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SUMMARY

Recently, there has been an increased interest in modeling the association between aggregate disease
counts and environmental exposures measured, for example via air pollution monitors, at point locations.
This paper has two aims: first, we develop a model for such data in order to avoid ecological bias; second,
we illustrate that modeling the exposure surface and estimating exposures may lead to bias in estimation
of health effects. Design issues are also briefly considered, in particular the loss of information in mov-
ing from individual to ecological data, and the at-risk populations to consider in relation to the pollution
monitor locations. The approach is investigated initially through simulations, and is then applied to a
study of the association between mortality in those over 65 in the year 2000 and the previous year’s SO2,
in London. We conclude that the use of the proposed model can provide valid inference, but the use of
estimated exposures should be carried out with great caution.

Keywords: Ecological fallacy; Environmental epidemiology; Exposure modeling; Quasi-likelihood; Spatial
epidemiology.

1. INTRODUCTION

Recently, a great deal of attention has been paid to the investigation of associations between health out-
comes and environmental exposures that may be measured in air, water, or soil. Population and health
data are often routinely available in ecological, that is group, form while the exposure data typically con-
sist of a set of values recorded at monitor sites or via one-off sampling. The exposure information is
usually spatially sparse, which has recently lead to the modeling of an exposure surface. We primarily
consider models appropriate for point sampling of environmental rather than behavioral exposures such
as dietary, smoking, and alcohol variables; information on behavioral variables is obtained from individ-
uals at specific residential locations, often via surveys. The model we introduce in Section 3 may be
used for behavioral exposures, but the estimation of an exposure surface would not be of interest since
behavioral variables do not generally exhibit spatial structure. Exposures that are conducive to examina-
tion via ecological designs and which are amenable to analysis with the model developed in this paper
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include chronic air pollution (for examples, see Table 7.2 of Pope and Dockery, 1996), water constituents
(e.g. Maheswaran et al., 1999), and soil contaminants (e.g. Elliott et al., 2000).

A number of authors have considered the modeling of exposure surfaces. Le et al. (1996) develop the-
ory based on a multivariate normal distribution to model air pollution variables, Gelfand et al. (2001) use a
Gaussian random field (GRF) model for the modeling of ozone, Tonellato (2001) considers the modeling
of carbon monoxide at multiple sites, and Shaddick and Wakefield (2002) model the spatiotemporal vari-
ability of four pollutants in London. More recently, a number of authors have combined health data with
modeled exposures. For example, Zidek et al. (1998) extend the work of Le et al. (1996) to examine the
association between daily hospital admissions for respiratory disease and sulfate concentrations; Carlin
et al. (1999) examine the relationship between pediatric asthma emergency room visits and ozone, where
the latter are modeled using kriging within a geographic information systems (GIS); and Zhu et al. (2003)
extend this analysis by assuming the ozone measures arise from a continuous, stationary spatial process
whose parameters are estimated using Bayesian methods. The above authors do not consider correcting
for ecological bias; assuming that associations observed at the level of the area hold for the individuals
within the areas can lead to the so-called ecological fallacy (Selvin, 1958). Ecological bias can manifest
itself in a variety of ways; the one that we concentrate on is ‘pure specification bias’, which arises under
aggregation of a non-linear model. The aims of this paper are two-fold. First, we develop a convolu-
tion model that avoids pure specification bias due to the use of an incorrect mean function. Second, we
illustrate the problems of the use of estimated exposures within a health model.

As an example of a study for which the methods of this paper are intended, we examine the association
between respiratory mortality in the year 2000 in those over 65 in inner London and the previous year’s
SO2, measured in parts per billion (ppb). The latter is available as the yearly average of (daily) values at
each of the 16 monitor sites, and is a concentration. A major problem with such studies is that the density
of exposure monitors is insufficient to fully characterize the exposure surface for a complete geographical
study region. To illustrate, population and health data were extracted for all enumeration districts (EDs)
whose centroids lie within 1 km of at least one of the monitor sites (an ED is a census-defined geographical
area that contains on average 400 individuals); 1 km was chosen as this radius is sufficiently large to show
the exposure characterization problems.

Table 1 reports summary statistics for the study; the populations are not integers since they have been
adjusted for undercount and migration (Simpson et al., 1996). Figure 1 shows the locations of the 16 mon-
itor sites. A plot of mortality risk versus SO2 (at the ecological level) indicates no clear association. We
emphasize that in this application we have observed mortality and population information at each of the
1027 EDs whose centroids lie within 1 km of a monitor, but exposure is only measured at the 16 monitors.

The structure of this paper is as follows: In Section 2 we indicate a number of inadequacies with
previous approaches, and in Section 3 suggest a new model. In Section 4 we demonstrate the use of
this model on simulated data, and in Section 5 return to the motivating example. Section 6 provides a
concluding discussion.

2. PREVIOUS APPROACHES

Consider a study region A consisting of K sub-areas, Ak , for which population data, Nk , and disease data,
Yk , are available, k = 1, . . . , K . We assume a univariate exposure and no confounders. Exposure data
xm are available from a set of pollution monitors within the study region, at locations sm , m = 1, . . . , M .
A naive ecological model is given by

Yk |xk, βββ
� ∼ind Poisson{Nk exp(β�

0 + β�
1 xk)}, (2.1)

where βββ� = (β�
0, β�

1) and xk is the observed mean exposure within area k, k = 1, . . . , K .
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Table 1. Summary statistics for the respiratory mortality study. The second column identifies the monitor
with the label on Figure 1

Monitor site Label Number of Number Population Incidence Yearly mean
EDs of cases (over 65) rate ×103 SO2 (ppb)

Bromley 1 33 18 2365.0 7.61 0.90
Bexley 2 28 13 1847.2 7.04 2.83
Bloomsbury 3 84 20 3377.6 5.92 4.96
Brent 4 31 12 1494.5 8.03 1.64
London Bridge Place 5 102 46 5218.9 8.81 2.64
Cromwell Road 6 124 16 3808.0 4.20 4.38
Eltham 7 16 16 1615.9 9.90 2.06
Hillingdon 8 12 4 929.1 4.31 3.80
Lewisham 9 42 53 2688.7 19.7 2.94
Marylebone Road 10 100 16 4138.0 3.87 5.03
North Kensington 11 99 40 4332.5 9.23 2.44
Southwark 12 87 43 5497.4 7.82 2.88
Teddington 13 23 24 1763.4 13.6 2.21
Southwark roadside 14 57 35 3015.8 11.6 3.66
Sutton 15 42 43 2912.2 14.8 3.14
West London 16 147 28 4260.4 6.57 0.31

Totals/means 1027 427 49 264.6 9.94 2.86

Fig. 1. Locations of the 16 pollution monitor sites in London, each circle is of radius 1 km. Health and population
data are from all EDs whose centroids lie within 1 km of any monitor. The names of the monitor sites are given in
Table 1. The River Thames is marked, and the light lines denote boundaries of London boroughs.
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To illustrate the problems with (2.1), consider individual i in area k, let Yki denote a Bernoulli disease
indicator, and assume the individual-level model is

Yki |xki , βββ ∼ind Bernoulli{p(xki , βββ)}, (2.2)

for k = 1, . . . , K , i = 1, . . . , Nk . For a rare disease, assume p(x, βββ) = exp(β0 + β1x) so that βββ =
(β0, β1). We emphasize that the individual-level parameter of interest is β1, while in (2.1), β�

1 is the
ecological association, and ecological bias will in general result in β1 �= β�

1 . The characterization of
ecological bias has seen a great deal of attention (see, for example Richardson et al., 1987; Piantadosi
et al., 1988; Greenland and Morgenstern, 1989; Greenland, 1992; Greenland and Robins, 1994; Diggle
and Elliott, 1995; Plummer and Clayton, 1996; Wakefield and Salway, 2001; Wakefield, 2003, 2004).

In the aggregate setting, we do not know the individual responses, Yki , but rather the sum Yk . Letting
xk = (

xk1, . . . , xkNk

)T denote the collection of the exposures for the individuals of area k, we have

E[Yk |xk, βββ] = Nkqk,

where

qk = eβ0

Nk

Nk∑
i=1

exp(β1xki ) (2.3)

is the average risk of the individuals in area k. If we know the collection xk but not the linkage with indi-
viduals, then each of the Nk responses are Bernoulli with probability (2.3), but they are not independent
(since we are sampling without replacement from xk) and so Yk is not binomial with parameters Nk and
qk ; we derive the appropriate likelihood in Section 3. An alternative approach (related to block Kriging)
is to model the exposure surface, x(s), for s ∈ A, form the average

xk =
∫

Ak

x(s) fk(s)ds, (2.4)

where fk(s) represents the population density in area k at location s, and then substitute this mean into
(2.1). Such an approach leads to ecological bias since the risk function is evaluated at the mean exposure,
while (2.3) shows that we should calculate the mean of the risk functions. Zhu et al. (2003), building on
Gelfand et al. (2001), use such an approach within a Bayesian hierarchical model.

Prentice and Sheppard (1995) propose an ‘aggregate data’ method in which exposures xk j , j =
1, . . . , mk � Nk , are available on a subset of individuals (for further details of this approach, see Sheppard
and Prentice, 1995 and Guthrie and Sheppard, 2001). An estimate of (2.3) is given by

q̂k = eβ0

mk

mk∑
j=1

exp(β1xk j ) (2.5)

which, together with the variance of Yk , allows an estimating equation for βββ to be constructed. If mk < Nk ,
then the estimating equation is biased, but Prentice and Sheppard (1995) obtain an expression for this bias,
and use this to provide an unbiased estimating equation.

A second approach (Richardson et al., 1987) assumes that pk(·|φφφk) is the distribution of exposure in
area k, with parameters φφφk , in which case the average risk is

eβ0

∫
x(s):s∈Ak

exp(β1x)pk(x |φφφk)dx, (2.6)

and the link with (2.3) is revealed if we replace fk(x|φφφk) by a discrete distribution on xk1, . . . , xkNk .
Pure specification bias occurs with the use of (2.1) because, unless the exposure is constant within Ak ,
integrating a non-linear risk model leads to the model changing form. As an illustration, for a normal
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within-area distribution, xki ∼iid N (xk, s2
k ), so that φφφk = (xk, s2

k ), (2.6) takes the form

exp(β0 + β1xk + β2
1 s2

k /2). (2.7)

A plausible model that is amenable to analytic study (Wakefield, 2003) is to assume that s2
k = a + bxk so

that if b > 0 the variance increases with the mean, a behavior that is often observed with environmental
exposures (e.g. Ott, 1994). This choice leads to (2.7) taking the ecological form

exp(β0 + aβ2
1/2 + β1xk + bβ2

1 xk/2), (2.8)

so that, in terms of the naive ecological model (2.1), we have

β�
0 = β0 + aβ2

1/2, β�
1 = β1 + bβ2

1/2, (2.9)

illustrating that bias will result unless b = 0, that is unless the variance is independent of the mean. It is
clear in this case (and true more generally) that pure specification bias is small if β1, and/or the within-
area variabilities in exposure, are close to zero. Hence, for example, we may conclude that in the study
of Zhu et al. (2003), pure specification bias will be small since the study areas are zip codes and the main
exposure contrasts are temporal rather than spatial. In such a context, modeling an exposure surface is
likely to give small benefits, however, and may even be detrimental, as we show in Section 4.2.

3. A CONVOLUTION MODEL

3.1 Model development

The likelihood, under the assumptions of Section 2 and when all individual-level exposures are available,
is the convolution

Pr(Yk = yk |xk) =
∑

yk∈Cyk

Nk∏
i=1

Pr(Yki = yki |xki ) =
∑

yk∈Cyk

Nk∏
i=1

pyki
ki (1 − pki )

1−yki , (3.1)

where yk = (
yk1, . . . , ykNk

)T, pki = p(xki ) is the risk model evaluated at xki , and Cyk is the set containing

the
(Nk

yk

)
ways of assigning Yk cases to Nk individuals. In general, (3.1) will be computationally expensive

to enumerate (since Nk is typically large), but in the case of a rare event, each of the Bernoulli random
variables may be approximated by a Poisson random variable, and with the log-linear risk model pki =
eβ0+β1xki , we obtain the convolution model

Yk |xk ∼ind Poisson

⎧⎨
⎩eβ0

Nk∑
i=1

exp(β1xki )

⎫⎬
⎭ . (3.2)

This distribution should still be viewed as group level because we have individual-level exposures, but
only aggregate disease counts and there is no linkage between individual-level outcomes and exposures.
However, the use of this model removes pure specification bias.

Usually, the full exposure information xki , i = 1, . . . , Nk , will be unavailable. Suppose, however, that
mk exposures, xk j , are measured at locations sk j , j = 1, . . . , mk . One possible use of this information is
to allocate Nkj individuals to measurement xk j . For example, suppose we have populations Nkj within ED
j contained within region k, and exposures, xk j at ED centroids, sk j , but disease counts, Yk , at a coarser
geographical scale (for example the monitor regions in the motivating example), we may then allocate ED
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population Nkj to exposure xk j . One may then replace (3.2) with

Yk |xk ∼ind Poisson

⎧⎨
⎩eβ0

mk∑
j=1

Nkj exp(β1xk j )

⎫⎬
⎭ . (3.3)

If we take Nkj = Nk/mk , so that we divide the population equally, then

Yk |xk ∼ind Poisson

⎧⎨
⎩Nk

eβ0

mk

mk∑
j=1

exp(β1xk j )

⎫⎬
⎭ . (3.4)

Comparison with (2.5) reveals we have a parametric version of the aggregate method of Prentice and
Sheppard (1995). If mk < Nkj , then this model is susceptible to ecological bias, and explains the finite-
correction bias suggested for the aggregate method. The key to minimizing ecological bias is to have a fine
enough partition of space at which exposure measurements are available, relative to the spatial exposure
variability.

3.2 Inference with known exposures

Inference for the convolution model (3.3), with the exposures xk j known, is easily carried out via likeli-
hood, with the extension to quasi-likelihood being immediate. The Poisson log-likelihood corresponding
to (3.3) is not a generalized linear model since we do not have a linear predictor, but may be maximized
with respect to β0 in closed form to give the profile log-likelihood for β1:

l p(β1) = −y+ log

⎛
⎝ K∑

k=1

mk∑
j=1

Nkj exp{β1xk j }
⎞
⎠ +

K∑
k=1

yk log

⎛
⎝ mk∑

j=1

Nkj exp{β1xk j }
⎞
⎠ ,

which is straightforward to maximize.
In most ecological studies, the sample sizes are large and asymptotic inference is likely to be accurate,

at least for simple models. For the convolution model (3.3), the expected information is given by

IC(βββ) =
⎡
⎣

∑K
k=1

∑mk
j=1 Nkj pk j

∑K
k=1

∑mk
j=1 Nkj xki pk j∑K

k=1
∑mk

j=1 Nkj xki pk j
∑K

k=1

(∑mk
j=1 Nkj xk j pk j

)2/∑mk
j=1 Nkj pk j

⎤
⎦ , (3.5)

where pkj = exp(β0 +β1xk j ). Quasi-likelihood is based on assuming that var(Yk |βββ) = κ × E[Yk |βββ] with
cov(Yk, Yk′) = 0 for k �= k′. Point estimates are the same as under maximum likelihood, and standard
errors are multiplied by

√
κ̂ , using the method-of-moments estimator

κ̂ = 1

K − 2

K∑
k=1

(yk − µ̂k)
2

µ̂k
,

with µ̂k = ∑mk
j=1 Nkj exp(β̂0 + β̂1xk j ) (McCullagh and Nelder, 1989). If the variance is proportional to

the mean, and the data are independent, the asymptotic distribution of the estimator for βββ, as K → ∞
and with mk = Nk , is given by

IC(βββ)1/2(β̂ββ − βββ) →d N (0, κI2).

If mk < Nk , there will be ecological bias, as with the uncorrected estimator of Prentice and Sheppard
(1995). Quasi-likelihood is appealing since it is straightforward to implement and provides a consistent
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estimator so long as the first two moments are correctly specified. If residual spatial dependence is present,
then a more complex approach is required; in this case, random-effects models are appealing, and com-
putation via Markov chain Monte Carlo (MCMC) is convenient. Section 6 gives brief details of a model
that allows for residual spatial dependence.

3.3 Information considerations

The loss of information in moving from individual to aggregate data may be quantified via examination
of the respective information matrices. For individual-level Poisson data,

Yki |xki ∼ind Poisson(pki ), (3.6)

where pki = exp(β0 + β1xki ), and

II(βββ) =
⎡
⎣ ∑K

k=1
∑Nk

i=1 pki
∑K

k=1
∑Nk

i=1 xki pki∑K
k=1

∑Nk
i=1 xki pki

∑K
k=1

∑Nk
i=1 x2

ki pki

⎤
⎦ . (3.7)

For direct comparison between (3.5) and (3.7), we take mk = Nk so that Nkj = 1. In (3.5) the element
IC

22, that represents the information for the parameter of interest β1, may be written as

K∑
k=1

⎡
⎢⎣ Nk∑

i=1

x2
ki pki −

⎧⎪⎨
⎪⎩

1∑Nk
i=1 pki

⎡
⎢⎣

⎛
⎝ Nk∑

i=1

x2
ki pki

⎞
⎠

⎛
⎝ Nk∑

i=1

pki

⎞
⎠ −

⎛
⎝ Nk∑

i=1

xki pki

⎞
⎠

2
⎤
⎥⎦

⎫⎪⎬
⎪⎭

⎤
⎥⎦

so that the term within braces represents the loss of information associated with the convolution; this
term is zero if there is no within-area variability in exposure, and increases as the within-area variability
increases.

We now present a simple example to illustrate the loss of information in moving from individual
to ecological outcomes. Specifically, we examine the asymptotic efficiency in using the convolution
model (3.2) relative to the individual model (3.6). We assume there are Nk = 400 individuals in each of
K = 1000 areas, so that we have roughly the same number of areas and the same population sizes as in
the motivating study. Within-area exposures are assumed normal with xk = 2 + 3 × (k − 1)/(K − 1)
and s2

k = bxk , k = 1, . . . , K . Table 2 reports the efficiencies for a number of values of β0, β1, and b.
We also give the ratio of the between-area variability in exposure to the sum of the within- and between-
area variability; an ecological study is likely to be carried out when this ratio is large since between-
area variability in exposure is being exploited. The final column gives the bias of the ecological model,
E[β̂�

1] − β1 = bβ2
1/2; we see overestimation in this situation in which the exposure variance increases

with the mean. Line 1 of the table has a weak mean–variance relationship and a relative risk close to 1,
and hence the bias is small; the variance of the convolution estimator is increased by 47% relative to the
individual estimator. In other cases, the variance of the convolution estimator is 2.03–2.66 times greater
than the variance of the individual estimator.

3.4 Inference with estimated exposures

We now consider the situation in which the exposures, xk j , in model (3.3) are unknown. Estimation of
these exposures, based on monitored exposures xm , at locations sm , m = 1, . . . , M , may be carried out
if an appropriate exposure model is available to interpolate across the study region. We take a Bayesian
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Table 2. Comparison of information in different designs. ‘Between’ refers to the between-area variability
in exposure means, that is var(xk), and ‘total’ the sum of the between- and the average within-area
variability E[s2

k ]; varC(β̂1) and varI(β̂1) are the asymptotic variances of β̂1 under the convolution and
individual models

Exposure ratio Bias ofb
Between/total

β0 β1 varC(β̂1)
varI(β̂1) ecological model

0.1 0.68 −5 log 1.2 1.47 0.002
0.2 0.52 −9 log 2 2.03 0.05
0.2 0.52 −10 log 3 2.27 0.12
0.3 0.42 −9 log 2 2.38 0.07
0.3 0.42 −10 log 3 2.66 0.18

approach to modeling with unknown exposures, which is convenient to reveal the implications of a number
of approximations.

Denote by yK = (y1, . . . , yK )T the vector of observed disease counts; xK = (x1, . . . , xK )T, with
xk = (

xk1, . . . , xkmk

)T, k = 1, . . . , K , the set of unknown exposures; and xM = (x1, . . . , xM )T the set of
observed exposures. Adopting a Bayesian approach to inference and exploiting conditional independen-
cies, the joint posterior, over the unknown parameters and exposures, is given by

p(βββ, xK |yK , xM )p(yK , xM ) = p(βββ|xK , yK )p(xK |xM ). (3.8)

The posterior for βββ is given by

p(βββ|xK , yK ) ∝
K∏

k=1

p(yk |βββ, xk)p(βββ),

where the predictive distribution p(xK |xM ) may be obtained by assuming a parametric form. We illustrate
by assuming a GRF model for the log exposures. Letting ψψψ x represent the parameters of this model, the
predictive distribution in (3.8) is given by

p(xK |xM ) =
∫ K∏

k=1

p(xk |ψψψ x )p(ψψψ x |xM )dψψψ x , (3.9)

where

p(ψψψ x |xM ) ∝
M∏

m=1

p(xm |ψψψ x )p(ψψψ x ). (3.10)

Under a GRF model, each of the distributions p(x|ψψψ x ) in (3.9) is multivariate lognormal. Since xK is
present in both terms on the right-hand side of (3.8), a fully Bayesian approach would require simulta-
neous estimation of the health and exposure parameters. This has the advantage of allowing feedback
between the health and exposure models, but the disadvantage is that implementation, via MCMC, is
computationally expensive since the dimension of the estimated exposure vector

(∑K
k=1 mk

)
is high. We

discuss two approximations that ease this computational burden.
An approximation that cuts the link between the two components of (3.8) (the health and exposure

models) takes an estimate x̂k , and then substitutes this into the likelihood to give p(yk |βββ, x̂k); this allows
separate computation of the exposure and health models, but is dangerous since the errors-in-variables
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aspect of using an estimated exposure is not acknowledged. A more sophisticated approach that still
allows separate computation but acknowledges the uncertainty in x̂k is to approximate the predictive
distribution. More precisely, we may assume the three-stage model:

Stage 1, Health model.

Yk |xk, βββ ∼ind Poisson

⎧⎨
⎩eβ0

Nk∑
i=1

exp(β1xki )

⎫⎬
⎭ , k = 1, . . . , K .

Stage 2, Exposure model. Let zk j = log xk j and zK = (z1, . . . , zK )T, with zk = (
zk1, . . . , zkmk

)T,
k = 1, . . . , K . If we ignore the uncertainty in the posterior for ψψψ x

p(xk |xM ) ≈ p(xk |ψ̂ψψ x ), (3.11)

with ψ̂ψψ x taken (for example) to be the posterior median, then

zK |µ̂µµ, �̂�� ∼ N (µ̂µµ, �̂��), (3.12)

where the estimated mean and covariance are functions of ψ̂ψψ x . We could also incorporate the uncer-
tainty in the posterior, use

µ̂µµ = E[zk j |xM ], �̂�� = cov(zk j |xM ),

and replace the normal form in (3.12) with a Student’s t distribution, bringing this stage of the model
close to that of Zidek et al. (1998). Although the distribution given by (3.12) is high dimensional, the
moments can be determined in an initial analysis, greatly reducing the computational burden. Note
that (3.12) represents a Berkson error model with heteroscedastic errors.

Stage 3, Prior distributions. Specify priors for βββ and ψψψ .

4. SIMULATION STUDY

We now describe a simulation study with two aims. The first is to investigate the use of the convolution
model (3.3), and the second is to assess the impact of estimated, rather than known, exposures in the
health model. The location and observed exposures from the air pollution monitors, and the ED locations
and populations at risk, are based on the London study described in Section 1.

The overall structure of the simulation is as follows: We fit a GRF model to the 16 observed monitor
exposures and then, based on the estimated parameters, we simulate 1027 exposures at each of the study
ED centroids, and also at the 16 monitor sites. In Section 4.1, the 1027 values are taken as the known
exposures, and we compare the individual, convolution, and ecological models. In Section 4.2, we fit a
GRF to the 16 simulated monitor values, and then obtain predictions at each of the 1027 ED centroids, in
order to investigate the use of estimated exposures. We would expect the measured exposure to be most
appropriate for those individuals living close to a monitor, and so we consider different designs in which
the study population consist of individuals lying within 0.1r km of each of the 16 pollution monitors, for
r = 2, . . . , 10.

Letting xm denote the measured SO2 at monitor m, we take log xm , m = 1, . . . , 16, as arising from
an isotropic GRF model with mean µx , and covariance function of observations at locations s and s′,
σ 2

x exp(−φx |s − s′|), so that ψψψ x = (µx , σ
2
x , φx ). We used the ‘GeoBUGS’ software (Thomas et al.,

2000) to fit a GRF model with priors taken as: µx improper uniform, σ−2
x ∼ Ga(0.01, 0.001), and

φx ∼ U(0.12, 1.15). The gamma prior is quite flat, while the prior for φx allows both very weak and very
strong spatial dependence, relative to the study geography/monitor configuration (see Thomas et al., 2000,
for more details). We obtained posterior median estimates of µ̂x = 0.69, σ̂x = 0.71, and φ̂x = 0.84.
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4.1 Known exposures

We simulated disease counts for each ED, based on a log-linear Poisson model with a relative risk of 2. We
report a single simulation only, but set β0 = −5.5 which gives sufficient cases for a repeat simulation to
give very similar results. Three models were fitted: the individual model (3.6), with 1027 pairs (Ykj , xk j ),
j = 1, . . . , mk ; the ecological model (2.1), with 16 pairs (Yk, xk); and the convolution model (3.3), with
16 counts Yk , and the 1027 exposures xk j , with Nkj being taken as the true ED populations, j = 1, . . . , mk ,
k = 1, . . . , 16.

Table 3 summarizes the results over different study radii. For radii greater than 200 m, we see unbiased
estimation for the individual and convolution models, while the ecological model underestimates β1. The
individual and convolution model estimates are similar, with larger standard errors for the latter, reflecting
the loss in information when there is no linkage between outcome and exposure (as we saw in Section 3.3).
In the limit (mk = 1, with a single exposure, for K = 16 areas) the three models would provide identical
inference. The inaccuracy of estimation for a radius of 200 m is due to sampling variability (there are
only 50 cases). Figure 2 shows individual, ecological, and convolution profile log-likelihoods for β1. The
loss in information in moving from the individual to the convolution designs is clear, as is the bias in the
ecological estimator, which reduces as the study region diminishes in size (though sampling variability
dominates at 200 m). The quadratic shape of the log-likelihoods indicates that asymptotic inference via
quasi-likelihood is accurate.

For the individual model κ̂ ≈ 1, while for the convolution model it is slightly larger than unity. The
estimated overdispersion is much larger for the ecological model, reflecting model misspecification: the
ecological responses do not follow the Poisson model (2.1).

4.2 Estimated exposures

In this section, we repeat the fitting of the individual and convolution models, but now use estimated
exposures. The simulated exposure data at the 16 monitors were analyzed with a GRF model, resulting
in the estimates µ̂x = 0.61, σ̂x = 0.69, and φ̂x = 0.85. We obtained predictions at each of the 1027 ED
centroids to give our estimated exposures. The first approximation described in Section 3.4 was used for
inference.

Table 4 gives the results; the ecological model results are identical to Section 4.1 but are included for
completeness. Figure 3 shows individual, ecological, and convolution profile log-likelihoods for β1. The
horizontal axes are the same as in Figure 2, but the vertical axes differ.

Table 3. Simulated data with known exposures: estimation for different study radii and different models;
the true value of the log-relative risk, β1, is log 2 = 0.69

Radii
(km)

Number of
EDs

Population
size

Number of
cases

Individual model Ecological model Convolution model

β̂1 s.e.(β̂1) κ̂ β̂1 s.e.(β̂1) κ̂ β̂1 s.e.(β̂1) κ̂

1.0 1027 49 264.6 1674 0.67 0.010 1.0 0.46 0.098 55.8 0.68 0.014 1.3
0.9 847 40 141.2 1362 0.66 0.012 1.0 0.46 0.083 32.5 0.67 0.017 1.4
0.8 682 32 274.7 1071 0.67 0.016 1.0 0.44 0.070 18.1 0.68 0.020 1.1
0.7 519 24 524.8 816 0.67 0.019 1.0 0.48 0.060 10.5 0.68 0.022 0.98
0.6 381 18 145.9 619 0.66 0.022 1.1 0.52 0.053 5.9 0.67 0.028 1.3
0.5 265 12 503.4 396 0.68 0.027 1.1 0.55 0.054 3.9 0.69 0.024 0.63
0.4 169 8067.9 215 0.70 0.032 0.99 0.61 0.063 2.9 0.71 0.033 0.89
0.3 96 4863.0 114 0.64 0.047 1.0 0.63 0.063 1.4 0.64 0.053 1.2
0.2 40 2135.8 50 0.59 0.099 0.88 0.46 0.069 0.65 0.59 0.090 0.68
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Fig. 2. Profile log-likelihoods for simulated data with known exposures. The solid, dashed, and dotted lines corre-
spond to individual, ecological, and convolution models, respectively. The solid vertical line on each plot represents
the true value of β1.
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Table 4. Simulated data with estimated exposures: estimation for different study radii and different
models; the true value of the log-relative risk, β1, is log 2 = 0.69

Radii
(km)

Number of
EDs

Population
size

Number of
cases

Individual model Ecological model Convolution model

β̂1 s.e.(β̂1) κ̂ β̂1 s.e.(β̂1) κ̂ β̂1 s.e.(β̂1) κ̂

1.0 1027 49 264.6 1674 1.04 0.069 6.5 0.46 0.098 55.8 1.19 0.16 28.6
0.9 847 40 141.2 1362 0.99 0.058 4.0 0.46 0.083 32.5 1.09 0.13 16.6
0.8 682 32 274.7 1071 0.93 0.051 2.6 0.44 0.070 18.1 0.99 0.10 8.8
0.7 519 24 524.8 816 0.91 0.051 2.2 0.48 0.061 10.5 0.97 0.087 5.7
0.6 381 18 145.9 619 0.90 0.057 2.2 0.52 0.053 5.9 0.96 0.077 3.7
0.5 265 12 503.4 396 0.88 0.068 2.3 0.55 0.054 3.9 0.92 0.083 3.2
0.4 169 8067.9 215 0.90 0.087 2.4 0.61 0.063 2.9 0.93 0.092 2.6
0.3 96 4863.0 114 0.85 0.086 1.4 0.63 0.063 1.4 0.85 0.089 1.5
0.2 40 2135.8 50 0.59 0.11 0.91 0.46 0.069 0.65 0.59 0.092 0.67

Both the individual and convolution models produce β̂1 with positive bias because the 16 observed
exposures are not sufficient to characterize the exposure surface. This is illustrated in Figure 4 in which
the ‘known’ exposures are plotted versus distance from the closest monitor for two representative sites
on the top row, with the ‘estimated’ exposures on the bottom row. The modeled exposures for London
Bridge Place are not only determined by the concentration measured at that site (2.64 ppb) and the overall
mean (2.86 ppb) but also increased due to the high exposure measured at Cromwell Road (4.38 ppb),
which is only 2.5 km away (sites 5 and 6 on Figure 1). We see that the estimated exposures do not reflect
the variability of the true exposures, and exhibit the well-known attenuation to the overall mean of these
shrinkage-type estimators. This attenuation results in a narrowing of the estimated exposure range as
compared to the true exposure range, resulting in overestimation of the regression coefficient.

For radii of 300–500 m, the ecological analysis actually provides more accurate estimation than the
individual and convolution models, since it is based on known exposures, albeit at just 16 points. Hence,
it may actually be detrimental to model the exposure surface. The very large values of κ̂ indicate the
difficulties in estimation of the exposures (though in practice one would not know whether this overdis-
persion was due to other problems, such as missing confounders, and/or misrecording of population/health
counts).

Analyses using the three-stage model of Section 3.4 are not reported. The results were poor because
the simple errors-in-variables model (3.12) cannot correct for the attenuation problems discussed above.
Future research will examine when the three-stage model provides accurate inference, in particular as a
function of the spatial density of monitor information, relative to the exposure variability.

5. MORTALITY AND SO2 IN LONDON

We now return to the example introduced in Section 1. We carried out a number of simulations, similar
to those of the previous section, but found that for the observed number of cases the results were highly
variable; hence, we conclude that the observable exposure data are not sufficient to reliably estimate the
association in this study. We carried out individual, ecological, and convolution analyses, as in Section
4.2, but do not include the results since they are dominated by sampling variability. If there were more
cases, then we might hope to see some correspondence between ecological and convolution analyses, at
least for small radii. There is no benefit in using a simple errors-in-variables approach to correct for the
estimated exposures since the pollution monitors are too sparsely located (relative to the spatial variability
in exposure) to give reliable estimation of the log SO2 surface.
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Fig. 3. Profile log-likelihoods for simulated data with estimated exposures. The solid, dashed, and dotted lines corre-
spond to individual, ecological, and convolution models, respectively. The solid vertical line on each plot represents
the true value of β1.
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Fig. 4. Known (top row) and estimated (bottom row) log SO2 versus distance from monitor for simulated data, for the
Bromley and London Bridge Place monitors. On each plot, the dotted line represents the overall mean of the fitted
GRF surface, and the solid line corresponds to the value of the log exposure at the monitor (located at at a distance of
0 km).

The analyses we carried out were based on assuming that all populations are located at their population
ED centroids, and are therefore susceptible to ecological bias. Postcode centroids, which are far more
dense geographically, were available, but we decided that refinement of the analysis to use this information
was not merited, given that the exposure surface is so poorly estimated.

6. DISCUSSION

In this paper, we have considered the common spatial epidemiological situation in which aggregate dis-
ease and population counts are available, along with exposure measures at a set of monitor sites. We
have illustrated that a naive ecological regression is subject to pure specification bias, but have devel-
oped a convolution model that is not subject to bias, so long as accurate within-area exposure measures
are available. A second conclusion is that estimated exposures should be used with caution since sim-
ple measurement error models cannot adjust for bias resulting from estimates based on sparse monitor
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information. Some applications use a more complex exposure model, for example based on geographic
and atmospheric variables (e.g. Briggs et al., 1997), but the general point is that the predictions still need
to be accurate.

The convolution model was derived with no confounding variables. We now describe a model in
which we jointly estimate confounder and exposure effects. At the level of the individual, let Ykci be the
disease indicator of individual i in confounder stratum c and area k and assume

Ykci |xkci , βββ, γγγ ∼ Bernoulli{exp(β0 + β1xkci + γc)},
for k = 1, . . . , K , c = 1, . . . , C , i = 1, . . . , Nkc. Usually the numbers of individuals and cases within
each confounder stratum by area, Nkc and Ykc, will be known. Aggregating over individuals within
confounder stratum, and assuming a rare disease, gives

Ykc|xkc, βββ, γγγ ∼ind Poisson

⎧⎨
⎩eβ0+γc

Nkc∑
i=1

exp(β1xkci )

⎫⎬
⎭ ,

where xkc = (
xkc1, . . . , xkcNk

)
. Suppose now that we have exposure measurements xkcj by confounder

stratum, j = 1, . . . , mk , at mk locations within area k. Then

Ykc|xkc, βββ, γγγ ∼ind Poisson

⎧⎨
⎩eβ0+γc

mk∑
j=1

Nkcj exp(β1xkcj )

⎫⎬
⎭ ,

where xkc = (
xkc1, . . . , xkcmk

)
and we take Nkcj as the confounder-defined populations in sub-area

(e.g. ED) j . If we assume that individuals in the same sub-area are subject to the same exposure xk =(
xk1, . . . , xkmk

)
regardless of confounder group, which means that we do not have a within-area con-

founder, then we obtain

Ykc|xk, βββ, γγγ ∼ind Poisson

⎧⎨
⎩eβ0+γc

mk∑
j=1

Nkcj exp(β1xk j )

⎫⎬
⎭ . (6.13)

The assumption that the exposure distribution is the same across potential confounder stratum within areas
is clearly crucial, and will need to be critically assessed in any application. For example, gender may be
less related to exposure than age is since different age groups may have very different time activities and
therefore exposure profiles.

We have concentrated upon inference via quasi-likelihood, but an obvious extension is to include
random effects which allow for unmeasured variables with spatial structure. Clayton et al. (1993) used
the model of Besag et al. (1991) in an ecological regression context, but did not allow for within-area
variability in exposure. We extend (2.2) to the form

Yki |xki , βββ,Uk, Vk ∼ind Bernoulli{exp(β0 + β1xki + Uk + Vk)}, (6.14)

where Uk and Vk represent random effects with and without spatial structure, retrospectively, in area k.
Under aggregation model, (6.14) takes the form

Yk |βββ, xk,Uk, Vk ∼ Poisson

⎧⎨
⎩eβ0+Uk+Vk

mk∑
j=1

Nkj exp(β1xk j )

⎫⎬
⎭ . (6.15)

The inclusion of random effects cannot control for general confounding. Clayton et al. (1993) argue
that spatial random effects can control for ‘confounding by location’,though this is difficult to achieve in
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practice since regression estimates can be sensitive to the particular spatial model used. The model may
provide more appropriate standard errors than under an assumption of independent outcomes, however.
If there is evidence of residual spatial dependence, then we would recommend carrying out sensitivity
analyses under a range of scenarios, including models that do and do not acknowledge spatial dependence.

Model (3.2), with some modification, also allows computation for the disease-mapping model of
Kelsall and Wakefield (2002) to be carried out without recourse to approximation. For a related approach,
see Follestad and Rue (2003).

A difficult yet crucial issue in any analysis that uses spatially referenced exposure data is whether to
model the exposure surface. As an aid to making this decision, we would recommend following the proce-
dure described in Section 4. Specifically, one may fit a model to the monitor exposure data, and simulate
new monitor and population location exposure data using the fitted model; the differences between known
and estimated values can then be examined, to gain insight into whether an exposure modeling strategy is
likely to be successful. The study design will often inform the need to model the exposure surface.

An interesting design question is the determination of which populations to study in relation to the lo-
cation of the pollution monitors. This choice represents the classic mean–variance trade-off; populations
close to a monitor have accurate exposure assessment but are small in size, while examining larger popu-
lations gives an increase in power but results in less accurate exposure estimates. One way of increasing
power is to have a dense monitoring network, where dense is relative to both the spatial variability in
exposure and the population distribution. If the exposure surface is relatively flat, only a sparse network is
required, but in this case a spatial study will have low power due to narrow exposure contrasts. In studies
of the acute effects of air pollution, temporal contrasts provide the greatest exposure information, which
suggests that in such a study, modeling spatial variability in exposure will not be worthwhile.
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