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Abstract 

Simulating river runoff and terrestrial water storage variability in data-scarce semi-arid 

catchments using remote sensing. 

Peshawa M Najmaddin  

---------------------------------------------------------------------------------------------------------- 

Remotely sensed data can be used as an alternative to ground based observations to predict 

river discharge and water storage variability. The latter dataset used consists of meteorological 

records from four stations (2003-2014) and daily river discharge records from one stations 

(2010-2014). A model was developed named ‘Leicester Model for Semi-Arid Region’ 

(LEMSAR). It was applied in the semi-arid Kurdistan region of Northern Iraq.  

TRMM Multi-satellite Precipitation Analysis (TMPA) data products (TMPA 3B42 and 

3B42RT) were used with and without a bias correction. The uncorrected TMPA underestimated 

observed mean catchment rainfall by 10% compared to corrected data with 0.7%.   

Four methods of computing  reference evapotranspiration (ETₒ) were applied which include 

Hargreaves-Samani (HS), Jensen-Haise (JH), McGuinness-Bordne(MB) and FAO Penman 

Monteith(PM). The variables utilised are air temperature, relative humidity and cloud cover 

fraction from the Atmospheric Infrared Sounder / Advanced Microwave Sounding 

(AIRS/AMSU), and wind speed at 10 m height from MERRA (Modern-Era Retrospective 

Analysis for Research and Application). Compared to ETₒ-G (PM), ETₒ-RS (HS) underestimated 

ETₒ-G (PM) by 3% while JH and MB overestimated by 8% to 40% at different stations. 

Nash-Sutcliffe Efficiency (NSE) for the LEMSAR fit with the observed hydrograph was 0.75, 

for a calibration period (2010-2011) using gauged rainfall data with ETₒ-G (PM). Model 

validation performance (2012–2014) was best (NSE =0.61) using the corrected 3B42 data with 

ETₒ-RS HS and poorest when driven by uncorrected 3B42RT data with ETₒ-RS JH (NSE =0.07).  

Data from the Gravity Recovery and Climate Experiment (GRACE: 2003-2014) were used to 

evaluate total water storage variability and compared with that of well observations data and 

LEMSAR. Trends in GRACE_TWSA were approximately -33.72 mm y-1 for the Lesser Zab 

catchment and -35.4 mm y-1 for the Hawler well monitoring zone while LEMSAR predicted 

15 mm y-1 for the Lesser Zab Catchment. This suggest that reduction in recharge (modelled 

by LEMSAR) may only be responsible for about 50% of the reduction in groundwater storage. 

The rest could be the result of increased abstraction in response to the drought. 

Overall, results suggest that RS data can be usefully employed to simulate river discharge and 

to evaluate terrestrial water storage variability in semi-arid areas. It has the potential to help 

decision-makers improve water resources management.  
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1 Introduction 

This chapter presents an overview of the existing knowledge of the water resources issues in 

semi-arid areas. It also gives a brief review of hydrological processes, rainfall-runoff modelling 

and the application of such models in semi-arid regions. Finally it explore the role of remote 

sensing in hydrological modelling. It concludes with summary, an assessment of important 

gaps in the literature, aim, objectives and the thesis structure. 

1.1 General context 

1.1.1 Water resources issues in semi-arid regions  

Water is one of the most important natural resources. It is an essential component in the climate 

system and has an environmental, economic and social value. Globally, human demands for 

water have increased and are predicted to grow further in the coming decades (Kundzewicz et 

al., 2007). This is driving, for example, groundwater over-pumping for irrigation and domestic 

supply which is being exacerbated by global climate change (Abdulla, 2008; Al-Ansari and 

Knutsson, 2011; Ibraimo and Munguambe, 2007; Zakaria et al., 2013). The Intergovernmental 

Panel on Climate Change IPCC (2013) stated that the global temperature is predicted to 

increase by 1.5 ◦C by the end of the twenty-first century. Such changes to the climate will be 

associated with changes in a number of components of the hydrological cycle such as: patterns 

in precipitation, atmospheric water vapour content, soil moisture, snow cover and snow pack 

depth, widespread melting of ice (Bates et al., 2008). As a result, surface-groundwater 

availability are projected to increase in some wet areas (Bates et al. 2008) but decrease in arid 

and semi-arid areas particularly in southern Europe, western Russia, North Africa and the 

Middle East (Arnell, 2003; Kundzewicz, 2008).  Allan (2001); Chenoweth et al. (2011); Al-

Ansari (2013) and Joodaki et al. (2014) have also stated that  water scarcity will drive the 

Middle East region to be even more unstable politically and socio-economically.  

The catchments of many major rivers in the Middle East (e.g. the Tigris and the Euphrates) are 

shared by more than one country and the construction of dams has significantly contributed to 

reduced downstream river flows (Abdulla and Al-Badranih, 2000; Al-Ansari and Knutsson, 

2011; Bozkurt and Sen, 2013; Issa et al., 2014; Abdul Hameed et al., 2010).  For instance, the 

Grate Anatolia Project ‘GAP’ in Turkey, is constructing 22 dams and 19 hydropower stations 

on the headwater of the Euphrates and Tigris rivers (Unver, 1997). Undoubtedly this project 
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will have a great impact on water resources in the downstream countries (e.g. Iraq). Al-Ansari 

& Knutsson (2011) analysed data from several sources to identify the effects of the GAP and 

its consequences for water resources in Iraq. The results showed that the discharge from the 

Tigris River could be depleted by up to 47% after the completion of the GAP.   

The severe water crises faced by many semi-arid catchments require a solid understanding of 

hydrological process in order to develop sound mitigation strategies to limited available water 

resources which are insufficient for the meeting demands of agriculture and domestic/ 

industrial supply. However, a significant issue with many semi-arid zones outside of Europe 

and North America is that meteorological and hydrological data availability is often scarce. 

This has been recognised as a major challenge in hydrological modelling in arid and semi-arid 

regions (Pilgrim et al., 1988; Wilby and Yu, 2013). Data-Scarce can be defined as a short length 

of historical observations and spatially insufficient observations which have undergone some 

quality control procedures recommended by the World Meteorological Organization (WMO, 

2007). For instance, for certain parameters such as precipitation, a separation of 10 km between 

stations may be required in same areas for purposes such as climatology and hydrological 

forecasting (WMO, 2006).   In this study data-scarce means a lack of hydro-meteorological 

data to drive a rainfall-runoff model.In this thesis an attempt is made to gain a  better understand 

of the hydrological processes in a data poor semi-arid regions and quantify spatiotemporal 

variations in water resources for better water resource planning and management. Catchments 

in Northern-Iraq, for conducting this study are used to illustrate the general ideas which are 

developed. 

1.2 Hydrological processes in semi-arid regions 

Hydrology is the study of the distribution and circulation of water (Davie, 2008). It provides 

an understanding of how water moves around the planet and which factors influence it (Chow 

et al., 1988). Arid to semi-arid areas have been recognised as having higher temporal and spatial 

variability of all hydrological processes (i.e. rainfall, evapotranspiration, infiltration and runoff 

generation) than in humid regions (Food and Agriculture Organization (FAO), 1981; Pilgrim 

et al., 1988; Wheater et al., 2007).  
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1.2.1 Rainfall 

Rainfall is an important component of the hydrological cycle and is the primary input for 

hydrological modelling. Rainfall in arid and semi-arid regions has several unique 

characteristics compared to rainfall in humid regions. For instance, storm events in arid and 

semi-arid areas are often by random, short duration and high intensity, with greater spatial 

variation than in humid regions (Pilgrim et al., 1988; Chahine, 1992; Wheater, 2002). The 

extreme temporal variability of rainfall and long, dry periods may have far-reaching effects on 

the hydrological processes and the production of runoff in semi-arid regions (Pilgrim et al., 

1988; Reaney, 2008; Buytaert and Beven, 2011). There are several studies regarding the 

temporal variability of rainfall such as (White et al., 1997; Gutiérrez et al., 1998) and spatial 

variability such as (Goodrich et al., 1997; White et al., 1997; Goodrich et al., 2008; Babu et al., 

2016). Consequently, rainfall measurement is crucially important in order to understanding and 

modelling of hydrological processes within arid and a semi- arid areas. However, this is 

compounded by the fact that there is a significant issue with many semi-arid zones outside of 

Europe and North America is that meteorological and hydrological data availability is often 

scarce. 

1.2.2 Interception and evapotranspiration 

Interception loss and evapotranspiration are two main elements of the hydrological cycle. 

Interception refers to rainfall that is intercepted by surface elements such as trees, shrubs and 

grass before it hits the ground (Savenije, 2004) and is returned to the atmosphere by direct 

evaporation from plant surfaces (Pilgrim et al., 1988). Interception can be a very significant 

part of the total water loss to the atmosphere in some environments (e.g. forest) (Návar, 2017). 

However, it often can be neglected in arid areas with sparse vegetation based on the argument 

that it is a very small proportion of total water loss in these areas (Savenije, 2004).  

Evapotranspiration (ET) is one of the main components of the hydrological cycle. Its 

quantification is essential for water resource management (Zhao et al., 2013). However, it is 

arguably the most difficult process to measure directly, especially in arid and semi-arid areas 

where losses of water tend to be temporally highly variable (Nikam et al., 2014; Pilgrim et al., 

1988).  
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Evapotranspiration (ET) consists of two main component processes: evaporation and 

transpiration (Chahine, 1992; Shaw, 1994). Evaporation (E), is the loss of water from open 

water surfaces such as oceans, lakes, reservoirs, rivers and from soil pores directly to the 

atmosphere. In the evaporation process, energy is required to convert liquid water to the vapour 

state. Most of this energy comes from absorbed radiation which depends (inter alia) on latitude, 

season, cloud cover, air temperature and surface albedo (the fraction of solar shortwave 

radiation reflected from the earth back into space, which is affected by surface conditions and 

soil moisture:  Chahine, 1992; Strugnell et al., 2001). Transpiration (T), occurs when water 

absorbed by plant roots is returned to the atmosphere through their stomata (López-Urrea et 

al., 2006). It is noteworthy to highlight that evaporation and transpiration occur simultaneously 

and it is complex to differentiate them. There are three different expressions for ET: potential 

evapotranspiration (ETp), reference evapotranspiration (ETₒ) and actual evapotranspiration 

(ETa). ETp is the water loss which would occur from a vegetated surface when sufficient 

moisture is available in the soil such that stomata are fully open and resistance to water vapour 

transport from bare soil to the atmosphere is minimal (Beaumont et al., 2016). ETₒ is defined 

as the evapotranspiration rate from a hypothetical reference surface with unlimited soil 

moisture availability (Allen et al., 1998). The reference surface is assumed to be a grass sward 

with a  height of 0.12 m, a fixed surface resistance (representing the ease with which water 

vapour is transferred between the surface layer and the atmosphere) of 70 s m-1 and an albedo 

of 0.23 (Allen et al., 1998).  ETa is the loss of water from a vegetated surface under ambient 

soil moisture conditions (i.e. soil moisture may be limiting to the evapotranspiration rate). ETₒ 

can vary significantly on a daily time scale (which is the most commonly applied input data 

time step for hydrological modelling). In contrast to precipitation (which is notoriously 

variable) several studies have reported that variation of ETₒ is likely to be relatively uniform 

spatially at the basin scale, except where there are topographic complexities or strong gradients 

in relief (Tabari et al., 2012a; Herath et al., 2017; Alemayehu et al., 2017). 

1.2.3 Runoff generation process 

The runoff generation is one of the most complex and non-linear process in hydrology. 

Rainfall-runoff transformation involves many hydrological processes (e.g. interception, ET, 

soil drainage, through flow, overland flow and base flow). For many years, hydrologists have 

attempted to understand runoff generation in order to predict river discharge and flood risk 

assessment. There is a large volume of published studies describing runoff generation in humid 
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regions (i.e. Betson, 1964; Weyman, 1975; Pearce et al., 1986; Allan and Roulet, 1994; Dohnal 

et al., 2016; van Meerveld et al., 2016) and in arid and semi-arid regions (i.e. Yair and Lavee, 

1976; Yair and Lavee, 1985; Abrahams et al., 1995; Lange et al., 2003; Ries et al., 2016).   

In humid regions, four different processes: Hortonian Overland Flow (HOF), shallow 

subsurface flow, saturation overland flow and groundwater flow may be involved at different 

times and magnitudes in excess runoff generation (Betson, 1964; Weyman, 1975; Pearce et al., 

1986; Allan and Roulet, 1994; Dohnal et al., 2016; van Meerveld et al., 2016). In the arid and 

semi-arid regions, the dominant mechanism of runoff generation is generally assumed to be 

Hortonian Overland Flow (HOF) which occurs when the rate of (unsaturated) infiltration is 

less than the rainfall rate (Pilgrim et al., 1988; Lange, 1999).  

Runoff response to a rainfall event is controlled by different factors including rainfall 

characteristics (Yair and Lavee, 1985; Castillo et al., 2003) and catchment characteristics such 

as, relief, soil composition,  initial soil water content, land cover and land use and the 

underlying (hydro) geology (Hernandez et al., 2000; Ohana-Levi et al., 2015; van Meerveld et 

al., 2016; Pilgrim et al., 1988; Hendrickx, 1990).  Rainfall characteristics include rainfall 

intensity and duration. For instance, when rainfall intensity is greater than the soil infiltration 

rate and rainfall duration is longer than ponding time (the time required to saturate the 

uppermost layer of soil for a given initial soil moisture profile: Assouline et al., 2007),  this 

results in the accumulation of excess water at the ground and the generation of HOF.  

Initial water content has a great influence on infiltration. In principle, water movement in the 

soil profile occurs as a result of gradients in potential energy (the hydraulic potential) 

(Hendrickx, 1990). When the soil is dry potential energy is low and water will infiltrate quickly. 

As the soil wets up, the potential energy gradient decrease and infiltration rate decreases. 

Infiltration and water movement are also strongly affected by hydraulic soil properties, 

particularly hydraulic conductivity and the water retention characteristics (Hendrickx, 1990). 

The hydraulic conductivity determines soils capacity to move water through the porous space 

and fractures. The water retention characteristics describe the relationship between the water 

content ( ) and soil water potential () or matrix potential which is affected by capillary forces 

which are, in turn, a function of pore size for empty pores (Niemela, 2011). Non-linear 

relationships between water content and matric potential can be described mathematically 
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using a number of analytical functions such as those of  Brooks and Corey (1966) and van 

Genuchten (1980) equations which are commonly used for water flow in soil profiles.  

Yair and Lavee (1985) in Israel and Wallace and Lane (1976) in southeastern Arizona studied 

Hortonian Overland Flow in semi-arid contexts. In both cases, the infiltration rate was found 

to be the main driver of HOF. Casenave and Valentin (1992) analysed some factors including 

antecedent soil water content and soil surface characteristics such as soil crusting which have 

a huge impact on infiltration and runoff processes in the semi-arid area of west Africa. Other 

studies have also shown that soil infiltration rate reduces at higher in soil moisture contents 

(Cerdà et al., 1997). 

Land cover (LC) and land use (LU) also represent crucial factors influencing runoff. Ohana-

Levi et al. (2015) stated that decreasing LC is one of the main causes of increased runoff rate 

and high peak flow due to reduced infiltration of rainfall on bare ground. This which confirms 

a strong negative relationship between vegetation cover and the relative volume of runoff.  

Similarly, van Meerveld et al. (2016) studied the effects of LU on runoff generation in upland, 

eastern Madagascar. Their results show that the runoff coefficient (RC) depend on soil type, 

rainfall intensity and land cover. Runoff coefficient varied with different land cover (e.g.  RC 

for a deforestation site, young forest site and mature forest site were 22%, 3.5% and 2.7% 

respectively.  

1.2.4 Groundwater  

Groundwater is simply the subsurface water in fully saturated soil pore spaces and in the 

fractures of rock formations. Groundwater is replenished naturally by precipitation via soil 

drainage. It can be one of the most important sources of water for river flow, crucial to sustain 

flow in rain-free periods by returning water to the river (McCallum et al., 2013; Candela et al., 

2014; Abo and Merkel, 2015; Shaw, 1994). Groundwater recharge depends on the local 

climate, soil properties, vegetation characteristics and geology (Shaw, 1994; Scanlon et al., 

2006).  

In both humid and semi-arid regions, groundwater recharge occurs based on the time factor 

(Simmers, 1988) via short term recharge (Sharma and Hughes, 1985), seasonal recharge 

(Rushton and Ward, 1979), perennial recharge (Morel and Wright, 1978) and historical 

recharge (Campana and Simpson, 1984). Recharge estimation is very a challenging element to 
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predict in hydrology, due to the difficulty in direct subsurface observation. This is particularly 

true for the arid and semi-arid areas because of a high temporal and spatial variability of all 

water balance components, in addition to the lack of observation data including meteorological, 

soil characteristics, geomorphology and vegetation cover (Koeniger et al., 2016; Pilgrim et al., 

1988; Candela et al., 2014). There are a variety of techniques that can be used to estimate 

groundwater recharge rate indirectly, including rainfall-runoff modelling, (Scanlon et al., 

2006). These techniques have been described and reviewed by several studies (Lerner et al., 

1990; Hendrickx and Walker, 1997; Kinzelbach et al., 2002; Banimahd et al., 2015; Izady et 

al., 2014; Acworth et al., 2016; Koeniger et al., 2016). 

1.2.5 River flow regimes 

Understanding the hydrological behavior of rivers is crucial to assessing water resource 

management. Lerner et al. (1990) classified river flow into three flow categories: perennial, 

seasonal and ephemeral. Perennial rivers flow throughout the year, seasonal rivers only flow 

during part of the year, and ephemeral rivers have extremely high flow variability: from no 

flow to flash floods during storms. The variation in river discharge over a long period 

constitutes its regime which is the direct consequence of climatic factors (precipitation and 

temperature) in the catchment area and the catchment characteristics including soils, rock 

structure, basin morphometry and hydraulic geometry (Haines et al., 1988; Harris and Gurnell, 

2000; Zhu et al., 2012) . 

A catchment is the area where precipitation is collected and redistributed to the drainage 

network and translated to river discharge at the catchment outlet. Catchment hydrology takes 

into account the integration of hydrological processes at the catchment scale and determines 

the catchment response to rainfall. River discharge can be measured directly at a gauging 

station or can be predicted by rainfall-runoff modelling. There are some factors that affect the 

accuracy of the river flow measurements such as the integrity of the gauging structure and the 

choice of rating equation.  Simulation accuracy can be affected by artificial influences such as 

large abstractions upstream of the gauging station, controlling river flow through regulated 

reservoir releases (Shaw, 1994).  

Understanding of these processes, particularly within semi-arid catchments, can provide better 

options for water resources management. However, experience has shown that quantifying 

hydrological variables (i.e. river discharge) is often difficult and subject to uncertainties (Wilby 
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et al., 2017). In addition, hydrological data and field observation may not be available.  

Therefore, rainfall-runoff  models can be help to estimate rainfall runoff relationships, can 

significantly contribute to scientific understanding and support decision making in water 

resources management (Beven, 2012).  

1.3 Rainfall-runoff modelling  

Rainfall-runoff models are powerful tools which can be used in many aspects of catchment 

hydrology. There are mathematical representation(s) of the hydrological cycle which renders 

an approximate description of the system under study via set of equations linking the inputs 

and outputs (Chow et al., 1988). They contain various quantities  (i.e. parameters, initial and 

boundary conditions) which are incompletely known (Janssen and Heuberger, 1995). The 

characteristics of a watershed are represented by parameters (Dent et al., 2004). These artificial 

representations of the physical world always incorporate some level of simplification of 

physics over the spatial and temporal domains (Dent et al., 2004).  Most rainfall-runoff models 

have parameters that cannot be measured directly, either because they represent several 

physical processes or because the scale at which they are applied in the model does not 

correspond to the scale at which they can be measured (i.e. parameters that define groundwater 

flow), as well as parameters that can be measured or observed directly  such as the area of the 

catchment (Dent et al., 2004; Beven, 2012). Those parameters that are not directly observable 

need to be determined by indirect techniques of matching the model output to historical 

observed data. This is called calibration (Gupta et al., 1998). It means the searching for the 

parameter values that give the best predictions (Janssen and Heuberger, 1995). Most 

hydrological models are calibrated and so this becomes a critical phase in the modelling process 

(Beven, 2012). 

This adjustment may be done by several strategies including (i) manual trial-and-error where 

the modeler manually changes the values of the parameters until they are satisfied with the 

model results against observations. This method can be successful in applications where the 

model has a small number of parameters (e.g. <3). However, it can suffer from low objectivity 

and reproducibility (Janssen and Heuberger, 1995); (ii) Automatic calibrations which are useful 

in calibrating complex models with a large number of parameters (Dent et al., 2004). Example 

include , (a) inverse modelling method where a search algorithm is applied to minimise an 

objective function reflecting the distance between simulations and observations and (b) 
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parameter space methods where parameter values are selected from a population of values (i.e. 

Monte Carlo Markov Chain) and usually need a large number of model runs (Šimůnek and De 

Vos, 1999; Dent et al., 2004; Arnold and Moriasi, 2012; Tada and Beven, 2012; Beven, 2012). 

The advantages in applying automatic calibration are (usually) a closer fit between model 

output and observations as well as increased objectivity and reproducibility in the process 

(Doherty and Johnston, 2003; Dent et al., 2004).  

Hydrologists commonly apply different models to meet particular requirements when they 

intend to deal with issues such as (i) leaching of pollutants to water resources (Seibert, 1999; 

Whelan and Gandolfi, 2002; Pullan et al., 2014), predict flooding (Lundin et al., 1998), (ii) 

manage water resources (Buytaert and Beven, 2011; Pechlivanidis and Jackson, 2011), and (iii) 

predict the potential impacts of climate change on water resources (Bergström et al., 2001; 

Ragab and Prudhomme, 2002; Shepherd et al., 2010; Jung and Chang, 2011; Milman et al., 

2013; Hatcher and Jones, 2013; Bozkurt and Sen, 2013; Gosling and Arnell, 2013; Li et al., 

2015; Sarhadi et al., 2016). 

1.3.1 Rainfall-runoff modelling processes  

The modelling process has two components: the model building process and the modelling 

protocol (i.e. the way to use the model for either operational managment or research:  

Solomatine and Wagener, 2011). In model building, four different stages exist (Beven, 2012): 

The first stage, the perceptual model, involves the collection of background information on the 

physical system uner consideration based on previous research, data analysis and field site 

experience which may help to develop a good model. The perceptual model stage is not 

formalised or constrained by mathematical theory. A mathematical description is then required 

in order to formulate a model. This is the starting point for the evaluation of a practical model 

and is the basis of the next stage which is called the conceptual model. This may use 

mathematical equations for components represented in the catchment and for the definition of 

the boundary conditions for the real system. The next stage is the development of a procedural 

model which requires techniques of numerical analysis to transform the equations of the 

conceptual model into code that will run on computes-. It is then necessary to calibrate the 

parameters, as described in previous section. After the model parameter values have been 

specified, a simulation can be performed and the model can be validated, (on an independent 

data set which has not used in calibration) to evaluate model performance (Beven, 2012).  
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1.3.2 Classification of rainfall-runoff models 

Rainfall-runoff models have been classified in many ways. Examples of the classifications are 

given by Clarke (1973); Todini (1988); O’Connell (1991); Wheater et al. (1993);Singh (1995); 

and Refsgaard and Knudsen (1996). There are two criteria: (i), the extent to which physical 

principles are applied in the model structure and (ii) the treatment of the model inputs and 

parameters as a function of space and time. As well as the physical process description, a 

hydrological model can also be defined as either stochastic or deterministic (Dzubakova, 2010; 

Pechlivanidis and Jackson, 2011; Solomatine and Wagener, 2011). Stochastic models use 

random variables to link a single set of inputs, for instance rainfall, to produce different outputs 

such as runoff (Dzubakova, 2010; Pechlivanidis and Jackson, 2011; Solomatine and Wagener, 

2011). Deterministic models, on the other hand, represent the physical processes observed to 

give the same output for a given set of input variables (Dzubakova, 2010; Solomatine and 

Wagener, 2011). 

 Models can also be classified according to whether the model has a lumped or distributed 

description of the catchment area. Lumped models treat the catchment as a homogenous unit 

with the output representing an average over the catchment area, while distributed models 

discretise a catchment into different units and the output represents the weighted average of the 

response of the different discrete unite (which may also be time-dependent). Distributed models 

usually need more detailed input data than is usually available (Beven, 2012).  

Furthermore, model descriptions of hydrological processes can be empirical, conceptual or 

physical based. Three classes of deterministic model can be distinguished: (i) metric or ‘black 

box’ models which are entirely empirical, (ii) conceptual or ‘gray box’ models which include 

some physical process representation-often in conceptual way, and (iii) physical or ‘white box’ 

models which attempt to describe conditions and process using mechanistic, physical-based 

concepts (Wheater, 2002; Dzubakova, 2010; Solomatine and Wagener, 2011).  

Metric or black box models are essentially empirical and statistical tools which attempt to 

reproduce the catchment scale relationship between inputs and outputs using mathematical 

equations that have been derived from an analysis of the simultaneous climatic input data (i.e. 

rainfall and evapotranspiration) and output time series (Pechlivanidis and Jackson, 2011). The 

unit hydrograph method, which was originally developed by Sherman (1932), is used widely 

as an example of empirical methods. It is a simple linear model that can be used to produce 
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hydrographs based on an excess rainfall (Chow et al., 1988). This type of model represents 

stream response to individual storm events, either by non-linear loss functions or linear transfer 

functions. Other examples of statistical model  include those based on regression and 

correlation (Chow et al., 1988). A good examples of a recent approach to  in statistical modeling 

is the Autoregressive Integrated Moving Average (ARIMA) model (Box and Jenkins, 1970). 

Other interesting black box modelling approaches include Data Based Mechanistic models 

(DBM: Young et al., 1997; Young, 1998; Young, 2001; Young, 2003; Ratto et al., 2007) and 

Artificial Neural Networks (ANN: Lange, 1999; Dawson and Wilby, 2001; Jain et al., 2004; 

Dawson et al., 2007). 

Conceptual models are characterised by two criteria: firstly, model parameters have no direct 

physical measurement and secondly the structure is specified prior to any modelling being 

undertaken (Wheater, 2002; Solomatine and Wagener, 2011).  Conceptual models vary 

considerably in complexity and an extensive number of interconnected schematic storages are 

used to represent important physical hydrological features in a catchment. Rainfall, snowmelt, 

infiltration and percolation recharge the stores depleted through evapotranspiration and runoff. 

Parameters and fluxes are represented by average values over the entire catchment and 

parameter values are usually obtained through calibration against observed time series data 

(Seibert, 1999; Wagener et al., 2001; Wagener et al., 2003). These  models can be used to 

obtain both a short term and long term prediction of runoff (Seibert 1999). Pechlivanidis and 

Jackson (2011) argue that a balance between model complexity and available input data is 

crucial for a successful prediction. Model complexity can be controlled by sensitivity analysis 

which is a technique used to determine how different values of an independent parameter 

impact a particular dependent parameter under a given set of assumption (Fenicia et al., 2008; 

Jiang et al., 2015). Parameter can be held constant to which the model is insensitive (Li et al., 

2009; McIntyre and Al-Qurashi, 2009). Examples include the Stanford Watershed Model 

(SWM: Crawford and Linsley, 1966), the Hydrologiska Byråns Vattenbalansavdelning model 

(HBV: Bergström and Forsman, 1973), theSacramento Soil Moisture Accounting model 

(Burnash et al., 1973); (Wheater, 2002), TOPMODEL (Beven and Kirkby, 1979) and the 

ARNO model (Todini, 1996). These models describe hydrological processes in relatively 

simple ways in terms of catchment scale input-output relationships (Pechlivanidis & Jackson, 

2011; Solomatine & Wagener, 2011). A brief description of several conceptual models are 
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given by Fleming (1972); Todini (1988); Franchini and Pacciani (1991); Singh (1995); 

Dzubakova (2010);  and Beven (2012). 

Physical models are based on the basic physical principles such as the law of conservation 

mass, energy and momentum (Solomatine & Wagener, 2011). Hydrological processes are 

modelled by different equations of mass, momentum and conservation or by empirical 

equations derived from an independent experimental study (Abbott et al., 1986). Hydrological 

processes such as evapotranspiration, infiltration, and saturated and unsaturated zone flow can 

all be represented by physical models (Pechlivanidis & Jackson, 2011). These variables are 

measureable in laboratory and field experiments (Pechlivanidis & Jackson, 2011).  Beven and 

Freer (2001) stated that, in theory, the physics-based model can provide a continuous 

simulation of the rainfall-runoff relationship without calibration but, in practice, such a model 

has a number of important issues. For instance, the parameter measurements of these models 

are essentially made at the point scale, but, the models themselves use average parameters at 

the grid scale, which is basically greater than the scale of variation of the process, thus raising 

uncertainty about their applicability (Beven, 2004).  In addition, this does not adequately 

represent heterogeneity at the grid or catchment scale (Pechlivanidis and Jackson, 2011). 

Examples of physically based models include, SHE/ MIKE SHE (Abbott et al., 1986); 

Precipitation Runoff Modeling System (PRMS: Leavesley et al., 1983) and the Penn State 

Integrated Hydrologic Model devised by Qu and Duffy in 2007 (Solomatine & Wagener, 

2011). 

1.3.3 Selection of rainfall-runoff model 

Choosing the best model depends on the specific problems considered. In most cases several 

different models could be applied. For data scarce catchments, models with many parameters 

are not suitable because evaluation and estimation of parameters from a knowledge of the 

physical characteristics of the catchment is very difficult. . Beven (2012) argued that main 

criteria that can be used in choosing a models can be categorized as follows: 

1. Study objectives. 

2. The availability of rainfall and runoff data and other input data required by the model.  

3.  The variables predicted by each model and the model’s ability to offer the output    

needed to meet the aims. 
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4. Model ability to address the problem of parameter calibration. 

5. The characteristics of the hydrological system considered. 

Although it is often possible to represent the physical processes more closely using physically-

based distributed models, this will involve greater complexity, an increase in the number of 

parameters and require more data and information (i.e. readings at more frequent time intervals 

and on a denser spatial network). However, if the input data (or information) are not available, 

these models are of little use. Thus, data availability and the need for practical usefulness of 

the results often restrict the choice of a model. A conceptual model would be the model of 

choice for this study due to; (i) low data requirements; (ii) ability to describe all hydrological 

processes and (iii) the use of semi empirical equations with a physical basis.  Other types of 

model not considered here include ; (i) empirical models (i.e. unit hydrograph method : Chow 

et al., 1988)   which cannot easily be applied to other catchment; and (ii) physically based 

models (i.e. SHE/MIKE SHE model : Abbott et al., 1986) which have high data requirements. 

1.3.4 Examples of rainfall-runoff models 

Some commonly used rainfall-runoff models are described below. 

The Precipitation Runoff Model System (PRMS) model (Leavesley et al. 1983) is a conceptual, 

continuous simulation with physical and fitted Hydrologic Response Unit (HRU) parameters 

models  used for evaluation of the impact of precipitation, climate and land use on stream flow. 

HBV is a conceptual lumped model but is sometimes referred as a distributed model and is 

based on the theory of linear reservoirs (Bergström and Singh, 1995).  

TOPMODEL is a rainfall-runoff model that was originally developed at the University of 

Leeds (United Kingdom) to predict different types of hydrological response (Beven and 

Kirkby, 1979; Ambroise et al., 1996). It is a topography-based model designed to estimate 

runoff from hillslopes. According to Beven (2012), TOPMODEL uses two fundamental 

assumptions to relate down-slope flow from a point to discharge at the catchment outlet. Firstly, 

the dynamics of the saturated zone are approximated by successive steady state representation 

with the recharge rate (mm hr-1) entering the water table over the area (a). Secondly, the 

effective hydraulic gradient of the saturated zone is approximated by the local surface slope (S 

or tan β). The strengths of this model include its simplicity and the possibility of visualising 

predictions of near-surface saturation spatially (Beven, 1997). TOPMODEL also has some 
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weaknesses. For example, Beven (2012)  argued that the model cannot provide a good 

simulation of stream discharge in drier catchment areas because the dynamics of the saturated 

contributed area may not respond under very dry conditions, for example in Mediterranean 

regions (see Beven (2012: for more details)  . 

The HEC-HMS model (Lundin et al., 1998; Feldman, 2000) is a conceptual hydrological model 

with lumped parameters, which was developed by the US Army Crop of Engineers Hydrologic 

Engineering Center. It uses different methods of hydrological analysis, including the unit 

hydrograph, to conceptually describe catchment responses to precipitation (Lundin et al., 

1998).  

Like TOPMODEL, the Pan-European Soil Erosion Risk Assessment model (PESERA) uses 

simple lumped soil water balance calculations but with a focus on the prediction of overland 

flow. It was developed specifically to predict soil erosion in large catchments using a simple 

(but physically-based) description of the processes controlling sheet and rill erosion via 

Hortonian and saturation-excess overland flow  (Kirkby et al. 2003). It has the ability to 

combine the influence of climate, vegetation cover, soil properties and topography in the 

prediction of runoff and erosion (Kirkby et al. 2003).  

The Soil and Water Assessment Tool (SWAT) is another rainfall-runoff model based on a 

conceptual representation of physical processes. It is comprehensive in the scope of processes 

represented and semi-distributed (in that it can represent different behaviours in a number of 

hydrologically similar zones – so-called hydrologic response units or HRUs).  One 

disadvantage of SWAT is that it has high input parameter requirements so model set-up 

(paramaterisation and calibration) can be difficult and time consuming (Arnold & Moriasi 

2012).  

1.3.5 Applications of rainfall-runoff models in semi-arid regions 

Although data are often scarce in arid and semi-arid catchments, some rainfall-runoff models 

have been developed and employed for a variety of purposes in these areas, particularly where 

ground data are available (e.g. in the south-western USA but also Africa, Australia, India, Saudi 

Arabia and Israel).  

The semi-arid experimental catchment of Walnut Gulch (WG-USA), has a long history of 

hydrological investigation and a wealth of data have been collected including detailed 
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topographic data, drainage density, geomorphological characteristics of the stream, 

meteorological and runoff data. This has facilitated the successful application of different 

models. Wallace and Lane (1976), for example, applied the kinematic cascade model to 

investigate the effects of landform evolution on drainage systems; Grayson et al. (1992) 

presented and applied the THALES model, which is a simple distributed parameter rainfall-

runoff model, to simulate surface runoff; Renard et al. (1993) applied four simulation models 

[KINEROS, the Revised Universal Soil Loss Equation (RUSLE), Water Erosion Prediction 

Project (WEPP) and Chemical, Runoff, and Erosion from Agricultural Management system 

(CREAMS)], to explore the effect of land management on runoff and erosion; Karnieli et al. 

(1994) applied the CELMOD5 model which is a parametric, semi-distributed linear rainfall-

runoff model to study larger rainfall-runoff events; Wheater et al. (1997) outlined the structure 

of an integrated model of arid areas to evaluate the groundwater recharge management options; 

Hernandez et al. (2000) applied two hydrological models, (KINEROS and SWAT) to evaluate 

the land cover change and the effect of the spatial variability of rainfall on catchment responses; 

Nichols et al. (2016) applied the distributed rainfall-runoff model KINEROS2 to simulate event 

runoff discharge and gully erosion processes. The authors conclude that the rich and reliable 

data at WG watershed have contributed to enhance our understanding of hydrological processes 

in semi-arid environments but there is still a need for studies in different semi-arid areas where 

data is scarce.   

Hydrological models that have been developed specifically for arid and semi-arid regions of 

South Africa have been reviewed by Hughes (2008). The Pitman monthly time-step model was 

developed in the 1970s (Pitman, 1973). It went through different numbers of revisions since 

then and now exists in several forms. The model consists of different stores including 

interception, soil moisture and groundwater. The Pitman Model has been more widely applied 

within the southern African region than any other hydrological model (Gan et al., 1997; Hughes 

et al., 2006; Hughes, 2008; Rojas‐Serna et al., 2016).The authors concluded that uncertainties 

and limitations of meteorological data and observed river flow were the most significant 

challenges for model calibration and validation.  

Models developed, applied and tested in Australia include the conceptual lumped rainfall-

runoff model RORB3 (Kotwicki, 1987) which was used to  estimate unrecorded past river 

inflows to the 450,000 km2 arid Lake Eyre; Ye et al. (1997) applied three different rainfall-

runoff models: (1) a simple conceptual model (the Generalised Surface infiltration Baseflow: 
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GSFB (Boughton, 1984), (2) the : IHACRES model (Identification of Hydrographs and 

Components from Rainfall Evapotranspiration and Streamflow data: Jakeman et al., 1990) and 

(3) a complex conceptual model (the Large Scale Catchment Model (LASCAM : Sivapalan 

and Viney, 1994) to assess their prediction capability to predict runoff in ephemeral river. An 

important conclusion from this study was that a much denser hydro-meteorological data 

network is required in order to make good hydrological predictions.  

Few studies of rainfall runoff modelling have been focused on the semi-arid regions of Middle 

East. The Geomorphologic Instantaneous Unit Hydrograph (GIUH) model, introduced by 

(Rodríguez‐Iturbe and Valdes, 1979)  has been applied in the region by serval authors including 

(Allam, 1990; Al-Turbak, 1996; Shadeed et al., 2007). A single event watershed model was 

developed and applied by Abdulla et al. (2002) in the western Iraqi desert region. This model 

is based on the water balance equation and performed well with respect to observed data. 

However, the authors concluded that a more complete dataset for the spatial distribution of 

rainfall, evapotranspiration, and soil properties is required to obtain improved estimates of 

hydrological processes in the catchment considered. 

1.4 Alternative ways of estimating the meteorological forcing data for hydrological 

models. 

Despite significant progress made during the last few decades, rainfall-runoff modelling 

continues to face some fundamental issues.  These include the continued need for calibration, 

issues connected with equifinality (the fact that several different combinations of of parameters 

make similarly good or bad simulations:  Beven, 2012) and validation (Beven and Binley, 

1992; Beven and Freer, 2001; Beven and Alcock, 2012; Brazier et al., 2000; Franks et al., 

1997).  Some of these issues are linked to the limited availability of data for driving the models 

at an appropriate scale (e.g. meteorological data), the spatial density and accuracy of river 

discharge measurements and characterization of catchment characteristics (especially in the 

subsurface). The spatial and temporal resolution of  key driving variables (i.e. rainfall and 

evapotranspiration) remain particularly challenging, regardless of the climate (Shaw, 1994; 

Beven, 2012; Tada and Beven, 2012). However, the installation and maintenance of new 

meteorological stations is expensive and unlikely to represent a significant investment target 

in most countries in the near to medium term.  Therefore, establishing alternative ways of 
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estimating (accurately, cheaply and at appropriate spatial and temporal resolutions) the 

meteorological forcing data for hydrological models and their applications is a major need.   

1.4.1 Application of weather generators and downscaling methods in hydrological 

modelling.  

Weather generators and downscaling techniques can be used as alternative ways to simulate 

hydro- meteorological data at higher temporal and spatial resolutions (Vezzoli, 2013).  

Downscaling techniques can be divided into two main categories: dynamic (Global Climate 

Model GCM) and statistical (Vezzoli, 2013). In dynamic downscaling, the GCM provides 

boundary and initial conditions to Regional Climate Model (RCM) simulations over the region 

of interest with a finer spatial resolution than the original one. Statistical downscaling 

techniques are based on statistical models applied to historical data (e.g. regression models). 

Statistical downscaling can reach a finer resolution than dynamic downscaling, depending on 

the availability of  observations, and it is generally less demanding from a computational point 

of view (Vezzoli, 2013).  Weather generators were statistical tools able to simulate, from 

observed statistics, atmospheric variables like rainfall, temperature, relative humidity, solar 

radiation, etc., in one or more sites. The simulated variables reflect the statistical behaviour of 

the observed ones. Wilby and Yu (2013) applied weather generator techniques to produce 

gridded maps of annual mean precipitation and temperature, as well as parameters for site-

specific, daily weather generation in Yemen. Their results show that the weather generator 

reproduced daily and annual diagnostics when run with parameters from observed 

meteorological series for a test site at Taiz. However, when run with interpolated parameters, 

the frequency of wet days, mean wet-day amount, annual totals and variability were 

underestimated. Downscaling techniques have been widely used in different studies to generate 

daily precipitation scenarios to simulate winter flooding and for filling in missing values   

(Wilby et al., 2014). Although this study does not take these techniques into account, future 

extension of this work may consider them. 

 1.4.2 Application of remote sensing (RS) data into hydrological models. 

Remote sensing (RS) is the science of obtaining information about an object using data 

acquired by a device (“sensor”) that is not in contact with the object. It is typically used to refer 

to the observation of the earth’s surface and atmosphere via the measurement of the reflection, 

absorption and emission of electromagnetic waves (from gamma rays to microwaves), either 
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passively (using natural electromagnetic radiation from the sun) or actively (generating a signal 

and observing its transmission and reflection) (Lillesand et al., 2014).  Measurements are often 

taken using sensors mounted on satellites but sensors can also be mounted on aircraft, including 

UAVs.  This can yield important (and previously unobtainable) information about the objects 

under consideration (Lillesand et al., 2014).  The data generated by remote sensing is often 

processed spatially into pixels which represent single points or aggregations displayed in a 

graphic image. The pixels contain the raw data collected by the sensor on the electromagnetic 

signals received or may contain processed data which have been transformed to yield variables 

of environmental significance (such as temperature or the characteristics of the vegetation). 

There are currently many satellites in earth orbit including polar orbiting and geostationary 

(Lillesand et al., 2014). Polar orbiting satellites have an orbit close to both North and South 

poles. Satellites of this type have the advantage that they are sun-synchronous ( i.e. the time of 

overpass is roughly the same for every point on the South to North ascending leg of the orbit 

and changes by 12 hours for the North to South descending leg (Cao et al., 2004). Geostationary 

satellites are positioned approximately 3600 km above the Earth’s surface (Lillesand et al., 

2014). They move in the same sense as the Earth’s rotation and remain vertically above a 

particular point on the Earth’s surface. Thus, a geostationary satellite sees the same view of the 

full Earth disc all the time (Lillesand et al., 2014).  

Remote Sensing (RS) has been increasingly used to obtain the spatial and temporal information 

pertaining to the global water cycle and is now routinely used to help generate hydrological 

model-drivers as the acquisition of data has become easier and more cost–effective. Limitations 

of remote sensing include:  (1) reliability - because many of the environmental factors are 

sensed indirectly, estimates may not always be usable in all circumstances and may require the 

interpretation of a skilled operator (Lillesand et al., 2014) and (2) calibrations and validation 

against ground-based data - the variables of interest need to be derived via transformation of 

the raw signals which may require some empirical model fitting (calibration).  The resulting 

transformed data products subsequently need to be checked against empirical observations of 

the variable of interest (validation) so the use of satellite imagery does not do away with need 

for field measurements entirely.  However, despite of these limitations,  in some cases (e.g., in 

data-scarce areas) remote sensing data may be the only viable source for obtaining data needed 

for rainfall-runoff modelling (Katara et al., 2013). 
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Wavelength bands in the electromagnetic spectrum (Lillesand et al., 2014) which can yield 

useful hydrological information include: (i) the visible wavelength band between 0.4 and 0.7 

μm (e.g. for cloud and vegetation monitoring); (ii) near and shortwave infra-red wavelengths 

between 0.7 and 3 μm (e.g. for vegetation indices such as NDVI); (iii) thermal infra-red 

wavelengths between 8 and 15 μm (e.g. for temperature of the surface observed); (iv) 

microwave sensor wavelengths between 1 and 300 μm ( e.g.  for rainfall detection). 

There is a considerable amount of research regarding the application of RS data in hydrology. 

This includes runoff-erosion studies (King et al., 2005), the effects of impervious surface cover 

on the prediction of peak flow (Chormanski and Voorde, 2008), identifying  suitable sites for 

rainwater harvesting (Bakir and Xingnan, 2008), land cover change effects on runoff (Santillan 

et al., 2011) and obtaining catchment properties (i.e. drainage area, slope, flow length, stream 

network density: Merwade, 2012). 

1.4.2.1 Remotely-derived rainfall data 

Unfortunately, no satellite yet exists which can reliably identify and accurately quantify rainfall 

rates in all circumstances. However, some sensors can make indirect estimates of rainfall by 

measuring things such as the thickness of clouds or the temperature of cloud tops but these 

images are not much use for giving a precise estimates of rainfall for particular points on the 

ground, at a particular time. In recent years, advances in remote sensing have established the 

potential to significantly improve rainfall estimates from space (Huffman et al., 2001). If the 

spatial and temporal resolution of such data are adequate, then such data may provide 

alternative inputs for rainfall-runoff modelling as long as they have sufficient accuracy 

compared with observed data. For example, the Tropical Rainfall Measuring Mission 

(TRMM), which was a joint mission between the National Aeronautical and Space 

Administration (NASA) Earth Science Enterprise and the Japan Aerospace Exploratory 

Agency (JAXA), was successfully launched in 1997 and ended in 2015.  It initially operated at 

an altitude of 350 km (changed in 2001 to 402.5 km to increase mission life), with an orbital 

inclination of 35° and made approximately 16 orbits a day.  The TRMM complement comprises 

the first rain radar to be flown in space and its rain sensor package consist of (i) a conical- 

precipitation radar (PR); (ii) a multi-channel passive microwave sensor (TMI); and (iii) an 

infrared and visible scanner (VIRS). Details of TRMM rain sensor can be found in Simpson et 

al. (1996).  
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TRMM has now been replaced by the Global Precipitation Measurement (GPM) mission 

(Prakash et al., 2016). The initial objective of TRMM was to monitor monthly and seasonal 

rainfall over the tropics and subtropics using a combination of passive microwave radiometry 

and radar (Huffman et al., 2007) in order to improve understanding of the hydrological cycle. 

One issue with obtaining spatially-distributed rainfall estimates from satellite-based sensors is 

that calibration and validation of these estimates may be challenging especially in the absence 

of a dense network of rain gauges (McCollum et al., 2000; Huffman et al., 2001; New et al., 

2002; Collischonn et al., 2008). 

Recent examples of applications of satellite-based precipitation estimates include Zulkafli et 

al. (2014), Nerini et al. (2015), Zubieta et al. (2015) and Zubieta et al. (2016). Harris et al. 

(2007) used satellite-derived rainfall data (TRMM and Multi-satellite Precipitation Analysis: 

TMPA) for flood prediction in the Upper Cumberland River basin Kentucky, using the HEC-

HMS model and TOPMODEL (Beven and Kirkby, 1979). Their results showed that satellite 

data could be used successfully for flood prediction. Similarly, Tarnavsky et al. (2013) 

evaluated a dynamic hydrological model in dry lands using TRMM rainfall intensity at a spatial 

resolution of 1 km. TRMM data were corrected based on the fractional cover of rainfall (FCR) 

method in order to predict high enough rainfall intensities to generate realistic rates of predicted 

surface runoff.  

Although recent studies of TRMM data showed that it can be used successfully in different 

applications, others highlight its limitations. For example, Cai et al. (2015) have evaluated 

TRMM data in Mid-High Latitude China and Mourre et al. (2016) over a  mountainous 

watershed of approximately 10,000 km2 in Peru . Their results show that; (i) TRMM may have 

poor performance over ice-covered areas because ice on the ground or in the atmosphere 

scatters the microwave energy in a similar way to rain; (ii)  TRMM underestimates 

precipitation in mountainous regions possibly due to difficulty in detecting shallow, orographic 

rainfall (Dixon and Wilby, 2015). 

1.4.2.2 Evapotranspiration derived from remote sensing  

ET has a crucial role in the long term terrestrial water balance. Its estimation is essential for 

water resources management, particularly in semi-arid regions where resource availability is 

often low and variable (Pilgrim et al., 1988). However, as with rainfall, this can be a problem 

when observed data are sparse or unavailable, as is often the case in low and middle income 



22 
 

countries (Wilby and Dawson, 2013). Fortunately, remote sensing (RS) has the potential to 

provide estimates of the meteorological variables required to calculate ET at different scales. 

Over the last decade, significant improvements in dynamic atmospheric retrieval techniques 

from RS have been made for several relevant variables with different spatial and temporal 

resolutions. Examples include the Atmospheric Infrared Sounder (AIRS) / Advanced 

Microwave Sounding (AMSU) and the MODerate resolution Imaging Spectroradiometer 

(MODIS) which are mounted on NASA’s Earth Observing System (EOS) Aqua satellite (Lee 

et al., 2013).  

AIRS is a passive sensing system which uses infrared hyperspectral sensing to measure 

temperature and humidity (AIRS Science Team/Joao Texeira, 2013). The density profile of 

constituent atmospheric gases responsible for infrared absorption is used to define a weighting 

function for each of the 2378 AIRS channels, with wavelengths between 3.7 and 15.4 μm 

(AIRS Science Team/Joao Texeira, 2013). By measuring the infrared radiance (IR) in each of 

the AIRS channels, atmospheric temperature can be calculated using the Planck equation 

(Meier and Fiorino, 2016). When cloud cover prevents accurate IR temperature retrieval from 

the lower atmosphere, measurements can be made by its partner AMSU. This is a passive multi-

channel microwave radiometer measuring atmospheric temperature with a 15-channel 

microwave sounder with a frequency range of 15-90 GHz (Meier and Fiorino, 2016).  AMSU 

can provide atmospheric temperature measurements from the land surface up to an altitude of 

40 km, as well as cloud filtering for the AIRS infrared channel at altitude to increase the 

accuracy of measurements (AIRS Science Team/Joao Texeira, 2013). This allows NASA to 

provide an integrated dataset (AIRS/AMSU, hereafter AIRS). AIRS has contributed to studies 

of the atmospheric temperature profile, sea-surface temperature, relative humidity, land surface 

temperature and emissivity and fractional cloud cover (AIRS Science Team/Joao Texeira, 

2013).  

Zhang et al. (2008) used remotely-sensed leaf area indices from MODIS with the Penman-

Monteith equation, gridded meteorology and a two -parameter biophysical model for surface 

conductance (Gs) to estimate 8-day average evaporation (ERS) at a 1 km spatial resolution. A 

steady-state water balance (precipitation – runoff) approach was used to calibrate ERS which 

was then applied to estimate mean annual runoff, for 120 gauged sub-catchment in the Murray-

Darling Basin of Australia. The results suggest that the evaporation model can be applied to 
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estimate steady-state evaporation and ERS could be used with a hydrological model to generate 

runoff with an RMSE as low as 79 mm yr-1.  

Mu et al. (2009) developed an algorithm to estimate ET using the Penman-Monteith method 

driven by MODIS-derived vegetation data and daily surface meteorological inputs. They also 

applied the model with different meteorological inputs from ground-based stations and vapour 

pressure deficit and air temperature from the Advanced Microwave Scanning Radiometer 

(AMSR-E) and Global Modelling and Assimilation Office (GMAO) meteorological 

reanalysis-based humidity, solar radiation and near-surface air temperature data. Their results 

were validated using data from six flux towers across the northern USA. Simulated ET_RS 

derived from MODIS, AMSR-E and GMAO agreed well with tower-observed fluxes (r > 0.7 

and RMSE of latent heat flux< 30 Wm-2 (i.e. ETₒ < 1.05 mm d-1).  

Rahimi et al. (2014) compared the Surface Energy Balance Algorithm for Land (SEBAL) with 

the Penman-Monteith equation to investigate the accuracy of actual evapotranspiration (ETa) 

estimation using MODIS data. The results showed that there was no significant difference 

between the SEBAL and PM methods for estimating hourly and daily ETa (RMSE ranged from 

0.091 mm d-1 to 1.49 mm d-1). Peng et al. (2016) compared six existing RS-derived ET products 

at different spatial and temporal resolutions over the Tibetan Plateau. They used one product 

(LandFlux-EVAL) as a benchmark due to the lack of availability of in situ measurements. Their 

results showed that although existing ET products capture the seasonal variability well, 

validation against in situ measurements are still needed in order to confirm the accuracy of 

calculated ET, at least in this region and probably in general. 

1.4.2.3 Total water storage changes derived from remote sensing  

In addition to helping to estimate precipitation and evapotranspiration, satellite-derived sensors 

have significant potential for informing water storage terms in the terrestrial water balance. For 

example, the Gravity Recovery and Climate Experiment (GRACE) can be used to estimate 

changes in the strength of Earth’s gravitational field from space.  These estimates can be used 

to predict changes in terrestrial water storage (TWS) at various spatial and temporal scales 

(Tiwari et al., 2009; Famiglietti et al., 2011; Swenson and Wahr, 2002),  which can be used to 

track changes in groundwater levels and to validate or improve predictions made by land 

surface models (Rodell et al., 2006).  GRACE was launched in 2002 and has been used for 

various hydrological applications, including attempts to quantify the effects of climate change 
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on water resources at different scales (Rodell et al., 2004; Syed et al., 2005; Frappart et al., 

2006; Lombard et al., 2007; Andersen et al., 2005; Yeh et al., 2006; Rodell et al., 2009; 

Castellazzi et al., 2016; Bhanja et al., 2016). Voss et al. (2013) reported GRACE-derived 

monthly anomalies in groundwater storage in the Tigris-Euphrates river basin (753,963 km2) 

using the averaging kernel method developed by Swenson and Wahr (2002). This work 

suggested that TWS decreased by 27.2 mm y-1 between January 2003 and December 2009. 

Mulder et al. (2015) also estimated groundwater depletion in this region using the Mascon 

method (Mulder et al., 2015). They suggested that groundwater levels decreased by 39 ± 8 mm 

y-1 between 2007 and 2009.  Unfortunately, both these studies were unsupported by ground-

based observations of water table levels.  

1.5 Summary 

Generally water resources in the Middle East and particularly in Iraq are facing several issues 

including climate change, increased demands and reductions in cross border water transfers 

due to dam construction.  In order to mitigate these threats, an understanding and modelling of 

hydrological processes is required. However, a significant issue with many semi-arid zones 

outside of Europe and North America is that meteorological and hydrological data availability 

is often scarce. Some of the problems associated with obtaining reliable long-term hydrological 

data in semi-arid regions include limited economic resources for monitoring and harsh 

climates. This is compounded by the fact that spatial and temporal variability in hydrological 

activity can be much higher in arid zones than in humid areas, requiring (in principle) denser 

monitoring networks (e.g. rain gauges and gauging stations) to capture the nature of system 

behaviour. Over last few decades, rainfall-runoff models have been widely built and used for 

a variety of purposes, but the majority of all modelling tools have been originally developed 

for data-rich areas. In addition, despite the increasing availability of remotely-sensed data at 

different spatial and temporal resolutions, they are scarcely used in hydrological modelling and 

only a small number of studies have been carried out (i.e. satellite data as input for hydrological 

modelling in data-scarce areas). Reasons may be related to: 1) the large errors (particularly) 

bias which often characterises satellite data.  This can be modified by calibration and validation 

of the satellite derived products using ground estimates to quantify the direct usability of the 

products and 2) the spatial/temporal resolutions of the satellite data.  
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1.6 Gaps in the literature 

The following gaps in the literature have been identified which require more study and focus: 

 To date, the majority of all hydrological modelling tools have been originally developed 

for humid environments and for data rich semi-arid areas. Data-poor semi-arid regions 

have particular challenges and have consequently received little attention. Thus, a gap 

still exists for a parsimonious conceptual rainfall-runoff model that represents the main 

hydrological processes operating and which is able to generate time series of runoff and 

groundwater flow in such areas using readily available data at a daily time step.  

 One issue with obtaining spatially-distributed rainfall estimates from satellite-based 

sensors is that calibration and validation of these estimates may be challenging 

especially in the absence of a dense network of rain gauges and the majority of studies 

have focused on data rich areas (McCollum et al., 2000; Huffman et al., 2001; New et 

al., 2002; Collischonn et al., 2008). Thus, assessment of the potential value of satellite-

derived rainfall data for water resources management in a data-scarce areas crucially 

required. 

 Despite the fact that other studies have used RS data to estimate ET, few previous 

attempts have been made, to my knowledge, to use AIRS data to estimate ET in a data-

scarce semi-arid area, such as northern Iraq. Existing ET-RS and reanalysis data products 

with global spatial coverage include the MODIS 1km Penman Monteith (PM) data (Mu 

et al., 2009; Mu et al., 2011) and reanalysis data such as MERRA-2 (Global Modeling 

and Assimilation Office (GMAO), 2015). However, these data have temporal 

resolutions of eight days and one month, respectively – which are too course for many 

hydrological applications.  Whilst attempts have been made elsewhere to obtain 

accurate evapotranspiration estimates from RS (ETₒ–RS) at higher temporal resolutions 

(e.g. daily), for example in South Africa (Amy McNally NASA/GSFC/HSL, 2016) and 

the USA (Michael Jasinski, 2016), this has not been performed for many areas of the 

world where resources are limited and where ground observations are often very scarce. 

Thus, more studies are required to estimate daily ETₒ–RS. 

 Several studies have investigated variations in  water storage using satellite data (e.g. 

GRACE) in northern Iraq, but none of these have been validated against ground-based 

data (i.e. well level data). There are also no studies looked at changes in water 

abstraction rates in northern-Iraq particularly during the drought periods. Additional 
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work is therefore, required to quantify and validate GRACE-derived terrestrial water 

storage variability in northern Iraq. 

1.7 Aim and Objectives  

1.7.1 Aim of research 

 The aim of this thesis is to develop and test a conceptual catchment scale rainfall-runoff model 

framework which can be driven by remote sensing data, in order to predict river runoff and 

evaluate surface and ground water storage variability in data-scarce semi-arid regions.  The 

development of a validated and usable tool will be invaluable for present and future water 

resource management. This thesis has the following objectives to achieve the aim: 

1.7.2 Objectives of the research 

1.  To develop a conceptual rainfall-runoff model framework which is parsimonious 

(i.e. has a low number of easily identifiable parameters) and which can run using a 

minimum input data set of daily temperature and precipitation. 

2. To evaluate the ability of this conceptual model to simulate river discharge at the 

catchment outlet in a semi-arid catchment. 

3. To estimate precipitation (P) and reference evapotranspiration (ETₒ) from remote 

sensing (RS) data and to compare these estimates with those generated using ground-

based meteorological data (i.e. simulating reduced input data availability and 

quality).   

 

4. To evaluate the utility of satellite-based precipitation data to drive the rainfall-runoff 

model and to compare the predictions of runoff which are generated with those 

generated using ground-based meteorological data (i.e. simulating reduced input data 

availability and quality).  

 

5. To evaluate variations in total terrestrial water storage using a combination of remote 

sensing data (GRACE), observed well data and rainfall-runoff modelling. 
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1.8 Structure of the thesis 

The thesis is divided into six chapters, grouped into four sections, as shown schematically in 

Figure 1.2.  

 

 

Figure 1. 1. Thesis structure. 
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The first chapter provides a general context and an overview of the problems facing water 

resources in semi-arid areas, a general review of hydrological processes in semi-arid regions 

and an outline of the rainfall-runoff modelling process including the limitations to developing 

and applying hydrological models in data-scarce semi-arid regions. It also discusses the 

potential role of remote sensing techniques for hydrological studies. The aim and objectives 

were developed based on identified knowledge gaps in the literature and problems identified 

for hydrological modelling in data-scarce catchments. 

Chapter 2 describes the study area and the in situ data used in this research.  The description of 

the study area includes topography, geology, soil type, land cover and land use, and climate 

including precipitation, temperature, wind speed and relative humidity. This was necessary in 

order to understand the nature of the environment needed for method selection etc. 

Chapter 3 presents the developed conceptual rainfall-runoff model and provides an assessment 

of the application of remotely sensed rainfall estimates (TRMM) for driving this model. This 

chapter also contains a methodology to correct the TRMM data based on observed data from 

rain gauges and an insight into the analysis (calibration and validation) of the developed model. 

Chapter 4 describes the estimation of daily reference evapotranspiration ETₒ in a data-scarce 

semi-arid region using remotely-sensed meteorological data (e.g. net radiation flux density, 

surface temperature and relative humidity).  It also evaluates the accuracy of the daily ETₒ 

estimates derived from remote sensing (ETₒ-RS) compared with those derived from four ground 

based stations (ETₒ-G) using four different ET models. In addition this chapter evaluates the 

potential use of remote sensing ET data for simulating river discharge in the study area when 

the catchment is completely independent of ground-based observations. 

Chapter 5 provides a quantitative assessment of temporal changes in terrestrial water storage 

in northeastern Iraq using the GRACE satellite data and, importantly, attempts a validation of 

the GRACE groundwater anomaly data using observed well data and a comparison with the 

simulated water balance using the model described in Chapter 3. 

Chapter 6 provides a general discussion of the main body of research presented in the thesis 

and some conclusions. Recommendations for further work are also presented here. 
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Chapter 2: Study area and In situ data 
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2.1 Description of the study area 

2.1.1 Location 

The study area is situated in the Kurdistan region of north-eastern Iraq in the Middle East (33 

00’ 00” N, 42 00’ 00” E to 37 00’ 00” N, 47 00’ 00” E). The study area boundary was 

delineated using 30m resolution digital elevation data from the Shuttle Radar Topography 

Mission (SRTM) (NASA Jet Propulsion Laboratory (JPL), 2013) (Figure 2.1). 

 

 Figure 2. 1. (a) Elevation in the study area derived from the Shuttle Radar Topography 

Mission (SRTM) digital elevation model (DEM) (https://earthexplorer.usgs.gov/). (b) Regional 

location of the catchments. 

https://earthexplorer.usgs.gov/
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It consists of three areas namely called the Lesser Zab River catchment (11,630 km2), Sirwan 

River catchment (16,750 km2) and Hawler well monitoring zone (15, 532 km2 ).The latter 

comprises of part of the Greater Zab catchment and part of the Khabur catchment. Hawler well 

monitoring zone’s boundary was defined arbitrarily to include all the monitoring wells for 

which data were available. The north eastern boundary of the study area is defined by the 

Zagros Mountains. The study area to the west is dominated by lower hills and lowland plains. 

Elevation ranges between 399 and 3601 m above sea level.  The Lesser Zab and Sirwan River 

catchments were selected to evaluate Objective 2, 3 and 4. The Hawler well monitoring zone 

was selected to evaluate Objective 5 and Lesser Zab catchment was also used to evaluate 

Objective 5. These areas were selected for this research since they are equipped with a few 

hydro-meteorological stations and well monitoring system. These areas have also the capacity 

to represent similar river basins in the region due to similarity in some characteristics such as 

annual average temperature, annual precipitation, vegetation type, hydrographic pattern and 

geology.  An overall description of the catchment and some summary information about the 

climatic inputs is given in the following section. 

2.1.2 Climate 

The climate of the study area is classified as subtropical semi-arid  type (BSH: Rasul et al., 

2016) which is hot and dry in summer (June to September)  and cool and relatively wet in 

winter (October to May) (FAO, 2011). The transitions from winter to summer and vice versa 

are marked and often rapid (Beaumont et al., 2016). For the reason that the climate elements 

are crucial in this study, they are described in more detail. 

2.1.2.1 Precipitation 

The amount of precipitation depends on the two major factors in the study area; (i) the major 

moisture sources of the study area are the Mediterranean, Black and Caspian Seas, (ii) altitude, 

for instance the north and northeast parts receive a higher amount of precipitation than the 

south part. Average monthly rainfall during 2003-2014 is shown in Figure 2.2. Analysis of this 

record shows that the seasonal distribution of the precipitation in the study area varies and  

mostly falls as rain in winter and autumn with mean annual precipitation ranging from 350 and 

>1200 mm in the high mountain zone, but winter snowfall is common above 1000m above 

mean sea level (Zaitchik et al., 2007). The typical mean snow line in winter is 1270m ASL 

(Krásný et al., 2006). This means that highlands zone stores significant quantities of water as 
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snow pack during the winter period to be released, often as flood discharge or recharge 

groundwater, when temperatures begin to rise in spring. Whereas June, July and August are 

identified as drier months due to the absence of precipitation. 

 

Figure 2. 2. Mean monthly spatially-averaged rainfall (Theisen polygons) for four stations, 

temperature, relative humidity and reference evapotranspiration (calculated using the Wasim-

ET model: Hess et al., 2000) in the Lesser Zab catchment 2003-2014 (Sulaimani 

Meteorological Office, 2015). 

2.1.2.2 Temperature 

Throughout the regions temperature is characterised by warm and dry summers (June to 

September) and moderately cold and wet in winter (October to May). Summer temperatures 

are high almost everywhere. The highest mean daily summer temperatures exceed 40°C and 

have been recorded by meteorological stations in the study area (Figure 2.2). The lowest mean 

daily temperatures are recorded in the winter (Figure 2.2). In general, much stronger contrasts 

in temperature are noted between different regions in winter. This is due to the strong 

relationships between temperature and elevations. Therefore, the temperature in lower altitudes 

(Dukan and Sulaimani) is higher compared to high mountains (Penjween and Chwarta), as 

shown in Table 2.1. 
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Table 2. 1. Elevation, mean daily temperature, relative humidity and average annual rainfall 

of the four stations located in the study area from 2010 to 2014 (Sulaimani Meteorological 

Office, 2015). 

Stations 
Elevation 

(m) 

Mean daily 

temperature (°C) 

Relative 

humidity (%) 

Rainfall 

(mm) 

Dukan 650 23.1 44.2 586.3 

Sulaimani 885 20.1 45.2 646.7 

Chwarta 1128 19.6 46.1 693.2 

Penjween 1300 14 57.1 951 

 

2.1.2.3 Relative humidity, winds, evapotranspiration 

The study area experiences extreme seasonal variations in relative humidity due to high 

variations in climate and altitude. The annual average RH is about 48% in the study area. It is 

high in winter and exceeds 70% but only 22% in August. RH also has higher values in the high 

mountains (Penjween and Chwarta) compared to lower altitudes (Dukan and Sulaimani). Wind 

is a very important variable of climate which moves moisture and temperature. Wind speed is 

one of the factors that influence the evapotranspiration (Allen et al., 1998). The mean speed of 

the wind at Sulaimani station during 2003-2014 was 1.8m sec-1. Southerly winds from the 

lowlands bring increased temperatures and northerly winds tend to bring cooler air (Beaumont 

et al., 2016). Evapotranspiration is higher in summer where there is always a water deficit and 

lower rate in winter (Figure 2.2). 
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2.1.3 Hydrographic pattern and geology 

The hydrographic pattern of the study area is dominated by the Khabur River, Greater Zab 

River, Lesser Zab, and Sirwan River (Figure 2.1). The Greater Zab and Khabur rivers originate 

in Turkey and the Lesser Zab River and Sirwan River rise in Iran. They join the river Tigris at 

the border between the Kurdistan region and the rest of Iraq. Each river catchment contains 

sparsely inhabited high mountains with high precipitation, groundwater storage and a seasonal 

snowpack (Buringh, 1960); a heterogeneous Karst zone characterised by fissured aquifers, 

canyons and dry valleys (Krásný et al., 2006) and lowland plains containing agricultural land 

(Figure 2.3)  (FAO, 2011). 

 

Figure 2. 3. Sample of hydrographic of Lesser Zab River flow, (a1) shows high mountain zone, 

(a2) represents karstified zone and (a3) is lowland plains area (Taken 2015). 

 

 

 

 

Figure 2. 4.  (a4) shows Sample of alluvial deposit and (a5) shows layers of gravel, sand in 

Lesser Zab river bed (taken 2015).    
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The geology of the study area is very complex due to the interactions and movement of three 

major plates which are the African, Eurasian and Arabian plates (Beaumont et al., 2016). This 

motion led to the production of a crash zone, mountain ranges and different morphology forms 

during ancient geological periods (Beaumont et al., 2016). The study area land mass composed 

of different parents and older rocks is shown in Figure 2.3 which was delineated using 1:5000, 

000 geological map of the world established by FAO (2011).  

 

Figure 2. 5. Geology map of the study area derived from geological map of the world 

established by FAO (2011). 

 

Generally, there are three major tectonic zones in the study area: (1) The Thrust Zone in the 

north (along the border with Turkey and Iran) which contains variable geological formations 

from the pre-Triassic to the late Tertiary; (2) the High Folded zone in the central part which is 

dominated by thick layers of karstified limestones and dolomitised limestones from the mid 

Jurassic to the mid Tertiary, which comprise important aquifers (i.e. Bekhma and Pilaspi; see 

next section) and (3) the Low Folded zone in the south. These formations are overlain by clastic 

sediments from the upper Miocene and Pliocene often with a thickness exceeding 1000m (Saad 

and Jeremy, 2006; Kamal, 2010) . These formations dominate the lowland plains and can act 

as aquifers. Fluvial terraces and recent alluvium are also presen (Figure 2.4) (Saad and Jeremy, 

2006; Kamal, 2010).  
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Groundwater resources are significant but vary both in space and time. Generally, two main 

groups of significant aquifers were defined by Stevanovic and Markovic (2004), based on 

geological and hydrogeological similarities: The karstic and karstic-fissured aquifers of the 

extended carbonate formations (limestones and varieties) in the central, high-folded zones; and 

the intergranular aquifers of the lowlands. The main characteristics of karstic and karstic-

fissured aquifers are that they are non-homogenous and anisotropic. Turbulent flow regimes 

exist and cavities exceeding 10 m in length may be encountered during drilling. Wells >150 m 

deep may have yields of up to 40-50 L s-1 with very limited drawdown (Stevanovic and 

Markovic, 2004). The groundwater flow direction is determined by the position of the erosion 

base and tectonics. The karst rock massifs are often drained by high-yield springs, 20 to 30 of 

which have a minimum discharge exceeding 100 L s-1. In many cases very high transmissivity 

values of 6-9 x 10-2 m² s-1 have been observed (Stevanovic and Markovic, 2004).  

Results of permeability tests in the intergranular aquifers also show a high degree of 

heterogeneity (Saad and Jeremy, 2006; Kamal, 2010) with calculated transmissivity values for 

the Bakhtiari aquifer ranging from 1 x 10-6 m² s-1 to1 x 10-1 m² s-1 while the hydraulic 

conductivity is on average 1 x 10-4 m s-1 (Stevanovic and Markovic, 2004). Locally, there are 

cemented layers obstructing aquifer recharge and groundwater circulation. Groundwater 

movement is slow and roughly follows the surface drainage pattern.  

2.1.4 Land cover and Land use 

The catchments area, which has an area of about 30,000 km2, identifies 11 different type of 

land cover (Figure 2.6) which was delineated using a 1:5,000, 000 land cover map of the world 

established by FAO (2011). Land cover is the predominantly extensive grazing of sparsely 

vegetated areas but also includes some irrigated and rain-fed arable land, woodland, open water 

and some small urban areas (Figure 2.7). The percentage covers of each major land cover are 

shown in Table 2.2. The herbaceous vegetation, aquatic or regularly flooded land covers 

approximately 30% while, snow and glaciers covers 0.0033% of the  all study area based on 

FAO (2011) . 
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Figure 2. 6. Land cover map of the study area derived from land cover map of the world 

established by FAO (2011). 

 

Table 2. 2. Land cover percentage in the study area (FAO, 2011) 

Land cover taypes Area % 

Arificial Surafce 0.037 

Cropland 0.32 

Grassland 23.7 

Trees  21.72 

Shrubs  10.7 

Herbaceous vegetation, acquatic or regurarly floaded 30.6 

Mangroves 0.011 

Sparse vegetation 0.67 

Bare Soil 11.4 

Snow and glaciers 0.0033 

Waterbodies 0.91 
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Figure 2. 7. Sample of different land cover type in the Study area, a6 shows natural grassed 

area, a7 illustrates artificial forest plantation, a8 displays sparsely vegetated hillslopes and a9 

shows natural tree cover area (Taken 2015). 

 

2.1.5 Soil of the study area  

Different soil types  can be found in the study area based on soil map classifications and 

descriptions (Figure 2.8) by the FAO (2011)).  The dominant soil types are eutric lithosols, 

vertisols, xerosols, calcrtic and regosols and they vary in texture, structure, colour and 

composition.  Texturally the Eutric lithosols chromic bertisols have a fine texture, which are 

mostly located at hill slopes and are related to the parent geological formation. Eutric lithosols 

is the shallow depths soil which were formed by the weathering of parent’s rock and having 

50% or more base saturation. Whereas calcaric regosols have deeper soil depths, at least 

between 20-50cm from the surface and whose formation was conditioned by climate, arid and 

semi-arid regions. Xerosols having a weak structure, aridic moisture regime and a calcic 

horizon within 125cm of the surface. According to the representative soil sample (Table A.1), 

all soil types of the watershed have a large percentage of silt to clay content that ranges from 

30 to 57%. Besides these textural characteristics, soil bulk density, organic matter available 

water content and optimum moisture content also vary from place to place within the areas. 

They are highly linked to topography and are vulnerable to soil degradation by erosion, which 

is related to the land cover and soil conservation practice.  
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Figure 2. 8 Soil map of the study area derived from global soil map classifications by the 

FAO (2011). 

 

2.2 In situ data 

There are several challenges in obtaining ground-observed meteorological data in semi-arid 

areas of the Middle East., primarily the harsh situation of the study area (Figure 2.9). These 

include poor transport infrastructure (making access difficult), sparse population (restricting 

possible for regular manual observation) and harsh climate (e.g. very high day time 

temperatures which can make fieldwork challenging and potentially interfere with instrument 

performance. This is illustrated in Figure 2.9. Ground-observed meteorological data (minimum 

and maximum air temperature, relative humidity, sunshine hours, wind speed and rainfall) were 

obtained from the Sulaimani Meteorological office. In the Lesser Zab catchment 

meteorological data were obtained on a daily basis for four stations. In the Hawler well 

monitoring zone, meteorological data were obtained on monthly basis at five stations (Figure 

2.1). Daily and monthly reference evapotranspiration (ETₒ) was calculated based on the FAO 

Penman Monteith equation (Allen  et al., 1998) using the Wasim-ET software (Hess et al., 

2000). Mean daily river discharge data were obtained (for the Lesser Zab catchment only) for 

the station located upstream of the Dukan Dam reservoir (2010 - 2014) from the Hydrology 

Department of the Dukan Dam Directorate. Existing well information (Table 2.2) and observed 
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monthly well level data were obtained from the Ministry of Agriculture and Water Resources 

in the Kurdistan Regional Government for 65 monitoring wells distributed across the Hawler 

well monitoring zone for the period 2003-2009 (Figure 2.1).  

 

Table 2. 3. Summary of the In situ data sets used in this study(Ministry of Agriculture and 

Water Resources in the Kurdistan Regional Government , Hydrology Department of the Dukan  

and Darbandikhan Dam Directorate and the Sulaimani Meteorological office ). 

 

Catchment_ 

name 

                 Variable Resolution Period 

  Spatial Temporal  

Lesser Zab Max and Min air temperature (°C) - daily 2003-2014 

 Relative humidity (%) - daily 2003-2014 

 Sunshine hours - daily 2003-2014 

 Wind speed (m s-1) - daily 2003-2014 

 Rainfall (mm) - daily 2003-2014 

 River discharge (m3 s-1) - daily 2010-2014 

Sirwan River River discharge(m3 s-1)  daily 2010-2014 

Hawler Max and Min air temperature (°C) - monthly 2003-2014 

 Relative humidity (%) - monthly 2003-2014 

 Sunshine hours - monthly 2003-2014 

 Wind speed (m s-1) - monthly 2003-2014 

 Rainfall (mm) - monthly 2003-2014 

 Well data (m) - monthly 2003-2009 

 

Table 2. 4. Existing wells in Hawler and Lesser zab catchment, by well depth and status up to 

2014 (Ministry of Agriculture and Water Resources in the Kurdistan Regional Government). 

 

Catchment Number  

of Wells 

Of 

which 

legal 

well status well depth (m) 

   In 

use 

dry others <50 50-

100 

100-

150 

150-

200 

>200 

Hawler 6778 4093 5708 272 798 192 2200 405 2840 1141 

Lesser zab 525 NA 330 48 147 26 174 12 201 4 
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Figure 2. 9. Sample of different situations in the Study area, 10 shows a mountainous area, 

11 illustrates a seasonality dry river, 12 displays a sparsely vegetated lowland area and 13 

shows an urban area (Taken 2015). 

 

2.3 Remote sensing data 

2.3.1 TRMM data 

The rainfall-runoff model employed here has a daily time step. The TMPA- 3B42 v7 and 

3B42RT data products  also have daily temporal resolution and 0.25° [approx. 27.83 km] 

spatial resolution, with global coverage from 50° N to 50° S (Huffman et al., 2007). They, 

therefore, represent suitable drivers for the model. These data were downloaded from the 

NASA data server (https://giovanni.gsfc.nasa.gov/giovanni/) for the period 2003–2014. For 

modelling 4383 daily precipitation layers of TMPAS were downloaded.  To download data 

from the NASA data server, first, the area of interest is defined (Figure 2.10), and then with 

https://giovanni.gsfc.nasa.gov/giovanni/
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the selection of time interval, the data are visualized. There are four format types: HDF, 

NetCDF, ASCLL and Google Earth KMZ. In this study, results were downloaded in NetCDF 

format for further operations. Files were processed to extract data for the catchment using R (R 

Core Team, 2014) and ArcGIS (ESRI, Redlands, CA, USA). 

 

 

Figure 2. 10.   Example of the TRMM pixel values for April 2003 in relation to the Lesser 

Zab catchment area. 

 

2.3.2 AIRS data 

Daily time series of near-surface air temperature (°C), RH (%) and cloud cover fraction were 

obtained from Aqua AIRS/AMSU Level 3 Daily Standard Physical Retrieval (AIRS + AMSU) 

1 degree × 1 degree V006 (short name AIRX3STD) for 2010–2014 at 1° spatial resolution 

(Figure 2.11). These data were downloaded from the NASA data server  

(https://disc.gsfc.nasa.gov/SSW/#keywords=AIRX3STD%20006). Data gaps were filled using 

cubic spline interpolation (R Core Team, 2014). Although this can be problematic if temporal 

gaps in the data are wide, in this study AIRS data were available for 99% of the period of 

interest (2010–2014) and the maximum data gap was just four days. Cubic splines are 

considered to be a reasonable interpolation method at this resolution and have often been 

https://disc.gsfc.nasa.gov/SSW/#keywords=AIRX3STD%20006
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reported to be better than simple linear interpolation for oscillating data, provided the temporal 

gaps are not too wide (McKinley and Levine, 1998). 

 

 

Figure 2. 11.  Example of The AIRS pixel values for May 2012 in relation to the Lesser Zab 

and Sirwan River catchment area. 

 

2.3.3 Reanalysis Data 

MERRA is a reanalysis of daily meteorological datasets for the Era satellite which was built 

by NASA’s GMAO. It assimilates atmospheric observations into a numerical model called the 

Goddard Earth Observation System Data Assimilation System Version 5 (GEOS-5). MERRA 

focuses on historical analysis of the hydrological cycle at a broad range of spatiotemporal 

scales. It offers a variety of reanalysis datasets including monthly surface pressure, relative 

humidity, air temperature and hourly wind speed. The output of interest for this study is wind 

speed due to its high temporal resolution. Daily estimates of wind speed at 10 m height were 

obtained from MERRA (GMAO: Global Modeling and Assimilation Office, 2008: 

http://giovanni.gsfc.nasa.gov/giovanni) at 0.5° x 0.6°. The spatial resolution of MERRA and 

AIRS is different. Bilinear interpolation was, therefore, applied to resample the MERRA data 

to a 1° spatial grid using the four orthogonal MERRA cells surrounding a given pixel.  
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2.3.4  GRACE data 

GRACE is a joint mission by NASA and the German Deutsche Forschungsanstalt für Luft und 

Raumfahrt (DLR) (Swenson and Wahr, 2002). It consists of two identical satellites that fly 

about 220 km apart in polar orbit at an altitude of ∼500 km (Tapley et al., 2004). A K/Ka-band 

microwave ranging system is used to make very accurate measurements of the relative speed 

and distance between the satellites caused by variations in their orbital motion resulting from 

differences in the Earth’s gravitational field (Tregoning et al., 2012). Water storage can make 

a significant contribution to the gravitational field and temporal changes in water storage can, 

therefore, be detected at different locations on a monthly basis (Tregoning et al., 2012; Wahr 

et al., 1998). GRACE-derived Total Water Storage Anomalies (TWSA) (deviations from the 

2004-2009 average: Landerer and Swenson, 2012) represent the vertically integrated water 

storage, including surface water, snow, soil moisture, biological water and groundwater.  They 

are expressed in Equivalent Water Height (EWH, cm: Xie et al., 2016). Since its launch in 

2002, the GRACE Science Data System has continuously released monthly gravity solutions 

from three different processing centres: (the Center for Space Research at University of Texas, 

Austin [CSR], the GeoForschnungsZentrum [GFZ] Potsdam and the Jet Propulsion Laboratory 

[JPL] (Wahr et al., 1998; Swenson et al., 2008; Scanlon et al., 2012; Jacob et al., 2012).  

The first published results using data from the GRACE mission showed significant 

improvement in the accuracy with which the earth’s gravity field could be measured (Tapley 

et al., 2004) and yielded the first estimates of the amplitude of annual variations in the global 

hydrological cycle.  However, significant errors in a north–south striping pattern were evident 

in the solutions, completely masking the hydrological and oceanic signals that were being 

sought. The stripes were found to be related to unidentified errors in the reduction of the raw 

observations and filtering techniques were employed to reduce these errors (Tapley et al., 2004; 

Wahr et al., 2006). Rodell et al. (2004) found that the GRACE TWS estimates lay roughly 

between estimates derived from a water balance model and the Global Land Data Assimilation 

System (GLDAS) model. They also found that the spatial scaling applied to the GRACE data 

affected the amplitude of the variations in the GRACE estimates. They also conclude that a 

major source of uncertainty driving groundwater dynamics from GRACE is the need to subtract 

estimated soil moisture storage. Finally, the spatial resolution of GRACE (1 degree) is a too 

coarse for some hydrological studies.  
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Landerer and Swenson (2012) also suggested that due to the sampling and post-processing of 

GRACE observations, surface mass variations at small spatial scales tend to be attenuated. 

Users should, therefore, multiply GRACE data by a scaling grid in order to restore the signal 

removed by the destriping and filtering. For further detail, see (Landerer and Swenson, 2012).  

Total Water Storage Anomalies (TWSA) (deviations from the 2004-2009 average: Landerer 

and Swenson, 2012) of GRACE RL05 (1° x 1°)] from the three independent GRACE research 

centres (CSR, GFZ and JPL) were downloaded from the NASA data server 

(http://grace.jpl.nasa.gov) for the study period 2003 – 2014. First, the area of interest and time 

interval were defined (Figure 2.12), and then data are visualized. In this study, results were 

downloaded using NetCDF format for further operations. Files were processed to extract data 

for the catchment using R (R Core Team, 2014) and ArcGIS (ESRI, Redlands, CA, USA). 

 

Figure 2. 12.  Example of The GRACE pixel values for January 2003 in relation to the 

Lesser Zab catchment and the Hawler well monitoring zone. 

 

2.3.5 GLDAS data  

The Global Land Data Assimilation System (GLDAS) is a land surface modelling system that 

uses global satellite-based observations to drive climate and hydrological simulations (Rodell 

et al., 2004). It includes soil moisture and snow water equivalent and, importantly, does not 

include groundwater (Rodell et al., 2004).  Zaitchik et al. (2010)  stated that the main strength 

of GLDAS is the provision of information on land surface processes in data poor regions 

http://grace.jpl.nasa.gov/
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although, it has considerable uncertainties in its runoff routing algorithm. This is a particular 

concern because of the nature of the “cell-to-cell” (CTC) algorithm, in which the runoff from 

each cell is routed to its downstream neighbour and is tracked along the river network on the 

basis of the continuity equation. This process does not consider within cell routing (Zaitchik et 

al., 2010). In contrast to CTC algorithms, in which all runoff must be routed explicitly through 

the conveyance and storage equations of every cell between a runoff source and the discharge 

point of interest, the “source‐to‐sink”  approach (STS: Olivera et al., 2000) may solves for 

discharge at selected points on the landscape. However STS algorithms used as alternative to 

CTC, it does not improve the runoff routing in GLDAS runoff simulation which tend to 

underestimate observed runoff (Zaitchik et al., 2010). 

Monthly GLDAS water storage prediction were obtained for the study period 2003-2014 from 

the NASA data server at http://grace.jpl.nasa.gov/data/get-data/land-water-content/. GLDAS 

has same spatial resolution (1° x 1°) as GRACE data (Figure 2.13). 

 

 

Figure 2. 13.  Example of GRACE pixel values for January 2003 in relation to the Lesser Zab 

catchment and the Hawler well monitoring zone. 

 

 

http://grace.jpl.nasa.gov/data/get-data/land-water-content/and
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Chapter 3: Application of satellite-based precipitation estimates to rainfall-

runoff modelling in a data-scarce semi-arid catchment 
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Part of this chapter have been published with CC-BY copyright license as: 

“Najmaddin, P.M.; Whelan, M.J.; Balzter, H. Application of satellite-based 

precipitation estimates to rainfall-runoff modelling in a data-scarce semi-

arid catchment. Climate 2017, 5, 32” 

 

3.1 Introduction  

Understanding and modelling hydrological processes is important for the management of water 

resources and for the analysis of extreme hydrological events, such as droughts or floods. 

However, a significant issue with many semi-arid zones outside of Europe and North America 

is that meteorological and hydrological data availability is often scarce. Some of the problems 

associated with obtaining reliable long-term hydrological data in semi-arid regions include 

limited economic resources for monitoring, sparse population and harsh climates (Wheater, 

2002; Beaumont et al., 2016). This is compounded by the fact that spatial and temporal 

variability in hydrological activity can be much higher than in humid temperate areas, requiring 

(in principle) denser monitoring networks (e.g., rain gauges and streamflow gauging stations) 

to capture the nature of system behaviour (Sawunyama and Hughes, 2008; Collischonn et al., 

2008; Draper et al., 2009). This issue is even more acute in mountainous areas where spatial 

and temporal variability in precipitation tends to be higher than in lowland areas. 

Unfortunately, the establishment and maintenance of such networks is often not a priority for 

many developing countries or is quite simply unaffordable. Even when monitoring data exist, 

they may be of variable quality, contain significant gaps or be unavailable to scientists without 

the necessary political contacts (Voss et al., 2013). These problems have brought about 

considerable uncertainty in the development, calibration and validation of hydrological models 

in data-poor semi-arid regions which may affect management decisions based on their 

simulations (Beven and Alcock, 2012). Alternatively, recent development in remote sensing 

(RS) based precipitation (i.e. TMPA) has the potential to cover these issues. In this chapter, a 

simple lumped hydrological model applied to the Lesser Zab River basin in the Kurdistan 

region of Iraq. The main purposes of the chapter were (a) to compare TMPA rainfall estimates 

to data from rain gauges installed at different locations in the catchment; (b) to evaluate the 

ability of a simple conceptual water balance model to simulate the hydrological response of a 

large and complex semi-arid catchment and (c) to compare model performance against 
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measured discharge data when driven by TMPA rainfall estimates and when driven by rain 

gauge data in order to assess the potential value of satellite-derived rainfall data for water 

resources management. 

3.2 Materials and Methods 

3.2.1 Study area  

Study area of interest in this chapter is the Lesser Zab catchment which was described in 

(chapter 2, section 2.1). 

3.2.1 In situ data 

In situ data used in this chapter was described in (chapter 2, section 2.2). 

3.2.2 Remote sensing data 

The remote sensing data of interest in this chapter is TRMM products which described in ( 

chapter 2, section 2.3.1) 

3.2.3 TRMM correction 

Comparisons between TRMM-derived rainfall estimates and ground-level gauge data suggest 

that TRMM data can sometimes be biased systematically (Arias-Hidalgo et al., 2013). Several 

attempts have been made to correct these estimates. Examples include mean bias correction 

(Seo et al., 1999), which uses the average bias for all stations to correct the satellite-derived 

rainfall, regression analysis (Immerzeel et al., 2009) based on historical time series and the 

spatial bias approach (Muhammad et al., 2012). 

Here, a bias-correction approach (originally developed for downscaling climate model outputs) 

was used to adjust TRMM data, based on the assumption that the satellite and in situ data have 

similar statistical properties (Bouwer et al., 2004): 

𝑆𝑅𝐸𝑐(𝑡) = (
𝑆𝑅𝐸0(𝑡) − 𝜇𝑆𝑅𝐸

𝜎𝑆𝑅𝐸
) ∗ 𝜎𝑂𝐵𝑆 + 𝜇𝑂𝐵𝑆 (3.1) 
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where 𝑆𝑅𝐸𝑐(𝑡)  and  𝑆𝑅𝐸0(𝑡)  are the corrected and uncorrected satellite-derived rainfall 

estimates, respectively, 𝜇𝑂𝐵𝑆 is the average observed rainfall for all reporting stations, 𝜇𝑆𝑅𝐸 is 

the average satellite-derived rainfall,  𝜎𝑂𝐵𝑆 is the standard deviation of the observed data and 

𝜎𝑆𝑅𝐸 is the standard deviation of satellite-derived rainfall. 

This can be re-written as 

 𝑆𝑅𝐸𝑐(𝑡) = (𝑆𝑅𝐸0(𝑡) − 𝜇𝑆𝑅𝐸) ∗  𝜎𝑓 + 𝜇𝑆𝑅𝐸  ∗ 𝜇𝑓 (3.2) 

where 

𝜇𝑓 =
𝜇𝑂𝐵𝑆

𝜇𝑆𝑅𝐸
  (3.3) 

and 

𝜎𝑓 =
𝜎𝑂𝐵𝑆

𝜎𝑆𝑅𝐸
  (3.4) 

Rainfall data were split into two periods: Period 1 from 2003 to 2009 (calendar years), in which 

we derived the two correction factors (𝜇𝑓 and 𝜎𝑓) and Period 2 from 2010 to 2014, in which 

the satellite-derived rainfall data were adjusted using the correction factors derived in Period 1 

(𝜇𝑓 = 1.05 and 𝜎𝑓  = 1.24). Period 2 represents an independent validation period for the rainfall 

correction method. 

3.2.4 Rainfall-runoff model  

LEMSAR (Leicester Model for Semi-Arid Regions) is a conceptual lumped rainfall-runoff 

model that simulates daily river discharge using daily rainfall and potential evapotranspiration 

data. It is based on the models described by Whelan and Gandolfi (2002) and Pullan et al. 

(2016), with added routines for snow melt and groundwater storage (Figure 3.1). LEMSAR has 

been coded with R programing language to assure minimum running times and an extended re-

usability of the code (Figure A. 1). 
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Figure 3. 1. Structure of the LEMSAR model 

 

Briefly, the catchment is conceptualised using three moisture stores: (1) a single soil store, 

characterised by its depth (z), whole profile porosity (∅) and by hydraulic parameters which 

describe the relationship between soil water content and unsaturated hydraulic conductivity; 

(2) a groundwater store which is augmented by recharge from the soil and depleted by baseflow 

to the river and (3) a time-variable snowpack. 

A simple water balance is considered for the soil store: 

𝑑𝑆

𝑑𝑡
= 𝑃 − 𝐸𝑇 − 𝑞 − 𝑞𝑜  + 𝑀𝑡𝑜𝑡 (3.5) 
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where 𝑆 is the whole profile soil water storage (mm), 𝑡 is time (d), P is precipitation as rainfall  

(mm d−1), ET is actual evapotranspiration (mm d−1), 𝑞𝑜 is overland flow (mm d−1), q is vertical 

drainage out of the soil (mm d−1) and 𝑀𝑡𝑜𝑡  is the area-weighted input from snowmelt (mm d−1). 

Actual evapotranspiration is calculated from reference evapotranspiration (ETₒ) which can be 

either be imported or calculated from temperature using the Hargreaves equation (Hargreaves 

and Samani, 1985). It is assumed that ET is equal to ETₒ when the soil moisture content exceeds 

a threshold value, θT, and that there is a linear decrease in ET as soil moisture content is depleted 

below θT down to zero at the permanent wilting point (θR). In the work described in this chapter 

ETₒ was assumed to be equivalent to the reference ET rate which was imported from the 

Wasim-ET model (Hess et al., 2000) employing the FAO Penman-Monteith equation. 

In the absence of a snow pack, Hortonian overland flow is described after Kirkby et al. (2008) 

using: 

𝑞𝑜 = 𝑝(𝑃 − 𝑅0) (3.6) 

where 𝑅0 is a constant runoff threshold for precipitation (mm d−1) and 𝑝 is a dimensionless 

proportion of excess rainfall that flows over the land surface. Note that when P < R0, 𝑞𝑜 is zero. 

Vertical drainage out of the soil is calculated using a simple gravity flow approximation under 

unit hydraulic gradient (Whelan and Gandolfi, 2002): 

𝑞 = 𝐾() (3.7) 

where 𝐾() is the unsaturated hydraulic conductivity (mm d−1) at average profile volumetric 

water content (θ, cm3 cm −3). The daily value of q is partitioned between direct transfer to 

surface water (e.g., via shallow throughflow: qTF) and groundwater recharge (qGW) using an 

empirically-derived (calibrated) partition factor (𝑓𝑔) ranging between 0 and 1: 

 𝑞𝐺𝑊 = 𝑓𝑔. 𝑞 (3.8) 
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𝑞𝑇𝐹 = (1 − 𝑓𝑔). 𝑞  (3.9) 

𝐾() is calculated using the Mualem-van Genuchten equation (van Genuchten, 1980): 

𝐾() = 𝐾𝑠𝑎𝑡 . 𝜃∗
0.5. [1 − (1 − 𝜃∗

1
𝑚)𝑚]

2

  (3.10) 

where  𝐾𝑠𝑎𝑡  is the saturated hydraulic conductivity (mm d−1), 𝑚 is an empirical shape factor 

parameter of the soil water retention curve and ∗ is the dimensionless water content (0 to 1): 

𝜃∗ =
𝜃 − 𝜃𝑟

∅ − 𝜃𝑟
  (3.11) 

where 𝜃𝑟 is the average profile residual water content (cm3 cm−3), assumed here to be the 

storage at the permanent wilting point—i.e., the water content at −1500 kPa tension). Note that 

in the Mualem-van Genuchten model 𝜃𝑟 is often lower than the wilting point but here the 

equations are employed with different physical significance for the parameters, which represent 

effective area responses rather than describing hydraulic properties at the Darcy scale (Pullan 

et al., 2016). 

The shape parameter m is related to the van Genuchten parameter n via: 

𝑚 = 1 −
1

𝑛
  (3.12) 

Snow accumulation and snow melt are assumed to occur in limited zones of the catchment 

delineated by altitude using the SRTM 30 m DEM. The daily air temperature in each zone is 

estimated from reference weather station data via: 

𝑇𝑖 = 𝑇𝑎 − 𝛺  (𝑍𝑖 − 𝑍𝑤)  (3.13) 
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where 𝑇𝑖 is the temperature of zone i, 𝛺 is the dry adiabatic lapse rate (0.0065 °C m−1: (Miller, 

1991), 𝑍𝑖 is the mean elevation of zone i (m) and 𝑍𝑤 is the elevation of the nearest reference 

station (m). 

The treatment of the snowpack is based on a simple mass balance algorithm of water equivalent 

units similar to that employed in the HBV model (Bergström and Singh, 1995) which is 

augmented by snowfall and depleted by snowmelt. All precipitation in a zone is assumed to 

fall as snow when the daily average temperature (𝑇𝑎) for the zone is below −0.5 °C (Fontaine 

et al., 2002). When the zonal temperature is above 1.5 °C all precipitation is assumed to be 

rainfall and between −0.5 and 1.5 °C the fraction of precipitation assumed to fall as snow is 

calculated by linear interpolation. Snow melt is assumed to be independent of the size of the 

snow store (except when the snow pack is exhausted) and is calculated from the difference 

between mean air temperate and 0 °C multiplied by a degree-day factor (Kustas et al., 1994). 

Although simplistic, this approach has been shown to produce reasonable results (Pipes and 

Quick, 1987; Cazorzi and Dalla Fontana, 1996). The daily rate of melting in each zone (𝑀𝑖) is 

given by: 

𝑀𝑖 = 𝑎 [𝑇𝑎 − 𝑇𝑚𝑒𝑙𝑡] + 𝛽 𝑅𝑛  (3.14) 

where 𝑎 is degree-day factor ranging between 2 and 2.5 (mm °C−1d−1), 𝛽 is conversion factor 

for energy flux density to snowmelt depth (set to 0.26: Kustas et al., 1994),  𝑇𝑚𝑒𝑙𝑡 is a threshold 

temperature below which no melting occurs and 𝑅𝑛 is the net radiation flux density in water 

equivalent units (mm d−1). Rn is calculated from sunshine hours at the reference meteorological 

stations using the Angstrom formula and assuming a snow albedo of 0.7 (Allen et al., 1998). 

No adjustments for changes in cloud cover with altitude are made. Total snow melt Mtot is the 

area-weighted average of the daily snow melt in each zone which is added to the main soil 

store. 

Baseflow is assumed to be proportional to water storage (SG) in groundwater via a non-linear 

storage model (Moore, 2007): 

𝑞𝑏 = 𝑘 𝑆𝐺
𝜀  (3.15) 
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where 𝑞𝑏 is groundwater discharge (mm d−1) and 휀 (>0) and  𝑘 typically 0–1: ( typically 0-1: 

Vogel and Kroll, 1996) are empirical coefficients. 𝑆𝐺  is derived from mass balance as: 

The predicted total daily river discharge (𝑄: mm d−1) is calculated as 

𝑄 = 𝑞𝑜 + 𝑞𝑏 + 𝑞𝑇𝐹         (3.17) 

 

3.2.5 Calibration and validation of the LEMSAR model 

The observed discharge data for the period 2010-2014 were divided into two subsets, one for 

calibration (2010-2011) and the another for validation (2012-2014). This is a “split record” 

validation. It is used in this study as it has been shown to be the most common method for a 

validation of rainfall runoff modelling (Arnold and Moriasi, 2012). Other validation methods 

include; (i) cross-validation (Dixon and Wilby, 2015; Biondi et al., 2012) in which inverting 

the group of data used for calibration and validation periods (Biondi et al., 2012) (ii) graphical 

techniques validation (i.e. stream flow duration curve: Biondi et al., 2012) in which  allow a 

subjective and qualitative validation of the model.. Calibration was performed using the Self 

Organizing Migrating Algorithm (SOMA: Zelinka, 2004). The Nash-Sutcliffe Efficiency 

(NSE: Nash and Sutcliffe, 1970) was adopted as the objective function. Optimal parameter 

values are shown in Table 3.1 along with the range within which the parameters values were 

constrained in the SOMA procedure. The initial value for S was also optimised in the 

calibration routine but the initial value for SG was arbitrarily set to 100 mm. Various 

configurations of the groundwater parameterization were attempted. Optimizing 휀 in the 

SOMA procedure (휀 = 0.72) gave a NSE of 0.75 and Bias = 1.1% and a reasonable prediction 

of base flow. However, the slope of the 1:1 line in this calibration was closer to 1 when 휀 was 

arbitrarily set to 1 (i.e., when groundwater is represented by a linear reservoir), the NSE was 

unaffected although the Bias was higher (−12.6%). Furthermore, model performance in the 

validation period was superior when 휀 was fixed at 1 (Bias = 4%). Given the considerable 

uncertainty in the behaviour of the groundwater store in this catchment I, therefore, chose to 

𝑑𝑆𝐺

𝑑𝑡
= 𝑓𝑔. 𝑞 − 𝑞𝑏   (3.16) 
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fix 휀 = 1 in all subsequent simulations. This issue is discussed further below. Four statistical 

measures were used to evaluate model performance in validation: the NSE; Pearson’s 

Correlation Coefficient (r); the root-mean-square error (RMSE) and Percent bias (see 

Equations (3.18–3.21). The model was validated three times (using a different rainfall data set 

in each case) in order to evalute the value of satellite-derived rainfall as the driver for predicted 

runoff in this catchment and, potentially, in large semi-arid data-poor catchments.   

𝑁𝑆𝐸 = 1 − [
∑ (𝑄𝑖

𝑠𝑖𝑚 − 𝑄𝑖
𝑜𝑏𝑠)2𝑚  

𝑖=1

∑ (𝑄𝑖
𝑜𝑏𝑠 − �̅�𝑜𝑏𝑠)2𝑚

𝑖=1

] (3.18) 

𝑟 =
∑ (𝑄𝑖

𝑜𝑏𝑠 − �̅�𝑜𝑏𝑠)(𝑄𝑖
𝑠𝑖𝑚 − �̅�𝑠𝑖𝑚)𝑛

𝑖=1

√∑ (𝑄𝑖
𝑜𝑏𝑠 − �̅�𝑜𝑏𝑠)2𝑛

𝑖=1 √∑ (𝑄𝑖
𝑠𝑖𝑚 − �̅�𝑠𝑖𝑚)2𝑛

𝑖=1

 
(3.19) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑄𝑖

𝑠𝑖𝑚 − 𝑄𝑖
𝑜𝑏𝑠)2𝑛

𝑖=1

𝑁
 (3.20) 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑏𝑖𝑎𝑠 =  
∑ (𝑄𝑖

𝑠𝑖𝑚 − 𝑄𝑖
𝑜𝑏𝑠)𝑁

𝑖=1

∑ 𝑄𝑖
𝑜𝑏𝑠𝑁

𝑖=1

∗ 100        (3.21) 

where 𝑄𝑖
𝑜𝑏𝑠 and  𝑄𝑖

𝑠𝑖𝑚 are the observed and simulated discharges, respectively, �̅�𝑜𝑏𝑠  is the 

average observed discharge,  �̅�𝑠𝑖𝑚 is the average simulated discharge and 𝑁  is the number of 

records. 
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Table 3. 1. Optimum parameter values generated by automatic calibration for LEMSAR in 

the Lesser Zab catchment (휀 = 1). 

Param

eter 
Description Lower Upper Optimised Value 

𝒏 Shape parameter in van Genuchten equation (-) 1 2.5 2.18 

∅ Saturated water content (cm3 cm−3) 0.4 0.6 0.58 

θR Permanent wilting point (cm3 cm−3) 0.03 0.22 0.10 

z Soil depth (cm) 50 200 146 

θT Threshold water content when ET < ETₒ (cm3 cm−3) 0.2 0.4 0.35 

𝜽𝒓 Residual soil water content (cm3 cm−3) 0.01 0.3 0.007 

𝑲𝒔𝒂𝒕  Soil saturated hydraulic conductivity (mm d−1) 75 450 262 

𝑹𝟎 Rainfall threshold for overland flow (mm d−1) 5 50 42.9 

p Fraction of excess rainfall which runs off (-) 0.05 0.1 0.06 

𝒌 Empirical coefficient for groundwater flow (d−1) 0.1 0.99 0.6 

𝒇𝒈 Empirical partition factor for groundwater recharge (-) 1 0.99 0.32 

 Fixed parameters for snow pack sub-model    

𝛺 Dry adiabatic lapse rate (0.0065 °C m−1)    

𝑎                 Degree-day factor (2.3 mm °C−1d−1 )    

β 
Conversion factor for energy flux density to snowmelt 

depth (0.26) 
   

𝑇𝑚𝑒𝑙𝑡 
A threshold temperature below which no melting occurs 

(0 °C) 
   

 

3.2.6 Equifinality and sensitivity analysis in LEMSAR 

Uncertainty analysis was conducted using the Generalised Likelihood Uncertinty Estimation 

(GLUE) methodology (Beven and Freer, 2001). R code for GLUE was obtained from a link in 

(Beven, 2010) and incorporated into the LEMSAR model. Briefly, a Monte Carlo Simulation 

(MCS) is performed in which model parameters are selected randomly from uniform 

distributions with pre-defined ranges in a large number of iterations. Model performance is 

estimated using a likelihood function (0–1) which is zero for parameter combinations which 

do not reflect system behaviour and unity for “optimal” parameter combinations. GLUE can 
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help to identify equifinality—the existence of different combinations of parameters which 

generate similarly “good” representations of system behaviour (Li et al., 2009). This often 

occurs when models are poorly constrained (e.g., they are evaluated solely on the basis of one 

predictor, such as stream discharge, with no check on model performance with respect to other 

predicted state variables, such as soil water content or groundwater storage). Here, 10,000 

model iterations were performed and the NSE (Equation (3.18)) for Q (Equation (3.17)) was 

used as the likelihood function. An acceptability threshold of 0.5 was selected for NSE based 

on the model performance classification executed by Moriasi et al. (2007), (i.e., simulations 

were considered to be acceptable for NSE > 0.5). 

3.3 Results  

3.3.1 Comparison between gauged rainfall and TRMM data 

Weighted-mean (Thiessen polygon) daily ground-observed rainfall is plotted against both 

uncorrected and corrected TMPA-3B42/3B42RT data for Periods 1 and 2 in Figure 3.2. 

Correlation coefficients (r) were highly significant in both cases (p < 0.0001) but there is a lot 

of scatter around the 1:1 line and, in general, the satellite-derived data tended to under-estimate 

the gauged data (negative bias). Figure 3.2 shows that for Period 1 the correction of the TMPA-

3B42 and TMPA-3B42RT data resulted in a slight change to r (from 0.674 to 0.673 and from 

0.545 to 0.546, respectively) but also a decrease in the magnitude of the bias (from −5.5% to 

−0.8% and −16.3% to −1.3%, respectively). For Period 2 (Figure 3.2c,d) the application of the 

correction factors derived with the Period 1 data also resulted in little change to r but reduced 

the bias from −10% to −0.7% for TMPA-3B42 and from −10.7% to −1.6% for TMPA-3B42RT. 
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Figure 3. 2. Scatterplots of daily catchment-average gauged rainfall ( Sulaimani, Dukan, 

Penjween and Chwarta stations) versus TRMM daily rainfall: (a,b) represent uncorrected 

and corrected TMPA-3B42/3B42RT data for Period 1 and (c,d) represent uncorrected and 

corrected TMPA-3B42/3B42RT data for Period 2. 

 

To further investigate the correspondence between TMPA-3B42 / 3B42RT estimates and the 

rain gauge data, the following verification metrics were also employed, based on a contingency 

table (Table 3.2): (i) the False Alarm Ratio (FAR) i.e. the ratio of the number of times rainfall 

was forecast by the satellite data product but not observed in the gauged rainfall data to the 
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total number of times rain was forecasted successfully (Equation 3.22); (ii)  the Probability of 

Detection (POD; see Equation 3.23 ) i.e. the ratio of the number of times rain days were 

successfully forecasted to the total number of rain days (Doswell  et al., 1990; Tartaglione, 

2010)) and (iii) the Heidke Skill Score (HSS; see Equation 3.24) i.e. a measure of the frequency 

of correct matches between satellite forecasts and gauged observations compared to the number 

of correct matches which would be expected by chance (Panofsky et al., 1958; Doswell  et al., 

1990). These verification statistics for Periods 1 and 2 are displayed in Figure 3.3. The FAR 

values for both the uncorrected and corrected TMPA-3B42RT were higher than those 

calculated for TMPA-3B42 for both Periods 1 and 2. The POD values were lower for the 

TMPA-3B42RT data than for the TMPA-3B42 for both periods. Overall, the 3B42 data 

performed better than the 3B42RT data.  However, these statistics show that both TMPA 

products have serious problems in detecting the occurrence or not of rainfall. Values of HSS 

were about 0.4 for Period 1 and 0.3 for Period 2 for most rainfall intensities. Note that positive 

values of HSS indicate that the TMPA data products were better than chance.  This is the case 

for the most common rainfall intensities (i.e. between 5 and 45 mm d-1).  

Table 3. 2. Contingency table comparing gauge area average and TMPA rainfall estimates. 

 

TMPA-event forecast 
Gauge-event observed 

Yes No Marginal total 

Yes A b a + b 

No C d c + d 

Marginal total a + c b + d a + b + c +d  

 

𝐹𝐴𝑅 =
𝑏

𝑎 + 𝑏
               (3.22) 

𝑃𝑂𝐷 =
𝑎

𝑎 + 𝑐
              (3.23) 
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𝐻𝑆𝑆 =
2(𝑎𝑑 − 𝑏𝑐)

(𝑎 + 𝑐)(𝑐 + 𝑑) + (𝑎 + 𝑏)(𝑏 + 𝑑)
            (3.24) 

Where: a, b, c, d represent, respectively, hits, false alarms, missed and correct negatives 

 

 

Figure 3. 3. Verification statistics between TMPA-3B42 / 3B42RT and observed (gauge) 

rainfall. Panels (a) and (b) show FAR and POD for Periods 1 and 2, respectively. Panels (c) 

and (d) show the HSS between TMPA-3B42 and TMPA-3B42RT and observed (gauge) 

rainfall for different rainfall intensities during Periods 1 and 2, respectively. 

 

3.3.2 Comparing observed and simulated discharge  

Observed and simulated discharge for the Lesser Zab River in different periods and driven by 

different rainfall data sets are shown in Figure 3.4. All hydrological model runs used weighted 

average values of daily ETₒ calculated from ground-based meteorological observations. In all 

cases, the black line shows the observed discharge, the orange line represents predicted 

snowmelt and the red line is groundwater flow. In general, the seasonal agreement between 
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observed and simulated discharge is reasonable using both gauge-derived and corrected 

TMPA-3B42/3B42RT rainfall data. However, some hydrograph peaks appear to be noticeably 

under-predicted by the model, particularly when driven by the uncorrected TMPA-

3B42/3B42RT rainfall data. In part, this reflects a general tendency for the TMPA data to 

under-estimate the gauge-derived rainfall data. Simulated flows are plotted against measured 

data in Figure 3.5, along with the best-fit linear regression and the 1:1 line. Most of the points 

are scattered around the 1:1 line when the model is driven by the area-weighted rain gauge 

data. However, there is considerable deviation at high flows (e.g., the model underestimates 

some measured discharge peaks >500 m3s−1) and for hydrograph recessions (in which predicted 

flows tend to reduce slightly faster than those observed). This results in a slope for the best-fit 

regression which is less than unity in the validation period. This systematic deviation was more 

pronounced when the model was driven by the uncorrected TMPA-3B42 and TMPA-3BRT 

rainfall data (Figure 3.5c and e). However, the TMPA correction procedure noticeably reduced 

(but did not eliminate) the systematic tendency for the model to under-estimate measured flow 

and resulted in tolerable discharge predictions overall. It is important to note that the factors 

(𝜇𝑓 and 𝜎𝑓) used for the correction of the TMPA data were derived from Period 1 (2003–2009) 

which does not overlap with either the calibration or the validation periods used for evaluating 

the hydrological model. The TMPA corrections are, therefore, independent of the rain gauge 

data used to drive the hydrological model over 2010–2014.  
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Figure 3. 4. Observed and simulated hydrographs for the Lesser Zab River above the Dukan 

reservoir. Data for the calibration period (2010-2011) are shown in (a). In all cases, 

hydrological model parameters were calibrated using the gauged rainfall data.  Data for the 

validation period (2012-2014) are shown in (b), (c), (d), (e) and (f). The top right panel (b) 

shows validation when driven by the weighted-average gauge-derived rainfall. The middle 

panels (c and d) show validation driven by the uncorrected and corrected TMPA-3B42 rainfall 

data, respectively. The bottom panels (e and f) show validation driven by the uncorrected and 

corrected TMPA-3B42RT rainfall data, respectively. In all cases, the orange line shows 

modelled snowmelt and the red line is modelled groundwater flow. 
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Figure 3. 5. Scatterplots of observed versus simulated discharge for (a) the calibration period 

(2010-2011) and (b) the validation period (2012-2014) when the model was driven by the 

weighted-average gauge-derived rainfall. The middle panels (c and d) show model 

performance for the validation period when driven by the uncorrected (c) and corrected (d) 

TMPA-3B42 rainfall data. The bottom panels (e and f) show validation simulations driven by 

the uncorrected (e) and the corrected (f) TMPA-3B42RT rainfall data, respectively. The solid 

line indicates the 1:1 relationship. The grey line shows the best fit regression with 95% 

confidence intervals. 
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Goodness-of-fit statistics are presented in Table 3.3. These statistics reinforce the message 

derived from the graphs that the model tends to under-estimate the measured river discharge in 

both the calibration and validation periods regardless of the rainfall data used. The bias was 

lowest when the measured rainfall data were used to drive the model and highest when the 

uncorrected TMPA-3B42/3B42RT rainfall data were used. However, the best NSE value for 

the validation period was obtained using the corrected TMPA-3B42 data. As expected, model 

performance was poorest when it was driven by the uncorrected TMPA-3B42/3B42RT data 

(lowest NSE, highest BIAS and highest RMSE). Overall, using the TMPA-3B42 product 

resulted in better model performance compared to usingTMPA-3B42RT product. 

Table 3. 3. Summary of goodness of fit criteria for simulated discharge in the Lesser Zab 

catchment using different rainfall data sets to drive the model. * Significant at p0.01. 

 

Statistical comparisons between simulated and measured flows are also plotted on Taylor 

Diagrams in Figure 3.6.  This diagram summarises the overall performance of LEMSAR during 

the calibration and validation periods when driven by different precipitation data.  The position 

of each point appearing on the plot quantifies how closely simulated river discharge matches 

observations. In the case of the calibration period, when the model is driven by the area-

weighted rain gauge data, the blue point lies closer to the dashed arc (line of standard 

deviation).  Its correlation coefficient is about 0.89, the RMS error is about 65m3 s-1 and the 

standard deviation is about 148 m3 s-1. The relative merits of various validations of the model 

can be inferred from Figure 3.7. The black point represents validation when the model was 

driven by the area-weighted rain gauge data.  This lies on the black arc line which means that 

the standard deviation of the simulated discharge is similar to that of the observed data (i.e. the 

Statistical 

measures 

Calibration Validation 

Mean 

rainfall obs 

Mean 

rainfall 

obs 

TMPA-

3B42uc 

TMPA-

3B42c 

TMPA-

3B42RTuc 

TMPA-

3B42RTc 

BIAS (%) -12.6 4 -37.6 -2.6 -32 -14.2 

RMSE ( m3 s-1) 65 96 97 77 112 109 

NSE 0.75 0.48 0.45 0.66 0.28 0.31 

r 0.87* 0.72* 0.80* 0.81* 0.59* 0.61* 



66 
 

mean amplitude of discharge variations is similar). The green point represents simulated river 

discharge in the validation period when the model was driven by the corrected TMPA-3B42.  

This model run generally produced the best agreement with the observations and has the 

highest correlation (r = 0.81) and lowest RMSE (77 m3 s-1).  

 

 

Figure 3. 6. Taylor diagram summarising the statistical performance of simulated versus 

observed river discharge for (a) the calibration period (2010-2011) and (b) the validation period 

(2012-2014) when the model was driven by the weighted-average gauge-derived rainfall, 

uncorrected and corrected TMPA-3B42 / 3B42RT rainfall data. The orange contours indicate 

the centred Root Mean Square (RMS) values which is proportional to the distance from the 
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point on the X-axis identified as “observed”.  The blue dashed line shows standard deviations 

which are proportional to the radial distance from the origin. 

3.3.3 Contribution of snowmelt and groundwater flow to simulated river discharge 

The daily predicted contributions of snowmelt and groundwater in the Lesser Zab catchment 

are shown in (Figure 3.7). Although predicted daily snow melt contributions to total flow 

tended to be low (annual percentage contribution 4%–13.5%), predicted melt-derived flows 

can be substantial in spring and may contribute to occasional flood events (Figure 3.5). 

Monthly snowmelt contributions were highest when the model was driven by gauged rainfall 

data, principally due to a higher winter precipitation rate observed compared to both the 

uncorrected and corrected TMPA products, and hence a deeper simulated snowpack 

accumulation. The snowmelt contributions were also higher when LEMSAR was driven by 

both uncorrected and corrected TMPA-3B42RT data than it was driven by the TMPA-3B42 

data. 
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Figure 3. 7. Boxplots of predicted monthly snowmelt contributions to river discharge in the 

Lesser Zab catchment. The calibration period (2010–2011) is shown in the top left panel (a). 

Panels (b–f) show contributions during the validation period (2012–2014) using rain gauge 

data and uncorrected and corrected TMPA-3B42/3B42RT data. The horizontal line within 

each box represents the median, the box boundaries represent upper and lower quartiles and 

the dashed whiskers show the maximum and minimum values. 
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The predicted contribution of groundwater flow to river discharge is low and significantly 

underestimates baseflow. This is, in part, due to the simplistic representation of the complex 

and highly uncertain hydrogeological system underlying this catchment but it is also a result 

of the model parameterisation (including our arbitrary decision to set 휀 = 1). Overall model 

performance tended to be better with a high value of k (implying very steep groundwater 

recession and a perenially low groundwater storage). Many of the underlying strata in the 

catchment are karstic (i.e., they contain a highly conductive network of cracks and fissures) 

which respond rapidly during storm events but which have baseflow behaviours which are 

difficult to model (Doummar et al., 2012). A high value of k is consistent with the rapid 

behaviour of karstic systems, although I recognise that it penalises model performance at low 

flows in order to get a better simulation of the hydrograph during storm events. 

3.3.4 Flow Duration Curves 

Flow duration curves (FDC) for both observed and simulated river discharge are shown in 

Figure 3.8. The match between the curves is generally good, although there is some under-

prediction of discharge at high exceedance percentiles (i.e., low flows tend to be under 

predicted) and some over-prediction of flows in the 5–25 exceedance percentile range. Again, 

the under-prediction of low flows is due in part to the simple nature of the baseflow model 

adopted here and its parameterisation. The source of rainfall data used to drive the model had 

a significant effect on the shape of the FDC. Flows were under predicted over most of the range 

when the model was driven by the uncorrected TMPA-3B42 and 3B42RT data but this 

noticeably improved for a significant percentile range when the TMPA-3B42/3B42RT data 

were corrected. Overall, reproduction of the FDC was slightly better when the model was 

driven by the corrected TMPA-3B42RT data than when it was driven by the TMPA-3B42 data. 
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Figure 3. 8. Observed and simulated FDCs for the Lesser Zab catchment. Top panels: (a) 

Calibration period (2010-2011); (b) Validation period (2012–2014) when the model was driven 

by the weighted-average gauge-derived rainfall. Middle panels: (c) Validation period when 

driven by the uncorrected TMPA-3B42 data; (d) Validation period when driven by the 

corrected TMPA-3B42 data. Bottom panels: (e) Validation period when driven by the 

uncorrected TMPA-3B42 RT data; (f) Validation period when driven by the corrected TMPA-

3B42RT data. 
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3.3.5 Equifinality 

Figure 3.9 shows scatter plots of NSE against MCS-generated parameter values for the 

calibration period. The blue point indicates the NSE for the calibrated (reference) parameter 

set (NSE = 0.75). Only parameter combinations yielding NSE > 0.5, are displayed. The graphs 

clearly demonstrate the frequently reported phenomenon of equifinality (Beven and Binley, 

1992; Beven and Freer, 2001; Beven and Alcock, 2012; Brazier et al., 2000; Franks et al., 1997; 

Beven, 1993) in which reasonable model performance can be achieved using several different 

combinations of model parameters. Here it occurs, in part, due to the fact that the model is 

poorly constrained (i.e., measured data are available for only one predicted output variable—

stream discharge, with other predicted internal state variables, such as soil water content and 

groundwater storage, not measured and, hence, not validated). Hence, the “optimal” set of 

model parameters yields good predictions of the data available but may actually produce poor 

simulations for unmeasured phenomena such as snow melt and baseflow contributions (i.e., 

the model may give the “right results for the wrong reasons”). Although it is possible to apply 

qualitative constraints on parameter combinations to ensure that unmeasured state variable 

predictions are “sensible” (Kannan et al., 2007), the lack of measured data for these variables 

mean that both aleatory and epistemic uncertainty are always high. Equifinality also makes 

evaluating the relative contributions of errors in the individual terms of the water balance 

equations to the overall model error difficult if not impossible. This is in part, because many 

of these terms are linked e.g., via a dependence on soil moisture or contain parameters which 

are calibrated on discharge at the catchment outlet, rather than being determined independently. 

The results from a local sensitivity analysis are presented in the Figure 3.11 and suggest the 

following rank order for model sensitivity (high to low ∅ > n > z > Ksat > fg> θT, θR, θr, p, Ro, 

k. Given the relative insensitivity of the model performance to θT, θR, θr, p, Ro, and k these 

parameters were fixed to their optimal values and the MCS re-run to generate GLUE 

uncertainty boundaries on predicted discharge. These are shown in Figure 3.10 for the 

calibration period (2010–2011). 
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Figure 3. 9. Scatterplots for eleven model parameters versus NSE for random parameter 

combinations yielding NSE > 0.5. Blue point shows the highest NSE value for the optimised 

parameter set. 
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Figure 3. 10. Prediction uncertainty bounds for river discharge in the Lesser Zab River over 

the calibration period 2010-2011. The black line is the observed discharge; the red line is the 

median predicted flow for all combinations of parameters yielding NSE > 0.5 and the grey area 

shows the 95% GLUE prediction quantile. (a) All parameters sampled in the MCS; (b) 

Parameters to which the model was least sensitive (θT, θR, θr, p, Ro and k) fixed at their optima. 
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Figure 3. 11. Sensitivity analysis of the LEMSAR model for all parameters using a local 

sensitivity method for the period 2010-2011. 

 

3.4. Discussion 

In this chapterr, a simple rainfall-runoff model which was presented and applied, for the first 

time, to the Lesser Zab catchment in Iraq using weighted average gauged daily rainfall data 

and rainfall data derived from remote sensing. The principal aim was to assess the potential 

value of remotely-sensed rainfall data as a driver for rainfall-runoff modelling in data-scarce 

semi-arid catchments. Although data availability for the Lesser Zab catchment was actually 

sufficient for hydrological modelling, this is atypical of most semi-arid regions in the world 

which often suffer from data scarcity issues related to inadequate resource allocation for 

instrumentation and monitoring (Wagener et al., 2004). Moreover, even when data exist, they 

may not be made available for scientific studies without appropriate connections to the data-

holding authorities. This study, therefore, provides an excellent opportunity to evaluate model 

performance and the utility of remotely sensed data under various assumptions of data paucity. 
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Two daily satellite-derived data products (TMPA-3B42 and 3B42RT) were corrected using 

mean bias statistics (mean and standard deviation) assuming uniform bias across the whole 

range of rainfall intensities. Five river discharge simulations were performed, driven by 

different daily rainfall data sets (gauged data, uncorrected TMPA3B42 data, uncorrected 

TMPA-3B42RT data, corrected TMPA-3B42 and corrected TMPA-3B42RT data). Both the 

uncorrected TMPA data products tended to underestimate gauge-derived rainfall. The 

performance of the TMPA-3B42RT product was poorer than that of the TMPA-3B42 product 

during rainy days. The 3B42RT also had a higher tendency to predict rainfall on days in which 

there was no gauge-observed rainfall (hence the higher FAR). In addition, the TMPA-3B42 

data generated higher POD values than the 3B42RT data, confirming better performance for 

predicting rainy days. Generally, the HSS of both products was best for rainfall rates between 

5 and 45 mm d−1. Failure to accurately predict events with higher intensities could be related 

to the low spatial and temporal resolution of the TMPA data products (the time interval between 

TRMM orbits is too long to capture all rainfall events (Muhammad et al., 2012) and the 

random, short duration and localized nature of high intensity convective storm events in arid 

and semi-arid areas which contribute to greater spatial variability for precipitation in these areas 

compared with humid regions (Pilgrim et al., 1988). This is also an issue for precipitation 

capture by rain gauges, especially if they are sparsely located (Prabhakara et al., 2002). That 

said, overall trends are generally captured well.  

Aside from the localised nature of convective rainfall, there are many possible explanations for 

deviations of the TMPA rainfall from the gauge-recorded data, including the influence of 

topography (e.g., slope, aspect and local relief: Gao and Liu, 2013). In addition, known (and 

unknown) instrument errors (e.g., the TRMM radar cannot detect rainfall at less than about ~18 

dBZ or 0.4 mm/h:(National Space Development Agency of Japan (NASDA), 1999)) will also 

contribute to deviations. I used area-averaged (Thiessen polygon weighted averaging) 

precipitation measurements derived from ground observations from four stations over a limited 

period to correct the TMPA data. These data are associated with considerable uncertainty due 

to instrument and sampling errors arising from the relatively low spatial density of gauges. In 

particular, these stations are predominantly located at low elevations (550 to 1300 m ASL) and, 

hence may under-estimate total precipitation at altitude and total catchment precipitation in 

general. However, data to verify the extent to which this may have been a major issue or not 

are currently not available. The uncorrected and corrected TMPA-3B42 data both 
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underestimated gauged data by −10% and −0.7% respectively. Similarly, the TMPA-3B42RT 

underestimated gauged data by −10.7% and −1.3 respectively. This finding is in rough 

agreement with (WMO, 2006) which reported that satellite-derived rainfall could 

systematically underestimate ground observed rainfall by 30% or more. Collischonn et al. 

(2008) also showed that relative differences between observed and satellite-derived rainfall 

data can range from −39% to +25%. 

Given the simplicity of the model assumptions and the large and complex nature of the 

catchment, the performance of the LEMSAR model in the Lesser Zab catchment was 

surprisingly good. Although model performance was weak in places (e.g., the poor prediction 

of baseflow  and delay in some peak flows Figure 3.10), performance overall was equivalent 

to or better than that obtained using a similar model in smaller UK catchments (Pullan et al., 

2016). The contribution of snow melt and baseflow to river discharge is unknown and the 

model is poorly constrained with respect to these processes.This contributed to significant 

equifinality, illustrated by a wide range of “acceptable” parameter combinations. Although a 

significant part of the catchment (20%) is above 1500 m altitude and, therefore, likely to receive 

some winter precipitation as snow, the relative contribution of calculated snowmelt to 

simulated river discharge was generally low, even in the spring melt season (although the 

absolute volumes were occasionally significant and the snow melt contribution may have been 

masked by coincidentally high rainfall in this season). However, it would be useful to confirm 

this prediction by independent studies in high altitude sub-catchments. 

All hydrological model runs used weighted average values of daily ETₒ calculated from ground-

based meteorological observations. No adjustment was made in the model for changes in ETₒ 

with altitude or over snow cover. Instead a weighted average daily ETₒ value from the available 

meteorological stations was used to drive the model. Since ETₒ is likely to decrease with 

altitude, this assumption is likely to lead to an overestimation in mean catchment ETₒ. 

Estimated evapotranspiration and sublimation from snow and frozen soil has generally been 

reported to be low (Pomeroy and Brun, 2001). For example, Male and Granger (Male and 

Granger, 1981) estimated daily net evaporation rates of 0.02–0.3 mm d−1 in central 

Saskatchewan. However, in any case, snow cover is predicted to occur in a maximum of 20% 

of the catchment area and only for three months of the year. Given the lumped nature of the 

model employed and the other major simplifications assumed, therefore, the impact of this 

uncertainty is relatively minor. 
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The representation of the behaviour of the regional groundwater system in the LEMSAR model 

was simplistic, reflecting high epistemic uncertainty. In fact, model performance was highest 

overall when 휀 was fixed at 1 and k was high (resulting in minimal groundwater contribution), 

suggesting that the aquifer reacts like a single linear reservoir where the groundwater flow is 

proportional to groundwater storage and water release from the soil store is the principal limit 

on the timing and magnitude of river discharge. This will, in turn, be controlled by seasonal 

changes in evapotranspiration and soil moisture content, similar to many humid-temperate 

catchments. Although the dominant underlying karstic strata in the catchment are 

volumetrically important, they have rapid hydrological response times (Doummar et al., 2012). 

We can postulate, therefore, that delays in groundwater flow are short and make little 

modification to hydrograph shape and magnitude. However, one important issue with this 

assumption is that low flows in the sustained dry summers experienced in the catchment are 

poorly predicted. This is clearly important from a water resources management perspective but 

does not affect the evaluation of the TMPA-3B42/3B42RTdata as a driver for hydrological 

modelling. Resolving this issue is, therefore, beyond the scope of this study but one solution 

could be to simply assume an additional fixed baseflow. Finally, although there will be channel 

network delays in the translation of rainfall to runoff in such a large catchment (>11,000 km2), 

these delays are not likely to be important at the daily time step (i.e., network travel times will 

still be mostly < 24 h—particularly during storm events). Although some modelling uncertainty 

could be reduced by excluding model-insensitive parameters from the (Li et al., 2009), 

constraining simulations using measured state variables such as soil water content, snow melt 

and groundwater behaviour would clearly be more beneficial (Mo and Beven, 2004; Gallart et 

al., 2007; Beven, 2012). 

Observed discharge in the Lesser Zab river was represented reasonably well by the model using 

in situ gauged rainfall and both TMPA-3B42 and 3B42RT data, particularly when the latter 

were corrected using a limited set of rain gauge data. Flow simulations using uncorrected 

TMPA-3B42/3B42RT data generally under-estimated flows for significant periods, with some 

peaks missed altogether, although seasonal fluctuations were still well captured. It has been 

reported that TMPA bias tends to increase with rainfall intensity (e.g. Pipunic et al., 2015), 

suggesting that the bias is multiplicative, not additive. In this study, some rainfall events >40 

mm d−1 do appear to become more biased after correction (Figure 2b). This means that although 

our corrections improve rainfall over the most frequent ranges (typically low intensity), they 
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may fail to improve significantly (or worsen) model performance in lower frequency, higher 

magnitude events. Application of different bias statistics for different ranges of rainfall 

intensity could provide a solution to this issue but this has not been explored further here. 

The superior accuracy of LEMSAR when driven by corrected, compared to uncorrected, 

TRMM data mainly reflects the fact that the correction reduced the bias in the TRMM estimates 

which was translated, in part, into higher predicted flows. These results are consistent with 

other research (Anders et al., 2006; Collischonn et al., 2008; Kneis et al., 2014) which has 

indicated that corrected TMPA-3B42 v7 precipitation estimates can provide reasonable model 

input for the simulation of river discharge. However, previous attempts at correction have used 

denser rain gauge networks than the network employed here and none have been employed in 

this region. The TMPA-3B42/3B42RT data were corrected using a limited set of the available 

rain gauge data in order to evaluate the application of the correction equation to independent 

data. The agreement between the corrected daily TMPA-3B42/3B42RT data and the daily rain 

gauge data for Period 2, together with the reasonable performance of LEMSAR when driven 

by the corrected TMPA data for the whole flow record, suggest that this correction may be 

generally applicable in this catchment. Nevertheless, it should be noted that the superior 

performance of the model when driven by both of the corrected satellite data products may be 

“opportunistic” to some extent—resulting from the fact that flows are slightly over-estimated 

by the model when calibrated using gauged rainfall whilst gauged rainfall is still slightly under-

estimated by the TMPA data. 

Furthermore, since the TMPA data provide spatially aggregated rainfall estimates over an area, 

while rain gauge data are measured at specific point locations, the TMPA data may be useful 

for modelling catchments where gauge data are sparse. Note that the TRMM data mission has 

now ended and another platform (Global Precipitation Measurement (GPM) mission is 

available at http://pmm.nasa.gov/GPM) which supplies similar data to TRMM. The Integrated 

Multi-satellitE Retrievals for GPM (IMERG) will be much improved in terms of spatial and 

temporal resolutions  (e.g., 0.1 deg and half-hourly:  Huffman et al., 2017). The findings of this 

work should also be broadly applicable to GPM data. 

 

http://pmm.nasa.gov/GPM
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3.5 Summary 

Rainfall-runoff modelling is a useful tool for water resources management. This chapter 

presents a simple daily rainfall-runoff model, based on the water balance equation, which 

applied to the 11,630 km2 Lesser Zab catchment in northeast Iraq. The model was forced by 

either observed daily rain gauge data from four stations in the catchment or satellite-derived 

rainfall estimates from two TRMM Multi-satellite Precipitation Analysis (TMPA) data 

products (TMPA-3B42 and 3B42RT) based on the Tropical Rainfall Measuring Mission 

(TRMM) from 2003 to 2014. As well as using raw TMPA data, we used a bias-correction 

method to adjust TMPA values based on rain gauge data. The uncorrected TMPA data products 

underestimated observed mean catchment rainfall by −10.1% and −10.7%. Corrected data also 

slightly underestimated gauged rainfall by −0.7% and −1.6%, respectively. Nash-Sutcliffe 

Efficiency (NSE) and Pearson’s Correlation Coefficient (r) for the model fit with the observed 

hydrograph were 0.75 and 0.87, respectively, for a calibration period (2010–2011) using 

gauged rainfall data. Model validation performance (2012–2014) using ground based ETₒ was 

best (highest NSE = 0.66 and r = 0.81; lowest RMSE = 77 and bias = -2.6) using the corrected 

3B42 data product and (poorest NSE = 0.28 and r = 0.59; highest RMSE = 112 and bias = -

14.2) when driven by uncorrected 3B42RT data. Uncertainty and equifinality were also 

explored. The results suggest that TRMM data can be used to drive rainfall-runoff modelling 

in semi-arid catchments, particularly when corrected using rain gauge data.  

In this chapter, the utility of remotely-sensed rainfall data for driving a hydrological model 

have only evaluated. Next chapter will also explore the effects of using other remotely sensed 

meteorological data (e.g., surface temperature) to predict ETₒ and the potential for simulating 

hydrological response in this and other catchments completely independently of ground-based 

observations. 
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Chapter 4: Predicting river flow in a data-scarce semi-arid catchments 

using remote sensing estimates of precipitation and evapotranspiration 
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Part of this chapter have been published with CC-BY copyright license as: 

“Najmaddin, P.M.; Whelan, M.J.; Balzter, H. Estimating Daily Reference 

Evapotranspiration in a Semi-Arid Region Using Remote Sensing 

Data. Remote Sens. 2017, 9, 779.” 

 

4.1 Introduction  

In chapter 3, the utility of satellite-based precipitation (TMPA) for driving rainfall-runoff 

model was evaluated. In this chapter, the estimation of daily reference evapotranspiration using 

remote sensing data (ETₒ-RS) is carried out and the accuracy of these estimates against ETₒ is 

calculated using ground observations (ETₒ-G) is quantified. The main purposes of the chapter 

were (i) to evaluate the accuracy of daily ETₒ estimates derived using remote sensing data 

against ETₒ calculated using ground observations based on the PM method as a benchmark (ii) 

to evaluate the performance of the LEMSAE model when the model was forced just by RS data 

4.2 Materials and Methods 

4.2.1 Study area  

The study area interested in this chapter is (Lesser Zab and Sirwan River catchments) which 

was described in detail in chapter 2, section 2.1. 

4.2.2 In situ data 

In situ data used in this chapter was described in (chapter 2, section 2.2). 

4.2.3 Remote sensing data 

The remote sensing data of interest in this chapter is AIRS  products which described in ( 

chapter 2, section 2.3.2) 

4. 2.3 AIRSdata 

Cloud cover fraction data from AIRS were used to estimate sunshine duration using: 
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𝐷𝑆 = 𝐻 ∙  𝐶𝑓                                                                                         (4.1) 

where 𝐷𝑆 is sunshine duration (hours), 𝐶𝑓 is the cloud cover fraction (established from the 

AIRS/Aqua L3 Daily Standard Physical Retrieval (AIRS + AMSU) 1 degree × 1 degree V006 

cloud-cover fraction data (AIRX3STD)) and H is the maximum possible sunshine hours, 

calculated as (Allen et al., 1998): 

 

𝐻 =  
24

𝜋
 𝜔𝑠                                                                                   

 
   (4.2) 

where 𝜔𝑠 is the sunset hour angle which is calculated by: 

𝜔𝑠 = arccos[ − tan(𝜑) − tan(𝛿 )]                                  (4.3) 

in which 𝜑 is the latitude and 𝛿 is the solar declination (i.e.):  

𝛿 = 0.409 sin (
2𝜋 

365
  𝐽 − 1.39)                                      

 
(4.4) 

in which 𝐽 is the Julian day of the year (1 to 365, or 366 in a leap year). 

 

4.2.4 Reanalysis Data 

Combination methods such as the Penman-Monteith equation usually requires wind speed 

measurements at 2 m height above ground (Allen et al., 1998). Daily estimates of wind speed 

at 10 m height were obtained from MERRA (GMAO: Global Modeling and Assimilation 

Office, 2008: : http://giovanni.gsfc.nasa.gov/giovanni) at 0.5° x 0.6° spatial resolution adjusted 

to the standard 2 m height using (Allen et al., 1998); 
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𝑈2 = 𝑈𝑧

4.87

ln (67.8 𝑧 − 5.42)
                                                                  

 
(4.5) 

where  𝑈2 is wind speed at 2 m (m s-1) and 𝑈𝑧 is wind speed at z m above ground (m s-1).  

4.2.5 Reference evapotranspiration (𝑬𝑻𝒐) estimation methods 

ET is commonly estimated indirectly from meteorological data (Allen et al., 1998; Tabari et 

al., 2011; McMahon et al., 2013) using a variety of different methods (Brutsaert, 1982; Poyen 

and Ghosh, 2016; Jensen et al., 1990). These methods can be grouped into three categories: (i) 

those based on energy balance and mass transfer concepts, often referred to as the combination 

equation or Penman–Monteith (PM) method (Allen et al., 1998); (ii) those based on empirical 

relationships between ETₒ and temperature- (e.g., (Thornthwaite, 1948) and (Hargreaves and 

Samani, 1985: HS); and (iii) and radiation-based approaches which utilise measured or 

estimated solar radiation flux density at the surface (e.g., (Jensen and Haise, 1963: JH); 

(McGuinness and Bordne, 1972: MB); and (Priestley and Taylor, 1972)). The PM method is 

widely considered to be the most reliable indirect method (Allen et al., 1998; Gong et al., 2006; 

Pandey et al., 2016). However, its main shortcoming is that it requires a complete weather data 

set (net radiation flux density, temperature, relative humidity and wind speed) which is not 

always available for many areas (Tabari and Talaee, 2011). The other methods have fewer 

meteorological data requirements (Tabari et al., 2011) and are, hence, widely applied—

particularly those based solely on temperature. The performance of temperature- and radiation-

based methods, relative to the PM method, is often spatially and temporally variable 

(Sabziparvar et al., 2009; Tabari et al., 2012b). Although the commonly used Thornthwaite 

approach requires only temperature data, it is not considered here because (i) it cannot be used 

when Ta < 0 °C; and (ii) it was developed in the mid-latitude continental USA as a climatic-

index rather than a method for calculating ETₒ. Outside of these region there is significantly 

more uncertainty about its validity. The HS method is generally agreed to be the best 

temperature-based approach (WeiB and Menzel, 2008; Tabari, 2009) but has been reported to 

perform poorly in some semi-arid contexts (Tabari et al., 2012b) where radiation-based 

methods may be more suitable (Pandey et al., 2016). The JH and MB methods have been 

successfully applied in humid and arid environments (Oudin et al., 2005; Tabari et al., 2011) 
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but the main drawback of these equations is underestimation in humid areas (Poyen and Ghosh, 

2016) and overestimation in semi-arid areas (Tabari et al., 2011). 

Four methods were considered: (1) the Penman–Monteith (PM) equation (Allen et al., 1998) 

which was used as a benchmark for comparison with the other methods; (2) the (Hargreaves 

and Samani, 1985: (HS)); (3) the radiation-based method of ( Jensen and Haise, 1963: (JH)); 

and (4) the radiation-based method of (McGuinness and Bordne, 1972: (MB) ). All methods 

require temperature data, the PM also requires RH, wind speed and sunshine hours data. JH 

and MB also require sunshine data. The equations are as follows. 

PM: 𝐸𝑇𝑜 =
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇𝑎 + 273 𝑈2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0.34𝑈2)
 

(4.6) 

HS: 𝐸𝑇𝑜 = 0.0023 (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5(𝑇𝑎 + 17.8)
𝑅𝑎

𝜆
 (4.7) 

JH: 𝐸𝑇𝑜 =
0.025(𝑇𝑎 + 3) 𝑅𝑠 

𝜆
 (4.8) 

MB: 𝐸𝑇𝑜 =
𝑅𝑠

𝜆
 
(𝑇𝑎 + 5)

68
 (4.9) 

where 𝐸𝑇𝑜 is the reference evapotranspiration rate (mm d−1), 𝑈2 is mean daily wind speed at 2 

m height (m s−1) (Equation (4.5)), ∆ is the slope of the vapour pressure versus temperature 

curve (kPa °C−1) (Equation (4.10)), 𝑅𝑛 is the net radiation flux density at the vegetation surface 

(MJ m−2 d−1) (Equation (4.11)), 𝐺 is the soil heat flux density (MJ m−2 d−1)—assumed to be 

zero because it is very small at the daily time scale (Allen et al., 1998), 𝑇𝑎 is mean daily air 

temperature at 2 m height (°C), 𝑇𝑚𝑖𝑛 is minimum air temperature (°C), 𝑇𝑚𝑎𝑥 is maximum air 

temperature (°C), 𝑅𝑠 is the solar radiation flux density at the surface (MJ m−2 d−1) (Equation 

(4.13)), 𝑅𝑎 is the extraterrestrial radiation (i.e., the theoretical radiation flux density at the top 

of the atmosphere) [MJ m−2 d−1] (Equation (4.14)), 𝑒𝑠 is the saturation vapour pressure (kPa) 

(Equation (4.18)), 𝑒𝑎 is the actual vapour pressure (kPa) (Equation (4.19)), 𝑒𝑠 − 𝑒𝑎 is the 
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saturation vapour pressure deficit (kPa), 𝜆 is the latent heat of vaporization (i.e., 2.45 (MJ kg−1)) 

and 𝛾 is the psychrometric constant (kPa °C−1) (Equation (4.22)). 

Further definitions of variables used in Equations (4.6)–(4.9) are given (Allen et al., 1998) as 

follows: 

∆=

4096 [0.6108𝑒𝑥𝑝
(

17.27𝑇𝑎
𝑇𝑎+273.3

)
]

(𝑇𝑎 + 273.3)2
 

(4.10) 

𝑅𝑛 = 𝑅𝑛𝑠 − 𝑅𝑛𝑙 (4.11) 

in which 𝑅𝑛𝑠 is the net shortwave radiation flux density (MJ m−2 d−1) (Equation (4.12)) and 𝑅𝑛𝑙 

is the net longwave radiation flux density (MJ m−2 d−1) (Equation (4.16)):  

𝑅𝑛𝑠 = (1 − ⍺)𝑅𝑠 (4.12) 

where ⍺ is the surface albedo, assumed to be 0.23 for a hypothetical grass sward (Allen et al., 

1998).  

𝑅𝑠 = (𝑎𝑠 + 𝑏𝑠

𝐷𝑆

𝐻
)𝑅𝑎 (4.13) 

in which 𝐷𝑆 is the actual duration of sunshine (hours), 𝐻 is the maximum possible duration of 

sunshine (hours) and 𝑎𝑠 + 𝑏𝑠 are regression constants set to 0.25 and 0.5, respectively, as 

recommend by Allen et al. (Allen et al., 1998).  

𝑅𝑎 =
24(60)

𝜋
 𝐺𝑠𝑐  𝑑𝑟[𝜔𝑠 sin(𝜑) sin(𝛿) + cos(𝜑) cos(𝛿) sin (𝜔𝑠] (4.14) 

in which 𝑑𝑟 is the inverse of the relative distance between the Earth and the Sun ( Equation 

(4.15)), 𝜔𝑠 is defined by Equation (4.3), 𝜑 is the latitude, 𝛿 is given in Equation (4.4) and 𝐺𝑠𝑐 

is the solar constant = 0.0820 MJ m−1 min−1. 
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𝑑𝑟 = 1 + 0.033 cos
2𝜋

365
𝐽 (4.15) 

𝑅𝑛𝑙 = 𝜎 [
(𝑇𝑚𝑎𝑥+273.3)4 + (𝑇𝑚𝑖𝑛+273.3)4

2
] (0.34 − 0.14 ∗ √𝑒𝑎)(1.35

𝑅𝑠

𝑅𝑠𝑜

− 0.35) 

(4.16) 

in which σ is the Stefan–Boltzmann constant (4.903 10−9 MJ K−4 m−2 d−1), (0.34 − 0.14 ∗ √𝑒𝑎) 

expresses the correction for atmospheric humidity, and the cloudiness is expressed by 

(1.35
𝑅𝑠

𝑅𝑠𝑜
− 0.35) (Allen et al., 1998); 𝑅𝑠𝑜 is the clear-sky solar radiation flux density (MJ m−2 

d−1) which can be used when calibrated values for 𝑎𝑠 + 𝑏𝑠 are not available (Allen et al., 1998) 

i.e., 

𝑅𝑠𝑜 = (0.75 + 2 ∗ 10−5 ∗ 𝑧)𝑅𝑎 (4.17) 

in which 𝑧 is the station elevation above sea level (m). 

The vapour pressure terms are defined as follows: 

𝑒𝑠 = (
𝑒0(𝑇𝑚𝑎𝑥) + 𝑒0(𝑇𝑚𝑖𝑛)

2
) (4.18) 

𝑒𝑎 = (
𝑒𝑚𝑖𝑛

0 𝑅𝐻𝑚𝑎𝑥

100
+ 𝑒𝑚𝑎𝑥

0 𝑅𝐻𝑚𝑖𝑛

100
2

) 
(4.19) 

where 𝑅𝐻𝑚𝑖𝑛 and 𝑅𝐻𝑚𝑎𝑥 are minimum and maximum relative humidity (%) and 𝑒𝑚𝑖𝑛
0  and 

𝑒𝑚𝑎𝑥
0  are the saturation vapor pressure at the minimum and maximum air temperatures, 

respectively (Equations (4.20) and (4.21)): 

𝑒𝑚𝑖𝑛
0 = 0.6108 𝑒𝑥𝑝(

17.27 𝑇𝑚𝑖𝑛

𝑇𝑚𝑖𝑛 + 273.3
) (4.20) 
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𝑒𝑚𝑎𝑥
0 = 0.6108 𝑒𝑥𝑝(

17.27 𝑇𝑚𝑎𝑥

𝑇𝑚𝑎𝑥 + 273.3
) (4.21) 

The psychrometric constant is defined as: 

𝛾=
𝐶𝑝𝑃

휀 𝜆
 (4.22) 

in which 𝐶𝑝 is the specific heat capacity at constant pressure; 1.013 10−3 (MJ kg−1 K−1), 휀 is the 

ratio molecular weight of water vapour:dry air (i.e., 0.622); and 𝑃 is the atmospheric pressure 

(kPa). 

 

4.2.5 Rainfall-runoff model 

LEMSAR model applied in this chapter was described in chapter 3.2.4. 

4.2.6 Evaluation criteria 

Four statistical measures were used to evaluate model performance in validation: NSE, r, 

RMSE and percent bias (Equations 3.18- 3.21). 

4.3 Results 

4.3.1 Comparison between Meteorological Variables Estimated from Remote Sensing 

with Station Data 

Satellite-derived and ground-measured values of mean daily air temperature (𝑇𝑎), RH, sunshine 

hours (DS) and U2 are compared in Figure 4.1 for the four stations in the study area. A statistical 

summary of this comparison is shown in Table 4.1. The R2 values between the ground-

measured and AIRS-derived values of  𝑇𝑎 were high (R2 > 0.88) and highly significant for all 

stations. The RMSE for 𝑇𝑎 ranged from 3.2 to 5.1 °C with a tendency of RS to underestimate 

the ground observations of 𝑇𝑎. For RH, the relationship between satellite-derived and ground-

based measurements was also significant for all four stations (R2 > 0.3; p < 0.05). For RH the 

RMSE ranged from 12.5% to 24% with negative bias for all stations. However, there was a 
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weak but significant relationship for DS (0.15 < R2 < 0.2; p < 0.05) and the relationship between 

measured  𝑈2 and MERRA-derived wind speed is even weaker for all stations (Table 4.1). 

Remotely sensed DS and U2 both had positive bias in all cases, except for wind speed at Dukan 

(Table 4.1). 

Since ET is widely known to be driven by turbulent eddies, and is thus sensitive to wind speed, 

an extra analysis was conducted to evaluate the model sensitivity to the MERRA-wind speed 

data. ETo estimates derived using the PM equation for all four stations using U2 derived from 

MERRA were compared with PM estimates assuming a constant U2 value (the mean measured 

daily value for each station during 2010–2014). The ETo predictions produced with the constant 

wind velocity were actually better overall (closer match with PM estimates obtained using 

ground-measured data in terms of regression equation slope, R2 and RMSE: see Appendixes, 

Figures A2 and A3, Table A2, A3 and A4), although (as expected) high ET values (>ca 8 mm 

d−1) which often arise on windy days are not well predicted. This implies that that the PM 

equation can still be used with RS data provided a reasonable estimate can be made for the 

mean wind speed for the locations of interest. 
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Figure 4. 1. Scatterplots of daily 𝑇𝑎 , RH %, 𝐷𝑆 and  𝑈2 measured at ground-based stations 

(x-axes) compared with those derived from remote sensing (y-axes) for four different stations. 

The solid black line indicates the 1:1 relationship. The grey line shows the best-fit regression 

with 95% confidence interval. 
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Table 4. 1. Statistical summary of the relationship between daily ground-measured and 

remotely-sensed values of 𝑇𝑎, RH %, 𝐷𝑆 𝑎𝑛𝑑  𝑈2 for four different stations during the study 

period (2010–2014).  * Significant at p  0.05. 

Station Variable RMSE BIAS (%) r 

Sulaimani 

𝑇𝑎 3.5 −14.2 0.97* 

RH % 12.7 −0.6 0.76* 

𝐷𝑆 4.5 16.1 0.38* 

 𝑈2 1.4 27.8 0.03* 

Penjween 

𝑇𝑎 5.1 28.4 0.94* 

RH % 13.8 −13.4 0.72* 

𝐷𝑆 4.3 10.2 0.45* 

 𝑈2 1.7 34.8 0.02 

Chwarta 

𝑇𝑎 3.3 −0.1 0.94* 

RH % 24 −26 0.55* 

𝐷𝑆 4.2 9.1 0.44* 

 𝑈2 1.5 24.5 0.03* 

Dukan 

𝑇𝑎 3.2 −2.8 0.95* 

RH % 12.5 −7.3 0.80* 

𝐷𝑆 5.1 21.8 0.40* 

 𝑈2 1.4 −47.7 0.03* 

 

4.3.2 Comparison between Daily ETₒ-RS and ETₒ-G  

The calculated daily ETo-G and ETₒ-RS estimates are shown in Figure 4.2. In all cases, the black 

line shows ETo–G. For all stations, there is seasonal agreement between ETo-G and ETo–RS for all 

evapotranspiration methods. Estimated ETo-G is plotted against ETo– RS in Figure 4.3, along with 

the best-fit linear regression and the 1:1 line. Most of the points are scattered around the 1:1 

line for the JH and MB methods which always have high R2 and regression gradients close to 

unity. However, there is considerable variability in the slope of the ground-derived versus RS-

derived regression lines (0.7 to 0.89) and in R2 (0.64 to 0.9) when using the HS and PM 

methods—particularly for the Dukan and Sulaimani stations. These stations have relatively low 

elevations compared with the other two stations, with higher average temperatures (Table 2.1). 

Average annual ETo values estimated using the ground and RS data for all methods from 2010 

to 2014 are presented in Figure 4.4. The MB method yielded highest average annual values for 

both ETo-G and ETo– RS (1670 mm y−1 and 1677 mm y−1, respectively), while the HS method 

yielded the lowest annual value of ETo– RS (1198 mm y−1) and the PM method yielded lowest 

annual values of ETo-G (1337 mm y−1). The average annual values of ETo– RS were relatively 

similar to those of ETo-G, which reflects low bias and hence small cumulative errors. 
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Goodness-of-fit statistics are presented in Table 4.2. The MB method consistently performed 

better than other methods (in terms of the similarity of the ETo-G and ETₒ-RS data) for all stations 

and for all goodness-of-fit criteria, except for the bias at Sulaimani. The greatest differences 

were observed when the PM and HS methods are compared. The HS method consistently 

underestimated ground-based ET estimates when RS data were used as inputs (i.e., bias was 

always negative). Pearson correlation coefficients (r) between ETₒ-G and ETₒ-RS were generally 

high and always highly significant (p < 0.05) for all stations. 

 

Table 4. 2. Statistical summary of comparisons between estimated daily reference 

evapotranspiration using ground-based measurements (ETₒ-G) and remote sensing data (ETₒ-

RS) for four different methods at four different stations (Sulaimani, Penjween, Chwarta, and 

Dukan) over the study period 2010–2014. * Significant at p 0.05. 

 

Station Methods RMSE (mm d−1) BIAS (%) r 

Sulaimani 

PM 0.99 2.5 0.80* 

HS 1.26 −17 0.95* 

JH 0.82 −3.2 0.93* 

MB 0.65 −10.5 0.99* 

Penjween 

PM 1.59 17.7 0.81* 

HS 1 −13 0.94* 

JH 1.46 23.2 0.93* 

MB 0.92 18.2 0.97* 

Chwarta 

PM 1.26 12.8 0.86* 

HS 0.95 −10 0.92* 

JH 1.19 3.7 0.93* 

MB 0.57 0.3 0.97* 

Dukan 

PM 1.7 −13 0.81* 

HS 1.1 −19.9 0.94* 

JH 1.56 5.1 0.91* 

MB 0.52 −1.8 0.98* 
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Figure 4. 2. Plot of daily ETₒ estimates derived from ground-based measurements (ETₒ-G) 

and remote sensing data (ETₒ-RS) using four methods from 2010–2014 for Sulaimani, 

Penjween, Chwarta and Dukan stations. The black line presents the ETₒ-G. 
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Figure 4. 3. Scatterplots of estimated daily reference evapotranspiration using ground-based 

measurements (ETₒ-G) versus estimated reference evapotranspiration using remote sensing 

data (ETₒ-RS) applying four different methods at four different stations (Sulaimani, 

Penjween, Chwarta, and Dukan). The solid black line indicates the 1:1 relationship. The 

grey line shows the best-fit regression with 95% confidence interval (equations and R2 also 

shown). 
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Figure 4. 4. Average annual ETₒ estimates derived from ground-based measurements (ETₒ-

G) and remote sensing data (ETₒ-RS) using four methods from 2010–2014 for Sulaimani, 

Penjween, Chwarta and Dukan stations. 

 

4.3.3 Cross-Comparison of the ETo Methods  

In Figure 4.5, different ETₒ-RS values calculated using the HS, JH, and MB methods are plotted 

against benchmark data (i.e., ETₒ-G PM) for all stations. This comparison is based on the 

assumption that the PM method is most reliable (Allen et al., 2000), and that the ground-based 

measurements at each station best represent the atmospheric drivers for evapotranspiration (i.e., 

the ground-based data will best-predict ETo using the PM method). There was considerable 

variation in model performance against the benchmark data for different stations. The JH and 

MB methods had regression slopes in the range between 0.95 and 1.4, with most slopes >1, 

indicating a slight tendency of these methods to overestimate the benchmark values. However, 

the slopes for the HS method ranged between 0.63 and 0.82, suggesting a tendency for the HS 

equation to under-predict ET when driven by RS data, particularly at the Dukan station 

Although the MB method yielded the best coefficient of determination for each station (0.74 < 

R2 < 0.86), this was not always the best method in terms of proximity to the 1:1 line. At the 

two stations with higher elevation (Penjween and Chwarta) the HS method was the best 
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predictor. Table 4.3 summarises the results statistically. This confirms that the HS method 

tends to underestimate benchmark ET (−9 < bias% < −0.6) and that the other methods tend to 

overestimate it (bias ranged between 8.6 and 40%). At all stations the HS method had the lowest 

RMSE (1–1.3 mm d−1). Despite the fact that the JH and MB methods had correlation 

coefficients which were often better than for the HS method, they had much higher RMSE 

values (1.8–2.1 mm d−1). 
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Figure 4. 5. Estimated daily reference evapotranspiration using remote sensing data (ETₒ-

RS) for the HS, JH and MB methods against estimated reference evapotranspiration 

generated using ground-based measurements (ETₒ-G) with the PM method (the benchmark 

model) for four different stations (Sulaimani, Penjween, Chwarta and Dukan). The solid 
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black line indicates the 1:1 relationship. The grey line shows the best-fit regression with 

95% confidence interval (equations and R2 also shown). 

 

Table 4. 3. Statistical bias, RMSE and Pearson Product Moment Correlation coefficient (r) for 

ETₒ-RS values against the benchmark data set ETₒ-G (PM) for the different stations over the study 

period 2010–2014. * Significant at p 0.01. 

Station Methods RMSE (mm d−1) BIAS (%) r 

Sulaimani 

HS 1.3 −9 0.83* 

JH 2.1 21.4 0.83* 

MB 1.6 24.5 0.85* 

Penjween 

HS 1 −1.9 0.88* 

JH 2.1 37 0.88* 

MB 1.7 40 0.91* 

Chwarta 

HS 0.98 −0.6 0.89* 

JH 2 33.3 0.90* 

MB 1.6 37 0.92* 

Dukan 

HS 1.2 −2.6 0.89* 

JH 1.8 11.2 0.89* 

MB 1.81 8.6 0.92* 

 

 

4.3.4 Comparing observed and simulated discharge for Lesser Zab and Sirwan River 

catchments over period 2010-2014. 

Observed and simulated discharge for the Lesser Zab and Sirwan River in different periods and 

driven by different rainfall data-sets and estimated ETₒ-RS based on different reference 

evapotranspiration methods are shown in Figure 4.6. In all cases, the black line shows the 

observed discharge. In general, the seasonal agreement between observed and simulated 

discharge is reasonable using corrected TMPA-3B42 / 3B42RT rainfall with all estimated ETₒ-

RS for both catchments. However, some hydrograph peaks appear to be noticeably under-

predicted by the model, particularly when driven by the uncorrected TMPA-3B42 / 3B42RT 

rainfall data with estimated ETₒ-RS according to JH and MB methods. Simulated flows are 

plotted against measured data in Figure 4.7, along with the best-fit linear regression and the 1:1 

line. Most of the points are scattered around the 1:1 line when the model is driven by the area-

weighted rain gauge data with estimated ETₒ-RS according to PM and HS methods. However, 
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there is considerable deviation at high flows (e.g. the model underestimates some measured 

discharge peaks >500 m3 s-1) and for hydrograph recessions (in which predicted flows tend to 

reduce slightly faster than those observed).  This results in a slope for the best-fit regression 

which is less than unity in the Lesser Zab catchment. This systematic deviation was more 

pronounced when the model was driven by the uncorrected TMPA-3B42 and TMPA-3BRTuc 

rainfall data with ETₒ-RS using JH and MB methods (Figure 4.7a and c). The slope for the best-

fit regression in Sirwan river match the 1:1 line when the LEMSAR driven by corrected TMPA-

3B42 and 3B42RT with ETₒ-RS HS (Figure 4.7 f and h) compared to the Lesser zab catchment. 

Goodness-of-fit statistics are presented in Table 4.4. These statistics reinforce the message 

derived from the graphs that the model tends to under-estimate the measured river discharge in 

the validation periods regardless of the rainfall and ETₒ data used for the Lesser Zab catchment. 

While simulated flow tends to over-estimated for Sirwan river catchment. The best NSE value 

for the validation period was obtained using the corrected TMPA-3B42 with ETₒ HS data for 

the Lesser Zab catchment. As expected, model performance was poorest when it was driven by 

the uncorrected TMPA-3B42 / 3B42RT with ETₒ JH and MB data (lowest NSE, highest BIAS 

and highest RMSE) in both catchments. Overall, the TMPA-3B42 product has relatively higher 

performance compare to TMPA-3B42RT with the ETₒ HS and PM than ETₒ, JH and MB in 

both catchments. 
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Figure 4. 6. Observed and simulated hydrographs for the Lesser Zab River and Sirwan River 

above the Dukan and Darbandikhan reservoir. In all cases, hydrological model parameters were 

calibrated using the gauged rainfall data with ETₒ-G (PM) in the Lesser Zab catchment (see 

section 3.2.5). Validation period (2012-2014) for Lesser Zab when the model was driven by 

the uncorrected and the corrected TMPA-3B42 rainfall data with different estimated ETₒ-RS are 

shown in (a), (b), (c) and (d). Data for the validation period (2010-2014) for Sirwan catchment 

are shown in (e), (f), (g) and (h) when the model driven by the uncorrected and the corrected 

TMPA-3B42 rainfall data with different estimated ETₒ-RS.  
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Figure 4. 7. Scatterplots of observed versus simulated discharge for the validation period 

(2012-2014) for Lesser Zab when the model was driven by the uncorrected and the corrected 

TMPA-3B42 rainfall data with different estimated ETₒ-RS are shown in (a), (b), (c) and (d). 

Scatterplots for the validation period (2010-2014) for Sirwan River are shown in (e), (f), (g) 

and (h) when the model was driven by the uncorrected and the corrected TMPA-3B42 rainfall 

data with different estimated ETₒ-RS. The solid line indicates the 1:1 relationship. The orange, 

purple, light blue and green lines show the best fit regression with 95% confidence intervals 

when the model driven by the uncorrected and the corrected TMPA-3B42 rainfall data with 

different estimated ETₒ (HS, JH, MB and PM) respectively. 
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Table 4. 4. Summary of goodness of fit criteria for simulated discharge in the Lesser Zab and 

Sirwan River catchments. * Significant at p 0.01. Note that the model was not calibrated for 

the Sirwan River catchment. 

Catchment Precipitation  
ETₒ  

methods 

RMSE 

(m3 sec-1) 

BIAS 

(%) 
r NSE 

Lesser Zab TMPA-3B42uc PM 92 -21 0.74* 0.41 

  HS 84 -10 0.78* 0.44 

  JH 96 -28 0.73* 0.42 

  MB 92 -23 0.74* 0.41 

 TMPA-3B42c PM 102 20 0.78* 0.52 

  HS 99 11 0.80* 0.61 

  JH 109 34 0.77* 0.47 

  MB 101 17.5 0.78* 0.52 

 TMPA-3B42RTuc PM 127 1.3 0.56* 0.16 

  HS 116 15.3 0.58* 0.24 

  JH 128 -8 0.55* 0.07 

  MB 125 -1.6 0.56* 0.13 

 TMPA-3B42RTc PM 117 -34 0.57* 0.22 

  HS 115 -21 0.60* 0.26 

  JH 121 -45 0.56* 0.17 

  MB 120 -39 0.57* 0.2 

Sirwan River TMPA-3B42uc PM 55 -8 0.65* 0.22 

  HS 53 5 0.71* 0.26 

  JH 56 -15 0.63* 0.22 

  MB 55 -11 0.65* 0.27 

 TMPA-3B42c PM 62 15 0.71* 0.24 

  HS 66 32 0.75* 0.31 

  JH 60 6.6 0.69* 0.12 

  MB 61 13.1 0.71* 0.18 

 TMPA3B42RTuc PM 92 4.3 0.47* 0.18 

  HS 91 18.9 0.52* 0.17 

  JH 92 -3.1 0.44* 0.19 

  MB 92 2.3 046* 0.18 

 TMPA-3B42RTc PM 116 31 0.51* 0.1 

  HS 112 21 0.55* 0.14 

  JH 118 48 0.48* 0.12 

  MB 120 28 0.50* 0.13 
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4.3.5 Flow duration curves for Lesser Zab and Sirwan River 

Flow duration curves (FDC) for both observed and simulated river discharge are shown in 

Figure 4.8. The match between the curves is generally good, although there is some under-

prediction of discharge at high exceedance percentiles (i.e. low flows tend to be under 

predicted) and some over-prediction of flows in the 5-25 exceedance percentile range.  Again, 

the under-prediction of low flows is due in part to the simple nature of the baseflow model 

adopted here and its parameterisation. The source of rainfall data and different ETₒ used to drive 

the model had a significant effect on the shape of the FDC.  Flows were under predicted over 

most of the range when the model was driven by the uncorrected TMPA-3B42 and over 

predicted when the model was driven by the uncorrected 3B42RT data with regardless ETₒ-RS 

data used. Overall, reproduction of the FDC was better when the model was driven by the 

corrected TMPA-3B42RT data than when it was driven by the TMPA-3B42 with ETₒ-RS HS 

data. 
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Figure 4. 8. Observed and simulated FDCs for the validation period (2012-2014) for Lesser 

Zab when the model was driven by the uncorrected and the corrected TMPA-3B42 rainfall data 

with different estimated ETₒ-RS are shown in (a), (b), (c) and (d). FDCs for the validation period 

(2010-2014) for Sirwan River are shown in (e), (f), (g) and (h) when the model was driven by 

the uncorrected and the corrected TMPA-3B42 rainfall data with different estimated ETₒ-RS. 

The orange, purple, light blue and green lines show FDCs when model driven by the ETₒ (HS, 

JH, MB and PM respectively). 
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4.4 Discussion 

In this chapter, reference evapotranspiration (ETₒ) was estimated based on four methods using 

ground-observed and RS-derived meteorological data (i.e., AIRS and reanalysis wind speed 

data from MERRA) at four stations in northeastern Iraq. For mean daily air temperature, AIRS 

and ground-based measurements were very similar for all sampled stations. The positive bias 

for 𝑇𝑎 increased with increasing station altitude. Similarly, for RH the relationship between 

AIRS and ground-based measurements was strong, albeit with a negative bias, for all stations. 

Despite the better spatial resolution of the MERRA data compared to AIRS data, this chapter, 

explicitly, focuses on the value of the RS data and avoid reanalysis products as much as 

possible. Reanalysis data (which often integrate data from different sources) can be sensitive 

to observing system changes and there is often some uncertainty due to variations in both the 

models used and in the analysis techniques employed (Rienecker et al., 2011). Unfortunately, 

I were not able to avoid using reanalysis products completely and MERRA wind speed data 

( 𝑈2) was required because to date no RS wind speed data are available. The relationships for 

DS and 𝑈2 were weak for all stations. The effect of differences between RS and ground-based 

meteorological variables on ETₒ rate will depend on the model sensitivity to the variable in 

question (i.e., if the model is sensitive to an input variable then predictions of ET will differ 

significantly if the RS estimate for that variable differs from the ground-based measurement; 

conversely, if the model is insensitive to the variable in question then ET will be relatively 

unaffected by errors in the RS estimates). Differences could be due to the different spatial 

reference frames employed, with meteorological stations recording point measurements and 

RS platforms observing spatially aggregated variables over large grid cells or pixels. As well 

as altering ET using empirical methods, differences in 𝑇𝑎 estimates will also affect other 

temperature-dependent values such as vapour pressure deficit and ∆.  

There was generally reasonable agreement between ETₒ-RS and ETₒ-G for all the ETₒ methods 

evaluated, based on high R2 values and regression line slopes close to unity compared with the 

predictions driven by ground-based measurements. However, there was some variation in 

model performance for individual stations. Regressions between the bias in input variables (RS 

versus ground) and the bias in ETₒ estimates (calculated using RS versus the benchmark) for 

all methods are shown in Table A3. Strong and significant relationships were observed between 

the bias in sunshine duration and the bias in ETₒ in the case of the JH and MB methods (R2 > 

0.95, p < 0.05) for all stations. This is not unexpected, given the dependence of these methods 
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on solar radiation (and indirectly DS) suggesting high sensitivity. Other relationships were 

insignificant – even for the bias in ET from the HS method versus the bias in Ta, possibly 

because the HS method also depends on the theoretical radiation flux density at the top of the 

atmosphere. The bias in ETₒ-RS for the PM equation was most sensitive to DS and wind speed, 

reflecting the high importance of both radiative and aerodynamic terms in this method (by 

definition).  

The PM model tended to predict lower ETₒ than when using ground-based data for the Dukan 

station, but higher ETₒ for the Sulaimani, Penjween and Charta stations. This is mainly due to 

the sensitivity of the PM method to meteorological input data (i.e. radiation, air temperature, 

humidity and wind speed: Allen et al., 1998). Thus, the effects of disparities between ground-

level measurements and RS estimates can be significant on ETₒ calculations especially in 

windy, warm and or dry conditions (Allen et al., 1998). For instance, 𝑇𝑎 derived from RS 

overestimated ground-based measurements for the Penjween and Chwarta stations in the 

mountains (1284 and 1128 m ASL, respectively) but underestimated 𝑇𝑎 at Dukan, which is 

located at lower altitude (690 m ASL). These results agree with the results reported by Ferguson 

and Wood (2010) which showed that the positive bias of near-surface air temperature from 

AIRS increased with increasing elevation. Similar to 𝑇𝑎, DS and  𝑈2 also contributed 

significantly to the deviation of RS and ground-driven ET using the PM method due to high 

bias and RMSE for the RS-estimates of these variables compared to ground-based 

measurements. 

In the cross-comparison of the ETₒ methods (i.e., when the RS-driven models were compared 

with the benchmark data set), ETₒ-RS (HS) slightly underestimated ETₒ-G (PM: Table 4). This 

could be due to: (i) The absence of humidity terms in the HS method (Temesgen et al., 2005; 

Tabari et al., 2011) in contrast to the PM method in which ETₒ is positively correlated with 

vapour pressure deficit. This is especially important in semi-arid environments were humidity 

deficits can be high (i.e., when low relative humidity results in a steep gradient in vapour 

pressure between the surface and the bulk atmosphere). (ii) The fact that temperature-based 

methods (HS) tend to underestimate ETₒ at high wind speeds of >3 m s−1 (Allen et al., 2000). 

In the original PM method, wind speed is included via the aerodynamic resistance term (which 

is combined with the surface resistance, specific heat capacity and air density in the FAO 

version shown in Equation (4.6) via the constants 900 and 0.34). (iii) The fact that atmospheric 

transmissivity (the ratio of the global solar radiation at ground level to that received at the top 
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of the atmosphere, (Bo et al., 2009; Baigorria et al., 2004)) in semi-arid area tends to differ 

from other areas due to lower atmospheric moisture content (Bo et al., 2009). A number of 

other studies (Jensen et al., 1997; Kashyap and Panda, 2001; Yoder et al., 2005; Trajkovic, 

2007; Landeras et al., 2008; Tabari and Talaee, 2011) have reported that the HS method can 

overestimate ETₒ in humid environments and under estimate it in semi-arid regions (Tabari, 

2009). Although a slight negative bias was also observed here, the HS model yielded lower 

RMSE values overall compared with the other methods suggesting that it is a reasonable 

method for estimating ETₒ in semi-arid regions similar to our study area (even when driven by 

RS data). This result is in agreement with López-Urrea et al. (2006), Tabari (2009) and Tabari 

and Talaee (2011) who concluded that the HS method can be successfully used in semi-arid 

areas.  

The positive bias obtained from comparisons between ETₒ-RS calculated using the JH and MB 

methods and ETₒ-G PM is in accordance with both Jensen et al. (Jensen et al., 1990) and Tabari 

et al. (Tabari et al., 2011) who found that these models tend to overestimate ETo compared with 

the PM method, by as much as 30% and 60%, respectively. In this study the JH and MB 

methods overestimated the benchmark average annual ETₒ at all stations (Figure 4.4) by 

between 9% and 40%. Instead, the average annual ETₒ predicted by the HS method was similar 

to that estimated by the PM method for all stations (e.g., bias ranged between −0.6% and −9%).  

This study did not take into account the effects of vegetation factors on the ET rate and, instead, 

focussed on climatic factors. ETₒ expresses the evaporation power of the atmosphere at a 

specific location and time of the year and does not consider land cover characteristics and soil 

factors (Allen et al., 1998). If required, crop-specific ETp can be calculated from ETₒ using 

crop-specific resistance terms in the PM equation or, more generally, using crop coefficients 

Allen et al. (1998) which account for differences in vegetation canopy characteristics such as 

leaf area index, canopy height and stomatal resistance. ETa can be calculated from ETp (or 

ETₒ) if soil moisture content can be estimated, often via a linear reduction in ETa:ETp between 

a threshold moisture content and the permanent wilting point. 

RS-derived precipitation and ETₒ estimates were also combined to force the LEMSAR model 

in the Lesser Zab and Sirwan River catchments, assuming there is no ground-based 

meteorological observations. Compared to rainfall, evapotranspiration has little influence on 

the water balance at a daily time scale. The LEMSAR model had the highest efficiency with 
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ETₒ-RS (HS) compared to the other methods. This is may be because of underestimated of ETₒ-

RS (HS (section 4.3.3) is balanced by less water lose in the water balance equation used in the 

LEMSAR model, leading to a good prediction of river discharge. The LEMSAR model 

performance in the Sirwan river basin was not as good as its performance in the Lesser Zab 

catchment. This may related to the fact that; using calibrated parameter for Lesser Zab 

catchment cannot represent characteristics of the Sirwan catchment when streamflow were 

predicted without calibrating the LEMSAR model to the observed river discharge data of this 

catchment; hydrological responses between both catchment are different (i.e. the Dukan 

catchment has fewer more extreme high flow events due to the permeable nature of this 

catchment than Sirwan catchments).  

4.5 Summary 

In this chapter, the accuracy of daily ETₒ estimates derived from remote sensing (ETₒ-RS) were 

assessed and compared with those derived from four ground based stations (ETₒ-G) in Kurdistan 

(Iraq) over the study periods (2010-2014). Remote sensing data products used were near 

surface air temperature, relative humidity and cloud cover fraction from the Atmospheric 

Infrared Sounder / Advanced Microwave Sounding (AIRS)/ AMSU), and wind speed at 10 m 

height from MERRA (Modern-Era Retrospective Analysis for Research and Application). Four 

methods were used to estimate ETₒ: Hargreaves - Samani (HS), Jensen - Haise (JH), 

McGuinness - Bordne (MB) and the FAO Penman Monteith equation (PM). Compared to ETₒ-

G (PM) as the main benchmark, HS underestimated ETₒ by 2%-3% (R2 = 0.86 to 0.90; RMSE 

= 0.95 to 1.2 mm d-1 at different stations). JH and MB overestimated ETₒ by 8% to 40% (R2= 

0.85 to 0.92; RMSE from 1.18 to 2.18 mm d-1). The annual average values of ETₒ estimated 

using RS data and ground-based data were similar reflecting the low bias in daily estimates. 

They ranged between 1153 and 1893 mm y-1 for ETₒ-G and between 1176 and 1859 mm y-1 for 

ETₒ-RS. The overall performance of the LEMSAR is satisfactory as it meets the evaluation 

criteria in the Lesser Zab catchment. But it performs poorly in the Sirwan catchment. Model 

validation performance was best (highest NSE and r; lowest RMSE and bias) using the 

corrected 3B42 data product with ETₒ-RS HS method and poorest when the model was driven 

by uncorrected 3B42RT data with ETₒ-RS JH and MB methods in both catchments. The results 

suggest that TRMM data and ETₒ-RS can be used to drive rainfall-runoff modelling in data-

scarce semi-arid catchments. 
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Chapter 5: Evaluation of terrestrial water storage variability in northern 

Iraq using a combination of GRACE, well data and water balance model 

estimates 
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Part of this chapter will be  submitted as: 

Najmaddin, P., Whelan, M. and Balzter, H (2017) Evaluation of water storage variability 

in northern Iraq using a combination of GRACE, well data and water balance modelling. 

Remote Sensing of Environment (2017). 

5.1 Introduction  

Water scarcity has long been a major problem across the Middle East (Joodaki et al., 2014) and 

is likely to increase in future under the combined pressures of climate change and rising 

demand due to rapid economic development and population growth (Michel et al., 2012). The 

catchments of many major rivers (e.g. the Tigris and the Euphrates) are shared by more than 

one country and the construction of dams has significantly contributed to reduced downstream 

river flows (Abdul Hameed et al., 2010). Groundwater is, therefore, increasingly relied upon 

for water supply in many areas. It is, therefore, important to understand and quantify 

spatiotemporal variations in groundwater storage for better water resource planning and 

management and to reduce unsustainable groundwater exploitation (Konikow and Kendy, 

2005)  (Stevanovic et al., 2009; Joodaki et al., 2014). This is often challenging due to a paucity 

of systematic observations at the regional scale (Chenoweth et al., 2011; Kavvas et al., 2011; 

Voss et al., 2013; Mulder et al., 2015). In chapters 3 and 4 the river discharge was simulated 

and evaluated based on RS data. In this chapter, GRACE-derived groundwater depletion in 

northern Iraq are compared and evaluated with observed well water depths and water balance 

predictions from the LEMSAR calibrated and validated on observed river discharge data. 

 

5.2 Materials and Methods  

5.2.1 Study area 

The study area of interest in this chapter is Lesser Zab catchment and Hawler well monitoring 

zone which was described in (chapter 2, section 2.1). 

5.2.2 In situ data 

In situ data (i.e. gauge station and well data) used in this chapter was described in (chapter 2, 

section 2.2). 
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5.2.3 Remote sensing data 

The remote sensing data of interest in this chapter is GRACE  data which described in ( chapter 

2, section 2.3.4) 

The arithmetic mean (GRACE_TWSA) calculation 

The arithmetic mean (GRACE_TWSA) of the three data products (CSR, GFZ and JPL) was taken 

to minimize the uncertainties associated with the data processing. In addition, TWSA solutions 

were multiplied by the provided scale factors. Missing data were gap-filled using the na.spline 

method (R Core Team, 2014).  In addition, uncertainty for GRACE_TWSA (𝑈𝑇𝑊𝑆𝐴) was 

calculated (Eq. 5.1) using provided gridded fields of leakage and GRACE measurement errors, 

which were downloaded as separate files from the NASA data server. Measurement errors are 

manifested as both random and systematic errors (Wahr et al., 2006). Leakage errors are 

residual errors after filtering and rescaling (Landerer and Swenson, 2012). 

 

    𝑈𝑇𝑊𝑆𝐴 = √ (𝜎𝑚)2 + (𝜎𝑙)2                                      (5.1) 

where 𝜎𝑚 is the standard deviation of measurement error:  

𝜎𝑚 = √(variance _measurment error)/N      
 

(5.2) 

and 𝜎𝑙  is the standard deviation of leakage error: 

𝜎𝑙 = √(variance_ leakage error)/𝑁                   (5.3) 

 in which N is the number of pixels.  

5.2.4 GLDAS data and groundwater storage estimates 

Monthly GLDAS water storage prediction were obtained for the study period 2003-2014 from 

the NASA data server at http://grace.jpl.nasa.gov/data/get-data/land-water-content/. There 

https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Variance
http://grace.jpl.nasa.gov/data/get-data/land-water-content/and
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were converted to monthly anomalies (S_GLDAS) from the monthly average GLDAS̅̅ ̅̅ ̅̅ ̅̅ ̅ for the 

period 2004-2009 (i.e. S_GLDAS = GLDAS𝑖 −  GLDAS̅̅ ̅̅ ̅̅ ̅̅ ̅) where i is the month. This was then used 

to estimate the groundwater contribution to the total water storage anomaly from GRACE. This 

is facilitated by the fact that GLDAS data have the same spatial and temporal resolution as the 

GRACE data sets (Rodell et al., 2004). Uncertainty in S_GLDAS was calculated using. 

𝜎𝑔 = √ 
variance − S_𝐺𝐿𝐷𝐴𝑆

𝑁
                       

  

(5.4) 

where 𝜎𝑔 is the standard deviation of GLDAS data (6.45 mm for the Hawler well monitoring 

zone and 9.47 mm for the Lesser Zab catchment). 

Groundwater residual anomalies (GRACE_GWRA) were calculated as the difference between 

GRACE_TWSA and S_GLDAS (Figure 5.3). This approach has been evaluated by (Rodell and 

Famiglietti, 2002; Yeh et al., 2006; Rodell et al., 2009; Voss et al., 2013; Bhanja et al., 2016) 

and it has been demonstrated that the groundwater component as the residual of the total water 

can be successfully isolated from the GRACE data using GLDAS data. 

Total uncertainties in GRACE_GWRA were calculated using: 

𝑢𝐺𝑊𝑅𝐴 = √(𝜎𝑔)
2

  +     𝑈𝑇𝑊𝑆𝐴                              
 

(5.5) 

where 𝑢𝐺𝑊𝑅𝐴 is the uncertainty in GRACE_GWRA.  

 

5.2.5 Observed groundwater levels and groundwater storage anomalies  

In order to validate the GRACE_GWRA, regional average groundwater depths were calculated 

based on raw well depth observations from 65 wells distributed across the Hawler well 

monitoring zone (Figure 2.1) using kriging (Boisvert and Deutsch, 2011). Average 

groundwater depth was converted into well level anomalies (i.e. deviations of equivalent water 

depth relative to the average well level between 2004 and 2009) and then multiplied by the 

https://en.wikipedia.org/wiki/Variance
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specific yield (Sy) (i.e. the ratio of the volume of water that drains from saturated rock to the 

total volume of the rock). Sy is dimensionless and typically has values in the range 0.01-0.3 

(Moore, 2007). A sensitivity analysis of the assumed specific yield is also shown in Figure 5.1 

(i.e. Observed_GWRA calculated with different values of Sy). The specific yield modified the 

magnitude of the time series of observed groundwater recharge anomaly but not the relative 

pattern. Hence, the specific yield is assumed arbitrarily to be 0.01 everywhere in the Hawler 

well monitoring zone and constant with time although, we acknowledge that Sy is a substantial 

source of uncertainty. Additionally, in order to establish the error associated with observed 

ground water level data the confidence interval (CI) 95% was calculated using: 

95%CI = 𝑀 ̅̅ ̅ ± 1.96 ∗ SE                           (5.6) 

where 𝑀 ̅̅ ̅ is the mean value of observations and SE is the standard error of the mean. 
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Figure 5. 1. Differences in the average observed groundwater anomaly in the Hawler well 

monitoring zone, assuming different values of specific yield for the period from 2003 to 2009 

(note the different y-axis scales). The dark grey shaded area represents the 95% confidence 

interval (CI) derived from observed variability in well water depths. 
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5.2.6 Rainfall-runoff model 

LEMSAR model applied in this chapter was described in chapter 3.2.4. It used to calculate 

the net catchment monthly change in total storage using Eq. 5.7. All terms are calculated on a 

daily basis using Euler’s method of integration with a time step of 0.1. 

 

∆𝑆

𝑚𝑜𝑛𝑡ℎ
= ∑ 𝑃 − 𝐸𝑇𝑎 − 𝑞𝑏 − 𝑞𝑇𝐹 − 𝑞𝑜 − 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

𝑁=𝑑𝑎𝑦𝑠

𝑡=1

  (5.7) 

 

where ∆𝑆 is the total storage change (mm), 𝑡 is time (d), P is precipitation (mm d−1), 𝐸𝑇𝑎 is 

actual evapotranspiration (mm d−1), 𝑞𝑜 is overland flow (mm d−1), 𝑞𝑏 is groundwater discharge 

(mm d−1) and 𝑞𝑇𝐹 is shallow throughflow (mm d−1). 

 

In order to compare these predictions with GRACE data, the monthly change in total water 

storage (GRACE_TWSC) was derived from GRACE_TWSA using:  

 

𝐺𝑅𝐴𝐶𝐸−𝑇𝑊𝑆𝐶 = 𝐺𝑅𝐴𝐶𝐸−𝑇𝑊𝑆𝐴(𝑖 + 1) − 𝐺𝑅𝐴𝐶𝐸−𝑇𝑊𝑆𝐴 (𝑖) (5.8) 

where i is an index for the month. 
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5.3 Results 

5.3.1 GRACE_TWSA and GRACE_GWRA. 

Figure 5.2 shows the GRACE_TWSA for the Lesser Zab catchment and the Hawler well 

monitoring zone, along with the trend lines over the monitoring period (2003 – 2014). 𝑈𝑇𝑊𝑆𝐴 

was found to be 32.8 mm for the Hawler well monitoring zone and 69.7mm for the Lesser Zab 

catchment. Figure 5.3 also shows the GRACE_TWSA but, in addition, displays the GRACE_GWRA 

values, calculated as the difference between GRACE_TWSA and S_GLDAS, in terms of equivalent 

water heights, for the Lesser Zab catchment and the Hawler well monitoring zone. There is a 

clear trend in both areas of decreasing total water storage and groundwater storage 

(GRACE_TWSA and GRACE_GWRA trends were -33.72 ± 2.52 mm y-1 and -31 ± 1.8 mm y-1 for 

the Lesser Zab catchment, respectively and-35.4 ± 2.52 mm y-1 and -34 ± 2.04 mm y-1 for the 

Hawler well monitoring zone, respectively). 𝑢𝐺𝑊𝑅𝐴 was found to be 38.73 mm and 79.17 mm 

for the Hawler well monitoring zone and Lesser Zab catchment respectively (grey shading).  
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Figure 5. 2. Temporal variability of GRACE_TWSA, (a) in the lesser Zab catchment and (b) in 

the Hawler well monitoring zone from January 2003 to December 2014. The green lines show 

the linear trends in GRACE_TWSA over the whole period. The dark grey shaded area represents 

the uncertainty error in GRACE_TWSA ( 𝑈𝑇𝑊𝑆𝐴).  
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Figure 5. 3. GRACE-total water storage anomalies (GRACE_TWSA), the terrestrial water 

storage (snow pack and soil) anomaly (𝑆_𝐺𝐿𝐷𝐴𝑆) and GRACE-groundwater residual anomalies 

(GRACE_GWRA) for the Lesser Zab (a) catchment and the Hawler well monitoring zone (b) 

over the period 2003-2014. The dark grey shaded area represents the total uncertainties in 

GRACE_GWRA (𝑢𝐺𝑊𝑅𝐴 ).   

 

Monthly precipitation and reference evapotranspiration (ETₒ) are shown in Figure 5.4 for each 

zones. This is, to some extent, explained by decreasing rainfall in both areas over the study 

period (i.e. negative trend of -22 and -9 mm y-1) although the gradient in rainfall and in the net 

modelled water balance from LEMSAR are not as high as those for groundwater storage 

estimates derived from GRACE. The seasonality in GRACE_TWSA, GRACE_GWRA and rainfall 

are shown in Figure 5.5. GRACE_TWSA and GRACE_GWRA tend to be higher during winter wet 

season (October to April) and lowest during the summer (May to September).  

 

 



118 
 

 

Figure 5. 4. Annual precipitation and reference evapotranspiration for (a) the Lesser Zab 

catchment and (b) the Hawler well monitoring zone from 2003 to 2014. The dashed red and 

black lines show linear trends in evapotranspiration and rainfall, respectively. 
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Figure 5. 5. Boxplots of (left) GRACE_TWSA, (right) GRACE_GWRA and monthly precipitation 

for the Lesser Zab catchment (a and b) and the Hawler well monitoring zone (c and d) from 

2003 to 2014.  The horizontal line within each box represents the median, the box boundaries 

represent upper and lower quartiles and the dashed whiskers show the maximum and minimum 

values. 

 

5.3.2 Comparison between Observed_GWRA and GRACE_GWRA in the Hawler well 

monitoring zone. 

Figure 5.6 shows a comparison between GRACE_GWRA and Observed_GWRA (assuming Sy 

=0.01). Overall, both variables have a decreasing trend over the period. The GRACE_GWRA data 

suggest a total annual groundwater loss of 0.41 km3 (recharge area = 15553 km2), over the 
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study period 2003-2009. The magnitude of observed groundwater loss in the Hawler well 

monitoring zone depends on the value chosen for Sy, so the data shown should be viewed in 

relative terms. That said, there appears to have been a dramatic decrease in mean observed 

groundwater level in late 2004 and 2008-2009. The coefficient of determination (R2) between 

GRACE_GWRA and Observed_GWRA was just 0.26 but the slope of the regression was close to 1 

when the line was constrained to go through the origin and the RMSE was 92.4 mm y-1. The 

strong seasonal patterns in GRACE_GWRA is also seen in the observed data but is less regular. 

The gradient in GRACE_GWRA with time was slightly steeper than the trend in Observed_GWRA.  

 

 

 

Figure 5. 6. (a) Comparison of GRACE_GWRA and Observed_GWRA for the Hawler well 

monitoring zone.  Linear fits are shown with straight lines. (b) Scatter plot of GRACE_GWRA 

against Observed_GWRA. 

 

5.3.3 Simulated river discharge in the Lesser Zab catchment 

Figure 5.7 shows the simulated and observed river discharge in the Lesser Zab river above the 

Dukan reservoir. The black line shows the observed river discharge and the green line shows 

the simulated discharge. Generally, both the magnitude and the seasonal patterns in the 

observed discharge are well-captured by the model, although there was some deviation at high 
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flows (hydrograph peaks under-predicted by the model) and baseflow is also under predicted. 

Goodness-of-fit statistics between simulated and observed river discharge for calibration and 

validation are presented in (Chapter 3). The daily predicted groundwater flow was significant 

in low flow periods. Predicted melt-derived flow can be substantial in spring and may 

contribute to some occasional events and groundwater recharge. Simulated river discharge is 

plotted against observed data in Figure 5.7 (b), along with the 1:1 line and the best fit linear 

regression. The slope of the regression equation was close to unity, (0.98) suggesting a good 

match between modelled and measured discharge, overall. The simulated net-catchment water 

balance is shown in Table 5.1. Simulated mean river discharge decreased annually by -18 mm 

y-1. This could be partly explained by an increase in reference evapotranspiration (ETₒ) by 6 

mm y-1: Table 5.1 over the study period. However, the actual annual evapotranspiration 

predicted by the model is fairly constant (constrained by soil moisture availability) and the 

decrease in discharge is most like to be driven by the decrease in rainfall. 

 

Figure 5. 7. (a) Observed and simulated hydrographs for the Lesser Zab river above the Dukan 

reservoir. Measured discharge in black (2010 -2014) and simulated in green (2003-2014). (b) 

Scatter plot of simulated discharge against measured discharge over the period 2010-2014. 

Linear fit is shown in grey line. The solid line indicates the 1:1 relationship.  

 

 



122 
 

Table 5. 1. Annual modelled water balance for the Lesser Zab catchment over the study 

period 2003-2014. 

Date Precipitation 

(mm y-1) 

ETₒ  

(mm y-1) 

ETa  

(mm y-1) 

Simulated 

discharge 

(mm y-1) 

Change in 

Storgae 

(mm y-1) 

2003 878 1267 374 506 -2 

2004 897 1317 409 491 -3 

2005 685 1288 344 348 -7 

2006 890 1246 375 529 -14 

2007 590 1297 319 298 -27 

2008 426 1356 295 131 0 

2009 681 1292 367 306 8 

2010 542 1433 276 282 -16 

2011 677 1295 359 322 -4 

2012 738 1362 380 352 6 

2013 660 1338 356 308 -4 

2014 633 1285 365 285 -17 

Trend (mm y-1) -19 6 -2 -18  

 

5.3.4 Comparison between GRACE and LEMSAR predictions 

Comparison between the simulated water balance (Equation 5.7) and total water storage change 

from GRACE (Equation 5.8) are shown in Figure 5.8.  The LEMSAR model was able to 

capture the changes in total terrestrial water storage estimated by GRACE quite well. The slope 

for the best-fit regression was 0.75 although the R2 was low (0.26, p<0.01). The relative pattern 

of water storage was calculated by adding up the change in storage from GRACE and 

LEMSAR. In each case, the initial storage was set at an arbitrary value of 100 mm. It should 

be noted that this does not reflect the actual water storage in the system- simply the relative 

pattern over time in both, so as to facilitate a comparison between GRACE observations and 

LEMSAR predictions (Figure 5.8c and d). The predicted trend in the relative simulated water 

balance from LEMSAR was -15 ± 1.44 mm y-1 between 2003 and 2014 compared to -33.72 ± 

2.52 mm y-1 from GRACE. The two graphs differ mainly in the magnitude of winter peaks and 
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summer troughs with LEMSAR underestimating terrestrial water storage in winter between 

2003 and 2007 and over estimating storage in summer between 2008 and 2013. The amplitude 

of the simulated (LEMSAR) water balance was lower than that for GRACE_TWSA. The 

coefficient of determination between the relative GRACE_TWSA and simulated water balance 

was high (R2 = 0.69, p< 0.01) but the slope (0.44) was substantially less than unity.   

 

 

Figure 5. 8. (a) Monthly changes in total water storage estimated from GRACE and simulated 

by LEMSAR over the period 2003-2014. (b) Scatter plot between GRACE total water storage 

anomaly change and mass changes predicted by LEMSAR. (c) Comparison between the 

relative patterns of total water storage from GRACE and LEMSAR. (d) Scatter plot of relative 

total water storage predicted by LEMSAR (x-axis) and GRACE (y-axis). Linear fits of two 

variables are shown with the dashed red line. Black line shows 1:1 line. 
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5.4 Discussion 

Other studies have used GRACE data to assess trends in water resources in this region (Voss 

et al., 2013; Mulder et al., 2015). However, these data have never previously been corroborated 

by measured data. Here, in this chapter, for the first time, GRACE observations with observed 

well data in the Northern Iraq have compared.  In this chapter, a rainfall-runoff model driven 

by observed meteorological data and calibrated and validated using observed river discharge 

observations have also applied. The GRACE_TWSA data suggest that the total water volume 

stored in the soil, surface waters and groundwater in the region has decreased by approximately 

0.55 km3 each year for the Hawler well monitoring zone and 0.39 km3 each year for the Lesser 

Zab catchment over the study period 2003-2014. This loss is alarming because the region was 

already facing severe water scarcity. Very low precipitation in late 2005 and 2008-2009 

probably explains the bulk of the dramatic decreases in GRACE_TWSA signals over this period.  

Thereafter annual change in the GRACE signal decreases (but does not disappear entirely). 

Rainfall on the other hand, has been approximately stable since 2009. This suggests that a new 

(low storage) steady state where the out flow of the system (river discharge, evapotranspiration 

and enhanced evapotranspiration resulting from irrigation of abstracted water) is in balance 

with lower recharge values (as suggested by Voss et al. (2013) and Mulder et al. (2015)) may 

not yet have been established .  

There is considerable uncertainty in the GRACE_TWSA values which could be influenced by 

spatial leakage from neighbouring regions (Bhanja et al., 2016; Rodell and Famiglietti, 2002; 

Longuevergne et al., 2010; Rateb et al., 2017) although the GRACE_TWSA  trend for a larger 

study area was estimated by Voss, et al. (Voss et al., 2013) at 27.2 ± 0.6 mm y-1 and Mulder, 

et al. (Mulder et al., 2015) at -39 ±8 mm y-1 are comparable to the trends I report here.  

The analysis presented here suggests that groundwater depletion is by far the main single 

contributor to the observed negative GRACE_TWSA trend (i.e. accounting for approximately 70% 

of the total volume of the water loss in the Lesser Zab catchment and 78% in the Hawler well 

monitoring zone). Common factors that affect ground water depletion in both areas include; 

(1) Meteorological drought (i.e. low precipitation combined with high ETₒ. Several years of 

below-normal precipitation (Figure 5.4) have contributed to the decline in ground water levels. 

Average annual precipitation was low in 2008 and 2010 but it has increased after 2011 (e.g. 

>700 in 2012). This implies that the observed negative trend in GRACE_TWSA is unlikely to be 
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related to changes in precipitation alone but may affected by also other factors (2) the 

dominance of karstified aquifers which have high recharge during wet periods but also fast 

response through springs which can result in depletion during dry periods (Stevanovic et al., 

2009); (3) human activity, such as increases in abstraction to maintain crop yields via increased 

irrigation. Over-abstraction can lead to decreases in groundwater storage even in the absence 

of meteorological drought. However, in dry years, abstractions tend to increase as farmers 

attempt to supplement reduced rainfall with extra irrigation exacerbating the effects of reduced 

recharge on ground water storage. In situ data  were used to corroborate this assertion including 

the documented drilling of 7303 extra wells to exploit groundwater resources according to the 

well database (Table 2.3). Almost 62% of wells in the Lesser Zab catchment and 60% in the 

Hawler well monitoring zone are used for irrigation (Figure 5.9), which is common in Arabian 

countries (Richey et al., 2015). This is likely to have resulted in a rapid increase of groundwater 

consumption in the study period and may go some way to explain the deviation of modelled 

water storage calculations (which are only driven by meteorological data) from the GRACE 

observations and well water levels. 

For both areas, results show that the combined contributions of over-abstraction and variation 

in precipitation exposes the groundwater system to additional stresses. For instance, according 

to the well database (Table 2.3), approximately 14% of wells in the Hawler well monitoring 

zone and 28% in the Lesser Zab catchment dried-out completely between 2003 and 2010.  

Water level is deeper than 100 m > 65% of wells in the Hawler well monitoring zone and 62% 

in the Lesser Zab catchment (Table 2.3).  
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Figure 5. 9. Pie chart of principal usage for existing wells in (a) the Lesser Zab catchment and 

(b) the Hawler well monitoring zone (Ministry of Agriculture and Water Resources in the 

Kurdistan Regional Government). 

 

Although the observed and GRACE-based GWS anomalies show strong seasonality in the 

Hawler well monitoring zone, the gradient of Observed_GWRA was lower than that for the 

GRACE_GWRA. There are several potential explanations for this deviation including the lower 

spatial resolution of GRACE products (1° x 1°), significant uncertainty in the applied scaling 

factors (Landerer and Swenson, 2012) and uncertainty (𝑢𝐺𝑊𝑅𝐴) in the GRACE_GWRA . There is 

also significant uncertainty in specific yield assumptions to change observed groundwater 

levels to EWH.  

The good performance of LEMSAR-predicted river discharge (R2=0.64, p<0.01, slope= 0.98) 

compared to observed discharge (2010-2014) using measured meteorological data suggests that 

it can provide good estimates of the water balance (Table 5.1). This is confirmed by reasonable 

agreement between LEMSAR-derived water balance calculations and total water storage 

changes from GRACE (Figure 5.8). The seasonal amplitude of storage changes differed in all 

months (GRACE_TWSC estimates had larger amplitude than the simulated changes in storage) 

which was manifested as a lower storage loss in LEMSAR compared with GRACE_TWSA in the 

Lesser Zab catchment. This deviation of LEMSAR total water storage estimates from GRACE 
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observations support the hypothesis outlined above that meteorological drivers for storage 

depletion have been exacerbated by other factors. The most obvious additional factor affecting 

groundwater levels in this region is abstraction, which is believed to have increased in recent 

years. Once constructed, new wells encourage irrigation in areas where previously irrigation 

may have been limited, facilitating an unsustainable level of abstraction, even when 

meteorological drought has passed. It is very difficult to estimate over abstraction. However, 

if we assume that abstraction is equal to the difference between the storage changes estimated 

from GRACE and the equivalent LEMSAR outputs (Figure 5.8c), more than 50% of the total 

water loss may be related to abstraction. Explanation for the difference in yearly mass 

variations between GRACE and LEMSAR may related to the structure of LEMSAR’s 

groundwater model which has a low storage capacity compared to natural systems and 

forecasting issues in GRACE-TWSA itself. 

 

5.5 Summary 

Evaluating groundwater resources is crucial for water resources management and policy 

making. The main goal of this chpter is to explore the capability of the Gravity Recovery and 

Climate Experiment (GRACE) satellite to quantify multi-annual groundwater trends over the 

semi-arid land of North Iraq, a region with scarce hydrological and meteorological 

observations and subject to immense pressures on its limited water resources from urban 

expansion, agricultural intensification and water demands caused by the significant migration 

of refugees. The mean of three different GRACE-derived data products for total water storage 

(GRACE_TWSA) and monthly soil water content predictions from near-surface hydrological 

model simulations from the Global Land Data Assimilation System (GLDAS) were used to 

derive GRACE ground water residual anomalies (GRACE_GWRA) over the study period 2003 

- 2014. These estimates were compared with observation data from 65 wells (Observed_GWRA). 

A daily lumped water balance model (the Leicester Model for Semi-Arid Regions: LEMSAR) 

calibrated on river discharge data in the Lesser Zab catchment was used to calculate the 

terrestrial water balance independently, using meteorological data from four ground-based 

stations. Total water storage in the study area decreased significantly over the study period. 

Trends in GRACE_TWSA were approximately -33.72 ± 2.52 mm y-1 equivalent water height 

(EWH) for the Lesser Zab catchment and -35.4 ± 2.52 mm y-1 for the Hawler well monitoring 
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zone. Trends in GRACE_GWRA and Observed_GWRA were similar and indicate that the well 

monitoring zone has lost groundwater over the period at an average of -26.52 ± 5.4 and -24.4 

± 1.44 mm y-1 respectively. The trend in modelled water storage predicted by LEMSAR was 

approximately -15 ± 1.44 mm y-1 for the Lesser Zab catchment. This suggests that only about 

half of the decrease in water storage in this region can be explained by meteorological driver. 

The rest could be due to increased (unsustainable) abstraction from existing and a new wells 

in the region. 
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Chapter 6: General Discussion and Conclusions  
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6.1 Meeting the aim and objectives 

Water is an important precious in arid and semi-arid regions where it is often in short supply 

and, therefore, needs to be managed more carefully. Good management requires a solid 

understanding of the stocks and flows of water, including consideration of spatial and temporal 

variability. This understanding can be acquired through the collection and analysis of data and 

via the construction of conceptual models. Unfortunately, however, the availability of 

hydrological studies in many semi-arid catchments is poor leading to non-exist ant or 

inadequate water recourses management strategies. One issue is the common paucity of 

observations of meteorological variables, water storage (e.g. groundwater level) and river 

flows, either because of low levels of monitoring investment of the retention of data by 

government agencies (i.e. data are un available to scientists). Remote sensing offers a number 

of opportunities for filling data gaps or for substituting ground-based observations entirely. 

Satellite sensors can now yield estimates of meteorological data (e.g. rainfall temperature, 

relative humidity and solar radiations flux density) which can be used to drive models of the 

terrestrial water balance. Satellite data can also be used to estimate terrestrial water storage via 

systematic changes to the earth’s gravitational field. Whilst such data have been available for 

some time now, their accuracy relative to ground based data) and their utility for hydrological 

investigations (i.e. for driving hydrological models) remains uncertain. If they can be shown to 

give reliable estimates of the variables required to calculate (and validate) water fluxes and 

stores, these methods have tremendous potential for improving systematic water resources 

management in these water scarce areas. Different algorithms and regression equations of 

various complexity and theoretical foundations are used to convert raw RS signals into 

hydrological variables. Such methods are of course, subject to uncertainty which will clearly 

impact the quality of any simulations using RS data. However, traditional observations are also 

impacted by uncertainty and measurement errors. Although, RS data can provide a spatial scale 

that may better correspond to the size of the catchment area (instead of point data). They are 

hitherto scarcely used in hydrological modelling. This may be related to the lack of ground 

observation data to verify the RS data.  

Given this background, the overall aim of the thesis was to develop a conceptual catchment 

scale rainfall-runoff model framework using remote sensing data in order to simulate river 

discharge and groundwater storage variability in a data-scarce semi-arid region. This 
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framework could then be used to improve present and future water resource management. To 

achieve this aim the following objectives were accomplished:  

1. To develop a conceptual rainfall-runoff model framework which is parsimonious 

(i.e. has a low number of easily identifiable parameters) and which can run using 

a minimum input data set of daily temperature and precipitation. 

 

The Leicester Model for Semi-Arid Regions (LEMSAR) model (section 3.2.4) has been 

developed to simulate river discharge at the catchment outlet. LEMSAR attempts to capture 

the important processes involved in precipitation transfer to river discharge. Briefly, the 

catchment is conceptualised using three (lumped) moisture stores: (1) a single soil store, 

characterised by its depth (z), whole profile porosity (⏀ ) and by hydraulic parameters which 

describe the relationship between soil water content and unsaturated hydraulic conductivity; 

(2) a groundwater store which is augmented by recharge from the soil and depleted by baseflow 

to the river and (3) a time-variable snowpack.  During times of precipitation events soil storage 

is filled and emptied by drainage described the unit hydraulic gradient (gravity flow) using the 

g method. LEMSAR model has low data requirements which (daily rainfall and reference 

evapotranspiration) and a simple conceptual model structure which requires the evaluation of 

only eleven parameters.  The groundwater store model is the weaknesses of the LEMSAR. 

Currently, a very simple linear storage conceptualisation is employed in LEMSAR with an 

arbiter choice of initial storage and calibrated parameters. This clearly provides a poor 

description of low flow in the catchment and also probably misrepresents the contribution of 

groundwater flow during storm events-due to the karstic nature of the aquifers have. The 

LEMSAR model was written in R, which allows to inclusion of additional process 

representations, uncertainty and automatic calibration.  

 

2. To evaluate the ability of this conceptual model to simulate river discharge at the 

catchment outlet in a semi-arid catchment. 

 

In Chapter 3, the LEMSAR model was tested and evaluated in the Lesser Zab catchment in 

North Iraq. Overall, model performance for predicting discharge was reasonable, particularly 

given the relatively simplistic assumptions made and the large size of the catchment. This 

suggests that runoff dynamics in this catchment are principally controlled by the soil moisture 
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balance and that groundwater dynamics and snow melt make relatively small contributions to 

the shape and magnitude of the hydrograph (although snow melt is predicted to be significant 

in spring and baseflow is important in the dry season). However, significant uncertainty exists 

in the model simulations reported, manifested as equifinality. The aleatory component of this 

uncertainty could be quantified using GLUE which defines uncertainty bounds on predicted 

flows (resulting, in part, from poorly constrained calibration) but epistemic uncertainty is 

unknown and likely to be significant.  

3. To evaluate the utility of satellite-based precipitation data to drive the rainfall-

runoff model and to compare the predictions of runoff which are generated with 

those generated using ground-based meteorological data (i.e. simulating reduced 

input data availability and quality).  

 

The utility of satellite-derived rainfall data to force the LEMSAR model were evaluated in 

Chapter 3. TMPA data products were biased towards an under-estimation of observed rainfall 

and needed to be corrected. A bias-correction approach was employed, which rescales standard 

scores (z scores) using the mean and standard deviation of the gauged rainfall data. Overall the 

TMPA-3B42 data product out-performed the 3B42RT data in terms of the Probability of 

Detection (POD), the Heidke Skill Score (HSS) and the False Alarm Ratio (FAR) compared 

with gauged rainfall. Hydrological model performance was also generally better when driven 

by the corrected 3B42 data than when the 3B42RT data were used. When LEMSAR was driven 

by corrected TMPA- 3B42c rainfall, predicted runoff in the validation period was as good as 

or better than that predicted using gauge-derived data. This suggests that the corrected TMPA 

rainfall data particularly TMPA-3B42 (or equivalent data from GPM) can be used to predict 

river discharge in this catchment which may be useful for future water resources management.  

4. To estimate reference evapotranspiration (ETₒ) from remote sensing (RS) data 

and to compare these estimates with those generated using ground-based 

meteorological data (i.e. simulating reduced input data availability and quality).  

  

Chapter 4 assessed the validity of using daily RS-derived meteorological variables for 

estimating daily ETₒ compared with ETₒ from the same models driven by ground-based 

meteorological variables, for four stations in northeastern Iraq. The results were also compared 

with a benchmark model (PM) driven by ground-based meteorological observations. The good 
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agreement (i.e., low RMSE and bias and high r) between AIRS-derived and ground-based data, 

particularly near-surface air temperature, and the generally good performance of the ET models 

compared to the benchmark data set, suggest that AIRS data can be used as alternatives to 

conventional meteorological data to estimate daily ETₒ with reasonable accuracy. Considering 

the low density of ground-based stations and the paucity of climatological records in regions 

such as Iraq, this is encouraging for future hydrological studies and for better-informed water 

management. The application of the PM method is limited in many semi-arid regions of the 

world by lack of required weather observations. In such circumstances, simpler models are 

often used to estimate ETₒ. In this case, the RS-driven HS method produced better ETₒ estimates 

(compared to the PM equation as a benchmark) than the other models. This confirms others 

reports about the performance of the HS model (López-Urrea et al., 2006; Tabari, 2009; Tabari 

et al., 2011)  which should be used where complete weather observation data are lacking and 

can also can be successfully employed using RS data to yield accurate and useful daily ETₒ 

estimates. Some reanalysis data products already exist which attempt to estimate ETₒ using a 

combination of RS data and ground-based data and numerical models (e.g., MERRA-2). Future 

work could usefully compare ETₒ estimates generated here with those predicted by MERRA-

2. RS-derived precipitation and ETₒ estimates were also combined to force the LEMSAR model 

in the Lesser Zab and Sirwan river catchments. Different river discharge simulations were 

performed, driven by daily uncorrected and corrected TMPA rainfall data sets with different 

estimated ETₒ-RS values. In the Lesser Zab catchment, the LEMSAR model performance was 

better when it was driven by the corrected TMPA-3B42 data with ETₒ-RS (HS) than when 

3B42RT was used with ETₒ-RS (PM, JH and MB).  In the Sirwan river catchment, in which 

optimized parameter values from the Lesser Zab catchment were used to simulate river 

discharge, LEMSAR performance was relatively poor. For example, the correlation between 

simulated river discharge and observed river discharge was low (e.g. NSE < 0.5). This may 

related to the fact that, although the both catchments are neighbours, the hydrological processes 

operating are quite different.  It also leads weight to the argument that good hydrological model 

performance can rarely be achieved without catchment-specific calibration (Post and Jakeman, 

1999). 
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5. To evaluate variations in total terrestrial water storage using a combination of 

remote sensing data (GRACE), observed well data and rainfall-runoff modelling. 

 

In Chapter 5, total water storage and groundwater storage variability were evaluated in north-

eastern Iraq using a combination of GRACE data, well observation and modelling. The results 

show that total water storage has been depleted significantly over the period 2003-2014. This 

trend, in part, reflects prevailing meteorological conditions (e.g. declining rainfall) but this has 

probably been exacerbated by increased abstraction which may continue into the future, even 

if rainfall increases. The reasonable correlation between GRACE observations and well levels 

confirms that GRACE data can be used to monitor the variability of total water storage in the 

study area.  Other studies have used GRACE data to assess trends in water resources in this 

region such as (Voss et al., 2013; Mulder et al., 2015). However both studies suggested that 

TWS decreased by 27.2 mm y-1 and 39 ± 8 mm y-1 respectively between January 2003 and 

December 2009, unfortunately, these studies were unsupported by ground-based observations 

of water table levels to verify their results.  

Changes in total water storage from LEMSAR were well correlated with GRACE observations 

but the slope of the decreasing trend predicted by LEMSAR was significantly lower than that 

implied by both GRACE and well level observations. This could be imply that depletions in 

groundwater level have been markedly increased by abstractions (which are not taken in to 

account in LEMSAR). The increase in well numbers documented here suggest that abstraction 

have significantly increased and that water resources in this region are unlikely to recover 

unless abstractions are more rigorously managed. Reduction in human dependence on 

groundwater (e.g. by adopting techniques such as rainwater harvesting (Al-Ansari et al., 2014) 

and more efficient water use (e.g. drip irrigation (Zakaria et al., 2012) are also urgently required 

to bridge the supply-demand gap for both domestic and agricultural purposes.   
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6.2 Conclusions 

The research presented in this thesis has focused on developing and testing a new conceptual 

lumped rainfall-runoff model to simulate river discharge and evaluate ground and surface water 

storage variability in data scarce semi-arid regions. The LEMSAR model contains only eleven 

parameters that require calibration and has quick simulation times at daily time-steps. The 

LEMSAR model uses daily rainfall and reference evapotranspiration (which can be generated 

using a number of methods, depending on the availability of meteorological data) input to 

produce a time series of estimated river discharge. The model can be forced by either in situ 

meteorological data or remote sensing data. Overall, remote sensing data (TMPA and ETₒ-RS) 

showed reasonable potential for forcing rainfall-runoff models. Simulated discharge was 

reasonable during calibration periods according to the statistical criteria used in this study (i.e. 

NSE= 0.75). LEMSAR model validations were also good suggesting satisfactory simulation of 

daily river flows at the catchment scale (i.e. NSE= 0.66). The trend of GRACE, well level 

observations and modelling show that total water storage has been depleted significantly. The 

reasonable correlation between GRACE and well level observation suggest that GRACE data 

can be used to evaluate total water storage variability in data-scarce semi-arid areas. 

Specifically, this research explains how RS data can be used to drive hydrological models to 

simulate streamflow and water storage variability in arid regions when there is a dearth of 

ground-based observations. The broad-scale approach to modelling presented here may 

provide valuable information for better policy making and planning to ensure efficient use of 

water resources in data scarce semi-arid areas. 
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6.3 Recommendation for future research 

Although the application of simple rainfall-runoff models, such as LEMSAR, using RS data 

has great potential aspects of the model could still be improved. Several future research 

directions have been revealed through the results in this thesis, in relation to future satellite 

missions and the development of LEMSAR model including: 

 LEMSAR was calibrated based on ground measurements (precipitation and reference 

evapotranspiration. However, it is important for future work to also re-calibrate 

LEMSAR with RS data to assess whether its performance is improved or not. This also 

provide a fairer comparison with model performance during validation using RS data 

as model inputs. Future work should also be done to evaluate new coming satellite-

based rainfall (e.g. the NASA GPM project). TRMM officially ended in 2015, but a 

recent study by Prakash et al. (2016) highlighted that the recently released Integrated 

Multi-satellite Retrievals for GPM (IMERG) to detect of rainfall has the same ability 

as TRMM rainfall data did.  

 Obtaining accurate estimates of daily ETₒ-RS are still challenging in areas outside of 

Europe and the USA. Further study is recommended to expand (and, where possible 

test) the daily ETₒ-RS methodology or different ET equations presented in this thesis 

from catchment scale to global scale.  

 The snow melt results presented in Chapter 3 provide a preliminary exploration of the 

importance of this process for the timing and magnitude of total river discharge. 

However, the actual contributions of snow melt to river discharge are unknown. 

Measuring this variable for large remote area using snow surveys is an expensive task. 

RS is an alternative method, which can detect snow cover area (SCA) and which can 

then be used as a proxy for snow water equivalent (SWE). Thus, future research is 

needed to reduce uncertainty on snow melt contributions to the river discharge, 

especially during the melting period and to validate this prediction by independent 

studies using some field data in combination with RS data (i.e. MODIS, SCA data). 

 Although simulated total stream flow was in broad agreement with the recorded total 

stream flow, there is still significant uncertainty, particularly at low flows. This may 

related to existing  artificial structures such as irrigation and diversion canals in the 

study area but no information about the amount water used to irrigate farms is currently 

available. This clearly influences the accuracy of the model simulation. More 
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importantly, however, significant uncertainties exist about the nature of groundwater 

dynamics in this catchment and how best to represent this in the model. Currently, the 

behaviour of the groundwater model is the weaknesses of the LEMSAR model. One 

important issue with this groundwater model is that low flows in the sustained dry 

summers experienced in the catchment are poorly predicted. This is clearly important 

from a water resources management perspective. Future work is required to improve 

this aspect of the model. 

 The Intergovernmental Panel on Climate Change IPCC (2013) stated that the global 

temperature is predicted to increase by 1.5 °C by the end of the twenty-first century. 

Consequently, changes to the climate will be associated with changes in a number of 

components of the hydrological cycle such as: precipitation patterns, atmospheric water 

vapour content, soil moisture content, snow cover and snow pack depth, widespread 

melting of ice and surface water runoff (Bates et al., 2008). As a result annual surface 

and near- surface runoff, river discharge and water availability are projected to increase 

in some relatively wet areas (Bates et al. 2008) and projected to suffer a decrease in the 

arid and semi-arid areas particularly in southern Europe, western Russia, North Africa 

and the Middle East (Arnell, 2003; Kundzewicz, 2008).  It is recommended therefore 

to evaluate the impact of land use and climate change scenarios in semi-arid regions in 

terms of changing hydrological processes. Model such as LEMSAR could be used for 

this purpose-particularly if they can be properly validated for current climatic 

conditions so that we can have some confidence in their ability to represent processes. 

 Further research assessing the transferability of model parameters (Broderick et al., 

2016) between contrasting climate conditions and a range of different catchments is 

recommended to better understand the role of hydroclimatic regime. Future work 

should also evaluate the impact of uncertainties associated  with hydrological modelling 

(Clark et al., 2016)  on water resources management.  

 Finally, future work is needed to make the R package for LEMSAR available to the 

research community. So that it can be more widely used and tested. 
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Appendixes 

 

Table A. 1. Some soil physical properties for different location in study area (SP% = Saturation Percentage, O.M % = Percent Organic matter, 

and O.M.C % = Optimum Moisture Content. 

ID 
Sample 

Location 

Particle size distribution % 

Soil texture 

Bulk 

density 

Mg/m3 

Water content at 
Available 

water % 
SP% 

O.M 

% 

O.M.C 

% Clay Silt Sand -1500 kPa -33kPa 

1 Barzinja 56.093 39.845 4.062 Clay 1.13 24.20 35.55 11.35 60.3 1.740 24.88 

2 Cwarqurna 15.887 49.073 35.040 Loam 1.43 10.13 19.59 10.72 28.3 1.180 13.04 

3 Dukan 32.759 49.914 17.328 Silty clay loam 1.36 16.04 26.29 10.25 48.4 2.53 18.34 

4 Chwarta 46.12 45.26 8.62 Silty clay 16 22.3 33.02 10.72 55 1.4 22.5 

5 Mawat 29.361 30.484 40.155 Silty clay 1.41 14.85 24.94 10.09 54.6 1.960 15.92 

6 Qalachwalan 36.713 35.140 28.147 Clay loam 1.3 17.42 27.86 10.44 50.5 1.140 18.53 

7 Qaladza 57.782 37.838 4.380 Clay 1.2 24.79 36.22 11.43 53.4 2.73 25.27 

8 Sangasar 50.514 41.534 7.951 Silty clay 1.33 22.25 33.33 11.08 58.6 1.85 23.27 

9 Sarseer 51.011 41.425 7.564 Silty clay 1.21 22.42 33.53 11.11 57.3 1.53 23.42 

10 Ranya 50.87 41.79 7.34 Silty clay 1.89 21.2 32.2 11 53.2 1.68 22.21 
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Figure A. 1. LEMSAR model function code 
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Figure A. 2.  Plot of daily ETₒ estimates derived from ground-based measurements (ETₒ-G) 

and remote sensing data (ETₒ-RS) using PM method from 2010 -2014 for Sulaimani, Penjween, 

Chwarta and Dukan stations. The black line presents the ETₒ-G. The blue line presents the ETₒ-

RS when the PM model driven by constant-wind speed. The green line presents the ETₒ-RS when 

the PM model driven by MERRA-wind speed. 
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Figure A. 3. Scatterplots of estimated daily reference evapotranspiration using ground-based 

measurements  using PM method (ETₒ-G) versus estimated reference evapotranspiration using 

remote sensing data (ETₒ-RS) using PM method when the PM  was driven by with MERAA- 

wind speed and constant-wind speed at four different stations (Sulaimani, Penjween, Chwarta, 

and Dukan). The solid black line indicates the 1:1 relationship. The grey line shows the best-

fit regression with 95% confidence interval (equations and R2 also shown). 
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Table A. 2. Statistical summary of comparisons between estimated daily reference 

evapotranspiration using ground-based measurements (ETₒ-G) and remote sensing data (ETₒ-

RS) with MERRA-wind speed and constant-wind speed data for PM methods at four different 

stations (Sulaimani, Penjween, Chwarta, and Dukan) over the study period 2010-2014. 

Station Variable RMSE  BIAS (%) R 

Sulaimani (MERRA-wind 

speed) 

1.47 2.5 0.8* 

 (constant-wind 

speed) 

1.45 15.7 0.85* 

Penjween (MERRA-wind 

speed) 

1.57 17.2 0.8* 

 (constant-wind 

speed) 

1.4 30 0.91* 

Chwarta (MERRA-wind 

speed) 

1.23 12.8 0.86* 

 (constant-wind 

speed) 

1.2 27 0.92* 

Dukan (MERRA-wind 

speed) 

1.78 -13 0.81* 

 (constant-wind 

speed) 

1.1 -1.1 0.492* 
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Table A. 3. Statistical summary of (BIAS %) between daily ground-measured and remotely-

sensed values of 𝑇𝑎 , RH %, 𝐷𝑆 and 𝑈2 and BIAS % summary of estimated daily reference 

evapotranspiration using remote sensing data (ETₒ-RS) for four different methods against the 

benchmark data set (PM method using ground-based measurements: ETₒ-G : PM) for four 

different stations (Sulaimani, Penjween, Chwarta, and Dukan) over the study period 2010-

2014. * means significant at p<0.05. 

 

 
Bias for ETo (%)  Bias for meteorological 

variables (%) 

Station PM HS JH MB Ta  RH DS U2 

Sulaiman

i 
2.5 -9 21.4 24.5 -14.2 -0.6 27.8 16.1 

Penjwee

n 
17.7 -1.9 37 40 28.4 -13.4 34.8 10.2 

Chwarta 12.8 -0.6 33.3 37 -0.1 -26 24.5 9.1 

Dukan -13 -2.6 11.2 8.6 -2.8 -7.3 -47.7 21.8 

Bias for ETo vs bias for meteorological variables  

 PM vs Ta HS vs Ta JH vs Ta MB vs Ta 

R2 0.36 0.35 0.43 0.33 

P- value 0.64 0.65 0.57 0.67 

    

 PM vs DS JH vs DS MB vs DS 

R2 0.94 0.956 0.969 

P- value 0.06 0.04* 0.031* 

  

 PM vs RH% 

R2 0.29 

P- value 0.71 

  

 PM vs U2 

R2 0.81 

P- value 0.19 
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Table A. 4. Summary of annual ETₒ-G and ETₒ-RS (with MERRA-wind speed and constant-wind 

speed data) for PM method at four different stations (Sulaimani, Penjween, Chwarta, and 

Dukan) over the study period 2010-2014. 

 

Station variable Year 

2010 2011 2012 2013 2014 

Sulaimani ETₒ-G  mm y-1 1385 1269 1290 1109 1482 

ETₒ-RS mm y-1
  (MERRA-wind 

speed) 

1439 1304 1316 1285 1328 

ETₒ-RS mm y-1
 (constant-wind 

speed) 

1577 1473 1497 1485 1499 

Penjween  1183 1150 1154 1054 121 

ETₒ-RS mm y-1
  (MERRA-wind 

speed) 

1474 1329 1305 1321 1323 

ETₒ-RS mm y-1
 (constant-wind 

speed) 

1561 1471 1495 1484 1497 

Chwarta ETₒ-G  mm y-1 1274 1133 1144 1091 1275 

ETₒ-RS mm y-1
  (MERRA-wind 

speed) 

1430 1307 1318 1290 1331 

ETₒ-RS mm y-1
 (constant-wind 

speed) 

1560 1472 1496 1484 1498 

Dukan ETₒ-G  mm y-1 1864 1767 1848 1706 1372 

ETₒ-RS mm y-1
  (MERRA-wind 

speed) 

1588 1479 1479 1435 1460 

ETₒ-RS mm y-1
 (constant-wind 

speed) 

1762 1678 1675 1674 1677 
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