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Preface

The study of environmental physics requires understanding topics
from many different areas of physics as well as comprehension of physi-
cal aspects of the world around us. Several excellent textbooks are
available covering most aspects of environmental physics and of applica-
tions of physics to the natural environment from various points of view.
However, while teaching environmental physics to university students, I
sorely missed a book specifically devoted to exercises for the environmen-
tal science student. Thus, the motivation for this book came about as in
physics, as well as in many other disciplines, satisfactory knowledge of a
subject cannot be acquired without practice. Usually students are not
familiar with the various areas of physics that are required to describe
both the environment and the human impact upon it. At the same time,
students need to develop skills in the manipulation of the ideas and con-
cepts learned in class. Therefore, this exercise book is addressed to all
levels of university students in environmental sciences.

Because of the wide range of potential users this book contains both
calculus-based and algebra-based problems ranging from very simple to
advanced ones. Multiple solutions at different levels are presented for
certain problems—the student who is just beginning to learn calculus will
benefit from the comparison of the different methods of solution. The
material is also useful for courses in atmospheric physics, environmental
aspects of energy generation and transport, groundwater hydrology, soil
physics, and ocean physics, and selected parts may even be used for basic
undergraduate physics courses. This collection of exercises is based on
courses taught at the University of Northern British Columbia and at
the University of Victoria, Canada.

Each problem and its solution are self-contained so that they can
be attempted or assigned independently. For students willing to deepen
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their knowledge of the subject, references to the literature are sometimes
given in the text or the solution of the problems.

The problems are arranged by topic, although problems usually over-
lap two or more different categories. This should make the students
aware of the fact that problems of the environment—even relatively sim-
ple ones—often involve different areas and require various techniques in
an interdisciplinary approach. This is even more true for the complex
problems that the environmental scientist encounters daily. To put it in
John Muir’s words, “When we try to pick out anything by itself, we find
it hitched to everything else in the universe” [53].

This book is not comprehensive: covering the complete spectrum of
topics in environmental physics would require a monumental work and
most readers would have little appreciation for the more specialized top-
ics. Many books or review papers on specific topics exist and they some-
times include exercises, but they are often too detailed for the purpose
of a general course in environmental physics. The selection of topics
contained in this book is to a certain extent arbitrary, as is the choice
of subjects presented in most courses in environmental physics currently
taught in university. However, I do believe that the essential topics
common to any general environmental physics course are covered here.
Rather than presenting exercises on the plethora of empirical formulas
appearing in the literature on the various areas of environmental physics,
the focus is on the unifying physical principles that can be applied to
many different subjects.

How to Use This Book

The International System of units (SI system) is used in this book.
Exercises are labeled with the letters A, B, or C. A denotes lower
mathematical level (algebra-based) problems that can be solved with-
out knowledge of calculus; whereas B indicates higher mathematical
level problems usually requiring calculus for their solution. The letter
C denotes conceptual questions that do not require calculations—these
are inserted at the beginning of each chapter in lieu of lengthy review
sections. Problems labeled A or C are not necessarily the easiest just
because no calculus is required: they test the student’s understanding
and knowledge of the physical concepts and normally require more than
just common sense for their solution.

The student should not browse through the solution before a problem
has been attempted and a honest effort has been made to solve it. If
a problem cannot be solved in spite of serious and repeated effort, the
student should not be frustrated but should read and understand the
solution and then review and correct his or her knowledge of the subject.
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This is what exercises are for, after all, and the student will certainly
learn from this process. Many exercises in the book require a sound
mathematical background, and Chapter 1 reviews basic mathematical
techniques. The section on vector calculus is particularly important to
solve exercises that require the use of the transport equations.

First-year students may benefit from reading a general qualitative
book such as Refs. [64, 60, 46] before delving into the details of specific
areas of environmental physics. References [27, 28] contain entertaining
and instructive solutions to selected problems using simplified quantita-
tive models—for an advanced reference on environmental modeling, see
Ref. [72]. Suggested readings are given at the beginning of each chapter
or section. A recommendation for students just beginning in science and
to whom many of these exercises are addressed: the problems should be
solved using symbols for the physical quantities considered and the nu-
merical values should only be inserted at the end of the mathematical
calculations. It is strongly recommended to insert the corresponding
units together with the numerical values of the various quantities, and
to pay attention to the number of significant digits.

I have tried as much as possible to eliminate errors from the book,
but I shall be grateful to readers informing of any errors that they may
notice.

Lennoxville, Québec

March 2006

Valerio Faraoni
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Chapter 1

MATHEMATICAL METHODS

A part of the secret of analysis is the art of using notations well.
—Gottfried Wilhelm Leibnitz

Environmental problems are often posed in the context of data collec-
tion and statistics, and extensive discussion of the social, economic, and
legal aspects of environmental science is certainly required. However, it
is not sufficient to talk about environmental problems or to collect data
and make statistics. To begin analyzing and finding solutions to prob-
lems in environmental physics requires a precise formulation in mathe-
matical terms, and the methods of mathematical physics are widely used.
Many problems—even if well-posed mathematically—are too difficult to
solve because of the complexity resulting from interdisciplinarity and
because of their intrinsic nonlinearity. As a result, simplified models are
often employed.

Mathematical modeling is an art in which one needs to capture the
essential features of the phenomenon under study, yet keep the model
sufficiently simple so that it is useful. Complications and details can be
added later by modifying a model that has provided physical insight,
and observational data and statistics are required in order to formu-
late the necessary boundary and initial conditions. One ends up using
approximations, which are usually found on the basis of physical in-
tuition rather than mathematical convenience, although sometimes the
temptation to kill complicated terms in the equations has led to mean-
ingful approximations. The assumptions of the model, however, should
not oversimplify—the old adagio applies: no model is better than its
assumptions.
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Environmental science takes advantage of virtually every mathema-
tical tool developed—here we review the basic mathematical concepts
used in the solution of the exercises of this book.

1.1 Complex numbers
Complex numbers are used to describe physical systems ruled by linear

differential equations, to represent physical quantities with Fourier series
and Fourier integrals, to compute definite integrals of functions of a
single variable, in quantum mechanics, fluid dynamics, and in many
other applications.

1 (A) Solve the complex algebraic equation

x + iy + 2 + 3i = 1 − 2i.

Solution
This equation can be rewritten as

x + iy = −1 − 5i

and, by equating the real (respectively, imaginary) part of the left-
hand side to the real (respectively, imaginary) part of the right-hand
side, we obtain the complex solution z = −1 − 5i.

2 (A) Solve the complex algebraic equation

z2 − i = 0.

Solution
One can rewrite this equation using the polar form of i = cos (π/2)+
i sin (π/2) = eiπ/2 as

z2 = i = ei(π/2+2nπ) (n = 0, 1, 2, 3, ...) ,

which has the two distinct solutions obtained for n = 0, 1

z1,2 = ei(π/4+nπ) =
[
cos
(π

4
+ nπ

)
+ i sin

(π

4
+ nπ

)]

= ±
√

2
2

(1 + i) .

3 (A) What regions of the complex plane correspond to the following?
a) |z| < 1
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b) Re(z) > 3
c) Im(z) > 2
d) |z + 5| ≤ 1
e) −1 ≤ Im(z) ≤ 1
f) 2 < |z| < 3

Solution
Let z = x + iy, where x =Re(z) and y =Im(z) are real. Then:
a) represents a circle of unit radius centered on the origin z = 0 and
excluding the circumference of radius r ≡

√
x2 + y2 = 1

b) represents the half-plane x > 3 with arbitrary y
c) represents the half-plane y > 2 with x arbitrary
d) represents the circle of unit radius centered on z = −5 [or (x, y) =
(−5, 0)] and including the circumference of unit radius
e) represents the horizontal strip −1 ≤ y ≤ 1 with arbitrary x
f) represents the annulus comprised between the circles of radii 2 and
3 and centered on the origin z = 0.

4 (A) Express the complex number z = 1 + i
√

3 in polar form.

Solution
The polar form is

z = ρ ei(θ+2nπ) (n = 0, 1, 2, 3, ...) ,

where ρ = |z| =
√

12 +
(√

3
)2

= 2 and θ = tg−1(
√

3/1) = π/3; hence

z = 2 ei(π/3+2nπ) (n = 0, 1, 2, 3, ...) .

The argument of z obtained for n = 0 is called the principal argument
of z.

5 (A) When studying oscillations of a physical system described by or-
dinary differential equations, is it always legitimate to represent an os-
cillating quantity A using a complex exponential as A = A0 exp (iωt),
and to take the real part of A at the end of the calculations as the
physical result? If x(t) and y(t) are oscillating quantities represented
by complex exponentials, is Re(xy) =Re(x) ·Re(y)?

Solution
No: the above representation is legitimate only when the oscillat-
ing quantity A obeys linear differential equations. Often a system
described by a set of nonlinear equations may be described by the
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linearized version of the full equations under the assumption of small
motions or small oscillations (e.g., a simple pendulum), which may
constitute a physically meaningful approximation.

If x(t) = x0 eiω1 t and y(t) = y0 eiω2 t, then

x(t) y(t) = x0y0 ei(ω1+ω2)t;

however,

Re (xy) = x0y0 cos [(ω1 + ω2) t]

= x0y0 [cos (ω1 t) cos (ω2 t) − sin (ω1 t) sin (ω2 t)]

�= Re(x) · Re(y) = x0y0 [cos (ω1 t) cos (ω2 t)] .

6 (A) Prove that a phase factor eiθ, where θ is real, has unit modulus.

Solution
We have

|z| ≡ eiθ = |cos θ + i sin θ| =
(
cos2 θ + sin2 θ

)1/2 = 1.

7 (A) Prove that

a) Re(z) = z+z∗
2

b) Im(z) = z−z∗
2i

c) z2 = (z∗)2 only if z is purely real or purely imaginary.

Solution
Let z = x + iy, where x = Re(z) and y = Im(z) are real. Then we
have

z + z∗

2
=

(x + iy) + (x − iy)
2

= x,

z − z∗

2i
=

(x + iy) − (x − iy)
2i

= y;

the equation z2 = (z∗)2 is equivalent to

(x + iy)2 = (x − iy)2 ,

or
x2 − y2 + 2ixy = x2 − y2 − 2ixy.
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Equating the real part of the left-hand side to the real part of the
right-hand side and doing the same for the imaginary parts yields
xy = 0, with solutions x = 0, or y = 0, or both x and y vanishing.

8 (A) Show that there are exactly n distinct roots of a complex num-
ber z �= 0.

Solution
Write z in its polar form

z = ρ ei(θ+2kπ),

where k = 0, 1, 2, 3, ... Then

z1/n = ρ1/n ei( θ
n

+ 2k
n

π).

The n distinct roots of z are obtained from this formula by letting k
assume the n values

k = 0, 1, 2, ... , (n − 1) .

9 (B) Use complex exponentials to derive the trigonometric identities

sin (2θ) = 2 sin θ cos θ,

cos (2θ) = cos2 θ − sin2 θ.

Solution
The de Moivre formula

eiθ = cos θ + i sin θ

squared yields

e2iθ =
(
eiθ
)2

= (cos θ + i sin θ)2 = cos2 θ − sin2 θ + 2i sin θ cos θ.

On the other hand,

e2iθ = cos (2θ) + i sin (2θ) ;

by comparing the two expressions of e2iθ one deduces that

cos (2θ) + i sin (2θ) = cos2 θ − sin2 θ + 2i sin θ cos θ;

and by equating the real and the imaginary parts of the two sides of
this equation, we obtain

sin (2θ) = 2 sin θ cos θ,

cos (2θ) = cos2 θ − sin2 θ.
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1.2 Differentiation and integration of functions
of a single variable

Basic calculus begins by studying functions of a single variable: the
most basic operations are taking limits, differentiation, and integration.
In the mathematical modeling of a physical process or system one begins
by choosing an independent variable and by letting other variables be
functions of it—for example, in the problem of motion of a point particle
the independent variable can be time and the particle coordinates are
dependent variables.

1.2.1 Differentiation
1 (B) Compute the first and second derivatives of the function f(x) =

x ex lnx + x3 sin x.

Solution
The function f(x) is defined on (0, +∞) and has derivatives of all
orders on this interval. The first derivative is

f ′(x) = ex lnx + x ex lnx + ex + 3x2 sin x + x3 cos x,

while the second derivative is

f ′′(x) = ex lnx +
ex

x
+ ex lnx + x ex lnx + x

ex

x
+ ex + 6x sin x

+3x2 cos x + 3x2 cos x − x3 sin x

= (x + 2) ex lnx +
(

1
x

+ 2
)

ex + x
(
6 − x2) sin x + 6x2 cos x.

2 (B) Compute the derivative df/dx, where

f(x) =
√

cos
(
sin2 x

)
.

Solution
We have

df

dx
=

d
(
cos
(
sin2 x

))
/dx

2
√

cos
(
sin2 x

) =
− sin

(
sin2 x

)
d
(
sin2 x

)
/dx

2
√

cos
(
sin2 x

)
=

− sin x cos x sin
(
sin2 x

)
√

cos
(
sin2 x

) .



Mathematical Methods 7

3 (B) Compute the derivative df/dx, where

f(x) = x2 e−2x 3 e−2x − 1
(3 e−2x + 1)2

.

Solution
We have

df

dx
= 2x e−2x 3 e−2x − 1

(3 e−2x + 1)2
− 2x2 e−2x 3 e−2x − 1

(3 e−2x + 1)2

+6x2 e−4x

[
− (3 e−2x + 1

)
+ 2
(
3 e−2x − 1

)
(3 e−2x + 1)3

]

= 2x e−2x

[ (
3 e−2x − 1

)
(3 e−2x + 1)2

(1 − x) + 9x e−2x

(
e−2x − 1

)
(3 e−2x + 1)3

]

=
2x e−2x

(3 e−2x + 1)3
(
9 e−4x − 9x e−2x + x − 1

)
.

4 (B) Compute the derivative of the function

f(x) = x ln
(
3x4 + 2x2 + |x| + 1

)
.

Solution
We apply the Leibnitz rule (fg)′ = f ′g + fg′ and the chain rule
d(f(g(x)))

dx dx = df
dg

dg
dx obtaining, for x �= 0,

df

dx
= ln

(
3x4 + 2x2 + |x| + 1

)
+

x
(
12x3 + 4x + |x|

x

)
(3x4 + 2x2 + |x| + 1)

= ln
(
3x4 + 2x2 + |x| + 1

)
+

12x4 + 4x2 + |x|
3x4 + 2x2 + |x| + 1

.

This result is obtained for x �= 0, but the function f(x) is defined at
x = 0 and since the two limits

lim
x→0−

df

dx
= lim

x→0−

[
ln
(
3x4 + 2x2 + |x| + 1

)
+

12x4 + 4x2 + |x|
3x4 + 2x2 + |x| + 1

]

= 0,
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lim
x→0+

df

dx
= lim

x→0+

[
ln
(
3x4 + 2x2 + |x| + 1

)
+

12x4 + 4x2 + |x|
3x4 + 2x2 + |x| + 1

]

= 0,

exist and are equal, we conclude that the derivative of f(x) at x = 0
exists and is zero.

5 (B) Prove that

arcsin x + arccos x =
π

2
, −1 ≤ x ≤ 1,

arctg x + arccotg x =
π

2
, −∞ < x < +∞.

Solution
Differentiate arcsin x + arccos x in the interval (−1, 1):

d

dx
(arcsin x + arccos x) =

1√
1 − x2

− 1√
1 − x2

= 0,

hence arcsin x + arccos x = const. in (−1, 1) and, by continuity, also
in [−1, 1]. At x = 1 we have arcsin 1 + arccos 1 = π/2, which fixes
the value of the constant. Hence arcsinx + arccos x = π/2 in [−1, 1].

Let us consider the function arctgx + arccotg x on the real axis: dif-
ferentiating in this interval we obtain

d

dx
(arctg x + arccotg x) =

1
1 + x2 − 1

1 + x2 = 0

and hence arctg x + arccotg x is constant. Since at x = 1

arctg 1 + arccotg 1 =
π

4
+

π

4
=

π

2
,

the value of the constant is fixed and arctg x + arccotg x = π/2 over
the entire real axis.

6 (B) Prove the identities

arctg x + arctg
(

1
x

)
=

π

2
(x > 0) ,

arctg x + arctg
(

1
x

)
= −π

2
(x < 0) .
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Solution
The function arctgx + arctg

( 1
x

)
is singular at x = 0 and therefore

we have to consider separately the two semi-infinite intervals x < 0
and x > 0. Differentiation yields

d

dx

[
arctg x + arctg

(
1
x

)]
=

1
1 + x2 +

1
1 + 1/x2

(−1
x2

)
= 0

for any x �= 0. Hence the function arctgx+arctg
( 1

x

)
is constant, but

the value of the constant is different in the two disconnected intervals
x < 0 and x > 0. In fact, for x = −1 it is

arctg(−1) + arctg(−1) = −π

4
− π

4
= −π

2
,

while for x = 1 it is

arctg 1 + arctg 1 =
π

4
+

π

4
=

π

2
,

which fixes the values of the constants.

7 (B) Determine whether there exist values of α and β such that the
curves representing the two functions

f(x) =
3α

4
x4 + βx2,

g(x) = x2 + 3,

have parallel tangents at some point, and find the values of x for
which this happens.

Solution
The functions f and g are continuous with all their derivatives of any
order on (−∞,+∞). The points with the desired property are those
where the first derivatives of f and g are equal, i.e., where

3αx3 + 2βx = 2x

or
x
[
3αx2 + 2 (β − 1)

]
= 0.

The point x = 0 has the desired property for any value of α and β:
the tangent to both curves representing f(x) and g(x) is horizontal
here.
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If α = 0, one finds immediately that setting β = 1 all points x have
the desired property.

If α �= 0, then the points x with the desired property satisfy the
equation

x2 = − 2
3α

(β − 1) ;

this equation has solutions for α < 0 and β ≥ 1, or for α > 0 and
β ≤ 1; the points x with the desired property are

x = ±
√

2
3

∣∣∣∣β − 1
α

∣∣∣∣.
To summarize, the values of α and β that allow for the desired prop-
erty are
any (α, β) and x = 0,
(α, β) = (0, 1) and any x,

(α, β) with α < 0 and β ≥ 1, and x = ±
√

2
3

∣∣∣β−1
α

∣∣∣,
(α, β) with α > 0 and β ≤ 1, and x = ±

√
2
3

∣∣∣β−1
α

∣∣∣.
1.2.2 Integration
1 (B) Compute the indefinite integral∫

dx
(
x ex + 3x2) .

Solution
Because of the linearity of the integral, we have∫

dx
(
x ex + 3x2) =

∫
dx x ex + 3

∫
dx x2.

The first integral on the right-hand side is evaluated by parts, ob-
taining ∫

dx x ex = x ex −
∫

dx ex = (x − 1) ex.

As a check, one can take the derivative of this last term,

d

dx
[(x − 1) ex] = ex + (x − 1) ex = x ex,
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which assures us of the correctness of this first integral. The second
integral is elementary, ∫

dx x2 =
x3

3
,

and therefore we have∫
dx
(
x ex + 3x2) = x ex + x3 + constant.

2 (B) Compute the definite integrals

I1 =
∫ +∞

−∞
dx f(x) x,

I2 =
∫ +∞

−∞
dx f(x) x3,

I3 =
∫ +∞

−∞
dx g(x) x2,

I4 =
∫ +∞

−∞
dx g(x) x8,

where the functions f(x) and g(x) are defined and regular over the
entire real axis and are, respectively, even and odd, i.e., f(−x) = f(x)
and g(−x) = −g(x) for any real value of x.

Solution
We have

I1 = I2 = I3 = I4 = 0

because in all these cases the integrand is an odd function of x and
the integrals are computed over an interval symmetric with respect to
x = 0 (the entire real axis). The contribution to the integral coming
from regions with x < 0 cancels the corresponding contribution, with
opposite sign, from symmetric regions with x > 0.

3 (B) Compute the integral∫ +∞

1
dx

1
x (x + 1)

.

Solution
We decompose the fraction in the integrand as follows:

1
x (x + 1)

=
A

x
+

B

x + 1
,



12 EXERCISES IN ENVIRONMENTAL PHYSICS

where the constants A and B are determined by writing the two terms
on the right-hand side with common denominator

A

x
+

B

x + 1
=

(A + B) x + A

x (x + 1)

and setting this equal to 1/x(x + 1), which yields

A + B = 0,

A = 1,

or (A, B) = (1,−1). Therefore,∫ +∞

1
dx

1
x (x + 1)

=
∫ +∞

1

dx

x
−
∫ +∞

1

dx

x + 1

= [lnx − ln (x + 1)]+∞
1

= lim
M→+∞

[
ln
(

M

M + 1

)
− ln

1
2

]

=
[

lim
M→+∞

(
M

M + 1

)]
+ ln 2 = ln 2.

4 (B) Consider a river modeled as a straight channel of width a with
irregular depth. Using horizontal x- and y- axes pointing in the
direction of the flow and in the transversal direction, respectively,
the depth profile across the river is given by the function

h(y) =
{ −h0 sin

[
π
(
1 − y

a

)]
if 0 ≤ y < a,

0 if y < 0 or y ≥ a,

where h0 is a constant with the dimensions of a length. Compute the
cross-sectional area of the river.

Solution
The area of a cross section of the river is

A =
∫ a

0
dy |h(y)| = −h0

∫ a

0
dy sin

[
π
(y

a
− 1
)]

= h0
a

π
cos
[
π
(y

a
− 1
)]∣∣∣a

0
=

2h0a

π
� 0.6367h0a.
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Figure 1.1. The normalized Gaussian (1.2).

5 (B) Compute the integral

I =
∫ +∞

−∞
dx e−αx2

, (1.1)

which represents the area of the region of plane delimited by the
x-axis and by the graph of a Gaussian1 (Fig. 1.1). Normalize the
Gaussian in such a way that

f(x) ≡ N e− α x2
, (1.2)

where N is a constant, satisfies∫ +∞

−∞
dx f(x) = 1.

1The Gaussian function is widely used in statistics and in many models (Gaussian plume
models) describing the spreading of pollutants in water or in the atmosphere.
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Solution
Consider the quantity

I2 =
(∫ +∞

−∞
dx e−αx2

)2

=
(∫ +∞

−∞
dx e−αx2

)
·
(∫ +∞

−∞
dy e−αy2

)

=
∫ ∫

R2
dx dy e−α(x2+y2).

By using polar coordinates (r, ϕ), where

x = r cos ϕ,

y = r sin ϕ,

and inserting the Jacobian factor r corresponding to the transforma-
tion from Cartesian to polar coordinates (x, y) → (r, ϕ), we obtain

I2 =
∫ +∞

0
dr

∫ π

0
dϕ r e−αr2

= 2π

∫ +∞

0
dr

(
− 1

2α

)
d

dr

(
e−αr2

)

= − π

α

[
e−αr2

]+∞
0

=
π

α
,

and therefore

I =
√

π

α
.

In order to find a normalization factor N such that
∫ +∞
−∞ dx f(x) = 1,

one needs to impose the condition∫ +∞

−∞
dx f(x) = 1,

and hence N = 1/I. With the choice N =
√

α/π, the normalized
Gaussian

f(x) =
√

α

π
e− αx2

satisfies ∫ +∞

−∞
dx Ne−αx2

= 1.

1.2.3 Maxima, minima, and graphs
Calculus allows one to compute maxima, minima, and inflection points,

to study the behavior of functions of a single variable and to construct
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their graphs. In physics, these tools are used to find states of equilib-
rium, study stability, or optimize choices.

1 (B) Study the graph of the function f(x) = x2 ln |x|.

Solution
The function is defined on (−∞, 0) ∪ (0, +∞) and is continuous with
all its derivatives of any order there. The function is even, i.e.,
f(x) = f(−x) for all values of x in the intervals on which f is de-
fined. We also notice that f(x) > 0 for |x| > 1, that f(x) < 0 in the
intervals −1 < x < 0 and 0 < x < 1, and f (±1) = 0. The points
x = ±1 are the only zeros of f .

Let us compute the limits of f(x); as x → 0 we have

lim
x→0

f(x) = lim
x→0

ln |x|
1/x2 = lim

x→0

1
|x|

|x|
x

−2
x3

= lim
x→0

−x2

2
= 0,

by using de l’Hôpital rule. The function f(x) can be redefined so that

f̃(x) ≡
⎧⎨
⎩

f(x) if x �= 0,

0 if x = 0

is continuous at x = 0. The other limits of f(x) are

lim
x→±∞ x2 ln |x| = +∞.

The first derivative of the function f is

f ′(x) = x (1 + 2 ln |x|) ,

and its sign is determined by studying the sign of 1 + 2 ln |x|, which
is positive for |x| > e−1/2, negative for −e−1/2 < x < e−1/2, and zero
at ±e−1/2. Therefore:
f ′(x) < 0 and f is strictly decreasing if x < −1/

√
e and 0 < x <

1/
√

e;
f ′ (±1/

√
e) = 0 and f has horizontal tangent there;

f ′(x) > 0 and f is strictly increasing if −1/
√

e < x < 0 and x > 1/
√

e.
This information, plus what we know about the continuity of f , is
sufficient to establish that f(x) has local and absolute minima at
x = ±1/

√
e, and the minimum is f (±1/

√
e) = −1/2e. The graph of

the function is reported in Fig. 1.2.
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Figure 1.2. The graph of f(x) = x2 ln |x|.

2 (B) It can be shown [12, 27, 4] that the work delivered by a heat
engine is

f (x) = xa

(
TH − TC

1 − x

)
,

where x is the efficiency of the engine and TH and TC (with 0 <
TC < TH) are the absolute temperatures of the hot and cold reser-
voir, respectively, while a is a positive constant. Find the efficiency
that maximizes the work delivered in the interval2 [0, 1 − TC/TH ].

Solution
We look for a maximum of the function f(x) in the efficiency interval
[0, 1 − TC/TH ]. The function f is continuous with all its derivatives

2Thermodynamics imposes the fundamental upper limit on the efficiency 0 ≤ x ≤ xc, where
xc ≡ 1 − TC/TH < 1 is the Carnot factor.
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in this interval and its first derivative is
df

dx
= a

(
TH − Tc

1 − x

)
− aTCx

(1 − x)2
=

aTH

(1 − x)2

[
(1 − x)2 − TC

TH

]
.

One has df/dx > 0 and f strictly increasing if (1 − x)2 > TC/TH ,
df/dx = 0 (horizontal tangent) if (1 − x)2 = TC/TH , while df/dx < 0
and f is strictly decreasing if (1 − x)2 < TC/TH . The inequality
(1 − x)2 > TC/TH corresponds to

x < 1 −
√

TC

TH
< 1 − TC

TH
,

and the above results are sufficient to conclude that f(x) has a local
maximum at x∗ = 1 −√TC/TH , which has the value

fmax = f

(
1 −
√

TC

TH

)
= x∗aTH

(
1 − 1

1 − x∗
TC

TH

)

= a

(
1 −
√

TC

TH

)2

.

Since fmax > f(0) = f (1 − TC/TH) = 0 and f is continuous on
[0, 1 − TC/TH ], the local maximum is also an absolute maximum.

3 (B) Study the graph of the function f(x) = x |x| ex.

Solution
The function is defined on (−∞,+∞) and is continuous in this inter-
val. All its derivatives exist and are continuous on (−∞, 0)∪(0, +∞).
The limits of the function at the boundaries of this interval are

lim
x→+∞ f(x) = +∞,

lim
x→−∞ f(x) = 0.

The function is negative for x < 0, vanishes only at x = 0, and is
positive for x > 0. The first derivative of f(x) for x �= 0 is

f ′(x) = |x| ex (x + 2) .

Since both limits

lim
x→0−

f ′(x) = 0,

lim
x→0+

f ′(x) = 0
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exist and are finite and equal, the first derivative of f(x) exists also
at x = 0 and has zero value.
The study of the sign of f ′(x) allows one to conclude that
f ′(x) < 0 for x < −2, where f is strictly decreasing;
f ′ (−2) = 0, where the graph of f has horizontal tangent;
f ′(x) > 0 for x > −2, where f(x) is strictly increasing.
The function f has a local minimum at x = −2, which is f (−2) =
−4/e2. This minimum is also an absolute minimum.
The second derivative f ′′(x) is defined on the set (−∞, 0) ∪ (0, +∞)
and has the value

f ′′(x) = |x| ex

(
2
x

+ x + 4
)

:

it is not defined at x = 0. By studying the sign of f ′′(x) one con-
cludes that
f ′′(x) < 0 for x < − (2 +

√
2
)

and for −2 +
√

2 < x < 0; the graph
of the function has concavity facing downward in these intervals.
f ′′ (−2 ± √

2
)

= 0 and the graph of f(x) changes concavity at x =
−2 ± √

2.
f ′′(x) > 0 for − (2 +

√
2
)

< x < −2 +
√

2 and for x > 0, where
the curve representing f(x) has upward-facing concavity. Therefore,
the graph of f(x) is as follows: the x-axis is a horizontal asymptote
as x → −∞. Beginning from x → −∞, the function is negative
with downward-facing concavity, decreases until it reaches its abso-
lute minimum at x = −2 (changing concavity at x = −2−√

2 before it
reaches its minimum), then it starts increasing and is always strictly
increasing for x > −2 (it changes concavity again at x = −2 +

√
2

past its minimum point). It reaches its zero at x = 0, where the
second derivative has a jump discontinuity (from −2 as x → 0− to
+2 as x → 0+), and diverges as x2 ex as x → +∞. The graph is
reported in Fig. 1.3.

4 (B) Study the function f(x) = x eλx as the real parameter λ varies,
and sketch its graph.

Solution
The function is continuous with all its derivatives of any order on
(−∞,+∞). The sign of f(x) is easy to study—we have, for any real
value of the parameter λ:
f(x) > 0 if x > 0;
f(x) = 0 only at x = 0;
f(x) < 0 if x < 0.
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Figure 1.3. The graph of f(x) = x |x| ex.

The first and second derivatives of f are

f ′(x) = (λx + 1) eλx,

f ′′(x) = λ eλx (λx + 2) ,

respectively. We now consider the possible values of λ separately. If
λ > 0, the limits of f(x) are

lim
x→+∞ x eλx = +∞,

lim
x→−∞ x eλx = 0.

The sign of the first derivative of f is as follows:
f ′(x) < 0 for x < −1/λ, where f is strictly decreasing;
f ′ (−1/λ) = 0 (f has horizontal tangent);
f ′(x) > 0 for x > −1/λ, where f is strictly increasing.



20 EXERCISES IN ENVIRONMENTAL PHYSICS

5

x

3

1.0

6

4

2

1.5

1

0

0.50.0−0.5−1.0−1.5

Figure 1.4. The graph of f(x) = x eλx for λ = 1.

Hence, f(x) has a local minimum at x = −1/λ, which has the value
f (−1/λ) = − (λe)−1. Given what we know on the limits of f and
the fact that f is continuous everywhere, we can state that the local
minimum is also an absolute minimum. We can also study the sign
of the second derivative of f , concluding that
f ′′(x) < 0 for x < −2/λ, and the concavity of the graph of f is facing
downward;
f ′′ (−2/λ) = 0, where there is a change of concavity;
f ′′(x) > 0 for x > −2/λ, and the concavity of the graph of f is facing
upward.
As λ → 0+, the minimum point and the inflection point get closer
and closer to zero—they coincide for λ = 0.

For λ = 0 the function reduces to f(x) = x, whose graph is the
straight line passing through the origin and making a 45◦ angle with
both axes. This is the limiting case of the situations for λ > 0 or
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λ < 0 as the parameter λ becomes smaller and smaller.

For λ < 0 the limits of f are

lim
x→+∞ x eλx = 0,

lim
x→−∞ x eλx = −∞.

The sign of the first derivative is as follows:
f ′(x) > 0 for x < 1/ |λ|, where f(x) is strictly increasing;
f ′ (1/ |λ|) = 0, where f has horizontal tangent and an inflection point;
f ′(x) < 0 for x > 1/ |λ|, where f(x) is strictly decreasing.

Therefore, f(x) has an absolute maximum at x = 1/ |λ|, with value
f (1/ |λ|) = −1/ (λe) > 0. The second derivative f ′′(x) has sign given
by the following:
f ′′(x) < 0 for x < 2/ |λ|, where the graph of f has downward-facing
concavity;
f ′′ (2/ |λ|) = 0, where there is a change of concavity;
f ′′(x) > 0 for x > 2/ |λ|, where the graph of f has upward-facing
concavity.
As λ → 0−, the maximum point and the inflection point get closer
and closer to zero—they coincide for λ = 0.
The graphs of f(x) for λ = +1 and λ = −1 are given in Fig. 1.4 and
Fig. 1.5, where the qualitative variation as λ increases from negative
to positive values is evident.

5 (B) Study the function f(x) = x2 (1 + λx) as the real parameter λ
varies, and sketch its graph.

Solution
The function is continuous with all its derivatives of any order on
(−∞,+∞); in addition, f(0) = 0. For large values of |x| the func-
tions is asymptotic to the cubic λx3. We consider the possible values
of λ separately.

For λ < 0 we have f ′(x) = x (2 − 3 |λ| x) and f(x) ≈ − |λ| x3 as
x → +∞, with

lim
x→±∞ f(x) = ∓∞.

The sign of the first derivative is obtained by separately studying the
signs of the terms x and (2 − 3 |λ| x) and then putting the results
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Figure 1.5. The graph of f(x) = x eλx for λ = −1.

together, obtaining
f ′(x) < 0 for x < 0, where f is strictly decreasing;
f ′(0) = 0, where f has horizontal tangent;
f ′(x) > 0, for 0 < x < 2/ (3 |λ|) where f is strictly increasing;
f ′ (2/3 |λ|) = 0, where f has horizontal tangent again;
f ′(x) < 0 for x > 2/3 |λ|, where f is strictly decreasing.
Since f is continuous, this is sufficient to establish that there is a local
minimum of f at x = 0 [which is f(0) = 0] and a local maximum at
x = 2/3 |λ|, with value f (2/3 |λ|) = 4/

(
27λ2

)
.

For λ = 0 the function reduces to the parabola f(x) = x2 with an
absolute minimum f(0) = 0 at x = 0 and f(x) > 0 for x �= 0

For λ > 0 the function is asymptotic to λx3 as x → +∞ and

lim
x→+∞ = +∞,
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Figure 1.6. The graph of f(x) = x2 (1 + λx) for λ = −2.

lim
x→−∞ = −∞.

The sign of the first derivative is
f ′(x) > 0 for x < −2/(3λ) and for x > 0, where f(x) is strictly
increasing;
f ′(0) = f ′ (−2/(3λ)) = 0, where the graph of f has horizontal tan-
gent;
f ′(x) < 0 for −2/(3λ) < x < 0, where f(x) is strictly decreasing.
Since f is continuous everywhere, it has a local maximum

fmax = f

(−2
3λ

)
=

4
27λ2

at x = −2/ (3λ) and a local minimum f(0) = 0 at x = 0.

The graphs of f(x) for λ = −2 and λ = 2 are given in Fig. 1.6 and
Fig. 1.7, respectively.
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Figure 1.7. The graph of f(x) = x2 (1 + λx) for λ = 2.

1.3 Ordinary differential equations
Ordinary differential equations (ODEs) describe physical systems with

a finite number of degrees of freedom. Often the solution of partial
differential equations, which describe systems with an infinite number
of degrees of freedom, can be reduced to the problem of solving a set
of ODEs. Many so called zero-dimensional models or box models in
earth sciences or environmental sciences neglect the spatial variation of
the relevant quantities and retain only their temporal variation: the
result is a simplified model of environmental processes based on ODEs
that admit analytical solutions. These models provide valuable physical
insight and are the starting point for more sophisticated models based
on partial differential equations (PDEs).

1.3.1 Solution methods
Here the basic solution methods for first- and second-order ODEs are

reviewed.
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1 (B) Solve the first-order ODE

y′ = x2y2.

Solution
If the solution y(x) is not identically zero, we can divide both sides
of the ODE by y2, obtaining

y′

y2 =
d

dx

(
− 1

y

)
= x2,

which is immediately integrated:∫ y

y0

d

(
1
z

)
= −

∫ x

x0

ds s2.

The general solution of the ODE is therefore

1
y

− 1
y0

= −x3

3
+

x3
0
3

or
y =

3
C − x3 ,

where C is an arbitrary integration constant.

Since we have divided by y2 assuming that y(x) is not identically zero,
we now have to check the case y ≡ 0: by inspection one concludes
immediately that this is also a solution.

2 (B) Solve implicitly the first-order ODE

y′ =
x + 2

3y2 + 1
.

Solution
This equation is separable and can be written as

(
3y2 + 1

) dy

dx
= x + 2

and integrated ∫
dy
(
3y2 + 1

)
=
∫

dx (x + 2)
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to yield the solution in implicit form(
y2 + 1

)
y = x2 + 2x + C,

where C is an arbitrary integration constant.

3 (B) Find the general solution of the first-order ODE

xy′ + y = x2.

Solution
For x �= 0 the ODE is equivalent to

y′ +
y

x
= x.

The general solution is the sum of the general solution of the associ-
ated homogeneous equation y′ + y/x = 0 and of a particular solution
yp of the nonhomogeneous equation. The associated homogeneous
equation can be written as

y′

y
= − 1

x
,

or
d

dx

(
ln
∣∣∣∣ y

y0

∣∣∣∣
)

= − d

dx

(
ln
∣∣∣∣ x

x0

∣∣∣∣
)

,

where x0 and y0 are arbitrary constant. Therefore,

|y| =
|y0| |x0|

|x| ,

which can be written as
y(x) =

C

x
,

with C an arbitrary constant. For a particular solution of the inho-
mogeneous ODE, we try the form yp(x) = Ax2, with A a constant.
Substitution into the ODE yields A = 1/3, and therefore the general
solution of the given ODE for x �= 0 is

y(x) =
C

x
+

x2

3
.

4 (B) A physical system is described by the nonlinear ODE

dx

dt
= α xβ,
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where α is a positive constant and β is a parameter that can be
changed in steps.
a) Assume that initially β = −1 and solve the ODE. On what inter-
val(s) is the solution defined?
b) Repeat for β = 0.
c) Repeat for β = 1.
d) Repeat for β = 2.
What is the effect of progressively varying β on the growth rate of
the solution x(t)? Interpret your result in terms of feedback on the
solution.

Solution
The ODE can be written as

x−β dx

dt
= α

and integrated, obtaining

1
1 − β

x1−β = α (t − t0)

if β �= 1, where t0 is an integration constant.

a) If β = −1, this solution applies and x(t) = ±√2α (t − t0), which
is defined on [t0, +∞).

b) If β = 0, the solution still applies and is linear, x(t) = α (t − t0),
defined on (−∞,+∞).

c) For β = 1 the previous solution does not apply. The ODE is
now dx/dt = α x, which has the solution x(t) = C eα t, where C is an
integration constant and is defined on (−∞,+∞).

d) For β = 2 the solution still applies, and

x(t) =
1

α (t0 − t)

has two separate branches defined on (−∞, t0) or (t0, +∞).

The effect of increasing the parameter β is to increase the growth
rate of the solution x(t), which is proportional to xβ. If β < 0, the
growth rate decreases although x(t) still increases: for β = −1 we
find x(t) ∝ √

t − t0. For β = 0 the solution grows faster (linearly)
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and is defined everywhere, for β = 1 it grows exponentially fast. In
this case, as x grows, dx/dt increases at the same rate, which implies
a larger x, which implies a larger dx/dt, and so on. There is a positive
feedback. The solution grows fast, but it keeps growing for an infinite
time. When β is increased to values larger than unity, the solution
x(t) ∝ 1/ (t − t0)

1
|β−1| , the derivative dx/dt ∝ xβ has such a large

positive feedback and grows so fast that it cannot keep growing for
an infinite time: the system “explodes” in a finite time at the vertical
asymptote t = t0.

5 (B) Solve the nonlinear ordinary differential equation

du

dt
+ cu2 + a = 0 (1.3)

(Riccati equation [32]), where c �= 0 and a �= 0 are constants.

Solution
If c = 0, it is easy to see that u(t) = −at+u0, where u0 is a constant
(this includes the particular case u = const. when a = 0). If both
c and a are different from zero, the solution is found by introducing
the auxiliary variable w defined by

u =
1
c

w′

w

(where a prime denotes differentiation with respect to the variable t),
which changes Eq. (1.3) into the linear equation

w′′ + ac w = 0,

the solution of which is elementary. If c a > 0, we have the harmonic
oscillator equation with general solution

w(t) = A cos (ωt) + B sin (ωt) , ω =
√

ca.

If ca < 0, the solution is instead the sum of two exponentials

w(t) = C eωt + D e−ωt, ω =
√

|ca|.
A, B, C, and D are integration constants. By returning to the original
variable u, we obtain

u(t) =
ω

c

−A sin (ωt) + B cos (ωt)
A cos (ωt) + B sin (ωt)
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if ca > 0, and

u(t) =
ω

c

C eωt − D e−ωt

C eωt + D e−ωt

if ca < 0.

6 (B) Find the general solution of the ODE y′′ + 3y = 0.

Solution
This is a linear second-order ODE with constant coefficients (the har-
monic oscillator equation), the solution of which is elementary. The
complementary equation is

r2 + 3 = 0,

which has complex conjugate roots r± = ±i
√

3. A set of linearly
independent solutions on (−∞,+∞) is

{
e±i

√
3 x
}

. Instead of this set
one can use the equivalent linearly independent set{

sin
(√

3 x
)

, cos
(√

3 x
)}

,

obtaining the general solution

y(x) = C1 cos
(√

3 x
)

+ C2 sin
(√

3 x
)

on (−∞,+∞), where C1,2 are arbitrary integration constants.

7 (B) Find the solution of the initial-value problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y′′ − 5y = 0,

y(0) = 2,

y′(0) = 1.

Solution
The theorems on ODEs guarantee existence and uniqueness of the
solution for this initial-value problem. The second-order linear ODE
with constant coefficients is elementary, and the complementary equa-
tion is

r2 − 5 = 0,

with real roots r± = ±√
5. The general solution of the ODE on

(−∞,+∞) is therefore

y(x) = C1 e
√

5 x + C2 e−√
5 x,
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where C1,2 are integration constants to be determined by the initial
conditions.

Imposing y(0) = 2 yields C1 + C2 = 2, while the second initial con-
dition yields

√
5 (C1 − C2) = 1. The linear system⎧⎨

⎩
C1 + C2 = 2,

C1 − C2 = 1√
5
,

has the solution C1,2 = 1 ± 1/
(
2
√

5
)

and the unique solution of the
initial-value problem on (−∞,+∞) is

y(x) =
(

1 +
1

2
√

5

)
e
√

5 x +
(

1 − 1
2
√

5

)
e−√

5 x

= 2 cosh
(√

5 x
)

+
1√
5

sinh
(√

5 x
)

.

8 (B) Find the general solution of the ODE x2y′′ + 3xy′ − y = 0.

Solution
This second-order ODE is recognized to be an Euler–Cauchy (or
equidimensional 3) equation, which has the general form

x2y′′ + αxy′ + βy = 0,

with α and β constants. The solution is defined on (−∞, 0)∪(0, +∞)
and x = 0 is a (regular) singular point.

We look for power-law solutions y(x) = xr; substitution of this form
into the ODE yields the algebraic equation for the power r

r2 + 2r − 1 = 0,

with real distinct roots r = −1 ± √
2. The solutions y1(x) = x

√
2−1

and y2(x) = x−(1+
√

2) are linearly independent and the general solu-
tion of the ODE on (−∞, 0) ∪ (0, +∞) is therefore

y(x) = C1 |x|
√

2−1 + C2 |x|−(
√

2+1) .

9 (B) Solve the linear ODE x2y′′ + 3xy′ + y = 0.

3The name equidimensional comes from the fact that if x is replaced by kx, where k is a
dimensional constant, the left-hand side does not change dimensions.
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Solution
This second-order ODE is recognized to be an Euler–Cauchy or equidi-
mensional equation, with solutions defined on (−∞, 0)∪(0, +∞). The
point x = 0 is a (regular) singular point.

By looking for power-law solutions y(x) = xr and substituting into
the ODE, one finds the algebraic equation for the power r:

r2 + 2r + 1 = (r + 1)2 = 0,

with real coincident roots r = −1. Therefore, y1(x) = 1/x is a
solution. A second, linearly independent, solution is y2(x) = xr lnx =
lnx/x. The general solution of the ODE on (−∞, 0) ∪ (0, +∞) is
therefore

y(x) =
1
|x| (C1 + C2 ln |x|) ,

where C1,2 are arbitrary integration constants.

10 (B) Solve the two-point boundary-value problem in [0, 1]⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y′′ + π2y = 0,

y(0) = 1,

y(1) = 0.

Solution
This second-order ODE is the harmonic oscillator equation with gen-
eral solution on (−∞,+∞)

y(x) = C1 cos (πx) + C2 sin (πx) ,

where C1,2 are arbitrary integration constants. The boundary con-
dition at x = 0 implies that C1 = 0, while the second boundary
condition at x = 1 requires C2 sin π = 0, which is always satisfied
for any value of C2. Therefore, the solution of the boundary-value
problem is

y(x) = C2 sin (πx) ,

where C2 can assume any value different from zero [if C2 = 0, then
the constant function y ≡ 0 does not satisfy the boundary condition
y(0) = 1].
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11 (B) Solve the eigenvalue problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y′′ + λy = 0,

y(0) = 0,

y(π) = 0,

i.e., find all the real values of λ (eigenvalues) for which the problem
has nontrivial solutions (eigenfunctions), and these solutions.

Solution
If λ = 0, the ODE is simply y′′ = 0, which has the general linear
solution y(x) = αx + β, where α and β are integration constants.
The boundary condition at x = 0 requires β = 0, while the bound-
ary condition at x = π is only satisfied if α = 0, yielding the trivial
solution. There are no nontrivial solutions for λ = 0.
If λ > 0, the ODE is the harmonic oscillator equation with general
solution

y(x) = C1 cos
(√

λx
)

+ C2 sin
(√

λx
)

,

with C1,2 integration constants. The boundary condition at x = 0
implies that C1 = 0, while to satisfy the boundary condition at x = π

it must be C2 sin
(√

λπ
)

= 0. Since C2 cannot be zero (otherwise

we are left only with the trivial solution) it must be sin
(√

λπ
)

= 0,

or
√

λπ = nπ and λ = n2, n = 1, 2, 3, ... Note that the value n = 0
is not acceptable because it yields the trivial solution.
If λ < 0, the ODE has the general solution

y(x) = C1e
√

|λ| x + C2e−
√

|λ| x,

with C1,2 integration constants. By imposing the boundary condi-
tions, we obtain

C1 + C2 = 0,

C1 e
√

|λ| π + C2 e−
√

|λ| π = 0.

Substitution of C2 = −C1 from the first equation into the second
one yields sinh

(√|λ|π
)

= 0, which has no solutions for λ < 0 (the
function sinhx intersects the x-axis only at x = 0).
To summarize, the eigenvalues of the problem are λn = n2 with
n = 1, 2, 3, ..., and the eigenfunctions are yn(x) = sin (nx).
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1.3.2 Qualitative analysis
Very often one cannot provide analytical solutions of nonlinear ODEs,

but it is still possible to perform a rigorous analysis of the qualitative
behavior of the solutions in phase space. The concepts of stability, insta-
bility, phase space, and attractor are very relevant in the environmental
sciences. Very often one is not interested in transient solutions that
decay relatively rapidly as much as in final states of equilibrium—then
it is important to be able to decide whether these states are stable or
unstable. Here stability is reviewed through exercises on population dy-
namics, a field of interest to both the biologist and the environmental
scientist.

1 (B) a) The population, defined as the number of live individuals
P (t), of a certain species in the presence of unlimited food and in
the absence of predators or competing species, is described by the
Malthus model

dP

dt
= aP,

where the birth rate a is constant. Find the future evolution of the
species population.

b) A better model takes into account the fact that, as the popu-
lation grows, its members begin competing between themselves for
food or other resources, or get poisoned by their own waste products,
and the growth cannot continue indefinitely at the same rate. The
Verhulst model describes the rate of change of the population with
the famous logistic equation4

dP

dt
= aP (1 − αP ) ,

where a and α are positive constants. Solve for the evolution of the
population P (t).

Solution
a) This elementary ODE is solved by writing

1
P

dP

dt
=

d

dt

(
ln

P

P0

)
= a,

4The logistic equation x′ = ax (1 − x) exhibits chaos associated with its nonlinear character
when the parameter a is varied: there is a bifurcation as the value of a increases.
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which is immediately integrated, yielding the solution

P (t) = P0 eat,

where P0 = P (0). The growth of the population is exponential and
unbounded in the Malthusian model.

b) To solve the Verhulst model, we write the logistic equation as

1
P (1 − αP )

dP

dt
= a

and decompose the fraction on the left-hand side as follows:

A

P
+

B

1 − αP
=

1
P (1 − αP )

.

The appropriate values of A and B that make this decomposition
possible are easily found to be A = 1 and B = α, hence

1
P

dP

dt
+

α

1 − αP

dP

dt
= a.

Integration gives∫ P

P0

dP ′

P ′ −
∫ (αP−1)

(αP0−1)

d (αP ′ − 1)
αP ′ − 1

= at,

and

ln
(

P

P0

)
− ln

∣∣∣∣ αP − 1
αP0 − 1

∣∣∣∣ = at.

By using the properties of logarithms and taking the exponential of
both sides, we obtain

P (αP0 − 1)
P0 (αP − 1)

= eαt

and finally, after straightforward algebraic manipulations,

P (t) =
P0 eat

1 − αP0 + αP0 eat
=

P0

αP0 + (1 − αP0) e−at
,

where again, the integration constant has the meaning P0 = P (0).

The late time (formally, as t → +∞) state of the population is
P ≈ 1/α irrespective of the initial condition P0—the population does
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not grow indefinitely as in the Malthus model, but it asymptotically
reaches a constant value. If one begins with a very small population,
i.e., if the initial condition satisfies P0 
 α−1, the approximation

P (t) =
P0 eat

1 − αP0 + αP0 (1 + ...)
≈ P0 eat (t → 0)

holds and the Malthus solution is recovered. The effects of the limit-
ing factor α are felt when the population becomes larger.
The asymptotic state of equilibrium P = 1/α is an exact solution of
the logistic equation, as seen by inspection, and it can be found by
setting dP/dt in the search for steady-state equilibrium solutions. It
is a stable solution and an attractor in the (t, P ) plane. In fact, if
the initial population is P0 > α−1, the solution will always be larger
than 1/α; otherwise the curve corresponding to P (t) would cross the
straight line representing P = α−1 in the (t, P ) plane: this is forbid-
den by the uniqueness theorems of the solutions of ODEs. (Similarly,
if P0 < α−1, then it is P (t) < α−1 for all times t.) Therefore, if
P0 > α−1, it is dP/dt = aP (1 − αP ) < 0 and P (t) is a monoton-
ically decreasing function. It cannot go to minus infinity because
otherwise it would cross the line P = α−1; hence it must converge
asymptotically to its lower bound α−1 with dP/dt → 0 as t → +∞
(similar conclusions hold if P0 < α−1). Therefore, P = α−1 is a
stable solution and an attractor in the phase space.

2 (B) The dynamics of a population P (t) of animals broken into spati-
ally separate subpopulations (a metapopulation) can be described by
the ODE [43, 25]

dP

dt
= cP (1 − P ) − mP,

where c and m are positive constants describing the intrinsic growth
rate and the mortality rate, respectively. Analyze qualitatively the
solutions of the ODE and predict the future of the population.

Solution
If the initial condition P (0) is in a small neighborhood of the origin in
the (t, P ) plane, i.e., if P (0) 
 1, we can neglect the quadratic term
in the ODE, which reduces to the elementary asymptotic equation

dP

dt
≈ (c − m) P (t → 0, P (0) 
 1) ,

which has the solution

P (t) = P (0) e(c−m)t.



36 EXERCISES IN ENVIRONMENTAL PHYSICS

If c > m (birth rate larger than the mortality rate), this asymp-
totic solution grows exponentially fast and the approximation P 
 1
breaks down. If c < m instead, the species declines exponentially
fast and soon becomes extinct (P (t) → 0). Since in this case P (t) <
P (0) 
 1, the approximation that led to the asymptotic equation
holds better and better and this solution remains valid at all times
t > 0. However, it is limited to initial conditions such that P (0) 
 1.

Let us consider now the case of arbitrary initial conditions: if c = m,
the ODE can be rewritten as

− 1
P 2

dP

dt
=

d

dt

(
1
P

)
= c,

which is integrated to yield

P (t) =
1

c (t − t0)

with t0 an integration constant. In terms of the initial condition
P0 ≡ P (0), one finds

P (t) =
P0

1 + P0ct
.

It should be noted, however, that this exact solution corresponds to
an unrealistic fine-tuning in the parameters c and m.

For arbitrary initial conditions, let us look for equilibrium solutions
with dP/dt = 0. These are obtained by setting [(c − m) − cP ] P = 0,
which yields (discarding the trivial solution)

P = P∗ ≡ 1 − m

c
,

and it only exists for c ≥ m because P is forced to be nonnegative.

Let us study the stability of this equilibrium solution for c > m.
Consider a generic solution P (t), which satisfies the ODE rewritten
as

dP

dt
= c (P∗ − P ) P :

because c and m are positive, the sign of dP/dt is the same as the
sign of P∗ − P and, due to the uniqueness theorems for the solutions
of ODEs, the curve representing the solution P (t) cannot cross the
straight line P ≡ P∗; hence it is always P > P∗ or P < P∗.
If P > P∗, then dP/dt < 0, and the solution P (t) is always strictly de-
creasing. Therefore, it will asymptotically approach its lower bound
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P∗ with dP/dt → 0 as t → +∞. If instead P < P∗, then dP/dt > 0,
and the solution P (t) always increases approaching its upper bound
P∗ asymptotically. Therefore, P = P∗ is a stable solution and an
attractor in the (t, P ) plane.
For c < m there are no equilibrium solutions,

dP

dt
= (c − m) P − cP 2

is always negative, and any solution P (t) is always strictly decreasing
approaching zero asymptotically: the species becomes extinct.

1.4 Functions of two or more variables
As soon as the dependence of physical quantities on space—in addition

to time—is introduced, one faces functions of more than one variable.
Many ideas from the theory of functions of a single variable are gener-
alized, with obvious complications arising from the increased number of
dimensions.

1.4.1 Differentiation
1 (B) Find an expression for the gradient 	∇f(r), where f(r) is a reg-

ular function of the radius r ≡ |	x| =
√

x2 + y2 + z2.

Solution
We have

	∇f(r) = f ′ 	∇r = f ′
(

∂r
∂x , ∂r

∂y , ∂r
∂z

)

= f ′ (x
r , y

r , z
r

)
= f ′ �x

r , (1.4)

where f ′ ≡ df/dr.

2 (B) Compute 	∇f and the directional derivative ∂f/∂s, where

f(x, y) = x sin
(
x2 + y2)

and 	s = 1√
5

(1, 2).

Solution
The partial derivatives of f are

∂f

∂x
= sin

(
x2 + y2)+ 2x2 cos

(
x2 + y2) ,

∂f

∂y
= 2xy cos

(
x2 + y2) ;
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hence the gradient of f is

	∇f =
(

∂f

∂x
,
∂f

∂y

)

=
(
sin
(
x2 + y2)+ 2x2 cos

(
x2 + y2) , 2xy cos

(
x2 + y2)) .

The directional derivative of f along 	s is

∂f

∂s
≡ 	s · 	∇f =

(
1√
5
,

2√
5

)

· (
sin
(
x2 + y2)+ 2x2 cos

(
x2 + y2) , 2xy cos

(
x2 + y2))

=
1√
5

[
sin
(
x2 + y2)+ 2x (x + 2y) cos

(
x2 + y2)] .

3 (B) Find the directional derivative ∂f/∂u of the polynomial

f(x, y, z) = x2y + 3xyz

in the direction identified by the unit vector 	u = (l, m, n), where
l2 + m2 + n2 = 1.

Solution
The directional derivative is

∂f

∂u
≡ 	u · 	∇f = (l, m, n) · (2xy + 3yz, x2 + 3xz, 3xy

)
= ly (2x + 3z) + mx (x + 3z) + 3nxy.

4 (B) Compute the Laplacian of the function

f (x, y, z) = sinx sin y cos z.

Solution

The first partial derivatives of f are

∂f

∂x
= cos x sin y cos z,

∂f

∂y
= sin x cos y cos z,

∂f

∂z
= − sin x sin y sin z,
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and the second partial derivatives appearing in the Laplacian are

∂2f

∂x2 =
∂2f

∂y2 =
∂2f

∂z2 = − sin x sin y cos z.

The Laplacian of f is therefore

∇2f ≡ ∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2 = −3 sinx sin y cos z.

5 (B) Prove Euler’s theorem: if f (x, y, z) is a regular function of the
three variables x, y, and z that satisfies the property

f (λx, λy, λz) = λf (x, y, z) (1.5)

for any real number λ and for any triple (x, y, z), then

f (x, y, z) = x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
. (1.6)

Solution

To prove the theorem, differentiate Eq. (1.5) with respect to λ, ob-
taining

∂f

∂ (λx)
x +

∂f

∂ (λy)
y +

∂f

∂ (λz)
z = f (x, y, z) .

This equation holds true for any real λ �= 0, in particular for λ = 1.
By setting λ = 1, the desired property (1.6) follows.

6 (B) Prove that the expression f (x, y) = 0, where f (x, y) = x sin y+y
defines implicitly a function y(x) in a neighborhood of the point
(0, 0). Is this function unique? Motivate your answer and compute
the derivative dy/dx.

Solution
The function f is continuous with continuous first derivatives on the
entire (x, y) plane, f (0, 0) = 0, and fy (0, 0) = 1 �= 0. The hypothe-
ses of the implicit function theorem are satisfied and the theorem
guarantees that an implicit function y(x) is uniquely defined and is
continuous in a neighborhood [−ε, ε] of x = 0, and is continuously
differentiable in (−ε, ε). The first partial derivatives of f are

fx = sin y, fy = x cos y + 1,
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and the implicit function y(x) has derivative

dy

dx
=

−fx (x, y(x))
fy (x, y(x))

= − sin (y(x))
x cos (y(x)) + 1

.

7 (B) Prove that the surfaces of constant f and g, where

f(x) = x2 − y2,

g(x) = xy + C

(with C a constant), are orthogonal to each other.

Solution
The functions f and g are defined and differentiable at any point
(x, y) in the plane. The surfaces of constant f and g are orthogonal
if and only if the gradients 	∇f and 	∇g are mutually perpendicular.
We have

	∇f ≡
(

∂f

∂x
,
∂f

∂y

)
= (2x,−2y) ,

	∇g ≡
(

∂g

∂x
,
∂g

∂y

)
= (y, x) ,

and
	∇f · 	∇g = 2xy − 2yx = 0.

The two surfaces are mutually orthogonal at every point (x, y) in the
plane.

1.4.2 Integration
1 (B) Compute the integral

I =
∫ ∫ ∫

Q
dxdydz xy2z3 ex,

where Q is the cube Q = [0, 1]× [0, 1]× [0, 1] in the three-dimensional
space (x, y, z).

Solution
The integrand is the product of three factors that depend only on x,
y, and z, and therefore the integral splits into the product of three
integrals,

I =
∫ ∫ ∫

Q
dxdydz xy2z3 ex =

∫ 1

0
dx x ex ·

∫ 1

0
dyy2 ·

∫ 1

0
dz z3.
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We compute the first integral by parts, obtaining∫ 1

0
dx x ex = [x ex] −

∫ 1

0
dx ex = [(x − 1) ex]10 = 1.

Then

I = 1 ·
[
y3

3

]1
0
·
[
z4

4

]1
0

=
1
12

.

2 (B) Compute the integral

I =
∫ ∫

T
dxdy y sin x,

where T is the triangle delimited by the x-axis and the straight lines
of equations x = π/2 and y = x.

Solution
It is convenient to integrate first with respect to y and then with
respect to x:∫ ∫

T
dxdy y sin x =

∫ π/2

0
dx

∫ x

0
dy y sin x =

∫ π/2

0
dx sin x

[
y2

2

]x

0

=
1
2

∫ π/2

0
dx x2 sin x.

The last integral is computed by parts,∫
dx x2 sin x = −x2 cos x +

∫
dx 2x cos x

= −x2 cos x + 2
[
x sin x −

∫
dx sin x

]

= −x2 cos x + 2x sin x + 2 cos x,

and therefore

I =
1
2
[−x2 cos x + 2x sin x + 2 cos x

]π/2
0 =

π

2
− 1.

3 (B) Compute the integral ∫ ∫
S

dxdy x2y,
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where S is the region of the plane delimited by the two parabolas of
equations y = x2 and y = 3x2, and the lines x = ±1.

Solution
It is convenient to integrate first with respect to the variable y and
then with respect to the variable x:

∫ ∫
S

dxdy x2y =
∫ +1

−1
dx x2

∫ 3x2

x2
dy y =

∫ +1

−1
dx x2

[
y2

2

]3x2

x2

=
1
2

∫ +1

−1
dx x2 [9x4 − x4] = 4

∫ +1

−1
dx x6

=
[
4x7

7

]+1

−1
=

8
7
.

4 (B) Compute the integral∫ ∫
S

dxdy
1

(x2 + y2)2
,

where S is the region of the plane between the circles of radii 2 and
3 centered on the origin.

Solution
It is convenient to use polar coordinates (r, ϕ); then the region S is
simply given by (r, ϕ) ∈ [2, 3] × [0, 2π] and the integrand is r−4. By
inserting the Jacobian factor r, we obtain∫ ∫

S
dxdy

1
(x2 + y2)2

=
∫ 3

2
dr

∫ 2π

0
dϕ

r

r4 =
∫ 2π

0
dϕ ·

∫ 3

2
dr r−3

= 2π

[
−1

2
r−2
]3

2
= −π

(
1
32 − 1

22

)
=

5π

36
.

5 (B) Compute the area of the circle C of radius R by using double inte-
grals. Compute the length of the circumference γ using line integrals.

Solution
Let the circle C be centered on the origin (0, 0, ); its area is computed
using polar coordinates (r, ϕ) with Jacobian r,

A ≡
∫

C

∫
dxdy =

∫
C

∫
drdϕ r =

∫ R

0
dr r

∫ 2π

0
dϕ
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= 2π

∫ R

0
dr r = 2π

[
r2

2

]R

0
= πR2,

the well-known result.

The circumference γ has the parametric representation

x(t) = R cos t,

y(t) = R sin t,

with 0 ≤ t ≤ 2π. The length of this curve is

l ≡
∫

γ
dl =

∫ 2π

0
dt
∣∣∣∣∣∣	T (t)

∣∣∣∣∣∣ ,
where 	T (t) is the tangent vector to γ. We have

	T =
(

dx

dt
,
dy

dt

)
= (−R sin t, R cos t)

and

l =
∫ 2π

0
dt
√

R2 sin2 t + R2 cos2 t = R

∫ 2π

0
dt = 2πR,

another well-known result.

6 (B) Compute the area and the volume of the sphere of radius R by
using double and triple integrals, respectively.

Solution
Let S be the sphere of radius R centered on the origin (0, 0, 0); its
area and volume are computed using polar coordinates (r, θ, ϕ), with
Jacobian r2 sin θ. The area of the sphere is

A ≡
∫ ∫

S2
R2dθdϕ sin θ = R2

∫ π

0
dθ sin θ

∫ 2π

0
dϕ

= 2πR2 [− cos θ]π0 = 4πR2,

a well-known result. The volume of the sphere is

V ≡
∫ ∫

S
dxdydz =

∫ ∫
S

dr dθ dϕ r2 sin θ
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=
∫ R

0
dr r2

∫ π

0
dθ sin θ

∫ 2π

0
dϕ

= 2π

[
r3

3

]R

0
[− cos θ]π0 =

4πR3

3
,

another well-known result.

7 (B) Compute the integral
∫
γ dl xy, where the curve γ is the segment

of the circle of unit radius centered on the origin and lying in the first
quadrant (x > 0 and y > 0).

Solution
A parametric representation of the curve γ is

x(t) = cos t,

y(t) = sin t,

where 0 ≤ t ≤ π/2. The tangent to the circle is the vector

	T =
(

dx

dt
,
dy

dt

)
= (− sin t, cos t) ,

and the integral is∫
γ
dl xy ≡

∫ π/2

0
dt x(t)y(t)

∣∣∣∣∣∣ 	T (t)
∣∣∣∣∣∣

=
∫ π/2

0
dt sin t cos t

√
sin2 t + cos2 t

=
∫ π/2

0
dt sin t cos t =

[
sin2 t

2

]π/2

0
=

1
2
.

8 (B) Compute the integral∫
γ
dl
(
x2 + y2) ln (x2 + y2) ,

where the curve γ is the segment of the spiral of equation r = eϕ

comprised between r = 0 and r = 10.
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Solution
It is convenient to use polar coordinates (r, ϕ); then a parametric
representation of the spiral is its equation r = eϕ using ϕ as a para-
meter. We are interested in the portion of the spiral between r = 0
and r = 10, which correspond to ϕ → −∞ and ϕ = ln 10, respec-
tively. In polar coordinates

x(ϕ) = r cos ϕ,

y(ϕ) = r sin ϕ,

we have, along the spiral,

x = eϕ cos ϕ,

y = eϕ sin ϕ,

and the tangent to γ is the vector

	T (ϕ) =
(

dx

dϕ
,
dy

dϕ

)
= eϕ (cos ϕ − sin ϕ, sin ϕ + cos ϕ) ,

and, setting

f (x, y) ≡ (x2 + y2) ln (x2 + y2) = e2ϕ 2ϕ eϕ
√

2,

the required integral∫
γ
dl f(x, y) ≡

∫
γ
dϕ f (x(ϕ), y(ϕ))

∣∣∣∣∣∣	T (ϕ)
∣∣∣∣∣∣

=
∫ ln 10

−∞
dϕ

√
2 eϕ2ϕ e2ϕ

= 2
√

2
∫ ln 10

−∞
dϕϕ e3ϕ =

2
√

2
3

[
e3ϕ

3

(
ϕ − 1

3

)]ln 10

−∞

=
2
√

2
3

103

3

(
ln 10 − 1

3

)
� 618.9.

1.5 Vector calculus
Vector calculus is covered in many excellent mathematics textbooks.

Alternatively, more physically minded students who are not inclined to-
ward such books may find it more practical to refer to textbooks on
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mechanics or electromagnetism that usually devote an entire introduc-
tory chapter to vector calculus (e.g., Refs. [59, 22]).

1 (C, B) Explain the difference between scalars and vectors and pro-
vide examples of scalar and vectorial physical quantities. What is a
scalar field? What is a vector field?

Solution 1 (level C)
Physically, a scalar quantity is completely characterized by its mag-
nitude while a vector quantity is characterized by its magnitude and
direction. Examples of scalars are mass, temperature, time, while
position with respect to a fixed origin, velocity, acceleration, force,
electric and magnetic field are vector quantities.

A scalar field is a scalar function f(	x) of the position 	x = (x, y, z),
while a vector field is a vector quantity that depends on position,
	a = 	a (	x).

Solution 2 (level B)
A mathematically more precise definition of scalars and vectors can
be given by using the transformation properties of their components
under a coordinate transformation

xi −→ x′i = x′i(xj). (1.7)

A scalar s is unchanged by coordinate transformation, i.e., s′ = s,
while a covariant vector 	a with components ai transforms according
to

ai −→ a′i =
∑

j

∂x′i

∂xj
aj .

A 1-form or contravariant vector with components ωi instead trans-
forms according to

ωi −→ ω′
i =
∑

l

∂xl

∂x′i ωl.

Both vectors and 1-forms can be used to represent vectorial quanti-
ties.

2 (A) Find the vector product of the vectors

	a = (3, 0, 2) , 	b = (1, 5, 0) .
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Solution
The vector product of 	a and 	b is given by the pseudodeterminant

	a ×	b =

∣∣∣∣∣∣
	i 	j 	k
3 0 2
1 5 0

∣∣∣∣∣∣ = −10	i + 2	j + 15	k = (−10, 2, 15) ,

where	i,	j, and 	k denote the unit vectors in the x, y, and z directions,
respectively.

3 (A) Show that the following vectors are perpendicular to each other:

	a = (1, 2, 5) , 	b = (2,−2, 2/5) .

Solution
The scalar product of 	a and 	b is

	a ·	b = (1, 2, 5) ·
⎛
⎝ 2

−2
2/5

⎞
⎠ = 2 − 4 + 2 = 0,

and therefore 	a and 	b are perpendicular.

4 (B) Compute 	a×	a×	a×	x, where 	a is a constant vector and 	x is the
position vector.

Solution
Let 	a = (ax, ay, az) and 	x = (x, y, z) in Cartesian coordinates; then

	a × 	x =

∣∣∣∣∣∣∣∣∣∣

	ex 	ey 	ez

ax ay az

x y z

∣∣∣∣∣∣∣∣∣∣
= 	ex (ayz − azy) − 	ey (axz − azx) + 	ez (axy − ayx)

and

	a × 	a × 	x =

∣∣∣∣∣∣∣∣∣∣

	ex 	ey 	ez

ax ay az

(ayz − azy) (azx − axz) (axy − ayx)

∣∣∣∣∣∣∣∣∣∣
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= 	ex [ay (axy − ayx) − az (azx − axz)]

−	ey [ax (axy − ayx) − az (ayz − azy)]

+	ez [ax (azx − axz) − ay (ayz − azy)]

= 	ex

(
axayy − a2

yx − a2
zx + axazz

)
+	ey

(
ayazz − a2

zy − a2
xy + axayx

)
+	ez

(
axazx − a2

xz − a2
yz + ayazy

)
≡ Ax	ex + Ay	ey + Az	ez

and finally

	a × 	a × 	a × 	x =

∣∣∣∣∣∣∣∣∣∣

	ex 	ey 	ez

ax ay az

Ax Ay Az

∣∣∣∣∣∣∣∣∣∣
= 	ex

(−a2
xayz − a3

yz + a2
yazy − aya

2
zz + a3

zy + a2
xazy

)
−	ey

(
a2

xazx − a3
xz − axa2

yz + a2
yazx + a3

zx − axa2
zz
)

+	ez

(−axa2
zy − a3

xy + a2
xayz − axa2

yy + a3
yx + aya

2
zx
)
.

5 (B) Compute the divergences of the vector fields

	a =
(
x2 + yz

)
	i +
(
y2 + 3xz

)
	j +

(
z2 − xy

)
	k,

	b =
(
x2 + xz

)
	i +
(
y2 + xyz

)
	j +

(
3zy2)	k.

Solution
The divergence of 	a is

	∇ · 	a ≡ ∂ax

∂x
+

∂ay

∂y
+

∂az

∂z
= 2(x + y + z),
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while the divergence of 	b is

	∇ ·	b ≡ ∂bx

∂x
+

∂by

∂y
+

∂bz

∂z

= (2x + z) + (2y + xz) + 3y2

= 2(x + y) + 3y2 + z(1 + x).

6 (B) Calculate the Laplacian of

f (x, y, x) = x2 sin y + sin x sin z.

Solution
The first partial derivatives of f are

∂f

∂x
= 2x sin y + cos x sin z,

∂f

∂y
= x2 cos y,

∂f

∂z
= sin x cos z,

while the second derivatives needed to form the Laplacian are

∂2f

∂x2 = 2 sin y − sin x sin z,

∂2f

∂y2 = −x2 sin y,

∂2f

∂z2 = − sin x sin z.

The Laplacian of f is

∇2f =
∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2 =
(
2 − x2) sin y − 2 sinx sin z.

7 (B) Prove that the divergence of a gradient is equal to the Laplacian
operator, or

	∇ ·
(

	∇f
)

= ∇2f
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for any regular function f .

Solution
It is sufficient to verify the identity in Cartesian coordinates and
then it will be true in any coordinate system because this quantity is
a scalar. We have

	∇ ·
(

	∇f
)

=
∂

∂x

[(
	∇f
)

x

]
+

∂

∂y

[(
	∇f
)

y

]
+

∂

∂z

[(
	∇f
)

z

]

=
∂

∂x

(
∂f

∂x

)
+

∂

∂y

(
∂f

∂y

)
+

∂

∂z

(
∂f

∂z

)
=

∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2 ≡ ∇2f.

8 (B) Prove that

∇2 (fg) = f∇2g + 2 	∇f · 	∇g + g∇2f.

Solution
We have

∇2 (fg) = 	∇ ·
[
	∇ (fg)

]

= 	∇ ·
[(

	∇f
)

g + f
(

	∇g
)]

= 	∇ ·
[(

	∇f
)

g
]

+ 	∇ ·
(
f 	∇g

)

=
[
	∇ · 	∇f

]
g +
(

	∇f
)

·
(

	∇g
)

+
(

	∇f
)

·
(

	∇g
)

+ f
[
	∇ ·
(

	∇g
)]

≡ (∇2f
)
g + 2 	∇f · 	∇g + f∇2g.

9 (B) Find the expressions of 	∇ · 	x and of 	∇ × 	x, where 	x = (x, y, z) is
the position vector in Cartesian coordinates. Can the position vector
be expressed as the gradient of a scalar function?

Solution
The divergence of the position vector is

	∇ · 	x = 	∇ · (x, y, z) =
∂x

∂x
+

∂y

∂y
+

∂z

∂z
= 1 + 1 + 1 = 3,
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while the curl of the position vector is given by

	∇ × 	x =

∣∣∣∣∣∣∣∣∣∣

	i 	j 	k

∂x ∂y ∂z

x y z

∣∣∣∣∣∣∣∣∣∣
= 	i (∂yz − ∂zy) −	j (∂xz − ∂zx) + 	k (∂xy − ∂yx) = 0.

The vanishing of the curl tells us that one can express the position
vector as the gradient of a scalar; in fact, it is straightforward to
verify5 that 	x = 	∇ (r2/2

)
, where r =

√
x2 + y2 + z2 = |	x|.

10 (B) Find the curl of the vector field

	a (	x) =	i (x ey) +	j (xy ln z) + 	k (xyz ez) .

Solution
In the calculation of the curl of 	a it is convenient to use the pseudo-
determinant

	∇ × 	a =

∣∣∣∣∣∣∣∣∣∣

	i 	j 	k

∂x ∂y ∂z

ax ay az

∣∣∣∣∣∣∣∣∣∣
= 	i (∂yaz − ∂zay) −	j (∂xaz − ∂zax) + 	k (∂xay − ∂yax)

= x
(
z ez − y

z

)
	i − yz ez	j + (y ln z − x ey) 	k.

11 (B) The notation 	∇×	a for the curl of the vector field 	a may suggest
that 	∇ × 	a is orthogonal to the vector field 	a. Is this true?

Solution
In order to decide whether or not this is true, we examine the scalar
product 	a ·

(
	∇ × 	a

)
and see if it is zero (which would mean that 	a

5This is trivial in one dimensions, in which x = d
(
x2/2

)
/dx.
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and 	∇ × 	a are orthogonal). We have

	∇ × 	a =

∣∣∣∣∣∣∣∣∣∣

	ex 	ey 	ez

∂x ∂y ∂z

ax ay az

∣∣∣∣∣∣∣∣∣∣
= 	ex (∂yaz − ∂zay) − 	ey (∂xaz − ∂zax) + 	ez (∂xay − ∂yax) ,

and the required scalar product is

	a ·
(

	∇ × 	a
)

= ax (∂yaz − ∂zay)−ay (∂xaz − ∂zax)+az (∂xay − ∂yax) .

This scalar product does not vanish in general, and therefore the
suggested property of 	∇ × 	a is not true.

12 (B) Prove that, for any vector 	a,(
	a · 	∇

)
	x = 	a.

Solution
We have(

	a · 	∇
)

	x ≡
(

ax
∂	x

∂x
+ ay

∂	x

∂y
+ az

∂	x

∂z

)

= ax (1, 0, 0) + ay (0, 1, 0) + az (0, 0, 1) = 	a.

13 (B) Prove that 	∇ × 	a = 0 if 	a is the gradient of a scalar field.

Solution
Let 	a = 	∇f , where f(	x) is a regular function; then

	∇ × 	∇f =

∣∣∣∣∣∣∣∣∣∣

	i 	j 	k

∂x ∂y ∂z

∂xf ∂yf ∂zf

∣∣∣∣∣∣∣∣∣∣
= 	i (∂y∂zf − ∂z∂yf) −	j (∂x∂zf − ∂z∂xf)

+	k (∂x∂yf − ∂y∂xf) = 0,
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due to the fact that mixed second derivatives commute for a regular
function,

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
(i, j = 1, 2, 3) .

14 (B) Prove that 	∇·	a = 0 if 	a = 	∇×	b, where 	b is a regular vector field.

Solution
We have

	a = 	∇ ×	b =

∣∣∣∣∣∣∣∣∣∣

	i 	j 	k

∂x ∂y ∂z

bx by bz

∣∣∣∣∣∣∣∣∣∣
= 	i (∂ybz − ∂zby) −	j (∂xbz − ∂zbx) + 	k (∂xby − ∂ybx)

and
	∇ · 	a = ∂xax + ∂yay + ∂zaz

= ∂x∂ybz − ∂x∂zby − ∂y∂xbz + ∂y∂zbx + ∂z∂xby − ∂z∂ybx = 0

because mixed second derivatives commute for a regular field, i.e.,
∂i∂jbs = ∂j∂ibs for i, j, s = 1, 2, 3.

15 (B) Compute the Laplacian of the vector field

	a =
(
x3,−3xz, 2x2y2z

) ≡ (ax, ay, az) .

Solution

By definition, the Laplacian of the vector field 	a is

∇2	a ≡ (∇2ax,∇2ay,∇2az

)
.

The first partial derivatives of the vector components are

∂ax

∂x
= 3x2,

∂ax

∂y
= 0,

∂ax

∂z
= 0,

∂ay

∂x
= −3z,

∂ay

∂y
= 0,

∂ay

∂z
= −3x,

∂az

∂x
= 4xy2z,

∂az

∂y
= 4x2yz,

∂az

∂z
= 2x2y2.
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The second derivatives needed to construct the Laplacian of each
component are

∂2ax

∂x2 = 6x,
∂2ax

∂y2 = 0,
∂2ax

∂z2 = 0,

∂2ay

∂x2 = 0,
∂2ay

∂y2 = 0,
∂2ay

∂z2 = 0,

∂2az

∂x2 = 4y2z,
∂2az

∂y2 = 4x2z,
∂2az

∂z2 = 0,

and the Laplacian of 	a is

∇2	a =
(∇2ax,∇2ay,∇2az

)
=
(
6x, 0, 4y2z + 4x2z

)
.

16 (B) Prove that

	∇ ×
(

	∇ × 	a
)

= 	∇
(

	∇ · 	a
)

− ∇2	a (1.8)

in Cartesian coordinates.6

Solution
Let 	b denote the curl

	b ≡ 	∇ × 	a =

∣∣∣∣∣∣∣∣∣∣

	i 	j 	k

∂x ∂y ∂z

ax ay az

∣∣∣∣∣∣∣∣∣∣
= 	i (∂yaz − ∂zay) −	j (∂xaz − ∂zax) + 	k (∂xay − ∂yax) .

The curl of 	b is

	∇ ×	b =

∣∣∣∣∣∣∣∣∣∣

	i 	j 	k

∂x ∂y ∂z

bx by bz

∣∣∣∣∣∣∣∣∣∣
=	i (∂ybz − ∂zby)

−	j (∂xbz − ∂zbx) + 	k (∂xby − ∂ybx)

6Note that Eq. (1.8) is valid only in Cartesian coordinates.
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= 	i
(
∂y∂xay − ∂2

yyax + ∂z∂xaz − ∂2
zzax

)
−	j
(
∂2

xxay − ∂x∂yax − ∂z∂yaz + ∂2
zzay

)
+	k
(−∂2

xxaz + ∂x∂zax − ∂2
yyaz + ∂y∂zay

)
= 	i

{
∂x (∂yay + ∂zaz) − (∂2

yy + ∂2
zz

)
ax

}
+	j
{
∂y (∂xax + ∂zaz) − (∂2

xx + ∂2
zz

)
ay

}
+	k
{
∂z (∂xax + ∂yay) − (∂2

xx + ∂2
yy

)
az

}
= 	i

{
∂x

(
	∇ · 	a

)
− ∇2ax

}
+	j
{

∂y

(
	∇ · 	a

)
− ∇2ay

}

+	k
{

∂z

(
	∇ · 	a

)
− ∇2az

}

= 	∇
(

	∇ · 	a
)

− ∇2	a.

17 (B) Compute the curl

	∇ ×
(

	er

r2

)
.

Solution
It is convenient to use spherical coordinates (r, θ, ϕ) with 	er, 	eθ, and
	eϕ denoting the associated unit vectors; then, for a generic n (and in
particular for n = −2, which is the case given)

	A ≡ rn 	er = (rn, 0, 0) .

By using the expression of the curl operator in spherical coordinates
(see Appendix C), we obtain

	∇ × 	A =
1

r sin θ

[
∂

∂θ
(sin θAϕ) − ∂Aθ

∂ϕ

]
	er

+
1
r

[
1

sin θ

∂Ar

∂ϕ
− ∂

∂r
(rAϕ)

]
	eθ

+
1
r

[
∂

∂r
(rAθ) − ∂Ar

∂θ

]
	eϕ
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=
1

r sin θ

∂ (rn)
∂ϕ

	eθ − 1
r

∂ (rn)
∂θ

	eϕ = 0.

18 (B) Prove Green’s theorem∫ ∫ ∫
V

d3	x
(
f∇2g − g∇2f

)
=
∫ ∫

S

(
f 	∇g − g	∇f

)
· d	S (1.9)

by using the Gauss theorem, where V is a finite volume delimited by
the closed surface S.

Solution
By applying the divergence operator to the vector

(
f 	∇g − g	∇f

)
, we

obtain

	∇·
(
f 	∇g − g	∇f

)
= 	∇f ·	∇g+f∇2g−	∇g ·	∇f −g∇2f = f∇2g−g∇2f.

(1.10)
By integrating the left-hand side of Eq. (1.10) over the volume V and
applying the Gauss theorem, we obtain∫ ∫ ∫

V
d3	x 	∇ ·

(
f 	∇g − g	∇f

)
=
∫ ∫

S

(
f 	∇g − g	∇f

)
· d	S. (1.11)

The integration of Eq. (1.10) over the same volume yields∫ ∫ ∫
V

d3	x 	∇ ·
(
f 	∇g − g	∇f

)
=
∫ ∫ ∫

V
d3	x

(
f∇2g − g∇2f

)
;

(1.12)
a comparison of Eqs. (1.11) and (1.12) then yields Green’s theo-
rem (1.9).

1.6 Partial differential equations
While ordinary differential equations (ODEs) describe physical sys-

tems with a finite number of degrees of freedom (such as, in mechanics,
point particles and rigid bodies), distributed systems with an infinite
number of degrees of freedom are more realistic, and they are described
by partial differential equations (PDEs). Often the solution of a PDE
can be reduced to the problem of solving a set of ODEs, e.g., by the
method of separation of variables.

1 (B, C) Provide physical examples of elliptic, parabolic, and hyper-
bolic partial differential equations.
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Solution
An example of elliptic PDE is the Laplace equation, which in Carte-
sian coordinates assumes the form

∇2f =
∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2 = 0. (1.13)

The Laplace equation is satisfied, e.g., by the Newtonian gravitational
potential outside mass distributions, by the electrostatic potential
outside charge distributions, by the temperature, the concentration
of a diffusing chemical, or by the hydraulic potential in stationary
situations.

An example of parabolic PDE is

∂f

∂t
= α∇2f, (1.14)

where α is a constant. If f (t, 	x) represents the temperature, Eq. (1.14)
describes heat transfer by conduction in a homogeneous medium (see
Chapter 5). If instead f describes the concentration of a pollutant,
Eq. (1.14) describes its spreading by diffusion processes (see Chap-
ter 8).

An example of hyperbolic PDE is the d’Alembert or wave equation

f ≡ ∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2 − 1
v2

∂2f

∂t2
= 0,

where v is a constant representing the speed of propagation of the
wave f(t, x, y, z) in a homogeneous medium.

2 (B, C) Oceanic circulation, weather, and climate are examples of
fluid-dynamical systems. The basic equations of fluid dynamics are
the Navier–Stokes equations

ρ
dvi

dt
= − ∂P

∂xi
+ 2

3∑
j=1

∂

∂xj
(ησij) + fi, (1.15)

where 	v, ρ, and η are, respectively, the velocity field, the density,
and the dynamic viscosity coefficient of the fluid. P is the pressure,
fi is the volume density of external forces, and σij is the stress ten-
sor. Oceanic circulation, weather, and climate are known to exhibit
chaotic phenomena in the form of turbulence—this is the reason why
it is impossible to obtain an accurate weather forecast on a scale of
weeks or months—and chaos occurs in systems obeying nonlinear and
dissipative equations. Point out the nonlinearity and the dissipative
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features of the Navier–Stokes Eqs. (1.15).

Solution
Dissipation is present through the term 2 ∂ (ησij) /∂xj representing
the action of viscosity. Viscosity describes internal friction in the
fluid and friction between the fluid and its boundaries, both sources
of energy dissipation. Nonlinearity is evident in the velocity term

dvi(t, 	x)
dt

=
∂vi

∂t
+

3∑
j=1

∂vi

∂xj

dxj

dt
=

∂vi

∂t
+

3∑
j=1

∂vi

∂xj
vj =

∂vi

∂t
+
(
	v · 	∇	v

)i
,

where the advective term

(
	v · 	∇	v

)i
=

3∑
k=1

vk ∂vi

∂xk

is nonlinear.

3 (B) Is f (x, y) = α
(
x2 − y2

)
+ βxy, where α and β are constants, a

harmonic function?

Solution
By definition a harmonic function satisfies the Laplace equation

∇2f = 0.

The first derivatives of f are

∂f

∂x
= 2αx + 2βy,

∂f

∂y
= −2αy + βx,

and the second derivatives needed to form the Laplacian are

∂2f

∂x2 = 2α,
∂2f

∂y2 = −2α.

The Laplacian of f is

∇2f ≡ ∂2f

∂x2 +
∂2f

∂y2 = 0,

and therefore f is a harmonic function.
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4 (B) Solve the two-dimensional boundary-value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂x2 + ∂2u

∂y2 = 0,

u (0, y) = 0,

u (a, y) = f(y),

u (x, 0) = 0,

u (x, b) = 0,

for (x, y) ∈ [0, a] × [0, b], where f(y) is a regular function and, for
consistency, f(0) = f(b) = 0.

Solution
We proceed by separation of variables looking for solutions of the
form

u (x, y) = X(x)Y (y).

Substitution into the Laplace equation and division by u = XY yield

1
X

d2X

dx2 +
1
Y

d2Y

dy2 = 0.

The first term on the left-hand side depends only on x, the second
term depends only on y, and this equation can only be satisfied if
both terms are constant and opposite to each other. We set the first
term equal to λ, d2X/Xdx2 = λ, and the second term equal to −λ,
d2Y/Y dy2 = −λ, obtaining the two ODEs

d2X

dx2 − λX = 0,

d2Y

dy2 + λY = 0,

with the boundary conditions X(0) = 0 and Y (0) = Y (b) = 0.

If λ < 0, we set λ ≡ −µ2 (where µ > 0) for convenience and the
general solution of the equation for Y (y) is

Y (y) = C1 eµy + C2 e−µy,

with C1,2 integration constants. The boundary condition Y (0) = 0
yields C1 + C2 = 0, while the boundary condition Y (b) = 0 yields
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C1 eµb + C2 e−µb = 0. By substituting C2 = −C1 from the first equa-
tion into the second equation, one obtains C1 sinh (µb) = 0. Since
sinh (µb) �= 0 for λ < 0, it must be C1 = −C2 = 0, yielding only the
trivial solution, which is not acceptable because it does not satisfy
the boundary condition u (a, y) = f(y). There are no solutions for
λ < 0.
If λ = 0, the equations for X and Y are d2X/dx2 = 0 and d2Y/dy2 =
0, with linear solution Y (y) = αy + β, with α and β constants. The
boundary condition Y (0) = 0 implies that β = 0, while the boundary
condition Y (b) = 0 requires that also α = 0. Again, this leaves only
the trivial solution, which is not acceptable. There are no solutions
for λ = 0.
If λ > 0, we set λ = µ2 for convenience and the general solutions of
the equations for X and Y are

X(x) = C1 eµx + C2 e−µx,

Y (y) = D1 cos (µy) + D2 sin (µy) ,

with C1,2, D1,2 integration constants. The boundary condition X(0) =
0 yields C1 + C2 = 0 and

X(x) = C sinh (µx) ,

while the boundary conditions Y (0) = Y (b) = 0 yield D1 = 0 and
D2 sin (µb) = 0, which implies µb = nπ with n = 1, 2, 3 ... or the
discrete values

λn = µ2
n =

(nπ

b

)2
(n = 1, 2, 3 ... )

for the separation constant. The fundamental solutions of the prob-
lem are

un (t, x) = Xn(x)Yn(y) = sinh
(nπx

b

)
sin
(nπy

b

)
.

According to the superposition principle expressing the linearity of
the Laplace equation, the general solution of the problem is the series

u (x, y) =
+∞∑
n=1

cn sinh
(nπx

b

)
sin
(nπy

b

)
.

The coefficients cn are determined by imposing the last boundary
condition u (a, y) = f(y), i.e.,

f(y) =
+∞∑
n=1

cn sinh
(nπa

b

)
sin
(nπy

b

)
.



Mathematical Methods 61

This equation expresses the fact that the series is the Fourier se-
ries of f(y) on [0, b] and therefore the coefficients cn are the Fourier
coefficients

cn =
2

b sinh (nπa/b)

∫ b

0
dy f(y) sin

(nπy

b

)
(n = 1, 2, 3, ...) .

5 (B) Consider the Laplace equation in the n-dimensional space with
coordinates

(
x1, x2, ... , xn

)
∇2u =

∂2u

∂ (x1)2
+

∂2u

∂ (x2)2
+ ... +

∂2u

∂ (xn)2
= 0,

and find all its solutions (harmonic functions) that depend only on
r ≡∑n

k=1
(
xk
)2.

Solution
Let u = u(r) and ∇2u = 0. The first derivatives of u are

∂u

∂xi
=

du

dr

∂r

∂xi
≡ u′ xi

r
.

The second derivatives of u needed to form the Laplacian ∇2u are

∂2u

∂ (xi)2
= u′′

(
xi

r

)2

+
u′

r
− u′xi

r2
∂r

∂xi
=

= u′′
(

xi

r

)2

+
u′

r
− u′ (xi

)2
r3 .

The Laplacian of u is therefore, using
∑n

i=1
(
xi
)2 = r2,

∇2u =
n∑

i=1

[
u′′ (xi

)2
r2 +

u′

r
− u′ (xi

)2
r3

]
= u′′ + (n − 1)

u′

r
= 0.

This ODE can easily be integrated by writing

u′′

u′ +
n − 1

r
= 0

or (
lnu′)′ + (n − 1) (ln r)′ = 0,

which, using the properties of logarithms, becomes

u′ =
C

rn−1 ,
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where C is an integration constant. This equation can be further
integrated. If n �= 2, we have

u(r) = C r2−n + D (n �= 2) ,

while for n = 2 we have

u(r) = C ln r + D (n = 2) ,

where C and D are arbitrary integration constants.

6 (B) Solve the one-dimensional initial-boundary-value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t = a ∂2u

∂x2 ,

∂u
∂x (t, 0) = 0,

∂u
∂x (t, l) = 0,

u (0, x) = f(x),

for x ∈ [0, l] and t ≥ 0, where f(x) is a regular function on [0, l]. This
is a heat conduction problem in a rod with insulated ends—in fact,
u is the temperature and the flux density q′′ = −k∂u/∂x is zero at
both ends.

Solution
We proceed by separation of variables looking for solutions of the
form

u (t, x) = T (t)X(x).
By substituting this form into the one-dimensional heat equation, one
obtains

X
dT

dt
= aT

d2X

dx2 .

Division by au = a TX yields

1
aT

dT

dt
=

1
X

d2X

dx2 ,

where the left-hand side depends only on t and the right-hand side
depends only on x. This equation can only be satisfied if both sides
are constant and have the same value (separation constant), which
we will call −λ. Hence we obtain the two ODEs

dT

dt
+ λaT = 0,

d2X

dx2 + λX = 0.
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The PDE is reduced to two simple ODEs, and the price to pay for
this simplification is that we have two equations instead of one. The
time equation is immediately integrated, yielding

T (t) = e−λat.

We do not attribute a multiplicative integration constant to this solu-
tion because we retain arbitrary integration constants in X(x), which
multiplies T (t) in the solution.

The boundary condition ux(t, 0) = 0 yields T (t)dX/dx(0) = 0 and,
since T (t) cannot vanish identically, it must be dX/dx(0) = 0. Simi-
larly, the boundary condition at x = l, ux(t, l) = 0, yields dX/dx(l) =
0. Let us consider all the possible real values of the separation const-
ant λ.

If λ < 0, we set λ ≡ −µ2 (where µ > 0) for convenience. The spatial
equation is

d2X

dx2 − µ2X = 0,

and it has the general solution in [0, l]

X(x) = C1 eµx + C2 e−µx,

with C1,2 integration constants. The boundary condition dX/dx = 0
at x = 0, l implies that

µ (C1 − C2) = 0,

µ
(
C1 eµl − C2 e−µl

)
= 0.

This linear system of algebraic equations admits only the solution
(C1, C2) = (0, 0); therefore, for λ < 0 there is only the trivial solution,
which is not acceptable because it does not satisfy the initial condition
u (0, x) = f(x).

If λ = 0, the spatial equation is d2X/dx2 = 0, which has the general
linear solution X(x) = αx+β, with α and β constants. The boundary
condition dX/dx(0) = 0 implies that α = 0 and the only acceptable
solution for λ = 0 is X =constant.

If λ > 0, we set λ = µ2 for convenience and the spatial equation is
the harmonic oscillator equation

d2X

dx2 + µ2X = 0
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with general solution

X(x) = C1 cos (µx) + C2 sin (µx) ,

with C1,2 integration constants. The boundary condition dX/dx(0) =
0 implies C2 = 0, while the boundary condition dX/dx(l) = 0 yields
C1 sin (µl) = 0. Since C1 cannot be zero (otherwise we have only the
trivial solution, which does not satisfy the initial conditions), it must
be sin (µl) = 0, or µl = nπ with n = 1, 2, 3 ... (it cannot be n = 0
for µ �= 0). The separation constant therefore can only assume the
discrete values (eigenvalues of the problem)

λn = µ2
n =

(nπ

l

)2
(n = 1, 2, 3 ... ) ,

and the corresponding eigenfunctions are

Xn(x) = cos
(nπx

l

)
.

The fundamental solutions of the problem are

un (t, x) = Tn(t)Xn(x) = e− n2π2at
l2 cos

(nπx

l

)
.

The heat equation is linear and satisfies the superposition principle,
which allows one to obtain the general solution as the series

u (t, x) =
c0

2
+

+∞∑
n=1

cne− n2π2at
l2 cos

(nπx

l

)
,

where the first term on the left-hand side represents a steady-state
constant solution corresponding to λ = 0, and the second term is
a transient that decays as time goes by. The solution is not com-
plete though, because the coefficients cn of the series have not yet
been determined. This is achieved by imposing the initial condition
u (0, x) = f(x), which yields

f(x) =
c0

2
+

+∞∑
n=1

cn cos
(nπx

l

)
.

This equation expresses the fact that the coefficients cn are the Fourier
coefficients of the function f(x) on [0, l], or

cn =
2
l

∫ l

0
dx f(x) cos

(nπx

l

)
(n = 1, 2, 3, ...) .
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7 (B) Verify that the plane wave

f(t, 	x) = f0 ei(�k·�x−ωt),

where f0,	k, and ω are constants, satisfies the d’Alembert or wave
equation

∇2f − 1
c2

∂2f

∂t2
= 0

provided that ω = c|	k|.

Solution
The first-order partial derivatives of f are

∂f

∂xi
= ikif0 ei(�k·�x−ωt) = ikif

or, in compact notation, 	∇f = i	kf , while

∂f

∂t
= −iωf0 ei(�k·�x−ωt) = −iωf,

and

∇2f − 1
c2

∂2f

∂t2

=
∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2 − 1
c2

∂2f

∂t2

=
(
i	k
)2

f − 1
c2 (iω)2 f

= −
(

	k2 − ω2

c2

)
f.

The last expression vanishes if ω = c
∣∣∣	k∣∣∣, which is equivalent to the

usual relation c = λ ν between the wavelength λ, the phase velocity
c, and the frequency ν of the wave if one remembers that k = 2π/λ
and ω = 2πν.
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8 (B) Solve the one-dimensional initial-boundary-value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂x2 − 1

v2
∂2u
∂t2

= 0,

u (t, 0) = 0, u (t, l) = 0,

u (0, x) = f(x),

∂u
∂t (0, x) = 0

for x ∈ [0, l] and t ≥ 0, where f(x) is a regular function on [0, l] with
f(0) = f(l) = 0.

Solution
We proceed by separation of variables assuming that

u (t, x) = T (t)X(x);

substitution into the wave equation and division by u = TX yield

1
X

d2X

dx2 =
1
v2

d2T

dt2
.

Since the left-hand side depends only on x and the right-hand side
depends only t, this equation can only be satisfied if both sides are
constant and have the same value −λ (separation constant). This
yields the two ODEs

d2T

dt2
+ λv2T = 0,

d2X

dx2 + λX = 0.

If λ < 0, we set λ ≡ −µ2 (with µ > 0) for convenience. The spatial
equation

d2X

dx2 − µ2X = 0

has the general solution

X(x) = C1 eµx + C2 e−µx,

with C1,2 integration constants. The boundary conditions u (t, 0) = 0
and u (t, l) = 0 yield X(0) = 0 and X(l) = 0, respectively, which
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translate into

C1 + C2 = 0,

C1 eµl + C2 e−µl = 0.

Substitution of the first equation into the second gives C1 sinh (µl) =
0, which, for µ �= 0, is only satisfied by C1 = −C2 = 0; there is only
the trivial solution for λ < 0 and it is not acceptable because it does
not satisfy the initial condition u (0, x) = f(x).

If λ = 0, the spatial equation is d2X/dx2 = 0, which has the general
solution X(x) = αx + β, with α and β constants. The boundary
conditions at x = 0, l yield β = 0 and α = 0, respectively, and there
are no nontrivial solutions for λ = 0.

If λ > 0, we set λ = µ2 for convenience. The spatial equation

d2X

dx2 + µ2X = 0

has the general solution

X(x) = C1 cos (µx) + C2 sin (µx) ,

with C1,2 integration constants. The boundary condition X(0) = 0
yields C1 = 0, while the second boundary condition X(l) = 0 yields
C2 sin (µl) = 0. Since C2 cannot be zero (otherwise the only solution
is the trivial solution, which does not satisfy the initial conditions),
it must be sin (µl) = 0, or µn = nπ/l with n = 1, 2, 3 ... . The
eigenvalues of the problem are therefore the discrete values

λn =
(nπ

l

)2
(n = 1, 2, 3 ... ) ,

and the corresponding eigenfunctions are

yn(x) = sin
(nπx

l

)
.

Let us solve now the time equation

d2T

dt2
+ λnv2T = 0;

the general solution is

Tn(t) = αn cos
(√

λn vt
)

+ βn sin
(√

λn vt
)

.
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The initial condition ut (0, x) ≡ 0 yields βn = 0 for all n, and the
fundamental solutions of the problem are

un (t, x) = Tn(t)Xn(x) = cos
(

nπvt

l

)
sin
(nπx

l

)
.

The wave equation is linear and we can superpose the fundamental
solutions to form the general solution

u (t, x) =
+∞∑
n=1

αn cos
(

nπvt

l

)
sin
(nπx

l

)
.

The coefficients αn are determined by imposing the initial condition
u(0, x) = f(x), which has not yet been used. This yields

f(x) =
+∞∑
n=1

αn sin
(nπx

l

)
,

i.e., the coefficients αn are the Fourier coefficients of the function f(x)
on [0, l], or

αn =
2
l

∫ l

0
dx f(x) sin

(nπx

l

)
(n = 1, 2, 3 ...) .

9 (B) Provide a physical interpretation of the fact that

f(	x) =
1
r

≡ 1√
x2 + y2 + z2

is a (distributional) solution of the partial differential equation

∇2f = −4πδ(3) (x, y, z) ,

where δ(3) (	x) = δ (x) δ (y) δ (z) is the Dirac delta in three dimensions
[17], i.e., a generalized function such that∫ ∫ ∫

all space
d3	x δ(3) (	x) = 1.

Hint: Consider the Newtonian potential generated by a point mass M for r > 0.

Solution
To recognize that 1/r is a solution of this PDE (in the sense of dis-
tributions [17]) consider the Newtonian gravitational potential Φ due
to a point mass M located at the origin of the coordinates. It is well
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known that Φ = −GM/r, where G is the gravitational constant and
that, in general, Φ satisfies the Poisson equation

∇2Φ = −4πGρ (x, y, z) ,

where ρ(	x) is the mass density. Since the mass M is concentrated at
the point 	x = 0, one can express the corresponding mass density as

ρ (x, y, z) = M δ(3) (x, y, z)

and then

∇2Φ = −GM ∇2
(

1
r

)
= 4πGM δ(3) (x, y, z) ,

from which it follows that 1/r is a solution with the Dirac delta as a
source

∇2
(

1
r

)
= −4π δ(3) (x, y, z) .

The total mass in space is obtained, as usual, by integrating the mass
density ρ over all space and is given by∫ ∫ ∫

d3	x ρ (x, y, z) = M

∫ ∫ ∫
d3	x δ(3) (x, y, z) = M.

1.7 Tensors
Once the transition from scalars (naively, quantities with no indices)

to vectors (naively, quantities with one index) is made, one can gener-
alize to quantities with more than one index: tensors. Although they
usually do not appear in elementary physics and mathematics courses,
tensors are necessary to describe, for example, stresses in fluid dynamics
and elasticity theory, the inertial properties of a rigid body, the trans-
fer of momentum by an electromagnetic field, thermal conductivity in
an anisotropic medium, or the hydraulic conductivity in an anisotropic
aquifer in groundwater hydrology. An approachable reference is [65].

1 (B, C) What is a tensor with two contravariant indices? A tensor
with two covariant indices? A tensor with two mixed indices? Pro-
vide an example of a two-index tensor.

Solution
A tensor with two contravariant indices is an object with components
T ij labeled by two upper indices, that transforms according to

T ij −→ T ′ ij =
∑
l,m

∂x′i

∂xl

∂x′j

∂xm
T lm
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under the coordinate transformation xi −→ x′i. A tensor with two
covariant indices is an object with components Tij labeled by two
lower indices, that transforms according to

Tij −→ T ′
ij =

∑
l,m

∂xl

∂x′i
∂xm

∂x′j Tlm

under the coordinate transformation xi −→ x′i.
A tensor with two mixed indices is an object with components Ti

j

labeled by one upper and one lower index, that transforms according
to

Ti
j −→ T ′

i
j =
∑
l,m

∂xl

∂x′i
∂x′j

∂xm
Tl

m

under xi −→ x′i. The difference between covariant and contravariant
indices is relevant when curvilinear coordinates are used instead of
Cartesian ones, or when the metric is not Euclidean. Note that the
order of the mixed indices is important.

A simple example of a two-index tensor is built out a vector field, e.g.,
the velocity field vi in a fluid. The quantity T ij ≡ vi vj is a tensor
with two contravariant indices and it is symmetric because T ji = T ij

for all values of i and j. Another example is the tensor ∂vi/∂xj , often
used as an approximation of the stress tensor in fluid mechanics.

2 (B) Show that if the components of a tensor vanish in a coordinate
system, they vanish in any other coordinate system.

Solution
Let T ab...

cd... = 0 in the coordinate system
{
xi
}
. Then in any other

coordinate system
{
x′i} it is

T ′ab...
cd... =

n∑
e,f, ...=1

n∑
g,h, ...=1

∂x′a

∂xe

∂x′b

∂xf
...

∂xg

∂x′c
∂xh

∂x′d ... T ef...
gh... = 0

because T ef...
gh... = 0.

3 (B) Prove that the identity tensor with components δi
j is invariant

under coordinate transformations, i.e., that its components assume
the same values in any coordinate system. By using this property,
show that the trace

T ≡
n∑

i=1

T i
i
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of a two-index tensor T i
j is invariant under coordinate transforma-

tions.

Solution
Under a coordinate transformation xi −→ x′i, the components of the
identity tensor transform according to

δ′i
j =

n∑
k,l=1

∂x′i

∂xk

∂xl

∂x′j δk
l

=
n∑

k=1

∂x′i

∂xk

∂xk

∂x′j =

(using the chain rule)

=
∂x′i

∂x′j = δi
j .

The trace of a two-index tensor transforms under a change of coor-
dinates according to

T ′ ≡
n∑

i=1

T ′i
i =

n∑
i,j=1

T ′i
j δ′j

i =
n∑

i,k,l=1

∂x′i

∂xk

∂xl

∂x′j T k
l δ

j
i =

=
n∑

i,k,l=1

∂x′i

∂xk

∂xl

∂x′i T k
l =

n∑
i,k,l=1

∂xl

∂x′i
∂x′i

∂xk
T k

l

=
n∑

k,l=1

∂xl

∂xk
T k

l =
n∑

k,l=1

δk
l T k

l =
n∑

i=1

T l
l ≡ T.

4 (B) Any two-index tensor Tij can be decomposed into a symmetric
part T(ij) and an antisymmetric part T[ij] as follows:

Tij =
Tij + Tji

2
+

Tij − Tji

2
≡ T(ij) + T[ij],

where

T(ij) =
Tij + Tji

2
,

T[ij] =
Tij − Tji

2
.
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The identity is trivial. Show that this decomposition is unique.

Solution
We need to show that, if Tij = pij + qij is another decomposition of
Tij into a symmetric and an antisymmetric part, with pij = pji and
qij = −qji, then pij and qij coincide with T(ij) and T[ij], respectively.

Let us use the symmetry and antisymmetry properties of pij and qij

to write

Tij = pij + qij , (1.16)

Tji = pij − qij . (1.17)

Adding Eqs. (1.16) and (1.17) term to term yields

Tij + Tji = 2pij ,

or
pij = T(ij),

while subtracting Eq. (1.17) from Eq. (1.16) term to term yields

Tij − Tji = 2qij ,

or
qij = T[ij],

which is what we wanted to show.

5 (B) By using tensor algebra, prove that the scalar product 	a ·	b of two
vectors 	a and 	b is a scalar under coordinate transformations. Repeat
the proof for the contraction

n∑
i,j=1

AijB
ij

of the two-index tensors Aij and Bij .

Solution
For two vectors 	a and 	b in an n-dimensional space, we have

	a ·	b =
n∑

i=1

aib
i
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in the coordinate system
{
xi
}
. Under the coordinate transformation

xi −→ x′i, the scalar product transforms as

	a′ · 	b′ ≡
n∑

i=1

a′
ib

′i =
n∑

i,k,l=1

∂xl

∂x′i al
∂x′i

∂xk
bk

=
n∑

i,k,l=1

(
∂xl

∂x′i
∂x′i

∂xk

)
alb

k =
n∑

i,k,l=1

∂xl

∂xk
alb

k

=
n∑

i,k,l=1

δl
k alb

k =
n∑

i,k,l=1

alb
l ≡ 	a ·	b.

For the two-index tensors Aij and Bij , we have

n∑
i,j=1

A′
ijB

′ij =
n∑

i,j,k,l,r,s=1

∂xk

∂x′i
∂xl

∂x′j Akl
∂x′i

∂xr

∂x′j

∂xs
Brs

=
n∑

i,j,k,l,r,s=1

(
∂xk

∂x′i
∂x′i

∂xr

)(
∂xl

∂x′j
∂x′j

∂xs

)
Akl B

rs

=
n∑

k,l,r,s=1

δk
r δl

s AklB
rs =

n∑
k,l=1

AklB
kl,

i.e., the quantity
∑n

i,j=1 AijB
ij does not change under coordinate

transformations.

1.8 Dimensional analysis
Dimensional analysis is a subsidiary tool to avoid a more detailed anal-

ysis of physical problems—it shortcuts to a result that is usually correct
within one order of magnitude. Although the method of dimensional
analysis cannot provide an exact result (if it does, it is a coincidence), it
is nevertheless very useful to estimate physical quantities of interest in
a physical problem before attacking it with the full arsenal of mathema-
tical weapons available, or else resorting to experiment. The method of
dimensional analysis is also useful as a check of mathematical formulas
and very often reveals errors by showing the dimensional inconsistency
of a formula. In fact, the equations used must be dimensionally ho-
mogeneous, i.e., the left-hand side and the right-hand side must have
the same dimensions, and only quantities with the same dimensions can
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be added or subtracted in a mathematical expression.7 Similarly, the
argument of trigonometric, logarithmic, or exponential functions must
be dimensionless.

Dimensional analysis can range from a simple back-of-the-envelope
calculation to the more sophisticated analyses used in environmental
engineering (see, e.g., Ref. [4]). In certain situations where a complete
mathematical solution of an environmental physics or engineering prob-
lem is not possible, dimensional analysis proves to be extremely valuable.

Most first-year physics textbooks have a section on dimensional anal-
ysis that can be used for reference; Ref. [36] is entirely devoted to this
subject.

1 (B) Derive an approximate formula for the period of a simple pen-
dulum using only the method of dimensional analysis and neglecting
friction.

Solution
The period P of the pendulum has the dimensions of time. If we ne-
glect friction the physical quantities that are in principle of possible
relevance to determine the pendulum’s period are its length l, the
mass m of the bob, and the acceleration of gravity g. Assume that
P = lαmβgγ : then

[T ] = [Lα]
[
Mβ
] [

LγT−2γ
]

=
[
Lα+γT−2γMβ

]
,

and it must be

α + γ = 0,

−2γ = 1,

β = 0.

This linear system has solution

α =
1
2
, β = 0, γ = −1

2
;

hence, the desired approximate formula for the period of the pendu-
lum is

P =

√
l

g
.

7This principle of dimensional homogeneity was stated explicitly by Jean Baptiste Joseph
Fourier in his work La Théorie Analitique de la Chaleur in 1822.
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The mass of the bob does not appear in this formula: this is due to
the universality of free fall, i.e., to the fact that the acceleration of
gravity is the same for all bodies placed in a given gravitational field,
independently of their mass. Even if we forget about this experimen-
tal fact discovered long ago by Galileo, the method of dimensional
analysis allows us to recover it. For comparison, the exact formula
for the period of the simple pendulum (in the approximation of small
oscillations) is

P = 2π

√
l

g
.

2 (B) You are writing a physics exam and you don’t remember the for-
mula for the period of the compound pendulum, which you need in
order to solve a problem. Is it P = 2π

√
mgl/I or P = 2π

√
I/(mgl)?

(Here I, m, and l are the moment of inertia, mass, and distance be-
tween the center of gravity and the rotation axis of the pendulum,
while g is the acceleration of gravity.) Use the method of dimensions
to find out.

Solution
The dimensions of I and g are [I] =

[
ML2

]
and [g] =

[
LT−2

]
, so[√

mgl

I

]
=

[(
MLT−2L

ML2

)1/2
]

=
[
T−1] ;

the expression
√

mgl/I has the dimensions of the inverse of a time
and is therefore incorrect. On the other hand,[√

I

mgl

]
= [T ] ,

and P = 2π
√

I/mgl is the correct expression for the period of the
compound pendulum.

3 (B) Verify the dimensional correctness of Einstein’s famous formula
E = mc2, where m is the mass of a particle, E is its (rest) energy,
and c is the speed of light in vacuum.

Solution
Energy is a quantity homogeneous to work, which is dimensionally a
force multiplied by a length; hence,

[E] = [F ] [L] =
[
L2T−2M

]
;
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while [
m c2] = [M ]

[
L2T−2] ;

hence [E] =
[
mc2
]
.

4 (B) Suppose that you adopt length, time, and force (L, T , and F ) as
fundamental quantities instead of length, time, and mass (L, T , and
M). What would be the dimensions of mass, moment of inertia, and
mass density in this new hypothetical system of units?

Solution
Because force = mass × acceleration, in this hypothetical system of
units the dimensions of mass would be

[M ] =
[
F

a

]
=
[
FL−1T 2] .

A moment of inertia I would have dimensions

[I] =
[
ML2] =

[
FL−1T 2] [L2] =

[
FLT 2] ,

while mass density ρ would have dimensions

[ρ] =
[
ML−3] =

[
FL−1T 2] [L−3] =

[
FL−4T 2] .

5 (B) In gravitational physics there is a system of units in which the
gravitational constant G and the speed of light c are dimensionless,
and assume the value unity. This procedure avoids the need to write
G and c many times. Show that in these units length, time, and mass
all have the same dimensions. Find the conversion factor from mass
to length once the dimensions and numerical values of G and c are
restored in SI units.

Solution
In units in which G = c = 1, we have

[c] =
[
L

T

]
= [0] ,

which implies that [L] = [T ]. Further, the dimensions of the gravita-
tional constant G are [G] =

[
L3T−2M−1

]
, which yields

[0] =
[
LM−1]

and [M ] = [L] = [T ].
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When G and c are restored in SI units we have

[L] =
[
GαcβM

]
=
[
M−αL3αT−2α

] [
LβT−β

]
[M ]

=
[
L3α+βT−2α−βM−α+1

]
,

which yields the system

−α + 1 = 0,

3α + β = 1,

−2α − β = 0,

with solution
α = 1, β = −2,

and therefore GM/c2 has the dimensions of a length and G/c2 is the
conversion factor from mass to length.

6 (B) It is believed that the classical description of gravity must break
down at a very small length scale (the Planck length introduced by
Max Planck), at which gravity and quantum mechanics should merge
into an as-yet unknown theory of quantum gravity. Using only the
fundamental constants of gravity (the Newton constant G), electro-
magnetism (the speed of light in vacuum c), and quantum mechanics
(the reduced Planck constant �), derive expressions and numerical
values for the Planck scales of length, time, mass, and energy.

Solution
The fundamental constants G, c, and � have dimensions

[G] =
[
L3M−1T−2] ,

[c] =
[
LT−1] ,

[�] =
[
L2MT−1] .

One forms the Planck length lp = Gαcβ
�

γ with

[lp] =
[
L3αM−αT−2α

] [
LβT−β

] [
L2γMγT−γ

]
=
[
L3α+β+2γM−α+γT−2α−β−γ

]
,
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and therefore it must be

3α + β + 2γ = 1,

−α + γ = 0,

−2α − β − γ = 0.

This system has the solution

α = γ =
1
2
, β = − 3

2
;

hence the Planck length is

lp =

√
G�

c3 =

√(
6.67 · 10−11 N · m2 · kg−2) (1.05 · 10−34 J · s)

(3 · 108 m/s)3

= 1.6 · 10−35 m,

while the Planck time is simply

tp =
lp
c

=

√
G�

c5 = 5.3 · 10−44 s.

The Planck mass is given by mp = Gαcβ
�

γ , which now yields

[mp] =
[
L3αM−αT−2α

] [
LβT−β

] [
L2γMγT−γ

]
=
[
L3α+β+2γM−α+γT−2α−β−γ

]
and

3α + β + 2γ = 0,

−α + γ7 = 1,

−2α − β − γ = 0,

with the solution

α = −1
2
, β = γ =

1
2
;
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hence, the Planck mass is

mp =

√
c�

G
=

c2

G
lp = 2.2 · 10−8 kg,

and the Planck energy scale is found by noting that

Ep = mpc
2 =

√
c5�

G
= lp

c4

G
= 1.9 · 109 J.

7 (B, C) Give a reason why the argument of trigonometric, exponen-
tial, logarithmic, or hyperbolic functions must always be dimension-
less — consider, for example, the function sin x.

Solution
All these functions can be expanded in power series—for example,
for sinx,

sin x =
+∞∑
n=0

(−1)n x2n+1

(2n + 1)!
= x − x3

3!
+

x5

5!
+ ... .

If the argument x of the sine had dimensions, sin x should simulta-
neously have the dimensions of x and x3 and x5, ..., which is clearly
impossible.





Chapter 2

PLANET EARTH IN SPACE

When we contemplate the whole globe as one great dewdrop, stripped and dotted
with continents and islands, flying through space with other stars all singing
and shining together as one, the whole universe appears as an infinite storm of
beauty.

—John Muir, Travels in Alaska

Physics has identified four fundamental forces: gravity, the electro-
magnetic interaction, the strong nuclear force, and the weak interaction.
Although the gravitational force is the weakest of the four, it domin-
ates on the scale of the Earth, the planets, stars, stellar systems, and
on larger scales. Gravity rules the dynamics of planets, stars, galaxies,
galaxy clusters and superclusters, and of the universe itself. Newton’s
law of gravity dictates the shape of stars and planets, which is modified
only slightly by rotation.

The particular location of the Earth near a rather average star called
the Sun creates environmental conditions that are just right for life.
Probably many—if not most—of the stars in the Milky Way have plan-
ets and maybe some of them host forms of life. However, the presence
of life on the Earth should not be taken for granted, as several concomi-
tant factors contribute to make it possible. First, the distance of the
Earth from the Sun is such that temperature extremes found on plan-
ets closer or further away from the Sun are avoided. This property is
also due to the presence of the atmosphere, which mitigates tempera-
ture fluctuations. The Earth’s atmosphere can be retained because the
mass and size of our planet provide sufficient gravitational attraction to
keep the molecules of atmospheric gases that surround us moving at the
speeds corresponding to the temperatures typically found in the atmo-
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sphere. The presence of liquid water in the oceans and on land and in the
biomass is made possible by the surface temperature of the Earth being
in the range between 0◦C and 100◦C. The atmosphere screens life from
the harmful γ-rays, X-rays, and ultraviolet radiation that are common
in outer space.

The rotation of the Earth around the Sun and the spinning of the
Earth about its axis are responsible for the existence of the seasons,
the day and night cycle, the different insolation of different parts of
the planet, and for the various local climates. Differential absorption
of solar radiation and the consequent temperature gradients maintain
global and local atmospheric circulation with transport of mass, energy,
and momentum around the globe.

Photosynthesis by plants and algae provides a means of converting
the electromagnetic energy from the Sun into chemical energy available
to the food chain. Almost all the energy stored and used in physical,
chemical, and biological processes on the planet comes from the Sun.

2.1 Astronomy
The Earth is a planet orbiting a star in a stellar system comprising

other planets and celestial bodies: this basic fact determines essential
features such as the energy received from the Sun, which sustains life,
the diurnal and seasonal cycles, the reinforcing of the tides due to plane-
tary conjunctions, the rotation of the Earth affecting winds and oceanic
currents, or the fall of meteorites of various sizes on the planet.

Any standard first-year physics textbook will suffice as a reference for
the material in this section.

1 (A) Compute the angular and linear velocity of the Earth around
the Sun. Approximate the orbit with a circle of radius r =1 A.U.=
1.50 · 1011 m.

Solution
The orbital period is T = 1 year; hence, the angular velocity is

ω =
2π

T
=

2π

365 · 24 · 3600 s
= 1.99 · 10−7 rad

s
.

The linear speed of the Earth in its orbit is

v = ωr =
(

1.99 · 10−7 rad
s

)(
1.50 · 1011 m

)
= 29.9

km
s

.

2 (A) Derive Kepler’s third law of planetary motion from Newton’s
theory of gravity under the assumption of circular orbits.
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Solution
Assuming circular orbits, the centripetal force acting on any of the
planets is

F = mac = mω2r,

where m is the mass of the planet, ω its angular velocity, and r
the orbital radius. Newton’s law of gravitation yields the attractive
gravitational force between the planet and the Sun,

F =
GM	m

r2 ,

where M	 is the mass of the Sun. By comparing the last two equa-
tions the mass of the individual planet drops out and the rest of the
calculation does not depend on any individual planet. We obtain

ω2r =
GM	

r2 ,

or
ω2r3 = GM	,

where the right-hand side is a constant that has the same value for all
planets. Kepler’s third law (a phenomenological law) is thus derived
from Newton’s law of gravitation (a fundamental one).

3 (A, B) Compute the escape speed—the minimum speed that a body
must have in order to escape to infinity and forever leave the gravita-
tional attraction of the planet—from the surface of a planet of mass
M and radius R. Does the escape speed depend on the mass of the
body? Neglect the friction of the body with the atmosphere.

Solution 1 (level A)
The gravitational potential energy of a body of mass m and radial
coordinate r in the gravitational field of the planet is

Eg = − GMm

r
,

and it vanishes at infinity (r → +∞). The escape speed is computed
by assuming that the initial kinetic energy mv2/2 of the body leaving
the surface of the planet in radial (vertical) motion be just sufficient
to overcome the gravitational attraction—the body arrives at infinity
with asymptotically vanishing speed. The initial energy must equal
the final energy, i.e.,

1
2
mv2 − GMm

R
= 0.
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The mass m of the body cancels out and therefore the escape speed
does not depend on it—this is consistent with the equivalence prin-
ciple (universality of free fall [73]). The escape speed is

ve =
(

2GM

R

)1/2

.

Solution 2 (level B)
In order to leave the planet, the initial kinetic energy of the body of
mass m on the planet’s surface must equal the work done against the
gravitational force −GMm/r2 and required to take the mass m to
r = +∞,

1
2
mv2 =

∫ +∞

R
dr

GMm

r2 =
[
− GMm

r

]+∞

R

=
GMm

R
.

Hence, one finds

ve =
(

2GM

R

)1/2

.

The mass m of the body cancels out and therefore the escape speed
does not depend on it—this is consistent with the equivalence prin-
ciple (universality of free fall—see Ref. [73]). If friction can be ne-
glected, the escape speed is the same for a molecule and for a satellite.

4 (A) Arizona’s Meteor Crater was created 50,000 years ago by a metal-
lic meteorite with a mass estimated to be 5.00 · 108 kg. On impact
the meteorite vaporized. Assuming for simplicity that the mete-
orite was composed of iron, compare the minimum kinetic energy
of the meteorite and the energy necessary to melt and vaporize it.
The latent heats of fusion and vaporization of iron are, respectively,
2.89 ·105 J/kg and 63.4 ·105 J/kg, the melting point and boiling point
are 1535◦C and 3000◦C, and the specific heat is c = 0.107 Kcal/kg.

Solution
Consider a meteorite that starts from the radial distance r = ∞ with
zero kinetic energy and zero gravitational potential energy, hence zero
total energy. Assuming conservation of energy and neglecting friction
with the atmosphere (which is appropriate for a large meteorite), it
arrives on the surface of the Earth (r = R) with zero total energy

E =
1
2
mv2 − GM

r
= 0
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from which one deduces its speed v =
√

2GM/r, which is the escape
speed. If the initial kinetic energy of the meteorite is larger than zero,
its speed on arrival is larger than the escape speed from the planet
vesc =

√
2GM/R = 11.2 km/s. The kinetic energy of the meteorite

that generated Meteor Crater was

T ≥ 1
2

mv2
esc =

1
2
(
5.00 · 108 kg

) ·
(
1.12 · 104 m

s

)2
= 3.14 · 1016 J.

The energy necessary to melt and vaporize the mass of the meteorite
(assumed to be iron) is the sum of latent heat Lf m, the heat nec-
essary to raise its temperature from the melting to the boiling point
Q = cm∆T , and the latent heat1 Lvm,

E = (Lf + c∆T + Lv) m

=
[
2.89 · 105 J · kg−1 + 0.107 ·

(
4186

J
kg · (◦C)

)

× (3000◦C − 1535◦C)

+
(
63.4 · 105 J · kg−1)] (5.00 · 108 kg

)
= 3.64 · 1015 J.

The minimum kinetic energy of the meteorite was certainly sufficient
to vaporize it. The rest of its kinetic energy went into mechanical
work to create the crater, melting the rocks on the site (fused silica
have been found in the crater), and in the generation of earthquake
and sound waves.

5 (B) The probability of a 10 km-sized asteroid colliding with the Earth
is estimated to one event every 108 years. Many people believe that
such an impact caused the extinction of dinosaurs approximately 65
million years ago. Compute the minimum speed and kinetic energy
of a 10 km-sized iron asteroid falling on the Earth in a head-on col-
lision. For simplicity, assume that the asteroid starts from rest very
far away and describe it as a homogeneous sphere. Compare your
result with the energy of a 10 megaton hydrogen bomb. The density
of iron is ρ = 7.8 · 103 kg/m3 and 1 ton (of TNT) is equivalent to

1We make the simplifying assumption that the vaporized iron is not heated further.
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4.2 · 109 J.

Solution
Assume that the asteroid starts from rest at infinity in a head-on col-
lision. For a large asteroid only a small fraction of the kinetic energy
is dissipated into friction with the atmosphere and one can assume
that the total energy E of the asteroid is conserved. At r = ∞ the
total energy is

E =
1
2

mv2 − GMm

r
= 0

and, upon impact with the surface of the Earth at r = R, the asteroid
has the same energy. The previous equation yields, at the Earth
radius R,

v =

√
2GM

R
= 11.2

km
s

.

The speed of the asteroid equals the escape speed from the surface of
the Earth. The mass of the asteroid (assumed to be a homogeneous
sphere of radius r = 5 km and uniform mass density equal to the
density of iron) is

m =
4π r3

3
ρ =

4π

3
(
5 · 103 m

)3(7.8 · 103 kg
m3

)
= 4.1 · 1015 kg.

The minimum kinetic energy of the asteroid is then
1
2

mv2 =
1
2
(
4.1 · 1015 kg

) (
1.2 · 103 m

s

)2
= 3 · 1021 J.

This energy is equivalent to

3 · 1021 J
4.2 · 1016 J

= 7 · 104

hydrogen bombs: the impact of such an asteroid with the Earth would
be catastrophic.

6 (A) Assuming that the Sun radiates like a blackbody at 5800 K,
what is the value of the solar constant on the surface of Neptune,
30.2 astronomical units (A.U.) away? 1 A.U. = 1.5 · 1011 m, and the
radius of the Sun is R	 = 7 · 108 m.

Solution
The solar constant on the surface of Neptune is the energy received
per unit time and per unit of normal area,

SNept =
L	

4πd2 =

(
σT 4	

) · (4πR2	
)

4πd2 = σT 4
	

(
R	
d

)2

,
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where L	 is the solar luminosity (energy emitted per unit time), d
is the average distance between Neptune and the Sun, and σ is the
Stefan–Boltzmann constant. Numerically, we have

SNept =
(

5.67 · 10−8 W
m2 · K4

)
· (5800 K)4 ·

(
7 · 108 m

30.2 · 1.5 · 1011 m

)2

= 1.5
W
m2 .

2.2 Planet Earth
The physical and chemical parameters of planet Earth—such as mass,

radius, angular momentum, average density, chemical composition, and
solar constant—differentiate it from the other planets in the solar sys-
tem and determine its essential features. These include the strength of
gravity, the surface temperature, the existence and chemical composition
of the atmosphere, the atmospheric pressure, geological activity, and so
forth. In turn, these features are responsible for the existence of liquid
oceans, deserts, forested areas, icecaps, and mountains, for the global
climate, the atmospheric and oceanic circulation, the thermal inertia of
the oceans, and for the hydrologic, rock, and other cycles.

1 (A, C) As a first approximation the Earth is considered as a sphere
of average radius R = 6370 km. This neglects a bulge at the equa-
tor, flattening at the poles, and local irregularities. What fraction of
the Earth’s radius is the tallest mountain? The depth of the deep-
est ocean trench? The average ocean depth? Does your result mean
that one can treat the Earth as a perfect sphere when planning the
operation of a satellite?

Solution
The average radius of the Earth is R = 6370 km; the tallest mountain
is Mt. Everest at 8848 m, for which

h

R
=

8848 m
6.37 · 106 m

� 1.4 · 10−3.

The deepest trench is the Marianas trench, 11 km deep, for which

h

R
=

11 km
6370 km

� 1.7 · 10−3.

The average ocean depth is 3.8 km and

h

R
=

3.8 km
6370 km

≈ 6 · 10−4.
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It is reasonable to neglect these local irregularities in a first approx-
imation. However, the gravitational field of the Earth is not spheri-
cally symmetric because local overdensities and underdensities deter-
mine gravitational anomalies and deviations from the monopole field
of a perfect sphere that are important for satellite motion.

2 (A) a) What is the distance along the surface of the Earth between
two points on the same meridian separated by one degree of lati-
tude?
b) What is the distance between two points at the same latitude
λ = 50◦S separated by one degree of longitude ϕ?

Solution
a) This is the distance between two points on a the perimeter of a
great circle2 (meridian) and is given by L = λR, where R is the Earth
radius and λ the latitude angle separating the two points, expressed
in radians. Numerically,

L = λR =
(

π
1◦

180◦

)(
6.37 · 106 m

)
= 1.11 · 105 m = 111 km.

b) Two points at the same latitude λ lie on a parallel, which is a
circle of radius R cos λ (not a great circle): if they are a longitudinal
angle ϕ apart, their linear distance L′ along the Earth’s surface is
ϕR cos λ, where ϕ must be expressed in radians. Numerically, for the
case assigned,

L′ = ϕR cos λ =
(

π
1◦

180◦

)(
6.37 · 106 m

)
cos (50◦)

= 7.15 · 104 m = 71.5 km.

3 (A) At a point of latitude λ the angle θ between the radial direction
and the solar rays is given by

cos θ = sin λ sin δ + cos λ cos δ cos (ωt) ,

where the declination δ is the latitude at which the Sun is at the
zenith at noon (δ depends on the day of the year) and ω = 2π/P ,
with P = 24 hours (the phase is chosen so that t = 0 at noon). Find
the latitudes λ (δ) such that the Sun never sets.

2A great circle is a section of the sphere containing a diameter of the sphere.
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Solution
Consider first the Northern Hemisphere, where the Sun never sets if
it is cos θ ≥ 0 at all times t during the day, that is,

sin λ sin δ ≥ − cos λ cos δ cos (ωt)

and, since cos λ, cos δ ≥ 0, we can write tan λ tan δ ≥ − cos (ωt) at
all times t. Since −1 ≤ − cos (ωt) ≤ 1 this inequality is satisfied at
all times only if tanλ tan δ ≥ 1. By using the trigonometric identity

tan (λ + δ) =
tanλ + tan δ

1 − tanλ tan δ
,

the inequality is rewritten as

1 − tanλ + tan δ

tan (λ + δ)
≥ 1.

Taking into account the fact that both tanλ and tan δ are positive in
the Northern Hemisphere, it must be tan (λ + δ) ≤ 0 with λ, δ ≥ 0.
This implies that λ + δ ≥ π/2, or

λ (δ) ≥ π

2
− δ :

at latitudes λ satisfying this inequality the Sun never sets.

Similarly, in the Southern Hemisphere it must be

tanλ + tan δ

tan (λ + δ)
≤ 0,

but now −π/2 ≤ λ, δ ≤ 0 and tanλ, tan δ ≤ 0, so it must be

tan (λ + δ) ≥ 0

and therefore
λ (δ) ≤ − π

2
− δ.

4 (B) An exceptionally well-funded geographer with a taste for moun-
taineering has counted all the peaks and passes on Earth, finding
them to be n and m, respectively. Can you tell her how many valleys
are on Earth, without counting them?

Solution
According to the Poincaré index theorem the sum of the indices of a
vector field on a surface of genus γ is 2 − 2γ. Consider the elevation
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h as a regular function of two coordinates on the surface of an oth-
erwise spherical Earth, and the gradient 	H = −	∇h as vector field.
The index of maxima (summits) and minima (valleys) of h is +1, the
index of saddle points (passes) is −1, while the genus of a sphere is
γ = 0. Therefore,

n (peaks) + n (valleys) − n (passes) = 2

and the number of valleys on Earth is n (valleys) = 2 − n + m.

5 (A) Explain how the Cavendish experiment measuring the gravita-
tional constant G yielded a value for the mass of the Earth. Compute
the average density of the Earth and compare it with the average den-
sity for rocks and soil in the crust, ρ = 2.2 ·103 kg/m3. What can one
argue about the density of the Earth’s core?

Solution
The Cavendish experiment provided an experimental value for the
gravitational constant—the value of G is today measured as G =
6.67 · 10−11 N · m2 · kg−2. The acceleration of a body on the surface
of the Earth is

g =
GM

R2 ,

where M and R are, respectively, the Earth’s mass and radius. One
then obtains the value of the mass of the Earth

M =
gR2

G
.

Since g is easily measurable and has the average value 9.81 m · s−2

and the radius of the Earth, approximately R = 6370 km, has been
known since the times of Erathostenes’ calculation, the Cavendish
experiment provides the value of M

M =

(
9.81 m · s−2

) · (6.37 · 106 m
)2

6.67 · 10−11 N · m2 · kg−2 = 5.97 · 1024 kg.

The average density of the Earth is then

〈ρ〉 =
M

4πR3/3
=

3 · (5.97 · 1024 kg
)

4π (6.37 · 106 m)3
= 5.51 · 103 kg

m3 .

This value is considerably larger (2.5 times) than the average density
of the crust; hence, the core of the planet is significantly denser than
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the crust. The value of 〈ρ〉 is typical of metals and one can argue
that the Earth has a metallic core.

6 (B) Compute the moment of inertia of a homogeneous sphere with
respect to an axis passing through its center and express the result as
a function of the radius R and the mass M of the sphere. Apply your
result to estimate the angular momentum of the spinning Earth by
treating it as a sphere of constant density, mass M = 5.978 · 1024 kg,
and radius R = 6.378 · 106 m.

Solution
The moment of inertia is

I =
∫ ∫ ∫

d3	x ρ d2 (	x) ,

where ρ is the density of the sphere and d (	x) the distance of a generic
point of the sphere from the rotation axis z. Since d2 = x2 + y2 =
r2 sin2 θ in polar coordinates

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ,

we have

I = ρ

∫ R

0
dr

∫ π

0
dθ

∫ 2π

0
dϕ r2 sin θ r2 sin2 θ

= ρ

∫ R

0
dr r4 ·

∫ π

0
dθ sin3 θ · 2π = 2π

R5

5
ρ

∫ π

0
dθ sin3 θ.

Integration by parts gives∫ π

0
dθ sin3 θ = − cos θ sin2 θ

∣∣π
0 − 2

∫ π

0
d(cos θ) cos2 θ

= 2
∫ +1

−1
dx x2 =

2x3

3

∣∣∣∣
+1

−1
=

4
3
,

and
I =

8π

15
R5ρ.

The mass of the sphere is

M = ρ · 4π

3
R3,

and the moment of inertia can be written as

I =
2
5

MR2.
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For the Earth spinning with the period of one day the angular mo-
mentum is

L = Iω =
2
5

MR2ω

=
2
5
(
5.978 · 1024 kg

) · (6.378 · 106 m
)2 · 2π

24 · 3600 s

= 7.074 · 1033 kg · m2

s

in the approximation in which the Earth is treated as a sphere of
constant density. In reality, the core density is higher than the crust
and mantle density and this fact decreases the value of the moment
of inertia with respect to the estimated value.

7 (B) Write an expression for the centrifugal force acting on a particle
at a point with latitude λ on the surface of the Earth. Can the cen-
trifugal acceleration be derived from a potential?

Solution 1
The centrifugal force is perpendicular to the rotation axis and is
directed away from it. Its magnitude on a particle of mass m is
Fc = mω2rd, where ω = 2π/P , P is the rotational period equal
to the sidereal day3 of 23 h 56 min 4 s = 8.6164 · 104 s, and rd is
the orthogonal distance to the rotation axis. For a particle on the
surface of the Earth (radius R) at latitude λ it is rd = R cos λ and
Fc = mω2R cos λ. The magnitude of the centrifugal force is maxi-
mum at the equator and zero at the poles. This force can be derived
from the centrifugal potential

Vc (x, y, z) = − 1
2

ω2r2
d = − 1

2
ω2R2 cos2 λ = − 1

2
ω2 (x2 + y2)

in Cartesian coordinates (x, y, z) with the origin at the center of the
Earth and with the z-axis aligned with the rotation axis. It is easy
to verify that the centrifugal force is given by 	Fc = −m	∇Vc.

3The sidereal day (23 h 56′ 4′′) is the time taken for a fixed point on the Earth to regain its
position with respect to the fixed stars. Because of the fact that the Earth revolves around
the Sun, the sidereal day is not the same as the solar day of 24 h. The solar day is a little
longer than the sidereal day because, while the Earth spins about its axis, it also moves along
its orbit around the Sun and, as a result, it has to spin a little longer in order for the fixed
point on the surface of the Earth to regain the position that it had with respect to the Sun.
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Solution 2
A more rigorous solution is the following: use a Cartesian coordinates
system with the origin at the center of the Earth and with the rotation
axis as z-axis. The centrifugal acceleration is [20] 	ac = −	ω × 	ω ×
	x, where the vector 	ω is directed along the rotation axis and has
magnitude equal to the angular velocity ω, and 	x is the position
vector. The centrifugal force on a particle of mass m is 	Fc = m	ac.
In order to decide whether the vector field 	ac can be derived from
a potential we examine its curl. If 	∇ × 	ac = 0 then there exists4 a
scalar function Vc such that 	ac = −	∇Vc (the negative sign is a mere
convention). By using the vector calculus identity

	∇ ×
(
	a ×	b

)
= 	a

(
	∇ ·	b

)
−	b
(

	∇ · 	a
)

+
(
	b · 	∇

)
	a −

(
	a · 	∇

)
	b

with 	a = 	ω and 	b = 	ω × 	x, one obtains

	∇ ×
(
	ω ×	b

)
= 	ω

(
	∇ ·	b

)
−
(
	ω · 	∇

)
(	ω × 	x)

= 	ω
[
	∇ · (	ω × 	x)

]
−
(
	ω · 	∇

)
(	ω × 	x)

because 	ω is a constant vector and its derivatives vanish. We have

	ω × 	x =

∣∣∣∣∣∣∣∣∣∣

	ex 	ey 	ez

ωx ωy ωz

x y z

∣∣∣∣∣∣∣∣∣∣
= ω (−y	ex + x	ey) ,

by using the fact that 	ω = (0, 0, ω) and

	∇ ×
(
	ω ×	b

)
= 	ω

[
	∇ · (	ω × 	x)

]
−
(
	ω · 	∇

)
(	ω × 	x)

= 	ω [∂x (−ωy) + ∂y (ωx)] − ω
∂

∂z
[−ωy	ex + ωx	ey]

= 0.

Therefore,
	∇ × 	ac = 	∇ × (−	ω × 	ω × 	x) = 0

4Remember that the curl of a gradient is always zero.
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and 	ac can be represented as the gradient of a scalar function. Let
us compute the components of 	ac. We have

	ω × (	ω × 	x) =

∣∣∣∣∣∣∣∣∣∣

	ex 	ey 	ez

0 0 ω

−ωy ωx 0

∣∣∣∣∣∣∣∣∣∣
= −ω2 (x	ex + y	ey) .

Then 	ac = −	ω × (	ω × 	x) =
(
ω2x, ω2y, 0

)
. By setting 	ac = −	∇Vc we

obtain
∂Vc

∂x
= −ω2x,

∂Vc

∂y
= −ω2y,

∂Vc

∂z
= 0,

and integration yields

Vc (x, y) = − ω2x2

2
+ f(y),

Vc (x, y) = − ω2y2

2
+ g(x),

where f(y) and g(x) are integration functions. By equating the right-
hand sides and setting to zero an arbitrary integration constant we
obtain

Vc (x, y) = − ω2
(
x2 + y2

)
2

= − ω2r2
d

2
= − ω2R2

2
cos2 λ.

8 (A) Estimate the relative importance of centrifugal forces and gravity
for the motion of a particle near the surface of the Earth (or for mo-
tions in the atmosphere and in the oceans) at latitude λ.

Solution
The relative importance of centrifugal forces and gravity can be mea-
sured by the ratio η of the centrifugal and the Newtonian gravita-
tional potential. In order of magnitude, by keeping only the dominant
monopole term in the gravitational potential, we obtain

η =
− (ω2R2 cos2 λ

)
/2

−GM/R
=

ω2R3 cos2 λ

2GM
≤ ω2R3

2GM
,

where ω and M are the rotational angular velocity and mass of the
Earth, respectively, and G is Newton’s constant. Numerically,

η ≤
( 2π

24·3600 s
)2 · (6.37 · 106 m

)3
2 (6.67 · 10−11 N · m2 · kg2) (5.978 · 1024 kg)
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≈ 2 · 10−3.

The centrifugal force at the equator, where it is maximum, is almost
negligible in comparison with the gravitational force. However, the
centrifugal force is not the only effect of rotation: the Coriolis force,
although small, is important for objects with a long flight time, and
for oceanic currents and atmospheric winds, because it accumulates
over the long flight time.

9 (B) The total geopotential (including both the gravitational and cen-
trifugal potentials) in spherical coordinates near the surface of the
Earth is

U (	x) = − GM

r
+

G

2r3 (C − A)
(
3 sin2 λ − 1

)− ω2r2

2
cos2 λ,

where M is the Earth mass, A and C are its moments of inertia with
respect to the x- and z- axes, λ is the geographic latitude, and ω is
the angular velocity. The flattening of the Earth is

ε ≡ Re − Rp

Re
,

where Re and Rp are the equatorial (λ = 0) and polar (λ = π/2)
radii, respectively. Find an approximate expression for the flatten-
ing ε as a function of M, A, C, ω, and Re by using the fact that ε 
 1.

Solution
The geoid (equipotential surface of U) passing through the equator
and the poles defines the surface of the Earth and satisfies

U0 = − GM

Re
− G

2R3
e

(C − A) − ω2R2
e

2

at the equator and

U0 = − GM

Rp
+

G

R3
p

(C − A)

at the poles, where U0 is constant over the surface of the Earth. By
equating the right-hand sides and substituting the value of Rp =
Re (1 − ε), we obtain

− 1
Re

+
(A − C)
2MR3

e

− ω2R2
e

2GM
= − (1 + ε)

Re
+

(C − A)
R3

eM
(1 + 3ε)
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Figure 2.1. Tides on the Earth due to the Moon.

to first order in ε and

ε

[
1 − 3 (C − A)

MR2
e

]
=

3 (C − A)
2R2

eM
+

ω2R3
e

2GM

and since C ≈ A ≈ MR2
e with

C − A

MR2
e

= O(ε) 
 1,

we obtain the expression of the Earth’s flattening

ε =
3 (C − A)

2MR2
e

+
ω2R3

e

2GM
+ ...

10 (A, B) Terrestrial tides are due to the action of the Moon and the
Sun. Consider two points of the Earth’s surface located, respectively
(Fig. 2.1),
1) on the line joining the Earth and the Moon’s centers, and closest
to the Moon,
2) at the antipodes of the first point. Compute the difference ∆g =
g1 − g2 in the magnitude of the gravitational acceleration due to the
Moon between these two points. Neglect the effect of the Sun.

Solution 1 (level A)
At point 1, closest to the Moon, the gravitational acceleration due to
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the Moon has magnitude

g1 =
GMM

(d − R)2
,

where R is the Earth’s radius, MM is the Moon mass, and d is the
Earth–Moon distance measured from the center of the Earth to the
center of the Moon. At the antipodal point 2 the gravitational accel-
eration due to the Moon has magnitude

g2 =
GMM

(d + R)2
.

The acceleration difference is

∆g ≡ g1 − g2 = GMM

(
1

(d − R)2
− 1

(d + R)2

)

=
4GMMR

d3(1 − R/d)2(1 + R/d)2
=

4GMMR

d3 [1 − (R/d)2]2
� 4GMMR

d3 ,

where the expression 1 − (R/d)2 in the denominator has been appro-
ximated with unity because R/d 
 1.

Solution 2 (level B)
The gravitational acceleration due the Moon at a point at distance
r from its center is g = −GMM/r2. Tides are due to the differential
acceleration at different points, i.e., to the acceleration gradient

dg

dr
=

d

dr

(−GMM

r2

)
=

2GMM

r3 .

At point 2 on the surface of the Earth, the farthest away from the
Moon, we have

g(d + R) = g(d − R) +
dg

dr

∣∣∣∣
d−R

(2R) + ...

and

∆g ≡ g(d + R) − g(d − R) � 4GMMR

(d − R)3
� 4GMMR

d3 .

11 (A) The differential accelerations due to the Moon on different points
of the ocean are responsible for tides on the Earth. The Sun also
contributes to terrestrial tides. Assume for simplicity that the Moon,
the Sun, and the Earth are aligned, and consider two points 1 and 2
on this line, with point 1 being closest to the Moon. Denote by
(∆g)M = g1 − g2 the differential acceleration due to the Moon be-
tween these two points, and by (∆g)S the same quantity due to the
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Sun. Compute the ratio (∆g)M/(∆g)S . The mass of the Moon is
7.35 · 1022 kg, the mass of the Sun is 1.99 · 1030 kg, the average
Earth–Sun distance is dES = 1.50 · 1011 m, and the average Earth–
Moon distance is dEM = 3.84 · 108 m.

Solution
From the previous problem, we have

(∆g)M =
4GMMR

d3
EM

, (∆g)S =
4GM	R

d3
ES

,

where MM and M	 are the Moon and the Sun masses, respectively.
The ratio (∆g)M/(∆g)S is

(∆g)M

(∆g)S
=

MM

M	

(
dES
dEM

)3

=
7.35 · 1022 kg
1.99 · 1030 kg

(
1.50 · 1011 m
3.84 · 108 m

)3

= 2.20.

The effect of the gravitational acceleration of the Moon on terrestrial
tides is approximately twice that due to the Sun.

12 (B) Compute the area that the Earth presents perpendicular to the
rays coming from the Sun, assuming that these rays are all parallel
to each other. What fraction of the surface area of the planet is this?
Interpret your result geometrically.

Solution
Take the direction of propagation of the solar rays as the z-axis and
use polar coordinates (θ, ϕ) to describe the position on the Earth
surface, assumed to be a sphere (Fig. 2.2). An element of area dS
with unit normal 	n on the surface of the Earth presents to the solar
rays the normal area

dS⊥ = dS 	ez · 	n = dS cos θ =
(
R2 sin θdθdϕ

)
cos θ,

where 	ez is the unit vector in the direction of the z-axis and R is
the radius of the Earth. By integrating over the hemisphere that is
illuminated by the Sun, one obtains the total normal area

S⊥ =
∫ π/2

0
dθ

∫ 2π

0
dϕR2 sin θ cos θ = 2πR2

∫ π/2

0
dθ

sin (2θ)
2

= πR2
[
− cos (2θ)

2

]π/2

0
= πR2.

Thus, S⊥ is one quarter of the total area of the planet 4πR2; the
geometrical meaning of this result is that the normal area presented
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Figure 2.2. Normal area presented by the Earth to the solar rays.

by the Earth to the rays coming from the Sun coincides with the area
of the equatorial cross section, a circle of radius R.

13 (A) Derive a simple equation describing the energy balance for the
Earth in space. Neglect the presence of the atmosphere and the heat-
ing due to the decay of radioactive elements inside the Earth.5 The
average albedo of the Earth is a = 0.34. Compare your result with
the measured values of the average surface temperature Ts = 288 K
and the average atmospheric temperature Ta = 255 K.

Solution
The power πR2 S reaching the Earth in the form of electromagnetic
radiation from the Sun is the solar constant S (in W/m2) times the
effective cross-sectional area presented to the Sun πR2, where R is the
Earth radius (cf. the previous problem). A fraction a of this power

5This is only important on astronomical time scales, e.g., if one wants to compute the cooling
time of a newly formed planet.
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(albedo) is reflected back into space, hence the total power received
from the Sun is (1 − a)πR2S. At equilibrium, this power equals the
power radiated into space by the Earth as blackbody radiation. The
power radiated by a blackbody per unit of surface area is given by the
Stefan–Boltzmann law σT 4, where σ is the Stefan–Boltzmann const-
ant and T is the Kelvin temperature, hence the total power radiated
by the Earth is 4πR2σT 4

s , where Ts is the surface temperature. At
equilibrium it must be

(1 − a)πR2S = 4πR2σT 4
s ,

and the surface temperature of the Earth is

Ts =
[
(1 − a)S

4σ

]1/4

=

[
(1 − 0.34)

(
1.37 · 103 W/m2

)
4
(
5.761 · 10−8 W · m−2 · K−4)

]1/4

= 250 K.

This number is close to the measured average value 255 K of the at-
mospheric temperature, but different from the average surface tem-
perature of 288 K. This discrepancy is due to the presence of the
atmosphere and the greenhouse effect.

14 (B) Assume that the Earth receiving energy from the Sun and emit-
ting into space is not a system in equilibrium, and that its surface
temperature is allowed to change with time. Neglecting the presence
of the atmosphere, derive an equation describing this energy balance,
and study it qualitatively. For simplicity, assume that the albedo
does not vary with T .

Solution
The power reaching the Earth from the Sun is the product of the solar
constant S and of the cross-sectional area πR2 presented to the solar
rays. A fraction a (albedo) of this power is reflected back into space,
and the total power received by the Earth is (1 − a)πR2S. Accord-
ing to the Stefan–Boltzmann law, the power emitted as a blackbody
is 4πR2σT 4, where T is the surface temperature of the Earth. The
heat absorbed by the Earth during the temperature change dT is
CdT , where C is the heat capacity of the planet. The heat balance
for the planet is therefore

C
dT

dt
= (1 − a)πR2S − 4πR2σT 4;

this can be written as the nonlinear ordinary differential equation

dT

dt
= α

(
T 4

∗ − T 4) ,
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where

α ≡ 4πR2σ

C
, T∗ ≡

[
(1 − a)S

4σ

]1/4

.

By assuming that the albedo does not change with time,6 one finds by
inspection the steady-state equilibrium solution T = T∗. This a stable
solution: in fact, if T > T∗ initially, the temperature will always be
larger than T∗, otherwise the curve representing the solution T (t)
will cross the line representing the exact solution T = T∗, which is
forbidden by the uniqueness theorems for the solutions of ODEs.
Then, dT/dt = α

(
T 4∗ − T 4

)
< 0 and the solution T (t) is forced

to decrease monotonically and approaches asymptotically its lower
bound T∗. Similarly, if T < T∗ initially, then dT/dt > 0 and the
solution T (t) approaches its upper bound T∗ asymptotically without
crossing it—we conclude that the solution T = T∗ is stable and is an
attractor in the phase space.

The nonlinear differential equation can be integrated implicitly: by
using the variable θ(T ) ≡ T (t)/T∗, it can be written as

1
1 − θ4

dθ

dt
= αT 3

∗ ,

from which it follows that∫
dθ

1 − θ4 = αT 3
∗ t,

and, using a table of integrals [21], the implicit solution

ln
∣∣∣∣θ + 1
θ − 1

∣∣∣∣+ 2 tan−1 θ = 4αT 3
∗ t + const.

is found.

6This simplifying assumption is not very realistic—the albedo will change with the temper-
ature T , which is a function of time.





Chapter 3

OCEAN AND ATMOSPHERIC PHYSICS

If God had consulted me before embarking on the creation, I would have suggested
something simpler.

—Alfonso de Castile

Approximately seventy percent of the surface of the planet is covered
by oceans, and not much is really known about these, especially below
the air–water interface, because of the difficulty in obtaining systema-
tic and reliable data. The fact that the oceans are studied in physics,
geology, chemistry, biochemistry, and biology testifies to their complex-
ity. The atmosphere surrounds the Earth like a blanket and allows for
the presence of aerobic life and for a host of related phenomena. The
oceans and the atmosphere are not separate entities but they interact in
many ways to determine the global circulation and climate, as well as
many local phenomena. For example, winds drive oceanic currents and
generate waves.

From the physical point of view, the dynamics of both the oceans
and the atmosphere are regulated by fluid dynamics and thermodyn-
amics, which are necessarily complicated by the practical need of refer-
ring theory and observations to a noninertial reference frame connected
with the rotating Earth. While ocean water can usually be treated as an
incompressible fluid, atmospheric air is very compressible and is mostly
concentrated in the lowest 10 kilometers of the atmosphere. The pres-
ence of water vapor in this lower layer is responsible for clouds, precipi-
tation, transport of energy stored as latent heat, and other phenomena.

The study of the atmosphere and the oceans, based on the nonlin-
ear laws of fluid dynamics, is complicated. In this chapter we touch
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upon the most elementary aspects, which are usually covered in intro-
ductory courses in environmental science. Reference [55] is suggested
for descriptive qualitative oceanography and Ref. [56] for quantitative
dynamic oceanography, while Refs. [13, 19, 48] are more advanced. As
introductory readings on atmospheric physics and meteorology, we rec-
ommend Refs. [34, 67, 71], and more advanced texts are [31, 7].

3.1 The blue planet
This section has the purpose of familiarizing the student with basic

physical aspects of the oceans.

1 (A) The oceans cover 70% of the Earth’s surface and have an average
depth of 3.8 km. What fraction of the mass of the planet is contained
in the oceans? The mass of the Earth is ME = 5.98·1024 kg, its radius
is 6370 km, and the average density of saltwater is 1.03 · 103 kg/m3.

Solution
The volume occupied by the oceans is V = 0.7 · 4πR2d, where R is
the radius of the Earth and d is the average depth of the oceans. The
mass of the oceans is ρ V , where ρ is the density of water; the mass
of the oceans in units of the Earth’s mass is given by the fraction

ρ · (0.7 · 4πR2)d
ME

=

(
1.03 · 103 kg/m3

) · 0.7 · 4π(6.37 · 106 m)2 · (3.8 · 103 m
)

5.98 · 1024 kg

= 2.34 · 10−4.

2 (A) On average, 2.4% by mass of sea water consists of dissolved salts.
If the Earth’s oceans could be completely evaporated, the remaining
salts would cover the entire surface of the Earth with a layer of depth
h. Given that the oceans cover 70% of the Earth’s surface and their
average depth is d = 3.8 km, compute the value of h. The density
of sea water is ρw = 1.025 · 103 kg/m3 and the average density of the
salts in it is ρs = 25 kg/m3. What would be the height h′ of the salts
if they were spread over the continental surface instead?

Solution
The total mass of the oceans is

M = ρwV = ρw · 0.7 · 4πR2
Ed,
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where RE is the Earth’s radius and V is the volume occupied by
the oceans. The total mass of salts dissolved in sea water is then
Ms = 2.4 · 10−2 M . If these salts were spread over the entire surface
of the Earth (with area A = 4πR2

E), they would occupy the volume
V ′ = Ah. The value of h is therefore

h =
V ′

A
=

Ms

ρsA
= 2.4 · 10−2 ρw

ρs

0.7 · (4πR2
Ed
)

4πR2
E

= 2.4 · 10−2 0.7 · (1.025 · 103 kg/m3
) · (3.8 · 103 m

)
25 kg/m3 = 2.6 km.

If instead the salts were spread over the continental surface, they
would occupy the area A′ = 0.3 · 4πR2

E = 0.3A and they would reach
the height h′ = h/0.3 = 8.7 km, approximately the height of Mt.
Everest.

3 (B) The Marianas trench has a depth of 11.0 km below sea level.
Compute the pressure at the bottom of the trench
a) by treating sea water as an incompressible fluid,
b) by taking into account the compressibility of water.
The density of water at the surface is ρ0 = 1.0 · 103 kg/m3 and its
bulk modulus is B = 2.1 · 109 Pa.

Solution
a) If the compressibility of water is ignored, the pressure at the bot-
tom of the trench is simply

P = P0 + ρgz,

where P0 is the atmospheric pressure at the surface, and z is the
depth. Numerically,

P =
(
1.01 · 105 Pa

)
+
(

1.0 · 103 kg
m3

)
·
(
9.81

m
s2
)

· (1.10 · 104 m
)

= 1.1 · 108 Pa.

b) The hydrostatic pressure obeys the equation

dP

dz
= ρg, (3.1)
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while the compression (relative change of volume) of sea water due
to the weight of the column above is described by the equation1

dV

V
= − 1

B
dP.

Since the density of water is ρ = M/V , where M is the mass of water,
we have

dV = d

(
M

ρ

)
= − M

ρ2 dρ

and
− M

ρ2 dρ
ρ

M
= − 1

B
dP,

or
B

dρ

ρ
= dP. (3.2)

Comparison of Eqs. (3.1) and (3.2) yields

dρ

ρ2 = −d

(
1
ρ

)
=

g

B
dz,

which is immediately integrated, giving

ρ(z) =
1

A − gz/B
.

Here it is assumed that g is constant and A is an integration constant
determined by the initial condition at the surface

ρ (z = 0) = ρ0 = 1.0 · 103 kg
m3 ,

which yields
ρ (z) =

ρ0

1 − z/z∗
,

where

z∗ ≡ B

gρ0
=

(
2.1 · 109 Pa

)
(9.81 m · s−2) · (1.0 · 103 kg/m3)

= 2.14 · 105 m

is a characteristic length. Equation (3.2) now yields

dP = Bd (ln ρ)

1The (isothermal) bulk modulus B is the inverse of the isothermal compressibility

κ ≡ − 1
V

(
∂V
∂P

)
T

.
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and integrating between the surface of the sea and the depth z we
obtain

P (z) = P0 − B ln (1 − z/z∗) =
(
1.01 · 105 Pa

)− (2.1 · 109 Pa
)

· ln
(

1 − 1.10 · 104 m
2.14 · 105 m

)
= 1.1 · 108 Pa.

There is no difference between the two calculations of the pressure to
two significant figures.

4 (C) The difference between water levels at low and high tide (tidal
range) in the open ocean is approximately 1 m. Why can the tidal
range assume values much larger than 1 m along the coast?

Solution
Along coastlines water can be funnelled, pile up, and surge in chan-
nels, inlets, fjords, and other natural constrictions. An extreme case
is the Bay of Fundy on the Atlantic coast of Canada, in which the
tidal range can reach 15 m.

3.2 Oceanic circulation
Oceanic currents include geostrophic currents, wind-driven currents,

and tidal currents. Our description of these phenomena in a reference
frame connected to the rotating Earth must include noninertial forces,
and the scarcity of reliable data limits our knowledge of deep oceanic
circulation.2

1 (B) Consider two Cartesian coordinate systems with common origin,
the first being an inertial system and the second rotating with respect
to the first one with angular velocity 	Ω (this vector is pointing along
the rotation axis and has magnitude equal to the angular velocity Ω).
It can be shown [20] that the relation between the time derivatives
of a vector 	A in the two frames is

d 	A

dt
=

(
d 	A

dt

)
rot

+ 	Ω × 	A,

where the subscript “rot” refers to the rotating frame and the deriva-
tive with no subscript is taken in the inertial frame. Find d2 	A/dt2 in

2A popular science book written by H. Stommel [66], one of the pioneers in this field, is
recommended as a side reading in addition to the more technical references [56, 55].
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the rotating frame and interpret your result physically. Apply your
result to the case in which 	A = 	x is the position vector of a point
particle moving on the surface of the Earth, which is rotating with
respect to the inertial frame of the fixed stars.

Solution
We just need to apply the differential operator

d(...)
dt

=
(

d ...

dt

)
rot

+ 	Ω × ...

to the vector d 	A/dt. The result is

d2 	A

dt2
=

d

dt

(
d 	A

dt

)
=
[(

d

dt

)
rot

+ 	Ω×
][(

d 	A

dt

)
rot

+ 	Ω × 	A

]

=

(
d2 	A

dt2

)
rot

+

(
d	Ω
dt

)
rot

× 	A + 2	Ω ×
(

d 	A

dt

)
rot

+	Ω × 	Ω × 	A.

The second time derivative of 	A in the rotating frame is(
d2 	A

dt2

)
rot

=
d2 	A

dt2
− 2	Ω ×

(
d 	A

dt

)
rot

− 	Ω × 	Ω × 	A + 	A × dΩ
dt

,

where in the last term we used the fact that(
dΩ
dt

)
rot

=
dΩ
dt

because Ω × Ω = 0. The physical interpretation of this result is
as follows. The terms containing the angular velocity 	Ω describe
noninertial effects due to the fact that the derivative on the left-hand
side is taken in a noninertial (rotating) frame. The last term on the
right-hand side only occurs if the angular velocity 	Ω changes direction
or magnitude with time.
In the case in which 	A = 	x is the position of an object and the rotating
frame is connected to the Earth, which is the situation occurring in
oceanography or atmospheric physics, we have the relation between
velocities and accelerations in the rotating frame fixed to the Earth
and the inertial frame of the fixed stars

	vrot = 	v − 	Ω × 	x,

	arot = 	a − 2	Ω × 	vrot − 	Ω × 	Ω × 	x,
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where the term proportional to d	Ω/dt is dropped due to the fact that
the angular velocity of the Earth is nearly constant.3

The first term on the right-hand side is the acceleration in the non-
rotating frame caused by real forces; the second term is the Coriolis
acceleration proportional to the speed of the object and the sine of
the angle between 	Ω and 	v (remember that

∣∣∣	Ω × 	v
∣∣∣ =

∣∣∣	Ω∣∣∣ |	v| sin θ),
which is equal to the latitude λ. The last term is the centrifugal
acceleration directed radially away from the center of the Earth and
with magnitude

∣∣∣	Ω × 	Ω × 	x
∣∣∣ = Ω2R sin (π/2 − λ) = Ω2R cos λ, where

R is the Earth radius.
Numerically, the Coriolis and the centrifugal accelerations are small
because Ω is small. The centrifugal acceleration is counteracted by
the much larger acceleration of gravity 	g. The Coriolis acceleration is
not counteracted by gravity: although it is small its effect cumulate
over long (say, larger than one hour) periods of time and it is not
negligible for objects with a long flight time. For oceanic currents
and atmospheric winds, which have a virtually infinite “flight time,”
the Coriolis force is significant, giving rise to geostrophic currents
and winds. For example, at the latitude λ = 38◦ and for a speed
v ≈ 1 m/s for the Gulf Stream we get∣∣∣−2	Ω × 	vrot

∣∣∣ = 2Ωv sin λ = 2
(

2π

24 · 3600 s

)(
1

m
s

)
sin 38◦ ≈ 10−4 m

s2
.

After one hour the lateral displacement is of order

∆x � 1
2

∣∣∣−2	Ω × 	vrot
∣∣∣ t2 ≈ 1

2

(
10−4 m

s2
)

(3600 s)2 ≈ 650 m.

2 (A) The Kuroshio current has speed of order v = 1 m/s to 1.2 m/s
between latitudes 31 and 33 degrees north. The dynamic viscosity co-
efficient and the density of sea water in the relevant range of temper-
ature and salinity (T � 25◦C and S = 35) are η = 9·10−4 kg·m−1 ·s−1

and ρ = 1022 kg · m−3. Do you expect turbulence in this current?

Solution
Whether the flow is turbulent or not can be decided by looking at
the value of the Reynolds number Re = vL/ν, where v is the typical
speed, L is the length scale over which the flow varies, and ν ≡ η/ρ

3This is not exactly true on long (astronomical) time scales due, for example, to the precession
of the rotation axis of the Earth, or the tiny dissipation of rotational energy due to friction
caused by tides.
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is the kinematic viscosity coefficient. The scale of variation L corre-
sponds to three degrees of latitude λ (corresponding to π/60 radians)
and is related to the Earth radius R by

L = λR =
π

60
(
6.37 · 106 m

) � 3 · 105 m = 300 km.

The kinematic viscosity coefficient is

ν ≡ η

ρ
=

9 · 10−4 kg · m−1 · s−1

1022 kg · m−3 = 8.8 · 10−7 m2

s
.

The Reynolds number is therefore

Re =
vL

ν
=

(1 m/s)
(
3 · 105 m

)
8.8 · 10−7 m2/s

� 3 · 1011.

The Reynolds number is much larger than 3000 and the flow is cer-
tainly turbulent.

3 (B) In oceanography the specific volume α = 1/ρ is often used in-
stead of the density ρ. Express conservation of mass of sea water in
terms of α instead of ρ when sea water flows with velocity 	v. What is
the form of this equation when sea water is treated as incompressible,
which is a satisfactory approximation for many purposes in dynamic
oceanography?

Solution
Conservation of mass in the absence of sources or sinks is expressed
by the continuity equation

∂ρ

∂t
+ 	∇ · (ρ	v) = 0.

By using the definition of specific volume α ≡ ρ−1, one obtains

∂

∂t

(
1
α

)
+ 	v · 	∇

(
1
α

)
+

1
α

	∇ · 	v = 0,

or
− 1

α2
∂α

∂t
− 1

α2 	v · 	∇α +
1
α

	∇ · 	v = 0,

and finally
∂α

∂t
+ 	v · 	∇α − α	∇ · 	v = 0.

By treating sea water as an incompressible fluid ρ, and therefore also
α, are assumed to be constants and conservation of mass takes the
form 	∇ · 	v = 0, or the velocity field is solenoidal.
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4 (B) In open ocean the horizontal velocity field at the surface (z = 0)
is

(vx, vy) = (1 + 0.01 (x + y) , 0.1y) · 10−2 m
s

.

Estimate the vertical velocity at a depth of 60 m (this is usually much
smaller than the horizontal velocity and harder to measure).

Solution
By treating sea water as an incompressible fluid the continuity equa-
tion expressing mass conservation becomes 	∇ · 	v = 0 and therefore,
at the surface z = 0

∂vz

∂z

∣∣∣∣
z=0

= −
(

∂vx

∂x
+

∂vy

∂y

)∣∣∣∣
z=0

= − (1 · 10−4 + 1 · 10−3) m
s

= −1.1 · 10−3 m
s

.

In order of magnitude, the vertical velocity at depth z = −60 m is

v(z) � ∂vz

∂z
∆z =

(
−1.1 · 10−3 m

s

)
(−60 m) = 6.6 · 10−2 m

s
.

5 (B) A strong wind sets ocean water in motion and then dies off. The
surface of the sea is now horizontal, the pressure P (z) does not depend
on the horizontal coordinates x and y, and all the forces (including
friction) other than gravity and the Coriolis force can be neglected.
Assume also that sea water is incompressible and that the circulation
is horizontal, i.e., the velocity of the water is 	v = (vx, vy, 0). Write the
equations for this situation (inertial motion) and solve them. What
does your solution represent? How does the pressure vary with the
depth?

Solution
The full equations of motion for oceanic circulation are

dvx

dt
= −α

∂P

∂x
+ 2Ωvy sin λ − 2Ωvz cos λ + fx,

dvy

dt
= −α

∂P

∂y
− 2Ωvx sin λ + fy,

dvz

dt
= −α

∂P

∂z
+ 2Ωvx cos λ − g + fz,

where α is the specific volume, λ is the latitude, Ω is the rotational
angular velocity of the Earth, and 	f is the force density per unit
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volume including frictional, tidal, and other forces. In the special
case of inertial motion under consideration these equations reduce to

dvx

dt
= 2Ωvy sin λ,

dvy

dt
= −2Ωvx sin λ,

∂P

∂z
= α−1 (g − 2Ωvx cos λ) .

By differentiating the first equation with respect to time, we find the
second-order ODE for vx

d2vx

dt2
− 2Ω sin λ

dvy

dt
= 0,

and by substituting dvy/dt from the second equation, the decoupled
equation for vx follows,

d2vx

dt2
+ (2Ω sinλ)2 vx = 0.

This is recognized as the harmonic oscillator equation for vx, with
angular frequency 2Ω sinλ, and its general solution is

vx(t) = C1 cos [(2Ω sin λ) t] + C2 sin [(2Ω sin λ) t] ,

where C1,2 are integration constants. By substituting this solution
into the ODE for vy, one now obtains

dvy

dt
= −2Ω sin λ {C1 cos [(2Ω sin λ) t] + C2 sin [(2Ω sin λ) t]} ,

which is immediately integrated to

vy(t) = C2 cos [(2Ω sin λ) t] − C1 sin [(2Ω sin λ) t] .

Suppose that we choose the origin of time so that C2 = 0: then

vx(t) =
dx

dt
= C1 cos [(2Ω sin λ) t] ,

vy(t) =
dy

dt
= −C1 sin [(2Ω sin λ) t] ,
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where x(t) and y(t) are the positions of a small parcel of sea water.
These equations are integrated, obtaining

x(t) =
C1

2Ω sin λ
sin [(2Ω sin λ) t] ,

y(t) =
C1

2Ω sin λ
cos [(2Ω sin λ) t] ,

which constitute the parametric representation of a horizontal circle
of radius

R =
∣∣∣∣ C1

2Ω sin λ

∣∣∣∣
away from the equator. At the equator (λ = 0) the ODEs for vx

and vy yield constant vx and vy because the Coriolis force is absent
there. The circle is traveled clockwise in the Northern Hemisphere
with angular velocity 2Ω sinλ maximum at the poles and zero at the
equator. The corresponding period, called the inertial period, is

Pcirc =
2π

2Ω sin λ
=

Prot
2 sinλ

,

where Prot is the rotational period of the Earth (the sidereal day of
23 h 56’ 4”). The Coriolis force keeps water parcels on their circular
paths.

The vertical velocity is zero and the vertical equation of motion yields

dP

dz
=

1
α

(g − 2Ωvx cos λ) ,

which is integrated to

P (z) =
1
α

(g − 2Ωvx cos λ) z

by imposing the initial condition that the pressure vanishes at the
surface4 z = 0. Note that the z-axis is pointing upward and that
z < 0 under water.

6 (B) Consider a two-dimensional irrotational flow around an island,
which can be modeled by a vertical cylinder of radius R and the

4P is a gauge pressure, i.e., the difference between the absolute pressure and the atmospheric
pressure. The absolute pressure at the surface is equal to the atmospheric pressure.
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z-axis as symmetry axis. Verify that

Φ (r, ϕ) = v

(
r +

R2

r

)
cos ϕ,

Ψ (r, ϕ) = v

(
r − R2

r

)
sin ϕ,

are the velocity potential and the stream function, respectively, corres-
ponding to the boundary conditions

∂Φ
∂r

(R,ϕ) = 0,

Ψ (R,ϕ) = 0,

where the first boundary condition corresponds to stream lines par-
allel to the surface of the cylindrical island. Here v is a constant.

Solution
Let us verify that both Φ and Ψ satisfy the Laplace equation ∇2f = 0.
The Laplacian operator in two dimensions and in cylindrical coordi-
nates (r, ϕ) is

∇2 =
1
r

∂

∂r

(
r

∂

∂r

)
+

1
r2

∂

∂ϕ2

and therefore

∇2Φ =
1
r

∂

∂r

(
r

∂Φ
∂r

)
+

1
r2

∂Φ
∂ϕ2

=
v

r

(
1 +

R2

r2

)
cos ϕ − v

r

(
1 +

R2

r2

)
cos ϕ = 0,

∇2Ψ =
1
r

∂

∂r

(
r

∂Ψ
∂r

)
+

1
r2

∂Ψ
∂ϕ2

=
v

r

(
1 − R2

r2

)
sin ϕ − v

r

(
1 − R2

r2

)
sin ϕ = 0.

In addition,

	∇Φ =
∂Φ
∂r

	er +
1
r

∂Φ
∂ϕ

	eϕ

= v

(
1 − R2

r2

)
cos ϕ	er − v

(
1 +

R2

r2

)
sin ϕ	eϕ,
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	∇Ψ =
∂Ψ
∂r

	er +
1
r

∂Ψ
∂ϕ

	eϕ

= v

(
1 +

R2

r2

)
sin ϕ	er + v

(
1 − R2

r2

)
cos ϕ	eϕ,

and using the fact that 	er · 	er = 	eϕ · 	eϕ = 1, 	er · 	eϕ = 0 one finds that

	∇Φ · 	∇Ψ = v2
(

1 − R4

r4

)
sin ϕ cos ϕ (	er · 	er)

−v2
(

1 − R4

r4

)
sin ϕ cos ϕ (	eϕ · 	eϕ) = 0,

i.e., 	∇Φ and 	∇Ψ are orthogonal.

Finally, let us verify that the boundary conditions are satisfied:

Ψ (R,ϕ) = v
(
R − R2

R

)
sin ϕ = 0,

∂Φ
∂r (R,ϕ) = v

(
1 − R2

r2

)
cos ϕ

∣∣∣
r=R

= 0.

3.3 Ocean waves
Ocean waves can be classified as follows:

Surface waves such as ripples, wind waves, and swells due to the wind
action,

Internal waves that travel below the interface between sea water and
the atmosphere,

Gravity waves, which can be both surface or internal waves. If their
period is sufficiently long, the Coriolis force becomes important and
they are called gyroscopic-gravity waves.

Planetary or Rossby waves with wavelength comparable to the radius
of the planet. These are really oscillating geostrophic currents prop-
agating westward due to the periodic shrinking and stretching of the
surrounding masses of water in the north–south direction.

Tsunamis, long waves caused by sudden vertical motions of the ocean
floor and, from the human point of view, responsible for many disas-
ters.
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Tides are also sometimes classified as ocean waves. They are peri-
odic phenomena due to the time-varying gradients of the gravitational
acceleration due to the Moon and Sun.

For this section we recommend [44, 54, 42, 56] as references.

1 (A) Can the following waves be considered as linear waves?
a) a ripple with wavelength λ = 3 cm and height h = 0.5 cm
b) a ripple with wavelength λ = 3 cm and height h = 1 mm
c) a swell with wavelength λ = 300 m and height h = 1 m.

Solution
In order for a wave to be linear the height h of the wave must be much
smaller than its wavelength λ. A practical criterion for linearity is
h/λ < 1/20 = 0.05. In case a) the ratio of height to wavelength is

h

λ
=

0.5 cm
3 cm

=
1
6

� 0.1667 > 0.05

and this wave is nonlinear. In case b)

h

λ
=

0.1 cm
3 cm

� 0.033 < 0.05,

and this wave is linear. In case c)

h

λ
=

1 m
300 m

� 0.0033 
 0.05,

and the wave is definitely linear.

2 (B) In the literature, two expressions are found for the phase veloc-
ity of a wave in a dispersive medium: vp = λν and vp = ω/k, where
ω = 2πν is the angular frequency and k = 2π/λ is the wave vector.
Show that the two expressions coincide and that the group velocity
vg = dΩ/dk can be written as −λ2dν/dλ.

Solution
We have

ω

k
=

2πν

2π/λ
= λν.

The group velocity is

vg =
dω

dk
= 2π

dν

dλ

dλ

dk
= 2π

dν

dλ

(−2π

k2

)
= −

(
2π

k

)2 dν

dλ
= −λ2 dν

dλ
.
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3 (B) Show that the ratio between group and phase velocity for a wave
propagating in a dispersive medium can be written as

vg

vp
= − d(ln ν)

d(lnλ)
. (3.3)

Solution
By remembering that the angular frequency and the wave vector are
defined, respectively, by ω = 2πν and k = 2π/λ, we have

vg

vp
=

dω/dk

ω/k
=

k

ω

dω

dk
=

1
λν

2π
dν

dλ

dλ

dk
=

1
λν

dν

dλ

d

dk

(
4π2

k

)

= − λ

ν

dν

dλ
= − d(ln ν)

d(lnλ)
.

4 (A) The water’s surface is characterized by its surface tension γ and
density ρ. Using dimensional considerations, derive an approximate
dispersion relation ω = ω(k) for short wavelength waves (ripples)
generated by wind drag and propagating on the surface of deep wa-
ter.

Solution
The dimensions of surface tension (a force per unit length) and mass
density are

[γ] =
[
MT−2] ,

[ρ] =
[
ML−3] ,

and the dimensions of angular frequency and wave vector are [ω] =[
T−1

]
, [k] =

[
L−1
]
. By requiring that

ω = A γα ρβ kγ ,

where A is a dimensionless coefficient, we obtain[
T−1] =

[
MαT−2α

] [
MβL−3β

] [
L−γ

]
=
[
Mα+βT−2αL−3β−γ

]
.

The linear system

α + β = 0, (3.4)

−3β − γ = 0, (3.5)

−2α = −1, (3.6)
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must be satisfied, and the solutions are α = −β = 1/2, γ = 3/2. The
approximate dispersion relation is

ω(k) = A

√
γ

ρ
k3/2.

The exact dispersion relation is given by A = 1 and is used in the
following problem.

5 (B) Short waves (ripples) at the surface of deep water propagate
according to the relation between frequency ν and wavelength λ

ν =
(

2π γ

ρ λ3

)1/2

, (3.7)

where γ and ρ are, respectively, the surface tension and the density of
water. Derive the dispersion relation ω = ω(k) between the angular
frequency and the wave vector, the phase and group velocities, and
their ratio.

Solution
The angular frequency is ω = 2πν and the wave vector is k = 2π/λ;
we have

ω =
√

γ

ρ

(
2π

λ

)3/2

.

The dispersion relation is

ω(k) =
√

γ

ρ
k3/2,

the group velocity is

vg =
dω

dk
=

3
2

√
γ

ρ
k1/2, (3.8)

and the phase velocity is

vp =
ω

k
= λv =

√
γ

ρ
k1/2. (3.9)

The ratio between group and phase velocity is vg/vp = 3/2 (the sit-
uation in which vg > vp is called anomalous dispersion), and shorter
waves propagate faster.

6 (A) Waves propagating in deep water are dominated by gravity. The
quantities relevant to the propagation of gravity waves should be
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the acceleration of gravity g and the density ρ of the fluid. Using
dimensional considerations, derive an approximate dispersion rela-
tion ω = ω(k) for deep-water waves.

Solution
The dimensions of g and ρ are [g] =

[
LT−2

]
and [ρ] =

[
ML−3

]
, while

the dimensions of angular frequency and wave vector are [ω] =
[
T−1

]
,

[k] =
[
L−1
]
. By requiring that

ω = A gαρβkγ ,

where A is a dimensionless coefficient, we obtain

[
T−1] =

[
LαT−2α

] [
MβL−3β

] [
L−γ

]
=
[
Lα−3β−γT−2αMβ

]
.

The linear system

α − 3β − γ = 0, (3.10)

β = 0, (3.11)

−2α = −1, (3.12)

must be satisfied, and its solutions are α = γ = 1/2, β = 0. The
approximate dispersion relation is

ω(k) = A
√

g k1/2;

with no dependence on the density ρ. The exact dispersion relation
corresponds to A = 1, which is used in the following problem.

7 (B) Consider the dispersion relation for linear monochromatic water
waves

ω (k) =
[(

g +
γk2

ρ

)
k tgh(kh)

]1/2

,

where g is the acceleration of gravity, γ is the surface tension, h is the
water’s depth, and k = 2π/λ is the wave vector. Derive approximate
dispersion relations
a) for surface waves in deep-water
b) for gravity waves in deep-water.
Discuss the meaning of “deep” and “shallow” water.



120 EXERCISES IN ENVIRONMENTAL PHYSICS

Solution
“Deep” or “shallow” water are concepts relative to the wavelength of
the waves: deep-water means that h � λ, or kh � 1; shallow water
means that h 
 λ, or kh 
 1.
In the deep-water approximation kh � 1, we have

tgh(kh) =
ekh − e−kh

ekh + e−kh
� 1;

the dependence on the depth h disappears from the dispersion rela-
tion and

ω2 �
(

g +
γk2

ρ

)
k. (3.13)

If the first term in Eq. (3.13) dominates, we have gravity waves while
if the second term dominates we have surface waves instead. The two
terms have equal magnitudes when g = γk2/ρ, or when

λ = λ∗ ≡ 2π

√
γ

gρ
.

a) For surface waves in deep-water, the term γk2/ρ containing the
surface tension dominates over g and we have the dispersion relation

ω(k) =
√

γ

ρ
k3/2,

and short waves travel faster than long waves.
b) For gravity waves in the deep-water approximation g > γk2/ρ, and
we have instead the dispersion relation

ω(k) =
√

g k1/2,

and long waves travel faster than short waves.

8 (B) The dispersion relation for linear water waves with wavelength
λ > 5 cm (which allows surface tension effects to be neglected) is

ω(k) = [gk tanh (kh)]1/2 ,

where g is the acceleration of gravity and h is the water depth, re-
spectively. What are the phase and group speeds?

Solution
The phase speed is

vp ≡ ω

k
=
[g
k

tanh (kh)
]1/2

,
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while the group speed is

vg ≡ dω

dk
=

√
g

tanh (kh) + kh
cosh2(kh)

2
√

k tanh (kh)

=
1
2

√
g

k
tanh (kh)

[
1 +

2kh

sinh (2kh)

]

=
vp

2

[
1 +

2kh

sinh (2kh)

]
.

9 (B) A storm far out at sea generates a swell with typical wavelengths
λ of order 100 m. What is the phase velocity? What is the group
velocity? Will short or long waves announce the storm to a boat out
on the sea? How long does it take for 100 m waves to travel the 100 km
distance between the storm and the boat? The density of water is
ρ = 1.0 · 103 kg/m3 and the surface tension is γ � 7.28 · 10−2 N/m
at 20◦C. Use the fact that the general dispersion relation for water
waves is

ω =
[(

g +
γk2

ρ

)
ktgh(kh)

]1/2

,

where g is the acceleration of gravity and h is the water’s depth.

Solution
Far out at sea, the depth is much larger than the typical wavelength
(h � 100 m) and one can use the approximation tgh(kh) � 1 for
kh � 1, obtaining

ω(k) �
[(

g +
γk2

ρ

)
k

]1/2

.

The g-term and the γ-term in the dispersion relation have equal mag-
nitudes when

λ = λ∗ ≡ 2π

√
γ

gρ
;

from the given values of ρ and γ one derives λ∗ = 1.7 cm. The gravity
term dominates the dispersion relation for λ � 100 m� λ∗, hence the
dispersion relation for the long waves generated in the storm is

ω(k) =
√

g k1/2.

The phase velocity is vp = ω/k =
√

g k−1/2 and the group velocity is

vg =
dω

dk
=

√
g

2
k−1/2 =

1
2

vp.
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We have vp = 2vg (vp > vg is called normal dispersion); since vp =
2vg ∝ √

λ, long waves travel faster than short ones and will bring the
news of the storm to the boat—the energy of the waves travels with
the group velocity vg. For waves of wavelength λ = 100 m the phase
velocity is

vp =
[
(9.81 m · s−2) · (100 m)

2π

]1/2

� 12.5
m
s

� 45
km
h

.

The waves cover the distance L = 100 km between the storm and the
boat in the time

t =
L

vp
=

105 m
12.5 m · s−1 = 8 · 103 s = 2.2 hours.

10 (B) When two layers of water with different densities ρ and ρ′ are in
contact, deep-water waves propagate along the interface with group
velocity

vg =
1
2

[
g

k

ρ − ρ′

ρ + ρ′

]1/2

,

where k is the wave vector and g is the acceleration of gravity. Find
the dispersion relation and the phase velocity for these waves.

Solution
The group velocity is vg = dω/dk, where ω is the angular frequency,
and the dispersion relation ω = ω(k) is obtained integrating vg with
respect to k,

ω(k) =
∫

dk vg(k) =

√
g

ρ − ρ′

ρ + ρ′

∫
dk

2
√

k
=

√
gk

ρ − ρ′

ρ + ρ′ .

The phase velocity is

vp(k) ≡ ω

k
=

√
g

k

ρ − ρ′

ρ + ρ′ .

3.4 General features of the atmosphere
The lowest 10 kilometers of the atmosphere—the troposphere

—contain most of the mass of air around the planet and are the arena
for weather-related phenomena. The power from the Sun drives weather
and climate, and the water vapor present in the troposphere is respon-
sible for phenomena such as clouds and precipitation, and concurs in
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determining the stability or instability of air masses. This section re-
views basic properties of the atmosphere.

1 (A) Given equal conditions of temperature, volume, and pressure, is
moist air heavier or lighter than dry air? Is this a reason why water
vapor is only found at the bottom of the atmosphere?

Solution
Dry air is composed of approximately 75% of N2 and 25% of O2, with
average molecular mass

mdry = 0.75 mN2 + 0.25 mO2 = 2 (0.75 mN + 0.25 mO)

= 2 (0.75 · 7 + 0.25 · 8) a.m.u. = 14.5 a.m.u.

The mass of water molecules (H2O) is

mH2O = 2mH + mO = (2 · 1 + 8) a.m.u. = 10 a.m.u. < mdry.

By replacing part of the dry air in a given volume with water vapor
(i.e., by considering wet air instead of dry air) one obtains a lighter
mixture. In spite of this, water vapor is mostly concentrated within
the first two kilometers of the atmosphere because water vapor enters
the atmosphere through the air–surface or air–water boundary layer.

2 (B) Approximately, what is the thickness of the atmosphere? Com-
pare it with the radius of the Earth. Given that the average atmo-
spheric pressure at sea level is P0 = 1.01·105 Pa, compute the average
density of the atmosphere and its total mass.
How does pressure depend on the elevation z? How does the particle
density change with z? State the barometric formula. Where does
most of the atmosphere’s mass reside? Compute the fraction η of
the total mass of the atmosphere found in a layer between sea level
(z = 0) and z.

Solution
The atmosphere is approximately h = 100 km thick. The ratio be-
tween the size of the atmosphere and the Earth’s radius is

h

R
=

100 km
6370 km

= 1.57 · 10−2.

The atmospheric pressure at sea level is due to a column of air with
height h = 100 km and is given by the formula for hydrostatic pres-
sure

P0 = ρ̄ g h,
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where

ρ̄ =
P0

gh
=

1.01 · 105 Pa
(9.81 m · s−2) · (1.00 · 105 m)

= 0.10
kg
m3

is the atmospheric average density. The total mass of the atmosphere
is

M = ρ̄ V = ρ̄
(
4πR2

E

)
h

=
(
0.103 kg · m−3) · 4π · (6.37 · 106 m

)2 · (1.00 · 105 m
)

= 5.25 · 1018 kg.

Over spatial scales sufficiently small that the temperature can be
approximated by an average temperature T̄ , the pressure decreases
exponentially with the elevation z,

P (z) = P0 e−z/H ,

where
H =

kT

mg

is a length scale characteristic of the atmosphere and m is the mass
of the average atmospheric gas molecule.

By treating the mixture of atmospheric gases as an ideal gas, the
number density of particles also decreases exponentially with eleva-
tion,

nd(z) = n
(0)
d e−z/H

(barometric formula), where n
(0)
d = P0/(kT ) = nd (z = 0). In fact,

the ideal gas law
PV = NkT,

where N is the number of gas particles in the volume V , yields P =
ndkT , where nd ≡ N/V is the particle number density and

nd(z) =
P (z)
kT

= n
(0)
d e−z/H .

The atmospheric density is then given by

ρ(z) = ρ0 e−z/H ,

where ρ0 = m n
(0)
d = mP0/(kT ) = ρ(z = 0).
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The mass contained in a layer of the atmosphere between sea level
(z = 0) and the elevation z is

M(z) =
∫ 2π

0
dϕ

∫ π

0
dθ

∫ R+z

R
dr r2 sin θ ρ

= 4π

∫ R+z

R
dr r2ρ0 e−(r−R)/H

= 4πρ0 eR/H

∫ R+z

R
dr r2 e−r/H

= 4πρ0H
3 eR/H

∫ (R+z)/H

R/H
dx x2 e−x,

where x ≡ r/H and the elevation is z = r − R. Integrating by parts,
we obtain the integral∫

dx x2 e−x = −e−x
(
x2 + 2x + 2

)
,

and

M(z) = 4πρ0

[(
1 − e−z/H

) (
R2H + 2RH2 + 2H3)

−zH e−z/H (z + 2H + 2R)
]
.

The fraction of mass contained in the shell R ≤ r ≤ R + z is then

η ≡ M(z)
M

= 4π
ρ0

M

[(
1 − e−z/H

) (
R2H + 2RH2 + 2H3)

− zH e−z/H (z + 2H + 2R)
]
.

In order to compute the elevation z such that a given fraction η of
the atmosphere resides in the shell (R,R + z), we must invert the
previous equation numerically.

3 (C) What is, approximately, the composition of the atmosphere?
What would happen to human and animal life if the percentages of
nitrogen and oxygen were suddenly reversed?

Solution
The atmosphere consists of approximately 78% of N2 by volume, 21%
of O2, and 1% of argon. In addition to this gas mixture (dry air),
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water vapor is present in the bottom part of the atmosphere (mainly
below 2 km) together with CO2 and particles of dust and pollution.
CO2 is the main greenhouse gas and is an essential component of
plant and animal life on the planet. Water vapor is the source of
clouds and precipitation and is a very effective absorber of infrared
radiation radiated by the Earth, and of some radiation from the Sun.

From the point of view of human and animal life, the oxygen con-
tained in the atmosphere is conveniently diluted by nitrogen. If the
proportions of N2 and O2 were suddenly reversed, the breathing ap-
paratus of virtually all forms of aerobic life would be burned by the
oxygen excess.

4 (A) Compute the escape speed ve at the top of the atmosphere,
z � 110 km; at what temperature is the thermal speed of hydro-
gen molecules comparable with ve? Compare the result with the
escape speed from the surface of the Moon. The Earth has mass
ME = 5.98 · 1024 kg and radius RE = 6370 km, and the Moon has
mass MM = 7.35 · 1022 kg and radius RM = 1740 km.

Solution
The escape speed at a distance r from the center of a planet is

ve =
(

2GM

r

)1/2

=
(

2GM

R + h

)1/2

,

where R is the radius of the planet and h the elevation above its
surface in the radial direction. The escape speed at z = 110 km is

ve =
[
2 · (6.67 · 10−11 N · m2 · kg−2) · (5.98 · 1024 kg)

(6370 + 110) · (103 m)

]1/2

= 11.1 km · s−1.

The temperature at which the thermal speed of hydrogen molecules
equals the escape speed is given by

1
2

mv2
e =

3
2

kT,

which yields

T =
m v2

e

3k
,
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where m = 2 a.m.u. = 3.32 · 10−27 kg is the mass of the hydrogen
molecule H2. Numerically,

T =

(
3.32 · 10−27 kg

) · (1.11 · 104 m · s−1
)2

3 · (1.38 · 10−23 J · K−1) = 9.88 · 103 K.

Since this temperature is much higher than the average atmospheric
temperature the Earth retains its atmosphere mainly composed of ni-
trogen (N2) and oxygen (O2) molecules, which are heavier and slower
than H2.

The escape speed from the surface of the Moon is only

ve =
(

2GMM

RM

)1/2

=

[
2 · (6.67 · 10−11 N · m2 · kg−2) · (7.35 · 1022 kg

)
1.74 · 106 m

]1/2

= 2.37 km · s−1,

due to the weaker gravity of the Moon. The temperature needed for
hydrogen molecules to escape from the surface of the Moon is

T =
m v2

e

3k
=

(
3.32 · 10−27 kg

) · (2.37 · 103 m · s−1
)2

3 · (1.38 · 10−23 J · K−1) = 450 K;

most hydrogen molecules—not only those in the tails of the Maxwell–
Boltzmann distribution—can escape. These figures explain why the
Moon lost its atmosphere while the Earth did not.

5 (A) The atmospheric pressure at sea level is P0 = 1 atm= 1.01 ·
105 Pa. What is the average density of the atmosphere, given that
it extends to an elevation of 100 km? Compare it with the density
at sea level, ρ0 = 1.29 kg · m−3. What is the height of the equivalent
water column, i.e., the column of water that causes the same pressure?

Solution
The pressure at depth h in a fluid of density ρ is P = ρgh, hence the
average atmospheric density is

ρ̄ =
P

gh
=

1.01 · 105 Pa
(9.81 m · s−2) · (1.0 · 105m)

= 0.1 kg · m−3.
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The ratio between the average atmospheric density and the density
at sea level is

ρ̄

ρ0
=

0.1 kg · m−3

1.29 kg · m−3 = 7.8 · 10−2.

A water column with the same pressure must satisfy P = ρwater g z =
P0, that gives

z =
P0

ρwater g
=

(
1.01 · 105 Pa

)
(1.0 · 103 kg/m3) · (9.81 m/s2)

= 10.3 m.

It is a rule of thumb among scuba divers that pressure increases by
approximately one atmosphere every 10 meters of depth.

3.5 Temperature and pressure
Temperature and pressure are two basic physical observables that

determine the dynamics of the atmosphere and are used to describe
it. To these, we must add the water vapor content of atmospheric air
and the velocity field of air parcels.

1 (A) Using dimensional considerations, derive the vertical tempera-
ture gradient of dry atmospheric air as a function of the acceleration
of gravity g and of the specific heat at constant pressure cP .

Solution
The dimensions of the vertical temperature gradient are [∂T/∂z] =
[K]
[
L−1
]

where K is the (Kelvin) temperature. The dimensions of
g are [g] =

[
LT−2

]
and the dimensions of cP are obtained from the

formula δQ = cP m δT , where δQ is the heat supplied to a mass
m to change its temperature by the amount δT . Hence, [cP ] =[
L2T−2K−1

]
. By imposing that

∂T

∂z
= A gαcβ

P ,

where A is a dimensionless coefficient, we have[
∂T

∂z

]
= [gα]

[
cβ
P

]
,

or
[K]
[
L−1] =

[
LαT−2α

] [
L2βT−2βK−β

]
,

and we obtain the equations

−β = 1,

α + 2β = −1,

−2α − 2β = 0,
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with the solutions α = 1 and β = −1; therefore, ∂T/∂z = Ag/cP .
The exact expression is

∂T

∂z
= − g

cP
≡ −Γd,

where Γd ≡ g/cP is called the dry adiabatic lapse rate.

2 (A) You are planning to climb to the top of Mt. Robson (m. 3954)
in the Canadian Rockies from a camp at 1000 m of elevation where
the temperature is 5.0◦C. What temperature should you expect at
the top? Consider dry air and assume that the variation of the heat
coefficient at constant pressure cP with elevation is negligible. The
dry adiabatic lapse rate is Γd = 0.01◦C·m−1. What is the physical
meaning of a negative Γd?

Solution
The vertical temperature gradient is given by ∂T/∂z = −Γd, where
Γd = g/cP = const. = 0.01◦C·m−1 is the adiabatic lapse rate for dry
air. Therefore, the temperature is a linear decreasing function of ele-
vation, T (z) = −Γdz + T0, where T0 = T (z = 0). At camp (elevation
z1), T (z1) = −Γdz1 +T0, while at the top T (z2) = −Γdz2 +T0; hence

T (z2) − T (z1) = −Γd(z2 − z1)

and

T (z2) = −(0.01◦C · m−1)(3954 m − 1000 m) + 5.0◦C = −24.5◦C

at the top of the mountain. In practice the temperature gradient
often changes to assume a milder slope and the temperature at the
top will be somehow higher than −25◦C. This happens because air is
never dry and as moisture rises it condenses, releasing latent heat that
raises the temperature. Remember that the latent heat of evaporation
of water, 2.26 · 106 J/kg is unusually high.

If Γd < 0, then ∂T/∂z > 0 and the temperature increases with the
elevation. This phenomenon is known as thermal inversion.

3 (A) A mass of air rises along a mountain slope. Assuming that air is
an ideal gas and that the expansion is sufficiently fast to be considered
adiabatic, compute the temperature change and the final volume of
the air mass by knowing the initial and final pressures Pi and Pf , the
initial volume Vi, and the adiabatic index γ.
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Solution
Let Ti, Tf , Vi, and Vf be the initial and final temperatures and vol-
umes; the equation of an adiabatic transformation of an ideal gas
is

PV γ = constant,

and therefore
PiV

γ
i = PfV γ

f ,

from which one deduces that

Vf = Vi

(
Pi

Pf

)1/γ

.

The ideal gas equation of state yields

PiVi = nRTi,

PfVf = nRTf .

Division of these two equations term to term and the use of the
expression for Vi then yield

Tf = Ti
Pf

Pi

Vf

Vi
= Ti

Pf

Pi

(
Pi

Pf

)1/γ

= Ti

(
Pf

Pi

) γ−1
γ

.

3.6 Atmospheric circulation
A complete treatment of atmospheric circulation is beyond the scope

of this exercise book—we include a few problems that can be approached
by students beginning their studies in environmental science.

1 (A) A tornado can be approximated by a cylinder with an 80m ra-
dius rotating with angular velocity ω = 2.5 rad · s−1. Estimate the
wind speed at the outer edge of the tornado.

Solution
Assuming rigid rotation for simplicity, the linear velocity at the edge
of the tornado has magnitude

v = ωr =
(

2.5
rad
s

)
· (80 m) = 200

m
s

= 720
km
h

.
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2 (C) You are looking at a picture taken from space of a hurricane
rotating clockwise. In what hemisphere is the hurricane?

Solution
In the Southern Hemisphere. Because of the Coriolis force, objects
in motion including winds deviate to their left in the Southern Hemi-
sphere. Hurricanes are created by air masses moving toward a low
pressure center and deviated by the Coriolis force. Therefore, hurri-
canes rotate clockwise in the Southern Hemisphere. In the Northern
Hemisphere objects are deviated to their right and hurricanes rotate
counterclockwise instead.

3 (A) When there is large scale rotation in a thunderstorm a tornado
can form. A mesocyclone (rotation on the scale of the whole thunder-
storm updraft) has a spatial scale R = 6.00 km and is slowly rotating
with angular velocity ωm = 5.55 · 10−4 rad · s−1. It degenerates into
a tornado of radius r = 200 m. Estimate the angular velocity of the
tornado and the wind speed at its boundary.
Hint: Assume that the mass of air is conserved when the tornado forms and that
the air mass is isolated.

Solution
The angular momentum is L = Iω, where I = αMl2 is the moment
of inertia of the system, M is the mass of the air, l the spatial scale
of rotation, and α a dimensionless coefficient assumed to be constant
during the formation of the tornado. In other words, it is assumed
that the density profile inside the tornado is the same as in the initial
mesocyclone. Since there are no torques acting on the air mass, its
angular momentum is conserved, yielding

αMR2ωm = αMr2ωT , (3.14)

where ωT is the angular velocity of the tornado. Therefore, we obtain

ωT = ωm

(
R

r

)2

=
(

5.55 · 10−4 rad
s

)(
6.00 · 103 m
2.00 · 102 m

)2

= 0.50
rad
s

.

The linear speed at the edge of the tornado is

v = ωT r =
(

0.50
rad
s

)
· (200 m) = 100

m
s

= 360
km
h

.

4 (B) The Himalayan mountains cause small perturbations in a jet
stream that crosses them. These perturbations have wavelike char-
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acter (Rossby or planetary waves) and propagate in the direction op-
posite to the jet stream with wavelengths comparable to the Earth’s
radius. The group velocity of Rossby waves is given by

vg = − 2Ω cos θ

R k2 ,

where Ω and R are the Earth’s angular velocity and radius, θ is the
latitude, and the negative sign describes the fact that Rossby waves
propagate in the direction opposite to the jet stream flow. Derive
the dispersion relation ω = ω(k) for planetary waves. Do longer or
shorter Rossby waves propagate faster?

Solution
The group velocity of Rossby waves is

vg =
dω

dk
= − α

k2 ,

where α = (2Ω cos θ) /R. Integration with respect to k gives the
dispersion relation

ω(k) =
α

k
=

2Ω cos θ

R k
.

Since vg ∝ λ2, longer waves propagate faster.

3.7 Precipitation
The purpose of this section is to make the student realize how much

physical intuition and a knowledge of basic physics can help in under-
standing the physical properties of the natural world.

1 (C) Why do cross sections of hailstones often show approximately
concentric layers of ice in them?

Solution
Because when hailstones form they do not immediately fall to the
ground but are carried upward by winds and undergo successive cy-
cles of melting and freezing during their vertical motions.

2 (A) Fog occurs because of natural condensation—minuscule droplets
of water form because of the condensation of atmospheric water va-
por caused by a temperature drop, a process assisted by the pres-
ence of condensation nuclei. Water droplets are suspended in air.
Compute the terminal speed of a spherical droplet of radius r =
1.0 · 10−3 cm, given that the air (dynamic) viscosity coefficient is
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η = 1.0 · 10−5 kg · m−1 · s−1, its density is ρ′ = 1.29 kg/m3, and the
density of water is ρ = 1.0 · 103 kg/m3.

Solution
The air drag on a spherical object moving in a viscous fluid at mod-
erate speed v is given by Stokes’ law

Fd = 6πηrv.

The terminal speed is reached when the air drag and the buoyant
force balance the weight of the sphere and the resulting acceleration
of the droplet vanishes,

mg − Fd − Fb = 0,

or
ρ

4π

3
r3g = 6π η r v + ρ′ 4π

3
r3g,

yielding the terminal speed

v =
2
9

r2g

η

(
ρ − ρ′) .

Numerically,

v =
2
9

(
1.0 · 10−5 m

)2 · (9.81 m · s−2)
(1.0 · 10−5 kg · m−1 · s−1)

· (1.0 · 103 kg · m−3 − 1.29 kg · m−3) = 2.2 · 10−2 m
s

.

3 (B) Find the velocity v(t) as a function of time for a raindrop of mass
m falling in air in the case in which the friction force is proportional
to the square of the drop’s velocity, Ffriction = −εv2. Assume that
the raindrop starts with zero initial velocity, and neglect the buoyant
force, which is numerically irrelevant at larger speeds. Find the time
scale over which the terminal speed is approached by knowing that
the density of water is 1.0 · 103 kg/m3, the spherical raindrop has ra-
dius 1.0 mm, and ε = CDρ′A/2, where the drag coefficient CD = 0.5,
ρ′ = 1.29 kg/m3 is the air density, and A is the cross section presented
to the air.

Solution
Neglecting the buoyant force, the equation of motion of the raindrop
is

ma = Fgravity + Ffriction
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or

m
d2y

dt2
= mg − εv2,

where g is the acceleration of gravity, which is assumed to be const-
ant over the scale of distances interesting for rainfall, y is a vertical
coordinate pointing downward, and v(t) = dy/dt. One can write

dv

dt
+

ε

m
v2 − g = 0, (3.15)

which is recognized to be a Riccati equation [32] of the form

dv

dt
+ αv2 + β = 0

with α = ε/m and β = −g. The solution is obtained by using the
auxiliary variable u defined by

v ≡ 1
α u

du

dt
. (3.16)

Since
dv

dt
=

1
α u

d2u

dt2
− 1

α u2

(
du

dt

)2

,

substitution of Eq. (3.16) into Eq. (3.15) yields

d2u

dt2
+ αβ u = 0

with αβ = −gε/m < 0. The general solution of this equation is

u(t) = u1 exp
(√

|αβ| t
)

+ u2 exp
(
−
√

|αβ| t
)

and the velocity is

v(t) =
1

αu

du

dt
=

√∣∣∣∣βα
∣∣∣∣ u1 e

√
|αβ| t − u2 e−

√
|αβ| t

u1 e
√

|αβ| t + u2 e−
√

|αβ| t
,

where u1 and u2 are integration constants. The initial condition
imposed by the problem is

v(0) = 0,

which yields the relation between the integration constants u1 = u2.
Hence, the solution for the velocity can be written as

v(t) =
√

gm

ε
tanh

(√
gε

m
t

)
.
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The velocity v(t) of the raindrop describes a substantial accelera-
tion stage only during an initial transient and quickly approaches the
asymptotic value

√
gm/ε on the time scale γ =

√
m/(gε).

The time scale γ can be written as

γ =
√

m

gε
=
[

(4πr3/3)ρ
g(CD/2)ρ′πr2

]1/2

=
(

8r

3CDg

ρ

ρ′

)1/2

=

[
8 · (1.0 · 10−3 m

)
3 · 0.5 · (9.81 m · s−2)

1.0 · 103 kg · m−3

1.29 kg · m−3

]1/2

= 0.65 s.

4 (A) A spherical raindrop of radius 1.5 mm falls in air with velocity
v. In the reference frame in which the drop is at rest, the fluid flow
is turbulent. Assuming that the Reynolds number is NR = 10 (the
threshold for the onset of turbulence in a fluid flow with obstacles),
estimate the vertical velocity of the drop. The dynamic viscosity co-
efficient of air is η = 1.8 ·10−5 Pa · s and its density is ρ = 1.29 kg/m3.

Solution
The Reynolds number appropriate for fluid flow in the presence of
obstacles is the dimensionless quantity

NR =
ρ v d

η
,

where d is the transversal size of the obstacle (the diameter of the
sphere). Hence,

v =
NRη

ρ d
=

10 · (1.8 · 10−5 Pa · s)
(1.29 kg · m−3) · (3.0 · 10−3 m)

= 4.7 · 10−2 m
s

.

5 (A) Discuss the air drag on an object moving rapidly in a fluid for
which the buoyant force is negligible compared to the air drag. Com-
pute the terminal velocity of a spherical raindrop with radius of 1 mm
assuming that the drag coefficient is CD = 0.41, the air density is
ρ′ = 1.29 kg/m3, and the density of water is ρ = 1.0 · 103 kg/m3.

Solution
For an object moving rapidly in a fluid, the buoyant force is negligi-
ble in comparison to the air drag. The latter is proportional to the
square of the velocity of the object relative to the fluid,

FD = b v2,
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where the coefficient b is given by

b =
1
2

CDρA;

ρ is the density of the fluid and A is the area of the object normal
to the flow. The drag coefficient CD depends on the shape of the
moving body.

For a spherical raindrop falling with terminal velocity, the weight
equals the air drag force,

FD = mg,

or (
1
2

CDρ′
)

· (πr2) v2 =
4π

3
r3ρg,

where ρ′ is the air density. Therefore,

v =
(

8r

3CD

ρ

ρ′ g

)1/2

=

[
8 · (1.0 · 10−3 m)

3 · 0.41

(
1.0 · 103 kg · m−3

)
(1.29 kg/m3)

· (9.81 m · s−2)]1/2

= 7.0
m
s

.

6 (A) Compute the latent heat of vaporization LV of water at 10◦C,
30◦C, and 60◦C. Is the temperature dependence of LV a factor in
explaining the abundant precipitation in tropical regions?
Hint: Use the Regnault equation.

Solution
The temperature dependence of the latent heat of vaporization of
water is given by the empirical Regnault equation

LV =
[
606.5 − 0.695

(
T

1◦ C

)]
Kcal
kg

,

an equation valid for temperatures above a certain threshold, T ≥ Tc.
The latent heats at 10◦C, 30◦C, and 60◦C are, respectively,

L
(1)
V = 600

Kcal
kg

,
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L
(2)
V = 586

Kcal
kg

,

L
(3)
V = 565

Kcal
kg

.

LV decreases linearly with the temperature (for T ≥ Tc). In tropical
regions a large amount of solar energy is available to evaporate water,
and this is the main factor explaining the abundant precipitation.
However, the comparatively low value of LV at the relatively high
temperatures found in these regions also facilitates the evaporation
of even larger masses of water.





Chapter 4

ELECTROMAGNETIC RADIATION
AND RADIOACTIVITY

There is something fascinating about science. One gets such wholesale return
of conjecture out of such trifling investments of facts.

—Mark Twain, Life on the Mississippi

The electromagnetic force is one of the four fundamental forces, the
others being the gravitational force, the strong nuclear force, and the
weak interaction. The electromagnetic force dominates on the scale of
atoms and molecules, determining the chemical properties of the ele-
ments and compounds, the chemical reactions occurring on the planet,
and the mechanical, thermal, electrical, and optical properties of ma-
terials. Although the electromagnetic interaction has infinite range like
gravity, in practice the electromagnetic force is negligible on large scales
where gravity dominates instead. This is due to the fact that there are
two sources of electric forces—positive and negative charges—which can
cancel each other, as opposed to the case of gravity, which is only gen-
erated by positive masses. On the larger scales there is no net electric
charge.

Electromagnetic radiation is emitted in the form of continuous spec-
tra by accelerated charges and in the form of discrete or band spectra
by atoms, molecules, and nuclei, or by electrons in solids. Emission
and absorption processes related to discrete spectra are described by
quantum mechanics and the emitted radiation carries the fingerprint of
the emitting atom or molecule. For this reason spectroscopy is an in-
valuable tool to identify the presence of even small amounts of different
chemicals, and spectroscopic techniques are widely used as tools in envi-
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ronmental physics to monitor, for example, the presence and abundance
of pollutants, greenhouse gases, and of gases destroying the ozone layer.

As general references for the material in this chapter we suggest [59,
22] while Ref. [37] is the professional reference on electromagnetism.
References [4, 68] are useful for environmental spectroscopy, while [61,
41, 49, 23] are standard references on quantum mechanics.

4.1 The electromagnetic spectrum
Electromagnetic waves cover a semi-infinite range of frequencies and

wavelengths ranging from low-frequency (long wavelength) radio waves
to the infrared, to the rather narrow optical band that we call “light” in
everyday language (or, more properly, “visible” band), to the ultravio-
let, and to the X and γ radiation corresponding to the highest frequen-
cies. Electromagnetic waves travel at the speed of light, reflect, refract,
diffract, and scatter, and these phenomena are frequency-dependent.
The color of objects is explained by selective absorption and scattering.
Many of the following exercises focus on the propagation of electromag-
netic waves through an absorbing medium.

1 (C) How is the electromagnetic spectrum divided into wavelength
bands?

Solution
At the low-frequency end of the spectrum there are extremely long
waves (usually classified as noise) with wavelengths λ > 103 m; then,
in order of decreasing wavelength, corresponding to increasing fre-
quency and energy, there are
— radio waves with 0.1 m < λ < 103 m
— microwaves with 10−4 m < λ < 0.1 m
— infrared radiation with 7 · 10−7 m < λ < 10−4 m
— visible light with 4 · 10−7 m < λ < 7 · 10−7 m = 700 nm
— ultraviolet light with 10−8 m < λ < 4 · 10−7 m = 400 nm

— X-rays with 10−11 m < λ < 10−8 m = 10 nm = 100
◦
A

— γ-rays with λ < 10−11 m = 10−2 nm = 0.1
◦
A.

2 (A) The energy of electromagnetic radiation is often measured in eV
and the inverse wavelength in cm−1. Show that 1 cm−1 is equivalent
to 1.24 · 10−4 eV.

Solution
The relation between frequency ν and wavelength λ of electromag-
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netic radiation c = λν (where c is the speed of light in vacuum),
combined with the relation between energy and frequency of a pho-
ton E = hν, yields E = h c/λ. If λ = 1 cm,

E =
h c

λ
=

(
6.625 · 10−34 J · s

) · (2.998 · 108 m/s
)

1.00 · 10−2 m
= 1.986 · 10−23 J

= 1.24 · 10−4 eV,

where the conversion factor 1 eV= 1.60 · 10−19 J is used.

3 (B, C) The absorption of electromagnetic radiation by chlorophyll a
and chlorophyll b present in green plants peaks at wavelengths λa =
6.80 · 10−7 m and λb = 6.44 · 10−7 m, respectively. In what region of
the electromagnetic spectrum do these wavelengths fall? Is this fact
related to the color of chlorophyll?
Photosynthesis of glucose (C6 H12 O6) can be summarized in the net
reaction

6 CO2 + 6 H2 O −→ C6 H12 O6 + 6 O2.

The total energy needed to make one CO2 molecule to react is E =
2.34 · 10−18 J = 14.6 eV. On average, how many photons must be ab-
sorbed by a CO2 molecule in chlorophyll a to react? In chlorophyll b?

Solution
The absorption wavelengths λa and λb both fall in the red band of
the visible spectrum, hence both chlorophyll a and b absorb red light
and look green (the complementary color).
The energy of a photon at wavelength λa is

Ea = hνa =
hc

λa
=

(
6.625 · 10−34 J · s

) (
2.998 · 108 m/s

)
6.80 · 10−7 m

= 2.92 · 10−19 J = 1.83 eV,

while the energy of a photon at wavelength λb is

Eb = hνb =
hc

λb
=

(
6.625 · 10−34 J · s

) (
2.998 · 108 m/s

)
6.44 · 10−7 m

= 3.08 · 10−19 J = 1.93 eV.

The average number of photons of frequency νa necessary to add up
to the energy E is

E

Ea
=

2.34 · 10−18 J
2.92 · 10−19 J

= 8,
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while for the photons at frequency νb we have

E

Eb
=

2.34 · 10−18J
3.08 · 10−19 J

= 7.60.

4.2 Blackbody radiation
The spectrum of electromagnetic radiation emitted by blackbodies

was the subject of investigation in theoretical physics and led to the in-
troduction of the quantum of action by Max Planck in 1900, beginning
a revolution in physics now called quantum mechanics. For the environ-
mental scientist, a blackbody or a graybody is a convenient model to
describe emission or absorption by the Sun, the planet, the atmosphere,
the soil, and the oceans.

1 (A) What is the total energy per unit area and per unit time radi-
ated over all frequencies by an ideal blackbody at 2.50 · 103 K?

Solution
The total energy radiated by a blackbody per unit time and per unit
normal area is given by the Stefan–Boltzmann law,

dE

dtdS
= σT 4 =

(
5.67 · 10−8 W

m2K4

)(
2.50 · 103 K

)4 = 2.21 · 106 W
m2 .

2 (A) What is the wavelength of the peak of the blackbody curve for
an object radiating at 3.00 · 103 K?

Solution
Wien’s law of displacement λmaxT = b = 2.898 · 10−3 m · K yields

λmax =
b

T
= 9.66 · 10−7 m = 966 nm.

3 (A) Calculate the luminosity of the Sun, i.e., the total energy per
unit time radiated in the whole spectrum of frequencies, knowing that
the temperature at the surface of the Sun is T	 = 5800 K and its
radius is R	 = 7.00 · 105 km. Compute the solar constant using the
average Earth–Sun distance 1.50 · 1011 m.

Solution
By treating the Sun as a blackbody, the Stefan–Boltzmann law gives
the total energy radiated over the whole spectrum per unit time and
per unit of normal area

dE

dtdS
= σT 4

	.
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The luminosity of the Sun is

L	 =
dE

dt
= 4πR2

	 σ T 4
	,

where 4πR2	 is the surface area of the Sun. Using the given data we
obtain

L	 = 4π(7.00 · 108 m)2 · (5.67 · 10−8 W · m−2 · K−4) · (5800 K)4

= 3.95 · 1026 W.

The solar constant S (energy falling on the unit normal area per unit
time) on the Earth is given by L	 = 4πd2S, hence

S =
L	

4πd2 =
3.95 · 1026 W

4π(1.50 · 1011 m)2
= 1.4 · 103 W

m2 .

4 (A) The Earth radiates approximately as a blackbody at 255 K.
Calculate the wavelength at which the blackbody distribution peaks
and compare the result with the wavelength at which the emission
from the Sun peaks (the Sun can be approximated by a blackbody
at 5800 K).

Solution
Wien’s law of displacement

λmaxT = b = 0.2898 cm · K

yields

λmax =
0.2898 cm · K

255 K
= 1.14 · 10−3 cm = 11.4 µm

for the Earth, and

λmax =
0.2898 cm · K

5800 K
= 5.00 · 10−5 cm = 500 nm

for the Sun. The emission from the Earth is peaked in the infrared
while the emission from the Sun is peaked in the visible band (the
Sun is classified as a yellow star).

5 (A) The radius of the Sun is R	 = 7.0 · 108 m, the average distance
between the Earth and the Sun is the astronomical unit (1 A.U.=
1.5 · 1011 m), and the solar constant on the Earth, i.e., the radiation
energy from the Sun falling on the unit of normal area per unit time,
is S = 1.4 · 103 W·m−2. Assuming the solar spectrum to be that of a
blackbody, compute the surface temperature of the Sun.
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Figure 4.1. The Sun and a sphere of radius d centered on it.

Solution
The luminosity of the Sun (total energy emitted per unit time over
all frequencies) is

L	 = 4πR2
	F, (4.1)

where F is the flux emitted at the surface of the star (energy emitted
per unit time and per unit normal area). The Stefan–Boltzmann law
gives

F = σT 4
	, (4.2)

where σ = 5.67 · 10−8 W ·m−2 K−4 is the Stefan–Boltzmann constant
and T	 is the Kelvin temperature of the solar surface. The electro-
magnetic energy radiated propagates through empty space and its
flux S across a sphere centered on the Sun, with radius d equal to
the astronomical unit (Fig. 4.1), is given by

L	 = 4πd2S. (4.3)

By comparing Eqs. (4.1) and (4.3) one obtains, using also Eq. (4.2),

T	 =

[
S

σ

(
d

R	

)2
]1/4

=

[
1.4 · 103 W · m−2

5.67 · 10−8 W · m−2 · K−4

(
1.5 · 1011 m
7.0 · 108 m

)2
]1/4

= 5800 K.
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6 (B) Derive the spectral energy density u(λ, T ) of a blackbody as a
function of wavelength λ, from the Planck distribution u(ν, T ) as a
function of frequency ν. Verify Wien’s law of displacement qualita-
tively. How can one verify it quantitatively?

Solution
The Planck distribution for the spectral energy density as a function
of frequency is

u(ν, T ) =
dE

dV dν
=

8πh

c3
ν3

e
hν
kT − 1

.

As a function of the wavelength λ = c/ν, we have

dE

dV dλ
=

dE

dV dν

dν

dλ
= − c

λ2 u
( c

λ
, T
)

.

By absorbing the negative sign in the definition of the spectral energy
density in wavelength, we obtain

u(λ, T ) ≡ − dE

dV dλ
=

c

λ2
8πhc3

λ3c3
1

e
hc

λkT − 1
,

or
u(λ, T ) =

8πhc

λ5
1

e
hc

λkT − 1
.

To verify Wien’s law, note that du/dλ vanishes at the maximum of
u(λ, T ):

du

dλ
=

8πhc

λ6
1

(ex − 1)2
[ex(x − 5) + 5] = 0,

where
x ≡ hc

λkT
.

The equation du/dλ = 0 is satisfied if and only if ex(5 − x) = 5. The
solutions of this trascendental equation are the intersections between
the graphs of the functions f(x) ≡ ex(5 − x) and y(x) = 5. To deter-
mine whether such intersections actually exist, we study analytically
the shape of the graph of f(x) for x ≥ 0 (corresponding to λ > 0).
f(x) is everywhere regular, f(0) = 5, f(x) → −∞ as x → +∞, and

df

dx
= ex(4 − x)

is positive for x < 4, zero for x = 4, and negative for x > 4. This
is sufficient to establish that f(x) has a local maximum that is also
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an absolute maximum at x = 4. The value of this maximum is
f(4) = e4 � 54.6 > 5. Hence, there are always only two intersections
between the line y = 5 and f(x): x0 = 0 and x = x1, with 4 <
x1 < 5 [note that f(5) = 0]. Since the maximum of the blackbody
distribution occurs at a particular value x1 of x ≡ hc/(λkT ), Wien’s
law of displacement

λmaxT =
hc

kx1
≡ b

is qualitatively verified. To verify the law quantitatively, i.e., to com-
pute the value of the constant b, we should solve numerically the
equation f(x) = 5. The result1 is x1 � 4.965, yielding

b =
hc

kx1
=

(6.625 · 10−34 J · s) · (3.0 · 108 m · s−1)
(1.38 · 10−23 J · K−1) · 4.965

= 0.29 cm · K.

7 (B) Show that the Planck energy distribution

u(ν, T ) =
8πhν3

c3
1

ehν/kT − 1

leads to the Rayleigh–Jeans law

uRJ(ν, T ) =
8πν2kT

c3

for low frequencies. Find the asymptotic form of u(ν, T ) at high fre-
quencies and discuss the meaning of “low” and “high” frequencies.

Solution
Low frequency denotes the situation in which the dimensionless ratio
of energies hν/kT 
 1. In this approximation the Planck distribu-
tion reduces to

u(ν, T ) =
8πhν3

c3
1

ehν/KT − 1
=

8πhν3

c3
1

1 + hν
kT + · · · − 1

� 8πkTν2

c3 ≡ uRJ(ν, T ),

where the Taylor expansion of the exponential function ex = 1 + x +
· · · is used.

1This numerical solution can be performed by successive approximations by using a simple,
nonprogrammable, pocket calculator.
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High frequency denotes the opposite limit in which hν/kT � 1. In
this limit

(
ehν/KT − 1

)−1 � e−hν/KT and the Planck distribution
reduces to

u(ν, T ) =
8πhν3

c3 e−hν/KT ,

a form originally proposed by Wien.

8 (A) The filament of a typical incandescent bulb is at a temperature
of 3000 K. Approximate the bulb with a blackbody: at what wave-
length λmax does then the emitted spectrum peak? In what region
of the electromagnetic spectrum does λmax fall? Comment on the
efficiency of an incandescent bulb for the purpose of lighting.

Solution
Wien’s law of displacement λmaxT = b = 2.898 · 10−3 m · K yields

λmax =
b

T
=

2.898 · 10−3 m · K
3000 K

= 9.66 · 10−7 m = 0.966 µm.

This wavelength lies in the infrared band of the electromagnetic spec-
trum, hence most of the energy emitted by the bulb is radiated in the
infrared, not in the visible band. An incandescent bulb has a poor
efficiency (typically around 5%) for the purpose of lighting.

4.3 Propagation of electromagnetic radiation
The propagation of electromagnetic radiation in a medium is accom-

panied by absorption, which is differential. Absorption depends on the
frequency of the radiation because of the quantum nature of atoms,
molecules, and solids that resonate and exchange photons only in cor-
respondence with selected frequencies determined by definite differences
between different energy levels of the system.

1 (A) Intensity of radiation is another name for the flux density of
electromagnetic energy. The intensity of solar radiation on the Earth
is given by the solar constant S. What is the intensity of solar radia-
tion on Mars, if the average Earth–Sun and Mars–Sun distances are
1 A.U. and 1.53 A.U., respectively? Treat the Sun as a pointlike
source.

Solution
The energy emitted by the pointlike Sun propagates radially outward
and is distributed over a spherical wavefront. The intensity (or flux
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Figure 4.2. A screen, a lightbulb, and a pointlike source.

density or solar constant) of electromagnetic radiation at distance r
from the Sun is I = L	/

(
4πr2

)
, where L	 is the luminosity (power

emitted) of the Sun. At the positions rE and rM of the Earth and
Mars,

IE = S =
L	

4πr2
E

, IM =
L	

4πr2
M

,

and
IM

IE
=
(

rE

rM

)2

so that the intensity (or flux density, or solar constant) at Mars is

IM = S

(
rE

rM

)2

= S

(
1 A.U.

1.53 A.U.

)2

= 0.43S.

2 (A) A 60.0 W lightbulb produces on a very small screen 1.84 m away
the same intensity as a pointlike light source of unknown power W2
at 2.56 m (Fig. 4.2). What is the value of W2? At what distance from
the screen should one place this second source to obtain the intensity
of 10.0 W/m2? Treat the lightbulb as an isotropic point source.

Solution
Assuming for simplicity that the light sources radiate isotropically,
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and that the small screen can be approximated by a nearly flat por-
tion of spherical surface centered on the lightbulb, the intensity of
light on the screen is

I =
W1

4πd2
1

=
W2

4πd2
2
,

where Wi and di are, respectively, the power and the distance from
the screen of the light sources (i = 1, 2). We have

W2 = W1

(
d2

d1

)2

= (60.0 W) ·
(

2.56 m
1.84 m

)2

= 116 W.

When this pointlike source of light is placed at the new distance d′

from the screen, the intensity at the screen is I ′ = W2/
[
4π (d′)2

]
=

10.0 W/m2, yielding

d′ =
(

W2

4πI ′

)1/2

=
[

116 W
4π (10.0 W/m2)

]1/2

= 0.961 m.

3 (A) A medium is composed of a substance with molar extinction
coefficient 2.5 · 105 dm3·mol−1·cm−1 at a certain wavelength λ and
concentration 2.8·10−3 mol·dm−3. A monochromatic light beam with
this wavelength travels through a layer of the substance. What is the
distance traveled when the intensity of the light beam is reduced to
1/1000 of the intensity upon entering the medium? What are the
dimensions of the optical density?

Solution
The attenuation of the light beam is given by the Lambert–Beer–
Bouguer law

I(z) = I0 · 10−τ ,

where the optical density τ is

τ = ε C z.

Here ε is the molar extinction coefficient, C is the concentration of the
chemical, z is the distance traveled by the beam, I0 = I(z = 0) is the
intensity of the beam upon entering the medium, and the attenuation
of the beam intensity is exponential. When the beam intensity is
reduced to I/I0 = 10−3, then τ = 3 and

z =
τ

ε C
=

3.0(
2.5 · 105 dm3 · mol−1 · cm−1

) · (2.8 · 10−3 mol/dm3)
= 4.3 · 10−3 cm.
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The optical density τ is a pure number and does not carry dimensions.

4 (A) The Lambert–Beer–Bouguer law describing the attenuation of
the intensity I of electromagnetic radiation due to absorption appears
in the literature in two forms:

I = I0 e−αx,

where I0 = I(x = 0) is the intensity upon entering a slab of absorbing
material normal to the direction of propagation, x is the distance
traveled in the slab, and the absorption coefficient α depends on the
material and the frequency of radiation. The second form of the
Lambert–Beer–Bouguer law is

I = I0 · 10−τ ,

where τ = ε C x is the optical density, ε is the molar extinction coef-
ficient, and C is the concentration of the absorbing substance. What
is the relation between α and τ? What are their dimensions?

Solution
By using the formula

ax ≡ ex ln a,

we obtain
I = I0 · 10−τ = I0 e−ε C x ln 10 = I0 e−αx,

with
α = ε C ln 10 � 2.303 ε C.

Since the argument of the exponential in the Lambert–Beer–Bouguer
law must be dimensionless, the absorption coefficient has the dimen-
sions of the inverse of a length, [α] =

[
L−1
]
. Similarly, the optical

density τ does not carry dimensions. The dimensions of the molar
extinction coefficient and of the concentration are

[ε] =
[
dm3 · mol−1 · cm−1]

and
[C] =

[
mol/dm3] .

5 (C) The attenuation of the intensity I of a beam of electromagnetic
radiation in the atmosphere is due to absorption and scattering. Scat-
tering by particles suspended in the atmosphere is described by

T = e−βx,
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where the transmittance T = I/I0 is the ratio between the intensity
of the beam I and its intensity I0 upon entering the atmosphere at
x = 0, and the coefficient β depends on the radiation wavelength, the
concentration of the scatterers, their size r, and the refraction index
n. Discuss Rayleigh, Mie, and nonselective scattering according to
the size of the scattering particles. How is the radar used for weather
monitoring related to scattering?

Solution
When the scattering particles have sizes much smaller than the wave-
length of the incident radiation, r 
 λ, Rayleigh scattering domin-
ates. The coefficient β is strongly λ-dependent,

β ∝ 1
λ4 .

Consequently, the transmittance T is large (close to unity) for long
wavelengths and exponentially small for short wavelengths—hence
short wavelengths are intensely scattered. This phenomenon is re-
sponsible for the blue color of clear, clean skies.

When r � λ waves are reflected from different parts of the particle
and interfere, Mie scattering dominates and β (λ) is a complicated
function of the wavelength. At shorter wavelengths it is approxima-
tely β ∝ λ−2.

For r � λ, scattering is nonselective and β is independent of the
wavelength, dβ/dλ = 0. This is the case, for example, of water
droplets in fog and clouds, with size 5 · 10−6 m ≤ r ≤ 10−4 m, scat-
tering infrared radiation. This scattering phenomenon is used in the
weather radar, an important tool that monitors weather and detects
suspended droplets and clouds. The speed of an approaching cloud
can be measured using the Doppler effect.

6 (A) When electromagnetic radiation of frequency ν1 emitted by the
Sun reaches the surface of the Earth after traversing the entire at-
mosphere radially, its intensity is reduced to 0.35 times its value in
outer space because of absorption. The ratio T1/T2 of transmittances
for waves of frequencies ν1 and ν2 is 0.40; what is the value of the
absorption coefficient for electromagnetic waves of frequency ν2? As-
sume that the thickness of the atmosphere is 1.0 · 102 km.

Solution
The transmittances for radiation at frequencies ν1 and ν2 are given
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by the Lambert–Beer–Bouguer law

T1 = e−α1z, T2 = e−α2z,

and their ratio is
T1

T2
= e(α2−α1)z,

yielding

α2 = α1 +
1
z

ln
(

T1

T2

)
.

The absorption coefficient α1 is given by α1 = −z−1 lnT1 and

α2 =
1
z

[
ln
(

T1

T2

)
− lnT1

]
=

1
1.0 · 105 m

(ln 0.40 − ln 0.35)

= 1.3 · 10−6 m−1.

7 (A) A beam of monochromatic electromagnetic radiation of initial
intensity I0 propagates through a layer of the atmosphere and is both
absorbed and scattered, with absorption and scattering coefficients
α = 0.50 · 10−5 m−1 and β = 2.00 · 10−4 m−1, respectively. What is
the beam intensity I (as a fraction of I0) after it has traveled one
kilometer in the air layer?

Solution
Absorption and scattering both contribute to exponential attenua-
tion of the beam intensity, and they occur simultaneously. Without
scattering, absorption alone would determine an intensity

I1(z) = I0 e−α z.

We can take this intensity as the initial value for the beam intensity
that is further reduced by scattering by another exponential factor
e−β z, or

I(z) = I1(z) e−β z = I0 e−(α+β)z

= I0 e−(0.50·10−5 m−1+2.00·10−4 m−1)(1000m) = 0.815 I0.

Although this separation is artificial because absorption and scatter-
ing occur simultaneously, it may still be useful in order to combine
the effects of the two processes.
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8 (A) The foliage cover of a forest filters sunlight letting only cer-
tain wavelengths reach the ground. The attenuation of the inten-
sity of a light beam is due to chlorophyll a, with absorption peaked
in the red—the solar energy absorbed is converted into chemical
energy due to photosynthesis. What is the molar extinction coef-
ficient (in dm3 · mol−1 · cm−1) of chlorophyll for red light, if the
leaves are 2.5 · 10−2 mm thick and the chlorophyll concentration is
C = 8.5 ·10−4mol/dm3? Assume that a beam of sunlight, on average,
traverses 10 leaves reducing its intensity to 10−3 times the value that
it has above the foliage cover. What is the value of the extinction
coefficient?

Solution
The attenuation of sunlight entering a leaf perpendicularly to its sur-
face is described by the Lambert–Beer–Bouguer law

I = I0 · 10−τ ,

where the optical density τ is given by τ = ε C x, ε is the molar
extinction coefficient, C is the chlorophyll concentration, and x is
the distance traveled by the beam. Hence,

ε = −
[
lg10

(
I

I0

)]
1

Cx
=

− lg10
(
10−3

)
(
8.5 · 10−4 mol/dm3) · 10 · (2.5 · 10−5 m)

=
3(

8.5 · 10−4 mol/dm3) · 10 · (2.5 · 10−3 cm)
= 1.41 · 105 dm3

mol · cm
.

The Lambert–Beer–Bouguer law can be put in the form

T ≡ I

I0
= e−αx,

where α is the extinction coefficient, or

α = − 1
x

ln
I

I0
.

For the average path of a beam of sunlight through the foliage cover,
we have

α =
−1

2.5 · 10−4 m
ln 10−3 = 2.8 · 104 m−1.

9 (B) In the ionosphere, at altitudes higher than 80 km, the number
density of free electrons and ions created by ionizing radiation from
the Sun is sufficiently large to affect the propagation of electromag-
netic waves. The relation between the angular frequency ω and the
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wave vector k (dispersion relation) of an electromagnetic wave prop-
agating through the ionospheric plasma is given by

ω2 = c2 k2 + ω2
p,

where c is the speed of light in vacuum and ωp is a constant called
plasma frequency. Compute the phase and group velocities of the
electromagnetic wave as functions of the angular frequency ω. Con-
sider a monochromatic plane wave propagating along the positive
x-axis and described by the electric field 	E = 	E0 ei(kx−ω t), where 	E0
is a constant vector. Discuss the propagation of the wave for the
situations ω > ωp and ω < ωp.
The plasma frequency is given by

ωp =

√
4πe2ne

meγ
,

where e, me, and ne are, respectively, the electron charge and mass,
and the number density of free electrons; γ ≡ (1 − v2/c2

)−1/2 is the
Lorentz factor of electrons with speed v. Provide an argument show-
ing that it is harder and harder for radio waves of intermediate fre-
quency to propagate in the ionosphere at higher and higher altitudes.

Solution
The dispersion relation is

ω = ck

√
1 +
(ωp

ck

)2
,

and the corresponding phase velocity is

vp ≡ ω

k
= c

√
1 +
(ωp

ck

)2

(see Fig. 4.3), which is larger than the speed of light c. This is not a
paradox because the physically relevant velocity is the group velocity

vg ≡ dω

dk
=

c2 k√
c2k2 + ω2

p

= c

[
1 +
(ωp

ck

)2
]−1/2

,

which is smaller than c (Fig. 4.4).

For a monochromatic plane wave described by the electric field 	E =
	E0 ei(kx−ω t) the dispersion relation yields

k =
1
c

√
ω2 − ω2

p;
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Figure 4.3. The phase velocity in units of the speed of light c.

if ω > ωp, the wave vector k is real and the wave propagates almost
freely—it is unaffected by the presence of the ionospheric plasma in
the limit ω � ωp, in which k ≈ ω/c as in vacuum. If instead ω < ωp,
the wave vector k is imaginary, k = i |k|, and the wave’s electric field
can be written as

	E = 	E0 ei(kx−ω t) = 	E0 e−|k|x e−iω t,

in which it is evident that the wave is absorbed by the plasma as it
propagates through it. The effective amplitude of the electric field∣∣∣ 	E0

∣∣∣ e−|k|x decreases exponentially fast with the distance x traveled.
Upon traveling the length

|k|−1 =
c√

ω2 − ω2
p

the amplitude is reduced by a factor 1/e (one e-fold)—long waves
cannot propagate through the plasma. High-frequency waves travel
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Figure 4.4. The group velocity in units of the speed of light c.

better through the atmosphere than low- or intermediate-frequency
waves, a fact well known to radio amateurs.

The plasma frequency (the angular frequency threshold for propaga-
tion)

ωp =
(

4πe2ne

me γ

)1/2

is larger and larger at higher elevations due to the larger abundance
of electrons freed by ionizing solar radiation in conditions of lower
pressure and density (larger ne). Therefore, it is harder and harder for
intermediate frequency electromagnetic waves to propagate at higher
altitudes.

4.4 Greenhouse effect and global warming
Global warming is one of the most intensively studied aspects of mod-

ern environmental physics. The injection of greenhouse gases, mainly
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CO2, in the atmosphere since the beginning of the Industrial Revolu-
tion has created a sort of blanket that allows short-wavelength radiation
to reach the surface of the Earth and traps longer-wavelength infrared
radiation re-radiated by the Earth, that would normally escape to outer
space. The long-term effect is a global warming of the planet. While
such a trend is actually being observed, it is not clear whether it is
caused by manmade emissions or by natural causes.

1 (C) Describe the greenhouse effect in a farm greenhouse. What is
the main difference between a greenhouse and the atmosphere?

Solution
In a greenhouse, short wavelength radiation in the visible band (wave-
lengths 400 nm < λ < 700 nm) enters through the glass walls and is
absorbed by the plants contained in it. Electromagnetic radiation is
then emitted by the plants at shorter wavelengths in the infrared
(700 m< λ <0.1 mm). The glass of the walls is transparent to
shorter wavelengths in the visible band and is opaque to the longer
wavelengths re-radiated in the infrared by the plants—infrared radia-
tion is therefore trapped inside the greenhouse. The main difference
between the Earth’s atmosphere and a greenhouse is that infrared
radiation escapes from the Earth at night, while it can not escape
from the enclosed space of a greenhouse.

2 (A) Absorption of ultraviolet light in the atmosphere is described by
the Lambert–Beer–Bouguer law. What would happen to the inten-
sity of UV radiation on the surface of the Earth if the optical density
decreased by one unit?

Solution
The Lambert–Beer–Bouguer law yields the intensity of UV radiation
reaching the surface of the Earth

I = I0 · 10−τ ,

where τ is the optical density. If τ decreases by one (τ is dimension-
less), the intensity I increases by 10 units:

I −→ I0 10−(τ−1) = 10 I0 10−τ .

3 (A) The optical density from outer space to a point P in the at-
mosphere located below the ozone layer is τ = 1. Assume that the
ozone concentration drops by 10% and compute the ratio of intensi-
ties of UV-B radiation at P before and after the change of the O3
concentration.
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Solution
The optical density to a generic point in the atmosphere is τ = ε C z,
where ε is the molar extinction coefficient, C is the concentration of
ozone responsible for absorbing UV-B radiation, and z is the distance
traveled by the UV-B rays. When the concentration of ozone under-
goes the change C → C ′ = 0.9 C the optical density τ = ε C z changes
according to τ → τ ′ = 0.9 τ . Before the drop in C the intensity of
UV-B is given by the Lambert–Beer–Bouguer law, I = I0 ·10−τ ; after
C drops, the intensity is I ′ = I0 · 10−0.9 τ . The ratio of intensities is

I ′

I
=

10−0.9 τ

10−τ
= 10 0.1 τ .

At point P , it is τ = 1 before the change and I ′/I = 100.1 = 1.259,
thus a 10% change in the concentration of atmospheric ozone leads to
a 26% change in the intensity of UV-B radiation. Since biomolecules
and human tissues are very sensitive to UV-B radiation, a 26% in-
crease in its intensity would have serious consequences on the inci-
dence of skin cancer.

4 (B) When the concentration of greenhouse gases in the atmosphere
increases, C0 −→ C, the temperature rises accordingly (radiative
forcing) to compensate for the decreased flux of infrared radiation
leaving the atmosphere. Greenhouse gases are measured by their
equivalent CO2 concentration. Two different models of radiative forc-
ing found in the literature predict the temperature variations

∆T1 = τ ln
(

C

C0

)

and
∆T2 = τ

∆C

C0
,

where ∆C ≡ C−C0 and τ = 6.1 K. From 1850 to 1990 during the late
Industrial Revolution, the value of C rose from 285 ppm to 360 ppm.
Compare the predictions of the two models for the corresponding
temperature change. Derive the second model from the first. What
order of approximation in powers of in ∆C/C0 is needed in order to
reach agreement to two significant figures between the two models?

Solution
In the first model of radiative forcing

∆T1 = (6.1 K) ln
(

360 ppm
285 ppm

)
= 1.4 K,
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while in the second model

∆T2 = (6.1 K)
360 ppm − 285 ppm

285 ppm
= 1.6 K.

The disagreement between the predictions of the two models is

∆T2 − ∆T1

∆T2
= 13%.

The second model is nothing but the linear approximation of the first
one and is only adequate for small values of ∆C/C0. By using the
series

ln (1 + x) = x − x2

2
+

x3

3
− x4

4
+ . . .

for |x| < 1, one computes the corrections to the following orders:

∆T = τ ln
C

C0
= τ ln

(
1 +

∆C

C0

)

= τ

[
∆C

C0
− 1

2

(
∆C

C0

)2

+
1
3

(
∆C

C0

)3

− 1
4

(
∆C

C0

)4

+ . . .

]
;

to first order, one recovers the second model of radiative forcing,
∆T = τ∆C/C0. The leading order correction yields

∆T = (6.1 K)
[(

360 ppm − 285 ppm
285 ppm

)

−1
2

(
360 ppm − 285 ppm

285 ppm

)2
]

= 1.4 K.

The second-order correction is necessary since ∆C/C0 � 0.263 is not
a very small number and the linear approximation is not accurate.
To the relevant accuracy (two significant figures) the second-order
approximation agrees with the exact model.

5 (B) Assume that the heat flux F radiated by the Earth in space
suddenly decreases due to the greenhouse effect, caused by an abrupt
increase in the concentration of greenhouse gases in the atmosphere.
Since the Earth is in thermal equilibrium with outer space its surface
temperature Ts must increase to compensate for the decrease of F ,
according to the Stefan–Boltzmann law. This radiative forcing is
described by

∆Ts ≡ Ts(t) − T0 = G ∆F,
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where T0 is the surface temperature before the change, ∆F is the
magnitude of the variation of F , and G is a gain function, which
in the linear approximation is simply ∂Ts/∂(∆F )|∆F=0. Refine this
model by taking into account the thermal inertia of the oceans cov-
ering 70% of the Earth’s surface. Let c m be the heat capacity of the
top layer of the oceans interested by global warming (m is its mass
and c is the specific heat of water); derive a differential equation for
the surface temperature Ts(t) and find its solution.

Solution
The heat flux (energy passing per unit time through the unit area
normal to the direction of propagation) is F = dQ/dt dS and the
magnitude of its variation due to the greenhouse effect is ∆F . We
obtain

∆F =
d (∆Q)
dt dS

+
∆Ts

G
,

where ∆Q is the difference between the heat lost by the Earth’s
surface after and before the change in the greenhouse gases concen-
tration. Since ∆Q = c m∆Ts, it is straightforward to conclude that
Ts obeys the differential equation

d (∆Ts)
dt

+
∆Ts

γG
=

∆F

γ
, (4.4)

where γ ≡ d (cm) /dS is the heat capacity of the oceans per unit
area. The general solution of the homogeneous equation associated
with Eq. (4.4) is

∆Ts(t) = A e−t/τ ,

where τ ≡ γ G is a time scale. A particular solution of the inhomo-
geneous equation (4.4) is

∆Ts = G ∆F,

and therefore the general solution of Eq. (4.4) is

Ts(t) = T0 + A e−t/τ + G ∆F.

The integration constant A is determined by the initial condition
Ts(0) = T0, which yields A = −G ∆F , and therefore

Ts(t) = T0 + G ∆F
(
1 − e−t/τ

)
.

The solution goes to its asymptotic value T0 + G ∆F as t → +∞.
In practice Ts reaches 90% of this value after a time t = 2.3 τ . The
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effect of the thermal inertia of the oceans is to introduce a time lag
in the global warming of the planet—without the oceans we would
have the constant solution T0 + G ∆F . The time scale τ is estimated
to be between 50 and 100 years. In order or magnitude we have

τ = γ G =
d (c m)

dS
G � cmG

0.7 · 4πR2
E

=
cρ
(
0.7 · 4πR2

E

)
hG

0.7 · 4πR2
E

= c ρ h G,

where RE is the Earth’s radius and h the depth of the top layer of the
oceans. Realistic values are G = 0.7 ◦ C · s · m2/J [4] and h = 1 km,
yielding

τ ∼
(

4187
J

kg · (◦ C)

)(
1.0 · 103 kg

m3

)(
103 m

)(
0.7

◦ C · s · m2

J

)

∼ 3 · 109 s ∼ 93 years.

4.5 Electromagnetic radiation and human health
The effects of electric fields on biological cells are relatively well un-

derstood, while the effects of magnetic fields are not. The effects of
electromagnetic fields on complex organisms such as the human body
are largely unknown and are the subject of extensive research. Electro-
magnetic pollution by human activities is the subject of much ongoing
research in environmental science.

1 (C) What are the various forms of ionizing radiation? What are their
nature and origin?

Solution
Ionizing radiation includes UV-B radiation, X-rays, γ-rays, and α-
particles. UV-B radiation, X-rays, and γ-rays are electromagnetic
waves with increasing frequency ν and energy E = hν, where h is
the Planck constant. The higher the frequency and the energy, the
higher the penetrating power of the radiation. As the name says,
when ionizing electromagnetic waves propagate through a medium
they ionize its atoms or molecules by removing electrons.

UV-B radiation originates from electronic transitions of electrons
that are tightly bound to an atom, with relatively large binding
energies.

X-rays originate from the inner shells of atom—electrons in these
inner shells are closer to the nucleus than outer valence electrons
and therefore experience the full nuclear charge without being
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shielded from it, as is the case for the outer electrons. As a
consequence, inner electrons are more tightly bound and their
excitation involves higher energies and frequencies than those as-
sociated with the outer, less tightly bound, electrons.

γ-rays originate in nuclear radioactivity and in matter–antimatter
annihilations.

α-particles are massive particles composed of two protons and two
neutrons, i.e., helium nuclei, and originate in radioactive decay.
They also have the ability to ionize the material they propagate
through and their penetrating power depends on their energy.

2 (B) The absorption of radiation by human tissues can be schemati-
cally described as follows. Consider an electromagnetic wave propa-
gating along the positive x-axis and described by the electric field

	E = 	E0 ei(kx−ωt)

for x ≤ 0, where 	E0 is a constant vector. The wave enters a human
tissue modeled by a semi-infinite slab at x = 0 and a component is
partially transmitted and partially absorbed, while another compo-
nent is reflected, as described by the electric field

	E (t, 	x) = 	E′0 e−x/δ ei(k′x−ωt) + 	E′′0 ei(−kx−ωt),

for x > 0, where 	E′0 and 	E′′0 are constants. The new wave vector k′
and the skin depth δ are given by the equations

(
k′)2 = µεω2 +

(µσω)2

4 (k′)2
, (4.5)

δ =
2k′

µσω
, (4.6)

where µ, ε, and σ are, respectively, the magnetic permeability, dielec-
tric constant, and conductivity of the material. Discuss Eqs. (4.5) and
(4.6) in the limits of an ideal conductor σ → +∞ and of an ideal di-
electric σ → 0 (in reality, human tissues are neither ideal conductors
nor ideal insulators). In both cases, find an expression for the phase
velocity of the transmitted wave.

If δ = 15 cm, at what value of x is the electric field amplitude reduced
by 90%?
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Solution
In the case of an ideal conductor (σ → +∞) the first term in the
right-hand side of Eq. (4.5) can be neglected, obtaining

k′ =
√

µσω

2
,

while Eq. (4.6) yields

δ =
√

2
µσω

−→ 0.

The phase velocity of the damped part of the wave is

v =
ω

k′ =
√

2ω

µσ
−→ 0

as σ → +∞.
In the case of an ideal dielectric (σ → 0), Eqs. (4.5) and (4.6) yield

k′ � √
ε µ ω,

δ =
2k′

µ σ ω
� 2

σ

√
ε

µ
;

then δ → +∞ and the transmitted wave is not absorbed, e−x/δ → 1.
The phase velocity is

v′ =
ω

k′ =
1√
µε

.

The amplitude of the electric field describing the part of the wave
that is partially transmitted and partially absorbed is reduced by
90% when e−x/δ = 0.1, or x = (− ln 0.1) δ � 2.3 δ = 35 cm.

3 (A) What is the strength of the magnetic field 5 m, 10 m, and 50 m
away from a lightning bolt during the short time it carries a current
of 1.0 · 104 A? For simplicity, approximate the bolt with a straight
line. Compare your result with the strength of the geomagnetic field
Bg � 10−4 T and with the strength of the field below a high voltage
power line, B0 = 10−3 T. Is there a point in studying the health
effects of manmade electromagnetic fields?

Solution
The magnetic field surrounding a long, thin, straight wire is

B =
µ0I

2πr
,
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where µ0 is the magnetic permeability of vacuum, I is the intensity
of the current carried by the conductor, and r is the distance from
the wire. The geomagnetic field’s average intensity is Bg � 10−4 T.
At 5 m from the lightning bolt,

B =

(
4π · 10−7 T · m · A−1) · (1.0 · 104 A

)
2π · (5 m)

= 4 · 10−4 T = 4Bg.

At 10 m, B = 2 · 10−4 T = 2Bg and, at 50 m from the bolt, B =
4 · 10−5 T = 0.4Bg.

Even at the very small distance of 10 m from the lightning bolt,
the ratio between the magnetic induction due to the bolt and the
magnetic induction B0 below a high voltage power line is

B (10 m)
B0

=
2 · 10−4 T
10−3 T

= 0.2.

Therefore, electromagnetic fields produced by human activities can
have much larger intensities than natural electromagnetic fields, even
when the latter are at their strongest intensities. In principle there
is a point in studying the health effects of manmade electromagnetic
fields.

4.6 Environmental spectroscopy
The quantum structure of matter (atoms, molecules, and solids) deter-

mines discrete energy levels: quantum systems can only absorb or emit
electromagnetic radiation in discrete packets of energy corresponding
to the difference between two energy levels—a resonance phenomenon.
This fact explains, for example, why absorption of electromagnetic radia-
tion is so highly selective in frequency. Emission spectra by gases consist
of spectral lines characteristic of the atom or molecule that constitute
a fingerprint useful to identify that atom or molecule. Spectroscopy in
environmental applications is used to detect the presence of a molecule
naturally present or of a pollutant in the atmosphere, soil, and water.
Examples are the monitoring of the concentration of ozone in the strato-
sphere with remote sensing, the measurement of CO2 (the main green-
house gas) abundance in tree rings formed a few centuries ago, or the
detection of toxic chemicals in soil and water. Suggested introductory
references are [68] and [4].

1 (C) Summarize the main spectroscopic techniques useful in envi-
ronmental science according to the energy levels excited, and give
examples of their uses.
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Solution
Spectroscopic techniques can be classified according to the energy
levels of atoms and molecules that are excited and originate spectra.

Electronic transitions generate spectra in the near-infrared, visi-
ble, and ultraviolet regions; transitions involving inner shell elec-
trons produce X-rays. Optical spectroscopy, X-ray emission and
absorption, photoelectron, Auger, and PIXE (particle-induced X-
ray emission) spectroscopy are based on these transitions.

Rotational and vibrational spectroscopy study transitions between
rotational and vibrational states of molecules. Raman spectro-
scopy studies light scattered by molecules and rotational and vi-
brational transitions.

NMR (nuclear magnetic resonance) and ESR (electron spin reso-
nance) spectroscopy study, respectively, transitions between nu-
clear and electron spin states in the presence of an external mag-
netic field in interaction with atoms or molecules.

Spectroscopy is a very important scientific tool in many fields; its
applications to environmental science include qualitative and quan-
titative analysis of the composition of the atmosphere, soil, surface
waters and groundwater, monitoring the concentration of greenhouse
gases in the atmosphere, the variation of concentration of chemicals
destroying the ozone layer, and the relative abundance of atmospheric
CO2 in the past (analysis of tree rings and deep ice samples).

4.6.1 Quantum mechanics
It is beyond the scope of this book and outside the interest of most

environmental science students to review quantum mechanics through
exercises. Here we present a few selected problems that are useful to
reinforce the understanding of basic aspects of environmental spectro-
scopy. Standard references are [23, 41, 49].

1 (C) Discuss the relative size in meters of molecules, atoms, and nu-
clei.

Solution
Molecules have typical sizes of order 10−9 m, however heavy, compli-
cated molecules composed of many atoms can be much larger. The
size of the hydrogen atom is given by the Bohr radius a0, the ra-
dius at which the probability density for the ground state of the
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single electron peaks: a0 = 0.5 · 10−10 m. Hence, atoms have typ-

ical size of order 10−10 m= 1
◦
A. A nucleus has a typical size of

10−15 m = 1 fm (1 Fermi). Therefore, latom/lmolecule ≈ 10−1 and
lnucleus/latom ≈ 10−5.

2 (A) Consider a system of two identical quantum particles described
by the wave function ψ(	x1, 	x2). Any function ψ(	x1, 	x2) can be de-
composed into a symmetric and an antisymmetric part as

ψ(	x1, 	x2) = ψ(S)(	x1, 	x2) + ψ(A)(	x1, 	x2),

where
ψ(S) (	x1, 	x2) ≡ 1

2
[ψ(	x1, 	x2) + ψ(	x2, 	x1)] ,

ψ(A) (	x1, 	x2) ≡ 1
2

[ψ(	x1, 	x2) − ψ(	x2, 	x1)] .

Prove that this decomposition of ψ into a symmetric and an antisym-
metric part is unique.

Consider the exchange operator P̂12 defined by

P̂12 ψ(	x1, 	x2) ≡ ψ(	x2, 	x1);

what are the eigenvalues and the eigenvectors of P̂12? What kind of
particles do they describe?

Solution
Let

ψ(	x1, 	x2) = A(	x1, 	x2) + B(	x1, 	x2)

with A symmetric and B antisymmetric be another decomposition of
ψ into symmetric and antisymmetric parts. Then

ψ(	x2, 	x1) = A(	x2, 	x1) + B(	x2, 	x1)

= A(	x1, 	x2) − B(	x1, 	x2).

By adding and subtracting the expressions of ψ (	x1, 	x2) and ψ (	x2, 	x1)
we obtain, respectively,

A(	x1, 	x2) =
1
2

[ψ(	x1, 	x2) + ψ(	x2, 	x1)] ≡ ψ(S)(	x1, 	x2),

B(	x1, 	x2) =
1
2

[ψ(	x1, 	x2) − ψ(	x2, 	x1)] ≡ ψ(A)(	x1, 	x2),
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which proves the uniqueness of the decomposition.

The operator P̂12 is nilpotent, i.e., P̂12
2

= Îd, where Îd is the identity
operator, hence the eigenvalues a of P̂12 simultaneously satisfy the
relations

P̂12 ψ = aψ

and
P̂12

2
ψ = a2ψ = ψ,

which imply that a2 = 1, or that the eigenvalues are a = ±1. Sym-
metric wavefunctions are associated with the eigenvalue +1 and de-
scribe bosons, while antisymmetric wavefunctions are associated with
the eigenvalue −1 and describe fermions.

3 (B) The width of a spectral line due to lifetime broadening (or un-
certainty broadening) is described by the Lorentzian function

L(E) =
�/τ

(E − Ef )2 + [�/(2τ)]2
, (4.7)

where Ef is the energy of the spectral line and τ is the lifetime of the
excited state. Study analytically the shape of the Lorentzian curve,
sketch its graph, and find its full width at half-maximum (FWHM).
Does the area under the Lorentzian curve depend on the lifetime τ?

Solution
We have L(E) = 2f(x), where x ≡ E, x0 = Ef , and

f(x) =
α

(x − x0)
2 + α2

,

with α ≡ �/(2τ). The function f(x) is regular for every value of x
and its graph is symmetric about the vertical line x = x0. If one
performs the translation x → x′ = x − x0, then f(x′) = f(−x′). In
addition,

lim
x→±∞ f(x) = 0.

The first derivative of f is

f ′(x) =
−2α (x − x0)

[(x − x0)2 + α2]2
.

We have f ′(x) > 0 for x < x0, f ′(x0) = 0, and f ′(x) < 0 for x > x0,
hence f(x) has a local and absolute maximum fmax = f(x0) = α−1

at x = x0 (or E = Ef ). The graph of the Lorentzian (in units 1/Ef )
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Figure 4.5. A Lorentzian curve.

versus x (in units Ef ) is sketched in Fig. 4.5 for α = 0.5Ef .
The half-maximum of f is attained at the values x± of x satisfying
the equation

fmax
2

=
α

(x − x0)
2 + α2

,

or (x − x0)2 = α2, which yields x± = x0 ± α corresponding to E± =
Ef ± �/(2τ). The FWHM is then

∆E = E+ − E− = �/τ.

As α increases, the maximum of the Lorentzian 2fmax = 2α−1

decreases and the curve becomes less and less peaked around Ef

while the FWHM ∆E = 2α increases. The total area between the
Lorentzian curve and the x-axis is given by∫ +∞

−∞
2f(x)dx = 2α

∫ +∞

−∞
dx

1
(x − x0)

2 + α2

= 2α

∫ +∞

−∞
dz

1
z2 + α2
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= 2α lim
M→+∞

[
1
α

arctg
( z

α

)]+M

−M

= 2π,

and therefore does not depend on α nor on the lifetime τ of the
excited state.

4.6.2 Vibrational and rotational levels of
molecules

For the environmental scientist, rotational and vibrational spectro-
scopy are very useful to study the presence and abundance of specific
molecules — usually pollutants — in water, in the atmosphere, or in
samples of material. Like electronic energy levels, the rotational and
vibrational energies of a molecule are also quantized. There are very
common diatomic molecules that are quite simple and have relatively
uncomplicated rotational and vibrational spectra, described by simple
formulas for the energy levels that can be used without extensive knowl-
edge of quantum mechanics.

1 (A) The CO molecule has a bond strength k = 1860 N·m−1 while the
masses of C and O are, respectively, 1.99·10−26 kg and 2.66·10−26 kg.
Find the frequency ν(12,11) corresponding to the transition v = 12 −→
v = 11 between vibrational levels of the CO molecule. Is the fre-
quency ν(9,8) corresponding to the v = 9 −→ v = 8 transition differ-
ent from ν(12,11)?

Solution
The CO molecule is a linear oscillator and in the harmonic approx-
imation its vibrational energy levels are the energy levels of the
one-dimensional quantum mechanical harmonic oscillator (see, e.g.,
Refs. [61, 41, 49, 23])

Ev =
(

v +
1
2

)
�ω v = 0, 1, 2, 3, · · · ,

where ω = (k/µ)1/2 and µ is the reduced mass of the molecule. The
energy difference between adjacent energy levels is

∆E(v+1,v) =
[(

v + 1 +
1
2

)
−
(

v +
1
2

)]
�ω = �ω

and does not depend on v: the energy levels of the harmonic oscillator
are equally spaced. Note that transitions between adjacent energy
levels are the only ones allowed by the selection rule ∆v = ±1 [41,
49, 23].
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The reduced mass of the molecule is

µ =
mCmO

mC + mO

=
(1.99 · 10−26 kg) · (2.66 · 10−26 kg)
(1.99 · 10−26 kg) + (2.66 · 10−26 kg)

= 1.14 · 10−26 kg,

and the frequency of any v + 1 −→ v transition is

ν(v+1, v) =
1
2π

√
k

µ
=

1
2π

√
1860 N · m−1

1.14 · 10−26 kg
= 6.43 · 1013 Hz.

2 (A) The separation between the carbon and oxygen atoms in the CO
molecule is r = 1.13 · 10−10 m and the masses of the C and O atoms
are, respectively, 1.99 · 10−26 kg and 2.66 · 10−26 kg. Compute the
energy of the two lowest rotational states of the molecule in Joules
and in electronvolts.

The strength of the C-O bond is k = 1860 N · m−1. Find the en-
ergies of the first two vibrational levels of the molecule in Joules and
in electronvolts. Compare the orders of magnitude of the energy of
the vibrational and the rotational levels.

Solution
The CO molecule is a linear rotor, and the two-body problem can be
reduced to an equivalent one for a single particle with reduced mass
µ at distance r from the rotation axis. The reduced mass is

µ =
m1m2

m1 + m2
=

(1.99 · 10−26 kg) · (2.66 · 10−26 kg)
(1.99 · 10−26 kg) + (2.66 · 10−26 kg)

= 1.14 · 10−26 kg.

The moment of inertia for the reduced problem is

I = µr2 = (1.14 · 10−26 kg) · (1.13 · 10−10 m)2 = 1.46 · 10−46 kg · m2.

The rotational energy levels are given by

EJ = J(J + 1)hcB,

where B = �/(4πcI) is the rotational constant and J = 0, 1, 2, 3, ... .
Hence,

EJ =
�

2

2I J(J+1) = 3.8·10−23J(J+1) Joules = 2.38·10−4J(J+1) eV.
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The two lowest rotational states corresponding to J = 0 and J = 1
have energies E0 = 0 and

E1 = 7.60 · 10−23 Joules = 4.76 · 10−4 eV.

The vibrational energy levels of a diatomic molecule are given by the
energy eigenvalues of the one-dimensional quantum harmonic oscil-
lator [61, 41, 49, 23],

Ev =
(

v +
1
2

)
�ω (v = 0, 1, 2, ...),

where ω =
√

k/µ is the vibrational angular frequency. For the CO
molecule,

ω =
(

1860 N m−1

1.14 · 10−26 kg

)1/2

= 4.04 · 1014 rad
s

.

The energy levels are

Ev =
(

v +
1
2

)
· (4.26 · 10−20 J

)
= 0.266

(
v +

1
2

)
eV.

The energies of the two lowest vibrational states are E0 = 0.133 eV
and E1 = 0.399 eV, and the ratio between rotational and vibrational
energies is of the order

EJ

Ev
=

2.38 · 10−4 eV
0.266 eV

� 10−3.

3 (A) The bond strength of the H2 molecule is k = 5.80 · 102 N · m−1,
and the internuclear separation is d = 8.00 · 10−11 m. Compute the
energy corresponding to the J = 0 → J = 1 rotational transition and
the energy of the v = 1 vibrational level.

Solution
The H2 molecule is a linear rotor and the two-body system is me-
chanically equivalent, in the center of mass frame, to a single particle
of reduced mass µ = mp/2 (where mp is the proton mass) at a dist-
ance d from the center of force. The moment of inertia of the reduced
particle relative to rotations about an axis perpendicular to the H-H
axis is

I = µd2 =
mpd

2

2
.
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The rotational energy eigenvalues are given by

EJ =
J(J + 1)�2

2I =
J(J + 1)�2

mpd2 (J = 0, 1, 2, ...) .

The energy difference corresponding to the J = 0 → J = 1 transition
is

∆E = E1 − E0 = E1 =
2�

2

mpd2

=
2 · (1.054 · 10−34 J · s

)2
(1.67 · 10−27 kg) · (8.00 · 10−11 m)2

= 2.08 · 10−21 J.

The vibrational energy eigenvalues are given by

Ev =
(

v +
1
2

)
�ω (v = 0, 1, 2, ... ) ,

where ω =
√

k/µ =
√

2k/mp. The energy of the v = 1 level is

E (v = 1) =
3
2

�ω = 3�

√
k

2mp

= 3 · (1.054 · 10−34 J · s
) ·
[(

5.80 · 102 N · m−1
)

2 · (1.67 · 10−27 kg)

]1/2

= 1.32 · 10−19 J.

4 (A) Find the rotational spectrum of a triatomic molecule with prin-
cipal moments of inertia I1, I2 and rotational Hamiltonian operator

Ĥrot =
L̂2

x + L̂2
y

2I1
+

L̂2
z

2I2
.

Treat the molecule as if it were rigid.

Solution
In the approximation of constant internuclear distances I1 and I2 are
constant and, since

L̂2
x + L̂2

y = L̂2 − L̂2
z,

we obtain

Ĥrot =
L̂2

2I1
+

L̂2
z

2

(
1
I2

− 1
I1

)
.
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The rotational Hamiltonian is constructed from the operators L̂2 and
L̂z and it commutes with them. Therefore, the energy eigenstates are
simultaneous eigenstates of these operators. These eigenstates are the
spherical harmonics Ylm(θ, ϕ), which satisfy

L̂2 Ylm = l(l + 1)�2 Ylm,

L̂z Ylm = l m� Ylm,

where l and m assume the values l = 0, 1, 2, 3, ... and m = −l, −l +
1, ... 0, ..., l − 1, l. The eigenvalues of the rotational Hamiltonian are
then

Elm =
�

2

2

[
l(l + 1)

I1
+ m2

(
1
I2

− 1
I1

)]
.

4.7 Radioactivity
The phenomenon of radioactivity is due to the decay of naturally oc-

curring or artificially produced isotopes. These can originate naturally
in the decay of parent nuclei or in the bombardment of atoms by cos-
mic rays in the atmosphere. One naturally occurring isotope, radon,
causes environmental problems: accumulation of radon in gaseous form
in buildings has been discovered to be potentially dangerous for humans
(radon problem).

In addition to natural radioactivity, manmade radioactive isotopes
are used in nuclear power generation and its related aspects such as
uranium mining and the storage and transport of radioactive waste,
nuclear weapons and nuclear testing, and medical applications (radiation
therapy is widely used in cancer treatments). Exercises on these aspects
require some knowledge of nuclear physics and are beyond the scope
of this book. In this section we focus on the main phenomenological
features of radioactivity.

1 (A) Find an approximate value for the density of the nuclide 55Cs.
Does the nuclear density of the elements in the periodic table depend
on the atomic mass number A?

Solution
The radius of a nucleus is given by the approximate law

r = r0 A1/3,
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where r0 = 1.2 fm and A is the mass number of the nuclide. The
density of 55Cs is approximately

ρ =
m

V
=

m

4πr3/3
=

3 (A a.m.u.)
4πr3

0A
=

3 · (1.66 · 10−27 kg)
4π · (1.2 · 10−15 m)3

= 2.30 · 1017 kg.

The atomic mass number A cancels out and the value of ρ computed
is therefore typical for the nuclear density of most nuclides.

2 (A) Radon, a radioactive element, is in the gas phase at room tem-
perature. It originates from the decay of uranium and thorium in
rocks and soil and can invade foundations of buildings by seeping out
of the ground and accumulating to dangerously high levels (radon
problem). The isotope 222

86 Rn is a decay product of 238U, while 220
86 Rn

originates from the decay of 232Th. What are the electron, proton,
and neutron contents of 222

86 Rn and 220
86 Rn? How can one minimize

the radon problem in buildings?

Solution
To answer this question, we must look at the atomic and mass num-
bers of the isotopes considered. The atomic number denotes the
number of protons in the nucleus, which is also the number of elec-
trons of the neutral (nonionized) isotope. 222

86 Rn has 86 proton, 86
electrons, and (222−86) = 136 neutrons, while 220

86 Rn has 86 protons,
86 electrons, and (220 − 86) = 134 neutrons.

The radon problem in buildings can be minimized by sealing all cracks
in the foundations and walls and by installing adequate ventilation
systems to prevent accumulation of the radioactive gas in crawl spaces
and in basements. Basements without concrete foundations should
be avoided and adequate ventilation provided, especially in winter.

3 (A, B) Radon (a naturally occurring radioactive gas) penetrates
into the basement of a house by diffusing through a homogeneous
slab of compacted soil in its basement. Let d be the thickness of the
horizontal slab and describe it, for simplicity, as extending to infinity
in the x and y directions; let D be the diffusion coefficient. Let CB

and CT be the radon concentration at the bottom and the top of
the slab, respectively. Assuming a stationary regime (i.e., C does
not depend on time), find the dependence C(z) of C on the vertical
coordinate z.
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Solution 1 (level A)
We have, using Fick’s law F = −∆C/∆x,

F = −D
CT − C(z)

d − z

between the top of the slab and level z, and

F = −D
C(z) − CB

z

between level z and the bottom of the slab. By comparing the two
expressions of the flux we obtain

CT − C(z)
d − z

=
C(z) − CB

z
,

from which

CT z − C(z)z = C(z)d − C(z)z − CBd + CBz

and
C(z) = (CT − CB)

z

d
+ CB.

Solution 2 (level B)
The diffusion equation

∂C

∂t
= D ∇2C (4.8)

reduces to
d2C

dx2 = 0,

with the linear solution C(z) = αz + β. The boundary conditions

C(z = 0) = CB

and
C(z = d) = CT

yield, respectively, β = CB and α = (CT − CB)/d and the solution is

C(z) = (CT − CB)
z

d
+ CB.

Solution 3 (level B)
The flux of radon is 	F = (0, 0, Fz). The continuity equation

∂C

∂t
+ 	∇ · 	F = 0
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leads to ∂Fz/∂z = 0 (i.e., F does not depend on z) in the stationary
regime ∂C/∂t = 0. Fick’s law 	F = −D	∇C for the flux density
(0, 0, F ) then yields ∂F/∂z = 0 and

∂C

∂z
=

dC

dz
= −F

D
= constant.

Integration then gives

C(z) = − F

D
z + C0.

The boundary conditions yield, as in Solution 2,

C(z) = (CT − CB)
z

d
+ CB

with F = (CB − CT ) D/d > 0 and dC/dz = −F/D < 0.

4 (A) A radioactive nucleus A
ZX is observed to emit an α-particle and

a γ-ray, followed by two β-particles and two γ-rays. What are the
mass and atomic number of the final nucleus?

Solution
An α-particle (helium nucleus) consists of two protons and two neut-
rons and carries away four units of mass, that is, the mass number of
the nucleus decreases by four. Two protons are emitted in this decay
and therefore the atomic number decreases by two. The final nucleus
is A−4

Z−2X.

5 (A) Discuss how the principles of conservation of electric charge and
baryon number apply to the nuclear reaction

C14 −→ N14 + e−.

Solution
All isotopes of carbon have 6 protons and C14 is no exception; nitro-
gen has 7 protons and in the nuclear reaction considered, a nucleus
of C14 acquires a positive charge by emitting an electron (β-particle).
On the left-hand side of the nuclear reaction the C14 nucleus has
electric charge +6e, while on the right-hand side the N14 nucleus has
charge +7e and the electron has charge −e, with total electric charge
+6e on the right-hand side. Electric charge is conserved in this nu-
clear process (charge +6e before the decay and charge +6e after the
decay).
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Protons and neutrons each carry baryon number +1, while the elec-
tron is assigned baryon number 0. On the left-hand side of the re-
action there are 14 nucleons in C14, 6 protons and 8 neutrons, for a
total baryon number 14. On the right-hand side there are again 14
nucleons in N14 (7 protons and 7 neutrons) with total baryonic num-
ber 14 (the electron does not contribute to the baryonic number).
Also, the baryonic number is conserved in this nuclear reaction.

6 (B) Consider a radioactive sample with a half-life of 10.5 days, write
the differential equation expressing the number of atoms N(t) present
in the sample as a function of time, and solve it. Express the disinte-
gration rate r after 15 days in units of the initial disintegration rate r0.

Solution
The number of atoms decaying per unit time is proportional to the
number N of atoms present in the sample at that particular instant
of time, or

− dN(t)
dt

= αN(t),

where τ ≡ α−1 ln 2 is the half-life of the nuclide. The solution of this
elementary differential equation is

N(t) = N0 e−αt,

where N0 = N(0) is the initial number of atoms. By using the fact
that α = τ−1 ln 2, one also has

N(t) = N0 2−t/τ .

The disintegration rate at time t is

r(t) ≡ dN

dt
= −αN(t),

and the ratio between the disintegration rate at t = 15 days and the
initial disintegration rate is

r(t)
r0

=
−αN0 e−α t

−αN0
= e−α t = exp

(
− 15 days

10.5 days
ln 2
)

= 0.37,

or r (15 days) = 0.37 r0.

7 (B) The radioactive isotope C14 is present in the atmosphere to-
gether with the much more abundant isotope C12. The ratio of the
abundances of isotopes C14 and C12 in the atmosphere is constant,
having reached its equilibrium value many millions of years ago. C14
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decays with a half-life τ14 = 5730 years. A living organism constantly
absorbs C14 and C12 in the atmospheric ratio

r0 ≡ number of C14 nuclides
number of C12 nuclides

= 1.6 · 10−10.

When the organism dies, C14 is not absorbed anymore, it decays
and disappears as an isotope, whereas C12 remains and the ratio r
decreases with time. Derive a formula2 that helps an archaeologist
dating the remains that she has just uncovered at time t from the
measured ratio r(t) = 8.5 · 10−12.

Solution
At the time t0 when the organism died, the ratio between the number
N14 of C14 isotopes and the number N12 of C12 isotopes was

r0 =
N14

N12

∣∣∣∣
t0

= 1.6 · 10−10.

Since N12 is constant while N14(t) = N14(t0) 2− (t−t0)
τ14 , the ratio r at

time t is
r(t) = r0 2− (t−t0)

τ14 = r0 e− (t−t0)
τ14

ln 2

and, by taking the logarithm of both sides,

t − t0 = − τ14

ln 2
ln
[
r(t)
r0

]
= − 5730 years

ln 2
ln
(

8.5 · 10−12

1.6 · 10−10

)

= 24000 years.

8 (B) A radioactive substance has decay constant r and is produced at
a constant rate (number of particles created per second) α. Find the
number N(t) of nuclides of that nuclear species present at time t if at
the initial time t = 0 this number is N(0) = N0. How many nuclides
will be present as t → +∞? Give a practical meaning to this limit.

Solution
The rate of change of the number of nuclides with time is the creation
rate α (input) minus the decay rate (output) rN(t). Therefore,

dN

dt
= α − rN(t). (4.9)

2This is the basis of the method of radiocarbon dating discovered by W. F. Libby, winner of
the Nobel Prize for chemistry in 1960.
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The general solution of this first-order linear, nonhomogeneous ODE
is the sum the general solution of the complementary equation

dN/dt = −rN(t)

(which is Ce−rt, where C is an integration constant) and of a par-
ticular solution Np of the nonhomogeneous equation. By using the
method of variation of parameters we look for a particular solution
of the form Np(t) = u(t) e−rt. Substitution into Eq. (4.9) yields

du

dt
= α ert

and
u(t) =

α

r
ert;

hence,
Np(t) =

α

r
.

The general solution of the inhomogeneous equation is therefore

N(t) =
α

r
+ C e−rt.

By imposing the initial condition N(0) = N0 one determines that
C = N0 − α/r and

N(t) =
α

r
+
(
N0 − α

r

)
e−rt.

This solution is the sum of a transient that dies off exponentially
fast and of the steady-state α/r. At late times t → +∞ we have
N (t → +∞) ≈ α/r. In practice, because of the exponentially fast
decay, the late time limit t → +∞ can be taken as t ≈ a few time
scales r−1.
The steady-state solution can also be found directly by looking for
equilibrium solutions and setting dN/dt = 0. The fact that this
equilibrium state is approached irrespective of the initial condition
N0 means that the steady-state is stable. This guess is confirmed by
a perturbation analysis. Let

N(t) =
α

r
+ δN(t),

where δN is a perturbation. By substituting this expression into
Eq. (4.9) for N(t), we find the evolution equation for the perturbation
δN :

d (δN)
dt

= −rδN,
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which has the general solution δN(t) = δ0 e−rt (with δ0 = δN(t = 0)).
Perturbations of any sign or amplitude decay exponentially fast and
the steady-state is asymptotically stable.

9 (A) The accident at the Chernobyl nuclear power plant in April 1986
released a large amount of 137Cs with half-life τ = 30 years. When
will the number of atoms of this nuclide3 be reduced by 90% of its
original value?

Solution
The number of 137Cs atoms present at time t after the disaster is

N(t) = N0 2−t/τ = N0 e− t ln 2
τ ;

it is reduced by 90% of its original value N0 when N(t) = 0.1 N0, or

t = − ln 0.10
ln 2

τ = 3.3 τ � 100 years.

Ninety percent of the 137Cs atoms will have disappeared due to ra-
dioactive decay by the year 2086.

10 (B) Some amounts of Sr90 were injected into the environment as
fallout during atmospheric nuclear tests and, because it is chemi-
cally similar to calcium, it tends to be assimilated by organisms in
the same way and ends up in bone tissues. The half-life of Sr90 is
28 years. When will the number of Sr90 nuclides released in a 1960
test be reduced to 10% of its initial value? To 1% of it?

Solution
The number of Sr90 nuclei present at time t is

N(t) = N0 2−t/τ = N0 e− t ln 2
τ

and the time t at which the number of nuclei present is a fraction
N/N0 of its original value is obtained by taking the logarithm of
both sides of this equation, obtaining

t = − τ

ln 2
ln

N

N0
.

N(t) will be reduced to 10% of its original value N0 at the time

t0.1 = −28 years
ln 2

ln 0.1 = 93 years,

3Cesium is chemically similar to potassium and it tends to be absorbed by living organisms
in the same way.
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i.e., in the year 2053. Reduction to 1% of the original value will occur
in the time

t0.01 = −28 years
ln 2

ln 0.01 = 186 years,

i.e., in the year 2146.





Chapter 5

ENERGY AND THE ENVIRONMENT

Make everything as simple as possible, but no simpler.
—Albert Einstein

The purposes of studying energy and energy transport in environmen-
tal physics are manifold. The planet receives energy from the Sun and
emits energy in space, part of which is reflected back or trapped in the
atmosphere because of the greenhouse effect. The planet is mostly in
an equilibrium configuration in which the energy balance determines the
average temperature of the Earth.

The heavy use of fossil fuels as a source of energy to face an increas-
ing demand in the post–Industrial Revolution world during the last two
centuries has led to the depletion of fossil fuel reserves and to major
problems related to the emission of pollutants. Another issue is the
emission of greenhouse gases and the related climate change. The con-
servation of energy and the need to reduce the use of fossil fuels and
minimize the associated pollution problems call for energy conservation
practices and the search for alternative energy sources. The conversion
of energy from one form to another is unavoidably related to the envi-
ronment. Even a relatively clean method of power generation such as
hydroelectric generation impacts the environment (e.g., the damming of
rivers).

Energy transfer is studied to attempt to reduce the need for energy,
e.g., by minimizing the loss of heat from a building through the under-
standing of heat conduction and new insulating materials and the ratio-
nal design and location of windows. Other motivations for the study of
energy transfer include the need to make the transfer of thermal energy
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from one part of a machine to another more efficient, thus improving
overall efficiency and reducing the consumption of fossil fuels; or trans-
porting electric power from a power station to the users in a way that
minimizes energy losses and the impact of power lines on the human and
natural environment.

References recommended for the general aspects of energy production,
transport and consumption in relation to the environment are [4, 47, 35,
16].

5.1 Mechanical energy
Various aspects of mechanics are of interest in the physical world and

specifically to the environmental physicist. Here we focus on the storage
and transport of mechanical energy, on the conversion of eolic1 energy
into mechanical or electrical energy, and on energy losses in vehicles.

5.1.1 Storage and transport
Understanding how, and how much, energy can be stored in a flywheel

clarifies the limitations of “green” vehicles designed with the intention
of limiting the consumption of gasoline or diesel fuel by storing kinetic
energy in a flywheel instead of dissipating it as heat in the vehicle’s
brakes.

1 (C) In cars the continuous start-and-stop driving of rush hour wastes
energy that is transformed into heat generated by the brakes, and
the same is true for urban public transport vehicles at all times. Fly-
wheels could be used to store rotational kinetic energy in the vehicle
for later use. How much rotational kinetic energy is stored in a fly-
wheel? How can you maximize it for practical purposes?

Solution
The rotational kinetic energy stored in a flywheel is

K =
1
2

I ω2,

where I is the moment of inertia of the flywheel with respect to its
rotation axis and ω is the angular velocity. The moment of inertia is
I = αMR2, where M is the mass of the flywheel, R is its size, and α is
a dimensionless coefficient depending on the flywheel’s geometry and
density distribution. To maximize K one either maximizes I or ω,

1From the name of Eolus, the keeper of the winds in Greek mythology.
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or both. Since it is not practical to increase the mass of the flywheel
beyond certain limits in a vehicle, one maximizes I by appropriately
designing the mass distribution (e.g., a thin ring has a moment of
inertia that is twice that of a cylinder with equal mass and radius).
In practice, we try to increase ω by using rapidly spinning flywheels.
The practical upper limit on ω is set by the tensile strength of the
material used, which should not deform or break under the centrifugal
stress.

2 (B) Compute the moment of inertia of a homogeneous flywheel with
the shape of a hollow cylinder of inner radius R1, outer radius R2,
and length L with respect to the symmetry axis.

Solution
Since the material composing the flywheel is homogeneous, the mass
density ρ does not depend on the position. The moment of inertia is

I =
∫ ∫ ∫

V
d3	x ρ d2 (	x) ,

where d (	x) is the orthogonal distance of the point 	x to the rotation
axis. In cylindrical coordinates (r, ϕ, z),

I =
∫ R2

R1

dr

∫ 2π

0
dϕ

∫ L

0
dz rρr2 = ρ

∫ R2

R1

dr r32πL

=
1
2

ρ
(
R4

2 − R4
1
)
πL.

The mass of the flywheel is

M =
∫ ∫ ∫

V
d3	x ρ =

∫ R2

R1

dr

∫ 2π

0
dϕ

∫ L

0
dz r ρ = πL ρ

(
R2

2 − R2
1
)
.

Hence,

I =
πL

2
ρ
(
R2

2 − R2
1
) (

R2
2 + R2

1
)

=
1
2
M
(
R2

1 + R2
2
)
. (5.1)

Given equal mass, the moment of inertia does not depend on the
length L of the cylinder, and Eq. (5.1) also applies to a thin cylindrical
ring. In the limit R1 → 0 one recovers the expression of the moment
of inertia MR2/2 of a solid cylinder or disk.

3 (A) A flywheel made of homogeneous steel (density ρ = 8.0 · 103 kg ·
m−3) has the shape of a hollow cylinder of inner radius r1 = 40 cm,
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outer radius r2 = 60 cm, and length L = 110 cm. If the flywheel
spins with angular velocity ω = 14 rad · s−1, how much kinetic energy
is stored in it?
The flywheel is installed on a vehicle powered by a 20 HP (� 1.49 ·
104 W) engine with 22% efficiency. How long will the vehicle run
when the engine is replaced by the flywheel rotating with angular
velocity ω = 14 rad · s−1?

Solution
The moment of inertia of the flywheel is (cf. previous problem or a
table of moments of inertia)

I =
1
2

M
(
r2
1 + r2

2
)
,

where the mass of the flywheel is M = ρV = ρLπ
(
r2
2 − r2

1
)
. The

rotational kinetic energy stored in the flywheel is

K =
1
2

Iω2 =
π

4
ρ L
(
r2
2 − r2

1
) (

r2
2 + r2

1
)
ω2

=
π

4
ρ L
(
r4
2 − r4

1
)
ω2 =

π

4
(
8.0 · 103 kg · m−3) · (1.10 m)

· [(0.6 m)4 − (0.4 m)4
] · (14 rad · s−1)2 = 1.4 · 105 J.

The power generated by the vehicle’s engine is energy divided by
time, W = E/t; if the engine is replaced by the flywheel, the vehicle
will run on the stored rotational energy of the flywheel for the time

t =
E

W
=

1.4 · 105 J
0.22 · (1.49 · 104 W)

= 43 s,

a very short time indeed. We need to increase the kinetic energy
stored in the flywheel by a significant amount if it is going to be
useful. Since it is not practical to increase the mass or the size of the
flywheel beyond certain limits for use in a vehicle, we must increase
the angular velocity ω instead. This has led to the search for new
materials (e.g., fiber composites) capable of withstanding the large
centrifugal stresses arising during fast rotation.

4 (A) In order to reduce pollution and save energy the small town of
Cleverville uses a trolleybus running on the energy stored in a large
cylinder of mass m = 800 kg, radius R = 1 m, spinning at the angular
velocity ω0 = 5 revolutions per second at full speed.
How much kinetic energy is stored in the flywheel rotating at full
speed? The power needed to run the bus is 25 HP on average. How
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long will the trolleybus run on the kinetic energy stored in the fly-
wheel alone?

Solution
The kinetic energy stored in a cylinder rotating around its axis of
symmetry is

T =
1
2

Iω2,

where I = mR2/2 is the moment of inertia of the cylinder. At full
speed,

T =
1
4
(
8 · 102 kg

) · (1 m)2 · (2π · 5 rad · s−1)2 = 2 · 105 J.

The power used by the bus is W = 25 HP= 25 · 746 W= 1.87 · 104 W
and, since power is the rate at which energy is used, W = E/t, the
bus will run on the kinetic energy of the flywheel for

t =
E

W
=

2 · 105 J
1.87 · 104 W

= 11 s.

5 (A) Compute the moment of inertia of a hoop of radius R and mass
M about its axis of symmetry (Fig. 5.1).

Solution
By definition the moment of inertia of a body is

I =
∑

i

mir
2
i , (5.2)

where mi is the mass of the ith particle composing the body, ri is its
perpendicular distance to its rotation axis, and the sum is extended
over all particles composing the body. In a hoop all particles are at
the same distance R from the rotation axis and

I =

(∑
i

mi

)
R2 = MR2, (5.3)

where M =
∑

i mi is the total mass of the hoop.

6 (B) Compute the moment of inertia of a thin homogeneous rod about
an axis passing through its center and perpendicular to its length. Let
l be the length of the cylindrical rod and R its radius and express
your result in terms of l, R, and the mass m of the rod.
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Figure 5.1. A hoop and its rotation axis.

Solution
It is appropriate to use cylindrical coordinates (r, θ, z) adapted to
the axis of symmetry, that is taken as the z-axis. Then, the required
moment of inertia is

I =
∫ ∫ ∫

d3	x ρ d2 (	x) ,

where ρ is the density of the material (which is constant, since the
rod is homogeneous) and d (	x) is the distance of a generic point 	x of
the rod from the rotation axis. We have

I = ρ

∫ R

0
dr

∫ 2π

0
dϕ

∫ l/2

−l/2
dz rz2 = 2πρ

∫ R

0
dr r

∫ l/2

−l/2
dz z2

= 2πρ

[
r2

2

]R

0
·
[
z3

3

]l/2

−l/2
=

π

12
ρR2l3.

The mass of the rod is

m = ρV = ρ · (πR2l),

where V is the volume of the rod, and the moment of inertia can be
written as

I =
π

12
ρR2l3 =

(
ρπR2l

) l2

12
=

ml2

12
.
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5.1.2 Transportation and vehicles
Vehicles are a major source of pollution as is especially evident at rush

hour in a big city. Limiting the emission of pollutants, or controlling their
chemical nature and relative abundances, can have a significant impact
on air pollution and fossil fuel consumption.

1 (A, B) Assume that the forces of air drag Fd and rolling resistance
Fr acting on a car moving at constant speed v are constant. Find the
total power dissipated against these forces.

Solution 1 (level A)
The dissipated power is equal to the work done per unit time against
the friction force,

W =
F · d

t
,

where d is the displacement and t is the time during which the const-
ant friction force F = Fd +Fr acts. Since d/t = v, the constant speed
of the car, we have

W = (Fd + Fr) v.

Solution 2 (level B)
The dissipated power W is the rate at which energy E is spent doing
work against the friction forces,

W =
dE

dt
=

d

dt

(∫ x(t)

0
dx F

)
=

d

dt

(∫ t

0
Fvdt

)
= Fv = (Fd + Fr) v,

where v = dx/dt is the velocity of the car. This expression is valid
even when the friction forces and the velocity v are not constant.

2 (A) A modern car with mass m = 1000 kg, air drag coefficient
Cd = 0.3, and frontal area A = 1.89 m2 starts from rest. What
is the dominant source of power loss at low and at high speeds? At
what speed (in km/h) is the power dissipated against air drag equal to
the power dissipated against rolling resistance? Is this speed different
from the speed at which the air drag force equals the rolling resis-
tance? The density of air is ρ = 1.2 kg/m3 and the rolling friction
coefficient for a paved road is Cr = 0.01.

Solution
The air drag is given by

Fd =
Cd

2
ρAv2,
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where v is the car’s speed, and the rolling resistance is given by

Fr = Crmg,

where g is the acceleration of gravity. The power dissipated against
friction is W = Wd + Wr, where

Wd =
Cd

2
ρAv3, Wr = Crmgv.

The ratio between the power dissipated against air drag and the
power dissipated against rolling resistances is

Wd

Wr
=

CdρA

2Crmg
v2,

proportional to the square of the car’s velocity. Rolling resistances
dominate at small speeds while air drag dominates at higher speed.
The dissipated powers Wd and Wr are equal when

Cd

2
ρAv2 = Crmg,

or

v =
(

2Cr

Cd

mg

ρA

)1/2

=

(
2 · 0.01

0.3

(
1.0 · 103 kg

) · (9.81 m · s−2)
(1.2 kg · m−3) · (1.89 m2)

)1/2

= 17
m
s

= 61
km
h

.

The condition that Fd = Fr is exactly the same as Wd = Wr and
yields the same threshold speed.

5.1.3 Eolic energy
There is a fundamental limit (the Betz limit) on the efficiency of wind-

mills converting the kinetic energy of the wind into mechanical work. In
general, the potential and the limitations of renewable energy sources
should be understood before advocating them as a panacea for the prob-
lems created by an ever-increasing demand for energy. This does not
mean that we should shy away from renewable energy sources: they are
worth tapping into where the conditions are favorable and they will be-
come more and more competitive with fossil fuels as the price of the
latter increases.

1 (A) Estimate the maximum power output of a windmill with a rotor
of radius r = 4 m in a uniform constant wind with a speed of 10 m/s
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operating with an efficiency η = 40%. How does your result depend
on the wind speed? Is it realistic to replace a 1 GW nuclear or coal-
fired power station with a wind farm?
Hint: Consider the kinetic energy of a horizontal cylinder of air of radius r with
one end against the windmill blades.

Solution
The windmill converts the kinetic energy of air impinging on it into
electric energy. Consider a horizontal cylinder of air of radius r with
one end on the windmill rotor (Fig. 5.2). During the time t the air
that pushes the rotor travels a distance L = vt, where v is the (const-
ant and uniform) wind speed. The kinetic energy of the air contained
in the cylinder of length L and radius r is

1
2

mv2 =
1
2

ρair
(
Lπr2) v2 =

1
2

ρairπr2v3 t,

where m = ρairπr2L is the mass of air contained in the cylinder of
volume V = πr2L. The power output of a windmill with efficiency η
is

W =
dEgenerated

dt
= η

d
(
mv2/2

)
dt

=
ηπ

2
ρairr

2v3,

and it depends on the third power of the wind speed v. Numerically,

W =
0.40π

2

(
1.2

kg
m3

)
(4m)2

(
10

m
s

)3
= 104 W.

In order to replace a 1 GW power station with a wind farm one would
need

1 GW
104 W

= 105

windmills, assuming for simplicity that the presence of a windmill
does not reduce the efficiency of nearby windmills (a questionable
assumption). Such an option is clearly unviable and windmills are
only appropriate for the small-scale production of eolic energy. The
dependence of the power output on v3 makes windmills useful only
in regions traversed by dominant winds with appreciable speed.

2 (B) a) What is the maximum amount of power that can be theo-
retically generated by a domestic windmill with horizontal rotor (the
blades have radius R = 1.5 m) in horizontal wind with average speed
v = 3.1 m/s? The density of air at 20◦C is 1.2 kg/m3. Is this power
significant for household purposes?
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Figure 5.2. A cylinder of air of radius R and length vdt.

b) Now assume that the windmill is upgraded to a new design with
rotor blades of 5-m radius, mounted on a tower that allows the blades
to spin and catch wind at the higher speed of 4.0 m/s. What maxi-
mum power can theoretically be generated?

Solution
The maximum possible efficiency of a windmill with horizontal rotor
is the Betz limit ηBetz = 16/27 = 59%. The air impinging on the
rotor blades horizontally in the time interval dt traverses a horizontal
cylinder of radius R and length vdt (Fig. 5.2) and carries the kinetic
energy

dE =
1
2

(dm) v2 =
1
2

ρ (dV ) v2 =
1
2

ρ
(
πR2vdt

)
v2

and the power
dE

dt
=

π

2
ρR2v3.

The wind is not stopped by the rotor and only a fraction ηBetz of this
power can theoretically be converted into electric power (in practice,
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the real efficiency is lower than the Betz limit), or

ηBetz
dE

dt
=

πηBetz
2

ρR2v3

=
π · 0.59

2

(
1.2

kg
m3

)
(1.5 m)2

(
3.1

m
s

)3
= 75 W,

an amount too small even for household needs.

b) For the improved and enlarged version of the windmill it is in-
stead

ηBetz
dE

dt
=

πηBetz
2

ρR2v3

=
π · 0.59

2

(
1.2

kg
m3

)
(5.0 m)2

(
4.0

m
s

)3
= 1.8 · 103 W,

or 24 times the previous result. This is not surprising considering
that doubling the size of the rotor quadruples the extracted energy
and doubling the wind speed would multiply the generated energy by
eight times. This new number suggests that it is worth investing in
a larger windmill.

3 (B) It can be shown by physical considerations that the theoretical
efficiency of a windmill with horizontal rotor in horizontal wind is
given by

η =

(
vin + vout

) (
v2
in − v2

out
)

2v3
in

,

where vin and vout are, respectively, the wind velocities upstream
and downstream the turbine. Find the maximum possible value of η
(called the Betz limit).
Hint: Use the variable x ≡ vout/vin.

Solution
Inspection of the expression for the windmill efficiency η suggests
using the new variable x ≡ vout/vin, eliminating one of the two vari-
ables [this is possible because of the special form of η

(
vin, vout

)
].

The efficiency becomes

η(x) =
1
2

(1 + x)
(
1 − x2)
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with 0 ≤ x ≤ 1, and we are looking for a maximum of η(x) in this
interval. Because η(x) is a polynomial, it is continuous with all its
derivatives of all orders. Furthermore, η(0) = 1/2 and η(1) = 0. The
first derivative is

dη

dx
= − 1

2
(
3x2 + 2x − 1

)
= − 3

2
(x + 1)

(
x − 1

3

)
.

The factor x + 1 is positive in this interval, hence the sign of η(x) is
the opposite of the sign of (x − 1/3) and

dη

dx
> 0 if 0 ≤ x <

1
3
,

dη

dx

∣∣∣∣
x=1/3

= 0,

dη

dx
< 0 if

1
3

< x ≤ 1.

The function η(x) is therefore strictly increasing between 0 and 1/3,
has horizontal tangent at x = 1/3, and is strictly decreasing between
1/3 and 1: since η is continuous this is sufficient to conclude that
there is a local maximum at x = 1/3. Since η (1/3) = 16/27 �
0.59 > η(0) = 0.5, this is also an absolute maximum in [0, 1]. The
Betz limit (maximum theoretical efficiency) of the horizontal windmill
is therefore

ηBetz =
16
27

= 59%.

4 (B) Compute the maximum energy that can theoretically be ex-
tracted in one day from a continuous horizontal wind by a windmill
with a horizontal rotor equipped with blades of radius R = 1.5 m.
The air density is ρ = 1.25 kg/m3 and the probability that the wind
has speed v is given by the two-parameter Weibull distribution func-
tion2

f(v) =
β

α

( v

α

)β−1
e−(v/α)β

,

where, at the given location, the scale parameter has the value α =
5.1 m/s and the shape parameter is β = 1.5.
Hint: Use the Weibull distribution to compute averages of the quantities in your
formulas that depend on v.

2The Weibull distribution is widely used in reliability analysis, especially in the prediction
of failures in the metallurgical industry.
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Solution
The kinetic energy dE impinging on the rotor during the time interval
dt is carried by the air that traverses a horizontal cylinder of radius
R, length vdt, volume dV = πR2vdt, and mass dm = ρdV ,

dE =
1
2

(dm) v2 =
1
2

ρ (dV ) v2 =
π

2
ρR2v3dt,

and the maximum power that can theoretically be extracted by this
air mass is

ηBetz
dE

dt
=

πηBetz
2

ρR2v3,

where the Betz limit ηBetz = 16/27 = 59% is the maximum theoret-
ical efficiency of such a windmill. We now have to replace the factor
v3 with its statistical average v̄3 taken with the Weibull distribution.
We have

v̄3 ≡
∫ +∞

0
dv f(v)v3 =

∫ +∞

0
dv

β

α

( v

α

)β−1
e−(v/α)β

v3

= α3β

∫ +∞

0
d
( v

α

)( v

α

)β−1
e−(v/α)β

( v

α

)3
.

By using the auxiliary variable z ≡ v/α,

v̄3 = α3β

∫ +∞

0
dz zβ+2 e−zβ

,

and changing variables again to ζ ≡ zβ, we have βzβ+2dz = ζ3/β dζ,
which yields, using a table of integrals [21],

v̄3 = α3
∫ +∞

0
dζ ζ3/β e−ζ = α3 Γ

(
3
β

+ 1
)

,

where Γ is the gamma function. Therefore, the maximum theoret-
ical power that can be extracted from the windmill with the given
parameters is

W =
πηBetz

2
ρR2v̄3 =

πηBetz
2

ρR2α3 Γ
(

3
β

+ 1
)

=
π · 0.59

2

(
1.25

kg
m3

)
(1.5 m)2

(
5.1

m
s

)3
Γ(3) = 690 W.

In one day of continuous operation the energy extracted from this
wind is

E = (690 W) (24 · 3600 s) = 6 · 107 J.

This is only the theoretical upper limit based on the Betz efficiency:
the real efficiency could be much lower.
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5.2 Heat transfer
There are three mechanisms of heat transfer: conduction, convection,

and radiation. In many applications of environmental science also latent
heat transfer should be added to this list: it occurs when water vapor
is removed from the surface of a body of water (ocean), from soil, or
from a sweating human body, and the latent heat of evaporation is car-
ried away (evapotranspiration is reviewed in Chapter 7 together with
phase transitions). The most common model for a radiating body is a
blackbody or a graybody—these are discussed in Chapter 4. Convection
is associated with fluid motions—for the environmental scientist, mov-
ing air or water—and is intimately connected with fluid dynamics. The
focus of this section is on conduction and convection.

Heat conduction is described by the heat or diffusion equation, which
is also the tool to describe problems such as the spread of pollutants and
the formation of plumes in air, water, or groundwater, the infiltration of
rain into a soil, the transport of groundwater in an aquifer, percolation
of rain through a snowpack, diffusion of salts in sea water, and many
other environmental physical problems. Therefore, the student spend-
ing time and effort on heat conduction will become acquainted with a
mathematical formalism useful in many other fields of environmental
physics. Direct applications of heat conduction include the study of how
heat penetrates through a soil, minimizing heat losses from buildings in
colder climates, or helping to reduce the energy demand for air condi-
tioning in warmer climates. In engineering instead, one often wants to
maximize heat transfer, e.g., between different parts of a machine, or to
cool a power plant (which in turn leads to thermal pollution), or other
devices.3

Temperature affects biological systems and biochemical reactions. As
a rule of thumb, a 10◦C increase in temperature doubles the reaction rate
(with the exception of exothermic reactions) and this increases the rate
of cell subdivision and plant growth. In addition, temperature affects
evaporation and humidity in the atmosphere.

1 (C) Discuss the three mechanisms of heat transfer.

Solution
Heat is transferred by conduction, convection, and radiation. In con-
duction the kinetic energy of particles that are relatively free to move,
e.g., free electrons in a metal, is transferred to other particles through

3Think, for example, of the black or silvered fins that are usually found on the back of a
stereo amplifier or similar electronic devices.
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scatterings resulting in a net heat flux. In convection, macroscopic
motions of a fluid (liquid or gas) transport heat. In radiation, elec-
tromagnetic waves in the infrared band carry away energy from the
heat source without transport of matter. Electromagnetic waves can
propagate through vacuum, and therefore radiation does not require
the presence of a medium through which heat passes. For example,
radiation from the Sun reaches the surface of the planets propagating
almost entirely through empty space.

2 (A) Calculate the heat lost per unit time through a glass window
of surface area 2.6 m2 and the heat resistance of the window. The
thickness of the glass pane is d = 5.0 mm, its thermal conductivity
is k = 1.2 W · m−1 · K, the temperature of the room is 18◦C, and the
temperature outside is −2◦C. How can the heat loss be minimized?

Solution
According to Fourier’s law, the temperature difference between out-
side and inside is

To − Ti = − q′′

k
d,

where q′′ is the heat flux. The heat lost per unit time is

q = q′′A = −k
(To − Ti) A

d
,

where A is the surface area of the window. Hence,

q =
(

−1.2
W

m · K

)
(−20 K)

(5.0 · 10−3 m)
· (2.6 m2) = 1.25 · 104 W.

The heat resistance is

R =
∆T

q
=

20 K
1.25 · 104 W

= 1.6 · 10−3 K
W

.

Alternatively, we could calculate the heat resistance by using its ex-
pression for a slab of material

R =
d

kA
,

and obtain the same result.

The heat loss can be minimized by using a double-pane glass instead
of single pane because the air trapped between the two layers of glass
acts as an insulator. In addition, a shutter or other insulating surface



198 EXERCISES IN ENVIRONMENTAL PHYSICS

can be placed in front of the glass and a curtain on the inside. At the
stage of designing the building, the window area can be minimized.

3 (A) The thermal equivalent of a certain refrigerator is a styrofoam
box (k = 5.0 · 10−2 W · m−1 · K−1) with inner surface area 4.0 m2 and
thickness d = 1.0 cm. At what rate is heat being removed from the
interior of the refrigerator, given that it is 20◦C below the outside
temperature and that the motor is running 11% of the time?

Solution
Were the motor of the refrigerator running 100% of the time, the heat
flux would have magnitude

q′′ = k
∆T

d

and the heat removed per unit time would be

q = k
∆T

d
A.

Given that the motor only runs 11% of the time, the actual heat
removed from the interior of the refrigerator when the motor is op-
erating is

q = k
∆T

d
A

1
0.11

=

(
5.0 · 10−2 W · m−1 · K−1) · (4.0 m2

) · (20 K)
0.11 · (1.0 · 10−2 m)

= 3.6 kW.

4 (B) Integrate the heat equation for the temperature T (t, 	x) in a ma-
terial

ρ cp
∂T

∂t
= 	∇ · (k 	∇T ) + q̇

over a fixed volume of space V and describe the heat balance for V .
ρ, cp and k are, respectively, the density, specific heat at constant
pressure, and thermal conductivity of the material. The source term
q̇ denotes the heat generated inside the material per unit volume and
per unit time.

Solution
Let the closed surface S be the boundary of the volume V (Fig. 5.3).
By integrating the heat equation over V we obtain∫ ∫ ∫

V
dV ρ cP

∂T

∂t
=
∫ ∫ ∫

V
dV 	∇ · (k	∇T ) +

∫ ∫ ∫
V

dV q̇.
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Figure 5.3. Heat flow from V through S.

By applying Gauss’ law and exchanging the operators of integration
and differentiation with respect to time in the left-hand side, we
obtain

d

dt

(∫ ∫ ∫
V

dV ρ cP T

)
=
∫ ∫

S
k	∇T · 	n dS +

∫ ∫ ∫
V

dV q̇, (5.4)

where 	n is the unit normal to S. The use of Fourier’s law expressing
the heat flux density (heat flowing through the unit of normal area
per unit time), 	q′′ = −k 	∇T , gives∫ ∫ ∫

V
dV q̇ =

d

dt

(∫ ∫ ∫
V

dV ρcP T

)
+
∫ ∫

S

	q′′ · 	n dS.

The last equation describes the heat balance for the volume V and
the terms appearing in it have the following physical interpretation:∫ ∫ ∫

V dV q̇ is the heat generated in V per unit time;∫ ∫ ∫
V dV ρ cP T is the heat absorbed by the material in V (which

increases its temperature) per unit time, and d
dt

(∫ ∫ ∫
V dV ρcP T

)
is

its rate of variation;
− ∫ ∫S k	∇T ·	n dS =

∫ ∫
S

	q′′ ·	n dS is the amount of heat escaping the
volume V through the surface S per unit time. By adopting the usual
convention on the sign of the normal to a surface, 	n points outwards
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and
∫ ∫

S k	∇T ·	n dS is then the heat leaving V . The physical meaning
of the integral form (5.4) of the heat equation is that the total heat
generated in V (per unit of time) equals the heat absorbed by the
medium in V (in the unit of time) plus the heat escaping V (in the
unit of time). The physical content of the heat equation is simply an
energy balance.

5 (B) Verify that

T (t, x) = T1 + (T0 − T1) erf
(

x

2
√

at

)
, (5.5)

where

erf(s) ≡ 2√
π

∫ s

0
dξ e−ξ2

,

is the error function, is the solution of the one-dimensional heat equa-
tion

∂T

∂t
= a

∂2T

∂x2 (5.6)

in [ 0,+∞ ) with the boundary condition at x = 0

T (t, 0) = T1 (t ≥ 0) ,

the boundary condition limx→+∞ T (t, x) finite, and the initial con-
dition

T (0, x) = T0 (x > 0)

corresponding to a sudden temperature change at t = 0.

Solution
It is straightforward to check that the boundary and the initial condi-
tions are verified by (5.5) by using the property of the error function
erf(0) = 0 and the fact that the integral of the Gaussian is∫ +∞

0
ds e−s2

=
√

π

2
,

which yields
lim

t→0+
erf (s(t)) = lim

s→+∞ erf (s) = 1.

To check that (5.5) satisfies Eq. (5.6), we compute ∂T/∂t using

d [erf(s)]
ds

=
2√
π

e−s2
:
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∂T

∂t
= (T0 −T1)

2√
π

e−
(

x
2
√

at

)2 1
2
√

a

−x

2t
√

t
= − (T0 − T1)

2
√

πa
x t−3/2 e− x2

4at .

On the other hand,

∂T

∂x
=

(T0 − T1)√
πat

e− x2
4at ,

∂2T

∂x2 =
(T0 − T1)√

πat

−2x

4at
e− x2

4at .

Therefore,

a
∂2T

∂x2 =
−x(T0 − T1)
2
√

πa t3/2 e− x2
4at =

∂T

∂t
.

6 (B) Verify that the solution of the heat equation in one dimension
for daily or seasonal temperature changes, modeled by the boundary
conditions

T (t, 0) = T̄ + T0 cos (ωt) ,

T → T̄ as x → +∞,

is
T (t, x) = T̄ + T0 e−Ax cos (kx − ωt) ,

where T̄ and T0 are constants and

k =
ω

v
, A =

( ω

2a

)1/2
, v = (2aω)1/2 .

The constants xe ≡ A−1 and τ ≡ (1 m)/v are called damping depth
and delay time, respectively.

Solution
We have

∂T

∂t
= T0 ω e−Ax sin (kx − ωt) ,

∂T

∂x
= −AT0e−Ax cos (kx − ωt) − kT0e−Ax sin (kx − ωt) ,

and

∂2T

∂x2 = T0e−Ax
[
A2 cos (kx − ωt) + 2Ak sin (kx − ωt)

−k2 cos (kx − ωt)
]
.
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Hence,

a
∂2T

∂x2 = aT0e−Ax
[(

A2 − k2) cos (kx − ωt) + 2Ak sin (kx − ωt)
]

=
∂T

∂t

provided that
A2 − k2 = 0, 2Aka = ω.

This system of equations has the solution

A = k =
√

ω

2a
,

and the phase velocity of the damped temperature waves is

v =
ω

k
=

√
2 a ω.

The boundary conditions are satisfied since

T (t, x = 0) = T̄ + T0 cos (ωt) ,

and
T → T̄ as x → +∞

because e−Ax → 0 as x → +∞.

7 (A) Compute the damping depth and the delay time for a semi-
infinite stone wall undergoing daily temperature variations. The
Fourier coefficient of the stone used in the wall is a = 5.00·10−7 m2/s.

Solution
The damping depth is

xe =

√
2a

ω
=

[
2 · (5.00 · 10−7 m2/s

)
2π · (24 · 3600 s)−1

]1/2

= 0.117 m.

The delay time is

τ =
(1 m)

v
=

(1 m)√
2aω

=
(1 m)[

2 · (5.00 · 10−7 m2 · s−1) · 2π · (24 · 3600 s)−1
]1/2

= 1.17 · 105 s � 33 hours.
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When x = xe, the damping depth, the amplitude of the original
temperature wave T0 cos (ωt) at x = 0 is reduced by one e-fold, T0/e =
0.37 T0.

8 (B) Verify that

T (t, x) =
Θ

2
√

πat
e− x2

4at , (5.7)

where Θ is a constant, is the solution of the one-dimensional heat
equation

∂T

∂t
= a

∂2T

∂x2 (5.8)

with boundary condition

T (t, x) → 0 as |x| → +∞ (5.9)

and with initial condition

T (0, x) = Θ δ(x), (5.10)

where δ(x) is the Dirac delta distribution [17]. Consider the solution
at an arbitrarily small value of t > 0 and an arbitrarily large value
of x and discuss its implications for causality. Discuss the graphical
interpretation of the integral

I(t) =
∫ +∞

−∞
dx T (t, x)

for this solution in the limit t → 0+.

Solution
We have

∂T

∂t
=

Θ
4
√

πa t3/2 e− x2
4at

(
x2

2at
− 1
)

,

∂T

∂x
= − Θ x

4
√

πa3 t3
e− x2

4at ,

and
∂2T

∂x2 =
Θ

4
√

πa3 t3
e− x2

4at

(
x2

2at
− 1
)

.

Hence a ∂2T/∂x2 = ∂T/∂t and the heat equation is satisfied.

The boundary condition (5.9) is easily verified due to the fact that
lim|x|→+∞ e−α2x2

= 0. To verify the initial condition (5.10), introduce
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the quantity α ≡ (2
√

at)−1; then α → +∞ as t → 0+. By using the
Dirac delta representation [17]

δ(x) =
1√
π

lim
α→+∞ α e−α2x2

,

we verify that

lim
t→0+

T (t, x) = lim
α→+∞

Θ√
π

α e−α2x2
= Θ δ(x).

The initial condition corresponds to releasing a certain amount of
thermal energy at x = 0 at the initial time t = 0. At any later
instant of time t and position x, with t arbitrarily small and x ar-
bitrarily large, the temperature T (t, x) is strictly positive—this fact
implies that Eq. (5.8) describes instantaneous propagation of heat
(heat paradox). This feature of the heat equation does not constitute
a problem for most practical applications because the relativistic cor-
rections that would be needed to take into account the finite velocity
of heat propagation are usually negligible. Thus, Eq. (5.8) is an ex-
cellent approximation for everyday situations.

The limit t → +∞ has a graphical interpretation: as t → +∞, the
Gaussian function (5.7) is more and more peaked on x = 0. The
area between the x-axis and the graph of the Gaussian, given by the
integral

A =
Θ

2
√

πat

∫ +∞

−∞
dx e−x2/4at =

Θ√
πat

∫ +∞

0
dx e−x2/4at = Θ,

does not depend on time. As t → 0+ we have A → Θ
∫ +∞
−∞ dx δ(x) =

Θ. The total thermal energy content of space does not depend on
time. It is initially concentrated at x = 0, spreads with infinite
velocity,

lim
t→0+

∂T

∂t
|x=0 = −∞,

and at later times is distributed over the entire x-axis with ∂T/∂t → 0
as t → +∞.

9 (B) Consider a hollow cylinder with inner radius R1, outer radius
R2, and length L (with L � R1, L � R2), made of a homogeneous
and isotropic material with thermal conductivity k (Fig. 5.4). The
inner surface of the cylinder (r = R1) is heated and kept at constant
temperature Ti with a thermostat, while the outer surface (r = R2)
is ventilated, keeping it at constant temperature TS < Ti. No heat
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Figure 5.4. The hollow cylinder in steady state.

is generated or retained by the material composing the hollow cylin-
der. Assuming steady state, compute the temperature T of the hollow
cylinder as a function of radius r. Compute also the heat current den-
sity q′′ (heat flowing per unit time through the unit of area normal
to the flux).

Solution
We use cylindrical coordinates (r, ϕ, z) with the axis of the cylinder
lying along the z-axis. In steady state, the temperature T does not
depend on time, and the heat equation

∂T

∂t
= a∇2T

reduces to

∇2T =
1
r

∂

∂r

(
r

∂T

∂r

)
+

1
r2

∂2T

∂ϕ2 +
∂2T

∂z2 = 0,

where the expression of the Laplace operator in cylindrical coordi-
nates is used (see Appendix C). Because of the cylindrical symmetry
and neglecting end effects, T is independent of ϕ and z and the
heat equation is further simplified, becoming the ordinary differen-
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tial equation
1
r

d

dr

(
r

dT

dr

)
= 0,

which is immediately integrated to

dT

dr
=

C1

r

and again to

T (r) = C ln
(

r

r0

)
,

where C1, C, and r0 are integration constants. The boundary condi-
tions

T (r = R1) = Ti, T (r = R2) = TS

yield

Ti = C ln
(

R1

r0

)
, (5.11)

TS = C ln
(

R2

r0

)
. (5.12)

By subtracting Eq. (5.11) from Eq. (5.12), we obtain

C =
TS − Ti

ln (R2/R1)
,

while the addition of Eqs. (5.11) and (5.12) yields

Ti + TS = C ln
(

R1R2

r2
0

)
=

TS − Ti

ln (R2/R1)
ln
(

R1R2

r2
0

)

and
Ti + TS

Ti − TS
ln
(

R2

R1

)
= ln

(
r2
0

R1R2

)
;

finally,

r0 =
{

R1R2 exp
[
Ti + TS

Ti − TS
ln
(

R2

R1

)]}1/2

.

The solution of the heat equation can thus be expressed as

T (r) =
TS − Ti

ln (R2/R1)
ln
(

r

r0

)
,
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while the heat current density is

q′′(r) = −k
dT

dr
= −k

TS − Ti

ln (R2/R1)
1
r
.

The heat flux through the side wall of a cylinder of radius r (with
R1 ≤ r ≤ R2) and length L is

q(r) = 2πrLq′′(r) = −2πrLk
TS − Ti

ln (R2/R1)
1
r

= −2πLk
TS − Ti

ln (R2/R1)
,

and does not depend on r, as it should be, since heat cannot stop in
the material (there are no sources or sinks of heat inside the cylinder).

10 (A) In cold weather you exit an overheated building without gloves
and you put your sweaty hand on an iron railing. By knowing that
your body temperature is 36.8◦C, the outside temperature is −15◦C,
the values of the contact coefficient for the human skin and for iron
are 1200 kg · s−5/2 · K and 1.7 · 104 kg · s−5/2 · K, respectively, find the
contact temperature of the skin.

Solution
The contact temperature of the hand’s skin is

Tc =
b1T1 + b2T2

b1 + b2

=
{(

1200 kg · s−5/2 · K · 36.8◦C
)

+
[
1.7 · 104 kg · s−5/2 · K · (−15◦C)

]}

·
[
(1200 + 17000) kg · s−5/2 · K

]−1
= −12◦C.

Moisture on your hand from sweating will freeze upon touching the
railing.

11 (B, C) Does the heat equation

∂T

∂t
= a∇2T

describe reversible or irreversible processes? Provide an answer based
on the mathematical form of the equation and interpret it from the
physical point of view.
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Solution
The heat equation describes irreversible processes. In fact, under the
time reflection t −→ −t the heat equation changes into

∂T

∂t
= −a∇2T,

and therefore the heat equation is not invariant under time rever-
sal and it describes irreversible processes. Heat conduction is an
irreversible phenomenon. Heat flows spontaneously from regions at
higher temperature to regions at lower temperatures. An example is
the solution of the heat equation for initial conditions corresponding
to thermal energy initially concentrated in a hot spot: the solution is
a Gaussian describing heat spreading over all space. The temperature
of the initial hot spot decreases monotonically while the temperature
at every other point increases and the thermal energy diffuses but
never concentrates again spontaneously in a hot spot.
By contrast the basic equation of classical mechanics, Newton’s sec-
ond law of motion

m
d2	x

dt2
= 	F ,

where 	F is the force acting on a point particle of mass m and position
	x(t), describes reversible phenomena. The time inversion t −→ −t
leaves this equation unchanged because

d

d (−t)
= − d

dt
,

and
d2

d (−t)2
=

d2

dt2
.

12 (B) Derive the heat equation for a homogeneous isotropic medium
from a variational principle and provide a Lagrangian and a Hamil-
tonian formulation of heat diffusion.
Hint: Promote the temperature T to the role of a complex variable and consider
T and T ∗ as Lagrangian fields.

Solution
We proceed in analogy with the Lagrangian and Hamiltonian forma-
lism for the Schrödinger field [51]. Once T is allowed to assume com-
plex values, the heat equation in a homogeneous isotropic medium

∂T

∂t
= a∇2T
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is formally the same as the Schrödinger equation for a free quantum
particle represented by the complex Schrödinger field ψ,

i�
∂ψ

∂t
= − �

2

2m
∇2ψ,

with the important difference that the coefficients of the heat equa-
tion are real. Therefore, we consider the Lagrangian density

L = −a	∇T · 	∇T ∗ − 1
2

(
T ∗Ṫ − T Ṫ ∗

)
and the variational principle [20, 51]

δS = 0

for the action

S =
∫

d3	x L (t, 	x) .

The Euler–Lagrange equations equivalent to the variational principle
[20, 51]

∂

∂t

∂L
∂Ṫ

+
∂

∂xi

∂L
∂(∂iT )

− ∂L
∂T

= 0,

∂

∂t

∂L
∂Ṫ ∗ +

∂

∂xi

∂L
∂(∂iT ∗)

− ∂L
∂T ∗ = 0,

then yield

∂T ∗

∂t
= −a∇2T ∗, (5.13)

∂T

∂t
= a∇2T, (5.14)

using

∂L
∂T

=
1
2

Ṫ ∗,
∂L
∂T ∗ = − 1

2
Ṫ ,

∂L
∂(∂iT )

= −a ∂iT
∗,

∂L
∂(∂iT ∗)

= −a ∂iT.

Equation (5.13) tells us that T ∗(t) = T (−t) is simply the time reverse
of the solution T (t) since it satisfies the same equation with t changed
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into −t. The Hamiltonian formulation is obtained by defining the
canonical momenta

πT ≡ ∂L
∂Ṫ

= − 1
2

T ∗,

πT ∗ ≡ ∂L
∂Ṫ ∗ =

1
2

T,

from which one reads the Hamiltonian density

H = πT Ṫ + πT ∗ Ṫ ∗ − L = a	∇T · 	∇T ∗

and the Hamiltonian

H =
∫

d3	x H = a

∫
d3	x 	∇T · 	∇T ∗.

The Hamilton equations

Ṫ =
∂H
∂πT

, Ṫ ∗ =
∂H

∂πT ∗
,

π̇T = − ∂H
∂T

, ˙πT ∗ = − ∂H
∂T ∗ ,

are equivalent to the Euler–Lagrange equations and yield again Eqs.
(5.14) and (5.13).

13 (B) The loss of heat from the surface of a body at temperature T to
its surroundings at temperature T∞ can be modeled by Newton’s law
of cooling4

dT

dt
= −α (T − T∞) , (5.15)

where α is a constant coefficient.

a) Solve this equation by assuming that the temperature of the sur-
roundings is not altered by the heat supplied by the cooling body
and that at the time t = 0 the temperature of the body surface is T0.
Interpret your result physically. What is the late time state of this
physical system?
b) Solve the ODE (5.15) by allowing the temperature of the surround-
ings to vary as heat is supplied by the cooling body. At the initial

4The nomenclature is a little ambiguous as this name also denotes the law for the heat flux
for convective cooling, q′′ = h (T − T∞), from which Eq. (5.15) can be derived.
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time t = 0 the body and its surroundings have respective tempera-
tures T0 and T

(0)
∞ .

Hint: Consider the heat capacities Cbody and Csurr of the body and the sur-
roundings as known quantities.

Solution
a) By using the variable θ ≡ T − T∞, we rewrite Eq. (5.15) as

1
θ

dθ

dt
=

d

dt
(ln θ) = −α,

and it can be immediately integrated to give

θ(t) = θ0 e−αt,

where θ0 is an integration constant to be determined. By imposing
the initial condition T (0) = T0, one finds T0 − T∞ = θ0 and

T (t) = T∞ + (T0 − T∞) e−αt.

At late times (formally, as t → +∞) the transient (T0 − T∞) e−αt

decays and the steady-state solution is

T (t → +∞) ≈ T∞,

i.e., the body loses heat (if T0 > T∞) and reaches thermal equilibrium
with the surroundings at temperature T∞. Note that the final tem-
perature T∞ is independent of the initial condition T0, i.e., beginning
with any temperature within the realm of validity of Eq. (5.15) one
ends with the same final temperature.

b) If the temperature of the surroundings is changed by the heat
supplied by the cooling body we have two unknown functions T (t)
and T∞(t). In order to solve the problem we need a second equation,
which is supplied by the calorimetric heat balance for the cooling
body and its surroundings:

Cbody (T − T0) + Csurr
(
T∞ − T (0)

∞
)

= 0,

where Cbody and Csurr are the heat capacities of the body and the
surroundings (assumed to be independent of the temperature for the
process considered). Thus, calorimetry allows us to eliminate the
temperature T∞(t) by writing it as the function of T (t)

T∞ − T (0)
∞ = −

Cbody
Csurr

(T − T0) ≡ −γ (T − T0) (5.16)
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and to reduce the problem to the single ODE

dT

dt
= −α

[
T − T (0)

∞ + γ (T − T0)
]
,

where γ ≡ Cbody/Csurr. By using the variable θ ≡ T − T
(0)
∞ and

writing
T − T0 = T − T (0)

∞ + T (0)
∞ − T0 = θ − θ0,

we rewrite Eq. (5.15) as

dθ

dt
= −α [θ + γ (θ − θ0)] = −α (1 + γ)

(
θ − γ

1 + γ
θ0

)

or
1

θ − γ θ0
1+γ

dθ

dt
=

d

dt

[
ln

∣∣∣∣∣
θ − γθ0

1+γ

θ1

∣∣∣∣∣
]

= −α (1 + γ) ,

which is immediately integrated to

θ(t) = θ1 e−α(γ+1)t +
γθ0

1 + γ
,

where θ1 is an integration constant. By imposing θ(0) = θ0, we find
θ1 = θ0 (γ + 1)−1 and

T (t) = T (0)
∞ +

θ0

γ + 1

[
γ + e−α(γ+1)t

]
and using the expression (5.16) of T∞(t) in terms of T (t),

T (t) =

⎡
⎣CbodyT0 + CsurrT

(0)
∞

Cbody + Csurr

⎤
⎦

+

⎡
⎣Csurr

(
T0 − T

(0)
∞
)

Cbody + Csurr

⎤
⎦ e

−α

(
1+

Cbody
Csurr

)
t

. (5.17)

The late time steady-state solution is the constant

T (t → +∞) = T∞ (t → +∞) ≈
CbodyT0 + CsurrT

(0)
∞

Cbody + Csurr
,

a weighted average of the temperatures of the body and the surround-
ing air with the respective heat capacities as weights. In the limit
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in which the heat capacity of the surroundings tends to infinity, the
solution of part a) is recovered and T∞ stays constant. Physically, it
is clear that this state of thermal equilibrium is stable. This is con-
firmed by the mathematics by considering this steady-state constant
solution rewritten in terms of the variable θ, which we call

θ∗ =
γθ0

γ + 1
.

θ = θ∗ is an exact solution and is stable. In fact, assume that the
initial datum is θ0 > θ∗ (corresponding to the surface of the body
initially hotter than the surrounding air, T0 > T

(0)
∞ ). Then it is

θ(t) > θ∗ at all times t. For any solution θ(t), the curve representing
θ(t) in the (t, θ) plane never crosses the straight line θ = θ∗, or else the
uniqueness theorems for the solutions of ODEs would be violated—
hence it is θ(t) > θ∗. Then

dθ

dt
= −α (1 + γ) (θ − θ∗) < 0,

d2θ

dt2
= −α (1 + γ)

dθ

dt
> 0,

and the solution is monotonically decreasing with upward-facing con-
cavity. It must approach asymptotically its lower bound θ∗, which it
cannot cross.
Similarly if θ0 < θ∗ initially, then dθ/dt > 0 and d2θ/dt2 < 0, and
again θ(t) approaches θ∗ as t → +∞. If θ0 = θ∗, then the solution
stays constant forever (an unphysical fine-tuned situation). The final
equilibrium state is stable, as expected.

14 (A) What is the heat flux between the ground surface at 15.6◦C and
the surrounding air at 5.2◦C due to free convection? Measurements
have provided the empirical value of 9.5 W·m−2 ·K−1 for the convec-
tion coefficient.

Solution
The heat flux due to free convection is proportional to the tempera-
ture difference between air and ground according to Newton’s law of
cooling

q′′ = h (Tg − T∞) =
(

9.5
W

m2 · K

)
(15.6 − 5.2) K = 99

W
m2 .

15 (A) The Bergmann rule of biology states that in warm-blooded, wide-
ranging animal species, members living in colder climates tend to be
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larger than animals of the same species living in warmer climates.
Explain this rule on the basis of your knowledge of heat transfer.

Solution
In cold climates or cold waters it is essential to preserve body heat.
The total heat produced by an animal is proportional to the amount
of metabolizing tissue, hence to the body mass. Let us model the an-
imal as a sphere5 of radius R; then the body mass is m = 4πρR3/3,
where ρ is the average density, while the heat dissipated by convection
and radiation is given by the heat flux densities q′′

1 = h (T − T∞) and
q′′
2 = εσ

(
T 4 − T 4∞

)
(here T is the body surface temperature, T∞ is

the temperature of the surroundings, h is the convection coefficient, σ
is the Stefan–Boltzmann constant, and ε is the average graybody fac-
tor). If also conduction is an important factor of heat loss, Fourier’s
law gives the heat flux density 	q′′

3 = −k	∇T . In all these cases the
heat lost per unit time is proportional to the surface area A of the
cooling body, qi = Aq′′

i . For the spherical animal A = 4πR2, and the
ratio

heat lost per unit time
heat generated per unit time

∝ 4πR2

4πρR3/3
≈ 1

R

is inversely proportional to the size of the animal. It is expected that
natural selection favors larger individuals within the same species.

5.3 Thermodynamics
From the point of view of energy demand and its environmental conse-

quences, thermodynamics places fundamental limits on the efficiency of
processes converting thermal energy into mechanical and then electrical
energy. These limits are summarized in the second law of thermodyn-
amics. From a more general point of view, thermodynamics regulates
the exchanges of heat and mechanical work between different subsystems
of the environment or between organisms and their habitat. A review of
equilibrium and nonequilibrium thermodynamics is beyond the scope of
this book—Refs. [9, 15, 62, 74] are suggested as general references and
[8, 45, 52] for biological applications.

1 (B, C) Define heat capacity, specific heat, latent heat of fusion, and
latent heat of vaporization.

5This is in the spirit of the spherical cow of Ref. [27] and of many jokes on physicists.
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Solution
The heat capacity C of a body is the amount of heat Q necessary to
rise its temperature by one degree Celsius: it is proportional to the
mass m of the body and it depends on the nature of the material
composing the body. In formulas,

C ≡ dQ

dT
.

where dQ is the infinitesimal amount of heat exchanged with the body
and dT is the consequent variation of its temperature. In principle,
heat can be supplied or removed at constant volume or at constant
pressure, obtaining two different heat capacities CV ≡ (dQ/dT )V and
CP ≡ (dQ/dT )P . It is CP > CV because when the volume is allowed
to change in a process at constant pressure part of the heat energy
supplied goes into mechanical work (dW = PdV for an infinitesimal
change in volume dV ). In practice processes of interest for the envi-
ronmental scientist occur at constant atmospheric pressure and CP

is the relevant heat capacity.

The specific heat (capacity) c is the heat capacity of the unit mass
of the material composing the body—for a small temperature change
∆T we have

Q = c m ∆T,

where C = c m is the heat capacity. This formula holds if there are
no phase changes and if the temperature change ∆T is small. For
larger temperature changes Ti −→ Tf the heat exchanged is given by
the integral

Q =
∫ Tf

Ti

c m dT,

where in principle c = c(T ) depends on the temperature.

The latent heat of fusion Lf of a substance is the heat necessary to
melt a unit of mass of it. The heat necessary to melt a mass m of
the same substance is

Q = Lf m;

this thermal energy is given back by the substance when it solidifies.

The latent heat of vaporization Lv of a liquid is the heat necessary
to evaporate a unit of mass of it. The heat required to evaporate a
mass m of the same substance is

Q = Lv m;

this energy is removed from the vapor when it liquefies.
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Note that there is no temperature variation in the formulas for phase
transitions. The temperature stays constant during a phase change
of a chemically pure substance.

2 (A) In a heat engine hot steam is injected at 180◦C and is expelled
at 50◦C. Compute the maximum possible theoretical efficiency of the
engine. Given that 35% of the mechanical work produced is dissi-
pated against internal friction, what is the real maximum efficiency
possible?

Solution
The maximum possible theoretical efficiency is given by the Carnot
factor

ηmax = 1 − TC

TH
= 1 − 323 K

453 K
= 0.29 = 29%.

The work extracted is

Wout = (1 − 0.35) · 0.29 Qin = 0.19 Qin,

and the real maximum efficiency possible is6

ηreal =
Wout
Qin

= 0.19 = 19%.

3 (A) A power station uses hot steam at 650◦C as the hot reservoir
and water from a nearby river at 16◦C as a coolant. What is the
maximum efficiency of the plant that is theoretically possible accord-
ing to thermodynamics?

Solution
The maximum theoretical efficiency allowed by the laws of thermo-
dynamics is given by the Carnot factor

ηmax = 1 − TC

TH
,

where TC and TH are, respectively, the Kelvin temperatures of the
cold and hot reservoirs. Therefore7,

ηmax = 1 − 289 K
923 K

= 0.687 = 68.7%.

6A common mistake is to express temperatures in the Celsius scale instead of the correct
Kelvin scale. This incorrect procedure would lead to a maximum theoretical efficiency of
72%, a significant deviation from the true value.
7The incorrect procedure of expressing temperatures in the Celsius scale instead of the correct
Kelvin scale would lead to a maximum theoretical efficiency of 97.5%, very different from the
actual theoretical value.
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4 (A) An experimental heat engine in a laboratory uses a cycle ex-
tremely close to a Carnot cycle with 40% efficiency, and the cold
reservoir is at 21◦C. Find the temperature of the hot reservoir. Why
is such an engine useless for most practical purposes?

Solution
The efficiency of the Carnot cycle is given by the Carnot factor

η = 1 − TC

TH
,

and therefore the temperature of the hot reservoir is

TH =
TC

1 − η
=

294 K
1 − 0.4

= 490 K.

A reversible Carnot engine is useless for most practical purposes be-
cause the time required for the engine to perform work in reversible
and quasistatic conditions is extremely long and the power output
is extremely small. This disadvantage arises from the need to keep
the transformations reversible at every point along the cycle. Alter-
natively, an operation on reasonable time scales would require the
temperature difference TH − TC to be infinitesimal and the amount
of work extracted would be negligible.

5 (A) A thermal field in Volcanoland has a steam temperature of
276◦C. A small thermal power station operates using this steam as
the hot reservoir and water at 16.5◦C as the cold reservoir. What is
the maximum theoretical efficiency of this plant?

Solution
The maximum theoretical efficiency of the power station is given by
the Carnot factor

η = 1 − TC

TH
= 1 − 2.90 · 102 K

5.49 · 102 K
= 0.472 = 47.2 %.

6 (A) The average efficiency of the muscles in the human body is appro-
ximately 20% and it can almost double in a trained athlete. Assume
that the average temperature of the environment in which the body
operates is 15◦C. Can the human body be described as a heat engine?
If not, what kind of thermodynamic processes describe it?
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Solution
Were the human body correctly described as a heat engine, its effi-
ciency would have as upper limit the Carnot factor

ηmax = 1 − TC

TH
= 1 − 288 K

309 K
= 6.8 · 10−2 = 6.8 %,

where the hot reservoir would be the body itself at a temperature
of approximately 36◦C= 309 K. Since its efficiency is much larger
than the Carnot factor, the human body cannot be described as a
heat engine—it is better described as a isothermal machine at the
constant temperature of approximately 36◦C.

7 (A) The exhausts of a gas turbine, which has efficiency ηA = 0.32,
are used to produce the steam necessary to run a second turbine that
has efficiency ηB = 0.42. What is the overall efficiency of the system?

Solution
Let QA be the heat entering the gas turbine, QB the heat leaving it,
and QC the heat leaving the steam turbine. The efficiency of the gas
turbine is

ηA =
QA − QB

QA
= 1 − QB

QA
,

which yields
QB = QA (1 − ηA) .

The efficiency of the steam turbine is

ηB =
QB − QC

QB
= 1 − QC

QB
,

which yields

QC = QB (1 − ηB) = QA (1 − ηA) (1 − ηB) .

The overall efficiency of the system is

ηtotal =
QA − QC

QA
=

QA − QB

QA
+

QB − QC

QA

= ηA +
QA (1 − ηA) − QA (1 − ηA) (1 − ηB)

QA

= ηA + (1 − ηA) [1 − (1 − ηB)]

= ηA + ηB − ηAηB.
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Numerically,

ηtotal = 0.32 + 0.42 − 0.32 · 0.42 = 0.61.

5.4 Electricity
Electricity is the main form in which energy for human use is trans-

ported over large distances through power lines. It is used to run motors,
for lightning, for heating, in industrial processes, and in many devices
including computers. Power generation plants convert thermal or me-
chanical energy into more readily usable and transportable electric en-
ergy.

1 (A) An underground parking lot has its lights on twenty-four hours
a day. Ten 60 W incandescent bulbs are replaced by 10 20 W fluo-
rescent bulbs providing the same amount of light. How much energy
is saved in one year of operation?

Solution
Since power W is energy divided by time, the energy saved per sec-
ond is 10 · (60 − 20) W·s = 400 J, and the energy saved in one year
is

E = Wt = 10 · (40 W) · (365 days) · (24 hours) = 3500 kWh.

2 (A) What is the cost of operating a 4.50 W electrical alarm clock for
a year if your electric company charges 9.75 cents/kWh?

Solution
The energy used in one year of operation by the alarm clock is

E = (4.50 W) · (365 days) · (24 hours) = 3.94 · 104 Wh = 39.4 kWh.

The cost of a year of operation is (9.75 cents/kWh) · (39.4 kWh) =
3.84 · 102 cents = $ 3.84.

3 (A) A power line at 350 kV distributes 100 MW of power; what cur-
rent is carried in it, if losses are neglected?

Now taking into account heat generation due to the Joule effect, find
the amount of heat generated per unit time by the power line if it
has a resistance of 10 Ω. What fraction of the power is lost as heat?
Hint: For simplicity, treat the line as a direct current circuit.
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Solution
Neglecting heat losses, the power transported by the power line is
W = V I and the intensity I of the current is

I = W/V =
1.0 · 108 W
3.5 · 105 V

= 2.86 · 102 A � 2.9 · 102 A.

The power dissipated into heat is

Wlost = I2R = (286 A)2 · (10 Ω) = 8.2 · 105 W.

The fraction of power lost is

Wlost
W

=
8.2 · 105 W

108 W
= 8.2 · 10−3.

4 (A) The Niagara Falls are approximately 52 m high with a flow rate of
6.0 ·103 m3/s. If all the gravitational potential energy of the water in
the falls could be converted into electrical energy, what power would
be available? Take the density of water to be ρ = 1.0·103 kg/m3. Five
hydroelectric stations at Niagara Falls produce a total of 1800 MW;
what fraction of the total potential energy of water is converted into
electricity?

Solution
The generated power W would be the rate at which gravitational
potential energy is converted into electrical energy,

W =
E

t
.

Since the gravitational potential energy of a mass m of water occu-
pying the volume V is E = mgh = ρV gh, we have

W = ρ
V

t
gh

=
(
1.0 · 103 kg · m−3) (6.0 · 103 m3 · s−1) (9.81 m · s−2) (52 m)

= 3.1 · 109 W = 3.1 GW.

The fraction of gravitational potential energy converted into electric-
ity is

η =
1.8 · 109 W
3.1 · 109 W

= 0.58.



Energy and the Environment 221

5 (A) Compute the maximum flux density of kinetic energy, available
for conversion into electric energy by a turbine, which is carried by a
fluid of density ρ moving with speed v.
Hint: For simplicity, assume laminar flow and consider a portion of stream tube
traversed by the fluid in the infinitesimal time dt.

Solution
Assuming laminar flow, in the time dt the fluid covers the distance
dL = vdt and defines a portion of stream tube of length dL and
cross-sectional area A, which can be assumed to be constant along
the stream tube because the latter has infinitesimal length. The mass
contained in this portion of stream tube is dm = ρdV = ρAvdt and
its kinetic energy is dE = (dm)v2/2 = ρAv3dt/2. The power (energy
per unit time) carried by the fluid per unit area, which is in principle
available for conversion into electric power, is

W

A
=

1
A

dE

dt
=

1
2
ρv3,

proportional to the cube of the fluid speed.

6 (A) A power plant converts the energy of tides into electric energy.
If the tidal range is R = 5.2 m, what is the maximum power per unit
of area of the collecting basin that can be extracted? The density of
sea water is ρ = 1.03 · 103 kg/m3.

Solution
Assuming that the collecting basin has a depth equal to the tidal
range R and that the water is discharged onto a turbine at low tide,
the gravitational potential energy of the water in the collecting basin
is mgR, where m = ρV is the mass of sea water, of density ρ, in the
basin of volume V . Therefore, if A is the area of the collecting basin,
the total energy converted into electric energy is

E = mgh = ρARgR

or

E

A
= ρ gR2 =

(
1.03 · 103 kg

m3

)(
9.81

m
s2
)

(5.2 m)2 = 2.7 · 105 J
m2 .

Since there is a tide every 12 hours, the power available per square
meter of the collecting basin is

W =
E

At
=

2.7 · 103 kg/m2

12 · 3600 s
= 6.3

W
m2 .
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This modest number suggests that the collecting basin should have
a large area, which would impact a large portion of shoreline or tidal
flats, if present.



Chapter 6

FLUID MECHANICS

You may have inner tranquillity, but you can’t escape surface tension.
—V. Louise Roth

Liquids and gases, whether in static equilibrium or in motion, are es-
sential constituents of the natural environment, and various fluids are
also essential for the functioning of biological organisms. Earth sciences
such as atmospheric science, meteorology, dynamical oceanography, and
hydrology rely on the understanding of fluid mechanics. While liquids
are only slightly compressible, gases are easily compressed and this ac-
counts for many of their different physical properties. It is convenient to
separate the study of fluids from that of liquids and gases. Applications
to the oceans and the atmosphere are presented in Chapter 3.

Any standard first-year physics textbook will suffice as a reference for
the problems labeled A or C in this chapter—a fluid dynamics book
(e.g., Refs. [1, 50, 40, 57]) is needed for the rest of the material in
Section 1, and a book on gas laws, thermodynamics, and kinetic theory
(e.g., [62, 9, 38, 10]) is useful for Section 2.

6.1 Liquids
The main liquid of interest for the environmental scientist is water,

but various hydrocarbons are also important for the petroleum industry
and its related aspects, e.g., oil exploration, pipelines, and environmental
clean-up.

1 (C) Summarize the unusual physical and chemical properties of wa-
ter.
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Solution
Due to the hydrogen bonds, the boiling point of water (100◦C at
1 atm) is rather high and the difference between melting point and
boiling point is also rather large (100◦C), making it possible for water
to exist in the liquid state and allowing for the existence of oceans,
lakes, and rivers.

Water expands when it turns into ice unlike most common substances;
ice does not sink to the bottom of lakes and oceans, but floats on top.
In addition, the density of water is maximum at 4◦C and water at
this temperature sinks, allowing life to continue under water. The
expansion of water when it freezes, with large stresses applied to the
walls of a container confining it, constitutes an important agent of
erosion when the temperature oscillates around 0◦C.

The specific heat of water (4187 J · kg−1 · (◦ C)−1) is unusually high,
about five times that of most common rocks and soils. As a conse-
quence oceans and lakes mitigate climates with their thermal inertia,
reduce temperature excursions, and create local winds and sea and
mountain breezes. The high specific heat also makes water an excel-
lent coolant medium for industrial applications.

The latent heat of vaporization of water (2258 J/kg) is very large
in comparison to most substances, implying that a large amount of
latent heat can be stored in the water vapor evaporated at the tropics
and residing in the lower atmosphere. This energy can be transported
(an important item in the global distribution of solar energy around
the planet), fuel tropical hurricanes, or be released when water vapor
condenses, causing precipitation and continuing the hydrologic cycle.

The surface tension of water is also relatively high, a fact that has
various applications, e.g., to soil physics, surface waves on bodies of
water, and the rising of sap in the xylem of a tree.

Finally, water molecules are polar, making water a very good solvent
for many substances and a good medium to transport nutrients and
waste products in plant and animal organisms. Most biochemical
reactions occur in water solutions.

6.1.1 Fluid statics
Very often we see water at rest or in slow motion and it is impor-

tant for the environmental scientist to have a clear understanding of the
properties of static fluids. For example, most of the sea water in the
oceans far away from major oceanic currents can be considered at rest
or in very slow motion and the motion of groundwater is also very slow.
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The static state is the result of an equilibrium that has been achieved
through previous motion. Understanding hydrostatics helps to model
bodies of water, capillary phenomena in the soil or plant and animal
tissues, buoyancy phenomena in the atmosphere, or the floating of ice-
bergs.

1 (A) A river has average width 46 m, has an average depth of 21 m,
and is 156 km long. What is the mass of water in it?

Solution
The mass of the river is the product of the density of water ρ �
1.0 · 103 kg/m3 and of the volume of the river,

M = ρ V = ρSh

= (1.0 · 103 kg · m−3) · (46 m) · (21 m) · (1.56 · 105 m)

= 1.5 · 1011 kg.

2 (A) A dam creates an artificial lake with surface area S = 112 km2

and average depth h = 63 m. What is the mass of the water in the
lake? At the beginning of summer the average temperature of the
lake was 8◦C, while at the end of the summer it is 15.5◦C. How
much heat was absorbed by the lake during the summer?

Solution
The mass of the lake is the product of the density of water ρ =
1.00 · 103 kg/m3 and of the volume of the lake,

M = ρ V = ρS h =
(
1.0 · 103 kg/m3) · (1.12 · 108 m2) · (63 m)

= 7.1 · 1012 kg.

The heat absorbed by the lake during summer is given by

Q = c m ∆T =
(

1.0
Kcal

kg · ◦C

)
· (7.1 · 1012 kg

) · (7.5◦C)

= 5.3 · 1013 Kcal = 2.2 · 1017 J.

3 (A) The Columbia Plateau is a large basaltic lava flow over an area
shared by four states of the present northwestern USA. It covers a sur-
face of area A = 5.76 · 105 km2 and has an average depth h = 150 m.
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Compute the mass of basalt that flowed forming the plateau and the
pressure that it exerts on the underlying rock. The density of the
basalt is ρ = 2.2 · 103 kg/m3.

Solution
The mass of the Columbia Plateau is given by its average density
times its volume,

m = ρV = ρAh =
(

2.2 · 103 kg
m3

)
· (5.76 · 1011 m2) · (150 m)

= 1.9 · 1017 kg.

The pressure exerted by this mass on the underlying rock is the ratio
of its weight to its area,

P =
mg

A
= ρgh =

(
1.9 · 1017 kg

) · (9.81 m · s−2
)

5.76 · 1011 m2 = 3.2 · 106 Pa.

4 (A) What is the fraction of the volume that is submerged for an ice-
berg? The densities of water and ice are, respectively, 1.00·103 kg/m3

and 0.917 · 103 kg/m3. Is there a simple formula giving the height of
the part of the iceberg that sticks out of the water?

Solution
According to Archimede’s principle, the upward-directed buoyant
force FB on the iceberg balances the weight of the ice,

FB = mwater g = mice g,

where mwater is the mass of the volume of water displaced. At equi-
librium mwater = mice and we have, for the corresponding densities
and volumes,

ρwater Vdisplaced = ρice Viceberg.

The fraction of the volume of the iceberg that is submerged is then

Vdisplaced
Viceberg

=
ρice

ρwater
=

0.917 · 103 kg · m−3

1.00 · 103 kg · m−3 = 0.917,

or 91.7%. In practice, even more of the volume of the iceberg sticks
out of the water because saltwater in the ocean has a higher den-
sity than the freshwater composing the iceberg, and because the ice
contains air bubbles that lower its density.
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Figure 6.1. A parcel of fluid of infinitesimal volume δV = Aδz.

There is no simple formula giving the height of the part of the iceberg
sticking out of the water: it depends on the shape of the iceberg.

5 (B) Derive the equation of hydrostatic equilibrium in a fluid.

Solution
Consider a vertical axis z pointing upward and a parcel of fluid with
the shape of a vertical parallelepiped with volume V and horizontal
faces of area A at z and z + δz (Fig. 6.1). The only forces acting in
the vertical direction are due to the pressures on the horizontal faces,
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−AP (z+δz) (directed downward) and AP (z) (directed upward), and
the weight −mg of the parcel pointing downward (g is the accelera-
tion of gravity). Since the mass of the parcel is m = ρV = ρ A δz,
where ρ is the density of the fluid, the balance of forces in the vertical
direction yields

A [P (z) − P (z + δz)] − ρgAδz = ma,

where a is the vertical acceleration of the parcel. In equilibrium,
a = 0 and

P (z + δz) − P (z)
δz

+ ρg = 0.

By taking the limit as δz → 0, we obtain the equation of hydrostatic
equilibrium

dP

dz
= −ρ g. (6.1)

Using differentials,1 we can write Eq. (6.1) as

dP = −ρ g dz. (6.2)

The forces acting on the fluid parcel in the horizontal direction bal-
ance on opposite sides of the parcel and do not provide additional
mathematical relations.

6 (B) State the equation of hydrostatic equilibrium

a) under water, where P (z) is the pressure and z is the depth;

b) in the atmosphere, where P (z) is the pressure and z is the ele-
vation.
Solve the equation in both cases.
Hint: In case b) substitute the actual temperature with an average temperature
that is independent of elevation.

Solution
a) The equation of hydrostatic equilibrium is

dP = ρ g dz,

where z is the water’s depth. Since water is almost incompressible,
one can assume that ρ is independent of z and the equation of hy-
drostatic equilibrium is immediately solved, yielding

P (z) = ρ g z.

1More rigorously, using differential forms, or 1-forms.
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b) The equation of hydrostatic equilibrium is

dP = −ρ g dz,

where z is the elevation. In this case, the air density depends on z,
and the ideal gas law in the form

P = ρ
kT

m
,

where k is the Boltzmann constant, T is the temperature, and m is
the average mass of the air particles, yields

ρ(z) =
mP (z)

kT

and
dP

dz
= −ρ g = − mgP (z)

kT
.

By replacing the temperature T with an average, z-independent tem-
perature T̄ , we obtain the ordinary differential equation

1
P

dP

dz
=

d (lnP (z))
dz

= − mg

kT̄

that has the exponential solution (Fig. 6.2)

P (z) = P0 exp
(
− z

H

)
,

where

H ≡ kT̄

mg

is a length scale characteristic of the atmosphere and P0 = P (z = 0).

7 (B) Prove that in an incompressible fluid in hydrostatic equilibrium
the pressure P satisfies the Laplace equation ∇2P = 0.

Solution
The equation of hydrostatic equilibrium is

	∇P − ρ	g = 0 ,

where 	g = −	∇Φ is the opposite of the gradient of the gravitational
potential Φ. By taking the divergence of this equation, we obtain

∇2P −
(

	∇ρ
)

· 	g − ρ	∇ · 	g = 0.
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Figure 6.2. The pressure (atm) versus elevation (km) for H = 1 km.

Since the acceleration of gravity 	g can be considered as constant on
regions small compared to the radius of the Earth and the fluid is
incompressible (ρ = constant), both 	∇ρ and 	∇ · 	g vanish and we are
left with ∇2P = 0.

8 (A) Compute the percent change in volume of ocean water at a
depth of 6000 m due to the weight of the water above. The bulk
modulus and the average density of sea water are, respectively, B =
2.2 · 109 N·m−2 and ρ = 1.03 · 103 kg/m3.

Solution
The fractional change of volume is given by

δV

V
=

1
B

F

A
, (6.3)
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where B is the bulk modulus and F is the force per unit normal area
A. The pressure at depth h is approximately given by

P = ρ g h = (1.03 · 103 kg/m3) · (9.81 m/s2) · (6000 m) = 6.06 · 107 Pa,

where g is the acceleration of gravity. Here we neglect the compress-
ibility of water in the computation of the pressure, which amounts to
a second-order error in the final formula for δV/V . Therefore,

δV

V
=

P

B
=

6.06 · 107 Pa
2.2 · 109 N · m−2 = 2.8 · 10−2 = 2.8 %.

6.1.2 Capillarity and surface tension
Capillarity and surface tension are important concepts in understand-

ing the adsorption of thin films of water at the interface of pores and solid
particles in a soil. Capillarity is also important to understand the hori-
zontal transport of liquids (especially water) and the vertical transport
of liquids over short distances which is counteracted by gravity. This
has applications, e.g., to heat pipes in machines and to some extent to
plant tissues. Surface tension also regulates the physics of membranes
forming the interface between water and air, of bubbles and drops and
is relevant, e.g., for the detergent industry which is responsible for some
water pollution and for eutrophication, or the ability of certain insects
to walk on the surface of a pond.

1 (B) Compute the difference between the internal and the external
pressure in a soap bubble by using the fact that the surface tension
represents the energy per unit area. Consider an infinitesimal dila-
tion during which the bubble radius increases from r to r + dr.
Repeat the exercise for a spherical bubble of air in water.

Solution
The difference between the internal pressure and the external atmo-
spheric pressure is Pi − P0. The total force normal to the surface of
the bubble is (Pi − P0) 4πr2, and the infinitesimal work done by this
force during the dilation r −→ r + dr is 4πr2 (Pi − P0) dr. This work
must equal the energy change of the bubble γdA, where A is the sur-
face area. Since a soap bubble has two surfaces of contact between the
liquid and air, each of area 4πr2, it is γ dA = γ d

(
8πr2

)
= 16πγrdr.

Therefore, the energy balance is

4πr2 (Pi − P0) dr = 16πγ rdr,

and the gauge pressure inside the bubble is given by

Pi − P0 =
4γ

r
.
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Figure 6.3. A capillary tube.

Smaller bubbles have larger internal pressure.

For a bubble of air in water there is only one surface of contact
between liquid and gas. Therefore,

4πr2 (Pi − P0) dr = 8πγ rdr,

which yields the difference between the air pressure inside and the
water pressure outside the bubble:

Pi − P0 =
2γ

r
.

2 (B) Derive a formula for the height h reached by a liquid of surface
tension γS and contact angle θ in a capillary tube of given radius r,
using only dimensional analysis (Fig. 6.3).

Solution
The height h reached by a liquid in a capillary tube will depend on

the nature of the liquid, the radius r of the tube, and the gravita-
tional acceleration g. The physical variables characterizing the liquid
and playing a role in this problem will be the density ρ, the surface
tension γS , and the contact angle θ of the liquid. However, because
the contact angle does not carry dimensions, the dependence of h on
θ will be missed. The dimensions of the quantities involved are

[h] = [r] = [L] ,

[γS ] =
[
MT−2] ,
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[g] =
[
LT−2] ,

[ρ] =
[
L−3M

]
,

and by setting
h = A γα

S ρβ gγ rδ,

where A is a dimensionless coefficient, we obtain the dimensional
equation

[L] =
[
MαT−2α

] [
L−3βMβ

] [
LγT−2γ

] [
Lδ
]

=
[
L−3β+γ+δT−2α−2γMα+β

]
,

which yields

−3β + γ + δ = 1,

−2α − 2γ = 0,

α + β = 0.

This linear system of three equations for four unknowns is underde-
termined and has the solution

α arbitrary, β = γ = −α, δ = 1 − 2α,

which yields only

h = A

(
γS

ρg

)α

r1−2α,

leaving α to be determined by experiment, e.g., by studying the de-
pendence of h on the radius of the capillary tube and establishing
that h ∝ r−1 we would obtain the formula h = Aγ/ (ρ gr). How-
ever, this is not what is required, and we can refine the dimensional
analysis and solve the problem as follows below.

The improvement consists in distinguishing between lengths in the
vertical direction Lz and lengths in the transverse or horizontal di-
rection, Lr. Then the relevant physical quantities have dimensions

[h] = [Lz] ,

[r] = [Lr] ,
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[γS ] =
[
Force

L

]
=
[
LzT

−2M

Lr

]
,

[g] =
[
LzT

−2] ,
[ρ] =

[
L−1

z L−2
r M

]
.

This yields the dimensional equation

[Lz] =
[
Lα

z L−α
r T−2αMα

] [
L−β

z L−2β
r Mβ

] [
Lγ

zT−2γ
] [

Lδ
r

]

=
[
Lα−β+γ

z L−α−2β+δ
r T−2α−2γMα+β

]
,

and the associated linear system

α − β + γ = 1,

−2α − 2γ = 0,

−α − 2β + δ = 0,

α + β = 0,

which now consists of four independent equations for the four un-
knowns and is completely determined. The solution is

α = 1, β = γ = δ = −1,

and
h = A

γS

ρgr
.

This solution to the problem requires only theoretical considerations
and no experiment and constitutes an example of how we can solve a
problem that is otherwise unsolvable with the method of dimensions
by enlarging the number of quantities treated as independent.

3 (A) How high can capillarity lift sap through the tubes with radius
r = 0.02 mm forming the xylem of a tree? Can capillarity explain
how sap reaches the top of a giant sequoia 80 m high? The sap density
is ρ = 1.05 · 103 kg/m3 and its surface tension is γ = 7.28 · 10−2 N/m.
Assume that the contact angle is zero.
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Solution
The height above the free surface of a liquid reached in a capillary
tube (Fig. 6.3) is

h =
2γ cos θ

ρ g r
,

where g is the acceleration of gravity and θ is the contact angle—
hence, the maximum height that sap can reach due to capillarity is

h =
2 · (7.28 · 10−2 N/m

)
(1.05 · 103 kg/m3) · (9.81 m/s2) · (2 · 10−5 m)

= 0.71 m.

Obviously, capillarity alone cannot be responsible for rising sap even
in trees of modest height, let alone giant sequoias. It is a molecular
mechanism that explains the rising of sap in trees. Water is lifted
upward due to the transpiration from the leaves and the subsequent
motion of the water below that is drawn up in small tubular structures
due to the relatively high surface tension of this liquid. The work
done in raising the water is provided by the latent heat released by
evaporation from the leaves on top of the tree.

6.1.3 Fluid dynamics
A fluid in motion is a physical system with an infinite number of

degrees of freedom and is described by partial differential equations.
The basic equations of fluid dynamics are the Navier–Stokes equations,
which are nonlinear and include dissipative terms describing the viscos-
ity of the fluid. Because of these features the study of fluid dynamics
is very complicated, few analytical solutions are available, and approxi-
mations must be made whenever possible. Nonlinearity and dissipation
are responsible for the occurrence of turbulence, a regime in which the
dynamics becomes chaotic and predictability breaks down. Turbulence,
chaotic dynamics, and fractals are the subjects of a recent branch of
science that, overall, is still poorly understood—we recommend [70, 11]
as references. Here we focus on the basic ideas of fluid dynamics.

1 (B) Elementary physics textbooks discuss the continuity equation for
incompressible fluids in a pipe (or, more generally, in a stream tube)

S v = constant, (6.4)

where S is the cross-sectional area of the pipe (or stream tube) and
v is the velocity of the fluid, normal to S. How does Eq. (6.4) relate
to the partial differential equation of fluid dynamics

∂ρ

∂t
+ 	∇ · (ρ	v) = 0 (6.5)
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that bears the same name?

Solution
Equation (6.4) is in fact a special form of Eq. (6.5). An incompress-
ible fluid has ρ =constant and

∂ρ/∂t = ∂ρ/∂xi = 0 (i = 1, 2, 3) ;

then Eq. (6.5) yields 	∇ · 	v = 0. Consider a volume V delimited by a
pipe (or by a stream tube) and two cross sections normal to it—the
velocity field v is tangent to the pipe (or to the streamlines composing
the walls of the tube). By applying Gauss’ law to the volume V , we
obtain

0 =
∫ ∫ ∫

V
dV 	∇ · (ρ	v) = ρ

∫ ∫
S

	v · 	n dS = −S1v1 + S2v2,

where S1 is the area of the cross section where the fluid enters the
volume V , with unit normal 	n1 pointing outside the pipe in the direc-
tion opposite to 	v (this explains the negative sign of this first term).
S2 is the area of the cross section on the right of the volume V ; then
the law

S1 v1 = S2 v2

is recovered in the special case of incompressible fluids.

2 (B) a) Integrate the continuity equation

∂ρ

∂t
+ 	∇ · (ρ	v) = 0

over a fixed volume of space V that has a closed surface S as its
boundary and discuss the physical meaning of this integral form of
the continuity equation.

b) How would the continuity equation change if the mass q̇(	x, t) per
unit time and per unit volume was injected or removed at points 	x
internal to V ?
Hint: Add the corresponding source term to the integral form of the continuity
equation studied in a) and then derive the differential form of the equation.

Solution
a) Integration of the continuity equation over a fixed volume of space
V (Fig. 5.3) gives

d

dt

(∫ ∫ ∫
V

dV ρ

)
+
∫ ∫ ∫

V
dV 	∇ · (ρ	v) = 0.
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By applying Gauss’ law to the second integral on the left-hand side,
we obtain

d

dt

(∫ ∫ ∫
V

dV ρ

)
= −

∫ ∫
S

dS 	n · (ρ	v) . (6.6)

The terms appearing in the integral equation (6.6) have the following
physical interpretation:∫ ∫ ∫

V dV ρ is the mass contained in V and d
dt

(∫ ∫ ∫
V dV ρ

)
is its rate

of change;
− ∫ ∫S dS 	n · (ρ	v) is the mass flux across the surface S. Since the sign
of the outer normal is taken as positive, a positive flux represents
mass leaving V through S. The integral form (6.6) of the continu-
ity equation states that the rate of change of mass contained in V
is equal to minus the mass flux through the boundary S of V . In
other words, the physical content of the continuity equation is mass
conservation.

b) Let us consider now the case in which the amount q̇ of mass per
unit volume is injected (if q̇ > 0) or removed (if q̇ < 0) from V in the
unit of time. In this case the integral equation is modified to

d

dt

(∫ ∫ ∫
V

dV ρ

)
= −

∫ ∫
S

dS 	n · (ρ	v) +
∫ ∫ ∫

V
dV q̇.

Due to the arbitrariness of the integration volume it must be

∂ρ

∂t
+ 	∇ · (ρ	v) = q̇ ,

and q̇ represents a source (if q̇ > 0) or sink (if q̇ < 0) term. In
this case the mass of the fluid is not conserved because there are
external sources or sinks adding or removing mass. In the language
of thermodynamics, the fluid is not a closed system but exchanges
particles and hence mass with its surroundings.

3 (B) Show that incompressible fluids have solenoidal velocity field2 	v,
i.e., that 	∇ · 	v = 0.

2This fact is used in oceanography, where sea water is most often treated as an incompress-
ible fluid and the equation �∇ · �v = 0 is used to estimate small vertical velocities from the
measurement of horizontal ones.
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Solution
An incompressible fluid has uniform and constant density ρ, i.e.,
∂ρ/∂t = 0 and ∂ρ/∂xi = 0 (i = 1, 2, 3). The continuity equation

∂ρ

∂t
+ 	∇ · (ρ	v) = 0

then yields ρ	∇ · 	v = 0, and 	∇ · 	v = 0.

4 (B, C) Write the partial differential equations describing the dy-
namics of a nonviscous and of a viscous fluid in terms of the mass
density ρ, pressure P , velocity field 	v, and force per unit volume 	f .

Solution
Fluid dynamics is described by three partial differential equations
expressing the conservation of mass, momentum, and energy.

Mass conservation is expressed by the continuity equation

∂ρ

∂t
+ 	∇ · (ρ	v) = 0.

The second equation is Newton’s second law of motion adapted to a
fluid. For a nonviscous fluid it reads

	∇P + ρ
d	v

dt
= 	f.

For a viscous fluid we have to add terms that describe dissipation.
This is done by introducing the stress tensor 		σ and generalizing the
previous equation to

	∇P + ρ
d	v

dt
= 	f + 2	∇ ·

(
η 		σ
)

,

where η is the dynamic viscosity coefficient.

The partial differential equation expressing the conservation of energy
is

∂

∂t

(
1
2
ρv2 + u

)
+ 	∇ ·

[(
1
2
ρv2 + u + P

)
	v

]
= 	f · 	v − 	∇ · 	q′′,

where u is the internal energy per unit volume of the fluid and 	q′′ is
the heat flux density describing conduction and possibly radiation in
the fluid.
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5 (B) Consider the velocity field 	v = 	v(t, 	x) in a fluid, and the ten-
sor field vij ≡ ∂vi/∂xj . Decompose vij into a symmetric part θij

and an antisymmetric part ωij (vorticity tensor), and prove that the
decomposition is unique. Further decompose θij as

θij = σij +
θ

3
δij ,

where δij is the Kronecker delta, σij is the shear tensor, (θ/3) δij is the
expansion tensor, and θ = 	∇ · 	v. Consider at time t a sphere of fluid
particles at coordinates xi and follow their trajectories for a short
time interval δt. At time t + δt the sphere is deformed into another
surface (if δt is sufficiently small, the deviations from spherical shape
will be small). Derive the geometrical meaning of the shear, vorticity,
and expansion tensors by considering the time evolution map

xi(t) −→ xi(t + δt)

for small time intervals δt.

Solution
One can write

vij =
vij + vji

2
+

vij − vji

2
≡ θij + ωij ,

where θij is symmetric (θij = θji) and the vorticity tensor ωij is
antisymmetric (ωij = −ωji). This decomposition is unique; in fact,
let

vij = Aij + Bij

with Aij symmetric and Bij antisymmetric be another decomposition
of vij into symmetric and antisymmetric parts. Then

vji = Aji + Bji = Aij − Bij .

By adding and subtracting the last two equations, we obtain, respec-
tively,

Aij =
1
2

(vij + vji) ≡ θij ,

Bij =
1
2

(vij − vji) ≡ ωij ,

which proves the uniqueness of the decomposition.
We can further decompose θij as follows:

θij ≡ vij + vji

2
=

vij + vji

2
− θ

3
δij +

θ

3
δij ≡ σij +

θ

3
δij ,
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Figure 6.4. The action of expansion, shear, and vorticity.

where

θ = Tr (vij) ≡
3∑

i=1

∂vi

∂xi
= 	∇ · 	v

is the trace of the tensor θij , and

σij = vij + vji − θ

3
δij

is the shear tensor. It follows from this definition that the shear
tensor is traceless, Tr(σij) = 0.
Let us consider now a sphere of fluid particles with positions xi at
the time t; at a later time t + δt the particles occupy positions

xi(t + δt) = xi + viδt + . . .

(see Fig. 6.4). The Jacobian matrix of the time evolution operator
xi(t) −→ xi(t + δt) is

Jij =
∂x′ i

∂xj
= δij +

∂vi

∂xj
δt + . . . = δij +

[
θ

3
δij + σij + ωij

]
δt + . . . .

The Jacobian is the determinant J ≡ det (Jij). The action of the
transformation is then decomposed into the action of three indepen-
dent transformations described by the expansion, shear, and vorticity
tensors, respectively. The expansion tensor (θ/3) δij , which is diag-
onal, does not select a preferred direction—it changes the volume of
the sphere without altering its shape or orientation. If σij and ωij

were zero, we would have

Jij = δij

(
1 + δt

	∇ · 	v
3

)
,
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corresponding to a change of scale (expansion of the sphere if 	∇·	v > 0

or contraction if 	∇ · 	v < 0), and J =
(
1 + δt 	∇ · 	v/3

)3
. Since the

volume occupied by the particles that previously were forming the
sphere is

V =
∫

d3	x′ =
∫

d3	x J =

(
1 + δt

	∇ · 	v
3

)3

Vsphere

�
(
1 + δt 	∇ · 	v

)
Vsphere,

then 3θ = 	∇ · 	v describes the rate
δV/Vsphere

δt at which the volume
changes.

The symmetric shear tensor σij changes the sphere into an ellipsoid
without rotating it or changing its volume. The directions along
which deformations occur are given by the eigendirections of σij , and
its eigenvalues give the amount of deformations along these directions.
The antisymmetric vorticity tensor ωij rotates the sphere without
changing its volume or deforming it.

6 (B) Show that by assuming that the stress tensor has the form σij =
∂vi/∂xj , we can write the Navier–Stokes equations

ρ
dvi

dt
= − ∂P

∂xi
+ 2

3∑
j=1

∂

∂xj
(ησij) + Fi

as
∂vi

∂t
= −	v · 	∇vi − 1

ρ

∂P

∂xi
+ 2ν

3∑
j=1

∂2vi

∂xi∂xj
+ fi.

Here ρ, P,	v, η, ν = η/ρ, Fi and fi are the density, pressure, velocity,
dynamic and kinematic viscosity, external force per unit volume, and
external force per unit mass, respectively.

Turbulence occurs when the nonlinear terms, which amplify small
velocity perturbations, are larger than the friction terms that tend
to smooth out velocity differences between different layers of fluid.
Estimate the ratio of the nonlinear and the viscosity term. Does
your result have a familiar form?
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Solution
By using the fact that

dvi

dt
=

∂vi

∂t
+

3∑
j=1

∂vi

∂xj

dxj

dt
=

∂vi

∂t
+

3∑
j=1

∂vi

∂xj
vj =

∂vi

∂t
+ 	v · 	∇vi

and dividing the Navier–Stokes equations by the density ρ, we obtain

∂vi

∂t
= −	v · 	∇vi − 1

ρ

∂P

∂xi
+ 2ν

3∑
j=1

∂2vi

∂xi∂xj
+ fi

by using also the fact that ν ≡ η/ρ and fi = Fi/ρ.

In order of magnitude, the required ratio is

	v · 	∇vi

ν
∑3

j=1
∂

∂xj
∂vi

∂xi

≈ v v/L

ν v/L2 =
vL

ν
,

where v is a typical value of the velocity and L is a typical length
scale over which v varies. The ratio is the Reynolds number, usually
introduced as ratio between inertial and viscous forces. If Re < 2000,
the fluid flow is usually laminar, while if Re > 3000, it is turbulent.

7 (A) The flow rate of oil in a pipeline is F = 10.0 m3/s, a section
of the pipeline between two pumping stations is 10.0 km long, the
pressure difference between its ends is 2.5 · 104 Pa, and the dynamic
viscosity coefficient of the oil is η = 0.1 Pa·s at 10◦C. What are the
radius of the pipe and the power needed to pump the oil?

Solution
According to Poiseuille’s law, the flow rate of a viscous fluid in a pipe
of radius r and length L is

F =
(P2 − P1) πr4

8ηL
;

hence,

r =
[

8F η L

π (P2 − P1)

]1/4

=

[(
10.0 m3/s

) · 8 · (0.1 Pa · s) · (1.0 · 104 m
)

π · 2.5 · 104 Pa

]1/4

= 1.0 m.
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The power needed to pump the oil is

W =
8ηL

πr4 F2 =
8 · (0.1 Pa · s) · (104 m)

π (1 m)4
(
10 m3/s

)2 = 2.55 · 102 kW.

8 (B) Consider the flow of viscous oil in a pipeline as described by
Poiseuille’s law. The pressure gradient dP/dz is independent of r, ϕ,
and z, where (r, ϕ, z) are cylindrical coordinates adapted to the pipe
symmetry (the z-axis is the axis of the cylindrical pipe).

Let F be the flow rate of oil, i.e., the volume of fluid passing per unit
time through a normal cross section of the pipe; consider two cross
sections at z1 and z2, with z2 − z1 = L. Show that the flow rate
can be represented, in an electrical analogy with Ohm’s law, by the
formula

P1 − P2 = R F .

Find an expression for the fluid-dynamical “resistance” R in terms
of the parameters of the pipe and fluid. Show that the effect of two
consecutive sections of the pipeline is obtained, using the electrical
analogy, by treating them as resistors in a series connections.

Solution
Poiseuille’s law for the flow rate is

F =
dV

dt
=

πGR4

8η
,

where G = −dP/dz, R is the pipe radius, and η is the oil dynamic
viscosity coefficient. Since dP/dz is independent of z, P (z) = P0−Gz
and

P1 ≡ P (z1) = P0 − Gz1,

P2 ≡ P (z2) = P0 − Gz2,

and G = (P1 − P2) /L is the (constant) pressure gradient. We have

F =
πR4

8η

(P1 − P2)
L

≡ P1 − P2

R ,

where R = 8ηL/(πR4) is the fluid-dynamical analogue of the electri-
cal resistance in Ohm’s law and 8η/π is the analogue of the electrical
resistivity.
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Two consecutive sections of the pipeline with equal diameters and
lengths L1 and L2 give the total resistance

R = 8ηL/(πR4) =
8ηL1

πR4 +
8ηL2

πR4 = R1 + R2,

i.e., the two such hydrodynamical resistances add like resistors in a
series connection.

9 (A) In the hydrodynamics of viscous fluids it can be proven that
flows having the same geometry and Reynolds numbers are dynam-
ically similar, i.e., the two flows are identical when scaled in the
appropriate way. Consider water flowing in an irrigation pipe of ra-
dius R with speed v: if we quadruple the radius of the pipe, at what
speed will the flow be exactly the same as before?
Hint: Consider the Reynolds number.

Solution
The Reynolds number is Re ≡ 2vR/ν, where R is the length scale
over which the velocity varies and ν is the kinematic viscosity coeffi-
cient. The geometry of the flow does not change—it is still the same
fluid in a pipe—and the viscosity coefficient is still the same. In order
to keep the flow dynamically similar when R −→ 4R, the Reynolds
number must be kept constant, therefore it must be v −→ v/4.

6.2 Gases
Gases are composed of particles relatively far apart from each other,

which can be assumed to interact with each other through instanta-
neous collisions instead of with complicated short range forces requiring
detailed models as is the case with liquids and solids. On average, gas
particles travel a distance λ (mean free path) between consecutive colli-
sions. The particles may have an overall velocity 	v (gas velocity) onto
which random velocities are superposed. If the gas is not extremely rar-
ified, in a reference frame moving with the gas at velocity 	v the particles
have a Maxwell–Boltzmann distribution characterized by the gas tem-
perature T . On length scales much larger than the mean free path λ the
gas can be described as a compressible fluid and we can employ as physi-
cal variables the mass density ρ, pressure P , temperature T , volume V ,
macroscopic velocity field 	v, and the external force per unit volume 	f
(for example, gravity). The fluid is usually viscous, in which case we
have to introduce a simple model for internal dissipation. If instead one
wants to study phenomena on length scales of the order of λ or smaller,
the kinetic theory of gases [62, 9, 38, 10, 6] must be used.



Fluid Mechanics 245

The most important gas for the environmental scientist is of course air,
which is a mixture of different gases, but other gases are also important,
for example, greenhouse gases, especially CO2, which participates in the
carbon cycle, photosynthesis, and the greenhouse effect), ozone, which
in the atmosphere shields living organisms from harmful ultraviolet rays
and at ground level is a pollutant, methane produced by agricultural
practices and the cattle industry, radioactive radon seeping from the
ground, or various other pollutants emitted in gaseous form. Here we
focus on the physical properties of gases—see Chapter 3 for applications
to atmospheric physics.

1 (A) Determine the number of particles in 1.00 m3 of gas at temper-
ature 10◦C and pressure P = 2 atm.

Solution
The ideal gas law

PV = N k T

yields the number of particles

N =
PV

kT
=

2 · (1.01 · 105 Pa) · (1.00 m3)
(1.38 · 10−23 J · K−1) · (283 K)

= 5.17 · 1025.

2 (C) Define the ideal gas and write the equation of state that it obeys.
Do real gases satisfy it? What corrections can be introduced to ac-
count for the behavior of a real gas?

Solution
The ideal gas is defined as one such that the volume of its particles
is negligible in comparison to the volume occupied by the gas and
the interatomic/intermolecular forces are weak. The molecules only
interact through scattering.

The ideal gas equation of state is

P V = N k T, (6.7)

where P , V , N , and T are, respectively, the pressure, volume, num-
ber of particles, and absolute temperature of the gas, and k is the
Boltzmann constant. In a (V, P ) plane and at constant temperature
T , the ideal gas equation of state is represented by the hyperbola
P = const./V (ideal gas isotherm).

Real gases obey the ideal gas equation of state in conditions of rela-
tively high temperature and low pressure and density. To take into
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account the finite volume occupied by the gas particles and the inter-
action forces between particles, the Van der Waals equation of state
is often used, (

P +
a

V 2

)
· (V − b) = N k T, (6.8)

where a and b are constants characteristic of the particular gas con-
sidered, with dimensions of an energy times a volume and of a volume,
respectively.

3 (A) The ideal gas law is

PV = NkT, (6.9)

where N is the number of gas particles contained in the volume V , k
is the Boltzmann constant, and T is the absolute temperature of the
gas. Show that Eq. (6.9) can be rewritten as

P = nd k T, (6.10)

where nd is the number density of gas particles, or as

PV = n R T (6.11)

where n is the number of moles of gas in V and R is the universal
gas constant, or as

P = ρ
k T

m
, (6.12)

where m is the mass of the gas particle and ρ is the mass density.

Solution
By dividing Eq. (6.9) by the volume V and introducing the number
density of particles nd ≡ N/V , we immediately obtain Eq. (6.10).

By introducing the number of moles of gas in V , nmol = N/NA,
where NA = 6.022 · 1023 mol−1 is Avogadro’s number, we obtain

PV =
N

NA
NAkT = nRT,

where R ≡ NAk = 8.31 J · mol−1 · K−1 is the universal gas constant.

Finally, by introducing the mass m of each gas particle and using
Eq. (6.10), we notice that the mass density of the gas is ρ = m nd

and we obtain
P = mnd

kT

m
= ρ

kT

m
.
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4 (A) You see a lightning flash and hear the thunder 6.00 s later: how
far away, approximately, did the lightning strike?

Solution
The distance to the point where the lightning struck is approximately

d = vsound t � (330 m/s) · (6 s) = 1980 m,

where vsound � 330 m/s is the speed of sound at temperature of 0◦C
and pressure of 1 atm.

5 (A) Derive the law for adiabatic transformations of an ideal gas

T V γ−1 = constant, (6.13)

where T is the temperature of the ideal gas, V is its volume, and
γ = cP /cV > 1 is the ratio of specific heats at constant pressure and
constant volume.

Solution
The equation of state of an ideal gas is PV = ndkT , where nd and k
are the number density of gas particles and the Boltzmann constant,
respectively. Adiabatic transformations obey Poisson’s law

P V γ = const.,

from which we obtain

P V γ = (P V ) V γ−1 = nd k T V γ−1 = const.,

and therefore
T V γ−1 =

const.
nd k

= C,

where C is a constant.

6 (B) Compute the expansivity, the isothermal compressibility, and
the bulk modulus of an ideal gas.

Solution
The expansivity is the percent change in volume V as the temperature
changes at constant pressure,

β ≡ 1
V

(
∂V

∂T

)
P

.

The ideal gas equation of state

PV = nRT,
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where n is the number of moles of the gas and R is the universal gas
constant yields

β =
P

nRT

(
∂

∂T

)
P

(
nRT

P

)
=

1
T

.

The isothermal compressibility is the percent change in volume as the
pressure changes at constant temperature, changed in sign,

κ ≡ − 1
V

(
∂V

∂P

)
T

=
−P

nRT

(
∂

∂P

)
T

(
nRT

P

)
=

1
P

.

The isothermal bulk modulus is the inverse of the isothermal com-
pressibility, B ≡ κ−1 = P .

7 (A) The decomposition of organic materials at the bottom of a lake
20m deep liberates gases in the form of bubbles that ascend to the
surface of the lake. A bubble has radius rb = 2 mm at the bottom
of the lake, where the temperature is 4◦C. What is the new radius
of the bubble at the surface, where the temperature is 2◦C? For sim-
plicity, assume that the bubble ascends slowly enough that it always
maintains thermal equilibrium with its surroundings.

Solution
By treating the gas in the bubble as an ideal gas and using the ideal
gas equation of state, we obtain

PbVb = nRTb

at the bottom and
PsVs = nRTs

at the surface of the lake, where V = 4πr3/3 is the bubble volume,
n is the number of moles of gas in the bubble, and T is the Kelvin
temperature. The pressure Pb at the bottom of the lake is the sum
of the atmospheric pressure P0 and of the hydrostatic pressure ρgh,
where ρ is the freshwater density, g is the acceleration of gravity, and
h is the lake depth, or Pb = P0 + ρgh. Division of the equation of
state at the surface and at the bottom yields(

rs

rb

)3

=
Ts

Tb

(
1 +

ρgh

P0

)
.

The bubble radius at the surface of the lake is then

rs = rb

[
Ts

Tb

(
1 +

ρgh

P0

)]1/3

= (2 mm)
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·
{(

275 K
277 K

)[
1 +

(
1.0 · 103 kg/m3

) (
9.8 m/s2

)
(20 m)

1.013 · 105 Pa

]}1/3

= 2.84 mm � 3 mm.

8 (B) Compute the configuration work done when a volume V of an
ideal gas is changed isothermally.

Solution
The ideal gas obeys the equation of state PV = nRT , where P, n, R,
and T are the pressure, number of moles, universal gas constant, and
Kelvin temperature, respectively. The configuration work done in an
infinitesimal volume change dV is dW = PdV . Therefore, for a fi-
nite expansion from initial volume Vi to final volume Vf at constant
temperature, it is

W =
∫ Vf

Vi

P (V )dV = nRT

∫ Vf

Vi

dV

V
= nRT ln

(
Vf

Vi

)
.

If Vf > Vi (expansion), then W > 0 and work is done by the gas.
If Vf < Vi (compression), then W < 0 and work is done on the gas.

9 (B) Compute the specific (molar) work done when the specific (mo-
lar) volume v of a gas satisfying the Van der Waals equation of state(

P +
a

v2

)
(v − b) = RT

(where a and b are constants) is changed isothermally.

Solution
The configuration work done in an infinitesimal change dv of specific
volume is dw = Pdv and therefore, for a finite expansion from initial
molar volume vi to final molar volume vf , it is w =

∫ vf

vi
Pdv. The

pressure as a function of the other two thermodynamic variables v
and T is obtained from the Van der Waals equation of state rewritten
as

P (v, T ) =
RT

v − b
− a

v (v − b)
+

ab

v2 (v − b)
.

Since the temperature T is constant, the specific work done is

w = RT

∫ vf

vi

dv

v − b
− a

∫ vf

vi

dv

v (v − b)
+ ab

∫ vf

vi

dv

v2 (v − b)
.
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By using the decompositions

1
v (v − b)

=
−1/b

v
+

1/b

v − b
=

1
b

(
1

v − b
− 1

v

)
,

1
v2 (v − b)

=
−1/b − v/b2

v2 +
1/b2

v − b
=

1
b

[
− 1

v2 − 1
bv

+
1

b (v − b)

]
,

which are straightforward to find, we obtain

w = RT

∫ vf

vi

dv

v − b
− a

b

[∫ vf

vi

dv

v − b
−
∫ vf

vi

dv

v

]

+a

[∫ vf

vi

dv
−1
v2 − 1

b

∫ vf

vi

dv

v
+

1
b

∫ vf

vi

dv

v − b

]

= RT ln
(

vf − b

vi − b

)
+

a

vf
− a

vi
.

10 (A) Compute the root mean square speed of particles of mass m in
a monoatomic gas at temperature T using the classical principle of
equipartition of energy.

Solution
A monoatomic gas is composed of particles with only three degrees
of freedom and no internal structure. The principle of equipartition
of energy assigns the energy kT/2 to each degree of freedom, and the
average kinetic energy of the gas particles is then

1
2

mv̄2 =
3
2

kT.

The root mean square molecular speed is then

vrms ≡ (v̄2
)1/2 =

(
3kT

m

)1/2

.



Chapter 7

EVAPOTRANSPIRATION, SOILS,
AND HYDROLOGY

The success of any physical investigation depends on the judicious selection of
what is observed as of primary importance, combined with a voluntary abstrac-
tion of the mind from those features which, however attractive they may appear,
we are not sufficiently advanced in science to investigate with profit.

—James Clerk Maxwell

Even within the relatively limited range of temperatures experienced
on planet Earth, phase transitions are commonly observed. For the
environmental scientist it is phase transitions of water that are most
important as evaporation and condensation determine the transfer of
solar energy around the globe and precipitation.

Historically, hydrology developed as a branch of engineering devoted
to the study of water management for human uses and only later was
raised to the dignity of an earth science. The hydrologic cycle consists of
perennial transfer of water: water is removed by evapotranspiration from
the oceans (especially in tropical regions), land waters, soils, and the veg-
etation cover; it is transported as water vapor carrying large amounts
of latent heat; and finally it returns to the land and oceans through
precipitation. Water falling in liquid form on the land is removed as
runoff into streams and rivers, or as groundwater or through evapotran-
spiration again. In this chapter we focus on soil physics of which water
dynamics is an important part, and on groundwater hydrology.
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7.1 Phase transitions, hygrometry, and
evapotranspiration

Phase changes are very interesting in fundamental physics, cryogenics,
thermodynamics, and statistical mechanics. Exercises on the thermody-
namical aspects of phase transitions are presented in Chapter 5. From
the environmental scientist’s point of view, the phase transitions of wa-
ter are the most important. Evaporation of liquid water is the part of
the hydrologic cycle by which water is transferred into the atmosphere.
Transpiration is the process of evaporation from the leaves of plants—the
collective name evapotranspiration denotes both of these processes. Dur-
ing evaporation of a solution most but not all1 chemicals and salts dis-
solved are left behind—evaporation is nature’s powerful way of purifying
water, making clean water available again. Most of the evaporation on
the planet occurs from the oceans, mostly in tropical regions. An accu-
rate knowledge of evapotranspiration is required, for example, to model
runoff following rainfall, plan efficient irrigation of crops in agriculture
(agriculture consumes much more water than industry and households),
and to plan water reservoirs efficiently. Evaporation (sweating) is also
important as a temperature-regulating factor in the human body.

In addition to evaporation, sublimation liberates water molecules in
the atmosphere directly from the solid phase—ice or snow. The opposite
phase transition from gas to solid is responsible for frost. Condensation
is fundamental in meteorology because it is the process that allows pre-
cipitation to occur so that water is returned to the land and oceans.
Dew is another manifestation of condensation.

The melting of ice and snow is important in the hydrologic cycle, and
the freezing of water bodies and rivers is also significant.

1 (C) Discuss the anomalous behavior of the density of water during
temperature changes and during the water/ice phase transition, and
the consequences for marine and freshwater life.

Solution
Most substances decrease their density when the temperature rises
but the density of water increases from 0◦C to 4◦C and is maximum
at 4◦C (ρ = 1.000 ·103 kg/m3). In addition, most substances increase
their density during the transition from the liquid to the solid phase
but water decreases its density during this phase transition. Ice is less
dense than water (icebergs float on water). The anomalous behavior
has important consequences for marine and freshwater life in cold

1DDT is a notable exception.
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climates: water at 4◦C tends to sink, and ice begins forming at the
water surface. This fact allows life to continue in water underneath
the ice when the air temperature drops below the freezing point. The
layer of ice on top acts as an insulator for the water below and it may
prevent freezing all the way to the bottom. If the density of water
decreased monotonically with decreasing temperature, colder water
would sink and freezing would begin from the bottom and continue
to the top.

2 (A) Water seeping into cracks of rocks, roads, or walls of buildings
causes substantial damage when it freezes and is a significant erosion
agent in the mountains when the temperature oscillates around 0◦C.
Compute the pressure applied to the walls of a container filled with
water when the latter turns into ice. The densities of water and ice
are, respectively, ρw = 1.00·103 kg·m−3 and ρice = 9.17·102 kg·m−3,
and the bulk modulus of ice is B = 1.13 · 106 N · m−2. Why should
a mountaineer be particularly careful about rockfall at sunrise and
sunset?

Solution
The percent change in volume of ice under compression is

δV

V0
=

1
B

F

A
,

where F is the force on the unit normal area of the ice block. When
a mass m of water turns into ice, the densities before and after the
phase change satisfy the relation

m = ρwV0 = ρice (V0 + δV ) .

Hence,
ρw

ρice
− 1 =

δV

V0
,

and the required pressure is

P =
F

A
= B

δV

V0
= B

(
ρw

ρice
− 1
)

=
(
1.13 · 106 N · m−2) ·

(
1.00 · 103 kg · m−3

0.917 · 103 kg · m−3 − 1
)

= 1.0 · 105 Pa.

A mountaineer should be especially alert for falling rocks at sunrise
because the first heat from the rising Sun melts the ice that locks
rocks in place, causing them to fall. At sunset water from melting
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snow will freeze and expand when the temperature drops, dislodging
rocks that are in loose balance.

3 (A) The air temperature is 30◦C and the hygrometer reads the rel-
ative humidity as 75%. What is the vapor pressure? The saturated
vapor pressure at 30◦C is 4.23 kPa.

Solution
The relative humidity is the ratio between the vapor pressure Pv and
the saturated vapor pressure at that temperature Psat,

W ≡ Pv

Psat
;

therefore,

Pv = WPsat = 0.75 · (4.23 · 103 Pa
)

= 3.2 kPa.

4 (B) The Clausius–Clapeyron equation of thermodynamics applies to
the liquid–vapor phase transition for water when the water vapor is
saturated (i.e., in equilibrium with the liquid phase):

dPsat
dT

=
Lv

T (Vg − Vl)
,

where Psat is the saturated vapor pressure, Lv is the latent heat of
vaporization, T is the Kelvin temperature, and Vg and Vl are the vol-
umes of water in the gaseous and liquid phase, respectively. Derive
a formula giving the saturated vapor pressure as a function of the
temperature. Treat the vapor as an ideal gas, and comment on the
physical significance of your result for atmospheric physics.

Solution
The volume change going from the liquid to the vapor phase is ex-
tremely large2 and Vg � Vl: this justifies writing

dPsat
dT

� Lv

T Vg
.

By treating water vapor as an ideal gas and applying the ideal gas
equation of state PsatVg = nRT , where n is the number of moles
of steam, we obtain Vg = nRT/Psat. Substituting this value in the

2During the phase transition 1 m3 of liquid water turns into 1600 m3 of steam.



Evapotranspiration, Soils, and Hydrology 255

previous equation yields

dPsat
dT

=
Lv Psat
nRT 2 ,

or
1

Psat

dPsat
dT

=
lv

RT 2 ,

where lv ≡ Lv/n is the molar latent heat of vaporization. In terms
of differentials, we have

d (lnPsat) = − lv
R

d

(
1
T

)
,

which integrates to

Psat(T ) = P∗ exp
[

1
R

∫
dT

lv(T )
T 2

]
,

where P∗ is an integration constant. If lv can be considered appro-
ximately independent of the temperature (e.g., by considering only
a restricted range of temperatures over which lv does not change
significantly), then

Psat(T ) = P∗ exp
[−lv

R

(
1
T

− 1
T∗

)]
,

where T∗ is another integration constant (see Fig. 7.1).

The saturated vapor pressure is strongly dependent on the tempera-
ture, and its slope

dPsat
dT

=
Lv

TVg
=

LvPsat
nR

1
T 2

formally diverges as T → 0+. This means that the curve represent-
ing Psat(T ) is very steep and Psat is very sensitive to temperature
changes. Then warm air can accommodate much more water va-
por than colder air. This fact is important for meteorology because
warm air in tropical regions can store large amounts of water vapor
and the associated latent heat. The latter can be transported in the
atmosphere, condense to form precipitation, or fuel hurricanes.

5 (B) More than two thirds of the evaporation from the surface of
the Earth occurs in regions at latitudes comprised between 30◦S and
30◦N. What percentage of the surface of the Earth is covered by these
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Figure 7.1. Saturated vapor pressure versus temperature.

regions? Why there is so much evaporation in these regions?

Solutions
The region with latitude 30◦S ≤ λ ≤ 30◦N corresponds to polar
angles (colatitude θ)

π

2
− π

6
≤ θ ≤ π

2
+

π

6
,

or π/3 ≤ θ ≤ 2π/3, and the area it covers is given by the surface
integral

S1 = R2
∫ 2π/3

π/3
dθ

∫ 2π

0
dϕ sin θ = 2πR2 [ − cos θ ]2π/3

π/3 = 2π R2;

this is half of the total area of the globe 4πR2. If heat is supplied at
a constant rate, evaporation in air is described by Dalton’s empirical
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law

m = c
A (PH − Ph) t

P0
,

where m is the mass of the liquid that evaporates, A is its surface
area, PH and Ph are, respectively, the maximum vapor pressure at
the temperature of the liquid and the pressure of the vapor already
present in air, and P0 is the atmospheric pressure, while t is time and
c a coefficient. A large amount of water evaporates in the regions
at latitudes 30◦S ≤ λ ≤ 30◦N because of the amount of solar en-
ergy available in these regions and because of the large surface area
A that they cover. In addition, the latent heat of vaporization of
water is comparatively lower in these regions because of the higher
temperatures found there.

6 (B) It is estimated that 50% of the energy reaching the Earth from
the Sun goes into evaporation of ocean water and evapotranspira-
tion of land waters. Assume for simplicity that water is distributed
uniformly around the surface of the planet, covering it completely.
Calculate the thickness of the layer of water evaporated in one year
from the surface of such fictitious water-covered planet.3 The solar
constant is S = 1370 W/m2, the average Earth radius is 6370 km,
and the latent heat of vaporization of water is Lv = 2.26 · 106 J/kg.

Solution
The power received from the Sun per unit of normal area is the solar
constant S. An element of the Earth surface dA with unit normal
making an angle θ with the direction of propagation of the rays from
the Sun (assumed to be all parallel to each other) presents a normal
area dA⊥ = dA cos θ = R2 sin θ dθ dϕ to the rays, where R is the
radius of the Earth and ϕ is an azimuthal angle. By integrating over
the entire hemisphere illuminated by the Sun, we obtain the normal
area presented by the Earth to the Sun:

A⊥ =
∫ π/2

0
dθ

∫ 2π

0
dϕR2 sin θ cos θ = 2πR2

∫ π/2

0
dθ

sin (2θ)
2

= πR2
[
− cos (2θ)

2

]π/2

0
= πR2.

3Of this, 88% is water evaporated from the oceans while 12% is due to evapotranspiration
from land waters.



258 EXERCISES IN ENVIRONMENTAL PHYSICS

The total power received by the planet from the Sun at any given
time is

SπR2 = π

(
1370

W
m2

)(
6.37 · 106 m

)2 = 1.75 · 1017 W.

The total energy received in one year is

E =
(
1.75 · 1017 W

)
(365 days)

(
12

hours
day

)(
3600

s
hour

)

= 2.76 · 1024 J.

Half of this energy, Q = E/2 = 1.38 · 1024J, goes into evaporating
water. The mass of water evaporated during one year is therefore
m = Q/Lv, where Lv is the latent heat of evaporation of water,

m =
Q

lv
=

1.38 · 1024 J
2.26 · 106 J/kg

= 6.1 · 1017 kg.

This mass corresponds to a layer of thickness x around a fictitious
planet entirely covered by water—then m = ρV = ρ 4πR2x, where ρ
is the density of water. This yields

x =
m

4πR2ρ
=

6.1 · 1017 kg
4π (6.37 · 106 m)2 (103 kg/m3)

= 1.2 m � 1 m.

7 (A) Transpiration from an area covered with short vegetation pro-
duces the volume flux density (in m3/

(
m2 · s

)
) of water vapor4

q′′ = F (v) (Psat − Pv) , (7.1)

where Psat is the saturated vapor pressure at the temperature of the
vegetated surface, Pv is the vapor pressure, and the coefficient F (v)
is a “conductance” that depends on the wind velocity5 v.

a) Derive an electrical analogy for this transpiration law.

b) What is the flux density of latent heat associated with transpi-
ration? Express it in terms of the relative humidity.

4Equation (7.1) is a form of Dalton’s law of evaporation.
5Both Pv and v are measured at a conventional height, usually two meters above the ground
with short vegetation.
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Solution
a) In an electrical analogy, consider a resistor of resistance R subject
to the potential difference V1 − V2 between its ends and traversed by
an electrical current of intensity I according to Ohm’s law

V1 − V2 = R I.

The given law for the flux of transpiration vapor has a similar form

Psat − Pv = RT IT ,

where the difference Psat − Pv between the saturated vapor pressure
and the vapor pressure is the analogue of the potential difference
V1 − V2, the quantity IT ≡ q′′A (the flux density of vapor multiplied
by the cross-sectional area A normal to the flow) is the analogue of
the electric current intensity I, and RT ≡ 1/F is the “transpiration
resistance,” the analogue of the electrical resistance. The differential
form of Ohm’s law is 	J = −σ	∇V , where 	J is the current density, σ is
the electrical conductivity, and V is the potential. The finite differ-
ence form of this equation is J = σ (V1 − V2) /l, which is formally the
same as the law given for transpiration.

b) Since the amount of heat required to evaporate a mass m of liq-
uid is Q = Lv m, where Lv is the latent heat of vaporization, during
transpiration latent heat is released from the stomata of the plants
at the rate

dQ

dt
= Lv

dm

dt
.

The heat flux density is the heat energy evaporated per unit of normal
area and per unit time, while m = ρvVv is the mass of vapor released
(ρv and Vv are the density and volume occupied by the vapor). Hence,
the heat flux density is

q′′
Q = Lvρvq

′′
v = LvρvF (v) (Psat − Pv) .

By remembering that the relative humidity is W = Pv/Psat, we
obtain

q′′
Q = LvρvF (v)Psat (1 − W ) .

8 (B) A lake is formed in an Australian desert by a once-in-a-lifetime
rainfall. Water evaporates from the surface of the lake of area A into
a slab of air of height h with a vapor flux density q′′ (in kg·m−2 · s−1)
given by Dalton’s law6

q′′ = c (Psat − Pv) ,

6John Dalton discovered this empirical law in 1802.
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where Psat is the saturated vapor pressure at the temperature of the
liquid surface, Pv is the vapor pressure in the air slab, and c is a
constant coefficient.

a) By treating the vapor as an ideal gas and assuming that the tem-
peratures of the air and of the liquid surface remain constant, derive
an ordinary differential equation for the mass of liquid m(t) left in
the lake as a function of time t, by knowing that at the initial time
t = 0 this mass of water is m0.

b) Assume that the evaporated liquid is immediately diluted so that
the vapor pressure in the air Pv remains constant, and solve the differ-
ential equation that you found for m(t). What is the mass of water
in the lake after a long time?

Solution
a) The flux density of vapor leaving the liquid surface is − 1

A
dm
dt , and

the mass of vapor present in the air at time t is mv(t). This is given
by the ideal gas equation of state PvV = nRT , where the number of
moles of the vapor is n = mv/M , M is the molar mass of water, and
T is the Kelvin temperature, hence PvAh = mvRT/M . The mass of
water evaporated at time t is mv(t) = m0 − m(t), hence

Pv = [m0 − m(t)]
RT

MAh
.

Dalton’s law can be written as

1
A

d

dt
[m0 − m(t)] = c

{
Psat − [m0 − m(t)]

RT

MAh

}
.

The saturated vapor pressure Psat can be considered as constant be-
cause the temperature of the liquid surface is assumed to be constant,
as well as the air temperature T , and we can write

dm

dt
= − cRT

Mh

[
m(t) −

(
m0 − PsatMAh

RT

)]
,

or
dm

dt
= −α [m(t) − µ0] ,

where
α ≡ cRT

Mh
, µ0 = m0 − PsatMAh

RT
are constants.
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b) In order to solve this differential equation for m(t), we divide
both sides by (m − µ0), obtaining

1
m − µ0

dm

dt
=

d

dt

(
ln
∣∣∣∣m − µ0

µ

∣∣∣∣
)

= −α,

where µ is an integration constant. This equation is immediately
integrated, yielding

m(t) = µ e−α t + µ0.

The initial condition m (t = 0) = m0 determines the integration const-
ant µ = m0 − µ0, hence

m(t) = µ0 + (m0 − µ0) e−α t.

The late time state of the lake is described by the steady-state solu-
tion

m (t → +∞) ≈ µ0 = m0 − PsatMAh

RT
.

In this model, if µ0 > 0 there will be water left in the lake, while if
µ0 < 0 the lake evaporates completely in a finite time. If µ0 is exactly
zero (an unlikely situation corresponding to a practically impossible
fine-tuning), the lake will take a very long (formally infinite) time to
dry up. If µ0 > 0, there will be water left in the lake, while if µ0 < 0
the lake will dry up completely in a finite time.

9 (C) Is melting the only cause for the disappearance of the snowpack
in spring?

Solution
No: a large fraction of the snowpack disappears due to sublimation,
the direct change from the solid phase (in this case ice—snow consists
of ice crystals) to the gas phase (water vapor). At any temperature,
molecules leave the surface of a solid and merge with air molecules.
The opposite process (deposition) takes place when water molecules
go directly from the vapor to the ice phase, forming frost.

10 (C) In polar regions water is locked in form of snow and ice. What
causes the presence—albeit scarce—of water vapor in air in these re-
gions given that precipitation is almost absent and, if there is any, it
is in form of snow (ice crystals)?

Solution
The presence of water vapor in polar regions, which are cold deserts,
is due to sublimation, the direct change of water from the solid to the
vapor phase (cf. previous problem).
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7.2 Soil physics
By drilling a borehole vertically into the ground one encounters, be-

ginning from the surface, a region called unsaturated soil—sometimes
called also dry soil, which is perhaps a misnomer because humidity is
usually present. Below this there is a very thin transition layer called
capillary fringe or tension-saturated zone and, further below, there is the
saturated soil, which constitutes the subject of groundwater hydrology
(or geohydrology).

The unsaturated soil is practically irrelevant for groundwater hydrol-
ogy because water residing in it cannot be effectively pumped out. Water
in unsaturated soils is called soil moisture or vadose water—the simulta-
neous presence of water, oxygen, microorganisms, and organic materials
make unsaturated soils interesting from the point of view of biochem-
istry and biology and, of course, agriculture. Plant roots also penetrate
unsaturated soil.

1 (B) Consider a soil composed of three phases: solid particles (with
total mass ms and volume Vs), liquid water (with total mass ml and
volume Vl), and gaseous air (with negligible mass and volume Vg).
The total mass of the soil is m = ms + ml and its total (or bulk)
volume is Vt = Vs + Vl + Vg, while the soil porosity is defined as

ε ≡ Vl + Vg

Vt

and the void ratio is
e ≡ Vl + Vg

Vs
.

Express the porosity as a function of the solid particles density ρs ≡
ms/Vs and the (dry) bulk density7 ρb ≡ ms/Vt. Derive the relation
ε (e) between porosity and void ratio and its inverse e (ε).

Solution
By using the fact that the total volume of the soil is Vt = Vs +Vl +Vg,
the porosity can be written as

ε ≡ Vl + Vg

Vt
=

Vt − Vs

Vt
= 1 − Vs

Vt
.

The definitions of bulk and particle densities ρb ≡ ms/Vt and ρs ≡
ms/Vs yield Vt = ms/ρb and Vs = ms/ρs, which, upon substitution

7This is determined by weighing a sample of soil dried in an oven.
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into the previous equation, yield

ε = 1 − Vs

Vt
= 1 − ms/ρs

ms/ρb

and finally
ε = 1 − ρb

ρs
,

which is the desired expression. Similarly we can express the void
ratio as

e =
Vl + Vg

Vs
=

Vt − Vs

Vs
=

Vt

Vs
− 1 =

ms/ρb

ms/ρs
− 1 =

ρs

ρb
− 1.

By using the fact that ρb/ρs = 1 − ε, we obtain

e (ε) =
1

1 − ε
− 1 =

ε

1 − ε
.

This relation can be easily inverted to obtain

ε (e) =
e

1 + e
.

2 (B) The volumetric water content of a soil is defined as θ ≡ Vl/Vt,
where Vl is the volume of liquid water in it and Vt is the total (bulk)
volume given by Vt = Vl + Vs + Vg. Here Vs and Vg are the volumes
occupied by solid particles and gaseous air in the soil, respectively.
The gravimetric water content of the soil is defined as θm ≡ mw/ms,
where mw is the mass of liquid water in the soil and ms is the mass
of the solid particles. Prove that the range of values of θ is 0 ≤ θ ≤ ε,
where ε is the soil porosity. Prove the relation between θ and θm

θ = θm
ρb

ρw
,

where ρb ≡ ms/Vt is the (dry) bulk density and ρw is the density of
water.

Another measure of the water content used in swelling soils is the
liquid ratio defined by θr ≡ Vl/Vs. Prove that

θr = θm
ρs

ρw
,

where ρs = ms/Vs is the density of solid particles, and prove that
θr = θ (1 + e), where e is the void ratio.
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Solution
Since 0 ≤ Vl ≤ Vt − Vs and θ ≡ Vl/Vt it is also

0 ≤ Vl

Vt
≤ Vt − Vs

Vt
= 1 − Vs

Vt
=

Vl + Vg

Vt
≡ ε ≤ 1,

or 0 ≤ θ ≤ ε.

The relation between θ and θm is obtained by using

θ ≡ Vl

Vt
=

mw/ρw

ms/ρb
=

mw

ms

ρb

ρw
= θm

ρb

ρw
.

The liquid ratio is

θr ≡ Vl

Vs
=

mw/ρw

ms/ρs
=

mw

ms

ρs

ρw
≡ θm

ρs

ρw
.

The relation between θr and θ is obtained by considering that

θr = θm
ρs

ρw
=
(

θ
ρw

ρb

)(
ρs

ρw

)
= θ

ρs

ρb

by using the fact that θ = θm ρb/ρw. Now use the relations

ε = 1 − ρb

ρs
=

e

1 + e

to obtain ρb/ρs = (1 + e)−1 and

θr = θ
ρs

ρb
= θ (1 + e) .

3 (B) A possible way of measuring the water content of a soil is to
study the attenuation of γ-rays propagating through it, which is due
to both solid particles in the soil (with density ρb = ms/Vt, where ms

is the mass of solid particles and Vt is the total volume) and water
contained the soil pores (with mass mw). The attenuation of γ-rays
is exponential—if Nm denotes the count rate for γ-rays transmitted
from a given source to a detector in moist soil (see Fig. 7.2), the
following law is obeyed:

Nm(x) = N0 exp [− (µsρb + µwθ) x] ,

where x is the distance traveled in the soil, N0 is the count rate for
γ-rays propagating in free air, θ is the water content in volume of
the soil (θ ≡ Vl/Vt, where Vl is the volume occupied by the liquid
water in the soil), while µs and µw are attenuation coefficients for
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Figure 7.2. Attenuation of γ-rays in a soil.

solid particles and water, respectively. To measure the water content
of a soil one drills two vertical boreholes of equal depth and places a
source of γ-rays in one hole and a γ-ray detector, at the same depth,
in the second hole. The count rate Nm in the soil is then measured.
This measurement is repeated on a sample of soil taken to the lab
and dried up, determining the count rate Nd. Derive a formula that
allows one to determine the water content θ of the moist soil in terms
of the known attenuation coefficient µw and of the measured count
rates Nm and Nd.

Solution
For the moist soil we have

Nm(x) = N0 exp [− (µsρb + µwθ) x] ,

while for the dry soil

Nd(x) = N0 exp (−µsρb x) ;

by dividing term to term we obtain

Nd

Nm
=

N0 exp (−µsρbx)
N0 exp [− (µsρb + µwθ) x]

= eµwθx,

and therefore,

θ =
1

µw x
ln
(

Nd

Nm

)
.

4 (A) The suction head in a gravelly sandy soil is ψ = 1.0 cm, while in
a silty soil it is ψ = 1.0 m. Estimate the corresponding values of the
effective radius of pores, i.e., the radius of a fictitious vertical tube
in the soil carrying water by capillarity. The surface tension of water
at 20◦C is γ = 7.3 · 10−3 N/m.
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Solution
Water in a capillary tube of radius r rises to the height

h =
2γ cos θ

ρ g r
,

where θ is the contact angle, which can be taken equal to zero for
most substances in contact with water, ρ is the water density, and g
is the acceleration of gravity. Therefore,

r � 2γ

ρgh

� 2
(
7.3 · 10−3 N/m

)
(1.00 · 103 kg · m−3) (9.8 m · s−2) (1.0 · 10−2 m)

� 1.5 · 10−4 m = 150 µm for gravelly sandy soil,

� 2
(
7.3 · 10−3 N/m

)
(1.00 · 103 kg · m−3) (9.8 m · s−2) (1.0 m)

� 1.5 · 10−6 m = 1.5 µm for silty soil.

5 (B) Particle size analysis in the classification of soils with finer par-
ticles employs the rate of settling for sedimentation in water, while
sieves are employed for coarser particles. According to Stokes’ law
(which can be applied to particles with radius < 40µm [18]) the fric-
tion force encountered by a sphere of radius r moving with speed v in
a fluid with dynamic viscosity coefficient η is Fv = 6πη rv. Particles
of different sizes will settle at different speeds and the determina-
tion of the amount of soil settled after a given time will provide the
abundance of particles of a given size in the soil sample.

Assuming that the soil particles are spherical, find the terminal veloc-
ity of the particles of a clayey soil with radius r = 1µm and density
ρs = 2.65 · 103 kg/m3. Do finer or coarser particles settle first? Esti-
mate the time taken for a soil sample mostly made of particles of the
same size to settle in a 30.0cm deep tank. The density and dynamic
viscosity coefficient of water at 10◦C are ρw = 1.00 · 103 kg/m3 and
η = 1.30 · 10−3 Pa · s.

Solution
During the sedimentation process a soil particle is subject to three
vertical forces: its own weight mg = 4π

3 r3ρsg pointing downward,
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the buoyant force Fb = 4π
3 r3ρwg pointing upward, and the viscous

drag Fv = 6πηrv also directed upward. When the particle reaches its
terminal velocity these forces balance, giving zero net force. In this
regime the particle experiences zero acceleration and

Fb + Fv − mg = 0

or
4π

3
r3ρwg − 4π

3
r3ρsg + 6πηrv = 0.

This equation yields

v =
2
9

r2g

η
(ρs − ρw) .

The deposition rate is proportional to the square of the particle size
and therefore finer particles settle much more slowly than larger par-
ticles. Numerically,

v =
2
9

(
1.00 · 10−6 m

)2 (9.81 m/s2
)

1.30 · 10−3 Pa · s

(
2.65 · 103 kg

m3 − 1.00 · 103 kg
m3

)

= 2.77 · 10−6 m
s

.

A homogeneous soil sample will settle approximately in the time

t ≈ l

v
=

0.30 m
2.77 · 10−6 m/s

= 1.08 · 105 s � 30 hours.

6 (A) The Darcy law of groundwater hydrology in saturated soils can
be applied with some caution also to unsaturated soils.8 Consider an
unsaturated soil in which the flow of water only occurs in the vertical
direction. The hydraulic potential φ can be written as the sum of
the suction head ψ = P/ (ρg) and of the depth z, φ = ψ + z. Here
P , ρ, and g are the water pressure and density and the acceleration
of gravity, respectively. The z-axis is vertical and points upward,
and the origin z = 0 is at a conventional reference level, usually sea
level. Derive a condition on the vertical gradient of the suction head
ψ characterizing

8Essentially the hydraulic conductivity K becomes a function of the water content that is
changing with the flow in unsaturated soils.
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a) a regime in which the transfer of soil moisture is predominantly
due to evaporation,

b) a regime in which the transfer of soil moisture is predominantly
due to infiltration into the soil following rainfall or irrigation.

Solution
Darcy’s law of groundwater hydrology states that the specific dis-
charge vector 	q (volume of water flowing through the unit of normal
area per unit time) is proportional to the gradient of the hydraulic
potential φ,

	q = −K 	∇φ,

where K(z) is the hydraulic conductivity (called capillary conductiv-
ity in unsaturated soils). Since the flow is purely vertical 	q = (0, 0, qz)
or qz = |	q| and

qz = −K
dφ

dz
,

where φ = φ(z) and ψ = ψ(z) only. By introducing the suction head
given by φ = ψ + z, we have

qz = −K

(
dψ

dz
+ 1
)

.

During evaporation the soil moisture moves upward in the soil in the
positive z direction and qz > 0. Hence,

dψ

dz
< −1

is the desired condition on the suction head ψ. During infiltration
following rainfall or irrigation the flow is downward, qz < 0, which
yields the opposite condition

dψ

dz
> −1.

7 (B) Microorganisms in the top region of a homogeneous and isotropic
soil produce CO2 at the rate χ̇ (kg·m−3 ·s−1) per unit volume and per
unit time. This gas diffuses upward along the positive z-axis through
the soil until it reaches a steady-state equilibrium at which its concen-
tration at the surface z = 0 is C (t, 0) = C0. At depth z = −d there
is a layer of soil impassable to the gas. Solve the one-dimensional
diffusion equation for the concentration C (t, z) of the gas.
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Solution
The one-dimensional diffusion equation for CO2 is

∂C

∂t
= D

∂2C

∂z2 + χ̇.

In steady state ∂C/∂t = 0, and the boundary-value problem to solve
is

d2C

dz2 +
χ̇

D
= 0,

C(0) = C0,

−dC

dz

∣∣∣∣
z=−d

= 0,

where χ̇ and D are constants with respect to both t and z and the
second boundary condition at z = −d expresses the fact that the flux
of gas vanishes there. The general solution of the ordinary differential
equation is obtained by two elementary integrations,

dC

dz
= − χ̇

D
z + α,

and
C(z) = − χ̇

2D
z2 + α z + β,

where α and β are integration constants to be determined by imposing
the boundary conditions. The condition C(0) = C0 implies that
β = C0, while the second boundary condition at z = −d yields α =
−χ̇ d/D. The concentration of the diffusing gas is therefore

C (t, z) = C0 − χ̇

2D
z (z + 2d) .

8 (B) Consider an unconfined aquifer and assume that all the water va-
por leaving the water table evaporates out of the soil with flux density
qv (in m3 ·m−2 · s−1), and that this process determines a groundwater
flow that takes place only in the vertical direction. Find an expres-
sion for the depth of the water table as a function of qv, the hydraulic
conductivity K, and the suction head ψ. Assume that ψ = ψ(z) only
and that the groundwater has nonzero salinity. What happens to the
dissolved salts during evaporation from the soil?
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Solution
Darcy’s law yields the specific discharge in the z- direction

qz = −K
dφ

dz
,

where φ = ψ + z is the hydraulic potential, ψ is the suction head,
and z is the level of the water table. Therefore,

qz = −K

(
dψ

dz
+ 1
)

.

If the vertical flow of groundwater is entirely due to evaporation from
the surface of the soil, then qz = qv and

− qv

K
=

dψ

dz
+ 1.

By integrating between the surface of the soil z = 0 and the water
table at level z, we obtain

z +
∫ z

0

dψ

ds
ds = − qv

K
z

and
z + ψ(z) − ψ(0) = − qv

K
z,

or
z = K

ψ(0) − ψ(z)
K + qv

.

Since ψ(z) will be larger than ψ(0), the level of the water table will
be z < 0, as it should be if the origin of the z-axis is at the surface.

If the groundwater has nonzero salinity, during evaporation from the
soil the dissolved salts are left behind and deposited at the surface
where they concentrate. This gives rise to the salinity problem fre-
quently encountered with irrigation in agriculture.

9 (B) Infiltration in a homogeneous soil following rainfall or irrigation
can be described by the changing volumetric water content of the soil
θ (t, z) as a function of depth z. A possible model for the infiltration
process is the one-dimensional diffusion problem

∂θ

∂t
= D

∂2θ

∂z2 (7.2)

with the boundary conditions

θ (t, 0) = θ0 (7.3)
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at the surface z = 0,
lim

z→+∞ θ (t, z) = θ̄ (7.4)

at infinite depth z → +∞ (modeling the soil as a semi-infinite slab),
and with the initial condition

θ (0, z) = θ̄ (z > 0) , (7.5)

with θ̄ < θ0 corresponding to sudden wetting at t = 0. Look for a
solution for z ∈ [ 0, +∞ ) in the form of a function of the new variable

z̄ ≡ z√
t

introduced by Boltzmann himself [5].

Solution
By using the new variable, we have

∂z̄

∂t
= − z

2t
√

t
,

∂

∂t
=
(

∂

∂z̄

)(
∂z̄

∂t

)
= − z

2t
√

t

∂

∂z̄
,

∂

∂z
=
(

∂

∂z̄

)(
∂z̄

∂z

)
=

1√
t

∂

∂z̄
,

and
∂2

∂z2 =
1
t

∂2

∂z̄2 .

In terms of the new variable z̄ the diffusion equation becomes

d2θ

dz̄2 +
z̄

2D

dθ

dz̄
= 0,

where the total derivative replaces the partial derivatives because
θ depends only on z̄. The original partial differential equation is
reduced to an ordinary differential equation. By setting u ≡ dθ/dz̄
this ODE reduces to

du

dz̄
= − z̄ u

2D
,

which is immediately integrated, yielding

u =
dθ

dz
= C1 e− z̄2

4D ,
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where C1 is an arbitrary integration constant. Then

θ (z̄) = C1

∫ z̄

0
dζ e− ζ2

4D + C2 = C1
√

4D

∫ z̄√
4D

0
dξ e−ξ2

+ C2

= C3 erf
(

z̄√
4D

)
+ C2,

where ξ ≡ z̄/
√

4D and the definition of the error function

erf (s) ≡ 2√
π

∫ s

0
dx e−x2

has been used. Therefore,

θ (t, z) = C3 erf
(

z

2
√

Dt

)
+ C2

is the desired solution of the diffusion equation (Fig. 7.3).

Upon use of the property erf(0) = 0, the boundary condition θ (t, 0) =
θ0 fixes the value of the integration constant C2 = θ0. The second
boundary condition limz→+∞ θ (t, z) = θ̄ yields, using the other prop-
erty lims→+∞ erf(s) = 1, the condition C3 + C2 = θ̄. Therefore, the
solution of the problem is

θ (t, z) =
(
θ̄ − θ0

)
erf
(

z

2
√

Dt

)
+ θ0.

The property of the error function erf(+∞) = 1 guarantees that

lim
t→0+

θ (t, z) = θ̄

and therefore that also the initial condition is satisfied.

The physical interpretation of the solution found is as follows. If
we model the soil as a semi-infinite slab, the sudden wetting at the
surface z = 0 and the subsequent diffusion process increase the vol-
umetric water content θ of the soil. The latter decays exponentially
fast with the depth z to its average constant value before rainfall or ir-
rigation. However, if we wait sufficiently long (formally, as t → +∞),
the water content θ at a fixed depth z will reach the value θ0 found
at the surface because

lim
t→+∞ erf

(
z

2
√

Dt

)
= erf(0) = 0
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Figure 7.3. The solution of the infiltration problem (7.2)–(7.5).

and θ (t → +∞, z) = θ0.

10 (B) Consider water-carrying pipes buried at a depth z. The solution
of the one-dimensional heat equation with the periodic boundary con-
dition

T (t, 0) = T̄ + T0 cos (ωt)

modeling seasonal changes (with T̄ the year average at large depths)
is

T (t, z) = T̄ + T0 e−Az cos (kz − ωt) .

How deep should one bury the pipes in order to avoid freezing of the
water in them? In the geographical location under consideration, the
daily thermal excursion is 20.0◦C, the average ground temperature
at large depths is constant and equal to 3.50◦C, and the penetration
depth is A−1 = 1 m.
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Solution
One wants to bury the pipes at a depth z such that T (t, z) > 0◦C, or

T0 e−Az cos (kz − ωt) > −T̄ ;

since cos (kz − ωt) ≥ −1, this is guaranteed by taking z such that

T0 e−Az ≤ T̄ ,

yielding

z ≥ − 1
A

ln
(

T̄

T0

)
= − 1

1 m−1 ln
(

3.50◦C
10.0◦C

)
= 1.05 m,

where we used the fact that the temperature excursion is Tmax −
Tmin = 2T0 = 20.0◦C, yielding T0 = 10.0◦C.

11 (B) Calculate the steady-state heat flux density in a homogeneous
soil with thermal conductivity k = 1.1 W ·m−1 ·K−1 by knowing that
the surface temperature is Ts = 32◦C and the temperature measured
at the reference depth zref = 65 cm is Tref = 19◦C. Assuming that
initially all this heat goes into evaporation of water and that vapor
can escape freely from the top portion of the soil, how much water
(in kg·m−2 · s−1) is evaporated in one hour from the portion of the
soil between the surface z = 0 and the depth zref? The latent heat
of evaporation of water is Lv = 2.26 · 106 J/kg.

Solution
The heat flux density due to conduction satisfies Fourier’s law

	q′′ = −k	∇T.

For a homogeneous soil and assuming that 	q′′ is constant at equilib-
rium, the equation becomes

q′′ = −k
dT

dz
,

where the z-axis is vertical and pointing downward into the soil. This
equation is integrated, obtaining

q′′z = −k [T (z) − T0] ,

where T0 is an integration constant determined by imposing latthe
boundary condition T (z = 0) = Ts, which yields T0 = Ts. At the



Evapotranspiration, Soils, and Hydrology 275

depth zref, we have q′′zref = −k
(
Tref − Ts

)
and the required heat

flux density is therefore

q′′ =
−k
(
Tref − Ts

)
zref

=
− (1.1 W · m−1 · K−1) (19 − 32) K

0.65 m
= 22

W
m2 .

If the heat dQ goes into evaporating water, the mass of water leaving
the soil in the time dt is given by dQ = Lv dm, where Lv is the latent
heat of evaporation of water. For an area A of soil

1
A

dQ

dt
= q′′ =

Lv

A

dm

dt
.

The rate of evaporation from the top part of the soil with
0 ≤ z ≤ zref is

1
A

dm

dt
=

q′′

Lv
=
(

22
W
m2

)(
2.26 · 106 J

kg

)−1

= 9.7 · 10−6 kg
m2 · s

.

12 (A, B) A flux density qr
′′ (in m3/

(
m2 · s

)
) of rain at temperature

Tr falls on a snowpack at subzero temperature Ts. What happens
to the rainwater and to the snowpack? Derive an expression for the
flux density qQ

′′ of heat supplied to the snowpack as a function of
qr

′′ and the temperature difference Tr − Ts. Assume that all the
rain penetrates the snowpack without running off. What is the heat
flux supplied to a snowpack by 3.8 cm of rain at 3.5◦C falling on it
during one day of heavy rain? The specific heat of ice at this tem-
perature is 0.500 Kcal · kg−1 · K−1, and the latent heat of fusion is
Lf = 3.34 · 105 J/kg.

Solution
Rainwater cools to zero degrees Celsius and then freezes. The heat
lost by rainwater warms up the snowpack: this is the sum of the heat
lost by the water during its cooling from Tr to zero degrees Celsius,
plus the latent heat released when rainwater freezes.
The heat lost by a mass m of rainwater during cooling by an infinites-
imal amount dT is dQ1 = c mdT . Since the range of temperatures
involved is rather small, we can assume that the specific heat does
not change over this small range and we integrate dQ1 between Tr

and ◦C, obtaining the heat Q1 = c m (0◦C − Tr). The mass of rain-
water is m = ρ V , where ρ is the water density and V its volume,
and it is supplied at the rate dm/dt = ρ dV/dt over an area A of the
snowpack. The mass flux density is

qm
′′ =

ρ

A

dV

dt
= ρ qr

′′.



276 EXERCISES IN ENVIRONMENTAL PHYSICS

The flux density of heat supplied to the snowpack due to the cooling
of rainwater is

q1
′′ =

1
A

∣∣∣∣dQ1

dt

∣∣∣∣ = c

A

dm

dt
(Tr − 0 ◦C) = c ρ qr

′′ (Tr − 0 ◦C) .

The latent heat released when the mass m of rainwater freezes is
Q2 = Lf m, where Lf is the latent heat of fusion of water and its
flow rate is

q2
′′ =

1
A

dQ2

dt
= Lf ρ qr

′′.

The total heat flux supplied to the snowpack is therefore

qQ
′′ = q1

′′ + q2
′′ = ρ [c (Tr − 0 ◦C) + Lf ] qr

′′.

With the given data, this amounts to

qQ
′′ =

(
1.00 · 103 kg

m3

)[(
0.500

kcal
kg · K

· 4187
J

kcal

)
(3.5 K)

+ 3.34 · 105 J
kg

]
·
(

0.038 m
24 · 3600 s

)
= 150

W
m2 .

7.3 Groundwater hydrology
Groundwater hydrology studies the flow of underground water and the

dynamics of aquifers. Perhaps the word “flow” is exaggerated because
although there is a net flow of groundwater, which is extremely slow in
comparison with the faster flow in a stream or river, the process is more
similar to a slow diffusion of water finding its way through the system
of pores between solid particles in a random walk than to the organized
(or even disorganized and turbulent) flow in a river. Concepts from
hydrostatics such as hydrostatic pressure are fundamental to understand
the various potentials used in groundwater hydrology and soil physics
and use is made of hydrodynamical quantities and equations as well.

1 (A) An unconfined aquifer in a gravelly soil has porosity ε = 0.25
and effective porosity εeff = 0.22. A borehole isolates a cylindrical
column of saturated soil with radius r = 15 cm and 30m high. What
mass of water is contained in this column? What mass of water could
in practice be pumped from such a column in the aquifer?

Solution
The volume of the cylindrical column is Vc = πr2h, where h is the
height of the column. Since the porosity is defined as the ratio be-
tween the volume of the pores filled with water in a saturated soil
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and the total volume of the material, the volume of water contained
in the saturated column is equal to the total volume of pores

Vpores = ε Vc = ε πr2h = 0.25π (0.15 m)2 (30 m) = 0.53 m3.

The mass of water contained in the column is mw = ρwVpores, where
ρw is the density of freshwater (assume zero salinity). Numerically,

mw = ρwVpores =
(

1.00 · 103 kg
m3

)(
0.53 m3) = 5.3 · 102 kg.

The volume of water that can practically be extracted by such a
column of water is smaller because εeff < ε, due to dead-end pores
and the fact that a film of groundwater adsorbs on the solid particles
in the soil. This volume is given by

Veff = εeff Vc = 0.22π (0.15 m)2 (30 m) = 0.47 m3.

The maximum mass of water that can be pumped from the column
is

meff = ρwVeff =
(

1.00 · 103 kg
m3

)(
0.47 m3) = 4.7 · 102 kg.

2 (A, B) A soil is composed of gravel and sand and has hydraulic con-
ductivity K = 400 m/day. Two wells are drilled 300m apart along
a line parallel to the groundwater flow. The hydraulic potential (or
groundwater head) is φ1 = 26m in the well upstream and φ2 = 22m
in the well downstream. Estimate the magnitude of the specific dis-
charge vector (volume of groundwater passing through the unit of
normal area per unit time) and the flow rate through a cross section
of the aquifer 20m2 wide. Is the kinetic energy of water going to be
important in the study of groundwater flow?

Solution
The specific discharge vector is given by Darcy’s law

	q′′ = −K 	∇φ.

Since the line joining the two wells is parallel to the average direction
of 	q′′ and the two wells are relatively close, the gradient 	∇φ in Darcy’s
law can be approximated as∣∣∣	q′′

∣∣∣ ≈ K

∣∣∣∣∆φ

∆x

∣∣∣∣ = K

∣∣∣∣φ1 − φ2

∆x

∣∣∣∣ =
(

400
m

day

)(
26 m − 22m

300 m

)

= 5.3
m

day
= 6.2 · 10−5 m

s
:
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this number shows that groundwater flow is very slow in terms of
everyday velocities. Therefore, the kinetic energy of groundwater is
usually orders of magnitude smaller than the other forms of energy
and work involved in groundwater flow, and it is usually neglected in
the energy balance.
The flow rate through a cross section of the aquifer of area A is∣∣∣	q′′

∣∣∣A =
(

6.2 · 10−5 m3

m2 · s

)(
20 m2) = 1.2 · 10−3 m3

s
.

3 (A) Consider the continuity equation for steady flow of incompress-
ible water and derive an average velocity for groundwater flow from
Darcy’s law—this is called Darcy velocity vD. Argue that the Darcy
velocity actually underestimates the real velocity of the flow in the
soil pores. Find a relation among the true velocity of groundwater,
the Darcy velocity, and the porosity of the soil.
Hint: Consider the definition of porosity.

Solution
For the steady flow of an incompressible fluid, the continuity equation
assumes the simple form

V

t
= Av = constant,

where V is the volume of water flowing through the normal area A
during the time t and v is the fluid velocity. Darcy’s law gives the
specific discharge vector (volume of fluid passing through the unit of
normal area per unit time) 	q′′ = −K 	∇φ in terms of the hydraulic
conductivity K and of the hydraulic potential φ. The specific dis-
charge coincides with the flow rate V/t. Hence the Darcy velocity
is

vD =
V

At
=
∣∣∣	q′′
∣∣∣ = K

∣∣∣	∇φ
∣∣∣ .

In fact, only a part Ap of the cross section A of an aquifer is occupied
by pores through which groundwater can flow—the rest is occupied
by solid particles. By considering an imaginary tube in the aquifer
parallel to the flow and with cross-sectional area A and length l, we
find that the actual average velocity of the flow v is given by

V

t
= A vD = Ap v,

which yields

v =
A

Ap
vD =

Al

Apl
vD =

Vt

Vpores
vD.
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The porosity ε of the soil is defined as the ratio of the volume Vpores
occupied by the pores and the bulk volume Vt of the soil. Hence,

v =
vD

ε
.

Because ε < 1, it is v > vD and the Darcy velocity can seriously
underestimate the average groundwater flow velocity. The effect of
the solid particles in the soil is to reduce the cross-sectional area and
therefore increase the speed of the flow, as described by the continuity
equation. This is analogous to squeezing a garden hose to increase
the speed of the water coming out of it.

4 (B) In the absence of major perturbing factors (torrential rainfalls,
droughts, etc.) groundwater flow reaches an equilibrium in a steady-
state regime. Prove that in this regime and in the absence of wells
and sources, the hydraulic potential φ in a homogeneous aquifer sat-
isfies the Laplace equation ∇2φ = 0. Assume that groundwater has
the same temperature and zero salinity everywhere in the aquifer.

Solution
Conservation of the groundwater mass is expressed by the continuity
equation

∂ρ

∂t
+ 	∇ · (ρ	v) = 0,

where ρ and 	v are the density and velocity field of the water. In
steady state ∂ρ/∂t = 0. Furthermore, the normal velocity v is given
by the Darcy velocity divided by the soil porosity ε, 	v = 	q′′/ε, where
	q′′ is the specific discharge vector given by Darcy’s law 	q′′ = −K 	∇φ,
and K is the hydraulic conductivity. Therefore,

	∇ ·
(

ρ
	q′′

ε

)
= −	∇ ·

(
ρ

K

ε
	∇φ

)
= 0.

The aquifer is homogeneous, hence ∂K/∂xi = 0 and ∂ε/∂xi = 0.
Since all the points of the aquifer are at the same temperature and
there is no salinity, the density of groundwater is also constant, or
∂ρ/∂xi = 0. Then we can write

ρK

ε
	∇ · 	∇φ = 0.

Finally, using the vector identity 	∇ · 	∇ = ∇2, we obtain the Laplace
equation for the hydraulic head

∇2φ = 0.



280 EXERCISES IN ENVIRONMENTAL PHYSICS

Figure 7.4. Groundwater through a cylinder of radius r and height φ(r).

5 (A) The level of the water table decreases near a pumped well in
an unconfined aquifer forming the cone of depression. Assume that
the aquifer is homogeneous and in steady-state equilibrium, that the
original water table (i.e., without the well) was horizontal, and that
the flow to the well is approximately horizontal9 and radial in cylin-
drical coordinates centered on the well. Compute the profile φ(r) of
the hydraulic head as a function of the horizontal distance r from the
axis of the well, knowing the rate Q (m3/s) at which water is pumped
from the well. Assume that the well reaches the bottom of the aquifer.

Solution
According to Darcy’s law the specific discharge vector (volume of
water flowing through the unit of normal area per unit time) is
	q′′ = −K 	∇φ, where φ is the hydraulic potential (hydraulic head)
and K is the hydraulic conductivity. The water arriving from the
distance r to the well and pumped out of the well passes through a
cylinder of radius r and height φ (see Fig. 7.4) coaxial with the well,
because the well reaches the bottom of the aquifer. The lateral area

9This is the Dupuit approximation.
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of this cylinder is 2πrφ(r), and the flow rate through it is

Q = 2πrφ(r)
∣∣∣ 	q′′
∣∣∣ = 2πrφ(r)K

dφ

dr
;

hence, we have the ordinary differential equation

φ
dφ

dr
=

Q

2πKr
.

Integration yields ∫ φ

φ1

φ′dφ′ =
Q

2πK

∫ r

r1

dr

r
,

where Q is constant because steady state is assumed and ∂K/∂r = 0
because the aquifer is homogeneous. Here the integration constant
r1 > r has the meaning of an arbitrary reference value at which the
hydraulic head φ1 ≡ φ(r1) will be measured with an observation well.
Hence,

φ2

2
− φ2

1
2

=
Q

2πK
ln
(

r

r1

)
and

φ(r) =
[
φ2

1 − Q

πK
ln
(r1

r

)]1/2

is the profile of the depression cone. This expression makes sense for
r > r0, where r0 is the lower limit on r at which the argument of the
square root in the expression of φ(r) is nonnegative, i.e.,

r0 = r1 exp
(

− πK

Q
φ2

1

)
.

In practice the expression for φ(r) is valid almost all the way to the
well if the argument of the exponential is in absolute value much

larger than unity, or φ1 �
√

Q
πK . This means that

(
φ

φ1

)2

− 1 =
Q

πKφ2
1

ln
(

r

r1

)

 1,

or that the slope of the cone of depression

dφ

dr
=

Q

2πKφr

is small. In other words, the well does not significantly disturb the
level of the water table.
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6 (B) In steady state and outside sources and wells, the hydraulic po-
tential obeys the Laplace equation ∇2φ = 0. Show that the approxi-
mate solution for φ found in the previous exercise satisfies the Laplace
equation approximately but not exactly, due to the approximations
made. Argue that the solution for multiple wells, all satisfying the
assumptions of the previous exercise, is the sum of the solutions for
each individual well were all the others absent.

Solution
The approximate solution found

φ(r) =
[
φ2

1 +
Q

πK
ln
(

r

r1

)]1/2

depends only on the cylindrical radius. Therefore, its Laplacian in
cylindrical coordinates reduces to

∇2φ =
1
r

d

dr

(
r

dφ

dr

)
.

We find
dφ

dr
=

Q

2πK

1
rφ

,

and
1
r

d

dr

(
r

dφ

dr

)
=

1
r

d

dr

(
Q

2πK

1
φ

)
=

Q

2πK

1
r

(
− 1

φ2
dφ

dr

)

= − Q

2πK

1
rφ2

Q

2πK

1
rφ

= −
(

Q

2πKr

)2 1
φ3 ≈ 0

because the approximation used to find the solution φ(r) in the pre-
vious exercise is that the slope of the depression cone is small, i.e.,∣∣∣∣dφ

dr

∣∣∣∣ =
∣∣∣∣ Q

2πKrφ

∣∣∣∣
 1.

Therefore, the Laplace equation is satisfied approximately but not
exactly.
If there are n wells, each satisfying the small drawdown assumption,
let φ(i) be the solution corresponding to each well without all the
others. Because the Laplace equation is linear, a superposition prin-
ciple holds and the approximate solution in the presence of n wells is
simply the sum of the individual approximate solutions φ(i),

φ =
n∑

i=1

φ(i).
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7 (B) a) Derive an electrical analogy between Darcy’s law in a homo-
geneous isotropic aquifer and Ohm’s law.

b) Consider an anisotropic soil composed of n horizontal layers, each
of which is homogeneous and isotropic and has hydraulic conductiv-
ity Ki, placed on top of each other. Assume that groundwater flows
only in the horizontal (x) direction, and prove that the effective hy-
draulic conductivity of this layered soil is the sum of the hydraulic
conductivities of each layer,

K =
n∑

i=1

Ki.

Solution
The differential form of Ohm’s law is 	J = σ 	E, where 	J is the current
density vector (charge flowing per unit of normal area and per unit
time), σ is the electrical conductivity of the ohmic material, and 	E =
−	∇V is the electric field, while V is the electric potential. Darcy’s law
states that the specific discharge vector 	q′′ (volume of water flowing
per unit of normal area and per unit time) is 	q′′ = −K	∇φ, where K
is the hydraulic conductivity and φ is the hydraulic potential. The
analogy between Darcy’s law and Ohm’s law in the form 	J = −σ 	∇V
is evident. The following quantities are analogous:

electric charge Q and volume of water Vw

electric current I ≡ dQ/dt and flow rate dVw/dt

current density 	J and specific discharge 	q′′

electric potential V and hydraulic potential φ

electric conductivity σ and hydraulic conductivity K

electric resistivity ρ = σ−1 and “hydraulic resistivity” ρh = K−1

wire cross-sectional area A and aquifer cross-sectional area A

length of wire l and length of aquifer l

electric resistance R and “hydraulic resistance” Rh = l
KA

Ohm’s law (differential form) 	J = −σ 	∇V and Darcy’s law
	q′′ = −K 	∇φ

Ohm’s law V1 − V2 = RI and φ1 − φ2 = K dVw/dt.

The finite form of Ohm’s law applied to a resistor of resistance R
traversed by a current of intensity I and subject to the potential
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difference V1−V2 between its ends is V1−V2 = RI. The finite form of
Darcy’s law is obtained as follows. Consider a parallelepiped parallel
to the groundwater flow, with cross-sectional area A and length l.
Since the soil is homogeneous, K is constant and

dφ

dx
=

∆φ

∆x
=

φ2 − φ1

x2 − x1
=

φ2 − φ1

l
;

then
q′′A = KA

φ2 − φ1

l
or

dVw

dt
=

KA

l
(φ1 − φ2) .

We can write this relation as

φ1 − φ2 =
l

K A

dVw

dt
≡ Rh

dVw

dt
,

where Rh ≡ l/ (KA). The electrical analogy is not perfect because
groundwater hydrology considers the flux density of the volume of
water 	q′′ instead of the flux density of the mass of water as would be
more intuitive.

b) Consider an aquifer composed of n horizontal, homogeneous and
isotropic layers on top of each other, each characterized by the hy-
draulic conductivity Ki (i = 1, ... , n). The horizontal flow of water
across a vertical cross section of the aquifer is

	q′′ =
n∑

i=1

	q′′
i,

where 	q′′
i is the specific discharge across the ith layer and the total

flow rate is the sum of the flow rates dV
(i)
w /dt across each layer:

dVw

dt
=

n∑
i=1

dV
(i)
w

dt
=

n∑
i=1

(φ1 − φ2)
KiAi

l
= (φ1 − φ2)

1
l

n∑
i=1

KiAi,

where the difference (φ1 − φ2) is the same for each horizontal layer
because the flow is horizontal and the hydraulic potential is indepen-
dent of the vertical coordinate: φ = φ(x) only. The last equation can
be rewritten as

φ1 − φ2 = Rh
dVw

dt
,
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where Rh = l/
∑n

i=1 KiAi. If we further assume that all the layers
have the same cross-sectional area Ai = A, then

Rh =
l

A

n∑
i=1

Ki =
n∑

i=1

Ri.

The “hydraulic resistances” Ri then add up as electrical resistances
in a parallel connection.

8 (B) A circular pond of radius rp is surrounded by higher soil, which
is homogeneous and isotropic. The hydraulic head φ is higher in the
soil wall than in the pond (where it takes the value φ(rp) ≡ φp).
Assume that groundwater only flows horizontally (Dupuit approx-
imation) and radially to the pond; hence, φ = φ(r), with flow rate
Q (in m3/day). Assuming steady state, compute the flow rate Q in
terms of the hydraulic heads φ(r) at r and φp, and in terms of the
hydraulic conductivity K.

Solution
Consider a vertical cylinder of soil coaxial with the pond and with
radius r. Groundwater flows across the side of this cylinder mov-
ing radially to the pond. The flow rate is Q = 2πrφ(r)q′′, where
	q′′ = −K 	∇φ is the specific discharge vector, which points radially.
Hence,

Q = 2πrφ(r)K
dφ

dr

at any radius r ≥ rp. By noting that

φ
dφ

dr
=

d

dr

(
φ2

2

)
,

we can write
1
2

d

dr

(
φ2) =

Q

2πKr
.

Integration with respect to r between the radius of the pond rp and
r yields ∫ φ2

φ2
p

d
(
φ2) =

Q

πK

∫ r

rp

dr′

r′ ,

or

φ2(r) − φ2
p =

Q

πK
ln
(

r

rp

)
,
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from which the desired expression of Q follows:

Q = πK
φ2(r) − φ2

p

ln (r/rp)
.



Chapter 8

POLLUTION

Prediction is very difficult, especially about the future.
—Attributed to Mark Twain

While natural forms of pollution (e.g., volcanic eruptions and nat-
ural forest fires) exist, the human impact on the environment is very
visible around us. Pollution resulting from human activities is one of
the most urgent problems of the modern world. Power plants pollute
while there is increasing demand for energy, manufacturing industries
pollute while world economies push for larger production rates, agricul-
ture pollutes and consumes large amounts of water while the demand for
food and higher crop yields to feed an ever-increasing world population
rises, households pollute and require more energy every year to sustain
the high standard of living expected in developed countries, vehicles,
airplanes, and ships pollute while the number of vehicles increases to
satisfy the demands of an increasing population in developing countries,
and the extraction and exploitation of oil, gas, and mineral resources
contribute a great deal to pollution. The emission of CO2 and other
greenhouse gases threatens global warming while the ozone layer is be-
ing destroyed by manmade pollutants. Power plants and the industry
also generate thermal pollution, while attention is also being drawn to
radioactive, electromagnetic, acoustic, light, indoor, and visual pollu-
tion. In this chapter we focus on the way pollutants are transported in
the environment, in particular in air and in water.

The best practice would be to limit, if not eliminate, pollution. How-
ever, complete elimination of pollution is a utopic ideal, and sometimes
limiting the emission of a certain chemical increases the emission of an-
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other one, or the consumption of energy. It is a fact that there will always
be manmade pollution and we have to deal with it. One way is to dilute
pollution. For example, organic waste is eliminated naturally (mainly
by aerobic organisms) if it is sufficiently diluted—however, this does not
apply, e.g., to heavy metals. Another way to deal with toxic waste is to
store it away in “safe” places so that it does not enter the environment—
this is done with radioactive waste from nuclear reactors. When these
approaches fail, the pollutant enters the environment and the last re-
source is environmental clean-up. This is usually a long and expensive
process, and often impossible. Examples are attempts to clean up oil
spills or the remediation of a contaminated aquifer. There are many
general and specialized references for this chapter—[69, 29, 63, 4, 39, 58]
are recommended.

8.1 Transport equations
Common ideas and methods underlie different models of the trans-

port of pollutants in different media in the environment. The spreading
of a pollutant in still air or water is described by diffusion processes.
Diffusion is usually very slow and most of the transport is carried out
by convective motion when the fluid flows. However, in the presence of
turbulence, random motion in the turbulent fluid can be described again
by diffusion-type processes, provided that the parameters are changed
with respect to proper diffusion. The spreading of pollutants in a flow-
ing medium is described by the Navier–Stokes equations of fluid dyna-
mics and by the theory of turbulent diffusion. Special solutions of the
advection-diffusion equation called Gaussian plume models are particu-
larly important due to their wide range of applications in atmospheric
pollution and hydrology. In general, one can consider the transport of
mass (of a fluid or of a pollutant), the transport of energy (e.g., heat
conduction already considered in Chapter 5, or the transport of kinetic
energy in a moving fluid, or of potential energy in the form of latent
heat stored in water vapor in the atmosphere), and the transport of
momentum due to viscosity or turbulent eddies. The relevant transport
and conservation equations are, of course, applied to many other areas
of physics.

1 (C) Discuss the basic ideas of transport theory: flux density, flux,
electrical analogies, and conservation equations.

Solution
Transport theory studies the transport of a certain quantity Q, e.g.,
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mass, volume of liquid, energy, momentum, or angular momentum,
etc. The flux density is the amount of the quantity Q that is trans-
ported per unit time across the unit of area normal to the direction
of motion. Flux densities are usually denoted with the symbol 	q′′ (a
vector pointing in the direction of motion) and have the dimensions
[q′′] = [Q] /

[
m2 · s

]
.

The amount of quantity Q transported per unit time across a certain
surface S is the flux of Q across that surface, usually denoted with
the symbol q:

q =
∫ ∫

S

	q′′ · 	dS.

If 	q′′ is homogeneous across a surface S of area A, then we have simply
	q′′ = 	q A. It is a good thing to remember this relation as it gives the
dimensions of q: [q] = [q′′]

[
m2
]
.

In most applications of transport theory a linear approximation is
used that assumes the flux density to be proportional to the gradient
of a quantity that is the cause of the transport. In heat conduction
this approximation takes the form of Fourier’s law 	q′′ = −k	∇T , in
diffusion theory we find Fick’s law 	q′′ = −D	∇C, in groundwater hy-
drology Darcy’s law 	q′′ = −k	∇φ, etc. This linear approximation re-
sembles the differential form of Ohm’s law 	J = σ 	E = −σ	∇V between
the current density 	J (flux density of electric charge), the conductiv-
ity σ, and the electric field 	E = −	∇V , which is minus the gradient
of the electrostatic potential V . This is the basis of many electri-
cal analogies encountered in the theory of heat conduction, diffusion,
turbulent diffusion, fluid mechanics, and geohydrology. Therefore, it
is not surprising to also see analogues of the finite form of Ohm’s law

I =
1
R

∆V

between electric current I (flux of electric charge across the cross sec-
tion of a wire), the electrical resistance R, and the potential difference
∆V across a resistor. It is common to find the words conductance to
refer to the analogue of R−1 and conductivity for the analogue of σ.
For example, one speaks of thermal or hydraulic conductivity, or of
the conductance of a soil with respect to the evaporation of water.

A conservation equation for the quantity Q transported with velocity
	v expresses the fact that, in the absence of sources or sinks of Q, the
amount of Q that enters a volume V in the unit time is equal to the
amount of Q that exits V per unit time. In practice, the differential
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form of the conservation equation is more useful than its finite (or
integral) form and is written as

∂ρQ

∂t
+ 	∇ · (ρQ	v) = 0,

where ρq is the volume density of the quantity Q.

2 (C) There is an analogy between heat conduction and diffusion:
Fourier’s law for the heat flux 	q′′ = −k 	∇T resembles Fick’s law for
the flux of a diffusing substance, 	F = −D 	∇C; and the heat equation
for the temperature T ,

∂T

∂t
= a∇2T, (8.1)

is formally the same as the diffusion equation for the concentration
C of a pollutant,

∂C

∂t
= D∇2T. (8.2)

What is the physical origin of this formal analogy?

Solution
The formal analogy is due to the fact that both diffusion and heat
conduction are due to the same kind of microscopic phenomena: ran-
dom motions and collisions of particles. Molecules and atoms vibrate,
move, and scatter randomly in a medium, while electrons in a con-
ductor move and undergo scatterings against other electrons and ions
of the metal. It is not surprising that the macroscopic descriptions
of these phenomena are also similar.

3 (A) Derive the dimensions

of the Fourier coefficient a by using the heat equation,

of the diffusion coefficient D by using the diffusion equation,

of the thermal conductivity k by using Fourier’s law,

of the diffusion coefficient D by using Fick’s law.

Solution
The heat equation

∂T

∂t
= a∇2T
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and the diffusion equation

∂C

∂t
= D ∇2C

give [a] = [D] =
[
m2 · s−1

]
.

Fourier’s law 	q′′ = −k 	∇T and Fick’s law 	FC = −D 	∇C, plus the
expression 	F = C	v, give

[k] =
[
W · m−1 · K−1]

and
[D] =

[
m2 · s−1] .

4 (C) Explain why the diffusion coefficient D is smaller for heavier
molecules.

Solution
From the microscopic point of view, molecular diffusion is due to the
random walk of molecules through the medium. Molecules cannot
cover macroscopic distances quickly because of the continuous scat-
tering with other molecules. A more massive, larger molecule has
smaller root mean square speed

vrms =
(

3kT

m

)1/2

and a larger cross section. Therefore, its diffusion will be slower
than the diffusion of a lighter molecule. Macroscopically, this fact is
reflected in smaller values of the diffusion coefficient D.

5 (B) The continuity equation for the concentration C (mass density)
of a pollutant is

∂C

∂t
+ 	∇ · 	F = 0

away from sources or sinks of the pollutant, where the flux density 	F
of the pollutant is given by Fick’s law

	F = −D	∇C

and D is the diffusion coefficient.

a) Derive the continuity equation and comment on its physical con-
tent. What can you say about the number of particles in a volume
of space V ?
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b) How is the continuity equation modified if diffusion takes place
in a medium (water or air) that is flowing with velocity 	v?

Solution
a) Consider a fixed volume of space V enclosed by the surface S (see
Fig. 5.3). The mass of the pollutant contained in V is∫ ∫ ∫

V
dV C (t, 	x) ,

and its rate of variation is

d

dt

(∫ ∫ ∫
V

dV C

)
=
∫ ∫ ∫

V
dV

∂C

∂t
.

The flux leaving the volume V through the surface S in the unit of
time is ∫ ∫

S

	F · 	n dS,

where 	n is the outward unit normal to S. In the absence of sources or
sinks of the pollutant, the mass disappearing from V in the unit time
is equal to the mass leaving V in the same time and flowing through
S, i.e.,

− d

dt

(∫ ∫ ∫
V

dV C

)
=
∫ ∫

S

	F · 	n dS;

by applying Gauss’ law, we obtain∫ ∫ ∫
V

dV
∂C

∂t
+
∫ ∫ ∫

V
dV 	∇ · 	F = 0.

Since the integration volume V is arbitrary, it must be

∂C

∂t
+ 	∇ · 	F = 0.

The physical content of the continuity equation is simply mass con-
servation for the pollutant.

The concentration can be written as C = m nd, where m is the mass
of the polluting particles and nd = C/m is the number density of
particles. The total number of particles in a volume V is

N =
∫ ∫ ∫

V
d3	x nd =

1
m

∫ ∫ ∫
V

d3	x C,
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and its time derivative is

dN

dt
=

1
m

∫ ∫ ∫
V

d3	x
∂C

∂t
= − 1

m

∫ ∫ ∫
V

d3	x 	∇ · 	F

= − 1
m

∫ ∫
S

	F · 	n dS.

If there is no flux of particles across the boundary S of the volume
V and there are no chemical reactions, then the number of particles
in V is constant, dN/dt = 0.

b) In a medium moving with velocity 	v, the flux density becomes

	F = −D	∇C + C 	v,

where the second term in the right-hand side is usually much larger
than the first one. The continuity equation becomes

∂C

∂t
+ C	∇ · 	v + 	v · 	∇C = 	∇ ·

(
D	∇C

)
and, if the fluid motion is solenoidal and the diffusion coefficient D
does not depend on the position, then

∂C

∂t
+ 	v · 	∇C = D∇2C;

this is called the advection-diffusion equation.

6 (B) A pollutant diffuses in the x direction in a homogeneous medium
at rest. Prove that in stationary regime the flux density of the pol-
lutant does not depend on the coordinate x.

Solution
Let C(t, x) be the concentration (mass density) of the pollutant. C

and the flux 	F of the pollutant obey the continuity equation

∂C

∂t
+ 	∇ · 	F = 0. (8.3)

In stationary regime ∂C/∂t = 0 and, since the flux is unidirectional,
	F = (F, 0, 0), it follows from Eq. (8.3) that

	∇ · 	F =
∂F

∂x
= 0.
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7 (B) Show that the change of the time coordinate t −→ τ ≡ Dt
changes the diffusion equation

∂C

∂t
= D ∇2C (8.4)

for the concentration C(t, x) of a pollutant in a fluid at rest into

∂C

∂τ
= ∇2C.

Does the new variable τ have the dimensions of a time?

Solution
We have

∂

∂t
=

∂

∂τ

dτ

dt
= D

∂

∂τ
,

and the diffusion equation (8.4) is changed into

∂C

∂τ
= ∇2C.

The dimensions of the variable τ are

[τ ] = [D] [T ] =
[
m2 · s−1 · s

]
=
[
m2] ,

so τ has the dimensions of a length squared, not of a time.

8 (B) Verify that

C (t, x) =
C0

2
√

πDt
exp
(

− x2

4Dt

)

is the solution of the one-dimensional diffusion equation

∂C

∂t
= D

∂2C

∂x2 (8.5)

with the boundary condition

C(t, x) → 0 as |x| → +∞
and with the initial condition

C(0, x) = C0 δ(x)

representing a single pointlike puff or spill of pollutant in still air
or water. Consider the solution at an arbitrarily small time t > 0
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and an arbitrarily large value of |x| and discuss the implications for
causality. Discuss the graphical interpretation of this solution in the
limit t → 0+. Various modifications of this solution in the case of
flowing media are the basis of Gaussian plume models of pollution.

Solution
We have

∂C

∂t
=

C0

4
√

πD t3/2
e− x2

4D t

(
x2

2 D t
− 1
)

,

∂C

∂x
= − C0 x

4
√

πD3 t3
e− x2

4Dt ,

and
∂2C

∂x2 =
C0

4
√

πD3 t3
e− x2

4Dt

(
x2

2Dt
− 1
)

.

Hence, D∂2C/∂x2 = ∂C/∂t and the diffusion equation is satisfied.

The boundary condition is easily verified, since limx→±∞ e−α2x2
= 0.

To verify the initial condition, introduce the quantity α ≡ (2
√

Dt)−1;
then α → +∞ as t → 0+ and, using the representation of the Dirac
delta [17]

δ(x) =
1√
π

lim
α→+∞ α e−α2x2

,

we verify that

lim
t→0+

C(t, x) = lim
α→+∞

C0√
π

α e−α2x2
= C0 δ(x).

The initial condition corresponds to the instantaneous release of a
certain amount of pollutant at x = 0 at the initial time t = 0. At any
later time t and position x, with t arbitrarily small and x arbitrarily
large, the mass density C(t, x) of the pollutant is strictly positive:
this fact implies that Eq. (8.5) describes instantaneous diffusion.1

The initial rate of change of C at x = 0 (the only point where C �= 0
at t = 0) is

∂C

∂t

∣∣∣∣
x=0

→ ∞ as t → 0+.

This feature of the diffusion equation does not constitute a problem
for most practical applications because the relativistic corrections

1This phenomenon is analogous to the heat paradox.
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that would be needed to take into account the finite velocity of prop-
agation are usually completely negligible—Eq. (8.5) is an excellent
approximation for everyday situations.

The limit t → 0+ has a graphical interpretation: as t → 0+, the
Gaussian (8.5) is more and more peaked on x = 0; the area between
the x-axis and the graph of C(t, x), given by the integral

A =
∫ +∞

−∞
dx C(t, x) =

C0√
πDt

∫ +∞

0
dx e−x2/4Dt = 2C0

∫ +∞

0
dξ e−ξ2

,

where ξ ≡ x/(2
√

Dt), does not depend on time. At t = 0 we have

A = C0

∫ +∞

−∞
dx δ(x) = C0.

The total mass of pollutant present over all space does not depend
on time—it is initially concentrated at x = 0 and later is spread over
the entire x-axis. This is consistent with the continuity equation

∂C

∂t
+ 	∇ · 	F = 0

(where 	F = −D 	∇C is the flux of the pollutant) expressing the con-
servation of the pollutant’s mass.

8.2 Water pollution
Water pollution is one of the major problems of environmental sci-

ence. Pollutants are released in various ways into the environment and
contaminate groundwater, streams, rivers, lakes, and oceans. One pri-
mary concern is the disappearance of safe drinking water for human use,
followed by the destruction or alteration of ecosystems and plant and an-
imal life. Water pollution comes from industry, households, transporta-
tion, and agriculture (which in addition to using pesticides is responsible
for increasing nitrogen levels due to the heavy use of fertilizers, which
cause eutrophication). Thermal pollution may also be of concern near
power plants.

In the absence of advection, the transport of pollutants in water is de-
scribed by molecular diffusion or by similar processes—when net flows
are present in the water, convection and advection dominate the trans-
port. If the flow is turbulent, which is usually the case in streams and
rivers, the advection-diffusion equation with eddy coefficients replacing
the molecular diffusion coefficients is a very useful tool to model the
transport of pollutants.
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1 (A) You take sugar in your morning tea or coffee. Why do you stir
it? To answer, compute the average time it takes a C6H12O6 (glu-
cose) molecule to diffuse 1 cm in water. The diffusion coefficient is
D = 6.7 · 10−10 m2 · s−1.

Solution
The root mean square distance traveled by glucose molecules is given
by σ =

√
2Dt, and the average time required to travel a distance σ is

t =
σ2

2D
=

(
1.0 · 10−2 m

)2
2 · (6.7 · 10−10 m2 · s−1)

= 7.5 · 104 s = 21 hours.

Obviously no one wants to wait so long to drink a coffee, and stirring
causes turbulent mixing. In practice, spontaneous convective motions
accelerate the process even without stirring.

2 (B) The volume of water in a lake is constant and is given by the
balance of the flow rates (expressed in m3/s)

FR + FP + FE + FO = 0, (8.6)

where FR,FP ,FE , and FO are the constant flow rates due to runoff
into the lake (FR > 0), precipitation (FP > 0), evaporation (FE < 0),
and outflow from the lake (FO < 0), respectively. Eutrophication in
the lake is limited by the inflow of nitrogen, the nutrient least avail-
able to algae, and it is crucial to know its concentration C(t) (in
kg/m3) in the lake as a function of time. Derive an ordinary differ-
ential equation for the nitrogen concentration C(t) by knowing the
concentration CR in the water entering the lake. Find the solution of
this ODE by knowing that at the time t = 0 the measured concen-
tration has the value C∗.
Hint: Consider the mass of nitrogen m(t) in the lake at the instant t and compute
its rate of change dm/dt, neglecting the contributions to C(t) from precipitation
and evaporation.

Solution
The mass of nitrogen flowing into the lake per unit time is CRFR, the
mass leaving the lake is CFO (the concentration of nitrogen in the
outflow from the lake is the same as the concentration in the lake),
while precipitation and evaporation do not contribute to the balance
of nitrogen mass. The rate of change of the nitrogen mass in the lake
is

dm

dt
= CRFR + CFO
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and m = CV , where V is the volume of water in the lake, which does
not vary in time. Therefore,

dC

dt
− FO

V
C =

CRFR

V
,

which is the desired ODE. Its general solution is the sum of the
general solution of the associated homogeneous equation and of a
particular solution of the inhomogeneous equation. These are eas-
ily determined to be α eFOt/V (where α is an arbitrary integration
constant) and −CRFR/FO. The general solution of the inhomoge-
neous equation is

C(t) = α exp
(

− |FO| t
V

)
+

CRFR

|FO| .

The integration constant α is determined by imposing the initial con-
dition C(0) = C∗, which yields α = C∗ − CRFR/ |FO|. The solution
of the problem is therefore the nitrogen concentration

C(t) = C1 e− t/τ + C2,

where

τ =
V

|FO| ,

C1 = C∗ − CR

FR
|FO|,

C2 =
CRFR

|FO| .

The late time state of the lake is one with nitrogen concentration
equal to the asymptotic value C2. The timescale for changes in C
is τ . In order to limit the eutrophication of the lake, one must keep
the asymptotic concentration of the nitrogen—the nutrient for the
algae—below a certain threshold Cmax, or

C2 =
CRFR

|FO| < Cmax.

If we use the water balance equation for the lake (8.6), this inequality
becomes

CR < Cmax

[
1 − |FE | − FP

FR

]
.
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3 (B) Phosphate (a major agent of eutrophication) enters a lake at a
constant rate a (expressed in kg/s) through a stream that collects
waste from a factory producing detergents. The outflow of water
from the lake occurs through a stream that carries a constant flow
Fout (expressed in m3/s). Derive an ordinary differential equation
describing the concentration C (in kg/m3) of phosphate in the lake
and solve it. What is the late time state of the lake? Is it stable?
Neglect evaporation, precipitation, and groundwater flow into and
out of the lake, and assume that rapid mixing occurs.

Solution
The rate at which the phosphate accumulates in the lake is simply
the input rate a minus the output rate. Because rapid mixing is as-
sumed, the concentration of the pollutant in the water leaving the
lake is the same as in the lake and the outflow of the pollutant (in
kg/s) is CFout. Therefore, the rate of change of the phosphate con-
centration in the lake is given by

d (CV )
dt

= a − CFout,

where V is the volume of the lake, which is assumed to be constant.
We write

dC

dt
= a − C

τ
,

where τ ≡ V/Fout has the dimensions of a time. This linear, first-
order, inhomogeneous ODE can be solved using the method of varia-
tion of parameters. The complementary equation dC/dt = −C/τ has
general solution α e−t/τ , where α is an integration constant. There-
fore, we look for a solution of the inhomogeneous equation in the
form

C(t) = u(t) e−t/τ .

By substituting into the nonhomogeneous equation, we obtain

du

dt
= a et/τ ,

which is immediately integrated, obtaining

u(t) = aτ et/τ + β,

with β an integration constant, and

C(t) = aτ + βe−t/τ .
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The constant β is determined by imposing an initial condition C(0) =
C0 at the initial time t = 0, which yields

C(t) = aτ + (C0 − aτ) e−t/τ .

The late time state of the lake (as t → +∞) is the steady state
C (t → +∞) ≈ aτ . This is an exact solution corresponding to equi-
librium (dC/dt = 0), which is also obtained by inspection of the
original ODE for C(t). In order to study its stability we write C(t)
as the equilibrium state aτ plus a perturbation δC(t),

C(t) = aτ + δC(t),

and assume that at the initial time t = 0 the perturbation has mag-
nitude ε, which can be of either sign. By inserting this expression
into the ODE for C, we obtain the evolution equation satisfied by
the perturbation δC

d (δC)
dt

= − δC

τ
,

which is immediately integrated to yield

δC(t) = ε e−t/τ .

Any perturbation decays exponentially fast irrespective of its sign or
of its initial amplitude.2 The late time state of the lake is asymptot-
ically stable.

4 (B) A pollutant is released in a long pond of still water. One side of
the pond (at x = 0) faces a rock wall completely impassable to the
pollutant, which does not stick to it. At the opposite side (x = L)
the pollutant is so diluted that its concentration there is measured
to be zero. At an initial time t = 0 a measurement has given a non-
vanishing distribution C0(x) for the pollutant. Find the solution of
the diffusion equation at a later time t > 0.
Hint: Use separation of variables.

Solution
The diffusion equation

∂C

∂t
= D ∇2C

2Note that we did not assume that the perturbation is small: the ODE for the perturbation
is exact. This is possible because the equation for C(t) is linear.
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must be solved for 0 ≤ x ≤ L and t ≥ 0 with the boundary conditions

−D
∂C

∂x
(t, 0) = 0 (8.7)

(no flux of the pollutant at x = 0) and

C(L) = 0, (8.8)

and with the initial condition C(0, x) = C0(x). Separation of vari-
ables

C(t, x) = T (t) X(x) (8.9)

yields

X
dT

dt
= D T

d2X

dx2 (8.10)

and division by C = TX gives

1
T

dT

dt
=

D

X

d2X

dx2 . (8.11)

The last equation can only be satisfied if the left-hand side and the
right-hand side, which depend on different variables, are constant:

1
T

dT

dt
= −λ2, (8.12)

and
D

X

d2X

dx2 = −λ2, (8.13)

where −λ2 is a separation constant, which is chosen to be negative
on physical grounds (see the discussion ahead). The equations

dT

dt
+ λ2T (t) = 0,

d2X

dx2 +
λ2

D
X(x) = 0,

have the solutions

T (t) = e−λ2t,

X(x) = A cos
(

λ√
D

x

)
+ B sin

(
λ√
D

x

)
,
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where A and B are integration constants determined by the boundary
and initial conditions. The boundary condition (8.7) yields B = 0,
while Eq. (8.8) leads to X(L) = cos

(
λL/

√
D
)

= 0 and

λn =
π
√

D

2L
(2n + 1) (n = 0, 1, 2, 3, · · ·) .

Only discrete values of the separation constant are allowed. The
general solution is a superposition of elementary solutions,

C(t, x) =
+∞∑
n=0

An cos
[
(2n + 1)

πx

2L

]
exp
[
− (2n + 1)2

π2D

4L2 t

]
.

The initial concentration profile C0(x) is also expanded as a Fourier
series

C0(x) =
+∞∑
n=0

Cn cos
[
(2n + 1)

πx

2L

]
with Fourier coefficients

Cn =
2
L

∫ L

0
dx C0(x) cos

[
(2n + 1)

πx

2L

]
.

By imposing the initial condition C(0, x) = C0(x), we find An = Cn

for n = 0, 1, 2, 3, · · · and

C(t, x) =
+∞∑
n=0

Cn cos
[
(2n + 1)

πx

2L

]
exp
[
− (2n + 1)2

π2D

4L2 t

]
.

(8.14)
We now discuss the sign of the separation constant. If λ = 0, we
obtain the trivial solution

T (t) = const., X(x) = αx + β,

and the boundary conditions (8.7) and (8.8) imply α = β = 0, which
does not satisfy the initial condition C(0, x) = C0(x) �= 0.

If the separation constant is positive (+λ2 instead of −λ2), we have
the solutions

T (t) = T0 eλ2t, X(x) = α eλx/
√

D + β e−λx/
√

D;

the exponential increase with time of the concentration at a fixed
point is clearly unphysical. From the mathematical point of view,
the boundary conditions (8.7) and (8.8) give α = β = 0, leaving as
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the only possible solution the trivial one, which is incompatible with
the initial condition (8.9).

5 (B) Solve the previous problem with the initial condition given by
the linear concentration

C0(x) =
(

3
kg
m

)
cos
(πx

2L

)
.

Solution
The only nonvanishing Fourier coefficient appearing in the series
(8.14) is

C0 = 3
kg
m

,

corresponding to n = 0. Therefore, the solution is

C(t, x) =
(

3
kg
m

)
exp
[
−
(

π2D

4L2 t

)]
cos
(πx

2L

)
.

This solution represents a concentration that oscillates in x with a
long wavelength λ = 4L (only a quarter of the wavelength fits in the
length of the pond) and decreasing exponentially fast in time.

6 (B) Compute the total derivative with respect to time of the con-
centration of a pollutant C = C(t, 	x) in a river flowing with velocity
field 	v.

Solution
The total derivative of the concentration C (t, 	x) is

dC

dt
=

∂C

∂t
+

3∑
i=1

∂C

∂xi

dxi

dt
=

∂C

∂t
+

3∑
i=1

∂C

∂xi
vi, (8.15)

or, in compact form,

dC

dt
=

∂C

∂t
+ 	v · 	∇C. (8.16)

This expression of the total derivative explicitly takes into account
the fact that, in addition to the explicit dependence of C on time, the
particles of the pollutant moving with the fluid have time-dependent
coordinates 	x(t) as well. The concentration at a fixed point of space
changes because of an explicit dependence on t (described by ∂C/∂t)
and because the flow with velocity 	v spreads the pollutant, as de-
scribed by the term 	v · 	∇C.
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7 (B) The spreading of pollutants in groundwater in a homogeneous
but anisotropic aquifer is described by the advection-diffusion equa-
tion

∂C

∂t
= Kx

∂2C

∂x2 + Ky
∂2C

∂y2 + Kz
∂2C

∂z2 − 	u · 	∇C,

where C is the concentration of the pollutant and 	u is the velocity field
of the groundwater flow. The hydraulic conductivity is represented
by the diagonal matrix

(Kij) =

⎛
⎜⎜⎜⎜⎝

Kx 0 0

0 Ky 0

0 0 Kz

⎞
⎟⎟⎟⎟⎠ .

Find a coordinate transformation that reduces the advection-diffusion
equation to the corresponding one in a fictitious isotropic aquifer.

Solution
Redefine the spatial coordinates

{
xi
}

according to

x −→ x̄ ≡ x√
Kx

, y −→ ȳ ≡ y√
Ky

, z −→ z̄ ≡ z√
Kz

.

Then
∂

∂xi
=

3∑
j=1

(
∂

∂x̄j

)
∂x̄j

∂xi
=

1√
Ki

∂

∂x̄i
,

and by applying this operator twice,

∂2

∂ (xi)2
=

1
Ki

∂2

∂ (x̄i)2
, (8.17)

3∑
i=1

Ki
∂2

∂ (xi)2
=

3∑
i=1

Ki
1
Ki

∂2

∂ (x̄i)2
= ∇̄2, (8.18)

where ∇̄2 is the Laplacian operator in the new coordinates
{
x̄i
}
.

The components of the velocity vector field 	u transform according to
the law

ūi =
3∑

j=1

∂x̄i

∂xj
uj =

3∑
j=1

1√
Ki

δij uj =
ui

√
Ki

,



Pollution 305

and the operator 	u · 	∇ becomes, in the new coordinates,

	u · 	∇ =
3∑

i=1

ui
∂

∂xi
=

3∑
i=1

√
Ki ūi

1√
Ki

∂

∂x̄i
= 	̄u · 	̄∇,

where 	̄∇ is the gradient with respect to
{
x̄i
}
. The advection-diffusion

equation is rewritten in the new coordinates as

∂C

∂t
= ∇̄2C − 	̄u · 	̄∇C.

The hydraulic conductivity in the fictitious aquifer corresponding to
the new unphysical coordinates

{
x̄i
}

coincides with the identity ten-
sor represented by the identity matrix diag(1, 1, 1). Note that the
new coordinates do not have the dimensions of a length but instead
have dimension

[
x̄i
]

=
[
T 1/2

]
.

8 (A) Consider a factory spilling a mass m = 1.0 · 103 kg of a certain
pollutant into a turbulent river. What is the distribution of the av-
erage concentration (in kg/m) of the pollutant after six hours? How
fast is the peak of this average concentration diluted as time goes
by? Assume that the spill is instantaneous, the turbulent diffusion
coefficient is 1.0 · 10−3 m2/s, and the average velocity of the water in
the river is v̄ = 5.0 m/s.

Solution
The average concentration C̄ of the pollutant satisfies the
one-dimensional dispersion equation

∂C̄

∂t
+ v̄

∂C̄

∂x
= K

∂2C̄

∂x2 ,

where x is a coordinate along the river with x = 0 at the polluting
source and K is the turbulent diffusion (or dispersion) coefficient.
The one-time, instantaneous spill is modeled by a delta-like source at
t = 0. The solution of the dispersion equation is

C̄ (t, x) =
m√
2π σ

exp

[
− (x − v̄ t)2

2σ2

]
,

where the dispersion is σ =
√

2K t. Hence,

C̄ (t, x) =
m√

4π K t
exp

[
− (x − v̄ t)2

4K t

]
.
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Six hours after the spill, the average concentration is

C̄ (x) =

(
1.0 · 103 kg

)
√

4π (1.0 · 10−3 m2/s) · 6 · (3600 s)

exp

[
− [x − (5.0 m/s) · 6 · (3600 s)]2

4 · (1.0 · 10−3 m2/s) · 6 · (3600 s)

]

=
(

61
kg
m

)
exp
{

−1.35 · 108
[( x

110 km

)
− 1
]2}

.

The dilution away from the front x = v̄ t is exponential and the peak
of the (linear) average concentration is at x = v̄t and has value

C̄0 =
(

150
kg
m

) (
t

1 hour

)−1/2

.

9 (A) A mass m1 = 1.00 · 105 kg of water at 65.0◦C used for cooling a
power plant is discharged into a nearby pond containing 3.00 ·104 m3

of water at 15.50◦C (thermal pollution). What is the temperature
change of the pond after thermal equilibrium is established?

Solution
The pond contains the mass of water

m2 = ρ V =
(

1.00 · 103 kg
m3

)
· (3.00 · 104 m3) = 3.00 · 107 kg,

where ρ is the density of freshwater. The temperature rise of the lake
is given by the heat balance

c m1 (T − T1) + c m2 (T − T2) = 0,

where c is the specific heat of water and T is the final temperature
after thermal equilibrium between the two masses of water is reached.
Simple algebra yields

T =
m1T1 + m2T2

m1 + m2

=

(
1.00 · 105 kg

) · (65.0◦C) +
(
3.00 · 107 kg

) · (15.5◦C)
(1.00 · 105 kg + 3.00 · 107 kg)

= 15.7◦C.

The temperature change of the pond is 0.2◦C.
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8.3 Air pollution
Atmospheric pollution is another major problem of environmental sci-

ence. Apart from global problems such as the emission of CO2 and other
greenhouse gases in the atmosphere since the advent of the Industrial
Revolution, or the ozone hole problem, there are more local problems.
Examples are the well-known London smog from coal burning and the
photochemical Los Angeles smog. These exemplify pollution problems
caused by pollutants of different chemical nature. Pollutants are released
by industry, power generation plants, transportation, and domestic ac-
tivities. Here we propose a few exercises on zero-dimensional models
and Gaussian plume models based on the advection-diffusion equation.

1 (B) A crude but simple zero-dimensional model for air pollution in a
city is the following. Imagine the city enclosed in a parallelepiped of
sides L1 and L2 and height h equal to the mixing length in the atmo-
sphere. A pollutant is emitted at a constant rate P (in kg/s) and its
concentration C(t) (in kg/m3) is uniform and instantly distributed
over the city. A horizontal wind with uniform and constant velocity v
enters the side of the box of length L1 perpendicular to it, and moves
along the side of length L2 (one can always orient the parallelepiped
to achieve this geometrical configuration) and exits from the opposite
side, thus diluting the pollutant.

a) Derive an ordinary differential equation for the concentration C(t)
of the pollutant as a function of time and solve it by knowing that
the initial concentration at time t = 0 is C0. What happens to your
solution if there is no wind?

b) Assume now that the emission rate P is not constant in time
but varies periodically as P (t) = P0 + P1 cos (ωt), where P0,1 are
constants (for example, the pollutant could be carbon monoxide re-
leased by automobile traffic, which peaks at rush hour). Find the
corresponding solution C(t).

Solution
a) Conservation of the pollutant mass CV is expressed by the balance
equation for the rate of change of the concentration C

d (CV )
dt

= P − M,

where V = L1L2h is the volume of the imaginary parallelepiped
enclosing the city and M is the outflow of air from it (in kg/s) due
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to the wind. The mass of the pollutant leaving the box in the time
dt is CdVout, where the volume of air leaving the box during dt is
dVout = L1hdx = L1hvdt. Therefore, M = CdVout/dt = L1hvC
and mass conservation of the pollutant is described by

dC

dt
+

v

L2
C =

P

L1L2h
.

The general solution of this equation is the sum of the general solution
of the associated homogeneous equation and of a particular solution
of the inhomogeneous one. Those are easily found to be

C(t) = α exp
(

− t

τ

)
+

P

L1hv
,

where τ = L2/v is the time scale for dilution and α is an integration
constant determined by the initial condition. By imposing C(0) =
C0, we obtain α = C0 − P/ (L1vh), and the solution is

C(t) =
(

C0 − P

L1hv

)
e−t/τ +

P

L1hv
.

The asymptotic state as t → +∞ is the steady-state concentration
C = P/ (L1hv). This goes with the inverse of the transverse size
of the box L1, the inverse of the atmospheric mixing length h, and
the inverse of the wind speed v. The dilution timescale τ also goes
with the inverse of v and is of course proportional to L2, the distance
that the wind has to travel to cross the entire city. In this model if
there is no wind (v = 0), there is no dilution of the pollutant that is
constantly produced, M = 0, and the ODE is modified to

dC

dt
=

P

L1L2h
,

which has the linear solution

C(t) =
P

L1L2h
t + C0

satisfying the initial condition C(0) = C0. The pollutant keeps ac-
cumulating, and its concentration diverges linearly in time. This
solution can also be obtained as the limiting case of the general one
as v → 0 by Taylor-expanding in powers of v:

exp
(

− t

τ

)
= exp

(
− v

L2
t

)
= 1 − v

L2
t + ...
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and

C(t) =
(

C0 − P

L1hv

)(
1 − v

L2
t + ...

)
+

P

L1hv

= C0 +
P

L1L2h
t + ... .

b) If the production rate P of the pollutant changes sinusoidally
with time as P (t) = P0 + P1 cos (ωt), the conservation equation for
the mass m(t) of the pollutant becomes

dC

dt
+

v

L2
C =

P0

L1L2h
+

P1

L1L2h
cos (ωt) .

The general solution of the associated homogeneous equation is the
exponential α e−t/τ . We look for a particular solution of the inhomo-
geneous equation in the form

C1(t) = β cos (ωt) + γ sin (ωt) + δ,

with β, γ, and δ constants. Substitution into the ODE yields(
−ω β +

v

L2
γ

)
sin (ωt) +

(
ω γ +

v

L2
β

)
cos (ωt) +

v

L2
δ

=
P1

L1L2h
cos (ωt) +

P0

L1L2h
.

Then it must be

−ω β +
v

L2
γ = 0,

ω γ +
v

L2
β =

P1

L1L2h
,

v δ =
P0

L1h
.

This linear system has the solution

β =
P1v

L1h
(
ω2L2

2 + v2
) ,

γ =
ωL2P1

L1h
(
ω2L2

2 + v2
) ,

δ =
P0

L1hv
.
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Hence, the general solution of the ODE is

C(t) = α e−t/τ +
P1

L1h
(
ω2L2

2 + v2
) [v cos (ωt) + ωL2 sin (ωt)]

+
P0

L1hv
.

By imposing the initial condition C(0) = C0, we determine the
integration constant

α = C0 − P1v

L1h
(
ω2L2

2 + v2
) − P0

L1hv
.

The final solution is

C(t) = C0 e−t/τ +
P1v

L1h
(
ω2L2

2 + v2
) [cos (ωt) − e−t/τ

]

+
ωL2P1

L1h
(
ω2L2

2 + v2
) sin (ωt) +

P0

L1vh

(
1 − e−t/τ

)
.

The late-time solution is the oscillating concentration

C (t → +∞) ≈ P1

L1h
(
ω2L2

2 + v2
) [v cos (ωt) + ωL2, sin (ωt)] +

P0

L1hv
.

2 (B) Consider a homogeneous fluid at rest and suppose that at time
t = 0 an amount C0 of pollutant is released instantaneously in the
x = 0 plane. The pollutant diffuses through the fluid in both the
positive and negative x directions. What is the root mean square
distance traveled by pollutant particles at a time t > 0?

Solution
The solution of the one-dimensional diffusion equation with the ap-
propriate initial condition C(x, 0) = C0 δ(x) is the Gaussian function

C(t, x) =
C0

2
√

πDt
e− x2

4Dt ,

where C(t, x) is the concentration of the pollutant and D is the diffu-
sion coefficient. The root mean square distance traveled by polluting
particles at time t is the variance of the Gaussian σ =

√
2Dt.

3 (A) Fifty grams of poisonous gas are instantaneously released when a
container is accidentally dropped on the floor of a laboratory. What
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is the gas concentration 10m from the point of the accident, after
one hour? The air is still and the diffusion coefficient is D = 9.0 ·
10−5m2·s−1. Can diffusion be the main agent in spreading the gas?
Hint: Treat the emission as pointlike.
Solution
The solution of the diffusion equation for the concentration C(t, 	x)
in the case of a point source in three dimensions is

C(t, 	x) =
Q(√

2π σ
)3 e− r2

2σ2 , σ =
√

2D t.

We have σ =
√

2 · (9.0 · 10−5 m2 · s−1) · (3600 s) = 0.80m and

C(1 h, 10 m) =

(
5 · 10−2 kg

)
(√

2π 0.80 m
)3 exp

[
−
(

10 m√
2 · (0.80 m)

)2
]

= 7.3 · 10−37 kg
m3 .

This extremely small number clearly shows that diffusion is not an
efficient process in transporting pollutants over macroscopic scales
in short times. The main agents spreading the poisonous gas are
convective motions and advection.

4 (B) Verify that

C(t, 	x) =
Q(√

2π σ
)3 e− r2

2σ2 ,

where σ =
√

2D t, solves the diffusion equation

∂C

∂t
= D ∇2C.

It represents the solution for a instantaneous point source in three
dimensions (a single puff in still air).

Solution
Explicit calculation of the derivatives yields

∂C

∂t
=

Q

σ
(√

2π σ
)3 e− r2

2σ2

(
−3 +

r2

σ2

)
∂σ

∂t

=
Q

σ
(√

2π σ
)3 e− r2

2σ2

(
−3 +

r2

σ2

) √
D

2t
=

C

σ2

(
−3 +

r2

σ2

)
D,
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and
	∇C =

−Q

σ2
(√

2π σ
)3 e− r2

2σ2 	x = − C

σ2 	x.

The Laplacian of C is easily computed by using the identity

∇2C = 	∇ · 	∇C =
−1
σ2

(
	∇C · 	x + C	∇ · 	x

)
=

1
σ2

(
− C

σ2	x · 	x + 3C

)

=
C

σ2

(
r2

σ2 − 3
)

.

Hence, we have

∂C

∂t
= D

C

σ2

(
r2

σ2 − 3
)

= D ∇2C.

5 (C) Describe the principles of smoke precipitators and electrostatic
air cleaning.

Solution
Smoke precipitators are based on electrostatics. Air containing par-
ticulate matter pollutants from industrial processes passes through a
positively charged grid at a potential of the order of 30 kV that gives
the particles a positive charge. They are then attracted by a second
grid kept at a negative potential with respect to the first one and are
collected on it, thus effectively removing them from the air flow.

Air cleaners for household use are based on the same principle to re-
move particles of smoke, dust, pollen, and other polluting or irritating
materials.

6 (A) Beginning at time t = 0, a pointlike source of CO2 emits continu-
ously at the rate of 1 kg ·s−1 in uniform wind with velocity 5.0 m ·s−1.

a) In a coordinate system with the source at the origin and the x-axis
in the direction of the wind, what is the concentration CA of CO2 (in
kg/m3) at the point A = (x, y, z) = (1 km, 0, 0) on the x-axis?

b) Consider a point B = (x, y, z) = (1 km, y, 0) with |y| 
 1 km:
for what values of y has the concentration in B gone down by two
e-folds, i.e., its value is e−2 CA?
In both cases, compute the concentration a long time after the source
began emitting and take D = 1.64 · 10−5m2·s−1 as the value of the
diffusion coefficient.
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Solution
a) The solution of the advection-diffusion equation

∂C

∂t
+ 	v · 	∇C = D ∇2C (8.19)

for a continuously emitting pointlike source, with the geometry of the
problem and in the approximation t → +∞ (a long time after the
source begins to emit), is (e.g., Ref. [4])

C (	x) =
q

4πDr
e− v(r−x)

2D , (8.20)

where r =
√

x2 + y2 + z2 and q = 1 kg/s. At point A it is r = x,
e−v(r−x) = 1 and

CA =
q

4πDr
=

(
1 kg · s−1

)
4π · (1.64 · 10−5 m2 · s−1) · (1.0 · 103 m)

= 4.85
kg
m3 .

b) At point B (with y coordinate to be determined), we have, in the
approximation |yB| 
 xA,

q

4πDr
e− v(r−x)

2D = e−2CA,

which yields
v(r − x)

2D
= 2,

or
√

x2 + y2 = x + 4D/v. Hence,

y = ±
[(

x +
4D

v

)2

− x2

]1/2

= ±4D

v

√
1 +

vx

2D

= ± 4 · (1.64 · 10−5 m2 · s−1)
(5.0 m · s−1)

√
1 +

(5.0 m · s−1) · (1.0 · 103 m)
2 · (1.64 · 10−5 m2 · s−1)

= ±0.16 m.





Appendix A
Physical constants

Fundamental constants

gravitational constant G = 6.673 · 10−11 N · m2 · kg−2

speed of light in vacuum c = 2.998 · 108 m/s
molar gas constant R = 8.315 J · mol−1 · K−1

Avogadro’s number NA = 6.022 · 1023 mol−1

molar volume1 Vm = 22.414 · 10−3 m3 · mol−1

universal gas constant R = 8.314 J · K−1 · mol−1

Boltzmann constant k = R/NA = 1.381 · 10−23 J/K
Stefan–Boltzmann constant σ = 5.671 · 10−8 W · m−2 · K−4

permittivity of vacuum ε0 = 8.854 · 10−12 F/m
permeability of vacuum µ0 = 4π · 10−7 H/m

Microscopic physics

electron charge e = 1.602 · 10−19 C
electron mass me = 9.109 · 10−31 kg = 511.0 keV
proton mass mp = 1.673 · 10−27 kg = 938.3 MeV
atomic mass unit 1 a.m.u.= 1.661 · 10−27 kg = 931.5 MeV
Planck constant h = 6.626 · 10−34 J · s
reduced Planck constant � = h

2π
= 1.0546 · 10−34 J · s

fine structure constant α = µ0ce
2/(2h) = 7.297 · 10−3

Rydberg constant R = 1.0974 · 107 m−1

Compton wavelength of the electron λc = 2.426 · 10−12 m
Wien’s displacement law constant b = λmaxT = 2.8978 · 10−3 m · K

Astronomical constants

mass of the Earth ME = 5.978 · 1024 kg
mass of the Sun M� = 1.989 · 1030 kg

1Ideal gas at T = 273.15 K and 1 atm.
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mass of the Moon MM = 7.35 · 1022 kg
average radius of the Earth RE = 6.370 · 106 m
equatorial radius of the Earth R = 6.378 · 106 m
radius of the Sun R� = 6.96 · 108 m
radius of the Moon RM = 1.74 · 106 m
average Sun–Earth distance 1 A.U.= 1.496 · 1011 m
solar constant S = 1.370 · 103 W/m2

average acceleration of gravity on the Earth’s surface g = 9.81 m/s2

(bolometric) luminosity of the Sun L� = 3.826 · 1026 W

Air

density of air at 10◦C ρ = 1.247 kg/m3

density of air at 20◦C ρ = 1.205 kg/m3

specific heat of dry air at constant pressure cp = 1004 J · K−1 · kg−1

Fourier coefficient a = 2.25 · 10−5 m2/s
thermal conductivity at 27◦C k = 0.026 W · m−1 · (◦C)−1

speed of sound at 1 atm and 0◦C vs = 330 m/s

Water

density of freshwater at 20◦C ρ = 0.998 · 103 kg/m3

density of sea water at 20◦C ρ = 1.03 · 103 kg/m3

latent heat of fusion Lf = 3.34 · 105 J/kg = 79.7 cal/g
latent heat of vaporization Lv = 2.26 · 106 J/kg = 539 cal/g
coefficient of thermal expansion at 20◦C 2.10 · 10−4 (◦C)−1

specific heat at 25◦C 4187 J · kg−1 · (◦C)−1 = 1.00 cal/g
surface tension at 20◦C γ = 7.28 · 10−2 N/m
dynamic viscosity coefficient of freshwater at 20◦C η = 1.00 · 10−3 Pa · s

Conversion factors

radian 1 rad = 57.3 ◦

Armstrong 1
◦
A = 10−10 m

fermi 1 fm = 10−15 m
foot 1 ft = 0.3048 m
arcminute 1’ = 2.909 · 10−4 rad
arcsecond 1” = 4.848 · 10−6 rad
electronvolt 1 eV = 1.602 · 10−19 J
kilowatthour 1 kWh = 3.6 · 106 J
kilocalorie 1 Kcal = 4187 J
calorie 1 cal = 10−3 Kcal = 4.187 J
British thermal unit 1 BTU = 1.055 · 103 J
horsepower 1 HP = 746 W
atmosphere 1 atm = 1.01325 · 105 Pa
torr (millimeter of mercury) 1 torr = 133.3224 Pa
foot of water2 1 f.w. = 2.989 · 103 Pa

2At 4◦C.
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gallon (UK) 1 gl = 4.546 · 10−3 m3

gallon (US) 1 gl = 3.785 · 10−3 m3

gauss 1 gauss = 10−4 T





Appendix B
Mathematical identities

Trigonometric identities

tan θ ≡ sin θ

cos θ

cot θ ≡ (tan θ)−1

sec θ ≡ (cos θ)−1

csc θ ≡ (sin θ)−1

sin (α ± β) = sin α cos β ± sin β cos α

cos (α ± β) = cos α cos β ∓ sin α sin β

tan (α ± β) =
tan α ± tan β

1 ∓ tan α tan β

cos α cos β =
1
2

[cos (α + β) + cos (α − β)]

sin α sin β =
1
2

[cos (α − β) − cos (α + β)]

sin α cos β =
1
2

[sin (α + β) + sin (α − β)]

sin2 θ + cos2 θ = 1

sin (2θ) = 2 sin θ cos θ

cos (2θ) = cos2 θ − sin2 θ

tan (2θ) =
2 tan θ

1 − tan2 θ

cos2 θ =
1 + cos (2θ)

2

sin2 θ =
1 − cos (2θ)

2
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Hyperbolic identities

sinh x ≡ ex − e−x

2

cosh x ≡ ex + e−x

2

tanh x ≡ sinh x

cosh x

coth x ≡ (tanh x)−1

sinh (α ± β) = sinh α cosh β ± sinh β cosh α

cosh (α ± β) = cosh α cosh β ± sinh α sinh β

tanh (α ± β) =
tanh α ± tanh β

1 ± tanh α tanh β

cosh2 x − sinh2 x = 1

sinh (2x) = 2 sinh x cosh x

cosh (2x) = cosh2 x + sinh2 x

tanh (2x) =
2 tanh x

1 + tanh2 x

cosh2 x =
1 + cosh (2x)

2

sinh2 x =
cosh (2x) − 1

2

Error function

The error function is defined as

erf (x) ≡ 2√
π

∫ x

0
ds e−s2

and satisfies the properties

erf(0) = 0, erf (+∞) = 1, erf (−x) = −erf(x).

The complementary error function is defined as

erfc(x) ≡ 1 − erf(x).



Appendix C
Differential operators in various coordinate
systems

Gradient

The gradient of a function f(
x) in Cartesian coordinates (x, y, z) is


∇f =
(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

The expression of the gradient of f in cylindrical coordinates (r, ϕ, z) is


∇f =
∂f

∂r

er +

1
r

∂f

∂ϕ

eϕ +

∂f

∂z

ez.

The gradient of f in spherical polar coordinates (r, θ, ϕ) is


∇f =
∂f

∂r

er +

1
r

∂f

∂θ

eθ +

1
r sin θ

∂f

∂ϕ

eϕ.

Divergence

The divergence of a vector field 
a(
x) = (ax, ay, az) in Cartesian coordinates is


∇ · 
a =
∂ax

∂x
+

∂ay

∂y
+

∂az

∂z
.

The expression of the divergence of 
a in cylindrical coordinates is


∇ · 
a =
1
r

∂

∂r
(rar) +

1
r

∂aθ

∂θ
+

∂az

∂z
.

The divergence of 
a in spherical polar coordinates is


∇ · 
a =
1
r2

∂

∂r

(
r2ar

)
+

1
r sin θ

∂

∂θ
(aθ sin θ) +

1
r sin θ

∂aϕ

∂ϕ
.
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Laplacian

The Laplacian (or Laplace operator) applied on a function f(
x) in Cartesian coordi-
nates is

∇2f =
∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2 .

The expression of the Laplacian of f in cylindrical coordinates is

∇2f =
1
r

∂

∂r

(
r

∂f

∂r

)
+

1
r2

∂2f

∂ϕ2 +
∂2f

∂z2 .

The Laplacian of f in spherical polar coordinates is

∇2f =
1
r2

∂

∂r

(
r2 ∂f

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1
r2 sin2 θ

∂2f

∂ϕ2 .

d’Alembert’s operator

The d’Alembert operator (Dalambertian) applied on a function f (t, 
x) is

f = ∇2f − 1
v2

∂2f

∂t2
.

Differential operator identities


∇ (fg) = f 
∇g + g
∇f


∇ · (f
a) =
(


∇f
)

· 
a + f 
∇ · 
a

∇ × (f
a) =

(

∇f

)
× 
a + f 
∇ × 
a


∇ · 
∇f = ∇2f


∇ ×
(


∇f
)

= 0


∇ ·
(


∇ × 
a
)

= 0


∇ ×
(


∇ × 
a
)

= 
∇
(


∇ · 
a
)

− 
∇2
a (Cartesian coordinates only)


∇
(

a ·
b

)
= 
a ×

(

∇ ×
b

)
+

(

a · 
∇

)

b +
b ×

(

∇ × 
a

)
+

(

b · 
∇

)

a


∇ ·
(

a ×
b

)
= 
b ·

(

∇ × 
a

)
− 
a ·

(

∇ ×
b

)


∇ ×
(

a ×
b

)
= 
a

(

∇ ·
b

)
−
b

(

∇ · 
a

)
+

(

b · 
∇

)

a −

(

a · 
∇

)

b
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