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Preface

What is the title of this book intended to signify, what connotations is the
adjective “Postmodern” meant to carry? A potential reader will surely pose
this question. To answer it, I should describe what distinguishes the ap-
proach to analysis presented here from what has by its protagonists been
called “Modern Analysis”. “Modern Analysis” as represented in the works of
the Bourbaki group or in the textbooks by Jean Dieudonné is characterized
by its systematic and axiomatic treatment and by its drive towards a high
level of abstraction. Given the tendency of many prior treatises on analysis
to degenerate into a collection of rather unconnected tricks to solve special
problems, this definitely represented a healthy achievement. In any case, for
the development of a consistent and powerful mathematical theory, it seems
to be necessary to concentrate solely on the internal problems and structures
and to neglect the relations to other fields of scientific, even of mathematical
study for a certain while. Almost complete isolation may be required to reach
the level of intellectual elegance and perfection that only a good mathemat-
ical theory can acquire. However, once this level has been reached, it can
be useful to open one’s eyes again to the inspiration coming from concrete
external problems. The axiomatic approach started by Hilbert and taken up
and perfected by the Bourbaki group has led to some of the most important
mathematical contributions of our century, most notably in the area of al-
gebraic geometry. This development was definitely beneficial for many areas
of mathematics, but for other fields this was not true to the same extent. In
geometry, the powerful tool of visual imagination was somewhat neglected,
and global nonlinear phenomena connected with curvature could not always
be addressed adequately. In analysis, likewise, perhaps too much emphasis
was laid on the linear theory, while the genuinely nonlinear problems were
found to be too diverse to be subjected to a systematic and encompassing
theory. This effect was particularly noticable in the field of partial differential
equations. This branch of mathematics is one of those that have experienced
the most active and mutually stimulating interaction with the sciences, and
those equations that arise in scientific applications typically exhibit some
genuinely nonlinear structure because of self-interactions and other effects.

Thus, modern mathematics has been concerned with its own internal
structure, and it has achieved great successes there, but perhaps it has lost
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a little of the stimulation that a closer interaction with the sciences can of-
fer. This trend has been reversed somewhat in more recent years, and in
particular rather close ties have been formed again between certain areas of
mathematics and theoretical physics. Also, in mathematical research, the em-
phasis has perhaps shifted a bit from general theories back to more concrete
problems that require more individual methods.

I therefore felt that it would be appropriate to present an introduction to
advanced analysis that preserves the definite achievements of the theory that
calls itself “modern”, but at the same time transcends the latter’s limitations.

For centuries, “modern” in the arts and the sciences has always meant
“new”, “different from the ancient”, some times even “revolutionary”, and so
it was an epithet that was constantly shifting from one school to its successor,
and it never stuck with any artistic style or paradigm of research. That only
changed in our century, when abstract functionality was carried to its extreme
in architecture and other arts. Consequently, in a certain sense, any new
theory or direction could not advance any further in that direction, but had
to take some steps back and take up some of the achievements of “premodern”
theories. Thus, the denomination “modern” became attached to a particular
style and the next generation had to call itself “postmodern”. As argued
above, the situation in mathematics is in certain regards comparable to that,
and it thus seems logical to call “postmodern” an approach that tries to build
upon the insights of the modern theory, but at the same time wishes to take
back the latter’s exaggerations.

Of course, the word “postmodern” does not at present have an altogether
positive meaning as it carries some connotations of an arbitrary and unprin-
cipled mixture of styles. Let me assure the potential reader that this is not
intended by the title of the present book. I wish rather to give a coherent
introduction to advanced analysis without abstractions for their own sake
that builds a solid basis for the areas of partial differential equations, the
calculus of variations, functional analysis and other fields of analysis, as well
as for their applications to analytical problems in the sciences, in particular
the ones involving nonlinear effects.

Of course, calculus is basic for all of analysis, but more to the point, there
seem to be three key theories that mathematical analysis has developed in
our century, namely the concept of Banach space, the Lebesgue integral, and
the notion of abstract differentiable manifold. Of those three, the first two
are treated in the present book, while the third one, although closest to the
author’s own research interests, has to wait for another book (this is not
quite true, as I did treat that topic in more advanced books, in particular in
“Riemannian Geometry and Geometric Analysis”, Springer, 1995).

The Lebesgue integration theory joins forces with the concept of Banach
spaces when the Lp and Sobolev spaces are introduced, and these spaces are
basic tools for the theory of partial differential equations and the calculus of
variations. (In fact, this is the decisive advantage of the Lebesgue integral
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over the older notion, the so-called Riemann integral, that it allows the con-
struction of complete normed function spaces, i.e. Hilbert or Banach spaces,
namely the Lp and Sobolev spaces.) This is the topic that the book will lead
the reader to.

The organization of the book is guided by pedagogical principles. After
all, it originated in a course I taught to students in Bochum at the beginning
level of a specialized mathematics education. Thus, after carefully collect-
ing the prerequisites about the properties of the real numbers, we start with
continuous functions and calculus for functions of one variable. The intro-
duction of Banach spaces is motivated by questions about the convergence
of sequences of continuous or differentiable functions. We then develop some
notions about metric spaces, and the concept of compactness receives partic-
ular attention. Also, after the discussion of the one-dimensional theory, we
hope that the reader is sufficiently prepared and motivated to be exposed
to the more general treatment of calculus in Banach spaces. After present-
ing some rather abstract results, the discussion becomes more concrete again
with calculus in Euclidean spaces. The implicit function theorem and the
Picard-Lindelöf theorem on the existence and uniqueness of solutions of or-
dinary differential equations (ODEs) are both derived from the Banach fixed
point theorem.

In the second part, we develop the theory of the Lebesgue integral in Eu-
clidean spaces. As already mentioned, we then introduce Lp and Sobolev
spaces and give an introduction to elliptic partial differential equations
(PDEs) and the calculus of variations. Along the way, we shall see several
examples arising from physics.

In the Table of Contents, I have described the key notions and results of
each section, and so the interested reader can find more detailed information
about the contents of the book there.

This book presents an intermediate analysis course. Thus, its level is some-
what higher than the typical introductory courses in the German university
system. Nevertheless, in particular in the beginning, the choice and presen-
tation of material are influenced by the requirement of such courses, and
I have utilized some corresponding German textbooks, namely the analysis
courses of 0. Forster (Analysis I - III, Vieweg 1976ff.) and H. Heuser (Anal-
ysis I, II, Teubner, 1980ff.). Although the style and contents of the present
book are dictated much more by pedagogical principles than is the case in
J. Dieudonné’s treatise Modern Analysis, Academic Press, 1960ff., there is
some overlap of content. Although typically the perspective of my book is
different, the undeniable elegance of reasoning that can be found in the trea-
tise of Dieudonné nevertheless induced me sometimes to adapt some of his
arguments, in line with my general principle of preserving the achievements
of the theory that called itself modern.

For the treatment of Sobolev spaces and the regularity of solutions of ellip-
tic partial differential equations, I have used D. Gilbarg, N. Trudinger, Elliptic
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Partial Differential Equations of Second Order, Springer, 21983, although of
course the presentation here is more elementary than in that monograph.

I received the competent and dedicated help – checking the manuscript
for this book, suggesting corrections and improvements, and proofreading –
of Felicia Bernatzki, Christian Gawron, Lutz Habermann, Xiaowei Peng,
Monika Reimpell, Wilderich Tuschmann, and Tilmann Wurzbacher. My orig-
inal German text was translated into English by Hassan Azad. The typing
and retyping of several versions of my manuscript was performed with pa-
tience and skill by Isolde Gottschlich. The figures were created by Micaela
Krieger with the aid of Harald Wenk and Ralf Muno. I thank them all for
their help without which this book would not have become possible.

Preface to the 2nd edition

For this edition, I have added some material on the qualitative behavior of
solutions of ordinary differential equations, some further details on Lp and
Sobolev functions, partitions of unity, and a brief introduction to abstract
measure theory. I have also used this opportunity to correct some misprints
and two errors from the first edition. I am grateful to Horst Lange, C. G.
Simader, and Matthias Stark for pertinent comments. I also should like to
thank Antje Vandenberg for her excellent TEXwork.

Preface to the 3rd edition

This edition corrects some misprints and minor inconsistencies that were
kindly pointed out to me by several readers, in particular Bruce Gould, as
well as an error in the proof of theorem 19.16 that was brought to my attention
by Matthias Stark. I have also used this opportunity to introduce another
important tool in analysis, namely covering theorems. Useful references for
such results and further properties of various classes of weakly differentiable
functions are W.Ziemer, Weakly differentiable functions, Springer, 1989, and
L.C.Evans, R.Gariepy, Measure theory and fine properties of functions, CRC
Press, 1992, as well as the fundamental H.Federer, Geometric measure theory,
Springer, 1969.

Leipzig, January 2005 Jürgen Jost
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Chapter I.

Calculus for Functions of One Variable



0. Prerequisites

We review some basic material, in particular the convergence of sequences of real
numbers, and also properties of the exponential function and the logarithm.

The integers are Z = {. . . ,−2,−1, 0, 1, 2, . . .}, and the positive integers
are N = {1, 2, 3, . . .}.

We shall assume the standard arithmetic operations on the real numbers
R, and occasionally also on the complex numbers C, although the latter will
not play an essential rôle. We shall also assume the ordering of the real
numbers (symbols <,≤, >,≥) and the notion of absolute value | · | in R, and
occasionally in C as well.

For a, b ∈ R, subsets of R of the form

(a, b) := {x ∈ R : a < x < b}, (a,∞)
:= {x ∈ R : a < x}, (−∞, b) := {x ∈ R : x < b},

and R itself are called open intervals, those of the form

[a, b] := {x ⊂ R : a ≤ x ≤ b}, [a,∞)
:= {x ∈ R : a ≤ x}, (−∞, b] := {x ∈ R : x ≤ b},

and R itself are called closed intervals.
We shall also employ the standard set theoretic symbols like ⊂Idxaaak@⊂

(“subset of”), as well as the quantifiers ∀ (“for all”) and ∃ (“there exists
some”).

We recall that a sequence (xn)n∈N ⊂ R of real numbers is called a Cauchy
sequence if

∀ ε > 0 ∃N ∈ N ∀n,m ≥ N : |xn − xm| < ε. (1)

(For the reader who is not familiar with the logical quantifiers employed
here, let us state the content of (1) in words:

For every ε > 0, there exists some N ∈ N, with the property that for all
n,m ≥ N we have

|xn − xm| < ε.)
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A similar notion applies in C. R is complete in the sense that every Cauchy
sequence has a limit point, i.e. if (xn)n∈N ⊂ R is a Cauchy sequence then there
exists x ∈ R with

∀ ε > 0 ∃N ∈ N ∀n ≥ N : |x− xn| < ε. (2)

C enjoys the same completeness property.
If (2) is satisfied, we write

x = lim
n→∞xn, (3)

and we say that (xn)n∈N converges to x.
Conversely, every convergent sequence is a Cauchy sequence. Also, the

limit of a Cauchy sequence in (2) is unique.
We emphasize that the completeness of R, i.e. the existence of a limit point

for every Cauchy sequence in R, is an axiom, whereas the Cauchy property
of a convergent sequence and the uniqueness of the limit are theorems that
hold not only in R but also for example in the rational numbers Q. In order
to recall the required technique – that will be used frequently in the sequel –
we shall now provide proofs for those results.

Thus, assume that (xn)n∈N ⊂ R converges to x. Given ε > 0, we may
choose N ∈ N so large that for all n,m ∈ N with n,m ≥ N

|xn − x| < ε/2, |xm − x| < ε/2. (4)

This follows from (2) with ε/2 in place of ε.
With the help of the triangle inequality, (4) implies that we have for all

n,m ≥ N

|xn − xm| ≤ |xn − x| + |xm − x| < ε/2 + ε/2 = ε

which verifies the Cauchy property.
To see the uniqueness of the limit of a convergent sequence, let (xn)n∈N ⊂

R have x and x′ as limit points. Put

η := |x− x′|.
We need to show η = 0, because we then get x = x′, hence uniqueness of the
limits. We choose ε = η/2, in case we had η > 0. From (2), applied to the
limit point x, we find N such that for n ≥ N,

|xn − x| < ε = η/2.

Likewise, applying (2) to the limit point x′, we find N ′ ∈ N such that for
n ≥ N ′

|xn − x′| < ε = η/2.

Thus, for n ≥ max(N,N ′), we get
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η = |x− x′| ≤ |xn − x| + |xn − x′|,
using the triangle inequality

< η/2 + η/2 = η.

Thus, the assumption η > 0 leads to a contradiction. We must therefore
have η = 0, i.e. uniqueness.

We say that for a sequence (xn)n∈N ⊂ R,

lim
n→∞xn = ∞

if

∀M ∈ R ∃N ∈ N ∀n ≥ N : xn > M,

and similarly
lim

n→∞xn = −∞
if

∀M ∈ R ∃N ∈ N ∀n ≥ N : xn < M.

We also recall the theorem of Bolzano-Weierstraß, saying that every
bounded sequence (xn)n∈N ⊂ R (boundedness means that there exists some
M ∈ R that is independent of n ∈ N, with the property that for all n ∈ N

|xn| ≤M)

has a convergent subsequence. This theorem will be used in §1. In §7, however,
it will be given a proof (see Cor. 7.41) that does not depend on the results
of the preceding §§. This is an instance where the pedagogical order of this
textbook does not coincide with the logical one. Of course, every convergent
sequence is bounded (if x = lim

n→∞xn, choose N such that for n ≥ N

|xn − x| < 1,

hence
|xn| ≤ |xn − x| + |x| < |x| + 1,

and put
M := max(|x1|, . . . , |xN−1|, |x| + 1)

to get
|xn| ≤M for all n ∈ N),

but bounded sequences need not converge themselves.
(Example: xn = 1 for odd n, xn := 0 for even n defines a bounded

sequence that does not converge.)
Therefore, the selection of a subsequence in the Bolzano-Weierstraß the-

orem is necessary. A limit point of a subsequence of a sequence (xn)n∈N is
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called an accumulation point Bolzano-Weierstraß theorem then says that ev-
ery bounded sequence in R has at least one accumulation point.

The standard arithmetic operations carry over to limits of convergent
sequences. Thus, suppose that

x = lim
n→∞xn (5)

y = lim
n→∞ yn (6)

for some sequences (xn)n∈N, (yn)n∈N in R (or C).
Then the sequences (xn + yn)n∈N, (xnyn)n∈N, (λxn)n∈N for λ ∈ R are

likewise convergent, with

lim
n→∞(xn + yn) = x+ y (7)

lim
n→∞(xnyn) = xy (8)

lim
n→∞(λxn) = λx. (9)

Finally, if y �= 0, we may find N ∈ N such that for n ≥ N, yn �= 0, as well,
and the sequence

(
xn

yn

)
n≥N

then converges to x
y . As an example, we provide

the proof of (8). First of all, as convergent sequences are bounded, we may
find M ∈ R with

|xn| < M.

Let M ′ := max(M, |y|). From (2), applied to (xn) and (yn) with ε
2M ′ in place

of ε, we obtain N1 ∈ N such that for all n ≥ N1

|xn − x| < ε

2M ′ ,

and N2 ∈ N such that for all n ≥ N2

|yn − y| < ε

2M ′ .

For n ≥ N := max(N1, N2), we then obtain

|xnyn − xy| = |xn(yn − y) + (xn − x)y|
≤ |xn||yn − y| + |xn − x||y|
< M ′ ε

2M ′ +
ε

2M ′M
′ = ε.

Thus, the criterion (2) holds for the sequence (xnyn) and xy ∈ R. This shows
the convergence of (xnyn) towards xy.

If (5) and (6) hold for sequences (xn), (yn) ⊂ R and xn ≤ yn for all n ∈ N,
then also

x ≤ y.

Similar constructions and results apply to infinite series, i.e. sequences
(xn)n∈N of the form
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xn =
n∑

ν=1

yν .

If such a sequence converges to some x ∈ R, we write

x =
∞∑

ν=1

yν .

We say that the above series converges absolutely if the sequence (ξn)n∈N

given by

ξn :=
n∑

ν=1

|yν |

converges.
Applying the above Cauchy criterion for the convergence of sequences to

series yields that a series
∑∞

ν=1 yν converges precisely if

∀ ε > 0 ∃N ∈ N ∀n ≥ m ≥ N : |
n∑

ν=m

yν | < ε.

Similarly, it converges absolutely if we can achieve
∑n

ν=m |yν | < ε for
n ≥ m ≥ N.

The most important series is the geometric series: Let 0 < |q| < 1. Then

∞∑
ν=1

qν =
q

1 − q
.

This series can be used to derive the ratio test (quotient criterion) for the
absolute convergence of a series

∑∞
ν=1 yν with yν �= 0 and

|yν+1

yν
| ≤ q for all ν ≥ n0,

where 0 < q < 1.
Namely, from the assumption one derives that

|yν | ≤ |yn0 |qν−n0 .

Hence
n∑

ν=m

|yν | ≤ |yn0 |
1
qn0

n∑
ν=m

qν .

The right hand side can be made arbitrarily small for sufficiently large n,m
since the geometric series converges and hence satisfies the Cauchy crite-
rion. Therefore, the left hand side also becomes arbitrarily small, and the
series

∑∞
ν=1 |yν | consequently satisfies the Cauchy criterion and converges,

as claimed.
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In the course of this textbook, we shall assume that the reader knows
the elementary transcendental functions, namely the exponential function
expx = ex for x ∈ R and the logarithm logx for x > 0. At certain points,
we shall also mention the functions sinx, cosx, tanx, cotx, but these will not
play an essential rôle. We now summarize some results about the exponential
function and the logarithm. The exponential function is given by

ex = lim
n→∞(1 +

x

n
)n. (10)

It is strictly monotonically increasing, i.e.

ex < ey for x < y. (11)

(This follows from the fact that for each n

(1 +
x

n
)n = 1 + x+ other positive terms

that are increasing in x, and consequently (1 + y
n )n − (1 + x

n )n ≥ y − x for
x < y.)

We also have the functional equation

ex+y = exey for all x, y ∈ R. (12)

Since e0 = 1 (which follows from (10)), we obtain in particular that

e−x =
1
ex

for all x ∈ R. (13)

We have the following asymptotic results:

lim
x→∞

ex

xm
= ∞ for all m ∈ N ∪ {0}. (14)

(In terms of sequences, this limit means that for every sequence (xn)n∈N with
lim

n→∞xn = ∞, we have lim
n→∞

exn

xm
n

= ∞.)

Proof. For n ≥ m+ 1,

(1 +
x

n
)n ≥

(
n

m+ 1

)
xm+1

nm+1
by binomial expansion

=
n(n− 1) · . . . · (n−m)

nm+1

1
(m+ 1)!

xm+1.

Since lim
n→∞

n(n−1)·...·(n−m)
nm+1 = 1 for fixed m ∈ N, ex asymptotically grows at

least like xm+1 which implies (14).
(14) and the quotient rule for limits yield

lim
x→∞xme−x = 0 for all m ∈ N ∪ {0}. (15)



0. Prerequisites 9

Put y = 1
x , (14) also yields

lim
y→0
y>0

yme1/y = ∞ for all m ∈ N ∪ {0}. (16)

If (an)n∈N ⊂ R converges to 0, with an �= 0 and an > −1 for all n, then

lim
n→∞(1 + an)1/an = e. (17)

More generally, if x ∈ R, lim
n→∞ an = 0, an �= 0, xan > −1 for all n, then

lim
n→∞(1 + anx)1/an = ex. (18)

(This is a slight generalization of (10), and it can be derived from (10) by
elementary estimates.)

From (18), one derives the following rule (for α, x ∈ R)

(ex)α = lim
n→∞(1 +

x

n
)αn (w.l.o.g., we take only

those n with x
n > −1 into account)

= lim
n→∞(1 + anαx)1/an with an := 1

αn (19)

= eαx.

The logarithm is defined as the inverse of the exponential function, i.e.

log(ex) = x for all x ∈ R, (20)

and then also
elog x = x for all x > 0. (21)

The functional equation (12) implies that

log(xy) = log x+ log y for all x, y > 0, (22)

and combining this with (13), we get

log
x

y
= log x− log y for x, y > 0. (23)

Finally
log xα = α log x for x > 0, α ∈ R (24)

which follows from

elog xα

= xα = (elog x)α = eα log x (using (19)).

From the monotonicity (11) of the exponential function, we derive the mono-
tonicity of the logarithm
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log x < log y whenever 0 < x < y. (25)

In §2, when we wish to compute the derivative of the exponential function,
we shall also need the limit of

exn − 1
xn

for xn → 0, assuming that all xn �= 0. (26)

In order to determine this limit, we put

an := exn − 1.

Then an > −1, and also an �= 0, since xn �= 0, for all n.
Since the logarithmm is defined as the inverse of the exponential function,

we have
xn = log(an + 1).

We thus need to evaluate

lim
n→∞

an

log(an + 1)
.

We consider

exp
(

log(an + 1)
an

)
= (an + 1)

1
an .

This expression converges to e, by (17).
In order to deduce from this result that

lim
n→∞

an

log(an + 1)
=

1
log e

= 1, (27)

we need the following general result.
If (yn)n∈N ⊂ R converges to y0 > 0, with yn > 0 for all n, then

lim
n→∞ log yn = log y0. (28)

(In the terminology of §1, this is the continuity of the logarithm).
Using (23), we see that (28) is equivalent to

lim
n→∞ log

yn

y0
= 0. (29)

This means that we need to show that for every sequence (bn)n∈N that con-
verges to 1 as n → ∞, with bn > 0 for all n, we have

lim
n→∞ log bn = 0. (30)

Let ε > 0. Then
eε > 1

as one sees from(10), and hence with (13)
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e−ε < 1.

As (bn) converges to 1, we may thus find N ∈ N such that for all n ≥ N

e−ε < bn < eε. (31)

The monotonicity (25) of the logarithm allows us to deduce from (31) that

−ε < log bn < ε (32)

which implies (30).
We have thus verified (28) which in turn implies (27). From the definition

of (an)n∈N, (27) is equivalent to

lim
xn→0
xn �=0

exn − 1
xn

= 1. (33)

Finally, we shall assume the concept of a vector space over R (and also over
C, but this is not essential) from linear algebra. In particular, we shall employ
the vector space Rd(d ∈ N).

Exercises for § 0

1) Show that a ∈ R is an accumulation point of a sequence (an)n∈N ⊂ R

precisely if for all ε > 0 and all N ∈ N there exists n ≥ N with

|an − a| < ε.

2) Suppose that the sequence (an)n∈N ⊂ R converges to a ∈ R. Show
that the sequence defined by

bn :=
1
n

(a1 + . . .+ an)

converges to a as well. Does the converse hold as well, i.e. does the
convergence of (bn)n∈N to a imply the convergence of (an)n∈N to a?

3) Let (an)n∈N ⊂ R be a bounded sequence with only one accumulation
point a. Show that (an) converges to a. Is this also true for unbounded
sequences?

4) Which of the following sequences (an)n∈N are convergent? What are
the limits of those that converge?
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an =
n(n+ 1)
n2 + 1

a)

an =
a2n

2 + a1n+ a0

b2n2 + b1n+ b0
, a0, a1, a2 ∈ R, b0, b1, b2 > 0b)

an =
13n6 − 27

26n5
√
n+ 39

√
n

c)

an =
1
n

n∑
ν=1

1
ν2

d)

an =
ρn

nm
for m ∈ N, ρ ∈ Re)

(here, the answer depends on ρ).

5) Which of the following series converge?

∞∑
n=1

1
n(n+ 2)

a)

∞∑
n=1

1
1 + an

(a �= −1)b)

∞∑
n=1

1√
n(n+ µ)

, µ > 0.c)

6) Let an :=
(
1 + 1

n

)n
, bn :=

n∑
ν=0

1
ν!

Show that

an ≤ an+1 for all na)
an ≤ bn for all nb)

lim
n→∞ bn = lim

n→∞ an(= e).c)

7) Let α > 0. Show that

lim
x→∞

xα

log x
= ∞

and
lim
x→0
x>0

xα log x = 0.



1. Limits and Continuity of Functions

We introduce the concept of continuity for a function defined on a subset of R (or
C). After deriving certain elementary properties of continuous functions, we show
the intermediate value theorem, and that a continuous function defined on a closed
and bounded set assumes its maximum and minimum there.

Definition 1.1 Let D ⊂ R (or C) and f : D → R (or C) be a function. We
say that lim

x→p
f(x) = y if and only if for every sequence (xn)n∈N ⊂ D with

lim
n→∞xn = p we have lim

n→∞ f(xn) = y.

Theorem 1.2 In the notations of definition 1.1

lim
x→p

f(x) = y

if and only if the following conditions are fulfilled

∀ ε > 0 ∃ δ > 0 ∀x ∈ D with |x− p| < δ :
|f(x) − y| < ε . (1)

Proof. “ ⇐ ” Let (xn)n∈N ⊂ D be a sequence with lim
n→∞xn = p. We have

∀ δ ∃N ∈ N ∀n ≥ N : |xn − p| < δ . (2)

For ε > 0 we determine δ > 0 as in (1) and then N as in (2): It follows
that for n ≥ N :

|f(xn) − y| < ε.

We have therefore shown

∀ ε > 0 ∃N ∈ N ∀n ≥ N : |f(xn) − y| < ε,

so lim
n→∞ f(xn) = y and therefore, by definition, lim

x→p
f(x) = y.

“ ⇒ ” If (1) is not fulfilled then
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∃ ε > 0 ∀ δ > 0 ∃x ∈ D with |x− p| < δ

but |f(x) − y| > ε . (3)

For n ∈ N we set δ = 1
n and determine xn = x corresponding to δ as in

(3). Then |xn − p| < 1
n and so lim

n→∞xn = p, but for ε as in (3) we have

|f(xn) − y| > ε,

and therefore lim
n→∞ f(xn) �= y. �

Definition 1.3 Let D ⊂ R (or C), f : D → R (or C) a function and p ∈ D.
The function f is said to be continuous at p if

lim
x→p

f(x) = f(p).

f is continuous in D if f is continuous at every point p ∈ D.

Theorem 1.4 In the notations of definition 1.3 f is continuous at p precisely
when the following condition is fulfilled

∀ ε > 0 ∃ δ > 0 ∀x ∈ D with |x− p| < δ

|f(x) − f(p)| < ε . (4)

Proof. This is a direct consequence of theorem 1.2. �

Lemma 1.5 Suppose that g : D → R (or C) is continuous at p ∈ D, and
that g(p) �= 0. Then there exists δ > 0 with the property that for all x ∈ D
with |x− p| < δ

g(x) �= 0

as well.

Proof. Let ε := |g(p)|
2 > 0. Since g is continuous at p, we may find δ > 0 such

that for all x ∈ D with |x− p| < δ

|g(x) − g(p)| < ε =
|g(p)|

2
.

This implies

|g(x)| > |g(p)|
2

> 0.

�

Lemma 1.6 Assume that the functions f, g : D → R (or C) are continuous
at p ∈ D. Then so are the functions f + g, fg, and λf, for any λ ∈ R(C).
Furthermore if g(p) �= 0, then f

g is continuous at p as well.
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Proof. This follows from the rules for the limits of sums, products, and quo-
tients of convergent sequences described in §0. �

Corollary 1.7 All polynomial functions, i.e. functions of the form f(x) =
n∑

ν=0
aνx

ν , are continuous. �

Corollary 1.8 The functions f : D → R(C) that are continuous at p ∈ D
form a vector space over R(C). The same holds for those functions that are
continuous on all of D. �

Definition 1.9 Let D ⊂ R (or C) and f : D → R (or C) a function. The
function f is said to be uniformly continuous in D

⇐⇒ ∀ ε > 0 ∃ δ > 0 ∀x1, x2 ∈ D with |x1 − x2| < δ :
|f(x1) − f(x2)| < ε . (5)

The crucial difference between the requirements of continuity and uniform
continuity is that in (4), δ could depend on p, whereas in (5) it must be
possible to choose δ independent of the points under consideration of D.

Example. Let f : R → R be the function f(x) = x2. We show that f is
continuous at every p ∈ R. Let ε > 0. We set

δ = min
(

1,
ε

2|p| + 1

)
.

If |x− p| < δ then

|x2 − p2| = |x− p||x+ p| ≤ |x− p|(|x| + p) < |x− p|(2|p| + 1) < ε.

This shows that f is continuous. We now show that f is not uniformly con-
tinuous on R.

For this we prove the negation of (5), namely

∃ ε > 0 ∀ δ > 0 ∃x1, x2 ∈ R with |x1 − x2| < δ

but |f(x1) − f(x2)| > ε . (6)

We choose ε = 1. For δ > 0 there exist x1, x2 ∈ R with |x1 − x2| = δ
2 , |x1 +

x2| > 2
δ . Therefore

|x2
1 − x2

2| = |x1 − x2||x1 + x2| > 1

which proves (6).

Theorem 1.10 Let I = [a, b] be a closed and bounded interval and f : I → R

(or C) a continuous function. Then f is uniformly continuous on I.
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Proof. Otherwise

∃ ε > 0 ∀ δ > 0 ∃x1, x2 ∈ I with |x1 − x2| < δ,

but |f(x1) − f(x2)|. (7)

For n ∈ N we choose δ = 1
n and then points x1,n = x1 and x2,n = x2 as in

(7). By the Bolzano-Weierstrass theorem, the bounded sequence (x1,n) has a
convergent subsequence which converges to, say, x0. As I is closed the point
x0 ∈ I. As

|x1,n − x2,n| < 1
n

we also have lim
n→∞x2,n = x0.

Since f is continuous, it follows that

lim
n→∞ f(x1,n) = f(x0) = lim

n→∞ f(x2,n)

which contradicts (7).

Remark. By theorem 1.10, the function f(x) = x2 is uniformly continuous
on any closed and bounded interval [a, b]. Nevertheless, as shown above, the
function f(x) = x2 is not uniformly continuous on R. Uniform continuity of
a function therefore depends on its domain of definition.

Recalling corollary 1.8, we now formulate

Definition 1.11 C0(D,R) and C0(D,C) are, respectively, the vector spaces
of continuous functions f : D → R and f : D → C. We denote C0(D,R) also
by C0(D).

Definition 1.12 Let D ⊂ R and f : D → R (or C), and 0 < α < 1. f is
called α-Hölder continuous (for α = 1 Lipschitz continuous) if for any closed
and bounded interval I ⊂ D there exists an mI ∈ R with

|f(x) − f(y)| ≤ mI |x− y|α for all x, y ∈ I. (8)

One easily checks that if f, g : D → R(C) are α-Hölder continuous, then
so is their sum f + g, and likewise λf, for any λ ∈ R(C).

Definition 1.13 The vector space of α-Hölder continuous functions f : D →
R (resp. C) will be denoted by C0,α(D,R) (resp. C0,α(D,C)). We also write
C0,α(D) for C0,α(D,R) and, for 0 < α < 1, C0,α(D) as Cα(D).

We now come to the important intermediate value theorem of Bolzano

Theorem 1.14 Let f : [a, b] → R be continuous. Then f assumes any value
κ between f(a) and f(b). This means that if for example f(a) ≤ f(b), and
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f(a) ≤ κ ≤ f(b),

then there exists some x0 ∈ [a, b] with

f(x0) = κ.

Proof. By considering f−κ in place of κ, we may assume that κ = 0. We may
also assume f(a) < f(b), because otherwise we may consider −f in place of
f. Thus, we may assume

f(a) < 0 < f(b)

(if f(a) or f(b) were equal to 0, we would have found the desired x0 already).
We now perform the following inductive construction:

Let a0 = a, b0 = b. If an ≥ an−1 and bn ≤ bn−1 have been determined,
with an < bn, put

cn :=
1
2
(bn − an).

If f(cn) = 0, put x0 = cn, and the process can be terminated, and so this
case can be disregarded in the sequel.

If f(cn) < 0, put an+1 = cn, bn+1 = bn.
If f(cn) > 0, put an+1 = an, bn+1 = cn.
We then have

bn+1 − an+1 =
1
2
(bn − an).

By the Bolzano-Weierstraß theorem, subsequences (αν)ν∈N of (an)n∈N and
(βν)ν∈N of (bn)n∈N converge, and since

lim
n→∞ |bn − an| = 0,

they both converge to the same point x0 ∈ [a, b].
(In fact since an ≤ an+1 ≤ bn+1 ≤ bn for all n ∈ N, it is easy to verify

that the sequences (an) and (bn) themselves converge.)
Since

f(an) < 0, f(bn) > 0 for all n ∈ N,

the continuity of f implies that

f(x0) = lim
ν→∞ f(αν) = lim

ν→∞ f(βν) = 0.

Thus, the desired x0 has been found. �

Theorem 1.15 Let f : [a, b] → R be continuous. Then f is bounded, i.e.
there exists M ≥ 0 with

|f(x)| ≤M for all x ∈ [a, b],

and it assumes its minimum and maximum on [a, b], i.e. there exist x0, x1 ∈
[a, b] with
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f(x0) = inf{f(x) : x ∈ [a, b]}
f(x1) = sup{f(x) : x ∈ [a, b]}.

Proof. The second statement implies the first, because

|f(x)| ≤ max(|f(x0)|, |f(x1)|) =: M

by the choice of x0, x1. By considering −f in place of f, the reasoning for the
maximum is reduced to the one for the minimum, and so we only describe
the latter. Let (xn)n∈N ⊂ [a, b] be a sequence with

lim
n→∞ f(xn) = inf{f(x) : x ∈ [a, b]}.

(At this point, we have not yet excluded that this infimum is −∞, and so in
this case f(xn) would approach −∞.)

Since (xn) is contained in the bounded interval [a, b], the Bolzano-
Weierstraß theorem implies the existence of a subsequence (ξν)ν∈N of (xn)n∈N

that converges towards some x0 ∈ [a, b]. Since f is continuous on [a, b], we
obtain

f(x0) = lim
ν→∞ f(ξν) = inf{f(x) : x ∈ [a, b]}.

In particular, the latter expression is finite, and f assumes its minimum at
x0.

Remarks.
1) To simplify our terminology, in the sequel we shall usually say in

proofs of the type of the preceding one: “after selection of a subse-
quence, (xn)n∈N converges” in place of “there exists a subsequence
(ξν)ν∈N of (xn)n∈N that converges”.

2) For the preceding theorem to hold, it is important that the interval
of definition of f is closed. In fact, f : (0, 1) → R, f(x) = x, neither
assumes its minimum nor its maximum on (0, 1), and the function
g : (0, 1) → R, g(x) = 1

x even is unbounded on (0, 1), although both
of them are continuous there.

Exercises for § 1

1) Show the following result:
Let f : (a, b) → R, x0 ∈ (a, b). Then lim

x→x0
f(x) exists precisely if the

limits lim
x→x0
x>x0

f(x) and lim
x→x0
x<x0

f(x) exist and coincide.

2) Let f, g : D → R be continuous. Show that F,G : D → R defined by
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F (x) := min(f(x), g(x))
G(x) := max(f(x), g(x))

are continuous as well.

3) Are the following functions continuous?
a) f : R\{−1, 1} → R,

f(x) =
x

x2 − 1
.

b) f : (0,∞) → R,

f(x) =
x2 − 5x+ 6
x2 − 4

for x �= 2, f(2) = 0.

c) f : (0,∞) → R,

f(x) =
x2 − 5x+ 6
x2 − 4

for x �= 2, f(2) = −1
4
.

d) f : R → R,
f(x) = x3e(3x2+6x+1).

e) f : R → R,

f(x) =
{

1
|x| for x �= 0
0 for x = 0 .

f) f : R → R,

f(x) =
{

x
|x| for x �= 0
0 for x = 0 .

g) f : R → R,

f(x) =
{

x2

|x| for x �= 0
0 for x = 0 .

4) We consider the following function z : R → R

z(x) :=
{
x− 4n for x ∈ [4n− 1, 4n+ 1]
−x+ 4n+ 2 for x ∈ [4n+ 1, 4n+ 3] .

Show that z is uniformly continuous. (One possibility to solve this
exercise is to show that z is continuous on the interval [−1, 3] and to
then show that every continuous function f : R → R that is periodic
(i.e. there exists ω > 0 with f(x+ω) = f(x) for all x ∈ R) is uniformly
continuous.)

5) Let f : [a, b] → [a, b] (i.e. a ≤ f(x) ≤ b for all x ∈ [a, b]) be a contin-
uous function. Show that there exists some x ∈ [a, b] with f(x) = x.
(Such an x with f(x) = x is called a fixed point of f.)

6) Let p : R → R be a polynomial of odd order, i.e.

p(x) = akx
k + ak−1x

k−1 + . . .+ a0,

where k ∈ N is odd. Show that there exists some x0 ∈ R with p(x0) =
0.



2. Differentiability

We define the notion of differentiability of functions defined on subsets of R, and
we show the basic rules for the computation of derivatives.

Definition 2.1 Let D ⊂ R and f : D → R be a function. The function f is
said to be differentiable at x ∈ D if

f ′(x) := lim
ξ→x

ξ∈D\{x}

f(ξ) − f(x)
ξ − x

= lim
h→0
h�=0

x+h∈D

f(x+ h) − f(x)
h

exists. We shall also write df
dx in place of f ′(x), and we shall call this expres-

sion the derivative of f at x. We call f differentiable in D if it is differentiable
at every x ∈ D.

(In this definition it is tacitly assumed that there exists a sequence
(xn)n∈N ⊂ D\{x} which converges to x).

Remark. Although D is allowed to be a subset of R of rather general type,
in our subsequent applications, D typically will be an interval.

Theorem 2.2 Let D ⊂ R and f : D → R a function. Let x0 ∈ D and
(ξn) ⊂ D\{x0} a sequence with lim

n→∞ ξn = x0. The function f is differentiable

at x0, with derivative f ′(x0) = c, precisely if for x ∈ D

f(x) = f(x0) + c(x− x0) + φ(x), (1)

where φ : D → R is a function with

lim
x→x0
x�=x0

φ(x)
x− x0

= 0 . (2)

Equivalently
|f(x) − f(x0) − c(x− x0)| ≤ ψ(x), (3)

where ψ : D → R is again a function with

lim
x→x0
x�=x0

ψ(x)
x− x0

= 0. (4)
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Proof. “ ⇒ ” Let f be differentiable at x0. We set φ(x) := f(x) − f(x0) −
f ′(x0)(x− x0). Therefore

lim
x→x0
x�=x0

φ(x)
x− x0

= lim
x→x0
x�=x0

(
f(x) − f(x0)

x− x0
− f ′(x0)) = 0.

“ ⇐ ” Suppose (1) holds. Then

lim
x→x0
x�=x0

f(x) − f(x0)
x− x0

= c+ lim
x→x0
x�=x0

φ(x)
x− x0

= c.

�

Corollary 2.3 If f : D → R is differentiable at x0 ∈ D then f is continuous
at x0.

Proof. Equation (3) implies

|f(x) − f(x0)| ≤ |f ′(x0)||x− x0| + ψ(x)

with lim
x→x0

ψ(x) = 0. It follows that

lim
x→x0

f(x) = f(x0)

and therefore f is continuous at x0. �

If f, g : D → R are differentiable at x ∈ D, then it is straightforward to
check that f + g is likewise differentiable at x, with

(f + g)′(x) = f ′(x) + g′(x). (5)

Similarly, for λ ∈ R,
(λf)′(x) = λf ′(x). (6)

In particular, the functions f : D → R that are differentiable at x form a
vector space.

We next have the product rule.

Theorem 2.4 If f, g : D → R are differentiable at x ∈ D, then so is their
product fg, with

(fg)′(x) = f ′(x)g(x) + g′(x)f(x). (7)

Proof. We have to compute
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lim
ξ→x

ξ∈D\{x}

f(ξ)g(ξ) − f(x)g(x)
ξ − x

= lim
ξ→x

ξ∈D\{x}

{ (f(ξ) − f(x))g(x) + (g(ξ) − g(x))f(ξ)
ξ − x

}
= lim

ξ→x
ξ∈D\{x}

( (f(ξ) − f(x))
ξ − x

g(x)
)

+ lim
ξ→x

ξ∈D\{x}

(g(ξ) − g(x)
ξ − x

f(ξ)
)

≤ f ′(x)g(x) + g′(x) lim
ξ→x

ξ∈D\{x}

f(ξ),

according to the rules for limits described in § 0
= f ′(x)g(x) + g′(x)f(x) since f is continuous at x by corollary 2.3.

�

Similarly, we have the quotient rule.

Theorem 2.5 If f, g : D → R are differentiable at x ∈ D, and if g(x) �= 0,
then their quotient f

g is differentiable at x as well, with(f
g

)′
(x) =

f ′(x)g(x) − g′(x)f(x)
g2(x)

. (8)

Proof. It follows from the continuity of g at x (corollary 2.3) that there exists
δ > 0 with the property that

g(ξ) �= 0 whenever |ξ − x| < δ.

Therefore, in the subsequent limit processes where we let ξ tend to x, we may
assume that g(ξ) �= 0. We now compute

lim
ξ→x

ξ∈D\{x}

1
ξ − x

(f(ξ)
g(ξ)

− f(x)
g(x)

)
, lim

ξ→x
ξ∈D\{x}

1
ξ − x

f(ξ)g(x) − g(ξ)f(x)
g(ξ)g(x)

= lim
ξ→x

ξ∈D\{x}

1
g(ξ)g(x)

lim
ξ→x

ξ∈D\{x}

f(ξ)g(x) − g(ξ)f(x)
ξ − x

=
1

g2(x)
lim
ξ→x

ξ∈D\{x}

(f(ξ) − f(x)
ξ − x

g(x) − g(ξ) − g(x)
ξ − x

f(x)
)
,

using the continuity of g at x

=
f ′(x)g(x) − f ′(x)f(x)

g2(x)
. �

The next theorem presents the important chain rule.
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Theorem 2.6 Let f : D1 → R be differentiable at x ∈ D1 with f(D1) ⊂ D2,
and let g : D2 → R be differentiable at y := f(x). Then the composition g ◦ f
is differentiable at x, with

(g ◦ f)′(x) = g′(f(x))f ′(x). (9)

Proof. We set out to compute

lim
ξ→x

ξ∈D1\{x}

g(f(ξ)) − g(f(x))
ξ − x

= lim
ξ→x

ξ∈D1\{x}

g(f(ξ)) − g(f(x))
f(ξ) − f(x)

f(ξ) − f(x)
ξ − x

.

Here, the slight technical problem arises that we may have f(ξ) = f(x) even
if ξ �= x, and so the first quotient may not be well defined. This, however,
can easily be circumvented by considering

g(1)(η) :=

⎧⎨⎩
g(η)−g(y)

η−y for η �= y

lim
η→y

η∈D2\{y}

g(η)−g(y)
η−y = g′(y) for η = y

(note that here we are using the assumption that g is differentiable at y) and
replacing the above limit by

lim
ξ→x

ξ∈D1\{x}

(
g(1)(f(ξ))

f(ξ) − f(x)
ξ − x

)
= g′(f(x))f ′(x),

using the continuity of f at x (corollary 2.3) to handle the first term and the
assumed differentiability of f at x to handle the second one. �

The next result allows to compute the derivative of the inverse of a func-
tion once the derivative of that function is known. To formulate that result,
we call a function f : I → R, I an interval, monotonically increasing (de-
creasing) if f(x1) ≤ (≥)f(x2) whenever x1 < x2 (x1, x2 ∈ I). f is called
strictly monotonically increasing (decreasing) if we have f(x1) < (>)f(x2)
whenever x1 < x2.

Theorem 2.7 Let I ⊂ R be an open interval, and let f : I → R be strictly
monotonically increasing or decreasing. Then there exists a continuous func-
tion

ϕ : f(I) → R

with
ϕ ◦ f(x) = x for all x ∈ I (10)



2. Differentiability 25

and
f ◦ ϕ(y) = y for all y ∈ f(I). (11)

ϕ is called the inverse function of f. We shall usually denote the inverse func-
tion ϕ of f by f−1. ϕ is also strictly monotonically increasing or decreasing,
resp. If f is differentiable at x ∈ I, with f ′(x) �= 0, then ϕ is differentiable at
y := f(x), with

ϕ′(y) =
1

f ′(x)
=

1
f ′(ϕ(y))

, (12)

or, equivalently (f−1)′(y) = 1
f ′(f−1(y)) .

Proof. The strict monotonicity of f implies that it is injective. Therefore, for
each y ∈ f(I), there exists a unique x ∈ I with

f(x) = y,

and we put
x = ϕ(y).

ϕ then satisfies (10) and (11).
The strict monotonicity of f implies the strict monotonicity of ϕ. If suffices

to treat the increasing case as the decreasing case is reduced to the increasing
one by considering −f in place of f. In the increasing case,

x1 < x2 ⇐⇒ f(x1) < f(x2),

hence,
ϕ(y1) < ϕ(y2) ⇐⇒ y1 < y2

for yi = f(xi), i = 1, 2. This is the strict monotonicity of ϕ.
We shall now verify the continuity of ϕ. For that purpose, let y ∈

f(I), x := ϕ(y) ∈ I. Since I is an open interval, there exists ρ > 0 with

(x− ρ, x+ ρ) ⊂ I.

For the continuity of ϕ, it suffices to consider 0 < ε < ρ. For such ε, x − ε
and x+ ε belong to I, and since f is strictly increasing

f(x− ε) < y < f(x+ ε).

Hence, there exists δ > 0 with

f(x− ε) < y − δ < y + δ < f(x+ ε).

If now η ∈ f(I) satisfies |η−y| < δ, the strict monotonicity of ϕ = f−1 yields

x− ε < f−1(η) < x+ ε.

This means that
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|f−1(y) − f−1(η)| < ε (since x = f−1(y))

whenever |η − y| < δ, verifying the continuity of ϕ = f−1. For the claim
about the differentiability, let (yn)n∈N ⊂ f(I) converge to y = f(x). We put
xn := ϕ(yn). Since we have already seen that ϕ is continuous, we conclude

lim
n→∞xn = x.

We suppose yn �= y for all n. By the strict monotonicity of ϕ, then also
xn �= x for all n. Now

lim
n→∞

ϕ(yn) − ϕ(y)
yn − y

= lim
n→∞

xn − x

f(xn) − f(x)
= lim

n→∞
1

f(xn)−f(x)
xn−x

=
1

f ′(x)
,

since f ′(x) �= 0. Consequently

ϕ′(y) =
1

f ′(x)
.

�

The preceding results allow to compute the derivatives of many functions:

Examples.
0) f : R → R, f(x) = c (c ∈ R) satisfies f ′(x) = 0 for all x ∈ R as is

obvious from definition 2.1.

1) f : R → R, f(x) = cx, c ∈ R, satisfies

f ′(x) = c for all x ∈ R.

This follows directly from definition 2.1.

2) f : R → R, f(x) = x2, satisfies

f ′(x) = 2x for all x ∈ R.

This follows from 1) and the product rule, writing x2 = x · x.
3) More generally, for f : R → R, f(x) = xm,m ∈ N,

f ′(x) = mxm−1 for all x ∈ R,

as one verifies by induction on m, (write xm = x · xm−1 and apply
the product rule).

4) f : R\{0} → R, f(x) = 1
xm ,m ∈ N, satisfies

f ′(x) =
−m
xm+1

for all x �= 0

by 3) and the quotient rule.
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5) For the exponential function exp(x) = ex, we have

exp′(x) = lim
h→0
h�=0

ex+h − ex

h
= ex lim

h→0
h�=0

eh − 1
h

, using (12) in §0

= ex by (26) in §0.

Thus, the exponential function has the remarkable property that it
coincides with its own derivative, i.e. satisfies

f ′(x) = f(x) for all x ∈ R.

6) More generally, f(x) = ecx, c ∈ R, satisfies

f ′(x) = cecx = cf(x) for all x ∈ R,

as follows from 1), 5) and the chain rule.

7) For the logarithm, theorem 2.7 yields in conjunction with 5)

log′(x) =
1

exp′(log x)
=

1
exp(log x)

=
1
x

for x > 0.

8) For a differentiable function f : D → R and x ∈ D with f(x) > 0, the
chain rule and 7) yield

(log f(x))′ = log′(f(x))f ′(x) =
f ′(x)
f(x)

.

We next define second and higher order derivatives:

Definition 2.8 Let f : D → R be a differentiable function. We say that f
is twice differentiable at x ∈ D if the derivative f ′ of f is differentiable at x.
We write

f ′′(x) := (f ′)′(x) (the derivative of f ′ at x),

and also d2f
dx2 (x) in place of f ′′(x). (The latter symbol is explained as ( d2

dx2 )f =
( d

dx )2f = d
dx ( df

dx ).) Inductively, we say that a k-times differentiable function
f : D → R is (k + 1)-times differentiable at x ∈ D if the kth derivative
f (k) = dk

dxk f is differentiable at x. It is (k+1)-times continuously differentiable
in D if the (k + 1)st derivative f (k+1) exists and is continuous in D.

Definition 2.9 Ck(D,R) = Ck(D) is the vector space of k-fold continuously
differentiable real valued functions on D. Ck,α(D,R) = Ck,α(D) is the vector
space of those f ∈ Ck(D) with f (k) ∈ C0,α(D) (0 < α ≤ 1). Finally, we put
C∞(D,R) = C∞(D) :=

⋂
k∈N

Ck(D), the vector space of infinitely often
differentiable functions on D.
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It is clear that ex is in C∞(R), because it is differentiable and coincides
with its own derivative so that the latter is differentiable as well and so
inductively all derivatives are differentiable. Likewise, any polynomial is in
C∞(R) because the derivative of a polynomial is again a polynomial. A less
trivial example of an infinitely often differentiable function is

f(x) :=
{
e
− 1

1−x2 for |x| < 1
0 for |x| ≥ 1 .

Using the chain rule and induction, it is easy to verify that f is infinitely often
differentiable for |x| �= 1, and thus we only need to check the differentiability
properties at ±1. Since f is even, i.e. f(x) = f(−x) for all x, the behaviour
at x = −1 is the same as the one at x = 1, and so we only consider the latter.
We put y := ϕ(x) := 1

1−x2 . Thus f(x) = e−y. Since

lim
x→1
x<1

ϕ(x) = ∞,

(15) of §0 implies that
lim
x→1
x<1

f(x) = 0.

Thus, f is continuous at x = 1. This, of course, is only the first step, and we
have to investigate the differentiability properties of f at x = 1.

For |x| < 1, by the chain and quotient rules,

f ′(x) =
2x

(1 − x2)2
f(x) = 2xy2e−y.

Using (15) of §0 again, we see that

lim
x→1
x<1

f ′(x) = 0.

Therefore, f is differentiable at x = 1 (see exercise 2)). Inductively, one real-
izes that for any n ∈ N f (m)(x) for |x| < 1 has the structure of a polynomial
in x and y = ϕ(x) multiplied by e−y. All terms containing x are bounded for
|x| < 1, and (15) of §0 shows that for any m ∈ N

lim
y→∞ yme−y = 0,

and therefore
lim
x→1
x<1

f (n)(x) = 0 for all n ∈ N.

Thus, f is differentiable to any order at x = 1, with

f (n)(1) = 0 for all n ∈ N.
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Exercises for § 2

1) Which of the following functions are differentiable at x0 = 0?

a) f(x) = x|x|
b) f(x) = |x| 12
c) f(x) = |x| 32

d) f(x) =
{
e−

1
|x| for x �= 0

0 for x = 0

e) f(x) =
{

1
xe

− 1
|x| for x �= 0

0 for x = 0
2) Let f : D → R (D ⊂ R), be a function, x ∈ D.

a) Show that f is differentiable at x precisely if the following limits
both exist and coincide:

f ′
−(x) := lim

ξ→x
ξ∈D,ξ<x

f(ξ) − f(x)
ξ − x

, f ′
+(x) := lim

ξ→x
ξ∈D,ξ>x

f(ξ) − f(x)
ξ − x

.

b) Show that f is differentiable at x if it is differentiable onD\{x},
and if

lim
z→x

z∈D\{x}
f ′(z)

exists. That limit then yields f ′(x).

3) Let I ⊂ R be an interval, f, g : I → R, x0 ∈ I, f(x0) = 0, and assume
that f is differentiable at x0. Show that f · g is differentiable at x0,
and compute (f · g)′(x0), provided one of the following assumptions
holds:
a: g is continuous at x0.
b: f ′(x0) = 0, and g is bounded on I.

4) Let f : R → R be a differentiable function, x0 ∈ R. Show that

f̄(x) := f(x0) + f ′(x0)(x− x0)

is the best approximation of f at x0 among all affine linear functions in
the following sense: For any affine linear � : R → R (i.e. �(x) = cx+d),
there exists δ > 0 such that for all x with |x− x0| < δ

|f(x) − f̄(x)| ≤ |f(x) − �(x)|.



3. Characteristic Properties of Differentiable
Functions. Differential Equations

We treat the mean value theorems for differentiable functions, characterize interior
minima and maxima of such functions in terms of properties of the derivatives,
discuss some elementary aspects of differential equations, and finally show Taylor’s
formula.

Definition 3.1 Let D ⊂ R, f : D → R a function. We say that f has a local
minimum (maximum) at x0 ∈ d if there exists ε > 0 with the property that
for all y ∈ D with |x0 − y| < ε

f(y) ≥ f(x0) (f(y) ≤ f(x0)). (1)

Idxstrict local minimum (maximum) A local minimum (maximum) is called
strict if we have “ > ” (“ < ”) for y �= x0 in (3.1).

x0 ∈ D is called a global minimum (maximum) for f in D if (3.1) holds
for all y ∈ D, and not only for those with |x0 − y| < ε. Often, the qualifier
“global” is omitted.

Remark. x0 is a (global) minimum for f on D precisely if

f(x0) = inf{f(x) : x ∈ D}.
Thus, the terminology just defined is consistent with the one implicitly em-
ployed in §1.

Theorem 3.2 Let f : (a, b) → R be a function with a local minimum or
maximum at x0 ∈ (a, b). If f is differentiable at x0, then f ′(x0) = 0.

Proof. We only treat the case of a minimum, as the case of a maximum is
reduced to the case of a minimum by considering −f in place of f. Thus, we
have

f(ξ) ≥ f(x0)

for all ξ ∈ (a, b) ∩ (x0 − ε, x0 + ε) for some ε > 0.
Thus, if ξ < x0

f(x0) − f(ξ)
x0 − ξ

≤ 0

while for ξ > x0
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f(x0) − f(ξ)
x0 − ξ

≥ 0.

As f is differentiable at x0, we conclude that necessarily

f ′(x0) = lim
ξ→x0
ξ �=x0

f(x0) − f(ξ)
x0 − ξ

= 0.

�

Examples.
1) f(x) = x2, f : R → R, has a global minimum at x0 = 0.

2) f(x) = x3, f : R → R, satisfies f ′(0) = 0 although it neither has a
local minimum nor a local maximum at x0 = 0. Thus, f ′(x0) = 0 is
not a sufficient condition for a local minimum or maximum.

3) f(x) = x, f : [0, 1] → R, has a local minimum at x0 = 0 and a local
maximum at x0 = 1. However, at neither point f ′(x0) = 0. The reason
is that the domain of definition of f, [0, 1], does not contain an open
interval around x0 = 0 or x0 = 1.

4) f(x) = 2x3 − 3x2, f : R → R, satisfies f ′(x0) = 0 for x0 = 0, 1, and it
has a local maximum at x0 = 0, and a local minimum at x0 = 1.

Theorem 3.3 (Rolle’s theorem) Let f : [a, b] → R be continuous and
differentiable on (a, b) (a < b). Let f(a) = f(b). Then there exists an x0 ∈
(a, b) with f ′(x0) = 0.

Proof. If f is constant on [a, b], then f ′(x) = 0 for all x ∈ (a, b). If f is not
constant, we may find some x1 ∈ (a, b) with f(x1) �= f(a)(= f(b)). W.l.o.g.,
let us suppose that f(x1) > f(a). By theorem, the continuous function f
assumes its maximum at some x0 ∈ [a, b]. For a maximum point, we must
have f(x0) ≥ f(x1) > f(a) = f(b), and so we must have x0 ∈ (a, b). Since f
is differentiable on (a, b), theorem 3.2 implies f ′(x0) = 0. �

Corollary 3.4 (2nd mean value theorem) Let f, g : [a, b] → R be continu-
ous functions which are differentiable on (a, b). Let g(b) �= g(a) and g′(x) �= 0
for all x ∈ (a, b). Then there exists an x0 ∈ (a, b) with

f(b) − f(a)
g(b) − g(a)

=
f ′(x0)
g′(x0)

.

Proof. Let

F (x) := f(x) − f(a) − f(b) − f(a)
g(b) − g(a)

(g(x) − g(a)).
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Now F (a) = 0 = F (b) so by Rolle’s theorem there exists an x0 ∈ (a, b) with

0 = F ′(x0) = f ′(x0) − f(b) − f(a)
g(b) − g(a)

g′(x0).

�

A special case is the 1st mean value theorem:

Corollary 3.5 Let a < b, f : [a, b] → R be continuous on [a, b] and differen-
tiable on (a, b). Then there exists an x0 ∈ (a, b) with

f ′(x0) =
f(b) − f(a)

b− a
.

A further consequence follows from corollary 3.5, namely

Corollary 3.6 Let f : [a, b] → R be continuous on [a, b] and differentiable
on (a, b) with

µ ≤ f ′(x) ≤ m for all x ∈ (a, b).

We then have for a ≤ x1 ≤ x2 ≤ b

µ(x2 − x1) ≤ f(x2) − f(x1) ≤ m(x2 − x1).

In particular if M := max(|µ|, |m|) then

|f(x2) − f(x1)| ≤M |x2 − x1| for all x1, x2 ∈ (a, b).

Therefore if f ′(x) ≡ 0 then f is constant. �

In particular, we have

Corollary 3.7 Let f : (a, b) → R be differentiable. If f ′(x) ≥ 0 for all
x ∈ (a, b), then

f(x1) ≤ f(x2) whenever a < x1 ≤ x2 < b,

i.e. f is monotonically increasing.
Likewise if f ′(x) ≤ 0 on (a, b) then

f(x1) ≥ f(x2) for a < x1 ≤ x2 < b,

i.e. f is monotonically decreasing.
If f ′(x) > 0(< 0), we get the strict inequality in (2) (resp. (3)) for x1 <

x2.
�

Another easy consequence of corollary 3.6 is
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Corollary 3.8 Let f1, f2 : [a, b] → R be continuous on [a, b] and differentiable
on (a, b), with

f1(a) = f2(a)

and
f ′
1(x) ≤ f ′

2(x) for all x ∈ (a, b).

Then
f1(x) ≤ f2(x) for all x ∈ [a, b].

Proof. The function f = f1 − f2 satisfies

f ′(x) ≤ 0 for all x ∈ (a, b).

We apply corollary 3.6 with m = 0, x1 = a, x2 = x to conclude

f(x) ≤ 0

which is our claim.
�

Corollary 3.6 also implies

Corollary 3.9 Let f : [a, b] → R be continuous on [a, b] and differentiable
on (a, b). Suppose

f ′(x) ≡ γ

for some constant γ.
Then

f(x) = γx+ c,

with some constant c, for all x ∈ [a, b].

Proof. We consider
F (x) := f(x) − γx.

F : [a, b] → R satisfies the assumptions of corollary 3.6, and

F ′(x) = f ′(x) − γ ≡ 0

on (a, b). Therefore, F ≡ c on [a, b], for some constant c. The claim follows.
�

Theorem 3.10 Let γ ∈ R and f : R → R be a function which satisfies the
differential equation f ′ = γf, that is, f ′(x) = γf(x) for all x ∈ R. Then

f(x) = f(0)eγx for all x ∈ R.
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Proof 1. We consider
F (x) := f(x)e−γx.

Now
F ′(x) = f ′(x)e−γx − γf(x)e−γx = 0,

so by corollary 3.6
F ≡ const. = F (0) = f(0),

and therefore
f(x) = f(0)eγx.

�

Proof 2. Either f ≡ 0, in which case there is nothing to prove, or else there
exists an x0 ∈ R with f(x0) �= 0; say f(x0) > 0 (otherwise one considers −f).
As f is continuous, there exists a neighborhood U(x0) with f(x) > 0 for all
x ∈ U(x0). For x ∈ U(x0) we have

(log f(x))′ =
f ′(x)
f(x)

= γ,

so by corollary 3.9, log f(x) = γx+ c, for some constant c. Hence

f(x) = c1e
γx where c1 = ec. (1)

We now show that if f is not identically zero then f(x) = 0 has no solutions.
For this, it is important to observe that (1) holds on any neighborhood U(x0)
provided f(x) �= 0 for all x ∈ U(x0). Now if f is not identically zero, say
f(x0) > 0 for some x0, there exists, by continuity of f, a smallest x1 > x0

with f(x1) = 0 or a greatest x2 < x0 with f(x2) = 0. In the first case (1)
holds for x0 ≤ x < x1. But then

lim
x→x1
x<x1

f(x) = c1e
γx1 > 0 = f(x1) ,

in contradiction to the continuity of f.
Therefore f(x1) �= 0 and similarly f(x2) �= 0. Consequently f has no

zeroes and (1) holds for all x ∈ R. Setting x = 0 one has c1 = f(0). �

In the proof above we have used local solutions to rule out zeroes. Never-
theless, one can also argue abstractly.

Theorem 3.11 Let f : [a, b] → R be a differentiable function that satisfies for
all x ∈ [a, b] |f ′(x)| ≤ γ|f(x)|, γ a constant. If f(x0) = 0 for some x0 ∈ [a, b]
then f ≡ 0 on [a, b].

Proof. We may assume that γ > 0, otherwise there is nothing to prove. Set
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δ :=
1
2γ

and choose x1 ∈ [x0 − δ, x0 + δ] ∩ [a, b] =: I such that

|f(x1)| = sup
x∈I

|f(x)|

(such an x1 exists by continuity of f).
By corollary 3.6

|f(x1)| = |f(x1) − f(x0)| ≤ |x1 − x0| sup
ξ∈I

|f ′(ξ)|

≤ γ|x1 − x0| sup
ξ∈I

|f(ξ)| ≤ γδ|f(x1)| =
1
2
|f(x1)|,

and therefore f(x1) = 0. It follows that

f(x) = 0 for all x ∈ I.

We have therefore shown that there exists a δ > 0 with the following property:
If f(x0) = 0 then f(x) = 0 for all x ∈ [x0 − δ, x0 + δ] ∩ [a, b]. If f is not
identically zero, there exists a smallest ξ1 with a < ξ1 ≤ b and f(ξ1) = 0, or
a greatest ξ2 with a ≤ ξ2 < b and f(ξ2) = 0. However, this is not compatible
with the statement which we just proved. �

Corollary 3.12 Let φ : R → R be Lipschitz continuous, c ∈ R and [a, b] ⊂ R.
There exists at most one solution f : [a, b] → R of the differential equation

f ′(x) = φ(f(x)) for all x ∈ [a, b]

with
f(a) = c.

Proof. Let f1 and f2 be solutions with f1(a) = f2(a) = c. The function
F = f1 − f2 satisfies

F (a) = 0

and
|F ′(x)| = |φ(f1(x)) − φ(f2(x))|

≤ L|f1(x) − f2(x)| = L|F (x)|
for a suitable constant L, as f1 and f2, being continuous, map the bounded
interval [a, b] onto a bounded interval and φ is Lipschitz continuous. Theorem
3.11 implies that F ≡ 0, that is f1 ≡ f2, whence the uniqueness of the
solutions. �

We shall see below, in theorem 6.16, that the differential equation

f ′(x) = φ(x, f(x)) (2)
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indeed possesses a solution with f(a) = c on some interval [a, a+h], provided
that φ is uniformly bounded and uniformly Lipschitz continuous with respect
to the second variable, i.e.

|φ(x, y)| ≤M (3)

and

|φ(x, y1) − φ(x, y2)| ≤ L|y1 − y2|, (4)

for some constants M and L and all relevant x, y, y1, y2.
In order to see why such a condition of uniform Lipschitz continuity is

needed, we shall now analyze a situation where the solution of a differential
equation becomes infinite on a finite interval.

Theorem 3.13 We consider the differential equation

f ′(x) = φ(f(x)) (5)

with
φ(y) ≥ γyα (6)

for some γ > 0, α > 1. Let f be a solution of (5) with

f(a) = c > 0.

Then there exists some b1 > a such that f(x) tends to ∞ when x approaches
b1 from below. Thus, f cannot be continued as a solution of (5) beyond b1.

Remark. One says that f “blows up” at b1.

Proof. Since f(a) = c > 0 and the right hand side of (5) is positive whenever
f(x) is positive, f(x) is a monotonically increasing function of x. Let n ∈
N, n ≥ c. We now suppose that we have found some xn ≥ a with

f(xn) = n.

Since f is monotonically increasing and consequently φ(f(x)) ≥ γxα ≥ γxα
n

for x ≥ xn, we have for x ≥ xn, by corollary 3.6, that

f(x) ≥ f(xn) + (x− xn)γxα
n

= n+ (x− xn)γxα
n.

From this, we find xn+1 with f(xn+1) = n+ 1, and

n+ 1 = f(xn+1) ≥ n+ (xn+1 − xn)γxα
n

implies

xx+1 ≤ 1
γnα

+ xn.

Iterating this inequality yields
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xN ≤
N−1∑
n=n0

1
γnα

+ xn0

for all N ≥ n0 ≥ c. We then choose n0 as the smallest n ∈ N with n ≥ c, and
by the same reasoning as above, we obtain

xn0 ≤ n0 − c

γcα
+ a.

Altogether,

xN ≤
N−1∑
n=n0

1
γnα

+
n0 − c

γcα
+ a.

The essential point now is that the preceding sum, when extended from n0

to ∞, is finite for α > 1. We put

b0 :=
∞∑

n=n0

1
γnα

+
n0 − c

γcα
+ a.

Since then
xN ≤ b0,

and xN+1 ≥ xN , because f is monotonically increasing, (xN )N∈N converges to
some b1 ≤ b0. Since xN is chosen such that f(xN ) = N and f is monotonically
increasing, we conclude that

f(x) → ∞
as x approaches b1.

�
In order to complete our qualitative picture of the growth behavior of

solutions of ODEs, we now consider the differential inequality

f ′(x) ≤ γf(x)β (7)

for a positive function f , some constant γ, and

0 ≤ β < 1.

We assume that f solves this inequality for x ≥ a.
For g := f1−β , we then have

g′(x) = (1 − β)f−β(x)f ′(x)
≤ γ(1 − β).

Suppose that
g(a) = c.

Then, from corollaries 3.9 and 3.8, for x ≥ a

g(x) ≤ γ(1 − β)(x− a) + c.
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In terms of our original f , we get

f(x) ≤ (γ(1 − β)(x− a) + c)
1

1−β .

The essential feature here is that f asymptotically grows like the power

x
1

1−β .

We now can summarize our results about the qualitative behavior of solutions
of ODEs (γ > 0):

Case A:
f ′ = γf.

Here, f(x) is proportional to eγx, i.e., it grows exponentially.

Case B:
f ′ ≥ γfα for α > 1.

Here, a positive solution necessarily blows up, i.e., it grows so fast that it
becomes infinite on some finite interval. Sometimes, this is called hyperbolic
growth.

Case C:

f ′ ≤ γfβ for some β < 1.

Here, a solution is controlled by a finite power of x, namely x
1

1−β . It thus
grows at most polynomially.

If we even have

f ′ ≤ γ,

then f grows at most linearly.

We now return to the local discussion of functions and their derivatives.
In order to distinguish minima from maxima, it is convenient to consider

second derivatives as well.

Theorem 3.14 Let f : (a, b) → R be twice differentiable, and let x0 ∈ (a, b),
with

f ′(x0) = 0, f ′′(x0) > 0. (8)

Then f has a strict local minimum at x0. If we have f ′′(x0) < 0 instead, it
has a strict local maximum at x0. Conversely, if f has a local minimum at
x0 ∈ (a, b), and if it is twice differentiable there, then

f ′′(x0) ≥ 0. (9)
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Proof. We only treat the case of a local minimum. We apply the reasoning
of corollary 3.7 to f ′ in place of f. If

lim
x→x0
x�=x0

f ′(x) − f ′(x0)
x− x0

= f ′′(x0) > 0,

then there exists δ > 0 with

f ′(x) < f ′(x0) = 0 for x0 − δ < x < x0

and
f ′(x) > f ′(x0) = 0 for x0 < x < x0 + δ.

Thus, by corollary 3.7, f is strictly monotonically decreasing on (x0 − δ, x0),
and strictly monotonically increasing on (x0, x0 + δ). This implies that

f(x) > f(x0) for 0 < |x− x0| < δ,

and consequently f has a strict local minimum at x0.
The second half of the theorem follows from the first half. �

Examples.
1) f : R → R, f(x) = x2 satisfies f ′(0) = 0, f ′′(0) > 0. f therefore has a

strict local minimum at x0 = 0.

2) f : R → R, f(x) = x4 satisfies f ′(0) = 0, f ′′(0) = 0. The condition of
theorem 3.14 thus does not hold, but f nevertheless has a strict local
minimum at x0 = 0.

3) f : R → R, f(x) = x3 satisfies f ′(0) = 0, f ′′(0) = 0. At x0 = 0, f has
neither a minimum nor a maximum.

We finally discuss the famous theorem of Taylor.

Theorem 3.15 (Taylor expansion) Assume that the function

f :[x0, x] → R (or f : [x, x0] → R,

depending on whether x0 < x or x < x0)

possesses a continuous derivative f (n) on [x0, x] and is even (n + 1)times
differentiable on (x0, x) (resp. on (x, x0)). Then there exists some ξ between
x0 and x with

f(x) =f(x0) + f ′(x0)(x− x0) +
1
2!
f ′′(x0)(x− x0)2

(10)

+ . . .+
1
n!
f (n)(x0)(x− x0)n +

1
(n+ 1)!

f (n+1)(ξ)(x− x0)n+1.
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Proof. We may find z ∈ R with

f(x) =
n∑

ν=0

1
ν!
f (ν)(x0)(x− x0)ν +

1
(n+ 1)!

(x− x0)n+1z. (11)

We consider

ϕ(y) := f(x) −
n∑

ν=0

1
ν!
f (ν)(y)(x− y)ν − 1

(n+ 1)!
(x− y)n+1z.

ϕ is continuous on [x0, x] and differentiable on (x0, x) (we discuss only the
case x0 < x, as the case x > x0 is analogous). Moreover, ϕ(x) = 0, and also
ϕ(x0) = 0 by choice of z. By Rolle’s theorem 3.3, there exists some ξ ∈ (x0, x)
with

ϕ′(ξ) = 0.

As

ϕ′(y) = −f ′(y) −
n∑

ν=1

( 1
ν!
f (ν+1)(y)(x− y)ν − 1

(ν − 1)!
f (ν)(y)(x− y)ν−1

)
+

1
n!

(x− y)nz

= − 1
n!
f (n+1)(y)(x− y)n +

1
n!

(x− y)nz,

ϕ′(ξ) = 0 implies that
z = f (n+1)(ξ).

Inserting this in (11) yields (10). �

Exercises for § 3

1) Let f : R → R be differentiable with

fn+1 ≡ 0 for some n ∈ N

(i.e. the (n+ 1)st derivative of f vanishes identically). Show that f is
a polynomial of degree at most n.

2 Let f : [a, b] → R be continuous, and let it be twice differentiable in
(a, b) with

f ′′ = cf for some c > 0.

Show that for all x ∈ (a, b)

|f(x)| ≤ max(|f(a)|, |f(b)|).
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(Hint: Show that f may in (a, b) neither assume a positive maximum
nor a negative minimum.)

3) Let f : R → R be differentiable with

|f ′(x)| ≤ cf(x) for all x ∈ R and some c ≥ 0.

a) Show that |f(x)| ≤ γec|x| for some γ ≥ 0.
b) Assume in addition that f(x0) = 0 for some x0 ∈ R. Show that

f ≡ 0.

4) Let f : [a, b] → [a, b] be differentiable, f ′(x) �= 1 for all x ∈ [a, b]. Show
that there exists a unique x ∈ [a, b] with f(x) = x. (The existence of
such an x has been shown already in exercise. The point here is the
uniqueness.)

5) Let f : (a, b) → R be differentiable, x0 ∈ (a, b), f ′ continuous at
x0. Let (xn)n∈N, (yn)n∈N ⊂ (a, b) with xn �= yn for all n, lim

n→∞xn =
lim

n→∞ yn = x0. Show that

lim
n→∞

f(xn) − f(yn)
xn − yn

= f ′(x0).

6)
a) Let p ≥ 1, f : [0, 1] → R, f(x) = (1+x)p

1+xp . Determine the max-
imum and minimum of f in [0, 1]. Use this to conclude the
following inequalities:
For all a, b ∈ R

|a|p + |b|p ≤ (|a| + |b|)p ≤ 2p−1(|a|p + |b|p).

b) Let p > 1, q := p
p−1 , f(x) = |a|p

p + xq

q − |a|x for x ≥ 0, a ∈
R. Determine the minimum of f for x ≥ 0 and conclude the
following inequality: For all a, b ∈ R

|ab| ≤ |a|p
p

+
|b|q
q
.

7) Let f : R → R be differentiable, f �≡ 0, and satisfy

f(x+ y) = f(x)f(y) for all x, y ∈ R.

Show that
f(x) = eλx for some λ ∈ R.



4. The Banach Fixed Point Theorem. The
Concept of Banach Space

As the proper setting for the convergence theorems of subsequent §§, we introduce
the concept of a Banach space as a complete normed vector space. The Banach
fixed point theorem is discussed in detail.

Theorem 4.1 Let I ⊂ R be a closed, not necessarily bounded, interval and
f : I → R a function with f(I) ⊂ I and which satisfies for a fixed θ, 0 ≤ θ <
1, the inequality

|f(x) − f(y)| ≤ θ|x− y| for all x, y ∈ I. (1)

Then there exists exactly one fixed point of f, i.e. a ξ ∈ I with

f(ξ) = ξ.

Proof. We choose an arbitrary x0 ∈ I and set iteratively

xn := f(xn−1) for n ≥ 1.

This is possible as f(I) ⊂ I.We now show that (xn) forms a Cauchy sequence.
For
n > m,m ≥ 1 we have

|xn − xm| ≤ |xn − xn−1| + |xn−1 − xn−2| + . . .+ |xm+1 − xm|
= |f(xn−1) − f(xn−2)| + . . .+ |f(xm) − f(xm−1)|
≤ θ(|xn−1 − xn−2| + . . .+ |xm − xm−1|)

≤
n−1∑
ν=m

θν |x1 − x0|

≤ θm 1
1 − θ

|x1 − x0| (taking into consideration that θ < 1).

As θ < 1 we deduce,

∀ε > 0 ∃ N ∈ N ∀ n,m ≥ N : |xn − xm| < ε.

This shows that (xn)n∈N is a Cauchy sequence.
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As R is complete, the sequence (xn) converges to an ξ ∈ R and as I is
closed, ξ ∈ I. Furthermore, as f is continuous on account of (1), we have:

f(ξ) = lim
n→∞ f(xn) = lim

n→∞xn+1 = lim
m→∞xm = ξ.

Therefore ξ is a fixed point.
For uniqueness let ξ1, ξ2 be fixed points, so

f(ξ1) = ξ1, f(ξ2) = ξ2.

From (1) it follows that

|ξ1 − ξ2| = |f(ξ1) − f(ξ2)| ≤ θ|ξ1 − ξ2|
and as θ < 1 we have ξ1 = ξ2, hence the uniqueness. �

Corollary 4.2 Let I ⊂ R be a closed interval, f : I → R a differentiable
function with f(I) ⊂ I. Let θ, 0 ≤ θ < 1, be given with

|f ′(x)| ≤ θ for all x ∈ I.

Then there exists exactly one fixed point ξ of f in I.

Proof. The mean value theorem implies that

|f(x) − f(y)| ≤ θ|x− y| for all x, y ∈ I.

(Notice that we have used here that I is an interval.)
Therefore, the hypotheses of theorem 4.1 are fulfilled and the assertion

follows. �

We shall now return to theorem 4.1 and analyse its proof closely. Indeed,
we shall investigate which properties of the real numbers have been used in
its proof. These properties are given in the following definition:

Definition 4.3 Let V be a vector space over R (or C). A mapping

‖ · ‖ : V → R

is called a norm if the following conditions are fulfilled:

For v ∈ V \{0}, ‖v‖ > 0 (positive definiteness)(i)
For v ∈ V, λ ∈ R resp. C, ‖λv‖ = |λ|‖v‖(ii)
For v, w ∈ V, ‖v + w‖ ≤ ‖v‖ + ‖w‖ (triangle inequality).
(iii)

A vector space V equipped with a norm ‖ · ‖ is called a normed vector space
(V, ‖ · ‖). A sequence (vn)n∈N ⊂ V is said to converge (relative to ‖ · ‖) to v if
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lim
n→∞ ‖vn − v‖ = 0;

we write lim
n→∞ vn = v, when ‖ · ‖ is clear from the context.

Examples. The absolute value | · | in R can be generalized to a norm in Rd

by putting for x = (x1, . . . , xd) ∈ Rd

‖x‖p :=
( d∑

i=1

(|xi|)p
) 1

p

, with 1 ≤ p < ∞,

or by
‖x‖∞ := max

i=1,...,d
|xi|.

Of particular importance is the Euclidean norm ‖x‖2. Sometimes, we shall
write ‖x‖, or even |x|, in place of ‖x‖2. The notation |x| will be employed
when we want emphasize the analogy with the usual absolute value | · | in
R. The examples just given are norms on finite dimensional vector spaces. In
the sequel, however, we shall encounter norms on infinite dimensional vector
spaces, and the properties of certain such norms will form an important object
of study for us.

Remark. Of the above properties of a norm, the condition (ii) will not be
used in the present §. One can therefore define more generally a metric on a
space X as follows:

Definition 4.4 A metric on a space X is a mapping

d : X ×X → R

such that

∀ x, y ∈ X : d(x, y) ≥ 0(i)
and d(x, y) = 0 only then when x = y (positive definiteness)
∀ x, y ∈ X : d(x, y) = d(y, x) (symmetry)(ii)
∀ x, y, z ∈ X : d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)(iii)

A sequence (xn)n∈N ⊂ X is said to converge (relative to d) to x ∈ X if

lim
n→∞ d(xn, x) = 0.

The fact that every Cauchy sequence in R is convergent was crucial to the
proof of theorem 4.1. We now define next the concept of Cauchy sequence in
a normed vector space:
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Definition 4.5 Let V be a vector space with a norm ‖ · ‖. A sequence
(vn)n∈N ⊂ V is called a Cauchy sequence (w.r.t. ‖ · ‖) if

∀ ε > 0 ∃ N ∈ N ∀ n,m ≥ N : ‖vn − vm‖ < ε .

Now we distinguish those vector spaces in which every Cauchy sequence is
convergent.

Definition 4.6 A normed vector space (V, ‖ · ‖) is called complete, or a
Banach space, if every Cauchy sequence (vn)n∈N ⊂ V converges to some v ∈
V. A subset A of a Banach space is called closed if (vn)n∈N ⊂ A, lim

n→∞ vn = v

implies v ∈ A.

Our preceding analysis gives as a result:

Theorem 4.7 ( Banach fixed point theorem) Let (V, ‖ · ‖) be a Banach
space, A ⊂ V a closed subset, f : A → V a function with f(A) ⊂ A which
satisfies the inequality

‖f(v) − f(w)‖ ≤ θ‖v − w‖ for all v, w ∈ V,

θ being fixed with 0 ≤ θ < 1.
Then f has a uniquely determined fixed point in A.

Proof. The proof is exactly the same as that of theorem 4.1; one substitutes
V for R, A for I and ‖ · ‖ for | · |. �

Definition 4.8 In continuation of definition 4.5, a sequence (xn)n∈N in a
metric space (X, d), that is a space X equipped with a metric d, is a Cauchy
sequence if

∀ ε > 0 ∃ N ∈ N ∀ n,m ≥ N : d(xn, xm) < ε.

A metric space (X, d) is called complete if every Cauchy sequence has a limit
in X.

Remark. Theorem 4.7 also holds in complete metric spaces. Instead of
‖f(v) − f(w)‖ one now has to write d(f(v), f(w)) etc. without changing
anything in the proof.



5. Uniform Convergence. Interchangeability
of Limiting Processes. Examples of Banach
Spaces. The Theorem of Arzela-Ascoli

We introduce the notion of uniform convergence. This leads to Banach spaces of
continuous and differentiable functions. We discuss when the limit of the derivatives
of a convergent sequence of functions equals the derivative of the limit and related
questions. The theorem of Arzela-Ascoli is shown, saying that an equicontinuous
and uniformly bounded sequence of functions on a closed and bounded set contains
a uniformly convergent subsequence.

Definition 5.1 Let K be a set and fn(n ∈ N) real (or complex) valued func-
tions defined on K. The sequence (fn)n∈N converges pointwise to a function
f if for every x ∈ K lim

n→∞ fn(x) = f(x).

Remark. For every x ∈ K we have:

∀ ε > 0 ∃ N ∈ N ∀ n ≥ N : |fn(x) − f(x)| < ε.

Here N depends in general not only on ε but also on x.

Examples.

1) Let fn : [0, 1] → R be the function fn(x) = xn. The sequence (fn)n∈N

converges pointwise to the function f defined by:

f(x) :=
{

0, if 0 ≤ x < 1
1, if x = 1.

For x = 1 we always have fn(x) = 1, whereas for 0 ≤ x < 1, given
ε > 0 there exists an N ∈ N, e.g. the smallest natural number greater
than log ε

log x , such that

|fn(x) − 0| = |fn(x)| = xn < ε for all n ≥ N.

We observe that the limit function f is not continuous, although all
the fn are continuous. The concept of pointwise convergence is there-
fore too weak to allow for continuity properties to carry over to limit
functions.

2) The weakness of this convergence concept is demonstrated more dras-
tically in the next example:
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Define fn : [0, 1] → R, n ≥ 2, by requiring fn to be continuous and
given by the following prescription:

fn(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for x = 0
n for x = 1

n
0 for 2

n ≤ x ≤ 1
linear for 0 ≤ x ≤ 1

n
linear for 1

n ≤ x ≤ 2
n

or, concisely

fn(x) := max(n− n2|x− 1
n
|, 0).

Now fn converges pointwise to the function f(x) = 0, since f(0) = 0
and for 0 < x ≤ 1 there exists an N ∈ N with 2

N ≤ x, so for all
n ≥ N we have fn(x) = 0 and thus lim

n→∞ fn(x) = 0. Consequently

the sequence (fn) converges pointwise to 0, although the fn become
unbounded as n → ∞.

We now introduce a better convergence concept.

Definition 5.2 Let K be a set, and fn : K → R or C. The sequence (fn)n∈N

converges uniformly to the function f : K → R or C if

∀ ε > 0 ∃ N ∈ N ∀ n ≥ N,x ∈ K : |fn(x) − f(x)| < ε.

Symbolically: fn ⇒ f.

The crucial point in this formulation is that for all x ∈ K the same N
can be chosen.

Theorem 5.3 Let K ⊂ R or C and fn : K → R (or C) continuous functions
which converge uniformly to f : K → R (resp. C). Then the function f is
continuous.

Proof. Let x ∈ K, ε > 0. By virtue of the uniform convergence of (fn), there
exists a sufficiently large N ∈ N so that for all ξ ∈ K we have

|fN (ξ) − f(ξ)| < ε

3
.

Corresponding to x and ε we then determine a δ > 0 so that

|fN (y) − fN (x)| < ε

3
for all y ∈ K with |x− y| < δ.

This is possible as the functions fN are by assumption continuous. We then
have for all y ∈ K with |x− y| < δ
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|f(x) − f(y)| ≤ |f(x) − fN (x)| + |fN (x) − fN (y)| + |fN (y) − f(y)|
<
ε

3
+
ε

3
+
ε

3
= ε,

whereby f is continuous at x and therefore also in K, as x ∈ K was arbitrary.
�

Definition 5.4 Let K be a set and f : K → R (or C) a function.

‖f‖K := sup{|f(x)| : x ∈ K}.

Lemma 5.5 ‖ · ‖K is a norm on the vector space of bounded real (resp.
complex) valued functions on K.

Proof. If f is bounded then ‖f‖K < ∞.

‖f‖K ≥ 0 for all f, and ‖f‖K = 0 ⇔ f ≡ 0 on K(i)
Let λ ∈ R resp. C(ii)
⇒ ‖λf‖K = sup{|λf(x)| : x ∈ K}
= |λ| sup{|f(x)| : x ∈ K} = |λ|‖f‖K

‖f + g‖K = sup{|f(x) + g(x)| : x ∈ K}(iii)
≤ sup{|f(x)| + |g(x)| : x ∈ K}
≤ sup{|f(y)| : y ∈ K} + sup{|g(z)| : z ∈ K}
= ‖f‖K + ‖g‖K

(note that f and g could assume their maximum at different points).
Thereby all the properties of a norm are fulfilled. �

Theorem 5.6 fn : K → R (or C) converges uniformly to f : K → R (resp.
C) if and only if

lim
n→∞ ‖fn − f‖K = 0.

Proof.

fn ⇒ f ⇔ ∀ ε > 0 ∃ N ∈ N ∀ n ≥ N,x ∈ K : |fn(x) − f(x)| < ε

⇔ ∀ ε > 0 ∃ N ∈ N ∀ n ≥ N : sup{|fn(x) − f(x)| : x ∈ K} < ε

⇔ ∀ ε > 0 ∃ N ∈ N ∀ n ≥ N : ‖fn − f‖K < ε

⇔ lim
n→∞ ‖fn − f‖K = 0. �

Theorem 5.7 The space C0
b (K) := {f ∈ C0(K) : ‖f‖K < ∞}, equipped

with the norm ‖ · ‖K , is a Banach space. Correspondingly, so is C0
b (K,C).
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Proof. Let (fn)n∈N ⊂ C0
b (K) be a Cauchy sequence relative to ‖ · ‖K . So

∀ ε > 0 ∃ N ∈ N ∀ n,m ≥ N : ‖fn − fm‖K < ε,

and therefore sup{|fn(x) − fm(x)| : x ∈ K} < ε.

Thereby, for every y ∈ K |fn(y) − fm(y)| < ε, and hence (fn(y))n∈N is a
Cauchy sequence. As R is complete, this sequence converges to f(y). For,
when we let m tend to infinity in the above inequality we have

∀ ε > 0 ∃ N ∈ N ∀ n ≥ N : sup{|fn(x) − f(x)| : x ∈ K} < ε,

as for every y ∈ K |fn(y) − f(y)| < ε and N is independent of y. Therefore

lim
n→∞ ‖fn − f‖K = 0

and f is the limit of (fn) with respect to ‖ · ‖K . By theorem 5.3 the function
f is continuous, which proves the completeness of C0

b (K). �

Corollary 5.8 (Weierstraß) Let fn : K → R or C be functions with

∞∑
n=0

‖fn‖K <∞.

The series
∞
Σ

n=0
fn converges uniformly on K, and for every x ∈ K, the series

∞
Σ

n=0
fn(x) converges absolutely.

Proof. We first show that the sequence of partial sums Fm :=
m

Σ
n=0

fn is a

Cauchy sequence relative to ‖ · ‖. Now for m ≥ m′ we have

‖Fm − Fm′‖K = ‖
m∑

n=m′
fn‖K ≤

m∑
n=m′

‖fn‖K ,

whereby the sequence (Fm) is Cauchy on account of the convergence of
∞
Σ

n=0
‖fn‖K . Therefore by theorem 5.7

∞
Σ

n=0
fn converges uniformly on K.

The absolute convergence follows from Σ|fn(x)| ≤ Σ‖fn‖K as the latter
majorizes the former series. �

Corollary 5.9 Let z0 ∈ C, (an)n∈N ⊂ C. Assume that for some z1 �= z0 the
series

f(z) :=
∞∑

n=0

an(z − z0)n

is convergent.
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For r > 0 let B(z0, r) := {z ∈ C : |z − z0| ≤ r}. Then for every r with
0 < r < |z1 − z0| the above power series converges absolutely and uniformly
on B(z0, r) and so does the power series

∞∑
n=1

n an(z − z0)n−1.

Proof. For z ∈ B(z0, r) we have

|an(z − z0)n| = |an(z1 − z0)n| |z − z0|n
|z1 − z0|n ≤ |an(z1 − z0)n|ϑn

with ϑ := r
|z1−z0| < 1. As f(z1) converges, there exists an m ∈ R with

|an(z1 − z0)n| ≤ m for all n ∈ N,

so
|an(z − z0)n| ≤ mϑn for z ∈ B(z0, r).

Therefore the series ∞∑
n=0

‖an(z − z0)n‖B(z0,r)

converges and corollary 5.8 gives the absolute and uniform convergence of
∞
Σ

n=0
an(z − z0)n on B(z0, r).

Similarly for z ∈ B(z0, r)

|nan(z − z0)n−1| ≤ nmϑn−1.

As
∞
Σ

n=1
nϑn−1 converges by the ratio test, the statements about convergence

of∞
Σ

n=1
nan(z − z0)n−1 for z ∈ B(z0, r) follow likewise from corollary 5.8. �

Definition 5.10 For a power series f(z) as in corollary 5.9 its radius of
convergence R is

R := sup{r :
∞∑

n=0

an(z − z0)n convergent on B(z0, r)}.

Theorem 5.11 Let I = [a, b] be a bounded interval in R. Let fn : I → R be
continuously differentiable functions. Assume that

(i) there exists a z ∈ I for which fn(z) converges

(ii) the sequence of derivatives (f ′
n) converges uniformly on I.
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Then the sequence (fn) converges uniformly on I to a continuously dif-
ferentiable function f and we have

f ′(x) = lim
n→∞ f ′

n(x) for all x ∈ I.

Proof. Let g(x) be the limit of f ′
n(x). Let η > 0. Because of uniform conver-

gence of f ′
n we can find an N ∈ N with the following property

∀ n,m ≥ N : sup{|f ′
n(x) − f ′

m(x)| : x ∈ I} < η (1)
and so sup{|f ′

n(x) − g(x)| : x ∈ I} < η for n ≥ N (2)

Furthermore, for all x ∈ I, n,m ∈ N, we have, by the mean value theorem

|fn(x) − fm(x) − (fn(z) − fm(z))| ≤ |x− z| sup
ξ∈I

|f ′
n(ξ) − f ′

m(ξ)|, (3)

and therefore

|fn(x) − fm(x)| ≤ |fn(z) − fm(z)| + |x− z| sup
ξ∈I

|f ′
n(ξ) − f ′

m(ξ)|,

wherefrom, on account of (i) and (1) it follows easily that (fn) is a Cauchy se-
quence relative to ‖·‖I . Therefore by theorem 5.7 the sequence (fn) converges
to a continuous limit function f.

In particular (i), and thereby the above considerations, hold for every
z ∈ I.

In (3) we let m tend to ∞ and obtain from (2)

|fN (x) − f(x) − (fN (z) − f(z))| ≤ |x− z|η. (4)

For N, which depends only on η, and x we find a δ > 0 with

|fN (x) − fN (z) − (x− z)f ′
N (x)| ≤ η|x− z| for |x− z| < δ. (5)

This follows from our characterization of differentiability (see theorem 2.2).
It follows from (2), (4) and (5) that

|f(x) − f(z) − g(x)(x− z)| ≤ 3η|x− z|, if |x− z| < δ.

Since this holds for every x ∈ I and for all z with |x− z| < δ, it follows from
our characterization of differentiability, that f ′(x) exists and

f ′(x) = g(x).

�

Theorem 5.11 has the following stronger version, which we shall use later
in introducing integrals.
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Theorem 5.12 Let fn, gn : [a, b] → R be functions. Assume that the fn are
continuous and for every n there exists a countable subset Dn ⊂ [a, b] such
that for every x ∈ I\Dn

f ′
n(x) = gn(x).

Assume moreover that

(i) there exists a z ∈ [a, b] for which fn(z) converges

(ii) (gn)n∈N converges uniformly on [a, b].

Then fn converges uniformly on [a, b] to a continuous function f and for
all x ∈ I\ ∪

n∈N

Dn, f
′(x) exists and

f ′(x) = lim
n→∞ gn(x).

The proof of this theorem is the same as that of theorem 5.11 if, instead
of the mean value theorem one uses the following lemma:

Lemma 5.13 Let I := [a, b] ⊂ R and f : I → R continuous, D a countable
subset of I such that f is differentiable on I\D with

f ′(x) ≤M for all x ∈ I\D.
We then have

f(b) − f(a) ≤M(b− a) (6)

Proof. It suffices to show that for all η > 0

f(b) − f(a) ≤M(b− a) + η(b− a+ 1).

As the left hand side of this inequality is independent of η, inequality (6)
follows immediately.

Let n �→ ρn(n ∈ N) be a counting of D.

A :=
{
ξ ∈ I : for all ζ with a ≤ ζ < ξ

f(ζ) − f(a) ≤ M(ζ − a) + η(ζ − a) + η
∑

ρn<ζ

2−n
}

As a ∈ A, the set A is nonempty. c := supA. By continuity of f we have
c ∈ A and so

f(c) − f(a) ≤ M(c− a) + η(c− a) + η
∑
ρn<c

2−n. (7)

We claim that c = b, which implies the inequality (6). So we assume that
c < b and consider two cases:
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Case 1: c �∈ D. Then f ′(c) exists and from our characterization of the deriva-
tive (theorem 2.2) there exists a δ > 0 with c+ δ ≤ b such that for all ζ with
c ≤ ζ ≤ c+ δ

f(ζ) − f(c) − f ′(c)(ζ − c) ≤ η(ζ − c).

From this it follows that

f(ζ) − f(c) ≤ f ′(c)(ζ − c) + η(ζ − c) ≤M(ζ − c) + η(ζ − c)

and with (7)

f(ζ) − f(a) ≤M(ζ − a) + η(ζ − a) + η
∑

ρn<ζ

2−n.

Therefore ζ ∈ A for c ≤ ζ ≤ c+ δ which contradicts the definition of c. So in
case 1 necessarily c = b.

Case 2: c ∈ D, say c = ρm. By continuity of f there exists a δ > 0 with
c+ δ ≤ b such that for all ζ with c ≤ ζ ≤ c+ δ we have

|f(ζ) − f(c)| ≤ η2−m.

By (7) it follows again for c < ζ < c+ δ

f(ζ) − f(a) ≤M(c− a) + η(c− a) + η
∑
ρn≤c

2−n

≤M(ζ − a) + η(ζ − a) + η
∑

ρn<ζ

2−n

and we obtain again a contradiction to the definition of c. This completes the
proof Lemma 5.13. �

We now return to theorem 5.11 and draw some consequences:

Definition 5.14 For f ∈ Ck(D), k = 0, 1, 2, . . . , D ⊂ R, let

‖f‖Ck(D) :=
k∑

i=0

‖f (i)‖D (here f (0) := f),

Ck
b (D) := {f ∈ Ck(D) : ‖f‖Ck(D) < ∞}.

For f ∈ Ck,α(D), k = 0, 1, 2, . . . , 0 < α ≤ 1, D ⊂ R, let

‖f‖Ck,α(D) := ‖f‖Ck(D) + sup
x,y∈D

x�=y

|f (k)(x) − f (k)(y)|
|x− y|α ,

Ck,α
b (D) := {f ∈ Ck,α(D) : ‖f‖Ck,α(D) < ∞}.
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Lemma 5.15 ‖·‖Ck(D) and ‖·‖Ck,α(D) define norms on Ck
b (D) and Ck,α

b (D),
respectively.

The proof is elementary, if one draws on Lemma 5.5.

Theorem 5.16 (Ck
b (D), ‖ · ‖Ck(D)) is a Banach space for k = 0, 1, 2, . . .

Proof. We deal only with the case k = 1, as the general case then follows
easily by induction. The case k = 0 is theorem 5.7. Let (fn)n∈N be a Cauchy
sequence relative to ‖ · ‖C1(D). This means that (fn) and (f ′

n) are Cauchy
sequences relative to ‖ · ‖D. As by theorem 5.7 C0

b (D) is a Banach space,
there exist limit functions, so

fn ⇒ f, f ′
n ⇒ g.

By theorem 5.11 (note that here even a stronger condition than (i) of theorem
5.11 is fulfilled) we have

f ′ = g

on every bounded interval contained in D, and so, f ∈ C1
b (D) and ‖fn −

f‖C1(D) → 0. Therefore C1
b (D) is complete and hence a Banach space. �

Theorem 5.17 For k = 0, 1, 2, . . . , 0 < α ≤ 1 (Ck,α
b (D), ‖ · ‖Ck,α(D)) is a

Banach space.

Proof. We consider only the case k = 0, as the general case follows easily
inductively by using theorem 5.16. So let (fn)n∈N be a Cauchy sequence
relative to ‖ · ‖C0,α(D). Then (fn)n∈N is also a Cauchy sequence relative to
‖ · ‖D and by theorem 5.16, the sequence (fn) converges uniformly to a limit
function f. Moreover ∀ ε > 0 ∃ N ∈ N ∀ n,m ≥ N :

sup
x,y∈D

x�=y

|fn(x) − fm(x) − (fn(y) − fm(y))|
|x− y|α < ε .

For every pair x, y ∈ D,x �= y, we can let m tend to ∞ and obtain

|fn(x) − f(x) − (fn(y) − f(y))|
|x− y|α < ε .

This implies firstly that

|f(x) − f(y)|
|x− y|α ≤ ε+

|fn(x) − fn(y)|
|x− y|α

and so f ∈ C0,α
b (D) and secondly lim

n→∞ ‖fn − f‖C0,α(D) = 0. Therefore

C0,α
b (D) is complete, hence a Banach space. �
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We now come to

Definition 5.18 Let K ⊂ R or C and fn : K → R or C functions (n ∈ N).

a) The sequence (fn)n∈N is called uniformly bounded in K

:⇔ ∃ M ∈ R ∀ n ∈ N, x ∈ K : |fn(x)| ≤M

(so for all n : ‖fn‖K ≤M)

b) The sequence (fn)n∈N is called equicontinuous on K

⇔ ∀ ε > 0 ∃ δ > 0 ∀ n ∈ N, x, y ∈ K with |x− y| < δ : (8)
|fn(x) − fn(y)| < ε.

If the sequence (fn)n∈N is equicontinuous in K then in particular all the
fn are there uniformly continuous. The important point in (8) is that δ is
independent of n.

Theorem 5.19 Let I be an interval in R. Let

(fn)n∈N ⊂ Ck(I), k ≥ 1

or ⊂ Ck,α(I), 0 < α ≤ 1, k ≥ 0,
with ‖fn‖Ck(I) resp. ‖fn‖Ck,α(I) ≤M for all n.

Then (fn) is uniformly bounded and equicontinuous.

Proof. Uniform boundedness of (fn) is clear. For equicontinuity, it suffices
to consider the cases k = 1 and k = 0, 0 < α ≤ 1. First, let (fn) ⊂
C1(I), ‖fn‖C1(I) ≤ M. By the mean value theorem, for all x, y ∈ I and
n ∈ N we have:

|fn(x) − fn(y)| ≤ |x− y| sup
ξ∈I

|f ′
n(ξ)| ≤M |x− y|,

and equicontinuity follows.
Similarly now let (fn) ⊂ C0,α(I), ‖fn‖C0,α(I) ≤ M. Then for all x, y ∈ I

and n ∈ N

|fn(x) − fn(y)| ≤M |x− y|α

and equicontinuiuty follows again. �

Theorem 5.20 (Arzela-Ascoli). Let I = [a, b] be a closed, bounded interval
in R, fn : I → R or C a sequence of uniformly bounded and equicontinuous
functions. Then the sequence (fn)n∈N contains a uniformly convergent sub-
sequence.
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Proof. We consider a sequence (xn)n∈N, which is dense in I. So every x ∈ I
is a limit of a subsequence of (xn). For I = [0, 1] we can take for example the
following sequence:

(0, 1,
1
2
,
1
4
,
3
4
,
1
8
,
3
8
,
5
8
,
7
8
,

1
16
, . . .).

Since (fn) is uniformly bounded, |fn(x1)| is, in particular, bounded, inde-
pendently of n. Therefore, there exists a subsequence (f1,n)n∈N of (fn) for
which f1,n(x1) is convergent. Iteratively, we find a subsequence (fk,n)n∈N

of (fk−1,n)n∈N, for which fk,n(xk) converges. As (fk,n) is a subsequence of
(fk−1,n), inductively the sequences (fk,n(x1)), . . . , (fk,n(xk−1)) also converge.
We now construct the diagonal sequence (fkk)k∈N. Then fkk(xi) converges
for every fixed i ∈ N as k → ∞. Namely, if k ≥ i, then fkk ∈ (fi,n)n∈N, and
fi,n(xi) converges. The above process is called the Cantor diagonal process.
We now show that (fkk)k∈N is a Cauchy sequence relative to ‖ · ‖I . Let ε > 0.
We choose

1) δ > 0 such that

∀ x, y ∈ I with |x− y| < δ, k ∈ N : |fkk(x) − fkk(y)| < ε

3
.

This is possible because of the equicontinuity of the sequence (fn)n∈N

and therefore of its subsequence (fkk)k∈N.

2) M ∈ N such that:

∀ x ∈ [0, 1] ∃ i ∈ {1, . . . ,M} : |x− xi| < δ.

It is in this step that the boundedness of I is used.

3) N ∈ N such that

∀ i ∈ {1, . . . ,M}, n,m ≥ N : |fnn(xi) − fmm(xi)| < ε

3
.

As M has already been chosen, this is a question of finitely many
points xi, i = 1, . . . ,M, and as (fnn(xi))n∈N converges for all i, such
an N can be found. So N depends on M, M on δ and δ ond ε. Now
for every x ∈ [0, 1] and n,m ≥ N

|fnn(x) − fmm(x)| ≤ |fnn(x) − fnn(xi)| + |fnn(xi) − fmm(xi)|
+ |fmm(xi) − fmm(x)|
<
ε

3
+
ε

3
+
ε

3
= ε

where xi (1 ≤ i ≤ M) has been chosen as in 2).
Therefore

∀ ε > 0 ∃ N ∈ N ∀ n,m ≥ N : sup{|fnn(x)−fmm(x)| : x ∈ [0, 1]} < ε,
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as N is independent of x.
Thereby (fnn)n∈N has been shown to be a Cauchy sequence. �

Corollary 5.21 Let (fn)n∈N ⊂ Ck(I), k ≥ 1 or ⊂ Ck,α(I), k ≥ 0, 0 < α ≤ 1
with

‖fn‖Ck(I) ≤M or ‖fn‖Ck,α(I) ≤M,

where I is a closed bounded interval in R. Then (fn)n∈N has a uniformly
bounded convergent subsequence.

Proof. This follows directly from theorems 5.19 and 5.20. �

Remarks.
1) Quite analogously one can prove the theorem of Arzela-Ascoli for

example for a sequence (fn) of uniformly bounded and equicontinuous
functions defined on B(zo, r) ⊂ C, 0 < r <∞.

2) We want to show by an example that in the theorem of Arzela-Ascoli,
the assumption on the interval of definition I being bounded, is es-
sential. For this we set

fn(x) :=
{

sinx for 2πn ≤ x ≤ 2π(n+ 1)
0 otherwise

The functions fn are uniformly bounded and equicontinuous and con-
verge pointwise, but not uniformly, to 0.

Exercises for § 5

1) Which of the following sequences (fn)n∈N of functions fn : R → R

converge for n → ∞? What are the limits of the convergent ones?
Find all intervals where the convergence is uniform.

a) fn(x) = nx
1+nx2 .

b) fn(x) = nx
1+n2x2 .

c) fn(x) = n2x
1+nx2 .

2) Which of the following sequences (fn)n∈N is uniformly convergent? If
it is, what is the limit?
a) fn : R → R, fn(x) :=

{ |x− n| − 1 for n− 1 ≤ x ≤ n+ 1
0 otherwise .

b) fn : R → R, fn(x) := 1
1+( x

n )2 .

c) fn : R → R, fn(x) = sin( x
n ).
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d) fn : R → R, fn(x) :=
{

1
n sinx for 2πn ≤ x ≤ 2π(n+ 1)
0 otherwise .

3) Show that fn(x) = xn converges uniformly on every interval [a, b] ⊂
(0, 1).

4) Let D ⊆ R, f : D → R a function, (an)n∈N ⊂ R a sequence that con-
verges to 0, and put fn(x) := anf(x) for x ∈ D. Show that (fn)n∈N

converges to 0 pointwise on D, and the convergence is uniform pre-
cisely if f is bounded on D.

5)
a) Let gn : K → R be functions that converge uniformly to a

function g. Let f : K → R be bounded. Then gnf converges
uniformly to gf.

b) Let gn ⇒ g on K as in a), and suppose

|gn(x)| ≥ c > 0 for all x ∈ K,n ∈ N.

Then
1
gn

⇒ 1
g

on K.

6) For f ∈ C∞(R), put

|||f ||| := sup{|f(x)| : 0 ≤ x ≤ 1}.
Does ||| · ||| define a norm on C∞(R)? (Hint: Consider the function

f(x) :=
{
e−

1
x2 for x ≤ 0

0 elsewhere.

(Of course, one needs to verify that f ∈ C∞(R).))

7) Let 0 < β < α ≤ 1, I = [a, b] a closed and bounded interval in R,
(fn)n∈N ⊂ Cα(I) with

‖fn‖Cα(I) ≤ M for some constant M.

show that a subsequence of (fn)n∈N converges w.r.t. the norm ‖ ·
‖Cβ(I).

8) Let P be the space of polynomials p : R → R, i.e. p(x) = anx
n +

an−1c
n−1 + . . .+ a0, with a0, . . . , an ∈ R. For p ∈ P, we put

‖p‖ := sup{|p(x)| : 0 ≤ x ≤ 1}.

a) Show that ‖ · ‖ defines a norm on P.
b) Is (P, ‖ · ‖) a Banach space?
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9) Let fn : [a, b] → R be continuously differentiable functions. Assume
that (fn)n∈N converges pointwise to some function f. Which – if any –
of the following assertions can be concluded from these assumptions?

a) f is continuously differentiable.

b) The sequence (f
′
n)n∈N converges pointwise.

c) If f is continuously differentiable, then lim
n→∞ f

′
n(x) = f

′
(x) for

all x ∈ [a, b].

d) If f is continuously differentiable, and if lim
n→∞ f

′
n(x) exists for

all x ∈ [a, b], then lim
n→∞ f

′
n(x) = f

′
(x) for all x.



6. Integrals and Ordinary Differential
Equations

A continuous function g is called a primitive of another function f if the derivative of
g exists and coincides with f. A primitive thus is an indefinite integral. We derive
the basic rules for the computation of integrals. We use the Banach fixed point
theorem to derive the Picard-Lindelöf theorem on the local existence of solutions
or integrals of ordinary differential equations (ODEs).

Definition 6.1 Let I be a closed interval in R, f : I → R a function. A
continuous function g : I → R is called a primitive of f on I if there exists
a countable subset D of I such that for all ξ ∈ I\D, g is differentiable in ξ
and g′(ξ) = f(ξ). In that case, f is called (Riemann) integrable on I.

Remark. Starting with §12, we shall develop Lebesgue integration theory,
and we shall introduce a more general notion of integrability.

Lemma 6.2 If g1, g2 are primitives of f on I then g1 − g2 is constant on I.

Proof. This is a direct consequence of lemma 5.13. �

Remark. In order to verify whether f : I → R has a primitive, it suffices to
consider bounded, closed subintervals of I. We have

I =
⋃
n∈N

Jn

and the Jn are so chosen that some x0 ∈ Jn for all n and Jn are closed and
bounded. Let gn be a primitive of f on Jn with gn(x0) = 0. Then by lemma
6.2 the function g defined by

g(x) := gn(x) for x ∈ Jn

is a primitive of f on I.

Definition 6.3 A function f : I → R is called admissible if it is the uniform
limit of step functions. Here, I → R is called a step function if I is the disjoint
union of finitely many intervals on each of which t is constant.
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Lemma 6.4 Let I be a closed, bounded interval in R and f : I → R contin-
uous. Then f is admissible.

Proof. Let ε = 1
n . For ε we determine a δ > 0 such that for all x, y ∈ I with

|x − y| < δ, we have |f(x) − f(y)| < ε. Let I = [a, b] and m the greatest
natural number with a+mδ < b. For an integer µ with 0 ≤ µ ≤ m we set

xµ := a+ µδ and xm+1 := b

and define a step function by

tn(x) = f(xµ) for xµ ≤ x < xµ+1, tn(b) = f(b). (1)

Then for all x ∈ [a, b]

|f(x) − tn(x)| = |f(x) − f(xµ)|, xµ as in (1)
< 1/n

as |x− xµ| < δ.
Therefore (tn)n∈N converges uniformly to f. �

Theorem 6.5 Let I be a closed interval, f : I → R a admissible function.
Then f has a primitive on I.

Proof. By the remark after lemma 6.2 we may assume that I is bounded. We
consider first the case where f is a step function. So let I = [a, b], x0 = a <
x1 < . . . < xn = b, f(ξ) = ci for xi < ξ < xi+1, i = 0, . . . , n− 1. We set

g(ξ) := ci(ξ − xi) +
i−1∑
ν=0

cν(xν+1 − xν) for xi ≤ ξ < xi+1.

Then g is continuous and g′(ξ) = f(ξ) for x �∈ {x0, . . . , xn} and therefore g
is a primitive of f.

In the general case of an admissible function f, there exists a sequence
(tn)n∈N of step functions which converges uniformly to f. By what has already
been shown, every tn has a primitive gn which we can normalize by setting
gn(a) = 0. Since g′n = tn on I\Dn, Dn countable, by theorem 5.12 the gn

converge uniformly to a continuous function g with g′ = f on I\ ∪
n∈N

Dn.

Hence g is a primitive of f. �

Theorem 6.6 Let f : I → R be continuous with primitive g. Then g is
differentiable on I and g′(x) = f(x) for all x ∈ I.

Proof. By lemma 5.13 applied to the function φ(h) = g(x + h) − f(x)h we
have

|g(x+ h) − g(x) − f(x)h| ≤ h sup
|η|≤|h|

|f(x+ η) − f(x)|.
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As f is continuous, we have for every x ∈ I

lim
h→0

1
h

(h sup
|η|≤|h|

|f(x+ η) − f(x)|)

= lim
h→0

sup
|η|≤|h|

|f(x+ η) − f(x)| = 0,

and therefore by theorem 2.2 it follows that g′(x) = f(x) for all x ∈ I. �

Definition 6.7 Let g be a primitive of f on I and x1, x2 ∈ I. Then the
integral of f from x1 to x2 is defined as

x2∫
x1

f(ξ)dξ := g(x2) − g(x1).

Notice that by lemma 6.2, this expression is independent of the choice of
the primitive g.
Notation. If g is a primitive of f, we write g′ = f, although there could be
a countable subset on which g is either not differentiable or on which g′ does
not agree with f.

Lemma 6.8 Let I be a closed bounded interval in R, f : R → R continuous
and φ : I → R admissible. Then fφ : I → R is admissible.

Proof. Let (tn)n∈N be a sequence of step functions which converge uniformly
to φ and let M := sup{‖f‖I , ‖tn‖I ;n ∈ N} < ∞. For a given ε > 0 there
exists an N ∈ N and a δ > 0 such that:

∀ n ≥ N : ‖tn − φ‖I <
ε

2M
∀ x, y ∈ I with |x− y| < δ : |f(x) − f(y)| < ε

2M
.

Let I = [a, b] and m ∈ N maximal such that a + mδ < b. For an integer µ
with 0 ≤ µ ≤ m we set xµ := a+ µδ and xm+1 = b. We define

τn(x) := tn(x)f(xµ) for xµ ≤ x < xµ+1, τn(b) := tn(b)f(b). (2)

Now with xµ as in (2) above we have

|τn(x) − f(x)φ(x)|
≤ |tn(x)(f(xµ) − f(x))| + |f(x)(tn(x) − φ(x))|,
< M

ε

2M
+M

ε

2M
= ε for n ≥ N.

Therefore the sequence of step functions (τn)n∈N converges uniformly to fφ
and fφ is admissible. �
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Theorem 6.9 (Transformation law) Let I, J be closed intervals, h a prim-
itive of an admissible function on I with h(I) ⊂ J and f : J → R continuous.
Then for all x1, x2 ∈ I

x2∫
x1

f(h(ξ))h′(ξ)dξ =

h(x2)∫
h(x1)

f(y)dy. (3)

Proof. By lemma 6.8 the function f(h(ξ))h′(ξ) is admissible on [x1, x2]. Let g
be a primitive of f. By the chain rule g(h(ξ)) is a primitive for f(h(ξ))h′(ξ).
Therefore the left as well as the right hand side of (3) are equal to

g(h(x2)) − g(h(x1)).

�

Theorem 6.10 (Integration by parts) Let f and g be primitives of ad-
missible functions defined on a closed interval I and x1, x2 ∈ I. Then

x2∫
x1

f(ξ)g′(ξ)dξ = f(x2)g(x2) − f(x1)g(x1) −
x2∫
x1

f ′(ξ)g(ξ)dξ .

Proof. By lemma 6.8 the function fg′ + f ′g is admissible on [x1, x2],and its
primitive, by the product formula, is gf. �

Lemma 6.11 (Monotonicity of the integral) Let f1, f2 : [a, b] → R be
admissible functions with primitives g1, g2. Assume that for all x ∈ [a, b]

f1(x) ≤ f2(x).

Then
g1(b) − g1(a) ≤ g2(b) − g2(a).

Proof. This follows directly from lemma 5.13. �

Theorem 6.12 (Mean value theorem) Let f : [a, b] → R be continuous.
There exists an x ∈ [a, b] such that

b∫
a

f(ξ)dξ = f(x)(b− a).

Proof. Let
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λ := inf{f(ξ) : ξ ∈ [a, b]}
µ := sup{f(ξ) : ξ ∈ [a, b]}

and g a primitive of f.
As λξ and µξ are primitives of the constant functions λ and µ, respectively,

it follows from lemma 6.11 that

λ(b− a) ≤ g(b) − g(a) =

b∫
a

f(ξ)dξ ≤ µ(b− a).

Therefore, there exists an m with λ ≤ m ≤ µ and

b∫
a

f(ξ)dξ = m(b− a).

By the intermediate value theorem 1.14, there exists an x ∈ [a, b] with f(x) =
m. �

More generally, the following mean value inequality holds:

Theorem 6.13 Let f : [a, b] → R be admissible. Then

|
b∫
a

f(ξ)dξ| ≤
b∫
a

|f(ξ)|dξ ≤ (b− a) sup
ξ∈[a,b]

|f(ξ)| .

Proof. With f the function |f | is also admissible, as one verifies easily. Now
if (tn)n∈N converges uniformly to f then (|tn|)n∈N converges uniformly to |f |
as ||tn| − |f || ≤ |tn − f |. Let g be a primitive of f and h that of |f |. Then, by
lemma 6.11 applied f1 = ±f and f2 = |f |, we obtain

|g(b) − g(a)| ≤ h(b) − h(a) ≤ (b− a) sup
ξ∈[a,b]

|f(ξ)| .

�

Theorem 6.14 Let I be a closed, bounded interval, fn : I → R admissible
with fn ⇒ f on I. Then for all x1, x2 ∈ I we have

x2∫
x1

fn(ξ)dξ →
x2∫
x1

f(ξ)dξ .

Proof. One can see easily by the Cantor diagonal process that f is admissible.
Namely, if the sequence of step functions (tmn)m∈N converges uniformly to
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fn, then one can find a subsequence (tm(n),n)n∈N which converges uniformly
to f. The formal proof goes as follows:

∀ε > 0 ∃ N ∈ N ∀ n ≥ N : ‖fn − f‖I <
ε

2
.

Furthermore for every n there exists an m(n) such that

‖tm(n),n − fn‖I <
ε

2
.

It follows that for n ≥ N : ‖tm(n),n−f‖I < ε. Therefore f is admissible. Now
the proof follows from theorem 5.12. �

Theorem 6.15 Let I and fn be as in theorem 6.14,
∞
Σ

n=1
‖fn‖I < ∞, F :=

∞
Σ

n=1
fn (which exists by corollary 5.8). Then

x2∫
x1

F (ξ)dξ =
∞∑

n=1

x2∫
x1

fn(ξ)dξ,

and the convergence is absolute.

Proof. The convergence follows as in theorem 6.14 and the absolute conver-
gence follows from theorem 6.13. �

We now want to describe briefly the connection of the integral with cal-
culations of area.

For this, let f : I → R be a function defined on an interval I = [a, b]; we
shall assume that f(x) ≥ 0 for all x ∈ I, so that we do not have to worry
about the sign of area.

First, as in the proof of theorem 6.5, let f be a step function. So there
exists a subdivision x0 = a < x1 < . . . < xn = b of I with

f(ξ) = ci for xi < ξ < xi+1, i = 0, . . . , n− 1 .

By our assumption all ci ≥ 0. Furthermore, as in the proof of theorem 6.5

g(ξ) := ci(ξ − xi) +
i−1∑
ν=0

cν(xν+1 − xν) for xi ≤ ξ < xi+1

is a (continuous) primitive of f.
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An elementary geometric consideration shows directly that the area
bounded by the ξ-axis and the graph of f (where the different levels of the
step function are connected by perpendicular lines as in the figure below) is
exactly the area g(b) − g(a).

ξ

For an arbitrary nonnegative admissible function f : [a, b] → R it is now
natural to define the area bounded by the ξ-axis and the graph of f to be
g(b) − g(a), where g is a primitive of f. This is meaningful because if a
sequence (tn)n∈N of step functions converges uniformly to f on [a, b] then
the corresponding primitive functions converge (uniformly) to a primitive
function of f, as we have seen in the proof of theorem 6.5.

Historically, of course, one has gone the opposite way. Namely, the defi-
nite integral of f over [a, b] was defined to be the area bounded by the ξ-axis
and the graph of f, and then the so-called Fundamental Theorem of Differ-
ential and Integral Calculus was derived, which says that the derivative of a
primitive of a, say, continuous function gives again the original function. We
have just now taken this so-called Fundamental Theorem as definition of the
integral and then we have derived the connection of the integral with area.

We now wish to study ordinary differential equations (ODEs) of the form
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f ′(x) = φ(x, f(x)) (4)

on some interval I ⊂ R. Here, φ(x, y) is assumed to be continuous in both
arguments. More precisely, we assume that φ is continuous for x ∈ I and
for y ∈ J, for some interval J ⊂ R. A continuous function f on I then is a
solution of (4) on I if f(x) ∈ J for all x ∈ I, and

f(ξ2) − f(ξ1) =

ξ2∫
ξ1

φ(ξ, f(ξ))dξ (5)

whenever ξ1, ξ2 ∈ I. This is a consequence of theorem 6.6 since for continuous
f, ϕ(x) := φ(x, f(x)) is a continuous function of x.

We wish to study the initial value problem for the ODE (ordinary dif-
ferential equation) (4), i.e. given x0 ∈ I, y0 ∈ J, we wish to find a solution
of

f ′(x) = φ(x, f(x)) (6)

with f(x0) = y0.
Such a solution is provided by the theorem of Picard-Lindelöf.

Theorem 6.16 Suppose φ(x, y) is continuous for |x− x0| ≤ ρ, |y − y0| ≤ η,
with

|φ(x, y)| ≤M for all such x, y. (7)

Moreover, suppose that φ(x, y) is Lipschitz continuous in y, i.e. suppose there
exists some L <∞ with

|φ(x, y1) − φ(x, y2)| ≤ L|y1 − y2| (8)

whenever |x− x0| ≤ ρ, |y1 − y0| ≤ η, |y2 − y0| ≤ η.
Then there exists some h > 0 with the property that (6) possesses a unique

solution on [x0 − h, x0 + h] ∩ I.

Proof. Putting ξ2 = x, ξ1 = x0 in (5), we see that we need to solve the integral
equation

f(x) = y0 +

x∫
x0

φ(ξ, f(ξ))dξ (9)

on I ′ := [x0 − h, x0 + h] ∩ I.
We shall achieve this by applying the Banach fixed point theorem 4.7 to

A := {f ∈ C0(I ′) : ‖f − y0‖C0(I′) ≤ η}.
Here, we have to choose the parameter h > 0 so small that

hM ≤ η (10)
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and
θ := hL < 1. (11)

We put H(f)(x) := y0 +
x∫
x0

φ(ξ, f(ξ))dξ, and we shall now verify that with

this choice of h, A and H satisfy the assumptions of theorem 4.7. Indeed,
H maps the closed subset A of the Banach space C0(I ′) to itself: namely, if
f ∈ A, then

‖Hf − y0‖C0(I′) = max
x∈I′

|
x∫
x0

φ(ξ, f(ξ))dξ|

≤ h max
ξ∈I′

|y−y0|≤η

|φ(ξ, y)|

since |f(ξ) − y0| ≤ η for f ∈ A, and ξ ∈ I ′

≤ hM

≤ η by (10).

Also, H satisfies the contraction property: namely, for f, g ∈ A

‖Hf −Hg‖C0(I′) = max
x∈I′

|
x∫
x0

{φ(ξ, f(ξ)) − φ(ξ, g(ξ))}dξ|

≤ hLmax
ξ∈I′

|f(ξ) − g(ξ)| by (8)

= θ‖f − g‖C0(I′),

and we recall θ < 1 by (11).
Therefore, by the Banach fixed point theorem,

H : A→ A

has a unique fixed point f, and this fixed point f then provides the desired
solution of (9). �

We have already seen examples of ODEs in §3, and we shall see further
examples in subsequent §§. Here, we just recall from theorem 3.10 that the
unique solution of

f ′(x) = γf(x) (γ ∈ R)
f(0) = y0

is given by
f(x) = y0e

γx.
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Exercises for § 6

1) Let f : [0, b] → R be continuous, 0 ≤ x ≤ b. Then

x∫
0

⎛⎝ y∫
0

f(ξ)dξ

⎞⎠ dy =

x∫
0

(x− y)f(y)dy.

(Hint: Write the left integral as

x∫
0

ϕ(y)ψ(y)dy

with ϕ(y) ≡ 1, ψ(y) =
y∫
0

f(ξ)dξ and integrate by parts.)

2) Compute
b∫
a

xexdx,
b∫
a

x2exdx, and derive a recursion formula for

b∫
a

xnexdx, n ∈ N.

3) For which λ ∈ R is sinλ(x) integrable on (0, π)? Compute

π∫
0

sinn(x)dx for n ∈ N

and
3π
4∫
π
4

dx

sinx
.

4) Compute
1∫
−1

x+ 1
x2 − 2

dx.

5) Compute

lim
n→∞

2∫
−2

dx

1 + x2n
.

6) Let
ϕ,ψ : [a, b] → R be differentiable,
f : [α, β] → R continuous,



Exercises for § 6 71

with
α ≤ ϕ(x) < ψ(x) ≤ β for all x ∈ [a, b].

Show that

F (x) :=

ψ(x)∫
ϕ(x)

f(ξ)dξ

is differentiable on [a, b].

7)
a) Find a sequence (fn)n∈N of integrable functions fn : [0, 1] → R

such that f(x) = lim
n→∞ fn(x) exists on [0, 1] and is integrable,

but

lim
n→∞

1∫
0

fn(x)dx �=
1∫
0

f(x)dx.

b) Find a sequence (fn)n∈N of integrable functions fn : [0, 1] → R

such that f(x) = lim
n→∞ fn(x) exists on [0, 1], but is not inte-

grable.

8) Determine all solutions of the differential equation

f ′(x) = f(x) + c

(c ∈ R, f : R → R).

9) Let I, J ⊂ R be open intervals, 0 ∈ J. Let ψ : I → R be continuous,
y0 ∈ I. We call f : J → I a solution of the differential equation

f ′ = ψ(f)

with initial condition
f(0) = y0

if it satisfies

df

dx
(x) = ψ(f(x)) for all x ∈ J and f(0) = y0.

Find suitable values of α > 0 such that for ψ : R → R, ψ(y) = yα and
some (or all) initial conditions for the differential equation f ′ = ψ(f),

a) a solution f does not exist on J = R

b) a solution f is not unique.

10)
a) Compute, for n,m ∈ Z,
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2π∫
0

sinnx sinmxdx,

2π∫
0

cosnx cosmxdx,

2π∫
0

sinnx cosmxdx.

b) f : R → R is called periodic, with period ω, if f(x+ ω) = f(x)
for all x ∈ R. Show that for such a periodic f that is piecewise
continuous, and any a, b ∈ R

b∫
a

f(x)dx =

b+ω∫
a+ω

f(x)dx.

c) Let f : R → R be periodic with period 2π, and piecewise con-
tinuous. Put

an :=
1
π

2π∫
0

f(x) cosnxdx, bn :=
1
π

2π∫
0

f(x) sinnxdx

for n = 0, 1, 2, . . . These numbers an, bn are called the Fourier
coefficients of f. Show that if f is an even function, i.e. f(x) =
f(−x) for all x ∈ R, then

bn = 0, an =
2
π

π∫
0

f(x) cosnxdx for all n.

Similarly, if f is odd, i.e. f(x) = −f(−x) for all x ∈ R, then

an = 0, bn =
2
π

π∫
0

f(x) sinnxdx for all n.

d) With the notations established in c), prove all steps of the fol-
lowing sequence of assertions: For x ∈ R, n ∈ N, we put

fn(x) :=
a0

2
+

n∑
ν=1

(aν cos νx+ bν sin νx),

and we have
2π∫
0

f(x)fn(x)dx =

2π∫
0

|fn(x)|2dx

= π(
a2
0

2
+

n∑
ν=1

(a2
ν + b2ν)).

With ϕn := f − fn, we have
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2π∫
0

fn(x)ϕn(x)dx = 0,

and hence
2π∫
0

|f(x)|2dx =

2π∫
0

|fn(x)|2dx+

2π∫
0

|ϕn(x)|2dx.

This yields Bessel’s inequality

a2
0

2
+

∞∑
ν=1

(a2
ν + b2ν) ≤ 1

π

2π∫
0

|f(x)|2dx,

and equality holds if and only if

lim
n→∞

2π∫
0

|ϕn(x)|2dx = 0.



Chapter II.

Topological Concepts



7. Metric Spaces: Continuity, Topological
Notions, Compact Sets

We introduce the elementary topological concepts for metric spaces, like open,
closed, and compact subsets. Continuity of functions is also expressed in topological
terms. At the end, we also briefly discuss abstract topological spaces.

Definition 7.1 A metric space is a pair (X, d) where X is a set and d a
metric on X, that is, the following conditions are satisfied

(i) ∀ x, y ∈ X : d(x, y) ≥ 0, and d(x, y) = 0 ⇐⇒ x = y
(positive definiteness)

(ii) ∀ x, y ∈ X : d(x, y) = d(y, x) (symmetry)

(iii) ∀ x, y, z ∈ X : d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

When the metric d is clear from the context we often simply write X
instead of (X, d). d(x, y) is called the distance of x from y.

The metric spaces with which we shall work later will always carry some
extra structure. However, the metric structure suffices for the basic topologi-
cal concepts to which we now want to turn, and extra structures would only
obscure the contents of the concepts and statements.

Theorem 7.2 A normed vector space (X, ‖·‖), in particular a Banach space,
becomes a metric space by defining

d(x, y) := ‖x− y‖ .

Proof.
(i) d(x, y) = ‖x − y‖ ≥ 0, and d(x, y) = 0 ⇐⇒ ‖x − y‖ = 0 ⇐⇒

x− y = 0 ⇐⇒ x = y.

(ii) d(x, y) = ‖x−y‖ = ‖(−1)(y−x)‖ = |−1|‖y−x‖ = ‖y−x‖ = d(y, x).

(iii) d(x, z) = ‖x − z‖ = ‖(x − y) + (y − z)‖ ≤ ‖x − y‖ + ‖y − z‖ =
d(x, y) + d(y, z).

which follow from the corresponding properties of the norm. �
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Example. A particular example is R with

d(x, y) := |x− y|
and similarly C.

Definition 7.3 In general we introduce on Rd a norm by

‖x‖p :=
( d∑

i=1

|xi|p)1/p (x = (x1, . . . , xd)
)

(p− norm)

and
‖x‖∞ := max(|x1|, . . . , |xd|) (maximum norm).

Remark. Of particular importance is the Euclidean norm ‖ · ‖2 – which we
shall sometimes simply denote by ‖·‖ or even |·|. By theorem 7.2 these norms
define corresponding metrics on Rd. One can naturally define the same norms
and metrics on Cn.

Of course, there exist also metric spaces that are not induced by a norm,
like the following trivial one: For any set X, put d(x, x) = 0 and d(x, y) = 1
if x �= y ∈ X.

Finally, we further note

Lemma 7.4 Let (X, d) be a metric space and B ⊂ X. Then B is also a metric
space where we define a metric dB on B by dB(x, y) = d(x, y) (x, y ∈ B).

The proof is obvious.

Lemma 7.5 Let (X, ‖ · ‖) be a normed space and let (xn)n∈N ⊂ X converge
to x ∈ X. Then

lim
n→∞ ‖xn‖ = ‖x‖

i.e. the norm is continuous.

Proof. By the triangle inequality we have

|‖xn‖ − ‖x‖| ≤ ‖xn − x‖,
and by assumption, the right hand side tends to 0. �

Definition 7.6 Let (X, d) be a metric space and (xn)n∈N ⊂ X a sequence.
The sequence (xn) is said to converge to x ∈ X, symbolically xn → x, if

∀ ε > 0 ∃ N ∈ N ∀ n ≥ N : d(xn, x) < ε.
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A sequence (xn)n∈N ⊂ X is called a Cauchy sequence if ∀ ε > 0 ∃ N ∈
N ∀ n,m ≥ N : d(xn, xm) < ε. (X, d) is called complete if every Cauchy
sequence (xn)n∈N ⊂ X converges to some x ∈ X.

The above concepts are direct generalizations of the corresponding con-
cepts for R and C. We shall now consider these concepts for Rd. We shall
equip Rd here, and in what follows, always with the Euclidean metric. The
following considerations however continue to hold for all the metrics intro-
duced above, and also for Cd, which the reader may verify as an exercise.

Theorem 7.7 Let (xn)n∈N ⊂ Rd, xn = (x1
n, . . . , x

d
n) for all n. Then

xn → x = (x1, . . . , xd) ⇐⇒ i = 1, . . . , d : xi
n → xi.

In particular, Rd is complete as R is complete.

Proof. ⇒: ∀ ε > 0 ∃ N ∈ N ∀ n ≥ N : ‖xn −x‖ < ε. As |xi
n −xi| ≤ ‖xn −x‖

for i = 1, . . . , d, we have

|xi
n − xi| < ε, for n ≥ N

This implies xi
n → xi.

⇐: Let ε > 0. We choose N ∈ N such that for n ≥ N and i = 1, . . . , n

|xi
n − xi| < ε√

d
.

We then have

‖xn − x‖ =

(
d∑

i=1

|xi
n − xi|2

) 1
2

< ε

for n ≥ N, so xn → x.
The last assertion follows, since (xn) is a Cauchy sequence precisely when

(xi
n) is, for i = 1, . . . , d. �

Definition 7.8 Let X and Y be metric spaces. A function f : X → Y is said
to be continuous at x0 ∈ X if

lim
x→x0

f(x) = f(x0).

f is said to be continuous on Ω ⊂ X if it is continuous at every point x0 ∈ Ω.

Theorem 7.9 Let (X, dX) and (Y, dY ) be metric spaces. A function f : X →
Y is continuous at x0 precisely if

∀ ε > 0 ∃ δ > 0 ∀ x ∈ X with dX(x, x0) < δ : dY (f(x), f(x0)) < ε.
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Proof. The proof is exactly the same as that for functions between subsets
of R; in the proof one has only to substitute everywhere |x − x0| etc. by
d(x, x0). �

Definition 7.10 Let X and Y be metric spaces, Ω ⊂ X. A function f : Ω →
Y is said to be uniformly continuous if

∀ ε > 0 ∃ δ > 0 ∀ x, y ∈ Ω with d(x, y) < δ : d(f(x), f(y)) < ε.

Example. Let X be a metric space, x0 ∈ X,

f(x) := d(x, x0) (f : X → R).

Then f is uniformly continuous on X.

Namely, for a prescribed ε > 0 we can choose δ = ε and obtain for x, y ∈ X
with d(x, y) < ε

|f(x) − f(y)| = |d(x, x0) − d(y, x0)| ≤ d(x, y) < ε ,

on account of the triangle inequality.

Theorem 7.11 Let X be a metric space. A function f = (f1, . . . , fd) : X →
Rd is (uniformly) continuous precisely if all the fi (i = 1, . . . , d) are (uni-
formly) continuous.

Proof. The continuity is a simple consequence of theorem 7.7. The assertion
about uniform continuity is also quite easy. �

Theorem 7.12 Let X be a metric space, f, g : X → R continuous. The
functions
f + g, f · g,max(f, g),min(f, g), |f | : X → R are also continuous. (Here we
have set max(f, g)(x) := max(f(x), g(x)), etc.) If g(x) �= 0 for all x ∈ X,
then f/g is also continuous.

Proof. The proof is the same as for functions f : K → R with K ⊂ R. �

Theorem 7.13 Let X,Y,Z be metric spaces, f : X → Y continuous at x0

and g : Y → Z continuous at f(x0). Then g ◦ f is continuous at x0.

Proof. Similar to that for functions of a single variable. �

Definition 7.14 Let f, fn : X → Y be functions (n ∈ N), X, Y being metric
spaces. The sequence (fn)n∈N converges uniformly to f (notation: fn ⇒ f),
if

∀ ε > 0 ∃ N ∈ N ∀ n ≥ N,x ∈ X : d(fn(x), f(x)) < ε.
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Theorem 7.15 Assumptions being as in definition 7.14, let all fn be contin-
uous and fn ⇒ f. Then f is also continuous.

Proof. The proof goes again as for functions of one variable. We give it again
for the sake of completeness.

Let x0 ∈ X, ε > 0. By uniform convergence, there exists m ∈ N with

d(fm(x), f(x)) <
ε

3
for all x ∈ X.

Since fm is continuous, there exists δ > 0 with

d(fm(x), fm(x0)) <
ε

3
, when d(x, x0) < δ .

Therefore for d(x, x0) < δ we have

d(f(x), f(x0)) ≤ d(f(x), fm(x)) + d(fm(x), fm(x0)) + d(fm(x0), f(x0))

<
ε

3
+
ε

3
+
ε

3
= ε.

�

We now want to consider linear maps, also called linear operators, between
normed vector spaces.

Definition 7.17 V,W being normed vector spaces with norms ‖ · ‖V , ‖ · ‖W ,
a linear map L : V → W is called bounded if there exists a c ∈ R with

‖L(x)‖W ≤ c‖x‖V for all x ∈ V.

Theorem 7.18 A linear operator between normed vector spaces is continuous
precisely when it is bounded. In particular, every linear map L : Rn → Rm is
continuous.

Proof. Let L : V →W be bounded, say

‖L(x)‖W ≤ c‖x‖V for all x ∈ V.

Let ε > 0. We may assume c > 0, otherwise the assertion is trivial, and set
δ = ε

c . Now for x, y ∈ V with ‖x− y‖V < δ we have

‖L(x) − L(y)‖W ≤ c‖x− y‖V < ε.

Hence L is even uniformly continuous. Conversely, let now L : V → W be
continuous. As L is, in particular, continuous at 0, there exists a δ > 0 with

‖L(ξ)‖W < 1 for all ξ with ‖ξ‖V < δ.

We choose c := 2
δ . For x ∈ V, x �= 0, we set ξ := x

c‖x‖V
. Now ‖ξ‖V < δ, so

‖L(ξ)‖W < 1 by choice of δ; consequently
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‖L(x)‖W = ‖ c‖x‖V L(ξ) ‖W < c‖x‖V .

Finally, it is obvious that a linear map between finite dimensional vector
spaces is bounded, hence also continuous by what has just been proved. �

Remark. We have even shown more than what is stated, namely, L is con-
tinuous at 0 ⇒ L is bounded ⇒ L is uniformly continuous. Naturally, the
assumption that L is linear is essential here.

Definition 7.19 Let L : V → W be a continuous linear map of normed
vector spaces. The norm ‖L‖ of L is defined by

‖L‖ := sup{‖L(x)‖W : ‖x‖V = 1}

(= sup{‖L(x)‖W : ‖x‖V ≤ 1} = sup{‖L(x)‖W

‖x‖V
: x �= 0}).

(By theorem 7.18, ‖L‖ is finite since L is assumed to be continuous).

That ‖L‖ indeed defines a norm follows very easily.

Examples.
1) δx : C0([0, 1]) → R, δx(f) := f(x) (x ∈ [0, 1]) is continuous with

‖δx‖ = 1, for

|δx(f)| = |f(x)| ≤ sup{|f(ξ)| : ξ ∈ [0, 1]} = ‖f‖C0 ,

and equality holds for f ≡ 1.

2) D : C1([0, 1]) → C0([0, 1]), Df := f ′ is continuous with ‖D‖ ≤ 1,
because

‖Df‖C0 = ‖f ′‖C0 ≤ ‖f‖C0 + ‖f ′‖C0 = ‖f‖C1 .

But if we equip C1([0, 1]) not with the C1-norm but with the supre-
mum norm (so C1([0, 1]) would then be considered as a subspace
of C0([0, 1])), then D is no longer continuous, because for fn(x) :=
sin(nx) we have (for n ≥ 2) ‖fn‖C0 = 1, ‖Dfn‖C0 = ‖f ′

n‖C0 = n, and
therefore there is no c ∈ R with

‖Df‖C0 ≤ c‖f‖C0 for all f ∈ C1.

The continuity of a linear operator can, therefore, also depend on
which norms are being used.

Definition 7.20 Let V and W be normed vector spaces. We denote the
space of continuous linear maps L : V → W by B(V,W ) and equip it with
the norm ‖ · ‖.
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Theorem 7.21 Let W be a Banach space, V a normed vector space (e.g.
likewise a Banach space). Then B(V,W ) is also a Banach space.

Proof. Let (Ln)n∈N ⊂ B(V,W ) be a Cauchy sequence relative to ‖ · ‖, so

∀ ε > 0 ∃ N ∈ N ∀ n,m ≥ N : ‖Ln − Lm‖ < ε.

For every x ∈ V we then have for n,m ≥ N :

‖Ln(x) − Lm(x)‖W = ‖(Ln − Lm)(x)‖W ≤ ε‖x‖V ,

which follows directly from the definition of ‖Ln −Lm‖. Therefore, for every
x ∈ V, (Ln(x))n∈N forms a Cauchy sequence in W. As W is complete, this
sequence has a limit which we shall denote by L(x). Thereby we have defined
a map L : V → W which is linear, since e.g. for x, y ∈ V

‖L(x+ y) − L(x) − L(y)‖
≤ ‖L(x+ y) − LN (x+ y)‖ + ‖LN (x+ y) − LN (x) − LN (y)‖

+ ‖LN (x) − L(x)‖ + ‖LN (y) − L(y)‖,
and the second term on the right side vanishes by linearity of LN , whereas
the other terms can be made arbitrarily small for sufficiently large N and
therefore

L(x+ y) = L(x) + L(y)

and similarly
L(αx) = αL(x) for α ∈ R.

Ln also converges to L in B(V,W ) since for n,m ≥ N

sup{‖Ln(x) − Lm(x)‖W

‖x‖V
: x �= 0} < ε

and therefore also

‖L(x) − Lm(x)‖W

‖x‖V
= lim

n→∞
‖Ln(x) − Lm(x)‖W

‖x‖V
< ε

for all x �= 0. Moreover L is bounded on account of

‖L(x)‖W

‖x‖V
≤ ‖(L− LN )(x)‖W

‖x‖V
+

‖LN (x)‖W

‖x‖V
,

and we can choose N so that ‖(L−LN )(x)‖W

‖x‖V
< 1 by the previous inequality.

Hence L ∈ B(V,W ). �

For later purposes, we insert the following result about invertible linear
maps between Banach spaces.

Lemma 7.22 Let L0 : V → W be a bijective continuous linear map be-
tween Banach spaces, with a continuous inverse L−1

0 . If L ∈ B(V,W ) satisfies
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‖L− L0‖ <
∥∥L−1

0

∥∥−1
,

then L is also bijective with a continuous inverse.

Proof. L = L0

(
Id− L−1

0 (L0 − L)
)
. As for the geometric series, we see that

the inverse of L is given by( ∞∑
i=0

(
L−1

0 (L0 − L)
)i

)
L−1

0 ,

if we can show that that series converges. We have

‖
n∑

i=m

(
L−1

0 (L0 − L)
)i ‖ ≤

n∑
i=m

‖ (L−1
0 (L0 − L)

)i ‖

≤
n∑

i=m

(‖L−1
0 ‖‖L0 − L‖)i

.

By our assumption,
∥∥L−1

0

∥∥ ‖L0 − L‖ < 1, and so the series satisfies the
Cauchy property, and it therefore converges to a linear operator with finite
norm. As observed, this operator is the inverse L−1, and Theorem 7.18 implies
its continuity.

�

Definition 7.23 Let (X, d) be a metric space, x0 ∈ X, r > 0.

U(x0, r) := {x ∈ X : d(x, x0) < r}
and

B(x0, r) := {x ∈ X : d(x, x0) ≤ r}
are called the open and closed balls centered at x0 of radius r. U(x0, r) is

also called an r-neighborhood of x0.

Remark. Let x0, y0 ∈ X, x0 �= y0. For 0 < ε ≤ 1
2d(x0, y0), the open balls

U(x0, ε) and U(y0, ε) are disjoint.

A metric space therefore satisfies the so called Hausdorff separation prop-
erty, that for every pair of distinct points, there exist disjoint ε-neighborhoods
of the points. For later purposes, we formulate this as

Lemma 7.24 Let x, y ∈ X (a metric space), x �= y. Then there exists an
ε > 0 with U(x, ε) ∩ U(y, ε) = ∅. �

Definition 7.25 Let (X, d) be a metric space. A subset Ω ⊂ X is called
open if for every x ∈ Ω there exists an ε > 0 with
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U(x, ε) ⊂ Ω,

that is, when together with every point it also contains an ε-neighborhood
of the point. An open subset of X containing x ∈ X is called an open neigh-
borhood of x. A subset A ⊂ X is called closed if X\A is open.

Examples.
1) X = R, a, b ∈ R, (a < b). Then the intervals (a, b), (a,∞), (−∞, b)

are open. For example, let x0 ∈ (a, b), ε = min(|a−x0|, |b−x0|). Then
U(x0, ε) =
{ξ ∈ R : |x0 − ξ| < ε} ⊂ (a, b). Hence [a, b], [a,∞), (−∞, b] are closed,
for X\[a, b] = (−∞, a) ∪ (b,∞) is open. The latter intervals are not
open, since e.g. there exists no ε > 0 with U(a, ε) ⊂ [a, b]. The point
a ∈ [a, b] has therefore no ε-neighborhood contained in [a, b]. Similarly
(a, b) is not closed. By similar considerations, one sees that {x ∈ R :
a ≤ x < b} is neither open nor closed.

2) Let (X, d) be a metric space, x0 ∈ X, r > 0. Then U(x0, r) is open.
For, if x ∈ U(x0, r) then with ε := r − d(x, x0) > 0, we have

U(x, ε) ⊂ U(x0, r),

on account of the triangle inequality.

We formulate this example as

Lemma 7.26 Let (X, d) be a metric space, x0 ∈ X, r > 0. Then U(x0, r) is
open.

Theorem 7.27 Let (X, d) be a metric space.

(i) ∅ and X are open.

(ii) For open Ω1, Ω2 their intersection Ω1 ∩Ω2 is also open.

(iii) If (Ωi)i∈I (I any index set) is a family of open subsets of X, then⋃
i∈I Ωi is also open.

Proof.
(i) ∅ is open, because there is no x ∈ ∅ and therefore no condition that

must be verified. X is open, since for every x ∈ X and all r > 0,
U(x, r) ⊂ X.

(ii) Let x0 ∈ Ω1 ∩ Ω2. Since Ω1 and Ω2 are open, there exist r1, r2 > 0
with U(x0, ri) ⊂ Ωi, i = 1, 2. For r := min(r1, r2) we then have

U(x0, r) ⊂ Ω1 ∩Ω2.

Hence Ω1 ∩Ω2 is open.
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(iii) If x0 ∈ ⋃
i∈I

Ωi, then there exists an i0 ∈ I with x0 ∈ Ωi0 . Since Ωi0

is open, there exists an r > 0 with U(x0, r) ⊂ Ωi0 ⊂ ⋃
i∈I

Ωi, whereby

the openness of the latter has been shown. �

Remark. From (ii) one obtains inductively: if Ω1, . . . , Ωn are open, then

so is
n⋂

ν=1
Ων . This does not hold for infinite intersections as the example

Ων = (− 1
ν ,

1
ν ) ⊂ R shows, for

⋂
ν∈N

Ων = {0}, which is not open.

Example. For the example before lemma 7.4, i.e. where d(x, y) = 1 for all
x �= y, every subset of X is open, and hence also every subset is closed as its
complement is open.

Theorem 7.28 Let X be a metric space. A subset A ⊂ X is closed precisely
when the following condition is fulfilled: if (xn)n∈N ⊂ A and (xn) converges
to x ∈ X then x is already in A.

Proof. ⇒: Let A be closed and assume that the sequence (xn)n∈N ⊂ A con-
verges to x ∈ X. If x ∈ X\A, there exists an ε > 0 with U(x, ε) ⊂ X\A.
This, however, contradicts xn → x. Hence, necessarily x ∈ A.

⇐: If A were not closed, i.e. X\A not open, then there would be an
x ∈ X\A with the property that for no n ∈ N U(x, 1

n ) ⊂ X\A holds. So
for every n ∈ N there exists an xn ∈ A ∩ U(x, 1

n ). Now as d(xn, x) < 1
n , the

sequence (xn) ⊂ A converges to x, and by assumption we would have x ∈ A.
This contradiction proves that X\A is open, so A is closed. �

A direct consequence is

Corollary 7.29 Every finite subset, in particular every one element subset,
of a metric space is closed.

�

Definition 7.30 Let X be a metric space, M ⊂ X. An element x ∈ X
is called a boundary point of M if every open neighborhood of x contains
(at least) one point of M as well as of its complement X\M. ∂M denotes

the set of boundary points of M.
◦
M := M\∂M denotes the interior and

M̄ := M ∪ ∂M the closure of M.

The previous definition is justified by the following theorem

Theorem 7.31 Let X be a metric space and M ⊂ X. We have

(i) ∂M is closed.
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(ii) M\∂M is open.

(iii) M ∪ ∂M is closed.

Proof.
(i) Let x ∈ X\∂M. Then there exists an ε neighborhood U(x, ε) which

either contains no points of M or no points of X\M. Now if there were
a y ∈ ∂M with y ∈ U(x, ε) then by lemma 7.26, there would exist an
η > 0 with U(y, η) ⊂ U(x, ε). Since y ∈ ∂M, the neighborhood U(y, η)
contains a point of M as well as of X\M, the same holds for U(x, ε),
which would be a contradiction. It follows that U(x, ε) ⊂ X\∂M and
so X\∂M is open and ∂M is closed.

(ii) If x ∈ M\∂M then again there exists an ε-neighborhood U(x, ε)
which either contains no points of M or none of X\M. Now since
x ∈ M ∩ U(x, ε), only the latter is possible, and it follows, using (i),
that U(x, ε) ⊂M\∂M. Hence M\∂M is open.

(iii) If x ∈ X\(M∪∂M), then again there exists an ε-neighborhood U(x, ε)
which either contains no points of M or no points of X\M, because
in particular x ∈ X\∂M. Since x ∈ X\M ∩ U(x, ε), this time the
first possibility must occur and it follows as before that U(x, ε) ⊂
X\(M ∪∂M). Therefore X\(M ∪∂M) is open and M ∪∂M is closed.

�

The next result appears at first sight perhaps somewhat surprising.

Theorem 7.32 Let f : X → Y be a function, X,Y being metric spaces. The
function f is continuous precisely if for every open set V ⊂ Y, the set f−1(V )
is open in X.

Proof. ⇒: Let V ⊂ Y be open and x0 ∈ f−1(V ), so f(x0) ∈ V. Then there
exists an ε > 0 with U(f(x0), ε) ⊂ V. As f is continuous, there exists a δ > 0
with d(f(x), f(x0)) < ε whenever d(x, x0) < δ. This, however, means that
for x ∈ U(x0, δ), f(x) ∈ U(f(x0), ε) ⊂ V, and therefore U(x0, δ) ⊂ f−1(V ).
Hence f−1(V ) is open.

⇐: Let x0 ∈ X, ε > 0. The neighborhood U(f(x0), ε) is open and by
assumption f−1(U(f(x0), ε)) is also open. Therefore there exists a δ > 0
with U(x0, δ) ⊂ f−1(U(f(x0), ε)), so f(U(x0, δ)) ⊂ U(f(x0), ε). But this is
equivalent to the implication

d(x, x0) < δ ⇒ d(f(x), f(x0)) < ε.

Hence f is continuous. �

Example. For the trivial metric space (X, d) introduced before lemma 7.4,
every function f : X → Y into a metric space Y is continuous, because all
subsets of X are open.
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Caution: The continuity of f is not equivalent to the requirement that
the image f(U) of an open set U ⊂ X be open in Y. An example is f : R →
R, f(x) = |x|. Here f(R) = {x ∈ R : x ≥ 0}, which is not open in R.

Definition 7.33 A subset C of a vector space is called convex if for all
x, y ∈ C,
x+ t(y − x) ∈ C ∀ t ∈ [0, 1].

A convex set therefore contains for any two points in it the segment joining
the two points.

Example. Let B be a Banach space, x0 ∈ B. Then for every r > 0 the
sets U(x0, r) and B(x0, r) are convex. For example, let x, y ∈ U(x0, r), so
‖x− x0‖ < r and ‖y − x0‖ < r. Now for 0 ≤ t ≤ 1 ‖x− x0‖ < r and

‖x+ t(y − x) − x0‖ ≤ t‖y − x0‖ + (1 − t)‖x− x0‖ < r,

so x+ t(y − x) ∈ U(x0, r).

The proof of the convexity of B(x0, r) is exactly the same.

Definition 7.34 A metric space B is said to be connected, if for every pair
of open sets Ω1, Ω2 ⊂ B with

Ω1 ∪Ω2 = B

Ω1 ∩Ω2 = ∅
either

Ω1 = ∅ or Ω2 = ∅.

Example. We continue to discuss the example of a metric space (X, d) with
d(x, y) = 1 for all x �= y. If X has more than one element, then X is not con-
nected because every subset of X is open and so we may find two nonempty
disjoint open sets whose union is X.

The following result is often of use in proofs.

Lemma 7.35 Let B be connected. If Ω is a nonempty subset of B which is
both open and closed then Ω = B.

Proof. Ω1 = Ω and Ω2 = B\Ω fulfil the requirements of definition 7.34. Since
B is connected and Ω �= ∅, it follows B\Ω = ∅, so Ω = B. �

Lemma 7.36 Every normed vector space is connected. More generally, every
convex subset of a normed vector space is connected.
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Proof. Let B be a normed vector space and Ω1, Ω2 nonempty open subsets
of B with B = Ω1 ∪Ω2, Ω1 ∩Ω2 = ∅. Let x ∈ Ω1 and y ∈ Ω2. We set

t := sup{τ ∈ [0, 1] : for all s with 0 ≤ s ≤ τ we have sy + (1 − s)x ∈ Ω1}
(as x ∈ Ω1, the set under consideration is nonempty because it contains 0).

We shall show that
ξ := ty + (1 − t)x

can lie neither in Ω1 nor in Ω2, which is a contradiction to Ω1 ∪Ω2 = B, so
that one of Ω1 and Ω2 must be empty, as asserted. To prove this assertion we
shall show that every open neighborhood of ξ contains points of Ω2 = B\Ω1

as well as points of Ω1 = B\Ω2. Since Ω1 and Ω2 have both been assumed
open, the point ξ can then indeed lie neither in Ω1 nor in Ω2. So let U be
an open neighborhood of ξ. If t = 1 then ξ = y �∈ Ω1. If t < 1, there exists
a t′ with t < t′ ≤ 1 and ξ′ := t′y + (1 − t′)x ∈ U, but ξ′ �∈ Ω1. Now as U
is open, there exists an ε > 0 with sy + (1 − s)x ∈ U for t − ε < s < t + ε
and by definition of t there exists for every ε > 0 a t′ with t < t′ < t+ ε and
t′y + (1 − t′)x �∈ Ω1, as claimed. If t = 0, then ξ = x �∈ Ω2. If t > 0, there
exists a t′′ with t − ε < t′′ < t, so ξ′′ := t′′y + (1 − t′′)x ∈ U, and as t′′ < t,
by definition of t the point ξ′′ ∈ Ω1 = B\Ω2. Therefore U contains a point
ξ′ ∈ Ω2 as well as a point ξ′′ ∈ Ω1.

Exactly the same proof shows that convex subsets of B are connected. �

Lemma 7.37 The connected subsets of R are precisely the intervals (open,
closed or half open ({a < x ≤ b} or {a ≤ x < b}), bounded or unbounded
(including R). Here a single element subset of R is also regarded as a closed
interval).

Proof. Let B ⊂ R. As a subset of a metric space, B itself is a metric space.
A neighborhood U(x, ε) (ε > 0) of a point x ∈ B relative to the metric of B
is then

U(x, ε) := {y ∈ B : d(x, y) < ε} = B ∩ {y ∈ Rn : d(x, y) < ε}.
From this it follows that the open sets of B relative to the metric of B are
of the form B ∩Ω, Ω open in R.

After these preliminaries, we come to the actual proof. So let B be a non-
empty connected subset of R. If B contains just one point, there is nothing
to prove. So let x1, x2 ∈ B, say x1 < x2. We assume that there exists an
ξ ∈ R with x1 < ξ < x2, ξ �∈ B. We then set

Ω1 := B ∩ {x ∈ R : x < ξ}
Ω2 := B ∩ {x ∈ R : x > ξ}.

Now Ω1, Ω2 are open in B, Ω1 ∩ Ω2 = ∅ and Ω1 ∪ Ω2 = B, as ξ �∈ B. On
account of x1 ∈ Ω1, x2 ∈ Ω2 none of these sets is empty and B can therefore
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not be connected. Therefore, if B is connected, it contains together with any
two points all the points lying between them. If we set

M := sup{x ∈ B} ∈ R ∪ {∞}
m := inf{x ∈ B} ∈ R ∪ {−∞},

then B contains all points x with m < x < M, as well as possibly m and M,
in case they are finite. Hence B is an interval. �

Definition 7.38 A subset B of a metric space is called bounded if there
exist an x0 ∈ X and an r > 0 with

B ⊂ U(x0, r).

B is said to be totally bounded if for every ε > 0 there exist an n ∈ N and
points x1, . . . , xn ∈ B with

B ⊂
n⋃

i=1

U(xi, ε).

Definition 7.39 A subset K of a metric space is said to be compact if for
any open cover (Ui)i∈I of K (i.e. all Ui are open and K ⊂ ⋃

i∈I

Ui) there exists

a finite subfamily (Ui)i∈E (E ⊂ I and E finite) which covers K, that is, K ⊂⋃
i∈E

Ui. K is said to be sequentially compact if every sequence (xn)n∈N ⊂ K

contains a subsequence which converges to some x ∈ K.

It may well be argued that the concept of compactness is the single most
important concept of mathematical analysis. In its sequential version it em-
bodies the existence of limits of subsequences. The concept of compactness
will be fundamental for many of the subsequent §§.

Theorem 7.40 Let K be a subset of a metric space X. Then the following
three conditions are equivalent:

(i) K is compact.

(ii) K is sequentially compact.

(iii) K is complete (i.e. if (xn)n∈N ⊂ K is a Cauchy sequence then it
converges to x ∈ K) and totally bounded.

Proof.

(i) ⇒ (ii). Let (xn)n∈N ⊂ K. If there is no subsequence of (xn) which
converges to a point in K, then every x ∈ K has a neighborhood U(x, r(x))
which contains only finitely many terms of the sequence. For, if there were
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an x ∈ X for which for every ε > 0 there were infinitely many n ∈ N

with xn ∈ U(x, ε), the same would hold in particular for ε = 1
m ,m ∈ N.

We could then find inductively for m ∈ N nm ∈ N with nm > nm−1 and
xnm

∈ U(x, 1
m ). But then the sequence (xnm

)m∈N ⊂ (xn)n∈N would converge
to x, which would be contrary to our assumption. Hence any neighborhood
of an element x ∈ K contains only finitely many terms of the sequence. Now
clearly

K ⊂
⋃

x∈K

U(x, r(x)),

and as K is compact, this cover has a finite subcover, so there exist
ξ1, . . . , ξN ∈ K with

K ⊂
N⋃

i=1

U(ξi, r(ξi)).

Since every U(ξi, r(ξi)) contains only finitely many sequence terms, there-
fore K also contains only finitely many sequence terms. Consequently, the
sequence (xn)n∈N is contained in a finite subset of K and so a subsequence is
convergent, which contradicts our assumption. Hence K must be sequentially
compact.

(ii) ⇒ (iii). First of all any sequence inK, in particular a Cauchy sequence,
contains a subsequence which is convergent in K. Therefore every Cauchy
sequence itself converges in K, as a Cauchy sequence is convergent if and
only if any subsequence of it is convergent. So K is complete.

We assume that K is not totally bounded. There is then an η > 0
such that K cannot be covered by finitely many U(xi, η). We now de-
fine inductively a sequence (xn)n∈N ⊂ K as follows: choose an arbitrary
x1 ∈ K; if x1, . . . , xn−1 ∈ K have been chosen with d(xi, xj) ≥ η for i �= j,

1 ≤ i ≤ n−1, 1 ≤ j ≤ n−1, then K is not covered by
n−1⋃
i=1

U(xi, η). Therefore

there exists an xn ∈ K\
n−1⋃
i=1

U(xi, η), and this xn satisfies d(xi, xn) ≥ η for

1 ≤ i ≤ n−1. The sequence (xn)n∈N can contain no convergent subsequence,
for otherwise this subsequence would have the Cauchy property, and in par-
ticular there would be xn1 and xn2 with d(xn1 , xn2) < η. That (xn) contains
no convergent subsequence contradicts the assumed sequential compactness
of K. Hence K must be totally bounded.

(iii) ⇒ (i). Assume that there exists an open cover (Ui)i∈I of K which
contains no finite subcover. We then define inductively a sequence (Bn) of
closed balls B(ξn, rn) as follows:

Set B0 = X and let Bn−1 = B(ξn−1,
1

2n−1 ) with ξn−1 ∈ K such that
Bn−1∩K is not covered by any finite subfamily of (Ui)i∈I . Since K is assumed
to be totally bounded, K can be covered by finitely many closed balls Kj =
B(yj ,

1
2n ), yj ∈ K. Amongst the balls Kj ∩ Bn−1 �= ∅ there exists at least
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one for which Kj ∩ K cannot be covered by finitely many of the (Ui)i∈I ,
for otherwise Bn−1 ∩K would itself be covered by finitely many of the Ui’s.
We choose Bn = B(ξn, 1

2n ) as one Kj with this property. Therefore as Bn ∩
Bn−1 �= ∅ we have

d(ξn, ξn−1) ≤ 1
2n−1

+
1
2n

≤ 1
2n−2

.

For N ∈ N and n,m ≥ N it follows (assuming n < m)

d(ξn, ξm) ≤ d(ξn, ξn+1) + . . .+ d(ξm−1, ξm) ≤ 1
2n−1

+ . . .+
1

2m−2
≤ 1

2N−2
.

Therefore (ξn)n∈N is a Cauchy sequence which converges by assumption to
some x ∈ K. Now x ∈ Ui0 (such an i0 ∈ I exists as the (Ui)i∈I cover K).
Since Ui0 is open, there exists an ε > 0 with U(x, ε) ⊂ Ui0 . Because (ξm)
converges to x, there exists some N ∈ N with d(x, ξN ) < ε

2 and 1
2N < ε

2 . It
follows from the triangle inequality that

B(ξN ,
1

2N
) ⊂ U(x, ε) ⊂ Ui0 .

This, however, contradicts the assumption that BN = B(ξN , 1
2N ) cannot

be covered by any finite subfamily of (Ui)i∈I . This contradiction proves the
compactness of K. �

Lemma 7.41 Every closed subset A of a compact set K is compact.

Proof. We can use any of the three criteria of theorem 7.40, for example that
of the sequential compactness (the reader may carry out a proof using the
other critieria as an exercise). So let (xn)n∈N ⊂ A be a sequence. Since A ⊂ K
and K is compact, a subsequence converges to some x ∈ K and this x ∈ A
because A is closed (by theorem 7.28). Hence A is compact. �

Corollary 7.42 (Heine-Borel) A subset K of Rd is compact precisely if it
is closed and bounded.

Proof. The implication follows one way from theorem 7.40 (iii), as a complete
set is closed and a totally bounded set is bounded. Now assume that K is
closed and bounded. As K is bounded, there is an R > 0 for which K is
contained in the cube

WR := {x = (x1, . . . , xd) ∈ Rd, max
i=1,...,d

|xi| ≤ R}.

Since K is closed, it suffices, by lemma 7.41, to show that WR is compact.
Because Rd is complete (theorem 7.7) and WR is closed (this follows likewise
from theorem 7.7 using the fact that the interval [−R,R] ⊂ R is closed), it
is also complete, for if (xn)n∈N ⊂ WR is a Cauchy sequence, it converges to
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an x ∈ Rd, which must already be in WR, since WR is closed. Moreover, WR

is totally bounded. For, let ε > 0. We choose m ∈ N with m > R
ε . We then

have

WR ⊂
⋃

{U((
k1R

m
,
k2R

m
, . . . ,

knR

m
), ε) :

k1, . . . , kn ∈ Z,−m ≤ ki ≤ m for i = 1, . . . , d}
So WR is totally bounded. Therefore condition (iii) of theorem 7.40 holds
and the assertion follows. �

Remark. The assertion in corollary 7.42 is no longer true for infinite dimen-
sional spaces. As an example, consider

S := {f ∈ C0([0, 1]) : ‖f‖C0 = 1}
S is obviously bounded and it is closed, because if (fn)n∈N converges uni-
formly to f, then ‖f‖C0 = 1, so f ∈ S. However, S is not compact: we
consider the sequence

fn = xn.

As we have seen earlier, (fn)n∈N contains no convergent subsequence, because
the pointwise limit of any subsequence is

f(x) =
{ 0 for 0 ≤ x < 1

1 x = 1
(see Example 1) in §5),

and since f is discontinuous, it cannot be the uniform limit of continuous
functions. Therefore S is not sequentially compact.

Corollary 7.43 (Bolzano-Weierstrass) Every bounded sequence in Rd has
a convergent subsequence.

Proof. This follows directly from corollary 7.42 and theorem 7.40, applied to
the closure of the set of all points in the sequence. �

Theorem 7.44 Let K be compact and f : K → R be continuous. Then f
assumes its maximum and minimum on K, i.e. there exist y1, y2 ∈ K with

f(y1) = sup{f(x) : x ∈ K}
f(y2) = inf{f(x) : x ∈ K}.

Proof. We shall prove that f takes its maximum value onK. Let (xn)n∈N ⊂ K
be a sequence with

lim
n→∞ f(xn) = sup{f(x) : x ∈ K}.
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Since K is sequentially compact, the sequence (xn) converges, after choosing
a subsequence, to some y1 ∈ K. Since f is continuous it follows that

f(y1) = lim
n→∞ f(xn) = sup{f(x) : x ∈ K}.

�

Theorem 7.44 can be proved as well using the covering criterion for com-
pactness. For this, consider for example

M := sup{f(x) : x ∈ K}.
If f does not assume its maximum on K, then there exists, by continuity of
f, for any x ∈ K a δ > 0 with

f(ξ) < r(x) :=
f(x) +M

2
< M

for d(x, ξ) < δ (this is the ε− δ−criterion used for ε = M−f(x)
2 ). Since δ can

depend on x, write δ(x) instead of δ.
Since K is compact and (U(x, δ(x))x∈K is an open cover of K, it has a

finite subcover, so there exist points x1, . . . , xn with

K ⊂
n⋃

i=1

U(xi, δ(xi)).

We set
r := max

i=1,...,n
r(xi) < M.

Then for every ξ ∈ K we have f(ξ) < r, for there is an i with ξ ∈ U(xi, δ(xi))
and so f(ξ) < r(xi) ≤ r. Since r < M, the supremum of f on K cannot be
M. This contradiction proves that the maximum is, after all, achieved on K.

Theorem 7.45 Let K be compact, Y a metric space and f : K → Y contin-
uous. Then f is uniformly continuous on K.

Proof. Let ε > 0. For every x ∈ K there exists, by continuity of f, a δ(x) > 0
with

f(U(x, 2δ(x))) ⊂ U(f(x),
ε

2
).

The (U(x, δ(x)))x∈K form an open cover of K. Since K is compact, this cover
has a finite subcover, so there exist points x1, . . . , xm ∈ K such that

K ⊂
m⋃

i=1

U(xi, δ(xi)).

Let δ := min
i=1,...,m

δ(xi) > 0. Now if d(x, y) < δ then there exists a j ∈
{1, . . . ,m} with x, y ∈ U(xj , 2δ(xj)). It follows that f(x), f(y) ∈ U(f(xj), ε

2 )
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and therefore d(f(x), f(y)) < ε. As this holds for arbitrary x, y ∈ K with
d(x, y) < δ, we see that f is uniformly continuous on K. �

Theorem 7.46 Let X,Y be metric spaces, K ⊂ X compact and f : K → Y
continuous. Then f(K) is compact.

(So a continuous image of a compact set is again compact.)

Proof. Let (Ui)i∈I be an open cover of f(K). We set Vi := f−1(Ui), i ∈ I. By
theorem 7.32 Vi is open. Moreover the (Vi)i∈I clearly form an open cover of
K. Hence there exists a finite subcover f−1(Ui), i ∈ E (E finite ) of K, since
K is compact. But then f(K) is covered by the sets f(Vi) ⊂ Ui(i ∈ E). So
Ui(i ∈ E) is a finite subcover and f(K) is therefore compact. �

Naturally, theorem 7.46 can also be proved by means of sequential com-
pactness.

Theorem 7.47 All norms in Rd are equivalent in the following sense: If ‖·‖0

and ‖ · ‖1 are two norms on Rd then there exist λ, µ > 0 with

∀ x ∈ Rd : λ‖x‖0 ≤ ‖x‖1 ≤ µ‖x‖0.

Proof. We prove the left inequality: the right one follows analogously by in-
terchanging the roles of ‖ · ‖0 and ‖ · ‖1.

We set
λ := inf{‖y‖1 : y ∈ Rd, ‖y‖0 = 1}.

We equip Rd with the metric induced by ‖ · ‖0. Now {y ∈ Rd : ‖y‖0 = 1}
is bounded and closed, for if yn → y then ‖yn − y‖1 → 0 and because
|‖yn‖0 − ‖y‖0| ≤ ‖yn − y‖0 (triangle inequality) we have ‖yn‖0 → ‖y‖0 and
therefore ‖y‖0 = 1 in case ‖yn‖0 = 1 for all n. By corollary 7.42, {y ∈ Rd :
‖y‖0 = 1} is compact.

Now we consider the continuity of ‖·‖1 : Rd → R. First, let v ∈ Rd, v �= 0.
For a sequence (λn)n∈N ⊂ R and λ ∈ R we have

‖λnv − λv‖0 → 0
⇔|λn − λ|‖v‖0 → 0
⇔|λn − λ|‖v‖1 → 0
⇔‖λnv − λv‖1 → 0.

Now let e1, . . . , ed be a basis of Rd, x = x1e1 + . . . xded ∈ Rd. By substituting
for v the basis vectors e1, . . . , ed, it follows that for any sequence (xn)n∈N ⊂
Rd, xn = x1

ne1 + . . . xn
ned

‖xn − x‖0 → 0 ⇔ ‖xn − x‖1 → 0.
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From this the continuity of ‖ · ‖1 follows because we have chosen the metric
on Rd so that xn → x is equivalent to ‖xn − x‖0 → 0.

As {y ∈ Rd : ‖y‖0 = 1} is compact and ‖ · ‖1 : Rd → R is continuous,
there exists an x0 with ‖x0‖0 = 1 and ‖x0‖1 = λ. Since x0 �= 0, it follows
that λ > 0. Therefore for x ∈ Rd

‖x‖1 = ‖x‖0 · ‖ x

‖x‖0
‖1 ≥ ‖x‖0 · λ‖ x

‖x‖0
‖0, as ‖ x

‖x‖0
‖0 = 1

= λ‖x‖0.

The assertion follows. �

Definition 7.48 A continuous function f : X → Y from a metric space X
to a metric space Y is said to be compact if for every bounded sequence
(xn)n∈N ⊂ X, the sequence f(xn)n∈N has a convergent subsequence.

Examples.

1) Every continuous function f : Rd → Rm is compact. This follows from
corollary 7.42, as for a bounded sequence (xn)n∈N ⊂ Rd, the sequence
(f(xn))n∈N ⊂ Rm is again bounded, on account of continuity of f.

2) The function i : C0,α([0, 1]) → C0([0, 1]), i(g) = g, (0 < α ≤ 1) is
compact. This follows from the theorem of Arzela-Ascoli (5.21), for
if (gn)n∈N is bounded in C0,α([0, 1]), it is also equicontinuous and
contains therefore a uniformly convergent subsequence. For the same
reason i : Ck([0, 1]) → Ck−1([0, 1]) (k ≥ 1) is compact.

At the end of this §, we should like to briefly discuss the abstract concept
of a topological space. This concept will not be needed in the reminder of
this textbook, but it plays a basic rôle in many mathematical theories, and
its inclusion at the present location seems natural. The idea simply is to use
the contents of theorems 7.27 and 7.32 as axioms.

Thus

Definition 7.49 Let X be a set. A topology on X is given by a collection U
of subsets of X, called open subsets of X, that satisfy

(i) ∅, X ∈ U .
(ii) If U, V ∈ U , then also U ∩ V ∈ U .
(iii) If Ui ∈ U for all i in some index set I, then also⋃

i∈I

Ui ∈ U .

A topological space (X,U) is a set X equipped with a topology U . A ⊂ X
is called closed if X\A is open.
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An open subset U of X containing x ∈ X is called an open neighborhood
of x.

By theorem 7.27, any metric space (X, d) becomes a topological space if
we take U as the collection of all sets that are open in the sense of definition
7.49. The resulting topology is called the topology induced by the metric.

We have also seen (lemma 7.24) that every metric space satisfies

Definition 7.50 A topological space (X,U) is called a Hausdorff space if for
any x, y ∈ X with x �= y there exist open neighborhoods U(x) of x, U(y) of
y with

U(x) ∩ U(y) = ∅.

This property, however, is not satisfied by every topological space.

Examples.
1) Let X be a set with at least two elements, U = {∅, X} then defines a

topology on X that is not Hausdorff.

2) We equip R2 with the following topology:
The open subsets are ∅,R2, and all the complements of straight lines
as well as the finite intersections and arbitrary unions of such sets. In
other words, the closed subsets of R2 with this topology are precisely
the affine linear subspaces and their finite unions. This topology is
not Hausdorff. Namely, let x, y ∈ R2, x �= y, and let U(x) and U(y) be
arbitrary neighborhoods of x and y, resp. The complement of U(x)∩
U(y) then is a finite union of affine linear subspaces (different from
R2 since neither U(x) nor U(y) is empty). Thus, this complement is
a proper subset of R2, and hence U(x) ∩ U(y) �= ∅.
(A generalization of this topology yields the so called Zariski topology
that is quite important in algebraic geometry.)

A remark on notation: Except for this example, Rd is always understood
to be equipped with its Euclidean metric and the induced topology.

The next definition axiomatizes the content of theorem 7.32:

Definition 7.51 A map f : (X,U) → (Y,V) between topological spaces is
called continuous if for every open V ⊂ Y, f−1(V ) is open in X.

Examples.
1) Consider again the topology U = {∅, X} on a set X. Let (Y,V) be a

Hausdorff topological space. Then the only maps f : (X,U) → (Y,V)
that are continuous are the constant ones. Namely, let y0 ∈ f(X).
Then for every neighborhood U(y0) of y0, f

−1U(y0) is nonempty,
and open if f is continuous. Thus, f−1(U(y0)) = X. For any other
point y �= y0 in Y, by the Hausdorff property, we may find disjoint
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neighborhoods U(y0) and U(y) of y0 and y, resp. Then f−1(U(y0))
and f−1(U(y)) are also disjoint, and open if f is continuous. There-
fore, the set f−1(U(y)) has to be empty. Since this holds for every
y �= y0, f ≡ y0.

2) Consider again a metric space (X, d) with metric d(x, y) = 1 for x �= y,
with the induced topology. Since now every subset of X is open, any
map f : X → (Y,V) into any topological space is continuous.

The concept of compactness extends to topological spaces as well, and
in fact the formulation given in definition 7.39 can be taken over verbatim.
However, a sequential characterization of compactness is not possible in gen-
eral.

Exercises for § 7

1) Provide two proofs, one using sequences and one using open coverings,
of the following result.
Let Kn �= ∅ be compact subsets of some metric space, and

Kn+1 ⊂ Kn for all n ∈ N.

Then ⋂
n∈N

Kn �= ∅.

Give an example to show that this result ceases to be true if the Kn

are merely supposed to be closed.

2) Let (X, d) be a metric space, f, g : X → R continuous functions. Then

ϕ(x) := max(f(x), g(x))
ψ(x) := min(f(x), g(x))

define continuous functions as well. Use this to conclude that |f | is
continuous if f is.

3) Determine
Sp := {y ∈ R2 : ‖y‖p = 1}

for p ≥ 1(p ∈ R) and p = ∞. Draw pictures for p = 1, 2,∞.

3) Let K be a compact subset of some metric space, (Ui)i∈I an open
covering of K. Show that there exists δ > 0 with the property that
for every x ∈ K there is some i ∈ I with

U(x, δ) ⊂ Ui.
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5) Let I, J ⊂ R be compact intervals, f : I × J → R continuous. De-
fine F : I → R by F (x) := sup{f(x, y) : y ∈ J}. Show that F is
continuous.

6) Determine the boundaries δA of the following sets A ⊂ X :

a) A = Q (rational numbers), X = R

b) A = R\Q, X = R

c) A = {x ∈ R : 0 < x ≤ 1}, X = R

d) A = {x ∈ R2 : ‖x‖ < 1}, X = R2

e) A = C1([0, 1]), X = C0([0, 1])

f) X a metric space, A = (xn)n∈N, with (xn) ⊂ X converging to
x ∈ X.

7) Let M be a subset of some metric space with closure M̄ and interior
◦
M. Show that M̄ is the smallest closed set containing M (i.e. if A is

closed and M ⊂ A, then also M̄ ⊂ A), and that
◦
M is the largest open

set contained in M (i.e. if Ω is open and Ω ⊂ M, then also Ω ⊂
◦
M).

8) Let Gl(d,R) be the space of invertible d×dmatrices (with real entries).
Show that Gl(d,R) is not connected.
(Hint: Consider det : Gl(d,R) → R where det(A) denotes the deter-
minant of the matrix A.)

9) Construct a subset of some metric space that is bounded, but not
totally bounded.

10) Which of the following subsets of R2 are connected?

a) Ω1 := {(x, y) : x �= 0 : y = sin 1
x}

b) Ω2 := Ω1 ∪ {(0, 0)}
c) Ω3 := Ω1 ∪ {(0, y) : y ∈ R}

11) Construct a Banach space B and a linear map L : B → B that is not
continuous.



Chapter III.

Calculus in Euclidean and Banach Spaces



8. Differentiation in Banach Spaces

We introduce the concept of differentiability for mappings between Banach spaces,
and we derive the elementary rules for differentiation.

Definition 8.1 Let V,W be Banach spaces, Ω ⊂ V open, f : Ω → W a
map and x0 ∈ Ω. The map f is said to be differentiable at x0 if there is a
continuous linear map L =: Df(x0) : V →W such that

lim
x→x0
x�=x0

‖f(x) − f(x0) − L(x− x0)‖
‖x− x0‖ = 0 (1)

Df(x0) is called the derivative of f at x0. f is said to be differentiable in
Ω if it is differentiable at every x0 ∈ Ω.

Notice that the continuity of Df(x0) as a linear map does not mean that
Df(x0) depends continuously on x0.

Lemma 8.1 Let f be differentiable at x0 (assumptions being as in Def. 8.1).
Then Df(x0) is uniquely determined.

Proof. Let L1, L2 : V → W be linear maps that fulfil (1) above. It follows
easily that

lim
x→x0
x�=x0

‖L1(x− x0) − L2(x− x0)‖
‖x− x0‖ = 0.

For ε > 0 there exists therefore δ > 0 with

‖(L1 − L2)(
x− x0

‖x− x0‖ )‖ =
‖(L1 − L2)(x− x0)‖

‖x− x0‖ < ε

for ‖x− x0‖ < δ.
Now for any y ∈ V with ‖y‖ = 1 there exists an x ∈ V with ‖x− x0‖ < δ

and x−x0
‖x−x0‖ = y. So for an arbitrary ε > 0 and all y ∈ V with ‖y‖ = 1 we

have
‖(L1 − L2)(y)‖ < ε

so that ‖L1 − L2‖ ≤ ε and as ε was arbitrary, L1 = L2. �
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Lemma 8.2 Let f be differentiable at x0 (the assumptions being as in Def.
8.1). Then f is continuous at x0.

Proof. On account of equality (1) above, there is an η > 0 such that for
‖x− x0‖ < η,

‖f(x) − f(x0) − L(x− x0)‖ ≤ ‖x− x0‖
holds, so

‖f(x) − f(x0)‖ ≤ (1 + ‖L‖)‖x− x0‖.
For ε > 0 we choose δ = min(η, ε

1+‖L‖ ) > 0 and for ‖x − x0‖ < δ we then
have

‖f(x) − f(x0)‖ < ε,

and the continuity of f at x0 follows. �

Examples.

1) Let f : Ω → W be constant. Then f is differentiable in Ω and its
derivative Df(x0) is the zero element of B(V,W ) for every x0 ∈ Ω.

2) Any L ∈ B(V,W ) is differentiable on V with

DL(x0) = L

for all x0 ∈ V, because

L(x) − L(x0) − L(x− x0) = 0 for all x ∈ V.

3) Let Ω ⊂ Rn be open. If f : Ω → Rm is differentiable at x0 ∈ Ω, its
derivative Df(x0) is a linear map from Rn into Rm and so can be
identified with an
(m× n)-matrix. Recall that a linear map between finite dimensional
vector spaces is automatically continuous.

4) In particular, let Ω ⊂ R, f : Ω → R. Then f is differentiable at x0 ∈
Ω precisely if lim

x→x0

f(x)−f(x0)
x−x0

= f ′(x0). (Here, we observe f ′(x0) =

Df(x0)(1).) Notice that a linear map L : R → R is simply given by
the real number L(1).

5) Let W = W1 × . . .×Wn be a product of Banach spaces. Setting

‖y‖ := max
i=1,...,n

‖yi‖Wi
for y = (y1, . . . , yn) ∈W,

the space W itself becomes a Banach space.
For L = (L1, . . . , Ln) ∈ L(V,W ) we have, correspondingly

‖L‖ = max
i=1,...,n

‖Li‖.
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Let Ω be an open subset of a Banach space V.
The map f = (f1, . . . , fn) : Ω → W is differentiable at x0 ∈ Ω
precisely if every f i(i = 1, . . . , n) is differentiable there and we have
then

Df(x0) = (Df1(x0), . . . , Dfn(x0)).

Lemma 8.3 Let f and g be differentiable at x0 (assumptions as in definition
8.1), λ ∈ R. Then f + g, λf are also differentiable at x0.

The proof is obvious.

Theorem 8.4 (Chain rule) Let V,W,U be Banach spaces, Ω ⊂ V open,
x0 ∈ Ω, f : Ω → W differentiable at x0 and further Σ ⊂ W open with
y0 := f(x0) ∈ Σ and g : Σ → U differentiable at y0.

Then g ◦f is defined in an open neighborhood of x0 and it is differentiable
at x0 with

D(g ◦ f)(x0) = Dg(y0) ◦Df(x0).

Proof. As f, by lemma (8.2), is continuous at x0, there exists an open neigh-
borhood Ω′ ⊂ Ω with f(Ω′) ⊂ Σ. The function g ◦ f is then defined on
Ω′.

Now for x ∈ Ω′

‖g(f(x)) − g(f(x0)) −Dg(y0) ◦Df(x0)(x− x0)‖
≤ ‖g(f(x)) − g(f(x0)) −Dg(y0)(f(x) − f(x0))‖ (2)
+ ‖Dg(y0)(f(x) − f(x0) −Df(x0)(x− x0))‖.

For ε > 0, we choose σ > 0 in such a way that for ‖y − y0‖ < σ

‖g(y) − g(y0) −Dg(y0)(y − y0)‖ ≤ ε

2(1 + ‖Df(x0)‖)‖y − y0‖. (3)

This works, as g is differentiable at y0. Next we choose η1 > 0 so that for
‖x− x0‖ < η1

‖f(x) − f(x0) −Df(x0)(x− x0)‖ ≤ ε

2‖Dg(y0)‖‖x− x0‖. (4)

Finally, we choose 0 < η2 <
σ

1+‖Df(x0)‖ in such a way that for ‖x− x0‖ < η2

‖f(x) − f(x0)‖ ≤ (1 + ‖Df(x0)‖)‖x− x0‖ (5)

holds. This is possible as f is differentiable at x0.
By (5), we have for ‖x− x0‖ < η2

‖f(x) − f(x0)‖ ≤ σ. (6)
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We set δ := min(η1, η2). Then for ‖x− x0‖ < δ we have

‖g(f(x)) − g(f(x0)) −Dg(y0) ◦Df(x0)(x− x0)‖ ≤ ε‖x− x0‖
using (2), (3), (5), (6), and (4).

As ε > 0 was arbitrary, it follows that

lim
x→x0
x�=x0

‖g(f(x)) − g(f(x0)) −Dg(y0) ◦Df(x0)(x− x0)‖
‖x− x0‖ = 0,

hence the theorem. �

Theorem 8.5 (Mean value theorem) Let I = [a, b] be a compact interval
in R, W a Banach space and f : I → W a function which is continuous on

I and differentiable in the interior
◦
I of I with

‖Df(x)‖ ≤M for all x ∈
◦
I. (7)

Then
‖f(b) − f(a)‖ ≤M(b− a). (8)

Proof. We show that for every η > 0

‖f(b) − f(a)‖ ≤M(b− a) + η(b− a) (9)

holds. As η > 0 is arbitrary, the inequality (8) follows.
We set

A := {ξ ∈ I : for all zwith a ≤ z < ξ,

‖f(z) − f(a)‖ ≤M(z − a) + η(z − a)}.
The set A is non-empty as a ∈ A. We set

c := supA.

As f is continuous, it follows that c ∈ A, so A = [a, c]. In order to show (9),
it suffices to prove that c = b.

We assume that c < b. Then there exists a δ > 0 with c+ δ ≤ b and

∀ z ∈ [c, c+ δ) : ‖f(z) − f(c) −Df(c)(z − c)‖ ≤ η(z − c),

by definition of differentiation. From this, it follows that for z ∈ [c, c+ δ)

‖f(z) − f(a)‖ ≤ ‖f(z) − f(c)‖ + ‖f(c) − f(a)‖
≤M(z − c) + η(z − c) +M(c− a) + η(c− a)
= M(z − a) + η(z − a).
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But here, as z > c is possible, this contradicts the definition of c, unless c = b.
Therefore c = b and the assertion follows. �

Corollary 8.6 Let V,W be Banach spaces, x, y ∈ V, S := {x + t(y − x) :
0 ≤ t ≤ 1} the line joining x and y, U an open neighborhood of S, and let
f : U → W be continuous and differentiable at every point of S with

‖Df(z)‖ ≤M for all z ∈ S.

Then
‖f(y) − f(x)‖ ≤M‖y − x‖.

Proof. We set I = [0, 1] ⊂ R and define g : I → W by

g(t) = f(x+ t(y − x)).

By the chain rule (theorem 8.4) g is differentiable at every t ∈ (0, 1) with

Dg(t) = Df(x+ t(y − x)) · (y − x).

Theorem 8.5 now gives the assertion. �

For later purposes we notice further

Lemma 8.7 Let V,W be Banach spaces, x, y ∈ V, S := {x + t(y − x) : 0 ≤
t ≤ 1}, U an open neighborhood of S, f : U →W differentiable.

Then for all z ∈ U we have

‖f(y) − f(x) −Df(z)(y − x)‖ ≤ ‖y − x‖ sup
ξ∈S

‖Df(ξ) −Df(z)‖

Proof. We apply corollary 8.6 to the function g : U → W defined by

g(ζ) = f(ζ) −Df(z) · ζ.
The function g is differentiable with

Dg(ζ) = Df(ζ) −Df(z).

�

Definition 8.8 Let V,W be Banach spaces, Ω ⊂ V open, f : Ω → W
differentiable with derivative Df(x) for x ∈ Ω. The function f is said to be
continuously differentiable in Ω if Df(x) is continuous in x.

It is important to distinguish between continuity of the linear mapDf(x0)
for fixed x0, which is part of the requirement for differentiability at x0, and
the continuity of Df as a function of x in the above definition.
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Definition 8.9 Let V = V1 × . . . × Vd (V1, . . . , Vd being Banach spaces), Ω
open in V, a = (a1, . . . , ad) ∈ Ω. A function f from Ω to some Banach space
is said to be partially differentiable at a in the j-th variable (j ∈ {1, . . . , d})
if the function xj �→ f(a1, . . . , aj−1, aj + xj , aj+1, . . . , ad) is differentiable at
xj = 0. The corresponding derivative is then denoted by Djf(a) and called
the j-th partial derivative of f at a.

Lemma 8.10 Notations being as in definition 8.9, let f be differentiable at
a. Then f is partially differentiable at a in all the variables, and for v =
(v1, . . . , vd) ∈ V1 × . . .× Vd, we have

Df(a)(v1, . . . , vd) = D1f(a)v1 + . . .+Ddf(a)vd. (10)

Proof. For j = 1, . . . , d, let ij : Vj → V,

vj �→ (0, . . . , vj

↑
j-th slot

, . . . , 0)

be the canonical injection. It is continuous and linear and therefore differen-
tiable with derivative ij . Therefore, by the chain rule, Djf(a) exists as the
derivative of the function f(a+ ij(xj)) at the point xj = 0 with

Djf(a) = Df(a) ◦ ij . (11)

The equation (10) now follows from v =
d

Σ
j=1

ij(vj). �

We shall later see by an example that the converse of lemma 8.10 does not
hold, that is, partial differentiability in all the variables does not necessarily
imply differentiability. However, the following holds.

Theorem 8.11 Let V1, . . . , Vd,W be Banach spaces, V = V1×. . .×Vd, Ω ⊂ V
open. A function f : Ω → W is continuously differentiable on Ω precisely if
it is partially differentiable on Ω with respect to the first to the n-th variable
and all the partial derivatives are continuous on Ω. Of course, formula (10)
then holds.

Proof. The implication in one way follows directly from lemma 8.10 and equa-
tion (11). For the converse, we shall treat only the case d = 2. The general
case follows easily by induction. We first show that f is differentiable.

It suffices to prove the following statement: Let a ∈ Ω, a = (a1, a2). For
every ε > 0 there exists a δ > 0 such that for all

(t1, t2) ∈ V1 × V2 with ‖t1‖, ‖t2‖ ≤ δ
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‖f(a1 + t1,a2 + t2) − f(a1, a2) −D1f(a1, a2)t1 −D2f(a1, a2)t2‖ (12)
≤ ε sup(‖t1‖, ‖t2‖).

We use the following break-up in order to show (12).

f(a1 + t1, a2 + t2) − f(a1, a2) −D1f(a1, a2)t1 −D2f(a1, a2)t2

= f(a1 + t1, a2 + t2) − f(a1 + t1, a2) −D2f(a1 + t1, a2)t2 (13)
+D2f(a1 + t1, a2)t2 −D2f(a1, a2)t2

+ f(a1 + t1, a2) − f(a1, a2) −D1f(a1, a2)t1.

As f is partially differentiable in the first variable, there exists a δ1 > 0 such
that

∀ t1 with ‖t1‖ ≤ δ1 : ‖f(a1+t1, a2)−f(a1, a2)−D1f(a1, a2)t1‖ ≤ ε

4
‖t1‖. (14)

By continuity of D2f there exists a δ2 > 0 such that

∀ t = (t1, t2)with ‖t1‖, ‖t2‖ ≤ δ2 : ‖D2f(a1 + t1, a2 + t2)−D2f(a1, a2)‖ ≤ ε

4
.

(15)
From this it follows first that for ‖t1‖, ‖t2‖ ≤ δ2

‖D2f(a1 + t1, a2)t2 −D2f(a1, a2)t2‖ ≤ ε

4
‖t2‖. (16)

Furthermore, lemma 8.7 implies

‖f(a1 + t1, a2 + t2) − f(a1 + t1, a2) −D2f(a1 + t1, a2)t2‖
≤ ‖t2‖ sup

‖τ‖≤‖t2‖
‖D2f(a1 + t1, a2 + τ) −D2f(a1 + t1, a2)‖

≤ ε

2
‖t2‖ again by (15) . (17)

Now (13), (14), (16), (17) give (12), provided ‖t1‖, ‖t2‖ ≤ δ := min(δ1, δ2).
It also follows from (10) (lemma 8.10) that

Df(a1, a2)(t1, t2) = D1f(a1, a2)t1 +D2f(a1, a2)t2,

and with this, the continuity of Df follows from the continuity of D1f and
D2f. �

We now come to the higher derivatives.

Definition 8.12 Let V,W be Banach spaces, Ω ⊂ V open, x0 ∈ Ω, f : Ω →
W differentiable. If the derivative Df is differentiable at x0 then f is said
to be twice differentiable at x0 and the derivative of Df in x0 is denoted by
D2f(x0).
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Notice that f was a function from Ω into W so Df is then a map
from Ω to B(V,W ), which is again a Banach space. Therefore D2f(x0) ∈
B(V,B(V,W )).

We shall now identify the elements of B(V,B(V,W )) with continuous
bilinear maps of V × V into W. So let L ∈ B(V,B(V,W )), and x, y ∈ V. We
set

L(x, y) := (L(x))(y). (18)

(On the right side, L assigns to an element x an element L(x) ∈ B(V,W ),
which is then applied to y ∈ V ). Clearly, L(x, y) is continuous and linear in x
and y, as required. With respect to the norms, we have for L ∈ B(V,B(V,W ))

‖L‖ = sup
‖x‖=1

‖L(x)‖

= sup
‖x‖=1

sup
‖y‖=1

‖(L(x))(y)‖ (19)

= sup
‖x‖,‖y‖=1

‖L(x, y)‖.

Therefore
‖L(x, y)‖ ≤ ‖L‖‖x‖‖y‖ for all x, y ∈ V. (20)

Analogous constructions and inequalities as (20) above, hold also for differ-
ential operators of order k ≥ 2.

Theorem 8.13 With the notations of definition 8.12, let f be twice differ-
entiable at x0. Then the continuous bilinear map D2f(x0) is symmetric, that
is for s, t ∈ V

D2f(x0)(s, t) = D2f(x0)(t, s).

Proof. Let U(x0, 2σ) ⊂ Ω. We consider

ϕ : [0, 1] →W

ϕ(τ) := f(x0 + τs+ t) − f(x0 + τs) for ‖s‖, ‖t‖ ≤ σ .

By lemma 8.7 it follows that

‖ϕ(1) − ϕ(0) −Dϕ(0)‖ ≤ sup
τ∈[0,1]

‖Dϕ(τ) −Dϕ(0)‖ (21)

(note that, by a small abuse of notation, we put Dϕ(0)(1) = Dϕ(0) for the
real number 1). The chain rule gives

Dϕ(ρ) = (Df(x0 + ρs+ t) −Df(x0 + ρs))s

= (Df(x0 + ρs+ t) −Df(x0) −D2f(x0)ρs)s

− (Df(x0 + ρs) −Df(x0) −D2f(x0)ρs)s .

By assumptions, for ε > 0 there exists a δ > 0 such that for ‖s‖, ‖t‖ ≤ δ and
0 ≤ ρ ≤ 1
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‖Df(x0 + ρs+ t) −Df(x0) −D2f(x0)(ρs+ t)‖ ≤ ε(‖s‖ + ‖t‖),
‖Df(x0 + ρs) −Df(x0) −D2f(x0)(ρs)‖ ≤ ε‖s‖.

This gives
‖Dϕ(ρ) − (D2f(x0)t)s‖ ≤ 2ε(‖s‖ + ‖t‖)‖s‖ (22)

and further

‖ϕ(1) − ϕ(0) − (D2f(x0) · t)s‖ ≤ ‖ϕ(1) − ϕ(0) −Dϕ(0)‖ + ‖Dϕ(0) − (D2f(x0)t)s‖
≤ 6ε(‖s‖ + ‖t‖)‖s‖ (23)

by (21) and (22) for ρ = 0 and ρ = τ.
But ϕ(1)−ϕ(0) = f(x0+s+t)−f(x0+s)−f(x0+t)+f(x0) is symmetric

in s and t, and we may therefore interchange s and t in (23) and obtain

‖(D2f(x0)t)s− (D2f(x0)s)t‖ ≤ 6ε(‖s‖ + ‖t‖)2, (24)

at first for ‖s‖, ‖t‖ ≤ δ.
However, if we substitute λs, λt (λ > 0) for s and t, then both sides of

(24) are defined and are multiplied with |λ|2. Therefore (24) holds also for
‖s‖ = 1 = ‖t‖, for one has only to choose λ = δ. Therefore

‖D2f(x0)(t, s) −D2f(x0)(s, t)‖ ≤ 24ε

for all s, t with ‖s‖ = 1 = ‖t‖.
But as ε was arbitrary, it follows that

D2f(x0)(t, s) = D2f(x0)(s, t).

�

Corollary 8.14 Let V1, . . . , Vd,W be Banach spaces, V = V1×. . .×Vd, Ω ∈ V
open and x0 ∈ Ω. If f : Ω → W is twice continuously differentiable at
x0, then all the partial derivatives DkDjf(x0), k, j = 1, . . . , d, exist and for
tα = (tjα)j=1,...,d, α = 1, 2, we have

D2f(x0)(t1, t2) =
∑

j,k=1,...,d

DkDjf(x0)(tk1 , t
j
2);

in particular, we have

DkDjf(x0) = DjDkf(x0) for all j, k.

f is therefore twice continuously differentiable in Ω precisely if all partial
derivatives of order 2 exist and are continuous there.

Proof. This follows directly from theorems 8.11 and 8.13.
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Quite similar results hold for higher order derivatives Dkf and as such
results can be derived easily by induction, we avoid giving further details at
this point. We note only

Definition 8.15 Let V,W be Banach spaces, Ω ⊂ V open, k ∈ N :

Ck(Ω,W ) := {f : Ω →W, f is k times continuously differentiable inΩ}
C∞(Ω,W ) :=

⋂
k∈N

Ck(Ω,W ).

We now come to the Taylor formulae:

Theorem 8.16 Let Ω be an open subset of a Banach space V, x0 ∈ Ω, t ∈ V
and assume that {x0 + τt, 0 ≤ τ ≤ 1} ⊂ Ω, f ∈ Ck+1(Ω,R) (k ∈ N).

Then for a suitable θ ∈ (0, 1) we have:

f(x0 + t) =f(x0) +Df(x0)t+
1
2!
D2f(x0)(t, t) + . . .+

1
k!
Dkf(x0) (t, . . . , t)︸ ︷︷ ︸

k- times

+
1

(k + 1)!
Dk+1f(x0 + θt) (t, . . . , t)︸ ︷︷ ︸

(k+1)-times

. (25)

Proof. We consider

g : [0, 1] → R, g(τ) := f(x0 + τt).

It follows easily from the chain rule by induction that g is (k + 1)-times
continuously differentiable, with derivative

Djg(τ) = Djf(x0 + τt) (t, . . . , t)︸ ︷︷ ︸
j-times

(1 ≤ j ≤ k + 1). (26)

The Taylor series for functions of one variable (see theorem 3.13) gives

g(1) =
k∑

j=0

1
j!
Djg(0) +

1
(k + 1)!

Dk+1g(θ) for some θ ∈ (0, 1). (27)

Now (25) follows from (26) and (27). �

Corollary 8.17 (Taylor expansion) Let V be a Banach space, Ω ⊂ V
open,
x0 ∈ Ω, δ > 0, U(x0, δ) ⊂ Ω and f ∈ Ck(Ω,R). Then for all t ∈ V with
‖t‖ < δ we have
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f(x0 + t) =
k∑

j=0

1
j!
Djf(x0) (t, . . . , t)︸ ︷︷ ︸

j-times

+rk+1(t),

where

lim
t→0
t�=0

rk+1(t)
‖t‖k

= 0.

Proof. By theorem 8.16 we have, for some θ ∈ [0, 1],

f(x0 + t) =
k∑

j=0

1
j!
Djf(x0)(t, . . . , t) + rk+1(t)with

rk+1(t) =
1
k!

(Dkf(x0 + θt) −Dkf(x0)) (t, . . . , t)︸ ︷︷ ︸
k-times

.

As Dkf(x) is continuous by assumption, we see, as 0 ≤ θ ≤ 1, that
lim
t→0

(Dkf(x0 + θt) −Dkf(x0)) = 0, and therefore lim
t→0

rk+1(t)
‖t‖k = 0 also. �

Exercises for § 8

1) On Rd, consider
f1(x) := ‖x‖1

f2(x) := ‖x‖2

f∞(x) := ‖x‖∞.
Where are this functions differentiable? Compute the derivatives
whenever they exist.

2) For x = (x1, x2) ∈ R2, consider

f(x) :=
x1(x2)2

(x1) + (x2)2
for x �= 0, f(0) := 0.

Show that

lim
t→0
t�=0

f(x+ tξ) − f(x)
t

=: g(x, ξ)

exists for every x, ξ ∈ R2. However, the map ξ �→ g(0, ξ) is not linear.
Conclude that f is not differentiable at 0 ∈ R2.

3) Let V,W be Banach spaces, Ω ⊂ V open and connected, f : Ω → W
differentiable with

Df(x) = 0 for all x ∈ Ω.
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Show that f is constant.

4) Compute the Taylor expansion up to second order of

f(ξ, η) :=
ξ − η

ξ + η
(for ξ + η �= 0) at (1, 1) ∈ R2.

5) Let Ω be an open subset of a Banach space V = V1 × . . . × Vd as in
definition 8.9, f : Ω → R a function whose partial derivatives exist
and are bounded in Ω. Then f is continuous in Ω.
(Hint: Let h = (h1, . . . hd) ∈ V1 × . . . × Vd, κi = (h1, . . . , hi, 0, . . . , 0),
for i = 1, . . . , d, and κ0 = 0. For x ∈ Ω, write

f(x+ h) − f(x) =
d∑

i=1

(f(x+ κi) − f(x+ κi−1)

and apply the mean value theorem.)



9. Differential Calculus in R
d

The results of the previous paragraph are specialized to Euclidean spaces. Again,
as in §3, interior extrema of differentiable functions are studied. We also introduce
some standard differential operators like the Laplace operator.

A. Scalar Valued Functions

In this paragraph, we shall consider the following situation: Ω is an open
subset of Rd and f : Ω → R is a function.

Definition 9.1 The graph Γf of f is defined to be the set
Γf := {(x, y) ∈ Ω × R : f(x) = y} ⊂ Rd+1. Furthermore, for c ∈ R, the set
Nf (c) := {x ∈ Ω : f(x) = c} ⊂ Rd is called the level set of f for the value c.
For d = 2 the level sets are also called contour lines.

Examples. We shall consider some examples in R2; for x ∈ R2 we shall write
x = (ξ, η) instead of x = (x1, x2). In the examples, Ω will always be R2.

1) f(ξ, η) = ξ2 + η2
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The graph of f is a paraboloid which opens upwards, the contour lines
being circles centered at the origin.
2) f(ξ, η) = ξ2 − η2

Already in this example, we see that the contours can degenerate to a
point or have self intersections.

3) f(x) = ξ2 + η3

Here the graph rises in
three directions and falls
only in the direction of
the negative η-axis. The
contour {f(x) = 0} has
a vertex at the origin of
the coordinates.

We now always split Rd as:

Rd = R × . . .× R︸ ︷︷ ︸
n-times

.

In what follows we always equip Rn with the Euclidean norm ‖ · ‖2. We shall
usually omit the index 2. Furthermore, we shall let ei be the unit vector in
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the direction of the positive xi-axis. So, in our current notations, we have

x =
∑d

i=1 x
iei. If y =

d

Σ
i=1

yiei, we have

〈x, y〉 :=
d∑

i=1

xiyi,

the usual scalar product in Rd. In particular,

〈ei, ej〉 = δij :=
{

1 for i = j
0 for i �= j

,

and
‖ei‖2 = 1 for i = 1, . . . , d.

The ith partial derivative of f, in case it exists, is then given by

Dif(x) = lim
h→0
h�=0

f(x+ hei) − f(x)
h

=:
∂f(x)
∂xi

.

Generally, we formulate the following definition.

Definition 9.2 Let Ω be open in Rd, f : Ω → R a function, v ∈ Rd, ‖v‖2 = 1.
The directional derivative of f in the direction v is given by

Dvf(x) :=
d

dh
f(x+ hv)|h=0 = lim

h→0
h�=0

f(x+ hv) − f(x)
h

,

provided this limit exists.

Furthermore,

Definition 9.3 Let f : Ω → R (Ω open in Rd) be partially differentiable at
x ∈ Rn. The gradient of f at x is the vector field

∇f(x) := grad f(x) := (
∂f

∂x1
(x), . . . ,

∂f

∂xd
(x)).

Lemma 9.4 Let f : Ω → R be differentiable at x, v ∈ Rd with ‖v‖2 = 1.
Then

Dvf(x) = Df(x)(v) = 〈∇f(x), v〉 . (1)

Proof. As f is differentiable, we have

lim
h→0
h�=0

‖f(x+ hv) − f(x) −Df(x)hv‖
‖hv‖ = 0 .
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It follows that

Dvf(x) = lim
h→0
h�=0

f(x+ hv) − f(x)
h

= Df(x)(v),

and formula (10) of the previous chapter (with (v = (v1, . . . , vd)) gives

Df(x)(v) =
d∑

i=1

Dif(x)vi = 〈 grad f(x), v〉.

�

The derivative Df(x) is therefore given by taking the scalar product with
∇f(x); in other words, the vector ∇f(x) is dual to the linear function Df(x).
Furthermore, it follows from (1) that if ∇f(x) �= 0, ‖Dvf(x)‖ takes its max-
imum value over all v with ‖v‖ = 1 precisely when v = ∇f(x)

‖∇f(x)‖ . This can be
so interpreted that ∇f(x) gives the direction of steepest ascent of f. On the
other hand, if Dvf(x) = 0, then

〈 grad f(x), v〉 = 0,

so such v’s are perpendicular (relative to the given scalar product) to ∇f(x).
We shall later interpret this to mean that ∇f(x) is perpendicular to the level
sets of f.

Examples.

1) Consider the following example:

f(x) =
ξη

ξ2 + η2
for (ξ, η) �= (0, 0)

f(0) = 0 .

For (ξ, η) �= (0, 0), f is partially differentiable with respect to ξ and
η, with

∂f(x)
∂ξ

=
η(η2 − ξ2)
(η2 + ξ2)2

,
∂f(x)
∂η

=
ξ(ξ2 − η2)
(ξ2 + η2)2

.

But f is also differentiable at the origin with respect to ξ and η, for

f(ξ, 0) = 0 for all ξ and therefore
∂f(0, 0)
∂ξ

= 0 and similarly
∂f(0, 0)
∂η

= 0.

Nevertheless, f is not continuous at the origin as

lim
h→0
h�=0

f(h, h) = lim
h2

h2 + h2
=

1
2
�= f(0).
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2) Consider the function

g(x) =
ξη

ξ4 + η4

g(0) = 0;

g is likewise everywhere partially differentiable, but g is not only dis-
continuous at the origin, it is even unbounded near the origin:

lim
h→0
h�=0

g(h, h) = lim
h2

h4 + h4
= ∞.

By theorem 8.11, such phenomena are no longer possible when the
partial derivatives not only exist, but are also continuous.

3) We consider now for x ∈ Rd the distance r(x) of x from the origin,
namely
r(x) = ‖x‖ = ((x1)2 + . . .+ (xd)2)

1
2 .

For r(x) �= 0 (so for x �= 0) we can calculate as follows:

∂r(x)
∂xi

=
1

2((x1)2 + . . . (xd)2)
1
2
2xi =

xi

r
, (2)

so in particular
∇r(x) =

x

r
forx �= 0. (3)

We have

‖∇r(x)‖ =
‖x‖
r

=
r

r
= 1.

The gradient of r(x) is therefore the unit vector in the direction de-
termined by x.
It is always perpendicular to the level sets of r, namely concentric
spheres centered at the origin. At the origin, r(x) is not partially
differentiable, for e.g. r(x1, 0, . . . , 0) = |x1| is not differentiable at
x1 = 0.

4) Functions f(x) often depend only on r(x). So let ϕ : (0,∞) → R be
differentiable and let f(x) = ϕ(r(x)). The chain rule gives

∂f(x)
∂xi

=
dϕ(r(x))

dr

∂r(x)
∂xi

=
dϕ

dr
· x

i

r
forx �= 0 . (4)

We shall now investigate the partial derivatives of order 2 of functions
f : Ω → R.

Corollary 8.15 gives directly

Corollary 9.5 Let f : Ω → R have continuous partial derivatives of order
2. Then for x ∈ Ω and i, j = 1, . . . , n,
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∂2

∂xi∂xj
f(x) =

∂2

∂xj∂xi
f(x)

where we have set
∂2f(x)
∂xi∂xj

:=
∂

∂xj

(∂f(x)
∂xj

)
.

In order to show that the continuity of second order derivatives is really
necessary for this, we consider the following example

f(x) :=
{
ξη ξ2−η2

ξ2+η2 for (ξ, η) �= (0, 0)
0 for (ξ, η) = (0, 0).

We have

∂f(0, η)
∂ξ

= −η for all η and therefore
∂2f(0, 0)
∂η∂ξ

= −1

and
∂f(ξ, 0))

∂η
= ξ for all ξ and so

∂2f(0, 0)
∂ξ∂η

= 1.

Definition 9.6 Let f : Ω → R be twice continuously differentiable. The
Hessian (matrix) of f is given by

D2f(x) = (
∂2f(x)
∂xi∂xj

)i,j=1,...,n.

One takes corollary 8.14 into account here again. The above corollary then
signifies

Corollary 9.7 Let f : Ω → R be twice continuously differentiable. Then the
Hessian matrix of f is symmetric. �

We now come to the investigation of local extrema of scalar valued func-
tions.

Definition 9.8 A point x0 ∈ Ω is called a local maximum (minimum) of
f : Ω → R if there is a neighborhood U ⊂ Ω of x0 such that

f(x) ≤ f(x0) (f(x) ≥ f(x0)) for allx ∈ U. (5)

If in (5) the symbol < (>) occurs for x �= x0, then the local extremum is
called strict or isolated.

Theorem 9.9 Let x0 ∈ Ω be a local extremum of f : Ω → R, and let f be
partially differentiable at x0. Then ∇f(x0) = 0.
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Proof. We consider for i = 1, . . . , d

ϕi(h) = f(x0 + hei).

The function ϕi is defined in a neighborhood of 0 in R and ϕi has a local
extremum at h = 0. It follows from the corresponding theorem for functions
of a real variable that

0 =
d

dh
ϕi(h)|h=0 = Df(x0 + hei) · d

dh
(x0 + hei)|h=0

= Df(x0) · ei =
∂

∂xi
f(x0), for i = 1, . . . , d.

The assertion follows. �

We shall now find conditions with which one can conversely decide
whether an x0 for which ∇f(x0) = 0 is an extremum and, more precisely,
whether it is a local maximum or a minimum. As for functions of one real
variable, these conditions will involve the second derivatives of f. We shall
assume that f is twice continuously differentiable at x0 and recall that by
corollary 9.7, the Hessian matrix D2f(x0) is then symmetric.

Definition 9.10 A symmetric (d× d)-matrix A is called

(i) positive (negative) definite, if

〈v,Av〉 > 0 (< 0) for all v ∈ Rd\{0}

(ii) positive (negative) semidefinite if

〈v,Av〉 ≥ 0 (≤ 0) for all v ∈ Rd

(iii) indefinite if it is neither positive nor negative semidefinite.
So for an indefinite matrix A there exist v1, v2 ∈ Rd such that

〈v1, Av1〉 > 0 and 〈v2, Av2〉 < 0 .

A is negative (semi)definite precisely if −A is positive (semi)definite.

Lemma 9.11 A symmetric (n × n)-matrix A is positive (negative) definite
precisely if there exists a λ > 0 such that

〈v,Av〉 ≥ λ‖v‖2 (≤ −λ‖v‖2) for all v ∈ Rd . (6)

Proof.
“ ⇐ ” is trivial.
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“ ⇒ ” : We treat only the case where A is positive definite. We consider
Sd−1 := {v ∈ Rd : ‖v‖ = 1}. By corollary 7.42 Sd−1, being closed and
bounded, is a compact subset of Rd. Moreover, the function

v �→ 〈v,Av〉 =
d∑

i,j=1

viaijv
j (A = (aij)i,j=1,...,d)

is continuous. Therefore 〈v,Av〉 assumes on Sd−1 its minimum value λ, i.e.,
there exists a v0 ∈ Sd−1 with 〈v0, Av0〉 = λ. Therefore λ > 0 by assumption.
Furthermore, for all w ∈ Sd−1, 〈w,Aw〉 ≥ λ.

It follows that for v ∈ Rd\{0} 〈 v
‖v‖ , A

v
‖v‖ 〉 ≥ λ, so 〈v,Av〉 ≥ λ‖v‖2.

Finally, (6) holds trivially for v = 0. �

Theorem 9.12 Let f : Ω → R be twice continuously differentiable. Assume
that for x0 ∈ Ω

∇f(x0) = 0.

If the Hessian matrix D2f(x0) is

(i) positive definite then f has a strict (strong) minimum at x0, i.e., there
exists a neighborhood U of x0 such that

f(x) > f(x0) for all x ∈ U\{x0}.

(ii) negative definite then f has a strict maximum at x0.

(iii) indefinite then f has no local extremum at x0.

Proof. By Taylor expansion (corollary 8.17) we have, using Df(x0) = 0, that
for v ∈ Rd with x0 + τv ∈ Ω (0 ≤ τ ≤ 1),

f(x0 + v) = f(x0) +
1
2
D2f(x0)(v, v) + r3(v)

where

lim
v→0
v �=0

r3(v)
‖v‖2

= 0. (7)

Now if v = (v1, . . . , vd) we have

D2f(x0)(v, v) =
∂2f(x0)
∂xi∂xj

vivj = 〈v,D2f(x0)v〉.

So if D2f(x0) is positive definite, by lemma 9.11 there exists a λ > 0 such
that

〈v,D2f(x0)v〉 ≥ λ‖v‖2 for all v ∈ Rd.

By (7) there exists a δ > 0 such that
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|r3(v)| ≤ λ

4
‖v‖2 for ‖v‖ ≤ δ. (8)

It follows that for ‖v‖ ≤ δ

f(x0 + v) ≥ f(x0) +
λ

2
‖v‖2 − λ

4
‖v‖2 = f(x0) +

λ

4
‖v‖2,

and f therefore has a strict minimum at x0.
If D2f(x0) is negative definite then D2(−f(x0)) is positive definite and

−f therefore has a strict minimum and consequently f has a strict maximum
at x0.

Finally, if D2f(x0) is indefinite, there exist λ1, λ2 > 0 and v1, v2 ∈ Rd\{0}
with

〈v1, D2f(x0)v1〉 ≥ λ1‖v1‖2

(9)
〈v2, D2f(x0)v2〉 ≤ −λ2‖v2‖2 .

For λ := min(λ1, λ2), we choose δ > 0 as in (8), and λ remains invariant
under the scaling v �→ tv, t ≥ 0. We can assume that ‖v1‖ = δ = ‖v2‖ . It
follows that

f(x0 + v1) ≥ f(x0) +
λ

4
‖v1‖2

f(x0 + v2) ≤ f(x0) − λ

4
‖v2‖2.

Therefore, f can have no extremum at x0, as we can decrease δ > 0 arbitrarily.
�

Examples. We want to investigate the local extrema of functions in the
examples at the beginning of this chapter.

1) f(ξ, η) = ξ2 + η2.
Here ∇f(x) = (2ξ, 2η). So the gradient vanishes only at the point
(0, 0). Furthermore

D2f(0) =
(

2 0
0 2

)
.

So f has a strict minimum at 0.

2) f(ξ, η) = ξ2 − η2,∇f(x) = (2ξ,−2η), so again ∇f(0) = 0.
Now

D2f(0) =
(

2 0
0 −2

)
is, however, indefinite and therefore there is no extremum at hand.

3) f(x) = ξ2 + η3,∇f(x) = (2ξ, 3η2). Now
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D2f(0) =
(

2 0
0 0

)
,

is positive semidefinite. But again there is no local extremum at the
origin.

4) f(x) = ξ2 + η4,∇f(x) = (2ξ, 4η3), so again ∇f(0) = 0. Now

D2f(0) =
(

2 0
0 0

)
,

so it is again positive semidefinite. But now there is a strict minimum
at the origin.

5) f(x) = ξ2,∇f(x) = (2ξ, 0), so again ∇f(0) = 0. We have once more

D2f(0) =
(

2 0
0 0

)
,

so positive semidefinite. A local minimum occurs at the origin, which,
however, is not a strict minimum.

We give now, without a proof, the following criterion for positive definite-
ness of a symmetric matrix.

Lemma 9.13 Let A = (aij)i,j=1,...,d be a symmetric matrix, so aij = aji for
all i, j. A is positive definite if and only if for all ν = 1, . . . , d

det

⎛⎝ a11 . . . a1ν
...

...
aν1 . . . aνν

⎞⎠ > 0.

A is negative definite when these determinants are negative for all odd ν and
positive for even ν.

Definition 9.14 The Laplace operator ∆ is defined as follows: For a twice
differentiable function f : Ω → R we set

∆f :=
∂2f

(∂x1)2
+ · · · ∂2f

(∂xd)2
. (10)

A function f ∈ C2(Ω) which satisfies the equation

∆f = 0 in Ω (11)

is said to be harmonic (in Ω). The equation (11) is called the Laplace equa-
tion.

Examples. Constants and linear functions are trivially harmonic. In R2, the
function f(x) = ξ2 − η2 is harmonic. We shall now consider some less trivial
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examples. We consider again functions of the form f(x) = ϕ(r(x)). By the
chain rule (cf. examples after 9.4) we have

∂f

∂xi
=
dϕ(r(x))

dr

xi

r
,

and therefore

∆ϕ(r(x)) =
n∑

i=1

(
d2ϕ

dr2
· x

i

r
· x

i

r
+
dϕ

dr
· 1
r
− dϕ

dr
· x

i

r3
xi

)
=
d2ϕ

dr2
+

(n− 1)
r

dϕ

dr
, (12)

for
∑d

i=1 x
ixi = r2. It follows that, in particular,

for d = 2 : ∆ log(r(x)) = 0 for x �= 0

and for d ≥ 3 : ∆
1

rd−2(x)
= 0 for x �= 0.

These functions, that is, log(r(x)) and r2−d(x), respectively, are called fun-
damental solutions of the Laplace equation.

Definition 9.15

(i) Let k > 0 be a constant (heat conductivity). The differential equation
defined for functions f : Ω × R+ → R, (x, t) ∈ Ω × R+, f being twice
differentiable in x and once in t, by

1
k

∂f(x, t)
∂t

−∆f(x, t) = 0

(∆ as in (10)) is called the heat equation.

(ii) Let c > 0 be likewise a constant (wave propagation speed);
f ∈ C2(Ω × R+,R), (x, t) ∈ Ω × R+. The differential equation

1
c2
∂2f(x, t)
∂t2

−∆f(x, t) = 0

(∆ as in (10)) is called the wave equation.

We consider the function

k(x, t) :=
1

t
d
2

exp
(
−‖x‖2

4t

)
forx ∈ Rd, t > 0.

By (12), on account of ‖x‖ = r, ∂k
∂r = −r

2t
d
2 +1

exp
(
− r2

4t

)
, we have
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∆k(x, t) =
(

r2

4t
d
2 +2

− d

2t
d
2 +1

)
exp

(
−r2

4t

)
and

∂k(x, t)
∂t

=
(

r2

4t
d
2 +2

− d

2t
d
2 +1

)
exp

(
−r2

4t

)
,

and therefore

∂k(x, t)
∂t

−∆k(x, t) = 0, forx ∈ Rd, t > 0.

The functions k(x, t) are called fundamental solutions of the heat equation.
We have, for x �= 0, lim

t↘0
k(x, t) = 0 and lim

t↘0
k(0, t) = ∞, and for all x,

lim
t→∞ k(x, t) = 0.

For every fixed t > 0, the curve k(x, t) is bell-shaped, and it is the steeper
the smaller t is; in the illustration, n = 1.

Physically, the function k(x, t) describes the process of heat conduction in
the space Rd as a function of time t, where the initial values are concentrated
in a point and form an infinitely hot heat source there. This is an idealised
situation, but we shall see later that a general initial state can be represented
by a superposition (i.e. integration) of such idealised initial states. Moreover,
the bell shaped curve described by k(x, t) (for t fixed) also plays a role in
probability theory. Namely, it gives the socalled Gaussian distribution.

Finally, we want to present a solution of the wave equation. Let c > 0,
v ∈ Rd, w = c‖v‖, and

σ(x, t) := g(〈v, x〉 − wt)

with g ∈ C2(R,R).

We have
1
c2

∂2

∂t2
σ(x, t) −∆σ(x, t) =

w2

c2
g′′ − ‖v‖2g′′ = 0.

Therefore σ(x, t) is a solution of the wave equation.
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The Laplace equation, the heat equation and the wave equation are pro-
totypes of a certain class of partial differential equations (“partial” means
that the unknown function is a function of several variables, in contrast to
ordinary differential equations), which we want to define briefly.

Definition 9.16 A linear differential operator of second order is a continuous
linear map of C2(Ω,R) into C0(Ω,R) of the following form:

f(x) �→ Lf(x) =
d∑

i,j=1

aij(x)
∂2f(x)
∂xi∂xj

+
d∑

i=1

bi(x)
∂f(x)
∂xi

+c(x)f(x)+d(x), (13)

where aij(x), bi(x), c(x), d(x) ∈ C0(Ω,R).

If (aij(x))i,j=1,...,d (for all x ∈ Ω) is a positive definite matrix, then the
differential equation

Lf(x) = 0

is called elliptic.
A differential equation of the form

∂

∂t
f(x, t) − Lf(x, t) = 0

(f : Ω×R+ → R with corresponding differentiability properties) with elliptic
L (as in (13)) is called parabolic, and an equation of the form

∂2

∂t2
f(x, t) − Lf(x, t) = 0 (f ∈ C2(Ω × R+,R)),

with again an elliptic L, is called hyperbolic.

These are the types of differential equations of second order which are
of principal interest in mathematics and physics. Elliptic equations describe
states of equilibrium, parabolic and hyperbolic ones diffusion and vibration
processess, respectively. For the Laplace operator

aij(x) = δij

(
=

{
1 for i = j
0 for i �= j

)
for all x.

The matrix (aij(x)) therefore is the identity matrix and hence positive defi-
nite.
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B. Vector Valued Functions

As before, let Ω be an open subset of Rd. We consider the map

f : Ω → Rm

and write f = (f1, . . . , fm).
If f is differentiable at x ∈ Ω, the differential Df(x) is a linear map

Rd → Rm, and indeed Df(x) is given by the matrix(
∂f j(x)
∂xi

)
i=1,...,d,j=1,...,m

(compare example 5 at the beginning and (10) of the previous chapter). This
matrix is called the Jacobi matrix of f. Furthermore in case d = m, the
Jacobian or functional determinant of f at x is defined as

det
(
∂f j(x)
∂xi

)
;

in other words, it is the determinant of the Jacobi matrix.
If g : Ω′ → Rl, Ω′ open in Rm, is differentiable at the point f(x) ∈ Ω′,

the chain rule gives

D(g ◦ f)(x) = (Dg)(f(x)) ◦Df(x),

or, in matrix notation

∂(g ◦ f)k(x)
∂xj

=
m∑

j=1

∂gk(f(x))
∂yj

· ∂f
j(x)
∂xi

(k = 1, . . . , l, i = 1, . . . , d).

In particular in the case d = m = l we have

det
(
∂(g ◦ f)k(x)

∂xi

)
= det

(
∂gk(f(x))

∂yj

)
det

(
∂f j(x)
∂xi

)
.

Definition 9.17 A function f : Ω → Rd (so m = d) is, in many contexts,
also called a vector field, as to any point x ∈ Ω ⊂ Rd a vector f(x) in Rd is
assigned by f. If f is partially differentiable, the divergence of f is defined as

div f(x) :=
d∑

i=1

∂f i(x)
∂xi

.

Theorem 9.18 If ϕ : Ω → R is partially differentiable, then

∂

∂xi
(ϕf i) = ϕ

∂f i

∂xi
+

∂ϕ

∂xi
f i
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and by summation over i,

div (ϕf) = ϕdiv f + 〈 gradϕ, f〉.
If ϕ : Ω → R is twice partially differentiable, then gradϕ = ∇ϕ =(

∂ϕ
∂x1 , . . . ,

∂ϕ
∂xn

)
is a partially differentiable vector field and we have

div (gradϕ) =
n∑

i=1

∂2ϕ

(∂xi)2
= ∆ϕ.

Definition 9.19 In the special case d = 3 one defines for a partially differ-
entiable vector field f : Ω → R3 yet another vector field rot f (the rotation
of f) by

rot f :=
(
∂f3

∂x2
− ∂f2

∂x3
,
∂f1

∂x3
− ∂f3

∂x1
,
∂f2

∂x1
− ∂f1

∂x2

)
.

Corollary 9.20 If ϕ : Ω → R is twice differentiable, then

rot gradϕ = 0.

Proof. The proof follows from direct calculations. The first component of rot
grad ϕ is e.g.

∂

∂x2

(
∂ϕ

∂x3

)
− ∂

∂x3

(
∂ϕ

∂x2

)
= 0,

by corollary 8.14. �

If f : Ω → R3(Ω ⊂ R3) is a twice differentiable vector field, then

div rot f = 0.

The proof is again a direct calculation.

Exercises for § 9

1) We define f : R2 → R by

f(ξ, η) :=
{

ξη
r sin(1

r ) for (ξ, η) �= (0, 0)
0 for (ξ, η) = (0, 0),

where r(ξ, η) := (ξ2 + η2)
1
2 .

Where do the partial derivatives ∂f
∂ξ ,

∂f
∂η exist? For which (a, b) ∈ R2

are the maps ξ �→ ∂f
∂ξ (ξ, b), η �→ ∂f

∂η (ξ, b), η �→ ∂f
∂η (a, η) continuous?



130 9. Differential Calculus in Rd

f is not differentiable at (0, 0). Is this compatible with the results
demonstrated in §9?

2) Determine the local minima and maxima of f : R2 → R,

a) f(ξ, η) := (4ξ2 + η2)e−ξ2−4η2
,

b) f(ξ, η) := ξ2 − η2 + 1,
c) f(ξ, η) := ξ3 + η3 − ξ − η.

3) Show that f(x, y) = (y−x2)(y−2x2) does not have a local minimum
at 0 ∈ R2. However, the restriction of f to any straight line through
0 does have a local minimum at 0.

4) Let Ω ⊂ Rd be open, f : Ω → R continuously differentiable. Show
that the gradient of f is orthogonal to the level set Nf (c) := {x ∈ Ω :
f(x) = c} (c ∈ R) in the following sense:
If γ : (−ε, ε) → Rd(ε > 0) is continuously differentiable with γ(0) =
x0 ∈ Ω, γ(t) ⊂ Nf (c) for −ε < t < ε, then

〈γ′(0), grad f(x0)〉 = 0.

5) Let f : Rd → R be a continuous function with continuous partial
derivatives. Show that f is homogeneous of degree α (i.e. f(tx) =
tαf(x) for all x ∈ Rd, t > 0, precisely if Euler’s formula

d∑
i=1

xi ∂f

∂xi
(x) = αf(x)

holds for all x ∈ Rd.

6) Compute ∇ log log r and ∆ log log r, for r =
(
Σ(xi)2

) 1
2 �= 0 (x =

(x1, . . . , xd) ∈ Rd).

7) Let Ω ⊂ R2 be open, 0 �∈ Ω, f ∈ C2(Ω) a solution of ∆f = 0 in Ω.
Then g(x) := f

(
x

‖x‖2

)
is a solution of ∆g = 0 in Ω∗ := {x : x

‖x‖2 ∈ Ω}.
Similarly, if Ω ⊂ R3 instead, g(x) = 1

‖x‖ f( x
‖x‖ ) yields a solution of

∆g = 0.

8) Determine all harmonic polynomials in R2 of degree ≤ 3.

9) Let Ω := {(ξ, η, ξ) ∈ R3 : ξ2 + η2 < 1}. Let u ∈ C3(Ω) be harmonic,
i.e. ∆u = 0 in Ω. Suppose that u is rotationally symmetric about the
ξ-axis (express this condition through a formula!), and suppose that

f(ξ) := u(0, 0, ξ)

is given for ξ ∈ R. We wish to compute u on Ω from f by Taylor
expansion w.r.t. ξ and η, where we consider ξ as a parameter. Thus,
we write
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u(ξ, η, ξ) = a0(ξ) + a1(ξ)ξ + a2(ξ)η + a11(ξ)ξ2 + 2a12(ξ)ξη + a22(ξ)η2

+ higher order terms.
Use the equation ∆u = 0 to determine the functions a0(ξ), . . . , a22(ξ)
in terms of f.



10. The Implicit Function Theorem.
Applications

The Banach fixed point theorem is used to derive the implicit function theorem.
Corollaries are the inverse function theorem and the Lagrange multiplier rules for
extrema with side conditions.

We shall first explain the setting of the problem. Let a function F (x, y) be
represented by its contour lines. We have already illustrated a few examples in
the previous chapter. Practical examples occur in maps, where F (x, y) gives
the height above the sea level, or in weather charts, where F (x, y) describes
the air pressure. Here the contours are the socalled isobars – lines of equal
pressure. Now the following question can be posed: Given c ∈ R and (x0, y0)
such that F (x0, y0) = c, can a function x �→ y = g(x) be found, at least
locally, i.e. in a neighborhood of (x0, y0), that satisfies the equation

F (x, g(x)) = c. (1)
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Here, g should be as continuous as possible and even differentiable, provided
F is assumed to be itself differentiable. Besides, in this neighborhood, for
every x, g(x) should be the unique solution of (1). We thus want to represent
the contours locally as functions of x, in graphical representations as graphs
over the x-axis.

By illustrations one can convince oneself quickly that this is not always
possible. The contours should, first of all, be non-degenerate, i.e., they should
not be single points, nor should they have corners or self intersections. Also,
such a solution in x can certainly not function where the contour has a
vertical tangent, at least not with a differentiable g, and not at all if the
contour has a recurring point. Of course, at such points, one could try to find
a solution in y instead of x. Finally, the restriction to a small neighborhood
is important. If one chooses too big a neighborhood of x0, there exists in
general no solution anymore, and if one chooses the neighborhood of y0 too
big, then the solution is, in general, no longer unique. It turns out that with
these limitations, a solution with the required properties can really be found.
Namely, the following important result holds.

Theorem 10.1 (Implicit function theorem)
Let V1, V2,W be Banach spaces, Ω ⊂ V1 × V2 an open set, (x0, y0) ∈ Ω

and F : Ω →W be continuously differentiable in Ω. Assume that

F (x0, y0) = 0

(without loss of generality, we have taken c = 0). Let (the continuous) linear
map

D2F (x0, y0) : V2 → W

be invertible, and let its inverse be likewise continuous. Then there exist open
neighborhoods Ω1 of x0 and Ω2 of y0, Ω1 × Ω2 ⊂ Ω, and a differentiable
function g : Ω1 → Ω2 such that

F (x, g(x)) = 0 (2)

and
Dg(x) = −(D2F (x, g(x)))−1 ◦D1F (x, g(x)) (3)

for all x ∈ Ω1.
Furthermore, for every x ∈ Ω1, g(x) is the only solution of (2) in Ω2.

Proof. For abbreviation, we set L0 := D2F (x0, y0). The equation F (x, y) = 0
is the equivalent to

y = y − L−1
0 F (x, y) =: G(x, y).

Thus, we have transformed our problem to that of finding, for every x, a fixed
point of the map y �→ G(x, y). The advantage of this reformulation is that we
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can use the Banach fixed point theorem. For recollection we formulate this
once more as

Lemma 10.2 Let A be a closed subspace of a Banach space B and let T :
A→ A satisfy

‖Ty1 − Ty2‖ ≤ q‖y1 − y2‖ for all y1, y2 ∈ A (4)

with a fixed q < 1.
Then there exists a unique y ∈ A such that

Ty = y. (5)

Furthermore, if we have a family T (x), where all the T (x) fulfil (4) for a fixed
q independent of x (x is allowed to vary in an open subset of a Banach space
B0), then the solution y = y(x) of

T (x)y = y (6)

depends continuously on x.

As we have previously not proved continuous dependence on x, we give a
proof again.

Proof. We set, recursively, for every x ∈ Ω

yn := T (x)yn−1, (7)

where y0 ∈ A is chosen arbitrarily.
So

yn =
n∑

ν=1

(yν − yν−1) + y0 =
n∑

ν=1

(T (x)ν−1y1 − T (x)ν−1y0) + y0. (8)

Now
n∑

ν=1

‖T (x)ν−1y1 − T (x)ν−1y0‖ ≤
n∑

ν=1

qν−1‖y1 − y0‖ ≤ 1
1 − q

‖y1 − y0‖

and therefore the series (8) converges absolutely and uniformly, and the limit
function y(x) = lim

n→∞ yn is continuous. We also have

y(x) = lim
n→∞T (x)yn−1 = T (x)( lim

n→∞ yn−1) = T (x)y(x),

and as A is closed, y(x) ∈ A, and consequently y(x) solves (6). The uniqueness
follows again from (4): If y1, y2 are two solutions of y = Ty, then

‖y1 − y2‖ = ‖Ty1 − Ty2‖ ≤ q‖y1 − y2‖



136 10. The Implicit Function Theorem. Applications

and therefore as q < 1, we have y1 = y2. �

With that, the proof of lemma 10.2 is complete and we can proceed with
the proof of the theorem. First we obtain (L−1

0 ◦ L0 = Id)

G(x, y1) −G(x, y2) = L−1
0 (D2F (x0, y0)(y1 − y2) − (F (x, y1) − F (x, y2))).

As F is differentiable at (x0, y0) and L−1
0 is continuous, there exist such

δ1 > 0, η > 0 that for ‖x − x0‖ ≤ δ1, ‖y1 − y0‖ ≤ η, ‖y2 − y0‖ ≤ η (and
therefore also ‖y1 − y2‖ ≤ 2η) we have

‖G(x, y1) −G(x, y2)‖ ≤ 1
2
‖y1 − y2‖ (9)

(instead of 1
2 we could work here with any other q < 1).

Besides, there exists such a δ2 > 0 that for ‖x− x0‖ ≤ δ2

‖G(x, y0) −G(x0, y0)‖ < η

2
. (10)

If then ‖y − y0‖ ≤ η, we have, using G(x0, y0) = y0

‖G(x, y) − y0‖ = ‖G(x, y) −G(x0, y0)‖
≤ ‖G(x, y) −G(x, y0)‖
+ ‖G(x, y0) −G(x0, y0)‖
≤ 1

2
‖y − y0‖ +

η

2
≤ η.

by (9), (10), for every x with ‖x− x0‖ ≤ δ := min(δ1, δ2).
Therefore, G(x, y) maps the closed ball B(y0, η) onto itself (and similarly

also the open ball U(y0, η)). Therefore lemma 10.2 can be applied to the
function y �→ G(x, y), and for every x such that ‖x − x0‖ ≤ δ there exists
therefore a unique y = y(x) with ‖y − y0‖ ≤ η and y = G(x, y), so F (x, y) =
0, and y depends continuously on x. We set Ω1 := {x : ‖x − x0‖ < δ},
Ω2 := {y : ‖y − y0‖ < η}; without restriction, let Ω1 × Ω2 ⊂ Ω. We denote
such a y with g(x), and it just remains to show the differentiability of g. Let
(x1, y1) ∈ Ω1 ×Ω2, y1 = g(x1). Since F is differentiable at (x1, y1) we obtain,
setting K = D1F (x1, y1) and L = D2F (x1, y1),

F (x, y) = K(x− x1) + L(y − y1) + ϕ(x, y) (11)

for (x, y) ∈ Ω with

lim
(x,y)→(x1,y1)

ϕ(x, y)
‖(x− x1, y − y1)‖ = 0. (12)
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Since F is continuously differentiable, we may choose δ and η so small
that our operator L satisfies the assumption of Lemma 7.21 and therefore
has a continuous inverse L−1.

As F (x, g(x)) = 0 holds for x ∈ Ω1, it follows that

g(x) = −L−1K(x− x1) + y1 − L−1ϕ(x, g(x)). (13)

On account of (12) there exist ρ1, ρ2 > 0 with the property that for

‖x− x1‖ ≤ ρ1, ‖y − y1‖ ≤ ρ2

‖ϕ(x, y)‖ ≤ 1
2‖L−1‖ (‖x− x1‖ + ‖y − y1‖),

so
‖ϕ(x, g(x))‖ ≤ 1

2‖L−1‖‖x− x1‖ + ‖g(x) − g(x1)‖ (14)

also holds. From (13) and (14) it follows that

‖g(x) − g(x1)‖ ≤ ‖L−1K‖ ‖x− x1‖ +
1
2
‖x− x1‖ +

1
2
‖g(x) − g(x1)‖,

so
‖g(x) − g(x1)‖ ≤ c‖x− x1‖with c := 2‖L−1K‖ + 1. (15)

Setting ψ(x) := −L−1ϕ(x, g(x)) it follows from (13) that

g(x) − g(x1) = −L−1K(x− x1) + ψ(x), (16)

and we have

lim
x→x1

ψ(x)
‖x− x1‖ = 0 (17)

using ‖ψ(x)‖ ≤ ‖L−1‖ ‖ϕ(x, g(x))‖ and lim
x→x1

ϕ(x,g(x))
‖x−x1‖ = 0 by (12) and (15).

(16) and (17) mean that g(x) is differentiable at x1 with

Dg(x1) = −L−1K = −(D2F (x1, y1))−1D1F (x1, y1).

This is equivalent to (3). �
A direct consequence of the implicit function theorem is the

Theorem 10.3 (Inverse function theorem) Let V and W be Banach
spaces, Ω open in V, f : Ω → W continuously differentiable and y0 ∈ Ω. Let
Df(y0) be invertible and the inverse (Df(y0))−1 likewise continuous. There
exists an open neighborhood Ω′ ⊂ Ω of y0 which is mapped bijectively under
the function f onto an open neighborhood Ω′′ of x0 = f(y0), and the inverse
function g = f−1 : Ω′′ → Ω′ is differentiable with

Dg(x0) = (Df(y0))−1. (18)
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Proof. We consider F (x, y) = f(y)−x. By assumption D2F (x0, y0) = Df(y0)
is invertible, with continuous inverse. Therefore by the implicit function the-
orem there exists an open neighborhood Ω′′ of x0, as well as a differentiable
function g : Ω′′ → V such that g(Ω′′) ⊂ Ω2 for a neighborhood Ω2 of y0,
F (x, g(x)) = 0, so f(g(x)) = x for x ∈ Ω′′, and g(x0) = y0. In what fol-
lows, we restrict f to g(Ω′′), without changing the notations. On account
of f(g(x)) = x, the function g is injective on Ω′′; therefore g establishes a
bijection of Ω′′ onto g(Ω′′). Furthermore g(Ω′′) = f−1(Ω′′) is open, as f is
continuous. We set accordingly Ω′ = g(Ω′′). Then f maps Ω′ bijectively onto
Ω′′. Finally (18) follows from (3) as well as from the relation f(g(x)) = x, so
by the chain rule,

Df(g(x0)) ◦Dg(x0) = Id.

�

We shall now consider further explicit consequences in the finite dimen-
sional case.

Corollary 10.4 Let Ω be an open set in Rd, x0 ∈ Ω,ϕ : Ω → Rk continu-
ously differentiable, ϕ(x0) = y0.

(i) If d ≤ k and Dϕ(x0) is of maximal rank (= d), there exist open
neighborhoods Ω′ of y0 and Ω′′ of x0 and a differentiable function

g : Ω′ → Rk

with the property that for all x ∈ Ω′′

g ◦ ϕ(x) = i(x),

i : Rd → Rk, d ≤ k, being the canonical injection
i(x1, . . . xd) = (x1, . . . , xd, 0, . . . , 0).

(ii) If d ≥ k and Dϕ(x0) is of maximal rank (= k), there exists an open
neighborhood Ω̃ of x0 as well as a differentiable map

h : Ω̃ → Ω

with h(x0) = x0 and ϕ ◦ h(x) = π(x),
π : Rd → Rk (for d ≥ k) being the canonical projection π(x1, . . . , xd) =
(x1, . . . , xk).

Proof.

(i) By assumption, we have rank (Djϕ
i) i=1,...,k

j=1,...,d
= d at x0. By changing

notations, if necessary, we can assume that det(Djϕ
i)i,j=1,...,d �= 0 at

x0.
We define f : Ω × Rk−d → Rk by
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f(x1, . . . , xk) = ϕ(x1, . . . , xd) + (0, . . . , 0, xd+1, . . . , xk).

Now
det(Djf

i)i,j=1,...,k = det(Djϕ
i)i,j=1,...,d �= 0

at {x0} × {0}.
By the implicit function theorem, there exists locally a differentiable
inverse g of f such that

i(x) = g ◦ f(i(x)) = g ◦ ϕ(x).

(ii) As before, we assume, without loss of generality, that
det(Djϕ

i)i,j=1,...,k �= 0atx0.
We define f : Ω → Rd by

f(x1, . . . , xd) = (ϕ1(x), . . . , ϕk(x), xk+1, . . . , xd).

We have

det(Djf
i)i,j=1,...,d = det(Djϕ

i)i,j=1,...,k �= 0

at x0.
Therefore there exists, by the inverse function theorem, an inverse
function h of f with

π(x) = π ◦ f ◦ h(x) = ϕ ◦ h(x).

�

In case (i), ϕ thus locally looks like the inclusion

Ω′′ ⊂ Rd ϕ→Ω′ ⊂ Rk

i ↘ ↙ g

Rk

and in case (ii) like the projection

Ω̃ ⊂ Rd

h ↙ ↘ π

h(Ω̃) ⊂ Ω ⊂ Rd →
ϕ

Rk

As i = g ◦ϕ and π = ϕ ◦ h, respectively, both diagrams can be traced in any
way in the direction of the arrows. Such diagrams are called commutative
diagrams.

Example. As an example, we want to consider again the familiar polar coor-
dinates in R2. Let f : R+ × R → R2 be given by
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f(r, ϕ) = (r cosϕ, r sinϕ).

Now

Df(r, ϕ) =
(∂f1

∂r
∂f1

∂ϕ

∂f2

∂r
∂f2

∂ϕ

)
=

(
cosϕ −r sinϕ
sinϕ r cosϕ

)
,

so det(Df) = r > 0 for r > 0 and any ϕ.
Consequently, Df(r, ϕ) for r > 0 is invertible and by the inverse function

theorem, f is therefore locally invertible, with inverse g and

Dg(x, y) = (Df(r, ϕ))−1 =
(

cosϕ sinϕ
− sin ϕ

r
cos ϕ

r

)
for (x, y) = f(r, ϕ).

We have x
r = cosϕ, y

r = sinϕ, r =
√
x2 + y2 and moreover ϕ = arctan y

x ,
so that here the solution can be given even explicitly. In particular

Dg(x, y) =
( x√

x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

)
.

From this example one sees that inversion is, in general, possible only locally,
for we have

f(r, ϕ+ 2πm) = f(r, ϕ) for all m ∈ Z.

If x, y are cartesian coordinates of a point in R2, then r and ϕ, with x =
r cosϕ, y = r sinϕ, are called polar coordinates of (x, y). For (x, y) �= (0, 0)
the coordinate ϕ is completely undetermined; but here, the above function f
is also not invertible. In complex notation we have

x+ iy = reiϕ.

We now want to derive the Lagrange multiplier rule for local extrema
with constraints. For this, let Ω be an open subset of Rd,m < d, and let
F : Ω → Rm be given. Now, local extrema of a function h : Ω → R under
the constraint F (x) = 0 are to be found. So, in other words, we consider
the restriction of h to the set {x : F (x) = 0} and look in this set for locally
smallest or greatest values, whereby these extremal properties are to hold
only in comparison with other points of the set {F (x) = 0}. For this, the
following result holds.

Theorem 10.5 Let F : Ω → Rm, h : Ω → R be continuously differentiable
(Ω ⊂ Rd,
m < d), and let h have a local extremum at the point x0 subject to the
constraint F (x) = 0.

Let DF (x0) have maximal rank m, i.e. assume that there exists a nonva-
nishing subdeterminant of m rows of
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DF (x0) =

⎛⎜⎜⎜⎝
∂F 1(x0)

∂x1 · · · ∂F 1(x0)
∂xd

...

∂F m(x0)
∂x1 . . . ∂F m(x0)

∂xd

⎞⎟⎟⎟⎠ .

Then there exist m real numbers λ1, . . . , λm (Lagrange multipliers) which
satisfy the equation

Dh(x0) =
m∑

j=1

λjDF
j(x0). (19)

In the special case m = 1 this simply means the existence of a real λ with

gradh(x0) = λ gradF (x0).

Proof. By renumbering the coordinates x1, . . . , xd if necessary, we may as-
sume that

det
(
∂F i(x0)
∂xj

)
i=1,...,m

j=n−m+1,...,d

�= 0, (20)

so the subdeterminant of DF (x0) formed from the last m rows does not
vanish. We write z = (x1, . . . , xd−m), y = (xd−m+1, . . . , xd), and similarly
z0, y0. The inequality (20) means that D2F (z0, y0) (x = (z, y) ∈ Rd−m×Rm)
is invertible. The implicit function theorem implies that in a neighborhood of
(z0, y0) the condition F (z, y) = 0 is described by y = g(z), so F (z, g(z)) = 0.
The function H(z) := h(z, g(z)) then has an (unconstrained) local extremum
at x0. Therefore, by theorem 9.9

DH(z0) = 0 ⇐⇒ ∂H

∂zi
(z0) = 0 for i = 1, . . . , d−m,

so
∂h(z0, g(z0))

∂zi
+

m∑
j=1

∂h(z0, g(z0))
∂yj

· ∂g
j(z0)
∂zi

= 0

for i = 1, . . . , d−m, or in other notation,

D1h(z0, g(z0)) +D2h(z0, g(z0))Dg(z0) = 0.

On the other hand, by the implicit function theorem,

Dg(z0) = −(D2F (z0, g(z0)))−1D1F (z0, g(z0)),

so altogether
D1h−D2h(D2F )−1D1F = 0,

always at the point (z0, g(z0)). We set

Λ := (λ1, . . . , λm) := D2h(D2F )−1(z0, g(z0)).
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We then have
D1h = ΛD1F (21)

and by definition of Λ also

D2h = ΛD2F, (22)

again evaluated at the point (z0, g(z0)). The equations (21) and (22) are
equivalent to (19). �

Example. As an example, we want to determine the extrema of h : R3 → R,
h(x) = x1 + x2 + x3 subject to the condition F (x) = 0 with F (x) =
(x1)2 + (x2)2 + (x3)2 − 1. At an extreme point we must have gradh(x0) =
λ gradF (x0), so here

1 = 2λxi
0 for i = 1, 2, 3, (23)

and in addition F (x0) = 0, so

(x1
0)

2 + (x2
0)

2 + (x3
0)

2 = 1. (24)

These are four equations for the three components of x0 and λ, so for alto-
gether four unknowns. Equations (23) give x1

0 = x2
0 = x3

0, and by (24)

x0 = +(
1√
3
,

1√
3
,

1√
3
). (25)

On the other hand, h must assume its maximum and minimum on the com-
pact set
{F (x) = 0}, therefore at both the points determined by (25). The plus sign
obviously goes with the maximum and the minus with the minimum in (25).

Exercises for § 10

1) Discuss the map
f : C → C, f(z) := z2.

Where is f differentiable when considered as a map of R2 to itself?
Where is the Jacobian different from 0? Is the image of each open set
open? Construct a maximal region in C where f is bijective and f as
well as f−1 are continuously differentiable. Study the images under
f of parallels to the real and the imaginary axis, as well as of rays
starting at 0 and of circles with center at 0.

2) Define f : R2 → R2 by
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f1(ξ, η) := ξ

f2(ξ, η) := η − ξ2 for ξ2 ≤ η

f2(ξ, η) :=
η2 − ξ2η

ξ2
for 0 ≤ η ≤ ξ2, (ξ, η) �= (0, 0)

f2(ξ, η) := −f2(ξ,−η) for η ≤ 0.

Show that f is differentiable everywhere, Df(0, 0) = Id, but Df is
not continuous at (0, 0). Every neighborhood of (0, 0) contains points
x1 �= x2 with f(x1) = f(x2). Is this compatible with the inverse
function theorem?

3) Let B := {x ∈ Rd : ‖x‖ < 1}, A := {x ∈ Rd, ‖x‖ > 1}. Consider
f : B\{0} → A, f(x) = x

‖x‖2 . Compute Df. Is f bijective? Supply a
geometric construction for f(x) if d = 2 or 3.

4) (Spatial polar coordinates) Let Rd
+ := {(r, t2, . . . , td) ∈ Rd : r ≥

0} (d ≥ 3). We define a map Fd : Rd
+ → Rd by the following equations:

x1 := r

d∏
i=2

cos ti, xj := r sin tj
d∏

i=j+1

cos ti for j = 2, . . . , d− 1

xd := r sin td.

Show that Fd is surjective. Compute its Jacobian. Where is the Jaco-
bian �= 0? What are the images under Fd of the following sets?

QR := {(r, t2, . . . , td) : 0 ≤ r ≤ R,−π < t2 ≤ π,−π

2
≤ tj ≤ π

2
for j = 3, . . . , d}

HR := {(r, t2, . . . , td) : r = R,−π < t2 ≤ π,−π

2
≤ tj ≤ π

2
for j = 3, . . . , d}.

For x ∈ Rd with x = Fd(r, t2, . . . , td), (r, t2, . . . , td) are called polar coordi-
nates of x. r is uniquely determined by x (give a formula!). Which convention
can be employed to determine t2, . . . , td uniquely for x �= 0? For d = 3, inter-
prete t2 and t3 as angles (draw a picture!).



11. Curves in R
d. Systems of ODEs

First, some elementary properties, like rectifiability or arc length parametrization,
of curves in Euclidean space are treated. Next, curves that solve systems of ODEs
are considered. Higher order ODEs are reduced to such systems.

Definition 11.1 A curve in Rd is a continuous map γ : I → Rd, where I
is an interval in R consisting of more than one point. The interval I can be
proper or improper.

Examples.

1) A straight line γ : R → Rd, γ(t) = x0 + vt (v �= 0)

2) A circle of radius r > 0 : γ : [0, 2π] → R2, γ(t) = (r cos t, r sin t)

3) A helix: γ : R → R3, γ(t) = (r cos t, r sin t, αt) (r > 0, α �= 0)

4) Archimedian spiral: γ : R → R2, γ(t) = (αt cos t, αt sin t), α > 0

5) Logarithmic spiral: γ : R → R2, γ(t) = (αeλt cos t, αeλt sin t), α >
0, λ > 0

6) The graph of a continuous function f : I → R : γ : I → R2, γ(t) =
(t, f(t)).

Definition 11.2 Let γ : I → Rd be a differentiable curve. For t ∈ I we call

γ̇(t) := Dγ(t)

the tangent vector of γ at t. γ̇(t) is the limit of secants: γ̇(t) = lim
h→0
h�=0

γ(t+h)−γ(t)
h .
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One can interpret a curve in Rn also kinematically as the orbit of a point
mass which is situated at position γ(t) at time t. γ̇(t) then is the velocity
vector at time t.

The trace of a continuously differentiable curve could still have corners,
as the example of Neil’s parabola shows:

γ : R → R2, γ(t) = (t2, t3), so γ(R) = {(ξ, η) ∈ R2 : η = ±ξ 3
2 }.

In order to exclude this, we make the following definition

Definition 11.3 Let γ : I → Rd be a continuously differentiable curve. It is
called regular if γ̇(t) �= 0 for all t ∈ I, and singular if γ̇(t) = 0 for some t ∈ I.

We now want to define the length of a curve. Let γ : [a, b] → Rd be a curve;
a partition Z of [a, b] consists of points t0 = a < t1 < . . . < tk = b (k ∈ N).
We set

L(γ, Z) :=
k∑

i=1

‖γ(ti) − γ(ti−1)‖,

so L(γ, Z) is the length of the polygon joining the points γ(t0), γ(t1), . . . , γ(tk).

Definition 11.4 A curve γ : [a, b] → Rd is called rectifiable if

L(γ) := sup
Z
L(γ, Z) <∞.

L(γ) is then called the length of γ. For α, β ∈ [a, b] we denote the restriction
of γ to [α, β] by γ|[α,β], so γ|[α,β] : [α, β] → Rd with γ|[α,β](t) = γ(t) for
t ∈ [α, β].
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Lemma 11.5 Let γ : [a, b] → Rd be a curve, c ∈ (a, b). The curve γ is
rectifiable precisely if γ|[a,c] and γ|[c,b] are rectifiable and then

L(γ) = L(γ|[a,c]) + L(γ|[c,b]).

Proof. Let Z be partition of [a, b] with ti < c < ti+1 for an index i. The
points t0, t1, . . . , ti, c, ti+1,...tk likewise define a partition Z ′ of [a, b] and we
have

L(γ, Z) ≤ L(γ, Z′).

We set further
γ1 = γ|[a,c], γ2 = γ|[c,b].

The partition Z ′
1 defined by t0, . . . , ti, c, is a partition of [a, c] and similarly

Z ′
2, given by c, ti+1,...tk is one of [c, b]. It follows that

L(γ, Z) ≤ L(γ, Z′) = L(γ1, Z
′
1) + L(γ2, Z

′
2) ≤ L(γ). (1)

Conversely, arbitrary partitions Z1, Z2 of [a, c] and [c, b], respectively, define
a partition Z = Z1 ∪ Z2 of [a, b], and we have

L(γ1, Z1) + L(γ2, Z2) = L(γ, Z) ≤ L(γ). (2)

From (1) and (2) the assertion follows easily. �

Definition 11.6 For a rectifiable curve γ : [a, b] → Rd we define its arc
length function s : [a, b] → R+, by

s(t) := L(γ|[a,t]).

By lemma 11.5, this definition is possible and s(t) is monotonically in-
creasing.

Theorem 11.7 Let γ : [a, b] → Rd be a continuously differentiable curve.
Then γ is rectifiable and

L(γ) =
∫ b

a

‖γ̇(τ)‖dτ,
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and ṡ(t) = ‖γ̇(t)‖ for all t ∈ [a, b].

Proof. First of all, for a partition Z of [a, b] given by t0, . . . , tk we have

‖γ(ti) − γ(ti−1)‖ = ‖
∫ ti

ti−1

γ̇(τ)dτ‖ (i = 1, . . . , k), (3)

where we have set∫ β

α

γ̇(τ)dτ := (
∫ β

α

γ̇1(τ)dτ, . . . ,
∫ β

α

γ̇d(τ)dτ).

Furthermore, for an arbitrary continuous f : [a, b] → Rd and α, β ∈ [a, b] we
have

‖
∫ β

α

f(τ)dτ‖ ≤
∫ β

α

‖f(τ)‖dτ. (4)

This follows by approximating f uniformly by (vectorvalued) step functions
(sn)n∈N, sn = (s1n, . . . , s

d
n), and using (by the triangle inequality)

‖
l∑

λ=1

s(τλ)(τλ − τλ−1)‖ ≤
l∑

λ=1

‖s(τλ)‖(τλ − τλ−1); (5)

here the τλ are precisely the points of discontinuity of s. For s = sν both
sides of (5) converge to the corresponding sides of (4). By means of (4) we
now conclude from (3) that

‖γ(ti) − γ(ti−1)‖ ≤
∫ ti

ti−1

‖γ̇(τ)‖dτ,

and from this

L(γ) ≤
∫ b

a

‖γ̇(τ)‖dτ. (6)

In particular, γ is rectifiable. For t, t + h ∈ [a, b] we now have (assuming
h > 0)

‖γ(t+ h) − γ(t)‖ ≤ L(γ|[t,t+h]) = s(t+ h) − s(t)

≤
∫ t+h

t

‖γ̇(τ)‖dτ,

by lemma 11.5 and by (6) applied to γ|[t,t+h]. It follows that

‖γ(t+ h) − γ(t)
h

‖ ≤ s(t+ h) − s(t)
h

≤ 1
h

∫ t+h

t

‖γ̇(τ)‖dτ.

For h → 0, the left and right hand sides converge to ‖γ̇(t)‖ and it follows
that ṡ(t) = ‖γ̇(t)‖ and from this also
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L(γ) = s(b) =
∫ b

a

ṡ(τ)dτ =
∫ b

a

‖γ̇(τ)‖dτ .

�

Definition 11.8 A curve γ : [a, b] → Rd is called piecewise continuously
differentiable if there exist points t0 = a < t1 < . . . < tk = b with the
property that for i = 1, . . . , k, γ|[ti−1,ti] is continuously differentiable.

From lemma 11.5 and theorem 11.7, we conclude

Corollary 11.9 Every piecewise continuously differentiable curve is rectifi-
able and its length is the sum of the lengths of its continuously differentiable
pieces.

Definition 11.10 Let γ : [a, b] → Rd be a curve, [α, β] ⊂ R. A parameter
transformation is a bijective continuous map ϕ : [α, β] → [a, b]. It is called
orientation preserving if it is strictly monotonically increasing, orientation
reversing if it is strictly monotonically decreasing (as ϕ is bijective, one of
these two cases must occur). Two curves γ1 and γ2 are called equivalent if
γ2 = γ1 ◦ϕ for an orientation preserving transformation, and weakly equiva-
lent if ϕ is not necessarily orientation preserving.

Obviously these relations (equivalent and weakly equivalent) are equiva-
lence relations. The transitivity follows, for example, from the fact that the
composition of two parameter transformations is again a parameter transfor-
mation. For (weakly) equivalent curves the image sets are the same but they
are, in general, traced differently.

Definition 11.12 An arc is a class of weakly equivalent curves, an oriented
arc is a class of equivalent curves.

A curve γ : I → Rd need not necessarily be injective; it could, for example,
have double points.

Example. Let γ : R → R2 be the curve γ(t) = (t2 − 1, t3 − t). We have
γ(1) = γ(−1) = (0, 0). So γ has a double point,



150 11. Curves in Rd. Systems of ODEs

and both the tangent vectors γ′(−1) = (−2, 2) and γ′(1) = (2, 2) there have
different directions.

Definition 11.13 An arc is called a Jordan arc if it is represented by an in-
jective curve γ : [a, b] → Rd. It is called a closed Jordan arc if it is represented
by a curve γ : [a, b] → Rd which is injective on [a, b) and satisfies γ(a) = γ(b)
(thus the initial and end points coincide).

Obviously, a curve weakly equivalent to an injective curve is again injec-
tive, so that for the Jordan property it is immaterial by which curve an arc
is represented.

Lemma 11.14 Let γ1 : [a1, b1] → Rd and γ2 : [a2, b2] → Rd be weakly
equivalent curves. If one is rectifiable, so is the other, and their lengths then
coincide.

Proof. Let γ2 = γ1◦ϕ, where ϕ : [a2, b2] → [a1, b1] is bijective and continuous.
Now ϕ induces a bijection between the partitions of [a2, b2] and those of
[a1, b1]. Namely, if a2 = t0 < t1 < . . . tk = b2 is a partition Z2 of [a2, b2], then
ϕ(t0), ϕ(t1), . . . , ϕ(tk) leads to a partition Z1 of [a1, b1] for increasing ϕ, and
ϕ(tk), . . . , ϕ(t0) for decreasing ϕ. Similarly ϕ−1 carries a partition of [a1, b1]
into one such of [a2, b2]. Moreover, we obviously have L(γ2, Z2) = L(γ1, Z1),
for γ2(ti) = γ1(ϕ(ti)) for i = 1, . . . , k. From this, the assertion follows directly
by the definition of L(γj), j = 1, 2. �

Lemma 11.14 allows

Definition 11.15 An arc is called rectifiable if it is representable by a rec-
tifiable curve γ : [a, b] → Rd and its length is then defined to be L(γ).

Theorem 11.16 Let γ : [a, b] → Rd be continuously differentiable, with
γ̇(t) �= 0 for all t ∈ [a, b]. Then the length function s(t) := L(γ|[a,t]) is
invertible, and its inverse t(s) is likewise differentiable. The curve γ̃(s) :=
γ(t(s)), γ̃ : [0, L(γ)] → Rd is equivalent to γ and satisfies

‖ ·
γ̃(s)‖ = 1 for all s, 0 ≤ s ≤ L(γ). (7)

Before the proof, we make a definition.

Definition 11.17 A curve γ̃(s) with s = L(γ̃|[0,s]) is said to be parametrized
by arc length and s in this case is called the arc length parameter.

Theorem 11.16 states that a continuously differentiable (and thus also
a piecewise continuously differentiable curve) can always be parametrised
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by arc length. This assertion also holds for arbitrary rectifiable curves. The
proof is, in principle, not difficult, but it is somewhat involved and we shall
not present it here. The main point consists in showing that s(t) := L(γ|[a,t])
is continuous. The interested reader may try this herself or himself.

Proof of Theorem 11.16: By theorem 11.7 and our assumptions we have

ṡ(t) = ‖γ̇(t)‖ > 0 for all t, andL(γ) =
∫ b

a

ṡ(τ)dτ. (8)

It follows that t �→ s(t) yields a strictly increasing bijection of [a, b] onto
[0, L(γ)] and the inverse map t(s) is differentiable with ṫ(s) = 1

ṡ(t) . It follows

that for γ̃(s) := γ(t(s)) we have
·
γ̃(s) =

·
γ(t(s)) · 1

ṡ(t) , so ‖
·
γ̃(s)‖ = 1, by (8).

�

We now want to define briefly the intersection angle between two regular
curves.

Definition 11.18 Let γ1 : I1 → Rd, γ2 : I2 → Rd be regular curves, and
γ1(t1) = γ2(t2) for certain t1 ∈ I1, t2 ∈ I2. The angle between the oriented
curves γ1 and γ2 at the point γ1(t1) = γ2(t2) is defined to be the angle
between the corresponding tangent vectors; thus

θ := arccos
< γ̇1(t1), γ̇2(t2) >
‖γ̇1(t1)‖ · ‖γ̇2(t2)‖ .

The angle between two regular curves does not change when both the
curves undergo a parameter transformation, so far as both the transforma-
tions are simultaneously orientation preserving or orientation reversing. On
the contrary it changes to π−θ when only one of the transformations reverses
the orientation.

Finally we cite, without proof, the visibly plausible but surprisingly diffi-
cult to prove

Jordan arc theorem: A closed Jordan arc Γ in R2 partitions R2 into exactly
two open and connected sets, that is, R2\Γ = Ω1 ∪Ω2, ∂Ω1 = Γ = ∂Ω2, Ω1 ∩
Ω2 = ∅, Ω1, Ω2 open and connected. Of these two sets, only one is bounded.

We now wish to study curves

f : I → Rd, for some interval I ⊂ R,

that solve ordinary differential equations. For that purpose, let

φ : I × J → Rd
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be a continuous function, where J is some subset of Rd. A curve f then is a
solution of the system of ordinary differential equations

f ′(x) = φ(x, f(x)) (9)

if f(x) ∈ J for all x ∈ I, and

f i(ξ2) − f i(ξ1) =

ξ2∫
ξ1

φi(ξ, f(ξ))dξ for i = 1, . . . , d

whenever ξ1, ξ2 ∈ I (here, f(ξ) = (f1(ξ), . . . , fd(ξ)).
The proof of theorem 6.16 can be taken over verbatim to obtain a solution

of (9) with given initial condition f(x0) = y0 if φ satisfies a Lipschitz condition
as before:

Theorem 11.19 Suppose φ(x, y) is continuous for |x−x0| ≤ ρ, |y−y0| ≤ ρ,
with

|φ(x, y)| ≤M for all such x, y. (10)

Further, let φ satisfy the Lipschitz condition

|φ(x, y1) − φ(x, y2)| ≤ L|y1 − y2|
whenever |x − x0| ≤ ρ, |y1 − y0| ≤ η, |y2 − y0| ≤ ρ, for some fixed L < ∞.
Then there exists h > 0 with the property that (9) possesses a unique solution
with f(x0) = y0 on [x0 − h, x0 + h] ∩ I.

Such systems of ODEs arise naturally when one studies higher order
ODEs. For example, for

u : I → R,

we consider the second order ODE

u′′(x) = ψ(x, u(x), u′(x)). (11)

Here, u ∈ C2(I) is a solution of (11) if its second derivative u′′(x) coincides
with ψ(x, u(x), u′(x)) for all x ∈ I. Of course, this can be expressed by an
equivalent integral equation as in the case of first order ODEs as studied in
§6. We wish to solve (11) with initial conditions

u(x0) = u0 (12)
u′(x0) = v0

for x0 ∈ I.
We shall reduce (11) to a system of two first order ODEs. We simply put

v(x) := u′(x), (13)
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and (11) becomes equivalent to the system

u′(x) = v(x) (14)
v′(x) = ψ(x, u(x), v(x)).

With f(x) := (u(x), v(x)), φ(x, f(x)) := (v(x), ψ(x, u(x), v(x)), (14) is equiv-
alent to the system

f ′(x) = φ(x, f(x)). (15)

Likewise, with y0 := (u0, v0), the initial condition (12) becomes

f(x0) = y0. (16)

We thus obtain

Corollary 11.20 The second order ODE (11) with initial condition (12)
possesses a unique solution u on some interval [x0 − h, x0 + h] ∩ I if ψ is
bounded and satisfies a Lipschitz condition of the form

|ψ(x, u1, v2) − ψ(x, y2, v2)| ≤ L(|u1 − u2| + |v1 − v2|)
for |x− x0| ≤ ρ, |ui − u0| + |vi − v0| ≤ η for i = 1, 2.

In the same manner, ODEs of higher than second order or systems of
ODEs of higher order can be reduced to systems of first order ODEs.

Exercises for § 11

1) Compute the arc length function for the curves of examples 1) – 5)
at the beginning of this paragraph.

2) Determine all solutions f : R → R of the ODE

f ′′ = f.



Chapter IV.

The Lebesgue Integral



12. Preparations. Semicontinuous Functions

As a preparation for Lebesgue integration theory, lower and upper semicontinuous
functions are studied.

Theorem 12.1 (Dini) Let K be a compact subset of a metric space with
distance function d, fn : K → R (n ∈ N) be continuous functions with

fn ≤ fn+1 for all n ∈ N (1)

and for all x ∈ K assume that

f(x) = lim
n→∞ fn(x)

exists, and that the function f : K → R is also continuous.
Then (fn)n∈N converges uniformly to f on K.

Proof. Let ε > 0. For every x ∈ K there exists such an N(x) ∈ N that

|f(x) − fN(x)(x)| < ε

2
. (2)

As fN(x) and f are both continuous, there exists, moreover, such a δ(x) > 0
that

|(f(y) − fN(x)(y)) − (f(x) − fN(x)(x))| < ε

2
for all y ∈ K with d(x, y) < δ(x). (3)

From (1), (2) and (3) it follows that for n ≥ N(x), d(x, y) < δ(x)

|f(y) − fn(y)| ≤ |f(y) − fN(x)(y)| < ε.

For x ∈ K let
Ux := U(x, δ(x)) = {y : d(x, y) < δ(x)}.

Since K is compact and is clearly covered by (Ux), it is already covered by
finitely many such balls, say Ux1 , . . . , Uxk

. We then have

|f(y) − fn(y)| < ε for all y ∈ K andn ≥ max(N(x1), . . . , N(xk)).

From this the uniform convergence follows. �
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As simple and well known examples show, this theorem does not hold any-
more if the limit function f is not assumed to be continuous, and the limit of
a monotonically increasing sequence of continuous functions is not necessarily
continuous itself. We shall now introduce a class of functions which contains
the class of continuous functions and which is closed under monotonically
increasing convergence.

Definition 12.2 Let X be a metric space, x ∈ X. A function f : X →
R ∪ {∞} is called lower semicontinuous at x if, for all c ∈ R with c < f(x),
there exists a neighborhood U of x such that for all y ∈ U, c < f(y). For
X = R, this is expressible as follows: ∀ ε > 0 ∃ δ > 0 ∀ y with |x − y| < δ :
f(x) − f(y) < ε. The function f is called lower semicontinuous on X if it is
lower semicontinuous at every x ∈ X.

Correspondingly, f : X → R∪ {−∞} is called upper semicontinuous at x
if −f is lower semicontinuous at x, or equivalently, if ∀ c ∈ R with c > f(x)∃
a neighborhood U of x such that ∀ y ∈ U : c > f(y).

The lower semicontinuity of f : X → R∪{∞} means that for every c ∈ R

the set f−1((c,∞]) is a neighborhood of all its points. So we have

Lemma 12.3 f : X → R ∪ {∞} is lower semicontinuous if and only if for
all c ∈ R f−1((c,∞]) = {x ∈ X : c < f(x)} is open (in X).

Examples.

1) f : X → R is continuous if and only if it is lower and upper semicon-
tinuous.

2) Characteristic functions.
Let A ⊂ X. We define the characteristic function of A as

χA(x) :=
{

1 for x ∈ A
0 for x ∈ X\A .

Lemma 12.3 implies that A is open exactly when χA is lower semi-
continuous and it is closed when χA is upper semicontinuous.

3) If f has a relative minimum at x0, so f(x) ≥ f(x0) for all x in a
neighborhood of x0, then f is lower semicontinuous at x0.

We also have a sequential criterion for lower semicontinuity.

Lemma 12.4 f : X → R ∪ {∞} is lower semicontinuous at x ∈ X if and
only if for every sequence (xn)n∈N ⊂ X with lim

n→∞xn = x we have

lim inf
n→∞ f(xn) ≥ f(x).
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Proof. Let f be lower semicontinuous at x = limxn, and let c < f(x). Then
for all y ∈ U, U being a suitable neighborhood of x,

c < f(y).

On the other hand, there exists an N ∈ N with xn ∈ U for n ≥ N, as xn → x.
It follows that f(xn) > c for n ≥ N and as this holds for every c < f(x), it
follows that

lim inf f(xn) ≥ f(x).

Conversely, assume that the given sequential criterion in the lemma holds,
and let c < f(x).

We assume that there exists no neighborhood U of x with the property
that for all y ∈ U, c < f(y) holds. In particular, there exists then for every
n ∈ N an xn ∈ X with

d(x, xn) <
1
n

and f(xn) ≤ c.

But then lim
n→∞xn = x and lim inf

n→∞ f(xn) ≤ c < f(x), in contradiction to the
assumption. �

Lemma 12.5 Let f, g : X → R ∪ {∞} be lower semicontinuous. Then
sup(f, g), inf(f, g) and f + g are also lower semincontinuous.

The proof is a simple exercise. �

Lemma 12.6 A lower semicontinuous function on a compact set K assumes
its infimum there.

Proof. Let µ := infy∈K f(y). There exists a sequence (xn)n∈N ⊂ K with
f(xn) → µ. As K is compact, the sequence (xn) converges, after choosing a
subsequence, to an x ∈ K. By lemma 12.4 we have

f(x) ≤ lim inf f(xn) = µ,

and on the other hand, by definition of µ, also f(x) ≥ µ so altogether f(x) =
µ. Thus f assumes its minimum at the point x. �

Remark. A lower semicontinuous function on a compact set need not assume
its supremum. For example f defined on [0, 1] by

f(x) =
{
x for 0 ≤ x < 1
0 for x = 1

is such a function.
The value of a lower semicontinuous function may jump down as a point

x is approached, but it cannot jump up.
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Definition 12.7 Let fα : X → R ∪ {∞}, α ∈ I, be a family of functions.
The upper envelope of this family

f := sup
α∈I

fα

is defined by
f(x) := sup

α∈I
fα(x).

Similarly, one can define the lower envelope inf fα of a family
fα : X → R ∪ {−∞}, α ∈ I.

Lemma 12.8 Let fα : X → R ∪ {∞} be a family of functions and let every
fα, α ∈ I, be lower semicontinuous at x0 ∈ X. Then the upper envelope is
also lower semicontinuous there.

Proof. Let c < f(x0). As f(x0) = sup
α∈I

fα(x0), there exists a β ∈ I with

c < fβ(x0). Since fβ is lower semicontinuous, this also holds for y in a neigh-
borhood U of x0 : c < fβ(y). As f ≥ fβ , it follows that for y ∈ U c < f(y).
Therefore f is lower semicontinuous at x0. �

Therefore, the upper envelope of a family of continuous functions is also
lower semicontinuous. Nevertheless, the upper envelope of a family of contin-
uous functions is not necessarily continuous, as the following example shows:

fn : [0, 1] → R, fn(x) :=
{
nx for 0 ≤ x < 1

n (n ∈ N)
1 for 1

n ≤ x ≤ 1 .

We have then

sup
n∈N

fn(x) =
{

0 for x = 0
1 for 0 < x ≤ 1 .

Definition 12.9 Let X be a metric space, f : X → R. The support of f, in
symbols supp f, is defined as the closure of {x ∈ X : f(x) �= 0}. Cc(X) is the
space of continuous functions f : X → R with compact support.

Theorem 12.10 For f : Rd → R∪{∞} the following conditions (i) and (ii)
are equivalent

(i) a) f is lower semicontinuous.
b) There exists a compact set K ⊂ Rd with f(x) ≥ 0 for x ∈ Rd\K.

(ii) There exists a monotonically increasing sequence of functions (fn)n∈N

⊂ Cc(Rd) (monotonically increasing means fn ≤ fn+1 for all n ∈ N)
with f = limn→∞ fn (in the sense of pointwise convergence; so f(x) =
lim

n→∞ fn(x) for all x ∈ Rd).
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Proof. (ii) ⇒ (i): As the sequence (fn) is monotonically increasing, we have
lim fn = sup fn, and since all the fn are continuous, f = sup fn is lower
semicontinuous, by lemma 12.8. Moreover, f ≥ f1, and therefore f(x) ≥ 0
for x ∈ Rd\ supp (f1) and K := supp(f1) is assumed to be compact.

(i) ⇒ (ii): First, we observe that it suffices to find a sequence (gm)m∈N of
continuous functions with compact support that fulfils

f = sup
m∈N

gm; (4)

that is, we then have a monotonically increasing sequence in Cc(Rd) defined
by fn := sup(g1, . . . , gn) with f = lim fn. We shall now construct such a
family (gm)m∈N.

As a lower semicontinuous function on a compact set is bounded from
below (e.g. by lemma 12.6), there exists a rational m ≥ 0 with

f(x) > −m for x ∈ Rd.

Let
Q := {(q, r, s) : q, r, s rational and s ≥ −m,

f(x) ≥ s for allxwith |x− q| < r}.
The set Q is countable, and for every j = (q, r, s) ∈ Q there exists a function
gj ∈ Cc(Rd) with the following properties:

1) gj(x) = s for x ∈ U(q, r
2 ).

2) gj(x) ≤ s for x ∈ U(q, r).

3) gj(x) = −m for x ∈ K\U(q, r).

4) gj(x) ≤ 0 for x ∈ Rd\(K ∪ U(q, r)).

By construction, we have f ≥ gj for all j ∈ Q, and also f = supj∈Q gj ,
which one sees as follows:
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Let x ∈ Rd, c < f(x). We choose a rational s, s ≥ −m with c ≤ s < f(x).
As f is lower semicontinuous, there exists a δ > 0 with

f(y) > s for |x− y| < δ.

We choose a rational r, 0 < r ≤ δ
2 , as well as a q ∈ Rd with rational

coordinates with |x − q| < r
2 . Then j = (q, r, s) ∈ Q and c ≤ gj(x) < f(x).

As we can construct such a gj for every c < f(x), we indeed have f = sup
j∈Q

gj .

As Q is countable, we have thereby constructed a family of functions which
satisfies the condition (4) above. �

Quite analogously, the upper semicontinuous functions which are nonpos-
itive outside a compact set can be characterised as follows:

Theorem 12.11 For f : Rd → R ∪ {−∞}, the following conditions (i) and
(ii) are equivalent

(i) a) f is upper semicontinuous.
b) f(x) ≤ 0 outside a compact set K ⊂ Rd.

(ii) There exists a monotonically decreasing sequence (fn)n∈N of continu-
ous functions with compact support with f = lim fn.

Definition 12.12 Let HI(Rd) be the class of functions f : Rd → R ∪ {∞}
which satisfy the conditions of theorem 12.10 and HS(Rd) the class of those
which satisfy the conditions of theorem 12.10’.

Corollary 12.13 HI(Rd)∩HS(Rd) = Cc(Rd). A function that is the limit of
a monotonically increasing, as well as of a monotonically decreasing, sequence
of continuous functions with compact support is itself already continuous.

Proof. This follows directly from theorems 12.10 and 12.11. �

Exercises for § 12

1) Let f, g : X → R∪ {∞} (X a metric space) be lower semicontinuous.

a) Show that sup(f, g), inf(f, g), f + g are lower semicontinuous
as well.

b) Assuming f, g ≥ 0 show that f · g is lower semicontinuous, too.

c) What semicontinuity properties does 1
f have if properly defined

at those places where f = 0?

2) Show that a uniform limit of lower semicontinuous functions is lower
semicontinuous itself.
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3) Let g : R×(0,∞) → R be defined by g(x1, x2) = |x1x2−1|, f : R → R

by f(x1) := inf
x2>0

g(x1, x2). Show that f is not lower semicontinuous.

4) Let f : X → R ∪ {∞} be a function, for some metric space X. We
define “regularizations” f(−), f(s) of f by

f(−)(x) := sup{g(x) : g ≤ f, g : X → R ∪ {∞} lower semicontinuous}
f(s)(x) := sup{g(x) : g ≤ f, g : X → R continuous}.

a) Show that f(−) and f(s) are lower semicontinuous.

b) Construct examples where f(−) and f(s) are not continuous.

c) Does one always have f(−) = f(s)?

d) What is the relation between f(−), f(s), and f, defined by

f(x) := lim inf
y→x

f(y) := inf{lim inf
n→∞ f(yn) : yn → x}?



13. The Lebesgue Integral for Semicontinuous
Functions. The Volume of Compact Sets.

We define the integral of semicontinuous functions, and consider properties of such
integrals, like Fubini’s theorem. Volumes of compact sets are defined, and certain
rules, like Cavalieri’s principle, for their computation are given. In particular, com-
putations simplify in rotationally symmetric situations.

The aim of this, and of the following paragraphs, is to construct as large
a class as possible of real valued functions on Rd, for which one can define
an integral in a sensible manner. The correspondence

f �→
∫
Rd

f(x)dx

should here be linear, monotone (f ≤ g ⇒ ∫
f ≤ ∫

g) and invariant under
isometries of Rd (if A is an orthogonal matrix and b ∈ Rd, then for f in our
class∫
Rd

f(Ax+ b)dx =
∫
Rd

f(x)dx should hold). Furthermore, integration should be

interchangeable with general limit processes.
The construct will be made stepwise: first, we will define the integral for

continuous functions with compact support, then for semicontinuous ones of
the classes HI and HS and finally for general functions. The convergence
theorems will be proved in §16.

Definition 13.1 A unit cube in Rd is

Id := {(x1, . . . , xd) ∈ Rd : 0 ≤ xi ≤ 1 for i = 1, . . . , d}
or, more generally, a subset A(Id) + b, where b ∈ Rd and A is an orthogonal
d× d−matrix.

To define a cube of side length � > 0, we substitute the condition 0 ≤
xi ≤ � for i = 1, . . . , d.

Definition 13.2 Let W ⊂ Rd be a cube. A function t : W → R is called
elementary if there is a partition of W into subcubes W1, . . . ,Wk with W =
k∪

i=1
Wi,

◦
W i ∩

◦
W j = ∅ for i �= j, so that t is constant on every

◦
W i, i = 1, . . . , k.
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Let t
|
◦

W i

= ci and let Wi have side length �i. We define the integral of the

elementary function t as ∫
W

t(x)dx =
k∑

i=1

ci�
d
i . (1)

The right side is clearly independent of the partition of W into subcubes
on which t is constant.

Now let f ∈ Cc(Rd). We choose a cube W with supp f ⊂ W, as well as a
sequence (tn)n∈N of elementary functions on W that converge uniformly to
f. (The existence of such a sequence should be clear: Let � be the side length
of W, and for every n ∈ N we partition W in to nd cubes W1, . . . ,Wnd of
side length �

n . For every i = 1, . . . , nd we choose a point xi ∈ Wi and set
tn(x) = f(xi) forx ∈Wi. As f is uniformly continuous on the compact cube
W, the functions tn then converge uniformly to f).

Definition 13.3 We define the integral of f to be∫
Rd

f(x)dx := lim
n→∞

∫
W

tn(x)dx.

The existence of this limit is easy to see: For ε > 0 we find an N ∈ N with

sup
x∈W

|f(x) − tn(x)| < ε forn ≥ N,

so also
sup
x∈W

|tn(x) − tm(x)| < 2ε forn,m ≥ N

and therefore

|
∫
W

tn(x)dx−
∫
W

tm(x)dx| < 2ε · �d (� = side length ofW )

for n,m ≥ N, so that the sequence of integrals
∫
W

tn(x)dx is a Cauchy se-

quence in R. An analogous argument shows that
∫
Rd

f(x)dx is independent of

the choice of the sequence (tn)n∈N which converges uniformly to f, as well as
of the choice of the cube W which contains supp f.

Furthermore, for d = 1, we recover the integral defined earlier for contin-
uous functions. However, in contrast to the former, the main point here is to
construct a definite instead of an indefinite integral.

Lemma 13.4 Let f, g ∈ Cc(Rd), α ∈ R. We have
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∫
Rd

(f(x) + g(x))dx =
∫
Rd

f(x)dx+
∫
Rd

g(x)dx,(i)

∫
Rd

αf(x)dx = α

∫
Rd

f(x)dx (linearity).

(ii) If f ≤ g, then also
∫
Rd

f(x)dx ≤ ∫
Rd

g(x)dx .

(iii) If b ∈ Rd, A an orthogonal d× d−matrix, then∫
Rd

f(Ax+ b)dx =
∫
Rd

f(x)dx .

Proof. Parts (i) follows directly from the corresponding rules for the integral
of elementary functions. The rule (iii) holds for elementary functions, because
for an orthogonal matrix A and an elementary function t, the function t◦A is
again elementary as A maps a cube onto a cube, and similarly for translation
by a vector b. (ii) follows, as in case f ≤ g, we can approximate f and g by
sequences (tn) and (sn), respectively, of elementary functions with tn ≤ sn.

�

Furthermore, we have

Lemma 13.5 Let f ∈ Cc(Rd) with supp(f) in a cube of side length �. Then

|
∫
Rd

f(x)dx| ≤ sup |f(x)| · �d . (2)

The proof again follows directly from the corresponding property for ele-
mentary functions.

Lemmas 13.4 and 13.5 mean that the correspondence

f �→
∫
Rd

f(x)dx

is a linear, bounded (therefore continuous) real valued functional on each
Banach space Cc(W ) (W a cube in Rd) that is invariant under isometries.
One can show that a functional with these properties and the normalisation∫

Id

1dx = 1
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is already uniquely determined.
We shall now integrate semicontinuous functions of the classes HI and

HS .

Definition 13.6 For f ∈ HI we define∫
Rd

f(x)dx := sup{
∫
Rd

g(x)dx : g ∈ Cc(Rd), g ≤ f} ∈ R ∪ {∞},

and similarly for f ∈ HS∫
Rd

f(x)dx := −
∫
Rd

−f(x)dx,

as for f ∈ HS , we have −f ∈ HI .

Lemma 13.7 Let (fn)n∈N ⊂ HI be a monotonically increasing sequence.
Then f := sup

n∈N

fn ∈ HI and

∫
Rd

f(x)dx = sup
n∈N

∫
Rd

fn(x)dx = lim
n→∞

∫
Rd

fn(x)dx . (3)

Proof. We first consider the case where f and all fn are in Cc(Rd). Then for
all n we have

suppfn ⊂ suppf1 ∪ suppf =: K,

on account of the assumed monotonicity. By the theorem of Dini (theorem
12.1) it follows that (fn) even converges uniformly to f, and (2) shows that

|
∫
Rd

(fn(x) − f(x))dx| ≤ const. · sup |fn(x) − f(x)|,

and this tends to zero because of uniform convergence.
Now we come to the general case. From the definition it follows directly

that for all n ∫
Rd

fn(x)dx ≤
∫
Rd

f(x)dx,

and it remains to show that, conversely, for every g ∈ Cc(Rd) with g ≤ f∫
Rd

g(x)dx ≤ sup
n∈N

∫
Rd

fn(x)dx (4)

holds.
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By theorem 12.10, for any n ∈ N there exists a monotonically increasing
sequence (ϕnm)m∈N ⊂ Cc(Rd) with

fn = sup
m∈N

ϕnm.

We set
hn := sup

p≤n,q≤n
ϕpq

gn := inf(g, hn).

The sequences (hn) and (gn) are monotonically increasing sequences in
Cc(Rd), and

f = sup
n∈N

hn

g = sup
n∈N

gn (by g ≤ f) .

Since g lies also in Cc(Rd), it follows from the case already dealt with that∫
Rd

g(x)dx = sup
n∈N

∫
Rd

gn(x)dx

≤ sup
n∈N

∫
Rd

hn(x)dx as gn ≤ hn

≤ sup
n∈N

∫
Rd

fn(x)dx as hn ≤ fn,

hence (4). Here we have repeatedly used the monotonicity of the integral
(lemma 13.4). �

Lemma 13.8 The assertions of lemma 13.4 hold for f, g ∈ HI(Rd), α ≥ 0.

The proof again follows directly from the definitions and lemma 13.4.
Finally, it follows from lemmas 13.8 and 13.7 that

Lemma 13.9 Let (fn)n∈N ⊂ HI be a sequence of non-negative functions.
We have ∫

Rd

∞∑
n=1

fn(x)dx =
∞∑

n=1

∫
Rd

fn(x)dx.

We shall now reduce an integral in Rd to a d-fold iterated integral in R :

Theorem 13.10 (Fubini) Let f ∈ HI(Rd), i1 . . . id a permutation of
(1, . . . , d), 1 ≤ c < d. For (xic+1 , . . . , xid) ∈ Rd−c, let
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F (xic+1 , . . . , xid) :=
∫
Rc

f(ξ, xic+1 , . . . , xid)dξ with ξ = (xi1 , . . . , xic).

Then ∫
Rd

f(x)dx =
∫

Rd−c

F (η)dη with η = (xic+1 , . . . , xid).

(In particular, all the functions appearing are in HI .)

One best remembers the assertion of theorem 13.10 in the following form∫
Rd

f(x)dx =
∫

Rd−c

(
∫
Rc

f(ξ, η)dξ)dη .

Iteratively, we can also write∫
Rd

f(x)dx =
∫
R

. . .

∫
R

f(x1, . . . , xd)dx1 . . . dxd,

where we may omit the brackets, as theorem 13.10 also asserts that the order
of the separate integrations is immaterial.

Proof of theorem 13.10. We first consider the case f ∈ Cc(Rd). We choose
an axis-parallel cube W with suppf ⊂ W and we approximate f uniformly
by elementary functions tn on W. Every tn is a sum of terms tn,i with

tn,i =
{
ci on a subcube Wi

0 otherwise .

Let the cube Wi have side-length �i; obviously∫
Rd

tn,i(x)dx = ci�
d
i = ci�

d−c
i �ci

=
∫

Rd−c

(
∫
Rc

tn,i(ξ, η)dξ)dη .

The assertion thus holds for tn,i and therefore also for tn = Σ tn,i.
If now sup

x
|tn(x) − f(x)| < ε, then

sup
η

|
∫
Rc

(tn(ξ, η) − f(ξ, η))dξ| < �c · ε (� = side-length ofW ),

and from this the assertion for f follows, if one takes into account that with
f(ξ, η) also F (η) =

∫
Rc

f(ξ, η)dξ is continuous; namely we have

|F (η1) − F (η2)| ≤ �c sup
ξ

|f(ξ, η1) − f(ξ, η2)|,
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and the right hand side becomes arbitrarily small provided |η1 − η2| is suffi-
ciently small, because f is even uniformly continuous on its compact support.

Now let f ∈ HI(Rd), and (fn)n∈N ⊂ Cc(Rd) be a monotonically increasing
sequence convergent to f. With Fn(η) :=

∫
Rc

fn(ξ, η)dξ, we have

F (η) =
∫
Rc

f(ξ, η)dξ = lim
n→∞

∫
Rc

fn(ξ, η)dξ = lim
n→∞Fn(η).

By the previous considerations, Fn ∈ Cc(Rd−c) and by theorem 12.10, we
then have F ∈ HI(Rd−c). Further∫

Rd−c

F (η)dη = lim
n→∞

∫
Rd−c

Fn(η)dη = lim
n→∞

∫
Rd−c

∫
Rc

fn(ξ, η)dξdη

= lim
n→∞

∫
Rd

fn(x)dx by what has already been proved

=
∫
Rd

f(x)dx,

where we have used lemma 13.7 twice. This gives the assertion. �

Corollary 13.11 In the notations of theorem 13.10, let f(ξ, η) = ϕ(ξ) ·ψ(η)
with ϕ,ψ ∈ HI . Then∫

Rd

f(x)dx =
∫
Rc

ϕ(ξ)dξ ·
∫

Rd−c

ψ(η)dη .

Lemma 13.12 Let f ∈ HI(Rd), A ∈ GL(d,R) (so A is a d×d−matrix with
detA �= 0), b ∈ Rd. Then the function x �→ f(Ax+ b) is also in HI(Rd) and
we have ∫

Rd

f(Ax+ b)dx =
1

|detA|
∫
Rd

f(x)dx.

Proof. The first assertion is clear, and by lemma 13.8 we have∫
Rd

f(Ax+ b)dx =
∫
Rd

f(Ax)dx.

Furthermore, well known results from linear algebra give the decomposition

A = S1DS2, (5)

where S1 and S2 are orthogonal matrices and D a diagonal matrix, say
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D =

⎛⎝λ1 0
. . .

0 λd

⎞⎠ .

Again, by lemma 13.7,∫
Rd

f(S1DS2x)dx =
∫
Rd

f(S1Dx)dx

=
∫
R

. . .

∫
R

f(S1D(x1, . . . , xd))dx1 . . . dxd by theorem 13.10

=
1

|λ1 . . . λd|
∫
R

. . .

∫
R

f(S1(y1, . . . , yd))dy1 . . . dyd ,

(as for a one dimensional integral
∫
R

ϕ(λx)dx = 1
|λ|

∫
R

ϕ(y)dy holds)

=
1

|λ1 . . . λd|
∫
Rd

f(y)dy, again by lemma 13.8,

As orthogonal matrices have determinant ±1, it follows from (5) that

|detA| = |detD| = |λ1 . . . λd|,
and therefore, together with the previous formulae, the assertion. �

We want to give another proof of lemma 13.12 which does not use the
decomposition (5), but rather just elementary linear algebra.

Let I be the (d× d)-unit matrix. For i �= j, i, j ∈ {1, . . . , d}, and t ∈ R let
Sij(t) be the matrix which is obtained when one adds t times the jth row of
I to its ith row, and Rij the matrix which results from interchanging the ith
and jth rows of I. We have

detSij(t) = 1 = |detRij | for all i �= j, t ∈ R.

Moreover, ∫
Rd

f(Rijx)dx =
∫
Rd

f(x)dx,

as Rij is orthogonal, so it maps a cube to one with the same side-length and
also∫

Rd

f(Sij(t)x)dx =
∫
Rd

f(x1, x2, . . . xi−1, xi + txj , xi+1, . . . , xd)dx1 . . . dxd (6)

by the theorem 13.10 of Fubini. Further, by properties of one dimensional
integrals
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R

ϕ(xi + txj)dxi =
∫
R

ϕ(xi)dxi.

We therefore first perform integration over xi in the iterated integral (6) and
then the remaining integrations, which by the theorem of Fubini does not
change the result, and obtain∫

Rd

f(Sij(t)x)dx =
∫
Rd

f(x)dx .

We consider now the matrix A. The matrix RijA arises from A by inter-
changing the ith and jth rows, and ARij by interchanging the ith and jth
columns. So by multiplying A with the matrices Rij we can bring a nonzero
element to the (1, 1)-entry. By adding suitable multiples of the new first col-
umn to the other columns, we obtain zeroes to the (1, 2), . . . , (1, d)-entries.
This process is obtained by multiplying A with matrices Sij(t). Similarly, one
can also bring zeroes at the entries (2, 1), (2, 2), . . . , (2, d). One iterates this
process d-times and obtains a diagonal matrix. So we have

A = P1DP2,

where P1 and P2 are products of matrices of the form Rij , Sij(t) and

D =

⎛⎝λ1 0
. . .

0 λd

⎞⎠ .

So
detA = detP1 detD detP2,

|detP1| = 1 = |detP2|, therefore
|λ1 . . . λd| = |detD| = |detA| �= 0 by assumption .

Finally, ∫
Rd

f(P1DP2x)dx =
∫
Rd

f(P1Dx)dx

(by what is already proved)

=
∫
Rd

f(P1(λ1x
1, . . . , λdx

d))dx1 . . . dxd

=
1

|λ1 . . . λd|
∫
Rd

f(P1x)dx,

by the rules for one dimensional integrals (the theorem of Fubini has been
used again)
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=
1

|λ1 . . . λd|
∫
Rd

f(x)dx,

again by what has already been proved.
The assertion follows on account of |λ1 . . . λd| = |detA| . �

Remark. It is very important that the preceding assertions, for example
theorem 13.10 or lemma 13.12 carry over in an obvious manner to functions
of the class HS(Rd). We shall therefore use all these assertions in what follows
without comment also for functions in HS(Rd).

Notation. Let us introduce the following notation. Let A be – for the time
being – a compact subset of Rd, f ∈ HS(Rd). Then∫

A

f(x)dx :=
∫
Rd

f(x)χA(x)dx .

Later we shall tacitly use this notation also for more general sets and
functions; for the time being, strictly speaking, we must also assume that
f ·χA is likewise in HS ; for example this always holds for f positive (compare
lemma 12.5).

If d = 1, we also write

b∫
a

f(x)dx in place of
∫
[a,b]

f(x)dx.

A quite analogous definition is possible in case A is open and bounded,
f ∈ HI(Rd) and e.g. f is again non-negative.

Now let K ⊂ Rd be a compact set. Then the characteristic function χK

is in HS(Rd) (cf. §12).

Definition 13.13 The volume of K is defined as

Vol (K) := Vol d(K) :=
∫
Rd

χK(x)dx.

For the case d = 1 one says length instead of volume, and for d = 2, one
says area.

Lemma 13.14 Let 1 ≤ c < d, K1 ⊂ Rc,K2 ⊂ Rd−c compact. Then

Vold(K1 ×K2) = Volc(K1) · Vold−c(K2).

Proof. We write x = (x1, . . . , xd), ξ = (x1, . . . , xc), η = (xc+1, . . . , xd). Then
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χK1×K2(ξ, η) = χK1(ξ) · χK2(η),

and the result follows from corollary 13.11. �

From this corollary, many elementary geometric formulae can be re-
covered. For example, the volume of a rectangular parallelepiped arises
as the product of the lengths of its sides, or the volume of the cylinder
B × [0, h] ⊂ Rd, B ⊂ Rd−1 compact, as the product of Vold−1(B), that is, of
its base, and of its height h.

As in the one dimensional case, one can also compute the volume of sets
that are bounded from above by the graph of a continuous function.

Lemma 13.15 Let K ⊂ Rd be compact, f : K → R continuous and non-
negative, Kf := {(x, t) ∈ K × R : 0 ≤ t ≤ f(x)}. Then

Vold+1(Kf ) =
∫
K

f(x)dx

Proof. By means of the theorem of Fubini we obtain

Vold+1(Kf ) =
∫

Rd+1

χKf
(x, t)dtdx =

∫
Rd

(

f(x)∫
0

1dt)χK(x)dx =
∫
Rd

f(x)χK(x)dx

=
∫
K

f(x)dx.

�

A useful method for calculating volumes is the principle of Cavalieri (Cav-
alieri, a contemporary of Galileo, came upon corollary 13.17 infra by heuristic
considerations).

Theorem 13.16 Let K ⊂ Rd be compact. For t ∈ R, let

Kt := {(x1, . . . , xd−1) ∈ Rd−1 : (x1, . . . , xd−1, t) ∈ K}
be the intersection of K and the hyperplane {xd = t}. Then

Vold(K) =
∫
R

Vold−1(Kt)dt.

Corollary 13.17 Let K,K ′ ⊂ Rd be compact and for all t, let Vold−1(Kt) =
Vold−1(K ′

t). Then also
Vold(K) = Vold(K ′). �
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Proof of theorem 13.16. By means of the theorem of Fubini we have

Vold(K) =
∫
Rd

χK(x1, . . . , xd−1, t)dx1 . . . dxd−1dt

=
∫
Rd

χKt
(x1, . . . , xd−1)dx1 . . . dxd−1dt

( asχK(x1, . . . , xd−1, t) = χKt
(x1, . . . , xd−1))

=
∫
R

Vold−1(Kt)dt .

�

Example. As an example, we shall now calculate the volume of a sphere.
Let

Bd(0, r) := {x ∈ Rd : ‖x‖ ≤ r}
the closed ball in Rd of radius r,

ωd := Vol(Bd(0, 1)).

Obviously ω1 = 2. We shall now apply the Cavalieri principle: We have
Bd(0, 1)t = Bd−1(0,

√
1 − t2) for |t| ≤ 1, and therefore

ωd =

1∫
−1

Vol(Bd−1(0,
√

1 − t2))dt (7)

We now need the following simple consequence of lemma 13.12

Lemma 13.18 Let K ⊂ Rd be compact, λ > 0, λK := {x ∈ Rd : 1
λ x ∈ K}.

Then
Vold(λK) = λd Vold(K).

Proof. By lemma 13.12∫
Rd

χλK(x)dx = λd

∫
Rd

χλK(λy)dy = λd

∫
Rd

χK(y)dy.

�

(7) therefore yields

ωd = ωd−1

1∫
−1

(1 − t2)
d−1
2 dt .
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Furthermore, by the substitution t = cosx,

sd :=

1∫
−1

(1 − t2)
d−1
2 dt =

π∫
0

sind(x)dx .

Using integration by parts and induction over d, it easily follows that

s2k = π

k∏
i=1

2i− 1
2i

, s2k+1 := 2
k∏

i=1

2i
2i+ 1

(k ∈ N).

In particular, sd · sd−1 = 2π
d , so

ωd = ωd−1sd = ωd−2sd−1sd =
2π
d
ωd−2,

and therefore

ω2k =
1
k!
πk, ω2k+1 =

2k+1

1 · 3 · . . . (2k + 1)
πk.

In particular, we note that
lim

d→∞
ωd = 0.

Thus the volume of the unit ball in Rd tends towards zero with increasing d.
From lemma 13.18 it also follows that

VoldB(0, r) = ωdr
d.

A further consequence of the principle of Cavalieri is

Corollary 13.19 ( Volume of solids of revolution) Let [a, b] ⊂ R, f :
[a, b] → R continuous and positive,

K := {(x, y, t) ∈ R2 × [a, b] : x2 + y2 ≤ f(t)2}.
Then

Vol (K) = π

b∫
a

f(t)2dt.

Proof. For t ∈ [a, b] we have

Kt = {(x, y) ∈ R2 : x2 + y2 ≤ f(t)2}.
so

Vol(Kt) = πf(t)2,

e.g. by the previous example, and the result follows from theorem 13.16. �



178 13. Lebesgue Integral and Volume

Example. As a further example, we shall calculate the volume of a torus of
revolution. Let 0 < ρ < R, B := {(t, x, y) ∈ R3 : y = 0, (x − R)2 + t2 ≤ ρ2},
T the solid generated by rotating B around the t-axis, so T = {(x, y, t) :
(R−

√
ρ2 − t2)2 ≤ x2 + y2

≤ (R+
√
ρ2 − t2)2}. As in the proof of corollary 13.19,

Vol (T ) = π

ρ∫
−ρ

((R+
√
ρ2 − t2)2 − (R−

√
ρ2 − t2)2)dt = 4πR

ρ∫
−ρ

√
ρ2 − t2dt

= 4πρ2R

π∫
0

sin2 xdx = 2π2ρ2R.

We shall now integrate rotationally symmetric functions. For this we need
the following simple lemmas.

Lemma 13.20 Let K ⊂ Rd be compact, f ∈ HI(Rd) bounded. Assume that
K = K1 ∪K2 with compact sets K1 and K2 and Vol(K1 ∩K2) = 0.

Then ∫
K

f(x)dx =
∫
K1

f(x)dx+
∫
K2

f(x)dx.

Proof. From the monotonicity of the integral (lemma 13.4) it follows easily
that for an arbitrary compact A

|
∫
A

f(x)dx| ≤ sup
x∈A

|f(x)| · VolA, (8)

so ∫
K1∩K2

f(x)dx = 0. (9)

Now
χK1 + χK2 = χK + χK1∩K2 ,

so ∫
K1

f(x)dx+
∫
K2

f(x)dx =
∫
K

f(x)dx+
∫

K1∩K2

f(x)dx =
∫
K

f(x)dx ,

because of (9). �

More general results will be proved later. Now we can handle rotationally
symmetric functions.
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Theorem 13.21 Let 0 ≤ R1 < R2, f : [R1, R2] → R be continuous. We
then have for the d-dimensional integral

∫
R1≤‖x‖≤R2

f(‖x‖)dx = dωd

R2∫
R1

f(r)rd−1dr

(ωd = volume of the d-dimensional unit ball: see above).

Proof. We set, for 0 ≤ ρ ≤ r, A(ρ, r) := {x ∈ Rd : ρ ≤ ‖x‖ ≤ r}. Let
n ∈ N, n ≥ 2,

rk,n := R1 +
k

n
(R2 −R1) for k = 0, 1, . . . , n

Ak,n := A(rk−1,n, rk,n) for k = 1, . . . , n .

We have
Vol(A(ρ, r)) = ωd(rd − ρd),

the argument being the same as for calculating the volume of a ball. In
particular,

Vol (A(r, r)) = 0 for all r . (10)

Let

ρd−1
k,n : =

rd
k,n − rd

k−1,n

d(rk,n − rk−1,n)

=
1
d

(
rd−1
k,n + rd−2

k,n rk−1,n + . . .+ rk,nr
d−2
k−1,n + rd−1

k−1,n

)
,

so
rk−1,n < ρk,n < rk,n. (11)

We have, by choice of ρk,n,

Vol (Ak,n) = ωd(rd
k,n − rd

k−1,n)

= dωdρ
d−1
k,n (rk,n − rk−1,n). (12)

Now let tn(‖x‖) := f(ρk,n)

τn(‖x‖) := f(ρk,n)ρd−1
k,n for rk−1,n < ‖x‖ < rk,n

and continued semicontinuously for ‖x‖ = rk,n. Using lemma 13.20 (using
(10)) we obtain
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A(R1,R2)

tn(‖x‖)dx =
n∑

k=1

f(ρk,n)
∫
χAk,n

(x)dx (13)

= dωd

n∑
k=1

f(ρk,n)ρd−1
k,n (rk,n − rk−1,n) by (12)

= dωd

R2∫
R1

τn(r)dr .

Now, on the one hand, tn(‖x‖) converges uniformly to f(‖x‖) on A(R1, R2) as
n → ∞, since f is uniformly continuous on this set, and on the other hand,
τn(r) converges uniformly to f(r)rd−1, because of (11). Therefore letting
n → ∞, it follows from (13) that

∫
A(R1,R2)

f(‖x‖)dx = dωd

R2∫
R1

f(r)rd−1dr.

�

Examples.
1) For s ∈ R, 0 < R1 < R2,

∫
R1≤‖x‖≤R2

‖x‖sdx = dωd

R2∫
R1

rd+s−1dr

=
{

dωd

d+s (Rd+s
2 −Rd+s

1 ) for s �= −d
dωd(logR2 − logR1) for s = −d

So, in particular, (using e.g. lemma 13.7)∫
R1≤‖x‖

‖x‖sdx = lim
R2→∞

∫
R1≤‖x‖≤R2

‖x‖sdx <∞ ⇐⇒ s < −d

∫
‖x‖≤R2

‖x‖sdx = lim
R1→0

∫
R1≤‖x‖≤R2

‖x‖sdx <∞ ⇐⇒ s > −d

2) We want to calculate the one dimensional integral
∞∫
0

e−x2
dx .

This integral exists because e−x2
decreases faster than any power of x as

|x| → ∞.

First of all,
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∞∫
−∞

e−x2
dx = 2

∞∫
0

e−x2
dx.

Furthermore

(

∞∫
−∞

e−x2
dx)2 =

∞∫
−∞

e−x2
dx ·

∞∫
−∞

e−y2
dy

=

∞∫
−∞

∞∫
−∞

e−(x2+y2)dxdy by corollary 13.11

= 2π

∞∫
0

e−r2
rdr by theorem 13.21, by taking limits

= −π
∞∫
0

d

dr
(e−r2

)dr = π.

Therefore we obtain ∞∫
0

e−x2
dx =

1
2
√
π.

The passage to limits used in the above examples can be justified as
follows:
As the functions f considered are all positive, the sequence

(f · χ ◦
A( 1

n ,n)
)n∈N ⊂ HI(Rd)

converges in a monotonically increasing manner towards f and lemma
13.7 therefore justifies the passage to the limit∫

Rd

f(x)dx = lim
n→∞

∫
◦
A( 1

n ,n)

f(x)dx.

(We integrate here over open sets, because their characteristic func-
tions are lower semicontinuous; as Vold(A(r, r)) = 0 (cf. (10)), this
plays no role for the value of the integral).
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Exercises for § 13

1) Come up with five connected solids of Rd of nonzero volume, different
from a rectangular parallepiped, a pyramid, a parallelotope, a cylin-
der, a cone, a ball, a torus, or an ellipsoid, and compute the volume
of these five solids.

2)
a) Ud(0, 1) = {x ∈ Rd : ‖x‖ < 1}. For which λ ∈ R, does the

following integral exist, and if it does, what is its value?∫
Ud(0,1)

dx

(1 − ‖x‖2)λ
.

b) For 0 < r < R,A(r,R) ⊂ Rd, compute∫
A(r,R)

log ‖x‖dx.

c) Compute ∫
A(r,R)

e−‖x‖2
dx.



14. Lebesgue Integrable Functions and Sets

The general Lebesgue integral is defined, and basic properties are derived. Here, a
function is called Lebesgue integrable if approximation from above by lower semi-
continuous functions leads to the same result as approximation from below by
upper semicontinuous functions. Sets are called integrable when their characteristic
functions are.

Definition 14.1 For f : Rd → R ∪ {±∞} we set∫ ∗

Rd

f(x)dx := inf{
∫
Rd

g(x)dx, g ∈ HI(Rd), g ≥ f}

∈ R ∪ {±∞} (upper integral)∫
∗

Rd

f(x)dx := sup{
∫
Rd

g(x)dx : g ∈ HS(Rd), g ≤ f}

∈ R ∪ {±∞} (lower integral)

(= −
∫ ∗

(−f(x))dx).

Remark. For every f : Rd → R ∪ {±∞} there exist g1 ∈ HI , g2 ∈ HS with
g2 ≤ f ≤ g1, namely g1 ≡ ∞, g2 ≡ −∞. Therefore the sets on which the
infimum and supremum, respectively, are taken are non-empty.

Lemma 14.2
(i) For every f : Rd → R ∪ {±∞} we have∫

∗
Rd

f(x)dx ≤
∫ ∗

Rd

f(x)dx .

(ii) For every f ∈ HI(Rd) or HS(Rd) we have∫
∗

Rd

f(x)dx =
∫ ∗

Rd

f(x)dx =
∫
Rd

f(x)dx .
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Proof.
(i) It suffices to show the following: if ϕ ∈ HI , ψ ∈ HS , ψ ≤ ϕ, then∫

Rd

ψ(x)dx ≤ ∫
Rd

ϕ(x)dx. Now −ψ ∈ HI so ϕ − ψ ∈ HI (lemma 12.5)

and ϕ− ψ ≥ 0, so, by lemma 13.8

0 ≤
∫
Rd

(ϕ(x) − ψ(x))dx

hence ∫
Rd

ϕ(x)dx ≥
∫
Rd

ψ(x)dx.

(ii) Let f ∈ HI(Rd). From the definitions, it follows directly that∫ ∗

Rd

f(x)dx =
∫
Rd

f(x)dx . (1)

Now let (gn)n∈N ⊂ Cc(Rd) be a monotonically increasing sequence
convergent to f. Then on the one hand∫

Rd

f(x)dx = sup
n∈N

∫
Rd

gn(x)dx (lemma 13.7). (2)

and on the other hand, as also gn ⊂ HS(Rd),

sup
n

∫
Rd

gn(x)dx ≤
∫
∗

Rd

f(x)dx ≤
∫ ∗

Rd

f(x)dx, (3)

by (i). The assertion follows from (1), (2) and (3).
f ∈ HS(Rd) is treated analogously. �

For later purposes, we want to write down some simple properties of the
upper integral; analogous statements hold for the lower integral.

Lemma 14.3
(i) Let f : Rd → R ∪ {∞} be non-negative, λ ≥ 0. Then∫ ∗

Rd

λf(x)dx = λ

∫ ∗

Rd

f(x)dx .

(ii) If f ≤ g, then also ∫ ∗

Rd

f(x)dx ≤
∫ ∗

Rd

g(x)dx .
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(iii) If A is an orthogonal d× d-matrix, b ∈ Rd, then for all f∫ ∗

Rd

f(Ax+ b)dx =
∫ ∗

Rd

f(x)dx .

Proof. This follows directly from the corresponding statements of lemma 13.8.
�

The following result will be used in the proof of the central convergence
theorems of Lebesgue integration theory.

Theorem 14.4 Let fn : Rd → R ∪ {∞} be non-negative functions (n ∈ N).
Then ∫ ∗

Rd

(
∞∑

n=1

fn(x))dx ≤
∞∑

n=1

∫ ∗

Rd

fn(x)dx .

Proof. By definition of the upper integral, for every ε > 0 and n ∈ N there
exists. gn ∈ HI(Rd) such that gn ≥ fn and∫

Rd

gn(x)dx ≤
∫ ∗

Rd

fn(x)dx+ 2−nε . (4)

Lemmas 12.5 and 12.8 imply that

g :=
∞
Σ

n=1
gn ∈ HI(Rd).

As fn ≥ 0, so is gn ≥ 0 and lemma 13.9 therefore implies∫
Rd

g(x)dx =
∞∑

n=1

∫
Rd

gn(x)dx ≤
∞∑

n=1

∫ ∗

Rd

fn(x)dx+ ε by (4). (5)

But, on the other hand,
∞
Σ

n=1
fn ≤ ∞

Σ
n=1

gn = g and therefore by lemma 14.3

(ii) ∫ ∗

Rd

(
∞∑

n=1

fn(x))dx ≤
∫
Rd

g(x)dx. (6)

As ε > 0 is arbitrary, (5) and (6) yield the assertion. �

Definition 14.5 f : Rd → R ∪ {±∞} is said to be (Lebesgue)-integrable if

−∞ <

∫
∗

Rd

f(x)dx =
∫ ∗

Rd

f(x)dx <∞.
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The common value of the upper and lower integral is then called the
(Lebesgue) integral of f, and it is denoted by

∫
Rd

f(x)dx.

Using lemma 14.2 (ii), we observe

Lemma 14.6 f ∈ HI(Rd) is integrable if and only if∫
f(x)dx <∞.

Here the integral is to be understood in the sense of §13 and both concepts of
integration – from §13 and the current chapter – coincide. Analogously, we
have: f ∈ HS(Rd) is integrable ⇐⇒ ∫

Rd

f(x)dx > −∞.

In particular, every f ∈ Cc(Rd) is integrable. �

Remark. In contrast to the terminology of §13, the integral
∫
Rd

f(x)dx of an

arbitrary function f is automatically finite, if it is at all defined.
For certain reasons, which we do not wish to go into precisely here, but

which the reader equipped with the concept of measurable functions intro-
duced below can perhaps consider himself, it is not meaningful to take +∞
or −∞ as the value of the integral of an arbitrary f whose upper and lower
integrals are both simultaneously +∞ or −∞.

The following lemma is another simple reformulation of the definitions.

Lemma 14.7 f : Rd → R ∪ {±∞} is integrable
⇐⇒ ∀ ε > 0∃ g ∈ HS , h ∈ HI : g ≤ f ≤ h,

∫
Rd

h(x)dx− ∫
Rd

g(x)dx < ε

⇐⇒ ∃ a monotonically increasing sequence (gn)n∈N ⊂ HS , a monoton-
ically decreasing sequence (hn)n∈N ⊂ HI :

gn ≤ f ≤ hn,

−∞ < lim
n→∞

∫
Rd

hn(x)dx = lim
n→∞

∫
Rd

gn(x)dx <∞,

and the common value of both integrals is
∫
Rd

f(x)dx.

Remark. For the first criterion,
∫
Rd

h(x)dx and
∫
Rd

g(x)dx, and with it also

the upper and lower integrals of f, must be finite, and the upper and lower
integrals must then agree.

The second criterion, apart from the requirement of monotonicity, is
equivalent to the first one. Now if one has arbitrary sequences (g′n)n∈N ⊂ HS ,
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(h′n)n∈N ⊂ HI , which satisfy the other conditions of the criterion, then so do
the monotonic sequences

gn := sup
1≤i≤n

{g′i}, hn := inf
1≤i≤n

{h′i}.

Theorem 14.8 Let f : Rd → R ∪ {±∞}
(i) f is integrable ⇐⇒ ∀ ε > 0 ∃ ϕ ∈ Cc(Rd) :

∫ ∗

Rd

|f(x) − ϕ(x)|dx < ε

(ii) If (ϕn)n∈N ⊂ Cc(Rd) satisfies lim
n→∞

∫ ∗

Rd

|f(x) − ϕn(x)|dx = 0, then∫
Rd

f(x)dx = lim
n→∞

∫
Rd

ϕn(x)dx.

Proof.
(i) “ =⇒ ” : By lemma 14.7 there exist g ∈ HS , h ∈ HI with g ≤ f ≤ h

and
∫
Rd

h(x)dx − ∫
Rd

g(x)dx < ε
2 . On the other hand, there exists a

ϕ ∈ Cc(Rd) with ϕ ≤ h and∫
Rd

h(x)dx−
∫
Rd

ϕ(x)dx <
ε

2
,

by definition of the integral for h ∈ HI .
Now

|f − ϕ| ≤ |h− ϕ| + |h− f | ≤ |h− ϕ| + |h− g| = (h− ϕ) + (h− g)

and therefore, by lemma 14.3 (ii),∫ ∗

Rd

|f(x) − ϕ(x)|dx ≤
∫ ∗

Rd

(h(x) − ϕ(x))dx+
∫ ∗

Rd

(h(x) − g(x))dx < ε.

“ ⇐= ” : If ϕ ∈ Cc(Rd) satisfies
∫ ∗

Rd

|f(x) − ϕ(x)|dx < ε, then there

exists an h ∈ HI with |f − ϕ| ≤ h and
∫
Rd

h(x)dx < 2ε (by definition

of the Rd upper integral). We then have

−h+ ϕ ≤ f ≤ h+ ϕ

(as ϕ is finite, both the sums are defined everywhere) −h + ϕ ∈
HS , h+ ϕ ∈ HI (compare §12) and∫

Rd

(h(x) + ϕ(x))dx−
∫
Rd

(−h(x) + ϕ(x))dx = 2
∫
Rd

h(x)dx < 4ε,
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and the first criterion in lemma 14.7 is fulfilled; f is therefore inte-
grable.

(ii) From (i), it follows first that f is integrable. Let ε > 0, and n ∈ N

such that ∫ ∗

Rd

|f(x) − ϕn(x)|dx < ε.

Then there exists an hn ∈ HI(Rd) with

|f − ϕn| ≤ hn,

∫
Rd

hn(x)dx < 2ε,

so again −hn + ϕn ≤ f ≤ hn + ϕn and∫
Rd

(−hn(x) + ϕn(x))dx ≤
∫
Rd

f(x)dx ≤
∫
Rd

(hn(x) + ϕn(x))dx

and thus

|
∫
Rd

f(x)dx−
∫
Rd

ϕn(x)dx| ≤
∫
Rd

hn(x)dx < 2ε.

The result follows. �

Theorem 14.9 If f is integrable, so are |f |, f+ := sup(f, 0), f− := − inf(f, 0)
and

|
∫
Rd

f(x)dx| ≤
∫
Rd

|f(x)|dx. (7)

Conversely, if f+ and f− are integrable, so is f.
If f1 and f2 are integrable, then sup(f1, f2) and inf(f1, f2) are also inte-

grable.

Proof. We use the criterion in theorem 14.8 (i). If ϕ ∈ Cc(Rd) satisfies∫ ∗

Rd

|f(x) − ϕ(x)|dx < ε, it follows, because of ||f | − |ϕ|| ≤ |f − ϕ|, that

∫ ∗

Rd

||f(x)| − |ϕ(x)||dx < ε,

hence by theorem 14.8 (i) the integrability of |f |. The inequality (7) then
follows, on account of −|f | ≤ f ≤ |f |, from the monotonicity of the upper
integral and therefore also of the integral for integrable functions (lemma 14.3
(ii)). The integrability of f± likewise follows, so from that of f, on account
of |f± − ϕ±| ≤ |f − ϕ|. Conversely, if f+ and f− are integrable, then there
exist, again by theorem 14.8 (i), ϕ,ψ ∈ Cc(Rd) with



14. Lebesgue Integrable Functions and Sets 189∫ ∗

Rd

|f+(x) − ϕ(x)|dx < ε

2
,

∫ ∗

Rd

|f−(x) − ψ(x)|dx < ε

2
.

Since f = f+ − f− and ϕ− ψ ∈ Cc(Rd), we have∫ ∗

Rd

|f(x) − (ϕ(x) − ψ(x))|dx < ε,

and therefore f is integrable, as usual by theorem 14.8 (i).
For the last assertion, we use the criterion in lemma 14.7. Thus there exist

g1, g2 ∈ HS , h1, h2 ∈ HI with g1 ≤ f1 ≤ h1, g2 ≤ f2 ≤ h2 and∫
Rd

hi(x)dx−
∫
Rd

gi(x)dx <
ε

2
for i = 1, 2.

We then have sup(g1, g2) ≤ sup(f1, f2) ≤ sup(h1, h2) and on account of
sup(h1, h2) − sup(g1, g2) ≤ h1 + h2 − g1 − g2,∫

Rd

sup(h1, h2)(x)dx−
∫
Rd

sup(g1, g2)(x)dx < ε

and sup(f1, f2) is therefore integrable by lemma 14.7, and analogously,
inf(f1, f2) is integrable. �

Lemma 14.10 Let f be integrable, A ∈ GL(d,R), b ∈ Rd. Then x �→ f(Ax+
b) is also integrable and∫

Rd

f(Ax+ b)dx =
1

|detA|
∫
Rd

f(x)dx .

Proof. The proof follows from lemma 13.11. �

Definition 14.11 L1(Rd) := {f : Rd → R : f integrable }.

Here, we do not allow ±∞ as function values, so that e.g. we can add
functions from L1(Rd) pointwise: Below, when considering null sets, we shall
see that this does not impose any restrictions for integration theory.

Theorem 14.12 L1(Rd) is a vector space and
∫
Rd

: L1(Rd) → R is linear and

monotone
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(f ≤ g =⇒
∫
Rd

f(x)dx ≤
∫
Rd

g(x)dx).

Proof. That L1(Rd) is a vector space follows from the preceding remarks, the
linearity of the integral follows as usual from theorem 14.8, and monotonicity
follows from the monotonicity of the upper integral (lemma 14.3 (ii)). �

Definition 14.13 A ⊂ Rd is called integrable ⇐⇒ χA is integrable. In case
A is integrable, we define the Lebesgue measure or volume of A to be

Vol (A) := Vol d(A) :=
∫
Rd

χA(x)dx .

For an arbitrary subset A of Rd one also defines the outer and inner measure,
respectively, of A as

µ∗(A) :=
∫ ∗

Rd

χA(x)dx and µ∗(A) :=
∫
∗

Rd

χA(x)dx,

and A is thus integrable if and only if µ∗(A) and µ∗(A) agree and are finite.

Theorem 14.14 If A is open or closed, then A is integrable precisely if µ∗(A)
is finite. In particular, compact as well as bounded open sets are integrable.

Proof. If A is open or closed, then χA is, respectively, lower or upper semi-
continuous (compare §12) and for semicontinuous functions, the upper and
lower integrals are equal by lemma 14.1 (ii). Furthermore, every bounded set
A is contained in a cube and therefore, because of the monotonicity of the
upper integral,

µ∗(A) ≤ µ∗(W ) <∞.

�

Theorem 14.15 If A and B are integrable, then so are A ∪ B,A ∩ B, and
A\B, and

Vol (A ∪B) + Vol (A ∩B) = VolA+ VolB,
Vol (A\B) = Vol (A) − Vol (A ∩B).

Proof. For the characteristic functions, we have

χA∩B = inf(χA, χB)
χA∪B = χA + χB − χA∩B

χA\B = χA − χA∩B .
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The integrability of A ∩ B therefore follows from theorem 14.9, and that of
A∪B and A\B together with the corresponding volume formulae then follows
from theorem 14.12. �

Definition 14.16 Let A ⊂ Rd, f : A→ R ∪ {±∞}. f is called integrable on
A provided that the function f̃ : Rd → R ∪ {±∞}, defined by

f̃(x) :=
{
f(x) for x ∈ A
0 for x ∈ Rd\A ,

is integrable. In this case, we set∫
A

f(x)dx :=
∫
Rd

f̃(x)dx.

Exercises for § 14

1)
a) Let W ⊂ Rd be a cube, f : W → R nonnegative and integrable.

Assume that for some x0 ∈ W, f is continuous at x0 with
f(x0) > 0. Concluse ∫

W

f(x)dx > 0.

b) LetW ⊂ Rd be a cube, f : W → R continuous and nonnegative,∫
W

f(x)dx = 0. Conclude

f ≡ 0 on W.

c) Extend a) and b) to sets more general than cubes.

2) Compute the following integrals:

a) K := [0, 2] × [3, 4],
∫
K

(2x+ 3y)dxdy.

b) K := [1, 2] × [1, 2],
∫
K

ex+ydxdy.

c) K := [0, 1] × [0, 1],
∫
K

(xy + y2)dxdy.

d) K := [0, π
2 ] × [0, π

2 ],
∫
K

sin(x+ y)dxdy.

e) K := [1, 2] × [2, 3] × [0, 2],
∫
K

2z
(x+y)2 dxdydz.
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f) K := [0, 1] × [0, 1] × [0, 1],
∫
K

x2z3

1+y2 dxdydz.

g) K := {(x, y) ∈ R2 : x2 + y2 ≤ 1}, n,m ∈ N,
∫
K

xnymdxdy.

3) Let V be a finite dimensional vector space (over R). Develop an ana-
logue of the concept of the Lebesgue integral for maps f : Rd → V.
State criteria for integrability. In the special case V = C, show

|
∫
Rd

f(x)dx| ≤
∫
Rd

|f(x)|dx.

4) Let f : [r1, R1] × [r2, R2] be bounded. Assume that for any fixed
x ∈ [r1, R1],
f(x, ·) → R is integrable on [r2, R2], and for any fixed y ∈ [r2, R2], f(·, y)
is continuous on [r1, R1]. Conclude that the function

F (x) :=

R2∫
r2

f(x, y)dy

is continuous on [r1, R1].

5) Let f : Rd → R be integrable. For x ∈ Rd, n ∈ N, put

fn(x) :=

⎧⎨⎩
f(x) if −n ≤ f(x) ≤ n
n if f(x) > n
−n if f(x) < −n

.

Show that fn is integrable, that |fn−f | converges to 0 pointwise, and
that ∫

Rd

f(x)dx = lim
n→∞

∫
Rd

fn(x)dx.

6) (Riemann integral) Let T (Rd) be the vector space of elementary
functions. Thus, each t ∈ T (Rd) is defined on some cube W ⊂ Rd,
and constant on suitable subcubes, i.e.

W =
n⋃

i=1

Wi, Wi cubes with
◦
W i ∩

◦
W j = ∅ for i �= j,

t
|
◦

W i

= ci.

Denote the length of the edges of Wi by li. Show that t is integrable,
with ∫

Rd

t(x)dx =
n∑

i=1

cil
d
i .
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f : Rd → R is called Riemann integrable if for any ε > 0, we may find
ϕ,ψ ∈ T (Rd) with

ψ ≤ f ≤ ϕ∫
Rd

ϕ(x)dx−
∫
Rd

ψ(x)dx < ε.

Show that any Riemann integrable function is Lebesgue integrable as
well, with∫

Rd

f(x)dx = inf
{∫

Rd

ϕ(x)dx : ϕ ∈ T (Rd), ϕ ≥ f
}

= sup
{∫

Rd

ψ(x)dx : ψ ∈ T (Rd), ψ ≤ f
}
.

7) In the terminology of the preceding exercise, show that the following
function f : [0, 1] → R is not Riemann integrable:

f(x) :=
{ 1 if x is rational

0 if x is irrational
.

8) Let f, g be integrable, with f bounded. Show that fg is integrable.
Given an example to show that the boundedness of f is necessary.

9) Let f : Rd → R be bounded and satisfy

|f(x)| ≤ c

‖x‖d+λ
for some constant c and some λ > 0.

Show that f is integrable.



15. Null Functions and Null Sets. The
Theorem of Fubini

Null functions, i.e. those whose integral is 0 on every set, and null sets, i.e. those
whose volume vanishes, are negligible for purposes of integration theory. In par-
ticular, countable sets, or lower dimensional subsets of Euclidean spaces are null
sets. The general theorem of Fubini saying that in multiple integrals the order of
integration is irrelevant is shown.

We begin with an example. Let f : R → R be defined as follows:

f(x) :=
{

1, if x rational
0, if x irrational

We claim that f is integrable and
∫
R

f(x)dx = 0.

For the proof, let n �→ xn be a bijection of N onto the set of rational
numbers. (We recall that the rational numbers are countable.) Further, let
ε > 0.

For n ∈ N, let

Un := {x ∈ R : |x− xn| < ε · 2−n}
and

U :=
⋃
n∈N

Un.

By construction, U contains all the rational numbers. Therefore

f ≤ χU ≤
∞∑

n=1

χUn
(1)

Furthermore, by theorem 14.4,∫ ∗

R

∞∑
n=1

χUn
(x)dx ≤

∞∑
n=1

∫ ∗
χUn

(x)dx =
∞∑

n=1

ε · 21−n = 4ε,

and therefore by (1) ∫ ∗

R

f(x)dx ≤ 4ε. (2)

On the other hand, as f is nonnegative,
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∗

R

f(x)dx ≥ 0. (3)

Since ε > 0 can be chosen arbitrarily small, it follows from lemma 14.2 (i)
and inequalities (2) and (3), that f is integrable and∫

R

f(x)dx = 0,

as asserted.
We shall now investigate systematically the phenomenon which has ap-

peared in this example and develop the concepts required for it.

Definition 15.1 f : Rd → R∪{±∞} is called a null function if
∫ ∗

Rd

|f(x)|dx =

0. A ⊂ Rd is called a null set if χA is a null function.

The following lemma sums up a few obvious remarks.

Lemma 15.2 Let f be a null function, λ ∈ R, |g| ≤ |f |. Then λf and g are
also null functions. Every subset of a null set is again a null set. �

The next lemma explains our example above.

Lemma 15.3 Let (fn)n∈N be a sequence of nonnegative null functions. Then
∞
Σ

n=1
fn is also a null function. If (Nm)m∈N is a sequence of null sets in Rd,

then N := ∪
m∈N

Nm is also a null set.

Proof. The first statement follows directly from theorem 14.4, and the second

follows from the first on account of χN ≤
∞∑

m=1
χNm

. �

Corollary 15.4
(i) Every countable subset of Rd is a null set.

(ii) Every hyperplane in Rd is a null set.

Proof.
(i) First, every one point set in Rd is a null set, as it is contained in a

cube of arbitrarily small volume. Lemma 15.3 implies then that any
countable as a countable union of one-point sets is also a null set.

(ii) Let L be a hyperplane in Rd, x0 ∈ L, x0 = (x1
0, . . . x

d
0),

W (L, n) := {x = (x1, . . . xd) ∈ L : sup
1≤i≤d

|xi
0 − xi| ≤ n}. One com-

putes, e.g. as follows, that Vol dW (L, n) = 0. As Lebesgue measure
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is invariant under isometries of Rd, we may assume, without loss of
generality, that L = {x = (x1, . . . , xd) : xd = 0}.
Then for ε > 0

Q(L, n, ε) := {x = (x1, . . . , xd) : (x1, . . . , xd−1, 0) ∈W (L, n), |xd| ≤ ε}.
Q(L, n, ε) is a rectangular parallelepiped and

Vol dQ(L, n, ε) = (2n)d−1 · ε (compare lemma 13.14).

So, because w(L, n) ⊂ Q(L, n, ε), we see that for every ε > 0

Voldw(L, n) ≤ (2n)d−12ε,

thus
Voldw(L, n) = 0.

Since L = ∪
n∈N

w(L, n) the result follows again from lemma 15.3. �

The following result should already be known to the reader, but it is given
here a new proof.

Corollary 15.5 R is uncountable.

Proof. Were R countable, so would [0, 1] be and corollary 15.4 (i) would then
give the contradiction

1 =

1∫
0

dx = vol [0, 1] = 0.

�

Example. We shall now construct an uncountable null set in R, the so-called
Cantor set.

From [0, 1] we remove the middle third (1
3 ,

2
3 ), and obtain the set

S1 := [0,
1
3
] ∪ [

2
3
, 1].

From S1 we remove again the middle thirds of both the subintervals, that is,
( 1
9 ,

2
9 ) and (7

9 ,
8
9 ) and obtain

S2 := [0,
1
9
] ∪ [

2
9
,
3
9
] ∪ [

6
9
,
7
9
] ∪ [

8
9
, 1].

This process is iterated: thus we remove at the nth-step the open middle third
of all the subintervals of the set Sn−1. One obtains in this manner a set Sn,
which consists of 2n disjoint compact intervals of length 3−n. Finally, we set
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S = ∩
n∈N

Sn.

Obviously, for all n ≥ 2
S ⊂ Sn ⊂ Sn−1

and
VolSn = (

2
3
)n,

so in particular lim
n→∞ VolSn = 0. Therefore, S is a null set. In order to show

that S is uncountable, we derive a contradiction to the assumption that there
is a bijection

N → S

m �→ xm

For this, we associate to every x ∈ S a sequence, which assumes only the
values 0 and 1. We set

λ1(x) =
{

0 if x ∈ [0, 1
3 ]

1 if x ∈ [ 23 , 1]

and iteratively for n ∈ N, λn(x) = 0 in case x, in the passage from Sn−1

to Sn, lies in the first subinterval of the interval of Sn−1 which contains
x, and λn(x) = 1, in case x lies in the third subinterval. This defines the
sequence (λn(x))n∈N. Conversely, every sequence (λn)n∈N which assumes only
the values 0 and 1 defines in this manner a point in S, and different sequences
define different points in S.

Now let m �→ xm be a counting of S.
We define x ∈ S by

λm(x) =
{

0 if λm(xm) = 1
1 if λm(xm) = 0 .

Then for no m ∈ N, x can be of the form xm, for we always have

λm(xm) �= λm(x).

So x could not have been contained in the counting and consequently the
existence of a counting of S is contradicted.

Definition 15.6 We say that a property E(x) holds for almost all x ∈ Rd,
or it holds almost everywhere if

{x ∈ Rd : E(x) does not hold}
is a null set.

Lemma 15.7 f : Rd → R ∪ {±∞} is a null function precisely when f = 0
almost everywhere (i.e. when {x ∈ Rd : f(x) �= 0} is a null set).
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Proof. Let N := {x ∈ Rd : |f(x)| > 0}.
Now

|f | ≤ sup
m∈N

mχN and χN ≤ sup
m∈N

m|f |.

Thus if N is a null set, then∫ ∗

Rd

|f(x)|dx ≤
∫ ∗

Rd

sup
m∈N

mχN (x)dx ≤
∫ ∗

Rd

∞∑
m=1

mχN (x)dx = 0,

by theorem 14.4, so f is a null function, and conversely if f is a null function
then ∫ ∗

Rd

χN (x)dx ≤
∫ ∗

Rd

sup
m∈N

m|f(x)|dx ≤
∫ ∗

Rd

∞∑
m=1

m|f(x)|dx = 0,

again by theorem 14.4, whence N is a null set. �

Lemma 15.8 Let f : Rd → R∪{±∞} satisfy
∫ ∗

Rd

|f(x)|dx <∞ (e.g. let f be

integrable). Then f is almost everywhere finite.

Proof. We have to show that N := {x ∈ Rd : f(x) = ±∞} is a null set. For
every ε > 0 we have

χN ≤ ε|f |,
consequently ∫ ∗

Rd

χN (x)dx ≤ ε

∫ ∗

Rd

|f(x)|dx.

As this holds for arbitrary positive ε,
∫ ∗

Rd

χN (x)dx = 0, so N is a null set. �

Lemma 15.9 Let f, g : Rd → R∪ {±∞} with f = g almost everywhere. If f
is integrable then so is g, and their integrals are then equal.

Proof. Let N := {x ∈ Rd : f(x) �= g(x)}. Let (ϕn)n∈N be a sequence in
Cc(Rd) with

lim
n→∞

∫ ∗

Rd

|f(x) − ϕn(x)|dx = 0. (4)

Now |g − ϕn| ≤ |f − ϕn| + sup
m∈N

mχN and therefore as in the proof of lemma

15.7 ∫ ∗

Rd

|g(x) − ϕn(x)|dx ≤
∫ ∗

Rd

|f(x) − ϕn(x)|dx

and therefore by (4)



200 15. Null Functions and Null Sets. The Theorem of Fubini

lim
∫ ∗

Rd

|g(x) − ϕn(x)|dx = 0.

Theorem 14.8 now gives the integrability of g and we have∫
Rd

g(x)dx = lim
n→∞

∫
Rd

ϕn(x)dx =
∫
Rd

f(x)dx.

�

From lemmas 15.8 and 15.5 it follows that one can substitute an integrable
function f by a function which coincides with f almost everywhere and which
is finite almost everywhere, without changing the value of the integral of f.
This justifies the restriction we made in the definition of the space L1(Rd) :
see definition 14.11.

For later purposes we introduce the following terminology.

Definition. Two functions f, g : A→ R ∪ {±∞} are called equivalent when
they are equal almost everywhere on A (that is, when N := {x ∈ A : f(x) �=
g(x)} is a null set).

Here, we can even call f and g equivalent when one or both of them
are defined only almost everywhere on A, that is, when one is dealing with
functions

f : A\N1 → R ∪ {±∞}, g : A\N2 → R ∪ {±∞}
for which N1, N2 and {x ∈ A\(N1 ∪N2) : f(x) �= g(x)} are null sets. Lemma
15.9 then states that together with f, every function which is equivalent to
f is integrable and has the same integral.

Definition 15.10 For A ⊂ Rd let L1(A) be the set of equivalence classes of
functions integrable on A (as said earlier, we need only consider f : A→ R).
For f ∈ L1(A) we set

‖f‖L1(A) :=
∫
A

|f(x)|dx

where the integral is to be understood as the integral of any function in the
equivalence class of f.

Theorem 15.11 L1(A) is a vector space and ‖ · ‖L1(A) is a norm on L1(A).

Proof. If f1 and g1 as well as f2 und g2 are equivalent and λ ∈ R, then so are
f1 + f2 and g1 + g2 as well as λf1 and λg1. Therefore the set of equivalence
classes L1(A) forms a vector space.

It follows from the elementary properties of the integral established in
§14 that ‖ · ‖L1(A) satisfies the triangle inequality and that one can take out
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scalars with their absolute value. In order for ‖ · ‖L1(A) to be a norm, it
remains only to show its positive definiteness. The latter means

‖f‖L1(A) ⇐⇒ f = 0 almost everywhere onA

(i.e. f lies in the equivalence class of the function which is identically zero).
But this follows at once from lemma 15.7. �

We shall show later that L1(A) is even a Banach space.
We now come to the general form of the theorem of Fubini.

Theorem 15.12 Let f : Rc ×Rd → R∪{±∞} be integrable, let x = (ξ, η) ∈
Rc ×Rd. Then there exists a null set N ⊂ Rd with the property that for every
η ∈ Rd\N the function

Rc → R ∪ {±∞}
ξ �→ f(ξ, η)

is integrable. For η ∈ Rd\N we set

f1(η) :=
∫
Rc

f(ξ, η)dξ

(and for η ∈ N we define f1(η) arbitrarily, e.g. = 0). Then f1 is integrable
and ∫

Rd

f1(η)dη =
∫

Rc+d

f(x)dx.

(One remembers the assertion – theorem of Fubini – most easily in the
following form
(x = (ξ, η)) ∫

Rc+d

f(x)dx =
∫
Rd

(
∫
Rc

f(ξ, η)dξ)dη

=
∫
Rc

(
∫
Rd

f(ξ, η)dη)dξ,

for an integrable function f ; the last equality follows from the symmetry
in the roles of ξ and η or from the fact that (ξ, η) �→ (η, ξ) is an orthogo-
nal transformation and the Lebesgue integral is invariant under orthogonal
coordinate transformations).

Proof. As f is integrable, there exist for every ε > 0 functions g ∈ HS(Rc+d),
h ∈ HI(Rc+d) with g ≤ f ≤ h and∫

Rc+d

h(x)dx−
∫

Rc+d

g(x)dx < ε, by lemma 14.7. (5)
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Let
f1∗(η) =

∫
∗

Rc

f(ξ, η)dξ, f∗
1 (η) =

∫ ∗

Rc

f(ξ, η)dξ

and further
g1(η) :=

∫
Rc

g(ξ, η)dξ, h1(η) :=
∫
Rc

h(ξ, η)dξ.

By Fubini’s theorem for semicontinuous functions (theorem 13.9), g1 ∈
HS(Rd), h1 ∈ HI(Rd) as well as∫

Rd

g1(η)dη =
∫

Rc+d

g(ξ, η)dξdη,

∫
Rd

h1(η)dη =
∫

Rc+d

h(ξ, η)dη. (6)

As g ≤ f ≤ h it follows that

g1(η) ≤ f1∗(η) ≤ f∗
1 (η) ≤ h1(η) (7)

by lemma 14.2 (i).
From (5) and (6) it follows that∫

Rd

h1(η)dη −
∫
Rd

g1(η)dη < ε. (8)

Again, by lemma 14.7 it follows (by means of (7), (8)) that both f1∗(η) and
f∗
1 (η) are integrable and (by means of (5), (6), (7)) that both the integrals

coincide with one another and with
∫

Rc+d

f(x)dx :∫
Rd

f1∗(η)dη =
∫
Rd

f∗
1 (η)dη =

∫
Rc+d

f(x)dx. (9)

As f1∗ ≤ f∗
1 it follows from lemma 15.8 and (9) that f1∗ and f∗

1 are equal
almost everywhere, and that both are finite almost everywhere.

Thus for almost all η, the integrals
∫
∗

Rc

f(ξ, η)dξ and
∫ ∗
Rc

f(ξ, η)dξ agree and

are finite. Thus for a null set N and every η ∈ Rd\N the function

ξ �→ f(ξ, η)

is integrable over Rc, and

f1(η)(=
∫
Rc

f(ξ, η)dξ) = f1∗(η) = f∗
1 (η).

The assertion then follows from (9) and lemma 15.9. �
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Exercises for § 15

1) Let (fn)n∈N be a bounded sequence of null functions. Then sup
n∈N

{fn(x)}
is a null function, too.

2)
a) Let Q := {(x, y) ∈ R2 : 0 < x, y < 1} be the unit square,

f(x, y) :=
x2 − y2

(x2 + y2)2
.

Show that the following integrals both exist, but

1∫
0

( 1∫
0

f(x, y)dx
)
dy �=

1∫
0

( 1∫
0

f(x, y)dy
)
dx.

Is this compatible with Fubini’s theorem?
b) In a similar vein, consider f : Q→ R defined by

f(x, y) :=

⎧⎨⎩ y−2 for 0 < x < y < 1
−x−2 for 0 < y < x < 1
0 otherwise,

and derive the same conclusion as in a).



16. The Convergence Theorems of Lebesgue
Integration Theory

We discuss the fundamental convergence theorems of Fatou, B. Levi, and Lebesgue,
saying that under certain assumptions, the integral of a limit of a sequence of
functions equals the limit of the integrals. Instructive examples show the necessity
of those assumptions. As an application, results that justify the derivation under
the integral sign w.r.t. a parameter are given.

In this paragraph, we shall consider the following question: Let (fn)n∈N

be a sequence of integrable functions. The functions fn converge, in a
sense still to be made precise, to a function f, say pointwise or almost
everywhere. Under which assumptions is then f integrable, and when is∫
f(x)dx = lim

n→∞
∫
fn(x)dx?

To have an idea of the problems involved, we shall first consider some
examples.

Examples.
1) Let fn : Rd → R be defined thus:

fn(x) :=
{

1 if ‖x‖ < n
0 if ‖x‖ ≥ n

fn is inHI(Rd) for all n and therefore integrable. However lim
n→∞ fn(x) =

1 for all x ∈ Rd, and lim fn is not integrable.

2) We now show by an example that even when lim fn is integrable, the
relationship

∫
lim

n→∞ fn(x)dx = lim
n→∞

∫
fn(x)dx may not hold necessar-

ily. For this, let fn : [0, 1] → R be defined as follows:

fn(x) :=
{
n for 0 ≤ x ≤ 1

n
0 for 1

n < x ≤ 1

Again, all the fn are integrable, and for every n∫
[0,1]

fn(x)dx = 1.

On the other hand, lim
n→∞ fn = 0 almost everywhere (namely, not for

x = 0 only), so
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1∫
0

lim fn(x)dx = 0.

We first prove the monotone convergence theorem of Beppo Levi.

Theorem 16.1 Let fn : Rd → R ∪ {±∞} form a monotonically increasing
sequence (so
fn ≤ fn+1 for all n) of integrable functions. If

lim
n→∞

∫
Rd

fn(x)dx <∞

(the limit exists in R ∪ {∞} on account of the monotonicity of (fn)), then

f := lim
n→∞ fn

is also integrable (by monotonicity of fn, the above limit exists for every
x ∈ Rd as an element of R ∪ {±∞}), and∫

Rd

f(x)dx = lim
n→∞

∫
Rd

fn(x)dx.

Proof. Let
Nn := {x ∈ Rd : fn(x) = ±∞},
N =

⋃
n∈N

Nn.

By lemma 15.8, every Nn is a null set and so is N, by lemma 15.2.
Now, because of monotonicity,∫ ∗

Rd

|f(x) − fm(x)|dx =
∫ ∗

Rd

∞∑
n=m

(fn+1(x) − fn(x))dx

≤
∞∑

n=m

∫ ∗

Rd

(fn+1(x) − fn(x))dx

= lim
n→∞

∫
Rd

(fn+1(x) − fm(x))dx

using integrability of the fn

= lim
n→∞

∫
Rd

fn(x)dx−
∫
Rd

fm(x)dx.

Now for every ε > 0 we can choose m ∈ N so large that
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| lim
n→∞

∫
fn(x)dx−

∫
fm(x)dx| < ε

2
(1)

and thus obtain from the preceding inequality also∫ ∗

Rd

|f(x) − fm(x)|dx < ε

2
. (2)

As fm is integrable, there exists moreover, by theorem 14.8, a ϕ ∈ Cc(Rd)
with ∫ ∗

Rd

|fm(x) − ϕ(x)| dx < ε

2
. (3)

By (2) and (3) it follows that∫ ∗

Rd

|f(x) − ϕ(x)|dx < ε

and from (1)

| lim
n→∞

∫
Rd

fn(x)dx−
∫
Rd

ϕ(x)dx| < ε

holds also.
Theorem 14.8 now implies that f is integrable and∫

Rd

f(x)dx = lim
n→∞

∫
Rd

fn(x)dx.

�

An analogous result holds, of course, for monotonically decreasing se-
quences. In the example 1 above, the limit of the integrals is infinite, whereas
in example 2 the convergence is not monotone.

A simple reformulation of theorem 16.1 is

Corollary 16.2 (B. Levi) Let fn : Rd → R ∪ {±∞} be non-negative inte-
grable functions. If

∞∑
n=1

∫
Rd

fn(x)dx <∞,

then
∞
Σ

n=1
fn is also integrable, and

∫
Rd

∞∑
n=1

fn(x)dx =
∞∑

n=1

∫
Rd

fn(x)dx.
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Proof. One applies theorem 16.1 to the sequence of partial sums. �

We now prove

Lemma 16.3 Let fn : Rd → R∪{±∞} be a sequence of integrable functions.
Assume that there exists an integrable function F : Rd → R ∪ {±∞} with

fn ≥ F for all n ∈ N.

Then inf
n∈N

fn is also integrable.

Similarly, sup
n∈N

fn is integrable, provided there is an integrable G : Rd →
R ∪ {±∞} with

fn ≤ G for alln.

Proof. We set
gn := inf

i≤n
fi

and thus obtain a monotonically decreasing sequence of integrable functions,
so gn+1 ≤ gn for all n and

gn ≥ F,

and therefore also ∫
Rd

gn(x)dx ≥
∫
Rd

F (x)dx > −∞.

By the monotone convergence theorem, we have the integrability of f =
lim

n→∞ gn. The second statement is proved analogously by considering

hn := sup
i≤n

fi.

�

The next result is usually referred to as Fatou’s lemma.

Theorem 16.4 Let fn : Rd → R ∪ {±∞} be a sequence of integrable func-
tions. Assume that there is an integrable function F : Rd → R ∪ {±∞} with

fn ≥ F for all n.

Furthermore, let ∫
Rd

fn(x)dx ≤ K <∞ for all n.

Then lim inf
n→∞ fn is integrable, and
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Rd

lim inf
n→∞ fn(x)dx ≤ lim inf

n→∞

∫
Rd

fn(x)dx.

Proof. We set gn := inf
i≥n

fi. By lemma 16.3, all the gn are integrable. More-

over, we have
gn ≤ gn+1, gn ≤ fm for alln andm ≥ n.

Therefore ∫
Rd

gn(x)dx ≤ K

also holds for all n.
Thus by the monotone convergence theorem

lim inf
n→∞ fn = lim

n→∞ gn

is integrable and ∫
Rd

lim inf
n→∞ fn(x)dx = lim

n→∞

∫
Rd

gn(x)dx

≤ lim inf
n→∞

∫
Rd

fn(x)dx.

�

In the example 1 above, the integrals are again not uniformly bounded;
the corresponding statement with lim sup fails due to lack of an integrable
upper bound. Example 2 shows that in theorem 16.4, in general, one cannot
expect equality.

We prove now the dominated convergence theorem of H. Lebesgue.

Theorem 16.5 Let fn : Rd → R∪{±∞} be a sequence of integrable functions
which converge on Rd pointwise almost everywhere to a function f : Rd →
R ∪ {±∞}. Moreover, assume that there is an integrable function G : Rd →
R ∪ {∞} with

|fn| ≤ G for all n ∈ N.

Then f is integrable and∫
Rd

f(x)dx = lim
n→∞

∫
Rd

fn(x)dx (4)

Proof. In as much as we can change, if necessary, the functions fn and f on a
null set, we may assume that all the functions have finite values (notice that
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f can be infinite at most on a null set, where G is so, compare lemma 15.8)
and

f(x) = lim
n→∞ fn(x) for all x ∈ Rd.

The assumptions of theorem 16.4 are fulfilled with K =
∫
Rd

G(x)dx and there-

fore f is integrable (notice that f = lim fn = lim inf fn) and∫
Rd

f(x)dx ≤ lim inf
n→∞

∫
Rd

fn(x)dx.

Analogously, one shows that∫
Rd

f(x)dx ≥ lim sup
n→∞

∫
Rd

fn(x)dx,

and from these inequalities, the result follows directly. �

In the examples 1 and 2 the functions fn are not bounded in absolute
value by a fixed integrable function, so that theorem 16.5 is not applicable
there. However, the following holds

Corollary 16.6 Let fn : Rd → R ∪ {±∞} be integrable functions. Further,
assume that there is an integrable function F : Rd → R ∪ {±∞} with

| lim
n→∞ fn| ≤ F. (5)

Then lim
n→∞ fn is integrable.

Proof. We set
hn := sup{inf(fn, F ),−F}.

Then lim
n→∞hn = lim

n→∞ fn, on account of (5), and the sequence (hn)n∈N satisfies
the assumptions of theorem 16.5. This gives the assertion. �

Corollary 16.7 Let A1 ⊂ A2 ⊂ A3 ⊂ . . . be subsets of Rd,

A :=
⋃
n∈N

An.

For f : A → R ∪ {±∞}, let f|An
be integrable over An for every n; and

assume that
lim

n→∞

∫
An

|f(x)|dx <∞.

Then f is integrable over A and
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A

f(x)dx = lim
n→∞

∫
An

f(x)dx.

Proof. In order to connect with the previous terminology, we define f(x) = 0
for x ∈ Rd\A and thereby obtain, without changing notations, a function
f : Rd → R ∪ {±∞}.

Then we consider the functions

fn = fχAn
.

First of all, |fn| converges monotonically to |f | which is integrable. But then,
the assumptions of theorem 16.5 hold with G = |f |, and this then yields the
assertion. �

Corollary 16.8 Let Ω ⊂ Rd be open, f : Ω → R ∪ {±∞} be integrable and
ε > 0. Then there exists an open bounded set Ω′ with Ω′ ⊂ Ω and

|
∫
Ω

f(x)dx−
∫
Ω′

f(x)dx| < ε.

Proof. First, for every open bounded set Ω′ ⊂ Ω, f|Ω′ is integrable. To see
this, by theorem 14.9 we can assume, without loss of generality, that f ≥ 0.
Then f|Ω′ = lim

n→∞(inf(f, nχΩ′)), which is integrable, e.g. by theorem 16.5

(notice that the characteristic function χΩ′ is integrable as Ω′ is open and
bounded). We set Ωn := {x ∈ Ω : ‖x‖ < n, dist (x, ∂Ω) > 1

n}. Then Ωn is
open and bounded and Ω =

⋃
n∈N

Ωn. By corollary 16.7∫
Ω

f(x)dx = lim
n→∞

∫
Ωn

f(x)dx.

Thus one can take Ω′ to be Ωn for n sufficiently large (depending on ε). �

Corollary 16.9 Let Ω ⊂ Rd be open, f : Ω → R ∪ {±∞} be integrable,
and ε > 0. Then there exists δ > 0 such that whenever Ω0 ⊂ Ω satisfies
V ol (Ω0) < δ, then

|
∫
Ω0

f(x)dx| < ε. (6)

Proof. Otherwise, there exist ε0 > 0 and a sequence (Ωn)n∈N of subsets of Ω
with

lim
n→∞ Vol (Ωn) = 0 (7)

and
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|
∫
Ωn

f(x)dx| > ε0 for all n. (8)

We let fn := fχΩ\Ωn
. Then |fn| ≤ |f | for all n, and, moreover, fn converges to

f pointwise almost everywhere, because of (7). Therefore, by the dominated
convergence theorem 16.5,

lim
n→∞

∫
Ω

fn(x)dx =
∫
Ω

f(x)dx.

However, ∫
Ω

f(x)dx =
∫

Ω\Ωn

f(x)dx+
∫
Ωn

f(x)dx

=
∫
Ω

fn(x)dx+
∫
Ωn

f(x)dx,

and therefore, by (8),

|
∫
Ω

f(x)dx−
∫
Ω

fn(x)dx| > ε0,

a contradiction.
�

As a direct application of the dominated convergence theorem we now
treat parameter dependent integrals.

Theorem 16.10 Let U ⊂ Rd, y0 ∈ U, f : Rc ×U → R∪ {±∞}. Assume that

a) for every fixed y ∈ U x �→ f(x, y) is integrable

b) for almost all x ∈ Rc y �→ f(x, y) is continuous at y0

c) there exists an integrable function F : Rc → R∪{∞} with the property
that for every y ∈ U,

|f(x, y)| ≤ F (x).

holds almost everywhere on Rc.
Then the function

g(y) :=
∫
Rc

f(x, y)dx

is continuous at the point y0.

Proof. We have to show that for any sequence (yn)n∈N ⊂ U with yn → y0,

g(yn) → g(y0) (9)

holds. We set



16. The Convergence Theorems of Lebesgue Integration Theory 213

fn(x) := f(x, yn) for n ∈ N, f0(x) := f(x, y0).

By b), for almost all x ∈ Rc we have

f0(x) = lim
n→∞ fn(x).

By a) and c), the assumptions of theorem 16.5 are fulfilled and thus

lim
n→∞ g(yn) = lim

n→∞

∫
Rc

fn(x)dx

=
∫
Rc

f0(x)dx = g(y0).

�

Theorem 16.11 (Differentiation under the integral sign) Let I ⊂ R

be an open interval, f : Rc × I → R ∪ {±∞}. Assume that

a) for every t ∈ I the function x �→ f(x, t) is integrable

b) for almost all x ∈ Rc, t �→ f(x, t) is finite and is differentiable on I
with respect to t

c) there exists an integrable function F : Rc → R∪{∞} with the property
that for every t ∈ I

|∂f
∂t

(x, t)| ≤ F (x)

holds for almost all x ∈ Rc.
Then the function

g(t) :=
∫
Rc

f(x, t)dx

is differentiable on I and

g′(t) =
∫
Rc

∂f

∂t
(x, t)dx.

Proof. We have to show that for any sequence (hn)n∈N ⊂ R\{0}, hn → 0

lim
n→∞

∫
Rc

1
hn

(f(x, t+ hn) − f(x, t))dx

=
∫
Rc

∂f

∂t
(x, t)dx (10)

holds, as the left side of this equation is the differential quotient of g(t).
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We set

fn(x) =
1
hn

(f(x, t+ hn) − f(x, t)),

f0(x) =
∂f

∂t
(x, t). (11)

By the mean value theorem for almost all x ∈ Rc, there exists, on account of
(b), a θn = θn(x) with −hn ≤ θn ≤ hn such that

fn(x) =
∂f

∂t
(x, t+ θn).

By a), fn is integrable and by c) |fn(x)| ≤ F (x) holds. Therefore it follows
from theorem 16.5 that

lim
n→∞

∫
Rc

fn(x)dx =
∫
Rc

f0(x)dx

and by our notations (11), this is equivalent to (10). �

Exercises for § 16

1) Let f : R → R be integrable, a, b ∈ R, a < b. Show

lim
t→0

b∫
a

|f(x+ t) − f(x)|dx = 0.

Conclude lim
t→0

b∫
a

f(x+ t)dx =
b∫
a

f(x)dx.

2)
a) (Gamma function) Let λ > 0. Show that

Γ (λ) :=

∞∫
0

e−xxλ−1dx

exists.
b) For n ∈ N, |x|n < 1, show

(1 − x

n
)n ≤ (1 − x

n+ 1
)n+1 (cf. §0).

c) For x > 0, show
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x− 1
x

≤
x∫
1

1
t
dt ≤ x− 1.

d) Use a) – c) to show lim
n→∞

n∫
0

(1 − x
n )nxλ−1dx = Γ (λ).

e) For λ > 1, show
∞∫
0

e−x

1−e−xx
λ−1dx = Γ (λ)

∞∑
n=1

1
nλ .

(Hint: e−x

1−e−x =
∞∑

n=1
e−nx.)

3) Let (fn)n∈N be a monotonically decreasing sequence of nonnegative
integrable functions with

lim
n→∞

∫
Rd

fn(x)dx = 0.

Show that (fn) converges to 0 almost everywhere. Give an example
to show that the convergence need not take place everywhere.

4) For x > 0, consider

f(x) :=

∞∫
0

e−xtdt =
1
x
.

Show that one may differentiate infinitely often w.r.t. x under the
integral, and derive the formula

∞∫
0

tne−tdt = n

without integration by parts.

5) Let fn : Rd → R ∪ {±∞} be a sequence of integrable functions for

which
∞∑

n=1
|fn| is integrable as well. Show that

∫
Rd

∞∑
n=1

fn(x)dx =
∞∑

n=1

∫
Rd

fn(x)dx.



17. Measurable Functions and Sets. Jensen’s
Inequality. The Theorem of Egorov

We introduce the general notion of a measurable function and a measurable set.
Measurable functions are characterized as pointwise limits of finite valued functions.
Jensen’s inequality for the integration of convex functions and Egorov’s theorem
saying that an almost everywhere converging sequence of functions also converges
almost uniformly, i.e. uniformly except on a set of arbitrarily small measure, are
derived. We conclude this § with an introduction to the general theory of measures.

In the definition of integrability of a function f we required that f must
have a finite integral. So not all continuous functions, e.g. the non-zero con-
stants, are integrable on Rd. We are now going to introduce a larger class of
functions which includes the integrable as well as the continuous functions
on Rd.

Definition 17.1 Let f, g, h be functions defined on Rd with g ≤ h. We define
the medium function med(f, g, h) by:

med (g, f, h) := inf{sup(f, g), h}.
This expression arises in that one cuts f from above by h and from below

by g.

Definition 17.2 f : Rd → R ∪ {±∞} is called measurable if for every
compact cube W ⊂ Rd and every µ > 0 the function med (−µχW , f, µχW ) is
integrable.

Theorem 17.3
(i) All continuous and all integrable functions are measurable.
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(ii) If f and g are measurable then so are |f |, f+, f−, αf +βg (α, β ∈ R),
sup(f, g) and inf(f, g).

(iii) If (fn)n∈N is a sequence of measurable functions which converges al-
most everywhere to a function f, then f is also measurable.

Proof.
(ii) Let W be a compact cube, µ > 0. We have

med (−µχW , |f |, µχW ) = |med (−µχW , f, µχW )|.
If f is measurable, the right hand side is integrable (theorem 14.9)
and therefore |f | is measurable.
We now set, for n ∈ N,

fn := med (−nµχW , f, nµχW )

and define gn analogously. Then fn and gn are integrable, as f and
g are measurable. For x ∈ Rd\W we have fn(x) = 0 = gn(x) and for
x ∈W, lim

n→∞ fn(x) = f(x), lim
n→∞ gn(x) = g(x) holds and therefore also

lim med (−µχW , αfn + βgn, µχW ) = med (−µχW , αf + βg, µχW ).

med (−µχW , αfn + βgn, µχW ) is integrable (by theorem 14.9) and

|med (−µχW , αfn + βgn, µχW )| ≤ µχW .

Therefore, by the dominated convergence theorem, med (−µχW , αf+
βg, µχW ) is integrable and hence αf + βg is measurable.
The measurability of f+, f−, sup(f, g), inf(f, g) follows from the rela-
tions

f+ =
1
2
(|f | + f)

f− =
1
2
(|f | − f)

sup(f, g) =
1
2
(f + g) +

1
2
|f − g|

inf(f, g) =
1
2
(f + g) − 1

2
|f − g|.

(i) If f is continuous, then so are f+ and f−. The functions f+χW and
f−χW then are in the class HS(Rd) and thereby integrable. Therefore

med (−µχW , f+, µχW )

is integrable and f+ is thus measurable, and similarly also f−. By
(ii), f = f+ − f− is then also measurable.
If f is integrable, so is med (−µχW , f, µχW ), by theorem 14.9, and so
f is measurable.
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(iii) Since the functions fn are measurable, the functions med (−µχW , fn,
µχW ) are integrable and converge, by assumption, almost everywhere
to med (−µχW , f, µχW ). Moreover, |med (−µχW , fn, µχW )| ≤ µχW

and the dominated convergence theorem gives the integrability of med
(−µ χW , f, µχW ) and thereby the measurability of f. �

Lemma 17.4 f : Rd → R ∪ {±∞} is measurable precisely when for every
non-negative integrable function g : Rd → R ∪ {±∞},

med (−g, f, g)
is integrable.

Proof. “ ⇐= ” : obvious

“ =⇒ ” : We set

Wn = {x = (x1, . . . xd) ∈ Rd : |xi| ≤ n for i = 1, . . . d},
fn = med (−nχWn

, f, nχWn
) (n ∈ N).

Then, by assumption, fn is integrable. Furthermore, med (−g, fn, g) is also
integrable (theorem 14.9), bounded in absolute value by g and converges to
med (−g, f, g). By the dominated convergence theorem, med (−g, f, g) is then
integrable. �

Theorem 17.5 If f is measurable and |f | ≤ g for an integrable function g,
then f is integrable.

Proof. By assumption, f = med (−g, f, g) and the result follows from lemma
17.4. �

Corollary 17.6 If f is measurable and |f | integrable, then f is integrable.
�

We note yet another consequence of the statements of §15.

Lemma 17.7 If f is measurable and f = g almost everywhere, then g is also
measurable.

Definition 17.8 A subset A ⊂ Rd is called measurable if its characteristic
function is measurable. In case A is measurable but not integrable, we set
Vol (A) = ∞.

Similar to theorem 14.15 one proves, this time with the help of theorem
17.3, that for measurable sets A and B, A ∪ B, A ∩ B and A\B are also
measurable. However, using the dominated convergence theorem, we obtain
a yet stronger statement
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Theorem 17.9
(i) If A1 ⊂ A2 ⊂ . . . ⊂ Rd are measurable, then

∞∪
n=1

An is measurable

and Vol (
∞∪

n=1
An) = lim

n→∞ Vol (An).

(ii) Let {Bn}n∈N be a sequence of measurable sets. Then
∞∪

n=1
Bn is mea-

surable and Vol (
∞∪

n=1
Bn) ≤ ∞

Σ
n=1

Vol (Bn). If the sets Bn are disjoint,

then Vol (
∞∪

n=1
Bn) =

∞
Σ

n=1
Vol (Bn).

(iii) If C1 ⊃ C2 ⊂ . . . are measurable with Vol(C1) <∞, then Vol (
∞⋂

n=1
Cn)

= lim
n→∞ Vol (Cn).

Proof. (i) follows by applying the dominated convergence theorem to the
functions χAn

, in case sup
n∈N

Vol (An) < ∞. In the other case, Vol (
∞∪

n=1
An) =

∞.
(ii) follows from (i) applied to An =

n∪
j=1

Bj , using the formula

Vol (A ∪B) + Vol (A ∩B) = VolA+ VolB

for measurable sets A and B (theorem 14.15).

(iii) follows from (i) applied to An = C1\Cn. Namely, C1 =
∞⋂

n=1
Cn ∪

∞⋃
n=1

An, hence

Vol(C1) = Vol
( ∞⋂
n=1

Cn

)
+ Vol

( ∞⋃
n=1

An

)
, again by theorem 14.15

= Vol
( ∞⋂
n=1

Cn) + Vol(C1) − lim
n→∞ Vol(Cn)

by (i) and theorem 14.15.

�

Definition 17.10 ϕ : Rd → R is said to be a simple function if there exist
disjoint measurable sets B1, . . . , Bk ⊂ Rd and c1, . . . , ck ∈ R such that

ϕ =
k∑

j=1

cjχBj
.

Theorem 17.11 The following statements are equivalent for a function
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f : Rd → R ∪ {±∞}.
(i) f is measurable.

(ii) For every c ∈ R, the set Ac := {x ∈ Rd : f(x) ≥ c} is measurable.

(iii) f is the pointwise limit of simple functions (the convergence thus oc-
curs everywhere and not just almost everywhere).

Proof. (iii) ⇒ (i): this follows directly from theorem 17.3 (iii).

(i) ⇒ (ii): For c ∈ R, we put

fn(x) := nmin(f(x), c) − nmin(f(x), c− 1
n

).

If f(x) ≥ c, then fn(x) = 1, and if f(x) < c, then for n ≥ N (where N
depends on x) fn(x) = 0. Hence

lim
n→∞ fn = χAc

,

and by theorem 17.3 (iii) χAc
, and thus Ac, is measurable.

(ii) ⇒ (iii): For n ∈ N and j = 1, . . . , n2n+1 we set

cn,j := −n+ (j − 1)2−n

Bn,j := {cn,j ≤ f(x) < cn,j+1},

ϕn :=
n·2n+1∑

j=1

cn,jχBn,j

Now Bn,j = Acn,j
\Acn,j+1 is, by assumption, measurable and therefore ϕn

is simple. Moreover, ϕn converges pointwise to f. �

Remark. If f is measurable and bounded, say |f | ≤ K, then for n ≥ K

|f − ϕn| ≤ 2−n

with the functions ϕn of the previous proof. In this case, f is even the uni-
form limit of simple functions. In this formulation, the basic idea of Lebesgue
integration theory does not consist in dividing the domain of a function uni-
formly as in Riemann integration theory and expressing the function as a
limit of step functions, but rather to divide the range uniformly and to con-
sider limits of simple functions. One notes also that the functions ϕn have
been constructed so that in case f is bounded from below, say f ≥ −K,

ϕn ≤ ϕn+1 ≤ f

holds for all n ≥ K. In this case, f is even the limit of monotonically increasing
simple functions.
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Corollary 17.12 Let f1, . . . fk : Rd → R be measurable, Q : Rk → R con-
tinuous. Then the function h defined by h(x) = Q(f1(x), . . . , fk(x)) is also
measurable.

Proof. By theorem 17.11, the functions f1, . . . , fk are limits of simple func-
tions ϕ1,n, . . . , ϕk,n. Then ηn(x) := Q(ϕ1,n(x), . . . , ϕk,n(x)) defines likewise
a simple function. As Q is continuous, ηn converges pointwise to h, and the-
orem 17.11 yields the assertion. �

Corollary 17.13 If f and g are measurable then so is f · g.

Proof. One sets Q(x1, x2) = x1 · x2 in corollary 17.12. �

We now wish to derive Jensen’s inequality concerning convex functions.
We recall that a function

K : R → R

is convex if for all x, y ∈ R, 0 ≤ t ≤ 1,

K(tx+ (1 − t)y) ≤ tK(x) + (1 − t)K(y). (1)

Inductively, one verifies that a convec function satisfies

K
( n∑

i=1

tixi) ≤
n∑

i=1

tkK(xi) (2)

whenever xi ∈ R, 0 ≤ ti ≤ 1 for i = 1, . . . , n and
n∑

i=1

ti = 1.

Theorem 17.14 (Jensen’s inequality) Let B ⊂ Rd be bounded and mea-
surable, f : B → R be integrable, K : R → R be convex. Suppose that
K ◦ f : B → R is also integrable. Then

K
( 1
Vol(B)

∫
B

f(x)dx
) ≤ 1

Vol(B)

∫
B

K(f(x))dx. (3)

Proof. We first consider the case where f is simple, i.e.

f =
n∑

i=1

ciξBi
,

where the Bi, i = 1, . . . , n are disjoint measurable sets with

n⋃
i=1

Bi = B. (4)
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In that case

K
( 1

Vol (B)

∫
B

n∑
i=1

ciχBi

)
= K

( n∑
i=1

Vol (Bi)
Vol (B)

ci
)

≤
n∑

i=1

Vol (Bi)
Vol (B)

K(ci) by (2), since

n∑
i=1

Vol (Bi)
Vol (B)

= 1 because of (4)

=
1

Vol (B)

d∑
i=1

∫
B

K(ci)χBi

which is the required inequality.
We now wish to treat the case of a general integrable f through approxi-

mating f by simple functions as described in theorem 17.11. If K is bounded
on f(B), we may then use the dominated convergence theorem 16.5 to ob-
tain the inequality for f from the corresponding ones for the approximating
simple functions. In the general case, we consider

An := {x ∈ B : |f(x)| ≤ n}.
Since |f | is integrable together with f (see theorem 14.9), and since∫

B\An

|f(x)|dx ≥ n Vol (B\An),

we conclude that
lim

n→∞ Vol (B\An) = 0, (5)

hence
lim

n→∞ Vol (An) = Vol (B). (6)

By what we have already shown, Jensen’s inequality holds for An, i.e.

K
( 1

Vol (An)

∫
An

f(x)dx
) ≤ 1

Vol (An)

∫
An

K(f(x))dx.

Using (5) and (6), applying corollary 16.7 and noting that convex functions
are continuous (see also lemma 22.5 below for a proof in a more general
context), letting n → ∞ then yields (3). �

We next show Egorov’s theorem

Theorem 17.15 Let A ⊂ Rd be measurable, Vol (A) < ∞, and suppose
the sequence (fn)n∈N of measurable functions converges to the measurable
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function f almost everywhere on A. Then for every ε > 0, there exists a
measurable B ⊂ A satisfying

Vol (A\B) < ε

with the property that fn converges to f uniformly on B. (One says that
(fn)n∈N converges to f almost uniformly on A.)

Proof. We put, for m,n ∈ N,

Cm,n :=
∞⋃

ν=n

{x ∈ A : |fν(x) − f(x)| ≥ 2−m}.

Theorem 17.9 (iii) implies for every m that

lim
n→∞ Vol (Cm,n) = Vol

( ∞⋂
n=1

Cm,n

)
= 0,

since fn converges to f almost everywhere on A.
Therefore, for each m ∈ N, we may find N(m) ∈ N with

Vol (Cm,N(m)) < ε2−m.

Thus, B := A\
∞⋃

m=1
Cm,N(m) satisfies

Vol (A\B) < ε by theorem 17.9 (ii).

Also, by construction, for x ∈ B, we have

|fν(x) − f(x)| < 2−m for all ν ≥ N(m)

which implies the uniform convergence on B. �

In this book, we are exclusively working with the Lebesgue measure. In
many fields of mathematics, however, also other measures occur and need
to be considered. We therefore now give a brief sketch of abstract measure
theory. This theory in fact can be presented as a natural abstraction of the
theory of the Lebesgue measure. For the axiomatic approach, one needs a
collection of sets with certain properties:

Definition 17.16 A nonempty collection Σ of subsets of a set M is called a
σ-algebra if:
(i) Whenever A ∈ Σ, then also M\A ∈ Σ.

(ii) Whenever (An)n∈N ⊂ Σ, then also
∞⋃

n=1
An ∈ Σ.
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One easily observes that for a σ-algebra on M , necessarily ∅ ∈ Σ and M ∈ Σ,

and whenever (An)n∈N ⊂ Σ, then also
∞⋂

n=1
An ∈ Σ.

Definition 17.17 Let M be a set with a σ-algebra Σ.
A function µ : Σ → R+ ∪ {∞}, i.e.,

0 ≤ µ(A) ≤ ∞ for every A ∈ Σ,

with
µ(∅) = 0,

is called a measure on (M,Σ) if
whenever the sets An ∈ Σ,n ∈ N, are pairwise disjoint, then

µ(
∞⋃

n=1

An) =
∞∑

n=1

µ(An)

(countable additivity).
A measure µ with

µ(M) = 1

is called a probability measure.

The essence of this definition is that the properties derived for the
Lebesgue measure in theorems 14.15 and 17.9 now become the constitutive
axioms for a measure. It is easy to verify that not only (ii), but also (i) and
(iii) of theorem 17.9 hold for a measure µ and sets An, Bn, Cn ∈ Σ for n ∈ N.
In the proof, one uses the formula

µ(A1 ∪A2) + µ(A1 ∩A2) = µ(A1) + µ(A2) for all A1, A2 ∈ Σ

and the monotonicity
µ(A1) ≤ µ(A2)

whenever A1 ⊂ A2, A1, A2 ∈ Σ. For example, the latter inequality follows
from A2\A1 = M\(A1 ∪M\A2) ∈ Σ (by (i) and (ii) of definition 17.16), and
then

µ(A2) = µ(A1) + µ(A2\A1) by the additivity of µ
≥ µ(A1) by the nonnegativity of µ.

Definition 17.18 A triple (M,Σ, µ) consisting of a set M , a σ-algebra Σ
on M , and a measure µ : Σ → R+ ∪ {∞} is called a measure space. The
elements of Σ then are called measurable.

Definition 17.19 Let (M,Σ, µ) be a measure space.
We say that a property holds µ-everywhere if it holds on a set A ∈ Σ

with µ(M\A) = 0, i.e., outside a set of measure 0.
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Definition 17.20 Let (M,Σ, µ) be a measure space. A function f : M →
R ∪ {±∞} is called measurable if for every c ∈ R, the set

Ac := {x ∈M : f(x) ≥ c} ∈ Σ.

Lemma 17.21 Let (fn)n∈N be a sequence of measurable functions on a mea-
sure space (M,Σ, µ). Then

lim inf
n→∞ fn and lim sup

n→∞
fn

are measurable. In particular, when it exists,

lim
n→∞ fn

is measurable.

Proof. A function f is measurable precisely if the sets

Bc := {x ∈M : f(x) < c}
are measurable, because Bc = M\Ac.

We now have, for any sequence (gn)n∈N of measurable functions,

{x ∈M : inf
n∈N

gn(x) < c} =
⋃
n∈N

{x ∈M : gn(x) < c},

and since the latter sets are measurable, so then is the former.
Therefore, inf

n∈N

gn is also a measurable function.

By the same reasoning, sup
n∈N

gn is measurable.

Then
lim inf
n→∞ fn(x) = sup

m
inf

n≥m
fn(x)

and
lim sup

n→∞
fn(x) = inf

m
sup
n≥m

fn(x)

are also measurable, if the fn are.
�

Equipped with lemma 17.21, we may now extend all the results derived in
the present § about functions that are measurable for the Lebesgue measure
to measurable functions for an arbitrary measure µ. In particular, measurable
functions can be characterized as pointwise limits of simple functions as in
theorem 17.11, and Egorov’s theorem 17.15 holds in our general context.
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Exercises for § 17

1) Let f : Rd → R be measurable. Put

g(x) :=
{

1
f(x) if f(x) �= 0
0 if f(x) = 0.

Prove that g is measurable as well,
a) by showing that the sets Ac := {x ∈ Rd : g(x) ≥ c} are mea-

surable for all c ∈ R.
b) by showing that g is the pointwise limit of simple functions.

2) Let f : Rd → R be nonnegative and measurable. Then f is the point-
wise limit of a monotonically increasing sequence (ϕn)n∈N of sim-
ple functions. Show that f is integrable if and only if the sequence∫
Rd

ϕn(x)dx converges to some finite value. Moreover, in that case

∫
Rd

f(x)dx = lim
n→∞

∫
Rd

ϕn(x)dx.

3) Let A ⊂ Rd be integrable, f : A → R ∪ {±∞} be measurable and
finite almost everywhere. Show that for every ε > 0 there exists a
bounded measurable function g with

Vol {x ∈ A : g(x) �= f(x)} < ε.

4) Let A ⊂ Rd be measurable and bounded.
a) Let f : A→ R be nonnegative and integrable. Show

lim
n→∞n Vol {x : f(x) > n} = 0.

b) Does the vanishing of this limit conversely imply the integra-
bility of a nonnegative measurable function?

c) Show that a measurable function f : A→ R is integrable if and
only if

∞∑
n=1

Vol {x : |f(x)| ≥ n} < ∞.

5) Let A ⊂ Rd be measurable, fn, f : A→ R be measurable (n ∈ N). We
say that (fn)n∈N converges to f almost uniformly if for every ε > 0
there exists B ⊂ A with Vol (B) < ε such that fn converges to f
uniformly on A\B. Show that if fn converges to f almost uniformly,
then fn converges to f pointwise almost everywhere, i.e. except on a
null set.
(This is of course the converse of Egorov’s theorem.)



18. The Transformation Formula

The general transformation formula for multiple integrals is derived. Transforma-
tion from Euclidean to polar coordinates is discussed in detail.

Definition 18.1 Let U, V ⊂ Rd be open. A bijective map Φ : U → V is
called a homeomorphism if Φ and Φ−1 are continuous, and a diffeomorphism
if Φ and Φ−1 are continuously differentiable.

The aim of this paragraph is to prove the following transformation formula
for multiple integrals.

Theorem 18.2 Let U, V ⊂ Rd be open, Φ : U → V a diffeomorphism.
A function f : V → R ∪ {±∞} is integrable precisely when the function
(f ◦ Φ)|detDΦ| is integrable over U, and in this case one has∫

Φ(U)

f(y)dy =
∫
U

f(Φ(x))|detDΦ(x)|dx.

We first prove

Lemma 18.3 Let U, V ⊂ Rd be open, Φ : U → V a homeomorphism. Let Φ be
differentiable at x0 ∈ U. Then for every sequence (Wn)n∈N of open or closed
cubes in U which contain x0 and whose side length tends to 0 as n → ∞, one
has

lim
n→∞

Vol (Φ(Wn))
Vol (Wn)

= |detDΦ(x0)|. (1)

Proof. We remark first that the assertion holds when Φ is an affine linear
transformation, as follows from lemma 13.12. We now set

A := DΦ(x0).

As in the proof of lemma 13.12, there exist matrices P1, P2 with
|detP1| = 1 = |detP2| and a diagonal matrix D such that

A = P1DP2.
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Using the fact that the assertion of the lemma holds for linear transforma-
tions, as already remarked at the beginning, and that, if necessary, we can
replace Φ by P−1

1 ΦP−1
2 , we may assume that DΦ(x0) is a diagonal matrix

D =

⎛⎝λ1 0
. . .

0 λd

⎞⎠ .

Namely, one has for any measurable set A and every linear transformation P
with |detP | = 1, Vol (PA) = Vol (A).

To simplify the notations, we can also assume that

x0 = 0 = Φ(x0).

By definition of the differential, there exists for any ε > 0 a δ > 0 such that

‖Φ(x) − Φ(x0) −DΦ(x0)(x− x0)‖ ≤ ε‖x− x0‖,
if ‖x− x0‖ < δ, thus by our simplifications

‖Φ(x) −D · x‖ ≤ ε‖x‖ (2)

for ‖x‖ < δ.
We now distinguish two cases

1) |detD| = |detDΦ(x0)| = 0. Then at least one of the diagonal el-
ements λi vanishes and DWn lies in the hyperplane {xi = 0}. For
ε > 0, choose δ > 0 as in (2) and let the side length �n of Wn satisfy
�n < δ, which holds, by assumption, for sufficiently large n.
On account of (2), Φ(Wn) lies in a parallelepiped with side lengths

(|λi| + 2ε)�n.

As at least one of the λi’s vanishes, it follows, with L := max
i=1,...d

|λi|,
that

Vol (Φ(Wn))
Vol (Wn)

≤ (L+ 2ε)d−12ε,

thus
lim

n→∞
Vol (Φ(Wn))

Vol (Wn)
= 0.

2) |detD| = |detDΦ(x0)| �= 0. By considering the map D−1 ◦Φ instead
of Φ, which has the differential D−1 · DΦ(x0) = id at x0, we can
assume that

D = id.

With these simplifications we obtain

‖Φ(x) − x‖ ≤ ε‖x‖ (3)
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for ‖x‖ < δ.
Let ε < 1

4 and let the side length �n of Wn satisfy again

�n < δ.

Let W−
n and W+

n be cubes concentric with Wn of side lengths (1 −
3ε)�n and (1+3ε)�n, respectively. For n sufficiently large, W+

n is also
contained in U.
By (3) one has

Φ(Wn) ⊂ W+
n

and as Φ is a homeomorphism, Φ(∂Wn) = ∂Φ(Wn) also holds.
By (3) one has

Φ(∂Wn) ∩W−
n = ∅,

thus
∂Φ(Wn) ∩W−

n = ∅. (4)

On the other hand, on account of (3)

Φ(Wn) ∩W−
n �= ∅, (5)

for Φ moves the centre of Wn at most by 1
2ε�n, thus by less than

1
2 (1 − 3ε)�n, since ε < 1

4 . As W−
n is connected and satisfies (4) and

(5), it follows that
W−

n ⊂ Φ(Wn).

Thus, altogether
W−

n ⊂ Φ(Wn) ⊂W+
n ,

and therefore

(1 − 3ε)d ≤ Vol (Φ(Wn))
Vol (Wn)

≤ (1 + 3ε)d,

so far as �n < δ. It follows that

lim
n→∞

Vol (Φ(Wn))
Vol (Wn)

= 1.

�

Definition 18.4 We say that Φ has a measure derivative ∆Φ(x0) at the point
x0, if for any sequence of open or closed cubes Wn containing x0 and whose
side lengths tend to zero,

lim
n→∞

Vol (Φ(Wn))
Vol (Wn)

= ∆Φ(x0).

Lemma 18.5 Let Φ have measure derivative ∆Φ(x) at every point of a closed
cube W with
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∆Φ(x) ≤ K. (5)

Then for every cube W ′ ⊂ W one has

Vol (Φ(W ′))
Vol (W ′)

≤ K. (6)

Proof. Assume that
Vol (Φ(W ′))

Vol (W ′)
≥ K1 > K. (7)

We may assume that W ′ is closed, as ∂W ′ is a null set (e.g. by corollary 15.4)
and so Vol (W

′
) = Vol(W ′), and Vol (Φ(W

′
)) ≥ Vol (Φ(W ′)) and thereby

(7) continues to hold by passage to the closure. We subdivide W ′ into 2d

subcubes of the same size, with disjoint interiors. At least one of these, say
W1, satisfies

Vol (Φ(W1))
Vol (W1)

≥ K1.

By continued subdivisions we obtain a sequence of cubes (Wn)n∈N with

Vol (Φ(Wn))
Vol (Wn)

≥ K1. (8)

Let x0 be the limit of the sequence of middle points of the Wn. x0 is contained
in all Wn. From (8) it follows that

∆Φ(x0) ≥ K1,

in contradiction to the assumption (5). Therefore (7) could not hold. �

Lemma 18.6 Let U ⊂ Rd be open, Φ : U → Rd injective and continuous
with measure derivative ∆Φ(x) in U. Let ∆Φ be bounded on every compact
subset of U. Then for every (open or closed) cube W with W ⊂ U one has

Vol (Φ(W )) =
∫
W

∆Φ(x)dx. (9)

Proof. Divide W into subcubes W1, . . . ,Wk; we shall here demand that

W =
k⋃

i=1

Wi, Wi ∩Wj = ∅ for i �= j,

and therefore we can choose Wi neither open nor closed, rather we must
attach the common sides with exactly one of the cubes under consideration.
But as the previous statements hold for open as well as for closed cubes,
they hold also for cubes W ′ which are neither open nor closed, on account
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of
◦
W ′ ⊂ W ′ ⊂ W ′ and as Vol (

◦
W ′) = Vol (W ′). For such a subdivision we

now set

ϕ :=
k∑

i=1

Vol (Φ(Wi))
Vol (Wi)

χWi
.

So ∫
W

ϕ(x)dx =
k∑

i=1

Vol (Φ(Wi))

= Vol (Φ(W )).

By continuously refining the subdivision, we obtain a sequence of step func-
tions (ϕn)n∈N, which converge on W to ∆Φ and which satisfy for all n∫

W

ϕn(x)dx = Vol (Φ(W )).

By lemma 18.5 we can apply the dominated convergence theorem and obtain
thereby the lemma. �

Definition 18.7 Let U ⊂ Rd be open, Φ : U → Rd injective and continuous.
We say that Φ has a density function dΦ provided for every cube W with
W ⊂ U,

Vol (Φ(W )) =
∫
W

dΦ(x)dx.

Lemma 18.6 thus states that a map with bounded measure derivative has
this as its density function.

Theorem 18.8 Let U, V ⊂ Rd be open, Φ : U → V a homeomorphism
which has a density function dΦ. If g : V → R ∪ {±∞} is integrable then
g(Φ(x))dΦ(x) is integrable over U, and one has∫

Φ(U)

g(y)dy =
∫
U

g(Φ(x))dΦ(x)dx. (10)

Proof. From the definition of a density function, the statement follows in case
g ◦Φ is the characteristic function of a cube W with W ⊂ U, and by linearity
of the integral also if g ◦ Φ is a step function with support in U. Now let g
be continuous with compact support K in V. Now Φ−1(K), being the image
of a compact set under a continuous map, is again compact, and g ◦ Φ has
therefore compact support in U. The function g ◦Φ is then a uniform limit of
step functions ϕn with compact support K ′ in U, and likewise g is the limit
of ϕn ◦Φ−1. Furthermore, for a suitable constant c, the functions ϕn · dΦ are
bounded in absolute value by the integrable function cχK ·dΦ. The dominated
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convergence theorem then implies the statement for continuous functions with
compact support. We now decompose g = g+ − g− and can therefore limit
ourselves to the case g ≥ 0.

If g ∈ HI(Rd), then g is the limit of a monotonically increasing sequence
(fn)n∈N ⊂ Cc(Rd). We set

f ′
n(x) :=

⎧⎨⎩
fn(x) if d(x, ∂V ) ≥ 2

n and x ∈ V
n(d(x, ∂V ) − 1

n )fn(x) if 1
n ≤ d(x, ∂V ) < 2

n andx ∈ V
0 if d(x, ∂V ) < 1

n orx /∈ V

Here, d(x, ∂V ) denotes the distance of x from the closed set ∂V : this is
a continuous function. Now the functions f ′

n even have compact support
contained in V and converge monotonically increasing to g · χV . Similarly,
(f ′

n ◦Φ)dΦ converge monotonically increasing to (g ◦Φ)dΦ, for, we can assume
without restriction that dΦ ≥ 0.

The monotone convergence theorem of B. Levi therefore yields the asser-
tion for g ∈ HI and likewise for g ∈ HS . Finally, for arbitrary integrable g
one has ∫

Φ(U)

g(y)dy = inf{
∫

Φ(U)

h(y)dy, h ∈ HI , h ≥ g}

= sup{
∫

Φ(U)

f(y)dy, f ∈ HS , f ≤ g}.

From what has already been proved it follows that∫
Φ(U)

g(y)dy = inf{
∫
U

h(Φ(x))dΦ(x)dx, h ∈ HI , h ≥ g}

= sup{
∫
U

f(Φ(x))dΦ(x)dx, f ∈ HS , f ≤ g}.

Now, as for h ∈ HI , f ∈ HS with f ≤ g ≤ h

f(Φ(x))dΦ(x) ≤ g(Φ(x))dΦ(x) ≤ h(Φ(x))dΦ(x)

(notice that dΦ ≥ 0 and we have restricted ourselves to the case g ≥ 0), it
follows easily that g(Φ(x))dΦ(x) is integrable over U, and that (10) holds. �

Proof of theorem 18.2 The proof is now easy. Lemmas 18.3 and 18.6
imply that a diffeomorphism Φ has a density function dΦ = |detDΦ| de-
fined everywhere. Theorem 18.8 therefore allows us to conclude the inte-
grability of (f ◦ Φ)|detDΦ| over U from that of f : V → R ∪ {±∞},
together with the corresponding integral formulae. For the other direc-
tion we use that Φ−1 is likewise a diffeomorphism with density function
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dΦ−1 = |detD(Φ−1)| = |detDΦ|−1 ◦Φ−1. Therefore if g = (f ◦Φ)|detDΦ| is
integrable, so is also (g ◦Φ−1)|detD(Φ−1)| = f, by theorem 18.8, again with
the asserted integral formula. �

Examples. We shall now consider transformations to polar coordinates. First
the planar case:

We consider the mapping

Φ : {(r, ϕ) : r ≥ 0, ϕ ∈ R} → R2

(r, ϕ) �→ (r cosϕ, r sinϕ) (in complex coordinates (r, ϕ) �→ reiϕ).

We compute for the differential

DΦ =
(

cosϕ −r sinϕ
sinϕ r cosϕ

)
,

so in particular
detDΦ = r. (11)

From this we see, with the help of the inverse function theorem, that Φ is
locally invertible for r > 0; however Φ is not globally invertible as for k ∈ Z

Φ(r, ϕ+2πk) = Φ(r, ϕ). In order to ensure the injectivity of Φ, one can restrict
the domain of definition to

{(r, ϕ) : r > 0, 0 ≤ ϕ < 2π};
the image is then R2\{0}.

From theorem 18.2 we deduce

Corollary 18.9 f : R2 → R∪{±∞} is integrable precisely when the function

(r, ϕ) �→ r f(Φ(r, ϕ))

is integrable over {(r, ϕ) : r ≥ 0, 0 ≤ ϕ ≤ 2π}. In this case we have∫
R2

f(x, y)dxdy =

2π∫
0

∞∫
0

f(r cosϕ, r sinϕ)rdrdϕ. (12)

Proof. We set in theorem 18.2

U := {(r, ϕ) : r > 0, 0 < ϕ < 2π}
and V := Φ(U) = R2\{(x, 0) : x ≥ 0}. Φ then establishes, as required in
theorem 18.2, a diffeomorphism between the open sets U and V. The result
follows from theorem 18.2 as the complements R2\V and {r ≥ 0, 0 ≤ ϕ ≤
2π} \ {r > 0, 0 < ϕ < 2π} are null sets. �

In the same way we define spatial polar coordinates by the map
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x

z

y

Ψ : {(r, θ, ϕ) : r ≥ 0, θ, ϕ ∈ R} → R3

(r, θ, ϕ) �→ (r sin θ cosϕ, r sin θ sinϕ, r cos θ).

Now

DΨ =

⎛⎝ sin θ cosϕ r cos θ cosϕ −r sin θ sinϕ
sin θ sinϕ r cos θ sinϕ r sin θ cosϕ

cos θ −r sin θ 0

⎞⎠ ,

and
detDΨ = r2 sin θ.

Again Ψ is not globally invertible; we have Ψ(r, θ, ϕ + 2πk) = Ψ(r, θ, ϕ) for
k ∈ Z and Ψ(r, θ + π, ϕ) = Ψ(r, π − θ, ϕ + π). The map Ψ is injective on
{(r, θ, ϕ) : r > 0, 0 < θ < π, 0 ≤ ϕ < 2π} and surjective on {(r, θ, ϕ) : r ≥
0, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π}.

Exactly as for corollary 18.9 one proves

Corollary 18.10 f : R3 → R ∪ {±∞} is integrable precisely when the func-
tion
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(r, θ, ϕ) �→ r2 sin θf(Ψ(r, θ, ϕ))

is integrable on {r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π} and

∫
R3

f(x, y, z)dxdydz =

2π∫
0

π∫
0

∞∫
0

f(Ψ(r, θ, ϕ))r2 sin θdrdθdϕ. (13)

From the formulae (12) and (13) we recover for d = 2 and d = 3, respec-
tively, the formulae obtained earlier for integrals of rotationally symmetric
functions.

Exercises for § 18

1) Try to simplify the proof of theorem 18.2 in case f is continuous with
compact support.

2) Derive and discuss the transformation formula for cylinder coordi-
nates in R3, i.e. for

(r, ϕ, z) �→ (r cosϕ, r sinϕ, z).



Chapter V.

Lp and Sobolev Spaces



19. The Lp-Spaces

The Lp-spaces of functions the pth power of whose absolute value is integrable are
introduced. Minkowski’s and Hölder’s inequality are shown, and the Lp-spaces are
seen to be Banach spaces. Also, the approximation of Lp-functions by smooth ones
is discussed. These mollifications are also used to show the existence of partitions
of unity.

We recall first that we have called two functions equivalent if they differ
only on a null set (see §15). For purposes of integration, equivalent functions
are completely the same as all their integrals coincide.

Definition 19.1 Let Ω ⊂ Rd be open, p ≥ 1 (p ∈ R). Lp(Ω) is defined to be
the set of all equivalence classes of measurable functions f : Ω → R ∪ {±∞}
for which |f |p is integrable over Ω. For f ∈ Lp(Ω) we set

‖f‖Lp(Ω) := (
∫
Ω

|f(x)|pdx)
1
p .

Remark on notation: Sometimes, we also need to consider vector valued
functions F = (f1, . . . , fd) : Ω → (R∪ {±∞}c. We shall sometimes write | · |
in place of ‖ · ‖ for the Euclidean norm in Rc, and we put

‖F‖Lp(Ω) :=
( c∑

i=1

‖f i‖p
Lp(Ω)

) 1
p

.

Obviously ‖f‖Lp(Ω) depends only on the equivalence class of f and one
has

‖f‖Lp(Ω) ≥ 0 for all f (1)

and
‖f‖Lp(Ω) = 0 ⇐⇒ f is a null function . (2)

Thus ‖f‖Lp(Ω) is positive definite on the space of equivalence classes. In what
follows we shall often, for the sake of simplicity, talk of measurable functions
when what is really meant is an equivalence class of measurable functions.
If a pointwise property is attributed to an equivalence class of measurable
functions, it means that there is an element of the equivalence class which
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has this property. For example, f ≡ 0 means, with this agreement, that f is
a null function.

Definition 19.2 For a measurable f : Ω → R ∪ {±∞} we set

ess sup
x∈Ω

f(x) := inf{a ∈ R ∪ {∞} : f(x) ≤ a for almost allx ∈ Ω}

and analogously

ess inf
x∈Ω

f(x) := sup{a ∈ R ∪ {−∞} : a ≤ f(x) for almost all x ∈ Ω}

(essential supremum and infimum, respectively).

L∞(Ω) is the space of all (equivalence classes) of measurable functions
with

‖f‖L∞(Ω) := ess sup
x∈Ω

|f(x)| <∞.

We have, as before,
‖f‖L∞(Ω) ≥ 0 (3)

and
‖f‖L∞(Ω) = 0 ⇐⇒ f ≡ 0 (i.e. f is null function). (4)

Example. As an example we consider the function

f(x) = ‖x‖α (α ∈ R),

and the domains Ω1 = {x ∈ Rd : ‖x‖ < 1} and Ω2 = {x ∈ Rd : ‖x‖ > 1}.
Obviously,

f ∈ L∞(Ω1) ⇐⇒ α ≥ 0

and
f ∈ L∞(Ω2) ⇐⇒ α ≤ 0.

To investigate to which Lp-spaces f belongs we must examine if the integral∫
Ω

‖x‖αpdx

exists for Ω = Ω1 and Ω2 resp.
By theorem 13.21 we have, with r = ‖x‖

∫
Ω1

‖x‖αpdx = dωd

1∫
0

rαp · rd−1dr = dωd

1∫
0

rαp+d−1dr,

and this integral exists precisely when αp+ d > 0.
Thus

f ∈ Lp(Ω1) ⇐⇒ αp+ d > 0.
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Similarly, ∫
Ω2

‖x‖αpdx = dωd

∞∫
1

rαp+d−1dr,

so
f ∈ Lp(Ω2) ⇐⇒ αp+ d < 0.

�

We shall now investigate the Lp-spaces.
For 1 ≤ p ≤ ∞, λ ∈ R, f ∈ Lp(Ω) we have

‖λf‖Lp(Ω) = |λ|‖f‖Lp(Ω).

Thus with f, λf also lies in Lp(Ω). We shall now show that ‖·‖Lp(Ω) defines a
norm: for this, there remains only to verify the triangle inequality. For p = ∞
this is clear:

‖f + g‖L∞(Ω) ≤ ‖f‖L∞(Ω) + ‖g‖L∞(Ω), (5)

and similarly for p = 1 (due to the monotonicity of the integral)

‖f + g‖L1(Ω) ≤ ‖f‖L1(Ω) + ‖g‖L1(Ω). (6)

For 1 < p <∞, we need still some preparations. Here and later, when there is
no danger of confusion, we shall often simply write ‖ · ‖p instead of ‖ · ‖Lp(Ω).

We recall first the so-called Young inequality.

Lemma 19.3 For a, b ≥ 0, p, q > 1, 1
p + 1

q = 1,

ab ≤ ap

p
+
bq

q
. (7)

We now prove the Hölder inequality:

Theorem 19.4 Let p, q ≥ 1, 1
p + 1

q = 1 (if p = 1 then q is to be set = ∞ and
conversely), f ∈ Lp(Ω), g ∈ Lq(Ω). Then fg ∈ L1(Ω) and

‖fg‖1 ≤ ‖f‖p · ‖g‖q . (8)

Proof. First of all, by corollary 17.13, with f and g also f · g is measurable.
In case p = 1 and q = ∞ we have∫

Ω

|f(x)g(x)|dx ≤ ess sup
x∈Ω

|g(x)|
∫
Ω

|f(x)|dx

= ‖g‖∞ · ‖f‖1.
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There remains the case p, q > 1 to be handled. First of all, the assertion holds
clearly in case f = 0 or g = 0.

Moreover, the inequality (8) is homogeneous in the sense that if it holds
for f and g then it holds also for λf, µg (λ, µ ∈ R). We can therefore assume
that

‖f‖p = 1 = ‖g‖q (so
∫
Ω

|f(x)|pdx = 1 =
∫
Ω

|g(x)|qdx). (9)

By Young’s inequality (lemma 19.3) we have

|fg| ≤ |f |p
p

+
|g|q
q

and therefore by (9) ∫
Ω

|f(x)g(x)|dx ≤ 1
p

+
1
q

= 1.

�

We can now prove the triangle inequality for Lp(Ω), which is also called
the Minkowski inequality.

Corollary 19.5 Let 1 ≤ p ≤ ∞, f, g ∈ Lp(Ω). Then f + g ∈ Lp(Ω) and

‖f + g‖Lp(Ω) ≤ ‖f‖Lp(Ω) + ‖g‖Lp(Ω).

Proof. The cases p = 1,∞ have already been dealt with. So let 1 < p < ∞
and q = p

p−1 , so that 1
p + 1

q = 1, and η := |f + g|p−1. Now ηq = |f + g|p
and it is clear that if f, g ∈ Lp(Ω) then f + g is also in Lp(Ω) and therefore
η ∈ Lq(Ω) with

‖η‖q = ‖f + g‖
p
q
p .

Furthermore,
|f + g|p = |f + g|η ≤ |fη| + |gη| (10)

and therefore from the Hölder inequality by integrating (10), we obtain

‖f + g‖p
p ≤ ‖fη‖1 + ‖gη‖1

≤ (‖f‖p + ‖g‖p)‖η‖q

= (‖f‖p + ‖g‖p)‖f + g‖
p
q
p ,

so
‖f + g‖p = ‖f + g‖p− p

q
p ≤ ‖f‖p + ‖g‖p.

�
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We summarize our considerations above as

Corollary 19.6 Lp(Ω) is a vector space, and ‖ · ‖Lp(Ω) is a norm on Lp(Ω)
for all 1 ≤ p ≤ ∞. �

For later purposes we note also the following generalization of theorem
19.4, which can be proved easily by induction:

Let p1, . . . , pn ≥ 1, 1
p1

+ . . .+ 1
pn

= 1, fi ∈ Lpi(Ω) (i = 1, . . . , n). Then∫
Ω

|f1(x) . . . fn(x)|dx ≤ ‖f1‖p1 . . . ‖fn‖pn
. (11)

Further consequences of the Hölder inequality are

Corollary 19.7 Let Ω ⊂ Rd be open, Vol (Ω) < ∞, 1 ≤ p ≤ q ≤ ∞. Then
Lq(Ω) ⊂ Lp(Ω), and for f ∈ Lq(Ω) we have

Vol (Ω)−
1
p ‖f‖Lp(Ω) ≤ Vol (Ω)−

1
q ‖f‖Lq(Ω).

Proof.

‖f‖p
Lp(Ω) =

∫
Ω

|f(x)|pdx =
∫
Ω

1 · |f(x)|pdx

≤ ‖|f |p‖
L

q
p (Ω)

· ‖1‖L q
q−p (Ω)

(as
p

q
+
q − p

q
= 1) by theorem 19.4

= ‖f‖p
Lq(Ω) Vol (Ω)1−

p
q ,

and this implies the result. �

Corollary 19.8 Let 1 ≤ p ≤ q ≤ r, 1
q = λ

p + (1−λ)
r . If f ∈ Lp(Ω) ∩ Lr(Ω)

then f ∈ Lq(Ω) and
‖f‖q ≤ ‖f‖λ

p · ‖f‖1−λ
r .

Proof.
∫
Ω

|f(x)|qdx =
∫
Ω

|f(x)|λq · |f(x)|(1−λ)qdx. For p1 = p
λq , p2 = r

(1−λ)q we

have
1
p1

+ 1
p2

= 1, so by theorem 19.4,∫
Ω

|f(x)|qdx ≤ ‖|f |λq‖p1 · ‖|f |(1−λ)q‖p2

= ‖f‖λq
p · ‖f‖(1−λ)q

r

�
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Corollary 19.9 Let Ω ⊂ Rd be open, Vol (Ω) < ∞. For f ∈ Lp(Ω) we
set (1 ≤ p < ∞) Φp(f) := ( 1

Vol (Ω)

∫
Ω

|f(x)|pdx)
1
p (1 ≤ p < ∞). If |f |p is

measurable but not integrable, we set Φp(f) = ∞. Then for every measurable
f : Ω → R ∪ {±∞}

lim
p→∞Φp(f) = ess sup

x∈Ω
|f(x)|.

Proof. For f ∈ Lp(Ω),

Φp(f) = Vol (Ω)−
1
p ‖f‖Lp(Ω).

By corollary 19.7, Φp(f) is monotonically increasing in p and for 1 ≤ p < ∞
we have

Φp(f) ≤ ess sup
x∈Ω

|f(x)|.

Thereby lim
p→∞Φp(f) exists in R∪ {∞} and it now remains only to show that

ess sup
x∈Ω

|f(x)| ≤ lim
p→∞Φp(f).

For K ∈ R let
AK := {x ∈ Ω : |f(x)| ≥ K}.

AK is measurable since f is measurable (see theorem 17.11).
Moreover, for K < ess sup

x∈Ω
|f(x)|,

Vol (AK) > 0.

Also

Φp(f) ≥ Vol (Ω)−
1
p (

∫
AK

|f(x)|pdx)
1
p ≥ Vol (Ω)−

1
p Vol (AK)

1
p ·K,

since |f(x)| ≥ K for x ∈ AK . As Vol (AK) > 0, it follows from this that

lim
p→∞Φp(f) ≥ K.

As this holds for all K < ess sup
x∈Ω

|f(x)|, we have

limΦp(f) ≥ ess sup
x∈Ω

|f(x)|.

This completes the proof of the corollary. �
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We shall now show that Lp(Ω) is even a Banach space. To understand this
statement, we shall first compare the different convergence concepts which
are available to us.

First, we have the pointwise convergence almost everywhere. Then there
is the L∞-convergence:

fn
L∞
−→f ⇐⇒ ‖fn − f‖∞ → 0.

Obviously, the L∞-convergence implies pointwise convergence almost every-
where. Finally, we have the Lp-convergence for 1 ≤ p <∞ :

fn
Lp

−→f ⇐⇒ ‖fn − f‖p → 0;

this convergence is also called strong convergence (we shall later introduce
yet another convergence – the weak convergence). For p = 2, one also says
mean quadratic convergence. We now give two examples which show that for
1 ≤ p < ∞ neither pointwise convergence implies Lp-convergence nor does
Lp-convergence imply pointwise convergence.

Examples.
1) This example is already known to us from our study of the convergence

theorems. Let fn : (0, 1) → R be defined by

fn(x) :=
{
n for 0 < x ≤ 1

n
0 for 1

n < x < 1.

Now fn converges pointwise to 0, however

‖fn‖Lp = n
p−1

p (= n for p = ∞)

and therefore
‖fn‖ → ∞ as n → ∞ (p > 1).

For p = 1 we indeed have ‖fn‖ = 1 for all n but still there is no
f ∈ L1(Ω) with

‖fn − f‖1 → 0, (12)

for as fn(x) = 0 for x > 1
n , f must then equal 0, which again cannot

lead to (12) as ‖fn‖ = 1.
Besides, one can also set

gn(x) :=
{
n2 for 0 ≤ x ≤ 1

n
0 otherwise

;

then also ‖gn‖1 → ∞ as n → ∞.

2) We consider the following sequence

χ[0,1], χ[0, 1
2 ], χ[ 12 ,1], χ[0, 1

4 ], χ[ 14 , 1
2 ], . . .
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For n ∈ N, if k denotes the natural number uniquely determined by

2k ≤ n < 2k+1

and
In := [n2−k − 1, (n+ 1)2−k − 1]

then we can represent the sequence by

fn = χIn
.

Then, for 1 ≤ p <∞,

‖fn‖p = 2−
k
p ,

so ‖fn‖p → 0 as n → ∞, but fn(x) does not converge for any x ∈
(0, 1), because for every x there exist infinitely many m ∈ N with
fm(x) = 1 and infinitely many � ∈ N with f�(x) = 0.

We now prove

Lemma 19.10 Let (fn)n∈N ⊂ Lp(Ω), 1 ≤ p < ∞ and

∞∑
n=1

‖fn‖p =: M <∞.

Then Σfn converges in Lp as well as pointwise almost everywhere to a func-
tion h ∈ Lp(Ω).

Proof. Let

gn :=
n∑

j=1

|fj |

Then (gn)n∈N ⊂ Lp(Ω) is monotonically increasing and nonnegative and,

on account of ‖gn‖p ≤
n∑

j=1

‖fj‖p (corollary 19.5), we have ‖gn‖p ≤ M, so∫
Ω

(gn(x))pdx ≤ Mp. By the dominated convergence theorem, (gp
n)n∈N con-

verges pointwise almost everywhere to an integrable k with∫
Ω

k(x)dx ≤Mp.

This means that (gn)n∈N converges to a non-negative measurable function g
with gp = k, so g ∈ Lp(Ω) and ‖g‖p ≤M.

Since the series Σfn converges absolutely (almost everywhere), Σfn con-
verges pointwise almost everywhere to a function h with |h| ≤ g. By theorem
17.3 (iii), h is measurable and it follows that h ∈ Lp(Ω),

‖h‖p ≤ M.
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Thus
n

Σ
j=1

fj − h converges pointwise almost everywhere to 0 and, besides, as

|
n∑

j=1

fj − h| ≤ 2|g|,

it follows from the dominated convergence theorem that

‖
n∑

j=1

fj − h‖p → 0 forn → ∞.

This verifies the Lp-convergence. �

Theorem 19.11 For 1 ≤ p ≤ ∞, Lp(Ω) is a Banach space.

Proof. First, let 1 ≤ p < ∞. Let (fn)n∈N ⊂ Lp(Ω) be a Cauchy sequence. For
every k ∈ N there exists an N(k) ∈ N such that

‖fn − fN(k)‖p < 2−k forn ≥ N(k); (13)

we may assume, without loss of generality, that N(k) < N(k + 1). Then the
series

‖fN(1)‖p + ‖fN(2) − fN(1)‖p + ‖fN(3) − fN(2)‖p + . . .

converges, as one sees by comparison with the geometric series. By lemma
19.10, the series

fN(1) + (fN(2) − fN(1)) + (fN(3) − fN(2)) + . . . (14)

converges to an f ∈ Lp(Ω), and indeed in the Lp-norm as well as pointwise
almost everywhere. The Lp-convergence however means that

‖fN(k) − f‖p → 0 for k → ∞.

For ε > 0 we now choose k so large that

‖fN(k) − f‖p <
ε

2
(15)

and
2−k <

ε

2
. (16)

Then, for n ≥ N(k), we have

‖fn − f‖p ≤ ‖fn − fN(k)‖ + ‖fN(k) − f‖ < ε

(by (13), (15), (16)) and thereby fn converges in the Lp-norm to f.
This takes care of the case p < ∞. Before we come to the proof for

p = ∞, we record the following statement, which follows from the fact that
convergence in (14) occurs also pointwise almost everywhere.
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Theorem 19.12 If (fn)n∈N converges to f in Lp then a subsequence of (fn)
converges pointwise almost everywhere to f.

We now prove theorem 19.11 for p = ∞. So let (fn)n∈N be a Cauchy
sequence in L∞(Ω). For every k ∈ N there exists then an N(k) ∈ N with

ess sup
x∈Ω

|fn(x) − fm(x)| < 1
k

forn,m ≥ N(k).

For every pair (n,m) with n,m ≥ N(k), let Anm,k be the null set of those
x ∈ Ω with

|fn(x) − fm(x)| ≥ 1
k
.

Then A :=
⋃

k≥1
n,m≥N(k)

Anm,k is also a null set (lemma 15.3). On Ω\A the se-

quence (fn)n∈N converges even uniformly to a function f, as for n,m ≥ N(k)
we have

sup
x∈Ω\A

|fn(x) − fm(x)| < 1
k
, (17)

and (fn)n∈N thereby form a pointwise Cauchy sequence on Ω\A. Since A is
a null set, the sequence fn converges pointwise almost everywhere on Ω to
f, thereby f, by theorem 17.3 (iii), is measurable. Besides, for n ≥ N(k) we
have

ess sup
x∈Ω

|fn(x) − f(x)| = sup
x∈Ω\A

|fn(x) − f(x)| ≤ 1
k
,

which one obtains by letting m → ∞ in (17). Thus fn converges to f in
L∞(Ω). �

We shall now study the convolution of Lp-functions with kernel functions.
For this, let ρ be a non-negative, bounded, integrable function with support
in the unit ball of Rd, so

ρ(x) ≥ 0 for all x ∈ Rd,

ρ(x) = 0 for ‖x‖ ≥ 1

and, moreover, ∫
Rd

ρ(x)dx = 1. (18)

Now let f ∈ L1(Ω). The convolution of f (with parameter h) is defined
as

fh(x) :=
1
hd

∫
Ω

ρ(
x− y

h
)f(y)dy for x ∈ Ω, h < dist (x, ∂Ω).

In the following we shall use the symbol A ⊂⊂ Ω to denote that A is
bounded and its closure is contained in Ω.
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Theorem 19.13 If f ∈ C0(Ω), then fh → f as h → 0, uniformly on every
Ω′ ⊂⊂ Ω.

Proof. We have

fh(x) =
1
hd

∫
|x−y|≤h

ρ(
x− y

h
)f(y)dy =

∫
|z|≤1

ρ(z)f(x− hz)dz

(substituting z =
x− y

h
).

Now if Ω′ ⊂⊂ Ω and h < 1
2 dist (Ω′, ∂Ω), it follows that

sup
x∈Ω′

|f(x) − fh(x)| = sup
x∈Ω′

|
∫

|z|≤1

ρ(z)(f(x) − f(x− hz))dz|,

(for, by (18),
∫

|z|≤1

ρ(z)f(x)dz = f(x))

≤ sup
x∈Ω′

∫
|z|≤1

ρ(z)|f(x) − f(x− hz)|dz

≤ sup
x∈Ω′

sup
|z|≤1

|f(x) − f(x− hz)|, again by (18).

As f is uniformly bounded on the compact set

{x : dist (x,Ω′) ≤ h} ⊂ Ω (by choice of h),

this tends to 0 as h→ 0. �

Lemma 19.14 (Approximation of Lp-functions). For any f ∈ Lp(Ω),
1 ≤ p <∞, and any ε > 0, there exists a ϕ ∈ Cc(Rd) with ‖f − ϕ‖p < ε.

Proof. We extend f by zero on Rd\Ω. It suffices to consider the case f ≥ 0.
For n ∈ N we set

fn(x) :=
{

min(f(x), n) for ‖x‖ ≤ n
0 for ‖x‖ > n.

Then fn ∈ L1(Rd) for all n ∈ N. As |fn − f |p ≤ |f |p, the dominated conver-
gence theorem gives

fn
Lp

−→f forn → ∞.

Therefore, for ε > 0 there exists an n ∈ N with

‖fn − f‖Lp(Rd) <
ε

2
. (19)

Furthermore, by theorem 14.8 there exists a ϕ ∈ Cc(Rd) with
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‖fn − ϕ‖L1(Rd) <
εp

2pnp−1
. (20)

As 0 ≤ fn ≤ n, we can also assume here that 0 ≤ ϕ ≤ n, in that, if necessary,
we replace ϕ by med (0, ϕ, n). Then |fn − ϕ| ≤ n so

|fn − ϕ|p ≤ np−1|fn − ϕ|,
and therefore

‖fn −ϕ‖p
Lp(Ω) ≤ ‖fn −ϕ‖p

Lp(Rd)
≤ np−1‖fn −ϕ‖L1(Rd) < (

ε

2
)p by (20). (21)

From (19) and (20) it follows that

‖f − ϕ‖Lp(Ω) < ε.

�

Lemma 19.15 For any f ∈ Lp(Ω), 1 ≤ p < ∞, we may find a sequence
(ϕn)n∈N ∈ Cc(Rd) that converges to f almost everywhere in Ω.

Proof. By lemma 19.14, there exists such a sequence that converges to f in
Lp(Ω).

By theorem 19.12, a subsequence of this sequence then converges to f
almost everywhere.

�
We now have the fundamental theorem about the convergence of the

regularizations or approximations to the original function f :

Theorem 19.16 Let f ∈ Lp(Ω), 1 ≤ p < ∞. Then fh converges to f in
Lp(Ω) as well as pointwise almost everywhere in Ω as h → 0.
(here we have extended f by zero on Rd\Ω in order to define fh on all of Ω).

For the pointwise emergence almost everywhere it suffices, in fact, that
f ∈ L1

loc(Ω), i.e. that f is locally integrable on Ω.

Proof. We write again

fh(x) =
∫

|z|≤1

ρ(z)f(x− hz)dz

=
∫

|z|≤1

(ρ(z)1−
1
p )(ρ(z)

1
p f(x− hz))dz

≤ (
∫

|z|≤1

ρ(z)dz)1−
1
p (

∫
|z|≤1

ρ(z)|f(x− hz)|pdz) 1
p

(by Hölder’s inequality)

= (
∫

|z|≤1

ρ(z)|f(x− hz)|pdz) 1
p by (18).
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Thus ∫
Ω

|fh(x)|pdx ≤
∫
Ω

∫
|z|≤1

ρ(z)|f(x− hz)|pdzdx

=
∫

|z|≤1

ρ(z)(
∫
Ω

|f(x− hz)|pdx)dz by Fubini

≤
∫

|z|≤1

ρ(z)
(∫

Rd

|f(y)|pdy
)
dz =

∫
Rd

|f(y)|pdy by (18). (22)

=
∫
Ω

|f(y)|pdy.

Now let ε > 0. We first choose n so large that, using corollary 16.8,

(
∫

Ω∩{x∈Rd:‖x‖≥n}

|f(x) − fh(x)|pdx)
1
p <

ε

4
(23)

(here by e.g. (22), n is independent of h).

Then we choose, using lemma 19.14, a ϕ ∈ Cc(Rd) with

‖f − ϕ‖Lp(Rd) <
ε

4
. (24)

By theorem 19.13, for h sufficiently small, we have

‖ϕ− ϕh‖Lp(Ω∩{x∈Rd:‖x‖≤n}) (25)

≤ ( Vol (Ω ∩ {‖x‖ ≤ n}) 1
p
(

sup
x∈Ω,‖x‖≤n

|ϕ(x) − ϕh(x)|) < ε

4
.

We now apply (22) to f − ϕ instead of f and obtain altogether

‖f − fh‖Lp(Ω) ≤ ‖f − fh‖Lp(Ω∩{x∈Rd:‖x‖≤n})
+ ‖f − fh‖Lp(Ω∩{x∈Rd:‖x‖≥n})
≤ ‖f − ϕ‖Lp(Rd) + ‖ϕ− ϕh‖Lp(Ω∩{x∈Rd:‖x‖≤n})

+ ‖ϕh − fh‖Lp(Rd) +
ε

4
by (23)

< ε, by (22), (24), (25).

This shows the Lp-convergence. It remains to show the pointwise conver-
gence almost everywhere.

For this, we need some more preparations. This will also provide us with
the opportunity to introduce a very useful technical tool, namely covering
theorems.
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In order to derive such pointwise results about integrable functions, we
need a covering theorem stating that we can cover an open set efficiently by
balls. The setting is the following: We consider a collection B of closed balls
B = B(x, r) = {y ∈ Rd : |x − y| ≤ r} for points x ∈ Rd and radii r > 0. A
set A ⊂ Rd is covered by B if

A ⊂
⋃

B∈B

B.

A is finely covered by B when also for each y ∈ A

inf{r| y ∈ B(x, r) ∈ B} = 0,

that is, each point in A is contained in arbitrarily small balls.
The Vitali covering theorem then says

Theorem 19.17 Let B be a collection of closed ball B = B(x, r) in Rd as
above, with ρ := sup{r |B = B(x, r) ∈ B} < ∞. Then there exists a countable
family of disjoint balls B(xn, rn), n ∈ N, with

A :=
⋃

B∈B

B ⊂
⋃
n∈N

B(xn, 5rn).

In words: We can select a countable family of disjoint balls from the
original collection so that A is covered by these balls when their radii are
enlarged by a factor of 5.

Proof. We let B1 be a maximal disjoint collection of balls in B with radii
between ρ

2 and ρ. B1 is countable (and in fact finite when the union of our
balls is bounded). Having iteratively selected Bj for j = 1, ...,m − 1, we
take Bm as a maximal family of disjoint balls from B, disjoint from all the
balls in the Bj for j < m, among those with radii between ρ

2m and ρ
2m−1 .

N :=
⋃

m∈N

Bm then is a countable collection of closed balls from B, and we

claim that it satisfies the conclusion of the theorem. In fact, let B(x, r) ∈ B.
We choose m with ρ

2m < r ≤ ρ
2m−1 . By the maximality of the Bj , there exists

some j ≤ m and some ball B(xn, rn) ∈ B with B(x, r) ∩ B(xn, rn) �= set,
and by construction, r ≤ 2rn. Therefore, B(x, r) ⊂ B(xn, 5rn). This implies
the conclusion of the theorem. �

An important consequence of the Vitali covering theorem is

Theorem 19.18 For any open set Ω ⊂ Rd and any ε > 0, we can find a
countable collection N of disjoint closed balls of radii ≤ ε contained in Ω with

Vol(Ω −
⋃

B∈N

B) = 0.
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Proof. We first treat the case Vol(Ω) < ∞ as we can later easily reduce the
general case to this one. The decisive step is to show that for some 0 < η < 1,
we can find finitely many balls B1, ..., Bn1 ⊂ Ω of radii ≤ ε with

Vol(Ω −
n1⋃

ν=1

Bν) ≤ ηVol(Ω). (26)

Having achieved this, we put Ω1 := Ω−
n1⋃

ν=1
Bν , and having iteratively found

Ωj = Ω −
nj⋃

ν=1
Bν = Ωj−1 −

nj⋃
ν=nj−1+1

Bν , with balls Bnj−1+1, ..., Bnj
⊂ Ωj−1

of radii at most ε, and Vol(Ω −
nj⋃

ν=1
Bν) = Vol(Ωj) ≤ ηjVol(Ω), we see that

we achieve our aim by letting j → ∞. In order to show (26), we use the
Vitali covering theorem to find, in the family of balls of radius at most ε
contained in Ω, a countable disjoint family of balls Bn = B(xn, rn) with
Ω ⊂ ⋃

n
B(xn, 5rn). Therefore

Vol(Ω) ≤
∑

n

Vol(B(xn, 5rn)) = 5d
∑

n

Vol(B(xn, rn)) = 5dVol(
⋃
n

B(xn, rn))

since the latter balls are disjoint. From this,

Vol(Ω −
⋃
n

B(xn, rn)) ≤ (1 − 5−d)Vol(Ω).

When we now choose 1 − 5−d < η < 1, then, since the family of balls just
chosen is countable, we can find finitely many of them so that (26) holds.

It remains to treat the case Vol(Ω) = ∞, but in that case we simply apply
the previous reasoning to the sets ΩN := {x ∈ Ω : N < |x| < N + 1} which,
as N → ∞, cover Ω up to a nullset. �

While this is an important result, for our subsequent purposes, we need
a slightly different version:

Corollary 19.19 Let A ⊂ Rd (not necessarily open), and let B be a collection
of closed balls covering A finely. We can then find a countable collection N
of disjoint closed balls from B with

Vol(A−
⋃

B∈N

B) = 0.

In fact, if A is open, since the covering is fine, all these balls can be chosen
to be contained in A.

Proof. The proof is the same as the one of the preceding theorem, taking
B in place of the collection of balls in Ω of radius ≤ ε. The fineness of the
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covering B is needed to guarantee that in the iterative step, the balls needed
to cover Ωj are contained in Ωj and therefore disjoint from the ones chosen
in previous steps. �

Besides the Vitali covering theorem, there is another, more powerful, cov-
ering result, the Besicovitch covering theorem which we state here with-
out proof as it will not be employed in this book:

Theorem. There exists a positive integer Nd depending only on the dimen-
sion d with the property that for any family B = {B(x, r) : x ∈ A} of balls
with centers in some set A ⊂ Rd, with uniformly bounded radii, we can find
at most Nd disjointed subfamilies Bj, j = 1, ..., Nd, (that is, any two balls
from the same Bj are disjoint), such that the set A of the centers of our balls
can be covered by their union, that is,

A ⊂
Nd⋃
j=1

⋃
B∈Bj

B.

The Besicovitch covering theorem simply says that from the original ball
covering, we can find a subcovering of A, the set of the centers of the balls,
for which each point is contained in at most Nd balls.

We now return to the convergence of the approximations of our Lp func-
tion f . We first consider a particular kernel function, namely

ρ0(x) =
{

1
ωd

for x ∈ B(0, 1),
0 otherwise,

where ωd denotes the volume of the ballB(0, 1) ⊂ Rd, so that (18) is obviously
satisfied. The convolution of f ∈ L1(Ω) then is simply the averaged function

fh(x) =
1

ωdhd

∫
B(x,h)

f(y)dy,

assuming B(x, h) ⊂ Ω. It is also customary to use the notation∫
−

B(x,h)

f(y)dy :=
1

ωdhd

∫
B(x,h)

f(y)dy

for our present fh. We shall now first verify theorem 19.16 for this particular
choice of kernel function; before stating the result, we formulate a definition:

Definition 19.20 x ∈ Ω is called a Lebesgue point for f ∈ L1(Ω) if
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f(x) = lim
h→0

1
ωdhd

∫
B(x,h)

f(y)dy, (h < dist (x, ∂Ω))

i.e., if the value of f at x is the limit of the averages of f over the balls B(x, h)
for h→ 0.

Theorem 19.21 Let f ∈ L1
loc(Ω). Then almost every point x ∈ Ω is a

Lebesgue point for f .

Proof.

|
∫
−

B(x,h)

f(y)dy − f(x)| ≤
∫
−

B(x,h)

|f(y) − ϕ(y)|dy +
∫
−

B(x,h)

|ϕ(y) − f(x)|dy

where we take ϕ as a continuous function so that the last term converges to
|ϕ(x) − f(x)| for h → 0. Therefore

{x ∈ Ω : lim sup
h→0

|
∫
−

B(x,h)

f(y)dy − f(x)| > ε}

⊂ {x ∈ Ω : lim sup
h→0

∫
−

B(x,h)

|f(y) − ϕ(y)|dy > ε

2
} ∪ {x ∈ Ω : |ϕ(x) − f(x)| > ε

2
}

=: Uε ∪ Vε.
(27)

We now claim that ∫
Uε

|f(y) − ϕ(y)|dy ≥ ε

2
Vol(Uε). (28)

As it suffices to show this for bounded subsets of Uε, we may assume that
Vol(Uε) < ∞. We letΩ be any open set containing Uε. Let δ > 0. By definition
of Uε, for any x ∈ Uε, we can find a sequence of closed balls B(x, rn) ⊂ Ω,
with rn → 0 – and, consequently, they cover Uε finely – and with∫

B(x,rn)

|f(y) − ϕ(y)|dy ≥ (
ε

2
− δ)Vol(B(x, rn)).

By corollary 19.19, we then find a countable disjoint family N of these balls
that cover Uε up to a nullset. Thus,

(
ε

2
−δ)Vol(Uε) ≤ (

ε

2
−δ)

∑
B∈N

Vol(B) ≤
∑
B∈N

∫
B

|f(y)−ϕ(y)|dy ≤
∫
Ω

|f(y)−ϕ(y)|dy.

Since Ω and δ are arbitrary, we obtain (28).
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Obviously, also ∫
Vε

|f(y) − ϕ(y)|dy ≥ ε

2
Vol(Vε).

Therefore, by lemma 19.14, by an appropriate choice of ϕ, we can make
Vol(Uε) and Vol(Vε) arbitrarily small.

Therefore, by (27), Vol({x ∈ Ω : lim sup
h→0

| ∫−
B(x,h)

f(y)dy − f(x)| > ε}) = 0

for every ε > 0, and the theorem follows. �

We can now also easily complete the proof of theorem 19.16 by showing
that fh(x) converges to f(x) for h → 0 at every Lebesgue point x of f .
Namely,

|fh(x)−f(x)| ≤ 1
hd

∫
|x−y|≤h

ρ(
x− y

h
)|f(y)−f(x)|dy ≤ sup ρ

1
hd

∫
|x−y|≤h

|f(y)−f(x)|dy

which goes to 0 for h → 0 for all Lebesgue points x of f . Since almost every
point is a Lebesgue point by the preceding theorem, the proof of theorem
19.16 is complete. �

We now consider the kernel

ρ1(x) :=
{
c exp( 1

‖x‖2−1 ) for ‖x‖ < 1
0 for ‖x‖ ≥ 1

,

where the constant c > 0 is so chosen that (18) holds.
In contrast to the kernel ρ0, the kernel ρ1 is of class C∞(Rd).
We now let fh denote the convolution with this smooth kernel ρ1, i.e.,

fh(x) =
1
hd

∫
Ω

ρ1(
x− y

h
)f(y)dy for x ∈ Ω, h < dist (x, ∂Ω),

and obtain

Lemma 19.22 If Ω′ ⊂⊂ Ω and h < dist (Ω′, ∂Ω) then

fh ∈ C∞(Ω′).

Proof. As ρ1 ∈ C∞
0 (Rd), this follows directly from theorem 16.10, as for every

k there exists a ck with sup
x∈Rd

|Dkρ1(x)| ≤ ck, where Dk stands abbreviatively

for all the k-th partial derivatives. �

Definition 19.23 For k = 0, 1, 2, 3, . . . ,∞ we define
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Ck
0 (Ω) := {f ∈ Ck(Ω) : suppf ⊂⊂ Ω}.

Corollary 19.24 C∞
0 (Ω) is dense in Lp(Ω) for 1 ≤ p <∞.

Proof. The assertion means that for any f ∈ Lp(Ω) and ε > 0 one can find a
ϕ ∈ C∞

0 (Ω) with
‖f − ϕ‖Lp(Ω) < ε.

First we choose a Ω′ ⊂⊂ Ω with ‖f‖
Lp(Ω\Ω

′
)
< ε

3 (see corollary 16.8).
We set

f̃(x) :=
{
f(x) for x ∈ Ω

′

0 for x ∈ Rd\Ω′ .

By theorem 19.16 there exists an h < dist (Ω′, ∂Ω) with

‖f̃ − f̃h‖Lp(Ω) <
ε

3
.

As f̃(x) = 0 for x ∈ Ω\Ω′
, it follows in particular that

‖f̃h‖Lp(Ω\Ω
′
)
<
ε

3
.

It follows that

‖f − f̃h‖Lp(Ω) ≤ ‖f‖
Lp(Ω\Ω

′
)
+ ‖f̃h‖Lp(Ω\Ω

′
)

+ ‖f̃ − f̃h‖Lp(Ω′) < ε.

By lemma 19.22, f̃h ∈ C∞(Rd), and by choice of h, f̃h has compact support
in Ω. �

Corollary 19.25 Let f ∈ L2(Ω). Assume that for all ϕ ∈ C∞
0 (Ω) we have∫

Ω

f(x)ϕ(x)dx = 0.

Then f ≡ 0.

Proof. By corollary 19.24 there exists a sequence (ϕn)n∈N ⊂ C∞
0 (Ω) with

‖f − ϕn‖2 → 0, i.e.∫
Ω

(f(x) − ϕn(x))2dx → 0 for n → ∞. (29)

The Hölder inequality implies
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Ω

f2(x)dx−
∫
Ω

f(x)ϕn(x)dx ≤ (
∫
Ω

f2(x)dx)
1
2

(∫
Ω

(f(x) − ϕn(x))2dx
) 1

2
.

It follows from (29) that∫
Ω

f2(x)dx = lim
n→∞

∫
Ω

f(x)ϕn(x)dx = 0,

by assumption.
Thus ‖f‖2 = 0 and therefore f ≡ 0. �

Corollary 19.26 Let f ∈ C0(Ω) and for all ϕ ∈ C∞
0 (Ω) assume that∫

Ω

f(x)ϕ(x)dx = 0.

Then f ≡ 0.

Proof. For every Ω′ ⊂⊂ Ω, f|Ω′ ∈ L2(Ω′), and by the previous corollary we
have f|Ω′ ≡ 0. Thus f ≡ 0. �

We finally use the regularization method introduced in this § to show the
existence of a so-called partition of unity.

Theorem 19.27 Let Ω be open in Rd and be covered by the family {Ui}i∈I

of open sets, i.e. Ω =
⋂

i∈I Ui. Then there exists a subordinate partition of
unity, i.e. a system {φj}j∈J of functions in C∞

0 (Rd) satisfying:
(i) For each j ∈ J , supp φj ⊂ Ui for some i ∈ I.
(ii) 0 ≤ φj(x) ≤ 1 for all j ∈ J , x ∈ Rd.
(iii)

∑
j∈J φj(x) = 1 for all x ∈ Ω.

(iv) For each compact K ∈ Ω, there are only finitely many φj that are not
identically zero on K.

Proof. For each open ball U(y, r), y ∈ Rd, r > 0, we may find a function ρy,r

with

ρy,r

{
> 0 if x ∈ U(y, r)
= 0 otherwise,

by translating and scaling the above function ρ1. For n ∈ N, let

Kn := {x ∈ Ω : ‖x‖ ≤ n, dist(x, ∂Ω) ≥ 1
n
} (K0 := K−1 := ∅).

The Kn are compact sets with Kn ⊂
◦
Kn+1 for all n and

Ω =
⋃
n∈N

Kn.
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Let
Ωn :=

◦
Kn+1 \Kn−2, An := Kn \ ◦

Kn−1.

Then An is compact, Ωn open, An ⊂ Ωn for all n, and

Ω =
⋃
n∈N

An.

Any compact subset of Ω is contained in some Kn, and therefore intersects
only finitely many of the sets Ωn. For any x ∈ An, we find some open ball
U(x, r) ⊂ Ωn, and also U(x, r) ⊂ Ui for some i ∈ I. Since An is compact, it
can be covered by finitely many such balls

U(xn
ν , r

n
ν ), ν = 1, . . . , kn.

Then any compact K ⊂ Ω intersects only finitely many of these balls
U(xn

ν , r
n
ν ) (n ∈ N, ν = 1, . . . , kn), while these balls in turn cover Ω. We

simplify the notation and denote the family of these balls by

{U(xj , rj)}j∈N.

For every j, we then take the function

ρj := ρxj ,rj
.

Since ρj vanishes outside U(xj , rj), on any compact K ⊂ Ω, only finitely
many of the ρj are nonzero. Therefore,

φ(x) :=
∑
j∈N

ρj(x)

is convergent for every x ∈ Ω, and positive as the balls U(xj , rj) cover Ω and
ρj is positive on U(xj , rj). We put

φj(x) :=
ρj(x)
φ(x)

to get all the conclusions of the theorem (remember that we have chosen the
balls U(xj , rj) so that each of them was contained in some Ui). �
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Exercises for § 19

1) Let Ω ∈ Rd be open, Vol (Ω) < ∞, f : Ω → R ∪ {±∞} measurable
with |f |p ∈ L1(Ω), and put

Φp(f) :=
( 1

Vol (Ω)

∫
Ω

|f(x)|pdx) 1
p .

Show
a) lim

p→−∞Φp(f) = ess inf |f |.
b) lim

p→0
Φp(f) = exp

(
1

Vol (Ω)

∫
Ω

log |f(x)|dx)
(provided these limits exist).

2) Let Ω ⊂ Rd be open, 1 ≤ p < q ≤ ∞. Construct a sequence
(fn)n∈N ⊂ Lp(Ω)∩Lq(Ω) that converges in Lp(Ω), but not in Lq(Ω).
Do there also exist open sets Ω for which one may find a sequence
that converges in Lq(Ω), but not in Lp(Ω)? And what happens if Ω
is bounded?

3) For n ∈ N, define fn : (0, 1) → R as follows

fn(x) := sinn(πnx).

For 1 ≤ p <∞, show

lim
n→∞ ‖fn‖Lp((0,1)) = 0.

4) Let 0 < s ≤ 1, and let Ls(Rd) be the space of equivalence classes of
measurable functions f with |f |s ∈ L1(Rd). Show that Ls(Rd) is a
vector space. Put

‖f‖s :=
(∫

Rd

|f(x)|sdx) 1
s .

Show that for nonnegative f, g ∈ Ls(Rd), we have

‖f‖s + ‖g‖s ≤ ‖f + g‖s.

5) Let 1 ≤ p < ∞, and suppose that (fn)n∈N ⊂ Lp(Rd) converges to
some function f pointwise almost everywhere.
a) Show that if ‖fn‖p ≤ M < ∞ for all n, then f ∈ Lp(Rd), and

‖f‖p ≤M.
For p = 1, construct an example where ‖fn‖p does not converge
to ‖f‖p.

b) Suppose now that ‖fn‖p converges to ‖f‖p. Show that fn then
converges to f in Lp, i.e. ‖fn − f‖p converges to 0.
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(Hint: Show that for every ε > 0, one may find a compact set
K ⊂ Rd and n0 ∈ N such that for n ≥ n0∫

Rd\K

|fn(x)|pdx < ε.)

(Hint: Use the theorem of Egorov.)
c) What happens for p = ∞?

6) Show that L∞(R) is not separable (a metric space (X, d) is called
separable if it contains a countable subset (xn)n∈N that is dense in X,
i.e. for every open ball U(p, r) ⊂ X, we may find some n0 ∈ N with
xn0 ∈ U(p, r)).
(Hint: Consider the subset of L∞(R) consisting of chracteristic func-
tions of intervals.)

7) Let f be a nonnegative measurable function on Ω, and for c > 0,
Ac := {x : f(x) ≥ c}. Show that, if f ∈ Lp,

cp Vol (Ac) ≤
∫
fp.

Conversely, if Vol (Ω) <∞ and if there exist constants M and η > 0
with

Vol (Ac) ≤ Mc−p−η

for all c > 0, then f ∈ Lp(Ω).

8) For 0 < x < 1, put f(x) := (1 + x
1
p )p + (1 − x

1
p )p.

a) For p ≥ 2, show the following inequalities (0 < x < 1)

f ′′(x) ≤ 0(i)
f(x) ≤ f(y) + (x− y)f ′(y) (0 < y < 1)(ii)
f(x) ≤ 2p−1(x+ 1)(iii)

f(x) ≤ 2(1 + x
q
p )

p
q , where

1
p

+
1
q

= 1.(iv)

b) For 1 ≤ p < 2, show the above inequalities with “ ≥ ” in place
of “ ≤ ”.

9)
a) Use the preceding exercise to show the following inequalities

for a, b ∈ R, p ≥ 2, 1
p + 1

q = 1 :

2(|a|p + |b|p) ≤ |a+ b|p + |a− b|p ≤ 2p−1(|a|p + |b|p)(i)

|a+ b|p + |a− b|p ≤ 2(|a|q + |b|q) p
q(ii)

2(|a|p + |b|p) q
p ≤ |a+ b|q + |a− b|q(iii)
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Use these inequalities to show Clarkson’s inequalities for f, g ∈
Lp (p ≥ 2)

2(‖f‖p
p + ‖g‖p

p) ≤ ‖f + g‖p
p + ‖f − g‖p

p

≤ 2p−1(‖f‖p
p + ‖g‖p

p)

‖f + g‖p
p + ‖f − g‖p

p ≤ 2(‖f‖q
q + ‖g‖q

q)
p
q

2(‖f‖p
p + ‖g‖p

p)
q
p ≤ ‖f + g‖q

q + ‖f − g‖q
q.

b) For 1 ≤ p < 2 show the above inequalities with “≥” in place of
“ ≤”.
(Hint: Use the Minkowski inequality in Ls for 0 < s ≤ 1 from
Exercise 4.)

10) Deduce corollary 19.19 from the Besicovitch covering theorem.



20. Integration by Parts. Weak Derivatives.
Sobolev Spaces

Weak derivatives are introduced by taking the rule for integration by parts as a
definition. Spaces of functions that are in Lp together with certain weak derivatives
are called Sobolev spaces. Sobolev’s embedding theorem says that such functions are
continuous if their weak derivatives satisfy strong enough integrability properties.
Rellich’s compactness theorem says that integral bounds on weak derivatives implies
convergence of subsequences of the functions itself in Lp.

Lemma 20.1 Let Ω ⊂ Rd be open, 1 ≤ i ≤ d. For all ϕ ∈ C1
0 (Ω) we have∫

Ω

∂ϕ(x)
∂xi

dx = 0. (1)

Proof. By setting ϕ(x) = 0 for x ∈ Rd\Ω, we can work with ϕ ∈ C1
0 (Rd).

Let
suppϕ ⊂ [−M,M ]d for M ∈ R. Without loss of generality, assume that i = d.
Then we have for fixed (x1, . . . , xd−1) ∈ Rd−1∫

R

∂ϕ

∂xd
(x1, . . . , xd)dxd = ϕ(x1, . . . , xd−1,M) − ϕ(x1, . . . , xd−1,−M) = 0,

and therefore ∫
Rd

∂ϕ(x)
∂xd

dx = 0.

�

From (1) we deduce that for f ∈ C1(Ω), ϕ ∈ C1
0 (Ω), (so fϕ ∈ C1

0 (Ω)),∫
Ω

∂f

∂xi
(x)ϕ(x)dx = −

∫
Ω

f(x)
∂ϕ

∂xi
(x)dx, (2)

using the product rule for differentiation.
By iteration we obtain for f ∈ C2(Ω), ϕ ∈ C2

0 (Ω),∫
Ω

∂2f(x)
(∂xi)2

ϕ(x)dx = −
∫
Ω

∂f

∂xi
(x)

∂ϕ

∂xi
(x) =

∫
Ω

f(x)
∂2ϕ(x)
(∂xi)2

dx, (3)
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and by summation over i∫
Ω

∆f(x)ϕ(x)dx = −
∫
Ω

grad f(x) · grad ϕ(x)dx =
∫
f(x)∆ϕ(x)dx (4)

where the dot in the middle integral denotes the scalar product in Rd.

Definition 20.2 In the following we set

L1
loc (Ω) := {f : Ω → R ∪ {±∞} : f ∈ L1(Ω′) for every Ω′ ⊂⊂ Ω}.

We will use the above formulae as a motivation for introducing a concept
of differentiation for functions which are not necessarily differentiable in the
classical sense.

Definition 20.3 Let f ∈ L1
loc (Ω). A function v ∈ L1

loc (Ω) is called the weak
derivative of f in the direction xi(x = (x1, . . . , xd) ∈ Rd) if∫

Ω

v(x)ϕ(x)dx = −
∫
Ω

f(x)
∂ϕ(x)
∂xi

dx (5)

holds for all ϕ ∈ C1
0 (Ω) (such a function is also called a test-function). We

write v = Dif. In case f has weak deriatives Dif for i = 1, . . . , d, we write
Df = (D1f, . . . ,Ddf).

Obviously every f ∈ C1(Ω) has weak derivatives, namely

Dif =
∂f

∂xi
,

as a comparison of (2) and (5) shows. However, there are functions which
have weak derivatives, but are not in C1(Ω). On the other hand, not every
function in L1

loc has weak derivatives.

Examples. Let Ω = (−1, 1) ⊂ R

1) f(x) := |x|. Then f has the weak derivative

Df(x) =
{

1 for 0 ≤ x < 1
−1 for −1 < x < 0,

because for every ϕ ∈ C1
0 ((−1, 1)) we have

0∫
−1

(−ϕ(x))dx+

1∫
0

ϕ(x)dx = −
1∫
−1

ϕ′(x) · |x|dx.
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2)

f(x) :=
{ 1 for 0 ≤ x < 1

0 for −1 < x < 0
has no weak derivative, for Df(x) must then be zero for x �= 0, thus as
an L1

loc-function, Df ≡ 0, but it does not hold for every ϕ ∈ C1
0 (−1, 1)

that

0 =

1∫
−1

ϕ(x) · 0 dx = −
1∫
−1

ϕ′(x)f(x)dx = −
1∫
0

ϕ′(x)dx = ϕ(0).

The weak derivatives of higher order are defined analogously.

Definition 20.4 Let f ∈ L1
loc(Ω), α := (α1, . . . αd), αi ≥ 0 (i = 1, . . . d),

|α| :=
d

Σ
i=1

αi > 0,

Dαϕ := (
∂

∂x1
)α1 . . . (

∂

∂xd
)αdϕ for ϕ ∈ C|α|(Ω).

A function v ∈ L1
loc(Ω) is called the α-th weak derivative of f, in symbols

v = Dαf if ∫
Ω

ϕvdx = (−1)|α|
∫
Ω

f ·Dαϕdx ∀ ϕ ∈ C
|α|
0 (Ω).

Definition 20.5 For k ∈ N, 1 ≤ p ≤ ∞, we define the Sobolev spaceW k,p(Ω)
by W k,p(Ω) := {f ∈ Lp(Ω) : Dαf exists and is in Lp(Ω) for all |α| ≤ k}.

We set

‖f‖W k,p(Ω) := (
∑
|α|≤k

∫
Ω

|Dαf |p) 1
p for 1 ≤ p <∞

and
‖f‖W k,∞(Ω) :=

∑
|α|≤k

ess sup
x∈Ω

|Dαf(x)|.

As for Lp spaces, one sees that the Sobolev spaces W k,p(Ω) are normed
spaces. We want to show that the spaces W k,p(Ω) are Banach spaces.

In the rest of this chapter, we shall only consider the case 1 ≤ p <∞.

Example. As an example, we want to see when, for Ω = U(0, 1) = {x ∈ Rd :
‖x‖ < 1} the function

f(x) = ‖x‖α (α ∈ R)
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lies in W 1,p(Ω).
First, we calculate that for x �= 0, i = 1, . . . , d

∂

∂xi
‖x‖α =

∂

∂xi
(

d∑
j=1

|xj |2)α
2 = αxi(

d∑
j=1

|xj |2)α
2 −1.

We have already seen in § 19 that

‖x‖α ∈ Lp(Ω) ⇐⇒ αp+ d > 0.

Correspondingly, because | ∂
∂xi ‖x‖α| ≤ |α|‖x‖α−1, ∂

∂xi ‖x‖α ∈ Lp(Ω) for (α−
1)p+ d > 0.

We will now show that for d+ α > 1

v(x) :=
{

∂
∂xi ‖x‖α for x �= 0
0 for x = 0

is the ith weak derivative of ‖x‖α. Then we would have shown that

‖x‖α ∈W 1,p(Ω) for (α− 1)p+ d > 0.

For the verification that v is the weak derivative of ‖x‖α we set

ηn(r) :=

⎧⎨⎩
1 for r ≥ 2

n (n ∈ N)
n(r − 1

n ) for 1
n ≤ r < 2

n
0 for 0 ≤ r < 1

n

For ϕ ∈ C1
0 (Ω) we have∫

Ω

‖x‖α ∂

∂xi
(ηn(‖x‖)ϕ(x))dx = −

∫
Ω

∂‖x‖α

∂xi
ηn(‖x‖)ϕ(x)dx,

as ηn, and thus the singularity of ∂
∂xi ‖x‖α, vanishes in a neighborhood of 0.

We must certainly still justify our use of integration by parts without
ϕ · ηn being a C1-function. This can be done by means of an approximation
argument or by lemma 19.14.

By the dominated convergence theorem, for (α− 1) + d > 0∫
Ω

∂‖x‖α

∂xi
ηn(‖x‖)ϕ(x)dx →

∫
Ω

v(x)ϕ(x)dx

as n → ∞ and∫
Ω

‖x‖α ∂

∂xi
(ηn(‖x‖)ϕ(x))dx →

∫
Ω

‖x‖α ∂

∂xi
ϕ(x)dx,

namely, as with r = ‖x‖,
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|
∫
Ω

‖x‖αϕ(x)Diηn(‖x‖)dx|c0 ≤ c0 sup |ϕ| ·
2
n∫
1
n

rα · nrd−1dr (theorem 13.21)

with a certain constant c0

= c0
sup |ϕ|
d+ α

· n((
2
n

)d+α − (
1
n

)d+α)

→ 0 as n → ∞ and d+ α > 1.

We have shown thereby that v is indeed the ith weak derivative of ‖x‖α for
d+ α > 1.

Lemma 20.6 Let f ∈ L1
loc(Ω) and assume that v = Dif exists. If dist

(x, ∂Ω) > h then
Di(fh(x)) = (Dif)h(x),

where the convolution fh with the smooth kernel ρ1 is defined as in § 19.

Proof. By differentiation under the integral we obtain

Di(fh(x)) =
1
hd

∫
∂

∂xi
ρ(
x− y

h
)f(y)dy

=
−1
hd

∫
∂

∂yi
ρ(
x− y

h
)f(y)dy

=
1
hd

∫
ρ(
x− y

h
)Dif(y)dy by definition of Dif

= (Dif)h(x).

�

Theorem 20.7 Let f, v ∈ Lp(Ω), 1 ≤ p <∞. Then v = Dif

⇔ ∃(fn) ⊂ C∞(Ω) : fn → f in Lp(Ω), ∂
∂xi fn → v in Lp(Ω′) for any Ω′ ⊂⊂

Ω.

Proof. “ =⇒ ” We consider the convolution fh as in the previous lemma, by
which
vh = Di(fh) and by theorem 19.16 as h→ 0,

fn → f in Lp(Ω), vn → v in Lp(Ω′) for any Ω′ ⊂⊂ Ω.

“ ⇐= ” Let ϕ ∈ C1
0 (Ω). Then ϕ,Diϕ (i = 1, . . . , d) are bounded and from

the dominated convergence theorem it follows that∫
Ω

f(x)
∂

∂xi
ϕ(x)dx = lim

n→∞

∫
Ω

fn(x)
∂

∂xi
ϕ(x)dx = − lim

n→∞

∫
Difn(x)ϕ(x)dx

= −
∫
Ω

v(x)ϕ(x)dx.
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Thus v = Dif. �

Definition 20.8 Hk,p(Ω) is the closure of C∞(Ω)∩W k,p(Ω) relative to the
W k,p-norm, and Hk,p

0 (Ω) is the closure of C∞
0 (Ω) relative to the W k,p-norm.

The preceding involves a slight abuse of notation, as C∞(Ω) is a space
of functions, while W k,p(Ω) is defined as a space of equivalence classes of
functions, but the reader should have no difficulties sorting this out.

Thus f ∈ Hk,p
0 (Ω) precisely when there exists a sequence (fn)n∈N ⊂

C∞
0 (Ω) with lim

n→∞ ‖fn − f‖W k,p(Ω) = 0.

For k ≥ 1, the functions in Hk,p
0 (Ω) vanish on ∂Ω in a sense which will

be made precise later.

Corollary 20.9 Let 1 ≤ p < ∞, k ∈ N. The space W k,p(Ω) is complete with
respect to ‖ · ‖W k,p , thus it is a Banach space.

Proof. We consider the case k = 1 : the general case then follows by induction.
Let fn be a Cauchy sequence in W 1,p(Ω). Then fn, Difn (i = 1, . . . , d) are
Cauchy sequences in Lp(Ω). As Lp(Ω) is complete, there exist f, vi ∈ Lp(Ω)
such that fn → f,Difn → vi

(i = 1, . . . , d) in Lp(Ω).
Now for φ ∈ C1

0 (Ω) we have∫
Ω

Difn · φ = −
∫
Ω

fnDiφ,

the left side converges to
∫
Ω

vi ·φ and the right to − ∫
Ω

f ·Diφ. Thus Dif = vi

and therefore f ∈W 1,p(Ω). This proves the completeness of W k,p(Ω). �

Corollary 20.10 Let 1 ≤ p <∞, k ∈ N. Then

W k,p(Ω) = Hk,p(Ω).

Proof. We need to show that the space C∞(Ω)∩W k,p(Ω) is dense inW k,p(Ω).
We put

Ωn := {x ∈ Ω : ‖x‖ < n,dist (x, ∂Ω) >
1
n
} for n ∈ N (Ω0 := Ω−1 := ∅).

Then
Ωn ⊂⊂ Ωn+1,

⋃
n∈N

Ωn = Ω.

Using Theorem 19.27, we let {φj}j∈N be a partition of unity subordinate to
the cover {Ωn+2 \ Ωn−1} of Ω. Let f ∈ W k,p(Ω). For ε > 0, using Theorem
20.7 we may find positive numbers hn, n ∈ N, with
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hn ≤ dist (Ωn, ∂Ωn+1)

‖(φnf)hn
− φnf‖W k,p(Ω) <

ε

2n
.

By the properties of the φn, at most finitely many of the smooth functions
(φnf)hn

are nonzero on any Ω′ ⊂⊂ Ω. Therefore

f̃ :=
∑

n

(φnf)hn
∈ C∞(Ω).

Since
‖f − f̃‖W k,p(Ω) ≤

∑
n

‖(φnf)hn
− φnf‖ < ε,

we conclude that every W k,p(Ω) function can be approximated by smooth
functions in W k,p(Ω), as was to be shown. �

We have seen in § 19 (corollary 19.24) that C∞
0 (Ω) is dense in Lp(Ω)

relative to the Lp-norm. The previous corollary means that C∞(Ω) is dense
in W k,p(Ω) relative to the W k,p(Ω) norm. However, for k ≥ 1, C∞

0 (Ω) is no
longer dense in W k,p(Ω). We shall see later as an example that a non zero
constant does not lie in Hk,p

0 (Ω) and thus also not in the closure of C∞
0 (Ω).

On the other hand for every Ω with Vol (Ω) <∞, naturally any constant lies
in W k,p(Ω). To get a feeling for the spaces H1,p

0 (Ω), we consider the example
Ω = U(0, 1) = {x ∈ Rd : ‖x‖ < 1}. Let f ∈ C1(Ω) ∩ C0(Ω) and let f = 0 on
∂Ω. We claim that f then lies in H1,p

0 (Ω). For a proof, we set, for λ > 1,

fλ(x) := f(λx).

Then fλ ∈ C1
0 (Ω). Since fλ has compact support, the regularizations fλ,h

also have compact support for h sufficiently small (independent of λ), and
therefore fλ ∈ H1,p

0 (Ω). Now as λ → 1, fλ tends pointwise to f, and
Difλ(x) = λ ∂

∂xi f(λx) converges pointwise to ∂
∂xi f(x). By the dominated

convergence theorem, fλ also tends to f in the W 1,p-norm and as H1,p
0 (Ω)

is, by definition, closed, it follows that f ∈ H1,p
0 (Ω).

We now want to give still a few more rules for dealing with Sobolev
functions.

Lemma 20.11 Let 1 ≤ p <∞. Let f ∈W 1,p(Ω), ψ ∈ C1(R) with

sup
y∈R

|ψ′(y)| <∞.

Then
ψ ◦ f ∈W 1,p(Ω), D(ψ ◦ f) = ψ′(f)Df.

Proof. Let (fn)n∈N ⊂ C∞(Ω), fn → f in W 1,p(Ω) as n → ∞. Then
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Ω

|ψ(fn) − ψ(f)|pdx ≤ sup |ψ′|p
∫
Ω

|fn − f |pdx → 0

and ∫
Ω

|ψ′(fn)Dfn − ψ′(f)Df |pdx ≤ 2p(sup |ψ′|p
∫
Ω

|Dfn −Df |pdx

+
∫
Ω

|ψ′(fn) − ψ′(f)|p|Df |pdx).

By theorem 19.12, a suitable subsequence of fn converges pointwise almost
everywhere to f in Ω. Since ψ′ is continuous, ψ′(fn) also converges pointwise
almost everywhere to ψ′(f) and the last integral therefore approaches zero,
by the Lebesgue dominated convergence theorem.

Thus
ψ(fn) → ψ(f) in Lp(Ω)
D(ψ(fn)) = ψ′(fn)Dfn → ψ′(f)Df in Lp(Ω)

and therefore, by theorem 20.7,

ψ ◦ f ∈W 1,p(Ω) und D(ψ ◦ f) = ψ′(f)Df.

�

Corollary 20.12 If f ∈W 1,p(Ω)(1 ≤ p < ∞) then so is |f | and

Di|f |(x) =

⎧⎨⎩
Dif(x) if f(x) > 0
0 if f(x) = 0 (i = 1, . . . , d)
−Dif(x) if f(x) < 0 .

Proof. For ε > 0 we set

ψε(f) := (f2 + ε2)
1
2 − ε

Now ψε fulfils the assumptions of lemma 20.11 and so for ϕ ∈ C1
0 (Ω)∫

Ω

ψε(f(x))Diϕ(x)dx = −
∫

f(x)Dif(x)
(f2(x) + ε2)

1
2
ϕ(x)dx.

We let ε approach zero and apply as usual the dominated convergence theo-
rem; it follows that∫

Ω

|f(x)|Diϕ(x)dx = −
∫
v(x)ϕ(x)dx

with
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v(x) =

⎧⎨⎩
Dif(x) if f(x) > 0
0 if f(x) = 0
−Dif(x) if f(x) < 0 .

This is the assertion that |f | is weakly differentiable and its derivative has the
required form. That f, as well as |f |, lies in W 1,p then follows directly. �

Corollary 20.13 Let f ∈W 1,p(Ω), A ⊂ Ω, f ≡ constant on A. Then Df =
0 almost everywhere on A.

Proof. We may assume that f ≡ 0 on A. Then Df = D|f | = 0 on A by
corollary 20.12. �

Lemma 20.14 Let 1 ≤ p < ∞. Let Ω0 ⊂ Ω, g ∈ W 1,p(Ω), h ∈ W 1,p(Ω0)
and h− g ∈ H1,p

0 (Ω0). Then

f(x) :=
{
h(x) x ∈ Ω0

g(x) x ∈ Ω\Ω0

is in W 1,p(Ω) and

Dif(x) =
{
Dih(x), x ∈ Ω0

Dig(x) x ∈ Ω\Ω0, i = 1, . . . , d.

Thus one can replace a Sobolev function in W 1,p on an interior subset
by another one with the same boundary values, without leaving the Sobolev
space. Thus corners play no role for membership of W 1,p.

Proof. By considering h−g and f −g instead of h and f, we can assume that
g = 0. We thus have to show the following:

Let h ∈ H1,p
0 (Ω0), then

f(x) =
{
h(x) for x ∈ Ω0

0 for x ∈ Ω\Ω0

is also in W 1,p(Ω) and

Dif(x) =
{
Dih(x) for x ∈ Ω0

0 for x ∈ Ω\Ω0.

Let (hn)n∈N ⊂ C∞
0 (Ω0) be a sequence that converges in the W 1,p-norm to h.

Then we have
fn(x) :=

{
hn(x) for x ∈ Ω0

0 for x ∈ Ω\Ω0

in C∞
0 (Ω), with derivative

∂

∂xi
fn(x) =

{
∂

∂xihn(x) for x ∈ Ω0

0 for x ∈ Ω\Ω0.
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The assertion now follows directly from theorem 20.7. �

We now consider, for a moment, the case d = 1, and so, we let our domain
Ω be an open interval I ⊂ R. We consider

f ∈ H1,1(I).

By theorem 20.7, we may find functions fn ∈ C∞(I) that converge to f ,
and whose derivatives converge to the weak derivative Df , in Lp(I ′) for any
I ′ ⊂ I. Thus

lim
n→∞

∫
I′

|fn(x) − f(x)|dx+
∫
I′

|dfn

dx
(x) −Df(x)|dx = 0.

Since fn is smooth, for a, b ∈ I, and ε > 0, we obtain

|fn(b) − fn(a)| = |
b∫
a

dfn

dx
(x)dx| ≤

b∫
a

|dfn(x)
dx

|dx

≤
b∫
a

|Df(x)|dx+
ε

2

for sufficiently large n, because of the above convergence.
Moreover, since Df ∈ L1(I), using corollary 16.9, we may find δ > 0 such

that whenever a, b ∈ I satisfy |a− b| < δ, then

b∫
a

|Df(x)|dx < ε

2
.

In conclusion
|fn(b) − fn(a)| < ε

whenever n is sufficiently large and |b−a| < δ. Therefore, the fn are equicon-
tinuous, and by the theorem 5.20 of Arzela-Ascoli, they converge uniformly
towards their continuous limit f .

Moreover, by passing to the limit n→ ∞ in the above inequality, we then
also get

|f(b) − f(a)| ≤
b∫
a

|Df(x)|dx

for all a, b ∈ I.
Thus, in particular, for d = 1, everyH1,1-function is uniformly continuous.

We now come to the important Sobolev embedding theorem, which con-
stitutes a certain extension of the preceding result to the case d > 1.
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Theorem 20.15 Let Ω ⊂ Rd be bounded and open and f ∈ H1,p
0 (Ω). Then

for p < d

f ∈ L
dp

d−p (Ω)

and for p > d
f ∈ C0(Ω).

Moreover, there exist constants c = c(p, d) with the property that for all f ∈
H1,p

0 (Ω)
‖f‖

L
dp

d−p (Ω)
≤ c‖Df‖Lp(Ω) for p < d (6)

and
sup
x∈Ω

|f(x)| ≤ c Vol (Ω)
1
d− 1

p ‖Df‖Lp(Ω) for p > d. (7)

Proof. Since the case d = 1 has already been analyzed, we now consider
d > 1. We first assume that f ∈ C1

0 (Ω) and treat the case p = 1. We write,
as usual, x = (x1, . . . , xd). For i = 1, . . . , d we have

|f(x)| ≤
xi∫
−∞

|Dif(x)|dxi.

Here we have used the compactness of the support of f and therefore

|f(x)|d ≤
d∏

i=1

∞∫
−∞

|Dif |dxi

where this expression stands as an abbreviation for

d∏
i=1

∞∫
−∞

|Dif(x1, . . . , xi−1, y, xi+1, . . . , xd)|dy,

and

|f(x)| d
d−1 ≤ (

d∏
i=1

∞∫
−∞

|Dif |dxi)
1

d−1 .

It follows that
∞∫
−∞

|f(ξ)| d
d−1 dξ1 ≤ (

∞∫
−∞

|D1f |dx1)
1

d−1

·
∞∫
−∞

(
d∏

i=2

∞∫
−∞

|Dif |dxi)
1

d−1 dξ1,
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thus
∞∫
−∞

|f(x)| d
d−1 dx1 ≤

( ∞∫
−∞

|D1f |dx1)
1

d−1 ·
(∏

i�=1

∞∫
−∞

∞∫
−∞

)
|Dif |dxidx1

) 1
d−1

,

where we have used (11) from §19 (the generalized Hölder inequality) for
p1 = . . . = pd−1 = d− 1.

Further, with the same argument we have

∞∫
−∞

∞∫
−∞

|f(x)| d
d−1 dx1dx2 ≤

( ∞∫
−∞

∞∫
−∞

|D1f |dx1dx2
) 1

d−1

·
( ∞∫
−∞

∞∫
−∞

|D2f |dx1dx2
) 1

d−1

·
( d∏

i=3

∞∫
−∞

∞∫
−∞

∞∫
−∞

|Dif |dxidx1dx2
) 1

d−1
.

Iteratively, it follows that∫
Ω

|f(x)| d
d−1 dx ≤

( d∏
i=1

∫
Ω

|Dif |dx
) 1

d−1
,

thus

‖f‖ d
d−1

≤
( d∏

i=1

∫
Ω

|Dif |dx
) 1

d

≤ 1
d

∫
Ω

d∑
i=1

|Dif |dx,

as the geometric mean is not bigger than the arithmetic mean, hence

‖f‖ d
d−1

≤ 1
d
‖Df‖1, (8)

which is (6) for p = 1.
If one applies (8) to |f |γ(γ > 1), then one obtains

‖|f |γ‖ d
d−1

≤ γ

d

∫
Ω

|f |γ−1|Df |dx, (9)

(using the chain rule of lemma 20.11)

≤ γ

d
‖|f |γ−1‖q · ‖Df‖p for

1
p

+
1
q

= 1
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(by the Hölder inequality).
If p < d, then γ = (d−1)p

d−p satisfies dp
d−p = γd

d−1 = (γ−1)p
p−1 and (9) yields,

taking into account q = p
p−1 , that

‖f‖γ
γd

d−1
≤ γ

d
‖f‖γ−1

γd
d−1

· ‖Df‖p,

so
‖f‖ γd

d−1
≤ γ

d
‖Df‖p, (10)

which is (6).
We now treat the case p > d. We assume that

Vol (Ω) = 1 (11)

and
‖Df‖Lp(Ω) = 1. (12)

Then (9) becomes
‖|f |γ‖ d

d−1
≤ γ

d
‖|f |γ−1‖ p

p−1
,

and therefore
‖f‖γ d

d−1
≤ (

γ

d
)

1
γ ‖f‖

γ−1
γ

(γ−1) p
p−1

and then
‖f‖γ d

d−1
≤ (

γ

d
)

1
γ ‖f‖

γ−1
γ

γ p
p−1

(13)

by corollary 19.7, as Vol (Ω) = 1.
We now set

γ =
d

d− 1
· p− 1

p
> 1, as p > d.

By substituting γn for γ in (13) we get

‖f‖γn d
d−1

≤ (γn

d

) 1
γn ‖f‖

γn−1
γn

γn−1 d
d−1

(14)

because
γn p

p− 1
= γn−1 d

d− 1
.

Now if for infinitely many n ∈ N we have

‖f‖γn d
d−1

≤ 1,

then by corollary 19.9
ess sup

x∈Ω
|f(x)| ≤ 1, (15)

because of the normalization (11).
If, on the contrary, for all n ≥ n0 (n0 being chosen minimal)
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‖f‖γn d
d−1

≥ 1,

it follows from (14) that for n ≥ n0 + 1

‖f‖γn d
d−1

≤ (
γn

d
)

1
γn ‖f‖γn−1 d

d−1
(16)

and then from (16) by iteration

‖f‖γn d
d−1

≤ γ

n

Σ
ν=n0+1

ν 1
γν

d

n

Σ
ν=n0+1

1
γν

‖f‖γn0 d
d−1

. (17)

We then apply (14) for n = n0 and obtain on the right side ‖f‖γn0−1 d
d−1

. We
may assume that ‖f‖γn0−1 d

d−1
≤ 1 or n0 = 1.

For the last case, taking into consideration (8) as well as the normalization
‖Df‖p = 1, it follows in every case from corollary 19.9, by taking the limit
as n → ∞, that

ess sup
x∈Ω

|f(x)| ≤ c(p, d). (18)

We shall now get rid of the normalizations (11) and (12). In case ‖Df‖p �= 0,
we can consider g := f

‖Df‖p
. Then g fulfils (12) and from (18) applied to g it

follows that
ess sup

x∈Ω
|f(x)| ≤ c(p, d)‖Df‖p. (19)

A C1
0 -function f with ‖Df‖p = 0 is already identically zero and so in that

case the assertion follows trivially.
Finally, to remove (11), we consider the coordinate transformation

y = y(x) = Vol (Ω)
1
dx (20)

and
Ω̃ := {y : x ∈ Ω}

f̃(y) := f(x).

Then
Vol Ω̃ = 1

and
Dif(x) = Dif̃(y) Vol (Ω)

1
d

and finally(∫
Ω

|Dif(x)|pdx) 1
p =

(∫
Ω̃

|Dif̃(y)|p dy

VolΩ
) 1

p · Vol (Ω)
1
d ,

so applying (19) to f̃ shows that
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ess sup
x∈Ω

|f(x)| ≤ c(p, d) Vol (Ω)
1
d− 1

p ‖Df‖p, (21)

as claimed.
Up till now we have only handled the case f ∈ C1

0 (Ω). If now f ∈ H1,p
0 (Ω),

then we approximate f in the W 1,p-norm by C∞
0 -functions fn and apply (6)

and (7) to the differences fn − fm. Since (Dfn)n∈N is a Cauchy sequence in
Lp it follows that it is a Cauchy sequence in L

dp
d−p (Ω) (for p < d) and in

C0(Ω) (for p > d). Therefore f also lies in the corresponding space and fulfils
(6) and (7), respectively. �

As a corollary, we obtain the so-called Poincaré inequality

Corollary 20.16 Let Ω ⊂ Rd be open and bounded, f ∈ H1,2
0 (Ω). Then

‖f‖L2(Ω) ≤ const. Vol (Ω)
1
d ‖Df‖L2(Ω).

Proof. By theorem 20.15 we have

‖f‖2 ≤ const. ‖Df‖ 2d
d+2

(
taking p =

2d
d+ 2

)
≤ const. Vol (Ω)

d+2
2d − 1

2 ‖Df‖2 by corollary 19.7

= const. Vol (Ω)
1
d ‖Df‖2.

�

A consequence of the last corollary is that on H1,2
0 (Ω), the norms ‖f‖W 1,2

and ‖Df‖L2 are equivalent.
Moreover, it follows from the Sobolev embedding theorem that a non-zero

constant does not lie in H1,p
0 (Ω). Thus C∞

0 (Ω) is dense in Lp(Ω) but not in
W 1,p(Ω).

Example. We shall now show by an example that for d > 1, a function in
H1,d(Ω) need not necessarily be bounded and thus, the analysis carried out
before theorem 20.15 for d = 1 does not extend to higher dimensions; indeed,
let

f(x) := log(log
1
r
) with r = ‖x‖
U(0, R) := {x ∈ Rd : ‖x‖ < R} with R < 1

Now for x �= 0
∂

∂r
f(x) =

+1
r log r

so



280 20. Integration by Parts. Weak Derivatives. Sobolev Spaces

∫
U(0,R)

| ∂
∂r
f(x)|ddx = dωd

R∫
0

rd−1

rd(log r)d
dr =

−dωd

(d− 1)(log r)d−1

∣∣∣R
0

=
−dωd

(d− 1)(logR)d−1
<∞.

It remains to show that ∂
∂rf(x) is also the weak derivative of f, for there

is again a singularity at zero. Once this is shown, it would follow that f ∈
H1,d(U(0, R)) but f is not in L∞(U(0, r)).

For this we consider, as before,

ηn(r) :=

⎧⎨⎩
1 for r ≥ 2

n
n(r − 1

n ) for 1
n ≤ r < 2

n
0 for 0 ≤ r < 1

n .

For ϕ ∈ C1
0 (U(0, R)) we have∫

U(0,R)

log log
1
r
· ∂

∂xi
(ηn(r)ϕ(x))dx

= −
∫

U(0,R)

∂

∂xi
(log log

1
r
) · ηn(r)ϕ(x)dx

and by going to the limit as n → ∞ we obtain as in the example of ‖x‖α∫
U(0,R)

log log
1
r

∂

∂xi
ϕ(x)dx

= −
∫

U(0,R)

∂

∂xi
(log log

1
r
)ϕ(x)dx.

The critical term is now

|
∫

U(0,R)

log log
1
r
ϕ(x)

∂

∂xi
ηn(r)dx|

≤ const. sup |ϕ(x)|
2
n∫
1
n

log log
1
r
nrd−1dr → 0 for n → ∞.

This completes the verification that log(log 1
r ) ∈ H1,d(U(0, R)) for R < 1.

Finally, a function in H1,d(Ω) ∩ L∞(Ω) (Ω ⊂ Rd, d ≥ 2) need not be
continuous, as the example

f(x) = sin log log
1
r

(r = ‖x‖) on U(0, R) for R < 1
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shows.

However, we do have from theorem 20.15 and corollary 19.7

Corollary 20.17 Let Ω ⊂ Rd be open and bounded, f ∈ H1,d
0 (Ω). Then

f ∈ Lp(Ω) for 1 ≤ p <∞.

�

Corollary 20.18 Let Ω ⊂ Rd be open and bounded. Then

Hk,p
0 (Ω) ⊂

{
L

dp
(d−kp) (Ω) for kp < d

Cm(Ω) for 0 ≤ m < k − d
p

(Cm(Ω) := {f ∈ Cm(Ω) : f and all its derivatives of order up to and includ-
ing m are continuous in Ω}).

Proof. The first embedding follows by using theorem 20.15 iteratively, the
second then from the first and the case p > d in theorem 20.15. A detailed
proof can be given for k = 2 according to the following scheme.

For the case k = 2, it follows first of all that

H2,p
0 ⊂ H1, dp

d−p for p < d.

To see this, let (fn)n∈N ⊂ C∞
0 be a sequence converging to f in the W 2,p-

norm. By the Sobolev embedding theorem

‖fn − f‖
W

1,
dp

d−p
≤ const. ‖fn − f‖W 2,p ,

thus f ∈ H
1, dp

d−p

0 . Hence H2,p
0 ⊂ H

1, dp
d−p

0 for p < d.
If now even p < d, so dp

d−p < d, we use theorem 20.15 with dp
d−p in place

of d and obtain the required inequality

H2,p
0 (Ω) ⊂ L

dp
d−2p (Ω).

Similarly as Lr ⊂ Lq for 1 ≤ q ≤ r ≤ ∞ (corollary 19.7; notice that here Ω
is assumed to be bounded),

H2,d
0 ⊂ H1,q

0 for every q < ∞.

Finally, it follows for f ∈ H2,p
0 with p > d that f as well as Df is continuous

on Ω. Then Df is also the classical derivative of f. This follows, for example,
from theorem 19.15 and lemma 20.6, for one only has to observe that for
a sequence (fn)n∈N ⊂ C1, for which fn as well as Dfn converge uniformly,
limDfn is the derivative of lim fn. This simply means that C1 is a Banach
space and it was shown in theorem 5.12.
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Thus if p > d then H2,p
0 (Ω) ⊂ C1(Ω); if p < d but dp

d−p > d (i.e. 2p >

d) then H2,p
0 (Ω) ⊂ C0(Ω); if p = d then, likewise, H2,d

0 (Ω) ⊂ C0(Ω̄), by
the preceding considerations and theorem 20.15. In this way, one shows the
assertion easily for arbitrary k. �

Corollary 20.19 Let Ω ⊂ Rd be open and bounded. If u ∈ Hk,p
0 (Ω) for a

fixed p and all k ∈ N, then u ∈ C∞(Ω). �

Theorem 20.15 shows, amongst other things, that for p < d the space
H1,p

0 (Ω) is embedded continuously in the space L
dp

d−p (Ω), i.e. there exists an
injective bounded (= continuous) linear map

i : H1,p
0 (Ω) → L

dp
d−p (Ω).

We recall that a continuous linear map is said to be compact if the image of
every bounded sequence contains a convergent subsequence.

We recall also that for a bounded Ω, there does exist a continuous em-
bedding

j : Lr(Ω) → Lq(Ω) for 1 ≤ q ≤ r ≤ ∞
(corollary 19.7). In particular, there thus exists a continuous embedding

j ◦ i : H1,p
0 (Ω) → Lq(Ω) for 1 ≤ q ≤ dp

d− p
.

The compactness theorem of Rellich-Kondrachov which we now state says
that this embedding is compact for 1 ≤ q < dp

d−p .

Theorem 20.20 Let Ω ⊂ Rd be open and bounded. Then for p < d and
1 ≤ q < dp

d−p , and p ≥ d and 1 ≤ q < ∞, respectively, the space H1,p
0 (Ω) is

compactly embedded in Lq(Ω).

We shall apply this theorem later mostly in the following form: If
(fn)n∈N ⊂ H1,2

0 (Ω) is bounded, so

‖fn‖W 1,2(Ω) ≤ K,

then (fn) contains a convergent subsequence in the L2-norm (and then by
theorem 19.12, also a subsequence which converges pointwise almost every-
where). (This in fact is the statement originally proved by Rellich.)

Proof. Again by corollary 19.7, H1,p
0 (Ω) ⊂ H1,r

0 (Ω) for 1 ≤ r ≤ p < ∞, so
we can limit ourselves to the case p < d. (Namely, that case implies that for
every r < d and any 1 ≤ q < dr

d−r , H
1,r
0 (Ω) is compactly embedded in Lq(Ω).

Since for every 1 ≤ q < ∞, we may find r < d with q < dr
d−r , we thus obtain
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the compactness of the embedding of H1,p
0 (Ω) ⊂ H1,r

0 (Ω) in Lq(Ω) for every
q in the other case p ≥ d as well.)

We first consider the case q = 1. So let (fn)n∈N ⊂ H1,p
0 (Ω),

‖fn‖W 1,p(Ω) ≤ K. (22)

We shall show that (fn)n∈N in L1(Ω) is totally bounded, that is, for every ε >
0 there exist finitely many u1, . . . , uk ∈ L1(Ω) with the following property:
for every n ∈ N there exists an i ∈ {1, . . . , k} with

‖fn − ui‖L1(Ω) < ε. (23)

Thus (fn)n∈N would be covered by finitely many open balls

Ui := {h ∈ L1(Ω) : ‖h− ui‖L1 < ε}.
Then by theorem 7.40 the closure of (fn)n∈N must be compact in L1(Ω)
and thus (fn)n∈N would contain a convergent subsequence relative to the
L1-norm.

First of all for every n ∈ N and ε > 0, by the definition of H1,p
0 (Ω) there

exists a gn ∈ C1
0 (Ω) with

‖fn − gn‖L1(Ω) ≤ const. ‖fn − gn‖W 1,p(Ω) (24)

<
ε

3
.

For g ∈ C1
0 (Ω) we consider the convolution

gh(x) =
1
hd

∫
Ω

ρ(
x− y

h
)g(y)dy.

Now for every g ∈ C1
0 (Ω) we have

|g(x) − gh(x)| =
1
hd

|
∫
Ω

ρ(
x− y

h
)(g(x) − g(y))dy|

= |
∫

|z|≤1

ρ(z)(g(x) − g(x− hz))dz|

(see the calculation in §19)

≤
∫

|z|≤1

ρ(z)

h|z|∫
0

| ∂
∂r
g(x− rω)|drdz mit ω =

z

|z| .

Integrating with respect to x gives
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Ω

|g(x) − gh(x)|dx ≤
∫

|z|≤1

ρ(z)h|z|
∫
Ω

|Dg(x)|dxdz

(Dg = (D1g, . . .Ddg)) (25)

≤ h

∫
Ω

|Dg(x)|dx.

On account of (22) and (24) there exists a K ′ with

‖gn‖W 1,1(Ω) ≤ const. ‖gn‖W 1,p(Ω) ≤ K ′ (26)

for all n.
From (25) it then follows that we can choose h > 0 so small that for all

n ∈ N

‖gn − gn,h‖L1(Ω) <
ε

3
. (27)

Furthermore,

|gh(x)| =
1
hd

|
∫
Ω

ρ(
x− y

h
)g(y)| ≤ 1

hd
sup

z
|ρ(z)|‖g‖L1(Ω) (28)

and

|Digh(x)| =
1
hd

|
∫
Ω

Diρ(
x− y

h
)g(y)dy| ≤ 1

hd+1
sup | ∂

∂zi
ρ(z)|‖g‖L1(Ω). (29)

Applying (28) and (29) to gn it follows, by (26), that

‖gn,h‖C1(Ω) ≤ const. (30)

The constant here depends on h, but we have chosen h to be fixed and in fact
so that (27) holds. The sequence (gn,h)n∈N is therefore uniformly bounded
and equicontinuous and therefore contains, by the Arzela-Ascoli theorem, a
uniformly convergent subsequence. This subsequence then converges also in
L1(Ω). The closure of {gn,h : n ∈ N} is thus compact in L1(Ω) and hence
totally bounded. Consequently there exist finitely many u1, . . . , uk ∈ L1(Ω)
with the property that for any n ∈ N there is an i ∈ {1, . . . , k} with

‖gn,h − ui‖L1(Ω) <
ε

3
. (31)

By (24), (27) and (31), for any n ∈ N there is an i ∈ {1, . . . k} with

‖fn − ui‖L1(Ω) < ε.

this is (23) and with it the case q = 1 is settled.
Now for arbitrary q < dp

d−p we have for f ∈ H1,p
0 (Ω)
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‖f‖Lq(Ω) ≤ ‖f‖λ
L1(Ω)‖f‖1−λ

L
dp

d−p (Ω)

(32)

with
1
q

= λ+ (1 − λ)(
1
p
− 1
d
)

(by corollary 19.8)
≤ const. ‖f‖λ

L1(Ω)‖Df‖1−λ
Lp(Ω)

by theorem 20.15.

We have already shown that (fn)n∈N, after a choice of a subsequence, con-
verges in L1(Ω) and thus it is a Cauchy sequence, i.e. ∀ ε > 0 ∃ N ∈
N ∀ n,m ≥ N

‖fn − fm‖L1(Ω) < ε.

Taking into account (22), (32) then gives that

‖fn − fm‖Lq(Ω) ≤ const. ελ.

Thus (fn)n∈N is also a Cauchy sequence in Lq(Ω). Thereby, on account of the
completeness of Lq(Ω) (theorem 19.11), the proof of the theorem is complete.

�

Exercises for § 20

1) Which of the following functions are weakly differentiable? (Note that
the answer may depend on d!)
a) f : Rd → R, f(x) := ‖x‖.
b) The components of f : Rd → Rd, f(x) :=

{
x

‖x‖ for x �= 0
0 for x = 0 .

c) f : Rd → R, f(x) :=
{

log ‖x‖ for x �= 0
0 for x = 0

d) f : Rd → R, f(x) :=
{

1 for x1 ≥ 0
−1 for x1 < 0 (x = (x1, . . . , xd))

e) f : R → R, f(x) = esin
5 x + 7x9.

2) For which values of α, k, p, d is

‖x‖α ∈W k,p(U(0, 1))?

(U(0, 1) = {x ∈ Rd : ‖x‖ < 1}).
3) Let f, g ∈ H1,2

loc(Ω) where this space is defined analogously to L2
loc.

Show that f · g is weakly differentiable, with

D(fg) = fDg + gDf.

(Hint: Consider first the case where one of the functions is in C1(Ω).)
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4) Let ψ : R → R be continuous and piecewise continuously differen-
tiable, with sup |ψ′| < ∞. Let f ∈ W 1,p(Ω). Show that ψ ◦ f ∈
W 1,p(Ω), with

D(ψ ◦ f)(x) =
{
ψ′(f(x))Df(x) if ψ is differentiable at f(x)
0 otherwise .



Chapter VI.

Introduction to the Calculus of Variations
and Elliptic Partial Differential Equations



21. Hilbert Spaces. Weak Convergence

Hilbert spaces are Banach spaces with norm derived from a scalar product. A
sequence in a Hilbert space is said to converge weakly if its scalar product with any
fixed element of the Hilbert space converges. Weak convergence satisfies important
compactness properties that do not hold for ordinary convergence in an infinite
dimensional Hilbert space. In particular, any bounded sequence contains a weakly
convergent subsequence.

Definition 21.1 A real (complex) Hilbert space H is a vector space over
R(C) which is equipped with a scalar product

(·, ·) : H ×H → R(C)

with the following properties

i) (x, y) = (y, x) ((x, y) = (y, x)) respectively) for all x, y ∈ H

ii) (λ1x1 +λ2x2, y) = λ1(x1, y)+λ2(x2, y) ∀ λ1, λ2 ∈ R(C), x1, x2, y ∈ H

iii) (x, x) > 0 for all x �= 0, x ∈ H

iv) H is complete relative to the norm ‖x‖ := (x, x)1/2 (i.e. every Cauchy
sequence relative to ‖ · ‖ has a limit point in H).

Thus, every Hilbert space is a Banach space (one notes the triangle in-
equality in lemma 21.2 infra). Naturally, all the finite dimensional Euclidean
vector spaces, and thus Rd with the usual scalar product, are Hilbert spaces.
The significance and use of the concept of Hilbert space however lies in mak-
ing possible an infinite dimensional generalization of the Euclidean space and
its geometry. For us, the most important Hilbert spaces are the spaces L2(Ω)
with

(f, g)L2(Ω) :=
∫
Ω

f(x)g(x)dx

(this expression is finite for f, g ∈ L2(Ω) because of the Hölder inequality),
and more generally the Sobolev spaces W k,2(Ω) with

(f, g)W k,2(Ω) :=
∑
|α|≤k

∫
Ω

Dαf(x) ·Dαg(x)dx.
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That L2(Ω) and W k,2(Ω), with these scalar products, are in fact Hilbert
spaces follows from the theorems in §19 and §20, where e.g. the completeness
was proved. We shall consider here mainly real vector spaces; however in
physics complex vector spaces are also important, e.g. L2(Ω,C) := {f : Ω →
C, Re f, Im f ∈ L2(Ω)} with

(f, g)L2(Ω,C) :=
∫
Ω

f(x)g(x)dx.

The theory of real and complex Hilbert spaces is, to a large extent, similar.

Lemma 21.2 The following inequalities hold for a Hilbert space H :

— the Schwarz inequality

|(x, y)| ≤ ‖x‖ · ‖y‖ (1)

with equality only for linearly dependent x and y

— the triangle inequality

‖x+ y‖ ≤ ‖x‖ + ‖y‖ (2)

— the parallelogram law

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) (3)

Proof. (1) follows from ‖x+ λy‖2 ≥ 0 with λ = −(x,y)
‖y‖2 , and (2) then follows

from (1). (3) is obtained by a direct calculation. �

Definition 21.3 x, y ∈ H (H is a Hilbert space) are called orthogonal if
(x, y) = 0. If F is a subspace of H then so is

F⊥ := {x ∈ H : (x, y) = 0 for all y ∈ F}.

Theorem 21.4 Let F be a closed subspace of a Hilbert space H. Then every
x ∈ H has a unique decomposition

x = y + z with y ∈ F, z ∈ F⊥. (4)

Proof. We give a proof for a real Hilbert space; the complex case is analogous.
Let

d := inf
y∈F

‖x− y‖

and (yn)n∈N ⊂ F be a minimal sequence, thus



21. Hilbert Spaces. Weak Convergence 291

‖x− yn‖ → d. (5)

From (3) it follows that

4‖x− 1
2
(ym + yn)‖2 + ‖ym − yn‖2 (6)

= 2(‖x− ym‖2 + ‖x− yn‖2).

As with yn, ym also 1
2 (yn+ym) ∈ F, it follows that (yn) is a Cauchy sequence;

asH is complete, it has a limit, say y. Since F is closed, y ∈ F and d = ‖x−y‖.
We set z = x − y and have to show that z ∈ F⊥. If y′ ∈ F, α ∈ R then

y + αy′ ∈ F. Therefore

d2 ≤ ‖x− y − αy′‖2 = (z − αy′, z − αy′)

= ‖z‖2 − 2α(y′, z) + α2‖y′‖2.

As ‖z‖ = d, it follows for all α > 0

|(y′, z)| ≤ α

2
‖y′‖2

and therefore
(y′, z) = 0 for all y′ ∈ F,

so z ∈ F⊥.
The uniqueness of y follows by (6) from

‖x− 1
2
(y1 + y2)‖ < d

if ‖x−y1‖ = d = ‖x−y2‖ and y1 �= y2, which would contradict the minimality
of d. �

Corollary 21.5 For every closed subspace F of a Hilbert space H there exists
a unique linear map

π : H → F

with

‖π‖ = sup
x�=0

‖πx‖
‖x‖ = 1 (7)

π2 = π (π is a projection) (8)
kerπ = F⊥. (9)

Proof. For x = y + z as in (4) we set

πx = y.

All the assertions then follow immediately. �
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We now prove the Riesz representation theorem

Theorem 21.6 Let L be a bounded linear functional on a Hilbert space H
(so L : H → R (resp. C) is linear with

‖L‖ := sup
x�=0

|Lx|
‖x‖ <∞).

Then there exists a uniquely determined y ∈ H with

L(x) = (x, y) for all x ∈ H. (10)

Moreover
‖L‖ = ‖y‖. (11)

Proof. Let N := kerL := {x : Lx = 0}. If N = H then we set y = 0. So let
N �= H. N is closed, and so, by theorem 21.4, there exists a z �= 0, z ∈ H
with

(x, z) = 0 for all x ∈ N.

Therefore Lz �= 0, and for x ∈ H we have

L(x− Lx

Lz
z) = Lx− Lx

Lz
Lz = 0,

thus x− Lx
Lz z ∈ N, so

(x− Lx

Lz
z, z) = 0,

and
(x, z) =

Lx

Lz
‖z‖2,

and with
y :=

Lz

‖z‖2
· z

we have
Lx = (x, y).

If there were y1, y2 with this property, then we would have

(x, y1 − y2) = 0 ∀x,
so ‖y1 − y2‖2 would be zero and therefore y1 = y2.

Furthermore, we have, by the Schwarz inequality,

‖L‖ = sup
x�=0

|(x, y)|
‖x‖ ≤ ‖y‖

and on the other hand
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‖y‖2 = (y, y) = Ly ≤ ‖L‖ · ‖y|,
so altogether

‖y‖ = ‖L‖.
�

Definition 21.7 Let H be a Hilbert space. We say that (xn)n∈N ⊂ H is
weakly convergent to x ∈ H if

(xn, y) → (x, y) for all y ∈ H.

In symbols, xn ⇁ x.

As
|(xn, y) − (x, y)| ≤ ‖xn − x‖ · ‖y‖ by (1)

a sequence (xn)n∈N which converges in the usual sense is also weakly conver-
gent.

However, we shall see in the following that a weakly convergent sequence
need not be convergent in the usual sense. To distinguish the usual Hilbert
space convergence from weak convergence, we shall usually call the former
strong convergence.

In a finite dimensional Euclidean space, weak convergence simply means
convergence componentwise and thus here weak and strong convergence are
equivalent.

Theorem 21.8 Every bounded sequence (xn)n∈N in a Hilbert space H has a
weakly convergent subsequence.

Proof. Let ‖xn‖ ≤ M. It suffices to show that for a suitable subsequence
(xnk

) and some x ∈ H, (xn, y) → (x, y) for all y which lie in the closure S̄ of
the linear subspace S of H spanned by xn. For, by theorem 21.4, y ∈ H can
be split as

y = y0 + y1, y0 ∈ S, y1 ∈ S
⊥

and (xn, y1) = 0 for all n.
For a fixed m, (xn, xm) has a bound independent of n as ‖xn‖ ≤ M

and therefore ((xn, xm))n∈N has a convergent subsequence. By the Cantor
diagonal process, one obtains a subsequence (xnk

) of (xn) for which (xnk
, xm)

converges for every m ∈ N as k → ∞. Then (xnk
, y) also converges when

y ∈ S. If y ∈ S then for y′ ∈ S

|(xnj
− xnk

, y)| ≤|(xnj
, y − y′)| + |(xnj

− xnk
, y′)|

+ |(xnk
, y′ − y)| ≤ 2M‖y − y′‖

+ |(xnj
− xnk

, y′)|.
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For a preassigned ε > 0 one chooses y′ ∈ S with ‖y′ − y‖ < ε
4M and then j

and k so large that
|(xnj

− xnk
, y′)| < ε

2
.

It follows that |(xnj
− xnk

, y)| → 0 for all y ∈ S as j, k → ∞.
Thus (xnk

, y) is a Cauchy sequence and consequently has a limit; we set

Ly := lim
k→∞

(xnk
, y).

L is linear and bounded because of (1) and ‖xn‖ ≤M.
By theorem 21.6 there is an x ∈ S with

(x, y) = Ly for all y ∈ S

and then also Ly = (x, y) = 0 for y ∈ S
⊥
. Thus xnk

converges weakly to
x. �

Corollary 21.9 If (xn)n∈N converges weakly to x, then

‖x‖ ≤ lim inf
n→∞ ‖xn‖.

(So the norm is lower semicontinuous with respect to weak convergence.)
(xn)n∈N converges to x precisely when it converges weakly to x and

‖x‖ = lim
n→∞ ‖xn‖.

Proof. We have

0 ≤ (xn − x, xn − x) = (xn, xn) − 2(xn, x) + (x, x).

As (xn, x) → (x, x) as n → ∞, it follows that

0 ≤ lim inf ‖xn‖2 − ‖x‖2.

If ‖x‖ = lim
n→∞ ‖xn‖, it follows from the above considerations that lim

n→∞(xn −
x, xn − x) = 0, thus strong convergence. It is clear that, conversely, strong
convergence implies convergence of norms and we have seen above that strong
convergence implies weak convergence. �

Example. We consider an orthonormal family (en)n∈N ⊂ H, so

(en, em) = δnm

(
=

{
1 for n = m
0 for n �= m

)
Such an orthonormal family is called complete if every x ∈ H satisfies

x =
∑

n

(x, en)en.
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As an example we consider L2((−π, π)) and the functions 1√
2π
, 1√

π
cosnx,

1√
π

sinnx
(n ∈ N). We have

(
1√
π

cosnx,
1√
π

cosmx) =
1
π

π∫
−π

cosnx · cosmxdx = δmn

(
1√
π

sinnx,
1√
π

sinmx) =
1
π

π∫
−π

sinnx · sinmxdx = δmn

(
1√
π

sinnx,
1√
π

cosmx) =
1
π

π∫
−π

sinnx cosmxdx = 0

(
1√
2π

,
1√
2π

) =
1
2π

π∫
−π

dx = 1

(
1√
2π

,
1√
π

cosnx) =
1

π
√

2

π∫
−π

cosnx = 0 (n ≥ 1)

(
1√
2π

,
1√
π

sinnx) =
1

π
√

2

π∫
−π

sinnx = 0 (n ≥ 1).

Thus we obtain an orthonormal family in L2((−π, π))

e1 :=
1√
2π

, e2n :=
1√
π

sinnx, e2n+1 :=
1√
π

cosnx (n ≥ 1).

This orthonormal family is basic for the expansion of an L2((−π, π))-function
in a Fourier series. We shall come accross another L2-orthogonal series when
we treat the eigenvalue problem for the Laplace operator.

Now let H be an infinite dimensional Hilbert space and (en)n∈N an or-
thonormal sequence in H. We claim that (en) converges weakly to zero. Oth-
erwise, by choosing a subsequence from the en, there would be an x ∈ H
with

|(x, en)| ≥ ε for all n ∈ N, and some ε > 0. (12)

Now (x, em)em is the projection of x onto the subspace spanned by em as
by theorem 21.4 x = αem + f, with (f, em) = 0 and since (em, em) = 1,
α = (x, em). Similarly

N∑
n=1

(x, en)en

is the projection of x onto the subspace spanned by e1, . . . , eN . Therefore, if
(12) holds,
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‖x‖2 = ‖x−
N∑

n=1

(x, en)en‖2 + ‖
N∑

n=1

(x, en)en‖2 ≥
N∑

n=1

(x, en)2 ≥ Nε2.

Thus, (12) is not possible, and we conclude that en ⇁ 0.
As ‖en‖ = 1 for all n, one sees that in Corollary 21.9 one cannot expect

equality. Furthermore, (en) does not converge strongly (i.e. in the norm) to
0. Thus with respect to compactness arguments, weak convergence is the
suitable analogue of convergence in finite dimensional spaces.

Corollary 21.10 (Banach-Saks) Let (xn)n∈N ⊂ H with ‖xn‖ ≤ K (inde-
pendent of n). then there exists a subsequence (xnj

) ⊂ (xn) and an x ∈ H
such that

1
k

k∑
j=1

xnj
→ x (convergence in norm) as k → ∞.

Proof. Let x be the weak limit of a subsequence (xni
) ⊂ (xn) (theorem 21.8)

and let
yi := xni

− x.

Then yi ⇁ 0 and ‖yi‖ ≤ K ′ for a fixed K ′.
One chooses successively yij

∈ (yi) with

|(yi

, yij

)| ≤ 1
j

for � < j.

That this is possible follows from yi ⇁ 0 on account of which (z, yi) → 0 for
any z ∈ H, and therefore also for the finitely many

yi

, � = 1, . . . , j − 1, in H, (yi


, yi) → 0.

Now

‖1
k

k∑
j=1

yij
‖2 =

1
k2

(
k∑

�,j=1

(yi

, yij

))

=
1
k2

(
k∑

j=1

((yij
, yij

) + 2
j−1∑
�=1

(yi

, yij

)))

≤ 1
k2

(kK ′2 + 2
k∑

j=1

j · 1
j
)

≤ K ′2 + 2
k

→ 0 as k → ∞;

hence the assertion. �

We now prove further
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Lemma 21.11 Every weakly convergent sequence (xn) ⊂ H is bounded.

Proof. It suffices to show that the bounded linear functions

Lny := (xn, y)

are uniformly bounded on {y : ‖y‖ ≤ 1}. We then have that ‖xn‖ =
(xn,

xn

‖xn‖ ) is bounded independently of n.
For this it suffices, by the linearity of Ln, to verify their uniform bounded-

ness on any ball. The existence of such a ball is now proved by contradiction.
Otherwise, if (Ln)n∈N is not bounded on any ball, then there exists a sequence
(Ki) of closed balls

Ki := {y : |y − yi| ≤ ri},
Ki+1 ⊂ Ki

ri → 0

as well as a subsequence (xni
) ⊂ (xn) with

|Lni
y| > i ∀ y ∈ Ki. (13)

Now the (yi) form a Cauchy sequence and therefore have a limit y0 ∈ H;
we have

y0 ∈ ∞∩
i=1

Ki

and therefore by (13)
|Lni

y0| > i ∀ i ∈ N,

in contradiction to the weak convergence of (xni
), which implies the conver-

gence of Lni
y0. �

Corollary 21.12 If A is a closed convex (i.e. x, y ∈ A =⇒ tx+(1− t)y ∈ A
for 0 ≤ t ≤ 1) subset of a Hilbert space, e.g. a closed subspace of A, then A
is also closed with respect to weak convergence.

Proof. Let (xn)n∈N ⊂ A and assume (xn) converges weakly to x ∈ H. By
lemma 21.11, the sequence (xn) is bounded and by corollary 21.10, for a

subsequence (xnj
)j∈N,

1
k

k∑
j=1

xnj
converges to x. Since A is convex, 1

k

k∑
j=1

xnj
∈

A for all j and then as A is closed, x ∈ A. �
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Exercises for § 21

1
a) Let S be a closed convex subset of some Hilbert space H, x ∈ H.

Show that there is a unique y ∈ S with smallest distance to x.
b) Let F : H → R be linear, continuous, ‖F‖ = 1. Show that

there exists a unique y ∈ {x ∈ H : ‖x‖ = 1} with F (y) = 1.

2) In a finite dimensional Euclidean space, strong and weak convergence
are equivalent.

3) Let (fn)n∈N ⊂ C0([a, b]) (a, b ∈ R) be a bounded sequence.
Show that there exist a subsequence (fnk

)k∈N of (fn) and some
f ∈ L2((a, b)) with

b∫
a

fnk
(x)ϕ(x)dx →

b∫
a

f(x)ϕ(x)dx

for every ϕ ∈ C0([a, b]).

4) Let L : H → K be a continuous linear map between Hilbert spaces.
Suppose that (xn)n∈N ⊂ H converges weakly to x ∈ H. Then
(Lxn)n∈N converges weakly to Lx. If L is compact (cf. Def. 7.48),
then Lxn converges strongly to Lx.

5) Let H be an infinite dimensional Hilbert space with an orthonormal
family (en)n∈N. Does there exist a linear map

L : H → H

with
L(en) = nen for all n ∈ N?



22. Variational Principles and Partial
Differential Equations

Dirichlet’s principle consists in constructing harmonic functions by minimizing the
Dirichlet integral in an appropriate class of functions. This idea is generalized, and
minimizers of variational integrals are weak solutions of the associated differential
equations of Euler and Lagrange. Several examples are discussed.

We shall first consider a special example, in order to make prominent
the basic idea of the following considerations. The generalization of these
reflections will then later present no great difficulty.

The equation to be treated in this example is perhaps the most important
partial differential equation for mathematics and physics, namely the Laplace
equation.

In the following, Ω will be an open, bounded subset of Rd. A function
f : Ω → R is said to be harmonic if it satisfies in Ω the Laplace equation

∆f(x) =
∂2f(x)
(∂x1)2

+ . . .+
∂2f(x)
(∂xd)2

= 0.

Harmonic functions occur, for example, in complex analysis. If Ω ⊂ C and
z = x + iy ∈ Ω, and if f(z) = u(z) + iv(z) is holomorphic on Ω, then the
so-called Cauchy-Riemann differential equations

∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x
(1)

hold, and as a holomorphic function is in the class C∞, we can differentiate
(1) and obtain

∂2u

∂x2
+
∂2u

∂y2
=

∂2v

∂x∂y
− ∂2v

∂y∂x
= 0

and similarly
∂2v

∂x2
+
∂2v

∂y2
= 0.

Thus the real and imaginary parts of a holomorphic function are harmonic.
Conversely, two harmonic functions which satisfy (1) are called conjugate

and a pair of conjugate harmonic functions gives precisely the holomorphic
function f = u+ iv.
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In case (1) holds, one can interpret (u(x, y),−v(x, y)) as the velocity field
of a two dimensional rotation-free incompressible fluid. For d = 3 the har-
monic functions describe likewise the velocity field of a rotation-free incom-
pressible fluid, as well as electrostatic and gravitational fields (outside at-
tracting or repelling charges or attracting masses), temperature distribution
in thermal equilibrium, equilibrium states of elastic membranes, etc.

The most important problem in harmonic functions is the Dirichlet prob-
lem: Here, a function g : ∂Ω → R is given and one seeks f : Ω → R with

∆f(x) = 0 for x ∈ Ω (2)
f(x) = g(x) for x ∈ ∂Ω.

For example, this models the state of equilibrium of a membrane which is
fixed at the boundary of Ω.

There exist various methods to solve the Dirichlet problem for harmonic
functions. Perhaps the most important and general is the so-called Dirichlet
principle, which we want to introduce now.

In order to pose (2) sensibly, one must make certain assumptions on Ω
and g. For the moment we only assume that g ∈ W 1,2(Ω). As already said,
Ω is an open and bounded subset of Rd. Further restrictions will follow in
due course in our study of the boundary condition f = g on ∂Ω.

The Dirichlet principle consists in finding a solution of

∆f = 0 in Ω

f = g on ∂Ω (in the sense that f − g ∈ H1,2
0 (Ω))

by minimizing the Dirichlet integral

1
2

∫
Ω

|Dv|2 (here Dv = (D1v, . . .Ddv))

over all v ∈ H1,2(Ω) for which v − g ∈ H1,2
0 (Ω).

We shall now verify that this method really works.
Let

m := inf
{1

2

∫
Ω

|Dv|2 : v ∈ H1,2(Ω), v − g ∈ H1,2
0 (Ω)

}
.

We must show thatm is assumed and that the function for which it is assumed
is harmonic. (Notation: By corollary 20.10, W 1,2 = H1,2 and in the sequel
we shall mostly write H1,2 for this space.)

Let (fn)n∈N be a minimizing sequence, so fn − g ∈ H1,2
0 (Ω) and∫

Ω

|Dfn|2 → 2m.

By corollary 20.16 we have
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‖fn‖L2(Ω) ≤ ‖g‖L2(Ω) + ‖fn − g‖L2(Ω)

≤ ‖g‖L2(Ω) + const. ‖Dfn −Dg‖L2(Ω)

≤ ‖g‖L2(Ω) + c1‖Dg‖L2(Ω) + c2‖Dfn‖L2(Ω)

≤ const. + c2‖Dfn‖L2(Ω),

as g has been chosen to be fixed.
Without loss of generality let

‖Dfn‖2
L2(Ω) ≤ m+ 1.

It follows that

‖fn‖H1,2(Ω) ≤ const. (independent of n).

By theorem 21.8 fn converges weakly, after a choice of a subsequence, to an
f ∈ H1,2(Ω) with f − g ∈ H1,2

0 (Ω) (this follows from corollary 21.12) and
corollary 21.9 gives ∫

Ω

|Df |2 ≤ lim inf
n→∞

∫
Ω

|Dfn|2 = 2m.

By the theorem of Rellich (theorem 20.20) the remaining term of ‖fn‖2
H1,2 ,

namely
∫ |fn|2 is even continuous, so

∫
Ω

|f |2 = lim
n→∞

∫
Ω

|fn|2, after choosing a

subsequence of (fn).
Because of f − g ∈ H1,2

0 (Ω), it follows from the definition of m that∫
Ω

|Df |2 = 2m.

Furthermore, for every v ∈ H1,2
0 , t ∈ R we have

m ≤
∫
Ω

|D(f + tv)|2 =
∫
Ω

|Df |2 + 2t
∫
Ω

Df ·Dv + t2
∫
Ω

|Dv|2

(where Df ·Dv :=
d∑

i=1

Dif ·Div) and differentiation by t at t = 0 gives

0 =
d

dt

∫
Ω

|D(f + tv)|2|t=0 = 2
∫
Ω

Df ·Dv

for all v ∈ H1,2
0 (Ω).

By the way, this calculation also shows that the map

E : H1,2(Ω) → R

f �→
∫
Ω

|Df |2
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is differentiable, with

DE(f)(v) = 2
∫
Ω

Df ·Dv.

Definition 22.1 A function f ∈ H1,2(Ω) is called weakly harmonic or a
weak solution of the Laplace equation if∫

Ω

Df ·Dv = 0 for all v ∈ H1,2
0 (Ω). (3)

Obviously, every harmonic function satisfies (3). In order to obtain a har-
monic function by applying the Dirichlet principle, one has now to show con-
versely that a solution of (3) is twice continuously differentiable and therefore,
in particular, harmonic. This will be achieved in §23.

However, we shall presently treat a more general situation:

Definition 22.2 Let ϕ ∈ L2(Ω). A function f ∈ H1,2(Ω) is called a weak
solution of the Poisson equation (∆f = ϕ) if for all v ∈ H1,2

0 (Ω)∫
Ω

Df ·Dv +
∫
Ω

ϕ · v = 0 (4)

holds.

Remark. For a preassigned boundary value g (in the sense of f−g ∈ H1,2
0 (Ω))

a solution of (4) can be obtained by minimizing

1
2

∫
Ω

|Dw|2 +
∫
Ω

ϕ · w

in the class of all w ∈ H1,2(Ω) for which w − g ∈ H1,2
0 (Ω). One notices that

this expression is bounded from below by the Poincaré inequality (corollary
20.16), as we have fixed the boundary value g.

Another possibility of finding a solution of (4) for a preassigned f − g ∈
H1,2

0 is the following:
If one sets w := f − g ∈ H1,2

0 , then w has to solve∫
Ω

Dw ·Dv = −
∫
Ω

ϕ · v −
∫
Ω

Dg ·Dv (5)

for all v ∈ H1,2
0 .

The Poincaré inequality (corollary 20.16) implies that a scalar product on
H1,2

0 (Ω) is already given by
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((f, v)) := (Df,Dv)L2(Ω) =
∫
Ω

Df ·Dv.

With this scalar product, H1,2
0 (Ω) becomes a Hilbert space. Furthermore,∫

Ω

ϕ · v ≤ ‖ϕ‖L2 · ‖v‖L2 ≤ const. ‖ϕ‖L2 · ‖Dv‖L2 ,

again by corollary 20.16. It follows that

Lv := −
∫
Ω

ϕ · v −
∫
Ω

Dg ·Dv

defines a bounded linear functional on H1,2
0 (Ω). By theorem 21.6 there exists

a uniquely determined w ∈ H1,2
0 (Ω) with

((w, v)) = Lv for all v ∈ H1,2
0 ,

and w then solves (5).

This argument also shows that a solution of (4) is unique. This also follows
from the following general result.

Lemma 22.3 Let fi, i = 1, 2, be weak solutions of ∆fi = ϕi with f1 − f2 ∈
H1,2

0 (Ω). Then

‖f1 − f2‖W 1,2(Ω) ≤ const. ‖ϕ1 − ϕ2‖L2(Ω).

In particular, a weak solution of ∆f = ϕ, f − g ∈ H1,2
0 (Ω) is uniquely deter-

mined by g and ϕ.

Proof. We have ∫
Ω

D(f1 − f2)Dv = −
∫
Ω

(ϕ1 − ϕ2)v

for all v ∈ H1,2
0 (Ω) and therefore in particular∫

Ω

D(f1 − f2)D(f1 − f2) = −
∫
Ω

(ϕ1 − ϕ2)(f1 − f2)

≤ ‖ϕ1 − ϕ2‖L2(Ω)‖f1 − f2‖L2(Ω)

≤ const. ‖ϕ1 − ϕ2‖L2(Ω)‖Df1 −Df2‖L2(Ω)

by corollary 20.16, and consequently

‖Df1 −Df2‖L2(Ω) ≤ const. ‖ϕ1 − ϕ2‖L2(Ω).
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The assertion follows by another application of corollary 20.16. �

We have thus obtained the existence and uniqueness of weak solutions of
the Poisson equation in a very simple manner.

The aim of the regularity theory consists in showing that (for sufficiently
well behaved ϕ) a weak solution is already of class C2, and thus also a classical
solution of ∆f = ϕ. In particular we shall show that a solution of ∆f = 0 is
even of class C∞(Ω).

Besides, we must investigate in which sense, if for example ∂Ω is of class
C∞ – in a sense yet to be made precise – and g ∈ C∞(Ω), the boundary
condition f−g ∈ H1,2

0 (Ω) is realized. It turns out that in this case, a solution
of ∆f = 0 is of class C∞ and for all x ∈ ∂Ω f(x) = g(x) holds.

We shall now endeavour to make a generalization of the above ideas. For
this we shall first summarize the central idea of these considerations:

In order to minimize the Dirichlet integral, we had first observed that
there exists a bounded minimizing sequence in H1,2. From this we could
then choose a weakly convergent subsequence. As the Dirichlet integral is
lower semicontinuous with respect to weak convergence the limit of this se-
quence then yields a minimum. Thus, with this initial step, the existence of a
minimum is established. The second important observation then was that a
minimum must satisfy, at least in a weak form, a partial differential equation.

We shall now consider a variational problem of the form

I(f) :=
∫
Ω

H(x, f(x), D(f(x)))dx → min .

under yet to be specified conditions on the real valued function H; here Ω is
always an open, bounded subset of Rd and f is allowed to vary in the space
H1,2(Ω).

Similar considerations could be made in the spaces H1,p(Ω), but we have
introduced the concept of weak convergence only in Hilbert and not in general
Banach spaces.

Theorem 22.4 Let H : Ω×Rd → R be non-negative, measurable in the first
and convex in the second argument, so H(x, tp+ (1 − t)q) ≤ tH(x, p) + (1 −
t)H(x, q) holds for all x ∈ Ω, p, q ∈ Rd and 0 ≤ t ≤ 1.

For f ∈ H1,2(Ω) we define

I(f) :=
∫
Ω

H(x,Df(x))dx ≤ ∞.

Then
I : H1,2(Ω) → R ∪ {∞}

is convex and lower semicontinuous (relative to strong convergence, i.e. if
(fn)n∈N converges in H1,2 to f then
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I(f) ≤ lim inf
n→∞ I(fn)).

(As H is continuous in the second argument (see below) and Df is mea-
surable, H(x,Df(x)) is again measurable (by corollary 17.12), so I(f) is
well-defined).

Proof. The convexity of I follows from that of H, as the integral is a linear
function: Let f, g ∈ H1,2(Ω), 0 ≤ t ≤ 1. Then

I(tf + (1 − t)g) =
∫
Ω

H(x, tDf(x) + (1 − t)Dg(x))dx

≤
∫
Ω

{tH(x,Df(x)) + (1 − t)H(x,Dg(x))}dx

= tI(f) + (1 − t)I(g).

It remains to show the lower semicontinuity. Let (fn)n∈N converge to f
in H1,2. By choosing a subsequence, we may assume that lim inf

n→∞ I(fn) =

lim
n→∞ I(fn). By a further choice of a subsequence, Dfn then converges point-
wise to Df almost everywhere. By theorem 19.12 this follows from the fact
that Dfn converges in L2 to Df. As H is continuous in the second variable
(see lemma 22.5 infra), H(x,Dfn(x)) converges pointwise to H(x,Df(x))
almost everywhere on Ω. By the assumption H ≥ 0 we can apply Fatou’s
lemma and obtain

I(f) =
∫
Ω

H(x,Df(x))dx =
∫
Ω

lim
n→∞H(x,Dfn(x))dx

≤ lim inf
n→∞

∫
Ω

H(x,Dfn(x))dx

= lim inf
n→∞ I(fn).

(As lim I(fn) = lim inf I(fn), by choice of the first subsequence, lim inf I(fn)
does not change anymore in choosing the second subsequence). Thereby, the
lower semicontinuity has been shown. �

We append further the following result:

Lemma 22.5 Let ϕ : Rd → R be convex. Then ϕ is continuous.

Proof. We must control the difference |ϕ(y + h) − ϕ(y)| for h → 0. We set
� := h

|h| (we may assume h �= 0) and choose t ∈ [0, 1] with

h = (1 − t)�.
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By convexity, we have

ϕ(ty + (1 − t)(y + �)) ≤ tϕ(y) + (1 − t)ϕ(y + �)

so
ϕ(y + h) ≤ tϕ(y) + (1 − t)ϕ(y + �),

and therefore

ϕ(y + h) − ϕ(y) ≤ 1 − t

t
(−ϕ(y + h) + ϕ(y + �)). (6)

The convexity of ϕ also gives

ϕ(y) ≤ tϕ(y + h) + (1 − t)ϕ(y − t�),

so
ϕ(y + h) − ϕ(y) ≥ 1 − t

t
(ϕ(y) − ϕ(y − t�)). (7)

We now let h approach 0, so t→ 1, and obtain the continuity of ϕ at y from
(6) and (7). �

We now prove

Lemma 22.6 Let A be a convex subset of a Hilbert space, I : A→ R∪{±∞}
be convex and lower semicontinuous. Then I is also lower semicontinuous
relative to weak convergence.

Proof. Let (fn)n∈N ⊂ A be weakly convergent to f ∈ A. We then have to
show that

I(f) ≤ lim inf
n→∞ I(fn). (8)

By choosing a subsequence, we may assume that I(fn) is convergent, say

lim inf
n→∞ I(fn) = lim

n→∞ I(fn) =: ω. (9)

By choosing a further subsequence and using the Banach-Saks lemma (corol-
lary 21.10) the convex combination

gk :=
1
k

k∑
ν=1

fN+ν

converges strongly to f as k → ∞, and indeed for every N ∈ N.
The convexity of I gives

I(gk) ≤ 1
k

k∑
ν=1

I(fN+ν). (10)

Now we choose, for ε > 0, N so large that for all ν ∈ N
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I(fN+ν) < ω + ε

holds (compare (9)). By (10) it then follows that

lim sup
k→∞

I(gk) ≤ ω.

The lower semicontinuity of I relative to strong convergence now gives

I(f) ≤ lim inf
k→∞

I(gk) ≤ lim sup
k→∞

I(gk) ≤ ω = lim inf
n→∞ I(fn).

Thereby (8) has been verified. �

We obtain now the important

Corollary 22.7 Let H : Ω×Rd → R be non-negative, measurable in the first
and convex in the second argument. For f ∈ H1,2(Ω), let

I(f) :=
∫
Ω

H(x,Df(x))dx.

Then I is lower semicontinuous relative to weak convergence in H1,2.
Let A be a closed convex subset of H1,2(Ω).
If there exists a bounded minimizing sequence (fn)n∈N ⊂ A, that is,

I(fn) → inf
g∈A

I(g) with ‖f‖H1,2 ≤ K,

then I assumes its minimum on A, i.e. there is an f ∈ A with

I(f) = inf
g∈A

I(g).

Proof. The lower semicontinuity follows from theorem 22.4 and lemma 22.6.
Now let (fn)n∈N be a bounded minimizing sequence. By theorem 21.8, after
choosing a subsequence, the sequence fn converges weakly to an f, which by
corollary 21.12 is in A. Due to weak lower semicontinuity it follows that

I(f) ≤ lim inf
n→∞ I(fn) = inf

g∈A
I(g),

and, as trivially inf
g∈A

I(g) ≤ I(f) holds, the assertion follows. �

Remarks.
1) In corollary 22.7, H depends only on x and Df(x), but not on f(x).

In fact, in the general case

I(f) =
∫
Ω

H(x, f(x), Df(x))dx
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there are lower semicontinuity results under suitable assumptions on
H, but these are considerably more difficult to prove. The only ex-
ception is the following statement:
Let H : Ω×R×Rd → R be measurable in the first and jointly convex
in the second and third argument, i.e. for x ∈ Ω, f, g ∈ R, p, q ∈
Rd, 0 ≤ t ≤ 1 one has

H(x, tf + (1 − t)g, tp+ (1 − t)q) ≤ tH(x, f, p) + (1 − t)H(x, g, q).

Then the results of corollary 22.7 also hold for

I(f) :=
∫
Ω

H(x, f(x), Df(x))dx.

The proof of this result is the same as that of corollary 22.7.

2) Weak convergence was a suitable concept for the above considerations
due to the following reasons. One needs a convergence concept which,
on the one hand, should allow lower semicontinuity statements and
so should be as strong as possible, and on the other hand, it should
admit a selection principle, so that every bounded sequence contains
a convergent subsequence and therefore should be as weak as possible.
The concept of weak convergence unites these two requirements.

Example. We now want to consider an important example:
For i, j = 1, . . . , d, let aij : Ω → R be measurable functions with

d∑
i,j=1

aij(x)ξiξj ≥ λ|ξ|2 (11)

for all x ∈ Ω, ξ = (ξ1, . . . , ξd) ∈ Rd, with a λ > 0.
The condition (11) is called an ellipticity condition.

We consider

I(f) :=
∫
Ω

d∑
i,j=1

aij(x)Dif(x)Djf(x)dx

for f ∈ H1,2(Ω).
We shall also assume that

ess sup
x∈Ω

i,j=1,...d

|aij(x)| ≤ m. (12)

Then I(f) < ∞ for all f ∈ H1,2(Ω).
By (11) and (12),
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λ

∫
Ω

|Df(x)|2dx ≤ I(f) ≤ md

∫
Ω

|Df(x)|2dx (13)

holds.
We now observe that

〈f, g〉 :=
1
2

∫
Ω

d∑
i,j=1

aij(x)(Dif(x)Djg(x) +Djf(x)Dig(x))dx

is bilinear, symmetric and positive semi-definite (so 〈f, f〉 ≥ 0 for all f) on
H1,2(Ω). Therefore the Schwarz inequality holds:

〈f, g〉 ≤ I(f)
1
2 · I(g) 1

2 . (14)

It now follows easily that I is convex:

I(tf + (1 − t)g) =
∫
Ω

d∑
i,j=1

aij(x)(t2Dif(x)Djf(x)

+ t(1 − t)(Dif(x)Djg(x) +Djf(x)Dig(x))

+ (1 − t)2Dig(x)Djg(x))dx,

thus

I(tf + (1 − t)g) = t2I(f) + 2t(1 − t)〈f, g〉 + (1 − t)2I(g)

≤ t2I(f) + 2t(1 − t)I(f)
1
2 I(g)

1
2 + (1 − t)2I(g) by (14)

≤ t2I(f) + t(1 − t)(I(f) + I(g)) + (1 − t)2I(g)
= tI(f) + (1 − t)I(g).

Finally, we also observe that if we restrict ourselves to the space H1,2
0 (Ω),

then every minimizing sequence for I is bounded. Namely, for f ∈ H1,2
0 (Ω),

the Poincaré inequality (corollary 20.16) holds:

‖f‖2
H1,2(Ω) ≤ c

∫
Ω

|Df(x)|2dx where c is a constant (15)

≤ c

λ
I(f) by (13),

and thereby a minimizing sequence is bounded in H1,2(Ω).
In general, for a fixed g ∈ H1,2(Ω), we can also consider the space

Ag := {f ∈ H1,2(Ω) : f − g ∈ H1,2
0 (Ω)}

The space Ag is closed and convex and for f ∈ Ag we have
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‖f‖H1,2(Ω) ≤ ‖f − g‖H1,2(Ω) + ‖g‖H1,2(Ω)

≤ (
c

λ
I(f − g))

1
2 + ‖g‖H1,2(Ω) since f − g ∈ H1,2

0 (Ω)

≤ (
c

λ
(I(f) + I(g))2)

1
2 + ‖g‖H1,2(Ω)

(using the triangle inequality implied by the Schwarz inequality for I(f)
1
2 =

〈f, f〉 1
2 )

= (
c

λ
)

1
2 I(f) + (

c

λ
)

1
2 I(g) + ‖g‖H1,2(Ω).

As g is fixed, the H1,2-norm for a minimizing sequence for I in Ag is again
bounded.

We deduce from corollary 22.7 that I assumes its minimum on Ag, i.e. for
any g ∈ H1,2(Ω) there exists an f ∈ H1,2(Ω) with f − g ∈ H1,2

0 (Ω) and

I(f) = inf{I(h) : h ∈ H1,2(Ω), h− g ∈ H1,2
0 (Ω)}.

This generalizes the corresponding statements for the Dirichlet integral. In
the same manner we can treat, for a given ϕ ∈ L2(Ω)

J(f) =
∫
Ω

( d∑
i,j=1

aij(x)Dif(x)Djf(x) + ϕ(x)f(x)
)
dx

and verify the existence of a minimum with given boundary conditions.
However, not every variational problem admits a minimum:

Examples.
1) We consider, for f : [−1, 1] → R

I(f) :=

1∫
−1

(f ′(x))2x4dx

with boundary conditions f(−1) = −1, f(1) = 1. Consider

fn(x) =

⎧⎨⎩
−1 for −1 ≤ x < − 1

n
nx for − 1

n ≤ x ≤ 1
n

1 for 1
n < x ≤ 1

Then lim
n→∞ I(fn) = 0, but for every f we have I(f) > 0. Thus the

infimum of I(f), with the given boundary conditions, is not assumed.

2) We shall now consider an example related to the question of realiza-
tion of boundary values:
Let Ω := U(0, 1)\{0} = {x ∈ Rd : 0 < ‖x‖ < 1}, d ≥ 2.
We choose g ∈ C1(Ω) with
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g(x) = 0 for ‖x‖ = 1
g(0) = 1

We want to minimize the Dirichlet integral over
Ag = {f ∈ H1,2(Ω) : f − g ∈ H1,2

0 (Ω)}. Consider, for 0 < ε < 1,
(r = ‖x‖),

fε(r) :=
{

1 for 0 ≤ r ≤ ε
log(r)
log(ε) for ε < r ≤ 1 .

By the computation rules given in §20, fε(r) is in H1,2
0 (Ω) and∫

Ω

|Dfε(r)|2dx =
1

(log ε)2

∫
ε≤r≤1

1
r2
dx

=
dωd

(log ε)2

1∫
ε

rd−1

r2
dr (theorem 13.21)

=

{
2π

log 1
ε

for d = 2
1

(log ε)2
dωd

d−2 (1 − εd−2) for d > 2

It follows that
lim
ε→0

∫
Ω

|Dfε|2 = 0,

and thereby

inf{
∫
Ω

|Df |2, f ∈ Ag} = 0.

Now, it follows from the Poincaré inequality (corollary 20.16) as usual
that for a minimizing sequence (fn)n∈N ⊂ Ag

‖fn‖H1,2 → 0 for n → ∞.

Thus fn converges inH1,2 to zero. So the limit f ≡ 0 does not fulfil the
prescribed boundary condition f(0) = 1. The reason for this is that
an isolated point is really too small to play a role in the minimizing
of Dirichlet integrals. We shall later even see that there exists no
function h at all such that

h : B(0, 1) → R, ∆h(x) = 0 for 0 < ‖x‖ < 1,
h(x) = 0 for ‖x‖ = 1 and h(0) = 1

(see example after theorem 24.4).
The phenomenon which has just appeared can be easily formulated
abstractly.

Definition 22.8 Let Ω be open in Rd, K ⊂ Ω compact. We define the
capacity of K with respect to Ω by
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capΩ(K) := inf{
∫
Ω

|Df |2 : f ∈ H1,2
0 (Ω), f ≥ 1 on K}.

So the capacity of an isolated point in Rd vanishes for d ≥ 2.

In general we have

Theorem 22.9 Let Ω ⊂ Rd be open, K ⊂ Ω compact with capΩ(K) = 0.
Then the Dirichlet principle cannot give a solution of the problem

f : Ω\K → R

∆f(x) = 0 for x ∈ Ω\K
f(x) = 0 for x ∈ ∂Ω

f(x) = 1 for x ∈ ∂K.

�

For an arbitrary A ⊂ Ω one can also define

capΩ(A) := sup
K⊂A

K compact

cap (K)

(as for an A with e.g. vol (A) = ∞ there is no f ∈ H1,2
0 (Ω) with f ≥ 1 on

A, we cannot define the capacity directly as in definition 22.8).
We shall now derive the so-called Euler-Lagrange differential equations as

necessary conditions for the existence of a minimum of a variational problem.

Theorem 22.10 Consider H : Ω × R × Rd → R, with H measurable in the
first and differentiable in the other two arguments. We set

I(f) :=
∫
Ω

H(x, f(x), Df(x))dx

for f ∈ H1,2(Ω). Assume that

|H(x, f, p)| ≤ c1|p|2 + c2|f |2 + c3 (16)

with constants c1, c2, c3 for almost all x ∈ Ω and all f ∈ R, p ∈ Rd. (I(f) is
therefore finite for all f ∈ H1,2(Ω)).

(i) Let A ⊂ H1,2(Ω) and let f ∈ A satisfy

I(f) = inf{I(g) : g ∈ A}.
Let A be such that for every ϕ ∈ C∞

0 (Ω) there is a t0 > 0 with

f + tϕ ∈ A for all t with |t| < t0. (17)
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Assume that H satisfies for almost all x and all f, p

|Hf (x, f, p)| +
d∑

i=1

|Hpi
(x, f, p)| ≤ c4|p|2 + c5|f |2 + c6 (18)

with constants c4, c5, c6; here, the subscripts denote partial derivatives
and
p = (p1, . . . pd). Then for all ϕ ∈ C∞

0 (Ω) we have∫
Ω

{Hf (x, f(x), Df(x))ϕ(x) +
d∑

i=1

Hpi
(x, f(x), Df(x))Diϕ(x)}dx = 0

(19)

(ii) Under the same assumptions as in (i) assume that even for any
ϕ ∈ H1,2

0 (Ω) there is a t0 such that (17) holds. Furthermore, assume
instead of (18) the inequality

|Hf (x, f, p)| +
d∑

i=1

|Hpi
(x, f, p)| ≤ c7|p| + c8|f | + c9, (20)

with constants c7, c8, c9. Then the condition (19) holds for all ϕ ∈
H1,2

0 (Ω).

(iii) Under the same assumptions as in (i), let now H be continuously
differentiable in all the variables. Then, if f is also twice continuously
differentiable, we have

d∑
i,j=1

Hpipj
(x, f(x), Df(x)) · ∂

2f(x)
∂xi∂xj

+
d∑

i=1

Hpif (x, f(x), Df(x))
∂f(x)
∂xi

+ (21)

+
d∑

i=1

Hpixi(x, f(x), Df(x)) −Hf (x, f(x), Df(x)) = 0

or, abbreviated,

d∑
i=1

d

dxi
(Hpi

(x, f(x), Df(x)) −Hf (x, f(x), Df(x)) = 0 (22)

(here d
dxi is to be distinguished from ∂

∂xi !).

Definition 22.11 The equations (21) are called the Euler-Lagrange equa-
tions of the variational problem I(f) → min .
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The equation (21) was first established by Euler for the case d = 1 by
means of approximation by difference equations and then by Lagrange in the
general case by a method essentially similar to the one used here.

Proof of theorem 22.10
(i) We have

I(f) ≤ I(f + tϕ) for |t| < t0. (23)

Now

I(f + tϕ) =
∫
Ω

H(x, f(x) + tϕ(x), Df(x) + tDϕ(x))dx.

As for ϕ ∈ C∞
0 (Ω), ϕ and Dϕ are bounded we can apply theorem

16.11 on account of (16) and (18) and conclude that I(f + tϕ) is
differentiable in t for |t| < t0 with derivative

d

dt
I(f + tϕ) =

∫
Ω

{Hf (x, f(x) + tϕ(x), Df(x) + tDϕ(x))ϕ(x)

+
d∑

i=1

Hpi
(x, f(x) + tϕ(x), Df(x)

+ tDϕ(x)) ·Diϕ(x)}dx.
From (23) it follows that

0 =
d

dt
I(f + tϕ)|t=0

=
∫
Ω

{Hf (x, f(x), Df(x))ϕ(x) +
d∑

i=1

Hpi
(x, f(x), Df(x))

·Diϕ(x)}dx.
This proves (i).

If (20) holds, we can differentiate under the integral with respect to t in
case ϕ ∈ H1,2

0 (Ω), for then the integrand of the derivative is bounded by

(c7|Df(x) + tDϕ(x)| + c8|f(x) + tϕ(x)| + c9)(|ϕ(x)| + |Dϕ(x)|)
the integral of which, by the Schwarz inequality, is bounded by

const. ‖f + tϕ‖H1,2 · ‖ϕ‖H1,2 .

Therefore theorem 16.11 can indeed again be applied to justify differentiation
under the integral sign. Thus (ii) follows.

For the proof of (21) we notice that, due to the assumptions of continuous
differentiability, there exists for every x ∈ Ω a neighborhood U(x) in which
Hpipj

∂2f
∂xi∂xj ,Hpif

∂f
∂xi and Hpixi are bounded.
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For ϕ ∈ C∞
0 (U(x)) we can then integrate (19) by parts and obtain

0 =
∫
Ω

{Hf (x, f(x), Df(x)) −
d∑

i,j=1

Hpipj
(x, f(x), Df(x))

∂

∂xi
(
∂f(x)
∂xj

)

−
d∑

i=1

Hpif (x, f(x), Df(x))
∂f

∂xi
(x) −

d∑
i=1

Hpixi(x, f(x), Df(x))}ϕ(x)dx.

As this holds for all ϕ ∈ C∞
0 (U(x)) it follows from corollary 19.19 that the

expression in the curly brackets vanishes in U(x), and as this holds for every
x ∈ Ω, the validy of (21) in Ω follows. �

Remark. By the Sobolev embedding theorem, one can substitute the term
c2|f |2 in (16) by c2|f | 2d

d−2 for d > 2 and by c2|f |q with arbitrary q < ∞
for d = 2, and similarly c5|f |2 in (18) etc., without harming the validity of
the conclusions. (Note, however that the version of the Sobolev embedding
theorem proved in the present book is formulated only for H1,2

0 and not for
H1,2, and so is not directly applicable here.)

One can also consider more general variational problems for vector-valued
functions: Let

H : Ω × Rc × Rdc → R

be given, and for f : Ω → Rc consider the problem

I(f) :=
∫
Ω

H(x, f(x), Df(x))dx → min .

In this case, the Euler-Lagrange differential equations are

d∑
i=1

d

dxi
(Hpα

i
(x, f(x), Df(x))) −Hfα(x, f(x), Df(x)) = 0 for α = 1, . . . c

or, written out,

d∑
i,j=1

c∑
β=1

Hpα
i

pβ
j
(x, f(x), Df(x))

∂2

∂xi∂xj
fβ

+
c∑

β=1

d∑
i=1

Hpα
i

fβ (x, f(x), Df(x))
∂fβ

∂xi

+
d∑

i=1

Hpα
i

xi(x, f(x), Df(x)) −Hfα(x, f(x), Df(x)) = 0 for α = 1, . . . , c.

So this time, we obtain a system of partial differential equations.
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For the rest of this paragraph, H will always be of class C2.

Examples. We shall now consider a series of examples:

1) For a, b ∈ R, f : [a, b] → R, we want to minimize the arc length of
the graph of f, thus of the curve (x, f(x)) ⊂ R2, hence

b∫
a

√
1 + f ′(x)2 dx → min .

The Euler-Lagrange equations are

0 =
d

dx

f ′(x)√
1 + f ′(x)2

=
f ′′(x)√

1 + f ′(x)2
− f ′(x)2f ′′(x)

[1 + f ′(x)2]
3
2

=
f ′′(x)

(1 + f ′(x)2)
3
2
,

so
f ′′(x) = 0. (24)

Of course, the solutions of (24) are precisely the straight lines, and we
shall see below that these indeed give the minimum for given boundary
conditions f(a) = α, f(b) = β.

2) The so-called Fermat principle says that a light ray traverses its ac-
tual path between two points in less time than any other path joining
those two points. Thus the path of light in an inhomogeneous two di-
mensional medium with speed γ(x, f) is determined by the variational
problem

I(f) =

b∫
a

√
1 + f ′(x)2

γ(x, f(x))
dx → min .

The Euler-Lagrange equations are

0 =
d

dx

f ′(x)
γ(x, f(x))

√
1 + f ′(x)2

+
γf

γ2

√
1 + f ′(x)2

=
f ′′(x)

γ
√

1 + f ′(x)2
− (f ′(x))2f ′′(x)
γ(1 + f ′(x)2)

3
2
− γx

γ2

f ′(x)√
1 + f ′(x)2

− γf

γ2

f ′(x)2√
1 + f ′(x)2

+
γf

γ2

√
1 + f ′(x)2,

so
0 = f ′′(x) − γx

γ
f ′(x)(1 + f ′(x)2) +

γf

γ
(1 + f ′(x)2). (25)
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Obviously, example 2 is a generalization of example 1.

3) The brachistochrone problem is formally a special case of the pre-
ceding example. Here, two points (x0, 0) and (x1, y1) are joined by a
curve on which a particle moves, without friction, under the influence
of a gravitational field directed along the y-axis, and it is required
that the particle moves from one point to the other in the shortest
possible time.
Denoting acceleration due to gravity by g, the particle attains the
speed (2gy)

1
2 after falling the height y and the time required to fall

by the amount y = f(x) is therefore

I(f) =

x1∫
x0

√
1 + f ′(x)2

2gf(x)
dx.

We consider this as the problem I(f) → min. subject to the boundary
conditions f(x0) = 0, f(x1) = y1. Setting γ =

√
2gf(x), equation (25)

becomes
0 = f ′′(x) + (1 + f ′(x)2)

1
2f(x)

. (26)

We shall solve (26) explicitly. Consider the integrand

H(f(x), f ′(x)) =

√
1 + f ′(x)2

2gf(x)
.

From the Euler-Lagrange equations

d

dx
Hp −Hf = 0

it follows, as H does not depend explicitly on x, that

d

dx
(f ′ ·Hp −H) = f ′′ ·Hp + f ′ d

dx
Hp −Hp · f ′′ −Hf · f ′

= f ′(
d

dx
Hp −Hf ) = 0,

so f ′ ·Hp −H ≡ const. ≡ c.
From this, f ′ can be expressed as a function of f and c, and in case f ′ �= 0,

the inverse function theorem gives, with f ′ = ϕ(f, c),

x =
∫

df

ϕ(f, c)
.

In our case
c = f ′ ·Hp −H = − 1√

2gf(1 + f ′2)
,

so
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f ′ = ±
√

1
2gc2f

− 1.

We set 2gc2f = 1
2 (1 − cos t), so that f ′ =

√
1+cos t
1−cos t = sin t

1−cos t , and then

x =
∫

df

f ′ =
∫

1 − cos t
sin t

df

dt
dt

=
1

4gc2

∫
(1 − cos t)dt =

1
4gc2

(t− sin t) + c1. (27)

Thereby f and x have been determined as functions of t. If one solves (27)
for t = t(x) and puts this in the equation for f, then one also obtains f(x).

In the preceding example, we have learnt an important method for solving
ordinary differential equations, namely, that of finding an expression which
by the differential equation, must be constant as a function of the indepen-
dent variable. From the constancy of this expression x and f(x) can then be
obtained as a function of a parameter. One can proceed similarly in the case
where h does not contain the dependent variable f ; then the Euler-Lagrange
equation is simply

d

dx
Hp = 0

and therefore Hp = const., and from this one can again obtain f ′ and then
x and f(x) by integration.

All the above examples were concerned with the simplest possible sit-
uation, namely the case where only one independent and one dependent
variable occured. If one considers, for example, in 1) an arbitrary curve
g(x) = (g1(x), . . . , gc(x)) in Rc, then we have to minimize

I(g) =

b∫
a

‖g′(x)‖dx =

b∫
a

(
c∑

i=1

(
d

dx
gi(x))2

) 1
2

dx,

and we obtain as the Euler-Lagrange equations

0 =
d

dx

g′i(x)

(
c

Σ
j=1

g′j(x)2)
1
2

=
g

′′
i

c

Σ
j=1

(g′j)
2 − g′i ·

c

Σ
j=1

g′jg
′′
j

(
c

Σ
j=1

(g′j)2)
3
2

for i = 1, . . . , c. (28)

From this, one can at first not see too much, and this is not surprising as we
had already seen earlier that the length I(g) of the curve g(x) is invariant
under reparametrizations. Thus, if x �→ g(x) is a solution of (28) then so is
γ(t) := g(x(t)) for every bijective map t �→ x(t). In other words, there are
just too many solutions. On the other hand, we know that for a smooth curve
g we can always arrange ‖ d

dtg(x(t))‖ ≡ 1 by a reparametrization x = x(t).
The equations (28) then become
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d

dt
(
d

dt
gi(x(t)) = 0 for i = 1, . . . , c,

and it follows that g(x(t)) is a straight line. Then g(x) is also a straight line,
only here g(x) does not necessarily describe the arc length.

In physics, stable equilibria are characterized by the principle of minimal
potential energy, whereas dynamical processes are described by Hamilton’s
principle. In both, it is a question of variational principles. Let a physical
system with d degrees of freedom be given; let the parameters be q1, . . . , qd.
We want to determine the state of the system by expressing the parameters
as functions of the time t. The mechanical properties of the system may be
described by:

— the kinetic energy T =
d∑

i,j=1

Aij(q1, . . . qd, t)q̇iq̇j

(thus T is a function of the velocities q̇1, . . . , q̇d – a point “ · ” always
denotes derivative with respect to time –, the coordinates q1, . . . , qd, and
time t; often, T does not depend anymore explicitly on t (see below): Here,
T is a quadratic form in the generalized velocities q1, . . . , qd)

— and the potential energy U = U(q1, . . . qd, t).

Both U and T are assumed to be of class C2.
Hamilton’s principle now postulates that motion between two points in

time t0 and t1 occurs in such a way that the integral

I(q) :=

t1∫
t0

(T − U)dt (29)

is stationary in the class of all functions q(t) = (q1(t), . . . , qd(t)) with fixed
initial and final states q(t0) and q(t1) respectively .

Thus one does not necessarily look for a minimum under all motions
which carry the system from an initial state to a final state, rather only for
a stationary value of the integral. For a stationary value, the Euler-Lagrange
equations must hold exactly as for a minimum, thus

d

dt

∂T

∂q̇i
− ∂

∂qi
(T − U) = 0 for i = 1, . . . , d. (30)

If U and T do not depend explicitly on time t, then equilibrium states are
characterized by all the quantities being moreover constant in time, so in
particular q̇i = 0 for i = 1, . . . , d, and thereby T = 0, therefore by (30)

∂U

∂qi
= 0 for i = 1, . . . , d. (31)

Thus in a state of equilibrium, U must have a critical point and in order for
this equilibrium to be stable U must even have a minimum there.
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We shall now derive the theorem of conservation of energy in the case
where T and U do not depend explicitly on time (though they depend im-
plicitly as they depend on qi, q̇i which in turn depend on t).

By observing that

d∑
i,j=1

Aij q̇
iq̇j =

1
2

d∑
i,j=1

(Aij +Aji)q̇iq̇j

and, if necessary, replacing Aij by 1
2 (Aij +Aji), we may assume that

Aij = Aji.

Now

T =
d∑

i,j=1

Aij(q1, . . . , qd)q̇iq̇j

U = U(q1, . . . , qd).

Introducing the Lagrangian
L = T − U,

the Euler-Lagrange equations become

0 =
d

dt
Lq̇i − Lqi (i = 1, . . . , d).

As above, one calculates that

d

dt

(
d∑

i=1

q̇iLq̇i − L

)
=

d∑
i=1

(
q̈iLq̇i + q̇i d

dt
Lq̇i − Lq̇i q̈i − Lqi q̇i

)
= 0,

so
d∑

i=1

q̇iLq̇i − L = const. (independent of t).

On the other hand

d∑
i=1

q̇iLq̇i =
d∑

i=1

2q̇i
d∑

k=1

Aik q̇
k = 2T,

and it follows that
2T − L = T + U

is constant in t. T + U is called the total energy of the system and we have
therefore shown the time conservation of energy, in case T and U do not
depend explicitly on t.

A special case is the motion of a point of mass m in three dimensional
space; let its path be q(t) = (q1(t), q2(t), q3(t)). In this case
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T =
m

2

3∑
i=1

q̇i(t)2

and U is determined by Newton’s law of gravitation, for example,

U = −m g

‖q‖
in case an attracting mass is situated at the origin of coordinates (g = const.)

We shall now consider motion in the neighborhood of a stable equilibrium.
Here we will again assume that T and U do not depend explicitly on time t.
Without loss of generality, assume that the equilibrium point is at t = 0 and
also that U(0) = 0 holds. As motion occurs in a neighborhood of a stationary
state, we ignore terms of order higher than two in the q̇i and qi; thus, we set

T =
d∑

i,j=1

aij q̇
iq̇j

U =
d∑

i,j=1

bijq
iqj

(32)

with constant coefficients aij , bij . We have therefore substituted U by the
second order terms of its Taylor series (the first order terms vanish because
of (31)). In particular, we can assume bij = bji. By writing

T =
d∑

i,j=1

1
2
(aij + aji)q̇iq̇j ,

we can likewise assume that the coefficients of T are symmetric. As U is to
have a minimum at 0, we shall also assume that the matrix

B = (bij)i,j=1,...,d

is positive definite.
Finally, we also assume that

A = (aij)i,j=1,...,d

is positive definite.
Equation (30) transforms to

d∑
j=1

aij q̈
j +

d∑
j=1

bijq
j = 0 for i = 1, . . . , d, (33)

so in vector notation to
q̈ + Cq = 0 (34)
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with the positive definite symmetric matrix C = A−1B. As C is symmetric,
it can be transformed to a diagonal matrix by an orthogonal matrix, hence

S−1CS =: D =

⎛⎝λ1 0
. . .

0 λd

⎞⎠
for an orthogonal matrix S. As C is positive definite, all the eigenvalues
λ1, . . . λd are positive. We set y = S−1q, and (34) then becomes

ÿ +Dy = 0,

thus
ÿi + λiy

i = 0 for i = 1, 2, . . . , d. (35)

The general solution of (35) is

yi(t) = αi cos(
√
λit) + βi sin(

√
λit)

with arbitrary real constants αi, βi(i = 1, . . . , d).
We now come to the simplest problems of continuum mechanics. States of

equilibrium and motion can be characterized formally as before, however the
state of a system can no longer be determined by finitely many coordinates.
Instead of q1(t), . . . , qd(t) we now must determine a (real or vector-valued)
function f(x, t) or f(x) describing states of motion or rest, respectively.

First we consider the simplest example of a homogeneous vibrating string.
The string is under a constant tension µ and executes small vibrations about
a stable state of equilibrium. This state corresponds to the segment 0 ≤ x ≤
� of the x-axis and the stretching perpendicular to the x-axis is described
by the function f(x, t). The string is fixed at the end points and therefore
f(0, t) = 0 = f(�, t) for all t.

Now the kinetic energy is

T =
ρ

2

�∫
0

f2
t dx (ρ means density of the string), (36)

and the potential energy is

U = µ{
�∫
0

√
1 + f2

xdx− �},

thus proportional to the increase in length relative to the state of rest. We
shall consider a small stretching from the equilibrium position and therefore
ignore terms of higher order and set, as before,
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U =
µ

2

�∫
0

f2
xdx. (37)

By Hamilton’s principle, the motion is characterized by

I(f) =

t1∫
t0

(T − U)dt =
1
2

t1∫
t0

�∫
0

(ρf2
t − µf2

x)dxdt (38)

being stationary in the class of all functions with f(0, t) = f(�, t) = 0 for all
t.

The Euler-Lagrange equation is now

ρftt − µfxx = 0. (39)

This is the so-called wave equation. For simplicity we shall take ρ = µ = 1.
The weak form of the Euler-Lagrange equation is then

t1∫
t0

�∫
0

(ftϕt − fxϕx)dxdt = 0 for all ϕ ∈ C∞
0 ((0, �) × (t0, t1)) (40)

(we have not required any boundary conditions for t = t0 and t = t1 and
therefore this holds even for functions ϕ which do not necessarily vanish at
t = t0 and t = t1, but this we do not want to investigate here in detail).

Now let γ ∈ C1(R). Then the function g defined by

g(x, t) := γ(x− t)

is in C1([0, �] × [t0, t1]) and satisfies

gx = −gt.

Therefore, for all ϕ ∈ C∞
0 ((0, �) × (t0, t1)) we have

t1∫
t0

�∫
0

(gtϕt − gxϕx)dxdt =

t1∫
t0

�∫
0

(−gxϕt + gtϕx)dxdt

=

t1∫
t0

�∫
0

g(ϕtx − ϕxt)dxdt = 0.

Thus g is a solution of (40) although g is not necessarily twice differentiable
and therefore not necessarily a classical solution of the Euler-Lagrange equa-
tion

ftt − fxx = 0. (41)
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Hence a weak solution of the Euler-Lagrange equation need not necessarily
be a classical solution.

In this example, the integrand

H(p) = p2
2 − p2

1 (p1 stands for
∂f

∂x
, p2 for

∂f

∂t
)

is analytic indeed, but has an indefinite Hessian (Hpipj
), namely(−2 0

0 2

)
.

Moreover, the fact behind this example is that

g(x, t) = γ(x− t) + δ(x+ t)

is the general solution of the wave equation

gtt − gxx = 0.

If the string is subjected to an additional external force k(x, t) then the
potential energy becomes

U =
µ

2

�∫
0

f2
xdx+

�∫
0

k(x, t)f(x, t)dx,

and the equation of motion becomes

ρftt − µfxx + k = 0. (42)

Correspondingly, an equilibrium state (assuming that k depends no longer
on t) is given by

µfxx(x) − k(x) = 0. (43)

The situation looks similar for a plane membrane – i.e. an elastic surface
that at rest covers a portion Ω of the xy-plane and can move vertically.
The potential energy is proportional to the difference of the surface area to
the surface area at rest. We set the factor of proportionality as well as the
subsequent physical constants equal to 1. If f(x, y, t) denotes the vertical
stretching of the surface then

U =
∫
Ω

√
1 + f2

x + f2
ydxdy − Vol (Ω). (44)

We shall again restrict ourselves to small pertubations and therefore substi-
tute U as before by

U =
1
2

∫
Ω

(f2
x + f2

y )dxdy. (45)
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The kinetic energy is

T =
1
2

∫
Ω

f2
t dxdy. (46)

The equation of motion is then

ftt −∆f = 0 (∆f = fxx + fyy) (47)

and its state of rest is characterized by

∆f = 0. (48)

We had already derived this earlier. Under the influence of an external force
k(x), its state of rest is correspondingly given by

∆f(x, y) = k(x, y). (49)

Thus, if the membrane is fixed at the boundary, we have to solve the Dirichlet
problem

∆f(x, y) = k(x, y) for (x, y) ∈ Ω

f(x, y) = 0 for (x, y) ∈ ∂Ω.

We shall now derive the Euler-Lagrange equations for the area functional

I(f) =
∫
Ω

√
1 + f2

x + f2
ydxdy.

Setting H(p1, p2) =
√

1 + p2
1 + p2

2 we have

Hpi
=

pi√
1 + p2

1 + p2
2

and

Hpipj
=

δij√
1 + p2

1 + p2
2

− pipj

(1 + p2
1 + p2

2)
3
2

(
δij =

{
1 for i = j
0 for i �= j

)
.

Thereby, the Euler-Lagrange equations become

0 =
2∑

i,j=1

Hpipj
fxixj =

1
(1 + f2

x + f2
y )

3
2
{(1 + f2

y )fxx

− 2fxfyfxy + (1 + f2
x)fyy},

so
(1 + f2

y )fxx − 2fxfyfxy + (1 + f2
x)fyy = 0.

This is the so-called minimal surface equation. It describes surfaces with
stationary area that can be represented as graphs over a domain Ω in the
(x, y)-plane.

Finally, we consider quadratic integrals of the form



326 22. Variational Principles and Partial Differential Equations

Q(f) =
∫
Ω

{ d∑
i,j=1

aij(x)fxifxj +
d∑

i=1

2bi(x)f · fxi + c(x)f(x)2
}
dx; (50)

again, without loss of generality, let aij = aji. The Euler-Lagrange equations
are now

−
d∑

i=1

∂

∂xi
(

d∑
j=1

aij(x)
∂f

∂xj
+ bi(x)f) +

d∑
i=1

bi(x)
∂f

∂xi
+ c(x)f = 0. (51)

The Euler-Lagrange equations for a quadratic variational problem are there-
fore linear in f and its derivatives.

We shall now study the behaviour of the Euler-Lagrange equations under
transformations of the independent variables.

So let ξ �→ x(ξ) be a diffeomorphism of Ω′ onto Ω; we set Dxf =
( ∂f

∂x1 , . . . ,
∂f
∂xd ), Dξx = (∂xi

∂ξj )i,j=1,...,d etc.

H(x, f,Dxf) = H(x(ξ), f,Dξf · (Dξx)−1) =: Φ(ξ, f,Dξf).

By the change of variables in integrals we have∫
Ω

H(x, f,Dxf)dx =
∫
Ω′

Φ(ξ, f,Dξf)|det(Dξx)|dξ. (52)

We now write for the sake of abbreviation

[H]f = −(
d∑

i=1

d

dxi
Hpi −Hf ). (53)

We then have for ϕ ∈ C∞
0 (Ω), on account of the derivation of Euler-Lagrange

equations,∫
Ω

[H]fϕdx =
d

dt

∫
Ω

H(x, f + tϕ,Dxf + tDxϕ)dx|t=0

=
d

dt

∫
Ω′

Φ(ξ, f + tϕ,Dξf + tDξϕ)|det(Dξx)|dξ|t=0

=
∫
Ω′

[Φ|det(Dξx)|]fϕdξ

=
∫
Ω

[Φ|det(Dξx)|]fϕ|det(Dxξ)|dx.

As this holds for all ϕ ∈ C∞
0 (Ω), it follows, as usual, from corollary 19.20

that
[H]f = [Φ|det(Dξx)|]f |det(Dxξ)|. (54)
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(Under the assumption H ∈ C2, we consider

I(f) =
∫
Ω

H(x, f(x), Df(x))dx

as a function
I : C2(Ω) → R

and [H]f is then the gradient of I, as the derivative of I is given by

ϕ �→ DI(ϕ) =
∫
Ω

[H]fϕdx.

Thus equation (54) expresses that the behaviour under transformations of
this gradient is quite analogous to that of a gradient in the finite dimensional
case.)

We shall use this to study the transformation of the Laplace operator; the
advantage of (54) lies precisely in this that one does not have to transform
derivatives of second order. Now the Laplace equation, as we have already
seen at the beginning, is precisely the Euler-Lagrange equation for the Dirich-
let integral.

So let ξ �→ x(ξ) be again a diffeomorphism of Ω′ onto Ω; we set

gij :=
d∑

k=1

∂xk

∂ξi

∂xk

∂ξj

and

gij :=
d∑

k=1

∂ξi

∂xk

∂ξj

∂xk
.

Thus
d∑

i=1

gikg
i� = δk�

(
=

{
1 for k = �
0 for k �= �

)
.

Furthermore, let
g := det(gij).

Now

d∑
i=1

(
∂f

∂xi

)2

=
d∑

i=1

d∑
j,k=1

∂f

∂ξj

∂ξj

∂xi

∂f

∂ξk

∂ξk

∂xi
=

d∑
j,k=1

gjk ∂f

∂ξj

∂f

∂ξk
.

Formula (54) now gives directly, together with (50) and (51),

∆f(x) =
1√
g

d∑
j=1

∂

∂ξj

(
√
g

d∑
k=1

gjk ∂f

∂ξk

)
. (55)
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This is the desired transformation formula for the Laplace operator.
For plane polar coordinates

x = r cosϕ, y = r sinϕ

one calculates from this

∆f(x, y) =
1
r
(
∂

∂r
(r
∂f

∂r
) +

∂

∂ϕ
(
1
r

∂f

∂ϕ
)), (56)

and for spatial polar coordinates

x = r cosϕ sin θ, y = r sinϕ sin θ, z = r cos θ

∆f(x, y, z) =
1

r2 sin θ
(
∂

∂r
(r2 sin θ

∂f

∂r
) +

∂

∂ϕ
(

1
sin θ

∂f

∂ϕ
) +

∂

∂θ
(sin θ

∂f

∂θ
))(57)

(cf. §18 for the discussion of polar coordinates).

Exercises for § 22

1) Let Ω ⊂ Rd be open and bounded. For f ∈ H2,2(Ω), put

E(f) :=
∫
Ω

|D2f(x)|2dx.

(Here, D2f is the matrix of weak second derivatives DiDjf, i, j =
1, . . . , d, and

|D2f(x)|2 =
d∑

i,j=1

|DiDjf(x)|2.)

Discuss the following variational problem: For given g ∈ H2,2(Ω),
minimize E(f) in the class

Ag :={f ∈ H2,2(Ω) : f − g ∈ H1,2
0 (Ω),

Dif −Dig ∈ H1,2
0 (Ω), i = 1, . . . , d}.

2) Let H : Ω × R × Rd → R be nonnegative, measurable w.r.t. the first
variable, and convex w.r.t. the second and third variables jointly, i.e.
for all f, g ∈ R, p, q ∈ Rd, 0 ≤ t ≤ 1, x ∈ Ω, we have

H(x, tf + (1 − t)g, tp+ (1 − t)q) ≤ tH(x, f, p) + (1 − t)H(x, g, q).

For f ∈ H1,2(Ω), we put

I(f) :=
∫
Ω

H(x, f(x), Df(x))dx.
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Show that I is lower semicontinuous w.r.t. weak H1,2 convergence.

3)
a) Let A be a (d× d) matrix with det(A) �= 0. Consider the coor-

dinate transformation

ξ �→ x = Aξ.

How does the Laplacian ∆ =
d∑

i=1

∂2

(∂xi)2 transform under this

coordinate transformation?
b) Discuss the coordinate transformation (ξ, η) �→ (x, y) with

x = sin ξ cosh η
y = cos ξ sinh η

(planar elliptic coordinates) and express the Laplacian in these
coordinates.

4) Determine all rotationally symmetric harmonic functions f : R3\{0} →
R.

5) For m ∈ N, define the Legendre polynomial as

Pm(t) :=
1

2mm!
( d
dt

)m(t2 − 1)m.

Show that
f(r, θ) := rmPm(cos θ)

satisfies ∆f = 0 (in spatial polar coordinates).

6) Let a, b ∈ R, g1, g2 > 0. For functions f : [a, b] → R with f(a) =
g1, f(b) = g2, we consider

K(f) := 2π

b∫
a

f(x)
√

1 + f ′(x)2dx → min .

(I(f) yields the area of the surface obtained by revolving the graph
of f about the x-axis. Thus, we are seeking a surface of revolution
with smallest area with two circles given as boundary.) Solve the cor-
responding Euler-Lagrange equations!

7) We define a plate to be a thin elastic body with a planar rest position.
We wish to study small transversal vibrations of such a body, induced
by an exterior force K. Let us first consider the equilibrium position.
Let f(x, y) be the vertical displacement. The potential energy of a
deformation is

U = U1 + U2,
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where
U1 =

∫
Ω

((1
2
∆f(x, y

))2 + µ
(
fxxfyy − f2

xy

))
dxdy

(here, Ω ⊂ R2 is the rest position, µ = const.),

U2 =
∫
Ω

K(x, y)f(x, y)dxdy.

Derive the Euler-Lagrange equations

∆(∆f) +K = 0.

For the motion, f(x, y, t) is the vertical displacement, and the kinetic
energy is

T =
1
2

∫
Ω

f2
t dxdy.

Derive the differential equation that describes the motion of the plate.



23. Regularity of Weak Solutions

It is shown that under appropriate ellipticity assumptions, weak solutions of partial
differential equations (PDEs) are smooth. This applies in particular to the Laplace
equation for harmonic functions, thereby justifying Dirichlet’s principle introduced
in the previous paragraph.

In the last sections we had constructed weak solutions of the Laplace and
Poisson equations, that is, solutions f ∈ H1,2(Ω), f − g ∈ H1,2

0 (Ω) (g a
prescribed boundary value) of the equation∫

Ω

d∑
i=1

Dif(x)Diϕ(x)dx+
∫
Ω

k(x)ϕ(x)dx = 0 (1)

for all ϕ ∈ C∞
0 (Ω) or even ϕ ∈ H1,2

0 (Ω), with given k ∈ L2(Ω).
In this section we shall show that a solution of (1) is regular. We shall

show, for example that if k is C∞ on Ω then so is f. In particular, f is then
a classical solution of

∆f(x) = k(x) for x ∈ Ω.

Similarly, we shall show that if ∂Ω is of class C∞, in a sense yet to be defined,
and g is also of class C∞, then f is even in C∞(Ω) and for every x ∈ ∂Ω,

f(x) = g(x)

holds.
The idea of the proof consists in showing that f has square integrable

derivatives of arbitrarily high order and therefore f ∈ W k,2(Ω) for every
k ∈ N. With the Sobolev embedding theorem one then concludes easily that
f ∈ C∞(Ω).

In order to bring forth the idea of the proof clearly, let us assume that we
could set ϕ = DjDjf in (1). Naturally, this does not work as, first of all, this
ϕ does not have zero boundary values and then we do not know whether ϕ
and its first derivatives are square integrable. But we assume, as said, that
we could nevertheless employ this ϕ and obtain∫

Ω

d∑
i=1

Dif(x)DiDjDjf(x)dx+
∫
Ω

k(x)DjDjf(x)dx = 0,
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and from this we obtain, using integration by parts (where we have again
made the false assumption that this is possible without further ado) and
summing over j,∫

Ω

d∑
i,j=1

DjDif(x)DjDif(x)dx+
∫
Ω

k(x) ·
d∑

j=1

DjDjf(x)dx = 0,

and then using Hölder’s inequality

‖D2f‖2
L2 ≤ ‖k‖L2‖D2f‖L2 ;

so
‖D2f‖L2 ≤ ‖k‖L2 . (2)

We thus obtain an estimate for the second derivatives. In the sequel, we shall
first substitute the second derivatives of f by difference quotients and then
multiply these difference quotients by a suitable η(x) ∈ C∞

0 (Ω), and obtain
in this way a test function ϕ, which we may substitute. We shall then obtain
an estimate analogous to (2) for the second difference quotient of f, and this
estimate would be independent of the difference parameter h. We shall then
see that in the limit h→ 0 we obtain first the existence and then an estimate
for the second weak derivatives of f.

This procedure can then be iterated, provided k fulfils appropriate as-
sumptions, to obtain estimates for higher derivatives.

Definition 23.1 For f : Ω → R we define the difference quotients by

∆h
i f(x) :=

f(x+ hei) − f(x)
h

(h �= 0),

where ei is the ith unit vector of Rd (i ∈ {1, . . . , d}).

We shall need the following formula for a kind of integration by parts for
difference operators.

Lemma 23.2 Let f, ϕ ∈ L2(Ω), suppϕ ⊂⊂ Ω, |h| < dist (suppϕ, ∂Ω); we
have ∫

Ω

ϕ(x)∆h
i f(x)dx = −

∫
Ω

f(x)∆−h
i ϕ(x)dx. (3)

Proof. For the proof we calculate
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Ω

ϕ(x)
f(x+ hei) − f(x)

h
dx

=
1
h

∫
Ω

ϕ(x)f(x+ hei)dx− 1
h

∫
Ω

ϕ(x)f(x)dx

=
1
h

∫
Ω

ϕ(y − hei)f(y)dy − 1
h

∫
Ω

ϕ(y)f(y)dy

(where we have set y = x+ hei in the first integral and y = x in the second
(note the assumption on h))

=
∫
Ω

f(y)
ϕ(y − hei) − ϕ(y)

h
dy

= −
∫
Ω

f(y)
ϕ(y + (−h)ei) − ϕ(y)

−h dy,

and this proves the required formula. �

Lemma 23.3 Let f ∈W 1,2(Ω), Ω′ ⊂⊂ Ω, |h| < dist (Ω′, ∂Ω). Then ∆h
i f ∈

L2(Ω′) and
‖∆h

i f‖L2(Ω′) ≤ ‖Dif‖L2(Ω) (i = 1, . . . , d).

Proof. By an approximation argument we can again restrict ourselves to the
case
f ∈ C1(Ω) ∩W 1,2(Ω). Then

∆h
i f(x) =

f(x+ hei) − f(x)
h

=
1
h

h∫
0

Dif(x1, . . . , xi−1, xi + ξ, xi+1, . . . , xd)dξ

and by the Hölder inequality

|∆h
i f(x)|2 ≤ 1

h

h∫
0

|Dif(x1, . . . , xi + ξ, . . . , xd)|2dξ,

and further ∫
Ω′

|∆h
i f(x)|2dx ≤ 1

h

h∫
0

∫
Ω

|Dif |2dxdξ

=
∫
Ω

|Dif |2dx.
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�

Conversely, we have

Lemma 23.4 Let f ∈ L2(Ω) and assume that there exists a K < ∞ with
∆h

i f ∈ L2(Ω′) and
‖∆h

i f‖L2(Ω′) ≤ K

for all h > 0 and all Ω′ ⊂⊂ Ω with |h| < dist (Ω′, ∂Ω). Then there exists
the weak derivative Dif and

‖Dif‖L2(Ω) ≤ K.

Proof. By theorem 21.8, the bounded set
{
∆h

i f
}

in L2(Ω′) contains a weakly
convergent sequence. As this holds for every Ω′, there exists a sequence hn →
0 and a v ∈ L2(Ω) with ‖v‖2 ≤ K (see, e.g., corollary 21.9) and∫

Ω

ϕ∆hn
i f →

∫
Ω

ϕv for all ϕ ∈ C1
0 (Ω).

If hn < dist (suppϕ, ∂Ω) then by (3) (lemma 23.2)∫
Ω

ϕ∆hn
i f = −

∫
Ω

f∆−hn
i ϕ → −

∫
Ω

fDiϕ as n → ∞.

It follows that ∫
Ω

ϕv = −
∫
Ω

fDiϕ,

thus v = Dif. �

Theorem 23.5 Let f ∈ W 1,2(Ω) be a weak solution of ∆f = k, with k ∈
L2(Ω). Then for every Ω′ ⊂⊂ Ω, f ∈W 2,2(Ω′), and we have

‖f‖W 2,2(Ω′) ≤ const. (‖f‖L2(Ω) + ‖k‖L2(Ω)), (4)

where the constant depends only on d and on δ := dist (Ω′, ∂Ω). Further-
more, ∆f = k almost everywhere in Ω.

Proof. Let Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω, dist (Ω′′, ∂Ω) ≥ δ/4, dist (Ω′, ∂Ω′′) ≥ δ/4.
Now ∫

Ω

Df ·Dw = −
∫
Ω

k · w for all w ∈ H1,2
0 (Ω). (5)

as f is a weak solution.
In the following we consider a w with
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supp w ⊂⊂ Ω′′ (i.e. w ∈ H1,2
0 (Ω′′′) for some Ω′′′ ⊂⊂ Ω′′

and always choose h > 0 with

|2h| < dist (suppw, ∂Ω′′).

We can then also substitute ∆−h
� w(� ∈ {1, . . . d}) in (5) (as w ∈ H1,2 ⇒

∆−h
� w ∈ H1,2).

It follows that∫
Ω′′

D∆h
� fDw =

∫
Ω′′

∆h
� (Df) ·Dw (6)

= −
∫
Ω′′

Df∆−h
� Dw = −

∫
Ω′′

Df ·D(∆−h
� w)

=
∫
Ω′′

k∆−h
� w

≤ ‖k‖L2(Ω) · ‖Dw‖L2(Ω′′)

by lemma 23.3 and choice of h. Now let η ∈ C1
0 (Ω′′), 0 ≤ η ≤ 1, η(x) = 1 for

x ∈ Ω′, |Dη| ≤ 8
δ .

Now we set
w := η2∆h

� f. (7)

By (6) we get∫
Ω′′

|ηD∆h
� f |2 =

∫
Ω′′

D∆h
� f ·Dw − 2

∫
Ω′′

η∆h
� fD∆

h
� f ·Dη

≤ 2‖k‖L2(Ω)(‖ηD∆h
� f‖L2(Ω′′) + ‖∆h

� fDη‖L2(Ω′′)) (8)

+ 2‖ηD∆h
� f‖L2(Ω′′)‖∆h

� fDη‖L2(Ω′′).

In the following estimates, we apply the Schwarz inequality in the form

ab ≤ 1
2ε
a2 +

ε

2
b2

where ε is chosen suitably for our purposes.
Thus, applying lemma 23.3 (note the choice of h) we obtain

‖ηD∆n
� f‖2

L2(Ω′′) ≤ 4‖k‖2
L2(Ω) +

1
4
‖ηD∆h

� f‖2
L2(Ω′′)

+ ‖k‖2
L2(Ω) + sup |Dη|2‖D�f‖2

L2(Ω′′) (9)

+
1
4
‖ηD∆h

� f‖2
L2(Ω′′) + 4 sup |Dη|2‖D�f‖2

L2(Ω′′).

We can get Ω′′ here as η has compact support in Ω′′, by choosing h <
dist (∂Ω′′, suppη) and observing that the corresponding norm in (8) must be
taken only over suppη.
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The important trick here in applying the Schwarz inequality consists in
multiplying the expression ‖ηD∆h

� f‖2
L2(Ω′′) on the right side by a smaller

factor than that which appears on the left side and therefore the contribution
of the right side can be absorbed in the left side. We therefore obtain, as η ≡ 1
on Ω′ and (a2 + b2)

1
2 ≤ a+ b,

‖D∆h
� f‖L2(Ω′) ≤ ‖ηD∆h

� f‖L2(Ω′′)

≤ const (‖k‖L2(Ω) + sup |Dη| · ‖D�f‖L2(Ω′′)). (10)

Letting h → 0, it follows from lemma 23.4 that

‖D2f‖L2(Ω′) ≤ const (‖k‖L2(Ω) +
1
δ
‖Df‖L2(Ω′′)). (11)

We now claim that

‖Df‖L2(Ω′′) ≤ const (
1
δ
‖f‖L2(Ω) + δ‖k‖L2(Ω)). (12)

For this, let ζ ∈ C1
0 (Ω) with ζ(x) = 1 for x ∈ Ω′′, |Dζ| ≤ 8

δ . We set w = ζ2f
in (5) and obtain with the help of the Schwarz inequality∫

Ω

ζ2|Df |2 = −2
∫
Ω

ζfDf ·Dζ −
∫
Ω

k · ζ2f

≤ 1
2

∫
Ω

ζ2|Df |2 + 2
∫
Ω

f2|Dζ|2 + δ2
∫
Ω

k2 +
1
δ2

∫
f2 (13)

and therefore∫
Ω′′

|Df |2 ≤
∫
Ω

ζ2|Df |2 ≤ const (
1
δ2

‖f‖2
L2(Ω) + δ2‖k‖2

L2(Ω)) (14)

and this is just (12). Now (4) follows from (11) and (12). �

If now k is even in W 1,2(Ω) then one can substitute Diw for w in (5) and
obtain ∫

Ω

D(Dif)Dw = −
∫
Dik · w.

Theorem 23.5 thereby gives Dif ∈W 2,2(Ω′), thus f ∈W 3,2(Ω′).
Iteratively, one obtains

Theorem 23.6 Let f ∈ W 1,2(Ω) be a weak solution of ∆f = k, k ∈
Wm,2(Ω). Then for every Ω′ ⊂⊂ Ω the function f ∈Wm+2,2(Ω′), and

‖f‖W m+2,2(Ω′) ≤ const (‖f‖L2(Ω) + ‖k‖W m,2(Ω)),

where the constant depends on d,m and dist (Ω′, ∂Ω).
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Corollary 23.7 If f ∈ W 1,2(Ω) is a weak solution of ∆f = k with k ∈
C∞(Ω), then f ∈ C∞(Ω).

Proof. This follows from theorem 23.6 and the Sobolev embedding theorem
(in particular corollary 20.19), as for every η ∈ C∞

0 (Ω) we have ηf ∈ Hm,2
0 (Ω)

for all m, and for any x0 ∈ Ω there is an r > 0 with B(x0, r) ⊂ Ω and an
η ∈ C∞

0 (Ω) with η(x) = 1 for x ∈ B(x0, r), and then for every x ∈ B(x0, r)
η(x)f(x) = f(x). �

Corollary 23.8 Let f ∈ W 1,2(Ω) be an eigenfunction of the Laplace opera-
tor, thus
∆f + λf = 0 in the weak sense for some λ ∈ R. Then f ∈ C∞(Ω).

Proof. We write the equation in the form

∆f = −λf.
By assumption the right side is in W 1,2 and so f ∈ W 3,2 by theorem 23.5.
But then, the right side is in W 3,2 and thereby f ∈ W 5,2 by theorem 23.6.
Iteratively, it follows that f ∈ Wm,2 for all m ∈ N and then, as in corollary
23.7, f ∈ C∞(Ω). �

For later purposes we must consider more general operators then the
Laplace operator, namely linear elliptic operators. We consider thus

Lf(x) :=
d∑

i=1

∂

∂xi

⎛⎝ d∑
j=1

aij(x)
∂

∂xj
f(x)

⎞⎠
The functions aij(x) are assumed to be measurable on Ω. We assume that
the operator L is uniformly elliptic in the following sense:

There exist constants 0 < λ ≤ µ with

λ‖ξ‖2 ≤
d∑

i,j=1

aij(x)ξiξj ≤ µ‖ξ‖2 (15)

for all x ∈ Ω and all ξ = (ξ1, . . . , ξd) ∈ Rd.
Obviously the Laplace operator satisfies (15) with λ = µ = 1. f ∈ H1,2(Ω)

is called a weak solution of

Lf = k (k ∈ L2(Ω) prescribed),

if for all v ∈ H1,2
0 (Ω)
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∫
Ω

d∑
i,j=1

aij(x)Djf(x)Div(x)dx

= −
∫
Ω

k(x)v(x)dx. (16)

Theorem 23.5 generalizes to

Theorem 23.9 Let f ∈ W 1,2(Ω) be a weak solution of Lf = k in Ω, where
L is uniformly elliptic and k ∈ L2(Ω). Furthermore, let the functions aij(x)
be in C1(Ω) and assume that

‖aij‖C1(Ω) ≤ K for all i, j, (17)

K being a constant.
Then f ∈W 2,2(Ω′) for every Ω′ ⊂⊂ Ω and

‖f‖W 2,2(Ω′) ≤ c1(‖f‖L2(Ω) + ‖k‖L2(Ω)), (18)

where the constant c1 again depends on d, δ = dist (Ω′, ∂Ω), λ and K.

(Notice that the requirement ‖aij‖C1(Ω) ≤ K implies the second inequal-
ity in (15) with µ = Kd).

Proof. We shall modify the proof of theorem 23.5 suitably. For this, we also
need a rule for the difference quotients of a product. We have

(∆h
� (ρσ))(x) =

1
h
{ρ(x+ he�)σ(x+ he�) − ρ(x)σ(x)} (19)

= {ρ(x+ he�)∆h
� σ(x) + (∆h

� ρ(x))σ(x)}.
In particular

∆h
� (

d∑
j=1

aij(x)Djf(x)) =
d∑

j=1

(aij(x+ he�)∆h
�Djf(x) (20)

+ (∆h
� a

ij(x))Djf(x)).

Now we proceed exactly as before and substitute ∆−h
� v for v in (16), where

v satisfies the same conditions as in the proof of theorem 23.5.
We obtain ∫

Ω′′

d∑
i,j=1

∆h
� (aij(x)Djf(x))Div(x)dx

= −
∫
k(x)∆−h

� v(x)dx, (21)
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and now when we take (20) into account and use lemma 23.3 we obtain, with

ψi(x) :=
d∑

j=1

(∆h
� a

ij(x))Djf(x)

the inequality∫
Ω′′

d∑
i,j=1

aij(x+ he�)Dj∆
h
� f(x) ·Div(x)dx (22)

≤ (
d∑

i=1

‖ψi‖L2(Ω′′) + ‖k‖L2(Ω′′))‖Dv‖L2(Ω′′)

≤ c2(‖f‖W 1,2(Ω′′) + ‖k‖L2(Ω)) · ‖Dv‖L2(Ω′′)

where c2 depends on d and K, thus the analogue of (6).
For the rest of the proof, one needs only to observe further that

λ

∫
Ω

|ηD∆h
� f(x)|2dx (23)

≤
∫
Ω

η2
d∑

i,j=1

aij(x+ he�)∆h
�Dif(x)∆h

�Djf(x)dx

and proceed as in the proof of theorem 23.5. One obtains only the extra factor
1
λ in the estimates.

As an example, we want to derive the analogue of (12):
We substitute as before ζ2f, this time in (16), and obtain

λ2

∫
Ω

ζ2(x)|Df(x)|2dx ≤
∫
Ω

d∑
i,j=1

aij(x)Djf(x)Dif(x)ζ2(x)dx

= −2
∫
Ω

d∑
i,j=1

aij(x)Djf(x) · ζ(x)Diζ(x)f(x)dx (24)

−
∫
Ω

k(x)ζ2(x)f(x)dx

≤ λ2

2

∫
Ω

ζ2(x)|Df(x)|2dx+
2
λ2
K2

∫
Ω

f2(x)|Dζ(x)|2dx

+ δ2
∫
Ω

ζ2(x)k(x)2dx+
1
δ2

∫
Ω

f2(x)dx ,

as usual by applying the Schwarz inequality

2ab ≤ εa2 +
1
ε
b2.
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Therefore we can again absorb the term λ2

2

∫
ζ2(x)|Df(x)|2dx in the left hand

side and obtain∫
Ω′′

|Df(x)|2dx ≤ c3(
1
δ2

‖f‖2
L2(Ω) + δ2‖k‖2

L2(Ω)), (25)

which is the analogue of (12), whereby c3 depends on λ and K. �

Iteratively one proves, as in theorem 23.6 and corollary 23.7, the following
theorem

Theorem 23.10 Let f ∈ W 1,2(Ω) be a weak solution of Lf = k, with k ∈
Wm,2(Ω). Furthermore, let the coefficients aij of L be in Cm+1(Ω) with

‖aij‖Cm+1(Ω) ≤ Km for all i, j.

Then for every Ω′ ⊂⊂ Ω, f ∈Wm+2,2(Ω′) with

‖f‖W m+2,2(Ω′) ≤ c(‖f‖L2(Ω) + ‖k‖W m,2(Ω)),

where c depends on d, λ,m,Km and dist (Ω′, ∂Ω). If k and the coefficients
aij are in C∞(Ω) then f is also in C∞(Ω). �

From this, the regularity of solutions of an arbitrary elliptic operator in
divergence form can easily be recovered:

Corollary 23.11 Let f ∈W 1,2(Ω) be a weak solution of

Mf(x) :=
d∑

i=1

(
∂

∂xj

⎛⎝ d∑
j=1

aij(x)
∂

∂xj
f(x) + bi(x)f(x)

⎞⎠
+

d∑
i=1

ci(x)
∂

∂xi
f(x) + d(x)f(x) = k(x).

If k(x), d(x) and all coefficients aij(x) are of class C∞ then f ∈ C∞(Ω).

Here, weak solution means that for all v ∈ H1,2
0 (Ω)∫

Ω

{
d∑

i=1

(
d∑

j=1

aij(x)Djf(x) + bi(x)f(x))Div(x)

− (
d∑

i=1

ci(x)Dif(x) + d(x)f(x))v(x)}dx (26)

= −
∫
Ω

k(x)v(x)dx.
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Proof. We write (26) as∫
Ω

d∑
i,j=1

aij(x)Djf(x)Div(x)dx =
∫
Ω

ψ(x)v(x)dx (27)

with

ψ =
d∑

i=1

(bi + ci)Dif +

(
d∑

i=1

Dib
i + d

)
f − k.

By assumption, ψ ∈ L2(Ω) for every Ω0 ⊂⊂ Ω, so f is a weak solution of

Lf = ψ in Ω0

with right side in L2. Theorem 23.9 gives f ∈ W 2,2 locally. But then (still
locally) ψ ∈ W 1,2, therefore f ∈ W 3,2 by theorem 23.10 and so ψ ∈ W 2,2;
again by theorem 23.10 f ∈W 4,2 and so on. �

In order to show that f is also regular on ∂Ω we must first formulate
suitable assumptions on ∂Ω.

Definition 23.12 A bounded open set Ω ⊂ Rd is said to be of class Ck(k =
0, 1, 2, . . .∞) if for every x0 ∈ ∂Ω there is an r > 0 and a mapping Φ :
U(x0, r) → Rd with the following properties

(i) Φ and Φ−1 are of class Ck

(ii) Φ(Ω ∩ U(x0, r)) ⊂ {x = (x1, . . . , xd) ∈ Rd : xd > 0}
(iii) Φ(∂Ω ∩ U(x0, r)) ⊂ {x = (x1, . . . , xd) ∈ Rd : xd = 0}

In particular, ∂Ω is thus of dimension d−1, in the sense that locally there
exists a Ck-diffeomorphism to an open subset of Rd−1. A set of class Ck can
therefore, in particular, have no isolated boundary points if d > 1.

Definition 23.13 Let Ω ⊂ Rd be of class Ck. A mapping g : Ω → R is said
to be of class C�(Ω), for � ≤ k, if g ∈ C�(Ω) and for every x0 ∈ ∂Ω
g ◦ Φ−1 : {x = (x1, . . . , xd) = xd ≥ 0} → R is of class C�, where Φ is chosen
as in the definition 23.12.

We can now prove the following global statement (“global” here means
that the statement refers to Ω and not just to relative compact subsets of Ω;
such a statement would only be “local”).

Theorem 23.14 Let g ∈W 2,2(Ω), k ∈ L2(Ω) and let the open, bounded set
Ω be of class C2. Let f be a weak solution of ∆f = k, with f − g ∈ H1,2

0 (Ω).
Then f ∈W 2,2(Ω) and

‖f‖W 2,2(Ω) ≤ c(‖k‖L2(Ω) + ‖g‖W 2,2(Ω)), (28)
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where c depends on d and Ω.

Proof. First, we reduce the proof to the case f ∈ H1,2
0 (Ω). Otherwise, we

consider f̃ = f − g ∈ H1,2
0 (Ω). Then we have

∆f̃ = ∆f −∆g = k −∆g = k̃ ∈ L2(Ω)

and ‖k̃‖L2 ≤ ‖k‖L2 + ‖g‖W 2,2(Ω) and f̃ therefore satisfies the same assump-
tions as f, and obviously the W 2,2-norm of f can be approximated by those
of f̃ and g.

Thus we assume that f ∈ H1,2
0 (Ω).

Now let x0 ∈ ∂Ω. As Ω, by assumption, is of class C2, there exists a
C2-diffeomorphism Φ with Φ(x0) = 0,

Φ : U(x0, r) → Φ(U(x0, r)) ⊂ Rd (r > 0)

with the properties described in definition 23.12. We now transform the
Laplace operator ∆ by the coordinate transformation Φ−1, as described in
§22. The mapping f := f ◦ Φ−1 then fulfils, by the considerations at the end
of §22, a weak equation of the form

d∑
i,j=1

1√
g

∂

∂xi
(
√
ggij ∂

∂xj
f) = k,

so with aij :=
√
ggij , k :=

√
gk (in particular aij ∈ C1) we obtain

d∑
i,j=1

∂

∂xi
(aij ∂

∂xj
f) = k̄. (29)

As Φ(U(x0, r)) is an open set containing 0, equation (29) holds in U+(0, R) :=
{(x1, . . . , xd) ∈ U(0, R) : xd > 0} for some R > 0. Moreover, there exist
constants λ > 0, K < ∞, such that (15) and (17) hold in U+(0, R). The
constants λ and K here depend of course on the special geometry of ∂Ω (the
matrix (gij) is positive definite as Φ is a diffeomorphism; for the same reason,
g = det(gij) is positive).

We now make the following observation:
If η ∈ C1

0 (U(0, R)), then ηf ∈ H1,2
0 (U+(0, R)).

Namely, f vanishes for xd = 0, so we do not need to demand this of η.
If now 1 ≤ i ≤ d− 1 and |h| < dist (supp η, ∂U(0, R)), then also

η2∆h
i f ∈ H1,2

0 (U+(0, R)).

But this means that we can argue exactly as in the proof of theorem 23.9 to
obtain a corresponding estimate for Dijf ∈ L2(U(0, R

2 )), as long as i and j

are not both equal to d. Finally, in order to control Dddf we rewrite (29) as
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∂2

(∂xd)2
f =

1
add

{k −
d∑

i,j=1
(i,j)�=(d,d)

∂

∂xi
(aij ∂

∂xj
f) − (

∂

∂xd
add)

∂f

∂xd
}. (30)

As we have just controlled the L2-norm of the right side of (30) the L2-norm
of Dddf has also thereby been controlled.

It follows that

‖f‖W 2,2(U+(0, R
2 )) ≤ c4(‖k‖L2(U+(0,R)) + ‖f‖W 1,2(U+(0,R))).

However, now

‖f‖W 2,2(Φ−1(U+(0, R
2 ))) ≤ c5‖f‖W 2,2(U+(0, R

2 )),

where c5 depends on Φ and its first and second derivatives. We have thus
found for every x0 ∈ ∂Ω a neighborhood on which we can control the W 2,2-
norm of f by the L2-norm of k and the W 1,2-norm of f. Since Ω is bounded,
∂Ω is compact and can therefore be covered by finitely many such neighbor-
hoods.

It follows, together with the interior estimate from theorem 23.5, that

‖f‖W 2,2(Ω) ≤ c6(‖k‖L2(Ω) + ‖f‖W 1,2(Ω)). (31)

But now, by the Poincaré inequality (corollary 20.16), we have

‖f‖L2(Ω) ≤ c7‖Df‖L2(Ω) (32)

as f ∈ H1,2
0 (Ω), where c7 depends on the size of Ω.

Finally, on account of f ∈ H1,2
0 (Ω),

‖Df‖2
L2(Ω) =

∫
Ω

Df ·Df =
∫
Ω

k · f

≤ 1
ε

∫
Ω

k2 + ε

∫
Ω

f2, (33)

for every ε > 0. Choosing ε sufficiently small, it follows from (32) and (33)
that

‖f‖W 1,2(Ω) ≤ c8‖k‖L2(Ω), (34)

and therefore from (31)

‖f‖W 2,2(Ω) ≤ c9(‖k‖L2(Ω)). (35)

This is (28) for the case f ∈ H1,2
0 (Ω), to which we had reduced the proof at

the beginning. �

Theorem 23.15 Let Ω be an open, bounded subset of Rd of class C∞. Let
k, g ∈ C∞(Ω). Then there exists a unique solution of the Dirichlet problem
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∆f(x) = k(x) for x ∈ Ω

f(x) = g(x) for x ∈ ∂Ω,

and this solution is of class C∞(Ω).

Proof. We had already shown in the last paragraph that there is a unique
weak solution of the problem

∆f = k on Ω,

f − g ∈ H1,2
0 (Ω).

So we must only show the regularity. This can be done as before by iterating
the argument of theorem 23.14 together with the Sobolev embedding theorem.
In order that we can iterate the proof of theorem 23.14, we must first prove, in
case we make the same reduction as at the beginning of theorem 23.14, that
f is even in H2,2

0 (Ω). For this it again suffices to show, using the notations
of theorem 23.14, that for η ∈ C1

0 (U(0, R)) and 1 ≤ i ≤ d− 1,

ηDif ∈ H1,2
0 (U+(0, R)).

Now by lemma 23.3

η∆h
i f ∈ H1,2

0 (U+(0, R)) for sufficiently small |h|,
and

‖η∆h
i f‖W 1,2(U+(0,R)) ≤ ‖η‖C1(U+(0,R)) · ‖f‖W 2,2(U+(0,R)).

Therefore, by theorem 21.8, there exists a sequence (hn)n∈N, lim
n→∞hn = 0,

for which η∆hn
i f converges weakly in H1,2

0 (U+(0, R)).
However, the limit of such a sequence is ηDif and as H1,2

0 is closed under
weak convergence, it follows that indeed ηDif ∈ H1,2

0 (U+(0, R)). Thus f ∈
H2,2

0 (Ω) and we can thereby apply the argument of the proof of theorem 23.14
to Dif, i = 1, . . . , d− 1. Dddf is then controlled as before by the differential
equation.

In this way one can iterate the proof of theorem 23.14 to show that f ∈
Wm,2(Ω), f − g ∈ Hm,2

0 (Ω) for every m ∈ N. Corollary 20.18 as usual then
yields the assertion. �

Entirely similar statements can be proven for the operators

Lf =
d∑

i,j=1

∂

∂xi
(aij ∂

∂xj
f) +

d∑
i=1

∂

∂xi
(bif) +

d∑
i=1

ci
∂

∂xi
f + ef (36)

with corresponding regular coefficients aij , bi, ci, e. Certainly one obtains an
extra term ‖f‖L2(Ω) on the right side of (28).

That such a term in general is necessary, one already sees from the dif-
ferential equation
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f ′′(t) + λ2f(t) = 0, 0 < t < π

f(0) = 0, f(π) = 0

with λ > 0. The solutions for λ ∈ Z are f(t) = α sin(λt), with arbitrary α.
The details of the regularity proof for such an operator L are recom-

mended to the reader as an exercise.

Exercises for § 23

1) Carry out the regularity proof for an operator L as given in (36).

2) Define a notion of weak solution for the equation

∆f =
d∑

i=1

Dik
i, where ki ∈ L2(Ω) for i = 1, . . . , d.

Show regularity results for weak solutions under appropriate assump-
tions on ki.



24. The Maximum Principle

The strong maximum principle of E. Hopf says that a solution of an elliptic PDE
cannot assume an interior maximum. This leads to further results about solutions
of such PDEs, like removability of singularities, gradient bounds, or Liouville’s
theorem saying that every bounded harmonic functions defined on all of Euclidean
space is constant.

Let Ω be, as usual, an open subset of Rd. In this paragraph, we consider
linear elliptic differential operators of the form

Lf(x) =
d∑

i,j=1

aij(x)
∂2f

∂xi∂xj
+

d∑
i=1

bi(x)
∂f

∂xi

which fulfil the following conditions:

(i) aij(x) = aji(x) for all i, j, x (this is not an essential restriction, as
already remarked occasionally)

(ii) uniform ellipticity: There are constants 0 < λ ≤ µ <∞ with

λ|ξ|2 ≤
d∑

i,j=1

aij(x)ξiξj ≤ µ|ξ|2

for all x ∈ Ω, ξ ∈ Rd

(iii) there is a constant K such that

|bi(x)| ≤ K for all x ∈ Ω, i ∈ {1, . . . , d}
We point out explicitly that the type of the operators considered here is

different from that of the operators considered in the previous paragraph, as
the operators there were of the form

d∑
i=1

∂

∂xi

( d∑
j=1

aij(x)
∂

∂xj

)
+ . . .

We now come to the so-called weak maximum principle.

Theorem 24.1 Let Ω be bounded and let f ∈ C2(Ω) ∩ C0(Ω) satisfy
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Lf ≥ 0 in Ω.

Then f assumes its maximum on ∂Ω, i.e.

sup
x∈Ω

f(x) = max
x∈∂Ω

f(x). (1)

If Lf ≤ 0 then the corresponding statement holds for the minimum.

Proof. We first consider the case that Lf > 0 in Ω. We claim that in this
case, f cannot have a maximum in the interior of Ω. Namely, at an interior
maximum x0,

Df(x0) = 0,

and

D2f(x0) = (
∂2f

∂xi∂xj
(x0))i,j=1,...,d

is negative semi-definite.
As the matrix A = (aij(x0)) is, by assumption, positive definite,

Lf(x0) =
d∑

i,j=1

aij(x0)
∂2f

∂xi∂xj
(x0)

= Tr (A ·D2f(x0)) ≤ 0

(Tr denotes the trace of a matrix), in contradiction to the assumption
Lf(x0) > 0. Thus, in fact, f can in this case have no maximum in the
interior of Ω. We now consider for α = const.

Leαx1
= (α2a11(x) + αb1(x))eαx1 ≥ (λα2 −Kα)eαx1

,

by (ii) and (iii).
So, for sufficiently large α

Leαx1
> 0. (2)

We now fix an α which satisfies (2). Then, for every ε > 0,

L(f(x) + εeαx1
) > 0.

Therefore by what has already been shown

sup
x∈Ω

(f(x) + εeαx1
) = max

x∈∂Ω
(f(x) + εeαx1

).

Now (1) follows by letting ε → 0. �

Corollary 24.2 Let f, g ∈ C2(Ω) ∩ C0(Ω), Ω bounded. If

Lf ≥ Lg in Ω (3)
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and f(y) ≤ g(y) for y ∈ ∂Ω (4)

then

f(x) ≤ g(x) for x ∈ Ω. (5)

If, instead of (3), even Lf = Lg holds in Ω and instead of (4) f = g on
∂Ω, then f = g in Ω.

In particular, the Dirichlet problem

Lf(x) = k(x) for x ∈ Ω (k ∈ C0(Ω) given)

f(x) = ϕ(x) for x ∈ ∂Ω (ϕ ∈ C0(∂Ω) given)

is uniquely solvable.

Proof. We have L(f − g) ≥ 0. Thus, by theorem 24.1,

sup
x∈Ω

(f(x) − g(x)) = max
y∈∂Ω

(f(y) − g(y)) ≤ 0,

on account of (4). This is (5). The remaining assertions follow easily. �

Definition 24.3 f ∈ C2(Ω) is called a subsolution of Lf = 0 if Lf ≥ 0, and
a supersolution of Lf = 0, if Lf ≤ 0 in Ω. A subsolution, resp. supersolution,
of ∆f = 0 is called subharmonic and superharmonic, respectively.

This terminology is motivated as follows:
If ∆h = 0,∆f ≥ 0 in Ω and f = h on ∂Ω then f ≤ h, by corollary 24.2.
A subharmonic function therefore always lies below a harmonic function

with the same boundary values.

Examples.
1) For β ∈ R and x ∈ Rd, ∆|x|β = (dβ + β(β − 2))|x|β−2; for β ≥ 2 this

is also defined for x = 0 and ∆|x|β ≥ 0. Thus |x|β is subharmonic for
β ≥ 2.

2) Let f : Ω → R be harmonic and positive and α ≥ 1. We compute

∆fα =
d∑

i=1

∂

∂xi
(αfα−1fxi)

=
d∑

i=1

(α(α− 1)fα−2fxifxi + αfα−1fxixi)

=
d∑

i=1

α(α− 1)fα−2fxifxi , as f is harmonic

≥ 0.
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Therefore for α ≥ 1 and a positive harmonic f, fα is subharmonic.

3) We compute for a positive f : Ω → R

∆ log f =
d∑

i=1

∂

∂xi
(
fxi

f
) =

d∑
i=1

(
fxixi

f
− fxifxi

f2
).

Therefore if f is harmonic then log f is superharmonic.

As an application of the maximum principle, we can prove a result on the
removability of isolated singularities of the Laplace operator.

Theorem 24.4 Let x0 ∈ Rd, d ≥ 2, R > 0 and

f : U(x0, R)\{x0} → R

be harmonic and bounded. Then f has a harmonic extension through the point
x0, i.e. there is a harmonic function

h : U(x0, R) → R

such that h = f in U(x0, R)\{x0}.

Proof. Since the Laplace equation is invariant under translations and homo-
theties, we can assume that x0 = 0 and R = 2.

Let
f : B(0, 1) → R

be a solution of the Dirichlet problem

∆f = 0 on U(0, 1) (6)
f(x) = f(x) for x ∈ ∂B(0, 1).

The existence of f has been proven in §23 (theorem 23.15: notice that by
corollary 23.7, f is C∞ in some neighborhood of ∂B(0, 1)).

We recall, moreover, that for x �= 0

g(x) :=
{

log 1
‖x‖ for d = 2

(‖x‖2−d − 1) for d ≥ 3

is harmonic (see §9).
We now consider

fε(x) := f(x) + εg(x). (7)

For all ε we have, as g(x) = 0 for ‖x‖ = 1

fε(x) = f(x) = f(x) for ‖x‖ = 1 (8)

and
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lim
x→0

fε(x) = ∞ for all ε > 0. (9)

For every ε > 0 there thus exists an r = r(ε) > 0 with

fε(x) > f(x) for ‖x‖ ≤ r (10)

since, by assumption, f(x) is bounded.
Finally, for sufficiently large ε we also have

fε(x) > f(x) for 0 < ‖x‖ < 1, (11)

as ∂
∂rg(x) < 0 for ‖x‖ = 1 (r = ‖x‖) and f, as a C∞-function, has a bounded

derivative (corollary 23.7), in particular for ‖x‖ = 1.
We now choose the smallest ε0 ≥ 0 such that

fε0(x) ≥ f(x) for ‖x‖ ≤ 1. (12)

From the above considerations, it follows that such an ε0 exists.
Now if ε0 were positive, there would be y0 ∈ U(0, 1)\{0} with

fε0/2(y0) < f(y0), (13)

by (8). But then by (10) we would have

inf
x∈U(0,1)\B(0,r(ε0/2))

(fε0/2(x) − f(x)) < 0

= min
y∈∂B(0,1)∪∂B(0,r(ε0/2))

(fε0/2(y) − f(y)).

As fε0/2−f is harmonic in U(0, 1)\B(0, r(ε0/2)), this would contradict corol-
lary 24.2.

It follows that ε = 0, so

f = f0 ≥ f in U(0, 1)\{0}.
Similarly one proves that

f ≤ f in U(0, 1)\{0}.
Thus f = f in U(0, 1)\{0} and

h :=
{
f in U(0, 2)\{0}
f in U(0, 1)

has the required properties. �

Example. It follows in particular that the following Dirichlet problem has no
solution: f : B(0, 1) → R with

∆f(x) = 0 in U(0, 1)\{0}
f(y) = 0 for ‖y‖ = 1
f(0) = 1
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By theorem 24.4, such a solution would admit a harmonic extension h :
B(0, 1) → R with ∆h(x) = 0 in U(0, 1), h(y) = 0 for ‖y‖ = 1. But then by
corollary 24.2 h ≡ 0 holds in B(0, 1), in particular h(0) = 0 �= 1. (For this
example, recall also the discussion before definition 22.8.)

A further consequence of the maximum principle is a gradient estimate
for solutions of the Poisson equation.

Theorem 24.5 Let f ∈ C2(U(x0, r)) ∩ C0(B(x0, r)) satisfy

∆f(x) = k(x)

in U(x0, r), with k a bounded function. Then for i = 1, . . . , d we have

| ∂
∂xi

f(x0)| ≤ d

r
sup

∂B(x0,r)

|f | + r

2
sup

B(x0,r)

|k|. (14)

Proof. We may assume x0 = 0 and i = d. We set

U+(0, r) := {x = (x1, . . . , xd) : ‖x‖ < r, xd > 0},
and for x = (x1, . . . , xd) let x′ := (x1, . . . , xd−1). Let M := sup

∂B(0,r)

|f |,K :=

sup
B(0,r)

|k|. Set

g(x) :=
1
2
(f(x′, xd) − f(x′,−xd))

and
ϕ(x) :=

M

r2
‖x‖2 + xd(r − xd)(

dM

r2
+
K

2
).

We then have
∆ϕ(x) = −K in U+(0, r)
ϕ(x′, 0) ≥ 0 for all x′

ϕ(x) ≥ M for ‖x‖ = r, xd ≥ 0.

Also
|∆g(x)| ≤ K in U+(0, r)
g(x′, 0) = 0 for all x′

|g(x)| ≤M for ‖x‖ = r, xd ≥ 0.

Altogether this gives

∆(ϕ± g) ≤ 0 in U+(0, r)
ϕ± g ≥ 0 on ∂U+(0, r).

The maximum principle therefore implies

|g(x)| ≤ ϕ(x) in U+(0, r).
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It follows that

| ∂

∂xd
f(0)| = lim

xd→0
xd>0

|g(0, x
d)

xd
| ≤ lim

xd→0
xd>0

ϕ(0, xd)
xd

=
dM

r
+
r

2
K.

�

As a direct consequence, we obtain Liouville’s theorem:

Corollary 24.6 Every bounded harmonic function defined on all of Rd is
constant.

Proof. Let f : Rd → R be harmonic with sup
x∈Rd

|f(x)| ≤M.

By (14),

| ∂
∂xi

f(x0)| ≤ dM

r
(15)

holds for every i ∈ {1, . . . , d}, every x0 ∈ Rd and every r > 0.
Letting r → ∞ gives ∂

∂xi f ≡ 0. Thus f is constant. �

We can also easily derive estimates for higher order derivatives, as all
derivatives of a harmonic function are again harmonic.

Corollary 24.7 Let f : Ω → R be harmonic, Ω′ ⊂⊂ Ω, δ := dist(Ω′, ∂Ω).
For every multiindex α ∈ Nd we have

sup
Ω′

|Dαf | ≤ (
d|α|
δ

)|α| sup
Ω

|f |.

Proof. We consider the case α = (1, 1, 0, . . . 0). The general case follows it-
eratively according to the same pattern. Let x0 ∈ Ω′, r = δ

2 . Then by (14)
applied to the harmonic function ∂

∂x1 f we obtain

| ∂

∂x2
(
∂

∂x1
f(x0))| ≤ 2d

δ
sup

y∈∂B(x0, δ
2 )

| ∂f
∂x1

(y)|. (16)

But as B(y, δ
2 ) ⊂ Ω for every y ∈ ∂B(x0,

δ
2 ), we can apply (14) again to f

itself and obtain

sup
y∈∂B(x0, δ

2 )

| ∂f
∂x1

(y)| ≤ 2d
δ

sup
z∈Ω

|f(z)|. (17)

Combining (16) and (17) gives the result for the case considered. �

This implies in its turn
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Corollary 24.8 Let fn : Ω → R be a bounded sequence of harmonic functions
(so sup

x∈Ω
|fn(x)| ≤ K for all n). Then a subsequence converges uniformly on

any compact subset to a harmonic function. In particular, a uniform limit of
harmonic functions is again harmonic.

Proof. By corollary 24.7, all the partial derivatives of (fn) are equicontinuous
on any Ω′ ⊂⊂ Ω. By the theorem of Arzela-Ascoli, we obtain in particular
a subsequence which is C2 convergent. This implies that the limit is again
harmonic. In order to conclude that the same subsequence has the required
property for any Ω′ ⊂⊂ Ω, we apply the usual diagonal process.

Let Ω1 ⊂⊂ Ω2 ⊂⊂ . . . Ωn ⊂⊂ . . . Ω with

Ω =
∞⋃

n=1

Ωn. (18)

We then find a subsequence (f1,n) of (fn) which converges on Ω1, then a
subsequence (f2,n) of (f1,n) which converges on Ω2, and so on. The subse-
quence (fn,n) then converges on every Ωm and thus, on account of (18), on
any Ω′ ⊂⊂ Ω. �

Remark. Corollary 24.8 can also be obtained by means of the Sobolev em-
bedding theorem, using the integral estimates of § 23.

For what follows we also need the following generalization of theorem
24.1.

Corollary 24.9 Let c : Ω → R be nonnegative. Let L satisfy the assumptions
formulated before theorem 24.1. Let f ∈ C2(Ω) ∩ C0(Ω) be such that

Lf(x) − c(x)f(x) ≥ 0.

Then for f+ := max(f, 0) we have

sup
Ω

f+ ≤ max
∂Ω

f+.

Proof. Let Ω̃ := {x ∈ Ω : f(x) > 0}. In Ω̃ we have, because c is nonnegative,

Lf ≥ 0,

so by theorem 24.1
sup
Ω̃

f ≤ max
∂Ω̃

f.

The boundary of Ω̃ consists of two parts:
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∂1Ω̃ := ∂Ω̃ ∩Ω
∂2Ω̃ := ∂Ω̃ ∩ ∂Ω ⊂ ∂Ω.

We have
f|∂1Ω̃ = 0

and
max
∂2Ω̃

f ≤ max
∂Ω

f.

Therefore
max
∂Ω̃

f ≤ max
∂Ω

f+,

and as also
sup
Ω

f+ = sup
Ω̃

f,

the result follows. �

We now prove the strong maximum principle. In order to give the proof
in as transparrent a manner as possible, we consider only the case of the
Laplace operator. The corresponding assertion for an operator L considered
at the beginning of this article can then be proved entirely analogously.

Theorem 24.10 Let Ω ⊂ Rd be open and let f : Ω → R satisfy

∆f ≥ 0 in Ω. (19)

If f assumes its maximum in the interior of Ω then f is constant. More
generally, if c : Ω → R is a nonnegative function and if

∆f(x) − c(x)f(x) ≥ 0 for x ∈ Ω, (20)

and f assumes a nonnegative maximum in the interior of Ω, then f is con-
stant.

We first prove the boundary point lemma of E. Hopf.

Lemma 24.11 Let ∆f − cf ≥ 0 in Ω̃ ⊂ Rd for a nonnegative function
c : Ω → R. Let x0 ∈ ∂Ω̃.

Assume further that

(i) f is continuous at x0

(ii) f(x0) ≥ 0, if c(x) �≡ 0.

(iii) f(x0) > f(x) for all x ∈ Ω̃

(iv) There exists a ball U(y,R) ⊂ Ω̃ with x0 ∈ ∂U(y,R).

Then for r = ‖x− y‖
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∂f

∂r
(x0) > 0, (21)

if this derivative exists (in the direction of the outer normal to Ω̃).

Proof. We may assume that y and R are so chosen in (iv) that ∂U(y,R) ∩
∂Ω̃ = {x0}. For x ∈ U(y,R)\B(y, ρ) (0 < ρ < R) we consider the auxiliary
function

g(x) := e−γ‖x−y‖2 − e−γR2
.

We have

∆g − cg = (4γ2‖x− y‖2 − 2dγ − c)e−γ‖x−y‖2
+ ce−γR2

.

Therefore for sufficiently large γ we have

∆g − cg ≥ 0 in U(y,R)\B(y, ρ). (22)

By (iii) and (iv),

f(x) − f(x0) < 0 for x ∈ ∂B(y, ρ).

Therefore there exists an ε > 0 with

f(x) − f(x0) + εg(x) ≤ 0 for x ∈ ∂B(y, ρ). (23)

As g = 0 on ∂B(y,R), (23) holds in turn because of (iii) and (iv) also for
x ∈ ∂B(y,R).

On the other hand,

∆(f(x) − f(x0) + εg(x)) − c(x)(f(x) − f(x0) + εg(x))
≥ c(x)f(x0) ≥ 0

for x ∈ U(y,R)\B(y, ρ), because of (ii). Since f(x) − f(x0) + εg(x) ≤ 0 on
∂(B(y,R)\B(y, ρ)), it follows from corollary 24.9 that

f(x) − f(x0) + εg(x) ≤ 0 for x ∈ B(y,R)\B(y, ρ).

It follows (in case this derivative exists) that

∂

∂r
(f(x) − f(x0) + εg(x)) ≥ 0 at the point x = x0 ∈ ∂B(y,R),

thus
∂

∂r
f(x0) ≥ −ε∂g(x0)

∂r
= ε(2γRe−γR2

) > 0.

Proof of theorem 24.10 To prove the theorem, we assume that f is not
constant and yet it assumes a maximum m(≥ 0 if c �= 0) in the interior of Ω.
Then

Ω̃ := {x ∈ Ω : f(x) < m} �= ∅
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and
∂Ω̃ ∩Ω �= ∅.

Let y ∈ Ω̃ be closer to ∂Ω̃ than to ∂Ω and U(y,R) the largest ball contained
in Ω̃ with center y. Then

f(x0) = m for some x0 ∈ ∂B(y,R),

and f(x) < f(x0) for x ∈ Ω̃.
Now (21) is applicable and gives

df(x0) �= 0,

which, however, is not possible at an interior maximum. �
The assumption c ≥ 0 in theorem 24.10 is clearly required, as the existence

of non-trivial eigenfunctions shows. For example, f(x) = sinx satisfies on
(0, π)

f ′′(x) + f(x) = 0,

but f assumes a positive maximum at x = π
2 .

Exercises for § 24

1) Show the strong maximum principle for an operator of the form

L =
d∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑
i=1

bi(x)
∂

∂xi

under the assumptions (i) – (iii) made at the beginning of this para-
graph.

2) Let f : Rd → R be harmonic with bounded gradient. Then f is affine

linear, i.e. f(x) =
d∑

i=1

aix
i + b, with constants a1, . . . , ad, b.



25. The Eigenvalue Problem for the Laplace
Operator

We use Rellich’s embedding theorem to show that every L2 function on an open
Ω ⊂ Rd can be expanded in terms of eigenfunctions of the Laplace operator on Ω.

We first recall the following result from linear algebra:
Let 〈·, ·〉 denote the Euclidean scalar product in Rd and let A be a sym-

metric d× d-matrix, so

〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ Rd. (1)

Then Rd has an orthonormal basis v1, . . . , vd consisting of eigenvectors of A.
Thus

Avi + λivi = 0 with λi ∈ R (2)
〈vi, vj〉 = δij for all i, j. (3)

We shall now study an analogous situation in an infinite dimensional Hilbert
space. Even though the following considerations can be made in far greater
generality, we shall restrict ourselves to a concrete case, namely to the eigen-
value problem for the Laplace operator.

Let Ω be an open bounded subset of Rd. We want to study the eigenfunc-
tions of ∆ in H1,2

0 (Ω), thus f ∈ H1,2
0 (Ω) with

∆f(x) + λf(x) = 0 for all x ∈ Ω,

λ being real.
In the following we set

H := H1,2
0 (Ω), 〈f, g〉 :=

∫
Ω

f(x)g(x)dx

for f, g ∈ L2(Ω),
‖f‖ := ‖f‖L2(Ω) = 〈f, f〉 1

2 .

We note that the Laplace operator is symmetric in a certain sense. For ex-
ample for ϕ, ψ in C∞

0 (Ω) we have

〈∆ϕ,ψ〉 = −〈Dϕ,Dψ〉 = 〈ϕ,∆ψ〉.
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We now define
λ1 := inf

f∈H\{0}
〈Df,Df〉
〈f, f〉 .

From the Poincaré inequality (corollary 20.16) it follows that

λ1 > 0. (4)

Now let (fn)n∈N be a minimizing sequence, so that

lim
n→∞

〈Dfn, Dfn〉
〈fn, fn〉 = λ1.

Here, we may assume that

‖fn‖ = 1 for all n (5)

and then also
‖Dfn‖ ≤ K for all n. (6)

By theorem 21.8, after a choice of a subsequence, the sequence (fn)n∈N con-
verges weakly in the Hilbert space H to some v1 ∈ H, and by the Rellich
compactness theorem (theorem 20.20) (fn)n∈N then also converges strongly
in L2(Ω) to v1; by (5) it follows that

‖v1‖ = 1.

Furthermore, it follows, because of lower semicontinuity of ‖Df‖L2(Ω) for
weak convergence in H (corollary 21.9; notice that by the Poincaré inequality
‖Df‖L2(Ω) defines a norm in H), and the definition of λ1 that

λ1 ≤ 〈Dv1, Dv1〉 ≤ lim
n→∞〈Dfn, Dfn〉 = λ1,

so 〈Dv1, Dv1〉
〈v1, v1〉 = λ1.

Now assume that (λ1, v1), . . . , (λm−1, vm−1) have already been determined
iteratively, with λ1 ≤ λ2 ≤ . . . ≤ λm−1,

∆vi(x) + λivi(x) = 0 in Ω,

and
〈vi, vj〉 = δij for i, j = 1, . . . ,m− 1. (8)

We set
Hm := {f ∈ H : 〈f, vi〉 = 0 for i = 1, . . . ,m− 1}

and
λm := inf

f∈Hm\{0}
〈Df,Df〉
〈f, f〉 .

We make two simple remarks
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(i)
λm ≥ λm−1, as Hm ⊂ Hm−1 (9)

(ii) Hm, being the orthogonal complement of a finite dimensional sub-
space, is closed (if (fn)n∈N ⊂ Hm converges to f then, as 〈fn, vi〉 = 0
for all n ∈ N, 〈f, vi〉 = 0 for i = 1, . . . ,m, so f ∈ Hm) and therefore
it is also a Hilbert space.

With the same argument as before we now find a vm ∈ Hm with ‖vm‖ = 1
and

λm = 〈Dvm, Dvm〉 =
〈Dvm, Dvm〉
〈vm, vm〉 . (10)

Now we claim that
∆vm + λmvm = 0 in Ω. (11)

For a proof we observe that for all ϕ ∈ Hm, t ∈ R

〈D(vm + tϕ), D(vm + tϕ)〉
〈vm + tϕ, vm + tϕ〉 ≥ λm

and this expression is differentiable in t (this is seen as in the derivation of
the Euler-Lagrange equations) and has a minimum at t = 0; so

0 =
d

dt

〈D(vm + tϕ), D(vm + tϕ)〉
〈vm + tϕ, vm + tϕ〉 |t = 0

= 2(
〈Dvm, Dϕ〉
〈vm, vm〉 − 〈Dvm, Dvm〉

〈vm, vm〉
〈vm, ϕ〉
〈vm, vm〉 )

= 2(〈Dvm, Dϕ〉 − λm〈vm, ϕ〉)
for all ϕ ∈ Hm.

However, for i = 1, . . . ,m− 1

〈vm, vi〉 = 0

and
〈Dvm, Dvi〉 = 〈Dvi, Dvm〉 = λi〈vi, vm〉 = 0.

It follows that
〈Dvm, Dϕ〉 − λm〈vm, ϕ〉 = 0 (12)

even for all ϕ ∈ H.
This means that vm is a solution of∫

Ω

Dvm(x)Dϕ(x)dx− λm

∫
Ω

vm(x)ϕ(x)dx = 0 for all ϕ ∈ H1,2
0 (Ω).

By corollary 23.8, vm ∈ C∞(Ω) and

∆vm(x) + λmvm(x) = 0 for all x ∈ Ω. (13)
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Lemma 25.1 lim
m→∞λm = ∞.

Proof. Otherwise, by (10), we would have

‖Dvm‖ ≤ K for all m ∈ N.

By the Rellich compactness theorem (theorem 20.20) the sequence (vm)m∈N,
after choosing a subsequence, would converge in L2(Ω), say to the limit v.

Thus
lim

m→∞ ‖vm − v‖ = 0.

However, this is not compatible with the fact that, using (8), i.e. 〈v�, vm〉 =
δm�

‖v� − vm‖2 = 〈v�, v�〉 − 2〈v�, vm〉 + 〈vm, vm〉 = 2 for � �= m

which violates the Cauchy property. This contradiction proves the lemma.
�

Theorem 25.2 Let Ω ⊂ Rd be open and bounded. Then the eigenvalue prob-
lem

∆f + λf = 0, f ∈ H1,2
0 (Ω)

has countably many eigenvalues with pairwise orthonormal vectors vm, also

〈vm, v�〉 = δm�, (14)
∆vm + λmvm = 0 in Ω

〈Dvm, Dv�〉 = λmδm�. (15)

The eigenvalues are all positive and

lim
m→∞λm = ∞.

For f ∈ H1,2
0 (Ω) we have

f =
∞∑

i=1

〈f, vi〉vi, (16)

where this series converges in L2(Ω) and

〈Df,Df〉 =
∞∑

i=1

λi〈f, vi〉2. (17)

Remark. Equation (16) means that the eigenvectors form a complete or-
thonormal basis in L2(Ω). This generalizes the fact referred to at the be-
ginning that in the finite dimensional case, a symmetric operator has an
orthonormal basis of eigenvectors.
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Proof. First we notice that (15) follows from (12) and (14). It remains to
show (16) and (17). We set for f ∈ H as abbreviation

αi := 〈f, vi〉 (i ∈ N)

and

fm :=
m∑

i=1

αivi, ϕm := f − fm.

ϕm is thus the orthogonal projection of f onto Hm+1, the subspace of H
orthogonal to v1, . . . , vm. Hence

〈ϕm, vi〉 = 0 for i = 1, . . . ,m (18)

and by definition of λm+1

〈Dϕm, Dϕm〉 ≥ λm+1〈ϕm, ϕm〉. (19)

By (12) and (18) we also have

〈Dϕm, Dvi〉 = 0 for i = 1, . . . ,m. (20)

From (18), we obtain

〈ϕm, ϕm〉 = 〈f, f〉 − 〈fm, fm〉, (21)

and from (20)

〈Dϕm, Dϕm〉 = 〈Df,Df〉 − 〈Dfm, Dfm〉. (22)

Now (19) and (20) give

〈ϕm, ϕm〉 ≤ 1
λm+1

〈Df,Df〉

and on account of lemma 25.1, the sequence ϕm therefore converges to 0 in
L2(Ω). This means that

f = lim
m→∞ fm =

∞∑
i=1

〈f, vi〉vi in L2(Ω),

hence (16). Furthermore

Dfm =
m∑

i=1

αiDvi,

so by (15)

〈Dfm, Dfm〉 =
m∑

i=1

α2
i 〈Dvi, Dvi〉 (23)

=
m∑

i=1

λiα
2
i .
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Now, as by (22), 〈Dfm, Dfm〉 ≤ 〈Df,Df〉 and all the λi are positive, the
series ∞∑

i=1

λiα
2
i

converges.
Now for m ≤ n

〈Dϕm −Dϕn, Dϕm −Dϕn〉 = 〈Dfn −Dfm, Dfn −Dfm〉

=
n∑

i=m+1

λiα
2
i .

Therefore, not only (ϕm) but also (Dϕm) is a Cauchy sequence in L2(Ω) and
ϕm therefore converges in H to 0, with respect to the H1,2 norm.

Hence by (22)

〈Df,Df〉 = lim
m→∞〈Dfm, Dfm〉 =

∞∑
i=1

λiα
2
i (compare (23)).

We finally want to verify still that we have found all the eigenvalues and
that all the eigenvectors are linear combinations of the vi.

First, the eigenvectors corresponding to different eigenvalues are L2-
orthogonal: Namely, if for v, w �= 0

∆v + λv = 0 and ∆w + µw = 0,

then for all ϕ ∈ H

〈Dv,Dϕ〉 = λ〈v, ϕ〉 , 〈Dw,Dϕ〉 = µ〈w,ϕ〉
and therefore

λ〈v, w〉 = 〈Dv,Dw〉 = 〈Dw,Dv〉 = µ〈w, v〉,
and so, if λ �= µ, we must have

〈v, w〉 = 0.

Now if there were an eigenvalue λ not contained in {λm}, say with an eigen-
vector v �= 0 that is linearly independent of all the vi, then 〈v, vi〉 would be
0 for all i and therefore by (16), v = 0, a contradiction. �

The decisive result in the proof above was the Rellich compactness theo-
rem:

If for a sequence (fn)n∈N ⊂ H1,2
0 , 〈Dfn, Dfn〉 is uniformly bounded, then

a subsequence converges in L2. One can then easily generalize the considera-
tions above, by considering instead of 〈Df,Df〉 and 〈f, f〉 two bilinear forms
K(f, f) and B(f, f) on a Hilbert space, of which the first has a compactness
property analogous to 〈Df,Df〉.
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velocity field, 300
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