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To Tatyana (1946–2000)



Difficulty in imagining how theory can adequately describe nature is
not a proof that theory cannot.

—Robert MacArthur (1930–1972)

Neruda: Le metafore? . . . Quando parli di una cosa, la paragonono
ad un’ altra. . . .
Postino: É semplice! Perchè questo nome é cosí complicato?

[Neruda: Metaphors? . . . It’s when you speak of one thing, com-
paring it to another. . . .
Postino: That’s simple! Why do they use such a complicated name?]

—Dialogue between the characters Pablo Neruda
and the postman in the movie Il Postino (1995)



Preface

The main focus of this book is the presentation of the “inertial”
view of population growth. This view provides a rather simple
model for complex population dynamics, and is achieved at the
level of the single species, without invoking species interactions.
An important part of our account is the maternal effect. Invest-
ment of mothers in the quality of their daughters makes the rate
of reproduction of the current generation depend not only on the
current environment but also on the environment experienced
by the preceding generation.
The inertial view is a significant departure from traditional

ecological theory, which has been developing within the Lotka–
Volterra framework for close to a century. One way to see this
departure is to focus attention away from the growth rate as the
sole variable responding to the environment, and toward “ac-
celeration,” or the rate of change of the growth rate between
consecutive generations. More precisely, our suggestion is that
population growth is a second-order dynamic process at the
single-species level, and the second-order character is not nec-
essarily the result of species interactions. If the inertial view of
population growth proves correct, a great deal of current theory
on population growth will need to be rethought and revised.
As will become clear, our inspiration for looking at ecology

in the way we do comes from similar moves in physics—in par-
ticular, the move from Aristotelian to Newtonian physics. So let
us say a few words in defense of our apparent “physics envy.”
Many biologists and ecologists find deference to physics, as the
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Alfred James Lotka (1880–1986)

science to which all other sciences must aspire, somewhat dis-
tasteful. Those who find this deference to physics unreasonable
are generally concerned by the inappropriateness of the meth-
ods of physics to other branches of science. They suggest that
biology, for example, would be better served if biologists did
biology instead of trying to mimic the methods and successes
of physics. We agree that the methods of the various sciences
are quite different and that, in general, the methods of physics
are of little use to biologists. But this does not mean that the
various branches of science cannot take inspiration from one
another.



Preface ix

Vito Volterra (1860–1940)

The inspiration here is metaphorical, not mechanical. We see
an abstract connection between a certain innovation in the devel-
opment of physics around the time of Galileo and an analogous
way to approach population growth. We are not suggesting any
mechanistic similarities between the ways in which populations
grow and the ways planets move. At the same time, we are not
trading in mere metaphors. Although the inspiration for looking
at ecology in the way we do comes from metaphorical connec-
tions with physics, these connections can, and will, be spelled
out via the mathematics employed in the respective theories we
present.



x Preface

Down through the ages, metaphors and analogies have been a
common device for generating new and fruitful ideas in science.
We hope, in the end, you will agree with us that the predominant
analogy of this book—the analogy between inertial population
growth and classical mechanics—is, at the very least, interesting.
This analogy helps motivate and shed light on a fruitful way of
thinking about population growth. Of course, eventually, the
inertial theory of population growth needs to stand on its own
merits, and we hope we have contributed to that enterprise as
well, but at the same time, we feel no shame in revealing the
more poetic beginnings of our thinking on this subject.
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One

On Earth as It I s in the Heavens

Populations grow and decline; planets roll relentlessly around the
sun. On the face of it, planets and populations have nothing to
do with one another. Indeed, they are studied by completely
different branches of science. Planets are studied by a branch of
physics—astronomy; populations of living organisms are studied
by a branch of biology—population ecology. And these two dis-
ciplines have little in common. Any suggestion that one theory
describes both planetary motion and population growth is surely
misguided.
There are some similarities between planets and populations,

however. For a start, the laws of nature are meant to hold ev-
erywhere in the universe. We expect planets in far-off galaxies
to be governed by the same natural laws as our own Earth. And
we expect theories of population growth to hold for whatever
strange creatures inhabit those far-off planets, just as these theo-
ries hold for rabbits, bacteria, and humans here on Earth. Second,
both planets and populations are capable of periodic behavior.
Planets trace out elliptical orbits around the sun and (more or less)
repeat these orbits, taking (more or less) the same period of time
to complete each cycle. The abundance of certain populations
can also rise and fall in a periodic way, so that the number of
organisms cycles between extreme values over some (more or
less) fixed period of time. Of course, the mechanisms in each
case are totally different, but at some level there are striking sim-
ilarities between planets and at least certain types of populations.
In fact, mathematically, the differences between orbits and cycles

3
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are rather minor. This suggests that we may find developments in
one area of science that provide useful hints for new ways to look
at another. In particular, we might find useful clues in physics
for the appropriate conceptual framework to adopt in population
ecology. It is this latter suggestion that we explore in this book.
We should make it absolutely clear, however, that we do not

think that populations literally grow in the same way that bodies
move. Indeed, that doesn’t even make sense. What we propose
is that an understanding of why certain developments in physics
were so successful will help us to make analogous moves in the
advancement of population ecology. We use planetary orbits as
a central and important metaphor to guide us in thinking about
such matters. Our ultimate aim, however, is to outline some of
the recent developments in population ecology and to suggest
that we may be on the verge of discovering some general prin-
ciples governing population growth.

1.1 How Planets Move

As we’ve already mentioned, our central analogy is that of plan-
etary orbits. In particular, we take our lead from certain de-
velopments in physics around the 17th century. An extremely
important change of perspective was heralded by Galileo and
Newton, who saw uniform motion as the default case. (We will
call this the inertial view.) The received wisdom at the time was
the Aristotelian view that rest was the default state of all bodies.
So, according to Aristotle, if a body was in motion, there must be
a force acting upon it. According to the inertial view, however,
a body in motion would remain in motion (because of inertia)
unless acted upon by a force. On the Aristotelian view, forces
bring about velocities, whereas on the inertial view, forces bring
about changes in velocities (or accelerations).
Nowadays it is hard to appreciate just how radical was the

introduction of the inertial view of Galileo and Newton. The
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Galileo–Newton insight was particularly astonishing because
their view seemed to fly in the face of almost all of our every-
day experience. After all, even on perfectly flat ground, moving
balls come to rest unless sustained by some external force. Rest
really does seem to be the natural state of things. But now think
about some of the things that do not seem to have a tendency
to slow down, the planets, for instance. How is it that planets
keep orbiting the sun? According to the Aristotelian view, they
must be sustained by some force. Moreover, this force must be
constantly changing direction so as to keep them orbiting. They
need, as it were, “the hand of God.”
According to the inertial view, planets do not need any ex-

ternal force to keep them moving, but their constant change
in velocity does need some explanation. The point is simply
that, although almost all earthly phenomena seemed to support
Aristotelian physics, a couple of key examples, such as the orbits
of the planets, were enough to cast doubt on the received view.
The new inertial view made more sense of certain, somewhat
rare, phenomena, but a story was required to explain why the
world appeared as though it were Aristotelian. The latter, of
course, was a story about frictional forces: on Earth, friction is
so prevalent that moving bodies need external forces to sustain
their motion, not because rest is the natural state, but because
bodies are subject to frictional forces and the external forces must
be applied to counter these.
There are a couple of valuable, general lessons to be learned

from this. The first is that it is very important to establish what the
default theory should be—what happens when nothing happens.
The default position, however, is not always the obvious choice.
Rest seems like a much more intuitive state for bodies with
no forces acting upon them. The real default state, somewhat
surprisingly, turns out to be uniform motion, of which rest is
only one special case. The second lesson is that sometimes it
can be extremely fruitful to focus attention on the exceptions
and anomalies. After all, truly inertial motion (i.e., frictionless
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motion) is hard to find. Nevertheless, it is precisely these rare
cases, such as planetary motion, that give us the greatest insights
into the laws of mechanics. It is an interesting question whether
we would have ever discovered Newtonian physics if we never
saw other planets—if we lived on a planet like Venus, for instance,
with constant, thick cloud cover.

1.2 How Populations Grow

Now let’s consider theways populations grow. Populations whose
abundances are cyclic are a minority, but these minority cases, we
believe, tell us something about the general theory of population
growth. In this way, cycling populations in ecology are verymuch
like planetary orbits for physics.
Suppose that we wish to devise a theory about the abundance

of some population of rabbits. Clearly, there are two ways the
number of rabbits might increase: births and immigration. Simi-
larly, there are twoways for the population to decrease: deaths and
emigration.We can therefore say that the population at any given
time is equal to the initial population plus all new immigrants
and all new births, minus all emigrants and deaths. Because it is
the birth–death process we are most interested in, let’s suppose
that there are no immigrants and no emigrants. Let’s suppose,
for instance, that the population of rabbits is on an island and
that there is no way on or off this island. The only way that new
rabbits can appear is by reproduction, and the only way they can
disappear is by death. The number of rabbits at any time, then,
is equal to the initial population plus births, minus deaths.
So far, so good. But what can we say about the births and

deaths? Well, one thing is clear: in general, the number of births
increases with the number of rabbits, and similarly for the number
of deaths. For example, there are more human births and deaths
in theUnited States than in Australia (all other things being equal)
simply because there are more people in the United States than in
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Australia. After all, rabbits come from rabbits, and humans come
from humans—living organisms do not spontaneously generate.
So let’s consider the birth and death rate. That is, let’s consider
the average number of births and deaths per rabbit.
Let’s suppose that the population abundance at some initial

time t0 is N (0). At some later time t1 the population will be
equal to the number at the earlier time plus all the births in the
interim period minus all the deaths in this same period. Instead
of simply speaking of the number of births and deaths, it is often
more fruitful to consider the rate of births and deaths. This is the
number of new births and deaths (respectively) in a given unit of
time divided by the number of individuals alive at the time. For
our present purposes, we are not particularly interested in the
fact that the change in population consists of births and deaths.
We can combine these to get a single growth rate R. This is the
average increase or decrease in the population in a given time
interval per individual.We can now express the population size at
time t1 as the growth rate R times the number of individuals alive
at t0. We can calculate the population at later times by iterating
this process. The population at some time t can be calculated via
the following fundamental formula:

N (t) = N (0)Rt . (1.1)

[This simply says that the population size at t time steps is equal
to the initial population N (0) times the growth rate R raised to
the power of t.]
Equation (1.1) is central to population ecology and describes

exponential or Malthusian growth, after Thomas Malthus (1766–
1834). It describes the default situation for populations—how
they behave in the absence of any disturbing factors. The im-
portant question remains, however, of how external “forces” act
on this background state. Do environmental forces affect the per
capita growth rate directly, or do they affect the rate of change
of this growth rate (i.e., the “acceleration” of the population
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abundance)? It is our view that it is the latter, and we defend
and support this view in the remainder of this book. In arguing
for this view, we will take the advice from the preceding section
very seriously: special insights may be gleaned from rare cases.
Here the rare cases are cycling populations—populations whose
abundance varies in a periodic fashion.

1.3 Metaphors and the Language of Science

Now that we have outlined the connection that we’re interested
in exploring between population growth and planetary motion,
let us say a little more about what this connection amounts to and
why we expect it to be fruitful. After all, by our own admission,
the connection is merely an analogy or metaphor. But such a
connection, we suggest, is not trivial.
In poetry, metaphors challenge us to see connections and

make associations that are not otherwise apparent. In science,
metaphors and analogies play exactly the same role. They allow
us to explore connections in nature that were not apparent be-
fore. For instance, when James Clerk Maxwell (1831–1879) was
trying to discover the fundamental laws of electromagnetism, he
relied on an analogy with Newtonian gravitational theory—both
gravitation and electromagnetism have inverse square laws, for
instance. The result of this analogy was the postulation of a prin-
ciple of conservation of charge. Without Maxwell’s use of such
an analogy, the arrival of modern electromagnetic theory would
almost surely have been greatly delayed. Indeed, use of analogy is
common in science. Another to employ analogical thinking was
Charles Darwin (1809–1882). Darwin, it seems, was impressed
by certain analogies between economics and biological systems.
The purpose of such metaphorical connections across

branches of science is not to findmechanistic similarities. Rather,
its purpose is to generate research programs in one area of science
that are motivated by similar developments in another area. In
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Thomas Malthus (1766–1834)

our case, we use analogies between mechanics and ecology to
generate fruitful hypotheses for ecology. Ultimately, these hy-
potheses need to refer to ecological causal mechanisms and must
be tested by ecological methods, against ecological data.

1.4 Inertial Population Growth

According to our view, populations are inertial. That is, popula-
tions tend to grow according to the Malthusian law (i.e., expo-
nentially), and the effect of an external force, such as a change in
environment, is to produce an “acceleration”—a rate of change
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in the per capita rate of change, in the abundance. In effect, this
means that population abundance does not respond immediately
to changes in the environment. Theremay be lags in the response.
Think of the way an inertial object such as a boat responds to
forces: trying to bring a boat to a complete standstill is very tricky
because you keep overshooting or undershooting the stationary
state. This is because of the delay brought about by inertia—
the boat “wants” to do what it was doing before. So, too, with
populations.
The primary reason for this inertia in population growth (on

the timescale of common interest, several generations), we be-
lieve, is the maternal effect. This is the phenomenon of “quality”
being transferred from mother to daughter, the idea being that a
well-nourished and healthy mother produces not only more off-
spring but healthier offspring. So, an individual from a healthy
mother experiencing a deteriorating environment will do better
and will be able to continue reproducing better than individuals
in the same environment not blessed with a healthy mother.
This means that the population abundance at any time is the
result of both the current environment and, to some extent, the
environment of the preceding generation.
An important test of any new theory is whether it is able to

explain what was not explained before, and whether it is able
to establish new connections between theories. In chapter 2,
we review some of the results that we attempt to explain in
following chapters. We also discuss the important question of
whether ecology has laws.



Two

Does Ecology Have Laws?

It is often claimed that ecology, unlike physics, does not have laws.
In physics we are able to identify various laws such as Newton’s
law of gravitation and Ohm’s law of electricity. These laws state
the relationship between two or more quantities: Newton’s law
specifies the relationship between gravitational force and mass,
and Ohm’s law specifies the relationship between potential dif-
ference, electric current, and electrical resistance. It is possible to
state these relationships so precisely because the physical world
of massive bodies and electric currents is relatively simple, or so
this popular line of thought goes. Ecology, on the other hand,
is messy. We cannot find anything deserving of the term law,
not because ecology is less developed than physics, but simply
because the underlying phenomena are more chaotic and hence
less amenable to description via generalization.
We disagree with this line of thought. In this book we are

concerned with uncovering relationships in ecology, some of
which, we believe, deserve to be called laws. Before we embark
on such a task, however, we need to see what’s wrong with the
line of thought presented in the preceding paragraph; otherwise,
we would be simply embarking on a wild goose chase. That
is, we need to at least make a case for the possibility of laws
in ecology. We begin by presenting a number of candidates—
the so-called allometries. We then present examples of laws in
physics. Then, once we have some examples at hand from both
ecology and physics, we turn to the more general question of
what natural laws are. The way we tackle this issue may seem

11
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somewhat indirect, but it turns out to be rather difficult to give
a complete and adequate account of what natural laws are. We
therefore look at examples of laws in order to get a “feel” for
them, before we discuss what we might expect a general account
of natural laws to look like. Then, once we understand more
about natural laws in general, we will be much better placed to
understand what laws of ecology might look like.

2.1 Ecological Allometries

We believe that there are some very good candidates for laws
in ecology. Indeed, in chapter 1 we’ve already presented one of
these—the law of exponential growth. For now, we’d like to
give a few examples of some ecological relationships we believe
deserve to be called laws. These relationships are both important
for later developments and of considerable interest in their own
right. We have in mind the so-called allometries of macroecology
(see Calder, 1984, for details; see also a very interesting collec-
tion edited by Brown and West, 2000). These are remarkable
statistical regularities that hold between various biological and
ecological quantities. We present a few of these in the order of
their discovery.

Kleiber Allometry

The first allometry was noticed by the biologist Max Kleiber
in 1932. Kleiber studied the relationship between the size of
animals of various species and their rate of metabolism, and he
made a remarkable discovery: basal metabolic rate (i.e., calories
“burned” while at rest) is proportional to a 3/4 power of body
weight. This means that if one animal is larger than a second by a
factor of 10,000, the first animal will have a basal metabolic rate
larger than the second by a factor of 1,000. This relationship has
now been confirmed with a very high degree of precision and
has been found to hold for animals as small as shrews and up to
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Figure 2.1. Kleiber allometry between body size and metabolism (from
Brown and West, 2000, p. 6, modified from Hemmingsen, 1960). Displayed
in three functional groups: unicellular organisms, poikilotherms
(cold-blooded vertebrates and invertebrates), and homeotherms
(warm-blooded birds and mammals). The data for each functional group
have been fitted with a line corresponding to (mass)3/4. That is, the lines
for each group are parallel, having different intercepts and the same slope.
Reprinted with permission from Oxford University Press.

the largest animals living. In fact, similar relationships have been
found to hold for organisms as tiny as bacteria (see figure 2.1).
It is not surprising that there should be some loose relationship

between metabolism and body size; indeed, it is not surpris-
ing that we should find that larger animals have a greater base
metabolic rate than do smaller animals. After all, larger creatures
require more energy input to maintain their various bodily func-
tions. What is surprising is that there should be some relationship
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Tom Michael Fenchel (b. 1940)

that holds across species and that this relationship should be that
metabolism is proportional to 3/4 power of body mass.
That the relationship should hold (though admittedly only

approximately) across species is surprising because it would seem
possible, at least, that some species would be more or less efficient
in using their energy. For example, it would seem possible that an
animal the size of a dog could be so efficient in using its energy
that its basal metabolic rate would be only marginally higher
than some inefficient mouse-sized creature. Kleiber’s allometry
tells us that there are no cases like this in nature.



Does Ecology Have Laws? 15

John Damuth (b. 1952)

That the relationship should involve the 3/4 power is per-
haps the most surprising aspect of Kleiber’s allometry. After
all, animals take in energy through two-dimensional surfaces
(e.g., stomach lining), and this energy is used to maintain three-
dimensional bodies. One would thus expect that the relationship
of metabolism to body size would be one involving a 2/3 power.
Indeed, this is what Kleiber and others expected to find, if any-
thing. Although the data are not so precise as to support 3/4 as
the exact power (no data are that precise), it is very clear that the
power is not 2/3 and that it is close to 3/4.
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Figure 2.2. Allometry between generation time and body mass (based on
data for 29 mammals from Millar and Zammuto, 1983). The equation for
this allometry is (generation time) = 1.74× (body mass)0.27.

Generation-Time Allometry

This allometry was suggested by various authors but was made
widely known by J. T. Bonner in 1965 in his book Size and Cycle.
It was noted that the maturation time of organisms of different
sizes was also related to their size. More precisely, the suggestion
is that maturation time is proportional to a 1/4 power of body
weight. This means that an organism 10,000 times bigger than
another will take 10 times longer to mature to reproduction age.
Others have considered overall longevity and a variety of other
life-history timings and obtained similar results (see figure 2.2).
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Figure 2.3. Fenchel’s allometry between rmax (maximal rate of increase) and
body mass for 42 species (ranging from a phage to Bos taurus, an extinct
ancestor of cattle; reprinted from Charnov, 1993, p. 116). The equation for
this allometry is rmax = constant x (body mass)−0.26, where the constant has
different values for each group (unicellular, poikilotherms, homeotherms).
Reprinted with permission of Oxford University Press.

Fenchel Allometry

In 1974, Tom Fenchel proposed that the maximal rate of re-
production of species was also related to body size. This time
the relationship seemed to be that the maximal reproduction
rate declines with a power of 1/4 of body weight. So an animal
10,000 times as big as another will only be able to reproduce
1/10 as fast (see figure 2.3).

Damuth Allometry

In 1981 John Damuth noticed that the average density of mam-
mals and birds in their natural environment was also a function
of body weight. Damuth found that the density declined as a 3/4
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Figure 2.4. Damuth’s allometry between body mass (g) and population
density (number per km2) for 564 mammalian species (after Damuth, 1987).
The equation for this allometry is density = 104 × (body mass)−0.76.

power of body size. So, for example, if one mammal is larger than
another by a factor of 16, typically there will be 1/8 as many of
them per unit area (see figure 2.4).

Calder Allometry

In 1983, William Calder hypothesized that the period of os-
cillations of animal species’ numbers, in those that oscillate, is
also related to body size. The relationship is that the period of
oscillation is proportional to 1/4 power of body weight. So, for
example, if one animal is 10,000 times larger than another, the
populations of the first will cycle (if they cycle) with a period 10
times as long as the second (see figure 2.5).
There is also an interesting allometric relationship apparently

closely related to the Calder allometry: all physiological and life-
history-related timings such as heart beat, maturation time, and
the like, are proportional to 1/4 power of body weight. It may
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Figure 2.5. Calder’s allometry, the relationship between body mass and
population cycle period, for 41 species of mammals and birds (from Peterson
et al., 1984). Each point represents one species (data for each species averaged
for all populations, ranging from 1 to 19). Both body mass and the period
scales are logarithmic. Note that a cycle period is expressed here in years, not
in generations. Periods of cycles expressed in units of generation times are
discussed in section 4.2. The 95% confidence interval for the predicted cycle
period is shown. Reprinted with permission of Science.

be that the Calder allometry is a result of this more general life-
history allometry.
As we’ve already mentioned, the Kleiber allometry is remark-

ably accurate over an extraordinary range of body sizes. The
others are less accurate, but nevertheless, in each case, there is
clear evidence of the relationship described.
It is also worth mentioning a few consequences of these al-

lometries. First, it follows from the generation-time and Fenchel
allometries that the lifetime reproduction of typical individuals is
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William Calder (1934–2002)

independent of body size. That is, elephants and rabbits produce
roughly the same number of surviving offspring over their en-
tire lives. Next, it follows from the generation-time and Kleiber
allometries that metabolism per lifetime is proportional to body
size. Finally, it follows from the Damuth and Kleiber allometries
that the total metabolism per unit of habitat is, crudely, the same
across species. That is, the metabolism of a square mile of horses
is the same as the metabolism of a square mile of mice.
Perhaps the most surprising thing about all the allometries is

that there is a relationship at all. After all, why should there be any
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relationship between metabolism and size or between size and
population density? What is the explanation of these allometries?
And, in particular, what is the explanation for the recurring 1/4
and 3/4 powers? The bottom line is that no one knows. There
are various explanations for the 1/4 and 3/4 powers that range
from fractal geometry (Southwood, 1976; West et al., 1999),
to physiology, to evolution; but none has managed to satisfy all
ecologists. The relationship between the maximum growth rate
and body size expressed in the Fenchel allometry is likely to
have a physiological explanation, based on a more fundamental
metabolism allometry (Kleiber). If reproduction is looked at as
any other physiological process, the rate has to be crudely pro-
portional to metabolism per unit weight. This may explain the
negative 1/4 power relation of maximum reproduction rate to
body size as (body size)3/4/body size = (body size)−1/4.
It’s fair to say, however, that a satisfactory explanation of these

and other allometries is something of the “holy grail” of current
macroecology. Later in this book, we offer an explanation of
some of these, but for now, we continue our exploration of the
question of whether ecology has laws. To do this, we need to
consider the question of what laws are, in general. So, by way of
example, we consider some laws from physics.

2.2 Kepler’s Laws

Let’s start with a couple of laws from physics that bear similarity
to the ecological allometries discussed in section 2.1. The laws
of physics we have in mind were discovered by Johannes Kepler
(1571–1630). By painstaking analysis of data collected by Tycho
Brahé (1546–1601), Kepler recognized certain relationships in
the geometry of the orbits of the planets. These relationships are
now known as Kepler’s three laws of planetary motion:
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Johannes Kepler (1571–1630)

Kepler’s Laws

1. The orbit of each planet is an ellipse with the sun at one
of the foci (see figure 2.6).

2. Each planet orbits the sun such that the radius vector
connecting the planet and the sun sweeps out equal areas
in equal times (see figure 2.7).

3. The squares of the periods of any two planets are pro-
portional to the cubes of their mean distances from the
sun.

As it turns out, these laws hold for any planet, and indeed,
they also hold for the moons of planets. At the time that Kepler
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Figure 2.6. Ellipse. The trajectory of a planet around the sun is an ellipse.
This is a figure drawn by connecting a fixed length of string to two fixed
points (foci). The sun is located at one of the two foci.

proposed these laws, there was no explanation of why they should
hold—they were simple brute facts about the way planets and
moons behave.
It will serve as a useful comparison to consider another candi-

date for a law from around the same time as Kepler: the Titius–
Bode law. This law specifies the distance from the sun of each
planet, based on the planet’s order in the sequence of planets
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Figure 2.7. Kepler’s third law of planetary motion. The squares of the
planets’ orbital periods are proportional to the cubes of their average distance
from the sun. Distances are shown in astronomical units (au), where one au is
the average distance of Earth from the sun.

(from closest to the sun to farthest). The main point to note is
that the formula for deriving the distances is based purely on
observation of what the distances happen to be. The formula has
no independent motivation and really is quite ad hoc.

Titius–Bode Law

The distance of each planet from the sun (measured in astro-
nomical units—the mean distance between Earth and the sun)
is given by 0.4 + 0.3N , where N is taken from the sequence
0, 1, 2, 4, 8, . . . , and the distance of the nth planet from the
sun is calculated using the nth term in the sequence. So, for
example, Venus is the second planet from the sun, so N is 1, and
the Titius–Bode formula gives us Venus’s distance from the sun
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as 0.4 + 0.3 × 1 = 0.7. This agrees pretty well with the actual
distance. Indeed, this law holds within a few percent for the
seven innermost planets (which were all that were known at the
time of Titius and Bode; the law was posited by Titius in 1766).
This law also predicted the largest of the asteroids (or planetoid),
Ceres, at 2.8 astronomical units.
Note that the relationships described by both Kepler’s laws and

the Titius–Bode law are only approximate, and neither offers an
explanation for the relationship in question. There is, however,
a huge difference between the Kepler laws and the Titius–Bode
law: Kepler’s laws are now underwritten by Newton’s theory
of gravitation. Indeed, all three of Kepler’s laws can be derived
from the gravitational inverse square law ofNewton’s theory. The
Titius–Bode law has no such more general theory to underwrite
it, and it is now considered no more than an interesting historical
curiosity. Indeed, the question of why certain planets are the
distance they are from the sun is no longer even thought of as
an interesting question—it’s seen as simply a matter of initial
conditions.
Our main point is that Kepler’s laws describe certain relation-

ships that hold for the orbits of the planets and planetary moons.
Why these relationships hold is not explained by Kepler’s laws—
this came later with Newton’s theory of gravitation. The Titius–
Bode law, at the time of its postulation, shared whatever virtues
Kepler’s laws enjoyed: it was reasonably (although not perfectly)
accurate; it was predictive (it predicted the asteroid belt) although
not explanatory. The difference between these two cases shows
that distinguishing a law of nature from a mere regularity is no
easy affair.
Which of our ecological allometries will achieve the status of

a law of nature, as Kepler’s laws have, and which will be seen
as mere regularities, such as the Titius–Bode law, remains to be
seen. We believe that some of the allometries, at least, have an
underlying explanation and may be good candidates for lasting,
theoretically sound laws of nature.
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2.3 What Is a Law of Nature?

There has been a great deal of discussion lately on the question
of whether biology and ecology have laws (e.g., Cooper, 1998;
Lawton, 1999; Murray, 1992, 1999; Quenette and Gerard, 1993;
Turchin, 2001). Unfortunately, a great deal of this discussion has
suffered because of a lack of clarity about what a natural law is.
As we suggested above, giving a clear account of laws of nature
is not easy, which may explain why the important question of
what they are has been mostly overlooked by those involved in
the debate so far. We are a little more foolhardy than those who
have gone before. In this section, we attempt to clarify what a
law of nature is.
Let us clear up a fewmisconceptions about natural laws and the

role they play in science. The first misconception about natural
laws is that they must be exceptionless. But requiring them to be
exceptionless is far too stringent; if we require laws to be excep-
tionless, there would be no laws, or very few—even in physics.
Galileo’s law that all massive bodies fall with constant accelera-
tion irrespective of their mass has many exceptions: snowflakes
fall quite differently from hailstones and with radically different
accelerations. Or consider the law of conservation of momen-
tum: the momentum (i.e., the mass of the system multiplied by
its velocity) is constant. In particular, consider the collision of
two billiard balls. The momentum of the system, according to
the law in question, will be the same after the collision as before.
But this is not the case; the momentum of the system after the
collision is always slightly less than the momentum before. Or
consider Kepler’s first law. Not only does this law have excep-
tions, but every planet is an exception. The orbit of any planet
is approximately an ellipse but because of disturbing factors (e.g.,
gravitational influences from other planets and changes in mass
of the planet and the sun), it is not exactly an ellipse. The point
is that if natural laws are supposed to be exceptionless, it would
seem that there are no laws.
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Now it’s not too difficult to give an account of why these laws
fail. In the first two cases, we’ve neglected the relevant frictional
forces: the effects of air resistance on snowflakes and hailstones;
and the frictional forces between the billiard balls and the table. In
the case of Kepler’s law, we neglected to account for disturbing
factors in planetary motions. This suggests that the view that
natural laws should be exceptionless can be salvaged if we simply
limit the scope of the laws in question. So, instead of the standard
statement of the law of conservation of momentum, we limit it to
cases where there is no friction. Now the law has no exceptions,
but it also fails to be of any use, for the simple reason that there
are no zero-friction environments. A law, thus construed, tells
us nothing about the momenta of billiard balls and the like. In
particular, it fails to account for why billiard balls almost conserve
momenta in their collisions.
The appeal to idealized setups such as frictionless environ-

ments and two-body problems seems to be on the right track,
however. Such idealizations were called limit myths by the phi-
losopher Quine (1960): they are myths because such setups are
impossible. Nevertheless, they tell us about what holds in the
idealized limit. So a frictionless plane is the limit of a series of
real planes, each with less friction than the one before. How such
limit myths are to be used in articulating laws of nature is a con-
tentious issue, but it is clear that something like them is needed.
Perhaps, as some suggest, laws of nature describe the dispositions
physical or biological systems have to behave in certain ways in
these idealized setups; in real setups, the physical or biological
systems have the same tendencies but the behavior is slightly dif-
ferent because of the interaction of several different tendencies.
What is clear, however, is that limit myths are important for our
articulation and understanding of laws of nature. In any case, laws
of nature (if there are any) are not exceptionless; that’s all we’re
claiming here.
The next misconception about laws is that they should make

precise predictions, or, as Popperians are fond of putting it, laws
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should be falsifiable. The idea is that a law L should make some
very specific prediction P about what will happen in some setup
S. If, in circumstances S, we observe P, then L is (provisionally)
confirmed (or at least it lives to be falsified another day); if in cir-
cumstances S we do not observe P, then L has been falsified and
should be rejected. According to this simple falsificationist line,
what distinguishes science from nonscience (or pseudoscience),
such as astrology, is that the former but not the latter is falsifiable.
It would take us too far afield to rehearse the many (and in our

view, decisive) objections to the simple falsificationist account
of science. Suffice it to say that this model fails to account for
the holistic nature of confirmation (and disconfirmation), and it
finds few supporters among modern philosophers of science. As
Quine puts it, “Our statements about the external world face
the tribunal of sense experience not individually but only as a
corporate body” (Quine, 1980, p. 41). This point was made long
ago by Duhem (1954) and more recently by Quine (1980, 1995)
and Lakatos (1970). Oncewe appreciate this basic point about the
logic of scientific methodology, it turns out that no hypothesis
(or law) is strictly falsifiable in the sense presupposed by simple
falsificationism. We can always make adjustments elsewhere in
the theory (in what Lakatos called “the auxiliary hypotheses”)
to accommodate recalcitrant data.
Think of the way in which Newton’s law of gravitation was

saved from falsification in light of the aberrant behavior of the
orbit of Uranus. The auxiliary hypothesis adjusted was the one
concerning the number of planets (at the time, thought to be
seven). Once an eighth planet (Neptune) with suitable mass and
orbit was posited, not only was Newton’s law of gravitation saved
from falsification, but also the discovery of Neptune was taken by
most commentators to be one of the great achievements of New-
ton’s theory. But the simple falsificationist view has a hard time
accounting for such episodes because, according to one reading
of the simple falsificationists’ view, Newton’s law was falsified by
the orbit of Uranus, and that should have been that—the law
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should have been rejected. On another reading, Newton’s law
was not falsified because it could be protected from impending
falsification by making suitable adjustments elsewhere. But such
adjusting is an option for protecting any law, so it’s hard to see
how any law could be falsified.
The point we’re making here is simply that a single law typi-

cally does not make predictions on its own; a great deal of extra
theory and facts about initial conditions are required to make
any predictions at all, let alone precise predictions. So, for exam-
ple, although Newtonian gravitational theory makes some rather
precise predictions about Halley’s comet, for example, it makes
much poorer predictions about the trajectories of the smaller
asteroids in the asteroid belt (because the latter involves knowing
a solution to the intractable N-body problem). Although there’s
no denying that predictive power in a theory is a virtue, it should
not be seen as the sole responsibility of the laws to provide this.
The final misconception about laws is that they are clearly

distinguishable from mere regularities. But this is hard to main-
tain, as the examples of Kepler’s laws and the Titius–Bode law
demonstrate. One way to try to distinguish laws from regulari-
ties, however, is to appeal to explanatory power. The suggestion
is that natural laws, but not mere regularities, are explanatory.
That is, we assume that appeal to a law will explain the regular-
ity of the events in question. So, for example, Newton’s law of
gravitation does not merely predict the gravitational pull of Earth
on the moon, it explains it. But this line of thought is also hard
to sustain. We all know that explanation must end somewhere,
and typically it ends with the laws of nature. In a very important
sense, then, such laws do not explain anything—theymerely state
the fundamental assumptions of the theory.
Reconsider our earlier billiard-ball example. If two billiard

balls of the same mass collided such that before the collision one
is moving and the other is stationary and after the collision the
first is stationary and the second is moving, why is it that the
velocity of the second ball after the collision is the same as the
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velocity of the first before the collision? Because of the conser-
vation of momentum, of course. The law does seem to explain.
But this appearance is only superficial. The law of conservation
of momentum really just describes the situation; we are none
the wiser as to why the two velocities are the same after hearing
the story about the conservation of momentum. To see this point
from a slightly different angle, consider the question,Why is mo-
mentum conserved? We really don’t have an explanation of the
billiard ball velocities until we have an adequate explanation of
the conservation of momentum. It seems, then, that fundamental
laws need not be explanatory—indeed, it seems that fundamental
laws of nature are an appropriate place for explanation to end and
so cannot be explanatory.
We take the above discussion to show that whatever laws of

nature are, we should not expect them to be exceptionless, we
should not expect them to always be predictive, and we should
not expect them (in general) to be explanatory or to distinguish
cause and effect. This is not to say that they never have any of
these features. Indeed, we might even prefer laws that do have
some or all of these features. Our point is simply that these cannot
be necessary conditions for being a natural law.
We will return to the matter of how one goes about selecting

the best theory (or hypothesis) in section 8.2, but very briefly,
the matter comes down to choosing theories that exhibit certain
aesthetic virtues. The most common such virtue is simplicity,
the idea being that if two theories conform equally well with the
data, we should prefer the theory that accommodates the data
in the simplest way, or is simpler in its underlying assumptions.
Although such appeals to simplicity are commonplace in science,
they are not easy to justify and they are not without their critics.
We will have more to say about such matters in the final chapter.

2.4 Laws in Ecology

Now that we have a better understanding of laws in general, let’s
return to the question of whether there are laws in ecology.
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It seems that a great deal of the dissatisfaction with the can-
didate laws in ecology is that they are not exceptionless; most
laws in ecology are fairly inaccurate in the sense that they have
many exceptions, or they only hold approximately. Consider, for
example, the Kleiber allometry. The relationship claimed here,
although the most accurate of all the known allometries, is only
approximate (most data points do not lie exactly on the line in
the graph, and some are quite a way from the line). But why
should such inaccuracies rule this out as a candidate for a law of
ecology? After all, we’ve already argued that most laws fail to be
exceptionless, and it is also very common for laws to hold only
in idealized situations. Now, we’re not claiming that the Kleiber
allometry is a law of ecology—just that the fact that it holds only
approximately should not rule it out as a candidate.
What else would be required to convince us that the Kleiber

allometry, for instance, is a law? Well, for a start, we’d like a story
about where and when to expect exceptions. More generally,
we’d also like a story about how the exceptions arise. Second,
we’d like, although we don’t insist, that the law in question be
explanatory. That is, we’d like the law not just to tell us that
a correlation exists, but to explain why the correlation exists
and why it is as it is. To ask for laws to be explanatory may,
in general, be asking too much. After all, we’ve already shown
that, even in physics, laws are not always explanatory. There is
a sense, however, in which other sciences, including ecology,
should be held to a higher standard than physics in this regard.
Let us explain.
We’ve already suggested that, in physics at least, the laws are

where explanation might be thought to end. So, for example,
Newton tells us that gravitational attraction acts according to an
inverse square law (the law of universal gravitation), and this is
why planets move in ellipses. But this leaves the law of univer-
sal gravitation unexplained, and because the explanation of the
planetary orbits rests on this, we don’t have an explanation for the
latter, either. With the law of universal gravitation, it seems we
have reached scientific bedrock—there simply is nothing known
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to us that is more fundamental than the law of universal gravita-
tion. Now consider a biological example. Let’s suppose that we
had a law that stated that organisms evolve so as to be well suited
to their environment. We should not accept that such a law is
fundamental—we should ask why it should hold, if it holds at
all. Of course, something like this law is true and is underwrit-
ten by Darwinian evolutionary theory. The latter provides the
causal story that explains why, when we look around us, we see
organisms that are, by and large, reasonably well suited to their
environments.
The difference between the two cases is instructive. In physics,

unlike biology, ecology, and other branches of science, we are
considering the fundamental laws of nature. Insofar as we are
considering such laws, we can expect that these laws will not
allow, or require, further, deeper explanations. In other branches
of science, we are not discussing such fundamental laws (other-
wise, we would be doing physics). So, in biology, for example,
we expect the fundamental laws will boil down to facts about
chemistry and ultimately to physics. This is not to say that we will
always be able to reduce other sciences to physics. On the contrary,
we believe that it is not useful and probably even impossible to
reduce biology to physics. What we are claiming here is that
why questions, if they end at all, end in physics, not in biology.
We may choose to stop asking the why questions before we get
all the way down to physics (because they have led to another
discipline and so they then become the responsibility of that
other discipline), or we may be prevented from pursuing these
questions further because of the complexity of the subject matter.
(Imagine trying to explain the complex interactions in a rainfor-
est in terms of subatomic particles!) For example, why questions
in ecology may lead to physiology. Ecologists can therefore rest
comfortably with physiological answers to ecological questions.
It’s not that physiology is in better shape or is better understood
than ecology, or that physiology is reducible to physics. It’s just
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that the questions the ecologists began with have led to answers
in well-established theory and that’s enough.
To sum up this discussion, we believe that there are good

candidates for laws in ecology. We have shown that those who
would deny that there are laws in ecology may have a somewhat
unrealistic account of what laws of nature are and how they op-
erate in other fields of science. Once we set these misconceptions
aside, there is no good reason to deny that ecology has laws. At
the very least, ecology and physics seem to be in much the same
boat in this regard; they both have laws that typically have excep-
tions, are not necessarily explanatory, may not be predictive, and
often invoke idealized situations. Nevertheless, it may be entirely
reasonable to strive for ecological laws that have few exceptions,
are (in some sense) explanatory, and are not so idealized as to be
irrelevant to real-world situations.



Three

Equil ibr ium and Accelerated Death

If you are an individual belonging to a population that is at
equilibrium, or at carrying capacity, you will not feel too secure.
Granted, some individuals may own their own territory or be
ahead in the feeding order, and thus will be reasonably well off,
but the average member of such a population is in something of
a precarious situation. Equilibrium means that births just barely
compensate for deaths. Making conditions just a bit worse for
an average individual will force the population into decline. It is,
however, the case that self-regulatory forces are in action here:
if the population size decreases, life per capita gets better, and if
the population size increases, life gets worse per capita. This is
all assuming, of course, a constant resource stream.
The usual view of this self-regulation is to express it in terms of

rises and falls in the birth and death rates, depending on whether
the population abundance is above or below the equilibrium.
We argue, instead, for a two-dimensional, energy-based view,
which is supported by two large-scale observations. That is, we
suggest that thinking about equilibrium simply as a balance be-
tween births and deaths is too simplistic. Rather, equilibrium is
a balance between rates of energy use and rates of consumption,
with both birth and death rates a consequence of these metabolic
considerations.

34
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3.1 Accelerated Death

For a population to grow exponentially, or with a constant per
capita growth rate, an average individual has to produce a con-
stant number of offspring per unit time. This is also true when
we are discussing exponential decline. The exponentiality of the
process implies the constancy of the physiological state of an av-
erage individual. Individuals, of course, use energy at a rate that
depends on their specific metabolic rate—this energy is used for
maintenance and reproduction.
Let us now consider an extreme situation. Let’s assume that

there is no food for a given population. Some organisms respond
to the absence of food by shutting down their various metabolic
functions. They do not die in the absence of energetic input but
rather hibernate until food is available again. Simple unicellular
organisms such as Escherichia coli do just that. Most other organ-
isms, including mammals and birds, die in the absence of food.
It is this death process we consider more closely.
If organisms continue to metabolize energy in the absence of

food, their internal energy level will decline and their net rate
of reproduction will follow this decline. Therefore, we expect
the total population abundance to decline with acceleration, not
with a constant exponential death rate (curve B in figure 3.1).
Figure 3.1 shows the expected behavior of the growth (death)
rate and the corresponding curve of the population abundance.
Assuming constant decline in the internal energy level, the abun-
dance (in a logarithmic scale) will look like a parabola. That is, the
decline will be quadratic in time. The differences between curves
A and C in figure 3.1 are a result of the initial reproduction rate,
determined by the initial energetic input. In some cases, when
the initial energetic input is sufficiently high, reproduction may
take place initially, even in the absence of external food.
The main conclusion of this simple analysis is that considering

not just the birth and death process, but also its underlying ener-
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Figure 3.1. Schematic comparison of exponential and accelerated death: the
logarithm of abundance declines linearly in the case of exponential death (B)
and parabolically for accelerated death. The difference between parabolas (A
and C) is due to different initial growth rates.

getic origins, suggests accelerated rather than exponential death
to be exhibited by populations in the absence of food.

3.2 Galileo and Falling Bodies

Before Galileo, the accepted wisdom in physics was that heavier
bodies fell faster than lighter bodies and that this velocity was
constant throughout the body’s fall. Galileo refuted this view
by considering the following imaginary setup (called a thought
experiment). (Contrary to popular belief, Galileo did not re-
fute Aristotelian physics by performing real experiments, such
as dropping rocks from the leaning tower of Pisa.) Galileo imag-
ined two falling bodies of different weights—the first heavier than
the second. He reasoned that if he were to tie these two bodies
together with a piece of twine of sufficient strength and allow
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them to fall freely from the same height, Aristotelian physics
would tell us that because the first is heavier than the second,
we should expect the first to fall faster until the piece of twine
becomes tight, and then the second will retard the first’s motion.
The velocity of the system (i.e., the two bodies combined) will
be slower than the first dropped on its own. On the other hand,
the mass of the system is greater than the mass of the first body
alone and so the system’s velocity should be faster than the first
body dropped on its own. This seems to suggest that Aristotelian
physics is inconsistent—it simply cannot be that heavier bodies
fall faster than lighter ones. With this thought experiment as
his starting point, Galileo then performed some meticulous ex-
periments with balls and inclined planes and deduced that it is
acceleration—not velocity—that is constant. Thus, a body that
is not falling (because it is suspended from a spring, say) has
zero velocity not because the downward velocity due to gravity
is balanced by the upward velocity due to the spring but, rather,
because the downward acceleration due to gravity is balanced by
the upward acceleration due to the spring. Of course, the velocity
is also zero, but it is the balance of the accelerations that is the
more fundamental.
The fact that bodies fall with a constant acceleration results

in the distinctive shape of the trajectory of projectiles. Imag-
ine standing on top of a cliff and throwing a rock, horizontally
over the cliff. If gravity were to provide the rock with a con-
stant velocity, the rock’s trajectory would be a straight line. It
would have a constant, horizontal velocity component provided
by the person throwing the rock, and it would also have a velocity
component directly downward provided by gravity. Combining
these two components would result in a straight-line trajectory
angled downward. The slope of this trajectory would depend
on the relative magnitudes of the velocity due to gravity and
the velocity due to the throw. But as we now know, thanks to
Galileo, gravity provides the rock with a constant acceleration,
not a constant velocity. This means that the rock has a constant
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Figure 3.2. Schematic representation of Galileo’s mythical experiment at the
Leaning Tower of Pisa. Because of downward acceleration, the trajectories
are parabolas, not the straight lines predicted by the Aristotelian worldview.

velocity in the horizontal direction, just as we described above,
but in the vertical direction its velocity is constantly increasing.
The resulting trajectory is not a straight line but a parabola. It
starts out horizontal, when the velocity due to the throw is the
larger component, and becomes steeper and steeper downward
as its velocity due to the acceleration of gravity increases (see
figure 3.2).
It is important to note that such trajectories require second-

order quantities such as acceleration. Acceleration is the rate of
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change of the rate of change of the projectile’s position; velocity is
a first-order quantity, because it is simply the rate of change of the
projectile’s position. It is not possible to get parabolic trajectories
with simple addition of velocities. Similarly, it is impossible to get
cycles (e.g., the elliptical orbits of planets) without second-order
quantities such as acceleration.

3.3 The Slobodkin Experiment

In the 1980s, Larry Slobodkin conducted some very interesting
experiments on water from the Hudson River. He used fresh-
water polyps, brown and green hydra, to determine the quality
of the water from various sites in the Hudson River system. In
particular, he placed five of these animals in a synthetic pond of
water from the Hudson. In all, there were more than 100 such
ponds with water from 51 different Hudson locations. He fed
the hydra for 3 weeks before the experiment and then stopped
feeding them, recording the number of individuals in each pond
on a weekly basis.
The experiment was originally conceived and designed to

study how quickly the hydra died in the different Hudson water
samples. It turns out, however, that this experiment also tells us
something rather important about population dynamics. Because
all the hydra populations were without food during the exper-
iment, we have a study of the way in which populations die in
the absence of energetic input. According to accepted wisdom
in population dynamics, the hydra populations should have died
exponentially. That is, if we graph the logarithm of the number
of individuals in a given population versus time, we should end
up with a straight line. What the experiments showed, however,
was that the hydra died with acceleration. That is, the graph of
the logarithm of the number of individuals in a given population
versus time was, to a first approximation, at least, a parabola—the
shape of the flight of a projectile falling under the influence of
gravity (see figure 3.3).



Figure 3.3. Effects of starvation on green hydra (a) and brown hydra (b).
These graphs summarize the results of a starvation experiment conducted by
Slobodkin (Akçakaya et al., 1988; Ginzburg et al., 1988). The results
demonstrate that the decline of populations under starvation is accelerating
rather than constant. The population data were combined into clusters, with
each cluster based on the longevity of the included populations. The
population sizes are shown here in logarithmic scale; the original data in
arithmetic scale can be found in the cited references.
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Galileo Galilei (1564–1642)

Now, the length of time it took for each of the different pop-
ulations to die was different, depending on the relevant popula-
tion’s initial growth rate—just as a rock thrown (with the same
force) travels farther if thrown at a trajectory of 45 degrees as op-
posed to, say, a trajectory of 10 degrees. Also, the brown hydra
died more quickly than did the green hydra, because the green
hydra have extra energy input from their symbiosis with green
algae. The important point for present purposes is that all the
populations exhibited accelerated death. This, as we’ve already
mentioned, is a telling point against the traditional model of
population growth. On the other hand, this is exactly what you
would expect from the second-order model we’re proposing.



42 Ecological Orbits

Lawrence B. Slobodkin (b. 1928)

This experiment, although not decisive—no single experiment
ever is—presents a serious problem for the standard model of
population growth and presents strong evidence in favor of our
second-order proposal.

3.4 Falling Bodies and Dying Populations

Although the fact that bodies fall with constant acceleration,
not with constant velocity, was discovered by Galileo some 300
years ago, this fact remains counterintuitive. Similarly, accelerated
death may seem counterintuitive to biologists who are used to
thinking that population decline is caused simply by mortality
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exceeding reproduction. Although it is undeniable that, when a
population is in decline, mortality exceeds reproduction, it misses
the point of continuous decline in reproduction (and the increase
in mortality) caused by lowered levels of energy available for
reproduction and maintenance. In terms of abundance curves,
the difference is dramatic—quadratic instead of linear decline
(when graphed in logarithmic scales).
The acceleration, not the decline rate, is the fundamental

species-specific constant controlled by the rate of the species
metabolism. Acceleration (in this case, deceleration, because we
are talking about declines) is directly proportional to the rate of
metabolism. This is because, in the absence of food, an organism’s
energetic storage will decline with this rate. As storage declines,
investments in reproduction and maintenance decline. Thus, the
net rate of reproductionwill decline, crudely, in proportion to the
metabolic rate. In the Slobodkin experiment, the green hydra de-
celerated more slowly than brown. This is because the symbiotic
algae provided some energy—not enough to maintain the popu-
lation, but enough to slow down the rate of decline of the growth.
Specific abundance curves may differ depending on two initial

values: initial abundance and initial internal energy level [or its
equivalent growth (death) rate]. Thus, the equation for a dying
population is analogous to that of a falling body. It is what is
known as a second-order differential equation because it is con-
cerned with the rate of change of the rate of change of the pop-
ulation (i.e., acceleration) rather than simply the rate of change
of the population. Such equations require two initial conditions
before they can give us specific death curves for the population
in question.

3.5 The Meaning of Abundance Equilibrium

The standard view in theoretical population ecology is that equi-
librium of abundance is a result of the birth rate equaling the
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death rate. In a sense, this view is correct. In order for a popula-
tion to have a constant abundance, it has to have equal birth and
death rates. This, according to our view, however, is a condition
that accompanies equilibrium; it is not the reason for it. Our sugges-
tion is that abundance equilibrium is the result of the balancing
of the underlying energetics of individuals.
Let us return to the above story of accelerated death and imag-

ine that now food comes in at a constant rate of S calories per unit
time. With this constant energy input, our population will not
die; instead, it will maintain a certain level of abundance dictated
by the level of available resources and the population’s ability to
utilize these resources. If we assume that the incoming resources
are simply shared by all individuals in the population, an average
individual will consume an amount of S/N calories per unit time
(where N is the number of individuals in the population at any
given time). But an average individual will metabolize a certain
number of calories irrespective of inputs. Indeed, as we showed in
section 3.4, the average individual’s metabolism is proportional
to the acceleration of death under starvation. It follows from
this that a population will equilibrate at the abundance inversely
proportional to the metabolism rate of a typical individual. Of
course, at this equilibrium point, births and deaths will be equal,
but this will be a consequence, rather than the cause, of equilib-
rium driven by energetic considerations.
We can state this more precisely if we employ the same nota-

tion as previously for population abundance, N (t), and introduce
a new variable, X(t), for average individual quality (energy re-
sources stored inside an individual). The simplest model is as
follows:

1
N

× dN
dt

= f (X),

dX
dt

= −m + k
S
N

.

(3.1)
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Figure 3.4. The shape of the dependence of the growth rate f (X) (units are
1/time) on the average individual’s energetic content X (units are calories).
The value of X∗ corresponds to a balance between birth and death rates;
rmax is the maximal possible growth rate for a given species.

Here, f (X) is the net, per capita reproduction rate (birth rate
minus death rate), which is a function of the internal resources,
or individual quality (figure 3.4). The resources are expended
with the metabolism rate, m, and they are imported at a rate
proportional to the total available resources per capita. (The ad-
ditivity of metabolism and consumption is a simplification; the
absence of X as an argument changing m and k is another sim-
plification.) At equilibrium, quality X ∗ is such that f (X ∗) = 0,
or births exactly compensate deaths. Equilibrium abundance is
determined by equilibrating the second equation, N ∗ = kS/m.
That is, at equilibrium, metabolic losses are exactly compen-
sated by the consumed resources. If the rate of metabolism were
constant, independent of X , this model would produce cycles
of abundance. Metabolism, however, is known to depend on X
(Calder, 1984). This dependence acts like friction and ensures
that both quality and abundance equilibrate. Note, also, that the
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time scale of the processes we are referring to is quite short in
comparison with generation time, a more relevant unit of time
discussed in chapter 4. For example, mammals without food die
in a small fraction of their generation time. Hydra happen to
die very slowly in units of their generation time. That is why we
were able to see the accelerated death in Slobodkin’s experiment.
The main source of inertia that we are focusing on in this book
is the maternal effect acting on much longer, generation time
scales. This is addressed in chapter 4.
It is worth noting that, according to this model, a population

reaching equilibrium under steady resource input is mathemat-
ically analogous to a body connected to a spring falling under
gravity. The spring will not allow the body to fall with a constant
acceleration, and the spring stops the fall when the forces balance.

3.6 The Damuth Allometry

One of the most surprising allometries discussed in chapter 2 is
a relationship discovered by John Damuth in 1981. Apparently,
the per unit habitat abundance of mammals and birds scales with
the body size to the power of −3/4. Even though the allometry
is not terribly accurate (it has an error of up to 100-fold), it is still
very clear that there is a relationship here, and moreover, it holds
for a range of body sizes of about 100,000-fold. We are now
in a position to suggest a simple explanation of this remarkable
relationship.
Because equilibrium abundance (with shared resources) has

to be inversely proportional to metabolism, Damuth’s law is an
immediate consequence of Kleiber’s law. The view of equilib-
rium we proposed in section 3.5 has the consequence that a
population will equilibrate at the abundance inversely propor-
tional to the metabolism rate of a typical individual. But, by
Kleiber’s law, the base metabolism rate is related to body weight
by a 3/4 power. So, combining these, we get Damuth’s law: the
equilibrium abundance scales to body size by a power of −3/4.



Figure 3.5. Damuth’s allometry by species groups. Herbivores are all primary
consumers, except for those who primarily eat fruit, which are shown on
the frugivore graph. The equations for this allometry by species group are,
for herbivore, density = 9× 105 × (body mass)−0.9; frugivore, density = 104

× (body mass)−0.74; insectivore, density = 4× 103 × (body mass)−0.82; and
carnivore, density = 103 × (body mass)−0.86.
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There are a few problems with this explanation. First, we
have to assume not only metabolic similarity but also similarity
of investment in reproduction and maintenance by a variety of
species. But this is not an unreasonable assumption, given the
generation-time and Fenchel allometries. Second, we had to
assume perfect sharing of resources, but in reality territoriality,
social structure, and other factors will often result in imbalances
in the allocation of resources (think, e.g., of a typical human
society). Third, the available stream of resources (S) will vary for
different species, and this will affect the result. Carnivores have
an order of magnitude less total food available than do herbivores.
It is possible that the second issue is an explanation of why the
Damuth law is imprecise, and the third may lead to refinements.
For example, it turns out that the carnivores’ line on the Damuth
diagram (figure 3.5) is, in fact, shifted with respect to the ones
for insectivores and herbivores, as one would expect.

3.7 A Harder Question

In this chapter, we have considered the case of a starving popula-
tion. A second-order model attributing population dynamics to
the underlying energetic balance gave a reasonable description of
two observed phenomena: (1) accelerated death in the absence of
food, and (2) the Damuth allometry of typical population density
to body size of its individuals.
With the extremes in mind of a starving population (where a

population has no food) andMalthusian growth (where a popula-
tion experiences unrestrained growth with unlimited resources),
we will now attempt to address the harder question of the causes
and consequences of inertia in population growth. That is, why
don’t populations respond immediately to changes in conditions?
Why are there lags?
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The Maternal Effect Hypothes i s

In this chapter we describe an effect that produces population
cycles and may be thought of as the mechanism for inertia in
population growth. This effect, the maternal effect, is the pass-
ing of quality (as opposed to quantity) from mothers to daugh-
ters. Although the maternal effect has been known at least since
Wellington (1957), it has attracted considerable attention since
the work of Boonstra and Boag (1987) on cycling voles and
a more recent exposition by Rossiter (1991). Still, it has been
underappreciated by the theoreticians. This is despite the recent
argumentation in its favor by Boonstra et al. (1998).
When mothers are endowed with plentiful resources, they

produce not only a larger number of offspring but, apparently,
better-endowed offspring as well. It could have been that well-
resourced mothers would just produce more eggs, seeds, or chil-
dren of standard size, or produce a standard number of them
with a larger endowment. Neither of these two options seems
to be the case. In all plants and animals that have been studied,
the pattern is what one may call a mixed strategy. Part of the
available resource is invested in quantity and part is invested in
quality. To the extent that quality investment is made, it pro-
duces a maternal effect. With parental care and other behavioral
mechanisms, one can easily generalize this to a parental effect,
but for the sake of simplicity, we will assume that mothers have
full control of the endowment (thus the maternal effect). There
is also an inverse maternal effect in which adverse conditions
negatively affect the quality of the offspring (Rossiter, 1998).

49
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We will use the term maternal effect in its most common sense to
mean a positive correlation between the maternal environment
and the quality of daughters. (See an excellent collection edited
by Mousseau and Fox, 1998, for a summary of current thinking
on maternal effects.)

4.1 Inertial Growth and the Maternal Effect

The maternal effect will cause inertia in population dynamics. A
population growing on a constant flow of resources and growing
to its equilibrium value will not stop at that value but will over-
shoot the equilibrium. The reason is that mothers reproducing
when the population is below equilibrium abundance have plen-
tiful resources and their daughters’ reproduction responds not
only to the daughters’ current conditions but also to the condi-
tions their mothers experienced. The same happens when pop-
ulations decline from a higher abundance to the equilibrium: in
this case, mothers were overabundant and thus undernourished.
The resulting effect on daughters leads to the undershooting of
the equilibrium abundance. Maternal effects can thus easily lead
to populations oscillating about the equilibrium value.
A simple maternal effect model assumes nonoverlapping gen-

erations and has just two variables: N, the population abundance,
and X , the average individual quality (Ginzburg and Taneyhill,
1994; a brief summary of some of the technical details is given
in appendix B). Only one parameter is essential for the model: R
is the maximum population growth rate of individuals that have
very high average quality, and it is assumed to be greater than
1. If this is not the case, the population will rapidly decline to
extinction. If t stands for time (in generations), the model has
the form

Nt+1 = RNt f (Xt) (4.1)
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Xt+1 = Xtg
(

S
Nt+1

)
, (4.2)

where f is a monotonically increasing function of quality, X ,
and g is a monotonically increasing function of per capita food,
S/Nt+1. Equilibrial values of the abundance, N ∗, and quality, X ∗,
are easily defined by Rf (X ∗) = 1 and g(S/N ∗) = 1.
Note the argument Nt+1, not Nt , in the second equation of

the model. The reason for this is that, in the absence of the
maternal effect, if Xt+1 did not depend on Xt , the quality Xt+1
would have been fully dictated by the abundance Nt+1 at the
concurrent generation. Thus, in the absence of maternal effects,
the delay is absent and substitution of the equation (4.2) into (4.1)
would lead to an “immediate” or direct density dependence. The
presence of the maternal effect makes the model fundamentally
delayed density dependent, not reducible to the traditional model
of direct density-dependent growth. [The latter has the general
form Nt+1 = Nt f (Nt).]
Typical behavior of the maternal effect model is shown in

figure 4.1. Population abundance goes up and down with sharp
maxima and flat minima. While this is happening, the quality of
individuals undergoes a cycle as well. Typical data collection is
only for organism abundance and not for the quality of individu-
als. Thus, what we see in terms of abundance may well be a one-
dimensional shadow of the two-dimensional process in which
abundance and individual quality interact in joint dynamics.
Note also that the maternal effect is fundamentally connected

to the time scale of generations, and this is one of the main advan-
tages of this view of population cycles. Time is always measured
in generations in population genetics, because this is the natural
unit for describing all evolutionary processes. In theoretical ecol-
ogy, the time unit is rarely carefully specified. The maternal effect
model compels us to use the same time scale as in population
genetics—generations.
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Figure 4.1. Typical behavior of the maternal effect model (equations 4.1 and
4.2) shown in time-series plot of abundance (from Ginzburg and Taneyhill,
1994). Abundance units are arbitrarily scaled; true abundance never reaches
zero. Reprinted with permission of the Journal of Animal Ecology.

4.2 The Missing Periods

There is one strong prediction that the maternal view of pop-
ulation cyclicity makes. This is that the period length of the
cycles is determined by the maximum rate of reproduction of
the population (per generation) and that this period cannot fall
below six generations in duration. The broken line on figure 4.2
shows the theoretically expected period in comparison with data
points. The maximum rate of reproduction, R, has to be above
1.0; otherwise, the population will disappear. When it is slightly
above 1.0, the period can be very long; as the maximum rate
of reproduction increases, the period of the population cycle
decreases. Most observed periods are in the range of 6–12 gen-
erations with the maximum reproduction rate, R, of 3–25. It
seems reasonable that when a population grows more slowly, it
takes a longer time to “go through the motion” of returning to
equilibrium than when it grows faster.



Figure 4.2. The gap between short and long observed cycle periods (in
generations) of cyclic species for which the individual quality (maternal
effects) hypothesis has been suggested to be the cause of the oscillatory
behaivor. The maximum growth rate was also estimated per generations.
Squares, forest Lepidoptera species in Ginzburg and Taneyhill (1994);
diamonds, northern European voles in Inchausti and Ginzburg (1998); stars,
the snowshoe hare time series in Inchausti and Ginzburg (2002); circles, the
Daphnia spp. from McCauley and Murdoch (1985); cross, moose from Peek
et al. (1976); circle with an x, the birth rate of the U.S. human population
from Frauenthal (1975) and Easterlin (1961). In the case of voles, two
breeding periods per year (spring→fall and fall→spring) are the time units.
The broken line corresponds to the theoretical curve of the maternal effect
model of Ginzburg and Taneyhill (1994). The straight lines define limits for
the growth rate and cycle periods. Only two assumptions are needed to
explain these observations: per capita consumption of resources and density
dependence delayed by one generation. Both are parts of our maternal effect
model (see explanation in section 3.2). The competing view, based on
predatory–prey interaction, is more complex and is discussed in section 5.5.
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The lower limit of six generations is a bit harder to explain
without going into the mathematical details (see Ginzburg and
Taneyhill, 1994, for those). But, briefly, recall from elementary
calculus that a simple sinusoidal wave has a period of 2π ≈6.28,
and it satisfies a second-order differential equation, d2z/dt2 = −z.
The corresponding discrete second-order difference equation
produces an oscillation with a period of 6.0. Or, consider the
more general case: d2z/dt2 = −αz. Here we find that the period is
2π/

√
α, and so all values of 0<α≤1 produce periods longer than

when α = 1. This is approximately what happens in our discrete
second-order model, when we write it in terms of the logarithm
of abundance. We can therefore say that the limiting period of
six generations is a result of the assumption of per capita food
sharing, represented in the model as S/N (and resulting in a slope
of −1 in the logarithmic scale). The reason is that a hyperbolic
decline of 1/N corresponds to a slope of −1 in the logarithmic
scale. In the more general case, where there is not perfect sharing
of food, we would have S/N α. When there is perfect sharing,
α = 1; when there is no interference (i.e., consumption rate does
not depend on the number of consumers), α = 0. The important
point to note here is that α has a biologically reasonable range of
0 to 1, and that no matter what value α takes in this range, the pe-
riod must be longer than six generations. Moreover, if the model
is generalized to include damped or unstable oscillations, the pe-
riod again will increase in relation to the purely oscillatory case.
(Indeed, in the mechanical case, this seems intuitively correct,
because friction increases the period of an oscillator.) Therefore,
the minimal period of six generations is robust with respect to
reasonable generalizations of the basic model. Note that the time
attribution of the density dependence (Nt+1 in equation 4.2, not
Nt) is both biologically meaningful and necessary for our argu-
ment. All of the results depend on this assumption, and it this
assumption that also distinguishes our model structurally from
other discrete-time predator–prey models.
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This minimum period of six generations also accords well with
data. Cycles of annual insects are always longer than six years
(generations in this case coincide with years). The well-known
lynx–hare cycle has a period of about 10 years in duration, or
about eight generations of the hare. The 4-year cycle of small
mammals (voles and lemmings) is about 12 generations long,
considering that these animals have three generations per year,
two in the spring to fall period and one over the winter. We
consider the simple prediction of the lower limit on periods to
be a strong argument in support of the maternal mechanism of
population cyclicity.
The maternal effect hypothesis provides a simple mechanism

for population cycling that depends only on the population un-
der consideration. It is thus an internal mechanism for population
cycling, as opposed to external mechanisms such as the traditional
predator–prey model. External mechanisms rely on factors ex-
ternal to the single population under consideration. In particular,
they rely on the influence of a second population.
There is another well-known internal mechanism of popu-

lation cycling: the age structure of the population. It is easy to
understand this mechanism with reference to what is known as
the “baby boom.” If there is a bulge in the age structure, overrep-
resenting the reproductive age category, we expect a generation
later to observe a similar bulge, a “baby boom-boom.”
In animals, competition for resources by overabundant par-

ents may cause a decline in the number of babies; then that next,
smaller generation will have plentiful resources. Thus, we can
have a baby boom skipping a generation, or showing a cycle
that is two generations long. This is called the cohort effect. There
is, however, no way that age structure or cohort considerations
can account for periods longer than two generations. One can
naturally call the baby-boom effect and the cohort effect first
order, and the delayed effect on the generation time scale second
order. Second-order effects are necessary for explaining the long
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cycles, but they are not sufficient. Without a specific mecha-
nism in place, second-order delayed models can produce any
periods—including the short ones. Two-generation cycles have
been observed in natural populations, but there is no evidence
of periods between two and six generations. This gap in the
observed periods is strong, indirect evidence for the maternal
effect as the mechanism for population cycles six generations
and longer (but see the discussion of Murdock et al., 2002, in
chapter 5).
Indeed, this may be true of human populations as well. One-

generation cycles are seen even in the recent U.S. population
history. Two-generation cycles in human abundance have been
documented (and are known as the Easterlin hypothesis). There is
also some evidence for longer cycles, around 200–300 years (or
12–18 generations; Turchin, 2003b, data from ancient China).
But there is no evidence of cycles of any period between. The
mechanism for the shorter cycles is, quite plausibly, the cohort
effect. The reasons for longer cycles are not known, but the
maternal effect, or its financial counterpart (most commonly
land inheritance), seems like a good candidate in humans. In
prosperous times, when human abundance is low, parents are
both physically and financially well endowed. Their children are
thus initially better endowed—both physically and financially.
For the moment, let’s just focus on financial endowment. Let’s
further (and not implausibly) suppose that each generation of
“rich” kids squander their inheritance. That is, suppose that the
children spend all their inheritance and do not pass their parents’
endowment on to their children. On this scenario, we would
have a very interesting financial analogue of the maternal effect.
This version would also have a single-generational time lag—
the only difference is that the parental endowment in this case
would be financial and thus more tangible. Obviously, such a
resource-related, maternal-effect model would be plausible only
in relation to human population cycling. But it may be useful in,
and may even shed light on, economic cycles.
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Analogies are never perfect. Some, however, are better than
others. We feel that the analogy of the uniform motion to expo-
nential growth is very good (chapter 1). The analogy of Kepler
laws for planets, as understood at the time of Kepler, to ecological
allometries of today is also quite good. In both cases, the mech-
anisms were and are unknown and a reasonable fit to a simple
power scaling law was, and is, quite surprising (chapter 2). In the
cases of Galileo’s falling bodies and Slobodkin’s accelerated death,
the analogy is also rather convincing (chapter 3). The alternatives
of the uniform rate of falling and exponential death are rejected
for similar reasons.
We suggested in chapter 1 another, somewhat tenuous but, we

think, useful analogy of cycling populations and planets revolving
around the sun. The sun is quite large, and a revolving planet can-
not get closer to the center of gravity than the radius of the sun.
Therefore, according to Kepler’s law, there is a minimal period for
planetary orbits (remember, periods decline with distance from
the center of gravity). Any planet farther from the sun orbits
slower, never faster, than this minimal period, determined by
the radius of the sun. Likewise, for a completely different reason
(the mechanism of resource sharing), our maternal-effect model
predicts a minimal period of cycling equal to six generations of
the cycling species. As we explained above, imperfect sharing
of resources and other limiting factors can change the period.
The change, however, will always result in an increase, so six
generations remains the minimum. The mechanism of cycling
for planets and populations is, of course, completely unrelated.

4.3 The Calder Allometry

An insightful observation of William Calder (1983) attracted at-
tention to the allometry of the oscillation period of population
abundance to body size (see figure 2.5). This allometry, supported
by the work of Peterson et al. (1984), and carefully reanalyzed
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in Krukonis and Schaffer (1991), attributes the relationship of
the period to the prey properties in the purported predator–prey
pairs. In particular, body size of predators does not exhibit any
connection to the observed periods, whereas prey body size does.
The original analysis suggested that the period was proportional
to 1/4 power of the prey body size. More careful analysis shows
that powers vary substantially for various data sets.
Let us try to express theCalder allometry in units of generation

times of the cycling species. Generation time is a difficult concept
to define precisely for species with overlapping generations. It is
clear that smaller organisms have shorter generation times than
do larger organisms, but generation time is certainly sensitive, in
most cases, to environmental conditions. We have to be satisfied
with very crude estimates. Krukonis and Schaffer (1991) reana-
lyzed the Calder allometry in different ways, suggesting that the
slope of the regression line of the original allometry is much less
certain than originally suggested. For our purposes, intercepts of
various suggested regression lines at the weight of about 1.0 kg
will be more informative than will the slopes. The reason is that
most cycling species are small, well within the range of 0.1–
10 kg, and the intercept at 1.0 kg divided by the intercept of
the allometry for the generation time gives a crude estimate of a
number of generations per cycle.
Whether or not a particular abundance sequence is cyclic is

often a difficult judgment to make, because the usual data se-
quences are quite short. Krukonis and Schaffer (1991) used four
levels of selectivity of the data sets to be included in the cyclic
subset. Every level was defined by a more stringent criterion for a
sequence to be qualified as cyclic. Independently of the selectiv-
ity of data, the period expressed in generations varies on average
between six and seven generations (although, not on average, for
a specific data series it varies between 3 and 14 generations). If
other life history timing measures are used, the result is similar.
Calder (1984) estimated the period to be about eight so-called
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turnover times (standing biomass divided by the annual rate of
production).
There is a second part to Calder’s discovery, which is of equal

or even greater significance to our argument. It turns out that the
period of cycling, as a function of predator body size, has zero
slope. Body size in this case, just as in the case of prey, stands in
for the implied generation time. This finding was reconfirmed
by Krukonis and Schaffer (1991). The absence of any positive
relationship would not be informative in itself, but it is in com-
bination with a strong relationship for the prey. We believe that
the two taken together present a strong argument in favor of our
view. We are not impressed much by data agreeing with theoret-
ical prediction; we are impressed when theoretical prohibitions
are absent in data. This is the second time we have encountered
this situation (the gaps in the observed periods being the first
instance). Both pieces of evidence, singly and in combination,
argue against the predator–prey explanation for the period. This
point was originally made by Calder purely on the basis of data,
without a specific mechanism in mind.

4.4 The Eigenperiod Hypothesis

According to our maternal-effect–based, inertial-growth view,
every population has a tendency to oscillate in abundance with
an intrinsic period exceeding six generations in duration. This
does not mean that every natural population has to undergo ob-
servable periodic behavior. In order to exhibit abundance cycles,
the population has to be appropriately disturbed. Let us elaborate
with another mechanical analogy.
A suspension bridge or a guitar string is stationary most of the

time, but if appropriately disturbed, it oscillates with its own so-
called “natural” frequency. In fact, there are many such frequen-
cies, but let us focus only on the dominant one corresponding
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to the longest observed period. Physicists use the word natural
for this frequency, stressing that it belongs to the bridge or the
guitar string and not to the way they are disturbed. In biology,
the word natural has so many meanings that we have decided
to use the more technical but unambiguous terms eigenfrequency
and eigenperiod. An eigenfrequency is an intrinsic property of the
species—its tendency, if appropriately disturbed, to oscillate at a
fixed frequency.We stress that this frequency does not depend on
the disturbance causing the cyclicity. Now, back to the analogy.
Amplitude and the shape of the oscillation that a bridge may
undergo do depend on the disturbance; it is only the period
that does not. The cause of this simple and clear separation is in
the inertial (read: second-order) dynamics that are basic in the
world of mechanical objects. Likewise, our view is that inertial
effects result in fundamental second-order dynamics and hence
the eigenperiod.
The problem of explaining cyclicity of hares in North Amer-

ica or cyclicity of voles and lemmings in northern Europe has
been under study for more than 75 years, without a clear res-
olution (Krebs et al., 2001a). Moreover, the latest experiments
(Krebs et al., 1995, 2001b) failed to clarify the issue. In fact, most
modern commentators list the competing hypothesis, internal
and external, without taking a position on the causes of cycles.
It is common to believe that both external and internal mecha-
nisms have to be involved in a full explanation. Our eigenperiod
hypothesis does not solve the overall problem, but it seems to
explain a major part of it. More specifically, our eigenperiod
argument is able to provide a natural explanation for why similar
species cycle with similar periods. For example, it is known that
hares cycle with a period of around 10 years when lynxes are
the major predators, but the period is the same on islands where
foxes are the major predators (Peterson and Vucetich, 2002) or
when owls are the major predators (Elton and Nicholson, 1942).
We hypothesize that the period of 10 years is an eigenperiod for
hares. Predators may be the cause of the cycle, and the details of
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the relevent predator interaction may be required to explain the
amplitude of the hare cycle in question—these differ from case to
case—but the period of about eight generations (1.25 years is an
average generation time for hares) may be the hare eigenperiod.
The so-called 4-year cycles of voles and lemmings (about 12

generations long in this case) may simply be the eigenperiod
for these species (Inchausti and Ginzburg, 1998). Note that lem-
mings cycle in the absence of predators (Turchin and Batzli, 2001)
and that this also sits well with our view. What is the chance that
the same (hare) or similar (voles and lemmings) species exhibit
similar periods in drastically different ecosystems, when the cy-
cling is due to predator–prey interaction? We believe that this
is unlikely indeed. [Models based on the traditional view have
been constructed (see review in Turchin, 2003a), but, in our
view, they have too many parameters to be plausible.]
Our view certainly does not exclude the absence of cyclicity,

which is what is seen most of the time for most species. Bridges
placed in a viscous liquid will not oscillate. Likewise, strong im-
mediate (not delayed) density dependence will stabilize popula-
tion abundances. [Boonstra (1994) gives an extensive discussion
of the reasons for noncyclicity.] One needs a combination of
low immediate density dependence and the right kind of distur-
bance to cause observable cyclicity. Given that this combination
is present, our suggestion is that the period of oscillation is an
eigenperiod.
The other commonly observed period of cycling is two gener-

ations long. This cycle has a well-understood first-order mecha-
nism of over- and undershooting equilibrium every generation.
In some cases this mechanism can lead to cycles that are 4, 8,
16 generations long and even chaotic dynamics (see the classic
work by May, 1974a). Note, however, that with noisy data pe-
riods of 4, 8, 16, . . . , may appear as a period of 2, because the
longer periods remain signwise two generations long: every peak
is followed by a trough. Thus, the period of two generations is
another eigenperiod explained by the single species nondelayed
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first-order dynamics. The spectrum of eigenperiods that we sug-
gest consists, therefore, of periods of two generations and more
than six generations. This prediction is consistent with the find-
ing of Murdoch et al. (2002).

4.5 What Can Be Done in the Laboratory

It may be even more convincing if inertial growth effects were
demonstrated experimentally. Although there are demonstra-
tions of single-species cycles in the laboratory, the periods of
such cycles are short in units of generation time of the cycling
species. Experiments in the Begon laboratory described in Bjon-
stad and Grenfell (2001) demonstrate a stable one-generation
cycle of abundance. Moreover, with the addition of viruses in
one case, and parasitoids in another, the absolute abundances and
the shape of the cycles changed but the period did not. This may
well be evidence in support of the donor-controlled suggestion
(see section 5.4), but the cycles are too short to be the result of
the maternal effect.
To clearly demonstrate inertial effects, one has to obtain slow

cycles with periods longer than six generations for a single
species. This, as far as we know, has not been done. We venture
to predict that such a demonstration is possible. In unicellular
cultures, larger cells produce larger daughter cells. Thus, the
maternal effect has to be present and, according to our view,
will cause long-term cycles. With species whose division time is
hours to days, the experiment is both practical and achievable.
Two properties have to be present to obtain inertial cycles in the
laboratory. First, individuals have to die in the absence of food
(so, e.g., E. coli is not a good candidate for a test species; see
section 3.1). Second, a strong degree of resource sharing has to
be present. A low abundance has to noticeably improve the per
capita resource allocation compared with the case of high abun-
dance. With these two conditions satisfied, our model predicts
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that a single species abundance will undergo slow cycling in the
absence of any interactions with other species. Moreover, we
predict that the only cycles we will see will have periods of six of
more, or two or fewer, generations.
A numerical study of the long-term abundance data sets can

also be helpful in confirming or rejecting our eigenperiod hy-
pothesis (see section 4.4). If we are correct, a “shadow” of this
period has to be present, even in noisy data series (Inchausti
and Halley, 2001). We therefore predict that a detailed spectral
analysis of the long-term abundance data series will reveal a peak
at a frequency corresponding to more than six generations of the
species in question. To check this prediction is far from easy, con-
sidering the relative shortness of the data series that are available
and the vagueness of the term generation time (NERC, 1999).
We have collected evidence in favor of the eigenperiod hy-

pothesis, although many publications also present counterevi-
dence in favor of the more traditional predator–prey account (the
best current summary of this evidence is Berryman, 2003). In
most cases, when such counterevidence is carefully considered,
our internal forces interpretation of the evidence is as viable as the
alternatives. The two suggestions in the preceding paragraphs, a
demonstration of inertial effects, and a numerical study of long-
term abundance data sets, are our attempt to propose clear tests
of the validity of our view.
Although no single experiment or single data analysis would

be expected to change people’s minds, we believe that demon-
strations described above will be extremely helpful in clarifying
basic features of population growth—whether or not they sup-
port our view.



Five

Predator--Prey Interact ions
and the Per iod of Cycl ing

Since Lotka and Volterra in the 1920s, the predominant view
on the cause of cyclicity in population abundance is predator–
prey interaction. Three recent books (Berryman, 2002; Turchin,
2003a; Murdoch et al., 2003) develop this traditional line of
argument. The predator–prey interaction is certainly capable of
producing inertial effects for each of the two species involved in
the interaction, and thus can be the cause of the cyclicity. Note,
however, that it is the inertia, or the second-order dynamics,
that we need for cycles. Second-order dynamics, however, may
or may not be the result of interacting species. In chapter 4 we
proposed an alternative to the predator–prey model in the form
of our single-species inertial model with the maternal effect as
the mechanism. We also suggested that the periods of cycling are
eigenperiods of a single species (prey in the case of an interacting
pair), but that the cause of the cycling may be due to any one
(or more) of a number of possibilities. The disturbance that in-
duces the periodic behavior may have its roots in predator–prey
dynamics or even higher order ecosystem interactions. All we
claim that is internal is the period of cycling, if there is one. This
period is an intrinsic property of each population.
To fully appreciate the advantages of our view, it is neces-

sary to discuss some of the details of, and debates about, the
predator–prey account of cyclicity. As will become clear, the
ratio-dependent idealization of the predator–prey interaction is
quite different from the more traditional prey-dependent ideal-
ization. Moreover, the ratio-dependent idealization is not con-
ducive to cyclic behavior.

64
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5.1 An Alternative Limit Myth

Ratio-dependent predation is the view that the predator consump-
tion rate is a function of the ratio of food to the number of
predators. Although this view doesn’t involve as radical a de-
parture from standard theories of population growth as the main
topic of this book—inertial population growth—it has, nonethe-
less, generated a great deal of controversy over the past dozen or
so years.
Ratio dependence is easy to restate in terms of an invari-

ance principle: two species’ interactions do not change when
both abundances are multiplied by the same constant. Such an
invariance, in the absence of other limitations, seems like a natural
and plausible principle. The classical Lotka–Volterra equations
are prey-dependent and are, of course, not invariant under such
rescaling. The law of mass action, based on a chemical metaphor,
lies at the foundation of these equations. Space is thought of as a
limiting factor, inseparable from the mechanism of interactions.
In the simplest Lotka–Volterra case, multiplying both abundances
by 10, say, would produce 10 times more predation. If space or
resources for the prey are limited, this is not unreasonable. But
space, in our view, is a limiting factor acting separately from the
pure interactions. It should be treated separately, and it has to
be reflected by other terms in the predator–prey model. (In fact,
we think that confusing two effects like this is an undesirable
consequence of instantism, discussed in section 5.3.) Therefore,
we prefer the scale-invariant view of pure interactions. The ratio-
dependent invariance may be a “shadow” of a larger invariance
that we will call Malthusian invariance (discussed in section 6.3).
Let us restate what we have just said in more precise terms.

Growth models of two interacting populations of predator and
prey are coupled through the consumption rate of the predators.
The issue of interest is whether the rate of consumption of an
individual predator depends just on the number of prey available
(food) or on the amount of food per number of predators. If f (·) is
the rate of consumption of an individual predator, the question is,
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What does it depend on? In general, because of the interference
between predators, it has to depend on both food abundance (N )
and the number of consumers (P). Without knowing the exact
details of this dependence, there are a couple of idealizations that
are plausible. The first idealization is that predator consumption
depends only on the abundance of food. (The idealization here is
that predators do not interfere with one another at all.) The other
is that consumption depends on per capita food availability. (The
idealization here is that the predators perfectly share the resource.)
We can represent the situation schematically as follows:

f (N )————f (N ,P)————f (N/P).

The true situation is f (N ,P), where the nature of the influence
of N and P on the predators’ rate of consumption is complex;
the first idealization (no interference of predators) is on the left;
the other (perfect sharing of resources) is on the right. These two
idealizations were termed by Arditi and Ginzburg (1989) prey-
dependent [f (N )] and ratio-dependent [f (N/P)] predation, respec-
tively. The question is not which of these two views is right—for
they are surely both idealizations. Rather, the question is which
provides the more useful model of real predator–prey popula-
tions. In the language of section 2.3, which one is the better
limit myth?

5.2 Prey-Dependent versus
Ratio-Dependent Models

Most of this debate has been covered in a paper in Ecology by
Akçakaya et al. (1995), which responded to previously pub-
lished criticism (Abrams, 1994), and in a review by Abrams and
Ginzburg (2000). Here, we address only two points, both related
to qualitative differences in the predicted dynamics of the two
extremes.
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One major piece of evidence in favor of ratio dependence
[f (N/P)] relates to equilibrial properties of trophic chains in re-
sponse to fertilization at the bottom. It has been shown (Ginzburg
and Akçakaya, 1992; McCarthy et al., 1995), by analyzing data
from lakes, that trophic chains respond to an increased reproduc-
tion rate at the bottom by monotonic increases at all levels. This
increase is close to linear, which is the prediction of the ratio-
dependent model. The traditional prey-dependent model, on the
other hand, has to invoke many quite intricate modifications to
explain this fact. The modifications always increase the number
of parameters of the model, and sometimes the number of vari-
ables. The ratio-dependent model remains the simplest model to
explain the data. (Interested readers may review Akçakaya et al.,
1995, for details of the argument.)
The other point, more relevant to the topic of this book,

concerns the potential for inherent instability in the interaction
between an obligate predator and its prey. In particular, we are
interested in the possibility of the obligate predator consuming
its prey to extinction, followed by the predator’s extinction.
A purely ratio-dependent model has a very narrow parameter

range for stable cycling of predator and prey populations. These
models are more likely to produce either stable equilibria or what
we call a Gause loop, the dual extinction described above. This
dichotomy is controlled by a simple inequality involving three
parameters: prey growth rate in isolation (r), predator death rate
in the absence of food (d), and the proportion of prey consumed
per unit of time (the so-called attack rate, a). The units of all
three are 1/time; and they are all per capita rates. If

r + d > a (5.1)

predator and prey coexist; otherwise, dual extinction is the out-
come. This simple result suggests an experiment: if one can
control any one or more of the parameters, one can switch the
behavior qualitatively from coexistence to extinction. That dual



68 Ecological Orbits

Georgyi Frantsevitch Gause (1910–1986)

extinction happens in the laboratory is well known from the
time of Gause in the 1930s. Such experiments were repeated by
Luckinbill and Veilleux in the 1970s. Luckinbill was even able
to produce cyclic coexistence by modifying the thickness of the
media in which Didinium and Paramecium interacted (Luckinbill,
1973). This presumably lowered the attack rate, a, changing the
inequality in (5.1) in favor of coexistence. Gause, of course, was
unable to avoid dual extinction without refugia for the prey or
other forms of reintroduction of the prey. Prey refugia, a por-
tion of the population inaccessible to predators, as a mechanism
for turning a Gause loop into stable cycling is the essence of
Akçakaya’s (1992) lynx–hare model. Akçakaya independently
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estimated parameters of the model for lynx and hare, and these
parameters turned out to be in the neighborhood of r + d = a.
Within the accuracy range, the model switches between a Gause
loop and stable cycling, and with refugia it always cycles.
Instability of well-mixed predator–prey cultures, leading to

dual extinction, is a repeated observation in Morin (1999). The
traditional prey-dependent models are unable to produce dual
extinctions; the prey always avoids extinction because of the
structure of the prey-dependent model. The traditional camp,
however, appeals to the fact that, at low abundances, differ-
ential equations are not really applicable. Thus, even though
the prey-dependent model trajectories always escape extinction,
dual extinction happens in practice, because populations consist
of discrete individuals and because of stochasticity at low abun-
dances. But notice that this is a testable hypothesis. By repeating
Gause’s experiments with proportionally larger population, one
would expect to find differences in the ability to obtain determin-
istic dual extinction. Such differences would not be demonstrable
if the ratio-dependent model is a better descriptor of what is go-
ing on. Manipulating initial abundances in relation to equilibrial
abundances should help, too. If the prey-dependent model is
correct, we should be able to see the switch from dual extinc-
tion to coexistence when the experiment is scaled up, and/or
when abundances are initially close to equilibrial. This will not
happen if the ratio-dependent model is a better description for
the pattern.
The results of such an experiment, of course, may not support

our ratio-dependent model, in which case, there would be no
need for further discussion—the model would be inadequate.
Even if the results do support our model, there may be plenty
of other possible explanations. The same facts can always be ac-
counted for by many theories. Although we concede that both
extreme views on predation are imperfect, they do produce two
clear and testable questions:
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1. Can we systematically switch the predator–prey behav-
ior from dual extinction to coexistence by controlling
one or more of the three parameters of the simple in-
equality above?

2. Can we systematically change the dual extinction to
coexistence by enlarging the scale of the experiment
(e.g., increase 100 times, from a little vial to a cup size),
and by manipulating initial abundances?

We are happy to raise these questions, and we think that
experiments designed to answer them will be extremely use-
ful. Of course, such experiments are unlikely to completely
decide matters. But they should shed light on which of the
two idealizations—prey dependence or ratio dependence—is the
more promising.

5.3 The Fallacy of Instantism

The root of the disagreement between prey versus ratio depen-
dence, as is often the case, lies in a seemingly orthogonal, and
somewhat philosophical, direction. The issue concerns the in-
terpretation of the rate dN/dt in population-growth equations
(Arditi and Ginzburg, 1989).
Most people in the prey-dependence camp (including Lotka

and Volterra) take the rate of growth represented by the derivative
dN/dt in the relevant differential equations to be truly instanta-
neous. We call this view instantism. When predators reproduce
once a year but consume prey every day, the adopted abstraction
is to treat the annual reproduction as a corresponding daily rate,
and so all rates can be thought of as instantaneous. With this ab-
straction in place, prey-dependent predation is natural, because in
an instant, a single consuming predator may not react to whether
there are other predators nearby—the predator in question only
responds to the density of the prey.
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A common argument for instantism is that every moment
reproduction occurs—it does not occur in discrete generational
time epochs. For instance, in a laboratory culture, at any given
instant there are some cells reproducing, even though the gen-
eration time may be about an hour. And in the case of human
populations, at any given second there are humans reproduc-
ing despite their roughly 20-year generation time. This simple
observation suggests that a shorter, or even instantaneous, time
scale is the most appropriate. In the case of exponential growth,
this argument seems sound because the age structure or stage
structure equilibrates and an instantaneous view is a possibility.
But as we have stressed repeatedly, the proper subject of ecology
is the deviation from exponential growth, and from this vantage
point, things are rather different. For example, when food supply
changes, the response time for bacteria, with a 1-hour genera-
tion time, is very different from that of humans, with a 20-year
generation time. This common argument for instantism is thus
without force in the case at issue.
In our view, the dt in dN/dt should be thought of as a large,

finite interval that includes both the reproduction and consump-
tion events. Only at such a scale can we sensibly include, for
instance, the conversion of food into offspring. In our view, the
scale for defining various rates is different in different cases, but
it is never really instantaneous—to assume so is to read too much
into the mathematical formalism. We call this mistake the fallacy
of instantism.
Even in many applications in physics, where differential equa-

tions are of fundamental importance, we know that the under-
lying assumption of continuity is an idealization. Liquids, for
example, are not continuous; they consist of small molecules.
Even space-time may not be continuous, but may come in very
small, discrete packets. And in cosmology, Einstein’s equation
treats the distribution of matter in the universe as continuous,
when clearly it is not. For many physical applications, derivatives
should thus not be thought of as literally instantaneous rates, but
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rather as idealizations of finite rates understood at the appropriate
scale. In ecology, this point is even more important. Finite time
scales certainly force one to consider the importance of preda-
tors interfering with one another, and this, in turn, suggests that
consumption is ratio dependent.
Skalski and Gilliam (2001) analyzed 19 cases of interactions

treated instantaneously. In 18 cases there is noticeable predator
dependence—that is, a clear rejection of prey dependence. In 6 of
the 18 cases, the more general model was indistinguishable from a
purely ratio-dependent one. [A similar result was obtained by Jost
and Ellner (2000) when analyzing Veilleux’s (1979) experiments.]
This is all at the instantaneous time scale. We believe that if the
issue is addressed at an appropriate finite time scale, most of
the cases would be hard to distinguish from ratio dependence,
because the effect of predator interference is more pronounced
at the appropriate time scales.
Using long-term data series for 1971–1998, Vucetich et al.

(2002) argued in favor of a ratio-dependent model in describing
wolf predation on moose. The ratio-dependent model was able
to account for 34% of the kill rate when viewed locally and
instantaneously. This was substantially higher than other models
of equal complexity. At our request, the authors recomputed
their results using spatial averages and temporal averages, with a
moving window of 2, 3, 4, . . . , years. With the generation time
of wolves close to 4 years and moose around 9 years, the results
were much stronger in favor of the ratio-dependent view—at
about 4-year averaging, the model accounted for about 86% of
the kill (figure 5.1). Although the prey-dependent model also
performed better with spatial and temporal averaging, the per-
centage of the kill rate accounted for remained around half that
of the ratio-dependent model.
Our view, in fact, calls for discrete difference equations, where

time is treated discretely. These equations, however, are notori-
ously hard to deal with. We therefore continue to use differential
equations, but we bear in mind that these are idealizations of the
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Figure 5.1. Per capita kill rate of moose by wolves as a function of the ratio
of moose to wolf abundance (triangles), and as a function of moose
abundance (circles), averaged for a number of years shown on the horizontal
axis (J. A. Vucetich and R. O. Peterson, personal communication).
Instantaneous data are from Vucetich et al. (2002).

underlying finite, discrete-time model. Instantists, on the other
hand, treat differential equations literally.
The conflict between these two interpretations of the dif-

ferential equations is a conflict between two abstractions. Both
have their problems. The problems with instantism we’ve already
made clear, but our discrete-time interpretation is not problem
free. After all, there are infinitely many different-sized, finite time
intervals to choose from, and none, it would seem, is the privi-
leged, “correct” one. When we choose the “appropriate” one,
as we’ve suggested, we too are making an idealization. Which
of these two idealizations is preferable? Time will tell; ecology
will choose the one that is more useful. We have argued that
our view and its natural companion, ratio dependence, is a bet-
ter idealization than is instantism and its companion view, prey
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dependence. We admit, however, that the truth is more complex
than either of these two idealizations. With current data, it is
not easy to distinguish between even the two extremes of ratio
dependence and prey dependence. We suggest that adopting the
ratio-dependent model is the best default strategy, with the un-
derstanding that the long-term goal is to move toward a more
general model, when data permit us to do so with confidence.

5.4 Why Period Travels Bottom Up

It is important for our argument that periods do not generally fall
below six generations, and that they seem to relate to the number
of generations of the prey rather than the predator. If thematernal
mechanisms in the prey population are the cause of cyclicity, this
is what we would expect to see.We therefore consider the Calder
allometry to be strong evidence for this internal mechanism for
cycles. The immediate question is, of course: Why doesn’t the
maternal effect impose its influence on the predator population?
On the one hand, we know that models of predator–prey in-

teractions can produce cyclic dynamics. On the other hand, we
have a very simple inertial growth model based on the maternal
effect, which attributes the cause of cyclicity to the prey popu-
lation. This model is also two-dimensional but the dimensions
are quantity and quality of the prey, not the abundances of the
two interacting species.
There is no doubt that predators and prey interact. If the

maternal effect acts in the prey population, causing a cycle, why
doesn’t it also act in the predator population, causing a cycle of a
different period? In general, we have to assume that both species
have their own inertial properties, and we would then have to
consider a four-dimensional model of predator and prey with
the inertial properties of each. The question is why the observed
period is close to one driven by only the prey properties.
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To explain our argument, we have to consider the so-called
donor-controlled models. In these models, studied by Stuart Pimm
in the 1980s, the prey equation does not explicitly contain the
predator abundance as a variable. So, the predator dynamics de-
pend on the donor (prey), and not vice versa. The predator equa-
tion does contain the prey abundance as a food source for the
predator. The original interpretation of the model is that the
predator consumes either old or sick individuals, or very young
individuals with a high mortality rate ahead of them. In the
last case, the predator is thought of as eliminating the “surplus”
production. Such action may have little or even no effect on
the dynamics of the consumed population. These have been the
narrow interpretations of donor-controlled models.
There is, however, another, more general interpretation of

these models, based on the ratio-dependent predation model. In
this model, mortality of the prey is expressed as

−f (N/P)P, (5.2)

where f is the rate of consumption of the individual predator
and depends on the ratio of abundances of prey (N ) and abun-
dances of predator (P). The graph of the function f is shown
in figure 5.2. For a small amount of per capita food (N/P),
consumption rises with supply; it then slows down and levels
off when supply is very high. We may consider the increasing,
linear part of the curve, f, as proportional to the ratio of N/P.
Because there are P consumers, the net result in equation (5.2)
is that for low N/P, total predator-imposed mortality is propor-
tional to N . Thus, the model will appear to be donor controlled,
with an additional constant mortality imposed by predation. The
additional mortality, however, reduces to zero in the absence of
predators. The effect of this relationship is that equilibrium abun-
dance of the prey population will be depressed by the presence of
predators but the dynamic properties will not be affected. If the
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Figure 5.2. Generalized donor-controlled model (the dashed line) as a linear
approximation of the ratio-dependent model at low levels of per capita food.

prey population cycles, based on its internal causes, the predator
population will follow, simply driven by the prey cycling, with
about a generation-time (of the predator) delay.
An assumption we need for this argument to work is that

predators are far from satiated even in the best circumstances; that
is, the ratio of abundances is such that more food per capita elicits
a nearly proportional average individual predator response. The
hypothesis is shown in figure 5.2 by the dashed line. We have also
analyzed a full four-dimensional system of predator–prey inter-
action under more general conditions in its linear approximation
around the hypothesized equilibrium. The frequencies of the
full four-dimensional linear system vary continuously with the
deviation of f from linearity. That is, if equilibrium abundances
are not too far from the linear range of f, the cycling will appear
as though driven entirely by prey dynamics.
So, the answer to the question is not straightforward, but nev-

ertheless interesting. Assuming ratio-dependent predation and
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the lack of predator satiation, prey abundance is, on average,
depressed by the presence of predators, but the cycle period is
driven by the prey. This may explain the Calder allometry for
cyclic species. [This may also explain a famous experiment (Krebs
et al., 1995, 2001b) in which excluding predators failed to elim-
inate the hare cycle (or change its period) but demonstrated an
effect on the average abundance and amplitude of the cycle.]
Another question might be raised at this stage. According to

our view, when there is a cycling predator–prey population, the
cycle is driven by the prey. Why not, then, attribute the cycle
of the prey to cycling of their resources (whatever they may be),
and so on down to the bottom of the food chain? It might seem
as though we are commited to the view that all cycles are driven
by cycles at the bottom of the food chain. This, however, is not
right. Not all populations cycle. In fact, as we’ve pointed out
before, cycling is rather rare. Our position is that whenever a
population cycles, its period is determined by its eigenperiod.
But this, of course, does not mean that any given population
must cycle. Recall the analogy with a suspension bridge or a
guitar string: when a bridge oscillates, it does so with a fixed
period, determined by its eigenvalue—irrespective of the mech-
anism for its initial movement—but nothing about the eigen-
value of suspension bridges implies that any particular suspension
bridge must swing—bridges can, and do, remain stationary. So,
in short, we are committed to the view that when we find a
cycling predator–prey pair, it’s the cycling of the prey that drives
both—the predators are just along for the ride. But this does not
imply that the cause of the cycling goes all the way down. The
cause of the cycling goes down only as far as the lowest species
in the chain that is experiencing population cycles. And this,
because of the rarity of cycling, is typically not very far.
You may have noticed that in explaining both the Damuth

allometry in chapter 3 and the Calder allometry in chapter 4, we
had to base our arguments on ratio-dependent consumption. It
was the assumption of perfect sharing of the resource that allowed
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us to deduce observed relationships. Ratio-dependent predation
is certainly an imperfect model, but it is, in our judgment, supe-
rior to the other extreme, the prey-dependent model.

5.5 Competing Views on Causes
and Cyclicity

The main competing explanation for population cycles is the
predator–prey model. This model suggests that cycles are the
result of an interaction between a predator and its prey such that
an increase in one is either the cause or the effect of a decrease in
the other. This well-entrenched, traditional view goes back to the
original work of Lotka and Volterra in the 1920s. This model has
a great body of theory and a large number of current supporters.
Although it may be the correct explanation of population cycling
in some cases, as we discussed in chapter 4 and elsewhere, we
do not think that it is the complete explanation of all population
cycles. We thus stress the deficiencies of this traditional view.
The first problem with the predator–prey model is the large

number of parameters that the most sophisticated models require
and the inability of such models to exclude unobserved behav-
ior. Predator–prey models, in their simplest form, have four
parameters (values that have to be determined from data to run
the model). The more sophisticated current models have 11–16
parameters. With all this “parametric power,” the theory cannot
reject any arbitrary periods, including the ones between two and
six generations (a.k.a. the missing cycles). In short, the theory is
sufficiently flexible to produce any period. But this means that
it can’t be empirically tested by period data, because it is con-
sistent with all possible periods. The maternal-effect hypothesis,
on the other hand, makes very specific predictions: no cycles
with periods between two and six generations. Moreover, the
fact that no such periods have been observed counts in favor of
the maternal-effect hypothesis. (The temptation to employ large
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numbers of parameters in one’s model in order to achieve flexi-
bility is sometimes referred to by modelers as overfitting. In a joke
attributed to Einstein, he allegedly said, “With five parameters I
can draw an elephant, with six, it will wag its trunk.”)
The second problem for the predator–prey model is the arbi-

trariness of the choice of prey and predator. For example, lem-
mings undergo oscillations of a period similar to that of voles
(4 years), and given the similarity of these two herbivores, one
would expect a similar explanation of the cycles. The standard
predator–prey explanation for voles is that voles are the prey in
a predator–prey pair. This won’t work for lemmings, though,
because lemmings on islands are known to be without preda-
tors and yet still undergo a 4-year population cycle. This does
not perturb the predator–prey theorist; they simply construct a
model in which lemmings are the predator and vegetation is the
prey. Apart from the obvious charge of being ad hoc, there is an
important sense in which this model is not explanatory. Because
the mechanism in each case is quite different, the account fails to
explain the similarity of the cycles for lemmings and voles—it’s
just viewed as a coincidence that the two cycle with the same
period. One would hope for a more satisfying account—one that
respects the intuition that it’s no coincidence that both cycles are
typically 4 years long.
To obtain cycles, one needs a model that is at least second

order; it does not necessarily have to be a two-species model.
A second-order model can result from either internal mecha-
nisms (e.g., the maternal effect) or external mechanisms (e.g.,
predator–prey interactions). It is thus the more subtle properties
of population cycles—such as the presence or absence of gaps in
the periods—and not the mere existence of cycles, that must de-
cide whether second-order models based on internal or external
mechanisms are to be preferred.
Murdoch et al. (2002) analyzed periodic data series, separating

them into two classes: specialist and generalist predators. The
analysis produced a clear gap in periods, with most generalists
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exhibiting cycles with periods of two to four maturation times.
Most life-history data are available in terms of time to maturity,
or overall longevity. These differ by a factor of 2.5 for mammals,
for example (Charnov, 1993), with a harder-to-define genera-
tion time somewhere between, closer to the time of maturity
than to the total longevity. Because maturation time is less than
generation time, we may attribute this class to two-generation
cycle category. The most interesting finding of Murdoch et al.
(2002) is that specialist predators cycle with very long periods,
certainly more than six maturation times of the prey, but possibly
much longer. There is a clear gap in periods between generalists
(short) and specialists (long). This gap is clearly observed when
the period is appropriately scaled.
Murdoch et al.’s interpretation of this finding is that specialists’

cycles are driven by predator–prey interactions whereas gener-
alists “average” various sources of food and are driven by their
own density dependence. We agree with the latter but question
the former of the two interpretations. Our view of the maternal
effect causing oscillations of the prey and predator following only
the dynamics of the prey is equally plausible. In fact, considering
the Calder allometry for the periods, it seems even more likely.
Also, it is not clear that species can be uncontroversially sepa-
rated into the two classes in question (specialist and generalist).
All that can be said with certainty is that there is a bimodality of
the period distribution.
The true cause of the cycles of specialists will not be de-

termined by comparing equations. Some predator–prey models
are capable of producing the gap in periods just like those of our
simpler, single-species view. Neither can be proven correct based
on equations alone. It is the total evidence and the simplicity of
the argument that moves us toward the view outlined in this
book. But it will be manipulative experiments that will someday
resolve the issue.
If we turn out to be correct, the title of the Murdoch et

al. (2002) paper, “Single-species models for many-species food
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webs,” will be applicable to both generalists and specialists. The
authors, of course, meant to attribute this only to generalists.
The old controversy over the causes of cyclicity in nature seems
to have heated up again in the last few years, but this time on a
new level, with more data and a better set of theories to choose
from (Beckerman et al., 2002, is a good reference for intraspecies
mechanisms).
Another attempt to explain the period of specialist cycles

through a simple, traditional predator–prey theory is made by
Schaffer et al. (2001), with the argument reiterated in Turchin
(2003b). The period of the classical Lotka–Volterra cycle in its
linear approximation is 2π/

√
rµ, where r is the growth rate of

the prey alone, and µ is the death rate of predators in the absence
of food. Because 2π ≈ 6.28, if we really had µ ≈ r, this period
would have been 2π/r, where 1/r is the so-called turnover time
of the prey, correlated to a generation time. This is the essence
of the argument.
We believe that the argument is quite weak on a number of

fronts. First, we believe that the Lotka–Volterra model is not an
appropriate simplification of the predator–prey interaction, and
we have covered the subject in detail in sections 5.1–5.3. Even
if one still accepts the Lotka–Volterra model as a basis (as many
would do), there is still no reason why µ has to be related to r.
Even if we ignore our argument in chapter 3 about death in the
absence of food being accelerated, and we assume exponential
death (as in Lotka–Volterra theory), there is no known reason to
even approximately equate µ to r. This seems to be a move based
more on a desire to get the right answer than on any evidence.
It would be premature to pass final judgment on the causes of

all cyclic dynamics in population ecology. Indeed, the predator–
prey model is not without merit. It does seem implausible, how-
ever, that predator–prey models are the best account of all pop-
ulation cycles of six generations or longer. We believe that in
many, if not most, cases, the maternal-effect model is the better
account.
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We conclude this chapter with a reminder about the nature of
the phenomena here. Populations cycle by missing the target—
the equilibrial level dictated by resources. They would grow ex-
ponentially if the resource limit was not present, but they are
pulled toward the equilibrium at both high and low abundances.
This is not unlike planets, which were it not for the sun’s gravita-
tional field would fly uniformly off into space. Instead, the sun’s
gravitational field pulls them back, and, if conditions are right,
they settle into stable orbits around the sun.



S ix

Inert ial Growth

There are two major difficulties in incorporating maternal-effect
ideas into practical descriptions of population dynamics. Both
relate to the usual way in which population data are recorded
and made available to theorists.
The first difficulty is that the data are available only as numbers

of individuals, or as some index of abundance, for a given census
area. There are no concurrent data on individual quality or its
correlate, say, average body size. Therefore, if we wish to check
the inertial hypothesis based directly on the concurrent changes
in abundance and quality, we are out of luck. We only have one
of the required data sequences.
The second difficulty is that, except for a few cases of biannual

counts, typically data are available only as annual counts. Because
the maternal effect is attached to the mother-to-daughter trans-
fer, it is linked to the generation time unit (which is generally not
one year), whereas data come in a chronological sequence. The
exception includes annually reproducing species for which one
year is the generation time. This is one of the reasons why cases
such as the Lepidoptera described by Ginzburg and Taneyhill
(1994) are so useful in defending the maternal-effect model.

6.1 The Implicit Inertial-Growth Model

The term inertiawas first used in relation to population growth by
William Murdoch (1970). He interpreted the term generally as

83
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a property of overshooting equilibria due to any one of a variety
of causes, without a reference to a specific, single cause. In this
chapter, we adopt Murdoch’s sense of inertia and try to flesh out
the details of a general account of inertia in population growth
that is able to accommodate a number of possible mechanisms
for the inertia. To motivate this, however, we return to the two
difficulties mentioned above.
Our approach to these difficulties—annual data and absence

of quality parameters—is to address both simultaneously. We will
employ a continuous-time differential equation with dt in dN/dt
standing for 1 year. Differential equations have been used from
the very start of theoretical developments in ecology by Lotka
and Volterra. The unit of time did not matter for most of the
history of the field, because no one ever seriously tried to es-
timate numerical values of the parameters. The models were,
and still are, commonly used to produce qualitative predictions.
This trend has been noticeably reversed since the 1990s, when
models using chronological time began to be developed. These
latter models employed estimated parameters that reproduce ma-
jor features of cyclic populations. Althoughmost authors used the
predator–prey mechanisms as the basis for their models, a par-
allel development produced similarly fitting descriptions using
discrete, generation time steps (rather than chronological time
steps) based on the maternal effect.
It is a well-known mathematical fact that a system of two

first-order differential equations, written in terms of two vari-
ables, is equivalent to a single second-order differential equation,
written in terms of one of the original variables. (There are
minor restrictions on this theorem that need not concern us
here.) A well-known Hamiltonian form of Newton’s laws, for
instance, presents them as a system of two first-order differential
equations, rather than a single acceleration-based second-order
model. It is traditional in ecology to start with two first-order
dynamic equations. In the opinion of some, this is the only way
to clearly describe a mechanism. In this chapter, we attempt to
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write a single second-order model in terms of abundance only
(in logarithmic scale, as always) but representing an unknown
(or hidden) second variable. It will be important to see that this
attempt does not relinquish the generality of the more familiar
system of two rate-based equations.
The approach we are suggesting here does not depend on the

precise nature of the second, unobserved dynamic variable in
joint dynamics with population abundance. It can be an unob-
served predator or prey abundance, or the unobserved and chang-
ing intrapopulation average individual quality. Inertia can be
caused by bothmechanisms. The existence of this second variable
simply tells us that we have to describe a two-dimensional pro-
cess, with abundance being one of the dimensions. Our choice in
this situation is simply to write a general second-order differential
equation and view the abundance and its rate of change as two
independent variables. We will call such a second-order model,
written in terms of abundance and its rate of change, an implicit
inertial growth model—it is implicit in the sense that the second
variable is not explicitly representing any particular mechanism
for the resulting dynemics. However, if predation is known to
be the mechanism, the growth rate of the observed population
can stand for the underlying unknown predator abundance. If
the mechanism is known to be maternal effect, the growth rate
can stand for the unobserved individual quality.
The description of a fundamentally discrete process of popu-

lation growth by a continuous differential equation is a serious
issue that we have already broached but will briefly revisit here.
The solutions of differential equations exactly coincide with the
solutions of the corresponding discrete models only in the case
of linear models. Not all of the models we use, however, are
linear. There is thus a substantial issue here: in what sense do the
easier-to-study differential equations correspond to their discrete
analogies? This is an open and unresolved question. In very gen-
eral terms, the simplicity of the continuous model may be mis-
leading. Chaotic dynamics appear in discrete models in a single
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dimension (May, 1974a), but we need at least three dimensions
to obtain similar effects in the continuous case.
One argument, commonly given for the validity of the con-

tinuous description, appeals to overlapping generations. In most
populations, because of a distribution of developmental stages,
there are always some individuals reproducing. Such almost-
continuous features of reproduction are clearly important and
yet would be left out of any discrete model. The only viable
alternative, it would seem, is to invoke the idealization of a
continuous-time model. But as we’ve already pointed out (in
section 5.3), this argument is clearly applicable in the case of
Malthusian growth when age or stage distribution is stable, but
when our focus is deviations from exponentiality, the argument
does not seem so convincing. Moreover, the argument is com-
pletely unconvincing when reproduction is synchronized, as in
annual species. Although we acknowledge that this traditional
argument for continuous description is not without some force,
we have to admit that our use of differential equations in this
chapter has to be viewed as an approximation with unknown
accuracy. It is our, and most ecological theoreticians’, hope
that we are crudely describing what goes on in the underly-
ing discrete-time process, at least for some finite duration of
time.
The equation we need in the general situation described

above is

dr
dt

= F(n, r), (6.1)

where n = lnN (abundance measured in the logarithmic scale), t
is time in years, r = dn/dt is a per capita growth rate, and F is the
acceleration of the logarithmic abundance or the rate of change
of the growth rate, dr/dt.
The model obviously produces exponential growth [or linear

growth of n(t)] when F = 0. F therefore characterizes the devi-
ation from Malthusian growth. This deviation depends on both
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population abundance, n, and the growth rate, dn/dt, which, re-
call, stands for the unmeasured, hidden variable engaged in joint
dynamics with abundance, n(t).
Predator–prey models have always been written in terms of

differential equations, both because of technical convenience and
because it is not clear how to write a reasonable discrete-time
model in any other way (because generation times of predator
and prey can be very different). The unit of time for these models
is, in principle, arbitrary, but it is commonly thought of as annual,
unless seasonality within the year is incorporated. If seasonality
is incorporated, the unit of time would be days or weeks. This
more specific time scale, in the opinion of some authors, adds
power to the theory. We remain unconvinced.
Maternal-effectmodels are written in units of generation time.

If viewed in chronological time, the change of units leads to a
simple transformation. If T is generation time of the species (in
years) but we wish to write an equation on an annual time scale,
we need to reexpress rates per generation in terms of rates per
year. The rate per generation is simply T multiplied by the rate
per year. For acceleration, dr/dt, we have to multiply the annual
acceleration by T 2 to move to the generation timescale. Obvi-
ously, the reverse is also true: to reexpress rates per generation in
terms of rates per year, they have to be adjusted accordingly. For
example, a rate of growth of 2.4 times per generation will be 0.8
per year if the generation time is 3 years; acceleration per year,
in this case, will be nine times smaller than the one measured per
generation.
Let us now describe the span of population dynamics events

that a good general theory needs to cover. One extreme of the
spectrum is extinction in the absence of food, which is a nega-
tively accelerated process, as described in chapter 3. In this case,
F = const < 0. On the other extreme is exponential growth
with the maximal possible growth rate, rmax (where rmax is species
specific). This is an ideal exponential growth, with a rate that
cannot be exceeded.
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Figure 6.1. Population dynamics for Zeiraphera diniana (larch budmoth;
Ginzburg and Inchausti, 1997): (a) time series data; (b) phase plane
representation of the time series. Reprinted with permission of Oikos.

The dynamics of the implicit inertial equation is naturally
represented in the abundance–growth-rate phase plane. This is
simply the space of various possible values for the abundance and
growth rate. In this representation, growth rate is an independent
variable standing for a hidden, unobserved dimension (which
might be quality or it might be abundance of another species).
Figure 6.1 shows such a representation. Note that the cycle of
the population looks asymmetric: it grows much more slowly
than it declines. That is, it takes longer to grow to the maximum
than it does to decline from the maximum to the minimum
(Ginzburg and Inchausti, 1997). The reason for this is the exis-
tence of the maximum rate of increase, rmax, but no such bound
on the rate of decrease. Organisms can die instantaneously, but
they cannot reproduce faster than a certain species-specific rate.
Indeed, the very existence of rmax turns any unstable equilibrium
into a limit cycle. There is no need for other explanations of
why the species in question does not, as it were, spiral out to
extinction.
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Direct density dependence or limiting factors act analogously
to friction in physics. The presence of these will dampen the
oscillations while elongating their period. Oscillations in the
case of a perfectly constant environment will die out, and the
population abundance will equilibrate. However, in a noisy en-
vironment, populations will exhibit correspondingly noisy tra-
jectories but with their natural frequency of oscillation evident
through the noise. This is not unlike a pendulum subject to
random hits. Its trajectory is random but the natural eigen-
frequency dictated by the pendulum characteristics will be clear
in its behavior. We therefore expect, based on the maternal-
effect model, that in general, noisy population trajectories will
reveal oscillatory tendencies with the dominant period exceed-
ing six generations. Indeed, there are suggestions of such pe-
riodic behavior in many data series, but the series in question
are typically too short for any definitive cyclic behavior to be
established.
We will treat rmax as an ideal maximal growth rate that can be

approached infinitely closely from below, but cannot be reached.
This treatment allows us to constrain the expression of F by a
simple condition:

F(n, rmax) = 0 (6.2)

irrespective of the value of n (where n = lnN ). This condition
disallows the growth rate to increase past the value rmax, so that all
the events in population growth are happening in the portion of
the n–r phase plane with arbitrary values of n but restricted values
of r < rmax (figure 6.1). Between the two extremes of acceler-
ated death and the maximal exponential growth lie a variety of
dynamic behaviors, including equilibration of abundance, oscil-
latory dynamics, limit cycles, and so forth. Before demonstrating
how our model (equation 6.1) describes these behaviors, we ad-
dress a specific parametric expression of the model that we will
use to fit the data.
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6.2 Parametric Specification

It is commonplace throughout science to prefer simpler theories
and equations. In particular, linear equations are prefered when-
ever they are up to the task. Linear functions are easier to work
with and, in an important sense, are no more complicated than is
required to fit certain well-behaved data sets. If linear functions
are not up to the task, we look for the next best thing—quadratic
functions. More generally, when dealing with differential equa-
tions, we prefer, whenever possible, to stick to the lower or-
der terms in Taylor-series expansions (the linear and quadratic
terms). So here, in our attempt to “deduce” the equation we
need, we will use linear functions, if possible, and quadratic ones
when necessary. This is in keeping with many other ecological
applications of differential equations (e.g., the logistic and Lotka–
Volterra equations). Indeed, Taylor series approximation has of-
ten been suggested as a way to “deduce” both the logistic and
Lotka–Volterra equations. The difference in our case is that we
have a function, F , of two arguments, n and r, and we therefore
have to approximate in two dimensions simultaneously.
We will assume an equilibrium point at n = n∗ and r = 0. We

will express the equation in terms of the deviation of the pop-
ulation abundance and growth rate from its equilibrium values.
Our suggested equation is

dr
dt

≈
(
1− r

rmax

) [−α(n − n∗) + βr
]
. (6.3)

Here α and β are parameters. Equation (6.3) is a quadratic ap-
proximation in r, and linear in n, to an unknown function that
becomes linear when growth rates are sufficiently small (i.e.,
when r is much smaller than rmax). In this case, equation (6.3)
is simply a linear second-order differential equation written in
the logarithmic scale of population abundance. The additional
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term, (1− r/rmax), makes the equation quadratic and guarantees
that our condition that the growth rate does not exceed rmax is
satisfied. It would be impossible to reflect this biologically impor-
tant constraint in the linear equation form; the quadratic form
has the minimum required complexity to capture this important
feature.
Our equation has three parameters, rmax, α, and β, and it re-

quires two initial conditions for the abundance and the growth
rate at time zero. The second initial condition, r, represents the
value of the hidden variable interacting with abundance in joint
second-order dynamics.
Here we can think of α and β as representing the strength of

delayed density dependence (α—not unlike the strength of the
restoring force in Hooke’s law in physics) and the strength of di-
rect density dependence (β—not unlike friction, when negative
and “antifriction” when positive, in the mechanical analogy). In
the current context, β can be thought of as representing growth
dependence, the effect of the growth rate on acceleration. This, of
course, is equivalent to the usual nondelayed density dependence
when α = 0. When α = 0, equation (6.3) integrates to the usual
first-order model.
Figure 6.2 demonstrates a variety of dynamic behaviors cov-

ered by our minimalistic, implicit, second-order model. In all
cases, parameter values and initial conditions were fitted to pro-
duce behavior closely resembling the data. When one is allowed
to fit parameters to data, it is not impressive that the fit is achieved.
The impressive part, in our judgment, is that the inertial growth
equation is very simple and remains the same across very differ-
ent cases. In short, our implicit, second-order model can capture
most of the dynamic complexity seen in real data, but it does so
in a simple and well-motivated fashion.
We believe that the inertial growth equation is a plausible

candidate to replace the outdated and much criticized logis-
tic equation as the simplest model for single-species dynamics.
This model, like the logistic equation, is not really based on any



92 Ecological Orbits

Figure 6.2. Growth curves (solid circles, solid lines) observed in natural
populations and described (open circles, dashed lines) by the implicit inertial
equation. The predicted population growth curves were obtained by
numerically integrating equation (6.3). Parameters and initial conditions used
are as follows: (A) Exponential growth (muskox, Ovibos moschatus; data from
Spencer and Lensink, 1970): N (0) = 32, r(0) = 0.11, α = 0, β = 0.
(B) Monotonic approach to equilibrium (red deer, Cervus elaphus;
Clutton-Brock et al., 1987): N ∗ = 160, α = 0, β = −0.15, r(0) = 0.15,
N (0) = 60, rmax = 5. (C) Overshooting the equilibrium once (ruffed
grouse, Lagopus scoticus; Middleton, 1934): N ∗ = 1921,Nover,max =
4,860, α = 0.09, β = −0.14, r(0) = −0.61,N (0) = 1,021, rmax = 5.
(D) Dampening oscillations approaching equilibrium (field vole, Microtus
agrestis, fall census; Hörnfeldt, 1994): N ∗ = 0.13, α = 2.47, β = −0.05,
r(0) = 2.5, N (0) = 0.025, rmax = 3.5.
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Figure 6.2. (Continued) (E) Oscillations of increasing amplitude
(gray-backed vole, Clethrionomys rufocanus, fall census; Henttonen et al.,
1987): N ∗ = 4.07, α = 1.57, β = 0.13, r(0) = 0.01, N (0) = 2.07,
rmax = 10. (F) Cycles of similar amplitude (larch budmoth, Zeiraphera diniana;
Baltensweiler and Fischlin, 1999): N ∗ = 2.17, α = 0.47, β = 1× 10−8
(arbitrarily set), r(0) = 1.06,N (0) = 0.02, rmax = 5. (G) Cycles of
asymmetric shape (lemmings, Lemmus lemmus; Seldal et al., 1989:
N ∗ = 1.44, α = 3.21, β = 1× 10−8 (arbitrarily set), r(0) = 2.75,
N (0) = 0.5, rmax = 5.

specific mechanism. We prefer to think that the inertial prop-
erties are caused by maternal effects, but they could just as well
be caused by the interaction with other species. This model is
just a simple rendering of the second-order dynamics, with three
parameters instead of the two in the logistic equation. This ex-
tra parameter dramatically increases the descriptive power of the
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model. In fact, this model is able to account for most observed
data. It is not so powerful as to be trivial, however. That is, it is
not so powerful as to be able to account for any arbitrary data
set. For instance, this model will not be able to account for two
distinct periods in the same data series. That such data series
have not been observed suggests that our model strikes the right
balance between simplicity and complexity; it’s complex enough
to handle existing data but is no more complex than it needs to
be to do this.
In the last 30 years, a lot of attention has been devoted to

analyzing population data series in terms of delayed density de-
pendence. Extensive work by Royama (1992), Turchin (2003a),
Stenseth (1999), and Berryman (1999), among others, has con-
vincingly shown that we have to consider at least one lagged
density dependence in addition to the immediate density de-
pendence. That is, the two-dimensional model

Nt+1 = Nt f (Nt,Nt−1) (6.4)

has been shown to be the minimal description that is consistent
with observed population abundance data series. This large body
of work, although convincing on the question of the dimension
in which the data series has to be embedded (it is two, rather
than one), is unable to answer the question of the causes for the
lag. It has this much in common with our implicit model, which
is also silent on this matter.
A discrete analog of our model can be written as

Nt+1
Nt

= Nt

Nt−1
F

(
Nt,

Nt

Nt−1

)
. (6.5)

This is equivalent to equation (6.4). The important difference is
that by describing F with an expression with three parameters,
rmax, α, and β, we have a great deal more power in the theory
For instance, just the presence of the term containing rmax turns
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locally unstable equilibria into limit cycles. Various oscillatory
behaviors, both stable and unstable, are included. In the form of
equation (6.4), eight parameters had to be introduced to faithfully
reproduce the features of observed data series (Turchin, 2001).
We believe that the reason we can achieve this with only three is
the focus on acceleration, or the rate of change of the growth rate.
Changing the response variable from the rate, to the acceleration
reflects the inertial properties of population growth somewhat
more naturally and thus allows us to achieve a general description
with fewer parameters.
We are of the view that the maternal effect is the cause of

inertia, but the fit to data and the particular parameterization
of the implicit inertial model do not depend on this choice of
the nature of the “hidden” dimension. Our arguments for the
internal cause, based on observed periods of cycling, are inde-
pendent of the particular form of the implicit inertial equation.
This minimalistic form of equation (6.3) seems useful in itself as
a way of describing inertial growth, irrespective of the cause.

6.3 Malthusian Invariancy

There is a well-known restatement of Newton’s first law in terms
of a thought experiment in which someone is placed inside a
moving capsule (missile, train, boat, etc., depending on how the
story is told). The restatement of Newton’s first law is then the
assertion that without looking out the window, or using other
objects outside for comparison, the person will not be able to
determine whether the capsule is at rest or moving uniformly.
Onlywhen the capsule accelerates (or decelerates) will the person
be able to determine that something is happening. This is known
as the Galilean relativity principle.
Indeed, such invariance, or symmetry, principles are funda-

mental to all of science. Whenever we have some significant
quantity or relationship (e.g., length—the relationship between
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the end points of an object), we need to be able to say under
what conditions this quantity or relationship will be unchanged
and under what conditions it will change. If we can’t do that, we
can’t claim to have a significant quantity at all. For example, in
Newtonian physics, length is invariant with respect to velocity
and with respect to position in space—the length of an object
does not change if you change the object’s velocity or location.
That is, length is invariant under a certain class of transformations
(known asGalilean transformations). (This example may seem triv-
ial but it is not. As it turns out, length is not invariant with respect
to Galilean transformation—the length of an object depends on
its relative velocity.) Specifying invariances is necessary, it would
seem, for the formulation of laws, for providing explanations,
and for making predictions. After all, how can you predict what
some significant ecological quantity (e.g., population abundance)
will be in the future if you do not know anything about the
conditions under which the quantity in question is invariant and
under which it is not? To put it crudely, you don’t know what
something is until you also understand what it is not.
With the importance of invariance in mind, let us now try

to formulate an ecological principle based on the Malthusian
law that is analagous to the Galilean relativity principle men-
tioned above. This ecological principle will help demonstrate
the connection between the ideas of inertial growth and ratio-
dependent predation. So, in the spirit of the Newtonian thought
experiment, imagine you are a cell in a laboratory cell culture
or a rabbit in a population of rabbits (or even a human in a
population of humans); how would you know whether the pop-
ulation that you belong to is constant in abundance, or whether
its abundance is increasing (or decreasing) exponentially, by only
looking around you, without conducting a census from the out-
side? We suggest that you would not know. A basic assumption
of exponential growth is that there are no changes in the internal
state of an average individual. We may, of course, determine the
growth rate by counting, but we count “from the outside.” We
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cannot internally sense the rate when we are members of the
population being counted. The only events that we sense are in-
dividual, energetic-based changes. For example, if food becomes
harder to obtain, or if you seem to encounter conspecifics more
often, you would know that something is changing. This will
correspond to changes in growth rate, not to the growth rate it-
self, and therefore, it is impossible to experience the rate directly
(without counting from the outside).
Our proposal is that equations describing growth have to be

based on the individual energetics that underlie population dy-
namics. The changes in individual energetics would not directly
react to the population’s growth rate. In the absence of data on in-
dividual quality, we may have to move to an implicit description,
in terms of abundance and its rate of change. The corresponding
second-order model will have to be invariant with respect to
Malthusian transformation, just as the laws of physics are invari-
ant with respect to the Galilean transformation. The meaning of
this invariancy is that an individual in a population growing on
an exponentially expanding resource will behave just as another
individual in a population growing on a constant resource if the
average energetic content of individuals is the same.
There is an important caveat to this statement. If the resource

increases very fast, the population may not be able to repro-
duce as fast—there is an absolute limit for the maximum rate of
reproduction. Therefore, the invariancy above is valid only ap-
proximately, when the growth rate is much below the maximum
possible growth rate.
Imagine a situation in which two populations, prey and preda-

tor, equilibrate at some ratio, say, one predator per 100 prey. The
absolute densities are equilibrated because of a limiting factor
controlling the prey population. Now let us assume that this
limiting factor (e.g., space, nutrients, or light) is available in abun-
dance and the prey population grows for a period of time with
the predator population growing along with it. If such growth
continues, a ratio of abundance for the predator and prey (both
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increasing exponentially because there is no limit) will be estab-
lished. The question is whether this ratio, with all other things
being equal, is different from 1:100? In other words, the ques-
tion is whether the predator population growth rate will react
to the fact that the underlying resource is expanding rather than
constant.
We have no doubt that such a reaction will take place with

nonexponential expansion of the prey, because in this case the per
capita supply of resources will change. The answer is not clear-
cut in the case of purely exponential expansion. The Malthusian
invariance principle suggests that the established ratio does not
depend on the rate of expansion (or contraction, which might
be easier to imagine). Change in the individual’s quality is then
the only absolute parameter “sensed” by predators. Evidence
partially supporting this assumption comes from the compari-
son of steady-state densities at different trophic levels for lakes
with varying nutrient concentrations. This evidence is far from
compelling, but an approximate constancy of the ratios seems to
be the case (Ginzburg and Akçakaya, 1992). We are not aware
of any data that would allow us to truly test the exponentially
expanding case.
In our daily lives, inertia of physical bodies is obvious. It would

not be so obvious, however, if we lived in a very viscous liquid.
Forces would then result in velocities, not accelerations, and the
Aristotelian view would be sufficient. In physics, the gradient
between inertial and friction forces in commonly described by
the Reynolds number (Percell, 1977). At one extreme, when
friction dominates, the Aristotelian view is sufficient; at the other
extreme, inertia has to be taken into account. Limiting factors in
population dynamics play the role in ecology that friction does
in physics. They stop exponential growth, not unlike the way in
which friction stops uniform motion. Whether or not ecology
is more like physics in a viscous liquid, when the growth-rate–
based traditional view is sufficient, is an open question. We argue
that this limit is an oversimplification, that populations do exhibit
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inertial properties that are noticeable. Note that the inclusion of
inertia is a generalization—it does not exclude the regular rate-
based, first-order theories. They may still be widely applicable
under a strong immediate density dependence, acting like friction
in physics.
Even the Aristotelian limit in physics preserves a simple sym-

metry: only relative distances matter. Laws are said to be invariant
with respect to translation. Ratio dependence within the tradi-
tional ecological theory is analogous to this: laws of interaction
are invariant with respect to multiplying abundances of interact-
ing species by the same constant. This, of course, is equivalent
to the arithmetic “translation” in the logarithmic scale.
Space is particularly important here, and it is an ever-present

limiting factor. It is therefore treated quite differently by the ratio-
dependent approach. We separate biological interactions from bi-
ological constraints. Both are, of course, present in nature; the
question is whether or not it is useful to treat them separately.
We separate the two influences and assume just the predator–
prey interaction to be ratio dependent. The limiting factors, like
space, are relegated to a separate term in our equations, which
stops otherwise infinite exponential growth of the interacting
pair. According to the traditional line of thought, beginning with
Lotka and Volterra, space is not to be thought of as a separate
constraint but is included in the very basis of how interactions
are described. Thus, traditional models not only disallow the
joint exponential growth of predator and prey but also disallow
even the thought of it. In other words, traditional models do not
contain a parameter that, when set to zero or to infinity, will elim-
inate the limiting factor and allow for joint exponential growth.
This is possible in the logistic model for a single species, but it is
not possible in the model with species interactions. We believe
that it is unreasonable to allow for the idea of Malthusian growth
only in the case of single species. It seems to us that when limiting
factors are introduced in the usual way in the Lotka–Volterra-
like scheme, it is double counting—a pure scheme would have
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already reflected limited space, because the pure scheme is not
invariant with respect to proportional scaling. The distinct treat-
ment of biologically meaningful interactions and limiting factors
is similar to the partitioning of forces in physics into true forces
and the reactions of constraints. This partition is a useful, simpli-
fying idea that may be helpful for constructing ecological models
as well.
Our suggestion is to construct a theory of population dy-

namics that is invariant with respect to Malthusian growth. This
invariance would lead to the ratio-dependent symmetry of in-
teractions as a special consequence. As of now, we have more
empirical justification for the consequence than for the larger
view. It is more on the basis of beauty and simplicity than on di-
rect evidence that we propose this view. There is certainly much
more experimental and theoretical work to be done to decide
whether a larger, Malthusian symmetry would be useful.

6.4 What Is and What Is Not Analogous

Now that we’ve spelled out the implicit inertial model of pop-
ulation growth, it will be useful to reconsider our analogy with
Newtonian mechanics. We will show that, just like Newton, we
are proposing a research program. Newton’s research program
was to identify physical forces; ours is to identify “ecological
forces.”
There are two ways of thinking about Newton’s laws of mo-

tion. Recall that the first law tells us that bodies remain in a state
of constant velocity unless acted upon by a net force. The second
law tells us that forces act on bodies in such a way as to result in
an acceleration that’s proportional to the force. The gravitational
law tells us about the gravitational force and its action on massive
bodies.
On the first way of looking at these laws, the first law is re-

dundant. After all, it seems to be a special case of the second law.
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Set the force equal to zero in the second law and we see that
the acceleration is zero, and hence the velocity must be constant.
Why, then, do we need the first law? Some have suggested that
Newton included the first law purely out of respect to Descartes
and Galileo, who first postulated this law. On this view, the first
law is a kind of redundant tribute to Newton’s intellectual pre-
dessesors.
There is, however, another way of looking at these laws—a

way in which there are no redundancies. On this second view,
the first law is a statement about the default state of bodies—what
happens, as it were, when nothing happens. The second law is
seen as a definition of the concept of force: a force is defined to
be a quantity that results in an acceleration. But this definition
leaves completely open how many and what kinds of forces are
possible. The two laws taken together, thus, open up a research
program to identify the forces that exist in nature. The first step in
this research program is taken by Newton with his gravitational
law. This law identifies and describes the action of one such
force: gravitational force. Of course, we know now that there
are others. In fact, there are thought to be four fundamental
forces: gravitational, electromagnetic, weak nuclear, and strong
nuclear forces.
We prefer this second interpretation of Newton’s laws. And

in a similar spirit, we suggest that the first law of ecology is
Malthus’s law—the default state of a growing population. We
define “ecological forces” to be quantities that act on growing (or
declining) populations as second-order quantities—“ecological
accelerations,” as we’ve been calling them. We then identify one
such force: thematernal effect, a force based on passing individual
quality across generations. Also in the spirit of Newton, we do
not rule out other forces (e.g., predator–prey interactions); what
we propose is a useful framework for exploring ecological forces.
The maternal effect, we claim, is one such force, and although
we expect that there will be others, we think that a great deal
can be explained simply by considering the maternal effect—just
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as a great deal can be explained in physics by simply considering
one force, without resorting to the other three known physical
forces.
We have been stressing the analogy between Newtonian laws

and laws of population dynamics so much that the question of
what is not analogous may be legitimately pondered. Let us take
a moment to discuss what is not analogous, in order to clarify
our position.
To start with, there is obviously nothing materially in com-

mon between how bodies move and how populations grow and
interact. The equations are also different. There is no analogy to
gravitational or electromagnetic force in ecology. The analogy
helps inform the way we look at dynamics, and helps in gener-
ating new hypotheses in the research program that we propose
to adopt.
As we’ve already discussed, the analogous program has been

quite successful in physics. It has identified a number of forces,
which can be captured in relatively simple equations, which in
turn yield verifiable predictions. We have suggested an analogous
research program, but we have not yet identified all the “ecolog-
ical forces” or their mathematical descriptions. The three forces
(read: causes of energetic changes for individuals or correspond-
ing changes in growth rate) that we have addressed are as follows:

1. Energetics. We think that the balance of metabolism
and consumption defines equilibrial abundances of or-
ganisms (Damuth allometry).

2. Maternal effect. We think that this is a very common
mechanism of cyclicity. We think that it is a strong al-
ternative to the traditional predator–prey account of the
observed abundance cycles. Thematernal effect account
also fits well with the Calder allometry and produces
the observed periods, while rejecting the unobserved
periods.
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3. Predator–prey interactions. We think that the better
predator–preymodel, consistent with our general frame-
work, is ratio-dependent predation.

In all three cases, the forces of which we speak are formally
analogous to physical forces in the sense that they result in changes
in the growth rate (accelerations) rather than directly affecting
the growth rate. We follow the Newtonian logic of approaching
the problem, but that’s all we do. In particular, we do not claim
that ecological forces bear any resemblance to physical forces.



Seven

Pract ical Consequences

So far, we have argued for a different approach to modeling pop-
ulation growth—the inertial approach. The mathematical and
theoretical differences between this and the traditional approach
are clear. But is this just an academic debate? After all, if there
are no practical consequences, why concern ourselves?We believe
that there are practical consequences and that some of the limita-
tions of traditional theoretical models may be due, at least in part,
to adopting too narrow a theoretical framework. If the inertial
model is the better model, it should fare better in applications.
In this chapter, we outline a few of these applications. But first,
it will be useful to reflect on the relationship between theoretical
and applied ecology.

7.1 Theoretical and Applied Ecology

The beauty of general theoretical concepts is not what attracts
students to ecology. Environmental concerns and the beauty and
complexity of life remain the two main motives. Yet work in
theoretical ecology—developing fruitful theoretical concepts and
putting them to use in ecological theories—accounts for more
than its fair share of the current and past research in ecology. Col-
lections of the seminal papers in ecology contain 40–50% the-
oretical papers (depending on how you count them, of course).
And this is with theoretical ecologists constituting less than 5%
of all ecologists (Holland et al., 1992).

104
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This dominance of theoretical output in ecology and con-
servation biology continues to this day. Both disciplines are in
desperate need of theories that provide practical guidance. In
particular, we need theories that help us answer such important
questions as, How are we to protect various endangered species?
Are we really in the midst of a mass extinction event? If we are,
what can we do about it? How can industrial development and
conservation coexist? The demand for answers to crucial ques-
tions such as these is the main reason for the existence of ecology
and conservation biology as scientific disciplines. Indeed, almost
all ecologists—theoretical and practical—owe their jobs to the
importance of these practical matters concerning the environ-
ment.
In a social climate such as this, there is a great deal of pressure

on ecologists to produce the goods—to produce theories that
help us manage our environment. But good ecological theories
are hard to come by; ecological theories are subject to natural
selection no less than the biological populations they describe.
There is no better selection pressure for a theory than the test of
applicability. Not only will the theory need to produce results
that match reality, but many models will simply crumble under
the weight of their own complexity.
There are also problems of communication between the the-

oreticians and the more practically oriented ecologists. Practical
ecologists often have trouble following the mathematical details
of a theoretical argument. On the other hand, theoreticians often
get so tied up in their mathematical models that they lose touch
with the ecological system being studied. The result is that prac-
tical ecologists tend to treat complex theories with more than a
little suspicion. As we shall show, we think that this suspicion is
not without some justification.
The mutual understanding between theoreticians and main-

stream ecologists has never been great. To start with, most older
ecological theorists around today were not trained by ecolo-
gists. They came from physics and mathematics backgrounds and
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trained themselves in ecology by reading, by talking to biologists,
and by working in biology and ecology departments. Because a
typical biology department in a university rarely needs more than
one theoretician, theoretical ecology is a minority occupation
among ecologists—currently of the order of 5% of all ecologists.
Theoretical topics are now taught to all ecologists, and new gen-
erations of theoreticians come almost exclusively from students
trained within the profession. We hope this qualitative change
will improve communication between theoreticians and the ma-
jority of ecologists. We say hope because the trend is counteracted
to some extent by the general decline in the mathematical culture
of biology students. It was never high, but it has continued to
decline visibly in the United States over the last 20 years. Euro-
pean and Asian students fare somewhat better, but the trend is in
the same direction. Either society at large does not require the
degree of mathematical sophistication scientists would naturally
like to see, or the trend may reverse as our children’s children
revolt against their parents.

7.2 Managing Inertial Populations

Although theoretical models in fisheries have been used for quite
some time, it is only in the last 20 years or so that theoretical
ecology has been widely put to practical use. This change of
attitude toward theoretical ecology is mostly a result of the needs
of conservation biology. It’s fair to say, however, that although
theoretical models are now fairly widely used, their usefulness
in predicting the behavior of actual ecological systems is not all
that one would hope for. There are, of course, many reasons for
this, most notably the incredible complexity of the systems being
modeled. But there may be another reason: the models may be
fundamentally flawed.
Both in fisheries and in most conservation biology applica-

tions, the time scales of interest are much shorter than we have
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addressed by our suggested inertial model. Inertia works on the
time scale of generations. If, as we’ve argued, cycles are mini-
mally six generations long, then when a population overshoots
or undershoots its equilibrial value, it will take at least three
generations to return to that equilibrial value. Fish species—at
least the ones of interest to humans—and many of the mam-
mal and bird populations subject to conservation efforts have
life spans that are often longer than one year and sometimes
many years in length. The time scales of practical interest of-
ten have more to do with politics (e.g., presidential terms of
office) than with biology. Most practically important theory has
focused on the details of the age and stage structure of popu-
lations. The time periods of interest here are a few generation
times of the species in question. The most common approaches
are computer simulations of population dynamics that incorpo-
rate various sources of uncertainty. The results are formulated
in terms of risk of decline or risk of extinction at time scales
that are too short for incorporating effects of intergenerational
inertia.
It is in the longer time scale of tens or hundreds of genera-

tions that our ideas will have practical impact. The main qual-
itative effect of the inertial view of population growth will be
in the evaluation of the long-term effects of artificial mortality
imposed on a natural population by harvesting, toxic effects, or
any other source of human-caused mortality. In the traditional
view, any additional mortality leads to the decline of the equi-
librium population abundance. This is because birth and death
rates are viewed as causes of equilibration, and with an increased
death rate, the equilibrium abundance also declines. This in-
terpretation remains valid for any source of mortality, including
natural (e.g., predation) or artificial (e.g., harvesting). Thus, the
response of the long-term equilibrium abundance to mortality
is typically viewed as shown in figure 7.1A: abundance declines
with mortality until mortality exceeds a critical level, and then
the population is driven to extinction.
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Figure 7.1. Response of equilibrium abundance, N ∗, to additional mortality,
µ. The three curves represent: traditional view (A), inertial view (B), and
realistic expectation (C). When µ ≈ rmax, equilibrium abundance is zero.

With the inertial view, the picture is quite different. The rea-
son is that with additional mortality, and with constant resources,
the population equilibrates, with the remaining individuals en-
joying a higher average quality of life. This increase in quality
will produce higher birth rates, which may compensate for the
increase in death rate. Our view is based on a delayed (by one
generation) density dependence. The picture of equilibrium re-
sponse may look more like figure 7.1B. Equilibrium abundance
may have little or even no response to mortality but then collapse
when the mortality reaches the critical value. The critical value
is the same in both cases: it is the maximum reproduction rate
that, if exceeded bymortality, leads to extinction. The difference,
however, is in the response to lowermortality levels. If the average
quality does not respond in perfect proportion to mortality, or if
the reproduction rate does not perfectly respond to quality, the
picture will be more like that illustrated by figure 7.1C. It may
not be as dramatic as a stepwise collapse (as in the extreme case),
but it will be closer to a collapse response than to a gradual re-
sponse. Therefore, if our view is correct, small rates of harvesting
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or small mortality rates in general may appear inconsequential.
The compensatory response may fool us into believing that even
higher rates of harvest are sustainable. We may then be surprised
by a very rapid decline and even extinction of an exploited pop-
ulation.
Although the equilibriummay not noticeably respond to small

amounts of imposed mortality, other characteristics of the pop-
ulation may. The so-called resilience, or rate of return to equilib-
rium after a deviation, will decline immediately after the imposed
mortality, even if such mortality is small. In a fluctuating environ-
ment where average, rather than equilibrium, abundance is the
more important concept, the average will decline even when
the equilibrium does not decline. To what extent it shifts the
response from gradual (figure 7.1A) to punctual (figure 7.1B)
depends on the size and frequency of disturbances.
The argument above is applicable to natural mortality, as well.

As we described in chapter 6, according to the ratio-dependence
theory, efficient predators can consume prey to complete extinc-
tion. It is worth bearing in mind that, although naturally occur-
ring pairs of predators and prey (and, indeed, whole trophic
chains) have coevolved, it may well be that we only see the pairs
that are able to coexist. This does not rule out past extinctions
due to overefficient predation. It is likely that there were such
extinctions in which both predator and prey disappeared. If such
dual predator–prey extinctions occurred close to the bottom of
a trophic chain, entire chains may have collapsed. On our view,
dual extinction is a natural, possible outcome of predator–prey
interactions. To deny this seems akin to believing that because
the planets we see orbit the sun, every physical body in the solar
system should also orbit the sun. But most bodies in the early
solar system either fell into the sun (or, perhaps, what would
become the sun), or fell into one of the nine planets (or their
satellites), or were flung out into space. The outcome depends
on the body’s mass and its initial trajectory. Most trajectories
are thus “selected against,” and would-be satellites are selected
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according to the stability of their trajectory. It is an extremely
unlikely combination of initial conditions that a body requires in
order to occupy a stable orbit. Likewise, species that are present
today are a small subsample of the ones that have existed. The
ones we see do coexist, but a sensible theory has to allow for
the possibility of extinction. Moreover, such a theory must give
some guidance on the limits of values of parameters that, when
exceeded, may lead to extinction.
The other side of the coin is the spectacularly unsuccessful at-

tempts to control unwanted species, primarily agricultural pests,
but also some wildlife. Deer populations in the United States,
for instance, have become so abundant in some regions that var-
ious state governments are unable to control them by increasing
hunting. At least part of the explanation for this failure may
stem from factors similar to those discussed above. That is, if the
response to mortality looks more like B than A in figure 7, the
expectation of a reduction of abundance in response to mortality
may be overestimated. Although the expectation might be close
enough in the short term, it could be well off the mark in the
long term—even with sustained mortality. If the inertial view is
correct, simpleminded short-term policies that fail to take into
account the quality of individuals are destined to fail.
It is worth stressing that this inertial, or two-dimensional view

of equilibrium is not a rejection but a generalization of the tra-
ditional rate-based view. It is possible that, with very low in-
ertia (because of a small effect of individual quality on the rate
of reproduction) and with strong direct limitations to growth
(unrelated to resource consumption), the traditional rate-based
equilibration will work well. We certainly do not rule that out.
Indeed, our view allows this as a special case, but our inertial
view also opens the door to other possibilities that may have
significant implications for management strategies—possibilities
that cannot even be entertained on the traditional view.
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7.3 Rates of Evolution

Since its first formulation, the theory of evolution has been
deeply rooted in the Malthusian model of population dynamics.
Adaptations are thought of as changes in the rate of reproduc-
tion. Natural selection acts by replacing the less fit (lower rate
of reproduction) with the more fit mutant (higher rate of re-
production). The inertial growth model adds a seemingly small,
but potentially significant, twist to this view. A mutant achiev-
ing a higher reproductive rate at the same energetic cost would
win the competition. However, because in our model repro-
duction rates explicitly depend on energetic investment, there is
another option. A more energetically efficient mutant will win
the competition, and this process can occur much faster than in
the first case. Because resource investment in reproduction and
maintenance is taking place at the energetic level, the underlying
reproductive changes of an advantageous mutation will cause a
superexponential or accelerated rate of replacement by a mutant.
We suspect that the rate of evolutionary change can be much
higher than previously thought if the inertial population growth
model is placed at its foundation. This is not an issue that we have
fully explored, and our suggestions here are rather speculative.
Another aspect of evolutionary applications involves our pro-

posed oscillatory image of a single species population consuming
a constant flow of the resource. If this view is correct, one possible
strategy for the evolution of species interactions is resonance avoid-
ance. Because the periods of oscillations for a species, according to
our view, are crudely a function of the species’ generation-time
eigenvalues, interacting pairs have to have sufficiently disparate
generation times in order to avoid high-amplitude resonance and
thus an increased chance of extinction. In fact, as Elton (2001)
pointed out, predators commonly have amuch longer generation
time than do their prey. Parasites have a much shorter genera-
tion time than do their hosts. The usual explanations are based
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on body sizes as causes and generation times as effects for these
structures. The inertial view, however, suggests that it may be
the other way around. It may well be that interactions between
species with similar generation times are dynamically unstable
and that resonance avoidance is the reason why stable trophic
chains consist of groups of species with very different generation
times. For example, consider the trophic chain of phytoplank-
ton (generation time in days), zooplankton (generation time in
weeks), forage fish (annual or biannual), and predatory fish (mul-
tiyear generation).
Another possible evolutionary application of our account of

population growth could involve capitalizing on inequality (5.1),
controlling dual extinction versus coexistence of predator and
prey. If the predator is too efficient, it eliminates the prey and
then dies, as in the Gause experiment. This is certainly not the
usual individual selection mechanism. We submit that it is also
not the usual group-selection or species-selection mechanism. A
good name for it may be ecological exclusion; it is a systemic or
structural elimination, not a kind of fitness competition in either
the individual or the group sense.
Such elimination may have happened in the past, and to-

day’s predator–prey pairs satisfy the coexistence inequality by not
having predators that are too efficient. A similar argument was
repeatedly raised in epidemiology. Moderation in virulence and
apparently “prudent” predation in the sense introduced by Slo-
bodkin (1980) may need a systemic explanation. A well-known
metaphor by Hutchinson sets ecology as a theater and evolution
as a play. To continue with this metaphor, it may be that not
just actors compete and are eliminated, but whole plays may be
excluded with all their actors, when characteristics of the pair
of species cross the coexistence line. We would thus have two
quite different methods of elimination. This possibility has been
tentatively suggested by Dunbar (1971), but given that tradi-
tional prey-dependent theory does not allow dual extinction as
an outcome, the suggestion was not pursued. If predator depen-
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dence symbolized by ratio dependence is a better idealization,
this evolutionary mechanism has to be given serious considera-
tion. Thewhole body of the spectacularly successful evolutionary
theory has Malthusian growth in its foundation. An incremental
progress in understanding population dynamics a step away from
this simplest law of growth has to fuel substantial progress in
understanding evolution as well.
There are, no doubt, many more questions about evolution

that could be asked and possibly answered differently if we
adopted the inertial view of population growth. It is beyond
the scope of this book to explore all such issues. Our purpose
here is simply to highlight the fact that the inertial model does
have serious evolutionary implications, and to briefly sketchwhat
some of these might be.

7.4 Risk Analysis

Populations grow when their abundance is low in relation to
the resources used for reproduction; they decline when their
abundance is high in relation to resources. Somewhere between
the low and the high lies the equilibrium value of abundance.
If this value is stable, and if a population abundance approaches
this value in an appropriate way, the abundance will stay at the
equilibrium value. Populations in nature are, of course, rarely in
perfect equilibrium. Unpredictable variability of environmental
characteristics shifts the abundance of populations up and down.
The effect of this unpredictable variation is often pronounced
and may have consequences for the value of average abundance
(which need not be equal to the equilibrial abundance). The rate
of return to equilibrium, for instance, may have a strong effect
on the average abundance, even when the equilibrium itself is
unchanged.
Such variability, or environmental fluctuations, has led to

a reformulation of one of the key questions asked by applied
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ecologists. Instead of predicting exact values for future popula-
tion abundance, ecologists are asking for only an estimate of the
risk of population decline or extinction. Methods for assessing
such risks have been developed over the last 20 years. They are
usually implemented using software, because the requiredMonte
Carlo simulations need significant computing power. The time
scale of the ecological risk assessment is often quite short—at
least if thought of in terms of generation times of the species in
question. The reasons for such short time scales are the urgency
of the issues under consideration and the way error accumulates
to make longer term assessments unreliable. The mathematical
models used for ecological risk assessments are typically based
on age- or stage-structured demographic models. They describe
the growth of populations with much shorter time units than is
generally found for generation times. Thus, the inertial growth
view, which is applicable in a much coarser time scale, has not
been incorporated into risk analyses. On the other hand, long-
term population data series accumulated at Imperial College in
London contain a significant number of long-term population
waves (NERC, 1999). This, in turn, suggests the need for an
inertial description at these longer time scales. It appears that
with an increase in our understanding of basic laws of population
dynamics, the inertial view may be incorporated into practical
risk assessments aimed at longer time scales.

7.5 The Moral

Why do most attempts to control natural populations fail? From
fishery collapses to pest explosions and dismal attempts to con-
trol various wildlife species, the news has been generally nega-
tive. Under the U.S. Endangered Species Act, more than 1,200
species have been listed as threatened or endangered. Of those,
only nine have been delisted (deemed to have recovered). With
all the effort put into conservation management and, in partic-
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ular, the protection and regeneration of threatened species, why
such a poor recovery rate? The blame is commonly placed on
shortsighted government policies, management errors, the poor
data on which predictive models are built, and the unpredictabil-
ity of environmental changes. We believe that a portion of the
blame may also be attributed to the failure of standard ecological
theory. This theory is the very basis of the predictive models un-
derpinning population forecasts and on which management and
conservation efforts are planned. It may well be that dependence
on traditional population dynamics is one of the reasons for the
failure of many environmental management policies.
Viewing populations as inertial may lead to a shift in fo-

cus in the design and implementation of practical strategies for
harvested or controlled population management. Using various
sources of mortality as controls is bound to lead to populations
substantially overshooting the desired abundance both in ampli-
tude and in duration. Thus, the inertial model may be viewed
not simply as an abstract exercise, but as a potential basis for
the revision of population management. However, the favorite
time horizon of governments, the “5-year plan,” may not be
an appropriate time scale for sensible management of relatively
long-lived species.
It is instructive to learn that until about 20 years ago fish-

eries management was commonly based on the assumption that
harvest does not affect recruitment. This is certainly not true,
but high fecundities of fish disguised this fact. High fecundities
created an impression of practically unlimited “surplus produc-
tion.” Enforcing a quota for fishing as a method of saving the
overfished stock, spraying insecticides to control pest growth,
and imposing additional mortality on an overgrown deer popu-
lation may not be the best ways of achieving the desired results.
A more sophisticated approach, based on monitoring and dy-
namic feedback, might be required. This is, of course, old news
in other disciplines such as engineering and physics, which have
long traditions of controlling inertial objects. But in ecology,
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such monitoring and dynamic feedback are new. Moreover, the
need for monitoring and feedback in ecology is emphasized all
the more by the inertial model. Certainly, because the inertial
character of population growth has not yet been recognized, the
consequences for management have not been fully appreciated.
Consider an inexperienced boat captain who does not appre-

ciate the inertial nature of the vessel she has at her command.
Such a captain, when coming into dock, would decelerate the
boat only at the very last moment. Of course, such a docking
strategy would result in a violent impact between boat and dock.
Our current ecological management strategies may well be like
this. But in the ecological case, the consequences are even more
serious—they can be extinctions. An experienced boat captain, on
the other hand, knows to start the deceleration well before the
boat gets to the dock, and learns that a successful docking requires
a subtle series of decelerations and sometimes even accelerations
in response to the boat’s movements. We suggest that theoret-
ical and applied ecologists alike need to appreciate the inertial
character of populations and learn the subtle dynamic-feedback
strategies required for successful management.



Eight

Shadows on the Wall

It can be very difficult to decide between two competing the-
ories. It is rarely a simple matter of appealing to evidence. For
one thing, typically, neither theory conforms perfectly with the
evidence—usually some auxiliary hypotheses are needed for this.
But more important, often both theories can be made to agree
with the evidence, by a suitable choice of auxiliary hypotheses.
The issue, then, is not which theory best accords with the data,
but which does so in the simplest or least ad hoc way.
Appeals to the notion of simplicity in science are rife with

controversy. For example, there is the nontrivial issue of spelling
out what simplicity amounts to. In this final chapter, we look at
two ways to get a theory to conform to complicated data sets.
The first is the method of increasing the dimension of the model;
the second method involves increasing the number of parameters
of the model. The inertial theory of population growth is an
example of the first strategy—it suggests a second-order model of
population growth rather than the traditional first-order model.
One of the virtues of the inertial theory is that it is simple in the
sense that it has few independent parameters. We now explore
these issues in more detail, and we mount a case for at least
sometimes preferring the strategy of increasing the dimension of
the theory. Finally, we discuss another way in which our theory
is simpler: it makes possible a rather elegant image of ecological
interactions.

117
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8.1 Plato’s Cave

Plato thought that all we see around us are mere shadows of the
“real” world. Unlike the imperfect world we seem to inhabit, the
real world is perfect. He used a now famous metaphor to illus-
trate his view. He suggested that it’s as though we are inhabitants
of a cave and all we are allowed to see are flickering distorted
shadows on the irregular cave wall. From this we must try to
infer what the real world that casts these shadows is like. Putting
aside Plato’s contentious metaphysical views, the cave metaphor
is a wonderful statement of the scientist’s plight. We are faced
with data that are often unreliable, biased in various ways, and
often permit many interpretations—just like the shadows on the
cave wall. But from these imperfect data we must construct a
picture of reality that is much more than the sum of all the data.
This picture should be free of the imperfections we see in our
data and it should tell us how things really are.
Imagine, for a moment, that you’re in Plato’s cave, looking

at the flickering shadows on the wall. How many dimensions
will you need to explain the fact that some shadows seem to
pass through one another while others seem to bounce off one
another? You could doggedly stick to two dimensions, because
your data are two-dimensional. You might insist that yours is
a theory of shadows and that there are many different kinds of
shadows: some pass through one another whereas others do not.
Alternatively, you could make an abstract leap and suggest that
the objects that the theory is about are in fact three-dimensional
physical objects inhabiting a three-dimensional world, of which
you are merely seeing the two-dimensional projection—and an
imperfect projection, at that. Now, the explanation of why some
shadows seem to pass through one another is straightforward:
all solid physical objects bounce off one another, but what you
see on the cave wall as shadows passing through one another are
just physical objects passing by one another at different distances
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from the cave wall. Although the dimensionality of theories was
not what Plato had in mind with his analogy, nevertheless, it’s
a wonderful illustration of the point that sometimes the best
explanation of the data is at a higher dimension.
The history of science has many examples of increasing di-

mensions to account for, and explain, the data. As we’ve repeat-
edly stressed, Newton and Galileo suggested the move from first-
order equations of motion to second-order equations of motion,
thus increasing the dimension of the relevant theory by one.
Einstein and Minkowski suggested that the appropriate model
of space is in fact four-dimensional—where time is a spacelike
dimension and the four together are thought of as a space-time
manifold. In modern quantum mechanics, the dimensionality of
the relevant Hilbert spaces employed is infinite. The suggestion
that we advocate for population ecology is a very modest one.
We are suggesting the move from a first-order model to a second-
order one. But the question remains, when are such increases in
dimensions justified and when are they not? And, more perti-
nent to the point of the present discussion, is the move from
the traditional Lotka–Volterra worldview to the inertial theory
of population growth legitimate or not?
We don’t believe that there is a general answer to the former

question.Wemust consider each case of increasing the dimension
of the theory on its own merits. But it is clear from the many
successful applications of increasing the dimension that it is at
least sometimes justified. As for the latter question, we agree
that, all other things being equal, we should prefer the simplicity
of lower dimensional theories. The question, then, is whether
the inertial theory is the simplest theory that can account for
what we see. This issue clearly requires further investigation, but
we hope that we have said enough in the course of this book to
show that the inertial theory of population growth is at least a
viable alterantive to its more traditional rival.
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8.2 Evidence and Aesthetics

The scientific method, as anyone will tell you, compels us to
look impartially at the evidence and deduce our scientific the-
ories from that evidence. Although this view is widely held, it
is, nonetheless, a fiction. In fact, it is not even clear that there
is any single method by which all science proceeds. In any case,
the scientific method (if there is one) is much more subtle and
much more interesting than this simplistic picture suggests. It is
instructive, however, to see where this picture goes wrong.
The first problem with this simple view is that the evidence

is often ambiguous or does not wholly support or wholly fail
to support the hypothesis in question. Think of the standards
of evidence in legal proceedings. The best and clearest evidence
supports the hypothesis beyond reasonable doubt, whereas weaker
evidence might be merely clear and convincing. Still weaker evi-
dence is when the hypothesis is supported merely on the prepon-
derance of evidence.
If we admit various standards of proof, as it seems we must,

then science is not simply a matter of looking at the data and
producing a theory that fits the data—there are degrees of fit.
Moreover, even this order of events can be questioned. Very
often we have a theory first and the theory suggests what data
we ought to seek and how we should interpret it. We are not
suggesting that you see what your theory tells you to see, just that
empirical evidence is very often theory laden. For example, when
a doctor “sees” a chest infection in an x-ray, she does so only via
a certain amount of theory about how x-rays work and about
the relative absorption of x-radiation by infected lung tissue.
The next problem with the statement of the scientific method

presented above is that it suggests that theories arise from evi-
dence alone—it ignores the role of aesthetics in science. It may
surprise some to learn of the deep and important role that aes-
thetic considerations play in science, but many scientists have
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waxed lyrical on this. For example, the scientist Henri Poincaré
(1854–1912) once said: “A scientist worthy of the name, above
all a mathematician, experiences in his work the same impres-
sion as an artist; his pleasure is as great and of the same nature”
(quoted in Bell, 1953, p. 526). The physicist Richard Feynman
(1918–1988) said: “To those who do not know mathematics it
is difficult to get across a real feeling as to the beauty, the deepest
beauty, of nature” (Feynman, 1965, p. 58).
There is a tendency, when reading passages such as these, to

simply dismiss them as signs of scientists who have gotten a bit
sentimental and somewhat mystical. Although the mood in these
passages is decidedly sentimental, the message is very serious and
essentially correct: there is most definitely an important role for
aesthetic considerations—especially simplicity—in standard sci-
entific methodology. Indeed, one of the best examples of beauty
in science can be seen in Darwin’s simple yet powerful idea of
natural selection.
To understand the role of aesthetics in theory choice, we need

to see that empirical evidence is not enough to determine a
unique theory. Indeed, it is not too difficult to show that there
are many (arguably infinitely many) theories that conform to any
set of observations. For example, consider the following theory,
attributed to William Gosse (1810–1888), that competes with
standard evolutionary and geological theory: the earth was cre-
ated by God about 4,000 years ago with all the fossil records
in place. No amount of evidence can help us discriminate be-
tween these two theories. We take it, however, that Gosse’s the-
ory should be rejected, and evolutionary and geological theory
should be accepted. Our point is simply that the rejection of
Gosse’s theory cannot be based on purely empirical grounds be-
cause it, too, agrees with the evidence. Typically, such decisions
are made on aesthetic grounds. Standard theory is more natural,
simpler, less ad hoc, more unified. Again, this is not meant to
be a skeptical conclusion. We can justify our belief in standard
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evolutionary and geological theories over Gosse’s theory; it’s just
that this justification must invoke aesthetic considerations—it
cannot rest on empirical matters alone.
There is one last concern with the simple statement of the

scientific method at the opening of this section. The concern
is that the simple view suggests that we can tell when a theory
conflicts with the data, and that when a theory does conflict
with the data, the theory should be rejected. This, too, is highly
questionable. It is very common for scientists to dismiss certain
pieces of data because such data conflict with accepted theory.
As Robert MacArthur (1930–1972) rather nicely put it:

Scientists are perennially aware that it is best not to trust theory until it
is confirmed by evidence. It is equally true, as Eddington pointed out,
that it is best not to put too much faith in facts until they have been
confirmed by theory. (MacArthur, 1972, p. 253)

Statisticians routinely, and quite rightly, reject as outliers data
points that do not conform to the relevant theory; physicists at-
tribute certain anomalies to experimental error and then ignore
them. For example, Einstein, when asked whether he would
have been concerned if the results of the crucial 1919 Eddington
eclipse experiment came in against general relativity, he replied
that if the experiment contradicted the theory, the experiment
would have been in error; the theory was too beautiful to be
wrong.
In some cases, recalcitrant data are not ignored, but in order

to save the theory, “epicycles” are added to the theory so that it
may account for the data. The most famous case of this was the
Ptolemaic model of the solar system. The simple, Earth-centered
model, with the planets, themoon, and the sun circling Earth, did
not fit well with observations. Although the sun’s and the moon’s
orbits were well described by the model, the planets’ orbits were
problematic—they exhibited retrograde motion, for instance. (This
is the apparent, occasional backward motion of the planets, as
viewed from our earthly perspective.) But instead of giving up
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the Earth-centered model, it was merely modified: the planets
were assumed to be orbiting points that were, in turn, circling
Earth (these secondary cycles are the so-called epicycles). When
this epicycle model conflicted with the data, further epicycles
were added.
Most current predator–prey theories of population cycles are,

in our view, another example of this Ptolemaic way of think-
ing (Ginzburg and Jensen, forthcoming). In the predator–prey
theory, we have a sequence of models of increasing complexity,
and we even have parameters fitted to the models that produce
behaviors strongly resembling major aspects of the historical data.
Our advice is not to bet on these models. The number of param-
eters is in a way a measure of how much massaging one had to
do to fit the theoretical construct to the evidence—how much
trial and error went into producing the model. Good theories
work well from the start; they are simple and general and have few
parameters. They account for the data in a natural way. There-
fore, one rather crude but objective measure of the simplicity of
a model is the number of parameters it requires.

8.3 Overfitting

Let us return to our favorite planetary example. Assume that we
are living in pre-Newtonian times and we already know from
Kepler’s discovery that the orbits of planets are elliptical, though
we do not yet know any more than that. We can, however,
develop a taste for the future theory. Consider the question, How
many parameters do we have to specify to describe an ellipse?
The answer is five. We have to know the locations of two foci on
a plane (each focus requires two numbers to specify its location),
plus we need the length of the string attached to the two nails
to draw a specific ellipse (see figure 2.6). If the theory to be
evaluated has more than five parameters, we would not be too
impressed by it. The theory may be able to describe our ellipses,
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but it will have a lot of freedom to produce many other curves.
Because we do not observe these other curves, we judge such a
theory as “overfitted.”
One of the many virtues of Newtonian gravitational theory

is that it has exactly five parameters. These parameters include
two initial conditions for the relative location and speed of the
planet with respect to the sun, plus the mass of one of the two
bodies. The theory produces not just the ellipse for one planet
but, as soon as five values are correctly specified, it also produces
ellipses for all the planets. In addition, without extra parameters,
the theory produces various other trajectories of bodies falling
into the sun, into planets, flying away, and so forth. Indeed, if
initial conditions plus the masses are not right to make a given
body a planet (i.e., able to maintain a stable, periodic trajectory),
the body in question will have one of these other trajectories.
The theory is beautiful because it is minimal.
Now, back to population-abundance cycles. The simplest

nonmechanistic description of a cycle is a sine wave. It requires
two parameters: period and amplitude. If we wish to pay atten-
tion to cycle asymmetry (slower increasing than decreasing), we
may need another parameter. If we have data for two interacting
species, assuming that the period is the same, we need another
amplitude for the second species and the so-called phase shift,
or a time-lag value between the two waves. So far, we have five
parameters. If the theory of predator–prey interaction (Turchin
and Batzil, 2001; King and Schaffer, 2001; Hanski et al., 2001)
had any more than five parameters, we should be inclined to
think that it is overfitted—it’s overly complex for the problem
at hand. So, in particular, some of the predator–prey theories in
the current literature, with more than 10 parameters, offend our
aesthetic sensabilities. Theories such as these eventually collapse
under their own parametric weight.
On the other hand, our very simple model of cycles based

on maternal effects uses two parameter values, one of which
(the strength of the maternal effect) is not known. It explains
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the main feature of all the cycles: their periods. That predator–
prey interactions can cause cycles of abundance is undeniable.
Whether they actually do is another question.We believe that we
have accumulated substantial circumstantial evidence toward the
inertial view. This includes an explanation of the Calder allom-
etry, the gap in the observed periods measured in generations,
and the quantitative fit of periods and shapes of oscillations for all
cyclic species to a simple, general (and not overparameterized)
model. All of our evidence combined does not constitute a proof,
but again, it makes our view a serious rival to the traditional
explanation.

8.4 A Simplified Picture of
Population Ecology

We have argued for a second-order inertial model of popula-
tion growth. This model is able to accommodate more complex
population abundance behavior (e.g., population cycles) without
having to appeal to population interactions (e.g., predator–prey
interactions). The reason for this second-order behavior, we ar-
gue, is the maternal effect. This effect involves the inheritance
of quality from mother to daughter. This, in turn, means that
population abundance, at a given time, is dependent on both
the current environment and the environment of the preceding
generation. This time lag lies at the heart of the second-order
model we propose.
We have also suggested that the inertial model is simpler than

its traditional competitors, and this, of course, is a good thing.
Very little population data are available, and what data are avail-
able do not justify complex theories. In most cases, exponential
growth, with a fluctuating growth rate (random walk of abun-
dance in the logarithmic scale), is as complex a model as can be
justified based on the evidence. Theories in ecology, particularly
models of interacting species, have systematically strayed from
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the evidence. More and more complex phenomena have been
“discovered” in systems of differential equations in which no
single parameter is reliably measured. Even a unit of time, the dt
in dN/dt, has not been clear in most cases.
We have attempted to make a fresh start, beginning again with

Malthusian growth and suggesting that, because of the maternal
effect, population growth is an inertial process. In any case, the
data can be accounted for by a simple, single-species, inertial
model acting on the time scale of generations. We believe that
the burden of proof for inclusion of species interaction has to
be shifted to the theoreticians building complex models. They
have to point to observations that would require more complex
theories. The model of an inertial single species connected to a
single resource is able to describe most of the patterns we see.
With the inertial view in physics, much of the complexity of

the solar system can be described by a two-body interaction. In
fact, the problem can be reduced to a one-body problem, where
the body in question is simply thought to be in the gravitational
field of another. Planets certainly interact with each other and
their moons are affected by the sun as well. It turns out, how-
ever, that these effects are secondary and, for many purposes, can
be ignored. The nested set of ellipses—planets orbiting the sun
and moons orbiting planets—describes planets and their satel-
lites quite well, and it does so without invoking higher order
interactions.
Populations may “orbit” their respective resources, not un-

like planets orbiting the sun and moons orbiting their planets
(hence the illustration on the cover of this book). Population
growth responds to changes in resources with a varying degree
of inertia, sometimes undergoing noticeable cycles of over- and
undershooting the average level. Various limiting factors act as
friction. In most cases, these limiting factors are so prevalent
that oscillations are absent or hard to see. Environmental fluc-
tuations make population orbits look noisy, so careful analysis
is needed to reveal hidden waves that are multiple generations
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long. Although this picture looks complex, it is much simpler
than the prevalent view of insurmountable complexity when all
species interact with all other species (see figure 8.1). The nested
structure of orbits stresses approximate dependence of population
growth only on the population’s own resources. By including
inertia and making the single-species view a bit more complex,
we simplify the big picture. It is as if herbivores orbit the plants
and carnivores respond only to herbivores, with no regard to the
plants, just like the moon orbits Earth irrespective of whether
Earth is orbiting the sun.
Another “big picture” metaphor in ecology is the Eltonian

pyramid, where each trophic level is seen as a level in a resource
pyramid. According to this view, biomass declines as we go up the
trophic levels. Plants are at the foundation and have the greatest
biomass. Above them in the pyramid are herbivores, and above
them carnivores. In some ways this view is like our own: the
herbivores depend only on the plants and the carnivores depend
(directly) only on the herbivores. But this seductive picture is
too simple. Some herbivores, such as elephants, lack predators,
whereas others, such as rabbits, have many predators. Our pic-
ture has no such shortcomings. Planets can have zero, one, or
many moons, just as different species can have zero, one, or many
predators.
This nested “planetary” structure of ecosystems is the image

that we propose to replace both the oversimplified Eltonian pyra-
mid and the overly complex spaghettilike diagrams of hundreds
of species interacting with each other. Of course, we do not deny
that such complex interactions occur. Populations, like planets,
interact with almost everything around them. The question is,
How much do these interactions need to be acknowledged by
our respective theories of populations and planets? The answer,
in the case of planets, is that all but the gravitational forces due
to the effect of the planet’s sun can be ignored (at least for most
purposes). Our answer for ecology is much the same. We may
be able to make a great deal of progress by considering only



Figure 8.1. The Benguela ecosystem, South Africa, represented as a food web
diagram (Abrams et al., 1996, p. 387), reprinted with permission from Chapman
and Hall.
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Figure 8.2. Eltonian trophic pyramid.

the population in question and its resources. And this simplifi-
cation is made possible by considering the inertial properties of
population growth.
Here is a summary of what we have proposed in this book:

• In ecology, the law of Malthusian growth plays a role
analogous to Newton’s first law in physics. Malthusian
growth describes the background of ecological events
that are interactions, both internal and external.

• Population ecology has to focus on the deviations from
Malthusian growth rather than on deviations from con-
stant abundance. Therefore, ecological models have to
include inertia, or second-order effects.

• Even though, at equilibrium, net growth rates of popu-
lation abundances have to be zero, it is individual quality
that is the cause of the equilibrium.
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• Maternal effects cause inertia of population growth on
the generation time scale. Resulting cycles are at least six
generations long and are consistent with observed peri-
ods for cycling populations. It is the absence of observed
periods in the 2–6 generations range that is the most
convincing evidence for our view. The relative role of
species’ interactions and internal inertia may be that of
disturbance and every species’ own eigenperiod.

• Ratio dependence, in describing predator–prey interac-
tions, may be a special case of a larger invariance of inter-
actions with respect to Malthusian transformation. The
former may be the simplest symmetry of ecological mod-
els, with more expected to be discovered in the future.

• The inertial view of population growth, in its implicit
form (as a single, second-order equation), is a simple
generalization, not a rejection, of the traditional view.
It achieves substantial flexibility with a minimum of pa-
rameters, and naturally incorporates a biologically mean-
ingful upper limit to the growth rate.

• The practical consequences of the inertial view for ap-
plied ecology relate to longer time scales than commonly
considered, because the effects have multiple-generation
time scales. Neglecting to account for inertia may be the
reason for systematic errors in management policies for
various natural populations, particularly for species with
longer generation times.

• If our view of population dynamics is generalized to in-
clude inertial effects, evolutionary theorymay have an ad-
ditional impetus to follow. Evolutionary theory certainly
has enjoyed spectacular success with the Malthusian-
growth model at its foundation. In view of our planetary
analogy, we suggest that a form of systemic “ecological
exclusion” needs to be considered, and this may lead to
new developments in evolutionary theory.
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• Our proposal is a research program. It changes some of the
questions typically raised in population ecology. A few of
the consequences of the program are found in our sug-
gested explanations of some of the body-size allometries
and periods of cycling. We expect more consequences to
be discovered if our program is pursued.
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Appendix A: Notes and
Further Reading

Frontmatter and Preface

The quotation from Robert MacArthur is from his last paper
(1972), which he wrote from his hospital bed. In this paper he
repeatedly makes comparisons between ecology and physics. The
dialogue is from the movie Il Postino (released by Miramax in
1995) and is based on the novel Il Postino di Neruda by Antonio
Skarmeta (published by Garzanti, mid-1980s).

Chapter 1

The analogy between Newton’s first law and exponential growth
was suggested independently by Clarke (1971) and Ginzburg
(1972). The better known references are Ginzburg (1986) and the
discussion in Ginzburg (1992). Although the analogy had been
accepted by other ecologists (Berryman, 1999; Turchin, 2003a),
there are substantial differences between various proposals de-
scribing the deviation from exponential growth. Our proposal
stresses the internal causes, and is described in chapters 3 and 4.
Berryman and Turchin take a more traditional stance and cite
species interaction as the cause of the deviation. See Kingsland
(1985) for a good history of ecology.
A very nice popular account of the physics we discuss in this

chapter and elsewhere can be found in Feynman (1965). See
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Feynman et al. (1963) for a more rigorous and thorough intro-
duction to basic physical theory.

Chapter 2

Interest in allometric relationships, including ecologically related
ones, is growing very fast. Many books have been published
recently on this topic (Calder, 1984; Reiss, 1989; Harvey and
Pagel, 1991; Charnov, 1993; Brown, 1995; Brown et al., 2000).
Of these Calder (1984; 2nd ed., 1996) is, in our judgment, still
the best. William Calder died in 2002, in the very month he had
scheduled a seminar at Stony Brook. We thus missed the chance
tomeet him.His allometry for the period of cycling species offers
some of the strongest support for the inertial view of cycling. As a
small tribute to William Calder, we suggest that the allometry in
question should bear his name and we include it in the list of the
basic statistical observations, which are for ecology what Kepler’s
laws are for classical celestial mechanics. Ecological allometries
are a part of a new field of macroecology (Brown, 1995). A
review by Lawton (1999) stresses the great potential of this field
while expressing some skepticism about our ability to understand
the species interactions that underpin it.
For good general discussions of laws of nature, see Armstrong

(1983), Newton-Smith (2000), Chalmers (1999, esp. chap. 14),
van Fraassen (1989, chap. 2), and Smart (1968, esp. chaps. 3 and
4). Quine’s influential views on the philosophy of science can
be found throughout much of his work. Good places to start,
however, are Quine and Ullian (1978) and Quine (1981, 1995).
His discussion of limit myths can be found in Quine (1960,
esp. pp. 248–251). Not everyone agrees that there are laws of
nature. See Cartwright (1983) and van Fraassen (1980) for some
skepticism in this regard, and see Cartwright (1999) for a very in-
teresting discussion of the alleged unity of science. Debate about
whether ecology has laws can be found in many places, but see
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Lawton (1999), Quenette and Gerard (1993), Slobodkin (2003),
Turchin (2001), and Colyvan and Ginzburg (2003a, 2000b).
The issue of what scientific explanation amounts to is a large

and complex one. Hempel’s classic (1965) is a good starting point.
For the record, we are inclined toward the unification account
of explanation. Kitcher (1981) gives a nice outline of this philo-
sophical theory of explanation.

Chapter 3

A very nice and accessible account of Galileo’s work can be found
in the recent bestseller by Dava Sobel, Galileo’s Daughter (1999).
Papers on accelerated death by Akçakaya et al. (1988) and

Ginzburg et al. (1988) analyze the Slobodkin experiment. The
Damuth (1981) allometry has been questioned on various
grounds, but it is becoming more accepted with time. Our argu-
ment, relating this allometry explicitly to Kleiber’s (1975) rule,
is new and, in our judgment, strongly suggests that energetic
processes underpin a great deal of population dynamics.
Strictly speaking, the Damuth allometry is observed only

when the amount of energy resources each population has avail-
able per unit time, S, is independent of body size across species.
That is, species in general should not differ in their potential
for extracting energy from the environment solely as a function
of their size. As noted in chapter 2, the observed exponent of
−3/4 means just this (Damuth, 1981, 1987, 1991); some have
therefore referred to the Damuth allometry as the “energetic
equivalence rule” (Nee et al., 1991). This assumes, of course,
ratio-dependent consumption. This assumption is accepted as
a fact in macroecology, although it’s still questioned in popu-
lation dynamics. The size independence of S may also seem
like a reasonable first assumption for ecosystems or the biota,
but in fact it has worried many ecologists, because there is no
known ecological mechanism that supports this assumption (e.g.,
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Lawton, 1989). For example, what would happen if, on average,
larger species had access to a wider range of resources or, by
virtue of adaptations related to their size, were better at com-
peting with small species? Then their equilibrium population
sizes would be, on average, larger than the Damuth allometry
would predict, and the exponents observed for the allometry of
population density would be shallower than −3/4. What con-
cerns ecologists is why it seems uncommon for communities or
biotas to be assembled from species that together strongly violate
the size independence of S. It may be even more surprising
that species of one size or another do not evolve so as to vio-
late the rough size independence of S for their trophic group.
These questions remain unresolved, and the empirical scaling
relationship—by now fairly well established—continues to be
the subject of active interest (Enquist et al., 1998; Charnov et
al., 2001; Blackburn and Gaston, 2001; Carbone and Gittleman,
2002).

Chapter 4

The maternal effect and/or predator–prey interactions remain
contenders for explanation of the strong oscillatory effects we ob-
serve (i.e., those a few generations in length). Thematernal-effect
theory, developed in Ginzburg and Taneyhill (1994), Inchausti
and Ginzburg (1998), and Ginzburg (1998), suggests periods of
six or more generations. The period increases with declining
maximum population growth rate. Observations of the periods
(Krukouis and Schaffer, 1991) support this prediction. Predator–
prey theory is also consistent with the observed data, but more
parameters are used and the predictions are less specific compared
with the maternal-effect model. A recent review of this debate
by Turchin and Hanski (2001) argues in favor of the predation
hypothesis, at least in the case of voles in Fennoscandia. They
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argue that the vole’s annual maximal reproduction rate should be
of the order of 100, whereas the maternal-effect model requires
this value to be of the order of 30. This dispute might be resolved
in the near future by empirical work.
In an old and not widely noticed paper, Michael Bulmer

(1975) had suggested a simple but powerful test for determin-
ing the cause of population cycles. Bulmer pointed out that,
based on a simple model, the phase shift (the delay) between
the cycles of predator and prey can help us discern whether
predator abundance is simply driven by food availability or if
both species are engaged in joint dynamics. His conclusion was
that the delay has to be greater or equal to 1/4 of the period of
the cycle in order to support the claim that the cycle is driven
by the interaction. If the delay is less than 1/4 of the period, it
is more likely that the predator abundance is simply driven by
prey abundance (following food availability). Putting aside issues
concerning the precision in the value of 1/4 (which was deduced
by linear approximation), the message is clear: it takes time for
the predator–prey interaction to drive the prey abundance down
from the maximum; it does not happen “instantaneously.” On
the other hand, if the predator abundance is driven by food, a
generation (of the predator) after the food is at a maximum, we
will expect the predator abundance to reach its maximum.
The Bulmer test is typically ignored by predator–prey mod-

elers, one reason being that simultaneous data for both predator
and prey are not usually available. Inchausti and Ginzburg (2002)
analyzed the lag data for the lynx and hare. Their conclusion
was that the lag was, on average, 1.5 years, clearly below 1/4
of the 10-year cycle period. This argues against predator–prey
interactions as the cause of the cycles.
Vadasz et al. (2001, 2002) recently reported regular oscillations

of the yeast cultures in the laboratory. This is definitely a single-
species oscillation. The periods are reported to be about six to
seven generations (unpublished personal communication). There
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is certainly more work required to demonstrate long cycles of
single species in the laboratory. Such a demonstration would lend
strong support for our point of view.

Chapter 5

The ratio-dependent predation model was developed indepen-
dently by Ginzburg et al. (1971), Ginzburg et al. (1974), and
Arditi (1975). The best known and most accessible account of
this model is Arditi and Ginzburg (1989), which was followed
by a large number of publications. The subject is covered now
by major undergraduate textbooks. The review by Abrams and
Ginzburg (2000) covers the debate and the current state of play.
Two relevant papers published after the review are Skalski and
Gilliam (2001) and Vucetich et al. (2002).
By analogy with “instantism” referring to the time scale, one

can think of “localism.” This would refer to ignoring spatial
complexity and thinking of predators and prey as uniformly dis-
tributed. Various spatial structures give rise to different functional
forms of predator dependence, commonly resembling ratio de-
pendence (Cosner et al., 1999; Arditi et al., 2001).
The inequality (5.1) was stated without proof in Ginzburg

et al. (1974) as a boundary between coexistence and dual ex-
tinction in ratio-dependent models. A number of recent papers
contain comprehensive and detailed analyses of the the ratio-
dependent predation model (see Jost et al., 1999; Berezovskaya
et al., 2001; Hsu et al., 2001; Xiao and Ruan, 2001). These
papers, particularly Berezovskaya et al. (2001), provide proofs of
the inequality (5.1) even though it takes a bit of work to translate
it into the form presented in chapter 5.

Chapter 6

Representing a hidden variable by the growth rate that, in ad-
dition to abundance, creates a two-dimensional description is an
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obvious idea—independent of the nature of the second, hidden
dimension (Ginzburg and Inchausti, 1997). One advantage of
this approach is that it makes data available for analysis based on
just one data series. Another advantage is that the very existence
of species-specific maximal growth rate produces two observable
features: asymmetry of cycles and their limit-cycle character.
Linearization in terms of logarithmic acceleration, suggested

in this chapter, can be restated in another commonly used lan-
guage, that of the superposition principle. The issue of how one
superimposes the effect of multiple food sources on a single con-
sumer has recently attracted the attention of ecologists (Kareiva,
1994; Billick and Case, 1994; Wooton, 1994; Adler and Mor-
ris, 1994). According to the traditional view, the growth rate is
a function of all the sources of food. It is linear in the Lotka–
Volterra scheme and more complex in its various generalizations.
In the simplest case, then, the suggestion is that the growth rate
of a population with two food sources is the sum of two parts:
the part due to consumption of the first resource plus that due to
consumption of the second. This superposition principle is re-
placed in our model by the approximate additivity of acceleration
contributions.
Superposition principles are equivalent to an assumption of

linearity in a chosen space, and they have a long history in
physics: from superimposing velocities in Aristotelian physics to
Newtonian superposition of accelerations scaled by masses, to a
bizarre superposition of the complex-valued functions in quan-
tum physics and beyond. Although we cannot guess which form
the superposition principle will take in the future of ecology,
our suggestion at least sharpens the question in terms that may
be worth considering.

Chapter 7

Ecological risk analysis has been a rapidly developing field in the
last 20 years. Useful reference for further reading in this area are
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Burgman et al. (1993), Akçakaya et al. (1999), and Ferson and
Burgman (2000). Most methods in this area are implemented as
software. The review by Pastorok et al. (2002) covers existing
methods and software. The inability of the first-order models to
capture the features that onemight expect from a good theory for
population management was a subject of an active discussion in
Ginzburg (1992) and the comments and responses that followed.
Applications of theoretical ecology, traditionally, have been

limited to single-species approaches, which pay a great deal of
attention to the internal structure of populations and their spatial
distribution. There are two reasons for this: (1) the relatively
short time scale of the desired assessment and (2) our ability to
better understand single-species dynamics. Most of the practical
applications are implemented in software.

Chapter 8

Plato’s famous cave analogy is presented in The Republic (Harvard
Univ. Press, 1930), book 7. See Chalmers (1999) for a very nice
discussion of the limitations of purely empirical elements in the-
ory and hypothesis choice. Colyvan (2001a, chap. 4; 2002) argues
that mathematics directly contributes to the aesthetic virtues of
the theory; mathematics is not just a convenient language. This
is relevant here because the choice of the mathematical model
need not reduce to simply a matter of which model best cor-
responds to the underlying ecological facts. One model may be
preferred for its aesthetic superiority, and this superiority might
arise from the mathematics itself. Although this view of the role
of mathematics in science is somewhat controversial, it is fair
to say that the importance of mathematics in theory choice is
underappreciated. This underappreciation seems to arise from (a
perhaps understandable) overattention on the purely empirical
elements of theory choice, and the widely held misconception
that mathematics is merely the language of science. See Wigner
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(1960), Dyson (1964), Steiner (1998), and Colyvan (2001b) for
more on the role of mathematics in the progress of science.
Moving from the first- to the second-order description, or

incorporating inertia, is certainly the simplest possible general-
ization one can make. Why, then, not the third or fourth order?
Why not grandparental effect, in addition to the maternal ef-
fect? There certainly is evidence for it in a number of species,
such as humans and our close evolutionary relatives. One argu-
ment is that the second-order description captures most, if not
all, the features we need. In the linear approximation, a cubic
characteristic equation has to have one real root. Therefore the
dynamics will contain either a growing exponent (but we do
not see unstable equilibria) or a declining exponent (these die
out in time, and we do not see them for a different reason). If
we saw the real presence of two different periods in our pop-
ulation abundance data, the fourth-order theory would have to
be invoked to generate two distinct frequencies. Our data do
testify to nonlinearity of population growth dynamics, but not
to a more complex spectrum than a single frequency—at least
on a multiple-generation time scale. Thus, the second-order is
a logical approximation covering more, but far from all, of the
dynamic properties we may need to include. The danger of over-
fitting is looming once again, and this is where aesthetic criteria
may come into consideration.
Even though the satisfaction of certain aesthetic criteria is not

a guarantee of being correct, satisfying such criteria at least serves
as a temporary guide until the issue is settled by clear manipu-
lative experiments. Note that the generality of an explanation
is included by us in the list of aesthetic criteria, and this, too,
might be challenged. Many people are much more comfort-
able thinking that every case has a different explanation; even
the vole cycle for these authors is fundamentally different from
that of the lemming cycle. This view reminds us again of Ptole-
maic epicycles fitted separately and differently for every planet’s
trajectory.



142 Ecological Orbits

Some of the overfitted models we have in mind are King
and Shaffer (2001), Turchin and Batzli (2001), and Hanski et al.
(2001).
There is another, stronger level of overfitting present in the

Hanski et al. (2001) model. The functional response and the
numerical response that is the coupling between predator and
prey are assumed not to be linked (Ginzburg, 1998b). By making
these two quantities functions of different arguments, one of N ,
the other of N/P, the authors acquire additional flexibility that
may help in fitting (directly or indirectly), but this does not strike
us as reasonable.
Stability selection (or, simply, exclusion) has certainly been a

major force in shaping the solar system. Many bodies have fallen
into the sun or collided with each other in the past. The resulting
weakly interacting, and nested structure of planets and their satel-
lites is a result of a long evolution under the influence of stability
selection. Of course, biological structures are much younger than
the solar system, but we may see the elements of ecological ex-
clusion in the formation of trophic webs. Neutel et al. (2002)
points toward certain simplifying tendencies in current trophic
webs that are likely to be explained by ecological exclusion. Our
suggestion of the inertial view of population growth and a simple
planetary metaphor lies along similar lines. If proven useful by
future work, it may contribute to substantial simplification of
theories of how trophic webs work.



Apppendix B: Essent ial Features
of the Maternal Effect Model

Even though the idea that the maternal effect could cause inertial
population dynamics has existed since the 1950s, the new wave
of interest in it appeared in the 1990s with the formal model
suggested in Ginzburg and Taneyhill (1994). This model was at
first applied to Lepidoptera because this was a simple case in
which generations coincide with years and the data are available
precisely in the generation time scale. Application to vole cycles
followed (Inchausti and Ginzburg, 1998). It has been criticized in
Turchin and Hanski (2001), which defended the more traditional
predator–prey hypothesis as a cause of cyclicity. Here we briefly
review the argument for the case of forest insects following the
first publication as well as Ginzburg and Taneyhill (1995).
The equations describing the model are

Nt+1 = Nt f (xt)

xt+1 = g
(
xt,

S
N t+1

)
, (B.1)

where f is a monotonically increasing function of xt and describes
the net reproductive rate of an individual of quality x, and g is
an increasing function of x (the maternal effect) and a decreas-
ing function of Nt+1 (as intraspecific competition for resources
increases). Note that the argument N of the second equation
is evaluated at the same generation as x on the left side of the
equation. This is because quality is affected by density in the cur-
rent generation, when competition for the resource takes place.

143
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Mathematically, as wewill show, this is a crucial assumption of the
model. In this respect equations (B.1) differ from usual discrete-
time population models where the variables N and x would be
interpreted as densities of interacting populations (Beddington
et al., 1976) and are evaluated at time t. Note that the model can
be rewritten in the time-delay form by substituting the right side
of the first equation for Nt+1 in the second equation and then
eliminating xt . It will then look like Nt+1 = F(Nt,Nt+1).
In the absence of the maternal effect g is independent of x, and

equations (B.1) reduce to the standard form of the immediate
density-dependent model: Nt+1 = NtF(Nt) . The presence of
the maternal effect thus creates the delayed density dependence.
Equilibrium density and quality (N ∗, x∗) can be found as the
roots of

f (x∗),

g(x∗,N ∗) = x∗.

The model given by equations (B.1) can then be analyzed
by the method of local stability analysis. Let us first change the
variables to logarithmic scale:

u = lnN ,

v = ln x,

and define new functions

f (v) = ln f (ev),

g(v, u) = ln(ev, eu).

We thus have in the new variables

ut+1 = ut + f (vt),

vt+1 = g(vt, ut+1). (B.2)
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The matrix for the linearized equations around the equilib-
rium point is [

1 f ′
v

g′
u g′

v + g′
uf

′
v

]
,

where prime denotes the partial derivative. Note that the ar-
gument of the second equation in (B.2) is ut+1, and it should
be substituted from the first equation when computing deriva-
tives. Stability of the system is determined by the roots of the
characteristic equation

λ2 − (
1+ g′

v + g′
uf

′
v

)
λ + g′

v = 0.

Local stability is governed by, in the original variables,

a = g′
x > 0

and

b = −f ′
x g

′
NN ∗ > 0.

In order to simplify the analysis of (B.1), it will be convenient
to discuss a specific example. Consider the following parameter-
ization of functions f and g:

Nt+1 = NtR
xt

k + xt

xt+1 = xtM
S/Nt+1

p + S/Nt+1
(B.3)

The parameter R represents the maximum reproductive rate
given any quality x, and M is the maximum possible increase
in average quality. Constants k and p control the rates of increase
to the asymptotes R and M . The S term represents the total
amount of resource available in the environment; we assume
that this is constant each generation. We divide the numerator
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and denominator of equations (B.3) by S; then, by expressing N
and x in the appropriate units, we can eliminate the other two
parameters k and p so that equations (B.3) in the dimensionless
form become

Nt+1 = NtR
xt

1+ xt
,

xt+1 = xtM
M

1+ Nt+1
(B.4)

Stability analysis of equations (B.4) shows that nondamping
oscillations occur whenever the parameterR is greater than unity,
assuming that M is also greater than unity. The period of oscil-
lations in the linearized form of equations (B.4) is a function
of

b = (1− 1/R)(1− 1/M ).

Thus, if M � 1, the length of the period is determined only by
the maximum rate of increase R. In this model, low values of R
lead to longer cycles.
Figure B1 shows a typical behavior of model (B.4) displayed

as a phase-plane plot. As can be seen from the phase diagram,
the cycles are neutrally stable; that is, the amplitude and period
of the cycles depend upon initial conditions. In this way, equa-
tions (B.4) are similar to the familiar Lotka–Volterra predator and
prey equations, and also to several other two-dimensional models
(Beddington et al., 1975; Anderson and May, 1980; Lauwerier
andMetz, 1986). The cycles usually have fractional values for the
period, and the system is not precisely periodic, as in continuous
models. Note also in figure B.1 the formation of island chains
for some initial conditions, a feature common to this type of
two-dimensional discrete map (Lauwerier, 1986; Lauwerier and
Metz, 1986).
Models that generate neutral cycles are of course pathologi-

cal from a biological viewpoint (May, 1974b). Modification of



Appendix B 147

Figure B.1. Typical phase-plane portrait of the maternal-effect model, shown
in logarithmic scale. Each ellipse corresponds to a unique set of initial
conditions. Note the formation of “island chains” for some initial values
(Ginzburg and Taneyhill, 1994). Reprinted with permission of the Journal of
Animal Ecology.

equations (B.4) to produce true limit cycles can be done in any
number of ways by adding one or more parameters to the model.
Available data do not allow us to distinguish between different
modifications, but our main conclusions do not depend on the
exact form of the functions.
Model (B.4) and the Lauwerier model have several properties

in common. First, and perhaps most important, is that cycle pe-
riods have an absolute minimum of six. This result was stated as
a theorem by Lauwerier and Metz (1986) for the simpler host–
parasitoid model, which mathematically is a special case of our
model (B.1). Our formal result is slightly more general. The
minimum six-generation cycle is in perfect agreement with ob-
servation: to our knowledge, no forest moth population has a
period less than 6 (Myers, 1988).
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Second, cycle periods decrease as the growth parameters (R)
increase. This pattern is opposite to that of some other delay
models, such as the discrete predator-prey (Beddington et al.,
1975) or delayed logistic (Levin and May, 1976) models (see the
comparison in Taneyhill, 1993). The limit of six generations
corresponds to high growth rates. On the other extreme, when
R is close to 1, very long periods are possible. The single main
qualitative evidence in favor of our model comes if we assume
M � 1 and thus present the period of cycles only as a function
of R (figure B.2).
The data evaluated for different annual insects by us and by

Berryman (1995) appear to fit the predicted curve quite well. R
values per generation are not very different for small mammals
and insects, so the range of periods for mammalian cycles in
generation time units serves as a confirmation of the proposed
view.
Note that the theoretical curve and the limit of six generations

are only valid for local dynamics around the equilibrium. Limit

Figure B.2. Comparison of Berryman (1995) data (solid squares) and
Ginzburg and Taneyhill (1994) data (open squares). The curve is from
Ginzburg and Taneyhill (1995). Horizontal line corresponds to a theoretical
lower limit of six generations. Reprinted with permission of the Journal of
Animal Ecology.
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cycles and chaotic trajectories surrounding unstable equilibria
have periods or quasi periods exceeding the linearized period,
and this is one reason why most real data points lie above and to
the right of the line.
As we pointed out in chapter 4, the essence of the argument

lies in the combination of delayed density dependence, the as-
sumption of the per capita consumption of the resource, S/N ,
and the correct choice of timing. This corresponds in logarithmic
scale to the second difference relating negatively to abundance,
as in Hooke’s law for the oscillating mass attached to the spring.
The coefficient, or Hooke’s constant, does not exceed unity, and
this causes the period to be longer than six generations. Various
generalizations of the model discussed in chapter 4 only elongate
the period.
We thus suggest that every species possesses an eigenperiod of

longer than six of its generations. Whether or not a given pop-
ulation cycles, and with what amplitude and shape, may depend
on disturbances. Predator–prey interaction is one of the prime
candidates to cause such a disturbance. However, if a population
cycles, the period, in our view, is an eigenperiod.
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