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1. Introduction

In the past ten years, there has been a considerable development of tools and
techniques in the calculus of variations to study homoclinic and heteroclinic solu-
tions of Hamiltonian systems. See e.g. [3, 10, 9, 11, 6]. A particular problem that
has received much attention is

(1.1) −ẍ = Wx(t, x)

where x ∈ R
n, W is 1-periodic in t, and has at least two time independent global

maxima in x. An important special case arises in model problems of multiple
pendulum type where W is periodic in the components of x. A typical result for
(1.1) is the existence of a solution heteroclinic from ξ to η where ξ and η are a pair
of time independent global maxima of W .

Suppose that W (t, x) = a(t)V (x). The main goal of this paper is to present
a simple minimization method to find heteroclinic connections between isolated
critical points of V , say 0 and ξ, which are local maxima but do not necessarily
have the same value of V . In particular for a class of positive slowly oscillating
periodic functions a, it will be shown that if δ = |V (0)− V (ξ)| is sufficiently small
and another technical condition is satisfied, then there exist a pair of solutions of
(1.1), Q+ heteroclinic from 0 to ξ and Q− heteroclinic from ξ to 0. Note that when
V (0) 6= V (ξ), a cannot be constant. Indeed if a is constant, conservation of energy
then implies V (Q+(−∞)) = V (0) = V (Q+(∞)) = V (ξ).

Two major cases where the technical condition is satisfied are (i) when n = 1
and 0 and ξ are adjacent local maxima of V and (ii) when 0 is a global maximum
and ξ a local maximum of V .

Once the basic pair of heteroclinics has been found, the same minimization ideas
can be used to obtain further heteroclinics as well as homoclinic solutions of (1.1).
These are solutions which start at 0 or ξ at t = −∞, oscillate back and forth
between neighborhoods of 0 and ξ a finite number of times before terminating at
0 or ξ at t = ∞. Indeed there are infinitely many such solutions characterized by
the amount of time they spend near 0 and ξ between transition states. Moreover
by a limit process, there are solutions of (1.1) which perform infinitely many such
transitions.

More generally if V has several local maxima, ξi, 1 ≤ i ≤ N , and the appropriate
technical condition is satisfied, then the above results yield heteroclinics Q+

i from ξi

to ξi+1, and Q−
i from ξi+1 to ξi, 1 ≤ i ≤ N − 1. Let (Pk) be any finite formal chain

constructed from {Q+
i , Q−

j | 1 ≤ i, j ≤ N−1}, i.e. Pk+1(−∞) = Pk(∞), 1 ≤ k ≤ K.
Such a chain will be called an augmented chain. E.g. in the previous paragraph,
the augmented chain consists of Q± followed by Q∓, etc. As an extension of
the above results, there are infinitely many actual heteroclinics Q of (1.1) with
Q(−∞) = P1(−∞), Q(∞) = PK(∞) and Q spends long time intervals near Pk(∞),
1 ≤ k ≤ K − 1.
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When there are enough points ξi, e.g. of order δ−1, the difference |V (P1(−∞))−
V (Pk(∞))| can be of order 1. Indeed an example will be given for n = 1 where there
is a sequence (ξi)i∈Z with ξi → ±∞ as i → ±∞, and V (ξi) → ±∞ as i → ±∞.
In that sense what is being done here is reminiscent of Arnold diffusion and the
variational approach to it by Bessi [1], the recent work of Mather on orbits of infinite
energy which shadow a family of periodics of increasing energy [7], and other recent
work of Bolotin and Treschev [2] and of Delshams, de la Llave, and Seara [5] that
was inspired by [7]. See also [4] and [8] which have some ideas in common with the
current work.

The basic heteroclinic Q± will be obtained in §2. Then §3 treats the case when V
has several local maxima. The results on homoclinics and heteroclinics associated
with the augmented chains will be given as a special case of this setting. Lastly §4
gives some examples.

2. Basic heteroclinics

In this section, it will be shown how to construct a heteroclinic solution of (HS)
which joins a pair of equilibrium points for the system, the equilibria corresponding
to slightly different values of the potential.

Consider

(HS) q̈ + a(t)V ′
δ (q) = 0, V ′

δ (x) =
∂Vδ

∂x
(x)

where Vδ is a function having (at least) two isolated local maxima, one at 0 and
one at ξ, with 0 = V (0) > V (ξ) = −δ. More precisely, assume:
(V1) Vδ ∈ C1(Rn, R), δ ∈ [0, δ0] and Vδ continuous in δ;
(V2) There is an r0 > 0 such that 0 = Vδ(0) > Vδ(x) for all x ∈ Br0(0) \ {0},

δ ∈ [0, δ0].
Let R0 be the connected component of

{
x ∈ R

n
∣∣ Vδ(x) ≤ 0

}
which contains 0,

and, for h < 0,
Rh =

{
x ∈ R

n
∣∣ Vδ(x) ≤ h

} ⋂
R0.

Further assume
(V3) There is a ξ ∈ R0\{0} such that Vδ(ξ) = −δ > Vδ(x) for all x ∈ Br0(ξ)\{ξ}

and δ ∈ [0, δ0].
Fixing a, a > 0, the function a in (HS) is required to belong to the set

A =
{

a ∈ C(R, R)
∣∣ 0 < a ≤ min a < max a ≤ a

and there is a minimal T = T (a) > 0 such that a(t + T ) = a(t)
}
.

More restrictions will be imposed on a later. The variational formulation of the
problem can now be introduced. Let E = W 1,2

loc (R, Rn), with

‖q‖2 = |q(0)|2 +
∫

R

|q̇(t)|2 dt.

Given m1 + 1 < m2, η1 ∈ Br0(0) and η2 ∈ Br0(ξ), set

γ(m1,m2, η1, η2) =
{

q ∈ E
∣∣ q(m1) = η1,

q(t) ∈ R0 for all t ∈ [m1,m2], q(m2) = η2

}
.

Let L(t, q, q̇) = 1
2 |q̇|

2 − a(t)Vδ(q). For q ∈ γ(m1,m2, η1, η2), define

I0(q) =
∫ m2

m1

L(t, q(t), q̇(t)) dt.
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Next an additional hypothesis (V4) will be made. It is a technical condition needed
to obtain the main existence result of this section, Theorem 2.5. In §4, examples
will be given of when (V4) is satisfied. E.g. an important special case to keep in
mind is when 0 is a global maximum for Vδ.
(V4) There is a h < 0 such that

(a) 0 and ξ are path-connected in Dh ≡ Br0(0) ∪Rh ∪Br0(ξ);
(b) for all m2 −m1 > 1, δ ∈ [0, δ0], a ∈ A, η1 ∈ Br0(0) and η2 ∈ Br0(ξ),

whenever Q0 is a minimizer of I0 in γ(m1,m2, η1, η2), then Q0(t) ∈ Dh

for all t ∈ [m1,m2].
Remark 2.1. Note that Br0(0) ∪ Br0(ξ) ⊂ R0. It is straightforward to show that
the minimum in γ(m1,m2, η1, η2) always exists.

We now define

Γ(m1,m2) =
{

q ∈ E
∣∣q(−∞) = 0, |q(t)| ≤ r0 for all t ≤ m1,

q(t) ∈ R0 for all t ∈ [m1,m2],

|q(t)− ξ| ≤ r0 for all t ≥ m2, q(+∞) = ξ
}
.

Observe that Γ(m1,m2) is not empty by assumption (V4). The heteroclinics we
seek will lie in Γ(m1,m2). For q ∈ Γ(m1,m2), let

Lδ(q) =

{
L(t, q(t), q̇(t)) t < m2

L(t, q(t), q̇(t))− δa(t) t ≥ m2.

Define

I(q) =
∫

R

Lδ(q) dt

and

(2.2) c(m1,m2) = inf
Γ(m1,m2)

I(q).

The next lemma makes the first step towards the main existence theorem of this
section. In what follows, it will always be assumed that (V1)–(V4) are satisfied.
Lemma 2.3. There is a c ∈ R such that 0 < c(m1,m2) ≤ c − 1 ≤ c for all
δ ∈ [0, δ0], a ∈ A and m2 −m1 ≥ 1. Moreover there is a function Q ∈ Γ(m1,m2)
such that I(Q) = c(m1,m2) and Q(t) ∈ Dh for all t.

Proof. Since q ∈ Γ(m1,m2) implies that q(t) ∈ R0 for all t, it follows that Vδ(q(t)) ≤
0 for all t. On the other hand for all t ≥ m2, q(t) ∈ Br0(ξ) and thus the assumptions
(V2) and (V3), imply that

Vδ(q(t)) ≤ −δ for all t ≥ m2.

Hence Lδ(q) ≥ 0 for all t and therefore c(m1,m2) > 0.
The existence of c follows by taking a function q ∈ E such that q(t) = 0 for all

t ≤ − 1
2 , q(t) = ξ for all t ≥ 1

2 , and q(t) ∈ R0 for all t. Then q̃(t) = q(t−m2+1/2) ∈
Γ(m1,m2). Note that, for such a q̃,

I(q̃) =
∫ m2

m2−1

[
1
2

∣∣ ˙̃q
∣∣2 − a(t)Vδ(q̃)] dt ≤

∫ 1/2

−1/2

[
1
2
|q̇|2 − aVδ(q)] dt.

Setting

c = 1 + sup
δ∈[0,δ0]

∫ 1/2

−1/2

[
1
2
|q̇|2 − aVδ(q)] dt ≥ 1 + I(q̃),

the bound on c(m1,m2) follows.
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To show that c(m1,m2) is achieved, take a minimizing sequence (qk) for I. Then,
for all t ∈ [m1,m2], setting qk = q we have, for k large,

|q(t)| ≤ |q(m1)|+ |q(t)− q(m1)|

≤ r0 + (
∫ t

m1

|q̇|2 ds)1/2(t−m1)1/2

≤ r0 +
√

2c(m2 −m1).

Hence, since q(t) ∈ Br0(0) for all t ≤ m1 and q(t) ∈ Br0(ξ) for all t ≥ m2,

(2.4) |q(t)| ≤ 3r0 +
√

2c(m2 −m1) for all t ∈ R.

Now by (2.4) and the form of I, we deduce that (qk) is bounded in H1
loc. Conse-

quently there exists a subsequence, still denoted (qk), which converges weakly in
W 1,2

loc and strongly in L∞loc to Q ∈ Γ(m1,m2). Standard arguments show that such
a Q is a minimizer of I in Γ(m1,m2).

To show that Q(t) ∈ Dh, it is enough to observe that:

(1) Q(t) ∈ Br0(0) ⊂ Dh for all t ≤ m1;
(2) Q

∣∣
[m1,m2]

minimizes I0 in γ(m1,m2, Q(m1), Q(m2)), and hence Q(t) ∈ Dh

for all t ∈ [m1,m2] by assumption (V4);
(3) Q(t) ∈ Br0(ξ) ⊂ Dh for all t ≥ m2.

�

Now the main result of this section can be stated. The proof of the theorem will
be carried out in a series of Lemmas.

Theorem 2.5. Let V satisfy (V1)–(V4). Then there is an A∗ ⊂ A such that for
each a ∈ A∗, there exists a δ2 = δ2(a) ≤ δ0 and a corresponding solution of (HS)
heteroclinic from 0 to ξ and a solution heteroclinic from ξ to 0.

Proof. A solution will be obtained in Γ(m1,m2) for appropriate choices of m2−m1.
Recall that m2−m1 ≥ 1. More assumptions will be made later on m2−m1. Let Q
be a minimizer for I over Γ(m1,m2). By Lemma 2.3, Q(t) ∈ Dh for all t ∈ [m1,m2].
Then Q(t) /∈ ∂R0 for t ∈ [m1,m2]. Consequently Q(t) is a solution of (HS) for
t ∈ [m1,m2].

The function Q is a solution of (HS) for all t < m1 whenever Q(t) /∈ ∂Br0(0),
and also for t > m2 whenever Q(t) /∈ ∂Br0(ξ). Hence in order to prove the theorem,
it only need be shown that Q(t) /∈ ∂Br0(0) for t < m1 and that that Q(t) /∈ ∂Br0(ξ)
for t > m2. For 0 < ρ < r0, let

β1(ρ) = min
x∈Br0 (0)\Bρ(0)

0≤δ≤δ0

−Vδ(x), β2(ρ) = min
x∈Br0 (ξ)\Bρ(ξ)

0≤δ≤δ0

(−Vδ(x)− δ),

and take β(ρ) = min{β1(ρ), β2(ρ)} > 0. With h < 0 given by (V4), take ρ1 so small
that

(2.6) −h > β(ρ)

for all ρ < ρ1. Then, for all x ∈ Dh \(Bρ(0)∪Bρ(ξ)), it follows that −Vδ(x) ≥ β(ρ).

Lemma 2.7. Let t∗ = 2c/aβ(ρ). Then there is a t ∈ [m2,m2 + t∗] such that
Q(t) ∈ Bρ(ξ) and a t ∈ [m2 − t∗,m2] such that Q(t) ∈ Bρ(ξ) ∪ Bρ(0). Similarly
there is an s ∈ [m1,m1+t∗] such that Q(s) ∈ Bρ(0)∪Bρ(ξ), and an s ∈ [m1−t∗,m1]
such that Q(s) ∈ Bρ(0).
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Proof. To show the existence of t, note that if t does not exist, Q(t) ∈ Br0(ξ)\Bρ(ξ),
t ∈ [m2,m2 + t∗] and therefore

c ≥ I(Q) ≥
∫ m2+t∗

m2

−a(t)(Vδ(Q(t)) + δ) dt ≥ at∗β(ρ) = 2c.

Similarly if t does not exist, Q(t) ∈ Dh \ (Bρ(0) ∪ Bρ(ξ)) for all t ∈ [m2 − t∗,m2].
Then −Vδ(Q(t)) ≥ β(ρ) for all t ∈ [m2 − t∗,m2], and a contradiction is obtained
by arguing as before. The existence of s, s follow in a similar way. �

Let

Ṽδ(x) =

{
Vδ(x) x ∈ Br0(0)
Vδ(x) + δ x ∈ Br0(ξ)

and define ϕ(ρ) in the following way:

(2.8) ϕ(ρ) = sup
{ 1

2

∫ 1

0

|q̇(t)|2 dt− a

∫ 1

0

Ṽδ(q(t)) dt
∣∣∣∣ δ ∈ [0, δ0], q(t) = η1 + t(η2 − η1), η1, η2 ∈ Bρ(0), or η1, η2 ∈ Bρ(ξ)

}
.

Henceforth assume that r0 is so small that ϕ(r0) < 1/2. One immediately sees that
ϕ(ρ) → 0, as ρ → 0, and arguing as in Lemma 2.3, one can show that

(2.9)
∣∣∣∫ s

−∞
Lδ(Q) dt

∣∣∣, ∣∣∣∫ ∞

t

Lδ(Q) dt
∣∣∣ ≤ ϕ(ρ).

For what follows s << r0 means s is small compared to r0.

Lemma 2.10. For ρ ≤ ρ2 � r0, Q(t) ∈ Br0(ξ) for t ≥ t and Q(t) ∈ Br0(0) for
t ≤ s.

Proof. The first assertion is a consequence of Lemma 2.7, (2.9) and the fact that
the cost as measured by I of going from ∂Bρ(ξ) to ∂Br0(ξ) exceeds γ � ϕ(ρ)
for some constant γ depending on r0. The second statement follows by the same
reasoning. �

Lemma 2.11. There is a δ1 ≤ δ0 such that if δ ≤ δ1 and Q(t) ∈ Bρ(ξ), then
Q(t) ∈ Br0(ξ) for t ∈ [t, t] and if Q(s) ∈ Bρ(0), Q(t) ∈ Br0(0) for t ∈ [s, s].

Proof. It is already known that Q(t) ∈ Bρ(ξ). Assume Q(t) ∈ Bρ(ξ), and Q(τ) /∈
Br0(ξ) for some τ ∈ (t, t). Then, as in Lemma 2.10,

∫ t

t
Lδ(Q) dt ≥ γ = γ(r0). Let

Q(t) =


Q(t) t ≤ t

linear t ≤ t ≤ t + 1
ξ t ≥ t + 1
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Then by the minimality of Q in Γr0(m1,m2),

γ ≤
∫ +∞

t

Lδ(Q) dt ≤
∫ +∞

t

Lδ(Q) dt

=
∫ m2

t

Lδ(Q) dt +
∫ +∞

m2

Lδ(Q) dt

≤
∫ t+1

t

[
1
2

∣∣∣Q̇(t)
∣∣∣2 − a(t)Vδ(Q)] dt−

∫ m2

t+1

a(t)Vδ(ξ) dt

+
∫ +∞

m2

[−a(t)Vδ(ξ)− δa(t)] dt

≤ ϕ(ρ) + aδ(m2 − t) ≤ ϕ(ρ) + aδt∗ ≤ ϕ(ρ) +
2ac

aβ(ρ)
δ.

Taking δ = δ(ρ) sufficiently small and recalling that ϕ(ρ) << γ(r0) yields a con-
tradiction. Therefore Q(t) ∈ Br0(ξ) for t ∈ [t, t] and similarly for the s case. �

Lemma 2.12. Suppose δ ≤ δ1. Assume Q(t̃) ∈ ∂Br0(ξ) for some t̃ ∈ [m2, t]. Then
Q(t) ∈ Br0(0) for all t ≤ t. Similarly, if Q(s̃) ∈ ∂Br0(0) for some s̃ ∈ [s,m1], then
Q(t) ∈ Br0(ξ) for all t ≥ s.

Proof. The first part of the lemma follows by observing that Q(t) ∈ Bρ(ξ) is not
possible via Lemma 2.11. Then, arguing as in Lemma 2.10, shows that Q(t) ∈
Br0(0) for all t ≤ t. Again the s case is proved in the same way. �

So far a ∈ A and ρ ≤ min{ρ1, ρ2} are free. Further choose ρ so that

(2.13)
4a

a
ϕ(ρ) ≤ 1

4
(a− a)

d2

2c
|h|

where
d = dist(Br0(0), Br0(ξ)),

and h is given by (V4). With ρ now fixed, choose a ∈ A∗ where

(2.14) A∗ =
{

a ∈ A
∣∣ min

[−t∗,t∗]
a− max

[−t∗−θ,t∗−θ]
a ≥ 1

2
(a− a) for some θ ∈ (0, T )

}
.

This condition will be satisfied for T sufficiently large and a which oscillates slowly
between its maximum and minimum. The simplest examples of a ∈ A∗ occur when
a(t) = b(εt) for b ∈ A and 0 < ε sufficiently small.

The significance of A∗ is that if e.g. Q(t) ∈ ∂Br0(ξ) for some t ∈ [m2, t], by the
previous lemma, the transition of Q from Bρ(0) to Bρ(ξ) occurs in [m2−t∗,m2+t∗],
an interval in which a is relatively large. But heuristically, the minimizer of I in
Γ(m1,m2) should not undergo a transition when a is relatively large; rather it
should occur when a is relatively small. In the next lemma, a comparison function
argument exploits this idea.

Lemma 2.15. Let a ∈ A∗, m1,m2 ∈ TN, m2 −m1 ≥ T (a) + t∗. Then, for δ > 0
small, Q(t) ∈ ∂Br0(ξ) for some t ∈ [m2, t] is not possible, and also Q(t) ∈ ∂Br0(0)
for some t ∈ [s,m1] is not possible.

Proof. Suppose Q(t) ∈ ∂Br0(ξ) for some t ∈ [m2, t]. Then by Lemma 2.12 Q(t) ∈
Br0(0) for all t ≤ t. Let θ ∈ (0, T ) be such that

(2.16) min
[−t∗,t∗]

a− max
[−t∗−θ,t∗−θ]

a ≥ 1
2
(a− a).

We claim that τ−θQ(·) ≡ Q(· + θ) ∈ Γ(m1,m2). Indeed, for all t ≥ m2, t + θ ≥
t ≥ m2 implies Q(t + θ) ∈ Br0(ξ) while t ≤ m1 implies that t + θ ≤ m1 + θ ≤
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m2 − T − t∗ + θ ≤ m2 − t∗ ≤ t, so that Q(t + θ) ∈ Br0(0) for all t ≤ m1 follows
from Lemma 2.12. Hence by the minimality of Q,

0 ≥ I(Q)− I(τ−θQ) =
∫ m2

−∞
(a(t)− a(t− θ))(−Vδ(Q)) dt

+
∫ ∞

m2

(a(t)− a(t− θ))(−Vδ(Q)− δ) dt− δ

∫ m2+θ

m2

a(t− θ) dt.

(2.17)

By Lemma 2.12, Q(t) ∈ Bρ(0). Therefore as in (2.9),∣∣∣ ∫ t

−∞
(a(t)− a(t− θ))(−Vδ(Q)) dt

∣∣∣ ≤ 2a

∫ t

−∞
−Vδ(Q) dt

≤ 2a

a

∫ t

−∞
L(Q) dt ≤ 2a

a
ϕ(ρ).

(2.18)

Similarly,

(2.19)
∣∣∣ ∫ ∞

t

(a(t)− a(t− θ))(−Vδ(Q)− δ)dt
∣∣∣ ≤ 2a

a
ϕ(ρ).

The last term on the right in (2.17) can simply be estimated by

(2.20) δ

∫ m2+θ

m2

a(t− θ) dt ≤ δaT.

Since a ∈ A∗,∫ m2

t

(a(t)− a(t− θ))(−Vδ(Q)) dt +
∫ t

m2

(a(t)− a(t− θ))(−Vδ(Q)− δ) dt

=
∫ t

t

(a(t)− a(t− θ))(−Vδ(Q)) dt− δ

∫ t

m2

(a(t)− a(t− θ)) dt

≥ 1
2
(a− a)

∫ t

t

(−Vδ(Q)) dt− 2δt∗a.

(2.21)

Now, if t1 = sup
{

t
∣∣ Q(t) ∈ Br0(0)

}
and t1 = inf

{
t

∣∣ Q(t) ∈ Br0(ξ)
}
, by (V4), it

follows that Q(t) ∈ Rh for all t ∈ [t1, t1] and

(2.22) d ≤
∣∣∣ ∫ t1

t1

Q̇ dt
∣∣∣ ≤ (t1 − t1)

1/2
( ∫ t1

t1

|Q̇|2 dt
)1/2

≤ (t1 − t1)
1/2(2c)1/2.

This last inequality implies

(2.23) t− t ≥ t1 − t1 ≥
d2

2c
.

Therefore

(2.24) −
∫ t

t

Vδ(Q) dt ≥ −
∫ t1

t1

Vδ(Q) dt ≥ d2

2c
|h| .

Hence by (2.17)–(2.24), (2.6), (2.13) and the definition of t∗,

(2.25) δa
(
T +

4c

aβ(ρ)

)
≥ 4

a

a
ϕ(ρ).

Consequently for δ = δ(ρ) suitably small, Q is not a minimizer of I, a contradiction.
Finally to prove that Q(t) /∈ ∂Br0(0) for t ∈ [s,m1], note that if to the contrary,

Q(t) ∈ ∂Br0(0) for some such t, then Q(t) ∈ Br0(ξ) for t ≥ s. Consider τT Q.
For t ≤ m1, τT Q(t) ∈ Br0(0). For t ≥ m2, t − T ≥ m2 − T ≥ m1 + t∗ ≥ s so
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τT Q(t) ∈ Br0(ξ). Also Q(t) ∈ R0 for all t implies the same for τT Q(t). Hence
τT Q ∈ Γ(m1,m2). Therefore as in (2.17),

0 ≥ I(Q)− I(τT Q)(2.26)

=
∫ m2

−∞
(a(t)− a(t + T )(−Vδ(Q))dt

+
∫ ∞

m2

(a(t)− a(t + T )(−Vδ(Q)− δ)dt

+ δ

∫ m2

m2−T

a(t + T )dt > 0

since the first two terms vanish due to the periodicity of a. Thus (2.26) shows this
case is impossible. �

Lemma 2.27. Q is a solution of (HS) heteroclinic from 0 to ξ.

Proof. It has already been noted that Q is a solution of (HS) provided Q(t) /∈
∂Br0(0), for t ≤ m1 and Q(t) /∈ ∂Br0(ξ) for t ≥ m2. This is now an immediate
consequence of Lemma 2.10 and Lemma 2.15. Standard arguments then show that
Q is actually an heteroclinic solution of (HS). �

Remark 2.28. Similarly there is a solution of (HS) heteroclinic from ξ to 0.

The above observations end the proof of Theorem 2.5. �

3. Multi-bump solutions

Suppose that Vδ has several local maxima, e.g. at ξ0 = 0, ξ1, . . . , ξN and that
|Vδ(ξi−1)− Vδ(ξi)| is small, 1 ≤ i ≤ N . Then the arguments of §2 can be extended
to show that (HS) has solutions heteroclinic from 0 to ξN and which spend at least
prescribed amounts of time near the points ξi, 1 ≤ i ≤ N − 1. In order to simplify
the presentation, assume (V1), (V2), (V4) and
(V′

3) There is a ξ ∈ R0 \ {0} such that Vδ(x + ξ) = Vδ(x)− δ for all x ∈ R
n and

δ ∈ [0, δ0].
Note that (V′

3) implies (V3), so that all the results of Section 2 hold in this setting.
Moreover we have that y ∈ R0 + jξ implies that y = x + jξ with x ∈ R0 so using
(V′

3),
Vδ(y) = Vδ(x + jξ) = Vδ(x)− jδ ≤ −jδ for all y ∈ R0 + jξ.

Given N ∈ N, and ~m ∈ R
2N such that mj+1−mj ≥ 2, let m0 = −∞, m2N+1 = +∞

and

Γ(~m) =
{

q ∈ E
∣∣ q(−∞) = 0,

q(t) ∈ R0 + `ξ for all t ≥ m2`+1, ` = 0, . . . , N − 1,

q(t) ∈ Br0(`ξ) for all t ∈ [m2`,m2`+1], ` = 0, . . . , N

and q(+∞) = Nξ
}
.

If q ∈ Γ(~m), define

Lδ(q) =

{
L(t, q(t), q̇(t))− `δa(t) m2` ≤ t < m2`+2, ` = 0, 1, . . . , N − 1
L(t, q(t), q̇(t))−Nδa(t) t ≥ m2N

It is immediate to check that Lδ(q) ≥ 0 for all t ∈ R if q ∈ Γ(~m). Indeed, for
m2` ≤ t ≤ m2`+2, we have that q(t) ∈ Br0(`ξ) ∪ (R0 + `ξ). Since our assumptions
imply that Br0(`ξ) ⊂ (R0 + `ξ), we deduce that

Vδ(q(t)) ≤ −`δ for all m2` ≤ t ≤ m2`+2



HETEROCLINIC AT DIFFERENT ENERGY LEVELS 9

so that

Lδ(q) =
1
2
|q̇(t)|2 − a(t)Vδ(q(t))− `δa(t) ≥ `δa(t)− `δa(t) ≥ 0

for this range of values of t. Define

I(q) =
∫ ∞

−∞
Lδ(q) dt,

and
c~m = inf

Γ(~m)
I(q).

Lemma 3.1. Let c be given by Lemma 2.3. Then for all δ ∈ [0, δ0] and a ∈ A, it
follows that c~m ≤ Nc and there is Q ∈ Γ(~m) such that I(Q) = c~m. Moreover for
` = 0, 1, . . . , N − 1

(3.2)
∫ m2`+3

m2`

Lδ(Q) dt ≤ c.

Proof. The existence of a minimizer Q of I follows as in §2. To get the estimates,
let q be the function defined in the proof of Lemma 2.3. Set

p(t) =

{
q(t−m2`+2 + 1/2) + `ξ m2` ≤ t ≤ m2`+2, 0 ≤ ` ≤ N − 1
q(t) = Nξ, t ≥ m2N

Then p ∈ Γ(~m) and c~m ≤ I(p) ≤ Nc.
To prove (3.2), consider the function Q ∈ Γ(~m) defined as

Q(t) =



Q(t) t ≤ m2`

linear m2` ≤ t ≤ m2` + 1
p(t) m2` + 1 ≤ t ≤ m2`+3 − 1
linear m2`+3 − 1 ≤ t ≤ m2`+3

Q(t) t ≥ m2`+3

Then

0 ≤ I(Q)− I(Q) =
∫ m2`+3

m2`

[Lδ(Q)− Lδ(Q)] dt.

Hence by Lemma 2.3, and recalling that ϕ(ρ0) < 1/2,∫ m2`+3

m2`

Lδ(Q) dt ≤
∫ m2`+3

m2`

Lδ(Q)

=
∫ m2`+1

m2`

Lδ(Q) dt +
∫ m2`+2

m2`+2−1

Lδ(Q) dt +
∫ m2`+3

m2`+3−1

Lδ(Q) dt

≤ c− 1 + 2ϕ(r0) ≤ c

and the result follows. �

Lemma 3.3. Let Q be a minimizer of I in Γ(~m) given by Lemma 3.1.
Then, for ` = 0, 1, . . . , N − 1,

Q(t) ∈ Br0(`ξ) ∪ (Rh + `ξ) ∪Br0((` + 1)ξ) = Dh + `ξ for all t ∈ [m2`+1,m2`+2].

Proof. Set
q(t) = Q

∣∣
[m2`+1,m2`+2]

(t)− `ξ

and observe that

q(t) ∈ γ(m2`+1,m2`+2, q(m2`+1), q(m2`+2))

and

Lδ(Q) = L(t, Q(t), Q̇(t))− `δa(t) = L(t, q(t), q̇(t)), for all t ∈ [m2`+1,m2`+2].
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Hence q minimizes I0 over γ(m2`+1,m2`+2, q(m2`+1), q(m2`+2)). The lemma then
follows from assumption (V4). �

Lemma 3.4. Let t∗ be as in Lemma 2.7. Suppose m2`+1 − m2` ≥ 2t∗. Then,
for ` = 1, 2, . . . , N , there is a t` ∈ [m2`,m2` + t∗], t` ∈ [m2` − t∗,m2`], s` ∈
[m2`−1,m2`−1 + t∗], and s` ∈ [m2`−1 − t∗,m2`−1] such that

Q(t`) ∈ Bρ(`ξ) Q(t`) ∈ Bρ((`− 1)ξ) ∪Bρ(`ξ)

Q(s`) ∈ Bρ((`− 1)ξ) ∪Bρ(`ξ) Q(s`) ∈ Bρ((`− 1)ξ).

Moreover, setting t0 = −∞, sN+1 = +∞, then for ` = 0, . . . , N

(3.5) 0 ≤
∫ s`+1

t`

Lδ(Q) dt ≤ ϕ(ρ) → 0 as ρ → 0

and

(3.6) Q(t) ∈ Br0(`ξ) t ∈ [t`, s`+1].

Proof. The proof of the first part is very similar to that of Lemma 2.7. Indeed,
suppose t` does not exist. Then Q(t) ∈ Br0(`ξ) \ Bρ(`ξ) for all t ∈ [m2`,m2` + t∗]
and, using Lemma 3.1

c ≥
∫ m2`+t∗

m2`

−a(t)(Vδ(Q(t)) + `δ) dt ≥ t∗aβ(ρ) = 2c.

The estimates (3.5) follow as in Lemma 2.7 using the arguments of Lemma 2.3,
and q(t) ∈ Br0(`ξ) for t ∈ [t`, s`] since, as in Lemma 2.10, the cost of going from
∂Bρ(`ξ) to ∂Br0(`ξ) ≥ γ � ϕ(ρ). �

Now the main theorem of this section can be stated.
Theorem 3.7. Let ρ satisfy

(3.8) 8ϕ(ρ) ≤ 1
4
(a− a)

d2

2c
|h|.

and define t∗ = 2c/aβ(ρ) and A∗ as in (2.14). Then for all a ∈ A∗, there is a
δ3 ≤ δ0 such that for all 0 < δ ≤ δ3, and for all ~m ∈ R

2N which satisfy

mj ∈ TZ j = 1, . . . , 2N(3.9)

m2`+1 −m2` ≥ 2t∗ + 2 ` = 1, . . . , N − 1(3.10)

m2` −m2`−1 ≥ 2t∗ + T (a) + 1 ` = 1, . . . , N(3.11)

(HS) has a heteroclinic solution Q ∈ Γ(~m).

Proof. Set m0 = −∞, m2N+1 = ∞. Let Q be the minimizer of I over Γ(~m). It is
immediate that such a function is a solution of (HS)

• for all t ∈ [m2`+1,m2`+2], ` = 0, . . . , N − 1, by Lemma 3.3;
• for all t ∈ [m2`,m2`+1] such that Q(t) /∈ ∂Br0(`ξ), ` = 0, . . . , N .

So, to prove the theorem, it only need be shown that Q(t) /∈ ∂Br0(`ξ) for all
t ∈ [m2`,m2`+1] and ` = 0, . . . , N . This will be done for ` = 1, . . . , N − 1. The
cases of ` = 0 and ` = N are treated in a similar but simpler fashion and will be
omitted.

By (3.6) of Lemma 3.4, it is known that Q(t) ∈ Br0(`ξ) for all t ∈ [t`, s`+1] ⊂
[m2`,m2`+1]. Thus it remains to verify that Q(τ) ∈ ∂Br0(`ξ) for some τ ∈ [m2`, t`]
or τ ∈ [s`+1,m2`+1] is not possible. Assume to the contrary that Q(τ) ∈ ∂Br0(`ξ)
for some τ ∈ [m2`, t`]. Then first of all, since Q(t`) ∈ Bρ(`ξ), Q(τ) ∈ ∂Br0(`ξ)
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and Q(t`) ∈ Bρ((`− 1)ξ)∪Bρ(`ξ), the arguments of Lemma 2.11 and Lemma 2.12
imply that Q(t`) ∈ Bρ((`− 1)ξ) and hence

(3.12) Q(t) ∈ Br0((`− 1)ξ) for all t ∈ [t`−1, t`].

Let θ ∈ (0, T (a)) be as in §2 and define Q̃(t) as follow:

Q̃(t) =



Q(t) t ≤ t`−1

(`− 1)ξ t`−1 + 1 ≤ t ≤ t` − θ − 1
Q(t + θ) t` − θ ≤ t ≤ t` − θ

`ξ t` − θ + 1 ≤ t ≤ s`+1 − 1
Q(t) t ≥ s`+1

linear otherwise

To verify that Q̃ is well defined, note that
• t`−1 +1 ≤ t`−θ−1, since by (3.10)–(3.11), t`− t`−1 ≥ m2`−m2`−2−2t∗ =

(m2` −m2`−1) + (m2`−1 −m2`−2)− 2t∗ ≥ 2t∗ + T (a) + 3 ≥ θ + 2;
• t` − θ + 1 ≤ s`+1 − 1, since s`+1 − t` ≥ m2`+1 −m2` − 2t∗ ≥ 2.

We claim that Q̃ ∈ Γ(~m). Since Q ∈ Γ(~m), by the definition of Q̃, it must be
verified that

(a) Q̃ ∈ Br0((`− 1)ξ), t ∈ [t`−1,m2`−1],
(b) Q̃ ∈ R0 + (`− 1)ξ, t ∈ [m2`−1,m2`],
(c) Q̃ ∈ Br0(`ξ), t ∈ [m2`, s`+1].

Using the definition of Q̃, (a) follows from (3.11), (b) from (V2)–(V′
3) and the fact

that if t ≥ m2`−1, then t + θ ≥ m2`−1, and (c) from (3.10) and the fact that if
t ≥ m2`, then t + θ ≥ m2`.

Since Q̃ ∈ Γ(~m), arguing as in §2,

(3.13) 0 ≤ I(Q̃)− I(Q) =
∫ t`−θ

t`−θ

Lδ(Q̃)dt−
∫ t`

t`

Lδ(Q)dt +R

where

(3.14) R =
∫ t`−θ

t`−1

Lδ(Q̃)dt +
∫ s`+1

t`−θ

Lδ(Q̃)dt−
∫ t`

t`−1

Lδ(Q)dt−
∫ s`+1

t`

Lδ(Q)dt.

By earlier arguments,

(3.15)
∣∣∣ ∫ t`−θ

t`−1

Lδ(Q̃)dt
∣∣∣ ≤ 2ϕ(ρ).

Since Q(t`−1) ∈ Bρ((` − 1)ξ) and Q(t`) ∈ Bρ((` − 1)ξ), the minimality of Q and
simple comparison arguments as e.g. in Lemma 3.1 imply

(3.16)
∣∣∣ ∫ t`

t`−1

Lδ(Q)dt
∣∣∣ ≤ 2ϕ(ρ)

and similarly

(3.17)
∣∣∣ ∫ s`+1

t`

Lδ(Q)dt
∣∣∣ ≤ 2ϕ(ρ).

The function Lδ(·) has a jump discontinuity (by −δa) at t = m2` so some care must
be taken with this value of t. The jump in Lδ(Q) occurs in the integral over [t`, t`].
If t`− θ ≥ m2`, the jump in Lδ(Q̃) occurs in the integral over [t`− θ, t`− θ]. Hence

(3.18)
∫ s`+1

t`−θ

Lδ(Q̃)dt ≤ 2ϕ(ρ)
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as for (3.15) and by (3.13)–(3.18),

0 ≤
∫ t`−θ

t`−θ

Lδ(Q̃)dt−
∫ t`

t`

Lδ(Q)dt + 8ϕ(ρ)(3.19)

≤
∫ t`

t`

(a(t− θ)− a(t))(−Vδ(Q(t))− (`− 1)δ)dt + δaθ + 8ϕ(ρ).

On the other hand, if t` − θ ≤ m2`.∫ s`+1

t`−θ

Lδ(Q̃) dt =
∫ s`+1

t`−θ

[
1
2

∣∣∣ ˙̃Q
∣∣∣2 − a(t)(Vδ(Q̃) + `δ)] dt +

∫ m2`

t`−θ

δa(t) dt

≤ 2ϕ(ρ) + a(m2` − t` + θ) ≤ 2ϕ(ρ) + aδθ

(3.20)

and

0 ≤ I(Q̃)− I(Q) ≤
∫ t`−θ

t`−θ

Lδ(Q̃) dt−
∫ t`

t`

Lδ(Q) dt + 8ϕ(ρ) + aδθ

≤
∫ t`

t`

(a(t− θ)− a(t))(−Vδ(Q(t))− (`− 1)δ) dt

−
∫ t`

m2`

δa(t) dt + δaθ + 8ϕ(ρ),

(3.21)

and equation (3.19) holds also in this case.
Then, by the same arguments used in equations (2.21)–(2.24) we find that

0 ≤ I(Q̃)− I(Q) ≤ −1
2
(a− a)

d2

2c
|h|+ δaT (a) + 8ϕ(ρ),

a contradiction for δ small via (3.8).
To complete the proof of Theorem 3.7, it remains to show that Q(τ) ∈ ∂Br0(`ξ)

for some τ ∈ [s`+1,m2`+1] is impossible.
This involves a comparison function argument based on a combination of the

case just carried out and the last part of the proof of Lemma 2.15. Arguing as
earlier,

(3.22) Q(t) ∈ Br0((` + 1)ξ), t ∈ [s`+1, s`+2].

Suppose k ∈ N satisfies

(3.23) (k + 1)T + 2t∗ + 2 > m2`+2 −m2`+1 ≥ kT + 2t∗ + 2.

Let θ = kT − θ with θ ∈ (0, T ) as earlier. Define

Q̃(t) =



Q(t), t ≤ t`

`ξ, t`+1 ≤ t ≤ s`+1 + θ − 1
Q(t− θ), s`+1 + θ ≤ t ≤ s`+1 + θ

(` + 1)ξ, s`+1 + θ + 1 ≤ t ≤ t`+1 − 1
Q(t), t ≥ t`+1

linear otherwise.

Then (3.23) and earlier arguments show Q̃ is well defined and Q̃ ∈ Γ(~m). As in
(3.13)

(3.24) 0 = I(Q̃)− I(Q) =
∫ s`+1+θ

s`+1+θ

Lδ(Q̃) dt−
∫ s`+1

s`+1

Lδ(Q) dt +R
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where now

R =
∫ s`+1+θ

t`

Lδ(Q̃) dt +
∫ t`+1

s`+1+θ

Lδ(Q̃) dt

−
∫ s`+1

t`

Lδ(Q) dt−
∫ t`+1

s`+1

Lδ(Q) dt

(3.25)

No jumps of Lδ(·) are involved here so a similar but simpler argument than in
(3.15)–(3.21), leads to∫ s`+1+θ

t`

Lδ(Q̃) dt ≤ 2ϕ(ρ)∫ t`+1

s`+1+θ

Lδ(Q̃) dt ≤ 2ϕ(ρ) + δ(t`+1 − s`+1 − θ)∫ s`+1

t`

Lδ(Q) dt ≥ 0∫ t`+1

s`+1

Lδ(Q) dt ≥ δ(m2`+2 − s`+1),

so that

(3.26) 0 ≤
∫ s`+1

s`+1

(a(t + θ)− a(t))(−Vδ(Q(t))− `δ) dt + 4ϕ(ρ).

But a(t + θ) = a(t + kT − θ) = a(t− θ) so as earlier

(3.27) 0 ≤ I(Q̃)− I(Q) ≤ −1
2
(a− a)

d2

2c
|h|+ 8ϕ(ρ)

contrary to the choice of ρ. �

Remark 3.28. As was noted earlier, it is not necessary that (V ′
3) holds, i.e. ξi = iξ

and Vδ(ξi−1) − Vδ(ξi) = δ. The argument of Theorem 3.7 applies whenever there
are points ξ0, . . . , ξN such that |Vδ(ξi−1) − Vδ(ξi)| is sufficiently small, 1 ≤ i ≤ N ,
and each ξi is a (strict) local maximum.
Remark 3.29. As a special case of Theorem 3.7, suppose the setting of Theorem 2.5
obtains. Set ξ0 = 0, ξ1 = ξ, ξ2i = ξ0, and ξ2i+1 = ξ1, i > 0. Then by Theorem 3.7,
there exist solutions of (HS) which are homoclinic to 0 if N is odd and heteroclinic
from 0 to ξ if N is even and which spend the time interval [m2i,m2i+1] near ξi. These
are the simplest examples of the augmented chains mentioned in the Introduction.
Remark 3.30. By a limiting procedure, one can allow (ξi)i∈N or (ξi)i∈Z provided
that δ is independent of the number of points. Indeed for the case of (ξi)i∈Z and
corresponding m ∈ (Z\{0})∞, set `k = (m−(2k+1),m−1,m1, . . . ,m2k+1) ∈ Z

4k+2.
Then by Theorem 3.7, there exists a solution Q`k

of (HS) heteroclinic from ξ−k to
ξk. It is not difficult to get L∞ bounds for Q`k

in each interval [mi,mi+1] as in
Lemma 2.3 or Lemma 3.1. Then (HS) gives bounds for Q`k

in C2
loc independently

of k. These bounds imply the existence of the limit solution.

4. On the assumption (V4)

In this section some examples will be given for which (V4) is valid. The first
example is one-dimensional.

Assume Vδ(x) = V0(x) + δW (x), where
(W1) V0 ∈ C2(R, R) is 1-periodic;
(W2) V0(0) = V ′

0(0) = 0, V ′′
0 (0) < 0, V (x) < 0 for all x /∈ Z;

(W3) W ∈ C2(R, R), W (x + 1) = W (x)− 1, for all x ∈ R;
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(W4) W (0) = W ′(0) = 0;
Proposition 4.1. Suppose V0 satisfies (W1)–(W2) and W satisfies (W3)–(W4).
Then there is a δ0 > 0 such that

Vδ(x) = V0(x) + δW (x)

satisfies (V1), (V2), (V′
3) and (V4) for all δ ∈ (0, δ0).

Proof. It is clear that (V1) and (V′
3) hold for all δ > 0 if we take ξ = 1. Take r1 > 0

and C1, C2 > 0 such that, for all |x| ≤ r1,

V0(x) ≤ −C1 |x|2 , |W (x)| ≤ C2 |x|2 .

Then
Vδ(x) ≤ −(C1 − δC2) |x|2 for all |x| ≤ r1

so (V2) holds for any r0 < r1 if δ0 < C1/C2.
Suppose further that

δ0 sup
[−1,1]

|W (x)| ≤ 1
2

inf
[r1,1−r1]

|V0(x)|.

Then one can check that Vδ(x) < 0 for all δ < δ0, and for all x ∈ [−1 + r1,−r1] ∪
[r1, 1− r1]. Using assumption (W3), one deduces that

[−1 + r1,+∞] ⊂ R0,

Now choose r0 < r1 such that the cost of going from −r0 to −r1 is greater then
the cost of going from −r0 to 0. (This can be done as in the proof of Lemma 2.10.)
Let h < 0 be such that

(4.2) 0 > h > sup
{

Vδ(x)
∣∣ x ∈ [−1 + r1,−r0] ∪ [r0, 1− r0], δ ∈ [0, δ0]

}
.

Then

(4.3) [−1 + r1, 2− r1] ⊂ Br0(0) ∪Rh ∪Br0(1) ≡ Dh,

so that 0 and 1 are path connected in Dh for all h0 < h < 0 and (V4)(a) follows.
Assume that such an h does not satisfy (V4)(b). Then there is −r0 < η1 < r0,

ξ − r0 < η2 < ξ + r0, Q0 ∈ γ(m1,m2), a minimizer for I0 and τ ∈ [m1,m2] such
that Q0(τ) ∈ ∂Dh. By (4.3)

∂Dh ⊂ (−∞,−1 + r1] ∪ [1 + r1,+∞).

Hence there is a number m1 ≤ τ ≤ m2 such that Q0(τ) = −1 + r1 (or Q(τ) =
1 + r1). Since Q(m1) = η1 > −r0 and Q(m2) = η2 > −r0, one has a contradiction
with our choice of r0. Thus (V4) has been established for all h satisfying (4.2). �

Next using Proposition 4.1, a somewhat artificial example of a potential in higher
dimensions which satisfies our assumptions can be given. Fix V0 : R → R satisfying
(W1)-(W2) and W : R → R satisfying (W3)-(W4). We know, from Proposition
4.1 that there is δ0 such that V0 + δW satisfies (V1), (V2), (V′

3) and (V4) for all
δ ∈ [0, δ0]. Then take r1 and r0 as in the proof of Proposition 4.1. We then know
that (V1), (V2), (V′

3) and (V4) hold.
Set

(4.4) µ1 = inf
{ ∫ τ

0

(
1
2
|q̇|2 − aVδ(q)) dt

∣∣∣∣ τ ≥ 0, δ ∈ [0, δ0], q(0) ≥ −r0, q(τ) ≤ −1 + r1, q ∈ W 1,2(0, τ)
}
.

Let ϕ be as in (2.8). Take r0 eventually smaller so that

ϕ(r0) + r2
0 ≤ r1.

Then take R : R× R
n−1 → R such that
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(W5) R ∈ C2(R× R
n−1, R) and R(x + 1, y) = R(x, y) for all (x, y) ∈ R× R

n−1;
(W6) R(0, 0) = ∇R(0, 0) = 0, R′′

yy(0, 0) < 0, R(x, y) < 0 for all y 6= 0;
(W7) R(x, y) ≥ −µ ≥ −µ1

2a for all x, |y| ≤ r0;
(W8) R(x, 0) ≥ R(x, y) for all x ∈ R, |y| ≥ r0 and sup|y|≥r0

R(x, y) < 0.

We will show that

Vδ(x, y) = V0(x) + δW (x) + R(x, y)

satisfies, (V1)-(V2)-(V′
3)-(V4) for all 0 < δ < δ0. Indeed (V1) and (V2) follows as

in Proposition 4.1, while (V′
3) (with ξ = (1, 0)) is a direct consequence of (W1),

(W3) and (W5).
To prove (V4), observe that for all h satisfying (4.2) and

0 > h > sup
{

R(x, y)
∣∣ −r0 ≤ |x| ≤ r0, |y| ≥ r0

}

it follows from (W6) that

[−1 + r1, 2− r1]× R
n−1 ⊂ Dh,

so that (V4)(a) holds.
In order to prove (V4)(b), assume it does not hold. Then there is a η1 ∈ Br0(0),

η2 ∈ Br0(ξ), Q0 = (x(t), y(t)) ∈ γ(m1,m2, η1, η2), a minimizer for I0 and τ ∈
[m1,m2] such that Q0(τ) ∈ ∂Dh. By (4.3)

∂Dh ⊂
(
(−∞,−1 + r1] ∪ [2− r1,+∞)

)
× R

n−1.

Hence there is a number m1 ≤ t0 ≤ m2 such that x(t0) ≤ −1 + r1. (The case
x(t0) ≥ 2−r1 can be dealt with similarly). Then there is t1 > t0 such that x(t) ≥ 0
for all t ≥ t1 and t2 ≥ t1 such that |y(t)| ≥ ρ for all t1 < t ≤ t2.

Define a new function Q ∈ γ(m1,m2, η1, η2) as follow:

Q(t) = (x(t), y(t)) =



η1 t = m1

linear m1 ≤ t ≤ m1 + 1
(0, 0) m1 + 1 ≤ t ≤ t1

(x(t), 0) t1 ≤ t ≤ t2 − 1
(x(t), linear) t2 − 1 ≤ t ≤ t2

(x(t), y(t)) t2 ≤ t ≤ m2



16 V. COTI ZELATI AND P. H. RABINOWITZ

Note that we can assume t1 ≥ m1 + 1, and that minor modifications are required
if t1 ≥ t2 − 1. Estimating I0(Q)− I0(Q):

0 ≥ I0(Q)− I0(Q)

=
∫ m2

m1

(
1
2 (|ẋ|2 + |ẏ|2)− a(t)(Vδ(x) + R(x, y))

)
dt

−
∫ m2

m1

(
1
2 (

∣∣ẋ∣∣2 +
∣∣ẏ∣∣2)− a(t)(Vδ(x) + R(x, y))

)
dt

=
∫ t2

m1

(
1
2 (|ẋ|2 + |ẏ|2)− a(t)(Vδ(x) + R(x, y))

)
dt

−
∫ t2

m1

(
1
2 (

∣∣ẋ∣∣2 +
∣∣ẏ∣∣2)− a(t)(Vδ(x) + R(x, y))

)
dt

=
∫ t2

m1

(
1
2 (|ẋ|2 − a(t)Vδ(x)

)
dt−

∫ t2

m1

(
1
2 (

∣∣ẋ∣∣2 − a(t)Vδ(x)
)
dt

+
∫ t2

m1

(
1
2 (|ẏ|2 − a(t)R(x, y)

)
dt−

∫ t2

m1

(
1
2 (

∣∣ẏ∣∣2 − a(t)R(x, y)
)
dt

=
∫ t1

m1

(
1
2 (|ẋ|2 − a(t)Vδ(x)

)
dt−

∫ t1

m1

(
1
2 (

∣∣ẋ∣∣2 − a(t)Vδ(x)
)
dt

+
∫ t2

m1

(
1
2 (|ẏ|2 − a(t)R(x, y)

)
dt−

∫ t2

m1

(
1
2 (

∣∣ẏ∣∣2 − a(t)R(x, y)
)
dt

Let us now observe that ∫ t1

m1

(
1
2 (|ẋ|2 − a(t)Vδ(x)

)
dt ≥ 2µ1

while, by the choice of ϕ,∫ t1

m1

(
1
2 (

∣∣ẋ∣∣2 − a(t)Vδ(x)
)
dt =

∫ m1+1

m1

(
1
2 (

∣∣ẋ∣∣2 − a(t)Vδ(x)
)
dt ≤ ϕ(r0).

We also have that∫ t2

m1

(
1
2 (|ẏ|2 − a(t)R(x, y)

)
dt ≥

∫ t2−1

m1+1

(
1
2 (|ẏ|2 − a(t)R(x, y)

)
dt

≥ −
∫ t2−1

m1+1

a(t)R(x, y) dt

and ∫ m1+1

m1

(
1
2 (

∣∣ẏ∣∣2 − a(t)R(x, y)
)
dt ≤

∫ m1+1

m1

(
1
2 (

∣∣ẏ∣∣2 + aµ
)
dt ≤ 1

2
r2
0 + aµ∫ t2

t2−1

(
1
2 (

∣∣ẏ∣∣2 + a(t)R(x, y)
)
dt ≤ 1

2
r2
0 + aµ.

We deduce that∫ t2

m1

(
1
2 (|ẏ|2 − a(t)R(x, y)

)
dt−

∫ t2

m1

(
1
2 (

∣∣ẏ∣∣2 − a(t)R(x, y)
)
dt

≥
∫ t2−1

m1+1

(
−a(t)R(x, y) + a(t)R(x, 0)

)
dt− r2

0 − 2aµ

≥ −r2
0 − 2aµ
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Combining these inequalities yields:

0 ≥ I0(Q)− I0(Q) ≥ 2µ1 − ϕ(r0)− r2
0 − 2aµ,

a contradiction which shows that (V4)(b) holds.

For our next example, suppose Vδ satisfies (V1)–(V3) and in addition:

(V5) Vδ(x) < 0 for all x ∈ R
n\{0, ξ}, δ ∈ [0, δ0].

By (V5), 0 is a global maximum for Vδ. Now R0 = R
n. The next proposition

shows that (V4) is valid for this setting.

Proposition 4.5. If Vδ satisfies (V1)–(V3) and (V5), then (V4) also holds.

By (V5), (V4)(a) is satisfied. To verify (V4)(b), observe that as in the proof of
Lemma 2.3, along a minimizing sequence for I0 in γ(m1,m2, η1, η2),

|q(t)| ≤ r0 +
√

2c(m2 −m1) ≡ R

as in Lemma 2.3. Choose h0 < 0 such that

Vδ(x) ≤ h0, x ∈ BR(0)\(B r0
2

(0) ∪B r0
2

(ξ))

and δ ∈ [0, δ0]. Then if h = h0/2, (V4)(b) holds.
Remark 4.6. Note that there may be several values of ξ for which (V3) is satisfied
possibly with different (small) values of δ.

We conclude with a couple of examples to which Theorem 3.7 and Remark 3.30
apply. Suppose n = 1, e.g. (W1)–(W4) hold. Then Proposition 4.1 and Theorem
2.5 show there is a solution, Q1 of (HS) heteroclinic from 0 to 1 for each small
δ. Similarly there are solutions Qj , of (HS) heteroclinic from j − 1 to j. By the
argument of Proposition 4.1 again together with Theorem 3.7, there are heteroclinic
solutions of (HS) from j to k for any j, k ∈ Z as well as solutions going from −∞
to ∞ via Remark 3.30. Moreover there are augmented chain type solutions in the
spirit of the Introduction and Remark 3.29.

A variant of these arguments shows Vδ(x) = (1 + δ)(cos(x)− 1) + δx has hetero-
clinics as in the previous paragraph.
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