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Preface

I t is no simple task to characterize the importance of phase-space
methods in the optical sciences. Geometrical optics, formally re-
lated to classical mechanics, has benefited implicitly and explicitly

from phase-space concepts since Hamiltonian and Lagrangian optics
were first formulated. In comparison, phase-space optics of coherent
wavefronts, namely, the use of the Wigner distribution functions and
of the ambiguity function, constitutes a more recent development,
and the Wigner distribution remains far from being integrated into
the canon of standard tools used by the optics community.

Optical engineers and researchers are polarized on the use of phase-
space optics. Many remain intrigued, but skeptical toward a math-
ematical formalism that appears theoretically demanding, without
providing obvious complementary information for describing optical
phenomena. On the other end of the spectrum one can find a small,
but fast-growing community that is enchanted by the beauty and sim-
plicity of phase-space optics, revealing itself even with only a scant
familiarity with the theoretical framework.

To understand this devotion, it is important to recognize the unique
position that optics holds in science and engineering. Optics is both
a subject of basic research and an enabling technology. Fundamental
questions about the quantum nature of light, and its interaction with
matter, are at the core of modern physics. At the same time, there is a
rich history of optical instruments pivotal to ground-breaking discov-
eries in astronomy, biology, communications, and many other disci-
plines. In the past half century, the optical sciences have developed at
an astounding pace. Perhaps with the exception of microelectronics,
optics has become the most vibrant technology resting at the intersec-
tion of different brands of research.

As a consequence, different optical sciences have developed unique
and effective models to describe light propagation and the interac-
tion of light with matter. Notwithstanding the universal validity of
Maxwell’s equations, or quantum electrodynamics, it is often more
effective to describe light propagation based on specific models (rays,
scalar waves, or Gaussian beams) than to consider the full complex-
ity of the electrodynamic wave field. All models of light propagation

xiii



xiv P r e f a c e

are well explored, as are their relationships with one another. How-
ever, it is, without question, desirable to have a simple, common plat-
form with which to unify these models, while preserving their unique
features.

From our viewpoint, such a platform can provide a powerful tool for
understanding and applying the physics of light propagation through
optical systems. Ideally, this common platform should be a superior
model, with all other models reducing to different facets of a common
framework. The contributions collected in this book emphasize the
fact that this model may be best implemented by what we term phase-
space optics.

Phase-space optics refers to a representation of optical signals in
an artificial configuration space simultaneously providing informa-
tion about spatial properties of the signal and its angular spectrum,
or equivalently in terms of its temporal and time-frequency charac-
teristics. In coherent optics, this concept has also been popularized
as “Wigner optics” since the properties of the Wigner distribution
function are often used to motivate the use of a joint signal represen-
tation. In the signal processing community, the Wigner-Ville distri-
bution is recognized as a relevant member of a larger class of joint
time-frequency transforms. Closely connected with the Wigner dis-
tribution function through a double Fourier transform, the ambiguity
function is used by the radar community for representing signals si-
multaneously carrying information about the down range of the target
and its velocity.

In contrast, the term phase space, while being based on the same con-
ceptual and formal mathematical tools, rather emphasizes the dynam-
ics of the physical system. Phase space, and in particular the Wigner
distribution, can be recognized as one common platform for under-
standing and applying the physics of more traditional models for de-
scribing electromagnetic signals as they evolve and propagate through
an optical system.

By compiling this book, it was our desire to create a mosaic of phase-
space optics. Each contribution constitutes a self-consistent perspec-
tive on one particular aspect of optical signals in phase space, while
revealing its full beauty and importance only as part of this entire
collection. We owe it to the authors who contributed to this effort that
the result has far exceeded our expectations.

Each of the chapters illustrates original ways to gain physical in-
sight and to develop novel engineering applications. All chapters are
written by authors who are pioneers in using phase-space optics in
their fields of expertise. As a consequence, the topics are discussed
with unique depth, without losing sight of the necessity to embed
phase-space optics in a broader context.
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We believe that the book will be helpful for researchers and graduate
students alike, who wish to familiarize themselves with phase-space
concepts in optics, but also want to move beyond a mere introduc-
tory level of discussion. We are sure that the number of applications
derived from phase-space optics will grow, and we hope that this
collection will help to facilitate this development.

This book would not have been possible without the guidance and
encouragement of McGraw-Hill senior editor Taisuke Soda. We are
indebted to him and the helpful staff at McGraw-Hill.

MARKUS E. TESTORF

Dartmouth College, Hanover, New Hampshire, United States

BRYAN M. HENNELLY

National University of Ireland, Maynooth, Ireland

JORGE OJEDA-CASTAÑEDA

Universidad de Guanajuato, México
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C H A P T E R 1
Wigner Distribution

in Optics

Martin J. Bastiaans
Technische Universiteit Eindhoven, Faculteit Elektrotechniek
Eindhoven, Netherlands

1.1 Introduction
In 1932 Wigner1 introduced a distribution function in mechanics that
permitted a description of mechanical phenomena in a phase space.
Such a Wigner distribution was introduced in optics by Dolin2 and
Walther3,4 in the 1960s, to relate partial coherence to radiometry. A few
years later, the Wigner distribution was introduced in optics again5–11

(especially in the area of Fourier optics), and since then, a great number
of applications of the Wigner distribution have been reported.

While the mechanical phase space is connected to classical mechan-
ics, where the movement of particles is studied, the phase space in
optics is connected to geometrical optics, where the propagation of
optical rays is considered. Whereas the position and momentum of a
particle are the two important quantities in mechanics, in optics we are
interested in the position and the direction of an optical ray. We will
see that the Wigner distribution represents an optical field in terms of
a ray picture, and that this representation is independent of whether
the light is partially coherent or completely coherent.

We will observe that a description by means of a Wigner distribu-
tion is, in particular, useful when the optical signals and systems can
be described by quadratic-phase functions, i.e., when we are in the
realm of first-order optics: spherical waves, thin lenses, sections of
free space in the paraxial approximation, etc. Although formulated

1
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in Fourier-optical terms, the Wigner distribution will form a link to
such diverse fields as geometrical optics, ray optics, matrix optics, and
radiometry.

Sections 1.2 through 1.7 mainly deal with optical signals and sys-
tems. We treat the description of completely coherent and partially
coherent light fields in Sec. 1.2. The Wigner distribution is introduced
in Sec. 1.3 and elucidated with some optical examples. Properties of
the Wigner distribution are considered in Sec. 1.4. In Sec. 1.5 we restrict
ourselves to the one-dimensional case and observe the strong connec-
tion of the Wigner distribution to the fractional Fourier transformation
and rotations in phase space. The propagation of the Wigner distri-
bution through Luneburg’s first-order optical systems is the topic of
Sec. 1.6, while the propagation of its moments is discussed in Sec. 1.7.
The final Sec. 1.8 is devoted to the broad class of bilinear signal repre-
sentations known as the Cohen class, of which the Wigner distribution
is an important representative.

1.2 Elementary Description of Optical
Signals and Systems
We consider scalar optical signals, which can be described by, say,
f̃ (x, y, z, t), where x, y, z denote space variables and t represents the
time variable. Very often we consider signals in a plane z = constant,
in which case we can omit the longitudinal space variable z from the
formulas. Furthermore, the transverse space variables x and y are
combined into a two-dimensional column vector r. The signals with
which we are dealing are thus described by a function f̃ (r, t).

Although real-world signals are real, we will not consider these
signals as such. The signals f̃ (r, t) that we consider in this chapter are
analytic signals, and our real-world signals follow as the real part of
these analytic signals.

Throughout we denote column vectors by boldface lowercase sym-
bols, while matrices are denoted by boldface uppercase symbols;
transposition of vectors and matrices is denoted by the superscript t.
Hence, for instance, the two-dimensional column vectors r and q rep-
resent the space and spatial-frequency variables [x, y]t and [u, v]t ,
respectively, and qtr represents the inner product ux + vy. Moreover,
in integral expressions, dr and dq are shorthand notations for dx dy
and du dv, respectively.
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1.2.1 Impulse Response and Coherent
Point-Spread Function

The input-output relationship of a general linear system f̃ i (r, t) →
f̃ o (r, t) reads

f̃ o (ro , to ) =
∫ ∫

h̃(ro , ri , to , ti ) f̃ i (ri , ti ) dri dti (1.1)

where h̃(ro , ri , to , ti ) is the impulse response, i.e., the system’s response
to a Dirac function:

�(r − ri )�(t − ti ) → h̃(r, ri , t, ti )

We restrict ourselves to a time-invariant system h̃(ro , ri , to , ti ) =:
h̃(ro , ri , to − ti ), in which case the input-output relationship takes the
form of a convolution (as far as the time variable is concerned):

f̃ o (ro , to ) =
∫ ∫

h̃(ro , ri , to − ti ) f̃ i (ri , ti ) dri dti (1.2)

The temporal Fourier transform of the impulse response h̃(ro , ri , �)

h(ro , ri , �) =
∫

h̃(ro , ri , �) exp(i2���) d� =: h(ro , ri ) (1.3)

is known as the coherent point-spread function; note that throughout
we omit the explicit expression of the temporal frequency �. If the
temporal Fourier transform of the signal exists

f (r, �) =
∫

f̃ (r, t) exp(i2��t) dt =: f (r) (1.4)

we can formulate the input-output relationship in the temporal-
frequency domain as12

fo (ro ) =
∫

h(ro , ri ) fi (ri ) dri (1.5)

1.2.2 Mutual Coherence Function and
Cross-Spectral Density

How shall we proceed if the temporal Fourier transform of the signal
does not exist? This happens in the general case of partially coherent
light, where the signal f̃ (r, t) should be considered as a stochastic
process. We then start with the mutual coherence function13–16

�̃(r1, r2, t1, t2) = E{ f̃ (r1, t1) f̃ ∗(r2, t2)} =: �̃(r1, r2, t1 − t2) (1.6)
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where we have assumed that the stochastic process is temporally sta-
tionary. After Fourier transforming the mutual coherence function
�̃(r1, r2, �), we get the mutual power spectrum15,16 or cross-spectral
density:17

�(r1, r2, �) =
∫

�̃(r1, r2, �) exp(i2���) d� =: �(r1, r2) (1.7)

The basic property16,17 of �(r1, r2) is that it is a nonnegative definite
Hermitian function of r1 and r2, i.e.,

�(r1, r2) = �∗(r2, r1) and
∫ ∫

g(r1)�(r1, r2)g∗(r2) dr1 dr2 ≥ 0

(1.8)

for any function g(r). The input-output relationship can now be for-
mulated in the temporal-frequency domain as

�o (r1, r2) =
∫ ∫

h(r1, �1) �i (�1, �2) h∗(r2, �2) d�1 d�2 (1.9)

which expression replaces Eq. (1.5). Note that in the completely co-
herent case, for which �(r1, r2) takes the product form f (r1) f ∗(r2), the
coherence is preserved and Eq. (1.9) reduces to Eq. (1.5).

1.2.3 Some Basic Examples
of Optical Signals

Important basic examples of coherent signals, as they appear in a plane
z = constant, are as follows:

1. An impulse in that plane at position ro , f (r) = �(r−ro ). In optical
terms, the impulse corresponds to a point source.

2. The crossing with that plane of a plane wave with spatial
frequency qo , f (r) = exp(i2�qt

or). The plane wave example
shows us how we should interpret the spatial-frequency vec-
tor qo . We assume that the wavelength of the light equals �o ,
in which case the length of the wave vector k equals 2�/�o . If
we express the wave vector in the form k = [kx, ky, kz]t , then
2�qo = 2�[qx, qy]t = [kx, ky]t is simply the transversal part of k,
that is, its projection onto the plane z = constant. Furthermore, if
the angle between the wave vector k and the z axis equals �, then
the length of the spatial-frequency vector qo equals sin �/�o .

3. The crossing with that plane of a spherical wave (in the parax-
ial approximation), f (r) = exp(i�rtHr), whose curvature is
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described by the real symmetric 2 × 2 matrix H = Ht . We use
this example to introduce the instantaneous frequency of a sig-
nal | f (r)| exp[i2�	(r)] as the derivative d	/dr = ∇	(r) =
[∂	/∂x, ∂	/∂y]t of the signal’s argument. In the case of a spheri-
cal wave we have d	/dr = Hr, and the instantaneous frequency
corresponds to the normal on the spherical wavefront.

Basic example of partially coherent signals include

4. Completely incoherent light with intensity p(r), �(r1, r2) =
p(r1)�(r1 − r2). Note that p(r) is a nonnegative function.

5. Spatially stationary light, �(r1, r2) = s(r1 − r2). We will see later
that the Fourier transform of s(r) is a nonnegative function.

1.3 Wigner Distribution and Ambiguity
Function
In this section we introduce the Wigner distribution and its Fourier
transform, the ambiguity function.

1.3.1 Definitions
We introduce the spatial Fourier transforms of f (r) and �(r1, r2):

f̄ (q) =
∫

f (r) exp(−i2�qtr) dr (1.10)

�̄(q1, q2) =
∫ ∫

�(r1, r2) exp
[− i2�

(
qt

1r1 − qt
2r2
)]

dr1 dr2 (1.11)

Throughout we use the generic form �(r1, r2), even in the case of
completely coherent light, where we could use the product form
f (r1) f ∗(r2). We thus elaborate on Eq. (1.11) and apply the coordinate
transformation

r1 = r + 1
2 r′

r2 = r − 1
2 r′

r = 1
2 (r1 + r2)

r′ = r2 − r1
(1.12)

and similarly for q. Note that the jacobian equals 1, so that dr1 dr2 =
dr dr′. The Wigner distribution1 W(r, q) and ambiguity function18

A(r′, q′) now arise “midway” between the cross-spectral density
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�(r1, r2) and its Fourier transform �̄(q1, q2),

�̄
(
q + 1

2 q′, q − 1
2 q′) =

∫ ∫
�
(
r + 1

2 r′, r − 1
2 r′)

× exp[−i2�(qtr′ + rtq′)] dr dr′

=
∫

W(r, q) exp(−i2�rtq′) dr

=
∫

A(r′, q′) exp(−i2�qtr′) dr′ (1.13)

and their definitions follow as

W(r, q) =
∫

�
(
r + 1

2 r′, r − 1
2 r′) exp(−i2�qtr′) dr′

=
∫

�̄
(
q + 1

2 q′, q − 1
2 q′) exp(i2�rtq′) dq′ (1.14)

A(r′, q′) =
∫

�
(
r + 1

2 r′, r − 1
2 r′) exp(−i2�rtq′) dr

=
∫

�̄
(
q + 1

2 q′, q − 1
2 q′) exp(i2�qtr′) dq (1.15)

We immediately notice the realness of the Wigner distribution, and
the Fourier transform relationship between the Wigner distribution
and the ambiguity function:

A(r′, q′) =
∫

W(r, q) exp[−i2�(rtq′ − qtr′)] dr dq

= F[W(r, q)](r′, q′) (1.16)

This Fourier transform relationship implies that properties for the
Wigner distribution have their counterparts for the ambiguity func-
tion and vice versa: moments for the Wigner distribution become
derivatives for the ambiguity function, convolutions in the Wigner
domain become products in the ambiguity domain, etc.

We like to present the cross-spectral density �, its spatial Fourier
transform �̄, the Wigner distribution W, and the ambiguity function A
at the corners of a rectangle (see Fig. 1.1). Along the sides of this rect-
angle we have Fourier transformations r′ → q and r → q′ and their
inverses, while along the diagonals we have double Fourier transfor-
mations (r, r′) → (q′, q) and (r, q) → (q′, r′).

A distribution according to the definitions in (1.14) was introduced
in optics by Dolin2 and Walther3,4 in the field of radiometry; Walther
called it the generalized radiance. A few years later it was reintroduced,
mainly in the field of Fourier optics.5–11 The ambiguity function was
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Γ(r + 1
2r

′, r − 1
2r

′)

Γ(q + 1
2q

′,q −− 1
2q

′)

W(r,q) A(r,q )′ ′

FIGURE 1.1 Schematic representation of the cross-spectral density �, its
spatial Fourier transform �̄, the Wigner distribution W, and the ambiguity
function A, on a rectangle.

introduced in optics by Papoulis.19 The ambiguity function is treated
in greater detail in Chap. 2 by Jean-Pierre Guigay; in this chapter we
concentrate on the Wigner distribution.

1.3.2 Some Basic Examples Again
Let us return to our basic examples. The space behavior f (r) or
�(r1, r2), the spatial-frequency behavior f̄ (q) or �̄(q1, q2), and the
Wigner distribution W(r, q) of (1) a point source, (2) a plane wave,
(3) a spherical wave, (4) an incoherent light field, and (5) a spatially
stationary light field are represented in Table 1.1.

Example* f (r) or �(r1, r2) f̄ (q) or �̄(q1, q2) W(r, q)

(1) �(r − ro ) exp(−i2�rt
oq) �(r − ro )

(2) exp(i2�qt
or) �(q − qo ) �(q − qo )

(3) exp(i�rtHr) [det(−iH)]−1/2 �(q − Hr)
exp(−i�qtH−1q)

(4) p(r1) �(r1 − r2) p̄(q1 − q2) p(r)

(5) s(r1 − r2) s̄(q1) �(q1 − q2) s̄(q)

∗(1) Point source, (2) plane wave, (3) spherical wave, (4) incoherent light,
and (5) spatially stationary light.

TABLE 1.1 Wigner Distribution of Some Basic Examples
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We remark the clear physical interpretations of the Wigner distri-
butions.

1. The Wigner distribution of a point source f (r) = �(r − ro ) reads
W(r, q) = �(r − ro ), and we observe that all the light originates
from one point r = ro and propagates uniformly in all direc-
tions q.

2. Its dual, a plane wave f (r) = exp(i2�qt
or), also expressible in

the frequency domain as f̄ (q) = �(q − qo ), has as its Wigner
distribution W(r, q) = �(q − qo ), and we observe that for all
positions r the light propagates in only one direction qo .

3. The Wigner distribution of the spherical wave f (r) =
exp(i�rtHr) takes the simple form W(r, q) = �(q − Hr), and
we conclude that at any point r only one frequency q = Hr,
the instantaneous frequency, manifests itself. This corresponds
exactly to the ray picture of a spherical wave.

4. Incoherent light, �(r+ 1
2 r′, r− 1

2 r′) = p(r) �(r′), yields the Wigner
distribution W(r, q) = p(r). Note that it is a function of the space
variable r only, and that it does not depend on the frequency vari-
able q: the light radiates equally in all directions, with intensity
profile p(r) ≥ 0.

5. Spatially stationary light, �(r + 1
2 r′, r − 1

2 r′) = s(r′), is dual to
incoherent light: its frequency behavior is similar to the space
behavior of incoherent light and vice versa, and s̄(q), its intensity
function in the frequency domain, is nonnegative. The duality
between incoherent light and spatially stationary light is, in fact,
the Van Cittert-Zernike theorem.

The Wigner distribution of spatially stationary light reads as
W(r, q) = s̄(q); note that it is a function of the frequency variable
q only, and that it does not depend on the space variable r. It
thus has the same form as the Wigner distribution of incoherent
light, except that it is rotated through 90◦ in the space-frequency
domain. The same observation can be made for the point source
and the plane wave; see examples (1) and (2), which are also
each other’s duals.

We illustrate the Wigner distribution of the one-dimensional spher-
ical wave f (x) = exp (i�hx2), (see example (3) above), by a numerical
simulation. To calculate W(x, u) practically, we have to restrict the in-
tegration interval for x′. We model this by using a window function
w( 1

2 x′), so that the Wigner distribution takes the form

P(x, u; w) =
∫

f
(

x + 1
2 x′)w

( 1
2 x′)w∗(− 1

2 x′) f ∗(x − 1
2 x′)

× exp (−i2�ux′) dx′ (1.17)
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P (x,u;w)

u

x

(a)

P (x,u;w)

u

x

(b)

FIGURE 1.2 Numerical simulation of the (pseudo) Wigner distribution
P(x, u; w) 	 W(x, u) = �(u − hx) of the spherical wave f (x) = exp(i�hx2),
for the case that w( 1

2 x′) is (a ) a rectangular window and (b) a Hann(ing)
window.

The function P(x, u; w) is called the pseudo-Wigner distribution. It
is common to choose an even window function w( 1

2 x′) = w(− 1
2 x′),

so that we have w( 1
2 x′)w∗(− 1

2 x′) = |w( 1
2 x′)|2. Figure 1.2 shows the

(pseudo) Wigner distribution of the signal f (x) = exp(i�hx2), which
reads as∫ ∣∣w( 1

2 x′)∣∣2 exp[−i2�(u−hx)] dx′ = F[∣∣w( 1
2 x′)∣∣2](u−hx) 	 �(u−hx)

where we have chosen a rectangular window of width X in Fig. 1.2a

w
( 1

2 x′) = rect
(

x′

X

)
and a Hann(ing) window of width X in Fig. 1.2b

w
( 1

2 x′) = cos2
(

�x′

X

)
rect

(
x′

X

)
Note the effect of F [|w( 1

2 x′)|2], which results in a sinc-type behav-
ior in the case of the rectangular window, P(x, u; w) = sin[�(u −
hx)X]/�(u − hx), and in a nonnegative but smoother version in the
case of the Hann(ing) window.

1.3.3 Gaussian Light
Gaussian light is an example that we will treat in greater detail. The
cross-spectral density of the most general partially coherent Gaussian
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light can be written in the form

�(r1, r2) = 2
√

det G1 exp

(
−�

2

[
r1 + r2

r1 − r2

]t [ G1 −iH

−iHt G2

] [
r1 + r2

r1 − r2

])
(1.18)

where we have chosen a representation that enables us to determine
the Wigner distribution of such light in an easy way. The exponent
shows a quadratic form in which a four-dimensional column vector
[(r1+r2)t , (r1−r2)t]t arises together with a symmetric 4×4 matrix. This
matrix consists of four real 2×2 submatrices G1, G2, H, and Ht , where,
moreover, matrices G1 and G2 are positive definite symmetric. The
special form of the matrix is a direct consequence of the fact that the
cross-spectral density is a nonnegative definite Hermitian function.
The Wigner distribution of such Gaussian light takes the form20,21

W(r, q) = 4

√
det G1

det G2
exp

(
−2�

[
r

q

]t
[

G1 + HG−1
2 Ht −HG−1

2

−G−1
2 Ht G−1

2

][
r

q

])
(1.19)

In a more common way, the cross-spectral density of general
Gaussian light (with 10 degrees of freedom) can be expressed in the
form

�(r1, r2) = 2
√

det G1 exp
[− 1

2 �(r1 − r2)t G0 (r1 − r2)
]

× exp
{− �rt

1

[
G1 − i 1

2 (H + Ht)
]

r1
}

× exp
{− �rt

2

[
G1 + i 1

2 (H + Ht)
]

r2
}

× exp
[− �rt

1 i(H − Ht) r2
]

(1.20)

where we have introduced the real, positive definite symmetric 2 × 2
matrix G0 = G2 − G1. Note that the asymmetry of matrix H is a mea-
sure for the twist22–26 of Gaussian light, and that general Gaussian
light reduces to zero-twist Gaussian Schell-model light27,28 if the
matrix H is symmetric, H−Ht = 0. In that case, the light can be consid-
ered as spatially stationary light with a Gaussian cross-spectral density
2
√

det G1 exp[− 1
2 �(r1 − r2)t G0 (r1 − r2)], modulated by a Gaussian

modulator with modulation function exp[−�rt (G1 − iH) r]. We re-
mark that such Gaussian Schell-model light (with nine degrees of
freedom) forms a large subclass of Gaussian light; it applies, for in-
stance, in

• the completely coherent case (H = Ht , G0 = 0, G1 = G2)

• the (partially coherent) one-dimensional case (g0 = g2 − g1 ≥ 0)
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• the (partially coherent) rotationally symmetric case (H = hI,
G1 = g1I, G2 = g2I, G0 = (g2 − g1)I, with I the 2 × 2 identity
matrix)

Gaussian Schell-model light reduces to so-called symplectic Gaus-
sian light,21 if matrices G0, G1, and G2 are proportional to one another.
Now G1 = 
G, G2 = 
−1G, and thus G0 = (
−1 − 
)G, with G a real,
positive definite symmetric 2 × 2 matrix and 0 < 
 ≤ 1. The Wigner
distribution then takes the form

W(r, q) = 4
2 exp

(
−2�


[
r

q

]t
[

G + HG−1H −HG−1

−G−1H G−1

][
r

q

])
(1.21)

The name symplectic Gaussian light (with six degrees of freedom) orig-
inates from the fact that the 4 × 4 matrix that arises in the exponent of
the Wigner distribution (1.21) is symplectic. We will return to symplec-
ticity later in this chapter. We remark that symplectic Gaussian light
forms a large subclass of Gaussian Schell-model light; it applies again,
for instance, in the completely coherent case, in the (partially coherent)
one-dimensional case, and in the (partially coherent) rotationally sym-
metric case. And again, symplectic Gaussian light can be considered
as spatially stationary light with a Gaussian cross-spectral density,
modulated by a Gaussian modulator [cf. Eq. (1.20)], but now with the
real parts of the quadratic forms in the two exponents described—up
to a positive constant—by the same real, positive definite symmetric
matrix G.

1.3.4 Local Frequency Spectrum
The Wigner distribution can be considered as a local frequency spec-
trum; the marginals are correct

�(r, r) =
∫

W(r, q) dq and �̄(q, q) =
∫

W(r, q) dr

(1.22)

Integrating over all frequency values q yields the intensity �(r, r) of
the signal’s representation in the space domain, and integrating over
all space values r yields the intensity �̄(q, q) of the signal’s repre-
sentation in the frequency domain. To operate easily in the mixed rq
plane, the so-called phase space, we will benefit from normalization
to dimensionless coordinates W−1r =: r and Wq =: q, where W is a
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diagonal matrix with positive diagonal entries

W =
[

wx 0

0 wy

]
(1.23)

In subsequent sections, we will often work with these normalized
coordinates; it will be clear from the context whether normalization is
necessary.

1.4 Some Properties of the Wigner
Distribution
Let us consider some of the important properties of the Wigner dis-
tribution. We consider in particular properties that are specific for
partially coherent light. Additional properties of the Wigner distribu-
tion, especially of the Wigner distribution in the completely coherent
case, can be found elsewhere; see, for instance, Refs. 29 to 40 and the
many references cited therein.

1.4.1 Inversion Formula
The definition (1.14) of the Wigner distribution W(r, q) has the form
of a Fourier transformation of the cross-spectral density �(r + 1

2 r′,
r− 1

2 r′) with r′ and q as conjugated variables and with r as a parameter.
The cross-spectral density can thus be reconstructed from the Wigner
distribution simply by applying an inverse Fourier transformation.

1.4.2 Shift Covariance
The Wigner distribution satisfies the important property of space and
frequency shift covariance: if W(r, q) is the Wigner distribution that
corresponds to �(r1, r2), then W(r − ro , q − qo ) is the Wigner distri-
bution that corresponds to the space- and frequency-shifted version
�(r1 − ro , r2 − ro ) exp[i2�qt

o (r1 − r2)].

1.4.3 Radiometric Quantities
Although the Wigner distribution is real, it is not necessarily non-
negative; this prohibits a direct interpretation of the Wigner distribu-
tion as an energy density function (or radiance function). Friberg has
shown41 that it is not possible to define a radiance function that sat-
isfies all the physical requirements from radiometry; in particular, as
we mentioned, the Wigner distribution has the physically unattractive
property that it may take negative values.

Nevertheless, several integrals of the Wigner distribution have clear
physical meanings and can be interpreted as radiometric quantities.
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We mentioned already that the integral over the frequency variable∫
W(r, q) dq = �(r, r) represents the intensity of the signal, whereas

the integral over the space variable
∫

W(r, q) dr = �̄(q, q) yields the
intensity of the signal’s Fourier transform; the latter is, apart from the
usual factor cos2 � (where � is the angle of observation with respect to
the z axis), proportional to the radiant intensity.42,43 The total energy E
of the signal follows from the integral over the entire space-frequency
domain:

E =
∫ ∫

W(r, q) dr dq (1.24)

The real symmetric 4 × 4 matrix M of normalized second-order
moments, defined by

M = 1
E

∫ ∫ [
r

q

]
[rt , qt]W(r, q) dr dq

= 1
E

∫ ∫ [
rrt rqt

qrt qqt

]
W(r, q) dr dq

=
[

Mrr Mrq
Mt

rq Mqq

]
=

⎡⎢⎢⎢⎣
mxx mxy mxu mxv

mxy myy myu myv

mxu myu muu muv

mxv myv muv mvv

⎤⎥⎥⎥⎦ (1.25)

yields such quantities as the effective width dx = √
mxx of the intensity

�(r, r) in the x direction

mxx = 1
E

∫ ∫
x2 W(r, q) dr dq = 1

E

∫
x2 �(r, r) dr = d2

x (1.26)

and similarly the effective width du = √
muu of the intensity �̄(q, q) in

the u direction, but it also yields all kinds of mixed moments. It will be
clear that the main-diagonal entries of the moment matrix M, being
interpretable as squares of effective widths, are positive. As a matter
of fact, it can be shown that the matrix M is positive definite; see, for
instance, Refs. 44 to 46

The radiant emittance42,43 is equal to the integral

jz(r) =
∫ √

k2 − (2�)2qtq
k

W(r, q) dq (1.27)

where k = 2�/�o represents the usual wave number. When we com-
bine the radiant emittance jz with the two-dimensional vector

jr (r) =
∫

2�q
k

W(r, q) dq (1.28)
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we can construct the three-dimensional vector [jt
r , jz]t , which is known

as the geometrical vector flux.47 The total radiant flux42
∫

jz(r) dr fol-
lows from integrating the radiant emittance over the space variable r.
More on radiometry can be found in Chap. 7 by Arvind Marathay.

1.4.4 Instantaneous Frequency
The Wigner distribution Wf (r, q) satisfies the nice property that for
a coherent signal f (r) = | f (r)| exp[i2�	(r)], the instantaneous fre-
quency d	/dr = ∇	(r) follows from Wf (r, q) through

d	

dr
=

∫
q Wf (r, q) dq∫
Wf (r, q) dq

(1.29)

To prove this property, we proceed as follows. From f (r) =
| f (r)| exp[i2�	(r)], we get ln f (r) = ln | f (r)| + i2�	(r), hence
Im{ln f (r)} = 2�	(r), which then leads to the identity

2�
d	(r)

dr
= Im

{
d ln f (r)

dr

}
= Im

{∇ f (r)
f (r)

}
= 1

2i

[∇ f (r)
f (r)

−
(∇ f (r)

f (r)

)∗]
= 1

2i
[∇ f (r)] f ∗(r) − f (r)[∇ f (r)]∗

f (r) f ∗(r)

= −i
1

| f (r)|2
∂

∂r′
[

f
(
r + 1

2 r′) f ∗(r − 1
2 r′)]∣∣∣∣

r′=0

On the other hand, we have the identity

2�

∫
q Wf (r, q) dq

= 2�

∫ [∫
f
(
r + 1

2 r′) f ∗(r − 1
2 r′) exp(−i2�qtr′) dr′

]
q dq

=
∫

f
(
r + 1

2 r′) f ∗(r − 1
2 r′) [2�

∫
q exp(−i2�qtr′) dq

]
dr′

= i
∫

f
(
r + 1

2 r′) f ∗(r − 1
2 r′) [∇�(r′)] dr′

= −i
∂

∂r′
[

f
(
r + 1

2 r′) f ∗(r − 1
2 r′)]∣∣∣∣

r′=0
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and when we combine these two results, we immediately get Eq. (1.29).
It is this property in particular that made the Wigner distribution a
popular tool for the determination of the instantaneous frequency.

1.4.5 Moyal’s Relationship
An important relationship between the Wigner distributions of two
signals and the cross-spectral densities of these signals, which is an
extension to partially coherent light of a relationship formulated by
Moyal48 for completely coherent light, reads as∫ ∫

W1(r, q) W2(r, q) dr dq =
∫ ∫

�1(r1, r2) �∗
2 (r1, r2) dr1 dr2

=
∫ ∫

�̄1(q1, q2) �̄∗
2 (q1, q2) dq1 dq2

(1.30)

This relationship has an application in averaging one Wigner distribu-
tion with another one, which averaging always yields a nonnegative
result.

1.5 One-Dimensional Case and the
Fractional Fourier Transformation
Let us for the moment restrict ourselves to coherent light and to the
one-dimensional case, and let us use normalized coordinates. The sig-
nal is now written as f (x).

1.5.1 Fractional Fourier Transformation
An important transformation with respect to operations in a phase
space is the fractional Fourier transformation, which reads as49–53

fo (xo ) = F�(xo ) = exp
(
i 1

2 �
)

√
i sin �

∫
exp

[
i�

(
x2

i + x2
o

)
cos � − 2xo xi

sin �

]
× fi (xi ) dxi (� �= n�) (1.31)

where
√

i sin � is defined as | sin �| exp[i( 1
4 �) sgn(sin �)]. We mention

the special cases F0(x) = f (x), F�(x) = f (−x), and the common
Fourier transform F�/2(x) = f̄ (x). Two realizations of an optical frac-
tional Fourier transformer have been proposed by Lohmann50 (see
Fig. 1.3). For both cases we have sin2( 1

2 �) = d/2 f ; the normalization
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d df

input output
(a)

f fd

input output
(b)

FIGURE 1.3 Two optical realizations of the fractional Fourier transformer.

width w is related to the distance d and the focal length of the lens f
by w2 tan( 1

2 �) = �od for Fig. 1.3a and by w2 sin � = �od for Fig. 1.3b.

1.5.2 Rotation in Phase Space
In terms of the ray transformation matrix, which is introduced and
treated in greater detail in Sec. 1.6, the fractional Fourier transformer
is represented by[

xo

uo

]
=
[

w 0

0 w−1

] [
cos � sin �

− sin � cos �

] [
w−1 0

0 w

] [
xi

ui

]
(1.32)

and after normalization, w−1x =: x and wu =: u, we have the form[
xo

uo

]
=
[

cos � sin �

− sin � cos �

] [
xi

ui

]
(1.33)

The input-output relation of a fractional Fourier transformer in terms
of the Wigner distribution is remarkably simple; if Wf denotes the
Wigner distribution of f (x) and WF�

denotes that of F�(x), we have

WF�
(x, u) = Wf (x cos � − u sin �, x sin � + u cos �) (1.34)

and we conclude that a fractional Fourier transformation corresponds
to a rotation in phase space.

1.5.3 Generalized Marginals—Radon
Transform

On the analogy of the two special cases | f (x)|2 = ∫
Wf (x, u) du and

| f̄ (u)|2 = ∫
Wf (x, u) dx, which correspond to projections along the u
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and the x axes, respectively, we can now get an easy expression for
the projection along an axis that is tilted through an angle �.

|F�(x)|2 =
∫

WF�
(x, u) du

=
∫

Wf (x cos � − u sin �, x sin � + u cos �) du

=
∫ ∫

Wf (�, u) �(� cos � + u sin � − x) d� du (1.35)

We thus conclude that not only are the marginals for � = 0 and � = 1
2 �

correct, but in fact any marginal for an arbitrary angle � is correct. We
observe a strong connection between the Wigner distribution Wf (x, u)
and the intensity |F�(x)|2 of the signal’s fractional Fourier transform.
Note also the relation to the Radon transform.

Since the ambiguity function is the two-dimensional Fourier trans-
form of the Wigner distribution, we could also represent |F�(x)|2 in
the form54–56

|F�(x)|2 =
∫

AF�
(� sin �, −� cos �) exp(−i2�x�) d� (1.36)

and we conclude that the values of the ambiguity function along the
line defined by the angle � and the projections of the Wigner distri-
bution for the same angle � are related to each other by a Fourier
transformation. Note that the ambiguity function in Eq. (1.36) is rep-
resented in a quasi-polar coordinate system (�, �).

We recall that the signal f (x) = | f (x)| exp[i2�	(x)] can be recon-
structed by using the intensity profiles of the fractional Fourier trans-
form F�(x) for two close values of the fractional angle �.56 The recon-
struction procedure is based on the property54–56

∂|F�(x)|2
∂�

∣∣∣∣
�=0

= − d
dx

[
| f (x)|2 d	(x)

dx

]
(1.37)

which can be proved by first differentiating Eq. (1.35) with respect to
� and using the identity

∂�(� cos � + u sin � − x)
∂�

∣∣∣∣
�=0

= (−� sin � + u cos �) �′(� cos � + u sin � − x)
∣∣
�=0 = u�′(� − x)
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leading to

∂|F�(x)|2
∂�

∣∣∣∣
�=0

=
∫ ∫

u Wf (�, u) �′(� − x) d� du

= − d
dx

[∫
u Wf (x, u) du

]
and then substituting, from Eq. (1.29),

∫
uWf (x, u) du = | f (x)|2 d	(x)/

dx. By measuring two intensity profiles around � = 0, |F�o (x)|2 and
|F−�o (x)|2 for instance, approximating ∂|F�(x)|2/∂� by [|F�o (x)|2 −
|F−�o (x)|2]/2�o , and integrating the result, we get | f (x)|2 d	(x)/dx.
After dividing this by the intensity | f (x)|2 = |F0(x)|2, which can be
approximated by [|F�o (x)|2 +|F−�o (x)|2]/2, we find an approximation
for the phase derivative d	(x)/dx, which after a second integration
yields the phase 	(x). Together with the modulus | f (x)|, the signal
f (x) can thus be reconstructed. This procedure can be extended to
other members of the class of Luneburg’s first-order optical systems,
to be considered next, in particular by using a section of free space
instead of a fractional Fourier transformer.57

1.6 Propagation of the Wigner Distribution
In this section, we study how the Wigner distribution propagates
through linear optical systems. We therefore consider an optical sys-
tem as a black box, with an input plane and an output plane, and
focus on the important class of first-order optical systems. A contin-
uous medium, in which the signal must satisfy a certain differential
equation, is considered in Sec. 1.6.5, but without going into much
detail.

1.6.1 First-Order Optical Systems—Ray
Transformation Matrix

An important class of optical systems is the class of Luneburg’s first-
order optical systems.58 This class consists of a section of free space (in
the Fresnel approximation), a thins lens, and all possible combinations
of these. A first-order optical system can most easily be described in
terms of its (normalized) ray transformation matrix59[

ro

qo

]
=
[

W 0

0 W−1

][
A B

C D

][
W−1 0

0 W

][
ri

qi

]
(1.38)

which relates the position ri and direction qi of an incoming ray to
the position ro and direction qo of the outgoing ray. In normalized
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coordinates, W−1r =: r and Wq =: q, we have[
ro

qo

]
=
[

A B

C D

] [
ri

qi

]
(1.39)

We recall that the ray transformation matrix is symplectic. Using the
matrix J,

J = i
[

0 −I

I 0

]
= J−1 = J† = −Jt (1.40)

where J−1, J† = (J∗)t , and Jt are the inverse, the adjoint, and the trans-
pose of J, respectively, symplecticity can be elegantly expressed as
T−1 = JTtJ. In detail we have

T−1 =
[

A B

C D

]−1

=
[

Dt −Bt

−Ct At

]
= JTtJ (1.41)

If det B �= 0, the coherent point-spread function of the first-order
optical system reads

h(ro , ri ) = (det iB)−1/2 exp
[
i�
(
rt

oDB−1ro − 2rt
i B

−1ro + rt
i B

−1Ari
)]

(1.42)

see also Refs. 60 and 61. In the limiting case that B → 0, we have

h(ro , ri ) = | det A|−1/2 exp
(
i�rt

oCA−1ro
)

�
(
ri − A−1ro

)
(1.43)

In the degenerate case det B = 0 but B �= 0, a representation in terms
of the coherent point-spread function can also be formulated.62 The
relationship between the input Wigner distribution Wi (r, q) and the
output Wigner distribution Wo (r, q) takes the simple form

Wo (Ar + Bq, Cr + Dq) = Wi (r, q) (1.44)

and this is independent of the possible degeneracy of submatrix B.

1.6.2 Phase-Space Rotators—More Rotations
in Phase Space

If the ray transformation matrix is not only symplectic but also orthog-
onal, T−1 = Tt , the system acts as a general phase-space rotator,53 as
we will see shortly. We then have A = D and B = −C, and U = A+ iB
is a unitary matrix: U† = U−1. We thus have

T =
[

A B

−B A

]
and (A − iB)t = U† = U−1 = (A + iB)−1

(1.45)
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and hence

Wo (Ar + Bq, −Br + Aq) = Wi (r, q) (1.46)

In the one-dimensional case, such a system reduces to a fractional
Fourier transformer (A = cos �, B = sin �); the extension to a higher-
dimensional separable fractional Fourier transformer (with diagonal
matrices A and B, and different fractional angles for the different co-
ordinates) is straightforward.

In the two-dimensional case, the three basic systems with an orthog-
onal ray transformation matrix are (1) the separable fractional Fourier
transformer F(�x, �y), (2) the rotator R(), and (3) the gyrator G(),
with unitary representations U = A + iB equal to[

exp(i�x) 0

0 exp(i�y)

] [
cos  sin 

− sin  cos 

]
and

[
cos  i sin 

i sin  cos 

]
(1.47)

respectively. All three systems correspond to rotations in phase space,
which justifies the name phase-space rotators!

From the many decompositions of a general phase-space rotator
into the more basic ones, we mention F( 1

2 �, − 1
2 �) R() F(− 1

2 �, 1
2 �)

F(�x, �y), which follows directly if we represent the unitary matrix as

U =
[

exp(i�x) cos  exp[i(�y + �)] sin 

− exp[i(�x − �)] sin  exp(i�y) cos 

]
(1.48)

Note that we have the relationship F( 1
4 �, − 1

4 �) R() F(− 1
4 �, 1

4 �) =
G(), which is just one of the many similarity-type relationships that
exist between a rotator R(�), a gyrator G(�), and an antisymmetric
fractional Fourier transformer F(�, −�):

F(± 1
4 �, ∓ 1

4 �
)G(±) F(∓ 1

4 �, ± 1
4 �
) = R(−) (1.49a)

F(± 1
4 �, ∓ 1

4 �
)R(±) F(∓ 1

4 �, ± 1
4 �
) = G() (1.49b)

R(± 1
4 �
)F(±, ∓) R(∓ 1

4 �
) = G(−) (1.49c)

G(± 1
4 �
)F(±, ∓) G(∓ 1

4 �
) = R() (1.49d)

R(± 1
4 �
)G(±) R(∓ 1

4 �
) = F(, −) (1.49e)

G(± 1
4 �
)R(±) G(∓ 1

4 �
) = F(−, ) (1.49f)

If we separate from U the scalar matrix U f (ϑ, ϑ) = exp(iϑ) I with
exp(2iϑ) = det U, which matrix corresponds to a symmetric frac-
tional Fourier transformer F(ϑ, ϑ), the remaining matrix is a so-called
quaternion, and thus a 2 × 2 unitary matrix with unit determinant;
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expressed in the form of Eq. (1.48), this would mean �y = −�x . Note
that the matrices Ur (�), Ug(�), and U f (�, −�), corresponding to a ro-
tator R(�), a gyrator G(�), and an antisymmetric fractional Fourier
transformer F(�, −�), respectively, are quaternions, and that every
separable fractional Fourier transformerF(�x, �y) can be decomposed
as F(ϑ, ϑ) F(�, −�).

We easily verify—for instance, by expressing the unitary matrix U
in the form of Eq. (1.48)—that the input-output relation for a phase-
space rotator can be expressed in the form

ro − iqo = U(ri − iqi ) (1.50)

which is an easy alternative for Eq. (1.39). Phase-space rotators are
considered in greater detail in Chap. 3 by Tatiana Alieva.

1.6.3 More General Systems—Ray-Spread
Function

First-order optical systems are a perfect match for the Wigner distribu-
tion, since their point-spread function is a quadratic-phase function.
Nevertheless, an input-output relationship can always be formulated
for the Wigner distribution. In the most general case, based on the
relationships (1.5) and (1.9), we write

Wo (ro , qo ) =
∫ ∫

K (ro , qo , ri , qi )Wi (ri , qi ) dri dqi (1.51)

with

K (ro , qo , ri , qi ) =
∫ ∫

h
(
ro + 1

2 r′
o , ri + 1

2 r′
i

)
h∗(ro − 1

2 r′
o , ri − 1

2 r′
i

)
× exp

[− i2�
(
qt

or′
o − qt

i r
′
i

)]
dr′

o dr′
i (1.52)

Relation (1.52) can be considered the definition of a double Wigner
distribution; hence, the function K has all the properties of a Wigner
distribution, for instance, the property of realness.

Let us think about the physical meaning of the function K . In a
formal way, the function K is the response of the system in the space-
frequency domain when the input signal is described by a product of
two Dirac functions Wi (r, q) = �(r−ri )�(q−qi ); only in a formal way,
since an actual input signal yielding such a Wigner distribution does
not exist. Nevertheless, such an input signal could be considered as
a single ray entering the system at the position ri with direction qi .
Hence, the function K might be called the ray-spread function of the
system.
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1.6.4 Geometric-Optical Systems
Let us start by studying a modulator, described—in the case of par-
tially coherent light—by the input-output relationship �o (r1, r2) =
m(r1) �i (r1, r2) m∗(r2). The input and output Wigner distributions are
related by

Wo (r, q) =
∫

Wm(r, q − qi ) Wi (r, qi ) dqi (1.53)

where Wm(r, q) is the Wigner distribution of the modulation function
m(r).

We now confine ourselves to the case of a pure phase modulation
function m(r) = exp[i2�	(r)]. We then get

m
(
r + 1

2 r′)m∗(r − 1
2 r′) = exp

{
i2�

[
	
(
r + 1

2 r′)− 	
(
r − 1

2 r′)]}
= exp{i2�[(d	/dr)tr′ + higher-order terms]}

(1.54)

If we consider only the first-order derivative in relation (1.54), we get
Wm(r, q) 	 �(q − d	/dr), and the input-output relationship of the
pure phase modulator becomes Wo (r, q) 	 Wi (r, q − d	/dr), which
is a mere coordinate transformation. We conclude that a single input
ray yields a single output ray.

The ideas described above have been applied to the design of optical
coordinate transformers63,64 and to the theory of aberrations.65 Now,
if the first-order approximation is not sufficiently accurate, i.e., if we
have to take into account higher-order derivatives in relation (1.54),
the Wigner distribution allows us to overcome this problem. Indeed,
we still have the exact input-output relationship (1.53), and we can
take into account as many derivatives in relation (1.54) as necessary.
We thus end up with a more general form66 than Wo (r, q) 	 Wi (r, q −
d	/dr). This will yield an Airy function instead of a Dirac function, for
instance, when we take not only the first but also the third derivative
into account.

We concluded that a single input ray yields a single output
ray. This may also happen in more general—not just modulation-
type—systems; we call such systems geometric-optical systems.
These systems have the simple input-output relationship Wo (r, q) 	
Wi [gx(r, q), gu(r, q)], where the 	 sign becomes an = sign in the case
of linear functions gx and gu, i.e., in the case of Luneburg’s first-order
optical systems. There appears to be a close relationship to the de-
scription of such geometric-optical systems by means of the Hamilton
characteristics.6
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1.6.5 Transport Equations
With the tools of this section, we could study the propagation of the
Wigner distribution through free space by considering a section of
free space as an optical system with an input plane and an output
plane. It is possible, however, to find the propagation of the Wigner
distribution through free space directly from the differential equation
that the signal must satisfy. We therefore let the longitudinal variable
z enter into the formulas and remark that the propagation of coherent
light in free space (at least in the Fresnel approximation) is governed
by the differential equation (see, for instance, Ref. 15, p. 358)

−i
∂ f
∂z

=
(

k + 1
2k

∂2

∂r2

)
f (1.55)

with ∂2/∂r2 representing the scalar operator ∂2/∂x2 +∂2/∂y2 and with
k the wave number. The propagation of the Wigner distribution is now
described by a so-called transport equation7,8,67–70 which in this case
takes the form

2�qt

k
∂W
∂r

+ ∂W
∂z

= 0 (1.56)

with ∂/∂r = ∇. The transport equation (1.56) has the solution

W(r, q; z) = W
(

r − 2�q
k

z, q; 0
)

(1.57)

which is equivalent to the result Eq. (1.44) in Sec. 1.6.1, with the special
choice A = D = I.

In a weakly inhomogeneous medium, the optical signal must satisfy
the Helmholtz equation

−i
∂ f
∂z

=
√

k2(r, z) + ∂2

∂r2 f (1.58)

with k = k(r, z). In this case, we can again derive a transport equation
for the Wigner distribution; the exact transport equation is rather com-
plicated, but in the geometric-optical approximation, i.e., restricting
ourselves to first-order derivatives, it takes the simple form

2�qt

k
∂W
∂r

+
√

k2 − (2�)2qtq
k

∂W
∂z

+
(

∂k
2� ∂r

)t
∂W
∂q

= 0 (1.59)

which, in general, cannot be solved explicitly. With the method of
characteristics, however, we conclude that along a path defined by

dr
ds

= 2�q
k

dz
ds

=
√

k2 − (2�)2qtq
k

dq
ds

= ∂k
2� ∂r

(1.60)
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the Wigner distribution has a constant value. When we eliminate the
frequency variable q from Eqs. (1.60), we are immediately led to

d
ds

(
k

dr
ds

)
= ∂k

∂r
d
ds

(
k

dz
ds

)
= ∂k

∂z
(1.61)

which are the equations for an optical ray in geometrical optics.71 We
are thus led to the general conclusion that in the geometric-optical ap-
proximation, the Wigner distribution has a constant value along the
geometric-optical ray paths, which conforms to our conclusions in
Sec. 1.6.4: Wo (r, q) 	 Wi [gx(r, q), gu(r, q)]. For a more detailed treat-
ment of rays, see Chap. 8 by Miguel Alonso.

1.7 Wigner Distribution Moments in
First-Order Optical Systems
The Wigner distribution moments provide valuable tools for the char-
acterization of optical beams (see, for instance, Ref. 37). First-order
moments, defined as

[mx, my, mu, mv] = 1
E

∫ ∫ ∫ ∫
[x, y, u, v] W(x, y, u, v) dx dy du dv

(1.62)
yield the position of the beam (mx and my) and its direction (mu
and mv). Second-order moments, defined by Eq. (1.25), give infor-
mation about the spatial width of the beam (the shape mxx and
myy of the spatial ellipse and its orientation mxy) and the angu-
lar width in which the beam is radiating (the shape muu and mvv
of the spatial-frequency ellipse and its orientation muv). Moreover,
they provide information about its curvature (mxu and myv) and its
twist (mxv and myu), with a possible definition of the twistedness as46

myymxv − mxxmyu + mxy(mxu − myv). Many important beam charac-
terizers, such as the overall beam quality72(

mxxmuu − m2
xu

)+ (
myymvv − m2

yv

)+ 2(mxymuv − mxvmyu)

(see also Sec. 1.7.1), are based on second-order moments. Also the
longitudinal component of the orbital angular momentum � = �a +
�v ∝ (mxv − myu) [see Eq. (3) in Ref. 73] and its antisymmetrical part
�a and vortex part �v,

�a ∝ (mxx − myy)(mxv + myu) − 2mxy(mxu − myv)
mxx + myy

�v ∝ 2
myymxv − mxxmyu + mxy(mxu − myv)

mxx + myy
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[see Eqs. (22) and (21) in Ref. 73] are based on these moments.74 Higher-
order moments are used, for instance, to characterize the beam’s sym-
metry and its sharpness.37

Because the Wigner distribution of a two-dimensional signal is a
function of four variables, it is difficult to analyze. Therefore, the signal
is often represented not by the Wigner distribution itself, but by its
moments. Beam characterization based on the second-order moments
of the Wigner distribution thus became the basis of an International
Organization for Standardization standard.75

In this section we restrict ourselves mainly to second-order mo-
ments. The propagation of the matrix M of second-order moments
of the Wigner distribution through a first-order optical system with
ray transformation matrix T can be described by the input-output
relationship9,76 Mo = TMi Tt . This relationship can be readily derived
by combining the input-output relationship (1.39) of the first-order op-
tical system with the definition (1.25) of the moment matrices of the
input and the output signal. Since the ray transformation matrix T is
symplectic, we immediately conclude that a possible symplecticity of
the moment matrix (to be discussed later) is preserved in a first-order
optical system: if Mi is proportional to a symplectic matrix, then Mo
is proportional to a symplectic matrix as well, with the same propor-
tionality factor.

1.7.1 Moment Invariants
If we multiply the moment relation Mo = TMi Tt from the right by J,
and use the symplecticity property (1.41) and the properties of J, the
input-output relationship can be written as77 MoJ = T(Mi J)T−1. From
the latter relationship we conclude that the matrices Mi J and MoJ are
related to each other by a similarity transformation. As a consequence
of this similarity transformation, and writing the matrix MJ in terms
of its eigenvalues and eigenvectors according to MJ = SΛS−1, we
can formulate the relationships Λo = Λi and So = TSi . We are thus
led to the important property77 that the eigenvalues of the matrix MJ
(and any combination of these eigenvalues) remain invariant under
propagation through a first-order optical system, while the matrix of
eigenvectors S transforms in the same way as the ray vector [rt , qt]t

does.
It can be shown77 that the eigenvalues of MJ are real. Moreover,

if � is an eigenvalue of MJ, then −� is an eigenvalue, too; this im-
plies that the characteristic polynomial det(MJ − �I), with the help of
which we determine the eigenvalues, is a polynomial of �2. Indeed,
the characteristic equation takes the form

det(MJ − �I) = 0 = �4 − a2�2 + a4
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with a4 = det M and

a2 = (
mxxmuu − m2

xu

)+ (
myymvv − m2

yv

)+ 2(mxymuv − mxvmyu)

Since the eigenvalues of MJ are invariants, the same holds for the co-
efficients of the characteristic equation. And since the characteristic
equation is an equation in �2, we have only two such independent
eigenvalues (±�x and ±�y, say) and thus only two independent in-
variants (such as �x and �y, or a2 and a4).

An interesting property follows from Williamson’s theorem:78,79

For any real, positive definite symmetric matrix M, there exists a
real symplectic matrix To such that M = ToΔoTt

o , where Δo =
T−1

o M(T−1
o )t takes the normal form

Δo =
[
Λo 0
0 Λo

]
with Λo =

[
�x 0
0 �y

]
and �x, �y > 0

(1.63)

From the similarity transformation MJ = To (ΔoJ)T−1
o , we conclude

that Δo follows directly from the eigenvalues ±�x and ±�y of MJ and
that To follows from the eigenvectors of (MJ)2: (MJ)2To = ToΔ2

o . Any
moment matrix M can thus be brought into the diagonal form Δo by
means of a realizable first-order optical system with ray transforma-
tion matrix T−1

o .

1.7.2 Moment Invariants for Phase-Space
Rotators

In the special case that we are dealing with a phase-space rota-
tor, for which the ray transformation matrix satisfies the orthogo-
nality relation T−1 = Tt , we have not only the similarity trans-
formation MoJ = T(Mi J)T−1 but also the similarity transformation
Mo = TMi T−1. The eigenvalues of M are now also invariants, and
the same holds for the coefficients of the corresponding characteristic
equation

det(M − �I) = 0 = �4 − b1�3 + b2�2 − b3� + b4

Since b4 = det M is already a known invariant (= a4), this yields at
most three new independent invariants.
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Another way to find moment invariants for phase-space rotators is
to consider the Hermitian matrix

M′ = 1
E

∫ ∫
(r − iq)(r − iq)†W(r, q) dr dq

= Mrr + Mqq + i(Mrq − Mt
rq)

=
[

mxx + muu mxy + muv + i(mxv − myu)

mxy + muv − i(mxv − myu) myy + mvv

]

=
[

Q0 + Q1 Q2 + i Q3

Q2 − i Q3 Q0 − Q1

]
(1.64)

and to use Eq. (1.50) to get the relation

M′
o = UM′

i U
† = UM′

i U
−1 (1.65)

which is again a similarity transformation. Note that the moments
mxu and myv, i.e., the diagonal entries of submatrix Mrq, do not enter
matrix M′ and that we have introduced the four moment combinations
Q j ( j = 0, 1, 2, 3) as

Q0 = 1
2 [(mxx + muu) + (myy + mvv)] (1.66a)

Q1 = 1
2 [(mxx + muu) − (myy + mvv)] (1.66b)

Q2 = mxy + muv (1.66c)

Q3 = mxv − myu (1.66d)

The characteristic equation with which the eigenvalues of M′ can be
determined reads

det(M′ − �I) = 0 = �2 − 2Q0� + Q2
0 − Q2 = (� − Q0)2 − Q2,

where we have also introduced

Q =
√

Q2
1 + Q2

2 + Q2
3 (1.66e)

The eigenvalues are real and we can write �1,2 = Q0 ± Q. Since the
eigenvalues are invariant, we immediately get that �1 − �2 = 2Q is
an invariant,80 and we also get the invariants �1 + �2 = 2Q0 = b1,
which is the trace of M′ and of M, and �1�2 = Q2

0 − Q2 = b2 − a2,
which is the determinant of M′. We remark that Q3 corresponds to
the longitudinal component of the orbital angular momentum of a
paraxial beam propagating in the z direction. From the invariance
of Q, we conclude that the three-dimensional vector (Q1, Q2, Q3) =
(Q cos ϑ, Q sin ϑ cos �, Q sin ϑ sin �) lives on a sphere with radius Q.
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It is not difficult to show now that M′ can be represented in the general
form

M′ = Q0

[
1 0

0 1

]
+ Q

[
cos ϑ exp(i�) sin ϑ

exp(−i�) sin ϑ − cos ϑ

]
(1.67)

where the angles ϑ and � follow from the relations Q cos ϑ = Q1 (with
0 ≤ ϑ ≤ �) and Q exp(i�) sin ϑ = Q2 + i Q3.

A phase-space rotator will only change the values of the angles ϑ

and �, but does not change the invariants Q0 and Q. To transform a
diagonal matrix M′ with diagonal entries Q0 + Q and Q0 − Q into
the general form (1.67), we can use, for instance, the phase-space ro-
tating system81 F( 1

2 �, − 1
2 �) R(− 1

2ϑ) F(− 1
2 �, 1

2 �); see also Sec. 1.6.2
and Eq. (1.48). Moreover, from Eq. (1.65), we easily derive80 that
for a separable fractional Fourier transformer F(�x, �y), Q1 is an
invariant and Q2 + i Q3 undergoes a rotation-type transformation:
(Q2 + i Q3)o = exp[i(�x − �y)] (Q2 + i Q3)i . Similar properties hold
for a gyrator G(), for which Q2 is an invariant and (Q3 + i Q1)o =
exp(i2) (Q3 + i Q1)i , and for a rotator R(−), for which Q3 is an
invariant and (Q1 + i Q2)o = exp(i2) (Q1 + i Q2)i .

1.7.3 Symplectic Moment Matrix—The
Bilinear ABCD Law

If the moment matrix M is proportional to a symplectic matrix, it can
be expressed in the form77

M = m

[
G−1 G−1H

HG−1 G + HG−1H

]
(1.68)

with m a positive scalar, G and H real symmetric 2 × 2 matrices, and
G positive definite; the two positive eigenvalues of MJ are now equal
to +m, and the two negative eigenvalues are equal to −m.

We recall that for a symplectic moment matrix, the input-output
relation Mo = TMi Tt can be expressed equivalently in the form of the
bilinear relationship

Ho ± iGo = [C + D(Hi ± iGi )][A + B(Hi ± iGi )]−1 (1.69)

This bilinear relationship, together with the invariance of det M, com-
pletely describes the propagation of a symplectic matrix M through
a first-order optical system. Note that the bilinear relationship (1.69)
is identical to the ABCD law for spherical waves: for spherical waves
we have Ho = [C + DHi ][A + BHi ]−1, and we have only replaced the
(real) curvature matrix H by the (generally complex) matrix H±iG. We
are thus led to the important result that if matrix M of second-order
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moments is symplectic (up to a positive constant) as described in
Eq. (1.68), its propagation through a first-order optical system is com-
pletely described by the invariance of this positive constant and the
ABCD law (1.69).

1.7.4 Measurement of Moments
Several optical schemes to determine all 10 second-order moments
have been described.72,82–87 We mention in particular Ref. 87, which is
based on a general scheme that also can be used for the determination
of arbitrary higher-order moments �pqrs with

�pqrs E =
∫ ∫ ∫ ∫

W(x, y, u, v) x puq yr vsdx dy du dv ( p, q , r, s ≥ 0)

(1.70)
Note that for q = s = 0 we have intensity moments

�p0r0 E =
∫ ∫ ∫ ∫

W(x, y, u, v)x p yr dx dy du dv

=
∫ ∫

x p yr �(x, x; y, y) dx dy ( p, r ≥ 0) (1.71)

which can easily be measured. The 10 second-order moments can be
determined from the knowledge of the output intensities of four first-
order optical systems, where one of them has to be anamorphic. For
the determination of the 20 third-order moments, for instance, we thus
find the need of using a total of six-first-order optical systems: four
isotropic systems and two anamorphic systems. For the details of how
to construct appropriate measuring schemes, we refer to Ref. 87.

1.8 Coherent Signals and the Cohen Class
The Wigner distribution belongs to a broad class of space-frequency
functions known as the Cohen class.30 Any function of this class is
described by the general formula

C f (r, q) =
∫ ∫ ∫

f
(
ro + 1

2 r′) f ∗(ro − 1
2 r′) k(r, q, r′, q′)

× exp
[− i2�

(
qtr′ − rtq′ + rt

oq′)] dro dr′ dq′ (1.72)

and the choice of the kernel k(r, q, r′, q′) selects one particular function
of the Cohen class. The Wigner distribution, for instance, arises for
k(r, q, r′, q′) = 1, whereas k(r, q, r′, q′) = �(r − r′)�(q − q′) yields the
ambiguity function. In this chapter we restrict ourselves to the case
that k(r, q, r′, q′) does not depend on the space variable r and the
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spatial-frequency variable q, hence k(r, q, r′, q′) = K̄ (r′, q′), in which
case the resulting space-frequency distribution is shift-covariant (see
Sec. 1.4.2).

1.8.1 Multicomponent Signals—Auto-Terms
and Cross-Terms

The Wigner distribution, like the mutual coherence function and the
cross-spectral density, is a bilinear signal representation. In the case
of completely coherent light, however, we usually deal with a linear
signal representation. Using a bilinear representation to describe co-
herent light thus yields cross-terms if the signal consists of multiple
components. The two-component signal f (r) = f1(r) + f2(r) yields
the Wigner distribution

Wf (r, q) = Wf1 (r, q) + Wf2 (r, q)

+ 2 Re
[∫

f1
(
r + 1

2 r′) f ∗
2
(
r − 1

2 r′) exp(−i2�qtr′) dr′
]

(1.73)

and we notice a cross-term in addition to the auto-terms Wf1 (r, q) and
Wf2 (r, q). In the case of two point sources �(r − r1) and �(r − r2), for
instance, the cross-term reads

2�
[
r − 1

2 (r1 + r2)
]

cos[2�(r1 − r2)tq)]

It appears at the position 1
2 (r1 + r2), i.e., in the middle between the

two auto-terms Wf1 (r, q) = �(r − r1) and Wf2 (r, q) = �(r − r2), and is
modulated in the q direction. We can get rid of this cross-term when
we average the Wigner distribution with a kernel that is narrow in the
r direction and broad in the q direction. We thus remove the cross-term
without seriously disturbing the auto-terms.

The occurrence of cross-terms is also visible from the general
condition45,88

Wf
(
r + 1

2 r′′, q + 1
2 q′′)Wf

(
r − 1

2 r′′, q − 1
2 q′′)

=
∫ ∫

Wf
(
r + 1

2 r′, q + 1
2 q′)Wf

(
r − 1

2 r′, q − 1
2 q′)

× exp[−i2�(q′′tr′ − q′tr′′)] dr′ dq′ (1.74)

which, for r′′ = q′′ = 0, reduces to

W2
f (r, q) =

∫ ∫
Wf

(
r + 1

2 r′, q + 1
2 q′)Wf

(
r − 1

2 r′, q − 1
2 q′) dr′ dq′

(1.75)
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From the latter equality we conclude that the value of the Wigner
distribution at some phase-space point (r, q) is related to the values
of all those pairs of points (r ± 1

2 r′, q ± 1
2 q′) for which (r, q) is the

midpoint. Using, as we generally do, the analytic signal f (r) instead
of the real signal 1

2 [ f (r) + f ∗(r)] avoids the cross-terms that otherwise
would automatically appear around q = 0.

The requirement of removing cross-terms without seriously affect-
ing the auto-terms has led to the Cohen class of bilinear signal rep-
resentations. All members C f (r, q) of this class can be generated by
a convolution (for both r and q) of the Wigner distribution with an
appropriate kernel K (r, q):

C f (r, q) = K (r, q)∗
r

∗
q

Wf (r, q)

=
∫ ∫

K (r − ro , q − qo ) Wf (ro , qo ) dro dqo (1.76)

Note that a convolution keeps the important property of shift covari-
ance! After Fourier transforming the latter equation, we are led to an
equation in the “ambiguity domain,” and the convolution becomes a
product:

C̄ f (r′, q′) = K̄ (r′, q′) Af (r′, q′) (1.77)

with

C̄ f (r′, q′) = F[C f (r, q)](r′, q′) (1.78a)

Af (r′, q′) = F[Wf (r, q)](r′, q′) (1.78b)

K̄ (r′, q′) = F[K (r, q)](r′, q′) (1.78c)

The product form (1.77) offers an easy way in the design of appropriate
kernels.

Again, cf. Fig. 1.1, we position the different signal and kernel rep-
resentations at the corners of a rectangle, see Fig. 1.4. For complete-
ness we have also introduced the kernels R(r1, r2) and R̄(q1, q2) that
operate on the product �f (r1, r2) = f (r1) f ∗(r2) and �̄f (q1, q2) =
f̄ (q1) f̄ ∗(q2), respectively, by means of a convolution for r or q. Again,
we have Fourier transformations along the sides of the rectangle, and
we readily see that the kernel K (r, q) is related to the kernels R(r1, r2)
and R̄(q1, q2) as

K (r, q) =
∫

R
(
r + 1

2 r′, r − 1
2 r′) exp(−i2�qtr′) dr′ (1.79a)

K (r, q) =
∫

R̄
(
q + 1

2 q′, q − 1
2 q′) exp(i2�rtq′) dq′ (1.79b)
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R(r + 1
2r

′, r − 1
2r

′) ∗
r
Γf (r + 1

2r
′, r − 1

2r
′)

R(q + 1
2q

′,q −− −

− −

1
2q

′) ∗
q

Γf (q + 1
2q

′, q − 1
2q

′)

Cf (r,q) = K(r,q) ∗
r
∗
q
Wf (r,q) Cf (r′, q′) =K(r′, q′)Af (r′, q′)

FIGURE 1.4 Schematic representation of the cross-spectral density �, its
spatial Fourier transform �̄, the Wigner distribution W, and the ambiguity
function A, together with the corresponding kernels R, R̄, K , and K̄ , on a
rectangle.

As an example, we mention that the kernel K (r, q) = �(r) �(q), for
which C f (r, q) = Wf (r, q) is the Wigner distribution, corresponds to
the kernels K̄ (r′, q′) = 1, R(r + 1

2 r, r′ − 1
2 r) = �(r), and R̄(q + 1

2 q′,
q − 1

2 q′) = �(q).

1.8.2 One-Dimensional Case and Some Basic
Cohen Kernels

Many kernels have been proposed in the past, and some already exist-
ing bilinear signal representations have been identified as belonging
to the Cohen class with an appropriately chosen kernel. Table 1.2 men-
tions some of them.30,31,36

In designing kernels, one may try to keep the interesting properties
of the Wigner distribution; this reflects itself in conditions for the ker-
nel. We recall that shift covariance is already maintained. To keep also
the properties of realness, x marginal, and u marginal, for instance, the
kernel K̄ (x′, u′) should satisfy the conditions K̄ (x′, u′) = K̄ ∗(−x′, −u′),
K̄ (0, u′) = 1, and K̄ (x′, 0) = 1, respectively. To keep the important
property that for a signal f (x) = | f (x)| exp[i2�	(x)] the instanta-
neous frequency d	/dx should follow from the bilinear representation
through

d	

dx
=

∫
uC f (x, u) du∫
C f (x, u) du
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Bilinear Signal Representation K̄ (x′, u′)

Wigner W(x, u), Eq. (1.14) 1

Pseudo-Wigner P(x, u; w), w( 1
2 x′)w∗(− 1

2 x′)
Eq. (1.17)

Page exp(−i�u′|x′|)
Kirkwood-Rihaczek exp(−i�u′x′)
w-Rihaczek w(x′) exp(−i�u′x′)
Levin cos(�u′x′)
w-Levin w(x′) cos(�u′x′)
Born-Jordan (sinc) sin(��u′x′)/��u′x′

Zhao-Atlas-Marks (cone/ w(x′) |�x′| sin(��u′x′)/��u′x′
windowed sinc)

Choi-Williams (exponential) exp[−(u′x′)2/
]

Generalized exponential exp[−(u′/uo )2N] exp[−(x′/xo )2M]

Spectrogram |S(x, u; w)|2, Aw(−x′, −u′)
Eq. (1.86)

TABLE 1.2 Kernels K̄ (x′, u′) of Some Basic Cohen-Class Bilinear Signal
Representations

as it does for the Wigner distribution, the kernel should satisfy the
condition

K̄ (0, u′) = constant and
∂ K̄
∂x′

∣∣∣∣
x′=0

= 0

The Levin, Born-Jordan, and Choi-Williams representations clearly
satisfy these conditions.

1.8.3 Rotation of the Kernel
In the case of two point sources �(x − x1) and �(x − x2), the cross-term

2�
[
x − 1

2 (x1 + x2)
]

cos[2�(x1 − x2)u]

was located such that we needed averaging in the u direction when we
wanted to remove it. In other cases, the cross-term may be located such
that we need averaging in a different direction; for two plane waves
exp(i2�u1x) and exp(i2�u2x), for instance, the cross-term reads

2�
[
u − 1

2 (u1 + u2)
]

cos[2�(u1 − u2)x]



34 C h a p t e r O n e

and we need averaging in the x direction. We may thus benefit from a
rotation of the kernel, or let the original kernel operate on the Wigner
distribution of the fractional Fourier transform of the signal,

C f (x, u) = K (x cos � + u sin �, −x sin � + u cos �) ∗
x

∗
u

Wf (x, u)

(1.80a)

CF�
(x, u) = K (x, u) ∗

x
∗
u

WF�
(x, u) (1.80b)

To find the optimal rotation angle �o , we may proceed as follows.
Let m�

x and m�
xx be the first- and second-order moments of the intensity

|F�(x)|2 of the fractional Fourier transform F�(x),

m�
x = 1

E

∫ ∫
xWF�

(x, u) dx du = 1
E

∫
x |F�(x)|2 dx (1.81a)

m�
xx = 1

E

∫ ∫
x2WF�

(x, u) dx du = 1
E

∫
x2 |F�(x)|2 dx (1.81b)

and let m�
xu be the mixed moment

m�
xu = 1

E

∫ ∫
xu WF�

(x, u) dx du (1.81c)

The propagation laws for the first- and second-order moments
through a rotator read[

m�
x

m�
u

]
=
[

cos � sin �

− sin � cos �

] [
mx

mu

]
(1.82a)

[
m�

xx m�
xu

m�
xu m�

uu

]
=
[

cos � sin �

− sin � cos �

] [
mxx mxu

mxu muu

] [
cos � − sin �

sin � cos �

]
(1.82b)

Note that mu = m�/2
x , muu = m�/2

xx , and mxu = m�/4
xx − 1

2 (mxx+m�/2
xx ), and

that all second-order moments follow directly from the measurement
of the intensity profiles of only three fractional Fourier transforms:
F0(x) = f (x), F�/2(x) = f̄ (x), and F�/4(x). While the second-order
moment m�

xx can be expressed as

m�
xx = mxx cos2 � + muu sin2 � + mxu sin 2� (1.83)

the second-order central moment ��
xx = m�

xx − (m�
x)2 can be expressed

as

��
xx = �xx cos2 � + �uu sin2 � + (mxu − mxmu) sin 2� (1.84)
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and extremum values of ��
xx arise for the angle �o , defined by

tan 2�o = 2
mxu − mxmu

�xx − �uu
= 2

m�/4
xx − 1

2

(
m0

xx + m�/2
xx
)− m0

xm�/2
x

m0
xx − m�/2

xx − (
m0

x

)2 + (
m�/2

x
)2

(1.85)

Note that �o corresponds to the minimum value of ��
xx , if �o is cho-

sen such that cos 2�o has the same sign as �
�/2
xx − �0

xx ; then �o + 1
2 �

corresponds to the maximum value of ��
xx . The angles �o and �o + 1

2 �
determine the principal axes of the moment ellipse in phase space.
Kernels can be optimized by rotating them and aligning them to these
principal axes.89

1.8.4 Rotated Version of the Smoothed
Interferogram

We will apply the aligning of the kernel to the smoothed interferogram,
which can be best derived from the pseudo-Wigner distribution. With

Sf (x, u; w) =
∫

f (x + xo )w∗(xo ) exp(−i2�uxo ) dxo (1.86)

denoting the windowed Fourier transform, the pseudo-Wigner dis-
tribution Pf (x, u; w), i.e., the Wigner distribution with the additional
window w( 1

2 x′)w∗(− 1
2 x′) in its defining integral [see Eq. (1.17)] can

also be represented as

Pf (x, u; w) =
∫

Sf
(

x, u + 1
2 t; w

)
S∗

f

(
x, u − 1

2 t; w
)

dt (1.87)

The smoothed interferogram, also known as the S method, is now
defined as90

Pf (x, u; w, z) =
∫

Sf
(

x, u + 1
2 t; w

)
z(t)S∗

f

(
x, u − 1

2 t; w
)

dt (1.88)

It is based on the pseudo-Wigner distribution written in the form
(1.87), but with an additional smoothing window z(t) in the u direc-
tion. The resulting distribution is of the Wigner distribution form,
with significantly reduced cross-terms of multicomponent signals,
while the auto-terms are close to those in the pseudo-Wigner dis-
tribution. For z(t) = �(t), the bilinear representation Pf (x, u; w, z) =
|Sf (x, u; w)|2 is known as the spectrogram: the squared modulus of the
windowed Fourier transform. For z(t) = 1, Pf (x, u; w, z) reduces to
the pseudo-Wigner distribution (1.87).

Since the window z(t) controls the behavior of Pf (x, u; w, z)—more
Wigner-type or more spectrogram-type—we spend one paragraph on
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|Sf(x,u;w)|2

u

x

(a)

|Sf(x,u;w)|2

u

x

(b)

FIGURE 1.5 Spectrogram of a sinusoidal FM signal
exp{i[2�u0x + a1 sin(2�u1x)]} with (a ) a medium-sized window, leading to a
space-frequency representation with smearing, and (b) a long window,
leading to a pure frequency representation.

the spectrogram. Although the spectrogram is a quadratic signal rep-
resentation |Sf (x, u; w)|2, the squaring is introduced only in the final
step and therefore does not lead to undesirable cross-terms that are
present in other bilinear signal representations. This freedom from
artifacts, together with simplicity, robustness, and ease of interpre-
tation, has made the spectrogram a popular tool for speech analysis
since its invention in 1946.91 The price that has to be paid, however,
is that the auto-terms are smeared by the window w(x). Note that for
w(x) = �(x), the spectrogram yields the pure space representation
|Sf (x, u; w)|2 = | f (x)|2, whereas for w(x) = 1, it yields the pure fre-
quency representation |Sf (x, u; w)|2 = | f̄ (u)|2. This is illustrated in
Fig. 1.5 on the sinusoidal FM signal

exp{i[2�u0x + a1 sin(2�u1x)]}

and a rectangular window w(x) = rect(x/X) of variable width X.
Note in particular the smearing that appears in Fig. 1.5a .

Based on Eq. (1.88), but replacing the signal f (x) by its frac-
tional Fourier transform F�(x), the �-rotated version P�

f (x, u; w, z) of
the smoothed interferogram Pf (x, u; w, z) was defined subsequently
as89,92

P
�
f (x, u; w, z) = PF�

(x, u; w, z)

=
∫

SF�

(
x, u + 1

2 t; w
)

z(t) S∗
F�

(
x, u − 1

2 t; w
)

dt (1.89)
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A definition directly in terms of the signal f (x) reads

P
�
f (x, u; w, z) =

∫
Sf
(

x + 1
2 t sin �, u + 1

2 t cos �; W−�

)
z(t)

× exp(−i2�ut sin �)

×S∗
f

(
x − 1

2 t sin �, u − 1
2 t cos �; W−�

)
dt (1.90)

where the fractional Fourier transform W−�(x) of the window w(x)
arises and where we have used the relationship

SF�
(x2, u2; W�) = exp[i�(u2x2 − u1x1)] Sf (x1, u1; w)

with
[

x2

u2

]
=
[

cos � sin �

− sin � cos �

] [
x1

u1

] (1.91)

The �-rotated smoothed interferogram P�
f (x, u; w, z) is related to the

Wigner distribution Wf (x, u) with the kernels89,92

K (x, u) = Ww(−x, −u)z̄(−x cos � + u sin �) (1.92a)

K̄ (x′, u′) =
∫

Aw(−x′ + t sin �, −u′ + t cos �)z(t) dt (1.92b)

Note that for � = 0, the distribution P�
f (x, u; w, z) reduces to the one

originally introduced, which was based on a combination of win-
dowed Fourier transforms in the u direction, while for � = 1

2 � it
reduces to the version that combines these windowed Fourier trans-
forms in the x direction.90

The rotated version of the smoothed interferogram is a versatile
method to remove cross-terms. To illustrate this, we show two nu-
merical examples. Consider first the signal

f (x) = exp

[
−
(

3x
xo

)8
]

{exp[i	1(x)] + exp[i	2(x)]}

with
	1(x) = �h1x2 + a1 cos(2�u1x)

	2(x) = �h2x2 + a2 cos(2�u2x)

consisting of two components with instantaneous frequency h1x −
a1u1 sin(2�u1x) and h2x − a2u2 sin(2�u2x), respectively; note that the
instantaneous frequencies cross at x = 0. In the numerical simulation,
the variables take the values xo = 128, h1 = 192, h2 = 64, u1 = u2 = 2,
−a1 = a2 = 8/�. A Hann(ing) window w(x) = cos2(�x/X) rect(x/X)
with width X = 128 is used for the calculation of the windowed
Fourier transform Sf (x, u; w). The values of the normalized second-
order central moments are �0

xx = 1, �
�/2
xx = 1.38, and �

�/4
xx = 0.07.
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According to Eq. (1.85), and using the fact that �
�/2
xx − �0

xx > 0, we get
�o = 41◦. The second-order moment in this direction, �41◦

xx = 0.057, is
smaller than in any other direction, while the second-order moment
in the orthogonal direction, �−49◦

xx = 2.01, is the largest. The fractional
Fourier transform F�(x) of the signal f (x) for the angle � = �o − 1

2 � =
−49◦ can now be calculated by using a discrete fractional Fourier
transformation algorithm. The next step is to calculate the windowed
Fourier transform SF�

(x, u; w) of the fractional Fourier transform F�(x)
and to use it in Eq. (1.89).

The results of this analysis are presented in Fig. 1.6. The pseudo-
Wigner distribution Pf (x, u; w) is shown in Fig. 1.6a . The smoothed in-
terferogram Pf (x, u; w, z), calculated by the standard definition (1.88),
i.e., combining terms along the u axis, with a rectangular window
z(t) = rect(t/T) and T = 15, is presented in Fig. 1.6b. We see that
some cross-terms already appear, although the auto-terms are still
very different from those in the Wigner distribution in Fig. 1.6a . The
reason lies in the very significant spread of one component along the

Pf(x,u;w)

u

x

(a)

Pf(x,u;w,z)

u

x

(b)

P γ
f(x,u;w,z)

u

x

(c)

P γ
f(x,u;w,z)

u

x

(d)

FIGURE 1.6 (a ) Pseudo-Wigner distribution Pf (x, u; w) of the signal f (x);
(b) smoothed interferogram Pf (x, u; w, z) calculated in the frequency
domain, with a rectangular window z; (c) smoothed interferogram
P

�
f (x, u; w, z) calculated in the optimal frequency domain, with a rectangular

window z; (d) smoothed interferogram P
�
f (x, u; w, z) calculated in the

optimal frequency domain, with a Hann(ing) window z.
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u axis. The �-rotated smoothed interferogram P�
f (x, u; w, z) for the

optimal fractional angle � = −49◦ is presented in Fig. 1.6c for a rect-
angular window with T = 9 and in Fig. 1.6d for a Hann(ing) window
with T = 15. We can see that as a consequence of the high concentra-
tion of the components along the optimal fractional angle, we almost
achieved the goal of getting the auto-terms of the Wigner distribution
without any cross-terms.

Similar results are obtained for the signal

f (x) = exp

[
−
(

3x
xo

)8
]

(exp{i[	(x) + 50�x]} + exp{i[	(x) − 50�x]})

with 	(x) =
∫ x

−∞
15 � arcsinh(100 �) d�,

where xo = X = 128 again and T = 21 see Fig. 1.7.

Pf(x,u;w)

u

x

(a)

Pf(x,u;w,z)

u

x

(b)

P γ
f (x,u;w,z)

u

x

(c)

P γ
f (x,u;w,z)

u

x

(d)

FIGURE 1.7 (a ) Pseudo-Wigner distribution Pf (x, u; w) of the signal f (x);
(b) smoothed interferogram Pf (x, u; w, z) calculated in the frequency
domain, with a rectangular window z; (c) smoothed interferogram
P

�
f (x, u; w, z) calculated in the optimal frequency domain, with a rectangular

window z; (d) smoothed interferogram P
�
f (x, u; w, z) calculated in the

optimal frequency domain, with a Hann(ing) window z.
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1.9 Conclusion
We have presented an overview of the Wigner distribution and of some
of its properties and applications in an optical context. The Wigner
distribution describes a signal in space (i.e., position) and spatial fre-
quency (i.e., direction) simultaneously and can be considered as the
local frequency spectrum of the signal, like the score in music and the
phase space in mechanics. Although it is derived in terms of Fourier
optics, the description of a signal by means of its Wigner distribution
closely resembles the ray concept in geometrical optics. It thus presents
a link between Fourier optics and geometrical optics. Moreover, the
concept of the Wigner distribution is not restricted to deterministic
signals (i.e., completely coherent light); it can be applied to stochastic
signals (i.e., partially coherent light) as well, thus presenting a link
between partial coherence and radiometry.

Properties of the Wigner distribution and its propagation through
linear systems have been considered; the corresponding description
of signals and systems can be directly interpreted in geometric-optical
terms. For first-order optical systems, the propagation of the Wigner
distribution is completely determined by the system’s ray transfor-
mation matrix, thus presenting a strong interconnection with matrix
optics.

We have studied the second-order moments of the Wigner distribu-
tion and some interesting combinations of these moments, together
with the propagation of these moment combinations through first-
order optical systems. Special attention has been paid to systems that
perform rotations in phase space.

In the case of completely coherent light, the Wigner distribution is
a member of a broad class of bilinear signal representations, known
as the Cohen class. Each member of this class is related to the Wigner
distribution by means of a convolution with a certain kernel. Because
of the quadratic nature of such signal representations, they suffer from
unwanted cross-terms, which one tries to minimize by a proper choice
of this kernel. Some members of the Cohen class have been reviewed,
and special attention was devoted to the smoothed interferogram
in combination with the optimal angle in phase space in which the
smoothing takes place.
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2.1 Introduction
The concept of the ambiguity function (AF) was introduced by
Woodward1 in the theory of signal processing of radar or sonar mea-
surements; it bears in its name the idea that it is impossible to perform
arbitrarily accurate measurements of both the distance and the veloc-
ity of a moving target. The well-known reason is that the width of
a signal in the time domain is inversely proportional to its width in
the frequency domain (a narrower signal has a wider spectrum and
inversely). From the mathematical point of view, this is just a property
of the Fourier transformation; from the physical point of view, this is
a common property in wave mechanics, for any kind of waves, and is
the basis of the uncertainty relations in quantum physics.

This concept can be introduced in optics as an extension of the
spectral analysis of images; the images are two-dimensional intensity
patterns I (x, y) which can often be analyzed in a convenient way by
considering their Fourier transform (intensity spectrum) written as

Ĩ (u, v) =
∫∫

dx dy I (x, y) exp [−i2�(ux + vy)]

or

Ĩ (f ) =
∫

dx I (x) exp [−i2�x · f ] (2.1)

where two-dimensional vectors are used; the variables (u, v) are the
spatial frequencies conjugate to the coordinates (x, y).
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The intensity distribution is nevertheless insufficient to describe
the optical field; the phase correlation between any pair of points
must be included in the description. For this purpose, it seems natural
to generalize I (x) by the mutual intensity �(x, x)∗ which contains 2
times more variables and is reduced to I (x) in the particular case x =
x′. The ambiguity function AF is defined, in the frame of phase-space
optics (PSO), as the Fourier transform with respect to x of the mutual
intensity written as �(x + a/2, x − a/2):

A(f, a) =
∫

dx exp (−i2�x · f)�
(

x + a
2

, x − a
2

)
(2.2)

The equivalent representation

A(f, a) =
∫

dm exp (i2�m · a)�̃
(

m + f
2

, m − f
2

)
(2.3)

is obtained by replacing the mutual intensity by its double Fourier
expansion

�
(

x + a
2

, x − a
2

)
=
∫∫

dg dh exp
{

i2�
[
g ·
(

x + a
2

)
− h ·

(
x − a

2

)]}
�̃(g, h) (2.4)

Formula (2.2) shows that A(f, 0) is equal to the intensity spectrum
Ĩ (f) which, as well as I (x), represents the experimental data recorded
by a digital detector. Formula (2.3) shows that A(0, a) is the inverse
Fourier transform of the intensity distribution �̃(m, m) in Fourier
space.

The Wigner distribution function (WDF)† is defined as the Fourier
transform of �(x + a/2, x − a/2) with respect to a, instead of x; the
WDF formulas similar to Eqs. (2.2) and (2.3) are

W(x, g) =
∫

da exp (−i2�a · g) �
(

x + a
2

, x − a
2

)
=
∫

dm exp (i2�m · x)�̃
(

f + m
2

, f − m
2

)
(2.5)

The mutual intensity can be obtained from the AF or from the WDF as

�
(

x + a
2

, x − a
2

)
=
∫

df exp (i2�f · x) A(f, a)

=
∫

dg exp (i2�g · a)W(x, g) (2.6)

∗See for instance Refs. [1] and [14] for a detailed definition of the mutual intensity
function.

†The WDF is discussed in detail in Chapter 1 by Martin Bastiaans.
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The AF and the WDF are related to each other by double Fourier
transformation over the position and frequency variables:

A(f, a) =
∫

dx
∫

dg exp [i2�(a · g − f · x)]W(x, g)

W(x, g) =
∫

da
∫

df exp [i2�(f · x − a · g)]A(f, a) (2.7)

The property �(x′, x) = �∗(x, x′) of the mutual intensity shows that the
WDF is real and that the AF, which is in general complex, satisfies the
relation A(−f, −a) = [A(f, a)]∗.

In the exit plane of an object of transmittance T(x), under uni-
form coherent illumination, the mutual intensity �(x + a/2, x − a/2)
is equal to the product T(x + a/2)T∗(x − a/2) which is, according
to Chap. 5, the product-space representation of the signal T(x). The
corresponding AF and WDF, which are referred to as the AF and
the WDF associated to T(x), were introduced in optics by Papoulis2

and Bastiaans,3 respectively. They are redundant representations
of T(x).

PSO representations are useful tools to characterize the perfor-
mances of optical systems. They provide elegant approaches to the
description and processing of optical signals or images. It has been
shown recently by Nugent4 (see also Ref. 5) that the concept of AF can
be used to unify the various noninterferometric approaches to X-ray
phase retrieval.

To simplify the formulation of the following sections, we most often
consider one-dimensional fields, in which case the two-dimensional
vectors are replaced by scalars, without a real loss of generality, be-
cause the extension to the general case is usually straigthforward.

2.2 Intensity Spectrum of a Fresnel
Diffraction Pattern Under
Coherent Illumination
2.2.1 General Formulation
For simplicity, let us consider a plane wave, of wavelength �, incident
along the z direction on a thin object of transmittance T(x) in the plane
z = 0. In the conditions of Fresnel diffraction, the wave function in a
plane z = D is

�D(x) = |�D|−1/2 exp
(
−i

�

4

)∫
d� exp

[
i�

(x − �)2

�D

]
T(�) (2.8)



48 C h a p t e r T w o

The corresponding intensity spectrum can be expressed by the multi-
ple integral

ĨD( f ) =
∫

dx exp (−i2�x f )
∫∫

d� d�′

�D

exp
[

i�
(x − �)2 − (x − �′)2

�D

]
T(�)T∗(�′) (2.9)

As the integration over x results in the following delta function∫
dx exp

[
−i2�x

(
f + � − �′

�D

)]
= �D�(�Df + � − �′) (2.10)

the intensity spectrum can thus be reduced to a single integration.6, 7

ĨD( f ) = exp (−i��Df 2)
∫

d� exp (−i2� f �)T(�)T∗(� + �Df )

=
∫

dx exp (−i2� f x)T
(

x − �Df
2

)
T∗
(

x + �Df
2

)
(2.11)

Similar expressions also exist in terms of T̃( f ):

ĨD( f ) = exp (−i��Df 2)
∫

dh exp (−i2��Dh f )T̃(h + f )T̃∗(h)

=
∫

dh exp (−i2��Dh f )T̃
(

h + f
2

)
T̃∗
(

h − f
2

)
(2.12)

It is interesting to note that the AF associated with T(x) is apparent in
this formulation if the intensity spectrum is formally considered as a
function of f and a = �Df .

2.2.2 Application to Simple Objects
This formulation can provide interesting results for some typical
Fresnel diffraction patterns. For instance, in the case of a slit of full
width w, we obtain7

ĨD(f ) =
(w−|�Df |)/2∫

−(w−|�Df |)/2

dx e−i2� f x =
{

sin[� f (w−|�Df |)]
� f for | f | ≤

∣∣ w
�D

∣∣
0 otherwise

(2.13)

which is analytically much simpler than the intensity distribution I (x)
in terms of Fresnel integrals represented geometrically by the Cornu
spiral.
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2.2.3 Contrast Transfer Functions
Considering T(x) = exp [−B(x) + i(x)], where exp [−B(x)] and (x)
are the absorption and the phase modulations, respectively, of the
object, we can introduce in formula (2.11) the approximation

T∗
(

x + �Df
2

)
T
(

x − �Df
2

)
	 1 − B

(
x + �Df

2

)
− B

(
x − �Df

2

)
− i

[


(
x + �Df

2

)
− 

(
x − �Df

2

)]
(2.14)

which should be valid under the conditions 0 < B(x) � 1 (weak
absorption) and |(x) − (x − �Df )| � 1. This last condition is the
slowly varying phase condition6 which is less restrictive and more
precise than the weak phase condition |(x)| � 1. Under such condi-
tions, the intensity spectrum takes a simple linear form

ĨD( f ) = �( f ) − 2 cos (��Df 2) B̃( f ) + 2 sin (��Df 2)̃( f ) (2.15)

where the factors of B̃( f ) and ̃( f ) are called the absorption-transfer
function (ATF) and the phase-transfer function (PTF) respectively.

Formula (2.14) can be generalized to the case of an imaging system
with aberrations other than defocusing. In electron microscopy, for
which primary spherical aberration characterized by the coefficient
CS is unavoidable, the following formula is to be used.8, 9

ĨD( f ) = �( f ) − 2 cos [�( f )]B̃( f ) + 2 sin [�( f )]̃( f ) (2.16)

with

�( f ) = �

(
�Df 2 + CS�3 f 4

2

)

2.3 Propagation through a Paraxial Optical
System in Terms of AF
2.3.1 Propagation in Free Space
Let us consider the propagation in free space, with mean direction
along the z axis, of a partially coherent beam. The mutual intensity in
the z = D plane is given in terms of the mutual intensity in the z = 0
plane as

�D

(
x + a

2
, x − a

2

)
= 1

�D

∫
d� exp

[
i�

(x + a/2 − �)2

�D

]∫
d�

× exp
[
−i�

(x − a/2 − �)2

�D

]
�0(�, �) (2.17)
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After insertion of this expression in (2.2), it can be seen that the inte-
gration over x results in the delta function �D�(� − � + a − �Df ). The
multiple integral is thus reduced to a single integral

AD( f, a ) =
∫

d� exp (−i2� f �)�
(

� + a − �Df
2

, � − a − �Df
2

)
= A0( f, a − �Df ) (2.18)

This result can be more readily obtained by recalling that the Fresnel
diffraction integral is the convolution of the input function T(x) by the
propagator G(x) = exp (i�x2/�D − i�/4)/

√
�D; the output spectrum

is therefore the product of the input spectrum T̃( f ) by the spectrum
G̃( f ) = exp (−i��Df 2) of G(x); this is translated in terms of mutual
intensity as

�̃D

(
m + f

2
, m − f

2

)
= exp

{
−i��D

[(
m + f

2

)2

−
(

m − f
2

)2
]}

× �̃0

(
m + f

2
, m − f

2

)
= exp (−i2�m�Df )�̃0

(
m + f

2
, m − f

2

)
(2.19)

Inserting this expression in (2.3), we indeed obtain directly2,11

AD( f, a ) =
∫

dm exp [i2�m(a − �Df )]�̃0

(
m + f

2
, m − f

2

)
= A0( f, a − �Df ) (2.20)

As shown in Ref. 3, a similar formula also exists for the WDF:

WD(x, g) = W0(x − �Dg, g) (2.21)

According to Eqs. (2.18) and (2.21), the AF and the WDF propagate in a
uniform medium without a change of their functional forms; only the
variables are linearly transformed. This is an elegant representation
of Fresnel diffraction phenomena.

2.3.2 Transmission through a Thin Object
In this case, the incident mutual intensity �inc(x, x′) is multiplied by
T(x)T∗(x′), where T(x) is the object transmittance. The AF of the in-
cident beam is then to be convoluted with the object AF AT ( f, a ) as
follows:

A( f, a ) =
∫

dh Ainc(h, a ) AT ( f − h, a ) (2.22)



A m b i g u i t y F u n c t i o n i n O p t i c a l I m a g i n g 51

where

AT ( f, a ) =
∫

dx exp (−i2�x f )T
(

x + a
2

)
T∗
(

x − a
2

)
The transmission by a thin lens of focal length F is of special
interest.2 This lens behaves as an object of transmittance exp (−i�x2/

�F ). With �inc(x + a/2, x − a/2) being the mutual intensity in the lens
entrance surface, the AF in the lens exit surface is calculated as

A( f, a ) =
∫

dx exp
[
−i2�x f − i�

(x + a/2)2 − (x − a/2)2

�F

]
× �inc

(
x + a

2
, x − a

2

)
=
∫

dx exp
[
−i2�x

(
f + a

�F

)]
�inc

(
x + a

2
, x − a

2

)
= Ainc

(
f + a

�F
, a
)

(2.23)

The corresponding formula for the WDF is easily found as

W(x, g) = Winc

(
x, g + x

�F

)
(2.24)

2.3.3 Propagation in a Paraxial Optical
System

Consider the process of propagation from an input plane to a thin lens
over a distance D1, then transmission by this lens of focal length F ,
and finally propagation to the output plane over a distance D2. Per-
forming the corresponding transformations successively, according to
Eqs. (2.20) and (2.22), it is easy to obtain the output AF in terms of the
input AF:

Aout( f, a ) = Ain

(
f − f

D1

F
+ a

�F
, a − a

D2

F

− f �

(
D1 + D2 − D1 D2

F

))
(2.25)

This linear transformation of variables can be represented by the
matrix

M =

⎛⎜⎝ 1 − D1
F

1
�F

�
(

D1 D2

F
− D1 − D2

)
1 − D2

F

⎞⎟⎠ (2.26)

which can also be obtained by multiplication of the matrices corre-
sponding to the elementary successive transformations. This matrix
shows a remarkable similarity with the ray-transfer matrix of geomet-
rical optics (see, for instance, Ref. 10) which transforms an ingoing
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ray to the corresponding outgoing ray, in the paraxial approximation,

with each ray being represented by a column vector
(

�/�
x

)
, where

x and � denote the position and the direction of the ray, respectively.
It turns out that the ray-transfer matrix is equal to the inverse of
matrix M of Eq. (2.26).

Therefore, the correspondance between geometrical optics and the
PSO formulation pointed out in Ref. 3 for the WDF appears to be also
valid for the AF.

This PSO method is thus a convenient and elegant tool to describe
the propagation of a coherent or partially coherent beam in any system
comprising coaxial lenses, and it is possible to use the WDF instead of
the AF. The PSO method is much simpler than the method based on
the propagation of mutual intensity which would involve convolution
integrals or Fourier transformations.

2.4 The AF in Isoplanatic (Space-Invariant)
Imaging
The mutual intensity �im(x, x′) in the image plane is given in terms
of the mutual intensity �ob(x, x′) in the object plane (for convenience,
the magnification is set equal to 1) as

�im(x, x′) =
∫∫

d� d�′G(x − �)G∗(x′ − �′)�ob(�, �′) (2.27)

where G(x) is the coherent point-spread function (PSF) of the imaging
system. The image AF is therefore

Aim( f, a ) =
∫

dx exp (−i2�x f )
∫

d� G
(

x + a
2

− �
)

×
∫

d�G∗
(

x − a
2

− �′
)

�ob(�, �′) (2.28)

By introducing new variables 
 = (�+�′)/2, � = �−�′, and t = x −

in this integral expression, we obtain directly11−13

Aim( f, a ) =
∫∫

dt d
 exp [−i2� f (t + 
)]

×
∫

d� G
(

t + a − �

2

)
G∗
(

t − a − �

2

)
�ob

(

 + �

2
, 
 − �

2

)
=
∫

d� AG ( f, a − �) Aob( f, �) (2.29)
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This is the convolution integral, with respect to the variable a , of the
AF in the object plane

Aob( f, �) =
∫

d
 exp (−i2� f 
) �ob

(

 + �

2
, 
 − �

2

)
(2.30)

with the function

AG ( f, a ) =
∫

dx exp (−i2�x f ) G
(

x + a
2

)
G∗
(

x − a
2

)
=
∫

dg exp (i2�ga ) G̃
(

g + f
2

)
G̃∗
(

g − f
2

)
(2.31)

where G̃(g) is known as the pupil function of the imaging system. Also,
AG ( f, a ) is to be considered equivalently as the AF of the coherent PSF
or as the pupil AF.

The image intensity spectrum, which is a quantity of special interest,
is obtained by setting a equal to 0 in Eq. (2.29):

Ĩim( f ) = Aim f, 0) =
∫

d� AG ( f, − �) Aob( f, �) (2.32)

Formula (2.31) shows that, in the particular case of free-space prop-
agation for which G̃( f ) = exp (−i��Df 2), the pupil AF is a delta
function �(a − �L f ). The pupil AF of an ideal (stigmatic) system is
equal to �(a ).

2.5 The AF of the Image of an
Incoherent Source
2.5.1 Derivation of the Zernike-Van Cittert

Theorem from the
Propagation of the AF

The mutual intensity of a planar incoherent source, in the source plane,
is of the form �(x, x′) = S(x)�(x − x′), where S(x) is the source density
[note that, for obvious dimensionality considerations, S(x) is not an
intensity distribution in the sense of the present formulation].

Formula (2.2) shows that the AF in the source plane is S̃( f )�(a ),
where S̃( f ) is the spectrum of the source density. According to formula
(2.18), at distance L from the source, the AF is therefore S̃( f )�(a−�L f ),
and the mutual intensity can be obtained by formula (2.6) as

�
(

x + a
2

, x − a
2

)
=
∫

d f exp (i2�x f ) S̃( f )�(a − �L f )

= S̃
( a

�L

)
exp

(
i2�xa

�L

)
(�L)−1 (2.33)



54 C h a p t e r T w o

This result, which is the expression of the Van Cittert-Zernike
theorem,14 can also be obtained from the WDF which is equal to
S(x − �L f ), since the WDF is easily found to be equal to S(x) in the
plane of the incoherent source.

2.5.2 Partial Coherence Properties in the
Image of an Incoherent Source11

The image of an incoherent source (or equivalently in the image of
an object under incoherent illumination) by a nonideal optical system
shows some degree of coherence because the light from each point
of the primary source is spread over a finite area in the image; it is
convenient to introduce the image AF, which characterizes this im-
age completely, including its coherence properties, and has a simple
expression.11

Aim( f, a ) =
∫

d�AG ( f, a − �) S̃( f )�(�) = AG ( f, a ) S̃( f ) (2.34)

2.5.3 The Pupil AF as a Generalization
of the OTF

In the case a = 0, formula (2.32) gives the image intensity spectrum as

Ĩim( f ) = Aim( f, 0) = AG ( f, 0) S̃( f ) (2.35)

This formula shows that AG ( f, 0) is identical to the well-known
optical transfer function (OTF). Since formula (2.34) is obviously a gen-
eralization of formula (2.35), the pupil AF is to be considered as a
generalization of the OTF.

According to Eq. (2.18), if the image is recorded at a distance D
from its normal position (defocusing), a is to be replaced by a −�Df in
Eq. (2.34). This means11 that the defocused pupil AF is AG ( f, a −�Df ).
The defocused OTF is consequently AG ( f, − �Df ). Therefore, the
pupil AF contains the values of the OTF for any value of the defo-
cusing distance. More precisely, as first pointed out in Ref. 15, the
pupil AF can be seen as a polar display of the OTF for variable defo-
cusing distance: the OTF is displayed, as represented schematically in
Fig. 2.1, along lines going through the origin of coordinates in the
( f , a ) representation (see Chapt. 5).

This connection between the OTF and the pupil AF has been
used16−24 for designing pupil phase masks (phase apodizers) which
increase the depth of focus without losing lateral resolution and light-
gathering power. Furthermore, various effects such as the behavior
of the Strehl ratio and the sensitivity to spherical aberration,25 or the
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a

O

a = –λDf

f

FIGURE 2.1 Schematic PSO representation. The AF along the line a = −�Df
corresponds to the intensity spectra ĨD( f ) at distance D from the reference
plane. The integration of formula (2.37) is to be performed along lines
parallel to the f axis.

focal shift,26 have been studied by considerations based on the behav-
ior of the pupil AF. These applications are detailed in Chapt. 5.

2.6 Phase-Space Tomography
The idea of phase-space tomography4, 5, 27−33 is to reconstruct the AF
(or the WDF) in the plane z = 0 from a set of intensity measurements
ID(x) in planes z = Dn. The mutual intensity can then be derived
from the reconstructed AF (or WDF) by using formula (2.6). This is of
interest for the characterization of the optical field in the plane z = 0.
If an object of transmittance T(x) is placed in this plane, we obtain

�inc

(
x + a

2
, x − a

2

)
T
(

x + a
2

)
T∗
(

x − a
2

)
=
∫

d f exp (i2� f x) A( f, a ) (2.36)

where �inc is the mutual intensity of the incident beam. With x = a/2,
this is reduced to

�inc(a, 0)T(a )T∗(0) =
∫

d f exp (i� f a ) A( f, a ) (2.37)

As �inc(a, 0) and the modulus of T(0) can be measured independently,
this last formula allows the determination (up to a constant phase
factor) of the complex function T(a ) from the AF.
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The WDF tomographic reconstruction is based on the formula

ID(x) =
∫

d f W(x − �Df, f ) (2.38)

which shows that ID(x) is the projection of the WDF in the (x, f )
space along a direction that can be varied by the position z = D of the
recording plane. The operation that allows the WDF reconstruction is
an inverse Radon transform.27, 28 The feasibility of the tomographic
WDF reconstruction has been discussed in Refs. 27 to 31.

The AF reconstruction is considered28−31 to be simpler, because
there is no need of inverse Radon transform (the term phase-space to-
mography is therefore not really appropriate in this case); we only need
to perform the Fourier transformation of the measured ID(x). The re-
lation ĨD( f ) = A( f, − �Df ) shows that the intensity spectra represent
the variations of the AF along the radial lines a = −�Df in the ( f, a )
space, as depicted in Fig. 2.1. To sample the AF over the complete
( f, a ) space, it is necessary to use negative as well as positive values
of the distance D; this is not possible presently in X-ray optics because
appropriate lenses are not available.

The process of AF reconstruction was first considered in the
case of one-dimensional structures.28, 29 A two-dimensional struc-
ture can be considered as an ensemble of one-dimensional y struc-
tures T(x0, y); the corresponding AFs are A(x0; fy, ay), from which
T(x0, y) can be derived as a function of y according to Eq. (2.35). For
this purpose, a convenient setup, actually a one-dimensional prop-
agator system, has been proposed by Liu and Brenner32 (see also
Ref. 33): A cylindrical lens of focal length F produces an exact image
(corresponding to no effective propagation) in the x direction, while
there is propagation over the object image distance in the y direction;
this distance can be varied by using several cylindrical lenses.

2.7 Another Possible Approach to AF
Reconstruction
The AF in the exit plane of an object illuminated by a tilted plane wave
of tilting angle � is∫

dx exp (−i2� f x)T
(

x + a
2

)
exp

[
i2�

�

�

(
x + a

2

)]
T∗
(

x − a
2

)
× exp

[
−i2�

�

�

(
x − a

2

)]
= Aob( f, a ) exp

(
i2�

�a
�

)
(2.39)

where Aob( f, a ) is the AF associated to the transmittance T(x). By
setting � = �/�, the intensity spectrum of the image delivered by an
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imaging system with pupil AF AG ( f, �) is

Ĩim( f, �) =
∫

d�AG ( f, −�) Aob( f, �) exp (i2���) (2.40)

which is a Fourier transform. Consequently,

Aob( f, �) AG ( f, −�) =
∫

d� exp (−i2���) Ĩim( f, �) (2.41)

Supposing AG ( f, − �) to be known and Ĩim( f, �) to be measured as
a function of �, we see this last formula provides the possibility to
obtain the object AF.

This approach was suggested34 in the context of X-ray analyzer-
based imaging which is a Schlieren-type technique (See Fig. 2.2) based
on Bragg diffraction by a perfect crystal (analyzer) acting as a filter
in Fourier space.34 The image spectrum is equal to T̃( f )G̃( f ), where
T̃( f ) is the object spectrum and G̃( f ) is the complex reflectivity of
the crystal for a plane wave of offset angular position � = � f with
respect to the exact Bragg angular position. Therefore G̃( f ) is the
pupil function of the system.

Crystal analyzer

Object Image

FIGURE 2.2 Principle of the X-ray analyzer-based imaging system. A
quasi-parallel and quasi-monochromatic beam is diffracted, after
transmission through the object, by a plate of perfect silicon crystal. The
arrangement is such that Bragg diffraction occurs, corresponding to
reflecting planes parallel to the crystal surface. The Bragg diffraction process
is highly sensitive to the direction of the rays. Images are recorded across the
diffracted beam for different angular settings of the crystal.
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If the crystal is rotated by an angle �� from its peak position in
the incident beam, this pupil function is changed into G̃( f − ��/�).
It is easy to show from formula (2.31) that the pupil AF AG ( f, a ) is
then changed to AG ( f, a ) exp (i2�a��/�); we then obtain for the image
intensity spectrum the same formula as Eq. (2.41) with � = ��/�.
This shows that, as expected, the rotation of the crystal analyzer is
equivalent to a change in the direction of the incident beam.

This technique is sensitive to the object structure in one dimension.
To overcome this limitation, it should be just necessary, for each an-
gular position of the crystal analyzer, to perform a 90◦ rotation of the
object in its plane, to obtain finally two-dimensional information.

2.8 Propagation-Based Holographic Phase
Retrieval from Several Images
2.8.1 Fresnel Diffraction Images as In-Line

Holograms
The holographic features of Fresnel diffraction images are clearly
shown by writing formula (2.11), with T(�) = 1 + �(�), as

exp (i��Df 2) ĨD( f ) = �( f ) + �̃( f ) + exp (2i��Df 2)�̃∗(− f )

+
∫

dh exp (−i2��Dh f )�̃(h + f )�̃∗(h) (2.42)

The sum of the two first terms corresponds to the reconstructed object;
the next term corresponds to the out-of-focus image (at distance 2D) of
the conjugate object �∗(x); the integral term is negligible if |�(x)| = 1
(weak object). The importance of these perturbation terms can be
strongly reduced by performing the following summation based on
N images recorded at different distances Dn:

1
N

∑N

n=1
ĨDn ( f ) exp

(
i��Dn f 2) = �( f ) + �̃( f ) + �̃∗(− f )

N

×
∑N

n=1
exp

(
2i��Dn f 2)+ N−1

×
∫

dh�̃(h + f )�̃∗(h)

×
∑N

n=1
exp (−i2��Dnh f ) (2.43)

The quantity on the left-hand side may be calculated from digitally
recorded images; this allows a good reconstruction of the object if the
perturbation terms are nearly canceled by this summation procedure.
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2.8.2 Application to Phase Retrieval
and X-Ray Holotomography

In the case of a phase object, such that T(�) = exp [i(�)], formula
(2.42) can be written in the following form:

ĨDn ( f ) − exp (−i��Df 2)
∫

dh exp (−i2��Dnh f ) �̃ (h + f )�̃∗(h)

= �( f ) + 2 sin(��Dn f 2)̃( f ) (2.44)

Neglecting the nonlinear term (the integral term), denoted as NLTDn ,
in the left-hand side of this equation, we obtain the following estima-
tion of the phase spectrum35 from the experimentally known ĨDn ( f )
by a least-squares fitting as

̃( f ) =
∑

n sin(��Dn f 2) ĨDn ( f )

2
∑

n sin2(��Dn f 2)
(2.45)

From this result, it is possible to calculate the nonlinear terms to check
whether they could indeed be neglected. If necessary, it is possible
to take them into account recursively: the calculated NLTDn can be
substracted from the experimentally known ĨDn ( f ) to obtain a new
estimate of the phase spectrum

̃( f ) =
∑

n sin(��Dn f 2)[ ĨDn ( f ) − NLTDn ]

2
∑

n sin2(��Dn f 2)
(2.46)

and this process can be continued recursively.
If a single image (N = 1) were used in formula (2.43), the phase

spectrum could not be obtained for the spatial frequencies f such that
sin(��Df 2) 	 0. Using several images (typically four or five images
are used36) allows one to eliminate this defect and to reduce the influ-
ence of the nonlinear terms.

This phase retrieval approach, which has some similarity to the
focus variation method used in electron microscopy,37 has been im-
plemented in synchrotron X-ray optics (see Fig. 2.3) to provide two-
dimensional phase maps, with micrometer resolution, of objects show-
ing a nearly uniform absorption but introducing an important phase
modulation. Advantage is taken of the high degree of spatial coher-
ence (due to the small lateral size of the source and the long source-
specimen distance) and the good monochromaticity available on mod-
ern synchrotron beam lines. The phase maps obtained for different
orientations of the object are used as input for a tomographic recon-
struction of the three-dimensional distribution of the electron density
in the sample. This technique named holotomography35,36,38 is of parti-
cular interest in the case of objects opaque to visible light. It has been
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Insertion
device

Multilayer
monochromator

Sample
stage

Rotation
axis

0.001 - 1 m

Near field
Fresnel diffraction

CCD

High resolution
detector

FIGURE 2.3 Scheme of the setup for X-ray holotomography operated on
the ID19 beamline of the ESRF (Grenoble, France). The X-ray beam is
monochromatized by a crystal monochromator or a multilayer, the energy
used being typically around 15 keV (wavelength around 0.08 nm). The
sample is mounted on a rotating table. The detector ensemble is a scintillator
screen coupled by light optics to a CCD camera. This dectector can be moved
to record images close to the object or at different distances from it.

applied to a large variety of objects of interest in biological or material
sciences.

2.9 Conclusion
The AF shares with the WDF the ability to describe the propagation
of a partially coherent beam in free space and through a paraxial opti-
cal system in a simple and elegant way. The AF is a generalization of
the intensity spectra which are the basis of important phase retrieval
methods. The images given by a space-invariant system are conve-
niently described in terms of AF of the object and of the pupil AF,
which is a generalization of the OTF and has important applications
in the design of phase apodizers. Phase-space tomography is a grow-
ing field of research, in which the AF reconstruction may be more
practical than the WDF tomographic reconstruction.
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3.1 Introduction
The canonical (integral linear) transforms (CTs) are widely used in sig-
nal and image processing, optics, quantum mechanics, etc.1−8 The
CTs are related to the affine transformations of the Wigner distribu-
tion, discussed in Chap. 1. The affine transformations in phase space,
defined by the position and spatial frequency (momentum) coordi-
nates, include scaling, shearing, rotation, etc. As we will see below, it
is a rotation that plays an important role for different applications in
information acquisition and processing, beam characterization, etc.

A well-known phase-space rotator is the Fourier transform (FT),
which produces a rotation in the position (time)–spatial (temporal) fre-
quency plane of �/2. The FT together with closely related convolution
and correlation operations9,10 forms the basis for information process-
ing. The fractionalization of the FT11−14 has opened new perspectives
in this field. Thus the fractional Fourier transform, which produces
the rotation in the position-frequency plane at arbitrary angle, has
been used for shift-variant filtering, noise reduction, chirp localiza-
tion, encryption, phase retrieval, etc.4,6,15−19 The fractional FT is the
only possible phase-space rotator for one-dimensional signals. If the
dimension of a signal is larger than 1, there exist other phase-space
rotators.

In coherent optics the FT of a two-dimensional signal, associated
with complex field amplitude, can be performed by application of a
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thin convergent spherical lens. It will be shown that all other phase-
space rotators also can be realized experimentally by using thin lenses,
but in this case some of them must be cylindrical.

In this chapter, we briefly summarize the main properties of the
two-dimensional CTs, corresponding to rotations in four-dimensional
phase space; we also consider in detail the basic phase-space rotators:
symmetric and antisymmetric fractional FTs, signal (image) rotator
and gyrator, as well as the first-order optical systems performing these
transforms. Finally we discuss the applications of the phase-space
rotators.

3.2 First-Order Optical Systems and
Canonical Integral Transforms
3.2.1 Canonical Integral Transforms and Ray

Transformation Matrix Formalism
In paraxial approximation of the scalar diffraction theory, the propa-
gation of a coherent monochromatic light through a first-order system
is described by a canonical integral transform.1,2,4 Thus starting from
the complex field amplitude fi (ri ) at the input plane of the system,
we have its CT at the output plane fo (ro )

fo (ro ) =
∫ ∞

−∞
fi (ri )K T (ri , ro ) dri (3.1)

The kernel K T(ri , ro ) is parameterized by the wavelength � and the
real symplectic ray transformation 4 × 4 matrix T that relates the po-
sition ri and direction pi of an incoming ray to the position ro and
direction po of the outgoing ray[

ro
po

]
=
[

A B
C D

] [
ri
pi

]
= T

[
ri
pi

]
(3.2)

where r = (x, y)t and p = ( px, py)t . The superscript t denotes trans-
position. Note that the term related to the time dependence and the
phase accumulation exp(i2�z/�) due to propagation at distance z will
be omitted. Here and further in this chapter we use the normalized
dimensionless variables and the matrix parameters. The normalized
variable p can also be interpreted as spatial frequency or ray mo-
mentum. To convert them to real position r and ray direction p, the
following relations have to be used: r = r

√
�w, p = p

√
�/w, a = A,

b = Bw, c = Cw, and d = D, where w is some length factor defined
by the used optical system and the beam width.
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The canonical integral transform associated with matrix T is repre-
sented by the operator RT

fo (ro ) = RT[ fi (ri )](ro ) = FT(ro ) (3.3)

In the often used case det B �= 0, the CT takes the form of Collins’
integral1

fo (ro ) = RT[ fi (ri )](ro ) = (det iB)−1/2
∫ ∞

−∞
fi (ri )

× exp
[
i�
(
rt

i B
−1Ari − 2rt

i B
−1ro + rt

oDB−1ro
)]

dri (3.4)

The kernel is a two-dimensional generalized chirp function since its
phase is a polynomial of second degree of variables ri and ro . For
A = D = 0 and B = −C = I, with I throughout denoting the identity
matrix, we obtain, apart from a constant phase factor exp(−i�/2), the
Fourier transform F[ f (ri )](ro )

F[ f (ri )](ro ) =
∫ ∞

−∞
f (ri ) exp(−i2�rt

ori ) dri (3.5)

known in optics as an angular spectrum of the complex field amplitude
f . The matrix parameters A = D = I, C = 0, and B = zI correspond
to the Fresnel transform

fo (ro ) = 1
i z

∫ ∞

−∞
fi (ri ) exp

[
i

�

z
(ri − ro )2

]
dri (3.6)

which describes the propagation of the paraxial beams in homoge-
neous medium.

The case B = 0 corresponds to the generalized imaging condition

fo (r) = (| det A|)−1/2 exp(i�rtCA−1r) fi (A−1r) (3.7)

which includes a possible scaling and rotation of the input function
accompanied by an additional phase modulation.

The CT is a linear transform: RT[ f (ri ) + g(ri )](r) = RT[ f (ri )](r) +
RT[g(ri )](r). It is additive in the sense that RT2RT1 = RT2×T1 . The ray
transformation matrix T is symplectic [see also Eq. (1.41)]

ABt = BAt CDt = DCt ADt − BCt = I

AtC = CtA BtD = DtB AtD − CtB = I (3.8)

and therefore it has only 10 free parameters. The inverse transforma-
tion is parametrized by the matrix T−1, which, since T is symplectic,
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is given by

T−1 =
[

Dt −Bt

−Ct At

]
(3.9)

3.2.2 Modified Iwasawa Decomposition
of Ray Transformation Matrix

Any proper normalized symplectic ray transformation matrix can be
decomposed in the modified Iwasawa form as20−22

T =
[

A B
C D

]
=
[

I 0
−G I

] [
S 0
0 S−1

] [
X Y

−Y X

]
= TL TSTO (3.10)

in which the first matrix represents a lens transform described by the
symmetric matrix

G = −(CAt + DBt)(AAt + BBt)−1 = Gt (3.11)

The second matrix corresponds to a scaler described by the positive
definite symmetric matrix

S = (AAt + BBt)1/2 = St (3.12)

and the third matrix, TO, is orthogonal21,22 and due its symmetry can
be shortly represented by the unitary 2 × 2 matrix

U = X + iY = (AAt + BBt)−1/2(A + iB) (3.13)

The action of the CTs described by the first two matrices is obvious. The
lens transform produces the second-order polynomial phase modu-
lation of the signal, and the scaler is responsible for the magnification
of the signal. Therefore the most significant signal transformations
are related to the last orthosymplectic matrix TO. They correspond
to phase-space rotators and will be denoted as rotational canonical
(integral) transforms (RCTs). The phase-space rotators include the sig-
nal rotator, separable fractional FT, and gyrator among others.

The signal rotator [ray transformation matrix Tr (�)] can be ex-
pressed by the unitary matrix, Eq. (3.13),

Ur (�)=
[

cos � sin �
− sin � cos �

]
(3.14)

associated with the clockwise rotation in the xy and px py planes at
angle �.
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The separable fractional FT [ray transformation matrix T f (�x, �y)]
described by the unitary matrix

U f (�x, �y) =
[

exp(i�x) 0

0 exp(i�y)

]
(3.15)

corresponds to rotations in the xpx and ypy planes through angles �x
and �y, respectively.

The gyrator transform associated with Tg(ϑ) or

Ug(ϑ) =
[

cos ϑ i sin ϑ

i sin ϑ cos ϑ

]
(3.16)

produces twisting, i.e., rotations in the mixed xpy and ypx planes of
phase space.

It has been shown23 that any orthosymplectic matrix can be decom-
posed in the form

TO = Tr (�) T f (�x, �y) Tr (�) (3.17)

It means that RTO is a separable fractional Fourier transformer RT f

embedded between two rotators RTr . In particular for the gyrator
matrix, we obtain Tg(ϑ) = Tr (−�/4) T f (ϑ, −ϑ) Tr (�/4).

Based on the modified Iwasawa decomposition Eq. (3.10) and
Eq. (3.17), we can write a general representation of the CT, which
is valid for any ray transformation matrix, including a singular sub-
matrix B, det B = 0.23

fo (ro ) = RT [ fi (ri )] (ro ) = (det S)−1/2 exp(−i�rt
oGro )

×RT f (�x ,�y) [ fi (Xr (�) ri )]
(
Xr (−�)S−1ro

)
(3.18)

3.3 Canonical Transformations Producing
Phase-Space Rotations
3.3.1 Matrix and Operator Description
The ray transformation matrix TO, which describes the phase-space
rotations, is symplectic, Eq. (3.8),

XYt = YXt XXt + YYt = I

XtY = YtX XtX + YtY = I
(3.19)

and orthogonal, TO = (Tt
O)−1, and therefore it has only four free

parameters.
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If a complex field amplitude f (r) is canonically transformed with
the matrix T, then its Fourier spectrum is canonically transformed
with (Tt)−1. It is easy to see that for the case of phase-space rotators
both transforms coincide.

For the description of phase-space rotations we can use the uni-
tary matrix U = X + iY instead of the ray transformation matrix TO.
Indeed, by introducing the following complex vector q = r − ip, it
is easy to check that the ray transformation equation, expressed in
dimensionless variables, Eq. (3.2), for the case of orthogonal matrix[

ro
po

]
=
[

X Y
−Y X

] [
ri
pi

]
(3.20)

can be rewritten as

(r − ip)o = (X + iY)(r − ip)i (3.21)

or in more compact form as qo = Uqi . This presentation underlines the
similarity in the description of phase-space rotators and polarization
rotators of the monochromatic paraxial beams defined by correspond-
ing Jones matrices.10

Further, the RCT operator associated with unitary matrix U will
be denoted as RU. As well as for the ray transformation matrix T,
the additivity of the phase-space rotators is expressed as RU2 RU1 =
RU2×U1 .

Since matrix U has four free parameters, there are four uniparamet-
ric groups of phase-space rotators: symmetric fractional FT, Eq. (3.15),
�x = �y; antisymmetric fractional FT, Eq. (3.15), �x = −�y; gyrator,
Eq. (3.16); and signal rotator, Eq. (3.14). These transforms are often
written in the form of Hermitian operators20,24−26

Ĵ0 = 1
4

[
x̂2 + ŷ2 + p̂x

2 + p̂y
2
]

Ĵ1 = 1
4

[
x̂2 − ŷ2 + p̂x

2 − p̂y
2
]

Ĵ2 = 1
2

[
x̂ ŷ + p̂x p̂y

]
Ĵ3 = 1

2

[
x̂ p̂y − ŷ p̂x

]
(3.22)

where x̂ and ŷ, p̂x = −i∂/∂x, and p̂y = −i∂/∂y are position and mo-
mentum operators. The operators Ĵ0, Ĵ1, Ĵ2, and Ĵ3 are associated with
symmetric and antisymmetric fractional Fourier transforms, gyrator,
and rotator, respectively. Note that the operator Ĵ0 commutes with all
others and that [ Ĵ i ,̂ Jj ] = iεi jk Ĵ k , where i, j, k = 1, 2, 3 and εi jk is the
totally antisymmetric symbol, normalized through ε123 = 1.
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Due to these commutation relations and by analogy with spin an-
gular momentum, the operators Ĵ1, Ĵ2, and Ĵ3 are often associated
with orbital angular momentum (OAM) defined in phase space. Note
that only Ĵ3 produces the rotation in configuration space (xy plane)
and relates to the beam OAM projection on the propagation direction.
Moreover, the OAM operators, as we will see below, provide an ele-
gant signal representation on the sphere, called, again by analogy with
polarization description, the orbital Poincaré sphere. This presentation
permits easy identification of the signal symmetry, its z-OAM projec-
tion, and defines the geometric phase accumulated by the Gaussian
beams during their propagation through the first-order optical sys-
tems, etc. Let us consider these basic transforms in detail.

3.3.2 Signal Rotator
The signal rotator transform associated with unitary matrix Ur (�),
Eq. (3.14); Yr = 0, and

Xr =
[

cos � sin �
− sin � cos �

]
(3.23)

produces a clockwise rotation of fi in the xy plane and, correspond-
ingly, its FT (the angular spectrum) Fi ( px, py) = F[ f (ri )](pi ) in the
px py plane at angle �.

fo (x, y) = fi (x cos � − y sin �, x sin � + y cos �)

Fo ( px, py) = Fi ( px cos � − py sin �, px sin � + py cos �) (3.24)

This transformation is additive with respect to angle parameter �.
Thus RUr (�) RUr (�) = RUr (�+�) , and therefore the inverse transform for
RUr (�) is a signal rotator at angle −�. Note that det U = det X = 1.

The action of the signal rotator is easy to understand, and it is
demonstrated in Fig. 3.1, where the original signal (real image, pho-
tograph of Madrid street) is seen in Fig. 3.1a and its transformation
after the rotation at angle � = �/4 in Fig. 3.1b.

The signal rotator is an important tool for the study of signal sym-
metry.

3.3.3 Fractional Fourier Transform
We call the transform associated with ray transformation matrix T
separable if the block matrices A, B, C, and D are diagonal. The only
possible separable phase-space rotator is the fractional FT, as it is easy
to see from the orthosymplectic conditions [Eq. (3.19)]. Indeed for
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(a) (b)

FIGURE 3.1 (a) The test real positive image and (b) its transformation after
the rotation at angle � = �/4.

diagonal block matrices X and Y, they lead to the relations

X2
11 + Y2

11 = 1

X2
22 + Y2

22 = 1 (3.25)

which are satisfied only if X11,22 = cos �x, y and Y11,22 = sin �x, y. Thus
the associated unitary matrix corresponds to the separable fractional
FT one, Eq. (3.15).

The kernel of the two-dimensional separable fractional FT is a prod-
uct of two one-dimensional fractional FT kernels, K U f (�x ,�y)(ri , ro ) =
K �x

f (xi , xo )K �y
f (yi , yo ) , with K �x

f (xi , xo ) given by

K �x
f (xi , xo ) = (i sin �x)−1/2 exp

[
i�

(
x2

i + x2
o

)
cos �x − 2xo xi

sin �x

]
(3.26)

There are two main definitions of the fractional FT kernel which differ
by the phase factor exp(i�x/2); see, for example, Refs. 4 and 5. Indeed,
to obtain the ordinary FT for �x = �/2 and rigorously satisfy the angle
additivity, the kernel exp(i�x/2)K �x

f (xi , xo ) has to be used. Neverthe-
less here we consider one, Eq. (3.26), that describes the complex field
amplitude propagation through the related first-order optical systems
as well as time evolution of the harmonic oscillator. In general the dif-
ference in the kernel definition is not important for the applications of
the RCTs, except in such particular cases as the definition of the Gouy
phase,27 where Eq. (3.26) is preferable. Moreover, the matrix formal-
ism widely used for the description of phase-space rotators permits
one to avoid the differences in the fractional FT kernel definition.
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If �x = �y = , then the fractional FT is symmetric. The symmetric
fractional FT produces the rotation in phase planes xpx and ypy at the
same angle . Its kernel is written as

K U f (,) (ri , ro ) = 1
i sin 

exp

[
i�

(
r2

i + r2
o

)
cos  − 2rt

ori

sin 

]
(3.27)

For  = 0 it corresponds to the identity transform K U f (0,0)(ri , ro ) =
�(ri −ro ); for  = �/2 to the common Fourier transform [Eq. (3.5)] apart
from constant −i ; for  = �, to the reverse transform K U f (�,�)(ri , ro ) =
−�(ri + ro ), which coincides, except for the sign, with signal rotation
at angle �; and for  = 3�/2 to the inverse FT apart from constant i .
We observe that the symmetric fractional FT is periodic, in the strict
sense, with 4� and not with 2� as the rest of basic phase-space rotators:
signal rotator, antisymmetric fractional FT, and gyrator.

The unitary matrix associated with the symmetric fractional FT
is a scalar matrix U f (, ) = exp(i)I with determinant exp(i2).
From the scalar form of U f (, ), it is easy to see that the symmetric
fractional FT commutes with any phase-space rotator: U f (, )U =
UU f (, ).

The signal transformation under the symmetric fractional FT, ob-
tained by numerical simulations, is demonstrated in Fig. 3.2, where the
real Fig 3.2a and imaginary Fig.3.2b parts of the symmetric fractional
FT at angle  = �/4 of the signal shown in Fig. 3.1a are displayed.

If �x = −�y = �, then the kernel is given by

K U f (�,−�)(ri , ro )

= 1
sin �

exp

[
i�

(
x2

i + x2
o − y2

i − y2
o

)
cos � − 2 (xo xi − yo yi )

sin �

]
(3.28)

and corresponds to the antisymmetric fractional FT, which also pro-
duces the rotation in phase planes xpx and ypy but at the angles �

(a) (b)

FIGURE 3.2 (a) Real and (b) imaginary parts of the symmetric fractional FT
at angle  = �/4 of the test signal (Fig. 3.1a).
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(a) (b)

FIGURE 3.3 (a) Real and (b) imaginary parts of the antisymmetric fractional
FT at angle  = �/4 of the test signal (Fig. 3.1a) are displayed.

and −�, respectively. The determinant of the associated unitary ma-
trix equals 1: det U f (�, −�) = 1. In Fig. 3.3 the real (part a) and the
imaginary (part b) parts of the numerically simulated antisymmetric
fractional FT at angle �/4 of the signal shown in Fig. 3.1a are dis-
played. Here as well as in Fig. 3.2, the chirp phase modulation is
clearly observed.

The combination of the symmetric RU f (,) and antisymmetric
RU f (�,−�) fractional FTs defines the separable fractional FT RU f (�x ,�y)

at angles �x =  + � and �y =  − � because

U f (�x, �y) = U f (, )U f (�, − �) = exp(i)U f (�, − �) (3.29)

If �x = 0 and �y = �, and correspondingly  = −� = �/2, the
separable fractional FT reduces to y reflector described by the unitary
matrix

Ure fy =
[

1 0
0 −1

]
(3.30)

For �x = � and �y = 0, the x reflector is obtained

Ure fx =
[−1 0

0 1

]
(3.31)

The cascade of two identical reflectors leads to the identity trans-
form Ure fy Ure fy = Ure fx Ure fx = I; meanwhile the cascade of the
different reflectors produces the signal rotation at �, Ure fx Ure fy =
Ure fy Ure fx = −I.

As we mentioned before in Eq. (3.17), any phase-space rotator can
be presented as the separable fractional FT embedded into two signal
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rotators23 that can be expressed in matrix form as

U = exp(i) Ur (�) U f (�, − �) Ur (�) (3.32)

where the parameters , �, �, and � are defined from the components
of the matrix U = X + iY by the following relations:

det U = exp(i2)

det X + det Y = cos 2� (3.33)

and

X11 + X22 − Y12 + Y21 = 2 cos(� + � + ) cos �

X12 − X21 + Y11 + Y22 = 2 sin(� + � + ) cos �

−X11 + X22 + Y12 + Y21 = 2 sin(� − � + ) sin �

X12 + X21 + Y11 − Y22 = 2 cos(� − � + ) sin � (3.34)

Note that det X = cos(+�) cos(−�) and det Y = sin(+�) sin(−�).
As we will see below, the fractional FT is widely used in signal and

image processing, phase retrieval, tomographic reconstruction of the
Wigner distribution, etc. More information about the fractional FT can
be found in Refs. 4 to 6, 13, 28, and 29.

3.3.4 Gyrator
As well as the signal rotator, symmetric and antisymmetric fractional
FTs, the gyrator defined by the unitary matrix Ug(ϑ) with determi-
nant equal to 1 [see Eq. (3.16)] also forms a uniparametric group of
transformations. The kernel of the gyrator transform at angle ϑ has a
form of a hyperbolic wave

K Ug(ϑ) (ri , ro ) = 1
|sin ϑ | exp

[
i2�

(xo yo + xi yi ) cos ϑ − (xi yo + xo yi )
sin ϑ

]
(3.35)

which reduces to �(ri − ro ) for ϑ = 0, to �(ri + ro ) for ϑ = �, and to the
twisted FT kernel exp[∓i2�(xi yo + xo yi )] for ϑ = ±�/2. It is periodic
with 2�. The inverse transform is the gyrator at angle −ϑ . The gyrator
produces rotations in the twisted xpy and ypx planes of phase space
at angle ϑ .

The gyrator plays an important role in two-dimensional signal pro-
cessing, orbital angular momentum manipulation, and beam con-
version. Thus by applying the gyrator transform at angle ±�/4
to the properly normalized Hermite-Gaussian beam, the helicoidal
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Laguerre-Gaussian mode is obtained. A detailed analysis of the gyra-
tor can be found in Refs. 30 to 33.

3.3.5 Other Phase-Space Rotators
The four uniparametric transforms—signal rotator, symmetric frac-
tional FT, antisymmetric fractional FT, and gyrator—are additive with
respect to their angle parameters and form the basis for the presen-
tation of other phase-space rotators. Thus, for example, the cascade
of the reflector, Eq. (3.31), and signal rotator produces a reflector with
rotation described by the matrix

U1(�) = Ur (�)Ure fx =
[− cos � sin �

sin � cos �

]
(3.36)

This transformation is not additive with respect to parameter �, be-
cause U1(�)U1(�) = Ur (� − �) �= U1(� + �).

The combination of this transform at angle �/2 and the fractional FT
leads to the phase-space rotator described by the antidiagonal unitary
matrix

U2(�x, �y) = U1

(�

2

)
U f (�x, �y) =

[
0 exp(i�x)

exp(i�y) 0

]
(3.37)

This RCT for �x = �y has been considered in Ref. 34. It is also not
additive with respect to the angles U2(�x, �y)U2(�x, �y) = U f (�x +�x,
�y + �y) �= U2(�x + �x, �y + �y).

The cascades of signal rotators and reflector correspond to all pos-
sible phase-space rotators with Y = 0. Nevertheless there exist phase-
space rotators with det Y = 0, but Y �= 0. Since det Y = sin �x sin �y,
it is easy to see that in this case �x = �nx or/and �y = �ny and nx, y
are integers. It means that for one coordinate, the fractional Fourier
transformer in the decomposition Eq. (3.32) acts as an identity or �
rotation system. As an example of such a system, we mention one
considered in Ref. 35 and described by the unitary matrix

U =
[

cos � sin �
−i sin � i cos �

]
(3.38)

3.4 Properties of the Phase-Space Rotators
In this section we consider the basic properties of the RCTs that are
useful for the application of these transformations for the signal pro-
cessing tasks and for the description of the related first-order optical
systems.
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In the case where det Y �= 0, the RCT parameterized by U of function
fi (ri ) takes the form

fo (ro ) = RU[ fi (ri )](ro ) = FU(ro ) = (det iY)−1/2
∫ ∞

−∞
fi (ri )

× exp
[
i�
(
rt

i Y
−1Xri − 2rt

i Y
−1ro + rt

oXY−1ro
)]

dri (3.39)

For X = 0 the kernel reduces to a plane wave function, and the trans-
form can be denoted as a Fourier type. As it follows from Eqs. (3.32),
X = 0 only if �x, y = �/2 + �kx, y, where kx, y is an integer.

If det Y = 0, the decomposition Eq. (3.18), which is also valid for
the nonsingular case, has to be used

fo (ro ) = RU[ fi (ri )](ro ) = RU f (�x ,�y)[ fi (Xr (�) ri )][Xr (−�)ro ] (3.40)

where the parameters �x, y, �, and � are defined from Eqs. (3.33) and
(3.34). In particular, if Y = 0, then fo (r) = fi (X−1r). Since | det U| =
| det X| = 1, these RCTs correspond to signal rotation or signal rotation
with reflection and may be denoted as imaging-type rotators.

3.4.1 Some Useful Relations for
Phase-Space Rotators

Based on the analysis of the canonical integral transform performed
in Ref. 7, it is easy to formulate the main theorems for the phase-space
rotators.

The complex conjugation of the RCT parameterized by U of f (ri )
is equivalent to the RCT parameterized by U∗ = X − iY of f ∗(ri ), that
is, {RU[ f (ri )](r)}∗ = RU∗

[ f ∗(ri )](r).
As shown in Ref. 7, the gradient of the RCT for det Y �= 0 can be

written as

∇o fo (ro ) = ∇o
{RU[ fi (ri )](ro )

}
= i2�(Yt)−1 {Xtro fo (ro ) − RT [ri fi (ri )] (ro )

}
(3.41)

where ∇ = (∂/∂x, ∂/∂y)t and therefore

RU [ri fi (ri )] (ro ) =
{

Xtro + i
Yt

2�
∇o

}
fo (ro )

RU [∇i fi (ri )] (ro ) = (
i2�Ytro + Xt∇o

)
fo (ro ) (3.42)

The well-known Parseval theorem holds for the entire class of the
CTs, and therefore for the phase-space rotators∫ ∞

−∞
f (ri ) g∗(ri ) dri =

∫ ∞

−∞
RU[ f (ri )](ro ) RU∗

[g∗(ri )](ro ) dro (3.43)
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which, in particular, yields the energy conservation law∫ ∞

−∞
| f (ri ) |2 dri =

∫ ∞

−∞
|RU[ f (ri )](ro )|2 dro (3.44)

We also remind (see Sec. 1.6) that the Wigner distribution is rotated
in phase space under the RCT

Wf (r, p) = WRU[ f ](Xr + Yp, −Yr + Xp) (3.45)

Moreover its projection corresponds to the squared modulus of the ap-
propriated RCT, which can be registered experimentally. These prop-
erties are crucial for phase-space tomography, which permits one to
reconstruct the Wigner distribution from its projections. The details
of this method for the case of the fractional FT are clarified in Chap. 4.

3.4.2 Similarity to the Fractional
Fourier Transform

It has been shown36,37 that any unitary matrix Us is similar to one
U f associated with the fractional FT. Indeed, the unitary matrix has
unimodular eigenvalues and can be diagonalized. The diagonal uni-
tary matrix corresponds to the fractional FT, Eq. (3.15). Moreover, the
matrix that diagonalizes the matrix is also unitary, and therefore we
can write

Us = UU f (�x, �y)U−1 (3.46)

where �x and �y and the matrix U are defined from the eigenvalues
and eigenvectors of Us , correspondingly. Then we can conclude that
any phase-space rotator is similar to the fractional FT. For example, the
signal rotator and gyrator are similar to the antisymmetric fractional
FT because

Ur (�) = Ug

(�

4

)
U f (�, − �) Ug

(
−�

4

)
Ug(�) = Ur

(
−�

4

)
U f (�, − �) Ur

(�

4

)
(3.47)

Note that due to the symmetry of the phase-space rotator matrices,
such as Ug(� ± �/4) = −Ug(±�/4), there exist various similarity
relations (see Sec. 1.6.2). For example, we can also write for the signal
rotator

Ur (±�) = Ug

(
±�

4

)
U f (�, − �) Ug

(
∓�

4

)
= Ug

(
� ± �

4

)
U f (�, − �) Ug

(
� ∓ �

4

)
(3.48)
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3.4.3 Shift Theorem
A shift of the input function by a vector v, fi (r) → fi (r − v), leads
to a shift of the output signal by the vector Xv and to an additional
quadratic phase factor

RU[ fi (ri −v)](ro ) = exp[−i�(2ro −Xv)tYv] RU[ fi (ri )](ro −Xv) (3.49)

where we have used the symplecticity conditions [Eq. (3.19)] and the
fact that vtZq = qtZtv. This implies that the squared modulus of the
RCT, associated in optics with intensity distribution, does not change
due to a displacement by v, but is merely shifted by Xv:∣∣RU[ f (ri − v)](ro )

∣∣2 = |FU(ro − Xv)|2 (3.50)

Equation (3.49) reduces to RU[ f (ri − v)](ro ) = FU(ro − Xv) and to
RU[ f (ri − v)](ro ) = exp(−i�2rt

oYv) FU(ro ) for Y = 0 and X = 0,
respectively. The shift theorem underlines the position-variant nature
of signal processing in the phase-space domains if X �= 0.

3.4.4 Convolution Theorem
Using the shift theorem, the RCT of the convolution between f and h

C f,h(r) = ( f ∗ h)(r) =
∫ ∞

−∞
f (r − v)h(v) dv =

∫ ∞

−∞
h(r − v) f (v) dv

(3.51)
can be written in the form

RU [( f ∗ h)(ri )] (ro ) =
∫ ∞

−∞
exp[−i�(2ro −Xv)tYv] FU(ro −Xv) h(v) dv

(3.52)

In the case where X = 0 (and thus also Yt = Y−1), it reduces to

RU [( f ∗ h)(ri )] (ro ) = (det iY)1/2 FU(ro ) HU(ro ) (3.53)

For imaging-type systems Y = 0, we have

RU [( f ∗ h)(ri )] (ro ) =
∫ ∞

−∞
FU(ro − Xv) h(v) dv (3.54)

3.4.5 Scaling Theorem
The scaling, as we discussed above, belongs to the class of CTs. There-
fore, as it follows from the additivity property of the CTs, the scaling
of the input function leads to a change of the parameterizing matrix.
Thus the phase-space rotation associated with matrix U of the scaled
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function (det W)1/2 f (Wri ), RU[(det W)1/2 f (Wri )](ro ) with W = Wt ,
corresponds to the CT of f (ri ) itself, RT̂[ f (ri )](ro ), parameterized by
the matrix

T̂ =
[

X Y
−Y X

] [
W−1 0

0 W

]
=
[

XW−1 YW
−YW−1 XW

]
(3.55)

The scaling theorems for

W =
[

wx 0
0 wy

]
(3.56)

can be formulated for important RCTs—signal rotator, fractional FT,
and gyrator transforms, relatively—as follows.4, 29, 30

RUr (�)[ f (Wri )](ro ) = f (Xr (−�)Wro )

RU f (�x ,�y)[ f (Wri )](ro )

=
(

cos �x

cos �x

)1/2

exp

{
i�x2

o

[
1 −

(
cos �x

cos �x

)2
]

cot �x

}

×
(

cos �y

cos �y

)1/2

exp

{
i�y2

o

[
1 −

(
cos �y

cos �y

)2
]

cot �y

}

×RU f (�x ,�y) [ f (ri )]
(

cos �x

cos �x
wxxo ,

cos �y

cos �y
wy yo

)
RUg(ϑ)[ f (Wri )](ro )

=
∣∣∣ cos �

cos ϑ

∣∣∣ exp
{

i2�xo yo

[
1 −

( cos �

cos ϑ

)2
]

cot ϑ

}
×RUg(�)[ f (ri )]

( cos �

cos ϑ
Wro

)
(3.57)

where cot �x, y = w2
x, y, cot �x, y, and cot ϑ = wxwy cot �. Note that if

wx = w−1
y = w, then RUg(ϑ)[ f (Wri )](ro ) = RUg(ϑ)[ f (ri )](Wro ).

The scaling property for the fractional FT has been used for the
analysis of fractal signals.38

3.4.6 Phase-Space Rotations of Selected
Functions

Phase-space rotation of only a limited number of functions can be
expressed analytically. Among them there is the function

fi (r) = exp
(
i2�kt

i r − �rtLi r
)

(3.58)
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where Li is a symmetric matrix with nonnegative definite real part
and ki is a real vector. Following the calculations done in Refs. 7 and
42, one can find that the RCT of the function (3.58) takes the form

fo (r) = RU[ fi (ri )](r) = [det (X + iYLi )]−1/2

× exp
[−i�kt

i (X + iYLi )−1 Yki + i2�kt
or − �rtLor

]
(3.59)

where kt
o = kt

i (X + iYLi )−1 and iLo = (−Y + iXLi ) (X + iYLi )−1.
If Li = −iHi is imaginary, then Lo = −iHo = −i(−Y + XHi )×

(X + YHi )−1 is imaginary, too, which implies that fi (ri ) [Eq. (3.58)]
and fo (r) [Eq. (3.59)] are the generalized chirp functions, which in-
clude as particular cases the plane, elliptic, hyperbolic, and parabolic
waves.

For ki = 0, and thus fi (r) = exp(−�rtLi r), Eq. (3.59) reduces to

fo (r) = [det (X + iYLi )]−1/2 exp
(−�rtLor

)
(3.60)

A Gaussian beam exp[−�(l11x2 + 2l12xy + l22 y2)] appears when Li is
real and positive definite.

For plane wave fi (r) = exp(i2�kt
i r) (Li = 0) we obtain

fo (r) = (det X)−1/2 exp
(−i�kt

i X
−1Yki + i2�kt

i X
−1r − i�rtYX−1r

)
(3.61)

Then a plane wave remains a plane wave only under the imaging-type
phase-space rotations (Y = 0).

Equation (3.61) can be used for the calculation of the phase-space ro-
tations of periodic functions. Thus by representing a periodic function
fi (r) with periods px and py with respect to the x and y coordinates
as a superposition of plane waves,

fi (r) =
∞∑

m,n=−∞
amn exp (i2�kt

mnr) (3.62)

with kt
mn = (m/px, n/py) and using Eq. (3.61 ), we get after the RCT

fo (r) = (det X)−1/2 exp(−i�rtYX−1r)

×
∞∑

m,n=−∞
amn exp

(−i�kt
mnX−1Ykmn + i2�kt

mnX−1r
)

(3.63)

If kt
mnX−1Ykmn = j , where j is an even integer, then the generalized

Talbot imaging7 is obtained

fo (r) = (det X)−1/2 exp
(−i�rtYX−1r

)
fi (X−1r) (3.64)
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It includes a rotation, scaling of the coordinates described by the
matrix X−1, and phase modulation associated with the matrix
product −YX−1.

Phase-space rotation of the Dirac � function leads to the generalized
chirp function, which corresponds to the point-spread function of the
related first-order optical system.

RU[�(ri − v) ](ro )

= 1√
det iY

exp
[
i�
(
vtY−1Xv − 2vtY−1ro + rt

oXY−1ro
)]

(3.65)

Correspondingly applying the inverse transform parameterized by
the matrix U−1 to this chirp function, we obtain �(ri − v). Therefore
the phase-space rotations can be used for the localization of certain
chirp signals, as will be discussed further.

3.5 Eigenfunctions for Phase-Space
Rotators
3.5.1 Some Relations for the Eigenfunctions
It is known that the Hermite-Gaussian (HG) functions Hm,n(r) =
Hm(x) Hn(y), where Hn(x) = 21/4 (2n n!)−1/2 Hn(

√
2� x) exp(−�x2)

and Hn(·) denotes the Hermite polynomials, are eigenfunctions for
the separable fractional FT for any angles �x and �y with eigenvalues
exp[−i(m + 1

2 )�x − i(n + 1
2 )�y] (see, for example, Ref. 4).

To find the eigenfunctions for the RCT parameterized by the
unitary matrix Us , first we perform the similarity decomposition
Us = UU f (�x, �y)U−1, where �x and �y and the matrix U are de-
fined from the eigenvalues and eigenvectors of Us correspondingly.
Then it is clear that39 the functions obtained from Hm,n(ri ) by the
RCT parameterized by U: HU

m,n(r) = RU[Hm,n(ri )](r) are eigenfunc-
tions for the RCT described by the matrix Us with eigenvalues
exp[−i(m + 1

2 )�x − i(n + 1
2 )�y].

There are various names for HU
m,n(r) modes: two-dimensional

Hermite-Gaussian functions,40 Hermite-Laguerre Gaussian func-
tions,35 and orthosymplectic modes.41 Here we will use the last one
since HU

m,n(r) is an eigenfunction for the RCT parameterized by the
orthosymplectic ray transformation matrix associated with Us .

As well as the HG functions, the modes HU
m,n(r) for the same U

and different indices m, n ∈ [0, ∞) form a complete orthonormal
set, and therefore, any function can be represented as their linear
superposition.
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From the fact that U f (, ) commutes with any unitary matrix U
follows that the mode HU

m,n(r) is an eigenfunction for the symmetric
fractional FT with eigenvalue exp[−i(m + n + 1)]. Then the kernel of
the symmetric fractional FT, Eq. (3.27), can be alternatively presented
as a series of products of the orthosymplectic modes.

K U f (,) (ri , ro ) =
∞∑

m,n=0

exp[−i(m + n + 1)]HU
m,n(r0)HU−1

m,n (ri ) (3.66)

The orthosymplectic modes HU
m,n(r), modes obtained from the HG

ones Hm,n(r) by the RCT associated with matrix U, have the following
generating function40,42√

2
det U

exp
(
−stU−1U∗s + 2stU−1r

√
2� − �rtr

)
=

∞∑
m=0

∞∑
n=0

HU
m,n(r)

(
2m+n

m!n!

)1/2

sm
x sn

y (3.67)

where st = (sx, sy). They can be expressed as40,42

HU
m,n(r) = (−1)m+n exp[�(x2 + y2)]

2m+n−1/2 (�m+nm!n! det U)1/2

×
(

U∗
11

∂

∂x
+ U∗

21
∂

∂y

)m (
U∗

12
∂

∂x
+ U∗

22
∂

∂y

)n

× exp[−2�(x2 + y2)] (3.68)

where Ujk ( j, k = 1, 2) are parameters of the unitary matrix U. Thus
for the separable fractional FT U = U f (�x, �y), this formula for any
angles �x and �y reduces to the HG functions up to the constant phase
exp[−i(m + 1

2 )�x − i(n + 1
2 )�y].

The orthosymplectic modes satisfy the symmetry relations

HU
m,n(−r) = (−1)m+nHU

m,n(r)[HU
m,n(r)

]∗ = HU−1

m,n (r) (3.69)

the derivative relations39[
∂

∂x
,

∂

∂y

]t

HU
m,n(r) = 2√

� U∗ [√mHU
m−1,n(r),

√
nHU

m,n−1(r)
]t

−2�HU
m,n(r) [x, y]t (3.70)
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and the recurrence relations

2√
� [x, y]t HU

m,n(r) = U
[√

m + 1HU
m+1,n(r),

√
n + 1HU

m,n+1(r)
]t

+ U∗[√mHU
m−1,n(r),

√
nHU

m,n−1(r)
]t

(3.71)

Based on Eqs. (3.70) and (3.71), we can determine41 the z-OAM
component for the orthosymplectic mode HU

m,n(r).

Lm,n
z =

∫ ∞

−∞
Im
{
HU

m,n(r)∗
(

x
∂

∂y
− y

∂

∂x

)
HU

m,n(r)
}

dx dy

= 2 Im
{

mU11U∗
21 − nU22U∗

12
}

(3.72)

As an example, let us find the eigenfunctions for the signal rota-
tor. Using the similarity transformation Eq. (3.48), we observe that
the orthosymplectic mode HUg(∓�/4+�k)

m,n (r) is an eigenfunction for the
signal rotator for any angle. Note that HUg(∓�/4+�k)

m,n with integer k
corresponds to the helicoidal Laguerre-Gaussian (LG) modes L±

m,n(r)
apart from the constant phase factor

HUg(∓�/4+�k)
m,n (r) ∝ L±

m,n(r) = 21/2
[

(min{m, n})!
(max{m, n})!

]1/2

(
√

2�r )|m−n|

× exp[±i(m − n)�] L (|m−n|)
min{m,n}(2�r2)

× exp(−�r2) (3.73)

where L (�)
n (·) denotes the generalized Laguerre polynomials, and spa-

tial coordinates are represented by the two-dimensional column vec-
tor r = (x, y)t = (r cos �, r sin �)t . Therefore, the LG mode L±

m,n(r) is
an eigenfunction for the signal rotator. From Eq. (3.72) it follows that
L±

m,n(r) possesses the integer OAM projection Lm,n
z = ±(m − n), also

known as a topological charge.
Correspondingly using the similarity transformation Eq. (3.47) for

the gyrator, we conclude that its eigenfunctions are the HG ones
rotated at ∓�/4 + �k.

3.5.2 Mode Presentation on Orbital
Poincaré Sphere

We have emphasized that a phase-space rotator is described by the uni-
tary matrix U, which has 4 degrees of freedom. Nevertheless HU

m,n(r)
is characterized by only two parameters because it is an eigenfunction
for the symmetric fractional FT RU f (,) and for the RCT associated
with matrix Us = UU f (�, − �)U−1 for any  and �. Let us demonstrate
this statement with the following example.
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HGm,n

HGn,m

LG+
m,n

LG–
m,n

Ψ

θ

FIGURE 3.4 (m, n)-Poincaré sphere for orthosymplectic mode presentation.

The orthosymplectic mode HU
m,n(r), Eq. (3.68), can be obtained from

the HG one,Hm,n(r), by application of the RCT associated with the ma-
trix U or alternatively from the LG mode asHU

m,n(r) = RUl [L±
m,n(ri )](r),

where Ul = U × Ug(±�/4) [see Eq. (3.73)]. Since Ul can be written as
Ul = Ur (�)U f (�, − �)Ur (�)U f (, ) and the LG modes are eigen-
functions for the symmetrical fractional FT and the signal rotator,
we conclude that all different orthosymplectic modes HU

m,n(r) can be
generated from the LGs by two-parameter RCTs described by matrix
Ur (�)U f (�, − �).

It has been proposed to present all different orthosymplectic modes
HU

m,n(r) (here a constant phase factor of the mode is ignored) for
fixed indices m and n on the sphere called the orbital (m, n)-Poincaré
sphere,43−45 which is similar to the one used for characterization of
polarized light (see Fig. 3.4).

For example, by starting from the LG mode L+
m,n(r) = L(0,.)

m,n (r),
living on the north pole of the (m, n)-Poincaré sphere, and ap-
plying the RCT associated with two-parameter matrix U(�, �) =
Ur (−�/4 + �/2) U f (�/2, −�/2) Ur (�/4 − �/2) to this mode, the en-
tire sphere can be populated by the different orthosymplectic modes
L(�,�)

m,n (r) = RU(�,�)[L+
m,n(ri )](r), where the parameters � ∈ [0, �] and

� ∈ [−�, �] indicate the colatitude of a parallel and the longitude of
a meridian on the sphere, respectively. The HG modes Hm,n(r) and
Hn,m(r) are located at the intersection of the main meridian and equa-
tor at points (�,�) = (�/2, 0) and (�/2, �), respectively. Moreover,
it has been shown43 that the transformation along the main meridian
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� = 0 corresponds to the gyrator transform Eq. (3.16), along the merid-
ian with � = �/2—to the antisymmetric fractional FT—and along the
equator—to the signal rotator transform Eq. (3.14). Thus the HG mode
Hm,n(r) rotated counterclockwise at angle �/2 lives on the equator at
longitude �.

It is easy to see from Eq. (3.72) that the modes from the same co-
latitude have the same projection of the OAM along the propagation
direction Lm,n

z = (m−n) cos �. Then for the LG mode L±
m,n(r) the value

of the projection Lm,n
z = ±(m − n) is an integer; meanwhile Lm,n

z = 0
for HG mode L(�/2,�)

m,n (r).
Correspondingly, any orthonormal set {HU

m,n(r)} with integer m, n ∈
[0, ∞) is characterized by two parameters and can be associated with
a certain direction (�,�) in three-dimensional parametric space.

3.6 Optical Setups for Basic
Phase-Space Rotators
It is well known (e.g., see Ref. 10) that in paraxial optics the Fourier
transform can be performed using a convergent thin lens. Thus the
complex field amplitude at the back focal plane of the lens corre-
sponds to the FT of one at the front focal plane. As derived in Ref. 28
and discussed in Sec. 1.5, the symmetric fractional FT at angle 
can be also performed by the same scheme if the distance z be-
tween the input/output plane and the lens of focal distance f equals
z = 2 f sin2 (/2). Another proposed scheme28 consists of two identi-
cal spherical convergent lenses of focal distance f located at the input
and output system planes with the distance z = 2 f sin2 (/2) between
them. Moreover, the propagation of the optical beam through the op-
tical fiber with a quadratic refractive index profile also produces the
symmetric fractional FT at angles defined by the propagation distance
and the refractive index gradient.14,29

To perform the separable fractional FT, as well as signal rotator
and gyrator, the cylindrical lenses are needed. Several setups for sep-
arable fractional FT,46−50 antisymmetric fractional FT,51 and signal
rotator21,22 have been proposed. Nevertheless most are difficult to
adapt to the often needed change of transformation parameter. More-
over, the parameter turning is usually accompanied by additional scal-
ing which depends on the transformation parameter.

The main objective of the system design is to find a minimal lens–
free-space configuration that is flexible for transformation parameter
changing. A setup with fixed free-space intervals between the gener-
alized lenses is a promising candidate for this task.

The generalized lens,52,53 which can be mathematically described
by the CT parameterized by ray transformation matrix TL , Eq. (3.10),
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φ2

φ1

xO

FIGURE 3.5 Generalized lens constructed from two cylindrical lenses
rotated at different angles.

with the block matrix

G =
[

gxx gxy
gxy gyy

]
(3.74)

produces the quadratic phase modulation of the input wavefront

fo (x, y) = exp[−i�(gxxx2 + 2gxyxy + gyy y2)] fi (x, y) (3.75)

In practice, the generalized lens can be implemented by a spatial
light modulator (SLM) that allows one to change the lens parameters
almost in real time. Also it can be constructed as a combination
of n aligned cylindrical lenses of power p j (p j > 0 for conver-
gent lens), which are attached one to another and rotated coun-
terclockwise with respect to the transversal OX axis at angles 	 j .
Then gxx = ∑n

j=1 p j cos2 	 j , gxy = −∑n
j=1 p j (sin 2	 j )/2, and gyy =∑n

j=1 p j sin2 	 j . Depending on the angles and the powers of the
cylindrical lenses, we obtain the elliptic (including spherical), hyper-
bolic, or parabolic phase modulations. In Fig. 3.5 the generalized lens
that contains only two cylindrical lenses is displayed.

Below we will consider flexible optical schemes with fixed loca-
tion of the generalized lenses which implement the basic phase-space
rotators.

3.6.1 Flexible Optical Setups for Fractional
FT and Gyrator

Based on the matrix formalism, flexible optical setups, which per-
form the fractional FT RU f (�x ,�y) , and the gyrator RUg(ϑ) have been
designed.21,33,54 These optical schemes contain three generalized
lenses L1, L2, and L3; the last is identical to L1, with fixed equal
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Z Z

Pinput Pout

L1 L2 L1

FIGURE 3.6 Scheme for the flexible setup performing the fractional FT and
gyrator.

distances between them denoted by z. Lenses L1 and L3 are located
at the input and output planes, as indicated in Fig. 3.6.

The block matrices for lensesL1 andL2 corresponding to the separa-
ble fractional Fourier transformer RU f (�x ,�y) have the diagonal forms

G1 = 1
z

[
1 − 1

2 cot(�x/2) 0

0 1 − 1
2 cot(�y/2)

]

G2 = 2
z

[
1 − sin �x 0

0 1 − sin �y

]
(3.76)

In the case of the separable fractional or symmetric fractional FT, the
required generalized lenses can be implemented only by the SLM.
Note that this scheme simplifies the acquisition of the Wigner distri-
bution projections, needed for its reconstruction by the phase-space
tomography method, discussed in Chap. 4.

For the gyrator transform RUg(ϑ) the generalized lenses are ex-
pressed as

G1 = 1
z

[
1 − cot(ϑ/2)

− cot(ϑ/2) 1

]

G2 = 2
z

[
1 − 1

2 sin ϑ

− 1
2 sin ϑ 1

]
(3.77)

In the case of the gyrator and antisymmetric fractional FT, the re-
quired generalized lenses can be obtained as a superposition of ordi-
nary cylindrical lenses. Then the transformation angle is changed by
rotation of the cylindrical lenses which form the generalized lenses.
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A generalized lens constructed from two convergent cylindrical
lenses of the same power p rotated at angles 	1 and 	2 is character-
ized by

G = p

[
cos2 	1 + cos2 	2 − 1

2 [sin(2	1) + sin(2	2)]

− 1
2 [sin(2	1) + sin(2	2)] sin2 	1 + sin2 	2

]
(3.78)

which reduces to

G = p
[

1 − sin(2	1)

− sin(2	1) 1

]
(3.79)

for 	2 = −	1±�/2. Comparing Eqs. (3.77) and (3.79), we conclude that
in the gyrator setup every generalized lens L j ( j = 1, 2) is a combi-
nation of two convergent cylindrical lenses of equal focal distance z/j
rotated counterclockwise at angles 	

( j)
1 = 	( j) and 	

( j)
2 = −	( j) ± �/2

with respect to the OX axis. The gyrator at angle ϑ is achieved if
sin(2	(1)) = cot(ϑ/2) and 2 sin(2	(2)) = sin ϑ . We observe that this
setup is able to perform the gyrator for the angles from the � in-
terval [�/2, 3�/2]. The experimental implementation of this optical
system has been demonstrated in Refs. 31 and 33 on the example
of orthosymplectic mode conversion. The experimental results are in
good agreement with theoretic predictions.

If the angles in Eq. (3.78) are chosen as 	
( j)
1 = 	( j) + �/4 and

	
( j)
2 = 	( j) − �/4, we obtain the generalized lenses suitable for the

antisymmetric fractional FT setup.

G j = j
z

[
1 − sin(2	( j)) 0

0 1 + sin(2	( j))

]
(3.80)

Indeed, comparing Eqs. (3.76) and (3.80), we observe that these
lens combinations perform the antisymmetric fractional FT at angle
(�, − �), where 2 sin(2	(1)) = cot(�/2) and 2	(2) = �. It is easy to see
from the last relation that this setup is able to perform the antisymmet-
ric fractional FT for the angles � ∈ [�/2, 3�/2] that cover a � interval
needed for the different applications, discussed in Sec. 3.7.

3.6.2 Flexible Optical Setup for Image
Rotator

Usually, Dove prisms are used for optical signal rotator realization.
But the diffraction effects during the propagation through the prisms
require additional optical elements for their compensation. Here we
consider the optical signal rotator based on the application of cylin-
drical lenses.21, 22, 55

A flexible optical scheme performing a rotation at angle � by only
the appropriate rotation of cylindrical lenses composing the setup has
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Z Z

L4

Pinput Pout

FIGURE 3.7 Scheme for the flexible setup performing the signal rotator.

been recently proposed.54 It has been shown that four is a minimal
number of generalized lenses located in fixed positions needed to
preform the signal rotator. The optical scheme of the signal rotator at
angle � is displayed in Fig. 3.7. If the distances between all elements
equal z, then the block matrices of the applied lenses are given by

G1(�) = G3(−�) = 1
2z

[
3 + cos � sin �

sin � 5 − cos �

]
G2(�) = 4

z

[
0 0
0 1

]
G4(�) = 2

z

[
1 + cos � − sin �
− sin � 1 − cos �

]
(3.81)

This scheme can be realized by implementation of analog generalized
lenses, which consist of three cylindrical lenses for L1 and L3 and one
cylindrical lens for L2 and L4.

By using the optical setups performing the basic phase-space rota-
tions, other phase-space rotators can be constructed as their cascades.
Nevertheless there is no guarantee that the obtained setup is optimal.

3.7 Applications of Phase-Space Rotators
3.7.1 Generalized Convolution
As mentioned before, the well-known phase-space rotator—the
Fourier transform—plays a crucial role in signal and image process-
ing. It forms a base for shift-invariant filtering which is used for pattern
recognition, denoising, encryption, etc. Many good books are devoted
to this subject; see, e.g., Refs. 9 and 10. Here we consider the application
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of other phase-space rotators for signal processing tasks, which can
be elegantly expressed in the framework of generalized convolution.

The convolution operation between signals f and h, Eq. (3.51), can
be alternatively expressed via the Fourier transform as9

C f,h(r) = ( f ∗ h)(r) = F−1 {F[ f (·)](u) F[h(·)](u)} (r) (3.82)

By analogy we can introduce the generalized (canonical) convolution
(GC) operation as6,8,56

GC f,h(T1, T2, T3, r) = RT3{RT1 [ f (·)](u) RT2 [h(·)](u)}(r) (3.83)

where the FT operators F are substituted by the CT ones RT. In the
widely used GCs, RT corresponds to the RCT RU and can be denoted
by GC f,h(U1, U2, U3, r).

It is easy to see6 that Eq. (3.83) reduces to common convolution,
Eq. (3.82), if the ray transformation matrices correspond to the direct/
inverse FT ones U1 = U2 = U−1

3 = U f (�/2, �/2). Besides that the GC
includes, as particular cases, the correlation operation

Cor f,h(r) = GC f,h∗
[
U f

(�

2
,

�

2

)
, U f

(
−�

2
, −�

2

)
, U f

(
−�

2
, −�

2

)
r
]

(3.84)

used as a measure of similarity between two signals f and h;9 the
fractional convolution

GC f,h[U f (�x, �y), U f (�x, �y), U f (�x, �y), r] (3.85)

applied for shift-variant filtering and pattern recognition;4,15 the
Wigner distribution

2GC f, f ∗
[
U f

(
�x + �

2
, �y + �

2

)
, U f

(
−�x + �

2
, −�y + �

2

)
,

U f

(
−�

2
, −�

2

)
, 2�

]
(3.86)

expressed in polar coordinates � = (
√

x2 + p2
x,
√

y2 + p2
y); and the

RCT power spectrum GC f, f ∗ (U, U−1, I, r) = |RU[ f ](r)|2, correspond-
ing to the squared modulus of the RCT of the signal or Wigner distri-
bution projection, which in the case U = U f (�x, �y) is denoted as the
Radon-Wigner transform (see Chap. 4)

GC f, f ∗ [U f (�x, �y), U f (−�x, −�y), I, r] = |RU f (�x ,�y)[ f ](r)|2 (3.87)

The generalized convolution GC f,h(U1, U2, U3, r) of two-
dimensional signals f and h is a function of 2 variables (r) and 12
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parameters, defined by the matrices U1, U2, and U3. Some of the pa-
rameters can also play the role of variables. The choice of the parame-
ters and the number of variables of the GC depends on the particular
application. Thus, if we are interested in the improvement of image
quality or in its manipulation for some feature extraction (e.g., edge
enhancement or image deblurring), then we have to choose U3 = U−1

1
to represent the result of filtering in the position domain.

A typical optical scheme for GC, GC f,h(U1, U2, U3, r), is a straight-
forward generalization of the Van der Lugt processor9 and consists
of a cascade of two first-order systems described by the matrices U1
and U3 (the flexible schemes for the phase-space rotators were con-
sidered in Sec. 3.6) with a diffraction/reflection screen between them
corresponding to multiplication of the passing/reflecting beam by
RU2 [h(·)]. Then with f (·) in the input of this system, we have its GC
with h(·) at the output plane. The common convolution operation
C f,h(r), Eg. (3.82), arises when U1 and U2 correspond to the direct FT
matrices and U3 to the inverse one. In optical realization, U3 is usually
the direct FT, and then we have C f,h(−r) at the output plane.

3.7.2 Pattern Recognition
The correlation operation Cor f,h(r) is a measure of the similarity be-
tween two signals f and h. The mathematical verification of this state-
ment is related to the inequality of Schwarz, which permits one to
discriminate two signals of equal energy, since in this case the au-
tocorrelation peak |Cor f, f (0)| is larger than the cross-correlation one∣∣Cor f,h(0)

∣∣. Note that |Cor f, f (0)| has a maximum in the origin of the
coordinates r = 0. Then by applying the appropriate threshold to
the correlation map |Cor f,h(r)|, the pattern associated with h can be
found on the investigated scene f . Moreover, because the correlation
is shift-invariant, Cor f (ri −v),h(ri )(r) = Cor f (ri ),h(ri )(r − v), the positions
of all patterns h, if there are several, can be localized. This operation
is also performed by the Van der Lugt processor using F−1[h∗(·)](u)
as a filter mask.

Let us consider as an example a set of numbers presented in Fig. 3.8a.
The amplitude of the numerically simulated cross-correlation between
this image and the reference one (Fig. 3.8b), is given in Fig. 3.8c. The
largest peaks are observed at the positions where 0 is written, which
permits its localization. Note that the value of the cross-correlation
peaks depends on the similarity between 0 and other numbers. Thus,
a relatively large peak is also observed in the end of the middle line
where 8 is written. More sophisticated filters are usually used for better
object discrimination.

If the pattern has to be detected only in a certain region of the scene,
then we must apply the fractional FT convolution,4,15,19,48 Eq. (3.85),
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(a) (b)

(c) (d)

FIGURE 3.8 (a) The analyzed image, (b) the reference image, (c) the
amplitude of their correlation in the Fourier domain, and (d) the amplitude of
their correlation in the fractional Fourier domain for �x = �/2 and �y = �/4.

with U1 = U−1
2 = U f (�x, �y) and U3 = U f (−�/2, −�/2), which pro-

vides the shift-variant pattern recognition. The shift tolerance condi-
tion is usually expressed in the form4,15 �vx, y
x, y cot �x, y � 1, where
vx, y is the allowed shift of the pattern on the scene with respect to the
reference one used for filter design and 
x, y is the pattern width in the
x and y directions, correspondingly.

Thus, if we choose different fractional angles for two orthogonal
coordinates, such that �x = �/2 and �y = �/4 and the same filter as
we have used before, then 0 will be recognized only on the middle line
of the number set, as shown in Fig. 3.8d, where the amplitude of the
fractional correlation is displayed. Therefore, the fractional correlation
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is a useful tool for shift-variant pattern recognition. This operation
can be performed by a fractional Van der Lugt correlator, which is a
modification of the common one, where the first part is replaced by
the fractional FT system.

To maximize the Horner efficiency of the correlation operation,
phase-only filters are often used. It was shown in Ref. 57 that, in gen-
eral, the phase of the fractional FT for  �= n� with integer n contains
more information about the signal than the amplitude, and therefore,
the phase-only filters can also be applied in the fractional FT domains.
To demonstrate, let us analyze the reconstruction of the test image,
Fig. 3.1a, from only the phase or only the amplitude of its symmetrical
fractional FT for different angles . Thus if we introduce the notation
RU f (,)[ fi (ri )](ro ) = A(ro ) exp[i�(ro )], where A ≥ 0 and � are the
amplitude and the phase of the fractional FT of the image, then the
considered operations are expressed as RU f (−,−)[exp[i�(ri )]](ro )
and RU f (−,−)[A(ri )](ro ). In Fig. 3.9 the amplitudes of the image

(a) (b)

(c) (d)

FIGURE 3.9 The amplitudes of the image reconstructed from the phase-only
data (parts a and b) and the amplitude-only data (parts c and d) of the
symmetric fractional FT of the test image for two transformation angles :
 = �/4 (parts a and c) and  = �/2 (parts b and d).
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reconstructed numerically from the phase-only data (parts a and b)
and the amplitude-only data (parts c and d) of the symmetric fractional
FT of the test image are displayed for two transformation angles :
 = �/4 (parts a and c) and  = �/2 (parts b and d). We observe that the
information about the structure of the image codified in the amplitude
of the fractional FT transform is poor for  �= n�. Meanwhile the frac-
tional FT phase contains essential information about the signal almost
for all ranges of . Thus we can conclude that the phase information
of the fractional FT is more relevant than the amplitude one, where
we exclude rather exotic images whose fractional FTs have constant
phase. The same results are also valid for other phase-space rotators32

excluding ones of the imaging type.
If the pattern on the scene is rotated with respect to the refer-

ence one, then we can apply the GC where U1 = Uf (�/2, �/2)Ur (�)
and U2 = U3 = U f (−�/2, −�/2), or U1 = U−1

3 = U f (�/2, �/2) and
U2 = U f (−�/2, −�/2)Ur (�). The identification of the largest corre-
lation peak as a function of � indicates the right orientation of the
pattern. This analysis for the two mentioned cases, respectively, can
be done by adding the flexible rotator system55 just before the com-
mon correlator with an invariable filter mask or using the Van der
Lugt correlator with a variable filter mask, which can be obtained by
application of the spatial light modulator.

For rotation-invariant pattern recognition, the reference image h,
presented in the polar coordinates, is decomposed into a linear sum
of the circular harmonics.58

h(r, ) =
∞∑

l=−∞
hl (r ) exp (il) =

∞∑
l=−∞

cl (r, )

hl (r ) = 1
2�

∫ 2�

0
h(r, ) exp (−il) d (3.88)

Since the Laguerre-Gaussian functions [see Eq. (3.73)] L±
m,n(r) =

Ll
p(r, ), where l = m − n and p = min{m, n}, form the complete

orthonormal set, then h(r, ) can be also represented as their linear
superposition

h(r, ) =
∞∑

l=−∞

∞∑
p=0

bl, pLl
p(r, ) (3.89)

and therefore the circular harmonic cl (r, ) is a linear superposition
of the LG modes with the same index l = m − n

cl (r, ) =
∞∑

p=0

bl, pLl
p(r, ) (3.90)
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Thus for rotation-invariant pattern recognition, only one circular har-
monic cl (r, ) (usually with l = ±1) substitutes the reference image.
The application of the combination of the various harmonics limits
the rotation invariance for a certain angle range.

3.7.3 Chirp Signal Analysis
Chirp, given, e.g., by Eq. (3.65), is often a part of medical and indus-
trial signals. It may contain valuable information or may correspond
to a noise. Then chirp detection, localization, estimation, and, if neces-
sary, elimination are important tasks in signal processing. The chirp,
Eq. (3.65), can be easily localized applying the RCT parameterized by
U−1 because the output signal becomes a � function. In particular, the
application of the FT, the fractional FT, and the gyrator allows one to lo-
calize plane, elliptic, and hyperbolic waves, respectively. Thus, the GC
GC f, f ∗ (U, U−1, I, r) corresponding to the RCT spectra |RU[ f (ri )](r)|2
with modifying parameters of U, associated with the intensity dis-
tributions of the output signal, is suitable for the detection of chirps
presented in the signal f (ri ). Here r and the parameters of U are vari-
ables of the GC GC f, f ∗ (U, U−1, I, r).

For example, if U = U f (�x, �y), then elliptic-type chirps can be
detected as a local maxima of the Radon-Wigner transform map59

|RU f (�x ,�y)[ f (ri )](r)|2 for �x, �y ∈ [0, �]. The appropriate filtering in
the fractional FT domains has been used for elimination of elliptic
chirplike noise and, therefore, image quality improvement.4 Analo-
gously, the hyperbolic chirps can be localized by analyzing the gyrator
power spectra |RUg(ϑ)[ f (ri )](r)|2 (Ref. 32).

3.7.4 Signal Encryption
The phase-space rotators are also used for signal encryption. The sim-
ple algorithm for optical image encryption consists of random phase
filtering in the position and FT domains.60 It has been recently gen-
eralized to the case of random phase filtering in different fractional
Fourier16 and gyrator32 domains. In these cases, not only the ran-
dom phase masks but also the orders of the phase-space domains
(fractional or gyrator angles) where they are located play the role of
encryption keys. It was demonstrated that it is impossible to recon-
struct the image by using the correct masks but the wrong phase-space
domains.

In general, other phase-space rotators can also be used for signal
encryption. Indeed the simple encryption procedure of signal f using
phase-space rotators consists of a cascade of N operations: the RCT
transform parameterized by matrix Un with further resultant multi-
plication at a random phase mask exp(i	n) for n = 1, 2, . . . , N, which
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can be summarized as

F = exp(i	N)RUN [· · · [exp(i	2)RU2 [exp(i	1)RU1 [ f ]]]] (3.91)

The decryption procedure is written correspondingly as

f = RU−1
1 [exp(−i	1) · · · [RU−1

N−1 [exp(−i	N−1)RU−1
N [exp(−i	N)F ]]]]

(3.92)
The randomness of the phase masks together with a large number
of encryption parameters Un provides a high security of the encryp-
tion procedure. More sophisticated algorithms for signal encryption
applying phase-space rotators have been developed in Refs. 17 and 18.

3.7.5 Mode Converters
The Hermite-Gaussian and the helical Laguerre-Gaussian (LG) modes
are probably the best-known functions used in optics. Indeed, the
transversal field distributions for widely applied laser cavities are de-
scribed by these modes. Moreover, they, as well as all orthosymplectic
modes, are structurally stable which means that, ignoring the scaling,
their intensity profiles remain the same during the propagation in ho-
mogeneous medium. This is a consequence of the fact that the modes
HU

m,n(r) are eigenfunctions for the symmetric fractional FT, which ap-
pear in the Iwasawa decomposition of the Fresnel ray transformation
matrix, Eq. (3.10), TO = T f (, ).

Although LG and HG modes can be produced directly from laser
cavities, it is often needed to switch from one type of mode to another.
The simplest and cheapest way to do it is based on cylindrical lens
application. Since a Laguerre-Gaussian beam is rotationally symmet-
ric and is an eigenfunction of a symmetric fractional Fourier trans-
former, there are several first-order optical systems which produce
this operation.25,35,42,52,61,62 Any of the phase-space rotators associ-
ated with the matrix42

U = 1√
2

[
exp(i�1) ±i exp(i�2)

±i exp(i�1) exp(i�2)

]
(3.93)

can serve as HG-to-LG mode converter. The LG beams at the output
of these systems differ one from another by only a constant phase
shift. The special case �1 = 0, �2 = �/2 has been considered in Ref. 35;
meanwhile for �1 = �2 = 0, matrix U reduces to the gyrator ma-
trix Ug(±�/4). Moreover, the gyrator transform of HG mode at other
angles ϑ generates all possible orthosymplectic modes, beside their
rotated replicas.

Therefore the flexible scheme proposed for the gyrator imple-
mentation can serve as a tunable mode converter. In Fig. 3.10 the
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(a) (b) (c) (d) (e)

FIGURE 3.10 The amplitude (upper row) and the phase (lower row) of the
orthosymplectic modes obtained from the HG Hm,n(r) by gyrator at angles
(a) ϑ = 0◦, (b) ϑ = 135◦, (c) ϑ = 150◦, (d) ϑ = 165◦, and (e) ϑ = 180◦.

transformation of the HG mode by gyrator is illustrated. There the
amplitude (upper row) and phase (lower row) of HUg(ϑ)

m,n (r) are dis-
played for angles (a) ϑ = 0◦, (b) ϑ = 135◦, (c) ϑ = 150◦, (d) ϑ = 165◦,
and (e) ϑ = 180◦ correspondingly. The experimental realization of
mode conversion by the flexible gyrator setup31 demonstrates good
agreement with numerical calculations.

While the HG and LG modes are widely used in various areas
of science and technology, including metrology, interferometry, laser
surgery, etc, the application of the other orthosymplectic modes is still
under development. It seems that as well as the HG and LG modes
they can used for microparticle manipulation.63 We also emphasize
that systems used as mode converters serve for the orbital angular mo-
mentum management of coherent as well as partially coherent parax-
ial light.

3.7.6 Beam Characterization
Since in optics the measurements of the intensity distribution are the
only feasible ones, the phase recovering from intensity information
is one of the important problems.64 As mentioned above, the phase-
space rotators produce the rotation of the Wigner distribution, which
completely characterizes the signal up to the constant phase factor.
Moreover, the squared modulus of the RCT of the signal, associated
with intensity distribution, corresponds to a certain projection of the
Wigner distribution. After exploration of this connection, a method
of phase-space tomography was proposed.65,66 It permits one to re-
construct the Wigner distribution and therefore the complex field am-
plitude or the mutual intensity for the case of coherent or partially
coherent fields, respectively, from the measurements of the intensity
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distributions. Note that this method is noninterferometric and noniter-
ative. The reconstruction of the Wigner distribution from the separable
fractional FT power spectra, known as the Radon-Wigner transform,
is discussed in detail in Chap. 4. Here we only mentioned that the flex-
ible optical setup for the fractional FT considered in Sec. 3.6 permits
the almost real-time measurements of the Radon-Wigner transform.
It has been shown in Ref. 67 that for the reconstruction of the Wigner
distribution of the optical field separable in the Cartesian coordinates,
the setup performing the antisymmetric fractional FT can be used. The
numerical simulations show that a large number of the Wigner dis-
tribution projections, which can be acquired only by a flexible setup,
are required for the correct field identification. This stresses the im-
portance of the flexible phase-space rotator setups considered in the
previous section.

We mentioned that the orthosymplectic modes HU
m,n(r) for fixed U

form a complete orthonormal set that permits one to represent a signal
as their linear superposition f (r) = ∑

m,n aU
mnHU

m,n(r). For the determi-
nation of the spatial mode spectrum |aU

mn|2 of a complex field ampli-
tude, the two uniparametric phase-space rotators for which HU

m,n(r)
are eigenfunctions are needed. Thus in Ref. 68 the symmetric frac-
tional FT and the signal rotator were applied for the LG spectrum
measurements. Another scheme based on the symmetric and anti
symmetric fractional FT has been proposed for the determination of
the HG spectrum.69

The optical field is often represented not by the Wigner distribu-
tion itself, which for the two-dimensional case is a function of four
variables, but by its global moments (see Sec. 1.7). Thus beam char-
acterization by means of 10 the second-order WD moments,26,54,70,71

defined in Eq. (1.25), became the basis of the international standard.
All these moments can be found from the measurements of the four
fractional FT power spectra72 |RU f (�x ,�y)[ f (ri )](r)|2 with at least one
of them corresponding to the different angles �x �= �y.

It has been shown in Ref. 73 [see also Eq. (1.66)] that the eight nor-
malized second-order moments can be combined into four linear su-
perpositions

Q0 = 1
2 [mxx + muu + myy + mvv]

Q1 = 1
2 [mxx + muu − (myy + mvv)]

Q2 = mxy + muv

Q3 = mxv − myu (3.94)

which are related to the four basic phase space rotators: symmetric and
antisymmetric fractional FTs, gyrator, and signal rotator, respectively.
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Parameters Q0 and Q2 = Q2
1 + Q2

2 + Q2
3 are invariant under the phase-

space rotations. The components Q j ( j = 1, 2, 3), which can be or-
ganized as a vector Q = (Q1, Q2, Q3), define the degree of vorticity
of the beam,46 which can be demonstrated on the example of the or-
thosymplectic modes.

For the HG modes only the diagonal second-order moments [see
Eq. (1.25)] differ from zero: mxx = muu = m+ 1

2 and myy = mvv = n+ 1
2 ,

and therefore

Q0 = m + n + 1

Q = (m − n, 0, 0) (3.95)

Using the transformation relations for Q j under the phase-space
rotators73 (see also Sec. 1.7.2), we find that the orthosymplectic mode
L(�,�)

m,n (r) presented on the (m, n)-orbital Poincaré sphere, defined in
Sec. 3.5.2, is characterized by the parameters

Q0 = m + n + 1

Q = Q(sin � cos �, sin � sin �, cos �) (3.96)

where Q = m − n. Thus for the LG mode L±
m,n(r) we obtain Q1 =

Q2 = 0, and Q3 = ±(m − n); meanwhile the HG modes rotated
counterclockwise at ±�/4 are characterized by Q1 = Q3 = 0 and
Q2 = ±(m − n). It has been mentioned that Q3 corresponds to the z
component of the OAM of the beam propagating in the z direction.
A beam with nonzero integer Q3 is referred as a vortex beam. Among
the orthosymplectic modes HU

m,n(r) (m �= n), only the LG modes are
usually mentioned as vortex beams. Nevertheless others with Q2 =
(m − n)2 �= 0 can be considered as potential vortices, since they are
converted to the LG modes by phase-space rotations. Note that for the
modes with symmetric indices m = n, we obtain Q1 = Q2 = Q3 = 0.
This is the case of the fundamental Gaussian mode, for which Q0 takes
a minimal value Q0 = 1.

The orbital Poincaré sphere introduced for the presentation of the
orthosymplectic modes can also be used for the characterization of
other two-dimensional signals,74 which may be coherent or partially
coherent. It has been shown in Ref. 20 that there exists such an op-
tical first-order optical system associated with ray transformation
matrix Tc that brings the moment matrix M to the diagonal form
Mc = TcMTt

c , called canonical fc , where mxx = muu, myy = mvv (see
details in Sec. 1.7.1). The signal fc has the parameters

Q0 = mxx + myy

Q = (mxx − myy, 0, 0) (3.97)
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and as well as the HG mode can be associated with the point
(�/2, 0) on the orbital Poincaré sphere. By performing the appro-
priate phase-space rotations, the entire sphere can be populated.
The signal f�,� at point (�, �) is characterized by the vector Q =
(mxx−myy)(sin � cos �, sin � sin �, cos �), which defines the signal sym-
metry. Thus signal with Q = (Q1, 0, 0) is better described in the Carte-
sian coordinates; meanwhile for Q = (0, 0, Q3) polar coordinates are
the best choice for signal analysis. Moreover, in the last case the signal
f0,� possesses a longitudinal component of the OAM (mxx − myy).

Let us consider a signal f (x, y) presented as a superposition of the
HG modes

f (x, y) =
∑
m,n

amnHmn(x, y)
∑
m,n

|amn|2 = 1 (3.98)

Based on the expressions for the signal second-order moments,75 we
derive its Q components.

Q0 =
∑
m,n

|amn|2 (m + n + 1) = 1 +
∑
m,n

|amn|2 (m + n)

Q1 =
∑
m,n

|amn|2 (m − n)

Q2 = 2 Re

[∑
m,n

am,n+1a∗
m+1,n

√
(m + 1)(n + 1)

]

Q3 = 2 Im

[∑
m,n

am,n+1a∗
m+1,n

√
(m + 1)(n + 1)

]
(3.99)

We observe that Q2 = Q3 = 0 if in the signal decomposition Eq. (3.98)
there are no subsequent terms am,n+1 and am+1,n. Moreover Q3 = 0 if
the signal is real.

The stable beams that do not change their form under the propaga-
tion in free space contain in the decomposition Eq. (3.98) only the HG
modes with the same index sum m + n. Then since the signal decom-
position is normalized, they have integer parameter Q0 = m + n + 1,
which is related to the Gouy phase of the beam.

If a signal corresponds to a circular harmonic cl (r, ) [see Eq. ( 3.90],
it has the same parameter Q = (0, 0, l) as the LG mode Ll

p .
Representing signals on the orbital Poincaré spheres, we simplify

the analysis and processing as well as the comparison with other sig-
nals. Since the search of the CT Tc is related to the diagonalization of
the moment matrix, the signal presentation on the Poincaré sphere is
valid for coherent as well as partially coherent beams.
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3.7.7 Gouy Phase Accumulation
It was found by Gouy76 more than 100 years ago that the Gaussian
beam accumulates the additional constant phase during its free-space
propagation. Now it is known that other transversal modes with
a Gaussian envelope, undergoing a cycle of transformations while
propagating through a paraxial optical system, accumulate Gouy
phase,77,78 usually divided into two parts: a dynamic part and a geo-
metric part.44,45,79,80 The identification of the Gouy phase is important
in resonator theory,81 in optical trapping,82 and in possible applica-
tions of its geometric part for quantum computation.83,84 A simple
method for the determination of the Gouy phase—and in particu-
lar its dynamic and geometric parts—accumulated by an appropriate
Gaussian-type mode during its propagation through a first-order op-
tical system has been proposed in Ref. 27. It is based on the analysis of
the eigenvalues and eigenvectors of the ray transformation matrix as-
sociated with the first-order optical system as it is briefly summarized
below.

Strictly speaking, a beam of light �(r) propagating through an op-
tical system, described by operator R, accumulates a phase shift only
if it is an eigenfunction of R with eigenvalue in the form of complex
exponent: R[�(ri )](ro ) = exp(i�) �(ro ). We recall (see Sec. 3.5.1), that
an orthosymplectic mode HU

m,n(ri ) is an eigenfunction for the phase-
space rotator associated with unitary matrix Us = UU f (�x, �y)U−1

with eigenvalue exp[−i(m + 1
2 )�x − i(n+ 1

2 )�y], which corresponds to
the Gouy phase. The decomposition Eq. (3.29) is crucial for the identifi-
cation of the dynamic and geometric parts of the Gouy phase. Indeed,
during the propagation through the symmetric fractional FT system,
the mode HU

m,n(ri ) acquires the dynamic phase �d = −(m + n + 1),
defined by the sum of mode indices; meanwhile in the case of a sys-
tem similar to the antisymmetric fractional FT, the accumulated phase,
known as the geometric one, is proportional to the index difference
�g = −(m−n)�. Note that the dynamic and geometric phases are also
defined by the second-order moments ofHU

m,n(ri ) through parameters
Q0 = −�d and Q = −�g . This emphasizes that the geometric phase
accumulation is related to the orbital angular momentum operators
defined in phase space.

If the eigenvalues of the ray transformation matrix are not unimod-
ular, we can speak about phase accumulation only in a wide sense,
where scaling and quadratic-phase modulation of the field amplitude
at the output system plane are present. In this case we permit the
beam to be an eigenfunction of the transformation described by the
orthosymplectic matrix in the Iwasawa decomposition Eq. (3.10).

We conclude that the Gouy phase accumulation of Gaussian-type
beams is associated with rotations in phase space. Dynamic phase is
acquired in symmetric, rotationally invariant systems, whose TO in
the decomposition Eq. (3.10) corresponds to the symmetric fractional
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FT. The example of this system is a free-space propagation. Geomet-
ric phase accumulation requires a system with astigmatic elements,
and TO is similar to the antisymmetric fractional FT, as well as mode
asymmetry m �= n.

3.8 Conclusion
In this chapter we have considered the phase-space rotators—the
transformations that produce the rotation of the Wigner distribution
in phase space. Several approaches to the description of phase-space
rotators by integral transforms, Hermitian operators, and ray transfor-
mation matrices have been discussed. There are four basic phase-space
rotators for two-dimensional signals: symmetric and antisymmetric
fractional FTs, gyrator, and signal rotator. The others can be obtained
as their cascades. The fractional FT certainly plays a main role in the
phase-space rotator description since it is associated with the diago-
nal unitary matrix, and any unitary matrix describing a phase-space
rotator is similar to it.

We have seen that the eigenfunctions for the phase-space rotators
are Gaussian functions modulated by the orthogonal polynomials,
with Hermite-Gaussian and Laguerre-Gaussian modes among them.
These modes are widely used for the description of optical beams. Dur-
ing the beam propagation through the optical system related to certain
phase-space rotators for which it is an eigenfunction, the Gouy phase
is acquired, because the eigenvalue is unimodular. We have stressed
that the phase-space rotators similar to the symmetric (antisymmet-
ric) fractional FTs are responsible for the accumulation of the dynamic
(geometric) phase, correspondingly.

The application of the phase-space rotators to the different signal
and image processing tasks such as filtering, pattern recognition, chirp
detection, and signal encryption has been discussed. We also note that
phase-space rotators play an important role in signal characterization,
orbital angular momentum manipulation, and beam conversion. Thus
the fractional FT is crucial for the phase-space tomography reconstruc-
tion of the Wigner distribution and therefore the complex field ampli-
tude or mutual intensity of the coherent or partially coherent beam
correspondingly.

The flexible optical setups for the experimental realization of ba-
sic phase-space rotators have been considered. We mention that the
systems constructed from the generalized lenses located at the fixed
position permit one to easily change the transformation parameters,
which is required in various applications of phase-space rotators.

In this chapter we have considered the application of phase-space
rotators to classical optical, beams, but they are also widely used in
quantum physics and signal processing.
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4.1 Introduction
One of the main features of phase space is that its conjugate coor-
dinates are noncommutative and cannot be simultaneously specified
with absolute accuracy. As a consequence, there is no phase-space joint
distribution that can be formally interpreted as a joint probability den-
sity. Indeed, most of the classic phase-space distributions, such as the
Wigner distribution function (WDF), the ambiguity function (AF), or
the complex spectrogram, have difficult interpretation problems due
to the complex, or negative, values they have in general. Besides, they
may be nonzero even in regions of the phase space where either the
signal or its Fourier transform vanishes. This is a critical issue, espe-
cially for the characterization of nonstationary or nonperiodic signals.
As an alternative, the projections (marginals) of the phase-space distri-
butions are strictly positive, and as we will see later, they give informa-
tion about the signal on both phase-space variables. These projections
can be formally associated with probability functions, avoiding all
interpretation ambiguities associated with the original phase-space
distributions. This is the case of the Radon-Wigner transform (RWT),
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closely related to the projections of the WDF in phase space and also
intimately connected with AF, as will be shown.

The general structure of this chapter is as follows. In Sec. 4.2, a gen-
eral overview of mathematical properties of the RWT is given, and
a summary of different optical setups for achieving it is presented.
Next, the use of this representation in the analysis of optical signals
and systems is developed in several aspects, namely, the computation
of diffraction intensities, the optical display of Fresnel patterns, the
amplitude and phase reconstruction of optical fields, and the calcula-
tion of merit function in imaging systems. Finally, in Sec. 4.4, a review
of design techniques, based on the utilization of the RWT, for these
imaging systems is presented, along with some techniques for optical
signal processing.

4.2 Projections of the Wigner Distribution
Function in Phase Space: The
Radon-Wigner Transform (RWT)
The RWT was first introduced for the analysis and synthesis of
frequency-modulated time signals, and it is a relatively new formal-
ism in optics.1,2 However, it has found several applications in this field
during the last years. Many of them, such as the analysis of diffrac-
tion patterns, the computation of merit functions of optical systems, or
the tomographic reconstruction of optical fields, are discussed in this
chapter. We start by presenting the definition and some basic proper-
ties of the RWT. The optical implementation of the RWT which is the
basis for many of the applications is discussed next.

Note, as a general remark, that for the sake of simplicity most of
the formal definitions for the signals used hereafter are restricted to
one-dimensional signals, that is, functions of a single variable f (x).
This is mainly justified by the specific use of these properties that we
present in this chapter. The generalization to more than one variable is
in most cases straightforward. We will refer to the dual variables x and
� as spatial and spatial-frequency coordinates, since we will deal mainly
with signals varying on space. Of course, if the signal is a function of
time instead of space, the terms time and frequency should be applied.

4.2.1 Definition and Basic Properties
We start this section by recalling the definition of the WDF associated
with a complex function f (x), namely,

W{ f (x), x, �} = Wf (x, �)

=
+∞∫

−∞
f
(

x + x′

2

)
f ∗
(

x − x′

2

)
exp (−i2��x′) dx′ (4.1)
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which also can be defined in terms of the Fourier transform (FT) of
the original signal

F{ f (x), �} = F (�) =
+∞∫

−∞
f (x) exp (−i2��x) dx (4.2)

as

Wf (x, �) =
+∞∫

−∞
F
(

� + �′

2

)
F ∗
(

� − �′

2

)
exp (i2��′x) d�′ (4.3)

It is interesting to remember that any WDF can be inverted to recover,
up to a phase constant, the original signal or, equivalently, its Fourier
transform. The corresponding inversion formulas are3

f (x) = 1
f ∗(x′)

+∞∫
−∞

Wf

(
x + x′

2
, �

)
exp [i2��(x − x′)] d� (4.4)

F (�) = 1
F ∗(�′)

+∞∫
−∞

Wf

(
x,

� + �′

2

)
exp [−i2�(� − �′)x] dx (4.5)

Note that these equations state the uniqueness of the relationship be-
tween the signal and the corresponding WDF (except for a phase con-
stant). It is straightforward to deduce from these formulas that the
integration of the WDF on the spatial or spatial-frequency coordinate
leads to the modulus square of the signal or its Fourier transform,
respectively, i.e.,

| f (x)|2 =
+∞∫

−∞
Wf (x, �) d� (4.6)

|F (�)|2 =
+∞∫

−∞
Wf (x, �) dx (4.7)

These integrals, or marginals, can be viewed as the projection of the
function Wf (x, �) in phase space along straight lines parallel to the �
axis [in Eq. (4.6)] or to the x axis [in Eq. (4.7)]. These cases are particular
ones of all possible projections along straight lines of a given function
in phase space. In fact, for any function of (at least) two coordinates,
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Rg(xθ, θ)

g(x, y)
y

x

xθ

xθ

yθ

θ

FIGURE 4.1 Projection scheme for the definition of the Radon transform.

say, g(x, y), its Radon transform is defined as a generalized marginal

R {g (x, y) , x�, �} = Rg(x�, �) =
+∞∫

−∞
g (x, y) dy� (4.8)

where, as presented in Fig. 4.1, x� and y� are the coordinates rotated
by an angle �. It is easy to see from this figure that

Rg(x�, � + �) = Rg(−x�, �) (4.9)

Thus, the reduced domain � ∈ (0, �) is used for Rg(x�, �). Note that the
integration in the above definition is performed along straight lines
characterized, for a given pair (x�, �), by

y = x�

sin �
− x

tan �
for � �= 0,

�

2
x = x� for � = 0

y = x� for � = �

2

(4.10)
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and therefore Eq. (4.8) can be reformulated as

Rg(x�, �) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∫
−∞

g
(

x,
x�

sin �
− x

tan �

)
dx for � �= 0,

�

2

+∞∫
−∞

g (x�, y) dy for � = 0

+∞∫
−∞

g (x, x�) dx for � = �

2

(4.11)

Thus, when we consider as projected function Wf (x, �), we can define
the generalized marginals as the Radon transform of this WDF, namely,

R{Wf (x, �), x�, �} = RWf (x�, �) =
+∞∫

−∞
Wf (x, �) d��

=
+∞∫

−∞
Wf (x� cos � − � sin �, x� sin � + � cos �) d�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∫
−∞

Wf

(
x,

x�

sin �
− x

tan �

)
dx for � �= 0,

�

2

+∞∫
−∞

Wf (x�, �) d� for � = 0

+∞∫
−∞

Wf (x, x�) dx for � = �

2

(4.12)

where, in the last expression, we have explicitly considered the equa-
tions for the integration lines in the projection. In terms of the original
signal, this transform is called its Radon-Wigner transform. It is easy
to show that

RWf (x�, �) = RWf (x�, �) =
+∞∫

−∞

+∞∫
−∞

f
(

x� cos � − � sin � + x′

2

)

× f ∗
(

x� cos � − � sin � − x′

2

)
× exp[−i2�(x� sin � + � cos �)x′] dx′d� (4.13)
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By performing a proper change in the integration variables, the fol-
lowing more compact expression can be obtained

RWf (x�, �)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∣∣ 1

sin �

∣∣ ∣∣∣∣+∞∫
−∞

f (x) exp
(

i� x2

tan �

)
exp

(−i2� x�x
sin �

)
dx

∣∣∣∣2 for � �= 0, �
2

| f (x0 = x)|2 for � = 0∣∣F (x�/2 = �
)∣∣2 for � = �

2

(4.14)

From this equation it is clear that

RWf (x�, �) ≥ 0 (4.15)

This is a very interesting property, since the WDF cannot be positive
in whole phase space (except for the particular case of a Gaussian
signal). Note also that from Eq. (4.14) a symmetry condition can be
stated, namely,

RWf (x�, � − �) = RWf ∗ (−x�, �) (4.16)

so that for real signals, that is, f (x) = f ∗(x)∀x ∈ R, one finds

RWf (x�, � − �) = RWf (−x�, �) (4.17)

and, therefore, for this kind of signal the reduced domain � ∈ [0, �)
in the Radon transform is clearly redundant. In this case, the range
� ∈ [0, �/2] contains in fact all the necessary values for a full definition
of the RWT.

Equation (4.14) also allows one to link the RWT with another inte-
gral transform defined directly from the original signal, namely, the
fractional Fourier transform (FrFT). This transformation, often con-
sidered a generalization of the classic Fourier transform, is given by

F p { f (x), �}

= Fp(�) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

exp[i(�+��2/tan �)]√
i sin �

+∞∫
−∞

f (x)

× exp
(

i� x2

tan �

)
exp

(−i2� �x
sin �

)
dx for � �= 0, �

2

f (�) for � = 0

F (�) for � = �
2

(4.18)
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where � = p�/2. From this definition, it is easy to see that

RWf (x�, �) = |F2�/�(x�)|2 (4.19)

so that the RWT can be also interpreted as a two-dimensional repre-
sentation of all the FrFTs of the original function.

Another interesting relationship can be established between the
RWT and the AF associated with the input signal. For our input signal
the AF is defined as

A{ f (x), �′, x′} = Af (�′, x′)

=
+∞∫

−∞
f
(

x + x′

2

)
f ∗
(

x − x′

2

)
exp(−i2��′x) dx (4.20)

which can be understood as the two-dimensional FT of the WDF, i.e.,

F2D{Wf (x, �), �′, x′} =
+∞∫

−∞

+∞∫
−∞

Wf (x, �) exp [−i2�(�′x + x′�)] dx d�

= Af (�′, −x′) (4.21)

There is a well-known relationship between the two-dimensional FT
of a function and the one-dimensional Fourier transformation of its
projections. This link is established through the central slice theorem,
which states that the values of the one-dimensional FT of a projection
at an angle � give a central profile—or slice—of the two-dimensional
FT of the original signal at the same angle. If we apply this theorem
to the WDF, it is straightforward to show that

F{RWf (x�, �), ��} = Af (�� cos �, −�� sin �) (4.22)

i.e., the one-dimensional FT of the RWT for a fixed projection angle
� provides a central profile of the AF Af (�′, x′) along a straight line
forming an angle −� with the �′ axis. These relationships together
with other links between representations in the phase space are sum-
marized in Fig. 4.2.

To conclude this section, we consider the relationship between the
RWT of an input one-dimensional signal f (x) and the RWT of the same
signal but after passing through a first-order optical system. In this
case, the input signal undergoes a canonical transformation defined
through four real parameters (a, b, c, d) or, equivalently, by a 2×2 real
matrix

M =
(

a b
c d

)
(4.23)
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f(x)
W

Wf (x, ξ)
A

rf (x, x') = f (x + x'/2) f *(x + x'/2)

F {x' → ξ}

R

RWf (xθ, θ)

Af (ξ', x')

F–
1 {ξ → x'}

F {x → ξ'}F–1 {ξ' → x}

A–1W–1

R–1

(1) (2)

(3) (4)F
–1 {(√ξ'2 + x'2 , θ) p

→ x θ}

F {x θ →
 (√ξ'2 + x'2 ,θ) p}

|F
p| 2

{x→
xθ }

θ =
 pπ/2

FIGURE 4.2 Relationship diagram between the original signal f (x) and
different phase-space representations. F , F p , W , A, and R stand for FT,
FrFT, WDF integral, AF transform, and Radon transformation, respectively,
while −1 represents the corresponding inverse operator. (1) WDF and
inverse transform; (2) AF and inverse transform; (3) projection (Radon)
transformation and tomographic reconstruction operator; (4) expression of
the central slice theorem applied to Radon transform and AF. (�, �) p represents
polar coordinates in phase space.

in such a way that the transformed signal g(x) is given by

g(x)

=

⎧⎪⎪⎨⎪⎪⎩
1√
ib

exp
(

−i�dx′2
b

) +∞∫
−∞

f (x′) exp
(

−i�ax′2
b

)
exp

( i2�
b x x′) dx′ b �= 0

exp
(

−i�cx′2
a

)
1√
a f
( x

a

)
b = 0

(4.24)

which are the one-dimensional counterparts of Eqs. (3.4) and (3.7). We
are restricting our attention to nonabsorbing systems corresponding
to the condition det M = ad − bc = 1.

The application of a canonical transformation on the signal pro-
duces a distortion on the corresponding WDF according to the general
law

Wg(x, �) = Wf (ax + b�, cx + d�) = Wf (x′, �′) (4.25)

where the mapped coordinates are given by(
x′
�′

)
=
(

a b
c d

)(
x
�

)
(4.26)
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By applying the definition in Eq. (4.12), it is straightforward to obtain

RWg(x�, �) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

+∞∫
−∞

Wg
(

x, x�

sin � − x
tan �

)
dx for � �= 0, �

2

+∞∫
−∞

Wg (x�, �) d� for � = 0

+∞∫
−∞

Wg (x, x�) dx for � = �
2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∫
−∞

Wf
(
ax + b

( x�

sin � − x
tan �

)
, cx

+d
( x�

sin � − x
tan �

))
dx for � �= 0, �

2

+∞∫
−∞

Wf (ax� + b�, cx� + d�) d� for � = 0

+∞∫
−∞

Wf (ax + bx�, cx + dx�) dx for � = �
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
∝ RWf (x�′ , �′) (4.27)

where the mapped coordinates for the original RWT are given by

tan �′ = −a tan � − b
c tan � − d

, x�′ = x�

a sin � − b cos �
sin �′ (4.28)

Let us consider in the following examples a spatially coherent light
distribution f (x), with wavelength �, that travels along a system that
imposes a transformation in the input characterized by an abcd trans-
form. Special attention is usually paid to the cases � = 0, �/2 since,
according to Eqs. (4.6) and (4.7), the modulus squared of the abcd
transform in Eq. (4.24) and its FT are then obtained, respectively.

1. Coherent propagation through a (cylindrical) thin lens. In this case
the associated M matrix for the transformation of the light field
is given by

ML =
(

1 0
1

� f 1

)
(4.29)

with f being the focal length of the lens. Thus, the RWT for the
transformed amplitude light distribution is given in this case by

RWg(x�, �) ∝ RWf
(

x�′ , �′) , tan �′ = −� f
tan �

tan � − � f
,

x�′ = x�

sin �
sin �′ (4.30)
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A careful calculation for the case of � = 0 leads to

RWg(x0, 0) = |g(x0)|2 ∝ RWf (x0, 0) (4.31)

while for the value � = �/2 the following result is obtained

RWg

(
x�/2,

�

2

)
∝ RWf

(
x�/2 sin �′, �′) , tan �′ = −� f

(4.32)

Note that the effect of this propagation through a thin lens of
focal length f is also physically equivalent to the illumination of
the incident light distribution by a spherical wavefront whose
focus is located at a distance � = f from the input plane. Thus,
the same results discussed here can be applied straightforwardly
to that case.

2. Free-space (Fresnel) propagation. If we consider now the Fresnel
approximation for the propagation of a transverse coherent light
distribution f (x) by a distance z, namely,

g (x) =
+∞∫

−∞
f (x′) exp

[
i�

�z
(x′ − x)2

]
dx′ (4.33)

the transformation matrix M is given by

MF =
(

1 −�z

0 1

)
(4.34)

and, therefore, the transformed RWT can be calculated through
the expression

RWg(x�, �) ∝ RWf (x�′ , �′), tan �′ = tan � − �z,

x�′ = x�

sin � + �z cos �
sin �′ (4.35)

For the projection with � = 0, one obtains

RWg(x0, 0) = |g(x0)|2 ∝ RWf (x�′ , �′), tan �′ = −�z,

x�′ = x0

�z
sin �′ (4.36)

and for the orthogonal projection � = �/2 the following result
is achieved

RWg

(
x�/2,

�

2

)
∝ RWf

(
x�/2,

�

2

)
(4.37)
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3. Magnifier. If a uniform scale factor m is applied to the input
function, the associated M matrix is given by

Mm =
(

1
m 0

0 m

)
(4.38)

In this case, the RWT is transformed according to the law

RWg(x�, �) ∝ RWf (x�′ , �′), tan �′ = 1
m2 tan �,

x�′ = mx�

sin �
sin �′ (4.39)

The vertical and horizontal projections are given here simply by
the following formulas.

RWg(x0, 0) = |g(x0)|2 ∝ RWf

( x0

m
, 0
)

(4.40)
RWg

(
x�/2,

�

2

)
∝ RWf

(
mx�/2,

�

2

)

4.2.2 Optical Implementation of the RWT:
The Radon-Wigner Display

Like any other phase-space function, the RWT also enables an optical
implementation that is desirable for applications in the analysis and
processing of optical signals. The correct field identification requires
a large number of Wigner distribution projections, which raises the
necessity to design flexible optical setups to obtain them. The rela-
tionship between the RWT and the FrFT, expressed mathematically
by Eq. (4.19), suggests that the optical computation of the RWT is pos-
sible directly from the input function, omitting the passage through
its WDF. In fact, the RWT for a given projection angle is simply the in-
tensity registered at the output plane of a given FrFT transformer. For
one-dimensional signals, the RWT for all possible projection angles
simultaneously displays a continuous representation of the FrFT of a
signal as a function of the fractional Fourier order p, and it is known
as the Radon-Wigner display (RWD). This representation, proposed by
Wood and Barry for its application to the detection and classification
of linear FM components,1 has found several applications in optics as
we will see later in this chapter.

Different and simple optical setups have been suggested to im-
plement the FrFT, and most have been the basis for designing other
systems to obtain the RWD. The first one described in the literature, de-
signed to obtain the RWD of one-dimensional signals, was proposed
by Mendlovic et al.4 It is based on Lohmann’s bulk optics systems
for obtaining the FrFT.5 In this method, the one-dimensional input
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function is converted to a two-dimensional object by the use of cylin-
drical lenses to allow the construction of a multichannel processor that
optically implements the calculations of the RWD. The setup consists
of three phase masks separated by fixed distances in free space. The
masks consist of many strips, each one representing a different chan-
nel that performs an FrFT with a different order over the input signal.
Each strip is a Fresnel zone plate with a different focal length that is
selected for obtaining the different fractional orderp. Thus, the main
shortcoming of the RWD chart produced by this setup is that it has a
limited number of projection angles (or fractional orders). Besides the
very poor angular resolution, the experimental results obtained in the
original paper are actually very far from the theoretical predictions.

A truly continuous display, i.e., a complete RWD setup, was pro-
posed by Granieri et al.6 This approach is based on the relationship
between the FrFT and Fresnel diffraction,7,8 which establishes that
every Fresnel diffraction pattern of an input object is univocally
related to a scaled version of a certain FrFT of the same input. There-
fore, if the input function f (x) is registered in a transparency with
amplitude transmittance t(x/s), with s being the construction scale
parameter, then the FrFT of the input can be optically obtained by
free-space propagation of a spherical wavefront impinging on it.
Actually, the Fresnel diffraction field U(x, Rp) obtained at distance
Rp from the input, which is illuminated with a spherical wavefront
of radius z and wavelength �, is related to the FrFT of order p of the
input function F p {t (x) , �} as follows:9

U(x, Rp) = exp
{

i�x2

�

[
z(1 − Mp) − Rp

z Rp M2
p

]}
F p

{
t
(

x′

Mp

)
, x
}

(4.41)

where Mp is the magnification of the optical FrFT. For each fractional
order, the values of Mp and Rp are related to the system parameters
s, �, and z through

Rp = s2�−1 tan( p�/2)
1 + s2(z�)−1 tan( p�/2)

(4.42)

Mp = 1 + tan( p�/2) tan( p�/4)
1 + s2(z�)−1 tan( p�/2)

(4.43)

These last equations allow us to recognize that by illumination of an
input transparency with a spherical wavefront converging to an axial
point S, all the FrFTs in the range [0, 1] can be obtained simultaneously,
apart from a quadratic-phase factor and a scale factor. The FrFTs are
axially distributed between the input transparency plane ( p = 0) and
the virtual source (S) plane ( p = 1) in which the optical FT of the input
is obtained. For one-dimensional input signals, instead of a spherical
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FIGURE 4.3 Implementation of the FrFT by free-space propagation.

wavefront, we can use a cylindrical one to illuminate the input
(see Fig. 4.3).

Keeping in mind Eq. (4.19), we see the next step is to obtain the
RWD from this setup. To do this, we have to find an optical element to
form the image of the axially distributed FrFT channels, at the same
output plane simultaneously. Therefore, the focal length of this lens
should be different for each fractional order p. Since in this case the
different axially located FrFTs present no variations along the vertical
coordinate, we can select a different one-dimensional horizontal slice
of each one and use it as a single and independent fractional-order
channel (see Fig. 4.4).

The setup of Fig. 4.4 takes advantage of the one-dimensional na-
ture of the input, and it behaves as a multichannel parallel FrFT trans-
former, provided that the focal length of the lens L varies with the y
coordinate in the same way as it varies withp. In this way, the problem
can be addressed as follows. For each value of p (vertical coordinate
y) we want to image a different object plane at a distance a p from the
lens onto a fixed output plane located at a ′ from the lens. To obtain this
result, it is straightforward to deduce from the Gaussian lens equation
and from the distances in Fig. 4.4 that it is necessary to design a lens
with a focal length that varies with p (vertical coordinate y) according
to

f ( p) = a ′a p

a ′ + a p
= a ′l + (1 + lz−1)a ′s2�−1 tan( p�/2)

a ′ − l − (a ′ + l + z)z−1s2�−1 tan( p�/2)
(4.44)

On the other hand, this focal length should provide the exact magnifi-
cation at each output channel. The magnification given by the system
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FIGURE 4.4 RWD setup (multichannel continuous FrFT transformer).

for each fractional order p is

ML ( p) = −a ′

a p
= a ′

s2�−1 tan( p�/2)
1+s2(z�)−1 tan( p�/2) − l

(4.45)

However, for the p-order slice of the RWT of the input function to be
achieved, the lens L should counterbalance the magnification of the
FRT located at Rp to restore its proper magnification at the output
plane. Therefore, by using Eq. (4.43), the magnification provided by
L should be

ML ( p) = −1
Mp

= − 1 + s2(z�)−1 tan( p�/2)
1 + tan( p�/2) tan( p�/4)

(4.46)

Comparing Eqs. (4.45) and (4.46), we note that the functional depen-
dence of both equations on p is different, and, consequently, we are
unable to obtain an exact solution for all fractional orders. However,
an approximate solution can be obtained by choosing the parameters
of the system, namely, s, z, l, �, and a ′, in such a way that they mini-
mize the difference between these functions in the interval p ∈ [0, 1].
One way to find the optimum values for these parameters is by a least-
square method. This optimization6 leads to the following constraint
conditions.

a ′ = l
(

1
2

+ �

4

)
, z = −ls2

�l + s2 (4.47)
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FIGURE 4.5 Focal length (solid curve) and optical power (dotted curve) of
the designed varifocal lens L for the values z = 426 mm, l = 646 mm, and
a = 831 mm.

The variation of the focal distance of the lens L with p according to
Eq. (4.44) and its optical power, under the constraints given by Eqs.
(4.47), are represented in Fig. 4.5 for the following values: z = 426 mm,
l = 646 mm, and a = 831 mm.

For this particular combination of parameters, the optical power is
nearly linear with p, except for values close to p = 1. This linearity
is also accomplished by some designs of ophthalmic progressive ad-
dition lenses in which there is a continuous linear transition between
two optical powers that correspond to the near portion and distance
portion. In the experimental verification of the system, a progressive
lens of +2.75 D spherical power and +3 D of addition was used in the
setup of Fig. 4.4 with the above-mentioned values for the parameters
z, l, and a . Figure 4.6 illustrates a comparison between the numerical
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FIGURE 4.6 RWD of a Ronchi grating of 3 lines/mm: (a) exact numerical
simulation; (b) experimental result.
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simulations and the experimental results obtained using a Ronchi
grating as input object.

Interestingly, in Fig. 4.6 the values of p that correspond to the self-
images, both positive and negative, can be clearly identified. The op-
tical setup designed for the experimental implementation of the RWD
was successfully adapted to several applications, as we show later in
this chapter.

In searching for an RWD with an exact scale factor for all the frac-
tional orders, this approach also inspired another proposal10 in which
a bent structure for the detector was suggested. The result is an exact,
but unfortunately impractical, setup to obtain the RWD. This draw-
back was partially overcome in other configurations derived by the
same authors using the abcd matrix formalism. There, the free propa-
gation distances are designed to be fixed or to vary linearly with the
transverse coordinate,11 so the input plane and/or the output plane
should be tilted instead of bent, resulting in a more realistic configu-
ration, provided that the tilt angles are measured very precisely.

4.3 Analysis of Optical Signals and Systems
by Means of the RWT
4.3.1 Analysis of Diffraction Phenomena
4.3.1.1 Computation of Irradiance Distribution

along Different Paths in Image Space
Determination of the irradiance at a given point in the image space
of an imaging system is a classic problem in optics. The conventional
techniques carry out a finite partition of the pupil of the system to
sum all these contributions at the observation point.12–16 This time-
consuming procedure needs to be completely repeated for each ob-
servation point, or if the aberration state of the system changes. In this
section we present a useful technique, based on the use of the RWT
of a mapped version of the pupil of the system, for a much more effi-
cient analysis of the irradiance in the image space of imaging systems.
This technique has been successfully applied to the analysis of dif-
ferent optical systems with circular17 as well as square,18 elliptical,19

triangular,19 and even fractal pupils.20 The method has also been ap-
plied to the study of multifaceted imaging devices.21

Let us consider a general imaging system, characterized by an exit
pupil function with generalized amplitude transmittance P(x). The
distance from this pupil to the Gaussian imaging plane is denoted
by f . Note that the function P(x) includes any arbitrary amplitude
variation p(x) and any phase aberration that the imaging system may
suffer from.
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FIGURE 4.7 The imaging system under study.

We now describe the monochromatic scalar light field at any point
of the image space of the system in the Fresnel approximation.21 It is
straightforward to show that, within this approach, the field irradiance
is given by

I (x, z) = 1
�2( f + z)2

×
∣∣∣∣∣∣
∫∫

�P

P(x′) exp
[ −i�z|x′|2

� f ( f + z)

]
exp

[ −i2�

�( f + z)
x · x′

]
d2x′

∣∣∣∣∣∣
2

(4.48)

where � is the field wavelength, x′ and z stand for the transverse
and axial coordinates of the observation point, respectively, and �P
represents the pupil plane surface. The origin for the axial distances
is fixed at the axial Gaussian point, as shown in Fig. 4.7.

It is convenient to express all transverse coordinates in normalized
polar form, namely,

x = arN cos 	, y = arN sin 	 (4.49)

where x and y are Cartesian coordinates and a stands for the maxi-
mum radial extent of the pupil. By using these explicit coordinates in
Eq. (4.48), we obtain

Ī (rN, 	, z)

= 1
�2( f + z)2

∣∣∣∣∣∣
2�∫

0

1∫
0

p̄(r ′
N, 	′) exp

[
i2�W(r ′

N, 	′)
�

]
exp

[
i2�W20(z) r ′

N
2

�

]

× exp
[ −i2�

�( f + z)
r ′

NrN cos(	′ − 	)
]

r ′
N dr ′

N d	′
∣∣∣∣2 (4.50)
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where the bar denotes the polar coordinate expression for the corre-
sponding function and where we have split out the generalized pupil
P(x′) to explicitly show the dependence on the amplitude pupil vari-
ations p(x′) and the aberration function W(r ′

N, 	′) of the system. The
classic defocus coefficient has also been introduced in this equation,
namely,

W20(z) = − za2

2 f ( f + z)
(4.51)

In many practical situations the most important contribution to the
aberration function is the primary spherical aberration (SA), whose de-
pendence on the pupil coordinates is given by

W40(r ′
N, 	′) = W40r ′

N
4 (4.52)

where W40 is the SA coefficient design constant. In the following rea-
soning, we will consider this term explicitly, splitting the generalized
pupil of the system as follows:

p̄(r ′
N, 	′) exp

[
i2�W(r ′

N, 	′)
�

]
= Q(r ′

N, 	′) exp
[

i2�W40 r ′
N

4

�

]
(4.53)

Thus Q(r ′
N, 	′) includes the amplitude variations on the pupil plane

and the aberration effects except for SA. Note that if no aberrations
different from SA are present in the system, Q(r ′

N, 	′) reduces simply
to the pupil mask p̄(r ′

N, 	′).
By substituting Eq. (4.53) into Eq. (4.50), we finally obtain

Ī (rN, 	, z)

= 1
�2( f + z)2

∣∣∣∣∣∣
2�∫

0

1∫
0

Q(r ′
N, 	′) exp

(
i2�W40 r ′

N
4

�

)
exp

[
i2�W20(z) r ′

N
2

�

]

× exp
[ −i2�

�( f + z)
r ′

NrN cos(	′ − 	)
]

r ′
N dr ′

N d	′
∣∣∣∣2 (4.54)

Let us now consider explicitly the angular integration in this equation,
namely,

Q(r ′
N, rN, 	, z) =

2�∫
0

Q(r ′
N, 	′) exp

[ −i2�

�( f + z)
r ′

NrN cos(	′ − 	)
]

d	′

(4.55)
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Thus we arrive at a compact form for the irradiance at a point in the
image space

Ī (rN, 	, z) = 1
�2( f + z)2

×
∣∣∣∣∣∣

1∫
0

Q(r ′
N, rN, 	, z) exp

(
i2�W40 r ′

N
4

�

)
exp

[
i2�W20(z) r ′

N
2

�

]
r ′

N dr ′
N

∣∣∣∣∣∣
2

(4.56)

By using the mapping transformation

r ′
N

2 = s + 1
2

, Q(r ′
N, rN, 	, z) = q (s, rN, 	, z) (4.57)

we finally obtain

Ī (rN, 	, z) = 1
�2( f + z)2

×
∣∣∣∣∣∣

0.5∫
−0.5

q (s, rN, 	, z) exp
(

i2�W40 s2

�

)
exp

{
i2�[W40 + W20(z)] s

�

}
ds

∣∣∣∣∣∣
2

(4.58)

Note that in this expression all the dependence on the observation
coordinates is concentrated in the mapped pupil q (s, rN, 	, z) and the
defocus coefficient W20(z). If we expand the modulus square in this
equation, we find

Ī (rN, 	, z) = 1
�2( f + z)2

×
0.5∫

−0.5

0.5∫
−0.5

q (s, rN, 	, z)q∗(s ′, rN, 	, z) exp
[

i2�W40 (s2 − s ′2)
�

]

× exp
{

i2� [W40 + W20(z) ] (s − s ′)
�

}
ds ds ′ (4.59)

which by using the change of variables

t = s + s ′

2
, u = s − s ′ (4.60)
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can be rewritten as

Ī (rN, 	, z) = 1
�2( f + z)2

×
1∫

−1

0.5∫
−0.5

q
(

t + u
2

, rN, 	, z
)

q∗
(

t − u
2

, rN, 	, z
)

× exp
{

i2�

�
[W40 + W20(z) + 2�W40] u

}
dt du (4.61)

The above integration over the variable u can be clearly identified as
the WDF of q (s, rN, 	, z) with respect to the first variable, as stated in
Eq. (4.1). Thus, it is straightforward to show that

Ī (rN, �, z) = 1
�2( f + z)2

0.5∫
−0.5

Wq

(
t, −2

W40

�
t − W40 + W20(z)

�

)
dt

(4.62)

This expression relates the irradiance at any observation point to the
line integral of the function Wq (x, �) along a straight line in phase
space described by the equation

� = −2
W40

�
x − W40 + W20(z)

�
(4.63)

as depicted in Fig. 4.8. One can identify this integration as a projection
of the WDF at an angle � given by [see Eq. (4.10)]

tan � = − �

2W40
(4.64)

FIGURE 4.8 Integration line in phase space.
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and at an oriented distance from the origin

x�(z) = − W40 + W20(z)√
4W2

40 + �2
(4.65)

in such a way that it is possible to express

Ī (rN, �, z) = 1
�2( f + z)2 RWq (x�(z), �) (4.66)

The main conclusion of all this is that it is possible to obtain the ir-
radiance at any point in image space through the values of the RWT
of a given function q (s, rN, 	, z) related to the pupil of the system.
Note, however, that this function depends in general on the particular
coordinates rN, 	, and z of the observation point. Thus, a different
function RWq (x�, �) has to be considered for different points in image
space. This major drawback can be overcome for special sets of points
or trajectories in image space that share the same associated mapped
pupil q (s, rN, 	, z).

To describe such trajectories in image space, let us express these
lines in parametric form rN(z), 	(z). By substituting Jacobi’s identity

exp(i� cos �) =
+∞∑

n=−∞
in Jn(�) exp (−in�) �, � ∈ R (4.67)

where Jn(x) represents the Bessel function of the first kind and order
n, into Eq. (4.55), it is straightforward to obtain

Q(r ′
N, rN(z), 	(z), z) =

+∞∑
n=−∞

in Jn

( −2�

�( f + z)
r ′

NrN(z)
)

Qn(r ′
N)

× exp [in	(z)] (4.68)

where Qn(r ′
N) stands for the n-order circular harmonic of Qn(r ′

N, 	′),
that is,

Qn(r ′
N) =

2�∫
0

Q(r ′
N, 	′) exp

(−in	′) d	′ (4.69)

Note that the dependence on the position parameter z in Eq. (4.68)
is established exclusively in the argument of the Bessel functions—
through rN(z)—and the phase exponentials—through 	(z). Thus, the
only way to strictly cancel this dependence is to consider the trajecto-
ries

rN(z) = K ( f + z), 	(z) = 	o (4.70)



128 C h a p t e r F o u r

y

x

a

f
z

Exit pupil
Focal plane

φo

Observation
point

ΣP

α
(z + f ) tanα

FIGURE 4.9 Trajectories in image space.

These curves correspond to straight lines passing through the axial
point at the plane of the exit pupil. Together with the optical axis,
each line defines a plane that forms an angle 	o with the x axis, as
depicted in Fig. 4.9. Note that the angle � of any of these lines with
the optical axis is given by

tan � = K a (4.71)

For these subsets of observation points, the mapped pupil of the sys-
tem can be expressed as

Q(r ′
N, rN(z), 	(z), z) = Q�,	o (r ′

N)

=
+∞∑

n=−∞
in Jn

(−2�a tan �

�
r ′

N

)
Qn(r ′

N) exp (in	o )

(4.72)

and analogously

r ′
N

2 = s + 1
2

, q (s, rN(z), 	(z), z) = Q�,	o (r ′
N) = q �,	o (s) (4.73)

in such a way that now the corresponding RWT RWq �,�o (x�, �) is in-
dependent of the propagation parameter z. This is a very interest-
ing issue since the calculation of the irradiance at any observation
point lying on the considered line can be achieved from this single
two-dimensional display by simply determining the particular co-
ordinates (x�(z), �) through Eqs. (4.64) and (4.65). Furthermore, the
proper choice of these straight paths allows one to obtain any desired
partial feature of the whole three-dimensional image irradiance distri-
bution. Note also that since W40 is just a parameter in these coordinates
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and does not affect the function RWq �,�o (x�, �), this single display can
be used for the determination of the irradiance for different amounts
of SA. Thus, compared to classic techniques, the reduction in compu-
tation time is evident. The axial irradiance distribution is often used
as a figure of merit for the performance of optical systems with aberra-
tions. This distribution can be obtained here as a particular case with
� = 0, namely,

I (0, 0, z) = 1
�2( f + z)2 RWq 0,0 (x�(z), �) (4.74)

where

q 0,0(s) = Q0,0(r ′
N) = Q0(r ′

N) (4.75)

This result is especially interesting since this mapped pupil, and thus
the associated RWT, is also independent of the wavelength �. This fact
represents an additional advantage when a polychromatic assessment
of the imaging system is needed, as will be shown in forthcoming
sections. Some quantitative estimation of these improvements is pre-
sented in Ref. 19.

To prove the performance of this computation method, next we
present the result of the computation of the irradiance distribution
along different lines in image space of two imaging systems, la-
beled system I and system II. For the sake of simplicity, we consider
only purely absorbing pupils and no aberrations apart from SA in
both cases. Thus, Q(r ′

N, 	′) reduces to the normalized pupil function
p̄(r ′

N, 	′). A gray-scale representation for the pure absorbing masks
considered for each system is shown in Fig. 4.10.

pI(x)

x

y

a x

ypII(x)

2a/3

a

(b)(a)

FIGURE 4.10 Gray-scale picture of the pupil functions for (a) system I and
(b) system II.
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FIGURE 4.11 Irradiance values provided by system I, along different lines
containing the axial point of the pupil and for two different amounts of SA.
Continuous lines represent the result by the proposed RWT method while
dotted lines stand for the computation by the classic method.

We compute the irradiance values for 256 points along three differ-
ent lines passing through the axial point of the pupil, all characterized
by an azimuthal angle 	o = �/2. These trajectories are chosen with
tilt angles � = 0.024◦, 0.012◦, and 0◦ (optical axis). We set a = 10 mm,
z = 15.8 mm, and � = 638.2 nm. The function RWq �,�o (x�, �) was com-
puted for 4096 × 4096 points, and for comparison purposes, the same
irradiance values were computed by using the classic method12,13

by partitioning the exit pupil of the imaging system into 1024×1024
radial-azimuthal elements. Figure 4.11 shows a joint representation of
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FIGURE 4.12 Irradiance values provided by system II, as in Fig. 4.11.

the numerical calculation for system I, when two different values of
the SA are considered. The same results applied now to system II are
presented in Fig. 4.12.

The analysis of these pictures shows that the results obtained with
the RWT method match closely those obtained with the classic tech-
nique. In fact, both results differ by less than 0.03 percent. However,
the RWT is much more efficient in this computation process. This is
so because the basic RWT does not require recalculation for any point
in each of the curves. This is also true for any amount of SA. Obvi-
ously, the greater the number of observation points, or SA values, that
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have to be considered, the greater the resultant savings in computation
time.

As a final remark on this subject, we want to point out that this
approach can also be applied to other trajectories of interest in im-
age space. For instance, short paths parallel to the optical axis in the
neighborhood of the focal plane17 or straight lines crossing the focal
point can be considered.22

4.3.1.2 Parallel Optical Display of Diffraction Patterns
In Sec. 4.2.2 we mentioned that the mathematical relationship be-
tween Fresnel diffraction and the FrFT is given by Eq. (4.41). This
means that the RWD is itself a continuous display of the evolution
of diffraction patterns of one-dimensional objects, and this property
is extremely useful from a pedagogical point of view. In fact, calcu-
lations of Fresnel and Fraunhofer diffraction patterns of uniformly
illuminated one-dimensional apertures are standard topics in under-
graduate optics courses. These theoretical predictions are calculated
analytically for some typical apertures, or, more frequently, they are
computed numerically. The evolution of these diffraction patterns un-
der propagation is often represented in a two-dimensional display of
gray levels in which one axis represents the transverse coordinate—
pattern profile—and the other axis is related to the axial coordinate—
evolution parameter.23 This kind of representation illustrates, e.g.,
how the geometrical shadow of the object transforms into the Fraun-
hofer diffraction pattern as it propagates, and that the Fraunhofer
diffraction simply is a limiting case of Fresnel diffraction.24 In addi-
tion to the qualitative physical insight that the RWD provides about
diffraction, it can provide a quantitative measurement of a variety of
terms. These include the precise location ys and the relative magnifica-
tion Ms of each diffraction pattern. These two terms are quantitatively
defined in terms of the maximum h and minimum 0 powers of the
varifocal lens L of the system represented in Fig. 4.5, i.e.,

ys = h



 + l2(h − 0)
, Ms = 1 + 


l2(h − 0)
(4.76)

where 
 is the axial coordinate at which the corresponding diffraction
pattern is localized under parallel illumination and h is the extent of
the so-called progression zone of the varifocal lens. Figure 4.13 illus-
trates the experimental results registered by a CCD camera using a
double slit as an input object. It can be seen that the RWD is a nice
representation of the evolution by propagation of the interference phe-
nomena. In fact, the Fraunhofer region of the diffracted field clearly
shows the characteristic Young fringes modulated by a sinc function.
To compare the theoretical and experimental results, a cross section of
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FIGURE 4.13 RDW showing the evolution of the field diffracted by a double
slit. (a) Experimental result. (b) Cross section of the RWD showing the
intensity profile near the Fraunhofer region. For comparison purposes, the
theoretical sinc envelope of the Young fringes is also shown by the dotted
line.

the experimental RWD for values of y/h close to 1 is also represented
in Fig. 4.13.

Another classic example is diffraction by periodic objects. Here,
self-imaging phenomena, such as the Talbot effect, are interesting and
stimulating and usually attract the students’ attention. As illustrated
earlier in Fig. 4.6, which shows the diffraction patterns of a Ronchi
grating, several self-imaging planes can be identified. It can be clearly
seen that, due to the finite extent of the grating at the input, the number
of Talbot images is limited by the so-called walk-off effect. Self imag-
ing phenomena are discussed in more detail in Chap. 9 by Markus
Testorf.

In addition to its use as an educational tool for displaying diffrac-
tion patterns, the RWD has been used to investigate diffraction by a
variety of different interesting structures, including fractal diffraction
screens. In fact, the properties of diffraction patterns produced by frac-
tal objects and their potential applications have attracted the attention
of several researchers during recent years because many natural phe-
nomena and physical structures, such as phase transition, turbulence,
or optical textures, can be analyzed and described by assuming fractal
symmetry. Most research has been devoted to the study of diffraction
patterns obtained from fractal objects in the Fraunhofer region,25 yet it
is in the Fresnel region where interesting features appear. For instance,
Fresnel diffraction of a Cantor set26 shows an irradiance distribution
along the optical axis having a periodicity that depends on the level of
the set. Furthermore, the intensity distributions at transverse planes
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FIGURE 4.14 RWD as a display of all diffraction patterns generated by a
Cantor grating of level 3.

show a partial self-similar behavior that is increased when moving to-
ward the Fraunhofer region. For this reason, it is useful to represent the
evolution of the complex amplitude of one-dimensional fractals prop-
agating through free space represented on a two-dimensional display,
especially if such a display can be obtained experimentally. In this case
one axis represents the transversal coordinate, and the other is a func-
tion of the axial coordinate. In fact, according to the analysis carried
out in Ref. 27, the evolution of the diffraction patterns allows one to
determine the main characteristic parameters of the fractal. Therefore,
one of the most important applications of the RWD has been in this
field.28 The RWD obtained for a triadic Cantor grating developed up
to level 3 is shown in Fig. 4.14. Moreover, this result can be favor-
ably compared with the results obtained with other displays.27 The
magnification provided by the lens L in the experimental setup (see
Fig. 4.4) enables the RWD representation to provide an optimum sam-
pling of the diffracted field. Near the object, where the diffraction pat-
terns change rapidly, the mapping of the propagation distance pro-
vides a fine sampling, whereas the sampling is coarse in the far field
where the variation of the diffraction patterns with the axial distance
is slow. We note that sampling is the subject of Chap. 10.

4.3.2 Inverting RWT: Phase-Space Tomographic
Reconstruction of Optical Fields

The WDF is an elegant and graphical way to describe the propagation
of optical fields through linear systems. Since the WDF of a complex
field distribution contains all the necessary information to retrieve the
field itself,29,30 many of the methods to obtain the WDF (and the AF)
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FIGURE 4.15 Diagram of the proposed hybrid optodigital method.

could be adapted to solve the phase retrieval problem. Optical or opto-
electronic devices are the most commonly employed systems to obtain
a representation of phase-space functions of one-dimensional or two-
dimensional complex signals.31,32 However, because most detectors
used to this end are only sensitive to the incident intensity, interfero-
metric or iterative methods are necessary in general to avoid loss of
information. This is true even for the optically obtained WDF, which
is real but has, in general, negative values and therefore is obtained
from an intensity detector with an uncertainty in its sign. On the other
hand, obtaining the WDF of wave fields is also possible indirectly
through other representations such as the Radon transform.33 In this
particular case, a tomographic reconstruction is needed to synthesize
the WDF. With this information it is possible to recover the ampli-
tude and the phase of the original field distribution solely by means
of intensity measurements. With most experimental setups for phase
retrieval,29,30 these measurements have to be taken sequentially in
time while varying the distances between some components in each
measurement. In this way the potential advantage of optics, i.e., paral-
lel processing of signal information, is wasted. Consequently, another
interesting application of the setup discussed in Sec. 4.2.2 to obtain the
RWD is the experimental recovery of the WDF by means of an inverse
Radon transformation.

The technique to obtain the WDF from projections is divided into
two basic stages, sketched in Fig. 4.15. In the first stage, the experimen-
tal Radon-Wigner spectrum of the input function is obtained from a
two-dimensional single-shot intensity measurement by the use of the
experimental setup in Fig. 4.4. This optical method benefits from hav-
ing no moving parts.

The second part of the proposed method is the digital computation
of the inverse Radon transforms of the experimental Radon-Wigner
spectrum. The most common algorithms used in tomographic recon-
struction are based on the technique known as filtered backprojec-
tion. This algorithm is based on the central slice theorem discussed in
Sec. 4.2.1. Thus, from Eqs. (4.21) and (4.22) we have

F{RWf (x�, �), ��} = F2D{Wf (x, �), (�� cos �, �� sin �)} (4.77)
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FIGURE 4.16 Experimental Radon-Wigner spectrum of (a) a single slit of
2.2 mm and (b) a binary grating with a linearly increasing spatial frequency.

where the one-dimensional FT is performed on the first argument
of RWf (x�, �). The inversion of this last transformation allows the
recovery of Wf (x, �) from its projections. Explicitly34

Wf (x, �) =
�∫

0

C f (x cos � + � sin �, �) d� (4.78)

with

C f (u, �) =
+∞∫

−∞
F{RWf (x�, �), ��} |��| exp (i2���u) d�� (4.79)

Equation (4.79) can be clearly identified as a filtered version of the
original RWT. In this way, from Eq. (4.78), Wf (x, �) is reconstructed
for each phase-space point as the superposition of all the projections
passing through this point.

The experimental RWD of different one-dimensional functions has
been used to reconstruct the WDF from projections. In Fig. 4.16 we
show the RWD obtained with the optical device described in Sec. 4.2.2
for two different functions, namely, a rectangular aperture (single slit)
and a grating with a linearly increasing spatial frequency (chirp signal).

To undertake the reconstruction of the WDF through the filtered
backprojection algorithm, it is necessary to consider the complete an-
gular region of the RWD, that is, � ∈ [0, �). Although we only obtain
optically the RWT for � ∈ [0, �/2], the symmetry property in Eq. (4.17)
has been used to complete the spectrum. From the experimental RWD
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FIGURE 4.17 (a) Theoretical WDF of a single slit. (b) Experimental result for
the tomographic reconstruction of the WDF of the same slit.

in Fig. 4.16, the corresponding WDFs have been obtained using the
filtered backprojection algorithm. For comparison purposes, Figs. 4.17
and 4.18 show both the theoretical and the experimentally recon-
structed WDF of the single slit and the chirp grating, respectively.
Note that in Figs. 4.17b and 4.18b some artifacts appear. The lines
radiating from the center and outward are typical artifacts (ringing
effect) associated with the filtered backprojection method.35 In spite
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FIGURE 4.18 (a) Theoretical WDF of a binary grating with a linearly
increasing spatial frequency. (b) Experimental tomographic reconstruction of
the WDF of the same grating.
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of this effect, a very good qualitative agreement can be observed be-
tween the results obtained with the theoretical and experimental data.
The asymmetry in Fig. 4.17 is a consequence of the noise in Fig. 4.16a,
reflecting also the asymmetry on the spatial coordinate in this figure.
In Fig. 4.18 the typical arrow-shaped WDF of a chirp function can be
observed in both cases. The slope in the arrowhead that character-
izes the chirp rate of the signal is the same for the theoretical and the
experimental results.

Several extensions of the proposed method are straightforward. On
one hand, a similar implementation proposed here for the WDF can be
easily derived for the AF, by virtue of Eq. (4.22). Note also that it is easy
to extend this method to obtain two-dimensional samples of the four-
dimensional WDF of a complex two-dimensional signal by use of a
line scanning system. Moreover, since complex optical wave fields can
be reconstructed from the WDF provided the inversion formulas, this
approach can be used as a phase retrieval method that is an alterna-
tive to the conventional interferometric or iterative-algorithm-based
techniques. In fact, as demonstrated,36 phase retrieval is possible with
intensity measurements at two close FrFT domains. This approach,
however, requires some a priori knowledge of the signal bandwidth.
In our method, a continuous set of FrFTs is available simultaneously,
and this redundancy should avoid any previous hypothesis about the
input signal.

4.3.3 Merit Functions of Imaging Systems
in Terms of the RWT

4.3.3.1 Axial Point-Spread Function (PSF) and Optical
Transfer Function (OTF)

There are several criteria for analyzing the performance of an opti-
cal imaging system for aberrations and/or focus errors in which the
on-axis image intensity, or axial point-spread function (PSF), is the
relevant quantity. Among them we mention:37 Rayleigh’s criterion,
Marechal’s treatment of tolerance, and the Strehl ratio (SR). As Hop-
kins suggested,38 the analysis of Marechal can be reformulated to give
a tolerance criterion based on the behavior of the optical transfer func-
tion (OTF) (spatial frequency information) instead of the PSF (space
information). Phase-space functions were also employed to evaluate
some merit functions and quality parameters.39–41 This point of view
equally emphasizes both the spatial and the spectral information con-
tents of the diffracted wave fields that propagate in the optical imaging
systems. Particularly, since the information content stored in the FrFT
of an input signal changes from purely spatial to purely spectral as
p varies from p = 0 to p = 1, that is, in the domain of the RWT, it
is expected that the imaging properties of a given optical system, in
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both the space and spatial frequency domains, could also be evaluated
from the RWD.

To derive the formal relationship between the PSF (and the OTF)
and the RWT, let us consider the monochromatic wave field, with
wavelength �, generated by an optical imaging system characterized
by a one-dimensional pupil function t(x), when a unit amplitude point
source is located at the object plane. In the neighborhood of the image
plane, located at z = 0, the field amplitude distribution can be written,
according to the Fresnel scalar approximation, as

U (x, z) =
+∞∫

−∞
t(x′) exp

(−i�

� f
x′2
)

exp
[

i�

�( f + z)
(x′ − x)2

]
dx′

(4.80)

where f is the distance from the pupil to the image plane. The trans-
formation of t(x) to obtain the field U (x, z) is given by a two-step
sequence of elementary abcd transforms, namely, a spherical wave-
front illumination (with focus at � = f ) and a free-space propagation
(for a distance f + z). Considering the results presented in Sec. 4.2.1,
the abcd matrix associated with this transform can be found to be

M =
(

1 0
1

� f 1

)(
1 −�( f + z)

0 1

)
=
(

1 −�( f + z)
1

� f − z
f

)
(4.81)

and, therefore, the equivalent relationships to that given by Eq. (4.80)
in terms of the corresponding RWTs can be expressed as [see Eq. (4.25)]

RWU(x,z)(x�, �) ∝ RWt(x�′ , �′)
(4.82)

tan �′ = � f tan � − �2 f ( f + z)
tan � − �z

, x�′ = x�

sin � + �( f + z) cos �
sin �′

In particular, the value � = 0 provides the irradiance distribution at
the considered observation point, as stated in Sec. 4.2.1. This function
is the PSF of the imaging system, as a function of the distance z to the
image plane. Thus,

RWU(x,z)(x0, 0) = |U(x0, z)|2 = I (x0, z) ∝ RWt(x�′
0
, �′

0)
(4.83)

tan �′
0 = � f ( f + z)

z
, x�′

0
= x0

�( f + z)
sin �′

0

For the optical axis (x0 = 0) the PSF can be expressed as

RWU(x,z)(0, 0) = |U(0, z)|2 = I (0, z) ∝ RWt

(
0, arctan

[
� f ( f + z)

z

])
(4.84)
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A normalized version of this axial irradiance is often used as a figure
of merit of the performance of the imaging system, namely, the SR
versus defocus, defined as

S(W20) = I (0, z)
I (0, 0)

∝ RWt

(
0, arctan

(
− �h2

2W20

))
(4.85)

where h is the maximum lateral extent of the one-dimensional pupil
and W20 stands for the one-dimensional version of the defocus coeffi-
cient defined in Eq. (4.51). Thus, the function S(W20) can be analyzed in
a polar fashion in the two-dimensional domain of the WDF associated
with the pupil function t(x) or, equivalently, in terms of its associated
RWT.

To illustrate this approach, the defocus tolerance of different kinds
of one-dimensional pupils was investigated, namely, a clear aperture
(slit) and a pupil with a central obscuration (double slit). The general
form of these pupils can be written as t(x) = rect(x/h) − rect(x/b),
with b = 0 for the uniform aperture. Figure 4.19 shows the RWD
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FIGURE 4.19 RWTs: (a) Computer simulation for an aperture with
h = 2.5 mm and b = 0 mm. (b) Experimental result for (a). (c) Computer
simulation for an aperture with h = 2.5 mm and b = 1.3 mm. (d)
Experimental result for (c). The horizontal axis corresponds to the
parameterization of the projection angle � = p�/2.
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numerically (parts a and c) and experimentally (parts b and d) ob-
tained, for two different values of the obscuration b.

According to our previous discussion, the slices of the RWD for
x = 0 give rise to the SR for variable W20. These profiles are plotted
in Fig. 4.20 for three different pupils. From these results, it can be
observed that, as expected, annular apertures have higher tolerance
to defocus.

The knowledge of the SR is useful to characterize some basic fea-
tures of any optical system, such as the depth of focus. However, the
main shortcoming of the SR as a method of image assessment is that
although it is relatively easy to calculate for an optical design pre-
scription, it is normally difficult to measure for a real optical system.
Moreover, the quality of the image itself is better described through
the associated OTF. Fortunately, this information can also be obtained
from the RWD via its relationship with the AF established in Sec. 4.2.1,
since the AF contains all the OTFs H(�; W20) associated with the opti-
cal system with varying focus errors according to the formula42

H�(�; W20) = At

(
−�( f + z)�,

2W20( f + z)
h2 �

)
(4.86)

In this way, the AF of the pupil function t(x) can be interpreted as a
continuous polar display of the defocused OTFs of the system. Con-
versely,

At
(

x′, �′) = H�

(
− x′

�( f + z)
; W20 = −�h2�′

2x′

)
(4.87)
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FIGURE 4.20 SR versus defocus for circular pupils with pupil function
t(x) = rect(x/h) − rect(x/b): (a) Computer simulation; (b) experimental
results. Again, the projection angle � = p�/2.
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Thus, by using Eq. (4.22) it is easy to find that

F {RWt(x�, �), ��} = At (�� cos �, −�� sin �)

= H�

(
− �� cos �

�( f + z)
; W20 = �h2

2
tan �

)
(4.88)

Therefore, the one-dimensional FT of the profile of the RWD for a
given value of the fractional order � = p�/2 corresponds to a defo-
cused (scaled) OTF. This representation is quite convenient to visualize
Hopkins’ criterion.39

Figure 4.21 shows the one-dimensional Fourier transforms, taken
with respect to the x variable, of the RWT illustrated in Fig. 4.19. From
the previous analysis, the defocused OTFs are displayed along the
vertical or spatial-frequency axis. These results for the clear aperture
are shown in Fig. 4.22.

The RWD can also be used for calculating the OTF of an optical
system designed to work under polychromatic illumination. In this
case, as we will discuss next, a single RWD can be used to obtain the
set of monochromatic OTFs necessary for its calculation.
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FIGURE 4.21 Computed one-dimensional FT of the RWDs shown
in Fig. 4.19.
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FIGURE 4.22 OTFs obtained from different slices of the intensity
distributions shown in Fig. 4.21 for the case of a uniform aperture, for
different amount of defocus.

4.3.3.2 Polychromatic OTF
As stated above, the RWT associated with the one-dimensional pupil
of an imaging system can be used to obtain the OTF of the device,
as a function of the defocus coefficient, through Eq. (4.88). It is worth
noting that in this equation the wavelength � of the incoming light acts
as a parameter in the determination of the particular coordinates of the
FT of the RWT, but it does not affect the RWT itself. Thus, changing the
value of � simply resets the position inside the same two-dimensional
display for the computation of the OTF. The calculation procedure
used in the previous section can be used, therefore, to compute the
transfer function for any wavelength by means of the same RWD. This
approach is based on previous work, where it was shown that the AF
of the generalized pupil function of the system is a display of all the
monochromatic OTFs with longitudinal chromatic aberration.43

An especially interesting application of this technique is the eval-
uation of the spatial-frequency behavior of optical systems working



144 C h a p t e r F o u r

under polychromatic illumination. In fact, the proper generalization of
the OTF-based description to this broadband illumination case allows
one to define quality criteria for imaging systems working with color
signals.44,45 This extension presents, however, some difficulties. The
direct comparison of the incoming and the outgoing polychromatic
irradiance distributions does not allow, in general, a similar relation-
ship to the monochromatic case to be established. It can be shown,
in fact, that only when the input signal is spectrally uniform can the
frequency contents of both signals be related through a single poly-
chromatic OTF function, providing the imaging system does not suffer
from any chromatic aberrations regarding magnification.46,47 Under
these restrictions, a single polychromatic OTF can be used for relat-
ing input and output polychromatic irradiances in spatial-frequency
space. This function is defined as

H(�; W20) =

∫
�

H�(�; W′
20(�))S(�)V(�) d�∫

�

S(�)V(�) d�
(4.89)

where � and S(�) are the spectral range and the spectral power of the
illumination, respectively. The function V(�) represents the spectral
sensitivity of the irradiance detector used to record the image. Note
also that a new wavelength-dependent defocus coefficient has been
defined, to account for the longitudinal chromatic aberration �W20(�)
that the system may suffer from, namely,

W′
20(�) = W20 + �W20(�) (4.90)

where W20 is the defocus coefficient defined in the previous section.
This OTF cannot account, however, for the chromatic information

of the image, since only a single detector is assumed.48 Indeed, by fol-
lowing the trichromacy of the human eye, three different chromatic
channels are usually employed to properly describe color features in
irradiance distributions, and, consequently, three different polychro-
matic OTFs are used, namely,44,45

HX(�; W20) =

∫
�

H�(�; W′
20(�))S(�)x� d�∫

�

S(�)x� d�

HY(�; W20) =

∫
�

H�(�; W′
20(�))S(�)y� d�∫

�

S(�)y� d�
(4.91)

HZ(�; W20) =

∫
�

H�(�; W′
20(�))S(�)z� d�∫

�

S(�)z� d�
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where x�, y�, and z� are three spectral sensitivity functions associated
with the measured chromaticity. These functions depend, obviously,
on the specific color detector actually used. In the case of a conven-
tional digital color camera, these channels can be associated with the
R, G, and B bands of the three pixel families in the detector array.
On the other hand, when a visual inspection of the final image is
considered, these sensitivity functions are the well-known spectral
tristimulus values of the human eye.49

Equations (4.91) establish the formulas to describe completely the
response of a system from a spatial-frequency point of view. To
numerically compute the functions described there, the evaluation
of the monochromatic OTFs for a sufficient number of wavelengths
inside the illumination spectrum has to be performed. Since any of
these monochromatic transfer functions can be obtained from a same
single RWD, as stated in the previous section, these computations can
be done in a much more efficient way by use of this two-dimensional
display. Furthermore, the same imaging system (i.e., the same pupil
function) but suffering from different longitudinal chromatic aberra-
tion can be assessed as well, with no additional computation of the
RWD. This is a critical issue in the saving of computation time which
provides this technique with a great advantage compared to other
classic techniques, as cited above.

To illustrate this technique, we present the result of the computa-
tion of the polychromatic OTFs associated with a conventional one-
dimensional clear-pupil optical system (slit of width h) but suffering
from two different chromatic aberration states (systems I and II from
now on), as shown in Fig. 4.23. We assume that no other aberrations
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FIGURE 4.23 Longitudinal chromatic aberration coefficient associated with
the two different correction states of the system under study.
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FIGURE 4.24 Monochromatic OTFs for system I in Fig. 4.23, corresponding
to the imaging plane (W20 = 0).

are present. This assumption does not imply any restriction of the
method, and the same applies to the one-dimensional character of
the imaging system, as can be easily shown. Regarding the geometric
parameters of the system, we fixed h/ f = 0.2.

The evaluation of the corresponding monochromatic OTFs for
both aberration states is achieved through the same computation
method as in the previous section, namely, through the sequen-
tial one-dimensional FT of the two-dimensional display of the RWT
RWt(x�, �). Some of these results are shown in Fig. 4.24.

The computation of the polychromatic OTFs is performed next for
both correction states, through the superposition of the monochro-
matic ones stated in Eqs. (4.91) for uniform sampling of 36 wave-
lengths in the range between 400 and 700 nm. The x�, y�, and z�

functions are set to be the spectral tristimulus values of the standard
human observer CIE 1931, while the spectral power for the illumi-
nation corresponds to the standard illuminant C49. The results for
system I, corresponding to a defocused plane, and for system II, at the
image plane, are shown in Fig. 4.25. Note that in both cases the same
RWD is used in the computation, as stated above.

4.3.3.3 Polychromatic Axial PSF
In this section we propose the use of a single two-dimensional RWD to
compute the axial irradiance in image space provided by an imaging
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system with polychromatic illumination. In fact, the proposed tech-
nique is a straightforward extension of what is stated in Sec. 4.3.1.1,
namely, that the axial irradiance distribution I (0, 0, z) provided by a
system with an arbitrary value of SA can be obtained from the single
RWT RWq 0,0 (x, �) of the mapped pupil q 0,0(s) in Eq. (4.75). When an
object point source is used, this irradiance distribution corresponds, of
course, to the on-axis values of the three-dimensional PSF of the imag-
ing system. For notation convenience we denote I�(z) = I (0, 0, z) in
this section.

According to the discussion in Sec. 4.3.3.2, the account for chro-
maticity information leads to a proper generalization of the monochro-
matic irradiances to the polychromatic case through three functions,
namely,

X(W20) =
∫
�

I�(z)S(�)x� d�

Y(W20) =
∫
�

I�(z)S(�)x� d� (4.92)

Z(W20) =
∫
�

I�(z)S(�)x� d�

where S(�), V(�), x�, y�, and z� stand for the magnitudes used in
the previous section. The defocus coefficient is defined in Eq. (4.51).
However, it is often more useful to describe a chromatic signal through
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a combination of these basic functions. A conventional choice for these
new parameters is the set

x (W20) = X(W20)
X(W20) + Y(W20) + Z(W20)

(4.93)

y (W20) = Y(W20)
X(W20) + Y(W20) + Z(W20)

known as chromaticity coordinates, along with the parameter Y(W20).
If the sensitivity functions are selected to be the spectral tristimulus
values of the human eye, the Y(W20) parameter is known as illumi-
nance and it is associated basically with the brightness of the chromatic
stimulus. On the other hand, in this case the chromaticity coordinates
provide a joint description for the hue and saturation of the colored
signal.49

Anyway, as in the previous section, the evaluation of these magni-
tudes requires the computation of the monochromatic components for
a sufficient number of spectral components. The use of conventional
techniques, as stated earlier, is not very efficient at this stage, since the
computation performed for a fixed axial point, a given wavelength,
and a given aberration state cannot be applied to any other configu-
ration. The method proposed in Sec. 4.3.1.1 represents a much more
efficient solution since all the monochromatic values of the axial ir-
radiance can be obtained, for different aberration correction states,
from a single two-dimensional display associated with the pupil of
the system.

To describe this proposal in greater detail, let us consider the system
presented in Fig. 4.9 with � = 0. According to the formulas in Sec.
4.3.1.1, the axial irradiance distribution in image space, for a given
spectral component, can be expressed as

I�(z) = 1
�2( f + z)2 RWq 0,0 (x�(z), �) (4.94)

where q 0,0(s) represents the zero-order circular harmonic of the pupil
Q(rN, 	), with s = r2

N + 1
2 . The normalized coordinates rN and 	 are

implicitly defined in Eq. (4.49). The specific coordinates (x�(z), �) for
the RWT are given by Eqs. (4.64) and (4.65). Note that for systems
with longitudinal chromatic aberration, the defocus coefficient W20
is substituted for the wavelength-dependent coefficient in Eq. (4.90).
Note that now the whole dependence of the axial irradiance on �, W40,
and z is established through these coordinates if the function Q(rN, 	)
itself does not depend on wavelength. This is the case when all the
aberrations of the system, apart from SA and longitudinal chromatic
aberration, have a negligible chromatic dependence. This is a very
usual situation in well-corrected systems, and in this case, every axial
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position, SA and chromatic aberration state, and wavelength can be
studied from the same two-dimensional RWD.

Thus, providing that these kinds of systems are analyzed, the poly-
chromatic description for the axial image irradiance can be assessed
by the formulas

X(W20) =
∫
�

RWq 0,0 (x�(z), �)
�2( f + z)2 S(�)x� d�

Y(W20) =
∫
�

RWq 0,0 (x�(z), �)
�2( f + z)2 S(�)y� d� (4.95)

Z(W20) =
∫
�

RWq 0,0 (x�(z), �)
�2( f + z)2 S(�)z� d�

where the values of (x�(z), �) for every wavelength, axial position,
and SA amount are given by Eqs. (4.64) and (4.65). Thus, once the
RWD of the function q 0,0(s) of the system is properly computed, these
weighted superpositions can be quickly and easily calculated.19,50,51

As an example for testing this technique, we evaluate the axial re-
sponse of a clear circular pupil imaging system, affected by spherical
and longitudinal chromatic aberrations as shown in Fig. 4.26. With-
out loss of generality we assume here that the SA coefficient has a flat
behavior for the considered spectral range. Once again, for the sake
of simplicity, we assume that no other aberrations are present.
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FIGURE 4.26 Aberration coefficients associated with the system under issue.
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We consider 36 axial positions characterized by defocus coefficient
values in a uniform sequence. We follow the same procedure as in
earlier sections for the digital calculation of the RWD RWq 0,0 (x�, �).
It is worth mentioning that for this pupil is possible to achieve an
analytical result for the monochromatic axial behavior of the system
for any value of W′

20, W40, and �, namely,12

I�(z) =
[

�a2

2� f ( f + z)

]2 1
W40

∣∣∣∣F [W′
20(�) + 2W40√

�W40

]
− F

[
W′

20(�)√
�W40

]∣∣∣∣2
(4.96)

where

F (z) =
z∫

0

exp
(

i�t2

2

)
dt (4.97)

is the complex form of Fresnel integral. This analytical formula is used
here to evaluate the results obtained by the proposed method. Figure
4.27 presents a comparison of these approaches for three different
wavelengths in the visible spectral range. Excellent agreement can be
observed in this figure.

Finally, we performed the calculation of the axial values for the
chromaticity coordinates and the illuminance, by assuming the same
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FIGURE 4.27 Axial irradiance values for the system under study. Solid lines
represent the results by analytical calculation, while superimposed symbols
correspond to the computation through the single RWD technique.
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FIGURE 4.28 Axial illuminance and chromaticity coordinates for the system
under study. Here solid lines represent the results obtained by the
conventional method, while superimposed symbols correspond to the
computation through the single RWD technique.

settings for the sensitivity functions and the illuminant as in the previ-
ous section. The values obtained with the method presented here are
compared in Fig. 4.28 with the ones obtained by applying the same
classic technique as in Sec. 4.3.3.2. Again, a very good agreement be-
tween them can be seen. A more detailed comparison of both methods
is presented in Ref. 19.

4.4 Design of Imaging Systems and Optical
Signal Processing by Means of RWT
4.4.1 Optimization of Optical Systems:

Achromatic Design
We now present a design method for imaging systems working under
polychromatic illumination on a RWT basis. In particular, we fix our
attention on the optimal compensation of the axial chromatic disper-
sion of the Fresnel diffraction patterns of a plane object. Although this
proposal can be applied to a wide variety of systems, we concentrate
on an optical system specially designed for this purpose. This de-
vice allows us to obtain the image of any arbitrary diffraction pattern
with very low residual chromatic aberration.52,53 The optical system,
sketched in Fig. 4.29, works under planar broadband illumination. The
only two optical elements in this device are an achromatic lens, with
focal length f , and an on-axis kinoform zone plate. This element acts,
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FIGURE 4.29 Achromatic imaging system under study.

from a scalar paraxial diffraction point of view, as a conventional thin
lens with a focal length proportional to the inverse of the wavelength
� of the incoming light, i.e.,

Z(�) = Zo
�o

�
(4.98)

�o being a reference design wavelength and Zo = Z(�o ). We note
that although the effect of residual focuses can be significant for those
wavelengths that are different from the design wavelength, we do not
consider it here.

Our goal in this section is to achieve the optimal relationship be-
tween the geometric distances in the imaging system to obtain an out-
put image corresponding to a given Fresnel pattern with minimum
chromatic aberration. Thus, let us consider a given diffraction pattern
located at a distance Ro from the object for the reference chromatic
component of wavelength �o . It is well known that with parallel illu-
mination the same diffraction pattern appears for any other spectral
component at a distance from the input mask given by

R(�) = Ro
�o

�
(4.99)

In this way, if the limits of the spectrum of the incoming radiation are �1
and �2, the same diffraction pattern is replicated along the optical axis
between the planes characterized by distances R1 = R(�1) and R2 =
R(�2), providing a dispersion volume for the diffraction pattern under
study. However, if we fix our attention on the reference plane located at
a distance Ro from the object, for � �= �o we obtain a different structure
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for the diffracted pattern, and, therefore, the final superposition of all
the spectral components of the incoming light produces a chromatic
blur of the monochromatic result. To analyze this effect, we again use
the RWT approach to describe the spectral components of this Fresnel
pattern. Since the above dispersion volume is transformed, by means
of the imaging system, into a different image volume, it is interesting
to derive the geometric conditions that provide a minimum value for
its axial elongation in the image space. Equivalently, the same RWT
analysis will be performed at the output of the system to analyze the
chromatic blur at the output plane for the reference wavelength �o .

For the sake of simplicity, we consider a one-dimensional ampli-
tude transmittance t(x) for the diffracting object. Let us now apply
our approach to calculate the irradiance free-space diffraction pattern
under issue through the RWT of the object mask. If we recall the result
in Eq. (4.36) for z = Ro , we obtain that each spectral component of this
Fresnel pattern is given by

Io (x; �) ∝ RWt (x�(�), �(�)) , tan �(�) = −�Ro,

x�(�) = x
�Ro

sin �(�) (4.100)

In this equation the chromatic blur is considered through the spec-
tral variation of the coordinates in the RWT for any given transverse
position x in the diffraction pattern. Thus, for a fixed observation
position there is a region in the Radon space that contains all the
points needed to compute the polychromatic irradiance. If we define
�i = arctan (�i Ro ), for i = 1, 2, the width of this region in both Radon-
space directions can be estimated as

�� = |�1 − �2|, �x� =
∣∣∣∣ x

Ro

(
sin �1

�1
− sin �2

�2

)∣∣∣∣ (4.101)

Note that the smaller this region is, the less is the effect of the chro-
matic blur affecting the irradiance at the specified observation point.
To achieve an achromatization of the selected diffraction pattern, this
region has to be reduced in the output plane of the optical setup.

Let us now fix our attention on the effect of the imaging system on
the polychromatic diffraction pattern under issue. Again, we use the
RWT approach to achieve this description by simply noting that the
system behaves as an abcd device that links the object plane and the se-
lected output plane. The transformation matrix Machr can be obtained
as a sequence of elemental transformations (see Fig. 4.29), namely, free
propagation at a distance l, propagation through the achromatic lens,
free propagation to the focal plane of that element, passage through
the zone plate, and, finally free propagation at a distance d ′

o . The out-
put plane is selected as the image plane of the diffraction pattern
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under study for � = �o . Thus, by using the results in Sec. 4.2.1, it is
straightforward to obtain

M(�) =

⎛⎜⎝ 1 − l
f

− f
Z(�)

−�

(
f − mo f + mol + f 2mo

Z(�)

)
1

� f
mo

⎞⎟⎠ (4.102)

where the following restriction applies to the fixed desired output
plane

l = Ro + f − f
mo

− f 2

Zo
(4.103)

where mo = −d ′
o/ f is the magnification obtained at the fixed image

plane (for � = �o ). The relationship between the RWTs of the input
object and the output Fresnel pattern for each spectral channel now
can be established by application of Eqs. (4.27) and (4.28). In particular,
by setting � = 0 we find

I ′
o (x; �) ∝ RWt

(
x�′ (�), �′(�)

)
tan �′(�) = �

[
Ro + f 2

Zo

(
�

�o
− 1

)]
, x�′ = x

mo
cos �′(�) (4.104)

Therefore, for the polychromatic description of the output diffraction
pattern we have to sum values of the RWT of the transmittance of the
object in a region in the Radon domain whose size in both dimensions
is given by

��′ = |�′
max − �′

min|, �x�′ =
∣∣∣∣ x
mo

(cos �′
max − cos �′

min)

∣∣∣∣ (4.105)

where

�′
max = max{�′(�)|� ∈ [�1, �2]}, �′

min = min{�′(�)|� ∈ [�1, �2]}
(4.106)

The specific values of these limits, which define the extension of the
integration region in Radon space in the polychromatic case, depend
on the particular values of the geometric design parameters f and
Zo of the imaging system. We now try to find a case that minimizes
the chromatic blur in the output pattern. It is worth mentioning that
exact achromatization of the pattern is achieved only when �′(�) =
�′(�o ) ∀� ∈ [�1, �2], which cannot be fulfilled in practice, as can be
seen from Eq. (4.104). However, a first-order approximation to that
ideal correction can be achieved by imposing a stationary behavior
for �′(�) around � = �o . Mathematically, we impose

d�′(�)
d�

∣∣∣∣
�o

= 0 (4.107)
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or, equivalently,

d tan �′(�)
d�

∣∣∣∣
�o

= 0 (4.108)

which leads to the optimal constraint

Ro = − f 2

Zo
(4.109)

This condition transforms Eq. (4.103) into

l = 2Ro + f − f
mo

(4.110)

Thus, the choice of a set of geometric parameters l, f , Zo , and d ′
o

fulfilling the two above equations provides a design prescription for
a first-order compensation of the chromatic blur in the diffraction
pattern located, for � = �o , at distance Ro from the object.54

To illustrate this design procedure and to check the predicted
results, we present an experimental verification by using a two-
dimensional periodic transmittance as an object, with the same pe-
riod p = 0.179 mm in both orthogonal directions. As a Fresnel pat-
tern to be achromatized, a self-imaging distribution is selected. In
particular, after parallel illumination with �o = 546.1 nm, the dis-
tance Ro = 11.73 cm is selected. Figure 4.30a shows a picture of the
irradiance distribution in that situation. In Fig. 4.30b, the irradiance
distribution over the same plane, but when a polychromatic colli-
mated beam from a high-pressure Hg lamp is used, is presented. The
chromatic blur is clearly seen by comparing these two figures.

To optimally achromatize this diffraction pattern, we follow the
prescriptions given in the above paragraphs. We use a kinoform lens

(a) (b)

FIGURE 4.30 Gray-scale display of the irradiance distribution to be
achromatized: (a) Monochromatic pattern for �o = 546.1 nm. (b) Broadband
(Hg lamp) irradiance distribution.
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FIGURE 4.31 Gray-scale display of the achromatized irradiance distribution.

with Zo = −12 cm, and we choose a value d ′
o = 10.00 cm. Therefore,

we select a focal distance for the achromatic lens f = √−Zo Ro =
11.86 cm, and we place that object at a distance l = 2Ro + f + f 2/d ′

o =
49.39 cm from that lens. A gray-scale display of the output irradiance
is presented in Fig. 4.31. The comparison between this result and the
monochromatic one in Fig. 4.30a shows the high achromatization level
obtained with the optimized system.

4.4.2 Controlling the Axial Response:
Synthesis of Pupil Masks by RWT
Inversion

In Sec. 4.3.1.1 we showed that the axial behavior of the irradiance
distribution provided by a system with an arbitrary value of SA can
be obtained from the single RWT of the mapped pupil q 0,0(s) of the
system. In fact, Eq. (4.74) can be considered the keystone of a pupil
design method55 in which the synthesis procedure starts by perform-
ing a tomographic reconstruction of Wq 0,0 (x, �) from the projected
function I (0, 0, z) representing the irradiance at the axial points—
variable W20—for a sufficient set of values of W40. Thus, the entire
two-dimensional Wigner space can be sampled on a set of lines de-
fined by these parameters. The backprojection algorithm converts the
desired axial irradiance for a fixed value of W40, represented by a one-
dimensional function, to a two-dimensional function by smearing it
uniformly along the original projection direction (see Fig. 4.8). Then
the algorithm calculates the summation function that results when all
backprojections are summed over all projection angles �, i.e., for all
the different values of W40. The final reconstructed function Wq 0,0 (x, �)
is obtained by a proper filtering of the summation image.55 Once the
WDF is synthesized with the values of the input axial irradiances, the
pupil function is obtained by use of Eq. (4.4). Finally, the geometric
mapping in Eq. (4.57) is inverted to provide the desired pupil function.
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FIGURE 4.32 (a) Amplitude transmittance of a desired pupil function.
(b) Phase-space tomographic reconstruction of the same pupil.

To illustrate the method, we numerically simulated the synthesis
of an annular apodizer represented in Fig. 4.32. It has been shown
that its main features are to increase the focal depth and to reduce
the influence of SA. From this function we numerically determined
first the Wq 0,0 (x, �) function, using the WDF definition, and thereby
the projected distributions defined by the RWT, obtaining the axial
irradiance distribution for different values of SA. In this case, we used
1024 values for both W40/� and W20/�, ranging from −16 to +16. We
treated these distributions as if they represented the desired axial be-
havior for a variable SA, and we reconstructed the WDF by using
a standard filtered backprojection algorithm for the inverse Radon
transform. From the reconstructed WDF we obtained the synthesized
pupil function p(x) by performing the discrete one-dimensional in-
verse FT of Wq 0,0 (x, �). The result is shown in Fig. 4.32b. As can be
seen, the amplitude transmittance of the synthesized pupil function
closely resembles the original apodizer in Fig. 4.32a.

4.4.3 Signal Processing through RWT
Throughout this chapter we have discussed the RWT as a mathemat-
ical tool that allows us to develop novel and interesting applications
in optics. Among several mathematical operations that can be opti-
cally implemented, correlation is one of the most important because it
can be used for different applications, such as pattern recognition and
object localization. Optical correlation can be performed in coherent
systems by use of the fact that the counterpart of this operation in the
Fourier domain is simply the product of both signals. To implement
this operation, several optical architectures were developed, such as
the classic VanderLugt and joint transform correlators.56,57 Because
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conventional correlation is a shift-invariant operation, the correlation
output simply moves if the object translates at the input plane. In many
cases this property is necessary, but there are situations in which the
position of the object provides additional information such as in im-
age coding or cryptographic applications, and so shift invariance is a
disadvantage.

The fractional correlation58,59 is a generalization of the classic cor-
relation that employs the optical FrFT of a given fractional order p
instead of the conventional FT. Conventionally, the fractional corre-
lation is obtained as the inverse Fourier transform of the product of
the FrFT of both the reference and the input objects, but for a sin-
gle fractional order p at a time. The fractional order involved in the
FrFT controls the amount of shift variance of the correlation. As is
well known, the shift-variance property modifies the intensity of the
correlation output when the input is shifted. In several pattern recog-
nition applications this feature is useful, for example, when an object
should be recognized in a relevant area and rejected otherwise, or
when the recognition should be based on certain pixels in systems
with variable spatial resolution. However, the optimum amount of
variance for a specific application is frequently difficult to predict,
and therefore more complete information would certainly be attained
from a display showing several fractional correlations at the same
time. Ideally, such a display should include the classic shift-invariant
correlation as the limiting case. In this section we will show that such a
multichannel fractional correlator could be easily implemented from
the RWD system presented in Sec. 4.2.2. The resulting optical system
generates a simultaneous display of fractional correlations of a one-
dimensional input for a continuous set of fractional orders in the range
p ∈ [0, 1].

We start by recalling58 the definition of the fractional correlation
between two one-dimensional functions f (x) and f ′(x)

C p (x) = F−1{Fp(�)F ′
p
∗(�), x} (4.111)

It is important to note that with the above definition the classic cor-
relation is obtained if we set p = 1. The product inside the brackets
of Eq. (4.111) can be optically achieved simultaneously for all frac-
tional orders, ranging between p = 0 and p = 1, following a two-step
process. In the first stage, the RWD of the input is obtained with the
experimental configuration shown in Sec. 4.2.2. A matched filter can
be obtained at the output plane if, instead of recording the intensity,
we register a hologram of the field distribution at this plane with a
reference wavefront at an angle �. (see Fig. 4.33).

In the second stage, the obtained multichannel matched filter is
located at the filter plane, and the input function to be correlated is
located at the input plane (see Fig. 4.34).
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FIGURE 4.33 Multichannel matched filter registration for a fractional
correlation. The elements are the same as in Sec. 4.2.2, except for BS
(beam splitter) and M1 and M2 (plane mirrors).

Because the transmittance of the holographic filter has one term
proportional to the complex conjugate of the reference field in
Eq. (4.111), for each fractional order channel the field immediately
behind the filter plane has one term proportional to the product of the
complex conjugate of the FrFT of the reference function f ′(x) and the
same FrFT of the input function f (x). Thus the multiplicative phase
factor in this equation and the corresponding one of the matched filter
cancel out. Besides, although the experimental FrFT for a given order
p is approximated owing to the scale error discussed in Sec. 4.2.2, the
experimental fractional correlation can be obtained exactly because
this error affects both Fp(�) and F ′

p
∗(�). Finally, the diffracted field at

angle � is collected by the lens Lc , which performs a one-dimensional
FT. Because each fractional order p ∈ [0, 1] has an independent one-
dimensional correlation channel, all the fractional correlations for this
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FIGURE 4.34 Multichannel fractional correlator. The filter H corresponds to
the one obtained in the setup of Fig. 4.33.
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FIGURE 4.35 Amplitude transmittance of an input object selected to
perform multichannel fractional correlation.

range of fractional orders are obtained simultaneously at the output
plane. Thus a two-dimensional display is obtained in which the frac-
tional correlations are ordered in a continuous display along the axis
normal to the plane shown in Fig. 4.34.

The shift-variant property of the FrFT correlation was confirmed
experimentally in Ref. 60. Here we present a numerical simula-
tion using an input object whose amplitude transmittance is shown
in Fig. 4.35. It represents a double nonsymmetric slit with a contin-
uous gray-level amplitude transmittance. The continuous transition
between the shift-variant case p = 0 and the shift-invariant case p = 1
is confirmed in Fig. 4.36. In this figure the fractional autocorrelation
of the input is considered, but the reference objects are shifted at the
input plane.

Figure 4.36a shows the fractional correlations when the input is
shifted an amount of one-half of the object size, and Fig. 4.36b shows
the fractional correlation when the input is shifted an amount equal to
the size of the object. The variant behavior of the fractional correlation
can be clearly seen by the comparison of these figures. Both displays
coincide near to p = 1 (except for the location of the maxima), but for
lower values of p the fractional correlation is highly dependent on the
magnitude of the shift. As can be seen in the three-dimensional plot
in this figure, for a fixed displacement the correlation peak increases
with p. As expected for p = 1, the correlation peak is the classic one
located at the input position. For values ranging between p = 0.5
and p = 1, the correlation peak did not change appreciably. The



T h e R a d o n - W i g n e r T r a n s f o r m 161

1.00

0.75

p

p

0.50

0.25

Space coordinate (x) Fr
ac

tio
na

l o
rd

er
 p

Fr
ac

tio
na

l c
or

re
la

tio
n 

in
te

ns
ity

0.00

0.0

0

Space coordinate (x)

0

0.0
0.2

0.4
0.6

0.8
1.0

Fr
ac

tio
na

l o
rd

er
 p

0.0
0.2

0.4
0.6

0.8
1.0

1.0

0.5

Fr
ac

tio
na

l c
or

re
la

tio
n 

in
te

ns
ity

0.0

1.0

0.5

1.00

0.75

0.50

0.25

0.00

0
x

0
x

(a)

(b)

FIGURE 4.36 Multichannel fractional autocorrelation of the function
represented in Fig. 4.35 with (a) a shift in the input plane of one-half of the
object size and (b) a shift of the whole size of the object.

shift-variant property becomes evident for values close to p = 0.25.
It can be seen that as the fractional order becomes lower, the peak
degenerates and shifts disproportionately toward the object position.
Thus, the output of the system shows a variable degree of space vari-
ance ranging from the pure shift variance case p = 0 to the pure shift
invariance case p = 1, that is, the classic correlation. This kind of
representation provides information about the object, such as classic
correlation, but also quantifies its departure from a given reference
position.
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C H A P T E R 5
Imaging Systems:

Phase-Space
Representations

Jorge Ojeda-Castañeda
DICIS, University of Guanajuato, Salamanca, México

5.1 Introduction
For designing optical imaging systems, one is often faced with
an inevitable tradeoff between two figures of merit, which are ex-
pressed as two Fourier conjugate variables. For example, for image
acquisition there is a tradeoff between the size of the pupil aperture
and the depth of field of the optical system. Phase-space representa-
tions may be useful for suggesting novel solutions to these types of
tradeoffs.

The purpose of this chapter is to put the reader in touch with
the use of phase-space representation for analyzing and designing
novel imaging systems. To that end, we selected a group of imaging
devices that highlight key features on the use of phase-space repre-
sentations. We illustrate the use of the Wigner distribution function1

(WDF) and the ambiguity function2 (AF) by considering equivalent
space-invariant, coherent optical processors, with unit magnification,
in a similar fashion to the approach discussed in Refs. 3 and 4 for other
applications. Our examples are invitations rather than endpoints. For
the sake of clarity, our discussions restrict mainly to one-dimensional
optical systems.
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5.2 The Product-Space Representation and
Product Spectrum Representation
In early studies on the use of coherent optical systems, Leith and
his colleagues5−7 recognized that several one-dimensional signals can
be processed in parallel by using suitable two-dimensional masks.
As is depicted in Fig. 5.1, one can implement optically a spectrum
analyzer of several one-dimensional signals, if one is able to generate
a suitable two-dimensional mask. Here, we consider the following
two-dimensional, complex amplitude transmittance

p(x, y) = u
(

x + y
2

)
u∗
(

x − y
2

)
(5.1)

In this chapter, the complex amplitude transmittance in Eq. (5.1) is
referred to (see Wood and Barry8) as the product-space representation
of the signal u(x). For a rectangular window, u(x) = rect (x/X), the
product-space representation is

p(x, y) = rect

(
x + y

2
X

)
rect

(
x − y

2
X

)

= rect
(

x
X − |y|

)
rect

( y
2
X

)
(5.2)

y
m

f

f

f

f

x

Product space representation

Product spectrum representation

p(x, y)

P(m,n) n

FIGURE 5.1 Optical setup for mapping the product space representation
into the product spectrum representation.
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n

m

FIGURE 5.2 Product space representation and product spectrum
representation of a rectangular window.

The result in Eq. (5.2) is a binary screen with transparent rhomboid that
is depicted in Fig. 5.2a. We note that for phase-space representations,
the above-mentioned rhomboid describes the support of any signal
that is space-bound. We denote the Fourier spectrum of an optical
signal u(x) as U(�),

U(�) =
∞∫

−∞
u(x) exp (−i2��x) dx (5.3)

Thus, the two-dimensional complex amplitude distribution at the
Fraunhofer diffraction plane of the product-space representation,
p(x, y) is

P(�, �) =
∞∫

−∞

∞∫
−∞

p(x, y) exp [−i2�(�x + �y)] dx dy

= U
(

� + �

2

)
U∗

(
� − �

2

)
(5.4)

In other words, if the mask in Eq. (5.1) is placed at the input of an
optical spectrum analyzer (as in Fig. 5.1), the output is the product
spectrum representation P(�, �), as defined in Eq. (5.4). In Fig. 5.2b we
display |P(�, �)| for the example in Eq. (5.2).
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FIGURE 5.3 Anamorphic processors for visualizing: (a) the Wigner
distribution function, (b) the ambiguity function.

Apparently, Ville9 was the first person to explore mathematically
two possible variations of the result in Eq. (5.4). His explorations are
rephrased here in terms of optical anamorphic processors.

In Fig. 5.3a we depict an anamorphic processor that is obtained by
adding (to the spectrum analyzer in Fig. 5.1) a cylindrical lens with
the same focal length as the spherical lens. Due to the presence of the
cylindrical lens, now the anamorphic processor images the complex
amplitude along the horizontal axis, while it implements a Fourier
transform along the vertical axis. In mathematical terms, the anamor-
phic processor is able to generate the WDF, W(x, �), by implementing
over the product-space representation the two-dimensional operation

W(x, �) =
∞∫

−∞

∞∫
−∞

p(x0, y)�(x − x0) exp (−i2��y) dx0 dy

=
∞∫

−∞
p(x, y) exp (−i2��y) dy (5.5)

Next, we analyze the anamorphic processor depicted in Fig. 5.3b.
Now, the anamorphic processor images the complex amplitude along
the vertical axis, while it implements a Fourier transform along the
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horizontal axis. In mathematical terms, the second anamorphic pro-
cessor generates the AF, A(�, y), by implementing over the product-
space representation the two-dimensional operation

A(�, y) =
∞∫

−∞

∞∫
−∞

p(x, y0)�(y − y0) exp (−i2��x) dx dy0

=
∞∫

−∞
p(x, y) exp (−i2��x) dx (5.6)

It is straightforward to extend the above results to similar cases. For
example, if we add a spherical lens to the anamorphic processors
in Fig. 5.3b, we find that the complex amplitude distribution of the
Fraunhofer diffraction pattern of A(�, y) is W(x, �). That is,

W(x, �) =
∞∫

−∞

∞∫
−∞

A(�, y) exp [i2�(x� − �y)] d� dy (5.7)

The above results are summarized pictorially in Fig. 5.4. This type
of diagram was introduced, by Brenner and Ojeda-Castaneda,10 as a

y y
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FIGURE 5.4 Phase-space representation: a roadmap for coherent
illumination.
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road map for visualizing the basic integral transformations that define
phase-space representations. See Chaps. 1 and 2 of this book for the
conceptual developments sketched in Fig. 5.4.

5.3 Optical Imaging Systems
Optical imaging devices are commonly analyzed using linear system
theory. Under coherent illumination, a space-invariant optical system
maps linearly the complex amplitude distribution at the input u0(x)
into the complex amplitude distribution at the output u(x). If the input
is a pinhole-size source, then the complex amplitude distribution at the
output is the coherent point-spread function, or the coherent impulse
response, q (x). Hence, if one has a space-invariant optical system, then
the imaging process is represented by the convolution integral

u(x) =
∞∫

−∞
q (x − x0)u0(x0) dx0 (5.8)

In what follows we explore the use of the WDF for linking ray optics
with wave optics. To that end, we rephrase the linear mapping, in Eq.
(5.8), in terms of the WDF of the input, W0(x, �), and the WDF of the
impulse response, Wq (x, �). Then we rewrite Eq. (5.8) as

W(x, �) =
∞∫

−∞
W0(x0, �)Wq (x − x0, �) dx0 (5.9)

Now, if the input is a pinhole-size source u0(x) = �(x), then in the
paraxial regime the WDF of the input represents a bundle of rays with
the same amplitude, for any possible angle � = ��, that is, W0(x, �) =
�(x). Then, according to Eq. (5.9), the output WDF is, Wq (x, �). By
adding the amplitudes of any possible ray, associated to the output
WDF, we obtain the output irradiance distribution

I (x) =
∞∫

−∞
Wq (x, �) d� (5.10)

We illustrate the use of Eq. (5.10) by considering the WDF of a clear
pupil aperture with cutoff spatial frequency 	

Wq (x, �) = 4(	 − |�|) sinc[4(	 − |�|)x] rect
( �

2	

)
(5.11)
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We note that several interesting features are apparent from Eq. (5.11).
First, independently of the value of x, the rays coming from the edge of
the pupil (marginal rays) can be considered as having zero amplitude,
Wq (x, 	) = 0. Second, in a lax manner, one can consider that all the
rays coming to the optical axis (x = 0) add constructively. However, the
amplitude of the rays decreases as 4(	 − |�|). Third, in a lax manner,
one can consider that outside the optical axis some of the rays add
destructively. Specifically, at the point x = 1/2	, the amplitude of the
rays varies as (2	/�) sin[2�(1 − |�/	|)].

According to Ref. 11, under the influence of wave aberrations, the
WDF of the diffraction-limited system W0(x, �) changes as follows:

W(x, �) = exp

[
−

[M/2]∑
m=1

Cm(�)
(

∂2m+1

∂x2m+1

)]
W0

(
x − f

(
d�

d�

)
, �

)
(5.12)

In Eq. (5.12) we employ the letter f for denoting the focal length of
the optical processor; �(�) denotes the wave aberration polynomial;
[M/2] = M/2 − 1 if M is an even integer number; and [M/2] =
(M− 1)/2 if M is an odd integer number. In the differential opera-
tor, the coefficients are

Cm(�) = f 2m+1( 4�
�

)2m
(2m + 1)!

d2m+1�

d�2m+1 (5.13)

It is apparent from Eq. (5.12) that the WDF W0(x, �) suffers from lateral
displacements, which are predicted by geometrical optics. In addition,
the WDF modifies its amplitude distribution, as predicted by wave
optics.11

Next we discuss the use of an equivalent optical processor, as de-
picted in Fig. 5.5, for implementing filtering operations in the phase-
space representation. To that end, we represent the equivalent optical
image processor, by the superposition integral

W (x, �) =
∞∫

−∞

∞∫
−∞

W0(x0, �0)Wb(x, �; x0, �0) dx0 d�0 (5.14)

The impulse response Wb(x, �; x0, �0) is the Bastiaans12 double WDF.
By simple comparison between Eqs. (5.9) and (5.14), one finds that for
a space-invariant imaging system

Wb (x, �; x0, �0) = Wq (x − x0, �0)�(� − �0) (5.15)

Next, at the pupil aperture of the equivalent optical processor,
we note that the complex amplitude distribution is the AF A0(�, y).
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FIGURE 5.5 Optical setup for processing the Wigner distribution function.

If the complex amplitude transmittance of the pupil mask is T(�, y),
then just after the mask the complex amplitude distribution is the AF
A(�, y) = T(�, y) A0(�, y). The above result can also be rephrased as
follows. If one uses a pupil mask with complex amplitude transmit-
tance T(�, y), then one generates the impulse response t(x, �), which
implements the mapping

W(x, �) =
∞∫

−∞

∞∫
−∞

W0(x0, �0)t(x − x0, � − �0) dx0 d�0 (5.16)

By comparison of Eqs. (5.14) and (5.16) we know that the impulse
response of the equivalent processor is Wb(x, �; x0, �0). For an ideal
system, the impulse response is Wb(x, �; x0, �0) = �(x − x0)�(� − �0).
This WDF cannot be obtained from a product-space representation.
Hence, we comment on the two following approaches.

On the one hand, it is possible to use masks that can be expressed in
terms of the product spectrum representation, say, T(�, y) = P(y/� f, �).
And consequently, the impulse response is expressed in terms of the
product-space representation. And in this manner, the equivalent op-
tical processor effectively implements Eq. (5.9).

On the other hand, one can use masks that cannot be expressed
in terms of the product spectrum representation for implementing
optically nonconventional transformations in phase-space. For exam-
ple, if at the Fraunhofer plane of the equivalent processor one sets
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T(�, y) = �(�), then at the output plane one obtains the WDF

W(x, �) =
∞∫

−∞
W0(x0, �) dx0 = |U0(�)|2 (5.17)

And consequently, since the signal u(x) can be recovered from its
WDF,

u(x)u∗(0) = p
( x

2
, x
)

=
∞∫

−∞
W
( x

2
, �
)

exp (i2�x�) d� (5.18)

we can rewrite Eq. (5.17) as the nonlinear mapping

u(x)u∗(0) =
∫ ∞

−∞
u0

(
x0 + x

2

)
u∗

0

(
x0 − x

2

)
dx0 (5.19)

From Eq. (5.19) it is apparent that the equivalent optical processor is
useful for visualizing a correlation operation. Of course a similar re-
sult is obtained by setting T(�, y) = �(y). For this latter example, at
the output plane, the WDF is

W(x, �) =
∞∫

−∞
W0(x, �0) d�0 = |u0(x)|2 (5.20)

And now Eq. (5.19) becomes

u(x)u∗(0) = |u0(0)|2�(x) (5.21)

The above results remind us that phase-space representations have
an inherent nonlinear nature, caused by using as input either the
product-space representation or the product spectrum representa-
tion. The nonlinear attribute is linked next to the Saleh bilinear
transformations.13

5.4 Bilinear Optical Systems
A bilinear transformation relates the complex amplitude distribution
at the input to the irradiance distribution at the output. Hence, in
terms of the third term of a Volterra series expansion, a bilinear trans-
formation is defined as

|u(x)|2 =
∞∫

−∞

∞∫
−∞

V(x; x1, x2)u0(x1)u∗
0(x2) dx1 dx2 (5.22)
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In Eq. (5.22) the kernel of the Volterra transformation, V(x; x1, x2), is
the bilinear impulse response.13 The concept of bilinearity has found
practical applications in some optical problems.14 In what follows
we show that bilinearity, in the above sense, is related to a phase-
space transformation.15 To our end, we use the following center and
difference coordinates:

ŷ = x1 + x2

2
, y = x1 − x2, B(x; ŷ, y) = V

(
x, ŷ + y

2
, ŷ − y

2

)
(5.23)

By employing Eq. (5.23), the definition of the product-space represen-
tation, and the definition of the WDF, we rewrite Eq. (5.22) as

|u(x)|2 =
∞∫

−∞

∞∫
−∞

B(x; ŷ, y)u0

(
ŷ + y

2

)
u∗

0

(
ŷ − y

2

)
d ŷ dy

=
∞∫

−∞

∞∫
−∞

B(x; ŷ, y) p0 ( ŷ, y) d ŷ dy

=
∞∫

−∞

∞∫
−∞

⎡⎣ ∞∫
−∞

B(x; ŷ, y) exp (i2��̂y) dy

⎤⎦W0( ŷ, �̂)d ŷ d�̂ (5.24)

Equation (5.24) tells one how to tailor the output irradiance distri-
bution if one takes as input either the product-space representation,
p0(x, y) or the WDF W0( ŷ, �̂). Here it is convenient to recall the result
in Eq. (5.14).

|u(x)|2 =
∞∫

−∞
W(x, �) d�

=
∞∫

−∞

∞∫
−∞

∞∫
−∞

W0( ŷ, �̂)Wb(x, �; ŷ, �̂)d ŷ d�̂ d�

=
∞∫

−∞

∞∫
−∞

⎡⎣ ∞∫
−∞

Wb(x, �; x0, �0) d�

⎤⎦W0( ŷ, �̂) d ŷ d�̂ (5.25)
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FIGURE 5.6 Same as Fig. 5.1, but with a rotating scatter plate for reducing
the degree of spatial coherence.

Comparing Eqs. (5.24) and (5.25) and using Eq. (5.15), we obtain

B(x; ŷ, y) =
∞∫

−∞

∞∫
−∞

Wb(x, �; ŷ, �̂) exp (−i2�y�̂) d�̂ d�

=
∞∫

−∞
Wq (x − ŷ, �) exp [i2�(−y)�] d�

= q
[

x −
(

ŷ + y
2

)]
q∗
[

x −
(

ŷ − y
2

)]
= pq (x − ŷ, −y) (5.26)

And therefore, in suitable coordinates, the Volterra kernel is related
to the double WDF. Equivalently, one can say that phase-space repre-
sentations are bilinear transformations. For space-invariant systems,
the Volterra kernel is the product-space representation of the im-
pulse response. Here it is relevant to note that for optical systems
working with partially coherent illumination, one needs to substitute
the product-space representation for the mutual coherence function
(the mutual intensity for monochromatic illumination), as depicted in
Fig. 5.6. Equivalently, the product spectrum representation should be
substituted by the cross-spectral density (the mutual power spectrum
or the mutual spectrum for monochromatic illumination). Thus, the
road map changes as depicted in Fig. 5.7.
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FIGURE 5.7 Same as Fig. 5.4, but for the mutual intensity and the mutual
spectrum.

5.5 Noncoherent Imaging Systems
Under noncoherent illumination, a space-invariant optical system is
represented by the noncoherent impulse response |q (x)|2 = h(x). Ex-
cept for a normalization factor, the Fourier transform of h(x) is denoted
as the optical transfer function (OTF), H(�). The modulus of the OTF,
|H(�)|, is known as the modulation transfer function (MTF). Next, we
analyze the impact of focus errors on the MTF of an optical proces-
sor working under noncoherent illumination. Hence, the generalized
pupil function of the optical system is

Q(�; W2,0) = T(�) exp
[

i2�

(
W2,0

�

)(�

	

)2
]

(5.27)

In Eq. (5.27), T(�) is the complex amplitude transmittance of a mask
located over the pupil aperture. We denote as W2,0 the wavefront aber-
ration coefficient for describing focus error.16−18 Consequently, except
for a normalization factor, the out-of-focus MTF is

|H(�, W2,0)|

=
∣∣∣∣∣∣

∞∫
−∞

T
(

� + �

2

)
T∗
(

� − �

2

)
exp

[
i2�

(
2W2,0�

�	2

)
�

]
d�

∣∣∣∣∣∣ (5.28)
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The result in Eq. (5.28) can be readily connected with the ambiguity
function of T(�), as follows. We note that the AF of the pupil mask is

AT (�, y) =
∞∫

−∞
T
(

� + �

2

)
T∗
(

� − �

2

)
exp (i2�y�) d� (5.29)

If we evaluate Eq. (5.29) at y = [2�/(�	2)]W2,0, then∣∣∣∣AT

(
�,

2W2,0�

�	2

)∣∣∣∣ = |H(�, W2,0)| (5.30)

In other words, if one evaluates the modulus of the AF, |AT (�, y)|,
along the straight line y = m�, then one obtains the MTF |H(�, W2,0)|
with focus error coefficient W2,0 = (�/2)m	2. Hence, we recognize
that |AT (�, y)| contains all the possible MTFs |H(�; W2,0)| for variable
focus error W2,0. See Ref. 19.

Next we note that the simple result in Eq. (5.30) has the two fol-
lowing applications. First, one can visualize (in a single picture) the
impact of variable focus error on the MTF. Second, one can seek pupil
masks that generated rotationally symmetric AF, for reducing the in-
fluence of focus error on the MTF. And in this manner, one can extend
the depth of field of an optical system.

In Fig. 5.8a , we display the modulus of the ambiguity function of a
clear pupil aperture

|AT (�, y)| = [2	 − |�|] rect
( �

4	

)
| sinc [(2	 − |�|)y]| (5.31)

m

y

y = 2W2,0m/lW 2

m

y

(a) (b)

FIGURE 5.8 Modulus of the ambiguity function for: (a) a rectangular pupil
aperture, (b) a phase-only mask with a phase function that has odd symmetry.
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The zero-loci curves of Eq. (5.31) obey the relationship

n
(�

2

)
=
(

2 − �

	

)(�

	

)
W2,0 (5.32)

where n = 1, 2, 3, 4, . . . . The zero-loci curves are useful for identifying
the points where the values of W2,0 and � have a MTF equal to zero,
and in this manner for setting tolerance values for the focus error, in
terms of W2,0. See Refs. 20 and 21. In Ref. 22, this approach is extended
to polychromatic illumination.

5.6 Tolerance to Focus Errors and
to Spherical Aberration
It is a misconception to assume that, under noncoherent illumination,
the phase distribution of the generalized pupil function does not in-
fluence the quality of an image. If the wave leaving the exit pupil has
departures from sphericity, the image quality is deteriorated. Hence,
one can expect that by modifying the phase of the generalized pupil
function, one can reduce the impact of aberrations on the MTF.

In other words, heuristically, one expects that by preventing an
image from becoming badly degraded (due to the presence of aber-
rations) its digitally restored version might have higher quality than
the restored picture of the nonpreventive image.23−25 This approach
has found applications for extending the depth of field, of an optical
system, by using a suitable phase mask that preserves both lateral
resolution and light-gathering power.

There are several phase masks that are able to generate a MTF with
low sensitivity to focus error.26−37 A suitable phase mask generates a
MTF that, inside its passband, does not have zero values for certain
amounts of focus error. However, inside its passband, the generated
MTF has reduced visibility.

Since one simultaneously records the images of planar scenes lo-
cated at different depths of the object field, by using a suitable phase
mask we ensure that each recorded image will suffer from virtually the
same amount of contrast reduction. For this reason, later on, by digital
processing, the image contrast can be simultaneously corrected for all
the recorded images. Next, we discuss a simple model for describing
this approach.

In Sec. 5.5 we indicate that for any pupil mask, its AF conveniently
contains all the defocused MTFs. Hence, an MTF with reduced sen-
sitivity to focus errors must be visualized as an AF with rotational
symmetry. If you will, the AF exhibits a “bow tie” effect, as depicted in
Fig. 5.8b. This type of AF was obtained early by using a parabolic FM,
in radar engineering.38 However, for extending the depth of field, the
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phase mask that produces this type of AF was discovered by Dowski
and Cathey.39

Now, we follow the treatment in Ref. 40. The complex amplitude
transmittance of the pupil aperture is

Q(�) = T(�) exp
[

i2�

(
W2,0

�

)(�

	

)2
]

(5.33)

In Eq. (5.33) we denote as T(�) the complex amplitude transmittance
of the mask located at the pupil aperture. Now, as discussed previously
except for a normalization factor, the OTF of T(�) with variable focus
error is

H(�; W2,0) =
∞∫

−∞
T
(

� + �

2

)
T∗
(

� − �

2

)
exp

[
i2�

(
2W2,0

�

�	2

)
�
]

d�

(5.34)

Next, we note that if T(�) is a continuous function in �, then the OTF
H(�; W2,0) is also continuous in both � and W2,0. Consequently, we
can express Eq. (5.34) as a Maclaurin power series expansion. That is,

H(�; W2,0) = H(�; 0) + W2,0

(
∂ H

∂W2,0

)
+
(

W2
2,0

2!

)(
∂2 H
∂W2

2,0

)
+ · · ·
(5.35)

In the above power series, the nth coefficient is

∂ ′′ H/∂Wn
2,0 =

(
i2��

�	2

)n ∞∫
−∞

�nT
(

� + �

2

)
T∗
(

� − �

2

)
d�

=
(

i2��

�	2

)n ∞∫
−∞

�n PT (�, �) d� (5.36)

In Eq. (5.36), PT (�, �) is the product spectrum representation of the
mask T(�). Here, it is relevant to recognize the following. If the
complex amplitude transmittance of the pupil mask is a Hermitian
function T(�) = T∗(−�), then the product spectrum representa-
tion PT (�, �) is an even function in the integrating variable �. That
is,

PT (�, −�) = PT (�, �) = T
(

� + �

2

)
T∗
(

� − �

2

)
(5.37)

Hence, the integrand in Eq. (5.36) is an odd function, provided that
the power order n is an odd integer number (n = 2s + 1). And con-
sequently, the odd-order coefficients are equal to zero for Hermitian
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pupil masks. If this symmetry condition is fulfilled, then the Maclaurin
series expansion becomes

H(�; W2,0) = H(�; 0) +
∞∑

n=1

W2n
2,0

2n!

(
∂2n H
∂W2n

2,0

)
(5.38)

The result in Eq. (5.38) has two powerful consequences. First, the OTF
exhibits a symmetrical behavior before and after the in-focus image
W2,0 = 0. Second, the optical system can have a large tolerance to
focus error W2,0, provided that the second-order coefficient has small
values.

We note that if the pupil mask is a phase-only filter, then the con-
dition for Hermitan symmetry implies that the phase profile must
exhibit odd symmetry. That is, if 	(�) = −	(−�), then

T∗(−�) = exp [−i	(−�)] = T(�) (5.39)

In Fig. 5.9, we display numerically simulated images of a spoke pat-
tern. Except for the clear pupil aperture, along the columns of Fig. 5.9,
the phase masks obey the relationship

exp [i	(�)] = exp
[
isign (�)


∣∣∣�

	

∣∣∣n] (5.40)

n = 3

Clear
pupil

W20 = 0

W20 = l

W20 = 2l

n = 4 n = 5 n = 6

FIGURE 5.9 Numerical simulations of in-focus and out-of-focus images of a
spoke pattern, when using a clear pupil aperture, and a mask with phase
variations that exhibits odd symmetry.
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In Eq. (5.40) we denote as sign(�) the signum function. We use 


for denoting the maximum phase delay, at the edge of the pupil
aperture. And n is any integer number. However, we note that n can
also represent a real number. For further discussion of this topic, see
Refs. 30, 31, and 40 to 43.

Next, we discuss how these results are also useful for reducing
the impact of spherical aberration in two-dimensional optical sys-
tems with radial symmetry. To that end, we discuss a simplified ver-
sion of McCutchen theorem44 that is useful for analyzing the Strehl
ratio of rotationally symmetric systems, which suffer from wave
aberrations.45−50

The generalized pupil function of an optical system, with rotation-
ally symmetry, that suffers from focus error W2,0 and from spherical
aberration W4,0 is

S(�; W2,0; W4,0) = T(�) exp
{

i2�

[(
W2,0

�

)( �

	

)2
+
(

W4,0

�

)( �

	

)4
]}

(5.41)

In Eq. (5.41) the complex amplitude transmittance of the pupil mask
is T(�). We denote as � the radial spatial frequency, and its maximum
value is the cutoff spatial frequency 	. In polar coordinates, the im-
pulse response of the optical system is obtained by taking the two-
dimensional Fourier transform of Eq. (5.41). That is,

s(r ; W2,0; W4,0) = 2�

	∫
0

S(�; W2,0; W4,0) J0(2�r�)� d� (5.42)

At the optical axis r = 0, Eq. (5.42) reduces to

s(0; W2,0; W4,0) = 2�

	∫
0

S(�; W2,0; W4,0)� d� (5.43)

Now, we map the radially symmetric, two-dimensional pupil into a
one-dimensional pupil aperture, by using the geometrical transfor-
mation

� =
( �

	

)2
− 0.5; Q(�) = T(	(� + 0.5)1/2) (5.44)

From Eq. (5.44), we observe that the geometrical transformation
defines an effective pupil function Q(�) from the physical pupil
mask T(�). And therefore, by using Eq. (5.43) at the optical axis, we
can define an effective impulse response as the square modulus of
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s(0; W2,0; W4,0). That is,

h(W2,0; W4,0)

= |s(0; W2,0; W4,0)|2 = (�	)2
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[(
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)
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+ (W4,0 + W2,0)�
]}

d�

∣∣∣∣∣∣
2

(5.45)

Of course, the effective impulse response, in Eq. (5.45), can be related
to an effective OTF

h(W2,0; W4,0) =
∞∫

−∞
H(�; W4,0) exp

{
i2�

[
(W4,0 + W2,0)

�

]
�

}
d�

(5.46)

Except for a normalization factor, the effective OTF is

H(�; W4,0) =
∞∫

−∞
Q
(

� + �

2

)
Q∗
(

� − �

2

)
exp

{
i2�

[(
2W4,0

�

)
�

]
�

}
d�

= Aq

(
�; 2W4,0

�

�

)
(5.47)

Now, in a similar fashion to the discussion in Sec. 5.5, it is apparent
from Eq. (5.47) that the effective OTF is related to the AF of the effective
pupil function Q(�). Hence, if the effective pupil mask has complex
amplitude transmittance with Hermitian symmetry (odd phase distri-
bution for phase-only mask), then the effective OTF has low sensitivity
to spherical aberration.

Of course, after the effective pupil function is selected, it is necessary
to find the complex amplitude transmittance of the physical mask
T(�), by using the inverse of the geometrical mapping in Eq. (5.44).
The effective OTF is not to be confused with the OTF of the physical
mask. We illustrate this result with the following simple example.
We consider an effective pupil mask that has a cubic phase profile.
That is,

Q(�) = exp (i2�
�3) rect (�) (5.48)

The effective pupil function has an odd phase profile. However, as ex-
pected, the physical pupil mask has a complex amplitude transmission
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that exhibits rotational symmetry. That is,

T(�) = exp

{
i2�


[( �

	

)2
− 1

2

]3
}

circ
( �

	

)
(5.49)

If you will, in Eq. (5.49), the physical pupil mask has an annularly
distributed phase profile, which has odd phase variation provided
that (on the pupil aperture) we take the circle with radius � = 	/

√
2

as the center of symmetry. The ambiguity function of the effective
pupil mask exhibits the bow tie effect. And consequently, the optical
system has low sensitivity to spherical aberration; see Ref. 33. Yet, the
ambiguity function of the effective pupil is not the OTF of the physical
mask.

Related to the previous discussion, we emphasize the following.
There is a difference between the use of radially symmetric phase
masks (axiconlike elements) for generating large axial irradiance
distributions51−57 and the use of annularly distributed odd phase
masks for reducing the impact of aberrations on the MTF, as in Ref. 58.
So it may be useful to use the term high focal depth for describing axi-
conlike elements and the term extended depth of field for describing
optical elements that reduce the impact of focus error on the MTF.

5.7 Phase Conjugate Plates
An optical system with variable focal length is commonly desig-
nated as a varifocal, or zoom, system. For tuning the focal length,
one changes the longitudinal separation between two quadratic-phase
components, which usually have opposite-sign powers. Alvarez59 and
Lohmann60−62 independently proposed a varifocal system that con-
sists of a pair of cubic phase elements, which are laterally displaced.
This type of optical device is also useful for generating, in a tunable
fashion, wavefront aberrations.63,64

In Fig. 5.10 we depict schematically the use of a pair of phase ele-
ments with opposite-sign powers. We assume that the pair is located
at the pupil aperture (Fourier domain) of a 4 f optical processor. The
pupil aperture has a rectangular shape. We use the Greek letters � and
� to represent the spatial frequencies along the horizontal axis and
the vertical axis, respectively, in the pupil aperture. For any phase
element, the cutoff spatial frequency is 	. The complex amplitude
transmittance of a single-phase plate is

Q(�, �) = T(�) rect
( �

2	

)
= exp [i(�)] rect

( �

2	

)
rect

( �

2	

)
(5.50)
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f f f f

FIGURE 5.10 Optical setup for using a phase conjugate pair, at the Fourier
plane.

Now, let us suppose that the pupil mask is formed with a pair of con-
jugate phase elements, and that these elements are laterally displaced
in opposite directions, say, by the spatial frequency �/2 along the hor-
izontal axis. Then the complex amplitude transmittance of the pupil
mask can be expressed in terms of the product spectrum representa-
tion PT (�, �) as

S(�, �; �) = T
(

� + �

2

)
T∗
(

� − �

2

)
rect

( �

2	

)
= PT (�, �) rect

( �

2	

)
(5.51)

Equation (5.51) tells us how a generalized pupil function can be syn-
thesized from a pair of conjugate phase elements. To find the cor-
responding synthesized PSF, we take the two-dimensional inverse
Fourier transform of S(�, �; �). Except for the normalization factor
1/(2	), this gives

s(x, y; �) = sinc (2	y)

⎡⎣ ∞∫
−∞

T
(

� + �

2

)
T∗
(

� − �

2

)
exp (i2�x�) d�

⎤⎦
(5.52)

The integral in Eq. (5.52) can be readily recognized as the AF, AT (�, x),
of the mask T(�). Hence, the modulus of s(x, y; �) can be written as

|s(x, y; �)| = |sinc (2	y)||AT (�, x)| (5.53)
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In Sec. 5.4 we note that the ambiguity function of any single phase
mask T(�) contains all the MTFs, |H(�; W2,0)|, for variable focus error
W2,0. That is, ∣∣∣∣AT

(
�, x = 2W2,0�

(�	)2

)∣∣∣∣ = |H(�; W2,0)| (5.54)

Now, by setting y = 0 in Eq. (5.53) and using Eq. (5.54), we get

|s(x, 0; �)| = |H(�; W2,0)| (5.55)

This is a remarkable result. By using a pair of conjugate phase ele-
ments that are laterally displaced with respect to each other, we select
a tunable spatial frequency � at the 4 f optical system. With the dis-
placed elements as a pupil mask, we generate a PSF whose modulus
would display optically the variation of the MTF with focus error of a
single-phase element, for the spatial frequency � that was previously
selected.

We use the result in Eq. (5.55) for relating the Alvarez-Lohmann
technique to the wavefront coding technique of Dowski and Cathey.
For a cubic phase element, the complex amplitude transmittance along
the horizontal axis is

T(�) = exp
[

i2�


( �

	

)3
]

rect
( �

2	

)
(5.56)

In Eq. (5.56), 
 denotes the maximum optical path difference, which
is introduced by the element at the edge of the pupil aperture. If we
use a mask that is composed of two laterally displaced cubic phase
elements, from Eqs. (5.51) and (5.56) we obtain

S(�, �; �) = exp
[

i�

(
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)(�
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]
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[
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]
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(5.57)

Therefore, except for the normalization factor 1/(2	), the modulus of
the synthesized PSF is

|s(x, y; �)|
= |sinc (2	y)|

×
∣∣∣∣∣∣

∞∫
−∞

exp
[
i2�(3
)
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)(�
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]
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(
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2	 − |�|
)

exp(i2�x�) d�
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(5.58)
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On the other hand, if we use the complex amplitude transmittance of
Eq. (5.56) in the case of a single phase element, except for a normal-
ization factor, the corresponding defocused MTF is

|H(�; W2,0)|

=
∣∣∣∣∣∣

∞∫
−∞

exp
{

i2�

[
(3
)
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)2
+ 2

(
W2,0

�

)( �

	

)](�

	

)}

× rect
(

�

2	 − |�|
)

d�

∣∣∣∣ (5.59)

We discuss next the relationship between Eqs. (5.58) and (5.59). On
one hand, we can set a coherent optical processor that uses as a spatial
filter a pair of cubic conjugate phase elements. According to Eq. (5.58),
by introducing a displacement between both elements, we generate a
quadratic-phase delay within the integral, which is used for evaluat-
ing the PSF.

On the other hand, under noncoherent illumination, we can gather
images using a single cubic phase element as the spatial filter. Ac-
cording to Eq. (5.59), due to the autocorrelation operation, we also
generate a quadratic-phase delay within the integral, which is used
for evaluating the MTF.

Hence, in the above two cases, we are able to generate a quadratic-
phase delay within a Fourier integral. In this manner, we transform
the Fourier integral into a Fresnel integral. Of course, in each case the
Fresnel integral appears for a different physical reason. However, it is
convenient to exploit this similarity with the purpose of visualizing the
defocused MTF of a single-phase element by using a pair of conjugate
phase elements. It is worth remarking that the expression in Eq. (5.59),
for the AF in terms of a Fresnel integral, was discovered early by
radar engineers.58 More recently, it has been used by Somayaji and
Christensen.65

Finally, we discuss a method for implementing optically a tunable
wavefront coding mask. We assume that the complex amplitude trans-
mittance of a single-phase element is

T(�) = exp
[

i2�


( �

	

)4
]

rect
( �

2	

)
(5.60)

We employ 
 again to represent the maximum phase delay, at the edge
of the pupil aperture. The two-dimensional version of Eq. (5.60) was
presented by Lopez-Gil et al. for generating spherical aberration.64

Here we consider that at the pupil aperture we have a pair of
quadratic-phase elements, which are laterally displaced in opposite
directions, say, by �/2. We also assume that the optical system suffers
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from focus error, and then the generalized pupil function is

S(�; �; W2,0) = exp
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(5.61)

From Eq. (5.61) we find that, except for a normalization factor, the
MTF for the pair of quartic phase conjugates is

|H(�; W2,0; �)|

=
∣∣∣∣∣∣

∞∫
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exp
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× rect
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)

d�

∣∣∣∣ (5.62)

From Eq. (5.62) we can see that again the integral for evaluating the
MTF is a Fresnel integral, as in the case of the wavefront coding tech-
nique. However, the phase “strength” of the element is now propor-
tional to the product 
�. Thus, by changing the lateral displacement
� between the phase elements, we can choose the strength of the cubic
phase term of the wavefront coding technique.

In Fig. 5.11 we show four graphs of the MTF versus �/	 and W2,0/�
for lateral displacements �/	 = 0.00, 0.02, 0.06, and 0.30, with 
 = 12.
It is apparent from Fig. 5.11 that the MTF has low sensitivity to focus
errors W2,0/� with increasing values of the plates’ lateral displacement
�/	.

Summarizing, we described the use of the optical anamorphic pro-
cessor for relating the product-space representation, the WDF, the AF,
and the product spectrum representation. We indicated that by adding
a rotating ground glass, for reducing the degree of spatial coherence,
the anamorphic processors are useful for linking the mutual inten-
sity with the WDF, the AF, and the mutual spectrum. We reported
two road maps for visualizing the basic integral transformations for
phase-space representations.

We explored the use of the WDF for linking geometrical optics and
wave optics. We discussed a method for analyzing the impact of wave
aberrations from the viewpoint of the WDF. Then we related bilinear
transformations with phase-space representations. We have shown
that for space-invariant systems, the Volterra kernel is the product-
space representation of the coherent impulse response.

We revisited the link between the OTF of an optical system that
suffers from focus errors and the AF of the pupil mask. We employed
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FIGURE 5.11 Modulation transfer function vs. focus errors for a phase
conjugate pair. Each element of the pair has a quartic phase profile. The
lateral displacements are: (a) �/	 = 00.0, (b) �/	 = 02.0, (c) �/	 = 06.0,
and (d) �/	 = 30.0.

a Maclaurin series expansion, of the defocused OTF, for achieving
an optical system with low sensitivity to focus errors. We have shown
computer-simulated image for visualizing the extended depth of field,
which can be achieved by using phase-only masks that have phase
variations with odd symmetry. This analysis was extended to spherical
aberration by using a simplified version of the McCutchen theorem.

We considered a coherent optical processor that uses as a spatial fil-
ter a phase mask which includes two phase elements, with opposite-
sign powers. We indicated that by introducing a lateral displacement
between the two elements, we generate a PSF that represents the
ambiguity function of a single element. We indicated that the vari-
focal technique proposed by Alvarez and Lohmann can be used to
visualize the defocused MTF of a cubic phase mask, as used in the
wavefront coding technique. We applied a pair of phase conjugates,
with quartic-phase profile, for proposing a tunable wavefront coding
technique.
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Gómez Sarabia.

References
1. M. J. Bastiaans, “Wigner distribution and its relatives,” Chap. 1, Phase Space

Representations in Optics, McGraw-Hill, New York, 2008.
2. J.-P. Guigay, “Ambiguity function in optical imaging,” Chap. 2, Phase Space

Representations in Optics, McGraw-Hill, New York, 2008.
3. W. T. Rhodes and J. M. Florence, “Frequency variant optical signal analysis,”

Appl. Opt., 15: 3073–3079 (1975).
4. B. E. Saleh, “Bilinear processing of one-dimensional signals by use of linear

two-dimensional coherent optical processors,” Appl. Opt., 17: 3408–3411 (1978).
5. L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, “Optical data pro-

cessing and filtering systems,” IRE Trans. Inf. Theory IT6: 386 (1960).
6. E. N. Leith, A. Kozma, and J. Upatnieks, “Coherent optical systems for

data processing, spatial filtering, and wavefront reconstruction,” Optical and
Electro-Optical Information Processing, J. T. Tippet et al. (eds.), Massachusetts
Institute of Technology Press, Cambridge, 1965, pp. 143–158.

7. L. J. Cutrona, “Recent developments in coherent optical technology,” Optical
and Electro-Optical Information Processing, J. T. Tippet et al. (eds.), Massachusetts
Institute of Technology Press, Cambridge, 1965, pp. 83–123.

8. J. Wood and D. Barry, “Linear signal synthesis using the Radon-Wigner trans-
form,” IEEE Trans. Signal Process. 42: 2101–2111 (1995).
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C H A P T E R 6
Super Resolved Imaging
in Wigner-Based Phase

Space

Zeev Zalevsky
School of Engineering, Bar-Ilan University
Ramat-Gan, Israel

6.1 Introduction
Super resolution (SR) is a field integrating the sciences of optics with
the expertise of image processing and computer vision science.1–7

Basically any imaging system, digital as well as a human eye, has a
limited capability to separate close spatial features. This limitation can
be related either to the diffraction or to the geometry of the imaging
sensing array.1 In the case of diffraction, given an imaging lens with
limited aperture size, not all the rays reflected from the object are
collected by the lens. According to Rayleigh criteria,8–10 this limitation
is proportional to the product of the wavelength of the illumination
and the F number of the optics (the ratio of the focal length to the
diameter of the lens). Thus, the smaller the F number, the better the
spatial separation becomes. In the case of the geometry of the sensing
array, the smaller the pixels are, i.e., the denser the spatial sampling of
the space, the better the capability to reconstruct closer point sources
originated from the imaged object.1

To overcome the limitation of a given imaging system, one may
convert the spatial degrees of freedom, which before could not pass
through the limited spectral bandwidth of the imaging system, into
other domains that the imaging system can transmit, and then after
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passing them through the system, one can convert them back to their
proper location in the space domain. The process of converting to
and converting back of the degrees of freedom is also called encoding
and decoding or multiplexing and demultiplexing. The improvement of
resolution requires “payment.” The payment needed to improve the
resolution in the space domain is the devotion of other domain or
other subspaces into which the required spatial degrees of freedom of
the input signal can be converted. The conversion of spatial degrees
of freedom can be done to a single subspace or to a plurality of several
such subspaces.

To do this properly without losing the desired spatial information,
one needs to have a priori information on the signal. Having a priori
knowledge that a certain domain is not used by the signal may allow
one to designate it for the use of spatial resolution improvement. For
instance, knowing that the object does not vary in the time domain
may assist in using the time domain for the process of converting to
and converging back the degrees of freedom.

The pluralities of other domains that may be used for this temporary
conversion of degrees of freedom are the time11–15 wavelength,16–18

polarization,19,20 code,21–25 gray levels,26 field of view,27–32 and even
light’s coherence33–35 domain.

To better understand how this adaptation of degrees of freedom
may be done, one may describe the space-frequency distribution, i.e.,
a phase space, of the signal (SWI) and the one of the system (SWY) and
perform the adaptation to all the degrees of freedom of SWI that are not
graphically overlapping with the SWY representation.36−38 The phase
space that is simple for presenting the space-frequency distributions
of both the signal and the system is the Wigner transformation.39,40

Although bilinear, this transformation has interesting properties of
representing basic optical modules as simple mathematical operations
in this domain.40−42

In this chapter we provide a schematic description and explanation
for how the process of SR may be understood in the Wigner space. In
general, a more heuristic explanation for the SR process may involve
any other phase-space diagrams. However, the advantage of using the
Wigner as part of our mathematical description is related to the fact
that the Wigner, although it is a bilinear transformation, can be related
mathematically to the spatial degrees of freedom of a signal. In our
presentation we mainly focus on the diffraction-related limitation of
resolution.

The chapter is constructed as follows: In Sec. 6.2 we mathematically
define the space bandwidth (SW), i.e., the space-frequency distribution,
while separating the distribution of the signal from that of the system
(SWI versus SWY). In Sec. 6.3 we focus on five ways of performing SR
while explaining how those operations are represented in the Wigner
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phase space. We discuss the use of Wigner for code, time, polarization,
wavelength, and gray-level multiplexing SR. Section 6.4 concludes the
chapter.

6.2 General Definitions
The Wigner phase space is a bilinear distribution defined as

Wu(x, �x) =
∫

u
(

x + x′

2

)
u∗
(

x − x′

2

)
exp (−2�i�xx′) dx′ (6.1)

where u(x) is the signal that is being transformed while x and �x are
the space and spatial-frequency coordinates, respectively.

The projection of the Wigner distribution contains the spatial and
the spectral distribution of the signal u:

|u(x)|2 =
∫

Wu(x, �x) d�x

|U(�x)|2 =
∫

Wu(x, �x) dx

(6.2)

where U(�x) is the Fourier transform of u(x). Another important prop-
erty is that the area of the Wigner equals the total energy of the signal:∫

|u(x)|2dx =
∫

|U(�x)|2d�x =
∫∫

Wu(x, �x) d�x dx (6.3)

Because of those important and fundamental properties, as well as
the fact that basic optical modules can be represented as simple and
well-defined geometric operations over the Wigner chart,41 this rep-
resentation became a very useful tool for analyzing optical systems
and especially when dealing with optical SR.

One important parameter is the number of degrees of freedom, also
called the space-bandwidth product (SW). This number equals

N = �x · �� (6.4)

where �x is the spatial size of the signal and �� is its spectral width. In
the general case also when the Wigner distribution is not a rectangular
function, it can still be shown that the number of degrees of freedom
is related to the area of the Wigner.36

N =
∫∫

Wu(x, �x) dx d�x

The proof is done by dividing the Wigner into infinitesimal rectangles
with each representing a single degree of freedom and showing that
their overall contribution equals the overall area of the distribution.
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Note that this number is preserved in various manipulations that
we may wish to apply to the signal. If the signal is compressed in the
space domain (due to magnification) by a given factor, then its spectral
bandwidth will be increased by the same factor in order to preserve
the product.

Instead of a number, one may define an SW function that can be
formulated by following the next steps. First, to define a binary Wigner
distribution

SWB(x, �x) =
{

1 〈Wu(x, �x)〉 > WTresh

0 otherwise
(6.5)

where 〈. . . 〉 stands for ensemble averaging over all possible signals
that are relevant to the investigated problem. Now we define the SW
distribution according to

SW(x, �x) = � · SWB(x, �x) (6.6)

where � is a normalizing constant equal to

� =
∫∫

SWB(x, �x)Wu(x, �x) dx d�x∫∫
SWB(x, �x) dx d�x

(6.7)

Now the SW is a two-dimensional distribution that, on one hand,
has the heuristics of a space and frequency representation since it is
evolved from a phase space and, on the other hand, has the rigorous
relation to the degrees of freedom due to the inherent property related
to the Wigner distribution.36

To realize SR, one may need to adapt or adjust the SW distribution
(in the Wigner phase space) of the signal to that of the system. This
process of adaptation is relevant only in the case where the system
can contain at least the number of degrees of freedom that is available
in the signal:

Nsignal ≤ Nsystem (6.8)

This means that the SR process is relevant only if the area of SWI is
smaller than the area of SWY.

As schematically depicted in Fig. 6.1 resolution may still be lost
even when Eq. (6.8) holds, if the SW chart of the signal (denoted as
SWI) is graphically not contained in the SW of the system (denoted
by SWY). To have the signal’s full resolution transmitted through the
system, one needs

SWI(x, �x) ⊆ SWY(x, �x) (6.9)
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FIGURE 6.1 Example of a case where the SW adaptation process may lead to
resolution improvement.

The process of adaptation includes conversion of spatial degrees
of freedom contained in the SWI into other domains such as time,
wavelength, polarization, coherence, gray level, field of view, or un-
used spatial regions/domain, etc., that are part of a hyperspectral
and multidimensional Wigner distribution representing the system
(SWY).

Figure 6.1 presents an example where the SR process may be imple-
mented. It is the case where the area of the SWI is smaller than the area
of SWY; i.e., the signal’s number of degrees of freedom is smaller than
the number of degrees of freedom that the system can transmit, and
yet graphically SWI is not contained within SWY and thus resolution
is reduced. By proper adaptation between the two charts, improve-
ment of resolution is feasible in this case. The adaptation process itself
may be implemented by using additional domains (denoted by z in
the figure) rather than using only the space and frequency plane.

6.3 Description of SR
We will assume a general imaging system, as presented in Fig. 6.2. In
this setup an encoding mask is positioned near the input object that is
imaged by a finite imaging lens, which is schematically described as an
aperture positioned at the optical Fourier plane, and later a decoding
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FIGURE 6.2 Schematic sketch of the imaging setup.

mask is positioned near the detector at which the output image is
obtained. The detector performs time, wavelength, or other types of
averaging to decode the spatial information that was encrypted by the
encoding input mask. The encoding mask can be a random spatial dis-
tribution, time-varying spatial distribution, or wavelength-dependent
filter, etc. The dependency of this mask is related to the domain into
which we aim to convert the degrees of freedom.

As mentioned before, we assume that the spatial encoding mask
which has some polarization, wavelength, or temporal dependency
is positioned near the input object u(x). We denote this mask as
g(x, p(t, �), �, t). The meaning of this notation is that at the different
spatial positions along the mask we may have wavelength dependen-
cies (denoted by �), time dependencies (denoted by t), or polarization
dependency (denoted by p) while the polarization dependency can
have time and wavelength dependency as well: p(t, �).

We denote the spatial spectrum of this mask as

G(�x, p(�, t), �, t) =
∫

g (x, p(�, t), �, t) exp (−2�i x�xx) dx (6.10)

and the spatial spectrum of the object by

U(�x) =
∫

u(x) exp (−2�i x�xx) dx (6.11)

Since the encoding mask is attached to the object (i.e., mathemat-
ically there is a multiplication operation between the two distribu-
tions in the space domain), in the spectrum we obtain a convolution
operation between the spectrum of the input object and the Fourier
transform of the mask:∫

U(�′
x)G(�x − �′

x, p(�, t), �, t) d�′
x (6.12)
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After the coded spatial information is passed through the finite
aperture of the imaging lens, we have a multiplication of this aperture
by the overall spectral distribution:

rect
(

�x

��x

)∫
U(�′

x)G(�x − �′
x, p(�, t), �, t) d�′

x (6.13)

We denoted the spatial width of the aperture by ��x . The decoding
mask is attached to the output plane, and thus its Fourier transform
performs an additional convolution operation with the overall expres-
sion of Eq. (6.13).∫

Gd (�x − �′
x, p(�, t), �, t) rect

(
�′

x

��x

)
×
∫

U(�′′
x)G(�′

x − �′′
x, p(�, t), �, t) d�′′

x d�′
x

(6.14)

where Gd is the Fourier transform of the decoding mask gd :

Gd (�x, p(�, t), �, t) =
∫

gd (x, p(�, t), �, t) exp (−2�i x�xx) dx (6.15)

Assuming that the decoding mask is the complex conjugate of the
encoding mask, we have

gd (x) = g∗(x) (6.16)

which means that

Gd (�x) = G∗(−�x) (6.17)

and thus the expression of Eq. (6.14) becomes

UR(�x) =
∫

G∗(−�x + �′
x, p(�, t), �, t) rect

(
�′

x

��x

)
×
∫

U(�′′
x)G(�′

x − �′′
x, p(�, t), �, t) d�′′

x d�′
x

(6.18)

where UR is the spectrum of the reconstructed image uR:

UR(�x) =
∫

uR(x) exp (−2�i x�xx) dx (6.19)
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6.3.1 Code Division Multiplexing
The expression of Eq. (6.18) can be reformulated as follows:

UR(�x) =
∫

U(�′′
x)
[∫

rect
(

�′
x

��x

)
G∗(�′

x − �x)G(�′
x − �′′

x) d�′
x

]
d�′′

x

(6.20)

In the case of code division multiplexing there are no time, polariza-
tion, or wavelength variations. For a random encoding mask having
small spatial features, the internal integral may be approximated as
follows:∫

rect
(

�′
x

��x

)
G∗(�′

x − �x) G(�′
x − �′′

x) d�′
x ≈ �(�x − �′′

x) (6.21)

which leads to

UR(�x) =
∫

U(�′′
x) �(�x − �′′

x) d�′′
x = U(�x) (6.22)

Note that the assumption of Eq. (6.21) is an approximation and in
practice when ��x is getting narrower, the right wing can better be
approximated with a spectral function which is wider than a delta. In
addition the right wing can contain another additive term that may be
approximated by a constant. The widening of the delta will blur the
spectral expression of UR which means that the super resolved image
will become field of view limited. The addition of the constant level
will reduce the contrast or the signal to noise ratio of the obtained
reconstruction.

In Fig. 6.3 we simulate numerically the proposed approach for code
division multiplexing SR. A resolution target was lowpass filtered

(a) (b)

FIGURE 6.3 (a) Low-resolution USAF target; (b) super resolved
reconstruction using code multiplexing.
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while being imaged through a band-limited lens aperture. The input
object is a U.S. Air Force (USAF) resolution target. Its spatial blurring
is clear in Fig. 6.3a. However, after the addition of the random encod-
ing and decoding code multiplexing mask, one obtains the image of
Fig. 6.3b where the high-resolution features of the resolution target are
almost completely reconstructed. The resolution improvement here is
by more than a factor of 5.

Obviously the image of Fig. 6.3b is obtained after image processing
that includes some reduction of background noises.

6.3.2 Time Multiplexing
In this case we will perform time averaging (thus we do not have to
assume spatial randomality of the encoding and decoding masks), so
Eq. (6.18) becomes

UR(�x) =
∫ ∫

U(�′′
x) rect

(
�′

x

��x

)
×
[∫

G(�′
x − �′′

x, p(�, t), �, t) G∗(−�x + �′
x, p(�, t), �, t) dt

]
× d�′′

x d�′
x

(6.23)

Since we have a time-varying mask we can approximate that

∫
G(�′

x − �′′
x, p(�, t), �, t)G∗(−�x + �′

x, p(�, t), �, t) dt ≈ �(�x − �′′
x)

(6.24)

We obtain the final expression for the reconstructed spectrum:

UR(�x) =
[∫

rect
(

�′
x

��x

)
d�′

x

]∫
U(�′′

x)�(�x − �′′
x)d�′′

x = ��x · U(�x)

(6.25)

Numerical demonstration of the time averaging SR approach may
be seen in Fig. 6.4. In Fig. 6.4a we present the blurred (lowpass) resolu-
tion target (USAF) and in Fig. 6.4b its reconstruction after the addition
of the time-varying encoding and decoding random mask and the
performing of the averaging operation in the time domain. In the sim-
ulation we averaged 800 images. One can clearly see the resolution
improvement demonstrated in this simulation. The obtained improve-
ment factor is about 3.



202 C h a p t e r S i x

(a) (b)

FIGURE 6.4 (a) Low-resolution USAF target; (b) super resolved
reconstruction using time multiplexing.

6.3.3 Polarization Multiplexing
In this case we perform averaging over the time-varying polarization
state, and thus Eq. (6.18) becomes

UR(�x) =
∫ ∫

U(�′′
x) rect

(
�′

x

��x

)
×
[∫

G(�′
x − �′′

x, p(�, t), �, t)G∗(−�x + �′
x, p(�, t), �, t) dp

]
× d�′′

x d�′
x =

∫ ∫
U(�′′

x) rect
(

�′
x

��x

)
×
[∫

G(�′
x − �′′

x, p(�, t), �, t)G∗(−�x + �′
x, p(�, t), �, t)

×
(

dp
dt

)
dt
]

d�′′
x d�′

x

(6.26)
since∫

G(�′
x − �′′

x, p(�, t), �, t)G∗(−�x + �′
x, p(�, t), �, t)

(
dp
dt

)
dt

≈ �(�x − �′′
x)

(6.27)
We obtain once again as the final expression for the reconstructed
spectrum

UR(�x) =
[∫

rect
(

�′
x

��x

)
d�′

x

]∫
U(�′′

x)�(�x − �′′
x) d�′′

x = ��x · U(�x)

(6.28)
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6.3.4 Wavelength Multiplexing
In this case we will perform wavelength averaging (so again we do not
have to assume the spatial randomality of the encoding and decoding
masks), so Eq. (6.18) becomes

UR(�x) =
∫ ∫

U(�′′
x) rect

(
�′

x

��x

)
×
[∫

G(�′
x − �′′

x, p(�, t), �, t)G∗(−�x + �′
x, p(�, t), �, t) d�

]
×d�′′

x d�′
x

(6.29)
since∫

G(�′
x − �′′

x, p(�, t), �, t)G∗ (−�x + �′
x, p(�, t), �, t) d� ≈ �(�x − �′′

x)

(6.30)

We obtain once again as the final expression for the reconstructed
spectrum

UR(�x) =
[∫

rect
(

�′
x

��x

)
d�′

x

]∫
U(�′′

x)�(�x − �′′
x) d�′′

x = ��x · U(�x)

(6.31)

Note that in this case the meaning of the encoding mask is that
every spatial pixel of the input object is “painted” with a different
color. The decoding mask is identical to the encoding one, and it is
picking out, from the blurred image, the right color in every high-
resolution spatial location. The realization of such a mask can be
straightforward by placing a chromatic spatially varying filter (e.g.,
chromatic absorption filter) in front of the input object which is being
illuminated by a white light source. Otherwise this may also be re-
alized by illuminating a dispersion grating with a white light source
while this grating is positioned before the object, and thus the input
object will be illuminated with the dispersed colors.

6.3.5 Gray-Level Multiplexing
Instead of using the domains previously discussed, for the coding
of the spatial degrees of freedom, one may use the gray-level or the
dynamic range domain as well. We assume that we have a priori
information that the dynamic range of the input object is limited. Once
again we attach a gray-level coding mask to the input object. Thus,
prior to the blurring due to the low-resolution imaging, we attach
a different transmission value to each pixel of the input, while the
ratio between every one of those values is 2M, where M is the a priori
known and limited number of bits spanning the dynamic range of the
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FIGURE 6.5 Schematic sketch of gray-level coding mask for binary objects.

imaged object. Obviously, the imager should have a sufficient number
of dynamic range bits. It should be at least M× K 2, where K is the SR
factor in every spatial dimension.

To clarify this concept, the schematic description of the gray level
coding mask appears in Fig. 6.5. In this figure the resolution improve-
ment is by a factor of 2 in each axis; thus the dynamic range of the
detector should have 4 times more bits than the number of bits in
the original object. So if the sensor has a dynamic range of 12 bits,
the imaged object should not have more than 3 bits of gray level. This
coding causes a spatial blurring. However, since every high resolution
lateral feature is mapped to a different region in the dynamic range
axis, it may be recovered later on. This is so because a priori we know
the encoding/decoding conversion map that converts between every
high-resolution spatial pixel and its corresponding bits region in the
dynamic range axis.

Specifically referring again to the schematic sketch of Fig. 6.5, since
the ratio of two adjacent pixels of the gray-level coding mask is 2, the
original object should have 1 bit of dynamic range (a binary object).

An important comment related to this approach is that it is more
suitable to deal with the reduction of the imaging resolution due to ge-
ometric limitation (the number and the size of detector’s pixels) than
the diffraction limitation since the proper conversion between space
resolution and dynamic range bits is done not continuously in space
but only for spatially adjacent blocks of pixels (in Fig. 6.5 those are
blocks of 2 × 2 pixels). The approach will not perform proper gray-
level coding for spatial sampling in regions of transition between two
adjacent blocks (e.g., the spatial transition sample which is the blurred
value that averages the right column of pixels of one block with the
left column of the next adjacent block positioned on its right side).
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(a) (b)

FIGURE 6.6 (a) Low-resolution Lena image containing 3 bits of dynamic
range; (b) super resolved reconstruction using gray-level multiplexing.

In Fig. 6.6 we simulated this approach by taking Lena image con-
taining 3 bits of gray level and coded it with gray-level mask similar to
the one presented in Fig. 6.5 (except that since the original object has 3
bits, the values of the coding mask should be 1, 8, 64, 512). We assume
that the dynamic range of the sensor has 12 bits (maximal value of
4096). In Fig. 6.6a we present the low-resolution and dynamic range-
limited image. In Fig. 6.6b we present the reconstruction. Clearly a
resolution improvement of close to a factor of 2 in each axis is ob-
tained. This is especially evident by observing the borders (e.g., the
borders of the hat of Lena).

6.3.6 Description in the Phase-Space Domain
In this subsection we describe the previously discussed SR principles,
using the Wigner transformation. As previously mentioned, a more
heuristic phase-space diagram can also do the job of describing the
SR principles. However, the advantages of using the Wigner transfor-
mation are connected to the relation between this distribution and the
spatial degrees of freedom.

In Fig. 6.7 we schematically present the various steps of the setup of
Fig. 6.2 for the case of time and polarization (which is time-varying)
SR approaches where the degrees of freedom are converted from the
spatial domain to the time or polarization domains.

In our schematic representations to come we deal with the case in
which the spectral bandwidth of the signal is 3 times larger than the
bandwidth that may be transmitted through the aperture of the imag-
ing lens. The maximal bandwidth that may fit through the aperture
of the lens is denoted by ��, where � and x designate the spectral and
the spatial domain coordinates, respectively.

In Fig. 6.7a we present the phase-space diagram of a randomly var-
ied distribution having high spatial resolution. This chart presents the
time-varying random encoding mask that we will use. Every different
spatial value is designated with a different color. Since we are talking
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FIGURE 6.7 Schematic description of the adaptation of degrees of freedom
in the phase-space plane for time and polarization multiplexing. (a)
Distribution of the encoding mask. (b) Distribution of the high-resolution
signal. (c) Distribution of the product of the signal and the encoding mask.
(d) Blurring due to reduced resolution of the imaging system. (e) Decoding
procedure.
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about time (or time-varied polarization) multiplexing, this spatial dis-
tribution is varied with time. Thus, in Fig. 6.7a the order of the different
colors is changed versus time. This indicates that the spatial distribu-
tion of the encoding mask is time-varying. The small spatial pixels
of the chart occupy a size of 3 �� in the spectral axis because in the
space domain the mask has pixels which are 3 times smaller than the
imaging resolution. To simplify our explanation, if we let �x denote
by �x the spatial resolution that corresponds to spectral bandwidth of
��, then

�x = 1
��

(6.32)

When we have 3 times finer resolution of �x/3, the spectral bandwidth
will be 3 times larger, or 3 ��, because the product of the spatial reso-
lution and the spectral bandwidth equals to 1 (a well-known property
of the Fourier transform).

In Fig. 6.7b we present the phase-space diagram of the signal that
has a bandwidth of 3�� (3 times larger than the bandwidth that may
be transmitted through the aperture of the imaging lens).

In Fig. 6.7c we present the schematic sketch of the phase-space
diagram of the product of the random coding mask and the signal.
The phase-space distribution of the signal does not vary with time,
but the encoding mask does. The bandwidth of the product equals
6�� since a well-known Fourier relation dictates that the product in
the space domain will be a convolution in the spectrum domain. A
convolution of two spectral functions having spectral width of 3��
yields a result with width of 6��.

In Fig. 6.7d we show what happens when the high-resolution (and
time-varying) product distribution is passed through a size-limited
aperture. There is spatial blurring which reduces the spatial resolu-
tion (the thin rectangles became 3 times wider in the spatial axis and
3 times narrower in the spectral axis), and thus the various colors that
designated different gray levels of the spatial pixels are mixed together
(which reduces their dimension in the spectral axis �). Note that the
area of each rectangle denotes a single degree of freedom, and this area
remains constant: increasing its dimension in the space domain re-
duces the dimension in the spectral axis while preserving the product.

The decoding process is described by Fig. 6.7e, and it includes mul-
tiplication of the captured information by the same high-resolution
and time-varying decoding spatial mask distribution and then per-
forming time averaging. The time averaging that is performed after
the multiplication will extract, from every high-resolution spatial de-
gree of freedom (that occupied spatial size of 3��) the original value
while averaging to zero, the undesired information that was added to
it due to the spatial blurring.
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FIGURE 6.8 Schematic description of the adaptation of degrees of freedom
in the phase-space plane for wavelength and dynamic range multiplexing.
(a) Encoding. (b) Blurring due to reduced resolution of the imaging system.
(c) Decoding for wavelength multiplexing.

Note that the dashed line in Fig. 6.7 represents a continuation of
pixel values along x of which we show three at the start and three at
the end.

In Fig. 6.8 we present the schematic sketch of the phase-space dia-
gram in the case of wavelength or dynamic range encoding. In Fig. 6.8a
we present the schematic sketch of the encoding process. There, once
again the object contains small spatial features that occupy 3 times
more bandwidth that the lens can transmit. Each of the spatial pixels
is “painted” with a different wavelength or is associated with different
regions along the dynamic range axis.

In Fig. 6.8b we show how the spatial low passing affects the phase-
space diagram of Fig. 6.8a. The spatial information is blurred, and thus
the spatial degrees of freedom become 3 times wider in the space axis
x but also 3 times narrower in the spatial-frequency domain �x .

In Fig. 6.8c we present the schematic effect of the decoding. Here in
each one of the spatial degrees of freedom is multiplied by a proper
spatially high-resolution distribution which corresponds to the spatial
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distribution used to encode the information as in Fig. 6.8a. The decod-
ing is designated by thin, long rectangles having spectral dimensions
of 3��, which correspond to the highest spatial resolution that we
aim to image. Those rectangles select out or filter out of the spatially
blurred information (that is designated with short, wide rectangles
having spectral width of ��) the relevant gray-level information of
each high-resolution pixel (having dimension of �x/3). Obviously the
decoding that is presented in Fig. 6.8c is relevant only to the wave-
length multiplexing case since in the dynamic range case the decod-
ing is trivial: one only needs to pick up the relevant bits, knowing
that every group of bits is related to a different high-resolution spatial
allocation.

In Fig. 6.9 we present the schematic explanation for the case of field
of view multiplexing SR and how it is seen in the phase-space diagram
space. In Fig. 6.9a and 6.9b we see the phase-space diagram of an object

ν

ν

ν

ν

3Δν

3Δν

Δν

Δν

3Δx

3Δx

Δx

Δx

x

x

x

x
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FIGURE 6.9 Schematic description of field of view multiplexing. (a), (b)
Spatial separation of the information while reducing its spectral resolution
and increasing its spatial bandwidth. (c), (d) Every spectral bandwidth is
multiplexed to a different spatial position.
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occupying the field of view of �x and having spectral bandwidth of
3��. If we divide the high spatial resolution over a 3 times larger field
of view (i.e., reduces the spatial resolution by a factor of 3 by spreading
it along the field of view), we obtain 3�x for the spatial region and 3
times smaller spectral bandwidth of only ��. In this figure every one
out of the three spatial regions is reduced by 3 times in its resolution
(thus, the spectral bandwidth of each one of the three spatial regions
is reduced by a factor of 3 while their spatial region is increased by a
factor of 3 and the entire area of each one of them is preserved). An
effect similar to that is obtained in the case of optical magnification or
zooming.

Another type of field of view multiplexing approach is the tech-
nique in which every one out of the three spectral slots (each one
of the three slots has the bandwidth of ��) is multiplexed by be-
ing shifted to different spatial positions, transmitted through the
resolution-limiting imager, and later on demultiplexed back to com-
pose the high-resolution image. This multiplexing/demultiplexing is
done using proper gratings. The grating can redirect or reposition
the different spectral slots (modulation and demodulation operation).
This operation is described in Fig. 6.9c and 6.9d. In this case the vari-
ous spectral slots are not changed in their shape as before (reduced in
the spectral domain and expanded in the space domain), but rather
only repositioned along the spatial axis. The optical realization of the
setup that is using the grating to perform the relocation of the spectral
slots while sacrificing the field of view can be achieved by positioning
2 or 3 gratings in predetermined locations along the imaging system,
as described in Ref. 28.

In many cases such as those presented in Refs. 31 and 32 where the
object is a one-dimensional object, one may use the second spatial axis
to improve the imaging resolution. In this case the schematic sketch
of the phase-space distribution is very similar to the one presented in
Fig. 6.8, while in this case the axis that is denoted as � or as the dynamic
range axis in Fig. 6.8 (e.g., in Fig. 6.8a) will be now the spectral axis �
corresponding to the second spatial dimension (y instead of x).

In Fig. 6.10 we perform a true numerical simulation for the Wigner
distribution in the case of a time multiplexing super resolution ap-
proach. In Fig. 6.10a we see the Wigner transform of a Gaussian signal.
In Fig. 6.10b we plot the Wigner distribution of the lowpass Gaussian
signal being low passed with a rectangular spectral window that is
approximately 3 times narrower than the original width occupied by
the input Gaussian.

In Fig. 6.10c we show the Wigner transform of the lowpass signal
after it is multiplied by the time-varying random decoding mask. The
chart in Fig. 6.10d is the computed Wigner distribution of the recon-
struction, i.e., the signal after being averaged in the time domain.
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FIGURE 6.10 The Wigner transform of (a) Gaussian signal, (b) Gaussian
signal after being low passed with a spectral rectangular aperture, (c) the low
passed signal being multiplied by the time-varying random decoding mask,
and (d) the resulting Wigner distribution of the time-averaged decoded signal.
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FIGURE 6.11 The Wigner of the reconstruction obtained using wavelength
multiplexing for the Gaussian signal of Fig. 6.10a. (a) The lowpass signal of
wavelength coded Gaussian. (b) The Wigner chart of the obtained
reconstruction after averaging over the wavelength axis.

The averaging is performed over the spatial signals that are ob-
tained after multiplying the blurred time-varying image by the time-
varying spatial decoding mask. The Wigner distributions of those
time-varying signals are presented in Fig. 6.10c.

We see that the original high-resolution distribution of the Gaussian
that is presented in Fig. 6.10a is fully reconstructed in Fig. 6.10d.

In Fig. 6.11 we present simulations of the Wigner distribution for
the case of wavelength coding. In this simulation each one of the
spatial pixels was coded with a different wavelength before the spatial
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blurring. The wavelength coding can be realized by using an optical
element performing spatial dispersion of colors which are used as
the color-space coding map (e.g., by a grating) or just by placing a
space-varying color transmission filter in the setup.

The object that we used for the simulation was the Gaussian signal
having the Wigner distribution presented in Fig. 6.10a. The Wigner
chart of the wavelength coded signal is presented in Fig. 6.11a. This
numerical simulation corresponds to the schematic sketch of Fig. 6.8a.
Since every spatial high-resolution pixel is coded with a different
wavelength, in the Wigner chart every such coded pixel is a nar-
row rectangle having spatial width of one pixel and maximal spectral
width of 3��. This narrow rectangle is shifted according to the spatial
position of the coded pixel.

The result of the reconstruction obtained after averaging over the
wavelength domain and using the same decoding color distribution
(i.e., realization of an inverse color-space mapping), yields the result
seen in Fig. 6.11b. We see that the obtained result is very similar to the
Wigner of the original nonblurred Wigner distribution presented in
Fig. 6.10a.

6.4 Conclusion
In this chapter we presented the usage of Wigner phase space for
the description and the understanding of the field of super resolu-
tion. We showed that the Wigner phase space is more than just a
heuristic representation. It is rather a chart that simplifies the under-
standing of the optical system and provides a representation that aids
the physical comprehension of the optical behavior of the imaging
system.

We focused in our description on five ways of performing super
resolution by using a priori knowledge on other domains into which
we could convert the spatial degrees of freedom such that they will not
be lost during transmission through the band-limited optical imaging
system. The five ways included code, time, polarization (which is
time-varying), wavelength, and gray-level multiplexing.

The additional domain used for the conversion of spatial degrees of
freedom generates a hyper phase space having more complete repre-
sentation than a conventional Wigner chart or a conventional phase-
space diagram.

In this chapter we presented both the schematic description of the
various super resolving approaches in the Wigner phase space and
the accurate numerical simulation of those approaches.
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7.1 Introduction
Radiometry is the science of measurement or detection of radia-
tion. It has a long history, starting from the works of Bouguer (1760)
and Lambert. It is widely used today. The ideas and concepts of this
science are based on geometrical or ray optics. However, radiation
is an electromagnetic wave. Waves diffract and have states of par-
tial coherence and polarization. Therefore, it is important to include
the wave nature of radiation and formulate radiometry in the frame-
work of wave theory. We refer to radiometry based on ray theory as
conventional radiometry and that based on wave theory as generalized
radiometry.

Section 7.2 reviews conventional radiometry and defines key ra-
diometric quantities. Section 7.3 discusses the unique radiometric
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qualities of Lambertian sources. Section 7.4 introduces the mutual
coherence function and statistical quantities that play a central role
in connecting the radiometric quantities of conventional radiometry
to those of generalized radiometry. Section 7.5 examines the concept
of stationary phase, an important tool in determining the radiome-
try of diffracting systems. Section 7.6 brings together the radiometric
concepts of the previous sections to establish generalized radiome-
try. Section 7.7 examines specific examples of generalized radiometry
in the context of blackbody radiation, partially coherent sources, and
coherent sources.

7.2 Conventional Radiometry
This science is largely empirical. Several workers having to deal with
the detection of radiation under different experimental conditions
have found it necessary to define and use quantities applicable to
their cases. A notable attempt to unify these concepts was made by
Jones1 (1963).

In this chapter, we define the radiometric quantities in common use
and show their interrelationships. Basically, we have sources, illumi-
nation, and detection.

Can make visual observations of radiation in the visible region
and/or quantitative measurement by radiation detectors. Radiom-
etry provides a defined vocabulary for describing the properties of
sources and various experimental arrangements for observations or
detections.

We begin with the (total) radiant power � in units of watts (W).
The spectral radiant power �̂ is generally expressed as a function of
wavelength � or frequency �. We define it as a function of frequency
with units of W Hz−1. Its integral over all frequencies yields the total
radiant power

� =
∞∫

0

�̂(�) d� (7.1)

With respect to a source, we speak of radiation emanating from it. We
use the term radiant exitance M with units of W cm−2. It is a function
of position �r ,

M(�r ) =
∞∫

0

M̂ (�r , �) d� (7.2)

In this equation, M̂(�r , �) is the spectral radiant exitance with units of
W cm−2Hz−1.
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For a planar source of area Aand in the plane z = constant, the total
radiant power is defined by the integral over the area of the source

�(z) =
∫∫

A

M(x, y, z) dx dy (7.3)

On the other hand, the radiation from the source is received on a
surface. It is described by the term radiant incidence or irradiance E with
units of W cm−2. It too is a function of position �r . The spectral irradiance
Ê(�r , �) has units of W cm−2Hz−1.

Let us reconsider the radiant exitance M. It is a function of position

�r = î x + ĵ y + k̂z (7.4)

From every point (x, y) on the source, it may channel different
amounts of radiation energy in different directions n̂ with compo-
nents

n̂ = î p + ĵ q + k̂m

= î(sin � cos 	) + ĵ(sin � sin 	) + k̂ cos �
(7.5)

where � and 	 are the polar angles, � is measured from the z axis, and
the azimuthal angle 	 is measured from the x axis in the xy plane.
The differential element of solid angle d	 with units of steradians (sr)
about the direction n̂ is

d	 = dp dq
m

= sin � d� d	 (7.6)

This equality is established by using the Jacobian of the change of
variables from ( p, q ) to (�, 	).

To account for the variation of the source properly as a function
of position and direction, a term called radiance L(�r , n̂) is used, with
units of W cm−2sr−1. An observer looking at the source in the direction
of n̂ sees the projected area dAproj = dA cos� as shown in Fig. 7.1.

dAproj = dA cosq

dA q dW

n̂

FIGURE 7.1 Projected area.
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Total radiant power in terms of L is given by

�(z) =
∫
A

∫
1/2

L(�r , n̂) cos � d	 d A (7.7)

In this expression, the z value indicates the source location on the z
axis. The symbol A under the integral stands for the integration over
the area of the source, and the 1/2 under the integral implies the
angle integration is limited to the right half space, 0 ≤ � ≤ �/2 and
0 ≤ 	 ≤ 2�. The product cos � d	 is called the projected solid angle
differential element. Following Eq. (7.7), the spectral radiant power
�̂(z, �) is found by using the spectral radiance L̂(�r , n̂, �) with units of
W cm−2sr−1Hz−1.

Far enough away from the source, the details of the source struc-
ture become less important but the characteristic angular distribu-
tion of radiation assumes importance. To describe this situation, the
term radiant intensity I (z, n̂) with units W sr−1 is used. Its solid angle
integral over the right half-space yields the total radiant power

�(z) =
∫

1/2

I (z, n̂) d	 (7.8)

The solid angle integral over the spectral radiant intensity Î (z, n̂, �) with
units of W sr−1Hz−1 yields the total spectral radiant power.

Among the various functions defined above, the basic one is the
spectral radiance L̂(�r , n̂, �). In terms of it, the other functions may
be derived by regrouping and performing the appropriate integral.
The interrelationships among the spectral functions are displayed in
Table 7.1.

L̂ (�r , n̂, �), [W cm−2sr−1Hz−1]

�̂(z, �) =
∫
A

∫
1/2

L̂(�r , n̂, �) cos � d	 dA

M̂(�r , �) =
∫

1/2

L̂(�r , n̂, �) cos � d	 Î (z, n̂, �) = cos �

∫
A

L̂(�r , n̂, �) dA

�̂(z, �) =
∫
A

M̂(�r , �) dA �̂(z, �) =
∫

1/2

Î (z, n̂, �) d	

TABLE 7.1 Interrelationships among the Spectral Functions of
Conventional Radiometry
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7.3 Lambertian Sources
Although sources in general do have position-dependent and/or
angle-dependent properties, it is often advantageous to consider the
limiting case of a source whose properties are independent of posi-
tion and direction. This is an idealization, never realized in practice in
the strict sense but approached in practice to a good approximation.
Consider a source whose spectral radiance is independent of position
�r on the source and the direction of observation n̂, that is,

L̂(�r , n̂, �) = L̂0(�) (7.9)

A source described by Eq. (7.9) is called a Lambertian source. For a
planar Lambertian source radiating in the right half space, it follows
from the relationships shown in Table 7.1 that,

�̂ = �AL̂0

M̂ = �L̂0

Î = cos � AL̂0

(7.10)

In the first two relationships, the factor � (sr) is the value of the
hemispherical solid angle with proper account of the cos � weighting.
The spectral radiant intensity relationship correctly accounts for the
projection Acos � along the viewing direction of the source area A.
Such a source would appear uniformly bright to an observer viewing
it from different directions.

7.4 Mutual Coherence Function
Radiometry and wave optics can be brought together by use of the
mutual coherence function (MCF). It is a statistical quantity, defined in
terms of the wave function. In principle, it can be studied through
optical experiments, and hence it is regarded as an “observable.” We
give a very brief introduction of the mutual coherence function in this
section before proceeding to the radiometry of wave optics. The details
of the theory may be found in Born and Wolf,2 Beran and Parrent,5

and Marathay.3

The MCF is defined as a cross-correlation:

�(�r1, �r2, �) = 〈�(�r1, t)�∗(�r2, t + �)〉 = lim
T→∞

1
T

∫ T

0
�(�r1, t)�∗(�r2, t + �)dt

(7.11)

The field � is any solution of the time-dependent wave equation. The
MCF contains the field evaluated at two different points at two dif-
ferent times. We have assumed that the field is stationary in time,
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i.e., independent of the time origin. In Eq. (7.11) the angular brackets
represent the time average. It is useful to define a normalized MCF.

�12(�) ≡ �(�r1, �r2, �)√
�(�r1, �r1, 0)�(�r2, �r2, 0)

(7.12)

By the Cauchy-Schwarz4 inequality, it can be shown to have the prop-
erty

0 ≤ |�12(�)| ≤ 1 (7.13)

The Fourier transform of the MCF is called the cross-spectral density
function or mutual spectral density (MSD) and may be defined with an
ensemble average of the transformed fields.

�(�r1, �r2, �) = 〈�(�r1, �)�∗(�r2, �)〉 (7.14)

The same symbol is used for the transformed function provided they
are identified by the arguments � or � as the case may be. In Eq. (7.14),
the angular brackets represent the ensemble average. A normalized
MSD function is defined by,

�12(�) ≡ �(�r1, �r2, �) = �(�r1, �r2, �)√
�(�r1, �r1, �)�(�r2, �r2, �)

(7.15)

Again by the Cauchy-Schwarz inequality we have

0 ≤ |�(�r1, �r2, �)| ≤ 1 (7.16)

The MCF is a convenient theoretical quantity to describe the quality
of the fringes in an interference experiment. A term such as contrast
of the fringes is used, but a better term is the visibility of fringes and
is denoted by V, defined by

V = Imax − Imin

Imax + Imin
(7.17)

In this expression, the symbol I is used for the time average of the
squared modulus of the optical field �(r, t), that is, I = 〈|�(r, t)|2〉.
Clearly when Imax = Imin, the visibility is zero; and when Imin = 0,
the visibility is unity.

0 ≤ V ≤ 1 (7.18)

It is a good estimate of how dark the minimum of the fringes is.
A typical setup of a simple interference experiment is shown in

Fig. 7.2. The source plane shows a noncoherent5 source in the shape
of a slit of width 2a. The source slit is placed at a distance d0 from
the double-slit plane with the slits labeled s1 and s2 separated by a
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Source Two-slit
plane

Observation
plane

d

Q

Δ
s2

s1S0

d0

FIGURE 7.2 Two-slit interference experiment to measure spatial coherence.

distance s and symmetrically placed on either side of the horizontal z
axis. The plane of observation is at a distance d behind the double-slit
plane.

A noncoherent source produces a uniform illumination on the two-
slit plane. By the property of noncoherence of the source, the spatial
coherence function depends only on the distance between two points
in the two-slit plane: r12 = |�r1 − �r2| = s, that is, �(�r1, �r2, �) = �(r12, �).

For the case of a non-coherent slit source, the normalized spatial
coherence function takes the form

�(r12, �) = sin u
u

, u ≡ 2�ar12

�do
(7.19)

The state of mutual spatial coherence of the radiation from the two
slits is described by Eq. (7.19), with the distance r12 = s between the
two slits.

To understand the orders of magnitude of the distances involved,
we assume � = 500.0 nm, d0 = 1.0 m, and 2a = 0.05 mm. The sec-
ond zero (u = 2�) of the coherence function of Eq. (7.19) is at
r12 = s = 20.0 mm. Thus when the two slits are separated by a dis-
tance of 20.0 mm, the visibility of fringes in the observation plane
will be zero. In the same way, when they are separated by 10.0 mm
(corresponding to the first zero), the visibility will again be zero. When
the slits are separated by a distance in between these two values, the
visibility will be small but not zero and the fringes will exhibit reverse
contrast. That is, the fringe at zero optical path difference (OPD) will
be dark instead of bright. For 2a much less than 10.0 mm, the visibility
of fringes is higher, approaching unity.

In an interference experiment, the ensemble average of the squared
modulus of the optical field is detected. At a point Q in the plane of
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observation, the squared modulus of the field is given by

I (Q) = I1(Q) + I2(Q) + 2
√

I1(Q) I2(Q)
sin u

u
cos

(
2�

�

sx
d

)
(7.20)

In this expression, d is the distance of the plane of observation from
the two-slit plane, and x is the coordinate of the point Q above the z
axis. The fringe spatial frequency is f = s/(�d). In Eq. (7.20), Ii (Q),
for i = 1 or 2, is the squared modulus of the field at Q contributed
by either of the two slits, individually. For simplicity we let I1(Q) =
I2(Q) = I0 and

I (Q) = 2I0

[
1 + sin u

u
cos

(
2�

�

sx
d

)]
(7.21)

In this form, it is clear that the normalized spatial coherence function

�(s, �) = sin u
u

= V (7.22)

plays the role of visibility of the fringes. In an experiment, it may be
better to leave the slit separation s and the distance d fixed, so that
the fringe period is kept fixed. The spatial coherence function may
be varied by changing the distance d0 of the source plane from the
two-slit plane.

7.5 Stationary Phase Approximation
The diffracted field as described by the Rayleigh-Sommerfeld diffrac-
tion theory is given by

�(x, y, z) =
∫∫

A

� (xs , ys , 0)
[

1
2�

z
R

(1 − ik R)
exp(ik R)

R2

]
dxsdys

(7.23)

In this expression, � (xs , ys , 0) is the amplitude distribution of the
field in the diffracting aperture centered at the origin, and R is the
distance between the aperture point and the point of observation R =
|�r − �rs | =

√
(x − xs)2 + (y − ys)2 + z2.

Consider the two-dimensional spatial Fourier transform of the
diffracted field

�(x, y, z) =
∫∫

�( p, q , 0) exp
[

i
2�

�
( px + q y + mz)

]
dp dq (7.24)
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The stationary phase approximation is carried out on the phase
function


( p, q ) = px + q y + mz = px + q y + z
√

1 − p2 − q 2. (7.25)

The direction cosines ( p, q ) are chosen to make the first partial
derivatives of 
( p, q ) equal to zero. These values are substituted in
the second partial derivatives of the phase function, and the higher-
order terms are neglected. This approximated phase function is used
in the evaluation of the double integral of Eq. (7.24). Alternatively, it
is simpler to substitute the values of ( p, q ) in the formula given in
Born and Wolf,2 Eq. (20) of Section 3 on double integrals, contained in
Appendix III, entitled “Asymptotic Approximations to Integrals.”
This procedure leads to the following expression for the diffracted
field.6

�(x, y, z) = −i
�

z
r

exp (ikr )
r

×
∫∫

A

� (xs , ys , 0) exp
[
−i

2�

�

( xxs + yys

r

)]
dxs dys

(7.26)

The form of this expression suggests that we can rewrite it in the
form

�(�r , �) = �(r, p, q , �)

= −i
�

m
exp (ikr )

r

×
∫∫

A

� (xs , ys , 0) exp
[
−i

2�

�
( pxs + q ys)

]
dxs dys (7.27)

Here, we have used the direction cosines p = x/r, q = y/r , and
m = z/r .

The diffracted field on a hemisphere is simply the spatial Fourier
transform of the field distribution in the aperture as long as the dis-
tance r to the observation point satisfies the far-field condition

r >>
2m2a2

�
(7.28)

In this expression m = z/r = cos � which is the third direction co-
sine. The symbol a is the radius of the aperture. The z axis is perpen-
dicular to the aperture plane and � is measured from the z axis.
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As the angle increases, the far-field condition becomes weaker. For
observation points not satisfying the far-field condition, the higher-
order terms of the stationary-phase approximation cannot be
neglected. This fact was realized by Harvey and Shack7 and they
developed an aberration theory inherent to the diffraction process.
This theory was applied to near-field diffraction whereby Fresnel
diffraction is interpreted as an aberrated form of Fraunhofer diffrac-
tion. In the stationary-phase approximation, there are no restrictions
on the direction cosines p, q and m. Hence, the diffracted field ampli-
tude of Eq. (7.27) is valid over the entire hemisphere, free from any
paraxial restrictions other than p2 + q 2 + m2 = 1. For an in-depth
discussion on the application of the stationary-phase approximation
to optical diffraction and imaging, see Mansuripur.8

Later Harvey and coworkers9 used it to describe diffraction grating
behavior and surface-scattering effects. Next we define radiometric
quantities, starting with the basic relationship given in Eqs. (7.26)
and (7.27).

7.6 Radiometry and Wave Optics
Radiation incident from the left on an aperture in a plane at z = 0
diffracts radiation into the right half-space. The diffracted field re-
sides on a hemisphere of radius r . The origin of the coordinate sys-
tem is in the open aperture. Let d	 denote a differential element of
solid angle. The differential element of area on the hemisphere is r2d	

(cm2 sr). A radiation detector responds to the ensemble average of the
squared modulus of the optical field; the output is in watts (W). To find
the total power radiated into the right half-space, we integrate over
the hemisphere. The spectral radiant power in the right half-space is
given by

�(�) =
∫∫

1/2

〈|�(�r , �)|2〉r2 sin � d� d	 =
∫∫

1/2

〈|�(�r , �)|2〉r2 d	 (7.29)

In this expression, the angular brackets denote the ensemble aver-
age. The linear frequency of the radiation is �. The integrand contains
the diffracted field �(�r , �) as given in Eqs. (7.26) and (7.27). From
Eq. (7.29), it is clear that the ensemble average of the squared modulus of
the diffracted field 〈|�(�r , �)|2〉 plays the role of spectral radiance with units
W cm−2sr−1Hz−1 for radiation detection on the surface of the hemi-
sphere.

To reduce the complexity of the resulting equations and for
notational convenience, it is useful to introduce vectors defined
in the following way: The coherence function may involve the
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variables (xs1, ys1, 0), (xs2, ys2, 0), for which we introduce average and
difference variables:

xs ≡ 1
2

(xs1 + xs2), ys ≡ 1
2

(ys1 + ys2), xs12 ≡ (xs1 − xs2),

ys12 ≡ (ys1 − ys2)

Next we introduce vectors �rs ≡ î xs + ĵ ys , �rs12 ≡ î xs12 + ĵ ys12, and
we can also have combination vectors �rs + 1

2 �rs12 = î xs1 + ĵ ys1 and �rs −
1
2 �rs12 = î xs2 + ĵ ys2. On the receiving side use, �r ≡ î x + ĵ y +
k̂z and the integration over the area elements dxs1 dys1 dxs2 dys2 =
dxs dys dxs12 dys12 = d2�rs d2�rs12. The unit normal vector is defined by
n̂ = (î x + ĵ y + k̂z)/r = î p+ ĵ q + k̂m, where p, q , and m are the actual
direction cosines. Thus, (xxs12 + yys12)/r = n̂ · �rs12.

Armed with this symbolic notation, we are now ready to proceed
with the formulation of radiometry for wave optics. In the computa-
tion of Eq. (7.29), we need to define the spatial coherence function

�(xs1, ys1, xs2, ys2, 0, �) = 〈�(xs1, ys1, 0, �)�∗(xs2, ys2, 0, �)〉,

�

(
�rs + 1

2
�rs12, �rs − 1

2
�rs12, 0, �

)
=
〈

�

(
�rs + 1

2
�rs12, 0, �

)

× �∗
(

�rs − 1
2
�rs12, 0, �

)〉
(7.30)

The angular brackets denote the ensemble average. The coherence
function can describe a coherent, partially coherent, or noncoherent
input field in the z = 0 plane. In the computation, we can use the av-
erage and difference variables, as done in Eq. (7.30). The total spectral
radiant power of Eq. (7.29) may be expressed as

�(�) =
∫∫

1/2
r2 d	

⎡⎣ 1
�2r2

( z
r

)2
∫∫

A

�

(
�rs + 1

2
�rs12, �rs − 1

2
�rs12, 0, �

)

×exp
(
−ik

xxs12 + yys12

r

)
d2�rsd2�rs12

⎤⎦ (7.31)

This expression can be regrouped in the following way,

�(�) =
∫∫

A

d2�rs

∫∫
1/2

m d	

⎡⎣m
�2

∫∫
A

�

(
�rs + 1

2
�rs12, �rs − 1

2
�rs12, 0, �

)

× exp
(−ikn̂ · �rs12

)
d2�rs12

⎤⎦ (7.32)
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Now following Walther,10 we identify the expression in the square
brackets as the spectral radiance (W cm−2sr−1Hz−1) function and de-
note it as follows:

B(�rs , 0, n̂, �) = m
�2

∫∫
A

�

(
�rs + 1

2
�rs12, �rs − 1

2
�rs12, 0, �

)
×exp

(−ikn̂ · �rs12
)

d2�rs12

= m
�2

∫∫
A

〈
�

(
�rs + 1

2
�rs12, 0, �

)
�∗
(

�rs − 1
2
�rs12, 0, �

)〉
×exp

(−ikn̂ · �rs12
)

d2�rs12 (7.33)

With this definition, the total spectral radiant power is

�(�) =
∫∫

A

[∫∫
1/2

B(�rs , 0, n̂, �)m d	

]
d2�rs (7.34)

Observe that we were able to do this by defining average and dif-
ference variables. Following this first step, Marchand and Wolf11 de-
veloped the remaining functions of radiometry, as we shall now do.

The definition of spectral radiance given in Eq. (7.33) almost looks
like an expression of a Wigner distribution12 Wf of a function f (x)

Wf (x, �) =
∞∫

−∞
f
(

x + 1
2

x′
)

f ∗
(

x − 1
2

x′
)

exp(−i2��x′) dx′ (7.35)

In this definition, the variables x and � are Fourier conjugate vari-
ables. The spectral radiance B(�rs , 0, n̂, �) defined in Eq. (7.33) is similar
to the Wigner distribution, but its arguments �rs and n̂ are not Fourier
conjugate variables; n̂ is a Fourier conjugate to �rs12.

The spectral radiant exitance of a source or the spectral irradiance on a
receiving plane is defined by

M(�rs , 0, �) =
∫∫

1/2
B(�rs , 0, n̂, �)m d	 (7.36)

In this way, the total spectral radiant power takes the form

�(�) =
∫∫

A

M(�rs , 0, �) d2�rs (7.37)
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Alternatively, we can regroup Eq. (7.34) to define the spectral radiant
intensity

J (n̂, �) = m
∫∫

A

B(�rs , 0, n̂, �) d2�rs (7.38)

The total spectral radiant power now reads

�(�) =
∫∫

1/2
J (n̂, �) d	 (7.39)

The definitions given in Eqs. (7.32) to (7.39) form the structure of
wave-theoretic radiometry. We based it on the diffracted field as de-
rived from the stationary-phase expression of Eqs. (7.26) and (7.27).
It is valid over the whole hemisphere of large radius centered on the
open aperture containing the field distribution. Thus, the radiometry
formulated in this way is free from any paraxial restrictions.

Comparison of Eqs. (7.39) and (7.29), suggests the relationship

J (n̂, �) = r2〈|�(r, p, q , �)|2〉 (7.40)

Alternatively, we can start with the definition of spectral radiant
intensity J (n̂, �) of Eq. (7.38) and use in it the expression of spectral
radiance B(�rs , 0, n̂, �) of Eq. (7.33). The integrals on d2�rs and d2�rs12
are identified as the ensemble average of the squared modulus of
the diffracted field of Eq. (7.27), thus reestablishing the relationship
shown in Eq. (7.40). We have just established that for radiation detec-
tion on a hemisphere the spectral radiant intensity is directly related
to the ensemble average of the squared modulus of the diffracted field
multiplied by the square of the radius of the hemisphere. Observe that
the squared modulus of the field depends on 1/r2 and the factor r2

in Eq. (7.40) indicates that the spectral radiant intensity is a conserved
quantity from one hemisphere to the next concentric hemisphere.

The ensemble average of the squared modulus of the optical field
always plays a role in optical detection. However, which radiometric
quantity it represents depends very much on the geometry and exper-
imental arrangement. In relation to Eq. (7.40), the squared modulus
corresponds to the spectral radiant intensity, since the measurement
was presumably made on the surface of a hemisphere. If the geometry
and the experimental arrangements are changed, the above conclu-
sion will not hold. For example, suppose the measurement is made
on a plane tangent to the hemisphere and perpendicular to the z axis.
When the detector explores the points on the plane, it will subtend a
projected-solid angle m d	 at the origin in the plane of the diffracting
aperture. Let us convert the diffraction pattern on a hemisphere to the
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one on the tangent plane. To do this we begin with Eq. (7.26), namely,

�(x, y, z) = −i
�

z
r

exp(ikr )
r

×
∫∫

A

� (xs , ys , 0) exp
[
−i

2�

�

( xxs + yys

r

)]
dxs dys

Make the substitution

r = z
m

= z
cos �

; r =
√

x2 + y2 + z2

We obtain

�P (x, y, z0) = −i
�

m2 exp(ikz0/m)
z0

×
∫∫

A

�(xs , ys , 0) exp

⎡⎣−i
2�(xxs + yys)

�
√

x2 + y2 + z2
0

⎤⎦dxs dys

(7.41)

The symbol �P is the distribution of the complex amplitude diffracted
onto the tangent plane perpendicular to the z axis at a distance
z = z0 from the diffracting aperture. The total spectral radiant power
(W Hz−1) now reads

�(z0, �) =
∞∫

−∞

∞∫
−∞

〈|�P (x, y, z0)|2〉 dx dy (7.42)

The units for 〈|�P (x, y, z0)|2〉 are W cm−2Hz−1. We have just estab-
lished that for radiation detection (measurement) on a plane parallel to the
aperture plane, the ensemble average of the squared modulus of the diffracted
field 〈|�P (x, y, z0)|2〉 is the spectral irradiance.

Also, it can be established that, with respect to the aperture plane,
the spectral radiant exitance is given by

M(�rs , 0, �) =
∫∫

1/2
B(�rs , 0, n̂, �)m d	 = �(�rs , �rs , 0, �) = 〈|�(�rs , �)|2〉

(7.43)

The details of this calculation are not included here. It involves the
substitution of the definition of the spectral radiance B(�rs , 0, n̂, �) from
Eq. (7.33) and evaluation of the angle integrals.

In this section, we discussed the various roles played by the en-
semble average of the squared modulus of the optical field and
the radiometric quantity it represents relative to the experimental
arrangement.
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7.7 Examples
7.7.1 Blackbody Radiation
Mehta and Wolf13 have calculated the spatial coherence function of
radiation in thermal equilibrium with the walls of a cavity. We can
write it in the form

�

(
�rs + 1

2
�rs12, �rs − 1

2
�rs12, 0, �

)
= 2�S

sin krs12

krs12
(7.44)

In this expression rs12 =
√

(xs1 − xs2)2 + (ys1 − ys2)2 is the magnitude
of the vector �rs12. The function S is defined by

S ≡ S(�, T) = 8�h�3

c3

[
1

exp (h�/kB T) − 1

]
(7.45)

This is in fact the spectral density (properly denoted as du/d� = S)
and has units J cm−3Hz−1; u is the energy density (J cm−3), and the
frequency � is in hertz (Hz) of the blackbody radiation in frequency
space.

Now we follow Palmer and Grant14 and observe that radiation
in thermal equilibrium with the walls of a cavity escapes (through
a small hole in the wall) with velocity c and spreads in free space
over 4� sr. We multiply Eq. (7.45) by c/4� (cm s−1sr−1) to obtain the
spectral density as accessible to measurement in free space,

SB B ≡ SB B(�, T) = c
4�

8�h�3

c3

[
1

exp (h�/kB T) − 1

]

= 2h�3

c2

[
1

exp (h�/kB T) − 1

]
(7.46)

It has the units of W cm−2sr−1Hz−1. In this way, the spatial coherence
of blackbody radiation in free space may be written

RB B (rs12, �) = 2�SB B(�, T)
sin (krs12)

krs12
(7.47)

We use this spatial coherence function in the definition of spectral
radiance in Eq. (7.33). By use of table of integrals, this expression can
be evaluated to give

B(�rs , 0, n̂, �) = m
�2 2�SB B · �2

2�

1
m

= SB B(�, T) (7.48)

This is the spectral radiance of blackbody radiation in free space
and has the units of W cm−2sr−1Hz−1 as pointed out in relation to
Eq. (7.46). It is independent of the average variable �rs .
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The total spectral radiant power is found to be

� = �ASB B(�, T) (7.49)

The constant A is the area of the elementary hole in the blackbody
cavity to provide the radiation to escape. The spectral radiant exitance
evaluates to

M(�rs , 0, �) = �SB B(�, T) (7.50)

Finally, the spectral radiant intensity can be shown to be

J (n̂, �) = cos �ASB B(�, T) (7.51)

We observe from Eqs. (7.48) to (7.51) that blackbody radiation is Lam-
bertian; see Eq. (7.10).

7.7.2 Non-coherent Source
The spatial coherence function for a noncoherent3, 5 source is defined
by

�

(
�rs + 1

2
�rs12, �rs − 1

2
�rs12, 0, �

)
= �2

�
Î 0(�)� (�rs12) (7.52)

In this expression, Î 0(�) is the squared modulus of the optical field at
frequency �.

The use of the Dirac delta function of Eq. (7.52) permits us to eval-
uate the spectral radiance function of Eq. (7.33); it gives

B(�rs , 0, n̂, �) = m
�2

�2

�
Î 0(�) = m

�
Î 0(�) (7.53)

Since the noncoherent source is assumed to be spatially stationary,
the spectral radiance is independent of the average variable �rs .

The spectral radiant power is

�(�) = 2
3

A · Î 0(�) (7.54)

The spectral radiant exitance is given by

M(�rs , 0, �) = 2
3

Î 0(�) (7.55)

Finally, the spectral radiant intensity takes the form

J (n̂, �) = m2 A
�

Î 0(�) (7.56)
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Owing to the factor m2 = cos2 �, the noncoherent source will appear
darker when viewed at large angles from the normal.

7.7.3 Coherent Wave Fields
The spatial coherence function for coherent fields assumes a factored
form15

�

(
�rs + 1

2
�rs12, �rs − 1

2
�rs12, 0, �

)
= U

(
�rs + 1

2
�rs12

)
U∗

(
�rs − 1

2
�rs12

)
× �(� − �0) (7.57)

The first factor U(�rs + 1
2 �rs12) = U(�rs1) is any solution of the Helmholtz

equation at frequency �0. The second factor is the complex conju-
gate of the first evaluated at a different point �rs2. The delta function
simply emphasizes that the coherent wave field is monochromatic at
frequency �0.

The spectral radiance function of Eq. (7.33) also assumes a fac-
tored form

B
(�rs , 0, n̂, �0

) = m
�2

∫
U (�rs1) exp

(
−i2�

n̂
�0

· �rs1

)
d2�rs1

×
∫

U∗ (�rs2) exp
(

+i2�
n̂
�0

· �rs2

)
d2�rs2 (7.58)

Each integral is a spatial Fourier transform. We can redefine this
expression as

B(�rs , 0, n̂, �0) = m
�2

0
Ũ
(

n̂
�0

)
Ũ∗

(
n̂
�0

)
= m

�2
0

∣∣∣∣Ũ(
n̂
�0

)∣∣∣∣2 (7.59)

In this expression the argument n̂/�0 is in fact a two-dimensional
spatial frequency variable.

The spectral radiant power takes the form

�(�) = A
∫∫

1
2

∣∣∣∣ m
�0

Ũ
(

n̂
�0

)∣∣∣∣2 d	 (7.60)

The spectral radiant exitance reads

M(�rs , 0, �0) =
∫∫

1
2

∣∣∣∣m
�0

Ũ
(

n̂
�0

)∣∣∣∣2 d	 (7.61)

Finally, the spectral radiant intensity takes the form

J (n̂, �0) = A

∣∣∣∣m
�0

Ũ
(

n̂
�0

)∣∣∣∣2 (7.62)
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As before, A is the effective area of the open aperture in the z = 0
plane containing the coherent field.

7.7.4 Quasi-Homogeneous Wave-Field
The spatial coherence of a quasi-homogeneous plane wave field has
a factored form

�s(�rs1, �rs2, �) = Is(�rs , �) gs(�rs12, �) (7.63)

where Is is the ensemble average of the squared modulus of the optical
field and is assumed to be very broad and slowly varying compared
to the coherence function gs(�rs12, �).

As a simple example, let us use Gaussians to represent the wave
field in the initial plane z = 0,

Is(�rs , �) = IQ exp

(
− r2

s

2
2
Q

)

gs(�rs12, �) = exp
(

− r2
s12

2
2
g

) (7.64)

The widths 
Q and 
g are both frequency �-dependent and 
Q >> 
g .
The first order of business is to obtain the spectral radiance

B(�rs , n̂, �) = 1
�

Is(�rs , �)
m
2

(k
g)2 exp
[
−1

2
(k
g)2( p2 + q 2)

]
(7.65)

It is a Gaussian in angular spectrum space.
The spectral radiant power is given by

�(�) =
∫

Is(�rs , �) d2�rs

{
(k
g)2

∫ 1

0
exp

[
− (k
g)2

2
(1 − �2)

]
�2 d�

}
(7.66)

In doing the angle integral, we substituted � = cos �. The angle inte-
gral, contained within curly braces, can be evaluated by using Mathe-
matica. It can be plotted as a function of (k
g)2/2. For values of 
g > �
and for values 
g >> �, the angle integral is rather approximately
unity to a high degree of accuracy. Hence, we may write

�(�) =
∫

Is(�rs , �) d2�rs (7.67)

In like manner, the spectral radiant exitance can be shown to be

M(�rs , �) = Is(�rs , �) (7.68)
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The spectral radiant intensity takes the form

J (n̂, �) = 1
2�

(k
g)2 exp
[
−1

2
(k
g)2 (p2 + q 2)] ∫ Is(�rs , �) d2�rs

(7.69)

The factor ( p2 + q 2) = (sin �)2 shows the dependence on angle �
which varies from 0 to �/2.

The set of Eqs. (7.65) to (7.69) describes the radiometry with respect
to the initial plane z = 0. After propagation the Gaussians retain their
form but the scale changes. For example, Is after propagation takes
the form

I (�r , �) = IQ

(
1

1 + z′2

)
exp

(
− r2

2
2
Q

1
1 + z′2

)
(7.70)

The parameter z′ is defined by z′ ≡ z/(k
Q
g) in which z is the
location of the plane parallel to the initial plane z = 0. The peak value
is reduced by the factor 1/(1 + z′2), and the variance 
2

g is increased by
the factor 1 + z′2. The spatial coherence function scales in an analogous
manner but acquires a linear phase factor. For details, see Ref. 3 where
more references to the literature are included.
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C H A P T E R 8
Rays and Waves

Miguel A. Alonso
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8.1 Introduction
From a conceptual point of view, the ray model for the propagation of
light is an outdated theory. Yet, it is still perhaps the most important
tool for the design and modeling of imaging and illumination optical
instruments due to its simplicity, intuitiveness, and often sufficient
accuracy. (An analogous although significantly more extreme situa-
tion occurs for mechanical systems: machines and tools are designed
and modeled using classical mechanics, which is also conceptually an
outdated theory; quantum effects are important only for very small or
very special mechanical systems.) It turns out that even when wave
effects are important, they can often be modeled based on the ray-
optical description of the system in question. There are a variety of
methods for modeling wave propagation based on rays. Phase space
is a natural framework for studying the link between the ray and
wave models. Using phase-space representations, a wave field can be
described as a function of both position and direction of propagation.

In general, the use of rays leads only to approximate wave propaga-
tion models. However, the laws of wave propagation can be expressed
exactly in terms of rays in three limits. The first is the paraxial limit
for the case of propagation through the so-called ABCD or first-order
systems. (See Chaps. 1 and 3 by Martin Bastiaans and Tatiana Alieva,
respectively.) These systems include free-space and homogeneous
media, thin quadratic lenses, and transversely linear and quadratic
gradient-index media. The propagation of waves in these systems can
be described exactly in ray terms, either by employing a point-spread
function like that in Eq. (1.42), or in terms of the Wigner function as
in Eq. (1.44). The second limit is the so-called quasi-homogeneous

237
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limit, corresponding to fields of low spatial coherence. In this case,
the Wigner function and other bilinear phase-space representations
acquire all the defining properties of the radiance, which is essentially
a ray-weighting distribution whose propagation is ruled by the laws
of geometrical optics. The radiometric description of wave fields and
the quasi-homogeneous limit are discussed in Chap. 7. The third limit
is that of small wavelength. This limit is discussed in many optics
textbooks1–3 and is the main topic of the two books by Kravtsov and
Orlov.4,5 As it turns out, there are a variety of ways in which this third
limit can be enforced, all leading to the same laws for the rays, but
different ray-based descriptions of the wave field. These various ap-
proaches are the topic of this chapter. Also discussed briefly here is the
mathematically analogous semiclassical limit of quantum mechanics,
where instead of rays one uses classical particle trajectories to estimate
the wave aspects of particle motion.

For simplicity, the propagation of scalar fields is considered in what
follows. We also limit our attention to the case of monochromatic light
(of frequency �), where the field’s time dependence can be factored as
E(�r , t) = U(�r ) exp(−i�t), with �r = (x, y, z) being the position vector.
The basic equation that describes the propagation of a monochromatic
scalar field U(�r ) is the Helmholtz equation

[∇2 + k2n2(�r )]U(�r ) = 0 (8.1)

where k = �/c is the wave number (with c representing the speed of
light in vacuum) and n(�r ) is the position-dependent refractive index.
It is assumed throughout that this refractive index is real, i.e., that the
medium presents no absorption or gain.

8.2 Small-Wavelength Limit in the Position
Representation. I: Geometrical Optics
The standard procedure for studying the connection between wave
and ray optics relies on the assumption that the field U consists of a
slowly varying amplitude and a rapidly oscillating phase proportional
to the wave number, i.e.,

U(�r ) = A(�r ) exp[ik	(�r )] (8.2)

where it is assumed that at least 	 is real. The substitution of Eq. (8.2)
into Eq. (8.1) gives, after some reordering and multiplication by
exp(−ik	),

k2 A(n2 − |∇	|2) + ik(2∇ A · ∇	 + A∇2	) + ∇2 A = 0 (8.3)
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The goal now is to separate this equation into two or more equations
that are amenable to a simple solution or that at least lead to an in-
tuitive interpretation. Two alternative approaches are considered in
what follows:

1. Assume that the wave number k is large, and use an asymptotic
treatment.

2. Assume that both A and 	 are real, and separate Eq. (8.3) into
real and imaginary parts.

In this section and the next we explore the first approach, which
leads to geometrical optics. The second approach is discussed in
Sec. 8.4.

8.2.1 The Eikonal and Geometrical Optics
Since k is assumed to be large, the leading part of Eq. (8.3) is the term
proportional to k2. Therefore, as a first step toward enforcing Eq. (8.3),
we choose to make the coefficient of this leading part vanish. This
results in the expression

|∇	(�r )|2 = n2(�r ) (8.4)

This equation is the well-known eikonal equation, which is formally
equivalent to other formulations of geometrical optics. The function 	
is called the eikonal function or simply the eikonal. This formulation
was proposed by Bruns6 in 1895, although an equivalent formalism
was proposed by Hamilton7 almost seventy years earlier.

The eikonal equation can be solved (or at least written in a form
that is better suited for numerical solution) by parameterizing the
position vector in terms of three independent parameters �, �1, �2 as
�r = �R(�, �1, �2). These parameters must be chosen so that �R moves in
three different directions with variations in each of them (i.e., the three
vectors corresponding to the partial derivatives of �R with respect to
each of the parameters must be linearly independent). To solve the
eikonal equation, the partial derivative with respect to � (denoted by
an overdot) of �R is chosen as parallel to the gradient of the eikonal,
i.e.,

∂ �R
∂�

= �̇R = �∇	( �R) (8.5)

where the proportionality function �(�, �1, �2) is assumed to be posi-
tive. Substituting the gradient of the eikonal as given in Eq. (8.5) into



240 C h a p t e r E i g h t

Eq. (8.4) evaluated at �R, we find

�(�, �1, �2) = v(�, �1, �2)

n[ �R(�, �1, �2)]
(8.6)

where

v(�, �1, �2) = | �̇R(�, �1, �2)| (8.7)

is the speed of the parameterization in �. The trajectories traced by the
vector �R for increasing � are precisely the rays of geometrical optics.

To find the equations that determine the rays, it is convenient to
define the optical momentum vector �P as

�P(�, �1, �2) = ∇	[ �R(�, �1, �2)] = n( �R)
v

�̇R (8.8)

where Eqs. (8.5) and (8.6) were used in the last step. The equation
for the propagation of the rays is found by considering the derivative
with respect to � of the first two parts of Eq. (8.8):

�̇P = ( �̇R ·∇)∇	 = v
n

(∇	 ·∇)∇	 = v
n

∇(∇	 · ∇	)
2

= v
n

∇(n2)
2

= v∇n( �R)
(8.9)

where the chain rule was used in the first step, the second part of
Eq. (8.8) was used in the second step, and Eq. (8.4) was used in the
fourth step. We must also find how the eikonal 	 evolves along a ray.
For this purpose, let L denote the eikonal evaluated along a parame-
terized ray, i.e.,

L(�, �1, �2) = 	[ �R(�, �1, �2)] (8.10)

This function increases with � according to the expression

L̇ = �̇R · ∇	 = n( �R)v (8.11)

where the chain rule, as well as Eqs. (8.7) and (8.8), was used. The
value of the eikonal is then found by integrating this expression in �.

The expressions in Eqs. (8.8), (8.9), and (8.11) are the basic equa-
tions that rule the propagation of the rays. Let us summarize these
equations:

�̇R = v

n( �R)
�P (8.12a)

�̇P = v ∇n( �R) (8.12b)

L̇ = v n( �R) (8.12c)
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(Recall that v = | �̇R| is the speed of the parameterization.) The first two
of these equations rule the propagation of each ray, and the third im-
plies that the eikonal corresponds to the optical path length along the ray.
Equation (8.12a) is the geometrical definition of the optical momen-
tum as a vector that is locally tangent to the ray and whose magnitude
is given by the local refractive index (see Fig. 8.1), while Eq. (8.12b)
states that local changes in the refractive index modify the direction
of propagation of the ray. For a homogeneous medium, Eq. (8.12b)
implies that �P remains constant, so rays are straight lines and, due to
Eq. (8.12c), L increases linearly with the propagation length. At the
interface between two homogeneous media, on the other hand, ∇n
is deltalike, pointing in the direction of the interface’s normal. In this
case, Eq. (8.12b) states that the component of �P locally parallel to the
interface remains constant. This fact, combined with the requirement
that | �P| = n at either side of the interface, leads to Snell’s law. When the
refractive index changes continuously and smoothly, the rays change
direction gradually and become curved.

While varying the parameter � causes �R to move along a ray, vari-
ations of �1 or �2 make �R move from one ray to another. That is,
the above set of equations describes the evolution of a two-parameter
family of rays, with each ray corresponding to a set of values of the pa-
rameters � = (�1, �2). However, the evolution of each ray is completely
autonomous, as can be appreciated from Eqs. (8.12a) and (8.12b), which
involve no operation on the parameters �1, �2. Nevertheless, the opti-
cal path lengths of the different rays in the family are interconnected,
as one can see from considering the derivative of Eq. (8.10) with re-
spect to one of these parameters,

∂L
∂� j

= ∇	 · ∂ �R
∂� j

= �P · ∂ �R
∂� j

(8.13)

This relation is a consequence of the fact that in Eq. (8.5) the rays
were chosen to be perpendicular to the surfaces of constant � (and
therefore L). That is, all along their propagation, the rays constitute
what is known as a normal congruence, which means that there exists
a continuous set of surfaces that intersect perpendicularly all rays in
the family. Then L corresponds to the optical path length along the
rays measured from one of these normal surfaces. For example, for a

P

n(R)
R

FIGURE 8.1 Definition of the optical momentum.
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point source in free space, the rays are straight lines radiating away
from the source, and the normal surfaces are spheres centered at the
source. The reference surface is usually chosen to be the sphere of zero
radius, i.e., the source itself.

8.2.2 Choosing z as the Parameter
The equations for the rays given above are general in the sense that
the parameterization along the rays is arbitrary. There are, however,
particular parameterizations that are convenient in certain situations,
leading to several different forms for the ray equations.8–10 Some com-
mon choices are the ones that make � equal to the arclength of the ray
(so v = 1), the optical path length (so v = 1/n), or the length divided
by the local refractive index (so v = n). In what follows, we con-
centrate on a fourth particular parameterization which, while more
limited in application, is convenient for the type of problems studied
in this book. This parameterization is only valid when one can choose
a “main direction of propagation” such that the component of the
momentum in this direction for all rays in the family is always pos-
itive. Let us align the z axis with this direction of propagation. Then
the condition for the application of this parameterization is that the
rays do not turn around in z, so that their positions are single-valued
functions of z. Under these circumstances, z itself can be used as the
parameter of propagation.

For this parameterization, it is convenient to separate the z and
transverse components of the position and momentum vectors as

�R(z, �) = [X(z, �), Y(z, �), z] = [X(z, �), z] (8.14)

�P(z, �) = [Px(z, �), Py(z, �), H(z, �)] = [P(z, �), H(z, �)] (8.15)

where X = (X, Y) and P = ( Px, Py). As stated earlier, it is assumed that
the longitudinal component of the momentum, namely H, is always
positive. As we know from the eikonal equation [i.e., Eq. (8.4)], this
function is related to P and the refractive index by

H(z, �) =
√

n2(X, z) − |P|2 (8.16)

Let us now find the form that the ray equations take for this parameter-
ization. First, the longitudinal part (i.e., the z component) of Eq. (8.12a)
gives 1 = vH/n, that is,

v = n
H

(8.17)
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By using this result, the transverse part of Eq. (8.12a) gives

Ẋ = P
H

(8.18a)

where the overdot now denotes a derivative with respect to z. Sim-
ilarly, the transverse and longitudinal parts of Eq. (8.12b) become,
respectively,

Ṗ = n
H

∂n
∂x

(X, z) = 1
2H

∂n2

∂x
(X, z) (8.18b)

Ḣ = n
H

∂n
∂z

(X, z) = 1
2H

∂n2

∂z
(X, z) (8.18c)

where ∂/∂x is the transverse (or x, y) part of the gradient. Finally,
Eq. (8.12c) becomes

L̇ = n2(X, z)
H

(8.18d)

8.2.3 Ray-Optical Phase Space and the
Lagrange Manifold

At this point, it is convenient to recall that rays can be represented by
points in phase space. For simplicity, let us consider fields propagating
in only two dimensions. That is, there is only one transverse coordinate
x plus the longitudinal coordinate z. In this case, the ray equations
become

Ẋ(z, �) = P(z, �)
H(z, �)

(8.19a)

Ṗ(z, �) = 1
2H(z, �)

∂n2

∂x
[X(z, �), z] (8.19b)

Ḣ(z, �) = 1
2H(z, �)

∂n2

∂z
[X(z, �), z] (8.19c)

Notice that there is now only one parameter � that labels the rays. The
equations for the path length L become

L̇(z, �) = n2(X, z)
H

(8.20)

L ′(z, �) = P X′ (8.21)

where the primes denote derivatives in �.
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At any fixed z, each ray is fully characterized by its transverse po-
sition X and transverse momentum P ; knowing where a ray is and in
what direction it is propagating is enough to trace it away from this
plane. This ray can then be represented by a point in the plane of x
versus p. This plane is called phase space. The complete ray family is
therefore represented by a curve, traced by the points for each ray by
varying �. This curve is called the phase-space curve (PSC) or Lagrange
manifold. Notice that the integral of Eq. (8.21) gives

L(z, �1) − L(z, �0) =
∫ �1

�0

P(z, �)
∂ X
∂�

(z, �) d� (8.22)

That is, the area under a segment of the PSC equals the difference
in optical path length between the rays that correspond to the ends
of the PSC segment, as shown in Fig. 8.2. This means that, given the
knowledge of the PSC for a given z and the value of L for only one ray,
the value of L for all the other rays can be determined. As mentioned
earlier, this relation is a consequence of the fact that L corresponds
to the optical path length along the rays, measured from a common
normal.

For three-dimensional fields, phase space is four-dimensional, since
there are two transverse directions and two transverse momenta. The
Lagrange manifold is then a two-parameter surface embedded in this
four-dimensional space.

x

p

L(
z, 

ξ 1
) –

L(
z, 

ξ 0
)

X(z, ξ0) X(z, ξ1)

P(z, ξ0)

P(z, ξ1)

FIGURE 8.2 The phase-space area under any segment of the PSC
corresponds to the difference in optical path length L for the corresponding
two rays.
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8.3 Small-Wavelength Limit in the Position
Representation. II: The Transport
Equation and the Field Estimate
After we chose 	 to satisfy the eikonal equation, the remainder of
Eq. (8.3) can be written as

2∇ A · ∇	 + A∇2	 + 1
ik

∇2 A = 0 (8.23)

Again, the key to the asymptotic treatment that follows is to regard k
as a parameter that takes very large values.

8.3.1 The Debye Series Expansion
The amplitude A is now written as a so-called Debye series of the form

A(�r ) =
∞∑
j=0

Aj (�r )
(ik) j (8.24)

Then, upon substitution of Eq. (8.24), Eq. (8.23) can be written as

2∇ A0 · ∇	 + A0∇2	 +
∞∑
j=1

1
(ik) j

(
2∇ Aj · ∇	 + Aj∇2	 + ∇2 Aj−1

) = 0

(8.25)

Since k is used as an asymptotic parameter, the coefficient of each
power of k is made to vanish independently. This gives a hierarchy of
linked equations for each of the Aj of the form

2∇ A0 · ∇	 + A0∇2	 = 0 (8.26a)

2∇ Aj · ∇	 + Aj∇2	 = −∇2 Aj−1, j = 1, 2, . . . (8.26b)

8.3.2 The Transport Equation and Its Solution
Equation (8.26a) can be solved to find A0, and in principle each Aj
can be found successively in terms of the previous one by solving
Eq. (8.26b). For sufficiently large k, however, A ≈ A0, so only Eq. (8.26a)
will be considered. Notice that by multiplying both sides by A0, this
equation can be rewritten as

∇ · (A2
0∇	

) = 0 (8.27)

This expression is known as the transport equation. To solve it, consider
integrating both sides over the volume occupied by a segment of an
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infinitesimally thin bundle of rays B corresponding to small intervals
��1, ��2 around a central ray �1, �2, and to z between z0 and z1, as
shown in Fig. 8.3. By using Gauss’ theorem, this volume integral can
be reduced to a surface integral, i.e.,∫

B
∇ · (A2

0∇	
)

d3r =
∫

∂B
A2

0∇	 · d�a = 0 (8.28)

where ∂B refers to the outer surface of the bundle B, and d�a is the
outward-pointing differential area element. It is easy to see that the
only contributions to the surface integral come from the infinitesimal
end faces of the bundle, since d�a is perpendicular to the ray momen-
tum ∇	 at the sides of the bundle. Let the infinitesimally small area
elements at both ends of the bundle be called �a0 and �a1, respec-
tively, so Eq. (8.28) can be written as

A2
0[X(z0, �), z0]H(z0, �) (−�a0) + A2

0[X(z1, �), z1]H(z1, �) �a1 = 0
(8.29)

where the minus sign in the area element for the first term comes from
the fact that ∇	 points into B at the beginning of the bundle segment
and out of B at its end. In getting to this expression, we also used the
fact that the z component of ∇	[X(z, �), z] is simply H(z, �). The in-
tensity of the field is given by |A|2 ≈ A2

0. The product of this intensity
and H (which is the refractive index times an obliquity factor) is pro-
portional to the flux density traversing the area element. Therefore

Δa0

Δa1

x

y

z

z0

z1

FIGURE 8.3 Volume B, occupied by a segment of an infinitesimally thin
bundle of rays.
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Eq. (8.29) has an intuitive interpretation: the total flux entering the
bundle segment at one end equals the flux exiting at the other end.
This means that the rays behave as infinitesimal conduits of power.
When the bundle expands, causing its transverse area at the exit to be
bigger than that at the entrance, the flux density (and therefore the in-
tensity) becomes smaller in the same proportion, since the conserved
power spreads over a larger area.

Now, notice that the area elements are given by

�a j = �(X)
�(�)

∣∣∣∣∣
z j

��1��2 =
(

∂ X
∂�1

∂Y
∂�2

− ∂ X
∂�2

∂Y
∂�1

)∣∣∣∣∣
z j

��1��2 (8.30)

where the Jacobian �(X)/�(�) is the determinant of the stability matrix
∂X/∂�. By replacing z1 with z, we can solve Eq. (8.29) for A0(X, z)
which, after using Eq. (8.30), gives

A0[X(z, �), z] =
√

H(z0, �)
H(z, �)

�[X(z0, �)]
�(�)

{
�[X(z, �)]

�(�)

}−1

A0[X(z0, �), z0]

(8.31)

This expression is the final piece that is needed to estimate the field.

8.3.3 The Field Estimate and Its Problems
at Caustics

All the pieces are now put together for the construction of the field
estimate. The estimate of the solution to the Helmholtz equation is
found in terms of the parameteric equation

U[X(z, �), z] ≈ A0[X(z, �), z] exp[ikL(z, �)]

=
√

H(z0, �)
H(z, �)

�[X(z0, �)]
�(�)

{
�[X(z, �)]

�(�)

}−1

× A0[X(z0, �), z0] exp[ikL(z, �)] (8.32)

This approximation results from neglecting all terms but the first in
the Debye series for A, which is justified by the fact that k is large.

To use the formula in Eq. (8.32), one must determine, from the ini-
tial conditions of the field, the initial conditions for the rays. Once
this is done, the rays can be traced by using the ray equations, and
from there the amplitude and phase of the field can be computed.
A distinctive aspect of this formula is that the field information is
transmitted through the rays: the value of the field at any point is
determined only by the infinitesimal bundle(s) of rays surrounding
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the ray(s) passing through this point. That is, if we only integrate the
ray equations over a thin bundle of rays, we can estimate the field
along this bundle over a long distance, regardless of what the rest of
the rays do, as long as rays do not cross. Notice also that if rays from
a point source are considered, and the medium is an ABCD system in
the paraxial approximation, the formula in Eq. (8.32) can be shown to
give the point-spread function in Eq. (1.42) after solving for � in terms
of the rays’ final position.

Notice, however, that the expression for the amplitude of this es-
timate given in Eq. (8.31) diverges when either of the two following
conditions is met:

H(z, �) = 0 (8.33)

�[X(z, �)]
�(�)

= 0 (8.34)

The first of these conditions happens when rays turn around in z. As
mentioned at the outset, it is assumed that this does not occur. (If it
does, this problem can be alleviated by using a different ray parame-
terization.) The second condition, on the other hand, occurs when the
bundle collapses, i.e., when the rays that make up the bundle cross.
This crossing of contiguous rays is what is known as a caustic. While
the field at a caustic is indeed large, it is not infinite as Eq. (8.31) pre-
dicts. This signals a problem in this formalism, which arises from the
fact that in the vicinity of the caustic, the right-hand side of Eq. (8.26b)
for j = 1 becomes large due to the fast variation of A0. This causes A1,
as well as the rest of the Aj , to be large too, up to a point where the
Debye series cannot be approximated by its leading term. The field
estimate in Eq. (8.32) therefore breaks down in the vicinity of caustics.

Remarkably, though, if after the caustic the rays become sufficiently
spread and uniform, this field estimate becomes valid again. Note,
however, that the passage through the caustic gives rise to changes
in sign for the Jacobian inside the square root in Eq. (8.31). Due to
the square root, these sign changes cause phase shifts that are integer
multiples of �/2, where the integer is called the Maslov or Morse
index. The determination of these indices can be complicated,11,12 as
the appropriate sign of the square root must be chosen. (Note: This
phase shift is consistent with the Gouy phase shift undergone by a
focused beam.) In many situations, after a caustic or caustics, there
are several bundles of rays occupying the same volume. The field
estimate then results from summing their contributions, each with a
suitable Maslov phase. (This is one example of how ray optics can
account for interference effects.) Also, there might be regions to one
side of a caustic where no rays arrive. The simple estimate presented
above then offers no access to the field in these regions, suggesting
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that the field must vanish there. This is not true, however, since the
field is small but not zero in these regions. There are generalizations of
the scheme presented here that give accurate estimates in these dark
regions by considering rays that leave the real space (the so-called
complex rays).13 This more complicated approach is beyond the scope
of this chapter. As will be shown later, the methods described in Secs.
8.4, 8.6, 8.7, 8.8, and 8.9 do lead to nonvanishing field estimates in the
dark regions.

The type of ray-based field estimation presented in this section is
useful, e.g., for modeling standard imaging systems, as long as it is
complemented appropriately by a simple wave-based computation.
Consider the case where the object is a point source. Then the two-
parameter family of rays corresponds to the rays emanating from
this point. The field at the image plane cannot be estimated with this
scheme, as the image is a caustic. The field must instead be recon-
structed at the exit pupil, where the rays are uniformly spread. Then a
wave-based computation must be used for the final stage of free-space
propagation from the exit pupil to the image plane. This computation
can be performed in a numerically efficient fashion through the use of
fast Fourier transforms. An additional advantage of this approach is
that the effects of diffraction from the aperture stop are automatically
accounted for in this last step by setting the field outside the exit pupil
to zero.

8.4 Flux Lines versus Rays
The second approach mentioned at the beginning of Sec. 8.2, which
consists of the assumption that both A and 	 are purely real, is dis-
cussed in this section. In this case, Eq. (8.3) can be separated into two
equations, corresponding to its real and imaginary parts, which can
be written as

|∇	|2 = n2 − ∇2 A
k2 A

(8.35a)

∇ · ( A2∇	) = 0 (8.35b)

Notice that Eq. (8.35b) is identical to Eq. (8.27), except for the fact that it
includes the full amplitude A instead of A0, which is only the leading
term in a series. That is, in this case it is not necessary to express A
as a Debye series, and the full A can, in principle, be found by inte-
grating Eq. (8.35b) over an infinitesimal bundle of trajectories. These
trajectories must be found by solving Eq. (8.35a) parameterically. The
nature of these trajectories becomes apparent from the substitution of
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Eq. (8.2) with real A and 	 into the definition of the field’s flux:

�F = Im(U∗∇U)
ik

= A2∇	 (8.36)

That is, ∇	 points now in the direction of the local flux. [Notice that
Eq. (8.35b) is simply the scalar version of Poynting’s theorem for a sta-
tionary field.] Therefore, the trajectories that result from this approach
are the flux lines of the field.

Equation (8.35a) strongly resembles the eikonal equation in Eq. (8.4),
except for the presence of the correction term −∇2 A/k2 A. Since this
correction contains A, Eqs. (8.35a) and (8.35b) are coupled: one can
no longer first solve the eikonal equation to find the rays and then
use these rays to solve the transport equation. The correction term
is proportional to k−2, so for large k this correction is usually very
small, meaning that the flux lines are very similar to the rays almost
everywhere. This correction has a similar effect to that of the refractive
index: its variation causes the flux lines to bend. This extra bending is
negligible except in regions where A varies quickly, e.g., near a focus.
There, this term causes the flux lines to deflect away from one another
instead of crossing. (It also changes the spacing of the wavefronts,
giving rise to the Gouy phase shift.) Therefore, flux lines never cross,
and there is always only one at any point in space. It would therefore
appear that the estimation of the field in terms of flux lines is a better
alternative than the one in terms of rays, since there are no problems
with caustics. However, this approach has two disadvantages. First,
the fact that Eqs. (8.35a) and (8.35b) are coupled complicates the deter-
mination of the trajectories, which must be found numerically even in
very simple cases such as propagation in free space. (A result of this
coupling is that, unlike rays, flux lines do not propagate in a mutually
independent way.) Second, the method has problems at zeros of the
field, since the correction term in Eq. (8.35a) can diverge when A = 0.

8.5 Analogy with Quantum Mechanics
All the ideas presented so far can also be applied to the study of
quantum dynamics.14 Let us concentrate on the case of nonrelativis-
tic quantum mechanics for a single particle of mass m moving in a
potential V(�r , t). This problem is ruled by the Schrödinger equation

ih̄
∂�

∂t
(�r , t) = − h̄2

2m
∇2�(�r , t) + V(�r , t)�(�r , t) (8.37)

where h̄ is the reduced Planck constant. The wavefunction � plays
the role of the wave field U. As with the Helmholtz equation, let us
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write the wavefunction in terms of a slowly varying amplitude and a
rapidly oscillating phase, i.e.,

�(�r , t) = A(�r , t) exp

[
i
h̄

	(�r , t)

]
(8.38)

Notice that the phase was chosen to be proportional to the inverse
of h̄. Therefore, like k for the Helmholtz case, h̄−1 plays the role of
the large asymptotic parameter. The resulting approximate results are
then valid within the so-called semiclassical regime, i.e., when h̄ is
small compared to all other quantities (or variations of quantities) in
the problem under study that present the same units (action= length×
mass × speed).

After substitution of Eq. (8.38) and reordering, Eq. (8.37) can be
written as(

∂	

∂t
+ |∇	|2

2m
+ V

)
− ih̄

(
∂ A
∂t

+ 2∇ A · ∇	 + A∇2	

2m

)
− h̄2 ∇2 A = 0

(8.39)

Again, we face a decision between two approaches:

1. Assume that h̄ is very small, and expand A in a Debye series.

2. Assume that both A and 	 are real, and separate the real and
imaginary parts of Eq. (8.39).

As before, let us consider approach 1 first.

8.5.1 Semiclassical Mechanics
We start by setting the leading term in Eq. (8.39) to zero. This leads to
the equation

∂	

∂t
+ |∇	|2

2m
+ V = 0 (8.40)

This is the equation for the action in classical mechanics. Like the
eikonal equation, it can be solved parameterically. We start by pa-
rameterizing the position as �r = �R(t, �1, �2, �3). We then define the
momentum �P and the Hamiltonian H, respectively, as the spatial and
(minus the) temporal derivatives of the action

�P = ∇	( �R, t) (8.41)

H = −∂	

∂t
( �R, t) (8.42)
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and choose for the time derivative of the parameterized position to be
proportional to the momentum, i.e.,

�P = m �̇R (8.43)

where, in this section, the overdot denotes a temporal derivative (since
here t plays a role analogous to that of z in the rest of this chapter).
The equation for the evolution of the “rays” for this problem results
from considering the time derivative of Eq. (8.41) [in a step analogous
to that in Eq. (8.9)]:

�̇P = ( �̇R · ∇)∇	 + ∇ ∂	

∂t
=
(

∇	

m
· ∇
)

∇	 + ∇ ∂	

∂t
= ∇

(
∇	 · ∇	

2m
+ ∂	

∂t

)
=−∇V( �R, t) (8.44)

where Eq. (8.40) was used in the last step. This equation is clearly
Newton’s second law of motion, so the “rays” of the Schrödinger
equation are classical trajectories. In other words, the mathematical
relation between wave and ray optics is analogous to that between
quantum and classical mechanics. (In fact, it was the analogy between
ray optics and classical mechanics that inspired Schrödinger to postu-
late his wave equation for mechanics.) Like the eikonal, the action can
be parameterized as S = 	( �R, t), and its equation of evolution results
from considering

Ṡ = �̇R · ∇	 + ∂	

∂t
= | �P|2

2m
− V( �R, t) (8.45)

Notice that the right-hand side of this expression is the Lagrangian.15

Let us now consider the rest of Eq. (8.39). As mentioned earlier, we
propose a Debye expansion for the amplitude of the form

A(�r , t) =
∞∑
j=0

(ih̄) j Aj (�r , t) (8.46)

After substituting this into Eq. (8.39) (recalling that the first term has
been made to vanish), separating the different powers of h̄, and rear-
ranging, we get the equations

∂ A2
0

∂t
+ ∇ ·

(
A2

0
∇	

m

)
= 0 (8.47a)

∂ Aj

∂t
+ 2∇ Aj · ∇	 + Aj∇2	

2m
= −∇2 Aj−1 (8.47b)
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for j ≥ 1. Notice that Eq. (8.47a) is a continuity equation. As in the
optical case, it can be solved through integration to give

A0[ �R(t, �� ), t] =
√

�[ �R(t0, �� )]

�(�� )

{
�[ �R(t, �� )]

�(�� )

}−1

A0[ �R(t0, �� ), t0] (8.48)

where �� = (�1, �2, �3). These results are the basis of many semiclassical
techniques used to understand and model quantum dynamics based
on classical mechanics. These techniques include the WKB (or JWKB)
method16 and the Van Vleck-Gutzwiller propagator.17,18 However, the
amplitude estimate in Eq. (8.48) diverges when classical trajectories
cross. This problem is analogous to the caustic problem in optics.

8.5.2 Bohmian Mechanics and the
Hydrodynamic Model

Now let us consider approach 2, where both A and 	 are assumed to
be real. After simple manipulation, the real and imaginary parts of
Eq. (8.39) can be written as

∂	

∂t
+ |∇	|2

2m
+ V − h̄2 ∇2 A

A
= 0 (8.49a)

∂ A2

∂t
+ ∇ ·

(
A2 ∇	

m

)
= 0 (8.49b)

This form of separating Schrödinger’s equation is the basis of Louis
deBroglie’s and David Bohm’s pilot wave interpretation for quantum
mechanics.19 Notice that Eq. (8.49a) is almost identical to the classical
equation for the action, except for the extra term −h̄2∇2 A/A. This
term is referred to as the quantum potential, and like the last term in
Eq. (8.35a), it has the effect of steering the trajectories away from the
classical ones in order to keep them from crossing. The interpretation
of deBroglie and Bohm is that there is a directly undetectable “pilot
wave” whose behavior is ruled by Schrödinger’s equation and which
guides the motion of the detectable particle.

Besides the philosophical interpretation of these results, Eqs. (8.49a)
and (8.49b) serve as the basis for computational methods. This formal-
ism is referred to as the hydrodynamic model20 since, as seen from
Eq. (8.49b), the square modulus of the wave function satisfies a conti-
nuity equation akin to that of a fluid. However, as in the optical case,
the fact that Eqs. (8.49a) and (8.49b) are coupled makes their solution
difficult, both algebraically and computationally, especially when the
wave function presents zeros.
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8.6 Small-Wavelength Limit in the
Momentum Representation
In the asymptotic approach presented in Secs. 8.2 and 8.3, the field es-
timate at a point is only due to the rays that go through that point. That
is, rays are completely local entities. This approach leads to problems
at caustics, where there is an infinite density of rays. An alternative
asymptotic approach is presented in this section, where instead of
working with the field as a function of r, we use its Fourier transform
over the transverse coordinates, defined as

Ũ( px, py, z) = k
2�

∫∫
U(x, y, z) exp(−ikx · p) dx dy (8.50)

where x = (x, y) and p = ( px, py). While the derivation presented in
the next few pages is in many ways analogous to that in Secs. 8.2 and
8.3, it is appreciably more cumbersome. Those readers who prefer to
do so can jump directly to the final result, given in Eq. (8.74).

8.6.1 The Helmholtz Equation in the
Momentum Representation

In free space, the transverse Fourier transform in Eq. (8.50) is known
as the angular spectrum representation.21 In a smoothly inhomogeneous
medium, Ũ satisfies an equation corresponding to the Fourier trans-
formation of both sides of Eq. (8.1):[

− k2|p|2 + ∂2

∂z2 + k2n2

(
i
k

∂

∂p
, z

)]
Ũ = 0 (8.51)

Here a function evaluated at a derivative is to be interpreted in terms
of its Taylor expansion:

n2

(
i
k

∂

∂p
, z

)
Ũ(p, z) =

∞∑
j=0

1
j !

(
i
k

) j

×
[

n2(x, z)

(←−
∂

∂x
·
−→
∂

∂p

) j

Ũ(p, z)

]∣∣∣∣∣
x=(0,0)

(8.52)

where the arrows indicate the direction in which the derivatives act.
Notice that it is assumed here that n2 is an analytic function and, for
convenience, the Taylor expansion is carried out around x = (0, 0).
It turns out, however, that the asymptotic results of this section are
independent of the point of expansion, and they hold as long as n is
continuous.
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We now write Ũ as a slowly varying amplitude times a phase factor:

Ũ = B(p, z) exp[ik�(p, z)] (8.53)

Notice that the substitution of this form in Eq. (8.52) gives

n2

(
i
k

∂

∂p
, z

)
[B exp(ik�)]

=
∞∑
j=0

(
i
k

) j

n2(x, z)

[
1
j !

(
ik

←−
∂

∂x
· ∂�

∂p

) j

B

+ 1
( j − 1)!

(
ik

←−
∂

∂x
· ∂�

∂p

) j−1(
ik

←−
∂

∂x
· ∂ B

∂p

)

+ 1
2( j − 2)!

(
ik

←−
∂

∂x
· ∂�

∂p

) j−2(
ik

←−
∂

∂x
· ∂2 B
∂p ∂p

·
←−
∂

∂x

)

+O(k j−2)

]∣∣∣∣∣
x=(0,0)

exp(ik�)

=
[

Bn2

(
− ∂�

∂p
, z

)
+ i

k
∂ B
∂p

· ∂n2

∂x

(
− ∂�

∂p
, z

)

− i B
2k

Tr

{
∂2n2

∂x ∂x

(
− ∂�

∂p
, z

)
· ∂2�

∂p ∂p

}
+ O(k−2)

]
× exp(ik�)

=
[

Bn2

(
− ∂�

∂p
, z

)
+ i

k
∂ B
∂p

· ∂n2

∂x

(
− ∂�

∂p
, z

)

+ i B
2k

∂

∂p
· ∂n2

∂x

(
− ∂�

∂p
, z

)
+ O(k−2)

]
exp(ik�) (8.54)

where only the two leading orders in powers of k were written explic-
itly. With this, Eq. (8.51) can be written, after dividing by −k2 exp(ik�),
as

B

[
|p|2 +

(
∂�

∂z

)2

− n2

(
− ∂�

∂p
, z

)]

+ 1
ik

[
2
∂ B
∂z

∂�

∂z
+ B

∂2�

∂z2 + ∂ B
∂p

· ∂n2

∂x

(
− ∂�

∂p
, z

)

+ B
2

∂

∂p
· ∂n2

∂x

(
− ∂�

∂p
, z

)]
+ O(k−2) = 0 (8.55)



256 C h a p t e r E i g h t

8.6.2 Asymptotic Treatment and Ray
Equations

Approaches 1 and 2 mentioned in Sec. 8.2 can be used to separate
Eq. (8.55). For approach 2, it is assumed that both B and � are real,
and Eq. (8.55) is separated into real and imaginary parts. This leads to
a momentum-space flux-line formalism where no two trajectories ever
have the same optical momentum at a given z, although they can cross
freely in position. (For quantum mechanics, the equivalent procedure
would lead to a momentum-space Bohmian formalism.) However,
except for very simple refractive index distributions, the two resulting
equations would be very complicated and would involve terms of
many orders in k. This approach is therefore not considered further.

On the other hand, approach 1, which corresponds to the asymptotic
treatment, is tractable. We start by expanding B as a Debye series:

B(p, z) =
∞∑
j=0

B j

(ik) j (8.56)

The substitution of this series into Eq. (8.55) gives analogs of the
eikonal and transport equations

|p|2 +
(

∂�

∂z

)2

= n2
(

−∂�

∂p
, z
)

(8.57a)

∂

∂z

(
B2

0
∂�

∂z

)
+ 1

2
∂

∂p
·
[

B2
0

∂n2

∂x

(
− ∂�

∂p
, z

)]
= 0 (8.57b)

Equation (8.57a) can be solved by parameterizing p = P̄(z, �) and
defining

X̄(z, �) = −∂�

∂p
(P̄, z) (8.58)

H̄(z, �) = ∂�

∂z
(P̄, z) (8.59)

Notice that the derivative with respect to z of both sides of Eq. (8.58)
gives

˙̄X = −
(

˙̄P · ∂

∂p

)
∂�

∂p
− ∂2�

∂p ∂z
(8.60)

To eliminate the cross-derivative term, let us consider the vector
derivative with respect to the transverse momentum of both sides
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of Eq. (8.57a), i.e.,

2p + 2
∂�

∂z
∂2�

∂p ∂z
= −

(
∂n2

∂x
· ∂

∂p

)
∂�

∂p
(8.61)

The evaluation of this expression at p = P̄(z, �) gives, after reordering
and the use of Eq. (8.59),

P̄
H̄

= − 1
2H̄

(
∂n2

∂x
· ∂

∂p

)
∂�

∂p
− ∂2�

∂p ∂z
(8.62)

From the comparison of Eqs. (8.60) and (8.62), we see that it is conve-
nient to choose

˙̄X = P̄
H̄

(8.63a)

˙̄P = 1
2H̄

∂n2

∂x
(X̄, z) (8.63b)

These equations are identical to Eqs. (8.18a) and (8.18b). Also, notice
that the substitution of Eqs. (8.58) and (8.59) into Eq. (8.57a) evaluated
at p = P̄(z, �) implies that

H̄ =
√

n2(X̄, z) − |P̄|2 (8.64)

so, remarkably, the parameterized trajectories that result from the
asymptotic treatment in the momentum representation are the stan-
dard rays. From now on, the bars over X, P, and H are dropped.

The phase function is again obtained parameterically. Let us define

T(z, �) = �(P, z) (8.65)

The evolution of this function results from considering its derivative
with respect to z:

Ṫ = ∂�

∂p
· Ṗ + ∂�

∂z
= − 1

2H
X · ∂n2

∂x
(X, z) + H (8.66)

where Eqs. (8.58), (8.59), and (8.63b) were used in the second step.
The relation between the values of T for contiguous rays is found
similarly by taking the partial derivative with respect to � j of both
sides of Eq. (8.65):

∂T
∂� j

= ∂�

∂p
· ∂P
∂� j

= −X · ∂P
∂� j

(8.67)

This relation, combined with Eq. (8.13), implies that

T(z, �) = L(z, �) − X(z, �) · P(z, �) (8.68)
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x

p

T(z, ξ0) – T(z, ξ1)

X(z, ξ0) X(z, ξ1)

P(z, ξ0)

P(z, ξ1)

FIGURE 8.4 The phase-space area between the p axis and any segment of
the PSC corresponds to the difference in optical path length T for the
corresponding two rays.

(Notice that an additive constant could have been included in this
expression. However, this constant can be absorbed by L .) It is easy
to show that Eqs. (8.66) and (8.68) are consistent with Eq. (8.12c).

As for L in the position representation, the geometrical interpreta-
tion of the phase T as an area in phase space is easier to understand in
the case of two-dimensional propagation, where only one parameter
� labels the rays. Equation (8.67) then becomes

T ′(z, �) = −XP ′ (8.69)

where the primes denote derivatives in �. It can be seen from Eq. (8.69)
that the area to the left of a segment of the PSC (up to the p axis)
corresponds to the difference in T for the corresponding end rays, as
shown in Fig. 8.4, so the knowledge of T for one ray and of the PSC is
sufficient to find T for any other ray.

8.6.3 Transport Equation in the Momentum
Representation

Now, to solve the momentum transport equation given by Eq. (8.57b),
let us define the differential operator in the mixed space (p, z) as

∇̃ =
(

∂

∂p
,

∂

∂z

)
(8.70)
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Let us also define the vector

�
 = (HṖ, H) = H
∂

∂z
(P, z) (8.71)

With this, the transport equation in Eq. (8.57b) can be written as

∇̃ · (B2
0

�
) = 0 (8.72)

This equation can be solved by integrating it over the volume in the
(p, z) space occupied by an infinitesimal bundle of rays between z0 and
z, and using Gauss’ theorem. Equation (8.71) states that �
 is locally
parallel to the rays in this space, so the contributions to the surface
integral from the sides of the bundle vanish, as in the position repre-
sentation case. By following steps analogous to those in Sec. 8.3, we
find

B0[P(z, �), z] =
√

H(z0, �)
H(z, �)

�[P(z0, �)]
�(�)

{
�[P(z, �)]

�(�)

}−1

B0[P(z0, �), z0]

(8.73)

Notice that this solution has problems when the Jacobian between
braces vanishes. This happens when contiguous rays in the family
have the same transverse momentum. (For a homogeneous medium,
this means that the rays are locally parallel.) That is, the field estimate
that results from this derivation also has problems, but these are dif-
ferent from those for the estimate found in the position representation,
associated with caustics. The location of these new problems, i.e., the
places where contiguous rays have the same momentum, are called
momentum caustics. As in the case of the amplitude of the position rep-
resentation estimate, one must be careful when choosing the sign of
the square root in Eq. (8.73).

8.6.4 Field Estimate
The field estimate is obtained by approximating B ≈ B0, that is,
Ũ(P, z) ≈ B0 exp(ikT). To obtain the field in the position represen-
tation, the inverse Fourier transform of this estimate must be taken.
Because p is parameterized, the Fourier transform integral must be
done parameterically by inserting a Jacobian factor:

U(�r ) ≈ k
2�

∫∫
B0(P, z) exp(ikT) exp(ikx · P)

�(P)
�(�)

d�1 d�2

= k
2�

∫∫
B0[P(z0, �), z0]

√
H(z0, �)
H(z, �)

�[P(z0, �)]
�(�)

�[P(z, �)]
�(�)

× exp(ik{L(z, �) + [x − X(z, �)] · P(z, �)})d�1 d�2 (8.74)
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Notice that the contribution for each ray now extends over all the
configuration space. That is, in this picture, rays do not contribute to
the field as infinitesimally thin conduits of power. Instead, they are
infinitely extended waves that interfere to make up the wave field. In
fact, for the case of homogeneous media, these waves are plane waves.
This estimate has no problems at position caustics (focal points), but
fails near momentum caustics.

While in this section we considered Fourier transforms over both
transverse coordinates, it is also possible to find estimates where
Fourier transforms over only one transverse coordinate are per-
formed. These could be useful in problems with specific asymmetries,
or in the implementation of the method discussed next.

8.7 Maslov’s Canonical Operator Method
The ray-based schemes discussed in previous sections present prob-
lems at either position or momentum caustics. These problematic situ-
ations have geometrical interpretations in terms of phase space. Again,
for simplicity, let us consider the case of two-dimensional propaga-
tion, where there is only one transverse position and one transverse
momentum, so that phase space is a plane. In this case, the formulas
for the amplitudes of the estimates in Eqs. (8.31) and (8.73) become,
respectively,

A0[X(z, �), z] =
√

H(z0, �)
H(z, �)

X′(z0, �)
X′(z, �)

A0[X(z0, �), z0] (8.75a)

B0[X(z, �), z] =
√

H(z0, �)
H(z, �)

P ′(z0, �)
P ′(z, �)

B0[P(z0, �), z0] (8.75b)

The field estimate resulting from using the position-dependent ap-
proach fails at caustics, i.e., when X′ = 0. In phase space, caustics cor-
respond to segments of the PSC that are locally vertical (see Fig. 8.5).
On the other hand, the momentum-representation-based estimate fails
at momentum caustics, when P ′ = 0, i.e., at segments of the PSC that
are locally horizontal. One could formulate field estimates based on
other representations associated, e.g., with a fractional Fourier trans-
form over the transverse variable of the field.22 These field estimates
would be well behaved at both position and momentum caustics, but
would fail around rays associated with segments of the PSC with a
given inclination (depending on the degree of the fractional Fourier
transform).

When a PSC is sufficiently complicated, the caustic problems are un-
avoidable, regardless of representation. Based on this fact, Maslov11
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x

p

FIGURE 8.5 Vertical segments (indicated by black dots) of the PSC
correspond to position caustics, while horizontal segments (indicated by
open dots) correspond to momentum caustics.

proposed a scheme where the PSC is subdivided into several seg-
ments, each free of at least one type of caustic (position or momentum).
A small transition region is left between the segments to avoid errors
introduced by the abrupt cuts. A field estimate is then performed for
each individual segment, using the appropriate prescription. The total
estimate is found by adding the contributions due to all the segments.
Notice that one must be careful in choosing the correct Maslov in-
dex phase for each contribution. This approach is known as Maslov’s
canonical operator method, or simply Maslov’s method.5,11,12 Its im-
plementation can be quite complicated, however, especially for three-
dimensional fields where instead of a PSC one has a two-dimensional
Lagrange manifold embedded in a four-dimensional phase space. In
this case, the global estimate can involve contributions of not only the
position- and momentum-representation-based estimates, but also of
those in mixed representations mentioned at the end of Sec. 8.6.

8.8 Gaussian Beams and Their Sums
In this section, a different scheme for connecting rays and waves is
discussed. Here, field contributions with finite effective extent in both
position and momentum are considered. For simplicity, the analysis
is performed in two-dimensional space.

8.8.1 Parabasal Gaussian Beams
According to the uncertainty relation, a field contribution cannot be
simultaneously arbitrarily localized in position and direction (i.e.,
momentum), since the product of the rms widths in these two
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representations must be equal to or greater than 1/(2k). Since the min-
imum product of widths is achieved by Gaussians, field contributions
with transverse Gaussian amplitude profile are considered here. Let
X(z) and P(z) be the centroids in x and p of such a field contribution.
This contribution, called a Gaussian beam, can then be written as

UG (x, z) = u(z) exp

[
− (x − X)2

2w2

]
exp{ik[L(z) + P(x − X)]} (8.76)

where u(z) is a complex amplitude and L(z) is a phase accumulated
under propagation. In what follows, it is shown that the beam cen-
troids X and P evolve according to geometrical optics.

The transverse rms width of the Gaussian beam in Eq. (8.76) is
w/

√
2. It is easy to show that the Fourier transform in x of this beam

is indeed a Gaussian in p centered at P , with rms width equal to
1/(

√
2kw). Since the case of large k is considered, we choose w =

1/
√

k�, where � has units of inverse length. This way, the width of
the beam is proportional to 1/

√
k in both the position and momentum

representations, leading to comparable levels of localization in phase
space in the x and p directions. The Gaussian beam in Eq. (8.76) can
then be written as

UG(x, z) = u(z)g�(x, z) (8.77)

where

g�(x, z) = exp

(
− k�

2
[x − X(z)]2 + ik{L(z) + P(z)[x − X(z)]}

)
(8.78)

Of course, the real part of � must be positive.
The next step is to substitute UG into the Helmholtz equation. First,

the second partial derivatives of UG can be found to be

∂2UG

∂x2 = [−k� + k2(iP − ��)2]ug� (8.79a)

∂2UG

∂z2 =
{

ü + u̇k[2iH + 2(�Ẋ + i Ṗ)� − �̇�2]

+uk
[

iḢ − (�Ẋ + i Ṗ) Ẋ + (�Ẍ + i P̈ + 2�̇Ẋ)� − �̈
�2

2

]

+uk2
[

iH + (�Ẋ + i Ṗ)� − �̇
�2

2

]2
}

g� (8.79b)
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where � = x − X and H = L̇ − P Ẋ. Also, it is convenient to expand
the refractive index in a Taylor series around the ray position as

n2(x, z) =
∞∑
j=0

1
j !

∂ j n2

∂x j (X, z)� j (8.80)

Equations (8.79a), (8.79b), and (8.80) are now substituted into the
Helmholtz equation for UG . The result can be grouped in powers of
k, with each coefficient itself being separated into powers of �:

[k2(C20+C21�+C22�
2+· · ·)+k(C10+C11�+· · ·)+C00] g� = 0 (8.81)

where the first few coefficients of each subseries are

C20 = u[n2(X, z) − P2 − H2] (8.82a)

C21 = u

[
∂n2

∂x
(X, z) − 2H Ṗ + 2i�(H Ẋ − P)

]
(8.82b)

C22 = u
[

1
2

∂2n2

∂x2 (X, z) + �2 + (�Ẋ + i Ṗ)2 − i H�̇

]
(8.82c)

C10 = 2iu̇H + u(−� − �Ẋ2 − iẊṖ + iḢ) (8.82d)

C11 = 2u̇(�Ẋ + i Ṗ) + u(�Ẍ + i P̈ + 2�̇Ẋ) (8.82e)

C00 = ü (8.82f)

We now assume that k is large, and we go on to perform the asymp-
totic treatment. Notice, however, that the coefficients of each power
of k involve terms with different powers of �, which cannot be mixed
to lead to an asymptotic constraint, because � depends on the spatial
variable x. Since g� is a Gaussian of width 1/

√
k� centered at x = X,

and � = x − X, the importance of each term in Eq. (8.81) decreases
with increasing powers of �. The main contribution, then, is the one
with the largest power of k and the smallest power of �, or k2C20. As
can be seen from Eq. (8.82a), this contribution vanishes if X, P , and H
are chosen to follow the rules of ray optics, i.e., if the two-dimensional
version of Eq. (8.16) is satisfied. The ray propagation equations for X
and P , given in Eqs. (8.19a) and (8.19b), are also found from setting to
zero the next contribution in importance, or k2C21�, as can be easily
seen from Eq. (8.82b). That is, as in the position- and momentum-
based derivations presented earlier, forcing the leading orders of the
asymptotic form of the wave equation to vanish leads to the laws of
ray optics.
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In analogy with those derivations, it might be expected that the am-
plitude u should be expanded into a Debye series and that this would
lead to a hierarchy of equations. However, given that the coefficients
of different powers of both k and � must be made to vanish indepen-
dently, this would lead to a set of mutually inconsistent equations. For
this reason, the strategy employed here is to leave u as one function.
The equations that describe its evolution as well as that of � follow
from considering only the next two most significant terms in Eq. (8.80),
i.e., from forcing C22 and C10 to vanish. The resulting equations are

�̇ = − i
H

[
1
2

∂2n2

∂x2 (X, z) + �2 + (�Ẋ + i Ṗ)2
]

= − i
H

{
�2 n2(X, z)

H2 + i�
P

H2

∂n2

∂x
(X, z) + 1

2
∂2n2

∂x2 (X, z)

−
[

1
2H

∂n2

∂x
(X, z)

]2
}

(8.83a)

u̇ = u
2H

[ẊṖ − Ḣ − i�(1 + Ẋ2)]

= u
4H3

[
P

∂n2

∂x
(X, z) − H

∂n2

∂z
(X, z) − 2i�n2(X, z)

]
(8.83b)

Equation (8.83a) is a nonlinear first-order differential equation of the
Riccati type, which can be expressed in terms of the solution to a
second-order linear differential equation.23 Equation (8.83b) requires
the use of the solution of Eq. (8.83a). These equations do not lead to
closed-form solutions except for certain simple refractive index dis-
tributions such as free space, where the solutions are the standard
paraxial Gaussian beams. In three dimensions, these equations are
more complicated, since � must be replaced by a 2 × 2 matrix.

Setting the remaining coefficients to zero leads to constraints that are
inconsistent with the ones found earlier. Therefore, the fields UG that
result from the substitution of the solutions of Eqs. (8.83a) and (8.83b)
into Eq. (8.77) are only approximate solutions to the Helmholtz equa-
tion. These beams are sometimes called parabasal Gaussian beams, as
they are the result of an expansion around a “base” ray with phase-
space coordinates (X, P).

8.8.2 Sums of Gaussian Beams
The parabasal propagation of Gaussian beams can be calculated
through the methods outlined earlier. A large body of work has been
produced in the last few decades with the goal of modeling the prop-
agation of arbitrary fields by expressing them as superpositions of
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Gaussian beams. These schemes are known collectively as Gaussian
beam summation methods. They were proposed independently in
many areas starting with geophysics, for the description of seismic
waves.24–28 Similar methods followed for quantum mechanics29–31

(where the beams are referred to as Gaussian wave packets) and elec-
tromagnetic waves32–37 (particularly in optics and radio science). One
of the main advantages of this approach is that it is free of problems
at caustics.

Gaussian beam summation methods rely on the expression of an
initial field as a Gabor representation,38 i.e., as a weighted superposi-
tion of Gaussian functions of a given width, with different locations
and linear phase factors. These superpositions can be discrete or con-
tinuous. A discrete Gabor representation, for example, allows us to
write a function f (x) in the form

f (x) =
∑
m,n

am,n exp
[−k�0(x − m�X)2

2
+ ikn�P (x − m�X)

]
(8.84)

Here, the sampling spacings �X and �P must satisfy the relation
�X�P ≤ 2�/k, where the basis is complete if the equality holds and is
overcomplete otherwise. (The standard complete Gabor basis results
from choosing �X = √

2�/k�0 and �P = √
2��0/k.) This basis of

Gaussians is not orthogonal, so the expansion coefficients am,n must
be found through the use of a biorthogonal basis.32,33 Each Gaussian
roughly occupies a phase-space area of size

√
2�/k�0 by

√
2��0/k

centered at (x, p) = (m�X, n�P ), so the Gabor representation can be
thought of as a subdivision of phase space into a Cartesian grid of cells
whose size is smaller than or equal to the minimum-uncertainty phase-
space area. The procedure for the propagation of a field U(x, z) in two
dimensions is as follows: First the coefficients am,n for the specified
initial field U(x, 0) are found. Then each Gaussian is propagated as
a Gaussian beam with u(0) = am,n, �(0) = �0, X(0) = m�X, P(0) =
n�P , and L(0) = 0. Finally, the field away from the initial plane is
approximated as the sum of the propagated Gaussian beams. This
method relies on the validity of the parabasal approximation for each
beam.

Continuous Gaussian beam summation methods result from ex-
pressing the field as a continuous superposition of Gaussian beams.
These can involve all initial positions and directions, although then
the superposition is not unique, since the continuous set of Gaus-
sians constitutes an overcomplete basis. Another form of continuous
superposition can be used for fields associated with a known initial
Lagrange manifold. In this case, the initial field is not composed of
all possible Gaussians but only of those whose central initial position
and direction fall within this Lagrange manifold. For fields in two
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dimensions, the corresponding field estimate then takes the form of
an integral over the PSC

U(x, z) ≈
∫

u(z, �)g�(z,�)(x, z, �) d� (8.85)

where

g�(x, z, �) = exp

(
−k�

2
[x−X(z, �)]2+ik{L(z, �)+P(z, �)[x−X(z, �)]}

)
(8.86)

and u(0, �) and �(0, �) must be chosen so that the superposition
matches the initial field at z = 0. Again, this method is valid as long
as the parabasal approximation holds for each independent Gaussian
beam.

8.9 Stable Aggregates of Flexible Elements
A different approach for building wave field estimates based on rays
through the superposition of Gaussian contributions is now discussed.
Like Eq. (8.85), this framework, referred to as stable aggregates of flexi-
ble elements (SAFE),39–43 takes the form of a continuous superposition
of Gaussian components around the rays in the Lagrange manifold.
However, in SAFE, the Gaussian contributions are not independently
propagating parabasal Gaussian beams; rather, they are interrelated
contributions, where � is not constrained to have a specific depen-
dance on z or �:

U(x, z) =
∫

u(z, �)g�(x, z, �) d� (8.87)

In what follows, it is assumed for simplicity that � is a real and positive
constant, although the results remain valid if this parameter has an
imaginary part and/or is allowed to vary slowly with z, �, or even x.

8.9.1 Derivation of the Estimate
To find the specific form of this estimate, we substitute Eq. (8.87) into
Eq. (8.1). By following the same steps as in Sec. 8.8, we obtain a result
that is identical to that in Eq. (8.81), except for the presence of an
integral in �:∫

[k2(C20+C21�+C22�
2+· · ·)+k(C10+C11�)+C00] g� d� = 0 (8.88)
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where the functional coefficients Cmn are those in Eqs. (8.82a) through
(8.82f), with all derivatives of � set to zero.

The main feature of SAFE is that the Gaussians are not independent
beams but interrelated contributions. This is due to the presence of the
integral in Eq. (8.88), which plays a fundamental role in the derivation.
The key for this is a trick based on the fact that the derivative of g�

with respect to � is given by

g′
� = k[�X′� + i(L ′ − P X′ + P ′�)]g� = k(�X′ + iP ′)�g� (8.89)

where, in the last step, we chose L to be the area under the PSC, so
that Eq. (8.21) is satisfied. Equation (8.89) can be written as

�g� = g′
�

kY ′ (8.90)

where the shorthand Y = �X + iP is used in what follows. By using
this expression, a factor of � multiplying g� can be removed at the
cost of turning g� into g′

� (and including an extra factor of 1/kY ′).
The � derivative in g� can then be removed through integration by
parts. This process can be repeated to remove higher powers of � in
the form∫

kmCmn�
ng� d� =

∫
km−1 Cmn

Y ′ �n−1g′
� d� = −

∫
km−1

(
Cmn

Y ′ �n−1

)′

× g� d�

=
∫

km−1

[
Cmn

X′

Y ′ �
n−2 −

(
Cmn

Y ′

)′
�n−1

]
g� d�

(8.91)

where the integrated terms resulting from the integration by parts
are dropped by assuming that the magnitude of the integrands goes
to zero at the limits. By using this trick repeatedly, we can rewrite
Eq. (8.88) as∫ {

k2C20 + k
[

X′

Y ′ C22 + C10 −
(

C21

Y ′

)′]
+ O(k0)

}
g� d� = 0 (8.92)

As for the Gaussian beams, setting the leading term, k2C20, to zero
leads to the laws of ray optics, which also make C21 vanish. Then forc-
ing the remaining part of the next term to vanish amounts to choosing
u so that X′C22 + Y ′C10 = O(k−1). The derivation that follows re-
quires a few steps. Let us start by substituting Eqs. (8.82c) and (8.82d)
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(recalling that �̇ = 0) into this expression:

X′C22 + Y ′C10 = uX′
(

1
2

∂2n2

∂x2 + �2 + Ẏ2
)

+Y ′[2iu̇H + u(−� − Ẏ Ẋ + iḢ)]

= u

[(
1
2

∂n2

∂x

)′
+ �(�X′ − Y ′) + Ẏ(ẎX′ − ẊY ′)

]
+ iY ′(2u̇H + uḢ) (8.93)

By using Eq. (8.19b) as well as the fact thatY = �X+iP , this expression
can be simplified to

X′C22 + Y ′C10 = u[(H Ṗ)′ − i�P ′ + iẎ( Ṗ X′ − ẊP ′)] + iY ′(2u̇H + uḢ)
(8.94)

By noticing that

H′ = (
√

n2(X, z) − P2)′ = 1
2H

(
∂n2

∂x
X′ − 2P P ′

)
= Ṗ X′ − ẊP ′

(8.95)

where Eqs. (8.19a) and (8.19b) were used in the last step, Eq. (8.94) can
be simplified further as

X′C22 + Y ′C10 = u[(H Ṗ − i�P)′ + iẎH′] + iY ′(2u̇H + uḢ)

= iu[ẎH′ − (�H Ẋ + iH Ṗ)′] + iY ′(2u̇H + uḢ)

= iu[ẎH′ − (HẎ)′] + iY ′(2u̇H + uḢ)

= −iuHẎ ′ + iY ′(2u̇H + uḢ)

= 2i
√

HY ′3 ∂

∂z

(
u

√
H
Y ′

)
(8.96)

where Eq. (8.19a) was used in the second step. Therefore, Eq. (8.92)
is satisfied up to the two leading orders if the result of Eq. (8.96)
is asymptotically negligible. This can be enforced by writing u as a
Debye series of the form

u =
√

k
2�

√
Y ′(z, �)
H(z, �)

∞∑
j=0

a j

(ik) j (8.97)

where the dominant term of the sum, that is, a0(�), is independent of
z, and the constant factor in front was added for convenience. That is,
for SAFE, the transport equation takes the simple form ȧ0 = 0.
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The field can be estimated by approximating a ≈ a0, giving

U(�r ) ≈ U�(�r )

=
√

k
2�

∫
a0(�)

√
�X′ + iP ′

H

× exp
{

−k�

2
(x − X)2 + ik[L + (x − X) P]

}
d� (8.98)

This result is SAFE’s basic field estimate. Like the Gaussian beam
summation methods, this estimate does not fail at caustics of any
kind. Its only divergence occurs when rays turn around in z, that is,
if H vanishes. Unlike the Gaussian beam summation methods, this
estimate does not depend on the parabasal approximation. In fact, its
results have been shown43 to remain valid beyond the point at which
the parabasal approximation fails, and the corresponding continuous
Gaussian beam superposition [as given in Eq. (8.85)] breaks down. The
generalization of this result to three dimensions is straightforward:

U(�r ) ≈ U�(�r ) = k
2�

∫∫
a0(�)

√
1
H

�(� · X + iP)
�(�)

× exp
{

−k
2

(x − X) · � · (x − X) + ik[L + (x − X) · P]
}

d�1 d�2

(8.99)

In the most general form of this result, � is a 2 × 2 matrix (whose
eigenvalues must have positive real parts).

Related propagation methods have been proposed in the quantum-
mechanical context. Heller44 proposed estimating the temporal evo-
lution of a wave function as a superposition of “frozen Gaussians.”
Later, Herman and Kluk45 found that a prefactor was missing from
Heller’s formulation. Their corrected result, known as the HK-IVR
(initial value representation) method, has become a standard tool in
quantum chemistry. Unlike SAFE, these methods involve integration
over all phase space, and not only over a Lagrange manifold.

8.9.2 Insensitivity to �
It would seem that SAFE’s estimate depends strongly on the choice of
the width parameter �. However, it is easy to show that this is not the
case. Consider the derivative of Eq. (8.98) with respect to �, that is,

∂U�

∂�
=
∫

a0

√
Y ′

H

(
X′

2Y ′ − k
�2

2

)
g d�

=
∫

a0

√
Y ′

H

[
X′

2Y ′ − X′

2Y ′ + O(k−1)

]
g d� = O(k−1)U� (8.100)
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where in the second step the integration-by-parts trick in Eq. (8.91)
was used to remove the �’s. This means that the variation of SAFE’s
estimate due to changes of the contributions’ widths is asymptotically
small, provided that a0 is chosen to be independent of �. This is the
reason for the name of the method: while each of the contributions (or
“elements”) is flexible in width, their superposition (or “aggregate”)
is stable.

8.9.3 Phase-Space Interpretation
Insight into SAFE and the insensitivity of the estimate on � (as well
as the limitations of this insensitivity) can be gained through a phase-
space picture. The windowed Fourier transform (WFT) like the one de-
fined in Eq. (1.86) is a linear phase-space representation of a function.
Here, let us consider a WFT where the window is chosen as a Gaussian
of width (k�)−1/2 (with � > 0):

Sf (x, p; �) =
√

k�1/2

2�

∫
f (x′) exp

[
−k�

(x′ − x)2

2

]
× exp

[
−ikp

(
x′ − x

2

)]
dx′ (8.101)

The squared modulus of this transform is known as the spectrogram or
Husimi function.46 The application of this transformation to the field
estimate in Eq. (8.98) gives

SU�
(x, p; z, �)

=
√

k�1/2

2�(� + �)

∫
a0

√
�X′ + iP ′

H
exp

[
−k

(x − X)2

2(�−1 + �−1)
− k

( p − P)2

2(� + �)

]
× exp

{
− ik

� + �

[
�x
(

P − p
2

)
− �p

(
X − x

2

)
− �XP

]}
d�

(8.102)

That is, the contribution from each ray is a Gaussian (times a linear
phase factor) localized around the corresponding phase-space point,
with rms widths

√
(�−1 + �−1)/2k in the x direction and

√
(� + �)/2k

in the p direction, as shown in Fig. 8.6a. This leads to the following
intuitive picture illustrated in Fig. 8.6b: the evaluation of Eq. (8.102) is
like spray-painting the wave field’s phase-space distribution over the
rays’ traced line (the PSC). The characteristic footprint of the spray
can has the widths mentioned earlier. However, the appearance of
the final thicker fuzzy line painted over the PSC is roughly indepen-
dent of the widths of the footprint,47 as long as this footprint is fine
enough to resolve the sections of the PSC where the curvature is tight.
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FIGURE 8.6 (a) The rms widths in phase space of the Gaussian-windowed
Fourier transform of a field contribution in Eq. (8.102) due to a ray. (b) Picture
of the Gaussian-windowed Fourier transform of SAFE’s field estimate as the
result of spray-painting over the PSC, where the footprint of the spray can
has the shape shown in part a.

For example, near a position caustic, the size of the footprint in the p
direction should not be excessively large, placing an upper bound on
�. On the other hand, near a momentum caustic, the x direction width
of the footprint should be sufficiently small to resolve the correspond-
ing curvature, and this results in a lower bound on �. This implies that
the geometry of the PSC (or the Lagrange manifold) dictates the valid
ranges for the width of the contributions.

It is worth noticing that, in the limit � → 0, SAFE’s estimate re-
duces to the momentum representation estimate in Eq. (8.74), as the
contributions become infinitely wide. On the other hand, in the limit
� → ∞, the Gaussian contributions become delta functions, and
the estimate reduces to that resulting from the position representa-
tion treatment, given in Eq. (8.32). The fact that, in the presence of
position or momentum caustics, these limiting values of � violate
the limitations outlined in the previous paragraph is consistent with
the failure of the estimates discussed in Secs. 8.3 and 8.6 in these
situations.

8.10 A Simple Example
Some of the methods described earlier are applied here to a simple ex-
ample, corresponding to a mirage like reflection in two-dimensional
space. Consider a hot surface at x = 0 heating up a transpar-
ent medium in the half-space x > 0. Away from this surface, the
medium’s refractive index is n0, while near it, the refractive index de-
creases smoothly due to thermal expansion. Let us use the following
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simplified model for the square of the refractive index

n2(x) =
{

n2
0 x ≥ x0

n2
0[1 − �2(x − x0)2] x < x0

(8.103)

where x0 is the height at which the refractive index becomes constant
and � determines the speed of the variation of the refractive index
near x = 0. Consider a point source located at (xs , 0), where xs >

x0, emitting light uniformly in all directions. Let us choose the ray
parameter � as the angle (with respect to the z axis) at which each ray
leaves the source. Since the refractive index is independent of z, H is
invariant under propagation, according to Eq. (8.19c). From geometry,
its value is found to be

H(�) = n0 cos � (8.104)

The solutions to Eqs. (8.19a), (8.19b), and (8.20) take different forms in
three regions:

1. If the ray has not entered the inhomogeneous region x < x0,
then it is a straight line defined by

X(z, �) = xs + z tan � (8.105a)

P(z, �) = n0 sin � (8.105b)

L(z, �) = n0z sec � (8.105c)

2. If the ray is inside the inhomogeneous region, then

X(z, �) = x0 + sin �

�
sin{�[z − Z1(�)] sec �} (8.106a)

P(z, �) = n0 sin � cos{�[z − Z1(�)] sec �} (8.106b)

L(z, �) = n0 sec �

{
Z1(�) +

(
1 + sin �

2

)
[z − Z1(�)]

}
+n0

4�
sin � sin{2�[z − Z1(�)] sec �} (8.106c)

where Z1(�) = (xs − x0) cot � is the value of z at which the ray
enters the inhomogeneous region.

3. If the ray has entered and exited the inhomogeneous region,
then

X(z, �) = x0 − [z − Z2(�)] tan � (8.107a)

P(z, �) = −n0 sin � (8.107b)

L(z, �) = n0[z + Z1(�) − Z2(�)] sec � + �n0

�

(
1 + sin �

2

)
(8.107c)
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where Z2(�) = Z1(�) + �n0 cos �/� is the value of z at which the
ray exits the inhomogeneous region. From the equations above,
as well as their substitution in any of the wave field estimation
formulas, it is easy to see that the solution to the problem de-
pends on the dimensionless parameters kn0/�, �x0, and �xs , as
well as on the dimensionless variables (�x, �z). For SAFE, the
estimate also depends on �/�.

Field estimates can be constructed from the equations for the rays
given above, once they are supplemented with initial weights for
the rays. In this example, only the position- and momentum-based
field estimates as well as that corresponding to SAFE (with �/� = 1)
are calculated. Since we are considering a point source emitting light
equally in all directions, the initial ray weight for SAFE is chosen as a
constant, a0 = U0. For propagation in two dimensions, the position-
representation-based estimate in Eq. (8.32) can be written as

U[X(z, �), z] ≈
√

H(z0, �)X′(z0, �)
H(z, �)X′(z, �)

A0[X(z0, �), z0] exp[ikL(z, �)]

(8.108)

Notice that, to plot the estimate as a function of x, the equation
x = X(z, �) has to be solved for � as a function of x and z. Except for
very simple cases such as free-space propagation, this cannot be done
in closed form, so it is necessary to use a numerical root-search proce-
dure. For the example considered here, this procedure is straightfor-
ward. However, for more complicated optical systems, this root-search
procedure can be computationally demanding, as each iteration in-
volves tracing a ray across the system. Also notice that, as written,
Eq. (8.108) is not suitable for the evaluation of a field generated by a
point source, since X′(z0, �) = 0. This problem can be solved by sub-
stituting

√
H(z0, �)X′(z0, �) A0[X(z0, �), z0] = U0, as this substitution

would give the asymptotic estimation of a circular wave in free space.
The momentum-based estimate for two-dimensional propagation is
given by

U(�r ) ≈
√

k
2�

∫
B0[P(z0, �), z0]

√
H(z0, �) P ′(z0, �) P ′(z, �)

H(z, �)

× exp(ik{L(z, �) + [x − X(z, �)]P(z, �)}) d� (8.109)

For calculating the field due to a point source, we use B0[P(z0, �), z0] =√
iU0/H(z0, �) (where the phase factor is inserted so that this estimate

is in phase with the other two).
Figure 8.7 shows (a) some of the rays and (b) a segment of the PSC

for �xs = 3, �x0 = 0.8, and �z = 10. Notice that these rays present
both a position caustic (at �x ≈ 0.55) and a momentum caustic (at
�x ≈ 0.78). The intensity estimates at �z = 10 for kn0/� = 1000 are
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FIGURE 8.7 (a) Rays from a point source, reflected by a quadratic gradient
index, and (b) a segment of the PSC for this family of rays at �z = 10.

shown in Fig. 8.8a, and the square modulus of their difference is shown
(over a larger region) in Fig. 8.8. The position-based field estimate
diverges at the caustic, but approaches SAFE’s estimate elsewhere. The
momentum-based estimate, on the other hand, differs from the other
two over a wide interval around the momentum caustic. The error of
this estimate is not divergent like that of the position-based one, but
it is considerably more extended. This is so because the momentum-
based estimate has a divergent but localized error in momentum space
and, due to the uncertainty relation of the Fourier transform, this error
becomes broad in the position representation.
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FIGURE 8.8 (a) Intensity estimates resulting from Eqs. (8.108) (dashed line),
(8.109) (dotted line), and (8.98) (solid line) for the ray family in Fig. 8.7 with
�z = 10 and kn0/� = 1000. (b) Square modulus of the difference between the
estimates in Eqs. (8.108) and (8.98) (solid line), Eqs. (8.109) and (8.98) (dashed
line), and Eqs. (8.108) and (8.109) (dotted line), for the same values of the
parameters.
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8.11 Concluding Remarks
The field estimates presented in this chapter were derived through the
same generic procedure: an ansatz is substituted into the Helmholtz
equation, leading to conditions that the functions in the ansatz must
satisfy. Note, however, that an alternative procedure for deriving
some of these results exists where, instead of using the (differential)
Helmholtz equation, one considers an infinite succession of prop-
agation integrals over infinitesimally short distances. For each in-
finitesimally thin slice of space, the propagation integral amounts to a
Rayleigh-Sommerfeld-like superposition of secondary waves, where
for each of these waves the refractive index is approximated as that
at the secondary source position. This description of wave propaga-
tion is analogous to Feynman’s path integral formulation of quantum
mechanics48 as a “sum of all possible histories.” The ray-based esti-
mates can then be obtained by approximating the integrals asymptoti-
cally, where k is used as the asymptotic parameter. The position-based
estimate in particular results from applying the method of stationary
phase49 to all the integrals. The resulting leading contribution to the
field at a point is associated with a trajectory (or a set of trajectories) ar-
riving at this point from the initial plane. The optical path length of this
trajectory is stationary with respect to infinitesimal variations, so it sat-
isfies Fermat’s theorem. These stationary paths are therefore the rays
of geometrical optics. Since the method of stationary phase consists of
approximating the rapidly varying phase as a quadratic polynomial
around a stationary point, the short-wavelength limit studied here
has something in common with the paraxial and quasi-homogeneous
limits mentioned in Sec. 8.1: they all lead to field estimates consistent
with ray optics through the quadratic approximation of phases inside
integrals, so that these integrals can be approximated analytically.
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C H A P T E R 9
Self-Imaging in Phase

Space

Markus E. Testorf
Dartmouth College, Hanover, New Hampshire, U.S.A

9.1 Introduction
There is little doubt that Fourier optics has shaped optical engineering
in ways only comparable to geometrical optics. Understanding wave-
fronts and optical hardware in terms of linear system theory has been
pivotal to integrating optical sciences with signal processing and nu-
merical computing. Topics such as diffractive optics design and com-
putational imaging are almost unimaginable without the theoretical
foundations of Fourier mathematics.

An emerging and fascinating alternative to Fourier optics is phase-
space optics. Forged by the marriage of joint time-frequency analysis
and the phase-space formalism of quantum mechanics, phase-space
optics is a platform for describing ray optics, radiometry, coherent
Fourier optics, and coherence theory with a single consistent frame-
work.

The phase-space interpretation is often perceived as a highly math-
ematical exercise with little additional information to complement the
standard treatment in terms of Fourier optics. This perception is per-
haps justified when looking at the mathematical properties of basic
phase-space tools, namely, the Wigner distribution function (WDF).
The WDF “inflates” the complex amplitude into an apparently redun-
dant multidimensional function with transverse spatial position and
spatial frequency as independent variables. In addition, the WDF is a
bilinear transformation, and hence the linearity of signal superposi-
tion is lost.

279
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Closer study, however, reveals a powerful representation of optical
signals and systems adding unprecedented insight and intuition to
well-known optical phenomena, which in turn forms the basis for
new system designs and applications.

While not all effects in classical optics find a preferable interpreta-
tion in phase space, the self-imaging phenomenon can be regarded as
a poster child for promoting phase-space optics as a true alternative
to Fourier optics.

In this chapter, we revisit the self-imaging effect and its closest rel-
atives, including the Talbot effect, the fractional Talbot effect, and the
Lau effect. All essential relationships are derived from simple dia-
grams of the associated phase space. We show that much of the math-
ematics involving the WDF can be avoided once a small set of relation-
ships has been established. Compared to the Fourier optics treatment,
we will then barely need any mathematical instrument, except basic
algebra and geometry. This is only possible if the mathematical tools
of phase-space optics are not applied in a mechanistic way, but are
customized to each situation. Thus, the study of self-imaging may not
provide a foolproof recipe. The chapter rather is intended as a teaser to
illustrate the beauty of phase-space optics. While intellectual pleasure
is guaranteed, the phase-space interpretation of self-imaging may also
have the potential of pointing toward new effects and applications not
immediately obvious from a Fourier optics perspective.

9.2 Phase-Space Optics Minimum Tool Kit
Phase-space optics represents N-dimensional signals in a 2N-
dimensional configuration space. Since we want to use diagrams not
merely for illustration, but also to obtain quantitative results, we re-
strict our discussion to one-dimensional optical signals. A phase-space
distribution suitable to represent the one-dimensional complex am-
plitude distribution u(x) is the WDF 1–3

W(x, �) =
∫ ∞

−∞
u
(

x + x′

2

)
u∗
(

x − x′

2

)
exp(−i2��x′) dx′ (9.1)

The signal function enters the transform twice which results in a bilin-
ear transformation. The properties of the WDF are highly symmetric
with respect to the two conjugate variables x and �. This is reflected
by the alternative definition

W(x, �) =
∫ ∞

−∞
ũ
(

� + �′

2

)
ũ∗
(

� − �′

2

)
exp(i2��′x) d�′ (9.2)
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based on the Fourier transform of the signal

ũ(�) =
∫ ∞

−∞
u(x) exp(−i2��x) dx (9.3)

Intensity and power spectrum of the complex signal can be recov-
ered as the marginals of the WDF, i.e., the projections parallel to the
phase-space axes∫ ∞

−∞
W(x, �) d� = |u(x)|2 and

∫ ∞

−∞
W(x, �) dx = |ũ(�)|2 (9.4)

In fact, it is possible to regain the original signal, apart from a constant
factor, as a Fourier transformation of the WDF, proving that the WDF
is a complete representation of the complex amplitude.

To gain intuition, we consider the WDF of two copropagating plane
waves (Fig. 9.1). The complex amplitude

utpw(x) = exp(i2��1x) + exp(i2��2x) (9.5)

is translated to

Wtpw(x, �) = �(�−�1)+�(�−�2)+2 cos [2�(�1 −�2)x] �
(

� − �1 + �2

2

)
(9.6)

Figure 9.1b shows a schematic representation of the WDF which we
will call the phase-space diagram (PSD). The phase-space interpre-
tation of optical rays associates each ray with a single point in the
x� plane. This means, for a given plane z, along the optical axis a
ray is represented by its transverse coordinate x and its propagation

z
n1

n

n1

n2 n2

(a) (b)

n1,2

x

x

FIGURE 9.1 Interference in phase space: (a) Two propagating coherent plane
waves and (b) the corresponding phase-space diagram.
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angle �, where �� = sin �, with � being the wavelength of the coherent
wavefront.

The WDF can be regarded as a generalized ray distribution. If we
interpret each of the two plane waves as a bundle of rays, where each
bundle has a different propagation angle, we can map each plane
wave into the PSD. The two horizontal �-lines, marked as �1 and �2
in Fig. 9.1b, correspond to the ray coordinates which we would in-
tuitively expect as the phase-space distribution of two plane waves.
The additional cosine modulated line at the intermediate frequency
�1,2 is the so-called interference term or cross-term related to the bilin-
earity of the WDF. The fundamental period of the interference term
is represented as the period of the dashed line in the PSD. This ad-
ditional term ensures proper encoding of interference effects is not
considered by geometrical optics. It is also implicit that the inter-
ference term carries the information about the mutual coherence of
the two plane waves.4 For mutually incoherent waves the interfer-
ence term of the WDF vanishes, and for partially coherent signals
it is a weighted contribution related to the degree of mutual coher-
ence of the two plane waves. While not corresponding to rays in a
geometrical optics sense, the phase-space points associated with in-
terference terms behave exactly as points associated with ordinary
rays.

This means that the WDF allows us to study the phase space of rays
and how it changes as the light signal propagates through a paraxial
optical system. Then the same rules are applied to the generalized
phase-space distribution of the WDF to propagate wavefronts through
the optical system. Paraxial ray tracing is conveniently described with
matrix optics. In fact, matrix optics, which appears in many textbooks
(see, e.g., Ref. 5) is phase-space optics in disguise. Each optical element
or system can be represented by a 2 × 2 matrix, and the coordinates
transform according to(

x

�

)
out

=
(

A B

C D

)(
x

�

)
in

(9.7)

Thus any paraxial optical system that can be described by an ABC D
matrix amounts to a geometrical transformation of the WDF

Wout(x, �) = Win( Ax + B�, Cx + D�) (9.8)

modifying the location of each point of the WDF, but not its value.
For instance, paraxial free-space propagation or Fresnel diffraction

corresponds to a shear of the WDF parallel to the x axis

WFr(x, �) = W0(x − �z�, �) (9.9)

The Fourier dual operation is the phase modulation with a linear chirp
function, i.e., the function of a parabolic lens. For a convex lens of focal
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length f we find

WL (x, �) = W0

(
x, � + x

� f

)
(9.10)

In Fig. 9.2 both operations are applied to a generic phase-space vol-
ume of rectangular shape. In addition, Fig. 9.2d shows the effect of a
Fourier transformation that corresponds to exchanging both phase-
space coordinates with a clockwise rotation of the WDF by 90◦.

Important operations are modulation and convolution of two sig-
nals. For the product of two functions u(x) = g(x) h(x), the corre-
sponding WDFs are convolved with respect to the frequency variable

Wu(x, �) =
∫ ∞

−∞
Wg(x, �′)Wh(x, � − �′) d�′ = Wg(x, �) ∗� Wh(x, �)

(9.11)

The symmetry between x and � implies that a convolution between the
two signals is translated to a convolution between the corresponding
WDFs with respect to x.

Finally, we will also need the phase-space representation of a linear
chirp function

uch(x) = exp[i2�(�x2 + �x + �)] (9.12)

n

n
n

n
W0(x, v)

(a) (b)

(d )(c)

WL(x, v)

WFT (x, v)

WFr(x, v)

x

x

x

x

FIGURE 9.2 Paraxial optics in phase space: (a) Generic phase-space
distribution of an optical signal, (b) signal after Fresnel diffraction, (c) after
modulation with a quadratic phase function, and (d) after Fourier
transformation.
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with the WDF reading

Wch(x, �) = �(� − 2�x − �) (9.13)

which includes as a limiting case a line parallel to x for each off-axis
plane wave and a line parallel to � as the representation of a single
point source.

The WDF of the chirp function also provides us with an alternative
interpretation of the affine transformations of phase space associated
with Fresnel diffraction and a thin lens. Fresnel diffraction can be
understood as a convolution of the complex amplitude distribution
with the point response function of free space

hFr(x, z) = 1√
i�z

exp
(

i�

�z
x2
)

(9.14)

This translates to

Wh(x, �) = 1
|�z|�

(
� − x

�z

)
= �(x − �z�) (9.15)

which is a straight line in phase space. From this we obtain Eq. (9.9)
straightforwardly as the convolution in x between the input WDF and
Wh(x, �). Similarly, convolution of the oblique line in � with the WDF
of the input signal corresponds to the operation in Eq. (9.10).

9.3 Self-Imaging of Paraxial Wavefronts
Self-imaging was first observed by Henry Fox Talbot6 in 1836 and the-
oretically explained by Lord Rayleigh7 in 1881. In modern language,
the Talbot effect is concerned with Fresnel diffraction of a coherent
monochromatic wavefront that is strictly periodic in the transverse
direction. Then the physics of wave propagation ensures strict peri-
odicity along the axis of propagation z as well.

It was not until 1967 that Montgomery proved lateral periodicity to
be a sufficient, but not a necessary, condition for self-imaging.8 In fact
it is possible to construct signals with a discrete plane wave spectrum,
which exhibit self-imaging not only within the bounds of paraxial
optics, but also for the nonparaxial domain of propagation.

With few exceptions the Talbot effect was ignored until affordable
coherent light sources became available and triggered a wave of re-
search related to coherent optical signal processing. Since then, the
Talbot effect has become a standard tool of Fourier optics. For a de-
tailed survey of the self-imaging phenomenon and its applications,
refer to the 1989 review by Patorski.9
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The scope of self-imaging was dramatically expanded by the study
of Fresnel diffraction of periodic signals at rational fractions of the
Talbot self-imaging period. Namely, the work by Winthrop and
Worthington10 identified Fresnel images, i.e., the diffraction patterns
at so-called fractional Talbot planes, as cases, where the Fresnel diffrac-
tion integral can be expressed in simple analytic form. Subsequent
investigations further simplified the analytic expressions,11–13 culmi-
nating in a discrete matrix formulation of near-field diffraction, which
relates the amplitudes of sampled periodic signals in different frac-
tional Talbot planes via linear transformations.14–16 Interest in study-
ing the fractional Talbot effect largely increased by the invention of
the Talbot array illuminator,17,18 a diffractive optical element to con-
vert a homogeneous wavefront to an array of high-intensity spots.
Today, a vast number of studies can be found in the literature that
describe design procedures, experimental work, and applications of
Talbot array generators (see Refs. 19–23 as only a small set of related
work).

A close relative of the Talbot effect is the Lau effect which is con-
cerned with incoherent periodic optical signals.24–26 While not receiv-
ing the same attention as coherent self-imaging, perhaps due to its less
intuitive nature and a more difficult experimental implementation, the
Lau effect was shown to be useful for a number of applications and
remains a vivid member of the family of self-imaging phenomena.

Self-imaging in phase space was first studied by Ojeda-Castañeda
and Sicre27 and applied to both the Talbot effect and the Lau effect.
The phase-space analysis was later extended to include the fractional
Talbot effect28 and the design of Talbot array illuminators.29

The remainder of the chapter, in part, is a review of previously
published results. In part, however, it contains original contributions
to highlight self-imaging as a phenomenon that is exceptionally suited
to be explored with phase-space optics.

9.4 The Talbot Effect
The setup to observe the Talbot effect is schematically depicted
in Fig. 9.3. An infinitely extended grating is illuminated with a
monochromatic coherent plane wave of wavelength �. Figure 9.3
shows the simulated intensity pattern behind a Ronchi grating. After
some propagation distance zT we find the exact intensity distribution
which is observable immediately behind the grating, and we call zT
the self-imaging distance or Talbot distance. The fractional Talbot ef-
fect, which is discussed in detail in Sec. 9.6, is associated with Fresnel
diffraction at rational fractions M/N of the Talbot distance, where M
and N are integer numbers. Our discussion will exclusively assume
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FIGURE 9.3 Configuration to observe the Talbot effect and the fractional
Talbot effect.

paraxial wave propagation and will be limited to a single transverse
coordinate.

To analyze the Talbot effect in phase space, we need to add the WDF
of a periodic signal to our phase-space toolbox. Transverse periodicity
implies a complex amplitude u(x) = u(x + d) with d being the trans-
verse period of the signal. It is commonly assumed that the periodic
amplitude distribution is the result of illuminating a grating with a
plane wave. It should be emphasized, however, that the Talbot effect
is not concerned with the interaction between the incident wave and
the diffraction screen, but exclusively with the evolution of a periodic
paraxial wavefront.

The periodic signal can be expanded into a Fourier series

up(x) =
∞∑

−∞
un exp

(
i2�nx

d

)
(9.16)

which can be used to compute the corresponding WDF as

Wp(x, �) =
∞∑

n=−∞

∞∑
n′=−∞

unu∗
n′ �

(
� − n + n′

2d

)
exp

(
i2�

n − n′

d
x
)

(9.17)

The PSD of the periodic signal is shown in Fig. 9.4. Equation (9.17)
expresses the WDF as a set of modulated � lines at integer multiples
of frequency 1/(2d). For n = n′ we obtain the so-called self-terms of the
WDF associated with the discrete frequencies of the Fourier series in
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FIGURE 9.4 PSD of a periodic function.

Eq. (9.16). The self-terms correspond to the WDF of individual discrete
frequency components and form lines without modulation located at
multiples of the base interval 1/d. All other terms n �= n′, in Eq. (9.17),
are cross-terms equivalent to the cross-term in Eq. (9.6). Note that the
choice of what term to identify as self-term depends on the particular
expansion we use to express the signal as a linear superposition of
signal components.

We can further observe that the modulation in x can again be in-
terpreted as a Fourier series; i.e., at each frequency 1/(2d) we find a
� line, with periodic modulation in x. It is important to note that the
base frequency of this periodicity is d for terms �m = (2m + 1)/(2d),
but is d/2 for �m = m/d, with m being an integer number.

While this can be readily verified from Eq. (9.17), we can also in-
terpret this as an inherent property of the cross-terms. We can con-
struct any cross-term by considering all possible pairs of self-terms in
turn. For each pair we expect a cross-term to appear at half distance
in between the two self-terms. The cross-terms are generally modu-
lated periodically to ensure they do not contribute to the marginal if
we integrate the WDF along its axes. This modulation frequency is
proportional to the distance in phase space between the respective
self-terms.

In Fig. 9.4 the cross-terms at �m = (2m+1)/(2d), which are interlaced
with the self-terms, can only be constructed from self-terms separated
by an odd multiple of 1/d , and the base period of the modulation
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becomes d. In contrast, the cross-terms superposed with self-terms at
�m = m/d can only be associated with pairs of self-terms separated
by integer multiples of 2/d, and as a consequence the modulation we
observe has a period of d/2, that is, one-half of what we obtain for
interlaced cross-terms.

Fresnel diffraction corresponds to a horizontal shear of the phase-
space distribution, and we see without difficulty that the PSD does
not change if the shear equals d at � = 1/(2d). All other discrete �
lines are automatically sheared by an integer multiple of the period
d, and we obtain the original phase-space distribution. The line S in
Fig. 9.4 corresponds to the tilt we would observe for a vertical line at
the input and is equivalent to the WDF of the associated point-spread
function of free space in Eq. (9.14). Using Eq. (9.15), the Talbot length
can now be deduced from d = �zT/(2d), or

zT = 2d2

�
(9.18)

It is immediately clear from the PSD in Fig. 9.4 that self-images can
be found at any integer multiple of the Talbot distance. This is re-
lated to the fact that the WDFs (and not only their projections) be-
fore and after shearing are identical, which proves that self-imaging
recovers not only the intensity distribution, but also the complex am-
plitude of the input signal. Also note that once the WDF of a periodic
function is known, the self-imaging condition can be deduced with a
minimum of mathematical formalism. Furthermore, the quantitative
result can only be obtained correctly by including the cross-terms,
namely, the interlaced terms at half intervals, into our analysis. This
is of significance as PSDs are often constructed as heuristic notions of
phase space rather than from the results of a rigorous evaluation of
the WDF.

This rigorous analysis of the WDF also provides access to the Fresnel
diffraction amplitude at zT/2. The diffraction patter is often described
as an additional grating image which is reversed in contrast.30 To un-
derstand this notion, we again turn to Fig. 9.4. If we consider the shear
associated with line H, which is only one-half the shear necessary for
Talbot self-imaging, we again recover the phase-space distribution of
the input signal, however shifted in x by d/2 compared to the distri-
bution in Fig. 9.4. By inspecting the points of intersection between line
H and the horizontal delta lines, we can verify that the lateral shift at
�m = m/d in fact is a multiple of d, while it is an odd multiple of d/2 for
the interlaced frequencies. Thus the terms at even multiples of 1/(2d)
and at odd multiples of 1/(2d) only register because the base period
of the modulation at �m = m/d is d/2, that is, one-half of what we
might expect intuitively for a phase-space distribution of a periodic
signal. For typical grating profiles, including, for instance, the Ronchi
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grating, we indeed observe a self-image of the input grating pattern
at zT/2, but with the bright and dark lines exchanged.

For practical applications the transverse shift by d/2 may be neg-
ligible, and it seems almost justified to use zT/2 as the self-imaging
distance. In Sec. 9.6, however, we expand the notion of self-imaging to
include rational fractions of the Talbot distance. In this context it will
be more suitable to count only precise replicas of the input complex
amplitude as self-images. The Talbot image at half distance is then
identified as a Fresnel image, i.e., the Fresnel diffraction pattern at the
fractional Talbot plane z1,2 = zT/2.

9.5 The “Walk-off” Effect
The Talbot effect is the result of the in-phase superposition of all plane
waves. The discrete nature of the spectrum guarantees equal phase
delays between adjacent frequencies; i.e., the in-phase condition can
readily be achieved.

This has to change as soon as we consider a finite grating aper-
ture. On one hand, the � lines will be replaced by the WDF of a sinc
function along �, and the quadratic propagator of the Fresnel diffrac-
tion transform is no longer sampled at the appropriate intervals only.
As a consequence the line shape of the Talbot grating image will be
perturbed.

On the other hand, in a quasi-geometrical sense, each discrete plane
wave mode is now truncated while propagating off-axis. This is ob-
servable as the so-called walk-off effect.30–32 At the boundaries of
the propagating window a transition region develops, where no self-
images can be observed, which cuts into the domain of self-imaging
as a function of propagation distance. We can interpret this effect
in terms of truncated plane waves, which “walk off” the window
defined by the grating aperture until they no longer contribute to
the self-images. In close analogy to the Abbe theory of coherent
image formation, we need at least two interfering plane waves to
observe a self-image with structural information about the original
grating.

It is possible to estimate the maximum distance for self-imaging
with para-geometrical optics. The analysis is conveniently executed
with the help of the PSD in Fig. 9.5. We assume a periodic signal with
a finite bandwidth �� and thus a finite number of Fourier coefficients.
This does not impose any severe restrictions since in practice all signals
are essentially band-limited due to the frequency cutoff of systems for
signal generation and transport. We now assume a quasi-ray optical
perspective by further assuming a truncation of the periodic signal to
M periods without impact on its plane wave spectrum.
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FIGURE 9.5 Phase-space interpretation of the walk-off effect.

Fresnel diffraction corresponds to a horizontal shear of the phase-
space distribution, and only over a region xs , in Fig. 9.5b, where all
plane waves can interfere, we expect the self-image to resemble the
input signal. The region xp marks a transition region that can be associ-
ated with edge diffraction from the grating aperture as the dominating
effect.

To derive a limiting-conditions analog to Abbe’s theory of the mi-
croscope, we consider a cosine pattern as input signal with �� = 2/d ,
giving rise to three propagating plane waves only (the analysis does
not change if we assume a periodic pattern with higher-order nonzero
Fourier coefficients; in this case �� defines the frequency band for
which truncated plane waves have not yet completely moved out of
the signal window).

With a grating aperture of size Md we can now estimate the maxi-
mum distance over which self-imaging can be observed as the point
where xs = 0. With xp = �zmax �� = Md/2 we find

zmax = Md2

�
(9.19)

which corresponds to the estimate given in Ref. 30.

9.6 The Fractional Talbot Effect
While forming the basis for various applications,9 the Talbot effect
is also interesting from a mathematical perspective. For the major-
ity of functions that are commonly used to model optical systems, the
Fresnel diffraction integral has no simple analytic solution. The Talbot
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effect is exceptional, because it defines a case in which the Fresnel
diffraction integral indeed has a trivial solution regardless of the grat-
ing’s groove shape.

A similar characterization applies to the fractional Talbot effect,
which also defines a set of cases in which the Fresnel diffraction in-
tegral can be expressed in simple closed form. The study of Fresnel
images, i.e., Fresnel diffraction patterns at rational fractions of the Tal-
bot distance, has revealed a formal structure of the fractional Talbot
effect, which appeals to the experimentalist as well as to the theoreti-
cian.

While the first systematic study of Fresnel images can be found in
the seminal paper by Winthrop and Worthington,10 it is worth point-
ing out the extent to which the formulation of the fractional Talbot
effect was simplified during the past four decades. Formulating the
fractional Talbot effect in terms of phase-space optics allows us to
appreciate this progress in a particularly satisfying way.

Instead of postulating rational fractions of the Talbot distance as
diffraction planes worthy of our attention, the phase-space interpre-
tation effortlessly finds the fractional Talbot planes as the result of
searching for cases with interesting properties.

The analysis of the fractional Talbot effect requires some prepara-
tion, which also serves as a demonstration as to how problems can
be dissected for applying a phase-space analysis most effectively. For
Fresnel diffraction of periodic complex amplitudes, we have to ex-
press the Fresnel diffraction amplitude at distance z from the input
plane as

u(x, z) = up(x) ∗
∞∑

n=−∞
�(x − nx0) ∗ hFr(x, z) (9.20)

with ∗ denoting a convolution. This means that we formulate the
periodic input signal as the function describing a single period up(x)
convolved with an infinite comb function. The propagation of the
signal corresponds to a second convolution with the pulse response
of free space, in Eq. (9.14).

The convolution operation is associative; i.e., we are at liberty to
interpret the output signal as a convolution of the comb function with
the propagator, then followed by a second convolution with the groove
shape of the grating. It is the propagation of the array factor that is most
conveniently discussed in phase space. This analysis can be carried out
without explicitly considering the groove shape for which the WDF
may be hard or impossible to calculate analytically.

However, one more time, we need to extend our phase-space tool-
box to include the WDF of the comb function. Substituting the infinite
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FIGURE 9.6 The PSD of the comb function. The � functions with a positive
(+) sign are interlaced with � functions with a negative (−) sign.

� comb into the definition of the WDF in Eq. (9.1), we find

Wcomb(x, �) = 1
2d

∞∑
n=−∞

∞∑
n′=−∞

(−1)nn′
�

(
x − nd

2

)
�

(
� − n′

2d

)
(9.21)

The corresponding PSD is shown in Fig. 9.6. The � functions at loca-
tions (xm, �m′ ) = (md, m′/d), with m and m′ being integer numbers,
are interlaced with a grid of � functions of alternating sign. The alter-
nating sign ensures that these interlaced terms do not contribute to
the marginals of WDF, i.e., the intensity and the power spectrum of
the comb function.

We can now use this PSD to study Fresnel diffraction by applying
a linear shear in x. As we increase the shear, we can identify cases
where points with a spatial frequency coordinate N/(2d) are laterally
shifted by a multiple of the period Md . Figure 9.7 shows the PSD cor-
responding to M = 1, N = 3. We observe registration of the horizontal
positions of � functions forming columns of � points with only posi-
tive sign, interlaced with columns of alternating sign. Without further
analysis we can deduce that the intensity distribution has to be again
a comb function. For N an odd integer, we find N delta functions
within an interval of size d. The corresponding diffraction plane is
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FIGURE 9.7 Fractional Talbot effect of the comb function at zT/3.

straightforwardly calculated from the shearing operation, in Eq. (9.9),
with zM, N�N/(2d) = Md, or

zM, N = M
N

2d2

�
(9.22)

which we identify as the set of fractional Talbot planes.
For the present we restrict the discussion to cases M = 1 and odd

numbers N. The WDF in Fig. 9.7 does not strictly resemble a comb
function. However, instead of interpreting the distribution of points
as a Cartesian grid which was sheared horizontally, we arrive at the
same distribution by interpreting this as a (different) Cartesian grid
sheared in the vertical direction.

This vertical shear is not unique. In Fig. 9.7 line H corresponds to
the WDF of the point response of free space, while V1 and V2 illustrate
the WDF of two chirp functions which can be used to modulate a
comb function of period d/3 to obtain the distribution in Fig. 9.7. Any
suitable line V has to run through the origin and the location of a �
function with positive sign at x = d/(2N). For N an odd integer, this
is only the case for multiples n of � = 1/d.

We find n by determining the slope of H in Fig. 9.7 as N/(2d2)
and seeking the discrete frequency for which the lateral shift caused
by the horizontal shear equals kd/2 + d/(2N), with k being an integer
multiplier. This allows us to find n = (1+ N)/4 and k = 1 for (1+ N)/2
being even, and n = (1 + N)/4, k = −1 for (1 − N)/2 being even.

This allows us to deduce the phase function of the chirp with the
help of Eqs. (9.12) and (9.13) by evaluating the slope of V. As solutions
we find

2� = (1 + N)N
2d2 (9.23)
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for even numbers (1 + N)/2 and

2� = (1 − N)N
2d2 (9.24)

for even numbers (1 − N)/2. We can substitute � back into the chirp
signal to obtain the phase of the chirp function

	(x) = 2��x2 = �
(1 ± N)N

2d2 x2 (9.25)

This modulates a comb function which samples the chirp at equidis-
tant intervals d/N; that is, the sheared distribution of � functions can
be expressed as

ucomb

(
x,

zT

N

)
= 1√

N
exp[i	(x)]

∞∑
n=−∞

�

(
x − nd

N

)

= 1√
N

N−1∑
l=0

exp(i	l )
∞∑

n=−∞
�

(
x − nd − ld

N

)
(9.26)

where we used the fact that the samples

	l = 	

(
ld
N

)
= �

1 ± N
2N

l2 (9.27)

are N-periodic. The factor 1/
√

N in Eq. (9.26) can be deduced as a
consequence of intensity conservation. The result is equivalent to the
expressions given in Ref. 14.

We have arrived at a remarkable result, which recognizes the Fres-
nel diffraction amplitude of a periodic function as the superposition
of N replicas of the input function, each replica being laterally shifted
by a multiple of d/N and modulated with a constant phase factor.
Coefficients cl = exp(i	l )/

√
N, called the Talbot coefficients, are ob-

tained as the samples of a chirp function. The importance of using
schematic, yet rigorous PSDs to study optical systems is perhaps best
illustrated by comparing the analysis of the fractional Talbot effect
given in this section with a rather formal application of the WDF to
the same problem.33 While the phase-space analysis in both cases pro-
vides a rather compact formulation of the fractional Talbot effect, the
analysis assisted by the PSD of comb functions at each step facilitates
the interpretation of the phase-space expressions in the signal domain
with simple and explicit relationships for both the complex amplitude
and the Talbot coefficients.

It is possible to extend the analysis28 to include all fractional Talbot
planes, namely, those with M �= 1 and even numbers N. However, in
what follows we will assume a slightly different perspective, which
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will allow us to extend the context of our discussion and further high-
light the importance of the fractional Talbot.

9.7 Matrix Formulation of the Fractional
Talbot Effect
In Sec. 9.6 we made no assumption regarding the groove shape of the
grating structure to illustrate that the fractional Talbot effect can be
expressed as a superposition of shifted and modulated copies of the
grating’s transmission function.

We will now consider the case in which each period of the input
function can be written as

up(x) = uint(x) ∗
Q−1∑
q=0

aq �

(
x − qd

Q

)
(9.28)

with Q being an integer number. We can interpret Eq. (9.28) as
a sampling expansion with uint(x) defining the interpolation func-
tion. In particular, with uint(x) = sinc(xQ/d), Eq. (9.28) turns into
the well-known Shannon-Whitaker sampling theorem. For uint(x) =
rect(xQ/d) we obtain a model most suitable to describe binary diffrac-
tive optical elements or images with rectangular pixels.

We are again at liberty to explore Fresnel diffraction without speci-
fying the interpolation function explicitly. It is sufficient to investigate
Fresnel propagation of the discrete sampled version of the input func-
tion. Given our discussion in Sec. 9.6, we expect to find fractional
Talbot planes where the diffraction amplitude is described as a su-
perposition of Q copies laterally shifted by a multiple of d/Q. This,
in turn, implies that for an input function consisting of modulated �
functions at intervals d/Q, the output function also has to be a mod-
ulated comb function with the same spacing between pulses. With
the interpolation functions remaining unaffected, each period of the
Fresnel diffracted wave can be expressed as

up(x, zM, N) = uint(x) ∗
Q−1∑
q=0

bq �

(
x − qd

Q

)
(9.29)

In other words, we can solve the propagation problem by express-
ing coefficients bq as a linear superposition of the coefficients aq .
This, in turn, means we can interpret the aq and bq as vectors in a
Q-dimensional vector space and determine a linear discrete trans-
formation to relate both sets of coefficients.14,15 The transformation
matrix has to be a function of the respective Talbot coefficients which
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FIGURE 9.8 Fractional Talbot in phase space: comb function at zT/8.

are sufficient to describe diffraction from one fractional Talbot plane
to another. Here, we again turn to phase-space optics for constructing
the transformation matrix.

We restrict our attention to the case of even numbers Q and argue
that this will allow us to obtain the transformation matrix for any
fractional Talbot plane. Figure 9.8 illustrates the shear of the comb
function for the case Q = 4. From this special case it is easy to verify
that we obtain exactly Q columns with only positive �’s if we shear
the WDF such that the row at � = 1/d moves by d/(2Q). This shear
corresponds to the fractional Talbot plane

z1,2Q = 1
2Q

zT (9.30)

We can also generalize the fact that lines H and V (as defined in Sec. 9.6)
coincide; i.e., the chirp function which can be thought of modulating
the modified comb function is

	(x) = exp
(

i�
Q
d2 x2

)
(9.31)

and the Talbot coefficients are samples of this chirp function at xq =
qd/Q,

cq = 1√
Q

exp
(

i�
q 2

Q

)
(9.32)
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We now use the superposition principle and interpret the PSD of
the comb function after shearing, in Fig. 9.8, as the PSD of an input
signal with a0 = 1 and aq = 0 for q = 1, . . . , Q − 1. Then the output
signal is the set of Talbot coefficients bq = cq . Next we investigate the
case a1 = 1 and aq = 0 for q �= 1. Thus the PSD in Fig. 9.8 merely has
to be shifted in x by d/Q. The same shift has to be considered for the
phase function of the modulating chirp, i.e.,

	(x) = exp

[
i�

Q
d2

(
x − d

Q

)2
]

(9.33)

Sampling the shifted chirp again at xq = qd/Q results in a reordering
of the Talbot coefficients. We obtain the output coefficients bq = cq−1,
where the subscript of the Talbot coefficients needs to be evaluated
modulo Q.

This procedure can be repeated by considering all input samples
aq in turn. The solution of the diffraction problem is obtained as
a superposition of diffraction amplitudes associated with all input
coefficients, i.e.,

b′
q =

Q−1∑
q=0

cq ′−q aq (9.34)

where again the subscript q ′ − q has to be calculated modulo Q.
This linear transformation is completely determined by the matrix
C = {cq ′−q }, and Eq. (9.34) can be used to obtain the Fresnel diffrac-
tion amplitude in any fractional Talbot plane (M, N). We can extend
the matrix description effortlessly to planes (M, 2Q), by applying the
linear transformation M times; i.e., the system matrix becomes CM.
Planes defined by odd numbers Q are identical to fractional Tal-
bot planes (2M, 2L), with L = 2Q. This implies, however, that we
need to consider twice as many samples per period to cover this case
with the matrix formalism in Eq. (9.34). This is necessary because
for odd Q, the Q copies of the input signal are shifted laterally by
qd/Q + d/(2Q).28,29,34 Doubling of the sampling frequency automati-
cally incorporates this shift. At least for formal explorations this seems
to be a small disadvantage if compared to the fact that all fractional
Talbot planes are covered with one single compact expression, while
other definitions need to distinguish carefully between different cases
(see, for example, Ref. 35).

Finally, we can also include planes specified by odd numbers N,
which were discussed in Sec. 9.6, by computing the transfer matrix
for fractional Talbot planes (4M, 4N). Again, we accept twice as many
samples as necessary to describe the diffraction problem in order to
apply the formalism without modification. Note, however, that the
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oversampling of the signal can be avoided in this case by modifying
the expression for the Talbot coefficients in Eq. (9.32).15

It may seem that the vector-matrix formulation of the fractional
Talbot effect carries a rather severe restriction: The base period has
to be expressed by a sampling expansion and the fractional Talbot
planes which we can access are linked with the number of samples per
period. However, the interpretation as Fresnel propagation of sampled
functions dramatically extends the scope of the fractional Talbot effect
in general.

In particular, the matrix formalism provides the link between a
continuous description of Fresnel diffraction and discrete computa-
tions. It is a well-understood fact that numerical simulations of Fres-
nel diffraction have to be carried out with care, because the pulse
response is neither space- nor band-limited. The matrix expression
in Eq. (9.34) defines a set of cases where a numerical computation
of Fresnel diffraction can be carried out rigorously (see also Refs. 13
and 16). The restriction to periodic functions, in this context, is similar
to that of the discrete Fourier transformation which is also used to
approximate the corresponding continuous transform.

For numerical applications it is also interesting that C has the
structure of a unitary matrix.15 This means, that the inverse Fres-
nel transform can be carried out without difficulty as well, which is
important for the performance of iterative methods, e.g., Gerchberg-
Saxton type of algorithms for phase retrieval and diffractive optics
design.36,37

9.8 Point Source Illumination
So far we only considered self-imaging of periodic wave fields, which
can be interpreted as the result of illuminating a diffraction screen with
a coherent plane wave. If diffraction can be described with Kirch-
hoff’s approximation, the complex amplitude at the input plane is
completely equivalent to the transmission function of the diffractive
element.

A small yet important generalization is the illumination with spher-
ical wavefronts (or parabolic wavefront, if the paraxial approximation
is invoked). This means that the strictly periodic wavefront is mod-
ulated with the chirp function hFr(x, R) in Eq. (9.14). With the sign
convention in Eq. (9.14) we obtain a diverging wave for R > 0 and a
converging wave for R < 0.

While the solution of this diffraction problem presents no funda-
mental difficulty if solved with standard Fourier optics (see, e.g.,
Ref. 9), it requires some bookkeeping effort, in particular when deal-
ing with the quadratic-phase terms of the Fresnel diffraction integral.
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FIGURE 9.9 Self-imaging of a periodic object under spherical illumination:
(a ) input plane and (b) first self-imaging plane.

By contrast, the phase-space analysis again only requires basic algebra
to obtain all fundamental relationships.

Figure 9.9 shows two cross-terms of the WDF associated with the
grating structure. The oblique orientation of the modulated � lines
is the result of a (negative) vertical shear caused by a chirp function
with R < 0. Both cross-terms are shown with a modulation of period d,
which is adequate since we are only interested in identifying the fun-
damental self-imaging distance. For inspecting intermediate planes,
we would again need to assign d/2 for the base period of interference
terms at every second � line.

It is immediately clear that we observe self-imaging after a prop-
agation distance that moves point C , in Fig. 9.9a , to point C ′. This
automatically causes the maxima of all other interference terms to
line up vertically. The result of this horizontal shearing operation is
shown in Fig. 9.9b.

The new phase-space distribution has the same qualitative shape
as the distribution in the input plane. However, the vertical projection
of the WDF indicates a reduced base period d ′. The phase-space dis-
tribution in Fig. 9.9b can again be interpreted as a chirp modulated
function, where the radius of curvature is smaller than the one in the
input plane.

We can deduce the self-imaging distance from the horizontal shear
of point C . Taking the sign convention for R into account, we find

C C ′ = d = �zP

(
1

2d
− d

�R

)
(9.35)

or

zP = 2d2

�

1
1 − 2d2/�R

= mRzT (9.36)
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The change of the self-imaging length, compared to the case of plane
wave illumination, can be expressed with the help of a magnification
factor

mR = 1
1 − zT/R

(9.37)

For diverging waves R > 0, the self-imaging distance is increased,
while for converging wavefronts the self-imaging distance is reduced
compared to plane wave illumination. The Talbot distance can be re-
covered for R → ∞.

The modified period of the first self-image can be deduced from the
new frequency spacing of the � lines; i.e., we can write

1
2d ′ = 1

2d
− d

�R
(9.38)

or

d ′ = mRd (9.39)

Finally, the new radius of curvature at the first self-imaging plane
becomes

R′ = R + zp = mR R (9.40)

Additional self-imaging planes can be found by substituting R′ back
into Eq. (9.36). For a converging wavefront we find self-imaging planes
with increasing density along the optical axis, the closer they are lo-
cated to the focal point of the illuminating spherical wave. At the focal
point we expect to see self-imaging replaced by the Fourier spectrum
of the grating. In phase space this corresponds to a horizontal shear
which turns all � lines vertical; i.e., the vertical projections will no
longer contain any information about the interference terms, but will
only show the distribution of discrete self-terms.

The case of self-imaging under spherical illuminations also serves
as an example to highlight other important generalizations of Talbot
self-imaging. For investigating diverging and converging wavefronts,
we had to drop the requirement of obtaining a perfect replica of the
complex amplitude. Instead, we accepted a scaled replica as a gener-
alized self-image. It should be mentioned that the geometric scaling
under spherical illuminations also applies to the fractional Talbot ef-
fect and was used to design Talbot array illuminators.38

A further generalization is self-imaging in arbitrary ABCD optical
systems. Fresnel diffraction from a grating under spherical illumina-
tion is equivalent to plane wave illumination of the grating followed
by a system consisting of a parabolic lens and free-space propaga-
tion. In fact, conditions for obtaining self-images in arbitrary ABCD
systems have already been investigated.39
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A further variant is the Fourier dual case, where the input signal is
an array of discrete equidistant pulses and the system is composed of
only a parabolic lens. Then it is possible to describe the equivalent of
self-imaging in the frequency domain, which has been termed spectral
self-imaging,40 which was shown to be of interest for time-domain
signals and optical fiber communication.

9.9 Another Path to Self-Imaging
So far we have assumed a periodic signal and explored the astound-
ing richness of Fresnel diffraction as a consequence of the signal’s
periodicity. We now change our perspective by using the self-imaging
phenomenon as the starting point. The task, then, is to identify those
signals for which self-imaging can be observed. In other words, in-
stead of analyzing a specific set of signals to discover self-imaging,
we now consider self-imaging as a given phenomenon and construct
signals with this property.

This design-oriented approach was suggested by Montgomery,8 in
1967 when seeking a necessary condition for signals to exhibit self-
imaging. The construction again can be carried out straightforwardly
in phase space.

We assume the signal to be composed of discrete frequencies. The
corresponding self-terms of the WDF all have the form of a � line par-
allel to the x axis. This means that the information about permissible
spatial frequencies has to be obtained from the associated cross-terms,
all having the form

Wn,m(x, �) = 2ana∗
m cos [2�(�n − �m)x] �

(
� − �n + �m

2

)
(9.41)

where n and m are integer numbers for labeling the spatial frequencies
and an and am are the associated Fourier amplitudes. Assuming m = 0
and �0 = 0, we can now use Eq. (9.41) to establish the condition for
self-imaging. The horizontal shift associated with Fresnel diffraction
has to be a multiple of the frequency �n − �m which modulates each
cross-term. Without loss of generality we assume m = 0 to find

�zM
�n

2
= n

�n
(9.42)

from which follows the set of permissible frequencies

�n =
√

2n
�zM

(9.43)

Equation (9.43) can be recognized as the Montgomery condition for
paraxial signals. Figure 9.10 illustrates the case of three discrete fre-
quencies and the associated cross-terms. It is a simple exercise to show
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FIGURE 9.10 Self-imaging based on the Montgomery condition.

that the condition in Eq. (9.43) automatically fulfills the self-imaging
condition for all other cross-terms with m �= 0.

9.10 Self-Imaging and Incoherent
Illumination

Phase-space optics allows one to describe both coherent and partially
coherent signals with one consistent formalism. While it is not the
purpose of this discussion to explore partially coherent optics in phase
space, the study of self-imaging conditions allows us to take a sneak
peak at how problems involving incoherent signals can be addressed.

To this end we consider the setup in Fig. 9.11, which is a double-
grating configuration. The first grating G1 is illuminated with inco-
herent quasi-monochromatic light. At distance zL a second grating is
located in the front focal plane of a Fourier lens f . This is one of vari-
ous systems for studying the Lau effect.24 The first grating G1 serves
as a periodically modulated incoherent light source, which is used to
illuminate a the second grating G2 located at some distance zL along
the optical axis. For a discrete set of grating separations it is possible to
observe a pattern of high-contrast fringes in the Fraunhofer diffraction
plane of the 2- f system.

The Lau effect easily rivals the Talbot effect in terms of its mathe-
matical beauty and its potential for applications. Perhaps due to its
slightly higher complexity, however, the Lau effect has unquestion-
ably received much less attention than coherent self-imaging.
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FIGURE 9.11 Setup for observing the Lau effect.

The discussion of the Lau effect focuses on the phase-space interpre-
tation and is aimed at establishing the basic condition for observing
Lau fringes. To this end we return to Fig. 9.4, the PSD of a periodic
(coherent) signal. If grating G2 were illuminated with a totally inco-
herent light signal, no features would be observed in the output plane
of the 2- f system. Each grating line would act as a separate incoher-
ent light source with a homogeneous far-field diffraction pattern, and
incoherent superposition of all intensities would not show any fringe
pattern. Thus the first grating G1 plus free-space propagation acts as
a system to modify the coherence properties of the source, ensuring
the formation of a far-field fringe pattern.

The phase-space interpretation allows us to compute the far-field
intensity by first determining the intensity for a point source in the
plane of grating G1 followed by the convolution with the source dis-
tribution in that plane. This resembles the procedure we would apply
by using elementary coherence theory. For the phase-space analysis
it is advantageous that this incoherent signal summation is a linear
operation (i.e., bilinear interference terms vanish).

The result of illuminating grating G2 with a point source was dis-
cussed in Sec. 9.8. The incident wave is described by a chirp, and
the WDF of a periodic structure is convolved with the � line of the
chirp signal. To analyze the Lau effect, however, we do not consider
near-field diffraction, but a Fourier transformation corresponding to
a rotation of the WDF by 90◦. In fact, we do not even need to execute
this rotation explicitly, but it is sufficient to consider the projection
of the WDF along the x axis to obtain the power spectrum (i.e., the
desired intensity of the far-field diffraction amplitude).

Then the Lau condition corresponds to a vertical shear of the phase-
space distribution for which we can identify a distinct modulation of
the far-field patter. Figure 9.12 shows the distribution in Fig. 9.4 after a
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FIGURE 9.12 PSD of a periodic function under spherical illumination
[radius z = d2/(2�)].

vertical shear. The representation includes the frequency doubling of
the terms at multiples of the base frequency interval 1/d. A modulation
in the horizontal projection can be ensured if the maxima of all terms
register in rows parallel to the x axis.

The first occurrence of this condition corresponds to a shear that
moves point P to point P ′. This means that the point with coordinate
x = −d/2 is moved in frequency �� = −1/d. From Eq. (9.10) we can
deduce the radius of the corresponding spherical wave as

zL = d2

2�
(9.44)

which is the well-known Lau condition for observing high-contrast
fringes in the far field.24

We can now consider the convolution with the source distribution.
Note that the phase of the far-field modulation depends on the trans-
verse source location, which would determine the interference be-
tween different source points for the case of coherent illumination. For
an incoherent source, this mutual phase shift between source points
is irrelevant, however.

In Fig. 9.12 line S refers to the WDF of the point source, and its
intersection with the x axis marks the center of the shear which is
applied to the phase-space distribution. Thus as the source moves in
x, the sheared distribution in Fig. 9.12 moves vertically, and for a shift
of the source by one grating period d, the phase-space distribution has
moved vertically by 2/d.
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For a continuous incoherent source illuminating grating G2, we
effectively integrate the phase-space distribution in the vertical direc-
tion, with the obvious result that no fringe pattern can be observed in
the far field. For a spatially inhomogeneous, but continuous source,
each shifted copy of the phase-space distribution is weighted with the
respective source strength, and we obtain as the far-field intensity the
expected convolution (or correlation) between the distribution for a
single source point and the source distribution.

For the case where G1 consists of an array of equidistantly spaced
pinholes with period d, all copies again register perfectly in the vertical
direction, and we observe the Lau effect for quasi-monochromatic
illumination. In this context it is again emphasized that incoherent
signal superposition is a linear operation in phase space, and no cross-
terms are observed. This also means that the PSD of an array of point
sources (at G1) corresponds to an array of vertical lines, rather than
the two-dimensional distribution of � functions, in Fig. 9.6, which
represent an array of mutually coherent pulses.

While we will not attempt a more detailed analysis of the Lau effect,
we note that condition [Eq. (9.44)] is not the only configuration for
which far-field fringes can be observed. In fact it follows from our
analysis that the fringes can also be observed if grating G1 is composed
of narrow slits with a period d/2.

A more general analysis was performed by using the formalism of
coherence theory predicting fringe patterns at zL = (M/N)d2/�, with
M and N being relative prime integer numbers.25 Coherence theory
has a formal interpretation in phase space,41,42 and it was shown that
this can also be used for a more rigorous derivation of the conditions
for observing the Lau effect.27

9.11 Summary
Not all optical phenomena find a natural interpretation in phase space.
Self-imaging, however, is exceptionally well suited to be analyzed
with the help of the WDF and PSDs. In part, this is due to the strict
periodicity of the signals. As a consequence, the WDF is discrete in at
least one of its coordinates.

Not only did the use of phase-space optics allow us to find a qual-
itative interpretation, but more importantly we were able to perform
a quantitative analysis requiring only a minimum of mathematical
formalism. Pivotal to this analysis is the use of PSDs as mediators
between the mathematical formalism of the WDF and an intuitive
interpretation of physical optics.

The discussion presented in this chapter was aimed at recover-
ing well-known relationships. However, we never even came close
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to exhausting the use of phase-space optics for exploring the self-
imaging phenomenon. A number of related phenomena still await a
thorough phase-space interpretation. It would be even more exciting,
however, if the phase-space interpretation helped us to discover new
self-imaging phenomena and applications not obvious from a Fourier
optics perspective.
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W. Mecklenbräuker and F. Hlawatsch (eds.), The Wigner Distribution—Theory
and Applications in Signal Processing, Elsevier, Amsterdam, 1997, pp. 375–426.

2. A. Torre, Linear Ray and Wave Optics in Phase Space, Elsevier, Amsterdam, 2005.
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10.1 Introduction
Sampling a continuous signal in order to represent or approximate
it with a discrete one is of enormous importance in today’s digital
world. In the optical sciences we are often interested in recording opti-
cal signals with discrete photosensitive devices such as CCD or CMOS
cameras. Such devices are sensitive to the intensity of an incident op-
tical wave field and bring about the spatial sampling of this intensity
pattern. By using interferometry it is possible to recover phase infor-
mation from the recorded intensity pattern, and so we may say that
we are effectively sampling the complex wavefront with our digital
camera. The operation of discrete display devices, such as liquid crys-
tal displays (LCDs) and electrically addressed spatial light modulators
(SLMs), are also governed by sampling theory and are of increasing
interest in diffractive optics. Thus, the discrete signal processing of
digitally captured data plays a central role in modern optoelectronics,
and this science is anchored in sampling theory. In the past decade
the Wigner distribution function (WDF) and, moreover, its simplified
version, the phase-space diagram (PSD), have been shown to be effec-
tive tools in gaining considerable insight into the discrete sampling of
signals. Not only does the PSD elegantly account for known sampling
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theorems, but also it paves the way for rich new theorems and algo-
rithm designs. This is the subject of this chapter.

Until recently, sampling of electromagnetic signals was performed
primarily using the theorems devised in the first half of the last century
by Nyquist,1 Shannon2 Whittaker,3 and Kotelnikov.4 We note that the
sampling theory of diffraction patterns5 was introduced by Francia
in 1955. Modern sampling theory has evolved far beyond Nyquist-
Shannon sampling, and a thorough account of contemporary sam-
pling theory and discrete signal processing can be found in Refs. 6
and 7. In this chapter we focus primarily on Shannon sampling (and
a recently generalized derivative of it) and its simplified description
using phase space. In this chapter we limit the scope of the discussion
to classical sampling. The rules of classical sampling and interpola-
tion may be summarized as follows: It is assumed that the continu-
ous signal is band-limited in frequency. Sampling this signal with a
sampling rate at least as fast as twice the maximum frequency (the
Nyquist rate) allows for the continuous signal to be “interpolated”
from the discrete sampled values by applying the Shannon interpola-
tion formula. This can be explained using the Fourier transform.8–11

Sampling creates an infinite number of copies of the signal’s Fourier
transform, all adjacent along the frequency axis, with a separation
equal to the inverse of the sampling interval. If the sampling rate is
high enough, the copies will not overlap with one another due to
their assumed finite support. The continuous signal may be interpo-
lated by isolating one of these copies, achieved by multiplying by an
appropriate rect function, which amounts to convolving the sampled
signal with a sinc function. This convolution is known as Shannon
interpolation.2

Recently there has been considerable interest12–25 in the literature
on the subject of sampling certain optical signals at rates below the
Nyquist rate and still managing to interpolate the continuous signal.
To the best of our knowledge, the first demonstration of this was by
Gori12 in 1981 in which he investigated the sampling of Fresnel diffrac-
tion patterns. This collective body of work12–25 has demonstrated that
the requirement of imposing the property of band-limitedness in the
Fourier domain is too strict a requisite for interpolation to be achiev-
able. It is sufficient that the signal be bounded in any one of an in-
finite set of domains which are output domains of the linear canon-
ical transform (LCT).13,19–21,23−33 The Fourier transform8−11 and the
Fresnel transform9,12,14,18 are special cases of the LCT. If the signal is
bounded within some finite support in such a domain, then the sig-
nal can be sampled at a rate, proportional to the finite LCT support
width. The Nyquist sampling rate, which is proportional to the Fourier
support width (bandwidth), is merely a special case of this more gen-
eralized sampling theorem. Importantly, the phase-space investiga-
tion of these concepts that follows unearths an interesting insight that
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this generalized sampling can be based entirely on the assumption of
a chirped signal.

It is also possible to deduce a more general interpolation formula.
This amounts to multiplying the signal samples by an appropriate
chirp function (the scale of the chirp is dependent on the LCT domain
in which the signal has finite support), followed by standard Shan-
non interpolation; and this is in turn followed by multiplying by the
conjugate of the fore-mentioned chirp. If a signal has finite support in
some LCT domain, the generalized sampling theorem predicts a finite
sampling rate, although this is associated with a signal that does not
exhibit a band limit in a classical sense. In this chapter we show how
phase-space diagrams allow us to understand and interpret general-
ized sampling in a most elegant manner as well as to calculate specifics
such as the most appropriate sampling rate for a given LCT bounded
signal. The generalized sampling theorem is of great importance for
digital holography.22,34–42 It is of considerable interest to this research
area because it implies that one may place the object to be recorded
at a distance much closer to the camera than previously predicted by
the Nyquist-Shannon theorem. A shorter distance between object and
camera implies a greater numerical aperture, which in turn should
allow reconstruction of the object at a resolution previously thought
impossible and which is greater than the resolution of the recording
CCD. Furthermore the reduced camera-object distance implies that
a far greater range of three-dimensional perspectives may be recon-
structed as a result.

To the best of our knowledge, the Wigner distribution func-
tion (WDF),27,43–47 was introduced to the optical community by
Bastiaans45 in 1979, and since then it has found application in describ-
ing numerous applications to which this book is a testament. The WDF
transforms a one-dimensional spatial signal into a two-dimensional
space–spatial frequency distribution. Besides being bilinear, the WDF
has a number of rich properties that are shared with both the spatial
representation of the signal and its Fourier transform. For example,
the integral projections of the WDF along the k and x axes yield the
space and frequency marginals, respectively. In the proceeding sec-
tion we review those properties of the WDF that are of interest in
the context of this chapter. One very useful method of visualizing the
WDF and conceptualizing its properties is by using Wigner charts or
phase-space diagrams48–52 (PSDs). These PSDs were popularized by
Lohmann, Mendlovic, and Zalevsky in graphically describing signal
propagation through quadratic-phase systems (QPSs) and also super-
resolution systems. PSDs are plan view style diagrams of a signal’s
WDF. They do not include any information about the actual values
of the WDF other than the support in the xk plane. By endowing the
PSD with many of the properties of the WDF, such as the convolu-
tion property, we can conceptualize many optical processes. In some
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cases it is even useful not to apply some WDF properties (in partic-
ular, the property of bilinearity) to the PSD in order to simplify our
understanding. Such omissions must be done with care and with good
reason. In Sec. 10.2 we discuss the PSD in greater detail, and then we
demonstrate the application of the PSD in understanding sampling
theory and in simulating optical systems.

The central theme of this chapter is to show that the WDF and the
PSD are useful tools in understanding the sampling of signals with an
LCT of finite support. This subject can be further complicated if we
consider signals which are sampled, then transformed by a LCT, and
then sampled again. The topic is of considerable interest because it
is central to the numerical implementation (or simulation) of optical
processes.34–42,53–88 The volume of publications on the subject in the
last 10 years highlights its relevance to contemporary optics as does
the industrial application of these algorithms in today’s optoelectronic
world. The double sampling considerably complicates matters, and it
forces us to consider sampling criteria of a signal in two transforma-
tion domains sequentially. The first sampling operation considerably
affects the second, and vice versa; i.e., the second sample must be
considered as also shaping the first sampling operation. In this case a
new type of aliasing can be encountered which is discussed for the first
time in this chapter. Again we find that the most intuitive approach
to this subject is through the PSD.

This chapter is broken down as follows. In Sec. 10.2 we discuss some
initial concepts that are utilized in the following sections. In Sec. 10.3
we review how a signal can have a finite support in some LCT do-
main. In Sec. 10.4 we discuss how Nyquist sampling and generalized
sampling may be discussed both qualitatively and quantitatively in
an elegant fashion using the WDF and PSD. In Sec. 10.5 we progress
to discuss sampling of a signal in two domains for the purposes of
simulating a quadratic-phase system, and finally in Sec. 10.6 we offer
a brief conclusion.

10.2 Notation and Some Initial Concepts
10.2.1 The Wigner Distribution Function

and Properties
The WDF is a time-frequency distribution and is mathematically defined
in terms of this spatial (x) distribution as follows

�{u(x)}(x, k) =
∞∫

−∞
u
(
x − �

2

)
u∗
(
x + �

2

)
exp(− j2�k�) d� = Wuu∗ (x, k)

(10.1)
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where k represents the spatial frequency, ∗ denotes complex conjuga-
tion, and �{u(x)}(x, k) denotes the WDF operator. The WDF can also
be equivalently defined in terms of the Fourier transform (FT) of u(x),
which is denoted U(k).

�{u(x)}(x, k) = �{U(k)}(x, k) =
∞∫

∞
U
(

k − �

2

)
U∗

(
k + �

2

)
× exp(+ j2�k�) d� (10.2)

U(k) =
∞∫

−∞
u(x) exp(− j2�kx) dx (10.3)

The real-valued WDF of a function has double the number of di-
mensions of the function. To find the intensity I (x) = |u(x)|2, we in-
tegrate �{u(x)}(x, k) over k; similarly, to find the spatial frequency
distribution Ĩ (k) = |U(k)|2, we integrate over x. The WDF is real-
valued and it is reversible with the exception of a constant phase
factor. The WDF of a shifted signal is given by a simple shift
�{u(x − �)}(x, k) = �{u(x)}(x − �, k). Similarly, if we multiply u(x)
by a harmonic function exp( j2��x), the resultant WDF is shifted in
k, �{u(x) exp(+ j2��x)}(x, k) = �{u(x)}(x, k − �). If two signals u and
h are convolved along the x axis, the WDF of the resultant signal is
given by the convolution of the individual WDFs along the same x
axis. Conversely, if two signals u and v are multiplied in the x domain,
the WDF of the resultant signal is given by the convolution of the in-
dividual WDF along the same k axis. The WDF of a convolution and
a product are given by Eqs. (10.4) and (10.5) respectively,

�

{∫
u(�)v̇(x − �) d�

}
(x, k) =

∫
�{u(x)}(x − x′, k)�{v(x)}(x′, k) dx′

= �{u(x)}(x, k) ∗x �{v(x)}(x, k) (10.4)

�{u(x)v(x)}(x, k) =
∫

�{u(x)}(x, k − k ′)�{v(x)}(x, k′) dk ′

= �{u(x)}(x, k) ∗k �{v(x)}(x, k) (10.5)

In the above equations we have introduced the notation ∗x and
∗k to denote convolution along the x and k axes, respectively. The
similarities between these properties and the convolution property of
the FT are obvious. Another property of the WDF is that it is bilinear;

�{u(x) +v(x)}(x, k) = Wuu∗ (x, k) + Wvv∗ (x, k) + Wuv∗ (x, k) + Wvu∗ (x, k)
(10.6)
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10.2.2 The Linear Canonical Transform
and the WDF

A property of central importance in this chapter is the relationship of
the WDF to the LCT. When an optical signal is input to a QPS, the
LCT describes the relationship between the signal at the output and
input to the system. The parameters of the LCT depend on the type of
system. QPSs are systems made up of any number of sequential thin
lenses and free space as well as many other lossless optical elements for
which the paraxial approximation is valid. The LCT also has meaning
in quantum mechanics. The LCT is mathematically defined as

uM(x′) = L M{u(x)}(x′) = exp(− j�/4)√
B

×
∞∫

−∞
u(x) exp

[
j�

(
A
B

x2 − 2
B

xx′ + D
B

x′2
)]

dx (10.7)

where L M{u(x)}(x′) is the operator notation for the LCT and M is a
matrix that contains the parameters of the LCT(

x′
k ′

)
= M

(
x
k

)
=
(

A B
C D

)(
x
k

)
(10.8)

where AD − BC = 1. This is simply the ray transfer matrix that is
commonly applied in geometrical optics. It maps the position and
angle of an input ray to those of the output. Collins26 first pointed
out the relationship between the ray transfer matrix and the LCT.
Remarkably, this relationship can be extended to include the WDF as
defined in Eq. (10.9).

�{uM(x′)}(x′, k ′) = �{u(x)}( Ax + Bk, Cx + Dk) (10.9)

Therefore, if an LCT is applied to a signal, the WDF of the signal under-
goes a simple coordinate transformation. This operation is affine,29–31

meaning that a given area on the WDF plane is conserved under this
coordinate shift. A noticeable and very useful property of the LCT-
WDF matrix relationship is that the combined matrix of several opti-
cal systems placed in series, each with its own matrix, can be found by
multiplying the individual system matrices. Thus rather than calculate
a series of LCTs to determine the output of the constituent subsystems,
a single LCT can be determined that approximates the entire system.

10.2.3 The Phase-Space Diagram
The PSD is an illustrative plan-view outline of the WDF of a sig-
nal. This diagrammatic approximation can be a very useful source of
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insight when we bestow it with many of the WDF properties. For ex-
ample, a signal with a finite bandwidth might have a PSD shown in
Fig. 10.1.

In Fig. 10.1a we show the PSD of a signal that has a finite bandwidth.
It is well known that in the strict mathematical sense any signal that
has such a property must, as a consequence, have infinite spatial sup-
port. However, in many practical cases we assume that the signal
has an approximately finite support in both domains, and the PSD of
such a signal is shown in Fig. 10.1b. The subject of finite support is ad-
dressed in greater detail in Sec. 10.3. The PSD that is bounded in both
x and k is much easier to use for illustrating some of the properties of
the WDF. For example, the application of the FT to our signal brings
about a 90◦ rotation of the WDF and therefore the PSD as shown in
Fig. 10.1c. The Fresnel transform causes a horizontal shearing of the

k

(a) (b) (c)

(d) (e) (f)

k k k

k k

xxx

xx x

FIGURE 10.1 The PSD of a signal (a) having finite bandwidth and therefore
an infinite spatial support, (b) having approximately finite spatial support
and finite bandwidth, (c) which is a Fourier transform of signal represented
in part b, (d) which is a Fresnel transform of the signal represented in part b,
(e) which is a signal represented in part b after being multiplied by a chirp
function, and (f) which is a linear canonical transform of the signal
represented in part b.
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signal’s WDF. In Fig. 10.1d we illustrate the PSD of the Fresnel trans-
formed signal. In Fig. 10.1e we show the PSD of a chirp modulated
signal. This is what happens when the signal passes through an ideal
thin lens. Multiplication by the chirp causes a vertical shearing of the
WDF. All these linear transformations that effect some change on the
WDF are special cases of the LCT. They all have matrices associated
with them that map each x-k coordinate on the WDF (and PSD) to a
new position. This coordinate shift is defined in Eqs. (10.8) and (10.9).
It is very important to note that all these mappings are affine; the
shaded area inside the PSD is conserved under the mapping. In Fig.
10.1f we show the PSD after the signal has been transformed by an
arbitrary LCT. We also note that in the case of the x-k bounded signal
shown in Fig. 10.1b the area of the PSD is exactly equal to the number
of samples required to represent the signal in the Nyquist limit. In the
next section we describe some more properties of the WDF and PSD
that are used in later sections.

10.2.4 Harmonics and Chirps
and Convolutions

The WDF of a harmonic function exp(+ j2�k0x), which in optics
represents a plane wave with wavelength � traveling at an angle
� = sin−1(�k0), has a WDF given by �(k − k0), where � represents
the Dirac delta function. The PSD for this harmonic is shown in
Fig. 10.2a. The arrows indicate that it extends over infinity in x. Simi-
larly a point source at a position x0 has a WDF given by �(x − x0). This
is a further example of the FT bringing about a 90 degree rotation of
the WDF.

It is well known from Fourier theory that if a signal is modulated by
a harmonic function, it is shifted in the frequency domain. The same

kk k

k0

(a) (b) (c)

x x x

–q

FIGURE 10.2 PSD of (a) a harmonic function, (b) signal represented in
Fig. 10.1b after being multiplied by the harmonic in Fig. 10.2a and (c) a chirp
signal.
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effect may be observed using the WDF. When the signal with PSD
shown in Fig. 10.1b is multiplied by the harmonic with PSD shown
in Fig. 10.2a the resultant PSD is given by the convolution of the two
along the k axis as defined in Eq. (10.5). The result of this convolution
is an exact replica of the signal’s WDF centred at k = k0. Chirp func-
tions are mathematically expressed as exp(+ j��x2). In the paraxial
approximation such functions represent spherical waves with cur-
vature �. The effect of a thin lens with focal length f is modeled
by multiplying by a chirp function where � = 1/� f . In the case of
convex and concave lenses � is negative and positive, respectively.
The WDF of the chirp signal can be shown to be �(k − �x). Thus at
any point x only one local frequency exists at k = �x. The PSD for
the chirp signal is shown in Fig. 10.2c. In this case � = 1/ tan(−�).
Again the arrows indicate that this Dirac delta line extends outward
infinitely.

From Eq. (10.4) we know that if a signal is convolved in space with
a chirp exp(+ j��x2), their WDFs are also convolved along x. Hence
the PSD shown in Fig. 10.1d, is given by the convolution along x of
the PSDs shown in Fig. 10.1b and Fig. 10.2c. This can be interpreted
as the paraxial approximation of spherical waves with curvature �.
This is actually equivalent to a LCT with A = D = 1, B = 1/�,
and C = 0. Therefore if a signal is convolved with a chirp function
exp( j��x2), the signal’s WDF undergoes the following coordinate
transformation.

�{u(x)}(x, k) → �{u(x)}(x + k/a, k) (10.10)

This follows from Eq. (10.9) and is known as a horizontal shearing. We
note that as � = 1/�z in such a convolution, the result is the Fresnel
transform for a distance z.

Similarly from Eq. (10.5) we can see that if a signal is multiplied
in space with a chirp exp( j��x2), their WDFs are convolved along k.
Hence the PSD shown in Fig. 10.1e is given by the convolution along
k of the PSDs in Fig. 10.1b and Fig. 10.2c. Again it is equivalent to a
LCT, this time with A = D = 1, C = 1/�, and � = 0. Therefore if
a signal is multiplied with a chirp function exp( j��x2), the signal’s
WDF undergoes the following coordinate transformation.

�{u(x)}(x, k) → �{u(x)}
(

x, k + x
a

)
(10.11)

This is known as vertical shearing. We note that if � = 1/� f ,
such a convolution, and the resultant WDF coordinate transforma-
tion, describes the result of a signal passing through a lens of focal
length f .
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10.2.5 The Comb Function and Rect Function
10.2.5.1 Comb Functions
In sampling theory one cannot avoid encountering both comb func-
tions and rect functions. For example, the physical sampling of a signal
is modeled by multiplying by a train of Dirac delta functions, some-
times called a comb function �T (x),

�T (x) =
∞∑

n=−∞
�(x − nT) = 1

T

∞∑
n=−∞

exp
(

j2�nx
T

)
(10.12)

where the rightmost part of Eq. (10.12) comes from a Fourier series
expansion. The WDF of this comb function can be expressed as47

�{�T (x)}(x, k) = 1
T2

∞∑
n=−∞

∞∑
m=−∞

�
(

k − n + m
2T

)
exp

[
j2�

(n − m
T

)
x
]

(10.13)

Equation (10.13) can be expanded out into the following form:

�{�T (x)}(x, k) = 1
2T

∞∑
n=−∞

∞∑
m=−∞

(−1)nm�
(

k − n
2T

)
�

(
x − mT

2

)
(10.14)

In Fig. 10.3 we show the WDF of the comb function. In Fig. 10.3a we
show the actual WDF of the comb function defined in Eq. (10.14). In
Fig. 10.3b we show the same WDF, but this time we ignore all the even

k k

x x

1/T

T

(a) (b)

FIGURE 10.3 WDF of a comb function. (a) The actual WDF of the comb
functions where we include all the interfering terms. The plus and minus
terms represent positive and negative Dirac delta function. (b) Here we show
only those terms that manifest themselves in the marginals of the WDF, i.e.,
at regular intervals of x = mT/2, k = n/2T for all even integers m, n.
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m and n terms. At this point the reader might fairly ask why one might
ever wish to use this incomplete description of the comb function in
any analysis. We can argue that this description is actually sufficient
for the analysis presented in this chapter. Those terms that we have
omitted in Fig. 10.3b do not manifest themselves in the marginals of the
WDF; i.e., if we integrate �{�T (x)}(x, k) over k, all those terms for even
m in Eq. (10.14) integrate to zero (those lines containing consecutive
positive and negative Dirac delta functions will integrate to zero).
Similarly, if we integrate �{�T (x)}(x, k) over x, all those terms for even
n in Eq. (10.14) integrate to zero. Importantly, it is possible to multiply
the comb function by the signal, thereby convolving their WDFs along
the k axis and to employ an incomplete version of the comb function’s
WDF in our analysis. This is true if (1) the signal’s bandwidth is less
than or equal to 1/T and (2) we intend only to view the signal from
the x or the k domain. For such a band-limited signal, the resultant
convolution will create copies of strips of the signal’s WDF that do
not overlap looking parallel to the x axis. Therefore there will be no
interference between adjacent copies in the Fourier domain, and the
cross-terms of the comb function can be ignored before the convolution
with the signal’s WDF. We note that viewing the signal from domains
other than the x or k domain will require us to include the cross-terms
from the outset. The idea becomes much clearer as we proceed to the
discussion on sampling in Sec. 10.4.

If the comb function defined in Eq. (10.12) is multiplied by a chirp
function exp(+ j��x2), such as that illustrated in Fig. 10.2c, we get

exp(+ j��x2) �T (x) = exp(+ j��x2)
∞∑

n=−∞
�(x − nT)

=
∞∑

n=−∞
exp[+ j��(nT)2] �(x − nT) (10.15)

The result is a coordinate shift of the WDF given by Eq. (10.11). Thus
the actual WDF of a sheared comb function can be found by setting
k → k + x/� in Eq. (10.14). One may envisage the process as a con-
volution along k of the PSDs illustrated in Fig. 10.2c and Fig. 10.3.
The results shown in Fig. 10.4a and b correspond to Fig. 10.3a and b.
In Fig. 10.4a we show the actual WDF of the sheared comb function,
and in Fig. 10.4b we show the case when we have removed every
second delta function in both the x and k dimensions, just as we did
in Fig. 10.3b. We recall that in relation to Fig. 10.3b we stated that we
could use the incomplete comb function in our future analysis because
all those terms integrated to zero along the x and k projections. Thus
as long as our analysis is interested only in the spatial and FT distri-
butions, we may employ the incomplete WDF. We need to amend this
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(a) (b)

FIGURE 10.4 WDF of a vertically sheared comb function, i.e., a comb
function that has been multiplied by a chirp function. (a) The actual WDF of
the vertically sheared comb function where we include all the interfering
terms. (b) Here, as in Fig. 10.3b, we show only those terms
x = mT/2, k = n/2T for all even integers m, n.

argument a little if we are to apply it to Fig. 10.4b. It is true that the
shearing of the comb function means that the projection of the WDF
along the k axis will be unchanged. However, the projection of the
sheared comb function along the x axis (i.e., into the FT domain) will
be altered significantly. This alteration is dependent on �. Thus our
previous statement “as long as our analysis is interested only in the
spatial and FT distributions, we may employ the incomplete WDF”
is no longer valid. If we wish to argue a case for the use of this in-
complete sheared comb WDF, we alter this statement accordingly: As
long as our analysis is interested only in the spatial distribution and
that projection along the arrow line (at angle �), we may employ the
incomplete WDF in this future analysis. We note that the relevance
of this vertically sheared comb function PSD will become clear in the
context of sampling a signal that is bounded in some LCT domain.

10.2.5.2 Rect Functions
Another signal often encountered in sampling theory is the rectangu-
lar window function, denoted by rect. We often multiply the sampled
signal’s Fourier transform by a rect function to recover the original
continuous signal. This process is of course equivalent to a convolution
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FIGURE 10.5 The rect function: (a) Wigner distribution function of rect(k)
and (b) the phase-space diagram of that function.

of the signal samples in the space domain with a sinc function. Since
this process is so central to sampling, it is important that we define
the WDF of a rect function in the frequency domain, defined as

rect(Tk) =
{

1 ∀|k| ≤ 1/2T

0 ∀|k| > 1/2T
(10.16)

Using Eq. (10.16) as input to the WDF integral defined in terms of
the Fourier transform [see Eq. (10.2)] results in the following WDF for
the rect function.

�{rect(Tk)}(x, k) = 2T(1 − 2T |k|) sinc
[

2x
T

(1 − 2T |k|)
]

(10.17)

In Fig. 10.5a we illustrate this function. We see that it is bounded
in the frequency domain. We note that integrating this function along
the k axis results in sinc(x/T) while integrating along the x axis results
in rect(Tk). The PSD for this function is shown in Fig. 10.5b.

10.3 Finite Supports
10.3.1 Band-limitedness in Fourier Domain
If a signal u(x) is zero-valued outside of some finite range, that is,
u(x) = 0 for |x| < D, it is said to have compact support. If the FT of a
signal has compact support, i.e., if U(k) for |k| < B, where U(k) is the
FT of u(x), we say that u(x) is band-limited. Such a signal has a PSD
shown in Fig. 10.1. We furthermore refer to u(x) as having bandwidth
B. This concept of band-limitedness is very important in sampling
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theory. The Shannon sampling theorem assumes that a signal has this
property. A theorem that appears in many textbooks states that a signal
and its Fourier transform cannot both have compact support (Ref. 9, p.
26; Ref. 89). We will refer to this as the Fourier transform compact support
theorem. This theorem is a corollary of the Paley-Wiener theorem.90−91

However, for numerical work, we must assume that a signal may
be approximately represented using a finite number of samples. This
is achieved in the discrete Fourier transform by pretending that the
signal is periodic in both space and frequency. Inevitably, this will
result in some error referred to as aliasing.

10.3.2 Band-limitedness and the LCT
The FT is a special case of the LCT. Given that a signal and its FT
cannot both have compact support, it is natural to ask, Can a signal
and its LCT ever have compact support, and if so, when? The question
of compact support and band-limitedness is important in relation to
the LCT92 as the development of a generalized sampling theory93 is
one of the topics we address in this chapter. We now present theorems
that describe how the LCT preserves, destroys, or transforms com-
pact support or band-limitedness. The proofs of these theorems are
omitted, but can be found in Ref. 92.

We first consider the case of a LCT with none of the ABCD pa-
rameters equal to zero. Such a LCT is entirely destructive of compact
support and band-limitedness. Given a quadratic-phase system (QPS)
characterized by an ABCD matrix with no elements equal to zero, and
given an input waveform u(x) that either has compact support or
is band-limited, the output waveform L M{u(x)}(x′) neither is band-
limited nor has compact support. This case is represented by the first
two lines in Table 10.1. Equivalently, if the ABCD matrix has no en-
tries equal to zero and the output waveform L M{u(x)}(x′) has compact
support or is band-limited, then the input waveform u(x) neither is
band-limited nor has compact support. This case is represented by
lines 3 and 4 in Table 10.1. A number of other cases are also shown in
Table 10.1. For example, if C = 0, as it does in the case of the Fresnel
transform ( A = D = 1, B = �z, C = 0), the property of finite band-
width will be conserved through the transform. Similarly the property
of infinite bandwidth will also be conserved. For a Fourier transform
A = D = 0, B = 1, and C = −1. Since A = 0, a property of finite band-
width will not be preserved through the Fourier transform; rather, it
will produce a property of finite support. If D = 0, the reverse also
holds true.

At this point the reader might reasonably ask, What will the PSD
of signal with a finite support w in an LCT domain (with parameters
ABCD) look like? As a simple illustration we show such a signal in
Fig. 10.6a. The signal will have a local bandwidth which is equal to b.
We show two lines, parallel to the boundary support of the signal,
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Input Signal LCT Output Signal

Finite Finite Finite Finite
Support Bandwidth A B C D Support Bandwidth

√
X �= 0 �= 0 �= 0 �= 0 X X

X
√ �= 0 �= 0 �= 0 �= 0 X X

X X �= 0 �= 0 �= 0 �= 0
√

X

X X �= 0 �= 0 �= 0 �= 0 X
√

X
√ = 0

√
X

X = 0 X
√

X = 0
√

X

X = 0 X

X
√ = 0 X

√

X = 0 X
√

X = 0 X
√

X = 0 X

Note: If a signal is to have a finite support in some domain, it must belong to one
of the above possible sets.

TABLE 10.1 Properties of Finite Support and Band-limitedness for Linear
Canonically Transformed Signals

defined as follows:

x + k tan � = b tan
�

2

x + k tan � = −b tan
�

2

(10.18)

After we apply the LCT, there will occur a simple coordinate trans-
formation to the PSD shown in Fig. 10.6b. This coordinate shift is given
by Eqs. (10.8) and (10.9). In this domain the signal clearly has a finite
support in x equal to w. Clearly our two lines have now become

x = −w
2

x = w
2

(10.19)

After applying the coordinate shift to Eq. (10.19), we get

( A+ C tan �)x + (B + D tan �)k = b tan
�

2

( A+ C tan �)x + (B + D tan �)k = b tan
�

2
(10.20)
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FIGURE 10.6 The phase-space diagram of (a) a signal with finite local
support in the LCT domain and (b) a signal with finite support in x (obtained
by applying LCT to signal in part a).

which, when we make use of the fact that AD − BC = 1, reduces to give

tan � = − B
D

w = b
B

(10.21)

10.3.3 Finite Space-Bandwidth
Product-Compact Support in x and k

In many practical problems it is assumed that a signal is bounded
within some finite region in both the spatial and spatial-frequency
domains. The spatial extent w and the frequency extent b are defined
such that

u(x) ≈ 0 |x| >
w
2

U(k) =
∫ ∞

−∞
u(x) exp(− j2�kx) dx |k| >

b
2

(10.22)

and therefore, the signal energy is negligible outside these spatial and
spatial-frequency regions. For all signals discussed here, w and b may
also be defined as∫ w/2

−w/2
|u(x)|2 dx = �E

∫ b/2

−b/2
|U(k)|2 dk = �E (10.23)

where � ∼= 1 and E represents the total signal energy.
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E =
∫ ∞

−∞
|u(x)|2 dx =

∫ ∞

−∞
|U(k)|2 dk (10.24)

The dual equality in Eq. (10.24) follows from Rayleigh’s theorem.
Earlier in Fig. 10.1b we showed the PSD of a signal u(x) in which the
signal energy lies within a rectangular area. In the next section we
discuss sampling and interpolation. As a prelude we note that the
signal u(x) is completely determined if it is sampled equidistantly in
x with sample space �x such that the Nyquist criterion is satisfied.
Therefore the number of samples N required to completely describe
u(x) is N = d/�x ≥ db. Clearly, for the most efficient uniform sampling
�x = 1/b and N = db, the space-bandwidth product (SBP) of the
signal. In general, signals may have an irregularly bounded WDF,
and one such case is shown in Fig. 10.1d.

10.4 Sampling a Signal
In the last section we discussed signals that had the properties of
compact support and band-limitedness and the effect that different
types of LCT would have on these two properties. It is well known
that a signal that has the property of band-limitedness can be sam-
pled and interpolated exactly from these samples. This is true only
if the signal has been sampled at a rate greater than or equal to the
Nyquist rate, which is determined by the bandwidth of the signal.
In this section we review this sampling theorem, using phase-space
diagrams. As shown in the last section, often the LCT of a band-
limited signal is no longer band-limited. Therefore, if one were to
rigorously follow the laws of Nyquist and Shannon, one would ar-
rive at the conclusion that such a signal could not be sampled and
interpolated from these samples. Recent work suggests otherwise. It
has been shown that a more general sampling theorem must be em-
ployed for signals of this type. As we show in this section, by far the
simplest way that one can deduce this generalized sampling theorem
is to again employ phase-space diagrams. In fact we shall see that
we need only heuristically apply some of the rules we have learned
thus far on the PSD in order to fully derive the generalized sampling
theorem in the briefest of fashions. We begin with a discussion of
Nyquist.

10.4.1 Nyquist-Shannon Sampling
The comb function was discussed in Sec. 10.2.5.1. We begin with a
signal u(x) with finite bandwidth equal to B with the PSD shown
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in Fig. 10.7a. Sampling this signal is modeled by multiplying by the
comb function defined in Eq. (10.12) to get a sampled function uT (x).

uT (x) = u(x)�T (x) (10.25)

Employing the Fourier series of the comb function in Eq. (10.12), we
may deduce that the Fourier transform of uT (x) is given by an infinite
sum of shifted replicas of U(k)

UT (k) = 1
T

∞∑
n=−∞

U
(

k − n
T

)
(10.26)
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FIGURE 10.7 Phase-space diagrams that demonstrate Nyquist-Shannon
sampling. (a) A band-limited signal with infinite support. The thick arrows
denote that the phase-space diagram extends to infinity along the x axis. (b)
Phase-space diagram for the sampled signal where the sampling rate is equal
to the Nyquist rate. The thick black lines correspond to strips of the original
WDF separated in x by T. These strips are actually the only nonzero values in
the WDF, although we show a light copy of the original WDF beneath the
strips for illustrative purposes. (c) The rate is less than the Nyquist rate, and
aliasing occurs. (d) The rate is greater than the Nyquist rate, and the signal is
oversampled.
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From our previous discussions the WDF of uT (x) may be defined
as

�{uT (x)}(x, k) = �{u(x)}(x, k) ∗k �{�T (x)}(x, k) (10.27)

and therefore the PSD for uT (x) is given by the convolution along k
of the PSD of u(x) and the PSD of the comb function shown in Fig.
10.3b. The result of convolving the signal’s PSD with these Dirac delta
lines is that we obtain multiple copies, in k, of the original signal PSD.
More accurately we obtain strips of the original WDF separated by the
sampling period, and we obtain multiple copies of these strips in k. It
is very important that the distance between the center of adjacent strip
copies in k (which from our earlier comb function analysis is equal to
1/T) be greater than or equal to b. When b = 1/T , we get the PSD
shown in Fig. 10.7b, where we can see that the replicas are just shy of
overlapping one another. This is the optimum sampling case known
as the Nyquist limit. The signal may be reconstructed by multiplying
UT (k) by Trect(Tk) defined in Eq. (10.17). From Fourier theory this is
equivalent to convolving uT (x) with sinc(x/T). All three equivalent
expressions for reconstruction are given below in terms of the spatial
representation, FT and WDF.

U(k) = UT (k)rect(Tk)

u(x) = uT (x) ∗ 1
T

sinc
( x

T

)
=

∞∑
n=−∞

u(nT) sinc
(

x − nT
T

)

�{u(x)}(x, k) = �{uT (x)}(x, k) ∗x �{rect(Tk)}(x, k) (10.28)

We can visualise this reconstruction as follows: The rect function WDF
illustrated in Fig. 10.5 convolves along the x axis in Fig. 10.7b. This rect
WDF has zero values for all values of k outside of the center order of
the sample’s signal WDF. Thus we need only visualize the convolution
of rect WDF with those strips of our signal’s WDF which lie crossing
the x axis.

Fascinatingly, the resulting convolution must be equal to the origi-
nal signal’s WDF in accordance with the Nyquist-Shannon sampling
theorem. If we do not sample quickly enough, such that T > 1/b, alias-
ing will occur where the copies of the signal will overlap with one
another and our reconstructions in Eq. (10.28) will be invalid. We il-
lustrate this case in Fig. 10.7c. In Fig. 10.7d we also illustrate the case
where we have oversampled, that is, T < 1/b. In this case we can see
our replicas have moved farther apart. Equation (10.28) still holds, and
indeed in this case it must hold for a range of different rect widths.
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10.4.2 Generalized Sampling
We now consider signals that have finite support in some LCT domain
with parameters ABCD. In the case of these signals it is possible to
derive a rigorous sampling theory that can be interpreted and derived
in the simplest possible way by employing phase-space diagrams. We
take the signal u(x) with PSD shown in Fig. 10.6a. We define this signal
to have a finite support w in some LCT domain with parameters ABCD
and to have local bandwidth b. From the third row of Table 10.1 we
know that u(x) must have an infinite bandwidth and an infinite spatial
support. Therefore Nyquist-Shannon sampling cannot be applied in
the conventional sense. If this signal can be sampled at some rate
T and reconstructed from these samples u(nT), we must derive a
new sampling criterion and a new interpolation formula. In fact we
already have derived both. We refer the reader to Sec. 10.2.5.1 where
we discussed the sheared comb function exp( j��x2)�T (x). The PSD
for this function is given in Fig. 10.4, where � = 1/ tan(−�). The WDF
of this sheared-sampled signal is given by

�
{

uT (x) exp( j��x2)
}

(x, k) = �{u(x)}(x, k) ∗k

�
{

�T (x) exp( j��x2)
}

(x, k) (10.29)

If we match up the values of �, then the convolution along k of
the PSD of u(x) shown in Fig. 10.6 and the sheared comb function
that result will be an infinite number of replicas of a band-limited
signal with bandwidth b similar to that shown in Fig. 10.7b. From
Eq. (10.21) matching up the values of �, this implies that for the comb
function � = 1/ tan(−�) = D/B. When b = 1/T , we get the PSD
shown in Fig. 10.7b, where we can see that the replicas are just shy of
overlapping one another. To avoid aliasing, we must have T ≤ 1/b.
From Eq. (10.21) this forces the following condition: The signal may be
reconstructed by multiplying the resultant signal by Trect(Tk) in the
Fourier domain. This step in the reconstruction is identical to Shannon
interpolation described by Eq. (10.28).

�{u(x) exp( j��x2)}(x, k) = �{uT (x) exp( j��x2)}(x, k) ∗x

�{rect(Tk)}(x, k) (10.30)

The final part of the reconstruction is accomplished by multiply-
ing by the conjugate of the original shear. The overall reconstruction
algorithm is given by

u(x) = exp
(

− j�x2 D
B

){[
uT (x) exp

(
j�x2 D

B

)]
∗ 1

T
sinc

x
T

}
= exp

(
− j�x2 D

B

) ∞∑
n=−∞

u(nT) exp
[

j�(nT)2 D
B

]
sinc

x − nT
T

(10.31)



S a m p l i n g a n d P h a s e S p a c e 329

We note for the first time an interesting observation. Regardless
of what LCT caused phase space to be compact in some direction,
the sampling representation can always be based on the assumption
of a chirped signal. In addition, this does not change the number
of samples despite any bandwidth compression or expansion. From
Eq. (10.31) we can see that only two parameters of the LCT are em-
ployed in interpolation.

10.5 Simulating an Optical System:
Sampling at the Input and Output

So far, we have discussed how to reconstruct a signal from its samples.
Often we encounter the case where a signal is sampled, an LCT is
applied to this discrete signal and the result of this is again sampled.
This arises in numerical simulations, where the input and output are
necessarily discrete, and when modeling paraxial optical systems with
discrete elements such as SLMs and CCD cameras. In this section, we
demonstrate how to sample a wave field which then undergoes a LCT,
how to sample the output of this LCT and then reconstruct from these
samples the analog LCT of the original analog wave field. Our major
goal here is to make sure that the LCT of the sampled signal actually
looks like the LCT of the continuous signal. This should obviously
be the case if we are to effectively simulate an optical system. This is
described by the block diagram in Fig. 10.8. We make two assumptions
about the input wave field: (1) It has approximately finite bandwidth,
and (2) it has approximately finite support. Both of these assumptions
are described by Eq. (10.23).

In the case of these signals it is possible to derive a rigorous sampling
theory that can be interpreted and derived in the simplest possible way
by employing PSDs.

Consider the first process in Fig. 10.8, sampling of the input.
When a signal is sampled, its phase-space diagram is altered by the

Analogue signal
bandwdth b

extent d
(Input wavefield)

Discrete signal

Analogue signal
(Output wavefield)

Reconstruction
filtering

Discrete signal
Sampling

Sampling LCT
Analogue signal

FIGURE 10.8 Block diagram of the problem considered in this section.
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addition of periodic replicas, as illustrated by Fig. 10.7. When a sig-
nal is transformed by a LCT, its phase-space diagram undergoes an
area-preserving (affine) coordinate transformation, as illustrated in
Fig. 10.1. The case for a sampled signal (which is produced by the
second step in Fig. 10.8) is illustrated in Fig. 10.9.

In Fig. 10.9a is the LCT of an analog function. In Fig. 10.9b is the LCT
of the sampled version. We have chosen our sampling rate sufficiently
high that the generalized sampling theory described in Sec. 10.4.2
allows us to recover the LCT of the analog function from the LCT of
the sampled one by filtering operations. Step 3 in Fig. 10.8 is to sample
the LCT of the sampled function, a sampling in the domain x. This
produces replicas in the orthogonal domain k. If we haven’t chosen
our sampling rates correctly, then we have replicas overlapping one
another in the PSD, as shown in Fig. 10.10a. This overlap illustrates
that aliasing has occurred, and our recovered signal will be degraded.

In the situation shown in Fig. 10.10b, we chose our first sampling
rate to be a little higher when sampling the input wave field, so that
the replicas don’t overlap, and we can reconstruct the output by trun-
cation (getting rid of everything outside the two dashed lines). This
reduces the problem to that discussed in the preceding section on gen-
eralized filtering. These two operations are the reconstruction filtering
process indicated in Fig. 10.8.

We now determine the sampling condition that guarantees the sit-
uation shown in Fig. 10.10b. There are other ways to prevent aliasing,

k k

x x

(a) (b)

FIGURE 10.9 (a) PSD of the LCT of the wave field after a LCT. (b) PSD of the
wave field after sampling and a LCT. The zeroth order is shaded and the
replicas are checkered.
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k k

x x

(a) (b)

FIGURE 10.10 (a) The phase-space diagram of the sampled LCT of the
undersampled input. The zeroth-order term is shaded. The terms created by
sampling the input (as in Fig. 10.9) are checkered. (b) The phase-space
diagram of the sampled LCT of the correctly sampled input.

some of which will be more useful than this one in specific cases.
The key idea to remember is to prevent any overlap of the repli-
cas. If this is achieved, we can recover the zeroth-order term by
truncation and generalized filtering. More importantly the new sam-
pled signal will be a sampled version of the LCT of the original
continuous signal. Consider a point in the phase-space footprint of
a sampled function p1(x1, k1). The equivalent point in one of the
two nearest replicas of the footprint is given by p2(x1, k1 + 1/Tx),
where Tx is the sampling rate used in the first sampling operation.
After the LCT operation, these points are transformed as shown in
Eq. (10.9). This results in the points p1( Ax1 + Bk1, Cx1 + Dk1) and
p′

2( Ax1 + Bk1, +B/Tx, Cx1 + Dk1, +D/Tx). These points are separated
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by a horizontal distance of |B|/Tx . This distance must be greater than
the extent of the transformed (unsampled) function in x. Similar re-
sults can be found for all other replicas, but this defines the lower
bound on the sampling rate.

Tx ≤ |B|
w

(10.32)

When this bound is used in addition to the Nyquist criterion, the PSD
of the output waveform—after this is also sampled at the generalized
Nyquist rate—will look like Fig. 10.10b. Equation (10.32) fails for B= 0,
which is a special case of the LCT where the output is already discrete
and no second sampling process takes place.

10.6 Conclusion
In conclusion we have demonstrated the usefulness of the WDF in
both qualitatively and quantitatively understanding sampling theory.
In particular, the ability of the WDF to describe generalized sampling
is extraordinary. At no point is it necessary to employ a wave integral
in these derivations. In fact, almost all the equations in this chapter
serve as a pretext to the underlying idea; by visualizing a signal’s
energy as a bounded shape in phase space and endowing this shape
with the basic properties of the WDF, we may derive complicated
sampling criteria and interpolation formula.
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11.1 Introduction
Time scales for dynamical measurements of optical pulses now cover
both the femto- and the attosecond domain, due to the rapid evolu-
tion of ultrafast technology in the last decade.1–4 Optical frequency
synthesis enables the generation of single-cycle optical pulses with
spectral bandwidths of several octaves.5 Novel light sources, based
on frequency mixing in nonlinear optical structures, are being devel-
oped for imaging applications such as optical coherence tomography
for medical diagnostics. Further, table-top laser systems are now capa-
ble of generating subpicosecond pulsed radiation in the XUV region,
so that attosecond pulses are routinely generated and characterized.6

These developments presage a host of new applications including at-
toscience of atoms and molecules and new types of time standards
based on precision frequency measurement from the microwave to
the UV. The need for measurement methods for ultrashort optical
pulses is therefore as compelling as ever. New spectral regions need
to be accessed, along with ever briefer durations, as well as pulses
with increasingly complex space-time structure, in order to access
new phenomena and develop new technologies.

Phase-space descriptions of optical pulses, ultrafast processes,
pulse manipulation, and measurement provide both a convenient
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framework for developing intuition about how such pulses propagate
and interact with matter and a set of rigorous calculation tools that
enable information to be extracted efficiently and accurately from ex-
perimental data. In this chapter, we develop the phase-space descrip-
tion of ultrafast processes and its application to the characterization of
ultrashort optical pulses. We make use of the strong analogy between
the propagation of pulses in time through dispersive optical elements
with the propagation of beams in space through paraxial optical sys-
tems, since this has played an important role in developing concepts
for measurement.

11.2 Phase-Space Representations
for Short Optical Pulses

The fundamental quantity describing an isolated, individual pulse of
light is its electric field vector

⇀ε(⇀x, t). This is a function of time t and
space ⇀x or equivalently optical frequency � and transverse wave vec-
tor

⇀

k . In all but the most intense pulses, the magnetic field does not
affect the interaction of the pulse with matter and can be estimated di-
rectly from the electric field. Characterizing an optical pulse therefore
involves estimating the space-time dependence of the electric field.

Since the electric field
⇀ε(⇀x, t) is the fundamental entity in Maxwell’s

theory, the ability to measure it precisely not only provides the ne
plus ultra of diagnostics, but also enables new experimental meth-
ods. When electromagnetic radiation interacts with matter, both its
amplitude and its phase can be altered. The changes induced by the
interaction can yield important information about the material dy-
namics: in fact, proper characterization of the temporal amplitude
and phase of the field can potentially lead to complete reconstruction
of the response function of the system. The spatiotemporal structure
of the input and output fields provides all the available information
from an optical experiment and therefore provides the data for the
most exacting tests of models of the process under consideration.

11.2.1 Representation of Pulsed Fields
Typically in ultrafast optics the problem is simplified by taking a scalar
approximation to the field vector. Simultaneous measurements of two
orthogonal polarizations can then be combined to give the full vector
field. Within this approximation, the real electric field, ε(t) underlying
an optical pulse (suppressing, for brevity, the spatial dependence)∗ is
twice the real part of its analytic signal E(t): ε(t) = 2 × Re[E(t)].

∗The appropriate dispersion relation for the medium or structure in which the
pulse propagates provides a connection that reduces the number of variables to
three.
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The analytic signal is the single-sided inverse Fourier transform of
the Fourier transform of the field

E(t) = 1√
2�

∞∫
0

d� ε̃(�) exp(−i�t) (11.1)

where

ε̃(�) = 1√
2�

∞∫
−∞

dt ε(t) exp(i�t) (11.2)

The electric field is considered to have compact support in the time
domain and is further assumed to have no spectral component at
� = 0, so ε̃(0) = 0 (the electric field of a pulse propagating in a
charge-free region of space must have zero area). The analytic signal
is complex and therefore can be expressed uniquely in terms of an
amplitude and phase

E(t) = |E(t)| exp[i	t(t)] exp(i	0) exp(−i�0t) (11.3)

where |E(t)| is the time-dependent envelope, �0 is the carrier fre-
quency (usually chosen near the center of the pulse spectrum), 	t(t)
is the time dependent phase, and 	0 is a constant. The square of the
envelope I (t) = |E(t)|2 is the time-dependent instantaneous power of
the pulse, which can be measured if a square-law photodetector of suf-
ficient bandwidth is available. The derivative of the time-dependent
phase accounts for the occurrence of different frequencies at different
times; that is, 	(t) = −∂	t/∂t is the instantaneous frequency of the
pulse that describes the oscillations of the electric field around that
time, although such interpretation can be difficult.7,8

The frequency representation of the analytic signal is the Fourier
transform of E(t)

Ẽ(�) = |Ẽ(�)| exp [i	�(�)] = 1√
2�

∞∫
−∞

dt E(t) exp(i�t)

=
{

ε̃(�) � > 0

0 � ≤ 0
(11.4)

Here |Ẽ(�)| is the spectral amplitude and 	�(�) is the spectral
phase. The square of the spectral amplitude Ĩ (�) = |Ẽ(�)|2 is the spec-
tral intensity (strictly speaking, this quantity is the spectral density—
the quantity measured in the familiar way by means of a spectrom-
eter followed by a photodetector). The spectral phase describes the
relative phases of the optical frequencies composing the pulse, and
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its derivative ∂	�/∂� is the group delay T(�) at the corresponding
frequency, i.e., the time of arrival of a group of optical frequencies
around �.

To reconstruct the temporal electric field, it is necessary and suffi-
cient to measure its Fourier transform for a finite set of frequencies.
The Whittaker-Shannon sampling theorem9 asserts that if the field has
compact support contained in a range �t, a sampling of Ẽ(�) at the
Nyquist frequency interval of 2�/�t is sufficient for reconstructing
the analytic signal E(t) and consequently the electric field ε(t) exactly.

These equivalent representations of the field in terms of the com-
plementary variables t and � suggest that an appropriate phase space
for representing the fields is the two-dimensional chronocyclic phase
space (t, �) in which these variables are arguments of joint time-
frequency distributions describing the pulse field. Such distributions
provide a description that is relevant for measuring pulses using stan-
dard photodetectors. This is because they account properly for the
fluctuations in the set of pulses that contribute to the detected signal.
Further, they also provide an intuitive representation of the temporal
and spectral structure of the pulses, such as a time-dependent fre-
quency or chirp.

11.2.2 Pulse Ensembles and Correlation
Functions

Applications and experiments involving ultrashort optical pulses of-
ten rely on a train or ensemble of pulses rather than a single pulse. In
this case the pulses must be characterized using quantities related
to the ensemble of which they are realizations. The mean electric
field may be defined in some cases for the ensemble as the square
root of the mean intensity times the exponential of the mean phase.
This may be measured directly provided a single-shot measurement
is possible for each pulse of the ensemble; that is, the mean intensity
and phase are obtained respectively by independently averaging the
measured intensities and the measured phases. However, the mean
quantities might not give an insightful picture of the pulse ensemble
(e.g., one could have large variations of the spectral phase from pulse
to pulse and obtain a mean spectral phase that is identically zero).
Furthermore, it is more usual for a multishot measurement to be made
and the detected signal averaged over this sample set of pulses. Even
assuming that the ensemble is ergodic, it is not the case that the field re-
constructed from the averaged signal is the mean field of the ensemble.
In certain cases, though, it is possible to show this directly. Such a mean
electric field is not the most general or useful quantity—often the fluc-
tuations of the pulses are important. When this is the case, the electric
field amplitude and phase of an individual pulse may be meaningless.
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One quantity, perhaps the simplest, that describes some of the sta-
tistical properties of the ensemble is the nonstationary two-time field
correlation function

�(t1, t2) = 〈E(t1)E∗(t2)〉 (11.5)

where the angle brackets indicate an average over the ensemble of
pulses and time is referenced to a frame moving at the pulse velocity.
If each pulse in the train is an independent realization of a stochastic
ensemble, the time average is equivalent to an ensemble average, by
definition. This enables the coherence of the train to be defined oper-
ationally in a reasonable way. For a train of identical pulses �(t1, t2)
factorizes into E(t1)E∗(t2), and the analytic signal E(t) is proportional
to � (t, t2), where t2 is such that E(t2) is nonzero. Thus, any pulse mea-
surement method capable of reconstructing the correlation function
is also capable of returning the electric field when such a description
will suffice.

This definition of the ensemble is suitable for describing a train
of optical pulses for which the pulse-to-pulse temporal phase (and
indeed amplitude) varies more or less randomly. It is always ade-
quate for situations where pulses are measured individually. How-
ever, when averages are taken over trains of pulses, especially those
for which the carrier-envelope phase is fixed,10 the proper description
of the ensemble must involve consideration of the field of the entire
train, which has a nonstationary correlation function. It is formally
quite difficult to formulate rigorously even the simplest of concepts,
such as the spectrum, for a nonstationary field such as this. Proce-
dures along the lines of those developed by Wiener and Khintchine11

must then be extended to define properly the correlation function of
nonstationary fields.12

The correlation function �(t1, t2) provides a quantitative descrip-
tion of fluctuations from pulse to pulse in the electric field at time
t1 relative to those at time t2. This is a complete description of the
pulse ensemble as long as the fluctuations obey normal (or Gaussian)
statistics. If not, then it is the simplest of a hierarchy of multitime
correlation functions defining the ensemble. The degree to which an
ensemble consists of identical pulses may be obtained from �(t1, t2)
in terms of an integral degree of temporal coherence �, where � is
readily derived from the time-domain analog of Born and Wolf’s11 de-
gree of coherence �(t1, t2), by first redefining the two-time correlation
function in terms of a center-time coordinate t and a difference-time
coordinate �t

C(t, �t) = �(t1, t2) (11.6)
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where t = (t1 + t2)/2 and �t = t1 − t2. Then � (t1, t2) is defined as

�

(
t + �t

2
, t − �t

2

)
= C(t, �t)

[C (t + �t/2, 0) C (t − �t/2, 0)]1/2 (11.7)

Using the Schwarz inequality, it is straightforward to show that
0 ≤ |�(t + �t/2, t − �t/2)| ≤ 1. This leads directly to the inequality

0 ≤ |C(t, �t)|2 ≤ C
(

t + �t
2

, 0
)

C
(

t − �t
2

, 0
)

(11.8)

The upper and lower bounds on the degree of coherence follow from
Eq. (11.8). However, it is difficult to determine � (t + �t/2, t − �t/2)
experimentally since it becomes singular for times at which C(t, �t)
is zero. A more practically useful definition is offered by integrating
Eq. (11.8) over the entire (t, �t) space and dividing by the quantity on
the right-hand side, leading to the integral degree of coherence �

0 ≤ � =
∫∫

dt d�t|C(t, �t)|2[∫
dt C(t, 0)

]2 ≤ 1 (11.9)

Here and in the remainder of this chapter, all integrals are under-
stood to be from −∞ to +∞. An integral degree of coherence strictly
smaller than 1 corresponds to a partially coherent train in which the
pulse amplitude and/or phase fluctuates, in which case C(t, �t) is the
fundamental quantity of interest. When � = 1, the ensemble is said
to be fully coherent (identical pulses) and C(t, �t) factorizes. In the
latter case the electric field becomes the fundamental quantity of in-
terest and is readily retrieved from the two-time correlation function
using

|E(t)| =
√

C(t, 0) (11.10)

and, with t2 held fixed,

Arg[E(t)] = tan−1
{

Im [C[(t + t2)/2, t − t2]]
Re [C[(t + t2)/2, t − t2]]

}
+ 	0 (11.11)

where 	0 is an undetermined constant. It is important to note that Eqs.
(11.10) and (11.11) are valid only if the integral degree of coherence
has been explicitly demonstrated to be equal to unity, which of course
requires that the two-time correlation function or equivalent repre-
sentation in frequency or phase space be measured. Thus, in cases
where an ensemble or train of pulses, rather than an individual pulse,
is used for application or experimentation, pulse-shape characteriza-
tion efforts must ultimately be directed toward measurement of the
ensemble statistics.
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The two-frequency correlation function is linked to the two-time
correlation function of the ensemble by a double Fourier transform

˜̃C(��, �) =
〈

Ẽ
(

� + ��

2

)
Ẽ∗
(

� − ��

2

)〉
= 1

2�

∫∫
dt d�t C(t, �t) exp[i(t�� + �t�)] (11.12)

The center-frequency and difference-frequency coordinates in Eq.
(11.12) are given by � = (�1 + �2)/2 and �� = �1 − �2, respectively.
Similar arguments to those mentioned for the two-time-correlation
function apply to the two-frequency correlation function.

For a coherent train of pulses, Eqs. (11.10) and (11.11), and their
equivalent in the frequency domain, indicate that the time or fre-
quency representation of the analytic signal can be reconstructed from
a single line of the corresponding correlation function. Therefore, if the
ensemble is assumed a priori to be coherent, the amount of collected
data can be greatly reduced. This is a luxury afforded only to those
measurement techniques that directly measure one of the correlation
functions.

11.2.3 The Time-Frequency Phase Space
Time-frequency distributions are central to the characterization of
pulses in the optical domain, since they are straightforwardly related
to the measured data. In optics, direct measurement of the wave-
form is not possible. This is in contrast to the more usual application
of the distributions in signal processing, where they are commonly
used as mathematical tools for signal representation. It is frequently
useful to work with a representation of the correlation functions in the
chronocyclic phase space. The intuitive concept of chirp (that is, time-
dependent frequency in the pulse) can be most easily seen within
this space. The pulse ensemble may also be represented within the
chronocyclic phase spaces defined by the complementary variables
(t, �) and (��, �t). The chronocyclic Wigner function W(t, �) and
ambiguity or Wigner characteristic function A(��, �t) provide two
particularly useful descriptions of the pulse train statistics in these
spaces. The relationship between the various representations of the
correlation function has been discussed in the context of spatially
localized fields,13 and the Wigner function was originally applied
to problems in ultrafast optics.14–16 Examples of applications of the
Wigner function, ambiguity function, and other time-frequency dis-
tributions in ultrafast optics can be found in Refs. 17 to 29. General
properties of the Wigner and ambiguity functions can, for example,
be found in Ref. 30.
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The Wigner function is obtained by taking the one-dimensional
Fourier transform of C(t, �t) over the time-difference coordinate

W(t, �) = 1√
2�

∫
d�t C(t, �t) exp(i��t)

= 1√
2�

∫
d�t

〈
E
(

t + �t
2

)
E∗
(

t − �t
2

)〉
exp(i��t)

= 1√
2�

∫
d��

〈
Ẽ
(

� + ��

2

)
Ẽ∗
(

� − ��

2

)〉
exp(−i��t)

(11.13)

The ambiguity function is obtained from C(t, �t) by performing
the Fourier transform over the average-time coordinate

A(��, �t) = 1√
2�

∫
dt C(t, �t) exp(i��t)

= 1√
2�

∫
dt
〈

E
(

t + �t
2

)
E∗
(

t − �t
2

)〉
exp(i��t)

= 1√
2�

∫
d�

〈
Ẽ
(

� + ��

2

)
Ẽ∗
(

� − ��

2

)〉
exp(−i��t)

(11.14)

These representations are uniquely and invertibly related to one
another by Fourier transformations.

The Wigner function has some features that make it useful in repre-
senting short optical pulses. For example, in contrast to the field and
correlation representations, it is real-valued. Moreover, its time and
frequency marginals (i.e., projections on the corresponding axis) are
the temporal and spectral intensity, respectively. The average time-
dependent intensity is obtained from the two-time correlation func-
tion by setting �t = 0. This corresponds to a projection of the Wigner
function onto the time axis, or the Fourier transform of the �t = 0
section of the ambiguity function

I (t) = C(t, 0) = 1√
2�

∫
d� W(t, �)

= 1√
2�

∫
d�� A(��, 0) exp(−i��t) (11.15)

Furthermore, the average pulse spectral intensity is obtained from the
two-frequency correlation function by setting �� = 0, by projecting
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the Wigner function onto the frequency axis, or by taking the Fourier
transform of the �� = 0 section of the ambiguity function

Ĩ (�) = ˜̃C(0, �) = 1√
2�

∫
dt W(t, �)

= 1√
2�

∫
d�t A(0, �t) exp(i��t) (11.16)

As shown in Fig. 11.1, the Wigner function provides an intuitive
representation of the pulse field, in particular the notion that different
frequencies may occupy different time slots in the pulse. Figure 11.1a
displays the Wigner function of a Fourier-transform-limited pulse

(a)

(b) (d)

(c)

Frequency

Time

FIGURE 11.1 Wigner functions of (a) a Fourier-transform-limited Gaussian
pulse, (b) a pulse with Gaussian spectrum and quadratic spectral phase, (c) a
pair of identical Fourier-transform-limited Gaussian pulses, and (d) a pulse
with Gaussian spectrum and third-order spectral phase. In each case, the
temporal and spectral marginals are plotted. Light and dark regions,
respectively, correspond to positive and negative values of the Wigner
function.
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(i.e., the spectral phase is at most a linear function of the optical fre-
quency), indicating no correlation between time and frequency local-
ization. Figure 11.1b is the Wigner function of a pulse with the same
spectrum and a parabolic spectral phase, i.e., a linear chirp. This leads
to stretching of the pulse in the time domain, as indicated by the
temporal marginal. Correlation between the temporal and spectral
components of the pulse can be inferred from the slope of the Wigner
function in the chronocyclic space. The amount of such chirp may
be quantified using the Wigner distribution in a way that respects
Fourier’s theorem, which may be thought to preclude the simulta-
neous specification of time and frequency. The instantaneous frequency
	(t) may be defined as the instantaneous mean value of the frequency
of the distribution

	(t) =
∫

d� �W(t, �)∫
d� W(t, �)

(11.17)

This can be evaluated by using integration by parts, making use of
the compact support of the pulse field in the formula for the Wigner
function. This leads to the relation

	(t) = −d	t

dt
(t) = −	′

t(t) (11.18)

which embodies the intuitive result that the instantaneous frequency
is the temporal derivative of the temporal phase. The group delay can
be calculated similarly as

T(�) =
∫

dt tW(t, �)∫
dt W(t, �)

= d	�

d�
(�) = 	′

�(�) (11.19)

which corresponds to the common interpretation of the group delay.
The Wigner function also has some less intuitive features. For exam-
ple, it is tempting to consider W as a joint probability distribution of
the time at which different frequencies occur within the pulse ensem-
ble. But since W is not a positive definite function, it cannot play the
role of a probability distribution. Negativity of the Wigner function is
a common phenomenon. For example, Fig. 11.1c displays the Wigner
function of a pair of temporally delayed identical pulses. Interference
between the two pulses is indicated at the center of the chronocyclic
space by an alternation of positive and negative regions of the Wigner
function. Note that the frequency marginal, i.e., the optical spectrum, is
positive, since negative regions of the cross-terms of the Wigner func-
tion at the center of the chronocyclic space are canceled by the positive
Wigner functions of each individual pulse. Finally, the Wigner func-
tion of a pulse with a third-order spectral phase is plotted in Fig. 11.1d.
This Wigner function also takes negative values, but its shape remains
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indicative of the group delay of the pulse, i.e., a parabolic function of
the optical frequency.

There exist an infinite number of time-frequency distributions that
can potentially be used to represent a signal in the chronocyclic space.
One approach to obtain bilinear time-frequency distributions is to use
a signal-independent kernel to generate the set of functions30

R(t, �) = 1
(2�)3/2

∫∫∫
d�t du d� E

(
u + �t

2

)
E∗
(

u − �t
2

)
× K (�, �t) exp(i��t + i�t − i�u) (11.20)

For example, K uniformly equal to 1 leads to the Wigner function,
while K equal to exp(−i� |�t|) leads to the Page distribution which has
also been used in the context of representing linear optical systems.31

In the coherent case, if K is chosen as the ambiguity function Ag of
an ancillary signal g as defined by Eq. (11.14), the time-frequency
distribution of Eq. (11.20) becomes

Rg(t, �) =
∣∣∣∣ 1√

2�

∫
du E(u)g(u − t) exp(i�u)

∣∣∣∣2 (11.21)

Equation (11.21) indicates that Rg(t, �) can be interpreted as the opti-
cal spectrum of the field after gating by the function g, represented as a
function of the optical frequency � and the relative delay t between the
pulse and the gate. This representation is known as a (Gabor) spectro-
gram. This particular time-frequency distribution is evidently positive
and can be measured directly by applying a time gate g to the opti-
cal test pulse and measuring the resulting spectrum. The marginals
of the spectrogram are convolutions of the corresponding intensity
of the test pulse with the intensity of the ancillary function. There-
fore the marginals are not equal to the temporal and spectral inten-
sities of the pulse. It is interesting to note that Eq. (11.21) can also be
written as

Rg(t, �) = 1
2�

∫∫
du d	 WE (u, 	)Wg(u − t, � − 	) (11.22)

which is valid regardless of the coherence of the ensemble of optical
pulses. This indicates that the spectrogram is obtained by convolution
of the Wigner function of the pulse with the Wigner function of the
gate in the chronocyclic space, and that its measurement requires a
full scan of the chronocyclic space with the Wigner function of the
gate. There exist other bilinear chronocyclic representations of pulses
that are positive definite, and therefore may be used as joint prob-
ability distributions. However, these do not have the property that
their marginal distributions are the temporal and spectral intensity.
Phase-space representations are not limited to the bilinear functions
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generated by Eq. (11.20). For example, the time-frequency representa-
tion P(t, �) = I (t) Ĩ (�) is positive, and its marginals are the temporal
and spectral intensity of the pulse.30 However, it is not uniquely re-
lated to a field and does not represent chirp properly since it is not
phase-dependent.

Coming back to bilinear time-frequency distributions, an entire
class of chronocyclic representations may be derived from the Wigner
function by means of a convolution

Ps(t, �) = 1
2�

∫∫
d�′ dt′ W(t′, �′)Gs(t − t′, � − �′) (11.23)

where

Gs(t, �) = 4
s

exp
[
−1

s

(
�2

�2 + 4�2t2
)]

(11.24)

This class is analogous to the commonly used phase-space repre-
sentations of the optical field in quantum optics.32,33 For s= 0, the
convolving function is a Dirac function, and P0 is the Wigner func-
tion of the pulse. Positive values of s correspond to smoothing in
the chronocyclic space, analogous to the Q function used in quantum
physics. The time-frequency distribution defined by Eq. (11.23) is pos-
itive for s larger than 2. In the particular case of s = 2, Gs is the Wigner
function of a coherent state, and P2 corresponds to the spectrogram
of the pulse defined for coherent ensembles by Eq. (11.21), the gating
function being the Gaussian function

g(t) =
√

2� exp(−�2t2) (11.25)

A set of smoothed Wigner functions corresponding to a Gaussian
pulse with third-order spectral phase is plotted in Fig. 11.2. The phase-
space representation of the pulse evolves from the Wigner function

1
s = 0

(a) (b) (c) (d)

s = 1 s = 2 s = 5

0

–1

FIGURE 11.2 Smoothed Wigner functions Ps of a pulse with Gaussian
spectrum and third-order spectral phase for (a) s = 0, (b) s = 1, (c) s = 2, and
(d) s = 5. Part a corresponds to the Wigner function and part c corresponds to
a spectrogram.
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(s = 0, Fig. 11.2a) to the spectrogram (s = 2, Fig. 11.2c) and is positive
for values of s larger than 2. As s increases, the Wigner function is
smoothed out, but the resulting time-frequency distribution loses its
ability to display chirp.

In fact, it is possible to cast all measurement strategies in terms of
phase-space distributions, in a form that ensures the positivity of the
signal distribution. The requirement that the signal be positive arises
from the way in which optical detectors respond to the field. They
are square-law detectors in which the intensity or energy (depending
on the response time of the detector) gives rise to a photocurrent or
charge. This implies that the detected signal is positive. As we have
seen, not all phase-space distributions are positive, but a theorem due
to Jordan shows that the distribution

S(T, 	) =
∫

d� dt W(t, �)WM(t − T, � − 	) (11.26)

with WM(t, �) the Wigner representation of the measurement appa-
ratus, is always positive. Apparatuses for which the measurement
function is a convolution, no matter how complex and negative the
Wigner function of the pulse and the measurement apparatus are,
yield a signal that is positive.

In general the measurement function may be written in the form

S(T, 	) =
∫

d� dt W(t, �)WM(t, �; 	, T) (11.27)

where the measurement Wigner function contains the apparatus pa-
rameters. This cannot always be written as a convolution, as in
Eq. (11.26), but nonetheless is always constrained to give a positive
signal. Further, it is clear from these formulas that any measurement
technique attempting to reconstruct either the Wigner or the ambigu-
ity function must be capable of exploring the entire two-dimensional
chronocyclic phase space.

11.2.4 Phase-Space Representation
of Paraxial Optical Systems

The representation of optical pulses in phase space can be understood
by analogy to the representation of optical ray trajectories in geometri-
cal optics.34 This provides an important first-order design framework
for ultrafast optical systems as well as an intuitive appreciation of the
more formal representations of the chronocyclic distributions. Parax-
ial optical systems are specified by a 2 × 2 real transfer matrix T,

T =
(

A B

C D

)
(11.28)
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with det(T) = 1. This matrix relates the input and output properties
of the ray trajectories, i.e., the ray height y with respect to the principal
ray of a bundle and its angle u with respect to this ray.† The refrac-
tive index of the medium n in which the ray propagates is usually
appended to the ray angle, so that the specification of the ray is the
column vector

�Y =
(

y
u

)
(11.29)

The output and input rays are related by the equation

�Yout = T �Yin (11.30)

This relation may be represented in the phase space consisting of a
transverse coordinate (the ray height) and the corresponding trans-
verse wave vector (proportional to the ray angle). A single ray is a
point in this space, a ray bundle emanating from a single point occu-
pies a region of constant height, and a plane wave occupies a region
of the phase space of constant angle (Fig. 11.3).

The elements of the transfer matrix may be derived by using Hamil-
ton’s characteristic function in the paraxial approximation, i.e., using
the Fresnel approximation to the propagation kernel in the Kirchhoff
formula. The output and input scalar electric fields for such a system
are related by

Eout(x) =
∫

dx′ K (x, x′)Ein(x′) (11.31)

The most general form of the Fresnel kernel K is (for light of wave
number k0 = 2�/�)

K (x, x′) =
√

ik0

2�B
exp

[
− ik0

2B
( Ax2 − 2xx′ + Dx′2)

]
(11.32)

The parameters of the transfer matrix determine the action of the op-
tical system on the input field through this kernel. This may be illus-
trated by some important simple paraxial optical elements.

†The notation used for specifying the phase-space coordinates of a ray in ge-
ometrical optics is conventionally in terms of the ray height y and the ray angle
u with respect to the principal ray of the bundle. This notation is used, e.g., in
paraxial ray tracing for first-order system design, which is sometimes known as
ynu tracing. The corresponding coordinates used for specifying the electric field
are more usually the transverse coordinate x = y and the transverse wave vector
kx = k0 tan u ∼= k0u with k0 = 2�/�, where � is the optical wavelength.
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FIGURE 11.3 Representations of various ray bundles in geometrical optics
and in the associated phase space. The first row corresponds to the
geometrical optics representations of (a) a single ray located at height y with
angle u, (c) a bundle of rays emanating from a point of height y in a range of
angles �u, and (e) a plane wave covering a range of heights �y propagating at
an angle u. The second row [plots (b), (d), and (f)] displays the corresponding
phase-space representations.

The transfer matrix for free-space propagation over a distance L is

Tprop. =
(

1 L
0 1

)
(11.33)

with the corresponding space-shift-invariant Fresnel kernel

K (x, x′) =
√

ik0

2�L
exp

[
− ik0

2L
(x − x′)2

]
(11.34)

Free-space propagation therefore increases the spatial coordinate pro-
portionally to the propagation distance and the associated wave vector
yout = yin + Lu, but does not modify the wave vector, so uout = uin
(Fig. 11.4a). This can be seen as a shear along the position direction in
the phase space (Fig. 11.4b).

The matrix describing propagation through a thin lens is

Tlens =
(

1 0
−1/ f 1

)
(11.35)

with the corresponding kernel

K (x, x′) = exp
(

ik
2 f

x2
)

�(x − x′) (11.36)
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FIGURE 11.4 Representations of free-space propagation and propagation in
a thin lens in geometrical optics and in the associated phase space. The first
row corresponds to the geometrical optics representations of (a) three
different rays propagating in free space, where it can be seen that the rays
before (depicted in gray) and after (depicted in black) conserve their angle
and acquire an angle-dependent height, and (c) of three different rays
propagating through a thin lens, where it can be seen that the rays before and
after the lens conserve their height and acquire a position-dependent angle.
The second row displays the corresponding phase-space representations
before (in gray) and after (in black), where the effect of free-space
propagation is seen in (b) as a shear along the height direction, and the effect
of the thin lens is seen in (d) as a shear along the angle direction.

Because this element is not space-shift-invariant, but rather angle-
shift-invariant, its form in the conjugate angle space is simpler.

˜̃K (kx, k ′
x) =

√
f
k

exp
[
− i f

2k
(kx − k ′

x)2
]

(11.37)

The thin lens therefore modifies the wave vector proportionally to
the lateral position of the ray on the lens, that is, uout = uin − yin/ f ,
but the ray height does not change, that is, yout = yin (Fig. 11.4c).
This is a shear in the phase space along the wave vector direction
(Fig. 11.4d). A lens can be combined with free-space propagation
to rotate the phase-space representation. The transfer matrix di-
rectly describes modifications of the Wigner function through optical
systems.35
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An important feature of the paraxial approximation is that it is
straightforward to propagate Gaussian beams using the transfer ma-
trices acting on the complex beam parameter

1
q

= 1
R

− i�

�w2 (11.38)

In Eq. (11.38), R is the radius of curvature of the beam at the reference
plane, w is the corresponding beam size, and � is the index-dependent
wavelength in the medium. The complex beam parameters before and
after propagation, q and q ′, respectively, are linked by the formula

q ′

n′ = Aq/n + B
Cq/n + D

(11.39)

where n and n′ are the optical index in the medium before and
after propagation, respectively. The elements of the transfer matrix
of Eq. (11.28) are then interpreted as modifying the beam waist and
radius of curvature, accordingly.

11.2.5 Temporal Paraxiality and the
Chronocyclic Phase Space

An optical pulse may be represented in a manner similar to optical
rays in geometrical optics. The analogy between space and time, the
space-time duality, has been very fruitful.36−38 Consider the action of
a linear filter on a pulsed field. The relationship between input and
output fields for the filter is

Eout(t) =
∫

dt′ H(t, t′)Ein(t′) (11.40)

which can also be written in the frequency domain as

Ẽout(�) =
∫

d�′ ˜̃H(�, −�′) Ẽ in(�′) (11.41)

Let us define a temporally paraxial approximation and postulate a
general linear filter function in the form of a temporal Fresnel kernel

H(t, t′) = 1√
2�b

exp
[
− i

2b
(at2 − 2tt′ + dt′2)

]
(11.42)

where a , b, and d are real numbers. Here H is unitary and verifies∫
dt H(t, t′)H∗(t, t”) = �(t′ − t”) (11.43)
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Then the parameters describing the filter form a temporal transfer
matrix

T =
(

a b
c d

)
(11.44)

which is again unimodular [det(T) = ad − bc = 1]. Define also a
column vector

�	 =
(

t
�

)
(11.45)

which describes time of occurrence and frequency of a temporal “ray.”
The properties of the pulse are described by a “bundle” of such rays,
which can be represented in the chronocyclic phase space to interpret
the effects of various linear filters. As in the case of the geometrical
optical rays, the output and input temporal rays are related by

�	out = T �	in (11.46)

Optical elements entirely analogous to free-space propagation, and
imaging may also be defined. The kernel for propagation in a dis-
persive medium, i.e., with a frequency-dependent index of refrac-
tion, or for double-passing a two-grating compressor as represented
in Fig. 11.5a, is

˜̃H(�, −�′) = exp
(

i
	′′

�

2
�2
)

�(� − �′) (11.47)

in the limit where only second-order dispersion 	′′
� is considered in the

development of the introduced spectral phase 	�. The corresponding
transfer matrix is

Tdispersion =
(

1 	′′
�

0 1

)
(11.48)

A pulse with such linear chirp is represented by a collection of ray
vectors in which t is a linear function of �

{ �	i } =
{(

ti = t + 	′′
��i

�i

)}
(11.49)

This manifests itself in the phase-space representation of the ray
bundle by a slope related to 	′′

� (Fig. 11.5b).
Transfer through a quadratic temporal phase modulator (Fig. 11.5c)

is the temporal analog of the action of a paraxial lens on a ray. The
corresponding kernel is

H(t, t′) = exp
(

i
	′′

t

2
t2
)

�(t − t′) (11.50)
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φ

ω ω
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(c)

Phase
modulator

t

FIGURE 11.5 Representations of the effect of (a) dispersive propagation in a
two-grating compressor and (c) propagation in a quadratic temporal phase
modulator. (b) Dispersive propagation leads to a shear of the chronocyclic
representation along the time axis. (d) The quadratic temporal phase
modulator leads to a shear of the chronocyclic representation along the
frequency axis.

belonging to the transfer matrix

Tmodulator =
(

1 0

−	′′
t 1

)
(11.51)

This adds a time-dependent instantaneous frequency −	′′
t t to the

pulse, as is observed in Fig. 11.5d. Analogy to the combined action
of free-space propagation followed by a lens suggests that prop-
agation in a time-stationary dispersive element (such as a grating
pair compressor) and passage through a time-nonstationary phase
modulator (such as an electrooptic crystal driven by a temporal
parabolic voltage) will cause a rotation of the phase-space distri-
bution of the temporal ray bundle in the chronocyclic phase space.
The combination of dispersive propagation 	′′

�,1 followed by a tem-
poral lens 	′′

t , again followed by dispersive propagation 	′′
�,2, leads
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to the transfer matrix

T =
(

1 + 	′′
�,2	′′

t 	′′
�,1 + 	′′

�,2 + 	′′
�,1	′′

�,2	′′
t

	′′
t 1 + 	′′

�,1	′′
t

)
(11.52)

The particular case of 	′′
�,1 = 	′′

�,2 = −1/	′′
t yields the remarkable

relations tout = −�in/	′′
t and �out = 	′′

t tin between temporal and spec-
tral coordinates of a ray bundle, in a fashion similar to the Fourier
transform relation induced by a lens of focal length f between two
planes located a distance f apart from the lens. This is known as
the time-to-frequency converter because the temporal intensity of the
input pulse can be recovered from a simple measurement of the spec-
tral intensity of the output pulse.39 Another interesting result is that
with 1/	′′

�,1 + 1/	′′
�,2 + 	′′

t = 0 (a condition referred to as temporal
imaging), the upper right quadrant of Eq. (11.52) is zero, which leads
to tout = (1 + 	′′

�,2	′′
t )tin. Such assembly therefore magnifies the ray

bundle in the time domain by the quantity 1 + 	′′
�,2	′′

t . Temporal mag-
nification following this formalism has been used to decrease the res-
olution required to measure an optical waveform.36,40–43

A further useful analogy is that it is straightforward to propagate
Gaussian pulses using the temporal transfer matrices. The complex
pulse parameter

�2 = � − i
1
�2 (11.53)

where � is the chirp parameter of the pulse at the reference plane and
� is the corresponding pulse duration, is modified simply according
to the less well-known formula

�0

c�′2 = A�0/(c�2) + B
C�0/(c�2) + D

(11.54)

The elements of the temporal transfer matrix are then interpreted as
modifying the chirp and duration accordingly.

This formulation is useful in visualizing both the optical pulses
and the strategies that are used to measure them. They are in broad
agreement with formal definitions of phase-space distributions of the
pulsed fields, although they only agree in detail in cases, such as for in-
coherent ensembles, when all quantities are positive definite. Further,
it is useful in system design and analysis, because it provides a sim-
ple way to understand the first-order space-time couplings that occur
when geometrical dispersion (such as happens in a prism or grating)
is used to build a temporally dispersive delay line. In this case the
paraxial and temporal transfer matrices are combined into 4 × 4 ma-
trices that describe the coupling between the spectral and temporal
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properties of the beam with the spatial and angular properties:

T =

⎛⎜⎜⎜⎝
A B � �

C D � �

�′ �′ a b

�′ �′ c d

⎞⎟⎟⎟⎠ (11.55)

This matrix acts on the ray representation (x, k, t, �) in the (space,
wave vector, time, frequency) space. The 2 × 2 block diagonal ele-
ments are the spatial and temporal transfer matrices described above,
and the off-diagonal elements are those involved in space-time cou-
pling. For example, the matrix describing a diffraction grating or prism
introducing angular dispersion (linear relation between wave vector
and optical frequency) has a nonzero �. A restricted form of this matrix,
where 7 of the 16 variables of the matrix of Eq. (11.55) are constrained,
has been applied to time-stationary filters by Kostenbauder.44 Space-
time Wigner functions have been used, e.g., to describe the space-time
coupling induced by zero-dispersion line pulse shapers.45,46

11.3 Metrology of Short Optical Pulses
11.3.1 Measurement Strategies
In principle, one can use an antenna to directly measure the oscillat-
ing electric field. For instance, low-temperature GaAs gated antennas
are routinely used to measure the oscillating field of electromagnetic
pulses whose carrier frequencies are on the order of 1 THz. But the
fastest antennas are far too slow to resolve the oscillations of optical
fields (the period of one cycle of an optical field in the visible spec-
tram is less than 3 fs). Detectors for the optical regime are square-law
(or energy) detectors which only respond to the intensity of the field.
State-of-the-art commercial photodiodes have response times on the
order of 10 ps, while streak cameras, by far the fastest electronic detec-
tion devices, offer a temporal resolution of about 1 ps. Herein lies the
problem of ultrashort pulse characterization: it is not possible to di-
rectly measure the temporal intensity of optical pulses with durations
less than 1 ps or so. The problem is especially acute for the few-cycle
optical regime and the XUV attosecond regime. Most conventional
photodetection schemes are also not sensitive to the phase of the elec-
tric field. These problems may be circumvented, however, by passing
the unknown (test) pulses through filters of known response func-
tions and then recording the average output energy as a function of
the parameters characterizing the filter response functions. As a gen-
eral proposition, pulse measurement techniques may be categorized
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according to the inversion algorithm they employ for reconstructing
the ensemble statistics from the measured experimental trace. Phase-
space techniques estimate either the Wigner function or the ambiguity
function. There are two classes of phase-space techniques, spectro-
graphic and tomographic. Methods from which the inversion returns
either the two-time or two-frequency correlation function may be clas-
sified as direct techniques: these are interferometric.

11.3.2 Pulse Characterization Apparatuses
as Linear Systems

Although currently most methods for pulse characterization are based
on nonlinear optical processes, it is informative to consider a general
framework for analyzing measurement methods based on a linear
filter analysis. This approach has two benefits. First, it proves that
nonlinearities are not necessary for determining the pulse field and
shows why they are often used. Second, it specifies the necessary and
sufficient conditions that must be fulfilled by any apparatus that is ca-
pable of determining the field. This leads to a convenient classification
scheme for most methods.

Consider the general interferometer shown in Fig. 11.6. It consists
of four causal filters and a square-law, integrating detector. Therefore,
we may consider a two-beam interferometer for the analysis with-
out loss of generality because a multibeam interferometer can always
be decomposed into a linear combination of two-beam interferome-
ters. Each filter is characterized by a time-domain response function
Hk(t, t′). We take the filters, and therefore the interferometer, to be
linear systems in the broad sense that the output field Eout(t) after the
filters can be expressed as a function of the input field Ein(t) as

Eout(t) =
∫

dt′ Hk(t, t′)Ein(t′) (11.56)

for the kth filter in the sequence. For measurement schemes in which
no interference of the filtered versions of the input pulse is required,
H3 and H4 may be set to zero.

H1(t;t′)

H3(t;t′)

H2(t;t′)

H4(t;t′)

FIGURE 11.6 General interferometer for optical pulse characterization
where Hk (k = 1 to 4) represents the action of linear filters on the electric field
of the input pulse before a square-law time-integrating detector.
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It turns out to be necessary to consider only two classes47 of linear
filter: time-stationary, in which the time of incidence of the input pulse
does not affect the output, and frequency stationary, the output of
which is unchanged by arbitrary frequency shifts of the input. A linear
filter of arbitrary response function may be synthesized from these two
classes. Moreover, they are the only classes of filter that have been used
to date in pulse shape measurement and are the easiest to implement
in practice. For a time-stationary filter, the output field is related to
the input field by

Eout(t) =
∫

dt′ S(t − t′)Ein(t′) (11.57)

where the filter response function H(t, t′) is a function only of the dif-
ference in its arguments t − t′. A frequency-stationary filter is defined
in an analogous manner in the spectral domain

Ẽout(�) =
∫

d�′ Ñ(� − �′) Ẽ in(�′) (11.58)

where the filter transfer function Ñ(� − �′) is a function only of the
difference in its arguments and the tilde represents a Fourier trans-
form. Frequency-stationary filters are time-nonstationary, since their
output depends on the time at which the pulse arrives at the input.
We use S and S̃, and N and Ñ, to denote the response functions and
transfer functions of time-stationary and time-nonstationary filters,
respectively.

There are two further important filter specializations: amplitude-
only and phase-only. These filters behave as their names suggest; the
former provides amplitude modulation while the later modulates
only the phase. We distinguish amplitude-only and phase-only filters
with the superscripts Aand P , respectively. To be specific, we identify
six filters to be used in this analysis and their corresponding response
or transfer functions.

Time gate:

NA(t; �) = exp
[−�2(t − �)2

2

]
(11.59)

Quadratic temporal phase modulator:

NP
Q (t; 	′′

t ) = exp
(

i	′′
t t2

2

)
(11.60)

Linear temporal phase modulator or frequency shifter:

NP
L (t; 	′

t) = exp
(
i	′

tt
)

(11.61)
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Spectral filter:

S̃A(�; �C ) = exp
[−(� − �C )2

2�2

]
(11.62)

Quadratic spectral phase modulator or dispersive delay line:

S̃P
Q(�; 	′′

�) = exp
(

i	′′
��2

2

)
(11.63)

Linear spectral phase modulator or delay line:

S̃P
L (�; 	′

�) = exp(i	′
��) (11.64)

The filter of Eq. (11.59) is a time gate, or shutter, where � is the
time of maximum transmission and �−1 is the duration for which it is
open. Both the quadratic and linear temporal phase modulators of Eqs.
(11.60) and (11.61), denoted by the subscripts Q and L , respectively,
impose new time-dependent phase on the input field. Temporal phase
is imparted on the input pulses, e.g., by passing the pulses through an
electrooptic phase modulator. Quadratic phase is imposed if the input
pulses are passed through the phase modulator near one of the max-
ima of a sinusoidal driving signal, whereas linear phase results if the
input pulses arrive near a zero crossing. Therefore 	′′

t is proportional
to the modulator’s modulation depth and the square of the modu-
lator’s driving frequency while 	′

t is proportional to both the modu-
lation depth and driving frequency. The spectral filter of Eq. (11.62)
is simply represented by an idealized spectrometer transfer function,
where �C is the center frequency and � is the frequency passband.
The quadratic and linear spectral phase modulators [Eqs. (11.63) and
(11.64)] impose new frequency-dependent phase on the input field.
Spectral phase is easily imparted by a delay line. Quadratic spectral
phase is imposed if the delay line is dispersive with group-delay dis-
persion of 	′′

�. Linear spectral phase is the result of a nondispersive
delay line of temporal delay 	′

�.
Using this formulation, the output of such a general measurement

apparatus is given by

D({pk}) =
∫

d� dt W(t, �)WM(t, �; {pk}) (11.65)

where the set {pk} specifies the filter parameters. Therefore any ap-
paratus measures a smoothed out, positive definite version of the
Wigner function—the pulse Wigner function W(t, �) integrated with
an apparatus Wigner function WM(t, �; {pk}).
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It is easy to show that if all the filters are time-stationary, then

WM(t, �; {pk}) =
∏

k

|S̃k(�; {pk})|2 (11.66)

and for nonstationary filters

WM(t, �; {pk}) =
∏

k

|Nk(t; {pk})|2 (11.67)

In both cases, it is clear that D consists of an overlap of a marginal of the
pulse Wigner function with the measurement Wigner function, and
therefore it returns no information on the phase of the field. An appa-
ratus consisting of only one class of filters will not work. What is sur-
prising is that an apparatus consisting of at least one time-stationary
and one time-nonstationary filter yields a signal from which the field
can be reconstructed.

Because of the need to explore the entire region of the time-
frequency phase space occupied by the pulse, a measurement scheme
in which the smallest possible number of elements is present must
therefore be an apparatus containing at least two filters of the classes
described previously, each characterized by one parameter. From
Fig. 11.6 it is clear that there are two general two-filter strategies.
The first consists of two filters in sequence, say, in the upper arm
of the interferometer, with the lower arm not used at all. This class
of devices may be called phase-space methods, since it turns out that
they make measurements directly on a phase-space representation of
the test pulse. The second category may be labeled interferometric or
in-parallel methods, since these devices use one filter in each of the
upper and lower arms of the interferometer of Fig. 11.6.

11.3.3 Phase-Space Methods
The analysis of phase-space techniques is found in Ref. 47. Our dis-
cussion follows this framework. There are two subclasses of phase-
space techniques—those that make simultaneous measurements of
the complementary variables � and t, recording thereby one of the
phase-space distributions, and those that record marginals of the
Wigner function, following a rotation in the phase space, leading to
a set of spectral or temporal intensities parameterized by the rota-
tion angle. The former method is known as spectrographic while the
latter is referred to as tomographic. For each of these subclasses there
are two possible filter orderings, resulting in a total of four types of
phase-space measurement.

Taking into consideration the amplitude- and phase-only filter sub-
classes, there are a number of possible ways to arrange the filters to
make up a minimalist scheme. But it is completely ineffective to allow



362 C h a p t e r E l e v e n

the last filter before a square-law detector to be a phase-only filter. The
final filter must be an amplitude-only filter, but it may be either time-
stationary or time-nonstationary. If it is the former, then the first filter
must be a time-nonstationary filter, but it can be either an amplitude
or a phase filter. If the last filter is time-nonstationary, the first must be
a time-stationary filter, but again it may be of either the amplitude or
the phase variety. Thus there are only four possible configurations of
two filters that can be used to measure the complete Wigner function
of the input pulse.

11.3.3.1 Spectrographic Techniques
The two spectrographic techniques make use of two sequential
amplitude-only filters, one time-stationary (spectral filter) and one
time-nonstationary (time gate) followed by a square-law detector, as
shown in Fig. 11.7. The recorded signal is either a measure of the spec-
trum of a series of time slices (type I, Fig. 11.7a) or a measure of the

Type
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Type
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Type
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Type
VI

Type
II

Type
V

Type
I

(e)

(f )

(g)

(h)

(a)

(b)

(c)

(d)
NA(t;τ)

NA(t;τ2)

NA(t;τ1)
NA(t;τ)

NA(t;τ) NA(t;τ)

NA(t;τ)SP(ω;φ′′ω)Q
˜

SP(ω;φ′ω)L
˜

SP(ω;φ′ω)L
˜

SA(ω;ωC)˜

SA(ω;ωC)˜ SA(ω;ωC)˜

SA(ω;ωC)˜

SA(ω;ωC)˜
SA(ω;ωC2)˜
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NP(t;φ′′t)Q

NP(ω;φ′t)L

NP(t;φ′t)L

FIGURE 11.7 Linear filter description of type I to type VIII devices.
Spectrographic devices, based on two serial amplitude filters in conjugate
variables, correspond to (a) type I and (b) type II. Tomographic devices, based
on a quadratic-phase modulation followed by an amplitude filter in the
conjugate variable, correspond to (c) type III and (d) type IV. Interferometric
techniques related to Young’s double-slit experiment, with two amplitude
filters in parallel followed by one amplitude filter in the conjugate variable,
that correspond to (e) type V and ( f ) type VI. Interferometric techniques
related to shearing interferometry, with two linear phase modulations in
conjugate domains in parallel, correspond to (g) type VII and (h) type VIII.
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time of arrival of a series of spectral slices (type II, Fig. 11.7b) depend-
ing on the ordering of the filters. There is no difference in principle
between the two possible filter orderings, and thus this type of appa-
ratus should be thought of as one that makes simultaneous measure-
ments of the conjugate variables rather than sequential measurements.
Fourier’s principle precludes precise simultaneous measurements of
the conjugate variables. Some of the earliest developments in the rep-
resentation and measurement of short optical pulses are based on the
concepts of spectrography in the time-frequency space.48

The Wigner function of the measurement apparatus for the type I
device, e.g., is

WM(t, �; {�C , �}) =
∫

d�′|S̃A(�′; �C )|2
∫

dt′NA
(

t + t′

2
; �

)
NA∗

×
(

t − t′

2
; �

)
exp[i(�′ − �)t′] (11.68)

In fact, for near-transform-limited input pulses, the apparatus Wigner
function has nearly the same area as the pulse Wigner function it-
self. In principle the Wigner function can be retrieved from the data
by deconvolution, but because of severe signal-to-noise requirements
this approach is impractical. Thus, spectrographic phase-space pulse
characterization techniques supply only qualitative insight into pulse
train statistics. However, in the limit of narrowband filtering, that is,
|S̃A(�′; �C )|2 → �(�′ − �C ), and if the pulses in the ensemble are as-
sumed to be identical, the experimental trace is a simple convolution of
Wigner functions, which can be expressed as a function of the electric
field of the pulse

D (�C , �) =
∫

d� dt W(t, �)WM (t − �, � − �C )

=
∣∣∣∣∫ dt Ein(t)NA(t − �) exp(i�C t)

∣∣∣∣2 (11.69)

This set of conditions gives an apparatus function that occupies
the minimum possible area of phase space, and therefore minimally
“smoothes” the signal Wigner function. In this case, the experimental
trace is the Gabor spectrogram with a window NA.

Type I devices are popular in ultrafast optics. The time-nonsta-
tionary filter required for these devices can be implemented using non-
linear interactions or temporal modulators, and the high-resolution
spectral measurements can be performed by an optical spectrum an-
alyzer (OSA). As an example of the use of a nonlinear interaction to
implement a type I device, let’s consider sum-harmonic generation
frequency resolved optical gating (SHG-FROG), as schematized in
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FIGURE 11.8 Schematics of spectrographic techniques and representative
spectrograms. (a) In SHG-FROG, the pulse under test is replicated,
and the spectrum of the field obtained by nonlinear mixing of the two
replicas is measured by an optical spectrum analyzer (OSA) as a function
of the optical frequency and delay between the two replicas modified
by translation of a pair of mirrors. (b) The experimental trace of a pulse
with second-order (left) and third-order (right) spectral phase does not give
an intuitive representation of the group delay. (c) In linear spectrography,
the pulse under test is modulated by a modulator driven by an electric
drive signal. The spectrum of the modulated pulse is measured by an OSA
as a function of the optical frequency and delay between the pulse under
test and the modulation, which is controlled in the electrical domain. (d) The
experimental trace of a pulse with second-order (left side) and third-order
(right side) spectral phase gives an intuitive representation of the group delay.

Fig. 11.8a.49,50 The pulse under test is sent into a symmetric Michelson
interferometer that generates two replicas of the pulse with a vari-
able relative delay � controlled by translation of one pair of mirrors.
Interaction in a nonlinear crystal provides a gating function; i.e., the
electric field of the up-converted pulse is essentially proportional to
the product of the fields of the two interacting pulses E(t)E(t − �).
The high-resolution optical spectrum analyzer measures the optical
spectrum of the up-converted pulse, which leads to the experimental
trace

S(�, �) =
∣∣∣∣∫ dt E(t)E(t − �) exp(i�t)

∣∣∣∣2 (11.70)

This identifies the unknown electric field of the pulse under test E as
the function NA. Figure 11.8b displays the SHG-FROG spectrogram
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of a pulse with second- and third-order spectral phase. Although the
corresponding electric fields and their Wigner functions are asymmet-
ric in time, the corresponding nonlinear spectrograms are not, which
implies that information on the direction of time cannot be recov-
ered directly from the measured spectrogram. Versions of frequency
resolved gating based on other nonlinearities, e.g., third-order non-
linearities, are characterized by gates NA corresponding to higher-
order products of the unknown electric field E and do not have this
ambiguity.50 Nonlinear interactions with a known ancillary pulse can
also be used, in which case the experimental trace becomes the spec-
trogram of the electric field of the pulse under test, measured using
the electric field of the known pulse as the gate.51–53 In these cases,
more intuitive nonlinear spectrograms are usually obtained, allow-
ing, e.g., the visualization of chirp and the interpretation of linear and
nonlinear propagation effects. The previous examples show that the
formalism of type I devices is not limited to amplitude only filters,
as the electric field is in most cases a complex quantity. Scanning of a
phase-only modulation and recording of the associated spectrogram
have also been demonstrated.54

Figure 11.8c represents a schematic of a type I device based on lin-
ear optics.55 A temporal modulator is a useful time-nonstationary de-
vice for pulse measurement if its transfer function changes signifi-
cantly during the time scale of the test pulse. While this condition is
difficult to meet for sub-100-fs pulses, the development of fast tem-
poral modulators for optical telecommunications has made possible
the characterization of short optical pulses in the range of hundreds
of femtoseconds to hundreds of picoseconds with completely linear
techniques. Lithium-niobate electrooptic modulators and electroab-
sorption modulators driven by sinusoidal drives at 10 GHz or higher
frequencies provide suitable speeds and magnitudes of phase or am-
plitude modulation. Since nonlinear optics requires high optical in-
tensities or large nonlinearities, linear techniques are advantageous in
terms of sensitivity. The temporal modulator is driven by an electric
signal synchronized to the pulse under test and has a gating function
NA = g which does not depend on the pulse under test. The rela-
tive delay between the pulse and the gate is scanned in the rf domain
using a phase shifter. The OSA after the modulator measures the spec-
trum of the modulated pulse as a function of the optical frequency,
leading to

S(�, �) =
∣∣∣∣∫ dtE(t)g(t − �) exp(i�t)

∣∣∣∣2 (11.71)

As can be seen in Fig. 11.8d, spectrograms measured with a signal-
independent gate give a better representation of the chirp present on
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the pulse, although the properties of the spectrogram are identically
impacted by the chirp characteristics of E and g.

Type II devices are also common in ultrafast optics. Implementation
of a stationary amplitude filter can be done using filters such as a
slit in a zero-dispersion line. A high-resolution time-nonstationary
amplitude filter is more difficult to implement since the pulse under
test is usually the shortest event available in the laboratory, and that
filter should in theory be significantly shorter than that to ensure that
the experimental trace is the equivalent of Eq. (11.69) in the frequency
domain. Photodetection has been used for pulses in the picosecond
range,56,57 and nonlinear cross-correlation with the pulse under test
has been used for shorter pulses.58–60

Reconstruction of the electric field of the pulse under test from the
experimental trace of Eq. (11.69) can, in principle, be performed di-
rectly by deconvolution of the Wigner function of the pulse using the
Wigner function of the gate. However, this requires a good knowl-
edge of the function NA (or equivalently, its Wigner function), which
is somewhat available for linear techniques but not available for non-
linear techniques with unknown gate pulses. Estimates of the group
delay or instantaneous frequency in the pulse can also be obtained
in some cases, using the properties of the spectrogram.30 For a type I
device with a narrow function NA, the weighted average time as a
function of frequency obtained using the spectrogram as the weight
function is the group delay of the unknown pulse as a function of
frequency. The practical use of this property, which is valid when the
gating function is significantly shorter than the pulse under test, is
hindered by the fact that the precision on the determination of the
group delay can be poor since the width of the spectrogram increases
dramatically in these conditions. The most practical approach to signal
reconstruction for type I and type II devices is based on iterative phase
retrieval. Electric field reconstruction from Eq. (11.69) is equivalent
to phase reconstruction of the two-dimensional quantity

∫
dt Ein×

(t)NA(t − �) exp(i�C t) from its measured modulus |∫ dt Ein(t)NA×
(t − �) exp(i�C t)|. Projections between ensembles of electric fields
matching different constraints allow, in most cases, convergence to
one possible solution of Eq. (11.69), whether the function NA is known,
unknown, or a function of the unknown electric field itself. The princi-
pal component generalized projections algorithm can be used to invert
experimental trace obtained with type I and type II devices.60,61

11.3.3.2 Tomographic Techniques
As with spectrographic methods, the so-called tomographic tech-
niques require in-series, time-stationary, and time-nonstationary fil-
ters so that the entire phase space can be explored. However, unlike
spectrographic techniques, the first filter in a tomographic apparatus is
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a phase-only filter, as illustrated in Fig. 11.7 [either a quadratic tempo-
ral phase modulator (type III, Fig. 11.7c) or a quadratic spectral phase
modulator (type IV, Fig. 7d)]. The inclusion of a quadratic phase-only
filter results in a distinctly different interpretation of the measurement,
leading to a fundamentally different inversion algorithm. To see this,
notice that a phase-only filter does not provide any information on
the frequency or the arrival time of a pulse ensemble and hence does
not constitute a measurement of either frequency or time. Therefore, a
tomographic apparatus does not make a simultaneous measurement
of these incompatible variables. Rather, the quadratic-phase modula-
tion acts to rotate the phase space. The square-law detector in com-
bination with the amplitude-only filter records the resulting intensity
distribution.

The measurement function takes the form

WM(t, �; {�C , 	′′
t }) =

∫
d�′ ∣∣S̃A(�′; �C )

∣∣2 ∫ dt′NP
Q

(
t + t′

2
; 	′′

t

)
NP

Q
∗

×
(

t − t′

2
; 	′′

t

)
exp[i(�′ − �)t′] (11.72)

When the phase-nonstationary filter takes the form of Eq. (11.60) and
the amplitude stationary filter that of Eq. (11.62), this reduces to the
form

WM(t, �; {�C , 	′′
t }) = exp

[
− (� − �C − 	′′

t t)2

�2

]
(11.73)

This function is different from the filter function of the Gabor trans-
form. Its location in phase space is not determined by the filter
parameters—rather its orientation is. A change in �C translates the
entire function along the frequency axis, and a change in 	′′

t alters the
orientation of the function about � = �C . The detected signal is, in
the limit as � → 0,

D(�C , 	′′
t ) =

∫
dt W(t, �C + 	′′

t t) (11.74)

This is easily interpreted by transforming the variables to the form

D (��, �) =
∫

dt�W (�� sin � + t� cos �, �� cos � − t� sin �) (11.75)

where we have defined tan � = −	′′
t and �� = �C cos � and scaled

the measured trace by cos(�). The signal D (��, �) is, therefore, a set
of distributions that are marginals of a rotated version of the pulse
Wigner function. This is the essence of tomographic measurements;
indeed, the above formula may be inverted to give the pulse Wigner
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distribution using the inverse Radon transform.62 The quadratic tem-
poral phase modulator of a type III device rotates the input pulses so
as to map time into frequency, and a spectrometer is used to resolve
the spectrum of the output pulses. Similarly, the quadratic spectral
phase modulator of a type IV device rotates the input pulses so as to
map frequency into time, and a time gate is used to resolve the time-
dependent intensity of the output pulses. A combination of quadratic
temporal and spectral phase modulations in series can also be used
to rotate the Wigner function, which avoids the requirement for large
amplitude of a single quadratic modulation.63 The Wigner function of
an optical source can, in principle, be completely reconstructed from a
set of its projections determined by using a type III or type IV device.
If the optical source is a train of identical optical pulses, the electric
field can be determined from the Wigner function reconstructed using
a large number of its projections.

Simplified versions of chronocyclic tomography have been experi-
mentally demonstrated. The first one rotates the Wigner function by
90◦ and measures its frequency marginal using a spectrometer, which
is a scaled representation of the temporal intensity of the pulse under
test. This is known as the time-to-frequency converter because it is ef-
fectively a procedure to map the temporal intensity of the input pulse
onto the spectral intensity of another signal.39 The second one rotates
the Wigner function by a small angle,64,65 so that Eq. (11.75) becomes

D(�C , ��) =
∫

dt�W(t� + �C ��, �C − t���) (11.76)

Development of this equation leads to the result

∂ D
∂�

(�C , 0) = − ∂

∂�C

[
Ĩ (�C )	′

�(�C )
]

(11.77)

Equation (11.77) indicates that the spectrally resolved changes of the
optical spectrum of the pulse after small amounts of quadratic tempo-
ral phase modulation are algebraically linked to the optical spectrum
and spectral phase of the pulse. Since Ĩ (�C ) can be directly measured
with a spectrometer [e.g., the spectrometer used to measure the signal
of Eq. (11.76) when the modulation is turned off], the spectral phase
	� can be obtained by solving the second-order differential equation,
Eq. (11.77). Figure 11.9 is a schematic of an implementation of sim-
plified chronocyclic tomography. The left-hand side of Eq. (11.77) is
obtained as a finite difference of the optical spectra obtained after
two small quadratic temporal phase modulations of opposite signs.
Quadratic modulation is obtained by synchronization with the max-
imum and minimum of a sinusoidal phase modulation obtained in a
lithium niobate electrooptic phase modulator. In this symmetric con-
figuration, the optical spectrum is simply obtained as the average of
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FIGURE 11.9 (a) Schematics of simplified chronocyclic tomography based
on a temporal phase modulator. Quadratic temporal phase modulations of
opposite signs are provided by a sinusoidally driven phase modulator
synchronized such that the pulse under test coincides with the minimum or
maximum of the phase modulation. (b) The Wigner function of a chirped
pulse is shown in the absence of modulation (upper left plot) and with
quadratic temporal modulations of opposite signs (upper right and lower
left plots). The effect of the shear along the frequency axis can be seen. (c)
The initial spectrum of the pulse (continuous line) and the spectra after the
quadratic temporal phase modulations of opposite signs (continuous lines
with round and square markers) are seen, from which the electric field of the
test pulse can be reconstructed.

the two measured optical spectra. Figure 11.9b represents the Wigner
function of a chirped pulse in the absence of modulation, and after
quadratic temporal phase modulation of opposite signs. The shear
effect due to the modulation can be observed, and it results in a
change of the frequency marginal. The spectral phase can directly be
reconstructed from the corresponding optical spectra represented in
Fig. 11.9c. The combination of a quadratic spectral phase modulation
(i.e., chromatic dispersion) and temporal gating by photodetection has
also been demonstrated based on the same formalism.66 These one-
dimensional determinations of the electric field are closely related to
phase retrieval using the transport-of-intensity equation in the spatial
domain.67

11.3.4 Interferometric or Direct Techniques
Direct techniques, as the name indicates, reconstruct the correlation
function in either the time domain or frequency domain directly
(i.e., noniteratively) from the recorded intensity distributions. In such
schemes each pulse in the ensemble is split into two replicas at a
beam splitter, and each replica is independently filtered before be-
ing recombined. The interference of the field from the parallel path-
ways introduces structure on the output intensity distribution, which
then carries information about both the amplitude and the phase of
the correlation function of the input field. Direct techniques of this
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kind are known as self-referencing. It is also possible to reconstruct
the electric field of an unknown pulse from the interferogram result-
ing from the overlap of the unknown pulse with a well-characterized
reference.68–70 Of course, this approach requires one to first character-
ize a reference, which begs the question. We thus confine this discus-
sion to self-referencing techniques.

One significant advantage of direct techniques compared to phase-
space techniques is that the entire space over which the phase-space
or correlation functions are defined need not be explored if the pulse
train is assumed to consist of identical pulses. Only a single section of
one quadrature of the (complex) correlation function is required to ob-
tain the electric field amplitude and phase, and this is precisely what
is recorded by direct techniques. Thus, while phase-space techniques
must explore the entire chronocyclic space even when the electric field,
rather than the correlation function, is the fundamental quantity of
interest, direct techniques need only return a single slice of the cor-
relation function in order to construct the simpler quantity. Roughly
speaking, if one wishes to reconstruct the complex electric field at
N temporal points, at least 2N independent real data points are re-
quired. While direct techniques are capable of reconstructing the field
by recording only the necessary 2N points, phase-space techniques
essentially require the measurement of N2 points. The excess data of
the phase-space methods can be advantageous as a means of refining
the estimate of the pulse shape. Of course, the overcomplete data set
is available from direct measurement of the entire correlation function
as well, or from any extended sampling of it.

11.3.4.1 Two-Pulse Double-Slit Interferometry
This class consists of an in-parallel pair of amplitude-only filters, fol-
lowed by an additional amplitude-only filter, as shown in Fig. 11.7.
The in-parallel amplitude-only filters select either two frequency slices
or two time slices of the pulse which beat together at the output of the
interferometer to provide information for a single point of the respec-
tive correlation function. Thus these two types of direct techniques
are the time-domain analog of Young’s double-slit interferometer. In a
type V apparatus, the in-parallel pair of amplitude-only filters is time-
stationary (spectral filters), and the final filter is a time-nonstationary
amplitude-only filter (time gate) (see Fig. 11.7e). Each pulse in the en-
semble under consideration is split into identical replicas at a beam
splitter, and a single frequency from each replica is selected by the
spectral filters. The center frequencies of the spectral filters �C1 and
�C2 are independently controllable, and usually the two spectral fil-
ters have the same passband �. The selected frequency components
are recombined, and the resulting temporal interferogram is subse-
quently resolved by a time gate. The signal recorded by the square-law
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detector is a function of the center frequencies and the time of maxi-
mum transmission � of the time gate

D({�C1, �C2, �}) =
〈∫

dt

∣∣∣∣NA(t − �)
∫

d�
[
S̃A (� − �C1)

+S̃A (� − �C2)
]

Ẽ(�) exp(−i�t)

∣∣∣∣2
〉

(11.78)

The detected signal takes on a particularly useful form when certain
assumptions regarding the filters are valid. The first assumption is that
the passband of the spectral filters is much narrower than the spectrum
of the input pulses, so that the spectral filter transfer functions become

S̃A(� − �C ) → �(� − �C ) (11.79)

The second assumption is that the duration over which the time
gate is open is much shorter than the temporal period of the beat note
to be measured, so that the time-gate response function becomes

NA(t − �) → �(t − �) (11.80)

The integration time of the square-law detector must be long
enough that an average over a sufficiently large number of pulses
is obtained. Changing the frequency variables to the center- and
difference-frequency coordinates, the detected signal of Eq. (11.78)
simplifies to

D
({

� − ��

2
, � + ��

2
, �

})
= Ĩ

(
� − ��

2

)
+ Ĩ

(
� + ��

2

)
+ 2| ˜̃C(��, �)| cos{arg[ ˜̃C(��, �)]

+ ���} (11.81)

where � = (�C1 + �C2)/2 and �� = �C1 − �C2.
The detected signal is an interferogram measuring sections of the

two-frequency correlation function of the pulse train. The inversion
procedure for reconstructing the correlation function from type V
measurements is apparent from the form of Eq. (11.81) and is
illustrated in Fig. 11.10. The visibility of the fringes, occurring with
temporal period 2�/��, provides a measure of the magnitude of
˜̃C(��, �). The location of the fringes along the delay axis � provides
a relative measure of the phase of ˜̃C(��, �). Each temporal beat
note supplies enough information to reconstruct a single point of the
two-frequency correlation function. Therefore, the temporal fringe
visibility and relative fringe position need to be recorded for every
pair of frequencies contained within the pulse spectrum if one wishes
to reconstruct the entire two-frequency correlation function. This
procedure is experimentally intensive and demands the recording of
a prodigious amount of data.
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FIGURE 11.10 (a) Schematics of a double-slit experiment in the spectral
domain and (b) resulting experimental trace for one particular setting of the
central frequencies of the two filters. The gray regions in part a depict the
filtering of two narrowband spectral slices at the center frequencies �C1

and �C2.

In many implementations, especially for femtosecond duration
pulses, the time gate consists of a nonlinear optical mixing process,
such as up-conversion with a portion of the pulse being characterized,
which sets the temporal resolution �−1 to be close to the duration of
the input pulses. Consequently, the narrow time-gate assumption of
Eq. (11.80) is not valid for frequency separations �� greater than a
small fraction of the pulse bandwidth, since the temporal beat note is
too fast to resolve.

The narrow time-gate approximation does hold for small frequency
separations so that slices of the two-frequency correlation function
near �� = 0 can be recorded. If the pulses in the train are assumed to
be identical, a sampling of one such slice is sufficient for reconstruct-
ing the pulse electric field. When coherence is assumed, the phase
of the two-frequency correlation function is no more than the phase
difference between the selected spectral components. Coupled with
knowledge of the pulse spectrum, the spectral phase differences for
a set of frequencies separated by �� provide ample information for
reconstructing the pulse electric field. This is precisely the approach of
direct optical spectral phase measurement (DOSPM).71 DOSPM uses
an apparatus in which a pair of adjustable slits is placed in the Fourier
transform plane of a zero-dispersion line. This spectral filter with dual
passbands of adjustable center frequencies is equivalent to a pair of
in-parallel single-frequency spectral filters. The beating with pairs of
optical frequencies was recorded by nonlinear interaction with the
pulse under test. This work was extended to the measurement of the
spectral phase difference between a reference optical frequency and a
set of other frequencies in the pulse, these frequencies being filtered
by a mask with multiple slits placed at the Fourier plane of a zero-
dispersion line.72 A version of the DOSPM that does not require the
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isolation of discrete optical frequencies in the pulse under test can
be implemented, provided that a large amount of chirp is added to
the pulse.73 The phase difference between two adjacent optical fre-
quencies is measured in the time domain by interfering two chirped
replicas of the pulse under test, and the time-frequency dependence in
the chirped pulses naturally links the temporal axis of the measured
intensity to the optical frequency in the pulse under test. This method
can be combined with a Fourier processing algorithm identical to that
of spectral shearing interferometry.74 Another approach to measuring
the spectral phase difference between different optical frequencies re-
lies on a fast electronic detector. The beat note between pairs of ad-
jacent frequencies, instead of the beat note between frequencies, was
measured to reduce the bandwidth requirement of the detector.75 The
overlap of two spectrally dispersed and spatially sheared replicas of
the pulse under test can also be used so that quantity of Eq. (11.81)
can be measured at different spatial locations.76 Finally, let’s note that
for a periodic source of period T , it suffices to measure the phase dif-
ference between spectral modes separated by 2�/T with a detector of
sufficient resolution. This is of particular interest for optical sources
used in optical telecommunications.77

A similar interferometric approach has been employed to recon-
struct the electric field amplitude and phase by Rothenberg and
Grischkowsky.78 In their technique, generically referred to as time-
domain interferometry, a spectral filter is placed in only one arm of
the interferometer. The monochromatic frequency component result-
ing from the spectrally filtered path provides an effective reference
with which to compare the pulse that passes through the unfiltered
arm of the interferometer. Constraints on the available temporal res-
olution limit this method to the measurement of stretched pulses of
relatively long duration.

A complementary approach to the temporally resolved two-pulse
interferometry is spectrally resolved two-pulse interference. This ap-
proach consists of two in-parallel time-nonstationary amplitude-only
filters (time gates), followed by a time-stationary amplitude-only fil-
ter (spectral filter). The two replicas of the pulse are independently
filtered by time gates with variable times of maximum transmission
�1 and �2, before being recombined. The spectral beats, resulting from
the overlap of the two time slices, are resolved by a spectrometer. The
spectrum for each pair of time settings of the time gates is recorded.
The visibility of the spectral fringes, occurring at the spectral period
2�/�� = 2�/(�1 − �2), is a measure of the magnitude of the two-time
correlation function at these two times. The position of the fringes
along the frequency axis is a relative measure of the phase. Thus,
each recorded spectrum returns one point of the two-time correlation
function so that a simple point-by-point reconstruction algorithm is
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possible. In practice, for femtosecond-duration pulses it is difficult to
satisfy the narrow time-gate approximation, so that iterative recon-
struction algorithms are needed to deconvolve the response functions
of these filters. Given the current state of technology, this class of direct
devices is not practical for pulses of duration less than several tens of
picoseconds.

11.3.4.2 Shearing Interferometry
Shearing interferometers consist of a time-nonstationary linear phase
filter and a time-stationary linear phase filter in parallel, followed by
an amplitude-only filter. The action of linear phase filters is to shift
the electric field in either time or frequency. For instance, consider the
spectral linear phase modulator of Eq. (11.64). The action of this filter
is a translation of the pulse in time, which can easily be obtained with a
nondispersive delay line. Likewise, imparting a temporal linear phase
on the input field is equivalent to a translation, or shift, of the frequency
axis. The resulting interferogram contains information about an entire
section of the correlation function, as opposed to sampling a single
point of the function, as is the case with the two-slit types.

In spectral shearing interferometry, the amplitude-only filter fol-
lowing the in-parallel linear phase filter arrangement is a spectral filter
(see Fig. 11.7g). Since the spectral filter is a time-stationary device, the
key filter is the time-nonstationary linear temporal phase modulator
that provides a shift, or shear, of the spectrum of one replica of the
input pulse.79,80 The detected signal is a function of the linear tempo-
ral phase modulator parameter 	′

t as well as the center frequency of
the spectrometer �C ,

D({	′
t , �C ; 	′

�}) =
〈∫

d�

∣∣∣∣S̃A(� − �C )
[∫

d�′ ÑP
L (� − �′, 	′

t) Ẽ(�′)

+S̃P
L (�, 	′

�) Ẽ(�)
]∣∣∣∣2
〉

(11.82)

where the temporal linear phase filter’s response function and the
spectral linear phase filter’s transfer function inherently depend on
the variables 	′

t and 	′
�, respectively. Therefore, the detected signal

is also a function of the amount of spectral phase modulation 	′
�,

although this dependence plays a secondary role which will be de-
scribed below. It is easy to see from Eq. (11.61) that the transfer function
of the temporal linear phase modulator is

ÑP
l (�′, 	′

t) = �(�′ − 	′
t) (11.83)

Again the spectral filter is taken to have a passband much narrower
than the spectrum of the input pulses. Upon substitution of the
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appropriate forms for the filter functions, recognizing that 	′
t plays

the role of a spectral shear �� and changing variables to the center-
and difference-frequency coordinates, the recorded distribution sim-
plifies to

D
({

��, � + ��

2
; 	′

�

})
= Ĩ

(
� − ��

2

)
+ Ĩ

(
� + ��

2

)
+ 2| ˜̃C(��, �)| cos{arg[ ˜̃C(��, �)] + 	′

��}
(11.84)

The measured signal D(�) = D({��, � + ��/2; 	′
�}) for a given

shear �� is related simply to a section of the two-frequency correlation
function. This section may be extracted using a simple and direct in-
version algorithm that separates the interference term [the third term
in Eq. (11.84)] from the noninterferometric terms.68,81 This is easily
accomplished by means of Fourier transforms, in a manner described
in Fig. 11.11. The spectral interferogram is first Fourier transformed to
separate the noninterferometric terms (located around t = 0) from the
interferometric terms (located around t = ±	′

�). One of the interfero-
metric terms is then filtered out and Fourier transformed back to the
frequency domain, where the amplitude and phase of the correlation
function are obtained. The key point of spectral shearing interferome-
try is that the spectral phase of the test pulse, arg[ ˜̃C(��, �)], is encoded
on the spacing of the fringes in the interference term.
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FIGURE 11.11 Extraction of a slice of the two-frequency correlation function
in spectral shearing interferometry. The spectral interferogram is Fourier
transformed to separate the interferometric components from the
noninterferometric terms. The slice of the two-frequency correlation function
is obtained by Fourier transforming back to the spectral domain one of the
sidebands.
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An entirely analogous argument may be made for temporal shear-
ing interferometers. In this case, the delay line in one arm of the in-
terferometer causes the pulses on recombining at the second beam
splitter to exhibit temporal beats in their intensity that may be re-
solved by a fast time gate. This latter element is the amplitude-only
filter that replaces the spectrometer required in the spectral shearing
interferometer. In this arrangement, a temporal linear phase modu-
lator may be used to provide a “temporal carrier” for the two-time
correlation function in the interference term. This is accomplished by
frequency-shifting one of the pulses with respect to the other by a
shear 	′

t . The detected signal is then

D
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t − �t
2

, �t; 	′
t

})
= I

(
t − �t

2

)
+ I

(
t + �t

2

)
+ 2|C(t, �t)| cos{arg[C(t, �t)] + 	′

tt}
(11.85)

assuming that the time gate is of infinitesimal duration. A similar al-
gorithm, as described for the spectral shearing interferogram, may be
used to extract the temporal phase of the test pulse in this case. In
practice, however, it is very difficult to provide a short enough time
gate to enable this method to work. Nonlinear optical interactions
that cross-correlate the interferogram with the test pulse will not pro-
vide enough temporal resolution to resolve the fringes. Therefore this
method is restricted to pulses whose duration is long enough that an
externally controlled time gate, such as a temporal modulator or a
nonlinear interaction with a short optical pulse, can be used.

As with spectrography, practical implementations of spectral shear-
ing interferometry have been demonstrated with nonlinear optics
and with entirely linear setups. In electrooptic spectral shearing in-
terferometry (EOSI), the spectral shear is obtained by linear tempo-
ral phase modulation, e.g., with lithium-niobate electrooptic phase
modulators.82,83 A symmetric implementation based on such a mod-
ulator is shown in Fig. 11.12a. The pulse under test is sent into an inter-
ferometer that generates two replicas separated by a delay �. One of
the outputs of the interferometer is sent to a phase modulator driven
by a sinusoidal high-frequency modulation. The modulation has a
period 2� and is synchronized so that the two replicas are located at
the two zero crossings of the modulation. In this configuration, the
replicas are sheared by the same amount in opposite directions. The
interferogram measured by an optical spectrum analyzer is

S(�) = Ĩ (� + 	) + Ĩ (� − 	) + 2
√

Ĩ (� + 	) Ĩ (� − 	)

× cos[	�(� + 	) − 	�(� − 	) + ��] (11.86)
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FIGURE 11.12 Schematics of spectral shearing interferometry based on (a) a
linear temporal phase modulator and (b) a nonlinear interaction with a
chirped pulse. In part a, two replicas of the pulse under test are spectrally
sheared in opposite direction by a temporal phase modulator driven by a
sinusoidal drive. In part b, a chirped pulse is generated by a dispersive delay
line (DLL), and nonlinear interaction of two relatively delayed replicas of the
test pulse with the chirped pulse induces a relative shear between the two
resulting pulses.

where 	 is the shear induced on one of the replicas, which can be
as high as several hundreds of gigahertz. Since the relative shear 2	

must be of the order of a few percents of the bandwidth of the pulse
under test to provide adequate sampling in the frequency domain and
maintain a measurable finite difference 	�(� + 	) − 	�(� − 	), EOSI
most likely can be implemented for pulses with duration down to 50 fs.
Advantageously, the signal intensity does not depend significantly on
the amount of chirp present on the pulse, and the technique is accurate
as long as one can maintain a linear phase ramp over the temporal
support of the pulse under test. Other related techniques measuring
the phase difference between the spectral modes of a periodic source
have been demonstrated.84–86

The nonlinear implementation of spectral shearing interferometry,
also known as spectral phase interferometry for direct electric-field
reconstruction (SPIDER), can provide large shears by nonlinear inter-
action of two replicas of the pulse under test with a highly chirped
pulse.87,88 For such a pulse, the instantaneous frequency is a linear
function of time and the frequency content in a short time interval is
quasi-monochromatic. As seen in Fig. 11.12b, part of the input pulse
is used to generate a chirped pulse, and two delayed replicas of the
input pulse are generated by an interferometer. Nonlinear interaction
of one replica of the pulse under test with the chirped pulse leads to
a spectral shift given by the instantaneous optical frequency of the
chirped pulse during the interaction. The other replica, delayed by
�, interacts with another optical frequency of the chirped pulse. The
two converted replicas are relatively sheared by 	 = �/	2, where
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	2 is the second-order dispersion of the chirped pulse. For pulses in
the hundreds of femtoseconds regime and shorter, spectral shearing
interferometry has proved to be a robust and effective method of deter-
mining the amplitude and phase of optical, infrared, UX, and indeed
EUV pulses.

Electric field reconstruction with spectral shearing interferometry
relies primarily on the steps described in Fig. 11.11. Once the spectral
phase of the two-time correlation function 	�(�+	) −	�(�−	) has
been extracted, it can be integrated into the spectral phase of the pulse
under test 	�(�). The reconstruction algorithm is therefore direct and
algebraic, even when the time-nonstationary filters are synthesized
using nonlinear optics. Spectral shearing interferometry can also be
used without a delay between the two interfering pulses, in which
case the phase of the interferometric component can be retrieved by
scanning the relative phase of the interfering pulses.89

11.4 Conclusions
A phase-space representation of ultrashort optical pulses is useful for
three reasons. First, it provides a useful tool for visualizing pulsed
fields and enables an intuitive way to understand central concepts
such as chirp, group delay, and instantaneous frequency. Second, it
enables representation of pulse ensembles in terms of the lowest-
order correlation function of the ensemble. Third, it provides a simple
framework for understanding measurement methods that are based
on square-law detectors, which are universal in optics. In this chapter,
we set out the basic definitions required to define the chronocyclic
phase space, and its space-time extension, as well as developed a cat-
alog of modern measurement techniques in terms of phase space (or
correlation space) distributions. This catalog can be shown to be com-
plete and can be understood in terms of manipulation and sectioning
of the phase-space distributions by means of linear filters and photo-
detectors. This clarifies an important misconception about ultrafast
measurements—that they require a nonlinear response somewhere in
the apparatus. In fact, a linear filter with a nonstationary response is
sufficient. Indeed the minimum necessary conditions for obtaining a
signal that encodes sufficient information to invert the electric field
of the pulse must contain at least one time-stationary and one time-
nonstationary filter. Further, we have shown how all the currently
most popular methods can be incorporated into this framework. Be-
cause it is necessary to synthesize a nonstationary filter by means of
nonlinear optics when one is working with ultrashort pulses (i.e., with
durations below 100 fs), inverting the data from the measured signal
sometimes requires iterative algorithms, though in some cases it is
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possible to find direct inversions that are robust. In both cases, there
are well-established practical methods by which the ultrashort pulse
may be completely characterized.
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Canonical transform
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Maslov method, 260–261
Maslov phase, 248
Matched filter, 158–159
Matrix optics, 282
McCutchen theorem, 181, 188
Measurement function, 349, 367
Merit function, 138–151
Mode presentation, 82–84
Modulation transfer function
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