large and negative and

that column experiences upward-decreasing cyclonic vorticity advection and, hence,

downward vertical motion. It is important to note that since geostrophic vorticity is

proportional to ∇2φ when the column above the surface low experiences a greater

increase in geostrophic vorticity aloft than near the surface, this implies that

∂

∂t
(∇2φ − ∇2φ0) > 0

or, alternatively,

∇2 ∂φ′

∂t
> 0
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Figure 6.7 The 500 hPa open wave over a surface low and surface high in the northern hemisphere.

Thin gray lines are sea-level isobars with accompanying arrows indicating the direction of the near

surface geostrophic flow. Thick black lines are the 500 hPa geopotential height with arrows indicating

the direction of the 500 hPa geostrophic flow. The ‘+’ and ‘−’ represent the locations of positive and

negative relative vorticities, respectively, with the size of the symbol indicating the relative magnitude

of the vorticity (i.e. larger at upper levels). Dark (light) gray shaded ovals indicate regions of upward

(downward) vertical motions. See text for explantion

which requires that

∂φ′

∂t
< 0.

In order to experience the requisite thickness decrease, the column must cool. The

cooling is achieved by adiabatic expansion of the rising air.

The second term on the RHS of (6.26) can be rewritten as

∇2

[
�V g · ∇

(
−∂φ

∂p

)]
= −∇2

[
− �V g · ∇

(
−∂φ

∂p

)]
.

This alternative form makes it clear that the term in the brackets physically represents

horizontal temperature advection. Thus, this entire expression describes the Lapla-

cian of horizontal temperature advection. If an environment is characterized by a

local maximum in warm (cold) air advection, then this term is positive (negative),

corresponding to upward (downward) vertical motion. It is important to note that,

according to the quasi-geostrophic omega equation, warm (cold) air advection alone

is not enough to diagnose the sense of the vertical motion – it is the Laplacian of

the temperature advection that matters. This implies that only heterogeneity in the

thermal advection field is associated with ω. This is easily demonstrated by considering

an alternative form of this term:

−∇ · ∇
[
− �V g · ∇

(
−∂φ

∂p

)]
.
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It is clear that if the gradient of horizontal temperature advection is zero (i.e. there

is uniform horizontal temperature advection) then the whole term will be zero and

no vertical motion will be forced.

The vertical motion fields described by the quasi-geostrophic omega equation

are precisely those vertical motions that are required to keep the thermal and mass

fields in hydrostatic and geostrophic balance. These diagnosed vertical motions also

tend to be an accurate description of the large-scale vertical motions observed in

the mid-latitude atmosphere. We will investigate why vertical motions are required

to maintain thermal wind balance presently. First, it is enlightening to examine a

simplified form of (6.26) that renders a result similar to that described by the Sutcliffe

development theorem.

Trenberth (1978) argued that carrying out all the derivatives on the RHS of (6.26)

could simplify the forcing function of the quasi-geostrophic omega equation. Ex-

panding the terms in square brackets on the RHS of (6.26) yields

σ

(
∇2 + f 2

0

σ

∂2

∂p2

)
ω = f0

∂

∂p

[
ug

∂(ζg + f )

∂x
+ vg

∂(ζg + f )

∂y

]
+ ∇2

[
−ug

∂2φ

∂x∂p
− vg

∂2φ

∂y∂p

]
. (6.27)

Employing the geostrophic wind relationships

ug = − 1

f

∂φ

∂y
and vg = 1

f

∂φ

∂x

along with the definition of the geostrophic relative vorticity (ζg = (1/ f0)∇2φ) gives

σ

(
∇2 + f 2

0

σ

∂2

∂p2

)
ω

= f0

∂

∂p

[
− 1

f

∂φ

∂y

∂

∂x

(
1

f0

∇2φ + f

)
+ 1

f

∂φ

∂x

∂

∂y

(
1

f0

∇2φ + f

)]
− 1

f
∇2

[
−∂φ

∂y

∂2φ

∂x∂p
+ ∂φ

∂x

∂2φ

∂y∂p

]
. (6.28)

Using the Jacobian operator, J (A, B), where

J (A, B) =
(

∂ A

∂x

∂ B

∂y
− ∂ A

∂y

∂ B

∂x

)
,

(6.28) can be rewritten as

σ

(
∇2 + f 2

0

σ

∂2

∂p2

)
ω = 1

f
[F1 + F2]
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where F1and F2 are given by

F1 = −J

(
∇2φ,

∂φ

∂p

)
− J

(
φ, ∇2 ∂φ

∂p

)
− 2

[
J

(
∂φ

∂x
,

∂2φ

∂x∂p

)
+ J

(
∂φ

∂y
,

∂2φ

∂y∂p

)]
(6.29)

F2 = J

(
∂φ

∂p
, ∇2φ

)
+ J

(
∂φ

∂p
, f f0

)
+ J

(
φ, ∇2 ∂φ

∂p

)
, (6.30)

respectively. Notice that the second term on the RHS of (6.29) is the additive inverse

of the third term on the RHS of (6.30). Also, F1 contains the deformation terms

(the square bracketed term on the RHS of (6.29)) which we neglected in the Sutcliffe

development theorem. Upon neglecting them here again, we find that the RHS of

(6.28) can be approximated as

1

f
[F1 + F2] ≈ 1

f

[
2J

(
∂φ

∂p
, ∇2φ

)
+ J

(
∂φ

∂p
, ff0

)]
(6.31a)

which can be approximated further, without much error and to facilitate applica-

tion, as

1

f
[F1 + F2] ≈ 2

f

[
J

(
∂φ

∂p
, ∇2φ

)
+ J

(
∂φ

∂p
, ff0

)]
. (6.31b)

Upon expansion of (6.31b), we find that an approximate form of the RHS of (6.26),

the quasi-geostrophic omega equation, is given by

σ

(
∇2 + f 2

0

σ

∂2

∂p2

)
ω ≈ 2

[
f0

∂ �V g

∂p
· ∇(ζg + f )

]
. (6.32)

Thus, even when proceeding from the classical quasi-geostrophic omega equation,

the fundamental physical insight achieved by Sutcliffe is confirmed: that is, large-

scale mid-latitude vertical motions are forced by thermal wind advection of absolute

geostrophic vorticity.

This result is both reassuring and convenient in the sense that it compresses a

rather complicated expression (6.26) into a single forcing term that is easy to employ

qualitatively using standard observations. Some nagging questions undoubtedly per-

sist in the reader’s mind at this point in our discussion, however. Perhaps chief among

them is: Is it reasonable that we continually neglect the so-called deformation terms in

deriving diagnostic expressions for the large-scale, mid-latitude vertical motions? Also,

perhaps lurking deeper in the mind of the reader: How do these quasi-geostrophic

vertical motions serve to maintain the thermal wind balance? Before we consider the

second question, let us first consider the nature of the neglected deformation terms.

The deformation terms appeared explicitly in (6.29) as

DEF = − 2

f

[
J

(
∂φ

∂x
,

∂2φ

∂x∂p

)
+ J

(
∂φ

∂y
,

∂2φ

∂y∂p

)]
. (6.33a)



JWBK072c06 JWBK072/Martin March 7, 2006 21:9 Char Count= 0

166 DIAGNOSIS OF SYNOPTIC-SCALE VERTICAL MOTIONS

Employing the geostrophic ( f vg = ∂φ/∂x and − f ug = ∂φ/∂y) and the hydrostatic

(∂φ/∂p = −RT/p) relationships, this can be expressed as

DEF = − 2

f

[
J

(
f vg , − R

p

∂T

∂x

)
+ J

(
− f ug , − R

p

∂T

∂y

)]
or

DEF = 2R

p

[
J

(
vg ,

∂T

∂x

)
− J

(
ug ,

∂T

∂y

)]
. (6.33b)

Carrying out the indicated derivatives and then grouping like terms together yields

DEF = 2R

p

[(
∂vg

∂x
+ ∂ug

∂y

)
∂2T

∂x∂y
− ∂vg

∂y

∂2T

∂x2
− ∂ug

∂x

∂2T

∂y2

]
. (6.33c)

Denoting the geostrophic shearing deformation, (∂vg /∂x + ∂ug /∂y), as SH, the

geostrophic stretching deformation, (∂ug /∂x − ∂vg /∂y), as ST, and employing the

non-divergence of the geostrophic wind, (6.33c) can be rewritten as

DEF = 2R

P

[
(S H)

∂2T

∂x∂y
+ (ST)

2

(
∂2T

∂x2
− ∂2T

∂y2

)]
(6.33d)

which illustrates that the deformation terms will be significant where second deriva-

tives of temperature are coincident with deformation (i.e. first derivatives) in the

geostrophic wind field. Mid-latitude frontal regions, as we will see, are defined by

such conditions. This fact has led to the historical assumption that the deformation

term is only large in frontal regions. As it turns out, a number of other recurrent

but non-frontal thermal structures in mid-latitude cyclones are also characterized

by these conditions – most notably the large-scale thermal ridge often associated

with occluded cyclones. From this perspective, neglect of the deformation term is

liable to lead to significant misdiagnosis in many canonical mid-latitude cyclone en-

vironments (as we will show later). Next we will derive an alternative expression for

the forcing for quasi-geostrophic vertical motions that includes these terms, lends

additional insight into the nature of the mid-latitude atmosphere, and is amenable

to simple graphical evaluation.

6.4 The �Q -Vector

The remainder of this chapter will be devoted to examining the so-called �Q-vector

form of the quasi-geostrophic omega equation introduced by Hoskins et al. (1978).

Consideration of the �Q-vector reveals an unexpected and intriguing characteristic

of the thermal wind balance that will serve as a cornerstone in the development

of a deeper conceptual understanding of the nature of quasi-geostrophic vertical

motions. We begin by investigating the geostrophic paradox.
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6.4.1 The geostrophic paradox and its resolution

Consider the jet entrance region depicted in Figure 6.8. The confluent, geostrophic

wind field depicted there acts to tighten the horizontal temperature gradient at C.

Any such increase in the magnitude of the temperature gradient forces an increase in

the geostrophic vertical shear via the thermal wind relationship. Simultaneously, the

geostrophic wind advects lower geostrophic momentum (quantified by the isotachs

of the y-direction geostrophic wind) into the jet core. The momentum advection

tends to decrease the wind speed at C and, thus, contributes to a decrease in the vertical

shear of the geostrophic wind in that column. Thus, the very same geostrophic flow

that serves to increase the magnitude of the horizontal temperature gradient at C

also serves to decrease the vertical shear of the geostrophic wind at C via negative

geostrophic momentum advection. This set of circumstances presents a paradox: that

is, on the one hand, geostrophic temperature advection should increase the thermal

wind at C and, on the other, geostrophic momentum advection should decrease it

at C. So, the geostrophic wind actually destroys thermal wind balance by affecting

opposite signed changes to the two components of that balance. Since the thermal

wind balance is a form of the geostrophic balance, it can therefore be said that the

geostrophic wind destroys itself! We will refer to this property of the geostrophic flow

as the geostrophic paradox.

Figure 6.8 Jet entrance region in the northern hemisphere. Thick solid lines are 500 hPa geopotential

height, dashed lines are 1000–500 hPa thickness, and thin solid lines are isotachs of the y-direction

geostrophic wind. Point C is mentioned in the explanation given in the text
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Interestingly, however, observations suggest that the synoptic-scale flow in the

middle latitudes is very nearly in geostrophic balance at all times. How can this be in

the face of what we have just described? There must be another portion of the flow that

acts to maintain the geostrophic balance in the face of its self-destructive tendency.

That portion of the flow is the forced, ageostrophic, secondary circulation.5 Since

the geostrophic flow tends to create thermal wind imbalance, the forced secondary

circulation must bring the flow back toward a state of geostrophic balance. This may

be accomplished if the secondary circulation counteracts the tendencies induced

by the geostrophic wind itself. Therefore, the secondary, ageostrophic circulation

operating in the vicinity of the jet entrance region depicted in Figure 6.8 must

simultaneously (1) decrease the magnitude of the horizontal temperature gradient,

and (2) increase the vertical shear. We now examine a derivation that quantifies the

geostrophic paradox and in so doing leads to a description of the forced, secondary

circulation that resolves it.

We begin by considering both the thermodynamic energy equation and the

y equation of motion at the level of quasi-geostrophic theory:(
∂

∂t
+ �V g · ∇

)
vg + f0uag = 0 and

(
∂

∂t
+ �V g · ∇

) (
−∂φ

∂p

)
− σω = 0.

Neglecting the ageostrophy for the moment, these expressions can be rewritten as(
∂

∂t
+ �V g · ∇

)
vg = 0 (6.34a)

and (
∂

∂t
+ �V g · ∇

) (
−∂φ

∂p

)
= 0. (6.35a)

Recall that the thermal wind balance for the situation depicted in Figure 6.8 is given by

f0

∂vg

∂p
= ∂2φ

∂x∂p
.

Now, f0∂/∂p of (6.34a) is equal to

f0

∂

∂p

[(
∂

∂t
+ �V g · ∇

)
vg

]
= f0

∂

∂p

[
∂vg

∂t
+ ug

∂vg

∂x
+ vg

∂vg

∂y

]
=

(
∂

∂t
+ �V g · ∇

) (
f0

∂vg

∂p

)
+ f0

[
∂ug

∂p

∂vg

∂x
+ ∂vg

∂p

∂vg

∂y

]
.

5 This flow is referred to as ‘secondary’ in order to distinguish it from the primary, geostrophic flow.
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Employing the thermal wind relationship and the non-divergence of the geostrophic

wind, this can be rewritten as

f0

∂

∂p

[(
∂

∂t
+ �V g · ∇

)
vg

]
=

(
∂

∂t
+ �V g · ∇

) (
f0

∂vg

∂p

)
+

[
∂ �V g

∂x
· ∇

(
−∂φ

∂p

)]
.

(6.34b)

Interestingly, −∂/∂x of (6.35a) is equal to

− ∂

∂x

[(
∂

∂t
+ �V g · ∇

) (
−∂φ

∂p

)]

= − ∂

∂x

[
∂

∂t

(
−∂φ

∂p

)
+ ug

∂

∂x

(
−∂φ

∂p

)
+ vg

∂

∂y

(
−∂φ

∂p

)]

=
(

∂

∂t
+ �V g · ∇

) (
∂2φ

∂x∂p

)
−

[
∂ �V g

∂x
· ∇

(
−∂φ

∂p

)]
. (6.35b)

Examination of the last lines of (6.34b) and (6.35b) proves that the geostrophic

tendencies of f0∂vg /∂p and ∂2φ/∂x∂p (the two components of the thermal wind

balance) have equal magnitude but opposite sign! Thus, the geostrophic wind de-

stroys itself by changing the two parts of the thermal wind balance equally, but in

opposite directions. Let us denote the magnitude of this geostrophic tendency as Q1

so that

Q1 = −∂ �V g

∂x
· ∇

(
−∂φ

∂p

)
.

If we now reinsert the ageostrophic terms that we previously neglected in developing

(6.34a) and (6.35a), we get

f0

∂

∂p

[(
∂

∂t
+ �V g · ∇

)
vg + f0uag

]
=

(
∂

∂t
+ �V g · ∇

) (
f0

∂vg

∂p

)
− Q1 + f 2

0

∂uag

∂p

(6.36)

and

− ∂

∂x

[(
∂

∂t
+ �V g · ∇

) (
−∂φ

∂p

)
− σω

]
=

(
∂

∂t
+ �V g · ∇

) (
∂2φ

∂x∂p

)
+ Q1 + σ

∂ω

∂x
.

(6.37)
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Multiplying (6.37) by –1 and adding it to (6.36) eliminates the time derivatives (since

f0∂vg /∂p = ∂2φ/∂x∂p by the thermal wind) and yields

−2Q1 = σ
∂ω

∂x
− f 2

0

∂uag

∂p
. (6.38)

The same set of operations can be performed on the x equation of motion and the

thermodynamic energy equation resulting in

−2Q2 = σ
∂ω

∂y
− f 2

0

∂vag

∂p
(6.39)

where

Q2 = −∂ �V g

∂y
· ∇

(
−∂φ

∂p

)
.

Finally, taking ∂/∂x of (6.38) and adding it to ∂/∂y of (6.39) produces

−2

(
∂ Q1

∂x
+ ∂ Q2

∂y

)
= σ

(
∂2ω

∂x2
+ ∂2ω

∂y2

)
− f 2

0

∂

∂p

(
∂uag

∂x
+ ∂vag

∂y

)
which becomes, upon substituting from the continuity equation,

−2

(
∂ Q1

∂x
+ ∂ Q2

∂y

)
= σ

(
∂2ω

∂x2
+ ∂2ω

∂y2

)
+ f 2

0

∂2ω

∂p2
= σ

(
∇2 + f 2

0

σ

∂2

∂p2

)
ω.

(6.40)

The RHS of (6.40) is identically the 3-D Laplacian operator found on the LHS of the

classical quasi-geostrophic omega equation (6.26). The forcing function in this form

of the quasi-geostrophic omega equation is given by twice the convergence of a 2-D

horizontal vector quantity, the �Q-vector, defined as �Q = (Q1, Q2) or

�Q =
[(

−∂ �V g

∂x
· ∇

(
−∂φ

∂p

))
î ,

(
−∂ �V g

∂y
· ∇

(
−∂φ

∂p

))
ĵ

]
. (6.41)

Using the hydrostatic relationship (∂φ/∂p = −RT/p) we can rewrite this expression

in a more convenient form as

�Q = − R

p

[(
∂ �V g

∂x
· ∇T

)
î ,

(
∂ �V g

∂y
· ∇T

)
ĵ

]
which is easier to employ with real weather maps. Looking again at (6.40), we see

that if �Q is convergent (divergent) then upward (downward) vertical motion results.

Also, note that in deriving (6.40) there was no neglect of the deformation terms as

we had been forced to do in prior derivations of an omega equation.

Now let us return to our original example of confluent flow superimposed upon

a temperature gradient shown in Figure 6.8. The traditional approximations to the

quasi-geostrophic omega equation might not be of much help in diagnosing omega

in this environment since vorticity advection is rather difficult to determine here. The
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completeness of the �Q-vector comes at the price of increased complication, however.

Therefore, we examine the full expression of the �Q-vector in order to determine if

a simplification, applicable to the example shown in Figure 6.8, is possible. The full

expression of �Q is given by

�Q = − R

p

[(
∂ug

∂x

∂T

∂x
+ ∂vg

∂x

∂T

∂y

)
î +

(
∂ug

∂y

∂T

∂x
+ ∂vg

∂y

∂T

∂y

)
ĵ

]
. (6.42)

But there is no ∂T/∂y in Figure 6.8 so, again employing the non-divergence of the

geostrophic wind, �Q simplifies to

�Q = − R

p

[(
∂ug

∂x

∂T

∂x

)
î +

(
∂ug

∂y

∂T

∂x

)
ĵ

]
= − R

p

(
∂T

∂x

) (−∂vg

∂y
î + ∂ug

∂y
ĵ

)
= − R

p

(
∂T

∂x

) [
k̂ × ∂ �V g

∂y

]
. (6.43)

So if one measures the change in the geostrophic wind vector along isotherms (i.e.

along the y-axis), then the direction of the resulting �Q-vector is determined as the

vertical cross-product of that vector change with its magnitude modulated by the

intensity of the x-direction temperature gradient.

Figure 6.9(a) shows the �Q-vectors for the confluent jet entrance of Figure 6.8. This

configuration of �Q-vectors results in �Q convergence in the warm air and �Q diver-

gence in the cold air. Consequently, we have diagnosed a thermally direct, secondary,

vertical circulation in which the warm air rises and the cold air sinks (Figure 6.9b).

Such a secondary ageostrophic circulation achieves two important modifications of

the environment. First, adiabatic cooling of the rising warm air and adiabatic warm-

ing of the sinking cold air decrease the magnitude of ∇T . This exactly counteracts the

tendency of the geostrophic temperature advection in the confluent flow! Second,

under the influence of the Coriolis force, the horizontal branches of this secondary

ageostrophic circulation tend to increase the vertical wind shear – exactly counter-

acting the tendency of the geostrophic momentum advection in the confluent flow!

Thus, the secondary ageostrophic circulation diagnosed with the �Q-vectors is pre-

cisely that necessary to restore the thermal wind balance in the face of the geostrophic

wind’s tendency to destroy the balance.

6.4.2 A natural coordinate version of the �Q -Vector

As we have just seen, the �Q-vector is a rather bulky expression but−2∇ · �Q represents

a complete form of the forcing in the quasi-geostrophic omega equation. Here we

consider an expression for the �Q-vector distilled into a natural coordinate version
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Figure 6.9 (a) �Q -vectors for the confluent jet entrance region depicted in Figure 6.8. Vertical cross-

section along line A–B is shown in (b). (b) Vertical cross-section along line A–B in (a). Black arrows

represent the vertical and horizontal branches of the secondary, ageostrophic circulation associated with

the �Q -vector distribution in (a). Gray arrows represent the direction of the horizontal branch of the

forced circulation before the Coriolis force turns in to the right. See text for explanation

that is easily applied to weather maps.6 We begin with (6.42)

�Q = − R

p

[(
∂ug

∂x

∂T

∂x
+ ∂vg

∂x

∂T

∂y

)
î +

(
∂ug

∂y

∂T

∂x
+ ∂vg

∂y

∂T

∂y

)
ĵ

]

6 This discussion follows work originally done by Sanders and Hoskins (1990).
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Figure 6.10 Zonally oriented, confluent jet entrance region in the northern hemisphere. Thick solid

lines are 500 hPa geopotential height, dashed lines are 1000–500 hPa thickness. Note that for this flow

configuration, ∂T /∂x = 0

and consider, independently, two extreme examples in which ∂T/∂x = 0 and

∂T/∂y = 0. For the case of ∂T/∂x = 0 we consider the confluent entrance region of

a zonally oriented jet as in Figure 6.10. In such an environment, the above expression

reduces to

�Q = − R

p

(
∂T

∂y

) [
∂vg

∂x
î + ∂vg

∂y
ĵ

]
= − R

p

(
∂T

∂y

) [
∂vg

∂x
î − ∂ug

∂x
ĵ

]
= R

p

(
∂T

∂y

) [
k̂ × ∂ �V g

∂x

]
since the geostrophic wind is non-divergent and

∂vg

∂x
î − ∂ug

∂x
ĵ = −k̂ × ∂ �V g

∂x
.

Note that in this example, the x-axis is in the along-flow direction and the y-axis is

in the across-flow direction, pointing toward colder air.

For the case of ∂T/∂y = 0, we appeal to the confluent jet entrance in Figure 6.8

used to illustrate the utility of the �Q-vector. In that example, we found that the

expression for �Q reduced to

�Q = − R

p

(
∂T

∂x

) [
k̂ × ∂ �V g

∂y

]
and the y-axis was in the along-flow direction with the x-axis in the across-flow

direction pointing toward warmer air.
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Let us now adopt natural coordinates (ŝ , n̂) such that ŝ is directed along the

isotherms and n̂ is directed across the isotherms toward warmer air. For the case of

∂T/∂x = 0 (Figure 6.10) we could say that ∂T/∂y = − |∂T/∂n| (since ∂T/∂y < 0).

Analogously, we could say that ∂ �V g /∂x = ∂ �V g /∂s so that our natural coordinate

expression for �Q would be

�Q = − R

p

∣∣∣∣∂T

∂n

∣∣∣∣
[

k̂ × ∂ �V g

∂s

]
.

For the case of ∂T/∂y = 0, we could say that ∂T/∂x = |∂T/∂n| (since ∂T/∂x > 0).

Also, we could say that ∂ �V g /∂y = ∂ �V g /∂s so that our natural coordinate expression

for �Q would be, again,

�Q = − R

p

∣∣∣∣∂T

∂n

∣∣∣∣
[

k̂ × ∂ �V g

∂s

]
, (6.44)

demonstrating that this expression serves as the general natural coordinate expression

for �Q. In order to apply this expression, we simply denote the vector change in the

geostrophic wind along isotherms, take the vertical cross-product of that vector, and

flip the resultant direction by 180◦ (as we must multiply by –1) to determine the

direction of �Q. The magnitude is modulated by |∂T/∂n|.
Now we examine some examples for which the answers should be fairly familiar.

First, let us consider a pattern of sea-level isobars and isotherms for an idealized

train of cyclones and anticyclones, illustrated in Figure 6.11. Choosing the middle

isotherm as our ŝ -axis, we need only consider the vector change in the geostrophic

wind along that isotherm. Upon doing so we find that the �Q-vectors converge to

the east of the sea-level low-pressure center and diverge to its west. Thus, we have

diagnosed ascent to the east of the cyclone and descent to the east of the anticyclone.

Figure 6.11 Schematic train of lows and highs in the northern hemisphere. Thin solid lines are sea-

level isobars, black dashed lines are 1000–500 hPa thickness, black arrows are surface geostrophic

winds, light gray arrows represent ∂ �V g/∂s, and shaded arrows are �Q -vectors. See text for explanation
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Figure 6.12 Isotherms in a region of geostrophic deformation. Curved gray arrows are geostrophic

streamlines, dashed lines are isotherms or thickness isopleths, black arrows are geostrophic winds at the

indicated circles. This gray arrows represent ∂ �V g/∂s, and the shaded gray arrows are the �Q -vectors

In this way, the train of cyclones and anticyclones propagates to the east, in the

direction of the thermal wind – a result we noted earlier in the chapter.

Next we consider a zonally oriented bundle of isentropes placed in a region of

pure geostrophic deformation as illustrated in Figure 6.12. Clearly, this environment

would not be easily diagnosed using the traditional form of the quasi-geostrophic

omega equation nor any of the approximations to it that we have examined. Picking

the middle isotherm as the ŝ -axis, we need only consider the geostrophic wind varia-

tion along that isotherm. The resulting �Q-vectors are uniformly pointed toward the

warm side of the baroclinic zone, indicating rising warm air and sinking cold air –

a thermally direct vertical circulation. The differential thermal advection occurring

in this deformation zone would tend to bring the isotherms closer together in the

horizontal, thereby increasing the thermal wind shear. This same underlying dy-

namical principle was discussed in reference to Figure 6.4(b). In the next chapter we

will more fully discuss the relationship between changes in the temperature gradient

and attendant vertical circulations as we discuss frontogenesis. Finally we consider a

hypothetical field of uniform geostrophic temperature advection as depicted in Fig-

ure 6.13. It is easy to demonstrate that since there is no variation of the geostrophic

wind along any isotherm, there is no �Q-vector field and, hence, no quasi-geostrophic

vertical motion.

We have said that the �Q-vector form of the quasi-geostrophic omega equation is a

complete form of the forcing. This distinguishes it from the Sutcliffe and Trenberth

approximations wherein the deformation terms are neglected. Two reasonable ques-

tions to ask at this point in our discussion are (1) where are the deformation terms

hiding in the �Q–vector forcing, and (2) are they really negligible? The first question

is rather academic but the second is crucially important to operational forecasting.
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Figure 6.13 Geopotential heights (thick black lines) and isotherms (dashed lines) in a field of uniform

geostrophic warm air advection. Arrows are the geostrophic winds at the indicated points. Since the

geostrophic flow is uniform, ∂ �V g/∂s is zero at the black dot and hence there is no �Q -vector and no
�Q -vector divergence

Recall that the forcing for ω in the �Q-vector form of the quasi-geostrophic omega

equation is given by

Forcing = −2∇ · �Q = −2

(
∂ Q1

∂x
+ ∂ Q2

∂y

)
. (6.45)

Using (6.42), this can be written as

Forcing = −2
R

p

[
∂

∂x

(
−∂ �V g

∂x
· ∇T

)
+ ∂

∂y

(
−∂ �V g

∂y
· ∇T

)]
which expands to four terms after applying the chain rule to yield

Forcing = −2
R

p

{[
∂

∂x

(
−∂ �V g

∂x

)
· ∇T + ∂

∂y

(
−∂ �V g

∂y

)
· ∇T

]

+
[
−∂ �V g

∂x
· ∇ ∂T

∂x
− ∂ �V g

∂y
· ∇ ∂T

∂y

]}
. (6.46)

It is left as an exercise to the reader to show that the first square bracketed term on

the RHS of (6.46) is exactly equal to the Sutcliffe/Trenberth approximation to the

forcing function of the quasi-geostrophic omega equation. Of course, that means

that the second square bracketed term on the RHS of (6.46) represents the oft ne-

glected deformation terms. As pointed out previously, these terms will be significant

any time a second derivative of temperature is coincident with a first derivative of

the geostrophic wind. Frontal zones fit this description but many other character-

istic thermal structures observed in mid-latitude cyclones do as well. Figure 6.14
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illustrates the quasi-geostrophic (QG) omega resulting from both the Sutcliffe/

Trenberth forcing terms (Figure 6.14a) and the deformation terms (Figure 6.14b)

for a modest occluded cyclone. Note that the occluded thermal ridge, a non-frontal

thermal structure, is the seat of significant QG vertical motions associated with the

deformation terms. This ascent would not be accounted for in the Sutcliffe/Trenberth

approximation to the QG omega equation.

6.4.3 The along- and across-isentrope components of �Q

A final word concerning the physical meaning of the �Q-vector is appropriate before

we begin to discuss frontogenesis in Chapter 7. This comment begins by rewrit-

ing the hydrostatic equation in the form −∂φ/∂p = f γ θ where θ is the potential

temperature and γ is a constant on isobaric surfaces, i.e.

γ = R

f p0

(
p0

p

)cv /c p

,

with p0 usually taken to be 1000 hPa. Employing this form of the hydrostatic equation

allows (6.41) to be rewritten as

�Q = f γ

[(
−∂ �V g

∂x
· ∇θ

)
î ,

(
−∂ �V g

∂y
· ∇θ

)
ĵ

]
. (6.47)

Now let us consider the Lagrangian rate of change of ∇θ following the geostrophic

flow, in symbols,

d

dtg

∇θ =
(

∂

∂t
+ �V g · ∇

)
∇θ =

(
∂

∂t
+ �V g · ∇

) (
∂θ

∂x
î + ∂θ

∂y
ĵ

)
. (6.48)

It is left to the reader to show that, under adiabatic conditions,

f γ
d

dtg

∇θ = �Q.

Thus, a profound physical meaning can be ascribed to the �Q-vector: that is, �Q
describes the rate of change of ∇θ following the geostrophic flow. This property of the
�Q-vector will be exploited in our subsequent discussions of both frontogenesis and

cyclogenesis. For now, it is enough that we take advantage of this physical fact to

develop additional insight from the �Q-vector.

Given that

�Q = f γ
d

dtg

∇θ,

it is useful to consider separately the along- and across-isentrope components of �Q,

denoted as �Qs and �Qn (where �Q = �Qs + �Qn), respectively, illustrated in schematic

form in Figure 6.15. Before deriving mathematical expressions corresponding to �Qs



JWBK072c06 JWBK072/Martin March 7, 2006 21:9 Char Count= 0

6.4 THE �Q -VECTOR 179

Figure 6.15 Natural coordinate partition of the �Q -vector into its along-isentrope ( �Q s ) and across-

isentrope ( �Q n ) components. See text for explanation

and �Qn, let us consider their respective physical meanings. Noting that the vector

∇θ , like all vectors, has both magnitude and direction, it is clear that �Qn, which

is directed along ∇θ , can only affect changes in the magnitude of ∇θ . Since �Qs is

directed perpendicularly to ∇θ it can only affect changes in the direction of ∇θ . Now,
�Qn is simply the component of �Q along the vector ∇θ and simple vector calculus

yields a mathematical expression for �Qn as

�Qn =
( �Q · ∇θ

|∇θ |

)
∇θ

|∇θ | . (6.49)

Allowing the unit vector in the ∇θ direction (∇θ/|∇θ |) to be written as n̂, and the

magnitude of �Qn ( �Q · ∇θ/|∇θ |) to be written as Qn, (6.49) can be rewritten as
�Qn = Qnn̂. Similarly, �Qs is the component of �Q along the vector k̂ × ∇θ and so can

be written as

�Qs =
[ �Q · (k̂ × ∇θ)

|∇θ |

]
k̂ × ∇θ

|∇θ | (6.50)

where we have taken advantage of the fact that
∣∣k̂ × ∇θ

∣∣ = |∇θ |. Allowing the

unit vector in the k̂ × ∇θ direction to be denoted as ŝ and the magnitude of �Qs

( �Q · (k̂ × ∇θ)/|∇θ |) to be denoted as Qs , (6.50) can be written as �Qs = Qs ŝ . Sub-

stituting the expressions for both �Qn and �Qs , we can write

�Q = Qnn̂ + Qs ŝ . (6.51)

Since the total QG vertical motion is related to −2∇ · �Q, the foregoing partition

allows us to see that total as the sum of two orthogonal parts associated with−2∇ · �Qn

and −2∇ · �Qs , respectively. Given the orientations of �Qn and �Qs , these components

of the total vertical motion will be distributed in couplets across the thermal wind

(transverse) and along the thermal wind (shearwise), respectively.

It will be shown in the next chapter that the transverse component of the QG

omega is directly related to the dynamics of the frontal zones that characterize the
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Figure 6.16 The 700 hPa �Q T R
vectors (black arrows) and associated QG vertical motion at 0000 UTC

13 November 2003. Vertical motion shown in units of μ bar s−1 (dPa s−1) contoured every 2μ bar s−1

with dark shading showing upward vertical motions and light shading showing downward vertical motion

mid-latitude cyclone. Insight into the nature of the shearwise component arises by

considering an alternative form of the Trenberth approximation to the QG omega

equation in which the thermal wind advection of geostrophic absolute vorticity was

the principal forcing mechanism for vertical motions. Starting with (6.32)

σ

(
∇2 + f 2

0

σ

∂2

∂p2

)
ω ≈ 2

[
f0

∂ �V g

∂p
· ∇(ζg + f )

]

and taking advantage of the non-divergence of the geostrophic wind while neglecting

the contribution of the planetary vorticity to the geostrophic absolute vorticity, we

note that the RHS can be written in a flux divergence form as

σ

(
∇2 + f 2

0

σ

∂2

∂p2

)
ω ≈ 2∇ ·

[
f0

∂ �V g

∂p
ζg

]
. (6.52a)



JWBK072c06 JWBK072/Martin March 7, 2006 21:9 Char Count= 0

PROBLEMS 181

But since

∂ �V g

∂p
= k̂

f
× ∇ ∂φ

∂p
= −γ (k̂ × ∇θ),

(6.52a) can be rewritten as

σ

(
∇2 + f 2

0

σ

∂2

∂p2

)
ω ≈ −2∇ · �QT R (6.52b)

where �QT R = f0γ ζg (k̂ × ∇θ). Thus, the approximate Trenberth form of the QG

omega equation can be written in a form that is identical to the �Q-vector form

of the full omega equation. Note that the vector �QTR must be everywhere paral-

lel to isentropes and thus �QTR represents at least a portion of �Qs .7 An illustration

of the distribution of �QTR vectors and the associated QG vertical motions from

the developing cyclone previously examined in Figure 6.6 are illustrated in Fig-

ure 6.16. The distinction between such shearwise and transverse vertical motions

will prove valuable when we discuss the process of mid-latitude cyclogenesis in

Chapter 8.

Selected References

Sutcliffe (1939) offers an illuminating discussion of the ageostrophic wind and its role in producing

vertical motions.

Sutcliffe (1947) describes his famous development theorem.

Trenberth (1978) describes the cancellation among terms in the traditional QG omega equation.

Hoskins et al. (1978) provide the seminal derivation and discussion of the �Q-vector.

Martin (1998b) examines the appropriateness of neglecting the deformation terms in the QG

omega equation from the perspective of the �Q-vector.

Problems

6.1. (a) For the mid-latitude, upper tropospheric wave train shown in Figure 6.1A, indicate

where the regions of ascent and descent are found. Explain your answer.

L L
H

Figure 6.1A

7 A full description of both the �Qn and �Qs components of the �Q-vector, along with their application to the
diagnosis of vertical motions in the occluded quadrant of mid-latitude cyclones, is given in Martin (1999).
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(b) The propagating wave train shown in Figure 6.1A will have an associated distribution

of height rises and falls as shown in Figure 6.1B. What can be concluded about

the relative magnitudes of the isallobaric and inertial advective components of the

ageostrophic wind at that level? Explain your answer.

L L
HHeight

falls
Height

falls
Height
rises

Height
rises

Figure 6.1B

6.2. An expansion of the ageostrophic wind consistent with the assumptions of quasi-

geostrophic theory can be written as

k̂

f
× d �V g

dt
= k̂

f
×

(
∂ �V g

∂t
+ �V g · ∇ �V g

)
= �V ag .

(a) Given this assumption, show that an expression for the inertial advective component

of the ageostrophic wind is given by

�V I A = −
�V g ζg

f
.

With simple pictures, show that the distribution of �V I A explains:

(b) the classic four-quadrant vertical motion distribution associated with a straight jet

streak, and

(c) the distribution of vertical motion associated with an upper tropospheric wave train

in the geopotential height field (such as is shown in Figure 6.1A).

6.3. This problem refers to the diagnosis of development described by Sutcliffe (1939). The

net column ageostrophic wind associated with the Lagrangian rate of change of the shear

vector (d �V s /dt) is always perpendicular to the shear vector itself, which means that any

process that changes the shear forces a vertical circulation that is transverse to the shear.

Show that the net column ageostrophic wind associated with shearing over the surface

wind ( �V s · ∇ �V 0) is not always parallel to the shear vector.

6.4. Consider Figure 6.2A which shows 1000–500 hPa thickness contours (dashed lines) along

with isopleths of an unknown variable Q which has the same value at 1000 hPa as it does

at 500 hPa.
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ΦΦ'−−−−δδΦΦ'

ΦΦ'+δδΦΦ'A

Q+δδδδQ Q-δδδδQ

Figure 6.2A

At which level, 1000 or 500 hPa, is the geostrophic advection of Q at Station A larger?

Station A is in the northern hemisphere. Explain your answer. (Hint: use the most basic,

physical definition of the thermal wind to prove your answer.)

6.5. There is partial cancellation between the two separate forcing terms in the traditional

quasi-geostrophic omega equation. Describe in words what process is represented by the

portion that cancels.

6.6. Show that

−∂φ

∂p
= f γ θ

where

γ = R

f p0

(
p0

p

) cv
c p

, R + cv = c p, and θ = T

(
p0

p

) R
c p

.

6.7. Do the entrance/exit region circulations associated with a straight jet streak in the south-

ern hemisphere mid-latitudes have the same characteristics as those associated with jet

streaks in the northern hemisphere? Explain.

6.8. Figure 6.3A illustrates the 700 hPa geopotential height and temperature analysis

for a developing mid-latitude cyclone east of the Kamchatka Peninsula in October

2004.

(a) Draw �Q-vectors at the indicated points using the natural coordinate expression for

the �Q-vector.

(b) Sketch the areas of convergence and divergence of the �Q-vectors drawn in (a).

(c) Do the areas of convergence and divergence correspond to your intuition

about where the air is likely to be rising and sinking in this storm?

Explain.
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6.9. Figure 6.4A shows the 850 hPa geopotential height (solid lines) and the 1000–850 hPa

thickness (dashed lines) in a North Sea ‘reverse shear’ polar low.

147 150

153

x
y

138

141

144

Figure 6.4A

(a) Indicate with a cross the location of the 850 hPa vorticity maximum.

(b) Indicate the direction of the 850–1000 hPa thermal wind.

(c) Use a + and a − to indicate the regions of synoptic-scale upward and downward

vertical motions, respectively. Explain your reasoning in terms of the Sutcliffe devel-

opment theorem.

6.10. Show that

2

f

[
J

(
∂φ

∂p
, ∇2φ

)
+ J

(
∂φ

∂p
, ff0

)]
= 2 f0

∂ �V g

∂p
· ∇ (

ζg + f
)
.

6.11. Demonstrate that the static stability parameter, σ , in the quasi-geostrophic omega

equation

σ = − 1

ρθ

∂θ

∂p

can be written in terms of the geopotential, φ, as

σ = ∂2φ

∂p2
+ cv

pc p

∂φ

∂p
.

6.12. Prove that, for adiabatic flow,

�Q = f γ
d

dtg

∇θ

where

d

dtg

= ∂

∂tg

+ �V g · ∇.
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6.13. Given that Q = Qnn̂ + Qs ŝ , do you expect that a component of quasi-geostrophic

forcing for ascent in a region can result simply from curvature in the isotherms? Explain.

6.14. One of the many physical interpretations of the �Q-vector is that �Q represents the degree

of thermal wind imbalance. Why is this an acceptable statement?

Solutions

6.4. Advection is larger at 500 hPa.
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7
The Vertical Circulation at Fronts

Objectives

One of the defining structural features of the mid-latitude cyclone is its asymmetric

thermal structure manifest most clearly in the fronts that characterize the cyclone.

Aside from their ubiquity, these fronts are vested with considerable sensible weather

relevance as well since large variations of meteorological conditions exist across them

and the precipitation distribution associated with a typical mid-latitude cyclone is

often concentrated in their vicinity. Figure 7.1(a) shows analyses of the sea-level

pressure and surface potential temperature for a typical mid-latitude cyclone. The

characteristic comma-shaped cloud pattern from the same storm (Figure 7.1b) is

anchored by the frontal structure identified in Figure 7.1(a). The vigilant reader

will be able to establish, through daily inspection of surface, upper air, and satellite

observations that the structural relationship demonstrated in Figure 7.1 is quite

common in the middle latitudes.

Note that the across-front dimension of the cold front in Figure 7.1(a) (on the order

of 100 km) is much smaller than its along-front dimension (on the order of 1000 km).

Considering characteristic velocities given such length scales we can draw the pre-

liminary conclusion that geostrophic balance exists in the along-front direction

(where the Rossby number (Ro) is given by Ro = 10 m s−1/(10−4 s−1)(106 m) = 0.1.

However, in the across-front direction Ro = (10 m s−1)/(10−4 s−1)(105 m) = 1.0!

Thus, mid-latitude fronts would appear to be hybrid phenomena characterized by

along-front geostrophy but a fair degree of across-front ageostrophy. The mixture

of scales that characterizes fronts makes them the focus of important scale inter-

actions in the mid-latitude cyclone. For this reason, the purely quasi-geostrophic

diagnostic perspective we have thus far developed will prove to be insufficient as

a means to investigate fronts and it will have to be extended in order to incorpo-

rate additional, physically relevant processes that are fundamental to the frontal

environment.

Mid-Latitude Atmospheric Dynamics Jonathan E. Martin
C© 2006 John Wiley & Sons, Ltd.
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Given the relationship between fronts and the cloud and precipitation distribu-

tion in mid-latitude cyclones that is suggested by Figure 7.1, a central question for

our subsequent investigation is: Why is such a relationship so prevalent? In order

to approach this question with precision, we first need to understand the essential

elements of frontal structure. Next we consider how frontogenesis, the process of

creating a front, leads to the vertical motions that characterize fronts. Adoption of a

semi-geostrophic perspective in the Sawyer–Eliassen frontal circulation equation for-

mally incorporates the interplay between the geostrophic and ageostrophic flows that

characterizes the frontal environment. We then proceed to an investigation of fronts

that form at the tropopause, known as upper-level fronts. Finally we consider some

of the circumstances that conspire to produce the observed variation of precipitation

intensity associated with fronts. We begin by establishing the essential characteristics

of fronts in the next section.

7.1 The Structural and Dynamical Characteristics
of Mid-Latitude Fronts

As demonstrated by Figure 7.1(a), a front is a boundary whose primary structural

and dynamical characteristic is the larger-than-background temperature (or den-

sity) contrast associated with it. In order to determine some basic characteristics

of fronts, from which we will create a working definition of a front, we will con-

sider the somewhat unphysical case of the zero-order front. The zero-order front

is characterized by discontinuities in the temperature and density across the frontal

boundary. For this reason, it most closely approximates the notion of the knife-like

polar front envisioned by the Bergen School in the Norwegian Cyclone Model. Real

fronts, however, actually more closely resemble a first-order front, in which gradients

of temperature and density, not the variables themselves, are discontinuous across

the front. Since a front is a boundary between two different air masses and each

air mass has a characteristic density, in a zero-order front density is discontinuous

across the front (Figure 7.2). We will demand that pressure be continuous across

Figure 7.2 Vertical cross-section through the zero-order front
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the zero-order front (so that the geostrophic winds are not infinite along the front!).

Then, according to the gas law, temperature (T) must also be discontinuous across

the front. Even though this will imply an infinite thermal wind, we will proceed

anyway, the simplicity of the ensuing analysis being the motivation. If we take the

x-axis as the along-front direction and further assume (1) that there is no along-front

variation in any variable, and (2) that the pressure is steady state (i.e. ∂p/∂t = 0),

then the differential of pressure is given by

dp =
(

∂p

∂y

)
dy +

(
∂p

∂z

)
dz (7.1)

on both sides of the front. This expression can be written for both the warm and the

cold sides of the front as

dpw =
(

∂p

∂y

)
w

dy +
(

∂p

∂z

)
w

dz and dpc =
(

∂p

∂y

)
c

dy +
(

∂p

∂z

)
c

dz,

respectively. We can use the hydrostatic equation to substitute for ∂p/∂z in both

expressions, set the expressions for dp equal to one another, and rearrange the result

to get

0 =
[(

∂p

∂y

)
c

−
(

∂p

∂y

)
w

]
dy − (ρc − ρw ) g dz. (7.2)

This can be solved for dz/dy, the slope of the zero-order front:

dz

dy
= (∂p/∂y)c − (∂p/∂y)w

g (ρc − ρw )
. (7.3)

Since more dense fluid must lie beneath less dense fluid, as portrayed in Figure 7.2, in

order that the frontal structure be statically stable and therefore sustainable, we note

that dz/dy > 0. From (7.3), this implies that the across-front pressure gradient must

be larger on the cold side of the front than on the warm side. Such a conclusion can be

incorporated into constructing a physically accurate analysis of sea-level pressure in

the vicinity of a front. Perhaps more enlightening for our investigation is to consider

the along-front geostrophic winds which are related to the across-front pressure

gradients. Recall that, in height coordinates,

ug = − 1

ρ f

∂p

∂y
or

∂p

∂y
= − fρug .

Using this expression we can recast (7.3) into

dz

dy
= f (ρw ugw

− ρc ugc
)

g (ρc − ρw )
. (7.4)

Now, in order for dz/dy > 0 we see that ugw
> ugc

; in other words, the front must

be characterized by positive geostrophic relative vorticity (∂ug /∂y < 0)! Thus, we
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Figure 7.3 Isentropes associated with a first-order front. Note that the static stability is largest in the

frontal zone

have discovered a fundamental dynamical characteristic of mid-latitude fronts – they

are characterized by positive geostrophic relative vorticity. In fact, further inspection

of (7.4) reveals that the stronger the density contrast across the front becomes, the

more intense is the vorticity at the front.

In reality, the temperature cannot be discontinuous at a front, but the temperature

gradient can be. In this more realistic case, we have a first-order discontinuity and the

isentropes must appear as in Figure 7.3 in the first-order front. Careful examination

of the isentropes in the frontal zone reveals that the frontal zone is also characterized

by larger static stability (−∂θ/∂p) than either the cold or warm side of the bound-

ary. Thus, frontal zones are characterized by (1) larger-than-background horizontal

temperature (density) contrasts, (2) larger-than-background relative vorticity, and

(3) larger-than-background static stability. We will use these characteristics to define

a front after we examine some observations of fronts.

A time series of rooftop observations at Madison, Wisconsin (known as a me-

teorogram) is shown in Figure 7.4(a). Note the ∼ 5◦C drop in temperature and

corresponding 3◦C drop in dewpoint temperature that occurred between 0510 and

0515 UTC. Simultaneously, the winds shifted from steady southwesterlies to steady

northerlies. This time series clearly demonstrates the sharp temperature and mois-

ture characteristics associated with a surface frontal passage (in this case, a cold

frontal passage). It also reveals the strong cyclonic vorticity that must attend a mid-

latitude frontal zone. Evidence for the enhanced static stability of a frontal zone is

provided in Figure 7.4(b) which is a vertical cross-section through what is known

as an upper-level front. Note that the static stability is elevated in the stratosphere,

as expected, but also within the bundle of isentropes that extends beneath the jet

maximum to nearly 700 hPa. This same bundle of isentropes constitutes the upper
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Figure 7.4 (a) Meteorogram of a surface cold frontal passage at Madison, WI between 0400 and 0700

UTC 30 April 2003. Black line is the temperature, gray line is the dewpoint, and asterisks are the wind

direction time series, respectively. Note the coincidence of the temperature and dewpoint drops with

the wind shift. (b) Vertical cross-section through an upper-level frontal zone at 1200 UTC 12 November

2003. Solid lines are isentropes labeled in K and contoured every 3 K. Dashed lines are isotachs labeled

in m s−1 and contoured every 10 m s−1 starting at 25 m s−1. Gray shading represents region of enhanced

static stability which includes the upper-frontal zone itself

front itself and is clearly characterized by large horizontal temperature contrast as

well as cyclonic vorticity (evidenced by the horizontal shear implied by the tight

packing of the isotachs). Now we are prepared to establish a working definition of

a front that is based upon the essential characteristics of mid-latitude frontal zones.

When we use the term ‘cold (warm) front’ we will be referring to:

The leading edge of a transitional zone that separates advancing cold (warm) air from

warm (cold) air, the length of which is significantly greater than its width. The zone

is characterized by high static stability as well as larger-than-background gradients in

temperature and relative vorticity.

In nature, fronts defined in this way come in varying degrees of intensity but every

front shares these fundamental physical and dynamical characteristics. Thus, the lack

of a numerical designation here is not an oversight but rather an attempt to distinguish

those features in the mid-latitude atmosphere that ought to be called fronts from

those which should not. Of course, the intensity of a front is a meaningful distinction

to make in terms of both scientific interest as well as sensible weather characteristics.

One way of measuring the strength of one front against another is by considering

the magnitudes of their respective horizontal temperature gradients. We will return

to this important diagnostic in just a moment. First we will consider the intimate

relationship between fronts and jets in the mid-latitude atmosphere.
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Figure 7.5 Idealized vertical cross-section through a frontal zone. Gray solid lines are isotachs of the

geostrophic wind into the page with ‘J’ indicating the position of the wind maxima. Black solid lines are

isotherms and thin dashed lines are isentropes. Gray shaded region with thick dashed border represents

the idealized frontal zone

7.2 Frontogenesis and Vertical Motions

The thermal wind relation requires that fronts (regions of large ∇T) be associated

with strong vertical shear of the geostrophic wind. Shown in Figure 7.5 is an idealized

vertical cross-section through a frontal zone. Notice that the magnitude of ∇T is

largest near the surface and that the frontal zone is characterized by the strongest

vertical shear. Also notice that the leading edge of the zone (i.e. the front itself) is a

maximum in geostrophic relative vorticity as we have previously suggested it should

be. Recall from the frictionless vorticity equation that vorticity can change only as a

result of divergence (dη/dt = − f (∇ · �V)). By the continuity equation, divergence is

accompanied by vertical motions (∇ · �V = −∂ω/∂p). Using these two relationships

we can establish the following logical argument. If, by some horizontal advective

process, for instance, the magnitude of ∇T increases, then the wind shear and jet

core wind speed necessarily increase as well. A more intense jet results in increased

vorticity. Increased vorticity implies that some divergence is operating in the fluid.

If divergence is operating, there must be some vertical motion as well. Therefore, an

increase in the magnitude of ∇T requires the production of a vertical circulation

in an atmosphere in approximate thermal wind balance. For the remainder of this

chapter we will investigate various physical/mathematical formulations that seek to

quantify this important physical relationship. The first step on this journey requires

that we consider how an increase in the magnitude of ∇T can be accomplished.
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Figure 7.6 (a) Pure convergence superimposed upon a field of isotherms. (b) Horizontal deformation

superimposed upon a field of isotherms. In both cases the horizontal wind will tend to intensify |∇T |

We shall broadly define as ‘frontogenetic’ any process that acts to increase the mag-

nitude of ∇T . Such a process in action is known as frontogenesis. More specifically

(for ease of physical interpretation later), we will refer to any horizontal advective

process that acts to increase the magnitude of ∇T as horizontal frontogenesis.

Some simple illustrations of horizontal frontogenetical processes are given in Fig-

ure 7.6. Given our verbal definition of frontogenesis, we can define a corresponding

mathematical one (termed the frontogenesis function) as

� = d
∣∣∇pθ

∣∣
dt

, (7.5)

defining the Lagrangian rate of change of the magnitude of ∇pθ (the potential tem-

perature gradient measured on an isobaric surface). Though it looks innocuous,

(7.5) is a rather bulky expression (as we will see presently). Without loss of physical

insight, we can consider the simpler 1-D version of (7.5) and gain some understand-

ing of the nature of frontogenesis. Therefore, we will consider the processes that can

change the magnitude of the x-direction temperature contrast using

�x = d

dt

(
∂θ

∂x

)
.

The reader is asked to show that, given

d

dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p
,
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Figure 7.7 The diabatic effects of cloud cover on ∂θ/∂x. The effect of differential latent heat release

can occur at any time of day. Differential insolation and infrared emittance are specific to day and night,

respectively

then

�x = d

dt

(
∂θ

∂x

)
= ∂

∂x

(
dθ

dt

)
− ∂u

∂x

∂θ

∂x
− ∂v

∂x

∂θ

∂y
− ∂ω

∂x

∂θ

∂p
. (7.6)

Thus, there are four physical processes, represented by the four terms on the RHS of

(7.6), that contribute to an increase in ∂θ/∂x . The first of these processes is the effect

of across-front gradients in diabatic heating, represented by ∂/∂x(dθ/dt). Consider

the meridionally oriented isentropes illustrated in Figure 7.7. If there is latent heat

release in ascending air on the warm side of this potential temperature gradient,

then ∂/∂x(dθ/dt) > 0. Consequently, such a distribution of latent heat release is

frontogenetical. Utilizing the same expression we can consider the effect of differential

cloud cover on frontal strength. If the warm side of Figure 7.7 is cloudy and the cold

side clear, then differential insolation during the day renders ∂/∂x(dθ/dt) < 0 and

daytime heating is frontolytic under such circumstances. Under the same distribution

of clouds during the night, the cold side cools more rapidly than the warm side so

that ∂/∂x(dθ/dt) > 0 and so the cloud cover promotes frontogenesis.

The effect of confluence over the temperature gradient is represented by the second

term on the RHS of (7.6),

−∂u

∂x

∂θ

∂x
.
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Figure 7.8 Confluent horizontal flow acting on meridionally oriented isentropes. The gray arrows

represent the x -direction wind

Considering the confluent flow shown in Figure 7.8, we note immediately that

∂θ/∂x > 0. The winds are distributed such that ∂u/∂x < 0. Overall, then, the ef-

fect of the confluent wind field depicted in Figure 7.8 is to promote frontogenesis.

One can imagine the wind field acting to push the isentropes closer together in the

horizontal, thereby increasing |∂θ/∂x|.
The effect of horizontal shearing on ∂θ/∂x is represented by the third term on the

RHS of (7.6),

−∂v

∂x

∂θ

∂y
,

and is illustrated in Figure 7.9. In this instance, the isentropes are aligned at a slight

angle to both the x- and y-axes in such a way that ∂θ/∂y < 0. Given the indicated

Figure 7.9 Effect of horizontal shear on ∂θ/∂x. The black arrows represent the y-direction wind
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Figure 7.10 Effect of tilting on ∂θ/∂x. The black arrows represent upward and downward vertical

motions

winds, it is clear that ∂v/∂x > 0 as well, meaning that the entire shearing term is

positive. Thus, such shearing will act to increase ∂θ/∂x by rotating the isotherms into

a more meridional orientation. This increase in ∂θ/∂x does not, however, represent

a decrease in the absolute distance between successive isentropes (as was the case

for both of the prior physical mechanisms). We will show later, in consideration of

the 2-D gradient of θ , that shear (more precisely, vorticity) does not modify the

magnitude of ∇θ , but only changes its direction.

Finally, the effect of vertical tilting is represented by the fourth term on the RHS

of (7.6),

−∂ω

∂x

∂θ

∂p
.

A thermally direct vertical circulation, along with a frontal bundle of isentropes, is

illustrated in the vertical cross-section depicted in Figure 7.10. In a statically stable

atmosphere, ∂θ/∂p must be negative. Recalling that upward vertical motion is con-

sistent with negative omega and vice versa, ∂ω/∂x < 0 for the situation depicted in

Figure 7.10. Thus, the entire vertical tilting term is negative, suggesting that a ther-

mally direct vertical circulation acts to decrease ∂θ/∂x by rotating the isentropes into

a more nearly horizontal orientation. This squares physically with the results of such

a circulation considered in terms of temperature rather than potential temperature.

From that perspective, the rising warm air cools by expansion while the sinking cold

air warms by compression. Thus, the originally warm air is made colder while the

originally cold air is made warmer under the influence of the thermally direct vertical

motions.

The same physical reasoning can be applied to the more complicated, 3-D fron-

togenesis function given by (7.5). Using similar algebra as was used to derive (7.6),
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we find that

�3D = d

dt
|∇θ | = d

dt

(
∂θ

∂x

2

+ ∂θ

∂y

2)1/2

= 1

|∇θ |
[(

−∂θ

∂x

) (
∂u

∂x

∂θ

∂x
+ ∂v

∂x

∂θ

∂y

)
−

(
∂θ

∂y

) (
∂u

∂y

∂θ

∂x
+ ∂v

∂y

∂θ

∂y

)
−

(
∂θ

∂p

) (
∂ω

∂x

∂θ

∂x
+ ∂ω

∂y

∂θ

∂y

)]
. (7.7)

In this more complete, 3-D expression, all terms with ∂u/∂x or ∂v/∂y are conflu-

ence terms, all terms with ∂v/∂x or ∂u/∂y are shearing terms, and all terms with

derivatives of ω are tilting terms. The physical interpretation of each type of term is

precisely the same as for our simpler expression (7.6). For many, but not all, types

of frontal development it is sufficient to consider the 2-D version of (7.7) in which

the tilting terms are neglected. The resulting expression,

�2D = 1

|∇θ |
[(

−∂θ

∂x

) (
∂u

∂x

∂θ

∂x
+ ∂v

∂x

∂θ

∂y

)
−

(
∂θ

∂y

) (
∂u

∂y

∂θ

∂x
+ ∂v

∂y

∂θ

∂y

)]
, (7.8)

can be insightfully rewritten using the expression of the four kinematic components

of the flow described in Chapter 1. Recalling that since the divergence, vorticity,

stretching, and shearing deformations are defined as

D = ∂u

∂x
+ ∂v

∂y
, ζ = ∂v

∂x
− ∂u

∂y
, F1 = ∂u

∂x
− ∂v

∂y
, and F2 = ∂v

∂x
+ ∂u

∂y
,

respectively, the horizontal derivatives of the wind field appearing in (7.8) can be

expressed as

∂u

∂x
= D + F1

2
,

∂v

∂y
= D − F1

2
,

∂v

∂x
= ζ + F2

2
, and

∂u

∂y
= F2 − ζ

2
.

Substituting these expressions into (7.8) yields

�2D = 1

|∇θ |
{
−

(
∂θ

∂x

) [(
D + F1

2

)
∂θ

∂x
+

(
ζ + F2

2

)
∂θ

∂y

]
−

(
∂θ

∂y

) [(
F2 − ζ

2

)
∂θ

∂x
+

(
D − F1

2

)
∂θ

∂y

]}
. (7.9a)

Fully expanding the RHS of (7.9a) and grouping like terms results in

�2D = −1

2 |∇θ |
[

D

(
∂θ

∂x

2

+ ∂θ

∂y

2)
+ F1

(
∂θ

∂x

2

− ∂θ

∂y

2)
+ 2F2

(
∂θ

∂x

∂θ

∂y

)]
(7.9b)
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demonstrating that only divergence and deformation can change |∇θ |. Our suspicion

that vorticity plays no role in frontogenesis (i.e. does not affect |∇θ |), as suggested

by our physical analysis of the simplified frontogenesis equation (7.5), is proven to

be true.

Now, recall that deformation is not invariant (i.e. the stretching and shearing

deformations ‘look like’ one another) so that the total deformation field can be

represented by either one so long as the coordinate axes are rotated by an appropriate

amount. By rotating the x- and y-axes counterclockwise by an angle ψ (where ψ =
1
2

tan−1(F2/F1)), we can rewrite (7.9b) as

�2D = − 1

2 |∇θ |

{
D(|∇θ |2) + F ′

1

[(
∂θ

∂x ′

)2

−
(

∂θ

∂y ′

)2
]}

(7.10a)

or

�2D = −|∇θ |
2

{
D + F ′

1[(∂θ/∂x ′)2 − (∂θ/∂y ′)2]

|∇θ |2

}
. (7.10b)

The geometry of the rotation of axes is illustrated in Figure 7.11. The angle β is

the angle the isentropes make with the x ′-axis (the axis of dilatation of the total

Figure 7.11 Geometry involved in formulating the kinematic form of the frontogenesis function (7.11).

The gray axes are the rotated principal axes of the total deformation field with x ′ and y ′ representing

the axes of dilatation and contraction, respectively. The angle 
 is the rotation angle and β is the angle

between the isentropes and the axis of dilatation of the total deformation field. The inset shows the angle

α between the x ′ axis and the vector ∇θ. See text for additional explanation
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deformation field). The angle α is the angle between the x ′-axis and the vector ∇θ .

Note also that ∂θ/∂x ′ and ∂θ/∂y ′ sum to ∇θ . From Figure 7.11 it is clear that

cos α = ∂θ

∂x ′

/
|∇θ | and sin α = ∂θ

∂y ′

/
|∇θ |.

Consequently,(
∂θ

∂x ′

)2

−
(

∂θ

∂y ′

)2

= |∇θ |2 [cos2 α − sin2 α] = |∇θ |2 cos 2α

so that (7.10b) can be rewritten as

�2D = −|∇θ |
2

(D + F ′
1 cos 2α). (7.10c)

Since α = 90◦ − β, and cos(δ − ε) = cos δ cos ε + sin δ sin ε by a trigonometric

identity, then cos 2α = − cos 2β. Thus, (7.10c) can finally be expressed as

�2D = |∇θ |
2

(F cos 2β − D) (7.11)

where F is the total deformation of the flow (F = (F 2
1 + F 2

2 )
1/2). Based upon (7.11)

it is clear that two kinematic environments will promote frontogenesis. Frontoge-

nesis will occur whenever non-zero |∇θ | is coincident with convergence (D < 0).

Frontogenesis will also occur if the total deformation field (F) acts upon isentropes

that are between 0◦ and 45◦ (β) of the axis of dilatation of the total deformation

field. Anytime β is between 46◦ and 90◦, the deformation promotes frontolysis.

A couple of hypothetical flow fields superposed with isentropes are illustrated in

Figure 7.12.

Figure 7.12 (a) Bundle of isentropes in a field of deformation. The thick gray line is the axis of dilatation

of the deformation field with which the isentropes make an angle of 30◦. The result is frontogenesis.

(b) Same bubdle of isentropes at an angle of 55◦ with the axis of dilatation of the deformation field. The

result is frontolysis
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This geometric form of the 2-D frontogenesis function is very useful in that it

distills the essential physics of frontogenesis into an expression that is rather easy

to apply to real weather maps. Such application involves quick identification of the

angle between the isentropes and the axis of dilatation of the total deformation field

and can be used to identify regions of frontogenesis. It is not, however, amenable to

quick calculation of the magnitude of the frontogenesis. In the modern computer era,

with the availability of gridded data sets of observations and forecasts, the numerical

calculation of frontogenesis using (7.7) or (7.8) is equally simple and much more

precise, though perhaps not as physically insightful to the young scientist.

As we have already discussed, there is a physical relationship between changes in

|∇θ | and the production of vertical circulations in the middle latitudes. We can use

R. C. Sutcliffe’s ideas to put some mathematical rigor to that argument. Recall that

in our discussion of the diagnosis of vertical motions in mid-latitudes we began

with

d �V
dt

−
(

d �V
dt

)
0

= �V s · ∇ �V 0 + d �V s

dt
. (7.12)

Let us now concentrate on the physical meaning of the second term on the RHS of

(7.12) which describes the rate of change of the vertical shear vector, �V s . If we make

the assumption that the vertical shear is geostrophically balanced, then �V s is directly

related to ∇θ by the thermal wind relationship. In such a case, an increase in �V s (i.e.

d �V s /dt > 0) is associated with an increase in |∇θ | and is therefore a result of pos-

itive horizontal frontogenesis. As discussed in Chapter 6, when d �V s /dt is positive,

a thermally direct vertical circulation results. Thus, we can conclude that a ther-

mally direct (indirect) vertical circulation will attend positive (negative) horizontal

frontogenesis. This relationship underlies the ubiquity of clouds and precipitation

in the vicinity of mid-latitude frontal zones! Of course, in making this connection,

we are implicitly asserting that such fronts are characterized by positive horizontal

frontogenesis, an assertion that is readily verified by observations.

Finally, we might consider an alternative version of (7.8) in which all winds are

geostrophic,

�2Dg
= 1

|∇θ |
[

∂θ

∂x

(
−∂ug

∂x

∂θ

∂x
− ∂vg

∂x

∂θ

∂y

)
+ ∂θ

∂y

(
−∂ug

∂y

∂θ

∂x
− ∂vg

∂y

∂θ

∂y

)]
.

(7.13a)

The terms inside the parentheses on the RHS of (7.13a) are equal to

1

f γ
Q1 and

1

f γ
Q2,

the components of the �Q-vector, respectively. Thus, (7.13a) can be expressed as

�2Dg
=

(
1

f γ

) �Q · ∇θ

|∇θ | , (7.13b)
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Figure 7.13 The 700 hPa geopotential heights (solid lines), isentropes (dashed lines), and �Q -vectors

near New Zealand at 0600 UTC 16 August 2004. Geopotential heights are labeled in dam and contoured

every 3 dam. Isentropes are labeled in K and contoured every 3 K. For clarity, only �Q -vectors larger

than 2 × 10−10 m2 kg−1 s−1 are plotted

a scalar multiple of the magnitude of the across-isentrope component of �Q, as shown

in Chapter 6. Shown in Figure 7.13 is a set of �Q-vectors and isentropes at 700 hPa.

From (7.13b), any place where �Q-vectors point across the isentropes from cold to

warm air will be associated with horizontal frontogenesis (i.e. �2Dg
> 0). In such

locations, the geostrophic winds are advecting θ in such a way as to increase |∇θ |
and we should expect a thermally direct vertical circulation to respond. Figure 7.13

illustrates that in such a setting the �Q-vectors will be convergent somewhere, and to

some degree, on the warm side of the baroclinic zone. This implies that the warm

air will rise and the cold air, in which the �Q-vectors are divergent, will be sinking –

precisely what we expected.
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As physically compelling as this is, the geostrophic frontogenesis function only

references the influence of geostrophic advection on forcing the secondary circu-

lation. We might reasonably ask if this is enough to describe nature accurately.

Recall that the geostrophic balance is fairly well obeyed in the along-front direc-

tion but not so well obeyed in the mesoscale, across-front direction. In nature, it is

entirely possible that across-front advections of temperature and geostrophic mo-

mentum might accomplish a considerable amount of frontal intensification and that

a large fraction of the across-front winds will not be in geostrophic balance. Indeed,

(7.11) makes clear that a sizeable portion of the frontogenetical forcing resides in

the divergence (D) of the ageostrophic wind. We now examine whether or not the

geostrophic frontogenesis function is a reasonable diagnostic of what actually occurs

at fronts.

In order to make this assessment, let us consider the effect of geostrophic conflu-

ence on the evolution of the temperature contrast illustrated in Figure 7.14. Let us

assume that

d

dt

(
∂θ

∂x

)
= −∂ug

∂x

∂θ

∂x
= k

∂θ

∂x
(7.14a)

where k is a constant, characteristic value of geostrophic confluence (k =
−∂ug /∂x = 10−5 s−1). Given these assumptions we proceed by first noting

that (7.14a) can be solved explicitly: d ln(∂θ/∂x)/dt = k can be rewritten as

d ln(∂θ/∂x) = k dt. This can be integrated to yield(
∂θ

∂x

)
t

=
(

∂θ

∂x

)
0

ekt (7.14b)

thus suggesting that, for typical conditions at middle-latitudes, it takes 105 seconds

(∼1 day) for pure geostrophic confluence to increase the intensity of a frontal tem-

perature contrast by a factor of e . Such an intensification rate is much slower than

what is actually observed in nature as illustrated by the observations in Figure 7.14.

Why should nature be able to accomplish frontogenesis so much faster than our

geostrophic confluence model? In making our case for geostrophic confluence, we

have adopted a view of frontal intensification in which the secondary circulation

forced by the geostrophic frontogenesis does not feed back upon the across-front

advection of temperature (or momentum). We have, thus, not considered a truly

dynamical approach to the problem as the neglected across-front ageostrophic tem-

perature advection will produce some ageostrophic frontogenesis which, when added

to the geostrophic frontogenesis, will accomplish greater total frontogenesis. Nature,

of course, includes such ageostrophic feedbacks on the frontal intensification rate.

Thus, in order to describe nature more accurately, we need to include these across-

front, ageostrophic advections of temperature and momentum in our diagnostic

equations for frontogenesis. The so-called semi-geostrophic equations, which we

will now develop, will include these important missing processes in a more compre-

hensive and physically accurate picture of frontogenesis.
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Figure 7.14 (a) Sea-level pressure (solid lines) and temperature (dashed lines) analyses at 2130 UTC

17 April 1953. Isobars are labeled in hPa and contoured every 6 hPa. The isothermal band between 4◦C

and 15◦C is shaded. (b) As for (a) but for 0330 UTC 18 April 1953. The region of temperature gradient

labeled ‘A’ has intensified by more than a factor of 2 in 6 hours. Adapted from Sanders (1955)

7.3 The Semi-Geostrophic Equations

J. S. Sawyer1 investigated a large number of frontal passages in the United Kingdom in

the early 1950s and came to the conclusion that active fronts (those fronts associated

1 John S. Sawyer was born in Wembley, England on 19 June, 1916. He joined the Meteorological Office in
1938 and was a forecaster during World War II in two distinct theaters: Western Europe from 1942 to 1943 and
in the Middle East from 1943 to 1945. After the war he worked under R. C. Sutcliffe in the new Forecasting
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Figure 7.15 Coordinate system orientation to isentropes adopted for development of the Sawyer–

Eliassen equation

with clouds and precipitation) were invariably associated with frontogenesis. We have

already seen that bands of considerable baroclinicity can be produced by differential

horizontal advection in non-divergent (i.e. geostrophic) deformation fields. But such

non-divergent flows cannot account for the production of the characteristic frontal

horizontal wind shear or the jet stream because these features are characterized by

vorticity which can only be produced by divergent motions. Let us consider a front

aligned such that the x-axis is along the front (i.e. along the isentropes) and the y-axis

points directly into the cold air as depicted in Figure 7.15. Recall that the geostrophic

wind relations are given by

Ug = − 1

f

∂φ

∂y
and Vg = 1

f

∂φ

∂x
.

The hydrostatic equation, as we saw at the end of Chapter 6, can be written as

1

f

∂φ

∂p
= −γ θ

where

γ = R

f p0

(
p0

p

)cv/c p

,

with p0 = 1000 hPa, is a function of pressure only. This expression for hydrostatic

balance results in simplified expressions for the thermal wind components,

∂Ug

∂p
= γ

∂θ

∂y
and

∂Vg

∂p
= −γ

∂θ

∂x
. (7.15)

Research Division of the Met Office and did extensive work on the calculation of vertical motions and numerical
weather prediction. His famous contribution to the theory of frontal circulations, in which a 1-D version of the
so-called Sawyer–Eliassen equation was first derived, was published in 1956. For his lifelong contributions to
dynamic meteorology he was honored by both the Royal Meteorological Society and the World Meteorological
Organization. He died on 19 September 2000.
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Since the front is assumed to be a 2-D one, there is no along-front geopotential height

gradient so the equation of motion in the along-front (x) direction is given by

dUg

dt
+ du

dt
= f v, (7.16a)

where u and v (Ug and Vg ) are the x- and y-direction ageostrophic (geostrophic)

winds, respectively. If we assume that the along-front flow is nearly geostrophic (i.e.

u is small with respect to Ug ) then we can make the geostrophic momentum ap-

proximation. This approximation simply implies that there is no systematic increase

in the magnitude of the along-front ageostrophic wind (i.e.
∣∣dUg /dt

∣∣ 	 |du/dt|).

Using the geostrophic momentum approximation, (7.16a) is simplified to

dUg

dt
= f v, (7.16b)

or, fully expanded,

dUg

dt
= ∂Ug

∂t
+ Ug

∂Ug

∂x
+ u

∂Ug

∂x
+ Vg

∂Ug

∂y
+ v

∂Ug

∂y
+ ω

∂Ug

∂p
= f v . (7.17)

Similarly, the thermodynamic energy equation becomes

dθ

dt
= ∂θ

∂t
+ Ug

∂θ

∂x
+ u

∂θ

∂x
+ Vg

∂θ

∂y
+ v

∂θ

∂y
+ ω

∂θ

∂p
. (7.18)

Now, since the along-front flow is presumed to be largely in geostrophic balance,

we will hereafter ignore the along-front ageostrophic advection terms (i.e. u ∂/∂x

terms). We will also introduce a new variable, the absolute geostrophic momentum

(M), defined as

M = Ug − f y (7.19)

noting that M is conserved, under the given assumptions, according to (7.16b). Using

(7.19), (7.17) can be rewritten as

∂Ug

∂t
+ Ug

∂Ug

∂x
+ Vg

∂Ug

∂y
+ v

∂ M

∂y
+ ω

∂ M

∂p
= 0. (7.20)

Now, taking ∂/∂p of (7.20) and adding it to −γ ∂/∂y of (7.18), and using the thermal

wind relationships and the non-divergence of the geostrophic wind, we get

− ∂

∂y

(
γ v

∂θ

∂y
+ γω

∂θ

∂p

)
+ ∂

∂p

(
v
∂ M

∂y
+ ω

∂ M

∂p

)

= −2

(
∂Ug

∂p

∂Ug

∂x
+ ∂Vg

∂p

∂Ug

∂y

)
− γ

∂

∂y

(
dθ

dt

)
. (7.21a)

The continuity equation in isobaric coordinates (∇ · �V = 0) can be simplified to

∂v

∂y
+ ∂ω

∂p
≈ 0



JWBK072-07 JWBK072/Martin March 7, 2006 21:14 Char Count= 0

7.3 THE SEMI-GEOSTROPHIC EQUATIONS 207

by assuming that the along-front derivative of the along-front ageostrophic flow

(∂u/∂x) is negligible. If we then set v = −∂ψ/∂p and ω = ∂ψ/∂y (7.21a) can be

rewritten in terms of a streamfunction, ψ , for the ageostrophic flow in the y–p

plane as(
−γ

∂θ

∂p

)
∂2ψ

∂y2
+

(
2
∂ M

∂p

)
∂2ψ

∂p∂y
+

(
−∂ M

∂y

)
∂2ψ

∂p2
= Qg − γ

∂

∂y

(
dθ

dt

)
(7.21b)

where

Qg = −2

(
∂Ug

∂y

∂Vg

∂p
− ∂Vg

∂y

∂Ug

∂p

)
(7.22)

is the geostrophic forcing function. Equation (7.21b) is known as the Sawyer–

Eliassen circulation equation as it is based upon pioneering work by J. S. Sawyer and

A. Eliassen.2 The Sawyer–Eliassen equation is a linear, second-order partial differen-

tial equation for the 2-D, across-front (transverse) ageostrophic streamfunction, ψ .

The general form of such an equation is

A
∂2u

∂x2
+ B

∂2u

∂x∂y
+ C

∂2u

∂y2
+ D

∂u

∂x
+ E

∂u

∂y
+ F u = G

and its solution characteristics can be assessed by considering the discriminant,

B2 − 4AC. The following conditions can be determined from the discriminate: if

< 0 Elliptic

B2 − 4AC = 0 Parabolic

> 0 Hyper bol i c .

In general form, elliptic solutions are those in which u is uniquely determined from

the forcing function, G . More specifically, for the Sawyer–Eliassen equation, so-

lutions for ψ (the transverse ageostrophic streamfunction) will arise entirely as a

consequence of the frontogenetic forcing provided that

γ

(
∂θ

∂p

∂ M

∂y
− ∂θ

∂y

∂ M

∂p

)
> 0.

Physically, this is the condition that the quasi-geostrophic potential vorticity is greater

than zero in the solution domain. If this condition is not met, then there is either

2 Arnt Eliassen was born in Oslo, Norway on 9 September 1915. He was introduced to meteorology,
rather by accident, in a course taught by Sverre Pettersen in autumn 1938. He later worked as an assistant
under Tor Solberg and, later still, under C. G. Rossby in Chicago in the 1950s. He was one of the giants of
modern dynamical meteorology involved in pioneering work on such diverse topics as the development of the
QG system of equations, potential vorticity applications to atmospheric flow, numerical weather prediction,
tropical cyclone development, and mid-latitude frontal circulations. In 1962 he published a generalization
of Sawyer’s earlier work on fronts, presenting the 2-D version of the Sawyer–Eliassen equation in a paper
that I consider to be the most clearly written scientific paper I have ever read. I had the opportunity to meet
Prof. Eliassen in Bergen in 1994 at which time I relayed these thoughts to him. With characteristic humility he
replied, ‘I had to write very clearly and carefully as my English was not so good.’ He died on 22 April 2000.
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Figure 7.16 (a) Isentropes in a frontogenetic field of deformation. (b) Close-up of the lightly shaded,

boxed area in (a) illustrating the effect of geostrophic shearing deformation

inertial instability, or static instability somewhere in the domain. The presence of

either instability in the solution domain will allow growth of non-unique solutions,

arising from the release of the instability, thus prohibiting clear attribution of the

resulting ageostrophic motions to the process of frontogenesis.

The Sawyer–Eliassen equation is a bulky expression and yet rather simple con-

ceptual interpretations are possible using it. We will concentrate on the geostrophic

forcing term, Qg , in our exploration of the physical interpretation of the Sawyer–

Eliassen equation, as we can determine the sense of the circulation by considering

Qg alone. Using the thermal wind relationships we can rewrite (7.22) as

Qg = 2γ

(
∂Ug

∂y

∂θ

∂x
+ ∂Vg

∂y

∂θ

∂y

)
(7.23)

where the first term on the RHS of (7.23) is known as the geostrophic shearing de-

formation while the second term is called the geostrophic stretching deformation.

We will investigate each of these terms in isolation beginning with the geostrophic

shearing deformation. Figure 7.16 illustrates an example of geostrophic shearing de-

formation. Before considering the mathematical underpinnings of this problem, let

us consider the physics of the situation depicted in Figure 7.16. It is clear that the ap-

parent shear zone in Figure 7.16(b) is a small portion of the larger-scale deformation

field shown in Figure 7.16(a). That deformation field will rotate the isentropes into an

alignment that is parallel to the axis of dilatation (x-axis) over time. Simultaneously,

the isentropes will be pushed closer together so positive horizontal frontogenesis is

implied. As we have seen earlier in this chapter, positive horizontal frontogenesis

is associated with a thermally direct vertical circulation. The geostrophic shearing

deformation term itself has the form

Qg S H
= 2γ

∂Ug

∂y

∂θ

∂x
.

For the situation depicted in Figure 7.16(b), both ∂Ug /∂y and ∂θ/∂x are positive;

thus, Qg S H
> 0.
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Figure 7.17 Illustration of the stretching deformation term of the Sawyer–Eliassen equation

The geostrophic stretching deformation can be investigated with the use of Fig-

ure 7.17 in which the confluent entrance region of a jet streak is depicted. The con-

fluent geostrophic flow is clearly tending to increase the baroclinicity in the region.

As a consequence, there is positive horizontal frontogenesis occurring there, and a

thermally direct vertical circulation results. The geostrophic stretching deformation

term itself has the form

Qg ST
= 2γ

∂Vg

∂y

∂θ

∂y
.

For the confluent jet entrance, both ∂Vg /∂y and ∂θ/∂y are negative; thus, Qg ST
> 0.

As it turns out, all we need to know in order to discern the sense of the 2-D

ageostrophic circulation using the Sawyer–Eliassen equation is the sign of the RHS of

(7.21b) – in this particular example, the geostrophic forcing function, Qg . Anytime

Qg is positive (negative), a thermally direct (indirect) circulation is diagnosed.

Notice that Qg can be written to look like a part of the �Q-vector since

Qg = 2γ

(
∂Ug

∂y

∂θ

∂x
+ ∂Vg

∂y

∂θ

∂y

)
= 2γ

(
∂ �V g

∂y
· ∇θ

)

and the ĵ component of �Q is equal to

Q2 = − f γ

(
∂ �V g

∂y
· ∇θ

)
.

Thus, the geostrophic forcing function, Qg , of the Sawyer–Eliassen equation is a

scalar multiple of the ĵ component of �Q; Q2 = −( f/2)Qg .

The LHS of the Sawyer–Eliassen equation (7.21b) is a rather complex-looking

expression but considerable physical insight into the process of frontogenesis can be
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garnered by considering each term in some detail. Since (7.21b) is an equation for

ψ , we will consider the physical interpretations of both the derivatives of ψ as well as

their coefficients. The first term on the LHS of (7.21b) is (−γ ∂θ/∂p)∂2ψ/∂y2. This

term represents the product of the static stability (−γ ∂θ/∂p) and across-front gra-

dients in ω (∂2ψ/∂y2, since ω = ∂ψ/∂y). The only way that across-front gradients

in vertical motion can have any effect on |∇θ | is if they act upon the static stability

via the tilting term. The second term on the LHS of (7.21b) represents the product

of the across-front baroclinicity (2∂ M/∂p) and the across-front, ageostrophic diver-

gence (∂2ψ/∂p∂y, or −∂v/∂y since v = −∂ψ/∂p). Clearly, if there is ageostrophic

convergence in the presence of baroclinicity, the frontal intensity is increased. Fi-

nally, the third term on the LHS of (7.21b) represents the product of the vorticity

(−∂ M/∂y) and the across-front vertical shear of the ageostrophic wind (∂2ψ/∂p2,

or −∂v/∂p since v = −∂ψ/∂p). The tilting of vortex tubes by the across-front ver-

tical shear of the ageostrophic wind will modulate the tilt of the frontal zone, an

observable characteristic of fronts in nature. Notice that each of the coefficients of

these three terms represents one of the three essential dynamical characteristics of

a front and that each of the three terms themselves represents an aspect of the sec-

ondary ageostrophic circulation that responds to the frontogenetical forcing. This

suggests that in solving (7.21b) for ψ , a successive overrelaxation procedure (SOR)

would execute the following solution steps: (1) assess the RHS forcing in (7.21b),

(2) make a first guess for ψ in the solution domain, (3) use ψ to compute the

first-guess ageostrophic circulation, (4) allow the ageostrophic circulation to advect

temperature and momentum (as in the terms just discussed on the LHS of (7.21b)),

(5) iterate to a state of balance between the RHS and LHS. In this way, the ageostrophic

secondary circulation feeds back into the final frontogenesis process as originally in-

tended with the introduction of the increased complexity of the Sawyer–Eliassen

equation. Thus, solution of the Sawyer–Eliassen equation mimics nature and sug-

gests that frontogenesis is a two-step process. First, the non-divergent, geostrophic

deformation tightens the temperature gradient resulting in the production of sec-

ondary, ageostrophic transverse circulation. Second, the ageostrophic circulation

itself advects temperature and momentum in the frontal zone, produces the charac-

teristic vorticity, and further intensifies the temperature contrast leading to the some-

times rapid production of the sharp frontal boundaries; observed in the mid-latitude

atmosphere.

Up to this point in our discussion of frontogenesis we have been solely focused

on the development of fronts at or near the surface of the Earth. The surface of the

Earth represents a physical boundary. Fronts, however, are not confined to form only

at physical boundaries; they may also form at thermodynamic boundaries across

which there is very little mixing. One such boundary in the Earth’s atmosphere is

the tropopause boundary. Next we will investigate the development of fronts at the

tropopause boundary, examining both the processes by which these fronts form and

the consequences their development has on the array of weather systems that parade

across the middle latitudes.
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7.4 Upper-Level Frontogenesis

A vertical cross-section through a modest local wind speed maximum (labeled

with a ‘J’) in the upper troposphere and lower stratosphere is shown in Figure 7.18.

The tropopause is easily identified by the sudden increase in the vertical gradient in

potential temperature corresponding to increased static stability. In accordance with

the thermal wind relationship, the local wind speed maximum sits atop a column

of air in which a modest horizontal temperature contrast exists, particularly in the

upper troposphere. As a consequence of the vertical wind shear resulting from the

presence of the local wind speed maximum, horizontal vortex tubes with the indi-

cated spin are present beneath the maximum. With this physical background, let us

now consider what might develop if a thermally indirect circulation straddling the

wind speed maximum can be generated.

First, since the lower stratosphere is characterized by high static stability, the hypo-

thetical thermally indirect circulation will tilt a bundle of closely packed isentropes

from their original horizontal orientation into a more vertical orientation. Since this

change is associated with vertical tilting, as we have already seen, the absolute distance

between isentropes in the tilted bundle will not change. As the isentropes acquire a

more vertical orientation, the magnitude of the horizontal θ gradient (|∇θ |H ) in-

creases. The hypothetical thermally indirect circulation also acts upon the horizontal

vortex tube, gradually tilting a component of that vorticity into the vertical direction.

Thus, a local increase in cyclonic vorticity results in precisely the same region in which

a local increase in |∇θ | is accomplished. These ingredients, along with the high static

stability present in the developing baroclinic zone owing to its lower stratospheric

origin, constitute the essential dynamical characteristics of a front. Thus, imposition

of a thermally indirect circulation onto an environment such as that illustrated in

Figure 7.18 leads to the development of a frontal zone along the tropopause bound-

ary. Such frontal zones are known as upper-level fronts. As a consequence of their

characteristic association with intensifying wind speed maxima, they are also often

referred to as upper-level jet/front systems.

It is important to note that such upper-level fronts do not separate air masses with

different origins in the horizontal as is the case with surface-based frontal zones.

Instead, upper-level fronts separate tropospheric air (beneath them) from strato-

spheric air (above them). In fact, the tropopause boundary often becomes ‘folded’

over itself in the vicinity of the upper-level front. A number of observable quantities

are present in the atmosphere that allow for a clear distinction between tropospheric

and stratospheric air to be made. In the late 1940s and 1950s it was common prac-

tice to test new weapons systems by exploding nuclear devices at high altitude in

the stratosphere, the idea being that the dangerous radioactive by-products of the

devices would rain out in the highly stratified stratosphere and would not quickly or

easily mix into the troposphere. Some of the pioneering work done in identifying and

diagnosing upper-level fronts used analysis of radioactivity, an indisputable criterion
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Figure 7.18 (a) 300 hPa geopotential height and isotachs from the NCEP AVN model valid at 1800 UTC

17 August 2004. Geopotential heights labeled in dam and contoured every 9 dam. Isotachs contoured

every 10 m s−1 starting at 30 m s−1. Cross-section along line A–B shown in (b). (b) Vertical cross-section

along line A–B in (a). Solid lines are isentropes labeled in K and contoured every 3 K. Dashed lines are

isotachs labeled in m s−1 and contoured every 10 m s−1 starting at 30 m s−1. ‘J’ indicates the position of

the jet core. Light shaded tube with arrows illustrates the horizontal vorticity associated with the vertical

wind shear of the jet. Dark shaded arrows are the upward and downward branches of a hypothetical

thermally indirect circulation. The consequences of such a circulation in this environment are discussed

in the text
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Figure 7.19 Vertical cross-section taken at 0000 UTC 22 April 1963 from Boise, ID (BOI), to Lander,

WY (LAN), to Denver, CO (DEN), to Amarillo, TX (AMA), to Midland, TX (MAF). Solid lines are isentropes

labeled in K and contoured every 4 K. Shading highlights regions in which potential vorticity (PV) is

greater than or equal to 2.5 PVU (1PVU = 10−6 K m2 kg−1 s−1) safely indicating stratospheric air. Dots

are measurements of radioactive decay of strontium (90Sr) in units of disintegrations per minute per

1000 cubic feet of air. Note the high radioactivity that exists within the high-PV stratospheric air as well

as within the upper frontal zone. Adapted from Danielsen (1964)

for establishing the presence of stratospheric air in upper-level fronts. Upper-level

fronts are also characterized by high ozone mixing ratios – again, indicative of the fact

that air of stratospheric origin is present in upper-level frontal zones. Finally, since

the lower stratosphere is also a region of high potential vorticity (PV) as compared

to the upper troposphere, the fact that upper-level frontal zones are characterized by

high PV is yet another clear indication that upper-level fronts separate stratospheric

from tropospheric air. Some of these analysis elements are illustrated in Figure 7.19,

a vertical cross-section through an upper-level front. It is clear from Figure 7.18 that

a thermally indirect vertical circulation in the vicinity of an upper tropospheric wind

speed maximum is of vital importance to the development of such upper-level frontal

zones. Naturally, then, we must determine under what synoptic-scale conditions

such a thermally indirect vertical circulation can be produced. Understanding this

question will unlock more secrets concerning upper-level fronts.

We will consider this question from the perspective of the Sawyer–Eliassen equa-

tion. Let us first consider the vertical circulations that accompany the entrance

and exit regions of an upper tropospheric jet streak such as the one illustrated in
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Figure 7.20 Vertical circulations at the entrance and exit regions of a straight jet streak as diagnosed

by the stretching deformation term of the Sawyer–Eliassen equation. ‘DVM’ and ‘UVM’ correspond to

downward and upward vertical motions, respectively

Figure 7.20. The non-divergence of the geostrophic wind allows the geostrophic

stretching deformation term to be written as

Qg ST
= 2γ

∂Vg

∂y

∂θ

∂y
= −2γ

∂Ug

∂x

∂θ

∂y
.

As we have already seen, a thermally direct vertical circulation arises in the jet entrance

region where ∂Ug /∂x > 0 and, consequently, Qg ST
> 0. The jet exit region, however,

is characterized by ∂Ug /∂x < 0 and Qg ST
< 0, consistent with a thermally indirect

vertical circulation. Thus, the exit region of a jet streak is a preferred location for the

development of an upper-level front. Note that the diffluent horizontal wind field

superimposed upon the isentropes in the exit region clearly promotes horizontal

frontolysis (i.e. d |∇θ |H /dtg < 0) which is associated with a thermally indirect

circulation. When that circulation is able to draw upon the high static stability of the

lower stratosphere, as it can if the thermally indirect circulation occurs in the upper

troposphere, then the frontolytic effect of the horizontal winds is superseded by the

tendency of the tilting to increase |∇θ |H .

Let us now consider the effect of geostrophic shearing deformation on upper fron-

togenesis. Recall that the geostrophic shearing deformation term from the Sawyer–

Eliassen equation is given by

Qg S H
= 2γ

∂Ug

∂y

∂θ

∂x
.

Figure 7.21 illustrates an example of horizontal cold air advection in the presence of

cyclonic shear. In such a case it is clear that the horizontal winds are tending to decrease

|∇θ |H by forcing a horizontal separation of the isentropes. Consistent with this fact,

Qg S H
< 0 and a thermally indirect vertical circulation is the result. Consequently,

the development of an upper-level front is promoted in such an environment. The

circumstance of warm air advection in anticyclonic shear will also render Qg S H
< 0
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Figure 7.21 Cold air advection in cyclonic shear producing a thermally indirect vertical circulation.

Arrows are the geostrophic winds. ‘DVM’ and ‘UVM’ correspond to downward and upward vertical

motions, respectively

and thus promote upper frontogenesis. Conversely, cold (warm) air advection in the

presence of anticyclonic (cyclonic) shear will be associated with Qg S H
> 0, thermally

direct circulations, and an upper-frontolytic tendency.

We will now develop a natural coordinate version of the geostrophic shearing

deformation forcing term to make diagnosis of these four combinations of horizontal

temperature advection and shear even more transparent. Figure 7.22 shows simple

schematics of all four of the relevant combinations along with the corresponding

Cartesian expressions for the temperature gradient and horizontal shear as well as

the resulting sign of Qg S H
. We will define the ŝ direction as the direction along the

isotherms (with cold air to the left) and Ug as the flow in the ŝ direction. Further,

we will define n̂ to point into the cold air, perpendicular to the isentropes. If we

then assess the magnitude of the horizontal temperature contrast as |∂θ/∂n|, we can

rewrite the geostrophic shearing deformation term as

Qg S H
= 2γ

∣∣∣∣∂θ

∂n

∣∣∣∣ ∂Ug

∂s
. (7.24)

Thus, if Ug increases (decreases) along an isentrope, there must be a thermally direct

(indirect) vertical circulation. We now exploit the simplicity of this expression to

examine the influence of along-flow temperature advection in straight jet streaks.

First, let us consider the situation in which there is no along-flow temperature

advection in the vicinity of a straight jet as illustrated in Figure 7.23(a). Concentrating

on the isentrope in the middle of the bundle that lies parallel to the jet axis, we see

that ∂Ug /∂s > 0 from the entrance region to the jet core itself. As a consequence

of (7.24), Qg S H
> 0 and the circulation in that portion of the jet/front system must

be thermally direct. To the east of the jet core, ∂Ug /∂s < 0 along the central isentrope

so that, by (7.24), Qg S H
< 0 and the circulation must be thermally indirect in the

exit portion of the jet/front system. The combination of these diagnoses leads to the
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Figure 7.23 The effect of temperature advection on the vertical circulation about a straight jet streak.

(a) Straight jet with no temperature advection along its axis. (b) Straight jet with cold air advection

along its axis. (c) Straight jet with warm air advection along its axis. Gray shading on left isolates the

jet entrance region. Right side is the jet exit region
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familiar four-quadrant model of vertical motions in the vicinity of a jet streak. Now,

if the jet crosses the same bundle of isentropes at a slight angle, then significant along-

flow temperature advection will result. In Figure 7.23(b) we see a jet characterized

by cold air advection along its axis. Once again, we can use (7.24) to diagnose the

distribution of vertical motions through consideration of the middle isentrope in the

bundle. In the entrance region of the jet portrayed in Figure 7.23(b), ∂Ug /∂s > 0

and so Qg S H
> 0 there. The associated thermally direct circulation, however, must

straddle the middle isentrope and is thus shifted toward the anticyclonic side of the jet

in the entrance region. In the exit region, a similar analysis yields ∂Ug /∂s < 0 and

Qg S H
< 0. The associated thermally indirect circulation must straddle the middle

isentrope, however, and is consequently shifted toward the cyclonic shear side of the

jet axis. The combination of these two diagnoses is that subsidence is maximized

directly along the jet axis when the jet is characterized by cold advection along its

axis. Another way to diagnose this vertical motion distribution is to consider the

Sutcliffe/Trenberth form of the omega equation in which thermal wind advection of

absolute geostrophic vorticity determines ω. Since the isentropes in Figure 7.23(b)

are a surrogate for the direction of the thermal wind, it is clear that anticyclonic

vorticity advection by the thermal wind will be maximized right at the position of the

jet core with corresponding regions of cyclonic vorticity advection on the flanking

cyclonic and anticyclonic sides. This distribution of vertical motion will tend to

increase both the horizontal temperature contrast as well as the vertical component

of vorticity through tilting, thus intensifying the upper-level jet/front system. The

exact opposite situation occurs when there is warm air advection along the axis of the

jet, as illustrated in Figure 7.23(c). The Sutcliffe/Trenberth diagnostic also suggests

upward vertical motion through the jet core for the case of warm air advection along

the jet, a circumstance that promotes the weakening of an upper-level front.

For the case of cold air advection along the jet axis, a particularly important

result of the subsidence maxima near the jet core is the resulting downward advec-

tion of high PV into the upper troposphere. In the previous chapter we considered

the important effect that vorticity advection in the middle and upper troposphere

has on the development of mid-latitude weather systems. In that discussion there

was no reference made to the origin of the important middle tropospheric vortic-

ity features themselves. It may now seem viable that some of these features arise

from downward advection of high PV associated with the development of upper

front/jet systems. Observations suggesting such origins are plentiful. Consider, for

instance, the case illustrated in Figure 7.24. At 0000 UTC 11 November 2003, modest

confluence between a high-latitude trough and a ridge at upper tropospheric levels

←
Figure 7.24 (a) 500 hPa geopotential height (solid lines), temperature (dashed lines), and absolute

vorticity (shading) at 0000 UTC 11 November 2003. Geopotential height is labeled in dam and contoured

every 6 dam. Temperature is labeled in ◦C and contoured every 3◦C. Absolute vorticity is labeled in

10−5 s−1 and contoured every 5 × 10−5 s−1 starting at 20 × 10−5 s−1. (b) As for (a) but for 1200 UTC

11 November 2003. (c) As for (a) but for 0000 UTC 12 November 2003. (d) As for (a) but for 1200

UTC 12 November 2003. (e) As for (a) but for 0000 UTC 13 November 2003
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was evident just off the Alaskan panhandle (Figure 7.24a). This confluence began

to concentrate the horizontal temperature contrast and, as a consequence, to in-

tensify the jet. Only a modest 500 hPa absolute vorticity maximum was associated

with this developing feature at this time. Twelve hours later, the modest vorticity

maximum had migrated southeastward to coastal British Columbia along with a sig-

nificant horizontal temperature contrast (Figure 7.24b). By 0000 UTC 12 November,

an emerging jet/front system was embedded in rather straight northwesterly flow

characterized by geostrophic cold air advection along the leading portion of the axis of

the jet (Figure 7.24c), a configuration that leads to upper frontogenesis. The 500 hPa

absolute vorticity had intensified only slightly to this point in the development of this

upper-level front. A more intense baroclinic zone had developed by 1200 UTC 12

November with an attendant increase in the absolute vorticity (Figure 7.24d). Finally,

by 0000 UTC 13 November, an intense upper-level front, characterized by a large

horizontal temperature contrast as well as a significant 500 hPa vorticity maximum,

had developed over the lower Great Lakes States (Figure 7.24e). As the upper-level

front moved toward the downstream side of its associated upper-level short-wave

disturbance by this time, a powerful surface cyclone had begun to develop downshear

of the upper-level front. Though not apparent in this case, in some instances, by the

time the upper front/jet system is downstream of the upper short-wave axis there

can be warm air advection along the jet axis leading to strong ascent beneath the jet

core and commencement of the decay of the upper front.

7.5 Precipitation Processes at Fronts

Though we have spent a great deal of effort describing the relationship between the

vertical circulations at fronts and their relationship to the process of frontogenesis,

the vertical motions themselves are correctly viewed as necessary but insufficient to

produce the precipitation often found in the vicinity of fronts. The simplest way to

verify this statement is to consider the case of a strong frontal circulation occurring

in the complete absence of water vapor. Clearly in such a case no precipitation could

possibly occur. Thus, it would appear that the correct thermodynamic conditions are

as vital an ingredient in the production of precipitation in mid-latitude cyclones as

the dynamical ones.

The canonical Norwegian Cyclone Model (to be described in the next chapter)

correctly portrayed fronts as the seat of much of the precipitation in mid-latitude

cyclones. But, as a result of observational constraints, the model also suggested that

the frontal precipitation intensity was uniform in the frontal regions and exhibited

no cellular substructure. With the advent of weather radar in the late 1950s, this

presumption was exposed as a misconception: considerable cellular substructure

exists in the distribution of frontal precipitation. Naturally, the question of what

controls the mesoscale distribution of precipitation in the vicinity of frontal zones

became a major research area. In this section we will broadly consider this ques-

tion, concentrating on the simple idea that the juxtaposition of dynamical forcing
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Figure 7.25 Schematic vertical cross-section through a region of positive horizontal frontogenesis.

The warm side of the region is characterized by lower static stability than the cold side. The dark arrows

represent the resulting thermally direct vertical circulation: a narrow, intense updraft and a widespread,

benign downdraft

with appropriate thermodynamic conditions goes a long way to explaining the gross

characteristics of the mesoscale distribution of precipitation at fronts.

We begin this investigation by considering the effect of variations of static stability

across a schematic frontal zone as depicted in Figure 7.25. Recall that both the QG

omega and Sawyer–Eliassen circulation equations related the geostrophic forcing

(−2∇ · �Q or Qg ) to ω via some measure of the static stability: σ in the QG omega

equation and QG PV in the Sawyer–Eliassen equation. In essence, the stability func-

tions as an amplitude modulator for ω in both expressions, for when the stability is

weak (strong) there is little (considerable) resistance to vertical displacement and for

a given amount of forcing, a large (only a small) vertical displacement may arise. For

the schematic frontal cross-section in Figure 7.25, let us assume that the forcing for

ascent results from horizontal frontogenesis (F2D > 0). The first-order response to

this forcing is, as we have seen, the production of a thermally direct vertical circula-

tion with ascent on the warm side and descent on the cold side of the frontal zone.

If we assume that the resistance to vertical displacement is smaller (larger) on the

warm (cold) side of the frontal zone, then the response to the frontogenetic forcing

will be modulated so as to produce intense ascent and much more benign descent.

Since continuity of mass requires that the amount of mass that ascends be equal to

the amount that descends, the updraft on the warm side, being more intense, must

also be horizontally restricted as compared to the downdraft on the cold side. The

consequence of these influences is that the updraft on the warm side of such a front

will be narrow and intense, producing a narrow linear band of precipitation, while

the downdraft will be wider and more benign. Thus, it is generally the case that the

narrow precipitation bands commonly observed in association with frontogeneti-

cally active frontal zones are a consequence of the modulation of the response to

frontogenetic forcing for vertical motions by cross-frontal differences in static sta-

bility. Next we investigate the synoptic-scale conditions favorable for the production

of a particular type of static instability known as convective or potential instability.
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Figure 7.26 Pseudo-adiabatic diagram portraying a hypothetical convectively unstable sounding. The

dashed line represents the moist adiabatic lapse rate (6◦C km−1) while the solid line represents the dry

adiabatic lapse rate (9.8◦C km−1). Layer A–B (located between 1 and 1.25 km) is characterized by a

temperature inversion. Parcel A is saturated while parcel B is very dry. Upon being lifted 1 km, this layer

develops an absolutely unstable lapse rate

Convective instability is a particularly potent form of gravitational instability.

Consider the hypothetical sounding shown in Figure 7.26. Given the temperature and

humidity characteristics of layer A–B, parcels A and B will be subjected to differential

adiabatic cooling rates upon being lifted with A cooling at ∼ 6◦C km−1 (the moist

adiabatic rate) and B cooling at 9.8◦C km−1 (the dry adiabatic rate). Upon being lifted

1 km, layer A–B will become absolutely unstable since its lapse rate will then exceed

the dry rate and free convection will ensue. Thus, rapid and intense convection,

leading to a narrow updraft, is likely to result from such a configuration. It can be

shown that temperature and dewpoint profiles such as those in Figure 7.26 conspire

to render ∂θe/∂z < 0 in layer A–B. The necessary condition for convective instability

is, in fact, that ∂θe/∂z be less than zero. Such a stratification can develop as a result

of differential moisture advection during cyclogenesis. In fact, it is very common in

cyclogenesis over the southern plains of the United States in which southeasterly low-

level, high-θ e flow from the Gulf of Mexico occurs beneath southwesterly low-θ e flow

at upper levels off the Mexican Plateau as illustrated schematically in Figure 7.27(a).

Another preferred region for the development of convective instability is the pole-

ward edge of the so-called ‘dry slot’ in cyclones. The dry slot is a region of desiccated
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Figure 7.27 (a) Schematic of the synoptic conditions leading to the development of convective in-

stability in the Central Plains of the United States. Dashed lines are sea-level isobars, solid lines are

geopotential height lines at 500 hPa. (b) Illustration of the differential vertical advection of dry air

characteristic of the poleward edge of the dry slot. Infrared satellite image (NOAA) is from 1815 UTC

10 November 1998. Thick dashed lines are schematic isopleths of mixing ratio (q ) and the white arrow

is the tropospheric thermal wind vector
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air, often with a history of subsidence, that develops in the upper troposphere to the

west of the cold frontal cloud shield. At the poleward edge of this feature, a significant

moisture contrast exists through a deep layer of the middle and upper troposphere.

The proximity of the cold frontal baroclinicity ensures that a significant vertical wind

shear is present in the vicinity of the poleward edge of the dry slot. Thus, as illustrated

in Figure 7.27(b), there is a region of strong dry air advection increasing with height

that can lead to the development of narrow regions of mid-level convective instability

and the consequent narrow bands of convective precipitation.

Though upright gravitational instabilities such as convective instability play a

role in the development of frontal precipitation, another type of instability called

symmetric instability, in which narrow, front parallel circulations can develop in

response to slantwise motions, may also be responsible for the production of the

linear bands of precipitation often observed in association with fronts. In order to

develop a theory regarding the stability of such slantwise motions (i.e. motions with

a component in both the horizontal and vertical), we must consider a rather specific

environment in which (1) the vertical shear is geostrophically balanced, and (2) the

flow is 2-D (i.e. not curved). Such conditions are not unlike those we assumed in

developing the Sawyer–Eliassen equation so we are, to a fair degree, describing the

flow in the vicinity of a frontal zone. Consider the depiction in Figure 7.28(a) of 2-D

flow in the y − z plane. In such a case, there is no x-direction pressure gradient so the

frictionless equation of motion, under the geostrophic momentum approximation,

reduces to

dUg

dt
− f v = 0 or

d

dt
(Ug − f y) = 0. (7.25)

If we now define Mg , the absolute geostrophic momentum from the Sawyer–Eliassen

discussion in Section 7.3, as Mg = Ug − f y, then (7.25) becomes a statement of the

conservation of Mg . Next we imagine that some perturbation in the atmosphere

accomplishes an exchange of the tubes of air labeled 1 and 2 in Figure 7.28(a) along

a θ e surface and consider the consequences. If the original velocity of tube 1 is Ug1
,

then Mg1
= Ug1

− f y. Upon moving tube 1 to the original position (y + �y) of

tube 2, conservation of Mg implies that

Mg1
= Ug1

− f y = U ′
g1

− f (y + �y)

= U ′
g1

− f y − f �y

so that

U ′
g1

= Ug1
+ f �y. (7.26a)

Similarly, if the original velocity of tube 2 is Ug2
, thenMg2

= Ug2
− f (y + �y). Upon

moving tube 2 to the original position (y) of tube 1, conservation of Mg yields,

Mg2
= Ug2

− f (y + �y) = U ′
g2

− f (y)

= U ′
g2

− f y
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Figure 7.28 (a) Schematic vertical cross-section perpendicular to a straight frontal zone aligned along

the y-axis. Thick solid lines are isopleths of θe. Tubes 1 and 2, infinite in the x direction and separated by

distances �y and �z in the horizontal and vertical directions, are described in the text. (b) Distribution

of M g and θe isopleths in a cross-section like that shown in (a). A parcel, S, displaced along a slanted

path (dashed line) will experience vertical and horizontal accelerations (solid arrows) as indicated. These

accelerations arise from the dual constraints of conserving θe and M g . The dashed black arrow represents

the resultant acceleration

so that

U ′
g2

= Ug2
− f �y. (7.26b)

Now, after this exchange, we measure the change in kinetic energy of the environ-

ment from the original state to the perturbed state. This change in kinetic energy

(KE) is given by

�K E = 1

2
m

(
U ′2

g1
+ U ′2

g2

) − 1

2
m

(
U 2

g1
+ U 2

g2

)
. (7.27)
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Substituting (7.26a) and (7.26b), the reader can show that (7.27) reduces to

�KE = mf �y(Mg1
− Mg2

). (7.28)

If �KE < 0, this implies that the environment has given up energy to the dis-

turbance that initiated the tube exchange, thus the environment was unstable to

that disturbance. Therefore, we conclude that the environment is unstable to such

slantwise displacements whenMg2
> Mg1

, or, with reference to Figure 7.28(a), when

(∂ Mg /∂y)θe
> 0 which translates to

(ζg + f )θe
< 0. (7.29a)

If the slope of the Mg surfaces is shallower than the slope of the θ e surfaces (in a

saturated atmosphere) then the atmosphere is unstable to such disturbances and

the instability will result in convection of heat and momentum approximately along

sloping θ e surfaces. If the 2-D flow in Figure 7.28 is saturated then a parcel conserves

both Mg and θe so that for displacement paths that lie between the sloping Mg and θe

surfaces, horizontal and vertical forces compel the parcel back toward its original Mg

and θe surfaces. Thus, as indicated in Figure 7.28(b), the displaced parcel accelerates

away from its origin along that slanted path. Notice also that the stability criterion

(7.29a) can be expressed equivalently as(
∂θe

∂z

)
Mg

< 0. (7.29b)

Thus, along the slanted path indicated in Figure 7.28(b), a parcel is equivalently (1)

inertially unstable on a θe surface (7.29a), or (2) convectively unstable on an Mg

surface (7.29b) even though the environment depicted in Figure 7.28 is inertially

and convectively stable! Such an instability is known as conditional symmetric

instability (CSI).3

Another means of determining the necessary conditions for this CSI arises from

consideration of a quantity called the geostrophic moist potential vorticity (PVeg
)

defined as

P Veg
= −( f k̂ + ∇ × �V g ) · ∇θe . (7.30a)

Upon expansion, (7.30a) takes the form

P Veg
= ∂vg

∂p

∂θe

∂x
− ∂ug

∂p

∂θe

∂y
−

(
∂vg

∂x
− ∂ug

∂y
+ f

)
∂θe

∂p
. (7.30b)

3 The adjective ‘symmetric’ is used here since the theory is the isentropic equivalent of a theory derived by
Rayleigh concerning convection of angular momentum in circularly symmetric, barotropic fluid flows. The
adjective ‘conditional’ refers to the condition that the air must be saturated in order that the instability be
realized under the specified necessary conditions.
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To be consistent with the 2-D assumption we adopted in formulating the necessary

condition for CSI, we neglect x variations and (7.30b) becomes

P Veg
= −∂ug

∂p

∂θe

∂y
−

(
f − ∂ug

∂y

)
∂θe

∂p
or, since Mg = Ug − f y,

P Veg
= ∂ Mg

∂y

∂θe

∂p
− ∂ Mg

∂p

∂θe

∂y
. (7.31)

Returning now to Figure 7.28(b) in which the necessary condition for CSI is por-

trayed, we see that anytime isopleths of Mg are less steeply sloped in the y–p plane

than isopleths of θe , then (7.31) will be negative. Thus, whenever the 2-D PVeg
is

negative the necessary condition for CSI is met. It is believed that when PVeg
be-

comes negative and such air is lifted to saturation in a frontal environment, CSI is

released. This slantwise-directed, free convective overturning produces roll circu-

lations parallel to the thermal wind. As the rolls grow, they create regions of con-

vective instability with the resulting convection leading to the banded nature of the

precipitation.

Recall that the ellipticity condition for the Sawyer–Eliassen equation, namely

γ

(
∂θ

∂p

∂ M

∂y
− ∂θ

∂y

∂ M

∂p

)
> 0,

is the dry adiabatic version of (7.31). Thus, strictly speaking, the Sawyer–Eliassen

equation is hyperbolic when PVeg
< 0 and the air is saturated. If, however, cross-front

variations of PVeg
exist in which PVeg

is positive everywhere, the resulting vertical

circulation will still be affected. With smaller PVeg
on the warm side of a thermally

direct frontal circulation, the vertical motions will be intense since the resistance to

slantwise displacement (proportional to the magnitude of PVeg
) is lower than on the

cold side. The updraft will also be horizontally restricted since mass continuity must

be obeyed. Thus, even in the absence of any actual instability, sound arguments can

be made that account for the banded nature of precipitation in the vicinity of active

frontal zones.

Having established the value of using PVeg
as a measure of the response to fronto-

genetic forcing, let us investigate the means by which this variable may change with

time. The Lagrangian rate of change of the full PVeg
(7.30b) is given by

d

dt
(P Veg

) = −�η · ∇ θ̇ e + f
∂ �V g

∂p
· ∇θe (7.32)

which describes two processes that can contribute to a change in PVeg
. The first term

on the RHS of (7.32) relates the influence of diabatic effects on PVeg
. Of particular

interest is the vertical component of that diabatic term given by

−
(

∂vg

∂x
− ∂ug

∂y
+ f

)
∂θ̇ e

∂p
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Figure 7.29 (a) Distribution of θ and θe isopleths associated with differential dry air advection and

reduction of P Veg . (b) Vertical cross-section illustrating the effect of such differential dry air advection

on the slope of M g and θe isopleths

where −∂θ̇ e/∂p is the vertical gradient of diabatic heating. Diabatic processes redis-

tribute PVeg
in the vertical, effectively ‘destroying’ PVeg

above the level of maximum

heating and ‘creating’ it below that level. The second term on the RHS of (7.32)

describes the effect of vertically differential horizontal θe advection on changing the

PVeg
, a purely adiabatic mechanism. Consider the distribution of θ and θe isopleths

illustrated in Figure 7.29(a). It is clear that in that scenario, there will be negative

θe advection by the thermal wind. Physically, this means that at station A, θe will

be decreased more rapidly aloft than near the surface. As a consequence, any given

θe isopleth will be tilted into a more vertical orientation over time (Figure 7.29b).
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Since the actual temperature field is represented in the thermal wind (−∂ �V g /∂p),

then the θe advection described by this term is actually just moisture advection.

Such moisture advection, though it does affect the orientation of the moist isen-

tropes, hardly affects the mass field at all. Consequently, the slopes of Mg isopleths

are essentially unaffected by this process. Thus, a gradual increase in the slope of θe

surfaces relative to Mg surfaces – that is, a reduction in PVeg
– will be produced by

the process described by this term. It is worth noting that the distribution of dry and

moist isentropes shown in Figure 7.29(a) is characteristic of the poleward edge of

the ‘dry slot’ discussed previously.

The frontal processes we have studied in this chapter are only a single component

of the multi-scaled circulation system known as the mid-latitude cyclone. These fas-

cinating disturbances, ubiquitous features of the mid-latitude circulation, can simul-

taneously affect millions of square kilometers over a life cycle that typically lasts from

3 to 7 days. In the next chapter we will investigate the nature of the mid-latitude cy-

clone by employing the many diagnostic tools we have thus far developed in our study.

Selected References

Margules (1906) provides the derivation of the zero-order frontal slope formulas.

Bergeron (1928) is among the first to discuss a frontogenesis function.

Bluestein, Synoptic-Dynamic Meteorology in Midlatitudes, Volume II, provides a clear derivation of

the trigonometric form of the frontogenesis function starting with the algebraic form.

Hoskins and Pedder (1980) describe the relationship between the �Q-vector and quasi-geostrophic

frontogenesis.

Hoskins and Bretherton (1972) describe the role of ageostrophic motions in the collapse of a frontal

zone to very small scale.

Sanders (1955) is the seminal observational paper concerning surface frontogenesis.

Eliassen (1962) introduces the 2-D form of the so-called Sawyer–Eliassen equation – the best

scientific paper ever read by the author.

Keyser and Shapiro (1986) provide a comprehensive review of observational and dynamical research

on upper-level fronts and frontogenesis.

Sanders and Bosart (1985) offer a clear physical description of the influence of cross-front gradients

of stability on determining some characteristics of frontal precipitation bands.

Emanuel (1979) and Bennetts and Hoskins (1979) are seminal papers on the theory of conditional

symmetric instability (CSI).

Schultz and Schumacher (1999) offer a careful review of CSI theory and application.

Problems

7.1. (a) Prove that

d

dt

(
∂θ

∂x

)
= ∂

∂x

(
dθ

dt

)
− ∂u

∂x

∂θ

∂x
− ∂v

∂x

∂θ

∂y
− ∂ω

∂x

∂θ

∂p

given that

d

dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p
.
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(b) For adiabatic, frictionless flow prove that

�3D = d

dt
|∇θ |

= 1

|∇θ |

[
−

(
∂θ

∂x

) (
∂ �V
∂x

· ∇θ

)
−

(
∂θ

∂y

) (
∂ �V
∂y

· ∇θ

)
−

(
∂θ

∂p

)
(∇ω · ∇θ)

]
.

7.2. Figure 7.1A shows zonally oriented isentropes superposed with some geostrophic winds

on an isobaric surface.

Figure 7.1A

(a) Use the natural coordinate form of �Q,

�Q = − R

f

∣∣∣∣∂T

∂n

∣∣∣∣
(

k̂ × ∂ �V g

∂s

)
to draw the �Q-vector at the indicated point.

(b) Is there any geostrophic frontogenesis implied by this setting? Explain your answer

with reference to your result in (a) and the �Q-vector form of the QG frontogenesis

function (Fg eo = �Q · ∇θ/|∇θ |).

(c) Given that the geostrophic frontogenesis function is also equal to

�g eo = |∇θ |
2

(F cos 2β)

(where F is the total deformation field) does the result you obtained in (b) surprise

you or not? Explain your answer.

7.3. Figure 7.2A is a schematic of 500 mb � and θ .

Φ−ΔΦ

Φ+ΔΦ

θ−Δθ

θ+Δθ
X

x

y

500 mb

Figure 7.2A
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Recall that the geostrophic shearing deformation forcing term of the Sawyer–Eliassen

equation is given by

Qshear = 2γ
∂Ug

∂y

∂θ

∂x
.

By applying this forcing term in Figure 7.2A, answer the following questions.

(a) What is the instantaneous effect of the geostrophic, horizontal flow on |∇θ |?
(b) Given your answer in (a), indicate the orientation of the �Q-vectors with respect

to the isotherms in that region. Explain your answer. (You do not have to carefully

draw �Q-vectors for this answer!)

(c) What type of vertical circulation is forced by this circumstance?

(d) What will the effect of the forced vertical circulation be on |∇θ | in the same region?

Explain your answer.

(e) The ‘X’ in Figure 7.2A marks a 500 mb absolute vorticity maximum. How will its

magnitude change with time? Defend your answer.

7.4. Given the 700 hPa isentropes and �Q-vectors in Figure 7.3A, what is the sign of QS E (the

geostrophic forcing function in the Sawyer–Eliassen equation) in that region? Defend

your answer.

θ−δθ θ+δθ

Q

Figure 7.3A

7.5. (a) In an atmosphere with only geostrophic horizontal flow, would fronts be stronger

or weaker than those observed in the real atmosphere? Give a physical explanation

of your answer.

(b) Describe a mathematical rationale for the answer in (a) by considering the kinematic

form of the frontogenesis function

� = |∇θ |
2

(F cos 2β − D)

where F is the total deformation and D is the divergence.

(c) What is the major difference between the semi-geostrophic (SG) and quasi-

geostrophic (QG) approximations? Why is SG more appropriate for investigating

real fronts?



JWBK072-07 JWBK072/Martin March 7, 2006 21:14 Char Count= 0

232 THE VERTICAL CIRCULATION AT FRONTS

7.6. Recall that in the derivation of the Sawyer–Eliassen equation, we considered the quantity

M = Ug −fy (the absolute geostrophic momentum).

(a) What do vertical gradients of M represent physically?

(b) What do across-front (∂/∂y) gradients of M represent physically?

(c) Describe why the product (−∂ M/∂y)(∂ M/∂p) might be a useful parameter to

consider in identifying frontal zones.

(d) Can the differences in static stability across a front be quantified in terms of M?

Explain your answer.

7.7. In saturated, 2-D geostrophic flow parallel to the x-axis, the y and z equations of motion

reduce to

dv

dt
= − f (Mparcel − Menv)

dw

dt
= κ(θe parcel − θe env)

where κ is a positive constant and M = Ug − f y.

(a) For a parcel originally at point P in the cross-section in Figure 7.4A, which of

the hypothetical parcel trajectories will result in parcel acceleration away from P?

Explain your answer.

p

y

θθθθe+ΔΔΔΔθθθθeθθθθe -ΔΔΔΔθθθθe
θθθθ e

M+ΔΔΔΔM

M

P

1

2

3

4

Figure 7.4A

(b) What is the sign of the geostrophic moist potential vorticity (P Veg
) in this cross-

section? Explain your choice. (This could be a one-sentence answer.)

7.8. Imagine that the surface horizontal velocities and temperature on a certain day can be

described by the following functional expressions:

U = −2 − (4 × 10−5)x − (2 × 10−5)y

V = 4 + (2 × 10−5)x + (1 × 10−5)y

T = 270 − (
√

3 × 10−5)x − (1 × 10−5)y.
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(a) What are the values of the vorticity, divergence, and shearing and stretching defor-

mations?

(b) What is the direction of the axis of dilatation of the total deformation field?

(c) What is value of the frontogenesis function in units of K (100 km)−1 (105 s)−1?

7.9. In the decade after World War II, it became common practice to test nuclear weapons

by exploding them in the stratosphere. The belief at the time was that the stable strato-

sphere provided a safe reservoir for the radioactive residue of such explosions. Given

the ubiquity of upper-level jet/front systems in the middle latitudes, comment on the

prudence of this practice. Do you suspect the discovery of upper-level jet/front systems

had a significant role in the adoption of the Nuclear Test Ban Treaty of 1960? Defend

your answer.

7.10. (a) Prove that the change in kinetic energy (�KE) of the environment resulting from

the exchange of tubes 1 and 2 in Figure 7.28(a) is given by

�KE = mf �y(Mg1
− Mg2

).

(b) Explain why the instability condition (�KE < 0) must imply that the Mg lines are

less steeply sloped than the θ e lines.

7.11. Figure 7.5A depicts a typical synoptic setting over the south central United States with

a 500 hPa trough axis centered over west Texas and a surface low-pressure center over

south central Texas.

L
A

Figure 7.5A

(a) Sketch the 500 hPa and surface geostrophic winds at A.

(b) What are the source regions of the air that resides above A? (That is, what are the

sources of the 500 hPa and surface air?)
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(c) What type of instability will result over A from this synoptic setting? Be specific

and draw a sketch of the likely temperature and dewpoint sounding over A.

(d) Would you expect general rising or sinking of air in the vicinity of A? Explain your

answer.

(e) Given all of the above, what forecast would you make for northern Texas/southern

Oklahoma on this day? Explain your answer.

7.12. Given that the Lagrangian rate of change of the geostrophic moist potential vorticity

(P Veg
) is given by

d

dt
(P Veg

) = −�ηg · ∇ θ̇ e + f
∂ �V g

∂p
· ∇θe .

(a) Show that the adiabatic production term ( f (∂ �V g /∂p) · ∇θe ) can be written as

f
∂ �V g

∂p
· ∇θe = γ k̂ · (∇θe × ∇θ).

(b) Use the right hand rule to determine the sign of this term at the schematic ‘dry slot’

of a mid-latitude cyclone depicted in Figure 7.29(a).

7.13. Figure 7.6A illustrates the positively sloped interface, F, between two regions (labeled 1

and 2) of a fluid characterized by a first-order discontinuity in potential temperature, θ .

Show that the slope of this interface in the x–z plane is given by(
dz

dx

)
F

= [(∂θ/∂x)1 − (∂θ/∂x)2]/[(∂θ/∂z)2 − (∂θ/∂z)1].

F

Region 1

Region 2

z

x

Figure 7.6A

7.14. Show that the vertical motions associated with the across-isentrope component of
�Q( �Qn) are dependent on both the geostrophic frontogenesis as well as across-front

gradients of the geostrophic frontogenesis.

Solutions

7.2. (b) There is no geostrophic frontogenesis implied.

7.3. (a) Forces a decrease in |∇θ |.
(c) Thermally indirect
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7.4. Positive

7.6. (a) Horizontal temperature contrasts (b) −ζg

7.7. (a) Parcels 2 and 4 (b) Negative

7.8. (a) ζ = 4 × 10−5 s−1, D = −3 × 10−5 s−1, F2 = 0, and F1 = −5 × 10−5 s−1(b) 0◦

(c) 5.5 K (100 km)−1 (105 s)−1
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8
Dynamical Aspects of the Life Cycle
of the Mid-Latitude Cyclone

Objectives

The single most common weather element in the middle-latitudes is the frontal

cyclone. As a consequence of this fact, the mid-latitude cyclone has been the subject

of scientific scrutiny for well over 200 years. In this chapter we will employ the

diagnostic tools and dynamical insights thus far developed and apply them to gain

an understanding of the structure, evolution, and underlying dynamics of the mid-

latitude cyclone life cycle.

This life cycle consists of various stages. We will pursue our investigation of several

of these stages by adopting the perspective that the cyclone is the product of devel-

opment initiated by finite, identifiable disturbances in the flow, not a manifestation

of unstable growth of an infinitesimal perturbation. Consistent with this choice of

perspective, we will make use of the quasi-geostrophic diagnostics developed in pre-

vious chapters to consider the dynamics of the cyclogenesis, post-mature, and decay

stages of the cyclone life cycle. Examination of the post-mature stage will involve

consideration of the structural and dynamical nature of the occlusion. Though re-

search regarding the mid-latitude cyclone stretches back into the eighteenth century,

we will begin our investigation by considering the broad structural characteristics of

these storms starting with the synthesis of prior observations made manifest in the

so-called polar front theory of cyclones.

8.1 Introduction: The Polar Front Theory of Cyclones

Much of the understanding of mid-latitude cyclones that existed before the turn of

the twentieth century was fragmentary and lacked an organizing conceptual frame-

work. Just after the end of World War I, meteorologists at the University of Bergen in

Mid-Latitude Atmospheric Dynamics Jonathan E. Martin
C© 2006 John Wiley & Sons, Ltd.
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Norway, under the leadership of Vilhelm Bjerknes,1 developed the polar front the-

ory of the structure and life cycle of mid-latitude cyclones, now known colloquially

as the Norwegian Cyclone Model (NCM). The essential genius of this conceptual

model, which represented a grand synthesis of prior insights concerning the cyclone,

was that it described the instantaneous structure of the cyclone while placing that

structure into an identifiable life cycle. At the conceptual heart of the NCM was the

existence of a globe-girdling, tropospheric deep, knife-like boundary known as the

polar front which separated cold polar air from warm tropical air (Figure 8.1a). For

reasons that were not discussed in the seminal paper by Bjerknes and Solberg (1922)

that introduced the NCM, perturbation vortices occasionally developed along this

polar front (Figure 8.1b). The existence of such vortices would then serve to deform

the polar front, locally ushering tropical air poleward and polar air equatorward

(Figure 8.1b). The precise mechanism by which the perturbation vortex would grow

in intensity is not well explained in the NCM, but the continued growth of the per-

turbation was thought to lead to further deformation of the polar front (Figure 8.1c)

and a lower sea-level pressure at the center of the perturbation. By this so-called

mature stage of the life cycle, the deformation of the polar front had become so

extreme as to lend the cyclone its now familiar characteristic frontal structure: a cold

front extending equatorward and a warm front extending eastward from the sea-level

pressure minimum. The region of homogeneous temperature between the two fronts

was deemed the warm sector. Continued intensification of the cyclone compelled

the cold front to encroach upon, and subsequently overtake, the warm front. Two

important results of this process were that (1) the sea-level pressure minimum was

removed from the peak of the warm sector and (2) an occluded front developed

to connect the cyclone center to the peak of the warm sector (Figure 8.1d). It was

thought that this process could result in the development of two varieties of occluded

fronts in cyclones. One of these was the so-called warm occlusion in which the cold

front would ascend the warm front upon overtaking it, leading to a vertical struc-

ture similar to that portrayed in Figure 8.2(a). Conversely, a so-called cold occlusion

would result if the encroaching cold front was able to undercut the warm front and a

vertical structure similar to that portrayed in Figure 8.2(b) would result. The warm

(cold) occlusion was thought to occur when the air poleward of the warm front was

more (less) dense than the air west of the cold front. Note that in either case, the

development of the occluded front was associated with the denser air lifting the less

1 Vilhelm Bjerknes was born on 14 March 1862 in Christiania, Norway (now Oslo). He was the son of a
professor of mathematics and the father of Jacob Bjerknes whose seminal paper written with Halvor Solberg in
1922 established the Norwegian Cyclone Model. He earned an MS in 1888 and then moved to Bonn, Germany
where he collaborated with Heinrich Hertz and received his Ph.D. in 1892. In 1897 he discovered the circulation
theorem that bears his name and thereafter pursued research aimed at employing the circulation theorem to
scientific weather forecasting. He was the driving force behind the establishment of the Bergen Geophysical
Institute, colloquially known as the Bergen School, which eventually attracted such giants as Solberg, Bergeron,
Petterssen, and Rossby. He died in 1951.
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Figure 8.1 Evolution of a mid-latitude cyclone according to the Norwegian Cyclone Model. (a) The

polar front as a background state. (b) The initial cyclonic perturbation. (c) The mature stage. (d) The

occluded stage. The thin solid lines are isobars of sea-level pressure and the arrows are surface wind

vectors

dense air aloft. In so doing, the horizontal density contrast originally characterizing

the cyclone (manifest in the horizontal temperature gradient associated with the po-

lar front) was reduced and a stable vertical stratification near the cyclone center was

gradually put in place. As illustrated in Figure 8.3, transformation of an originally

horizontal density contrast into a purely vertical one reduces the center of gravity of

a fluid system gradually driving the system to its lowest potential energy state. Based

upon this type of energetics argument, the NCM proposed that the development

of the occluded front heralded the post-mature phase for a mid-latitude cyclone, a
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Figure 8.2 (a) Vertical cross-section through a warm occlusion in which the cold front ascends the

warm front leaving a warm occluded front near the surface (gray line). (b) Vertical cross-section through

a cold occlusion in which the warm front ascends the cold front leaving a cold occluded front near the

surface (gray line)

cessation of intensification, and the commencement of cyclone decay. The nature of

the cyclone decay was not described in the NCM beyond mention of the fact that

the post-mature phase cyclone would eventually succumb to frictional dissipation

associated with the surface of the Earth.

Figure 8.3 Fluids of different densities separated horizontally in a container by a dividing wall (thick

black line) at t = 0. The white dot represents the height of the center of gravity of the two-fluid system.

At t = t1, after the divider has been removed, the height of the center of gravity of the fluid system has

been lowered by an amount δz
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Figure 8.4 (a) Vertical cross-section through a cold front according to the NCM. Dotted arrow repre-

sents the updraft of air at the frontal boundary. Inset indicates the location of A–A′, referring to Figure

8.1(c). (b) Vertical cross-section through a warm front according to the NCM. Inset indicates the location

of B–B′, referring to Figure 8.1 (c). Dotted arrow represents the updraft of air at the frontal boundary

The NCM accounted for the typical cloud and precipitation distribution associated

with a mid-latitude cyclone with reference to the vertical structure of the fronts

themselves. The cold front was described as a steeply sloped boundary between polar

and tropical air masses that steadily advanced into the tropical air. The advance

produced upgliding motions along the boundary itself and, as a consequence of

its steep slope, the updrafts were vigorous and horizontally restricted leading to a

narrow, sometimes squally precipitation distribution (Figure 8.4a). The warm front,

on the other hand, was a less steeply sloped boundary between advancing tropical

air and gradually retreating polar air (Figure 8.4b). The upgliding motions along

the warm frontal surface were considered to be less intense as a consequence of the

shallower slope. As a result, the cloudiness associated with the warm front was more

horizontally widespread and the precipitation more benign.

Despite its great insights, the NCM, like all great conceptual leaps, certainly has its

limitations. For instance, the nature of, and relationship between, the perturbations

which grow into cyclones and the large-scale environment that promotes such growth

are not addressed in the NCM and yet are clearly at the heart of understanding the

mid-latitude cyclone life cycle. In addition, as discussed in Chapter 7, much more

dynamically compelling arguments exist for explaining the production of vertical

circulations at fronts. The fronts themselves, in fact, are not knife-like discontinuities

as suggested by the NCM but zones of contrast across which temperature, density,

and pressure are continuous. Neither are the frontal zones continuous through the

depth of the troposphere. Note also that the NCM does not describe the physical

mechanisms by which the cyclone intensifies from its incipient stage (Figure 8.1b)

through its post-mature stage (Figure 8.1d). Also the development of the surface

occluded front, though partly described through reference to the vertical frontal

structure, is more correctly viewed as part of a process of occlusion that needs to be

more comprehensively considered. Additionally, the decay of the cyclone is barely

discussed in the NCM and yet clearly represents a major component of the cyclone
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life cycle. Finally, given the lack of available upper air observations at the time of its

development, the NCM does not describe the vertical structure of cyclones and the

manner in which that vertical structure supports the cyclone and evolves throughout

its life cycle. In the remainder of this chapter we will investigate (1) the nature of

cyclogenesis (the intensification of a cyclone), (2) the process of occlusion, and (3) the

nature of cyclolysis (the decay of a cyclone). In order to provide a broad background

to these discussions, and to illuminate some characteristics of a basic hydrodynamic

instability that underlies the existence of mid-latitude cyclones, we first explore the

basic environmental conditions that prevail at middle latitudes and then explore the

characteristic vertical structure of a developing mid-latitude cyclone building our

model literally from the ground up.

8.2 Basic Structural and Energetic Characteristics of the Cyclone

The uneven heating of the spherical Earth results in a pole-to-equator temperature

gradient on the planet. As a consequence of the dominance of the thermal wind

balance outside of the tropics, such a temperature gradient is manifest as a baroclinic

westerly vertical shear at middle latitudes. If we consider the rather hypothetical sit-

uation in which the mid-latitude flow is purely zonal and in thermal wind balance,

then at some middle or upper tropospheric level the geopotential height lines and

isotherms would be everywhere parallel. Imagine that a wave-like perturbation were

introduced into this flow and that the speed of the wave exactly equaled the speed

of the background zonal flow. In such a case, only the meridional motions associ-

ated with the perturbation would be discernible. Those meridional motions would

promote warm air advection downstream of the trough axis and cold air advection

upstream of the trough axis as shown in Figure 8.5, eventually producing a wave in

the thermal field that would lag the wave in the momentum field by one-quarter

Figure 8.5 Effect of introducing a wave in the momentum field into a zonally oriented bundle of

column-averaged isotherms. Light gray lines are undisturbed thickness isopleths of the mean state.

Dashed lines are the disturbed thickness isopleths after the meridional motions of the wave (arrows)

have distorted them. The thick black line shows a schematic geopotential height line. Note that the

resulting thickness wave is a guarter wavelength out of phase with the wave in the geopotential height
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wavelength. In order for this wave-like perturbation to grow, two conditions must be

met: (1) the positive and negative zonal temperature anomalies must become larger,

and (2) the kinetic energy associated with the wave motions must increase.

The pole-to-equator temperature gradient represents a horizontal density contrast

conceptually analogous to that shown in the left panel of Figure 8.3. If, by some

mechanism, the dense fluid ends up beneath the less dense fluid (as shown in the

right panel of Figure 8.3) then the center of mass of the fluid system has been reduced

and there has been a conversion of some of the initial potential energy into the kinetic

energy of the fluid motions involved in the rearrangement. That fraction of the total

potential energy that can be converted into kinetic energy is known as the available

potential energy (APE). Were our hypothetical wave-like disturbance able to convert

the APE of the background zonal baroclinic shear into the kinetic energy of its own

motions then the wave-like perturbation would grow at the expense of the basic

flow. In such a case, we would designate the background flow as unstable to the

introduction of such a disturbance.

Mid-latitude cyclones and anticyclones are wave phenomena. As a result, any

regional sea-level pressure analysis, such as the example shown in Figure 8.6, will

display an alternating sequence of surface high- and low-pressure disturbances. In

order that a surface low- (high-)pressure system remain a region of relative low (high)

pressure, air must be extracted from (stuffed into) the atmospheric column above

the surface. Thus, an alternating sequence of highs and lows, each associated with

sinking or rising air in their respective columns, characterizes a mid-latitude wave

train as shown in Figure 8.7(a). Recall that based on simple curvature arguments

alone, we know that upward (downward) vertical motions occur downstream of

trough (ridge) axes at upper tropospheric levels. Consequently, regions of low (high)

geopotential height must be located to the west of the rising (sinking) air columns as

shown in Figure 8.7(b). Thus, we know that for developing mid-latitude disturbances,

the geopotential height axes tilt westward, into the vertical shear, with increasing

height.

Recall that at the mature stage of the mid-latitude cyclone, the low-pressure center

is located at the peak of the warm sector. The surface anticyclone lies to the west of

the surface cyclone with its center close to the center of minimum temperature at

sea level. Now, since the hypsometric equation relates thickness to column-averaged

temperature, upper tropospheric geopotential minima (maxima) must lie atop rel-

atively cold (warm) columns. Thus, as shown in Figure 8.7(c), the thermal axes of

developing mid-latitude waves tilt eastward with increasing height. Finally, note that

since the air is rising through the warm column and sinking through the cold column,

developing mid-latitude disturbances are characterized by thermally direct vertical

circulations which convert the APE of the background baroclinicity, which is itself

manifest in the westerly vertical shear of the large-scale flow, into the kinetic energy

of the disturbances.

The fact that the structure of the mid-latitude cyclone results in spontaneous

conversion of APE to kinetic energy implies that the background zonal baroclinic
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Figure 8.7 Vertical structure of a developing mid-latitude cyclone. (a) Alternating sequence of

surface high- and low-pressure systems with ascent (descent) slightly downstream from the lows (highs).

(b) Upper tropospheric lows and highs are displaced to the west with height (see text for explanation).

Thick solid lines represent geopotential axes connecting surface and upper tropospheric features. (c) Thick

dashed lines are thermal axes which tilt slightly to the east with height (see text for explanation). Note

that warm air is ascending and cold air is descending in this wave train

shear is, indeed, unstable to certain wave-like perturbations and that mid-latitude

cyclones are a primary manifestation of this instability. A more fully developed ver-

sion of this baroclinic instability2 theory suggests that disturbances of the scale of

mid-latitude short waves (3000 to 4500 km in wavelength), in environments charac-

terized by observed values of vertical shear, are those that exhibit the most efficient

growth by this mechanism.

Though elements of the foregoing characteristic vertical structure of cyclones were

known in the late nineteenth century, almost no mention was made of the vertical

wave structure of cyclones in the NCM. The goal in the subsequent sections will not

be to provide a comprehensive review of the theory and supporting observations

regarding the various stages of the mid-latitude cyclone life cycle,3 but instead to

demonstrate that the diagnostic tools we have developed thus far can be gainfully

employed in developing an understanding of the basic elements of that life-cycle

evolution.

2 Baroclinic instability theory was discovered independently by Jule Charney (1947) and Eric Eady (1949)
using approaches to the problem that were significantly different from one another. Charney was also the first
to derive rigorously the quasi-geostrophic system of equations upon which much of this book is based.

3 A vast literature exists on the related subjects and to review it is an enormous job. A number of seminal
references from that literature are given at the end of the chapter.
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8.3 The Cyclogenesis Stage: The QG Tendency
Equation Perspective

Cyclogenesis is the process by which a surface cyclone initially develops and subse-

quently intensifies. Intensification is often measured in terms of sea-level pressure

decreases following the cyclone center. A consequence of this semi-Lagrangian neg-

ative pressure tendency is an increase in the low-level geostrophic vorticity. Thus,

cyclogenesis can be viewed as a process of low-level vorticity production. Vortic-

ity production necessitates the presence of divergence and vertical motions, as we

have already seen. Consideration of the isobaric form of the continuity equation

leads to

ps∫
0

∂ω = −
ps∫

0

(∇ · �V)∂p or ωps
= −

ps∫
0

(∇ · �V)∂p. (8.1)

Now, since

ω = dp

dt
= ∂p

∂t
+ �V a · ∇ p + w

∂p

∂z

and both w and �V a · ∇ p are nearly zero at the surface of the Earth,4 then (8.1) can

be rewritten as

∂ps

∂t
≈ −

ps∫
0

(∇ · �V)∂p. (8.2)

This expression, known as the pressure tendency equation, dictates that the surface

pressure tendency at a point is a consequence of the total convergence of mass into

the vertical column of atmosphere above that point. Thus, net mass divergence

(convergence) in the column is responsible for sea-level pressure falls (rises) at a

given location. As we have already seen, however, measuring the divergence cannot

be done with a great degree of accuracy. Thus, approximations to (8.2) must be made

in order to render useful results. The simplest set of approximate equations are the

quasi-geostrophic set that we derived in Chapter 5. Recall that the quasi-geostrophic

vorticity and thermodynamic energy equations were given by

∂ζg

∂t
= − �V g · ∇(ζg + f ) + f0

∂ω

∂p

∂

∂t

(
−∂φ

∂p

)
= − �V g · ∇

(
−∂φ

∂p

)
+ σω,

4 Ageostrophic pressure advection ( �V a · ∇ p) can be different from zero just above the surface, however.
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respectively. If we represent the geopotential tendency as χ = ∂φ/∂t, then the

geostrophic vorticity tendency can be expressed as

∂ζg

∂t
= 1

f0

∇2χ

and the above two expressions can be rewritten as

∇2χ = − f0
�V g · ∇

(
1

f0

∇2φ + f

)
+ f 2

0

∂ω

∂p
(8.3a)

∂χ

∂p
= − �V g · ∇

(
∂φ

∂p

)
− σω. (8.3b)

Now, in order to eliminate the ω terms in (8.3) we take (f 2
0 /σ )∂/∂p of (8.3b) and

add it to (8.3a) to get(
∇2 + f 2

0

σ

∂2

∂p2

)
χ = − f0

�V g · ∇
(

1

f0

∇2φ + f

)
− f 2

0

σ

∂

∂p

(
�V g · ∇

(
∂φ

∂p

))
(8.4)

which is known as the quasi-geostrophic height tendency equation. The operator

on the LHS of (8.4) is exactly the same as the operator on the LHS of the QG omega

equation and can be interpreted similarly. When(
∇2 + f 2

0

σ

∂2

∂p2

)
χ

is less than (greater than) zero, then χ itself is greater than (less than) zero. The RHS

of (8.4) suggests that there are two processes that can contribute to local geopotential

height changes. The first of these is represented by

− f0
�V g · ∇

(
1

f0

∇2φ + f

)
which describes the effect of geostrophic vorticity advection on height falls. Figure 8.8

shows a schematic upper tropospheric trough with a cyclonic vorticity maxima at its

base. Immediately to the east (west) of the trough axis, there is positive (negative)

geostrophic vorticity advection. In the absence of other processes, PVA is associ-

ated with height falls (χ < 0) while NVA is associated with height rises (χ > 0).

Interestingly, however, since the geostrophic vorticity advection is precisely zero at

the axis of the trough (since the gradient of geostrophic vorticity is zero there),

there is no height tendency at that point. Since that point represents the location

of lowest geopotential height in the first place, we see that the geostrophic vortic-

ity advection term can only propagate an already existing disturbance – it cannot

intensify it! It is interesting to note that since the geostrophic absolute vorticity is
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Figure 8.8 Upper tropospheric trough in the northern hemisphere. Thick black lines are isopleths of

geopotential. Gray arrows are geostrophic wind vectors and the dashed lines are contours of cyclonic

vorticity with the ‘X’ indicating the vorticity maximum. Light (dark) shading represents region of positive

(negative) vorticity advection

given by ηg = (1/ f0)∇2φ + f , the horizontal geostrophic vorticity advection can

be written as

− f0
�V g · ∇

(
1

f0

∇2φ + f

)
= − f0∇ · ( �V g ηg ). (8.5)

Thus, the geostrophic absolute vorticity flux convergence (divergence) is associated

with height falls (rises).

The second term on the RHS of (8.4) can be rewritten as

− f 2
0

σ

∂

∂p

[
− �V g · ∇

(
−∂φ

∂p

)]
. (8.6a)

Since −∂φ/∂p = RT/p and −∂/∂p represents the vertical derivative, (8.6a) can be

expressed as

R f 2
0

pσ

[
− ∂

∂p
(− �V g · ∇T)

]
(8.6b)

which is easily recognized as the vertical derivative of geostrophic temperature advec-

tion. It is this term that controls the development of disturbances from the perspective

of the QG height tendency equation. We see that geostrophic temperature advection

increasing (decreasing) upward is associated with height falls (rises). In a developing

mid-latitude cyclone, middle tropospheric height rises (manifest as ridge building)

typically occur to the east of the sea-level pressure (SLP) minimum, in the vicin-

ity of the cyclone’s warm front. From the tendency equation perspective, this is a

result of the fact that warm air advection is strong in the lower troposphere and

weaker in the middle and upper troposphere in that region of the storm. The result is

warm air advection decreasing with height (phenomenologically equivalent to cold
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Figure 8.9 The effect of horizontal temperature advection on geopotential tendency. Solid black arrows

are streamlines of the lower tropospheric thermal wind. Surface low-pressure center is indicated with

‘L’ and the gray arrows represent the lower tropospheric winds associated with the storm. Light (dark)

shaded region identifies an area where warm (cold) air advection decreases with height leading to height

rises (falls) and a negative (positive) vorticity tendency

air advection increasing with height) and height rises. To the west of the SLP mini-

mum, in the vicinity of the surface cold front, middle tropospheric height falls occur

consistent with the fact that the lower tropospheric cold air advection associated

with the surface cold front is stronger than the middle and upper tropospheric cold

air advection in the same location. Thus, the geostrophic temperature advection in-

creases with height in that vicinity and, consequently, mid-tropospheric height falls

occur there. The height falls to the west of the developing SLP minimum lead to

a positive, mid-tropospheric geostrophic vorticity tendency there, while the height

rises to the east of the SLP minimum are associated with a negative, mid-tropospheric

geostrophic vorticity tendency there, as illustrated in Figure 8.9. The juxtaposition

of positive and negative geostrophic vorticity tendencies, in turn, promotes more

intense positive vorticity advection by the thermal wind (and consequent upward

vertical motion) in the vicinity of the SLP minimum leading to continued lower

tropospheric cyclogenesis. In this way, the asymmetric temperature advection field

associated with a developing mid-latitude cyclone makes a significant contribution

to the dynamics of cyclogenesis. Of course, nature is nearly always more complicated

than the simplest example and careful analysis of the geostrophic temperature advec-

tion profile is necessary to employ the QG tendency diagnostic usefully in any given

real case.

If we employ the chain rule on (8.6b) we notice that

R f 2
0

pσ

[
− ∂

∂p
(− �V g · ∇T)

]
= R f 2

0

pσ

[
∂ �V g

∂p
· ∇T − �V g · ∇

(
−∂T

∂p

)]
. (8.7)
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The first term on the RHS of (8.7) describes the thermal wind advection of temper-

ature which is identically zero. Hence, the QG tendency equation becomes(
∇2 + f 2

0

σ

∂2

∂p2

)
χ = − f0

�V g · ∇
(

1

f0

∇2φ + f

)
− R f 2

0

pσ

(
− �V g · ∇ ∂T

∂p

)
or, since

T = − p

R

∂φ

∂p

from the hydrostatic equation,(
∇2 + f 2

0

σ

∂2

∂p2

)
χ = − f0

�V g · ∇
(

1

f0

∇2φ + f

)
− f 2

0

σ

(
�V g · ∇ ∂2φ

∂p2

)
. (8.8)

We will return to this form of the tendency equation in Chapter 9.

8.4 The Cyclogenesis Stage: The QG Omega Equation Perspective

Now that we have seen both the QG omega and height tendency equations we are

ready to consider the physical sequence of events that characterize the adjustment

of the mass and temperature fields to a canonical cyclogenesis event. Nearly all

cyclogenesis events proceed from a precursor upper-level disturbance in the flow.

This disturbance manifests itself as a relative vorticity maxima as illustrated in Fig-

ure 8.10(a). Given the influence of vorticity advection in the tendency equation, the

disturbance will propagate in the direction of the flow. Since the disturbance is often

initially largest at middle and upper tropospheric levels, where the geostrophic winds

are often largest as well, there will be upward-increasing positive (negative) vorticity

advection (PVA (NVA)) downstream (upstream) of the disturbance. From the QG

omega equation, this circumstance is associated with upward (downward) vertical

motion downstream (upstream) of the trough axis as shown in Figure 8.10(b). An

alternative way to view this forcing for vertical motion is through the approximate

Trenberth form of the QG omega equation in which PVA (NVA) by the thermal wind

is associated with ascent (descent). Recall that this forcing can be expressed in terms

of the divergence of a vector field oriented parallel to the thickness isopleths ( �QT R

discussed at the end of Chapter 6). Consequently, the initial vertical motion couplet

portrayed in Figure 8.10(b) is a shearwise couplet. Shearwise vertical motions, by

virtue of their relation to the �Qs component of the �Q-vector, are associated with

rotation of the ∇θ-vector. Thus, the distribution of �QT R shown in Figure 8.10(b)

will also deform the thermal field, producing a thermal ridge in the vicinity of the

developing surface low-pressure center and a thermal trough upstream. Under the in-

fluence of the cyclonic circulation associated with the developing lower tropospheric

disturbance, low-level warm air advection will occur downstream of the upper-level
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Figure 8.10 Initial thermal and mass field adjustments to cyclogenesis. (a) Upper tropospheric vorticity

maxima in a zonal thermal wind. Gray solid lines are 500 hPa geopotential heights, gray dashed lines

are 500 hPa geostrophic absolute vorticity, and the black dashed lines are 1000–500 hPa thickness

isopleths. ‘X’ marks the location of the maximum absolute vorticity. (b) As for (a) with the gray arrows

representing the �QTR vectors. Light (dark) shaded area is a region of upward (downward) vertical

motion and upper troposopheric divergence (convergence). (c) As for (b) but for a subsequent time in

the cyclone’s development. Note the development of the thermal ridge downstream of the upper trough

axis and the thermal trough upstream of it. Larger �QTR vectors and greater vertical motions are the

result of intensification of the 500 hPa trough–ridge couplet

trough axis and low-level cold air advection just upstream of it. As illustrated in

Figure 8.9, the tendency equation suggests that such a circumstance will serve to

raise the geopotential heights in the middle troposphere to the east of the surface

low and lower the heights to its west. Alternatively, the distribution of upper tro-

pospheric convergence and divergence associated with the vertical motion couplet

illustrated in Figure 8.10(b) will tend to increase the upper tropospheric vorticity

in the vicinity of the trough axis while decreasing it in the vicinity of the down-

stream ridge. A more intense upper-level vorticity maximum leads to greater PVA by

the thermal wind and attendant upward vertical motions which further intensify the

surface cyclone downstream of the upper feature. The rotation of ∇θ afforded by the

shearwise vertical motions eventually orients the baroclinicity into a configuration
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in which the deformation fields characteristic of the cyclogenesis itself begin to

increase |∇θ | locally. Thus, the cold and warm frontal zones begin to develop

along with their frontogenetically induced transverse circulations. The combina-

tion of the shearwise and transverse couplets of vertical motion thus produced un-

derlies the comma-shaped cloud distribution that characterizes the mid-latitude

cyclone.

As the upper disturbance continues to develop and progress eastward, it begins to

outrun its surface reflection. As a result, the convergence at the surface (maximized

at the location of the sea-level pressure minimum) gradually becomes disconnected

from its divergence valve aloft and the surface cyclone can no longer intensify. Thus,

the phasing of the upper and lower disturbances is crucial to their complementary

development.

The foregoing description of cyclogenesis makes no mention of the fact that clouds

and precipitation (and therefore latent heat release) are involved in this process. Nat-

urally, the interaction between the dynamic and diabatic processes is an important

aspect of the overall process of cyclogenesis. Though such interaction characterizes

every cyclogenesis event to some degree, these interactions are most vividly illus-

trated by considering cases of dramatic surface development, known as explosive

cyclogenesis.

8.5 The Cyclogenetic Influence of Diabatic Processes:
Explosive Cyclogenesis

Explosive cyclogenesis is the rapid development of a sea-level pressure minimum.

Prior work has suggested a threshold of 24 hPa of deepening in 24 hours5 as a rea-

sonable distinguishing characteristic of an explosive deepener. The deepening rates

for all northern hemisphere cyclones in a single year are shown in Figure 8.11. It

appears that the distribution is skewed toward these rapid deepeners6 suggesting

that something may be different about these storms. In fact, there are some notable

differences between the ‘ordinary’ cyclones that constitute the majority of all cy-

clones and these rarer events. One of the more significant differences between these

populations is that the explosive deepeners not only deepen more rapidly but also for

a longer time than the ‘ordinary’ cyclones. What does this mean about the contrast

in physical processes that operate in these two populations? The distribution of these

explosive deepeners provides a clue as to the circumstances that conspire to produce

them. As illustrated in Figure 8.12, explosively deepening mid-latitude cyclones in

the northern hemisphere tend to develop along the warm western boundary ocean

currents such as the Kurishio and Gulf Stream. The prevailing view is that these

5 This value was suggested by Sanders and Gyakum (1980) and is normalized for latitude according to the
following formula: Deepening Rate = 
p(sin φ/sin 60◦).

6 The reader is referred to Roebber (1984) for the complete study from which this information comes.
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Figure 8.11 Distribution of 24 h deepening rates for all northern hemisphere surface cyclones in year.

The dark solid line indicates the sum of two normal curves while the gray lines and shadings represent

the separate distributions (light shading for the ‘ordinary’ and darker for ‘explosive’cyclones). Adapted

from Roebber (1984)

storms are the manifestation of physical and dynamical processes that occur to some

degree in all cyclones but which are particularly vigorous in explosive deepeners.

A reasonable next question, then, is: ‘What makes ordinary processes so potent in

these storms?’ Recalling that surface development is strongly tied to upward vertical

Figure 8.12 Geographical distribution of positions of maximum deepening for all northern hemisphere

cyclones from 1976–1982 that intensified at a rate greater than 24 hPa (24 h)−1. Numbers indicate the

annual frequency of such developments at the indicated locations. Adapted from Roebber (1984)
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motion through the vorticity equation, let us look at the QG omega equation again,

σ

(
∇2 + f 2

0

σ

∂2

∂p2

)
ω = −2∇ · �Q

and consider, hypothetically, 2 days on which the RHS forcing (−2∇ · �Q) in a given

domain is exactly the same. Given this circumstance, the only factor that could

possibly influence the production of stronger vertical motions on one day versus the

other is the static stability, σ . In fact, σ acts as the amplitude modulator of the omega

equation (its AM dial as it were): lower (higher) σ is associated with a greater (lesser)

response to a given forcing.

Returning again to Figure 8.12, we note that the prevalence of explosively deepen-

ing cyclones over warm ocean currents is a result of the fact that these locations are

characterized by consistently lower static stability and, consequently, a consistently

more vigorous response to forcing for upward vertical motion. These more intense

vertical motions then lead to more intense cyclogenesis. But even this physical link-

age does not yet reference the effect of the characteristic cloud and precipitation

distribution of cyclones.

The characteristic precipitation distribution associated with mid-latitude cyclones

is asymmetric as illustrated schematically in Figure 8.13. The period of most rapid

development occurs when heavy precipitation develops poleward and westward of

the cyclone center. The associated latent heat release (LHR) can (1) add energy to

the system, (2) focus and intensify the vertical motion pattern through a local re-

duction of the static stability in saturated updrafts, and, perhaps most interestingly,

(3) affect the structure and dynamics of the larger-than-cyclone scale so as to intensify

the cyclogenetic effect of ordinary dynamical processes. This last point bears special

Figure 8.13 Schematic depicting the asymmetric cloud and precipitation distribution in a typical

mid-latitude cyclone. The lightly shaded area enclosed by the dashed line is the cloud pattern. The solid

lines within that region are the surface cold and warm fronts. The shaded subregions within the cloud

mass are the precipitation elements associated with the cold front (lightest shading), warm front (darker

shading), and the area to the north and northwest of the surface cyclone center (darkest shading)
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Figure 8.14 Schematic illustration of the influence that sensible and latent heat fluxes in the planetary

boundary layer can have on the magnitude of the lower tropospheric temperature advection east of the

surface cyclone center. (a) Prior to the influence of the heat fluxes a uniform temperature gradient exists.

Dashed lines are isotherms, ‘L’ is the location of the sea-level pressure minimum, arrows represent the

flow around the cyclone and the gray shaded area is the location where heat fluxes will warm the

boundary layer. (b) Increased temperature gradient results from the heating in the boundary layer.

Intensified lower tropospheric warm air advection intensifies the cyclone. (c) More intense cyclone leads

to more intense lower tropospheric winds (bolder arrows) and increased warm air advection

attention as it lies at the heart of a conceptual/dynamical model of cyclogenesis known

as the ‘self-development’ paradigm. Consider, as a first example, the feedback from

sensible and latent heat fluxes in the lower troposphere to cyclogenesis. As shown

schematically in Figure 8.14, poleward-directed boundary layer winds coupled with

ascent on the eastern side of the cyclone warm the lower troposphere on the equa-

torward side of the developing warm front via sensible heating associated with the

warm air advection and diabatic heating resulting from LHR in the moist, ascending

air. This warming leads to an increase in the magnitude of the low-level temperature

gradient and a consequent increase in the magnitude of the warm advection there.

Stronger warm advection is often associated with intensified ascent in that location.

Greater ascent leads to more intense baroclinic energy conversion and often to a

stronger cyclone whose intensified circulation, in turn, results in a positive feedback

loop. On larger scales, the LHR associated with the enhanced cloud and precipitation

production produces a positive thickness anomaly just east of the upper-level short-

wave trough axis (Figure 8.15). Consequently, the geopotential heights in the middle

and upper troposphere increase in that region and a small-scale ridge is built up above

the latent heating maxima. Positive vorticity advection to the east of the upper-level

short-wave compels that feature to move eastward. In the face of the diabatic ridge

building that occurs in association with the LHR in the cloud shield to the east, the

wavelength between the upstream trough and downstream ridge axes shrinks. As a

result of this wavelength shortening, the magnitude of the cyclonic vorticity advec-

tion by the thermal wind downstream of the trough axis greatly intensifies leading to

more intense upward vertical motions. The stronger vertical motions intensify the

cyclogenesis and produce more LHR just downstream of the upper-level short-wave

which tends to further shorten the wavelength of the upper disturbance. In this way,

a positive feedback loop is established.

A large number of numerical modeling studies investigating the influence of

LHR on cyclogenesis have been undertaken in the past 30 years. The consensus
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Figure 8.15 Schematic illustrating how latent heat release associated with the developing cloud and

precipitation shield of a mid-latitude cyclone feeds back on the development. (a) Initial upper tropospheric

wave in a geopotential height contour with the upper tropospheric vorticity maxima indicated by the

‘X’. Surface low, and associated cloud and precipitation, develops downstream of ‘X’ (b) Latent heat

release associated with the cloud and precipitation shield increases column thicknesses downstream of

the upper vorticity maxima deforming the upper tropospheric geopotential as indicated. The result is a

more significant ridge downstream of the upper trough and greater curvature vorticity in the vicinity of

the upper trough axis as indicated

conclusion drawn from these studies is that since water vapor is not a passive scalar,

its phase change tends to concentrate normal baroclinic processes onto smaller scales,

which leads to feedbacks that further the scale contraction and intensification of

these explosively deepening storms. From that perspective, it becomes clear that

these storms do not arise as a consequence of ‘special’ dynamical processes but

rather as a result of uncommonly intense interactions among the ‘ordinary’ suite of

physical and dynamical processes that operate, to some degree, in all mid-latitude

cyclones.

Recall that the NCM suggested that cyclones form along a pre-existing polar front

that divided polar from tropical air masses throughout the depth of the troposphere.

Subsequent work has proven beyond a doubt that cyclogenesis and frontogenesis are

nearly concurrent processes. An idealized wave train superimposed upon a zonally

oriented baroclinic zone is illustrated schematically in Figure 8.16. As the perturba-

tions develop, regions of deformation develop as indicated. The meridional shear

induced by the disturbances produces thermal ridges and troughs while the de-

formation (specifically diffluence) to the northeast and southwest of each cyclonic

disturbance in the wave train provides an environment in which the gradient of any
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Figure 8.16 (a) Wave train superimposed upon a zonal band of isotherms in the northern hemisphere.

‘H’ and ‘L’ signify high and low sea-level pressure centers, respectively, and the arrows represent

their associated geostrophic winds. (b) The effect of the deformation associated with the wave-train in

(a) on the isotherms. Thin solid lines show the original orientation of the isotherms while the dashed

lines represent the deformed isotherms. Light gray shaded regions identify the preferred regions of

frontogenetic deformation, both of which are associated with the low-pressure center

variable in the flow may be intensified. This applies, of course, to temperature and

consequently these two regions of deformation act frontogenetically to produce the

warm and cold frontal zones. This simple idealized illustration demonstrates that the

development of fronts is a consequence, not a cause, of cyclogenesis – a conclusion

that departs radically from the ideas put forth in the NCM. In defense of the NCM,

baroclinic instability theory indicates that a substantial background vertical shear,

made manifest in a robust horizontal temperature contrast (through thermal wind

balance), is necessary in order for cyclogenesis to occur. This temperature contrast,

coupled with the presence of a discernible upper tropospheric short-wave trough,

provides an environment in which cyclonic vorticity advection by the thermal wind

can initiate the upward vertical motions necessary to spin-up the low-level cyclone.

Since this forcing can be expressed as a portion of the along-isentrope �Q-vector, the

lifting occurs simultaneously with the production of a thermal ridge displaced slightly

downstream of the developing low-level circulation center. The circulation itself then

deforms the background baroclinic zone via differential horizontal advections. Such

differential horizontal advections produce regions of intensified baroclinicity (via

frontogenesis) and quasi-linear vertical motion couplets which, when added to the

cellular elements contributed by the shearwise forcing, result in the characteristic

comma-shaped pattern of vertical motion associated with the mid-latitude cyclone.

Note that this view also presents a life cycle in which the cyclogenesis and fronto-

genesis are nearly concurrent processes, perhaps even with cyclogenesis somewhat

leading frontogenesis.
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The prior discussion has implicitly assumed that surface cyclogenesis is the con-

sequence of dynamics associated with a pre-existing upper-level disturbance. It is

worth noting as we end this section that debate still rages as to whether this mech-

anism provides the only viable mechanism for mid-latitude surface cyclogenesis.

Petterssen and Smebye (1971), recognizing that cyclones are 3-D disturbances and

therefore might arise from any number of synoptic–dynamic scenarios, surveyed a

large number of storms in an attempt to find some general categories that describe

the possible variety of developmental scenarios. They concluded that two broad

types of cyclogenesis operate in the middle latitudes: so-called Type A and Type B

cyclogenesis. Type A cyclogenesis involves the amplification of lower tropospheric

waves, usually along the cold front of a prior disturbance, and is thought to occur in

the absence of any predecessor short-wave disturbance aloft. Typically, such storms

are said to develop ‘from the bottom-up’ and, though relatively rare overall, were

purported to be most common over the ocean basins. The manner by which such

‘bottom-up’ development might occur will be described in more detail in the next

chapter. It is important to note that since Type A cyclogenesis was found to operate

in a data-sparse region of the globe in a study undertaken in a data-sparse era, it may

be that Type A cyclogenesis is a vanishingly rare occurrence.

Type B cyclogenesis is characterized by the presence of a well-defined predecessor

disturbance aloft (i.e. in the form of an absolute vorticity maximum) which, upon

crossing over a lower/middle tropospheric baroclinic zone, triggers surface cyclo-

genesis through, for instance, upward-increasing cyclonic vorticity advection. It is

generally agreed that the majority of actual cyclogenesis events in the middle latitudes

are examples of Type B cyclogenesis.

Thus far we have only considered the dynamics of the cyclogenesis phase of the

mid-latitude cyclone life cycle. The NCM introduced the notion of occlusion as the

peak of intensity and commencement of decay. In the next section we will discuss

the essential distinguishing characteristics of the occluded phase of the life cycle as

well as the characteristic dynamics that operate in that phase.

8.6 The Post-Mature Stage: Characteristic Thermal Structure

Since the notion of occlusion was first introduced, considerable controversy has ex-

isted concerning the nature of the occluded (post-mature) stage of the mid-latitude

cyclone life cycle. Surprisingly, much of this controversy has centered around the

means by which the characteristic occluded thermal structure evolves in the post-

mature cyclone. In this section we therefore examine (1) the characteristic occluded

thermal structure itself, and (2) an underlying dynamical mechanism (diagnosed

using the QG equations) that simultaneously accounts for the development of that

thermal structure and for the characteristic presence of ascent in the occluded quad-

rant of mid-latitude cyclones. We begin by briefly reviewing aspects of the occluded

thermal structure.
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As far back as the 1920s it was suggested that the process of occlusion involved the

cold front encroaching upon, and subsequently overtaking and ascending, the warm

frontal surface.7 One of the main results of this process of warm occlusion was the

production of a wedge of warm air aloft, displaced poleward of the surface warm and

(newly created) occluded fronts. The cloudiness and precipitation associated with the

development of the warm occlusion were suggested to result from lifting of warm

air ahead of the upper cold front and were consequently distributed to the north

and west of the sea-level pressure minimum. As a result of the gradual squeezing of

warm air aloft between the two intersecting frontal surfaces, the horizontal thermal

structure of a warm occlusion was characterized by a thermal ridge connecting

the peak of the warm sector to the geopotential or sea-level pressure minimum.

This thermal ridge is often manifested as a 1000–500 hPa thickness ridge or an

axis of maximum θ or θe in a horizontal cross-section as shown in Figure 8.17.

Note that considerable upward vertical motion is also co-located with this thermal

ridge.

A vertical cross-section perpendicular to the axis of the thermal ridge in Figure 8.17

reveals the characteristic vertical structure of the warm occlusion (Figure 8.18a)

consisting of a poleward-sloping axis of maximum θe separating two regions of

concentrated baroclinicity. The surface warm occluded front is generally analyzed at

the location where this axis of maximum θe intersects the ground, whereas the base

of the warm air between the two baroclinic zones (the cold and warm fronts) sits atop

their point of intersection (labeled A in Figure 8.18a). It is clear, however, from this

cross-section that the upward vertical motion maximum is located at the leading

edge of the cold frontal baroclinicity, significantly displaced from the position of

the surface occluded front. Upon taking another vertical cross-section further along

the thermal ridge toward the surface cyclone center (Figure 8.18b), we find that the

same basic thermal structure and a roughly similar vertical motion distribution exist

though the intersection of the warm and cold frontal baroclinic zones (labeled A in

Figure 8.18b also) occurs at a higher elevation.

The observation that the cloudiness and precipitation characteristic of the oc-

cluded quadrant of cyclones often occurs in the vicinity of the thermal ridge led

scientists at the Canadian Meteorological Service in the 1950s and 1960s to regard

the essential feature of a warm occlusion to be the trough of warm air that is lifted

aloft ahead of the upper cold front, not the position of the surface occluded front.

The sloping line of intersection between the cold and warm frontal baroclinic zones,

termed the trough of warm air aloft (trowal), was found to bear a closer cor-

respondence to the cloud and precipitation features in occluded North American

cyclones than did the often weak surface warm occluded front. The trowal marks

the 3-D sloping intersection of the upper cold frontal portion of the warm occlu-

sion with the warm frontal zone and therefore represents a refined, 3-D description

7 Although this idea was first published in Bjerknes and Solberg (1922), the notion of occlusion as described
in the NCM was first devised by Tor Bergeron.
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Figure 8.18 (a) Vertical cross-section of θe, through the occluded thermal ridge, along line B–B′ in

Figure 8.17(c). Solid lines are moist isentropes labeled in K and contoured every 3 K. Shaded regions

are upward vertical motions labeled in cm s−1 and contoured every 5 cm s−1. ‘A’ represents the point

of intersection between the cold and warm frontal zones in the warm occluded thermal structure. (b) As

for (a) but for the cross-section along line C–C′ in Figure 8.17(c)

←
Figure 8.17 The characteristic occluded thermal ridge as observed at 0600 UTC 1 April 1997. (a) Solid

lines are 1000–500 hPa thickness labeled in dam and contoured every 6 dam. Dashed lines with shading

are 700 hPa upward vertical motion labeled in cm s−1 and contoured every 5 cm s−1. Both variables

are from an 18 h forecast of the NCEP Eta model valid at 0600 UTC 1 April 1997. (b) Solid lines are

18 h forecast of 700 hPa θ, valid at 0600 UTC 1 April, labeled in K and contoured every 2 K. Vertical

motion as in (c). As for (b) but solid lines are 18 h forecast of 700 hPa θe, labeled in K and contoured

every 4 K. Vertical motions indicated as in (a). Vertical cross-sections along lines B–B′ and C–C′ are

shown in Fig. 8.18
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Figure 8.19 Schematic of the trowal conceptual model. The dark (light) shaded surface represents

the warm edge of the cold (warm) frontal zone. The bold dashed line at the 3-D sloping intersection

of those two frontal zones lies at the base of the trough of warm air aloft – the trowal. The schematic

precipitation in the occluded quadrant of the cyclone lies closer to the projection of the trowal to the

surface than to the position of the surface warm occluded front

of the warm occluded structure presented in the NCM. A schematic illustrating the

trowal conceptual model is shown in Figure 8.19.

Given the availability of gridded output from numerical simulations of cyclones

along with the graphical capability of software display packages for viewing this

output, it is now relatively simple to identify the trowal structure in occluded cyclones.

Referring back to Figure 8.18, notice that the 312 θe isentrope lies near the warm edge

of both the warm and cold frontal baroclinic zones comprising the warm occluded

structure. Plotting the 312 K moist isentrope every 100 hPa beginning at 1000 hPa

from a gridded data set of this case reveals the isobaric topography of the 312 θe

surface (Figure 8.20a). Clearly identifiable in this topography are (1) the steeply

sloped cold frontal surface, (2) the less steeply sloped warm frontal surface, and (3)

the poleward- and westward-sloping 3-D ‘canyon’ in the 312 K surface representing

the trowal. This topography can also be viewed through inspection of the actual 312

θe surface produced by a different software package (Figure 8.20b).

Despite the historical controversy surrounding the nature of the occlusion process,

there is fairly widespread agreement that the thermal structures just described are

among the basic structural characteristics of the post-mature phase mid-latitude
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Figure 8.20 (a) Isobaric topography of the θe = 312 K isosurface valid at 0600 UTC 1 April 1997.

The thick solid line represents the position of the trowal and is clearly seen as a 3-D sloping canyon in the

312 K isosurface. (b) Elevated, northern view of the θe = 312 K isosurface valid at 0600 UTC 1 April

1997 from the visualization software package VIS-5D. The bold dashed line represents the trowal – a

sloping 3-D canyon in the 312 K isosurface

263
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cyclone. Next we employ the QG omega equation to gain insight into a fundamental

dynamical mechanism that simultaneously accounts for the presence of upward

vertical motion and a thermal ridge in the occluded quadrant of such cyclones.

8.7 The Post-Mature Stage: The QG Dynamics
of the Occluded Quadrant

Recall from Chapter 6 that a natural coordinate partition of the �Q-vector into along-

and across-isentrope components was described. The across-isentrope component

was later shown to be exactly equal, in magnitude, to the QG frontogenesis while we

had yet to specify any similar physical meaning for the along-isentrope component.

If we now consider the along-isentrope component of �Q once again, with the help of

Figure 8.21, we find a relation to the problem of occlusion. Figure 8.21(a) illustrates

a straight baroclinic zone along which there is a region of convergence of �Qs . This

convergence will not only be associated with upward vertical motion, a consequence

of the QG omega equation, but will also differentially rotate ∇θ on either side of

the convergence axis, as illustrated in Figure 8.21(b). Since �Qs cannot change the

magnitude of ∇θ , the result is that displayed in Figure 8.21(c) – the production

of a thermal ridge characterized by upward vertical motion! Figure 8.22 shows the

partition of the total 500–900 hPa column averaged �Q-vector forcing in the occluded

quadrant of a post-mature mid-latitude cyclone. It is clear that the �Qs component

(Figure 8.22b) far exceeds the �Qn component (Figure 8.22c) in that region. It turns out

that the �Qs component characteristically far exceeds the �Qn component in the vicinity

of the occluded quadrant of mid-latitude cyclones.8 Thus we find that rotation of

∇θ by the geostrophic flow (which is described by �Qs ) is the underlying dynamical

mechanism responsible for creating the occluded thermal structure and for forcing

the QG ascent associated with that process in the occluded quadrant of cyclones.

Upward vertical motion is, of course, associated with adiabatic cooling. The up-

ward vertical motion maximum that occupies the axis of the occluded thermal ridge,

therefore, contributes to a local maximum in adiabatic cooling in the thermal ridge.

Naturally, this cooling will tend to erode the thermal ridge. In the preceding argu-

ment, however, we have not included any of the effects of LHR. Clearly, the release

of latent heat in the updraft associated with the occluded thermal ridge will miti-

gate against the adiabatic cooling that would otherwise erode that feature. Thus, we

might suspect that LHR is an essential component of the development of occluded

thermal structures in the mid-latitude atmosphere. This suspicion turns out to be

correct and is best demonstrated within the framework of a potential vorticity view

of the cyclone life cycle to be presented in Chapter 9. Before we develop that view,

however, we first consider some dynamical aspects of the decay stage of the cyclone

life cycle.

8 The reader is referred to the study by Martin (1999).
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Figure 8.21 The effect of �Q s convergence on horizontal thermal structure. (a) Straight line isentropes

(solid lines) in a field of �Q s convergence (shading). The thick dashed line indicates the axis of maximum
�Q s convergence. The direction of ∇θ vector on either side of the �Q s convergence maximum is indicated.

(b) Rotation of ∇θ vector implied by �Q s vectors on either side of the �Q s convergence maximum

in (a). The thick black arrow denoted as ∇θ represents the original direction of the ∇θ vector. The thick

gray arrow denoted as ∇θ′ represents the direction of ∇θ vector after rotation implied by �Q s vectors.

(c) Orientation of the baroclinic zone depicted in (a) after differential rotation of ∇θ on either side of

the �Q s convergence maximum

8.8 The Decay Stage

The decay stage of the extratropical cyclone is the least studied, and therefore the

least well-understood stage of the cyclone life cycle. At a basic level, the decay stage

is associated with lower tropospheric geopotential and sea-level pressure rises and,

consequently, with a systematic decrease in lower tropospheric vorticity. Therefore,

cyclone decay is known as cyclolysis – the opposite of cyclogenesis. We have already

seen that cyclogenesis requires column stretching and upward vertical motions. It

therefore seems reasonable to assume that cyclolysis requires column squashing and

downward vertical motions. Certainly this set of physical circumstances represents a
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Figure 8.22 (a) The 500–900 hPa column averaged �Q -vectors and �Q -vector convergence from an

18 h forecast of the NCEP Eta model valid at 0600 UTC 1 April 1997. �Q convergence is contoured

and shaded in units of m kg−1 s−1 every 5 × 1016 m kg−1 s−1 beginning at 5 × 10−16 m kg−1 s−1. Thin

dashed gray lines are 500–900 hPa column-averaged isentropes labeled in K and contoured every 3 K.

(b) As in (a) except for �Q s . (c) As in (a) except for �Q n

sufficient means of reducing the lower tropospheric vorticity; it does not, however,

appear to be necessary for the occurrence of surface cyclolysis.

Recall that the vertical structure of a developing mid-latitude cyclone was such

that the axis of minimum geopotential height tilted into the vertical shear (i.e. to the

west as shown in Figure 8.7b). Since upward vertical motions occur downshear of

upper-level vorticity maxima (i.e. minima in the upper-level geopotential height),

that vertical structure ensures that an upper-level, dynamically forced divergence
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maximum is located directly above the sea-level pressure minimum and, via the

resulting upward vertical motions, serves to evacuate the mass that accumulates into

the sea-level pressure minimum as a consequence of frictionally induced surface

convergence. As the cyclone matures, the vertical tilt of the geopotential minimum

axis gradually becomes more vertical by the time of occlusion. A purely vertical

stacking results in the displacement of the upper divergence maximum to the east

of the sea-level pressure minimum. By the commencement of decay, the sea-level

pressure minimum has reached its greatest intensity as has the frictionally induced

surface convergence into its center. As a consequence of the eastward displacement

of the upper-level divergence at this stage of the life cycle, there is no mechanism

available to evacuate the accumulating mass near the center of the surface cyclone and

the surface pressure rises as a consequence. This rise in surface pressure is associated

with a decrease in the near surface geostrophic vorticity and therefore qualifies as a

cyclolysis event. Note that this sequence of events can occur in the absence of any

notable downward vertical motions over the surface cyclone center. Instead, it is the

absence of upward vertical motions sufficient to evacuate the mass accumulated near the

center of the surface cyclone that appears to be the dynamically necessary ingredient

for cyclone decay. Indeed, any process that results in decreased upper-level divergence

directly above the surface cyclone center leads to cyclone decay.

The results of a recently constructed synoptic climatology of surface cyclolysis

in the north Pacific Ocean can be used to illustrate these characteristic elements

of the decay stage. In particular, we examine the composite evolutions of the 500

hPa geopotential height and sea-level pressure distributions constructed from 180

so-called rapid cyclolysis periods (RCPs), defined as 12 h periods during which

a sea-level pressure rise of at least 12 hPa occurs at the center of a mid-latitude

cyclone.9

Twenty-four hours before the commencement of rapid cyclolysis, a fairly intense

sea-level pressure minimum is located just downstream of a strongly curved, slightly

negatively tilted, 500 hPa geopotential height trough (Figure 8.23a). Twelve hours

later, the upper trough axis has become more negatively tilted and the more intense

sea-level pressure minimum has drawn closer to the trough axis, characteristic of

occluded cyclones (Figure 8.23b).

By commencement of the 12 h period of rapid cyclolysis (Figure 8.23c), the sea-level

pressure minimum lies directly beneath the 500 hPa geopotential height minimum of

the even more negatively tilted trough. An astounding transformation in the 500 hPa

geopotential height field occurs during the 12 h RCP. The radius of curvature of

the geostrophic streamlines increases dramatically while the 500 hPa geopotential

height gradient weakens south of the dramatically weaker sea-level pressure mini-

mum (Figure 8.23d). The rapid flattening of the 500 hPa trough–ridge couplet, which

had been amplifying up to the commencement of cyclone decay, is associated with

9 Such RCPs are relatively rare events, occurring in less than 7% of all mid-latitude cyclones according to
the study of Martin et al. (2001) referenced here.
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Figure 8.23 (a) Composite 500 hPa geopotential height (solid black lines) and sea-level isobars (gray

dashed lines) (from 180 rapid surface cycloysis events observed in the north Pacific Ocean) valid 24 h

before the commencement of surface decay. Geopotential height is labeled in m and contoured every

60 m. Sea-level pressure is labeled in hPa and contoured every 4 hPa up to 1000 hPa. (b) As for (a)

but valid 12 h before the commencement of surface decay. (c) As (a) but valid at the commencement of

surface decay. (d) As for (a) but valid 12 h after the commencement of surface decay. The geographical

background map is given to provide scale only. Adapted from Martin et al. (2001)

a rapid decrease in upper tropospheric divergence downstream of the upper trough

axis (i.e. to the northeast of the sea-level pressure minimum). Such a circumstance,

occurring immediately after the surface cyclone reaches its maximum intensity, pro-

vides the key ingredient for the subsequent rapid cyclolysis at the surface. As the

surface cyclone reaches its greatest intensity, presumably so does the lower tropo-

spheric mass convergence into it, forced by friction in the lower troposphere. With

the abrupt reduction in cyclonic curvature and, consequently, in the mass divergence

aloft, the accumulating mass in the lower troposphere is less efficiently evacuated from

the column and the sea-level pressure rises rapidly as a result. Through subsequent

study of these events,10 it appears that rapid surface cyclolysis, though influenced by

10 The reader is referred to McLay and Martin (2002) for the complete study from which this conclusion
is drawn.
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friction in the boundary layer, is initiated and largely controlled by synoptic-scale

dynamical processes. Less intense ‘garden variety’ cyclolysis events most likely pro-

ceed in a similar fashion relying more on the gradual acquisition of a downshear

tilted structure, characteristic of all cyclones in the post-mature phase, than on the

eradication of upper tropospheric flow curvature.

Examination of individual examples of particularly rapid surface cyclolysis has

revealed that the surface decay in such cases is associated with a rapid erosion of

the associated upper tropospheric short-wave disturbance. There are many different

means of accomplishing this end in the atmosphere. Use of the potential vorticity

perspective, which we will develop more fully in the next chapter, will provide us

with an additional, powerful tool for examining the nature of both ordinary and

rapid cyclone decay.

Selected References

Bjerknes and Solberg (1922) is the paper that introduces the NCM.

Bluestein, Synoptic-Dynamic Meteorology in Midlatitudes, Volume I, contains a thorough discussion

of the QG height tendency equation.

Holton, An Introduction to Dynamic Meteorology, discusses the QG height tendency equation as

well.

Martin (2006) examines the roles of the shearwise and transverse QG vertical motions in the

mid-latitude cyclone life cycle.

Sutcliffe and Forsdyke (1950) introduce the concept of ‘self-development’.

Palmén and Newton, Atmospheric Circulation Systems, contains a number of illustrative examples

of cyclone life cycles.

Martin (1999) explores the QG forcing for ascent in the occluded quadrant of mid-latitude

cyclones.

Schultz and Mass (1993) provide a comprehensive list of references on the occlusion process.

Posselt and Martin (2004) examine the effect of LHR on the development of warm occluded

thermal structures in mid-latitude cyclones.

Martin and Marsili (2002) undertake a synoptic case study of rapid surface cyclolysis.

Problems

8.1. Briefly describe the major differences between modern understanding of the frontal

cyclone and the early ideas presented by Bjerknes and Solberg (1922) with respect to

the following:

(a) The ‘polar front’ and its role in cyclogenesis.

(b) The nature of fronts themselves.

(c) The nature of the precipitation distribution in frontal regions.

(d) The production of vertical motions in frontal regions.

(e) The relationship between cyclogenesis and frontogenesis.
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8.2. The typical cloud distribution associated with a mid-latitude cyclone is illustrated

in Figure 8.1A. Explain how the latent heat release associated with this distribution

reinforces the differential geostrophic temperature advection forcing in the quasi-

geostrophic height tendency equation.

L

φ`−δφ`

φ`

Figure 8.1A

8.3. A portion of Figure 8.7(b) describes the vertical structure of a developing mid-latitude

cyclone in terms of the locations of the SLP minimum and the corresponding upper

tropospheric geopotential minimum.

(a) Draw a similar idealized picture for a cyclone that is occluded.

(b) Why is it reasonable to suggest that the point of occlusion represents the com-

mencement of decay?

(c) Are strong downward vertical motions necessary for surface cyclone decay? Explain

your answer.

(d) Draw a similar idealized picture of a decaying cyclone.

(e) Explain why the tilt of the geopotential minimum with height is so crucial to

diagnosing the life cycle stage of a cyclone.

8.4. According to the classical definition of warm and cold occlusions, the type of occlu-

sion that is expected to form in a given cyclone depends upon whether the air mass

poleward of the warm front or upstream of the cold front is colder. Use the result

from Problem 7.13, along with a basic analysis characteristic of the surface occluded

front, to determine what physical parameter actually controls the slope of an occluded

front. How does this answer compare to the classical view? Is there a physical reason
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underlying the observation that warm occlusions account for nearly all occluded struc-

tures? Explain.

8.5. Figure 8.2A shows a surface cyclone, its associated precipitation and cloud shield, and

a 500 hPa geopotential height contour at t = 0.

 

ΦΦΦΦ

Surface
Low

Cyclone Cloud
Shield

L

Figure 8.2A

(a) Qualitatively sketch the 500 mb geopotential height line at some later time, demon-

strating how it is altered by latent heat release. Explain your reasoning.

(b) How does the diabatically altered 500 hPa trough affect the magnitude of the vor-

ticity maximum at that level? Explain your answer.

(c) Will the diabatically altered 500 mb trough increase or decrease the intensity of

cyclogenesis at the surface? Why?

8.6. If the Earth were completely dry (i.e. no water substance in any form existed in its

atmosphere) would explosive cyclogenesis still be possible at middle latitudes? Defend

your answer.

8.7. The Norwegian Cyclone Model hypothesized that the polar front was a necessary con-

dition for cyclogenesis suggesting that frontogenesis must precede cyclogenesis. Later

research suggested that frontogenesis and cyclogenesis are concurrent processes. With

reference to Figure 8.16, describe why it might be even more accurate to say that cyclo-

genesis slightly precedes frontogenesis. Explain your reasoning.

8.8. Figure 8.3A is a subjectively analyzed vertical cross-section of θe through a warm oc-

clusion in the central United States at 0000 UTC 20 January 1995. What θe surface lies

at the warm edge of both the warm and cold frontal zones constituting this occluded

thermal structure? Describe how you would construct the isobaric topography of this

θe surface given gridded numerical model output for this case. What feature of interest

would clearly emerge from such an exercise?
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8.9. Describe how the process of cyclolysis is physically distinct from that of anti-

cyclogenesis. Specifically consider the nature of the dynamical and diabatic processes

that characterize each phenomenon.

8.10. In the middle latitudes, surface cyclones propagate poleward while surface anticyclones

propagate equatorward. Give a physical explanation of this basic observational charac-

teristic of mid-latitude weather systems.

8.11. On 21 January 2000 an intense surface cyclone developed south of Nova Scotia. Listed

below are surface observations from the LeHave Bank buoy at 11 a.m. and 1 p.m. Local

Standard Time (LST). Assuming that the wind makes a 20◦ cross-isobar angle at all

times and that the distance from the sea-level pressure minimum to the buoy is the

same at 11 a.m. as it is at 1 p.m., answer the following questions:

(a) What path did the sea-level pressure minimum take relative to the buoy over the 2

hour interval? Explain your answer.

(b) What was the minimum sea-level pressure of this cyclone during the same time

interval? Explain your answer.

Time (LST) Temperature Wind direction Wind speed SLP

11 a.m. 8.4◦C 100◦ 10 m s−1 950.4 hPa

1 p.m. 6.5◦C 270◦ 15 m s−1 951.0 hPa
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8.12. Show that

�Q · (k̂ × ∇θ)

|∇θ | = f0γ |∇θ |
2

⎡⎢⎢⎣2F1g

∂θ

∂x

∂θ

∂y
+ F2g

(
∂θ

∂y

2

− ∂θ

∂x

2)
|∇θ |2

⎤⎥⎥⎦ + f0γ |∇θ | ζg

2

where �Q is the �Q-vector, and F1g
and F2g

are the geostrophic stretching and shearing

deformations, respectively.

Solutions

8.1. (a) From 205◦ to 25◦, roughly from SSW to NNE (b) pmin = 949.2 hPa
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9
Potential Vorticity and Applications
to Mid-Latitude Weather Systems

Objectives

Thus far we have considered the dynamics of the middle latitudes from what might be

termed the ‘basic state variables’ perspective in which a number of separate variables

(pressure/geopotential, temperature, omega) are considered simultaneously in the

context of the physical relationships and mathematical expressions that relate them.

In the quasi-geostrophic system which has formed the basis of this book, considerable

diagnostic power is available by simply keeping track of the geopotential at a variety

of levels as we have seen in the development of the QG omega and height tendency

equations. In this chapter we will discover that knowledge of the distribution of a

single variable, the so-called potential vorticity, enables us to develop alternative, but

equivalent, understanding of the dynamical processes operating in the mid-latitude

atmosphere.

Our investigation begins by exploring the curious relationship between vorticity

and static stability in the isentropic coordinate system. We will find that the definition

and diagnostic properties of potential vorticity are a straightforward extension of this

physical connection. Next, we consider the characteristic kinematic and thermody-

namic structure of the environments associated with positive and negative anomalies

in the potential vorticity distribution. This discussion leads us to a conceptualiza-

tion of the process of cyclogenesis from the potential vorticity perspective which will

include consideration of the influence of diabatic processes, particularly those asso-

ciated with latent heat release. Finally, we will consider some additional applications

of the potential vorticity perspective. We begin this pursuit with an investigation of

the effect of horizontal divergence in isentropic coordinates.

Mid-Latitude Atmospheric Dynamics Jonathan E. Martin
C© 2006 John Wiley & Sons, Ltd.
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9.1 Potential Vorticity and Isentropic Divergence

Assume that a given flow is adiabatic and that we will describe that flow in isentropic

coordinates. One might reasonably wonder what will be the effects of horizontal

divergence on the fluid when viewed in these isentropic coordinates. Based on the

invariance of both the divergence and vorticity, and their physical connection as

manifest in the vorticity equation, one effect of horizontal divergence in isentropic

coordinates is to change the relative vorticity. This effect can be expressed in the

isentropic coordinate form of the vorticity equation

d(ζθ + f )

dt
= −(ζθ + f )(∇ · �V θ ). (9.1)

Next, consider the hypothetical isentropic column of air portrayed in Figure 9.1(a).

If horizontal convergence into this column occurs, there must be an increase in the

mass of the column. The mass of the column is directly related to the pressure interval

between the bounding isentropic surfaces (M = −δp/g ). Thus, the pressure interval

δp between the isentropes θ and θ + δθ must be increased in the face of horizontal

convergence as illustrated in Figure 9.1(b). As a consequence, the ratio −(1/g )δp/δθ

becomes larger in the indicated column. This relationship underlies the expression

for the continuity equation in isentropic coordinates

d

dt

(
− 1

g

∂p

∂θ

)
= −

(
− 1

g

∂p

∂θ

)
(∇ · �V θ ). (9.2)

Now, letting

σ = − 1

g

∂p

∂θ

for simplicity of notation, we can isolate the expressions for ∇ · �V θ from both (9.1)

and (9.2) yielding

−∇ · �V θ = d ln(ζθ + f )

dt
and − ∇ · �V θ = d ln σ

dt
,

Figure 9.1 (a) Column of air (shaded) confined between two isentropes. The pressure interval between

the bounding isentropic surfaces is −δ p. (b) Horizontal convergence of air (represented by the heavy

arrows) increases the pressure interval between the two isentropes
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respectively. Equating these two expressions we get

d ln(ζθ + f )

dt
= d ln σ

dt
(9.3)

which can be solved by first multiplying by dt to get

d ln(ζθ + f ) = d ln σ or
d(ζθ + f )

(ζθ + f )
= dσ

σ
. (9.4)

Integration of (9.4) proceeds from

(ζθ+ f )∫
(ζθ+ f )0

d(ζθ + f )

(ζθ + f )
=

σ∫
σ0

dσ

σ

where the subscript indicates an initial value of the indicated variable. The integration

yields

ln
(ζθ + f )

(ζθ + f )0

= ln
σ

σ0

or
(ζθ + f )

(ζθ + f )0

= σ

σ0

which can be rearranged into

(ζθ + f )

σ
= (ζθ + f )0

σ0

.

The above expression demonstrates that, for adiabatic flow, the quantity

(ζθ + f )

/
− 1

g

∂p

∂θ

is a constant. We will call the related expression

−g (ζθ + f )

(
∂θ

∂p

)
(9.5)

the isentropic potential vorticity (IPV). It is clear from (9.5) that the IPV (or PV for

short) is a product of the absolute vorticity and the static stability. Potential vorticity

derives its name from the fact that there is a potential for creating relative vorticity

by changing latitude (through manipulation of f ) and by adiabatically changing the

separation between isentropic layers (through modification of −∂θ/∂p). Why such

a product should be conserved is rather a mystery at first glance. Since it is derived

by combining the vorticity and continuity equations, PV describes a mass-weighted

circulation and conservation of PV suggests that a parcel may exchange stratification

for circulation or vice versa, but that the stratification times the circulation will not

change so long as no flow is permitted across isentropic surfaces (i.e. the flow remains

adiabatic).

There are two important, exploitable characteristics of PV that bear mentioning

here. The first of these we have already considered – the conservative nature of PV.
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For adiabatic, frictionless flow a parcel of air will retain its value of PV forever. Thus,

if the PV distribution in a given domain is known at some initial time, and it is known

that the flow in that domain is adiabatic, any subsequent changes in the distribution

of PV in that domain must have occurred as a result of advection of PV. Conversely,

if the flow is not adiabatic, as is the case in the real atmosphere, some component of

the change in the PV distribution in the domain must have resulted from frictional

generation/dissipation or diabatic heating of some kind. We will exploit this property

of PV later in this chapter.

The second important property of PV is that it is invertible. This means that a lot

of information about the characteristics of a given flow exists in the PV distribution

of the flow. This is a consequence of the fact that knowledge of the vorticity field pro-

ceeds from information about the horizontal winds, u and v . Similarly, knowledge

of the static stability proceeds from information about the vertical distribution of

temperature. The hydrostatic relationship allows vertical temperature information

to be converted into knowledge about the geopotential height field, φ. Knowledge

of the φ and (u, v) fields provides information concerning the ageostrophic wind

distribution, and, consequently, ω itself. With appropriate specification of the con-

ditions on the boundary of a domain, those characteristics can be retrieved from

knowledge of the PV distribution so long as independent knowledge of a relation-

ship between the mass and momentum fields is known as well. Thus, the information

contained in PV can be recovered given (1) a knowledge of the distribution of PV

in a given domain, (2) knowledge of the boundary conditions on that domain, and

(3) a balance condition within the domain that relates the mass to the momentum

field. For mid-latitude flows on Earth, the primary example of a balance condition is

the geostrophic balance but there are others (i.e. gradient wind balance). The concept

of invertibility, and the importance of boundary conditions, is best demonstrated

with a simple example.

Let us consider the barotropic vorticity equation expressed as

dη

dt
= ∂η

∂t
+ �Vψ · ∇η = 0 (9.6)

where �Vψ = k̂ × ∇ψ ,η is the absolute vorticity (η = ∇2ψ), andψ is a non-divergent

streamfunction describing the flow. In such a case the balance condition is geostrophy.

Imagine a limited domain in which only η is known within that domain. Since

η = ∇2ψ , it is possible to solve for ψ under these circumstances. However, in the

absence of knowledge of the values of ψ along the boundaries of the limited domain,

there are many solutions that will satisfy the condition that η = ∇2ψ and there is

therefore no unique solution for ψ . A simple way to demonstrate this is to consider

the case in which η = 0 everywhere in the limited domain. In such a case, there can

be no curvature or horizontal shear in the flow, meaning that the streamlines must

be everywhere parallel and equally spaced. As suggested in Figure 9.2, there are an

infinite number of solutions that satisfy these characteristics. Given knowledge of

the boundary conditions on the limited domain, however, there is only one solution
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Figure 9.2 A series of four different solutions to the barotropic vorticity equation (η= 0) in a limited

domain with unspecified boundary conditions

that simultaneously satisfies the balance condition (i.e. η = ∇2ψ) and the boundary

conditions. In this one case, a unique solution for ψ exists.

Once a solution for the ψ field is found in this way, it can be used to calculate

the balanced wind in the domain which can then be used to advect η to the next

time step. Once the new η field is produced by this advection, it can be inverted

for the new ψ field (provided one has knowledge of the updated conditions on the

boundary of the domain), and so on. In this manner, the η field is invertible given

(1) global (or domain-wide) knowledge of η, (2) a balance condition relating η to the

mass field (i.e. η = ∇2ψ , geostrophy), and (3) knowledge of boundary conditions

for ψ . The exact same thing is true about PV, though the inversion is much more

complicated than for the barotropic vorticity equation. If the global distribution of

PV is known, along with a balance condition and boundary conditions, it is possible

to invert PV to determine values of φ, u, v , T, ω, and static stability within the

domain.
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Local anomalies in the distribution of PV (i.e. departures from a long time/large-

scale average) are features of greatest interest since they have associated with them

identifiable and discrete circulations. Consequently, in exploiting the property of

invertibility we want to focus on these PV anomalies. Before examining the nature of

PV inversion and the insight that it provides concerning mid-latitude weather sys-

tems, we must investigate the characteristic kinematic and thermodynamic structure

of the environments associated with these PV anomalies; specifically, that associated

with a positive PV anomaly.

9.2 Characteristics of a Positive PV Anomaly

A schematic of an upper-level, positive PV anomaly is shown in Figure 9.3. The

anomaly itself is drawn with a + sign at 300 hPa and represents a local region in

which PV is larger than the local spatial or temporal average. In more formal terms,

this PV anomaly represents a location at which the product −(ζθ + f )∂θ/∂p exceeds

the local average. This could mean one of three things: (1) the vorticity is larger than

average, (2) the static stability is larger than average, or (3) both the vorticity and

static stability are larger than average. In order to determine which of these three

possibilities is correct, we will perform the following thought experiment. Let us try

to construct a positive PV anomaly that is manifest entirely as a vorticity anomaly

in an atmosphere in thermal wind balance. Using a copy of the schematic from

Figure 9.3, we see that, since the PV anomaly is maximized at 300 hPa, the winds

must also be at their maximum at that level (Figure 9.4a). Thus, the winds in the

column straddling the positive PV anomaly in our example must be increasing with

height beneath 300 hPa. Given the assumed thermal wind balance, this implies that

Figure 9.3 Schematic of an upper tropospheric positive PV anomaly. The darker shaded region with

the ++ sign indicates the anomaly. The lighter shaded region represents the lower stratosphere and the

unshaded region the troposphere
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Figure 9.4 (a) Positive upper tropospheric PV anomaly characterized by a positive vorticity anomaly

near the tropopause. Large circle with a cross (a dot) in it indicates wind into (out of ) the page. Smaller

such circles indicate lesser wind speeds in the indicated directions. (b) The resulting relative temperatures

in the troposphere assuming thermal wind balance. (c) The resulting relative temperatures in the lower

stratosphere assuming thermal wind balance. (d) The overall isentropic distribution in the cross-section.

Note that the positive PV anomaly is a positive static stability anomaly as well as a positive vorticity

anomaly

a relatively cold column of air must lie directly beneath the positive PV anomaly

with a relatively warm ring surrounding it as shown in Figure 9.4(b). Conversely,

since the winds must decrease with increasing height above 300 hPa, there must be a

relatively warm column of air above the 300 hPa level with a ring of relatively colder

air surrounding it as shown in Figure 9.4(c). Now, constructing schematic isentropes

that conform to this relative distribution of temperatures shows that the positive PV

anomaly must be characterized by both positive vorticity and positive static stability

anomalies (Figure 9.4d). By extension, there is no ambiguity regarding the structure

of any PV anomaly; it must be characterized by vorticity and static stability anomalies

of the same sign!

Thus, we can identify characteristic structures and circulations associated with

PV anomalies. A negative PV anomaly is characterized by anticyclonic flow, whose

magnitude is maximized at the level of the anomaly but which extends throughout

some depth of the atmosphere above and below the anomaly. The vertical extent of

the circulatory influence of a PV anomaly is known as the penetration depth of the
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Figure 9.5 (a) Characteristic structure of a negative PV anomaly. Gray shaded area delineates the

negative anomaly and thin solid lines are isentropes. Wind into the page is indicated by a cross while

wind out of the page is signified by a dot. (b) Characteristic structure of a positive PV anomaly

anomaly and is given by

H = f L

N
(9.7)

where L is the characteristic length scale of the anomaly and N is the Brünt–Vaisala

frequency. Thus, the penetration depth of a given PV anomaly varies as the scale of the

anomaly and inversely as the ambient static stability. The negative anomaly will also

be characterized by isentropes that bow around the anomaly, indicating the presence

of a negative static stability anomaly in its vicinity (Figure 9.5a). A positive PV

anomaly is characterized by cyclonic flow, whose magnitude is maximized at the

level of the anomaly but which extends throughout some depth above and below the

anomaly according to the constraints imposed by (9.7). The positive anomaly will

be characterized by isentropes that bow toward the anomaly, indicating the presence

of a positive static stability anomaly in its vicinity (Figure 9.5b).

The structure of an upper-level, positive PV anomaly can be exploited to gain

insight into the relationship between positive PV advection and cyclogenesis. Imag-

ine a situation in which there is initially barotropic flow (i.e. there is no ∇pθ) and

the isentropes are unique to individual isobars as shown in Figure 9.6(a). Now, if a
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Figure 9.6 Illustration of the ‘vaccuum cleaner’ effect associated with a mobile positive PV anomaly

near the tropopause. (a) Vertical cross-section of isentropes in a barotropic state. Light gray shading

represents the stratosphere. (b) A westward-moving, positive anomaly intrudes into this environment

and deforms the thermal structure. Heavy black arrows represent adiabatic flow relative to the moving

PV anomaly which forces ascent downstream and descent upstream of the anomaly

positive, upper-level PV anomaly enters this domain from the west, the isentropes

must deform so as to take on the characteristic structure of a positive PV anomaly.

As the PV anomaly migrates eastward, adiabatic flow relative to the PV anomaly

will head westward along the newly sloping isentropes. Thus, there will be upward
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vertical motion to the east of the anomaly and downward vertical motions to the west

as shown schematically in Figure 9.6(b). This distribution of vertical motions is iden-

tically that which characterizes any mid-latitude synoptic short-wave disturbance:

ascent (descent) downstream (upstream) of the maximum cyclonic vorticity!

Confirmation of this simple physical picture comes from extending our previous

examination of the QG height tendency equation. Recall that when we left it (as

(8.8)) we had rewritten the tendency equation as(
∇2 + f 2

0

σ

∂2

∂p2

)
χ = − f0

�V g · ∇
(

1

f0

∇2φ + f

)
− f 2

0

σ

(
�V g · ∇

(
∂2φ

∂p2

))
.

(9.8)

Recalling that χ = ∂φ/∂t and noting that both terms on the RHS of (9.8) involve

geostrophic advection, (9.8) can be rewritten as

∂

∂t

(
∇2φ + f 2

0

σ

∂2φ

∂p2

)
= − �V g · ∇

(
∇2φ + f f 0 + f 2

0

σ

∂2φ

∂p2

)
. (9.9a)

Note that by adding ∂( f f 0)/∂t (which is equal to zero) to the LHS of (9.9a) we arrive

at the equivalent expression

∂

∂t

(
∇2φ + f f 0 + f 2

0

σ

∂2φ

∂p2

)
= − �V g · ∇

(
∇2φ + f f 0 + f 2

0

σ

∂2φ

∂p2

)
. (9.9b)

If we now divide both sides of (9.9b) by f0, we get

∂

∂t

(
1

f0

∇2φ + f + f0

σ

∂2φ

∂p2

)
= − �V g · ∇

(
1

f0

∇2φ + f + f0

σ

∂2φ

∂p2

)
. (9.9c)

Next we define the QG potential vorticity (P Vg ) as

P Vg =
(

1

f0

∇2φ + f + f0

σ

∂2φ

∂p2

)
(9.9d)

allowing us to rewrite (9.9c) as

∂

∂t
(P Vg ) = − �V g · ∇(P Vg ) (9.10a)

or

d

dtg

(P Vg ) = 0 (9.10b)

where

d

dtg

= ∂

∂t
+ �V g · ∇.

Thus, the QG tendency equation can be interpreted as a statement that P Vg is

conserved following adiabatic, geostrophic flow. Returning to the schematic in Fig-

ure 9.6(b), the region of upward vertical motion depicted there is clearly a region

of positive PV advection. In the QG system, (9.10a) requires that such a region be
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characterized by a local increase in P Vg (i.e. that the LHS of the traditional QG

tendency equation be positive). Whenever(
∇2 + f 2

0

σ

∂2

∂p2

)
χ

is greater than zero, χ itself must be negative and so the heights must fall in the

region of upward vertical motion shown in Figure 9.6(b). This is consistent with the

effect of adiabatic cooling in the ascending air which reduces the column thickness

and consequently lowers heights throughout the troposphere.

Thus far our discussion has been concerned only with upper-level PV anomalies. In

nature, PV anomalies can occur at a variety of levels including at the surface. In order

to develop a reasonable first description of cyclogenesis from the PV perspective, it

is necessary to consider the structure of PV anomalies at the surface of the Earth.

Figure 9.7(a) illustrates a warm potential temperature (θ) anomaly at the surface,

such as might be observed ahead of a cold front. At the top of the atmosphere there

Figure 9.7 Illustration of the equivalence of a surface warm anomaly to a positive PV anomaly.

(a) Surface warm anomaly produces a lower tropospheric warm column within which there is anticy-

clonic thermal vorticity (ζT , indicated by light gray circles). Since there is no vorticity at the top of

the atmosphere, there must be positive vorticity at the surface (ζS, indicated by black circles). The

stratosphere is shaded gray. (b) Positive static stability anomaly is created by connecting (underground)

the isentropes that straddle the warm anomaly. The surface is shaded gray
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is no vorticity since there is no wind. The contribution to the horizontal shear made

by the warm core above the surface warm anomaly, however, is clearly anticyclonic.

If there is no vorticity at the top of the atmosphere and there is anticyclonic thermal

vorticity (i.e. anticyclonic thermal wind vorticity), then there must be a cyclone at

the surface associated with the positive θ anomaly! There is also a maximum in

static stability at the surface in association with the warm anomaly if one considers

artificially connecting the isentropes that straddle the warm anomaly at the surface

under the ground (Figure 9.7b). This mathematical trick, invented by F. P. Bretherton,

allows us to consider positive (negative) low-level θ anomalies precisely as positive

(negative) low-level PV anomalies. Now that we have some knowledge of the nature

of PV anomalies near the surface and at upper levels (near the tropopause) we can

offer a description of cyclogenesis from the PV perspective.

9.3 Cyclogenesis from the PV Perspective

The first step in developing a PV-based description of cyclogenesis is to consider

separately the behavior of upper- and lower-level PV anomalies. A schematic upper-

level PV anomaly is illustrated at three different times in Figure 9.8. At the initial

time (T = 0), the anomaly is represented by an equatorward protuberance of high-

PV air indicated by the + sign. This positive PV anomaly will be associated with a

cyclonic circulation as indicated by the heavy arrows straddling the anomaly. The

indicated circulation will have the effect of advecting high PV southward to the west

of the anomaly and low-PV air northward to its east. Such advective tendencies have

Figure 9.8 (a) Positive upper tropospheric PV anomaly in the northern hemisphere indicated by the

++ sign and gray shading. Solid gray line is a single PV contour and the arrows indicate the cyclonic

circulation associated with the PV anomaly. (b) The same PV contour at some later time. Darker shaded

area with a -- sign indicates a negative upper tropospheric PV anomaly forced by northward advection of

low PV to the east of the original positive anomaly. (c) The same PV contour at an even later time. The

long dashed (solid) line is the phase line of the original positive (newly formed negative) PV anomaly
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two obvious effects: (1) to propagate the initial anomaly upstream (i.e. to the west),

and (2) to produce a negative PV anomaly to the east of the original feature, as

indicated. The negative PV anomaly that develops downstream of the original PV

anomaly also has a circulation associated with it indicated by the solid arrows in

Figure 9.8(b). At a still later time, the original PV anomaly continues to propagate

westward while the circulation associated with the negative PV anomaly spawns a

secondary positive PV anomaly even further to the east (Figure 9.8c). Notice that

the phase lines of the upper-level PV anomalies all suggest that the anomalies will

propagate upstream if left to their own devices. The same is true of large-scale waves

(i.e. Rossby waves) which propagate westward by virtue of the fact that the meridional

gradient of the Coriolis parameter compels positive (negative) vorticity tendency via

cyclonic (anticyclonic) planetary vorticity advection to the west (east) of cyclonic

disturbance in the westerlies.

Turning our attention now to a low-level potential temperature anomaly, the sur-

rogate for a low-level PV anomaly, we find a different behavior. Any low-level warm

anomaly can be considered a positive PV anomaly as previously shown in Figure 9.7.

As such, a low-level warm anomaly has a cyclonic circulation associated with it

indicated by the solid arrows straddling the + sign in Figure 9.9(a). The southerly

(northerly) winds downstream (upstream) of the anomaly center are associated with

Figure 9.9 (a) Schematic of a surface warm anomaly in the northern hemisphere. Solid gray lines are

surface isentropes, ++ sign indicates the surrogate positive PV anomaly center associated with the warm

anomaly, and the arrows represent the cyclonic circulation associated with the feature. (b) The same

warm anomaly at some later time. (c) The same warm anomaly at an even later time. The thick dashed

line indicates the phase line of the warm anomaly through time
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horizontal warm (cold) air advection. The net effect of warm advection downstream

and cold advection upstream of a warm anomaly is to propagate the warm anomaly

downstream, toward the warm advection and away from the cold advection (Fig-

ure 9.9b). Still later in time, the circulation continues to propagate the warm anomaly

downstream (Figure 9.9c). Notice that there is very little upstream development in

the behavior of the low-level warm anomaly in Figure 9.9; only the original anomaly

persists through time.

Recalling that any PV anomaly will have associated with it a circulation that pen-

etrates the atmosphere through a certain depth, the possibility exists that the lower

tropospheric portion of the circulation associated with an upper-level PV anomaly

may be able to penetrate far enough downward to influence the development of

a low-level warm anomaly through horizontal advection. Likewise, the upper-level

portion of the circulation associated with a low-level warm anomaly may penetrate

far enough upward through the troposphere to affect the amplitude of an upper-level

positive PV anomaly through horizontal PV advection at upper levels. In short, the

upper- and lower-level PV anomalies might be able to amplify one another if they

are properly phased in space. Notable surface cyclones are the product of persis-

tent, significant development. Viewed from the PV perspective, such development

depends critically upon a prolonged period of the mutual amplification of upper-

and lower-level anomalies just described. However, as analysis of Figures 9.8 and 9.9

suggests, the upper- and lower-level PV anomalies act as counter-propagating Rossby

waves – each headed in opposite directions when left to their own devices. Therefore,

the likelihood that prolonged mutual amplification of the separate anomalies will

occur depends upon the upper- and lower-level anomalies being in sufficiently close

proximity to one another for an extended period of time. Given the different propaga-

tion tendencies of the two anomalies, this would seem a difficult proposition. On the

other hand, the fact that cyclones are a ubiquitous feature of the mid-latitude atmo-

sphere suggests, of course, that it is not. Now we finally turn to the basic description

of cyclogenesis from the PV perspective to see why this is the case.

Imagine an upper-level PV anomaly migrating over a lower tropospheric baroclinic

zone as shown schematically in Figure 9.10(a). The upper anomaly has a cyclonic cir-

culation associated with it that, while maximized at the level of the anomaly, extends

with some vigor throughout the depth of the troposphere. The influence of the upper

PV anomaly is felt at sea level, to a degree determined by the penetration depth, in

the form of a weak cyclonic circulation that acts to deform the sea-level isotherms

through horizontal temperature advection (Figure 9.10a). The warm air advection

portion of that sea-level circulation produces a low-level warm anomaly (signified

by the + sign in Figure 9.10b) that acts as a positive PV anomaly near sea level. This

anomaly has its own circulation that, though strongest at the surface, penetrates

upward through the troposphere to a degree determined by the penetration depth.

Accordingly, the influence of the low-level PV anomaly is felt near the tropopause

in the form a weak cyclonic circulation that acts to intensify the upper-level PV

anomaly by inducing positive PV advection into the eastern half of the anomaly. The
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Figure 9.10 Upper tropospheric positive PV anomaly moving over a low-level baroclinic zone.

(a) Circulation associated with the upper PV anomaly (‘++’ sign) is indicated by the bold arrow. The

surface reflection of that circulation is given by the dashed arrow at the surface. (b) Low-level thermal

advections produce a surface warm anomaly (dark ‘++’ sign) whose circulation, indicated by the bold

arrow, has an upper tropospheric reflection (indicated by the dashed arrow). (c) Upper tropospheric

PV advections intensify the upper PV anomaly (dark ‘++’ sign) and its circulation, indicated by the bold

arrow, intensifies. The surface reflection of that circulation (dashed arrow) results in thermal advections

that serve to intensify the surface warm anomaly

concurrent negative PV advection to the east of the original upper-level anomaly,

coupled with this positive PV advection in the eastern half of the original anomaly,

produces a tendency for the upper PV anomaly to propagate downstream, quite the

opposite of its natural tendency to propagate westward! The invigorated upper-level

PV anomaly then exerts an invigorated cyclonic influence on the low-level thermal

field as shown in Figure 9.10(c). Since the upper-level PV anomaly lies upstream of

the surface warm anomaly, this influence produces maximum warm air advection

into the center of the warm anomaly and maximum cold air advection to its west.

This distribution of upper-level PV-induced warm and cold air advection not only

acts to intensify the low-level warm anomaly, but also tends to promote a westward

propagation of that feature, quite the opposite of its natural tendency to propagate

eastward! Thus, when upper- and lower-level PV anomalies come into sufficiently
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close proximity to one another, their influences on one another promote not only

mutual amplification but also a beneficial ‘phase locking’ whereby the natural ten-

dency for each anomaly to run away from the other is countermanded through the

interaction of their respective circulations and prolonged interaction is promoted.

Notice that, since the PV perspective is most correctly viewed as a complementary

perspective on cyclogenesis, many elements of the cyclogenesis process with which

we were already familiar are evident in the PV view. Primary among these is that

development cannot occur unless there is an upshear tilt between lower and upper

disturbances. In the basic state variable (or omega-centric) view of cyclogenesis, this

requirement was manifest in the upshear tilt of the geopotential minima with height

that ensured that the region downstream of the upper-level geopotential minimum

(i.e. the region characterized by PVA by the thermal wind) would lie directly above the

sea-level pressure minimum and thereby contribute to its subsequent intensification.

Another physical similarity is the ubiquity of a lower tropospheric warm anomaly

in the development of a cyclone. Yet another is the fact that the basic elements of

cyclogenesis appear to be quite physically separate from the attendant process of

frontogenesis, though this result seems more obvious from the PV perspective.

Once again, we have thus far considered the process of cyclogenesis from a purely

adiabatic perspective. In order to appreciate more fully the PV view of cyclogenesis

and to further understand the connections between this view and the classical view

of the process, we must also consider the effect of latent heat release from the PV

perspective. Before we can effectively consider such effects, however, we must first

understand the effect of diabatic heating on PV itself.

9.4 The Influence of Diabatic Heating on PV

Recall from (9.5) that the isentropic PV is defined as

P V = −g (ζθ + f )

(
∂θ

∂p

)
.

We seek to derive an expression for the Lagrangian rate of change of this PV. This

process is made considerably easier if we first derive an equivalent isobaric form of

the expression for PV.

Since the relative vorticity in isentropic coordinates is ζθ = (∂v/∂x)θ − (∂u/∂y)θ ,

we need expressions for (∂v/∂x)θ and (∂u/∂y)θ . Recall that the differentials of u

and v , evaluated on surfaces of constant potential temperature, can be written as

duθ =
(

∂u

∂x

)
y,p

dxθ +
(

∂u

∂y

)
x,p

dyθ +
(

∂u

∂p

)
x,y

dpθ (9.11a)

dvθ =
(

∂v

∂x

)
y,p

dxθ +
(

∂v

∂y

)
x,p

dyθ +
(

∂v

∂p

)
x,y

dpθ . (9.11b)
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Rearranging (9.11a) to solve for (du/dy)θ (which is equal to (∂u/∂y)θ ) we get(
du

dy

)
θ

=
(

∂u

∂y

)
θ

=
(

∂u

∂y

)
x,p

+
(

∂u

∂p

)
x,y

(
dp

dy

)
θ

(9.12a)

with a similar result for (dv/dx)θ upon rearranging (9.11b) into(
dv

dx

)
θ

=
(

∂v

∂x

)
θ

=
(

∂v

∂x

)
y,p

+
(

∂v

∂p

)
x,y

(
dp

dx

)
θ

. (9.12b)

A simple rearrangement of the Poisson equation leads to the expression

p = 1000

(
T

θ

)c p
/
R

from which we find that(
dp

dy

)
θ

= c pρ

(
dT

dy

)
θ

and

(
dp

dx

)
θ

= c pρ

(
dT

dx

)
θ

. (9.13)

Similar to (9.11), the differential of Ton an isentropic surface can be written as

dTθ =
(

∂T

∂x

)
y,p

dxθ +
(

∂T

∂y

)
x,p

dyθ +
(

∂T

∂p

)
x,y

dpθ (9.14)

so that (
dT

dx

)
θ

=
(

∂T

∂x

)
θ

=
(

∂T

∂x

)
y,p

+
(

∂T

∂p

)
x,y

(
dp

dx

)
θ

(9.15a)

and (
dT

dy

)
θ

=
(

∂T

∂y

)
θ

=
(

∂T

∂y

)
x,p

+
(

∂T

∂p

)
x,y

(
dp

dy

)
θ

. (9.15b)

Substituting the expressions for (dp/dx)θ and (dp/dy)θ from (9.13) into (9.15)

yields

1

c pρ

(
dp

dx

)
θ

=
(

∂T

∂x

)
y,p

+
(

∂T

∂p

)
x,y

(
dp

dx

)
θ

(9.16a)

1

c pρ

(
dp

dy

)
θ

=
(

∂T

∂y

)
x,p

+
(

∂T

∂p

)
x,y

(
dp

dy

)
θ

(9.16b)

which can be solved to render(
dp

dx

)
θ

=
(

∂T

∂x

)
y,p

/[
1

c pρ
−

(
∂T

∂p

)
x,y

]
(9.17a)
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and (
dp

dy

)
θ

=
(

∂T

∂y

)
x,p

/[
1

c pρ
−

(
∂T

∂p

)
x,y

]
. (9.17b)

Now, taking the vertical (−∂/∂p) derivative of the Poisson equation yields

−T

θ

∂θ

∂p
= 1

c pρ
−

(
∂T

∂p

)
x,y

.

Similarly, the x and y derivatives of potential temperature, evaluated on isobaric

surfaces, are

T

θ

(
∂θ

∂x

)
p

=
(

∂T

∂x

)
p

and
T

θ

(
∂θ

∂y

)
p

=
(

∂T

∂y

)
p

,

respectively. Substituting these expressions into (9.17) yields(
dp

dx

)
θ

= −∂θ

∂x

/
∂θ

∂p
(9.18a)

and (
dp

dy

)
θ

= −∂θ

∂y

/
∂θ

∂p
. (9.18b)

We can now rewrite (9.12) as(
∂v

∂x

)
θ

=
(

∂v

∂x

)
y,p

+
(

∂v

∂p

)
x,y

[
−∂θ

∂x

/
∂θ

∂p

]
(9.19a)

(
∂u

∂y

)
θ

=
(

∂u

∂y

)
x,p

+
(

∂u

∂p

)
x,y

[
−∂θ

∂y

/
∂θ

∂p

]
. (9.19b)

Subtracting (9.19b) from (9.19a) yields an expression for the isentropic relative

vorticity

ζθ =
(

∂v

∂x

)
θ

−
(

∂u

∂y

)
θ

=
(

∂v

∂x

)
y,p

−
(

∂u

∂y

)
x,p

+
(

∂v

∂p

)
x,y

[
−∂θ

∂x

/
∂θ

∂p

]
−

(
∂u

∂p

)
x,y

[
−∂θ

∂y

/
∂θ

∂p

]
which can be rewritten, by noting that ζp = (∂v/∂x)y,p − (∂u/∂y)x,p and by mul-

tiplying the entire expression by −g∂θ/∂p, as

−gζθ

∂θ

∂p
= −g

∂θ

∂p
ζp − g

∂v

∂p

∂θ

∂x
+ g

∂u

∂p

∂θ

∂y
. (9.20)

Every term on the RHS of (9.20) is evaluated on an isobaric surface and so that

collection of terms nearly represents PV in isobaric coordinates. By including the
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planetary vorticity on both sides of (9.20) the resulting expression can be rearranged

into the vector expression

P V = −g (ζθ + f )
∂θ

∂p
= −g ( f k̂ + ∇ × �V h) · ∇θ. (9.21)

Note that if the horizontal wind is assumed to be geostrophic, then (9.21) reduces

to the QG potential vorticity (9.9d). In fact, a more general derivation of the full PV

exists which extends to all three dimensions (i.e. includes gradients of ω as well) and

yet retains the same conservation property as the simple isentropic expression.1 We

are now interested in discovering how diabatic heating alters PV and so must derive

the Lagrangian derivative of (9.21) next.

This derivation is a long exercise that begins by expanding (9.21) into all of its

components. Then one operates upon that component expression with the isobaric

Lagrangian operator

d

dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p
.

After considerable algebraic manipulation and careful attention to the chain rule of

differentiation, the resulting expression is

d(P V)

dt
= −g (�ηa · ∇ θ̇) (9.22)

where �ηa is the 3-D absolute vorticity vector and θ̇ is the diabatic heating rate. Keeping

only the vertical component of (9.22) we have

d

dt
(P V) ≈ −g (ζ + f )

∂θ̇

∂p
(9.23)

so that PV is increased (decreased) where the vertical gradient of diabatic heating is

positive (negative). This result is illustrated schematically in Figure 9.11 in which the

reasonable assumption is made that the diabatic heating maximum in a typical mid-

latitude cyclone is located in the middle troposphere (between 400 and 600 hPa). In

such a case, it is clear that PV ‘production’ occurs in the lower troposphere while PV

‘destruction’ occurs near the tropopause. The low-level, positive PV anomaly thus

created has an associated cyclonic circulation just like any other positive PV feature

and so can contribute to the intensification of the low-level circulation associated

with a surface cyclone. In fact, if we consider the foregoing schematic within the

context of a developing cyclone, as in Figure 9.12, a more comprehensive view of the

effect of latent heat release on the PV structure arises.

The heating maximum occurs slightly downstream of an upper-level positive PV

anomaly since that is where the air is rising most vigorously. As just described, the

1 This more complete version of PV was first derived by Ertel (1942) and is thus often referred to as the
‘Ertel PV’.
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Figure 9.11 Lagrangian PV tendencies associated with diabatic heating. The circle labeled θ̇max is

the diabatic heating maximum. The light (dark) shading above (below) it indicates the region of PV

destruction (production)

effects of that heating are to create the low-level positive PV anomaly as well as

to erode upper tropospheric PV. This erosion of the upper tropospheric PV serves

to steepen the slope of the PV isopleth downstream of the upper-level positive PV

anomaly. Such steepening is the PV equivalent of shortening the wavelength between

the upper-level trough and the downstream ridge that was emphasized in the descrip-

tion of self-development. From the PV perspective, such an increase in slope also

contributes to making the upper PV feature more anomalous. Simultaneously, the

cyclonic circulation associated with the low-level positive PV feature enhances both

Figure 9.12 (a) Relationship between an upper tropospheric positive PV anomaly (++ sign) and a

surface low-pressure center (‘L’). (b) Ascent downstream of the PV anomaly produces latent heat release

manifest as a θ̇max . PV erosion aloft deforms the bold PV contour to the east of the original anomaly,

making that anomaly even more anomalous (larger ++ sign). PV production in the lower troposphere

intensifies the surface cyclone with high values of PV developing near the center indicated by the bold

black line surrounding the ‘L’
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the mutual amplification and phase-locking effects described earlier, leading to con-

tinued intensification of the cyclone. Finally, the penetration depth of each anomaly

is increased in the presence of latent heating which generally serves to reduce the

static stability in such regions.

9.5 Additional Applications of the PV Perspective

The diagnostic power of the PV perspective can be extended by exploiting the invert-

ibility principle in what is known as piecewise PV inversion. Use of this diagnostic

tool affords considerable insight into a number of canonical mid-latitude develop-

ments. In this section, we first examine the nature of piecewise PV inversion and then

consider a number of ubiquitous mid-latitude phenomena from the PV perspective.

9.5.1 Piecewise PV inversion and some applications

Perhaps chief among the applications of the PV perspective to understanding mid-

latitude cyclones is the use of piecewise inversion of PV to elucidate the contributions

to the atmospheric flow corresponding to discrete pieces of the PV distribution.

Inversion of the PV allows one to recover the portion of the total flow that is directly

attributable to each of several discrete pieces of the perturbation PV. At any given

time the total perturbation PV at a certain location in a domain can be defined as

P ′ = P − P (9.24)

where P is the time-averaged (or spatially averaged) PV at that location and P is

the instantaneous PV at that location and time. There are a number of ways to

subsequently partition the total perturbation PV (P ′) into pieces. For instance, one

could simply divide the atmospheric column in half and consider the P ′ in the layer

above 500 hPa as one piece and all the P ′ below 500 hPa as another piece. Inverting

each piece of the P ′ would then yield the portions of the total circulation, geopotential

height field, temperature, vertical motions, etc., associated with each piece.

More sophisticated partitioning of the total perturbation PV distribution allows

for more physical insight to be gained through the subsequent inversion. For in-

stance, one might consider one piece of the P ′ to be that associated with the upper

tropospheric PV. Another piece might be that portion of the P ′ associated with the

low-level potential temperature anomaly and still another piece might be the diabati-

cally generated PV which, as we have just seen, is relatively easy to isolate in principle.

One can employ criteria relating to isobaric level and ambient relative humidity to

make these suggested partitions.2

2 A functioning scheme for inversion of the full (Ertel) PV has been developed by Davis and Emanuel (1991).
A set of such criteria is employed, for example, by Korner and Martin (2000) in their piecewise inversion of
Ertel PV, following Davis and Emanuel (1991).
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Inversion of the full PV is a non-trivial numerical operation. The details of the

method, and its companion piecewise PV inversion, are described in the original

sources and will not be derived here. Nonetheless, the nature of the inversion pro-

cess can be illustrated by outlining the considerably easier inversion of the QG PV.

Recalling the definition of the QG PV (9.9d), it follows that the perturbation QG PV

is given by

P ′
g = 1

f0

∇2φ′ + f + f0

∂

∂p

(
1

σ

∂φ′

∂p

)
(9.25)

where φ′ is the perturbation geopotential and

σ = α

θ

d�

dp
,

� being the domain-wide average of θ at each isobaric level. By subtracting f from

P ′
g we get P ∗

g = P ′
g − f and P ∗

g can be partitioned into any number of pieces such

that

P ∗
g =

n∑
i=1

P ∗
gi

(9.26)

where each piece of the partitioned QG PV is denoted by P ∗
gi

. Associated with each

P ∗
gi

is its own piece of perturbation geopotential height, φ′
i . From (9.25) we have

P ∗
gi

= �(φ′
i ) (9.27a)

where � is the linear operator

� =
[

1

f0

∇2 + f0

∂

∂p

(
1

σ

∂

∂p

)]
. (9.27b)

It is clear, then, that each φ′
i can be obtained through inversion of (9.27a) as

φ′
i = �−1(P ∗

gi
). (9.27c)

As was the case with the QG omega equation, the inversion of QG PV through

(9.27c) can be achieved through successive overrelaxation with appropriate boundary

conditions. Inverting the full PV is not as simple because the operator relating the

perturbation PV to the perturbation geopotential is not as simple but the nature of

the inversion is the same.

Since it is the explicit accounting for diabatic processes that distinguishes the PV

perspective from the basic state variables perspective on mid-latitude dynamics, most

of the useful applications of the PV view of dynamics seek to exploit that advantage.

As we have already discussed, the cloud and precipitation distribution associated

with a typical mid-latitude cyclone is composed of contributions from the transverse

updrafts in the vicinity of the frontal zones as well as the larger-scale shearwise up-

drafts which produce the cloud head. Taken as a whole, the cloud and precipitation
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production that accompanies these upward vertical motion regions results in con-

siderable lower tropospheric PV production. A natural question is: ‘What portion

of the circulation of the cyclone is directly attributable to this diabatically generated

lower tropospheric PV?’ A number of studies, employing piecewise PV inversion,

have considered this question. Figure 9.13 illustrates a result from just one of these

many studies. The total perturbation geopotential height at 950 hPa at a certain time

in the evolution of a north central Pacific Ocean cyclone is shown in Figure 9.13(a).

The contributions from the upper tropospheric PV (Figure 9.13b), diabatically gen-

erated PV (Figure 9.13c), and lower-level warm anomaly (Figure 9.13d) all contribute

nearly equally to the geopotential minimum associated with this storm at this time.

Estimates from other similar studies place the influence of the diabatically generated

PV as high as 50% of the total circulation in intense mid-latitude cyclones.

The frontal zones themselves are also associated with diabatically generated lower

tropospheric PV as shown schematically in Figure 9.14.3 Cold frontal precipitation is

often distributed in a narrow band oriented parallel to the front itself (Figure 9.14a).

The latent heat released produces a similarly oriented strip of high PV in the lower

troposphere (Figure 9.14b). The circulation associated with this lower tropospheric

PV enhances the cyclonic shear across the frontal zone and contributes substantially to

the strength of the cold frontal low-level jet (LLJ). The consequence of this intensified

LLJ is an increase in the moisture transport into the warm sector of the cyclone which

can serve to enhance the overall diabatic contribution to the intensification of the

cyclone itself through promoting greater cloud and precipitation production.

9.5.2 A PV perspective on occlusion

Among the many applications of the PV perspective on the cyclone life cycle, one of

the most enlightening is related to the evolution of occluded cyclones. It has been

noted that the development of some occluded cyclones is accompanied by the de-

velopment of a characteristic upper tropospheric PV distribution termed the ‘treble

clef.’4 The treble clef PV distribution is characterized by an isolated, low-latitude,

high-PV feature that is connected to a high-latitude reservoir of high PV by a thin

filament of high PV as shown in Figure 9.15(a). As we have already seen, in an at-

mosphere in approximate thermal wind (or gradient wind) balance, regions of high

PV in the upper troposphere sit atop relatively cold columns of air, while relative

minima of upper tropospheric PV sit atop relatively warm columns of air. Thus, the

characteristic tropospheric thermodynamic structure associated with the horizon-

tal juxtaposition of two positive upper-level PV anomalies of unequal magnitude,

3 Examination of the diabatically generated PV associated with a cold front is carried out by Lackmann
(2002).

4 A full description of this structural connection between the tropopause-level PV and the tropospheric
thermal structure is given in Martin (1998a).
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Figure 9.14 (a) Schematic cold frontal precipitation distribution with shading representing radar

echoes in the precipitation along the front. (b) Gray shading indicates the thin, lower tropospheric

positive PV anomaly created via diabatic heating associated with the cold frontal precipitation. Bold

arrows represent the low-level cyclonic flow associated with the diabatically generated PV

separated by a relative minimum in PV (such as along the cross-section line in

Figure 9.15a), precisely depicts the canonical warm occluded thermal structure (Fig-

ure 9.15b). Consequently, the presence of an upper tropospheric treble clef PV sig-

nature serves as a sufficient condition for asserting the presence of a warm occluded

thermal structure in the underlying troposphere. The production of this treble clef

PV structure depends upon development of the ‘notch’ of low PV highlighted in

←
Figure 9.13 Perturbation geopotential height at 950 hPa at 0000 UTC 6 November 1986. Black

(gray) lines are negative (positive) perturbation heights labeled in m and contoured every 20 m. ‘L’

marks the location of the 950 hPa geopotential height minimum at that time. (b) Contribution to the total

perturbation geopotential height perturbation made by the upper tropospheric PV anomalies. Heights

contoured and labeled as in (a). (c) Contribution to the total geopotential height perturbation made

by the diabatically generated PV anomalies. Height perturbations contoured and labeled as in (a). (d)

Contribution to the total geopotential height perturbation made by the near surface PV anomalies. Height

perturbations contoured and labeled as in (a)
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Figure 9.15 (a) Schematic of treble-clef-shaped upper tropospheric PV structure described in the

text. Solid lines are isopleths of PV on an isobaric surface contoured and shaded in PVU (1 PVU =
10−6 m2 K kg−1s−1). The thick dashed line identifies the PV ‘notch’ described in the text. (b) Schematic

cross-section of potential temperature (θ) in the vicinity of a treble-clef-shaped upper tropospheric PV

signature. The dashed axis denotes the sloping axis of warm air in the troposphere characteristic of an

occluded cyclone

Figure 9.15(a). This notch development, in turn, depends upon tropopause-level

PV erosion via diabatic heating (in the form of latent heat release) in the occluded

quadrant of the cyclone.5 This dependence is illustrated schematically in Figure 9.16.

5 The reader is referred to a recent study by Posselt and Martin (2004) for the details of this argument.
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Figure 9.16 Schematic illustrating the synergy between diabatic erosion of PV and negative advection

of PV at the tropopause during occlusion. Gray shading represents the erosion of tropopause PV by diabatic

heating associated with the cyclone, the surface position of which is marked by the ‘L’. Traditional surface

frontal symbols indicate surface frontal locations. The thick soild line represents the PV = 2 PVU isopleth

at the tropopause. Arrows represent the tropopause-level flow associated with the upper tropospheric

PV feature. (a) The open wave stage. Heating is concentrated along the cold front and in the vicinity

of the developing surface cyclone. (b) Commencement of occlusion. Persistent diabatic erosion in the

northwest quadrant of the cyclone deforms the upper tropospheric PV contour northwest of the surface

cyclone. Tropopause-level flow is also deformed in that vicinity. (c) Fully occluded stage. Cyclone is far

removed from the peak of the surface warm sector. Heating is no longer proximate to the ‘notch’ in the

upper tropospheric PV. Tropopause-level flow controls intensification of the notch through negative PV

advection in the upper troposphere

In the open wave stage of the cyclone life cycle, significant ascent occurs in the

near vicinity of the SLP minimum, which is located just downstream of an upper

tropospheric positive PV anomaly as shown schematically in Figure 9.16(a). Given

sufficient moisture, this ascent produces clouds and precipitation and release of latent
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heat which, in turn, serves to erode the upper tropospheric PV in accord with (9.23).

Persistent diabatic erosion of upper tropospheric PV forms a ‘notch’ in the upper tro-

pospheric PV structure (Figure 9.16b) which, coupled with the eastward progression

of the upstream ridge, initiates the isolation of a low-latitude, upper tropospheric

PV maximum. The circulation associated with this feature then begins to contribute

to negative PV tendencies in the developing notch via negative PV advection, fur-

ther isolating the low-latitude PV maximum and accelerating the cutoff process

(Figure 9.16c). In the underlying troposphere the response to the development

of the local upper tropospheric PV minimum in the ‘notch’ is the simultaneous

development of an isolated, warm, weakly stratified column of air. Based along the

near surface thermal ridge, this column slopes poleward and westward and its axis is

identically the trowal, the essential structural characteristic of the warm occlusion.

9.5.3 A PV perspective on leeside cyclogenesis

Another application of the PV perspective applies to orographic cyclogenesis such

as occurs in the lee of the Rocky Mountains in North America. One of the favored

regions for development of cyclones in North America is in the lee of the Colorado

and Alberta Rockies (Figure 9.17). Westerly flow over a mountain barrier results

in subsidence in its lee as illustrated in Figure 9.18(a). This leeside subsidence ad-

vects middle tropospheric θ downward toward the ground. Consequently, lower

tropospheric air in the lee is warmed up leading to the characteristic warm axis of

a leeside trough. The downward advection of high θ is associated with an increased

separation between adjacent isentropes just above mountain height (Figure 9.18b)

so that −∂θ/∂p decreases. Thus, in order for the product −g (ζθ + f )∂θ/∂p to be

conserved, there must be an increase in ζθ . As a result, the characteristic warm axis of

a leeside pressure trough is accompanied by a cyclonic vorticity maximum at lower

tropospheric levels. The presence of cyclogenesis maxima in the lee of meridionally

oriented mountain ranges proceeds from the fact that the mid-latitude flow is pre-

dominantly westerly and the subsidence in the lee compels increases in ζθ in order

to conserve PV.

9.5.4 The effects of PV superposition and attenuation

The circulation associated with a given PV anomaly is greatly influenced by the

morphology of that anomaly. For instance, as shown in Figure 9.19(a), a linear,

positive PV filament can be thought of as a ‘string’ of positive PV anomalies, each

with its own cyclonic circulation. When these circulations are arranged in a linear

geometry, considerable cancellation between adjacent features occurs, resulting in

the creation of a cyclonic shear line. If one imagines this linear PV feature located

in the upper troposphere, its associated lower tropospheric circulation will take the
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Figure 9.17 Areal distributions of cyclogenesis frequencies for the month of January from 1950 to

1977. Gray shaded regions represent lee cyclogenesis areas east of the Rocky Mountains. Adapted from

Zishka and Smith (1980)

Figure 9.18 (a) Westerly flow (bold arrow) impinging on the Rocky Mountains. Parcel A is confined

between the 312 K and 315 K isentropes. (b) As the flow pushes Parcel A over the ridge of the Rockies,

the 312 K isentrope is forced toward the surface and the parcel is stretched in the vertical. A surface

low-pressure center (‘L’) develops in response to the conservation of PV
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form of a shear line as well. Such a feature is not the most likely progenitor of

a surface cyclone. Quite a number of studies have demonstrated the influence of

environmental deformation in promoting an increased isotropy in the perturbation

PV field. As shown in Figure 9.19(b), if the axis of dilatation of the environmental

deformation is at a sufficiently large angle to the long axis of a PV anomaly (90◦ is

optimal) then the PV anomaly tends to become more circular with time. The resulting

circular geometry means that the collection of positive PV anomalies originally

aligned in the ‘string’ in Figure 9.19(a) have become superposed on one another. Since

each of these PV elements retains its own circulation and anomalous geopotential

height field, the superposition of these discrete anomalies additively produces a more

substantial, more isotropic circulation maximum and geopotential height minimum.

The intensification of the perturbation circulation and geopotential height anomalies

associated with a PV anomaly when the anomaly is made more isotropic is a result

of what is known as the superposition principle.

Conversely, environmental deformation might just as well promote an increased

anisotropy in the perturbation PV (Figure 9.20). When a PV anomaly becomes more

anisotropic, its associated circulation and geopotential height anomalies weaken.

This process, the opposite of PV superposition, has been termed PV attenuation

and it has been demonstrated to exert an important influence on surface cyclolysis –

even when that cyclolysis is particularly rapid. To some extent, therefore, surface

cyclolysis is likely to occur in large-scale environments that promote the attenuation

(i.e. the thinning and stretching) of upper tropospheric PV anomalies associated

with synoptic-scale short waves.

This brief survey may suggest to you that the PV perspective on the cyclone life

cycle offers an alternative perspective more than it offers brand new insight into the

processes. It is still necessary, for instance, that an upper-level disturbance migrate

over a surface baroclinic zone in order to initiate cyclogenesis. All of the vorticity

advection considerations from the QG dynamical perspective on cyclogenesis can be

reinterpreted in terms of the PV perspective and vice versa. One rather obvious and

important benefit of the PV perspective is that one can take explicit accounting of the

effect of latent heat release on the development of the cyclone and its characteristic

thermal structure. The omega-centric view of the cyclone problem does not as readily

yield this specific information. Clearly, not every problem in mid-latitude dynamic

meteorology is amenable to analysis using one perspective. It is most fruitful to view

the QG and PV views as different, but complementary, tools by which investigation

←

of nature might proceed and, as anyone who has had to fix a household item at one

Figure 9.19 (a) A linear positive PV anomaly can be thought of as a ‘string’ of positive PV anomalies.

The dark gray shading represents the linear PV feature while the lighter gray circles represent the

individual PV anomalies that constitute the larger linear feature. (b) Effect of a deformation field on the

linear PV feature. When the long axis of the linear PV feature is nearly the same as the axis of contraction

of the deformation field, the individual PV anomalies become superposed, enhancing the overall cyclonic

circulation
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Figure 9.20 Schematic illustrating PV attenuation. A positive PV anomaly subjected to a deformation

field can be stretched into a thin line of individual PV anomalies thus reducing the potency of the

circulation associated with the anomaly. Such a process is known as PV attenuation

point in his/her life knows, different jobs require different tools. We humans have

developed a host of different languages to describe our common experience with

the world, yet none of those languages affords any more insight into the myster-

ies of our existence than any other. Analogously, neither of the two ‘languages’ of

mid-latitude dynamics explored in this book – the basic state variables and PV

‘languages’ – provides exclusive insight into any aspect of the manner in which mid-

latitude cyclones are created and how they live their relatively short, profoundly

important, and fascinating life cycles.
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Selected References

Hoskins et al. (1985) provide a comprehensive overview of the theory and use of Ertel potential

vorticity in the diagnosis and prediction of mid-latitude cyclones.

Ertel (1942) is the seminal work on potential vorticity (the original is in German, but translations

are available).

Eliassen and Kleinschmidt, Dynamic Meteorology, discuss cyclone life cycles from the potential

vorticity perspective.

Davis and Emanuel (1991) develop a scheme for the piecewise inversion of potential vorticity. This

scheme has been used extensively in diagnostic studies of mid-latitude dynamics.

Nielsen-Gammon and Lefevre (1996) develop a scheme for discerning height tendencies associated

with a variety of physical processes through inversion of the QG potential vorticity.

Stoelinga (1996) examines the sources and sinks of potential vorticity in the life cycle of a robust

mid-latitude cyclone.

Hoskins and Berrisford (1988) diagnose aspects of the Great October Storm of 1987 from a potential

vorticity perspective.

Morgan and Nielsen-Gammon (1998) discuss the use of maps of potential temperature on the

dynamic tropopause (what they term tropopause maps) in the diagnosis of mid-latitude cyclones.

Problems

9.1. (a) Imagine an upper tropospheric negative PV anomaly is introduced into a zonal,

geostrophic vertical shear in the northern hemisphere as shown in Figure 9.1A.

Based upon the characteristic thermodynamic structure of such a PV anomaly,

what must be the distribution of vertical motion associated with this setting?

(b) Demonstrate that a consistent distribution of vertical motion can be diagnosed

from the quasi-geostrophic omega-equation perspective.

θ−δθ

θ
x

y

Figure 9.1A

9.2. Show that for quasi-geostrophic flow on an f plane, geopotential height changes are

governed by the flux divergence of quasi-geostrophic potential vorticity.

9.3. Construct a diagram analogous to Figure 9.10 that describes the process of anticyclo-

genesis, including the distribution of vertical motions associated with the process.

(a) Does the concept of mutual amplification apply in this case?

(b) Is there something specific to anti-cyclogenesis that conspires to limit rather than

enhance the mutual amplification?

(c) Based upon your answer, suggest a physical reason why extreme negative departures

from standard sea-level pressure (1013 hPa) exceed extreme positive departures.
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9.4. Figure 9.2A shows a vertical cross-section through an upper tropospheric PV anomaly.

How does the horizontal scale of the PV anomaly affect the magnitude of the vorticity

anomaly? You may assume that the anomaly is axisymmetric.

Positive PV
Anomaly

Horizontal scale of
PV anomaly

Figure 9.2A

9.5. Beginning with the isobaric expression for PV

P V = g (− f k̂ + ∇ × �V h) · ∇θ,

develop an expression for PV in an atmosphere with a statically stable, purely zonal,

baroclinic flow.

(a) Describe the contribution of the baroclinic basic state to PV in such an atmos-

phere.

(b) Under what conditions would this atmosphere exhibit dry symmetric instability?

(c) What does this suggest about the conditions necessary for large-scale slantwise

motions such as those associated with baroclinic instability?

9.6. Beginning with (9.21), prove that

d(P V)

dt
= −g (ηa · ∇ θ̇)

where

d

dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p
.

9.7. (a) Figure 9.3A shows a vertical cross-section through a developing cyclone. If

the maximum latent heat release occurs at about 500 hPa, sketch the diabati-

cally altered 2 PVU surface (at some later time) in this cross-section. Explain your

sketch.
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Figure 9.3A

(b) Based upon your answer in (a), speculate as to the effect that the migration of trop-

ical cyclones into the middle latitudes might have on the subsequent development

of extratropical cyclones. Consider both the dynamic and thermodynamic impacts

that such migration can have on mid-latitude weather systems.

9.8. For an atmosphere in thermal wind balance, demonstrate that a positive PV anomaly

cannot be manifest solely as a positive static stability anomaly.

9.9. Perturbation PV anomalies are often defined as deviations from a time mean.

(a) Show that in such a case the local rate of change of the perturbation PV is the result

of four distinct physical processes.

(b) Describe each of these processes in words.

(c) Estimate which two of these four are likely to be the largest in magnitude. Explain

your answer.

9.10. By considering the characteristic distribution of clouds and precipitation in a developing

cyclone, describe the effect of latent heat release (LHR) on

(a) the distribution of upper and lower tropospheric PV,

(b) the lower tropospheric vorticity, and

(c) the static stability.

(d) Describe in detail how the mutual interaction and amplification of upper and

lower PV anomalies, depicted in Figure 9.10 (i.e. the PV view of cyclogenesis), is

influenced by LHR.

(e) Explain the equivalence between the elements of the view outlined in (d) and the

physical elements constituting the classical self-development theory of Sutcliffe and

Forsdyke (1950).

9.11. Figure 9.4A depicts a lower tropospheric positive PV anomaly associated with the

diabatic residue of precipitation along a frontogenetically active surface cold front.
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Figure 9.4A

Assume that the surface front itself is the axis of dilatation of the total deformation

field.

(a) Describe an alternative way to represent this elongated positive PV anomaly.

(b) With respect to the concept of PV superposition, describe what might occur if the

frontogenetic deformation is systematically relaxed over time.

(c) Could the situation you’ve described in (b) be associated with a Petterssen Type A

cyclogenesis event? Explain.

Solutions

9.4. As the horizontal scale increases, the magnitude of the vorticity decreases.

9.5. P V = −g ∂u
∂p

∂θ
∂y

− g
(

f − ∂u
∂y

)
∂θ
∂p
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Appendix A
Virtual Temperature

The air has varying amounts of water vapor mixed into it. This highly variable con-

stituent will serve to reduce the density of the air by virtue of the fact that its molecular

weight (18 g mol−1) is lower than that of ‘dry’ air whose apparent molecular weight

is 28.97 g mol−1. Consequently, the gas constant for 1 kg of moist air is larger than

that for dry air. Application of the ideal gas law under this circumstance would ne-

cessitate employment of a variable gas constant whose value depends upon the exact

water vapor content of the air. Alternatively, we can employ the gas constant for dry

air in conjunction with an adjusted temperature known as the virtual temperature.

Imagine that a volume V of moist air is at temperature T and exerts a total pressure

P . Further imagine that this moist air mixture contains a mass md of dry air and a

mass mv of water vapor. In such a case, the density of the moist air is given by

ρ = md + mv

V
= ρ ′

d + ρ ′
v (A1)

whereρ ′
d andρ ′

v are the fractional densities of the dry air and water vapor, respectively.

We can apply the ideal gas law to both the water vapor and the dry air individually

to yield

e = Rvρ
′
v T (A2)

and

p′
d = Rdρ

′
d T (A3)

where e and p′
d are the partial pressures exerted by the water vapor and dry air, while

Rv and Rd are the gas constants for water vapor and dry air, respectively.

We know from Dalton’s law of partial pressures that

P = p′
d + e. (A4)

Mid-Latitude Atmospheric Dynamics Jonathan E. Martin
C© 2006 John Wiley & Sons, Ltd.
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Combining (A2), (A3), and (A4) results in an alternative expression for density:

ρ = P − e

Rd T
+ e

Rv T
(A5)

or

ρ = P

Rd T

[
1 − e

P
(1 − ε)

]
(A6)

where ε, the ratio of the gas constants, is equivalently the ratio of the molecular

weight of water vapor to that of dry air (ε = Mw/Md = 18/28.97 = 0.622).

Equation (A6) can be rewritten as

P = RdρTv (A7)

where

Tv = T

1 − (e/P )(1 − ε)
(A8)

and is known as the virtual temperature. Physically the virtual temperature is the

temperature that dry air would have to have in order that its pressure and density be

equal to those of a sample of moist air at temperature T .

The expression for virtual temperature can be simplified by again considering

Dalton’s law. The partial pressure exerted by any constituent in a mixture of gases

is equal to the proportion of kilomoles of the constituent in the mixture. Thus, the

vapor pressure, e , is given by

e =
(

mv

/
Mw

md

/
Md + mv

/
Mw

)
P

or

e =
(

mv Mw Md

M2
w md + mv Mw Md

)
P =

[
(mv/md )Mw Md

M2
w + (mv/md )Mw Md

]
P . (A9)

By definition, mv/md is the mixing ratio (w) of water vapor for the gaseous mixture.

Thus, (A9) can be expressed as

e =
(

w

ε + w

)
P . (A10)

Substituting (A10) into (A8) yields

Tv = T

1 − [w/(ε + w)](1 − ε)
= T

(
w + ε

εw + ε

)
(A11)

which can be further simplified by performing the indicated division and neglecting

terms of order w 2 and higher. The final expression then becomes

Tv = T(1 + 0.61w) (A12)

where w is expressed in units of kg kg−1. Even for large values of w , the virtual

temperature is usually only about 1% larger than the actual air temperature.
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A

absolute acceleration, 118

absolute circulation, 121

absolute velocity, 52

absolute vorticity, rate of change, 132

absolute vorticity vector, vertical component,

134

acceleration, 25

absolute, 118

and flow direction, 95

and flow speed, 95

centrifugal, 34

centripetal, 34

Lagrangian, in an inertial system, 53

vector and ageostrophic wind, 148–154

vertical Coriolis, 35

across-front ageostrophy, 187

adiabatic cooling, 171

adiabatic expansion, of rising air, 163

adiabatic lapse rate, 72

adiabatic warming, 171

advection, 83

differential thermal, 175

geostrophic temperature, column-averaged,

91

horizontal temperature, and vertical

motion, 83

thermal wind, of absolute geostrophic

vorticity, 160, 165

ageostrophic divergence, Sutcliffe’s expression

for, 150–154

ageostrophic flow, 64

ageostrophic frontogenesis, 203

ageostrophic secondary circulation, 168

ageostrophic wind, 63

and acceleration vector, 148–154

convective component, 154

inertial advective component, 154–156

local wind tendency component, 154–155

ageostrophy, across-front, 187

along-front geostrophy, 187

altimeter equation, 48

anisotropy in perturbation potential vorticity

field, 305

anomalous high, 105

anomalous low, 103

anticyclones as wave phenomena, 243

apparent force, 26, 32–33

Aristotle, 44

atmosphere

at middle latitudes, 61

super-rotating (Venus), 101

attenuation, potential vorticity, 305

available potential energy (APE), 243

axis of

contraction, 18

dilatation, 18

rotation, 54

B

balanced flows, 77

and natural coordinates, 93–108

baroclinic instability theory, 245

barotropic fluid, 119

barotropic vorticity equation, 279

barotropy, 119

basic state variables, 1

Bergeron, Tor, 259

Bernoulli, Daniel, 69

Bernoulli’s equation, 69

beta-plane approximation, 140

Bjerknes, Jacob, 238
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Bjerknes, Vilhelm, 238

Bjerknes circulation theorem, 122

Brunt-Väisälä frequency, 72

and potential vorticity (PV) anomaly, 282

buoyancy oscillations, 72

C

Cartesian

coordinate system, 3, 77, 95

grid, 17

centered difference approximations, 10–11

centered differencing, 10

centrifugal

acceleration, 34

force, 26, 33–34

centripetal acceleration, 33–34

characteristics of mid-latitude fronts, 189–192

Charney, Jule, 245

circulation

absolute, 121

and fluid rotation, 115

and vorticity, relationship, 124

changes in, 118

relative, 121

secondary ageostrophic, 168

theorem, 135

theorem, and physical interpretation,

117–122

thermally indirect, and upper-level

frontogenesis, 214

coefficient of friction, 29

column-averaged geostrophic temperature

advection, 91

components of the �Q-vector, 178–181

compressible fluid, 67

conditional symmetric instability (CSI),

226–227

conditions for stability, 71

confluent, 1

confluent flow, 170

confluent jet entrance, 173

conservation of energy, 67–72

conservation of mass, 65–67

continuous variable, temporal changes of,

12–14

continuum, 2

convective instability, 221–223

convergence, 8, 133

horizontal, relation to vorticity, 132

Coriolis force, 26, 35–39, 53, 62, 97, 103

component expansion of, 58

Coriolis parameter, 35

cross product, 5

cross-frontal differences in static stability, 221

curl of a vector, 9

currents, 98

curvature terms, 59

curvature vorticity, 126

cyclogenesis, 246

and heat fluxes, 255

and potential vorticity (PV), 286–290

and QG omega equation, 250–252

and QG tendency equation, 246–249

and self-development paradigm, 255

explosive, 252–258

leeside, 302

omega-centric view of, 290

orographic, 302

Type A and Type B, 258

cyclogenetic influence of diabatic processes,

252–258

cyclolysis, 265–269

cyclones

decay of, 240

energetic characteristics of, 242–245

large-scale, 115

mid-latitude, 48

polar front theory, 237–242

structure of, 242–245

cyclostrophic

balance, 100

flow, 99–101

wind, 100

D

decay stage of extratropical cyclones, 265–269

deformation

geostrophic shearing, 166, 208

geostrophic stretching, 166, 209

pure shearing, 19

terms, in QG omega equation, 159, 176

total, 19

del operator, 7

density, 45

diabatic effects on moist potential vorticity,

227–228

diabatic heating, 86, 141

and frontogenesis, 195

influence on potential vorticity, 290–294

diabatic processes, cyclogenetic influence of,

252–256

discontinuities in zero-order fronts, 189
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divergence, 115, 133

and vorticity, relationship, 130–138

horizontal, 132

of a vector, 8

of gradient, 9

pure, 17

term, in vorticity equation, 132,

136

dot product, 5

dynamic viscosity coefficient, 30

E

Eady, Eric, 245

Earth’s vorticity, 124

effective gravity, 34

elements of vector calculus, 3–9

Eliassen, Arnt, 207

energetic characteristics of cyclones,

242–245

energy

conservation of, 48, 67–72

equation, 67–72, 83

equation, mechanical, 68

equation, thermodynamic, 246

internal, 67

law of conservation of, 67

radiant, 67

equations of motion

applications, 77–110

derived, 49–64

frictionless, 93, 130, 225

in spherical coordinates, 53–64

Ertel PV (potential vorticity), 295

Eulerian derivative, 12

Eulerian rate of change, 12

explosive cyclogenesis, 252–258

F

finite differencing, 10

flow direction and acceleration, 95

flow speed and acceleration, 95

fluids, kinematics of, 15–20

force

actual, 30

apparent, 26, 32–33

centrifugal, 26, 33–34

Coriolis, 26, 35–39, 53, 97, 103

frictional, 25, 28–31, 53

fundamental, 25–31

gravitational, 25, 27–28, 53

pressure gradient (PGF), 25–26, 53, 61–62,

79, 97, 103

friction

coefficient of, 29

in fluids, 29

frictional force, 25, 53

frictionless equations of motion, 93, 130, 224

frontal cyclone, and middle latitudes, 237

frontal zones, characteristics, 191

frontogenesis

ageostrophic, 203

and diabatic heating, 195

and geostrophic confluence, 203

and thermally direct vertical circulation, 208

and vertical motions, 193–204

horizontal, 194

positive horizontal, 201

3-D function, 197–198

two-step process, 210

upper-level, 211–220

frontogenesis function, 194

and relation to �Q vector, 201

geostrophic, 203

2-D, geometric form of, 198–201

frontolysis, horizontal, 214

fronts, mid-latitude

characteristics, 189–193

first-order, 189

gradients of temperature and density in,

189

precipitation processes at, 220–229

structure, 189–193

upper-level, 189, 211, 213

vertical circulation at, 187–228

zero-order, 189

fundamental force, 25–31

G

Galilean invariant, 20

gas constant, 45

gas law, ideal, 45

geopotential, 46

height, 47, 299

height field, instantaneous, and vertical

motion, 162

Laplacian of, 160

tendency and temperature advection, 249

tendency and vorticity advection, 247–248

geostrophic balance, 61, 62, 97, 164, 203

wind direction changes and, 62

wind speed changes and, 62
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geostrophic confluence and frontogenesis, 203

geostrophic deformation, 175

geostrophic forcing function of

Sawyer-Eliassen equation, 209

geostrophic momentum approximation, 206

geostrophic paradox, 167–171

geostrophic shearing deformation, 166, 208

geostrophic stretching deformation, 166, 209

geostrophic temperature advection,

column-averaged, 91

geostrophic wind, 62, 97

flow, 61

geostrophy, along-front, 187

gradient, 7

flow, 102–108

wind, equation, 102

gravitational force, 25, 27–28, 53

gravitational instability, 72, 222

gravity, 44

effective, 34

H

half-pendulum day, 98

Hamilton, Sir William Rowan, 3

heat fluxes and cyclogenesis, 255

height tendency equation, quasi-geostrophic,

247

high, anomalous, 105

high, regular, 105

homogeneous fluid, 129

horizontal

convergence, relation to vorticity, 132

divergence, 132

frontogenesis, 194

frontolysis, 214

temperature advection, effect on

geopotential tendency, 249

humidity, 1

hydrostatic balance, 44, 164

in isentropic coordinates, 86

in isobaric coordinates, 90

hydrostatic equation, 44

hypsometric equation, 45–48

I

incompressible fluid, 67

inertial advective component, of ageostrophic

wind, 154–156

inertial flow, 98

inertial frame of reference, 25

inertial motion, 32, 98–99

instability

and Brunt-Väisälä frequency, 72

baroclinic, 245

conditional symmetric (CSI), 226–227

convective, 221–223

gravitational, 222

potential, 221–223

symmetric, 224

instability theory, baroclinic, 245

internal energy, 67

isallobaric wind, 155

isentropes, 71

isentropic coordinates, 77, 83–89

hydrostatic balance in, 86

isentropic divergence and potential vorticity,

276–280

isentropic flow, 71

isentropic potential vorticity (IPV),

277–280

isentropic surfaces, 88

isobaric coordinates, 77

isobaric surface, slope of, 90

isopycnals, 119

isosteres, 119

isotachs, 74

isotherms, 13

isotropy in perturbation potential vorticity

field, 305

J

Jacobian operator, 164

jet streaks, 62

K

Kelvin, Lord, 3

Kelvin’s circulation theorem, 119

kinematic viscosity coefficient, 31

kinematics of fluids, 15–20

kinetic energy, in the energy equation, 68

L

Lagrangian acceleration

in an inertial system, 53

of the wind and ageostrophy, 64

Lagrangian rate of change, 12

Laplacian of geopotential, 160

Laplacian operator, 9
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large-scale cyclones, 115

life cycle of mid-latitude cyclones, 237–269

local wind tendency component, of

ageostrophic wind, 154–155

low, anomalous, 103

low, regular, 103

low-level potential vorticity (PV) anomaly,

286–290

M

mass, 2, 43

conservation of, 65–67

continuity equation, 66–67

divergence, 66

in the atmosphere, 43–44

mass flux, 65

mechanical energy equation, 68

middle latitudes, and frontal cyclone, 237

mid-latitude cyclones

and comma-shaped cloud pattern,

187

and polar front theory, 237–242

and scale interactions, 187

and shearwise couplets of vertical motion,

252

and transverse couplets of vertical motion,

252

as wave phenomena, 243

cold core, 48

cyclogenesis stage, 246–252

decay, 240, 265–269

diabatic processes, influence of, 252–256

evolution of, 239

life cycle, 237–269

mature stage, 239

occluded stage, 239

perturbation stage, 239

post-mature phase, 239, 258–265

structural and energetic characteristics,

242–245

mid-latitude fronts

characteristics, 189–193

first-order, 189

gradients of temperature and density in,

189

precipitation processes at, 220–229

structure, 189–193

upper-level, 189, 211, 213

vertical circulation at, 187–228

zero-order, 189

momentum, 27, 29

and Newton’s second law, 25

angular, 36

conservation of, 49–53

Montgomery potential, 85

Montgomery streamfunction, 85, 88

motion

equations of, 49–64

inertial, 32, 98–99

relative, 50

vertical equation of, 44

N

natural coordinates, 77

and balanced flows, 93–108

and the �Q-vector, 171–175

Newton, Sir Isaac, 32

Newton’s

law of universal gravitation, 27

second law, 25, 43, 72, 138

third law, 31

Norwegian Cyclone Model (NCM), 189,

238–242

and polar fronts, 238

O

occluded fronts, cold, 238

occluded fronts, warm, 238

occluded quadrant and QG dynamics, 264–265

occluded thermal structure, 258–263

omega equation, 160–180, See also QG omega

equation

Sutcliffe/Trenberth form of, 164–165, 176

omega equation perspective of cyclogenesis,

250–252

orographic cyclogenesis, 302

oscillations, buoyancy, 72

P

parcel, 2

trajectories, 96, 98, 109

perturbation geopotential height, 299

perturbation potential vorticity, 295

perturbation potential vorticity field

anisotropy in, 305

isotropy in, 305

phase locking and potential vorticity, 290

physical interpretation of circulation theorem,

117–122
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piecewise potential vorticity inversion,

295–297

Poisson equation, 71, 89, 128

polar front theory of cyclones, 237–242

polar fronts and the Norwegian Cyclone

Model, 238

post-mature cyclone

and occluded quadrant, 264–265

and QG dynamics, 264–265

and thermal structure, 258–263

potential energy, available (APE), 243

potential instability, 221–223

potential temperature, 70, 83, 129

as vertical coordinate, 83–89

surfaces of constant, 71

potential vorticity (PV), 129, 213

advection, horizontal, 284

and cyclogenesis, 286–290

and influence of diabatic heating, 290–294

and isentropic divergence, 276–280

and leeside cyclogenesis, 302

and phase locking, 290

and vorticity, 122–130

attenuation, effects of, 302–306

diabatic effects on, 227–228, 290–294

distribution, treble clef, 297

erosion, tropopause-level, 300

inversion, piecewise, 295–297

isentropic (IPV), 277

perturbation, 295

quasi-geostrophic, 207, 284–285, 296

quasi-geostrophic, moist, 226

superposition, effects of, 302–306

potential vorticity (PV) anomaly

and Brunt-Väisälä frequency, 282

and superposition principle, 305

characteristics of, 280–286

low-level, 285–290

negative, 281–282

penetration depth of, 281–282

positive, upper-level, 280–281, 286–290

precipitation processes at fronts, 220–229

pressure, 1, 45

as vertical coordinate, 77–83

reduced sea-level, 47

pressure gradient force (PGF), 25–27, 53, 61,

79, 97

pressure tendency equation, 246

pure divergence, 17

pure shearing deformation, 19

pure stretching deformation, 17

pure vorticity, 17

Q

QG dynamics and occluded quadrant, 264–265

QG omega

associated with deformation terms, 177

associated with Sutcliffe/Trenberth forcing,

177

shearwise, 179–180, 250–252

transverse, 179, 250–252

QG omega equation, 160–181

and cyclogenesis stage, 250–252

and cyclonic vorticity advection, 162

and deformation terms, 165–166, 175–178

and Laplacian of horizontal temperature

advection, 163

and thermal wind advection of absolute

geostrophic vorticity, 160–165
�Q-vector form of, 166–171

QG tendency equation and cyclogenesis,

246–249

QG thermodynamic energy equation, 141

quasi-geostrophic height tendency equation,

247–249

quasi-geostrophic potential vorticity, 207,

284–285, 296

inversion of, 296

quasi-geostrophic system of equations,

138–142

quasi-geostrophic vorticity equation, 140–141,

160, 246
�Q-vector, 166, 181

along- and across-isentrope components of,

178–181

and geostrophic paradox, 167–171

and natural coordinates, 171–175

components of, 178–181

R

radiant energy, 67

regular high, 105

regular low, 104

relative circulation, 121–122

relative motion, Lagrangian derivative of, 58

relative vorticity, 123

Rossby, Carl Gustav, 64

Rossby number, 64, 100

Rossby waves, 287
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rotation

effect of on objects at rest, 35

radius of, 37

rate of Earth, 38–39

vector, 58

rotationally invariant, 20

rotationally variant, 20

S

Sawyer, John S., 204

Sawyer-Eliassen frontal circulation equation,

204–210, 214

scalar, 3

invariant operator, 9

product, 5

scale analysis, 14–15

of the equations of motion, 59–60

scale interactions in the mid-latitude cyclone,

187

secondary ageostrophic circulation, 168

self-development paradigm and cyclogenesis,

255

semi-geostrophic equations, 203–210

shear vector, rate of change, 153

shear vorticity, 126

shearing deformation, 16

geostrophic, 208

pure, 19

shearing stress, 30

in fluid, 29

shearwise vertical motions, 180–181, 250

sidereal day, 39

slantwise motions

and 2-D flow, 224

and vertical shear, 224

slope of isobaric surfaces, 90

solar day, 39

Solberg, Halvor, 238

solenoid term, 119, 132

specific heat

at constant pressure, 70

at constant volume, 69

spherical coordinates, 53, 121

stability, conditions for, 71

static stability parameter, 141

cross-frontal differences in, 221

Stokes’ Theorem, 125

streamlines and trajectories, relationship,

108–110

stretching deformation, 16

geostrophic, 209

pure, 17

structure of cyclones, 242–245

subgeostrophic flow through troughs, 108

supergeostrophic flow through ridges, 108

superposition principle and potential vorticity

anomaly, 305

super-rotating atmosphere (Venus), 101

Sutcliffe, R.C., 148

Sutcliffe development theorem, 157–160, 162

Sutcliffe’s expression for ageostrophic

divergence, 150–154

Sutcliffe/Trenberth approximation, 176

Sutcliffe/Trenberth form of omega equation,

219

symmetric instability, 224

synoptic-scale features, characteristic length

scale, 60

Systèm Internationale (SI), 20

T

Taylor series expansion, 9–10

temperature, potential, 70, 129

temperature advection, along flow, and frontal

circulations, 215

thermal structure of post-mature cyclone,

258–263

thermal wind, 91

advection of geostrophic vorticity, 160, 165

advection of θe , 228

and geostrophic vertical shear, 167

balance, 89–93

thermal wind balance, 89

destruction of by geostrophic wind,

167–169

thermally indirect circulation and upper-level

fronts, 214

thermodynamic energy equation, 83, 160, 246

thermodynamics, first law of, 68–69

3-D frontogenesis function, 197–198

tilting term, 132, 136

time tendency of vorticity, 130

trajectories and streamlines, relationship,

108–110

transverse component of QG omega, 179

treble clef PV distribution, 297

Trenberth approximation, to QG omega

equation, 164–165, 176, 180
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tropopause boundary and upper-level fronts,

211

tropopause-level potential vorticity erosion,

300

trough of warm air aloft (trowal), 259

2-D flow and slantwise motions, 224

2-D frontogenesis function, geometric form

of, 198–201

Type A and Type B cyclogenesis, 258

U

unit vector, 3

universal gravitational constant, 28

upper-level frontogenesis, 211–220

upper-level fronts, 189, 213

and tropopause boundary, 211

V

vector analysis, 3

vector calculus, elements of, 3–9

vectors, 3

velocity

absolute, 52

divergence, form of continuity equation,

66

horizontal, characteristic scale of, 60

vertical circulation

and frontogenesis, 208

at fronts, 187–229

vertical component of absolute vorticity

vector, 134

vertical equation of motion, 44

vertical force balance, 34

vertical motion

and frontogenesis, 193–204

quasi-geostrophic diagnosis of, 157–181

shearwise, 179–180, 250–251

synoptic scale, characteristic scale of, 160

transverse, 179, 252

vertical pressure gradient force and hydrostatic

balance, 44

vertical shear, 30, 168

and slantwise motions, 224

of the geostrophic wind, 90–93

westerly, 93

virtual temperature, 46, See also Appendix,

311–312

viscosity coefficient

eddy, 32

kinematic, 31

viscous force, 30

volume, specific, 69

vorticity, 16, 122, 123

absolute, and rate of change, 132

and circulation, relationship, 124

and divergence, relationship, 130–138

and fluid rotation, 115

and potential vorticity, 128–130

curvature, 126

equation, 132, 141, 160, 246

of Earth, 124

potential, 122, 129, 213, 276–306

relation to horizontal convergence, 132

relative, 123, 140

shear, 127

time tendency of, 130

vorticity equation, barotropic, 279

W

wave phenomena

and anticyclones, 243

and mid-latitude cyclones, 243

westerly vertical shear, 93

wind

ageostrophic, 63

direction changes and geostrophic balance,

62

geostrophic, 61, 97

gradient, 102–108

inertial advective, 155–156

isallobaric, 155

Lagrangian acceleration of, and

ageostrophic wind, 64

speed changes and geostrophic balance, 62

thermal, 91–92

wind balance, thermal, 89–93

Z

zero-order front, 189

discontinuities in, 189
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