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Preface

In this book we are attempting to offer a modification of Dirac’s theory of the
electron we believe to be free of the usual paradoxa, so as perhaps to be acceptable
as a clean quantum-mechanical treatment.

While it seems to be a fact that the classical mechanics, from Newton to Ein-
stein’s theory of gravitation, offers a very rigorous concept, free of contradictions
and able to accurately predict motion of a mass point, quantum mechanics, even
in its simplest cases, does not seem to have this kind of clarity. Almost it seems
that everyone of its fathers had his own wave equation.

For the quantum mechanical 1-body problem (with vanishing potentials) let
us focus on 3 different wave equations1:

(I) The Klein-Gordon equation

(1) ∂2ψ/∂t2 + (1−∆)ψ = 0 , ∆ = Laplacian =
3∑

1

∂2/∂x2
j .

This equation may be written as

(2) (∂/∂t− i
√

1−∆)(∂/∂t + i
√

1−∆)ψ = 0 .

Here it may be noted that the operator 1−∆ has a well defined positive
square root as unbounded self-adjoint positive operator of the Hilbert
space H = L2(R3).

(II) The Dirac equation is of the form (“ = 1/2 of (I)”)

(3) (∂/∂t + iHD)ψ = 0 ,

where HD is a square root of 1 − ∆, but not the above positive one;
rather, Dirac introduces some hypercomplex units2α1, α2, α3, β such
that αjαl + αlαj = 2δjl , αjβ + βαj = 0 , β2 = 1 . Then he defines

1We use units of length, time and energy making c = m = e = � = 1, cf. footnote 1 of ch.1.
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xii

HD = α.D + β with D = (D1,D2,D3) Dj = −i∂/∂xj , and then gets
H2

D = 1−∆, so that, indeed, HD is a square root of 1−∆.
(III) The Schrödinger equation arises if we “approximate”

√
1−∆ ≈

1− 1
2∆, resulting in the equation

(4) (∂/∂t + i(−1
2
∆ + 1))ψ = 0 ,

where the last term - corresponding to the rest mass of the particle -
usually is eliminated by a substitution eitψ → ψ, so that we then get

(5) (∂/∂t + iHS)ψ = 0 with HS = −1
2
∆ .

If there is an electromagnetic field present, represented by a scalar electrostatic
V and a 3-vector electromagnetic potential A, we get

(6) HD = α(D −A) + β + V ,

and

(7) HS =
1
2

∑
(Dj −Aj)2 + V ,

as Dirac or Schrödinger “Hamiltionian”.
We have presented above 3 wave equations to exhibit their interrelation: Most

discussions of elementary quantum mechanics deal either with the Schrödinger
equation or the Dirac equation, or with both. But it is clear at once, that the
approximation

√
1 + x ≈ 1 + 1

2x is good only for very small x. This means that
also the approximation between the operators (6) and (7) can be useful only for
very small momenta3. So, only one - either Schrödinger or Dirac - can reflect the
real world, one should think. Why then do both equations enjoy their existence,
parallel to each other?

One feels tempted to declare the Dirac equation as the true wave equation of the
1-body problem. Indeed, first of all, the spectrum of the operator HD of (6) exhibits
the split of basic hydrogen states, known as fine structure, while the operator HS

only has these as states of higher multiplicity4, ignoring the fine structure split.
Next, looking at both equations from a mathematical aspect, one finds that
2Such αj , β may be represented by self-adjoint 4×4-matrices with complex coefficients, making

(3) a (hyperbolic symmetric) system of 4 linear first order PDE-s in 4 unknown functions. A

variety of such representations are in use.
3The rest energy of an electron is ≈ 500000eV , while the energies of the various bound states

of the hydrogen atom range around 10eV . So, for the spectral lines of H the relative error should

be around 10−4, perhaps good enough for even the accuracies of spectral measurements.
4For more details cf. sec.3.0.
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eq. (3) with HD of (6) is a true wave equation while eq.(5) with HS of (7) does
not have this property. More precisely, eq. (3) is a first order hyperbolic system
(of 4 equations in 4 unknown functions). It exhibits a finite propagation speed,
and a geometrical optics. “Finite propagation speed” means that a disturbance at
t = 0 (at a point x0) propagates only within a cone |x− x0| ≤ ct (with a constant
c > 0) - it cannot be felt outside that cone.“Geometrical optics” means that,
approximately, - with an error depending on wave length (i.e., momentum) - the
time-propagation may be described by letting an initial configuration (at t = 0)
propagate along “light rays” - that is, along a certain field of orbits. Evidently
then, for the Dirac equation, this field of orbits will be given by the classical field
of motion. Rather, one then will find two such fields of orbits, reflecting the fact
that eq. (3) really takes care of two particles - electron and positron, propagating
along different orbits.

But this parallel becomes even more striking because - as we will discuss later
on (cf. sec.4.6) - the Dirac equation’s geometrical optics does not only define
the classical orbits of propagation of the two particles, but also assigns a magnetic
moment riding on each particle - that is, a 3-vector changing along the propagation,
exactly as indicated by equations valid for a magnetic moment (of Bohr strength)
in the electromagnetic field of the potentials A,V. In other words, this geometrical
optics also represents the electron spin.

Finally, the Dirac equation remains invariant (rather co-variant) under Lorentz
transforms - i.e., it is compatible with theory of relativity. In comparison to the
above, the Schrödinger equation does not have above properties. It lives in a
mathematical environment of its own, is not a hyperbolic equation, in particular.
One might list in its favour that it allows a simple generalization to multiple
particle problems: For a system of N particles with masses mj and charges ej

(without other outside fields) one just uses the equation

(8) (∂/∂t + iHN
S )ψ = 0 with HS = −1

2

N∑

1

1
mj

∆j + V ,

involving 3N independent variables xj
l : j = 1, . . . , N, l = 1, 2, 3, with ∆j =∑3

l=1 ∂2
xj

l

and V =
∑

j,k
ejek

|xj−xk| .
Moreover, it appears that the Schrödinger equation seems to be firmly en-

trenched as equation of the harmonic oscillator (i.e., equ. (5) with HS = 1
2{−∂2

x +
ω2x2} , in one variable x, with a “frequency” ω = 2πν), and indispensable for
quantum field theory, involving theory of “light quant’s” - that is, particles other
than electrons).

For a system of eletrons and protons however, the Schrödinger equation should
survive only as an approximation, not as the real thing.
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From the above perspective, with all its beautiful agreements, it then appears
as a very disturbing fact that the Dirac equation was plagued by a variety of
systematic difficulties seemingly leading into rather bad contradictions. The aim
of the present book is to eliminate these: We will try to show that they appear only
due to a deficient (or incomplete) interpretation of quantum mechanical prediction.

What then are the theoretical foundations of quantum mechanical prediction?
While in classical mechanics one may accurately predict the status of a physical
system, once its initial status (at t = 0) is precisely determined, this is not so
in quantum mechanics. Given an initial status, the data at a future time may
be predicted only with a certain probability. The accuracy of such prediction is
limited. In particular, the Heisenberg uncertainty princile states that location and
momentum of a particle cannot both be predicted with infinite precision.

Note, the initial concept of quantum mechanical prediction grew out of obser-
vation of spectral lines of light emitted by excited atoms. Schrödinger found that
the spectral lines emitted by hydrogen atoms could be explained by looking at the
linear operator H = −∆ − c

|x| , with a suitable constant c, under suitable condi-
tions at ∞. This operator has a sequence of negative eigenvalues λ0 < λ1 < . . .

with lim λj = 0. The energies corresponding to the spectral lines of hydrogen then
coincided with the differences of the (energy states) λj .

Based on this fact (and other similar ones) mathematicians brought into play a
general spectral theory of unbounded self-adjoint operators on a separable Hilbert
space H. In the above we have H = L2(R3) and the self-adjoint operator H in a
suitable domain, such that ψ,Hψ ∈ H. Based on an earlier theory of Hilbert this
was mainly started by J.v.Neumann [JvN1,2] and F.Riesz [Rie1], and developed
into a field where many authors contributed5.

J.v.Neumann, in his book [JvN], then also attempted to design a precise formal
scheme of prediction, perhaps generally accepted, as follows.

The status of a system (like an atom) is fully described by specifying
a unit vector ψ of some given separable Hilbert space H. This vector
ψ is called the physical state of the system; it contains all the data
available.

The properties or quantities which can be predicted are called “ob-
servables”. Each observable is represented by an unbounded self-adjoint
linear operator A acting on (a dense subdomain of) H. Such a self-
adjoint operator possesses a spectral resolution {E(λ) : −∞ < λ <∞}

5cf. H.Weyl [Wey1], and the books of M.H.Stone [Sto1], B. Sz.-Nagy [Na1] , E.C.Titchmarsh

[Ti1,2]; especially note also the split of approaches, either abstract or specifically adapted to

differential operators.
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such that A =
∫ ∞
−∞ λdE(λ) (with a Stieltjes integral over the measure

dE(λ)). [Or, in simpler terms, A has an orthonormal eigenvector ex-
pansion or a corresponding integral expansion, or both - for different
parts of its spectrum.]

Physics then tries to predict the outcome of a measurement of an
observable in a given physical state. The result of such measurement
always must be a point of the spectrum Sp(A) of A. If λ ∈ Sp(A) is
measured, and λ is an isolated point-eigenvalue, then, after the mea-
surement, the system is assumed to be in a state ψ1 which is an eigen-
vector of A to eigenvalue λ, regardless of its earlier state ψ -i.e., we
have Aψ1 = λψ1. If such eigenvalue λ is simple (of multiplicity 1) then
the probability of measuring the value λ for A is given by |〈ψ1, ψ〉|2
with the inner product 〈., .〉 of H. In general, the probability of mea-
suring a value of A in the (open) interval (λ1, λ2) ⊂ R is given by
〈ψ, (E(λ2 − 0)−E(λ1 + 0))ψ〉. Thus the expectation value of the mea-
surement will be given by 〈ψ,Aψ〉 =

∫
λd〈ψ,E(λ)ψ〉.

As time propagates we may either keep all observables constant (in-
dependent of t), and let the state propagate as a solution of the wave
equation ∂u/∂t + iHu = 0 (where H denotes an observable - an un-
bounded self-adjoint operator on H - representing the total energy of
the system, and called the Hamiltonian of the system). Or else we may
let the states stay constant and let all observables propagate according
to the law A→ At = eiHtAe−iHt - noting that e±iHt are unitary oper-
ators on H. Both procedures will give the same prediction results. The
two above procedures are called the “Schrödinger representation” and
“Heisenberg representation”, respectively.

In particular, prediction of a measurement of the total energy H -
an observable - is independent of time: We get Ht = eiHtHe−iHt = H,
for all t, reflecting conservation of energy.

In the above it was assumed that the potentials A,V are independent of time.
For the Dirac equation one usually uses the Hilbert space H = L2(R3, C4),

called the configuration space and the total energy observable H = HD of (6).
Then it is common to work with a variety of dynamical observables, all derived from
important quantities of classical Physics, such as location, momentum, angular
momentum, spin, current, . . . . The difficulties in Dirac’s theory then arise from
the fact that (i) that equation ψ̇ + iHDψ = 0 must serve as wave equation for two
different particles - electron and positron - while (ii) prediction (or observation)

Preface



xvi

Here now we come in with our proposal of repair or modification of v.Neumann’s
procedure:

First of all, one should not attempt to work with a collection of
observables as large as v.Neumann does. All dynamical observables
are differential operators (perhaps of order 0, i.e., multiplications by a
function of polynomial growth). We propose to work with an algebra
of pseudodifferential operators6we call strictly classical, and allow
only self-adjoint operators within that algebra as observables. We will
give a physical motivation for this restriction in ch.2.

Secondly, working with the time-propagation A → At = eiHtAe−iHt,
of observables (with constant states), we want this time propagation to
depend smoothly on t, in a manner to be specified. This condition
alone will amount to further restrictions on observables, seemingly too
strong, because this excludes many dynamical observables. However,
the dynamical observables excluded are just the ones leading into con-
tradictions.

We resolve this difficulty by introducing an algebra P of precisely
predictable observables. - The elements of P are (strictly classical)
ψdo-s, and they have a smooth At, and J. v. Neumann’s principles
of predicting measurements, laid out above, should be applied only to
precisely predictable observables. Moreover then, for an observable
A which is not precisely predictable - such as location, for example -
we discuss some principles of finding precisely predictable approxima-
tions, that is, observables in P with expectation value close to that of
A. Such an approximation either may work for all states ψ. Or else,
it may work only for certain states - for example, if the particle is not
to close to the origin, or if it is known with certainty that the particle
is an electron - not a positron. At any rate, then, there is a built in

error for the prediction of expectation value. For example, location
has a built-in error of the order of the Compton wave length of the

6Pseudodifferential operators arise if we interpolate among the differential polynomials

a(x, D) =
∑

θ aθ(x)Dθ defined for a function a(x, ξ) =
∑

θ aθ(x)ξθ, polynomial in ξ, using a

procedure to allow definition of an operator a(x, D) also for more general functions a(x, ξ), not

polynomials in ξ. This will be done in such a way that the well known composition formulas

for products of differential polynomials - the so-called “Leibniz formulas” - still are valid in a

generalized form. For details cf. ch.1.

Preface
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electron, in agreement with the fact that location of an electron can-
not be predicted more accurately than its wave length - since in some
experiments the electron appears as a wave.

As another important observation: The elements of our precisely predictable
algebra P may be almost decoupled by a unitary pseudodifferential operator U

roughly similar to the Foldy-Wouthuysen transform (cf. [Th1], sec.3.3.9 or [DV1]).
Now, under some mathematical restrictions on the potentials A,V this decou-
pling (unitary pseudodifferential-) operator U may be refined in such a way that
it precisely decouples the Hamiltonian operator7 HD. Using this refined Foldy-
Wouthuysen decoupling, we then define a further restriction PX ⊂ P as the
subalgebra of operators precisely decoupled by (the refined) U , and then use PX
as algebra of precisely predictable observables.

This then will give an orthogonal split H = He ⊕ Hp of the Hilbert space
H into a space He of eletronic states and a space Hp of positronic states. And,
moreover, a precisely predictable observable A preserves this split - such operator
A is reduced by above decomposition; A maps He → He and Hp → Hp.

Following the v.Neumann principle thus modified will remove all difficulties of
Dirac’s theory. Moreover, we also investigate the behaviour of the algebras P
and PX under a Lorentz transform of the coordinate system, finding a kind of
covariance of these algebras (with features to be explained (ch.6)). [The algebras
PX are not uniquely characterized, by the way, leaving something open for physical
intuition, but also something in the way of a straight covariance.]

Finally, in ch.7, we undertake a study of certain precisely predictable approxi-
mations of observables not in P. Such approximations are not uniquely determined
either. Still, since it is proposed to use the spectral theory of these approxima-
tions as substitute for the non-corrected observable, their spectral theory will be
of interest, and it is hoped that it will not be too different from that of the original
observable. This is confirmed, indeed. In fact, for the two observables we studied
explicitly - location and eletrostatic potential - it was found that the approxima-
tion is unitarily equivalent to the original observable, so that only a unitary map
- not too far away from 1 is in the way.

In conclusion of this preliminary discussion we might note that a similar no-
tion of precisely predictable observables seems possible for gauge theories à la

7In other words, then the Dirac equation splits precisely into one equation for the electron, and

another one for the positron - both are strictly classical hyperbolic (2× 2-systems of) pseudodif-

ferential equations.
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Yang-Mills (cf.[FS]). Especially we may think of the two problems in nuclear
physics involving special representations of the Liegroups SU(2, C) and SU(3, C) of
Weinberg-Salam ([Sa1],[Wb1]) and Gell-Man ([GM1]) used for discussion of weak
and strong interactions - that is for their corresponding Dirac-type equations.

No such approach seems possible for the Schrödinger equation - at least not as a

t =
eiHtAe−iHt has very different properties for a second order differential operator
H.

However, we might make a distinction here between the case of equ. (8), where
the Schrödinger equation serves as a non-relativistic approximation only, and the
special case of the harmonic oscillator. In the first case, where we deal with an

of place anyhow. But the Schrödinger equation of the harmonic oscillator has
been used in Quantum Field theory as a (precise) wave equation of the Photon -
a particle of spin 0.

We address this case in ch.8. Interestingly, an algebra of precisely predictable
observables arises, but with the property that these observables are precisely pre-
dictable only at periodic times. This might be compared with the fact that total
energy HD(t) for a Dirac problem with time-dependent potentials also is not pre-
cisely predictable, except at the precise time t , but not earlier or later.

Assuming that a time-constant field A,V is superimposed with a field of an
oscillation - an electromagnetic wave - then also H(t) may be precisely predictable
only at periodic time-intervals. This, of course, would be a situation where an
atom emits (or absorbes) a photon, thereby changing its total energy. [And then,
it seems that time is also quantized - in the sense that only very special moments
can serve for precise observations.]

In fact, if we must admit that the outcome of our measurements can be precisely
predicted only at periodically occurring distinct times, then at once we might be
free from all concerns about so-called quantum jumps, because continuity at a set
of discrete points is a meaningless thing.

All in all, our improvement of v.Neumann’s “principles of quantum mechanics”
remains confined to a rather special set of problems. We must leave it to others
to perhaps use some of these ideas to design a fitting more general concept.

We have tried to anticipate the fact that this book might meet readers of very
different orientations. While, generally, we have tried to offer a mathematically
rigorous theory, including an introduction into (our kind of) pseudodifferential
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approximation only, a distinction of precisely predictable observables may be out

(cf.[Ca1]). However the simplest such case would deal with 8

directly analogous generalization. In fact, the Heisenberg representation A→ A

8- or 12×12- matrices,
and we have not attempted approaching it, so far.
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operators, we have tried to put lengthy and technical proofs into footnotes, or
somewhat out of the way, as not to bore others willing to accept the statements.
We have neglected to include an introduction into rigorous spectral theory of self-
adjoint differential operators in Hilbert space, although frequent use is made of
such things, referring to the large mathematical literature, already more than half
a century old. Regarding pseudodifferential operators, we did not include exis-
tence proofs of evolution operators, and the global Egorov theorem for hyperbolic
systems of pseudodifferential equations we developed in our book [Co5] is only
discussed for the Dirac operator, a very special symmetric hyperbolic operator,
although this is often used for more general such problems. Neither did we discuss
the proofs for global coordinate changes for ψdo-s, although, again, this is used.
Again, we did not include a general discussion of composition of Fourier integral
operators, although the evolution operator of HD is a Fourier integral operator.
But for the special compositions of FIOps we require, this is not needed. A sort of
“Egorov-type argument” always is sufficient for us. It avoids the nonlinear PDE-s
arising while obtaining newly-generated phase functions, focusing instead on some
kind of (linear) “Hamiltonian flow” in each case. In fact, we are making it a special
point, to be able to avoid Fourier integral operator calculus throughout this book
– just as well as we resist the temptation to translate our theory from Euclidean
space R

3 to differentiable manifolds, following a popular trend.
In conclusion: After looking over a multitude of introductions into Quantum

Theory - notably Dirac’s theory of the electron - given by Physicists and Mathe-
maticians, our personal orientation, emphasizing physical interest, spectral theory
and theory of pseudodifferential operators has lead us to a lookout over Quantum

Preface

Theory which seems distinctly different, in some respects. While we must admit
that we did not attempt a complete review of all relevant physical literature8,
we find it worthwile to hereby attempt a presentation to the general public - for
inspection and comments.

Our “Thanks” must be expressed to anybody - known or unknown - who en-
couraged us, especially the editor of this series, and the publisher, and to Stefan
Cordes who helped in many respects.

Heinz Otto Cordes
August 2006

8

[Th1]; For arguments for or against v.Neumann’s principles one might look into the papers of
Reference to older attempts dealing with Dirac paradoxes may be found in Thaller’s book

[DV]; also, the paper [GZA] of T. Gill et al. was recently brought to our attention.



Chapter 2

Why Should Observables be

Pseudodifferential?

2.0 Introduction

The present chapter will be irrelevant1 for the mathematical deployment in suc-
ceeding chapters. We offer this material only to provide a motivation for our claim
that a Dirac observable should be a self-adjoint pseudodifferential operator.

We shall consider the action of translations, rotations, and dilations on ψdo-s
- or, rather, on general bounded operators A : Hs → Hs−m. We shall find that
these actions are smooth, both in configuration space and in momentum space, if
and only if A is a ψdo of order m, not quite in Opψcm but in a slightly larger
such class, also equipped with some calculus of ψdo-s.

Note, the property “smooth” appears here as a mathematical idealization:
An observable certainly should be “insensitive” against small errors in
positioning our coordinate system - both in configuration space and in
momentum space - and this also should hold for small rotational errors
or dilational ones - if its prediction is to make any sense at all. The
idealization appears here as a replacement of “insensitive against small errors” by”

smooth under translational, rotational and dilational action”.

To explain in more detail, what this means: Consider the linear operators
Tz : u(x) → u(x − z) = (Tzu)(x), and, So : u(x) → u(ox) = (Sou)(x), and,
Rτ : u(x) → u(τx) = (Rτu)(x), for general z ∈ R

3, 0 < τ ∈ R, and a general (real

1Exception: We are making some practical application in sec.2.4, useful for a side-result in

ch.3.

37
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3 × 3-)rotation matrix o ∈ SO3(R). Note, we have Tz = e−izD - formally a ψdo
(with symbol e−ixξ) but certainly, Tz is not a strictly classical ψdo - except for
z = 0. Similarly, the operators So , Rτ do not belong to Opψc, except for τ = 1
or o = 1.

In the simplest case (of Hs = H - i.e., s = 0 - , and a bounded operator
A : H → H) we consider the 4 operator families2

(2.0.1) {Az = T−1
z ATz : z ∈ R

3} , and , {Aζ = e−iζxAeiζx : ζ ∈ R
3} ,

and,

(2.0.2) {Ao = S−1
o ASo : o ∈ SO3(R)} , and , {Aτ = R−1

τ ARτ : 0 < τ <∞} .

Each of these families involves certain parameters. In (2.0.1) there are the 3
parameters z1, z2, z3 ∈ R (or ζ1, ζ2, ζ3 ∈ R), in (2.0.2) we have the coefficients ojl

of the orthogonal matrix o, leaving 3 (real) degrees of freedom, since we may write
o = ea with a real antisymmetric 3 × 3-matrix a = −aT . (Or, in the second case
of (0.2), we have the single (real) parameter τ > 0.) So, we may ask whether
partial derivatives (of all orders) for these parameters exist - then we will say
that the corresponding action (of the operator Tz or e−iζx or So or Rτ on the
operator A) is smooth. And, to be precise, we want these partial derivatives to
exist in operator norm of the Hilbert space H. [That is, for example, we want that
‖∂Az/∂z1 − ∆Az/∆z1‖ → 0 as ∆z1 → 0, with ∆Az = Az+∆z1(1,0,0) − Az, etc.,
with operator norm ‖.‖ of H.]

The point we are trying to make then is this:

All the above 4 actions are smooth if and only if the bounded operator
A : H → H is a pseudodifferential operator of order 0, with symbol
belonging to a class we call ψs0, where ψs0 ⊃ ψc0 is a bit larger, but
still allows some calculus of ψdo-s.

For simplicity we get restricted to ψdo-s with complex-valued symbol - even
presenting some major arguments only for the 1-dimensional case, with trivial
extensions to arbitrary dimensions. We only want to make the point, that it
may be physically significant to restrict theory of observables to ψdo-s, while not

2Clearly this involves 4 Lie-group representations on the algebra L(H). For the second (2.0.1)

the Fourier transform A∧
ζ = F ∗AζF may be written as (Aζ)∧ = T−1

ζ A∧Tζ , since we have

Tζ = F ∗e−iζxF . Thus this amounts to translation smoothness in phase space, while the first

(2.0.1) expresses the same for configuration space. The smoothnesses of (2.0.2) automatically

imply (and are implied by) the corresponding smoothnesses in phase space, as a simple calculation

shows.
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allowing more general abstract linear operators of our Hilbert space H. For the
first (perhaps hardest) step we only use the Heisenberg group and the Hilbert
space H, postponing a refined treatment to later sections. Otherwise, the results
developed here are of no significance for our discussions in later chapters, so that
reading may be skipped or postponed.

2.1 Smoothness of Lie Group Action on ψdo-s

Consider first an arbitrary bounded operator A of H = L2(R3). Assume that we
have

(2.1.1) eizDe−iζxAeiζxe−izD = Az,ζ ∈ C∞(R6, L(H)) .

To discuss this condition: Note, that the operators Tz = e−izD form the group of
translation operators - We find that Tzu(x) = u(x− z). This is a Lie-subgroup of
the group of unitary operators. It is strongly continuous in z - we have Tzu → Tz0u

in strong L2-convergence, as z → z0, for every u ∈ H. However, Tz is not
uniformly continuous - we do not have ‖Tz − Tz0‖ → 0 as z → z0, as easily seen3.

Quite similarly, the group {eiζx : ζ ∈ R
3} of (unitary) multiplication operators

again is strongly continuous but not uniformly continuous4. The Fourier transform
of the multiplication group is the translation group again. Both groups {Tz} and
{eiζx} together generate what is called the Heisenberg group.

Then we must emphasize: by (2.1.1) we mean that the family Az,ζ is operator
norm continuous in L(H), not only strongly continuous. And in addition, that all
partial derivatives for zj and ζj (of any order) exist in norm convergence, and also
are norm continuous.

Now we want to prove:

Theorem 2.1.1 An operator A ∈ L(H) satisfies (2.1.1) if and only if it is a ψdo
in Opψt0. Here ψt0 = CB∞(R6) denotes the space of C∞(R6)-functions having
all derivatives bounded. For such a function the ψdo A = a(x,D) is defined in the
usual way - either (1.0.15) or (1.2.1)5.

3Consider the family uε(x) =
∏3

1 ϕε(xj) , ϕε(t) = (ε2π)−1/4e−t2/2ε2
of unit vectors in H.

Show that ‖Tzuε − Tz0uε‖2 → 2 as ε → 0 , ε > 0 for every fixed z, z0 with z �= z0, so that

‖Tz − Tz0‖ = 2 , as z �= z0, follows.
4Get ‖(eiζx − eiζ0x)u‖ = 2‖u sin( 1

2
(ζ − ζ0)x)‖ ≥ ‖u‖ whenever u ∈ H vanishes outside a

(non-empty) open x-set where | sin 1
2
(ζ − ζ0)x| ≥ 1

2
. Such open x-sets exists whenever ζ �= ζ0

since the sine reaches ±1 for some points x. Hence we get ‖eiζx − eiζ0x‖ ≥ 1 whenever ζ �= ζ0.
5(1.0.14) will work too, but the distribution a∨2

(x, x− .) no longer has the nice properties as

for an a ∈ ψc.[For example, the translation operator Tz itself has symbol tz(x, ξ) = eizξ ∈ ψt0 ,

but its integral kernel is δ(x − y − z) - with a singularity at x − y = z different from 0.]
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Proof. First of all, the ψdo-s A = a(x,D) all are bounded operators of H. [Of
course6, we have stated theorem 1.1.4 only for a ∈ ψc0, but the reader may inspect
the proof given, to find that only the boundedness of a few derivatives (up to
order 8) was used, and not the more stringent conditions (1.0.13), defining ψc0.]

Furthermore, for such A = a(x,D), we find that

(2.1.2) Az,ζ = a(x + z, ζ + D) .

In other words, Az,ζ is also a ψdo in Opψt0 with symbol az,ζ = a(x + z, ξ + ζ).
Indeed, (e−iζxAeiζxu)(x) = 1

8π3 e−iζx
∫

dξ
∫

dyeiξ(x−y)a(x, ξ)u(y)eiζy

= 1
8π3

∫
dξ

∫
dyei(ξ−ζ)(x−y)a(x, ξ)u(y)dy = a(x, ζ+D)u(x). Similarly, T−zATzu(x)

= a(x + z,D)u(x), confirming (2.1.2).
With formula (2.1.2) things are clear now: If a ∈ ψt0 then all derivatives of a

exist in uniform convergence over R
6. Using (2.1.2) and (1.4.5) (for ψt0) we thus

conclude that, indeed, all derivatives (for z and ζ) of Az,ζ exist in operator norm,
so that (2.1.1) holds.

Vice versa, assume now that an operator A ∈ L(H) satisfies (2.1.1). Then our
attempt to show that A ∈ Opψt0 will require that we specify a symbol a ∈ ψt0

such that A = a(x,D). Let us play a bit with the (norm-smooth) family Az,ζ .
For a translucent argument we get restricted to the case of a 1-dimensional

operator - that is, we consider the case of an operator A ∈ L(H) , H = L2(R), so
that only one (real) x- and ξ-variable7 is involved. Then we arrive at a formula
expressing the symbol a(x, ξ) of A in terms of Az,ζ by writing

(2.1.3) a(z, ζ) =
∫

dxdξγ2(−x)γ2(−ξ)b(x + z, ξ + ζ) ,

with b(x, ξ) = (1 + ∂x)2(1 + ∂ξ)2a(x, ξ), and the Greens function

(2.1.4) γm(t) = e−t tm−1

(m− 1)!
as t ≥ 0 ,= 0 , as t < 0

of the differential operator (1+∂t)m in (−∞,∞) - that is, we have (1+∂t)mγm(t) =
δ(t) with the Dirac delta function δ, and (2.1.3) simply expresses this fact.

Note that b(x, ξ) is the symbol of the operator

(2.1.5) B = (1 + i adD)2(1− i adx)2A
6Incidentally, as to be used later on, this also holds for (1.4.5): Again our proof there does

not use the Leibniz formulas, but only the special Beals-formulas for the symbol of as(x, D) =

Λsa(x, D)Λ−1
s , but they already work for a ∈ ψt0. Hence it follows that as(x.ξ) ∈ ψt0, and thus

also a(x, D) ∈ L(Hs), for all s.
7For 3 dimensions one simply must replace the function γ2(−x) in (2.1.3) by the product

γ2(−x1)γ2(−x2)γ2(−x3), and the differential operator (1 + ∂x)2 by
∏3

1(1 + ∂xj )2, and similarly

for ξ. Then we get fla. (2.1.7) again with W replaced by a product of 3 1-dimensional operators.
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where we have written “adXA = [X,A]”. If A ∈ Opψt0 then clearly B ∈ Opψt0

as well.
By (2.1.2) we get Bz,ζ = bz,ζ(x,D) where bz,ζ(x, ξ) = b(x + z, ξ + ζ). Using

this we may write (2.1.3) in the form

(2.1.6) a(z, ζ) =
∫

dxdξλ(x, ξ)bz,ζ(x, ξ) with λ(x, ξ) = γ2(−x)γ2(−ξ) .

Formally the right hand side of (2.1.6) looks like a trace: Using formula (1.2.1) it
is clear that bz,ζ(x, ξ)eixξ is the integral kernel of the operator

√
2πBz,ζF

∗, while
λ(x, ξ)eixξ similarly would be the integral kernel of the operator

√
2πλ(x,D)F ∗ =√

2πγ2(−x)γ2(−D)F ∗. Note that λ(x, ξ) is real, by definition. So, the right hand
side of (2.1.6) - i.e.,
=

∫
dxdξ(a(x, ξ)eixξ)(λ(x, ξ)eixξ) - then should represent the trace of the product

2π(Bz,ζF
∗)(λ(x,D)F ∗)∗ = 2πBz,ζλ(x,D)∗ = 2πBz,ζγ2(−D)γ2(−x). So, this

gives the formula

(2.1.7) a(z, ζ) = trace{Bz,ζW
∗},

with the integral operator

(2.1.8) W =
1
2π

γ2(−x)γ2(−D) = γ2(−x)(
1

(1 + ix)2
∗) .

For the derivation of (2.1.7) we have used that γ∧
2 (ξ) = 1√

2π(1+iξ)2
.

The point is that (i) formulas (2.1.7),(2.1.8) indeed express the symbol a of a
ψdo A ∈ Opψt0 explicitly in terms of the operator family Bz,ζ generated by B

of (2.1.5), while (ii) the operator W of (2.1.9) turns out to be8 of trace class (cf.
[Ka1]), so that indeed the traces and above formula make sense. Moreover, (iii)
even for a general bounded operator A of H satisfying (2.1.1), we find the family
Bz,ζ smooth as well, so that formula (2.1.7) defines a complex-valued function
a(z, ζ) ∈ ψt0 , using the fact that the trace class is an ideal of the algebra L(H),
where the function trace {CX∗} is a continuous function of C for C ∈ L(H) with
operator norm, as long as the operator X belongs to trace class.

8According to ch.X, sec’s 1.3-1.4 of [Ka1] an operator X is of trace class whenever it can

be shown that X = Y Z where Y and Z are of Schmidt class (i.e., they are integral operators

with kernel in L2(R2) for our 1-dimensional case.) But we may write the operator W as a

product UV of Schmidt operators as follows: W has integral kernel w(x, y) =
γ2(−x)

(1+i(x−y))2
.

Just introduce Uu(x) =
∫

dz
γ1(x−z)

1+iz
u(z)dz, and note that U−1 = (1 + ix)(1 + ∂x), so that

W = U((1 + ix)(1 + ∂x)W ) = UV . The integral kernel of U is squared integrable, since γ1 (of

(2.1.4)) and 1
1+ix

both are L2-functions. Similarly, V has the kernel (1+ ix)(1+∂x)
γ2(−x)

(1+i(x−y))2
,

also in L2(R2), so that U and V both are Schmidt operators. Hence W is of trace class, and so

then is Bz,ζW ∗, since the trace class is an adjoint invariant ideal of L(H).
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In other words, we find that (2.1.7) constitutes a left-inverse of the map
a(x, ξ) → A = a(x,D) defined for a ∈ ψt0. We already noted that formula
(2.1.7) defines a symbol in ψt0 for every operator A satisfying (2.1.1). Therefore,
in order to show that this left-inverse actually is an inverse, we only must prove
that a(z, ζ) ≡ 0 - with a defined by (2.1.7), for some A ∈ L(H) satisfying (2.1.1),
implies that A = 0. But then we get trace{Bz,ζW

∗} = trace{BW ∗
z,ζ} = 0 for all

z, ζ, by the general rules for traces. Also, for the formal ψdo W = 1
2π λ(x,D) we

get (just as (2.1.2))

(2.1.9) Wz,ζ =
1
2π

g2(−x− z)γ2(−ζ −D) .

Then, given two arbitrary C∞
0 -functions ω, χ get

(2.1.10)
∫

dzdζWz,ζ(1− ∂z)2ω(z)(1− ∂z)2ω(ζ) = ω(−x)χ(−D) ,

using partial integration and that (1 + ∂t)2γ2(t) = δ(t). Applying this we get

(2.1.11) trace(ω̄(x)Bχ̄(D)) = 0 for all ω, χ ∈ C∞
0 .

Expressing this with the distribution kernel kB(x, y) of B we get
∫

kB(x, x −
z)ω(x)χ(z)dxdζ = 0 for all ω, χ ∈ C∞

0 , implying B = 0, hence A = 0, q.e.d.

Our above theorem only is a preliminary result, involving the special translation
group in configuration space and momentum space, and the Hilbert spaceH = H0,
and operators of order 0. In the sections, below, we shall extend this in various
directions.

2.2 Rotation and Dilation Smoothness

We are still with zero-order ψdo-s with symbol in ψt0 (and with scalar-valued
symbol). The class Opψt0 was seen to be identical with the class of bounded
operators of H = L2 which are translation smooth, both in configuration space
and in momentum space - i.e., the operator A and its Fourier transform A∧ =
F ∗AF both are translation smooth - we have cdn.(2.1.1) We now ask about the
subset ΨGS of Opψt0 of operators which also are smooth with respect to the
action of rotations and dilations. That is, we request that, for the two families of
substitution operators GR = {So : o ∈ SO3} and GD = {Rτ : τ ∈ R+} we have

(2.2.1) S∗
oASo ∈ C∞(SO3, L(H))) ,

and

(2.2.2) R∗
τARτ ∈ C∞(R+, L(H)) .
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Here we use the operators Sou(x) = u(ox), and, Rτu(x) = τ3/2u(τx), respectively.
Both are unitary operators, and the classes GR and GD are Lie groups, of course.
Again the two conditions mean that the two conjugations (by So or by Rτ ) are
smoothly depending on the parameters o ∈ SO3 and τ > 0, respectively, with
derivatives existing and continuous in operator norm9 of L(H).

First of all, in that respect, we notice that

(2.2.3) FSo = S∗
oF , and , FRτ = R∗

τF .

This implies that A ∈ Opψt0 satisfies (2.2.1) (or (2.2.2)) if and only if A∧ = F ∗AF

does. So, we need not distinguish between these conditions in configuration space
or momentum space: If they hold in one of these spaces, then they do hold in the
other one as well. If (2.2.1) or (2.2.2) hold then we will say that A is “rotation
smooth” (“dilation smooth”).

Furthermore, after sec.2.1, if A is translation and rotation and dilation smooth
then we already know that A has a symbol in ψt0 and may work with it - this
makes things easier, and reduces the theorem below to a series of calculations.

Theorem 2.2.1 An operator A ∈ L(H) is smooth in the sense of all four above
groups {e−izD} and {eiζx} and {So} and {Rτ} if and only if A = a(x,D) with
symbol a(x, ξ) ∈ ψt0 satisfying the following “condition ψs0”:

Define the (first order linear) partial differential operators

(2.2.4) εjl = ξj∂ξl
− xl∂xj

, j, l = 1, 2, 3,

and then

(2.2.5) ηjl = εjl − εlj as j �= l , η00 =
3∑

1

εjj .

Every finite application of the ηjl to the symbol a(x, ξ) must still belong
to ψt0.

The proof of this theorem consists of studying the action of the two corre-
sponding Lie-algebras onto our symbols a(x, ξ). This will be left to the reader.
For details, see [Co5],ch.8, sec.5.

The class of all symbols a(x, ξ) ∈ ψt0 satisfying cdn. ψs0 will be denoted
by ψs0, henceforth. The classes ψs and ψsm are defined similarly to ψc , ψcm:

9Note that again, the operators S0 and Rτ are only strongly continuous - not uniformly

continuous in their parameters o or τ .
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ψs is the class of all polynomials in x, ξ with coefficients in ψs0. Also, ψsm =
〈x〉m2〈ξ〉m2ψs0. One confirms that

(2.2.6) ψcm ⊂ ψsm ⊂ ψtm ,

and that ψsm may be described as the subset of ψtm of all a(x, ξ) such that

every finite application of the operators ηjl still belongs to ψtm.

Investigating the type of symbol in ψsm we note first: These symbols (at least)
satisfy the (Hoermander-type) conditions (1.2.2) locally, in the following sense:

Proposition 2.2.2 For a ∈ ψsm we have (1.2.2) whenever either |x| or |ξ| belongs
to a bounded set. That is,

(2.2.7) a
(θ)
(ι) (x, ξ) = O((1 + |ξ|)m1−|θ|) , as |x| ≤ c ,

and,

(2.2.8) a
(θ)
(ι) (x, ξ) = O((1 + |x|)m2−|ι|) , as |ξ| ≤ c .

Proof. Focus on (2.2.7) (and assume m = 0). For a ∈ ψs0 and |x| ≤ c get
λ00a =

∑
ξja|ξj

= η00a + O(1) = O(1) , λjla = ξja|ξl
− ξla|ξj

= ηjla + O(1) =
O(1) . Thus,
|ξ|2a|ξj

= ξjλ00a−
∑

l ξlλjl = O(|ξ|), implying a|ξj
= O(〈ξ〉−1). This procedure

may be iterated to get (2.2.7). Similarly for general m and for (2.2.8), q.e.d.

As one consequence of this proposition we note that, for a symbol a ∈ ψs, the
integral kernel kA(x, y) = (2π)−3/2a∨2

(x, x− y) of A = a(x,D) (appearing in fla.
(1.0.14)) has regained the properties it had for a symbol of the class ψcm : It is
C∞ except at x = y and for large |y|, k(x0, y) behaves like a function in S. This
follows from prop.1.1.1, since, evidently, a(x, ξ) is of polynomial growth in ξ for a
given fixed x.

It is possible to state more precise global estimates for the symbols in ψsm -
where we again get restricted to m = 0 with similar facts for general m left to the
reader.

Theorem 2.2.3 For a ∈ ψs0 we have the estimates10

(2.2.9) a
(ι)
(θ)(x, ξ) = O({〈x〉〈ξ〉 }

j) for all − |θ| ≤ j ≤ |ι| ,

for all θ, ι.
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To prove this theorem we need the following

Lemma 2.2.4 For a(x, ξ) ∈ C∞
0 (R6) define apq = ηpqa , p, q = 0, . . . , 3 where we

extend (2.2.5) by setting

(2.2.10) ηp0 = ∂xp
, η0q = ∂ξq

, ηpp = 0 , p, q = 1, 2, 3.

Then there exist symbols γ1jpq ∈ ψce1−e2 and γ2j
pq ∈ ψce2−e1 such that

(2.2.11) a|xj
=

3∑

p,q=0

γ1j
pqapq , a|ξj

=
3∑

p,q=0

γ2j
pqapq .

This lemma follows with the argument of prop.2.2.2, writing down terms a bit
more carefully. It is clear then that the lemma allows to generate a factor 〈x〉/〈ξ〉
(or 〈ξ〉/〈x〉) in the general estimates for symbols, so that we get (2.2.11) and the
theorem.

Finally, in this section, let us come back to the question about calculus of ψdo-s
within Opψs. It is clear from (2.2.7) that we have a “local calculus of ψdo-s” in
the sense of Hoermander [Hoe1]. That is, the Leibniz formulas (1.0.8), (1.0.9) are
valid locally - i.e., we have asymptotic convergence of the series for c and a∗ in
compact x-subsets (with respect to ξ) or vice versa, giving asymptotic operator
convergences in the sense of [Ho1] (cf.also, [Co5],IV) - that is, in the sense of
smoother and smoother remainders.

Note also, the classes ψs0 , ψs as well as the operator classes Opψs0 , Opψs

form algebras, under their corresponding products - pointwise or operator product.
In matters of global calculus of ψdo-s it turns out that, at least, we have as-

ymptotically convergent Leibniz formulas for products AK , KA and commutator
[K,A] if A = a(x,D) ∈ Opψsm, but K = k(x,D) ∈ Opψc′m, in the following sense.

Proposition 2.2.5 We have

(2.2.12) 1 2

[k(x,D), a(x,D)] = c3(x,D) ,

where

c1(x, ξ) =
∑

|ι|≤N

(−i)|ι|

ι!
k(ι)(x, ξ)a(ι)(x, ξ) + R1

N (x, ξ) ,

10The class of symbols a(x, ξ) satisfying estimates (2.2.9) is known as the Weinstein-Zelditch

class (cf.[We1],[Ze1]).

k(x,D)a(x,D) = c (x,D) , a(x,D)k(x,D) = c (x,D) ,
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(2.2.13) c2(x, ξ) =
∑

|ι|≤N

(−i)|ι|

ι!
a(ι)(x, ξ)k(ι)(x, ξ) + R2

N (x, ξ) ,

c3(x, ξ) =
N∑

j=0

(−i)j

j!
{k, a}j(x, ξ) + R3

N (x, ξ) .

In (2.2.13) the terms k(ι)a(ι) , a(ι)k(ι), with |ι| = j, and the “higher order Poisson
brackets”

(2.2.14) {k, a}j = ∇j
ξk.∇j

xa−∇j
ξa.∇j

xk

belong to ψsm+m′−re1−r′e2 for all r, r′ = 0, 1, . . . with r + r′ = j, while Rl
N ∈

ψsm+m′−re1−r′e2 for all r, r′ = 0, 1, . . ., with r + r′ = N + 1 - for l = 1, 2, 3.

The proof is discussed in [Co5],ch.8, prop.7.4.

2.3 General Order and General Hs-Spaces

In this section we shall consider smoothness under the Heisenberg group as in
sec.2.1, but for operators A ∈ L(Hs), with one of the weighted Sobolev spaces
of sec.1.4 . Moreover, one may remove the restriction to ψdo-s of order 0 and
also characterize the classes Opψcm, for general m ∈ R

2 by looking at translation
smoothness for operators in L(Hs,Ht) - rather L(Hs,Hs−m), for any fixed s ∈ R

2,

Observe first that - clearly - the class Opψt0 is an algebra - it coincides with
the class of smooth operators considered in sec.2.1, above, and they trivially form
an (adjoint invariant) algebra. Moreover, we note that the translation operator
Tz = e−izD and the multiplication operator eiζx both belong to the algebra Opψt0.
As a consequence, it follows from corollary 1.4.2 that e−izD and eiζx both form
groups of bounded linear operators in every weighted Sobolev space11 Hs. Thus
we might ask whether a similar characterization of the smooth operators also is
possible for the spaces Hs.

Recall from sec.1.4: our Sobolev space Hs carries the norm ‖u‖s = ‖Λsu‖L2

with Λs = 〈x〉s2〈D〉s1 , so that Λs and Λ−1
s = Λ∗

−s = 〈D〉−s1〈x〉−s2 provide isome-
tries Λs : Hs → H and Λ∗

−s : H → Hs.
While examining operators in L(Hs) we then should keep in mind that

“A ∈ L(Hs)” means the same as “As = ΛsAΛ∗
−s ∈ L(H)”.

11Of course the operators e−izD, eiζx ∈ L(Hs) no longer may be expected to be unitary, but

they will be bounded.

as we will find.
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Note that Λs and Λ∗
−s are ψdo-s in Opψc. If A = a(x,D) is a ψdo in Opψt0

then we have calculated a symbol as for the operator As in 1.4 (footnote 23) - we
found that

(2.3.1) as(x, ξ) =

(2π)−6

∫
dydζa(x− y, ξ− ζ)(

∫
dze−izζ(

〈x− z〉
〈x〉 )−s2)(

∫
dηe−iyη(

〈ξ − η − ζ〉
〈ξ − ζ〉 )s1) ,

where we must recall that all 4 integrals are finite parts: When evaluating them we
must use the identity e−ixy = 〈x〉−2N (1−∆x)Ne−ixy and formal partial integration
to convert (2.3.1) into an integral with integrand in L1 which can be evaluated.
Examining differentiability of as(x, ξ) we note that - formally - a differentiation
∂θ

x∂ι
ξ may be carried out under the integral signs, giving

(2.3.2) (as)
(ι)
(θ)(x, ξ) =

(2π)−6

∫
dydζa

(ι)
(θ)(x−y, ξ−ζ)(

∫
dze−izζ(

〈x− z〉
〈x〉 )−s2)(

∫
dηe−iyη(

〈ξ − η − ζ〉
〈ξ − ζ〉 )s1) ,

Indeed, it is found that this operation is legal - the formal conversion gives
(2.3.3)

p(x, ξ) = (2π)−6

∫
dydηdzdζ

(〈y〉〈η〉〈z〉〈ζ〉)2N
aN (x− y, ξ− ζ)e−izζXN (x, z)e−iyηYN (ξ, η, ζ)

with aN (x, ξ) = (1−∆x)N (1−∆ξ)Na(x, ξ), and,

(2.3.4) XN = 〈z〉2N (1−∆z)N{ 1
〈z〉2N

(
〈x− z〉
〈x〉 )−s2} ,

YN = 〈η〉2N (1−∆η)N{ 1
〈η〉2N

(
〈ξ − η − ζ〉
〈ξ − ζ〉 )s1)} .

Again, N should be chosen sufficiently large, such that the integral converges
absolutely. [Note the various applications of 1−∆ do not improve nor disimprove
the estimates, but the various denominators 〈y〉2N eventually will create an L1-
function.] Moreover, if a ∈ ψt0 then any arbitrary (x, ξ)-differentiation may be
taken inside the integral (2.3.3), and it will not affect the L1-property of the
integrand. So, it follows that as ∈ ψt0 whenever a ∈ ψt0.

This conclusion may be reversed. We clearly have A = Λ∗
−sAsΛs. Hence we

get the same formulas (2.3.3) and (2.3.4) with a and as ( and x↔ ξ) interchanged.
We have proven:

Proposition 2.3.1 We have A = a(x,D) ∈ Opψt0 if and only if As = ΛsAΛ∗
−s ∈

Opψt0.
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Next let us also examine a possible relation between translation smoothness
for A and As. In that respect we might examine the abstract meaning of condition
(2.1.1):

Proposition 2.3.2 For any fixed s = (s1, s2) ∈ R
2 an operator A ∈ L(Hs) is

smooth under conjugation with (both) e−izD, eiζx ∈ L(Hs) - in the sense of (2.1.1)
– H replaced by Hs – if and only if all conmmutators12 (adx)θ(adD)ιA belong to
L(Hs), for any pair of multiindices θ, ι.

Proof. For a Lie-group differentiability at the unit element e = 0 implies differen-
tiability anywhere. For A ∈ L(H) and Aζ = e−iζxAeiζx we verify ∂ζj

〈u,Aζv〉|ζ=0 =
∂ζj
〈eiζxu,A(eiζxv)〉|ζ=0 = −i(〈xju,Av〉 − 〈u,Axjv〉) for u, v ∈ C∞

0 . If the com-
mutator [xj , A] exists as a well defined operator in L(H) then the right hand side
equals −i〈u, [xj , A]v〉. Moreover, then one easily verifies (by looking at the differ-
ence quotient of 〈u,Aζv〉) that ∂ζj

Aζ |ζ=0 = −i[xj , A] exists in operator norm of
H. And this conclusion may be reversed: If ∂ζj

Aζ |ζ=0 exists then also [xj , A] is
well defined and belongs to L(H). This argument may be iterated arbitrarily. By
taking Fourier transforms one similarly finds a relation between differentiability of
eizDAe−izD and existence of iterated commutators (adD)ι. Q.E.D.

With prop. 2.3.2 it is now easy to relate conditions (2.1.1) for A and As:
Suppose that A ∈ L(Hs) satisfies Az,ζ ∈ C∞(R6, L(Hs)). So, this amounts to

the condition that adθ
xadι

DA ∈ L(H). Now consider As = ΛsAΛ∗
−s ∈ L(H). We

have

(2.3.5) [Dj , As] = ([Dj ,Λs]Λ∗
−s)As + Λs[Dj , A]Λ∗

−s + As(Λs[Dj ,Λ∗
−s) ∈ L(H) ,

because [Dj ,Λs]Λ∗
−s = s2

xj

〈x〉2 ∈ L(H), and similar for Λs[Dj ,Λ∗
−s]. Similarly we

also get [xj , As] ∈ L(H). Moreover, the procedure may be iterated arbitrarily to
get adθ

xadι
DAs ∈ L(H) for all θ, ι. It follows that As satisfies the assumption of

thm.2.1.1. Hence As ∈ Opψt0. Then prop.2.3.1 implies that A ∈ Opψt0. So, we
have proven:

Theorem 2.3.3 The class of all operators A ∈ L(Hs) with Az,ζ ∈ C∞(R6, L(Hs))
coincides with the class Opψt0 of ψdo-s with symbol in ψt0.

Finally, let us also study the Heisenberg group action on an operator A ∈
Opψtm. We defined ψt as the class of all polynomials a(x, ξ) =

∑
aι,θ(x, ξ)xθξι,

with coefficients aι,θ ∈ ψt0. Such symbol is said to have order m = (m1,m2)
if λ−ma(x, ξ) = 〈x〉−m2a(x, ξ)〈ξ〉−m1 ∈ ψt0, and the class of such symbols is

12All operators adxj and adDl
commute.
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denoted by ψtm. Clearly then we have A = a(x,D) ∈ Opψtm if and only if
A0 = 〈x〉−m2A〈D〉−m1 ∈ Opψt0.

Under this aspect it is natural to consider the operator A = a(x,D) as a map
A : H(m1,0) → H(0,−m2) because for s = (m1, 0) , s−m = (0,−m2) the inequality
‖Au‖s ≤ c‖u‖ means exactly the same as the inequality ‖A0u‖ ≤ c‖u‖, with
L2-norm ‖.‖. Since Tz = e−izD and eiζx have their meaning as groups mapping
Hs → Hs, for every s, we may talk about smoothness of Az,ζ of (2.1.1) as maps
Hs → Hs−m for some fixed s ∈ R

2, whenever an initial A ∈ L(Hs,Hs−m), is
given. Again, by ‘smoothness’ we mean smoothness in the parameters z, ζ, and in
operator norm topology of L(Hs,Hs−m). We then have

Theorem 2.3.4 The family Az,ζ of an operator A ∈ L(Hs,Hs−m) is smooth in
L(Hs,Hs−m) if and only if A = a(x,D) is a pseudodifferential operator of order
m with symbol in ψtm.

Proof. Assume first that s = (m1, 0), as specified above. We can assume the
above prop.2.3.2 valid also for the case of an A ∈ L(Hs,Hs−m), simply , since
the partial derivatives of Az,ζ at z = ζ = 0 are given as the iterated commutators
adι

xadθ
DA. Now, for A = 〈x〉m2A0〈D〉m1 we calculate that

(2.3.6) [Dj , A] = −im2
xj

〈x〉2 A + 〈x〉m2 [Dj , A0]〈D〉m1 ,

(2.3.7) [xj , A] = 〈x〉m2 [xj , A0]〈D〉m1 + im1A
Dj

〈D〉2 ,

as well as

(2.3.8) [Dj , A0] = im2
xj

〈x〉2 A0 + 〈x〉−m2 [Dj , A]〈D〉−m1 ,

(2.3.9) [xj , A0] = 〈x〉−m2 [xj , A]〈D〉−m1 − im1A0
Dj

〈D〉2 .

The 4 equations tell us that existence of A, [Dj , A], [xj , A] in L(Hs,Hs−m) is equiv-
alent to existence of A0, [Dj , A0], [xj , A0] in L(H). Clearly this may be iterated
to show that existence of adι

Dadθ
xA in L(Hs,Hs−m) for all ι, θ is equivalent to

existence of adι
Dadθ

xA0 for all ι, θ.
Actually, this conclusion applies for all s , not only for s = (m1, 0), but we

then must look at A0 in L(Hs−(m1,0)) rather than in L(H). At any rate, we find
that theorem 2.3.4 is an immediate consequence of theorem 2.3.3. Q.E.D.

Finally let us also look at the classes Opψsm and ask whether they may be
characterized by a similar smoothness as in thm.2.2.1. Indeed, there is no trouble
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repeating the above arguments. We get the operators So and Rτ well defined as
bounded operators in every Hs. In fact, So even remains unitary in every HS

while Rτ sends 〈x〉 into 〈τx〉 and 〈D〉 into 〈D/τ〉. Differentiating 〈x〉m for τ gets
us

(2.3.10) ∂τ 〈τx〉m = τm
x2

1 + τ2x2
〈τx〉m

where the factor x2

〈τx〉2 is a bounded operator. So, for dilations, we get formulas
similar to (2.3.6)-(2.3.9). For rotations we get such formulas without the additional
terms. We summarize this:

Theorem 2.3.5 Let s,m ∈ R
2 be given. The 4 groups {e−izD} and {eiζx} and

{So} and {Rτ} act smoothly on an operator A ∈ L(Hs,Hs−m), in the sense of
strong operator convergence of L(Hs,Hs−m), if and only if A = a(x,D) with
symbol a(x, ξ) ∈ ψtm satisfying the following condition ψsm:

Every finite application of the ηjl to the symbol a(x, ξ) must belong to ψtm,
where

(2.3.11) ηjl = εjl − εlj as j �= l , η00 =
3∑

1

εjj ,

where

(2.3.12) εjl = ξj∂ξl
− xl∂xj

, j, l = 1, 2, 3.

2.4 A Useful Result on L2-Inverses and Square

Roots

In this section we want to discuss some simple but useful applications of thm.2.3.4.
With a slightly different argument prop.2.4.1, below, was already proven by R.Beals
[Be2].

Proposition 2.4.1 For any s,m ∈ R
2 if a ψdo A ∈ Opψcm [which naturally

extends to a bounded operator Hs → Hs−m] possesses a bounded inverse B =
A−1 : Hs−m → Hs then B must be a ψdo in Opψc−m.

We first make some simple reformulations.

Proposition 2.4.2 We have

(2.4.1) ψcm = {a ∈ ψtm : a
(θ)
(ι) ∈ ψt(m1−|θ|,m2−|ι|) ∀θ, ι} .
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The proof is evident - just by looking at (1.2.2).
Applying thm.2.3.4 and fla. (2.1.2) we then get this:

Proposition 2.4.3 For any fixed s,m ∈ R
2 the class Opψcm consists precisely

of all A ∈ L(Hs,Hs−m) such that (i) Az,ζ of (2.1.1) is smooth in L(Hs,Hs−m),
and (ii) each family ∂ι

z∂
θ
ζ Az,ζ is smooth in L(Hs,H(s1−m1+|θ|,s2−m2+|ι|)). Or,

equivalently, each family 〈x〉|ι|〈D〉|θ|∂ι
z∂

θ
ζ Az,ζ is smooth as a map Hs → Hs−m.

Moreover, the cdn. (ii), above, may be replaced by (ii’): each family ∂ι
z∂

θ
ζ Az,ζ is

smooth in L(Hs1−|θ|,s2−|ι|),Hs−m)), equivalent to requiring each ∂ι
z∂

θ
ζ Az,ζ〈x〉|ι|〈D〉|θ|

to be smooth as a map Hs → Hs−m.

Now the proof of prop.2.4.1 is immediate: Let A = a(x,D) ∈ ψcm have a
bounded inverse B = A−1 ∈ L(Hs−m,Hs). Then we get Bz,ζ = (Az,ζ)−1, and
find that

(2.4.2) Bz,ζ|z = −Bz,ζAz,ζ|zBz,ζ ,

first as a map Hs−m → Hs, using that Bz,ζ ∈ L(Hs−m,Hs), and Az,ζ|z ∈
Opψtm ⊂ L(Hs,Hs−m) only (a weaker condition). The derivative exists in norm
of L(Hs−m,Hs). Similarly for higher derivatives and for ζ-derivatives. From
thm.2.3.4 it then follows that B = b(x,D) ∈ Opψt−m ⊂ L(Ht,Ht + m) for all
t ∈ R

2. With that information we may go back to fla. (2.4.2) and conclude that
Bz,ζ|z ∈ L(Ht,Ht+m+e1) for all t. Iteration and application for ζ-derivatives then
confirms the cdn. of prop.2.4.3 (with m replaced by −m), completing the proof.

Proposition 2.4.4 Assume that mj ≥ 0 , j = 1, 2, and that an md-elliptic
ψdo A = a(x,D) ∈ Opψcm

and positive definite in H, in the sense that13

(2.4.3) 〈u,Au〉 ≥ a0〈u, u〉 for all u ∈ Hs

with some a0 > 0. Then the positive square root
√

A and its inverse
√

A
−1

belong
to Opψcm/2 and Opψc−m/2, respectively.

Proof: Under the assumptions it follows that the Hilbert space inverse B =
A−1 ∈ L(H) of the unbounded operator A with domain Hs exists, and that we
have ‖B‖ ≤ 1

a0
. This also implies that B is an inverse of A in L(Hs,H0). Hence,

by prop.4.1, we also get B ∈ Opψc−m.

13What we mean, more precisely, is that the unbounded operator A with domain Hs ⊂ H
coincides with its Hilbert space adjoint so that there exists a spectral resolution of A in the

Hilbert space H.

(with scalar (complex-valued) symbol) is self-adjoint
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The positive square root C of the bounded self-adjoint operator B of H exists
by standard arguments. Moreover, we have

(2.4.4) B =
1
π

∫ ∞

0

1
A + λ

dλ√
λ

,

a well known “resolvent formula” (cf. [Ka1],ch.V,fla.(3.43)). In fact, we might
need a more general formula (cf. [Co14],VI,(1.6)):
(2.4.5)

C2j+1 = BjC =
(−1)j

π

1 · 3 · · · (2j − 1)
2 · 4 · · · 2j

∫ ∞

0

dλ√
λ

1
(A + λ)j+1

, j = 1, 2, . . . .

This still is easily derived by a well known complex resolvent integral technique.
First of all we get (with norms and inner product of H = H0, and Λs =

〈x〉s2〈D〉s1 of (1.4.4))

(2.4.6) ‖Cu‖2 = 〈u,Bu〉 = 〈Λ−m/2u, {Λm/2BΛ∗
m/2}Λ−m/2u〉 , u ∈ S ,

where the operator {·} is in Opψc0, hence is L2-bounded. Accordingly,

(2.4.7) ‖Cu‖2 ≤ c2‖Λ−m/2u‖2 = ‖u‖−m/2 ,

and we have C ∈ L(H−m/2,H0).
In order to apply prop.2.4.3 - to show that C ∈ Opψc−m we next look at the

derivative Cz,ζ|z. With (2.4.4), also valid for Cz,ζ we get

(2.4.8) Cz,ζ|z|z=ζ=0 =
1
iπ

∫ ∞

0

dλ√
λ

1
A + λ

[D,A]
1

A + λ
.

In order to get control of this look at the commutator

(2.4.9) [P,
1

A + λ
] =

1
A + λ

[A,P ]
1

A + λ
,

valid for general operators P . Applying (2.4.9) (and iterating) we get
(2.4.10)

1
A + λ

P
1

A + λ
=

N∑

j=0

1
(A + λ)j+2

(adA)jP +
1

(A + λ)N+2
(adA)N+1P

1
A + λ

.

Here we set P = [D,A] = −adAD. Clearly then all “coefficients” adj
AP are ψdo-

s, and they belong to Opψcj(m−e)+m−e2 . Integrating (2.4.10) (with measure dλ√
λ
)

from 0 to∞, the terms of the sum at right will give (up to a multiplicative constant
cj) the operators Bj+1C(adA)jP = Pj , by (2.4.5). We have

(2.4.11) ‖Pju‖2 = 〈u, ((adA)jP )∗B2j+3(adA)jPu〉 ,
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where now all operators are ψdo-s, and the total order of the operator product in
(2.4.11) is −(2j +3)m+2(j(m− e)+m− e2) = −2(m/2+ e2)− 2je. Accordingly,
(2.4.12)

‖Pju‖2 = 〈Λ−m/2−e2u, (Λm/2+e2{·}Λm/2+e2)Λ−m/2−e2u〉 ≤ c‖u‖−m/2−e2 ,

amounting to Pj ∈ L(Hm/2−e2 ,H0). As to the remainder RN = last term in
(2.4.10), note that ‖ 1

(A+λ)l u‖ ≤ ‖Blu‖, as l, λ > 0. Thus,

(2.4.13) ‖RNu‖ ≤ ‖QN
1

A + λ
u‖

where QN = BN+2(adA)N+1P is a ψdo of order −(N + 1)e − e2. So, if N is
sufficiently large, we conclude that the orders of QN are less than the orders
−s = (−m1/2,−m2/2 − 1), and it follows that ‖QNu‖ ≤ c‖Λ−su‖ = c‖u‖−s.
Accordingly,

(2.4.14) ‖RNu‖ ≤ c‖ 1
A + λ

u‖−s = ‖ 1
A + λ + A′Λ−su‖ ,

where A′ = Λ−sAΛ∗
s −A ∈ Opψcm−e. The point now is that we can show that

(2.4.15) ‖ 1
A + λ + A′ u‖ ≤ c

1
1 + λ

as λ ≥ 0 ,

with some constant c. This again relies on the fact that we have

(2.4.16) ‖A′u‖ ≤ c‖A1−δu‖ ≤ 1
2
‖Au‖+ c′‖u‖ ,

with small δ > 0 and with constants c, c′. The latter will need the Heinz inequal-
ity14 for its verification. Details are omitted.

At any rate, we then get the integral
∫ ∞
0

dλ
(1+λ)

√
λ

< ∞. As a consequence we
indeed get the desired inequality

(2.4.17) ‖Cz,ζ|zu‖0 ≤ c‖u‖−m/2−e2 .

In a similar way we can derive all the other inequalities for use of prop.2.4.3,(ii’).
Q.E.D.

Corollary 2.4.5 While prop.2.4.4, in its present form, was stated only for an op-
erator A with scalar (complex-valued) symbol, the statement still holds for matrix-
valued symbols a(x, ξ) as long as (in addition to assumptions stated) all the com-
mutators of ad

(ι)
D ad

(θ)
x a(x,D) with A have the order they should have if a were

scalar.

The proof is evident.
14For self-adjoint positive A, B, if A ≤ B then also Aτ ≤ Bτ for all 0 ≤ τ ≤ 1.



Chapter 3

Decoupling with ψdo-s

3.0 Introduction

Spectral theory of the Dirac HamiltonianH of (1.0.2) has been vigorously pursued
since the early 1930-s. For moderately decent potentials V and A it is found
that there is a unique self-adjoint realization of H having bands of continuous
spectrum along the half-lines [1,∞) and (−∞,−1] while the spectrum in the open
interval (−1, 1) is discrete, (if any). Particularly, for the hydrogen atom (with no
electromagnetic potentials (i.e., Aj = 0) and Coulomb potential V(x) = − cf

|x| ) we
get the point-eigenvalues (cf. Sommerfeld [So2], ch.4,§7, or Thaller [Th1],7.4)

(3.0.1) µkl = {1 +
c2
f

(k +
√

l2 − c2
f )2
}−1/2 , k = 0, 1, ... , l = ±1,±2, ... .

It was one of the special features of Dirac’s theory that the energy levels represented
by (3.0.1) accurately reflect the levels of the hydrogen atom, including the fine
structure of the hydrogen spectral lines which the Bohr-Sommerfeld planetary
model could explain, but the Schrödinger equation could not1.

On the other hand, the presence of the band (−∞,−1] was always regarded
as a most disturbing fact - due to the tendency of a physical system to sink to
lower energy states, one then should conclude that the only stable state would be
“energy at −∞”. The Schrödinger Hamiltonian Hs is semi-bounded below, it does
not have the negative continuous spectrum. This seems to give some preference
to Schrödinger’s model.

Returning to Dirac, the important point is that the operator H really serves as
Hamiltonian for two particles: We have the charge conjugation - an anti-unitary

55
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map, turning equation (1.0.1) into the same equation with H replaced by −H−

with H− - of the general form (1.0.2) having the same potentials V,Aj , but with
signs reversed. So, under this transform, the negative energy band becomes the

for the positron. So, in view of this “C-symmetry” of the system one wants to
- the

“anti-particle2”.
1With our units of time, distance, energy [cf.ch.1,footnote 1] the time dependent Schrödinger

equation is of the form

(3.0.2) ∂ψ/∂t + iHsψ = 0 , Hs = 1 − 1

2
∆ + V(x) , V(x) = −

cf

|x|
,

with the Laplace operator ∆ and with “1” representing the rest energy of the electron (usually

omitted). Since the field free Dirac Hamiltonian H0 satisfies H2
0 = 1−∆ - cf.(1.0.3)) - one might

just formally write (1.0.2)) (with Aj = 0) as H =
√

1 − ∆ + V. Compared with (3.0.2) we are

reminded of the well known approximation formula
√

1 + x ≈ 1 + 1
2
x, valid for small x but not

for large x.

The eigenvalues of Hs differ by a relatively small amount from the rest energy 1. They are

given by the formula

(3.0.3) λj = 1 −
c2f

2(j + 1)2
, j = 0, 1, 2, ....

The fine structure constant cf ≈ 1
137

is small, we get c2f ≈ 0.532 × 10−4. In (1.0.1) we therefore

might approximate

(3.0.4) µkl ≈ 1 − 1

2

c2f

(k +
√

l2 − c2f )2
≈ 1 − 1

2

c2f

(k + |l|)2
= λk+|l|−1 .

So, clearly, the (multiple) eigenvalues λj of Hs split up into a bunch of eigenvalues of H (very

close together).

The same splitting (observed as fine structure of the spectral lines) was related to the relativistic

degeneration of orbital ellipses within the Bohr Planetary model of the hydrogen atom.

This used to be one feature in favour of Dirac’s theory. The other one, perhaps even more

important, is the explanation of the electron spin, to be discussed later on (cf. sec.4.6).
2For the special choice of the matrices αj , β used in this book (cf. (3.1.6),(3.1.7), below) the

charge conjugation map is given by the substitution ψ = α1ω̄, with the first Dirac matrix α1.

[Note, we have α∗
1 = α1, and α2

1 = 1, so α1 is unitary.] Looking at the eigenvalue problem

Hψ = λψ with H of (1.0.2), this substitution will give Hα1ω̄ = λα1ω̄ ⇔ α1Hα1ω̄ = λω̄.

Now, for our special set of αj , β, given in (3.1.6), (3.1.7)) we get α1 real, α2, α3 pure imaginary,

hence ᾱ1 = α1, ā2 = −α2, ᾱ3 = −α3, hence α1α1α1 = α1 = ᾱ1 , α1α2α1 = iα3α1 = −α2 =

ᾱ2 , α1α3α1 = iα2α3 = −α3 = ᾱ3, and also, α1βα1 = −βα2
1 = β = −β̄, using the relations

(1.0.3). Since all potentials are real-valued, we conclude that α1Hα1 =
∑3

1 āj(Dj −Aj)− β̄+V.

So, taking a complex conjugate, and using that Dj = −i∂xj has D̄j = −Dj , we find that

Hψ = λψ becomes

(3.0.7)

3∑

j=1

αj(Dj + Aj) + β − V)ω = −λω .

That is, under this symmetry, we get the same eigenvalue problem back, but with reversed sign

positive band [1,∞) while the sign of the potential is reversed, as it should be

conclude that the energy band (−∞,−1] really belongs to the positron
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Electrons and positrons, on the other hand, are well distinguished particles;
an electron never should become a positron - nor vice versa. So, in the first place
now, looking at physical states - that is, unit vectors in H = L2(R3, C4) - we need
a rule to decide whether a state ψ represents an electron or a positron.

Thus it might be considered highly desirable to effect a clean split of the Hilbert
space H of physical states into electronic and positronic states, with the general
state being a superposition of two such states. That is, one might like an orthog-
onal direct decomposition

(3.0.5) H = He ⊕Hp ,

where ψ ∈ He (ψ ∈ Hp) represents a situation where it is known with certainty
that the particle is an electron (a positron).

One would want this decomposition to reduce the Dirac operator H - that is,
H maps these spaces into themselves - we get

(3.0.6) H = He + Hp where He : He → He , Hp : Hp → Hp ,

(and He = 0 in Hp , Hp = 0 in He).

Note, the self-adjoint operator H possesses many invariant closed subspaces,
and then the orthogonal complement also is invariant, as a consequence of self-
adjointness. Accordingly, one will have a very large choice to construct such a
split, and, so far, one simply would elect one according to physical convenience or
meaningfulness.

In this chapter, we approach this dilemma by offering a decoupling effected by a
unitary (strictly classical) pseudodifferential operator U = u(x,D) decoupling
the Dirac Hamiltonian H, in the sense that

(3.0.8) U∗U = UU∗ = 1 , U∗HU =
(

He 0
0 Hp

)

where He and Hp act on the Hilbert space3L2(R3, C2) = K.

To effect this we must impose suitable assumptions on the potentials Aj ,V to
make sure that H is a strictly classical ψdo of order e1. We just will require that
the potentials are of polynomial growth, and of order −1, in the sense of ch.1,

of λ and the potentials A and V. But A and V all have the factor e - hidden by our choice of

units. So, if the charge e is replaced by −e then we get the eigenvalue problem (3.0.8). In other

words, looking at this symmetry ψ ⇔ ω we might just as well regard H as Hamiltonian for the

positron - an electron with reversed sign of charge. [It is clear, by the way, that ‖ψ‖ = ‖ω‖, and

that above correspondence also works for eigenpackets - see our later discussions in ch.7 - .]
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footnote 6 - cf. cdn. (X) of sec.3.2, below. And, moreover, we will assume here
that Aj ,V are time-independent.

This restriction to a unitary ψdo is not without merit: It reflects the fact
that, mathematically, equation (1.0.1) is a true wave equation with a built- in
“geometrical optics”. The “light rays”, in this case, are the orbits of particle
propagation. But, clearly, this particle propagation is two-fold - since electrons
and positrons propagate along different orbits.

In pursuit of this two-fold particle propagation the above split (3.0.5) will
emerge naturally, together with the unitary map (3.0.8). The geometrical optics
just splits the Hilbert space into 2 components, belonging to electron and positron:
A particle, known with certainty to be an electron propagates along one of the two
kinds of orbit; the positrons use the other kind. Theory of strictly classical ψdo-s
is needed to obtain such a split for general potentials.

Clearly one will expect the uncoupling (3.0.8) to be related to the Foldy-
Wouthuysen transform. Recall, this transform was introduced as an approximate
decoupling similar to (3.0.8), with an operator UFW composed of explicit expres-
sions related to the entries of the 4× 4-matrix operator H, and error terms going
with 1

c2 (with c = speed of light) (cf.de Vries [deV1]). Under special assumptions
on H this splitting becomes exact, and then coincides with (3.0.8) (cf. sec.3.2 -
and, in more detail, [Th1], 5.6).

It is clear that - with (3.0.8) - the two spaces He,Hp of (3.0.5) are given by

(3.0.9) He = U(K0 ) , Hp = U(0K) .

(3.0.10) U∗AU =
(

Ae 0
0 Ap

)
,

i.e., the “PP-operators” are uncoupled by U just as H is.
In ch.4 we then will show that there is no “generalized Zitterbewegung” for any

such precisely predictable observable, in the sense that its Heisenberg transform
At = eiHtAe−iHt depends smoothly on the parameter t, in a sense to be defined.
[And, this will also be discussed for time dependent potentials.]

3Actually, we may have to take away a finite dimensional subspace Z of K for the operator

He and add it to K for Hp - or vice versa - reflecting the fact that some “positronic” eigenvalues

might have wandered into the continuous spectrum of the electron - or vice versa. For details,

cf.sec.3.5, below.

In the time-independent case the “precisely predictable observables” of sec.1.0
then simply are the self-adjoint ψdo-s reduced by this split. In particular, a ψdo
A will be precisely predictable if and only if we have
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3.1 The Foldy-Wouthuysen Transform

Let us come back to the Dirac Hamiltonian of (1.0.2),i.e.,

(3.1.1) H =
3∑

j=1

αj(Dj −Aj) + β + V(x),

where we now assume V and Aj time-independent functions of x, and of poly-
nomial growth - order −1. That is, in detail, as a general assumption, for this
chapter,

Condition (X): The function is C∞(R3); derivatives of order j are
O((1 + |x|)−j−1) = O(〈x〉−j−1).

With our 4×4-matrices αj , β it is clear that H of (3.1.1) acts on vector functions
ψ(t, x), taking values in C

4, and eq. ∂ψ/∂t+ iHψ = 0 is a first order 4× 4-system
of PDE-s.

In the absence of fields, i.e., V = A = 0, the operator H = H0 has constant
coefficients, inviting application of the Fourier transform: We get

(3.1.2) F−1H0F = h0(ξ) = α · ξ + β ,

a multiplication operator where h0(ξ) is a hermitian symmetric 4× 4-matrix func-
tion of ξ = (ξ1, ξ2, ξ3). For each ξ ∈ R

3 the matrix h0(ξ) has the two distinct
real eigenvalues λ± = ±

√
1 + ξ2, each of multiplicity 2. There exists a uni-

tary 4 × 4−matrix function u(ξ) such that u∗(ξ)h0(ξ)u(ξ) =
(

λ+ 0
0 λ−

)
(ξ), where

the right hand side stands for the 4 × 4−diagonal-matrix with 2 × 2−blocks
0 =

(
0 0
0 0

)
, λ =

(
λ 0
0 λ

)
. Then, of course, U = u(D) = F−1u(ξ)F defines a uni-

tary operator of the Hilbert space H = L2(R3, C4), and we get

(3.1.3) U∗H0U =
(

λ+ 0
0 λ−

)
(D) =

(
Λ+ 0
0 Λ−

)
, Λ± = λ±(D) ,

where again the entries of the matrix are 2×2-blocks, using 0 =
(
0 0
0 0

)
and 1 =

(
1 0
0 1

)
.

Note, the right hand side of (3.1.3) no longer contains differential operators,
but, rather, singular convolution operators. We may write

√
1 + ξ2 = 〈ξ〉 =∑ ξj

〈ξ〉ξj + 1
〈ξ〉 , then,

(3.1.4) λ±(D) = ±{
∑

SjDj + S0} ,

where Sj = F−1 ξj

〈ξ〉F , S0 = F−1 1
〈ξ〉F are singular convolution operators. Sj , j >

0, involves a Cauchy-type singular integral.
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In terms of the matrices α, β of (1.0.3), we may write

(3.1.5) U =
1√

2 + 2S0

(1 + S0 − βαS) = u(D) ,

with u(ξ) = 1√
1+s0

(1 + s0 − βαs), where s0(ξ) = 1
〈ξ〉 , s(ξ) = ξ

〈ξ〉 , and, as usual,
u(D) = F−1u(ξ)F . So, clearly, U belongs to an algebra of singular convolution
operators generated by the bounded singular integral operators Sj , j = 1, 2, 3,

and S0.
Now let us observe that - formally - a somewhat similar “explicit diagonaliza-

tion” may be carried out in the case where the operator H has general magnetic
potentials Aj as long as the electrostatic potential V still vanishes identically. This
is called the Foldy-Wouthuysen transform4 of H. In fact such explicit transform
exist whenever the Dirac operator has a “supersymmetry”, as not to be discussed
here. Let us use an explicit set of matrices αj , β: With the “Pauli-matrices”

(3.1.6) σ1 =
(

0 i

−i 0

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 − 1

)
,

we set

(3.1.7) α =
(

0 iσ

−iσ 0

)
, β =

(
1 0
0 − 1

)

Generally we choose to write our 4× 4−matrices as 2× 2-matrices of 2× 2-blocks.
With above α, β and with V = 0, (3.1.1) assumes the “block form”

(3.1.8) H =
(

1 iΞ
−iΞ − 1

)
, Ξ = σ(D −A) =

∑
σj(Dj −Aj).

All 4 of the 2×2−blocks of H in (3.1.8) commute, while that matrix is hermitian.
One may use ordinary 2 × 2−matrix calculus to “diagonalize” this H, in the
sense that we get a “block diagonalization” (3.1.3) with suitable 2 × 2-matrix
operators Λ±, and a suitable unitary 4 × 4−matrix operator U , but the 2 × 2-
blocks Λ± no longer need to be diagonal. We will call this a “decoupling”. We
get Λ± = ±

√
2

0 by
1√

1+Ξ2 = Ξ0, and (αS) by Ξ√
1+Ξ2 = Ξ. Or, in detail, using 2× 2-blocks,

(3.1.9) U∗HU =
(

Λ+ 0
0 Λ−

)
, U =

1√
2 + 2Ξ0

{(1 + Ξ0)
(

1 0
0 1

)
− iΞ

(
0 1
1 0

)
}

4The Foldy-Wouthuysen transform was introduced in [FW] as an “approximate decoupling“́’,

in connection with the nonrelativistic limit of Dirac theory. U∗HU was decoupled only modulo

terms of order 1
c2

with c the speed of light - or, in higher approximation of order 1
c4

, etc.. For

the later development, especially the precise decoupling as V = 0 and more generally in the

supersymmetric case, we refer to the book of Thaller [Th1], and the review article of deVries

[deV1], perhaps also to Grigore, Nenciu, Purice [GNP].

.

1 + Ξ , and, formula ( 1.5) remains intact, if we just replace S3.

.
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A precise definition of U in the sense of the Hilbert space H is straight-forward,
if we impose cdn.(X) on the potentials Aj . Especially, the differential operator Ξ
has a unique self-adjoint realization; then Ξ0 and Ξ will be well defined bounded
operators of L2(R3, C2). But we also wish to emphasize that U as well as Λ =
U∗HU are (global) pseudodifferential operators on R

3. In fact, U belongs to our
algebra Opψc0 of “strictly classical” ψdo-s of [Co5], discussed in ch.1, assuming
that the potentials A(x) satisfy cdn.(X)5.

Note the symbol p(x, ξ) =
√

1 + (σ.(ξ −A))2 is md-elliptic of order e1, so that
the ψdo p(x,D) has a K-parametrix Q=q(x,D) of order −e1 , in the sense of
sec.1.3.

In this chapter we want to discuss such a unitary decoupling for cases where also
the potential V no longer vanishes identically - but it also must satisfy cdn.(X),
of course. In that case we cannot expect an explicit formula. However, in sec.3.2
we first will discuss a decoupling modulo a remainder of order −∞ where U has
an explicit asymptotic expansion, starting out with (3.1.9)) [or (3.1.5)] as the zero
order term. Getting a complete decoupling then will be a matter of manipulat-
ing remainders in O(−∞), as we learned handling them in sec.1.4. This will be
discussed in sec’s 3.5 and 3.6.

3.2 Unitary Decoupling Modulo O(−∞)

In this section we will assume (time-independent) potentials Aj ,V �≡ 0, all sat-
isfying cdn.(X). Similar to our construction of an inverse (mod O(−∞)) for an
md-elliptic ψdo we first shall try to use calculus of ψdo-s to construct a strictly
classical 0-order ψdo satisfying the 3 equations (3.0.8) only mod O(−∞).

Note, it follows from ψdo-calculus that, with the symbol u(x, ξ) of (3.1.9) - i.e.,
with6

(3.2.1) u(x, ξ) =
1√

2 + 2ζ0

{(1 + ζ0)
(

1 0
0 1

)
− iζ

(
0 1
1 0

)
} ,

5The differential operator Ξ indeed has a unique self-adjoint realization in H: It is a sum σD−
σA where −σA is bounded (under cdn.(X)) while σD is unitarily equivalent to the multiplication

−σξ , under the Fourier transform (which maps S ↔ S). One thus concludes that K = 1+Ξ2 =

1+(D−A)2−σcurl A = 1−∆+O(e1−e2) is bounded below by 1, in the Hilbert space H, hence

its inverse and its unique inverse positive square root Ξ0 are well defined bounded self-adjoint

operators of H. Moreover, Ξj = ΞjΞ0 are H-bounded self-adjoint as well, have bound 1, all as

operator H → H, as easily seen. Now, if we use prop.2.4.4 (and its corollary 2.4.5) it follows at

once that Ξ0 ∈ Opψc−e1 , hence that Ξ ∈ Opψc0. We again must use prop.2.4.4 to show that

also 1/
√

2 + 2Ξ0 ∈ Opψc0. Then, indeed, it follows that U of (3.1.9) belongs to Opψc0.
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where ζ0 = 1√
1+Υ2 , ζ = Υ√

1+Υ2 , with Υ(x, ξ) =
∑

σj(ξj −Aj(x)) - we get

(3.2.2) u∗(x,D)u(x,D)− 1 , u(x,D)u∗(x,D)− 1 ∈ Opψc−e ,

and

(3.2.3) u(x,D)∗Hu(x,D)−
(

Λ+ 0
0 Λ−

)
∈ Opψc−e2 ,

with Λ± = λ±(x,D))
(
1 0
0 1

)
. Accordingly we may use u0(x, ξ) = u(x, ξ) as a 0-th

approximation for the desired decoupling.
Suppose now, we have found uj(x, ξ) ∈ Opψc−Ne , j = 0, . . . , N , such that

U =
∑N

j=0 uj(x,D) satisfies

(3.2.4) U∗U − 1 , UU∗ − 1 ∈ Opψc−(N+1)e , U∗HU − Λ , ∈ Opψc−Ne−e2 ,

with a “decoupled” Λ =
(
Λ+ 0
0 Λ−

)
. Then we shall construct ω = uN+1 ∈ ψc−Ne−e

such that V = U +Ω with Ω = ω(x,D) satisfies (3.2.4) for N +1. By induction we
then get an infinite sequence uj ∈ ψc−Ne, and the asymptotic sum u =

∑∞
0 uj ∈

ψc0 will give the desired symbol satisfying (3.2.2),(3.2.3).
We have V ∗V − 1 = (U∗U − 1) + (U∗Ω + Ω∗U) + Ω∗Ω ∈ Opψc−(N+2)e, which

amounts to the condition

(3.2.5) u∗
0ω+ω∗u0−z1 ∈ ψc−(N+2)e with z1(x,D) = 1−U∗U ∈ Opψc−(N+1)e ,

using that above Ω has Ω∗Ω,ΩΩ∗ ∈ Opψc−2(N+1)e ⊂ Opψc−(N+2)e, while (3.2.4)
holds [U for N and V for N + 1]. Similarly V V ∗ − 1 ∈ Opψc−(N+2)e will hold if
we solve
(3.2.6)
u0ω

∗ + ωu∗
0 − z2(x,D) ∈ ψc−(N+2)e with z2(x,D) = 1− UU∗ ∈ Opψc−(N+1)e .

Conditions (3.2.5) and (3.2.6) mean that the hermitian symmetric parts of u∗
0ω

and ωu∗
0 should be equal to half of z1 and z2, resp. - i.e.

(3.2.7) ω ≡ u0(
1
2
z1 + iγ) ≡ (

1
2
z2 + iδ)u0 (mod ψc−(N+2)e),

with hermitian symmetric matrix symbols γ, δ of order −(N + 1)e. But note
that u0z1 ≡ z2u0 (mod ψc−(N+2)e) due to U(1 − U∗U) = (1 − UU∗)U . So the
two conditions do not contradict. We will treat the first as a sharp equation to
determine ω, then the second will hold mod order −(N + 2)e with δ = u∗

0γu0.

6We better recall, that Υ2 = |σ.(ξ −A)|2 = |ξ −A|2 is a scalar, due to the properties of σ, so

also ζ0 and the square root in (3.2.1) are scalars, while ζ is a 2 × 2-matrix. The 2 × 2-matrices

of (3.2.1) are really 4 × 4-matrices - i.e. 2 × 2-matrices of 2 × 2-blocks.
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Next we must satisfy the third condition (3.2.4)) with V and N + 1 and a new
decoupled Λ′. That is, V ∗HV −Λ′ ≡ (U∗HU−Λ)+(Λ−Λ′)+(U∗HΩ+Ω∗HU) ∈
Opψc−(N+1)e−e2 . For symbols this amounts to u∗

0hω + ω∗hu0 ≡ z3 + z4 (with “≡
mod order −(N + 1)e − e2”, and with the symbols z3, z4 of Λ′ − Λ,Λ − U∗HU .
Note that the symbol z3 of Λ′ − Λ should be “decoupled” and of order −Ne− e2

while z4 (of order −Ne− e2) is given (but z3 must be found). Here we substitute
ω = u0( 1

2z1 + iγ), (from (3.2.7)) for

(3.2.8) u∗
0hu0(

1
2
z1 + iγ) + (

1
2
z1 − iγ)u∗

0hu0 = z3 + z4 ,

where again a hermitian symmetric γ (of order -(N+1)e) and a decoupled z3 (of
order −Ne− e2) must be found while z1 (hermitian, of order −(N + 1)e) and z4

(hermitian, of order −Ne + e2 are given. Note, u∗
0hu0 = λ =diag(λ+, λ+, λ−, λ−)

is the diagonal matrix from (3.1.3),(3.1.4). Therefore the above amounts to

(3.2.9) i[λ, γ] = z3 + z4 −
1
2
{λz1 + z1λ} = z5 .

Note the right hand side z5 of (3.2.9) is of order −Ne − e2. That commutator
equation can only be solved for γ if z5 is of the form

(
0 p
p∗ 0

)
(with 2×2-blocks 0, p).

This determines z3 as the “decoupled part” of z5. Then (3.2.9) has infinitely many
solutions, of the form

(3.2.10) γ =
1
2i

ζ0

(
c1 p

p∗ c2

)
,

with general (2 × 2-matrix-valued) symbols c1, c2 to be chosen such that γ is a
symbol of proper order −(N + 1)e. So, indeed, the strictly classical ψdo U of
order 0 satisfying the 3 equations (3.0.8) modulo O(−∞) only exists.

Next, we will remove the “mod O(−∞)” from the first two relations (3.0.8) -
so that U indeed becomes a unitary operator of H. Just as in ch.1 with inverses
of ψdo-s this requires some functional analysis.

Note, the operator U thus far constructed is md-elliptic of order 0. Thus
we may apply thm.1.4.7 to find that (i) the kernels of U and U∗ both are finite
dimensional, and they belong to S ⊂ H. (ii) The operators U,U∗ have closed rank.
In other words, U,U∗ are Fredholm operators.

It is important then to show that their Fredholm index ind(U) = dim kerU −
dim ker U∗ vanishes. To verify this we need some common results of Fredholm
theory (cf.[Ka1],ch.4,§5 or [Co11],App A1): The index of a Fredholm operator
A ∈ L(H) does not change if we add a compact operator C or else, a bounded
operator B with sufficiently small norm ‖B‖. To use this, focus on the ψdo
u0(x,D) with u = u0 of (3.2.1). Note that U − u0(x,D) is of order −e, hence it
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is a compact operator of H (rem.1.4.3). Thus ind(U) =ind u0(x,D). Regarding
u0(x,D) we first notice that its Fredholm index is zero if we assume Aj = 0. In
that case the symbol is independent of x, so u0(x,D) = F−1u0(ξ)F is a unitary
operator with kerU = ker U∗ = {0}. For potentials Aj �≡ 0 form the symbol
(3.2.1) with Aj(x) replaced by sAj(x), with a constant s , 0 ≤ s ≤ 1. This
symbol, called us

0(x, ξ) satisfies [us
0−us0

0 ]4 → 0 as s→ s0 with [.]4 as in thm.1.4.1.
By that theorem we thus get ‖us

0(x,D) − us0
0 (x,D)‖ → 0 as s → s0. In other

words the family of operators us
0(x,D) is norm continuous in the parameter s. It

is md-elliptic for all s, so it is Fredholm for all s. Accordingly the Fredholm index
is constant along the interval [0,1]. That index is zero for s = 0, so also, for s = 1.
It follows that u0(x,D) and hence U has index 0.

In other words, kerU and ker U∗ have the same dimension N . We pick
orthonormal bases {ϕj}j=1...N and {ωj}j=1...N of ker U and kerU∗, resp. and
then form the operator V = U + X , X =

∑N
1 ωj〉〈ϕj . Here we note that

X ∈ O(−∞) since ker U and kerU∗ both are subspaces of S. Accordingly we still
have 1 − V ∗V = P ∈ O(−∞) and 1 − V V ∗ = Q ∈ O(−∞). In addition we
now have kerV = ker V ∗ = {0}, because the operator X is an isometric map of
ker U onto ker U∗ = (im U)⊥. So, it just extends the operator as an isometry into
its kernel. As a consequence we now have V invertible, as an operator of L(H),
and V ∗ then is invertible as well. So, V ∗V = 1 + C is invertible as well, where
C ∈ O(−∞).

Lemma 3.2.1 For a positive definite self-adjoint operator of the form 1 + C,
where C ∈ O(−∞) both the unique positive square root

√
1 + C and its inverse

(1 + C)−1/2 are of the form 1 +O(−∞).

This is an immediate consequence of cor.2.4.5. A simpler proof will be discussed
in sec.3.4, below (cf. prop.3.4.3).

With this lemma we now may define W = V (V ∗V )−1/2 = V (1 + C)−1/2.
Clearly then W = U + O(−∞) ∈ Opψc0 is invertible in L(H), and we have
W ∗W = 1, so that W is a unitary operator of H. Also we have W ∗HW =
U∗HU +O(−∞). So, since U∗HU was decoupled mod(O(−∞)) the same is true
for W ∗HW . So, we have proven:

Theorem 3.2.2 Let the C∞-potentials A,V have the property that derivatives of
order k decay like (1+ |x|)−k−1. Then there exists a unitary ψdo U ∈ Opψc0 such
that

(3.2.11) U∗HU −
(

X 0
0Y

)
∈ O(−∞) .
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Here X,Y are (2× 2-matrices of) ψdo-s in Opψc. In fact we have
(3.2.12)
X = λ+(x,D)+X0 , Y = λ−(x,D)+Y0 , λ±(x, ξ) = V(x)±

√
1 + (ξ −A(x))2 ,

with certain ψdo-s X0, Y0 ∈ Opψc−e2 , of order −e2 = (0,−1). Moreover, the
operators U,X0, Y0 possess asymptotic expansions into an infinite series of terms
of lower and lower order, and these terms may be explicitly calculated, by the
procedure outlined above7. The lowest term of U coincides with the operator of the
symbol (3.2.1).

3.3 Relation to Smoothness of the Heisenberg

Transform

Before we begin the task of replacing the “∈ O(−∞)” in fla. (3.2.11) by “= 0” let
us point to the following later result, to be discussed in thm.5.5.1. (The potentials
are still time-independent and satisfy cdn.(X)):

Theorem 3.3.1 An operator A ∈ Opψc (of order m) has a “ smooth Heisenberg
transform” At = eiHtAe−iHt if and only if it also is decoupled mod(O(−∞)), in
the sense of (3.2.11) - that is,

(3.3.1) U∗AU −
(

B 0
0C

)
∈ O(−∞) ,

with (blocks of) ψdo-s B,C ∈ Opψc (also of order m), and with U of theorem
3.2.2 - same U as for H.

[Proof see thm.5.7.1.]

Now, for the purpose of building a consistent theory of observables, in the
sense of J.v.Neumann [JvN], we will ask for a strict decoupling, not only modulo
O(−∞). In view of the already achieved decoupling of thm.3.2.2 this reduces to
the question whether, after the U of thm.3.2.2 we now can find another unitary
V = 1 + Z , Z ∈ O(−∞) such that

(3.3.2) V ∗U∗HUV =
(

X 0
0Y

)
,

7Note, the final correction of U , to make it a unitary operator, may be ignored, as far as

asymptotic expansions of X, Y, U are concerned. They just “redefine” the limit of the infinite

sum.



66 CHAPTER 3. DECOUPLING WITH ΨDO-S

with modified X,Y , but the modification consisting only of additional O(−∞)-
terms.

In [Co3] we were declaring the “smooth” algebra P as algebra of precisely
predictable observables. With an improved unitary UV = W , achieving a precise
decoupling (3.3.2), we will modify that declaration, and define a new algebra
PX ⊂ P of precisely predictable observables, by requesting that

(3.3.3) A ∈ PX ⇐⇒ W ∗AW =
(

B 0
0C

)
.

It is evident that (3.3.2) amounts to a spectral split of the Hamiltonian H: Defining
H± as the subspaces of H of all vectors with vanishing last two (first two) of the
4 components, and then K± = WH± we get H reduced by the orthogonal direct
decomposition

(3.3.4) H = K+ ⊕K− .

The spectrum of the restrictions H± = H|K± clearly will be that of the self-adjoint
operator X resp. Y . In fact we get

(3.3.5) W ∗
+H+W+ = X , W ∗

−H−W− = Y ,

with the restrictions W± = W |K± (which are unitary maps W± : K± → H±). The
spectral theory of X and Y can be readily studied, however, in view of formula
(3.2.12): The essential spectra of X and Y coincide with the half- lines Σ+ = [1,∞)
and Σ− = (−∞,−1] , respectively. Outside any neighbourhood of these half-lines
there are only finitely many point-eigenvalues of finite multiplicity.

This spectral split we expect to amount to a clean split into an electron and
positron part of the Hamiltonian. Accordingly, our above definition of the new
algebra PX of precisely predictable observables amounts to a restriction of ob-
servables to those who are also reduced by this split.

Clearly then, referring to our initial discussion, the spaces K± should be inter-
preted as spaces of purely electronic and purely positronic physical states - named
K+ = He and K− = Hp. This will convert (3.3.4) into (3.0.5).

We shall discuss a clean decoupling of H (of the form (3.3.2)) in sec.3.5, below.
However, there seems to be an obstruction, at least for our technique, insofar as the
split (3.3.2) will have to be made with respect to a decomposition H = H+ ⊕H−

where H± differ from the spaces of 4-vectors with last 2 (first 2) components
vanishing, resp. It may be necessary to shift a finite dimensional subspace Z of
rapidly decreasing functions from one of these spaces to the other one.
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Instead of directly designing a decoupling of H in the sense of (3.3.2) we will
attempt to decouple some special projection of the spectral family of H in the
interval between −1 and +1 - this automatically also gives a decoupling of H

itself. For such decoupling at λ0 a “deficiency index” ιλ0 must vanish, or else, a
space Z of dimension |ιλ0 | must be shifted. The index ι decreases with λ, so, it
may cross 0 for some λ ∈ (−1, 1) and allow decoupling. However, it seems possible
that ι does not change sign in (−1,+1). In that case we cannot decouple with
respect to the split H = H+⊕H− but first must modify the spaces H± by adding
and subtracting a space Z. This may result for potentials so strong that some
electron eigenvalues wander into the continuous spectrum of the positron, or, vice
versa.

For details we refer to sec.3.5, below.

3.4 Some Comments Regarding Spectral Theory

We are departing from thm.3.2.2, and write (3.2.11) in the form

(3.4.1) H∼ = U∗HU =
(

X 0
0Y

)
+

(
0Γ∗

Γ 0

)
,

with self-adjoint 2 × 2-blocks X,Y of the form (3.2.12), and a Γ ∈ O(−∞). The
task then will be, to find a unitary operator

(3.4.2) V =
(

1 + A B

C 1 + D

)
=

(
V+ B

C V−

)
, A,B,C,D ∈ O(−∞) ,

such that V ∗H∼V is “decoupled” - i.e., has the form (3.3.2) , its “ears” (the off
diagonal 2× 2-blocks) vanish.

In all of the following we work with potentials satisfying cdn.(X): Derivatives
of order k decay like (1 + |x|)−k−1 .

To discuss a complete decoupling of H we now will invoke spectral theory
of the self-adjoint partial differential operator system H, in the Hilbert space
H = L2(R3, C4). It is known8and easily proven that there is a unique self-adjoint
realization of the operator H of (3.1.1). This self-adjoint operator H has essential
spectrum consisting of the half-lines (−∞,−1] = Σ− and [1,∞) = Σ+ . The
spectrum in (−1, 1) is discrete, with at most countably many eigenvalues of finite
multiplicity clustering at ±1 only. The unitary transform H∼ of H is self-adjoint
too, with the same spectrum. Let {Eλ : λ ∈ R} be the spectral family of H∼.

8To investigate the spectral theory of H of (3.1.1) one might look at H as an H0-compact
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The operators X and Y of (3.4.1) (or (3.2.11)) have essential spectrum Σ+

and Σ−, respectively. Again, their spectrum is discrete outside of these half-lines.
Verification of this requires some simple arguments of ψdo-theory9.

We will require the following result:

Lemma 3.4.1 Let P0 =
(
1 0
0 0

)
, with 2× 2-blocks again. Then Eλ = 1− P0 − eλ ,

where eλ ∈ O(−∞) , for all λ ∈ (−1, 1) .

Proof. We must examine the difference between the spectral family Eλ of the
operator H∼ of (3.4.1), and that of H� =

(
X 0
0 Y

)
there, in order to prove lemma

3.1.1. Assume −1 < λ < 1, and first assume that λ is not an eigenvalue, not of
H∼ , nor of H�. For simplicity, write M = H∼ , N = H� , for a moment. For
simplicity let λ = 0 , noting that a general λ (as above) may be treated similarly.

The integral
∫ iη

−iη
(M − λ)−1dλ = Iη(M) (along part of the imaginary axis)

exists under norm convergence of H, as a Riemann integal, because the integrand

perturbation of H0 = α.D + β, writing H = H0 + {V −
∑

αjAj} = H0 + Z. Note, H0 is

diagonalized by the Fourier transform (cf. (3.1.2)), and its spectrum is readily confirmed as

the union Σ+ ∪ Σ− with both these half-lines giving absolutely continuous spectrum (of infinite

multiplicity). There are no point-eigenvalues of H0. We have H2
0 = 1 − ∆, and H−1

0 exists as a

ψdo in Opψc−e1 - symbol independent of x. H itself is md-elliptic of order e1 hence its null space

is finite dimensional and belongs to S, by thm.1.4.7. It must be self-adjoint in the domain of H0

(i.e., the Sobolev space He1 , e1 = (1, 0)), since the potentials are bounded, so that Z ∈ L(H).

If ker H �= {0} we consider H′ = H +
∑

ϕj〉〈ϕj with an orthonormal base {ϕj} of ker H. Clearly

H and H′ have the same spectral theory, except that H′ no longer has the eigenvalue 0 (and is

invertible). We also may write H′ = H0 + Z where now Z has an additional term of order −∞.

So, WLOG, we assume ker H = {0}, and then work with H instead of H′. Since the potentials

all are of order −e2 - by cdn(X) - we find that C = H−1
0 Z ∈ Opψc−e is compact, by rem.1.4.3.

We may write H = H0(1 + C) = (1 + C∗)H0, hence H−1 = (1 + C)−1H−1
0 = H−1

0 (1 + C∗)−1.

We get (1+ C)−1 = 1−C(1+ C)−1, hence H−1 = H−1
0 −C(1+ C)−1H−1

0 , where the last term

is compact - since products of compact and bounded operators are compact.

Now, it follows that the essential spectrum of any operator - that is, all points of the spectrum

except isolated point-eigenvalues of finite multiplicity does not change, if one adds a compact

operator (cf.[Ka1],or,[Co11]). Hence H−1 and H−1
0 have the same essential spectrum - and so

have H and H0. Thus, indeed, the essential spectrum of H must consist precisely of the union

Σ+ ∪Σ−. [But we have no statement, of course, about the more precise nature of Sp(H). Under

special condition - such as for potentials depending on r = |x| only one knows much more, such

as absolute continuity, etc.]
9For this we use a similar argument as for H: One will compare the operators λ±(x, D) with

the operator ±〈D〉, noting that the further perturbations X0 and Y0 again do not influence the

essential spectrum. Get 〈ξ − A(x)〉 − 〈ξ〉 = (A(x)2 − 2ξ.A(x))/{〈ξ − A(x)〉 + 〈ξ〉} ∈ ψc−e2 , as

well as V(x) ∈ ψc−e2 . So, we get X = 〈D〉 + Z′ , Y = −〈D〉 + Z′′ with Z′, Z′′ ∈ ψc−e2 . Again

〈D〉 is md-elliptic of order e1 - as are X, Y , and 〈D〉−1 exists - a ψdo in Opψc−e1 with symbol

independent of x. The spectrum of 〈D〉 equals Σ+. We may exactly repeat the argument of the

preceeding footnote to also show that Σ± is the essential spectrum of X (Y ). [Again, the study

of more detailed properties of these spectra requires a more delicate analysis.]
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is (norm-) smooth (even analytic). We may write
∫ iη

−iη
=

∫ iη

0
+

∫ 0

−iη
, and set

λ = iµ in the first, λ = −iµ in the second integral, with 0 ≤ µ ≤ η. A calculation
then gives

(3.4.3) M−1Iη(M) = 2i
∫ η

0

(M2 + µ2)−1 .

Here the integrand is O(µ−2) , as µ→∞ . Hence the improper Riemann integral∫ ∞
0

= limη→∞
∫ ∞
0

again exists in norm convergence of H .
For a real number a �= 0 we have

∫ ∞
0

dµ
a2+µ2 = 1

|a|
∫ ∞
0

dµ
1+µ2 = π

2|a| . Using the
spectral theorem we thus confirm that

(3.4.4) I(M) = lim
µ→∞

Iη(M) = iπsgn(M) = iπ(1− 2E0) ,

noting that
∫ +∞
−∞ sgn(λ)dEλ = −E0+(1−E0) = 1−2E0 . Note that

∫ i∞
−i∞ in (3.4.3)

exists only as a Cauchy principal value, and only pointwise, for u ∈ dom(M).
The corresponding formula holds for N = H�, where we observe that (i) the

domains dom(N),dom(M) are equal, and (ii) the spectral projection F0 at 0, for
the operator N must be of the form

(
0 0
0 1

)
+ S with an operator S ∈ O(−∞) . So,

in order to show that E0 − 1 + P0 is O(−∞), it suffices to look at the difference

(3.4.5) R = I(N)− I(M) =
∫ i∞

−i∞
(M − λ)−1Λ(N − λ)−1dλ

with Λ = M −N =
(
0 Γ∗

Γ 0

)
of (3.4.1) , Λ ∈ O(−∞) .

We claim that this difference R is of order −∞. To see this, let again Λs =
〈x〉s1〈D〉s2 , for s = (s1, s2). This operator Λs is an isometry Hs → H , with the
weighted Sobolev spaces Hs of sec.1.4. To show that R ∈ O(−∞) we must confirm
that ΛsRΛt ∈ L(H) for all s, t ∈ R

2 . But we have

(3.4.6) Λs(M − λ)Λ−1
s = M + Bs − λ = (M − λ)(1 + (M − λ)−1Bs) ,

where Bs = ΛsMΛ−1
s −M ∈ Opψc(0,−1) ⊂ H by the commutator rules and L2-

boundedness for pseudodifferential operators. M and ΛsMΛ−1
s have the same

spectrum, since their resolvents also are K-parametrices. On the other hand, for
large |λ| the operator (M − λ)−1 becomes small, on the integration path, so that
(1+(M−λ)−1Bs)−1 = Ks,λ exist and is uniformly bounded . A similar argument
holds for the operator N (instead of M). Since we must have ΛsΛΛt ∈ L(H) for
all s,t, we may pull Πs and Πt through the resolvents. to get a smooth integrand,
bounded by |λ|−2 for large |λ| . Thus the integral exists as improper Riemann
integral, in norm convergence of H. It follows that indeed R is of order −∞ .
Q.E.D.
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Remark 3.4.2 Eλ increases and is piecewise constant, in that interval, and jumps
only by a projection onto a finite dimensional subspace of S, at the eigenvalues.
Thus the eigenvalues of M (and those of N) need no longer be excluded.

Proposition 3.4.3 For A ∈ O(−∞) , if (1 + A)−1 exists, it is of the form
1 + B , B ∈ O(−∞). For a self-adjoint A ∈ O(−∞) all eigen functions to
an eigenvalue �= 0 belong to S = S(R3). If, in addition, 1 + A ≥ 0, then we have√

1 + A = 1 + B where B ∈ O(−∞).

Proof, (We base this on facts discussed in sec.1.4.) First of all, 1 + A , for
A ∈ O(−∞) is an md-elliptic ψdo of order 0. Thus it has a K-parametrix, unique
up to an additional term in O(−∞). Clearly a special K-parametrix is given by
1. An L2-inverse C of 1 + A, if it exists, must also be a ψdo in Opψc0, hence a
parametrix. Hence it differs from 1 only by an operator in O(−∞).

A selfadjoint A ∈ O(−∞) is a compact operator, hence has discrete spectrum
(except at 0). If λ �= 0 is an eigenvalue, then A − λ is Fredholm in L2 = H0,
hence Fredholm in every polynomially weighted Sobolev space Hs = H(s1,s2), and
its null space is independent of s = (s1, s2), so, must be a subspace of ∩Hs = S,
by thm.1.4.7. Hence all eigenvectors to λ �= 0 must belong to S.

For A as above let 1 + A ≥ 0. For
√

1 + A = 1 + B , B ∈ O(−∞) it suffices to
show that (1+A)−

1
2 = 1+C , C ∈ O(−∞), assuming (1+A)−1 to exist. For, if that

inverse does not exist, then let P be the orthogonal projection onto ker(1+A) ⊂ S.
We get P ∈ O(−∞), since ker(1 + A) is finite dimensional. Then (1 + A + P )−1

exists, and we may write
√

1 + A−1 = (1+A)(1+A+P )−
1
2 −1 ∈ O(−∞). Using

a well known formula for the inverse square root, write

(3.4.7) (1 + A)−
1
2 =

1
π

∫ ∞

0

dλ√
λ

(A + 1 + λ)−1 .

Taking the difference between (3.4.7) and the same formula for A = 0 we get

(3.4.8) 1− (1 + A)−
1
2 =

1
π

∫ ∞

0

dλ√
λ

A

(1 + λ)(A + 1 + λ)
.

Here the integral at right belongs to every Hs, hence to S. This follows, using the
same technique as for R of (3.4.5). Q.E.D.

3.5 Complete Decoupling for V(x) �≡ 0

After above preparations we now will discuss a complete decoupling of H (or, of
H∼ by an operator of the form 1 +O(−∞)). Our discussion here can be strictly
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confined to the class O(−∞) of integral operators. It was noted that O(−∞) is
an (adjoint invariant) subalgebra of L(H).

Let us fix some point λ0 ∈ (−1, 1) , not an eigenvalue of H∼ . By lemma 3.4.1
above we have
(3.5.1)

P = 1−Eλ0 = P0 + Z , Z =
(

F G

G∗ H

)
, F,G,H ∈ O(−∞) , F ∗ = F , H∗ = H .

Instead of directly looking for a V satisfying (3.3.2) we try to find a unitary V

such that

(3.5.2) V ∗PV = P0 .

Such V also must satisfy V ∗(1 − P )V = 1 − P0 =
(
0 0
0 1

)
. But we have H∼ =

PH∼P +(1−P )H∼(1−P ) , since P and H∼ commute. Thus it follows that also
V ∗H∼V is ψ-diagonal10.

Vice versa, if (3.3.2) holds, we need not to have V ∗PV = P0. Rather, it follows
that

(3.5.3) V ∗PV − P0 =
(

M 0
0N

)
.

with finite dimensional projections −M,N . Indeed, if H� = V ∗H∼V =
(
X 0
0 Y

)
is

ψ-diagonal then P0H
�(1 − P0) = (1 − P0)H�P0 = 0. Especially, P0 commutes

with H�, hence also commutes with the spectral projection P � = V ∗PV . That
is, P �P0 = P0P

� ⇒ P0P
�(1−P0) = (1−P0)P �P0 = 0 , i.e., P � is ψ-diagonal. But

the operator Y has its essential spectrum in the interval Σ− only, so, there are at
most finitely many point eigenvalues above λ0. This implies that the LR-corner
N of P � (which counts the spectrum above λ0) must be an orthogonal projection
of finite rank. Similarly, Y has its essential spectrum in Σ+, so that again only
finitely many point eigenvalues are below λ0. That is, the UL-corner −M of 1−P �

must be a projection of finite rank. So, indeed, P �−P0 is a symmetry as in (3.5.3).
Given P of the form (3.4.2) (which must satisfy P 2 = P ) we now look for V ,

as in (3.5.1), satisfying

(3.5.4) V ∗V = 1 , PV = V P0 .

[Note, the additional condition V V ∗ = 1 is implied: V = 1 + Z , with Z of order
−∞ is a compact perturbation of 1, hence is Fredholm, with index 0. If V ∗V = 1

10An operator A in 2 × 2-block-diagonal form with respect to a given direct decomposition

H = H1 ⊕ H2 will be called “ψ-diagonal”, in this section. [That is, A leaves both spaces H1,2

invariant.] We also may say that such operator has “its ears” equal to 0.
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then ker V = {0}, hence dim ker V ∗ =dim ker V = 0 ⇒ ker V ∗ = {0} ⇒ V is
invertible, and V V ∗ = 1 follows as well.] Evaluating (3.5.4) in 2× 2-block-matrix
form , get
(3.5.5)
(1+A∗)(1+A)+C∗C = 1 , (1+D∗)(1+D)+B∗B = 1 , (1+A∗)B+C∗(1+D) = 0,

using V ∗V = 1 , and, from the second relation (3.5.4),
(3.5.6)
FU+ +GC = 0 , G∗U+ +(H−1)C = 0 , (1+F )B+GU− = 0 , G∗B+HU− = 0 .

From P 2 = P we get

(3.5.7) F (1 + F ) + GG∗ = 0 , G∗G + H(H − 1) = 0 , FG + GH = 0.

These are satisfied apriori for F,G,H .
We must have 0 ≤ 1 + F ≤ 1 , 0 ≤ H ≤ 1 , since the projections P, 1− P are

self-adjoint positive.
The (self-adjoint) operators 1 + F and 1 − H are compact perturbations of

1, hence they are Fredholm. Their null spaces are finite dimensional, and their
inverses exist in the ortho-complements ker (1 + F )⊥ , ker (1 − H)⊥ , resp. ,
mapping these spaces to themselves.

Assume first ker(1 + F ) = ker(1−H) = {0}, so that the two inverses exist in
the entire space. Then the second and third relations (3.5.6) may be solved for
C,B. We get

(3.5.8) C = (1−H)−1G∗V+ , B = −(1 + F )−1GV− .

Substitute this into the first and 4-th relation (3.5.6) for

(3.5.9) FV+ + G(1−H)−1G∗V+ = 0 , −G∗(1 + F )−1GV− + HV− = 0 .

This looks like a serious restriction of V± . However, as a consequence of (3.5.7) it
is found that the coefficients F + G(1−H)−1G∗ = 0, and F −G∗(1 + F )−1G = 0
both vanish, so that the choice of V± still is completely free. Indeed, FG+GH = 0
of (3.1.7) implies (1 + F )G = G(1 − H) , or, G(1 − H)−1 = (1 + F )−1G , and
(1−H)−1G∗ = G∗(1 + F )−1 . Thus F + G(1 + H)−1G∗ = F + (1 + F )−1GG∗ =
(1 + F )−1{F (1 + F ) + GG∗} = 0, using the first of (3.5.7). Similarly for the other
coefficient.

We conclude that PV = V P0 of (3.5.6) holds for any matrix V of the form
(3.4.2), for an arbitrary choice of V±, with C,B of (3.5.8). Then, to make V

unitary, we must substitute (3.5.8) into (3.5.5), and solve these equations for A

and D. Substituting C from (3.5.8) into the first of (3.5.5) get

(3.5.10) (1 + A∗)(1 + A) + (1 + A)∗{(1 + F )−1GG∗(1 + F )−1}(1 + A) = 1.
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Using (3.5.7) to express GG∗ we get

(3.5.11) R = (1 + F )−1GG∗(1 + F )−1 = −F (F + 1)−1.

With this (3.5.10) assumes the form (1 + A)∗(1 + R)(1 + A) = 1 . This is solved
by setting

(3.5.12) V+ = (1 + A) = (1 + A)∗ = (1 + R)−1/2 = (1 + F )1/2.

Similarly, the second equation (3.5.5) is solved by

(3.5.13) V− = (1 + D) = (1−H)1/2.

The third relation (3.5.5) is also satisfied with such choice of A,B. We have proven:

Proposition 3.5.1 For an orthogonal projection P as in (3.5.1) assume that (1+
F )−1 and (1−H)−1 exist. Then the matrix (3.4.2) with
(3.5.14)
A =

√
1 + F − 1 , B = −G

√
1−H

−1
, C = G∗√1 + F

−1
, D =

√
1−H − 1 .

provides a solution of (3.5.2) (with V of the form (3.4.2)). In particular, V − 1
belongs to O(−∞), in view of prop.3.4.2.

In general, while we cannot expect the inverses of 1+F and 1−H to exist in all
of L2(R3, C2), they certainly will exist in closed subspaces of finite codimension,
as already mentioned. We have the orthogonal direct decompositions of H+ =
H− = L2(R3, C2) :

(3.5.15) H+ = ker(1 + F )⊕H◦
+ , H− = H◦

− ⊕ ker(1−H) ,

with H◦
+ = im(1 + F ) , H◦

− = im(1−H) .
Examining (3.5.7) we note that GG∗u = 0 on ker(1 + F ), and G∗Gu = 0 on

ker(1 − H) . This implies G∗u = 0 on ker(1 + F ) , and Gu = 0 on ker(1 − H).
Note, we must regard G : H− → H+ , and G∗ : H+ → H− . So, G and G∗ are
represented by a pair of 2× 2-block-matrices, with respect to the decompositions
(3.5.15). The above then means that G ∼

(
0 0
G◦ 0

)
, G∗ ∼

(
0 G◦∗

0 0

)
. Or, if we now

write

(3.5.16) H = H+ ⊕H−

in the form of a 4-fold direct sum

(3.5.17) H = H◦
+ ⊕H◦

− ⊕ ker(1 + F )⊕ ker(1−H) ,
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then the projection P assumes the form

(3.5.18) P =
(

P ◦ 0
0Q

)
, with P ◦ =

(
F ◦ G◦

G◦∗ H◦

)
, Q =

(
0 0
0 1

)
,

where, of course, the matrix elements are ordered according to (3.5.17), with Q

projecting onto ker(1 + F ) ⊕ ker(1 −H) . In order to bring this matrix onto the
form

(
1 0
0 0

)
, we will no longer insist on the direct decomposition (3.5.16). Rather,

we will write

(3.5.19) H = H�
+⊕H�

− , with H�
+ = H◦

+⊕ ker(1−H) , H�
− = H◦

−⊕ ker(1 + F ).

Then, with respect to the new decomposition (3.5.19), we just have to ψ-diagonalize
the operator P ◦ of (3.5.18), by a unitary V ◦ of the form (3.4.2), with respect to
H◦ = H◦

+ ⊕H◦
−, and then define V � =

(
V ◦ 0
0 1

)
. The latter task, however, may be

solved by application of proposition 3.5.1 to the operator P ◦ : H◦ → H◦. Or.
rather, we must repeat the abstract construction leading to V of prop.5.1 now for
the restrictions of A,B,C,D to H◦

±, respectively, where assumptions of prop.3.5.1
hold. Using the fact that the projections onto the finite dimensional subpaces
ker(1 −H) = N , ker(1 + F ) = M of S belong to O(−∞) we indeed then get a
V � − 1 ∈ O(−∞), and this even remains true if we replace 1 in the LR-corner of
V � by any other linear operator of M⊕N . Note that N , M are eigenspaces of
H , F , hence belong to S, by prop.3.4.2.

Returning to our old direct decomposition (3.5.16), w may express this result
in the form (3.5.3), i.e.,

(3.5.20) V �∗PV � − P0 =
(

M 0
0N

)
,

where now −M,N are the orthogonal projections onto the spaces M , N . How-
ever, the operator V �∗H∼V � needs not to be ψ-diagonal with respect to (3.5.16),
while it will be ψ-diagonal with respect to (3.5.19).

Now if we assume dim(M) = dim(N ) then this “deficiency” is easily corrected
by involving any unitary map M→ N , to switch the two spaces, thus returning
from the decomposition (3.5.19) to (3.5.16), as we should like. If these dimensions
are not equal, then such a unitary map does not exist, of course. However, if, for
example, we have “<”, instead of “=”, then M will be unitarily equivalent to a
subspace N � Z , with a proper subspace Z of N . If we then make the above
“unitary switch of spaces” we will convert (3.5.19) into H = {H◦

+ ⊕ ker(1 + F )⊕
Z} ⊕ {H◦

− ⊕ ker(1−H)�Z} . With definition of H◦
± by (3.5.17) this yields

(3.5.21a) H = {H+ ⊕Z} ⊕ {H− �Z} ,
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where we recall that Z, as a subspace of ker(1−H), must be a subspace of H−∩S.
Similarly, if we have “>”, then we will get

(3.5.21b) H = {H+ �Z} ⊕ {H− ⊕Z} ,

with a finite dimensional subspace Z of H+ ∩ S.
This suggests introducing a “deficiency index”

(3.5.22) ι = ι(λ0) = dim ker(1 + F )− dim ker(1−H) .

If ι vanishes then we succeeded in constructing the desired operator V -i.e., then
our ψdo W = UV decouples the Dirac Hamiltonian. For negative ι then we
constructed a decoupling with respect to a split of the form (3.5.21a). For positive,
with respect to (3.5.21b). In either case, by the way, we have

(3.5.23) dim Z = |ι| .

Note that, of course, our index ι depends on the choice of the point λ0 ∈ (−1, 1)
we made initially. Observe here that

(3.5.24) ker(1 + F ) = ker Pλ ∩H+ , ker(1−H) = ker Eλ ∩H− .

In particular this implies that ker(1 + F ) decreases, while ker(1−H) increases, as
λ increases from −1 to +1. There will be limits of {ker(1 + F )} and {ker(1−H)}
as λ → ±1, and those spaces are piecewise constant in λ , jumping only at the
eigenvalues of H∼, (and there only if the corresponding eigenspace contains a
nonvanishing function in H±, respectively).

It follows that our index function ιλ is piecewise constant and non-increasing, as
λ increases from −1 to +1, assuming only integer values. If it becomes 0 for some
λ0, then above construction will work, for that λ0, and we will get the decoupling
(3.3.2), with the split between electron and positron state occurring at λ0: All the
spectrum above (below) λ0 generates electron (positron) states, respectively. If
ιλ assumes both positive and negative values, then it either will also assume 0 ,
or else jump - at some eigenvalue λ0 from “+” to “−”. But even if it does that,
without assuming 0, then we still will get our decoupling at that λ0 by properly
splitting the eigenspace at λ0 .

The monotone function ιλ has limits ι±1 as λ → ±1 (where ±∞ is allowed).
Assume then, that ι1 > 0, for example. Clearly the limit of M = Mλ → M1 is
a finite dimensional subspace of S. We get dim Nλ = dim Mλ − ιλ ≤ dim M0,
as λ > 0, since ιλ > 0 and Mλ decreases. Hence the Nλ have bounded dimension
and must also converge towards a finite dimensional subspace M1 of S as λ → 1.
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Looking at the above space Z = Zλ of (3.5.21b), here a subspace of H+∩S, its
dimension |ιλ| decreases to the limit |ι1|, and we may choose it to decrease with
λ to a limit Z1. Since ιλ is a step function, assuming integer values, it must be
constant near 1. Hence Zλ = Z1 is constant near 1.

Similarly, if we assume that ι−1 < 0 (i.e., that ιλ assumes only negative values),
then we obtain a “mimimal” finite dimensional subspace Z ∈ H− ∩ S and a
decoupling of the form (3.5.21a), with that space Z. The space Z is minimal in
the sense that our technique does not supply any such space of smaller dimension.
Again the splitting (3.5.21a) may be obtained by using any λ > −1, sufficiently
close to −1.

Let us finally note, that our space Z might be made smaller still if we could
secure some point-eigenvalues within the continuous spectrum Σ+ (or Σ−), with
the property that a subspace T �= {0} of the corresponding eigenspace belongs
to S. In that case we could work with the spectral projection Pλ + T ⊃ Pλ , λ

close to ±1, T=projection onto T , which possibly might give a smaller space Z
(or even Z = 0). However, while isolated point-eigenvalues necessarily have their
eigenspaces in S, this is not proven for points within the continuous spectrum.

3.6

Let us shortly address the questions around the distinction of the ψdo-decoupling
we have achieved. First of all, it is clear that there are other unitary ψdo-s achiev-
ing a decoupling. For example, we may conjugate the decoupled H∆ =

(
X 0
0 Y

)
by

a unitary ψdo of the form K =
(

Ke 0
0 Kp

)
with unitary ψdo-s Ke,Kp acting on H±

(properly modified by adding and subtracting that space Z). This amounts to re-
placing V by V K. It will leave the two spaces He and Hp unchanged. If we insist
on the condition K−1 ∈ O(−∞) then it also will leave the asymptotic expansions
of thm.3.2.2 unchanged. Otherwise these expansions will look different, but we
still have a unitary operator UV K ∈ Opψc0 decoupling the Hamiltonian H. In
this case we might just speak about changing the representation of the decoupled
Hamiltonian H.

On the other hand, it might be important to notice that our split does not
create a precise ordering of discrete “energy levels” into two categories, one con-
taining electron- the other one positron-energy levels. Any two eigenvectors (ψ

0 )
and (0ω) of

(
X 0
0 0

)
and

(
0 0
0 Y

)
, resp., belong to S, assuming their eigenvalues λ and

µ are not in the continuous spectrum of X or Y , resp.. Then let χ = (ψ
−ω), and

define Z = χ〉〈χ ∈ O(−∞), assuming that ‖ψ‖ = ‖ω‖ = 1. Confirm that 1 − Z

unique - Summary

Split and Decoupling are not
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is unitary, equal to 1 at {(ψ
0 ), (0ω)}⊥, but it exchanges (ψ

0 ) and (0ω). The opera-
tor UV (1 − Z) (with U of thm.3.2.2 and V of thm.3.5.2) also is a unitary ψdo
∈ Opψc0 decoupling H, with X and Y of (3.3.2) changed by an additional term of
order −∞. However, for this decoupling, the energy level λ - formerly belonging
to (ψ

0 ) ∈ H+ - now belongs to (0ω) ∈ H−. Also, the level µ now belongs to H+. In
other words, the level λ now is positronic, but the level µ is electronic.

Note also, this construction is possible only if both electronic and positronic
bound states exist. Somehow, the construction seems to keep track of the total
number of electronic and positronic bound states each.

On the other hand the question arises whether our construction also might
reach others of the many splits of H into two orthogonal subspaces left invariant
by H. To illuminate this, let us look at the potential free case and the spectral
family of the operator H0 = α ·D + β. This operator is unitary equivalent to the
matrix-multiplication u(ξ) → h0(ξ)u(ξ) = v(ξ), via the Fourier transform. Here
h0(ξ) = α · ξ + β has eigenvalues ±〈ξ〉. We need the eigen-projections p±(ξ) =
1
2 (1±h0(ξ)/〈ξ〉) of h0(ξ). The spectral family {F (λ) : λ ∈ R} of the multiplication
operator h0(ξ), acting on a subspace of H, is a matrix-multiplication again. For
any λ < −1 the projection Fλ is given by

(3.6.1) u(ξ) → p−(ξ)u(ξ) as 〈ξ〉 > −λ , = 0 as 〈ξ〉 ≤ −λ .

In other words, if χλ(ξ) denotes the characteristic function of the set {|ξ|2 > λ2−
1}, then the projection Fλ is given by the multiplication u(ξ) → p−(ξ)χλ(ξ)u(ξ),
where the function p−(ξ)χλ(ξ) has a jump-discontinuity along the sphere |ξ|2 =
λ2 − 1, so neither the multiplication operator nor its Fourier transform belong to
Opψc0. A similar argunment shows that the same holds, if λ > 1. In other words,
the partition

(3.6.2) H = Fλ(D)H⊕ (1− Fλ(D))H

(reducing H0) is not generated by projections which belong to Opψc0. However, if
a decoupling by a U ∈ Opψc0 were possible, giving the split (3.6.2) as split (3.3.4)
then we would arrive at Fλ(D) = U

(
1 0
0 0

)
U∗ ∈ Opψc0 -i.e., a contradiction.

This seems to show that our ψdo-technique above aims at the right kind of
split.

Let us summarize:

Theorem 3.6.1 Let the potentials of H be time-independent and satisfy cdn.(X).
Then any λ in the interval {|λ|, 1} may be regarded as limit between electronic

and positronic states, in the sense that He and Hp may be defined as images
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of the spectral projections of H above and below λ, respectively [with a possible
eigen-space at λ split arbitrarily].

Any such split may be decoupled by a unitary ψdo Uλ ∈ Opψc0, in the sense
that

(3.6.3) U∗
λHUλ = Hλ =

(
Xλ 0
0Y λ

)
,

where Uλ,Xλ, Y λ satisfy the asymptotic expansions of thm.3.2.2, with terms in-
dependent of λ - so, differ only by an operator in O(−∞).

Here the matrix at right of (3.6.3) is with respect to a split

(3.6.4) H = Hλ
+ ⊕Hλ

− ,

where, in essence, Hλ
+ and Hλ

− are the spaces {(u
0 )} and {(0v)} with u, v ∈ L2(R3, C2),

resp., except that an arbitrary subspace Zλ ⊂ S(R3, C2) of dimension |ιλ| must be
shifted from one of these spaces to the other one.

The integers-valued function ιλ is non-increasing. If ιλ > 0 then

(3.6.5b) Hλ
+ = {(u

0 ) : u ∈ Zλ
⊥} , Hλ

− = {(u
v ) : u ∈ L2(R3, C3), v ∈ Zλ} .

If ιλ < 0 then

(3.6.5a) Hλ
− = {(u

v ) : v ∈ L2(R3, C3), u ∈ Zλ} , Hλ
+ = {(0v) : v ∈ Zλ

⊥} .

If ιλ = 0 then no correction by shifting a space Zλ is necessary.

One might add to thm.3.6.1 that a splitH = He⊕Hp in the sense of the theorem
might be designed in such a way that any finite orthonormal set of eigenvectors
belonging to the interval |λ| < 1 may be shifted from He to Hp, or, vice versa.

3.7 Decoupling for Time Dependent Potentials

In chapter 6 we will obtain a complete decoupling of the Dirac operator for a spe-
cial class of time-dependent potentials - those obtained from a time-independent
Hamiltonian by introducing new space-time coordinates, using a Lorentz trans-
form.

In general, if potentials depend on time - so that also H = H(t) is time-
dependent, then the Dirac equation will be decoupled by a (time-dependent) uni-
tary ψdo U(t) ∈ Opψc0 such that (not (3.0.8) holds, but, rather)
(3.7.1)

U∗(t)U(t) = U(t)U∗(t) = 1 , U∗(t)H(t)U(t)− iU∗(t)U̇(t) =
(

He 0
0 Hp

)
= H∼(t) ,



3.7. Decoupling for Time Dependent Potentials 79

for all t. Indeed, if we then set u(t) = U(t)v(t) into u̇ + H(t)u = 0 we get
0 = ∂t(Uv) + iHUv = Uv̇ + U̇v + iHUv i.e., the decoupled equation

(3.7.2) v̇ + iH∼v = 0 .

Assuming then that we have general time-dependent potentials V(t, x),A(t, x)
with properties similar to those derivable for Lorentz-transformed time-independent
ones, it turns out that a construction similar to that of sec.3.2 will be successful
at least in obtaining a decoupling mod O(−∞) again. The key to this will be
the fact, that the extra term U∗(t)U̇(t) appearing in (3.7.1) can be expected to
be of order −e2 = e1 − e. In other words, the third relation (3.7.1) appears as
a perturbation of (3.2.3) by a term of “lower order”, since the main term U∗HU

will be of order e1. In effect, then, the iteration of sec.3.2 must be modified, but
it still will work.

We will require the following assumptions on V(t, x),A(t, x):

Condition (XT): V and A are C∞ in t and x, and the time-derivatives
∂j

t V, ∂j
t A are of polynomial growth in x, of order −1 − j, for j =

0, 1, . . .. That is, x-derivatives of order l of ∂j
t V and ∂j

t A are O((1 +
|x|)−1−j−l), for j, l = 0, 1, . . . .

As in sec.3.2 we start with a first approximation, setting U0(t) = u0(t;x,D)
with u0(t;x, ξ) = u(t;x, ξ), with the symbol u of (3.2.1), (now also depending on
t, since it involves A = A(t, x)). But the dependence on t is only through A(t, x),
so that u̇0 is a product11 of Ȧ with gradξu0: This is a symbol in ψc−e2 , even in
ψc−e, under cdn.(X).

Now the equivalent of (3.2.3) may be written as

(3.7.3) U∗
0 (t)H(t)U0(t)− iU∗

0 U̇0 −
(

Λ+ 0
0 Λ−

)
∈ Opψc−e2 .

However, in (3.7.3), the term −iU∗U̇ is of order −e2 − e, so that it just may be
omitted: that is, we land at the same (3.2.3) again, with the perturbation just
being absorbed by the lower order terms. Since (3.2.2) remains unchanged, we
then again may use u0 = u of (3.2.1) as a 0-th approximation.

As to the induction argument, following (3.2.3), let us just look at the first step:
We must construct V (t) = U0(t) + Ω(t) with suitable Ω(t) = ω(t;x,D) ∈ Opψc−e

such that

(3.7.4) V ∗V − 1 , V V ∗ − 1 ∈ Opψc−2e , V ∗HV − Λ− iV ∗V̇ ∈ Opψc−e−e2 ,

11u0(x, ξ) = u(x, ξ) with u(x, ξ) of (3.2.1) depends only on Υ = σ(ξ − A(t, x)) [with Υ2 =

(ξ − A(t, x))2 a scalar]. Clearly, a time differentiation will produce a symbol of order −e2.

with a decoupled Λ.
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Here the first two conditions (3.7.4) do not differ from those imposed in (3.2.4).
So the symbol ω should be chosen according to (3.2.7) again- except that we may
add a hermitian symmetric matrix symbol of order −2e to z1 , since such addition
cannot change the first two relations (3.7.4). This is useful, indeed, because for
the third (3.7.4) we ’d better choose z1 not as the precise symbol of 1−U∗U [that
time-derivative might be difficult to control], but as the first term of the Leibniz
expansion (1.0.9) of symb(1− U∗U) - i.e., z1 = 1− u∗

0u0. That, indeed will make
ż1 controllable - [in fact, for our present first step we even have z1 = ż1 = 0].

Looking at the third (3.7.4), we get
V ∗HV − Λ′ − iV ∗V̇ ≡
(U∗

0 HU0−Λ)+(Λ−Λ′)+(Ω∗HU0+U∗
0 HΩ)−iU∗

0 U̇0−iU∗
0 Ω̇−iΩ∗Ω̇ (mod Opψc−2e)

=I+II+III+IV+V+VI .We have set Λ = λ(x,D) with
λ = diag (λ+, λ+, λ−, λ−) , λ± = V ± 〈ξ −A〉.
Here we ignore the terms V and VI , and try determining our Ω by decoupling

the symbol of the remaining sum I+II+III+IV, hoping that this will give an Ω
with Ȯ ∈ Opψc−e−e2 , so that the terms IV,V terms are Opψc−e−e2 .

Since we have z1 = 0 in (3.2.7) we must set Ω = ω(t, x,D) with ω = iu0γ,
where γ ∈ ψc−e is a hermitian symmetric symbol to be determined.

Now, indeed, the symbol of Λ − Λ′ already is decoupled, by construction.
Regarding I: Using Leibniz formulas we will get the leading symbol a finite sum
−i(u∗

0h|ξu0|x + u∗
0|xξhu0 + u∗

0|ξ(hu)|x) ∈ ψc−e, where we note that the time-
derivative of this term again belongs to ψc−e−e2 [ and one gains another −e for
each further “(̇)”]. This follows simply because time dependence is through the
variable ξ −A(t, x) only, and since A satisfies cdn.(XT).

Regarding III: Taking again only the leading terms of the Leibniz expansions
the symbol of this will be −i[λ, γ] with above diagonal matrix λ. Setting γ =(
γ1 γ2
γ3 γ4

)
, for a moment we will get i(λ+ − λ−)

(
0 −γ2
γ3 0

)
.

Regarding IV: The leading symbol will be u∗
0u̇0. Again any further time-

differentiation will generate another “−e”.
Setting the sum of the leading symbols of I,II,III,IV equal to 0 then indeed will

determine γ - or, rather γ2 and γ3 only - while γ1 and γ4 are left arbitrary, and we
will set them = 0 - in such a way that time-derivatives of order j are of je orders
lower.

This is exactly what we need for our iteration. We will not follow through all
details of further iterations, which now should be clear in principle.

It also is clear that the removal of O(−∞) in the first two relations (3.7.4) -
i.e., replacing “∈ O(−∞)” by “= 0” there , to make U(t) unitary will work exactly
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as in the proof of thm.3.2.2. We have proven:

Theorem 3.7.1 Let the potentials V,Aj be time-dependent, and assume that
cdn.(XT) holds. Then there exists a unitary ψdo U(t) = u(t, x,D) ∈ Opψc0

such that the substitution ψ(t, x) = (U(t)χ(t))(x, ξ) transforms the Dirac equation
ψ̇ + H(t)ψ = 0 into the form

(3.7.5) χ̇ + iH∆(t)χ = 0 with H∆(t) =
(

Λ+ 0
0 Λ−

)
+O(−∞),

a decoupling with respect to the split H = H+ ⊕ H−where H± consist of the 4-
vector-valued functions with last two (first two) components equal to 0, respectively.

The two operators Λ+ = X(t) and Λ− = Y (t) possess asymptotic expansions
of the form (3.2.12), i.e.,

(3.7.6) X(t) = λ+(t, x,D) + X0(t) , Y (t) = λ−(t, x,D) + Y0(t) ,

with

(3.7.7) λ±(t, x, ξ) = V(t, x)±
√

1 + (ξ −A(t, x))2 ,

where now X0(t), Y0(t) depend on t, and the expansions may be arbitrarily differ-
entiated for t.

All t-derivatives of the symbol u(t, x, ξ) exist, and are symbols again. Moreover,
we have

(3.7.8) ∂j
t u(t, x, ξ) ∈ ψc−je for j = 0, 1, . . . .

Moreover, we have

(3.7.9) ∂j
t X(t) , ∂j

t Y (t) ∈ Opψce1−je2 , j = 0, 1, . . . .



Chapter 4

Smooth Pseudodifferential

Heisenberg Representation

4.0 Introduction

In this and the following chapter we will investigate time-dependence of ψdo-
observables when physical states are kept constant in time. In particular we look
for “smooth” dependence on t in uniform operators norms (of our weighted Sobolev
spaces). Clearly the exponential operator e−iHt - for time-independent H - or,
more generally, the evolution operator U(τ, t) of H(t), are not even continuous in
strong operator topology, they are only (what functional analysts call) “strongly
continuous”. We shall see that our smoothness translates into a powerful condition
on the symbol a(x, ξ) of a ψdo , which is not passed by many observables. In a
sense, the rejected observables experience some kind of “Zitterbewegung”.

This investigation raises a variety of formal questions, possibly of strong physi-
cal interest. These are studied in the present chapter, while in ch.5 we will attempt
a mathematically rigorous discussion.

We already pointed to the fact that the observables with smooth Heisenberg
representation are closely related to the “precisely predictable observables”, i.e.,
the operators splitting under our rigorous decoupling of ch.3 (cf. thm.3.3.1). In
fact, we will find that all precisely predictable observables may be found by depart-
ing from a symbol q(x, ξ) commuting with the symbol h(x, ξ) of the Hamiltonian
H, for all x, ξ, and going through an iterative construction of lower and lower or-
der corrections z1(x, ξ), z2(x, ξ), . . . , to be added to q(x,D). Then, finally, we still
must add a correction z∞(x, ξ) of order −∞ to the asymptotic sum q +

∑∞
1 zj , to

83
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arrive at a symbol a(x, ξ) = q +
∑∞

1 zj + z∞ such that the self-adjoint operator
A = 1

2{a(x,D) + a(x,D)} gives a precisely predictable observable.

This procedure is mathematically correct, but, in general, will supply a prac-
tically inaccessible symbol a(x, ξ). Normally it will be possible to obtain only the
first correction z1(x, ξ), in some special cases we also control the second (or even the
third). To attempt some Physics, we thus will work with a(x, ξ) = q(x, ξ)+z(x, ξ)
where we set z = z1 (or, perhaps, z = z1 + z2, if z2 is explicitly available).

With this principle in mind we will lay out the construction of (the first correc-
tions) z1, z2 only, in this chapter, and investigate standard dynamical observables,
like location, momentum, etc. In many cases we may choose the initial sym-
bol q(x, ξ) as the symbol of the (not precisely predictable) observable in question
- for location, we use q(x, ξ) = x1 - the symbol of the multiplication operator
u(x) → x1u(x), with the first location coordinate x1. This works because the
scalar function x1 trivially commutes with the matrix h(x, ξ).

For other observables - such as the spin - this is not possible. But this only
means that we may predict the spin only if we know with certainty that the
particle is an electron - not a positron (or vice versa). In other words, we must be
sure that the corresponding physical state belongs either to He or to Hp (of the
decomposition (3.0.5)).

It turns out, that this smoothness of the Heisenberg representation, and even
the construction of only the first correction z1 will provide a rather perfect con-
nection between classical and quantum physics, insofar as it entails a “geometrical
optics”: The smooth propagation of a precisely predictable symbol goes along
“light rays”- the classical orbits - and this propagation also incorporates the
propagation of the spin as a magnetic moment in the electromagnetic field of
the given potentials. This we will work out in sec.4.6.

In ch.5, below, we then will focus on a mathematically complete construction
of our algebras P , PX of precisely predictable observables, proving a variety of
theorems.

Finally, at this place, we perhaps might point to a logical complication showing
up only if potentials depend on time - so, it never appeared in our previous presen-
tations of this material: “Prediction of an observable” usually means that we focus
on a given observable A valid for all times - such as the location coordinates x.
For a given physical state ψ at time t = 0 we want to predict location at some (or
at every) later time t – this would be the quantum mechanical equivalent of pre-
dicting the orbit of the particle. Using Heisenberg representation this means that
we want to look at the expectation value Ăt of the operator At = U(t, 0)AU(0, t) –
with A = x and the evolution operator U(τ, t) of the Dirac equation – in the state
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ψ. But our above “smoothness condition” addresses itself not to above At but
to (smoothness in t of) the map A → U(0, t)AU(t, 0), we shall call the “inverse
Heisenberg transform”. If potentials are time-independent then the two above
transforms are just given by eiHtAe−iHt and e−iHtAeiHt – involving just a change
from t to −t, not affecting differentiability. But, if potentials depend on time then
it is convenient for us to use the inverse Heisenberg transform.

4.1 Dirac Evolution with Time-Dependent

Potentials

Note that the Dirac Hamiltonian H of (1.0.2) belongs to Opψc if we assume that
the potentials V,Aj are of polynomial growth1 in x, for every fixed time t. In
fact, we get H = H(t) ∈ Opψcm with m = (1, N) = e1 + Ne2 with the N

mentioned there. Clearly H(t) is formally self-adjoint. As in ch.3 we generally
assume cdn.(X), i.e., that N = −1:

The potentials V,Aj of H are C∞(R3), and their derivatives of order
k are O((1 + |x|)−1−k

Recall, the operators H(t) then are md-elliptic of order e1 = (1, 0). Indeed,
the symbol of K = H〈D〉−1 will be k =

∑
αjsj(ξ) + (β + γ(x))〈ξ〉−1 with γ(x) =

V(x) −
∑

αjAj(x). For |ξ| = ∞ we have 〈ξ〉−1 = 0 and
∑

s2
j (ξ) = ξ2

1+ξ2 = 1,
so that k2(x, ξ) = 1 ⇒ k(x, ξ) is invertible with bounded inverse. For |x| = ∞
we have γ(x) = 0, hence h(x, ξ) = h0(x, ξ) ⇒ k2 = k∗k = 1 ⇒ |k−1| = 1. Thus
h(x, ξ)〈ξ〉−1 is md-elliptic of order 0 ⇒ H and h are md-elliptic of order e1. The
same may be stated for the operators H ± i - For (h± i)〈ξ〉−1 there is no change,
as |ξ| = ∞, while for |x| =∞ we get h0(x, ξ)± i nonsingular, since the matrix h0

is hermitian. One concludes that H(t) has a unique self-adjoint realization2 with
domain dom H(t) = He1 .

Assume first that H(t) = H is independent of t. We then conclude existence
of the (unitary) group e−iHt (cf. [Ka1],ch.9 for example, or just apply the spectral
decomposition theorem for the self-adjoint H) as evolution operator of the Dirac

1Recall, this means that x-derivatives of order j are O((1 + |x|)(N−j)) for some N , called the

order.
2We know that (H ± i) : He1 → H while ‖(H ± i)u‖2 = ‖Hu‖2 +‖u‖2 ≥ ‖u‖2 ⇒ H ± i is 1 to

1. Let f ∈ H and 〈f, (H + i)u〉 = 0 for all u ∈ He1 . But H + i has a K-parametrix E ∈ Opψc−e1

with (H+i)E = 1+K , K ∈ O(−∞). Substitute u = Ev , v ∈ S, for 〈f, v+Kv〉 = 0 valid for all

v ∈ S. This yields f = −k∗f ∈ S ⊂ He1 = dom(H). But then get (H − i)f = 0 ⇒ f = 0. Thus

the image of H + i is dense in H, hence = H. Similarly for H − i which implies H self-adjoint.

[For another proof cf. ch.3, footnote 5.]

) for all k = 0, 1, . . . .
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equation (1.0.1) in the Hilbert space H. In particular, for u(t) = e−iHtu0 , u0 ∈
dom(H) = He1 the derivative ∂tu(t) exists in H and u(t) solves (1.0.1), and e−iHt

is strongly (but not uniformly) continuous in t.
Now, we may use the same argument to also conclude that the group e−iHt

is well defined (strongly continuous) in every Hs, with doms(H) = Hs+e1 -
u(t) = e−iHtu0 differentiable in Hs for u0 ∈ Hs−e1 . The point is that, with
Λs = 〈x〉s2〈D〉s1 of (1.4.2),(1.4.3) and Hs = ΛsHΛ−1

s , and u(t) solving (1.0.1) in
Hs we get us(t) to solve ∂tus(t) + iHsus(t) = 0 in H. Clearly Hs = H + Ps where
Ps ∈ Opsc−e2 ⊂ Opψc0 is bounded in H. We again get Hs +λ md-elliptic of order
e1, for all �(λ) �= 0, while ‖(Hs+λ)u‖ ≥ ‖(H+λ)u‖−‖Psu‖ ≥ (|�(λ)|−‖Ps‖)‖u‖,
for u ∈ S and |�(λ)| > ‖Ps‖. The latter implies that Hs + λ is 1 to 1 in S while
md-ellipticity implies that the orthocomplement of the range belongs to S, so that
it must be 0, i.e. the resolvent (Hs + λ)−1 exists for |�(λ)| > ‖Ps‖, and this gives
existence of e−iHst. In turn we thus get existence of eiHt as strongly continu-
ous group on Hs, for every s. [But, of course, e−iHt no longer is unitary there.
Rather, we get an estimate ‖e−iHt‖ = O(ecs|t|) with some constant cs.] Conclude
thus that e−iHt is defined as an operator acting on all temperate distributions
u ∈ S ′ = ∪Hs, as an operator3 of order 0.

With time-dependent potentials we no longer may think of a group e−iHt but,
instead, will get an “evolution operator” U(τ, t) such that uτ (t) = U(τ, t)u0 solves
the initial-value problem

(4.1.1) ∂tuτ (t) + iH(t)uτ (t) = 0 , t ∈ R , uτ (τ) = u0 .

We quote the result below - as special case of [Co5],ch.6, thm.3.1. Its proof uses
a different technique: First use a Friedrich’s-type “mollifier” to “regularize” the
symbol h(t) of H(t) to get an operator Hε(t) of order 0, allowing Picard’s theorem
for solving the formal ODE (1.0.1). Then pass to the limit ε → 0, using the
Arzela-Ascoli theorem, where it is essential that commutators with Λs of matrix-
valued operators of order m are of order s + m − e while Λ−e is compact, giving
the necessary compactness for Arzela-Ascoli.

3Recall from sec.1.4, a continuous operator A : S′ → S′ will be said to be “of order m =

(m1, m2)” if its restriction to Hs is continuous as a map Hs → Hs−m for all s. Note then that

the ψdo-s in Opψcm all are of order m. Vice versa, of course, an operator S′ → S′ of order m

does not have to be a strictly classical ψdo. For example, let A = ei〈D〉. We may think of A as

a ψdo with symbol a(x, ξ) = ei〈ξ〉. But this symbol clearly does not belong to ψc. On the other

hand, the family At = ei〈D〉t solves the differential equation Ȧt − i〈D〉tAt = 0. An argument

as above shows that ‖At‖s = O(ecs|t|) for all s, so that, indeed, A is of order 0. Similarly, it

is easily verified that e−iH0t is not a ψdo in Opψc, while, of course, it may be written formally

as a ψdo. Such operators may be elegantly treated replacing eixξ by eiϕ(x,ξ) with a different

“phase function” ϕ(x, ξ). They are called “Fourier integral operators” (FIO-s) (cf.[Ta1],[Tr1]).

In general, the operators e−iH , under our cdn.(X) on potentials, will be FIO-s.
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Theorem 4.1.1 Let us assume that the potentials V,Aj and their time-derivatives
∂l

tV, ∂l
tAj , l = 1, 2, . . . , all satisfy cdn.(X) - x-derivarives of order k decay like

(1 + |x|)−1−k, for all k.
Then there exists a unique “evolution operator” U(τ, t) ∈ O(0) [of order 0],

defined for all τ, t ∈ R , and such that

(4.1.2) U(τ, τ) = 1 , U(t, κ)U(τ, t) = U(τ, κ) , U(t, τ)U(τ, t) = 1 ,

for all κ, τ, t ∈ R, and such that U(τ, t) satisfies the two abstract ODE-s

(4.1.3) ∂tU(τ, t) + iH(t)U(τ, t) = 0 , ∂τU(τ, t)− iU(τ, t)H(τ) = 0 ,

for all τ, t. In particular, the function U(τ, t) is strongly continuous in L(Hs)
for all s ∈ R

2, and its derivatives ∂j
τ∂l

tU(τ, t) exist in strong convergence of
L(Hs,Hs−(j+l)e1), and they are strongly continuous as operators Hs → Hs−(j+l)e1

for all s ∈ R
2. In particular, these derivatives are operators of order (j + l)e1.

Note: Even though the evolution operator U(τ, t) (or, for time- independent H

the operator e−iHt) are operators of order 0 they are not ψdo-s in Opψc0. Already
for vanishing potentials we may formally write P = e−iHt as a ψdo P = p(x,D)
with symbol p(x, ξ) = e−ith0(ξ) (with the matrix h0(ξ) of (3.1.2)) independent of
x. However, this symbol does not belong to ψc0 - although it indeed belongs to
the algebra ψt0 of thm.2.1.1. Especially, our Leibniz formulas (1.0.8),(1.0.9) are
not valid for such operators - i.e. the asymptotic convergence fails. One may find
a more complicated calculus of symbols for similar operators in [Hoe3],[Ta1],[Tr1].
But we will not require this here.

Returning to quantum mechanics, in the “Heisenberg representation” we as-
sume that physical states - the unit vectors ψ of H - are constant in time, while
observables - the unbounded self-adjoint operators A acting on a dense subspace
of H - propagate by the formula4

(4.1.4) A → At = U(τ, t)AU(t, τ)

while t propagates from τ to t.

4With “Schrödinger’s representation” the observables stay constant in time while the physical

states propagate, in the sense that ψ0 ∈ H at t = 0 propagates into ψ(t) at time t, where ψ(t) is

the solution of ψ̇ + iHψ = 0 satisfying ψ(0) = ψ0. That is, we have ψ(t) = U(0, t)ψ0 (that is,

ψ(t) = e−iHtψ0 for time-independent H).

Now, either we are given a state ψ0 at t = 0 and want to predict a given observable A at some

later time t. [This might be the normal situation: Certain well known “dynamical observables”

are given as well defined operators at any time - such as location, momentum,..., and one might

want to predict their propagation in time.] At time t the expectation value Ăt of A in the (thus
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In the following we now will not admit the most general self-adjoint operator
A as observable, but assume that, in addition, A must be (represented by) a
self-adjoint pseudodifferential operator5 in Opψcm, for some m.

Such restriction seems natural, in view of our discussion in ch.2, noting that an
observable should be “insensitive” against translations, dilations, rotations, both
in configuration space and in momentum space.

The selection of “useful” observables will be further restricted by asking for
“smooth” dependence of the function A → At with respect to the variable t.
While this might be felt to be a natural condition, we also might point to the fact
that just the “Zitterbewegung” experienced by observables like ’location’ might
be interpreted as “non-smoothness” of that observable.

So, this seems to point at one of the most important obstacles to Dirac’s theory.
More precisely we have in mind asking for two further restrictions:

Starting with a ψdo A ∈ Opψcm the (inverse) Heisenberg transform
At of (4.1.4) should again be a ψdo in ψcm.

And, At should depend smoothly on t - in a sense to be specified.
[In particular, its symbol at(x, ξ) should be smooth in t.]

4.2 Observables with Smooth Heisenberg

Representation

In this section we will allow time-dependent potentials satisfying cdn.(X) with all
their time-derivatives, for all t ∈ R. Mainly we focus on the Hamiltonian H(t) of

propagated) state ψ(t) will be Ăt = 〈ψ(t), Aψ(t)〉 = 〈ψ0, Atψ0〉 with At = U(t, 0)AU(0, t) (i.e.,

At = eiHtAe−iHt, for time-independent H).

Or else, the state ψ(t) = ψt at time t might be given, and one might want to get information

on A in the original state ψ0. Then we get Ă0 = 〈ψt, U(0, t)AU(t, 0)ψt〉, (i.e., e−iHtAeiHt for

time-independent H).

If we now work with general time-dependent H(t) then we must use (4.1.4) as propagation

formula for observables, while the “other” map A → U(t, 0)AU(0, t) really gives the “Heisenberg

representation”. For time-independent H this just is a matter of sign reversal of t. But for

general H(t) dependence of U on t and τ is slightly different, because we no longer have H(t)

commuting with H(τ) as τ �= t.
5There is the question of uniqueness of self-adjoint realizations of such an operator [For

example the scalar operator L = ∂2
x+x4 (in one x-variable will have many self-adjoint realizations

(cf. [Ti1], thm.5.11 - there is limit circle case then), but only one of them would qualify as a

strictly classical ψdo. as an investigation shows.] We leave this point without a general answer,

noting that our ψdo-s have their natural extension to S′ which also should specify their self-

adjoint extension under consideration. In particular, this question seems trivially answered for

the standard dynamical observables.

(1.0.2) again6.
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By thm.4.1.1 the differential equation (1.0.1) - i.e. u̇(t)+ iH(t)u(t) = 0, has an
evolution operator U(τ, t) of order 0, where U|t, U|τ are of order e1, assuming only
that also the differentiated potentials ∂j

t V, ∂j
t Aj , j = 0, 1, . . . , all satisfy cdn.(X)

The operator U(τ, t) satisfies

(4.2.1) ∂tU(τ, t) + iH(t)U(τ, t) = 0 , and , ∂τU(τ, t)− iU(τ, t)H(τ) = 0 ,

and,

(4.2.2) U(τ, τ) = 1 , U(κ, t)U(τ, κ) = U(τ, t) , U(t, τ)U(τ, t) = 1 , t, τ, κ ∈ R .

In the special case of time-independence we just have U(τ, t) = e−i(t−τ)H .
For a first approach, look at the “propagation”

(4.2.3) Aτt = U(τ, t)AU(t, τ)

of some linear operator A. [The physical state u is transformed back from time t

to time τ , then the observable A is applied, and then we transform forward again,
from τ to t (see also footnote 4) - this is what we called the inverse Heisenberg
representation] A formal differentiation of (4.2.3) produces

(4.2.4) ∂tAτt = −i[H(t), Aτt] , Aττ = A .

Under our present assumptions we may translate τ into 0. We thus will keep
τ = 0 fixed and write A0t = At and ∂ta = ȧ, to simplify notation. Recall,
U(τ, t) normally will not be a ψdo in Opψc. Thus we cannot normally expect At

to be in Opψc, even if we assume A ∈ Opψc. However, there will be a special
class of operators A ∈ Opψc with the property that also At ∈ Opψc for all t.
Assuming that A belongs to that class, we may approach (4.2.4) symbol-wise: Let
A = a(x,D) with a(x, ξ) ∈ ψcm, and then assume At = at(x, ξ) with at ∈ ψcm.
Using calculus of ψdo-s we may express the symbol of the commutator [H(t), At]
by an asymptoctic series

(4.2.5) symb([H(t), At]) = [h, at] +
∞∑

j=1

(−i)j

j!
{h, at}j ,

with the “Poisson brackets”

(4.2.6) {a, b}1 = {a, b} = a|ξb|x− bξa|x , {a, b}2 = a|ξξb|xx− b|ξξa|xx , etc. , . . . .

6However, (with proper modification) this just as well applies to the case where H is replaced

by a more general self-adjoint ψdo K of order e1 - such as the FW-transformed H (i.e., K =

U∗HU) of (3.0.7). Existence of the evolution operator (or of e−iKt, for time-independent K)

again follows with the techniques of sec.4.1, under proper assumptions on the time-derivatives

of the symbol.
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Thus (4.2.4) may be stated by writing

(4.2.7) ∂tat = −i[h(t), at]− {h(t), at}+
i

2
{h(t), at}2 + . . . .

where the first term at right tends to be of order higher than m, unless we assume
some kind of commutativity between h(t) and at. Our assumption of “smoothness”
of the (inverse) Heisenberg representation will include that (i) a and at are symbols
of (strictly classical) ψdo-s of the same order m, and that, moreover,(ii) ȧt even is
a symbol of order m−e2. With this, (4.2.7) implies that the commutator [h(t), at]
must be of order m− e2 as well. Especially, the terms of the asymptotic sum, at
right, are of order m− e2,m− e2 − e,m− e2 − 2e, . . ., so the sum also is of order
m− e2.

The above implies that there is a clean split of at into a sum

(4.2.8) at = qt + zt , with qt = p+atp+ + p−atp− , zt = p+atp− + p−atp+ ,

where qt commutes with h(t) while zt is of order m− e.
In (4.2.8) we have used the projections p± = p±(t) of the spectral decomposi-

tion of (the 4× 4-matrices) h(t). In particular we have

(4.2.9) h = λ+p+ + λ−p− where p± =
1
2
(1± h0(ζ)

〈ζ〉 ) ,

with ζ = ξ − A(t, x) , h0(ζ) = αζ + β . Note p± are orthogonal 4 × 4-projection
matrices of rank 2 commuting with h(t), for all t, x, ξ and with
(4.2.10)

p∗± = p± , p2
± = p± , p+p− = p−p+ = 0 , p+ + p− = 1 , x, ξ ∈ R

3 , t ∈ R .

One should keep in mind that p± depend on t if the potentials are time-
dependent.

Clearly the p± are symbols in ψc0, so qt of (4.2.8) belongs to ψcm while evi-
dently [h(t), qt] = 0 for all t, x, ξ. On the other hand one confirms7that zt ∈ ψcm−e.

With the split (4.2.8) eq. (4.2.7) (and the initial condition A0 = A) assume
the form

(4.2.11) q̇t + żt ≡ −i[h(t), zt]− {h(t), qt}(mod ψcm−e2−e) , q0 = q , z0 = z ,

noting that the terms at right of (4.2.7) are of order m+e1,m−e2,m−e2−e,m−
e2 − 2e, . . ., and with q = p+ap+ + p−ap− , z = p+ap− + p−ap+ . Then we treat

7The eigenvalues of h = α.(ξ − A) + β + V are λ± = ±〈ξ − A〉 + V. Hence λ+ − λ− =

2〈ξ − A〉, and one computes that zt = 1
2
{p+[h, at]p− − p−[h, at]p+}/〈ξ − A〉. Since we know

that [h(t), at] ∈ ψcm−e2 , it indeed follows that zt ∈ ψcm−e.
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(4.2.11) as a sharp (commutator) equation for the symbol z(x, ξ) - still dropping
ż as to be of lower order (which has to be checked, after solving), In other words,
we try to determine an approximate qt and zt as solutions of the (sharp) equation

(4.2.12) [h(t), zt] = i(q̇t + {h(t), qt}) = wt , q0 = q , z0 = z .

It will be found that the symbol qt is uniquely determined just by its initial
value q0 = q and the conditions to be imposed to make (4.2.12) solvable with
some zt. The initial value q may be any symbol in ψcm (for some given m)
commuting with the symbol h(0) for all x, ξ. Once qt is found, we then get a
formula for the possible symbols zt, where one confirms that zt ∈ ψcm−e and even
ż ∈ ψcm−e−e2 , so that indeed qt + zt satisfies (4.2.11), as a first approximation
of (4.2.7). Then we will seek the next approximation by going with the Ansatz
at = qt + zt + wt into eq. (4.2.7) where now the symbol wt ∈ ψcm−2e is to be
found. Again some approximative commutator equation similar to (4.2.11) will
have to be solved, Some further condition on zt will have to be imposed to make
that equation solvable. In this way, iterating the procedure, we will get an infinite
number of corrections, of lower and lower order. Their asymptotic sum will satisfy
(4.2.8) mod ψc−∞ - that is, mod O(−∞). But every operator in O(−∞) is a
strictly classical ψdo, and O(−∞) is an ideal of O(0). Since U(τ, t) ∈ O(0) one
then concludes that (4.2.4) and (4.2.3) hold sharply.

All of the discussion of higher order approximations will be postponed to ch.5,
however. Here we only look at the construction of qt and zt as solutions of the
sharp equation (4.2.12), starting with some arbitrary q commuting with h(0).

Since qt(x, ξ) commutes with h(t), it leaves the eigenspaces S± = im(p±(t, x, ξ))
invariant, and we must be able to write

(4.2.13) qt = q+
t p+ + q−t p−

with linear maps q±t : S± → S±.

First assume (as additional condition) that these q±t (x, ξ) are multiples of the
4×4-identity matrix. [We shall find that this Ansatz leads to a solution if only the
initial value q0 has that property. All scalar dynamical observables (with symbol
a multiple of the 4 × 4-identity) have this property, so it might be worthwhile to
look at it.]

Given a symbol qt ∈ ψcm with [h(t), qt] = 0 the commutator equation (4.2.12)
will be solvable with some z(x, ξ) if and only if we have the conditions

(4.2.14) p+(t)(q̇t + {h(t), qt})p+(t) = 0 , p−(t)(q̇t + {h(t), qt})p−(t) = 0 ,
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for all x, ξ, t. Assuming (4.2.14) we get all solutions of eq. (4.2.12) in the form

(4.2.15) zt = c+ +c−+
1

λ+ − λ−
{p+wtp−−p−wtp+} , λ+−λ− = 2〈ξ−A(t, x)〉 .

with wt of (4.2.12), and arbitrary matrices c± = ct
±(x, ξ) satisfying c± = p±c±p± .

It turns out, looking at higher iterations, that the ct are arbitrary for t = 0 but
they have to satisfy some conditions for t �= 0. Now we have

Proposition 4.2.1 Assume that above q±t are scalar multiples of the 2×2-identity.
Then the conditions (4.2.14) just mean that the two (complex-valued) symbols
q±t (x, ξ) satisfy the equations

(4.2.16) q̇+
t + {λ+, q+

t } = 0 , q̇−t + {λ−, q−t } = 0 ,

with Poisson brackets {·, ·} = {·, ·}1 of (4.2.6.).

Note that eq.s (4.2.16)) give two scalar first order PDE-s (with real coefficients)
for the two complex-valued functions q±t (x, ξ) of 7 variables t, x, ξ. Each involves
only one of the functions q±t ; they are independent of each other. Together with the
initial conditions q±0 (x, ξ) = q±(x, ξ) they will determine unique solutions q±t (x, ξ),
defined for all t, x, ξ.

This kind of initial-value problem will be shortly discussed at the end of this
section (together with a proof for prop.4.2.1). But a detailed study will be found
in sec.5.5. As a consequence of the discussion there we have

Proposition 4.2.2 Each of the two (scalar first order) PDE-s (4.2.16) has a
unique solution q±t (x, ξ) assuming the initial value q±t (x, ξ) = q±(x, ξ) at t = 0.
They are smooth functions of all variables x, ξ, t if they are smooth in x, ξ initially
- for t = 0. Moreover, an initial symbol q±(x, ξ) ∈ ψcm generates a solution q±t
which remains in ψcm for all t.

Let us assume this proposition for now.
Note, it is an automatic consequence of the DE (4.2.16) that we have q̇±t ∈

ψcm−e2 if q±t ∈ ψcm , as asserted by prop.4.2.2. This is, because the operation
{λ±, .} lowers the order of a symbol by e2. Moreover, differentiating (4.2.16) for t

we get q̈t = −{λ̇, qt} − {λ, q̇t} ∈ ψcm−2e2 . And this may be iterated for

(4.2.17) ∂j
t q±t (x, ξ) ∈ ψcm−je2 , j = 0, 1, . . . .

Notice that prop.4.2.2 and (4.2.17) and the formula (4.2.15) for zt imply that qt

and zt constructed from fla-s (4.2.16) with initial value q = q+p+ + q−p− (where
q± are scalar symbols in ψcm) define a qt ∈ ψcm with q̇t ∈ ψcm−e2 , while we
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indeed also get zt ∈ ψcm−e and żt ∈ ψcm−e−e2 , assuming that the ct
± are properly

selected. Later analysis of further corrections (in ch.5) will show that selection of
c0
± is free (and we usually will set c0

± = 0, since we want a correction of a given
commuting symbol). However, for t �= 0 the ct

± will have to satisfy a condition, to
be discussed in thm.5.1.1.

Apart from this “open end”, however, it is clear that we get a well defined qt and
zt with zt ∈ ψcm−e , żt ∈ ψcm−e−e2 such that eq. (4.2.7) holds mod(ψcm−e−e2)
for at = qt + zt. [Later construction of further corrections may fix the choice of ct

±
but within ψcm−e−e2 , and not for t = 0.]

In this way we have constructed a first order corrected symbol a∼
t =

qt +zt - and, in particular, an “initial correction” z = z0 to any symbol
q ∈ ψcm commuting with h(0) for every x, ξ, and which is scalar in the
two spaces S±(0, x, ξ). Moreover the propagated symbol still has the
same property - it splits into a sum qt + zt where qt commutes with
h(t), and is scalar in S±(t, x, ξ) while zt is of lower order m− e.

But the correction is not complete insofar as (4.2.4) is valid only mod
(Opψcm−e−e2).

In sec.4.3, below, we shall apply this result to construct first order corrections
for a variety of well known dynamical observables, all with the property that (i)
they belong to Opψcm, for some m, and (ii) their symbol is scalar in the two
eigenspaces of the symbol of the Hamiltonian.

Proof of prop.4.2.1. Using the indices j, l, r to indicate either “+” or “-” we get

(4.2.18) pj ṗl = −ṗjpl + ṗjδjl ,

by differentiating (4.2.10), and corresponding formulas for x- (or ξ-) derivatives.
This implies

(4.2.19) plṗrpl = −ṗlprpl + ṗlplδlr = 0 ,

and, similarly,

(4.2.20) pjpr|xpj = pjpr|ξpj = 0 .

Also,

(4.2.21) plq̇pl =
∑

r

plq̇rprpl +
∑

r

qrplṗrpl = q̇lpl .
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Next, we also find that

(4.2.22) pl{pj , pr}pl = 0 ,

because the left hand side equals equals
= plpj|ξpr|x − plpr|ξpj|xpl

= −pl|ξpjpr|xpl + δjlpl|ξpr|xpl + pl|ξprpj|xpl − δlrpl|ξpj|xpl

= pl|ξpj|xprpl − pl|ξpr|xplδjr + δjlpl|ξpr|xpl

−pl|ξpr|xpjpl + pl|ξpr|xplδrj − δlrpl|ξpj|xpl = 0 .

Accordingly,
pl{h, q}pl

=
∑

j,r pl{(λj|ξpj +λjpj|ξ)(qr
|xpr + qrpr|x)− (qr

|ξpr + qrpr|ξ)(λj|xpj +λjpj|x)}pl

= {λl, q
l}pl +

∑
j,r qrλjpl{pj , pr}pl = {λl, q

l}pl , because, in each term, the
two differentiations “∂ξ” and “∂x” will either both go onto projections - then the
corresponding sum will be

∑
λjq

rpl{pj , pr}pl = 0, by(4.2.22)) - or, only one will go
onto a projection, the other onto a scalar - then there will be a factor pl∂pjpl = 0,
by (4.2.20). Or, finally, both will land on scalars - then we will get {λl, q

l}pl, as
stated.

Substituing this and (4.2.19) into (4.2.14) we indeed get (4.2.16), q.e.d.

Finally some comments about solving the PDE-s (4.2.16). Focus on the first,

(4.2.23) ∂tq + λ|ξq|x − λ|xq|ξ = 0 ,

where we drop “+”, for a moment. The general solution of this equation consists
of all functions which are constant along all solution curves of the system (of 6
ODE-s in 6 unknown functions)

(4.2.24) ẋ = λ|ξ(t;x, ξ) , ξ̇ = −λ|x(t;x, ξ) .

Indeed, for any (x(t), ξ(t)) solving (4.2.24) get
∂
∂tq(t;x(t), ξ(t)) = q̇ + q|xẋ + q|ξ ξ̇ = q̇ + λ|ξq|x − λ|xq|ξ = 0 – that is,
q(t;x(t), ξ(t)) = const.

Note, the initial-value problem of the (Hamiltonian) system (4.2.24) is (locally)
uniquely solvable, and we shall show in sec.5.5 that, under our present assump-
tions on the function λ(x, ξ), the solution (xt(x0, ξ0), ξt(x0, ξ0)) through the point
(x0, ξ0), at t = 0, extends infinitely, for all t ∈ R. This defines8 a “flow” - that

8Generally, the flow ντt : R
6 → R

6 is defined for any pair of reals τ, t by following the solution

curve from (x0, ξ0) at t = τ to (x, ξ) at t. This map will depend smoothly on τ and t, and

there will be the “group property” νtκ ◦ ντt = ντκ for all τ, t, κ. In sec.5.5 we shall show that

composition a(x, ξ) → a ◦ ντt maps ψcm → ψcm. In particular the inverse map of ν0t is given

by νt0, just be using above group property (together with the fact that νtt = 1 for all t).
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is, a family ν0t : R
6 → R

6 of diffeomorphisms (x0, ξ0) → (x0t(x0, ξ0), ξ0t(x0, ξ0))
mapping R

6 onto R
6. To solve the initial-value problem for the PDE (4.2.23) -

getting the unique solution satisfying our given initial value q+(x0, ξ0) at t = 0 -
we must use the inverse of the above map: For any (x, ξ) we follow the solution
curve of (4.2.24) backward from (x, ξ) to its intersection with t = 0, at some point
(x0, ξ

0). Then, since q was seen constant along that curve, we define the value of
qt(x, ξ) as the value of q(x0, ξ0).

In this way we arrive at a well defined function qt(x, ξ) which is smooth in
t, x, ξ and represents a symbol in ψcm for every t, as shall be seen in sec.5.5.

Clearly the above, carried out for “+”, may just as well be done for “-”. So,
all together, we have this:

Theorem 4.2.3 The “ commuting part” q = q0 of our (first-approximated) sym-
bol a∼(x, ξ) propagates as q0t = q◦νt0 along the Hamiltonian flow νt0 of the system
(4.2.24). Then the (first) correction z0t is given by fla.(4.2.15), with symbols c0t

±
of order m − e, left arbitrary for t = 0 but needing further restraint for t �= 0 -
to be discussed later on. [But “cτt

± ≡ 0 in t will give a valid first correction with
A∼

τt = a∼
τt(x,D) satisfying (4.2.4) mod(Opψcm−e−e2).]

Now, at the end of this section we emphasize again that the symbol propagation
of thm.4.2.3 is not leading to “prediction of observables”: The expectation value
〈ψ,Atψ〉 (with At = A0t of (4.2.3)) represents the observable A applied to the state
ψ at time t transformed backward to time t = 0. For example, if A = x =location
and ψ = δ(x − x0) [the particle is located at x0 (at time t)] then the spectral
properties of A0t reflect the possible statements about location the particle might
have assumed at time t = 0 (in the past).

What we must answer, to predict A is just the inverse problem: We need
At0 = U(t, 0)AU(0, t) which does not satisfy a formula like (4.2.4) [This means
that we are given an observable A = Att at time t; we transform it back to 0,
apply it to our state ψ0 there, and then transform it back to t - indeed, this means
that we now are predicting measurement of the observable A at time t, given a
state at 0.].

However, what we practiced above for the initial time t = 0, may be repeated
for a general initial time t = τ , resulting in a general symbol flow ντt, defined for
all τ, t ∈ R. We discussed the symbol propagation q = qτ → qτt = q ◦ νtτ for fixed
τ and varying t as a first approximation, but now will use the formula

(4.2.25) qt0 = q ◦ ν0t

to describe the (approximate) symbol propagation of the (forward) Heisenberg
representation. Otherwise there is no change.
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Remark 4.2.4 The reader may guess that the flow ντt just reflects the classical
motion of the particle underlying this problem. Indeed this will be confirmed, but
only after we also discuss the case of a symbol (4.2.13) where the q±t need not be
multiples of 1, but may be hermitian symmetric operators of the two-dimensional
spaces S±. Interestingly, this also will bring the spin propagation - as a magnetic
moment moving in the given field - into the picture. For details cf. sec.4.6, below.

4.3 Dynamical Observables with Scalar Symbol

The tools developed in the preceeding section are sufficient for an application to
some - even though not all - of the standard dynamical observables.

Let us return to the case of time-independent potentials. Then H is constant
in time and we get U(τ, t) = e−i(t−τ)H . Accordingly, the operators U(0, t)AU(t, 0)
and U(t, 0)AU(0, t) assume the form e−iHtAeiHt and eiHtAe−iHt, the latter giving
the Heisenberg representation, the first just the same, but with time reversal. It
may be useful to summarize the results of sec.4.2 for the time-independent case.

Theorem 4.3.1 For time-independent potentials A,V consider any symbol q ∈
ψcm with the property that [q(x, ξ), h(x, ξ)] = 0 with h(x, ξ) = α(ξ − A(x)) +
β + V(x), for all x, ξ, and that, moreover, q(x, ξ) is a scalar multiple of 1 in the
two (2-dimensional) eigenspaces S±(x, ξ) of the 4 × 4-matrix h(x, ξ). Then, let
(x±

0t(x, ξ), ξ±0t(x, ξ)) denote the (unique) solution of the system (of 6 ODE-s in 6
unknown functions)

ẋ(t) = λ±|ξ(x(t), ξ(t)) , ξ̇(t) = −λ±|×(x(t), ξ(t))
through the point (x, ξ) ∈ R

6, with the eigenvalues λ±(x, ξ) = V(x)±〈ξ−A(x)〉 of
h(x, ξ), and let ν±

0t : R
6 → R

6 be the diffeomorphisms (x, ξ) → (x±
0t(x, ξ), ξ±0t(x, ξ)).

Using the two eigenprojections
p±(x, ξ) = 1

2 (1± (α(ξ −A(x)) + β)/〈ξ −A(x)〉) of h(x, ξ) we must have
q(x, ξ) = q+(x, ξ)p+(x, ξ) + q−(x, ξ)p−(x, ξ) , with scalar symbols q±(x, ξ).

Then define
(4.3.1)
qt(x, ξ) = q+

t (x, ξ)p+(x, ξ) + q−t (x, ξ)p−(x, ξ) with q±t (x, ξ) = (q± ◦ ν±
0t)(x, ξ) ,

and

(4.3.2) zt =
i

2〈ξ −A(x)〉 (p+{h, qt}p− − p−{h, qt}p+) .

[Specifically, z = z0 does not require knowledge of qt, and just needs the Poisson
bracket {h, q} = h|ξq|x − q|ξh|x of q(x, ξ) initially given. Also note, the term of
(4.2.15) generated by q̇t in (4.2.12) vanishes if potentials are time-independent.]
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Then the operator Qcorr = q(x,D) + z(x,D) differs from an operator with
smooth Heisenberg representation (i.e., in the algebra P of sec.3.3 or sec.’s 5.1. ,
5.2) only by a ψdo in Opψcm−2e.

As already mentioned, total energy is represented by the Hamiltonian H itself.
It is clear that - for time-independent potentials9 – we have Ht = eiHtHe−iHt = H

independent of t. So, the Heisenberg transform is not only smooth, but is even
is constant. The same is true for the total angular momentum J = x × D +
1
2

(
σ 0
0 σ

)
if A ≡ 0 and V is rotationally symmetric, because this differential operator

J is known to commute with H (cf. footnote 11 of ch.7.), so that again Jt =
eiHtJe−iHt = J for all t.

Looking for applications of thm.4.3.1 we notice that certainly its assumptions
are satisfied for any “scalar” observable - i.e., whenever the symbol of an observable
is a multiple of the 4 × 4-identity matrix. Evidently this is the case for most
standard dynamical observables. So, we now can calculate first order corrections
z(x, ξ) for many standard dynamical observables, starting with the symbol q of
such observable. For calcuation of z(x, ξ) write (setting h0 = α · (ξ −A(x)) + β)

(4.3.3) q = q+p++q−p− = r+sh0 , with r = q++q− , s = (q+−q−)/〈ξ−A(x)〉 .

Clearly this decomposition for H itself gives h(x, ξ) = V(x) + h0(x, ξ). Generally,
r(x, ξ) and s(x, ξ) are scalars, under the assumptions of the theorem. And, vice
versa, if r and s are scalars then q± are scalars as well. For an observable with
scalar symbol q we get s = 0, r = q, so that

(4.3.4) {h, q} = {V, q}+ {h0, q} = {V, q}+ α · {ξ −A(x), q} .

9If potentials depend on time then we must be aware that the operators H(t) and H(τ) no

longer need to commute, as t �= τ . Not even symbol-wise we need to have [h(t), h(τ)] = 0,

although under our assumptions (of cdn.(X)) we still have h(t) − h(τ) ∈ ψc−e2 = ψce1−e, so,

[h(t), h(τ)] is a symbol of lower order, with respect to h(t).

Still, since q = h(0) commutes with h(0), and since h(0; x, ξ) is scalar in each of the two

spaces S±(x, ξ) a (first order) correction symbol zt(x, ξ) ∈ ψc−e2 may be calculated [although

in the time-dependent case this correction does not vanish anymore]. Accordingly, the total

energy observable H(0) then possesses a precisely predictable approximation, but it is no longer

precisely predictable itself.

Incidentally, the self-adjoint operators H(τ), for τ �= t do not have their individual precisely

predictable corrections - except that they differ from H(0) (which has such correction) by an

operator of order e1 − e. We shall see in ch.5 that the precisely predictable observables form an

algebra P- subalgebra of Opψc. But this algebra depends on t, for time-dependent potentials.

Then H(t) has an H(t)corr in P(t), for every t, but (generally) not in P(τ) for t �= τ . [Note, if

the potentials V,A are periodic in t, then H(t) will have a precisely predictable approximation

in P(τ) periodically – for τ = t + jπ , with some period π, but not for other values of τ .]
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Then z(x, ξ) requires calculation of10

(4.3.5) p+αp− − p−αp+ =
i

〈ξ −A〉 (µ + ρ× (ξ −A)) .

For a scalar symbol q(x, ξ) we then get the correction symbol

(4.3.6) z(x, ξ) = {V(x), q(x, ξ)} − λc(x, ξ) · {ξ −A(x), q(x, ξ)} ,

with the formal 3-vector

(4.3.7) λc =
1

2〈ξ −A(x)〉2 (µ + ρ× (ξ −A(x))) ,

using the constant (3-vectors of) matrices µ =
(
0 σ
σ 0

)
and ρ =

(
σ 0
0 σ

)
, and the vector

product “×”.
If q is scalar only in each of the spaces S±, so that s in (4.3.3) does not vanish

identically, then fla. (4.3.6) gets the additional terms11

(4.3.8) −λc · {V, s(ξ −A)}+ {V, s}µ · ξ −A
〈ξ −A〉 − 〈ξ −A〉υ · α + h0υ · ξ −A

〈ξ −A〉 ,

with λc of (4.3.7) and υj = s|xj
+

∑
l Aj|xl

s|ξl
.

The above may be applied to observables like location, momentum, angular
momentum: Location coordinates are given as the multiplication operators u(x) →
xju(x) , j = 1, 2, 3. These are self-adjoint operators ofH with symbol aj(x, ξ) = xj

independent of ξ. Clearly aj belongs to ψce2 and it commutes with h(x). Applying
fla. (4.3.6) to the symbol q = aj - with m = e2 to determine a (first) correction
symbol z(x, ξ) ∈ ψc−e1 we get

(4.3.9) xcorr = x− λc , λc(x, ξ) =
1

2〈ξ −A〉2

We are aware that further corrections are needed to get an operator with a smooth
Heisenberg transform. However, it might be interesting then to obtain the explicit
z, in this case. Note - the location coordinates themselves do not have this smooth-
ness property; they need these corrections.

Note, the above symbol xcorr is a self-adjoint 4× 4-matrix. However, the cor-
responding ψdo xcorr(x,D) is not self-adjoint, so cannot represent an observable.

10cf. also [Co5], p.331, fla.(4.7).
11To include the case of time-dependent potentials here: Assuming q± scalar in S±, we also

have to add just one more term to (4.3.6) or (4.3.8) - the expression −s(x, ξ)λc(0; x, ξ) · Ȧ(0, x),

with λc of (4.3.7) and s(x, ξ) = (q+(x, ξ)−q−(x, ξ))/〈ξ−A(0, x)〉 of (4.3.3). Especially, if q(x, ξ)

is scalar in C
4 this correction vanishes.

{µ + ρ× (ξ −A)} .



4.3. Dynamical Observables with Scalar Symbol 99

This, however, is easily cured by defining the (first-)corrected location observable
as12

(4.3.10) Xcorr =
1
2
(xcorr(x,D) + xcorr(x,D)∗) = x +

1
2
(λc(x,D) + λc(x,D)∗) .

[In particular, note that the symbol λc(x, ξ) is of order −e1, i.e., its order is
e = (1, 1) units lower than that of the location operator x.] Let us state our
interpretation again, at this point:

The location observable x we would like to predict. However, x is
not precisely predictable while Xcorr (nearly) is. So, we may predict
Xcorr, in the sense of v.Neumann’s rules, but then must be aware of a
possible error of our expectation value of magnitude |�(〈u, λc(x,D)u〉)|
in the physical state u - the difference between x̆ and X̆.

Incidentally, this error is easily estimated: For vanishing potentials
the operator norm of (the components of) λc(x,D) is not larger than
1, as easily seen. For non-vanishing potentials this should not change
much (even though we did not check details).

The location variable has the physical dimension of a length. But
our unit length is the Compton wave length of the electron, as men-
tioned initially (ch.1, footnote 1.) So, this inaccuracy of our prediction
of location seems perfectly natural

The above construction of a corrected observable may be repeated (so far)
for every observable A = a(x,D) where the symbol a ∈ ψcm commutes with
h(x, ξ), and may be written as a = a+p+ + a−p− with scalar symbols a±(x, ξ).
Apart from location, this is true for the following dynamical observables. In the
list, below, we are giving the symbols of the (first order) corrections with some
discussion, but without derivation14. We may come back later on, to study their
spectral theory, etc. In each case, as for location x above, the corrected symbol
is a self-adjoint matrix, but the corresponding ψdo still must be “symmetrized”
– using the (self-adjoint) symbol acorr we take the (self-adjoint) operator Acorr =
1
2 (acorr(x,D) + acorr(x,D)∗) as (first order) corrected observable.

12This formal difficulty often is avoided by using a slightly amended definition of a ψdo A

represented by a given symbol a, called the Weyl-representation (cf. sec.1.6). While the Weyl

representation offers this (and certain other) advantage(s), it also brings forth some further

complications of certain formulas, notably the Leibniz formulas (1.0.8),(1.0.9). This is why we

are avoiding it here.
13Recall our correction recognizes only the first of infinitely many others we cannot analyze.
14The derivation, in each case, will be a matter of applying fla. (4.3.6) (or (4.3.8)) for the

symbol q of the (uncorrected) observable in question.

13
.
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Momentum:

(4.3.11) p = (p1, p2, p3) , pj = Dj = −i
∂

∂xj
: pcorr = ξ−

∑
λcl(x, ξ)Al|x(x) ,

with the components λcl of the formal 3-vector λc of (4.3.7).
But note that the correction of the symbol ξ ∈ ψc1

e is of order −e1 − 2e2 =
e1 − 2e, due to our cdn.(X) imposed on the Aj . This means that the first order
correction of the momentum p is zero. Only a second order correction is listed in
(4.3.11) while other second order terms were ignored. In other words, we rather
should write (4.3.11) as

(4.3.11′) p = (p1, p2, p3) , pj = Dj = −i
∂

∂xj
: pcorr = ξ ,

i.e., there is no first order correction to be added to the symbol of p.

(Orbital) Angular momentum:

(4.3.12) L = x× p : Lcorr(x, ξ) = x× ξ − λc(x, ξ)× ξ −
∑

λcl(x×Al|x) .

Again, with λc of (4.3.7), and, again, the last term is of order −e - two units e lower
than the corrected symbol x × ξ, so it should be omitted, since other corrections
of that order will come forth: We should write (4.3.12) as

(4.3.12′) L = x× p : Lcorr(x, ξ) = x× ξ − λc(x, ξ)× ξ .

Electrostatic potential:

(4.3.13) V(x) : Vcorr(x, ξ) = V + E(x).λc(x, ξ) , E = −grad V .

We will discuss the spectral theory of this operator15 in sec.7.3f .

Mechanical momentum:

(4.3.14) π = p−A : πcorr(x, ξ) = ξ −A(x)− B × λc , B = curl A .

Relativistic mass:

(4.3.15) M = H − V : Mcorr = h(x, ξ)−V(x)− E(x).λc(x, ξ) .

Again, the correction of h(x, ξ) −V(x) ∈ ψce1 listed is of order −e1 − 2e2 - i.e.,
2e units lower. However, in this case we cannot expect any other correction of

15Actually, we went through the calculations for obtaining a second order correction for this

observable (cf. sec.5.6.).
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that order16 , so, the symbol Mcorr of (4.3.15) already has the first and second
corrections represented.

Note that the formal 3-vector λc(x, ξ) seems to govern every correction above.
Clearly some dynamical observables are missing in above list, such as spin and

current. These have symbols not commuting with h(x, ξ) - or else, their symbol
does commute with h(x, ξ) but it is not a multiple of 1 in the two eigenspaces of
h. This latter type will be discussed in the next section, below.

4.4 Symbols Non-Scalar on S

In this section we will continue the discussion of sec.4.2, and construct a first
order correction zt also for the case of a symbol for a q ∈ ψcm still commuting
with h(t, x, ξ) but without the property that q(x, ξ)|S±(x, ξ) are multiples of the
identity. We return to time-dependent potentials for this.

Things are quite similar as in sec.4.2, except that we do not have the result
of prop.4.2.1, used to translate conditions (4.2.14) into a useful form. For this
we will have to analyze the two linear maps q±t (x, ξ) : St

±(x, ξ) → St
±(x, ξ) of the

(2-dimensional) St
±(x, ξ) with respect to suitable bases of these spaces.

Note, we already have a unitary map u(t;x, ξ), taking the symbol h(t;x, ξ) onto
the diagonal form diag{λ+, λ+, λ−, λ−}, given explicitly17by (3.2.1). Moreover,
u(t;x, ξ) is a symbol in ψc0 for every t. It is clear that the first two (last two)
columns of u(t;x, ξ) supply orthonormal bases of St

+(x, ξ) (of St
−(x, ξ)). However,

to simplify some calculations, we will expand arbitrary vectors, using the two
pairs of bi-orthogonal systems, obtained by avoiding the factor 1√

2+2ζ0
in the first

system - called ϕj - and applying its square for the second - called ψj . That is,
we set (for S+:)

(4.4.1) (ϕ1, ϕ2) = (1+υ0
−iσυ) , ψj =

1
2 + 2υ0

ϕj , j = 1, 2 ,

and, (for S−:)

(4.4.2) (ϕ3, ϕ4) = (−iσυ
1+ζ0

) , ψj =
1

2 + 2υ0
ϕj , j = 3, 4 ,

with υ0 = 1/〈ζ〉 , υ = ζ/〈ζ〉 , ζ = ξ − A . Clearly the linear maps q±t (x, ξ) are
represented by 2 × 2-matrices κ±

t = ((κ±
tjl)) with respect to the bases (4.4.1) (or

16Actually, since H = M + V(x) commutes with H the symbol of H needs no corrections - it

has the first correction as well as all the others equal to zero. It follows that corrections for M (of

any order) must equal the negative of the corresponding correction for V(x). Accordingly, the

first correction for M vanishes; the second is listed in (4.3.15). As mentioned we even calculated

a second correction for V(x). This must give the third correction of M .
17Our potentials are time-dependent here, but the formula (3.2.1) remains intact.

±



102 CHAPTER 4. SMOOTH ΨDO HEISENBERG REPRESENTATION

(4.4.2)) of St
±. We express this by writing

(4.4.3) q±t =
2∑

j,l=1

κ±
tjlp

±
tjl ,

with p+
tjl = ψj〉〈ϕl and p−tjl = ψj+2〉〈ϕl+2 . It is clear also that

(4.4.4) p± = p±t11 + p±t22 .

With such preparation we may look at cdn.’s (4.2.14) again. Note, we had
p±ṗp± = 0, but it is no longer true that also p±ṗ±jlp± = 0, although we still have
p∓p±jl = 0 ⇒ p∓ṗ±jl = −ṗ∓p±jl, hence

(4.4.5) p∓ṗ±jlp∓ = −ṗ∓p±jlp∓ = 0 , p∓p±jl|ξp∓ = p∓p±jl|xp∓ = 0 .

Inspecting the other formulas [(4.2.21)-(4.2.22)] used in the proof of the proposition
in sec.4.2 we find a similar effect: Looking at p+q̇p+, for example, we get

(4.4.6) p+q̇p+ = p+q̇+p+ =
∑

κ+
jlp+ṗ+

jlp+ +
∑

κ̇+
jlp

+
jl ,

where the first term at right no longer needs to vanish, although all terms involving
q−t (x, ξ) have disappeared.

Similarly, looking at

(4.4.7) p+{h, q}p+ = p+{λ+p+, q}p+ + p+{λ−p−, q}p+ = (I) + (II)

we get
(I) = p+{λ+, q}p+ + λ+p+{p+, q}p+, while
(II) = λ−|ξp+p−q|xp+ + λ−|xp+q|ξp−p+ + λ−p+{p−, q}p+ = λ−p+{p−, q}p+,

since p+p− = p−p+ = 0. Also, p+ + p− = 1 implies p−|x = −p+|x and p−|ξ =
−p+|ξ, hence, {p−, q} = −{p+, q}, so that, (II) = −λ−p+{p+, q}p+. Together we
get

(4.4.8) p+{h, q}p+ = p+{λ+, q}p+ + (λ+ − λ−)p+{p+, q}p+ .

For further simplifications note that λ+−λ− = 2〈ζ〉 = 2〈ξ−A〉. Also, q = q++q−,
where p+{λ+, q−}p+ = 0, by (4.4.5), since λ+ is a scalar. Furthermore,
p+{p+, q−}p+ = p+p+|ξq

−
|xp+−p+q−|ξp+|xp+ = −p+p+|ξq

−p+|xp++p+p+|ξq
−p+|xp+

= 0, where we used that p+q− = q−p+ = 0 implies p+q−|ξ = −p+|ξq
− , q−|xp+ =

q−p+|x. With these simplifications we get

(4.4.9+) p+{h, q}p+ = p+{λ+, q+}p+ + 2〈ζ〉p+{p+, q+}p+ .
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Repeating the above for “-” we get

(4.4.9−) p−{h, q}p− = p−{λ−, q−}p− − 2〈ζ〉p−{p−, q−}p− .

After this, it is clear that we again have split the two conditions (4.2.14) into
separate systems for q±: The first cdn. involves only q+, the second only q−. We
may rewrite (4.2.14) as

(4.4.10) p±q′±p± ± 2〈ζ〉p±{p±, q±}p± = 0 ,

where again “′” means differentiation along the flow - i.e., ∂t + λ±|ξ∂x − λ±|x∂ξ -
different for the two flows.

For a full evaluation of (4.4.10) we now will translate it into a matrix form.
Using (4.4.6) and (4.2.20) (i.e., p±p′±p± = 0 for any directional derivative “′”) we
translate (4.4.10) into

(4.4.11)
∑

jl

pjlκ
′
jl +

∑

jl

κjl(pp′jlp) + 2〈ζ〉
∑

jl

κjlp{p, pjl}p = 0 ,

where we again restricted to “+” and dropped the “+”. Evidently, the first term
of (4.4.11) has the matrix ((κ′

jl)). The matrices of the other two terms may be
written as Wκ with a linear map W acting on 2× 2-matrices. Thus (4.4.11) may
be written as

(4.4.12) (κ±
t )′ + W±

t κ±
t = 0

with

(4.4.13) κ′ = κ̇ + λ±|ξ∂xκ− λ±|x∂ξκ .

So, again, this will be 4 × 4-systems of (linear homogeneous) ODE-s along the
particle flows.

In fact we can improve on the term W±κ±, insofar as it turns out that we may
write

(4.4.14) W±κ± = [Θ±, κ±]

with certain 2×2-matrix-valued symbols Θ± at right and the matrix-commutator
[Θ±, κ±]. Indeed, (dropping “+”, and with “′”= any directional derivative) we
have ppjl = pjl, hence pp′jl + p′pjl = p′jl ⇒ (1− p)p′jl = p′pjl. Thus pp|ξpjl|xp =
pp|ξ(1 − p)pjl|xp = (pp|ξp|x)pjl, and, similarly, ppjl|ξp|xp = pjl(pp|ξp|xp). Using
(4.4.4) and pjl = ψj〉〈ϕl (for “+”) we may write

(4.4.15) pp|ξp|xp =
∑

kr

〈ϕk, p|ξp|xψr〉pkr .



104 CHAPTER 4. SMOOTH ΨDO HEISENBERG REPRESENTATION

Thus we get - with pjlpkr = ψj〉〈ϕl, ψk〉〈ϕr = δlkpjr - that

(4.4.16) p{p, pjl}p =
∑

kr

〈ϕk, p|ξp|xψr〉(pklδrj − pjrδkl) ,

hence - with Θ1
jl = 〈ϕj , p|ξp|xψl〉 - the last term in (4.4.11) will be

(4.4.17) = 2〈ζ〉
∑

jlkr

κjlΘ1
kr(pklδrj − pjrδlk) = 2〈ζ〉

∑

jl

([Θ1, κ+])jlp
+
jl .

In a similar way one finds that the second term of (4.4.11) - and, gener-
ally, a term of the form

∑
jl κjlp(pjl)′p, with any directional derivative “′” -

may be written as
∑

jl[Θ
∼, κ]pjl with Θ∼ = ((〈ϕj , ψ

′
l〉)). Indeed, get p(pjl)′p =∑

kr pkr(〈ϕk, ψ′
j〉〈ϕl, ψr〉+ 〈ϕk, ψj〉〈ϕ′

l, ψr〉). Differentiating 〈ϕk, ψj〉 = δkj we get
〈ϕ′

k, ψj〉+ 〈ϕk, ψ′
j〉 = 0. It follows that

(4.4.18) pp′jlp =
∑

kr

pkr(Θ∼
kjδlr − δkjΘ∼

lr) .

So,

(4.4.19)
∑

jl

κ+
jlpp′jlp =

∑

jl

[Θ∼, κ+]jlpjl .

All in all then the sum of the two last terms at left of (4.4.11) assumes the form

(4.4.20)
∑

jl

p+
jl[Θ

+, κ+] , Θ+
jl = 〈ϕj , ψ

′
j〉+ 2〈ζ〉〈ϕj , p|ξp|xψl〉 ,

where now “′” means the special directional derivative along the flow of (4.2.24),
as defined by (4.4.13). There is an analogous consideration for “−” which will be
left to the reader.

In other words, (4.4.11) (or (4.4.12)) now assumes the form

(4.4.21) (κ±
t )′ + [Θ±

t , κ±
t ] = 0 , (Θ±

t )jl = 〈ϕ±
j , (ψ±

l )′〉+ 2〈ζ〉〈ϕ±
j , p±|ξp±|xψ±

l 〉 ,

where we have introduced the new notation ϕ+
j = ϕj , ψ

+
j = ψj , ϕ

−
j = ϕj+2, ψ

−
j =

ψj+2, for j = 1, 2.

Clearly, the above should be further evaluated, using details of our bi-orthogonal
systems of (4.4.1) and (4.4.2). This will be done in sec.4.6, below, where we will
look at “geometrical optics” by studying the “particle flow” under physical as-
pects. We shall find that not only the classical orbits of electron and positron, but
also the propagation of spin is reflected in this kind of symbol propagation.

For our present purpose, it will be important to observe that there will be a
complete analogue to prop.4.2.2, asserting a unique solution - now of the system
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(4.4.21) - with κ±
t providing a symbol qt in ψcm if the initial-value q is such a

symbol, by way of (4.2.13) and (4.4.3). This will be discussed in sec.5.5. With that,
fla.(4.2.15) with wt of (4.2.12) automatically will give the neccessary correction
symbol zt in ψcm−e, and (4.4.21) automatically will give q̇t ∈ ψcm−e2 , implying
that zt ∈ ψcm−e−e2 may be neglected. Then, of course, the machinery of sec.4.2
also applies to initial symbols not scalar in the two spaces S±, as we shall require
in sec.4.5, below.

Note, by the way, the symbols Θ±
jl belong to ψc−e2 .

Looking at eqn. (4.4.21) [for “+” again, dropping “t” and “+”]: For a constant
2×2-matrix Θ the system κ′+[Θ, κ] = 0 (of 4 ODE-s in 4 unknown functions κ(t))
is solved by κ(t) = e−Θtκ(0)eΘt, this giving the unique solution of the initial-value
problem, fixing κ(0) = κ0. Here Q(t) = e−Θt solves Q′ +ΘQ = 0 with initial value
Q(0) = 1 - it represents the evolution operator of that constant coefficient system.

Our Θ of (4.4.21) depends on t, but one finds the same relation between the
two ODE-s κ′+[Θ(t), κ] = 0 and Q′+Θ(t)Q = 0: Let Q(τ, t) denotes the evolution
operator of the 2× 2-ODE q̇ + X(t)q = 0 with an X = X(t) depending on t, i.e.,

(4.4.22) ∂tQ(τ, t) + X(t)Q(τ, t) = 0 , Q(τ, τ) = 1 ,

equipped with the usual “group property” Q(τ, t) = Q(τ1, t)Q(τ, τ1) for all τ, τ1, t.
Then the unique solution of the ODE U̇ + [X(t), U ] = 0 with initial value U(0) is
given by U(t) = Q(0, t)U(0)Q(t, 0). In the case of (4.4.21) we have the derivative
“′” along the particle flow. That is, we must set

(4.4.23) X(t) = Θ(t, x(t), ξ(t))

with any solution curve x(t), ξ(t) of the Hamiltonian system (4.2.24). With such
X(t) we then define

(4.4.24) κ(t, x(t), ξ(t)) = Q(0, t)κ(0, x0, ξ0)Q(t, 0) .

Clearly we get κ(0, x(0), ξ(0)) = κ(0, x0, ξ0), assuming our curve starts at (x0, ξ0)
for t = 0. A differentiation at once confirms that
(4.4.25)

∂tκ(t, x(t), ξ(t)) = [X(t), κ(t, x(t), ξ(t))] = −[Θ(t, x(t), ξ(t)), κ(t, x(t), ξ(t))] .

We have proven:

Theorem 4.4.1 For time-dependent potentials satisfying cdn.(X) with all their
time-derivatives, and an initial symbol q0(x, ξ)∈ ψcm commuting with h(0, x, ξ) for
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all x, ξ (but without the condition that q0(x, ξ) is scalar in the two spaces S±(x, ξ))
a continuation symbol qt(x, ξ) (commuting with h(t, x, ξ) for all t) is given by
writing

(4.4.26) q±t =
2∑

j,l=1

κ+
tjlp

+
tjl +

2∑

j,l=1

κ−
tjlp

−
tjl ,

where the dyads p±tjl are defined as in (4.4.3), while the 2×2-matrices κ±
t = ((κ±

tjl))
are determined by fla. (4.4.24) with the evolution operator Q = Q±(τ, t) of the
problem (4.4.22) with X(t) of (4.4.23), where Θ = Θ± is given by (4.4.21) and
x(t), ξ(t) are the solutions of (4.2.24) - again for ±, respectively, and with initial
conditions x±(0) = x0 , ξ±(0) = ξ0.

Then the first correction symbol zt ∈ ψcm−e is given as in thm.4.2.3 - using
fla. (4.2.15) with above redefined qt. Again the symbols ct of (4.2.15) are free at
t = 0, but they need further restraint for general t (cf. proof of thm.5.1.1.(ii)).

4.5 Spin and Current

The spin-observable usually is defined as the (formal 3-vector of) matrices

(4.5.1) S =
1
2
ρ , ρj =

(
σ 0
0σ

)

j

,

motivated by the fact that - for rotationally symmetric potentials - the total an-
gular momentum

(4.5.2) J = x×D +
1
2
ρ = L + S

commutes with H, so can be predicted independently of any energy observations18.
Now, it is clear that the multiplication operator Sj = 1

2ρj belongs to Opψc0,
and has symbol a(x, ξ) = 1

2ρj independent of x and ξ. Evidently, this symbol does
not commute with the symbol h(x, ξ) of H, so that the constructions of sec.4.2
and sec.4.4 both do not apply.

In such a case, however, one may argue as follows: This observable S can
be meaningfully predicted only if it is known in advance (with certainty - i.e.,
probability 1) that the particle is an electron (a positron). Recall our split H =
He ⊕ Hp of (3.0.5), realized in sec.3.5, and the corresponding partition of unity

18cf. footnote 11 of ch.7.
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1 = Pe + Pp, where Pe and Pp are ψdo-s in Opψc0 with symbol p± (modulo
O(−∞)).

If the physical state u belongs to He then we have u = Peu, hence for the
expectation value S̆ we get

(4.5.3) S̆ = 〈u, Su〉 = 〈u, PeSPeu〉 .

Note, the operator Se = PeSPe is a ψdo with symbol

(4.5.4) se(x, ξ) =
1
2
p+ρp+ (modψc−e) ,

and the symbol se ∈ ψc0 commutes with h(x, ξ), for all x, ξ. So, it could well be
used as a symbol q of sec.4.2 to construct a correction with smooth Heisenberg
transform, which would be precisely predictable. But it could be used as approx-
imation for the spin-observable only for physical states where the particle is an
electron - for sure. To get such symbol working for both spaces He and Hp one
might take the sum

(4.5.5) S̃ = PeSPe + PpSPp ,

with symbol (mod ψc−e)

(4.5.6) s̃(x, ξ) =
1
2
(p+ρp+ + p−ρp−) .

Clearly, with p± of (4.2.9) , we get

(4.5.7) s̃ =
1
4
{ρ +

1
〈ζ〉2 (αζ + β)ρ(αζ + β)} .

We get βρβ = ρ, and, α1ρ1β + βρ1α1 = 0 while α2ρ1β = βρ1α2 = −µ3 and
α3ρ1β = βρ1α3 = µ2 . This gives

(4.5.8) (αζ)ρ1β + βρ1(αζ) = −2ζ2µ3 + 2ζ3µ2 = 2(µ× ζ)1 .

Furthermore,

(4.5.9) (αζ)ρ1(αζ) = 2ζ1(ρζ)− ζ2ρ1 ,

hence,
(αζ + β)ρ(αζ + β) = 2ρ + 2µ× ζ + 2ζ(ρζ)− 〈ζ〉2ρ, so that,

(4.5.10) s̃ =
1

2〈ζ〉2 {ρ + µ× ζ + ζ(ρζ)} .

We then might offer the operator S̃ = s̃(x,D) for the approximation procedure of
sec.4.2, to construct S̃corr as precisely predictable approximation. However, it is
clear then that this will work only for physical states in He or Hp.
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As another approach to the same problem we might look at the decomposition

(4.5.11) J = L + S = x×D +
1
2
ρ .

of the total angular momentum into spin and orbital contributions. We constructed
the symbol of a precisely predictable approximation of the observable L (or only
its first installment) in (4.3.12’), as

(4.5.12) lcorr = x× ξ − λC × ξ , Lcorr =
1
2
(lcorr(x,D) + lcorr(x,D)∗) .

For A = 0 and rotationally symmetric V (x) we know that [H,J ] = 0. Assuming
this we get λC independent of x; we then might write (4.5.11) in the form

(4.5.13) J = Jcorr = Lcorr + (S + λC(D)×D) .

Both terms of the last sum are of the same order 0. Moreover,
λC × ξ = 1

2〈ξ〉2 {µ × ξ − ξ × (ρ × ξ)} = 1
2〈ξ〉2 {µ × ξ + (ρξ)ξ − ξ2ρ} . Thus the

symbol of that sum is

(4.5.14)
1
2
ρ +

1
2〈ξ}〉2 {µ× ξ + (ρξ)ξ− ξ2ρ} =

1
2〈ξ〉2 {ρ + µ× ξ + (ρξ)ξ} = s̃(x, ξ) .

In other words, (4.5.13) assumes the form

(4.5.15) J = Lcorr + S̃ ,

where now the naturally corrected spin S̃ does have its symbol s̃ = 1
2 (p+ρp+ +

p−ρp−), (by (4.5.6)) indeed commuting with h(x, ξ).
In other words,

Proposition 4.5.1 For Aj = 0 and rotationally symmetric V there is a corrected
decomposition (4.5.15) of the total angular momentum into a precisely predictable
orbital component and a spin component where now the (uncorrected) symbol of
the spin commutes with h(x, ξ), so that it may be entered into the correction pro-
cedure19 of thm.4.2.3 or thm.4.4.1. This (uncorrected) new spin symbol s̃(x, ξ)
coincides with the symbol of (4.5.6) in the general case, useful for the expectation
value of S only in the case where the precise nature of the particle - either electron
or positron - is known with certainty.

We will not calculate any further correction of the spin-obervable, after having
achieved a “0-th correction” making our procedure of sec’s 4.2 and 4.4 applicable.
However, let us get the linear maps q± explicitly, used to correct the symbol

19and, more precisely into that of thm.5.1.1.
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s̃(x, ξ) of our natural spin S̃. That is, we should obtain explicitly the matrices κ±

of (4.4.3). Using (4.4.4) we have

(4.5.16) p+ρp+ =
∑

j,l

p+
jjρp+

ll =
1

2 + 2/〈ζ〉
∑

j,l

〈ϕj , ρϕl〉p+
jl .

So, for κ+ we must calculate the matrix (with υ0 = 1/〈ζ〉 , υ = ζ/〈ζ〉)
(ϕ1, ϕ2)∗ρ(ϕ1, ϕ2) = (1+υ0

−iσυ)∗
(
σ 0
0 σ

)
(1+υ0
−iσυ) = (1 + 1/〈ζ〉)2σ + 1

1+ζ2 (σζ)σ(σζ) .

One find that (σζ)σ(σζ) = 2(σζ)ζ − ζ2σ, hence

(4.5.17) κ+ =
1
〈ζ〉σ +

1
〈ζ〉(1 + 〈ζ〉) (σζ)ζ

Evidently this is not a multiple of 1, so, we must apply the theory of sec.4.4. For
the matrix κ− we get exactly the same formula, i.e.,

(4.5.18) κ− =
1
〈ζ〉σ +

1
〈ζ〉(1 + 〈ζ〉) (σζ)ζ .

As another observable, frequently used, but wit symbol non-commuting with
h(x, ξ), let us mention the current. The 3 components Cj of the current usu-
ally are given to coincide with the 3 Dirac matrices αj of (1.0.2) - for us given
by (3.1.7). But we must remember here that this describes the current density.
The corresponding observable then would be the (matrix-) multiplication operator
ψ(y) → αjδ(x− y)ψ(y) (with the delta-function δ(x− y)), describing current den-
sity at the point x. Again, while this is a linear operator S → S it does not define
a preclosed operator of H, and hence, does not qualify as an observable. What
one must take instead is the (distribution) limit (as ε → 0) of cε

j = αjδε(x − y)
with δε(x) = δ1(x/ε) where δ1 ∈ S ,

∫
δ1dx = 1. These cε

j(x) are well defined
multiplication operators (and ψdo-s in Opψc(0,−∞)), as ε > 0.

We remind of the continuity equation

(4.5.19) ∂tρ
0(x) + div c0(x) = 0 ,

linking20 the current density to the particle density ρ0(x), given as observable by
ρ0(x) = δ(x− y) - involving the same limit ρ0(x) = limε→0δ

ε(x).

20The expectation value of ρ0(x) at a state ψ will be ρ̆ =
∫

ψ∗(y)δ(x − y)ψ(y)dy = |ψ(x)|2.

Similarly, the expectation value of c0j (x) will be c̆0j (x) = ψ(x)∗αjψj(x). Assuming that ψ(t, x) is

a solution of the Dirac equation we then indeed get (4.5.19) for the expectation values, since aj

are hermitian, while Dj are skew-hermitian, and all potentials are real. In fact we then even get

the continuity relation (4.5.19) not only for ρ0(x) and c0(x) but even for (the expectation values

of) ρε(x) and cε(x).
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We can only work with the (smeared out) current and particle density cε(x) and
ρε(x), and notice that both belong to Opψc(0,−∞). The symbol of ρε commutes
with h but the symbol of cε does not.

We then repeat the argument given for the spin observable: Assuming that
the nature of the particle is known with certainty - either it is an electron or a
positron, then we work with the symbol

(4.5.20) c̃ε(x0) = {p+αp+ + p−αp−}δε(x0 − x) ,

i.e., the principal part of an operator giving the same expectation value as cε
j(x)

for such physical states. A calculation shows that

(4.5.21) c̃ε(x0) = (h(x, ξ)−V(x))
ξ −A
〈ξ −A〉2 δε(x0 − x) .

Clearly, this symbol is scalar in each of the two spaces S±, since all terms are
scalar, except h(x, ξ). Thus we may use the calculus of sec.4.2 to determine the
first correction. Details are left to the reader.

4.6 Classical Orbits for Particle and Spin

In this section we want to look at the Hamiltonian flow in (x, ξ)-space (i.e., phase
space) induced by the “equations of motion” (4.2.24) - a system of 6 ODE-s in
the 6 unknown functions x(t), ξ(t) -, and, more generally, the propagation of the
matrix κ±(x, ξ) along these orbits, described by eqn.s (4.4.21). We shall see that
there indeed is a propagation of a point charge in the given electromagnetic field
(induced by V and A), and also a propagation of a magnetic moment vector (of
Bohr strength) sitting on that point charge.

Explicitly, the system (4.2.24) for λ+ = 〈ξ −A〉+ V looks like this:
(4.6.1)

ẋ =
1

〈ξ −A(t, x)〉 (ξ −A(t, x)) , ξ̇ =
1

〈ξ −A(t, x)〉
∑

j

(ξj −Aj(t, x))Aj|x −V|x .

The first equation may be solved for ξ −A: We get

(4.6.2) ξ −A =
ẋ√

1− ẋ2
, 〈ξ −A〉 =

1√
1− ẋ

Equating the derivative ξ̇ of (4.6.2) with the second (4.6.1) gives

(4.6.3) (
ẋ√

1− ẋ2
)
·
+ ∂tA(t, x(t)) = −V|x +

∑

j

ẋjAj|x .

2
.
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In (4.6.3) we get ∂tA(t, x(t)) = A|t(t, x(t)) +
∑

l ẋl(t)A|xl
(t, x(t)). Now we use

the relation

(4.6.4) ẋ× curl A =
∑

l

(ẋlAl|x − ẋlA|xl
) .

As a consequence (4.6.3) assumes the form

(4.6.5) (
ẋ√

1− ẋ2
)
·
= −A|t(t, x(t))−V|x(t, x(t)) + ẋ× curl A(t, x(t)).

According to ch.1, footnote 1 we have the electric and magnetic field E and H
given by

(4.6.6) E = −A|t − grad V , B = curl A ,

and the relativistic mass will be 1√
1−ẋ2 , in the physical units we employ here.

Accordingly (4.6.5) reads

(4.6.7) (
ẋ√

1− ẋ2
)
·
= E + ẋ× B .

Clearly this exactly describes the acceleration of the charged particle under the
force of the (time-dependent) electromagnetic field acting on it.

The above was evaluated for λ+. For λ− we get the same equation (4.6.7),
except that left hand side bears a minus sign - in accordance with the fact that,
for a positron, all forces act in the opposite direction.

But now let us also try to interpret the propagation of (4.4.21), coming into play
only for observables with symbols inducing a nontrivial map of the two eigenspaces
S±. It will be necessary then to evaluate the matrices Θ± of (4.4.21).

Two things are important: First - (4.4.21) again is an ODE for the 2 × 2-
matrix - say, κ = κ+, - again along the particle orbits - solutions of (4.2.24),
with differentiation “′”=∂t + λ|ξ∂x − λ|x∂ξ. Arguments similar to those in sec.4.2
apply, concerning the two propagations A → U(0, t)AU(t, 0) and (the Heisenberg
representation) A → U(t, 0)AU(0, t), with the difference that qt now does not
propagate constant along the flow, but rather, as a solution of an initial-value
problem of a first order linear homogeneous ODE.

Second, to simplify calculations, we note that the matrices Θ occur only in a
commutator of the “equations of motion”. When we evaluate it we may omit any
additive term giving a scalar multiple of the 2 × 2- identity matrix, because its
contribution to the commutator will vanish. We shall write “a = b(mod 1)” if b−a

is a scalar multiple of the identity matrix
Again we focus on “+” and drop the +-sign in notation.
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First we look at (the 2× 2-matrix)

(4.6.8) Θ∼ = ((〈ϕj , ψ
′
l〉)) = (ϕ1, ϕ2)∗(ψ′

1, ψ
′
2) .

From (4.4.1) we get
(4.6.9)

(ϕ1, ϕ2) = (1 + υ0)( 1
−iσγ) , (ψ1, ψ2) =

1
2
( 1
−iσγ) , with g =

υ

1 + υ0
=

ζ

1 + 〈ζ〉 ,

hence (ψ′
1, ψ

′
2) = 1

2 ( 0
−iσγ′) , and,

(4.6.10) Θ∼ =
1
2
(1 + υ0)(σγ)(σγ′) =

1
2
(1 + υ0)iσ.(γ × γ′) (mod 1) .

Here we used the well known formula

(4.6.11) (σξ)(ση) = ξ.η + iσ.(ξ × η) , ξ, η ∈ R
3 .

Note, γ = ζ/(1+〈ζ〉) is a scalar multiple of ζ = ξ−A, hence γ×γ′ = 1
(1+〈ζ〉)2 ζ×ζ ′,

since ζ × ζ = 0. Thus we get - all (mod 1) -

(4.6.12) Θ∼ =
i

2
1

〈ξ −A〉(1 + 〈ξ −A〉)σ.((ξ −A)× (ξ −A)′) .

Next we calculate

(4.6.13) (ξ −A)′ = {∂t +
∑

j

λ|ξj
∂xj

−
∑

j

λ|xj
∂ξj
}(ξ −A) ,

where λ|ξj
= (ξj − Aj)/〈ξ − A〉 and λ|xj

= V|xj
−

∑
l Al|xj

(ξl − Al)/〈ξ − A〉 .
The result is this:

(4.6.14) (ξk −Ak)′ = −Ak|t −V|xk
−

∑

j

ξj −Aj

〈ξ −A〉 (Ak|xj
−Aj|xk

) , k = 1, 2, 3.

The last term equals + 1
〈ξ−A〉 (curl A× (ξ −A))k. Thus we have

(4.6.15) ζ ′ = (ξ −A)′ = −A|t −V|x +
1

〈ξ −A〉curl A× (ξ −A) ,

and we get

(4.6.16) (ξ −A)× (ξ −A)′ = ζ × ζ ′ = ζ × (−V|x −A|t)−
1
〈ζ〉

2

All togeter we get

(4.6.17) Θ∼ = − i

2
1

〈ζ〉(1 + 〈ζ〉)σ.(ζ × E +
1
〈ζ〉 (|ζ|

2B − (ζ.B)ζ)) .

(|ζ| B − (ζ.B)ζ) .
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Next we set out to calculate the other part 2〈ζ〉Θ1 of the matrix Θ of (4.4.20).
Here it might be some help to go back and write

(4.6.18) 2〈ζ〉pp|ξp|xp = ppξh|xp ,

noting that 2〈ζ〉pp|ξp|xp = λ+pp|ξp|xp + λ−pp|ξp−|xp while pp|ξp = 0.
We get

(4.6.19) 2〈ζ〉Θ1 =
1
2
(1 + υ0)(1, iσγ)p|ξh0(ζ)|x( 1

−iσγ) (mod 1)

with h0(ζ) = αζ + β, since the term V|x(1, iσγ)( 1
−iσγ) = V|x(1 + |γ|2) is scalar,

using (4.6.11).
Now we get p = 1

2 (1+ h0(ζ)
〈ζ〉 ) = 1

2 (1+υ0h0(ζ)), hence p|ξk
= 1

2 (υ0|ξk
/υ0)h0(ζ)+

1
2υ0αk where the first term at right will generate a scalar multiple of 1, hence may
be ignored. Also, h0(ζ)|xk

= (
∑

αj(ξj − Aj) + β)|xk
= −(α.A)|xk

. Substituting
into (4.6.19) we get

(4.6.20) 2〈ζ〉Θ1 = −υ0

4
(1 + υ0)(1, iσγ)(

∑

jl

Aj|xl
αjαl)( 1

−iσγ) .

But we have

(4.6.21)
∑

jl

Aj|xl
αjαl = div A− iρ. curl A ,

with ρ =
(
σ 0
0 σ

)
, where again the first term may be ignored, when we substitute this

into (4.6.20). We get

(4.6.22) 2〈ζ〉Θ1 = − i

4
υ0(1 + υ0)(1, iσγ)ρ.B( 1

−iσγ) .

A matrix calculation then gives
(4.6.23)

(1, iσγ)
(

σB 0
0 σB

)
( 1
−iσγ) = (σB) + (σγ)(σB)(σγ) = σ((1− |γ|2)B + 2(γBγ) .

We have 1− |γ|2 = 2
1+〈ζ〉 so (4.6.23) equals

(4.6.24)
2

1 + 〈ζ〉 (B +
1

1 + 〈ζ〉 (ζB)ζ) .

All together we then get

(4.6.25) 2〈ζ〉Θ1 = − i

2
1
〈ζ〉2 σ.(B +

1
1 + 〈ζ〉 (ζB)ζ) .

Collecting things, up to here: We have
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(4.6.26) Θ = Θ∼ + 2〈ζ〉Θ1

with Θ1 of (4.6.25) and

(4.6.27) Θ∼ = − i

2
1

〈ζ〉(1 + 〈ζ〉)σ.(ζ × E +
1
〈ζ〉 (|ζ|

2B − (ζ.B)ζ)) .

We may write Θ = − i
2σ.Υ with

(4.6.28) Υ =
1

〈ζ〉(1 + 〈ζ〉) (ζ ×E − 1
〈ζ〉 (|ζ|

2B− (ζB)ζ)) +
1
〈ζ〉2 (B+

1
1 + 〈ζ〉

(4.6.29) (κ0)′ = 0 , �κ′ + Υ× �κ = 0 .

The first equ. (4.6.29) councides with (4.2.16), or its translation (4.6.7), using
standard physical terms - this happens if qt is a multiple of the identity. In order
to evaluate the second (4.6.29) we must simplify Υ of (4.6.28).

Notice the terms with (ζB)ζ cancel while B carries the factor 1
〈ζ〉2 (1+ ζ2

1+〈ζ〉 ) =
1

〈ζ〉2(1+〈ζ〉) (1 + ζ2 + 〈ζ〉) = 1
〈ζ〉 .

Thus we get

(4.6.30) Υ =
1

〈ζ〉(1 + 〈ζ〉)ζ × E +
1
〈ζ〉B .

We still must use (4.6.1) and (4.6.2) to introduce visible physical quantities. We
get

(4.6.31) Υ =
√

1− ẋ2

1 +
√

1− ẋ2
ẋ× E +

√
1− ẋ2B .

All in all then, our equations (4.2.14) have assumed a form characterized as
follows:

Theorem 4.6.1 We consider time-dependent potentials V,A sat-
isfying cdn.(X) with all their time-derivatives.

Under the Heisenberg transform A → At = U(t, 0)AU(0, t) the
“commutative part” q of the symbol a = q + z ∈ ψcm of a “precisely
predictable” observable A = a(x,D) propagates as q → qt = q+

t +
q−t where q±t (x, ξ) leave the eigenspaces S±(t, x, ξ) of the Hamiltonian
symbol h(t, x, ξ) (to λ± = V ± 〈ξ −A(t, x)〉) invariant.

(ζB)ζ).

Any (hermitian symmetric) 2 × 2-matrix κ may be (uniquely) written as κ =
κ0 + σ.�κ, (often called the Garding-Wightman representation). In this form the
DE (4.4.21) reads like this:
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Specifically, the map q+
t (x, ξ) : S+(t, x, ξ) → S+(t, x, ξ) has a matrix

κ+
t = κt(x, ξ) (with respect to the bi-orthonormal system (4.4.1)) which

decomposes as κ = κ0 + σ.�κ, and with κ0 propagating as a constant
along the “electron particle flow” determined by the “classical equations
of motion”(4.6.7) - i.e.,

(4.6.32) (
ẋ√

1− ẋ2
)
·
= E + ẋ× B .

On the other hand, the 3-vector �κt propagates along the same classical
electron flow, obeying an equation of motion of a magnetic moment
vector (the spin-vector), of the form

(4.6.33)
1√

1− ẋ2
�κ′ = B∼ , where B∼ = B +

1
1 +

√
1− ẋ2

ẋ× E ,

with the electric and magnetic field strength E and B of (4.6.6), where
“ ′” denotes the directional derivative along the flow, given by (4.4.13).

Similarly, the other part q− of the symbol q will propagate with a
matrix κ− (with respect to the system (4.4.2)) for S− and “classical
orbits” of the positron and the positron spin, described by equations
corresponding to (4.6.31)-(4.6.33).

Remark 4.6.2 Looking at thm.4.6.1 one observes that the value of the right hand
side at a given t, x, ξ represents the magnetic field strength B∼ an electron, located
at x with momentum ξ, moving at velocity ẋ - effected by the field of A,V - should
experience at time t. If we interpret the vector �κ(t, x, ξ) as the magnetic moment

of the electron at (t, x, ξ) - which moves with the particle along the orbit through
(t, x, ξ) - then �κ′(t, x, ξ) should be the rate of change of that magnetic moment.

The factor 1√
1−ẋ2 ≈ 1 for relativistically small velocities should be regarded

as a relativistic correction. So then, eqn. (4.6.33) just states that the magnetic
moment approximately has the absolute value 1 - that is, it is of “ Bohr-strength”
(cf.[So1]) as it should be.

Remark 4.6.3 According to the “Stern-Gerlach effect” the orbit of an electron
should also depend on the direction of its spin. But, in the above, such effect is
not evident. Rather we get just the classically determined orbits of electron and
positron without influence of the spin.

Note, however, this Stern-Gerlach effect is quantum mechanical, insofar as in
all experiments proving it, there are only 2 spin-directions observed, not a con-
tinuous distribution - as it seems to us. So, since we are only looking at a first
approximation, in this chapter, it may not be astonishing that this effect escapes
our observation.
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The (only) two-fold orbits of our theory arise from the fact that the Dirac
Hamiltonian’s symbol h(t, x, ξ) - as 4× 4-matrix, has only two distinct eigenvalues
λ± = V ± 〈ξ −A〉, each one of multiplicity 2. If we look closely at the decoupled
Hamiltonian of sec.3.5 then it appears that a split of λ+ into 2 distinct eigenvalues -
both differing from λ+ only by a symbol of order −e2 - might be more natural to use
for obtaining orbits of the electron. However, such split is not strong enough to be
incorporated into our theory of observables, since it will disappear as |x|+|ξ| → ∞.

Also, the construction of higher order corrections of observables, we will discuss
in ch.V, will give us additional “decoupled symbols” - the matrices c± of (4.2.15)
(propagating in time) - to be considered while determining classical orbits.



Chapter 5

The Algebra of Precisely

Predictable Observables

5.0 Introduction

In this chapter we will start by discussing a precise theorem giving a necessary
and sufficient condition for smoothness of the (inverse) Heisenberg transform, with
some “framing conditions” added. Note, the symbol classes ψcm carry a “topol-
ogy” (in fact, a Frechet topology), defined by the sup norms1

(5.0.1) ‖a‖jl =
∑

|θ|=j,|ι|=l

‖〈x〉−m2+j〈ξ〉−m1+la
(ι)
(θ)(x, ξ)‖L∞(R6) , j, l = 0, 1, 2, . . . ,

where, as usual ‖b(x, ξ)‖R6 = supx,ξ∈R3 |b(x, ξ)|. This allows a definition of differ-
entiablilty of a symbol at(x, ξ) for a parameter t: We shall say that

at = at(x, ξ) belongs to C∞(R, ψcm) (or that the symbol at depends
smoothly on t) if at(x, ξ) ∈ C∞(R × R

6) and if, in addition, the
time-derivatives ȧt, ät, . . . , ∂

j
t at, . . . all exists in all of the above norms

(5.0.1). Then also the ψdo At = at(x,D) will be called a smooth
functions of t (within the space Opψcm).

We return to sec.4.2, and its assumptions there: time-dependent potentials
Aj ,V satisfying cdn.(X) with all their time-derivatives, for all t. We have the

1In view of the results presented in ch.2 it is possible to carry over this Frechet topology to the

operator class Opψcm by using the (countably many) norms ‖〈x〉m2−|ι|adθ
xadι

DA〈D〉m1−|θ|‖H.

In view of (2.1.7) [which expresses the symbol as a trace of the product of a fixed trace class

operator and an operator of the form (2.1.5)] we then get an equivalent topology on Opψcm.

117
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evolution operator U(τ, t) of the Dirac equation, an operator of order 0, - for
time-independent Aj ,V coinciding with e−i(t−τ)H - and consider the (inverse)
Heisenberg representation A → At = U(0, t)AU(t, 0), for an unbounded operator
A acting on a dense subdomain of H. We still assume A ∈ Opψcm to be a strictly
classical ψdo , and set τ = 0.

In ch.4 - centering around relation (4.2.7) - we were developing a procedure
to determine At for a given A - assuming that (i) At = at(x,D) still belongs
to Opψcm, while (ii) even ȧt ∈ ψcm−e1 . Actually, it was seen that these two
conditions alone imply that the symbol a(x, ξ) of such an operator must “nearly”
commute with the symbol h(0;x, ξ) of the Hamiltonian H(t) at t = 0. More
precisely, there must be a decomposition a = q + z - and, generally, at = qt + zt,
where qt(x, ξ) commutes with h(t;x, ξ) [so, q(x, ξ) = q(0, x, ξ) commutes with
h(0;x, ξ)], for all x, ξ while z = z0 , zt ∈ ψcm−e.

Also, starting with an arbitrary given symbol q ∈ ψcm with [h(0;x, ξ), q(x, ξ)] =
0 for all x, ξ, we were attempting to construct a “correction symbol” z(x, ξ) ∈
ψcm−e - and, more generally, continuations qt with [qt, h(t)] = 0 and zt(x, ξ) ∈
ψcm−e with z0 = z such that A = a(x,D) with a = q + z has a smooth (inverse)
Heisenberg representation, given by at(x,D) with at = qt + zt.

Our construction - so far - was not carried out completely, insofar as only qt

and an approximative z and zt were obtained. This approximation was seen to be
useful, however, insofar as it was correct “modulo lower order” - that is, its error
tends to get negligibly small as |x| + |ξ| → ∞. And the usefulness of this was
confirmed, perhaps, since, among other facts, we were able to derive the classical
equations of motion from it - including motion of the spin as a classical magnetic
moment vector.

In the present chapter we will offer a mathematically complete theory, showing
that an iteration of our procedure can be designed which indeed will supply a
precise correction symbol z ∈ ψcm−e for every symbol q ∈ ψcm commuting with
the Hamiltonian symbol h(t, x, ξ) at t = 0 such that indeed (1) q and z both will
have “extensions” qt ∈ ψcm and zt ∈ ψcm−e, for all t ∈ R, where q0 = q , z0 = z,
while [h(t;x, ξ), qt(x, ξ)] = 0]∀x, ξ ∈ R

3, t ∈ R; (2) qt ∈ C∞(R, ψcm) and zt ∈
C∞(R, ψcm−e); (3) A = q(x,D) + z(x,D) and At = qt(x,D) + zt(x,D) satisfy
At = U(0, t)AU(t, 0) - that is, At is the (inverse) Heisenberg representation of A.

In sec.5.1, below, we will set up the precise class of operators for the above,
and then will state and prove the corresponding theorem. The main ingredient of
the proof will just be an iteration of the procedure in sec’s 4.2 and 4.4. But we
again will need detailed facts about symbol propagation. These will be discussed
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and 4.4.
Our discussion in sec.5.1 will get us an algebra P(0) of precisely predictable

observables at the initial point τ = 0, but the procedure will work for any given
initial τ , of course. Moreover, the operators of P(0) will propagate – with their
inverse Heisenberg transform, creating the algebra P(τ) at some arbitrary τ . These
facts will be discussed in sec. 5.2. In sec.5.3 we return to the discussion of physical
consequences surrounding this kind of “prediction”.

In sec.5.6 we will obtain an explicit second correction, at least for two dynamical
observables - the energy split into potential and relativistic mass. [Here we assume
time-independence and vanishing magnetic potentials Aj , but a general V(x).]

In earlier publications [Co3],[Co4] we proposed the concept of precisely pre-
dictable observable as that of a self-adjoint operator A ∈ Opψc with smooth
Heisenberg representation, in the above sense. Such observables thus may be con-
structed from any given q(x, ξ) ∈ ψc commuting with h(0;x, ξ) by constructing
above correction symbol z, then defining B = q(x,D) + z(x,D) and finally choos-
ing A = 1

2 (B + B∗), to obtain a self-adjoint operator (and a precisely predictable
observable).

In the case of time-independent symbols this choice may be refined, by bringing
into play the Dirac decoupling of ch.3. Namely, after proving thm.3.3.1≡ thm.5.5.1
we may use the precisely decoupling unitary operator U of sec.3.5 and declare only
those self-adjoint ψdo-s precisely predictable which decouple precisely by that U .
For precisely predictable approximations - in the sense of ch.4 or ,rather, of sec.5.1
- this means that we still must add a correction of order −∞ after carrying out
the iteration constructed in sec.5.1. This will be discussed in sec.5.8, after first
discussing a proof of thm.3.3.1 in sec.5.7.

In the details of proofs, given in this chapter we will be partly dependent on
certain results discussed in detail in [Co5], ch.VI, but too lengthy to be taken
into the present book. Mostly they are straight-forward but more complicated
extensions of theorems discussed here under restricted assumptions - for easier
access.

5.1 A Precise Result on ψdo-Heisenberg

Transforms

For every m ∈ R
2 let us introduce the class Pm ⊂ Opψcm of all (strictly classical)

pseudodifferential operators A = a(x,D) ∈ Opψcm with the following property:

in sec.’s 5.4 and 5.5 together with those postponed in our discussions of sec’s 4.2
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evolution operator U(τ, t) of the Dirac equation (1.0.1),(1.0.2) - with
time-dependent potentials), belongs to Opψcm again, for every t ∈ R.
Moreover, we have At = at(x,D) with a symbol at ∈ C∞(R, ψcm),
and, moreover, we have

(5.1.1) ∂j
t at(x, ξ) ∈ ψcm−je2 , j = 0, 1, 2, . . . .

The class P - evidently an (L2-adjoint invariant) algebra2- then is defined as
union of all Pm:

(5.1.2) P =
⋃

m∈R2

Pm .

General assumptions3 on the potentials of H: For a(t, x) = V(t,x),Aj(t,x)
and also for all time-derivatives ∂j

t a(t, x) , j = 0, 1, 2, . . . require cdn.(X) of sec.3.1:

(5.1.3) ∂j
t ∂θ

xa(t, x) = O((1 + |x|)−1−|θ|), x ∈ R
3 ,

for each compact t-interval, and for each multi-index θ.

Theorem 5.1.1 (i) For each A = a(x,D) ∈ Pm the symbol allows a decompo-
sition

(5.1.4) a = q + z , with z ∈ ψcm−e , [h(0;x, ξ), q(x, ξ)] = 0 , x, ξ ∈ R
3.

(ii) Vice versa, if a symbol q ∈ ψcm commutes with h(0) for all x, ξ ∈ R
3, there

exists z ∈ ψcm−e with A = a(x,D) ∈ Pm, for a = q + z. Here the “correction
symbol” is an asymptotic sum z = Σzj (mod O(−∞)), with solutions zj of first
order commutator equations, recursively, where zj−1 must be adjusted to insure
solvability for zj.

(iii) Suppose A1, A2 ∈ Pm (both must have a decomposition (5.1.4)) have the
same q. Then b = z1−z2 is symbol of b(x,D) ∈ Pm−e; it allows (5.1.4) with m−e

instead of m.

2Regarding the algebra properties: Note that asymptotic sums (in the sense of prop.1.2.2) are

finite sums near any finite x, ξ, hence may be differentiated term by term. This shows that cdn.

(5.1.1) remains valid for products and adjoints of operators. It is evident that the algebra P and

its graded subspaces Pm depend on the choice of the “initial point” - in our case τ = 0, except if

potentials are time-independent. So, we should refer to P(0), or, in general, P(τ). Later it will

be seen that A → At provides an algebra isomorphism P(0) → P(t).
3Then the (4 × 4-matrix-valued) symbol h(x, ξ) and the eigenvalues λ±(x, ξ) all belong to

ψce1 , while the unitary u(x, ξ) of (3.2.1), the projections p± of (4.2.9), and the dyads p±tjl of

(4.4.3) all belong to ψc0.

The (inverse) Heisenberg transform At = U(0, t)AU(t, 0) (with the
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Proof. We postpone the proof4 of (iii) to sec.5.7. [While we wanted to state
this here - since it is a kind of uniqueness statement, linking (i) and (ii) - it is
easier to verify ( and perhaps more transparent) after we learn about the unitary
decoupling of our algebra P in sec.5.7.]

In essence, we will have to refine and continue the argument of sec.4.2. Let
A ∈ Pm. Note, the derivatives ∂tU(0, t) and ∂tU(t, τ) exist in L(Hs,Hs−e1) for
every s, and ∂tU(0, t) = −iH(t)U(0, t) , ∂tU(t, 0) = iU(t, 0)H(t) are operators of
order e1 - not ψdo-s, but they map Hs → Hs−e1 , continuously5. Thus it follows
that (4.2.4)) holds - i.e.

(5.1.5) Ȧt = −i[H(t), At] , t ∈ R , A0 = A ,

holds, where again At = at(x,D) ∈ Opψcm, by assumption. Using (5.1.1) and

(5.1.10) ȧt = −i[h(t), at]−{h(t), at}+
i

2
{h(t), at}2 + . . . (modO(−∞)) , a0 = a .

By (5.1.1) we also have ȧt ∈ ψcm−e2 while all other terms except the first at right
are in ψcm−e2 . It follows that the commutator [h(t), at](x, ξ) belongs to ψcm−e2 .

4The point is that cdn. (5.1.1) may not be needed for a study of a “local algebra” correspond-

ing to P. Note, if in (5.1.10) we ignore all Poisson brackets at right as terms of lower order [they

are ψcm−e2 ] then we get

(5.1.6) ȧ = i[h, at] mod (ψcm−e2 ) .

With the projections p± = 1
2
(1 ± h(ξ)/〈ξ − A〉) - assuming A time-independent, for a moment

- and Xεδ = pεXpδ , ε, δ = ± , it follows that

(5.1.7) [h, at]++ = [h, at]−− = 0 , [h, at]+− = 2〈ξ − A〉at+− , [h, at]−+ = −2〈ξ − A〉at−+ .

Accordingly, we conclude that (modulo ψcm−e2 ) we have

(5.1.8) ȧt++ = ȧt−− = 0 , ȧt+− = 2i〈ξ − A〉at+− , ȧt−+ = −2i〈ξ − A〉at−+ .

If this were sharp equations - not only mod (ψcm − e2)) - then this at once implies that at++

and at−− would be independent of t - so equal to their value at t = 0, while we get

(5.1.9) at+− = a+−(x, ξ)e2it〈ξ−A〉 , at−+ = a−+(x, ξ)e−2it〈ξ−A〉 .

Here it is easily verified that the functions at+− and at−+ can be (strictly classical) symbols

only if the “starting symbol” a(x, ξ) has order m1 = −∞ - that is it belongs to ψc−∞,m2 =

∩{ψcm1,m2 : m1 ∈ R}.
Indeed, when taking (multiple) ξ-derivatives of the product (5.1.9) some of them will land on

the factor e±2it〈ξ〉 which does not produce decay when differentiated for ξ. So, some decay will

be lost and must be made up for from the other factor.

So, this explains why our result needs the cdn. (5.1.1) - if we work without that we will

get a larger class of ψdo-s: Applying the decoupling operator U to this larger class we will get

operators with “ears” in ψc−∞,∞.

We will not discuss this in further detail.
5

ψdo-calculus (1.2.3)-(1.2.6) we then get (4.2.7), i.e.,

cf. thm.4.1.1 - or, more generally [Co5],VI, thm.3.1.
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With the eigen-projections p± = p±(t) of h(t) (of (4.2.9)) write

(5.1.11) at = at++ + at+− + at−+ + at−− with at±± = p±atp± ,

to get

(5.1.12) [h(t), at] = (λ+ − λ−)(at+− − at−+) for all x, ξ .

Thus
(5.1.13)

at+− =
1

2〈ξ −A〉p+[h(t), at] ∈ ψcm−e , at−+ = − 1
2〈ξ −A〉p−[h(t), at] ∈ ψcm−e .

So, just define qt = at++ + at−− = p+atp+ + p−atp−, and zt = p+atp− + p−atp+

to get the decomposition a = q+z as stated - [h, q] = 0 for all x, ξ , q ∈ ψcm , z ∈
ψcm−e (even for all t, not only for t = 0), proving (i).

Vice versa - for the proof of (ii), let q ∈ ψcm be given with [h(0, x, ξ), q(x, ξ)] =
0 ∀ x, ξ. In sec.4.2 and sec.4.4 we already constructed symbols6 qt ∈ ψcm and
zt ∈ ψcm−e solving eq. (5.1.10) modulo ψcm−e−e2 . As next step we will go
into (5.1.10) with at = qt + zt + wt , wt ∈ ψcm−2e, ẇt ∈ ψcm−2e−e2 (seeking
an improvement wt for our first correction zt), in the attempt to improve our
approximation. Using that zt satisfies (4.2.16), and that [h(t), qt] = 0 we conclude
from (5.1.10) that

(5.1.14) i[h(t), wt] + {h(t), zt} −
i

2
{h(t), qt}2 + żt ∈ ψcm−2e−e2 .

In particular, note that {h, qt}j ∈ ψcm+e1−je and {h, zt}j ∈ ψcm+e1−(j+1)e, so
that only the Poisson brackets listed in (5.1.14) appear. But we must assume, for
now, that also ẇt ∈ ψcm−2e−e2 , for the wt we will construct. This indeed will
be verified later on for the wt we now attempt to construct by setting the left
hand side of (5.1.14) equal to 0. In other words, we try to solve the commutator
equation

(5.1.15) [h(t), wt] = i({h(t), zt}+ żt −
i

2
{h(t), qt}2) = xt ,

where the right hand side is in ψcm−e−e2 . Again a solution wt of (5.1.15) exists if
and only if we have

(5.1.16) p+xtp+ = p−xtp− = 0 .

6Recall that qt was constructed using the Hamiltonian flow induced by h(t; x, ξ). It will be

essential that this flow has the following property: Write it as (ft, ϕt) = (ft(x, ξ), ϕt(x, ξ)), so

that ḟt = h|ξ(t, ft, ϕt), ϕ̇t = −h|x(t, x, ξ) and f0(x, ξ) = x , ϕ0(x, ξ) = ξ. For any symbol

a ∈ ψcm (and any m, any t) we then must have at(x, ξ) = a(ft(x, ξ), ϕt(x, ξ)) ∈ ψcm. This is

the statement of thm.5.4.3, below. Note, this automatically also implies that ȧt = (a|x)t(h|ξ)t −
(a|ξ)t(h|x)t ∈ ψcm−e2 -etc. [With cor.5.4.4 we also get the required cdn. (5.1.1) for at = qt +zt.]
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This will not automatically be true. However, we recall that the symbol zt we
constructed in sec.4.2, explicitly given by (4.2.15), was not uniquely determined.
Rather, zt of sec.4.2 was given by (4.2.15) with wt of (4.2.12) as soon as we have
determined qt. Recall, qt was obtained by letting the components q± float along
the particle flow, as described in sec.4.2 and sec.4.4. But in (4.2.15) there are those
functions c± with c± = p±c±p±, so far left quite arbitrary except for assuming
that they are symbols in ψcm−e with ċ± ∈ ψcm−e−e2 . Replacing zt in (5.1.15)
with zt + ct, where zt is given by (4.2.15) with c± = 0 and ct = c+ + c− we may
write (5.1.16) as

(5.1.17) p±(t)(ċt + {h(t), ct}+ (żt + {h(t), zt} −
i

2
{h(t), qt}2))p±(t) = 0 ,

where now the symbol yt = żt +{h(t), zt}− i
2{h(t), qt}2 ∈ ψcm−e−e2 is completely

determined by our preceeding operations. So, again, first we must determine ct

by solving the two equations (5.1.17). Once ct solving (5.1.17) is found we have
(5.1.16) with

(5.1.18) xt = i({h(t), zt + ct}+ żt + ċt −
i

2
{h(t), qt}2) ,

and then simply have

(5.1.19) wt = dt+ + dt− +
1

2〈ξ −A(t, x)〉 (p+xtp− − p−xtp+) ,

verified just as (4.2.15). Again dt± are arbitrary symbols in ψcm−2e satisfying
d± = p±d±p±, and we may impose the additional condition that ḋ± ∈ ψcm−2e−e2 .
Then we get ẇt ∈ ψcm−2e−e2 as required for our Ansatz at = qt + zt + wt.

Now we must solve the problem of finding a solution ct of (5.1.17). Observe that
ct commutes with h(t), by construction, just as qt did, in our first construction.
Moreover, the two matrices ct± of (4.2.15) correspond to (what we called) q±t in
(4.2.13). Moreover, the conditions (5.1.17) for ct - i.e., p±(ċt +{h(t), ct}+yt)p± =
0 look exactly like eq.’s (4.2.14) on qt, except that we now have an additional
“inhomogeneous” term p±ytp± which was 0 in (4.2.15).

We may apply the technique of sec.4.4 again to convert (5.1.17) into a pair of
first order PDE-s for the matrices γ±

t of ct± with respect to the bi-orthogonal sys-
tems (4.4.1)-(4.4.2): With the matrices p±jl defined there we have ct± =

∑
γ±

jlp
±
jl,

and let also p±ytp± =
∑

υ±
jlp

±
jl. Then the same calculation performed in sec.4.4

transforms (5.1.17) into two 2× 2-matrix systems of the form
(5.1.20)

(γ±
t )′ + [Θ±

t , γ±
t ] + υ±

t = 0 , (Θ±
t )jl = 〈ϕ±

j , (ψ±
l )′〉+ 2〈ζ〉〈ϕ±

j , p±|ξp±|xψ±
l 〉 ,

with notations as in (4.4.21). The first system (for “+”) contains only the unknown
2×2-matrix function γ+, the other one only γ−. There is the directional derivative
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“′” along the Hamiltonian flow of the system (4.2.24) again, for the two cases
“+” and “-”, and the first (5.1.20) translates into the (system of) first order
inhomogeneous ODE-s

(5.1.21) γ′
t + [Θ, γt] + υt , t ∈ R ,

for the 2 × 2-matrix function γt(x, ξ), assuming “+” (and omitting “+”). The
system (5.1.21) is uniquely solvable, given an initial matrix γ0. In sec.5.5 we will
show that the solution γt extends uniquely for all t ∈ R, and defines a symbol
in ψcm−e, given that γ0 ∈ ψcm−e, [and, of course, using that yt ∈ ψcm−e−e2

implies υt ∈ ψcm−e−e2 ]. Normally we will assume that γ0 = 0 to get c0 = 0,
so that the “commuting part” of our symbol a equals q. It also will follow that
γ̇t ∈ ψcm−e−e2 . With this all, we then are assured that the condition for solvability
of the commutator equation (5.1.15) is satisfied, so that then we may write down
its solution in the form (5.1.19).

Note then, that, indeed, ẇt ∈ ψcm−2e−e2 , due to yt = −ixt ∈ ψcm−e−e2 , as
we requested, when setting up (5.1.15). [And, moreover, cor.5.4.4 will give the
required cdn. (5.1.1) for at = qt + zt + wt.]

Note also, that we now have uniquely7defined functions ct± in (4.2.15), assum-
ing that c0± = 0.

It now should be clear that we may repeat this process of correction arbitrarily,
to get a sequence zt, wt, st, rt, . . . of corrections of lower and lower order.To indicate
just the next step: we will go with the Ansatz at = qt + zt + wt + st into equ.
(5.1.5) and use that [h(t), qt] = 0 and that (4.2.12) and (5.1.15) are valid. This
will give yet another commutator equation

(5.1.22) [h(t), st] = i({h(t), wt}+ ẇt −
i

2
{h(t), zt}2 −

1
6
{h(t), qt}3) = ωt ,

modulo ψcm−3e−e2 , assuming that also ṡt ∈ ψcm−3e−e2 . We then solve the sharp
equation (5.1.22), and again get a condition p±ωtp± = 0 for the right hand side of
(5.1.22). This last condition translates into an ODE along the particle flows, for
the matrices of dt± just like (5.1.21) for the γt or (4.4.21) for the κt. Again we must
invoke thm.5.4.3 to verify that the dt obtained are symbols of proper order, and
that also ṡt ∈ ψcm−3e−e2 , as needed for the Ansatz. Furthermore, again, cor.5.4.4

7Note that our initial split at = qt + zt, obtained while proving statement (i) of our theorem,

- i.e. (5.1.11),(5.1.12),(5.1.13), above - will bring forth different qt and zt, as we have constructed

now: We will get the split at = (qt + ct) + zt, with zt of (4.2.15), setting c± = 0 there. In other

words, our qt there no longer will be the initial q flowing along the particle flow. Rather, there

will be a lower order perturbation ct of qt also commuting with h(t) but propagating differently.

One might try to relate this to the Stern-Gerlach correction of particle orbits, for different spins.
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will bring the required cdn.(5.1.1) for the “partial sum” at = qt +zt +wt +st. The
new correction st then will be given by a formula like (5.1.19) with xt replaced by
ωt and new arbitrary symbols dt.

In this way we end up with a sequence z1
t = zt ∈ ψcm−e, z

2
t = wt ∈ ψcm−2e, z

3
t =

st ∈ ψcm−3e, . . . , z
j
t ∈ ψcm−je, . . ., such that the “partial sum”

AN
t = qt(x,D) +

∑N
j=1 zj

t (x,D) ∈ Opψcm satisfies (5.1.5) modulo a term of
order m − Ne − e2, for all N = 1, 2, 3, . . .. The asymptotic sum z∞t =

∑∞
1 zj

t ,
in the sense of prop.1.2.2, then will give an operator At = qt(x,D) + z∞t (x,D)
satisfying8 (5.1.5) mod O(−∞). Then form

(5.1.23) Bt = U(t, 0)A∞
t U(0, t)−A∞

0 .

Note we have B0 = 0 and Ḃt = iU(t, 0)[H(t), A∞
t ]U(0, t) + U(t, 0)Ȧ∞

t U(0, t),
where U(0, t) and U(t, 0) = U∗(0, t) are of order 0 (as evolution operators of a
semi-strictly hyperbolic system of ψdo-s) while Ȧ∞

t + i[H(t), A] ∈ O(−∞), as just
derived (cdn.(5.1.5)). It follows that Ḃt ∈ c∞(R,O(−∞)) as well. Integrating
from 0 to t it follows that Bt ∈ C∞(R,O(−∞)). In other words, we get

(5.1.24) U(0, t)A∞
t U(t, 0) = A∞

t + U(0, t)BtU(t, 0) ,

where again the last term belongs to C∞(R,O(−∞)). But O(−∞) = Opψc−∞,
by prop.1.4.6. Hence U(0, t)BtU(t, 0) = z̆∞t (x,D) is a ψdo with some symbol
z̆t ∈ ψc−∞. In particular, the right hand side of (5.1.24) is a ψdo of the form
qt(x,D)+(z∞t +z̆∞t )(x,D)) where the symbol at = qt+(zt+z̆t) satisfies cdn.(5.1.1),
while z∞t + z̆∞t is a symbol in ψcm−e.

Conclusion: For the given symbol q commuting with h(0) and a = q + z∞0
with z∞0 , as defined above, we have U(0, t)A∞U(t, 0) = A∞

t + Z̆∞
t = (qt + z∞t +

z̆∞0 )(x,D).
This completes the proof of (ii).

5.2 Relations between the Algebras P(t)

It might be useful now to reformulate our results of sec.5.1, by removing the special
emphasis we put onto the point τ = 0 as the “initial point” for the start of the
smooth-inverse Heisenberg transform.

Looking at the definition of Pm and P around fla. (5.1.1), and at the group
property

(5.2.1) U(τ, t) = U(κ, τ)U(τ, κ)
8That asymptotic sum is a finite sum near every finite t, x, ξ - even in compact t-intervals.

Hence it may be t-differentiated term by term, and we get cdn.(5.1.1) for it.
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of the evolution operator U(τ, t) - valid for all τ, κ, t ∈ R - it will be clear that,
with P(0) := P, defined as in sec.5.1, and

(5.2.2) Pm(τ) = {Aτ = U(0, τ)AU(τ, 0) : A ∈ Pm} , P(τ) = ∪Pm(τ) ,

we have defined a graded algebra for every τ ∈ R, just as for τ = 0.
In particular, we note that P(τ) may be redefined exactly parallel to the defi-

nition of P = P(0) in sec.5.1:

Pm(τ) consists precisely of all (strictly classical) ψdo-s A = a(x,D) ∈
Opψcm such that Aτt = U(τ, t)AU(t, τ) belongs to Opψcm again, for
all t ∈ R, and that, moreover, Aτt = aτt(x,D) with symbol aτt satis-
fying

(5.2.3) ∂j
t aτt(x, ξ) ∈ ψcm−je2 , j = 0, 1, 2, . . . .

In fact, let A = a(x,D) ∈ P(τ). Such A is of the form A = U(0, τ)A0U(τ, 0)
with some A0 = a0(x,D) ∈ P = P(0), by our definition of P(τ), and then we have
a(x, ξ) = a0

τ (x, ξ) with a0
τ defined as in (5.1.1). Using (5.2.1) we then get

(5.2.4)
Aτt = U(τ, t)AU(t, τ) = U(τ, t)U(0, τ)A0U(τ, 0)U(t, τ) = U(0, t)A0U(t, 0) = A0

t .

Thus,

(5.2.5) aτt(x, ξ) = a0
t (x, ξ) .

This shows at once that we have (5.2.3) if and only if we have (5.1.1).
Similarly we conclude that

(5.2.6)
U(τ, t)Pm(τ)U(t, τ) = U(τ, t)U(0, τ)PmU(τ, 0)U(t, τ) = U(0, t)PmU(t, 0) = Pm(t) ,

so that we have an algebra isomorphism P(τ) → P(t) given by the map

(5.2.7) P(τ) → U(τ, t)P(τ)U(t, τ) = P(t) .

It might be important here to point to an inherent unsymmetry between
the parameters t and τ here: For a given A ∈ Opψcm the two-parameter family
{Aτt = U(τ, t)AU(t, τ) : τ, t ∈ R} is well defined, taking values in the class
of operators of order m. If A ∈ P(τ) for some specific τ then we know that
Aτt ∈ P(t) ⊂ Opψcm again is a ψdo for all t. But this needs not to be true for
other τ , specifically we expect it to be false in a neighbourhood of such τ .



5.3. About Prediction of Observables again 127

On the other hand, if potentials are time-independent, then, of course, we get
U(τ, t) = e−i(t−τ)H with the (time-independent) H. In that case we clearly have

(5.2.8) Aτt = e−i(t−τ)HAei(t−τ)H = A0,t−τ ,

which shows that, in this case, we have P(τ) = P independent of t. Moreover, the
algebra isomorphism (5.2.7) then becomes an automorphism of P. We then may
say that P is an invariant algebra of the Dirac equation - conjugation with the
evolution operator leaves P invariant.

Note, in the time-independent case, we may use the “forward Heisenberg trans-
form” to define the algebra P - this then only amounts to a time-reversal.

To repeat this again: The total-energy observable H is precisely predictable -
it belongs to the algebra P - in the case of time-independence. But this is not
so, if potentials depend on time, although in that case still there exists the
lower order correction symbol of thm.5.1.1. for the total energy H(τ) at time τ .

5.3 About Prediction of Observables again

To clarify our approach regarding Heisenberg transform and precise (or approxi-
mate) prediction of observables let us here discuss a comparison of classical and
quantum mechanics, looking at - say - the orbit of our particle, as a classical pre-
diction of future behaviour of the mechanical system - electron or positron in a
given electro-magnetic field - we are studying.

Classically, at time t = 0, we are given the space-momentum coordinates -
perhaps also the magnetic moment - of the particle. So, we are given the space
and momentum coordinates x and ξ (and, perhaps, also the initial vectors �κ± of
sec.4.6) at time t = 0. We then have the equations of motion (derived for us in
sec.4.6) - a system of first order ODE-s determining the propagation of x, ξ,�κ±

giving us an initial-value problem (for ODE-s) with completely determined initial
data. From these data we can derive a unique orbit of the particle, predicting
x(t), ξ(t), �κ±(t) with infinite accuracy - theoretical error = 0.

In quantum mechanics - with our special interpretation of v.Neumann’s rules -
we have given corresponding observables xj ,Dj as linear operators on the Hilbert
space H, postponing discussion of the spin for now. These observables work at any
time t. With the Schrödinger representation, for a moment, we have not an initial x

or an initial momentum ξ given, at time t = 0, but, rather, an initial physical state
ψ0(x) ∈ H with ‖ψ0‖ = 1. This may be a (near) eigen-state of x - i.e. a δε(x−x0)
- certifying location of the particle near x0, or similarly a (near) eigenstate of D-
but not both. With Schrödinger location and momentum are given by x and D
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for all t, but the state ψ0 propagates as a solution of ψ̇ + iH(t)ψ = 0 from ψ0

into ψ(t) = U(0, t)ψ0. An attempt to predict x or D at time t then amounts to
studying the observable A = x or A = D in the state ψ(t) - or, equivalently, with
Heisenberg, the observable U(t, 0)AU(0, t) = At0 in the state ψ0.

Now, since neither x nor D belongs to the algebra P(t) containing the precisely
predictable observables at time t, the expectation value of A in the state ψ(t)
cannot be predicted with infinite accuracy in the sense of v.Neumann. Rather, we
must hope to find a precisely predictable approximation A∞ of A. In that respect
we note that A ∈ P(t) is equivalent to At0 ∈ P(0), by fla. (5.2.7). So we now may
try to apply thm.5.1.1(ii) - either on the operator A for P(t) or also on At0 for
P(0) to construct an approximation of A from the algebra P(t). Of course, this
works only if the symbol of A commutes with the symbol h(t, x, ξ) of H(t) - which
is true for A = x and A = D.

Nevertheless, we should make the point that this - precisely - is the re-
placement, Quantum Mechanics makes for our observation of the orbit
of the particle.

Or, with some weaker attempt, one may only construct the first iteration, as
we did in ch.4.

Even if we would succeed in constructing such A∞ ∈ P(t), we might still have
to refine this by adding yet another correction of order −∞ to get into the still
smaller algebra PX of sec.5.8.

5.4 Symbol Propagation along Flows

In this section we finally attack the problem of symbol propagation under the
Hamiltonian flows ντt used repeatedly in sec.’s 4.2, 4.4, 4.6, and sec.5.1. Generally
we assume given a (real-valued) symbol λt = λ(t;x, ξ) ∈ ψce1 , t ∈ R. Moreover,
we assume λt ∈ C∞(R, ψce1) using the norms (5.0.1) for m = e1. Clearly this
may be verified for the two symbol eigenvalues λ±

t = V(t, x) ± 〈ξ − A(t, x)〉 of
our Dirac Hamiltonian H, if the potentials V(t, x),Aj(t, x) satisfy cdn.(X) with
all their time derivatives.

Repeatedly, in the preceeding sections, we were facing a problem of investigat-
ing symbol properties of solutions of an initial-value problem of a first oder PDE
of the form

(5.4.1) ∂tu + λ|ξ · ∂xu− λ|x · ∂ξu + ku− l = 0 , u(0) = u0 ,

where k = k(t) = k(t;x, ξ) , l = l(t) = l(t;x, ξ) , u0 = u0(x, ξ) are given symbols.
In the simplest case we had k = l = 0, and the solution u(t;x, ξ) a scalar. Then it
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was found that the general solution of equ. (5.4.1) consists of all functions constant
along the flow generated by the system of 6 ODE-s in 6 unknown functions x(t), ξ(t)

(5.4.2) ẋ = λ|ξ(t;x, ξ) , ξ̇ = −λ|x(t;x, ξ) .

But we also needed to look at problems of the form (5.4.1) with non-vanishing k

or l, and even with matrix-valued solutions u(t;x, ξ) - such as equ. (4.4.21), or
equ. (5.1.15).

In the latter case, (5.1.1) turns into an ODE along the flow, of the form

(5.4.1′) ũ′ + k̃ũ = l̃ , ũ(0) = u0 ,

where we set g̃(τ) = g ◦ ν0τ = g(τ ;x0τ (x, ξ), ξ0,τ (x, ξ)) , and with “′”= ∂τ . Again
ν0τ denotes the flow (x, ξ) → (x0τ (x, ξ), ξ0,τ (x, ξ)) generated by the Hamiltonian
system (5.4.2).

We shall provide answers to questions around symbol properties of solutions
u(t;x, ξ) of (5.4.1) in 3 steps:

(i) The components f(x, ξ) = x0τ (x, ξ) and ϕ(x, ξ) = ξ0τ (x, ξ) of
the flow ν0τ are symbols. Specifically, we get f = x0τ ∈ ψce2 and
ϕ = ξ0τ ∈ ψce1 . Moreover, we have f, ϕ of the same order than x, ξ,
respectively. That is, c〈x〉 ≤ 〈f〉 ≤ C〈x〉 and c〈ξ〉 ≤ 〈ϕ〉 ≤ C〈ξ〉 with
positive constants c, C, in compact τ -intervals.

(ii) The substitution g → g ◦ ν0τ preserves the symbol property of
the function g - in the sense that g ∈ ψcm if and only if g ◦ ν0τ ∈ ψcm.

(iii) The solution of (the ODE-initial value problem) (5.4.1’) pos-
sesses the same symbol properties as its initial-value u0 and its un-
homogeneous term b̃, assuming that the (matrix-) function k̃ is ψc0.
That is - assuming that k̃ ∈ ψc0 and that u0, l̃(τ) ∈ ψcm we will get
ũ(τ) ∈ ψcm as well. Moreover9, if even k̃ ∈ ψc−e2 and l̃(τ) ∈ ψcm−e2 ,
then it also follows that ũ′ ∈ ψcm−e2 . [This latter fact is an imme-
diate consequence of equ.(5.4.1’), once we have that ũ(τ) ∈ ψcm. It
is of crucial importance for our results, because it will guarantee that
q̇ ∈ ψcm−e2 . żt ∈ ψcm−e−e2 , ẇt ∈ ψcm−2e−e2 , etc.]

In this section we focus on verifying (ii) and (iii), above. Note that (ii) is
a consequence of (i), with some calculations, while (iii) is an extension of some

9Actually, to verify (5.1.1) for the symbol constructed in step (ii) of thm.5.1.1, we must verify

that also a j-fold time derivative applied to the unknown symbol u in (5.5.1) will give a je2-fold

improvement in the order of u - i.e., that ∂j
t u ∈ ψcm−je2 for j=1,2,. . . . This, however, follows

automatically, once we impose proper conditions on the coefficient symbols (cf. corollary 5.4.4).
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facts already developed in sec.1.5 for scalar equations. Clearly (ii) means that,
regarding symbol properties of solutions of the PDE (5.4.1) we may safely focus
on the ODE (5.4.1’): A coefficient of (5.4.1) belongs to a ψcs if and only if the
corresponding coefficient ·̃ belongs to ψcs, and the same holds also for the solutions
u and ũ. We shall discuss (i) in sec.5.5, below - this involves a somewhat more
delicate procedure (cf. prop.5.5.1 and thm.5.5.2).

Proposition 5.4.1 We have g(x, ξ) ∈ ψcm if and only if
(g ◦ ν0τ )(x, ξ) = g(f(x, ξ), ϕ(x, ξ)) ∈ ψcm.

Proof. In view of the inversion property of the flow νττ ′ it suffices to prove the
“if”. Let υ(x, ξ) = g(f(x, ξ), ϕ(x, ξ)). Looking at (1.2.2) we get

(5.4.3) |υ(x, ξ)| = |g(f, ϕ)| ≤ c〈f〉m2〈ϕ〉m1 ≤ c′〈x〉m2〈ξ〉m1 ,

using that x, f and ξ, ϕ are of the same order, respectively (cf.(i) above, or,
prop.5.5.1). This confirms the first estimate (1.2.2) for υ.

Next, we get

(5.4.4) υ|x = g|xf|x + g|ξϕ|ξ .

Here g|x = O(〈f〉m2−1〈ϕ〉m1) and g|ξ = O(〈f〉m2〈ϕ〉m1−1, using (1.2.2) for g. Also,
fx = O(1), but ϕx = O(〈ξ〉/〈x〉), using (1.2.2) for f ∈ ψce2 and ϕ ∈ ψce1 (as stated
in (i) again - or, look at thm.5.5.2). Since f, x and ϕ, ξ are of the same order, we
then indeed get υ|x = O(〈x〉m2−1〈ξ〉m1). This is one of the two estimates (1.2.2)
involving derivatives of order |ι|+ |θ| = 1, and the other one follows similarly. In
fact this outline should be sufficient to explain the induction argument completing
the proof.

Next, to discuss (iii) above - which involves only an ODE - we need10 the
explicit form of the evolution operator for a system of first order ODE-s, in terms
of a fundamental system of solutions of the “corresponding homogeneous equation”
ũ′ + k̃ũ = 0:

This evolution operator E(τ, t) just equals the N × N -matrix solution of the
equation satisfying the initial condition E(τ, τ) = 1. In other words, E(τ, t) is the
unique N ×N -matrix-function solving

(5.4.5) ∂tE(τ, t) + k̃(t;x, ξ)E(τ, t) = 0 , E(τ, τ) = 1 .

10It may help to note that, already in sec.1.5 - fla. (1.5.4),(1.5.5) - we discussed the fact that

the function u0 = e−ikt , for a symbol k ∈ ψc0, belongs to ψc0. Observe that u0 is the evolution

operator of the ODE u̇ + iku = 0, i.e., we have our problem here for the scalar case, of a 1-

vector u. Similarly we now must prove the same symbol property for the general case, involving

N -vectors.
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We may use E to solve the problem (5.4.1’) - we get11

(5.4.6) ũ(t) = E(0, t)u0 +
∫ t

0

E(τ, t)l̃(τ)dτ .

From (5.4.6) we may directly read off the symbol property of ũ, once we have the
proposition, below.

Proposition 5.4.2 The function E(τ, t) = E(τ, t;x, ξ) belongs to ψc0 for any
fixed choice of τ, t.

Proof. This proof follows some very technical but standard arguments in
theory of ODE’s, concerning dependence of solutions on initial values. We present
only a discussion showing that the very first two symbol estimates (1.2.2) hold.
This should give a hint how it may be extended to obtain all other such estimates.

Differentiating (5.4.5) for x we get

(5.4.7) (〈x〉ũ)′ + k̃(〈x〉ũ) + (〈x〉k̃|x)ũ = 0 .

Write (5.4.5) and (5.4.7) together in matrix form:

(5.4.8) v′ +
(

k 0
〈x〉k|x 0

)
v = 0 , v(0) = ( u0

〈x〉u0|x
) = v0 ,

where we dropped “̃·”, for a moment, and introduced the vector v = ( u
〈x〉u|x

) .
Important to note then: The matrix in (5.4.8) is bounded in x, ξ [for a compact

τ, t-interval], in view of estimates (1.2.2) for k ∈ ψc0. So, we may use (5.4.8) for
the estimate

(5.4.9) |v′| ≤ c|v| ,

with a constant c independent of x, ξ, τ, t. Then (5.4.9) gives |(|v|2)′| ≤ 2c|v|2
which may be integrated for

(5.4.10) |v| ≤ |v0|ec|t−τ | .

Clearly this implies the first two estimates (5.4.2) for the evolution matrix E(τ, t)
and for order m = 0. Q.E.D.

We summarize our results - anticipating the results, concerning remark (i)
above, to be discussed in sec 5.4, below.

11To confirm (5.4.5) just left-multiply by E(t, 0), use the “group property” E(t, κ)E(τ, t) =

E(τ, κ) [which follows from definition of E] and differentiate, obtaining equal left and right hand

sides. We have equality in (5.4.6) at t = 0, so equality holds everywhere.



132 CHAPTER 5. THE ALGEBRA OF PRECISELY PREDICTABLES

Theorem 5.4.3 Let the real-valued λ = λ(t;x, ξ) belong to C∞(R, ψce1). Then
the (unique) solution u(t, x, ξ) of the first order initial value problem (5.4.1) with
given (N×N -matrix-valued) symbols k(t;x, ξ) ∈ C∞(R, ψc0) and l(t) = l(t;x, ξ) ∈
C∞(R, ψcm) - for some m = (m1,m2), and with u0 ∈ ψcm, exists for all times t,
and it belongs to C∞(R, ψcm).

If, in addition, we have k ∈ C∞(R, ψc−e2) and l ∈ C∞(R, ψcm−e2), then it
also follows that u̇ = ∂tu ∈ C∞(R, ψcm−e2).

The last statement of the theorem still requires the observation that, once we
have shown that u ∈ C∞(R, ψcm), every term of equ. (5.4.1), except the first
one, will be in ψcm−e2 so that this also follows for the first term u̇. Moreover, an
induction argument shows that we have

Corollary 5.4.4 Under the assumptions of thm.5.4.3, if in addition we have

(5.4.11) ∂j
t λ ∈ ψc−je2 , ∂j

t ∈ ψc−(j+1)e2 , ∂j
t l ∈ ψcm−(j+1)e2 , for j ≥ 1 ,

then it also follows that ∂j
t u ∈ ψcm−je2 for all j=1,2,. . . .

Indeed, this follows for j by differentiating (5.4.1) for t and using that it is true
for j − 1.

We then may go back to (5.1.16), (5.1.17), for example and note that indeed
there Θ ∈ ψc−e2 , while υt also is of e2 orders lower, so that the last sentence of
thm.5.4.3 applies. Also, we may use cor. 5.4.4, looking at higher t-derivatives.

5.5 The Particle Flows Components are Symbols

Let us now fill in the missing link of sec.5.4 - discussing (i) there. Generally we
assume given a symbol λt = λ(t;x, ξ) ∈ ψce1 , t ∈ R. Moreover, we assume
λt ∈ C∞(R, ψce1) using the norms (5.0.1) for m = e1. Clearly this may be verified
for the two symbol eigenvalues λ±

t = V (t, x)±〈ξ−A(t, x)〉 of our Dirac Hamiltonian
H, if the potentials V (t, x), Aj(t, x) satisfy cdn.(X) with all their time derivatives.
Then consider the system of 6 ODE-s in 6 unknown functions x(t), ξ(t)

(5.5.1) ẋ = λ|ξ(t;x, ξ) , ξ̇ = −λ|x(t;x, ξ) ,

with initial conditions

(5.5.2) x(τ) = x0 , ξ(τ) = ξ0 ,

where x0, ξ0 ∈ R
3 are given 3-vectors.
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Differentiability for t implies Lipschitz continuity in t, hence a local unique
solution of (5.5.1),(5.5.2) exists in some interval |t − τ | ≤ ε > 0, by Picard’s
theorem. For an ODE of this kind the problem of extending that solution into a
larger t-interval is just a matter of deriving apriori estimates12. Here is such an
apriori estimate:

Let us write f = f(t, τ ;x, ξ) = f(x, ξ) = xτt(x, ξ) , ϕ = ϕ(t, τ ;x, ξ) = ϕ(x, ξ) =
ξτt(c, ξ), so that (5.5.1),(5.5.2) assume the form

(5.5.3) ḟ = λ|ξ(t; f, ϕ) , ϕ̇ = −λ|x(t; f, ϕ) , f = x, ϕ = ξ at t = τ.

Proposition 5.5.1 For any given finite interval |t − τ | ≤ η0 (any 0 < η0 < ∞)
we have the apriori estimates

(5.5.4) c〈x〉 ≤ 〈f〉 ≤ C〈x〉 , c〈ξ〉 ≤ 〈ϕ〉 ≤ C〈ξ〉 , for all |t− τ | ≤ η0 ,

with constants c, C > 0 independent of t, x, ξ (but possibly depending on η0).

Proof. We have

(5.5.5) 〈f〉. =
ff .

〈f〉 = λ|ξ
f

〈f〉 = O(〈f〉) , 〈ϕ〉. = −
λ|xϕ

〈ϕ〉 = O(〈ϕ〉) .

Integrating this, under the initial conditions 〈f〉 = 〈x〉 , 〈ϕ〉 = 〈ξ〉 at t = τ we
get

(5.5.6) | log
〈f〉
〈x〉 | ≤ c0 , | log

〈ϕ〉
〈ξ〉 | ≤ c0

with constant c0 = η0 sup{|λ|ξ|, |λ|x/〈ξ〉| : x, ξ ∈ R
3, |t−τ | ≤ η0}. The logarithm is

an increasing function, so (5.5.6) implies (5.5.4) with constants c = e−c0 , C = ec0 ,
q.e.d.

As a consequence of the proposition the flow ντt : R
6 → R

6 indeed exists for
all τ, t. It is given by the map (x, ξ) → (f(x, ξ), ϕ(x, ξ)). Using well known differ-
entiability properties of solutions of ODE-s, derivatives ∂j

t ∂l
τ∂θ

x∂ι
ξf , ∂j

t ∂l
τ∂τ

x∂ι
ξϕ of

any order j, l, θ, ι exist and are continuous - and they satisfy all equations obtained
12This means the following: Assuming the local solution may be extended into |t−τ | ≤ η0 then

one must use the equation and initial conditions only to derive boundedness of that solution (in

that interval). If one succeeds in doing so, then the local solution indeed extends into that intervall

(and satisfies that “apriori estimate”). This is true because the estimate provides a “box” the

solution cannot leave, and where the derivatives also stay bounded, so that the solution cannot

oscillate either, while a local solution (for continuation) exists wherever it goes.
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by formally differentiating (5.5.1) or (5.5.2) with respect to any of the variables
t, τ, x, ξ.

We want to show that f(x, ξ) ∈ ψce2 , ϕ(x, ξ) ∈ ψce1 for every t, τ , i.e., that
f

(ι)
(θ) , ϕ

(ι)
(θ) satisfy the estimates (1.2.2), for their orders m = e2, e1, respectively.

Clearly for θ = ι = 0 this is implied by (5.5.4). We prepare for an induction proof
by considering next the case |ι|+ |θ| = 1 (i.e., by differentiating (5.5.3) once - for
one of the x, ξ (occurring in the initial conditions only)). Write f

(ι)
(θ) = v , ϕ

(ι)
(θ) = w,

for a moment, and get

(5.5.7) v̇ = λ|ξxv + λ|ξξw , v = x
(ι)
(θ) as t = τ ,

ẇ = −λ|xxv − λ|xξw , w = ξ
(ι)
(θ) as t = τ ,

with the 3× 3-matrices

(5.5.8) λ|ξx = ((λ|ξjxl
(t; f, ϕ))) , λ|xξ = ((λ|xjξl

(t; f, ϕ))) , etc.

Under our assumptions we get λ|ξx, λ|xξ ∈ ψc−e2 and λ|xx ∈ ψce1−2e2 , λ|ξξ ∈
ψc−e1 , implying corresponding estimates for the coefficients of the system (5.5.7).
Let us multiply the first equation (5.5.7) by 1

〈f〉 , and the second equation by 1
〈ϕ〉 ,

and regard (5.5.7) as a system

(5.5.9) ṗ = Pp , p = p0 at t = τ ,

of first order ODE-s for the vector p = (p1
p2

), with p1 = v
〈f〉 , p2 = w

〈ϕ〉 , and with
the matrix

(5.5.10) P =
(

λ|ξx(f, ϕ) 〈ϕ〉
〈f〉λ|ξξ(f, ϕ)

− 〈f〉
〈ϕ〉λ|xx(f, ϕ) − λ|xξ(f, ϕ)

)
+

(− fλ|ξ
〈f〉2 0

0 ϕλ|x
〈ϕ〉2

)
,

where the second matrix at right is generated by the conversion of the vector
(v̇/〈f〉
ẇ/〈ϕ〉) into ṗ. Both matrices clearly are O( 1

f ), using that the symbols λ|ξx(t; f, ϕ)=
O( 1

〈f〉 ), etc. , and also using (a slight improvement of) (5.5.4). Note that (5.5.9)
implies

(5.5.11) |p|2. = 2�(p.ṗ) = 2�(p.Pp) = O(|p|2) , |p|2 = |p(τ)|2 at t = τ .

Integrating this we get

(5.5.12) | log
|p(t)|
|p(τ)| | ≤ c|t− τ | 1

〈f〉 .

That is,

(5.5.13) |p(τ)|e−c|t−τ |/〈f〉 ≤ |p(t)| ≤ |p(τ)|ec|t−τ |/〈f〉 ,

with some constant c, depending on the t-interval chosen.
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Finally, we must distinguish between the cases where an x- (or ξ-) derivative
was taken. If |ι| = 1, θ = 0 then we have v = 0, |w| = 1 at t = τ , so that
p0 = ( 0

(δjl)/〈ϕ〉) = c0/〈ϕ〉, for some constant 6-vector c0 , |c0| = 1. Then (5.5.13)
amounts to

(5.5.14) f|ξ = O(
〈f〉
〈ϕ〉 ) , ϕ|ξ = O(1) .

In view of (5.5.4) this gives the desired symbol estimates (1.2.2) for one ξ-derivative.
Similarly one derives that estimate for one x-derivative. Substituting this back into
the ODE (5.5.9) we also get estimates for the derivatives v̇ and ẇ - namely,

(5.5.15) ḟ|ξ = O(
1
〈ξ〉 ) , ḟ|x = O(

1
〈x〉 ) , ϕ̇|ξ = O(

1
〈x〉 ) , ϕ̇|x = O(

〈ξ〉
〈x〉2 ) ,

valid in any finite t-interval.
Note, that (5.5.15) are exactly the first estimates needed to show that

(5.5.16) ḟ ∈ ψc0 , ϕ̇ ∈ ψce1−e2

as we shall proceed to show, in the following.

To continue this iteration differentiate (5.5.7) again - for some xj or ξl, to get
some f

(ι)
(θ), ϕ

(ι)
(θ) with |ι|+|θ| = 2, now called v′, w′. That derivative - for the moment

denoted by “′” - may land on the old u, v, or else on the coefficients λ|ξx, . . .. Also,
on the initial conditions, where we now will get v = w = 0 since x

(ι)
(θ) = ξ

(ι)
(θ) = 0

for such ι, θ. We shall get

(5.5.17) v̇′ = λ|ξxv′ + λ|ξξw
′ + q1 , v′ = 0 as t = τ ,

ẇ′ = −λ|xxv′ − λ|xξw
′ + q2 , w′ = 0 as t = τ ,

with

(5.5.18) q1 = λ′
|ξxv + λ′

|ξξw , q2 = −λ′
|xxv − λ′

|xξw .

We make the same transformations, defining now p1 = v′

〈f〉 , p2 = w′

〈ϕ〉 , and r1 =
q1
〈f〉 , r2 = q2

〈ϕ〉 , r = (r1
r2

), for

(5.5.19) ṗ = Pp + r , p = 0 at t = τ ,

with the matrix P of (5.5.10) again. Eq. (5.5.19) will lead to an estimate, similar
as (5.5.9) was implying (5.5.11). But, before we do this let us investigate the
properties of the 2-vector r = (r1

r2
). And, in fact, we want to prepare our induction
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proof, so, we better examine the rules used to estimate such r after repeated
differentiations. For example, we have

(5.5.20) λ′
|ξx = λ|ξxx(t, f, ϕ)f ′ + λ|ξxξ(t, f, ϕ)ϕ′ ,

and similar formulas for λ′
|ξξ, λ

′
|xx, λ′

xξ, where, in each case, as a rule, we always
convolve the last mentioned differentiation with the vector f ′ or ϕ′, etc. Thus r1

(and r2 as well) appear as a sum of terms which are products of a (3-fold (x, ξ)-)
derivative of λ and two first derivatives of f or ϕ, and a factor 1

〈f〉 or 1
〈ϕ〉 . [Write

v = f ‘, w = ϕ‘, for a moment, to emphasize this, then
r1 = 1

〈f〉{λ|ξxxf ′f ‘ + λ|ξxξϕ
′f ‘ + λ|ξξxf ′ϕ‘ + λξξξϕ

′ϕ‘}, and similarly for r2.]
While the first (x, ξ)-derivative of λ is coupled to the factor 1

〈f〉 (for “|x”) or 1
〈ϕ〉

(for “|ξ”)the second and third are linked to “f ′” (for “|x”) and “ϕ′” (for “|ξ”).
Since (x, ξ)-differentiation of λ always generates a factor 1

〈f〉 or 1
〈ϕ〉 , resp., in

the estimate, the products mentioned (making qj) always obey the estimate

(5.5.21) rj = O(
|f ′||f ‘|
〈f〉3 +

|f ′||ϕ‘|
〈f〉2〈ϕ〉 +

|ϕ′||f ‘|
〈f〉2〈ϕ〉 +

|ϕ′||ϕ‘|
〈f〉〈ϕ〉2 ) .

Recall we are aiming at the derivatives f
(ι)
(θ), so that we must have “′ +‘ =(ι)

(θ)”. Ac-
cordingly, each fraction at right of (5.5.20) must be O( 1

〈f〉 〈f〉−|θ|〈ϕ〉−|ι|). Similarly,
for r2, so, we get

(5.5.22) r = O(〈x〉−1−|θ|〈ξ〉−|ι|).

Using (5.5.22) in (5.5.19) we then arrive at

(5.5.23) p = O(〈x〉−1−|θ|〈ξ〉−|ι|) ,

and this supplies the estimates for (5.5.24), below, for all |ι|+ |θ| ≤ 2.

Theorem 5.5.2 The two functions f(x, ξ) = fτt(x, ξ) = xτt(x, ξ) and ϕ(x, ξ) =
ϕτt(x, ξ) = ξτt(x, ξ) are (strictly classical) symbols, together with all their t-
derrivatives. In fact we have

(5.5.24) f ∈ ψce2 , ḟ ∈ ψc0 , ϕ ∈ ψce1 , ϕ̇ ∈ ψce1−e2 ,

Going ahead in our induction proof, let us next examine what happens if we
keep on differentiating (5.5.7) (or (5.5.17)) again and again for an (x, ξ)-variable:
If all these derivatives land on the v, w of (5.5.7) or the v′, w′ of (5.5.17) we will
get the expression of (5.5.7), now with v = f

(ι)
(θ) , w = ϕ

(ι)
(θ). But there also will
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be other terms, generated whenever not all additional derivatives land on u, v of
(5.5.7). So, in the new equations there will be a linear combination of terms

(5.5.25) (∇j+ε1
x ∇l+ε2

ξ λ)

∑
ιr=j∏

∑
θr=j

f
(ιr)
(θr)

∑
νs=l∏

∑
µs=l

ϕ
(νs)
(µs) ,

where ej = 0, 1 , ε1 + ε2 = 1, and where all |ιr|+ |θr| and |νs|+ |µs| are < |ι|+ |θ|,
so that their corresponding estimates (1.2.2) are already known. We then will
define p1 = v

〈f〉 , p2 = w
〈ϕ〉 , and divide the combination of terms (5.5.25) by 〈f〉

and 〈ϕ〉, respectively, to get a new r1, r2, to finally obtain a new (5.5.19) again,
with the same matrix P of (5.5.10).

An examination of the terms (5.5.25) then will give estimates similar to (5.5.21),
and, finally (5.5.22) and (5.5.23), and the next estimate (5.5.24), which then is
proven by induction.

This completes the induction proof of thm.5.5.2.

5.6 A Secondary Correction for the Electrostatic

Potential

Let us here go through the details of a secondary correction, for the special dy-
namical observable V(x) - i.e., the electrostatic potential. Recall, that infinitely
many corrections may be constructed whenever the symbol of an observable com-
mutes with h(x, ξ). Here we have such a symbol V(x). Perhaps it will help to get
familiar with this construction.

In this section we assume the magnetic potentials ≡ 0, so that the Dirac
Hamiltonian is given by H =

∑
αjDj + β + V(x). Applying thm.5.1.1(ii) to the

multiplication operator u(x) → V (x)u(x) with symbol q(x, ξ) = V(x) ∈ Opψc−e2

[assuming V(x) satisfies cdn.(X)] we obtain an operator A = a(x,D) ∈ P−e2 with
symbol given by an asymptotic expansion a(x, ξ) = V(x)+z(x, ξ)+ . . .. Moreover,
this asyptotic expansion extends to At = eiHtAe−iHt ∈ P−e2 ; we have at(x, ξ) =
qt(x, ξ) + zt(x, ξ) + wt(x, ξ) + st(x, ξ) + . . ., where q0(x, ξ) = V(x) , z0(x, ξ) =
z(x, ξ) , . . ..

We must have Ȧt = i[H,At], or, in terms of symbols,

(5.6.1) ȧt = i[h, at] + {h, at} −
i

2
{h, at}2 −

1
6
{h, at}3 +

i

24
{h, at}4 + . . . .

The “first correction symbol” z0(x, ξ) (for t = 0) already was explicitly constructed
in sec.4.2. In our present setting it is given as

(5.6.2) z(x, ξ) = z0(x, ξ) = E · λc(x, ξ) , E = −grad V , λc =
1

2〈ξ〉2 {µ + ρ× ξ} ,

with the matrices µ, ρ of (4.3.7).
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But we also need zt for t �= 0 for our construction of the next correction wt(x, ξ).
In that respect, we recall the construction of sec.4.2: We explicitly obtained

(5.6.3) qt(x, ξ) = p+(ξ)V(x+
t (x, ξ)) + p−(ξ)V(x−

t (x, ξ)) ,

zt =
1

2〈ξ〉{p+ωtp− − p−ωtp+}+ ct+ + ct− ,

where (i) x±
t (x, ξ) denotes the x-component of the solution (xt, ξt) of the Hamil-

tonian system (4.2.24), given for us as

(5.6.4) ẋ = ±ξ/〈ξ〉 , ξ̇ = E(x) ,

through the point (x, ξ), while (ii) ωt = i({h, qt} − q̇t), and, p± = 1
2 (1 ± (αξ +

β)/〈ξ〉)) are the eigenprojections of the symbol h(x, ξ). Furthermore, (iii) ct± =
p±ct±p± may be arbitrarily chosen (as symbols in ψc−e−e2) at t = 0. but they still
must be properly determined for t �= 0 - as to solve a certain differential equation,
namely, eq. (5.6.7), below - that reduces to a set of ODE-s along the flow of (5.6.4).

Here we are looking for the second correction wt(x, ξ) ∈ ψc−e2−2e, while we
had zt ∈ ψc−e2−e. In sec.5.1 we derived a commutator equation for wt:

(5.6.5) [h,wt] = i({h, zt} − żt −
i

2
{h, qt}2) = χt ,

where the right hand side is in ψcm−e−e2 . Again a solution wt of (5.6.5) exists if
and only if we have

(5.6.6) p+χtp+ = p−χtp− = 0 .

This will not automatically be true. Rather, to satisfy (5.6.6) we interpret it
as a differential equation for the - so far undetermined - symbols ct± of (5.6.3):
Changing notations, let zt be the (well determined) symbol of (5.6.3) setting ct± ≡
0 there, and replace zt in (5.6.5) by zt + ct with ct = ct+ + ct−, interpreting (5.6.6)
as equations for ct:

(5.6.7) p±(ċt − {h, ct}+ (żt − {h, zt}+
i

2
{h, qt}2))p± = 0 .

Also, χt in equ. (5.6.5) will assume the new form

(5.6.8) χt = i({h, zt} − żt −
i

2
{h, qt}2 + {h, ct} − ċt) .

After getting the solvability straight, the solution of (5.6.5) will be

(5.6.9) wt =
1

2〈ξ〉 (p+χtp− − p−χtp+) + dt+ + dt− .
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We are only interested in w0 here, where we may set d0± = 0. Also we will
assume c0± = 0. This sets the stage for our calculation: the projections p± are
independent of t; from (5.6.3) - using (5.6.4) - we get

(5.6.10) q̇t = −p+(ξ)E(x+
t (x, ξ)) · ξ+

t (x, ξ)
〈ξ+

t (x, ξ)〉
− p−(ξ)E(x−

t (x, ξ)) · ξ−t (x, ξ)
〈ξ−t (x, ξ)〉

.

Inserting (5.6.10) into ωt = i({h, qt}− q̇t), and the result into zt = 1
2〈ξ〉{p+ωtp−−

p−ωtp+} we will get an explicit formula for zt (strongly simplifying) for t = 0.
However, we also need ż0 = 1

2〈ξ〉 (p+ω̇0p− − p−ω̇0p+), with ω̇0 = i({h, q̇0} − q̈0),
in the sequel. After calculating q̈ we then may set t = 0, henceforth, with strong
simplifications. We get

(5.6.11) p+q̈0 = p+(V|xjxl
ẋ+

0j ẋ
+
0l − E · ẍ

+
0 ) ,

where ẋ+
t = λ+|ξ(ξt), hence, ẍ+

t = λ+|ξξ · ξ̇t = −λ+|ξξ(ξt) · λ+|x(xt).
Recall, we have λ±(x, ξ) = V(x) ± 〈ξ〉, hence, λ+|x(x, ξ) = −E(x) , λ+|ξ =

ξ/〈ξ〉, and λ+|ξjξl
= δjl/〈ξ〉− ξjξl/〈ξ〉3. Therefore, ẋ+

0 = ξ/〈ξ〉 and ẍ+
0j = Ej/〈ξ〉−

(Eξ)ξj/〈ξ〉3. This gives

(5.6.12) (p+q̈0)(x, ξ) = p+(ξ){Vxjxl
(x)

ξjξl

〈ξ〉2 +
(E(x)ξ)2

〈ξ〉3 − E
2(x)
〈ξ〉 } .

Similarly, for “-”, we have λ−|x = λ+|x, but λ−|ξ = −λ+|ξ, etc., giving a corre-
sponding formula for p−q̈0. Adding both formulas we get

(5.6.13) q̈0(x, ξ) = V|xjxl
(x)sj(ξ)sl(ξ)− h0(ξ)s2

0(ξ){E2(x)− (E(x)s(ξ))2} ,

where we still have used that p+ +p− = 1 , p+−p− = h0(ξ)/〈ξ〉 with h0 = αξ+β,
and also have introduced s0(ξ) = 1/〈ξ〉 , s(ξ) = ξ/〈ξ〉.

Moreover, note that

(5.6.14) q0 = V(x) , q̇0 = −E(x)s(ξ) ,

the latter from (5.6.10) for t = 0.
From (5.6.14) we get

(5.6.15) ω0(x, ξ) = −iE(x)(α− s(ξ)) ,

and ω̇t = i({h, q̇t} − q̈t), hence ω̇0 = i({h, q̇0} − q̈0), where we get q̇0 and q̈0 from
(5.6.14) and (5.6.13). We get
(5.6.16)

{h, q̇0} = −{h, (E(x)s(ξ))} = V|xjxl
(x)αjsl(ξ)− s0(ξ)(E2 − (E(x)s(ξ))2) ,
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hence

(5.6.17) ω̇0 = i{V|xjxl
(x)(αj − sj(ξ))sl(ξ)− Z(x, ξ)s0(ξ)(1− h0(ξ)s0(ξ))} ,

setting Z(x, ξ) = E2(x)− (E(x)s(ξ))2, for a moment.
Next, calculating ż0 = 1

2s0(p+ω̇0p− − p−ω̇0p+) we notice that the term with
factor Z cancels out, when we substitute ω̇0 from (5.6.17), because Z is 4×4-scalar
while its factor 1− h0s0 equals 2p−. It follows that

(5.6.18) ż0 =
i

2
s0(ξ)V|xjxl

sl(ξ)(p+αjp− − p−αjp+) ,

since also the remaining term is scalar and cancels, due to p+ . p− − p− . p+ = 0.
In (5.6.18) we use that

(5.6.19) p+αp− − p−αp+ = s0(ξ)(h0(ξ)α− ξ) = is0(ξ)(µ + ρ× ξ) = 2i〈ξ〉λc(ξ) ,

so that we get

(5.6.20) ż0 = −V|xjxl
(x)sj(ξ)λCl(ξ) ,

with λc of (5.6.2).
Next we turn to the calculation of χ0 = i({h, z0}− ż0− i

2{h,V}2), as in (5.6.5),
for t = 0. Note, the last term vanishes; we have {h,V}2 = h|ξξV|xx−V|ξξh|xx = 0.
Furthermore,

(5.6.21) {h, z0} = {h, E(x)λc(ξ)} = −αjV|xjxl
(x)λCl(ξ) + λcj|ξl

(ξ)Ej(x)El(x).

For calculation of λcj|ξl
we note that (5.6.19) implies

(5.6.22) λcj =
i

2
s2
0(ξ)(ξj − h0(ξ)αj) ,

so that

(5.6.23) λcj|ξl
= −2s0(ξ)sl(ξ)λcj(ξ) +

i

2
s2
0(ξ)(δjl − αlαj).

The second term at the right in (5.6.21) equals 2s0(ξ)(s(ξ)E(x))(−λc(ξ)E(x)) +
i
2s0(ξ)(E2(x)− (αE(x))2). We need θ0 = ż0 − {h, z0}, i.e.,

(5.6.24) θ0 = V|xjxl
(x)(αj − sj(ξ))λCl(ξ)

+2s0(ξ)(s(ξ)E(x))(λc(ξ)E(x))− i

2
s2
0(ξ)(E2(x)− (αE)2).

With this θ0 (and, more generally, θt = żt − {h, zt} + i
2{h, qt}2) cdn. (5.6.7) for

the functions ct reads

(5.6.25) p±χtp± = 0 for χt = i(θt + {h, ct} − ċt) ,
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and then we have the desired w0 given as w0 = 1
2s0(p+χ0p−−p−χ0p+), according

to (5.6.9). But we imposed the condition c0 ≡ 0, so that {h, c0} = 0. Moreover,
the matrix function ct was always satisfying p+ctp− = p−ctp+ = 0. This implies
p+ċtp− = p−ċtp+ = 0, since the projections p± are independent of t. Thus it
follows that p±χ0p∓ = ip±θ0p∓. Or, in other words, the special form of the
“diagonal blocks” c0± is irrelevant for our next correction w0 - we get

(5.6.26) w0 =
i

2
s0(ξ)(p+θ0p− − p−θ0p+) ,

with θ0 of (5.6.24). For the calculation write θ0 = θ1 + θ2 + θ3 with the 3 terms at
right of (5.6.24). We claim that p+θ1p−− p−θ1p+ = 0. Indeed, this is a matter of
handling (α − s)λc, since other factors are 4× 4-scalars. From (5.6.19) we derive
2i〈ξ〉λc = (p+αp− − p−αp+). This implies p−λcp− = 0. Using p+ + p− = 1 get
2i〈ξ〉p+(α − s)λCp− = p+(α − s)p+(p+αp−) + p+(α − s)p−(p−λCp−), where the
last term at right vanishes. But the first term vanishes too. Here is the calculation:
4p+αjp+ = (1 + αs + βs0)αj(1 + αs + βs0) = αj + (αs)αj(αs) + (βs0)αj(βs0) +
(αj(αs) + (αs)αj) + (αj(βs0)(βs0)αj) + ((αs)αj(βs0) + (βs0)αj(αs)) = [1] + [2] +
[3] + [4] + [5] + [6]. Here [3] = −s2

0αj ; [4] = 2sj ; [5] = 0; [6] = 2βs0sj . Also,
[2] =

∑
kl skslαkαjαl = −

∑
kl skslαkαlαj + 2

∑
kl skslαkδlj = −|s|2αj + 2(αs)sj .

Using that s2
0 + |s|2 = 1 we then get [1] + . . . + [6] = αj(1− s2

0 − |s|2) + 2sj(αs +
βs0 + 1) = 4sj(ξ)p+. That is,

(5.6.27) p+(αj − sj)p+ = 0 , p−(αj + sj)p− = 0 ,

where the second relation is derived similarly. Accordingly we indeed get

(5.6.28) p+(α− s)λcp− = 0 , p−(α− s)λcp+ = 0 ,

where again the second relation follows similarly. Accordingly the term θ1 makes
no contribution to our w0.

For the term θ2 we must focus on

(5.6.29) p+λcp− − p−λcp+ = − i

2
s0(p+αp− + p−αp+) ,

as follows from (5.6.19) and a little calculation. Now, 2(p+αjp− + p−αjp+) =
1
2 ((1 + h0s0)αj(1 − h0s0) + (1 − h0s0)αj(1 + h0s0)) = αj − h0s0αjh0s0 = αj −
(αs)αj(αs) − (βs0)aj(βs0) − ((αs)αj(βs0) + (βs0)αj(αs)) = [1] − [2] − [3] − [6],
with above notation. So, we continue = αj + |s|2αj − 2(αs)sj + s2

0αj − 2βs0sj =
2αj − 2h0s0sj . That is,

(5.6.30) p+αp− + p−αp+ = α− h0(ξ)s0(ξ)s(ξ) ,
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and

(5.6.31) p−λcp− − p−λcp+ = − i

2
s0(ξ)(α− h0(ξ)s0(ξ)s(ξ)) .

It follows that θ2 supplies the term

(5.6.32) w0(x, ξ) =
1
2
s3
0(ξ)(s(ξ)E(x))(E(x)(α− h0(ξ)s0(ξ)s(ξ)) ,

as follows since the third term θ3 again will make no contribution to w0. For the lat-
ter we look at p+αjαlp−−p−αjαlp+ = (p+αjp+)(p+αlp−)+(p+αjp−)(p−αlp−)−
(p−αjp+)(p+αlp+) − (p−αjp−)(p−αlp+) = sj(p+αlp− + p−αlp+) − sl(p+αjp− +
p−αjp+), where we used (5.6.27) and 1 = p+ + p−. With (5.6.30) we get

(5.6.33) p+αjαlp− − p−αjαlp+ = sjαl − slαj .

Then it is evident that p+θ3p−− p−θ3p+ = 0 follows, so that, indeed, fla. (5.6.32)
gives the complete second correction symbol.

As to the secondary corrected operator, note that we may arrange the various
factors at right of (5.6.32) in any convenient order, since any commutators gener-
ated would be one order e lower than the order of w(x, ξ), so would not count. So,
we state:

Proposition 5.6.1 We have

(V(x))∼2 = V(x) +
1
2
{(E(x)λc(D)) + (λc(D)E(x))}

(5.6.34) +
1
4
{(E(x)s(D))(E(x)(α− h0(D)s0(D)s(D)))s3

0(D)

+s3
0(D)((α− h0(D)s0(D)s(D))E(x))(s(D)E(x))} ,

this giving a self-adjoint operator (V(x))∼2 .

5.7 Smoothness and FW-Decoupling

In this section we consider a Dirac Hamiltonian H = α(D −A)β + V with time-
dependent potentials Aj ,V satisfying cdn.(XT) of sec.3.7. We then want to es-
tablish the following result.

Theorem 5.7.1 Let U(t) = u((t, x,D) ∈ Opψc0 be any unitary operator decou-
pling of the Dirac equation ψ̇ + H(t)ψ = 0 mod O(−∞) , in the sense of sec.3.7.
That is, we have

(5.7.1) U∗HU − iU∗U̇ = H∆(t) =
(

X 0
0Y

)
+

(
0Γ∗

Γ 0

)
, Γ ∈ O(−∞) ,
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with respect to the split H = L2(R3, C4) = H+ ⊕H−, with H± = L2(R3, C2).
Then a strictly classical ψdo A ∈ Opψcm has a smooth (inverse) Heisenberg

representation A → At = U(τ, t)AU(t, τ) at τ , in the sense of (5.1.1) if and only
if

(5.7.2) U∗(τ)AU(τ)−
(

B 0
0C

)
∈ O(−∞)

with some (2× 2-blocks) B,C ∈ Opψcm.
That is, A ∈ Opψcm belongs to the class Pm(τ) if and only if (5.7.2) holds.

The proof of thm.5.7.1 requires some preparations. Let us first go and trans-
form the evolution operator U(τ, t) = UH(τ, t) of our Dirac equation u̇+ iH(t)u =
0, setting u(t) = U(t)v(t) with the decoupling unitary operator U(t) of the the-
orem. We get v̇ + iH∆(t)v = 0, i.e., v(t) = UH∆(τ, t)v(τ), with the evolution
operator UH∆(τ, t) of the transformed equation, while, of course, we also have
u(t) = U(t)v(t) = UH(τ, t)u(τ) = UH(τ, t)U(τ)v(τ). It follows that

(5.7.3) UH∆(τ, t) = U∗(t)UH(τ, t)U(τ) , τ, t ∈ R .

Now, given any ψdo A = a(x,D) ∈ Opψcm, let Aτt = UH(τ, t)AUH(t, τ) be its
inverse Heisenberg transform, taken at an initial point τ . We clearly get

(5.7.4) U∗(t)AτtU(t) = (U∗(t)UH(τ, t)U(τ))(U∗(τ)AU(τ))(U∗(τ)UH(t, τ)U(t)) .

Defining A∆ = U∗(τ)AU(τ) we thus get

(5.7.5) A∆
τt = U∗(t)AτtU(t) = UH∆(τ, t)A∆UH∆(t, τ) .

The point then is that we want to show that A∆
τt is a ψdo in Opψcm with symbol

a∆
τt(x, ξ) satisfying a condition like (5.1.1) (or,rather, (5.2.3)) - i.e.,

(5.7.6) ∂j
t a∆

τt(x, ξ) ∈ ψcm−je2 , j = 0, 1, 2, . . . ,

if and only if A∆ −
(
B 0
0 C

)
∈ O(−∞), with some 2× 2-ψdo-s B,C ∈ Opψcm. Then

we must compare smoothness of A∆
τt with smoothness of Aτt and show that they

mean the same.

Proposition 5.7.2 Let X∆(t) =
(
X 0
0 Y

)
with X = X(t) , Y = Y (t) of (5.7.1), and

let UX∆(τ, t) be the evolution operator of the equation u + iX∆(t)u = 0. Then we
have

(5.7.7) O(τ, t) = UH∆(τ, t)UX∆(t, τ)− 1 ∈ C∞(R2,O(−∞)) .
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Proof. Using [Co5],VI, cor.3.3 we know that both operators, UH∆ , UX∆ are
of order 0 while their partial derivatives for t and τ are of order je1 with the
combined order j of t- and τ -differentiation. We get

(5.7.8) ∂τO(τ, t) = iUH∆(τ, t)H∆(τ)UX∆(t, τ)− iUH∆(τ, t)X∆(τ)UX∆(t, τ)

= iUH∆(τ, t)Γ∆(τ)UX∆(t, τ) ,

where Γ∆ = H∆ −X∆ ∈ O(−∞). It follows that ∂τO(τ, t) ∈ O(−∞). Similarly
for all higher τ, t-derivatives. Integrating from τ to t we conclude that (5.7.7)
holds, q.e.d.

Proposition 5.7.3 Let ăτt(x, ξ) be the symbol of Ăτt = UX∆(τ, t)AUX∆(t, τ).
Then A∆

τt is a ψdo with symbol a∆
τt(x, ξ) satisfying (5.7.6) if and only if Ăτt is a

ψdo with symbol ăτt(x, ξ) satisfying (5.7.6).

The proof is evident, in view of (5.7.7).

Proposition 5.7.4 The operator Ăτt is a ψdo in Opψcm with symbol ăτt(x, ξ)
satisfying (5.7.6) if and only if Ă−

(
B 0
0 C

)
∈ O(−∞), with some 2×2-ψdo-s B,C ∈

Opψcm.

Proof. Clearly the system of equations u̇ + iX∆(t)u = 0 is fully decoupled: we
may write u = (v

w) where then the 2-vectors v and w satisfy

(5.7.9) v̇ + iX(t)v = 0 , ẇ + iY (t)w = 0 .

It follows that UX∆ =
(

V 0
0 W

)
also is fully decoupled, so that

(5.7.10) Ăτt =
(

Bτt Gτt

G∗
τt Cτt

)
,

where

(5.7.11) Bτt = V (τ, t)BV (t, τ) , Cτt = W (τ, t)CW (t, τ) ,

and

(5.7.12) Gτt = V (τ, t)GW (t, τ) ,

setting A =
(

B G
G∗ C

)
.

Using (3.2.12) - or, rather, its generalization13 to time-dependent potentials in
thm.3.7.1 - we have

(5.7.13) X = 〈D〉+ X1 , Y = −〈D〉+ Y1 , with X1, Y1 ∈ Opψc−e2 .

As a consequence we have
13Note, we have λ±(x, ξ) ∓ 〈ξ〉 ∈ ψc−e2 , so that, indeed, (3.2.12) implies (5.2.13).
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Proposition 5.7.5 The entire graded algebra of all 2× 2-matrix-valued ψdo-s in
Opψc is left invariant under the conjugations B → B̆τt and C → C̆τt. And,
moreover, the symbols B̆τt(x, ξ) and C̆τt(x, ξ) both satisfy the cdn.(5.7.6) for each
B,C ∈ Opψcm.

We will not discuss the details of the proof of prop.5.7.5 here, but refer the
reader to [Co5],VI, thm.5.1 - or else, one may go through the details of our proof
of thm.5.5.1 (ii) under the present slightly different assumptions14. The point is
that the operator X(t) or Y (t) substituting for H(t) in thm.5.5.1 equals the scalar
term ±〈D〉 ∈ ψce1 modulo a lower order matrix-valued term X1(t) or Y1(t) This
has the effect that just any symbol q(x, ξ) ∈ ψcm commutes with the symbol of
X (or Y ) mod lower order, so that we may construct a lower order correction
z(x,D) ∈ Opψcm−e for any q(x,D) ∈ Opψcm. Moreover, this may be iterated:
we’ll get a correction w ∈ ψcm−2e for z and find that q −w = (q + z)− (z + w) is
a symbol of the invariant algebra, etc.,. . .. So, finally, taking an asymptotic sum,
we will obtain a correction z∞ ∈ O(−∞) such that q(x,D) + z∞(x,D) belongs to
the invariant algebra. Since that algebra contains O(−∞) it the follows that it
also contains the entire Opψc.

Especially it also is confirmed that we get (5.7.6) as stated, just in the same
way as we obtained it for thm.5.1.1.

The proof of prop.5.7.4. then hinges on the following

Proposition 5.7.6 For any ψdo G ∈ Opψc we have Gτt of (5.7.12) a ψdo with
symbol gτt(x, ξ) satisfying (5.7.6) if and only if G ∈ O(−∞).

Proof. For a G ∈ O(−∞) we trivially have Gτt ∈ O(−∞), together with all its
τt-derivatives, simply because the two evolution operators V (τ, t) and W (τ, t) are
of order 0 and their t, τ -derivatives of total order j also are of order je1. Thus we
then indeed have G a ψdo of any order m and cdn.’s (5.7.6) also hold for any m.

14Our present equation u̇ + i(H∆ + Γ∆)u = 0 is semi-strictly hyperbolic of type e1 because

the operator H∆ belongs to Opψce1 , and, moreover, the symbol - modulo lower order terms -

equals the block-matrix
(λ+ 0

0 λ−

)
with λ± = V ± 〈ξ〉. This 4 × 4-matrix-valued function has 2

eigenvalues λ±(ξ) of constant rank 2 for all x, ξ, and we have |λ+(ξ) − λ−(ξ)| ≥ 2〈ξ〉 (actually

“=”), for all x, ξ. For any such semi-strictly hyperbolic system u̇ + iKu = 0 of type e1 we have

a complete analogon of thm.5.1.1 - one defines an algebra PK of operators A ∈ Opψcm (for

some m) with At = UK(0, t)AUK(t, 0) (with the evolution operator UK of K) satisfying (5.1.1),

(5.1.2). Then the 3 statements of thm.5.1.1 hold literally, but we may split K = K0 + K1 where

K1 ∈ Opψc−e2 , and then replace H in thm.5.1.1 by K0, instead of using the entire K instead of

H. The proofs also run exactly parallel. We will not discuss this thm. in more detail, but refer

to [Co5] (or, more compactly, [Co3], thm.5.1).
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Vice versa, assume that Q ∈ Opψcm satisfies Gτt = gτt(x,D) with γτt satisfy-
ing (5.7.6). Differentiating for t and setting t = τ we get

(5.7.14) Ġττ = −i(X(τ)G−GY (τ)) .

Using (5.7.13) and the fact that the commutator [〈D〉, Q] is of order m− e2, since
〈D〉 is scalar, and that Ġ ∈ Opψcm−e2 , by (5.7.6), we conclude that

(5.7.15) 2i〈D〉Q ∈ Opψcm−e2 ⇒ Q ∈ Opψcm−e .

Now, this procedure may be iterated. Differentiating twice for t we get

(5.7.16) G̈τt = −i(Ẋ(t)Gτt −GτtẎ (t))− Ω2
t (Gτt) ,

where we define Ωj
t (G) iteratively, setting Ω0

t (G) = G and Ωj+1
t = −i(X(t)Ωj

t (G)−
Ωj

t (G)X(t)) . Setting t = τ we then get

(5.7.17) G̈ττ = −i(Ẋ(τ)G−GẎ (τ)) + Ω2
τ (G) .

Now we use (5.7.6),(3.7.6) and (3.7.9) to find that (5.7.17) implies Ω2
τ (G) ∈

Opψcm−2e2 . On the other hand, using that we already know that G ∈ Opψcm−e,
by the above (and again using (5.7.13)) and the fact that commutators with (the
scalar operator) 〈D〉j add the term je1− e = −e2 to the order of the commutant)
one finds that Ω2

τ (G) = 4〈D〉2G(mod Opψcm−2e2). It follows that G ∈ Opψcm−2e.
With further iterations, using the expression Ωj

τ (G) for larger j and (5.7.6) for
higher derivatives, one indeed confirms that G must be of order m − je for all
j = 1, 2, . . .. Thus we get G ∈ O(−∞), q.e.d.

Finally, for the proof of thm.5.7.1, we still need to verify equivalence between
(5.1.1) and (5.7.6).

Proposition 5.7.7 We have at satisfying (5.1.1) if and only if a∆
t satisfies (5.7.6).

Proof. Assume that at satisfies (5.1.1) - for a given A = a(x,D) ∈ Opψcm,
and Aτt = aτt(x, ξ) = UH(τ, t)AUH(t, τ). With our Leibniz formulas we get
(5.7.18)

a∆
τt(x, ξ) =

∑

υιθ

(−i)υ+ι+θ

υ!ι!θ!
(((u∗(θ+ι)

(θ) )at(ι))(υ)u(υ))(x, ξ) = (u∗atu)(x, ξ) + . . . ,

where this may be considered reordered into an asymptotic sum of (finite sums
of) terms of order m,m− e,m− 2e, . . .. We have

(5.7.19)
1
ε
(aτt+ε(x, ξ)− aτt(x, ξ))− ȧτt(x, ξ) =

∫ 1

0

dκ(ȧτt+εκ − ȧτt)(x, ξ) .
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Under assumptions (5.1.1) it is clear that the right hand side converges15to 0 (in
all the Fréchet norms of ψcm−e2). In particular also the t-derivative Ȧτt exists
in operator norm of every L(Hs,Hs−m+e2), and we get

(5.7.20) Ȧτt = ȧτt(x,D) , Äτt = äτt(x,D) , . . . .

But the operators U = u(t, x,D) and U∗ are of order 0, and their t-derivatives
of order j are of order −je (by (3.7.6)), hence A∆

τt = U∗(t)AτtU(t) has the same
property : Its t-derivative of order j exists in every L(Hs,Hs−m+je2), and we get

(5.7.21) ȦA∆
τt = ȧ∆

τt(x,D) , Ä∆
τt = ä∆

τt(x,D) , . . . .

In particular, to show differentiability of an asymptotically convergent sum one will
only need to verify that the formally differentiated terms still satisfy the required
estimates (1.2.2). Q.E.D.

The proof of thm.5.7.1 then also is complete.
Finally, we now come back to an old-postponed problem: the proof of (iii) in

thm.5.1.1.
Suppose an operator A belongs to Pm, but we also know that A ∈ ψcm−e.

Applying thm.5.7.1 above, we then conclude that A∆ = U∗(0)AU(0) is of the
form A∆ =

(
B 0
0 C

)
+Γ with B,C ∈ Opψcm and Γ ∈ O(−∞). But we must also have

B,C ∈ Opψcm−e since A ∈ Opψcm−e while U,U∗ ∈ Opψc0. Applying prop.5.7.5
for m − e it then follows that also B,C satisfy cdn.’s (5.7.6) for m − e, not only
for m. But then thm.5.7.1 implies that A ∈ Pm−e, as stated in thm.5.1.1 (iii).
Q.E.D.

5.8 The Final Algebra of Precisely Predictables

We are returning to time-independent potentials here, just because the decou-
pling of sec.3.5 has not been worked out for general potentials depending on time.
[But we will allow the special time dependent case of ch.6, obtained by Lorentz-
transforming a time-independent H.]

The result of section 5.7 was linking the algebra P of observables with smooth
time-propagation to the class of strictly classical ψdo-s which can be decoupled
mod(O(−∞)) under the Foldy-Wouthuysen transform of ch.3. But we noticed
before that a “non-penetrable” barrier is needed between “electron states” and
“positron states”, and that no observation should mix up these two spaces - that

15The difference under the integral at right may be written as εκ
∫ 1
0 dλäτt+λ(x, ξ), where äτt+λ

and its (x, ξ)-derivatives satisfy estimates (1.2.2) even for m − 2e2, not only for m − e2. Thus it

indeed follows that the t-derivative exists in all the Frechet-norms induced by (1.2.2) for m− e2.
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is, a precisely predictable observable A should preserve these spaces: We should
require that such A also is strictly decoupled by the transform U strictly decoupling
H.

Thus we now introduce the sub-algebra PX ⊂ P of all strictly classical ψdo-s
A ∈ Opψc such that

(5.8.1) U∗AU =
(

B 0
0C

)
,

where U ∈ Opψc0 denotes the strictly decoupling unitary ψdo of sec.3.5.
This decoupling is with respect to the split H = H+ ⊕ H− where H± equal

L2(R3, C2), slightly corrected by (possibly) moving a finite dimensional space of
rapidly decreasing functions from “+” to “-” (or “-” to “+” ).

The spaces He and Hp (of electronic and positronic states, resp.) then will be
defined as

(5.8.2) He = UH+ , Hp = UH−.

And we then finally propose the self-adjoint operators of PX as precisely pre-
dictable observables. These operators indeed have the needed property:

Starting with an electronic state ψ ∈ He we get as expectation value
for the prediction the number Ă = 〈ψ,Aψ〉 = 〈ψ,Bψ〉, not influenced
by the positronic part C of A - referring to (5.8.1).

In particular, if the measurement results in an eigenvalue λ of A, this
will be an eigenvalue of B, belonging to an eigen function of B - a
function again belonging to He. So, indeed, an electron never turns
into a positron, due to a measurement.



Chapter 6

Lorentz Covariance of

Precise Predictability

6.0 Introduction

It is known and very essential to Dirac’s theory that it is compatible with a trans-
formation of coordinates under the laws of special relativity. In other words, if we
change the (space-time) coordinate system by a Lorentz transform then Dirac’s
equation remains intact - except for the physically significant changes of potentials
- for example, a moving electrostatic field will also generate a magnetic field, under
Faraday’s laws1.

Recall, that a Lorentz transform is defined as any invertible linear transfor-
mation (t′

x′) = L(t
x) (with a constant real 4 × 4-matrix L) under which the wave

operator � = ∂2
t − ∆ does not change. This is true if and only if the matrix L

satisfies the condition

(6.0.1) LT JL = J with the diagonal matrix J = diag(1,−1,−1,−1) .

The linear maps L satisfying (6.0.1) form a group - the Lorentz-group. Actually
one also should include the translations (t

x) → (t
x) + c, with a constant 4-vector b,

to then obtain the Poincaré group of transformations (t′

x′) = L(t
x) + c.

We are only interested in the “proper groups” (of Lorentz or Poincaré trans-
forms not reversing time (and with determinant 1)). That is we will assume the
component l00 of the matrix L =

(
l00 l01
l10 l11

)
to be positive, so that we get t′ increasing

1Also, the Dirac-4×4-matrices aj , β might change, but in such a way that the crucial condition

(1.0.3) remains intact.

149
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whenever t increases. The classes of these (Lorentz or Poincaré) transforms form
groups as well. We then will address the question about behaviour of precisely
predictable observables under proper Lorentz (or Poincaré) coordinate transforms.

Using the group property it seems practical to approach this question looking
at a suitable set of generators of the groups. The proper Lorentz group Lp is
generated by the maps2Lo =

(
1 0
0 o

)
[with any 3 × 3-rotation matrix o] and the

special Lorentz transforms (t, x) → (t′, x′), where, with fixed θ ∈ R,

(6.0.2) t′ = t cosh θ − x1 sinh θ, x′
1 = x1 cosh θ − t sinh θ, x′

2 = x2, x′
3 = x3.

leaving the coordinates x̃ = (x2, x3) unchanged and involving only t and x1.

We tend to regard the action of translations or (time-independent) rotations
Lo as (more or less) trivial3 but, still, these cases perhaps may serve as examples

2Clearly the transforms Lo are proper Lorentz transforms. For a general proper Lorentz

transform L we may multiply left and right by an Lo such that the two 3-vectors l10 and

lT01 point into the positive x1-direction. From LT JL = J (and LJLT = J - verified from

(6.0.1)) we conclude that lT11l10 = l00lT01 and also l11lT01 = l00l10. If both l10 and lT01 point into

the x1-direction then this means that (1, 0, 0)T is an eigenvector of both l11 and lT11, so that

l11 =
(l111 l112
l121 l122

)
with vanishing 2-vectors lT112 = l121 = 0. Thus, a Lorentz matrix L of this form

splits into a map x̃ → x̃ (which must be an Lo) and a map (t
x1

) → (t
x1

). The latter then is easily

seen to be of the form (6.0.2).
3Looking at a translation (t

x) → (t
x) + c and a map Lo first, we note that either coordinate

transform leaves the algebra Opψc and all its subspaces Opψcm invariant: The operator a(x, D)

goes into a(x − b, D) and a(ox, D), respectively, where c = (τ
b ). Moreover, a translation t′ =

t + τ, x′ = x + b sends the Dirac equation (1.0,1) into ∂ψ/∂t′ + iH′ψ=0 with H′ exactly of the

form (1.0.2), with the same matrices αj , β but the potentials A,V replaced by A′ = A(t+τ, x+

b),V′ = V(t + τ, x + b). Since α, β remain the same, the split H = H+ ⊕ H− also remains

the same. Going through all the operations, it becomes clear that the two unitary decouplings

ψdo-s U and U ′ of ch.III constructed for H and H′ may be related by U ′ = TbUT−b with

Tbu(x) = u(x + b). [There is no uniqueness in the construction of sec.3.5, but the above U ′

works. For time dependent potentials we should use U ′(t) = TbU(t + τ)T−b.]

For an Lo with an orthogonal map o = ((ojl)) the Dirac Hamiltonian H of (1.0.2) will change

into H′ =
∑

α′
j(D

′
j−A′

j)+β+V′, with unchanged β but α′
j =

∑
l ojlαl, and V′(t, x) = V(t, ox).

A calculation confirms that (i) the matrices α′
j , β′ = β still satisfy relations (1.0.3). Moreover,

(ii) with our choice of α, β (cf.(3.1.7)) the α′ still are of the form (3.1.7) with σj replaced by

σ′
j =

∑
ojlσl. Furthermore (iii) we still have σ′

1σ′
2 = iσ′

3 , σ′
2σ′

3 = iσ′
1 , σ′

3σ′
1 = iσ′

2, just as

for the σj . Finally (iv) there exists a constant unitary 2 × 2-matrix ϕ = ϕ(o) of determinant 1

such that ϕ∗σ′
jϕ = σj . [Such a matrix ϕ must diagonalize σ′

3 since σ3 =
(1 0
0−1

)
. Its columns

will be the two normalized eigenvectors of σ′
3 each carrying an arbitrary factor eiλ, eiµ, where

λ, µ may be adjusted to obtain precisely ϕ∗σ′
jϕ = σj , for j = 1, 2. This fixes only λ − µ, but

ϕ becomes unique up to a free choice of sign ± if we also request that det ϕ = 1. This fact

addresses a well known relation between the Lie groups SU(2) and SO(3). The inverse of above

map SO(3) → SU(2) describes a Lie-group homomorphism covering SU(2) twice.] So, with the

4 × 4-matrix ϕ̆ =
(ϕ 0
0 ϕ

)
, we have H̆ = ϕ̆∗H′ϕ̆ = α(D′ − A′) + β + V ′, and then should compare

the unitary ψdo-s U and Ŭ = ϕ̆∗U ′ϕ̆, using the same α, β, with different potentials.
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to outline our task: Of course, we will ask the question whether our concept of pre-
cisely predictable observables (and its surrounding facts) depend on the choice of
coordinate system. Under any of above transforms the Dirac equation will remain
intact, with covariantly changed potentials - perhaps with different Dirac matrices
α, β, but still a Dirac equation. Generally, in this chapter, we will get restricted
to time-independent potentials.After a boost the time-independent potentials
may become time-dependent though, (with a rather special time-dependence), but
they still will satisfy cdn.(X). There will be algebras P and PX (independent of
the initial point τ), before and after the change of coordinates. Now, as it comes to
the Hilbert space H = L2(R3, C4) of physical states, this space should remain the
same, if we deal with an Lo or with a translation by (0b), since the locus “t = 0”
in Minkowsky space R

4 does not change. In the new coordinates x′ = ox (or
x′ = x + b) a state ψ(x) will assume the form ψ′(x′) = ψ(x′ − b) = (T−bψ)(x′) (or
ψ′(x′) = ψ(oT x′) = (SoT ψ)(x′)). An observable A then will go into the observable
A′ = TbAT−b (or, A′ = SoASoT ). Note, Tb and So are unitary maps H ↔ H
inverted by T−b and SoT . So, in the Hilbert space H of physical states our coor-
dinate transform just corresponds to the unitary map ψ → Z∗ψ with Z = Tb (or
Z = So), under which a linear operator A : H → H transforms into A′ = ZAZ∗.

We then have the algebras P and PX and their transforms under Z - i.e.,
ZPZ∗ and ZPXZ∗ - and we will expect a relation between these algebras and the
algebras P ′ , PX ′ generated by the transformed Hamiltoninan H ′.

Now, our split H = He⊕Hp of (3.0.5) is determined by the split H = H+⊕H−

with H± = L2(R2, C3) (give or take some subspace Z), and the unitary map U

obtained in sec.3.5. And, the algebras P , PX also depend on the split H =
H+⊕H− and the operator U ∈ Opψc0 of sec.3.5. However, if we now examine U ,
it is clear that U ′ = ZUZ∗ (with Z = Tb (or Z = So)) belongs to Opψc0, again
since Opψcm are invariant under linear transformation of variables. Moreover, we
get

(6.0.3) U ′∗H ′U ′ =
(

X ′ 0
0Y ′

)
with X ′ = ZXZ∗ , Y ′ = ZY Z∗ ,

since evidently the transform Z leaves our split H = H+ ⊕H− intact [although it
might transform the (finite dimensional) space Z a bit].

It may be important now to recall that there is no uniqueness in the construc-
tion of our unitary operator U of sec.3.3 and sec.3.5, nor is the split H = H+⊕H−

unique, due to the subspace Z. But, if we decide to use the above transformed
operator U (and the correspondingly transformed space Z ′) then, indeed, we get

(6.0.4) H = H′
e ⊕H′

p with H′
e = U ′H′

+ , H′
p = U ′H′

− .
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and

(6.0.5) U ′∗P ′U ′ = {
(

AB

C D

)
: A,D ∈ Opψc,B,C ∈ O(−∞)} ,

U ′∗PXU ′ = {
(

A 0
0B

)
: A,C ∈ Opψc} .

Then we also have

(6.0.6) P ′ = ZPZ∗ , PX ′ = ZPXZ∗ .

Or, in other words, the concept of precise predictability transforms as it should
under this kind of “trivial” Lorentz transformation -

On the other hand, a time-translation (t
x) → (t+τ

x ) will generate the new ob-
servables At = eiτHAe−iτH - i.e., just the Heisenberg transform. We know that
this leaves the split (3.0.5) and both algebras P,PX invariant.

So, regarding Lorentz-invariance we are left with the special transform (6.0.2) -
called “x1-boosts” - or just “boosts”. For such a boost the Dirac equation will keep
its general form, as we shall see in sec.6.1. However, since now time is involved, we
no longer should keep the initial 3-space t = 0 as the location where our physical
states are defined. Rather, we should define a new Hilbert space of states along the
(also space-like) hyperplane t′ = 0, and on t′ = 0 use the new space-coordinates x′.
This raises the question of a useful correlation between physical states at t = 0, and
t′ = 0, accompanied by the proper change of observables as well. This problem
already appeared for the translation, if there is a time-shift - i.e., (t

x) → (t+τ
x ),

for example. In that case we were solving the Dirac equation (1.0.1) with initial
condition ψ(0, x) = ψ0(x), for a given state ψ0 ∈ H, getting ψ(t, x) = e−iHtψ0(x).
Then, choosing Z = eiHτ , we get Aτ = ZAZ∗ = eiHτAe−iHτ as the transformed
observable A.

We take this fact as encouragement for seeking the change between the space-
like hypersurfaces t = 0 and - after a boost (6.0.2) - t′ = 0 as follows: Again we will
extend a given state ψ0 into 4-space as solution ψ(t, x) = e−itHψ0(x) of the Dirac
equation (1.1.1). The values of ψ on the plane t′ = 0 in the proper coordinates x′

then should be related to the transformed state.
However the vector of H (living on S′ of fig.6.0.1) will only be a unit vector if

we use a modified inner product (u, v) =
∫

u∗κ2vdx, with the constant hermitian
positive definite 4 × 4-matrix κ = cosh(θ/2) − α1 sinh(θ/2), as will be shown.
Thus we will multiply the function ψ|S′ by κ to create the transformed physical
state, living on S′. ψ′ then will have norm 1 in H. The map R : ψ → ψ′ will be
a unitary operator of H — mapping the physical states on S onto the physical
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states on S′. (Multiplication by κ should correspond to the well-known relativistic
velocity distortion.)
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t′ = t0 cosh θ

The Hilbert space H is located over the hyperplane S = {t = 0}. After
the boost (6.0.2) we should work with a Hilbert space over S′ = {t′ = 0} given as
t = x1 tanh θ in the old coordinates. We relate a state ψ0 on S to a corresponding state
on S′ by restricting the solution of the Dirac equation assuming initial values ψ0 on S
to S′, and multiplying it by a “relativistic distortion”. This corresponds to the fact that
at the hyperplane t = t0 we traditionally deal with the restriction of the same solution

e−iHtψ0 to t = t0.

The induced transformation of independent and dependent variables will trans-
form the Dirac equation (1.0.1) into the Dirac equation again, with exactly the
same αj , β, but with potentials changed according to the covariant change of
electromagnetic field vector (details cf. sec.6.1).

Things are quite different in one respect, however: The transformed potentials
now will depend on t as well (except under special assumptions, such as Aj =
V ≡ 0). Still we must ask the question, in general as well as in the special cases,
whether or not “precisely predictable” can be defined also in the new coordinates,
and whether or not the definitions for both coordinates agree.

Indeed, in sec.6.2 we will show that in the case of vanishing potentials where
the unitary map U may be chosen according to (3.1.5), and then there are well
defined spaces He and Hp, we do have

(6.0.7) P ′ = RPR∗ and PX ′ = RPXR∗ .

This fact seems to be nontrivial - To prove it, we had to get some more explicit

Fig. 6.0.1.
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representation of the operator R. This happens to be a (global) Fourierintegral
operator with rather interesting properties.

On the other hand, for the general case, we find it useful to first investigate
another transform of the Dirac equation - namely, the equation

(6.0.8) ∂ψ/∂t + iH ′ψ where H ′ = RHR∗ .

Note that H ′, the transform of the Hamiltonian H under R still is a “Dirac-type”
operator - a first order PDO, not exactly of the form (1.0.2) but similar, and can
be explicitly calculated. This is a time-independent operator, not coinciding with
the Dirac Hamiltonian obtained by the above coordinate transform - here called
H∼(t) The Dirac equation ∂ψ/∂t + iH∼(t)ψ = 0 possesses an evolution operator
U(τ, t) = UH∼(τ, t) as in thm.4.1.1, not of the group form e−iH∼(t−τ). However,
one can derive a relation between UH∼ and e−iH′t, also involving a translation
operator (cf. (6.3.10)) These facts will be helpful for the study of transforming
precise predictability.

For V = A = 0 we can get a direct evaluation of R - in terms of some Fourier
transformed nonlinear substitutions, allowing us to directly show (6.0.8). It turns
out that R then commutes with the spectral projections of H0 effecting the split
(3.0.5), and the unitary ψdo U of (3.1.5) remains the same.

In the general case we will rely on the fact that the unitary ψdo U constructed in
sec.3.5 determines the two projections P+ = U

(
1 0
0 0

)
U∗ , P− = U

(
0 0
0 1

)
U∗ ∈ Opψc0

effecting the split and also the two algebras P,PX of precisely predictables.
We trivially have RU unitary, and

(6.0.9) (RU)∗H ′(RU) =
(

X 0
0Y

)
,

so, RU decouples H ′. However, this is not a decoupling of H ′ in our sense, since
RU is not a ψdo - the operator R still being a global Fourier integral operator
with rather nonlocal properties. But we will try to rectify this by right-multiplying
RU with another Fourier integral operator, not disturbing the split (6.0.9), but
converting RU into a ψdo. For this construction we will strongly rely on the
“formal ψdo ” E = e(x,D) with e(x, ξ) = eiηx1〈ξ〉 [this is not a ψdo in Opψc,
but, rather, a Fourier integral operator]. The U (called U�) thus constructed
will not coincide with U of (3.1.5) if potentials vanish, even though it then has a
representation U� = u�(D) with some other u�(ξ) (depending on η) diagonalizing
symb(H0).

Still, U� will decouple H ′ and equ. (6.0.8). And, moreover, the decoupling
achieved by U� will be the transform of the decoupling of U under the
unitary operator R. Once we have obtained this U�, then we also get a unitary
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ψdo (called U◦(t)), now depending on t, decoupling the Dirac equation ∂tu +
iH̃(t)u = 0 obtained by changing coordinates under the boost (6.0.2). It turns
out that

(6.0.10) U◦(t) = eiηtD1U◦(t)e−iηtD1 .

So, under U◦(t) we still have the R-transformed original decoupling of U - just
combined with a time dependent translation Tηt = eiηtD1 (which leaves the spaces
H′

e = RHe , H′
p = RHp unchanged with time).

Also, since now we have a time-dependent Hamiltonian, the algebras P and
PX now should depend on the initial point τ . Indeed, we get P̃(τ) = eiηtD1P ′

with P ′ = RPR∗ describing the proper precisely predictable algebra.
This then, finally, should describe the Lorentz covariance of precise

predictability we have to offer.

Proving these facts (i.e., thm. 6.4.1) will engage us in a complicated discussion,
finally focusing on the problem of solving a certain ODE with ψdo-coefficients -
rather, in proving symbol properties of their solutions. This is discussed in sec’s
6.5-6.7. We close the chapter with a discussion of integral kernels of some of the
operators used in this section - just to let us get a feeling for them.

Interestingly, the 1-dimensional (abelian) subgroup of boosts (6.0.1), for θ ∈ R,
generates a group R = Rθ of unitary operators. This Rθ may be seen to be the
evolution operator of a certain hyperbolic system, and, approximately, symb(A′)
is the transport of symb(A) along the (pair of) Hamiltonian flow(s) generated. We
will not work this out, however.

Note, we are keeping the ‘time evolution interpretation’ of the Dirac theory
intact, although normally this is abandoned in the extensive literature on Dirac
theory: For relativistic discussions equation (1.0.2) usually is multiplied by β and
thus assumes a form symmetric in the 4 variables (t, x) = (x0, x1, x2, x3). The
symmetry invites forgetting about the distinction of time variable.

Perhaps we here should mention the work of A.Unterberger [Unj ] who indepen-
dently has offered an abstract theory of Dirac observables, also involving pseudodif-
ferential operators. For vanishing potentials the operator Z = β(−i∂t + H)− 1 is
a “square root” of the wave operator: We have Z2 = ∆ − ∂2

t , due to the proper-
ties of the Dirac matrices αj , β. Accordingly, a solution ψ of ψ̇ + iHψ = 0 will
also solve the Klein-Gordon equation ψ|tt = ∆ψ − ψ. Their (t, x)-Fourier trans-
form ψ∧ must satisfy (τ2 − ξ2 − 1)ψ∧(τ, ξ) = 0, hence must have support on the
“mass-hyperboloid” M = {τ2 = 1 + ξ2}. Similarly to his earlier discussions for
Klein-Gordon theory, Unterberger introduces a class of pseudodifferential opera-
tors with symbol defined on a “phase space” with momentum and location given
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by the “world lines” in (t, x)-space. His operators preserve solutions of the Dirac
equation, and have covariance under Poincare transforms built in. This is worked
out for vanishing potentials only.

Perhaps we also should mention, at this point, the extensive literature on the
subject of relativity and the Dirac equation (cf. Thaller’s book [Th1], chapters 2
and 3). For us, looking at observables of the Dirac equation, the only thing impor-
tant seems to be the covariance of our algebras, looked at in terms of conjugation
with the unitary operator R introduced above. In fact, while mathematically quite
interesting, many of the properties discovered within the past 75 years might only
distract from the real physical issues.

6.1 A New Time Frame for a Dirac State

We are looking at the Dirac equation with time-dependent4 potentials, and symbol
of the Hamiltonian H(t) given by

(6.1.1) h(t;x, ξ) =
3∑

j=1

αj(ξj −A(t, x)) + β + V(t, x),

A physical state will be a unit vector ψ(x) in the Hilbert space H. When thinking
of this same physical state in the new space-time frame given by the boost (6.0.2)
we first extend ψ(x) into Minkowsky space {(t, x)} as a solution of the Dirac
equation ψ̇ + iHψ = 0 to obtain a function ψ(t, x), and then restrict ψ(t, x) to the
space-like hyperplane t′ = 0 in the new space-time coordinates (t′, x′).

This transformed state ψ∆ = ψ∆(x′) should be a unit vector in the Hilbert
space H∆ of squared integrable 4-vector functions on S′. And, indeed, we will
show this to be correct, but with a slight amendment: The inner product of C

4

on S ′ will no longer be ψ∗χ. Rather, we must use ψ∗κ2χ, with a certain constant
positive definite hermitian symmetric matrix5 κ.

The boost (6.0.2) will be abbreviated as

(6.1.2) t′ = tc− x1s , x′
1 = −ts + x1c , x′

2 = x2 , x′
3 = x3 ,

with c = cosh θ and s = sinh θ. Its inverse is given by

(6.1.3) t = t′c + x′
1s , x1 = t′s + x′

1c , x2 = x′
2 , x3 = x′

3 .

4Lorentz-transforming the Dirac equation will work for time-dependent potentials, but even-

tually we will return to time-independent A and V , since we want to study covariance of our

algebras P and PX partly defined only for that case.
5But, to compensate for this, we rather will left-multiply the restriction to t′ = 0 with the

constant matrix κ - applying a “relativistic distortion” to the state.
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Given a state ψ (and its extension ψ(t, x) into R
4). Assume ψ(x) ∈ C∞

0 (R3),
then also ψt ∈ C∞

0 (R3), for all times t. Indeed, the Dirac equation is a symmetric
hyperbolic system, hence it displays finite propagation speed. A quick study of
hyperbolic theory shows the upper speed limit to be = 1 — the speed of light —
as expected. Thus, if supp ψ is contained in a ball {|x| ≤ η} then supp ψt will be
contained in {|x| ≤ η + |t|}.

The transformed state ψ∆ then should be given as the restriction ψ(t, x)|{t′=0},
in the proper coordinates x′ on S′. Note that t′ = 0 amounts to t = ηx1, with
η = tanh θ. In order to verify a relation between ‖ψ‖2 =

∫
ψ∗ψdx =

∫
|ψ(x)|2dx

and some L2-norm on S ′ we consider the difference

(6.1.4) Z =
∫
|ψ(ηx1, x)|2dx−

∫
|ψ(x)|2dx.

For convenience we assume that t > 0, and that supp ψt is contained in the half
space x1 ≥ 0, for all 0 ≤ τ ≤ t. This is no restriction of generality, due to the fact
that supports are compact, and that we have arbitrary space-time translations
available to shift supports, before attempting our discussion.

Then we may write (using our Dirac equation ∂ψ/∂t = −iHψ):

Z =
∫

x1≥0

dx

∫ ηx1

0

dτ{ d

dτ
|ψ(τ, x)|2} =

∫

x1≥0

dx

∫ ηx1

0

dτ{ψ∗
|tψ + ψ∗ψ|t}(τ, x)

= −
∫ ∞

0

dτ

∫ ∫
dx2dx3

∫ ∞

τ/η

dx1{(iHψ)∗ψ + ψ∗(iHψ)}(τ, x1, x2, x3).

But the differential operator H is hermitian symmetric. Therefore the latter inner
integral transforms into a boundary integral.

More precisely, we get iH = α1∂x1 + . . .. The crucial term of above inner inte-
gral is

∫ ∞
τ/η

dx1∂x1{ψ∗α1ψ}(τ, x1, x2, x3) = −{ψ∗α1ψ}(τ, τ/η, x2, x3). The partial
integrations with respect to x2 and x3 do not give boundary terms since the inte-
grals extend from −∞ to ∞. It follows that
(6.1.5)

Z =
∫ ∞

0

dτ

∫ ∫
dx2dx3{ψ∗α1ψ}

(
τ,

τ

η
, x2, x3

)
= −η

∫
dx{ψ∗α1ψ}(ηx1, x),

where we have used the substitution τ
η = x1, dτ = ηdx1, and extended the integral

to all of IR3, using the support condition. Finally we introduce the coordinates
x′ (also in the first integral of Z): On S ′ we have t = x1 tanh θ, x′

1 = x1 cosh θ −
t sinh θ = x1/ cosh θ, x′

2 = x2, x′
3 = x3. Introducing this in the first integral

(6.1.8), and in the integral of (6.1.5), we get — with ψ(ηx1, x) = ψ∆(x′) —

(6.1.6)
∫

ψ∆∗(cosh θ − α1 sinh θ)ψ∆(x′)dx′ =
∫
|ψ(x)|2dx.
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This confirms the above discussion — we find that the positive definite matrix κ

mentioned is given by κ2 = cosh θ − α1 sinh θ. Indeed, κ2 is hermitian, since α1

is. Also, α1 has eigenvalues ±1, since α2
1 = 1. Hence the eigenvalues of κ2 are

cosh θ ± sinh θ > 0.
In order to round off this discussion let us next transform the Dirac equation

onto the coordinates (t′, x′) of (6.1.2). Equation ψ̇ + iH(t)ψ = 0 assumes the form

(6.1.7) {(c−α1s)∂t +(α1c−s)∂x1 +α2∂x2 +α3∂x3 +i(β+V −
3∑

1

αjAj)}ψ∆ = 0.

We find our positive matrix κ2 as coefficient of ∂t. It is practical to introduce
ψ′ = κψ∆, with the positive square root κ of κ2 = c − α1s. Then the left hand
side of (6.1.6) will be ‖ψ′‖2, and (6.1.6) shows that the map ψ → ψ′ is a unitary
operator of H. On the other hand, (6.1.7) with ψ′, after a left multiplication by
κ−1 =

√
c + α1s, assumes the form

(6.1.8) {∂t′ + α′
1∂x′

1
+ α′

2∂x′
2
+ α′

3∂x′
3
+ iβ′ + iκ−1(V −

3∑

1

αjAj)κ−1}ψ′ = 0,

where

(6.1.9) α′
1 = α1, α′

2 = κ−1α2κ
−1, α′

3 = κ−1α3κ
−1, β′ = κ−1βκ−1.

The last term in (6.1.8) assumes the form

(6.1.10) i{(c + α1s)(V − α1s)−
3∑

2

α′
jAj}

= i{(cV − sA1)− α1(−sV + cA1)−
3∑

2

α′
jAj}.

Introducing the transformed vector potential
(6.1.11)
(V ′,A′

1,A
′
2,A

′
3)(t

′, x′) = (V cosh θ−A1 sinh θ,A1 cosh θ−V sinh θ,A2,A3)(t, x)

(which conforms with the covariant transformation rules for vector potentials)
we then obtain the Dirac equation (6.0.3) in the old form again, with the αj , β

replaced by α′
j , β′ of (6.1.13). However, a calculation shows that β′ = β, α′

j = αj ,
for j = 1, 2, 3. Indeed, we get

(6.1.12) κ = δ+ − α1δ−, κ−1 = δ+ + α1δ−, δ+ = cosh(θ/2), δ− = sinh(θ/2),

using α2
1 = 1, and the fact that the matrices at right are positive.
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We already have α′
1 = α1. We use that α1α2+α2α1 = 0, for α′

2 = κ−1α2κ
−1 =

(δ+ + α1δ−)α2(δ+ + α1δ−) = α2(δ+ − α1δ−)(δ+ + α1δ−) = α2. Similarly for α3

and β, using α1α3 + α3α1 = 0 and α1β + βα1 = 0.
It follows that ψ′(t′, x′) = κψ(t, x) = (δ+ − α1δ−)ψ(t, x) satisfies the Dirac

equation again, in the new coordinates (t′, x′), with the (covariantly) transformed
potentials V ′,A′

j of (6.1.11), but with exactly the same Dirac matrices αj , β.
We summarize:

Proposition 6.1.1 The map R : ψ → ψ′ = κψ∆, with κ of (6.1.12), and the
restriction ψ∆(x′) to S ′ (the plane t′ = 0) of ψ(t, x) = e−itHψ, in the new coor-
dinates (6.1.2), defines a unitary map of H = L2(R3, C4) onto itself. This map
takes the physical state ψ(x) on S = {t = 0} (with ‖ψ‖ =

{∫
ψ∗ψdx

}1/2 = 1) to a
transformed physical state ψ′(x′), defined on the plane S ′ = {t′ = 0}, in the new
coordinates (t′, x′), again with ‖ψ′‖ =

{∫
ψ′∗ψ′(x′)dx′}1/2 = 1, in such a way that

the solution ψ′(t′, x′) of the Cauchy problem

(6.1.13) ∂ψ′/∂t′ + iH̃ψ′ = 0, ψ′(0, x′) = ψ′(x′),

(with H̃ of the same form as H, in new coordinates (t′, x′)),

(6.1.14) H̃ = h′(t′, x′,D′), h′ = V ′ + mβ +
3∑

1

αj(ξ′j −A′
j),

with the old αj , β of (6.0.2), but potentials V ′,A′
j of (6.1.11)) and the solution

ψ(t, x) = e−itHψ of (1.0.1) with ψ(0, x) = ψ(x) are transforms of each other in
the coordinate transform (6.1.2), combined with the map ψ → κψ∆ as transform
of dependent variable.

Remark 6.1.2 When trying to look at our algebras P and PX of sec.3.3, sec.3.5,
sec.5.7, sec.5.8, and their behaviour under this coordinate change, we must keep
in mind that PX generally was only defined for time-independent A and V, while,
in general, P will depend on the initial point τ , if potentials depend on time.
However, after performing above coordinate transform, our new A′,V′ of (6.1.11)
in general now will depend on t′. We will assume time-independence of A and
V, in the following, then getting our P and PX , in the old coordinates, with
the constructions of ch.3 and ch.5. But these constructions normally will not be
available in the new coordinates. Still, of course, we may transform the algebras
already obtained to the new coordinates, using our operator R, above, and we will
show that they display similar properties, also in the new coordinates, regarding the
possibility of decoupling by means of a unitary ψdo , etc. Also, these algebras will
be independent of the initial Hilbert space of states, in spite of now time-dependence
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of A′, V ′. However, as the constructions of sec.3.5 are not available for A′,V′,
we cannot expect a comparison between the different methods of obtaining these
algebras.

Remark 6.1.3 No symbol properties are needed for A and V, above, although we
will assume bounded C∞-potentials V ,Aj. This implies essential self-adjointness
of H in its minimal domain C∞

0 , hence existence of a unique self-adjoint realization
of H (cf.[Th1], thm. 4.2). So, also, our unitary group e−iHt is well defined
under such weaker assumptions. However, for convenience we always will assume
cdn.(X) for A and V , which implies cdn.(X) also for A′, V ′ together with all their
time-derivatives.

Then this group consists of operators of order 0 - bounded Hs → Hs for all s,
with the weighted Sobolev spaces Hs of sec.1.4 (cf. [Co5],VI,thm.3.1 - also look
at sec.5.7, above, for further comments). In particular, this ensures that we may
calculate with C∞

0 -states, all the way.

6.2 Transformation of P and PX for Vanishing

Fields

Let us look first at invariance of our algebras P and PX for vanishing potentials.
This is a case where not only the operator R of (6.0.2) but also conjugation A →
RAR∗ taking observables to the new space-time frame can be described explicitly.
It will be confirmed indeed that we have

(6.2.1) RPR∗ = P , RPXR∗ = PX .

Interestingly, however, we do not have H ′ = RHR∗ = H, reflecting the fact, that,
in the “moving frame”, the total energy of the particle (at rest in the old frame)
is “augmented” by the energy of the uniform motion in the x1-direction at speed
η.

Let us assume V = Aj ≡ 0 in all of the present section. In that case the
FW-transform U of (3.1.5) is just given by

(6.2.2) U =
1√

2 + 2S0

(1 + S0 − βαS) = u(D) ,

with u(ξ) = 1√
2+2s0

(1 + s0 − βαs), where s0(ξ) = 1
〈ξ〉 , s(ξ) = ξ

〈ξ〉 , and, as usual,
u(D) = F−1u(ξ)F .
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We have

(6.2.3) He = U{(u1, u2, 0, 0)T = (u
0 )} ⊂ H , Hp = U{(0, 0, v3, v4)T = (0v)} ⊂ H ,

and our algebras are explicily given as

(6.2.4) P = U{
(

AB

C D

)
: A,D ∈ Opψc , B,C ∈ O(−∞)}U∗ ,

(6.2.5) PX = U{
(

A 0
0D

)
: A,D ∈ Opψc}U∗ .

Or, alternately, using the two eigenprojections

(6.2.6) P± = p±(D) , p±(ξ) =
1
2
(1∓ (αξ + β)/〈ξ〉) ,

we have

(6.2.7) P = {A ∈ Opψc : P+AP−, P−AP+ ∈ O(−∞)} ,

(6.2.8) PX = {A ∈ Opψc : P−AP+ = P+AP− = 0} .

In terms of 2× 2-block matrices the two projections P± satisfy

(6.2.9) U∗P+U =
(

1 0
0 0

)
, U∗P−U =

(
0 0
0 1

)
,

and we have

(6.2.10) H = 〈D〉P+ − 〈D〉P− ,

since h(ξ) = αξ + β has eigenvalues ±〈ξ〉 = ±
√

1 + ξ2. The P± satisfy

(6.2.11) P ∗
± = P± , P 2

± = P± , P+P− = P−P+ = 0 , P+ + P− = 1 .

We get

(6.2.12) e−iHt = e−i〈D〉tP+ + ei〈D〉tP− ,

where the P± = p±(D) are ψdo-s with symbol p± ∈ ψc0, while e±i〈D〉t also are
ψdo-s, but with symbol e±i〈ξ〉t only in ψt0, not in ψc. Leibniz formulas do not
apply in the asymptotic form, for such operators. Their composition obeys some
more complicated rules.
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We will need fla. (6.2.12) for construction of our unitary operator R: The
solution of Diracs equation for a given initial value ψ0(x), at t = 0, is determined
by

(6.2.13) ψ(t, x) = e−i〈D〉tP+ψ0 + ei〈D〉tP−ψ0 .

Recall, R was constructed by the sequence
(6.2.14)
ψ0(x) → ψ(t, x) = e−iHtψ0 → ψ(ηx1, x) = ψ�(x)→ κψ�(cx1, x̃) = ψ′

0(x)=Rψ0(x).

In (6.2.13) the terms ψ0,± = P±ψ0 are independent of t. Thus, if we set t =
ηx1 , η = tanh θ, then we will obtain terms of the form Eψ0,± with an operator
E = Eη of the form

(6.2.15) Eu(x) = (2π)−3/2

∫
dξeixξeiηx1〈ξ〉u∧(ξ) , |η| < 1 .

Again, E looks like a ψdo with symbol e(x, ξ) = eiηx1〈ξ〉. But this symbol does
not even belong to ψt since repeated ξ-differentiation brings out higher and higher
powers of x1. Still, the operator E is well defined by the integral (6.2.15), at least
for u ∈ S, as easily seen6. Let us discuss some properties of the map E. Note,
this is a scalar operator - it commutes with every constant 4× 4-matrix.

Proposition 6.2.1 The scalar operator (formal ψdo) E = e(x,D) with symbol
e(x, ξ) = eiηx1〈ξ〉 may be written as

(6.2.16) E = F−1Q
1

ϕ(x)
F ,

with the operator Q : u(x) → u(µ(x), x2, x3), and the multiplication u(x) →
u(x)/ϕ(x) where the real-valued functions µ and ϕ are given by

(6.2.17) µ(x) =
1

1− η2
(x1 − η

√
x2

1 + (1− η2)〈x̃〉2 ) , x̃ = (x2, x3) ,

and

(6.2.18) ϕ(x1) = 1 + η
x1√

1 + x2
1 + x̃2

> 0 .

In other words, E is the Fourier transform of a product of a substitution Q of
the independent variable x1 and a multiplication operator u(x)→ u(x)/ϕ(x).

6These operators still have Leibniz formulas with integral remainder, but that remainder is

uncontrollable. Moreover, as another fact: While ψdo-s leave the location of singularities (of

the functions they are applied to) fixed, Fourier integral operators - like E - may transport

singularities elsewhere - according to interesting laws or prescriptions. Similar facts appear at

|x| = ∞, for our type of (global) ψdo-s and the global Fourier integral operators, similar to E.
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Proof. We may write the operator E in the form

(6.2.19) Eu(x) = (2π)−3/2

∫
dξei(xξ+ηx1〈ξ〉)u∧(ξ)

= (2π)−3/2

∫
dξ̃eix̃ξ̃

∫
dξ1e

ix1λ(ξ1,ξ̃)u∧(ξ1, ξ̃) ,

where we have written ξ = (ξ1, ξ̃) again, and where

(6.2.20) λ(ξ) = λ(ξ1, ξ̃) = (ξ1 + η

√
1 + ξ2

1 + ξ̃2) .

Observe that ϕ of (6.2.18) equals the partial derivative ϕ = ∂λ/∂ξ1. Since |η| < 1
we get ∂λ/∂ξ1 > 0 for all ξ, and conclude that λ(ξ1, ξ̃) is an increasing function
of ξ1 for fixed ξ̃. This function has an inverse function, explicitly given by µ of
(6.2.17), as seen by a calculation.

The function µ clearly is a symbol in ψce2 , and it satisfies

(6.2.21) µ(θ)(ξ) = O(〈ξ〉1−|θ|) .

Furthermore, the functions ϕ(ξ) of (6.2.18) and

(6.2.22) ν(ξ) =
1

ϕ(ξ)
=

〈ξ〉
〈ξ〉+ ηξ1

clearly belongs to ψc0 .
Now fla. (6.2.16) arises from the following trick: We get

(6.2.23) Eϕ(D)u = (eϕ)(x,D)u

= (2π)−3/2

∫
dξ̃eix̃ξ̃

∫
dξ1e

ix1λ(ξ1,ξ̃)∂λ/∂ξ1(x1, ξ̃)u∧(ξ1, ξ̃) .

Here we may introduce λ as new integration variable, in the inner integral. With
the inverse function µ of λ we then get

(6.2.24) Eϕ(D)u = (2π)−3/2

∫
dξeixξu∧(µ(ξ1), ξ̃) = F−1QFu , u ∈ S .

All above integral manipulations are easily verified, and we then indeed get (6.2.16)
from (6.2.24), q.e.d.

The following consequences of prop.6.2.1 will be helpful.

Proposition 6.2.2 (i) For any (possibly matrix-valued) function f(ξ) of polyno-
mial growth we have

(6.2.25)
Ef(D)E∗ = f∼(D), where f∼ = Scf

∆, with

f∆(ξ) = (c2 − sc ξ1
〈ξ〉 )f(cξ1 − s〈ξ〉, ξ̃).
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(ii) We have

(6.2.26) E∗E = ν(D) with ν(ξ) =
〈ξ〉

〈ξ〉+ ηξ1
,

again with c = cosh θ, s = sinh θ, η = tanh θ, and the ξ1-dilations Sc : u(ξ) →
u(cξ1, ξ̃).

(iii) The operator Eη, as a function of η, satisfies the differential equation

(6.2.27)
dEη

dη
= ix1Eη〈D〉 .

Proof. For fla.(6.2.27) we differentiate Eηu(x) = (2π)−3/2
∫

dξei(xξ+ηx1〈ξ〉)u∧(ξ)
under the integral sign. For (6.2.26) use (6.2.16) - i.e., E = F ∗QνF - , im-
plying E∗ = F ∗νQ∗F with Q∗ = ϕQ−1, so that E∗ = F ∗Q−1F and E∗E =
F ∗Q−1FF ∗QνF = ν(D). Similarly get Ef(D)E∗ = F ∗Q(νf)Q−1F = f∼(D),
where a calculation yields that f∼(x) = (νf)(µ(x1, x̃), x̃) assumes the form stated
in (6.2.25). Q.E.D.

Now we can approach the following result.

Theorem 6.2.3 For vanishing potentials the operator R of prop.6.1.1 commutes
with the projections P±, so that we have

(6.2.28) P ′
± = RP±R∗ = P± .

Also, we have

(6.2.29) H ′ = RHR∗ = cosh θ{H + tanh θD1} , D1 =
1
i

∂

∂x1

as transform of the total energy observable H.
For any ψdo A ∈ Pm the operator A′ = RAR∗ belongs to Pm again. For any

A ∈ PXm we also have A′ ∈ PXm.

Proof. Looking at (6.2.14) we may write (with the x1-dilation Sc : u(x) →
u(cx1, x̃) and its adjoint S∗

c = 1
cS1/c, where c = cosh θ )

(6.2.30) R = κSc(E−ηP+ + EηP−) , R∗ =
1
c
(P+E∗

−η + P−E∗
η)S1/cκ .

Let

(6.2.31) A = A++ + A−− + A+− + A−+ , Aεδ = PεAPδ , ε, δ = ± .
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An operator A belongs to Pm if and only if A++, A−− ∈ Opψcm, but A+−, A−+ ∈
O(−∞). It even belongs to PXm if also A+− = A−+ = 0 . Combining (6.2.30)
and (6.2.31) we get
(6.2.32)

A′ = RAR∗ =
1
c
κSc{E−ηA++E∗

−η+EηA−−Eη+E−ηA+−E∗
η+EηA−+E∗

−η}S1/cκ .

For A ∈ PX the last two terms in the sum of 4 in (6.2.32) vanish, and only the
first two must be considered. For A ∈ P we want to show that we get EηCE∗

−η ∈
O(−∞) for all |η| < 1 and C ∈ O(−∞). This follows from the fact that the
operator E belongs to O(0). That is, E ∈ ∩L(Hs) - for every s the operator E

extends to a continuous operator7 Hs → Hs . But Eη is the evolution operator of
a first order symmetric hyperbolic pseudodifferential equation: Using (6.2.27) and
(6.2.25),(6.2.26) we get

(6.2.33)
dEη

dη
= ix1(Eη(〈D〉ϕ(D))E∗

η)Eη = ik(η, x,D)Eη , E0 = 1 ,

where k(η, x, ξ) = x1(〈ξ〉ϕ(ξ))∼ in the sense of (6.2.25). Here the function k(η, x, ξ)
satisfies the assumptions of [Co5],VI,thm.3.1, so that, indeed, the evolution oper-
ator Eη is of order 0. Thus, indeed, it follows that the last two terms in (6.2.32)
are in O(−∞) whenever A ∈ P.

We will show that the first two terms of (6.2.32) belong to ψcm whenever
A ∈ Opψcm. But first now let us prove (6.2.28).

Apply fla. (6.2.25), setting f(ξ) = p(ξ) = 1
2 (1− (αξ +β)/〈ξ〉). We get p∆(ξ) =

(c2 − cs ξ1
〈ξ〉 )p(cξ1 − s〈ξ〉, ξ̃) = 1

2 (c2 − cs ξ1
〈ξ〉 ){1−

α1(cξ1−s〈ξ〉)−α̃ξ̃−β
c〈ξ〉−sξ1

}
= 1

2
c
〈ξ〉{c〈ξ〉−sξ1−α1(cξ1−s〈ξ〉)−α̃ξ̃−β} = 1

2
c
〈ξ〉{(c+α1s)〈ξ〉−(s+α1c)ξ1−α̃ξ̃−β}.

Recall from sec.6.1 that we have c + α1s = κ−2 , s + α1c = α1κ
−2, and that

we may write

(6.2.34) α2 = κ−1α2κ
−1 , α3 = κ−1α3κ

−1 , β = κ−1βκ−1 .

So, it follows that

(6.2.35) κp∆(ξ)κ = cp(ξ) .

Now we must look at the construction of p(D)′: Clearly we get p(D) = p(D)++.
So, in fla. (6.2.32), only the first term at right will appear. Formula (6.2.25) may

7As an alternate proof of this fact - perhaps more direct - one may use (6.2.16) again, where

then F, F ∗ map H(s1,s2) → H(s2,s1), so that one just must show that the multiplication (by ν(x))

and the substitution operator Q both map Hs → Hs. The first is evident, since v(x), ϕ(x) ∈ ψc0.

The second again may be verified, using that Q, Q−1 are L2-bounded while again thm.1.6.1 may

be used on the operator Q−1〈x〉m2 〈D〉m1Q to show that it belongs to Opψcm, with corresponding

L(Hs,Hs−m)-boundedness, according to sec.1.4.
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be written as

(6.2.36) Ep(D)E∗ = F ∗Scp
∆(x)S1/cF .

Furthermore note, we get F ∗Scu(x) = (2π)−3/2
∫

dξu(cξ1, ξ̃)eixξ = 1
c (S1/cFu(x)),

and S1/cF = cFSc, and, S∗
c = 1

cS1/c. So, (6.2.36) may be written as

(6.2.37) Ep(D)E∗ = S1/cp
∆(D)Sc = cκ−1S1/cp(D)Scκ

−1 .

Combining (6.2.37) with (6.2.32) - where only the first term, at right, counts, we
indeed get P ′ = p(D)′ = Rp(D)R∗ = p(D) - this is for p = p+, while a similar
argument implies P ′

− = RP−R∗ = P−.

Next we look at the transform of the Fourier multiplier

(6.2.38) H = 〈D〉p+(D)− 〈D〉p−(D) ,

i.e., we seek for the observable H ′ corresponding to the Hamiltonian H in the old
coordinates. We then get

(6.2.39) H++ = 〈D〉p+(D) , H−− = −〈D〉p−(D) .

It is easy to get f∆(D) for f(ξ) = 〈ξ〉p+(ξ): There just is the additional (scalar)
factor 〈(cξ1 − s〈ξ〉, ξ̃)〉 = c〈ξ〉 − sξ1 to be inserted into the result for f = p+. So,
we will get

(6.2.40) H ′
++ = c〈D〉p+(D)− sD1p+(D) ,

and similarly,

(6.2.41) H ′
−− = −c〈D〉p−(D) + sD1p−(D) .

However, before we put both formulas together, to form H ′, we must recall, that
(6.2.40) is to be used for E = E−η, but (6.2.41) for E = Eη. This means that,
in (6.2.40) and (6.2.41), we must replace (c, s) = (cosh θ, sinh θ) by (c,−s) and
(c, s), respectively. In other words, in (6.2.25) we still must replace −s by s. Thus
(6.2.40) and (6.2.41) imply (6.2.29).

Finally, to show that the first two terms of (6.2.32) belong to Opψcm whenever
A ∈ Opψcm, it suffices to look at the map

(6.2.42) A → EAE∗ = F ∗Qν(x)FAF ∗ν(x)Q∗F = F ∗Qν(x)FAF ∗Q−1F ,

using (6.2.16) again. First of all, the map A → FAF ∗ takes Opψc(m1,m2) onto
Opψc(m2,m1). Indeed, we get
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(FAF ∗u)(ξ) = 1
8π3

∫
dxe−ixξ

∫
dζeixζa(x, ζ)dζ = 1

8π3

∫
dx

∫
dζeix(ζ−ξ)a(x, ζ)u(ζ).

Reorganizing the variables, we may write
(FAF ∗u)(x) = 1

8π3

∫
dξ

∫
dyeiξ(x−y)a(−ξ, y)u(y) .

Comparing this with (1.0.15) we find that

(6.2.43) FAF ∗ = (a∗(−D,x))∗ , F ∗AF = (a∗(D,−x))∗ .

Here we see that the roles of x and ξ of the symbol a(x, ξ) have been interchanged:
For a symbol a(x, ξ) ∈ ψc(m1,m2) the symbols b(x, ξ) = a∗(−ξ, x) and c(x, ξ) =
a∗(ξ,−x) belong to ψc(m2,m1). But this change (m1,m2) → (m2,m1) will be
reversed by the later transform B → F ∗BF occurring in our procedure.

We already noted that the function ν(x) of (6.2.22) (and its inverse ϕ(x))
belong to ψc0. Hence, the multiplication b(x,D) → ν(x)b(x,D) = c(x,D) will
preserve the property “b(x,D) ∈ Opψcm”. So, we are left with showing that
C → QCQ−1 takes ψcm → ψcm. So, the question will be whether the coordinate
transform υ : R

3 → R
3 defined by x = (x1, x̃) → (µ(x1, x̃), x̃) will leave the classes

Opψcm invariant.
Now, local coordinate invariance of Hoermander classes of ψdo-s is well known.

For the global coordinate invariance needed here we will need thm.1.6.1 - or,
equivalently, thm.3.3 of ch.IV in [Co5]. This will require the condition that the
map

(6.2.44) s ◦ υ ◦ s−1with s(x) =
x

〈x〉 , s−1(x) =
x√

1− x2

of the open unit ball {|x| < 1} onto itself extends continuously to a diffeomorphism
Υ : {|x| ≤ 1} → {|x| ≤ 1}.

To check on this condition, note, it will be equivalent to show that the inverse
map, s ◦ υ−1 ◦ s−1 (where µ is replaced by λ) has this property. A calculation
shows that8

(6.2.45) Υ−1(x) =
1√

1 + η2 + 2ηx1

(x1 + η, x̃) ,

a C∞(|x| ≤ 1)-function, indeed, since the denominator does not vanish (due to
|η| < 1 and |x1| ≤ |x| ≤ 1).

The function of (6.2.45) is invertible as map between the open balls {|x| < 1},
by construction. But its inverse also exists in the closed ball: Setting y = (y1, ỹ) =
Υ−1(x) we focus on the first of these 3 equations:

(6.2.46) y1 =
x1 + η√

1 + η2 + ηx1

.

8We get υ−1(x) = (x1 + η〈x〉, x̃) hence (υ−1 ◦ s−1)(x) = (x1 + η, x̃)/
√

1 − x2, using that

〈x/
√

1 − x2〉 = 1/
√

1 − x2. Next we need 〈(x1 + η, x̃)/
√

1 − x2〉 =
√

1 + η2 + 2ηx1/
√

1 − x2.

Using this we will get (6.2.45).
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The function at right is smooth and increases from −1 to +1, as −1 ≤ x1 ≤ 1.
Thus it has a smooth inverse x1 = γ(y1, η) in |y1| ≤ 1. Substituting this we get

(6.2.47) x̃ =
√

1 + η2 + 2ηγ(y1, η) ỹ .

This supplies the desired smooth inverse map Υ.
Since application of κ and of the dilation Sc both leave Opψcm and O(−∞)

invariant, we then indeed get

(6.2.48) A′
ε,δ = PεA

′Pδ = (Aεδ)′ =
1
c
κScE−εηAεδE−δηS1/cκ , ε, δ = ± ,

and may conclude that RPR∗ ⊂ P, as well as
RPXR∗ ⊂ PX , completing the proof of thm.6.2.3.

Corollary 6.2.4 In the case of vanishing potentials V,Aj the two algebras P
and PX are left invariant by the transformation A → A′ = RAR∗ generated by
introducing new space-time coordinates with an x1-boost (6.1.2).

This ist just a consequence of the symmetry of conditions - comparing (6.1.2)
and (6.1.3) - , allowing application of thm.6.2.3 for the inverse Lorentz transform.

6.3 Relating Hilbert Spaces; Evolution of the

Spaces H ′ and H̃

From now on - for the remainder of this chapter, we always will assume time-
independent potentials A, V satisfying cdn.(X) - but no longer vanishing identi-
cally.

In constructing the operator R relating the spaces of physical states between
different space-time-coordinates we were, so far, only relating the L2-spaces of the
hyperplanes t = 0 and t′ = 0 with each other, by a unitary operator we called R.

Let us now try the same, but with the modification that we will relate the
space for t = 0 with the L2-space on the hyperplane t′ = τ ′, with given fixed τ ′ -
in the corresponding space-coordinates x′. Recall the boost (6.1.2) and its inverse
(6.1.3).

Given a state ψ0(x) (at t = 0) we will extend it into R
4 as solution of our Dirac

equation :

(6.3.1) ψ(t, x) = (e−iHtψ0)(x) .

Introducing the new space-time cordinates t′, x′ we then get

(6.3.2) ψ̃(t′, x′) = ψ(t′c + x′
1s, t

′s + x′
1c, x̃

′) .
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Here we now set t′ = τ ′ = a given fixed constant:

(6.3.3) ψ̆(x′) = ψ̆(x′
1, x̃

′) = ψ(τ ′c + x′
1s, τ

′s + x′
1c, x̃

′) .

This again is a function of (x′
1, x̃

′). To normalize it and create a state in L2({x′ ∈
R

3}) we will have to multiply it by the constant matrix κ = cosh(θ/2)−α1 sinh(θ/2)
again, creating ψ′(x′) = κψ̆(x′).

Repeating the construction of Rψ in sec.6.1, let us write

(6.3.4) ψ�(x1, x̃) = ψ(τ ′/c + ηx1, x) ,

with η = tanhθ = s/c, and with the function ψ(t, x) of (6.3.1). Then we get

(6.3.5) Rτ ′
ψ0(x′) = ψ′

0(x
′) = κψ�(x′

1c + τ ′s, x̃′) ,

defining a unitary operator Rτ ′
relating the initial states t = 0 and t′ = τ ′.

The question now is whether R and Rτ can be related, using the families
e−iHt and UH̃(τ, t) - evolution operator of the Dirac equation with the coordinate
transformed Hamiltonian H̃. Note, we have

(6.3.6) ψ′(t′, x′) = (UH̃(0, t′)Rψ0)(x′) = κψ̃(t′, x′) = κψ(t′c + sx′
1, x

′
1c + st′, x̃′) .

On the other hand, we get

(6.3.7) (Re−iHτ ′/cψ0)(x′) = κScψ(τ ′/c + ηx′
1, x

′
1, x̃

′) = κψ(τ ′/c + sx′
1, cx

′
1, x̃

′) .

Onto (6.3.7) we apply a translation Tλ : u(x) → u(x1 + λ, x̃) (with λ = ητ ′) for

(6.3.8) (TλRe−iHτ ′/cψ0)(x′) = κψ(τ ′/c + s(x′
1 + λ), c(x′

1 + λ), x̃′)

= κψ(τ ′c + sx1, cx
′
1 + sτ ′.x̃′) ,

using that cη = s and 1 + s2 = c2. Comparing (6.3.8) with (6.3.6) - where we set
t′ = τ ′, we get

(6.3.9) Rτ ′
ψ0(x′) = (UH̃(0, τ ′)Rψ0)(x′) = (Tητ ′Re−iHτ ′/cψ0)(x′) ,

where also (6.3.2),(6.3.3) and (6.3.5) were involved. This gives an interesting
relation between evolution operators, as an immediate consequence of (6.3.9):

Proposition 6.3.1 The evolutions UH̃ and e−iH′t with H ′ = RHR∗ are related
by the formula

(6.3.10) UH̃(0, t) = TηtRe−iHt/cR∗ = Tηte
−iH′t/c .
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Note, this gives the occasion for a check: For V = Aj = 0 we obtained the
formula

(6.3.11) H ′ = c(H + ηDx1)

(cf.(6.2.29)). The terms at right of (6.3.11) commute - they are f(D)-s - hence
(6.3.10) implies

(6.3.12) UH̃(0, t) = Tηte
−iHte−iηtDx1 .

But the operator e−iηtDx1 equals the translation T−ηt : u(x) → u(x1 − ηt, x̃),
inverting Tηt occurring in (6.3.12). Accordingly we have

(6.3.13) UH̃(0, t) = e−iHt ,

as it should be for vanishing potentials. - The test checks.

In connection with prop.6.3.1 we will go back to sec.6.1, for the following
observation.

Remark 6.3.2 Our potentials - in the old coordinates - did not depend on t,
by assumption. This has the effect that V ′, A′

j of (6.1.11) only depend on the
3 variables x′

1 + ηt′, x̃′ = (x′
2, x

′
3). Introducing the “translation operator” Tηt :

u(x) → u(x1 + ηt, x̃), we may write

(6.3.14) (V ′, A′)(t′, x′) = Tηt′(V �, A�) ,

where now the potentials

(6.3.15) (V �, A�)(x′) = (V c−A1s,A1c− V s,A2, A3)(cx′
1, x

′
2, x

′
3)

depend only on x′, no longer on t′. In particular, the multiplication operator u(x)→
V ∼(t, x)u(x) may be written as V ∼ = TηtV

�T−ηt, where now V � is independent
of t. Similarly for A∼ and A�.

However, the translation operator Tηt commutes with every x-differentiation
and constant matrix. Looking at (6.1.2), we thus get

(6.3.16) H̃(t) = TηtH
�T−ηt , with H� =

∑

j

αj(Dj −A�
j ) + β + V .

Again, let us emphasize, that the operator H� - formally, a Dirac operator - is
time-independent.

One finds that the relation (6.3.10) between the evolution operators of H̃(t) of
(6.1.14) and H ′ = RAR∗ also implies a relation between H̃(t) and H ′.
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Proposition 6.3.3 We have9

(6.3.17) H ′ = RHR∗ = c(H� + ηDx1) = c(T−ηtH̃Tηt + ηDx1) ,

with the (time-independent) operator H� of (6.3.16).

Proof. We have (Tηtu)(x) = u(x1 + ηt, x̃), hence ∂t(Tηtu) = ηu|x1(x1 + ηt, x̃) ⇒
Ṫηt = ηTηt∂x1 . Differentiating (6.3.10) for t we get−iH̃(t)Tηte

−iH′t/c = U̇H̃(0, t) =
∂t(Tηte

−iH′t/c) = ηTηt∂x1e
−iH′t/c − i

cTηtH
′e−iH′t/c .

Multiply left by iT−ηt and right by eiH′t/c for T−ηtH̃Tηt = iη∂x1 + 1
cH ′, implying

(6.3.17), in view of (6.3.16). Q.E.D.
Finally, as a generalization of prop.6.3.1 useful for considering the algebras

P ′(τ) , PX ′(τ):

Proposition 6.3.4 The evolution operator UH̃(τ, t), for a general initial point τ ,
is given by the formula

(6.3.18) UH̃(τ, t) = Tηte
−iH′(t−τ)/cT−ητ with H ′ = c(H� + ηDx1) .

This follows easily, using that H̃(t + τ) = Tητ H̃(t)T−ητ , by (6.3.16).

6.4 The General Time-Independent Case

Suppose now, we have a Dirac Hamiltonian H = α(D − A) + V with general
(time-independent) potentials V,A satisfying cdn.(X). We then have a decoupling
unitary ψdo U ∈ Opψc0, in the sense of sec.3.5 such that10

(6.4.1)

H = U

(
X 0
0Y

)
U∗ , where X = 〈D〉+ X1 , Y = −〈D〉+ Y1 , X1, Y1 ∈ Opψc−e2 .

We also have the operator R of sec.6.1, and the operator H ′ = RHR∗, explicitly
related to the transformed Hamiltonian H̃ by fla. (6.3.17). Since H ′ is time-
independent and also has a somewhat modified standard Dirac Hamiltonian form

9We should observe that one might feel tempted to apply the Baker-Campbell-Hausdorff

formula onto (6.3.9), observing that Tηt = eiηtDx1 , in order to get a representation of the

operator UH̃(t): Formally, we get eAt.eBt = eC(t) with a power series C(t) = C1t + C2t2 + . . .,

where C1 = A+B and Cj is a combination of iterated commutators of A and B - of order j. With

our special operators A = iηDx1 , B = iH′ these commutators will be of lower and lower order,

and the formal infinite series C(t) will converge asymptotically, resulting in a corresponding

asymptotic expansion for UH̃(t).
10Here we refer to a split H = H+ ⊕H− with H± coinciding with L2(R3, C

2), except that a

finite dimensional space Z of rapidly decreasing functions may have been shifted from “+” to

“-” (or “-” to “+”) (cf.sec.3.5).
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we might as well also ask whether H ′ may be decoupled by a unitary ψdo. Trivially
we have

(6.4.2) (RU)∗H ′(RU) = H∆ =
(

X 0
0Y

)
.

However, this is NOT a decoupling of the transformed Dirac equation in the sense
of ch.3, because the new unitary operator RU is not a ψdo in Opψc0.

On the other hand, we shall see that (6.4.2) may be modified, using another
(decoupled) unitary operator Z =

(
Z− 0
0 Z+

)
, again not a ψdo, such that

(6.4.3) (RUZ)∗H ′(RUZ) =
(

X̆ 0
0 Y̆

)
, with X̆ = Z∗

−XZ− , Y̆ = Z∗
+Y Z+ ,

where now
(6.4.4)

X̆ = c(〈D〉+ ηDx1) mod (Opψc−e2) , Y̆ = c(−〈D〉+ ηDx1) mod (Opψc−e2) ,

are ψdo-s in Opψce1 , while also U� = RUZ ∈ Opψc0, and

(6.4.5) U� = U0 mod (Opψc−e) ,

with the operator U0 = u0(D) of11 sec.3.1.
The task of getting the above operator Z will encounter considerable technical

difficulties (cf. sec’s 6.5 and 6.7). Even though decoupling H ′ by a unitary ψdo
does not mean that we have decoupled the (now time dependent) Dirac equation
u̇+ iH̃(t)u = 0, this still will help us to accomplish the latter task for the following
reason.

In decoupling equ. u̇ + iH∼(t)u = 0 we look for a unitary map - call it V (t)
here - such that the substitution u(t) = V (t)v(t) brings forth

(6.4.6) v̇ + iH∆(t)v = 0 with H∆(t) = V ∗HV − iV ∗V̇ ,

where now H∆ =
(
X 0
0 Y

)
is decoupled.

Writing v = (v1
v2

), equation (6.4.6) then splits into the 2 completely separate
equations

(6.4.7) v̇1 + iX(t)v1 = 0 , v̇2 + iY (t)v2 = 0 .

Each of these two equations has its own evolution operator - we call them A(t)
and B(t), resp. Then the evolution operator UH∆(t) will be decoupled:

(6.4.8) UH∆(t) =
(

A(t) 0
0 B(t)

)
.

11it really is u of (3.1.5).
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Now, the initial-value problem at t = 0 for (6.4.6) is solved by v(t) = UH∆(t)v(0).
So, then, the initial-value problem for H∼(t) will be solved by u(t) = V (t)v(t) =
V (t)UH∆(t)v(0) = V (t)UH∆(t)V ∗(0)u(0), implying UH∼(t) = V ∗(t)UH∆(t)V (0).
Or, in other words, for a unitary operator decoupling H∼, in the above sense, we
have

(6.4.9) V ∗(t)UH∼(t)V (0) =
(

A(t) 0
0 B(t)

)
.

Now, in our case, we have UH∼(t) = Tηte
−iH′t/c. And, we already decoupled

e−iH′t/c by a (time-independent) operator we called U�. Notice, we may just
set V (t) = TηtU

�. Then V ∗(t) = U�∗T−ηt, and we get (6.4.9) satisfied with
A(t) = e−iX�t/c and B(t) = e−iY �t/c.

But, clearly, this V (t) is no longer a strictly classical ψdo - except for tη = 0,
since it contains the translating factor Tηt .

On the other hand, it again turns out that we may compensate for this by
using the unitary operator U◦(t) = V (t)T−ηt = TηtU

�T−ηt instead of V (t). The
additional conjugation of H∆ with the translation T−ηt does not “undecouple”
H∆ and will give us the desired ψdo decoupling eq. (6.1.13).

Also, we note:
Since the transformed Hamiltonian H̃(t) is time-dependent, we should expect

the corresponding algebra P̃ of sec.5.2 to depend on the initial point τ . This
indeed will be confirmed: While the algebra P ′ is independent of t, we will get
P̃(τ) = TητP ′T−ητ .

Incidentally, while the algebra PX was defined so far only for time-independent
potentials - since only then we have results like sec.3.5 - we well may define algebras
PX∼(τ) for the present (time-dependent) H̃(t), Then, again, we have PX∼(τ) =
TητPX ′T−ητ as we shall see.

Let us summarize and state the following.

Theorem 6.4.1 After a Lorentz transform in the form of an x1-boost of the form
(6.0.2) we may consider the Hilbert space H of physical states transformed by the
unitary operator R of prop.6.1.1: A state ψ ∈ H transforms into the state ψ′ = Rψ.
An observable A (acting on a subspace of H) transforms into A′ = RAR∗.

The Dirac equation may be transformed onto the new coordinates in two dif-
ferent ways:

(i) By substitution of independent variables (6.0.2) (together with
left-multiplying the dependent variable with the constant matrix κ of
(6.1.12)) we get

(6.4.10) ψ̇ + iH∼ψ = 0 , ψ = ψ0 at t′ = 0 , with
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(6.4.11)
(V∼,A∼

1 ,A∼
2 ,A∼

3 )(t′, x′) = (Vc−A1s,A1c−Vs,A2,A3)(x′
1c+t′s, x′

2, x
′
3) .

(ii) By just introducing ψ′ = Rψ as new dependent variable we get

(6.4.12) ψ̇ + iH ′ψ = 0 , ψ = ψ0 at t = 0 , with H ′ = RAR∗ ,

where we found that (the time-independent) operator H ′ has the form

(6.4.13) H ′ = c(H� + ηDx1) with H� = α(D −A�) + β + V ,

with potentials
(6.4.14)
(V�,A�

1,A
�
2,A

�
3)(t, x) = (Vc−A1s,A1c−Vs,A2,A3)(cx1, x2, x3) .

The two initial value problems of (6.4.10) and (6.4.12) are solved (respectively)
by ψ = UH∼(t)ψ0 , UH∼(t) = UH∼(0, t), and by ψ = e−iH′tψ0, where we have

(6.4.15) UH∼(t) = Tηte
−iH′t/c .

For each of these initial-value problems there exists a unitary strictly classical
ψdo of order 0 [called U◦(t) and U�, respectively] decoupling the equation [(6.4.10)
or (6.4.13), resp.].

Moreover then, our transformed algebras P ′ = RPR∗ and PX ′ = RPXR∗ may
be characterized as the classes of strictly classical ψdo-s A with P ′AQ′, Q′AP ′ ∈
O(−∞) , (or = 0, resp.), where

(6.4.16) P ′ = U�
(

1 0
0 0

)
U�∗ , Q′ = U�

(
0 0
0 1

)
U�∗ .

In other words, P ′ and PX ′ consist of all ψdo-s in Opψc which are decoupled
mod(O(−∞)) or strictly decoupled by conjugation with the unitary ψdo U� ∈
Opψc0, respectively.

On the other hand, the operator U◦(t) ∈ Opψc0 decoupling the (time-dependent)
transformed Dirac equation (6.4.10) is given by

(6.4.17) U◦(t) = TηtU
�T−ηt.

The family of algebras P̃(τ) defined (as in sec.5.2 but) for the transformed Dirac
equation (6.4.10) is given by

(6.4.18) P̃(τ) = TητP ′ = {A ∈ Opψc : T−ητATητ ∈ P ′} .
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Then P̃(τ) consists precisely of all A ∈ Opψc with P ◦(τ)AQ◦(τ), Q◦(τ)AP ◦(τ) ∈
O(−∞), where

(6.4.19) P ◦(t) = U◦(t)
(

1 0
0 0

)
U◦∗(t) , Q◦(t) = U◦(t)

(
0 0
0 1

)
U◦∗(t) .

Moreover, since U◦(t) represents a precise decoupling of (6.4.10) we also may
define algebras PX∼(τ) by setting

(6.4.20) PX∼(τ) = {A ∈ Opψc : P ◦(τ)AQ◦(τ) = Q◦(τ)AP ◦(τ) = 0} .

These algebras then are transforms of PX - of the (given time-independent) Dirac
equation, in the sense that

(6.4.21) PX∼(τ) = {A ∈ Opψc : R∗T−ητATητR ∈ PX} .

Only the statements (6.4.15) through (6.4.21) remain to be verified. This will
require some efforts to be accomplished in sec.6.6, after a more careful study of
the operator R in sec.6.5.

6.5 The Fourier Integral Operators around R

While (so far, in earlier chapters) we always tended to avoid an explicit discussion
of the operator e−iHt, or the more general evolution operator UH(τ, t) in the time-
dependent case, it already was necessary to consider an explicit representation of
our Fourier integral operator R in sec.6.2, in the case of vanishing fields. In the
present section we will tend to achieve similar results for more general fields - still
time-independent. Again R will be seen to be a Fourier integral operator. Again,
however, we will not involve results about composition of general Fourier integral
operators.

Note, our operator U of (6.4.1) is of the form
(6.5.1)

U = U0 + U1 , U0 = u0(D) , U1 ∈ Opψc−e , u0(ξ) =
1√

2 + 2s0
(1 + s0 − βαs) ,

where s0 = 1/〈ξ〉 , s = ξ/〈ξ〉 [cf. thm.3.2.2 - combined with an additional term of
O(−∞), as seen in sec.3.5].

Let P = U
(
1 0
0 0

)
U∗ , Q = U

(
0 0
0 1

)
U∗, and, P0 = U0

(
1 0
0 0

)
U∗

0 , Q0 = U0

(
0 0
0 1

)
U∗

0 , the
latter with the splittingH = L2(R3, C2)⊕L2(R3, C2) corresponding to the fieldless
H0 = αD + β. Then P0, Q0 are the projections of the fieldless Hamiltonian H0

while P,Q are the analogous splitting projections corresponding to our present H

(with fields). Clearly we have

(6.5.2) P = P0 + P1 , Q = Q0 + Q1 , with P1, Q1,∈ Opψc−e .
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Our relation (6.2.12) of the fieldfree case may be set up again here, we get

(6.5.3) e−iHt = e−iH+tP + e−iH−tQ , H+ = U

(
X 0
0 0

)
U∗ , H− = U

(
0 0
0Y

)
U∗ ,

where X = 〈D〉+X1 , Y = −〈D〉+Y1 , X1, Y1 ∈ Opψc−e2 . Using the expansions
(6.5.1),(6.5.2) we may write H+ = U0〈D〉

(
1 0
0 0

)
U∗

0 + H1+ with H1+ ∈ Opψc−e2 .
Also, U0 = u0(D) commutes with 〈D〉, so that we get H+ = 〈D〉P0 + H1+.
Similary for H−: We get

(6.5.4) H+ = 〈D〉P0 + H1+ , H− = −〈D〉Q0 + H1− , H1± ∈ Opψc−e2 .

Construction of our operator R (now with fields) again will start along the
diagram (6.2.14): Given an initial state ψ0 get ψ(t, x) = (e−iHtψ0)(x), using
(6.5.3): ψ = ψ+ + ψ− = e−iH+tPψ0 + e−iH−tQψ0, and then look at ψ±(ηx1, x).
Here H±, P,Q, ψ0 are independent of t. We focus on the term with e−iH+t and
look at

(6.5.5) S(t) = ei〈D〉te−iH+tP = ei〈D〉te−i(〈D〉P0+H1+)tP ,

hoping to show that S(t) is a ψdo.
We get S(0) = P . Noting that P and e−itH+ commute, we differentiate for t

and get

(6.5.6) Ṡ(t) = −iK(t)S(t) where K(t) = ei〈D〉t(H1+ + 〈D〉(P0 − P ))e−i〈D〉t .

Now an important observation: The operator K(t) is a ψdo in Opψc−e2 - using
[Co5],VI, thm.5.1. We even know the symbol k(t, x, ξ) of K(t), up to lower order
terms: The conjugation a(x,D) → ei〈D〉ta(x,D)e−i〈D〉t generates the Hamiltonian
system

(6.5.7) ẋ = 〈ξ〉|ξ =
ξ

〈ξ〉 , ξ̇ = 〈ξ〉|x = 0 ,

with flow

(6.5.8) x = x0 + t
ξ0

〈ξ0〉 , ξ = ξ0 = const.

Thus the symbol k(t, x, ξ) will be of the form

(6.5.9) k(t, x, ξ) = k0(x + tξ/〈ξ〉, ξ) + k1(t, x, ξ) ,

where

(6.5.10) k0(t, x,D) = H1+ + 〈D〉(P0 − P ) , k1 ∈ ψc−e−e2 .



6.5. The Fourier Integral Operators around R 177

It is clear thus that S(t) describes an evolution
(6.5.11)

Ṡ(t) + ik(t, x,D)S(t) = 0 , S(0) = P = p(x,D) , where k(t, x, ξ) ∈ ψc−e2 .

Proposition 6.5.1 S(t) is a ψdo ∈ Opψc0.

This proposition is an immediate consequence12of thm.1.5.4.

Next we observe that (6.5.3) may be written as

(6.5.12) e−iHt = S∗(−t)e−i〈D〉tP + S∗
−(−t)ei〈D〉tQ ,

whith another ψdo S−(t) = e−i〈D〉te−iH−tQ with properties13 similar to S(t). Let
S∗(−t) = s(t, x,D), and S∗

−(−t) = s−(t, x,D), and ψ0+ = Pψ0 , ψ0− = Qψ0.
Setting t = ηx1 in the first term at right of (6.5.12) we get

(6.5.13) (S∗(−t)e−i〈D〉tPψ0)(x)|t=ηx1

= (2π)−3/2

∫
dξeixξs(ηx1, x, ξ){(e−i〈D〉tψ0+)∧(ξ)}|t=ηx1

= (2π)−3/2

∫
dξs(ηx1, x, ξ)ei(xξ−ηx1〈ξ〉)ψ∧

0+(ξ)

= (2π)−3/2

∫
dξs(ηx1, x, ξ)ei(x̃ξ̃+x1(ξ1−η〈ξ〉))ψ∧

0+(ξ) .

We again find the function λ(ξ) = ξ1 + η〈ξ〉 of (6.2.20) in the exponent of the last
term [with η replaced by −η], hence again might try the substitution of integration
variable ξ1 = µ(ζ1) , ξ̃ = ζ̃ to arrive at

(6.5.14) Rψ0 = (2π)−3/2κSc

∫
dξeixξs(ηx1, x, υ−η(ξ))(ν−ηψ∧

0+)(υ−η(ξ))

+(2π)−3/2κSc

∫
dξeixξs−(ηx1, x, υη(ξ))(νηψ∧

0−)(υη(ξ)) ,

where we used κ of (6.1.12) and Sc : u(x) → u(cx1, x̃) of (6.2.25), and the functions
µ(x), ν(x) = 1/ϕ(x) of (6.2.17), (6.2.18), (6.2.22) (and υ(x) = (µ(x), x̃)), calling
them µη, νη, υη, since they are used for η and −η.

12Recall, we used“the parametrix method”: Substitute a symbol s(t, x, D) into (6.5.11) and

neglect all “lower order terms”. Solve the corresponding ODE, and show the solution is a symbol

s0(x, ξ). Start an iteration by going into the equation with s = s0 + w with w of lower order.

Again solve the resulting ODE, etc. Take the asymptotic sum s = s0 + w + . . . and show it

solves (6.5.12) mod O(−∞). Then, finally, use Picard’s successive approximation for an ODE

with coefficient in O(−∞) to obtain a “clean” solution of (6.5.11).
13The arguments while analyzing S(t) may be exactly repeated.
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Note, we may re-express fla.(6.5.14) writing

(6.5.14′) Rψ0 = κSck+(η, x,D)E−ηPψ0 + κSck−(η, x,D)EηQψ0 ,

with the (formal) symbols
k+(η, x, ξ) = s(ηx1, x, υ−η(ξ)) , k−(η, x, ξ) = s−(ηx1, x, υη(ξ)).

Formula (6.5.14’) may be compared with (6.2.30) with E±η of (6.2.16), in the
fieldless case. This, however, can be useful for us only if we are able to prove a
symbol property for the terms s(ηx1, x, ξ) , s−(ηx1, x, ξ). We indeed will achieve
this, but using a different approach.

Proposition 6.5.2 Consider the operator V = Vη defined by

(6.5.15) Vηψ0(x) = {e−iH+tψ0}(x)|t=ηx1 , ψ0 ∈ S .

This operator solves the evolution initial-value problem

(6.5.16)
dVη

dη
+ ix1VηH+ = 0 , V0 = 1 .

Proof. First consider ψ+(t, x) = e−iH+tψ0. We get ψ̇+(t, x) = −ie−iH+tω0 with
(time-independent) ω0 = H+ψ0, and Vηψ0(x) = ψ+(ηx1, x), so that

(6.5.17)
∂

∂η
Vηψ0 = x1ψ̇(ηx1, x) = −ix1{e−iH+tω0}|t=ηx1

= −ix1(Vηω0)(x) = −ix1(VηH+ψ0)(x) ,

confirming the differential equation (6.5.16). The initial condition follows trivially.
Q.E.D.

At this time let us recall the (scalar) operator Eη of (6.2.15). Recall, that we
control this operator explicitly, using prop.6.2.1 and prop.6.2.2.

Let us introduce the operator Wη = VηPE∗
−η. Differentiating for η (using fla.-s

(6.5.16) and (6.2.27)) we get

(6.5.18)
dWη

dη
= −ix1VηPH+E∗

−η + iVηP 〈D〉E∗
−ηx1 .

With H+ = 〈D〉P0+H1+, by (6.5.4), and P 2 = P , write PH+ = PP0〈D〉+PH+ =
P 〈D〉+P ((P0−P )〈D〉+H1+) = P 〈D〉+PH2+, where H2+ = (P0−P )〈D〉+H1+ ∈
Opψc−e2 , this assumes the form

(6.5.19)
dWη

dη
+ i[x1, VηP 〈D〉E∗

−η] = −ix1VηPH2+E∗
−η , H2+ ∈ Opψc−e2 .
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From (6.2.26) we get

(6.5.20) E∗
−ηE−ηϕ(D) = 1 with ϕ(ξ) = 1− ηξ1/〈ξ〉 .

Substituting this into (6.5.19) we get

(6.5.21)
dWη

dη
+ i[x1,Wη(E−η〈D〉ϕ(D)E∗

−η)] = −ix1Wη(E−ηϕ(D)H2+E∗
−η) .

In this ODE for the operator function Wη , |η| < 1 , all coefficients are ψdo-s.
Specifically, we have
(6.5.22)

x1 ∈ Opψce2 , E−η〈D〉ϕ(D)E∗
−η ∈ Opψce1 , E−ηϕ(D)H2+E∗

−η ∈ Opψc−e2 .

Moreover, the first two (occurring in the commutator of (6.5.21)) are scalars; we
even have E−η〈D〉ϕ(D)E∗

−η = f∼(D) with the f∼ for f(x) = 〈x〉ϕ(x) of (6.2.25)14.
For the last term in (6.5.22) we must apply thm.5.1 of [Co5],VI again.

Proposition 6.5.3 The unique solution Wη of the ODE (6.5.21) with initial value
W0 = P also takes values in Opψc0.

The proof again uses the parametrix method, but it is more complicated, since
certain first order linear systems of PDE-s must be examined, regarding their
preservation of symbol properties. We shall discuss it in sec.6.7.

It should be clear that there is an analogous discussion for the operator V −
η

defined by

(6.5.23) V −
η ψ(x) = {e−iH−tψ(x)}|t=ηx1 ,

leading to the construction of W−
η = V −

η QE∗
η ∈ Opψc0. Assuming this we get the

following:

Theorem 6.5.4 The operators VηP , V −
η Q of (6.5.15),(6.5.23) may be written

as
(6.5.24)
VηP = VηPE∗

−ηϕ(D)E−η = (Wηϕ(D))E−η and V −
η = V −

η = (W−
η (Eηϕ(D))Eη ,

14A calculation shows that f∼(ξ) = 1
1−η2 {

√
ξ2
1 + (1 − η2)〈ξ̃〉2 + ηξ1}. We observe that we

get f∼ > 0 for all ξ and |η| < 1. Moreover, for large |ξ1|, we have a convergent power series

expansion

(6.5.25) f∼ =
|ξ1|

1 − η2
{(1 − η sgn(ξ1)) +

∞∑

j=1

cj(
σ2(1 − η2)

ξ2
1

)j} ,

with σ = 〈x̃〉 and constants cj , showing that f∼ ≈ |ξ1|
1±η

, (with ± = sgn(ξ1)), with an error

bounded by c(1 − η2)〈ξ̃〉2/ξ2
1 .

where the expressions Wηϕ(D) and W−
η ϕ(D) belong to Opψc0.
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The operator R of sec.6.1 (for general time-independent potentials satisfying
cdn.(X)) may be written as

(6.5.26) R = κSc{V 0
η E−ηP + V 0−

η EηQ}

with ψdo-s V 0±
η ∈ Opψc0, and the x1-dilation Sc : u(x) → u(x1 cosh θ, x̃) and

(constant 4× 4-) matrix κ = cosh(θ/2)− α1 sinh(θ/2), also, with η = tanh θ.

6.6 Decoupling with Respect to H ′ and H̃(t)

With the above theorem we now can approach a “repair” of the splitting [using the
operator RU ] of (6.4.2) - that is, in effect, the completion of the proof of thm.6.4.1.

We noted that RU is a unitary operator decoupling H ′ = c(H� +ηDx1), but it
is not a strictly classical ψdo. To repair this we introduce the (decoupled) unitary
operator15

(6.6.1) Z =
(

Z− 0
0 Z+

)
with Z± =

1√
c

√
ϕ±η(D)E∗

±ηS1/c

[it is unitary, by (6.5.20)], and then the unitary operator

(6.6.2) U� = RUZ .

Since Z already is decoupled, this will not change the decoupling property, - i.e.
we still have (6.4.2), with RU replaced by U�, but with the same spaces He,Hp.
Relation (6.4.4) will change, insofar as X,Y must be replaced by other ψdo-s X̆, Y̆ ,

15The matrix listed in (6.7.1) refers to the splitting H = H+ ⊕H− where H± are built from

the functions in L2(R3, C
4) with vanishing last two (first two) entries, respectively. We should

recall that the splitting used for the two projections P, Q differs from that by having a finite

dimensional space Z shifted. Calling these two splittings the standard and the effective splitting,

we should be aware that the projections
(1 0
0 0

)
= U∗PU and

(0 0
0 1

)
= U∗QU of the effective

splitting assume the form
( 1 0
0 F

)
and

( 0 0
0 1−F

)
in the standard splitting where F ∈ O(−∞) is a

finite dimensional orthogonal projection [onto the space Z we assume shifted from H− to H+ , for

example]. The operator U� = RUZ will give U�∗P ′U� = Z∗(1 0
0 0

)
Z and U�∗Q′U� = Z∗(0 0

0 1

)
Z

in the effective splitting. This assumes the form Z∗( 1 0
0 F

)
Z =

( 1 0
0 F�

)
, F � = Z∗

−FZ− and

Z∗( 0 0
0 1−F

)
Z =

(0 0
0 1−F�

)
, in the standard splitting. Here F � still is an orthogonal projection

with finite rank Z� ⊂ H−. Moreover, since Z− is of order 0 we still get F � ∈ O(−∞), and

Z� = im F � consists of rapidly decreasing functions. This means that the unitary operator U�

still decouples H′, but now with respect to a new splitting - we must shift the space Z� ⊂ H−
from H− to H+. Similar for shifts H+ → H−.
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but still ψdo-s in Opψce1 , and still, formulas like (3.2.1) or (6.4.1) are valid for
X̆, Y̆ , and still, this is a decoupling16.

On the other hand, using (6.5.25), it is easy to show17 , that U� also is a ψdo
in Opψc0.

Also, it is clear that the transformed algebras P ′,PX ′ are characterized by the
condition that P ′AQ′, Q′AP ′ ∈ O(−∞) (or, = 0, resp.) with P ′, Q′ defined by
(6.4.16).

This will complete the proof of thm.6.4.1, as far as decoupling with respect to
H ′ is concerned.

Now, regarding the decoupling of the transformed Dirac equation (6.1.13), i.e.,
ψ̇ + H̃(t)ψ = 0, we already noted that ψ(t) = V (t)ω(t) with V (t) = TηtU

� , U�

of (6.6.2) will take (6.1.13) into

(6.6.3) ω̇ + i(U�∗(T−ηtH̃(t)Tηt + ηDx1)U
�)ω = 0 ,

where T−ηtH̃Tηt +ηDx1 = H ′, (by (6.3.17)), is independent of t, and where, more-
over, U�∗H ′U� = H̆ =

(
X̆ 0
0 Y̆

)
is decoupled - with asymptotic expansions (6.4.4).

Again, this is not a decoupling of (6.1.13) by a unitary ψdo, since V (t) contains
the factor Tηt. However, we now may define

(6.6.4) U◦(t) = V (t)T−ηt = TηtU
�T−ηt.

This clearly is a ψdo , since the translation Tηt leaves all classes ψcm invariant. On
the other hand, the substitution ω(t) = T−ηtχ(t) will take (6.6.3), or ω̇ + iH̆ω = 0
into

(6.6.5) χ̇ + i(T−ηtH̆Tηt − ηDx1)χ = 0 ,

16It is not hard to see that the new X̆, Y̆ have the proper asymptotic expansion, required for

an analogous of (6.4.1).
17Assume first that Z = 0 - i.e., that standard and effective splitting coincide. Then, us-

ing (6.5.26) and the fla.’s P = U
(1 0
0 0

)
U∗ , Q = U

(0 0
0 1

)
U∗ we get RU = κScV 0

−ηE−ηU
(1 0
0 0

)
+

κScV 0−
η EηU

(0 0
0 1

)
.

After a right multiplication by Z the first term ends up with a factor E−ηU
(1 0
0 0

)
E∗

−η. This

is a ψdo in Opψc0, since Ω = U
(1 0
0 0

)
∈ Opψc0, using prop.6.2.1. [We get E−ηΩE∗

−η =

F ∗Qν(ξ)FΩF ∗ν(ξ)Q∗F ∈ Opψc0 since the funtion ν(ξ) = 1
ϕ(ξ)

belongs to ψc0 while the substi-

tution of variables executed by Q leaves Opψc0 invariant.] It follows that the first term is of the

form ScΞS1/c, where Ξ ∈ Opψc0. But the coordinate transform Sc : x → (cx1, x̃) leaves Opψcm

invariant. Thus the first term gives a ψdo in Opψc0, if right multiplied by Z. Similarly for the

second term.

If standard and effective splitting do not agree, then our matrix
(1 0
0 0

)
above must be replaced

by
( 1 0
0 F

)
, bringing forth extra terms such as E−ηU

( 0 0
0 F

)
Eη. But such terms are of order −∞

since F ∈ O(−∞) and E±η ∈ O(0). Hence they belong to Opψc−∞ ⊂ Opψc0. So, still, U�

remains as a ψdo in Opψc0.
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and this equation clearly is decoupled; we may write it as

(6.6.6) χ̇ + iH◦(t)χ = 0 with H◦ = T−ηtH̆Tηt − ηDx1 =
(

X◦ 0
0 Y ◦

)
,

where we have

(6.6.7.) X◦ = T−ηtX̆Tηt − ηDx1 , Y ◦ = T−ηtY̆ Tηt − ηDx1 .

In other words, we have

Proposition 6.6.1 The Dirac equation ψ̇ + iH̃(t)ψ = 0 with the x1-boost trans-
formed Hamiltonian H̃(t) of (6.1.14) is decoupled by the unitary ψdo U◦(t) of
(6.6.4).

Let us then look for the decoupling of the evolution operator UH̃(τ, t), already
evaluated in fla. (6.3.18). Clearly the evolution operator of the (decoupled) equa-
tion χ̇ + iH◦(t)χ = 0 is given by

(6.6.8) UH◦(τ, t) = U◦∗(t)UH̃(τ, t)U(τ) ,

as may be derived by an argument as used for (6.4.9).

Proposition 6.6.2 The graded algebra P̃(τ) for the (time-dependent) transformed
Hamiltonian H̃(t), in the sense of sec.5.2, is given by

(6.6.9) P̃(τ) = TητP ′ = {A ∈ Opψc : T−ητ ∈ P ′} .

Indeed, we may solve (6.6.8) for

(6.6.10) UH̃(0, t) = Tηt{U�(TηtUH◦(0, t))U�∗} ,

where the term (.) is decoupled so that the unitary ψdo {U�(.)U�∗} takes P ′ =
P̃(0) onto itself. Since P̃ = UH̃(0, t)P̃(0)U∗

H̃
(0, t), by (5.2.2), we indeed conclude

(6.6.9).

It then is clear that the remaining statements of thm.6.4.1. are falling into
place. In particular, conjugation by the (decoupled) unitary ψdo-s Z and T±ηt

leaves all the classes Opψcm (and also the class O(−∞)) invariant, so that indeed
the characterizations of P and P ′ proposed in thm.6.4.1 are equivalent, as well as
those of PX , PX ′ .

Thus thm.6.4.1 is established - except that we still need the proof of prop.6.5.3,
to be discussed in the section, below.

We might finish this section with some remarks:
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First we might point to fla. (6.6.4) which emphasizes the special kind of time-
dependence we have for our Hamiltonian H̃(t), obtained by using an x1-boost on a
time-independent Dirac Hamiltonian: The unitary ψdo decoupling it will depend
on time, but only through a time-dependent x1-translation.

Second, let us recall that our decoupling of H was not with respect to the
split H = H+ ⊕H− but with respect to (what we called) an “effective splitting”
- having a certain space Z shifted. If we now examine the splittings achieved by
our unitary ψdo-s U◦(t) then it must be noted that now the splitting will depend
on t, insofar as the space Z◦ to be shifted will depend on t.

6.7 A Complicated ODE with ψdo-Coefficients

In this section we want to generalize thm.1.5.2 so as to make it fit the ODE (6.5.21)
needed for the proof of thm.6.5.3.

Theorem 6.7.1 Given an initial-value problem of the form

(6.7.1)
dZ

dη
+i[x1, Zf(η,D)]+ix1Zc(η, x,D) = 0 , −1 < η < 1 , Z(0) = b(x,D) ,

for an unknown operator-valued function Z(η) taking values in O(m), for a given

fixed m ∈ R
2, with real-valued (scalar) f(η, ξ) = 1

1−η2 {
√

ξ2
1 + (1− η2)〈ξ̃〉2 + ηξ1},

and a coefficient symbol c(η, x, ξ) ∈ C∞(|η| < 1, ψc−e2) taking values in the class
of self-adjoint 4×4-matrices, modulo ψc−e−e2 . Also we assume that b(x, ξ) ∈ ψcm.

This problem admits a unique solution Z(η) belonging to C∞(|η| < 1, Opψcm).

We will attempt a proof along the lines of thm.1.5.2. Thus the first step will
be to assume existence of a solution of the form Z(η) = z(η, x,D) ∈ Opψc0, and
then write down (6.7.1) in terms of symbols:

(6.7.2) z|η + i
∞∑

j=1

(−i)j

j!
{x1, (zf)}j + ix1

∞∑

j=0

(−i)|ι|

ι!
z(ι)c(ι) = 0 .

In the first sum all terms vanish except for j = 1, where we get +i(zf)|ξ1 . In the
second sum we neglect all terms but the one for j = 0. We get

(6.7.3) z|η − (zf)|ξ1 − ix1zc = 0 (mod ψcm−e) ,

and will attempt to solve (6.7.3) as a sharp equation, not only mod ψc−e, with
initial value z(0, x, ξ) = b(x, ξ), just as suggested by (6.7.1). We must show then
that this solution z(η, x, ξ) exists in the “slab” |η| < 1, x, ξ ∈ R

3, and, moreover,
that it represents a symbol in C∞(|η| < 1, ψcm).
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Before we construct such z, let us discuss the iteration to follow: We will try to
improve on z by going with the Ansatz z +w (instead of z) into equ. (6.7.2), with
a correction symbol w ∈ ψcm−e. Assuming that z satisfies a sharp (6.7.3) with
initial value b, and neglecting terms of order m− 2e, we then get a new equation
for w, of the form

(6.7.4) w|s − (wf)|ξ1 − ix1wc = −z|ξc|x , w = 0 as s = 0 .

Comparing (6.7.3) and (6.7.4) one may observe that both equations are identical,
except that we have inhomogeneous initial condition but a homogeneous equation
in (6.7.3) but an inhomogeneous equation with homogeneous boundary condition
in (6.7.4) - but the corresponding homogeneous equation is the same, in each case.

It also becomes clear that the equation of this type arising in any of the further
improvements again will be of the form (6.7.4) with zero-initial condition and more
and more complicated right hand side, determined by the earlier iterations.

This simplifies matters, insofar as there is only one first order PDE-initial value
problem to be considered.

In (6.7.3) we consider x = (x1, x2, x3) and ξ2, ξ3 as constant parameters and
regard only η amd ξ1 as variables. We then have a first order PDE in two variables
η, ξ1 of the form

(6.7.5) z|η − fz|ξ1 = zc̆ , with c̆ = f|ξ1 + ix1c ,

where f assumes real (scalar) values, although the coefficient c̆ assumes matrix
values. Still, we may apply the standard technique used before: For any curve
ξ1 = ξ1(η) with ξ1(η) solving the ODE

(6.7.6) ξ̇1 = ξ1|η = −f(η, ξ1) ,

the (matrix-valued) function z̃(η) = z(η, ξ1) satisfies the ODE

(6.7.7)
dz̃

dη
= z̃c̃ with c̃(η) = c̆(η, ξ1(η)) .

Under our assumptions the solution curves of the ODE (6.7.4) cover the entire
{(η, ξ1) : |η| < 1, ξ1 ∈ R}: One curve through each point, and for all x, ξ2, ξ3.
Thus we get a unique solution z(η, x, ξ) of (6.7.3), with initial values b(x, ξ) at
s = 0, defined in |s| < 1. The point again is that we must show z(η, x, ξ) to be a
symbol.

Actually, the solution ξ1(η, ξ0
1) of the ODE (6.7.6) through the point (0, ξ0

1)
may be explicitly calculated. We get18

(6.7.8) ξ1(η, ξ0
1) =

√
1− η2{〈(ξ0

1 , ξ̃)〉 sinh(log
√

1− η

1 + η
) + ξ0

1 cosh(log
√

1− η

1 + η
)} .
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Moreover, it also is easy to calculate explicitly the inverse function ξ0
1 = ξ0

1(η, ξ1)
- keeping η fixed. We get
(6.7.9)

ξ0
1 =

1√
1− η2

{ξ1 cosh(log
√

1− η

1 + η
)−

√
ξ2
1 + (1− η2)〈ξ̃〉2 sinh(log

√
1− η

1 + η
)} .

We now can get control of the task regarding solving (6.7.3) or (6.7.4) by
verifying

Proposition 6.7.2 Let the functions of (6.7.8) and (6.7.9) be denoted by ξ1 =
υ(η, ξ0

1 , σ) and ξ0
1 = θ(η, ξ,σ), respectively, with σ = 〈ξ̃〉. Then, for each fixed

|η| < 1 the two transformations of variables

(6.7.10) Υη : a(x, ξ) → a(x, υ(η, ξ1, 〈ξ̃〉), ξ̃)

and

(6.7.11) Θη : a(x, ξ) → a(x, θ(η, ξ1, 〈ξ̃〉), ξ̃)

take the symbol classes ψcm onto themselves. Moreover, the maps aη = a(η, x, ξ) →
Υηaη and aη → Θηaη even take C∞(|η| < 1, ψcm)→ C∞(|η| < 1, ψcm).

The proof is a matter of differential calculus and proper use of estimates (1.2.2).
[See also [Co5], sec.9.2, and [Co2].]

Now the map Υη takes (6.7.3) into (6.7.7) as we have seen, where now prop.6.7.2
implies that c̃ = Υη c̆ ∈ ψc0 while z̃ = Υηz. We must show that z̃ ∈ ψcm. Then
z = Θη z̃ ∈ ψcm as well, again by prop.6.7.2, and we have obtained the desired
symbol property for the first approximation z. Very similarly one will handle all
further approximations, looking at (6.7.4), leading into an inhomogeneous linear
first order ODE with vanishing initial conditions.

18We may verify (6.7.8) directly: Clearly we get ξ1 = ξ0
1 as η = 0. Notice that (6.7.8) may be

rewritten as

ξ1 =
√

1 − η2〈ξ̃〉 sinh{log 1 − η

1 + η
+ γ} where sinh γ =

ξ0
1

〈ξ̃〉
.

Rewrite this as

sinh−1{ ξ1

〈ξ̃〉
√

1 − η2
} = log

√
1 − η

1 + η
+ γ

and differentiate for η. We get
√

1 − η2

√
ξ2
1 + (1 − η2)〈ξ̃〉2

{ ξ1√
1 − η2

}|η = − 1

1 − η2
.

This coincides with our ODE (6.7.6).
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However, solving equ. (6.7.7) with a symbol z̃ is just a matter of prop.1.5.3.
Thus, indeed, solving equ. (6.7.1) mod(O(−∞)) is accomplished.

Finally we must find an operator V ∈ C∞(|η| < 1,O(−∞)) solving the ODE-
initial-value problem

(6.7.12)
dV

dη
+ i[x1, V f(η,D)] + ix1V c(η, x,D) = G(η) , |η| < 1 , V (0) = 0 ,

with a given G(η) ∈ C∞(|η| < 1,O(−∞)).
Let us transform this equation a bit: First note that the function f(ξ) does

never vanish, and that

(6.7.13) g(ξ) = 1/f(ξ) =
1
〈ξ〉2 (

√
ξ2
1 + (1− η2)〈ξ̃〉2 − ηξ1)

belongs to ψc−e1 . Furthermore, we also have

(6.7.14) g|η = − 1
〈ξ〉2 (ξ1 +

η〈ξ̃〉2√
ξ2
1 + (1− η2)〈ξ̃〉2

) ∈ ψc−e1 .

In (6.7.12) introduce the operator K = V f(D) - i.e., set V = Kg(D) , V|η =
K|ηg(D) + Kg|η(D). Right-multiply by f(D), and get
(6.7.15)
∂K

∂η
+K

g|η
g

(D)+ i[x1,K]f(D)+ ix1Kg(D)c(x,D)f(D) = Gf(D) = L ∈ O(−∞) .

Write x1Kg(D)c(x,D)f(D) = K(x1g(D)c(x,D)f(D))+[x1,K](g(D)c(x,D)f(D)),
then (6.7.15) assumes the form

(6.7.16)
∂K

∂η
+ i[x1,K](f(D) + g(D)c(x,D)f(D))

+K(
g|η
g

(D) + ix1g(D)c(x,D)f(D)) = Gf(D) .

Clearly, equ. (6.7.16) is of the form

(6.7.17)
∂K

∂η
+ i[x1,K]A + KB = L ,

with ψdo-s A ∈ Opψce1 , B ∈ Opψc0, and given L ∈ O(−∞).
Now - since we expect a solution K ∈ O(−∞), which is an integral operator

with kernel k(x, y) in S(R6), by prop.1.4.6 - let us interpret equ.(6.7.17) as an
equation for the kernel k(x, y) of K. If C is any ψdo , then CK and KC have
the kernels (Cxk)(x, y) and (C̄y∗k)(x, y), respectively, where the superscripts x, y
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indicate that the operator is to be applied to the x- or y-variable, respectively.
With this convention equ.(6.7.17) assumes the form

(6.7.18)
∂k

∂η
+ i(x1Ā

y∗ − Āy∗y1)k + B̄y∗k = l .

Now, one finds at once that equ. (6.7.18) is a symmetric hyperbolic system of
pseudodifferential equations of type e in the 6 variables (x,y), in the sense of
[C5],ch.6. In particular we must use that the symbol of A is hermitian symmetric
modulo lower order, and also that the commutator [x1, A] is of order 0. Thus,
using the fact that the evolution operator of such an equation is an operator of
order 0, it follows at once that the solution of (6.7.18) (with initial-value 0) exists,
and belongs to S(R6). In other words existence of the solution of the initial-value
problem (6.7.1) and the symbol property of the solution is established.

Moreover, we then also get uniqueness of that solution: A transformation of
(6.7.1) to equ. (6.7.18) (with l = 0) works in general – not only for solutions
in O(−∞) , except that then the kernel k is a distribution kernel belonging to
S ′(R6) = ∪Hs(R6). Any solution of (6.7.1) with initial-value Z(0) = 0 , and
Z(t) ∈ C∞(|η| < 1,O(m)) thus must vanish identically, implying uniqueness of
the solution of (6.7.1). Q.E.D.

6.8 Integral Kernels of ei|D|t , ei
√

1−∆t and eiH0t

We were involved in the action of conjugation by eiHt (or the evolution operator
U(τ, t) of (1.0.1)) throughout this book, but avoided discussing these operators
explicitly, so far - except that we now were forced into a closer study, within the
present chapter. Let us thus take this final occasion to discuss these operators as
(highly singular) integral operators, although this will not be used anywhere here.

Note, the integral kernels of ei|D|t and ei
√

1+D2t are distribution kernels - i.e.,
Schwartz kernels. They are given as inverse Fourier transforms (2π)−3/2k∨(|x−y|)
where k(ξ) = ei|ξ|t or else = eit

√
1+ξ2 , respectively. Since k is radially symmetric,

in each case, the inverse Fourier transforms are Hankel transforms: For a function
f(x) = ω(|x|) we have f∧(ξ) = f∨(ξ) = χ(|ξ|) with

(6.8.1) χ(r) =
1
r

∫ ∞

0

√
rρJ 1

2
(rρ)ρω(ρ)dρ ,

with the Bessel function J 1
2
(z) =

√
2

πz sin z - [for half-numbers ν = j + 1
2 Bessel

functions are expressible by trigonometric functions; cf. [MO],p.27 or [MOS], p.73].
For formula (6.8.1) cf. [Co5], p.22, for example, where the dimension n equals 3.
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Thus we get,

(6.8.2) χ(r) =

√
2
π

1
r

∫ ∞

0

ρ sin(rρ)ω(ρ)dρ .

Here we may substitute ω(ρ), as supplied - noting that these integrals will diverge,
but should be ok as distribution integrals.

Incidentally, note that we may write � = ∂2
t −∆ = (∂t + i|D|)(∂t − i|D|) and

� + 1 = (∂t + i〈D〉)(∂t − i〈D〉), which explains why the operators ei|D|t, ei〈D〉t are
related to the initial-value problems of the wave operator � and the Klein-Gordon
operator � + 1, as discussed in ch. 0 of [Co5].

In our case we have ω(r) = eitr, or else , ω(r) = eit
√

1+r2 , but we might as well
then also look at ωγ(r) = eit

√
γ2+r2

, 0 ≤ γ ≤ 1, connecting the two above ω.
Of course, the integral (6.8.2) diverges, as improper Riemann integral, and

formula (6.8.1) is valid only for L1(R3)-functions, strictly speaking.
The simplest case happens for γ = 0 where we must make sense of the integral

(6.8.3)
∫ ∞

0

ρdρ sin(rρ)eitρ .

We do this by writing

(6.8.4) χ(r) = −
√

2
π

1
r
∂2

t {
∫ ∞

0

dρ

ρ
eitρ sin rρ} ,

where now the integral exists as improper Riemann integral, while we interpret
the derivative ∂2

t as a distribution derivative.
Focus on the integral in (6.8.4), called I, for a moment: I = 1

2i

∫ ∞
0

dρ
ρ (eiρ(t+r)−

eiρ(t−r)) = 1
2i{I1 + iI2}, with

(6.8.5)

I1 =
∫ ∞

0

(cos(t+r)ρ−cos |t−r|ρ)
dρ

ρ
, I2 =

∫ ∞

0

(sin(t+r)ρ−sgn(t−r) sin |t−r|ρ)
dρ

ρ
.

We may split the integral I2 and make a substitution of variable, for

(6.8.6) I2 =
π

2
(1− sgn(t− r)) = −πH(r − t) ,

with the Heaviside function H(τ) = 1 as τ > 0 , = 0 , as τ < 0. On the other
hand, write I1 = limε→0

∫ ∞
ε

= lim(I3,ε − I4,ε), and then make similar integral
substitutions in Ij,ε , j = 3, 4. Get I1 = − limε→0

∫ r+t

|r−t| cos(τε)dτ
τ . Or,

(6.8.7) I1 = − log
t + r

|t− r| .

Alltogether, we get
(6.8.8)

(2π)−3/2χ(r)=
1

4πr
∂2

t {H(r−t)+
i

π
log | t− r

t + r
|} =− 1

4πr
∂t{δ(t−r)+

2ir

π
p.v.

1
r2 − t2

}.
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Let us remind of the fact that ∂t in (6.8.8) is a distribution derivative. So, (6.8.8)
will contain a derivative of a delta-function, and of a “principal value”, both
holding singularities at r = t.

Now let us try to do the same or similar things for the operator ei〈D〉γt , with
〈D〉γ =

√
γ2 + D2.

Formula (6.8.2) now may be written in the form

(6.8.9) χ(r) = −i

√
2
π

1
r
∂t

∫ ∞

0

sin(rρ)eit〈ρ〉γ
ρ

〈ρ〉γ
dρ ,

with 〈ρ〉γ =
√

γ2 + ρ2. We choose this form (with only a first derivative ∂t) in spite
of the fact that the integral

∫ ∞
0

still is a distribution integral, because a formula due
to Sonine and Gegenbauer may be used to evaluate it [cf. [MO], p.53, first formula
, or else, [MOS], p.104, 4-th fla., where we set µ = ν = 1

2 , a = t , b = r , x = γ ,
and the integration variable now will be called ρ .] We also use the formulas

J 1
2
(z) =

√
2

πz sin z , H
(1)
1
2

(z) = −i
√

2
πz eiz , and that K−1 = K1 , H

(1)
−1 = −H

(1)
1 .

Furthermore, we took the complex conjugate of the formula in [MO] and [MOS],
and use that K1 is real and that the complex conjugate of H

(2)
1 is H

(1)
1 , for real

argument. From (6.8.9) we get

(6.8.10) χ(r) =
−i√

r
∂t{

∫ ∞

0

dρ(
√

2
πrρ

sin(rρ))(
eit〈ρ〉γ

√
t〈ρ〉γ

)ρ3/2〈ρ〉−1/2
γ

√
t}

= −
√

π

2r
∂t{t1/2

∫ ∞

0

dρJ 1
2
(rρ)H(1)

1
2

(t〈ρ〉γ)ρ3/2〈ρ〉−1/2
γ } .

Applying Sonine-Gegenbauer the integral assumes the form

(6.8.11a)
∫ ∞

0

= −(
r

t
)

1
2

γ√
t2 − r2

H
(1)
1 (γ

√
t2 − r2) , as r < t ,

and

(6.8.11b) =
2i

π
(
r

t
)

1
2

γ√
r2 − t2

K1(γ
√

r2 − t2) , as r > t .

Therefore

(6.8.12a) (2π)−3/2χ(r) = − γ

4π
∂t{

H
(1)
1 (γ

√
t2 − r2)√

t2 − r2
} as r < t ,

and

(6.8.12b) (2π)−3/2χ(r) =
iγ

2π2
∂t{

K1(γ
√

r2 − t2)√
r2 − t2

} as r > t .

We need not to mention that Jν , H
(j)
ν , Kν denote the well known (modified)

Bessel functions, and that ∂t in (6.8.9) denotes the distribution derivative. The
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integral in (6.8.9) defines a distribution we evaluated only for r �= t, as a C∞-
function there, while no statement was made for the singularity r = t.

Note that we have

(6.8.13) limz→0zH
(1)
1 (z) = −2i

π
, limz→0zK1(z) = 1 ,

with limit taken over z > 0. So, in the limit, as γ → 0, we get

(6.8.14) (2π)−3/2χ(r) → − i

2π2
∂t{

1
r2 − t2

} as t �= r ,

as γ tends to 0, in agreement with (6.8.8). Note, that only the imaginary part
appears, since the real part has its support at t = r. One finds that this (singular)
real part does not change with γ. Accordingly, for γ = 1, with the function

(6.8.15a) λ(r, t) = r
H

(1)
1 (
√

t2 − r2)√
t2 − r2

, r < t ,

and

(6.8.15b) λ(r, t) =
2ir

π

K1(
√

r2 − t2)√
r2 − t2

, t < r .

we arrive at the formula (for the integral kernel of ei〈D〉t)
(6.8.16)

k(x, y) = (2π)−3/2χ(|x− y|) =
1

4π|x− y|∂t{δ(t− |x− y|) + p.v.λ(t, |x− y|)} ,

where it may be readily checked (along (6.8.13)) that the principal value of the
function λ(t, |x− y|) (along the “singular sphere” |x− y| = t) exists.

Let us only then write down the final formula for the operators: In each of the
two cases we will have
(6.8.17)

ei|D|tu(x) =
∫

dyk0(x, y)u(y)dy , ei〈D〉tu(x) =
∫

dyk1(x, y)u(y)dy , u ∈ S ,

with distribution integrals, where k0 and k1 are formed as in (6.8.16), using the
functions χ of (6.8.8) and (6.8.16), respectively.

Since we now control the operator ei〈D〉t, and, of course, then also the operator
e−i〈D〉t (by taking proper complex conjugates), we then may construct the operator
eiH0t as well, with the field free Dirac operator H0 = α.D + β, using the unitary
diagonalization discussed in sec.3.1 - note that the unitary operator U there is a
ψdo of order 0. Its symbol is given explicitly by fla. (3.1.5), and it may be recalled
that the operators S0 , S all can be explicitly expressed with integral kernels built
from modified Hankel functions. The factor 1√

2+2S0
is inessential, by the way. If
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we omit it, the operator U no longer will be unitary, but it will be bounded and
invertible, and it still will decouple H0: We will get U−1H0U =

(
Λ+ 0
0 Λ−

)
= Λ.)

For the evolution operator e−iH0t we then get

(6.8.18) e−iH0t = e−i〈D〉tP+ + ei〈D〉tP− ,

with P+ = U
(
1 0
0 0

)
U∗ , P− = U

(
0 0
0 1

)
U∗. [That is, in essence, P+ and P− may be

constructed, using the first two (last two) columns of the 4 × 4-matrix U , and,
again, the factor

√
1 + S0 may be dealt with similarly as in sec.4.4.]



Chapter 7

Spectral Theory of Precisely

Predictable Approximations

7.0 Introduction

In this chapter we will analyze the spectral theory of a few of our “precisely
predictable approximations” of dynamical observables, which are not precisely
predictable. Let us emphasize again: We are not attempting to redefine these
observables. The approximations only are good for calculating an “approximate
expectation value” for predicting outcome of a measurement of the observable in
question.

Note, the operators we consider are not really precisely predictable - they are
only results of the first (or second, or third) iteration of a process leading to a
precisely predictable approximation. Besides, they are not uniquely fixed.

Still, when we analyze their spectrum, we might be able to get an idea of
meaningfulness of the procedure offered in this book.

Hamiltonian will understand that we are approaching a huge task, requiring much
detailed work for a more complete covering. Here, at this level, we essentially will
focus on only two observables: location and electrostatic potential, perhaps with
relativistic mass in the background.

It turns out that we will run into a type of singular Sturm-Liouville problem
- after a suitable separation of variables - which seems not well studied, so far,
insofar as there is a “third singularity” of the ODE in question - inside the interval
of definition, where the equation is “non-elliptic” hence has distribution solutions
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which are not C∞ there.

The reader familiar with work on spectral theory of the (precisely predictable)
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We shall start this investigation with discussing a simple model problem, in
sec.7.1, involving a second order ODE. The principles developed there will be
applied in sec.7.2 to discuss the correction of the location observable we derived
in sec.4.3 [fla. (4.3.10)].

In sec.7.3 we then start with a discussion of the split H = M + V of the
(precisely predictable) total energy observable H = αD + β + V into “relativistic
mass” M = H0 = αD + β and electrostatic potential V. Here we assume A ≡ 0
and a radially symmetric V = V(|x|).

Note, the two summands M and V are not precisely predictable, while their
sum H belongs to PX . However, the symbols of V(r) and H0 commute with the
symbol of H. Therefore our approximation procedure of ch.’s 4 and 5 works. This
produces an (asymptotically convergent) infinite sequence A∼

j , j = 1, 2, ..., of
corrections, for A = V(r) or A = H0 with the limit A∼

∞ still needing a correction
OA of order −∞ such that A∼ = A∼

∞+OA belongs to PX . We can supply only the
initial (first two, or first 3) approximations A∼

1 , A∼
2 , below, and hope that they may

be used as a substitute for A∼. [By the way, for any “capped” Coulomb potential
the difference A∼−A∼

2 is of trace class, so that, by the Kato-Rosenblum theorem
[Ka1], ch.10 at least a statement about the absolutely continuous spectrum of A∼

can be made.]

We will study the precisely predictable correction Vcorr (of the first order)
for the electrostatic potential V derived in (4.3.13) - here called (V)∼. There
will be a corresponding corrected relativistic mass (M)∼ = (H0)∼ defined by the
(analogous) split H = (H0)∼ + (V(r))∼, we leave to a future investigation.

A more detailed investigation of the spectral theory of (V(r))∼ will fill the
remainder of this chapter. It turns out that the eigenvalue problem (V(r))∼ψ =
λψ may be reduced to an eigenvalue problem of a (4-th order system of) PDE-s,
of the form Au = λBu with (formally self-adjoint) partial differential operators
A,B, where, in addition, B is positive definite. One might recall the fact that,
for self-adjoint finite matrices A,B, such problems possess a basis of eigenvectors,
orthonormal with respect to the inner product 〈u, v〉◦ = u∗Bv. Correspondingly,
the eigenvalue problem of the operator (V(r))∼ will lead into a rather complete
Sturm-Liouville-type investigation of a self-adjoint 4-th order ×2-system of ODE-
s, again of the form Au = λBu, with differential operators A,B, B > 0, defined
over the half-line r > 0. This will use the radial symmetry of the problem, enabling
us to use exactly the kind of separation of variables also splitting the eigenvalue
problem of the Dirac operator H.

And again, there will be a point of non-ellipticity inside the interval of definition
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0 < r < ∞ (depending on the parameter λ), so that the model of sec.7.1 might
give some directives.

Interestingly again, and similar to the result of sec.7.2 for the location coor-
dinates, the first correction for the operator V(r) is unitarily equivalent to V(r)
itself - at least as far as the continuous spectrum is concerned, and by a unitary
transform which is a Wiener-Hopf-Cauchy type singular integral operator. Very
similar facts seem to emerge for (H0)∼, but we will postpone details to a later
occasion.

Clearly, such unitary transforms can become “effective” only if the electron
is close to the nucleus, since otherwise the operators V(r) and H0 undergo only
very small changes. When close to the nucleus one perhaps might offer (V(r))∼

and (H0)∼ as renormalized potential and kinetic energies, bearing on thoughts
leading to similar properties of the electron developed in quantum field theory.

It also might be interesting that the unitary transform we obtained again is a
pseudodifferential operator, at least in its separated form. Indeed, the Cauchy-type
singular integral operator U of (7.3.9) is a local (1-dimensional) ψdo, while the
operators of our algebras P and Opψc mentioned in (iii) above are 3-dimensional

Our theorem - in its separated form - is stated in sec.7.3. In order to be self-
contained we are discussing the required separation of variables in sec.7.4 [This is
the well known separation of variables of the Dirac operator for radially symmetric
potentials, discussed also in [So2] or [Th1], for example].

In sec.7.5 we give a summary of the various steps needed. In sec.7.6 and sec.7.7
we discuss the 3 singularities of our generalized singular Sturm-Liouville problem,
at the 3 points r = 0 , r = 1

λ , r = ∞. The first two are regular singularities,
while the last one, at ∞ requires a “Thomé-normal-series-treatment” of a special
kind, where we borrow some ideas from J.Horn [Ho1]. In sec.7.8 we finish our
proof, discussing a variety of technical facts. In sec’s 7.6-7.8 we are still omitting
straight-forward calculations, quoting only the results.

7.1 A Second Order Model Problem

We find it useful to explain our technique for handling a special class of singular
Sturm-Liouville problems with applications to Dirac Theory on hand of a model
problem, working in the Hilbert space H = L2(R) , R = {−∞ < x < ∞} on a
perturbation of the “location operator” u(x)→ xu(x), namely,
(7.1.1)

Lε = x + ε
1

1− ∂2
, ∂ = ∂/∂x ,

1
1− ∂2

u(x) =
1
2

∫ ∞

−∞
e−|x−y|u(y)dy , 0 ≤ ε ≤ 1 .
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Specifically we focus on ε = 0, where the unperturbed operator L0 = x has the
well known spectral decomposition induced by the “wave distributions” δ(x− λ),
and on ε = 1.

The eigenvalue problem Lεu = λu is related to the singular Sturm- Liouville
problem

(7.1.2) (1−∂)x(1+∂)v + εv = λ(1−∂2)v , v = (1+∂)−1u ∈ H1 = (1+∂)−1H ,

or,

(7.1.3) (1− ∂)(x− λ)(1 + ∂)v + εv = 0 .

For ε = 1 this will be the Bessel equation (with variable s = x− λ): s2v′′ + sv′ −
s2v = 0.

Note, the differential equation (7.1.3) has 3 singularities, now at 0,±∞. Sur-
prisingly there are 3 linearly independent global distribution solutions (instead of
2). Using the modified Hankel functions I0,K0 (cf.[MOS],p.66) we may explicitly
write them down as

(7.1.4) v1(s) = I0(s) , v2(s) = K0(|s|) , v3(s) = I0(s), s > 0, = 0, s ≤ 0 .

It is clear that only v2(s) = K0(|s|) will be L2 (with all derivatives) at ±∞
(both). Taking (1 + ∂) (with ∂=distribution derivative) we then get the “wave
distribution”1

(7.1.5) uλ(x) = (1+∂)K0(|x−λ|) = p.v.k(x−.) , k(s) = K0(|s|)+sgn(s)K1(|s|) ,

(that is, a distribution solution uλ of L1u = λu which is L2 at ±∞, and such that
the “eigenpackets”

(7.1.6) f(x) = p.v.

∫ ∞

−∞
k(x− λ)κ(λ)dλ , κ ∈ C∞

0 (R)

belong to H ).
Clearly there are no eigenfunctions - i.e., no nontrivial linear combination of

(7.1.4) can be in H1. One will expect an “orthogonality” of the form

(7.1.7) p.v.

∫ ∞

−∞
k(x− λ)k(x− µ)dx = 0 , λ �= µ

with that principal value well defined as λ �= µ.

1p.v.k(x − .) denotes the “principal value” distribution 〈p.v.k(x − .), ϕ〉 = p.v.
∫

k(x −
λ)ϕ(λ)dλ , ϕ ∈ S, with p.v.

∫
= limε→0

∫
|x−λ|>ε .
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Completeness of the absolutely continuous spectrum generated by (7.1.7) is a
matter of proving solvability of (7.1.6) for every f of a set dense inH. Again, (7.1.6)
is a singular convolution equation, equivalent to f∧(ξ) =

√
2πk∧(ξ)κ∧(ξ) with

Fourier transform “.∧”. Using that application of (1 + ∂) amounts to multiplying
the Fourier transform by (1 + iξ) one finds that κ∧ =

√
π
2

1+iξ√
1+ξ2

equation f∧(ξ) = πυ(ξ)κ∧(ξ) with υ(ξ) = 1+iξ√
1+ξ2

having |υ(ξ)| = 1, so that the

multiplication operator is unitary. Then, with g(x) = πκ(x) we get f∧ = υg∧,

with υ =
√

2
π k∧. Going back we get

(7.1.8) f = Ug , Ug(x) =
1
π

p.v.

∫ ∞

−∞
k(x− y)g(y)dy , U∗L1U = L0 ,

with k(s) of (7.1.5), where U is a unitary singular convolution operator, as a new
generalized Fourier integral transform. Completeness of the absolutely continuous
spectrum thus generated then is evident.

For ε = 0 we already have control of the spectral resolution, but we might
repeat the same chain of arguments - formally - to then get sv′′ + v′ +(1− s)v = 0
solved by e−s. Since one solution is known, two other distribution solutions may
be explicitly obtained. Only w(s) = e−s , s > 0 , = 0 , s < 0 will be L2 at ±∞
(both). This will give the (already known) wave distribution uλ(x) = δ(x − λ),
and the corresponding eigenpackets and(trivial) generalized Fourier expansion -
with the identity as Fourier transform.

For general 0 < ε < 1 we get the differential equation sv′′+v′+(1−ε−s)v = 0,
equivalent to the Whittaker equation (W): 4t2w′′ = (t2 − 4κt + 4µ2 − 1)w. [We
use [MO],Ch.VI,2 as a reference]. Let w(κ, µ, t) be any solution of (W). Then

(7.1.9) v(s) = s−
1
2 w(

1
2
(1− ε), 0, 2s)

solves our equation. In this case we again will get a 3-dimensional space of global
distribution solutions in (−∞,∞). From the solutions of (W) we pick the “Whit-
taker function” Wκ,0(z) , κ = 1

2 (1 − ε) as z > 0, but W−κ,0(−z) , as z < 0. In
other words, we select

(7.1.10) v(s) = pwc0(s)|s|−
1
2 Wκ(s),0(2|s|) , s ∈ R ,

with a piecewise constant function pwc0(s) = a± jumping only at 0, where κ(s) =
sgn(s)1

2 (1− ε). This solves for s �= 0 since w(−k, µ,−z) also solves (W).
The behaviour near ±∞ of the function (7.1.10) is determined by the asymp-

totic formulas on p.116 of [MO] (second last formula) [Note that derivatives again
may be expressed by Wλ,0 with good coefficients (cf.[MO],p.117)]. This makes

. So, we get the
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sure that (1 + ∂)v ∈ L2 near ±∞. The behaviour near s = 0 is determined by the
second formula on p.116 of [MO], giving

(7.1.11) v(s) = − a+

Γ( ε
2 )
{2C + ψ(

ε

2
) + log |2s|}+ h.p. , s > 0 ,

and

(7.1.12) v(s) = − a−
Γ(1− ε

2 )
{2C + ψ(1− ε

2
) + log |2s|}+ h.p. , s < 0 .

Here C ≈ 0.577 . . . denotes the Euler constant, and, ψ(z) = Γ′(z)/Γ(z). “h.p.”
stands for a term of the form p(s) + q(s) log |s| with power series p, q vanishing at
0.

Proposition 7.1.1 v(s) of (7.1.10) is a distribution solution of (7.1.3) if (and
only if) we choose the constants a± such that the logarithmic terms in (7.1.11)
and (7.1.12) bear the same constant factor.

Indeed, we then get v(s) = c1 log |s|+c2H(s)+v1(s) with the Heaviside function
H(s), and v1(s) = p(s) + q(s) log |s|, again with power series p, q, where still
q(0) = 0, coefficients jumping at 0, except p(0). We may write (7.1.3) in the form
(sv′)′ +(2κ−s)v = 0. Note that H ′(s) = δ(s), hence sH ′(s) ≡ 0. Also, (log |s|′) =
p.v.1s , hence s(log |s|)′ = 1 = const., and (s(log |s|)′)′ = 0. It follows that (sv′)′ =
(sv′

1)
′ ∈ L1

loc, as readily checked from the special form of v1. Accordingly we also
have (the distribution) z = (sv′)′ + (2κ − s)v ∈ L1

loc. But v solves the equation
for s �= 0. Accordingly z = 0 for s �= 0. Since z ∈ L1

loc it must be the zero
distribution, and hence v must be a global distribution solution. The converse is
evident, following the argument backward. Q.E.D.

From the proposition we derive the condition

(7.1.13) a− = −ε

2
Γ(− ε

2 )
Γ( ε

2 )
a+ .

This then will again give a solution v(s) independent of λ. Defining kε(s) =
(1 + ∂)v(s) we again get an orthogonal integral expansion of the above kind. This
time the integral expansion theorem if of the form

(7.1.14) f(x) =
∫ ∞

−∞
kε(x− λ)κ(λ)dλ , kε = cε

1δ(s) + cε
2p.v.

1
s

+ L1
loc ,

with certain constants cε
j (where kε ∈ L2 near ±∞). Explicitly we get (with

ψ = Γ′/Γ)

(7.1.15) cε
1 = − a+

Γ( ε
2 )
{ψ(

ε

2
)− ψ(−ε

2
)− 2

ε
} , cε

2 = − a+

Γ( ε
2 )

.
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First we confirm that cε
j are well defined in 0 ≤ ε ≤ 1, and that c0

2 = c1
1 = 0, in

agreement with earlier calculations. The orthogonality
∫ ∞
−∞ kε(x−λ)kε(x−µ)dx =

0 (with distribution integral) is readily confirmed, using symmetry of the operator
Lε. This implies that the convolution operator (kε∗)∗(kε∗) = (lε∗) must be of the
form lε = c2δ(x) with a constant c > 0. Then define Uε = 1

ckε∗ and get a unitary
operator again, diagonalizing Lε - i.e., U∗

ε LεUε = L0.

7.2 The Corrected Location Observable

We were confronted with problems of the above kind while trying to do a clean
quantum mechanics of the Dirac equation One may remember that Dirac’s equa-
tion - while doing an incredible job explaining the hydrogen spectral lines - was
attacked because of unexplainable contradictions and paradoxa with the theory of
its observables, not to speak of the infinite negative energy band.

At that time it seemed to be unknown (or was left without consideration)
that the Dirac equation - similar to other (semi-strictly hyperbolic) symmetric
hyperbolic first order systems - possesses an invariant algebra of observables [also
relativistically covariant], and that it perhaps should be imperative to admit only
the self-adjoint operators of that algebra - of course, this is our algebra P (or else
the algebra PX ) of ch.5 - as precisely predictable observables. Total energy
and total angular momentum are precisely predictable, but most other dynamical
observables are not precisely predictable - although most of them possess precisely

Transitions from “eletron states” to “positron states” seem to be “unpre-
dictable” - so that the negative energy band should not be a disturbance at all.

To come back to our above problem: We have set out to study the spectral
theory of precisely predictable approximations of special observables, such as lo-
cation, orbital angular momentum, electrostatic potential, relativistic mass and,
at that occasion, found that they may be treated with above method, to get a
unitary equivalence between the precisely predictable approximation and the orig-
inal observable, by a unitary map which is a pseudodifferential operator, similar
to above singular convolutions.

space H = L2(R3, C4), and consider the location operator x = (x1, x2, x3), i.e. the
3 multiplication operators u(x) → xju(x) , j = 1, 2, 3. These 3 operators are not
precisely predictable. But their precisely predictable approximations2 are given

2Actually, fla. (7.2.1) gives only first improvement of a list of infinitely many, where only the

predictable approximations.

Let us discuss the perhaps simplest of such problems. We now are in the Hilbert
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as3

(7.2.1) xcorr = x− 1
2

1
1−∆

(µ + ρ×D) ,

where “×” denotes the vector product, and with the 4 × 4-matrices ρ =
(
σ 0
0 σ

)

and4 µ =
(
0 σ
σ 0

)
- also D = 1

i ∂x and ∆ =
∑3

1 ∂2
xj

=Laplacian. [Also, we set the
electromagnetic potentials equal to 0 but allow an arbitrary electrostatic potential.]

Let us focus on the operator A1 representing the first coordinate

(7.2.2) A1 = xcorr
1 = x1 −

1
2

1
1−∆

(µ1 + ρ2D3 − ρ3D2) ,

In order to convert the equation A1u = λu into an ODE we apply the Fourier
transform with respect to the second and third variable, for

(7.2.3) B1 = F−1
2 F−1

3 A1F2F3 = x1 −
1
2

1
1 + ξ2

2 + ξ2
3 − ∂2

x1

(µ1 + ρ2ξ3 − ρ3ξ2) .

Here we realize that the operator B1 almost looks like Lε of section 7.1, except
that we have a self-adjoint matrix involved. Introduce a new independent variable
y = κx1, with κ =

√
1 + ξ2

2 + ξ2
3 . With that we get

(7.2.4) B1 =
1
κ
{y − 1

2
a(ξ2, ξ3)

1
1− ∂2

y

} ,

with the self-adjoint 4× 4-matrix

(7.2.5) a(ξ2, ξ3) =
1
κ

µ1 −
ξ2

κ
ρ3 +

ξ3

κ
ρ

Then it will be a matter of a principal axes transform of the matrix (7.2.5) to
generate exactly the operator (7.1.1) with −2ε = λ(ξ2, ξ3) =eigenvalue of a(ξ2, ξ3)
The unitary operator diagonalizing A1 then will be the inverse Fourier transform
(with respect to the two parameters ξ2, ξ3) of the unitary operator we obtained in
section 7.1. The detailed form of that operator will emerge if we get more details
about above diagonalization of the matrix a.

final result will really be precisely predictable. But this last operator is not explicitly accessible,

so, we hope, that a study of (7.2.1) will provide a hint in the right direction.
3Recall our physical dimensions: The unit of lenght is the Compton wave length of the electron

�/mc ≈ 3.861 × 10−13m . The unit of time is �/mc2 ≈ 1.287 × 10−21sec. The unit of energy is

mc2 ≈ 0.5MeV (cf. footnote 1 of ch.1).
4Recall our “Pauli matrices” σ = (σ1, σ2, σ3) of (3.1.6), where

σ1 =
(0 i

−i 0

)
, σ2 =

(0 1

1 0

)
, σ3 =

( 1 0

0 − 1

)
.

2 .
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Regarding the matrix a(ξ2, ξ3), note that

(7.2.6) µ2
1 = ρ2

2 = ρ2
3 = 1 , ρ1ρ2 + ρ2ρ1 = 0 , µ1ρj + ρjµ1 = 0 , j = 2, 3 .

This implies

(7.2.7) a2(ξ2, ξ3) = 1 ,

so that a(ξ2, ξ2) can only have the eigenvalues λ = ±1. Note that ρ2 has both
eigenvalues ±1 with multiplicity 2, each. For reason of continuity this must prevail
for all ξ2, ξ3.

In order to obtain a diagonalization of A1 = xcorr
1 we then will need an explicit

unitary 4× 4-matrix Φ = Φ(ξ�) (with ξ� = (ξ2, ξ3)) such that

(7.2.8) Φ∗(ξ�)a(ξ�)Φ(ξ�) = diag(1, 1,−1,−1) .

To solve that eigenvalue problem we may write the 3 matrices occurring as tensor
products:

(7.2.9) µ1 = σ2 ⊗ σ1, ρ2 = 1⊗ σ2 , ρ3 = 1⊗ σ3 .

Then, looking for u solving

(7.2.10) a(ξ�)u = λu ,

let u = v± ⊗w with v± = 1√
2
( 1
±1) being one of the normalized eigenvectors of σ2.

Then (7.2.10) amounts to

(7.2.11) b(ξ�)w = (± 1
κ

σ1 +
ξ3

κ
σ2 −

ξ2

κ
σ3)w = λw ,

involving the matrix

(7.2.12) b(ξ�) =
1
κ

(
−ξ2 ξ3 ± i

ξ3 ∓ i ξ2

)
.

A calculation gives the following eigenvectors of b:

(7.2.13) For λ = 1 : w = w+ = (2κ(κ + ξ2))−
1
2 (ξ3±i

κ+ξ2
) = (2(1 + ζ2))−

1
2 (ζ3±iζ0

1+ζ2
) ,

and

(7.2.14) For λ = −1 : w = w− = (2κ(κ−ξ2))−
1
2 (ξ3±i

κ−ξ2
) = (2(1−ζ2))−

1
2 (ζ3±iζ0

1−ζ2
) ,

where we have written ζj = ξj

κ , j = 2, 3, and ζ0 = 1
κ =

√
1− ζ2

2 − ζ2
3 .
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In this way we end up with the orthonormal system

(7.2.15) (u1, u2) = (v+ ⊗ w+, v− ⊗ w+) for λ = 1 ,

(u3, u4) = (v+ ⊗ w−, v− ⊗ w−) for λ = −1 ,

and a desired unitary matrix is given as

(7.2.16) Φ(ξ�) = (u1, u2, u3, u4) .

Let us observe that the unitary matrix Φ(ξ�) of (7.2.16) has one shortcoming:
Considered as a function of ζ� = (ζ1, ζ2) in the disk |ζ�| ≤ 1 with ζ0 =

√
1− |z�|2

the components of Φ are bounded but some of them are discontinuous at ζ� =
(±1, 0). Actually the absolute values are continuous in the entire circle, but the
argument of some compoents of w± fails to be continuous there. However, using
that the eigenvectors w± are unique only up to a multiple of norm 1, this may
be cured locally by multiplying the discontinuous argument away. And, since the
unit disk is contractible, there also is a global cure, effected by multiplying w± by
a suitable function of norm 1.

Continuity of Φ(ζ�) becomes important when we return to the spectral the-
ory of the operator A1 by taking the inverse Fourier transform. Combining
(7.2.3),(7.2.4) and (7.2.8) we get

(7.2.17) (F �TκΦ�)∗A1(F �TκΦ�) =
1
κ

diag(L− 1
2
, L− 1

2
, L 1

2
, L 1

2
) ,

with F � = F2F3, and the (unitary) dilation operator

(7.2.18) (Tκu)(x1, ξ
�) =

√
κu(κx1, ξ

�) ,

and with L± 1
2

= Lε , ε = ± 1
2 of fla.(7.1.1). This operator will be diagonalized

with (the singular convolution operator) V = diag(U− 1
2
, U− 1

2
, U 1

2
, U 1

2
), using the

operator Uε introduced at the end of sec.7.1. Then we still must reverse the dilation
and the Fourier transform F �. So, we end up with

(7.2.19) W ∗xcorr
1 W = x1 , where W = F �TκΦ�T1/κF �∗ , W ∗W = WW ∗ = 1 .

It should be interesting to look at the detailed properties of the unitary operator
W , but we will not look at this here.

7.3 Electrostatic Potential and Relativistic Mass

Let us next analyze a precisely predictable approximation of the electrostatic po-
tential V(x).
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Again our Hilbert space is H = L2(R3, C4). Consider the multiplication oper-
ator u(x) → V(|x|)u(x) with5 V (r) = 1

r , and the (first order constant coefficient)
(4 × 4-matrix-) differential operator H0 =

∑3
1 αjDj + β . In the absence of elec-

tromagnetic fields our Dirac Hamiltonian - the (precisely predictable) total energy
observable then is of the form

(7.3.1) H = H0 + V(|x|) .

Note that H0,V(r) also represent dynamical observables of Dirac theory. They
represent relativistic mass, and potential (energy) of the particle. However, H0

and V(r) are not precisely predictable - but they have precisely predictable ap-
proximations we call (H0)∼ and (V(r))∼, respectively. Explicitly, we write6

(7.3.2)

(H0)∼ = H0−Λ−Λ∗ , (V(r))∼ = V(r) + Λ + Λ∗ , Λ = −1
4
E .(µ + ρ×D)

1
1−∆

,

with E = −grad V(|x|) and constant 4 × 4-matrices µ =
(
0 σ
σ 0

)
, ρ =

(
σ 0
0 σ

)
, where

σ = (σ1, σ2, σ3) are the 2× 2-Pauli matrices.

Note, we still have the split H = (H0)∼ + (V(r))∼, since the perturbations
cancel each other. Our point, making this new split, is that we claim that the new
energies (H0)∼ and (V(r))∼ can be predicted (in the sense of quantum mechanical
rules) while H0 and V(|x|) cannot. Yet, on superficial examination, the pertur-
bation Λ seems to be small, as |x| is large, due to E = O( 1

|x|2 ) and 1
1−∆ and D

1−∆

being bounded operators of H4. In that sense one may safely talk about potential
and kinetic energy, assuming the electron moves in its normal (hydrogen-) orbits,
but NOT SO if the electron is directly on the nucleus.

When we talk about spectral theory of the (unbounded self-adjoint) operators
A = (H0)∼ or A= (V(r))∼, we mean to study the eigenvalue problem Au = λu.
Formally, these eigenvalue problems may be reduced to the problem
(7.3.3)

(1−∆)H0(1−∆)v− 1
4
{(1−∆)E(µ+ρ×D)+(µ+ρ×D)E(1−∆)}v = λ(1−∆)2v

5Actually, we should use V(r) = − cf

r
with the fine structure constant cf ≈ 1

137
. But −cf is

a factor of V and of its perturbation (in (7.3.4)). It may be taken into the eigenvalue λ, saving

complications.
6Actually, Λ of (7.3.2) represents only the first of infinitely many corrections to be applied

to make these observables “precisely predictable”. We still control the next one, generated by

replacing Λ with Λ + Υ, where Υ = 3
8
i(E.D)(E.(µ + ρ × D)) H0

(1−∆)3
. These (higher order)

perturbations seem to generate very similar spectral theory, but lead to differential equations of

order 12 (or 13) - using only the Υ - perhaps too complicated for a detailed discussion.
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(for H0), and,
(7.3.4)

(1−∆)
1
r
(1−∆)v +

1
4
{(1−∆)E(µ+ρ×D)+ (µ+ρ×D)E(1−∆)}v = λ(1−∆)2v

(for V(r)). In each case we were setting u = (1−∆)v and multiplying the equation
by (1−∆).

In the form (7.3.3) or (7.3.4) we have an eigenvalue problem of the form
Au = λBu with self-adjoint differential operators A,B, and B = (1−∆)2 positive
definite. For finite matrices A,B this would be a self-adjoint problem with re-
spect to the inner product 〈u, v〉◦ = u∗Bv, and we then get a base of eigenvectors,
orthonormal with respect to that inner product.

The problems (7.3.3) and (7.3.4) involve (4 × 4-systems of) PDE-s of order 5
and 4, respectively. Fortunately the standard separation of variables applicable
to a Dirac operator H with rotationally invariant potentials may be applied for
(7.3.3) and (7.3.4) as well. We are going to discuss details of this separation in
sec.7.4, below. Looking at thm.7.4.1 , we are summarizing this conversion:

Proposition 7.3.1 Our Hilbert space splits: H = ⊕Hl,p,ε with l, p, ε as defined in
sec.7.4, where each Hilbert space Hl,p,ε coincides with the space H2 = L2(R+, C2),
so consists of 2-vector functions defined and squared integrable7 over the half-line
0 < r < ∞. Then problems (7.3.3) and (7.3.4) reduce to the (1-dimensional)
eigenvalue problems (7.3.5) and (7.3.6), below:

(7.3.5) {ZH0Z −GZ − ZG}v = λZ2v , v = Z−1u ,

and

(7.3.6) {ZV (r)Z + GZ + ZG}v = λZ2v , v = Z−1u ,

where (with the 2× 2-Pauli matrices of (3.1.6), cf. (7.4.50))

(7.3.7) H0 = −iσ1∂r +
κ

r
σ2 + σ3 .

(We use the same notation for the separated H0.) In (7.3.5) and (7.3.6) we used
the second order (2 × 2-matrix-) differential operator Z =

(
Z− 0
0 Z+

)
where8 Z± =

1+ κ(κ±1)
r2 −∂2

r , and the 2× 2-matrix multiplication G(r) = − cf

4r3 {1−σ3κ+ rσ2} .
Also, κ denotes a nonvanishing integer - separation parameter, determined by the
space Hl,p,ε -, and the Hilbert space is H2 = L2(R+, C2), mentionned above. The
perturbed operators now are

(7.3.8) (H0)∼ = H0 −GZ−1 − Z−1G , (V(r))∼ = V (|x|) + GZ−1 + Z−1G .

7Note, also a change rv = w of dependent variable is involved, where we then return to the

notation v for w again.
8Actually, Z is the separated operator 1 − ∆.
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This proposition follows at once from thm.7.4.1, below.
It is clear then, that the spectral theory of our corrected operators will be a

“superposition” of the spectral theories of all the operators (7.3.8), so that we must
look at the “singular Sturm-Liouville problems” (7.3.5) and (7.3.6), involving only
ODE-s (instead of the PDE-s (7.3.3) and (7.3.4)).

In the remainder of this chapter we will focus on (V(r))∼, leaving (H0)∼ for a
later occasion. Notice that (7.3.6) is a 4-th order ordinary differential equation -
rather, a system of 2 ODE-s in 2 unknown functions. Such a system will lead into
a self-adjoint theory if we introduce the (Sobolev-type) Hilbert space K = Z−1H2

with norm ‖u‖2 = ‖Zu‖ and inner product 〈u, v〉2 = 〈Zu,Zv〉.

We then will attempt a diagonalization of the corrected potential (V(r))∼. We
focus on (V(r))∼ - that is, on the eigenvalue problem (7.3.6) - but expect the
same facts for the second correction discussed in sec.5.6, although the calculations
there were not fully carried through. Also, we work with the uncapped Coulomb
potential9 V(r) = − cf

r (saving some complications) although we pointed out that
our observable theory is rigorous only with a cap on the singularity at 0.

Theorem 7.3.2 For the eigenvalue problem (7.3.6), that is, for the radial part
of the corrected potential (V(r))∼, - after adding a suitable “self-adjoint boundary
condition” at 0 for certain (finitely many) values of the separation parameter κ -
the entire continuous spectrum is absolutely continuous. The continuous spectrum
extends (with multiplicity 2) over all of the positive real axis R+. It corresponds
to the subspace H2

ac of H2 = L2(R+, C2) defined as the image of a unitary map
U : L2(R+, C2) → H2

ac ⊂ H2 , where U is explicitly given as singular integral
operator of the form
(7.3.9)

Uu(r) = A(r)u(r)+p.v.

∫ ∞

0

B(ρ)u(ρ)
dρ

r − ρ
+

∫ ∞

0

C(r, ρ)u(ρ)dρ , u ∈ C∞
0 (R+, C2) ,

with smooth 2× 2-matrix functions A(ρ), B(ρ) ∈ C∞(R+) satisfying

(7.3.10) A(r)∗A(r)+π2B(r)∗B(r) = 1 , A(r)∗B(r)−B(r)∗A(r) = 0 for all r > 0,

and such that the 2× 4-matrix (A,B)(ρ) is of maximal rank 2, for all ρ > 0; also,
with C(., ρ) ∈ H2 for all ρ > 0, and smooth in ρ as well. The integral kernel of
(7.3.9), i.e.,

(7.3.11) A(r)δ(r − ρ) + B(ρ) p.v.
1

r − ρ
+ C(r, ρ) ,

9Our theory of precisely predictable observables so far is valid only for smooth potentials; so

we must modify V(r) in some small neighbourhood of 0, to make it smooth. We call that a

capped Coulomb potential.
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is of the form Zv, with a distribution solution v (in the variable r) of the differential
eqn. (7.3.6) with λ = 1

ρ , and the distribution kernel (7.3.11) is L2, both near 0
and near ∞.

The operator U , as a map H2 → H2, is an isometry with range H2
ac, and we

have10.

(7.3.12) U∗U = 1 , U∗(V (r))∼U =
1
r

= V (r) .

In other words, the unitary U transforms the corrected potential (V(r))∼ into
the unperturbed V(r).

In the negative real axis we at most have discrete spectrum.

A discussion of the proof of the above theorem, and its link to the PDE-
eigenvalue problem (7.3.4), will fill the remainder of this chapter. Especially we
thought it necessary to give a detailed discussion of the separation of variables in-
volved, although this is the standard separation of variables used for Dirac Hamil-
tonians with rotationally symmetric potentials.

This again is an eigenvalue problem with the “third singularity” of sec.7.1,
but with many more complications appearing underway. Actually the standard
methods of treating singular eigenvalue problems involving ODE-s come into play,
but with very large technical difficulties, due to the fact, that this is a 4-th order
problem, involving 2× 2-systems.

7.4 Separation of Variables in Spherical

Coordinates

We will discuss the well known separation of variables for a Dirac equation with
potentials depending on r = |x| only. Here we are leaning on [So2] or [Th1].

We introduce spherical coordinates in R
3:

(7.4.1) x1 = r sin θ cos ϕ , x2 = r sin θ sin ϕ , x3 = r cos θ ,

where 0 ≤ r <∞ , 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π. Inverted get

(7.4.2) r = |x| , θ = arctan
x3√

x2
1 + x2

2

, ϕ = arctan
x2

x1
.

10Note, this theorem does not make statements about completeness of the continuous spectrum

addressed, nor does it discuss a possible point spectrum - or even a possibly dense domain of the

operators (V(r))∼j In the proof we just will gather information about wave distributions, using

well known techniques about singularities of ODE-s, and construct the unitary singular integral

operator (7.3.9).
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We get ∂x = (∂x1 , ∂x2 , ∂x3)
T in the form

(7.4.3) ∂x =




sin θ cos ϕ

sin θ sinϕ

cos θ



 ∂r+
1
r




cos θ cos ϕ

cos θ sinϕ

− sin θ



 ∂θ+
1

r sin θ




− sin ϕ

cos ϕ

0



 ∂ϕ ,

er eθ eϕ

Note, the 3 unit vectors er , eθ , eϕ, at right, satisfy er = x
|x| , eθ = ∂θer , eϕ =

1
sin θ ∂ϕer , as well as

(7.4.4) er × eθ = eϕ , eθ × eϕ = er , eϕ × er = eθ .

Formula (7.4.3) may be rewritten as

(7.4.3′) ∂x = er∂r +
1
r
eθ∂θ +

1
r sin θ

eϕ∂ϕ .

In Diracs theory the orbital angular momenta L , the spin S , and the total angular
momentum J are defined as

(7.4.5) L = −ix× ∂x , S =
1
2
ρ , J = L + S ,

with ρ =
(
σ 0
0 σ

)
. Using er × er = 0 , er × eθ = eϕ, , er × eϕ = −eθ , x = rer , and

use of (7.4.3’) gives

(7.4.6) L = −ieϕ∂θ +
i

sin θ
eθ∂ϕ ,

and a calculation yields

(7.4.7) L2 = − 1
sin θ

∂θ(sin θ ∂θ)−
1

sin2 θ
∂2

ϕ .

Note that −L2 coincides with the Beltrami-Laplace operator on the unit sphere.
In particular, the Laplace operator ∆ =

∑3
1 ∂2

xj
of R

3 admits the form

(7.4.8) ∆ = ∂2
r +

2
r
∂r −

1
r2

L2 =
1
r2
{∂rr

2∂r − L2} .

From (7.4.3’),(7.4.4) and (7.4.6) we get

(7.4.9) −i∂x = −ier∂r −
1
r
(er × L).

The important point for this separation is that the total angular momentum

(7.4.10) J =
1
2
ρ +

i

sin θ
eθ∂ϕ − ieϕ∂θ
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commutes with the free Dirac operator11H0 - and also, of course, with any scalar
potential V(r) = V(|x|) , depending on r = |x| only.

Constructing H0 in spherical coordinates we first focus on −iα∂x. Here use
the identity

(7.4.11) (aσ)(bσ) = a · b + ia× b · σ3 ,

valid for the Pauli matrices σ = (σ1, σ2, σ3) and any pair a, b, of 3-vectors. Simi-
larly, if a.b = 0, we conclude that (for α =

(
0 iσ

−iσ 0

)
of (3.1.7)), we get

(7.4.12) α(a× b) = −i(αa)(ρb) .

Using (7.4.9) and (7.4.12) get −iα∂x = −i(αer)∂r + i
r (αer)(ρL), hence

(7.4.13) H0 = −iα∂x + β = −i(αer){∂r −
1
r
(ρL)}+ β .

With a potential V(r) then H assumes the form

(7.4.14) H = −i(αer){∂r −
1
r
(ρL)}+ β + V(r) .

In (7.4.14) we still replace the term (ρL) by

(7.4.15) K = β(ρL + 1) ,

called the spin-orbit operator. Clearly ρL = βK − 1 , hence

(7.4.16) H = −i(αer){∂r +
1
r
− 1

r
βK}+ β + V(r) .

Notice, K has the matrix form

(7.4.17) K =
(

K0 0
0 −K0

)
, K0 = σL + 1 ,

where the 2 × 2-matrix K0 depends on angular variables θ , ϕ only. We have
J2 = (L + 1

2ρ)2 = L2 + ρL + 3
4 = L2 + βK − 1

4 . So,

(7.4.18) K = β(J2 − L2 +
1
4
) .

Note, the matrix (7.4.17) K commutes with β.
Regarding our separation of variables in spherical coordinates: Note, the 3

operators J2 , J3 , K all commute with each other; they act only on angular
11For the first component L1 of L (of 7.4.5)) one finds [L1, H0] = α2∂x3 − α3∂x2 . Also,

[ρ1, H0] = −i[ρ1, α2]∂x2 − i[ρ1, α3]∂x3 , where [ρ1, α2] = −2iα3 , [ρ1, α3] = 2iα2, using that

σ1σ2 = iσ3 . . .. So, we get [J1, H0] = 0. Similarly for the other components.
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coordinates, and hence may be regarded as operators on the sphere S
3 = {|x| = 1}.

Actually, they are self-adjoint operators there, in proper domains, and they have
a joint orthonormal base of eigenvectors12 in the Hilbert space L2(S3, C4).

Moreover, the (matrix-)multiplication operator αer also depends on θ , ϕ only,
and it also commutes with J2 , J3 , K, and so does the constant matrix β. But,
of course, αer and β do not commute - they anti-commute.13

Let us then focus on some joint eigenvector ψ of the 3 operators J2 , J3 , K,
on the sphere. The simplest of the 3 operators will be J3 = −i∂ϕ + 1

2ρ3, by (7.4.3),
(7.4.6), (7.4.10). So, we get J3ψ = mψ , with some real m. But ρ3 =

(
σ3 0
0 σ3

)

where (our) σ3 =
(

1 0
0−1

)
. So 1

2ρ3 −m is a diagonal matrix with diagonal elements
equal to −m± 1

2 . The solution exp i(m− 1
2ρ3)ϕ of the eigenvalue equation can be

continuous on S
3 only if m ± 1

2 is an integer. That is, m must be a half-number :
m = ± 1

2 ,± 3
2 ,± 5

2 , ... Then, however, we get the four components ψj all in the form

(7.4.19) ψj = cj(θ)ei(m∓ 1
2 )ϕ ,

with “-” for j = 1, 3 , and “+” for j = 2, 4.
For our joint eigenvector ψ we then have

(7.4.20) J2ψ = υψ , J3ψ = mψ , Kψ = κψ ,

12The operator J2 is self-adjoint and elliptic, on the compact manifold S
3, because its (scalar-

valued) principal part equals the negative Laplace operator L2 on S
3. Accordingly, J2 has discrete

spectrum. All its eigenspaces are finite dimensional subspaces of C∞(S3, C
4), left invariant by

the operators J3 , K. By theory of commuting self-adjoint operators in a finite dimensional

space every eigenspace of J2 is spanned by an orthonormal base of joint eigenvectors of the 3

operators. These bases may be united for an orthonormal base of L2(S3, C
4), consisting of joint

eigenfunctions of the 3 operators.
13We trivially get [J3, J2] = [J3, βK], looking at (7.4.18). In the UL-corner of this commutator

matrix we get [J3, σ1L1 + σ2L2], evaluating to 0, using the standard commutator relations for

[σj , σl] and [Lj , Ll]. Similarly for the LR-corner. So, [J3, J2] = 0. This also implies [J3, K] = 0,

using (7.4.18), since J3, K both commute with β. Furthermore, [J2, K] = [L2, K], by (7.4.18)

again. Again look at the UL-(and LR-)corner(s) only to verify that the commutator vanishes. A

similar calculation, finally, shows that also [αer, K] = 0. The latter implies that [αer, J2] = 0,

again using the commutator relations (7.4.28) for [Lj , Ll].

Let us prove [αer, J3] = 0: First look at J3 = −i∂ϕ + 1
2
ρ3 =

(τ 0
0 τ

)
, τ = −i∂ϕ + 1

2
σ3. and,

αer =
( 0 iσer
−iσer 0

)
=

( 0 iν
−iν 0

)
ν = σer. So, J3 is ψ−diagonal, and, the commutator equals

[αer, J3] =
( 0 i[τ,ν]
−i[τ,ν] 0

)
. So, let’s get [τ, ν]: Recall, σ3 =

( 1 0
0−1

)
, σ1 =

( 0 i
−i 0

)
, σ2 =

(0 1
1 0

)
, so

that, with er of (7.4.3),

ν = σer =
( cos θ ie−iϕ sin θ

−ieiϕ sin θ − cos θ

)
.

Get [∂ϕ, ν] = [∂ϕ, σer] =
( 0 e−iϕ sin θ

eiϕ sin θ 0

)
=

(0 ζ̄
ζ 0

)
, ζ = eiϕ sin θ. Also, [σ3,

(a b
c d

)
] = 2

( 0 b
−c 0

)
, hence,

1
2
[σ3, ν] = i

( 0 ζ̄
ζ 0

)
. It follows that [τ, ν] = −i[∂ϕ, ν] + 1

2
[σ3, ν] = 0. So, indeed, (αer) commutes

with J3.
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with reals υ , κ, and a half-number m. Using formula (7.4.18) we then get κψ =
β(υψ − L2ψ + 1

4ψ). That is,

(7.4.21) L2ψ = {(υ +
1
4
)− βκ}ψ

for the scalar differential operator L2 = −∆S . Writing ψ = (ψ+
ψ−

) we find that
(7.4.21) amounts to

(7.4.22) L2ψ+ = (υ − κ +
1
4
)ψ+ , L2ψ− = (υ + κ +

1
4
)ψ− .

But we know all the eigenfunctions of L2 = −∆S : They are the spherical harmonics
Y l

p(θ, ϕ) , where l = 0, 1, ..., , p = 0,±1, ...,±l. The corresponding eigenvalue is
λl = l(l + 1). Organized as a suitable orthonormal base of L2(S3) we may use the
functions (cf. [Mu], p.50)

(7.4.23) Y l
p (θ, ϕ) = clpe

ipϕP
|p|
l (cos θ) ,

with certain normalization constants clp, and with the associated Legendre func-
tions

(7.4.24) P k
l (x) = (−1)k 1

2ll!
(1− x2)k/2∂k+l

x (x2 − 1)l , k = 0, ..., l .

We choose the clp as

(7.4.25) clp =

√
2l + 1

4π

(l − |p|)!
(l + |p|)! ,

then we have a complete orthonormal system of L2(S3).
Since J2, J3,K commute with β they also commute with (1± β). Conclusion:

With ψ = (ψ+
ψ−

) also the two vectors (ψ+
0 ) and (0ψ−

) are simultaneous eigenvectors

of the 3 operators. Thus we may assume that either ψ = (ψ+
0 ) or ψ = (0ψ−

), and

even our joint orthonormal base may be assumed to consist of vectors (ψ+
0 ) and

(0ψ−
) as well.
Moreover, looking at the multiplication operator αer(θ, ϕ) we get

(7.4.26) (αer)(
ψ+
0 ) = −i(σer)(0ψ+

) , (αer)(0ψ−) = i(σer)(
ψ−
0 ) .

Notice, the 4×4−matrix αer is unitary and self-adjoint (i.e., a symmetry), as well
as the 2×2−matrix σer, for every θ, ϕ. Accordingly, the right hand sides in (7.4.26)
again are unit vectors, and they also form an orthonormal system. Therefore, we
may arrange our joint orthonormal base into a sequence of pairs (ψ+

0 ) , (0ψ−
), in

such a way that for each pair the action of β is given by the 2× 2−matrix
(

1 0
0−1

)
,
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and the action of αer by the 2× 2−matrix
(

0 i
−i 0

)
Also, each pair spans a space of

joint eigenvectors of the 3 operators, to a triple υ,m, κ of eigenvalues, and we have

(7.4.27) ψ− = i(σer)ψ+ , ψ+ = −i(σer)ψ− .

So, let us assume first that ψ = (ψ+
0 ). Then, looking at (7.4.22), we must have

υ−κ+ 1
4 = l(l+1), for some integer l ≥ 0, and the two components ψj

+ , j = 1, 2 of
ψ+ must be linear combinations of the Y l

p , |p| ≤ l. However, looking at (7.4.19),
we conclude that ψ1

+ = c1Y
l
m− 1

2
, ψ2

+ = c2Y
l
m+ 1

2
, this being the only way to

establish proper dependence on ϕ.
We can establish other relations between υ and κ: Observe that (σL)2 =

L2 +σ1σ2[L1, L2]+σ2σ3[L2, L3]+σ3σ1[L3, L1], using the (anti-)commutator rules
for the σj . Then use that σ1σ2 = iσ3 , σ2σ3 = iσ1 , σ3σ1 = iσ2, and also, that

(7.4.28) [L1, L2] = iL3 , [L2, L3] = iL1 , [L3, L1] = iL2 .

as verified by a calculation. So, we get (σL)2 = L2−(σL). Or, L2 = (σL)((σL)+1).
Looking at (7.4.17) we get

(7.4.29) L2 = K0(K0 − 1) .

Also, since ρ =
(
σ 0
0 σ

)
, we may write L2 = (ρL)2 + (ρL) . So, J2 = L2 + ρL + 3

4 =
(ρL)2 + 2(ρL) + 3

4 = (ρL + 1)2 − 1
4 . This implies

(7.4.30) J2 = K2 − 1
4

,

and, the corresponding for the eigenvalues υ and κ:

(7.4.31) υ = κ2 − 1
4

= (κ +
1
2
)(κ− 1

2
).

Inserting this into (7.4.22) get

(7.4.22′) L2ψ+ = κ(κ− 1)ψ+ , L2ψ− = κ(κ + 1)ψ−.

Now, coming back to our construction of ψ+, we must have

(7.4.32) ψ1
+ = c1Y

l
m− 1

2
, ψ2

+ = c2Y
l
m+ 1

2
,

where the integer l ≥ 0 satisfies

7.4.33) l(l + 1) = κ(κ− 1) ,

while the half-number m must be chosen such that |m ± 1
2 | ≤ l, either for “-” or

for “+”, or for both “±”. In the latter case we can allow both cj �= 0 , j = 1, 2.
For “-” and “+” we may allow c1 �= 0 and c2 �= 0, respectively.
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Note, (7.4.33) implies κ = 1
2 ± (l + 1

2 ), so, either κ = l + 1, or, κ = −l. It
follows that (the eigenvalue) κ must be a (positive or negative) integer. (Note,
κ = 0 is impossible, since this would give the negative eigenvalue − 1

4 to the positive
self-adjoint operator J2, by (7.4.30).)

In this way we will get a scheme of vectors ψ+ for κ = 1, 2, 3, ... , j = m− 1
2 =

−κ, ..., κ− 1, and for κ = −1,−2, ..., with j = m− 1
2 = κ− 1, ...− κ.

Specifically, for κ = 1 we get the two vectors

(7.4.34) ψ
1,− 1

2
+ = (0Y 0

0
) , ψ

1, 1
2

+ = (Y 0
0

0 ) ,

belonging to (κ,m) = (1,− 1
2 ) , and, = (1, 1

2 ) , resp., where Y 0
0 = 1√

4π
is the

constant, of course. These two states will be related to the ground state of the
atom.

Next, for κ = 2, and, κ = −1, each, we will get 4 sorts of vectors, each times:

(7.4.35) (0Y 1
−1

) , ... , (Y 1
1

0 ) ,

for (κ,m) = (2,− 3
2 ) , (2,− 1

2 ) , (2, 1
2 ) , (2, 3

2 ) , and , the one for κ = −1 is
identical to (7.4.35), so far. Similarly for κ = 3,−2 , κ = 4,−3, etc.

But, so far, we have not fully exploited the condition Kψ = κψ, or, (σL)ψ+ =
(κ− 1)ψ+, for our special ψ. This condition holds trivially for ψ = (ψ+

0 ) with the
functions ψ+ of (7.4.34), since these ψ+ are constant, so that Λψ+ = 0 , K0ψ+ =
ψ+. However, for the other cases we now must fully evaluate this condition.
Clearly

(7.4.36) K0 =
(

1 + L3 L2 + iL1

L2 − iL1 1− L3

)
.

We need to know how this operator applies to a spherical harmonic Y l
p . Clearly

L3 = −i∂ϕ, so, L3Y
l
p = pY l

p .
So, let us focus on L2 ± iL1 = X . From (7.4.3) and (7.4.6) we get L2 ± iL1 =

(−i cos ϕ∂θ + i cot θ sin ϕ∂ϕ) ± i(i sin ϕ∂θ + i cot θ cos ϕ) = −i(cos ϕ ∓ i sin ϕ)∂θ +
cot θ(i sin ϕ∓ cos ϕ)∂ϕ . This gives

(7.4.37) X = L2 ± iL1 = e∓iϕ(−i∂θ ∓ cot θ ∂ϕ) .

Apply to (7.4.23): XY l
p/clp = ei(p∓1)ϕ(i(P |p|

l )′(cos θ) sin θ ∓ ip cot θP
|p|
l (cos θ)) =

iei(p∓1)ϕ{(P |p|
l )′(x)

√
1− x2 ∓ p x√

1−x2 P
|p|
l (x)}|x=cos θ .

Let us recall the meaning of P k
l (of (7.4.24)): P k

l (x) = bk
l

√
1− x2

k
∂k+l

x (x2−1)l,

with some constant bk
l . Thus we get (P k

l )′ = − kx
1−x2 P k

l + 1√
1−x2

bk
l

bk+1
l

P k+1
l , and

hence

(7.4.38)
√

1− x2(P k
l )′ +

kx√
1− x2

P k
l =

bk
l

bk+1
l

P k+1
l , k = 0, ..., l .
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Actually, to have (7.4.38) valid also for k = l, we must define P l+1
l (x) = 0 as

is quite natural, looking at (7.4.24), since the (2l + 1)−th derivative of (x2 − 1)l

vanishes identically. Generally, for formal reason, we then also define Y l
k = 0 for

|k| > l. Looking at (7.4.24) we find that bk
l

bk+1
l

= −1. Let us write p = kε , k =

|p| , ε = sgn(p). So, if “±” in (7.4.37) equals −ε, and we write X = X± = X−ε,
then (7.4.38) will give

(7.4.39) X−εY
l
kε = −i

cl,k

cl,k+1
Y l

(k+1)ε .

In the other case - “±”=ε the crucial term below (7.4.37) will have the wrong sign;
it will read

(7.4.40)
√

1− x2(P k
l )′ − kx√

1− x2
P k

l = −P k+1
l − 2kx√

1− x2
P k

l .

Here we use a formula listed in [MO] (p.74, first formula):

(7.4.41) P k+1
l +

2kx√
1− x2

P k
l = −(l − k + 1)(l + k)P k−1

l , 1 ≤ k ≤ l − 1 .

Actually, (7.4.41) is valid also for k = l, if we assume P l+1
l = 0, as introduced

above. Combining then (7.4.37),...,(7.4.41) we get XεY
l
kε = i(l − k + 1)(l +

k)cl,kei(k−1)εϕP k−1
l . Or,

(7.4.42) XεY
l
kε = i(l − k + 1)(l + k)

cl,k

cl,k−1
Y l

(k−1)ε , k = 1, ..., l .

Summarizing formulas (7.4.39) and (7.4.42), we get

X±Y l
k = ql,k,±Y l

k∓1 , k = 0, ..., l ,

X±Y l
−k = ql,−k,±Y l

k∓1 , k = 0, ..., l ,

with certain constants ql,j,±. A calculation gives the following result:

(a) (L2 − iL1)Y l
k = −i

√
(l + k + 1)(l − k) Y l

k+1 , k = 0, 1, 2, ..., l ,

(b) (L2 − iL1)Y l
−k = i

√
(l − k + 1)(l + k) Y l

−k+1 , k = 1, 2, ..., l ,

(c) (L2 + iL1)Y l
k = i

√
(l − k + 1)(l + k) Y l

k−1 , k = 1, 2, ..., l ,

(d) (L2 + iL1)Y l
−k = −i

√
(l + k + 1)(l − k) Y l

−k−1 , k = 0, 1, 2, ..., l.

Actually, since Y l
±(l+1) was defined to be 0, equation (a) and (d) are valid with

any constant ql,l,+ or ql,−l,−, so, need to be derived only for k < l.
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The above formulas can be brought onto a simpler (more compact) form by
changing the definition of Y l

p for p < 0: As Thaller does, for example, let us replace
Y l

p by (−1)pY l
p ,for p < 0, (while leaving Y l

p unchanged for p ≥ 0). The modified
Y l

p will form an orthonormal base of L2(S3) just as well, and will substitute those
of (7.4.23) in every respect. Thus, from now on, (7.4.23) will define Y l

p only for
p ≥ 0, while we have

(7.4.23′) Y l
p (θ, ϕ) = (−1)pclpe

ipϕP
|p|
l (cos θ) , p < 0 .

With the modified Y l
p we now may write (c),(d), above, as

(7.4.43a) (L2 + iL1)Y l
p = i

√
(l − p + 1)(l + p) Y l

p−1 , p = 0,±1, ...,±l ,

while (a),(b) assume the form

(7.4.43b) (L2 − iL1)Y l
p = −i

√
(l + p + 1)(l − p) Y l

p+1 , p = 0,±1, ...,±l .

Formulas (7.4.43) give complete control of an application of K0 of (7.4.36) to a

vector of the form z = (
c1Y l

p

c2Y l
p+1

) , p = −l − 1,−l, ..., l . We have

(7.4.44) K0z =
(

1 + p i
√

(l − p)(l + p + 1)
−i

√
(l + p + 1)(l − p) − p

)
z .

So, the eigenvalue problem K0ψ+ = λψ+ is reduced to that of the 2 × 2−matrix
in (7.4.44), called A, for a moment. Let A− 1

2 = B, then det(B−µ) = 0 amounts
to µ = ±(l + 1

2 ), so, A has the eigenvalues λ = 1
2 ± (l + 1

2 ), i.e., λ = l + 1,−l, as
expected.

matrix B assumes a more treansparent form if we introduce the half-
numbers m = p + 1

2 , j = l + 1
2 :

(7.4.45) B =
(

m i
√

j2 −m2

−i
√

j2 −m2 −m

)
.

Subtracting and adding m = p + 1
2 from B of (7.4.45) it becomes evident that the

corresponding eigenvectors are

(7.4.46) ψ+ = (
i
√

(l+p+1)Y l
p√

(l−p) Y l
p+1

) ,

for the eigenvalue j = l + 1
2 of B - i.e., for κ = l + 1 of K0, and ,

(7.4.47) ψ+ = (
i
√

(l−p) Y l
p

−
√

(l+p+1)Y l
p+1

) ,

for the eigenvalue −j of B - i.e., for κ = −l of K0.

The
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�
yet normalized, but (7.4.46),(7.4.47), for a given l, form an orthogonal system
spanning the space of all 2-component vectors the components of which are spher-
ical harmonics to the eigenvector l(l + 1). Evidently then, the collection of these
vectors, for l=0,1,..., will form a base of the space L2(S3, C2).

It is easy to normalize our vectors ψ+ : Since the Y l
p are normalized, we will

get the sum of the square integrals of the components equal to 2l + 1 for each
vector (7.4.46) and (7.4.47). It follows that we must divide the right hand sides of
(7.4.47) and (7.4.48) by

√
2l + 1.

Summarizing then, introduce the (2−vector) functions Zl
p,+ , l = 0, 1, 2, ..., p =

−l − 1,−l, ..., l, and Zl
p,− , l = 0, 1, 2, ..., p = −l,−l + 1, ..., l − 1, by setting

(7.4.46′) Zl
p,+ =

1√
2l + 1

(
i
√

(l+p+1)Y l
p√

(l−p) Y l
p+1

) ,

(7.4.47′) Zl
p,− =

1√
2l + 1

(
i
√

(l−p) Y l
p

−
√

(l+p+1)Y l
p+1

) .

These (2-vector) functions Zl
p,± we call spin spherical harmonics (SSH(-functions)).

For each such SSH-function z = Zl
p,+ (or z = Zl

p,−) we then introduce the pair of
(4-vectors) ψ = (z

0) , ω = ( 0
σerz) . Then we have the following

Theorem 7.4.1 (a) The 4-vectors ψ and ω, taken over all SSH-functions Zl
p,±,

form an orthonormal base of the Hilbertspace L2(S3, C4).
(b) For any z = Zl

p,ε , ε = +,− , introduce the 2-dimensional space h =
span{ψ, ω}, and then the tensor product h ⊗ L2(0 ≤ r < ∞, r2dr), called Hl,p,ε.
Then the Hilbert space H = L2(R3, C4) equals the orthogonal direct sum of all
Hl,p,ε.

Moreover, the Dirac operator H of (7.4.14) with radially symmetric potential
V(r) is reduced by the above orthogonal decomposition: It transforms each K =
Hl,p,ε into itself, and so do the 5 operators J2, J3,K, β, αer.

All other vectors (7.4.46),(7.4.47) have both components = 0. They are not

There are some exceptions here: Above we appointed to have p = −l −
1,−l,−l + 1, ..., l − 1, l, where it seems that for each such p there appear two
eigenvectors ψ+ of K0 - one for κ = l + 1, the other for κ = −l. However, we
observe that for p = l 1 (and also for p = l) the vector (7.4.47) is not an

using that we appointed Y l
±(l+1) = 0. So, both components of ψ+ vanish in these

cases, and only the vector (7.4.46) - belonging to κ = l+1 is left. The latter vector

is a multiple of ( 0
Y l
−l

), for p = −l − 1 (and of (Y l
l
0 ), for p = l). This, of course,

nicely agrees with (7.4.34).

− −
eigenvector. We then get ψ+ = (

i
√

2l+1Y l
−l−1

0 ) = (00) (and ψ+ = (0√
2l+1Y l

l+1
) = (00))
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(c) A vector u of such subspace K may be uniquely written as u = u1(r)ψ(θ, ϕ)+
u2(r)ω(θ, ϕ) , and then may be represented by the column (u1

u2
). Then, if u ∼ (u1

u2
),

the (multiplication) operators β , (αer) are represented by the matrices

(7.4.48) β ∼
(

1 0
0 − 1

)
, (αer) ∼

(
0 i

−i 0

)
,

while J2 and J3 and K are represented as multiplications by the real scalars κ and
κ2 − 1

4 and m = p + 1
2 (while κ = l + 1 for ε = + , κ = −l for ε = −). The

operator H then is represented by

(7.4.49) H ∼ −i

(
0 i

−i 0

)
{∂r +

1− βκ

r
}+

(
1 0
0 − 1

)
+ V(r) , β =

(
1 0
0 − 1

)
.

Furthermore, the operators (1 − ∆) and E ](µ + ρ × D) occurring in fla’s (7.4.3)
and (7.4.4) are represented as

(7.4.50) 1−∆ ∼ 1
r

(
Z− 0
0 Z+

)
r with Z± = 1 +

κ(κ± 1)
r2

− ∂2
r ,

and

(7.4.51) E .(µ + ρ×D) ∼ G(r) = − cf

4r3
{1− σ3κ + rσ2} .

Only the last two formulas still need a discussion: From (7.4.8) get r(1−∆) 1
r =

1 − ∂2
r − 1

r2 L2. But on the spaces Hl,p,ε we have L2 = {κ2 − βκ}, where β must
be represented according to (7.4.49) above. This indeed confirms (7.4.50).

Regarding (7.4.51), we recall the formula

(7.4.52) µ + ρ×D = −i(αH0 −D) ,

easily verified, using fla’s (1.0.3). Also, with E = −grad V and V = −cf/r we get
E = − cf

r2 er . Thus, E · ( +ρ×D) = iE(αH0−D) = − cf

r2 {i(αer)H0− i∂r}. Using
(7.4.48) and (7.4.49) we then get (7.4.51).

7.5 Highlights of the Proof of Theorem 7.3.2

In this section we will sketch a proof for our theorem. The various steps will be
discussed in more detail in sec.’s 7.6 and 7.7, below. To simplify the discussion we
will just set cf = −1 here, i.e., work with V(r) = 1

r , noting that −cf in (7.3.6) is
a factor contained in V and G, hence may be taken into the eigenvalue parameter
λ. One major point is that, for λ > 0, eq. (7.3.6) fails to be elliptic at the point

µ
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r = 1
λ , inside the interval (0,∞) of definition, because the coefficient of its highest

derivative vanishes there. As a consequence, not all global distribution solutions
of (7.3.6) are also smooth solutions.

Curiously, eq. (7.3.6) has 10 linearly independent distribution solutions de-
fined in the entire R+, while normally a 4-th order 2× 2-system should have only
8. The two “extra-solutions” mean the existence of a (2-dimensional) absolutely
continuous spectrum of the observable, in all of 0 ≤ λ < ∞.

The construction of this absolutely continuous spectrum follows the old and
well known method of integrating a family ϕλ(r) of “wave functions” after its
parameter λ, to obtain “eigenpackets” but with the important difference that the
ϕλ(r) will be not functions, but distributions with singular support at r = 1

λ . In
fact, near r = 1

λ the singular part will be a linear combination of a delta-function
and a principal value.

Checking for completeness of this absolutely continuous spectrum could be a
matter of solving a Wiener-Hopf type singular integral equation over the half-line.
This seems to invite application of well known Fredholm criteria for such equations
(cf.[GK] or [Co12], for example) but ,so far, we do not control the behaviour of
kernels near λ = 0 and λ =∞ well enough for this.

One may have to be on guard for “spectrum at ∞”: For some κ the operator
Z is self-adjoint and positive definite only after imposing boundary conditions at
r = 0; We circumvent the difficulty of finding a proper domain of definition for
(V(r))∼j for uncapped Coulomb V(r) by defining dom(V(r))∼j as the span of all
eigenvalues and eigenpackets we will construct below.

Let us focus on (7.3.6): For λ > 0 this ODE has regular singularities at r = 0
and r = 1

λ , and a Thomé-Poincaré-type singularity at r = ∞. At 0 and ∞ we
may fix (real-valued) local bases ϕj(r, λ) , ωj(r, λ) , j = 1, ..., 8, defined in (0, 1

λ )
and ( 1

λ ,∞) according to standard rules14, and such that, at fixed r, they are
power series in λ − λ0 for λ0 > (or <)1

r , respectively. At ∞ eq. (7.3.6) looks
like (1 − ∂2

r )2v = 0, solved by e±r , re±r since all other terms carry a factor
1
rj , j = 1, 2, 3, . . .. Unfortunately, the two roots ±1 of the indicial equation, for
getting the Thomé normal series’ have multiplicity 2, so the standard approach
does not work. However, we found that, near ∞, the 4-th order 2 × 2-system
(7.3.6) may be reduced to a second order 4× 4-system of the form

(7.5.1) w′′ + a(
1
r
)w′ + b(

1
r
)w = 0 ,

with convergent (4 × 4-matrix-valued) power series a(s), b(s), in such a way that
the discussion we found in [Ho1], §62 through §65, carries over with few changes

14cf. for example [JvN], or, [Km1], or, [Ho1], or, [Na1].
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and indeed supplies a set of 8 linearly independent solutions with asymptotic
behaviour of the form e±r(c0 + c1

1
r + . . .), and depending analytically on λ, for

fixed r and λ > 1
r . Clearly then, at ∞, exactly 4 of the ωj - say, for j = 5, ..., 8

- are exponentially decaying (with all derivatives). They span a space T∞(λ) (of
dimension 4). At r = 0 the 8 indicial exponents are symmetric with respect to 2,
insofar as ε = (γ− 2)2 solves a product of 2 quadratic equations. Again there will
be a 4-dimensional subspace T0(λ) of local solutions - spanned by ϕ5, ..., ϕ8 - such
that Zu ∈ L2 near 0 for u ∈ T0. [For special κ we may have to add self-adjoint
boundary conditions15 to make that dimension 4.]

At the regular singularity r = 1
λ the indicial exponents are 2, 1, 0 with 1 of

multiplicity 4 and 0, 2 each of multiplicity 2. One might expect then a local
system of 8 “Frobenius-type” solutions, involving higher powers of log |r − 1

λ |, in
view of the fact that there are multiple roots, and that any two roots differ by an
integer. A careful analysis shows, however, that only the first power of log |r − 1

λ |
ever occurs, and then only in the form sj log |s|, j = 1, 2, . . . , s = r − 1

λ . One
may isolate a basis of 10 global distribution solutions, with singular support at
r = 1

λ only - call them χ1, ..., χ10 - such that Zχj ∈ L2
loc for j = 5, ..., 10, while,

for j = 1, 2,

(7.5.2) Zχj = ejδ(r − 1
λ

) + L2
loc , e1 = (10) , e2 = (01) .

and, for j = 3, 4,

(7.5.3) Zχj = ej−2p.v.
1

r − 1
λ

+ L2
loc ,

with “p.v.1s” denoting the “principal-value distribution”

(7.5.4) 〈p.v.
1
s
, ϕ〉 = lim

ε→0

∫

|s|≥ε

ϕ(s)
ds

s
, ϕ ∈ D .

All χj(r, λ) are power series in λ−λ0 for every r �= 1
λ0

, including their derivatives,
so, including Zχj .

Now we want to look for eigenfunctions and wave distributions: For 0 < λ <∞
we get
(7.5.5)

χj(r, λ) =
8∑

l=1

cjl(λ)ωl(r, λ) , r >
1
λ

, χj(r, λ) =
8∑

l=1

djl(λ)ϕl(r, λ) , r <
1
λ

,

15The discussion of self-adjoint boundary conditions at singular end points follows the standard

principles laid out by many authors (cf. the book [CL], for example). Note, in particular, that

the indicial exponents are independent of the eigenvalue parameter λ, so they are also valid for

λ = ±i, as necessary for the study of defect spaces.
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with constants cjl, djl depending on λ. These relations may be differentiated
arbitrarily for r, and we may introduce the “Wronskian matrices” Wω(r, λ) =
(ω, ω′, ω′′, ω′′′), etc. Note then that Wω and Wϕ are invertible 8 × 8-matrices,
while Wχ(r, λ) is a 10×8-matrix, defined for r �= 1

λ , and of maximal rank 8. With
c = ((cjl(λ))) , d = ((djl(λ))), (7.5.5) implies that Wχ(r, λ) = c(λ)Wω(r, λ) , r >
1
λ , and, Wχ(r, λ) = d(λ)Wϕ(r, λ) , r < 1

λ . Therefore,
(7.5.6)

c(λ) = Wχ(r, λ)Wω(r, λ)−1 , r >
1
λ

, d(λ) = Wχ(r, λ)Wϕ(r, λ)−1 , r <
1
λ

.

(7.5.6) implies that c(λ) and d(λ) have maximal rank 8 and have convergent ex-
pansions in powers of (λ− λ0) for every λ0 > 0.

A family v(r, λ) of global distribution solutions will be of the form

(7.5.7) v(r, λ) =
10∑

j=1

pj(λ)χj(r, λ) =
8∑

l=1

ωl(r, λ)
10∑

j=1

pj(λ)cjl(λ) , r >
1
λ

,

and,

(7.5.8) v(r, λ) =
8∑

l=1

ϕl(r, λ)
10∑

j=1

pj(λ)djl(λ) , r <
1
λ

.

The condition v(r, λ) ∈ T0(λ)∩T∞(λ) means that the coefficients of ω1, ..., ω4, and
of ϕ1, ..., ϕ4 must vanish. that is,

(7.5.9)
10∑

j=1

cjl(λ)pj(λ) = 0 ,

10∑

j=1

djl(λ)pj(λ) = 0 , l = 1, ..., 4 ,

giving 8 linear conditions for the 10 unknown functions pj(λ). There are at least
two linearly independent solutions of (7.5.9). For a point-eigenvalue λ0, on the
other hand, we also must set pj(λ0) = 0 , j = 1, ..., 4, so that only the 6 unknowns
p5, ..., p10 are left, and (7.5.8) gives an overdetermined system of 8 equations in 6
unknowns. This should be nontrivially solvable only for special λ. To prove this
we need orthogonality of eigenfunctions and wave functions:

Proposition 7.5.1 (i) Eigenfunctions to different eigenvalues are orthogonal [al-
ways with respect to the inner product of H2]. (ii) Wave distributions to different
λ-values are orthogonal - in particular the [distribution-] integral 〈u1, u2〉 is well
defined as long as the λ-values of u1 and u2 are distinct. (iii) Any eigenfunction
(to λ) is orthogonal to any wave function (to λ′ �= λ).

This proposition follows with the standard argument, using partial integration
and vanishing of boundary terms. For example, for two eigenfunctions uj = Zvj
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we get

(7.5.10) 〈u1, u2〉 = 〈Z2v1, v2〉 = 〈v1, Z
2v2〉 ,

with partial integration and vanishing of boundary terms at 0 and ∞ [and also at
r = 1

λj
]. Then Z2vj = 1

λj
Xvj with the left hand side operator in (7.3.6) called X,

for a moment. Then also, we must confirm that

(7.5.11) 〈Xv1, v2〉 = 〈v1,Xv2〉 .

Again this is a standard partial integration, and vanishing of boundary terms,
using what we know about the spaces Tζ(λ) , ζ = 0,∞.

The orthogonalities (ii) and (iii) follow similarly - one must keep in mind that
the singularities of the distributions on either side never can get together, so that
inner product integrals can be defined.

Any orthonormal system in our separable Hilbert space H2 is finite or count-
able. Hence there are at most countably many eigenvalues, i.e., the system (7.5.9)
with p1 = ... = p4 = 0 cannot be identically of rank < 6. Notice, a 6 × 6-minor
µ(λ) will be a real power series in λ− λ0, for all λ0 > 0, and so will be its square,
and even the finite sum Σ(λ) of such squares. It follows that Σ(λ) does not van-
ish identically, and, hence, that it has (at most) countably many isolated zeros,
clustering only at 0 and ∞, at most.

After this we now turn to the wave distributions. So far we only know that the
system (7.5.9) is not identically (in λ) of rank < 6. But another use of orthogonality
of wave distributions shows that this system really is of rank 8 (with exceptions
clustering only at 0,∞). [For every component of the 2-vector we can have only one
(nontrivial) linear combination of δ and p.v. being L2 near 0,∞, or else we run into
a contradiction with orthogonality.] So,then an argument described more closely
in sec.7.8.1 allows construction of a pair of two global families v1(r, λ) , v2(r, λ),
defined for all λ > 0, writing pj in (7.5.9) as p1

j (λ) or p2
j (λ), where the pk

j (λ) are
smooth in λ. Then we get

(7.5.12) Zvk(r, λ) = uk
1(λ)δ(r − 1

λ
) + uk

2(λ) p.v.
1

r − 1
λ

+ zk(r, λ) ,

with uk
1(λ) = (pk

1
pk
2
)(λ), and, uk

2(λ) = (pk
3

pk
4
)(λ) [where16 the real 2× 4-matrix U(λ) =

(U1, U2)(λ) , Uj = (u1
j , u

2
j ) is of maximal rank 2 for all λ], and with the 2×2-matrix

Uc = (z1(r, λ), z2(r, λ)) smooth in λ and with values in L2, in the variable r, even
if differentiated for λ. With that notation we may write the two eqs. (7.5.12) as
one matrix equation:

16At first there may be a discrete exception set of λ, but it may be eliminated (cf.sec.7.8.1).
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(7.5.12′) Z(v1, v2)(r, λ) = U1(λ)δ(r − 1
λ

) + U2(λ) p.v.
1

r − 1
λ

+ Uc(r, λ) .

Or, if we now come back to the corresponding eigenpackets∫
dλκ(λ)Zvj(λ) =

∫
dρυ(ρ)Zvj( 1

ρ ), - with υ(ρ) = 1
ρ2 κ( 1

ρ ) ∈ C∞
0 (R+), by a change

of integration variable - the right hand side of (7.5.12) will supply the term
(7.5.13)

U1(
1
ρ
)υ(r) + p.v.

∫ ∞

0

U2(
1
ρ
)υ(ρ)

dρ

r − ρ
+

∫ ∞

0

Uc(r,
1
ρ
)υ(ρ)dρ = F (r) ∈ H2 ,

where now υ(ρ) must be assumed as a 2-vector-valued C∞
0 -function. [Note, that

F (r) no longer is a distribution, but a function in H2.]
In (7.5.13) there appears the distribution kernel

(7.5.14) U0(r, ρ) = U1(
1
ρ
)δ(r − ρ) + p.v.

U2( 1
ρ )

r − ρ
+ Uc(r,

1
ρ
) .

This kernel has the following properties: (i) For fixed ρ, as a function of r only,
U0(., ρ) is L2 near 0 and ∞ (both), and has singular support at r = ρ only. (ii)
By orthogonality we have

(7.5.15) W (ρ, ρ′) =
∫ ∞

0

U0(s, ρ)U0(s, ρ′)ds = 0 , ρ �= ρ′ .

(iii) The distribution W (ρ, ρ′) defined by the above integral has singular support
at ρ = ρ′ only and must be a (2× 2-matrix-) multiple of δ(ρ− ρ′).

All in all this indicates that we have U0∗U0 equal to a multiplication operator
(by a matrix a2(ρ), with a(ρ) nonsingular). The desired unitary operator U of our
theorem - unitary only as a map from H2 to the (closed) span of the functions
F (r) of (7.5.13) - then is defined as the operator U = U0a−1(r). This completes
the discussion of our theorem.

We will get completeness of above eigenpackets if we can show that the func-
tions F of the form (7.5.13) are dense in H2. Or else, if the space spanned by
them is not H2 then one perhaps expects that its orthocomplement is spanned by
the eigenvalues obtained above.

At any rate, the issue of completeness clearly is related to the solvability of
the [Wiener-Hopf-type] singular integral eq. (7.5.13), when a function F ∈ H2

is given and a function υ is to be found. However, in addition we also have the
orthogonality (7.5.15), perhaps leading to a better approach.
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7.6 The Regular Singularities

7.6.1 The Regular Singularity at 0

The series Ansatz v = rγ(v0 + v1r + . . .) will lead to a product of 2 quadratic
equations in ε = (γ − 2)2 solved by

(7.6.1) ε =
5
2

+ (κ +
1
4
)(κ− β)± 1

4

√
144(κ− 2β)(κ + β) + (κ− β + 18)2 ,

where we must set β = ±1, while κ may be any nonvanishing integer.
Some special κ, β: For κ = β we get γ = 0, 1, 3, 4 . For κ = 2β we get

γ = ±
√

9 + β/2 + 2, 2, 2 . For κ = −β we get γ = ±
√

9− β + 2, 2, 2 .
The radicand in (7.6.1) may become negative, but not for our choices of β, κ,

so ε will always be real. Moreover, a detailed check shows that, for our choices
of β, κ, ε will never be negative, so that all exponents γ remain real. We will get
γ = 2±√ε. Looking at (7.6.1) it is clear that the two terms go like |κ|2 and ±|κ|,
so that ε ≈ |κ|2 for large |κ|, and

√
ε ≈ |κ|. One verifies that the cases κ = 2β and

κ = −β are the only cases where ε = 0 ocurrs, so that there are some roots γ = 2.
Note that we must check for squared integrability of Zu for the Frobenius type

solutions u0r
γ + . . . (or, possibly, a term like (u0r

γ + . . .) log r also might occur).
But we have

(7.6.2) Zu = Z0u0r
γ−2 + . . . , Z0 = κ(κ− σ3)− γ(γ − 1) .

The diagonal matrix Z0 has the elements κ(κ−β)−(2±√ε)(1±√ε) = dβ , β = ±1,
and we get rγ−2 = r±

√
ε

√
ε will give Frobenius solutions

in L2, near 0, since the smallest r-exponent of Zu is nonnegative. This remains
true, even if there still is a logarithmic factor. For γ = 2−√ε that exponent will
be negative (except for κ = −β and κ = 2β, and assuming that the corresponding
dβ does not vanish). We need dβ �= 0 and

√
ε ≥ 1

2 , in order to secure a solution
u �∈ L2 near 0. We get

(7.6.3) dβ = (κ− β

2
)2 − (

3
2
−
√

ε)2 = (|κ|+
√

ε− cβ)(|κ| −
√

ε + cβ)

with cβ = 1
2 (3 − βsgn(κ)). Note we get either cβ = 1 or cβ = 2. The first factor,

at right of (7.6.3) will be �= 0 for |κ| > 2. The second factor depends on a more
careful evaluation of ε (of (7.6.1)): Set υ = |κ| , σ =sgn(κ) , τ = βsgn(κ), for
(7.6.4)
4ε = {4υ2 + (σ − 4τ)υ + (10− στ)} ±

√
145υ2 − (146− 36σ)υ + (37− 36στ) .

There are 8 possibilities for the signs σ, τ and ± in (7.6.4). In each of the 8 cases
one may expand

√
ε = |κ|+ bστ± + 1

|κ|p( 1
|κ| ) with a constant bστ±. This gives an

. Clearly then the γ = 2+
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expansion for the second factor at right of (7.6.3) at ∞, of the form

(7.6.5) |κ| −
√

ε + cβ = aστ± +
1
|κ|p(

1
|κ| ) ,

where, in the 8 cases, 16aστ± = 19±
√

145 , 29±
√

145 , 27±
√

145 , 21±
√

145.
respectively. The smallest constant aστ± will be≈ 0.43. It follows that we will have
“limit point case” for all but finitely many κ - i.e., precisely 4 linearly independent
solutions (of the 8) which are L2 near 0.

Furthermore, one finds that the coefficients of the 8 Frobenius solutions are
polynomials in λ, hence, for fixed r, the solutions v(r, λ) have convergent power
series expansions at λ0, for each λ0 < 1

r .

7.6.2 The Regular Singularity at r = 1
λ

As mentionned, the indicial exponents are 2, 1, 0 with 1 a double root. Setting
s− r − 1

λ we get 8 Frobenius solutions, of the form
(7.6.6)
ψ1(s) = (10)s

2 + . . . , ψ2(s) = (01)s
2 + . . . , ψ3(s) = (10)s+ . . . , ψ4(s) = (01)s+ . . . ,

and

(7.6.7) ψ5(s) = ψ3 log |s|+ ψ52s
2 + . . . , ψ6(s) = ψ4 log |s|+ ψ62s

2 + . . . ,

and

(7.6.8) ψ7(s) = (10)+. . .+(ψ71s+. . .) log |s| , ψ8(s) = (01)+. . .+(ψ81s+. . .) log |s| .

Eqs. (7.6.6)-(7.6.8) define just functions, in the r-intervals (0, 1
λ ) and ( 1

λ ,∞).
To obtain distributions in D′(R+) we must fit them together at rλ = 1

λ , and,
in addition, we must check for solutions with support at the point rλ only. It
turns out that (i) there are no solutions of the latter kind (except 0). Also, (ii)
one finds that only ψ3 and ψ4 may be broken at rλ, giving raise to yet another
pair H(s)ψj(s) , j = 3, 4, with the Heaviside function H(s) = 1

2 (1+sgn(s)), we
call ψ9, ψ10. For j �= 3, 4 , j < 9, the ψj(r − rλ) ∈ L1

loc(R+) define solutions of
(7.3.6) with derivatives taken in the distribution sense. But this is not true, if
they are broken at rλ (i.e., continued on the other side of rλ with a different linear
combination of the ψl).

We finally set χ1 = ψ9, χ2 = ψ10, χ3 = ψ5, χ4 = ψ6, and then list the remain-
ing ψj as χ5, ..., χ10 - except that suitable linear combinations of ψ5, ψ6 must be
subtracted from ψ7, ψ8 to eliminate the terms ψl1s log |s|, l = 7, 8. It is clear then
that Zχj ∈ L2

loc for j = 5, . . . , 10 , so that conditions for the system of 10 global
distributions are fulfilled.
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7.7 The Singularity at ∞

7.7.1 Asymptotic Behaviour of Solutions at Infinity

Observe that (7.3.6) -i.e., {ZRZ +GZ +ZG}v = 0, with Z = 1−∂2
r +κ(κ−σ3) 1

r2

and the multiplications R = 1
r − λ and G = 1

4r3 (1− σ3κ + rσ2) may be written in
the form

(7.7.1) (LRL + LM + ML + N)v = 0 , L = 1− ∂2
r ,

where M = 1
r2 p( 1

r ) , N = 1
r4 q( 1

r ) with power series p(s), q(s). [In this subsection
we use “X = p(1

r )” (or “Y = q( 1
r )”) just to indicate that X (or Y ) equals some

power series in 1
r , with positive radius of convergence]. Clearly 1

R = p( 1
r ). We

may write (7.7.1) in the form

(7.7.2) {(L+S)R(L+S)+T}v = 0 , S =
M

R
=

1
r2

p(
1
r
) , T = N−RS2 =

1
r4

q(
1
r
) .

Introduce u = (L + S)v as additional dependent variable, so that (7.7.2) is equiv-
alent to

(7.7.3) (L + S)v − u = 0 , (L + S)Ru + Tv = 0 .

The second eq. (7.7.3) may be converted into (L + S)u − 1
R [∂2

r , R]u + T
Rv = 0,

where (with R = 1
r − λ) we get −[∂2

r , R] = −[∂2
r , 1

r ] = 2
r2 ∂r − 2

r3 , so that, (7.7.3)
assumes the form

(7.7.4) (L + S)v − u = 0 ,
T

R
v + (L + S − 1

r3

2
R

)u +
1
r2

2
R

∂ru = 0 .

Writing (7.7.4) matrixwise - for the 4-vector w = (v
u) - we get this:

(7.7.5) {
(

1 − 1
0 1

)
− ∂2

r}w +
1
r2

2
R

(
0 0
0 1

)
∂rw +

1
r2

p(
1
r
)w = 0 ,

where 0,±1 in the matrices stand for 2× 2-blocks, so that we have 4× 4-matrices.
So, indeed, we now have converted (7.7.1) (or (7.3.6)) into a second order

equation of the form (7.5.1) with (the 4× 4-matrices) a(1
r ) = − 1

r2
2
R

(
0 0
0 1

)
, b( 1

r ) =
−

(
1−1
0 1

)
− 1

r2 p( 1
r ).

It is important to notice that the first two coefficients a0, a1 of the power series p

vanish while also b1 = 0 and b0 = −
(
1−1
0 1

)
. The singularity of this equation at ∞

is “non-regular”, so that the standard (Frobenius) method for regular singularities
fails. A scalar equation of this form has been discussed in all details in [Ho1], §.10,
with a well readable proof - regarding asymptotic behaviour of its solutions near
∞. An essential condition there is that the algebraic equation γ2 + a0γ + b0 = 0
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(called indicial equation) has distinct roots γ1 �= γ2 [this is for scalar a, b where the
γj are complex numbers]. Our main reason for transforming (7.7.1) into (7.7.5) is
the fact, that, in the form (7.7.5), the indicial equation reads

(7.7.6) γ2 −
(

1 − 1
0 1

)
= 0 .

This equation may be solved by two distinct 4× 4-matrices γ = ±θ , θ = 1− 1
2ν

where ν =
(
0 1
0 0

)
. [Note, ν is nilpotent, we have ν2 = 0, hence θ2 = 1− ν =

(
1−1
0 1

)
.]

This suggests to try a generalization of Horn’s technique to our case of 4× 4-
matrices. It turns out that, indeed, [Ho1], ch.10 may be carried out, although
with some special guidance. This is important, because the general method of
Thomé normal series discussed in [CL], ch.5, for example seems to fail. Aiming at
(asymptotically convergent) Thomé normal series solutions of the form

(7.7.7) w(r) = e±θrrγp(
1
r
) ,

(with a scalar γ), we make the matrix-substitution w = e±θrz in (7.7.5). Using
“+” (with “-” behaving quite similarly) we get ∂rw = eθr(∂r + θ)z. Accordingly,
(7.7.5) assumes the form [with ι =

(
0 0
0 1

)
, and switching back from z to the old

notation w]

(7.7.8) L∼w +
1
r2

2
R

ιw′ +
1
r2

p(
1
r
)w = 0 , L∼ = −∂2

r − 2θ∂r .

Here we may make an ansatz w = w0r
γ + w1r

γ−1 + . . . with a scalar γ: The term
with the highest power will be −2γθrγ−1. Since θ is nonsingular, we conclude
that γ = 0, so that w appears as an ordinary power series in 1

r (taking values
in C

4). Starting with an arbitrary constant 4-vector w0 one will get the usual
recursion to calculate w1, . . ., and there will be no vanishing denominators, but
the formal power series obtained tend to be divergent. (Clearly one will get 4
linearly independent formal series.) For details cf. [Ho1], §62.

The formal power series obtained are asymptotically convergent to solutions
of the system (7.7.8) obtained as exponential integrals, as follows: First another
substitution w → rw converts (7.7.8) into

(7.7.9) Xw = 0 , X = −∂2
r − 2θ∂r +

1
r
p(

1
r
)∂r +

1
r
q(

1
r
) ,

with convergent power series p(s),q(s) - the constant terms now are p0 = −2 , q0 =
−2θ. In (7.7.9) we substitute a Laplace integral

(7.7.10) w(r) =
∫ ∞

0

ertz(t)dt ,
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with integration path a halfline arg t = const., in the complex t-plane. Assuming a
suitable exponential behaviour of z(t) this will lead us to a pair of (Volterra-type)
integral equations17 , to be satisfied by z(t):

(7.7.14) (2θ + t)tz(t) +
∫ t

0

{τP (τ − t) + Q(τ − t)}z(τ)dτ = 0 ,

with the power series

(7.7.15) P (t) =
∞∑

0

pj
tj

j!
, Q(t) =

∞∑

0

qj
tj

j!
,

using the coefficients pj , qj of the series for p and q.
Or also, equivalent to (7.7.14), a Volterra-type integral equation of the second

kind
(7.7.16)

z(t) = (t + 2θ)c + Y z(t) , Y z(t) = −(t + 2θ)
∫ t

0

dτ

τ(τ + 2θ)

∫ τ

0

Φ(τ, t′)z(τ ′)dτ ′ ,

with a constant 4-vector c, and

(7.7.17) Φ(t, τ) = {(2θ + t)−1(τP (τ − t) + Q(τ − t))}|t .

17Formally, assuming all integrals to exist, and all boundary terms of partial integrations

performed to vanish we will get the correspondences

(7.7.11) w ∼ z(t) , w′ ∼ tz(t) , w′′ ∼ t2z(t) ,
1

rj+1
w ∼ −

∫ t

0

(τ − t)j

j!
z(τ)dτ , j = 1, . . . .

[To see the last correspondence, let, for a moment, ϕj = −
∫ t
0

(τ−t)j

j!
z(τ)dτ . Then ϕ′

0 = −z, and

ϕ′
j = −ϕj−1, so that a repeated partial integration gives

∫ ∞
0 ertϕj(t)dt = 1

r

∫ ∞
0 ertϕj−1(t)dt =

. . . = 1
rj

∫ ∞
0 ertz(t)dt , assuming all boundary terms to vanish.] This will lead us to eq. (7.7.14)

with P, Q of (7.7.15). [Note, since the power series p and q converge near 0, the series P, Q

converge for all t, due to the additional denominators j!. Hence P, Q are entire functions of t.]

Eq. (7.7.14) is converted into (7.7.16) as follows: Multiply by (t + 2θ)−1 and differentiate for

t, to get

(7.7.12) (tz(t))′ + (2θ + t)−1(q0 + tp0)z(t) +

∫ t

0
Φ(t, τ)z(τ)dτ = 0 ,

with Φ(t, τ) = {(2θ + t)−1(τP (τ − t) + Q(τ − t))}|t . Link (7.7.12) with the homogeneous first

order ODE

(7.7.13) (tz(t))′ +
1

t + 2θ
(p0 +

1

t
q0)(tz(t)) = 0 .

Here we cast in our knowledge about p0 = −2 , q0 = −2θ to get (7.7.12) into the form (tz(t))′ −
ω(t)(tz(t)) = 0 , ω(t) = 2 t+θ

t(t+2θ)
= 1

t
+ 1

t+2θ
, integrated by z(t) = (t + 2θ)c , with a constant

4-vector c. [In Horn’s case, this is trivial, while here we must use that p0 and q0 commute to get

an exponential function as solution.] In (7.7.12) write the last term as Ψ(t), for a moment. Then

get (tz(t))′ −ω(t)(tz(t)) + Ψ(t) = 0 . With “variation of constants” we then get (7.7.12) into the

form tz(t) = t(t + 2θ)c − t(t + 2θ)
∫ t
0

1
τ(τ+2θ)

Ψ(τ)dτ , i.e.,(7.7.16), remembering the special form

of Ψ.
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Eq. (7.7.16) may be solved18 by a Neumann series z(t) = z0+Y z0+Y 2z0+Y 3z0+
. . . , z0(t) = (t + 2θ)c, uniformly convergent in compact sets of the t-plane slitted
along the negative real axis below −2. Such (unique) solution z = zc is obtained
for every constant 4-vector c. It is holomorphic in t in C \ {t ≤ −2} and satisfies
both (7.7.14) and (7.7.16).

To make the integral (7.7.10) exist and the equivalences (7.7.11) work, one
then will need exponential estimates on such z(t) along suitable rays arg t = const.
Reexamining coefficients of (7.7.9), they are meromorphic functions in the entire
complex r-plane with poles only at r = 0 and r = 1

λ . We need existence of the
integral (7.7.10) for r on the half-line r > 1

λ . For this, as it turns out, we must
choose a ray arg t = ω with π

2 ≤ |ω| ≤ π. Our z(t) satisfies both integral eqs.
(7.7.14) and (7.7.16), for any ray arg t = ω , any ω, except ω = π. The factor ert

in (7.7.10), as r > 1
λ , will decay exponentially for π ≥ |ω| > π

2 . So, we will need
an exponential estimate for z along such a ray. That will follow from (7.7.14) if we
obtain proper exponential estimates for the entire functions P,Q of (7.7.15). To
obtain such estimates we fix a path Pε,η in the complex r-plane encircling the two
singularities 0 and 1

λ of the coefficients of (7.7.10), by following a straight segment
parallel to (and above) the line Lη = {y = −η + ληx} (with η > 0), at distance
ε > 0 from 0 (and above 0), passing the two singularities 0, 1

λ on Lη, and then to
return in the half-plane below Lη (Fig.7.7.1), encircling 0, 1

λ . The line Lη has unit
normal 1√

1+λ2η2
(−λη
1 ) = (cos ω

sin ω ) with some ω = ωη between π
2 and π (Fig.7.7.1).

Then Lη is given by �(re−iω) = − η√
1+λ2η2

= −σ(ω). We have “>” and “<” in

this relation above and below Lη, respectively. Thus we have

(7.7.18) �(re−iω) ≤ ε

along the entire path P = Pε,η, With P positively oriented we get

(7.7.19)
∫

P
p(

1
r
)rm−1dr = 2πipm , m = 0, 1, . . . .

18This is a matter of estimating the operator Y to get convergence. Specify a region R by

taking the disk |t| ≤ η in the complex t-plane - with η large, cutting out the sector | arg t − π| ≤
ε , |t| ≥ 2 − ε, for small ε > 0. Then confirm: 1

t+2θ
= 1

t+2
+ 1

(t+2)2
ν is meromorphic with only

pole at t = −2 . Hence,

|t + 2θ| ≤ c1 , | 1
t+2θ

| ≤ c2 , |Φ(t, τ)| ≤ c3 ,

as t, τ ∈ R. Also, |z0| ≤ c1|c|. Let zn = Y nz0. Then,

|z1(t)| ≤ |c|c1c1c2c3|t| = |c|c21c2c3|t| , |z2(t)| ≤ |c|c31c22c23
|t|2
2!2

, . . . ,

|zn(t)| ≤ |c|cn+1
1 cn

2 cn
3

|t|n
n!2

, . . . , for all t ∈ R.

This indeed insures convergence of the series
∑

Y jz0 for all t ∈ R. So, it defines a unique

solution z = zc of (7.7.16), as specified. But we have differentiated to obtain (7.7.16) from

(7.7.14). So, apriori, (7.7.16) implies only that the left hand side of (7.7.14) is constant. However,

for z(t) continuous near 0 that constant vanishes at t = 0, hence it is 0, and we indeed have

equivalence of (7.7.14) and (7.7.16). [Uniqeness of the solution is evident, of course.]
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Rewrite this as

(7.7.20) pm =
1

2πi

∫

P
(
1
r
p(

1
r
))rmdr .

Then get
(7.7.21)

P (t) =
∑

pm
tm

m!
=

1
2πi

∫

P

∑ tm

m!
rm(

1
r
p(

1
r
))dr =

1
2πi

∫

P
(
1
r
p(

1
r
))ertdr ,

and, similarly,

(7.7.22) Q(t) =
1

2πi

∫

P
(
1
r
q(

1
r
))ertdr .

�

�

�����������

���������������

1/λ

−η

Pε,η

y = −η + ληx

0

A path Pε,η with �(re−iωη ) ≤ ε around 0 and 1
λ .

�(rt) : r ∈ P} with a con-
stant c incorporating length of P and maximum of coefficients p, q along P. For
t with arg t = −ω we have t = e−iω|t| , �(rt) = |t|�(re−iω) ≤ ε|t| on all of
P = Pε,η, by (7.7.18). Thus we get

(7.7.23) |P (t)|, |Q(t)| ≤ cεe
ε|t| , as t = e−iω|t| ,

with some constant cε for every ε > 0. Now we estimate z(t):

Proposition 7.7.1 The solution z(t) of our integral eqs. (7.7.14) and (7.7.16)
satisfies

(7.7.24) z(e−iωt) = O(eεt) , t > 0 ,

for any fixed ω = ωη satisfying π
2 < ω < π, with σ(ω) of (60) - choosing 0 < η <∞.

From (7.7.21),(7.7.22) get |P (t)|, |Q(t)| ≤ c Max{e

Fig. 7.7.1.
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Proof. With (7.7.14) and (7.7.23) we get
|z(e−iωt)| ≤ c

t
1+t
1+t

∫ t

0
dτeε(t−τ)|z(e−iωτ)| . For ζ(t) =

∫ t

0
e−ετ |z(e−iωτ)|dτ we

thus get ζ ′/ζ = (logζ)′ ≤ c
t = (log tc)′. Integrating we get

log(ζ(t)/ζ(1)) ≤ log(tc). Or, ζ(t) ≤ ζ(1)tc, as t ≥ 1. Or,
e−εt|z(e−iωt)| ≤ c

t ζ(t) ≤ ζ(1)ctc−1. Finally,
|z(e−iωt)| ≤ ctc−1eεt ≤ ce2εt for all t > 0, q.e.d.

Now we look at w(r) defined by (7.7.10), and fix the integration path as arg t =
−ω with above ω = ωη, while assuming r in the half-plane below line Lη. For the
e-function of (7.7.10) we get |ert| = e|t|�(re−iω) ≤ e−σ(η)|t|. Therefore, integrating
along that ray t = e−iωτ , and using (7.7.24) we get

(7.7.25) w(r) =
∫ ∞

0

z(t)ertdt = O(
∫ ∞

0

dτeτ(ε−σ(ω))) .

Notice the coefficient of τ in the exponent is negative (for small ε > 0, and the r

chosen). Therefore this integral exists for all r in the half-plane below the line Lη,
in particular, on the real axis, for r > 1

λ . To make the correspondences (7.7.11)
work we must insure that etr

∫ t

0
dτ

∫ τ

0
(τ − κ)mz(κ)dκ → 0 as t →∞, for r in that

halfplane and t going along the integration path, and for m = 0, 1, . . . . But we have
z(t) = O(eε|t|) there, hence the inner integeral is O(|t|meε|t|) = O(e(2ε|t|) while the
factor etr decays like e−σ|t| as |t| → ∞. Thus, indeed, the above condition holds,
and the w(r) constructed will solve our eq. (7.7.9). All in all, thus, we constructed
the desired solution of (7.7.8), for every constant 4-vector c, giving a 4-dimensional
space of solutions of (7.7.5) of the form wc(r)eθr , θ = 1− 1

2ν , ν =
(
0 1
0 0

)
. Repeating

the procedure for the minus sign we get another such family of the form wc(r)e−θr

- so, all together, an 8-dimensional space of solutions of (7.7.5), and thus of (7.3.6).

7.7.2 The Asymptotic Expansion at ∞; Dependence on λ

Finally, let us discuss the asymptotic expansion of the solution w(r) we found:
Recall z(t) is holomorphic in the plane slitted along t ≤ −2, so it has a power
series expansion

(7.7.26) z(t) =
∞∑

m=0

zmtm

convergent in |t| < 2. Observe that

(7.7.27)
∫ ∞

0

tmert =
(−1)m+1

rm+1
Γ(m + 1) = (−1)m+1 m!

rm+1
,
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where we must recall that the integral was taken over a ray t = τe−iω with
π
2 < ω < π. With a complex curve integral technique we may convert such integral
into an integral along the negative real axis, giving us the Gamma function. We
write (7.7.26) as

(7.7.28) z(t) =
k∑

m=0

zmtm + Rk(t) ,

with a “remainder” Rk bounded by c|t|k+1 near t = 0. Recall, we have |z(t)| =
O(eε|t|) on the integration path, and the same also for Rk(t) . Thus,

(7.7.29) w(r) =
1
r

k∑

m=0

wm

rm
+Sk(r) , Sk =

∫ ∞

0

ertRk(t)dt , wm = (−1)m+1m!zm ,

where (with �(re−iω) = − λrη√
1+λ2η2

, for real r)

(7.7.30) Sk = O(
∫ ∞

0

|t|k+1e(ε−λrη/
√

1+λ2η2)|t|d|t|) .

A substitution τ = ( λrη√
1+λ2η2

− ε)|t| in (7.7.30) gives Sk = O(|r|−k−2), for real

r > 1
λ , q.e.d.

Finally, dependence19 on λ: The coefficients of the DE’s (7.3.6),(7.7.5),...,(7.7.9)
all are local power series in λ as long as r > 1

λ . Hence also the operator Y of
(7.7.16) and all the terms of the Neumann series defining z(t) have that property.
Since the Neumann series converges uniformly (also under local change of λ) we
can state the same thing for z(t), in that slitted t-plane. Then even our expo-
nential estimates are uniform under local changes of λ. It follows that also the 8
linearly independent solutions of (7.3.6) we obtained have the property that v(r)
(and u(r)) are local power series in λ whenever λ > 1

r . Exactly 4 of them grow
exponentially, the other 4 decay exponentially, as we stated in sec.7.5.

7.8 Final Arguments

7.8.1 Fitting Together our Wave Distributions

First we verify that the system (7.5.9) must be of rank 8 for all λ > 0 (with discrete
exceptions). Introduce the 4 × 10-matrices C∼ = ((clj))l=1,...,10,j=1,...,4 , D∼ =
((dlj))l=1,...,10,j=1,...,4 , and then the 8× 10 matrix X = (C∼

D∼). Let X ′(λ) be the
8 × 6-right-most corner of X. So, we know that X ′ has rank 6, except at the

19For a study of similar dependence on a parameter we refer to [Ki1].
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eigenvalues. Let Mj(λ) denote the sum of the squares of all j × j-minors of X.
Clearly Mj(λ) expands into a (real-valued) power series near every real λ0 > 0 -
i.e., it is a holomorphic function of λ in some neighbourhood of R+. We know that
M6(λ) is not ≡ 0, since its right hand corner X ′ is not identically of rank < 6.
But we claim that also M7(λ) and M8(λ) do not vanish identically.

For, assume that M7(λ) ≡ 0 - i.e., X is of rank 6, with countable exceptions.
Pick some 6× 6-minor µ(λ), holomorphic and not ≡ 0, and let µ(λ0) �= 0 for some
λ0. Assume µ is obtained by crossing out the columns ν1, ..., ν4 - but we know
that we may choose νj = j, since X ′ is of rank 6. This means that we may choose
the 4-vector (p1, ..., p4) arbitrarily - say, equal to ej (having j-th component = 1,
all others zero) - and then solve for p5(λ), ..., p10(λ) , not only at λ = λ0 but for
all λ with countable exceptions not clustering anywhere in R+. The functions
pj(λ) , j ≥ 5, have denominator µ(λ) hence are meromorphic in a neighbourhood
of R+ with poles possible on R+. As a consequence we arrive at 4 families of
wave-distributions, of the form (7.5.2)(7.5.3) , but with L2

loc replaced by L2(R+):
For j=1,2, get

(7.8.1) Zvj(r, λ) = ejδ(r − 1
λ

) + v0
j (r, λ) , v0

j ∈ L2 1 1
0

2 0
1

and, for j = 3, 4,

(7.8.2) Zvj = ej−2p.v.
1

r − 1
λ

+ v0
j (r, λ) , v0

j ∈ L2 .

All Zv0
j (r, λ) are meromorphic in λ near R+, for each fixed r > 0. However,

we then find that Zv1λ and Zv3µ must be orthogonal, as λ �= µ, while we get
- setting η = 1

λ , ζ = 1
µ , for a moment - 〈δ(r − η), p.v. 1

r−ζ 〉 = 1
η−ζ . We get

0 = 〈Zv1(., λ), Zv3(., µ)〉 = 〈δ(. − η), p.v. 1
.−η 〉 + v0

3(ζ, λ) + p.v.
∫

v0
1(r, λ) dr

r−ζ +∫
v0
1(r, λ)v0

3(r, µ)dr where the last term stays bounded, as λ − µ → 0, and the
second and third term are O(| log |η− ζ||) and O((log |η− ζ|)2), as may be checked
by a calculation, using the fact that the singularities of v0

j are generated by terms
of the form sj log |s| with j ≥ 0. Since the first term goes like 1

η−ζ , we get
a contradiction, and must conclude that M7(λ) does not vanish identically. A
similar argument yields that also M8(λ) is not ≡ 0.

Then, now, we may pick an 8×8-minor µ(λ), not ≡ 0. Assume µ(λ) is obtained
by crossing out the columns ν1, ν2 from X. Then specify (pν1(λ), pν2(λ)) ≡ (1, 0)
(or ≡ (0, 1)) for two families of wave distributions of the form (7.5.12).

But there may be discrete points λ where the minor µ(λ) vanishes. Before we
discuss these points, let us note:

For a λ with µ(λ) �= 0 the linear span of the two vector functions Zvk(r, λ) , k =
1, 2, is characterized as the 2-dimensional null space of the system (7.5.9) - via

, e = ( ) , e = ( ) ,
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relation (7.5.7). This space depends smoothly on λ, both, in L2, and as subspace
Q(λ) ⊂ C

10, using the base (pl
1(λ), . . . , pl

10(λ))T , l = 1, 2, the latter dependence
even being real analytic. If, at a λ0 with µ(λ0) = 0 we still have rank(X) = 8 then
there will be another minor µ1(λ0) �= 0. This will generate another base (p1l

j (λ)) ,
not only at λ0, but in some neighbourhood, where also µ(λ) �= 0. In other words,
at such a point, only the base we constructed gets singular, but the space stays
smooth (and even real analytic) in λ. Similarly, at a point λ0 where rank(X) < 8
we only must show that the above two-dimensional space Q(λ) ⊂ C

10 continues
smoothly through that point, as a local subspace of the null space of X(λ0), but
coinciding with the null space of X(λ), near λ0. Given that, we have a smooth
base near each point λ of R+ and may construct a smooth global base, since R+

is contractible.

Now let rank(X(λ0)) = d < 8. Pick d rows xν1 , . . . , xνd
of X forming a basis

at λ0. They still are linearly independent near λ0, but the rank of X must be 8
there.

WLOG assume that X =
(

I 0
S T

)
. [First multiply left by a constant 8 × 8-

permutation such that (ν1, . . . , νd) goes into (1, . . . , d). Then right by a 10 × 10-
permutation such that the columns of a non-vanishing minor Z are taken into the
first d columns. So, we then have X =

(
Z Y
R L

)
with Z invertible. Now multiply right

by (the 10 × 10-matrix)
(
J K
0 I

)
where J = Z−1 , K = −Z−1Y All these matrix

multiplications are valid for some neighbourhood of λ0 and they are invertible. As
a result indeed we have converted X to the above form.] In fact, we even may
assume S(λ) = 0, using another invertible 8 × 8-left multiplication of the form(

1 0
−S 1

)
.

In this normal form we look at the equation Xp = 0 with X =
(

I 0
0 T

)
and,

correspondingly, p = (q
p). Clearly q(λ) = 0, and also, T (λ)p(λ) = 0, near λ0,

where now T (λ) is an (8 − d) × (10 − d)-matrix, and a power series T (λ) =∑∞
j=k Tk(λ− λ0)j , with k ≥ 1, and Tk �= 0. (We have T (λ0) = 0, since for λ = λ0

the rank is d, so all other rows must be combinations of the first d.) We may
divide with (λ − λ0)k and get the same equation with k = 0 - changed T (λ).
With the new (8 − d) × (10 − d)-matrix T (λ) we may have maximal rank -i.e.,
rank(T (λ0)) = 8−d. Then we are done - just fix a minor µ(λ0) �= 0 and construct
a linearly independent pair p1(λ), p2(λ) of (10− d)-vectors solving T (λ)pl(λ) = 0,
real analytic near λ0, transform back to get corresponding 10-vectors real analytic
near λ0, and spanning Q(λ) for λ �= λ0.

Or else, we still have rank T (λ0) < 8− d. Then we iterate the procedure. The
iteration must break off since we loose at least one dimension, at each step - from
the 8 dimensions we have.
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In this way, we indeed have constructed the space Q(λ) for all λ > 0, and
Q(λ) has a real analytic base near each point λ > 0. As mentioned, we then
may piece together a global base defined for all λ > 0 [using a countable cover of
open intervals ∆j , j = 0,±1,±2, . . . such that ∆j intersects with ∆j±1 but with
no other ∆l]. That global base should be used for definition of the 2 functions
(7.5.12).

7.8.2 Final Construction of the Distribution Kernel

U(r, ρ) of (7.3.11)

We may write the operator U0 with distribution kernel (7.5.14) in the form

(7.8.3) U0 = A(r) + K−B(r) + C ,

with the “Mellin convolutions” K±u(r) = p.v.
∫ ∞
0

u(ρ) dρ
r±ρ =

∫ ∞
0

u(ρ) dρ/ρ
r/ρ±1 , and

the matrix multiplications A(r) = U1( 1
r ) , B(r) = U2( 1

r ), and integral operator
C with kernel C(r, ρ) = Uc(r, 1

ρ ). Note, if rank(A(r), B(r)) < 2 then λ = 1
r must

be an eigenvalue, which we know happens only at discrete points r. Focus on
〈U0u,U0u〉, for a u ∈ C∞

0 (R+). The operators K± are bounded over L2(R+), and
they are diagonalized by the Mellin transform; one finds that

(7.8.4) K∗
± = ±K± , K2

− = −π2 + K2
+ .

We get
〈U0u,U0v〉 = 〈u, (A∗(r)−B∗(r)K−+C∗)(A(r)+K−B(r)+C)v〉 = 〈u, (A∗(r)A(r)+
π2B∗(r)B(r))v〉−〈u,B∗(r)K2

+B(r)v〉+〈u, (A∗K−B−B∗K−A)v〉+〈u, (C∗K−)Bv〉−
〈u,B∗(K−C)v〉+ 〈u,C∗Au + A∗Cv〉+ 〈u,C∗Cv〉 , u, v ∈ C∞

0 (R+, C2) .

We may write 〈U0u,U0v〉 = 〈W,u∗(r)⊗ v(r′)〉 with the distribution kernel

(7.8.5) W (r, r′) =
∫ ∞

0

U0(ρ, r)U0(ρ, r′)dρ = 0 , r �= r′ .

In other words, W (r, r′) has support at r = r′. However, the above calculation
shows that, with Q = A∗A + π2B∗B, we get

W (r, ρ)−Q(ρ)δ(r − ρ) = p.v. 1
r−ρ (A∗B −B∗A)(ρ) + C5(r, ρ)

where C5 is a function. This sum must vanish identically for r �= ρ, which may
happen only if (A∗B −B∗A)(r) ≡ 0, and C5 ≡ 0.
Conclusion: The operator W = U0∗U0 defined for C∞

0 -functions u, v by setting
〈u,Wv〉 = 〈U0u,U0v〉 is a multiplication operator; We have

(7.8.6) U0∗U0 = (A∗A + π2B∗B)(r) = Q(r) .
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We have seen that Q(r) is singular at discrete points r only, since Q(r)ϕ = 0 , ϕ �=
0 implies A(r)ϕ = B(r)ϕ = 0, or, rank(A(r), B(r)) < 2. Moreover, in proper local
coordinates, we have A(r), B(r) analytic near such a point r0. One then confirms
that the matrices A�(r) = A(r)Q(r)−

1
2 and B�(r) = B(r)Q(r)−

1
2 still are power

series20 while A�∗A� +B�∗B� = 1. Thus, defining U = U0Q− 1
2 (r), we then finally

have achieved our unitary map of the theorem, since we will have U∗U = 1. In
particular, after this correction, the matrix (U1, U2) is smooth and has maximal
rank, as stated.

7.8.3 About the Negative Spectrum

To show that there is only discrete spectrum for λ < 0 note that rλ = 1
λ < 0

no longer belongs to R+ so eq. (7.3.6) now is elliptic; distribution solutions are
C∞. At r = 0 and r = ∞ there is no change, regarding asymptotic behaviour of
solutions: We still have the bases ϕj(r, λ) and ωj(r, λ) of 8 solutions each, with
the spaces T0 and T∞ of sec.7.5. Defining χj(r, λ) now as the system of solutions
satisfying specified initial conditions at r = 1 - say, χ1 = e1, χ2 = e2, . . . , χ′′′

7 =
e1, χ′′′

8 = e2, all other derivatives (of order < 4) = 0 , all at r = 1, and with
e1 = (10), e

2 = (01) - we now get (7.5.5),(7.5.6) for all r > 0. Looking for eigenvalues
or wave functions we try for pj(λ) with v(r, λ) =

∑8
1 pj(λ)χj(r, λ) ∈ Tη, for η = 0

and η = ∞ both. This gives the 8 eqs. (7.5.9), but with sum from 1 to 8, not from
1 to 10. The matrix of this system must be singular to obtain nontrivial solutions.
The coefficients are local power series in λ again we only get discrete points unless
det((pjl(λ))) ≡ 0. But a nontrivial solution now defines an eigenfunction, and
there may be only countably many such, due to orthogonality. Thus, indeed, the
spectrum below 0 is discrete.

7.8.4 Final Comments

We expect our unitary operator U linking V ∼ to V to map onto H2 - equivalent
to the fact that there is no point spectrum of V ∼. Note, for example, that our
theorem extends trivially to the operator Vη generated from (7.3.2) by replacing
Λ with ηΛ, defining a family connecting V = V0 with V ∼. This will give a family
Uη , 0 ≤ η ≤ 1 of operators, with U∗

η Uη = 1. Clearly, the Uη are semi-Fredholm -

20Using analytic perturbation theory for real symmetric 2 × 2-matrices one may diagonalize

Q(r) near r0, by a unitary 2 × 2-matrix depending analytically on r. With that one finds the

inverse square root still a Laurent series in r−r0, near r0, and with finitely many negative powers.

Then A�, B� have the same property, but are also bounded, due to A�∗A� + π2B�∗B� = 1. So,

they cannot have negative powers and must be power series, i.e., analytic near r0.
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we have ker Uη = {0} and im Uη is closed in H2. A simple argument shows that
U0 = 1, so, the Fredholm index of U0 is 0. If it can be proven that the family
Uη is continuous in operator norm of H2, then the Fredholm index of Uη must be
zero for all η, and im U =im U1 = H2 would follow. Investigation of this norm
continuity seems linked to a study of asymptotic behaviour21 of wave distributions
(7.5.12) as λ → 0 and as λ →∞, as would be other approaches (through [GK] or
[Co9] , for example).

Note also, the 4×4-matrix-function
(

A(r) πB(r)
−πB(r) A(r)

)
, with A(r), B(r) of (7.3.9)),

is a family of unitary 4× 4-matrices, defining an “algebra-symbol” of U .
It is not hard to derive an “A-boundedness” in the sense of [Ka1] for the

perturbation Λ + Λ∗ of V occurring in (7.3.2), using well known estimates of the
form discussed in [HLP].

21The behaviour of solutions of the DE (7.3.6) at all 3 singularities seems uncontrollable, as

λ → 0 or λ → ∞, except that precisely the solutions needed for our wave distributions seem

to behave well, as we found out, using models. Incidentally, we believe that norm continuity

of Uη can be proven if we work with (7.3.6) in a finite interval [r′, r′′] ⊂ R+ imposing self-

adjoint boundary conditions at r′, r′′. Letting [r′, r′′] → R+ then might give the most promising

approach for solving the problem of completeness of the eigenpackets we constructed, because

that Ansatz should exclude the badly behaving “other solutions”.



Chapter 8

Dirac and Schrödinger

Equations; a Comparison

8.0 Introduction

In this chapter we shall venture beyond the Dirac equation - so far our only object
of study - and try reflecting on other wave equations in Quantum Mechanics.
Perhaps we have fortified our opinion that - for the hydrogen atom - and, more
generally, any “one-particle problem” considering a single charged particle in an
electromagnetic field - the Dirac equation would be preferable - i.e., more accurate,

Physics acknowledges this point of view by introducing a “Spin number” for
all elementary particles, setting this number = 1

2 for electrons and protons, and
then specifying the Dirac equation as responsible - by axiom - for all particles of
spin 1

2 .

On the other hand, the Schrödinger equation still may serve as an approximate
wave equation for the hydrogen atom. However we are forced to accept it as the
nonrelativistic wave equation for multiparticle systems - such as the Helium atom,
having a nucleus and two electrons or other multi-eletron atoms. Perhaps we may
use the “approximation element” as a reason for not trying to discuss precisely
predictable observables, in that context: Precision of any prediction cannot be
guaranteed anyway.

We already mentioned in the preface that it should be possible to design an
analogous theory of precisely predictable observables for the “Dirac-type equations”
arising from gauge theories of Yang-Mills and Higgs. We just have not looked at

237

and more to the point - to the Schrödinger equation, already introduced in (3.0.2).
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these equations, since they are an order of magnitude more technical - although
quite the same approach could be used.

Returning to Schrödinger’s equation, we might note yet the harmonic oscillator
- with Hamiltonian Hsh = 1

2 (x2 −∆). Its wave equation (∂t + iHsh)ψ = 0 seems
firmly entrenched in Quantum Field Theory as the wave equation of a “light quan-
tum”. A light quantum is categorized as a particle “of spin 0”, and it seems that,
indeed, the Schrödinger equation of the harmonic oscillator should be the proper
(and precise) wave equation for it. [We even may design a relativistic “covariance”
for it - cf. [BLT], for example] So, with this example, it seems that it is not proper
to completely eliminate the Schrödinger equation from our discussions. We might
thus ask whether any of our above principles of precisely predictable observables
can be redeveloped for the Schrödinger wave equation of the harmonic oscillator.

In one dimension this would be the equation1

(8.0.1) ∂ψ/∂t + iHshψ = 0 with H = Hsh =
1
2
(D2 + x2) =

1
2
(x2 − d2

dx2
) ,

in the Hilbert space H = L2(R3).
We have the algebra Opψc of strictly classical ψdo-s (in one dimension, and

scalar, complex-valued) and note that Hsh ∈ Opψc2e. Its symbol is given by
hsh(x, ξ) = 1

2 (x2 + ξ2), so, clearly, Hsh is md-elliptic of order 2e.
There is no analogous question to that asked in ch.3, since the symbol hsh

is scalar. This really should be a wave equation of only one (kind of) particle.

the Heisenberg representation A → At = eiHshtAe−iHsht for a self-adjoint ψdo A.
We shall do this - for special ψdo-s A - in sec.8.5, below, and will find a surprising
difference to the findings for Dirac Hamiltonians with time-indpendent potentials:

In general At will leave the algebra Opψc at once, as soon as t �=
0. However, At will return - not only to the algebra, but even to the
old operator A = A0 periodically, as t is a multiple of π. So, if we
propose Psh = Opψc as algebra of precisely predictable observables,
then - it seems that operators there are precisely predictable only at
certain discrete times - it is as if we have a quantization of the time
as well, at least in matters of predicting observables.

In case of the Dirac equation we might find- a somewhat similar behaviour
for time-dependent potentials. We observed earlier - sec.5.2, 5.1 - that the total

1This corresponds to an oscillation frequency of ω = 2π. A general frequency results from a

scaling of independent variable, not structurally affecting the algebra we will introduce.

Accordingly, we should turn to the problems raised in ch.4 and ch.5, and look at
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energy always is precisely predictable, if V,A are time-independent, but that this
fails to be true if potentials depend on time.

We are tempted, in this connection, to point to the following (hypothetical)
“experiment”:

Let the potentials A,V be superpositions of a (time-independent)
Coulomb potential VC = cf

|x| (and AC ≡ 0) and an (in space compactly
supported and infinitely differentiable) electromagnetic wave Aw,Vw.
The wave potentials Aw,Vw and their first time-derivatives are ar-
bitrarily given at t=0 - except that we require the “Lorentz-gauge”
condition

(8.0.2) div Aw + Vw
|t = 0

and also that Aw,Vw,Aw
|t ,V

w
|t are C∞

0 -functions of x. It then follows
that the field strengthes E ,B must satisfy the Maxwell equations. To-
gether with the gauge cdn. (8.0.2) it then follows that Aw,Vw will
satisfy the wave equation �Aw = 0 , �Vw = 0 - together with (8.0.2)
for all x, t and thus are uniquely determined by their values (and val-
ues of their first time-derivativces) at t = 0 for all x, t. The hyperbolic
wave equation has finite propagation speed (= 1). Hence the x-support
will stay compact for all t, but the wave will spread into 3-space and
die out, of course, as t → ±∞. At any rate, the combined potentials
V = VC + Vw , A = Aw are uniquely determined for all t ∈ R, and
they will satisfy our cdn.’s (X),(XT) of ch.3. So, our theory applies.

Here are the consequences: At each time τ the total energy H(τ) qualifies for
the construction of thm. 5.1.1,(ii) insofar as its symbol h(t, x, ξ) = α(ξ−A)+β+V
commutes with itself - although H(τ) normally will not belong to the algebra
P(τ). However, H(τ) is approximately predictable, insofar as a correction Z(τ) of
order −e2 can be found - small for large |x| - such that H(τ) + Z(τ) is precisely
predictable2.

In other words, while at t = ±∞ we have only the Coulomb potential - with
the “radiation component Aw,Vw” being undetectable, so that H is precisely
predictable, this will not be so for a finite τ . It should be a matter of a more
precise study of the correction Z(τ), in different physical states to get information
on the error of expectation value.

2But H(t), for a t �= τ , needs not even to have its symbol commuting with the symbol of

H(τ), except if we have a periodicity of the potentials - perhaps hinted at by our assumption on

the “wave” Aw,Vw. So, such H(t) does not even qualify for our approximation procedure of

thm. 5.1.1.
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Returning to the harmonic oscillator Hsh, in the sections, below, we will
elaborate on the scheme outlined above: To study the time-propagation under
A → At = eiHshtAe−iHsht of an algebra of ψdo-s - or it could be a similar such
algebra of unbounded operators on the Hilbert space H = L2(R) - where the
self-adjoint operators of that algebra will be considered as precisely predictable
observables.

At the same time we will return to the ideas of sec.1.0, paraphrasing them in a
slightly different environment3: That of a C∗-algebra obtained by “mixing” mul-
tiplication and convolution operators. Such approach [to elliptic and hyperbolic
theory of partial differential equations, in the light of C∗-algebras with symbol]
has fascinated us for some time. It also will cast a slightly different light onto our
intents, and it will give occasion to review the earlier approach, providing help for
a reader who has not looked very closely at earlier chapters.

In sec.8.1 we discuss a C∗-algebra A generated by a multiplication and a convo-
lution over L2(R) = H. This algebra is a subalgebra of the normclosure of Opψc0

(in 1 dimension) in L(H) (cf.thm.1.4.1); it is generated by two operators in Opψc0.
An operator A in A also has a “symbol” we call the “algebra symbol” σA, defined
as a continuous function over a certain compact space we call the “symbol space”
of A. σA is abstractly defined, and it coincides with the values at |x|+ |ξ| = ∞ of
the “ψdo-symbol” of A, if A belongs to Opψc0.

In sec.8.2 we discuss the action of conjugation by eiLt on the “symbol space” of
the algebra A - the “algebra symbol” of an operator A is defined over a “boundary”
|x|+ |ξ| = ∞ of R

2 we call the symbol space of A. [A ψdo A has a symbol defined
over R

2, possibly with a continuous extension to our symbol space. A general
operator in A has its “algebra symbol” defined only over that “boundary” - it
needs not to have an extension into R

2.]
Here L is a self-adjoint first order differential operator. Under reasonnable

conditions on the coefficients of L the algebra A stays invariant under such con-
jugation, and it is interesting to observe the action of that conjugation on the
symbol space - a flow [i.e. a 1-parameter family of automorphisms] will be gener-
ated. That flow is related to a Hamiltonian flow similar to those studied in ch’s 4
and 5.

In sec.8.3 and sec.8.4 we review our concept of strictly classical ψdo-s - in this
1-dimensional case, and bring things into correspondence with earlier chapters.
Especially also we will fit the case of the Dirac Hamiltonian L = H with H of
(1.0.2) - going into L2(R3, C4) again, where similar C∗-algebras may be studied.

3This chapter is composed, using notes of a lecture presented at Berkeley in April 2004.
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One then might consider to define the self-adjoint operators of the algebra
A - and other self-adjoint operators “within reach of A” as precisely predictable
observables, for the “photon Hamiltonian” Hsh. In sec.8.5 then we discuss the
corresponding Heisenberg representation - i.e., conjugation with e−iHsht, using
our second order Hamiltonian Hsh. While the Hamiltonian flow generated by the
first order PDE ψ̇ + iLψ = 0 of sec.8.2 could be interpreted as “introducing a
motion of the algebra symbol space”, in the first order case, this is no longer so
for the second order operator L = Hsh, an explanation for the basically different
behaviour we experience here.

Instead the entire algebra A will suffer a “motion into a different C∗-subalgebra
of L(H)”. But this will be a “periodic motion”, insofar as At = eitHshAe−itHsh =
A for all t = j π

2 , j = 0,±1,±2, . . ..
Proofs are omitted (or only sketched), in this last chapter, as this merely is to

serve as a general orientation.

8.1 What is a C∗-Algebra with Symbol?

To discuss the simplest nontrivial case, let H = L2(R), and define the two bounded
linear operators

(8.1.1) s(x) =
x√

1 + x2
, S = s(D) = F−1s(x)F ,

where s(x) acts as a multiplication operator, while F denotes the Fourier trans-
form Fu(ξ) = 1√

2π

∫ +∞
−∞ e−ixξu(x)dx , u ∈ S. Recall S is a singular convolution

operator,
Su(x) = 1√

2π

∫
dy s∨(x − y)u(y)dy with s∨(z) = 1√

π
sgn(z)K1(|z|) with the

modified Hankel function K1. This function has a singularity like 1
z at z = 0 and

the integral is a Cauchy principal value.
We have operator norms ‖s(x)‖ = ‖S‖ = 1 (since F is unitary). Each of the

operators generates a commutative C∗-subalgebra of L(H) , called Ax and AD,
respectively. Clearly, Ax = C([−∞,+∞]), and, AD = F−1C([−∞,+∞])F , with
the “closed real line” [−∞,+∞].

We observe that the commutator [s(x), S] is a compact operator. More-
over, if we mix both algebras - i.e., use both s(x) and S = s(D) to generate a
C∗-subalgebra A of L(H), then

(i) A contains the entire ideal K(H) ⊂ L(H) of compact operators, and
(ii) The quotient algebra A/K is a commutative (abstract) C∗-algebra.

As a commutative C∗-algebra with unit it has a compact maximal ideal space
M, and it must be isometrically isomorphic to the space C(M) of continuous
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(complex-valued) functions over M (cf. [Lo1],[Dx1]).
To each operator A ∈ A one may associate the continuous function σA(m) :

m ∈ M representing its coset modulo K. σA is called the (algebra) symbol of A,
and this defines a homomorphism A → C(M).

Theorem 8.1.1 (elliptic theory) An operator A ∈ A is Fredholm if and only if
its symbol σA(m) does not vanish anywhere on M.

One then will ask about the nature of the space M , and about explicit for-
mulas for operators - like the generators, for example: The “symbol space” M
is a subspace of the product [−∞,+∞] × [−∞,+∞] (with the “closed real line”
[−∞,+∞] = {−∞ ≤ x ≤ +∞}) thought of as a rectangle R with coordinates
(x, ξ) (see Fig.8.1.1). It coincides with the boundary of R. Moreover, then, we
have σa(x) = a(x) , σb(D) = b(ξ) for (x, ξ) ∈M, and every a(x) ∈ Ax , b(D) ∈ AD.
Specifically, σs(x) = s(x) , σS = s(ξ) = ξ√

1+ξ2
.

. Ms ⊂M

Mp ⊂M

Ms ⊂M

Mp ⊂M

�
�ξ

x

Fig. 8.1.1. The symbol space M of the algebra A is a square at |x|+ |ξ| = ∞, consisting
of the principal symbol space Mp (at |ξ| = ∞) and the secondary symbol space (at
|x| = ∞). The space M is defined as the maximal ideal space of the (commutative)
quotient algebra A/K(H) An operator A ∈ A is Fredholm if and only if its symbol does
not vanish on M .

The roots of this result go back to F.Noether (cf. [No1] (in 1921)), or, in its n-
dimensional (C∗-algebra-) version to I. Gohberg (cf. [Go1](in (1960)). The above
theorem is a special case of the algebra S discussed in [CH] (or cf. [Co11], ch.IV).
We are used to call A the comparison algebra of the differential operator 1 − ∂2

x

- as compared to similar algebras generated by more general second order elliptic
PDO-s (cf.[Co14]).
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This really holds the key of elliptic theory of linear PDE - there are multiple
extensions to (i) differential operators; (ii) systems; (iii) domains with boundary;
(iv) manifolds; (v) noncompact manifolds with edges (or conical points) on its
boundary; (vi) Lp-spaces and other Banach spaces (and even Fréchèt spaces).

8.2 Exponential Actions on A

After “elliptic theory” we now come to “hyperbolic theory”: For this, consider a
first order self-adjoint linear differential operator:

(8.2.1) H = ia(x)
d

dx
+

i

2
a′(x) + b(x) ,

with real-valued functions a, b defined over R. We want a, b to be C∞(R) and to
satisfy some growth conditions:

(8.2.2) a(j)(x), b(j)(x) = O((1 + |x|)1−j) , j = 0, 1, 2, . . . .

Let us assume that the differential operator H has a unique self-adjoint real-
ization4 - a (possibly unbounded) self-adjoint operator, defined in some dense
subspace of H. Then there is a well defined (strongly continuous) group U(t) =
e−itH of unitary operators, with “infinitesimal generator” H, and such that (i)
U(t)dom(H) ⊂dom(H), and (ii) u(t) = U(t)u0 satisfies the differential equation
du
dt + iHu = 0 and initial condition u(0) = u0 , for each u0 ∈ dom(H).

Now we ask for the “action” (by conjugation) of such U(t) on our algebra A
with symbol. More precisely, we ask for details on the (operator-valued) function

(8.2.3) At = U(t)∗AU(t) , t ∈ R ,

where A ∈ A is any operator. First question: For a ∈ A, do we have At ∈ A
for all (or some) t? If yes, then this defines a family of automorphisms A → A
(because clearly the map is invertible, since U is invertible). Such automorphism
evidently would induce a homeomorphism M → M onto itself. So then, if the
answer to (i) is affirmative, one would ask: (ii) Describe in detail this (group of)
homeomorphisms.

3 special examples: For H = D = −i∂x = −i d
dx we will get the translation

operator (U(t)u)(x) = u(x − t); For H = x=multiplication by x (also fitting the
assumptions) we get the “Fourier translation” (multiplication operator) U(t) =

4Actually this condition may be dropped: in [Co5],ch.6 we discuss existence of the group U(t)

even for ν × ν-matrix-valued systems H under much more general assumptions, and without

looking at self-adjoint realizations
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e−itx (amounting to translation of the Fourier transform. It is not hard to verify
that, in these cases, the action on the symbol space M corresponds to these
translations: For e−iDt the points on the vertical lines of the square stay fixed,
while those on the horizontal lines are translated. Vice versa for e−ixt - horizontal
and vertical interchanged. As a third example consider the case H = ix∂x + i

2 .
This operator is non-elliptic at x = 0, but still one easily finds that there is a
unique self-adjoint realization, using the fact that (H ± i)u = 0 does not have any
global distribution solutions in L2(R). The function u(t) = U(t)u0 = e−iHtu0 then
will solve the (hyperbolic) PDE u|t = iHu = −xu|x − 1

2u, or, u|t + xu|x + 1
2u = 0.

This operator H generates the group of dilations. Set u(t, x) = u0(xe−t)e−t/2, for
some u ∈ S. Clearly u(0, x) = u0(x) while u|t = − 1

2u − xu|x . So, u(t, x) solves
our initial-value problem. Notice then that U(t) is the unitary dilation operator,
dilating x into γx, with γ = e−t. The Fourier transform of that dilation operator
proves to be dilation by 1

γ = et. Applying this knowledge to our generators (8.1.1)
one finds that (i) the algebraA again is left invariant under conjugation by U(t) (ii)
the corresponding transformation of the symbol space M is generated by dilating
the sides ξ = ±∞ with γ = e−t, and the sides x = ±∞ with 1

γ = et.
It turns out that, in general, the 3 above cases can serve as models, insofar as

our result considers 3 types of operators, along these prototypes5.
In the general case, it is clear that u(t) = U(t)u0, for u0 ∈dom(H), must solve

the first order linear PDE ∂tu + iHu = 0, i.e.,

(8.2.4) ∂tu− a∂xu + (−1
2
a′ + ib)u = 0 , u(x, 0) = u0(x) .

An initial value problem of this kind may be solved “explicitly”, in the following
sense: Focus on curves in the (x, t)-plane given by x=x(t) with

(8.2.5)
dx

dt
= −a(x(t)) , x(0) = x0 .

Then, along such a curve, set ϕ(t) = u(x(t), t) , γ(t) = 1
2a′(x(t))− ib(x(t)) .Equa-

tion (8.2.4) then amounts to

(8.2.6)
dϕ

dt
= u|t + u|x

dx

dt
= u|t − au|x = (

1
2
a′ − ib)ϕ = γϕ , ϕ(0) = u0(x0) .

Note, (8.2.5) is an ODE with general solution −
∫

dx
a(x) = t + c. Its solutions fill

the entire (x, t)-plane, as a family of non-intersecting curves. Also, (8.2.6) is a first
order linear homogeneous ODE (for ϕ(t)), solved by

(8.2.7) u(x(t), t) = ϕ(t) = ϕ(0)e
∫ t
0 γ(τ)dτ = u0(x0)e

∫ t
0 ( 1

2 a′(x(τ))−ib(x(τ)))dτ .

5We are describing here the one-dimensional case of our result in [Co2] (also found in [Co5],

ch.9).
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In other words, at (x, t) one must follow the solution curve through that point
backward to the line t = 0 to obtain some (x0, 0). Then the value u(x, t) is given
as u(x(t), t) of (8.2.7) with that x0.

Now, regarding the action of U(t) on our algebra, for any bounded operator
A ∈ L(H) let At = U(t)∗AU(t). Then

(8.2.8)
d

dt
At = i[H,At] , A0 = A .

Formally, we might regard (8.2.8) as an evolution equation determining At; we
might write At = e−iadHtA with adHA = [A,H]. However, to really solve (8.2.8) it
will be practical to introduce the concept of “pseudodifferential operator” (abbrev.
ψdo):

Note, the special form of our second generator S = s(D) using convolution
with a modified Hankel function, quoted initially: This also may be written in the
form (8.2.9), below, with a(x, ξ) = s(ξ) (independent of x). Similarly, the first
generator s(x) can be given this form, with a(x, ξ) = s(x). A differential operator
A =

∑N
j=1 aj(x)Dα with coefficients aj(x) ∈ C∞(R) again may be written in that

way, choosing a(x, ξ) =
∑

aj(x)ξj . Again, all operators of the algebra A0 finitely
generated from s(x) and S = s(D) of (8.1.1) are ψdo’s; they may be written in
that form

(8.2.9) Au(x) =
1
2π

∫
dξdyeiξ(x−y)a(x, ξ)u(y) , u ∈ S ,

with a function a(x, ξ) also called the (ψdo-)symbol of A.
In fact, for every A ∈ A0 the “algebra symbol” σA equals the restriction to

M = ∂R of the continuous extension toR of the corresponding ψdo-symbol a(x, ξ)
defining A through (8.2.9).

On the other hand, the general operator A ∈ A has a symbol only defined on
M = ∂R, and there is not necessarily an extension a to R such that A = a(x,D)
can be represented in the form (8.2.9).

We will be forced now to work in a (slightly) larger algebra generated by more
general ψdo’s, mainly, because we need this “interpolation”, i.e., this extension of
the algebra symbol from the “boundary” M to the entire rectangle R.

8.3 Strictly Classical Pseudodifferential Operators

Notice that (8.2.9) also may be expressed in the form (corresponding to (1.0.14)
or (1.2.1))

(8.3.1) a(x,D)u(x) = (2π)−1/2

∫
dξeixξa(x, ξ)u∧(ξ) , u ∈ S .
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Or else,

(8.3.2) a(x,D)u(x) = (2π)−1/2

∫
dya∨2

(x, x− y)u(y)dy , u ∈ S ,

with “.∨
2
” denoting inverse Fourier transform with respect to the second argument

ξ of a(x, ξ). The integral in (8.3.2) generally will be a “distribution integral” - value
of the temperate distribution a∨2

(x, x−.) at the testing function u ∈ S. We impose
the following
Condition (1.2.2)0 on our symbols a(x, ξ):

a(x, ξ) is C∞(R2). We have ∂k
x∂l

ξa(x, ξ) = O((1 + |x|)−k(1 + |ξ|)−l) ∀k, l ≥ 0.

Symbols of operators A ∈ A0 [defined as the algebra finitely generated by s(x)
and s(D)] satisfy cdn.(1.2.2)0. Vice versa, general symbols satisfying (1.2.2)0 need
not define operators inA, although all such operators belong to L(H) (cf.thm.1.4.1).
We denote the class of symbols satisfying (1.2.2)0 by ψc0, and the corresponding
class of operators by Opψc0 and denote its closure (in operator norm of H) by
Ab. It turns out that Ab ⊃ A also is a C∗-algebra with compact commutator. Its
symbol is defined on a compact spaceMb “over”M - that is, the points ofM split
into an infinity of points of Mb, in the manner of a Stone-Cech compactification
(cf.[Co5],ch.V, sec.10).

We need the (slightly larger) algebra Ab because we now claim that, assuming
(8.2.2), with slight additional precautions, Ab indeed is invariant under the action
A → At [while we have not checked this in detail for A]. Also, as will be seen
shortly, use of ψdo-s seems to be unavoidable here, because the generators s(x), S
propagate only as ψdo’s.

Returning to equations (8.2.8), we now make the Ansatz At = a(x,D; t) with a
symbol at(x, ξ) = a(x, ξ; t) ∈ ψc0, for all t (and differentiability conditions, stated
later on). Here it must be mentioned that there is a “calculus of ψdo’s” within
Opψc0 which makes it an (adjoint invariant) algebra. This is given by a couple of
Leibniz-formulas (corresponding to (1.0.8) and (1.0.9))

(8.3.3) ∗ = a∗(x,D) ,

where c, a∗ are given as asymptotically convergent infinite series

(8.3.4) c(x, ξ) =
∞∑

j=0

(−i)j

j!
a(j)(x, ξ)b(j)(x, ξ) , a∗(x, ξ) =

∞∑

j=0

(−i)j

j!
a
(j)
(j)(x, ξ) ,

Here we have c, a∗ ∈ ψc0 whenever a, b ∈ ψc0. We denoted differentiation with
respect to x and ξ by .(j) and .(j) resp. Using this we may express the commutator

a(x,D)b(x,D) = c(x,D) , a(x,D)
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[H, at(x,D)] as a ψdo with symbol expressed as an asymptotic series

(8.3.5) [H, at(x,D)] = pt(x,D) , pt = −i(h|ξat|x − at|ξh|x) + . . . .

For this note that H of (8.2.1) is a ψdo in Opψce (of order e=(1,1)) an extended
class6 of (strictly classical) ψdo’s for which (8.3.3) (8.3.4) holds as well, with

i
2a′(x) + b(x).

The remainder “. . . ” in (8.3.5) may not be small, but it will be “of lower order”.
That is (essentially) it will be small, as (x, ξ) approaches M = ∂R. One might
thus decide to neglect this remainder, for a first approximation of At. Note that
also the (imaginary) term i

2a′(x) in h(x, ξ) is of “lower order”, compared to the
first and last term, hence might be neglected too. Writing h1(x, ξ) = −a(x)ξ+b(x)
this will lead us to a first order PDE (with real coefficients) of the form

(8.3.6) a|t − h1|ξa|x + h1|xa|ξ = 0 .

(or, a|t − 〈h1, a〉 = 0 with the “Poisson bracket” 〈., .〉).
Equation (8.3.6) may be solved just as equation (8.2.4) in sec.8.2: We introduce

the Hamiltonian system

(8.3.7) ẋ = h1|ξ(x, ξ) , ξ̇ = −h1|x(x, ξ) .

Then the solutions of (8.3.6) are the functions constant along the (reverse) “flow” in
(x, ξ)-space induced7 by (8.3.7). [Note (8.3.6) and (8.3.7) imply d

dta(−t, x(t), ξ(t))=
−a|t + ẋa|x− ξ̇a|ξ = 0.] This, and the initial condition a(x, ξ; 0) = a(x, ξ) defines a
unique a(x, ξ; t). One can show then, that this a(x, ξ; t) is a symbol of ψc0 again.
This only gives an approximate solution of (8.2.8). However, this is enough to
start an iteration, yielding an asymptotic sum giving a (unique) solution of (8.2.8)
belonging to Opψc0. Moreover, this solution then will coincide with A(t), showing

6Actually, the algebra Opψc0 ⊂ L(H) only holds the (strictly classical) ψdo’s of order 0 =

(0, 0). A general (strictly classical) ψdo is a polynomial in x and D = −i∂x with coefficients

being ψdo’s in Opψc0, best written in the form A = a(x, D) =
∑

jl xjajl(x, D)Dl, because then

formulas (8.3.1), (8.3.2), (8.3.3) all are valid with the symbol a(x, ξ) =
∑

jl ajl(x, ξ)xjξl ∈ ψc .

Such a symbol will satisfy a modified

of a(x, ξ) (or A = a(x, D)), the modification being that O((1 + |x|)−k(1 + |ξ|)−l) is replaced by

O((1 + |x|)m2−k(1 + |ξ|)m1−l). The Leibniz formulas then also hold within the algebra Opψc

with the addition that order of a product equals sum of orders of the factors. Clearly, under

assumption (8.2.2), H belongs to Opψce ⊂ Opψc, with e = (1, 1), where Opψcm denotes the

class of operators of order m. For details cf. sec.1.2.
7Clearly the flows of (8.2.5) and (8.3.7) are related: Project (8.3.7) onto (x, t)-space and get

(8.2.5), since h|x
own. Note also, for solving the initial-value problem of (8.2.5) we really needed the inverse flow

which accounts for a change of sign in (8.3.7).

slightly changed meanings. The symbol of H is h(x, ξ) = −a(x)ξ +

= −a(x) the first equation (8.3.7) does not involve ξ and may be solved on its

, called (1.2.2)  (or just (1.2.2)), called an order(1.2.2)0 m
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that A(t) remains a ψdo in Opψc0 whenever its initial value A at t = 0 belongs to
Opψc0.

Similarly as in sec.4.2 we then may introduce a “Hamiltonian flow”, defined as
the map ντt : (x, ξ) → (xτt(x, ξ), ξτt(x, ξ), where x(t) = τt(x, ξ) , ξ(t) = ξτt(x, ξ)
is the solution of (8.3.7) at time t, starting at t = τ with initial values (x, ξ).
Moreover, this flow of (8.3.7) extends continuously to Rb, the Stone-Cech type
compactification of R

2 = R×R generated as maximal ideal space of the closure of
the function algebra ψc0 within the bounded continuous functions over R

2. The
boundary ∂Rb = Rb\R2 happens to be the symbol spaceMb ofAb. The restriction
toMb of the extension toRb of our Hamiltonian flow (8.3.7) then defines the action
of U(t) on our algebra Ab - generating a group of homeomorphisms Mb →Mb.

The crucial result, in this respect is the following

Theorem 8.3.1 Assuming cdn. (8.2.2) on a, b, the Hamiltonian system (8.3.7)
has a unique solution x(t;x0, ξ0) = xτt(x0, ξ0), ξ(t;x0, ξ0) = ξτt(x0, ξ0) assuming
(x0, ξ0) at t = τ , for any given (x0, ξ0) ∈ R

2, and all τ , defined for t close to τ .
These local solutions extend for all (positive and negative) t, defining a family ντt

of diffeomorphisms 2 → R
2 such that ντκ◦νκt = ντt for all τ, κ, t ∈ R. Moreover,

the composition a → a ◦ ντt = aτt leaves the function algebra ψc0 invariant - [and
it even preserves orders, i.e., ψcm ◦ντt ⊂ ψcm, if we introduce general order ψdo-s
in a manner analogous to that in sec.1.2].

Theorem 8.3.1 is a special case of Thm.3.1 in [Co2] (cf. also [Co5],ch.6.6). Its
proof is a matter of verifying suitable apriori estimates [see also sec.’s 5.4 and 5.5
above].

Notice that theorem 8.3.1 induces a family of automorphisms ψc0 → ψc0 ◦
ντt = ψc0 of the function algebra ψc0 extending continuously to (isometric *-)
automorphisms of C(Rb) - since (evidently) the composition a → a ◦ ντt does not
change the sup-norm of a(x, ξ). Accordingly it follows that the homeomorphisms
νt indeed extend continuously to the boundary Mb of Rb - and, of course, take
Mb to itself.

Finally, notice that Opψc−e ⊂ K(H), as is well known (cf. rem.1.4.3). Thus,
for the study of cosets of the action A → At , for A ∈ Opψc0 it suffices to
study the map a(x,D) → (a ◦ ντt)(x,D), since aτt − a ◦ ντt ∈ ψc−e. So, in this
sense, Ab and U(t)∗AbU(t) have the same generators, so , the algebras coincide.
Similarly, it follows at once, that the above mentioned homeomorphism defines the
corresponding homeomorphism of the symbol space onto itself. We have proven:

Theorem 8.3.2 (hyperbolic theory) Assuming (8.2.2) for the coefficients a, b,
the map A → At = eiHtAe−iHt defines a group of automorphisms of the algebra

x

R
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Ab, and the corresponding action on the symbol space Mb is given by restricting
the continuous extension to Rb of the group of diffeomorphisms R

2 → R
2 defined

by the Hamiltonian flow of equations (8.3.7).

We call this “hyperbolic theory”, because the very same flow will govern propa-
gation of singularities under the hyperbolic equation (8.2.4): If A is “non-elliptic”
at m0 ∈M i.e., σA vanishes there, then the flow rules how that “singularity” will
propagate in time.

Again, this only ketches the root of the problem, there are generalizations of
all kinds, just as for elliptic equations. The result described does not only hold
for differential operators of the form H but also for general selfadjoint ψdo’s H of
order e = (1, 1). A local version is known as Egorov’s theorem, (cf.[Eg1] published
in 1969). Again this has been generalized in many ways, similar as for elliptic
theory.

8.4 Characteristic Flow and Particle Flow

Returning to our “comparison algebra” A of sec.8.1 we note that there is a reason
to decompose the symbol space M into a disjoint union

(8.4.1) M = Mp ∪Ms

of principal and secondary symbol space, respectively - where Mp = {|ξ| = ∞},
and, Ms = {|ξ| < ∞} - : The Fredholm property of an N -th order differential
operator L is that of the operator A = L(1 − ∂2

x)−N/2 possibly belonging to
our algebra A (if the coefficients are “good”). A (uniformly) elliptic operator L

generates a symbol of A bounded away from 0 on Mp. It then depends on the
“secondary symbol” of A - i.e., the symbol of A overMs whether or not the elliptic
operator L is Fredholm. For details cf.[Co14].

Let us make the point (without detailed proof) that, for a differential operator
H of the form (8.2.1) not only the symbol space of the larger algebra Ab is left
invariant (but is acted on) by the conjugation A → At but also the principal
symbol space Mp ⊂M of A is left invariant, and is acted upon. It turns out that
this action is completely independent of the choice of the function b(x) in (8.2.1),
and best discussed by setting b(x) ≡ 0 , i.e., considering the “principal symbol”
only. [Then, with a local treatment, thm.8.3.2 above in effect becomes trivial.].

Of course, we still must approach this from the Hamiltonian flow defined over
the space of finite x, ξ. The independence from b(x) must be checked by noting
that, at |ξ| =∞ the flow ceases to depend on b(x).
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The flow of e−iHt over Mp is generally referred to as the characteristic flow
(of the hyperbolic equation (8.2.4)).

In contrast to this characteristic flow we will refer to the flow of equations
(8.3.7) (for finite x, ξ) as of the particle flow of equation (8.2.4), for a reason
me might want to explain now: The name “particle flow” for this global flow
will become suggestive, if we describe generalization of above results to the Dirac
equation or the Schroedinger equation of the harmonic oscillator. Note, the Dirac
Hamiltonian H = Hd is a first order 4 × 4-system (in 3 independent variables)
while the Schroedinger Hamiltonian Hsh for the harmonic oscillator is of second
order. We mainly want to comment on action of e−iHsht but shortly must describe
things for e−iHd .

With the Dirac Hamiltonian we work in H = L2(R3, C4). Our comparison
algebra A is generated by the six operators

(8.4.2) sj(x) =
xj√

1 + |x|2
, Sj = sj(D) = F−1sj(x)F , j = 1, 2, 3 .

Again the C∗-algebra A contains the compact ideal K of H, and A/K = C(M) is a
commutative C∗-algebra. The subalgebras Ax and AD of multipliers and Fourier
multipliers, spanned by the sj(x) and by the Sj , respectively, both are (isomet-
rically isomorphic to) C(B3) with the closed ball B

3 = {|x| ≤ 1} ∼= directional
compactification of R

3 - adding one point in each direction x0
∞ = limt→∞tx0 for

|x0| = 1. The symbol space M equals the boundary of the product R = B
3 × B

3.
That is,

(8.4.3) M = B
3 × ∂B

3 ∪ ∂B
3 × B

3 = {(x, ξ) ∈ R : |x|+ |ξ| = ∞} .

Note, A is a subalgebra of L(L2(R3)), not of L(H), but the algebra A4 of all
4 × 4-matrices of operators in A works on H. The symbol of A ∈ A4 is a 4 × 4-
matrix-valued function on M. A is Fredholm if and only if σA(m) is invertible for
all m ∈M.

The Dirac operator Hd = H (of (1.0.2)) is of the form

(8.4.4) H = Hd =
3∑

1

αjDxj
+ β + V (x) = H0 + V (x) ,Dxj

= −i∂xj
,

with constant 4×4-matrices αj , β such that H2
0 = 1−∆, with the Laplace operator

∆. The symbol h(x, ξ) of H (as a ψdo) is given by h(x, ξ) =
∑3

1 αjξj +β +V (x).
The self-adjoint matrix h(x, ξ) has the two eigenvalues

(8.4.5) λ± = ±
√

1 + ξ2 + V (x) ,
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both of multiplicity 2 for each (x, ξ) Both functions λ±(x, ξ) are symbols (in our
class ψce1 , e1 = (1, 0)). If it comes to U(t) = e−iHdt and At = U(t)∗AU(t), then
it must be observed first that At remains a ψdo only for a sub-algebra P0 ⊂ A4 . In
ch’s 4 and 5 above we describe a class P0 ⊂ Opψc0 (in fact, a subalgebra algebra)
characterized by a smoothness of the function At with respect to the parameter
t, which has this property. This algebra P0 may be characterized by the fact that
its operators are of the form

(8.4.6) A = p(x,D) + s(x,D) : [p(x, ξ), h(x, ξ)] = 0 ∀x, ξ ; s(x, ξ) ∈ ψc−e .

For the analysis of the propagation A→ At the decomposition (8.4.6) is crucial:
Since p(x, ξ) and h(x, ξ) commute, there results a split of the matrix p(x, ξ) into a
pair p±(x, ξ) of self-adjoint 2× 2-matrices taking the (2-dimensional) eigenspaces
of h(x, ξ) to the (distinct) λ±(x, ξ) into themselves. [All of this must be thought
of with respect to a suitable orthonormal base ψj(x, ξ) of C

4, where the functions
ψj are symbols in ψc0.]

Now, the symbols p±(x, ξ) propagate along different Hamiltonian flows. Namely,
we have two such flows, given by the two Hamiltonian systems

(8.4.7) ẋ = λ±|ξ(x, ξ) , ξ̇ = −λ±|x(x, ξ) .

The propagation A → At is governed by letting p± propagate along the flow of
λ±, and then making an infinite number of (lower and lower order) corrections. In
such a way we indeed may construct a family At = at(x,D) of ψdo’s solving (8.2.8)
for H = Hd, and a corresponding “propagation of symbols” for the subalgebra P0

of A4 (cf.[Co3] or [Co5]Ch.10, and, of course, ch.5, above).
Now, what fascinates us most, in this context: The self-adjoint 2× 2-matrices

p± have a unique decomposition

(8.4.8) p±(x, ξ) = c0±(x, ξ) +
3∑

1

cj±(x, ξ)σj ,

with our Pauli matrices

σ1 =
(

0 i

−i 0

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 − 1

)
.

[This often is called the Garding-Wightman representation.] From (8.4.8) we form
the real-valued functions c0±(x, ξ) and the real 3-vectors �c±(x, ξ) with components
cj±(x, ξ) : j = 1, 2, 3. The point then is this [and that may justify the name
“particle flow” for the finite Hamiltonian flows (within R

3×R
3) defined by (8.4.7)

- analogous to (8.3.7)]:
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Theorem 8.4.1 The scalars c0±

of electron and positron, respectively, while the vectors �c±(x, ξ) describe propaga-
tion of a magnetic moment vector along these flows - to be interpreted as the spin.

Details were discussed in sec.4.6, where also nonvanishing electromagnetic po-
tentials are admitted. Curiously, the strength of the magnetic moment vector is
exactly one Bohr Magneton - so, even this seems built into that strange “square

8

8.5 The Harmonic Oscillator

With the harmonic oscillator we return to our Hilbert space H = L2(R) and
comparison algebra A, etc., of section 8.1, but now focus on the Hamiltonian

(8.5.1) H = Hsh =
1
2
(D2 + x2) =

1
2
(x2 − d2

dx2
) ,

a second order differential operator with symbol h(x, ξ) = 1
2 (x2 + ξ2). This har-

monic oscillator plays a crucial role in quantum theory of fields. The corresponding
classical equation of motion will be d2x

dt2 + x = 0, solved by x(t) = a sin(t − ϕ),
with amplitude a and phase ϕ. Following our above pattern we may examine the
“particle flow” of the Hamiltonian symbol h(x, ξ):

(8.5.2) ẋ = h|ξ = ξ , ξ̇ = −h|ξ = −x ,

which indeed leads to ẍ + x = 0, if we eliminate ξ. Solving the system (8.5.2)
gives (as orbits in the interior of the rectangle R) the concentric circles x2 + ξ2 =
c > 0 with flow running clockwise around 0 at angular velocity 1. Indeed, this
is the correct field of particle orbits in phase space. Note, this flow does not9

8These classical orbits do not exhibit a dependence on the spin. They must be regarded like

light rays in geometrical optics: Phaenomena like the Stern-Gerlach effect do not enter - they

are like diffraction of light - appearing only with the wave nature. The Stern-Gerlach effect is

quantum mechanical, already one obtains only two possible orbits - spin-up and spin-down, not

a continuum of orbits. [Incidentally, the Stern-Gerlach effect may be linked to the fact that also

the “commuting part” of the lower order symbol zt (of (4.2.15)) is forced into a motion along the

classical orbits, described in sec.5.1. This will suggest a split of the particle flow into two flows,

using the principal axes transformation of the 2 × 2-matrices c±t (cf. also footnote 7 of ch.5).]
9To see this, use the transformation s = s(x) = x√

1+x2
, σ = s(ξ) to map R homeomorphically

onto the rectangle {|s|, |σ| ≤ 1} in (s, σ)-space. The boundary sides |x| = ∞ and |ξ| = ∞ are

mapped onto |s| = 1 and |σ| = 1, respectively. The transformation xt = x cos t − ξ sin t , ξt =

x sin t + ξ cos t then goes into st =
s[σ] cos t−σ[s] sin t√

[s]2[σ]2+(s[σ] cos t−σ[s] sin t)2
(and a similar formula for σt),

where we set [a] =
√

1 − a2, for a moment. Note [s] = 0 amounts to s = ±1. For such s

root” of 1−∆, called the Dirac Hamiltonian .

(x, ξ) propagate along the flow of classical orbits
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extend continuously to a homeomorphism (onto itself) of our compact rectangle
R = [−∞,+∞]× [−∞,+∞], except if t is a multiple of π

2 .
Asking the question about U(t) = e−iHt and At = U(t)∗AU(t) we first note

that we have an explicit representation of U(t) as integral operator, namely,

(8.5.3) (U(t)ϕ)(x) =
∫

dyu(x, y; t)ϕ(y) , ϕ ∈ S ,

with

(8.5.4) u(x, y; t) =
e

i
2 (1+t)

√
2πi sin t

e
i

2 sin t{(x
2+y2) cos t−2xy} .

This may be verified either by using a “Feynman path integral10”

(8.5.5) u(x, y; t) =
∫

exp{i
∫ ∞

0

(xξ̇ − h(x, ξ))dτ}
∏ dxdξ

2π
,

or also directly, using the well known spectral decomposition of Hsh, and the well
known formula for the kernel of U(t) for a self-adjoint operator H with discrete
spectrum11 - i.e.,

(8.5.6) u(x, y; t) =
∑

j

e−iλjtψ̄j(x)ψj(y) ,

with an orthonormal basis {ψj} of eigenfunctions to eigenvalues λj . The path
integral representation (8.5.5) is complicated but often preferred, since it displays
the relation between the quantum mechanical Hamiltonian H and the classical”

action integral
∫ t

0
(qṗ − h(q, p))dτ of Hamiltonian classical mechanics. Also, it

provides a formalism useful for continuous

”

fields of harmonic oscillators”.

we get st =
s[σ] cos t
|s[σ] cos t| =sgn(s cos t) and σt =sgn(s sin t), regardless of σ as long as |σ| < 1 -

i.e., |ξ| < ∞, and t �= j π
2

, j = 0,±1, . . .. This means that the entire secondary symbol space

Ms = {|x| = ∞, |ξ| < ∞} is mapped onto some of the 4 corners |x| = |ξ| = ∞ of our rectangle

R. Similarly with the interior of Mp. It is thus clear that the map (x, ξ) → (xt, ξt) is not 1 − 1

and cannot define a homeomorphism R → R.
10Heuristically we have U(t) ≈ 1− iHt, hence U(t)u(x) ≈

∫ dydξ
2π

u(y)eiξ(x−y)(1− ith(y, ξ)) ≈∫ dydξ
2π

u(y)ei(ξ(x−y)−th(y,ξ)) = V (t)u(x), for small t. To get back to a precise formula for U(t),

try U(t) = limm→∞(V ( t
m

))m, leading to a kernel um - a 2m − 2-fold integral - and its limit u

for m → ∞, called the Feynman path integral.[The kernel um(x, y) of V (t/m)m appears as an

integral over all polygons (in (x, ξ)-space with m − 1 corners) of a partial sum of the integral∫ t
0 (xξ̇ − h(x, ξ))dτ (with ξ̇ replaced by a difference quotiont ∆ξ/∆t) (cf.[FS],Ch.2, for more

detail).] The Feynman integral is liked in Physics because it cleanly displays the relation to the

“action integral” S =
∫ t
0 (xξ̇−h(x, ξ))dτ of Hamiltonian mechanics. By some “magic” only those

polygons contribute, in the limit m → ∞, which converge to a smooth curve where the action

integral makes sense - hence the name “curve integral”.
11H has eigenvalues n + 1

2
, n = 0, 1, . . . , and eigenfunctions e−x2/2Hn(x) with Hermite

polynomials Hn as well known (cf.[Bu]).

”
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Now, let A be a ψdo (of the finitely generated algebra A0 or, more generally,
of Opψc0). Then, again, we have (8.2.8), i.e., Ȧt = i[H,A] . H = x2 +D2 also is a
ψdo, hence we have the Leibniz formulas (8.3.4) for both HA and AH. But they
will break off and give explicit formulas for the symbols, since h(x, ξ) = x2 + ξ2

is a polynomial in x, ξ. With h|xx = h|ξξ = 2 , h|x = 2x , h|ξ = 2ξ we get the
symbol of [H,A] equal to −2i(ξa|x − xa|ξ)− (a|xx − a|ξξ).

With this we may look at (8.2.8)

”

symbol-wise”:

(8.5.7) At = a(x,D; t) , a|t = 2(ξa|x − xaξ)− i(a|xx − a|ξξ) .

In other words, the function a(x, ξ; t) must satisfy the second order12 partial dif-
ferential equation (8.5.7).

This equation may be transformed by introducing b(x, ξ; t) = eixξa(x, ξ) as a
new dependent variable: The function b(x, ξ; t) satisfies the PDE

(8.5.8) ḃ + i(Hξ −Hx)b = 0 ,

where Hx and Hξ denote the operator H applied to the variable x and ξ, respec-
tively. Of course, b must satisfy the initial condition b(x, ξ; 0) = eixξa(x, ξ). Thus
we may calculate b(x, ξ; t) explicitly as

b(x, ξ; t) = e−iHξt+iHxtb = Uξ(t)Ux(−t)b, using that Ux(−t) = eiHxt and
Uξ(t) = e−iHξt commute.

All in all we come out with the formula 13

(8.5.9) a(x, ξ; t) = e−ixξUξ(t)U∗
x(t)eixξa .

We now might want to look at the propagation of our generators p(x) and q(D)
of the algebra A. For this we write the kernel (8.5.4) of U(t):

(8.5.10) u(x, y; t) =

√
ei

π

1√
1− e−2it

e
i

2 sin t (x−y)2e−
i
2 tan t

2 (x2+y2)

This means that we get

(8.5.11) U(t) = a(t)e−ib(t)x2
(eic(t)x2∗)e−ib(t)x2

,

12One might try to repeat the construction leading to the proof of thm.8.3.2, by omitting the

last term in (8.5.7), and then starting an iteration. However, it is clear that the statement of

thm.8.3.1 does not hold here: The rotation of (8.5.2) - solving (8.5.7) without the last (second

order) terms will not leave ψc invariant. It even will mix up the two orders m1, m2 of a symbol.

Besides, (8.5.7) will give a clean initial-value problem for the symbol a(x, ξ; t) since there is no

asymptotic sum involved.
13Actually, formula (8.5.9) may be derived in a simpler way: The Harmonic oscillator

commutes with the Fourier transform F , i.e., also FUx = UξF . Hence
√

2πAtu(x) =∫
U∗

x (eixξa(x, ξ))(Uxu)∧(ξ)dξ =
∫
(UξU∗

x(eixξa(x, ξ))u∧(ξ)dξ = a(x, D; t)u(x) with a(x, ξ; t) of

(8.5.9).



8.5. The Harmonic Oscillator 255

with convolution f ∗ u =
∫

f(x− y)u(y)dy and real a(t) =
√

2ei

π
1√

1−e−2it
, b(t) =

1
2 tan t

2 , c(t) = 1
2 sin t , independent of x. In other words, this is a product of a

convolution and multiplications, each times with a quadratic exponential. Note
also, that convolution with eicx2

amounts to multiplication of the Fourier transform
by (eicx2

)∧ =
√

i
2ceiξ2/4c.

So, starting with a(x, ξ) = p(x) (independent of ξ), we get
p(x)→ a2(e−i(xξ−bx2+bξ2))(e−icx2∗){eibx2

p(x)(eicξ2∗)(ei(xξ−bξ2))} .

Resolving this from inside out,∫
eic(ξ−η)2ei(xη−bη2)dη = eicξ2 ∫

e−i((b−c)η2+(2cξ−x)η)dη .

Here d = b− c = 1
2 cot t > 0 for small t, but it changes sign at t = π

2 . We thus
may continue above calculation:

=
√
− iπ

d ei(cξ2+(2cξ−x)2/4d) .

This also holds for π/2 < t < π with the appropriate change of sign of d.
The next step will be the calculation of∫

p(y)dye−ic(x−y)2eiby2
ei(cξ2+(2cξ−y)2/4d)

= e−i(cx2−ξ2(c+ c2
d ))

∫
p(y)dyei(b−c+ 1

4d )y2+i(2cx− c
d ξ)y .

Set b− c + 1
4d = d + 1

4d = 1
2 (cot t + tan t) = 1

sin 2t = f , c
2d = sin2 t/2

1−2sin2t/2 = g .

Then,
∫

p(y)dyei(fy2+2(cx−gξ)y) = e−i(cx−gξ)2/f
∫

p(y)eif(y+ cx−gξ
f )2dy .

Let us denote the last integral by k(x, ξ). Clearly

(8.5.12) k(x, ξ) =
∫

p(z − c

f
x +

g

f
ξ)eifz2

dz .

Then our symbol a(x, ξ; t) equals the product of k(x, ξ) with a bunch of quadratic
exponentials, namely,
(8.5.13)

p(x, ξ; t) =
|a|2
2π

√
−iπ

d
k(x, ξ)e−i(cx−gξ)2/f e−i(cx2−ξ2(c+ c2

d ) e−i(xξ−bx2+bξ2) .

So, the exponent will be

(8.5.14) −i{x2(
c2

f
− d) + ξ2(

g2

f
+ d− c2

d
) + xξ(1− 2

cg

f
)} .

Next we repeat this for a(x, ξ) = q(ξ) (independent of x)
q(x) → a2(e−i(xξ−bx2+bξ2))(eicξ2∗){e−ibξ2

q(ξ)(e−icx2∗)(ei(xξ+bx2))} .

Resolving this from inside out,∫
e−ic(x−y)2ei(yξ+by2)dy = e−icx2 ∫

ei(dy2+(2cx+ξ)y)dy ,

where again d = b− c = 1
2 cot t, and, continuing,

=
√

iπ
d e−i(cx2+(2cx+ξ)2/4d) .
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The next step will be the calculation of∫
q(η)dηeic(ξ−η)2e−ibη2

e−i(cx2+(2cx+η)2/4d)

= ei(cξ2−x2(c+ c2
d ))

∫
q(η)dηe−i(d+ 1

4d )η2−i(2cξ+ c
d x)η .

Set b− c + 1
4d = d + 1

4d = 1
sin 2t = f , c

2d = g .

Then,
∫

q(η)dηe−i(fη2+2(cξ+gx)η) = ei(cξ+gx)2/f
∫

q(η)dηe−if(η+ cξ+gx
f )2 .

Let us denote the last integral by l(x, ξ). Clearly

(8.5.15) l(x, ξ) =
∫

q(z − g

f
x− c

f
ξ)e−ifz2

dz .

Then our symbol a(x, ξ; t) equals the product of l(x, ξ) with a bunch of quadratic
exponentials, namely,

(8.5.16) q(x, ξ; t) =
|a|2
2π

√
iπ

d
l(x, ξ)ei(cξ+gx)2/f ei(cξ2−x2(c+ c2

d )) e−i(xξ−bx2+bξ2) .

Here the exponent works out as

(8.5.17) i{x2(
g2

f
+ d− c2

d
) + ξ2(

c2

f
− d) + xξ(2

cg

f
− 1)} .

Now, a calculation shows that these exponents both vanish identically, so the
exponentials both are ≡ 1. Moreover, we find that c

f = cos t , g
f = sin t . Hence

(8.5.13) and (8.5.16) assume the form of (8.5.19) and (8.5.20) below, and we may
summarize this as follows:

Theorem 8.5.1 For the operator H = Hsh of (8.5.1) and a pair of operators
p(x) ∈ Ax , q(D) ∈ AD such that p(x), q(ξ) ∈ ψc0, conjugation with U(t) = e−iHt

transforms p(x) and q(D) into formal ψdo’s of the form
(8.5.18))
U(t)∗p(x)U(t) = p(x cos t−D sin t; t) , U(t)∗q(D)U(t) = q(x sin t + D cos t; t) ,

where

(8.5.19) p(x0; t) = (2π)−3/2

√
−2i

sin 2t

∫ +∞

−∞
p(z − x0)e

i
sin 2t z2

dz ,

and

(8.5.20) q(ξ0; t) = (2π)−3/2

√
2i

sin 2t

∫ +∞

−∞
q(z − ξ0)e−

i
sin 2t z2

dz .

So, for given fixed t the symbols in (8.5.18) depend only on the variable x0 =
x cos t− ξ sin t and ξ0 = x sin t + ξ cos t, respectively.

considered as functions of x and ξ. But it is easily shown (using complex curve
One maynot expect the estimates of condition(1.2.2) for the symbols in (8.5.18),0
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integral techniques) that the functions p(x; t), q(ξ; t) of (8.5.19),(8.5.20) do satisfy
for the case of the (holomorphic) generators p(x) = s(x), q(ξ) = s(ξ)

of A.
In fact, there is a periodicity:

Corollary 8.5.2 For t = π
2 , π, 3π

2 , . . . , the integrals in (8.5.18),(8.5.19) degener-
ate to delta-function integrals. For these values of t we indeed get our algebra A
back. Moreover, for the half-numbered multiples of π the two generating algebras
Ax and AD are interchanged, while for t = jπ they are reproduced.

Interesting also, for any t, the symbols p(x0; t) (depending on x0 only) generate
a commutative algebra (with symbol depending only on the linear combination x0

of x and ξ): We have (pq)(x0; t) given by substituting p(x).q(x) instead of p(x) in
(8.5.19). Similarly with (8.5.20).

cdn.(1.2.2) ,0
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General Notations

A: Generals

(1) We are using various notations for derivatives:

∂u/∂x = ∂xu = u|x – whichever is convenient.

time derivative: u̇ = ∂u/∂t = ∂tu

multi-index notation – for symbols: a
(θ)
(ι) = ∂ι

x∂θ
ξ a(x, ξ) , where θ = (θ1, . . . , θn) ,

ι = (ι1, . . . ιn) , ∂ι
x = ∂ι1

x1
. . . ∂ιn

xn
, etc., – usually n = 3. For a multi-index ι set

|ι| = ι1 + . . . + ιn.

(2) R
n and C

n denotes real and complex n-dimensional space; R+ = half-line
{x > 0}.

(3) f(x) = O(g(x)) means that |f(x)| ≤ c|g(x)| with some positive constant
independent of x - possibly only for specific x, as indicated. The constant c then
is referred to as “the O(.)-constant .

(4) 〈u, v〉 denotes the inner product of u and v in Hilbert space, but (f, ϕ)
denotes the value of the distribution f at the testing function ϕ. The first is
sesqui-linear in u, v; the second is bi-linear in f, ϕ.

B: Function Spaces and Distribution Spaces

(1) L2(Rn, Cm) = Lebesgue-squared integrable maps R
n → C

m [if m = 1 the
last arument is omitted].

(2) Ck(Ω) =functions over Ω (an open set) with continuous partial derivatives
up to order k [including k =∞], values usually in C, but possibly also in some C

k

- including matrix-valued.

(3) D(Ω) = C∞
0 (Ω) = compactly supported C∞-functions over the open set Ω.

(4) S = S(Rk) = class of “rapidly decreasing” functions over R
k : All deriva-

tives are O((1 + |x|)−l) for every l = 1, 2, . . ..

(5) D′(Ω) = set of distributions over the open set Ω - i.e., continuous linear
functionals over the set D(Ω) of “testing functions”.
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(6) S ′ = S ′(Rn) = set of temperate distributions: continuous linear functionals
over the space S.

(7) L(X ,Y) = class of continuous linear maps :X → Y [if X = Y the last
argument is omitted].

(8) K(X ,Y) = class of compact linear maps :X → Y [the last argument is
omitted if X = Y].

C: Symbol classes
(1) ψc = class of all “strictly classical” synbols: That is, of all functions

a(x, ξ) ∈ C∞(R6) such that derivatives of x-order k and ξ-order l are O((1 +
|x|)m2−k(1 + |ξ|)m1−l) with some reals m1,m2 for all k, l = 0, 1, . . . [The O(.)-
constants may depend on k, l]. The pair m = (m1,m2) of reals is called an order
of the symbol a(x, ξ). The collection of all symbols of a given order m = (m1,m2)
is denoted by ψcm. Especially ψc−∞ = ∩mψcm - the symbols of order −∞.

Such a symbol a(x, ξ) may be vector-valued, or matrix-valued: We will not
distinguish in notation between symbols taking values in C or in C

n. Many of our
symbols are 4× 4-matrix-valued.

(2) ψt = class of all C∞(R6)-functions a(x, ξ) such that all derivatives (of all
orders) are O((1 + |x|)m2(1 + |ξ|)m1) with given fixed real m1,m2. Then again
m = (m1,m2) is called an order of the symbol a, and ψtm (including ψt−∞)
denotes the class of all symbols in ψt of order m.

(3) ψs = ∪mψsm where ψsm = collection of all symbols in ψtm such that any
finite application of the (first order differential operators) ηjl = εjl − εlj , j, l =
1, 2, 3 , j �= l , and η00 =

∑3
1 εjj – where εjl = ξj∂ξl

− xl∂xj
– belongs to ψtm

again.

D. Special Lie groups:
(1) SO3(R) = group of all real 3×3-matrices with determinant 1 – that is, the

group of all 3-dimenional rotations (about some axis in 3-space).
(2) SU2(C) = group of all unitary (complex) 2× 2-matrices with determinant

equal to 1.

E: Abbreviations used:
DE = Differential equation
ODE = ordinary differential equation
PDE = partial differential equation
ψdo = pseudodifferential operator
FIO = Fourier integral operator
�z , �z denote real and imaginary part of the complex number z.
WLOG = “without loss of generality”.
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Index

ψdo

strictly classical, 7

angular momentum
orbital, 100
total, 97, 106

anular momentum
total, 207

approximation
precisely predictable, 97, 107, 108,

119, 122, 128, 199, 202, 203
asymptotic convergence, 17

Baker-Campbell-Hausdorff formula, 171
Beals

boundedness proof, 20
criterion, 50
formulas, 40

Bessel function, 187

Cauchy problem, 159

compact
ideal, 241, 250
operator, 22, 25, 63, 68, 70, 241

negative order, 22
compact commutator, 246
condition (X), 59, 85
condition (XT), 79
configuration space, 37, 42
continuity equation, 109

continuous
norm, 39
strongly, 83
uniformly, 39

covariant, 153, 155
current, 109

deficiency index, 75
dilation, 42
distribution, 10

homogeneous, 11, 13
over Ω, 10
principal value, 11
singular points, 10
temperate, 10

distribution integral, 8, 11
distribution kernel, 42, 187, 206, 221,

233
distributions

singular points, 10

Egorov theorem, xix, 249
eigenpacket, 57, 196, 197, 217, 221, 235
electrostatic potential, 100, 202
elliptic

-md, 19, 20, 70, 85, 86, 238
md-, 19
PDO, 24
theory, 20, 24, 240, 242, 243

energy estimate, 30
evolution operator, 26, 85–87
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anti-unitary, 55

charge conjugation, 55
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flow, 94, 96, 240
characteristic, 250
Hamiltonian, 95, 110, 248
particle, 103, 104, 115, 250
symbol, 95

Foldy-Wouthuysen transform, xvii, 9, 58,
60, 147

Fourier integral, 10
Fourier multiplier, 166
Fourier transform, 7, 10
Fredholm, 70, 71, 242, 249, 250

criteria, 217
index, 63
integral equation, 25
inverse, 18, 20
operator, 19, 25, 63
property, 249
results, 9
semi, 234
theory, 63

Frobenius solution, 218, 222, 224
function, homogeneous, 11
function, rapidly decreasing, 10
function, testing, 10

Gell-Man, xviii
geometrical optics, 2, 58, 84, 104
Green inverse, 20, 24, 26

Hankel
function, 7, 11, 190, 196, 245
transform, 187

Heinz inequality, 53
Heisenberg group, 39, 46, 48
Heisenberg representation, 4, 88, 97, 111,

118, 238
smooth, 83

Higgs, 237
homogeneous function, 11

hyperbolic
semi-strictly, 2, 125, 145, 199
symmetric, xix, 2, 165, 187, 199
theory, 157, 240, 243, 248

ideal
maximal, 242, 248
two-sided, 18

infinitesimal generator, 243
initial value problem, 26, 29, 30, 91, 92,

94, 129, 132, 174, 244
integral equation

Volterra, 29, 226
integral kernel, 187, 205
integral kernels

singular, 12

K-parametrix, 18, 19, 70, 85
Klein’s Paradox, 4
Klein-Gordon

equation, xi, 155
operator, 7, 188
theory, 155

Laplace
integral, 225
operator, 1, 56, 207, 209, 250

Leibniz formula, 2, 6
asymptotically convergent, 15, 33,

34
with integral remainder, 15, 16, 34

Leibniz formulas
with integral remainder, 162

Lie
algebra, 43
group, 43, 150

light rays, 2, 58, 84, 252
location, 99

 Index

finite propagation speed, xiii, 239

Feynman integral, 253
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momentum, 100
mechanical, 100

momentum space, 37, 42

operator
within reach, 241

order, of an operator, 86

parametrix
K-, 18

Poincaré group, 149
Poisson bracket, 46, 89, 92, 96, 121, 247
polynomial growth, 6, 85
polynomially weighted, 21
preclosed operator, 109
principal value, 11
PsiDO

strictly classical, 8

quotient algebra, 241

relativistic mass, 100, 203
Rellich selection theorem, 21
representation

Heisenberg, 4
left-multiplying, 32
right-multiplying, 32
Schrödinger, 4
two-sided-multiplying, 33
Weyl, 33

resolvent, 69, 86
formula, 52
integral, 52

rotation, 42

Schrödinger
equation, xii, xiii, 2
representation, 4

88, 160, 243, 244

separation of variables, 206
for rotationally invariant potentials,

206
singularity

regular, 217, 222, 223
Thomé-type, 217

smooth
dilation, 43
rotation, 43
translation, 39, 42

Sobolev imbedding, 21
Sobolev space, 20, 21, 24
space

maximal ideal, 241
spectrum

absolutely continuous, 197
continuous, 55, 76, 205
discrete, 209, 234, 253
essential, 67, 71

spin, 106
spin propagation, 96, 115
Stern-Gerlach effect, 115, 124, 252
supersymmetry, 60
symbol

ψdo, 14
classes

ψc, 8, 14, 18, 43
ψs, 43, 44, 49, 50
ψt, 39, 48, 49

of order −∞, 14
order of a, 14
space, 240, 242

principal, 242
secondary, 242

strictly classical, 8, 14

Thomé normal series, 225

 Index

transform, 149
Lorentz self-adjoint realization, 55, 61, 67, 85,
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unitary decoupling
complete, 70

for time-dependent potentials, 78
mod O(−∞), 61, 78

wave distribution, 196, 206, 219, 220

wave distributions, 196

Weinberg-Salam, xviii
Weinstein-Zelditch class, 45
Weyl representation, 33, 99

Yang-Mills, xviii, 237

Zitterbewegung, 83, 88

 Index

trace class, 41
translation, 39
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