
About the Supplemental Text Material 
 

I have prepared supplemental text material for each chapter of the 6th edition of Design 
and Analysis of Experiments.   This material consists of (1) some extensions of and 
elaboration on topics introduced in the text and (2) some new topics that I could not 
easily find a “home” for in the text without disrupting the flow of the coverage within 
each chapter, or making the book ridiculously long. 

Some of this material is in partial response to the many suggestions that have been made 
over the years by textbook users, who have always been gracious in their requests and 
very often extremely helpful.  However, sometimes there just wasn’t any way to easily 
accommodate their suggestions directly in the book.  Some of the supplemental material 
is in direct response to FAQ’s or “frequently asked questions” from students.  It also 
reflects topics that I have found helpful in consulting on experimental design and analysis 
problems, but again, there wasn’t any easy way to incorporate it in the text.  Obviously, 
there is also quite a bit of personal “bias” in my selection of topics for the supplemental 
material.  The coverage is far from comprehensive.  

I have not felt as constrained about mathematical level or statistical background of the 
readers in the supplemental material as I have tried to be in writing the textbook.  There 
are sections of the supplemental material that will require considerably more background 
in statistics than is required to read the text material.  However, I think that many 
instructors will be able to use this supplement material in their courses quite effectively, 
depending on the maturity and background of the students.  Hopefully, it will also 
provide useful additional information for readers who wish to see more in-depth 
discussion of some aspects of design, or who are attracted to the “eclectic” variety of 
topics that I have included. 
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Chapter 1 Supplemental Text Material 
 

S-1.1  More About Planning Experiments 
Coleman and Montgomery (1993) present a discussion of methodology and some guide 
sheets useful in the pre-experimental planning phases of designing and conducting an 
industrial experiment.  The guide sheets are particularly appropriate for complex, high-
payoff or high-consequence experiments involving (possibly) many factors or other 
issues that need careful consideration and (possibly) many responses.  They are most 
likely to be useful in the earliest stages of experimentation with a process or system.  
Coleman and Montgomery suggest that the guide sheets work most effectively when they 
are filled out by a team of experimenters, including engineers and scientists with 
specialized process knowledge, operators and technicians, managers and (if available) 
individuals with specialized training and experience in designing experiments.  The 
sheets are intended to encourage discussion and resolution of technical and logistical 
issues before the experiment is actually conducted. 

Coleman and Montgomery give an example involving manufacturing impellers on a 
CNC-machine that are used in a jet turbine engine.  To achieve the desired performance 
objectives, it is necessary to produce parts with blade profiles that closely match the 
engineering specifications.  The objective of the experiment was to study the effect of 
different tool vendors and machine set-up parameters on the dimensional variability of 
the parts produced by the CNC-machines. 

The master guide sheet is shown in Table 1 below.  It contains information useful in 
filling out the individual sheets for a particular experiment. Writing the objective of the 
experiment is usually harder than it appears.  Objectives should be unbiased, specific, 
measurable and of practical consequence.  To be unbiased, the experimenters must 
encourage participation by knowledgeable and interested people with diverse 
perspectives.  It is all too easy to design a very narrow experiment to “prove” a pet 
theory.  To be specific and measurable the objectives should be detailed enough and 
stated so that it is clear when they have been met.  To be of practical consequence, there 
should be something that will be done differently as a result of the experiment, such as a 
new set of operating conditions for the process, a new material source, or perhaps a new 
experiment will be conducted.  All interested parties should agree that the proper 
objectives have been set. 

The relevant background should contain information from previous experiments, if any, 
observational data that may have been collected routinely by process operating personnel, 
field quality or reliability data, knowledge based on physical laws or theories, and expert 
opinion.  This information helps quantify what new knowledge could be gained by the 
present experiment and motivates discussion by all team members.  Table 2 shows the 
beginning of the guide sheet for the CNC-machining experiment. 

Response variables come to mind easily for most experimenters.  When there is a choice, 
one should select continuous responses, because generally binary and ordinal data carry 
much less information and continuous responses measured on a well-defined numerical 
scale are typically easier to analyze. On the other hand, there are many situations where a 
count of defectives, a proportion, or even a subjective ranking must be used as a 
response.



 

Table 1.  Master Guide Sheet.  This guide can be used to help plan and design 
an experiment. It serves as a checklist to improve experimentation and ensures 
that results are not corrupted for lack of careful planning.  Note that it may not be 
possible to answer all questions completely.  If convenient, use supplementary 
sheets for topics 4-8 

1.Experimenter's Name and Organization: 
   Brief Title of Experiment: 
2. Objectives of the experiment (should be unbiased, specific, measurable, and 
of practical consequence): 
3. Relevant background on response and control variables: (a) theoretical 
relationships; (b) expert knowledge/experience; (c) previous experiments.  Where does 
this experiment fit into the study of the process or system?: 
4. List: (a) each response variable, (b) the normal response variable level at which the 
process runs, the distribution or range of normal operation, (c) the precision or range to 
which it can be measured (and how): 
5. List: (a) each control variable, (b) the normal control variable level at which the 
process is run, and the distribution or range of normal operation, (c) the precision (s) or 
range to which it can be set (for the experiment, not ordinary plant operations) and the 
precision to which it can be measured, (d) the proposed control variable settings, and 
(e) the predicted effect (at least qualitative) that the settings will have on each response 
variable: 
6. List: (a) each factor to be "held constant" in the experiment, (b) its desired level 
and allowable s or range of variation, (c) the precision or range to which it can 
measured (and how), (d) how it can be controlled, and (e) its expected impact, if any, 
on each of the responses: 
7. List: (a) each nuisance factor (perhaps time-varying), (b) measurement precision, 
(c)strategy (e.g., blocking, randomization, or selection), and (d) anticipated effect: 
8. List and label known or suspected interactions: 
9. List restrictions on the experiment, e.g., ease of changing control variables, 
methods of data acquisition, materials, duration, number of runs, type of experimental 
unit (need for a split-plot design), “illegal” or irrelevant experimental regions, limits to 
randomization, run order, cost of changing a control variable setting, etc.: 
 
10. Give current design preferences, if any, and reasons for preference, including 
blocking and randomization: 
11. If possible, propose analysis and presentation techniques, e.g., plots, 
ANOVA, regression, plots, t tests, etc.: 
12.  Who will be responsible for the coordination of the experiment? 
13.  Should trial runs be conducted?  Why / why not? 
 
 
 
 
 



Table 2. Beginning of Guide Sheet for CNC-Machining Study. 
 

l.Experimenter's Name and Organization: John Smith, Process Eng.  Group 
Brief Title of Experiment: CNC Machining Study 
2. Objectives of the experiment (should be unbiased, specific, measurable, and 
of practical consequence): 
For machined titanium forgings, quantify the effects of tool vendor; shifts in a-axis, x- axis, y-axis, and z-
axis; spindle speed; fixture height; feed rate; and spindle position on 
the average and variability in blade profile for class X impellers, such as shown in 
Figure 1.  
 
3. Relevant background on response and control variables: (a) theoretical relationships; (b) expert 
knowledge/experience; (c) previous experiments.  Where does this experiment fit into the study of the 
process or system? 
(a) Because of tool geometry, x-axis shifts would be expected to produce thinner blades, an undesirable 

characteristic of the airfoil. 
(b) This family of parts has been produced for over 10 years; historical experience indicates that 

externally reground tools do not perform as well as those from the “internal” vendor (our own regrind 
operation). 

(c) Smith (1987) observed in an internal process engineering study that current spindle speeds and feed 
rates work well in producing parts that are at the nominal profile required by the engineering drawings 
- but no study was done of the sensitivity to variations in set-up parameters. 

 
Results of this experiment will be used to determine machine set-up parameters for impeller machining.  A 
robust process is desirable; that is, on-target and low variability performance regardless of which tool 
vendor is used. 
 
 
 
Measurement precision is an important aspect of selecting the response variables in an 
experiment.  Insuring that the measurement process is in a state of statistical control is 
highly desirable.  That is, ideally there is a well-established system of insuring both 
accuracy and precision of the measurement methods to be used.  The amount of error in 
measurement imparted by the gauges used should be understood.  If the gauge error is 
large relative to the change in the response variable that is important to detect, then the 
experimenter will want to know this before conducting the experiment.  Sometimes 
repeat measurements can be made on each experimental unit or test specimen to reduce 
the impact of measurement error.  For example, when measuring the number average 
molecular weight of a polymer with a gel permeation chromatograph  (GPC) each sample 
can be tested several times and the average of those molecular weight reading reported as 
the observation for that sample.  When measurement precision is unacceptable, a 
measurement systems capability study may be performed to attempt to improve the 
system.  These studies are often fairly complicated designed experiments.  Chapter 13 
presents an example of a factorial experiment used to study the capability of a 
measurement system. 
 
The impeller involved in this experiment is shown in Figure 1.  Table 3 lists the 
information about the response variables.  Notice that there are three response variables 
of interest here. 
 
 



 
 
Figure 1.  Jet engine impeller (side view).  The z-axis is vertical, x-axis is horizontal, y-
axis is into the page.  1 = height of wheel, 2 = diameter of wheel, 3 = inducer blade 
height, 4 = exducer blade height, 5 = z height of blade. 
 
 
 

Table 3. Response Variables 
Response variable 

(units) 
Normal operating 
level and range 

Measurement 
precision, accuracy 

how known? 

Relationship of 
response variable to 

objective 
Blade profile 

 (inches) 
Nominal (target) 
±1 X 10-3 inches to 
±2 X  10-3  inches at 

all points 

σE≈@ 1 X 10 -5    inches 
from a coordinate 

measurement 
machine capability 

study 

Estimate mean 
absolute difference 
from target and 
standard deviation 

 
Surface finish Smooth to rough 

(requiring hand 
finish) 

Visual criterion 
(compare to 
standards) 

Should be as smooth 
as possible 

 
Surface defect 

count 
Typically 0 to 10 Visual criterion 

(compare to 
standards) 

 
 

Must not be 
excessive in 
number or  
magnitude 

 
 
 
 
As with response variables, most experimenters can easily generate a list of candidate 
design factors to be studied in the experiment.  Coleman and Montgomery call these 
control variables.   We often call them controllable variables, design factors, or process 
variables in the text.  Control variables can be continuous or categorical (discrete).  The 
ability of the experimenters to measure and set these factors is important.  Generally, 



small errors in the ability to set, hold or measure the levels of control variables are of 
relatively little consequence.  Sometimes when the measurement or setting error is large, 
a numerical control variable such as temperature will have to be treated as a categorical 
control variable (low or high temperature).  Alternatively, there are errors-in-variables 
statistical models that can be employed, although their use is beyond the scope of this 
book.  Information about the control variables for the CNC-machining example is shown 
in Table 4. 
 
 
  Table 4. Control Variables 
  Measurement                                                                         
  Precision and Proposed settings, Predicted effects 
Control variable Normal level setting error- based on (for various 
 (units) and range how known? predicted effects responses) 
 
x-axis shift* 0-.020 inches .001inches 0, .015 inches Difference 
 (inches)  (experience) 
y-axis shift* 0-.020 inches .001inches    0, .015 inches Difference 
 (inches)  (experience) 
z-axis shift* 0-.020 inches .001inches    ? Difference 
 (inches)  (experience) 
Tool vendor Internal, external -    Internal, external External is more 
    variable 
a-axis shift* 0-.030 degrees .001 degrees    0, .030 degrees Unknown 
 (degrees)  (guess) 
Spindle speed 85-115% ∼1%    90%,110% None? 
 (% of  (indicator 
 nominal)  on control 
   panel) 
 
Fixture height 0-.025 inches .002inches 0, .015 inches Unknown 
  (guess) 
Feed rate (% of 90-110% ∼1% 90%,110% None? 
 nominal)  (indicator 
   on control 
   panel)                                                                                               
 
'The x, y, and z axes are used to refer to the part and the CNC machine.  The a axis refers only to the machine. 
 
 
Held-constant factors are control variables whose effects are not of interest in this 
experiment.  The worksheets can force meaningful discussion about which factors are 
adequately controlled, and if any potentially important factors (for purposes of the 
present experiment) have inadvertently been held constant when they should have been 
included as control variables.  Sometimes subject-matter experts will elect to hold too 
many factors constant and as a result fail to identify useful new information.  Often this 
information is in the form of interactions among process variables. 
 
In the CNC experiment, this worksheet helped the experimenters recognize that the 
machine had to be fully warmed up before cutting any blade forgings.  The actual 
procedure used was to mount the forged blanks on the machine and run a 30-minute cycle 



without the cutting tool engaged.  This allowed all machine parts and the lubricant to 
reach normal, steady-state operating temperature.  The use of a typical (i.e., mid-level) 
operator and the use of one lot of forgings ware decisions made for experimental 
“insurance”.    Table 5 shows the held-constant factors for the CNC-machining 
experiment. 
 
 

Table 5. Held-Constant Factors 
 Desired experi- Measurement                                                       
 Factor mental level and precision-how How to control Anticipated 
 (units) allowable range known? (in experiment) effects 
 
Type of cutting Standard type Not sure, but Use one type     None 
 fluid  thought to be 
   adequate 
Temperature of 100- 100°F. when 1-2° F. (estimate) Do runs after     None 
 cutting fluid machine is  machine has 
 (degrees F.) warmed up  reached 100° 
Operator Several operators - Use one "mid-     None 
 normally work  level" 
 in the process  operator 
Titanium Material Precision of lab Use one lot     Slight 
 forgings properties may tests unknown (or block on 
  vary from unit  forging lot, 
  to unit  only if 
    necessary) 
 
 
Nuisance factors are variables that probably have some effect on the response, but which 
are of little or no interest to the experimenter.  They differ from held-constant factors in 
that they either cannot be held entirely constant, or they cannot be controlled at all.  For 
example, if two lots of forgings were required to run the experiment, then the potential 
lot-to-lot differences in the material would be a nuisance variable than could not be held 
entirely constant.  In a chemical process we often cannot control the viscosity (say) of the 
incoming material feed stream—it may vary almost continuously over time.  In these 
cases, nuisance variables must be considered in either the design or the analysis of the 
experiment.  If a nuisance variable can be controlled, then we can use a design technique 
called blocking to eliminate its effect.  Blocking is discussed initially in Chapter 4.  If the 
nuisance variable cannot be controlled but it can be measured, then we can reduce its 
effect by an analysis technique called the analysis of covariance, discussed in Chapter 14. 
 
Table 6 shows the nuisance variables identified in the CNC-machining experiment.   In 
this experiment, the only nuisance factor thought to have potentially serious effects was 
the machine spindle.  The machine has four spindles, and ultimately a decision was made 
to run the experiment in four blocks.  The other factors were held constant at levels below 
which problems might be encountered. 
 
 
 



Table 6. Nuisance Factors 
 
 Measurement Strategy (e.g., 
Nuisance factor precision-how randomization, 
 (units) known? blocking, etc.) Anticipated effects 
 
Viscosity of Standard viscosity Measure viscosity at None to slight 
cutting fluid  start and end 
Ambient 1-2° F. by room Make runs below Slight, unless very 
temperature (°F.) thermometer 80'F. hot weather 
 (estimate) 
Spindle  Block or randomize Spindle-to-spindle 
  on machine spindle variation could be 
   large 
Vibration of ? Do not move heavy Severe vibration can 
machine during  objects in CNC introduce variation 
operation  machine shop within an impeller 
 
 
 
Coleman and Montgomery also found it useful to introduce an interaction sheet.  The 
concept of interactions among process variables is not an intuitive one, even to well-
trained engineers and scientists. Now it is clearly unrealistic to think that the 
experimenters can identify all of the important interactions at the outset of the planning 
process.   In most situations, the experimenters really don’t know which main effects are 
likely to be important, so asking them to make decisions about interactions is impractical.  
However, sometimes the statistically-trained team members can use this as an 
opportunity to teach others about the interaction phenomena.  When more is known about 
the process, it might be possible to use the worksheet to motivate questions such as “are 
there certain interactions that must be estimated?”  Table 7 shows the results of this 
exercise for the CNC-machining example. 
 

Table 7. Interactions 

Control 
variable 

 
y shift 

 
z shift 

 
Vendor 

 
a shift 

 
Speed 

 
Height 

 
Feed 

x shift   P     
y shift -  P     
z shift - - P     
Vendor - - - P    
a shift - - - -    
Speed - - - - -  F,D 
Height - - - - - -  
 
NOTE: Response variables are P = profile difference, F = surface finish and D = surface defects 
 
Two final points: First, an experimenter without a coordinator will probably fail.  
Furthermore, if something can go wrong, it probably will, so he coordinator will actually 
have a significant responsibility on checking to ensure that the experiment is being 
conducted as planned.  Second, concerning trial runs, this is often a very good idea—
particularly if this is the first in a series of experiments, or if the experiment has high 



significance or impact.  A trial run can consist of a center point in a factorial or a small 
part of the experiment—perhaps one of the blocks.  Since many experiments often 
involve people and machines doing something they have not done before, practice is a 
good idea.  Another reason for trial runs is that we can use them to get an estimate of the 
magnitude of experimental error.  If the experimental error is much larger than 
anticipated, then this may indicate the need for redesigning a significant part of the 
experiment.  Trial runs are also a good opportunity to ensure that measurement and data-
acquisition or collection systems are operating as anticipated.  Most experimenters never 
regret performing trial runs. 
 
Blank Guide Sheets from Coleman and Montgomery (1993) 
 
 

 Response Variables 

response 
variable 
(units) 

normal  
operating level 
& range 

meas. precision, 
accuracy 
How known? 

relationship of  
response variable 
to 
objective 

 
 

   

 
 

   

 
 

   

 
 

   

 
 
 

   

 
 

 Control Variables 
control 
variable 
(units) 

 
normal level 

& range 

meas. 
precision 

& setting error 
How known? 

proposed  
settings, 
based on 
predicted 

effects 

predicted 
effects 

(for various  
responses) 

 
 

    

 
 

    

 
 

    

 
 

    

 
 

    

 
 

    

 
 

    

 
 

    



“Held Constant” Factors 
 

factor 
(units) 

 

desired 
experimental 

level & 
allowable range

 
measurement 

precision 
How known? 

how to  
control (in 

experiment) 

 
anticipated 

effects 

     
     
     
     
     
 
 
 
 
 
 

Nuisance Factors 
nuisance 

factor (units) 
 

measurement 
precision 
How known? 

strategy (e.g., 
randomization, 
blocking, etc.) 

 
anticipated effects 

    
    
    
    
    
    
    
    
 

Interactions 
control var. 2 3 4 5 6 7 8 

1        
2 -       
3 - -      
4 - - -     
5 - - - -    
6 - - - - -   
7 - - - - - -  

 
 
 
 
 



S-1.2  Other Graphical Aids for Planning Experiments 
In addition to the tables in Coleman and Montgomery’s Technometrics paper, there are a 
number of useful graphical aids to pre-experimental planing.  Perhaps the first person to 
suggest graphical methods for planning an experiment was Andrews (1964), who 
proposed a schematic diagram of the system much like Figure 1-1 in the textbook, with 
inputs, experimental variables, and responses all clearly labeled.  These diagrams can be 
very helpful in focusing attention on the broad aspects of the problem. 

Barton (1997) (1998) (1999) has discussed a number of useful graphical aids in planning 
experiments.  He suggests using IDEF0 diagrams to identify and classify variables.  
IDEF0 stands for Integrated Computer Aided Manufacturing Identification Language, 
Level 0.  The U. S. Air Force developed it to represent the subroutines and functions of 
complex computer software systems.  The IDEF0 diagram is a block diagram that 
resembles Figure 1-1 in the textbook.  IDEF0 diagrams are hierarchical; that is, the 
process or system can be decomposed into a series of process steps or systems and 
represented as a sequence of lower-level boxes drawn within the main block diagram. 

Figure 2 shows an IDEF0 diagram [from Barton (1999)] for a portion of a videodisk 
manufacturing process.  This figure presents the details of the disk pressing activities. 
The primary process has been decomposed into five steps, and the primary output 
response of interest is the warp in the disk. 

The  cause-and-effect diagram (or fishbone) discussed in the textbook can also be 
useful in identifying and classifying variables in an experimental design problem.  Figure 
3 [from Barton (1999)] shows a cause-and-effect diagram for the videodisk process.  
These diagrams are very useful in organizing and conducting “brainstorming” or other 
problem-solving meetings in which process variables and their potential role in the 
experiment are discussed and decided. 

Both of these techniques can be very helpful in uncovering intermediate variables.  
These are variables that are often confused with the directly adjustable process variables.   
For example, the burning rate of a rocket propellant may be affected by the presence of 
voids in the propellant material.  However, the voids are the result of mixing techniques, 
curing temperature and other process variables and so the voids themselves cannot be 
directly controlled by the experimenter. 

Some other useful papers on planning experiments include Bishop, Petersen and Trayser 
(1982), Hahn (1977) (1984), and Hunter (1977). 

 

 

 

 

 

 

 



 

 

 
Figure 2.  An IDEF0 Diagram for an Experiment in a Videodisk Manufacturing Process 



 

 

 

 
Figure 2.  A Cause-and-Effect Diagram for an Experiment in a Videodisk Manufacturing 
Process 

 

 

 

 

 

S-1.3  Montgomery’s Theorems on Designed Experiments 
Statistics courses, even very practical ones like design of experiments, tend to be a little 
dull and dry. Even for engineers, who are accustomed to taking much more exciting 
courses on topics such as fluid mechanics, mechanical vibrations, and device physics.  
Consequently, I try to inject a little humor into the course whenever possible.  For 
example, I tell them on the first class meeting that they shouldn’t look so unhappy.  If 
they had one more day to live they should choose to spend it in a statistics class—that 
way it would seem twice as long. 



I also use the following “theorems” at various times throughout the course.  Most of them 
relate to non-statistical aspects of DOX, but they point out important issues and concerns. 
 
Theorem 1.  If something can go wrong in conducting an experiment, it will.   
 
Theorem 2.  The probability of successfully completing an experiment is inversely 
proportional to the number of runs. 
 
Theorem 3.  Never let one person design and conduct an experiment alone, particularly if 
that person is a subject-matter expert in the field of study. 
 
Theorem 4.  All experiments are designed experiments; some of them are designed well, 
and some of them are designed really badly.  The badly designed ones often tell you 
nothing. 
 
Theorem 5.  About 80 percent of your success in conducting a designed experiment 
results directly from how well you do the pre-experimental planning (steps 1-3 in the 7-
step procedure in the textbook). 
 
Theorem 6.  It is impossible to overestimate the logistical complexities associated with 
running an experiment in a “complex” setting, such as a factory or plant. 
 
 
Finally, my friend Stu Hunter has for many years said that without good experimental 
design, we often end up doing PARC analysis.  This is an acronym for  

  

Planning After the Research is Complete 

 

What does PARC spell backwards? 
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Chapter 2 Supplemental Text Material 
 

S2-1. Models for the Data and the t-Test 
 
The model presented in the text, equation (2-23) is more properly called a means model.  
Since the mean is a location parameter, this type of model is also sometimes called a 
location model.  There are other ways to write the model for a t-test.  One possibility is  
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where µ is a parameter that is common to all observed responses (an overall mean) and τi

is a parameter that is unique to the ith factor level.  Sometimes we call τi the ith treatment 
effect.  This model is usually called the effects model. 

Since the means model is  
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we see that the ith treatment or factor level mean is µ µ τi i= + ; that is, the mean 
response at factor level i is equal to an overall mean plus the effect of the ith factor.  We 
will use both types of models to represent data from designed experiments.  Most of the 
time we will work with effects models, because it’s the “traditional” way to present much 
of this material.  However, there are situations where the means model is useful, and even 
more natural. 

S2-2. Estimating the Model Parameters 
Because models arise naturally in examining data from designed experiments, we 
frequently need to estimate the model parameters.  We often use the method of least 
squares for parameter estimation.  This procedure chooses values for the model 
parameters that minimize the sum of the squares of the errors εij.  We will illustrate this 
procedure for the means model.  For simplicity, assume that the sample sizes for the two 
factor levels are equal; that is n n n1 2= = .  The least squares function that must be 
minimized is  
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to zero yields the least squares normal equations  
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The solution to these equations gives the least squares estimators of the factor level 
means. The solution is µ µ1 1 2= 2=y  and y ; that is, the sample averages at leach factor 
level are the estimators of the factor level means.   

This result should be intuitive, as we learn early on in basic statistics courses that the 
sample average usually provides a reasonable estimate of the population mean.  However, 
as we have just seen, this result can be derived easily from a simple location model using 
least squares.  It also turns out that if we assume that the model errors are normally and 
independently distributed, the sample averages are the maximum likelihood estimators 
of the factor level means.  That is, if the observations are normally distributed, least 
squares and maximum likelihood produce exactly the same estimators of the factor level 
means.   Maximum likelihood is a more general method of parameter estimation that 
usually produces parameter estimates that have excellent statistical properties. 

We can also apply the method of least squares to the effects model.  Assuming equal 
sample sizes, the least squares function is  
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and the partial derivatives of L with respect to the parameters are  
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Equating these partial derivatives to zero results in the following least squares normal 
equations: 
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Notice that if we add the last two of these normal equations we obtain the first one.  That 
is, the normal equations are not linearly independent and so they do not have a unique 
solution.  This has occurred because the effects model is overparameterized.  This 



situation occurs frequently; that is, the effects model for an experiment will always be an 
overparameterized model.   

One way to deal with this problem is to add another linearly independent equation to the 
normal equations.  The most common way to do this is to use the equation τ τ1 2 0+ = .  
This is, in a sense, an intuitive choice as it essentially defines the factor effects as 
deviations from the overall mean µ.  If we impose this constraint, the solution to the 
normal equations is  
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That is, the overall mean is estimated by the average of all 2n sample observation, while 
each individual factor effect is estimated by the difference between the sample average 
for that factor level and the average of all observations. 

This is not the only possible choice for a linearly independent “constraint” for solving the 
normal equations.  Another possibility is to simply set the overall mean equal to a 
constant, such as for example µ = 0.  This results in the solution  
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Yet another possibility is τ 2 0= , producing the solution  
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There are an infinite number of possible constraints that could be used to solve the 
normal equations.  An obvious question is “which solution should we use?”  It turns out 
that it really doesn’t matter. For each of the three solutions above (indeed for any solution 
to the normal equations) we have  

, ,µ µ τi i iy i= + = = 1 2  

That is, the least squares estimator of the mean of the ith factor level will always be the 
sample average of the observations at that factor level.  So even if we cannot obtain 
unique estimates for the parameters in the effects model we can obtain unique estimators 
of a function of these parameters that we are interested in.  We say that the mean of the 
ith factor level is estimable.  Any function of the model parameters that can be uniquely 
estimated regardless of the constraint selected to solve the normal equations is called an 
estimable function.  This is discussed in more detail in Chapter 3.   

S2-3. A Regression Model Approach to the t-Test 
The two-sample t-test can be presented from the viewpoint of a simple linear regression 
model.  This is a very instructive way to think about the t-test, as it fits in nicely with the 
general notion of a factorial experiment with factors at two levels, such as the golf 



experiment described in Chapter 1.  This type of experiment is very important in practice, 
and is discussed extensively in subsequent chapters. 

In the t-test scenario, we have a factor x with two levels, which we can arbitrarily call 
“low” and “high”.  We will use x = -1 to denote the low level of this factor and x = +1 to 
denote the high level of this factor.  Figure 2-3.1 below is a scatter plot (from Minitab) of 
the portland cement mortar tension bond strength data in Table 2-1 of Chapter 2. 
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We will a simple linear regression model to this data, say  

y xij ij ij= + +β β ε0 1  

whereβ β0 and 1 are the intercept and slope, respectively, of the regression line and the 
regressor or predictor variable is x j1 1= − and x j2 1= + .  The method of least squares can 
be used to estimate the slope and intercept in this model.  Assuming that we have equal 
sample sizes n for each factor level the least squares normal equations are: 
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The solution to these equations is  
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Note that the least squares estimator of the intercept is the average of all the observations 
from both samples, while the estimator of the slope is one-half of the difference between 
the sample averages at the “high” and “low’ levels of the factor x.  Below is the output 
from the linear regression procedure in Minitab for the tension bond strength data. 
 
Regression Analysis: Bond Strength versus Factor level  
 
The regression equation is 
Bond Strength = 16.9 + 0.139 Factor level 
 
 
Predictor        Coef  SE Coef       T      P 
Constant      16.9030   0.0636  265.93  0.000 
Factor level  0.13900  0.06356    2.19  0.042 
 
 
S = 0.284253   R-Sq = 21.0%   R-Sq(adj) = 16.6% 
 
 
Analysis of Variance 
 
Source          DF       SS       MS     F      P 
Regression       1  0.38642  0.38642  4.78  0.042 
Residual Error  18  1.45440  0.08080 
Total           19  1.84082 
 

 
 
Notice that the estimate of the slope (given in the column labeled “Coef” and the row 

labeled “Factor level” above) is 0.139 2 1
1 1( ) (17.0420 16.7640)
2 2

y y= − = − and the 

estimate of the intercept is 16.9030.   Furthermore, notice that the t-statistic associated 
with the slope is equal to 2.19, exactly the same value (apart from sign) that we gave in 
the Minitab two-sample t-test output in Table 2-2 in the text.  Now in simple linear 
regression, the t-test on the slope is actually testing the hypotheses 
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and this is equivalent to testing H0 1 2:µ µ= . 

It is easy to show that the t-test statistic used for testing that the slope equals zero in 
simple linear regression is identical to the usual two-sample t-test.  Recall that to test the 
above hypotheses in simple linear regression the t-statistic is  



t

Sxx

0
1

2
=

β
σ

 

where Sxx = −
==
∑∑ (x xij
j

n

i

2

11

2

) is the “corrected” sum of squares of the x’s.  Now in our 

specific problem, x x xj j= = − = +0 1 1,1 2,  and S nxxso = 2 .  Therefore, since we have 
already observed that the estimate of σ  is just Sp,  

t

S

y y

S
n

y y

S
n

xx
p p

0
1

2

2 1
2 1

1
2

1
2

2
= =

−
=

−( )β
σ

 

This is the usual two-sample t-test statistic for the case of equal sample sizes. 

 

S2-4. Constructing Normal Probability Plots 
While we usually generate normal probability plots using a computer software program, 
occasionally we have to construct them by hand.  Fortunately, it’s relatively easy to do, 
since specialized normal probability plotting paper is widely available.  This is just 
graph paper with the vertical (or probability) scale arranged so that if we plot the 
cumulative normal probabilities (j – 0.5)/n on that scale versus the rank-ordered 
observations y(j) a graph equivalent to the computer-generated normal probability plot 
will result.  The table below shows the calculations for the unmodified portland cement 
mortar bond strength data. 

j y (j) (j – 0.5)/10 z(j)

1 16.62 0.05 -1.64 

2 16.75 0.15 -1.04 

3 16.87 0.25 -0.67 

4 16.98 0.35 -0.39 

5 17.02 0.45 -0.13 

6 17.08 0.55 0.13 

7 17.12 0.65 0.39 

8 17.27 0.75 0.67 

9 17.34 0.85 1.04 

10 17.37 0.95 1.64 

 



Now if we plot the cumulative probabilities from the next-to-last column of this table 
versus the rank-ordered observations from the second column on normal probability 
paper, we will produce a graph that is identical to the results for the  unmodified mortar 
formulation that is shown in Figure 2-11 in the text. 

A normal probability plot can also be constructed on ordinary graph paper by plotting the 
standardized normal z-scores z(j) against the ranked observations, where the standardized 
normal z-scores are obtained from 

P Z z z j
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Φ
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where  denotes the standard normal cumulative distribution.  For example, if (j – 
0.5)/n = 0.05, then 

Φ( )•
Φ( ) . .z j = z j = −0 05 164 implies that .  The last column of the above 

table displays the values of the normal z-scores.  Plotting these values against the ranked 
observations on ordinary graph paper will produce a normal probability plot equivalent to 
the unmodified mortar results in Figure 2-11.  As noted in the text, many statistics 
computer packages present the normal probability plot this way. 

 

 

S2-5. More About Checking Assumptions in the t-Test 
We noted in the text that a normal probability plot of the observations was an excellent 
way to check the normality assumption in the t-test. Instead of plotting the observations, 
an alternative is to plot the residuals from the statistical model.   

Recall that the means model is  
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and that the estimates of the parameters (the factor level means) in this model are the 
sample averages.  Therefore, we could say that the fitted model is  

, , , , ,y y i j nij i i= = =1 2 1 2 and  

That is, an estimate of the ijth observation is just the average of the observations in the ith 
factor level.  The difference between the observed value of the response and the predicted 
(or fitted) value is called a residual, say 

e y y iij ij i= − =, ,1 2 . 

The table below computes the values of the residuals from the portland cement mortar 
tension bond strength data. 
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1 16.85 0.09 16.62 -0.42 

2 16.40 -0.36 16.75 -0.29 

3 17.21 0.45 17.37 0.33 

4 16.35 -0.41 17.12 0.08 

5 16.52 -0.24 16.98 -0.06 

6 17.04 0.28 16.87 -0.17 

7 16.96 0.20 17.34 0.30 

8 17.15 0.39 17.02 -0.02 

9 16.59 -0.17 17.08 0.04 

10 16.57 -0.19 17.27 0.23 

 

The figure below is a normal probability plot of these residuals from Minitab. 
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As noted in section 2-3 above we can compute the t-test statistic using a simple linear 
regression model approach.  Most regression software packages will also compute a table 
or listing of the residuals from the model.  The residuals from the Minitab regression 
model fit obtained previously are as follows: 
 
 
     Factor      Bond 
Obs   level  Strength      Fit  SE Fit  Residual  St Resid 
  1   -1.00   16.8500  16.7640  0.0899    0.0860      0.32 
  2   -1.00   16.4000  16.7640  0.0899   -0.3640     -1.35 
  3   -1.00   17.2100  16.7640  0.0899    0.4460      1.65 
  4   -1.00   16.3500  16.7640  0.0899   -0.4140     -1.54 
  5   -1.00   16.5200  16.7640  0.0899   -0.2440     -0.90 
  6   -1.00   17.0400  16.7640  0.0899    0.2760      1.02 
  7   -1.00   16.9600  16.7640  0.0899    0.1960      0.73 
  8   -1.00   17.1500  16.7640  0.0899    0.3860      1.43 
  9   -1.00   16.5900  16.7640  0.0899   -0.1740     -0.65 
 10   -1.00   16.5700  16.7640  0.0899   -0.1940     -0.72 
 11    1.00   16.6200  17.0420  0.0899   -0.4220     -1.56 
 12    1.00   16.7500  17.0420  0.0899   -0.2920     -1.08 
 13    1.00   17.3700  17.0420  0.0899    0.3280      1.22 
 14    1.00   17.1200  17.0420  0.0899    0.0780      0.29 
 15    1.00   16.9800  17.0420  0.0899   -0.0620     -0.23 
 16    1.00   16.8700  17.0420  0.0899   -0.1720     -0.64 
 17    1.00   17.3400  17.0420  0.0899    0.2980      1.11 
 18    1.00   17.0200  17.0420  0.0899   -0.0220     -0.08 
 19    1.00   17.0800  17.0420  0.0899    0.0380      0.14 
 20    1.00   17.2700  17.0420  0.0899    0.2280      0.85 
 

 
The column labeled “Fit” contains the averages of the two samples, computed to four 
decimal places.  The residuals in the sixth column of this table are the same (apart from 
rounding) as we computed manually.   
 
 
S2-6. Some More Information about the Paired t-Test 
The paired t-test examines the difference between two variables and test whether the 
mean of those differences differs from zero.  In the text we show that the mean of the 
differences µ d is identical to the difference of the means in two independent samples, 
µ µ1 − 2 .  However the variance of the differences is not the same as would be observed if 
there were two independent samples.  Let d be the sample average of the differences.  
Then 
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assuming that both populations have the same variance σ2 and that ρ is the correlation 
between the two random variables .  The quantity estimates the variance 
of the average difference

y1 and S nd
2 /

d .  In many paired experiments a strong positive correlation is 



expected to exist between because both factor levels have been applied to the 
same experimental unit.  When there is positive correlation within the pairs, the 
denominator for the paired t-test will be smaller than the denominator for the two-sample 
or independent t-test.  If the two-sample test is applied incorrectly to paired samples, the 
procedure will generally understate the significance of the data. 

y1 and y2

Note also that while for convenience we have assumed that both populations have the 
same variance, the assumption is really unnecessary.  The paired t-test is valid when the 
variances of the two populations are different. 



Chapter 3 Supplemental Text Material 
 

S3-1. The Definition of Factor Effects 
As noted in Sections 3-2 and 3-3, there are two ways to write the model for a single-
factor experiment, the means model and the effects model.  We will generally use the 
effects model 
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where, for simplicity, we are working with the balanced case (all factor levels or 
treatments are replicated the same number of times).  Recall that in writing this model, 
the ith factor level mean µ i  is broken up into two components, that is µ µ τi = + i , where 

τ i is the ith treatment effect and µ is an overall mean.  We usually define µ
µ
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This is actually an arbitrary definition, and there are other ways to define the overall 
“mean”.  For example, we could define  

µ µ= =
==
∑∑w wi i i
i

a

i

a

           where     1
11

 

This would result in the treatment effect defined such that  
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Here the overall mean is a weighted average of the individual treatment means.  When 
there are an unequal number of observations in each treatment, the weights wi could be 
taken as the fractions of the treatment sample sizes ni/N.   
 

S3-2. Expected Mean Squares 

In Section 3-3.1 we derived the expected value of the mean square for error in the single-
factor analysis of variance.  We gave the result for the expected value of the mean square 
for treatments, but the derivation was omitted.  The derivation is straightforward. 

Consider 
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Now for a balanced design 
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In addition, we will find the following useful: 
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Squaring the expression in parentheses and taking expectation results in  
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because the three cross-product terms are all zero.  Now consider the second term on the 
right hand side of : E SSTreatments( )
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since   Upon squaring the term in parentheses and taking expectation, we obtain τ i
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since the expected value of the cross-product is zero.  Therefore,  
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Consequently the expected value of the mean square for treatments is  

E MS E SS
a

a n

a

n

a

Treatments
Treatments

i
i

a

i
i

a

( )

( )

=
−

F
HG

I
KJ

=
− +

−

+
−

=

=

∑

∑

1

1

1

1

2 2

1

2

2

1

σ τ

σ
τ

 

This is the result given in the textbook. 

 

S3-3. Confidence Interval for σ2 

In developing the analysis of variance (ANOVA) procedure we have observed that the 
error variance  is estimated by the error mean square; that is,  σ 2
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We now give a confidence interval for .  Since we have assumed that the observations 
are normally distributed, the distribution of  
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distribution with N-a degrees of freedom, respectively.  Now if we rearrange the 
expression inside the probability statement we obtain 

P SS SSE

N a

E

N aχ
σ

χ
α

α α/ , / ,2
2

2

1 2
2 1

− − −

≤ ≤
F
HG

I
KJ = −  

Therefore, a 100(1-α) percent confidence interval on the error variance σ2 is  
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This confidence interval expression is also given in Chapter 12 on experiments with 
random effects. 



Sometimes an experimenter is interested in an upper bound on the error variance; that is, 
how large could σ2 reasonably be?  This can be useful when there is information about σ2 
from a prior experiment and the experimenter is performing calculations to determine 
sample sizes for a new experiment.  An upper 100(1-α) percent confidence limit on σ2 is 
given by 

σ
χ α

2

1
2≤
− −

SSE

N a,

 

If a 100(1-α) percent confidence interval on the standard deviation σ is desired instead, 
then  

σ
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S3-4. Simultaneous Confidence Intervals on Treatment Means 
In section 3-3.3 we discuss finding confidence intervals on a treatment mean and on 
differences between a pair of means.  We also show how to find simultaneous confidence 
intervals on a set of treatment means or a set of differences between pairs of means using 
the Bonferroni approach.  Essentially, if there are a set of r confidence statements to be 
constructed the Bonferroni method simply replaces α/2 by α/(2r).  this produces a set of  
r confidence intervals for which the overall confidence level is at least 100(1-α) percent. 

To see why this works, consider the case where r = 2; that is, we have two 100(1-α) 
percent confidence intervals.  Let E1 denote the event that the first confidence interval is 
not correct (it does not cover the true mean) and E2 denote the even that the second 
confidence interval is incorrect.  Now  

P E P E( ) ( )1 2= = α  

The probability that either or both intervals is incorrect is  

P E E P E P E P E E( ) ( ) ( ) ( )1 2 1 2 1 2∪ = + − ∩  

From the probability of complimentary events we can find the probability that both 
intervals are correct as  

P E E P E E
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1 2 1

1
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Now we know that , so from the last equation above we obtain the 
Bonferroni inequality 

P E E( )1 2 0∩ ≥

P E E P E P E( ) ( ) (1 2 1 21∩ ≥ − − )  

In the context of our example, the left-hand side of this inequality is the probability that 
both of the two confidence interval statements is correct and P E P E( ) ( )1 2= = α , so 



P E E( )1 2 1
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α α
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Therefore, if we want the probability that both of the confidence intervals are correct to 
be at least 1-α we can assure this by constructing 100(1-α/2) percent individual 
confidence interval. 

If there are r confidence intervals of interest, we can use mathematical induction to show 
that  

P E E E P E
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As noted in the text, the Bonferroni method works reasonably well when the number of 
simultaneous confidence intervals that you desire to construct, r, is not too large.  As r 
becomes larger, the lengths of the individual confidence intervals increase.  The lengths 
of the individual confidence intervals can become so large that the intervals are not very 
informative.  Also, it is not necessary that all individual confidence statements have the 
same level of confidence.  One might select 98 percent for one statement and 92 percent 
for the other, resulting in two confidence intervals for which the simultaneous confidence 
level is at least 90 percent. 

 

S3-5. Regression Models for a Quantitative Factor 

Regression models are discussed in detail in Chapter 10, but they appear relatively often 
throughout the book because it is convenient to express the relationship between the 
response and quantitative design variables in terms of an equation.  When there is only a 
singe quantitative design factor, a linear regression model relating the response to the 
factor is  

y x= + +β β ε0 1  

where x represents the values of the design factor.  In a single-factor experiment there are 
N observations, and each observation can be expressed in terms of this model as follows: 

y x ii i i= N+ + =β β ε0 1 1 2, , , ,  

The method of least squares is used to estimate the unknown parameters (the β’s) in this 
model.  This involves estimating the parameters so that the sum of the squares of the 
errors is minimized.  The least squares function is  
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To find the least squares estimators we take the partial derivatives of L with respect to the 
β’s and equate to zero: 
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After simplification, we obtain the least squares normal equations 
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where are the least squares estimators of the model parameters.  So, to fit this 
particular model to the experimental data by least squares, all we have to do is solve the 
normal equations.  Since there are only two equations in two unknowns, this is fairly 
easy. 

β 0 and 

In the textbook we fit two regression models for the response variable etch rate (y) as a 
function of the RF power (x); the linear regression model shown above, and a quadratic 
model 

y x x= + + +β β β0 1 2
2  

The least squares normal equations for the quadratic model are 
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Obviously as the order of the model increases and there are more unknown parameters to 
estimate, the normal equations become more complicated.  In Chapter 10 we use matrix 
methods to develop the general solution.  Most statistics software packages have very 
good regression model fitting capability. 

 

S3-6. More About Estimable Functions 
In Section 3-9.1 we use the least squares approach to estimating the parameters in the 
single-factor model.  Assuming a balanced experimental design, we fine the least squares 
normal equations as Equation 3-48, repeated below: 
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where an = N  is the total number of observations.  As noted in the textbook, if we add 
the last a of these normal equations we obtain the first one.  That is, the normal equations 
are not linearly independent and so they do not have a unique solution.  We say that the 
effects model is an overparameterized model. 

One way to resolve this is to add another linearly independent equation to the normal 

equations.  The most common way to do this is to use the equation .  This is 

consistent with defining the factor effects as deviations from the overall mean µ.  If we 
impose this constraint, the solution to the normal equations is  

τ i
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That is, the overall mean is estimated by the average of all an sample observation, while 
each individual factor effect is estimated by the difference between the sample average 
for that factor level and the average of all observations. 

Another possible choice of constraint is to set the overall mean equal to a constant, say 
µ = 0.  This results in the solution  

, , , ,
µ
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= =

0
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Still a third choice is τ a = 0 .  This is the approach used in the SAS software, for 
example.  This choice of constraint produces the solution  
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There are an infinite number of possible constraints that could be used to solve the 
normal equations. Fortunately, as observed in the book, it really doesn’t matter. For each 
of the three solutions above (indeed for any solution to the normal equations) we have  

, , , ,µ µ τi i iy i a= + = = 1 2  



That is, the least squares estimator of the mean of the ith factor level will always be the 
sample average of the observations at that factor level.  So even if we cannot obtain 
unique estimates for the parameters in the effects model we can obtain unique estimators 
of a function of these parameters that we are interested in.  

This is the idea of estimable functions.  Any function of the model parameters that can 
be uniquely estimated regardless of the constraint selected to solve the normal equations 
is an estimable function.   

What functions are estimable?  It can be shown that the expected value of any 
observation is estimable.  Now  

E yij i( ) = +µ τ  

so as shown above, the mean of the ith treatment is estimable.  Any function that is a 
linear combination of the left-hand side of the normal equations is also estimable.  For 
example, subtract the third normal equation from the second, yielding τ τ2 1− .  
Consequently, the difference in any two treatment effect is estimable.  In general, any 

contrast in the treatment effects is estimable.  Notice that the 

individual model parameters 

ci i
i
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i
i

a

τ
= =
∑ ∑ =

1 1

0 where c

µ τ τ, , ,1 a are not estimable, as there is no linear 
combination of the normal equations that will produce these parameters separately. 
However, this is generally not a problem, for as observed previously, the estimable 
functions correspond to functions of the model parameters that are of interest to 
experimenters. 

For an excellent and very readable discussion of estimable functions, see Myers, R. H. 
and Milton, J. S. (1991), A First Course in the Theory of the Linear Model, PWS-Kent, 
Boston. MA. 

 

S3-7. The Relationship Between Regression and ANOVA 
Section 3-9 explored some of the connections between analysis of variance (ANOVA) 
models and regression models. We showed how least squares methods could be used to 
estimate the model parameters and how the ANOVA can be developed by a regression-
based procedure called the general regression significance test can be used to develop the 
ANOVA test statistic.  Every ANOVA model can be written explicitly as an equivalent 
linear regression model.  We now show how this is done for the single-factor experiment 
with a = 3 treatments. 

The single-factor balanced ANOVA model is  
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The equivalent regression model is  
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where the variables x1j and x2j are defined as follows: 

x
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 if observation  is from treatment 1
0 otherwise

 if observation  is from treatment 2
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The relationships between the parameters in the regression model and the parameters in 
the ANOVA model are easily determined.  For example, if the observations come from 
treatment 1, then x1j = 1 and x2j = 0 and the regression model is  

y j j

j

1 0 1 2

0 1 1

1 0 1= + + +

= + +

β β β ε

β β ε
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Since in the ANOVA model these observations are defined by y j j1 1 1= + +µ τ ε , this 
implies that 

β β µ µ τ0 1 1 1+ = = +  

Similarly, if the observations are from treatment 2, then  
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and the relationship between the parameters is 

β β µ µ τ0 2 2 2+ = = +  

Finally, consider observations from treatment 3, for which the regression model is  
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and we have  

β µ µ τ0 3 3= = +  

Thus in the regression model formulation of the one-way ANOVA model, the regression 
coefficients describe comparisons of the first two treatment means with the third 
treatment mean; that is 
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In general, if there are a treatments, the regression model will have a – 1 regressor 
variables, say 

y x x x
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where 

x
j i

ij =
RST
1

0
 if observation  is from treatment 

 otherwise
 

Since these regressor variables only take on the values 0 and 1, they are often called 
indicator variables.  The relationship between the parameters in the ANOVA model and 
the regression model is 

β µ
β µ µ
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=
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Therefore the intercept is always the mean of the ath treatment and the regression 
coefficient βi estimates the difference between the mean of the ith treatment and the ath 
treatment.   

Now consider testing hypotheses. Suppose that we want to test that all treatment means 
are equal (the usual null hypothesis).  If this null hypothesis is true, then the parameters in 
the regression model become 

β µ
β

0 =
= = −

a

i i a0 1 2, , , , 1
 

Using the general regression significance test procedure, we could develop a test for this 
hypothesis.  It would be identical to the F-statistic test in the one-way ANOVA. 

 

Most regression software packages automatically test the hypothesis that all model 
regression coefficients (except the intercept) are zero.  We will illustrate this using 
Minitab and the data from the plasma etching experiment in Example 3-1.  Recall in this 
example that the engineer is interested in determining the effect of RF power on etch rate, 
and he has run a completely randomized experiment with four levels of RF power and 
five replicates.  For convenience, we repeat the data from Table 3-1 here: 

 
 
RF Power 
(W) 

Observed etch rate 
 

         1                          2                          3                          4                            5
160 575 542 530 539 570 
180 565 593 590 579 610 
200 600 651 610 637 629 
220 725 700 715 685 710 
 
The data was converted into the xij 0/1 indicator variables as described above.  Since 
there are 4 treatments, there are only 3 of the x’s.  The coded data that is used as input to 
Minitab is shown below: 
 
 



 
x1 x2 x3 Etch rate 
1 0 0 575 
1 0 0 542 
1 0 0 530 
1 0 0 539 
1 0 0 570 
0 1 0 565 
0 1 0 593 
0 1 0 590 
0 1 0 579 
0 1 0 610 
0 0 1 600 
0 0 1 651 
0 0 1 610 
0 0 1 637 
0 0 1 629 
0 0 0 725 
0 0 0 700 
0 0 0 715 
0 0 0 685 
 
 
 
The Regression Module in Minitab was run using the above spreadsheet where x1 
through x3 were used as the predictors and the variable “Etch rate” was the response.  
The output is shown below. 
 
 
Regression Analysis: Etch rate versus x1, x2, x3  
 
The regression equation is 
Etch rate = 707 - 156 x1 - 120 x2 - 81.6 x3 
 
 
Predictor     Coef  SE Coef       T      P 
Constant   707.000    8.169   86.54  0.000 
x1         -155.80    11.55  -13.49  0.000 
x2         -119.60    11.55  -10.35  0.000 
x3          -81.60    11.55   -7.06  0.000 
 
 
S = 18.2675   R-Sq = 92.6%   R-Sq(adj) = 91.2% 
 
 
Analysis of Variance 
 
Source          DF     SS     MS      F      P 
Regression       3  66871  22290  66.80  0.000 
Residual Error  16   5339    334 

 



 
Notice that the ANOVA table in this regression output is identical (apart from rounding) 
to the ANOVA display in Table 3-4.  Therefore, testing the hypothesis that the regression 
coefficients β β β β1 2 3 4 0= = = =  in this regression model is equivalent to testing the 
null hypothesis of equal treatment means in the original ANOVA model formulation. 

Also note that the estimate of the intercept or the “constant” term in the above table is the 
mean of the 4th treatment.  Furthermore, each regression coefficient is just the difference 
between one of the treatment means and the 4th treatment mean. 



Chapter 4 Supplemental Text Material 
 

S4-1. Relative Efficiency of the RCBD 
In Example 4-1 we illustrated the noise-reducing property of the randomized complete 
block design (RCBD). If we look at the portion of the total sum of squares not accounted 
for by treatments (302.14; see Table 4-4), about 63 percent (192.25) is the result of 
differences between blocks. Thus, if we had run a completely randomized design, the 
mean square for error MSE would have been much larger, and the resulting design would 
not have been as sensitive as the randomized block design. 

It is often helpful to estimate the relative efficiency of the RCBD compared to a 
completely randomized design (CRD).  One way to define this relative efficiency is  
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where are the experimental error variances of the completely randomized and 
randomized block designs, respectively, and  are the corresponding error 
degrees of freedom. This statistic may be viewed as the increase in replications that is 
required if a CRD is used as compared to a RCBD if the two designs are to have the same 
sensitivity. The ratio of degrees of freedom in R is an adjustment to reflect the different 
number of error degrees of freedom in the two designs. 
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is an unbiased estimator of the error variance of a the CRD. To illustrate the procedure, 
consider the data in Example 4-1. Since MSE  = 7.33, we have 
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Therefore our estimate of the relative efficiency of the RCBD in this example is 
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This implies that we would have to use approximately twice times as many replicates 
with a completely randomized design to obtain the same sensitivity as is obtained by 
blocking on the metal coupons. 

Clearly, blocking has paid off handsomely in this experiment. However, suppose that 
blocking was not really necessary. In such cases, if experimenters choose to block, what 
do they stand to lose? In general, the randomized complete block design has (a – 1)(b - 1) 
error degrees of freedom. If blocking was unnecessary and the experiment was run as a 
completely randomized design with b replicates we would have had a(b - 1) degrees of 
freedom for error. Thus, incorrectly blocking has cost a(b - 1) – (a - 1)(b - 1) = b - 1 
degrees of freedom for error, and the test on treatment means has been made less 
sensitive needlessly. However, if block effects really are large, then the experimental 
error may be so inflated that significant differences in treatment means could possibly 
remain undetected. (Remember the incorrect analysis of Example 4-1.) As a general rule, 
when the importance of block effects is in doubt, the experimenter should block and 
gamble that the block means are different.  If the experimenter is wrong, the slight loss in 
error degrees of freedom will have little effect on the outcome as long as a moderate 
number of degrees of freedom for error are available. 

 

S4-2. Partially Balanced Incomplete Block Designs 

Although we have concentrated on the balanced case, there are several other types of 
incomplete block designs that occasionally prove useful.  BIBDs do not exist for all 
combinations of parameters that we might wish to employ because the constraint that λ 
be an integer can force the number of blocks or the block size to be excessively large.  
For example, if there are eight treatments and each block can accommodate three 
treatments, then for λ to be an integer the smallest number of replications is r = 21.  This 
leads to a design of 56 blocks, which is clearly too large for most practical problems.  To 
reduce the number of blocks required in cases such as this, the experimenter can employ 
partially balanced incomplete block designs, or PBIDs, in which some pairs of 
treatments appear together λ1 times, some pairs appear together λ2 times, . . ., and the 
remaining pairs appear together λm times.  Pairs of treatments that appear together λi 
times are called ith associates.  The design is then said to have m associate classes. 

An example of a PBID is shown in Table 1.  Some treatments appear together λ1 = 2 
times (such as treatments 1 and 2), whereas others appear together only λ2  = 1 times 
(such as treatments 4 and 5).  Thus, the design has two associate classes.  We now 
describe the intrablock analysis for these designs. 

A partially balanced incomplete block design with two associate classes is described by 
the following parameters: 



1 .  There are a treatments arranged in b blocks.  Each block contains k runs and each 
treatment appears in r blocks. 

2. Two treatments which are ith associates appear together in λi blocks, i = 1, 2.  

3. Each treatment has exactly ni ith associates, i = 1,2.  The number ni is independent of 
the treatment chosen. 

4. If two treatments are ith associates, then the number of treatments that are jth 
associates of one treatment and kth associates of the other treatment is pi

jk,  (i , j ,k = 
1, 2).  It is convenient to write the pi

jk as (2 x 2) matrices with pi
jk  the jkth element of 

the ith matrix.                                        4 

 

For the design in Table 1 we may readily verify that a = 6, b = 6, k = 3, r = 3, λ1 = 2, λ2  
= 1, n1 = 1, n2 = 4, 

                    and               {  { }p jk
1 0 0

0 4
=
⎡

⎣
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⎤

⎦
⎥ }p jk
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Table 1. A Partially 
Balanced incomplete 
Block Design with Two 
Associate Classes 

Block Treatment 

Combinations 

 

1 1 2 3 

2 3 4 5 

3 2 5 6 

4 1 2 4 

5 3 4 6 

6 1 5 6 

 

We now show how to determine the pi
jk . Consider any two treatments that are first 

associates, say 1 and 2. For treatment 1, the only first associate is 2 and the second 
associates are 3, 4, 5, and 6. For treatment 2, the only first associate is 1and the second 
associates are 3, 4, 5, and 6. Combining this information produces Table 2.  Counting the 
number of treatments in the cells of this table, have the {pl

jk} given above.  The elements 
{p2

jk} are determined similarly. 



The linear statistical model for the partially balanced incomplete block design with two 
associate classes is 

    yij = µ + τi + βj + εij              

where µ is the overall mean, τi  is the ith  treatment effect, βj is the jth block effect, and εij  
is the NID(0, σ2) random error component.  We compute a total sum of squares, a block 
sum of squares (unadjusted), and a treatment sum of squares (adjusted). As before, we 
call 
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the adjusted total for the ith treatment.  We also define 

                S Q                  s and i are first associates Qi
s

1 ( ) = ∑ s

              ∆ = k-2{(rk - r + λ1)(rk - r +λ2) + (λ1 + λ2 ) 

   

            c1 =  (k∆) - 1[λ1(rk - r + λ2) +  (λ1 - λ2 )( λ2p1
12 - λ1p2

12)] 

                  

                                     c2 =  (k∆) - 1[λ2(rk - r + λ1) +  (λ1 - λ2 )( λ2p1
12 - λ1p2

12)] 

The estimate of the ith treatment effect is 
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The analysis of variance is summarized in Table 3.  To test H0: τi = 0, we use 
F0=MSTreatments(adjusted) /MSE. 

 

                 Table 2.  Relationship of Treatments to 1 and 2 

 

Treatment 1 

Treatment 2 

      1st  Associate           2nd Associate 

1st 
associate 

 

2nd 
associate 

                                               3,4,5,6 

 



 

Table 3.   Analysis of Variance for the Partially Balanced 
Incomplete Block Design with Two Associate Classes 

Source of Variation Sum of Squares Degrees of 

Freedom 

Treatments (adjusted) 
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We may show that the variance of any contrast of the form τ τu v−  is 
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where treatments u and v are ith associates (i = 1, 2).  This indicates that comparisons 
between treatments are not all estimated with the same precision.  This is a consequence 
of the partial balance of the design. 

We have given only the intrablock analysis.  For details of the interblock analysis, refer 
to Bose and Shimamoto (1952) or John (1971).  The second reference contains a good 
discussion of the general theory of incomplete block designs.  An extensive table of 
partially balanced incomplete block designs with two associate classes has been given by 
Bose, Clatworthy, and Shrikhande (1954). 

 
S4-3.  Youden Squares 
Youden squares are "incomplete" Latin square designs in which the number of columns 
does not equal the number of rows and treatments.  For example, consider the design 
shown in Table 4.  Notice that if we append the column (E, A, B, C, D) to this design, the 
result is a 5 × 5 Latin square.  Most of these designs were developed by W. J. Youden, 
hence their name. 

Although a Youden square is always a Latin square from which at least one column (or 
row or diagonal) is missing, it is not necessarily true that every Latin square with more 
than one column (or row or diagonal) missing is a Youden square.  The arbitrary removal 
of more than one column, say, for a Latin square may destroy its balance.  In general, a 



Youden square is a symmetric balanced incomplete block design in which rows 
correspond to blocks and each treatment occurs exactly once in each column or 
“position” of the block.  Thus, it is possible to construct Youden squares from all 
symmetric balanced incomplete block designs, as shown by Smith and Hartley (l948).  A 
table of Youden squares is given in Davies (1956), and other types of incomplete Latin 
squares are discussed by Cochran and Cox (1957, Chapter 13). 

 

Table 4. A Youden Square for Five 
Treatments (A, B, C, D, E) 

 
Row 

Column                            
      1              2                3                  4 

1 A B C D 
2 B C D E 
3 C D E A 
4 D E A B 
5 E A B C 

 
The linear model for a Youden square is 

Yijh = µ + αi + τ j + βh + εijh

where, µ is the overall mean, αi is the ith block effect τj is the jth treatment effect, βh is 
the hth position effect, and εijh is the usual NID(0, σ2) error term.  Since positions occur 
exactly once in each block and once with each treatment, positions are orthogonal to 
blocks and treatments.  The analysis of the Youden square is similar to the analysis of a 
balanced incomplete block design, except that a sum of squares between the position 
totals may also be calculated. 

 

Example of a Youden Square 
An industrial engineer is studying the effect of five illumination levels on the 
occurrence of defects in an assembly operation.  Because time may be a factor in the 
experiment, she has decided to run the experiment in five blocks, where each block is 
a day of the week.  However, the department in which the experiment is conducted has 
four work stations and these stations represent a potential source of variability.  The 
engineer decided to run a Youden square with five rows (days or blocks), four 
columns (work stations), and five treatments (the illumination levels).  The coded data 
are shown in Table 5. 

 
 
 
 
 
 
 



Table 5. The Youden Square Design used in the Example 
 

Work Station Day 
(Block) 1 2 3 4 yi..

Treatment 
totals 

1 A=3 B=1 C=-2 D=0 2 y.1.=12 (A)
2 B=0 C=0 D=-1 E=7 6 y.2.=2 (B) 
3 C=-1 D=0 E=5 A=3 7 y.3.=-4 (C) 
4 D=-1 E=6 A=4 B=0 9 y.4.=-2 (D)
5 E=5 A=2 B=1 C=-1 7 y.5.=23 (E)

y..h 6 9 7 9 y…=31  
 

 
 
Considering this design as a balanced incomplete block, we find a = b = 5, r= k = 4, and 
k = 3. Also, 
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Q1 = 12 - 1

4
(2  +  7  +  9 +  7) =  23/4 

 
Q2 = 2 - 1

4
(2 + 6 + 9 + 7) = - 16/4 

 
Q3 = - 4 - 1

4
(2 + 6 + 7 + 7) =  -38/4 

 
Q4 = -2 - 1

4
(2 + 6 + 7 + 9) =  - 32/4 

 
Q5 =23 - 1

4
(6 + 7 + 9 + 7) = 63/4 
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Also, 
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and 
 
SSE = SST - SSTreatments (adjusted) - SSDays - SSStations 

          = 134.95 - 120.37 - 6.70 - 1.35 = 6.53 
 
 
 
Block or day effects may be assessed by computing the adjusted sum of squares for 
blocks.  This yields 
 
Q1' =  2 - 1

4
(12 + 2 - 4 - 2) = 0/4 

 
Q2' =  6 - 1

4
(2 - 3 - 2 + 23) = 5/4 

 
Q3' =  7 - 1

4
(12 - 4 - 2 + 23) = - 1/4 

 
Q4' =  9 - 1

4
(12 + 2 - 2 + 23) = 1/4 

 
Q5' =  7 - 1

4
(12 + 2 - 4 + 23) = -5/4 
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The complete analysis of variance is shown in Table 6.  Illumination levels are 
significantly different at 1 percent. 
 
 
 



Table 6   Analysis of Variance for the Youden Square Example 
Source of Variation Sum of  

Squares 
Degrees of 
Freedom 

Mean 
Square 

 
F0

Illumination level, 
adjusted 

120.37 4 30.09 36.87a

Days, unadjusted 6.70 4 -  
Days, adjusted (0.87) (4) 0.22  
Work Station 1.35 3 0.45  
Error 6.53 8 0.82  
Total 134.95 19   
a Significant at 1 percent. 
 
 
 
S4-4.  Lattice Designs 
Consider a balanced incomplete block design with k2 treatments arranged in b = k(k + 1) 
blocks with k runs per block and r = k + 1 replicates.  Such a design is called a balanced 
lattice.  An example is shown in Table 7 for k2=9 treatments in 12 blocks of 3 runs each.  
Notice that the blocks can be grouped into sets such that each set contains a complete 
replicate.  The analysis of variance for the balanced lattice design proceeds like that for a 
balanced incomplete block design, except that a sum of squares for replicates is computed 
and removed from the sum of squares for blocks.  Replicates will have k degrees of 
freedom and blocks will have k2-1 degrees of freedom. 

Lattice designs are frequently used in situations where there are a large number of 
treatment combinations.  In order to reduce the size of the design, the experimenter may 
resort to partially balanced lattices.  We very briefly describe some of these designs.  
Two replicates of a design for k2 treatments in 2k blocks of k runs are called a simple 
lattice.  For example, consider the first two replicates of the design in Table 7. The 
partial balance is easily seen, since, for example, treatment 2 appears in the same block 
with treatments 1, 3, 5, and 8, but does not appear at all with treatments 4, 6, 7, and 9. A 
lattice design with k2 treatments in 3k blocks grouped into three replicates is called a 
triple lattice.  An example would be the first three replicates in Table 7. A lattice design 
for k2 treatments in 4k blocks arranged in four replicates is called a quadruple lattice. 

 
 

Table 7.   A 3 x 3 Balanced Lattice Design 
Block Replicate 1 Block Replicate 3 

1 1 2 3 7 1 5 9 
2 4 5 6 8 7 2 6 
3 7 8 9 9 4 8 3 

Block Replicate 2 Block Replicate 4 
1 1 4 7 10 1 8 6 
2 2 5 8 11 4 2 9 
3 3 6 9 12 7 5 3 

 



There are other types of lattice designs that occasionally prove useful.  For example, the 
cubic lattice design can be used for k3 treatments in k2 blocks of k runs.  A lattice design 
for k(k + 1) treatments in k + 1 blocks of size k is called a rectangular lattice.  Details of 
the analysis of lattice designs and tables of plans are given in Cochran and Cox (1957). 
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Chapter 5 Supplemental Text Material 
 

S5-1. Expected Mean Squares in the Two-factor Factorial 
Consider the two-factor fixed effects model 
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given as Equation (5-1) in the textbook.  We list the expected mean squares for this 
model, but do not develop them.  It is relatively easy to develop the expected mean 
squares from direct application of the expectation operator. 

Consider finding 
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where SSA is the sum of squares for the row factor.  Since 
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Furthermore, we can easily show that 
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which is the result given in the textbook.  The other expected mean squares are derived 
similarly.  

 

S5-2. The Definition of Interaction 
In Section 5-1 we introduced both the effects model and the means model for the two-
factor factorial experiment. If there is no interaction in the two-factor model, then  

µ µ τ βij i j= + +  

Define the row and column means as  
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Then if there is no interaction,  

µ µ µ µij i j= + −. .  



where .  It can also be shown that if there is no interaction, 

each cell mean can be expressed in terms of three other cell means: 

µ µ µ= = ∑∑ i ji
a. / /j b.

µ µ µ µij ij i j i j= + −′ ′ ′ ′  

This illustrates why a model with no interaction is sometimes called an additive model, 
or why we say the treatment effects are additive.  

When there is interaction, the above relationships do not hold.  Thus the interaction term 
( )τβ ij can be defined as  

( ) ( )τβ µ µ τ βij ij i j= − + +  

or equivalently,  

( ) ( )τβ µ µ µ µ

µ µ µ µ
ij ij ij i j i j

ij ij i j i j

= − + −

= − − +
′ ′ ′

′ ′ ′ ′

′  

Therefore, we can determine whether there is interaction by determining whether all the 
cell means can be expressed as µ µ τ βij i j= + + .   

Sometimes interactions are a result of the scale on which the response has been 
measured.  Suppose, for example, that factor effects act in a multiplicative fashion,  

µ µτ βij i j=  

If we were to assume that the factors act in an additive manner, we would discover very 
quickly that there is interaction present.  This interaction can be removed by applying a 
log transformation, since 

log log log logµ µ τ βij i j= + +  

This suggests that the original measurement scale for the response was not the best one to 
use if we want results that are easy to interpret (that is, no interaction).  The log scale for 
the response variable would be more appropriate.   

Finally, we observe that it is very possible for two factors to interact but for the main 
effects for one (or even both) factor is small, near zero.  To illustrate, consider the two-
factor factorial with interaction in Figure 5-1 of the textbook.  We have already noted that 
the interaction is large, AB = -29.  However, the main effect of factor A is A = 1.  Thus, 
the main effect of A is so small as to be negligible.  Now this situation does not occur all 
that frequently, and typically we find that interaction effects are not larger than the main 
effects. However, large two-factor interactions can mask one or both of the main effects. 
A prudent experimenter needs to be alert to this possibility. 

 

S5-3. Estimable Functions in the Two-factor Factorial Model 

The least squares normal equations for the two-factor factorial model are given in 
Equation (5-14) in the textbook as: 
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Recall that in general an estimable function must be a linear combination of the left-hand 
side of the normal equations.  Consider a contrast comparing the effects of row 
treatments i and .  The contrast is ′i

τ τ τβ τβi i i i− + −′ ′( ) ( ). .  

Since this is just the difference between two normal equations, it is an estimable function.  
Notice that the difference in any two levels of the row factor also includes the difference 
in average interaction effects in those two rows.  Similarly, we can show that the 
difference in any pair of column treatments also includes the difference in average 
interaction effects in those two columns.  An estimable function involving interactions is  

( ) ( ) ( ) ( ). . .τβ τβ τβ τβij i j− − + .  

It turns out that the only hypotheses that can be tested in an effects model must involve 
estimable functions.  Therefore, when we test the hypothesis of no interaction, we are 
really testing the null hypothesis 

H iij i j0:( ) ( ) ( ) ( ) ,. . ..τβ τβ τβ τβ− − + = 0 for all j  

When we test hypotheses on main effects A and B we are really testing the null 
hypotheses 

H a a0 1 1 2 2: ( ) ( ) ( ). . .  τ τβ τ τβ τ τβ+ = + = = +

and 

H b b0 1 1 2 2: ( ) ( ) ( ). .β τβ β τβ β τβ+ = + = = + .  

That is, we are not really testing a hypothesis that involves only the equality of the 
treatment effects, but instead a hypothesis that compares treatment effects plus the 
average interaction effects in those rows or columns.  Clearly, these hypotheses may not 
be of much interest, or much practical value, when interaction is large.  This is why in the 
textbook (Section 5-1) that when interaction is large, main effects may not be of much 
practical value.  Also, when interaction is large, the statistical tests on main effects may 
not really tell us much about the individual treatment effects.  Some statisticians do not 
even conduct the main effect tests when the no-interaction null hypothesis is rejected. 

It can be shown [see Myers and Milton (1991)] that the original effects model 
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or 

yijk i j ij ijk= + + + +µ τ β τβ ε* * * *( )  

It can be shown that each of the new parameters  is estimable.  
Therefore, it is reasonable to expect that the hypotheses of interest can be expressed 
simply in terms of these redefined parameters.  It particular, it can be shown that there is 
no interaction if and only if .  Now in the text, we presented the null hypothesis 
of no interaction as 

µ τ β τβ* * * *, , , ( )i j  and ij

( )*τβ ij = 0
H ij0 0:( )τβ =  for all i and j.  This is not incorrect so long as it is 

understood that it is the model in terms of the redefined (or “starred”) parameters that we 
are using.  However, it is important to understand that in general interaction is not a 
parameter that refers only to the (ij)th cell, but it contains information from that cell, the 
ith row, the jth column, and the overall average response. 

One final point is that as a consequence of defining the new “starred” parameters, we 
have included certain restrictions on them.  In particular, we have  

τ β τβ τβ τβ.
*

.
*

.
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.
*

..
*, , ( ) ( ) ( )= = =0 0  = 0,  = 0 and i j 0  

These are the “usual constraints” imposed on the normal equations.  Furthermore, the 
tests on main effects become 

H a0 1 2 0: * * *τ τ τ= = = =  

and  

H b0 1 2 0: * * *β β β= = = =  

This is the way that these hypotheses are stated in the textbook, but of course, without the 
“stars”. 

 

S5-4. Regression Model Formulation of the Two-factor Factorial 

We noted in Chapter 3 that there was a close relationship between ANOVA and 
regression, and in the Supplemental Text Material for Chapter 3 we showed how the 
single-factor ANOVA model could be formulated as a regression model.  We now show 
how the two-factor model can be formulated as a regression model and a standard 
multiple regression computer program employed to perform the usual ANOVA.   

 

 

 



We will use the battery life experiment of Example 5-1 to illustrate the procedure.  Recall 
that there are three material types of interest (factor A) and three temperatures (factor B), 
and the response variable of interest is battery life.  The regression model formulation of 
an ANOVA model uses indicator variables. We will define the indicator variables for 
the design factors material types and temperature as follows: 

 

Material type X1 X2

1 0 0 

2 1 0 

3 0 1 

  

 

Temperature X3 X4

15 0 0 

70 1 0 

125 0 1 

 

The regression model is  

y x x x x
x x x x x x x x

ijk ijk ijk ijk ijk

ijk ijk ijk ijk ijk ijk ijk ijk ijk

= + + + +

+ + + + +

β β β β β

β β β β
0 1 1 2 2 3 3 4 4

5 1 3 6 1 4 7 2 3 8 2 4 ε
                 (1) 

where i, j =1,2,3 and the number of replicates k = 1,2,3,4.  In this model, the terms 
β β1 1 2 2x xijk ijk+  represent the main effect of factor A (material type), and the terms 
β β3 3 4 4x xijk ijk+  represent the main effect of temperature.  Each of these two groups of 
terms contains two regression coefficients, giving two degrees of freedom.  The terms 
β β β β5 1 3 6 1 4 7 2 3 8 2 4x x x x x x x xijk ijk ijk ijk ijk ijk ijk ijk+ + +  in Equation (1) represent the AB 
interaction with four degrees of freedom.  Notice that there are four regression 
coefficients in this term. 

Table 1 shows the data from this experiment, originally presented in Table 5-1 of the text. 
In Table 1, we have shown the indicator variables for each of the 36 trials of this 
experiment.  The notation in this table is Xi = xi, i=1,2,3,4 for the main effects in the 
above regression model and X5 = x1x3, X6 = x1x4,, X7 = x2x3, and X8 = x2x4, for the 
interaction terms in the model. 

 

 

 



 

Table 1. Data from Example 5-1 in Regression Model Form 

Y X1 X2 X3 X4 X5 X6 X7 X8

130 0 0 0 0 0 0 0 0 
34 0 0 1 0 0 0 0 0 
20 0 0 0 1 0 0 0 0 
150 1 0 0 0 0 0 0 0 
136 1 0 1 0 1 0 0 0 
25 1 0 0 1 0 1 0 0 
138 0 1 0 0 0 0 0 0 
174 0 1 1 0 0 0 1 0 
96 0 1 0 1 0 0 0 1 
155 0 0 0 0 0 0 0 0 
40 0 0 1 0 0 0 0 0 
70 0 0 0 1 0 0 0 0 
188 1 0 0 0 0 0 0 0 
122 1 0 1 0 1 0 0 0 
70 1 0 0 1 0 1 0 0 
110 0 1 0 0 0 0 0 0 
120 0 1 1 0 0 0 1 0 
104 0 1 0 1 0 0 0 1 
74 0 0 0 0 0 0 0 0 
80 0 0 1 0 0 0 0 0 
82 0 0 0 1 0 0 0 0 
159 1 0 0 0 0 0 0 0 
106 1 0 1 0 1 0 0 0 
58 1 0 0 1 0 1 0 0 
168 0 1 0 0 0 0 0 0 
150 0 1 1 0 0 0 1 0 
82 0 1 0 1 0 0 0 1 
180 0 0 0 0 0 0 0 0 
75 0 0 1 0 0 0 0 0 
58 0 0 0 1 0 0 0 0 
126 1 0 0 0 0 0 0 0 
115 1 0 1 0 1 0 0 0 
45 1 0 0 1 0 1 0 0 
160 0 1 0 0 0 0 0 0 
139 0 1 1 0 0 0 1 0 
60 0 1 0 1 0 0 0 1 

 
This table was used as input to the Minitab regression procedure, which produced the 
following results for fitting Equation (1):  

 

Regression Analysis 
The regression equation is 
y = 135 + 21.0 x1 + 9.2 x2 - 77.5 x3 - 77.2 x4 + 41.5 x5 - 29.0 x6 
 +79.2 x7 + 18.7 x8 



minitab Output (Continued) 
 
Predictor        Coef       StDev          T        P 
Constant       134.75       12.99      10.37    0.000 
x1              21.00       18.37       1.14    0.263 
x2               9.25       18.37       0.50    0.619 
x3             -77.50       18.37      -4.22    0.000 
x4             -77.25       18.37      -4.20    0.000 
x5              41.50       25.98       1.60    0.122 
x6             -29.00       25.98      -1.12    0.274 
x7              79.25       25.98       3.05    0.005 
x8              18.75       25.98       0.72    0.477 
 
S = 25.98       R-Sq = 76.5%     R-Sq(adj) = 69.6% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         8     59416.2      7427.0     11.00    0.000 
Residual Error    27     18230.7       675.2 
Total             35     77647.0 
 
Source       DF      Seq SS 
x1            1       141.7 
x2            1     10542.0 
x3            1        76.1 
x4            1     39042.7 
x5            1       788.7 
x6            1      1963.5 
x7            1      6510.0 
x8            1       351.6 

 

First examine the Analysis of Variance information in the above display.  Notice that the 
regression sum of squares with 8 degrees of freedom is equal to the sum of the sums of 
squares for the main effects material types and temperature and the interaction sum of 
squares from Table 5-5 in the textbook.  Furthermore, the number of degrees of freedom 
for regression (8) is the sum of the degrees of freedom for main effects and interaction (2 
+2 + 4) from Table 5-5.  The F-test in the above ANOVA display can be thought of as 
testing the null hypothesis that all of the model coefficients are zero; that is, there are no 
significant main effects or interaction effects, versus the alternative that there is at least 
one nonzero model parameter.  Clearly this hypothesis is rejected. Some of the treatments 
produce significant effects. 

Now consider the “sequential sums of squares” at the bottom of the above display.  
Recall that X1 and X2 represent the main effect of material types. The sequential sums of 
squares are computed based on an “effects added in order” approach, where the “in 
order” refers to the order in which the variables are listed in the model. Now  



SS SS X SS X XMaterialTypes = + = + =( ) ( | ) . . .1 2 1 1417 10542 0 106837  

which is the sum of squares for material types in table 5-5.  The notation  
indicates that this is a “sequential” sum of squares; that is, it is the sum of squares for 
variable X

SS X X( | )2 1

2  given that variable X1 is already in the regression model. 

Similarly,  

SS SS X X X SS X X X XTemperature = + = + =( | , ) ( | , , ) . . .3 1 2 4 1 2 3 761 39042 7 391188  

which closely agrees with the sum of squares for temperature from Table 5-5.  Finally, 
note that the interaction sum of squares from Table 5-5 is  

SS SS X X X X X SS X X X X X X
SS X X X X X X X SS X X X X X X X X

Interaction = +
+ +
= + + + =

( | , , , ) ( | , , , , )
( | , , , , , ) ( | , , , , , ,
. . . . .

5 1 1 3 4 6 1 1 3 4 5

7 1 2 3 4 5 6 8 1 2 3 4 5 6 7

788 7 19635 6510 0 3516 96138
)  

When the design is balanced, that is, we have an equal number of observations in each 
cell, we can show that this model regression approach using the sequential sums of 
squares produces results that are exactly identical to the “usual” ANOVA.  Furthermore, 
because of the balanced nature of the design, the order of the variables A and B does not 
matter.  

The “effects added in order” partitioning of the overall model sum of squares is 
sometimes called a Type 1 analysis.  This terminology is prevalent in the SAS statistics 
package, but other authors and software systems also use it.   An alternative partitioning 
is to consider each effect as if it were added last to a model that contains all the others.  
This “effects added last” approach is usually called a Type 3 analysis.  

There is another way to use the regression model formulation of the two-factor factorial 
to generate the standard F-tests for main effects and interaction.  Consider fitting the 
model in Equation (1), and let the regression sum of squares in the Minitab output above 
for this model be the model sum of squares for the full model.  Thus,  

SSModel ( ) .FM = 59416 2  

with 8 degrees of freedom.  Suppose we want to test the hypothesis that there is no 
interaction.  In terms of model (1), the no-interaction hypothesis is  

H
H j

0 5 6 7 8

0

0
0 5 6 7

:
: , j 8, , ,
β β β β

β
= = = =

≠ = at least one 
                                       (2) 

When the null hypothesis is true, a reduced model is  

y x x x xijk ijk ijk ijk ijk ijk= + + + + +β β β β β ε0 1 1 2 2 3 3 4 4                                 (3) 

Fitting Equation (2) using Minitab produces the following: 

 

 
The regression equation is 
y = 122 + 25.2 x1 + 41.9 x2 - 37.3 x3 - 80.7 x4 



 
Predictor        Coef       StDev          T        P 
Constant       122.47       11.17      10.97    0.000 
x1              25.17       12.24       2.06    0.048 
x2              41.92       12.24       3.43    0.002 
x3             -37.25       12.24      -3.04    0.005 
x4             -80.67       12.24      -6.59    0.000 
 
S = 29.97       R-Sq = 64.1%     R-Sq(adj) = 59.5% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         4       49802       12451     13.86    0.000 
Residual Error    31       27845         898 
Total             35       77647 
 
The model sum of squares for this reduced model is  

SSModel (RM) = 49802.0  

with 4 degrees of freedom.  The test of the no-interaction hypotheses (2) is conducted 
using the “extra” sum of squares 

SS SS SSModel Model Model( (
, . , .

, .

Interaction) = FM) RM)
=

(−
−

=
59 416 2 49 812 0
9 604 2

 

with 8 – 4 = 4 degrees of freedom.  This quantity is, apart from round-off errors in the 
way the results are reported in Minitab, the interaction sum of squares for the original 
analysis of variance in Table 5-5 of the text.  This is a measure of fitting interaction after 
fitting the main effects. 

Now consider testing for no main effect of material type.  In terms of equation (1), the 
hypotheses are 

H
H j

0 1 2

0

0
0 1

:
: j 2, ,
β β

β
= =

≠ = at least one 
                                        (4) 

Because we are using a balanced design, it turns out that to test this hypothesis all we 
have to do is to fit the model 

y x xijk ijk ijk ijk= + + +β β β ε0 1 1 2 2                                            (5) 

Fitting this model in Minitab produces 

Regression Analysis 
The regression equation is 
y = 83.2 + 25.2 x1 + 41.9 x2 
 
Predictor        Coef       StDev          T        P 
Constant        83.17       13.00       6.40    0.000 
x1              25.17       18.39       1.37    0.180 
x2              41.92       18.39       2.28    0.029 



 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2       10684        5342      2.63    0.087 
Residual Error    33       66963        2029 
Total             35       77647 
 
Notice that the regression sum of squares for this model [Equation (5)] is essentially 
identical to the sum of squares for material types in table 5-5 of the text.  Similarly, 
testing that there is no temperature effect is equivalent to testing 

H
H j

0 3 4

0

0
0 3

:
: j 4, ,
β β

β
= =

≠ = at least one 
                                          (6) 

To test the hypotheses in (6), all we have to do is fit the model 

y x xijk ijk ijk ijk= + + +β β β ε0 3 3 4 4                                            (7) 

The Minitab regression output is 

Regression Analysis 
The regression equation is 
y = 145 - 37.3 x3 - 80.7 x4 
 
Predictor        Coef       StDev          T        P 
Constant      144.833       9.864      14.68    0.000 
x3             -37.25       13.95      -2.67    0.012 
x4             -80.67       13.95      -5.78    0.000 
 
S = 34.17       R-Sq = 50.4%     R-Sq(adj) = 47.4% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2       39119       19559     16.75    0.000 
Residual Error    33       38528        1168 
Total             35       77647 
 
Notice that the regression sum of squares for this model, Equation (7), is essentially equal 
to the temperature main effect sum of squares from Table 5-5.  

 

S5-5. Model Hierarchy 

In Example 5-4 we used the data from the battery life experiment (Example 5-1) to 
demonstrate fitting response curves when one of the factors in a two-factor factorial 
experiment was quantitative and the other was qualitative.  In this case the factors are 
temperature (A) and material type (B).  Using the Design-Expert software package, we fit 
a model that the main effect of material type, the linear and quadratic effects of 
temperature, the material type by linear effect of temperature interaction, and the material 
type by quadratic effect of temperature interaction.  Refer to Table 5-15 in the textbook.  
From examining this table, we observed that the quadratic effect of temperature and the 



material type by linear effect of temperature interaction were not significant; that is, they 
had fairly large P-values.    We left these non-significant terms in the model to preserve 
hierarchy. 

The hierarchy principal states that if a model contains a higher-order term, then it should 
also contain all the terms of lower-order that comprise it.  So, if a second-order term, 
such as an interaction, is in the model then all main effects involved in that interaction as 
well as all lower-order interactions involving those factors should also be included in the 
model. 

There are times that hierarchy makes sense.  Generally, if the model is going to be used 
for explanatory purposes then a hierarchical model is quite logical.  On the other hand, 
there may be situations where the non-hierarchical model is much more logical.  To 
illustrate, consider another analysis of Example 5-4 in Table 2, which was obtained from 
Design-Expert.  We have selected a non-hierarchical model in which the quadratic effect 
of temperature was not included (it was in all likelihood the weakest effect), but both 
two-degree-of-freedom components of the temperature-material type interaction are in 
the model.  Notice from Table 2 that the residual mean square is smaller for the non-
hierarchical model (653.81 versus 675.21 from Table 5-15).  This is important, because 
the residual mean square can be thought of as the variance of the unexplained residual 
variability, not accounted for by the model.  That is, the non-hierarchical model is 
actually a better fit to the experimental data. 

Notice also that the standard errors of the model parameters are smaller for the non-
hierarchical model.  This is an indication that he parameters are estimated with better 
precision by leaving out the nonsignificant terms, even though it results in a model that 
does not obey the hierarchy principal.   Furthermore, note that the 95 percent confidence 
intervals for the model parameters in the hierarchical model are always longer than their 
corresponding confidence intervals in the non-hierarchical model.  The non-hierarchical 
model, in this example, does indeed provide better estimates of the factor effects that 
obtained from the hierarchical model 
 

Table 2. Design-Expert Output for Non-hierarchical Model, Example 5-4.  
________________________________________________________________________ 
         ANOVA for Response Surface Reduced Cubic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of                Mean                        F  
 Source Squares          DF                 Square                     Value     Prob > F 
 Model     59340.17 7 8477.17 12.97 < 0.0001 
 A 10683.72 2 5341.86 8.17 0.0016 
 B 39042.67 1 39042.67 59.72 < 0.0001 
 AB 2315.08 2 1157.54 1.77 0.1888 
 AB2 7298.69 2 3649.35 5.58 0.0091 
Residual 18306.81 28 653.81 
Lack of Fit 76.06 1 76.06 0.11 0.7398 
Pure Error 18230.75 27 675.21 
Cor Total 77646.97 35 
 



 Std. Dev. 25.57 R-Squared 0.7642 
 Mean 105.53 Adj R-Squared 0.7053 
 C.V. 24.23 Pred R-Squared 0.6042 
 PRESS 30729.09 Adeq Precision 8.815 
 
  Coefficient  Standard 95% CI 95% CI 
 Term Estimate DF Error Low High  
Intercept 105.53 1 4.26 96.80 114.26 
 A[1]              -50.33 1 10.44 -71.72 -28.95 
 A[2]              12.17  1 10.44 -9.22 33.55 
 B-Temp       -40.33 1 5.22 -51.02 -29.64 
 A[1]B              1.71 1 7.38 -13.41 16.83 
 A[2]B           -12.79 1 7.38 -27.91 2.33 
 A[1]B2          41.96 1 12.78 15.77 68.15 
 A[2]B2        -14.04 1 12.78 -40.23 12.15 
 
________________________________________________________________________ 
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Chapter 6.  Supplemental Text Material 
 

S6-1. Factor Effect Estimates are Least Squares Estimates 
We have given heuristic or intuitive explanations of how the estimates of the factor 
effects are obtained in the textbook.  Also, it has been pointed out that in the regression 
model representation of the 2k factorial, the regression coefficients are exactly one-half 
the effect estimates.  It is straightforward to show that the model coefficients (and hence 
the effect estimates) are least squares estimates. 

Consider a 22 factorial.  The regression model is  

y x x x xi i i i i= i+ + + +β β β β ε0 1 1 2 2 12 1 2  

The data for the 22 experiment is shown in the following table: 

 

Run, i Xi1 Xi2 Xi1Xi2 Response total 

1 -1 -1 1 (1) 

2 1 -1 -1 a 

3 -1 1 -1 b 

4 1 1 1 ab 

 

The least squares estimates of the model parameters β  are chosen to minimize the sum of 
the squares of the model errors: 

L y x x x xi i i i
i

= − − − −
=
∑ β β β β0 1 1 2 2 12 1 2
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It is straightforward to show that the least squares normal equations are  
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Now since  because the design is 

orthogonal, the normal equations reduce to a very simple form: 
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The solution is  
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These regression model coefficients are exactly one-half the factor effect estimates.  
Therefore, the effect estimates are least squares estimates.  We will show this in a more 
general manner in Chapter 10. 

 

S6-2. Yates’s Method for Calculating Effect Estimates 
While we typically use a computer program for the statistical analysis of a 2k design, 
there is a very simple technique devised by Yates (1937) for estimating the effects and 
determining the sums of squares in a 2k factorial design. The procedure is occasionally 
useful for manual calculations, and is best learned through the study of a numerical 
example. 

Consider the data for the 23 design in Example 6-1.  These data have been entered in 
Table 1 below.  The treatment combinations are always written down in standard order, 
and the column labeled "Response" contains the corresponding observation (or total of all 
observations) at that treatment combination.  The first half of column (1) is obtained by 
adding the responses in adjacent pairs.  The second half of column (1) is obtained by 
changing the sign of the first entry in each of the pairs in the Response column and 
adding the adjacent pairs.  For example, in column (1) we obtain for the fifth entry 5 = -(-
4) + 1, for the sixth entry 6 = -(-1) + 5, and so on. 

Column (2) is obtained from column (1) just as column (1) is obtained from the Response 
column.  Column (3) is obtained from column (2) similarly.  In general, for a 2k design 
we would construct k columns of this type.  Column (3) [in general, column (k)] is the 
contrast for the effect designated at the beginning of the row.  To obtain the estimate of 
the effect, we divide the entries in column (3) by n2k-1 (in our example, n2k-1 = 8).  
Finally, the sums of squares for the effects are obtained by squaring the entries in column 
(3) and dividing by n2k (in our example, n2k = (2)23 = 16). 

 



 
Table 1.Yates's Algorithm for the Data in Example 6-1 

   Estimate Sum of 
Treatment  of Effect Squares 
Combination Response (1) (2) (3)           Effect      (3)÷n2k-1(3)2÷n2k-1  
        (1)                 -4    -3 1 16 I                ---       --- 
         a                    1  4 15 24 A 3.00  36.00 
         b                   -1  2 11 18 B 2.25  20.25 
        ab                   5  13 13 6 A B 0.75  2.25 
         c                   -1  5 7 14 C 1.75  12.25 
        ac                   3  6 11 2 A C 0.25  0.25 
        bc                   2  4 1 4 B C 0.50  1.00 
        abc                 11 9 5 4 ABC 0.50  1.00 
 
        
The estimates of the effects and sums of squares obtained by Yates' algorithm for the data 
in Example 6-1 are in agreement with the results found there by the usual methods.  Note 
that the entry in column (3) [in general, column (k)] for the row corresponding to (1) is 
always equal to the grand total of the observations. 

In spite of its apparent simplicity, it is notoriously easy to make numerical errors in 
Yates's algorithm, and we should be extremely careful in executing the procedure.  As a 
partial check on the computations, we may use the fact that the sum of the squares of the 
elements in the jth column is 2j times the sum of the squares of the elements in the 
response column.  Note, however, that this check is subject to errors in sign in column j. 
See Davies (1956), Good (1955, 1958), Kempthorne (1952), and Rayner (1967) for other 
error-checking techniques. 
 
S6-3. A Note on the Variance of a Contrast 

In analyzing 2k factorial designs, we frequently construct a normal probability plot of the 
factor effect estimates and visually select a tentative model by identifying the effects that 
appear large.  These effect estimates are typically relatively far from the straight line 
passing through the remaining plotted effects. 

This method works nicely when (1) there are not many significant effects, and (2) when 
all effect estimates have the same variance.  It turns out that all contrasts computed from 
a 2k design (and hence all effect estimates) have the same variance even if the individual 
observations have different variances.  This statement can be easily demonstrated. 

Suppose that we have conducted a 2k design and have responses  and let the 

variance of each observation be   respectively.  Now each effect estimate is 
a linear combination of the observations, say 
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where the contrast constants ci  are all either –1 or +1.  Therefore, the variance of an 
effect estimate is  

V Effect c V y

c

k i i
i

k i i
i

k i
i

k

k

k

( )
( )

( )

( )

( )

=

=

=

=

=

=

∑

∑

∑

1
2

1
2

1
2

2
2

1

2

2
2 2

1

2

2
2

1

2

σ

σ

 

because c .  Therefore, all contrasts have the same variance.  If each observation yi
2 1= i in 

the above equations is the total of n replicates at each design point, the result still holds. 

 

S6-4. The Variance of the Predicted Response 

Suppose that we have conducted an experiment using a 2k factorial design.  We have fit a 
regression model to the resulting data and are going to use the model to predict the 
response at locations of interest in side the design space − ≤ ≤ + =1 1 1 2x ii , , , , k .  What 
is the variance of the predicted response at the point of interest, say ′ =x [ , , , ]x x xk1 2 ? 

Problem 6-32 asks the reader to answer this question, and while the answer is given in the 
Instructors Resource CD, we also give the answer here because it is useful information.  
Assume that the design is balanced and every treatment combination is replicated n times.  
Since the design is orthogonal, it is easy to find the variance of the predicted response. 

We consider the case where the experimenters have fit a “main effects only” model, say 

( )y y i i
i

k

x ≡ = +
=
∑β β0

1

x  

Now recall that the variance of a model regression coefficient is V
n Nk( )β σ σ

= =
2 2

2
, 

where N is the total number of runs in the design. The variance of the predicted response 
is  
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In the above development we have used the fact that the design is orthogonal, so there are 
no nonzero covariance terms when the variance operator is applied 

The Design-Expert software program plots contours of the standard deviation of the 
predicted response; that is the square root of the above expression.  If the design has 
already been conducted and analyzed, the program replaces  with the error mean 
square, so that the plotted quantity becomes 
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If the design has been constructed but the experiment has not been performed, then the 
software plots (on the design evaluation menu) the quantity 
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which can be thought of as a standardized standard deviation of prediction. To illustrate, 
consider a 22 with n = 3 replicates, the first example in Section 6-2.  The plot of the 
standardized standard deviation of the predicted response is shown below. 
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The contours of constant standardized standard deviation of predicted response should be 
exactly circular, and they should be a maximum within the design region at the point 

.  The maximum value is  x x1 1= ± = ± and 2 1
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This is also shown on the graph at the corners of the square. 

Plots of the standardized standard deviation of the predicted response can be useful in 
comparing designs.  For example, suppose the experimenter in the above situation is 
considering adding a fourth replicate to the design.  The maximum standardized 
prediction standard deviation in the region now becomes  
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The plot of the standardized prediction standard deviation is shown below. 

 

DESIGN-EXPERT Plot

StdErr of Design
X = A: A
Y = B: B

S td E rr o f D e s ig n

A

B

- 1 .00 - 0.50 0.00 0.50 1.00

- 1.00

- 0.50

0.00

0.50

1.00

0 . 2 8 1

0 . 3 1 1

0 . 3 4 2

0 . 3 7 2 0 . 3 7 2

0 . 3 7 2 0 . 3 7 2

0 . 4 0 3 0 . 4 0 3

0 . 4 0 3 0 . 4 0 3

4 4

4 4

Design Points



 Notice that adding another replicate has reduced the maximum prediction variance from 
(0.5)2 = 0.25 to (0.433)2 = 0.1875.  Comparing the two plots shown above reveals that the 
standardized prediction standard deviation is uniformly lower throughout the design 
region when an additional replicate is run.   

Sometimes we like to compare designs in terms of scaled prediction variance, defined 
as  

NV y[ ( )]x
σ 2  

This allows us to evaluate designs that have different numbers of runs.  Since adding 
replicates (or runs) to a design will generally always make the prediction variance get 
smaller, the scaled prediction variance allows us to examine the prediction variance on a 
per-observation basis.  Note that for a 2k factorial and the “main effects only” model we 
have been considering, the scaled prediction variance is  
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where  is the distance of the design point where prediction is required from the center 
of the design space (x = 0).  Notice that the 2

ρ2

k design achieves this scaled prediction 
variance regardless of the number of replicates.  The maximum value that the scaled 
prediction variance can have over the design region is  

Max NV y k[ ( )] ( )x
σ 2 1= +  

It can be shown that no other design over this region can achieve a smaller maximum 
scaled prediction variance, so the 2k design is in some sense an optimal design. We will 
discuss optimal designs more in Chapter 11. 

 

S6-5. Using Residuals to Identify Dispersion Effects 
We illustrated in Example 6-4 (Section 6-5 on unreplicated designs) that plotting the 
residuals from the regression model versus each of the design factors was a useful way to 
check for the possibility of dispersion effects. These are factors that influence the 
variability of the response, but which have little effect on the mean.  A method for 
computing a measure of the dispersion effect for each design factor and interaction that 
can be evaluated on a normal probability plot was also given.  However, we noted that 
these residual analyses are fairly sensitive to correct specification of the location model.  
That is, if we leave important factors out of the regression model that describes the mean 
response, then the residual plots may be unreliable. 

To illustrate, reconsider Example 6-4, and suppose that we leave out one of the important 
factors, C = Resin flow.  If we use this incorrect model, then the plots of the residuals 
versus the design factors look rather different than they did with the original, correct 
model.  In particular, the plot of residuals versus factor D = Closing time is shown below. 
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This plot indicates that factor D has a potential dispersion effect.  The normal probability 
plot of the dispersion statistic in Figure 6-28 clearly reveals that factor B is the only 
factor that has an effect on dispersion. Therefore, if you are going to use model residuals 
to search for dispersion effects, it is really important to select the right model for the 
location effects. 

Fi
*

 

S6-6. Center Points versus Replication of Factorial Points 
In some design problems an experimenter may have a choice of replicating the corner or 
“cube” points in a 2k factorial, or placing replicate runs at the design center.  For 
example, suppose our choice is between a 22 with n = 2 replicates at each corner of the 
square, or a single replicate of the 22 with nc = 4 center points. 

We can compare these designs in terms of prediction variance.  Suppose that we plan to 
fit the first-order or “main effects only” model 
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If we use the replicated design the scaled prediction variance is (see Section 6-4 above): 
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Now consider the prediction variance when the design with center points is used.  We 
have  
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Therefore, the scaled prediction variance for the design with center points is  
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Clearly, replicating the corners in this example outperforms the strategy of replicating 
center points, at least in terms of scaled prediction variance.  At the corners of the square, 
the scaled prediction variance for the replicated factorial is  
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while for the factorial design with center points it is  
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However, prediction variance might not tell the complete story.  If we only replicate the 
corners of the square, we have no way to judge the lack of fit of the model.  If the design 
has center points, we can check for the presence of pure quadratic (second-order) terms, 
so the design with center points is likely to be preferred if the experimenter is at all 
uncertain about the order of the model he or she should be using. 

 

 

 



S6-7.  Testing for “Pure Quadratic” Curvature using a t-Test 
In Section 6-6 of the textbook we discuss the addition of center points to a 2k factorial 
design.  This is a very useful idea as it allows an estimate of “pure error” to be obtained 
even thought the factorial design points are not replicated and it permits the experimenter 
to obtain an assessment of model adequacy with respect to certain second-order terms.  
Specifically, we present an F-test for the hypotheses 
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An equivalent t-statistic can also be employed to test these hypotheses.  Some computer 
software programs report the t-test instead of (or in addition to) the F-test.  It is not 
difficult to develop the t-test and to show that it is equivalent to the F-test. 

Suppose that the appropriate model for the response is a complete quadratic polynomial 
and that the experimenter has conducted an unreplicated full 2k factorial design with nF 
design points plus nC center points.  Let and Fy Cy  represent the averages of the 
responses at the factorial and center points, respectively.  Also let 2σ̂  be the estimate of 
the variance obtained using the center points.  It is easy to show that  
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Therefore,  

 11 22( )F C kE y y kβ β β− = + + +  

and so we see that the difference in averages Fy yC−  is an unbiased estimator of the sum 
of the pure quadratic model parameters.  Now the variance of Fy yC−  is  
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Consequently, a test of the above hypotheses can be conducted using the statistic 
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which under the null hypothesis follows a t distribution with nC – 1 degrees of freedom.  
We would reject the null hypothesis (that is, no pure quadratic curvature) if 0 / 2,| |

Cnt tα 1−> . 

This t-test is equivalent to the F-test given in the book.  To see this, square the t-statistic 
above: 
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This ratio is computationally identical to the F-test presented in the textbook.  
Furthermore, we know that the square of a t random variable with (say) v degrees of 
freedom is an F random variable with 1 numerator and v denominator degrees of 
freedom, so the t-test for “pure quadratic” effects is indeed equivalent to the F-test. 
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Chapter 7.  Supplemental Text Material 
 

S7-1.  The Error Term in a Blocked Design 
Just as in any randomized complete block design, when we run a replicated factorial 
experiment in blocks we are assuming that there is no interaction between treatments and 
blocks.  In the RCBD with a single design factor (Chapter 4) the error term is actually the 
interaction between treatments and blocks.  This is also the case in a factorial design.  To 
illustrate, consider the ANOVA in Table 7-2 of the textbook.  The design is a 22 factorial 
run in three complete blocks.  Each block corresponds to a replicate of the experiment. 
There are six degrees of freedom for error.  Two of those degrees of freedom are the 
interaction between blocks and factor A, two degrees of freedom are the interaction 
between blocks and factor B, and two degrees of freedom are the interaction between 
blocks and the AB interaction.  In order for the error term here to truly represent random 
error, we must assume that blocks and the design factors do not interact. 

 

S7-2.  The Prediction Equation for a Blocked Design 
Consider the prediction equation for the 24 factorial in two blocks with ABCD 
confounded from in Example 7-2.  Since blocking does not impact the effect estimates 
from this experiment, the equation would be exactly the same as the one obtained from 
the unblocked design, Example 6-2.  This prediction equation is 

. . . . . .y x x x x x x x= + + + − +70 06 108125 4 9375 7 3125 9 0625 8 31251 3 4 1 3 1 4  

This equation would be used to predict future observations where we had no knowledge 
of the block effect.  However, in the experiment just completed we know that there is a 
strong block effect, in fact the block effect was computed as   

block effect y yblock block = − = −1 2 18 625.  

This means that the difference in average response between the two blocks is –18.625.  
We should compensate for this in the prediction equation if we want to obtain the correct 
fitted values for block 1 and block 2.  Defining a separate block effect for each block   
does this, where block effect block effect1 29 3125 9 3125  and  = − =. . .  These block effects 
would be added to the intercept in the prediction equation for each block.  Thus the 
prediction equations are 
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and 
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y block effect x x x x x x x
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S7-3. Run Order is Important 
Blocking is really all about experimental run order.  Specifically, we run an experiment in 
blocks to provide protection against the effects of a known and controllable nuisance 
factor(s).  However, in many experimental situations, it is a good idea to conduct the 
experiment in blocks, even though there is no obvious nuisance factor present.  This is 
particularly important when in takes several time periods (days, shifts, weeks, etc.) to run 
the experiment. 

To illustrate, suppose that we are conducting a single replicate of a 24 factorial design.  
The experiment is shown in run order is shown in Table 2.  Now suppose that misfortune 
strikes the experimenter, and after the first eight trials have been performed it becomes 
impossible to complete the experiment.  Is there any useful experimental design that can 
be formed from the first eight runs? 

 

Table 2.  A 24 Factorial Experiment 
Std Order Run Order Block Factor A Factor B Factor C Factor D 

2 1 Block 1 1 -1 -1 -1 
12 2 Block 1 1 1 -1 1 
10 3 Block 1 1 -1 -1 1 
15 4 Block 1 -1 1 1 1 
14 5 Block 1 1 -1 1 1 
4 6 Block 1 1 1 -1 -1 
7 7 Block 1 -1 1 1 -1 
3 8 Block 1 -1 1 -1 -1 
5 9 Block 1 -1 -1 1 -1 
8 10 Block 1 1 1 1 -1 
11 11 Block 1 -1 1 -1 1 
16 12 Block 1 1 1 1 1 
1 13 Block 1 -1 -1 -1 -1 
9 14 Block 1 -1 -1 -1 1 
6 15 Block 1 1 -1 1 -1 
13 16 Block 1 -1 -1 1 1 

 

 

It turns out that in this case, the answer to that question is “no”.  Now some analysis can 
of course be performed, but it would basically consist of fitting a regression model to the 
response data from the first 8 trials.  Suppose that we fit a regression model containing an 
intercept term and the four main effects.  When things have gone wrong it is usually a 
good idea to focus on simple objectives, making use of the data that are available.  It 
turns out that in that model we would actually be obtaining estimates of  

 
 
 [Intercept] = Intercept - AB + CD - ABCD 
            [A] = A + AB - BC - ABC + ACD - BCD 



             [B] = B + AB - BC - ABC 
             [C] = C - ABC + ACD - BCD 
             [D] = D - ABD - ACD + BCD 
 
 
Now suppose we feel comfortable in ignoring the three-factor and four-factor interaction 
effects.  However, even with these assumptions, our intercept term is “clouded” or 
“confused” with two of the two-factor interactions, and the main effects of factors A and 
B are “confused” with the other two-factor interactions.  In the next chapter, we will refer 
to the phenomena being observed here as aliasing of effects (its proper name).    The 
supplemental notes for Chapter 8 present a general method for deriving the aliases for the 
factor effects. The Design-Expert software package can also be used to generate the 
aliases by employing the Design Evaluation feature.  Notice that in our example,  not 
completeing the experiment as originally planned has really disturbed the interpretation 
of the results. 

Suppose that instead of completely randomizing all 16 runs, the experimenter had set this 
24 design up in two blocks of 8 runs each, selecting in the usual way the ABCD 
interaction to be confounded with blocks.  Now if only the first 8 runs can be performed, 
then it turns out that the estimates of the intercept and main factor effects from these 8 
runs are 

 

  [Intercept] = Intercept 
              [A] = A + BCD 
              [B] = B + ACD 
              [C] = C + ABD 
              [D] = D + ABC 
 

If we assume that the three-factor interactions are negligible, then we have reliable 
estimates of all four main effects from the first 8 runs.  The reason for this is that each 
block of this design forms a one-half fraction of the 24 factorial, and this fraction allows 
estimation of the four main effects free of any two-factor interaction aliasing.  This 
specific design (the one-half fraction of the 24) will be discussed in considerable detail in 
Chapter 8.   

This illustration points out the importance of thinking carefully about run order, even 
when the experimenter is not obviously concerned about nuisance variables and blocking.  
Remember: 

 

If something can go wrong when conducting an experiment, it probably will.   

A prudent experimenter designs his or her experiment with this in mind. 

 
 



Generally, if a 2k factorial design is constructed in two blocks, and one of the blocks is 
lost, ruined, or never run, the 2 2 2 1k k/ = −  runs that remain will always form a one-half 
fraction of the original design.  It is almost always possible to learn something useful 
from such an experiment.   

To take this general idea a bit further, suppose that we had originally set up the 16-run 24 
factorial experiment in four blocks of four runs each.  The design that we would obtain 
using the standard methods from this chapter in the text gives the experiment in Table 3. 
Now suppose that for some reason we can only run the first 8 trials of this experiment.  It 
is easy to verify that the first 8 trials in Table 3 do not form one of the usual 8-run blocks 
produced by confounding the ABCD interaction with blocks.  Therefore, the first 8 runs 
in Table 3 are not a “standard” one-half fraction of the 24.   

A logical question is “what can we do with these 8 runs?”  Suppose, as before, that the 
experimenter elects to concentrate on estimating the main effects.  If we use only the first 
eight runs from Table 3 and concentrate on estimating only the four main effects, it turns 
out what we really are estimating is  

 
      [Intercept] = Intercept - ACD 
                 [A] = A - CD 
                 [B] = B - ABCD 
                 [C] = C - AD 
                 [D] = D - AC 
 

Once again, even assuming that all interactions beyond order two are negligible, our main 
effect estimates are aliased with two-factor interactions. 
 

Table 3.  A 24 Factorial Experiment in Four Blocks 
Std Order Run Order Block Factor A Factor B Factor C Factor D 

10 1 Block 1 1 -1 -1 1 
15 2 Block 1 -1 1 1 1 
3 3 Block 1 -1 1 -1 -1 
6 4 Block 1 1 -1 1 -1 
12 5 Block 2 1 1 -1 1 
8 6 Block 2 1 1 1 -1 
13 7 Block 2 -1 -1 1 1 
1 8 Block 2 -1 -1 -1 -1 
11 9 Block 3 -1 1 -1 1 
2 10 Block 3 1 -1 -1 -1 
7 11 Block 3 -1 1 1 -1 
14 12 Block 3 1 -1 1 1 
16 13 Block 4 1 1 1 1 
5 14 Block 4 -1 -1 1 -1 
9 15 Block 4 -1 -1 -1 1 
4 16 Block 4 1 1 -1 -1 



 

 

If we were able to obtain 12 of the original 16 runs (that is, the first three blocks of Table 
3), then we can estimate 

 
      [Intercept] = Intercept - 0.333 * AB - 0.333 * ACD - 0.333 * BCD 
                 [A] = A - ABCD 
                 [B] = B - ABCD 
                            [C] = C - ABC 
                            [D] = D - ABD 
                         [AC] = AC - ABD 
                         [AD] = AD - ABC 
                        [BC] = BC - ABD 
                        [BD] = BD - ABC 
                        [CD] = CD – ABCD 

 

If we can ignore three- and four-factor interactions, then we can obtain good estimates of 
all four main effects and five of the six two-factor interactions.  Once again, setting up 
and running  the experiment in blocks has proven to be a good idea, even though no 
nuisance factor was anticipated.  Finally, we note that it is possible to assemble three of 
the four blocks from Table 3 to obtain a 12-run experiment that is slightly better than the 
one illustrated above.  This would actually be called a 3/4th fraction of the 24, an irregular 
fractional factorial.  These designs are mentioned briefly in the Chapter 8 exercises. 



Chapter 8.  Supplemental Text Material 
 

S8-1. Yates’s Method for the Analysis of Fractional Factorials 
Computer programs are almost always used for the analysis of fractional factorial. 
However, we may use Yates's algorithm for the analysis of a 2 k-1 fractional factorial 
design by initially considering the data as having been obtained from a full factorial in k - 
1 variables.  The treatment combinations for this full factorial are listed in standard order, 
and then an additional letter (or letters) is added in parentheses to these treatment 
combinations to produce the actual treatment combinations run.  Yates's algorithm then 
proceeds as usual.  The actual effects estimated are identified by multiplying the effects 
associated with the treatment combinations in the full 2k-1 design by the defining relation 
of the 2k-1 fractional factorial. 

The procedure is demonstrated in Table 1 below using the data from Example 8-1.  This 
is a 24-1 fractional.  The data are arranged as a full 23 design in the factors A, B, and C. 
Then the letter d is added in parentheses to yield the actual treatment combinations that 
were performed.  The effect estimated by, say, the second row in this table is A + BCD 
since A and BCD are aliases. 
 
 
 

Table 1. Yates's Algorithm for the 2  Fractional Factorial in Example 8-1 4 1
IV
−

Treatment 
Combination 

Response (1) (2) (3) Effect Effect 
Estimate 
2 3× ( ) / N
 

(1) 45 145 255 566 - - 
a(d) 100 110 311 76 A+BCD 19.00 
b(d) 45 135 75 6 B+ACD 1.5 
ab 65 176 1 -4 AB+CD -1.00 
c(d) 75 55 -35 56 C+ABD 14.00 
ac 60 20 41 -74 AC+BD -18.50 
bc 80 -15 -15 76 BC+AD 19.00 
abc(d) 96 16 16 66 ABC+D 16.50 
 
 
 
S8-2  Alias Structures in Fractional Factorials and Other Designs 
 
In this chapter we show how to find the alias relationships in a 2k-p fractional factorial 
design by use of the complete defining relation.  This method works well in simple 
designs, such as the regular fractions we use most frequently, but it does not work as well 
in more complex settings, such as some of the irregular fractions and partial fold-over 
designs.  Furthermore, there are some fractional factorials that do not have defining 
relations, such as Plackett-Burman designs, so the defining relation method will not work 
for these types of designs at all. 



Fortunately, there is a general method available that works satisfactorily in many 
situations.  The method uses the polynomial or regression model representation of the 
model, say

y X= +1 1β ε  

where y is an n × 1 vector of the responses, X1 is an n × p1 matrix containing the design 
matrix expanded to the form of the model that the experimenter is fitting, β1 is an p1 × 1 
vector of the model parameters, and ε is an n × 1 vector of errors.  The least squares 
estimate of β1 is 

( )β1 1 1
1

1= ′ ′−X X X y  

Suppose that the true model is 

y X X= + +1 1 2 2β β ε  

where X2 is an n × p2 matrix containing additional variables that are not in the fitted 
model and β2 is a  p2× 1 vector of the parameters associated with these variables.  It can 
be easily shown that  

E( ) ( )β β β
β β
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1

1 2 2

1 2
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= +
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where  is called the alias matrix.  The elements of this matrix 
operating on β

A X X X X= ′ ′−( )1 1
1

1 2

2 identify the alias relationships for the parameters in the vector β1. 

We illustrate the application of this procedure with a familiar example.  Suppose that we 
have conducted a 23-1 design with defining relation I = ABC or I = x1x2x3.  The model that 
the experimenter plans to fit is the main-effects-only model 

y x x x= + + + +β β β β ε0 1 1 2 2 3 3  

In the notation defined above,  
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Suppose that the true model contains all the two-factor interactions, so that  
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The interpretation of this, of course, is that each of the main effects is aliased with one of 
the two-factor interactions, which we know to be the case for this design. While this is a 
very simple example, the method is very general and can be applied to much more 
complex designs.  

 
 
S8-3.  More About Fold-Over and Partial Fold-Over of Fractional Factorials 
 
In the textbook, we illustrate how a fractional factorial design can be augmented with 
additional runs to separate effects that are aliased.  A fold-over is another design that is 
the same size as the original fraction.  So if the original experiment has 16 runs, the fold-
over will require another 16 runs.  
 
Sometimes it is possible to augment a 2k-p fractional factorial with fewer than an 
additional 2k-p runs.  This technique is generally referred to as a partial fold over of the 
original design. 
 
For example, consider the 25-2 design shown in Table 2.  The alias structure for this 
design is shown below the table. 
 
 
 
 
 



Table 2.  A 25-2 Design 
Std 
ord 

Run 
ord 

Block Factor 
A:A 

Factor 
B:B 

Factor 
C:C 

Factor 
D:D 

Factor 
E:E 

2 1 Block 1 1 -1 -1 -1 -1 
6 2 Block 1 1 -1 1 -1 1 
3 3 Block 1 -1 1 -1 -1 1 
1 4 Block 1 -1 -1 -1 1 1 
8 5 Block 1 1 1 1 1 1 
5 6 Block 1 -1 -1 1 1 -1 
4 7 Block 1 1 1 -1 1 -1 
7 8 Block 1 -1 1 1 -1 -1 

 
       
      [A] = A + BD + CE 
      [B] = B + AD + CDE 
      [C] = C + AE + BDE 
      [D] = D + AB + BCE 
      [E] = E + AC + BCD 
      [BC] = BC + DE + ABE + ACD 
      [BE] = BE + CD + ABC + ADE 
 
 
Now suppose that after running the eight trials in Table 2, the largest effects are the main 
effects A, B, and D, and the BC + DE interaction.  The experimenter believes that all 
other effects are negligible.  Now this is a situation where fold-over of the original design 
is not an attractive alternative.  Recall that when a resolution III design is folded over by 
reversing all the signs in the test matrix, the combined design is resolution IV.  
Consequently, the BC and DE interactions will still be aliased in the combined design.  
One could alternatively consider reversing signs in individual columns, but these 
approaches will essentially require that another eight runs be performed. 

The experimenter wants to fit the model 

y x x x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 4 4 23 2 3 45 4 5  

where x A x B x C x D x E1 2 3 4 5= = = = =, , , ,  and .  Recall that a partial fold-over is a 
design containing fewer than eight runs that can be used to augment the original design 
and will allow the experimenter to fit this model.  One way to select the runs for the 
partial fold-over is to select points from the remaining unused portion of the 25 such that 
the variances of the model coefficients in the above regression equation are minimized.  
This augmentation strategy is based on the idea of a D-optimal design, discussed in 
Chapter 11. 

Design-Expert can utilize this strategy to find a partial fold-over.  The design produced 
by the computer program is shown in Table 3.  This design completely dealiases the BC 
and DE interactions. 

 

 



Table 3.  The Partially-Folded Fractional Design 
Std 
ord 

Run 
ord 

Block Factor 
A:A 

Factor 
B:B 

Factor 
C:C 

Factor 
D:D 

Factor 
E:E 

2 1 Block 1 1 -1 -1 -1 -1 
6 2 Block 1 1 -1 1 -1 1 
3 3 Block 1 -1 1 -1 -1 1 
1 4 Block 1 -1 -1 -1 1 1 
8 5 Block 1 1 1 1 1 1 
5 6 Block 1 -1 -1 1 1 -1 
4 7 Block 1 1 1 -1 1 -1 
7 8 Block 1 -1 1 1 -1 -1 
9 9 Block 2 -1 -1 -1 -1 1 

10 10 Block 2 1 1 1 1 -1 
11 11 Block 2 -1 -1 1 -1 -1 
12 12 Block 2 1 1 -1 1 1 

 

Notice that the D-optimal partial fold-over design requires four additional trials. 
Furthermore, these trials are arranged in a second block that is orthogonal to the first 
block of eight trials.    

This strategy is very useful in 16-run resolution IV designs, situations in which a full 
fold-over would require another 16 trials.  Often a partial fold-over with four or eight 
runs can be used as an alternative.  In many cases, a partial fold with only four runs over 
can be constricted using the D-optimal approach. 

As a second example, consider the 26-2 resolution IV design shown in Table 4.  The alias 
structure for the design is shown below the table. 

Table 4.  A 26-2 Resolution IV Design 
Std 
ord 

Run 
ord 

Block Factor 
A:A 

Factor 
B:B 

Factor 
C:C 

Factor 
D:D 

Factor 
E:E 

Factor 
F:F 

10 1 Block 1 1 -1 -1 1 1 1 
11 2 Block 1 -1 1 -1 1 1 -1 

2 3 Block 1 1 -1 -1 -1 1 -1 
12 4 Block 1 1 1 -1 1 -1 -1 
16 5 Block 1 1 1 1 1 1 1 
15 6 Block 1 -1 1 1 1 -1 1 

8 7 Block 1 1 1 1 -1 1 -1 
7 8 Block 1 -1 1 1 -1 -1 -1 
5 9 Block 1 -1 -1 1 -1 1 1 
1 10 Block 1 -1 -1 -1 -1 -1 -1 
6 11 Block 1 1 -1 1 -1 -1 1 
4 12 Block 1 1 1 -1 -1 -1 1 

14 13 Block 1 1 -1 1 1 -1 -1 
13 14 Block 1 -1 -1 1 1 1 -1 

9 15 Block 1 -1 -1 -1 1 -1 1 
3 16 Block 1 -1 1 -1 -1 1 1 

 



 
 
      [A] = A + BCE + DEF 
      [B] = B + ACE + CDF 
      [C] = C + ABE + BDF 
      [D] = D + AEF + BCF 
      [E] = E + ABC + ADF 
      [F] = F + ADE + BCD 
      [AB] = AB + CE 
      [AC] = AC + BE 
      [AD] = AD + EF 
      [AE] = AE + BC + DF 
      [AF] = AF + DE 
      [BD] = BD + CF 
      [BF] = BF + CD 
      [ABD] = ABD + ACF + BEF + CDE 
      [ABF] = ABF + ACD + BDE + CEF 
 
Suppose that the main effects of factors A, B, C, and E are large, along with the AB + CE 
interaction chain.  A full fold-over of this design would involve reversing the signs in 
columns B, C, D, E, and F.  This would, of course, require another 16 trials.  A standard 
partial fold using the method described in the textbook would require 8 additional runs.  
The D-optimal partial fold-over approach requires only four additional runs.  The 
augmented design, obtained from Design-Expert, is shown in Table 5.  These four runs 
form a second block that is orthogonal to the first block of 16 runs, and allows the 
interactions of interest in the original alias chain to be separately estimated. 

Remember that partial fold over designs are irregular fractions.  They are not orthogonal 
and as a result, the effect estimates are correlated.  This correlation between effect 
estimates causes inflation in the standard errors of the effects; that is, the effects are not 
estimated as precisely as they would have been in an orthogonal design.  However, this 
disadvantage may be offset by the decrease in the number of runs that the partial fold 
over requires. 

 

 

 

 

 

 

 

 

 

 



 

Table 5.  The Partial Fold-Over 
Std Run Block Factor 

A:A 
Factor 
B:B 

Factor 
C:C 

Factor 
D:D 

Factor 
E:E 

Factor 
F:F 

12 1 Block 1 1 1 -1 1 -1 -1 
15 2 Block 1 -1 1 1 1 -1 1 

2 3 Block 1 1 -1 -1 -1 1 -1 
9 4 Block 1 -1 -1 -1 1 -1 1 
5 5 Block 1 -1 -1 1 -1 1 1 
8 6 Block 1 1 1 1 -1 1 -1 

11 7 Block 1 -1 1 -1 1 1 -1 
14 8 Block 1 1 -1 1 1 -1 -1 
13 9 Block 1 -1 -1 1 1 1 -1 

4 10 Block 1 1 1 -1 -1 -1 1 
10 11 Block 1 1 -1 -1 1 1 1 

6 12 Block 1 1 -1 1 -1 -1 1 
7 13 Block 1 -1 1 1 -1 -1 -1 

16 14 Block 1 1 1 1 1 1 1 
3 15 Block 1 -1 1 -1 -1 1 1 
1 16 Block 1 -1 -1 -1 -1 -1 -1 

17 17 Block 2 1 -1 1 -1 -1 -1 
18 18 Block 2 -1 1 -1 -1 -1 -1 
19 19 Block 2 -1 -1 1 1 1 1 
20 20 Block 2 1 1 -1 1 1 1 

 



Chapter 9.  Supplemental Text Material 
 

S9-1.  Yates's Algorithm for the 3k Design 
Computer methods are used almost exclusively for the analysis of factorial and fractional 
designs.  However, Yates's algorithm can be modified for use in the 3k factorial design.  
We will illustrate the procedure using the data in Example 5-1.  The data for this example 
are originally given in Table 5-1.  This is a 32 design used to investigate the effect of 
material type (A) and temperature (B) on the life of a battery.  There are n = 4 replicates. 

The Yates’ procedure is displayed in Table 1 below.  The treatment combinations are 
written down in standard order; that is, the factors are introduced one at a time, each level 
being combined successively with every set of factor levels above it in the table. (The 
standard order for a 33 design would be 000, 100, 200, 010, 110, 210, 020, 120, 220, 001, 
. . . ).  The Response column contains the total of all observations taken under the 
corresponding treatment combination.  The entries in column (1) are computed as 
follows.  The first third of the column consists of the sums of each of the three sets of 
three values in the Response column.  The second third of the column is the third minus 
the first observation in the same set of three.  This operation computes the linear 
component of the effect.  The last third of the column is obtained by taking the sum of the 
first and third value minus twice the second in each set of three observations.  This 
computes the quadratic component.  For example, in column (1), the second, fifth, and 
eighth entries are 229 + 479 + 583 = 1291, -229 + 583 = 354, and 229 - (2)(479) + 583 = 
-146, respectively.  Column (2) is obtained similarly from column (1).  In general, k 
columns must be constructed. 

The Effects column is determined by converting the treatment combinations at the left of 
the row into corresponding effects.  That is, 10 represents the linear effect of A, AL, and 
11 represents the ABLXL component of the AB interaction.  The entries in the Divisor 
column are found from 
 

2r3tn 
 

where r is the number of factors in the effect considered, t is the number of factors in the 
experiment minus the number of linear terms in this effect, and n is the number of 
replicates.  For example, BL has the divisor 21 x 31 x 4= 24. 

The sums of squares are obtained by squaring the element in column (2) and dividing by 
the corresponding entry in the Divisor column.  The Sum of Squares column now 
contains all of the required quantities to construct an analysis of variance table if both of 
the design factors A and B are quantitative.  However, in this example, factor A (material 
type) is qualitative; thus, the linear and quadratic partitioning of A is not appropriate.  
Individual observations are used to compute the total sum of squares, and the error sum 
of squares is obtained by subtraction. 
 

 
 
 
 



Table 1.    Yates's Algorithm for the 32 Design in Example 5-1 
Treatment 

Combination Response (1) (2) Effects Divisor Sum of Squares 

00 539 1738 3799   

10 623 1291 503 AL 2 3 41 1× ×  10, 542.04

20 576 770 -101 AQ 2 3 41 2× ×  141.68

01 229 37 -968 BL 2 3 41 1× ×  39,042.66

11 479 354 75 ABLXL 2 3 42 0× ×  351.56

21 583 112 307 ABQXL 2 3 42 1× ×  1,963.52

02 230 -131 -74 BQ 2 3 41 2× ×  76.96

12 198 -146 -559 ABLXQ 2 3 42 1× ×  6,510.02

22 342 176 337 ABQXQ 2 3 42 2× ×  788.67

  

 
The analysis of variance is summarized in Table 2.  This is essentially the same results 
that were obtained by conventional analysis of variance methods in Example 5-1.  

 

Table 2.      Analysis of Variance for the 32 Design in Example 5-1 
Source of 
Variation 

Sum of Squares Degrees of 
Freedom 

Mean Square F0 P-value 

A = AL × AQ 10, 683.72 2 5,341.86 7.91 0.0020 
B, Temperature 39,118.72 2 19,558.36 28.97 <0.0001 
BL (39, 042.67) (1) 39,042.67 57.82 <0.0001 
BQ (76.05) (1) 76.05 0.12 0.7314 
AB 9,613.78 4 2,403.44 3.576 0.0186 
A × BL = 
ABLXL + 
ABQXL

(2,315.08) (2) 1,157.54 1.71 0.1999 

A × BQ = 
ABLXQ + 
ABQXQ

(7,298.70) (2) 3,649.75 5.41 0.0106 

Error 18,230.75 27 675.21   
Total 77,646.97 35    
 

 



S9-2.  Aliasing in Three-Level and Mixed-Level Designs 
In the supplemental text material for Chapter 8 (Section 8-2) we gave a general method 
for finding the alias relationships for a fractional factorial design. Fortunately, there is a 
general method available that works satisfactorily in many situations.  The method uses 
the polynomial or regression model representation of the model,

y X= +1 1β ε  

where y is an n × 1 vector of the responses, X1 is an n × p1 matrix containing the design 
matrix expanded to the form of the model that the experimenter is fitting, β1 is an p1 × 1 
vector of the model parameters, and ε is an n × 1 vector of errors.  The least squares 
estimate of β1 is 

( )β1 1 1
1

1= ′ ′−X X X y  

The true model is assumed to be 

y X X= + +1 1 2 2β β ε  

where X2 is an n × p2 matrix containing additional variables not in the fitted model and β2 
is a  p2× 1 vector of the parameters associated with these additional variables.  The 
parameter estimates in the fitted model are not unbiased, since  

E( ) ( )β β β
β β

1 1 1 1
1

1 2 2

1 2

= + ′ ′
= +

−X X X X
A

 

The matrix A X  is called the alias matrix.  The elements of this matrix 
identify the alias relationships for the parameters in the vector β

X X X= ′ ′−( )1 1
1

1 2

1. 

This procedure can be used to find the alias relationships in three-level and mixed-level 
designs.  We now present two examples. 

Example 1 
Suppose that we have conducted an experiment using a 32 design, and that we are 
interested in fitting the following model: 

y x x x x x x x x= + + + + − + − +β β β β β β0 1 1 2 2 12 1 2 11 1
2

1
2

22 2
2

2
2( ) ( ) ε  

This is a complete quadratic polynomial.  The pure second-order terms are written in a 
form that orthogonalizes these terms with the intercept. We will find the aliases in the 
parameter estimates if the true model is a reduced cubic, say 

y x x x x x x x
x x x x

= + + + + − + −

+ + + +

β β β β β β

β β β ε
0 1 1 2 2 12 1 2 11 1

2
1
2

22 2
2

2
2

111 1
3

222 2
3

122 1 2
2

( ) ( )x
 

Now in the notation used above, the vector β1 and the matrix 1X are defined as follows:  
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and the other quantities we require are 

X X2 2
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The expected value of the fitted model parameters is  

E( ) ( )β β β1 1 1 1
1

1 2 2= + ′ ′−X X X X  

or 
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The alias matrix turns out to be  

A =

L

N

MMMMMMM

O

Q

PPPPPPP

0 0 0
1 0 2 3
0 1 0
0 0 0
0 0 0
0 0 0

/

 

This leads to the following alias relationships: 
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Example 2 
This procedure is very useful when the design is a mixed-level fractional factorial.  For 
example, consider the mixed-level design in Table 9-10 of the textbook.  This design can 
accommodate four two-level factors and a single three-level factor.  The resulting 
resolution III fractional factorial is shown in Table 3. 

Since the design is resolution III, the appropriate model contains the main effects 

y x x x x x x x= + + + + + + − +β β β β β β β0 1 1 2 2 3 3 4 4 5 5 55 5
2

5
2( ) ε , 

where the model terms  

β β5 5 55 5
2

5
2x x and ( )− x  

represent the linear and quadratic effects of the three-level factor x5.    The quadratic 
effect of x5 is defined so that it will be orthogonal to the intercept term in the model. 

 



Table 3.  A Mixed-Level Resolution III Fractional Factorial 

x1 x2 x3 x4 x5

-1 1 1 -1 -1 

1 -1 -1 1 -1 

-1 -1 1 1 0 

1 1 -1 -1 0 

-1 1 -1 1 0 

1 -1 1 -1 0 

-1 -1 -1 -1 1 

1 1 1 1 1 

 

 

Now suppose that the true model has interaction: 

y x x x x x x x
x x x x x x x

= + + + + + + −

+ + + − +

β β β β β β β

β β β ε
0 1 1 2 2 3 3 4 4 5 5 55 5

2
5
2

12 1 2 15 1 5 155 1 5
2

5
2

( )
( )

 

So in the true model the two-level factors x1 and x2 interact, and x1 interacts with both the 
linear and quadratic effects of the three-level factor x5.  Straightforward, but tedious 
application of the procedure described above leads to the alias matrix 
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L

N

MMMMMMMMM
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and the alias relationships are computed from 

E( ) ( )β β β
β β

1 1 1 1
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1 2 2
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−X X X X
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This results in  
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The linear and quadratic components of the interaction between x1 and x5 are aliased with 
the main effects of , and the  interaction aliases the linear component 
of the main effect of x

x x x2 3 4, ,  and x x1 2

5. 



Chapter 10.  Supplemental Text Material 
 

S10-1. The Covariance Matrix of the Regression Coefficients 

In Section 10-3 of the textbook, we show that the least squares estimator of β in the linear 
regression model y X= +β ε  

( )β = ′ ′−X X X y1  

is an unbiased estimator.  We also give the result that the covariance matrix of  is 
 (see Equation 10-18).  This last result is relatively straightforward to show.  

Consider  

β
σ 2 ( )′ −X X 1

]

′

′

′

)

V V( ) [( )β = ′ ′−X X X y1  

The quantity is just a matrix of constants and y is a vector of random 
variables.  Now remember that the variance of the product of a scalar constant and a 
scalar random variable is equal to the square of the constant times the variance of the 
random variable. The matrix equivalent of this is  

( )′ −X X X1

V V
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( ) ( )[( ) ]
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−

− −
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Now the variance of y is , where I is an n × n identity matrix.  Therefore, this last 
equation becomes 

σ 2I
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V

( ) [( ) ]
( ) ( )[( ) ]

( ) [( ) ]
( ) ( )
( )

β

σ

σ

σ

= ′ ′

= ′ ′ ′ ′

= ′ ′ ′ ′ ′

= ′ ′ ′

= ′

−

− −

− −

− −

−

X X X y
X X X y X X X

X X X X X X
X X X X X X
X X

1

1 1

2 1 1

2 1 1

2 1

 

We have used the result from matrix algebra that the transpose of a product of matrices is 
just the produce of the transposes in reverse order, and since ( ′X X is symmetric its 
transpose is also symmetric. 

 

S10-2.  Regression Models and Designed Experiments 
In Examples 10-2 through 10-5 we illustrate several uses of regression methods in fitting 
models to data from designed experiments. Consider Example 10-2, which presents the 
regression model for main effects from a 23 factorial design with three center runs.  Since 
the  matrix is symmetric because the design is orthogonal, all covariance terms 
between the regression coefficients are zero. Furthermore, the variance of the regression 
coefficients is  

( )′ −X X 1



V

V ii

( ) / .
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β σ σ

β σ σ
0

2 2

2 2
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In Example 10-3, we reconsider this same problem but assume that one of the original 12 
observations is missing.  It turns out that the estimates of the regression coefficients does 
not change very much when the remaining 11 observations are used to fit the first-order 
model but the ( matrix reveals that the missing observation has had a moderate 
effect on the variances and covariances of the model coefficients.  The variances of the 
regression coefficients are now larger, and there are some moderately large covariances 
between the estimated model coefficients.  Example 10-4, which investigated the impact 
of inaccurate design factor levels, exhibits similar results.  Generally, as soon as we 
depart from an orthogonal design, either intentionally or by accident (as in these two 
examples), the variances of the regression coefficients will increase and potentially there 
could be rather large covariances between certain regression coefficients.  In both of the 
examples in the textbook, the covariances are not terribly large and would not likely 
result in any problems in interpretation of the experimental results.  

)′ −X X 1

 

S10-3.  Adjusted R2

In several places in the textbook, we have remarked that the adjusted R2 statistic is 
preferable to the ordinary R2, because it is not a monotonically non-decreasing function 
of the number of variables in the model. 

From Equation (10-27) note that  
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Now the mean square in the denominator of the ratio is constant, but MSE will change as 
variables are added or removed from the model.  In general, the adjusted R2 will increase 
when a variable is added to a regression model only if the error mean square decreases.  
The error mean square will only decrease if the added variable decreases the residual sum 
of squares by an amount that will offset the loss of one degree of freedom for error.  Thus 
the added variable must reduce the residual sum of squares by an amount that is at least 
equal to the residual mean square in the immediately previous model; otherwise, the new 
model will have an adjusted R2 value that is larger than the adjusted R2 statistic for the 
old model. 

 

S10-4.  Stepwise and Other Variable-Selection Methods in Regression 
In the textbook treatment of regression, we concentrated on fitting the full regression 
model.  Actually, in moist applications of regression to data from designed experiments 
the experimenter will have a very good idea about the form of the model he or she wishes 



to fit, either from an ANOVA or from examining a normal probability plot of effect 
estimates.   

There are, however, other situations where regression is applied to unplanned studies, 
where the data may be observational data collected routinely on some process.  The data 
may also be archival, obtained from some historian or library.  These applications of 
regression frequently involve a moderately-large or large set of candidate regressors, 
and the objective of the analysts here is to fit a regression model to the “best subset” of 
these candidates. This can be a complex problem, as these unplanned data sets frequently 
have outliers, strong correlations between subsets of the variables, and other complicating 
features. 

There are several techniques that have been developed for selecting the best subset 
regression model.  Generally, these methods are either stepwise-type variable selection 
methods or all possible regressions.  Stepwise-type methods build a regression model by 
either adding or removing a variable to the basic model at each step.  The forward 
selection version of the procedure begins with a model containing none of the candidate 
variables and sequentially inserts variables into the model one-at-a-time until a final 
equation is produced.  In backward elimination, the procedure begins with all variables in 
the equation, and then variables are removed one-at-a-time to produce a final equation.  
Stepwise regression usually consists of a combination of forward and backward stepping.  
There are many variations of the basic procedures. 

In all possible regressions with K candidate variables, the analyst examines all 2K 
possible regression equations to identify the ones with potential to be a useful model. 
Obviously, as K becomes even moderately large, the number of possible regression 
models quickly becomes formidably large.  Efficient algorithms have been developed that 
implicitly rather than explicitly examine all of these equations.  For more discussion of 
variable selection methods, see textbooks on regression such as Montgomery and Peck 
(1992) or Myers (1990). 

 

S10-5.  The Variance of the Predicted Response 
In section 10-5.2 we present Equation (10-40) for the variance of the predicted response 
at a point of interest .  The variance is  ′ =x0 01 02 0[ , , ,x x x k ]

xV y[ ( )] ( )x x X X0
2

0
1

0= ′ ′ −σ  

where the predicted response at the point x0 is found from Equation (10-39): 

( )y x x0 0= ′β  

It is easy to derive the variance expression: 
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Design-Expert calculates and displays the confidence interval on the mean of the 
response at the point x0 using Equation (10-41) from the textbook.  This is displayed on 
the point prediction option on the optimization menu.  The program also uses Equation 
(10-40) in the contour plots of prediction standard error. 

 

S10-6.  Variance of Prediction Error 
Section 10-6 of the textbook gives an equation for a prediction interval on a future 
observation at the point .  This prediction interval makes use of the 
variance of prediction error. Now the point prediction of the future observation y

′ =x0 01 02 0[ , , ,x x x k ]
0 at x0 is  

( )y x x0 0= ′β  

and the prediction error is 

e y yp = −0 0( )x  

The variance of the prediction error is  
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because the future observation is independent of the point prediction.  Therefore,  
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The square root of this quantity, with an estimate of , appears in Equation 
(10-42) defining the prediction interval. 

σ σ2 2= = MSE

 

S10-7.  Leverage in a Regression Model 
In Section 10-7.2 we give a formal definition of the leverage associated with each 
observation in a design (or more generally a regression data set).  Essentially, the 
leverage for the ith observation is just the ith diagonal element of the “hat” matrix 

H X X X X= ′ ′−( ) 1  

or 

hii i i= ′ ′ −x X X x( ) 1  

where it is understood that is the ith row of the matrix.   ′xi X

There are two ways to interpret the leverage values.  First, the leverage hii is a measure of 
distance reflecting how far each design point is from the center of the design space.  For 
example, in a 2k factorial all of the cube corners are the same distance k from the 



design center in coded units.  Therefore, if all points are replicated n times, they will all 
have identical leverage.   

Leverage can also be thought of as the maximum potential influence each design point 
exerts on the model.  In a near-saturated design many or all design points will have the 
maximum leverage.  The maximum leverage that any point can have is hii = 1.  However, 
if points are replicated n times, the maximum leverage is 1/n.  High leverage situations 
are not desirable, because if leverage is unity that point fits the model exactly. Clearly, 
then, the design and the associated model would be vulnerable to outliers or other 
unusual observations at that design point.  The leverage at a design point can always be 
reduced by replication of that point. 



Chapter 11.  Supplemental Text Material 
 

S11-1.  The Method of Steepest Ascent 
The method of steepest ascent can be derived as follows.  Suppose that we have fit a first-
order model 

y xi i
i

k

= +
=
∑β β0

1

 

and we wish to use this model to determine a path leading from the center of the design 
region x = 0 that increases the predicted response most quickly.  Since the first–order 
model is an unbounded function, we cannot just find the values of the x’s that maximize 
the predicted response.  Suppose that instead we find the x’s that maximize the predicted 
response at a point on a hypersphere of radius r.  That is 
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where λ is a LaGrange multiplier.  Taking the derivatives of G yields 
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Equating these derivatives to zero results in  
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Now the first of these equations shows that the coordinates of the point on the 
hypersphere are proportional to the signs and magnitudes of the regression coefficients 
(the quantity 2λ is a constant that just fixes the radius of the hypersphere).  The second 
equation just states that the point satisfies the constraint.  Therefore, the heuristic 
description of the method of steepest ascent can be justified from a more formal 
perspective. 



  

S11-2.  The Canonical Form of the Second-Order Response Surface Model 
Equation (11-9) presents a very useful result, the canonical form of the second-order 
response surface model.  We state that this form of the model is produced as a result of a 
translation of the original coded variable axes followed by rotation of these axes.  It is 
easy to demonstrate that this is true. 

Write the second-order model as 

y = + ′ + ′β β0 x x Bx  

Now translate the coded design variable axes x to a new center, the stationary point, by 
making the substitution z = x – xs.  This translation produces 
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because from Equation (11-7) we have 2 .  Now rotate these new axes (z) so 
that they are parallel to the principal axes of the contour system. The new variables are 

, where  

′ = − ′x Bz zs β

w M z= ′

′ =M BM Λ  

The diagonal matrix Λ has the eigenvalues of B, λ λ λ1 2, , , k on the main diagonal and 
M is a matrix of normalized eigenvectors. Therefore,  
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which is Equation (11-9). 

 

S11-3.  Center Points in the Central Composite Design 
In section 11-4,2 we discuss designs for fitting the second-order model.  The CCD is a 
very important second-order design.  We have given some recommendations regarding 
the number of center runs for the CCD; namely, 3 5≤ ≤nc generally gives good results. 

The center runs serves to stabilize the prediction variance, making it nearly constant over 
a broad region near the center of the design space.  To illustrate, suppose that we are 
considering a CCD in k = 2 variables but we only plan to run nc = 2 center runs.  The 
following graph of the standardized standard deviation of the predicted response was 
obtained from Design-Expert: 
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Notice that the plot of the prediction standard deviation has a large “bump” in the center.  
This indicates that the design will lead to a model that does not predict accurately near 
the center of the region of exploration, a region likely to be of interest to the 
experimenter.  This is the result of using an insufficient number of center runs. 
Suppose that the number of center runs is increased to nc = 4 .  The prediction standard 
deviation plot now looks like this: 
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Notice that the addition of two more center runs has resulted in a much flatter (and hence 
more stable) standard deviation of predicted response over the region of interest. 
The CCD is a spherical design.  Generally, every design on a sphere must have at least 
one center point or the  matrix will be singular.  However, the number of center 
points can often influence other properties of the design, such as prediction variance. 

′X X

 
 
S11-4.  Center Runs in the Face-Centered Cube 

The face-centered cube is a CCD with α = 1; consequently, it is a design on a cube, it is 
not a spherical design.  This design can be run with as few as nc = 0 center points.  The 
prediction standard deviation for the case k = 3 is shown below: 
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Notice that despite the absence of center points, the prediction standard deviation is 
relatively constant in the center of the region of exploration.  Note also that the contours 
of constant prediction standard deviation are not concentric circles, because this is not a 
rotatable design.   

While this design will certainly work with no center points, this is usually not a good 
choice.  Two or three center points generally gives good results.  Below is a plot of the 
prediction standard deviation for a face-centered cube with two center points.   This 
choice work very well. 
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S11-5.  A Note on Rotatability 

Rotatability is a property of the prediction variance in a response surface design. If a 
design is rotatable, the prediction variance is constant at all points that are equidistant 
from the center of the design. 

What is not widely known is that rotatability depends on both the design and the model. 
For example, if we have run a rotatable CCD and fit a reduced second-order model, the 
variance contours are no longer spherical.  To illustrate, below we show the standardized 
standard deviation of prediction for a rotatable CCD with k = 2, but we have fit a reduced 
quadratic (one of the pure quadratic terms is missing). 
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Notice that the contours of prediction standard deviation are not circular, even though a 
rotatable design was used. 
 
 



Chapter 12  Supplemental Text Material 

 

S12-1.  The Taguchi Approach to Robust Parameter Design 
Throughout this book, we have emphasized the importance of using designed 
experiments for product and process improvement.  Today, many engineers and scientists 
are exposed to the principles of statistically designed experiments as part of their formal 
technical education.  However, during the 1960-1980 time period, the principles of 
experimental design (and statistical methods, in general) were not as widely used as they 
are today 

In the early 1980s, Genichi Taguchi, a Japanese engineer, introduced his approach to 
using experimental design for 
 
1. Designing products or processes so that they are robust to environmental conditions. 
 
2. Designing/developing products so that they are robust to component variation. 
 
3. Minimizing variation around a target value. 
 
Note that these are essentially the same objectives we discussed in Section 11-7.1. 
  
Taguchi has certainly defined meaningful engineering problems and the philosophy that 
recommends is sound.  However, as noted in the textbook, he advocated some novel 
methods of statistical data analysis and some approaches to the design of experiments 
that the process of peer review revealed were unnecessarily complicated, inefficient, and 
sometimes ineffective.  In this section, we will briefly overview Taguchi's philosophy 
regarding quality engineering and experimental design.  We will present some examples 
of his approach to parameter design, and we will use these examples to highlight the 
problems with his technical methods.  As we saw in Chapter 12 of the textbook, it is 
possible to combine his sound engineering concepts with more efficient and effective 
experimental design and analysis based on response surface methods. 

Taguchi advocates a philosophy of quality engineering that is broadly applicable.  He 
considers three stages in product (or process) development: system design, parameter 
design, and tolerance design.  In system design, the engineer uses scientific and 
engineering principles to determine the basic system configuration.  For example, if we 
wish to measure an unknown resistance, we may use our knowledge of electrical circuits 
to determine that the basic system should be configured as a Wheatstone bridge.  If we 
are designing a process to assemble printed circuit boards, we will determine the need for 
specific types of axial insertion machines, surface-mount placement machines, flow 
solder machines, and so forth. 

In the parameter design stage, the specific values for the system parameters are 
determined.  This would involve choosing the nominal resistor and power supply values 
for the Wheatstone bridge, the number and type of component placement machines for 
the printed circuit board assembly process, and so forth.  Usually, the objective is to 



specify these nominal parameter values such that the variability transmitted from 
uncontrollable or noise variables is minimized. 

Tolerance design is used to determine the best tolerances for the parameters.  For 
example, in the Wheatstone bridge, tolerance design methods would reveal which 
components in the design were most sensitive and where the tolerances should be set.  If 
a component does not have much effect on the performance of the circuit, it can be 
specified with a wide tolerance. 

Taguchi recommends that statistical experimental design methods be employed to assist 
in this process, particularly during parameter design and tolerance design.  We will focus 
on parameter design.  Experimental design methods can be used to find a best product or 
process design, where by "best" we mean a product or process that is robust or insensitive 
to uncontrollable factors that will influence the product or process once it is in routine 
operation. 

The notion of robust design is not new.  Engineers have always tried to design products 
so that they will work well under uncontrollable conditions.  For example, commercial 
transport aircraft fly about as well in a thunderstorm as they do in clear air.  Taguchi 
deserves recognition for realizing that experimental design can be used as a formal part of 
the engineering design process to help accomplish this objective. 

A key component of Taguchi's philosophy is the reduction of variability.  Generally, 
each product or process performance characteristic will have a target or nominal value.  
The objective is to reduce the variability around this target value.  Taguchi models the 
departures that may occur from this target value with a loss function.  The loss refers to 
the cost that is incurred by society when the consumer uses a product whose quality 
characteristics differ from the nominal.  The concept of societal loss is a departure from 
traditional thinking.  Taguchi imposes a quadratic loss function of the form 

     L(y) = k(y- T)2                       

shown in Figure 1 below.  Clearly this type of function will penalize even small 
departures of y from the target T. Again, this is a departure from traditional thinking, 
which usually attaches penalties only to cases where y is outside of the upper and lower 
specifications (say y > USL or y < LSL in Figure 1.  However, the Taguchi philosophy 
regarding reduction of variability and the emphasis on minimizing costs is entirely 
consistent with the continuous improvement philosophy of Deming and Juran. 

In summary, Taguchi's philosophy involves three central ideas: 

1. Products and processes should be designed so that they are robust to external sources 
of variability. 

2. Experimental design methods are an engineering tool to help accomplish this 
objective. 

3.   Operation on-target is more important than conformance to specifications. 



 
Figure 1.  Taguchi’s Quadratic Loss Function 

 

These are sound concepts, and their value should be readily apparent.  Furthermore, as 
we have seen in the textbook, experimental design methods can play a major role in 
translating these ideas into practice. 

We now turn to a discussion of the specific methods that Professor Taguchi recommends 
for applying his concepts in practice.  As we will see, his approach to experimental 
design and data analysis can be improved. 

 

S12-2.  Taguchi’s Technical Methods 

An Example 
We will use the connector pull-off force example described in the textbook to illustrate 
Taguchi’s technical methods.  For more information about the problem, refer to the text 
and to the original article in Quality Progress in December 1987 (see "The Taguchi 
Approach to Parameter Design," by D. M. Byrne and S. Taguchi, Quality Progress, 
December 1987, pp. 19-26).  Recall that the experiment involves finding a method to 
assemble an elastomeric connector to a nylon tube that would deliver the required pull-
off performance to be suitable for use in an automotive engine application.  The specific 
objective of the experiment is to maximize the pull-off force.  Four controllable and three 
uncontrollable noise factors were identified.  These factors are defined in the textbook, 
and repeated for convenience in Table 1 below.  We want to find the levels of the 
controllable factors that are the least influenced by the noise factors and that provides the 
maximum pull-off force.  Notice that although the noise factors are not controllable 
during routine operations, they can be controlled for the purposes of a test.  Each 
controllable factor is tested at three levels, and each noise factor is tested at two levels. 

Recall from the discussion in the textbook that in the Taguchi parameter design 
methodology, one experimental design is selected for the controllable factors and another 
experimental design is selected for the noise factors.  These designs are shown in Table 2.  
Taguchi refers to these designs as orthogonal arrays, and represents the factor levels 
with integers 1, 2, and 3. In this case the designs selected are just a standard 23 and a 34-2 
fractional factorial.  Taguchi calls these the L8 and L9 orthogonal arrays, respectively. 



 
 
Table 1.  Factors and Levels for the Taguchi Parameter Design Example 
 
Controllable Factors  Levels 
 
A = Interference Low Medium High 
B = Connector wall thickness Thin Medium Thick 
C =  Insertion,depth Shallow Medium Deep 
D = Percent adhesive in Low Medium High 
connector pre-dip 
 
Uncontrollable Factors                     Levels 
E = Conditioning time   24 h 120 h 
F = Conditioning temperature   72°F 150°F 
G = Conditioning relative humidity   25% 75% 
 
 
 
 
Table 2.  Designs for the Controllable and Uncontrollable 
Factors 
(a) L9 Orthogonal Array (b) L8 Orthogonal Array 
for the Controllable for the Uncontrollable 
Factors Factors 
Variable       .               Variable                    . 
Run     A     B    C      D Run      E    F    E X F     G   Ex G         
Fx G   e 
11   1 1 1 1 1 1 1 1 1 1 1 
21 2 2 2 2 1 1 1 2 2 2 2 
31 3 3 3 3 1 2 2 1 1 2 2 
42 1 2 3 4 1 2 2 2 2 1 1 
52 2 3 1 5 2 1 2 1 2 1 2 
62 3 1 2 6 2 1 2 2 1 2 1 
73 1 3 2 7 2 2 1 1 2 2 1 
83 2 1 3 8 2 2 1 2 1 1 2 
93 3 2 1 
 
 
 
The two designs are combined as shown in Table 11-22 in the textbook, repeated for 
convenience as Table 3 below.  Recall that this is called a crossed  or product array 
design, composed of the inner array containing the controllable factors, and the outer 
array containing the noise factors.  Literally, each of the 9 runs from the inner array is 
tested across the 8 runs from the outer array, for a total sample size of 72 runs. The 
observed pull-off force is reported in Table 3. 
 
Data Analysis and Conclusions 
 
The data from this experiment may now be analyzed.  Recall from the discussion in 
Chapter 11 that Taguchi recommends analyzing the mean response for each run in the 



inner array (see Table 3), and he also suggests analyzing variation using an appropriately 
chosen signal-to-noise ratio (SN).  These signal-to-noise ratios are derived from the 
quadratic loss function, and three of them are considered to be "standard" and widely 
applicable.  They are defined as follows: 
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Table 3.       Parameter Design with Both Inner and Outer Arrays 

___________________________________________________________________________________ 
 

                  Outer Array (L8) 
 
   E             1                1           1             2             2           2          2 
   F             1                2           2             1             1           2          2 

 G            2                1           2              1            2            1          2 
 
    Inner Array (L9)  .                 Responses      
.

Run A      B         C      D                    y              SNL

 1 1 1 1 1 15.6 9.5       16.9 19.9 19.6 19.6 20.0 19.1    17.525     24.025 
 2 1 2 2 2 15.0 16.2       19.4 19.2 19.7 19.8 24.2 21.9    19.475     25.522 
 3 1 3 3 3 16.3 16.7       19.1 15.6 22.6 18.2 23.3 20.4    19.025     25.335 
 4 2 1 2 3 18.3 17.4       18.9 18.6 21.0 18.9 23.2 24.7    20.125     25.904 
 5 2 2 3 1 19.7 18.6       19.4 25.1 25.6 21.4 27.5 25.3    22.825     26.908 
 6 2 3 1 2 16.2 16.3       20.0 19.8 14.7 19.6 22.5 24.7    19.225     25.326 
 7 3 1 3 2 16.4 19.1       18.4 23.6 16.8 18.6 24.3 21.6    19.8         25.711 
 8 3 2 t 3 14.2 15.6       15.1 16.8 17.8 19.6 23.2 24.2    18.338     24.852 
 9 3 3 2 1 16.1 19.9      19.3 17.3 23.1 22.7 22.6 28.6    21.200     26.152 
____________________________________________________________________________________________________ 
 
 
3.   Smaller the better: 
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Notice that these SN ratios are expressed on a decibel scale.  We would use SNT if the 
objective is to reduce variability around a specific target, SNL if the system is optimized 
when the response is as large as possible, and SNS if the system is optimized when the 
response is as small as possible.  Factor levels that maximize the appropriate SN ratio are 
optimal. 



In this problem, we would use SNL because the objective is to maximize the pull-off 
force.  The last two columns of Table 3 contain y  and SNL values for each of the nine 
inner-array runs.  Taguchi-oriented practitioners often use the analysis of variance to 
determine the factors that influence y  and the factors that influence the signal-to-noise 
ratio.  They also employ graphs of the "marginal means" of each factor, such as the ones 
shown in Figures 2 and 3.  The usual approach is to examine the graphs and "pick the 
winner." In this case, factors A and C have larger effects than do B and D. In terms of 
maximizing SNL we would select AMedium, CDeep, BMedium, and DLow.   In terms of 
maximizing the average pull-off force y , we would choose AMedium, CMedium, BMedium and 
DLow.  Notice that there is almost no difference between CMedium and CDeep.  The 
implication is that this choice of levels will maximize the mean pull-off force and reduce 
variability in the pull-off force. 

 
Figure 2.  The Effects of Controllable Factors on Each Response 

 

 
 

Figure 3.  The Effects of Controllable Factors on the Signal to Noise Ratio 
 
 
 
Taguchi advocates claim that the use of the SN ratio generally eliminates the need for 
examining specific interactions between the controllable and noise factors, although 
sometimes looking at these interactions improves process understanding.  The authors of 



this study found that the AG and DE interactions were large.  Analysis of these 
interactions, shown in Figure 4, suggests that AMedium is best. (It gives the highest pull-off 
force and a slope close to zero, indicating that if we choose AMedium the effect of relative 
humidity is minimized.) The analysis also suggests that DLow gives the highest pull-off 
force regardless of the conditioning time. 

When cost and other factors were taken into account, the experimenters in this example 
finally decided to use AMedium, BThin, CMedium, and Dlow.  (BThin was much less expensive 
than BMedium, and CMedium was felt to give slightly less variability than CDeep.) Since this 
combination was not a run in the original nine inner array trials, five additional tests were 
made at this set of conditions as a confirmation experiment.  For this confirmation 
experiment, the levels used on the noise variables were ELow, FLow, and GLow.  The 
authors report that good results were obtained from the confirmation test. 
 

 
 

Figure 4.  The AG and DE Interactions 
 
Critique of Taguchi’s Experimental Strategy and Designs 
 
The advocates of Taguchi's approach to parameter design utilize the orthogonal array 
designs, two of which (the L8 and the L9) were presented in the foregoing example.  There 
are other orthogonal arrays: the L4, L12, L16, L18, and L27.  These designs were not 
developed by Taguchi; for example, the L8 is a 2  fractional factorial, the L7 4
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9 is a  
fractional factorial, the L
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12 is a Plackett-Burman design, the L16 is a fractional 
factorial, and so on.  Box, Bisgaard, and Fung (1988) trace the origin of these designs.  
As we know from Chapters 8 and 9 of the textbook, some of these designs have very 
complex alias structures.  In particular, the L
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12 and all of the designs that use three-level 
factors will involve partial aliasing of two-factor interactions with main effects.  If any 
two-factor interactions are large, this may lead to a situation in which the experimenter 
does not get the correct answer. 



Taguchi argues that we do not need to consider two-factor interactions explicitly.  He 
claims that it is possible to eliminate these interactions either by correctly specifying the 
response and design factors or by using a sliding setting approach to choose factor 
levels.  As an example of the latter approach, consider the two factors pressure and 
temperature.  Varying these factors independently will probably produce an interaction.  
However, if temperature levels are chosen contingent on the pressure levels, then the 
interaction effect can be minimized.  In practice, these two approaches are usually 
difficult to implement unless we have an unusually high level of process knowledge.  The 
lack of provision for adequately dealing with potential interactions between the 
controllable process factors is a major weakness of the Taguchi approach to parameter 
design. 

Instead of designing the experiment to investigate potential interactions, Taguchi prefers 
to use three-level factors to estimate curvature.  For example, in the inner and outer array 
design used by Byrne and Taguchi, all four controllable factors were run at three levels.  
Let x1, x2, x3 and x4 represent the controllable factors and let z1, z2, and z3 represent the 
three noise factors.  Recall that the noise factors were run at two levels in a complete 
factorial design.  The design they used allows us to fit the following model: 
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Notice that we can fit the linear and quadratic effects of the controllable factors but not 
their two-factor interactions (which are aliased with the main effects).  We can also fit the 
linear effects of the noise factors and all the two-factor interactions involving the noise 
factors.  Finally, we can fit the two-factor interactions involving the controllable factors 
and the noise factors.  It may be unwise to ignore potential interactions in the controllable 
factors.   

This is a rather odd strategy, since interaction is a form of curvature.  A much safer 
strategy is to identify potential effects and interactions that may be important and then 
consider curvature only in the important variables if there is evidence that the curvature is 
important.  This will usually lead to fewer experiments, simpler interpretation of the data, 
and better overall process understanding. 

Another criticism of the Taguchi approach to parameter design is that the crossed array 
structure usually leads to a very large experiment.  For example, in the foregoing 
application, the authors used 72 tests to investigate only seven factors, and they still could 
not estimate any of the two-factor interactions among the four controllable factors.   

There are several alternative experimental designs that would be superior to the inner and 
outer method used in this example.  Suppose that we run all seven factors at two levels in 
the combined array design approach discussed on the textbook.  Consider the 

fractional factorial design.  The alias relationships for this design are shown in the 
top half of Table 4.  Notice that this design requires only 32 runs (as compared to 72).  In 
the bottom half of Table 4, two different possible schemes for assigning process 
controllable variables and noise variables to the letters A through G are given.  The first 
assignment scheme allows all the interactions between controllable factors and noise 
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factors to be estimated, and it allows main effect estimates to be made that are clear of 
two-factor interactions.  The second assignment scheme allows all the controllable factor 
main effects and their two-factor interactions to be estimated; it allows all noise factor 
main effects to be estimated clear of two-factor interactions; and it aliases only three 
interactions between controllable factors and noise factors with a two-factor interaction 
between two noise factors.  Both of these arrangements present much cleaner alias 
relationships than are obtained from the inner and outer array parameter design, which 
also required over twice as many runs. 

In general, the crossed array approach is often unnecessary.  A better strategy is to use the 
combined array design discussed in the textbook.  This approach will almost always 
lead to a dramatic reduction in the size of the experiment, and at the same time, it will 
produce information that is more likely to improve process understanding.  For more 
discussion of this approach, see Myers and Montgomery (1995) and Example 11-6 in the 
textbook.  We can also use a combined array design that allows the experimenter to 
directly model the noise factors as a complete quadratic and to fit all interactions between 
the controllable factors and the noise factors, as demonstrated in the textbook in Example 
11-7. 
 

Table 4.  An Alternative Parameter Design 
 

A one-quarter fraction of 7 factors in 32 runs.  Resolution IV. 
I = ABCDF = ABDEG = CEFG. 

 
Aliases: 
 A  AF = BCD  CG = EF 
 B  AG = BDE  DE = ABG 
 C  = EFG BC = ADF  DF = ABC 
 D  BD = ACF = AEG  DG = ABE 
 E  =  CFG BE = ADG   ACE = AFG 
 F  =  CEG  BF = ACD   ACG = AEF 
 G =  CEF BG = ADE   BCE = BFG 
 AB = CDF = DEG CD = ABF   BCG = BEF 
 AC = BDF CE = FG   CDE = DFG 
 AD = BCF = BEG CF = ABD  =  EG   CDG = DEF 

AF = BDG 
 
Factor Assignment Schemes: 
1. Controllable factors are assigned to the letters C, E, F, and G. Noise factors are assigned to the letters A, B, and D. All 

interactions between controllable factors and noise factors can be estimated. and all controllable factor main effects can be 
estimated clear of two-factor interactions. 

2. Controllable factors are assigned to the letters A, B, C, and D. Noise factors are assigned to the letters E, F. and G. All 
controllable factor main effects and two-factor interactions can be estimated; only the CE, CF, and CG interactions are aliased 
with interactions of the noise factors. 

 
 
Another possible issue with the Taguchi inner and outer array design relates to the order 
in which the runs are performed.  Now we know that for experimental validity, the runs 
in a designed experiment should be conducted in random order. However, in many 
crossed array experiments, it is possible that the run order wasn’t randomized.  In some 
cases it would be more convenient to fix each row in the inner array (that is, set the levels 
of the controllable factors) and run all outer-array trials. In other cases, it might be more 
convenient to fix the each column in the outer array and the run each on the inner array 
trials at that combination of noise factors.  Exactly which strategy is pursued probably 
depends on which group of factors is easiest to change, the controllable factors or the 



noise factors.  If the tests are run in either manner described above, then a split-plot 
structure has been introduced into the experiment.  If this is not accounted for in the 
analysis, then the results and conclusions can be misleading.  There is no evidence that 
Taguchi advocates used split-plot analysis methods.  Furthermore, since Taguchi 
frequently downplayed the importance of randomization, it is highly likely that many 
actual inner and outer array experiments were inadvertently conducted as split-plots, and 
perhaps incorrectly analyzed.  We introduce the split-plot design in Chapter in Chapter 
13.  A good reference on split-plots in robust design problems is Box and Jones (1992). 

A final aspect of Taguchi's parameter design is the use of linear graphs to assign factors 
to the columns of the orthogonal array.  A set of linear graphs for the L8 design is shown 
in Figure 5.  In these graphs, each number represents a column in the design.  A line 
segment on the graph corresponds to an interaction between the nodes it connects.  To 
assign variables to columns in an orthogonal array, assign the variables to nodes first; 
then when the nodes are used up, assign the variables to the line segments.  When you 
assign variables to the nodes, strike out any line segments that correspond to interactions 
that might be important.  The linear graphs in Figure 5 imply that column 3 in the L8 
design contains the interaction between columns 1 and 2, column 5 contains the 
interaction between columns 1 and 4, and so forth.  If we had four factors, we would 
assign them to columns 1, 2, 4, and 7. This would ensure that each main effect is clear of 
two-factor interactions.  What is not clear is the two-factor interaction aliasing.  If the 
main effects are in columns 1, 2, 4, and 7, then column 3 contains the 1-2 and the 4-7 
interaction, column 5 contains the 1-4 and the 2-7 interaction, and column 6 contains the 
1-7 and the 2-4 interaction.  This is clearly the case because four variables in eight runs is 
a resolution IV plan with all pairs of two-factor interactions aliased.  In order to 
understand fully the two-factor interaction aliasing, Taguchi would refer the experiment 
designer to a supplementary interaction table. 

Taguchi (1986) gives a collection of linear graphs for each of his recommended 
orthogonal array designs.  These linear graphs seem -to have been developed 
heuristically.  Unfortunately, their use can lead to inefficient designs.  For examples, see 
his car engine experiment [Taguchi and Wu (1980)] and his cutting tool experiment 
[Taguchi (1986)].  Both of these are 16-run designs that he sets up as resolution III 
designs in which main effects are aliased with two-factor interactions.  Conventional 
methods for constructing these designs would have resulted in resolution IV plans in 
which the main effects are clear of the two-factor interactions.  For the experimenter who 
simply wants to generate a good design, the linear graph approach may not produce the 
best result.  A better approach is to use a simple table that presents the design and its full 
alias structure such as in Appendix Table XII.  These tables are easy to construct and are 
routinely displayed by several widely available and inexpensive computer programs. 
 



 
Figure 5.  Linear Graphs for the L8 Design 

 
 
 
 
Critique of Taguchi’s Data Analysis Methods  
Several of Taguchi's data analysis methods are questionable.  For example, he 
recommends some variations of the analysis of variance that are known to produce 
spurious results, and he also proposes some unique methods for the analysis of attribute 
and life testing data.  For a discussion and critique of these methods, refer to Box, 
Bisgaard, and Fung (1988), Myers and Montgomery (1995), and the references contained 
therein.  In this section we focus on three aspects of his recommendations concerning 
data analysis:  the use of "marginal means" plots to optimize factor settings, the use of 
signal-to-noise ratios, and some of his uses of the analysis of variance. 

Consider the use of "marginal means" plots and the associated "pick the winner" 
optimization that was demonstrated previously in the pull-off force problem.  To keep the 
situation simple, suppose that we have two factors A and B, each at three levels, as shown 
in Table 5.  The "marginal means" plots are shown in Figure 6.  From looking at these 
graphs, we would select A3 and B1, as the optimum combination, assuming that we wish 
to maximize y. However, this is the wrong answer.  Direct inspection of Table 5 or the 
AB interaction plot in Figure 7 shows that the combination of A3 and B2 produces the 
maximum value of y. In general, playing "pick the winner" with marginal averages can 
never be guaranteed to produce the optimum.  The Taguchi advocates recommend that a 
confirmation experiment be run, although this offers no guarantees either.  We might be 
confirming a response that differs dramatically from the optimum.  The best way to find a 
set of optimum conditions is with the use of response surface methods, as discussed and 
illustrated in Chapter 11 of the textbook. 

Taguchi's signal-to-noise ratios are his recommended performance measures in a wide 
variety of situations.  By maximizing the appropriate SN ratio, he claims that variability is 
minimized. 

 
 



 
 
 

Table 5.   Data for the "Marginal Means" Plots in Figure 6 
                                                                                 Factor A 

 1 2 3 B Averages 
1 10 10 13 11.00 
2 8 10 14 9.67 
3 6 9 10 8.33 

 
 
Factor B 

A Averages 8.00 9.67 11.67  
 
 

 
 

Figure 6.   Marginal Means Plots for the Data in Table 5 
 
 

 
Figure 7.   The AB Interaction Plot for the Data in Table 5. 

 
 

Consider first the signal to noise ratio for the target is best case 
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This ratio would be used if we wish to minimize variability around a fixed target value.  
It has been suggested by Taguchi that it is preferable to work with SNT   instead of the 
standard deviation because in many cases the process mean and standard deviation are 
related. (As µ gets larger, σ gets larger, for example.) In such cases, he argues that we 
cannot directly minimize the standard deviation and then bring the mean on target.  



Taguchi claims he found empirically that the use of the SNT ratio coupled with a two-
stage optimization procedure would lead to a combination of factor levels where the 
standard deviation is minimized and the mean is on target.  The optimization procedure 
consists of (1) finding the set of controllable factors that affect SNT, called the control 
factors, and setting them to levels that maximize SNT and then (2) finding the set of 
factors that have significant effects on the mean but do not influence the SNT ratio, called 
the signal factors, and using these factors to bring the mean on target. 

Given that this partitioning of factors is possible, SNT is an example of a performance 
measure independent of adjustment (PERMIA) [see Leon et al. (1987)].  The signal 
factors would be the adjustment factors.  The motivation behind the signal-to-noise 
ratio is to uncouple location and dispersion effects.  It can be shown that the use of SNT  is 
equivalent to an analysis of the standard deviation of the logarithm of the original data.  
Thus, using SNT  implies that a log transformation will always uncouple location and 
dispersion effects.  There is no assurance that this will happen.  A much safer approach is 
to investigate what type of transformation is appropriate. 

Note that we can write the SNT   ratio as 
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If the mean is fixed at a target value (estimated by y ), then maximizing the SNT ratio is 
equivalent to minimizing log (S2).  Using log (S2) would require fewer calculations, is 
more intuitively appealing, and would provide a clearer understanding of the factor 
relationships that influence process variability - in other words, it would provide better 
process understanding.  Furthermore, if we minimize log (S2) directly, we eliminate the 
risk of obtaining wrong answers from the maximization of SNT   if some of the 
manipulated factors drive the mean y  upward instead of driving S2 downward.  In 
general, if the response variable can be expressed in terms of the model 

y x x xd a d= µ ε( , ) ( )  

where xd is the subset of factors that drive the dispersion effects and xa is the subset of 
adjustment factors that do not affect variability, then maximizing SNT will be equivalent 
to minimizing the standard deviation.  Considering the other potential problems 
surrounding SNT , it is likely to be safer to work directly with the standard deviation (or 
its logarithm) as a response variable, as suggested in the textbook.  For more discussion, 
refer to Myers and Montgomery (1995). 

The ratios SNL and SNS are even more troublesome.  These quantities may be completely 
ineffective in identifying dispersion effects, although they may serve to identify location 
effects, that is, factors that drive the mean.  The reason for this is relatively easy to see.  
Consider the SNS (smaller-the-better) ratio: 
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The ratio is motivated by the assumption of a quadratic loss function with y nonnegative.  
The loss function for such a case would be 
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where C is a constant.  Now 
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and 

SNS = 10 log C - 10 log L 

so maximizing SNs will minimize L. However, it is easy to show that 
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Therefore, the use of SNS as a response variable confounds location and dispersion 
effects. 

The confounding of location and dispersion effects was observed in the analysis of the 
SNL ratio in the pull-off force example.  In Figures 3 and 3 notice that the plots of y  and 
SNL versus each factor have approximately the same shape, implying that both responses 
measure location.  Furthermore, since the SNS and SNL ratios involve y2 and 1/y2, they 
will be very sensitive to outliers or values near zero, and they are not invariant to linear 
transformation of the original response.  We strongly recommend that these signal-to-
noise ratios not be used.   



A better approach for isolating location and dispersion effects is to develop separate 
response surface models for y  and log(S2).   If no replication is available to estimate 
variability at each run in the design, methods for analyzing residuals can be used.  
Another very effective approach is based on the use of the response model, as 
demonstrated in the textbook and in Myers and Montgomery (1995).  Recall that this 
allows both a response surface for the variance and a response surface for the mean to be 
obtained for a single model containing both the controllable design factors and the noise 
variables.   Then standard response surface methods can be used to optimize the mean 
and variance. 

Finally, we turn to some of the applications of the analysis of variance recommended by 
Taguchi.  As an example for discussion, consider the experiment reported by Quinlan 
(1985) at a symposium on Taguchi methods sponsored by the American Supplier 
Institute.  The experiment concerned the quality improvement of speedometer cables.  
Specifically, the objective was to reduce the shrinkage in the plastic casing material. 
(Excessive shrinkage causes the cables to be noisy.) The experiment used an L16 
orthogonal array (the 2  design).  The shrinkage values for four samples taken from 
3000-foot lengths of the product manufactured at each set of test conditions were 
measured and the responses 

III
15-11

y  and SNSheila computed. 

Quinlan, following the Taguchi approach to data analysis, used SNS  as the response 
variable in an analysis of variance.  The error mean square was formed by pooling the 
mean squares associated with the seven effects that had the smallest absolute magnitude.  
This resulted in all eight remaining factors having significant effects (in order of 
magnitude: E, G, K, A, C, F, D, H).  The author did note that E and G were the most 
important. 

Pooling of mean squares as in this example is a procedure that has long been known to 
produce considerable bias in the ANOVA test results, To illustrate the problem, consider 
the 15 NID(0, 1) random numbers shown in column 1 of Table 6.  The square of each of 
these numbers, shown in column 2 of the table, is a single-degree-of-freedom mean 
square corresponding to the observed random number.  The seven smallest random 
numbers are marked with an asterisk in column 1 of Table 6.  The corresponding mean 
squares are pooled to form a mean square for error with seven degrees of freedom.  This 
quantity is 

MSE = =
05088

7
0 0727. .  

Finally, column 3 of Table 6 presents the F ratio formed by dividing each of the eight 
remaining mean squares by MSE.  Now F0.05,1,7 = 5.59, and this implies that five of the 
eight effects would be judged significant at the 0.05 level.  Recall that since the original 
data came from a normal distribution with mean zero, none of the effects is different from 
zero. 

Analysis methods such as this virtually guarantee erroneous conclusions.  The normal 
probability plotting of effects avoids this invalid pooling of mean squares and provides a 
simple, easy to interpret method of analysis.  Box (1988) provides an alternate analysis of  



Table 6.  Pooling of Mean Squares 

NID(0,1) Random 
Numbers 

Mean Squares with One Degree 
of Freedom 

F0

-08607 0.7408 10.19 

-0.8820 0.7779 10.70 

0.3608* 0.1302  

0.0227* 0.0005  

0.1903* 0.0362  

-0.3071* 0.0943  

1.2075 1.4581 20.06 

0.5641 0.3182 4038 

-0.3936* 0.1549  

-0.6940 0.4816 6.63 

-0.3028* 0.0917  

0.5832 0.3401 4.68 

0.0324* 0.0010  

1.0202 1.0408 14.32 

-0.6347 0.4028 5.54 

 

the Quinlan data that correctly reveals E and G to be important along with other 
interesting results not apparent in the original analysis. 

It is important to note that the Taguchi analysis identified negligible factors as significant.  
This can have profound impact on our use of experimental design to enhance process 
knowledge.  Experimental design methods should make gaining process knowledge 
easier, not harder. 

 

Some Final Remarks   

In this section we have directed some major criticisms toward the specific methods of 
experimental design and data analysis used in the Taguchi approach to parameter design.  
Remember that these comments have focused on technical issues, and that the broad 
philosophy recommended by Taguchi is inherently sound. 

On the other hand, while the “Taguchi controversy” was in full bloom, many companies 
reported success with the use of Taguchi's parameter design methods.  If the methods are 
flawed, why do they produce successful results?  Taguchi advocates often refute criticism 
with the remark that "they work." We must remember that the "best guess" and "one-



factor-at-a-time" methods will also work-and occasionally they produce good results.  
This is no reason to claim that they are good methods.  Most of the successful 
applications of Taguchi's technical methods have been in industries where there was no 
history of good experimental design practice.  Designers and developers were using the 
best guess and one-factor-at-a-time methods (or other unstructured approaches), and 
since the Taguchi approach is based on the factorial design concept, it often produced 
better results than the methods it replaced.  In other words, the factorial design is so 
powerful that, even when it is used inefficiently, it will often work well. 

As pointed out earlier, the Taguchi approach to parameter design often leads to large, 
comprehensive experiments, often having 70 or more runs.  Many of the successful 
applications of this approach were in industries characterized by a high-volume, low-cost 
manufacturing environment.  In such situations, large designs may not be a real problem, 
if it is really no more difficult to make 72 runs than to make 16 or 32 runs.  On the other 
hand, in industries characterized by low-volume and/or high-cost manufacturing (such as 
the aerospace industry, chemical and process industries, electronics and semiconductor 
manufacturing, and so forth), these methodological inefficiencies can be significant. 

A final point concerns the learning process.  If the Taguchi approach to parameter design 
works and yields good results, we may still not know what has caused the result because 
of the aliasing of critical interactions.  In other words, we may have solved a problem (a 
short-term success), but we may not have gained process knowledge, which could be 
invaluable in future problems. 

In summary, we should support Taguchi's philosophy of quality engineering.  However, 
we must rely on simpler, more efficient methods that are easier to learn and apply to 
carry this philosophy into practice.  The response surface modeling framework that we 
present in the textbook is an ideal approach to process optimization and as we have 
demonstrated, it is fully adaptable to the robust parameter design problem. 
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Chapter 13.  Supplemental Text Material 
 
 

S13-1.  Expected Mean Squares for the Random Model 
We consider the two-factor random effects balanced ANOVA model 
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given as Equation (13-15) in the textbook.  We list the expected mean squares for this 
model in Equation (13-17), but do not formally develop them.  It is relatively easy to 
develop the expected mean squares from direct application of the expectation operator. 

For example, consider finding 
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where SSA is the sum of squares for the row factor.  Recall that the model components 
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are normally and independently distributed with means zero and 

variances respectively. The sum of squares and its expectation are 
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Furthermore, we can show that 

y abn bn an n... . . .. ...( )= + + + +µ τ β τβ ε  

so the second term in the expected value of SSA becomes 
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We can now collect the components of the expected value of the sum of squares for 
factor A and find the expected mean square as follows: 
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This agrees with the first result in Equation (15-17). 

 

S13-2.  Expected Mean Squares for the Mixed Model 

As noted in Section 13-3 of the textbook, there are several version of the mixed model, 
and the expected mean squares depend on which model assumptions are used.  In this 
section, we assume that the restricted model is of interest.  The next section considers 
the unrestricted model. 

Recall that in the restricted model there are assumptions made regarding the fixed factor, 
A; namely,  
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We will find the expected mean square for the random factor, B.  Now 
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Using the restrictions on the model parameters, we can easily show that 
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Since 

y abn an... . ...= + +µ β ε  

we can easily show that 
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Therefore the expected value of the mean square for the random effect is 
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The other expected mean squares can be derived similarly.  

 

S13-3.  Restricted versus Unrestricted Mixed Models 

We now consider the unrestricted model 
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for which the assumptions are 

α αγ αγ. [( ) ]= =0 2  and V ij  

and all random effects are uncorrelated random variables.  Notice that there is no 
assumption concerning the interaction effects summed over the levels of the fixed factor 
as is customarily made for the restricted model. Recall that the restricted model is 
actually a more general model than the unrestricted model, but some modern computer 
programs give the user a choice of models (and some computer programs only use the 
unrestricted model), so there is increasing interest in both versions of the mixed model. 

We will derive the expected value of the mean square for the random factor, B, in 
Equation (13-26), as it is different from the corresponding expected mean square in the 
restricted model case.  As we will see, the assumptions regarding the interaction effects 
are instrumental in the difference in the two expected mean squares.  



The expected mean square for the random factor, B, is defined as 
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and, as in the cases above 
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because α . = 0 .  Notice, however, that the interaction term in this expression is not zero 
as it would be in the case of the restricted model. Now the expected value of the first part 
of the expression for E(SSB) is  
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Now we can show that 
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We may now assemble the components of the expected value of the sum of squares for 
factor B and find the expected value of MSB as follows: 
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This last expression is in agreement with the result given in Equation (13-26).  

Deriving expected mean squares by the direct application of the expectation operator (the 
“brute force” method) is tedious, and the rules given in the text are a great labor-saving 
convenience.  There are other rules and techniques for deriving expected mean squares, 
including algorithms that will work for unbalanced designs.  See Milliken and Johnson 
(1984) for a good discussion of some of these procedures. 

 

S13-4.  Random and Mixed Models with Unequal Sample Sizes 

Generally, ANOVA models become more complicated to analyze when the designs is 
unbalanced; that is, when some of the cells contain different numbers of observations. In 
Chapter 15, we briefly discuss this problem in the two-factor fixed-effects design. The 
unbalanced case of random and mixed models is not discussed there, but we offer some 
very brief advice in this section. 

An unbalanced random or mixed model will not usually have exact F-tests as they did in 
the balanced case.  Furthermore, the Satterthwaite approximate or synthetic F-test does 
not apply to unbalanced designs.  The simplest approach to the analysis is based on the 
method of maximum likelihood.  This approach to variance component estimation was 
discussed in Section 13-7.3, and the SAS procedure employed there can be used for 
unbalanced designs.  The disadvantage of this approach is that all the inference on 
variance components is based on the maximum likelihood large sample theory, which is 
only an approximation because designed experiments typically do not have a large 
number of runs.  The book by Searle (1987) is a good reference on this general topic. 

 

S13-5.  Some Background Concerning the Modified Large Sample Method 

In Section 12-7.2 we discuss the modified large same method for determining a 
confidence interval on variance components that can be expressed as a linear combination 
of mean squares.  The large sample theory essentially states that  
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θ i  is the linear combination of variance components estimated by the ith mean square,   
and fi is the number of degrees of freedom for MSi.  Consequently, the 100(1-α) percent 
large-sample two-sided confidence interval for  is σ 0
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Operationally, we would replace θ i by MSi in actually computing the confidence interval.  
This is the same basis used for construction of the confidence intervals by SAS PROC 
MIXED that we presented in section 13-7.3 (refer to the discussion of tables 13-17 and 
13-18 in the textbook).   

These large-sample intervals work well when the number of degrees of freedom are large, 
but when the fi are small they may be unreliable.  However, the performance may be 
improved by applying suitable modifications to the procedure.  Welch (1956) suggested a 
modification to the large-sample method that resulted in some improvement, but Graybill 
and Wang (1980) proposed a technique that makes the confidence interval exact for 
certain special cases.  It turns out that it is also a very good approximate procedure for the 
cases where it is not an exact confidence interval.  Their result is given in the textbook as 
Equation (13-42). 

 

 

S13-6.  A Confidence Interval on a Ratio of Variance Components using the 
Modified Large Sample Method 
 As observed in the textbook, the modified large sample method can be used to determine 
confidence intervals on ratios of variance components.  Such confidence intervals are 
often of interest in practice.  For example, consider the measurement systems capability 
study described in Example 12-2 in the textbook.  In this experiment, the total variability 
from the gauge is the sum of three variance components , and the 

variability of the product used in the experiment is .  One way to describe the 
capability of the measurement system is to present the variability of the gauge as a 
percent of the product variability.  Therefore, an experimenter would be interested in the 
ratio of variance components 
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Suppose that  is a ratio of variance components of interest and that we can 
estimate the variances in the ratio by the ratio of two linear combinations of mean 
squares, say 
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and G H  are as previously defined.  For more details, see the book by 
Burdick and Graybill (1992). 
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Chapter 14.  Supplemental Text Material 
 

S14-1.  The Staggered, Nested Design 
In Section 14-1.4 we introduced the staggered, nested design as a useful way to prevent 
the number of degrees of freedom from “building up” so rapidly at lower levels of the 
design.  In general, these designs are just unbalanced nested designs, and many computer 
software packages that have the capability to analyze general unbalanced designs can 
successfully analyze the staggered, nested design.  The general linear model routine in 
Minitab is one of these packages. 

To illustrate a staggered, nested design, suppose that a pharmaceutical manufacturer is 
interested in testing the absorption of a drug two hours after the tablet is ingested.  The 
product is manufactured in lots, and specific interest focuses on determining whether 
there is any significant lot-to-lot variability.  Excessive lot-to-lot variability probably 
indicates problems with the manufacturing process, perhaps at the stage where the 
coating material that controls tablet absorption is applied.  It could also indicate a 
problem with either the coating formulation, or with other formulation aspects of the 
tablet itself. 

The experimenters select a = 10 lots at random from the production process, and decide 
to use a staggered, nested design to sample from the lots.  Two samples are taken at 
random from each lot.  The first sample contains two tablets, and the second sample 
contains only one tablet.  Each tablet is test for the percentage of active drug absorbed 
after two hours. The data from this experiment is shown in Table 1 below. 

Table 1.  The Drug Absorption Experiment 

 Sample 

Lot 1 2 

1 24.5, 25.9 23.9 

2 23.6, 26.1 25.2 

3 27.3, 28.1 27.0 

4 28.3, 27.5 27.4 

5 24.3, 24.1 25.1 

6 25.3, 26.0 24.7 

7 27.3, 26.8 28.0 

8 23.3, 23.9 23.0 

9 24.6, 25.1 24.9 

10 24.3, 24.9 25.3 

 

The following output is from the Minitab general linear model analysis procedure. 
 



General Linear Model 
 
 
Factor        Type Levels Values 
Lot         random     10  1  2  3  4  5  6  7  8  9 10 
Sample(Lot) random     20 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 
 
Analysis of Variance for Absorp., using Adjusted SS for Tests 
 
Source        DF     Seq SS     Adj SS     Adj MS       F      P 
Lot            9    58.3203    52.3593     5.8177   14.50  0.000 
Sample(Lot)   10     4.0133     4.0133     0.4013    0.71  0.698 
Error         10     5.6200     5.6200     0.5620 
Total         29    67.9537   
 
Expected Mean Squares, using Adjusted SS 
 
Source          Expected Mean Square for Each Term 
 1 Lot          (3) +  1.3333(2) +  2.6667(1) 
 2 Sample(Lot)  (3) +  1.3333(2) 
 3 Error        (3) 
 
Error Terms for Tests, using Adjusted SS 
 
Source          Error DF  Error MS  Synthesis of Error MS 
 1 Lot             10.00    0.4013  (2) 
 2 Sample(Lot)     10.00    0.5620  (3) 
 
Variance Components, using Adjusted SS 
 
Source       Estimated Value 
Lot                   2.0311 
Sample(Lot)          -0.1205 
Error                 0.5620 
 
 

 

As noted in the textbook, this design results in a - 1 = 9 degrees of freedom for lots, and a 
= 10 degrees of freedom for samples within lots and error.   The ANOVA indicates that 
there is a significant difference between lots, and the estimate of the variance component 
for lots is .  The ANOVA indicates that the sample within lots is not a 
significant source of variability.  This is an indication of lot homogeneity.  There is a 
small negative estimate of the sample-within-lots variance component.  The experimental 
error variance is estimated as .  Notice that the constants in the expected mean 
squares are not integers; this is a consequence of the unbalanced nature of the design. 
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2 2 03=
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S14-2.  Inadvertent Split-Plots 
In recent years experimenters from many different industrial settings have become 
exposed to the concepts of designed experiments, either from university-level DOX 
courses or from industrial short courses and seminars.  As a result, factorial and fractional 
factorial designs have enjoyed expanded use.  Sometimes the principle of randomization 
is not sufficiently stressed in these courses, and as a result experimenters may fail to 
understand its importance.  This can lead to inadvertent split-plotting of a factorial 
design.   

For example, suppose that an experimenter wishes to conduct a 24 factorial using the 
factors A = temperature, B = feed rate, C = concentration, and D = reaction time.  A 24 
with the runs arranged in random order is shown in Table 2. 

 
Table 2.  A 24 Design in Random Order 

 
Std Run Block Factor A: 

Temperature 
DegC 

Factor B: 
Feed rate 

gal/h 

Factor C: 
Concentration 

gm/l 

Factor D: 
Reaction time 

h 

Response
Yield 

16 1 Block 1 150 8 30 1.2  
9 2 Block 1 100 5 25 1.2  
7 3 Block 1 100 8 30 1  

12 4 Block 1 150 8 25 1.2  
2 5 Block 1 150 5 25 1  

13 6 Block 1 100 5 30 1.2  
1 7 Block 1 100 5 25 1  

10 8 Block 1 150 5 25 1.2  
3 9 Block 1 100 8 25 1  

14 10 Block 1 150 5 30 1.2  
6 11 Block 1 150 5 30 1  
4 12 Block 1 150 8 25 1  
5 13 Block 1 100 5 30 1  

15 14 Block 1 100 8 30 1.2  
11 15 Block 1 100 8 25 1.2  
8 16 Block 1 150 8 30 1  

 
When the experimenter examines this run order, he notices that the level of temperature 
is going to start at 150 degrees and then be changed eight times over the course of the 16 
trials.  Now temperature is a hard-to-change-variable, and following every adjustment to 
temperature several hours are needed for the process to reach the new temperature level 
and for the process to stabilize at the new operating conditions. 

The experimenter may feel that this is an intolerable situation. Consequently, he may 
decide that fewer changes in temperature are required, and rearange the temperature 
levels in the experiment so that the new design appears as in Table 3.  Notice that only 
three changes in the level of temperature are required in this new design.  In efect, the 
experimenter will set the temperature at 150 degrees and perform four runs with the other 
three factors tested in random order. Then he will change the temperature to 100 degrees 



and repeat the process, and so on.  The experimenter has inadvertently introduced a split-
plot structure into the experiment.   

 

 

Table 3.  The Modified 24 Factorial 
Std Run Block Factor A: 

Temperature 
DegC 

Factor B: 
Feed rate 

gal/h 

Factor C: 
Concentration 

gm/l 

Factor D: 
Reaction time 

h 

Response
Yield 

16 1 Block 1 150 8 30 1.2  
9 2 Block 1 150 5 25 1.2  
7 3 Block 1 150 8 30 1  

12 4 Block 1 150 8 25 1.2  
2 5 Block 1 100 5 25 1  

13 6 Block 1 100 5 30 1.2  
1 7 Block 1 100 5 25 1  

10 8 Block 1 100 5 25 1.2  
3 9 Block 1 150 8 25 1  

14 10 Block 1 150 5 30 1.2  
6 11 Block 1 150 5 30 1  
4 12 Block 1 150 8 25 1  
5 13 Block 1 100 5 30 1  

15 14 Block 1 100 8 30 1.2  
11 15 Block 1 100 8 25 1.2  
8 16 Block 1 100 8 30 1  

 

Typically, most inadvertent split-plotting is not taken into account in the analysis.  That 
is, the experimenter analyzes the data as if the experiment had been conducted in random 
order.  Therefore, it is logical to ask about the impact of ignoring the inadvertent split-
plotting.  While this question has not been studied in detail, generally inadvertently 
running a split-plot and not properly accounting for it in the analysis probably does not 
have major impact so long as the whole plot factor effects are large. These factor effect 
estimates will probably have larger variances that the factor effects in the subplots, so 
part of the risk is that small differences in the whole-plot factors may not be detected.  
Obviously, the more systematic fashion in which the whole-plot factor temperature was 
varied in Table 2 also exposes the experimenter to confounding of temperature with some 
nuisance variable that is also changing with time.  The most extreme case of this would 
occur if the first eight runs in the experiment were made with temperature at the low level 
(say), followed by the last eight runs with temperature at the high level. 

 



Chapter 15.  Supplemental Text Material 

 

S15-1.  The Form of a Transformation 
In Section 3-4.3 of the textbook we introduce transformations as a way to stabilize the 
variance of a response and to (hopefully) induce approximate normality when inequality 
of variance and nonnormality occur jointly (as they often do).  In Section 15-1.1 of the 
book the Box-Cox method is presented as an elegant analytical method for selecting the 
form of a transformation.  However, many experimenters select transformations 
empirically by trying some of the simple power family transformations in Table 3-9 of 
Chapter 3 ( y y, ln( ), / or 1 y , for example) or which appear on the menu of their 
computer software package. 

It is possible to give a theoretical justification of the power family transformations 
presented in Table 3-9.  For example, suppose that y is a response variable with 
mean E y( ) = µ  and variance V y .  That is, the variance of y is a function 
of the mean.  We wish to find a transformation h(y) so that the variance of the 
transformed variable is a constant unrelated to the mean of y.  In other words, 
we want V h  to be a constant that is unrelated to . 
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where R is the remainder in the first-order Taylor series, and we have ignored the 
remainder.  Now the mean of x is 
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and the variance of x is  
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Since , we have  σ 2 = f ( )µ

V x f h( ) ( ) ( )= ′µ µ 2  

We want the variance of x to be a constant, say c2.  So set 

c f h2 2= ′( ) ( )µ µ  



and solve for , giving ′h y( )
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Thus, the form of the transformation that is required is  
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where k is a constant. 

As an example, suppose that for the response variable y we assumed that the mean and 
variance were equal.  This actually happens in the Poisson distribution.  Therefore,  

µ σ= =2 implying that f t t( )  
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This implies that taking the square root of y will stabilize the variance.  This agrees with 
the advice given in the textbook (and elsewhere) that the square root transformation is 
very useful for stabilizing the variance in Poisson data or in general for count data where 
the mean and variance are not too different. 

As a second example, suppose that the square root of the mean is approximately equal to 
the variance; that is, . Essentially, this says that  µ σ1 2 2/ =

µ σ= =2 2 2  which implies that  f t t( )  

Therefore,  
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This implies that for a positive response where  the log of the response is an 
appropriate variance-stabilizing transformation. 

µ σ1 2 2/ =

 



S15-2.  Selecting λ in the Box-Cox Method 

In Section 15-1.1 of the Textbook we present the Box-Cox method for analytically 
selecting a response variable transformation, and observe that its theoretical basis is the 
method of maximum likelihood.  In applying this method, we are essentially maximizing  

L n SSE( ) ln ( )λ λ= −
1
2

 

or equivalently, we are minimizing the error sum of squares with respect to λ.  An 
approximate 100(1-α) percent confidence interval for λ consists of those values of λ that 
satisfy the inequality 

L L( ) ( ) /,λ λ χα− ≤
1
2 1

2 n

λ

 

where n is the sample size and is the upper α percentage point of the chi-square 
distribution with one degree of freedom. To actually construct the confidence interval we 
would draw on a plot of a horizontal line at height  

χα ,1
2

L( )λ  versus 

L( ) ,λ χα−
1
2 1

2  

on the vertical scale.  This would cut the curve of at two points, and the locations 
of these two points on the λ axis define the two end points of the approximate confidence 
interval for λ.  If we are minimizing the residual or error sum of squares (which is 
identical to maximizing the likelihood) and plotting 

L( )λ  

SSE ( )λ λ versus , then the line must 
be plotted at height 
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Remember that is the value of λ that minimizes the error sum of squares. λ

Equation (14-20 in the textbook looks slightly different than the equation for SS* above.  
The term  has been replaced by 1 , where v is the number of 

degrees of freedom for error.  Some authors use 1  instead, or 

sometimes 1 1 .  These are all based on the 

expansion of , and the fact that ,  
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unless the number of degrees of freedom v is too small.  It is perhaps debatable whether 
we should use n or v, but in most practical cases, there will be little difference in the 
confidence intervals that result. 

 

S15-3.  Generalized Linear Models 
Section 15-1.2 considers an alternative approach to data transformation when the “usual” 
assumptions of normality and constant variance are not satisfied.  This approach is based 



on the generalized linear model or GLM.  Examples 15-2, 15-3, and 15-4 illustrated the 
applicability of the GLM to designed experiments. 

The GLM is a unification of nonlinear regression models and nonnormal response 
variable distributions, where the response distribution is a member of the exponential 
family, which includes the normal, Poisson, binomial, exponential and gamma 
distributions as members.  Furthermore, the normal-theory linear model is just a special 
case of the GLM, so in many ways, the GLM is a unifying approach to empirical 
modeling and data analysis. 

We begin our presentation of these models by considering the case of logistic regression.  
This is a situation where the response variable has only two possible outcomes, 
generically called “success” and “failure” and denoted by 0 and 1.  Notice that the 
response is essentially qualitative, since the designation “success” or “failure” is entirely 
arbitrary.  Then we consider the situation where the response variable us a count, such as 
the number of defects in a unit of product (as in the grille defects of Example 14-2), or 
the number of relatively rare events such as the number of Atlantic hurricanes than make 
landfall on the United States in a year.  Finally, we briefly show how all these situations 
are unified by the GLM. 

S15-3.1.   Models with a Binary Response Variable 
Consider the situation where the response variable from an experiment takes on only two 
possible values, 0 and 1.  These could be arbitrary assignments resulting from observing a 
qualitative response.  For example, the response could be the outcome of a functional 
electrical test on a semiconductor device for which the results are either a “success”, 
which means the device works properly, or a “failure”, which could be due to a short, an 
open, or some other functional problem.   

Suppose that the model has the form 

yi i i= ′ +x β ε  

where ′ = ′ = ′x xi i i ik kx x x[ , , , , ] [ , , , , ]1 1 2 0 1 2,   ,  iβ β β β β β  is called the linear predictor, 
and the response variable yi takes on the values either 0 or 1. We will assume that the 
response variable yi is a Bernoulli random variable with probability distribution as 
follows: 

  

yi Probability 

1 P yi i( )= =1 π  

0 P yi i( )= = −0 1 π  

 

Now since E i( )ε = 0 , the expected value of the response variable is  
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This implies that  

E yi i( ) i= ′ =x β π  

This means that the expected response given by the response function E yi i( ) = ′x β  is just 
the probability that the response variable takes on the value 1.   

There are some substantive problems with this model.  First, note that if the response is 
binary, then the error term ε i  can only take on two values, namely 
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Consequently, the errors in this model cannot possibly be normal.  Second, the error 
variance is not constant, since 
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Notice that this last expression is just  
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since E yi i( ) = ′ =x β π .  This indicates that the variance of the observations (which is the 
same as the variance of the errors because ε π πi i iy i= − ,  and is a constant) is a function 
of the mean.  Finally, there is a constraint on the response function, because  

0 1≤ = ≤E yi i( ) π  

This restriction causes serious problems with the choice of a linear response function, as 
we have initially assumed. 

Generally, when the response variable is binary, there is considerable evidence indicating 
that the shape of the response function should be nonlinear.  A monotonically increasing 
(or decreasing) S-shaped (or reverse S-shaped) function is usually employed.  This 
function is called the logistic response function, and has the form 
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or equivalently,  
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The logistic response function can be easily linearized.  Let E y( ) = π and make the 
transformation 
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Then in terms of our linear predictor ′x β  we have  

η β= ′x  

This transformation is often called the logit transformation of the probability π, and the 
ratio π/(1-π) in the transformation is called the odds.  Sometimes the logit transformation 
is called the log-odds.   

There are other functions that have the same shape as the logistic function, and they can 
also be obtained by transforming π.  One of these is the probit transformation, obtained 
by transforming π using the cumulative normal distribution.  This produces a probit 
regression model.  The probit regression model is less flexible than the logistic regression 
model because it cannot easily incorporate more than one predictor variable.  Another 
possible transformation is the complimentary log-log transformation of π, given by 
ln[ ln( )]− −1 π .  This results in a response function that is not symmetric about the value 
π = 0.5. 

S15-3.2.  Estimating the Parameters in a Logistic Regression Model 
The general form of the logistic regression model is 

y E yi i i= +( ) ε  

where the observations yi  are independent Bernoulli random variables with expected 
values 
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We will use the method of maximum likelihood to estimate the parameters in the linear 
predictor ′xiβ .   

Each sample observation follows the Bernoulli distribution, so the probability distribution 
of each sample observation is  

f y i ni i i
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i
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and of course each observation yi takes on the value 0 or 1.  Since the observations are 
independent, the likelihood function is just  
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It is more convenient to work with the log-likelihood 
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Now since 1 , the log-likelihood can 
be written as  
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Often in logistic regression models we have repeated observations or trials at each level 
of the x variables.  This happens frequently in designed experiments. Let yi represent the 
number of 1’s observed for the ith observation and ni be the number of trials at each 
observation.  Then the log-likelihood becomes 
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Numerical search methods could be used to compute the maximum likelihood estimates 
(or MLEs) .  However, it turns out that we can use iteratively reweighted least squares 
(IRLS) to actually find the MLEs.  To see this recall that the MLEs are the solutions to  
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Putting this all together gives 
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Therefore, the maximum likelihood estimator solves 

′ − =X y 0( )µ  

where ′ = ′ =y [ , , , ] [ , ,y y y n n nn1 2 1 1 2 2 and ]n nµ π π π .  This set of equations is often 
called the maximum likelihood score equations.  They are actually the same form of the 
normal equations that we have seen previously for linear least squares, because in the 
linear regression model, E( )y X= =β µ and the normal equations are 
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which can be written as  
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The Newton-Raphson method is actually used to solve the score equations.  This 
procedure observes that in the neighborhood of the solution, we can use a first-order 
Taylor series expansion to form the approximation 
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Therefore, we can rewrite (1) above as  
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Consequently,  
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where V is a diagonal matrix of the weights formed from the variances of the ηi .  
Because η β= X  we may write the score equations as  
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and the maximum likelihood estimate of β  is 
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However, there is a problem because we don’t know .  Our solution to this problem 
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So V is the diagonal matrix of weights formed from the variances of the random part of z. 

Thus the IRLS algorithm based on the Newton-Raphson method can be described as 
follows: 

1. Use ordinary least squares to obtain an initial estimate of ; β β,  say 0

2. Use ; β π0 to estimate  and V



3. Let η β ; 0 0= X

4. Base z1 on η0 ; 

5. Obtain a new estimate  iterate until some suitable convergence criterion is 
satisfied. 

,β1  and

 

If  is the final value that the above algorithm produces and if the model assumptions 
are correct, then we can show that asymptotically 
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The fitted value of the logistic regression model is often written as  
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S15-3.3.  Interpreting the Parameters in a Logistic Regression Model 
It is relatively easy to interpret the parameters in a logistic regression model.  Consider 
first the case where the linear predictor has only a single predictor, so that the fitted value 
of the model at a particular value of x, say xi, is 

( )η β βx xi i= +0 1  

The fitted value at xi + 1 is  

( ) ( )η β βx xi i+ = + +1 10 1  

and the difference in the two predicted values is  

( ) ( )η ηx xi i+ − =1 1β  

Now ( )η xi is just the log-odds when the regressor variable is equal to xi, and ( )η xi +1 is 
just the log-odds when the regressor is equal to xi +1.  Therefore, the difference in the two 
fitted values is  
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If we take antilogs, we obtain the odds ratio 
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The odds ratio can be interpreted as the estimated increase in the probability of success 
associated with a one-unit change in the value of the predictor variable.  In general, the 
estimated increase in the odds ratio associated with a change of d units in the predictor 
variable is .   exp( )dβ1

The interpretation of the regression coefficients in the multiple logistic regression model 
is similar to that for the case where the linear predictor contains only one regressor.  That 
is, the quantity ex  is the odds ratio for regressor xp( )β j j, assuming that all other 
predictor variables are constant. 

 

S15-3.4.  Hypothesis Tests on Model Parameters 
Hypothesis testing in the GLM is based on the general method of likelihood ratio tests.  
It is a large-sample procedure, so the test procedures rely on asymptotic theory.  The 
likelihood ratio approach leads to a statistic called deviance. 

Model Deviance 
The deviance of a model compares the log-likelihood of the fitted model of interest to the 
log-likelihood of a saturated model; that is, a model that has exactly n parameters and 
which fits the sample data perfectly.  For the logistic regression model, this means that 
the probabilities π i are completely unrestricted, so setting π i yi= (recall that yi = 0 or 1) 
would maximize the likelihood.  It can be shown that this results in a maximum value of 
the likelihood function for the saturated model of unity, so the maximum value of the log- 
likelihood function is zero.   

Now consider the log- likelihood function for the fitted logistic regression model.  When 
the maximum likelihood estimates  are used in the log- likelihood function, it attains its 
maximum value, which is 
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The value of the log-likelihood function for the fitted model can never exceed the value 
of the log-likelihood function for the saturated model, because the fitted model contains 
fewer parameters.  The deviance compares the log-likelihood of the saturated model with 
the log-likelihood of the fitted model. Specifically, model deviance is defined as 

λ β β

β
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                                   (3) 

where  denotes the log of the likelihood function.  Now if the logistic regression model 
is the correct regression function and the sample size n is large, the model deviance has 
an approximate chi-square distribution with n – p degrees of freedom.  Large values of 



the model deviance would indicate that the model is not correct, while a small value of 
model deviance implies that the fitted model (which has fewer parameters than the 
saturated model) fits the data almost as well as the saturated model.  The formal test 
criteria would be as follows: 

if   conclude that the fitted model is adequate

if   conclude that the fitted model is not adequate
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The deviance is related to a very familiar quantity.  If we consider the standard normal-
theory linear regression model, the deviance turns out to be the error or residual sum of 
squares divided by the error variance . σ 2

Testing Hypotheses on Subsets of Parameters using Deviance
We can also use the deviance to test hypotheses on subsets of the model parameters, just 
as we used the difference in regression (or error) sums of squares to test hypotheses in the 
normal-error linear regression model case.  Recall that the model can be written as  
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where the full model has p parameters, β1  contains p – r of these parameters, β 2 contains 
r of these parameters, and the columns of the matrices X1 and X2 contain the variables 
associated with these parameters.  Suppose that we wish to test the hypotheses 
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Therefore, the reduced model is  

η β= X1 1  

Now fit the reduced model, and let λ β( )1  be the deviance for the reduced model.  The 
deviance for the reduced model will always be larger than the deviance for the full model, 
because the reduced model contains fewer parameters.  However, if the deviance for the 
reduced model is not much larger than the deviance for the full model, it indicates that 
the reduced model is about as good a fit as the full model, so it is likely that the 
parameters in β 2 are equal to zero.  That is, we cannot reject the null hypothesis above.  
However, if the difference in deviance is large, at least one of the parameters inβ 2 is 
likely not zero, and we should reject the null hypothesis.  Formally, the difference in 
deviance is  

λ β β λ β λ β( | ) ( ) ( )2 1 1= −  

and this quantity has n p r n p r− − − − =( ) ( )  degrees of freedom.  If the null hypothesis 
is true and if n is large, the difference in deviance has a chi-square distribution with r 
degrees of freedom.  Therefore, the test statistic and decision criteria are 



if   reject the null hypothesis

if   do not reject the null hypothesis

λ β β χ

λ β β χ
α

α

( | )

( | )
,

,

2 1
2

2 1
2

≥

<
r

r

 

Sometimes the difference in devianceλ β β( | )2 1  is called the partial deviance.  It is a 

likelihood ratio test.  To see this, let  be the maximum value of the likelihood 

function for the full model, and  be the maximum value of the likelihood function 
for the reduced model. The likelihood ratio is  
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The test statistic for the likelihood ratio test is equal to minus two times the log-
likelihood ratio, or 
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However, this is exactly the same as the difference in deviance.  To see this, substitute 
from the definition of the deviance from equation (3) and note that the log-likelihoods for 
the saturated model cancel out. 

Tests on Individual Model Coefficients 
Tests on individual model coefficients, such as  
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can be conducted by using the difference in deviance method described above.  There is 
another approach, also based on the theory of maximum likelihood estimators.  For large 
samples, the distribution of a maximum likelihood estimator is approximately normal 
with little or no bias.  Furthermore, the variances and covariances of a set of maximum 
likelihood estimators can be found from the second partial derivatives of the log-
likelihood function with respect to the model parameters, evaluated at the maximum 
likelihood estimates.  Then a t-like statistic can be constructed to test the above 
hypothesis.  This is sometimes referred to as Wald inference.   

Let G denote the p p× matrix of second partial derivatives of the log-likelihood function; 
that is  
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G is called the Hessian matrix.  If the elements of the Hessian are evaluated at the 
maximum likelihood estimators , the large-sample approximate covariance matrix 
of the regression coefficients is  

β β=
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The square roots of the diagonal elements of this matrix are the large-sample standard 
errors of the regression coefficients, so the test statistic for the null hypothesis in 
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The reference distribution for this statistic is the standard normal distribution.  Some 
computer packages square the Z0 statistic and compare it to a chi-square distribution with 
one degree of freedom.  It is also straightforward to use Wald inference to construct 
confidence intervals on individual regression coefficients. 

 

S15-3.5.  Poisson Regression 
We now consider another regression modeling scenario where the response variable of 
interest is not normally distributed.   In this situation the response variable represents a 
count of some relatively rare event, such as defects in a unit of manufactured product, 
errors or “bugs” in software, or a count of particulate matter or other pollutants in the 
environment.  The analyst is interested in modeling the relationship between the observed 
counts and potentially useful regressor or predictor variables.  For example, an engineer 
could be interested in modeling the relationship between the observed number of defects 
in a unit of product and production conditions when the unit was actually manufactured. 

We assume that the response variable yi is a count, such that the observation .  
A reasonable probability model for count data is often the Poisson distribution 
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where the parameter µ > 0 .  The Poison is another example of a probability distribution 
where the mean and variance are related.  In fact, for the Poisson distribution it is 
straightforward to show that  

E y V y( ) ( )= =µ µ and  

That is, both the mean and variance of the Poisson distribution are equal to the parameter 
µ.  

The Poisson regression model can be written as  

y E y ii i i n= + =( ) , , , ,ε 1 2  

We assume that the expected value of the observed response can be written as  
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and that there is a function g that relates the mean of the response to a linear predictor, 
say 
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The function g is usually called the link function.  The relationship between the mean 
and the linear predictor is  

µ βi ig= ′−1( )x  

There are several link functions that are commonly used with the Poisson distribution.  
One of these is the identity link 

g i i i( )µ µ β= = ′x  

When this link is used, E yi i i( ) = = ′µ βx  since .  Another popular 
link function for the Poisson distribution is the log link 
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For the log link, the relationship between the mean of the response variable and the linear 
predictor is  
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The log link is particularly attractive for Poisson regression because it ensures that all of 
the predicted values of the response variable will be nonnegative. 

The method of maximum likelihood is used to estimate the parameters in Poisson 
regression.  The development follows closely the approach used for logistic regression.  
If we have a random sample of n observations on the response y and the predictors x, then 
the likelihood function is  
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where .  Once the link function is specified, we maximize the log-
likelihood  

µ i g= ′−1(x βi )
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Iteratively reweighted least squares can be used to find the maximum likelihood estimates 
of the parameters in Poisson regression, following an approach similar to that used for 
logistic regression. Once the parameter estimates  are obtained, the fitted Poisson 
regression model is  
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For example, if the identity link is used, the prediction equation becomes 
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and if the log link is specified, then 
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Inference on the model and its parameters follows exactly the same approach as used for 
logistic regression.  That is, model deviance is an overall measure of goodness of fit, and 
tests on subsets of model parameters can be performed using the difference in deviance 
between the full and reduced models.  These are likelihood ratio tests.  Wald inference, 
based on large-sample properties of maximum likelihood estimators, can be used to test 
hypotheses and construct confidence intervals on individual model parameters. 

 

S15-3.6.  The Generalized Linear Model 
All of the regression models that we have considered in this section belong to a family of 
regression models called the generalized linear model, or the GLM.  The GLM is 
actually a unifying approach to regression and experimental design models, uniting the 
usual normal-theory linear regression models and nonlinear models such as logistic and 
Poisson regression.   

A key assumption in the GLM is that the response variable distribution is a member of 
the exponential family of distributions, which includes the normal, binomial, Poisson, 
inverse normal, exponential and gamma distributions.  Distributions that are members of 
the exponential family have the general form 
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where φ θ is a scale parameter and i is called the natural location parameter.  For members 
of the exponential family,  
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where var(µ) denotes the dependence of the variance of the response on its mean.  As a 
result, we have 
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It is easy to show that the normal, binomial and Poisson distributions are members of the 
exponential family. 

The Normal Distribution 
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Thus for the normal distribution, we have 
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The Binomial Distribution 
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Therefore, for the binomial distribution,  
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We note that 
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We recognize this as the mean of the binomial distribution.  Also,  
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This last expression is just the variance of the binomial distribution. 



The Poisson Distribution 
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y y
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Therefore, for the Poisson distribution, we have 
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Now 
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However, since 

d
d i

i
λ
θ

θ λ= =exp( )  

the mean of the Poisson distribution is  

E y( ) = ⋅ =1 λ λ  

The variance of the Poisson distribution is 

V y dE y
d i

( ) ( )
= =

θ
λ  

S15-3.7.  Link Functions and Linear Predictors 
The basic idea of a GLM is to develop a linear model for an appropriate function of the 
expected value of the response variable.  Let ηi be the linear predictor defined by 

η µ βi i ig E y g i= = = ′[ ( )] ( ) x  

Note that the expected response is just 

E y g gi i( ) ( ) ( )= = ′− −1 1η βxi  

We call the function g the link function.  Recall that we introduced the concept of a link 
function in our description of Poisson regression in Section S15-3.5 above.  There are 
many possible choices of the link function, but if we choose  

η θi i=  

we say that ηi is the canonical link.  Table 1 shows the canonical links for the most 
common choices of distributions employed with the GLM. 

 



Table 1.  Canonical Links for the Generalized Linear Model 

Distribution Canonical Link 

Normal η µi i=  (identity link) 

Binomial 
η π

πi
i

i

=
−
F
HG
I
KJln

1
  (logistic link) 

Poisson η λi = ln( )   (log link) 

Exponential 
η

λi
i

=
1   (reciprocal link) 

Gamma 
η

λi
i

=
1   (reciprocal link) 

 

There are other link functions that could be used with a GLM, including: 

1. The probit link,  

η i =
−Φ 1[ ( )]E yi  

where Φ represents the cumulative standard normal distribution function. 

2. The complimentary log-log link,  

ηi iE y= −ln{ln[ ( )]}1  

3. The power family link,  

η
λ
λ

λ

i
i

i

E y
E y

=
≠
=

RST
( ) ,

ln[ ( )],
      

  
0
0

 

A very fundamental idea is that there are two components to a GLM; the response 
variable distribution, and the link function.  We can view the selection of the link 
function in a vein similar to the choice of a transformation on the response.   However, 
unlike a transformation, the link function takes advantage of the natural distribution of 
the response.  Just as not using an appropriate transformation can result in problems with 
a fitted linear model, improper choices of the link function can also result in significant 
problems with a GLM. 

S15-3.8.  Parameter Estimation in the GLM 
The method of maximum likelihood is the theoretical basis for parameter estimation in 
the GLM.  However, the actual implementation of maximum likelihood results in an 
algorithm based on iteratively reweighted least squares (IRLS).  This is exactly what we 
saw previously for the special case of logistic regression. 

Consider the method of maximum likelihood applied to the GLM, and suppose we use 
the canonical link.  The log-likelihood function is  



( , ) [ ( )] / ( ) ( , )y β θ θ φ= − +
=
∑ y b a h yi i i i
i

n

1

φ  

For the canonical link, we have η µ βi i ig E y g i= = = ′[ ( )] ( ) x ; therefore,  
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Consequently, we can find the maximum likelihood estimates of the parameters by 
solving the system of equations 

1 0
1a

yi i i
i

n

( )
( )

φ
µ− =

=
∑ x  

In most cases, a( )φ is a constant, so these equations become: 

( )yi i i
i

n

− =
=
∑ µ x

1

0  

This is actually a system of p = k + 1 equations, one for each model parameter.  In matrix 
form, these equations are 

′ − =X y 0( )µ  

where ′ =µ µ µ µ[ , , ,1 2 p ] .  These are called the maximum likelihood score equations, 
and they are just the same equations that we saw previously in the case of logistic 
regression, where ′ =µ π π π[ , ,n n nn n1 1 2 2 ] . 

To solve the score equations, we can use IRLS, just as we did in the case of logistic 
regression.  We start by finding a first-order Taylor series approximation in the 
neighborhood of the solution 

y d
di i

i

i
i i− ≈ −µ µ

η
η η( )*  

Now for a canonical linkη θi = i , and  

y d
di i

i

i
i i− ≈ −µ µ

θ
η η( * )                                                 (4) 

Therefore, we have 

η η µ θ
µi i i i

i

i

y d
d

* ( )− ≈ −  



This expression provides a basis for approximating the variance of ηi . 

In maximum likelihood estimation, we replace ηi by its estimate, ηi .  Then we have 
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i
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Since are constants,  ηi
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But 

d
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i i

θ
µ µ

=
1

var( )
 

and V y ai i( ) var( ) ( ).= µ φ  Consequently,   
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i
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For convenience, define , so we have var( ) [var( )]η µi = −1
i

V ai i( ) var( ) ( ).η η φ≈  

Substituting this into Equation (4) above results in  

yi i
i

i− ≈ −µ
η

η η1
var( )

( * )                                                 (5) 

If we let V be an n  diagonal matrix whose diagonal elements are the n× var( )ηi , then in 
matrix form, Equation (5) becomes 

y V− ≈ −−µ η1( )* η  

We may then rewrite the score equations as follows: 

′ − =

′ − =
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−

−

X y 0
X V 0

X V X 0
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Thus, the maximum likelihood estimate of β  is 

( ) *β η= ′ ′− − −X V X X V1 1 1  



Now just as we saw in the logistic regression situation, we do not know , so we pursue 
an iterative scheme based on  

η*

z y d
di i i i

i

i

= + −( )η µ η
µ

 

Using iteratively reweighted least squares with the Newton-Raphson method, the solution 
is found from 

( )β = ′ ′− − −X V X X V z1 1 1  

Asymptotically, the random component of z comes from the observations yi.  The 
diagonal elements of the matrix V are the variances of the zi’s, apart from a( )φ .   

As an example, consider the logistic regression case: 
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Thus, for logistic regression, the diagonal elements of the matrix V are  
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which is exactly what we obtained previously. 

Therefore, IRLS based on the Newton-Raphson method can be described as follows: 

1. Use ordinary least squares to obtain an initial estimate of ; β β,  say 0

2. Use ; β µ0 to estimate  and V



3. Let η β ; 0 0= X

4. Base z1 on η0 ; 

5. Obtain a new estimate  iterate until some suitable convergence criterion is 
satisfied. 

,β1  and

 

If  is the final value that the above algorithm produces and if the model assumptions, 
including the choice of the link function, are correct, then we can show that 
asymptotically 

β

E V( ) (β β β φ= ′
−

   and    ) = a( ) -1X V Xc h 1
 

If we don’t use the canonical link, then η θi i≠ , and the appropriate derivative of the log-
likelihood is  
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Putting this all together yields 
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Once again, we can use a Taylor series expansion to obtain 
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i
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η
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Following an argument similar to that employed before,  

V d
d

V yi
i

i
i( ) (η θ

µ
≈ )
L
NM
O
QP

2

 

and eventually we can show that 



∂
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Equating this last expression to zero and writing it in matrix form, we obtain 

′ − =−X V 01( )*η η  

or, since η β= X ,  

′ − =−X V X 01( )*η β  

The Newton-Raphson solution is based on  

( )β = ′ ′− − −X V X X V z1 1 1  

where 

z y d
di i i i

i

i

= + −( )η µ η
µ

 

Just as in the case of the canonical link, the matrix V is a diagonal matrix formed from 
the variances of the estimated linear predictors, apart from a( )φ .   

Some important observations about the GLM: 

1. Typically, when experimenters and data analysts use a transformation, they use 
ordinary least squares or OLS to actually fit the model in the transformed scale. 

2. In a GLM, we recognize that the variance of the response is not constant, and we use 
weighted least squares as the basis of parameter estimation. 

3. This suggests that a GLM should outperform standard analyses using transformations 
when a problem remains with constant variance after taking the transformation. 

4. All of the inference we described previously on logistic regression carries over 
directly to the GLM.  That is, model deviance can be used to test for overall model fit, 
and the difference in deviance between a full and a reduced model can be used to test 
hypotheses about subsets of parameters in the model.  Wald inference can be applied 
to test hypotheses and construct confidence intervals about individual model 
parameters. 

 

S15-3.9.  Prediction and Estimation with the GLM 
For any generalized linear model, the estimate of the mean response at some point of 
interest, say x0, is  

( )y g0 0
1

0= = ′−µ βx  

where g is the link function and it is understood that x0 may be expanded to “model 
form” if necessary to accommodate terms such as interactions that may have been 
included in the linear predictor.  An approximate confidence interval on the mean 
response at this point can be computed as follows.  The variance of the linear predictor 



′ ′x x0 0β  is  Σx0 , where is the estimated of the covariance matrix of .  The 100(1-Σ β α )% 
confidence interval on the true mean response at the point x0 is 

L U≤ ≤µ( )x0  

where 

L g Z U g Z= ′ − ′ = ′ + ′− −1
0 2 0 0

1
0 2 0( ) ( )/ /x x x x xβ βα αΣ Σ  and  0x

i

 

This method is used to compute the confidence intervals on the mean response reported 
in SAS PROC GENMOD.  This method for finding the confidence intervals usually 
works well in practice, because  is a maximum likelihood estimate, and therefore any 

function of  is also a maximum likelihood estimate.  The above procedure simply 
constructs a confidence interval in the space defined by the linear predictor and then 
transforms that interval back to the original metric. 

β

β

It is also possible to use Wald inference to derive approximate confidence intervals on the 
mean response.  Refer to Myers and Montgomery (1997) for the details. 

 

S15-3.10.  Residual Analysis in the GLM 
Just as in any model-fitting procedure, analysis of residuals is important in fitting the 
GLM.  Residuals can provide guidance concerning the overall adequacy of the model, 
assist in verifying assumptions, and give an indication concerning the appropriateness of 
the selected link function. 

The ordinary or raw residuals from the GLM are just the differences between the 
observations and the fitted values,  

e y y
y

i i

i i

= −

= − µ
 

It is generally recommended that residual analysis in the GLM be performed using 
deviance residuals.  The ith deviance residual is defined as the square root of the 
contribution of the ith observation to the deviance, multiplied by the sign of the raw 
residual, or 

r d sign y yDi i i i= −( )  

where di is the contribution of the ith observation to the deviance.  For the case of logistic 
regression (a GLM with binomial errors and the logit link), we can show that  
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Note that as the fit of the model to the data becomes better, we would find that 
/π i iy n≅ i , and the deviance residuals will become smaller, close to zero.  For Poisson 

regression with a log link, we have 

d y y
e

y e i ni i
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i
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′ln ( ), , , ,
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x
β

β 1 2  

Once again, notice that as the observed value of the response yi and the predicted value 
 become closer to each other, the deviance residuals approach zero.   y ei

i= ′x β

Generally, deviance residuals behave much like ordinary residuals do in a standard 
normal theory linear regression model. Thus plotting the deviance residuals on a normal 
probability scale and versus fitted values are logical diagnostics.  When plotting deviance 
residuals versus fitted values, it is customary to transform the fitted values to a constant 
information scale.  Thus,  

1. for normal responses, use  yi

2. for binomial responses, use 2 1sin− π i  

3. for Poisson responses, use 2 yi  

4. for gamma responses, use  2 ln( )yi

 

S15-4.  Unbalanced Data in a Factorial Design 
In this chapter we have discussed several approximate methods for analyzing a factorial 
experiment with unbalanced data.  The approximate methods are often quite satisfactory, 
but as we observed, exact analysis procedure are available.  These exact analyses often 
utilize the connection between ANOVA and regression.  We have discussed this 
connection previously, and the reader may find it helpful to review Chapters 3 and 5, as 
well as the Supplemental Text Material for these chapters.  

We will use a modified version of the battery life experiment of Example 5-1 to illustrate 
the analysis of data from an unbalanced factorial.  Recall that there are three material 
types of interest (factor A) and three temperatures (factor B), and the response variable of 
interest is battery life.  Table 2 presents the modified data.  Notice that we have 
eliminated certain observations from the original experimental results; the smallest 
observed responses for material type 1 at each of the three temperatures, and one 
(randomly selected) observation from each of two other cells.   

S15-4.1.  The Regression Model Approach 
One approach to the analysis simply formulates the ANOVA model as a regression 
model and uses the general regression significance test (or the “extra sum of squares 
method’ to perform the analysis.  This approach is easy to apply when the unbalanced 
design has all cells filled; that is, there is at least one observation in each cell. 

 



 

Table 2. Modified Data from Example 5-1  

Temperature Material 
types 15 70 125 

1 130,155, 
180 

40,80,75 70,82,58 

2 150,188, 
159,126 

136,122,   
106,115 

25,70,45 

3 138,110,  
168,160 

120,150, 
139 

96,104,  
82,60 

 

 

Recall that the regression model formulation of an ANOVA model uses indicator 
variables. We will define the indicator variables for the design factors material types and 
temperature as follows: 

 

Material type X1 X2

1 0 0 

2 1 0 

3 0 1 

  

 

Temperature X3 X4

15 0 0 

70 1 0 

125 0 1 

 

The regression model is  

y x x x x
x x x x x x x x

ijk ijk ijk ijk ijk

ijk ijk ijk ijk ijk ijk ijk ijk ijk

= + + + +

+ + + + +

β β β β β

β β β β
0 1 1 2 2 3 3 4 4

5 1 3 6 1 4 7 2 3 8 2 4 ε

n

                (6) 

where i, j =1,2,3 and the number of replicates k ij= 1 2, , , , where nij is the number of 
replicates in the ijth cell. Notice that in our modified version of the battery life data, we 
have  n n n n n nij11 12 13 23 32 3 4= = = = = =,  and all other .   



In this regression model, the terms β β1 1 2x xijk ijk 2+  represent the main effect of factor A 
(material type), and the terms β β3 3 4 4x xijk ijk+  represent the main effect of temperature.  
Each of these two groups of terms contains two regression coefficients, giving two 
degrees of freedom.  The terms β β β β5 1 3 6 1 4 7 2 3 8 2 4x x x x x x x xijk ijk ijk ijk ijk ijk ijk ijk+ + +  represent 
the AB interaction with four degrees of freedom.  Notice that there are four regression 
coefficients in this term. 

Table 3 presents the data from this modified experiment in regression model form.  In 
Table 3, we have shown the indicator variables for each of the 31 trials of this 
experiment. 

Table 3. Modified Data from Example 5-1 in Regression Model Form 

Y X1 X2 X3 X4 X5 X6 X7 X8

130 0 0 0 0 0 0 0 0 
150 1 0 0 0 0 0 0 0 
136 1 0 1 0 1 0 0 0 
25 1 0 0 1 0 1 0 0 
138 0 1 0 0 0 0 0 0 
96 0 1 0 1 0 0 0 1 
155 0 0 0 0 0 0 0 0 
40 0 0 1 0 0 0 0 0 
70 0 0 0 1 0 0 0 0 
188 1 0 0 0 0 0 0 0 
122 1 0 1 0 1 0 0 0 
70 1 0 0 1 0 1 0 0 
110 0 1 0 0 0 0 0 0 
120 0 1 1 0 0 0 1 0 
104 0 1 0 1 0 0 0 1 
80 0 0 1 0 0 0 0 0 
82 0 0 0 1 0 0 0 0 
159 1 0 0 0 0 0 0 0 
106 1 0 1 0 1 0 0 0 
58 0 0 0 1 0 0 0 0 
168 0 1 0 0 0 0 0 0 
150 0 1 1 0 0 0 1 0 
82 0 1 0 1 0 0 0 1 
180 0 0 0 0 0 0 0 0 
75 0 0 1 0 0 0 0 0 
126 1 0 0 0 0 0 0 0 
115 1 0 1 0 1 0 0 0 
45 1 0 0 1 0 1 0 0 
160 0 1 0 0 0 0 0 0 
139 0 1 1 0 0 0 1 0 
60 0 1 0 1 0 0 0 1 

 

 



We will use this data to fit the regression model in Equation (6).  We will find it 
convenient to refer to this model as the full model.  The Minitab output is: 

 
Regression Analysis 
The regression equation is 
Y = 155 + 0.7 X1 - 11.0 X2 - 90.0 X3 - 85.0 X4 + 54.0 X5 - 24.1 X6  
    + 82.3 X7 + 26.5 X8 
 
Predictor        Coef       StDev          T        P 
Constant       155.00       12.03      12.88    0.000 
X1               0.75       15.92       0.05    0.963 
X2             -11.00       15.92      -0.69    0.497 
X3             -90.00       17.01      -5.29    0.000 
X4             -85.00       17.01      -5.00    0.000 
X5              54.00       22.51       2.40    0.025 
X6             -24.08       23.30      -1.03    0.313 
X7              82.33       23.30       3.53    0.002 
X8              26.50       22.51       1.18    0.252 
 
S = 20.84       R-Sq = 83.1%     R-Sq(adj) = 76.9% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         8     46814.0      5851.8     13.48    0.000 
Residual Error    22      9553.8       434.3 
Total             30     56367.9 
 
 
 
We begin by testing the hypotheses associated with interaction.  Specifically, in terms of 
the regression model in Equation (6), we wish to test 

H
H j

0 5 6 7 8

1

0
0 5 6 7

:
: , j 8, , ,
β β β β

β
= = = =

≠ = at least one 
                                         (7)        

We may test this hypothesis by using the general regression significance test or “extra 
sum of squares” method.  If the null hypothesis of no-interaction is true, then the reduced 
model is 

y x x x xijk ijk ijk ijk ijk ijk= + + + + +β β β β β ε0 1 1 2 2 3 3 4 4                              (8) 

Using Minitab to fit the reduced model produces the following: 

Regression Analysis 
The regression equation is 
Y = 138 + 12.5 X1 + 23.9 X2 - 41.9 X3 - 82.1 X4 
 
Predictor        Coef       StDev          T        P 
Constant       138.02       11.02      12.53    0.000 
X1              12.53       11.89       1.05    0.302 
X2              23.92       11.89       2.01    0.055 
X3             -41.91       11.56      -3.62    0.001 
X4             -82.14       11.56      -7.10    0.000 



 

S = 26.43       R-Sq = 67.8%     R-Sq(adj) = 62.8% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         4     38212.5      9553.1     13.68    0.000 
Residual Error    26     18155.3       698.3 
Total             30     56367.9 

 

Now the regression or model sum of squares for the full model, which includes the 
interaction terms, is ( ) 46,814.0ModelSS FM =  and for the reduced model [Equation (8)] it 
is .  Therefore, the increase in the model sum of squares due to 
the interaction terms (or the extra sum of squares due to interaction) is  

( ) 38, 212.5ModelSS RM =

(Interaction|main effects) ( ) ( )
46,814.0 38,212.5
8601.5

Model Model ModelSS SS FM SS RM= −
= −
=

 

Since there are 4 degrees of freedom for interaction, the appropriate test statistic for the 
no-interaction hypotheses in Equation (7) is 

0
(Interaction|main effects) / 4

( )
8601.5 / 4

434.3
4.95

Model

E

SSF
MS FM

=

=

=

 

The P-value for this statistic is approximately 0.0045, so there is evidence of interaction. 

Now suppose that we wish to test for a material type effect.  In terms of the regression 
model in Equation (6), the hypotheses are  

H
H

0 1 2

1 1 2

0
0

:
:
β β
β β

= =
≠ and / or 

                                                   (9) 

and the reduced model is  

y x x
x x x x x x x x

ijk ijk ijk

ijk ijk ijk ijk ijk ijk ijk ijk ijk

= + +

+ + + + +

β β β

β β β β
0 3 3 4 4

5 1 3 6 1 4 7 2 3 8 2 4 ε
                       (10)         

 

Fitting this model produces the following: 

 



Regression Analysis 
The regression equation is 
Y = 151 - 86.3 X3 - 81.3 X4 + 54.8 X5 - 23.3 X6 + 71.3 X7 + 15.5 X8 
 
Predictor        Coef       StDev          T        P 
Constant      151.273       6.120      24.72    0.000 
X3             -86.27       13.22      -6.53    0.000 
X4             -81.27       13.22      -6.15    0.000 
X5              54.75       15.50       3.53    0.002 
X6             -23.33       16.57      -1.41    0.172 
X7              71.33       16.57       4.30    0.000 
X8              15.50       15.50       1.00    0.327 
 
S = 20.30       R-Sq = 82.5%     R-Sq(adj) = 78.1% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         6     46480.6      7746.8     18.80    0.000 
Residual Error    24      9887.3       412.0 
Total             30     56367.9 
 
Therefore, the sum of squares for testing the material types main effect is 

(Material types) ( ) ( )
46,814.0 46, 480.6
333.4

Model Model ModelSS SS FM SS RM= −
= −
=

 

The F-statistic is  

0
(Material types) / 2

( )
333.4 / 2

434.3
0.38

Model

E

SSF
MS FM

=

=

=

 

which is not significant.  The hypotheses for the main effect of temperature is  

H
H

0 3 4

1 3 4

0
0

:
:
β β
β β

= =
≠ and / or 

                                                   (11) 

and the reduced model is  

y x x
x x x x x x x x

ijk ijk ijk

ijk ijk ijk ijk ijk ijk ijk ijk ijk

= + +

+ + + + +

β β β

β β β β
0 1 1 2 2

5 1 3 6 1 4 7 2 3 8 2 4 ε
                       (12)         

 

Fitting this model produces: 

 

 



Regression Analysis 
The regression equation is 
Y = 96.7 + 59.1 X1 + 47.3 X2 - 36.0 X5 - 109 X6 - 7.7 X7 - 58.5 X8 
 
Predictor        Coef       StDev          T        P 
Constant        96.67       10.74       9.00    0.000 
X1              59.08       19.36       3.05    0.005 
X2              47.33       19.36       2.45    0.022 
X5             -36.00       22.78      -1.58    0.127 
X6            -109.08       24.60      -4.43    0.000 
X7              -7.67       24.60      -0.31    0.758 
X8             -58.50       22.78      -2.57    0.017 
 
S = 32.21       R-Sq = 55.8%     R-Sq(adj) = 44.8% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         6       31464        5244      5.05    0.002 
Residual Error    24       24904        1038 
Total             30       56368 
 
 
Therefore, the sum of squares for testing the temperature main effect is 

(Temperature) ( ) ( )
46,814.0 31, 464.0
15,350.0

Model Model ModelSS SS FM SS RM= −
= −
=

 

The F-statistic is  

0
(Temperature) / 2

( )
15,350.0 / 2

434.3
17.67

Model

E

SSF
MS FM

=

=

=

 

The P-value for this statistic is less than 0.0001.  Therefore, we would conclude that the 
main effect of temperature has an effect on battery life.  Since both the main effect of 
temperature and the materials type-temperature interaction are significant, we would 
likely reach the same conclusions for this data that we did from the original balanced-data 
factorial in the textbook.  

S15-4.2.  The Type 3 Analysis 
Another approach to the analysis of an unbalanced factorial is to directly employ the 
Type 3 analysis procedure discussed previously.  Many computer software packages will 
directly perform the Type 3 analysis, calculating Type 3 sums of squares or “adjusted” 
sums of squares for each model effect.  The Minitab General Linear Model procedure 
will directly perform the Type 3 analysis.  Remember that this procedure is only 
appropriate when there are no empty cells (i.e., ). n iij > 0,  for all , j



Output from the Minitab General Linear Model routine for the unbalanced version of 
Example 5-1 in Table 3 follows: 

General Linear Model 
Factor     Type    Levels Values 

Mat       fixed      3           1 2 3 

Temp    fixed      3      15  70 125 

 

Analysis of Variance for Life, using Adjusted SS for Tests 

 

Source     DF     Seq SS        Adj SS     Adj MS         F          P 

Mat                2     2910.4     3202.4     1601.2       3.69      0.042 

Temp             2    35302.1    36588.7    18294.3   42.13     0.000 

Mat*Temp     4     8601.5     8601.5     2150.4       4.95      0.005 

Error             22     9553.8     9553.8      434.3 

Total             30    56367.9 

 

The “Adjusted” sums of squares, shown in boldface type in the above computer output, 
are the Type 3 sums of squares.  The F-tests are performed using the Type 3 sums of 
squares in the numerator.  The hypotheses that are being tested by a type 3 sum of 
squares is essentially equivalent to the hypothesis that would be tested for that effect if 
the data were balanced.  Notice that the error or residual sum of squares and the 
interaction sum of squares in the Type 3 analysis are identical to the corresponding sums 
of squares generated in the regression-model formulation discussed above. 

When the experiment is unbalanced, but there is at least one observation in each cell, the 
Type 3 analysis is generally considered to be the correct or “standard” analysis.  A good 
reference is Freund, Littell and Spector (1988).  Various SAS/STAT users’ guides and 
manuals are also helpful.    

S15-4.3.  Type 1, Type 2, Type 3 and Type 4 Sums of Squares 
At this point, a short digression on the various types of sums of squares reported by some 
software packages and their uses is warranted.  Many software systems report Type 1 and 
Type 3 sums of squares; the SAS software system reports four types, called (originally 
enough!!) Types 1, 2, 3 and 4.  For an excellent detailed discussion of this topic, see the 
technical report by Driscoll and Borror (1999). 

As noted previously, Type 1 sums of squares refer to a sequential or “effects-added-in- 
order” decomposition of the overall regression or model sum of squares.  In sequencing 
the factors, interactions should be entered only after all of the corresponding main effects, 
and nested factors should be entered in the order of their nesting. 



Type 2 sums of squares reflect the contribution of a particular effect to the model after all 
other effects have been added, except those that contain the particular effect in question.  
For example, an interaction contains the corresponding main effects.  For unbalanced 
data, the hypotheses tested by Type 2 sums of squares contain, in addition to the 
parameters of interest, the cell counts (i.e., the nij).  These are not the same hypotheses 
that would be tested by the Type 2 sums of squares if the data were balanced, and so most 
analysts have concluded that other definitions or types of sums of squares are necessary.  
In a regression model (i.e., one that is not overspecified, as in the case of an ANOVA 
model), Type 2 sums of squares are perfectly satisfactory, so many regression programs 
(such as SAS PROC REG) report Type 1 and Type 2 sums of squares. 

Type 3 and Type 4 sums of squares are often called partial sums of squares.  For balanced 
experimental design data, Types 1, 2, 3, and 4 sums of squares are identical.  However, in 
unbalanced data, differences can occur, and it is to this topic that we now turn. 

To make the discussion specific, we consider the two-factor fixed-effects factorial model.  
For proportional data, we will find that for the main effects the relationships between the 
various types of sums of squares is Type 1 = Type 2, and Type 3 = Type 4, while for the 
interaction it is Type 1 = Type 2 = Type 3 = Type 4.  Thus the choice is between Types 1 
and 4.  If the cell sample sizes are representative of the population from which the 
treatments were selected, then an analysis based on the Type 1 sums of squares is 
appropriate.  This, in effect, makes the factor levels have important that is proportional to 
the sample sizes.  If this is not the case, then the Type 3 analysis is appropriate. 

With unbalanced data having at least one observation in each cell, we find that for the 
main effects that Types 1 and 2 will generally not be the same for factor A, but Type 1 = 
Type 2 for factor B.  This is a consequence of the order of specification in the model.  For 
both main effects, Type 3 = Type 4.  For the interaction, Type 1 = Type 2 = Type 3 = 
Type 4.  Generally, we prefer the Type 3 sums of squares for hypothesis testing in these 
cases. 

If there are empty cells, then none of the four types will be equal for factor A, while Type 
1 = Type 2 for factor B.  For the interaction, Type 1 = Type 2 = Type 3 = Type 4.  In 
general, the Type 4 sums of squares should be used for hypothesis testing in this case, but 
it is not always obvious exactly what hypothesis is being tested.  When cells are empty, 
certain model parameters will not exist and this will have a significant impact on which 
functions of the model parameters are estimable.  Recall that only estimable functions can 
be used to form null hypotheses.  Thus, when we have missing cells the exact nature of 
the hypotheses being tested is actually a function of which cells are missing.  There is a 
process in SAS PROC GLM where the estimable functions can be determined, and the 
specific form of the null hypothesis involving fixed effects determined for any of the four 
types of sum of squares.   The procedure is described in Driscoll and Borror (1999). 

 

S15-4.4.  Analysis of Unbalanced Data using the Means Model 
Another approach to the analysis of unbalanced data that often proves very useful is to 
abandon the familiar effects model, say 
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and employ instead the means model 
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where of course µ µ τ β τβij i j ij= + + + ( ) . This is a particularly useful approach when 
there are empty cells; that is, nij = 0 for some combinations of i and j.  When the ijth cell 
is empty, this means that the treatment combination τ βi  and j is not observed.  
Sometimes this happens by design and sometimes it is the result of chance.  The analysis 
employing the means model is often quite simple, since the means model can be thought 
of as a single-factor model with ab – m treatments, where m is the number of empty 
cells. That is, each factor level or treatment in this one-way model is actually a treatment 
combination from the original factorial. 

To illustrate, consider the experiment shown in Table 4.  This is a further variation of the 
battery life experiment (first introduced in text Example 5-1), but now in addition to the 
missing observations in cells (1,1), (1,2), (1,3), (2,3) and (3,2), the (3,3) cell is empty.  In 
effect, the third material was never exposed to the highest temperature, so we have no 
information on those treatment combinations. 

 

Table 4. Modified Data from Example 5-1 with an Empty Cell  

Temperature Material 
types 15 70 125 

1 130,155, 
180 

40,80,75 70,82,58 

2 150,188, 
159,126 

136,122,   
106,115 

25,70,45 

3 138,110,  
168,160 

120,150, 
139 

 

 

It is easy to analyze the data of Table 4 as a single-factor experiment with ab – m = (3)(3) 
– 1 = 8 treatment combinations.  The Minitab one-way analysis of variance output 
follows.  In this output, the factor levels are denoted m m . m11 12 23, , ,

 

 



One-way Analysis of Variance 
 
Analysis of Variance for BattLife 
Source     DF        SS        MS        F        P 
Cell        7     43843      6263    14.10    0.000 
Error      19      8439       444 
Total      26     52282                              

Individual Confidence Intervals Based on Pooled Std Dev.        
Level       N      Mean     StDev  ------+---------+---------+--------+ 
m11         3    155.00     25.00                        (----*----)  
m12         3     65.00     21.79      (----*----)  
m13         3     70.00     12.00       (----*----)  
m21         4    155.75     25.62                         (---*----)  
m22         4    119.75     12.66                  (---*---)  
m23         3     46.67     22.55  (----*----)  
m31         4    144.00     25.97                      (----*---)  
m32         3    136.33     15.18                    (----*----)  
                                   ------+---------+---------+--------+ 
Pooled StDev =    21.07                 50       100       150      200 
Fisher's pairwise comparisons 
Family error rate = 0.453 
Individual error rate = 0.0500 
 
Critical value = 2.093 
 
Confidence Intervals for (column level mean) - (row level mean) 
 
                 m11         m12         m13         m21         m22         m23 
 
    m12        53.98 
              126.02 
 
    m13        48.98      -41.02 
              121.02       31.02 
 
    m21       -34.44     -124.44     -119.44 
               32.94      -57.06      -52.06 
 
    m22         1.56      -88.44      -83.44        4.81 
               68.94      -21.06      -16.06       67.19 
 
    m23        72.32      -17.68      -12.68       75.39       39.39 
              144.35       54.35       59.35      142.77      106.77 
 
    m31       -22.69     -112.69     -107.69      -19.44      -55.44     -131.02 
               44.69      -45.31      -40.31       42.94        6.94      -63.64 
 
    m32       -17.35     -107.35     -102.35      -14.27      -50.27     -125.68 
               54.68      -35.32      -30.32       53.11       17.11      -53.65 
 
 
                 m31 
 
    m32       -26.02 
               41.36 

 



 
First examine the F-statistic in the analysis of variance.  Since F = 14.10 and the P-value 
is small, we would conclude that there are significant differences in the treatment means.  
We also used Fisher’s LSD procedure in Minitab to test for differences in the individual 
treatment means.  There are significant differences between seven pairs of means: 

µ µ µ µ µ µ µ µ
µ µ µ µ µ µ

11 12 11 13 11 22 11 23

21 22 21 23 22 23

≠ ≠ ≠ ≠
≠ ≠ ≠

, , ,
, ,  and 

 

Furthermore, the confidence intervals in the Minitab output indicate that the longest lives 
are associated with material types 1,2 and 3 at low temperature and material types 2 and 3 
at the middle temperature level. 

Generally, the next step is to form and comparisons of interest (contrasts) in the cell 
means.  For example, suppose that we are interested in testing for interaction in the data. 
If we had data in all 9 cells there would be 4 degrees of freedom for interaction.  
However, since one cell is missing, there are only 3 degrees of freedom for interaction.  
Practically speaking, this means that there are only three linearly independent contrasts 
that can tell us something about interaction in the battery life data.  One way to write 
these contrasts is as follows: 

C
C
C

1 11 13 21 2

2 21 22 31 3

3 11 12 31 3

3

2

2

= − − +
= − − +
= − − +

µ µ µ µ
µ µ µ µ
µ µ µ µ

 

Therefore, some information about interaction is found from testing  

H C H C H C0 1 0 2 0 30 0: , : , : 0= = = and  

Actually there is a way to simultaneously test that all three contrasts are equal to zero, but 
it requires knowledge of linear models beyond the scope of this text, so we are going to 
perform t-tests.  That is, we are going to test   

H
H
H

0 11 13 21 23

0 21 22 31 32

0 11 12 31 32

0
0
0

:
:
:

µ µ µ µ
µ µ µ µ
µ µ µ µ

− − + =
− − + =
− − + =

 

Consider the first null hypothesis.  We estimate the contrast by replacing the cell means 
by the corresponding cell averages.  This results in 

. . . .
.

. . . .C y y y y1 11 13 21 32

15500 70 00 15575 46 67
24 08

= − − +
= − − +
= −

 

The variance of this contrast is  
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From the Minitab ANOVA, we have MSE = 444 as the estimate of , so the t-statistic 
associated with the first contrast C

σ 2

1 is  

t C
0

1
2 4
24 08

444 4
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=

=
−

= −
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.

( )(5 /
.

σ

)
 

which is not significant.  It is easy to show that the t-statistics for the other two contrasts 
are for C2

t C
0

2
2 13 12

28 33
444 13 12
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=

=

=

( / )
.

( )( /
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)
 

and for C3

t C
0
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2 4
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=

=

(5 / )
.

( )(5 /
.

σ

)
 

Only the t-statistic for C3 is significant (P = 0.0012).  However, we would conclude that 
there is some indication between material types and temperature. 

Notice that our conclusions are similar to those for the balanced data in Chapter 5.  There 
is little difference in materials at low temperature, but at the middle level of temperature 
only materials types 2 and 3 have the same performance – material type 1 has 
significantly lower life.  There is also some indication of interaction, implying that not all 
materials perform similarly at different temperatures.  In the original experiment we had 
information about the effect of all three materials at high temperature, but here we do not.  
All we can say is that there is no difference between material types 1 and 2 at high 



temperature, and that both materials provide significantly reduced life performance at the 
high temperature than they do at the middle and low levels of temperature.  

 

 

S15-5.  Computer Experiments 
There has been some interest in recent years in applying statistical design techniques to 
computer experiments.  A computer experiment is just an experiment using a computer 
program that is a model of some system.  There are two types of computer models that 
are usually encountered.  The first of these is where the response variable or output from 
the computer model is a random variable.  This often occurs when the computer model is 
a Monte Carlo or computer simulation model.  These models are used extensively in 
many areas, including machine scheduling, traffic flow analysis, and factory planning. 
When the output of a computer model is a random variable, often we can use the methods 
and techniques described in the book with little modification.  The response surface 
approach has been shown to be quite useful here. What we are doing then, is to create a 
model of a model.  This is often called a metamodel.  

In some computer simulation models the output is observed over time, so the output 
response of interest is actually a time series.  Many books on computer simulation discuss 
the analysis of simulation output.  Several specialized analysis techniques have been 
developed. 

The other type of computer model is a deterministic computer model. That is, the output 
response has no random component, and if the model is run several times at exactly the 
same settings for the input variables, the response variable observed is the same on each 
run.  Deterministic computer models occur often in engineering as the result of using 
finite element analysis models, computer-based design tools for electrical circuits, and 
specialized modeling languages for specific types of systems (such as Aspen for 
modeling chemical processes).   

The design and analysis of deterministic computer experiments is different in some 
respects from the usual types of experiments we have studied.  First, statistical inference 
(tests and confidence intervals) isn’t appropriate because the observed response isn’t a 
random variable.  That is, the system model is  

 1 2( , , , )ky f x x x=  

and not  

1 2( , , , )ky f x x x ε= +  

where ε  is the usual random error component.  Often the experimenter want to find a 
model that passes very near (or even exactly through!) each sample point generated, and 
the sample points cover a very broad range of the inputs.  In other words, the possibility 
of fitting an empirical model (low-order polynomial) that works well in a region of 
interest is ignored.  Many types of fitting functions have been suggested.  Barton (1992) 
gives a nice review. 



If a complex metamodel is to be fit, then the design must usually have a fairly large 
number of points, and the designs dominated by boundary points that we typically use 
with low-order polynomial are not going to be satisfactory.  Space-filling designs are 
often suggested as appropriate designs for deterministic computer models.  A Latin 
hypercube design is an example of a space-filling design. In a Latin hypercube design, 
the range of each factor is divided into n equal-probability subdivisions.  Then an 
experimental design is created by randomly matching each of the factors.  One way to 
perform the matching is to randomly order or shuffle each of the n divisions of each 
factor and then take the resulting order for each factor.  This ensures that each factor is 
sampled over its range.  An example for two variables and n = 16 is shown below. 
 

Latin Hypercube Design
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The design points for this Latin hypercube are shown in the Table 5.  For more 
information on computer experiments and Latin hypercube designs, see Donohue (1994), 
McKay, Beckman and Conover (1979), Welch and Yu (1990), Morris (1991), Sacks, 
Welch and Mitchell (1989), Stein, M. L. (1987), Owen (1994) and Pebesma and 
Heuvelink (1999). 

 

Table 5. A Latin Hypercube Design 
A B 
8 9 
11 8 
9 16 



13 1 
16 5 
6 2 
12 10 
14 13 
5 15 
4 11 
7 3 
1 4 
10 7 
15 6 
2 12 
3 14 
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