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Foreword

This book comprises a series of lectures given by the author at
the Zhou Pei-Yuan Center for Applied Mathematics at Tsinghua
University to introduce research in biology — specifically, protein
structure — to individuals with a background in other sciences that
also includes a knowledge in statistical physics. This is a timely pub-
lication, since the current perception is that biology and biophysics
will undergo rapid development through applications of the principles
of statistical physics, including statistical mechanics, kinetic theory,
and stochastic processes.

The chapters begin with a good thorough introduction to statis-
tical physics (Chapters 1-10). The presentation is somewhat tilted
towards biological applications in the second part of the book
(Chapters 11-16). Specific biophysical topics are then presented in
this style while the general mathematical /physical principles, such as
self-avoiding random walk and turbulence (Chapter 15), are further
developed.

The discussion of “life process” begins with Chapter 11, where the
basic topics of primary, secondary and tertiary structures are covered.
This discussion ends with Chapter 16, in which working hypotheses
are suggested for the basic principles that govern the formation and
interaction of the secondary and tertiary structures. The author has
chosen to avoid a more detailed discussion on empirical informa-
tion; instead, references are given to standard publications. Readers
who are interested in pursuing further in these directions are recom-
mended to study Mechanisms of Protein Folding edited by Roger H.
Pain (Oxford, 2000). Traditionally, the prediction of protein struc-
ture from its amino acid sequence has occupied the central position
in the study of protein structure. Recently, however, there is a shift
of emphasis towards the study of mechanisms. Readers interested
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in these general background information for better understanding of
the present book are recommended to consult Introduction to Pro-
tein Structure by Carl Branden and John Tooze (Garland, 1999).
Another strong point in this volume is the wide reproduction of key
figures from these sources.

Protein structure is a complex problem. As is true with all com-
plex issues, its study requires several different parallel approaches,
which usually complement one another. Thus, we would expect that,
in the long term, a better understanding of the mechanism of folding
would contribute to the development of better methods of prediction.
We look forward to the publication of a second edition of this volume
in a few years in which all these new developments will be found in
detail. Indeed, both of the two influential books cited above are in
the second edition. We hope that this book will also play a similar
influential role in the development of biophysics.

C.C. Lin

Zhou Pei-Yuan Center for Applied Mathematics,
Tsinghua University, Beijing

June 2004
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Introduction

There is now a rich store of information on protein structure in var-
ious protein data banks. There is consensus that protein folding is
driven mainly by the hydrophobic effect. What is lacking, however, is
an understanding of specific physical principles governing the folding
process. It is the purpose of these lectures to address this problem
from the point of view of statistical physics. For background, the
first part of these lectures provides a concise but relatively complete
review of classical statistical mechanics and kinetic theory. The sec-
ond part deals with the main topic.

It is an empirical fact that proteins of very different amino acid
sequences share the same folded structure, a circumstance referred
to as “convergent evolution.” It other words, different initial states
evolve towards the same dynamical equilibrium. Such a phenomenon
is common in dissipative stochastic processes, as noted by C.C. Lin."
Some examples are the establishment of homogeneous turbulence,
and the spiral structure of galaxies, which lead to the study of protein
folding as a dissipative stochastic processes, an approach developed
over the past year by the author in collaboration with Lin.

In our approach, we consider the energy balance that maintains
the folded state in a dynamical equilibrium. For a system with few
degrees of freedom, such as a Brownian particle, the balance between
energy input and dissipation is relatively simple, namely, they are
related through the fluctuation—dissipation theorem. In a system
with many length scales, as a protein molecule, the situation is
more complicated, and the input energy is dispersed among modes
with different length scales, before being dissipated. Thus, energy

1C.C. Lin (2003). On the evolution of applied mathematics, Acta Mech. Sin.
19 (2), 97-102.

xi



xii Introduction

flows through the system along many different possible paths. The
dynamical equilibrium is characterized by the most probable path.

e What is the source of the input energy?

The protein molecule folds in an aqueous solution, because of the
hydrophobic effect. It is “squeezed” into shape by a fluctuating net-
work of water molecules. If the water content is reduced, or if the
temperature is raised, the molecule would become a random coil.
The maintenance of the folded structure therefore requires constant
interaction between the protein molecule and the water net. Water
nets have vibrational frequencies of the order of 10 GHz. This lies
in the same range as those of the low vibrational modes of the pro-
tein molecule. Therefore, there is resonant transfer of energy from
the water network to the protein, in addition to the energy exchange
due to random impacts. When the temperature is sufficiently low,
the resonant transfer dominates over random energy exchange.

e How is the input energy dissipated?

The resonant energy transfer involves shape vibrations, and therefore
occurs at the largest length scales of the protein molecule. It is then
transferred to intermediate length scales through nonlinear couplings
of the vibrational modes, most of which are associated with internal
structures not exposed to the surface. There is thus little dissipa-
tion, until the energy is further dispersed down the ladder of length
scales, until it reaches the surface modes associated with loops, at
the smaller length scales of the molecule. Thus, there is energy cas-
cade, reminiscent of that in the Kolmogorov theory of fully developed
turbulence.

The energy cascade depends on the geometrical shape of the sys-
tem, and the cascade time changes during the folding process. We
conjecture that

The most probable folding path is that which minimizes the
cascade time.

This principle may not uniquely determine the folded structure, but
it would drive it towards a sort of “basin of attraction.” This would
provide a basis for convergent evolution, for the energy cascade blots
out memory of the initial configuration after a few steps. A simple
model in the Appendix illustrates this principle.
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We shall begin with introductions to statistical methods, and
basic facts concerning protein folding. The energy cascade will be
discussed in the last two chapters.

For references on statistical physics, the reader may consult the
following textbooks by the author:

K. Huang, Introduction to Statistical Physics (Taylor & Francis,
London, 2001).

K. Huang, Statistical Mechanics, 2nd ed. (John Wiley & Sons, New
York, 1987).
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Chapter 1

Entropy

1.1. Statistical Ensembles

The purpose of statistical methods is to calculate the probabilities
of occurrences of possible outcomes in a given process. We imagine
that the process is repeated a large number of times K. If a specific
outcome occurs p number of times, then its probability of occurrence
is defined as the limit of p/K, when K tends to infinity. In such
an experiment, the outcomes are typically distributed in the quali-
tative manner shown in Fig. 1.1, where the probability is peaked at
some average value, with a spread characterized by the width of the
distribution.

In statistical physics, our goal is to calculate the average values
of physical properties of a system, such as correlation functions. The
statistical approach is valid when fluctuations from average behav-
ior are small. For most physical systems encountered in daily life,

Average

.

< Width

Number of occurrences
1
|

Outcome

Fig. 1.1. Relative probability distribution in an experiment.
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fluctuations about average behavior are in fact small, due to the
large number of atoms involved. This accounts for the usefulness of
statistical methods in physics.

We calculate averages of physical quantities over a statistical
ensemble, which consists of states of the system with assigned prob-
abilities, chosen to best represent physical situations. By implement-
ing such methods, we are able to derive the law of thermodynamics,
and calculate thermodynamic properties, starting with an atomic
description of matter. Historically, our theories fall into the following
designations:

e Statistical mechanics, which deals with ensembles correspond-
ing to equilibrium conditions;

e Kinetic theory, which deals with time-dependent ensembles
that describe the approach to equilibrium.

Let us denote a possible state of a classical system by s. For
definiteness, think of a classical gas of N atoms, where the state of
each atom is specified by the set of momentum and position vectors
{p,r}. For the entire gas, s stand for all the momenta and positions
of all the N atoms, and the phase space is 6/N-dimensional. The
dynamical evolution is governed by the Hamiltonian H(s), and may
be represented by a trajectory in phase space, as illustrated symboli-
cally in Fig. 1.2. The trajectory never intersects itself, since the solu-
tion to the equations of motion is unique, given initial conditions.

Fig. 1.2.  Symbolic representation of a trajectory in phase space.
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It is exceedingly sensitive to initial conditions due to interactions.
Two points near each other will initially diverge from each other
exponentially in time, and the trajectory exhibits ergodic behavior:
Given sufficient time, it will come arbitrarily close to any accessible
point. After a short time, the trajectory becomes a spacing-filling
tangle, and we can consider this as a distribution of points. This dis-
tribution corresponds to a statistical ensemble, which will continue
to evolve towards an equilibrium ensemble.

There is a hierarchy of time scales, the shortest of which is set by
the collision time, the average time interval between two successive
atomic collisions, which is of the order of 107'%s under standard
conditions. Longer time scales are set by transport coefficients such
as viscosity. Thus, a gas with arbitrary initial condition is expected
to settle down to a state of local equilibrium in the order of 10710,
at which point a hydrodynamic description becomes valid. After a
longer time, depending on initial conditions, the gas finally approaches
a uniform equilibrium.

In the ensemble approach, we describe the distribution of points
in phase space by a density function p(s,t), which gives the relative
probability of finding the state s in the ensemble at time t. The
ensemble average of a physical quantity O(s) is then given by

_ 2:0(5)p(s:1)
(0) = S p(s.0) (1.1)

where the sum over states s means integration over continuous
variables. The equilibrium ensemble is characterized by a time-
independent density function peq(s) = lim¢—o p(s,t). Generally we
assume that peq(s) depends on s only through the Hamiltonian:

Peq(s) = p(H(s)).

1.2. Microcanonical Ensemble and Entropy

The simplest equilibrium ensemble is a collection of equally weighted
states, called the microcanonical ensemble. To be specific, consider an
isolated macroscopic system with conserved energy. We assume that
all states with the same energy E occur with equal probability. Other
parameters not explicitly mentioned, such as the number of particles
and volume, are considered fixed properties. The phase-space volume
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occupied by the ensemble is
I'(E) = Number of states with energy F (1.2)

This quantity is a measure of our uncertainty about the system, or
the perceived degree of randomness. We define the entropy at a given
energy as

S(E) = kplnT(E) (1.3)

where kp is Boltzmann’s constant, which specifies the unit of mea-

surement. Since the phase-space volume of two independent systems

is the product of the separate volumes, the entropy is additive.
The absolute temperature T is defined by

1 0S(E)

T OF (14)
For most systems, the number of states increases with energy, and
therefore T' > 0. For systems with energy spectrum bounded from
above, however, the temperature can be negative, as illustrated in
Fig. 1.3. In this case the temperature passes from +oo to —oco at the
point of maximum entropy. A negative absolute temperature does
not mean “colder than absolute zero,” but “hotter than infinity,” in
the sense that any system in contact with it will draw energy from
it. A negative temperature can in fact be realized experimentally in
a spin system.

T<0

Slope = 1/T

E

Fig. 1.3. Temperature is related to the rate of increase of the number of states
as energy increases.
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1.3. Thermodynamics

The energy difference between two equilibrium states is dE = T'dS.
Suppose the states are successive states of a system in a process in
which no mechanical work was performed. Then the energy increase
is due to heat absorption, by definition. Now we define the amount
of heat absorbed in any process as

dQ = TdS (1.5)

even when mechanical work was done. If the amount of work done
by the system is denoted be dW, we take the total change in energy
as

dE = TdS — dW (1.6)

Heat is a form of disordered energy, since its absorption corresponds
to an increase in entropy.

In classical thermodynamics, the quantities dW and d@) were
taken as concepts derived from experiments. The first law of ther-
modynamics asserts that dE = d@Q — dW is an exact differential,
while the second law of thermodynamics asserts that dS = dQ/T is
an exact differential. The point is that dW and d(@) themselves are
not exact differentials, but the combinations d@Q —dW and dQ/T are
exact.

In the statistical approach, dE and dS are exact differentials by
construction. The content of the thermodynamic laws, in this view,
is the introduction of the idea of heat.

1.4. Principle of Maximum Entropy

An alternate form of the second law of thermodynamics states that
the entropy of an isolated system never decreases. We can derive
this principle using the definition of entropy in the microcanonical
ensemble.

Consider a composite of two systems in contact with each other,
labeled 1 and 2 respectively. For simplicity, let the systems be of the
same type. The total energy E = Fj + Ejy is fixed, but the energies
of the component systems F; and Es can fluctuate. As illustrated in
Fig. 1.4, E; can have a value below E, and F» is then determined
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Energy spectrum

Fig. 1.4. The energy E: of a subsystem can range from the minimal energy to
E. For a macroscopic system, however, it hovers near the value that maximizes
its entropy.

as ' — F1. We have divided the energy spectrum into steps of level
spacing A, which denotes the resolution of energy measurements.
The total number of accessible states is given by

NE)= Y Ti(BE)T2(E-E) (1.7)
Eo<F1<E

where the sum extends over the possible values of E; in steps of A.
The total entropy is given by

S(E)=kpln Y Ti(E)T2(E - E) (1.8)
Eo<E1<E

For a macroscopic system, we will show that E7 hovers near one value
only — the value that maximizes its entropy.

Among the E//A terms in the sum, let the maximal term corre-
spond to By = E;. Since all terms are positive, the value of the sum
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lies between the largest term and E/A times the largest term:
k‘B ln[Fl(El)I‘g(E — El)]

: _ (1.9)
< S(E) < kpln[[1(E\)T2(E — E1)] + In(E/A)

In a macroscopic system of N particles, we expect S and F both to
be of order N. Therefore the last term on the right-hand side is of
order In N, and may be neglected when N — oo. Thus

S(E) = kgInT{(E)) + kgInTy(E — E1) + O(In N) (1.10)
Neglecting the last term, we have
S(E) = S1(Ey) + S2(E») (1.11)

The principle of maximum entropy emerges when we com-
pare (1.8) and (1.11). The former shows that the division of energy
among subsystems have a range of possibilities. The latter indicates
that, neglecting fluctuations, the energy is divided such as to maxi-
mize the entropy of the system.

As a corollary, we show that the condition for equilibrium between
the subsystems is that their temperatures be equal. Maximizing
In[['y(E1)To(E — E4)] with respect to Fy, we have

i[hlel(El) +InTy(E - E)] =0

oF
al 5 (1.12)
8—E‘1 lnrl(El) - O—EQ IDFQ(EQ) =0
This can be rewritten as
0 0
8—15151(E1) = 8—15232(E2) (1.13)
or
T =T (1.14)

1.5. Example: Defects in Solid

Consider a lattice with N sites, each occupied normally by one atom.
There are M possible interstitial locations where atoms can be mis-
placed, and it costs an energy A to misplace an atom, as illustrated
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in Fig. 1.5. Assume N, M — oo, and the number of displaced atoms
n is a small fraction of N. Calculate the thermodynamic properties
of this system. The given macroscopic parameters are N, M, n. The
energy is

E =nA (1.15)

The number of states in a microcanonical ensemble is

) = [n!(z\/'Ni n)!} [n!(]\yi n)!] (1.16)

The first factor is the number of ways to choose the n atoms to be
removed from N sites, and the second factor is the number of ways
to place the n atoms on the M interstitials. We can use Stirling’s
approximation for the factorials:

InN!'~=NInN - N (1.17)
Site Interstitial
@ T O & JY L 9

Misplaced atom

Normal atom

Fig. 1.5. Model of defects in a solid.
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The entropy of the system is then

S(E) B N S S
—B—lnF(E)—nlnn (N—-n)l ( N>
+nln%—(M—n)ln<l—% (1.18)

The temperature is given through
- LE?S(E) _olmIl(E) ic?lnf‘(E)

— = = = 1.1
kpT kg OF ) A 0On (1.19)
This leads to
A 0 N M
—=—hl(F)=Ih{— -1 Inf — -1 1.2
kT on (E) n(n >+n<n > (1:20)
Exponentiating both sides, we have
n? A
= e 1.21
war = (&) (121
The low- and high-temperature limits are
n ~VNMexp(—A/2kpT) (kT < A)
11 n 1 (kpT > A) (1.22)
n N M B

As a model for defects in a solid, we set N = M, and A = 1eV.
Then

% ~ exp(—A/2kpT) (1.23)

For T = 300K: n/N ~ 2 x 107Y.
For T = 1000 K: n/N ~ 2.5 x 1073.
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Chapter 2

Maxwell-Boltzmann Distribution

2.1. Classical Gas of Atoms

For the macroscopic behavior of a classical gas of atoms, we are
not interested in the precise coordinates {p,r} of each atom. All
we need to know is the number of atoms with a given {p,r}, to a cer-
tain accuracy. Accordingly, we group the values of {p,r} into cells of
size At corresponding to agiven energy tolerance. The cells are assumed
to be sufficiently large to contain a large number of atoms, and yet
small enough to be considered infinitesimal on a macroscopic scale.

Label the cells by A = 1,..., K. The positions and momenta
in cell A have unresolved values {r),p,}, and the corresponding
kinetic energy is €y = pi /2m. For a very dilute gas, we neglect the
interatomic interactions, and take the total energy E to be the sum
of kinetic energies over all the cells.

The number of atoms in cell A is called the occupation number
ny. A set of occupation numbers {ni,ng,...} is called a distribution.
Since there are N atoms with total energy F, we have the conditions

ZnA:N
A
Zn)\E)\ =F
A

The number of states corresponding to the distribution {ni,ns, ...} is
the number of permutations of N particles that interchange particles
in different cells:

(2.1)

N!

_ (2.2)
nilng! -+ ng!

11
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The phase-space volume of the microcanonical ensemble is obtained,
up to a multiplicative factor, by summing the above over all allowable
distributions, except that the factor N! is to be omitted:

D(E, V)= Q(ni,ny,...)
() (2.3)

1
Q(nl,ng, .. ) = —’n,l'ngl - nK'

where the sum }_r, 4 extends over all possible sets {ny} that satisfy

the constraints (2.1).

The factor N! was omitted according to a recipe called the “cor-
rect Boltzmann counting”, which is dictated by correspondence with
quantum mechanics. It has no effect on processes in which N is kept
constant, but is essential to avoid inconsistencies when NV is variable.
The recipe only requires that we omit a factor proportional to N'!
Consequently, the phase-space volume is determined only up to an
arbitrary constant factor.

2.2. The Most Probable Distribution

The entropy of the system is, up to an arbitrary additive constant,
S(E,V)=FkIn ) _ Q(n1,na,...) (2.4)
{nx}

This is expected to be of order N. By an argument used in the last
chapter, we only need to keep the largest term in the sum above:

S(E,V) :kan(ﬁl,ﬁg,)—FO(lnN) (25)

where the distribution {n,} maximizes 2, and is called the most
probable distribution. That is, §In 2 = 0 under the variation ny —
ny + 0ny, with the constraints

Zén)\ =0
A
Ze;ﬁn)\ =0

A

(2.6)

'From now on, we denote Boltzmann’s constant by k instead of kz, when no
confusion arises.
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These are taken into account by introducing Lagrange multipliers.
That is, we consider

5<1nQ+aZn)\—ﬁZe>\n>\>:0 (2.7)
A A

where each n) is to be varied independently, and « and (§ are fixed
parameters called Lagrange multipliers. We determine « and 3 after-
wards to satisfy (2.1).

Using the Stirling approximation, we have

an:—Zlnn)\!%—Zn)\lnn)\—l—Zn)\ (2.8)
A A A

hence

Z(lnn)\ —a+ fBey)dny =0 (2.9)
A

Since the dn) are arbitrary and independent, we must have Inny =
a — fey. Thus the most probable distribution is

iy = ae P (2.10)

This is called the Maxwell-Boltzmann distribution.

2.3. The Distribution Function

We now “zoom out” to a macroscopic view, in which the cell size
becomes very small. The cell label A becomes {p,r}, and A7 becomes
an infinitesimal volume element:

A—{p,}
d3p d3r
h3 (2.11)

d3p d>r
_
>, 3
A

AT —
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where h is a constant specifying the units, chosen to be Planck’s con-
stant for correspondence with quantum mechanics. The occupation
number becomes infinitesimal:

d3p d>r

s (2.12)

ny— f(pvr)

where f(p,r) is called the distribution function. The most probable
distribution corresponds to

f(p) = Ce~P%/2m (2.13)

which is independent of r in the absence of external potential. The
constraints (2.1) become
d3
[ 5 e -

/ dgp 2
2m

where V' is the volume of the system, and n is the particle density.
We need the integrals

/OO de 22—t — ﬁb—3/2
0 4

|
S

(2.14)

<|D1 <|2

- (2.15)
/ B 3\/Ebfs/2
0 8
The constraints are then satisfied with
a=n\?
3N (2.16)
/3 —
where
2mh?
Y L (2.17)
m
is a parameter of dimension length, with & = h/27. It follows

that 8 = (k:T)fl, and X is the thermal wavelength, the deBroglie
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4mp’ f(p)

Py P

Fig. 2.1. Maxwell-Boltzmann distribution of magnitude of momentum.

wavelength of a particle of energy k7. This completes the determi-
nation of the Maxwell-Boltzmann distribution function.
The physical interpretation of the distribution function is

f(p)d’p
= Probability of finding an atom with momentum p within d®p

(2.18)

The probability density 4mp? f (p) is qualitatively sketched in Fig. 2.1.
This gives the probability per unit volume of finding |p| between p
and p+ dp. The area under the curve is the density of the gas n. The
maximum of the curve corresponds to the “most probable momen-
tum” pg = mug, which gives the “most probable velocity”

Vo — — (219)

The root-mean-square average of the momentum p; = muwv; gives the
root-mean-square velocity

v =) — (2.20)
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2.4. Thermodynamic Properties

The entropy can be obtained from (2.5):
S=knQ{n;} =~k nylnny

A
kV
= e d3Pf(P) In f(p) (2.21)
This leads to
S 3 vV 3 E

up to an additive constant. Inverting this relation gives the internal
energy as a function of S and V:

E(S,V) N\*3 2 S
N = Cp <V) exXp §m (223)
where ¢y is a constant.
The absolute temperature is given by
OE(S,V) 2 FE
T=—F"-“"=—=— 2.24
oS 3k N ( )
Thus
E 3
— ==kT 2.2
N = 3" (2.25)

Comparison with (2.16) shows 3 = (kT')~!. This formula expresses
the equipartition of energy, namely, the thermal energy residing in
each translational degree of freedom is %k:T.

A formula for the pressure can be obtained from the first law

dE =TdS — PdV, by setting dS = 0:
p— _OE(S,V) _2E _ NET (2.26)
ov 3V Vv

which is the ideal gas law.



Chapter 3

Free Energy

3.1. Canonical Ensemble

We have used the microcanonical ensemble to describe an isolated
system. However, most systems encountered in the laboratory are
not isolated. What would be the ensemble appropriate for such
cases? The answer is found within the microcanonical ensemble, by
examining a small part of an isolated system. We focus our attention
on the small subsystem, and regard the rest of the system as a “heat
reservoir”, with which the subsystem exchanges energy.

Label the small system 1, and the heat reservoir 2, as illustrated
schematically in Fig. 3.1. Working in the microcanonical ensemble
for the whole system, we will find that system 1 is described by an
ensemble of fixed temperature instead of fixed energy, and this is
called the canonical ensemble.

System of interest

1]

7 Heat reservoir

Fig. 3.1. We focus our attention on the small subsystem 1. The rest of the system
acts as a heat reservoir with a fixed temperature.

17
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The total number of particles and total energy are sums of those
in the two systems:

N = Ny + N-
e (3.1)
E=F +E>
where
No >N
o (3.2)
Ey > Fy

Assuming that both systems are macroscopically large, we have
neglected interaction energies across the boundaries of the system.
We keep N7 and N, separately fixed, but allow F; and FEs to fluc-
tuate. In other words, the boundaries between the two subsystems
allow energy exchange, but not particle exchange.

We wish to find the phase-space density pi(s1) for system 1 in its
own phase space. This is proportional to the probability of finding
system 1 in state s1, regardless of the state of system 2. It is thus
proportional to the phase-space volume of system 2 in its own phase
space, at energy FE5. The proportionality constant being unimpor-
tant, we take

pi(s1) =T2(E2) =T2(E — Ev) (3.3)

Since E1 < FE, we shall expand I'y(E — F4) in powers of E; to lowest
order. It is convenient to expand kInI'y, which is the entropy of
system 2:

leFQ(E - El) == SQ(E - El)
955 (E")

E'=F
E
~ Sy (E) — ?1 (3.4)

where T is the temperature of system 2. This relation becomes exact
in the limit when system 2 becomes infinitely larger than system 1.
It then becomes a heat reservoir with given temperature 7. The
density function for system 1 is therefore

pi(s1) = )k FL/RT (3.5)
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The first factor is a constant, which can be dropped by redefining
the normalization. In the second factor, the energy of the system can
be replaced by the Hamiltonian:

Ey = Hi(s1) (3.6)

Since we shall no longer refer to system 2, subscripts are no longer
necessary, and will be omitted. Thus, the density function for a sys-
tem held at temperature T is

p(s) = e PHE) (3.7)

where H(s) is the Hamiltonian of the system, and g = 1/kT. This
defines the canonical ensemble.
It is useful to introduce the partition function:

QIT, V)= P (3.8)

where the sum extends over all states s of the system, each weighted
by the Boltzmann factor

efEnergy/kT (39)

Compared to the microcanonical ensemble, the constraint of fixed
energy has been relaxed, as illustrated schematically in Fig. 3.2.
However, the thermodynamic properties resulting from these two
ensembles are equivalent. This is because the energy in the canoni-
cal ensemble fluctuates about a mean value, and the fluctuations are
negligible for a macroscopic system, as we now show.

Heat reservoir T

|
Fixed Fixed N
Nand E
Microcanonical Canonical

Fig. 3.2. Schematic representations of microcanonical ensemble and canonical
ensemble.
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3.2. Energy Fluctuations

The mean energy U in the canonical ensemble is given by the ensem-
ble average of the Hamiltonian:

He BH 0 _

Differentiating with respect to 3, we have

ou Y HePH (3, He BH)?

9 et ey T T B

We can rewrite

oU _Uuar _ . ,0U

v _ v YL — 72
3 = 3T 95 o7 = —KT*Cy (3.12)

where Cy is the heat capacity at constant volume. Thus
(H?) — (H)? = kT?*Cy (3.13)
For macroscopic systems the left side is of order N2, while the right

side is of order N. Energy fluctuations therefore become negligible
when N — oo.

3.3. The Free Energy

We can examine energy fluctuation in more detail, by rewriting the
partition function (3.8) as an integral over energy. To do this, we
insert into the sum a factor of identity in the form

/dE(S(E —H(s) =1 (3.14)
Thus,

QT V)=Y_ / dES(E — H(s))e PH®) (3.15)
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Interchanging the order of integration and summation, we can write

Q= / dEe PET(E)

(3.16)
[(E)=) 6(H(s) - E)

The integrand is the product of the Boltzmann factor e #¥, which
is a decreasing function, with the number of states I'(E), which is
increasing. Thus it is peaked at some value of the energy. For macro-
scopic systems, the factors involved change rapidly with energy, mak-
ing the peak extremely sharp.

We note that T'(E) is the phase-space volume of a microcanonical
ensemble of energy E, and thus related to the entropy of the system
by S(F) = kInT'(E). Thus

Q= / dEe AIE-TS(E)] — / dEe=PAE) (3.17)

where
A(E)=E—-TS(FE) (3.18)

is the free energy at energy E. The term T'S represents the part of
the energy residing in random thermal motion. Thus, the free energy
represents the part of the energy available for performing work.

The integrand in (3.17) is peaked at £ = E where A(E) is at a
minimum:

0A
oF

_ [1 - T%] —0 (3.19)
E=FE OF E=E

or

In other words, E is the energy at which we have the thermodynamic
relation between entropy and temperature. The second derivative
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of A(E) gives!

0?A 028 1
0"~ omE ~ 70y (3.21)
Now expand A(E) about the minimum:
_ 1 _
A(E) = A(E) + 7Ty (E-E)*+--- (3.22)
Neglecting the higher-order terms, we have
Q = e PAE) /dE e~ (E—E)?/(2kT?Cv) (3.23)

Since Cy is of order N, the integrand is very sharply peaked at
E = E, as illustrated in Fig. 3.3. The width of the peak is \/kT2Cy,
which is the root-mean-square fluctuation obtained earlier by a dif-
ferent method. Since the peak is very sharp, we can perform the
integration over energy by extending the limits of integration from
—00 to 0o, and obtain

InQ = —BA(E) + %ln(kaTQCV) (3.24)

Integrand

_ " E
0 E
Fig. 3.3. When the partition function is expressed as an integral over energy,

the integrand is sharply peaked at a value corresponding to a minimum of the
free energy.

!The last equality comes from 8S/0E = —1/T, hence 8*S/0E? = T 20T /OE =
1/(T2Cv).
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In the thermodynamic limit, the first term is of order N, while the
second term is of order In IV, and can be neglected.
In summary, we have derived two thermodynamic results:

e In the canonical ensemble with given temperature 7' and vol-
ume V', thermodynamic functions can be obtained from the free
energy A(V,T), via the connection

ZefﬂH(s) — o BAWVT) (3.25)

e At fixed temperature and volume, thermodynamic equilibrium
corresponds to the state of minimum free energy.

3.4. Maxwell’s Relations

All the thermodynamic functions of a system can be derived from a
single function. We have seen that those of an isolated system can
be derived from the energy U(S, V). This must be expressed as a
function of S and V, for then we obtain all other properties though
use of the first law with S and V appearing as independent variables:

dU =TdS — PdV

oU oU (3.26)
T=55 P=—7

where the last two formulas are called Maxwell relations. For other
types of processes, we use different functions:

e Constant T, V: Use the free energy A(T,V)=U —TS:
dA = —SdT — PdV
3.27
0A 04 (3.27)
e Constant 7', P; Use the Gibbs potential G(P,T) = A+ PV:

dG = —SdT + VdP
aG aG (3.28)
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v A T
* A
\ /
U }x( G
7 N
s N,

S H P

Fig. 3.4. Each quantity at the center of a row or column is flanked by its natural
variables. The partial derivative with respect to one of the variables, with the
other held fixed, is arrived at by following the diagonal line originating from that
variable. Attach a minus sign if you go against the arrow.

e Constant P, S: Use the enthalpy H(P,S) =U + PV:

dH = TdS + VdP
oH OH (3.29)

=35 V=ap

All the Maxwell relations can be conveniently summarized as in
Fig. 3.4.

3.5. Example: Unwinding of DNA

The unwinding of a double-stranded DNA molecule is like unraveling
a zipper. The DNA has N links, each of which can be in one of two
states: a closed state with energy 0, and an open state with energy
A. A link can be opened only if all the links to its left are already
open, as illustrated in Fig. 3.5. Due to thermal fluctuations, links will
spontaneously open and close. What is the average number of open
links?

The possible states are labeled by the number of open links
n =0,1,2,...,N. The energy with n open links is E,, = nA. The

open closed

Fig. 3.5. Zipper model of DNA.
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partition function is

N _
1— e*ﬁ(NJrl)A
_ —BnA _

The average number of open links is

ZnN:() ne—fna ~ 10InQp
ST

B e—BA (N + 1)efﬁ(1\7+1)A
T 1—ePA ] B(N+DA

n =

At low temperatures A > 1, and there are few open links:
nae BB
At high temperatures SA < 1, almost all links are open:

nn
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Chapter 4

Chemical Potential

4.1. Changing the Particle Number

The chemical potential p is the energy required for adding one par-
ticle to the system. When the total number of particles N varies, the
first law of thermodynamics is generalized to

dU =TdS — PdV + udN (4.1)
or, equivalently,
dA = —-SdT — PdV + pdN (4.2)
Thus
p= VLN (43)
A related variable is the fugacity
2= et/FT (4.4)

Some useful thermodynamic relations follow from the property
AWV, T,N)= Na(v,T) (4.5)

where a(v,T) is the free energy per particle at specific volume
v = V/N. Thus

w=a(v,T)+ NaiNa(v, T) (4.6)
Since
da Oa Ov da

27
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where P is the pressure, we have
i=a+ Pv (4.8)

Differentiating this with respect to v, we obtain du/dv = vOP/0v,
which implies (0P/0v) (Ov/0u) = 1/v, or

oP 1
— - 4.
o v (4.9)

4.2. Grand Canonical Ensemble

We can remove the restriction to a fixed number of particles in the
canonical ensemble, by allowing the system to exchange particles
with a particle reservoir of given chemical potential. The number
of particles will then fluctuate about a mean value. The resulting
ensemble is called the grand canonical ensemble. It has the advan-
tage of being applicable to situations in which the particle number is
variable, which is almost always the case for a macroscopic system.
This is illustrated in Fig. 4.1. The grand partition function is defined
as a sum over the partition functions Qy for different particle num-
bers N, weighted by the Nth power of the fugacity:

Qz,V,T) =Y 2NQN(V,T) (4.10)

N=0

Heat reservoir T

I

Particle reservoir U

Fig. 4.1. In the grand canonical ensemble, the system can exchange particles
with a reservoir of given chemical potential. As in the canonical ensemble, it
exchanges energy with a reservoir of given temperature.
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In the macroscopic limit we expect

1
v InQ(2,V,T) e~ Finite limit (4.11)

The average number of particles is given by the ensemble average

N
N = % = z% In Q(z,V,T) (4.12)

The mean-square fluctuation can be obtained by differentiating again
with respect to z:

2’22’2 InQ(z,V,T) =

9z 0z S 2NQN > 2NQnN

_NT_A?

SNNQN [ZNZNQN] ’

In terms of the chemical potential we can write

0 ou 0 0
— =z———=kT— 4.1
“9: " "9, ou F ou (4.13)

Thus
o 52
N2 - N? = (kT)*——;

o2 InQ(z,V,T) (4.14)

Dividing both sides by V2, we have the density fluctuation

o T 2 92
n? —p?= %;—#2 In Q(z,V,T) (4.15)

Assuming (4.11), we see it vanishes like V! in the thermodynamic
limit. This makes the grand canonical ensemble equivalent to the
canonical ensemble.

Like the energy in the canonical ensemble, the particle number
here fixes itself in a macroscopic system, except in the neighborhood
of a phase transition, which we shall discuss later.



30 Chapter 4. Chemical Potential

4.3. Thermodynamics

Assuming that the number fluctuation is vanishingly small, we need
to keep only the largest term in the sum over N:

In Q(z,V,T) = I[N Qy(V,T)] = BNu+InQn(V,T) (4.16)

where 8 = 1/kT, and N denotes the average number of particles.
Taking InQny = —AN = —(Na, we have

PV

— (4.17)

InQ(=, V,) = -2 [ — af, 7)) =

where we have used (4.8) in the last step. Combining with (4.12)
leads to the parametric equations

P 1
k‘_T = V In Q(Z, V, T)
(4.18)

1 0
n= g InQ(z,V,T)

from which z should be eliminated to obtain the pressure as a func-
tion of density and temperature.
4.4. Critical Fluctuations

From (4.15) and (4.17), we have
(4.19)

Using (4.9), we have

P 01 1 1 1

D = — 4.2
ou?  dupwv v2 /v v30P/0v (4.20)

Introducing the isothermal compressibility

1/ 0v
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we obtain the fractional density fluctuation:

n2—na?  KTkr
n2 Vv

(4.22)

This vanishes when V' — oo, except when k7 — oo, and the latter
happens at the critical point of a phase transition. In reality, the
fluctuation does not diverge, for the atomic structure of matter acts
as a cutoff. But it becomes extremely large.

The mean-square fluctuation of density in an atomic system is
proportional to the scattering cross-section of light. This relation
has observable consequences, as in the blue of the sky. The large
fluctuation at the critical point leads to critical opalescence. In COaq,
the intensity of scattered light increases a million fold at its critical
point at T' = 304 K, P = 74 atm, and the normally transparent liquid
turns milky white.

4.5. Example: Ideal Gas

The partition function is

d3N d3N

p T
NN & ( om k:TZpZ> (4.23)

N 3N N
VT )T L (VAT gy

where the phase-space volume element is divided by N! in accordance
with correct Boltzmann counting, and

A = \/2rh2 JmkT (4.25)

In the canonical ensemble we obtain all thermodynamic information
from the free energy

QN (Tv V) =

AWV, T) = —kT nQn(T,V) = NkT [In(nX?) — 1] (4.26)
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where n = N/V, and we have used the Stirling approximation
InN!~ NIn N — N. We obtain
. . 0A 3
Chemical potential: p= | == = kT'In(nX’) (4.27)
ON Jvr
A 5
Entropy: S =— <g—T>V = Nk [5 — ln(n)\S)] (4.28)
A NEkT
Pressure: P — (g—v>T =5 (4.29)

In the grand canonical ensemble, the grand partition function is
given by

NvaY zV
N=0
Thus
Lo, v =2 (4.31)
JE— n z = — .
v T A3
The parametric equation of state is
Pz
kT A;’ (4.32)
n = F

from which we recover the pressure and chemical potential obtained
earlier.
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Phase Transitions

A phase transition is an abrupt change in thermodynamic behavior,
associated with a discontinuity in some thermodynamic function. At
constant pressure, it occurs at a transition temperature Ty, where the
Gibbs potential G(P,T) becomes singular. The function G is continu-
ous, but some derivative becomes discontinuous across the transition
point. When the first derivatives are discontinuous, we have a first-
order transition, and when the first derivative is continuous but the
second derivative is discontinuous, we have a second-order transition.
The discontinuity of a thermodynamic function is a mathematical
idealization in the macroscopic limit. For finite systems, no mat-
ter how large, thermodynamic functions are continuous with finite
derivatives.

5.1. First-Order Phase Transitions

The boiling and freezing of water are first-order transitions, in which
the volume V = (0G/JP)r and the entropy S = —(9G/0T) have
different values in the two phases. The phase boundaries are shown
in the PT diagram in Fig. 5.1. Because of the difference in entropy,
crossing the transition line at a fixed temperature necessitates the
absorption or liberation of latent heat:

LO = T()(SQ - 81) (51)

where s; is the specific entropy of the ith phase. The specific
entropy may mean entropy per particle, per mole, per unit mass or
per unit volume. The specific heat at constant pressure, as a function

33
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P
Line of
phase-coexistence
(Phase boundary)
Solid Critical
phase Liquid point
phase
Gas phase
Triple
point
0 T

Fig. 5.1. PT-diagram showing phase boundaries, or lines of phase-coexistence.

of temperature, contains a d-function at the transition point:
cp = f(P,T)+ Lod(T — Tp) (5.2)

where Ty and Ly may be functions of P.

Because of the difference in specific volume of the coexisting
phases, the isotherm in a PV-diagram exhibits a flat portion, as
shown in Fig. 5.2 for a gas-liquid transition. At the point 1 the sys-
tem is all liquid, at point 2 it is all gas, and in between, the system
is a mixture of liquid and gas in states 1 and 2, respectively. The PT
and PV diagrams are projections of the equation-of-state surface;
shown in Fig. 5.3.

5.2. Second-Order Phase Transitions

At the critical point of a gas—liquid transition, the two phases have
equal density and specific entropy, and the phase transition becomes
second order, associated with discontinuities in the second derivatives
of the Gibbs potential. That is, specific heats are singular at the
transition temperature T¢:

cp ~ colt|™® (5.3)
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I Gas-liquid )
All liguid mxtiie All gas
P ‘ —|—|

Liquid
phase

|
|
I Transition region
|
|

V] V2
Fig. 5.2.  An isotherm in the gas-liquid transition region.

P _ Critical
pojnt

T

Critical isotherm

Gas-liguid
transition

Liguid-solid Gas-solid
transition transition

Fig. 5.3. Equation of state surface.
where
p=2_tc (5.4)

with ~ meaning “singular part is proportional to.” The exponent «
is the same whether we approach the critical point from above or
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below; but the proportional constant ¢y can be different, and may be
zero on one side. Note that there is no §-function term because the
latent heat is zero.

Other examples of second-order transitions are the ferromagnetic
transition in magnetic materials, order—disorder transitions in metal-
lic alloys, superconductivity and superfluid transitions. As an exam-
ple, Fig. 5.4 shows the measured specific heat of liquid helium near
the superfluid transition point. It has an nearly logarithmic singu-
larity, with a ~ 0.

As a general rule, the phase at lower temperature is in a more
ordered state than the one at higher temperature. For example, in a
ferromagnet, atomic magnetic moments are aligned below the critical
temperature. The magnetization is as an “order parameter” in this
sense. At the transition point it grows with a power-law behavior

M ~ mo|t|® (5.5)

where my = 0 below the transition temperature and (3 is another
exponent like « in (5.3). This is illustrated in Fig. 5.5. The expo-
nents « and [ are part of a set of critical exponents characteristic of
the second-order phase transition. The power-law behaviors indicate
an absence of a length scale at the critical point. This is borne out by

n

Specific Heat (joule ¢! K1)

T(K)

Fig. 5.4. Experimental specific heat of liquid helium, showing a nearly loga-
rithmic peak at the superfluid transition point. (Data from R.W. Hill and O.V.
Lounasmaa (1957) Phil. Mag. 2, 143.)
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M

0 Te

Fig. 5.5. Magnetization in zero external field, as function of temperature.

the fact that the correlation length, which can be measured through
scattering of light or neutrons, diverges:

& ~ kolt|™" (5.6)

This means that detailed structures of the system are not relevant at
the critical point. Consequently, critical exponents have universality,
in that they are shared by systems that may be very different in
detailed structures.

5.3. Van der Waals Equation of State

A very simple and instructive model for the gas—liquid phase transi-
tion is the van der Waals model. The potential energy U (r) between
two atoms as a function of their separation r have the qualitative
form shown in Fig. 5.6. To take the intermolecular interaction into
account in a qualitative fashion, we separate the effects of the repul-
sive core and the attractive tail. The hard core excludes a certain

5/03)

r

Fig. 5.6. Interatomic potential.
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volume around a molecule, so the other molecules have less room to
move in. The effective volume is therefore smaller than the actual
volume:

Ve =V —b (5.7)

where V is the total volume of the system, and b is the total excluded
volume, of the order of b ~ N3 /6.

The pressure of the gas arises from molecules striking the wall of
the container. Compared with the case of the ideal gas, a molecule in
areal gas hits the wall with less kinetic energy, because it is being held
back by the attraction of neighboring molecules. The reduction in the
pressure is proportional to the number of pairs of interacting molecules
near the wall, and thus to the density squared. Accordingly we have

a
V2
where Pyinetic is the would-be pressure in the absence of attraction,

and a is a constant proportional to N2. Van der Waals makes the
assumption that, for 1 mole of gas,

Vefkainetic = RT (59)

P = Pyinetic — (5.8)

where R is the gas constant. This leads to the van der Waals equation
of state

(V- b)(P + %) — RT (5.10)

with isotherms as shown in Fig. 5.7. The pressure at fixed T is a
cubic polynomial in V:

(V —b)(PV2+4a) = RTV?

5.11
PV3 — (bP + RT)V? +aV — ba =0 (5.11)

There is a region in which the polynomial has three real roots. As we
increase T these roots move closer together, and merge at T' = T, the
critical point. For T' > T, one real root remains, while the other two
become a complex-conjugate pair. We can find the critical parameters
P., V., T, as follows. At the critical point, the equation of state must
be of the form

(V-V3=0

5.12
V3 —3V.V24+3V2V - V3 =0 (5:12)
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P

Vv

Fig. 5.7. Isotherms of the van der Waals equation of state.

Comparison with (5.11) yields

3V, = b+ JZC, 3{/3:%, sz% (5.13)
They can be solved to give
RL,= % p_ %y _3 (5.14)
27b 2702
Introducing the dimensional quantities
p:%, T:%, vz% (5.15)

we can rewrite the equation of state in the universal form

(V - %) <P + %) = gT (5.16)
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5.4. Maxwell Construction

The van der Waals isotherm is a monotonic function of V' for T' > T,.
Below T, however, there is a kink exhibiting negative compressibil-
ity. This is unphysical, and its origin can be traced to the implicit
assumption that the density is always uniform. As we shall see, in
thermal equilibrium the system undergoes a first-order phase transi-
tion, by breaking up into a mixture of phases of different densities.

According to the Maxwell relation P = —(9A/0V)r, the free
energy can obtained as the area under the isotherm:

A(V,T):—/ PV (5.17)
1sotherm

Let us carry out the integration graphically, as indicated in Fig. 5.8.
The volumes V7, V5 are defined by the double-tangent construction.

vV

Fig. 5.8. The Maxwell double-tangent construction for the free energy.
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At any point along the tangent, such as X, the free energy is a linear
combination of those at 1 and 2, and thus represents a mixture of two
phases. This nonuniform state has the same P and T as the uniform
state 3, but it has a lower free energy, as is obvious from the graphical
construction. Therefore the phase-separated state is the equilibrium
state. States 1 and 2 are defined by the conditions

88—{//11 - 88—‘2 (Equal pressure)
(5.18)
A — A _ 04 (Common tangent)
V2 - Vl B 8‘/1 i
Thus,
0A
—(Az = Ar) = — 55 (V2 = 1)
" 1 (5.19)
/ PdV = Pi(Va = V1)
|41

This means the areas A and B in Fig. 5.8 are equal.

Vv

P

Fig. 5.9. The Maxwell construction corresponds to omitting the loop in the
graph for the Gibbs potential G.
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The Maxwell construction can also be made via the Gibbs poten-
tial. From the Maxwell relation V' = (0G/0P)r, we have

G(P,T) = / VdP (5.20)
isotherm

The graphical integration is indicated in Fig. 5.9. In the graph for G,

the loop is to be omitted because it lies higher in G. The graph is

somewhat challenging to draw, because the two side arcs are concave

downwards, while the top arc is concave upwards.



Chapter 6

Kinetics of Phase Transitions

6.1. Nucleation and Spinodal Decomposition

Along the van der Waals isotherm shown in Fig. 6.1, the system sep-

arates into a mixture of two phases between the points A and B, and
follows the horizontal line. This describes the equilibrium situation.
How does the system behave if it was initially prepared on the orig-
inal isotherm? To answer this question, we examine an infinitesimal
arc on the van der Waals isotherm, and repeat the argument used for
the Maxwell construction, to see whether the free energy could be
lowered by phase separation on a local scale, (with only infinitesimal
change in the volume of the system). This is illustrated in Fig. 6.2.

Transition curve
r l’ {' /
1 -f
L
roy Spinodal curve
L] /
fo
L
i N Super-
4 1 \ saturation

! H . -lh...‘p\(/

' -

1 ” b
A T B
™ ' . '. b
L
Super- /"/\"-qp. . \ \
cooling
cavitation spinodal nucleation
decompaosition

Fig. 6.1. The regions of supersaturation and supercooling correspond to
metastable states, where phase transition is initiated via nucleation. Portions
of the isotherm with negative compressibility (—9P/0V < 0) represent unstable
states that undergo spinodal decomposition — spontaneous phase separation.
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Fig. 6.2. Portion A of the isotherm does not spontaneously separate into gas
and liquid, but do so via nucleation, because the free energy has a positive cur-
vature. Portion B separates spontaneously because the free energy has a negative
curvature.

e In regions with positive compressibility (9P/0V < 0), the free

energy has a positive curvature. Local phase separation does
not occur, and the system is metastable. It is only metastable,
because a global phase separation does lower the free energy,
as the Maxwell construction shows. The global phase separation
waits to be triggered by nucleation — the growth of a liquid
droplet (or a gas bubble) created through random fluctuation. A
computer simulation of nucleation in the freezing of water will
be presented later.

In regions with negative compressibility (0P/0V > 0), the free
energy has a negative curvature. Local separation will occur
spontaneously, and the system is unstable. This is called spinodal
decomposition. The envelop of the unstable region is called the
spinodal curve, as indicated in Fig. 6.1. The system will rapidly
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become a liquid—gas emulsion, and the liquid will gather into
larger pools to minimize surface tension, on a longer time scale.
The equation governing the decomposition, the Cahn—Hilliard
equation, will be derived in the next chapter.

6.2. The Freezing of Water

Water is important for human life. It makes up more than 95% of
a living cell, and it has a dominant presence in our environment.
Yet, the properties of water are not well understood, because of the
complexity of its molecular interactions. Water molecules have non-
spherical shape, and attract each other via the hydrogen bond, which
involves the sharing of a hydrogen atom by two oxygen atoms from
different molecules. The bond length is about 2 A, as compared to
the O—H separation of 0.9584 A in H,O.

Because of hydrogen bonding, water molecules can form stable
clusters of various sizes and shapes, some of which are shown in
Fig. 6.3. The binding energy of a cluster has many-body contribu-
tions, and is not simply proportional to the number of bonds. The
binding is strongest for pentagons and hexagons. The basic bond has
a binding energy of 0.2eV (5.5 kcal/mole), which is large compared
with 0.026 eV, the thermal energy at room temperature. However,
different water molecules compete for these bonds, so the bonding
network is constantly changing. The average lifetime of a bond is of

n=11 nh=20
E=104.9 E=187.17

Fig. 6.3. Water on a scale of 107 m. Clusters are formed by hydrogen bonding
(dotted lines). The calculated binding energy E is given in kcal/mole. [S. Mahesh-
wary, N. Patel and N. Sathyamurthy (2001) J. Phys. Chem. A105, 10525-10537.]
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Fig. 6.4. Water on a scale of 10% m.

the order of 107'2s. The intricacy of the molecular network gives
rise to amazing structures on a macroscopic scale, as illustrated in
Fig. 6.4.

The phase transitions of water are not amenable to analytical
studies. Computer studies are also difficult. But recently there has
been a successful molecular dynamics simulation of the freezing of
water, which throws light into the process of nucleation.! In this
simulation, the coordinates of 512 water molecules were calculated
at successive time steps, through numerical integrations of the New-
tonian equations of motion, using known intermolecular potentials.
The computation was carried out over a sufficiently large number of
steps to cover the phase transition region. That this is feasible attests
not only to the power of modern computers, but also the ingenuity
of the investigators.

M. Matsumoto, S. Saito and I. Ohmine (2002) Nature 416, 409-412.
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Fig. 6.5. Total potential energy as a function of time, after the system was
quenched from a high temperature to below freezing point.

208 ns 256 ns 290 ns 320 ns 500 ns

Fig. 6.6. Time development of the water network. Long-lasting bonds are shown
bright. The encircled region contains a nucleous of ice. The last image exhibits
the hexagonal crystalline structure of ice.

The calculations start by quenching the system from a high tem-
perature to 230 K, below the freezing point, and then follow the
dynamical time development. Figure 6.5 shows the total potential
energy as a function of time given in ns. The water remains in a
supercooled state for some time, waiting for a nucleus to be formed.
(In this run the time taken was about 250 ns.) Thereafter, the nucleus
rapidly grows until the entry system is frozen. The formation time
for a nucleus varies in different runs, exhibiting a Poisson distribu-
tion. This indicates that nucleation occurred at random. Figure 6.6
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600

Mo. of molecules with lasting bonds

0 " do0 200 300 400
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Fig. 6.7. Number of molecules with long-lasting (> 2ns) bonds, as a function of
time. Before reaching the plateau, the number fluctuation was 1/f noise.

shows the structure of the hydrogen bonds at different times after
quenching. Figure 6.7 shows the number of molecules with long-
lasting hydrogen bonds, as a function of time.



Chapter 7

The Order Parameter

7.1. Ginsburg—Landau Theory

As we have noted, in a phase transition, a system changes from a less
ordered state to a more ordered one, or vice versa. As an example of a
measure of order, we mentioned the magnetization of a ferromagnet,
which is nonzero only below the transition temperature, when the
atomic magnetic moments are aligned.

In the Ginsburg-Landau theory, the state of the system is
described by a local order parameter ¢(x), a scalar field modeled
after the magnetization density. The statistical properties of the sys-
tem is obtained through an ensemble of functions ¢(x), weighted by
the Boltzmann factor

e~ PE[] (7.1)

where the functional E[¢] has the form

2
Bl6l = [as| 5 IVo) + Wote) - hao(@)] (72

which is called the Landau free energy.! It contains a kinetic term
|Vo|?, a potential W (¢) and external field h(x). The constant ¢ is a
“stiffness coefficient.” The kinetic term imposes an energy cost for a

1 This could be called the “van der Waals free energy,” for it was first proposed in
J.D. van der Waals (1893) The thermodynamic theory of capillarity flow under
the hypothesis of continuous variation in density, Verhandelingen der Koninklijke
Nederlansche Akademie van Wetenchappen te Amsterdam 1, 1-56.

49
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gradient of the field ¢, and drives the system towards uniformity. In
general, x is a position in D dimensions.

The partition function in the presence of an external field h(z) is
given by

Q[h] = / Dge PP (7.3)
and the ensemble average of O is given by
B fD(bOe*ﬂE[‘z’]
(O) = "D gerEmr (7.4)

where [ D¢ denotes functional integration over all functional forms of
the field ¢. The implicit assumption is that all variables of the system
other than the order parameter have been integrated out, and E[¢]
embodies the results of these integrations. This is why F[¢] is called
a free energy. We thus expect the potential W to be dependent on
the temperature.

We expect the functional integrals to be dominated by the max-
imum values of their integrands, and the latter correspond to the ¢
that minimizes the Landau free energy. This ¢ gives the thermody-
namic properties of the system, and functions in its neighborhood
represent thermal fluctuations.

7.2. Second-Order Phase Transition
We consider h = 0. To model a second-order phase transition, choose

W(¢) = ro¢?® + ugd?

7.5

To = bt ( )
where b is a positive real constant, and
T-T,

t = 7.6

. (76)

The parameter ug > 0 is independent of ¢, but ry changes sign at
the transition point. The potential has the shape shown in Fig. 7.1.
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W(o)
ro>0 o <0
\ _¢D ¢IJ /
3 ¢ : !
1 0 L}
T>T, T<Te

Fig. 7.1. Modeling a second-order phase transition.

The field that minimizes the Landau free energy is spatially constant,
with the value

L (r>1T,) -
=14 WT —T,)/uo (T <T.) (@.7)

We choose one of the + signs. (This is known as spontaneous sym-
metry breaking.)

In an approximation known as mean-field theory, we neglect the
fluctuations about ¢g. Then the magnetization is M = V¢g, where V'
is the volume of the system. This gives a critical exponent 3 = 1/2.
On including the fluctuations, corrections are made to this value.

We see that discontinuous behavior, such as a phase transition,
can arise from continuous changes in continuous functions. This
insight is the basis of the so-called “catastrophe theory.”

7.3. First-Order Phase Transition

We can describe a first-order transition by assuming a form of W such
that, as the temperature varies, the function assumes a sequence of
shapes as shown in Fig. 7.2. We interpret ¢ as the particle density.
The two minima at ¢1, ¢o represent respectively the low-density and
high-density phases of the system. Just below the transition temper-
ature, ¢1 corresponds to the stable phase. At the transition point,
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Fig. 7.2. Modeling a first-order phase transition.

both ¢; and ¢o are stable, and just above the transition point ¢o
becomes the stable phase.

The present theory is phenomenological, and we can choose W
in any convenient way to suit our purpose. It is interesting to note,
however, that W can be chosen to correspond to the van der Waals
equation of state. For uniform ¢ in the absence of external field, the
Landau free energy is

E(¢) =VW(9) (7.8)

where the total volume V is a fixed parameter. The relevant variable
is the specific volume 1/¢. Thus, the pressure is given by the Maxwell
relation

_ _10E(9)
- Vo)

= ¢*W'(9) (7.9)

where W’ (¢) = 0W/0¢. Equating this to the van der Waals equation
of state leads to

, _ RT
WO = 5w —“

W(¢) = RT In

(7.10)

¢
1_b¢—a¢—|—c

where ¢ is a constant.
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Fig. 7.3. The upper panel shows X-ray microscopy images of the time devel-
opment of spinodal decomposition in a thin film of polymer blend [Courtesy
Professor H. Ade, NCSU]. The lower panel shows the phase separation of
a 2D binary alloy, from computer simulations of the Cahn—Hilliard equation
(www.lam.uni-bonn.de/grape/examples/cg/ch/html).

7.4. Cahn—Hilliard Equation

We now describe the dynamics of the system. The free energy per
particle at position r is proportional to the functional derivative
SE|[¢] 22 /
—— =—<"Vo+Wi(o 7.11
o (@) (7.11)

A nonuniformity in this quantity will induce a diffusion current pro-
portional to its gradient:

j=-V[-V%+W'(9)] (7.12)

where the proportionality constant has been absorbed into ¢ and W.
From the continuity equation

o¢
o +V-j (7.13)
we obtain the dynamical equation
0
(;f —V2[e2V2¢ — W(9)] (7.14)

which is known as the Cahn-Hilliard equation.?

2J.W. Cahn and J.E. Hilliard (1958) J. Chem. Phys. 28, 258-267. See C.P. Grant
(1993) Comm. Partial Diff. Equ. 18, 453-490, for a rigorous treatment of the 1D
equation.
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The Cahn—Hilliard equation is a nonlinear dissipative equation,
and its solution approaches a limiting form at large times. In this
respect, it is similar to the Navier—Stokes equation in hydrody-
namics. Computer simulations of this equation, with simple poly-
nomial potentials, have been successful in describing the dynamics
of spinodal decomposition. This is shown in Fig. 7.3 for a hypotheti-
cal substance. Experimental images from a real system are included
for comparison.



Chapter 8

Correlation Function

8.1. Correlation Length

The correlation function for a field ¢(z) is defined as
G(z,y) = (o(z) o(y)) — (¢(x))(o(y)) (8.1)

If the joint average (¢(x)¢(y)) is the same as the product of the indi-
vidual averages, then by definition there is no correlation between
the values of the field at  and y, and G(z,y) = 0. The correlation
function can be directly measured through X-ray or neutron scat-
tering.! Generally, G(x,%) decreases with increasing distance |z — y|
exponentially, for large distances:

Gz, y) ~ e lz=vl/t (8.2)

The characteristic length ¢ is called the correlation length. We shall
show that it diverges at the critical point.

8.2. Large-Distance Correlations

Let
9(z) = G(x,0) (83)

which is the relative probability of finding a particle at x, knowing
that there is one at the origin. We calculate this approximately by
finding the mean-field in the presence of a point source at the origin:

h(z) = hodP (z) (8.4)

1J. Als-Nielsen and D. McMorrow, Elements of X-Ray Physics (Wiley, NY, 2001).
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The Landau free energy is then

Blo] = [Pl V6 + 1 (0) + 00 ) — hoo()5

= / dD:c[ - %w% + rog® + ugd” — ho</>5D] (8.5)

where rg = bt, and the term —V?2¢ on the second line is arrived at
by performing a partial integration. In the mean-field approximation,
we take g(x) to the field that minimizes E[¢]. For a small variation
about the mean field

¢(z) = g(x) + 0¢(x) (8.6)

the first-order variation of E[¢] should vanish:
0=0E[¢] = / dPa[-eV2g + 2rg + duog® — hodP]0¢  (8.7)

Since ¢ is arbitrary, we obtain the equation
—eV2g(z) + 2rog(z) + duog® (z) = hodP () (8.8)

This is the nonlinear Schridinger equation with a unit source. It is
the simplest nonlinear generalization of the Schrodinger equation,
and occurs in such diverse fields as plasma physics, quantum optics,
superfluidity, and the theory of elementary particles.

We now neglect the nonlinear g3 term, and this should be a good
approximation when g(z) — 0, since then g3 < g2, unless 9 = 0.
Thus we have the linear equation

—eV2g(x) + 2rog(x) = hodP (z) (8.9)
Taking the Fourier transform of both sides, we obtain
(ek? + 2r0)g(k) = ho (8.10)

where g(k) is the Fourier transform of g(x):

g(k) = /dee_ik"”g(:v) (8.11)

The solution is
ho

gk) = ——— A2
g(k) €k2 + 27“0 (8 )
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and the inverse transform gives

de eik-ax

For large |z| for D > 2 we have the asymptotic behavior
g(z) ~ Colz|*Pe121/¢ (8.14)
where (Y is a constant, and
€= (2r0) V2 = (20)7V24712 (£ > 0) (8.15)

Thus, the correlation length diverges as t — 0, with critical exponent
1/2, in our approximation.

At precisely the critical point ¢t = 0, (8.14) gives, in our approxi-
mation, g o |z|>~P. But, as noted before, the linear approximation
may not be valid at ¢ = 0. Indeed, the correct critical behavior is

g(=) oc [x~ P

() o k-2 (8.16)

where 7 is a critical exponent. The dimension of space seems to have
changed from D to D+, which is called the “anomalous dimension.”

Actually, we need not have ¢t = 0 to have power-law behavior. As
long as |z| < &, the correlation length is effectively infinite, and we
will have (8.16).

8.3. Universality Classes

The correlation length ¢ measures the distance within which values
of the field are correlated. We cannot resolve spatial structures
smaller than £, because the field organizes itself into uniform blocks
of approximately that size. As we approach the critical point, &
increases, and we lose resolution. At the critical point, when &
diverges, we cannot see any details at all. Only global properties,
such as the dimension of space, or the number of degrees of freedom,
distinguish one system from another. That is why systems at the
critical point fall into universality classes, which share the same set
of critical exponents.
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8.4. Compactness Index

For a distribution of N points set up by a given rule, the characteristic
length R of the system depends on N, as N — oo, through a power
law

R =aN" (8.17)

where a is a length scale. The exponent v is an indication of the
compactness of the system. For example:

)

e For ordinary matter v = 1/3, since it “saturates,” i.e. the density
N/R3 is constant.
e For Brownian motion v = 1/2, since the average end-to-end dis-

tance for N steps is proportional to v N.

The Fourier transform of the correlation function at high wave
numbers has the behavior

gk) ~ k7Y (kR > 1) (8.18)

Thus the index v can be measured through scattering experiments.

8.5. Scaling Properties

The property (8.18) can be shown by considering the scaling prop-
erties of the correlation function.? The Landau free energy E[¢)] is of
dimension energy. Let us choose the constant € to be of dimension
energy. Then the field ¢(z) has dimension L~P/2, the correlation
function g(z) has dimension L=, and §(k) is dimensionless. Thus,
the latter can depend on k only through ka, and we can represent it
in the form

G(k) = F(ka, N) (8.19)

where I is a dimensionless function.

2P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press,
Ithaca, 1979).
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The relation R = a/N" is invariant under the scale transformation

a— a\’

8.20
v N (820)

Now, g(k) should scale like N, since it gives the scattering cross-
section from NN scatterers. Thus it should transform according to

- 1.
9(k) — 59(k)
Using (8.19), we have
1 N
F(ka,N) = XF(ka)\”, X) (8.21)

for arbitrary A. This is satisfied by the functional form
F(ka,N) = Nf(kaN") (8.22)
Thus
g(k) = Nf(kaN") = Nf(kR) (8.23)

The main result of the scaling argument is that §(k)/N depends on
N only through kR.
Now we make the following arguments:

e g(z) should be independent of N for |z| < R, because it should
depend on local properties only.
e Hence g(k) should be independent of N for kR > 1.

Assuming the power behavior f(kR) ~ (kR)? for large kR, we
have:

(k) ~ N(kR)P ~ N (kaN")P (8.24)

This can be independent of N only if vp + 1 = 0, hence p = —1/v,
and we obtain the result (8.18).
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Since the result depends on the small-distance behavior of g(z),
the correlation length is effectively infinite, and v is a critical expo-
nent. Comparison with (8.16) shows it is related to the anomalous
dimension through

= (8.25)



Chapter 9

Stochastic Processes

9.1. Brownian Motion

Macroscopic phenomena rarely give any hint of thermal fluctua-
tions. Indeed, the smallness of these fluctuations underlies the effec-
tiveness of thermodynamics. In Brownian motion, however, we can
actually see such fluctuations under a microscope. This is because
the micron-sized Brownian particles, suspended in solution, are suf-
ficiently small so impacts from solvent atoms do not completely
cancel out.

Figure 9.1 reproduces some of the pioneering observations made
by Perrin in 1909. The positions of a Brownian particle were made
at intervals of 30s, during which time it experiences the order of
10%! atomic impacts. Thus, in any observed interval, the final state
of a Brownian particle is statistically independent of the initial state,
because even an infinitesimal change in the initial condition would
lead to a finite difference in the final state. This extreme sensitivity
on the initial condition defines randomness. The fit of Perrin’s data to
the diffusion law, as shown in Fig. 9.1(c), verifies the random nature
of Brownian motion.

If we reduce the observation time interval by factors 10, 100,
1,000, ..., the observed motion would still look the same. There is
self-similarity under a change of time scale, and this will be so until
the observation time becomes the order of atomic time scale. Not only
is the atomic time scale a long way off, but to make observations on
that time scale would require a higher technology.

Einstein was the first to offer a theory of Brownian motion in
1905. His great insight was that each Brownian step must be regarded

61
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Fig. 9.1. (a) 2D projections of Brownian paths recorded by Perrin. (b) Spatial
distribtution of Brownian particles, with all initial positions translated to a com-
mon center. (c) Graph of the distance distribution. The solid curve is calculated
from the diffusion law.

as the resultant of a large number of random steps, and must there-
fore be treated in a statistical manner.

A wvariable that is the sum of a large number of random
contributions is now called a stochastic variable. The time devel-
opment of such a variable is called a stochastic process. It cannot be
described by a function of time in the ordinary sense, for it must
be represented by a sequence of probable values. Instead of a single
history, we have to consider an ensemble of histories. The simplest
stochastic process is the one-dimensional random walk.
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9.2. Random Walk

A 1D random walk refers to a particle on a linear discrete lattice. At
each time step, the particle has equal probability of moving forward
or backward. The total number of possibilities for making n steps
is 2", for there are two possibilities for each step. The probability
W (k,n) that, after making n steps, the particle finds itself k steps
from the starting point is thus given by

Wk, n) = No. of walks V;th the same k (9.1)

Let f and b denote respectively the number of forward and backward
steps made. Clearly

f+b=n
Fob—k (9.2)
Solving these, we obtain

n+k
I=73

ok (9.3)
b=

2

The number of walks with the same k is equal to the number of walks
with the same f. The latter can be chosen in (’}) ways. Thus

n\ 1 n! 1
v = (§)z - T o

27" nl
(555)! (51)!

The is called a binomial distribution in k.
For n > k > 1, we approximate the factorials using the Stirling
approximation, and expand the result to lowest order in k/n. The

Wk, n) = (9.5)
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result is!
2
W (k,n) ~ %e*’*/?" (9.6)

This is called a Gaussian distribution in k.

9.3. Diffusion

We now translate this result to a physical situation. The distance
covered is x = kxg, where x( is a unit of length. The time taken is
t = nty, where tg is the duration of a step in seconds. For large k, the
distance is the resultant of a large number of random steps, hence
a stochastic variable. The probability density of finding the particle
at x is given by the diffusion law

1
W(ZC, t) = \/ﬁe_$2/4Dt (97)

where D = x3/2t( is the diffusion constant. The normalization is

such that
/ dzW (z,t) =1
- (9.8)

W (x,t) P 0(x)
The mean-square average of the position is just the variance of the
distribution
o 2
(22) = oo dr x® W (x,t)
S _OOOO dxW (x,t)

= 2Dt (9.9)

1To obtain the prefactor in front of the exponential, one needs a more accurate
form of the Stirling approximation

Inn!~nlnn —n+Inv2rn

However, the prefactor can be obtained simply by noting the requirement
/ dkW(k,n) =1

since W (k,n) is a probability.
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which increases linearly with time. That is, after a time ¢, the prob-
able distance of the particle from the starting point is v/4Dt.

The probability distribution in 3D is just a product of the 1D
probability densities:

_ 1 —r2/4Dt

To project the 3D distribution onto the z—y plane, use cylindrical
coordinates p, 0, z, where p is the distance from the origin in the z—y
plane, and calculate

2 00 27T,0dp 00 ( -
11,74 __Anpep —(p*+22) /4Dt
pdp/o a0 /—oo a2 (r’ t) (47TE t)3/2 /—oo dze

d,
= %e*/ﬂ/wt (9.11)
The projected distribution is therefore

Plp,t) = ﬁe*/ﬂ/wt (9.12)

The theoretical curve in Fig. 9.1(c) is proportional to the above with

VADt = 7.16 p.

9.4. Central Limit Theorem

Our result shows that:

The sum of a large number of stochastic variables

obeys a Gaussian distribution. (9.13)

This is known as the central limit theorem. It explains why the “bell
curve” of the Gaussian distribution is so prevalent, from error anal-
ysis in laboratory experiments to age distribution in a population.

9.5. Diffusion Equation

We can derive the diffusion law from a different physical point of
view. Suppose that, at an initial time, there were N particles in a
medium, placed at the origin in 3D space at time ¢ = 0, so that the
density is N63(r). What is the density n(r,t) at time ¢?
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Since the number of particles is conserved, the current density
j(r,t) associated with a flow of the particles satisfies the continuity
equation

on
— +V-j=0 9.14
5 TV (9.14)
Now assume the phenomenological relation
j=-—-DVn (9.15)

which defines the diffusion coefficient D. Combining the two equa-
tions, we obtain the diffusion equation

on
Z — DV?2 1
5 Vn (9.16)

with normalization
/d37“ n(r,t) =N (9.17)
The solution is

N 2
_ —r2 /4Dt
n(r,t) = 7(47r t)?’/Qe (9.18)

Setting N = 1 reduces the above to the probability density W (r,t).
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Langevin Equation

10.1. The Equation

The motion of a Brownian particle may be described by the Langevin
equation:

dv

v =F(t) (10.1)

m
where v = dx/dt is the velocity and m is the mass of the particle.
The force acting on the particle by the environment is split into a
friction —yv, and a random force F'(t). Interactions between different
Brownian particles are neglected.

If F' were an external force that drags the particle in the medium,
then the terminal velocity would be given by v = F/~. Thus, v~ ! is
the mobility of the particle.

To treat F' as a random force, we must consider an ensemble of
systems, and define the random force through its ensemble averages:

(F(t)) =0

(10.2)
(F(t1)F(t2)) = cod(t1 — ta)

where ¢ is a constant, and the correlation time of the force is taken
to be zero. That is to say, the correlation time is assumed to be much
shorter than any other time scale in the problem. This is a reasonable
approximation, for the atomic collision time is of order 1072 s. The
random force so defined corresponds to “white noise.”

Because of the ensemble interpretation, the velocity v and posi-
tion z are stochastic variables. According to the central limit the-
orem, they should both have Gaussian distributions in the steady
state. The variances of these distributions are independently known,

67
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for the x distribution should obey the diffusion law, and the velocity
distribution should be Maxwell-Boltzmann. Thus we must have

(x?) = 2Dt

oy — T (10.3)

where D is the diffusion coefficient, ¢ the time, and 1" the absolute
temperature. It has been assumed that x =0 at ¢ = 0.

By calculating these variances via the Langevin equation, we can
relate the parameters cg and v to physical properties. We shall show

26—0 = kT
g T (10.4)
D

The first relation is known as the fluctuation—dissipation theorem,
and the second is Einstein’s relation.

10.2. Solution

To solve the Langevin equation, we take Fourier transforms:

v(t) = /OO d—we_wu(w)

oo 2T
(10.5)
o = [ e
) 2
The Fourier transform of the random force f(w) satisfies
fw)) =0
{(f(w) (10.6)
(fw)f (W) =2mcod(w + )
The transform of the Langevin equation reads
—imwu +yu = f (10.7)
Solving for u, we obtain
u(w) = L) (10.8)
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10.3. Fluctuation—Dissipation Theorem

We now calculate <v2>. The velocity correlation function in Fourier
space is

(u(w)u(e')) = T+ &) (10.9)

72+ m2w?
The inverse Fourier transform gives

*® dw ® dw' s 2mepd(w + W)
AN o —iwt o 't 0
(v(B(t')) = / 2m / 2 7+ mw?

—00 — 00

0 Ju e—w(t—t) © Jo e~ tw(t—t')
_ dw e7™0) e (1010
0 / 00 2T Y2 + mPw? CO/O T 2 + mlw? ( )

Taking ¢t = ¢/, we obtain

><d 1
m<1}2> = mcy R S— (10.11)
2 0 272+ miw? 4y

In thermal equilibrium this should be equal to k7'/2 by the equipar-
tition of energy. Hence

Co

— =kT 10.12

27 (10.12)
This is called the fluctuation—dissipation theorem. It relates two
aspects of the external force: random force strength ¢ (fluctuation),
and the damping constant v (dissipation).

10.4. Power Spectrum and Correlation

In (10.11) we can identify the integrand as the energy per unit fre-
quency or the power spectrum:

mcy

Using the fluctuation—dissipation theorem, we can write

2m~ykT
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In the limit of small dissipation we have

S(w) s 27kT §(w) (10.15)

Now we rewrite (10.10) in the form

* dw

(w(#)0(0)) = /0 et ) (10.16)

The inversion of this formula gives

S(w) = m /0 " dte= u(£)0(0)) (10.17)

The power spectrum and the velocity correlation functions are
Fourier transforms of each other. This statement is sometimes called
the “Wiener—Kintchine theorem.”

10.5. Causality

The calculation of <:1:2> is more intricate. In this section, we set m = 1
for simplicity.

Let the Fourier transform of z(t) be z(w). Since dz/dt = v, we
have —iwz(w) = u(w). Thus

_ i fw)
z(w) = p— (10.18)
and
[T dw flw)
2(t) = /_OO o tw’y —iw (10.19)

We have to deform the integration contour to circumvent the pole at
the origin. The requirement of causality dictates that we must detour
the path above the pole, as we now show.

Consider the correlation function

_ 2mepd(w + W)

(z(w)f(W)) = —(uw)f(W)) = o0 — ) (10.20)
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The inverse transform gives

© 9] / . ,
Py = [ B [* L e Brandlo d )

oo 2T oo 27 w(y —iw)
* dw ; ’ 1
=— e (L S — 10.21
of s (1021)

Again, this is ambiguous because of the pole at the origin. We must
treat the pole in such a manner as to make

(z()F(t')) =0 (t<t) (10.22)

which is required by causality, i.e. the position cannot respond to a
force applied in the future. This can be achieved by deforming the
path above w = 0. Equivalently, we displace the pole to the lower
half plane through the replacement

1 1

(e —0T) (10.23)

We then obtain, through contour integration,

D1 — e =07 (1> 1)
(z()F(t)) =17 (10.24)
0 (t<t)

Note that there is no correlation at equal time:

(x(t)F(t)) =0 (10.25)
The position coordinate is now well defined:
*©dw i f(w)
t) = —e W — 0F 10.26
z(t) /_0027r6 w 1€y — w (e—=07) ( )

We can now calculate the mean-square displacement, resulting in

co [ sin?(w
([x(t) — x(0)]*) = % /OO dw T 62()(:22? ) (10.27)

where we can safely set € = 0. In the limit ¢ — oo, we can use the
formula

S (W) ) (10.28)

w2 t—o0
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Thus

(2(t) — 2(0)]%) — ‘;L; (10.29)

Since the variance of the x distribution should be 2Dt, we have
co =2v°D (10.30)

Combined with the fluctuation—dissipation theorem ¢y /2y = kT, we
obtain

kT
= — 10.31
1= (10.31)
This is Einstein’s relation.
10.6. Energy Balance
The average kinetic energy is
K = 2(v?) (10.32)

Multiply both sides of the Langevin equation by v, we have

d 2
%% +y? = oF (10.33)
Taking the average yields
dK 2

where

(vF) = Rate of work done on the system

2y (10.35)

— K = Rate of energy dissipation
m

In the steady state, a dynamic equilibrium is maintained by balancing
energy input and dissipation: 2yK = m(vF).
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We can calculate (vF) as follows:

> d d g
/ w zwt/oo 2“; o't <u(w)

fw")

73

:/ dw _Wt/ dw it 2meo0 (w + W)

27r

= ZCO/ d_weflw(t tl);
oo 2m mw + 1y

De=vt=t) (¢ > ¢
_Jm

0 (t<t)
In the limit ¢ — t/, we take the average value
((t)F(t)) =

The energy balance (10.34) now reads
K _ < X

dt  2m m

€0

2m

with solution

_ G oyt
K_4»y(1 e )

¥ — imw

(10.36)

(10.37)

(10.38)

(10.39)

The asypmtotic value cy/47 reproduces the earlier result (10.11).
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Chapter 11

The Life Process

11.1. Life

According to the Chinese dictionary Shuo Wen (#3), compiled by
Xu Shen (#ff) in 101 AD, “life” connotes “advancement.” Its hiero-
glyphic character symbolizes blades of grass pushing out of the earth,
apparently driven by some incessant, irresistible force to maintain,
promulgate and improve a highly complex organization. The stage
on which the process plays out is the living cell, and the agents for
cellular functions are the protein molecules.
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76 Chapter 11. The Life Process

11.2. Cell Structure

Biological cells have sizes ranging from 10~7-10~% m, as shown in
Fig. 11.1 in comparison with other systems.

A cell in a living body is immersed in an aqueous environment,
with typical structure schematically shown in Fig. 11.2.

Human eye
e
Optical microscope
Electron microscope
nano micro mili centi
-10 -9 -8 -7 -6 5 -4 3 -2
10 10 10 10 10 10 10 10 10
T S S T Y Y 0 I (e
= | —
atoms cells fish eggs
I BN |
small macro- viruses bacteria
molecules molecules,
proteins

Fig. 11.1. Log scale of comparative dimensions.

Membrane

Cytoplasm

Fig. 11.2. Schematic structure of a cell.
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The stuff inside the cell membrane is called the cytoplasm, which
is 95% water. The remainder consists of, by weight,

50% protein,

15% carbohydrate,
15% nucleic acid,
10% lipid,

10% misc.

The acidity of a solution is measured by
pH = —log;,[H] (11.1)

where [H*] is the concentration of H* ions. For pure water [HT] =
1077, giving pH = 7. Below this value a solution is consider an acid,
and above this, a base. In a cell, the pH lies between 7.2-7.4.

Cells that have a nucleus are designated as eukaryotic, and this
includes most plant and animal cells. The nucleus, bound by its
own membrane wall, contains genetic molecules collectively known
as chromatin. A primitive type of cell without a nucleus is called
prokaryotic, an example of which is the single cell of the bacterium
E. Coli. In this case, the chromatin floats free in the cytoplasm.

Among the chromatin are chromosomes, which in the human cell
are very long and very thin threads, of diameter 4x 10~ m and length
1.8 m. Each chromosome consists of one DNA molecule, festooned at
regular intervals with bead-like proteins called histones. These help
to wind the chromosome, through several hierarchies of twisting, into
a tight knot that fits inside a nucleus of typical diameter 6 x 1075 m.
In Fig. 11.3 a chromosome is shown at different stages of unwinding.

The DNA molecule can be divided into sequences called genes;
one gene carries the code for making one type of protein. The central
dogma of biology states that protein synthesis proceeds according to
the sequence

DNA — RNA — Protein (11.2)

transcription translation
The transcription occurs inside the nucleus, where a specific gene
is copied to an RNA molecule, which is then transported through
pores in the nuclear membrane to the cytoplasm. There they are
translated into protein molecules at a ribosome, which is made up
of a special RNA and 80 proteins. There are hundreds of thousands
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Fig. 11.3. (a—e) Chromosome in different stages of unwinding. Lower left panel
is a schematic representation of the hierarchies of twisting, starting with the DNA
double helix in the lower right corner. [Adapted from MIT Biology Hyperbook,
http://www.botany.uwc.ac.za/mirrors/MIT-bio/bio/7001main.html]

of ribosomes floating freely in the cytoplasm, or attached to special
molecular structures.

A great variety of proteins is needed to perform different functions
in a living cell. Even in as simple a cell as . Coli there are thousands
of types of proteins.

11.3. Molecular Interactions
There are different types of interaction between atoms and molecules.
In biological studies, interaction energy is usually given in units of

kcal/mole, with the following equivalences:

1 kecal/mole = 0.0433eV = 503 K (11.3)
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For reference, thermal energy at room temperature (7' = 300 K) is
kT = 0.6 kcal/mole (11.4)

e The covalent bond involves the sharing of two electrons between
the interacting partners, with binding energy 50-150 kcal/mole.
This is regarded as unbreakable at room temperature. An exam-
ple is the water molecule HoO, where the hydrogen atoms are
bound to the oxygen via covalent bonds. The bonding leaves H
with an excess positive charge, and O with an excess negative
charge. This is indicated by the notation

HOt — 0%~ — Ht (11.5)

e The hydrogen bond involves sharing an H atom between the inter-
acting partners, with a binding energy of 5kcal/mol. The bond
has polarity, with H covalently bonded to one partner, and more
weakly attached to the other, through its excess charge. Exam-

ples are

—O% —H...0% —

— 0% —HT... N — (11.6)
where - -+ denotes a hydrogen bond.

e The donic bond arises from the exchange of one electron, with
binding energy 4-7 kcal/mol. An example is the bond Nat—Cl~,
which gives rise to the crystalline structure of salt.

e The van der Waals interaction arises from mutual electric polar-
ization, and is relatively weak, amounting to 0.2-0.5 kcal /mol.

In addition, charged molecules interact through the electrostatic
Coulomb potential screened by the surrounding solution.

11.4. Primary Protein Structure

A protein is a long-chain molecule consisting of a backbone made
up of amino acids connected sequentially via a peptide bond. For
this reason, the chain is called a polypeptide chain. The number of
units (amino acids) on the chain ranges from the order of 50 to 3000.
The amino acids are chosen from a list of 20, and the sequence of
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the amino acids is called the primary structure. A schematic dia-
gram of the polypeptide chain and the peptide bond are given in the
upper panels of Fig. 11.4. The amino acids are organized around a
central carbon atom labeled C,, and differ from one another only
in their side chains. Thus, we can picture the basic constitution of
the protein molecule as different side chains attached to a “back-
bone.” The repeating units along the main chain are referred to as
“residues.” This is illustrated in the lower panel of Fig. 11.4. The
chemical composition of the 20 side chains, grouped according to
their reaction to water (hydrophobic, hydrophilic, or in between) are
shown in Fig. 11.5.

Protein molecule

| |

Amino acid Peptide bond
H H H
| .
HiN—Cq — 00~ MNTCamC /' pirN = Cp—C00

Side chain {} “““ > H,0

Backbone

Fig. 11.4. Schematic representations of a protein molecule. [Partly adapted
from MIT Biology Hyperbook, http://www.botany.uwc.ac.za/mirrors/MIT-
bio/bio/7001main.html]
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Fig. 11.5. The side chains of the 20 possible amino acids in a protein molecule.

[Adapted from MIT Biology Hyperbook, http://www.botany.uwc.ac.za/mirrors/
MIT-bio/bio/7001main.html]

11.5. Secondary Protein Structure

Proteins are synthesized in vivo (in the cell) in molecular structures
called ribosomes, and released into the cytoplasm. In this aqueous
environment, it folds into its “native state,” whose geometrical shape
is important for biological functioning. Locally, the chain curls up
into a-helices, or braids into [-sheets. These are called secondary

structures.
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1.5 A rise
100° turn

_

SA

Fig. 11.6. An oa-helix in different schematic representations with increasing
detail. The black spheres represent the central carbon atom in an amino acid.
Dotted lines represent hydrogen bonds. [Adapted from MIT Biology Hyperbook,
http://www.botany.uwc.ac.za/mirrors/MIT-bio/bio/7001main.html]

An alpha helix is shown in Fig. 11.6 in various views. It is held
together by hydrogen bonds, with an N H group as donor, and C=0
group as acceptor. Forming such a helix allows the hydrophobic side
chains to be buried inside the folded molecule to avoid contact with
water, and at the same time saturate the hydrogen bonds within the
molecule, without reaching outside for a water molecule.

A [(3-sheet uses hydrogen bonding in a different manner, as illus-
trated in Fig. 11.7.

11.6. Tertiary Protein Structure

The helices and sheets are arranged in a three-dimensional architec-
ture called the tertiary structure. A striking difference between the
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Fig. 11.7. A p[-sheet, with one of the end groups is shown on the
right. Dots represent hydrogen bonds. [From MIT Biology Hyperbook,
http://www.botany.uwc.ac.za/mirrors/MIT-bio/bio/7001main.html]

.w

secondary structures and the tertiary structure is the high degree of
regularity in the former, and the irregular appearance of the latter.
Kendrew, who discovered the tertiary structure of myoglobin through
X-ray diffraction, was shocked at the irregularity, conditioned as he
was by the earlier discovery of the DNA double helix to expect some-
thing of similar “beauty.” His model of the molecule is shown in
Fig. 11.8. However, the formation of secondary and tertiary struc-
tures are not independent of each other.

Fig. 11.8. Kendrew’s model of myoglobin, in three different views. The sausage-
shaped tubes are low-resolution representations of « helices. [From C. Branden
and J. Tooze, Introduction to Protein Structure, 2nd ed. (Garland Publishing,
NY, 1998), Fig. 2.1



84 Chapter 11. The Life Process

11.7. Denatured State of Protein

Proteins may be extracted from cells and studied in vitro (in test
tube) under different temperatures and pH. At high temperatures
and low pH, the protein unfolds into a random coil. Upon restoring
the native environment, the molecule refolds into its native shape.
Depending on the protein, the folding time ranges from less than 1s
to 15 min.
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Self- Assembly

12.1. Hydrophobic Effect

The dominant driving force for protein folding is the hydrophobic
effect, which arises from the fact that water molecules seek to form
hydrogens bonds with each other, or with other polar molecules.
The presence of nonpolar molecules in water obstructs such bond
formation, and the water molecules try to push them out of the way.
The net effect is that the nonpolar molecules appear to avoid con-
tact water — they are “hydrophobic.” On the other hand, the polar
molecules can form hydrogen bonds, are said to be “hydrophilic.”
As we have mentioned, protein folding is driven by the hydrophobic
effect. A picture of a crambin protein molecule in water is shown in
Fig. 12.1, which is reconstructed from X-ray diffraction data.! The
water network “squeezes” the protein to maintain it in its native
state.

Protein folding is an example of “self-assembly,” in which com-
ponents of the system organize themselves in response to features in
the environment. Mutual interactions among the component play a
role in the structure, but they are not the driving forces. An example
is shown in Fig. 12.2.

Micelles and bilayers are examples of self-assembly driven
by the hydrophobic effect, but are much simpler than protein
molecules.

IM.M. Teeter, in Protein Folding: Deciphering the Second Half of the Genetic
Code, eds. L.M. Gierasch and J. King (Am. Asso. Adv. Sci. Pub. No.89-18S,
Washington, D.C., 1989) pp. 44-54.
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Fig. 12.1. Water molecules (small circles) adsorbed on the surface of a cram-
bin molecule. Lines between water molecules indicate hydrogen bonds. Arrow
indicates water accumulation at the position of an exposed hydrophobic residue.

Fig. 12.2. Self-assemblage of baracudas around a diver. (Photograph taken
in 1986 in Papua New Guinea by David Doubilet, photographer for National
Geographic Magazine.)
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12.2. Micelles and Bilayers

Lipids, in particular phospholipids, are chain molecules with a
hydrophilic “head,” and hydrophobic hydrocarbon “tail,” which may
have one or more strands. Examples are shown in Fig. 12.3. Single-
tail lipids are geometrically like cones, while those with more tails
are like cylinders.

When lipid molecules are placed in water at sufficiently high con-
centrations, they aggregate to form micelles or bilayers, in order to
hide the hydrophobic tails from water. The former is a sphere formed
from cone-like lipids, with heads on the surface and tails inside. The
latter is a two-layer structure made of cylinder-like lipids, with the
heads forming the outer surfaces, and the tails sandwiched between
the layers. These configurations are illustrated in Fig. 12.4. Bilayers
exhibit a solid-like phase in which the lipids arrange themselves in
a hexagonal lattice on the plane of the layer, and the tails of the
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Fig. 12.3. Phospholipids: (a) Cardiolipin, (b) Phophatidylinositol. [From P.L.
Yeagle, The Membranes of Cells, 2nd ed. (Academic Press, NY, 1993).]
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U

Lipids Micelle

Bilayer Vesicle

Fig. 12.4. Micelles and bilayers formed by lipids in water. Right panel shows a
vesicle — a sac with bilayer wall.

lipids are rigid. The thickness of the layer, typically 5nm, is about
twice the length of the lipid tails. At higher temperatures there is
a first-order phase transition into a liquid-like phase with greater
thickness, in which the lipids have considerable fluidity of motion in
the plane of the layer. Micelles can engulf water-insoluble molecules,
rendering the latter effectively water soluble. This is how soap works
to get rid of oil stains.

12.3. Cell Membrane

An actual cell membrane, called a plasma membrane, is a bilayer
embedded with other molecules that serve specific purposes.
For example, cholesterol molecules are embedded for mechanical
strength. There are protein molecules as well that act as receptors
for chemical signals, or create pores through which ions can pass.
These adjuncts are integral parts of the plasma membrane.

A protein is embedded in the membrane by threading partially
or completely through the bilayer, with its hydrophilic residues
sticking outside the membrane, and the hydrophobic ones between
the layers, as schematically illustrated in Fig. 12.5. The segment
inside generally contains 20-30 residues. In this manner, a protein
can fashion itself into a pore — a “barrel” with a molecular-sized
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Fig. 12.5. (Upper) Protein molecule threading through a bilayer. (Lower) Pro-
tein molecule forming a barrel-shape pore, with molecular-size hole.

opening, as illustrated in Fig. 12.5. Selected ions are allowed to
pass through these barrels, like ships passing through a dock of
a canal.

Molecules can also pass in and out of the cell membrane via pro-
cesses known as endocytosis (into cell) and ezocytosis (out of cell).
Endocytosis is depicted in the upper panel in Fig. 12.6, showing an
amoeba cell swallowing a food particle. The membrane deforms to
envelope the food particle, and the envelope then detaches from the
membrane and becomes part of the cytoplasm. The sensing of the
food particle, as well as the deformations of the membrane, are done
with the help of embedded proteins.

Exocytosis is illustrated in the lower panel in Fig. 12.6. A struc-
ture in the cell called the Golgi apparatus synthesizes vesicles, com-
plete with embedded proteins on its bilayer wall. These vesicles
migrate to the cell membrane, and fuse with it, and the content of
the vesicles (more proteins) are thereby secreted from the cell. This
process also serves the important function of renewing the plasma
membrane following endocytosis.
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Fig. 12.6. Processes showing the dynamic nature of the cell membrane. (Upper)
Endocytosis illustrated by amoeba engulfing a food particle. (Lower) Exocytosis
illustrated by secretion of proteins from a cell.

12.4. Kinetics of Self-Assembly

Micelles exhibit various phases, with interesting kinetics for their
formation. The system consists of lipids in solution, and there are
three parameters under the experimenter’s control:

e temperature,
e lipid concentration,
e nature of the solution.

At a fixed temperature for low concentrations, the lipids form a
“gas” of monomers. When the concentration is increased beyond a
critical value called the critical micellization concentration (CMC),
the lipid molecules assemble into micelles. The CMC can be varied by
varying the nature of the solution. Above the CMC, there is another
critical concentration at which the micelles form a crystal. The phase
diagram resembles the familiar PT diagram of real gases, as shown
in Fig. 12.7.

The nature of the solution also determines the shape of the
micelle. In an aqueous mixture of lecithin and bile salt, for exam-
ple, the micelle shape changes with dilution of the medium. At
high strengths, the micelle is spherical. Upon dilution, the spheres
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Fig. 12.7. Phase diagram of micelles.
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Fig. 12.8. Micelle—vesicle transition upon dilution of the medium.

elongate into rods, then to worm-like shapes, and finally goes
through a first-order phase transition to vesicles. Beyond this
point, the vesicles contract upon further dilution. This is illustrated

in Fig. 12.8.
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Fig. 12.9. Two-stage kinetics of the micelle-vesicle transition.

The micelle-visicle transition occurs via a two-step process,? with

a fast stage followed by a slow stage:
Micelles —— Intermediates — Vesicles
very fast slow

The transition was initiated by rapidly quenching the solution into
the vesicle phase. The intermediates are disk-like structures that were
formed within the dead time of the experiment, which was 25s. The
vesicle population grew with a time constant of 73 min. This is sum-
marized in Fig. 12.9. The fast—slow sequence of phase transitions has
also been observed in other experiments.3:4

12.5. Kinetic Arrest

The two-stage fast—slow kinetics is a common feature of first-order
phase transitions. This occurs in the long-lasting glass stage of a
liquid on its way to crystallization.

It occurs in the computer simulation of spinodal decomposition
discussed earlier. This example shows that local phase transitions
occur rapidly throughout the system, but the coalescence into global
phases takes a much longer time. It also suggests that the slowness
means more time is required for the system to search for paths in
phase space leading to the final state. The system may be said to be
in “kinetic arrest.”

28.U. Engelhaaf and P. Schurtenberger (1999) Phys. Rev. Lett. 82, 2804.
3H. Wang et al. (2003) Phys. Rev. E67, 060902(R).
*S.S. Funari and G. Rapp (1999) Proc. Natl. Acad. Sci. USA 96, 7756.
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This phenomenon was also observed in the crystallization of col-
loidal suspensions.” At a volume fraction 0.58 occupied by the col-
loidal particles, the system becomes a “glass” that takes months, even
years to crystallize.% Yet, in microgravity, crystallization occurred in
less than two weeks,” suggesting that the blockage in phase space
can be removed by trivial changes.

®V.J. Anderson and H.N.W. Lekkerker (2002) Nature 416, 811.

SP.N. Pusey and W. van Mergen (1986) Nature 320, 340.

"J. Zhu et al. (1977) Nature 387, 883. The experiment was performed in outer
space on the space shuttle Columbia, where gravity was reduced to 10~ g.
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Chapter 13

Kinetics of Protein Folding

13.1. The Statistical View

In experiments on protein molecules, one studies samples containing
a macroscopic number of molecules, either in solution or in crys-
talline form. The sample as a whole is of course a thermodynamic
system with well defined properties, but a single protein molecule is
too small to be considered a true thermodynamic system. Thermody-
namic functions, such as the free energy, when indirectly deduced, are
subject to large thermal fluctuations. Similarly, in the observation of
protein folding, we can only measure the fraction of molecules hav-
ing a certain average configuration, and there are large fluctuations
about the average configuration. Thus, when we speak of the prop-
erties of a protein molecule, they must be understood in a statistical
sense.

We should also bear in mind that properties we attribute to a sin-
gle protein molecule, such as its free energy, depend strongly on the
environment. It is the medium in which the molecule is immersed
that induces the molecule to fold; it is the medium that maintains
the native structure in a state of dynamic equilibrium. In addition
to interactions among the residues, the free energy should reflect
the hydrophobic interactions with the medium. It is expected to
have many local minima, and the dynamic equilibrium state may
be caught in one of these local minima, as determined by the kinetic
path of the folding process. It may also switch rapidly among a group
of neighboring minima.

There is a well-known “Levinthal paradox”, which might be
stated as follows: If a protein chain had to sample all possible con-
figurations to reach the free-energy minimum, a simple calculation

95
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shows that the time required would be orders of magnitude greater
than the age of the universe. How do actual protein molecules do it
in a matter of minutes, even seconds?

The premises of the paradox are that (a) the folding process seeks
a unique lowest minimum of the free energy; (b) any protein chain
must fold into the state of minimum free energy. There is no reason
to accept the assumptions. It is more likely that

e the free energy is not at an absolute, but at a constraint min-
imum, or a group of minima, as determined by the kinetics of
folding;

e not all protein chains will fold, and of those that do, not all
will fold in a short time. Only those protein chains that can
fold in a short time were chosen by evolution to function in
the living cell.

13.2. Denatured State

Protein molecules in a nonaqueous medium exists in an unfolded, or
denatured state, which can be taken to be a random coil. Evidence
for this is shown in Fig. 13.1.! The NMR? spectra of the protein
lysozyme are compared to that of a random chain with the same pri-
mary structure. That is, the relative orientations between successive
residues were chosen at random.

The polar residues in the protein chain seek to form hydrogen
bonds, either with molecules in the medium, or with each other.
Thus, a-helices and (-sheets will form momentarily, but they are not
permanent, since the bonds can rapidly switch from one molecule to
another. The lifetimes of such bonds are probably of the order of
1072, similar to those in the water network. These configurations
are therefore random fluctuations.

IT.L. James, Nuclear Magnetic Resonance in Biochemistry (Academic Press, NY,
1997) p. 239.

2NMR. (Nuclear Magnetic Resonance) measures the shift in the hyperfine struc-
ture of H atom due to a change in its chemical environment. This “chemical shift”
is given in terms of the frequency shift, or in ppm (parts per million).
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Fig. 13.1. NMR spectrum of hen lysozyme in D2O solution. (a) Simulation of
random coil; (b) denatured state; (c) native state. Vertical axis is intensity in
arbitrary units, horizontal axis is frequency shift in Hz.

13.3. Molten Globule

When the pH or temperature is changed, so that the medium
becomes effectively aqueous, the protein chain begins to fold. In
Fig. 13.2, the folding of lysozyme was followed in real time for about
1s, employing techniques that measure various properties of the
molecule.

e The permanent hydrogen bonds in a-helices and [(-sheets grow
with time constants of approximately 50 and 200 ms, respectively.

e The helical content, a measure of secondary structure, first over-
shoots, and then decays to the native value.
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Fig. 13.2. Development of various features of hen lysozyme, during the fold-
ing process. [Adapted from C.M. Dobson, A.E. Phillip and E.R. Sheena (1999)
Trends Biochem. Sci. 19, 31.]

e The decrease in the exposure of hydrophobic surface has roughly
the same time constant as for the decay of helical content. This
indicates that fluctuations in the secondary structure become
stabilized when hydrophobic residues become buried.

The folding time for the protein DHFR is much longer. Figure 13.3
displays the NMR spectrum as a function of time. We can follow the
decay of the initial random coil, and the growth of native structures.
Native features become recognizable after 20s, but the completion
of the folding process takes the order of 10 minutes.

These measurements do not reveal what happens at very short
times. To find out whether there are stable structures near the
native state, we turn to specific heat measurements. The specific
heat capacity of canine milk lysozyme are shown as functions of
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Fig. 13.3. Time evolution of the NMR spectrum of the protein DHFR (dihy-
drofolate reductase). [From S.D. Hoeltzli and C. Frieden (1998) Biochemistry
37, 387.]

temperature in Fig. 13.4. What is actually plotted is the excess heat
capacity of the solution when the proteins are added. The peak at a
higher temperature marks a transition from the denatured state to
an intermediate state known as the molten globule, and the second
peak marks the transition to the native state. If the protein molecule
had been infinitely large, we might imagine that these peaks would
become delta functions, signifying first-order phase transitions. As
they stand, we may associate them with pseudo phase transitions,
and estimate the latent heats from the areas under the peaks. The
results are given in the table below:

Denatured — Molten globule Molten globule — Native

Latent 100 kcal /mole 120 kcal /mole
heat
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Fig. 13.4. Excess specific heat of canine milk lysozyme. [Redrawn from
T. Koshiba et al. (1999) Protein Eng. 12, 429.]

These experiments indicate that protein folding goes through two
stages: a fast and a slow one. The fast stage lasts the order of
1073 s, during which the denatured state becomes a molten globule.
In the next stage, the molten globule slowly evolves into the native
state:

Denatured state fast Molten globule slow Native state

The durations of the slow stage can be estimated from Fig. 13.2
for lysozome, and Fig. 13.3 for DHFR, and are summarized in the
following table:

Protein Residue number Fold time (s)

Lysozyme 164 1
DHFR 384 250




18.5. Convergent Evolution 101

Conformational entropy
Unfolded
structure

funnel I

Molten
globule
PEELLI AL

stage Il

Native
structure

-4+——— Effective energy ———»

Fig. 13.5. The folding funnel. Horizontal dimension represents entropy, and
vertical dimension represents energy.

13.4. Folding Funnel

The two stages in folding may be indicated symbolically in a “folding
funnel”, as shown in Fig. 13.5. During the first stage, the protein
rapidly shrinks from a random coil to a molten globule, losing entropy
with relatively small change in the energy. In the second stage, the
molten globule slowly transforms into the native state, with little
change in entropy, but large loss of energy.

The profile of the folding funnel is a plot of the enthalpy H(P,.S)
as function of S at constant P. The enthalpy is given by the thermo-
dynamic formula

H = /cp dT (13.1)

We can perform the integration graphically from Fig. 13.4, and then
rescale the T' axis to convert it to S. The result is shown in Fig. 13.6,
where the rescaling from T to S could be done only qualitatively.

13.5. Convergent Evolution

It is a remarkable empirical fact that many protein molecules share
similar native folds. More specifically, proteins with sequence simi-
larity below the level of statistical significance (as low as 8-9%) have
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Fig. 13.6. Plotting the enthalpy as a function of S at fixed P gives a quantitative
profile of the folding funnel.

Fig. 13.7. The globin fold: (a) with all atoms displayed; (b) with side-chains
omitted, and the eight a-helices shown as tubes; (c) skeleton of the tertiary struc-
ture. [Adapted from C. Branden and J. Tooze, Introduction to Protein Structure,
2nd ed. (Garland Publishing, NY, 1991), Fig. 2.9.]
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Glu 6

Fig. 13.8. The hemoglobin protein contains subgroups of globin folds.
(C. Branden and J. Tooze, op. cit., Fig. 3.13.)

similar three-dimensional structures and functions.? This property is
known as “convergent evolution.” This must mean that the molten
globule state already has a degree of universality.

An example is the globin fold, as illustrated in Fig. 13.7, which is
found in a large group of proteins, including myoglobin illustrated in
Fig. 12.8. The larger protein hemoglobin is made up of four globin
folds, as shown in Fig. 13.8.

3N.V. Dokholyan, B. Shakhnovich and E.I. Shakhnovich (2002) Proc. Natl. Acad.
Sci. USA 99, 14132.
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Chapter 14

Power Laws in Protein Folding

14.1. The Universal Range

For length scales in which the correlation function exhibits power-
law behavior, the properties of a protein molecule should exhibit
universal behavior, for the correlation length is effectively infinite,
and details of the primary structure are not relevant. We call this
the “universal range.”

Consider the correlation function g(r) of a protein, which gives
the probability of finding a residue at r, when it is known that one is
at the origin. We envision the limit in which the number of residues
and the average radius tend to infinity. Let 1 be the scale of atomic
distances in the molecule, and £ the correlation length.

e On small length scales, g(r) has fluctuations over distances of
order 1. We shall smooth out such fluctuations through spatial
averaging. In experiments, the averaging is done through the
finite resolution of the measuring instruments.

e On large length scales, g(r) — 0 for r > &.

e The wuniversal range lies in between, where g(r) obeys a
power law:

nKrKé

14.1
> k> ! (14.1)

Since r < &, we are in the critical region where detailed struc-
tures of the system become irrelevant.

These properties are illustrated in sketches of g(r) and its Fourier
transform g(k) in Fig. 14.1.

105
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Fig. 14.1. Universal range, where the correlation function has power-law
behavior.

14.2. Collapse and Annealing

The native protein state is as compact as ordinary matter, with a
characteristic density. This corresponds to a compactness index v =
1/3, as shown in the plot of empirical data! in Fig. 14.2. Thus, in
the universal range, the native state exhibits the power law

G(k) ~ k=3 (Native state) (14.2)

which has been directly verified in scattering experiments, as shown
in Fig. 14.3.2

Slope =035+ 003

Number of residues

Fig. 14.2. Log-log plot of protein radius R versus number of residues N, for 43
proteins, showing R ~ N3,

'T.G. Dewey (1993) J. Chem. Phys. 98, 2250.

2The experiment was reported in G. Damaschun et al. (1986) Int. J. Biol. Macro-
mol. 13, 226. The data was taken from O. B. Pittsyn, The molten globule state,
in Protein Folding, ed. T. E. Creighton (Freeman, NY, 1992).
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Fig. 14.3. Fourier transform of correlation function for a range of high wave
numbers, in the native state and the molten globule state of a protein. The region
of the —3 power law corresponds to the “universal range” described in the text.

Data for the molten globule are included in the same plot, and
they show the same behavior:

G(k) ~ k3 (Molten globule) (14.3)

This shows that the molten globule is as compact as the native state.
In the denatured state, on the other hand, the protein is a random
coil. In the universal range, where local structures are irrelevant,
the structure is similar to a random polymer chain, for which the
compactness index is well approximated by v = 3/5, and thus

G(k) ~ k753 (Denatured state) (14.4)

This result can be derived in a model based on the self-avoiding
walk (SAW), which we shall describe later, and is verified by X-ray
scattering from polymers.? It has the same exponent as Kolmogorov’s
famous 5/3 law in turbulence, which places the denatured protein

3K. Okano, E. Wada and H. Hiramatsu (1974) Rep. Prog. Polym. Sci. Japan
17, 145.



108 Chapter 14. Power Laws in Protein Folding
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Fig. 14.4. Fast collapse and slow annealing in protein folding. The compactness
index v changes from 3/5 to 1/3, the latter being the same as that for ordinary
matter.

and turbulence in the same universality class. We shall expand on

this relation later.
In summary, the folding process consists of a fast collapse, followed

by slow annealing, as illustrated in Fig. 14.4.

14.3. Self-Avoiding Walk (SAW)

Flory* models a random polymer chain by self-avoiding walk (SAW),
which is random walk that is prohibited from revisiting an old posi-
tion. It simulates the condition that two different monomers can-
not occupy the same space. Other interactions among monomers are
ignored.

It is easy to generate a sequence of SAW steps on a computer.
A straightforward algorithm is to first generate a random step, and
accept it if an old site is not revisited, and generate another step
otherwise. One repeats the process until N acceptable steps are
obtained, and this represents one state of a polymer chain. By gener-
ating a sufficient number of chains independently, one has an ensem-
ble of polymer chains, in which statistical averages can be calculated.
It is harder to simulate the dynamics — the Brownian motion of the

4P. Flory, Principles of Polymer Chemistry (Cornell University Press, London,
1953).
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chain. The most successful algorithm appears to be the “pivoting
method,” in which one rotates part of a chain about an arbitrarily
chosen monomer, and accept the outcome only if it is self-avoiding.?
A SAW of 1000 steps on a cubic lattice, is shown in Fig. 14.5 in
stereoscopic views.

The compactness index can be calculated approximately, using an
intuitive argument due to Flory. Consider a chain of N monomers,
with end-to-end distance R in D-dimensional space, in the limit N —
00, R — 00. The monomer density is given by

N

n
The energy of the chain should contain a repulsive term due to self-
avoidance, with energy density e proportional to n?, the number of
pairs per unit volume:

e ~ kTwvon? (14.6)

where vg is the excluded volume, and k7' is the thermal energy. The
total repulsive energy is

k‘TU()NZ
~ b
The repulsive energy tends to expand the volume at small R. As R
increases, however, the collision between two monomers becomes
increasingly rare, and the sequence of steps should approach a simple
random walk. This effect is taken into account by postulating a lin-

ear restoring force, corresponding to an “elastic energy” proportional
to R?:

Erepulsive ~ eRP (14.7)

kT R2
Na?

R

2
Eelastic ~ kBT<_> ~

] (14.8)

where Ry = aV/ N is the characteristic length in simple random walk.
The total energy is of the form

N2 2
bl a > (14.9)

E= ErePUISiVe + Eelastic ~ kT(W + N—(12

®B. Li, N. Madras and A.D. Sokal (1995) J. Stat. Phys. 80, 661.
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Fig. 14.5. Stereoscopic views of SAW on a cubic lattice. Upper and lower panels
represent front and side views. (Computer data courtesy Prof. Thomas Kennedy,
Department of Mathematics, University of Arizona.)
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Minimizing this with respect to R, we obtain the equilibrium radius

Req ~ N3/(P+2) (14.10)
The compactness index is therefore
3
= — 14.11
" D12 (14.11)

For D = 3 this gives v = 3/5 = 0.6, which is remarkably close to the
best value from computer simulations®

v = 0.5877 =+ 0.0006 (14.12)

5B. Li, N. Madras and A.D. Sokal, op. cit.
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Chapter 15

Self-Avoiding Walk and Turbulence

15.1. Kolmogorov’s Law

The turbulent flow of a fluid is a stochastic process with dissipation.
In the steady state known as fully developed homogeneous turbu-
lence, the energy spectrum E(k) obeys Kolmogorov’s law in a range
as of wave numbers k called the “inertial range”:

E(k) ~ €35/ (15.1)

where € is the rate of energy dissipation. The inertial range is what
we call the universal range:

> k> et (15.2)

where 7 is a small length scale at which dissipation takes place, and
£ is a correlation length.

The Kolmogorov law is based on general properties of the Navier—
Stokes equation of hydrodynamics, physical assumptions and dimen-
sional analysis.! It is universal, in the sense that it is independent
of initial conditions, and independent of the detailed nature of the
system. Experimental verification in different systems are shown in
Figs. 15.1 and 15.2.

15.2. Vortex Model

A turbulent fluid can be modeled by a tangle of vortex lines. A
vortex either terminates on an external wall or ends on itself to form

1C.C. Lin and W.H. Reid, Turbulent flow, theoretical aspects in Hanbuch der
Physik, Fluid Dynamics {II}, eds. S. Flugge and C. Truesdell (Springer, Berlin,
1963). Reproduced in Selected Papers of C.C. Lin, Vol. 1, Fluid Mechanics, eds.
D. Benny, F.H. Shu and C. Yuan (World Scientific, Singapore, 1987) pp. 175-260.
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Fig. 15.2. Energy spectrum (in arbitrary units), in tidal channel flow, show-
ing details of transition from universal to dissipation range. [Adapted from H.L.
Grant, R.W. Stewart and A. Millet (1962) J. Fluid Mech. 12, 241.]

aring. Kelvin’s theorem in hydrodynamics states that, in the absence
of viscosity, vortex lines do not cross. Thus the motion of a vortex
line can be modeled by SAW. We are interested in situations with
a high local density of lines, and it matters little whether we have
a single long vortex line or a dense collection of separate lines. This
immediately establishes an equivalence between turbulence and the
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polymer chain, and the exponent —5/3 in (14.1). With specialization,
the model also accounts for the exponent —2/3.

Our model must break down at some small distance n from the
center, which defines a core radius. We shall regard the vortex line
as a tube of radius 7, with an intrinsic circulation

Ko = ]{ v - ds (15.3)
C

where v is the velocity field, and C' is a circle of radius 1 about the
vortex line. We assume that energy dissipation occurs only at the
vortex core. On length scales much larger than 7, the vortex lines
become indistinct. The number of vortex lines threading through a
closed loop will be taken as the circulation around that loop divided
by ko.

The correlation function g(r) is now defined as the vortex line
density at position 7. According to classical hydrodynamics, a vortex
line has an energy per unit length pxZ, where p is a mass density.
Thus, the energy density at r is given by

W (r) = prgg(r) (15.4)
The Fourier transform gives the energy spectrum:
E(k) = prjg(k) (15.5)

From our discussion of SAW earlier, j(k) ~ k=%/3 in the universal
range. Therefore

BE(k) ~ pr2k™/3 (15.6)

This is purely an expression of the correlation properties of vortex
lines.

We can express kg in terms of physical properties of the system.
The rate of energy dissipation in hydrodynamics is given by

€~ VK3 (15.7)

where v is the viscosity. We can eliminate v in terms of the Reynolds
number Ry = Au/v, where A is a length scale, and u a typical velocity
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at that scale. With the assumption that energy dissipation occurs
only at the vortex core, we take Au = kg, and obtain

3
Ko
~ — 15.8
™ Ry (15.8)
or
Ko ~ (Roe)'/? (15.9)

Substituting this result into (15.6), and dropping constant factors,
we obtain Kolmogorov’s law

BE(k) ~ /3553 (15.10)

The exponent 5/3 is universal, because it is a property of SAW. On
the other hand, the exponent 2/3 is not universal, for it depends on
physical properties of hydrodynamic vortices.

15.3. Quantum Turbulence

The vortex model also applies to superfluid turbulence in a quan-
tum fluid. The difference from the classical case is that vorticity is
quantized, and we must take

Ko = — (15.11)
m

where h is Planck’s constant, and m is the mass of a particle in the
fluid.? Kelvin’s theorem no longer holds, and vortex lines do cross.
When that happens, however, they immediately reconnect to form
new vortex lines.? Thus, effectively, the lines do not cross, and we can
use the SAW model. This places superfluid turbulence in the same
universality class as classical turbulence and the polymer chain. The
5/3 law in superfluid turbulence has been found to be consistent with
experiments.4

2R.J. Donnelly, Quantized Vortices in Helium IT (Cambridge University Press,
Cambridge, 1991).

3J. Koplik and H. Levine (1996) Phys. Rev. Lett. 76, 4745.

4S.R. Stalp, L. Skrbek and R.J. Donnelly (1999) Phys. Rev. Lett. 82, 4831.
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Fig. 15.3. Computer simulation of a vortex tangle in quantum turbulence. It is
a fractal of dimension 1.6.

Figure 15.3 shows computer simulation of a vortex tangle in a
quantum fluid,® which is a fractal of dimension 1.6.

15.4. Convergent Evolution in Turbulence

The energy spectrum in turbulence quickly reaches the universal
Kolmogorov form, independent of the type of fluid or initial con-
ditions. This is an example of convergent evolution. The general pic-
ture that emerges from long periods of theoretical and semi-empirical
analysis may be summarized as follows:

e Energy is supplied to the flow via large-scale structures, such as
a grid in a wind tunnel, boundary layers, wakes, weather fronts
and the jet stream.

e The energy “cascades” down through successively smaller length
scales, with negligible dissipation. The mechanism for the cas-
cade is the breakup of large eddies into successively smaller ones.

°D. Kivotides, C.F. Barenghi and D.C. Samuels (2001) Phys. Rev. Lett. 87,
155301.
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e The energy is dissipated at a minimal length scale, where it is
dissipated via viscosity, as soon as it is received.

The energy spectrum can be modified by a change in global condi-
tions. For example, the turbulence in a rotating fluid has an energy
spectrum with exponent between —5/3 and —2, depending on the
angular velocity.5

%Y. Zhou (1995) Phys. Fluids T, 2092.



Chapter 16

Convergent Evolution in
Protein Folding

16.1. Mechanism of Convergent Evolution

Convergent evolution refers to the property that a dynamical system
reaches a steady state independent of initial conditions. C.C. Lin has
emphasized that, on empirical evidence, this is a general phenomenon
in dissipative stochastic systems.! Can we understand the physical
basis for this?

To maintain equilibrium at a given temperature, a system must
exchange energy with its environment. Consider, for example, an
atom in a gas. Treating the rest of the gas as the environment,
we can describe its dynamics through the Langevin equation. The
energy input comes from random forces, and dissipation occurs due
to friction. In order to reach thermodynamic equilibrium, both forces
must be present, and related by the fluctuation—dissipation theorem.
The maintenance of the equilibrium Maxwell-Boltzmann velocity
distribution requires energy absorption and dissipation by the atom.

The example of a single atom is simple, in that the system has
no intrinsic length scale. In systems with a large number of length
scales, such as a turbulent fluid, or a long-chain molecule, the mecha-
nisms of energy input and dissipation are more complex. We suggest,
in analogy with turbulence, that the general mechanism for energy
exchange involves the energy cascade:

e Energy is absorbed by the system at some input length scale.

e The energy is transferred to successively shorter length scales.
This happens because the number of degrees of freedom generally
increases as the length scale is decreased. Spreading an amount of
energy among different degrees of freedom increases the entropy.

1C.C. Lin (2003) On the evolution of applied mathematics, Acta Mech. Sin. 19(2),
97-102.
119
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e The cascade ends at a microscopic scale, where the energy is
dissipated as heat, through atomic processes. Depending on the
system, dissipation can occur on all scales at varying degrees, or,
as in the case of turbulence, only at the smallest scale.

The manner in which energy is being transferred from one degree
of freedom to another may differ in different systems, but it is inde-
pendent of initial conditions. Thus, after a few steps in the cascade,
we expect all memory of the initial state to be lost.

In the absence of a complete theory, however, the scenario sug-
gested above must be taken as a conjecture. An example of this as a
simple model is given in Appendix A.

16.2. Energy Cascade in Turbulence

Let us review the mechanism for energy cascade in turbulence, which
is well-understood:

e Energy input occurs at large length scales, through the creation
of large vortex rings.

e The vortex rings are unstable because of “vortex stretching,”
i.e. the core of the vortex spontaneously contracts to a smaller
radius, and increases in length. Eventually the vortex ring breaks
up into smaller rings.

e The vortex ring ceases to exist as such, when its radius becomes
comparable to the core radius. Its energy is then dissipated as heat.

The steady state in turbulence consists of a distribution of vortex
rings of all sizes, from the input scale to the dissipation scale. The
distribution is independent of initial conditions, for it depends only
on the nature of vortex instability. A schematic representation of the
energy cascade in turbulence is shown in Fig. 16.1.

16.3. Energy Cascade in the Polymer Chain

Since both turbulence and the random polymer chain (which is a
model for the denatured protein state) can be modeled by SAW, we
can envision an energy cascade in the latter. The energy in this case is
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Fig. 16.1. Energy cascade in turbulence. Large vortex rings break up into smaller

ones, until dissipated at a small scale. In steady state, there is a distribution of
vortex rings of all sizes.
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Fig. 16.2. Energy cascade in a segment of a random polymer chain.

the kinetic energy of motion. The process is represented symbolically
in Fig. 16.2, with the main points summarized as follows:

e Through concerted action of atoms in the medium, a portion of
the chain gets bent on a large length scale. Dissipation is negligi-
ble, because the velocities involved are small. On the other hand,
significant kinetic energy is imparted to the system through the
induced mass motion.

e The energy cascades down the length scales, through coupling
between the normal modes of the chain.

e The energy is dissipated at a microscopic scale, where velocities
become large, and viscosity becomes important.
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16.4. Energy Cascade in the Molten Globule

In an aqueous medium, the protein chain begins to fold, driven by
hydrophobic forces. It rapidly collapses into a molten globule, with
release of latent heat. In this process, both the secondary and tertiary
structures must be considered.

The latent heat arises from the formation of semi-permanent
bonds in the secondary structures. However, this bonding is insuf-
ficient to bind the molten globule, as shown by the fact that the
latter cannot be maintained in a nonaqueous medium. Its stabiliza-
tion depends on the effective pressure from hydrophobic forces, which
arises from the desire of hydrophobic residues to be buried, and thus
shielded from contact with water. Water nets would form around the
molten globule to confine it.

The latent heat is released to the environment through the surface
of the collapsing structure. The molten globule is as compact as the
native state, and the surface-to-volume ratio is greatly reduced. That
is why it will take a much longer time to release the latent heat, in
the transition to the native state.

We suggest the following scenario for the energy cascade that
maintains the molten globule as a semi-equilibrium state:

e Energy input occurs on the largest length scale, i.e. the overall
dimension of the molecule. The water nets have a range of oscil-
lation frequencies. The one that resonates with the lowest fre-
quency of the structure transfers energy to that mode, in a man-
ner similar to that in a driven harmonic oscillator in Brownian
motion. These frequencies are of the order of 10 GHz.
e The energy is either
— transferred to smaller length scales with no dissipation,
through nonlinear structural interactions, or

— converted into heat through internal friction: The friction
arises from the unfolding-refolding of helices in the interior
due to thermal fluctuations. This dissipates energy, because
statistically a helix cannot refold exactly back to its original
state.

e When the energy reaches the smallest scales corresponding to the
radii of helices and loops exposed on the surface, it is dissipated
into the medium.
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Fig. 16.3. Energy cascade in the molten globule state. Energy input occurs at
large length scale, from the hydrophobic driving force. Dissipation occurs at small
scales, at the surface of the protein.

The scenario is symbolically represented in Fig. 16.3.

In the meantime, bonding in the secondary elements continues,
accompanied by release of latent heat, and the molten globule slowly
transforms into the native state.

Energy exchange with the environment continues in the native
state, and the energy cascade continues; but the rate of energy trans-
fer is much reduced, because there is no latent heat to be dissipated.

16.5. Secondary and Tertiary Structures

What principle guides the formation of the molten globule? It is
important to understand this, for the molten globule already pos-
sesses the basic structure of the native state.

We can only offer to guess this principle, namely that it is a
combination of

e the minimization of local free energy in the formation of sec-
ondary structures, and

e the minimization of the time for energy cascade in the formation
of the tertiary structure.

These two mechanisms influence each other, and are inseparable.
We still lack any mathematical model, even a simple one, to describe
the interplay.
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Appendix A

Model of Energy Cascade
in a Protein Molecule

A.1. Brownian Motion of a Forced
Harmonic Oscillator

A harmonic oscillator is a model for a normal mode of a system,
such as a protein molecule. Imagine that the molecule is immersed
in water. It experiences dissipative and random forces. In addition,
it is encaged in a water net, which exerts an organized oscillatory
force on the molecule, and can transfer energy to it. Thus, the forced
oscillation should alter the fluctuation—dissipation theorem.

Consider the Langevin equation of a harmonic oscillator of mass
m and natural frequency wy:

mi + mwiz +vi = G(t) + F(t) (A1)
where G(t) is a sinusoidal driving force with Fourier transform g(w):

G(t) = bcoswyt

g(w) = wb[d(w — w1) + d(w + w1)] (A.2)

and F'(t) is the random force with Fourier transform f(w) satisfying

(f(w)) =0
(fw)f(w)) =2mcd(w +w') (A.3)
(fwgw)) =0

125



126 Appendiz A. Model of Energy Cascade in a Protein Molecule
where () denotes ensemble average. Multiplying both sides of (A.1)
by &, we have

mii + mwiic +vi? = i(G+ F)

2 A4
%<mv2+%x2>:U(G+F)—w2 (A-4)

2 2

Taking ensemble averages, we obtain the equation for energy balance:

dK  dP
E—FE = <UF>+<UG> —2kK
K =2 (A.5)

2

2
p=shiey

with

We can make the following identifications:

e Rate of work done on system = (vF) + vG
e Rate of energy dissipation = 2k K

The Fourier transform of x(¢) is readily found to be

g(w) + f(w)
m(w? — wg + iwk) (A7)

z(w) = —

We consider the modification of the fluctuation—dissipation theorem
compared to the free-particle case, and will quote results without
derivation. The following relations are relevant to energy balance:

dP
—r =0
POF) = 5~ (A.8)
kb w? 1
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where an overhead bar denotes averaging over a time long enough to
be compared to the period of the driving force. Thus
dK ¢ kb w? 1

- = —2kK A9
dt 2m+ 2m (wg—w%f—l—wfﬁﬂ K (A.9)

After a sufficiently long time, when steady-state motion is estab-

lished, we should have dK /dt = 0, and
_ T

where T is the absolute temperature in energy units.! We then obtain
the fluctuation—dissipation theorem

c b2w? 1

2mek om (,,2 _ ,,2)2 2,9
(wo wl) + Wik

=T (A.11)

The rate of work done on the oscillator by the driving force is maxi-
mum at resonance (w3 = wyp). In that case the fluctuation—dissipation
theorem reads

c mb?
2y 292

In steady-state motion, the driving force transfers heat to the
medium through “stirring.” The theorem holds only when we wait
long enough for the steady-state equilibrium to be established. The
steady-state temperature T may be different from that in the absence
of the driving force.

=T (At resonance: w3 = wy) (A.12)

A.2. Coupled Oscillators

A.2.1. Equations of Motion

Consider a set of linearly coupled driven oscillators, with equations
of motion

mada + mawiqa + PYaq'a + Z )\aﬂqﬁ = Ha (Oé = 1> cee >N) (Al?’)
B

!That is, we set the Boltzmann constant to unity (h = 1).
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where
Aaﬁ = >\ﬂon )\aa =0
Ha = Foz + Ga

(A.14)
Go(t) = by cos vyt
(Fa(t)Fp(t) = cadap(t —t')
Now take Fourier transforms:
1 [ :
W) =5 [ dwe ()
1 > —iwt
H,(t) = — dwe™ " ho(w)
2 J_
ha = fa + Go (A'15)

9o (W) = 7o [6(w + va)e™* + §(w — va)e ¥°]
<foz(w/)fﬂ(w)> = 27700450(,6(5(&) + w’)

The equations become

Mo (—w? + w2 — iwka) 26 (W) + Z Aapz3(w) = ho(w) (A.16)
B

Steady-state solutions can be put in matrix form:

z=Qh

(Q_l)aﬁ = ma(—w2 + wi — iwma)éag + Aap (A.17)
where
_ o
Ko = p— (A.18)
We note that
Q*(w) = Q(~w) (A.19)

Transient solutions are those of the homogeneous equations
(i.e. with Hy, = 0), but they will decay in time, and will not be
considered.
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A.2.2. FEnergy Balance

The equations for energy balance can be obtained by multiplying
the equations of motion by ¢, on both sides, and taking ensemble
averages:

Ma(data) + Mawal@a) +Ya{da) + D Aapldats) = (daHa) (A.20)
<

which can be put in the form

%(Ka + Pa) = <anOl> — 2Ra Ko — Z/\aﬂ<(jaq,6>
5
Ka(t) = % (1) (A.21)
m, w2
Pa(t) = =5 (aa(1))

We can make the following identifications:

e Energy input rate from external forces = (G Hy) = I,
e Energy dissipation rate to environment = 2k, K,
e Energy transfer rate to other oscillators = 3 3 Ao (daqs) = Ra

These quantities contain terms that oscillate with the driving
frequencies. We average over an interval longer than the periods of
the driving frequencies, and indicate this operation by overhead bar.
The average kinetic and potential energies are found to be

K, = i Zmaca /OO dwaQaU(w)QZU(w)
S e (A.22)
Po= g Somaier [ 1QunQole)

The average energy input rate and average energy transfer rate are
given by

2

Yoba 11 Qe (va)

_ Cao o0

I, = — dwwIm Quq(w) +
T 0 2

1 o0
Ra=1 ﬁz Moo / oo T [ Qe () Q5 ()]

(A.23)
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Let ¢ be the diagonal matrix whose diagonal elements are c,. We
can write

R, = % /0 - dwwIm(QeQ™N) (A.24)
Note that Tr(QcQ™\) is real:
[Tr(QeQ™ )] = Tr(AQeQ™) = Tr(QcQ™ ) (A.25)
Thus
Y Ry = = / ” duw I Tr(QcQtA) =0 (A.26)
«a TJo

This implies that, in steady state, a constant amount of energy is
being circulated among the modes.

A.2.3. Fluctuation—dissipation theorem
The equations of energy balance are
dK,
dt

We assume that dK,/dt =0 after a sufficiently long time, and that
K, = T/2, and obtain the fluctuation—dissipation theorem

+ 260 Ko = I, — Ry, (A.27)

Tkeo = Iy — Rq (A.28)

which is a constraint on the parameters ¢, and ~,.

A.2.4. Perturbation Theory

Let D be the diagonal matrix with diagonal elements
Do(w) = mq [(w? — w2) + iwka] (A.29)
We can expand the matrix () in terms of the interaction matrix A

Q=—-D-N"'t=—-1-DN"!D?
=D '+ D D D IADTIAD 4+ ... (A30)

We cite results of calculations to second order in A, as follows.
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The input rates are given by

272
I,= - 4@ feaba o (A.31)
2mg 2ma (V2 —w2)° + 12K2
where
2
10 = Ce Zﬁ/wdw
ﬂma ﬂ?éa mﬁ O

(A.32)

The first two terms in I, represent, respectively, direct and indirect
effects of the random force. The last term in I, is the average input
rate due to the driving force.

The rates of energy transfer are given by

2
1 )\a@ Cgka  CaKg
Ra =0 2 mg \ mg e
7 °

X / dww? 3 ! 5
0 [(W? —w2)” + w2k2] [(w? — wj)” + w2KF]
(A.33)

Clearly, >, Ry = 0.

A.2.5. Weak-Damping Approximation

The integrals in Ig) and R, are elementary but complicated. To
obtain simpler forms, we consider the limit in which all damping
coefficients are small:

Yo — 0 (A.34)
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Using the formulas

2 + €2 J ()
&3 7T(5( ) (A.35)
=
(:c2+e2)2 —0 2\
we obtain
_ A2 1
Ca of K3
I, =~ 1+ <1 —)
* 7 2mg %; mamg 2Ka (w2 _ w%)Q
KalV2b2 1

2ma (12— W2+ V2R2

2
Ron Y o (Gt comp)(L 1) 1
« 2maomp \ mg Ma, Ko kg ) (w2 2)2

B#a —ws
(A.36)

We have assumed that there are no degeneracies among the frequen-
cies Wey-

A.3. Model of Protein Dynamics

We consider a protein molecule near the molten globule state, where
there is a clear distinction between the surface of the molecule and its
interior. The surface is in contact with water, and subject to random
impacts from water molecules. The interior feels the random forces
only indirectly, through their couplings to the surface modes. We
assume that the molecules is set into resonant vibration with water
networks surrounding the molecule, and there is resonant transfer of
organized energy. The frequencies involved should be of the order of
10-100 GHz.

In the high-dimensional configuration space of the protein
molecule, the potential energy has many local minima. These arise
from the fact that, as the spatial structure of the molecule varies,
different chemical bonds “snap” into (or unsnap out of) positions.
During the folding process, the molecule follows a path in this
configuration space, and the potential energy goes through a series
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Fig. A.1 Potential energy of protein molecule along the folding path. The
molecule is momentarily trapped in a local minimum. Its structure can be
described through normal modes of oscillations about that minimum. As the
molecule moves on to the next minimum, the normal modes change. The folding
process can be decribed as a sequence of normal modes.

of local minima. We are interested in motions much faster than the
folding process, so that the molecule appears to oscillate about the
local minima. This is symbolically depicted in Fig. A.1.

We assume that normal frequencies with respect to that minimum
are non-degenerate:

wi <wg <o < WN (A.37)

with associated masses my,...,my. As the folding process evolves,
these parameters change on a slower time scale.

e The mode w; corresponds to motion on the largest length scale,
associated with overall deformations of the molecule. We assume
that this is the only mode driven by external force, and we
assume it is driven at resonance v; = w;. In addition, this mode
is subjected to random forces, and dissipates energy.

e The mode wy corresponds to motions on the smallest length
scale — the surface modes. It is not being driven, but is subjected
to random forces, and dissipated energy.

e All other modes are internal modes. They are not directly driven,
not directly subjected to random forces, and do not directly dis-
sipate energy. However, Brownian motions are induced through
couplings to wy and wy.



134 Appendiz A. Model of Energy Cascade in a Protein Molecule

Thus,

A.38
ca=%=0 (a=2,...,N—-1) ( )

Apart from the frequencies and the masses, the model parameters are
e Driving force: b;
e Random forces: c¢1, ¢y

e Damping constants: v1,vn

We use perturbation theory in the weak-damping approximation.
From (A.36), we see that

=Ry=0 (a=2,...,N—1) (A.39)

We need only consider the modes oo = 1, IV:

= C1 b% C1
=—+-1+ 1-——|B+F
! 2m1 + 2’}/1 T mq |:< 2%1) + :|

s e (7 3) 20

2my  my KN (A.40)
_ c c m
(5 5) (2
My my " YN
Ry =R
where B, F, F' are dimensionless quantities given by
o 2 22
2mimpy (W1 — wN)
F = Z L (A.41)
2m1mg _ w2)2
B
N-1
s 1

F =
P
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A.4. Fluctuation—Dissipation Theorem
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The fluctuation—dissipation theorem (A.28) is automatically satisfied

fora=2,...,N —1. For a =1, N, we have
Tﬁlzfl—Rl
Ty = Iy + R;

(A.42)

These are to be satisfied order-by-order in perturbation theory. The

unperturbed conditions are

2
C1 b
2Tk = — + 1
my miki1
CN
2Tky = —
mny

The second-order conditions are

S (e
mi 2K1 mpy my K1

1
L
kN

OZC—NKl—H—N)B—FF’}+<CN“1_CWN><i

(A.43)

1
_> B
RN

(A.44)

From these four conditions, we can determine ¢y, ¢y, ¥1, YN in terms

of the other parameters.
We simplify the notation by introducing
m=mi, c=c, Y=, b=0bh
my KN CN
r=——F\ s§=—, t=—
mi R1 C1

The conditions to be satisfied are then

b2
o= &m0
Y
QTZEL
Y rs

s t 1 F
S R (LA N T i
0 2 <r s><—|—8>—|—B
s sr 1 F’
o=1-24(1-T)(1+-)+=
s+ (1-F)0+1)+ 5

These are to be solved for s,t,c, .

(A.45)

(A.46)
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Now assume that the global vibration has a much higher mass
than that of the surface mode:

mi1 > My (A.47)
Thus
F’ F
1, — 1, — 1 A 48
r<l, L 5> ( )

The last two inequalities hold because F, F’ are sums of the order of

N positive terms, each comparable to B.
With these approximations, the conditions reduce to

2
or = £ _ml2)
Y Y
or— 1
s (A.49)
2t
s=—
r
_2F
T B
Solving these give
_ M1 N 2F
MmN M1 B
cy  rF’ F
t = — = — ]_ —_—
C1 B ( + F/>

\/W \/m (A.50)
TENEN o VE—F
2/ 2mb2T

o (F/F)? -1

A.5. The Cascade Time

The energy input rate is given by

_ c b2 c \/b?T \/F F
I = 5+ m(F——B)~2 i (A.51)
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In a steady state, this must equal the amount of energy dissipated
per unit time, and the energy being dissipated should be of the order
of the thermal energy T'. Thus, the inverse cascade time is of the
order of 771 = I /T, hence

_T() F+F/
TTEPNF_F

1 /mT
=/ A.
=9V 92 (A.53)

is the characteristic time of the energy cascade. We minimize 7 by
varying the system parameters, i.e. by changing the structure of the
molecule.

(A.52)

where

A.6. Numerical Example

For illustration, we work out an example in which the structure is
specified by only one adjustable parameter

Nwl
= e

3 (A.54)

We shall see that the cascade time has a minimum with respect to &,
and that minimum would correspond to the equilibrium structure of
the molecule.

First, let us rewrite

. U1
- f)
N-1
F= My __ Y8 (A.55)
5=2 mg (fl - fﬁ)2
N-—1
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where
w2
fﬁ:<a
1/ Avg \°
= 3(2) "

Now choose frequencies such that they are uniformly spaced
between wy and wpy, with

&Ié—l-(a—l)A

WN N
1 ¢ (A.57)
“N_1 (1 - N)
Thus
§ 2
fn= [N +(n—1) A] (A.58)
The interactions are taken to be
vg =1
1 (A.59)

The interactions of the high-frequency mode ug are assumed to be
smaller, because the mode should be less affected by the folding

process.
We take

and assume that masses decrease linearly with «:

a—1
N -1

(m—mN):m[l—a_l] (A.61)

Ma =M —
N
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Fig. A.2 Energy cascade time as a function of a structural parameter. According
to our proposed principle, the minimum determines the equilibrium structure.

Then
F_lN 1 1
NS (N+1-B)(f - fa)
e 1 (A.62)
F'=—
N%; (N+1-B)(1~ f5)

We calculate 7/79, and vary £ to search for a minimum. The
results are shown in Fig. A.2, and summarized in the table below:

N § w1 /wn
10 2.3 0.23

100 1.9 0.019

The values of 7 cannot be compared for the two cases, since the N
dependence of 7y (in particular b) is not specified in this model.
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