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The Arne Ryde Foundation

ARNE RYDE was an exceptionally promising young student on the doctorate programme at the Department of
Economics at the University of Lund. He died after an automobile accident in 1968 when only twenty-three years old.
In his memory his parents Valborg Ryde and pharmacist Sven Ryde established the Arne Ryde Foundation for the
advancement of research at our department. We are most grateful to them. The Foundation has made possible
important activities which our ordinary resources could not have afforded.

In agreement with Valborg and Sven Ryde, we have decided to use the funds made available by the Foundation to
finance major initiatives. Since 1973 we have arranged a series of symposia in various fields of theoretical and applied
economics. In 1990 we published ‘Seven Schools of Macroeconomic Thought’ by Edmund S. Phelps, the first issue in
a series of Arne Ryde Memorial Lectures. Thomas J. Sargent's ‘Bounded Rationality in Macroeconomics’ followed in
1993, ‘High Inflation’ by Professors Daniel Heymann and Axel Leijonhufvud in 1995, and ‘Rational Risk Policy’ by
Professor W. Kip Viscusi in 1998. The present book by Professor Kumaraswamy Velupillai, based on lectures held at
Lund University in May 1994, is the fifth issue in this series. We are very glad and grateful that Professor Velupillai
agreed to come to Lund to give his Arne Ryde Memorial Lectures.

Bjørn Thalberg
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Preface and Acknowledgments

Just as in the uprooting of wild grasses;
If not grabbed properly, they cut the hand.
In ethical training, if there be no proper restrain,
One is picked for hell through one's own making.
(Chinese version of) Dharmapada, ch. 30, no. 6

The contents of this essay incorporate the substance of the lectures delivered as the fourth Arne Ryde Lectures on May
24/5 1994, at Trolleholm Castle in Scania, Sweden. I have gone into greater detail in some cases, particularly in
Chapters 4, 6, 7, 8, and 9, than I was able to do in the delivered lectures because of the obvious time constraints during
their actual delivery, although the planned program was substantially the same as the structure of this printed text.

I am greatly indebted to Professor Björn Thalberg for having invited me to give this prestigious series of lectures. My
indebtedness to him, however, extends far beyond the acknowledgment of gratitude for this particular invitation. I
began life as an academic economist twenty-seven years ago under his teaching, supervision, and guidance. Whether
the work reported here is an adequate partial compensation for his initial faith and investment I do not know. But none
of my work would have been possible without his consistent personal and professional support during the whole of
the period I have known him.

I was taught by Richard Goodwin that the problems of dynamics, optimization, and computation are inextricably
intertwined in the economic sphere. The full significance of his message began to dawn on me only after I understood
his idea of computation universality for dynamical systems and the recursion-theoretic underpinnings of induction. He
followed my faltering attempts at synthesizing his vision with sympathy, and even enthusiasm, to almost his last days. I
hope something of that great man's teaching comes through in the unspoken message of this book.

I have worked in the general area of computable economics for over two decades. During this period the collaboration
with my



friend Berc Rustem has meant a great deal to me. He introduced me to the weird and wonderful world of
computational complexity theory long before it was fashionable to think about the efficiency of algorithms, using
recursion-theoretic mathematics, in economic contexts.

Bob Clower, Axel Leijonhufvud, Francesco Luna, John McCall, and Stefano Zambelli have also been instrumental in
guiding me and helping me to focus on computability issues in economic hypothesis. Their inspired friendship, advice,
and help as the written text evolved turned out to be decisive in ways that cannot easily be described.

Almost all the material that has gone into this text was conceived, if not also finalized, during my tenure as associate
director of the Centre for Computable Economics (CCE), in the Department of Economics at UCLA. The director,
Professor Axel Leijonhufvud, and the CCE's chief benefactor, Dr Spiro Latsis, deserve special thanks for the freedom
and facilities they made available to me, through the CCE, for extended periods of time. The challenge of being
associated with the establishment and nurturing a research institution was indescribably exciting.

The final version of this text was prepared during my tenure as a member of the Department of Economics at the
Queen's University of Belfast. I am grateful to the director of the School of Social Sciences, Professor John Spencer,
for having given me unusual latitude to schedule my lectures in ways that made it possible for me to devote extended
and continuous periods of time to the preparation of this manuscript.

Viveka, Sumithra, and Aruna, my three daughters, played their usual background music that has sustained my sanity
and peace of mind for almost a quarter of a century. Viveka's interest in the music of Bartok, Sumithra's in the history
of film, and Aruna's in that of photography gave me perspectives that were, at times, decisive in breaking conceptual
and methodological dead-ends that blocked progress.

Maria Johansson, friend and companion, nursed me through a sequence of personal and professional catastrophes that
impinged upon my life from almost the day I began to conceive and pen the thoughts that were to become this book.
She was also instrumental in making the final text available for print. She did it with love and care.

Growing up in old Colombo gave me the privilege of basing my ethical training on the twin wisdoms of the
Thirukkural and the

x



Dharmapada. I have chosen, therefore, as an epigraph for this work a verse from the ancient Tamil collection of
couplets, the Thirukkural, attributed to the sage Thiruvalluvar. My father instructed me on its interpretations and its
wise ambiguities. This work is, in a way, an attempt to extol the virtues of ambiguities in a domain of economic theory
replete with pseudo-formal uncertainties. I hope, however, that the chessmen are not bereft of the chessboard.

More important than that, as taught in the wisdom of the Dharmapada, I hope that I have not extolled the virtues of
ambiguities without appropriate restraint.

K.V.

Dervio, Lago di Como

April 1998
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1 Introduction and Overview

I have long been considering the purchase of an electric drill, and I am sure that when I finally buy one I will drill
dozens of holes I do not really need. But triviality is a universal failing; . . . The remedy against it is strength of
character, not technological backwardness. Problems must dictate methods, not vice versa.
Solow (1954: 374; emphasis added)
[T]here are games in which the player who in theory can always win cannot do so in practice because it is
impossible to supply him with effective instructions regarding how he should play in order to win.
Rabin (1957: 148; emphasis added)

The above is a statement of the first important result in what I have come to call computable economics. The key word is
“effective,” referring to a procedure whose execution is specified in a finite series of instructions, each of which is finite
in length and where all the details of the execution are specified exactly, thereby leaving no room for magic, miracles, or
other such metaphysical entities. The exact meaning of “effecitivity” is mathematically equivalent, under the
Church–Turing thesis,1 to “computability.”

1 Many different, independent attempts were made in the formative years of recursive function theory to formalize the intuitive notion of effectively calculable or computable
function, number, object, etc. Thus, there was Turing's device of a machine, constructed on principles obtained by abstracting that which human beings with particular
physiological architectures would do when indulging in computing activities as it is commonly understood; there was the Gödel–Herbrand notion of general recursiveness
coming down from Dedekind, Peano, and others who used mathematical induction and iteration to build up the number system; there was Church's attempt at abstracting
the imperative content of the functional notation leading to the λ-calculus; and so on. Church's thesis is a statement encapsulating the phenomenological fact — or, as Emil
Post called it, a natural law — that all of these independent attempts ultimately yielded one and the same class of functions, numbers, and objects as effectively calculable or
computable.



I was taught by my teacher, mentor, and, subsequently, valued friend, Richard Goodwin, to view economists and the
economic system itself as problem-solvers.2 This meant, of course, that problems of the economic sphere had to be
identified. Methods to solve the identified problems had to be devised. The epistemological status and nature of the
solution sought had to be defined. Finally, and most importantly, the problem-solver had to be formally characterized.

Many different mathematical formalisms can be used to frame problems and problem-solvers. Alternative formalisms
for problems and problem-solvers lead, often, to methods for their solution, and to procedures to be adopted by the
problem-solvers, that depend on the particular mathematical framework chosen for their representation. That there is
no given, a priori, single formal framework that is natural, in any sense, for the formalization of economies and
economists as problem-solvers was the main message that Goodwin, among others, tried to suggest. In this work I
have chosen a recursion-theoretic formalism in the hope that it may lead to some interesting insights into economic
problems and problem-solvers. In other words, “problems must dictate methods,” but there is no evidence that the
mapping between them is bijective.3

Mathematical logic itself is divided into set theory, proof theory, model theory, and recursion theory. The study of
computable objects and domains is the subject matter of recursion theory. The formalisms of economic analysis are, in
general, based on mathematical foundations relying on set theory or model theory (e.g. nonstandard analysis).
Computable economics, as I see it, is about basing economic formalisms on recursion-theoretic fundamentals.4 This
means we will have to view economic entities, economic actions, and economic institutions as computable objects or
algorithms (cf. Scarf 1989).5

2 COMPUTABLE ECONOMICS

2 Perhaps in the same sense in which mathematics and mathematicians were viewed by Polya (cf. Velupillai and Punzo 1996).
3 I have in mind the kind of suggestions made, and questions posed, by David Ruelle in his fascinating Gibbs Lecture (Ruelle 1988). His main theme was circumscribed by

the question, how natural is our human 20th-century mathematics? His conclusions were that there was nothing natural about it. It is in this sense that I assert that there is
no evidence for a bijection between problems and methods.

4 Recursion theory did not exist at the time mathematical economics was rigorously codified in the early 1930s. Had it existed, there is no doubt, in my mind, that the
computable numbers would have been the natural domain, computable analysis and combinatorial optimization the natural framework, for economic analysis.

5 Analogously, as Debreu (1984: 268) points out, “one can describe the action of an economic agent by a vector in the commodity space Rl . The fact that the commodity
space has the structure of a real vector space is a basic reason for the success of the mathematization of economic theory. In particular convexity properties of sets in Rl , a
recurring theme in the theory of general economic equilibrium, can be fully exploited.” As we will see in what follows, “one can also describe the action of an economic
agent” as if “it” were a Turing machine; in this case the commodity space would have an appropriate recursive structure in which computable and combinatorial properties
would be exploited. This would have been no less a reason “for the success of the mathematization of economic theory” — if we were allowed the luxury of speculating in
counterfactuals.



For the moment these broad indications must suffice. In this book I will try to draw my picture with a broad brush on
a rough canvas with selected problems and classes of problem-solvers pertaining to: rationality, learning, (arithmetical)
games, dynamics and optimization. I give them recursion-theoretic interpretations and content and draw the ensuing
economic implications. These examples, I hope, will create the image I want to convey, about the nature and scope of
computable economics.

The book is structured as follows. In the second half of this general introduction and synopsis and in the concluding
Chapter 10 there are brief excursions into general methodological and epistemological issues that have arisen as a result
of the new ontology implied by the philosophies underlying recursion theory — incompleteness, undecidability, and
uncomputability being the prime examples. The other chapters, apart from the second, are discussions of examples
from standard economic theory. In each example, roughly speaking, the implicit question I pose is: what is the effective
or computable content of these examples?6 or, what is the computational complexity of a particular operator? or, again,
how does the computable characterization of a problem constrain the methods of solution for it? and, yet again, what
are the implications of characterizing problem-solvers' recursion theoretically? And so on. Each example or operator is
chosen in such a way that it enables me to introduce selected fundamental concepts and tools of recursion theory and
to show their workings in an economic setting.

In Chapter 2 I have attempted to outline the work of the pioneers and precursors of computable economics. At least
until the late 1980s and early 1990s, the work by Rabin, Putnam, Kramer, Futia, Lewis, Spear, and Rustem remained
isolated and scattered without the kind of unifying umbrella provided by computable economics.

INTRODUCTION AND OVERVIEW 3

6 It is like asking, what is the constructive content of standard mathematics? Then one would try to eliminate, for example, the indiscriminate use of the law of the excluded
middle in existential statements (cf. e.g. Beeson 1978 for a lucid discussion of these matters).



Mercifully, this fate did not have to be shared by Simon and Scarf. This is partly because some aspects of their
important contributions spawned wholly new research programs in behavioral economics and computable general
equilibrium (CGE) theory. I try to tell a unified story, albeit briefly, and to extract a theme that I believe to be of some
importance also in the mathematization of economics.

In Chapter 3, I take rationality, classically conceived, and show that the implicit procedural content in standard
definitions enables one to show an equivalence between the rational economic agent of orthodox theory and a Turing
machine (TM). With this equivalence, I investigate, in Chapter 4, some recursion-theoretic implications of adaptive
behavior. In Chapter 5 I take up the issue of induction, its modern recursion-theoretic formalization, and, by
reinterpreting learning-as-induction, use it in a simple application to a standard problem in economics in Chapter 6.
This is an eclectic chapter in that I fuse elements of computable analysis with applied classical recursion theory to
generate overwhelmingly positive results on the computable identifiability of a rational expectations equilibrium (REE).
This chapter also gives formal content to some of the epistemological speculations in the introductions, particularly on
induction, simplicity, complexity, and a few other classic and much maligned concepts. Moreover, the nature of the
example gives me the chance to introduce the basics of algorithmic complexity theory — that part of applied recursion
theory lying at the basis of the modern theory of induction.

In Chapter 7 I discuss Rabin's pioneering paper and the way in which he imposed recursion-theoretic contents into a
standard model of games, and I introduce the extensions to this model that Jones has suggested in a series of
fundamental contributions. This whole line of thought seems to have escaped the notice of economists interested in
applying recursion-theoretic ideas to standard problems in game theory.

In Chapter 8 I try to tackle the problem of the computational complexity of a procedural decision maker. One
particular algorithm is constructed and discussed in some detail, and Khachiyan's algorithm is applied to show the
polynomial-time complexity of the procedurally rational agent.

In Chapter 9 I move from the “bread-and-butter” issues to “cheese-and-cakes”. In speculating about the frontiers of
computable economics, in this chapter, I look at some fundamental

4 COMPUTABLE ECONOMICS



economic tools, concepts and methodologies from tentative recursion-theoretic formalisms. Economic dynamics —
such as growth and business cycle theories — poses intriguing questions about the paradoxes of multiple equilibria,
and about the advantages of linear stochastic formalisms over nonlinear deterministic formalisms to model growth
and fluctuations in the economy. I suggest that recursion-theoretic tools could provide elegant resolutions of some of
the paradoxes and disagreements — not always in directions that I would have felt like approving a priori. The
mathematical underpinnings of the Second Fundamental Theorem of welfare economics, tâtonnement, interpreted
recursion-theoretically rather than topologically, and computable reflections on the socialist calculation debate are some
of the other topics discussed in this chapter.

Finally, I return once again to methodological and epistemological issues in the concluding chapter. This is probably
best viewed as counterfactual speculation, trying to chart a course for the future of computable economics, as if it were
in the past.

The mathematical appendix is an attempt at providing a “child's guide to classical recursion theory.” It is neither
comprehensive nor self-contained; the field is too vast, and the tools I harness somewhat opportunistic, so that it
would be impossible to be either one or the other. It is, instead, a catalogue of building-blocks and rules and a few
lessons on structures that could be built with them. I had in mind the Meccano sets of my childhood — the box
containing the basic elements and a book of instructions on some of the possible constructions, but leaving the more
interesting possible constructions to the fertile imagination of a child.

I should like to add a minor caveat, without sounding pompous or imputing unnecessary originality due to ignorance
of other and parallel work.7 To the best of my knowledge, the results I have stated in Chapters 3, 4, 6, 8, and 9, as
theorems and propositions seem to be “new”; the rest tend to be adaptations and expositions of known results in
somewhat newer contexts — but not always so.

At this point some additional technical background remarks — at a general level — may be useful, to set the
methodological backdrop

INTRODUCTION AND OVERVIEW 5

7 I am reminded of Myrdal's acid remark about “the attractive Anglo-Saxon kind of unnecessary originality, which has its roots in certain systematic gaps in the knowledge of
the German language on the part of the majority of English economists” (Myrdal 1939: 8–9). I do not know the exact nature and extent of the “systematic gaps” in my
knowledge; hence the caveat.



against which the contents of this book should be viewed. Recursion theory has an applied wing,8 which in turn has at
least three subdivisions: computational complexity theory, diophantine complexity theory, and algorithmic complexity
theory. The latter has its own applied wing: stochastic complexity theory.

In a rigorously quantitative sense, computational complexity theory can be called the economic theory of computations
— in any field. This is because computational complexity theory is about the efficiency of algorithms, and the efficiency
is, in general, quantified and measured in terms of the cost of computation in time, space, and other related
dimensions.9

Induction and information have been at the heart of economic reasoning ever since the subject was codified into an
independent discipline.10 Algorithmic complexity, based on classical recursion theory, provides the foundations for a
rigorous modern theory of induction and randomness; the latter, in turn, lie at the basis of a theory of information
content in finite objects, be they finite sequences or individual objects. On the other hand, induction as learning from
finite objects — extracting universals from particulars — and learning as estimation is based on the empirics of
algorithmic complexity: for example stochastic complexity theory, or the minimum description length principle of Rissanen
(1989). Diophantine complexity theory, on the other hand, is a direct outgrowth of the methods and results associated
with the negative solution to Hilbert's Tenth Problem.

Finally, straddling constructive and computable analysis, there is the fascinatingly intractable world of combinatorial
optimization. Harnessing, in particular, the unifying concepts and tools of computational complexity theory and
classical recursion theory, combinatorial

6 COMPUTABLE ECONOMICS

8 In the same sense in which there is applied mathematics, which used to be called “methods of mathematical physics.”
9 There is also the fascinating area of measuring efficiency in terms of the thermo-dynamics of computation where, also, computational complexity theory acts as one of the

theoretical frameworks (cf. e.g. Bennett 1982).
10 Indeed, from the outset: Petty via Smith and Hume, through Jevons and Mill down to Keynes, Leontief, and Simon. It was, in my opinion, Ricardo who subverted

economics toward a deductive discipline, and then the various mathematizations of the subject remained faithful to the axiomatic-deductive method — this in spite of
profound changes in mathematics, the foundations of mathematics and logic. These changes — the “renascence of empiricism in the recent philosophy of mathematics,” in
the characteristically pungent and colourful view of Lakatos (1978: ch. 2) — have seen a movement away from axiomatic–deductive rigidities to a more experimental vision
of mathematical philosophy. Anything experimental must always have a large inductive component.



optimization almost defines the frontiers of modern operations research. A generation or two ago, economists were
trained in the tools of classical operations research: linear programming and the simplex algorithm, nonlinear
programming, dynamic programming, the maximum principle, and much else. Developments in computational
complexity theory and combinatorial optimization have completely changed the nature of the questions posed:
optimization problems are now posed as decision problems, as defined in logic and recursion theory. Such a fundamental
transformation gives immediate content to Simon's fertile concepts of bounded rationality and satisficing. Moreover,
these new tools and concepts show that even some of the most widely used algorithms and operators — simplex,
dynamic programming, optimal control, etc. — are theoretically intractable (i.e. computationally complex). That they
seem to work in practice — especially simplex — and are used by purists in economics must only mean that Simon has
always been right and, moreover, that the purists have, in fact, been speaking prose11 all their optimizing lives,
whenever they tried to compute a solution to their problem. One of the implicit messages of this book is that such
schizophrenia is neither necessary nor desirable, with emphasis on the former.

I conclude this chapter with the following broad, epistemological, remarks. Ian Hacking has characterized the period
1800–1936 as a time when chance was tamed only to give rise to indeterminism — the taming of chance and the rise
of indeterminism, in Hacking's felicitous terminology:

The taming of chance and the erosion of determinism constitute one of the most revolutionary changes in the
history of the human mind. I use the word “revolutionary” not as a scholar but as a speaker of common English. If
that change is not revolutionary, nothing is. That is the real justification for talk of a Probabilistic revolution,
1800–1930. (Hacking 1987: 54)

The afterglow of this probabilistic revolution and the “changed vision of the world in which we live” (Hacking 1987:
54) brought forth, for example, Haavelmo's “Probability Approach to Economics,” decades of Cowles Foundation
methodology, and the

INTRODUCTION AND OVERVIEW 7

11 I am, of course, referring to Monsieur Jourdain's famous remark in Molière: Par ma foi! il y a plus de quarante ans que je dis de la prose sans que j'en susse rien, et je vous suis le plus obligé

du monde de m'avoir appris cela.

[“Well, my goodness! Here I've been talking prose for forty years and never known it, and mighty grateful I am to you for telling me!” This translation is by John Wood in the
Penguin Classics version of Molière's plays.]



more recent stochastic modelling approaches in economic theory and econometrics. All of this was consciously, even
deliberately, woven into the fabric of the theoretical technology of modern analytical economics.

The confluence of events that led to the fundamental results of Gödel, Kleene, Church, Post, and Turing — the
fashioning of recursion theory — in the 1930s heralded a new period and a new characterization: the taming of
indeterminism and the rise of undecidability. This is the fundamental epistemological background thesis on the basis of
which this book is written.

Confluences linking logic, mathematics, philosophy of science, and economics have characterized earlier turning points
in the development of economic analysis: from Petty and his Baconian convictions on induction and political
arithmetic through Adam Smith's remarkable early work on the history of astronomy, where his philosophy of science
was a clear anticipation of Kuhn's sociological theory of growth of knowledge (Kuhn 1977), and then down the British
line12 of Ricardo, Mill, Jevons, and Keynes, who each in his own way was part of such an interdisciplinary confluence.
And this interdisciplinary linkage had influences on the development of quantitative methods, bolstered by logic and
mathematics, which in turn made decisive differences to the structure and scope of economic theorizing.

These are the broad senses in which I believe that a reasonable, philosophical, epistemological, and methodological13

case can be made for the computable approach to economics — paralleling the mathematization (or the mathematical
approach to) economics (of 1830–80 and 1926–56) and the probability approach to economics (of 1920–50) —
especially because of the changes in ontology, or, as Hacking more succinctly states it, “changes in our vision of the
world in which we live.” We accepted a non-deterministic ontology and theorized about it and within it. The rise of
incompleteness, uncomputability, and undecidability will bring forth an inductive ontology and the need to theorize
within it and within a vision of the world implied by it. It should not be forgotten that advances in recursion

8 COMPUTABLE ECONOMICS

12 But not only the “British line”: it was true of many of the other great traditions too: the Austrians, the Swedes, and some of the American Institutionalist pioneers.
13 “Methodological” in the sense of the new methods of recursion theory for gaining knowledge about the (economic) world; “epistemological” in the sense of what that

knowledge should or might be; “philosophical” in the sense of our notions about the world about which we seek knowledge.



theory — and its sub-branches — have been instrumental in the renascence of empiricism in mathematics and logic,
and hence in the formalisms underlying reasoning processes. The new methodologies demonstrate the inherent and
intrinsic incompleteness of reasoning processes, and so a subject like economics, which has its whole analytical edifice
based on the rationality principle, cannot avoid being influenced by these developments. The new ontology brings with
it, therefore, new and enhanced modes of thinking and hence, possibly, modes of behavior untameable by unadapted
theoretical technologies. I shall return to these broad themes, once again, at the end of this book.

INTRODUCTION AND OVERVIEW 9



2 Ideas, Pioneers, and Precursors

What must be achieved is in fact this: That every paralogism be recognized as an error of calculation, and that
every sophism when expressed in this new kind of notation . . . be corrected easily by the laws of this philosophic
grammar. . . . Once this is done, then when a controversy arises, disputation will no more be needed between
two philosophers than between two computers. It will suffice that, pen in hand, they sit down . . . and say to each
other: Let us calculate.
Leibniz (1686/1965: xiv; final emphasis added).

2.1 Introduction

I do think there are some very worthwhile and interesting analogies between complexity issues in computer science
and in economics. For example, economics traditionally assumes that the agents within an economy have universal
computing power . . . Computer scientists deny that an algorithm can have infinite computing power.
Karp (1987: 464)

I have tried, in the opening paragraphs of the previous chapter, to delineate the nature of computable economics by
suggesting that recursion-theoretic formalisms of economic fundamentals, broadly conceived, are the key features of
the subject. This does not, of course, restrict the scope of computable economics to the “pure” aspects of recursion
theory. The “applied” wings of recursion theory, in particular the varieties of complexity theories — computational,
algorithmic, stochastic, and diophantine — have an equally important role to play in redirecting the formalization of
economic fundamentals. By this I mean a redirection away from the dominant set-theoretic and model-theoretic
formalisms of economic fundamentals. The hope is that the



new insights that “a re-examination of several of the primitive concepts” of economic analysis will entail might make
the subject intrinsically numerical and computational, with strong foundations in computability theory. The alternative
route, tried and tested for over half a century, via the set-theoretic, Bourbakian path, for example, has a less direct link
with the numerical content and computational constraints of the formalized entities. There is also the deductive and
declarative bias of the standard formalism. The most vivid illustration of this thesis is the way computable general
equilibrium models have developed from their initial, formal — even Bourbakian — structures.

In this chapter I begin, in the following section, with an attempt to define, in less general terms than in the previous
chapter, the nature and scope of what I mean by “computable economics.” The ideas underlying a more focused
definition for computable economics are based on a study of the way in which economics was mathematized in the
“modern era.” By “modern era” I mean, on the one hand, the era that had its origins in the debates on the proper
formalism for economic analysis to pose, and answer, questions of the existence, uniqueness, and stability of general
economic equilibrium, and, on the other hand, the post-von Neumann–Morgenstern era. I have told my version of
these stories in greater detail in other, related, writings (cf. Velupillai 1996 and 1998b); what is reported in the following
section is a summary of these companion pieces, modified to provide the context in which it is possible to highlight the
relevance of the contributions of the pioneers and precursors of computable economics.

With the possible exception of Alain Lewis, none of the pioneers and precursors seems to have envisaged a sustained
research program in computable economics (as I have defined it). In certain specific ways, the work of the two most
famous pioneers (the two Herberts: Simon and Scarf) did spawn research programs of breadth, intensity, and vision.
But these programs, in the end, substantiate the case for computable economics without quite being confined by it or
to it. I think that Simon and Scarf had broader scope and vision than the narrower one of computable economics
according to my definition. In Section 3.3 below this aspect of computable economics, and speculative thoughts on
mild counterfactual themes on the “roads not taken”14 in the mathematization of economics, are given some positive
considerations.

IDEAS, PIONEERS, AND PRECURSORS 11

14 I have in mind the last three lines of Robert Frost's exquisite “The Road Not Taken”: over /



2.2 Ideas

To use the past for present purposes, we should see the history of the field as sequences of decisions, of choices,
leading up to the present. Imagine a huge decision-tree. . . . I wish to maintain that knowledge of the past, when the
past is understood as such a decision-tree, can be quite useful to the economist working on present questions at
today's frontier.
Leijonhufvud (1991: 4–5)

The mathematization of economic analysis in the “modern era,” when viewed as “sequences of decisions” along the
nodes of an “imagined decision-tree,” can be seen to have based the formalism of economic entities (institutions,
agents, etc.) and behavior (for example rationality — individual and collective) in set theory and model theory. As
mentioned in the previous chapter, these are two of the four branches of modern logic, the other two being recursion
theory and proof theory. There are no compelling doctrine-historical, analytical, or descriptive reasons for preferring a
formalism of economics on the basis of set theory and model theory rather than, say, recursion theory. It is my
contention that it was entirely an accident of the history of ideas that the mathematization of economics took the path
that led to a basis in set theory and model theory (cf. Velupillai 1996, 1998b). Some of the pioneers of mathematical
economics have claimed otherwise, i.e. deliberate design rather than fortuitous events and accidents. Thus, Frank
Hahn has claimed:15

Two roads diverged in a wood, and I —
I took the one less travelled by,
And that has made all the difference.
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effort at a maximum . . . ”!



But the task we set ourselves after the last war, to deduce all that was required from a number of axioms, has almost
been completed, and while not worthless has only made a small contribution to our understanding. (Hahn 1994:
258)

Couple this to the following series of clear and defining statements by Debreu:

The theory of value is treated here with the standards of rigour of the contemporary formalist school of
mathematics. (Debreu 1959: viii)
Especially relevant to my narrative is the fact that the restatement of welfare economics in set-theoretical terms forced a
re-examination of several of the primitive concepts of the theory of general economic equilibrium. (Debreu 1984:
269; emphasis added)
Walras and his successors for six decades perceived that his theory would be vacuous without an argument in
support of the existence of at least one equilibrium, and noted that in his model the number of equations equals the
number of unknowns, an argument that cannot convince a mathematician. One must, however, immediately add that the
mathematical tools that later made the solution of the existence problem possible did not exist when Walras wrote
one of the greatest classics, if not the greatest, of our science. It was Abraham Wald . . . who eventually in Vienna in
1935–36 provided the first solution in a series of papers that attracted so little attention that the problem was not
attacked again until the early 50s. (Debreu 1984: 268; emphasis added)

The fundamental methodological statements by two of the pioneers of contemporary mathematical economics
suggest, I claim, the following ideas:

• The early attempts at formalizing economic entities and behavior were based on the available theoretical
technology, i.e., essentially, set theory.

• Hence the economic questions posed, and the answers sought and obtained, had to be confined to those that
could have been framed in set-theoretic formalisms.

• The development of model-theoretic tools, e.g. nonstandard analysis, and the resurgence of interest in
constructive analysis had immediate impact in the mathematization of economics — the former in the
contribution of Abraham Robinson himself, but more particularly through the work of Aumann and others,
who pointed out that the economic significance of price-taking behavior in perfectly competitive markets
required the use of
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infinitesimals that were not part of the standard number system. The latter — i.e. constructive methods and
their impact on mathematical economics — came about via Scarf's pioneering attempts to give numerical
content to existence proofs.16

Thus, a restatement of problems in welfare economics, economic equilibrium, economic behavior, etc., in set-theoretic,
model-theoretic and quasi-constructive terms “forced a re-examination of several of the primitive concepts” of
economic analysis. Two of these “restatements” have led to fertile, progressive, research programs.17 Then, why not try
a “restatement” in terms of recursion-theoretic formalisms too? Perhaps there will be a fertile “re-examination of
several of the primitive concepts” of economic analysis.

On the other hand, a different line of reasoning, starting from the impressive developments in computable general
equilibrium theory, recursive economic dynamics, recursive computational equilibria, and computational economics,
leads one to the following natural question:18

The idea of universal computation . . . One is led to ask: is there a computability property for the economy? This is
clearly preliminary to any tentative computation. Given the difficulties we have been facing, one may well conjecture
an impossibility theorem for economic systems: the economy is, simply, not computable. (Baum 1988: 252)

These questions can be asked, and answered, only after a recursion-theoretic formalization of economic analysis is
attempted. Computable economics is, in part, about such an attempt.

If, now, I try to pull together these ideas in one methodological and epistemological credo, then the attempt to pursue
computable economics can be realized as a definite and focused research program in one of two ways (or in an eclectic
combination of the two): either

(a) seek or investigate the economic implications of recursion-theoretic restrictions to the standard primitive
concepts of economic analysis; or
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(b) go back to one of the nodes of the decision-tree that characterizes the development of the mathematization of
economics (cf. Leijonhufvud 1991); e.g. to the nodes at which existence, uniqueness, and stability questions
were rigorously posed and reconsidered for general economic equilibrium; then try to answer the questions
recursion-theoretically, rather than set-theoretically or model-theoretically.

Let me take a concrete counterfactual issue in terms of (b). The device of ensuring that “the number of equations
equals the number of unknowns” was known and considered to be insufficient to guarantee the existence of
economically meaningful solutions to a problem of general economic equilibrium. The problem was then posed, and
solved, with free-swinging, non-constructive, and non-algorithmic set-theoretic methods which guaranteed, ostensibly,
the existence (and even uniqueness) of economically meaningful — i.e. non-negative — equilibrium solutions. But this
resolution left two possible lacunae unresolved: the demonstrated solution could be any real number;19 and the
processes — whether virtual, like tâtonnement, or not — by which the demonstrated (unique) equilibrium was brought
about were left unspecified. Developments in computable general equilibrium theory, following Scarf's quasi-
constructive existence proofs, have partially resolved the second problem. Formulating the existence problem as a
(combinatorial) decision problem, however, resolves both lacunae in one fell swoop. This latter approach is squarely
recursion-theoretic; rational or integer constraints on data and solutions are explicitly introduced ab inizio and the
solution brings with it an algorithm, a process, to achieve it. There will, however, be an open-endedness about the
solution in that for most of the interesting economic decision problems — say, an increasing-returns-to-scale problem
arising from indivisibilities — it will not be possible to decide whether or not a best algorithm exists.

To get back, however, to (a) and (b) and the path followed in this book, my own inclination is to go the latter way (i.e.
(b)), although my limited knowledge and abilities force me to go the former way (i.e. (a)). As a result of these
conflicting features, this work is mildly eclectic, dominated by the former method with a few infusions along
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the latter path. Perhaps at some future date, when my knowledge and abilities mesh with my propensities, I may
attempt a more coherent restatement based on trying to realize a research program based on (b).

Against the backdrop provided by the above ideas and conjectures, I will now try to summarise the story of some of
the pioneers and precursors of computable economics.

2.3 Pioneers and Precursors of Computable Economics

The fact is that every writer creates his own precursors.
Borges (1964: 20120)

If we keep the Leibnizian injunction of “let us calculate” (when in doubt), it is possible to go back all the way to the
founder of political economy to discover the precursor par excellence: William Petty. After all, he did set out to represent
the concepts of political economics, as political arithmetic, entirely in terms of “number, weight and measure” — and
long before Leibniz.21 I shall, for the purposes of this book, restrain whim and concentrate on the pioneers and
precursors of computable economics and their contributions, guided by the framework suggested in the previous
section, in particular method (a). To make the story reasonably coherent, I will adopt a sub-schematization of method
(a) as follows:

(i) contributions that sought explicit recursion-theoretic characterizations of standard economic formalisms in
specific areas, for example rationality, learning, games;

(ii) contributions that investigated the properties of economic entities and processes from the point of view of
applied recursion

16 COMPUTABLE ECONOMICS

20 “Kafka and his Precursors,” Labyrinths , p. 201; emphasis added.
21 Swift's inimitable satire must, surely, be mentioned as a noble precursor, too, of computable economics. Learned readers will recall that, in “A Voyage to Laputa,” Gulliver
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theory, for example the computational complexity of optimization operators or production processes with
increasing returns to scale resulting from indivisibilities;

(iii) those contributions that utilized recursion-theoretic tools and concepts within the standard formalisms of
economic theory, but, paradoxically, almost never with recursion-theoretic questions or solutions in mind;

(iv) finally, those contributions that raised important recursion-theoretic issues in economics but not necessarily
within a systematic computable economic framework; Herbert Simon's lifelong research program comes to
mind as the paradigmatic example of this case. Nothing can be more recursion-theoretic than procedural
rationality or satisficing behavior; but neither of these was set in its paces in a computable economic setting.

Recursion-Theoretic Characterizations
The core areas in which explicit recursion-theoretic characterizations were sought for economic fundamentals have
been games, rationality, learning, equilibria, and rational expectations. The pioneers and precursors, in approximate
chronological order, are: Rabin (games), Lewis (games, rationality, equilibria), McAfee (games, rational expectations),
Spear (learning), and Rustem and Velupillai (rationality). It is a striking and melancholy fact that between Rabin's classic
work in 1957 and the contribution by Rustem and Velupillai in 1990, a period spanning over thirty years, the pioneers
have been so few and — proverbially — far between. I have no useful explanation for this surprising fact except to
conjecture that other, more exciting and pressing, concerns and developments in economics left little time for
economists to embark on mastering and applying wholly new tools and concepts. After all, this period coincided with
the great advances and consolidations in mathematical general equilibrium theory, a series of revolutions in
macroeconomics, impressive developments in game theory, experimental economics, computable general equilibrium
theory, and so on. Applying the economic principle to the classic problem of competition for the scarce resource of
technically able economists pursuing interesting, useful, and frontier problems, it is perhaps not surprising that
computable economics had to take a back seat, in particular because results in computable economics, under category
(i) above, were predominantly and spectacularly

IDEAS, PIONEERS, AND PRECURSORS 17



negative — effectively undecidable and unplayable games, effectively unrealizable choice functions, uncomputable
equilibria, effectively unlearnable REEs, and so on. Perhaps it was the fault of the pioneers that they emphasised the
(universal) negative results rather than the positive aspects of the negative results.22

All these issues and results, and summaries and generalizations of the above pioneering works, literally span the basic
contents of this book. Thus, the classic framework and results of Rabin form the subject matter of Chapter 7; aspects
of Lewis's sustained and deep research program in computable economics are discussed in Chapters 3, 7, and 9; the
starting-point for the subject matter of Chapter 6 on learning is the contributions of McAfee and Spear; a complete
elaboration and generalization of Rustem and Velupillai on rationality is the main theme of Chapter 3. However, in
contrast to the uniformly universal negative results reported in the original works, I try, wherever possible, to
emphasize an interpretation that stresses the positive aspects of the negative results. Taken together, these works
reiterate Debreu's message, but with “set-theoretical terms” replaced by “recursion-theoretical terms”; i.e., to
paraphrase Debreu, “Especially relevant to my narrative is the fact that the restatement of . . . economics in recursion-
theoretic terms forces a re-examination of several of the primitive concepts of economic theory” (1984: 269).

Above all, one is forced to re-examine the concepts of rationality, learning, the effective playability of games, and the
diophantine complexity of simple (arithmetical) games. For example, a reconsideration of the notion of rationality leads
to a natural definition in terms of procedures, which in turn forces — almost — the economic problem to be posed as
a decision problem rather than an optimizing problem; such a series of re-evaluations brings back into the fold, quite
naturally, satisficing behavior — but not simply as suboptimal behavior in a complex optimization problem (cf.
Chapter 4).

Combinatorial and Complexity Considerations
Without the slightest doubt, the clear and distinguished pioneers and precursors under this definition are Herbert
Simon (see below) and Scarf (1981a, b). The classics by Gomory and Baumol (1960) and

18 COMPUTABLE ECONOMICS

22 As in formal recursion theory in general and in computational complexity theory and diophantine decision problems in particular (cf. Chs. 7 and 8 below).



Clower and Howitt (1978) also belong to this class of pioneering works, as does the whole tradition of combinatorial
optimization coming down from Karl Menger's original statement of the famous travelling salesman problem (TSP). These
contributions investigate the role and feasibility of decentralized pricing mechanisms, and their optimality, in the
presence of computational complexities in the strict recursion-theoretic senses of the term. A model of computation
— usually the Turing machine model although, of course, under the Church–Turing thesis any equivalent model could
be used (cf. the appendix to this book) — underlies the theoretical analysis of the solution methods (algorithms). In
general, the computational complexities arise because of the intrinsic combinatorial or diophantine nature of a standard
integer programming problem, and these in turn are due to the existence of essential nonconvexities in economic
entities and behavior.23

I shall, however, also include the whole of the literature on the so-called socialist calculation debate in this category. I
believe it is feasible — indeed, quite easy — to give a computational complexity-theoretic characterization of the
fundamental points made by von Mises, Robbins, and Hayek: they, as precursors in the sense Borges uses in “Kafka
and his Precursors”, were making the obvious point that certain processes were computationally intractable. In
modern jargon, certain algorithms are computationally complex even though they can be shown to be theoretically
feasible.

The work by Clower and Howitt is remarkable in that they found the need for combinatorial constraints and the
theoretical technology of number theory for proofs24 in an elementary domain of economic theory: the transactions
theory of the demand for money. It is not too difficult to recast their problem and analyze it within
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24 As they note with characteristic candor, “These proofs necessarily involve the use of number theory — a branch of mathematics unfamiliar to most economists” (p. 452,
fn.3). I suppose the task I am attempting in this book is to try to familiarize economists with another branch of mathematics with which they are unfamiliar and, hence,
unable to harness for the purpose of mathematizing economics in effective ways.



the framework of a recursion-theoretic decision problem. Unfortunately, such an analysis within the framework of
computable economics must be postponed for the sequel to this book. (See Velupillai 1999a for a complete study of
Clower and Howitt within the framework of computable economics, and Velupillai 1998a for an initial attempt.)

The common economic implications in all these contributions, from Hayek to Simon, from Baumol–Gomory to Scarf,
was a “restatement of the tractability of decentralised economic processes analyzed in computational complexity terms
which forced a re-examination of the traditional interpretations of pricing, associated resource allocation mechanisms,
competition and institutions.” Indeed, in the series of classic works by Simon (Simon 1947 to Simon 1983 and beyond)
and by Scarf (1989, 1994), the imaginative economic implication of viewing institutions as algorithms is one result of
such computational complexity considerations; moreover, even the origin, evolution, and survival of firms and
markets are given an algorithmic interpretation with a basis for an analysis of their computational complexity — hence
economic efficiency — built in, so to speak.25

I will include two other classes of contributions under the present classification: my work with Rustem, going back to
the late 1970s, on the efficiency analysis of the algorithms used in policy optimization, estimation, and learning
exercises (Rustem and Velupillai 1985, 1990); and Kislaya Prasad's interesting and isolated work on applying
algorithmic complexity theory to investigate simple decidability questions in standard “polynomial” games (Prasad
1991). To the best of my knowledge, Rustem and I initiated the application of Khachiyan's celebrated result on the
tractability of linear programming to policy optimization and related problems. This work is adapted and applied in
Chapter 8.

In a certain precise sense, Prasad's work is an explicit application of two fundamental applied recursion-theoretic
results: algorithmic complexity theory, and diophantine decision problems. He uses the former approach to try to
answer questions on the determinateness of the number of equilibria in a class of standard games, and the latter to
investigate the decidability of finding equilibrium strategies in

20 COMPUTABLE ECONOMICS

25 I would even include Hayek's classic works on information and knowledge husbanding in decentralized economic systems (e.g. Hayek 1945) in this class of pioneers and
precursors.



a polynomially constrained cooperative game. I discuss these issues in Chapter 7.

Early Utilization of Recursion-Theoretic Tools and Concepts
In a fundamental contribution in the 1960s Hilary Putnam utilised, with characteristic imagination and foresight, the
notion of Turing machines to model rational behavior as defined in standard economic theory (Putnam 1967). So far
as I am aware, this was the first explicit case of modeling rational economic agents as Turing machines, albeit the
purposes were philosophical rather than economic.

Moreover, Putnam was also a pioneer and a noble precursor of the modern theory of induction (cf. Putnam 1963a,
1951). These remarkable and pioneering contributions by Putnam had their origins in the works of Reichenbach on
probability and Carnap on inductive logic.26

There is, however, an uncharacteristic and surprising technical slip in Putnam's use of a finite automaton to encapsulate
rational economic behavior.27 Some marginal notes on this issue can be found in Chapters 3 and 4 below. On the other
hand, as the precursor of the modern theory of induction, Putnam deserves a wholly separate and independent study.
My inadequate comments on his important and pioneering work in this area can be found in Chapter 4 (but cf.
Velupillai 1998a for a much more detailed study and appreciation of Putnam's contribution to a formalism for
induction and inductive logic from a recursion-theoretic point of view).

Gerald Kramer tried to formalize the idea of bounded rationality with the device of a finite automaton in an early and
unduly
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27 The technical slip occurs, I believe, in postulating an equivalence between a finite automaton and a rational agent as defined in economic theory: “In short, our machines [i.e.
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claims, however, even if the rational agent is modelled as a Turing machine (cf. Ch. 3, below).



neglected study (Kramer 1968). Not long after that, Carl Futia used the framework of the algebraic theory of automata
to investigate, formally, the complexity of (sequential) decision rules (Futia 1977). For pedantic reasons, I am forced to
take a puritanical attitude to the definition of computable economics — even granting the latitude via categories (i), (ii),
and (iii) above. I can, therefore, no more than mention these important and interesting contributions as examples of a
vast genre of work and results that have connections, albeit tangential, with computable economics according to the
above definitions. This is particularly so for the class of work in which finite automata and their (algebraic) complexity
properties have been used in repeated games. Some of this literature has been surveyed in Jerker Holm's doctoral
dissertation (Holm 1993) and I direct interested readers to that work and to the recent textbook by Osborne and
Rubinstein (1994, particularly chapter 9) for an excellent introduction to the frontiers of the field. Once again, as in the
case of Kramer and Futia, important and interesting though these contributions are, they are better studied from the
point of view of the algebraic theory of automata (and perhaps to some extent also on the basis of graph theory).28

Finally, there is the crucial contribution by Binmore (1987, 1988) which, like those by Simon and Scarf is essentially, a
wholly new research program. I am convinced that this will lead to the genesis of an entirely new sub-branch of
economics which would be best called algorithmic economics, on the same footing as Simon's behavioral economics,
Scarf's computable general equilibrium, and Vernon Smith's experimental economics. I suspect that what I have called
computable economics will, eventually, turn out to have a large intersection with Binmore's algorithmic economics
without, however, being a proper subset of it. At this time, the results and conceptual developments in algorithmic
economics, singlehandedly created and nurtured by Binmore, seem to be confined to game-theoretic issues; but a close
reading of what I consider to be the two classics of algorithmic economics (Binmore 1987, 1988), should convince any
reader that the methodological and epistemological agendas have wider scope and deeper aims.
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There is, finally, Canning's work, in which, using the notion of the Turing machine, he investigates the constrained
domain, in a certain precise game-theoretic sense, over which it is possible to be completely rational in the sense of
economic theory (Canning 1992). There are some methodological similarities with Putnam's much earlier exercise
(Putnam 1967). Neither of these contributions seems to have led to research programs in the sense in which I have
referred to the works by Simon, Scarf, Smith, or Binmore. This is to be regretted, but I am sure their time will come.

Herbert Simon as a Precursor
It is both impossible and, surely, unfair to try to summarize, under this heading, Herbert Simon's fascinating research
program. But I must give it a try, and for my attempt to make any sense at all it is, I think, necessary to view economics
within the broader canvas that is cognitive science.

When Herbert Simon made his first moves away from the Rational Man of Economics toward what he then termed
the Thinking Man (of Cognitive Science), his justifications and definitions were as follows (all quotes are from Simon,
1979: ix–xiii and 3–5):

(a) “[When Allen Newell and I began discussing ‘the prospect of simulating thinking in the summer of 1954’ it
was due to] my longstanding discontent with the economists' model of global rationality, which seemed to me
to falsify the facts of human behavior and to provide a wholly wrong foundation for a theory of human
decision making . . . ”

(b) On looking, therefore, for a “foundation for a theory of human decisionmaking” that would not so blatantly
“falsify the facts of human behavior.” Simon's first steps were:
(i) “to describe thinking processes as search processes” (p. 4), and, pro tempore, it was assumed that:
(ii) “the search [is] a serial, one-thing-at-a-time exploration” (p.4).
This was not due to any dogmatic belief in the infeasibility or irrelevance of parallel architectures; it was simply

a working hypothesis to get the research program going in its empirical and experimental paces.
(c) These broad, formal, and working hypotheses led to a more structured image of the Thinking Man (of

cognitive science),
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one that would be reasonably consistent with “the facts of human behavior.” This was the image that tried to
encapsulate the boundedly rational behavior of decision-making when agents confront complex environments;
the search — that “serial, one-thing-at-a-time” probing — was of the environment.

(d) But let me backtrack a little to get this point focused more clearly.
(i) From the early 1950s Simon, with Newell, had empirically investigated evidence on human problem-

solving and had “organised that evidence within an explicit framework of an information processing
theory” (p. x).

(ii) This led to “a general theory of human cognition, not limited to problem solving, [and] a methodology for
expressing theories of cognition as programs and for using computers to simulate human thinking” (p. x;
emphasis added).
Thus, the path towards Simon's behavioral economics began at the beginning, with the Rational Man of
Economics; but, by studying human problem-solving in general, he moved in two parallel directions which
facilitated a formal, experimental characterization of the Thinking Man: “inwards” to extract the cognitive
architectures consistent with the evidence of problem-solving; “outwards” to define the domain of analysis
in ways that would make experimental and behavioral sense. Thus, the Rational Man of Economics
became the “Whole (or nearly whole) Thinking Man (of cognitive science) by way of the Problem-Solving
Man (of normal science, à la Kuhn).

(e) The generalisation of human cognition — not limited to problem-solving — such that the restricted Problem-
Solving Man became the (nearly whole) Thinking Man implied capabilities to “express cognitive skills in a wide
range of task domains”:

[L]earning and remembering, problem solving, inducing rules and attaining concepts, perceiving and recognizing
stimuli, understanding natural language, and others. An information processing model of Thinking Man must
contain components capable of humanly intelligent behavior in each of these domains; and, as these models are
created, they must gradually be merged into a coherent whole. (p. x)
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It is in this sense that an understanding and appreciation of Simon's research program necessitates a view of economics
against a cognitive science background.29 This path towards a broader base for economics, with Thinking Man
replacing the traditional Rational Economic Man, stressed two empirical facts:

(I) “There exists a basic repertory of mechanisms and processes that Thinking Man uses in all the domain in
which he exhibits intelligent behavior” (p. x);

(II) “The models we build initially for the several domains must all be assembled from this same basic repertory,
and common principles of architecture must be followed throughout” (p. x; emphasis added).

It is at this point that I feel Simon's research program pointed the way toward computable economics in a precise
sense. In a possible world, inhabited by Kafka's predecessors, the first precept could be interpreted as a tentative
cognitive scientific statement of Church's thesis; i.e., the “basic repertory of mechanisms and processes” can be
encapsulated by Turing machines and their formal equivalents under Church's thesis. The second precept could, on the
basis of Rosenblatt's philosophy,30 have had its basis in the neural network underpinnings of cognitive science.
Together, they may have generalized the Thinking Man and led to the Computably Rational Man (cf. Chapter 3). But
somehow Simon did not push his research program in that direction.

Instead, the direction Simon took codified his research program in terms of the familiar notions of bounded rationality
and satisficing. The standard literature in formal economic theory has continued to interpret these notions as
approximations to full rationality and its outcomes. My own interpretation of these fertile concepts is almost
diametrically different. The reason I view them the way I do — reasons that are made formally explicit in Chapter 4 —
is that I interpret Simon's precepts (I) and (II) above recursion-theoretically, i.e. within the context of decision
problems in the strict recursion-theoretic sense.
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I remain convinced that, had Simon made the explicit recursion-theoretic link at some point in the development of his
research program, computable economics would have been codified much earlier.

2.4 Concluding Notes

This is a story of how I changed my views from the belief that good knowledge must always be represented as a set
of logical statements, within a suitable mathematical model of reality, to my present opinion that knowledge is basically
algorithmic.
Tseytin (1981: 390; emphasis added)

I have tried to tell a story of computable economics, its definition culled from “a road not taken” and the
substantiation, pro tempore, of the definition, by means of a narrative of the way some of the pioneers and precursors of
the subject tried to infuse recursion-theoretic considerations into economics. My formal starting-point was the fourfold
division of logic and an implicit bewilderment that economic knowledge, activities, and entities had been, and are,
modelled almost exclusively in set-theoretic and model-theoretic terms. What, I have asked myself over the years,31 if
“knowledge is basically algorithmic”? Are the tools and handmaidens of set theory and model theory, the standard
framework of the predicate logic, and related familiar methods sufficient or even necessary to encapsulate algorithmic
knowledge? If not, why not try other methods, more intrinsically algorithmic? Tseytin, that master analyst of learning
systems and procedures, goes on (from the above quoted starting-point):

My logicist approach to applications was implicitly based on a presupposition that . . . the predicate logic is a
universal representation of any regular reasoning, i.e., that any regular reasoning can be translated into the predicate
logic by a suitable change of notation.
There were no direct objections to declarative representation of knowledge itself. Formerly I had to stick to it
because it was the only form of knowledge supported by the logicist approach. Now I can view it as one special
type of knowledge; and it cannot operate alone, without the aid of procedural
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31 Inspired by listening to my friend and mentor, Axel Leijonhufvud, deliver his Marshall Lectures at Cambridge University almost a quarter of a century ago, where I was first
introduced to Herbert Simon's fascinating, algorithmic world.



knowledge. No equation, however general and elegant, can be used without an algorithm for its solution. . . . Thus the
change to proceduralism was in three steps: lifting the restrictions imposed by logicism; extending the techniques of
procedural knowledge; understanding the universal role of procedural knowledge. (Tseytin 1991: 391–2; emphasis
added)

Similarly, I conjecture — and hope — that the change to computable economics will proceed in a sequence of steps:
first, lifting the restrictions imposed by formalism and Bourbakianism32 which provide the mathematical underpinnings
of economics; then extending the techniques of proceduralism, as Simon, Scarf, and Binmore have done, and continue
to do; and finally, understanding the universal role of procedural knowledge, as Simon, almost more than any other
single person, has been claiming for almost half-a-century.

My definition of computable economics, as given in Section 2.3 above, and the story of the pioneers and precursors
were constructed with such steps in mind. Many have constructed individual, isolated steps, even whole segments of a
path. The whole “road not taken” can be assembled from these individual steps and segmented pathways.
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32 As Binmore perceptively noted, “Not only are abstractions introduced that do not necessarily admit an operational referent: At the same time, operationally relevant factors
are abstracted away together. This, in itself, is not necessarily invidious. However, the Bourbaki ethos makes it inevitable that factors that are not taken account of formally are not taken
account of at all ” (Binmore 1987: 183; emphasis added).



3 Computable Rationality

Turing's “Machines.” These machines are humans who calculate.
Wittgenstein (1980: s. 1096)

3.1 Introduction

We see that reason is wholly instrumental. It cannot tell us where to go; at best it can tell us how to get there.
Simon (1983: 7)

Can reason, in fact, tell us “how to get there”? The results in this chapter point to a negative answer to this query. I
begin starting from fundamentals to try to substantiate the notion that rational economic agents can be viewed as
Turing machines. By “starting from fundamentals,” I mean that I try to derive the mathematical equivalence between
the choice behavior of rational economic agents and the computational activities of a suitably encoded Turing machine
from the standard definitions and axioms of rational choice. This might seem surprising in view of the fact that
procedural elements are, ostensibly, absent in rational choice, as conventionally defined.33 That this is not so will be
demonstrated in the following section. Another reason for the exercise in Section 3.2, apart from the above and those
stated in the general aims of Chapter 1, is that most discussions in which the rational agent is modelled as a Turing
machine — with a few notable exceptions in game theory — assume, a priori, an equivalence. That this assumption is
justified, under some mildly restrictive assumptions, will be demonstrated.34

33 One aspect of Herbert Simon's multifaceted research program for the Thinking Man (cf. Ch. 2) is an attempt to rectify the procedural lacunae in the substantively rational
edifice of standard choice theory.

34 The “negative” consequences of the equivalence assumption, some of which are explored in this and the following three chapters, is quite another problem.



In Section 3.3, using the results obtained in Section 3.2, the undecidability of the effective generation of preferences and
the impossibility of effectively identifying subclasses of rational choice functions will be stated and proved as theorems.

Another way to view the aims and contents of this chapter would be to read it in the light of Arrow's characteristically
perceptive conjecture:

The next step in analysis . . . is a more consistent assumption of computability in the formulation of economic
hypotheses. This is likely to have its own difficulties because, of course, not everything is computable, and there will be in
this sense an inherently unpredictable element in rational behavior. (Arrow 1986: S398; emphasis added)

To wit, I shall explore the consequences of “a more consistent assumption of computability” in the formulation of
some aspects of rational choice hypotheses. It will be useful to keep in mind, in order to grasp the intended meaning of
some of the paradoxical and negative results, that Arrow links possibly unpredictable rational behavior with
uncomputability rather than with probabilistic structures in the traditional sense.

The formalizations, formal results, and proofs harness elementary concepts from classical recursion theory: Gödel
numbering, diagonalization, Rice's theorem, and the existence of recursively enumerable but not recursive sets. There
recursion-theoretic concepts are set in their effective paces within the standard framework of the economic theory of
rational choice.

3.2 The Rational Economic Agent as a Turing Machine

The present development . . . reveals the “Gödel Representation” to be merely a case of resymbolization, and
suggests that with the growth of mathematics such resymbolization will have to be affected again and again.35

Post (1994: 377)

COMPUTABLE RATIONALITY 29

35 The full paragraph of Post's seminal paper from which I have extracted this quote is particularly relevant for my essay: “Perhaps the chief difference in method between the
present development and its more complete successors is its preoccupation with the outward forms of symbolic expressions, and possible operations thereon, rather than
with logical concepts as clothed in, or reflected by, correspondingly particularlized symbolic expressions, and operations thereon. While this is perhaps responsible in part for
the fragmentary nature of our development, it also allows greater freedom of method and technique. In particular, it reveals the ‘Gödel Representation’ to be merely a case
of resymbolization , and suggests that with the growth of mathematics such resymbolization will have to be effected again and again” (Post 1944: 376–7; emphasis in the
original).



The equivalence I seek to demonstrate is that between the choice behavior of a rational economic agent and a suitably
encoded Turing machine. I will try to build the choice behavior of the rational agent from first principles to extract, on
the one hand, some of the implicit imperative contents of standard formalisms and to impute, on the other hand,
procedural elements where ambiguity can be identified.

First of all, I take it that we study choice behavior with choice functions.36 Formally, therefore, with

χ: a given universal set of alternatives;
Ω: a nonempty family of (finite) nonempty subsets of χ,

we have the following definition.

DEFINITION 3.1: THE CHOICE FUNCTION, C.

(i) .

(ii) .

Intuitively, this formalism encapsulates the elementary notion that choices are made from sets of
alternatives, and that

A process (rule, mechanism, criterion) for making choices, individual or collective, is applicable to any finite,
nonempty subset of some universal set χ of alternatives. (Schwartz 1986: 11)

In this interpretation, the process (or rule or mechanism) is called the choice function. We can immediately see
that the intended interpretation gives an imperative content to the function concept underlying C. This
alone could enable one to leapfrog to a λ-calculus interpretation of choice functions and hence, by
Church's thesis, to an assertion that rational economic agents are Turing machines.37 I will,
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36 In my formalisms of the basics I follow two of the classic texts in choice theory: Schwartz (1986) and Suzumura (1983).
37 In fact, in earlier work I felt able to use Schwartz's clear statements of an intended interpretation of the definition of the choice function — “C [the choice function]

represents what I call (for want of a better label) a choice process — a rule, procedure, institutional mechanism . . . ” (Schwartz 1986: 12) — by juxtaposing a reluctant
constructivist's statement of a version of Church's thesis — “Every rule is reducible to a recursive rule” (Beeson 1985: 55) — and then going on to assuming the
equivalence between rational economic agents and Turing machines.



however, pursue a more circuitous, but hopefully a logically better founded, path in the present attempt.
Ω is a collection of finite, nonempty subsets of the universal set χ, and therefore each ω is a finite, nonempty set. Thus,
the choice function C picks out a finite, nonempty subset to every finite, nonempty subset of χ. Again I will rely on
Schwartz's suggestive interpretative description, which gives behavioral content to the definitions in intuitive ways:

C represents what I call (for want of a better label) a choice process — a rule, procedure, institutional mechanism, or
criterion, or set of tastes, values, goals, or behavioral dispositions, that might govern the choices of some individual
or group of individuals from finite subsets of χ. For comprises those members of ω that choosers
governed by the given process might choose when ω is the feasible set. is the choice set from ω. (Schwartz
1986: 12)

Note also that the implication of (ii), indicated in the above quote, is that the choice function does not necessarily single
out just one alternative; this means that a nondeterministic Turing machine should be the appropriate model for the
rational economic agent (given that it can be shown to be equivalent to a Turing machine). The path from this very
general definition of the choice function to a definition of rationality is not particularly complicated, from a formal
point of view. The difficulty, if any, lies in unearthing various intended interpretations hidden behind some of the
abstruse symbolisms. This is the main task in the rest of this section: to uncover the anatomy of the choice function,
but via a dissection of the ideas and definitions behind (preference) orderings.

Arrow has demonstrated, in his classic piece on “Rational Choice Functions and Orderings” (Arrow 1959), that:

(a) “[b]oth demand function and orderings can be regarded as special classes of choice functions: (p. 122) and
(b) “an ordering can be interpreted as a series of statements about choices from sets containing two elements.

Choices from larger sets . . . are defined in terms of binary choice” (p. 122).

With this background, it can be seen that the idea behind rational choice is as follows. It is the choice, by the choice
function, of some class of maximal or optimal elements. These latter, in turn, are identified as a class of subsets of the
Cartesian product over the set of
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alternatives. Hence, as pointed out by Arrow above, orderings are, in general, special cases of choice functions. In this
sense, therefore, the given orderings — the traditional starting-point in economic analysis — via the choice function
interpretation must have an imperative content. To unearth this I proceed as follows.

Using Arrow's result given in (b) above, I ask whether the rational economic agent can effectively generate, as a
preference ordering, the relevant series of statements that are choices “from sets containing two elements.” The
formalism that enables me to ask, and answer, this question implies the equivalence I am seeking.

Taking, therefore, a few steps back from the standard, formal, starting-point of given orderings, I will ask the agents to
generate their preference orderings.38 This is, perhaps, to impose an unfair task; after all, the neoclassical closure is in
terms of preferences (orderings), endowments, and technology. One is not supposed to ask how they came into being.
There is, surely, no such thing as a totally endogenous field of inquiry: all science is in terms of judiciously chosen
closures. Let me therefore pose my query in a different (sequence of) way(s).

1. What is the nature and size of the set of alternatives, χ?39 For example, is χ countable? If not, how can we make
sense of “orderings . . . as a series of statements”? Whether χ is countable or not seems to be the only important
question requiring an answer under these headings.40 Quite apart from, and prior to, the fabled numerical
representation of preference orderings over sets of alternatives, there is
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38 Essentially, to generate them effectively. In my case, paraphrasing Nozick (cf. opening quote, Sec. 3.3, above), the “almost” equivalent query is: “In what other way, if not
effectively , can we understand the process of generating orderings (equivalent to ‘a series of statements about choices from sets containing two elements’)?” It is clear that I
am invoking Church's thesis.

39 Duncan Luce's four-decade old observation seems to me to be still valid: “All of our procedures for data collection and analysis require the experiments to make explicit
decisions about whether a certain action did or did not occur, and all of our choice theories — including this one — begin with the assumptions that we have a mathematically well-
defined set, the elements of which can be identified with the choice alternatives . . . There are limited experimental results on these topics, but nothing like a coherent theory. . . . More
than any other single thing, in my opinion, this Achilles' heel has limited the applicability of current theories of choice . . . ” (Luce 1959: 3–4; emphasis added). It may, at this
point, be useful to remind readers that Frank Ramsey, in his classic piece on Truth and Probability, considered only finite sets of alternatives, for the same reasons that
motivated Alan Turing to constrain his machines to be equipped with a finite number of states.

40 The interesting discussion between Chipman (1960, 1971) and Newman and Read (1961) is marginally relevant in this context. I will not, however, take it up in this book.



the question of describing the set of alternatives.41 “An ordering . . . as a series of statements” requires each alternative
to be described as a statement from a finite alphabet. The set of such statements from a finite alphabet can, at most, be
countable. Finally, two-element sets from such a countable set are also countable and are effectively encodable, say by
Gödel numberings. Before a demonstration of this encoding, another question should be asked.

2. What is the process by which economic agents are presented the alternatives, so as to exercise choice? There are
various conceptual suggestions, in the form of thought experiments, in the standard literature, for example the
Lucasian metaphor of the agent as a signal processor, or Patinkin's thought experiment of the agent as a utility computer, or
the more recent New Classical suggestions of agents as decision rules. Patinkin conceptualized his utility computer as
follows:

Indeed we can consider the individual — with his given indifference map and initial endowment — to be a “utility
computer” into whom we “feed” a sequence of market prices and from whom we obtain a corresponding sequence
of “solutions” in the form of specified optimum positions. In this way we can conceptually generate the individual's
excess-demand [function]. (Patinkin 1965: 7)

Conjoining Arrow's results with Patinkin's assumptions in the above thought experiment gives the first hint for the
equivalence that is being sought: the “given indifference map” (i.e. the given orderings) can, at most, be a countably
infinite set of statements from a finite alphabet — indeed, well formed formulas (w.f.f.) — of a language. In a Turing
machine formalism, this countably infinite list could be represented on the potentially infinite input tape, processed by
a set of finite configurations of internal states and a finite set of transition rules. But, of course, for the processing to be
implemented, the countably infinite set of statements encapsulating given orderings has to be represented number-
theoretically. I turn, now, to these number theoretic representations.

3. Three sets have to be effectively encoded if the suggested equivalence is to be derived.

(i) the set χ of alternatives;
(ii) the series of statements about choices from sets containing two elements;
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(iii) the encoding of Ω in an economically meaningful way.

From the discussion in paragraphs 1 and 2, it is clear that there is a natural encoding of χ in terms of ℵ, the natural
numbers. The encoding of the set in (ii) is, therefore, of the set ℵ × ℵ.ℵ Following, for example, Rogers (1967: 63–4),
the following number-theoretic encoding could be used: given any two alternatives x, y ∈ χ in a natural encoding in ℵ

(i.e., x, y ∈ ℵ), define:

(3.1)

It is easy to show that (3.1) is a recursive bijection from ℵ × ℵ to ℵ.

Next, to effectively encode Ω, assume, as in Arrow (1959) and Suzumura (1983), that the economic agent's
hypothetical “confrontation” is over the set of finite subsets of χ. Therefore, let ω ∈ Ω be a finite set of alternatives
denoted by

(3.2)

where

(3.3)

and denote by Dx the finite set that contains {x}. Then, each finite subset that is hypothetically presented to an
economic agent is represented number-theoretically.

4. So far, the alternatives have simply been given a representation to an “registered” on the potentially infinite input
tape of a Turing machine for effective processing. The elementary structures on the set of alternatives — τ(x, y), ω, and
Dx — are, thus, effectively encoded. The equivalence I seek can be achieved if, in some recursion theoretic sense, I can
also encapsulate a notion of rationality in an effective (or decidable) way. For this to be achieved, I need to investigate
particular binary relations and the idea of maximal alternatives. Now, what is the meaning of binary relations over a set
of alternatives facing an economic agent? To frame the question in a way that is relevant to my aims, note that a binary
relation, say over χ, is a propositional function with truth values (true) and (false) that unambiguously decides42 a
membership relation for an ordered pair. Then the recursion-theoretic question would be: is this membership
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42 There is an implicit acceptance of the law of the excluded middle in the face of countable infinities at this point and, hence, would immediately disqualify standard choice
theory from the constructivist's point of view.



relation effectively decidable? Define, therefore, the weak preference relation (e.g. Suzumura 1983: p. 7):

(3.4)

or

(3.5)

What is the meaning of (3.5)? Since the effective encoding of all the building blocks has been demonstrated in
paragraphs 2 and 3 above, this is a meaningful query for a Turing machine. Therefore the effective decidability of
membership or truth values in (3.5) will depend on the recursive structure endowed to χ.43 However, the economic
agent's exercise of rationality also requires the definition of a maximal set of alternatives. Rational choice is the
choosing of such a maximal set of alternatives by an economic agent. Define, then, the set of -maximal alternatives,

, as

(3.6)

where and ω ∈ Ω. Then, for example, a choice function becomes a rational choice function (RCF)
whenever, for all consists of the -maximal alternatives (3.6) of ω:

(3-7)

Clearly, is defined number-theoretically. A Turing machine can be programmed to test, for each given (pair
of) encoded alternative(s), whether τ(x, y) has a certain decidable property (i.e. satisfies a membership relation or
decides the truth value of a proposition) defining .

5. Finally, we put together the elements discussed in paragraphs 1–4 to obtain the equivalence between the formal
rational economic agent's choice process and the computing activities of a suitably initialized and configured Turing
machine. As has been shown, every element going into the formal activity of choosing a subset from a given set of
alternatives by a rational economic agent is effectively
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43 In other studies related to this one, more structure has been imposed directly on χ in order to characterize recursion-theoretic choice behavior. Alain Lewis (1985) is a
brilliant and exhaustive study along such lines.



encodable. The only remaining unanswered question is the meaning to be given to choosing, or “picking out,” a set of
maximal alternatives.

The activity of choosing or “picking out” is one of comparing, for each , all and identifying or verifying
the membership relation or deciding the truth value of the propositional function . This too is an
effectively encodable procedure, and hence can be processed by a Turing machine. Thus, every aspect of choice by a
rational economic agent corresponds to an implementable procedure by a Turing machine. We have, therefore, the
following proposition:

PROPOSITION 3.1. The process of rational choice by an economic agent is equivalent to the computing activity of a
suitably programmed Turing machine.

Remark. If, as is sometimes standard, the rational agent is represented or identified with an appropriate RCF, then that
RCF can be associated with a concomitant Turing machine.

In conclusion, it should be pointed out that I have eschewed the recent practice of endowing , from the outset, with
recursive structures, or of assuming, ab inizio, that rational agents are Turing machines. This was not for aesthetic,
theoretical, or even empirical reasons. It was simply because I wanted to begin from standard fundamentals and to
explore their effective content. It is clear that there are crucial — almost noneliminable — nonconstructive and
noneffective implicit assumptions in the standard formalism. For example, from the constructivist's point of view,
there is the implicit assumption of the law of the excluded middle in (3.5); and from the recursion theorist's point of
view, there are the implicit noneffective assumptions in (3.5) and (3.7). Effectivizing them are crucial steps in deriving
the equivalence Proposition 3.1.

3.3 The Noneffectivity of Preference Generation

In what other way, if not simulation by a Turing Machine, can we understand the process of making free choices?
By making them perhaps.
Nozick (1981: 303)
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Can economic agents act rationally, or choose optimally, without having access to their preference orderings, if these
exist? Or without being able to rationalize their choice functions? It is one thing for the experimental—econometric
investigator to endow agents with plausible utility functions44 with which to interpret and organize data and the
observed results of choice; it is quite another thing to assume that agents choose as they do because they have
rationalized their choice function or have ordered preferences.45 A plethora of dubious philosophical justifications have
been harnessed to justify standard practice, from crude “as if” arguments to pseudo-scientific instrumentalist
fundamentals. I do not know how to interpret the exact logical status of “as if” reasoning.46 But ever since Machlup,
Samuelson, and Friedman made their celebrated methodological statements, it has been hard to make a case for
scientific realism in the formulation of economic hypotheses.47 I will not even attempt to enter this particular minefield.
Instead, assuming the Church—Turing thesis, I will simply ask whether there are effective procedures that rational
economic agents, as Turing machines, can use to order their preferences (rationalize their choice functions48). If the
answer is negative, I will assume that the following observation by Sen must be taken seriously in the formulation of
testable hypotheses about rational behavior:
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44 But one must not forget Samuelson's original aim: “I have tried here to develop the theory of consumer's behaviour freed from any vestigial traces of the utility concept”
(Samuelson 1938: 71).

45 Or, to quote the master again, “the individual guinea-pig, by his market-behaviour, reveals his preference pattern — if there is such a consistent pattern” (Samuelson 1948:
243).

46 As cogently argued by Musgrave (1981), “Are [as-if] . . . hypotheses convenient mathematical devices for predicting . . . ? Are they, in other words, mere instruments which
do not really explain the facts which they predict? I do not think we are forced to such instrumentalist conclusions. For we can give our . . . hypotheses descriptive and
explanatory force by [rephrasing] them. . . . I prefer the paraphrases. This is partly because I prefer scientific realism to instrumentalism. It is also because they eliminate ‘as
if ’: for the logic of ‘as if ’ statements (what follows from them and what does not follow from them) is terribly unclear” (pp. 384–5). Musgrave means by this, for example, a
rephrasing of “under a wide range of circumstances individual firms behave as if they were seeking rationally to maximize their expected returns” to “under a wide range of
circumstances the conscious deliberation which underlie business behaviour have the overall effect of maximizing expected returns” (pp. 384–5, fn. 11).

47 But see Ch. 9 for an “inductivist's” justification of a compromise between realism and instrumentalism, naively conceived.
48 In an expectational context, the analogous problem would be whether there are effective procedures to rationalize expectations.



the fundamental assumption about the revelation of preference can be criticized from many points of view, including
the possibility that behavior may not be based on systematic comparison of alternatives. (Sen 1973: 21)

If the rational economic agent can rationalize a choice function or order preferences among alternatives, then this is
equivalent to stating that

(3.8)

or that

(3.9)

The following theorem claims that neither of these assertions is true.

THEOREM 3.1. There is no effective procedure to generate preference orderings.

Proof.49 As pointed out above, formally a binary relation on ℵ is a proposition such that, for any ordered pair (x, y),
where x, y, ∈ ℵ, we can state unambiguously whether is true or false. Thus, the demonstration of the
uncomputability of τ(x, y) will imply the truth of the theorem.

The economic agent, in standard theory (cf. Sen 1973), is assumed to systematically evaluate alternatives (pairwise —
cf. the quotations from Arrow 1959 above) in a rational choice situation such that the observable results reveal
consistent preferences. This “systematic evaluation” means a sequence of computations of τ(x, y). Let agent i,
therefore, apply Turing machine i, TMi, to evaluate the encoded number τ(x, y) of the ordered pair (x, y); the agent
faces, as in elementary consumer theory, the task of evaluating a countable infinity of ordered pairs.50 We can, of
course, encode the two truth values of in appropriate numerals, say and . Then, on input τ(x, y), the
TMi should halt with values 1 or 0. (But will every possible Turing machine halt for any arbitrary input τ(l, m), ∀ l,
m∈χ?51)
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49 I will assume that each agent has access to any Turing machine and that, therefore, the collection of agents can also use them.
50 Indeed I am assuming much else , since, in fact, the rational agent in elementary consumer theory faces all the “points” in the nonnegative orthant — i.e. uncountable

infinities. I cannot see how this number of alternatives can be assumed and, at the same time, agents be expected systematically to evaluate alternatives; or to be consistent
with any of the standard thought experiments, without also assuming some form of the axiom of choice .

51 The proof can be concluded, in a simple way, with an appeal to the unsolvability of the halting problem at this point. Alternatively, we can endow [τ(x , y )] with an
appropriate recursive structure and get direct undecidability results (as in Lewis 1985). I am, as mentioned earlier, following a more roundabout procedure which will also
enable me to introduce the notion of a Universal Turing machine .



Now, note that:

(3.10)

This kind of Turing machine, indexed by u, is the Universal Turing machine (UTM). Intuitively speaking, (3.10) asserts
that a special purpose Turing machine can be constructed that can, in principle, simulate the actions of any arbitrary
Turing machine for a given input. Consider the set

(3.11)

This set is recursively enumerable but not recursive (which will be demonstrated). Hence is not (effectively) decidable. In
other words, TMn, say corresponding to the Turing machine used by rational agent n, when “fed” n = τ(p, q), may or
may not output a truth value 1 or 0 for . Thus, there is no effective procedure to decide whether a preference
ordering can be generated by methodically — i.e. systematically — evaluating alternatives.

To complete the proof, it must also be shown that Γ is recursively enumerable but not recursive. This can be shown as
follows.

It is clear that Γ is recursively enumerable. If, in addition, Γ were recursive, then the complement of Γ would be recursively
enumerable, and therefore the (partial) characteristic function, say, η, of this complementary set would also be
computable. There would, thus, be a number m such that, ∀ x, η(x) = TMu (m, x). Therefore, x ∉ Γ iff η(x) is defined.
However, we have defined Γ such that m ∈ Γ iff TMu (m, m) is defined, and hence we have obtained the necessary
contradiction.

The assumption that the countable infinity of Turing machines are (potentially) utilized — even if the number of
rational agents is finite — is somewhat unsatisfactory. We shall, therefore, drop this assumption and, instead, ask
whether we can effectively identify classes of choice functions, used by an arbitrary agent, that do generate his or her
preference orderings. In other words, can we, given a class of choice functions, find a systematic procedure — i.e. an
effective procedure — to decide whether this class does, in fact, pick out a set such
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as of maximal alternatives? The next theorem asserts that the answer to this question is also in the negative.

THEOREM 3.2. Given a class of choice functions that do generate preference orderings (pick out the set of maximal
alternatives) for any agent, there is no effective procedure to decide whether or not any arbitrary choice function is a
member of the given class.

Proof. First of all, from the discussion in Section 3.2, we can safely assume that the class of choice functions can be
effectively encoded and, therefore, a fortiori, those choice functions that are rationalizable are also effectively encodable.
Moreover, dropping the assumption in footnote 17 used in proving Theorem 3.1, means that the class of choice
functions is not necessarily countably infinite. In other words, we now have a subset of the class of Turing machines
computing members from the class of all sequences [τ(x, y)] to evaluate truth values for (classes of) binary relations .
But by Rice's theorem no nontrivial property of this subset of Turing machines, i.e. the class of rationalizable choice
functions, is effectively decidable. In particular, there is no effective procedure to decide whether or not any arbitrary
given choice function is a member of the given rationalizable set.

This negative result, even more than Theorem 3.1, seems to be particularly depressing. But there are positive aspects to
such negative results, some of which are sketched in the next, concluding, section to this chapter.

3.4 Concluding Notes

If we use a method which takes account only of recursive hypotheses, then if we live in a world in which human
beings have the ability to calculate nonrecursive functions, and the true hypothesis involves a function of this kind,
then we will never confirm the true hypothesis using a scheme of the kind just described.
Putnam (1951/1990: 10)

It is quite possible that economic agents are able to rationalize their preference functions using nonrecursive functions.
Computable economics is, at least in part, about delineating the boundaries between
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the effective and noneffective processes. It must not, however, be forgotten that the notion of “effective” is predicated
upon an acceptance of the Church–Turing thesis.

In an early and notable paper, Gerald Kramer sought to show the formal incompatibility of the assumptions
underlying rational behavior and the “finite information-processing capabilities possessed by real decision-makers”
(Kramer 1968: 39). In other words, if the latter idea is formally encapsulated in the device of a finite automaton, the
question is whether the former behavior is possible, or whether a finite automaton can display rational behavior in the
sense in which this is understood in formal economic theory (defined in Section 3.2 above). Kramer's negative result
can be formally stated as follows:

PROPOSITION 3.2. For a countably infinite set of alternatives and the class of all finite subsets of , a
rationalization of a choice function by cannot be realized by a finite automation.

Remark. If we replace the finite automaton by a Turing machine, the equivalent result will be in terms of the effective
undecidability of the rationalization of a choice function as in Theorem 3.1 above. Either Theorem 3.1 can be adapted
to get a precise statement of Kramer's result, or, conversely, Kramer's methods can be modified appropriately to get
the result with a Turing machine. In recent research — particularly in game-theoretic contexts but not exclusively so —
attempts have been made to encapsulate the slippery notion of bounded rationality in the device of a finite automaton.
Kramer's result lends partial support to such attempts in a very special sense. I will return to these themes in what
follows.

I have underlined the importance of some of Putnam's seminal writings in Chapter 2. In his thoughts on “The Mental
Life of Some Machines” (Putnam 1967), he tried to give recursion-theoretic content to an analytical category in
economics in order to discuss issues in philosophy. In particular, Putnam wanted to debunk the idea that the
“traditional mind–body problem” has something to do with the “supposedly special character of human subjective
experience” (Putnam 1967: 408). By considering a community of finite automatons, each of which is endowed with a
“rational preference function” in the sense of economic theory, Putnam assumes52 that these
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machines can be considered “rational agents in the sense in which that term is used in inductive logic and economic
theory” (p. 409). Thus, Putnam's assumption is that these machines — finite automata — can behave so as to
maximize expected utility in the traditional sense in which this is held to be true in economic theory. But, by Kramer's
result, his premiss is false. However, by simply modifying the premiss of finite automata to Turing machines, Putnam
could preserve the substance of his analysis.

Perhaps the most general contribution to the genre spanned by Kramer (1968) and Putnam (1967) on the one hand
and Rustem and Velupillai (1990) on the other is the brilliant piece by Alain Lewis (1985).53 Lewis poses questions
similar to those put by the above authors in the setting of quite general recursive structures ab inizio. I have explained
my reasons for avoiding this path in Section 3.2 above. Lewis's main result (1985: 61, theorem 3.1) has a couple of
precise implications, one of which I will reproduce here mainly because it ties up well with my Theorem 3.1 and
Proposition 3.2.

Denote by:

the power set of the set of alternatives,
the image of a compact, convex subset , and

the collection of all recursive subsets of .

DEFINITION 3.2. A choice function is computationally viable if and only if there exists a Turing
machine such that realizes recursively.

Then we have the following proposition.

PROPOSITION 3.3. No nontrivial recursively representable demand correspondence on is computa-
tionally viable.

This result is a generalization of Proposition 3.3 and is an almost exact analogue of Theorem 3.1. The immediate
consequences of these results, from a strictly economic-theoretic point of view, are expertly summarized by Lewis:

It is obvious that any choice function that is not at least computationally viable is in a very strong sense economically
irrational. Unless the computation
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is trivial, i.e., involves no computation at all, and thus is both complete and accurate without the use of any Turing
Machine, the choices prescribed by a computationally non-viable choice function can only be implemented by
computational procedures that do one of two things: either (a) the computation does not halt and fails to converge,
or (b) the computation halts at a non-optimal choice. (Lewis 1985: 45)

How are we to interpret, positively, these negative results? Perhaps one message is that we should be gentler in our
demands on rational behavior — a message that Herbert Simon has been expounding tirelessly for almost half a
century. But the negative results have a positive aspect in a more direct way. They are, in one sense, like counter-
examples in mathematics,54 and should be used the way George Polya used them — imaginatively, to push the outer
boundaries of the subject. A demonstration that preferences cannot effectively be generated does not necessarily imply
that preferences do not exist: it only means that computationally viable methods have no access to them. Whether
there are other formal methods that can generate them, in analytically meaningful ways, is not a topic for discussion in
this book — particularly because I work within the framework of the Church–Turing thesis. The negative results have
to be accepted, and our frameworks adjusted to account for them, in the same way that social choice theorists and
mathematical political scientists accepted, and adapted to, Arrow's celebrated Impossibility Theorem; and, as
Suzumura pointed out, there are positive aspects to that result, too:

The implication of [Arrow's Impossibility Theorem] is very negative and sweeping indeed. But one should not fail
to recognize that Arrow's theorem and related negative results may well serve as a signal that forces us to reexamine
the conceptual framework of the analysis of rule design. Viewed in this way, the thrust of the apparently negative
assertions may turn out to be quite positive after all. (Suzumura 1983: 62–3)

This observation applies, pari passu, to the negative results reported in Theorems 3.1 and 3.2, and in Propositions 3.2
and 3.3. It should lead us to “reexamine the conceptual framework of the analysis of rational behaviour.” Again, it is
not a particularly startling message to those who have followed Simon's suggestions for many decades. In later
chapters I will suggest alternative ways to preserve the traditional conceptual framework, while remaining within a
recursion-theoretic framework.
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4 Adaptive Behavior

What is ordinarily called adaptation is, when translated into mechanical terms, direct equilibration.
Herbert Spencer (1866/1996: 234)

4.1 Introduction

One can ask if solutions or trajectories exist for [an adaptive, evolutionary, economic] model and what is their
dynamic and economic character. In particular we can ask if any such solutions would have the character of an
intertemporal, general equilibrium and under what conditions the adaptive evolutionary economy would converge
to one.
Day (1993: 21)

If behavior in an economic context is always adaptive, then its “trajectory” must always represent transition dynamics
to a steady state. If, moreover, behavior is assumed to be rational, then it must be characterized by the steady states of
the dynamical system that corresponds to the above “trajectory.” It is, therefore, legitimate to ask whether we can
characterize rational behavior, as it is normally understood and defined in economic theory, in terms of the limit-sets
of a dynamical system. Next, we may ask whether the limit-sets are computationally viable. Answers to these questions
may suggest an observational fact: the persistence of adaptive behavior. These themes circumscribe the nature and
scope of this chapter.

Fritz Machlup once described the word structure, as used in economics, as a weasel word 55 – “a word that makes a
statement evasive or misleading.”56 Something similar can be suggested for the increasing

55 In Machlup's characteristically pungent description, “Structure . . . is . . . a weasel-word used to avoid commitment to a definite and clear thought” (Machlup 1958: 280).
56 Wordsworth Concise English Dictionary .



use being made of adaptive, evolutionary, near-rational, boundedly rational, and many similar evocative terms being harnessed
by imaginative theoreticians to describe economic behavior that seems to be more realistic in descriptive and predictive
senses. As Holland and Miller, themselves influential contributors to a fascinating research program on modelling
economic environments as complex adaptive systems peopled by artificially adaptive agents (AAA), put it, “Usually,
there is only one way to be fully rational, but there are many ways to be less rational” (Holland and Miller 1991: 367).

This suggests that the many ways in which we theorize about less than full rationality — as adaptive, boundedly
rational, evolutionary etc., agents — are to be considered approximations, of one sort or the other, to the “one way to be
fully rational.” This is exemplified, for example, in the definition of ε-approximate rationality as boundedly rational.

But can we not go the other way? Can it not be the case that “full rationality” is the approximation to something more
“realistic” in descriptive and predictive senses — indeed, even in a normative sense? More to the point, are there not
more ways than one “to be fully rational”? I shall return to some of these issues later in this chapter and in other
chapters, but for the moment it may be useful to remember that so-called theories of “full rationality” are good at
being approximately correct only in descriptive and predictive senses. Why, then, should a “fully rational” model of
rational behavior be a benchmark — if its predictive and descriptive powers are only approximately correct? Surely, it is
the other way around in the natural and pure sciences. John Harsanyi, one of the great advocates of normative theories
of human behavior and of the fully rational model, raised some of these key issues in the following way:

[H]uman beings often fall quite short of the perfect rationality postulated by normative theories of rational
behaviour. . . . [One reason] is the limited information-processing ability of the human central nervous system,
emphasized by Simon's theory of “limited rationality”.
. . . [I]n actual fact these obvious limitations of human rationality do not generally present rational-behavior theories
from yielding reasonably good approximate predictions about social behavior over a wide range of social situations.
Of course, a good deal of further experimentation with various types of rational-behavior theories will be needed
before we can ascertain how far these theories can really take us in explaining and predicting empirical social
behaviour in each particular field. (Harsanyi 1977: 17)

ADAPTIVE BEHAVIOR 45



Is there, then, more than “one way to be fully rational,” as Harsanyi seems to be suggesting? This is my view, and I
shall try to make my case for an alternative fully rational model in this and ensuing chapters. However, recall pro
tempore, that I have identified a standard fully rational agent with a Turing machine (accepting the Church—Turing
thesis).

In the next section I try to explore the recursion-theoretic characterization of a definition of adaptic behavior
suggested recently by Lucas (1986). In Section 4.3 I continue my explorations on the connection between so-called
fully rational and adaptive behavior, but this time in a more descriptively realistic way. Finally, in Section 4.4, I try to
derive some hints, on the basis of the analytics in the preceding sections, on the path toward definitions of alternative
ways to be fully rational.

4.2 Dynamical Rational Behavior

One might question whether [processes that involve more or less mechanical following of a decision rule] involve
much real choosing using the everyday sense of that term.
Nelson and Winter (1982: 68)

Lucas discusses a dynamic characterization of rational behavior by suggesting that “all behavior is adaptive” (Lucas
1986: S408) in that “traditional demand functions are decision rules” (p. S410) and these, in turn are “steady states of
some adaptive process” (p. S402) which are “arrived at after a process of deliberate experimentation and assessment of
outcomes” (p. S410). The assessment of outcomes is by means of the traditional formalism of preferences. Thus,
Lucas seems to be making explicit the implicit dynamics underlying formalisms of rational behavior. In fact, he states
explicitly:

The behaviour implied by these decision rules is “rational” in the sense that economists use that term. But not only
is it consistent with adaptive, trial-and-error behaviour; the experiment designed to discover this rationality assumes
that, if it exists, it is the outcome of some (unspecified) adaptive process. (Lucas 1986: S4)

To explore the recursion-theoretic characterizations and implications, I shall work with the following two equivalences
in addition to
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the one determined in Chapter 3 (here stated, for convenience, as (c)):

(a) Adaptive processes will be assumed to be dynamical systems (in the strict technical sense of the term).
(b) Dynamical systems capable of computational universality can be constructed from Turing machines.
(c) Rational behavior by an economic agent is equivalent to the computational behavior of a Turing machine.

With these equivalences, it will be possible to ask recursion-theoretic questions about the “steady states of . . . adaptive
processes”; i.e. steady states of dynamical systems or the halting configuration of Turing machines which, by (c),
depicts appropriate rational choice. Now, the equivalence in (c) has been demonstrated in Chapter 3; the equivalences
in (b) will be shown in this section, while (a) will, as stated above, simply be assumed. The assumption of the
equivalence in (a) is quite standard and is, indeed, implied in Lucas's suggestive descriptions.

To show a particularly simple construction of a dynamical system embedding the computational activities of a Turing
machine (and, hence, rational behavior by an economic agent), I will describe, concisely, an ingenious recent
construction by Moore (1995). However, before proceeding with a description of Moore's construction, let me point
out that, ever since von Neumann (1966) constructed a 29-state cellular automaton (CA), there have been numerous
successes in building simple dynamical systems capable of supporting computation universality — i.e., of simulating
the behavior of a (Universal) Turing machine. More recently, for example, Berlekamp et al. (1982a, b) have shown how
computation universality can be implemented on the initial configuration of the game “LIFE”.

Now, Moore's starting-point was a construction suggested by Minsky in his seminal book (Minsky 1967: chs. 11, 14).
Using what he called the program machine equivalence of the Turing machine — called a register machine in the more
recent literature — Minsky showed, in theorems 14.1.1 and 14.2.1, how to construct a program machine with only 1
— or 2 — registers. For example, to simulate a register machine with three registers, say l, m and n, by a register
machine with two registers, Minsky's result is:

For any Turing Machine there exists a Program Machine with just two registers that behaves the same as
when started with zero in one register and 2l3m5n in the other . . . (Minsky 1967: 257)
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Moore, using analogous reasoning, combines the finite states (registers) of the Turing machine by putting

(4.1)

and letting

(4.2)

where n is the number of (finite) states in the given register machine and the n states are labelled s = 0, 1, . . . , n − 1.

Next, Moore embeds this in an analytic map of the reals. To check, then, whether or not the machine is in state s,
define:

(4.3)

It can be seen that hs(x) = 1 on integer values if x mod n = s, and hs(x) = 0, otherwise.

Next, to check whether the register ks, for ks = 2, 3, or 5, is zero, put

(4.4)

Then ks = 0 ⇔ gs(I) = 1 if I mod ks = 0, and ks = 1 ⇔ gs(I) = 0 if I mod ks ≠ 0.

Next, as in a standard Turing machine, depending on the symbol read and the current state, there is a transition; i.e.,
depending on s and which of the registers is being accessed, I must be appropriately modified and the Turing machine
must go to a new state, say t. Label them αs, βt, γs, and δt respectively. Then the transition can be affected by putting

(4.5)

if we define:

(4.6)

This is the map that contains the Minsky program machine, which in turn simulates the original Turing machine, which
is a representation
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of the rational economic agent's choice behavior. Furthermore, this map, as a dynamical system and a Turing machine,
has embedded in it the undecidability of the halting problem. The undecidabilities of the limit-sets of its dynamics will
not, for example, be due to sensitive dependence on initial conditions; i.e., even if initial conditions are precisely
known, there will be undecidabilities of particular properties of the limit-sets of the dynamics of the maps.

At a more general level, once the Minsky construction is effected, the path from (4.1) to (4.6) can easily be replicated to
tailor-make dynamical systems to specified prescriptions. Recall, further, that in a precise sense every Turing machine is
also a Universal Turing machine; i.e., such a machine can be programmed to compute any theoretically feasible
computation and mimic the action of any arbitrary Turing machine.

For ease of reference in the results to be stated as theorems and proved, I need two simple, synthetic, definitions.

DEFINITION 4.1. A dynamical system — discrete or continuous — is said to be capable of computation universality if, using
its initial conditions, it can be programmed to simulate the action of any arbitrary Turing machine, in particular that of
a Universal Turing machine.

DEFINITION 4.2. A dynamical system capable of computation universality will be called a universal dynamical system.

Remark. Clearly, it would have been sufficient, for my purposes, simply to use one of the cellular automatas — say, the
relevant “LIFE” configuration — that have been shown to be capable of computation universality as the universal
dynamical system. But the virtues of Moore's construction are that they are: (a) simple, (b) replicable, and (c) low-
dimensional (indeed, one-dimensional).

I can now return to Lucas's suggested connection between adaptive behavior and rationality and state two precise
results.

THEOREM 4.1. Only adaptive processes capable of computation universality are consistent with rationality “in the
sense that economists use that term.”

Proof. Recall, from earlier results, that the rational agent can be modelled as a Turing machine and that the rational
behavior of the economic agent is equivalent to the appropriate computing behavior by a Turing machine (equivalence
(c) above). By the construction above, equivalence (b) holds and (a) is an assumption. Then, by
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Kramer's result on finite automata (Proposition 3.2) we know that such restricted Turing machines are inconsistent with
rationality “in the sense that economists use that term.” Thus, it follows that any dynamical system modelled by
automata not capable of computation universality is similarly inconsistent, and hence only adaptive processes capable of
computation universality are consistent with rationality “in the sense that economists use that term.”

THEOREM 4.2. There is no effective procedure to decide whether given classes of decision rules are “steady states of
(some) adaptive process.”

Proof. Note, first of all, from the above discussions, assumptions, and results, that “steady states of adaptive processes”
are “steady states of dynamical systems.” Thus, given a class of decision rules, to ask whether they correspond to
steady states of dynamical systems is equivalent to asking whether they belong to the basin of attractions of (some)
such dynamical system. However, by the previous theorem, the dynamical system in question must be capable of
computation universality, i.e. a universal dynamical system; for, if not, the steady states will violate some form of the
rationality postulate.

Next, I claim that the basin of attraction of universal dynamical systems is recursively enumerable but not recursive.
That it is recursively enumerable follows from the simple fact that trajectories belonging to it can be effectively listed by
trying out initial conditions systematically.

On the other hand, suppose they are recursive. Then the halting problem would be solvable. For, given the basin of
attraction and arbitrary initial points, this will mean that the dynamics will effectively answer questions of membership.
Since this is a universal dynamical system, a query concerning whether or not a Universal Turing machine will halt, for
arbitrary inputs, at a particular configuration can be answered. This contradicts the unsolvability of the halting
problem. Hence, by Rice's theorem, there is no effective procedure to decide whether any given class of decision rules
is in the steady state of (some) adaptive process.

These results, in a nutshell, state that there are no systematic procedures available a priori to study and characterize
long-run properties of interesting dynamical systems. By “interesting dynamical systems” I mean those that can
encapsulate fully rational behavior. Any economic dynamics that leads to limit-sets that are only limit-points

50 COMPUTABLE ECONOMICS



(nodes, foci, saddle-points, even limit cycles) cannot represent fully rational behavior in a very precise sense. It is an
aspect of this precise sense that I have attempted to capture in the above two theorems.

To put it another way, economic dynamics not capable of computation universality will be incompatible with the no-
arbitrage hypothesis: there will be unexploited profitable opportunities in the limit. This is clearly one of the key
reasons for the need to supplement simple dynamics with “ad-hoc shockeries”57 in, for example, growth and cycle
theories.

But, as always, these seemingly negative results have positive aspects. After all, these results only negate the feasibility
of universally utilizable effective procedures to answer systematic questions about (dynamically) rational choice: they
do not assert that special-purpose procedures do not exist, or cannot be found, to study the processes of rational choice.

For example, even although Lucas suggests that “all behaviour is adaptive” and that decision rules, such as demand
functions, are “steady states of some adaptive process,” he also seems to have had in mind a study of special-purpose
dynamics:

In general terms, we view or model an individual as a collection of decision rules (rules that dictate the action to be
taken in given situations) and a set of preferences used to evaluate the outcomes arising from particular
situation–action combinations. These decision rules are continuously under review and revision, new decision rules
are tried and tested against experience, and rules that produce desirable outcomes supplant those that do not. I use
the term “adaptive” to refer to this trial-and-error process through which our modes of behavior are determined.
(Lucas 1986: S401)

Against the backdrop provided by the formalism in this section, and the results obtained, how can we approach the
systematic study of trial-and-error processes that are found to work over a range of situations from a recursion-
theoretic viewpoint? Some answers to this are put forward in the next section.

ADAPTIVE BEHAVIOR 51

57 In the felicitous words of Richard Day (1992).



4.3 A Computable Basis for the Study of Trial-And-Error Processes in
Rational Choice

[I]t is entirely permissible to regard the motion of an economy as a process of computing answers to the problems
posed to it.
Goodwin (1951: 1)

Richard Goodwin made the above interesting suggestion which, to the best of my knowledge, was the first explicit
statement with a computable economic content. What Goodwin was suggesting, all those many years ago, was that any
dynamical system encapsulating “the motion of an economy” could be interpreted as a suitable computing machine; if,
in addition, “the motion of an economy” is driven by or represents rational choice processes, then the computing
machine must be a Turing machine and the dynamical system a universal one. Goodwin's idea, and my remarks and
results of the previous sections can be coupled to Ian Stewart's admirable summary of recent results in the interface
between dynamical systems theory and computability:

A huge range of questions . . . has been proved undecidable. . . . [U]ndecidability extends to many questions in
dynamical systems theory. These include whether the dynamics is chaotic, whether a trajectory starting from a given
initial point eventually passes through some specific region of phase space. . . . Indeed virtually any “interesting”
question about dynamical systems is — in general — undecidable. (Stewart 1991: 664)

The results of the previous section could be considered as stepping stones toward an attempt to give positive content
to these fertile ideas. In this section I take a few further descriptively conjectural steps in the same direction.

It is easy to see from the formalism and results in Chapter 3, that the propositional function the rational economic
agent has to evaluate, or the function the Turing machine has to compute, includes — generically — the EXCLUSIVE
OR; i.e., given propositions X and Y, the rational agent has to evaluate the truth value of X OR ELSE Y. This is true
when, and only when, exactly one of the propositions is true.

Even more importantly, and independent of these immediately preceding remarks, every proposition (in the predicate
calculus) can be expressed as a string of
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(4.7)

(for given propositions X and Y).

This, i.e., (4.7), is the negation of the EXCLUSIVE OR:

(4.8)

(4.8a)

The negation of (4.8a) gives us (4.7), which, because of its property of being able to express every proposition (in the
predicate calculus) as strings of itself, is called a universal proposition. In other words (4.7) is a universal proposition in the
same sense in which we defined universal dynamical systems: it is capable of computation universality.

Recall, now, that the conventional reasons given for invoking boundedly rational behavior by economic agents are the
physiological, physical, and other natural constraints on the information-processing capabilities of human beings. To
quote Harsanyi again, [H]uman beings . . . fall . . . short of perfect rationality [owing to the] limited information-processing
ability of the human central nervous system . . . ” (1977: 17). In our case, the “human central nervous system” is required to
process strings of the universal proposition. What is the architecture of the minimally complex unit of the “human
central nervous system” that is capable of processing the universal proposition? Using standard McCulloch–Pitts
neuronal units, we can explore some answers to this question.

McCulloch–Pitts Neurons
Fig. 4.1

(M–P) (see Figure 4.1) neurons are characterized by
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(i) m + 1 numbers: inputs → x1, x2, . . . , xm

output → y.
(ii) threshold number: θ
(iii) “synaptic” weights: w1, w2, w3, . . . wm, (where wi is associated with xi and yj);

the refractory period is taken as the unit of time.

ASSUMPTION 4.1. yj(n + 1) = 1 iff Σ wijxi (n) ≥ θ; i.e., the neuron fires an impulse along its axon at time n + 1 if the
weighted sum of its inputs at time n exceeds the threshold of the neuron:

wij > 0:
excitatory synapse;

wij ≤ 0:
inhibitory synapse.

Neural Nets
A neural net is a collection of M–P neurons, each with the same refractory period, interconnected by splitting the output
of any neuron (“axon to the dendrites”) into a number of lines and connecting some or all of these to the inputs of
other neurons.

PROPOSITION 4.1. Any neural net is a finite automaton.

Simple Examples of Neural Nets to Evaluate Propositions
Three simple examples of how neural nets evaluate Boolean propositions prepares the groundwork for the main,
universal, example of the text.

(a)Negation
Fig. 4.2

The following remarks relate to Figure 4.2.

(i) The left neuron emits a “spike” at time t if some proposition A is true.
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(ii) If the transmission channel has weight w (−1), and the right neuron has the threshold θ = 1/2, then at time t +
1 the right neuron will not “spike”; i.e., A → ∼ A.

(iii) Conversely, when A is false, ∼ A → A.

(b)Conjunction
Fig. 4.3

The right neuron in Figure 4.3 will spike at t + 1 iff both neurons on the left spiked at time t, indicating that the
propositions tested by these two neurons have both been true. Thus,

when A and B are true. (Note the danger of diophantine formalisms.) If, on the other hand, A is true and B is false,
then

(c)The INCLUSIVE OR
Fig. 4.4
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If at least one of the left neurons in Figure 4.4 spike at time t, then the right neuron will spike at t + 1. Thus, if A is true
(1), and B is false (0), we have

Nothing more than a collection of these, and equally simple, elemental units is the basis for a neural network
architecture to compute anything that a Turing machine can compute.

A Neural Network for X OR ELSE Y
Fig. 4.5

Remark 1. The function of the “identity” operator in Figure 4.5 is to store R ∨ N while R is being evaluated – in
this case negated.
Remark 2. No choice of weights and thresholds will allow the neuronal network to compute (evaluate) R OR
ELSE N in a single step.

(A)The Geometry
The signal (input) can contain x, y, both or neither. Thus, the agent will have to identify four possible inputs and assign
truth values to the output signals appropriately (see Table 4.1).

It is easy to see from Figure 4.6 that no “line” can be drawn such that á (1,0), (0,1) ñ is on one side and á (0,0), (1,1) ñ is
on the “other”; i.e., the two sets of input signals are not (linearly) separable.
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Table 4.1

Input a Output a

x y
0 0 → 0
1 0 → 1
0 1 → 1
1 1 → 0

a 0 = false
1 = true

Fig. 4.6

However, if we allow second-order predicates, we can visualize a possible separation as in Figure 4.7. By introducing
the second-order predicate XY, we are able to separate X and Y in three-dimensional space.

(B)The Simple Algebra

where θ ≥ 0, w1 > θ, w2 > θ, and w1 + w2 ≤ θ, which is impossible. In the language of the above notations, X OR ELSE
Y (the exclusive-or) cannot be evaluated (computed) by simple McCulloch—Pitts units. We have to nonlinearize the
problem (a slight novelty in a procession that linearizes everything in sight) in the following way:
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Fig. 4.7

where θ ≥ θ, w1 > θ, w2 > θ, and w1 + w2 + w12 ≤ θ. A possible solution is given by θ = 0, w1 = w2 = 1, and w12 = −2.
Separability and nonlinearity go together.

(C)Discussion
From the geometry and algebra of the problem of processing a universal proposition, it is clear that some form of
nonlinearity is essential. From the neural network architecture, we also note that time-lags are essential for processing a
universal proposition; this is, of course, because no choice of weights or thresholds would allow the network to
compute (evaluate) X OR ELSE Y in a single step.

We now have enough elements to give some concrete substance to the formal results of Chapter 3 and Section 4.2
above. First, note that all M—P units, and collections of M—P units, between those that have been initially identified
as input and output groups of units are called hidden units. The adaptive, trial-and-error processes referred to in the
previous section are, then, those procedures that assign sets of weights to the hidden units such that, for given input
“signals,” derived outputs can be reached.

Let me pose the problem in a slightly different way. The general problem facing the rational economic agent is to
evaluate arbitrary propositions for truth values. Since a given proposition can be built up from strings of the universal
proposition, the general problem will
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be to assign appropriate weights (wij ) to hidden units. The key question, then, is:

Given any arbitrary proposition, is there an effective procedure, determinable a priori, for assigning appropriate
weights (to, say, construct the necessary “separating hyperplane”) to evaluate it?

The various theorems of Chapter 3 and the previous section formalize and state the negative answer to this kind of
question.

We can identify the reasons for the universal negative answers: the necessity of nonlinearity and time-lags.58 Put another
way, if we write the generalized algebraic expression for the input—output behavior of the neural network as

(4.9)

where f is nonlinear mapping, w is the vector of integer or rational-number-constrained connection weights, and y is the
vector of input, output, and hidden variables, then finding an effective procedure for assigning weights to evaluate a
given proposition is equivalent to finding an effective procedure to solve the diphantine equation (4.9). We know, from
the celebrated negative solution to Hilbert's Tenth Problem (cf. Chapter 7), that there are no general effective
procedures available a priori to solve a given, arbitrary, diophantine equation.

Furthermore, we can view (4.9) in a dynamic way, the solutions of (4.9) being the attractors for a dynamical system,

(4.10)

We know from the “geometry” of the evaluation problem for the EXCLUSIVE OR that the mapping f is both
nonlinear and of dimension ≥ 3. The attractors of such a dynamical system, as solutions to (4.10), will in general be
“strange,” in the sense in which this is defined in formal dynamical system theory. Dynamical systems with strange
attractors are minimally required if computation universality is to be feasible by them. Thus, we have the link between
Goodwin's suggestion, Baum's query, and the results of Chapter 3 and the earlier sections of this chapter. In the final
section of this
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chapter there is an attempt to tie up these disparate strands in a way that may suggest a micro—macro synthesis –
albeit in a very speculative way.

We can now summarize and tie up the loose and disparate strange. The rational economic agent's problem of
evaluating the truth value of given, arbitrary, propositions can be identified with:

(i) finding procedures to assign weights “appropriately” to hidden units in a neural network; or
(ii) finding algorithms to solve diophantine equations; or
(iii) finding effective methods to characterize strange attractors.

No known effective procedures exist to solve any of these problems in an a priori universal way; and in the case of (ii) it
is known that no such effective procedures exist in general (negative solutions to Hilbert's Tenth Problem).

The best that can be done is to find a uniform procedure for special classes of propositions. Finding such uniform
procedures, classifying classes of propositions, etc., are what count as “trial-and-error” procedures. This class of
activities is what makes “all behavior adaptive” — except for the highly limited class of activities where propositions
can be evaluated for their truth values without any hidden units. When a class of propositions has been classified and
uniform procedures found to evaluate them, then there is a sense in which a “steady state” can be defined for them.
Moreover, the modelling of “an individual as a collection of decision rules” can be interpreted in a similar fashion:
collection of the uniform procedures that are used to evaluate classes of propositions.

4.4 Concluding Notes

Now if an organism is confronted with the problem of behaving approximately rationally, or adaptively, in a
particular environment, the kinds of simplification that are suitable may depend not only on the characteristics —
sensory, neural and other — of the organism, but equally upon the structure of the environment. Hence, we might
hope to discover, by a careful examination of some of the fundamental structural characteristics of the
environment, some further clues as to the nature of the approximating mechanisms used in decision making.
Simon (1956/1979: 21)
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In the earlier parts of this chapter and in Chapter 3, we investigated some of the “characteristics of the organism” and
the “structural characteristics of the environment” that cast doubt on the usefulness of working with the full
paraphernalia of standard rational behavior. Now if the domain of the “structural characteristics of the environment”
could also include the problems that confront a problem-solver, we might investigate the “nature of the approximating
mechanisms” in use — implicitly and explicitly — in making them solvable. Approximating mechanisms have been
devised for the rational agent, as an adaptive agent, as a boundedly rational agent, as a finite automaton; they have also
been suggested for the “environment” — satisficing solutions, suitably chosen domains of definitions such as
appropriate topological, measure-theoretic, and other spaces. I would like to suggest that there is an alternative way to
approach this issue of “approximations” in a problem-solving context that leads to a more natural definition of
boundedly rational behavior in which the agent becomes adaptive almost by necessity.

One way of specifying the standard economic problem (SEP) to be solved by “the Rational Man of Economics” is to
formulate it as a mathematical programming problem (or an optimal control, gametheoretic, etc., problem). A simple
(textbook)59 formulation of an SEP is as follows (Papadimitriou and Steiglitz 1982: 343–6):

with standard assumptions on f, g, and h. Often the assumptions guarantee the existence60 (for example) of a global
optimum, as befits “a maximizer, who will settle for nothing less than the best.”

Now consider the following variation of (SEP):

(SEPα)
An optimization problem is a pair {F, c}, where:

F: any set (the domain of possible alternatives)
c: (e.g. criterion function)

ADAPTIVE BEHAVIOR 61

59 I follow the excellent notation and formulation in Papadimitriou and Steiglitz (1982), although, of course, I could have chosen any standard textbook in optimization,
optimal control, or game theory for alternative — but formally equivalent — formulations and definitions.

60 At the risk of belaboring a point beyond endurance, I cannot resist restating: guaranteeing the existence of an optimum is one thing; finding it is another thing; and finding it
tractably is yet another thing.



PROBLEM. Find f ∈ F such that c(f) ≤ c(g), ∀g ∈ F.

Clearly, some meaningful structure, dictated by economic considerations, must be imposed on F, c, etc.

Next, consider yet another variant of (SEP) (and (SEPα):

(SEP†) (a)
Given a combinatorial object (i.e. a number-theoretically specified object) f and a set of parameters S, decide
whether f ∈ F (where F is characterized by S). Assume that this decision procedure is executed by algorithm Tf

(standing for the Turing machine indexed by f, which has been effectively encoded.
(b) After the decision implemented by Tf, use another decision procedure (algorithm) to compute the value c (f ),

where c is characterized by a set of parameters Q. Call this decision procedure Tc.
(c) Note that S and Q are represented number-theoretically, for example Gödel-numbered.

Here is an example of (SEP†), the standard (integer) linear programming problem (SILP):

(SILP)
Minimize c ′x

subject to Ax = b
and x ≥ 0(integer)
(vectorial, of appropriate dimensions).

According to the (SEP†), interpretation, this means:

(i) The parameters S, for the decision procedure Tf, are given by A, b.
(ii) Given any integer (vector) x, Tf decides whether Ax = b and x ≥ 0 are simultaneously satisfied.
(iii) “Then” Tc is implemented which has c for Q to evaluate c 'x for each x decided by Tf.

Note, however, that the “then” in (iii) above does not necessarily imply sequential actions by the Turing machines.
More complex decision tasks, encapsulating richer varieties of (SEP†), will, of course, imply a set of Turing machines
operating on a parallel architecture and sequentially (synchronously and asynchronously). Thus, in this vision every
agent, and every problem in general, is a combinatorial object and a set of decision procedures; some of the decision
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procedures operate sequentially, with the output of a subset being inputs to other subsets; some operate
(synchronously or asynchronously) in parallel. (SEP†) does not violate the setting in which “the Rational Man of
Economics” is set in its paces. But it does give an entirely different perspective on the complexity and the dynamic
nature of the decision problems executed by such a rational agent.

Now, for the way I have reformulated the rational choice problem in Chapter 3 and in Sections 4.2 and 4.3 of this
chapter, it is (SEP†) that is relevant. The agent is, in general, interpreted as solving decision problems of which (SEP)
will now be considered a special case. In such a case the “hidden units” are, or behave as if they are, dummy variables.
All attention is focused on the input and output variables only, i.e. on the domain of substantive rationality. Whenever the
“hidden units” drive a wedge between input and output variables, (SEP) (and (SEPα)) must be generalized to (SEP†)
and we must focus on procedural rationality, i.e. on the rationality of the process of assigning weights to “hidden units.”

In what sense, then, can we talk about the existence of the “one way to be fully rational”? Almost none whatever.
There are many ways of being rational in the sense that classifying classes of problems, finding uniform, effective,
procedures, etc., are more Linnean than anything else.61 I think that induction and its formalisms provide discipling
rules for this Linnean world of decision-making.

Let me, however, end this chapter with a tentative definition of boundedly rational agents and some equally tentative
general notes.

DEFINITION 4.1. A boundedly rational agent solves decision problems in the sense of (SEP†).

Remark. This definition is completely consistent with the definition given by Osborne and Rubinstein in the context of
repeated games (Osborne and Rubinstein 1994: 164).62

This definition makes it clear, I hope, that boundedly rational agents are not approximately fully rational agents. They are
boundedly
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rational, according to these definitions, because the nature of the problems they face, and the way they view solutions
to them, places bounds on the classes of problems they can solve. The substantively rational — or “fully rational” —
agent of standard formalisms is a special case because such an agent is confronted with a special subset of the class of
decision problems facing the boundedly rational agent.63

This brings me to one further, general, point. Much has been made, in recent years, of attempts to model emergent
behavior on the basis of the interaction between collections of simple — even simplistic — agents. Connectionism,
massive parallelism, cellular automatas, etc., are some of the “buzz” words in this vast literature, straddling fascinating
interdisciplinary worlds. I believe this to be a fundamentally flawed vision.

The economic (or social or political) agent is anything but a simple or simplistic unit. I think it is imperative that we
model the agent in its full complexity, i.e. as a Turing machine. It is the collective that is simplistic and may fail to have
the capability of universal computation. How can the interactions of a collection of sophisticated agents — Turing
machines — result in a system that cannot achieve what the individual units can achieve individually and separately? I
think there are two reasons:

(a) First of all, the system does not try to solve decision problems: that is the individual agent's problem. The
system simply acts as the ledger book, the classifier in the bucket-brigade algorithm, the noticeboard. It records
the credits and debits. It is an accountant. In the extreme case it is Maxwell's Demon!

(b) Second, as the result of its being the accountant, it is not computation universality that is relevant for the
system's behavior, but some conversation principle. Most of the natural sciences, in their phenomenological
variations, have conservation principles; this is true even for many of the pure sciences (symmetry, modularity,
and so on). The social sciences seem not to have succeeded in formulating useful conservation principles.
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rationality meant was more constraints in the standard model, then, is the declarative a superset of the imperative (cf. concluding notes to Ch. 2) ?



Thus, the question finally to be posed is: how can a collection of interesting Turing machines result in macro systems
— institutions, laws, etc. — that have useful conservation principles? Computation universality is possessed by
individual agents who behave rationally and implement the “no arbitrage” principle; conservation laws are possessed
by aggregates. What, then, is the connection or relation between computation universality and conservation principles?
An answer to this question should resolve the micro–macro divide.

A tentative step in the direction of obtaining interesting answers to this question requires recursion-theoretic
formalisms at the macro level, too. For example, aggregate variables will have to be sequences that are recursively
enumerable but not recursive. But, then, only dynamical systems capable of computation universality can generate such
sequences. This means that all dynamical systems currently utilized to model growth and cycles in macroeconomics are
inconsistent with the microeconomics of rational behavior. This is one reason why real business cycle theorists resort
to “ad-hoc shockeries”; for no dynamical system that is asymptotically stable is capable of computation universality.

Most — if not all — of the assertions of the above paragraph can be stated and proved as theorems. I leave this as an
exercise for a sequel to this work.
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5 The Modern Theory of Induction

The laws of nature are sufficiently simple that, following the best available inductive methods, man can in a reasonable
period of time find them (or find a good approximation of them).
Kemeny (1953: 402; emphasis added)

5.1 Introduction

. . . we may think of a system of inductive logic as a design for a “learning machine”: that is to say, a design for a
computing machine that can extrapolate certain kinds of empirical regularities from the data with which it is
supplied.
Putnam (1963/1975: 297)

In this admirable and characteristically well focused sentence, Putnam has summarized, with customary finesse, the
essential features of the modern theory of induction and its constituent elements: inductive logic, learning machines,
computing machines, and extrapolation of regularities. In other words, it can be asked whether there is an inductive
logical foundation for the construction of computing machines to learn to extrapolate regularities. If an affirmative
answer can be found, the rational economic agent as a Turing machine could be set in its paces to “learn to extrapolate
regularities” on the basis of “a system of inductive logic.” This may help ground “economics as an inductive science”
(Clower 1996) and remove the deductive shackles to which economic analysis seems to have been chained ever since
Ricardo.

There have, however, been famous objections to such a “research program,” routinely referred to in Humean,
Popperian and other hand-waving modes. These have to be addressed, at least cursorily.



To suggest the way in which I believe the modern theory of induction comes to term with these objections, it may be
useful to begin by noting Putnam's clear statement of the issues to be resolved:

Inductive logic is concerned with the relation of confirmation. Just as in deductive logic we consider certain correct
inferences which lead from a set of sentences P (called the premises of the inference) to a conclusion S, so in
inductive logic we deal with certain inferences which lead from a set of sentences E (called the evidence for the
inductive inference) to a conclusion S. The premises of a good deductive inference are said to imply the conclusion
S; the evidence, in the case of a warranted inductive inference, is said to confirm the conclusion S. The difference in
terminology reflects some of the fundamental differences between the two subjects. The most important of these
differences is that in a warranted inductive inference the sentences E may be true and the conclusion S may still be
false. It is for this reason that we do not say that E implies S but choose the weaker terminology E confirms S. This
difference has one immediately annoying consequence: it makes it somewhat difficult to state with any degree of
precision what inductive logic is about.
Since deductive inferences are truth-preserving (this means: if the premises are true, the conclusion must be true) we
can characterize deductive logic by saying that we seek mathematical rules for deriving conclusions from sets of
premises which will preserve truth: which will lead from true premises only to true conclusions. But in inductive
logic we seek what? Mathematical rules which will lead from true premises to conclusions which are probably true,
relative to those premises. But “probably” in what sense? . . .
. . . If we seek rules which will lead to conclusions which are probably true on the evidence given in some a priori
sense of “probably true”, then what reason is there to think that there exists a defensible and scientifically
interesting a priori notion of probability?
Let us by pass these difficulties for the moment by agreeing that, just as in deductive logic there are certain clear
cases of valid reasoning, so in inductive logic there are certain clear cases of warranted inductive reasoning, and we
can at least attempt to see if these have any mathematically interesting structural properties. (Putnam 1963: 294–5)

In the modern theory of induction, these difficult philosophical and methodological issues are dealt with in the
following two analytical ways:

(1) The evidence for the inductive inference is characterized recursion-theoretically.
(2) The mathematical rules for confirming the recursion-theoretically characterized evidence is also formalized

algorithmically.
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Both of these analytical devices make it possible to circumvent, entirely, the need to rely on any a priori notion of
probability. In the rest of this section I discuss the basis for these assertions in various ad hoc and intuitive ways. In the
following section an outline of the mathematical formalism underlying the modern theory of induction is given (i.e.
explicating (2) above). Finally, in Section 5.3, two explicit ways in which the “evidence for the inductive inferences” are
characterized recursion-theoretically (i.e. following (1) above), and analyzed inductively, within the mathematical
formalism of the modern theory of induction are stated and discussed.

Economic agents observe (the “evidence for the inductive inference”) sequences of, say, prices (and quantities), and
adjust expenditures at the margins, to reach desirable situations. In some explicit and analytical sense, then, the
observed sequences must contain information. An induction process, on the information contained in relevant sequences,
will be the basis for decisions. If all the information relevant for the economic decision has been extracted by the
induction process, then it is reasonable to surmise that the evidence has been “randomized.” The classic “no-arbitrage”
hypothesis underlying any statement on rational behavior, institutional assertions on efficient market hypotheses, etc.,
implies this kind of “randomization” of the evidence. If, however, the evidence retains “unexploited utility or profit
generating possibilities” (Sargent 1993: 7), then, either agents are unable to exercise “full” rationality in some sense, or
institutions exhibit some inefficiency, or else a combination of the two underlies the functioning of the economic
system that gives rise to such evidence.

A broader interpretation consistent with the computable approach to economics would suggest an alternative
combination of possible reasons for economic systems to generate unrandomized evidence. This broader
interpretation implies that the reasons could be due to (a combination of):

(a) The intrinsic complexity of the observed sequence (i.e., the evidence);
(b) The inappropriateness of the mechanism (formalization) that is being used to model the agent or the

institution;
(c) The suboptimality of the utilized induction process;

In traditional economic analysis, the theoretical technologies that have been harnessed to encapsulate these three
subcomponents have
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not been derived in any consistent way. Ad hoc combinations of statistical and system-theoretic underpinnings for (a),
Bourbakian and formalistic building blocks for (b), and a variety of alternative (a priori) probabilistic bases for (c) have
caused the toolbox of economic analysis to resemble a veritable potpourri.

Imposing a rigid methodological discipline is not the main aim of the computable approach to economics. However,
against the backdrop provided by (a)-(c) three interrelated questions could be asked:

(i) What is the best way to model the inductive capabilities of a rational agent (or the best way to design or
interpret the functioning of economic institutions from an inductive point of view)?

(ii) How is the complexity of the evidence to be modelled so that randomization can be studied without any a priori
notion of probability being prejudicial to the formalism for (i) and the possible answer(s) to (iii) below?

(iii) Are there effective rules to decide when the no-arbitrage condition has been satisfied; i.e., are there effective
rules to decide when the inductive process is to stop?

From a computable point of view, there are unambiguous and consistent answers to these three questions. The rational
agent must be modelled as a Turing machine and the institutions of the economic system must be capable of
computation universality; the complexity of the evidence is to be formalized in terms of a measure — effective — of the
size and mode of its description or generation or, technically, in terms of its algorithmic complexity; as for an answer to
(iii), in view of the remarkable theoretical result that the algorithmic complexity of randomized evidence is
uncomputable, there can be no effective optimal stopping rule, valid in any general sense, for arbitrary inductive
processes. These are all assertions that are consistent with the results, formalisms, and frameworks suggested and
developed in earlier chapters.

Enough has been discussed about possible answers to (i) in previous chapters; some thoughts on answers to (iii) have
also been discussed, in particular in Chapter 4. Answers to (ii), in conjunction with (a)–(c) above, delineate the basic
material of this (and the next) chapter.

Ever since the microfoundation resurgence of the late 1960s, and the seminal work of Hayek, Stigler, and McCall, it
has been fashionable, if not imperative, to refer to the “information revolution” in
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economics. This is perhaps most evident in the theory of finance, but surely not less so in conventional micro (and
macro) economics and game theory. The economic cost of acquiring, utilizing, and transmitting information —
indeed, of treating information as an economic good — has become very much part of the bread-and-butter training
most graduate students receive in economics. In fact, it is just as important to state the nature of the assumptions
underlying the place of information as it is to specify the exact role of endowments, preferences and technology in the
traditional neoclassical closure. Phelps, and others following him — the New Classicals in particular — have
augmented the neoclassical closure to include information almost on an equal footing with the other three constituent
elements: endowments, preferences, and technology.

The suggestion to enlarge the core (to be very Lakatosian about it) is persuasive. However, I do not find the formalism
that is used to encapsulate the intuitive notion of information equally persuasive, or even useful. It seems to be a case
of repeating the same mistakes made in the formalization of preferences and technology, not to mention endowments,
all over again. I have no adequate methodological explanation for this except to quote, on my side. Lucas's perceptive
(and in my opinion correct) observation that:

To ask why the monetary theorists of the late 1940s did not make use of the contingent-claim view of equilibrium
is, it seems to me, like asking why Hannibal did not use tanks against the Romans instead of elephants. There is no
reason to view our ability to think as being any less limited by available technology than is our ability to act (if,
indeed, this distinction can be defended). (Lucas, 1981: 286)

In other words, economists are often unaware of available theoretical technologies that can encapsulate the intuitive
richnesses that, in turn, enhance “our ability to think.” Thus, in standard theory it would be customary to interpret the
evidence as a random variable drawn or generated in accordance with a probability density function which, in turn, is
consistent with some a priori notion of probability. Haavelmo, for example, prefaced his seminal work on “The
Probability Approach to Economics” with the following rationale for his “attempt to supply a theoretical foundation
for the analysis of interrelations between economic variables”:

it has been considered legitimate to use some of the tools developed in statistical theory without accepting the very
foundation upon which statistical
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theory is built. For no tool developed in the theory of statistics has any meaning — except, perhaps for descriptive purposes
— without being referred to some stochastic scheme.
The reluctance among economists to accept probability models as a basis for economic research has, it seems, been
founded upon a very narrow concept of probability and random variables. (Haavelmo 1994: iii)

Times have caught up even with the genius of Haavelmo.64 There is a perfectly valid and mathematically rigorous way
of founding (many of) the tools of statistics without any reference to a stochastic scheme: a fortiori, without reference to
any kind of a priori notion of probability (narrow in concept or not). If this can be demonstrated in an analytically
rigorous way, then there might be some basis for “the reluctance among economists to accept probability models as a
basis for economic research.” This will automatically imply that it will not be necessary to interpret evidence as a
random variable drawn or generated in accordance with a probability density function.

Even at the frontiers of business cycle research, such view are being questioned vigorously and imaginatively. Referring
to the famous “measurement without theory” debate initiated by Koopmans against NBER methodology, Kydland
and Prescott note:65

Koopmans's second criticism is that Burns and Mitchell's study lacks explicit assumptions about the probability
distribution of the variables. That is, their study lack “assumptions expressing and specifying how random
disturbances operate on the economy through the economic relationship
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between the variables” . . . . Economists, he argues, should first hypothesize that the aggregate time series under
consideration are generated by some probability model, which the economists must then estimate and test.
Koopmans convinced the economic profession that to do otherwise is unscientific. On this point we strongly
disagree with Koopmans: We think he did economics a grave disservice, because the reporting of facts — without
assuming the data are generated by some probability model — is an important scientific activity. We see no reason for
economics to be an exception. (Kydland and Prescott 1990: 3; emphasis added)

Kydland and Prescott (and indeed Kalman — cf. fn. 2) are trying to make a case for learning, inductively, from
extractable patterns in reported data, data assumed to be generated from an a priori theoretical model. The patterns in
the data contain and convey information. Filtering out noise from information is one way of analyzing data, the
standard way: extracting patterns as information is another way. The modern theory of induction formalizes, on the
basis of recursion theory, the latter mode.

The modern father of axiomatic probability theory, who happens also to be a parent of algorithmic complexity theory,
pointed the way when he said:

it is not clear why information theory should be based so essentially on probability theory, as the majority of text-
books would have it. It is my task to show that this dependence on previously created probability theory is not, in
fact, inevitable. (Kolmogorov 1983: 31)

The traditional reason for basing information theory66 “so essentially on probability theory” proceeds as follows. If the
evidence, say X, is a random variable generated in accordance with a probability density function p(x), then there is a
clear sense in which the information content of X = x is log(1/ p(x)).67. Thus, ostensibly, the information content of
the evidence depends, crucially, on the probability distribution, and hence on some a priori notion of probability. The
circle is then completed by claiming that “probability models as a basis for economic research,” information
economics, stochastic macroeconomics, and the like are the natural vehicle for economic analysis.

But is this version “inevitable”? Or, as Kolmogorov challengingly notes, is it the case that “this dependence on
previously created probability
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theory is not, in fact, inevitable”? To begin at the beginning, is it absolutely necessary to interpret the evidence, say X =
x, as a random variable, generated by an underlying probability density function, to encapsulate the unknown, the
unknowable, and the fragility in the observed and the observer? What if we interpret the evidence X = x recursion-
theoretically? Surely, even at an intuitive level it is clear that the uncomputability, undecidability, and incompleteness
inherent in complex entities, should be able to encapsulate the unknown, the unknowable, and the fragile in the
evidence. In addition, this approach would have the advantage of characterizing the observer and the observed
compatibly: the former, under the Church–Turing thesis, as a Turing machine: the latter, analogously, recursion-
theoretically.68 It is this possibility that Kolmogorov exploited, with characteristic finesse and originality, to free
information theory from its probabilistic basis. Simply and directly stated, the basic idea is to formalize the difficulties
inherent in describing the evidence recursion-theoretically, and to define randomness in terms of such a formalization,
and then to build a basis for probability on such foundations: i.e., randomness on recursion-theoretic foundations and
probability on randomness. This leads, directly and unambiguously, to a foundation for information theory in
recursion theory.

Reverting to the mild formalism with which I began this discussion, the question is whether there is an analytical route
to free ourselves from describing X = x by some function of log(1/ p(x)). Kolmogorov's brilliant insight69 was that a
measure to describe the evidence can be defined on the basis of the minimal length of the algorithm that can generate the
evidence, when implemented on a suitably defined universal computer. It will then be apparent that the evidence must,
ad inizio, be endowed with some kind of recursion-theoretic structure. To this insight was coupled the conjecture,
subsequently demonstrated, that such a description of the evidence does not depend, in any essential way, on the
“suitably defined universal computer” utilized to implement the algorithm. It can thus be shown that such a measure
— minimal over the resources needed to define
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and implement the relevant algorithm — can characterize a universal code, valid for all (computable) probability
density functions.70

Before proceeding with heavy formalisms in the next section, I would like to indulge in additional discursive comments
on the intuitive basis for randomness in a recursion-theoretic framework. Terence Fine's excellent remark almost
encapsulates the new view of randomness and contrasts it with the old:

Reflection on [the role of place-selection functions] . . . leads us from reliance on a pragmatic impossibility-of-a-
gambling-scheme view of random sequences to an epistemic view that a random sequence is highly irregular or
complex. (Fine 1973: 118)

It is this epistemic view that lies at the heart of the modern theory of induction and allows us to interpret learning as
induction. Let me, therefore, ask: What is randomness? Indeed, is there such a thing as a “random number”? A master
computer scientist suggested:

In a sense, there is no such thing as a random number; for example is 2 a random number? Rather, we speak of a
sequence of independent random numbers. . . . (Knuth 1981: 2; emphasis added)

So, is randomness to be defined in terms of sequences? How, then, are the sequences generated? Leaving aside the
deeper question of whether or not there are “random numbers,” we can, perhaps, get some intuitive understanding of
randomness71 in general by looking at practical devices for generating random numbers. Shall we toss coins? Throw
dice? Shuffle and deal out cards? Can a sequence of coin tosses generate “a sequence of independent random
numbers”?72

Now, it is well known that it is fashionable, especially in economic theory, to dismiss any attempt at founding
probability theory on frequency theoretic underpinnings. Knight, Keynes, Savage, and de Finetti rule! But it is only
from the point of view of frequency theory that a serious attempt has been made to deal with the randomness of finite
sequences. Rational agents, whether as Turing machines or not, have only a class, at most, of finite sequences to learn
from. When
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learning stops, at a no-arbitrage state, the agent must be able to be sure that “the remains” are, indeed, random, and
that they are, always, finite sequences. What, therefore, is the connection between finite and infinite sequences? How can
we theorize about the randomness of finite sequences?

Assume we toss a fair coin twenty times and the outcomes are, for three trials:

(5.1)

(5.2)

and

(5.3)

I suppose one feels that the third outcome is highly unlikely. Another way of looking at it would be to say that the first
two seem to be patternless and the third full of structure. The third is the sort of sequence expected in economic series
that are an outcome of “people . . . in recurrent situations” (Sargent 1993: 1); the first two are typical of outcomes that
are a result of “people . . . confronted with new and ill-defined rules”, people in “a daily struggle to determine the
‘mechanism’ that will eventually govern trade and production” (p. 1). But the people will have to determine the
“mechanism” in real time; the mechanism is in operation in real time, too.

So we ask, about the first two sequences, “patternless” in what sense? The epistemic answer, as distinct from the
pragmatic one, would be: in the sense of not having a shorter description of itself than presenting it in its entirety. This is rather like
the difference between encapsulating a regularity by a formula and being unable to capture any regularity by a rule
describing a time-series of outcomes of prices and quantities. In other words, we seek to identify randomness with
some definition of patternlessness, of lack of structure; we say it is “difficult to describe,” “hard to learn,” etc. This is
where algorithmic complexity theory meets randomness. Eventually we seek a definition of randomness for finite
sequences in terms of the descriptional complexity (described by an algorithm) of a finite object embedded in a larger
class of objects; this latter finesse means that we resort to the age-old strategy of embedding the finite problem in an
infinite one. If we denote the infinite continuations of (5.1), (5.2), and (5.3) by the imagery of the familiar ellipses, we
get
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(5.1′)

(5.2′)

(5.3′)

Next, after obtaining a definition of individual infinite sequences, we try to obtain a criterion for randomness for
classes of finite sequences, keeping in mind the fact that the rational agent is trying to learn, above all, whether or not a
(finite) sequence is patternless, in order to reach the no-arbitrage state.

It is here that the frequency theory of probability enters the induction problem with a vengeance! Leaving aside the
colourful imagery of patterns and patternlessness, we turn to Richard von Mises and his valiant attempts to found a
theory of probability on phenomenological grounds — like phenomenological thermodynamics and its laws. He did
this in terms of two concepts: one, conceptual — the collective (randomness), the other mathematical — “stability of
frequencies.” There was a third to cement the above two: “place selection rules,” to learn to randomize. It turns out
that “place selection rules” are computable functions. Thus, an agent must be computably rich enough to have within
“itself” enough “place selection rules” that can be activated when confronted with complex sequences from which to
learn. Roughly speaking, the initial formalism took the following steps.

DEFINITION 5.1: FREQUENCY STABILITY. If

where νn is, for example, the number of zeros in the beginning segment of a binary sequence a0, a1, a2, . . . , an − 1 of
length n, then the binary sequence a0, a1, a2, . . . has the property of frequency stability with limit p.

DEFINITION 5.2 (PRELIMINARY): RANDOM BINARY SEQUENCE. A binary sequence is random whenever any suitably
chosen sub-sequence of it has the property of frequency stability.

These preliminary conceptual tools can be broken down into the following steps:

1. Given an (in)finite binary sequence, and
2. given a class of selection rules [to “suitably choose”], then
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3. select a sub-sequence from the original sequence (using one of the selection rules given in step 2).

In other words, the trick is to link the definition of selection rules with the property of frequency stability. Thus,

A selection rule will extract a sub-sequence ar0, ar1, ar2 . . . from the original sequence a0, a1, a2 . . . such that the
extracted (sub)sequence has the frequency stability property.

The rational agent's learning task is exactly this (when modelled “artificially intelligently”), but with enough capacity to
be the most powerful automaton: the Turing machine, Learnable sequences are those that such a machine can compute;
unlearnable sequences trap the machine with the halting problem, undecidabilities, uncomputabilities and other
menaces.

One last “doctrine-historical” observation before I conclude this section. Another pioneer, almost as influential as
Haavelmo when measured in terms of his influence on the way economists model interrelations between economic
variables, i.e. Rudolf Kalman, has in more recent times argued forcefully and cogently for the wholesale rejection of the
Haavelmo—Cowles Foundation approach to quantitative analysis in economics. Put succinctly, and quite
independently of the massively impressive developments in algorithmic complexity theory. Kalman has come to
the conclusion that it was quite wrong to define randomness from the probability corner:

When we research and try to comprehend randomness in Nature we must try to avoid the temptation to
automatically “explain” randomness in terms of (conventional = games-of-chance = Kolmogorov) probability.
It is our claim that
The majority of observed phenomena of randomness in Nature (always excluding games of chance) cannot be and should not be
explained by (conventional) probability theory; there is little or no experimental evidence in favour of (conventional) probability but there
is massive, accumulating evidence that explanations and even descriptions should be sought outside of the conventional framework.
(Kalman 1994: 142; emphasis in the original)

Kalman's own definition of randomness is precisely the algorithmic one73 — although he couches his discussion in
different and idiosyncratic terminology and concepts.
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Are Kalman's observations sufficiently persuasive for abandoning the probability—randomness nexus? Is
experimental falsification sufficient ground to abandon a methodology that seems to have “worked,” with the help
of judiciously chosen “ad-hockeries”? I doubt it. If scientific practice were so pure, nothing would ever get done.
Dogmas, mythologies, and other alchemies are part of the small impurities that make the scientific enterprise robust,
successful and relatively meaningful. One or two anomalies rarely sound the death knoll: una rondine non fa primavera! On
the other hand, it is precisely the outlier, the odd swallow, that signals the onset of something new in the horizon.

5.2 The Modern Theory of Induction

If we could arrange all testable hypotheses in a single list, and then proceed to test hypotheses in the order in which
they occur in our list, perhaps we could ensure that if there is a correct testable hypothesis, then sooner or later it
will get tested (at least if there is an “immortal inquirer” or an immortal community of inquirers; the problem of the
finite case arises once more here) . . .
But . . . an empirical hypothesis is involved in saying that all testable hypotheses are in our list: Church's Thesis in
itself an empirical hypothesis about the calculating powers of human beings, one which it needs induction to verify.
If we use a method which takes account only of recursive hypotheses, then if we live in a world in which human
beings have the ability to calculate nonrecursive functions, and the true hypothesis involved a function of this kind,
then we will never confirm the true hypothesis using [a recursion-theoretic scheme].
Putnam (1990: 9–10)

A colourful, possibly misleading, characterization of the modern theory of induction would be to say that it is about
making precise, mathematically, the general notion of Occam's razor.74
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In the previous section I suggested something like the following idea for learning as induction: given some set of
information, say represented as binary sequences, can a learner find a (computable) rule to encapsulate this
information set in such a way that the rule is “simple” in some well defined sense and can be used to predict “future”
members of the sequence? In a nutshell, a scientific activity like learning is about finding rules to describe compactly
the past evidence in such a way that predictions are implied in the compact rule.

The main idea in modern theory of induction is to formalize this activity in the following supposition. The given past
(and contemporaneous) information set, the proposed hypothesis (rational expectations, for example), the mode of
obtaining evidence and the evidence itself, the way this evidence is used to understand the hypothesis and, if necessary,
to modify (RE to boundedly rational expectations (BRE)) the originally proposed hypothesis — all of these should (and
can) be encoded as the initial segment of a potentially infinite binary sequence.

Now to some formalisms:

B { 0,1}:
the set of basic elements that constitute the infinite binary sequences;

B { 0,1}*:
the set of all finite binary strings over B;

S: set of all one-way infinite binary sequences;
μ(x) =

Σ { P(xy): y∈ B} (measure μ over B).

Then, in terms of Bayes's formula,

(5.4)

In this simple formalism, learning as induction implies inferring the effective process (e.g. the Turing machine) that generates S
and, therefore, being able to forecast the next outcome a. This is how (and where) computability enters the picture.
The question is then reduced to the search for an “absolute” prior or, in the language of the modern theory of
induction, to the problem of the existence of a universal prior. The problem was solved by Solomonoff by imposing
computability constraints on the allowable priors. This solution, which we will now describe, is the formalism for the
modern theory of induction. The conceptual finesse is to use recursion-theoretic ideas to define the complexity of
finite objects and then to identify simplicity with probably — i.e. more simple as more probable — and, via Bayes
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and Turing, formalize Occam á la Solomonoff, Kolmogorov, and Chaitin!

Denote by:

l(x) the length of the (binary) string x;
T the Turing Machine.

We use the following encoding of strings:

(i) the empty string ε → 0;
(ii) the string {0} → 1;
(iii) the string {1} → 2;
(iv) the string {0,0} → 3;
(v) the string {0,1} → 4;

and so on; i.e., the coding is

DEFINITION 5.3. p is a description of the (finite) string x if, on input p to T, the output of T is x.

Remark. It is clear from the definitions that the description must be effective.

More generally, especially when Oracle computations are called forth, the Turing machine is allowed to use additional
information y to generate x; this is denoted by

T(p,y) = x: T with input p and y terminates with output x.

Intuitively, we would like to call a string simple if its description p, say in the form of a computer program, can be
achieved easily. There is, of course, a circularity in this intuitive statement: “simple in terms of easy.” But this will be
clarified in a moment.

DEFINITION 5.4. CT(x|y) = min { l(p): p ∈ {0,1}*, T(p, ↑ y) = x} and CT(x|y) = ∞ if ∃ p with such a minimum.

From standard results in algorithmic complexity theory, we know that the defined CT(x|y) is invariant with respect to
the choice of T. In other words, there exists a universal Turing machine (UTM) such that, ∀ T, ∃ cT (constant) such
that ∀ x, y ∈ B*:

(5.5)
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DEFINITION 5.5: PREFIX CODE

(i) x is a prefix of y if there is a z such that y = x z (x, y, z ∈ B*);
(ii) A ⊆ B* is prefix-free if ∀ x ∈ A, x is not a prefix for any y ∈ A;
(iii) F: B* → N is a prefix code if its domain is prefix-free.

DEFINITION 5.6: PREFIX MACHINE. A prefix machine is a multi-tape Turing machine such that the set of programs
for which it halts is a prefix code. Thus, prefix machines can be effectively enumerated.

DEFINITION 5.7: PREFIX COMPLEXITY

KT(x|y) = min { l(p): p∈ B*, T(p, y) = x} and, ∀ p for which there does not exist such a minimum: KT(x|y) = ∞

KT(x|y): prefix complexity of x ∈ B* with respect to prefix machine T and binary string y.

In other words, KT(x|y) is the length of the shortest self-delimiting program that outputs x.75

Definition 5.8: INCOMPRESSIBILITY

x ε B* is incompressible (or random) whenever K(x) ≥ l(x).

Remark. K(x) is uncomputable: it can be approximated by computable functions to arbitrary degrees of accuracy, but,
paradoxically, the error of approximation cannot be determined at any point.

We need a few more notions before we can get to a definition of the universal prior, semicomputability, in particular.
Semicomputability is related to computability, roughly speaking, as recursive enumerability is related to recursivity.

DEFINITION 5.9: SEMICOMPUTABLE FUNCTIONS. A function f is semicomputable from below if the set

is recursively enumerable. (Analogously, f is semicomputable from above if − f is semicomputable from below).

Remark. C(x), C(x|y), K(x) and K(x|y) are semicomputable from above, but are not computable.

DEFINITION 5.10: MEASURES AND UNIVERSAL MEASURES. If μ: N → [0, 1] and μ such that:
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but satisfies the other Kolmogorov axioms for probability, it is called a measure. Universal measures are those
semicomputable measures that dominate all measures in this class in the sense that, for the universal measure μ,

where c is a constant and μ′ is an arbitrary semicomputable measure.

LEVIN'S THEOREM. There exists a universal measure in the class of measures that are semicomputable from below.

DEFINITION 5.11: UNIVERSAL PRIOR. From the countably infinite class of universal (semicomputable) measures,
choose any arbitrary reference measure μ0(x) and denote it by m(x). This m(x) is a universal prior.

DEFINITION 5.12: SOLOMONOFF–LEVIN DISTRIBUTION. For all p such that a reference UTM outputs x and

denotes the Solomonoff (—Levin) distribution on the positive integers.76

Finally, we can state the main theorem of the modern theory of induction.

THEOREM OF THE MODERN THEORY OF INDUCTION. For all x, up to an additive constant c,

Remark. By linking the universal prior with the algorithmic complexity and the Solomonoff–Levin distribution, we link
up the conceptual bases of induction in a rigorous way: an outcome with the highest probability of occurring is also that which has
the simplest description. Because of the relations between m(x) and K(x) given by this theorem, it is also clear that m(x) is
uncomputable.

To close the loop with an estimate for μ in Bayes's theorem with which we started, we have one more definition.
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DEFINITION 5.13: A Priori PROBABILITY

Thus, M(x) is the prior probability of the output of the reference UTM that starts with x.

If we assume μ (in (5.4)) to be a recursive measure, then we can use M as an estimate of μ. This enables the highly
technical results from the modern theory of induction to use the universal prior in Bayes's rule to yield Occam's razor:
if a sequence can be generated by many programs, choose the shortest one.

Next, we use this framework and these results to show in what sense Gold's model of learning is a special case of the
modern theory of induction.

5.3Gold's Learning and Solomonoff's Inductive Inference

Accordingly, when we speak of a rule of induction, we mean a rule for making a series of approximations to the
limit of the relative frequency. . . . This rule . . . formalizes the simplest of the classical modes of inductive inference
— induction by “simple enumeration.”
Putnam (1951/1990: 24)

The basic conceptual idea in Gold's model of learning is that of identification in the limit, and the method of
implementing this is identification by enumeration. In a certain sense, it is classically Popperian in that the whole
process is about conjectures and refutation until convergence.

In identification in the limit, learning a rule (rational expectations equilibrium (REE) for example) is an infinite process.
In the terminology of the previous section, the method of learning (inference) that we use, say Ω, receives a longer and
longer initial segment S. Corresponding to these sequentially larger initial segments, Ω generates a sequence of
“conjectures” about R, say recursive functions f1, f2, . . . If, for some m and ∀ n > m
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and if fm is a correct description of R (e.g. if the algorithm for fm generates R), then, according to Gold, Ω identifies R in
the limit. But, surely, the ubiquitous halting problem precludes exact learning? In other words, can Ω, in general, know
when to stop (perhaps if the { fi} are appropriately restricted, say, to the class of primitive recursive functions)?

Some observations by Gold should be kept in mind in the following paragraphs..

(α) Gold cautioned as follows:

I have been asked, “If information presentation is by means of text, Why not guess the unknown language to be the
simplest one which accepts the text available?” This is identification by enumeration. It is instructive to see why it will
not work for most interesting classes of languages: the universal language (if it is in class) will have some finite
complexity. If the unknown language is more complex, then the guessing procedure being considered will always
guess wrong, since the universal language is consistent with any finite text. . . . The problem with text is that, if you
guess too large a language, the text will never tell you that you are wrong. (Gold 1967: 411; emphasis added)

(β) He was remarkably perceptive to note that:

Concerning inductive inference, philosophers often occupy themselves with the following type of question: Suppose
we are given a body of information and a set of possible conclusions, from which we are to choose one. . . . The
question is, of the conclusions which are consistent with the information, which is “correct”?
The difficulty with the inductive inference problem, when it is stated in this way, is that it asks: “What is the correct
guess at a specific time with a fixed amount of information?” There is no basis for choosing between possible
guesses at a specific time. However, it is interesting to study a guessing strategy. Now one can investigate the limiting
behavior of the guesses as successively larger bodies of information are considered. This report is an example of
such a study. Namely, in interesting identification problems, a learner cannot help but make errors due to incomplete knowledge.
But, using an “identification in the limit” guessing rule, a learner can guarantee that he will be wrong only a finite
number of times. (Gold 1967: 465–6; final emphasis added)

I shall now proceed to state the connection between identification by enumeration and Solomonoff's formalism for
inductive inference (in essence, linking the observations in (α) and (β) in the form of a proposition).
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Denote by

L: the class of languages, rules, etc., to be learned;
χL (x):

the characteristic function of L;
R: the class of hypotheses (representing L) that are effectively enumerable.

ASSUMPTION 5.1. The effective enumeration of hypotheses R1, R2, . . . are codes for algorithms to compute the
recursive functions f1, f2, . . .

How are the data to be presented to the learner (a Turing machine)? Denote

Then f has to be inferred, on the basis of R, from {s, f(s)}, which is an infinite sequence of examples.

DEFINITION 5.14: A POSITIVE EXAMPLE. When f = χL, χL(s) = 1 if and only if s ∈ L. Then s is said to be a positive
example for L. (Conversely, s is a negative example for L whenever s ∈ L.)

DEFINITION 5.15: CONSISTENCY. Given an initial segment of instances,

(5.7)

a rule (i.e. recursive function) f is said to be consistent with s if

(5.8)

The task in Gold is to learn f. For the formalism, we proceed as follows.

Choose, for the prior probabilities of the effectively enumerated functions { fi} the universal prior given above. i.e.

(5.9)

Using Bayes's rule,

(5.10)

In other words, the inferred probability of fk being f after n instances is given by (5.10). As is usual in Bayesian exercises,
the denominator is appropriately normalized. In fact, it denotes the combined prior probabilities of all rules consistent
with S. From the previous results we know that
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(5.11)

where c is a positive constant.

Now, for each k, all functions inconsistent with the current instance get zero for their probability values and remain
zero for all future instances. As the instances increase without limit only those functions consistent with the presented
S at that point have positive inferred probability. At this point we invoke (5.10) and use that fk with the least algorithmic
complexity of all those f that are consistent with S. Thus, we have Occam, Solomonoff, and Gold all dealt with in one
fell swoop!

Put another way, since m(k) is uncomputable, Gold's procedures are computable approximations to the evaluation of
(5.8). But Gold's method of identification by enumeration is, in fact, an implementation of formula (5.10).

DEFINITION 5.16: IDENTIFICATION BY ENUMERATION. Given S and the current instance s, use as f the first rule that
is consistent with S for generating (s, f(s)). If this can be effectively encoded, then the procedure is called identification by
enumeration.

We can now state Proposition 5.1.

PROPOSITION 5.1. Identification by enumeration is a computable approximation to the inductive inference formula
given by (5.8). An immediate consequence is a learnable class of functions.

PROPOSITION 5.2. Functions in the class of primitive recursive functions (PRC) can be learned.

Proof. PRCs are effectively enumerable, say Given any S, choose the least i such that is consistent with S.

PROPOSITION 5.3. The set of total recursive functions cannot, in general, be learned.

Proof. Suppose all total recursive functions can be learned. By diagonalizing over the set of consistent functions, we
derive a contradiction. Define f(ε) = 0. Using the effective encoding of instances. construct the sequence:

Diagonalize, for all n, f(n + 1) such that it is + 1 the prediction and equals, therefore, 0 or 1 if f(n + 1) is 1 or 0. Thus,
there exist recursive functions that can never be learned.
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Remark. In the example to be discussed in the next chapter (from Spear 1989). Theorems 6.1 and 6.2 and Proposition
6.1 are direct applications of Propositions 5.2 and 5.3 above. And Spear's Proposition 3.4 is an indirect application of
our Propositions 5.2 and 5.3. Furthermore, to prove Spear's Propositions 2.3 and 2.4, we simply invoke Rice's
theorem; then, after using that theorem to prove the absence of effective procedures to determine the index set
(Spear's Proposition 3.5) or membership in an index set (Spear's Proposition 4.1). Spear qualifies the scope of the
respective propositions by referring to the Rice—Shapiro generalization of the Rice theorem.

5.4 Concluding Notes

the task of inductive logic is the construction of a “universal learning machine”. Present day inductive logics are
learning devices of very low power. But this is not reason for alarm. . . .
. . . In the future, the development of a powerful mathematical theory of inductive inference of “machines that
learn”, and of better mathematical models for human learning may grow out of this enterprise.
Putnam (1963/1985: 303–4)

I believe that the inductive tradition in economics should be given a new orientation on the basis of the recent
developments in a recursion-theoretic approach to the principle of Occam's razor. In this chapter I have tried to give
this belief some analytical and methodological focus: these should have been buttressed by a detailed doctrine-
historical study of the inductive tradition in economics. Such a study would have to begin at the beginning — with the
writings of Petty, the works of Hume, and Smith's essay on The History of Astronomy — and come via Malthus and Mill
to Myrdal and Keynes all the way to Simon and Clower. That would be the mainstream; it is the others — the
Ricardians, right up to and including the Formalists and the Bourbakian mathematical economists and the traditional
econometricians — who were unorthodox.

But such a study would form the subject of a separate monograph. Neither space nor intellectual competence permits
such an adventure

THE MODERN THEORY OF INDUCTION 87



within the framework of the present book. The message I wish to convey, however, is reasonably simple. The
computable approach to economics enables the economic theorist to work within a consistent analytical framework in
studying choice, learning from evidence, adapting to events, and exercising a broad concept of rationality, while going
about the ordinary business of living as an economic person.

I have so far referred to, and assumed as a working hypothesis, the Church–Turing thesis. This “thesis” (referred to by
Post as a “law”) “legalises” the attempts that have been made to formally encapsulate the intuitive notion of effective
calculability by Turing machines. Post machines, the λ-calculus, partial recursive functions, and so on. It remains a
thesis, and has not been accorded the status of a theorem, because one cannot “prove.” in any standard way, the
equivalence between an intuitive concept and a formal definition. It is not inconceivable that some superior intelligence
will, at some future date, be able to formally encapsulate Rado's “busy beaver” within the fold of the effectively
calculable.

The exact analogy in the case with attempts to encapsulate the intuitive notion of randomness is the formal apparatus
of the modern theory of induction. It is not that “Hume's problem” has been magically solved by the formalisms of
the modern theory of induction: it is just that the modern theory of induction not only accepts the Church–Turing
thesis, but also works within what may be called the “Kolmogorov–Chaitin–Solomonoff thesis.” With these theses at
hand, the modern inductivist can suspend doubts cast by “Hume's problem,” at least provisionally. It is not unlike the
deductivists' deft side-stepping of the difficulties posed by Gödel's results.

In Chapter 6 the ostensibly heavy machinery developed in this chapter will be applied to the economic example
imaginatively developed by Spear (1989).
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6 Learning in a Computable Setting

[T]here is reason to believe that human learning most kinds can be explained within the framework of [a] symbol
processing system. . . .
Simon (1969: 119)

6.1 Introduction

All learning, including the process whereby the rules of induction are perfected, orders step by step an ensemble
erstwhile chaotic.
McCulloch (1965: 274)

Much of the learning literature in orthodox frameworks, and with standard purposes, has been expertly summarized by
Tom Sargent, my immediate predecessor as “Ryde Lecturer” (Sargent 1993). Sargent's work, in turn, has been
brilliantly reviewed by De Vany (1996). In recent growth models, in traditional overlapping-generations (OLG) models,
in the experimental economics literature, in game-theoretic settings, and in many other areas at the frontiers of
economic theory, there is a learning component in the crucial senses.

As shown in the previous chapter, there is a more fundamental approach to learning than those applied in the above
areas. This approach has been used by Spear in his pioneering article (Spear 1989), where the whole learning problem
is imaginatively recast in a recursion-theoretic setting, and computability and decidability results are invoked to discuss
the feasibility of learning rational expectations equilibria (REE).



In this chapter I simply describe Spear's model, interpret it as an application of Gold's learning paradigm, invoke the
necessary results from Chapter 5 to prove the relevant propositions, and provide the background necessary to
streamline the recursion-theoretic infelicities in the model. The aim is simply to show how to apply, in a standard
economic setting, a recursion-theoretic learning paradigm. The need to extract the recursion-theoretic core of the
economic setting77 before applying the learning paradigm is emphasized.

Thus, in Section 6.2, the Spear model and its learning problems are interpreted and analyzed in the light of the results
in Chapter 5. In Section 6.3, on the other hand, I attempt to analyze the nature of the computability constraints that
have to be placed on the economic underpinnings of Spear's model (cf. fn. 1 above). The concluding section in this
chapter is devoted to methodological and metamathematical observations that clarify some of the philosophically
motivated economic infelicities in the background and interpretations provided by Spear.

6.2 Using Gold in Learning REE78

And the stuff gathering in my ear
. . .
will have to be unlearned
even though from there on everything
is going to be learning

Seamus Heaney, Unwinding

An abbreviated explanation of Gold's (1967) model of learning, from the point of view of the modern theory of
induction, has been given in Chapter 5. The links with Bayesian learning, in a computable setting and as induction,
were also discussed in that chapter. In this section I confine myself to the strict telegraphic task of transmitting the
details of Spear's use of Gold's model for learning a rational expectations equilibrium under computability constraints.
Spear's basic
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analytical task is the modelling of the inductive learning of rational expectations equilibria. This is, therefore, a familiar
exercise for those acquainted with investigating “fix-point” mappings that achieve equilibria in standard general
equilibrium theory. Instead of inquiring into compactness and other topological conditions on the price simplex that
are necessary (and sufficient) to prove the existence of an equilibrium “fix-point” mapping, Spear investigates the
recursion-theoretic structure of price and forecast functions that could be “fix-point” mappings for a REE. In other
words, instead of the topology of mappings, Spear looks at the computability of certain mappings.

Notations and Assumptions
S: a countable set of state variables for the economy
P: a set of spot market prices for the economy
Φ: a set of total recursive functions on S that contains the set of (temporary) equilibrium (TE) price functions and

the set of admissible forecast functions

ASSUMPTION 6.1. The mapping from forecast functions to TE price functions, denoted by g, has a fixed point.

Remark. Using an effective enumeration of Φ, we can assume g to be a mapping from N to N. The fix-point
assumption, therefore, asserts the existence of functions φ1 and φg[i] such that φ1 = φg[i], where, φ0 and φ1 from S → P
correspond to φ1 and φg[i] from N → N. This means, of course, that p → P is computable too.

CASE 6.1: TWO-STAGE LEARNING WITH FULL INFORMATION. I make the following assumptions:

(a) Agents hold fixed, common forecasts φi.
(b) Agents observe a sequence of temporary equilibrium pairs (pt, st).

Learning problem: learn the function g. This is a two-stage problem in the following sense: given assumptions (a) and (b),
agents attempt to learn the TE price function corresponding to the fixed, common forecast; if this is possible, at the
next stage agents learn the function g by varying their forecasts to compute the TE price function
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correspondingly. Full information means that all prices and states, at every point in time, are observable.

The formalism. When the forecast is φi, agents observe st and prices are

(6.1)

PROPOSITION 6.1. If the TE price function is primitive-recursive, then it is computable; if not, it is not computable.

PROPOSITION 6.2. If the economy's mapping, g, is primitive-recursive, then agents can compute it.

Remark. The fix-point assumption means, in this recursion-theoretic setting, that there exists a computable function g
that maps the space of forecast functions to the collection of functions actually used by the economy, such that there is
a fix-point for this mapping. This is given by

(6.2)

Also, the REE is given by the forecasting rule φi such that

(6.3)

Propositions 6.1 and 6.2 hold for this economy and for REE as given by (6.3)

DEFINITION 6.1. An economy is recursive if g, φi, and φg[i] are primitive-recursive.

Propositions 6.1 and 6.2 imply that, in a primitive-recursive economy, agents can learn the REE price functions.

CASE 6.2: TWO-STAGE LEARNING WITH PARTIAL INFORMATION. We now drop the assumption of full information;
agents observe a signal ηn(s) which denotes agent n's observation of a state-correlated signal. All other assumptions are
identical to the full-information case; in particular, all agents hold, as before, a fixed common forecast φi. From the
signal ηn, agent n has to learn the REE.

Denote

(6.4)

From observations ηn(s), agent n must learn the set of indices for which forecast functions are consistent with the
economy's mapping φg[i]. That is, agent n must learn the set of indices
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(6.5)

These formulas have the following explanations. For every state s, the economy has a mapping from S to P. A given
signal η(s) could have come from any one of many states á s ñ; this set of states, for each signal observed by agent n, is
given by πn(·). For each such set of states πn(·), by the fix-point assumption, there will be a collection of forecast
functions for agents that are compatible with a collection of mappings by the “impersonal economy.” If the agent can
identify each collection {j}, then REE can be inferred via g.

PROPOSITION 6.3. The set πn(i) cannot be determined by an effective procedure.

Remark. The proof is obtained using a powerful result due to Rice (1953) (see the Appendix for statements of the
theorem, variations of it, and a discussion) and belongs to a class of theorems in recursion theory that can be used with
great force to obtain uncomputability and undecidability results. I have used it in Chapters 3 and 4 above; I shall also
use it in the following chapters. It is important to note that the proposition's message is that there is no general method
that will work effectively for all cases. This does not mean that special classes of effective methods cannot be found for
particular sets of indices by various ad hoc procedures.

CASE 6.3: INCREMENTAL LEARNING. Let

(6.6)

where, as before, η(s) is the signal that agents receive for state s, and i0 is the index of a common initial forecast.

ASSUMPTION 6.2. Agents receive a common signal, and use a common updating scheme as functions of ξ. There exists
a total recursive function f which maps it and ξ to it + 1 for given forecasts φ it:

(6.7)

and if, for all s,

(6.8)

then we call the forecast φj consistent with the updating scheme, or a model consistent equilibrium. If a consistent
forecast also satisfies the usual
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(6.9)

then it is called a REE forecast.

The final assumption is as follows.

ASSUMPTION 6.3. There exist total recursive consistent equilibrium price functions.

PROPOSITION 6.4. There is no effective procedure for determining whether any given updating scheme yields a model-
consistent REE forecast unless Rg is the trivial set, where

(6.10)

Remark. This is a “cheap” theorem, a mechanical application of Rice's theorem (or any variation of it). The
interpretation of the set of indices Rg is analogous to the one for π, keeping in mind (6.8) and (6.9).

6.3 Computable Analytic Underpinnings for the Spear Model

[C]omputable analysis differs profoundly from real analysis. This difference of computable analysis stems first from
the restriction of the analysis to a subset of the real numbers — the computable numbers — and second from the
restriction of the functions, sequences, etc., allowed over this subset to the algorithmically defined ones.
Aberth (1980: 3)

Spear states that he is working within “a stylized version of a simple overlapping generations model” (Spear 1989: 892).
It is against the backdrop of such a model, and its equilibria, that Spear's assumptions on S and Φ are made. Thus, it is
claimed that

For specificity, we will consider a stylized version of a simple overlapping generations model in which agents live for
two periods, though the results developed here apply more generally, for any model in which the REE can be
determined as the fixed points of a mapping taking forecasts into temporary equilibrium prices. (Spear 1989:
892–3).

The extent to which Spear's claim can be substantiated depends on the way a recursion-theoretic structure can be
introduced into any
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“stylized version of a simple overlapping generations model”; and then it will be seen that the assumption on Φ entails
that on S.

However, more importantly, the crucial question is whether, and in what sense, the REE learned within the recursion-
theoretic framework of Gold's model corresponds to a traditional REE generated by a “stylized version of an OLG”
model. If this question is not answered in a consistent and compatible manner, it is not clear whether the economic
content of the inductively learned REE corresponds to that in the REE defined within a “stylized version of an OLG
model.” To answer this question meaningfully, I must investigate the recursion-theoretic content of the REE
emanating from such a “stylized version of an OLG model.”

For this purpose I can use any one of many standard OLG expositions; I choose to work with a particularly lucid one
given in Azariadis (1993). A simple OLG model with standard assumptions (Azariadis 1993: 414–16) generates REE
as solution(s) to the following type of functional dynamic equation:

(6.11)

where u and v are functional notations for the additive utility function; and Lt is the size of generation t (a discrete
random variable with standard assumptions);

(6.12)

where Mt is the aggregate stock of currency, pt is the realized price (of the one consumption good), et is the endowment
at time t, and It is the information set, defined by

(6.13)

It is clear immediately that, without a more precise recursion-theoretic structure on (6.11)–(6.13), Assumptions (6.1)
and (6.2) are insufficient to ensure consistency between the REE defined by (6.9) and that generated by (6.11). Indeed,
except for flukes, it is most likely that REE solutions to (6.11) are nonrecursive reals. How, then, can this nonrecursive real
be learned by an observed sequence of state space and price realizations — even granting Assumptions 6.1 and 6.2?

The problem is to devise an effective mechanism to learn and identify a possible REE. The strategy to be adopted will be
similar to
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that adopted by Rabin to effectivize a standard game. Rabin systematically stripped away the non-effective components
in the Gale-Stewart game (to be discussed in the next chapter) and then posed recursion-theoretic questions. To make
this possible here, (6.11)–(6.13) must be endowed with an appropriate recursion-theoretic basis. I now indicate the
general nature of the minimum requirements.79

First and foremost, the derivative of the second-period component of the additive utility function, v:, must be a
computable real function.80

Before proceeding to expand on this, a remark is necessary. A more elegant way would be to begin, from the outset, by
defining choice over sets that have a suitable recursive structure. This strategy, however, leads to various
undecidabilities that cannot easily be remedied and still maintain the framework of traditional choice theory (cf. Lewis
1985). An even more useful way would be to replicate Shepherdson's highly ingenious methods where only rational
probabilities were used and still most of the traditional tools and concepts were preserved. By replacing the rational
probabilities with the computable probabilities (cf. Gill 1977), one can proceed, with appropriate modifications, to use
Shepherdson's framework to remain within standard choice theory. However, I now believe that my heuristic
suggestions are simpler and more direct for the limited purposes I have in mind.81

To return to the question of v′ and its status as a computable real function, it is important to remember that the
computability of v does not entail, in general, the computability of v′. (See Myhill 1971 for this celebrated result, and
Pour-El and Richards 1989 for a comprehensive
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n → ∞, ∀ n ∈ N . Replace the f with a total computable function and the above limit with: x − f (n ) ≤ 2−n , for each n , to get the computable reals. Real numbers for
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will be a functional , say Ω , from real numbers to real numbers. Hence, a real valued function is computable if the corresponding functional, Ω , is recursive. This is the
classic recursion-theoretic definition of a computable real function.
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exposition of this and related results.) Roughly speaking, if the domain of v is chosen judiciously, and if v ∈ C2 is
computable, then v′ is computable. But for this to be an acceptable assumption, the arguments of v′ must, in turn, be
computable reals, i.e. e2, mt + 1, Lt + 1/Lt. There will, of course, be no problem in ensuring this for e2. However, Lt is
another story; it is random variable, and hence we must give a recursion-theoretic interpretation to a kind of
probabilistic computation.82

The random variables in the OLG model that resulted in (6.1) are characterized by finite means and stationary
probability distributions. It is, therefore, easy to construct a probabilistic Turing machine endowed with an extra
random-bit generator which generates, when necessary, the output that has the preassigned probability distribution.
For the technical details of such a construction, I refer to Gill's classic work (1977).

Next, there is the question of the recursivity of the information set It. Given that a recursion-theoretic learning model
requires this to be recursively presented to the learners,83 it is only the element θt that remains to be recursively defined.
But this is a pure exogenous variable and can be defined recursively in any arbitrary way.

Finally, I interpret the expectations operator in the customary way as an integration process. Then, noting that
integration is a computable process completes my discussion of endowing (6.11)–(6.13) with enough recursion-
theoretic structure to make the REE generated by (6.11) to be a recursive real.

In the next section the above assumptions are set in their paces in the form of a theorem. The method of proof I shall
adopt is a minor variation of a standard technique in algorithmic complexity theory. (For an excellent exposition, see Li
and Vitanyi 1997).

6.1 Results and Interpretations
The recursive real(s) that are solutions to (6.11) as REEs can, surely, be learned by a wide variety of mechanisms. I am,
however, concerned with an effective learning procedure (in the same standard
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sense of classical recursion recursion theory). The result, stated below as a theorem, utilizes a variation of Gold's
model of recursive learning (Gold 1965, 1967) to identify and define a unique REE. I appeal to the auxiliary
epistemological principle of Occam's razor (cf. Chapter 5) to justify some of the optimizations.

THEOREM 6.1. A unique solution to (6.11) can be identified as the REE and learned recursively.

Proof. The proof requires, first, that the REE generated as a solution to (6.11) is shown to be a recursive real. Second, it
must be shown that there is an effective procedure, i.e. a recursive learning mechanism, to generate the recursive real
that is the unique REE for (6.11). It will be shown that a version of the Gold model can be utilized to learn the REE
given by (6.11). The learning procedure also identifies the unique solution that is to be the REE.

The first part of the proof is a trivial consequence of the assumptions. The second part is slightly more delicate in one
sense but quite mechanical in other ways. Note, first of all, that the solutions generated by (6.11) are sequences of
functions (cf. Azariadis 1993: 417). By the above assumptions, these functions are partial-recursive. The sequence can
be given an effective enumeration say by an appropriate Turing machine, for example f1,f2, . . . Observe, next, that we
single out a particular function, say f, the REE, as the one to be inferred from the mapping of “the set of all possible
histories” of the economy “into positive [recursive real] numbers that represent prices.” That f which is “simplest” —
in a sense to be defined — is, clearly the one to be identified economically as the one corresponding to a rational
expectations equilibrium. In other words, to infer, inductively, the REE given by f, we observe a sequence of prices that
are recursive reals, say Π = p1, p2, . . . , pn containing elements of the form

(6.14)

Now, we let n → ∞. Denote by Hk the hypothesis that “f = fk.” Then

depending on whether the upper or lower condition in (6.14) holds. Apply the Bayesian scheme,
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(6.15)

Now choose, for the prior, the Solomonoff universal prior (cf. Chapter 5), given by P(Hk = m(·) = 2−k(·), where K(·) is
the standard prefix complexity in algorithmic complexity theory. This prior is chosen for the intuitively obvious reason84

that in this case P(·|D) will be maximized for the simplest hypothesis, which we identify with the REE. Then, as n →
∞, this will hold for Hk where K(k) is minimized and f = fk.

Remark. The learning mechanism is called Gold's learning by enumeration in the limit algorithm.

Remark. The theorem, although effective in the technical recursion-theoretic sense at every stage of the argument as far
as implementation is concerned, does embody an unfortunate epistemological consequence: there is no effective way
for the agent to know when to stop applying the learning mechanism.

Remark. Nothing in my discussion guarantees any of the functions to be tractably computable. Indeed, once again, it is
most likely that none of these assumptions guarantees polynomial-time computability of any of the constituent functions.

Discussion. Some justification will, surely, be warranted regarding the identification of the unique REE as that solution
of (6.11) which is predicated upon the simplest hypothesis. Suppose, on the contrary, that some arbitrary prior other
than the Solomonoff universal prior is chosen to implement the learning mechanism. In this case, P ( |D) will be
maximized for some hypothesis that is not algorithmically the simplest, and hence costs of inferring, measured
appropriately, any solution will be higher. By a standard application of the no-arbitrage hypothesis, all such solutions are
dominated by the solution generated on the basis of the Solomonoff universal prior. Hence this latter solution is the
natural candidate to be identified as the unique REE.

In an earlier paper (Rustem and Velupillai 1990) the question was raised of the effectivity of an agent generating his
own preference function. Within the framework of classical recursion theory, the results were uniformly and
disappointingly negative. This conclusion applies to a series of related pioneering contributions by Kramer,
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Lewis, and McAfee (1984). I have summarized and surveyed these contributions in some detail, in Chapter 2 above.

However, by replicating the procedures adopted in this section within the framework of recursive analysis, my
conjecture is that it would be possible to construct effective mechanisms to generate preference orderings. The caveat
is, of course, that tractability may be compromised. Moreover, there is also the unfortunate problem of recognizing
when to stop whatever effective procedure is being used in the generation of preferences, rational choice functions, etc.
This, I conjecture, is a direct consequence of the classic halting problem for Turing machines.

The fundamental methodological message of this chapter (and the previous one) is that learning problems in
economics should be posed as induction problems. This gives us the chance to exploit the full scope of algorithmic
complexity theory. I believe, therefore, that there are two immediate directions in which to pursue research along the
lines adopted in this subsection – in addition to the suggestion in its opening paragraph.

First, and most immediate, would be to integrate estimation as part of learning in a model of induction. Here again,
there is the made-to-order tools provided by Rissanen's “Minimum-Description-Length” principle.85 The ad-hockery
of nonrecursive learners using unrelated estimation techniques86 can easily be eliminated in simple extensions of any
standard model laterally, so to speak.

Second, I suggest that it is not only important to demonstrate the feasibility of computable inductive procedures, but is
also necessary to investigate their tractability. An analysis of the computational and, when appropriate, diophantine
complexity of learning procedures is at least as important.
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6.4 Concluding Notes

Why, when it was all over, did I hold on to them?
Seamus Heaney, The Old Icons

There are some technical and metamathematical slips in Spear's exposition of the learning model. For reasons of
completeness and clarity, it may be useful to amend the slips, lest the fastidious computable economist be put off by
them and throw the proverbial baby out with the bathwater. I have not attempted to organize this section thematically;
instead, it is ordered sequentially, reflecting the order in which the themes appear in Spear's paper.

Spear, correctly and perceptively in my view, questions the refuge taken by economists in the quasi-logic of “as if.”87 He
then goes on to make the following observation to buttress his defence of algorithmic modelling of rational agents.

Ultimately, the “as if” question is one of whether human mental activity is machine simulable or not. (Spear 1989:
891)

It is not quite clear in what sense machine simulability of human mental activity can settle. “the ‘as if ’ question,” but
this questionable statement is coupled to an incorrect metamathematical assertion:

Finite algorithms . . . are important because they determine the set of feasible computations that a human being can
undertake. This is the content of the so-called Church–Turing thesis in formal logic. The Church–Turing thesis can
be equivalently stated as the principle of noncomputability: if a function cannot be calculated by a Turing Machine,
it cannot be calculated by a human being. (Spear 1989: 894)

However, Church's thesis – or the Church – Turing thesis – is about the formal equivalence of independently derived
mathematical definitions of an intuitive notion: effectively calculable. One of the accurate – and, indeed, the “naming” –
statement of the thesis, following the pioneer who gave it the name, is:

Every effectively calculable function (effectively decidable predicate) is general recursive. (Kleene 1952: 300)

LEARNING IN A COMPUTABLE SETTING 101

87 Cf. Musgrave's brilliant disposal of “as if” reasoning (fn. 14, Chapter 3, above) by pointing out its nebulous logical content (cf. Musgrave 1981).



A thesis is not a theorem; there is no such thing as a converse to a thesis, and taking a converse has no logical validity.

Next, continuing his scepticism on the “as if” theme, Spear states that:

if one views the various constructs of economic theory as attempts to model realistically (rather than as if) the actual
decision processes of agents, then the requirements that agents not be capable of deciding logically undecidable
propositions is actually quite weak, since it leaves available the vast array of results in logic and mathematics which
are, in fact, decidable. (Spear 1989: 891)

But, surely, Spear knows from his own deft use of the Rice and Rice–Shapiro theorems that there are no effective
procedures to determine any nontrivial subset of “the vast array of results in logic and mathematics which are, in fact,
decidable.” This must mean that it is not possible to effectivize the decidable subset that is of particular relevance to
economics. It is at least equally likely, in the unlikely event that they can be effectivized, that it is precisely the set of
undecidable propositions that is of relevance to economic decision-makers.88

The next slip is a curious misunderstanding. Having assumed the state space to be countable (p. 895), Spear then goes
on to claim that the “discreteness” associated with countability precludes continuity characterizations of such spaces.
But there is a solid and well developed field of computable analysis – indeed, varieties of computable analysis – where
quite rigorous definitions of continuity, compactness, etc., exist (cf. previous section for some references on this line of
work). Moreover, whether “Continuity assumptions . . . are . . . only idealizations of the actual discrete computations
performed in real economies peopled with real agents who always round off real numbers” (p. 895) or not is one thing;
it is quite another thing to work on the space of the computable real numbers where the idealizations are not on the
continuity assumptions. Above all, as pointed out in the previous section, the countability assumption is superfluous
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in that it is entailed by the assumptions necessary to make the two REEs compatible. Perhaps Spear has forgotten the
treacherous slips one can make when countable infinities are involved. I think the question about appropriate spaces
should have been put another way – the way Hamming put it in a related discussion (but read “economics” for
“probability”):

Thus without further examination it is not completely evident that the classical real number system will prove
appropriate to the needs of probability. perhaps the real number system is (1) not rich enough – see nonstandard
analysis; (2) just what we want – see standard mathematics; or (3) more than is needed – see constructive and
computable analysis. (Hamming 1991: 190)

It is not only the cardinality of the domain that is the relevant item; it is also the nature of the operations and operators.
Are we to allow the unrestricted use of the law of the excluded middle in a countably infinite space?89 What is the
status, logical or otherwise, of a theorem deduced in such nonconstructive ways, albeit in a countably infinite space?
Or, if there is no possibility of effectivizing the Hahn – Banach theorem, are we justified in appealing to this – in the
form of a separating hyperplane theorem – in our optimizing exercises? Or is Spear making a case for finiteness? In
any case, the conflation of the countable and the discrete and then the negation of the feasibility of defining continuity
seem both incorrect and somewhat misguided. Above all, the countability assumption is unnecessary – at least in its
explicit form.

Finally, Spear seems to suggest that the assumption of the computability of nonequilibrium temporary equilibrium
price functions “can be defended,”

by viewing these prices as computable approximations of the price functions associated with a given forecast. That
such approximations exist (to any degree of precision) can be shown formally (though we do not undertake a proof
here) by working with computable approximations to agents' excess demand functions) and applying the
generalized Sturm algorithm . . . to compute the zeros of the approximation to the aggregate excess demand
function. (Spear 1989: 895)

Spear's suggestion, therefore, is:

(a) Given an agent's excess demand function,
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(b) take a computable approximation to it, and
(c) apply the generalized Sturm algorithm to the computable approximation to the (individual) excess demand

function, then
(d) the zeros computed by the generalized Sturm algorithm will be approximations to the zeros of the (individual)

excess demand function.

Hence we are justified in working with the assumption of computable, nonequilibrium, TE price functions. Now, the
first question is: How does one take a computable approximation to an uncomputable function? Take, for example,
the busy beaver function. This is an explicit uncomputable function whose basic characteristic is that it grows faster than
any computable function in a certain precise sense.90 What would be the sense in which such an uncomputable function
becomes approximated by a computable function? Any definition of approximation involves, in general, two norms
connected by an inclusive inequality, e.g. something like

(6.16)

where, say ϕ is some class of uncomputable functions, and ψ, ψ* are computable functions, say in a class; and (6.14)
should hold for all ψ ∈ Ω. But this is impossible to satisfy in general; the best that can be done, via semicomputable
functions,91 is to assert an existential statement for the approximation without any idea of the degree of approximation.
Moreover, even if it were possible to take a computable approximation to an uncomputable excess demand function,
there remains the thorny problem of the effective decidability of computing zeros for special subsets of the
computable functions. It is easy to show, using variations of the theme broached by Richardson (1968) and Caviness
(1970) and the techniques developed to demonstrate the effective undecidability of Hilbert's Tenth problem (cf.
Chapter 7), that large classes of simple functions do not have effective procedures for the computation of their zeros.
In this connection it will be useful also to follow up on Spear's reference to Jacobsen's classic text and to check, in turn,
the demonstration of the Sturm theorem and further references to Seidenberg (1954); even further to van
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der Waerden's remarkably lucid exposition of the Sturm algorithm (cf. van der Waerden 1970: 243ff. and Seidenberg
1954: esp. 366, 374). A serious study of these classics will convince the reader that Spear's suggestions are infeasible.

Continuing on the approximation theme, Spear suggests that:

the question of whether one can uniformly approximate an economy with infinitely many state variables by one
with finitely many is most interesting. One possibility for dealing with this issue when it occurs because of the
inclusion of lagged endogenous variables would be to show a version of the shadowing lemma for compact,
stochastic dynamic systems. This lemma states that for a nonstochastic, hyperbolic dynamic system, any
approximation of a given trajectory is “uniformly shadowed by an exact trajectory. . . . “If such a result could be
shown for stochastic dynamic systems, it would justify approximating price processes on finitely many ε-balls.
(Spear 1989: 906)

Even if we grant success in this hope, it is unclear to me where finiteness enters the picture in the shadowing lemma —
in an effective way. Indeed, I conjecture, adapting a version of the result that shows the failure of the Heine—Borel
theorem in a recursive context (Bridges 1994: 69) that this noneffectivity can be proved.

Moreover, as noted by Spear himself, the available results on shadowing are for restricted classes of dynamical systems.
These results, the early results of Anosov and Bowen, were for diffeomorphisms that are hyperbolic. Although I
cannot see how and why price processes in RE models for generating REEs should be diffeomorphisms that are also
hyperbolic, Spear may in fact be summarizing an acceptable assumption. In other words, once again, Spear may well be
vindicated in that hyperbolic diffeomorphic price dynamics in an OLG setting is not an unacceptable economic
assumption; and, because they are diffeomorphisms, they may satisfy the necessary computable analytic assumptions
to make the model recursion-theoretically useful.

On the other hand, can it be shown that dynamical systems with the shadowing property are computation-universal? If
not, it is hard to see how price processes can satisfy Assumption 6.2.

I believe that Spear's framework and results are of fundamental importance to economists interested in modelling
learning. Spear has raised fundamental questions not just about the role of computability constraints in REE learning,
but also about the nature and scope of induction in economics. In addition, he has broached the subject
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of finiteness assumptions in economics and the significance of approximation considerations in formal economic
settings.

The weak links in his model and the metamathematical and technical slips are easy to rectify. The corrections
strengthen his approach. In considering and suggesting extensions and emendations, we must above all bear in mind
that Spear's fundamental message is that learning problems in economics should be posed as induction problems.

I hope that economists will take up the challenges posed by Spear in his imaginative suggestions to place learning
squarely in the middle of the weird and wonderful world of induction. It is a refreshing antidote to the dominance of
deductive theorizing in economics.
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7 Effective Playability in Arithmetical Games

On the first part of my inquiry I soon arrived at a demonstration that every game of skill is susceptible of being
played by an automaton.
Babbage (1864/1961: 153)

7.1 Introduction

Given a diophantine equation with any number of unknown quantities and with rational integral numerical
coefficients: To devise a process according to which it can be determined by a finite number of operations whether the equation is
solvable in rational integers.
Hilbert (1900/1902: 458)

I have, in earlier chapters referred to decision problems, suggesting that it is more general than the standard optimization
formalism customarily utilized in economic theory. Hilbert's Tenth problem, the original statement of which is quoted
above, is a paradigmatic example of a decision problem. Matiyasevich's lucid characterization of the essence of a
decision problem might set the background against which to understand some of the discussions in this chapter:

The essence of a decision problem lies in the requirement to find a single method that can be used for obtaining the
answer to any of the individual subproblems. Since Diophantus's time, number theorists have found solutions for
many Diophantine equations and have established the unsolvability of many other equations. However, for many
particular classes of equations, and even for certain individual equations, it was necessary to invent a specific
method. In the Tenth problem, Hilbert asked for a universal
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method for deciding the solvability of Diophantine equations. (Matiyasevich 1994: 2)

In this chapter I attempt to discuss the question of effective playability and the computational and diophantine complexity
of Rabintype games92 from various recursion-theoretic vantage points. The effective playability of an arithmetic game is
rephrased as a decision problem for a diophantine relation.

There is a growing literature on applying recursion-theoretic concepts to traditional issues in game theory. I have,
myself, been sceptical about the computable structure of many of these models. There are, of course, notable
exceptions.93 On the whole, my view on this literature is best summarized in the following important observation by
Megiddo and Wigderson:

It has been said that the prisoner's dilemma may be “resolved” by “bounded rationality.” One possibility of
bounding rationality is to have players play the game through computing machines. . . . The only restriction is on the
number of internal states of the machine . . . [However] it should be emphasized that most of the results are
nonconstructive and we do not believe that [this] approach . . . will lead to a practical resolution of the prisoner's dilemma. (Megiddo
and Wigderson 1986: 260; emphasis added)

As a matter of fact, it is easy to identify the nonconstructive nature of the results as emanating not only from the
noneffective rules of the underlying games,94 but also from the backward-induction proofs. It must be noted that it is
customary to use nonconstructive methods in recursion theory too; but existential results come with effective
processes to realize them. It is the (universal) undecidable results that are, in general, proved with free-swinging
nonconstructive methods.95

I shall, instead, return to the Rabin tradition of seeking recursion-theoretic formalisms in game theory, and shall link it
to some of the
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contribution — now almost four decades ago. One of the aims of this chapter is to demonstrate that it is still a fertile framework in which to explore recursion-theoretic
issues in games.

93 Above all, Binmore (1987).
94 As Rabin notes in his pioneering paper, “there should be no sense in worrying about the effective computability of a strategy when the rules of the game in which it should

be applied are not effective” (Rabin 1957: 148, fn.3).
95 As Davis et al. pointed out, “these [reductio ad absurdum and other noneffective methods] may well be the best available to us because universal methods for giving all the

solutions do not exist” (Davis et al.1976: 340).



classics as well. Indeed, a return to these classics makes it easier to link up with the frontiers in what I have earlier
referred to as applied recursion theory, i.e. computational and diophantine complexity theories and an introduction to
the use of new recursion-theoretic techniques to simplify proofs in arithmetical games.

This chapter is organized as follows. In the next section I discuss elementary examples and heuristic motivations for
considering Rabin-type games as useful and fruitful frameworks in which to pose questions of effective playability. In
Section 7.3, the formal structure of Rabin's effectivized Gale—Stewart game and an introductory discussion of Jones's
variation of the Rabin game (Jones 1974) are presented. I outline the imaginative way Rabin stripped away the
noneffective content in a Gale—Stewart game;96 and, via Jones's modified version of the Rabin game, I introduce, in
the proofs, the Busy Beaver game. Quite apart from the auxiliary benefit of literally seeing how an explicit
noncomputable function is actually constructed from seemingly innocuous building blocks, this device prepares the
analytical ground for the melancholy demonstration that very simple effectivized games, even when determined and
playable, can contain intrinsic undecidabilities and intractable complexities.

The basic theme in Section 7.4 is to introduce the idea of arithmetical games and to show that they are a natural
development of Rabin's effectivized Gale—Stewart game. Once we understand this, it is possible to exploit the elegant
results that were byproducts of the long saga that led to the negative solution to Hilbert's Tenth problem: the diophantine
nature of recursively enumerable sets. In other words, we reduce the analysis to questions of arithmetic (hence arithmetical
games); the main question that Rabin posed, effective playability, is answered by looking at the effective solvability of
diophantine equations by exploiting the above fundamental result.

The concluding section, is a brief introduction to the issue of diophantine and computational complexity in
arithmetical games. The section also includes my suggestions for directions in which the themes of this chapter should,
or could, be developed as part of a broad research strategy in computable economics.
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7.2 Examples and Motivations
The extensive form of a game is of considerable use in describing the details of moves and the information
conditions in an industry. A class of “games of economic survival” has been investigated . . .
Shubik (1984: 60)

Consider a simple variant of the classic problem of “Long-run equilibrium in concentrated oligopoly” (Sylos-Labini
1962: 41 ff.),97 as imaginatively modified and illuminatingly discussed by Kreps (1990: ch. 4, esp. 41 ff.), to illustrate the
fertile uses of a game-theoretic framework. A monopolistic manufacturer of one homogeneous commodity, x, faces a
classic downward-sloping demand curve and a simple cost structure (in, say, dollar-denominated monetary units),
respectively, as follows:

(a) x = 13 − p,
(b) c = x + 6.25,

where p = price and c = cost.

Elementary analysis results in an optimum value of x = 6 at which total profits are $28.75. Now consider a standard
“von Stackelberg story,” where the monopolistic manufacturer is threatened by a potential entrant. An extensive form
for this story, in which the potential entrant considers three levels of production, one for each of three levels
considered by the monopolistic manufacturer, is shown in Figure 7.1. Conventional analysis would dictate, for
example, that we reformulate the extensive form as a strategic form and seek, say, a Nash equilibrium. I wish, however,
to highlight slightly different aspects of this almost paradigmatic problem in elementary industrial organizations theory.
Observe, therefore, that:
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Fig. 7.1MM: Monopolistic Manufacturer PE: Potential Entrant

Source: Kreps (1990: 46)
(a) For each of three envisaged production decisions of the monopolistic manufacturer, the potential entrant

considers four possible “reactions”; i.e. a total of 43 = 64 possible reactions.
(b) The numerical values of the example – fortuitously or not – are “constrained” to be rational numbers. Kreps

notes that: “In
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theory, the monopolist can choose from an infinite set of actions, as the quantity variable is perfectly divisible. If you
find this bothersome, it will do to think that quantities must be in units no finer than hundredths” (Kreps
1990: 45; emphasis added).
I do find this bothersome! Hoggatt, in his pioneering study “An Experimental Business Game,” also observed
that: “The product is infinitely divisible, i.e., it can be produced in any fractional part of its unit of measure”
(Hoggatt 1959: 192); he then added a footnote to this observation about potential (uncountably) infinite
divisibility, to the effect that, “However, in the play of the game, numbers are rounded to two decimal places”
(p. 193). I find these dichotomies analytically imprecise and intellectually disturbing. A constrained optimization
problem in which the feasible domain is not98 the whole of R cannot be guaranteed to yield “rounded” optimal
solutions “near” a value yielded on the whole of R. In passing, it may be useful to remember that “the
monopolist [in theory] can choose from an uncountably infinite set of actions.” Somewhere, somehow, the
axiom of choice is invoked and the whole experiment becomes noneffective in the strict recursion-theoretic
sense.

(c) In this example, it is clear that the potential entrant can (easily!) compute an optimal response for each of the
possible decisions by the monopolistic manufacturer. The only “curse of dimensionality” faced by the potential
entrant is the number of computations, not their nature.99

(d) The extensive-form description highlights the sequential (or “dynamic”) nature of the example (even if not the
actual unfolding of events in the market).

(e) The way the problem has been presented indicates a termination point for the sequence of decisions and the
outcome, which can be one of a finite number of cases. For example, the market could “evolve” into a
duopolistic market, or remain one of two possible monopolistic markets. Thus, a standard
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“payoff” can be computed and associated with the finite number of alternative outcomes.

Stripped, therefore, of some of the paraphernalia, this problem can be considered a determined, two-person, perfect-
information, constant-sum, finite-time game in extensive form. In its bare essentials, it has the following structure.
There are two players, I and II; player I, choosing first, picks a number i; knowing I's choice, player II picks a number j;
depending on the value of i + j, the outcome is a continuation of the status quo (player I “wins”), evolves into a
duopolistic market (a “draw”), etc.

Eschewing standard ad-hockeries in the analysis of oligopoly (cf. fn. 1 above), Shubik has formulated a generalization
of the above kind of example as generic “games of economic survival” (cf. Shubik 1959: sec. 10.3). Apart from minor
variations, all games of economic survival have the essential structure exactly as described earlier in this section.

A few additional technical characteristics could be pointed out.

(α) The sequential nature highlighted by the extensive form of the example shows that the decision process has the
classic form of an alternating game; i.e., decisions or choices are prefixed alternately by the existential and
universal quantifiers until, at the termination point, a polynomial is evaluated to determine an outcome.

(β) The polynomials to be evaluated, in a general experimental setting, are constrained to yield rational, non-
negative values.

(γ) “Behind” the picking of integers (or rational numbers) i and j by players I and II, there is a whole process of
computation, conjecture, evaluation, etc. Some of these sub-elements lurking “behind the scenes” may even
have probabilistic elements.

Now, in the case of (α), technically this means that the problem can be described in a prenex normal form (cf.
Theorem 7.3 below). As for (β), it is clear that, in general, a realistic experimental game of economic survival should be
viewed as a diophantine decision problem (cf. below). In other words, it is not sufficient “to know how to take the
derivative of a quadratic”: it will also be necessary, for example, “to know methods to extract roots.”

As for (γ), it must first be noted that a probabilistic structure is usually given to these games in view of – in my opinion
– the
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historical accident of the pioneers basing rational behavior on expected utility fundamentals. This is an inessential
feature, but an expansion of this theme and a demonstration of its inessentiality will require space that is
disproportional in length and nature to the main goals of this chapter. A few observations may, in any case, put the
matter in some sort of perspective.

Expected utility maximization can be based on a definition for information that is wholly recursion-theoretic. This is
implied by a recursion-theoretic basis for randomness (cf. Chapter 5 above) on which, in turn, probabilities are
grounded.100 Therefore, the “behind-the-scenes” processes101 that are the bases for the players” choices of numbers102i
and j, say, can be given complete recursion-theoretic underpinnings.

Furthermore, every decision-making unit, within any of the standard frameworks of economic theory – i.e. within the
neoclassical closure – and the decision process itself, can be given a number-the-oretic encoding.103 The modifications
and altered constraints on the domain of analysis will not be as drastic as is sometimes suggested.104

Let me next consider the example of a well known parlour game, “NIM”, but in its form as the “Silver Dollar Game.
”105 A row of squares, semi-infinite to the right, in the form of a tape is placed on a board. A finite number of coins, of
which exactly one is a silver dollar, are placed on some of the squares, and a cash till at the left end of the semi-infinite
tape. A legal move in the game consists of moving any one coin-heap from the square on which it is placed to any
unoccupied square to its left without passing over any other coin heap. The cash till can hold any amount of coins, and
the leftmost coin can be deposited in the cash till in one legal move. When a player making a move is forced to shift
the silver dollar into the cash till, the game ends and the other player wins (gets the moneybag, for which a legal move
is also defined).
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100 Indeed, the original definition and conceptual introductions of martingales goes back to such considerations (cf. Fine 1973: esp. ch. IV).
101 In particular, expected utility maximization and the feasibility of choosing mixed strategies; but in general, almost all of standard theory.
102 Only the computable numbers?
103 E.g., Gödel numbering (cf. Ch. 3 above).
104 In Spear (1989) or Lewis (1985). In the concluding sections of Ch. 6 – and related work in progress – I have developed a computable analytic framework within which

standard results on REE can be retained in the face of “computability constraints.”
105 Brilliantly analyzed in Conway (1976) and Berlekamp et al. (1982).



A “Turing machine interpretation” of this game, heuristically, suggests the following intuitive ideas. Consider the semi-
infinite tape as the conventional input tape for the computing activities of a Turing machine; however, the heaps of
coins will be denoted by consecutive 1s with blank squares separating them. A program for the machine, in terms of its
standard quadruple, can be written to encapsulate the rules of the game, with an appropriate interpretation for the
terminal state given by the left-move end-state for the silver dollar.106

Although the game itself has a solution, in the sense of determining a winner, the point I wish to emphasize here is: can
we write an explicit sequence of instructions for the determinable winner to execute and reach the winning configurations? The answer, in
general, is negative.

Consider, now, a variation of the Silver Dollar Game. A win is determined for the player who makes a move that
results in the number of heaps of coins107 coinciding with the number of shifts made by an appropriately programmed
Turing machine at that move. Then the above query, if answered in the affirmative, would provide an answer to a
problem known to be effectively undecidable: the unsolvability of the halting problem for Turing machines. Many minor
variations of the same theme – either in the rules or in the nature of the scope for the silver dollar in determining a win
– with Turing machine dependence can be devised. It will then be possible to ask effective playability, decidability, and
tractability questions more directly. For example, in any one of these variations of the Silver Dollar Game, the next
question after the above query should perhaps be: given an affirmative answer to the question on the existence of explicit sequence
of instructions, how tractable is it? In other words, how fast can a win be effectively prescribed?

Note, also, that the play can be cast in terms of an alternative sequence of existence and universal quantifiers. The
player with the first move will be associated with the existential quantifier – choosing to move some one heap of coins
to a feasible position on the left (∃ ), taking into consideration all possible responses by the second player
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( ∀ ), and so on. The game is determined when one of the “win” conditions is satisfied; such conditions can be stated
as Boolean expressions and then arithmetized, so that its satisfaction is equivalent to the decidability of a diophantine
relation.

Finally, games of attrition (e.g. Isbell and Marlow 1956), games of timing, tactical air-war games (e.g. the Colonel Blotto
game – cf., say, Karlin 1959: 82 ff.; Dresher 1961: chs. 9, 10), and “parlour” games of skill such as chess and variants
of poker can all be studied in the generic form, intuitively suggested in the above discussion.108 Moreover, even the
famous Gambler's Ruin problem and the classic thought experiments underlying the genesis of calibration for logical
and subjective probabilities by Ramsey, de Finetti, von Neumann–Morgenstern, and Savage can be reformulated as
games in the senses discussed above.

In the next sections, in steps of increasing generality, a class of arithmetical games109 will be defined, discussed, and
analyzed. Such games encompass, as special cases, all of the above examples, when they are constrained computably in
various ways. It is then possible to ask recursion-theoretic questions on the decidability, effective playability, and
tractability of determined games.

It might be illuminating to conclude this section with Turing's remarkable, early, and general result; however, let me
first proceed, as Turing (1954) did, with a series of increasingly general questions and possible answers. Think, first, of
games in general. When asked to play the game, having been given an explanation of its rules, one may ask quite
simply,

(a)Can this game be played?

Perhaps, as economists, we can take the concrete example of the classic parlour game with a clear economic content:
Monopoly. With this game in mind, we know that the answer to (a) is “Yes”; but for
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108 Indeed, I have come to feel that the best starting-point for the analysis of all of these games is Conway's game-theoretic foundation for numbers – if, using Conway's own
caveat, “We ignore some objections on the grounds of ineffectivity ” (Conway 1976: 3; emphasis added).

109 A more appropriate name may have been “recursive games.” There are, however, two cogent reasons that mitigate against such a “naming.” First of all, Everett (1954),
more than 40 years ago, appropriated the word “recursive ” for a special class of what has come to be called arithmetical games; second, the number-theoretic underpinnings
of the methods devised to demonstrate the diophantine nature of recursively enumerable sets has made it natural to consider games studied in such contexts to be arithmetic
in a foundational sense (as distinct from being analytic, algebraic, etc.).



games in general the admissible answers are “Yes,” “No” or possibly, “Don't know.” Indeed, “theoretically,” a game of
Monopoly, which has an elementary chance mechanism built into it, can go on “for ever.” However, it does belong to
Shubik's generic definition of a “game of economic survival” with, in principle, no termination point.

Next, one may ask, or be asked:

(b)
Is there a best way to play the game?

Again, the possible answers may, at first, be “Yes,” “No” or “Don't know”; however, in the case of this question there
is scope for further refinement of the query and the answer. I shall not elaborate further on this point but shall move
to Turing's punch-lines:

When one has been asked a number of times whether a number of different [games] of similar nature can be
[played] one is naturally led to ask oneself:

(c)Is there a systematic procedure by which I can answer these questions, for [games] of this type?

If one were feeling rather more ambitious, one might even ask

(d)
Is there a systematic procedure by which one can tell whether a [game] is [playable]?

I hope to show that the answer to this last question is “No.” (Turing 1954: 16)

Rabin's particular result, which I quoted at the beginning of Chapter 1, is a special case of Turing's more general result.
With some of the intuitive background of this section as heuristic motivation, I begin with Rabin's framework and
result and describe its progressive generalization in various directions. My conjecture is that, eventually, a general result
similar to Turing's, applicable to arbitrary games when effectivized, can be demonstrated. These are tentative first steps
in the direction of demonstration of such a conjecture.

7.3Rabin's Computable Game — and Extensions
Mathematicians copied the example of philosophers; they derived logical principles from the language describing
finite mathematics and without scruple also used them in their pure mathematical study of infinite systems.
Brouwer (1929/1998: 50)
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Rabin's starting-point is the abstract Gale–Stewart game described in the appendix to this chapter. However, he
focuses on the actual playability of a game in real time; hence the first modification would be to do away with the
assumption of infinite plays.

Rabin's Assumption 1
(a) Each play terminates with a terminal position.
(b) There exists a 1–1 correspondence between terminal positions and plays.
(c) The set of terminal positions T of Γ (is defined by:

(d) x is finite or countably infinite.

Remark. It is interesting to note Rabin's motivation for assumption (d):

In order to make communication between the players possible, they must have some fixed system of naming or
denoting all the different positions of the game. Since any one notational system contains at most a countable
number of different symbols we must impose the condition that the set x of positions of Γ is finite or countably
infinite. (Rabin 1957: 150)

This important constraint is hardly ever considered in standard game theory – indeed, not even in ordinary economic
analysis, where agents routinely face an uncountable infinity of alternatives over which they are able to assign
preferences. I tried to point this out in the discussion of the “barriers to entry” example in the previous section. This
basic building block is never, in general, relaxed when agents play, say, the prisoner's dilemma with finite automata, or
when the algorithmic and computational complexity of Nash equilibria are investigated.

Rabin's Assumption 2 (Towards Effectiveness)
The following information must be effectively ascertainable:

(a) for all x∈ X: who makes the next move;
(b) given: x → x′, effective verification of f(x′) = x, i.e. the effective verification of the validity of a move that is

observed;
(c) for all x∈ X, whether
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(i) the play terminates at that x,
(ii) and if so, who won.

Rabin's Assumption 3
For X countably infinite,

(a) XI and XII are recursive sets;
(b) f is a computable function from (X − (0)) to X;
(c). T is recursive; and TI and TII for SI and SII are also recursive sets.

DEFINITION 7.1: ACTUAL GAMES. P ≡ {x0, X, XI, XII, f, S, SI, SII, Φ} is called an actual game if:

(a) all plays s ∈ S are finite;
(b) X is finite or countably infinite.

Discussion. (i) If X is finite, the game is actually playable. This is because the effective instructions to play the game can
be given in a finite list which enumerates the sets: XI, XII, T, TI, TII (recall that these are now recursive sets).

(ii) If X is countably infinite, too, the game is actually playable, this time because the finite list of effective instructions
to compute the characteristic functions of XI, XII, TI, TII, and the computable function, f, can be given. Whenever the
player faces one of the questions (a), (b), or (c) in Rabin's assumption 2, an answer can be given by computing the
necessary recursive set or computable function and proceeding to play or terminate.

DEFINITION 7.2: (EFFECTIVELY) COMPUTABLE STRATEGY (RULE). σ is a(n) (effectively) computable strategy if it is
defined by

and is (effectively) computable. Similarly for τ.

DEFINITION 7.3: THE ACTUAL EFFECTIVE GAME. For g(x), a computable function, g: N → N, an actual effective
game Γg is played as follows:

(i) Player I picks any integer I.
(ii) Player II, knowing I's choice, picks any integer j.
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(iii) Player I, knowing i and j, picks an integer k.
(iv) Compute g(k).
(v) If g(k) = i + j, then player I wins the play.
(vi) If g(k) ≠ i + j, then player II wins the play;

Finally, we have Rabin's theorem.

RABIN'S THEOREM. If g(x) enumerates a simple set110G, i.e. if the set of values of g(x) is simple, then there is no
(effectively) computable winning strategy in Γg.

Proof. Player II has the winning strategies because, given i, II could choose j so that i + j∉ G. This is possible because,
by the definition of a simple set, G is infinite. Therefore, a winning strategy for II is any computable function τ(i), such
that ∀ i, i + τ(i)∉ G. In fact, if I picks i and II picks τ(i), then no matter what k player I chooses in the third move, we
have: g(k)∈ G and g(k) ≠ i + τ(i)∉ G. So player II always wins.

Next, assume that player II has the winning strategy τ(i) and that it is a computable function. Clearly, h(i) = i + τ(i) is
also a computable function.111 Now, the set of values taken by h(i), call it H, is recursively enumerable. H is also infinite.
Because i + τ(i) ∈ Ḡ, H ⊆ Ḡ, . But this means that Ḡ contains an infinite set which is recursively enumerable. This
contradicts the assumption that G is simple. Hence τ(i) cannot be a computable function.

This whole section may appear arid and antiseptic. But is is never useless to know what the pioneer did – and why he
did it. More importantly, it gave me the chance to describe a minor research program, on effectivizing standard
concepts and tools. In the process I was able to introduce important definitions and two techniques customarily used
in proving uncomputabilities: the diagonal argument, and existence of recursively enumerable nonrecursive sets.

Jones's version of Rabin's Gale–Stewart game differs, ostensibly, only in the way a win is determined; the play, in its
basic first three steps, proceeds identically. Thus, the definition of the way the result is determined is:
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Player I wins if some (two-symbol) i-state TM halts in exactly i + k shifts112 when started on a blank input tape. If
not, player II wins.

Now, in a perfectly intuitive sense, this game should be effectively playable. Why? Because, after I and II have elected i,
j, and k, an impartial umpire should be able to list all possible (two-symbol) i-state TMs effectively. By a simple
counting argument, it is easy to show that there are (4i + 4)2i such machines. Then, the umpire needs to go down the
effective list of (4i + 4)2i (two-symbol), i-state TMs and operate each of them to see if any of them halts after exactly (i
+ k) shifts. If any does, player I will be declared the winner; if not, player II is the winner. In this sense, this can be
considered a variant of the Silver Dollar Game, discussed in the previous section, and hence a generalized form of
NIM. Moreover, being a (modified) Gale–Stewart game, it is also provable that there is a winning strategy for player II.
Even granting all this, it is still remarkable that:

THEOREM 7.1. In Jones's modified Rabin game, neither player has an effective winning strategy.

Some conceptual machinery must be introduced before the (simple) proof of the theorem can be given. Jones's original
proof uses the formalism and results inherent in the “Busy Beaver Game.” I will need to outline some of the basics of
this game.

Tibor Rado's Busy Beaver game (cf. Rado 1962; Lin and Rado 1965) gives an explicit, intuitively clear, uncomputable
function. Before defining it, consider, for example, a Rado-type description of a 3-state Turing machine (Figure 7.2). It
functions as follows. The entry in the first row, first column signifies that the Turing machine scanning symbol 0, in
state 1, writes 1 instead of 0, shifts right one square, and enters state 2. Now, denote by

Λ(k):
the set of all k-state Turing machines which eventually halt, after starting on a blank tape (Note: this number is
finite since it is a subset of the number (4k + 4)2k)

ρ(m): the number of 1s finally written by a halting Turing machine m (∈ Λ(k)), which is initialized on a blank tape (in
Figure 7.2, ρ(m) = 5)

s(m): the number of shifts made by Turing machine m (∈ Λ(k)) before halting (having written ρ(m))
Σ(k): the kth Busy Beaver number, defined by
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Fig. 7.2

S(k): the kth Busy Beaver shift number defined by:

DEFINITION 7.4: BUSY BEAVER GAME. Suppose we consider the set Λ(k). Then the winner of a Busy Beaver game is
that Turing machine, m ∈ Λ(k), which generates Σ(k).

DEFINITION 7.5: BUSY BEAVER PROBLEM. Find an effective procedure to determine Σ(k).

THEOREM 7.2. For every computable function f, there exists an n, (depending on f) such that Σ(k) > f(k), ∀ k > n.

Proof. See Rado (1962) or, for a pedagogically masterful “constructive” proof, Boolos and Jeffrey (1989: 34–42).

An immediate corollary arises:

COROLLARY 7.1. The Busy Beaver shift number, S(k), is uncomputable.

Proof. If S(k) were computable, then Σ(k) could be computed by a straightforward counting procedure. Simply run each
Turing machine m(∈ Λ(k)) through a maximum of S(k) shifts; tick off the 1s on those Turing machines (∈ Λ(k)) that
halt and choose the one that scores the highest ρ(m).

Remark. Just to get a feel for the orders of magnitude, note the following:

(a) There are [4(2 + 1)]4 = Λ(2), two-state machines, which is a manageable 20,730; Λ(3), on the other hand, is
[4(3 + 1)]6 = 16,777,216!!
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(b) As for the Busy Beaver number, Σ(k), we have Σ(1) = 1; Σ(2) = 4; Σ(3) = 0; Σ(4) = 13; and then we reach
monstrosities: Σ(4) ≥ 4,098, . . . , Σ(7) ≥ 22,961, and Σ(7) ≥ 3·(7· 392 − 1)/2.

(c) The busy beaver shift number, as can be expected, is properly “Malthusian”: S(3) = 21 (cf. Figure 7.2); S(4) =
107; S(5) ≥ 2,358,064.

Note, above all, that these are two-symbol machines. For example, S(2) for a three-symbol Turing machine is ≥ 38;
and for a four-symbol Turing machine it is ≥ 7,195. So far as I know, S(k), for k ≥ 3 and more than two symbols, has
not ever been seriously calculated.

We can now prove Theorem 7.1.

Proof of Theorem 7.1. Assume that the Turing machine m(∈ Λ(k) is initialized in state 1 on a blank tape. Clearly, Σ(k) ≤
S(k). Now player II's strategy would be to try to find an l, as a computable function of k, say f(k) = l, so that the first
player's third step is thwarted for any choice of k; i.e., l must be chosen so that f(k) ≥ S(k). Thus, there is a winning
strategy, S(k), for the second player. However, by Theorem 7.2 and corollary 7.1, f(k) < Σ(k) = S(k). Hence there is no
computable winning strategy for the second player.

Remark. The perceptive reader would have noticed that, both in Rabin's game and in Jones's variation of it, there are
common elements, the most important of which are:

(a) The players alternate in their moves to choose.
(b) These alternations can be modelled by alternating existential and universal quantifiers.
(c) The existential quantifier moves first; if the total number of moves is odd, then an existential quantifier again

fixes the choice of the last integer; if not — i.e., if the total number of moves is even — then the universal
quantifier determines the value of the last chosen integer.

(d) One of the players tries to make an expression preceded by these alternating quantifiers true; the other to make
it false.

Now, it can immediately be seen why Rabin-type games will be able to exploit the methods and results that were
developed to solve Hilbert's Tenth problem (negatively) — especially when the expression to be satisfied, which comes
after the alternating quantifiers, can be cast in conjunctive normal form. Recall that Rabin's G is a recursively
enumerable set (which is not recursive). Then determining
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whether i + j belongs to such a set is equivalent to determining whether there is an effective procedure to solve an
associated diophantine equation. The negative answer to the latter can then be used to show that there is no
computable winning strategy in the game. We will have occasion to return to these heuristic observations in more
formal ways in the next and the concluding sections.

7.4 Arithmetical Games
The result that the proposition can be transformed into one about polynomials was very unexpected. . . . This is
related to my early interest in number theory, stimulated by Furtwängler's lectures.
Gödel (in Wang 1996: 84)

Gödel's celebrated result was that there were arithmetical problems that were effectively undecidable (or recursively
unsolvable). Roughly speaking, what he showed was that there exist arithmetical equations, say linking two
polynomials, preceded by some finite sequence of existential and universal quantifiers that are effectively undecidable.
Now reflect on the way the moves are made in Rabin's effectivized Gale–Stewart game. The moves say: “there exists
an integer i, for all possible choices of j, such that there is a g(·) = i + j . . . ” — in other words, a form such as ∃ i ∀ j∃
g(·) {. . .}. Inside the braces the win condition will be stated as a proposition to be satisfied. If we can extract an
arithmetical form for the “win” condition, we can exploit the full force of the results coming down from Gödel and
culminating in Matiyasevich's magisterial demonstration that Hilbert's Tenth problem is recursively unsolvable. It is
here that we will exploit the fundamental result, i.e. the diophantine nature of recursively enumerable sets. When Rabin
stipulated that g enumerates a simple set, he was, essentially, stating the “win” condition in the form of requiring a
diophantine equation to be recursively solvable — an impossibility. This is the potted background to the work initiated
by Jones, in a series of important papers, building on the suggestions made by Rabin. This whole line of thought has
been almost totally ignored, as I mentioned in the introduction, by traditional game theorists who have attempted ad
hoc effectivizing in special classes of games.
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DEFINITION 7.6: ARITHMETICAL GAME OF LENGTHq. An arithmetical game of length q between two players, labelled
I and II, is a game of perfect information and alternating choices of integers with, say, player I choosing the first and
the final qth integers (i.e., q is odd); I wins if and only if P(x1, x2, . . . , xq) = 0, where P(x1, x2, . . . , xq) is a polynomial
with integer coefficients, xi, ∀ i = 1, . . . , q are the integers chosen, alternately, by I and II, and q is the length of game/
total number of “moves,” i.e. the total number of alternate choices made by I and II.

Remark. Note, in accordance with the previous remark, that the choices alternate. Indeed, I will be associated with the
existential quantifier, and II with the universal quantifier. Essentially, what happens is as follows: I tried to find an x, (∃
x1) such that, for any choice of x2 ( ∀ x2) by II, I can find an x3 (∃ x3) such that . . . until, finally, an expression (in the
case of arithmetical games, the expression is a polynomial) is to be satisfied by I (whilst II tries to make sure it is not
satisfied). This, as I pointed out above, is exactly as in Rabin's effectivized Gale–Stewart game. From this, Theorem 3
follows immediately:

THEOREM 7.3: ARITHMETICAL GAMES ARE DETERMINED (Jones 1981: 64). In every arithmetical game either I or II
has a winning strategy; either I can ensure that the polynomial is satisfied, or II can falsify it.

Proof. Note that the strategy of I or II is a series of alternating quantifiers beginning with the existential one for I and
the universal one for II. For example, in a game of length q, with q an odd number, I's strategy113 would look like:

Player II's strategy would, of course, be a negation of the above. Then, using the law of the excluded middle,114 one or
the other of the forms will be true; i.e., either I or II has a winning strategy.

It is, surely, intuitively obvious that one of the players has a winning strategy. Two obvious questions emerge from the
result of the theorem, because to prove existence is one thing; but to actually implement it is quite another:

(a) Is the winning strategy easy to implement; i.e., is it tractable?
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(b) Even more fundamentally, is it computable?

I will postpone a discussion of the first question to the next section and concentrate on various approaches toward an
answer to the second. For this I need two important results derived by Jones (1978, 1981). The first is theorem 2 in
Jones (1978: 336).

THEOREM 7.4. The recursively enumerable sets W1, W2, . . . , Wn, . . . , can be represented in the prenex normal form:

(7.1)

The second is lemma 2 in Jones (1981: 407):

THEOREM 7.5. For every recursively enumerable set W, there is a polynomial with integer coefficients given by Q(n, x1,
x2, x3, x4) such that, for all natural numbers n,

(7.2)

These elegant results are direct, but ingenious, outcomes of methods and results, as mentioned above, developed for
resolving Hilbert's Tenth problem.

An immediate application of Theorem 7.1 would be to consider a Rabin-type game of length q = 6. This is because we
can put x1 for I's first choice, x2 for II's choice, and the winning condition would be exactly as in Rabin's game: I wins if
x1 = x2 ∈ G. Then, analogously to Rabin's proof, II has a winning strategy, but has no computable winning strategy in a
game of length q = 6 associated with a polynomial Q (n, x1, x2, x3, x4) such that, for any choice of x1 and x2 by I and II,
respectively, we have (putting n = x1 + x2 in Theorem 7.1).

(7.3)

This is a recursively undecidable problem, and hence there is no computable winning strategy in the game. But, of
course, this a general
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statement, i.e. without any demonstration of an explicit given polynomial Q. Jones however constructed such an
example, which I report, again, in view of the neat way the first of the above two theorems is used in the proof. Jones
(1981: 70–1) has shown that the arithmetical game associated with the following polynomial has no computable
winning strategy for either player:

Since his proof of the above theorem gives the general method I am seeking, I will outline it.

Consider the above polynomial for a Rabin game, i.e. player I picking i, II picking j, etc. Then relabel, sequentially, the
variables in Theorem 7.4 as follows: i = x1; j = x2; a = x3; b = x5; and so on. Replace them in (7.1) to get the above
polynomial. This, then, is an arithmetic game of length 19; but x4, x8, x10, x12, x15, and x18 are dummy variables; hence it
is, in essence, an arithmetical game of length 13. Put, for the recursively enumerable set G in the Rabin game, Wn as in
Theorem 7.4. Then, the nonexistence of a computable winning strategy for either player follows immediately from the
diophantine nature of the above polynomial.

It will be clear that we have exploited results that are based on the diophantine nature of recursively enumerable sets.
This means we can easily use these results in conventional (non-arithmetical) game theory by specifying various
relevant functions as appropriate polynomials. The reason I have not done this in this essay is as follows. Recall that
Rabin first effectivized the whole of the Gale–Stewart game. It is only after that task was accomplished that he
investigated the existence of computable winning strategies. To repeat this procedure in more orthodox game theory
would necessitate that we go back to basics: essentially, reducing rational players to Turing machines. At that point the
games become those played by Turing machines approximately in the sense investigated by Ann Condon (1989). I
refer the reader to this competent work as an excuse for not pursuing a similar exercise in this essay.

It must also be clear that the skepticism I indicated in the opening paragraphs of this chapter, regarding the
conventional application,
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originates in reasons related to the remarks in the immediately preceding paragraph. But they are also due to the fact
that I believe arithmetical games to be of more relevance to the kind of conflict and cooperative situations that
economists ought to consider. A vision of an economy as a massively parallel distributed resource allocation system
peopled by Turing machines in conflicting and cooperative situations generating emergent phenomena seems, to me at
least, a far more interesting research strategy than pursuing the well-trodden path that appears to have exhausted itself.
There are, of course, many who will disagree with this assessment; but there are also some who may agree.

7.5 Concluding Notes and Complexity Considerations
The traditional worst-case analysis — the dominant strain in complexity theory — corresponds to a scenario in
which the instances of a problem to be solved are constructed by an infinitely intelligent adversary who knows the
structure of the algorithm and chooses inputs that will embarrass it to the maximal extent.
Karp (1987: 448)

Let me recall, from computational complexity theory, a few standard results.

(a) There is the well-known inclusion relation: P ⊆ NP ⊂ PSPACE.
(b) Quantified satisfiability (QSAT) is PSPACE-complete.
(c) Every Boolean expression is equivalent to one in conjunctive normal form.
(d) Finally there is the prenex normal form equivalent, with a Boolean expression instead of the polynomial, to

Theorem 7.4, and now expressed as Theorem 7.1a.

THEOREM 7.1a (Jones 1978: 336, theorem 1). The RE sets, W1, W2, . . . , may be represented in the form
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With this background, it is easy to see that all the arithmetical games that I have discussed in Section 7.4 have the
QSAT form and are hence PSPACE-complete. In particular, Rabin's game is of this category. This goes to show that,
even through the games are determined in principle, i.e. although the existence of a winning strategy for one of the
players is provable, they are in fact – even in relatively simple cases – intractable. In other words, these arithmetical
games would require at least exponential time to determine which player has a winning strategy. This is preliminary to
determining whether the winning strategy is recursive!

One intuitively illuminating way to formalize the arithmetical games of Section 7.4 would be to have them played by
alternating Turing machines. These machines, as the name suggests, allow the alternation of existential and universal
quantifiers in the execution of a computational process.115 Thus, Jones's modified Rabin game would be an ideal
candidate for this reformulation. I leave this for a future exercise.

Denote, now, the polynomials in Theorems 7.4 and 7.5 generically as D. Then, recalling the fundamental result that
recursively enumerable sets are diophantine, the facts stated in (a)–(d) at the beginning of this section, and the
properties of alternating Turing machines (cf. esp. fn. 24), we can also ask for the diophantine complexity of D (or Wn or G
in Rabin's game) in the following precise sense:

(i) What is the minimum possible degree with respect to the unknowns of the polynomial D in the diophantine
representation of Wn given in Theorem(s) 7.4 (and 7.5)?

(ii) What is the minimum possible number of unknowns in D?

For example, in proving that the arithmetical game of length 6 (which was a variation of Rabin's game) had no
computable winning strategies, we used a polynomial with 13 variables and the highest degree was 16. Call the degree
condition the order of the set Wn and the condition on the minimum number of unknowns the rank of Wn
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(cf. Matiyasevich 1994: ch. 8; Jones 1978: 338–9). Then we can define different diophantine complexity measures for
Wn, based on combinations of the order and rank conditions for D.

This means that we can link up directly with computational complexity measures without going back to quantified
Boolean expressions and then coming “down” through the complexity results for variations on the satisfiability
problem. Note that in recent years there have been imaginative definitions of nondeterministic diophantine machines in terms
of (parametric) diophantine equations like D. Then, its behavior, for given values of the parameter, is to “guess” the
values of the (integer) variables that will ensure that D = 0. It has been shown that nondeterministic diophantine
machines are as powerful as nondeterministic Turing machines. This means, of course, that we can also go, fruitfully,
in the opposite direction: to give direct number-theoretic characterizations of standard computational complexity
measures. But the obvious next step would be to define alternating diophantine machines, in analogy with the
alternating Turing machines. These are issues at the frontiers of applied recursion theory. My aim was to start with a
simple example and find a way to get to the frontiers in terms of just this one example: Rabin's effectivized
Gale–Stewart game.

Clearly, the way to proceed would be first to take a series of traditionally defined, simple, two-person, perfect-
information games and effectivize them. Next, take the definition of “solution” and reformulate it, say, in conjunctive
normal form – if it is not possible to arithmetize it directly. After that, it would be the routine procedure described
above: to verify that the game is determined, then to check that it is effectively playable, and finally to compute its
relevant complexities and see whether it can be simplified, in terms of the complexity measures (computational or
diophantine); eventually, also, to see what type of alternating machine can be simulated to play the effectivized game.
The problem of “barriers to entry” in noncompetitive markets could then be put to experiment in the laboratory via
simulation by alternating machines.

One other point should perhaps be made. Alternating Turing machines are, as mentioned above, generalizations of
standard non-deterministic Turing machines. Now, the feature that distinguishes a nondeterministic Turing machine
from its deterministic counterpart is that transitions are multivalued. This characteristic is, therefore, further
generalized in alternating machines in that they can be
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viewed as simulating a certain type of parallelism in their computing activities. Thus, a state in an alternating Turing
machine corresponding to, say, an evaluation at a universal quantifier will be “cooperating,” i.e. taking into account all
possible configurations in accordance with “for all.” Similarly, when the state corresponds to an existential evaluation, it
will be in a “conflict” situation; i.e., only one value will be evaluated, and all others ignored. Here I must refer again to
the relevance of Condon (1989).

This interpretation can be developed to reduce some of the simpler “many-person,” perfect-information, win–lose
games to two-person games of the same sort. Perhaps we will then travel Convey's path in constructing surreal
numbers in the opposite direction.

Appendix to Chapter 7: Gale–Stewart Games

The binary game is represented in extensive form (as a tree). Two players, I and II, choose, alternately, binary digits 0
or 1.

DEFINITION 7A. 1: A PLAY. A play consists of a countable number of such moves; i.e., each play consists of a
sequence ⇒ s(0), s(1), . . . , [s(i) = 0 or 1], and each such sequence determines a (real) number

DEFINITION 7A2: WIN–LOSE.

(a) Player I wins $1 from player II if s belongs to a certain subset T of the unit interval;
(b) Player II wins $1 from player I if s does not belong to T.

Main Result
A set T can be chosen so that no matter what strategy player I chooses, there exists a strategy by which player II can
win. (Contrariwise: for each strategy player II may elect to use, there exists a strategy by which player I can win.)

(NOTATIONAL) DEFINITIONS

(a) A game Γ is given by a set X of positions (vertices of a tree). Given a position x ∈ X, there must be a way of
telling which are the next positions, x′, obtainable from x on the next move, where: x′ is the immediate
successor of x, and x is the immediate predecessor of x′.

(b) x0 ∈ X in its initial position.
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(c) There is an immediate predecessor function f, such that:
(i) f: {X − x0} → X
(ii) ∀ x ∈ X, ∃ n ∈ ℵ (≥ 0), s.t fn (x) = x0

(d) A sequence {s(0), s(1), . . .} is a play if:
(i) s(0) = x0;
(ii) ∀ i ≥ 0, s(i) = f[s(i + 1)]
S is the set of plays of Γ.
(e) X and S are partitioned into two mutually exclusive sets:
(i) X = XIU XII, where: XI (XII) is the set of positions from which player I (II) has the right to move;
(ii) S = SIU SII, where: SI (SII) are the sets of plays in which player I (II) wins a game.

(WIN–LOSE GAME) DEFINITIONS. A win–lose game Γ is a collection of objects: Γ = (x0, X, XI, XII, f, S, SI, SII, Φ), such
that:

(i) x0 ∈ X;
(ii) XI ∩ XII = φ; XI ∪ XII = X;
(iii) f is an immediate predecessor function;
(iv) S satisfies (d)(i) and (ii) above;
(v) SI ∩ SII = φ and SI ∪ SII = S;
(vi) Φ is a real-valued function on S (payoff function).

A play of Γ, therefore is an element of S, and:

(vii) a play is a win for player I if it belongs to SI;
(viii) a play is a win for player II if it belongs to SII.

DEFINITION 7A.3: STRATEGY. Given a game P, the set of strategies (rules, procedures) for player I is denoted by ΣI, the
set of all functions σ with domain XI such that:

and similarly for player II (with ΣII and τ replacing ΣI and σ and XII replacing XI).

Thus, to every pair of strategies, σ and τ, there exists a unique play, s, of the game Γ; denote this as s = á σ, τñ. This play
satisfies the following inductive definitions:

(a) s(o) = xo

(b) if s(n) ∈ XI then s(n + 1) = σ(s (n) );
if s(n) ∈ XII then s (n + 1) = τ(s (n) ).
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DEFINITION 7A.4: A STRICTLY DETERMINED WINNING STRATEGY. A strategy (rule, procedure) σ is called a winning
strategy for player I if τ ∈ ΣII (Γ) implies á σ, τñ ∈ SI, and similarly for player II with corresponding definitions. Thus,

A win-lose game is strictly determined if one of the players has winning strategies.
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8 Notes on Computational Complexity

. . . I do think there are some very worthwhile and interesting analogies between complexity issues in computer science
and in economics. . . . They're in fact studying the limitations that have arisen because of computational
complexity. So there's a clear link there with economics.
Karp (1987: 464)

8.1 Introduction
There is something very satisfactory in proving that a yes–no problem cannot be solved in n, n2 or 2n steps, no
matter what algorithm is used.
Cook (1987: 417)

In most practical linear programming problems, with a constant coefficient matrix A of dimension m × n say, the
simplex algorithm takes about 3m/2 iterations to converge. But, theoretically, the algorithm can visit

vertices. This number is at least 2m, whenever n ≥ 2m. Thus, the possibility of intractability, i.e. of computational
complexity, is embedded in the algorithm. This intrinsic possibility was exploited by Klee and Minty to show the
existence of a class of (artificial) problems with m = n equality constraints in 2n non-negative variables where the
simplex algorithm required 2n − 1 iterations, i.e. a visit to every vertex of the problem!



Roughly speaking, the geometry of the reason for the intrinsic possibility of intractability is as follows:

(a) Since the simplex algorithm moves from vertex to vertex, first, find a polytope that has exponentially many
vertices. Take, for example, a three-dimensional cube; it has 6 faces (i.e. 2 × 3 faces) and 8 vertices (i.e. 23

vertices), and thus a cube with 2d faces has 2d vertices.
(b) Next, orient the cube such that the direction of decreasing cost is “upwards”; i.e., orient the sequence of

exponentially many vertices (2d), adjacent to one another, each higher than the “previously” (visited vertex).
(c) Then, for all d>4, there exists a linear program with 2d equations, 3d variables, and integer coefficients with

absolute value bounded by 4 such that the simplex may take 2d − 1 iterations to find the optimum.

Why, then, in practice, has simplex worked almost without exception? Is it luck, or could it have been human ingenuity
and intuition in selecting judicious initial conditions? Or is it that the measure we have chosen to quantify intractability
– the theory of computational complexity – is inadequate in nature and scope? Perhaps there is an element of truth in
all of these possibilities.

Quite apart from this simple case, there is the recursion-theoretic status of the plethora of methods – ostensibly
numerical, computational, and even tractable, if we are to believe textbooks – used in finding “solutions” to economic
problems. I have in mind, apart from particular algorithms such as simplex, the recursion-theoretic status of general
methods, widely used in economics: dynamic programming, the maximum principle, filtering, and variations thereof.116

Do these methods come with tractable algorithms to compute their solutions? If not, what is the rationale behind the
advocacy of the use of such methods by (even the) ideal economic decision-makers? Do such methods carry implicit
solution techniques that have the status of the simplex algorithm, i.e., theoretically intractable but, practically well
behaved and implementable?
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To even begin to answer these questions, it is above all necessary either to recast “the economic problem” recursion-
theoretically, or to embed the methods in a model of computation (or, of course, both). Two ways to recast the
economic problem recursion-theoretically were discussed in the previous two chapters. In this chapter, an intermediate
strategy is adopted.

Thus, in Section 8.2, I begin by suggesting that the negative results of Chapter 3 can be circumvented by adopting, as a
paradigmatic model of consumer behavior, Leijonhufvud's fertile construction of the Marshallian Consumer (MC). Then
in Section 8.3 the Marshallian Consumer's sequential choice behavior is modelled algorithmically and shown to be
tractable.

The concluding Section 8.4 summarizes the discussion and suggests broad directions in which the issues discussed in
this chapter can be further developed. I want to suggest that the Marshallian Consumer is a far more plausible model
of rational decision-making in economics than the Walrasian Consumer – the traditional rational agent in economic
theory. The Marshallian Consumer is the one I had in mind as the paradigmatic case of the algorithmically rational
agent in the formalisms of Chapter 3.

8.2 The Marshallian Consumer's Tractable Behavior
In Marshallian analysis, economic agents are conceived to be not so much rational as reasonable. Individuals fumble
and grope rather than optimize.
Clower (1984: 193–4)

It is now more than two decades since Axel Leijonhufvud suggested, in his remarkable Marshall Lectures at
Cambridge,117 that there was an alternative vision of procedurally consistent (descriptively more realistic) consumer
behavior in Marshall (cf. also Clower 1984). I had the pleasure and privilege to be present at that lecture118 and have
tried, over the years, to extract the formal content in Leijonhufvud's
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reinterpretation of Marshall's procedurally rational agent. I have found it useful to characterize Leijonhufvud's Marshallian
Consumer, and the underlying sequential choice behavior, in the following schematic way:

(i) Marshall's Consumer does not make an ex ante optimal choice of an entire basket of goods, all at once.
(ii) The conception is that of a consumer who starts out at some date with a sum of money (and credits and

debits) which is to last for a (given) time period, and who has some fairly definite notion, based on past
experience, of what a shilling is worth to her.

(iii) She then sets about making a series of consecutive purchases (choices) through time.
(iv) We are to imagine the Marshallian Consumer shopping and weighing, in a sequence of (binary) comparisons

between money and commodities, and at each stage making the choice of buying or not buying.
(v) Thus, the entire basket is composed sequentially.
(vi) At each stage, the past period's “final utility of money” serves the Marshallian Consumer as a rough index of

the opportunity cost of one good in terms of all other goods.
(vii) This spares the mental health and the computational burden of the Marshallian Consumer by eliminating the

need to contemplate marginal rates of substitution in n dimensions.
(viii) The Marshallian Consumer proceeds, conceptually, from the (lattice of the) consumption–commodity space,

by sequential choices, “out” towards the budget constraint.
(ix) When the constraints become binding, the basket has been composed.
(x) The chosen basket may not be “optimal”; this may lead to a recalibration of the various relevant measuring

rods.

As encapsulated and summarized by Leijonhufvud:119

This mode of behavior-description frees us from the obligation to assume that the agent knows, or thinks he
knows, or thinks he probably knows,
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beforehand, all the conditions formally required in order to solve the relevant constrained optimization problem.
This Marshallian Consumer is able to act even when ignorant – and not just “uncertain” about some of the prices
he will face and some of the relevant characteristics of the goods available in the market. Besides not being lamed by
incomplete information, he is able to muddle along with a “computational capacity” that is quite limited relative to
the information actually on hand and relative to the complexity of the task of putting together an optimal basket in
n-dimensions. (Leijonhufvud 1974: 48)

What, then, of my negative results of Chapters 3 and 4? The important point about the results of Chapters 3 and 4
(and of 7 too) is that they do not imply that specific procedures are not implementable in dynamic choice situations;
nor do they mean that algorithms cannot be found in well specified special contexts.120

Now let us accept, at least pro tempore, the descriptive rationale for the behavioral realism of the Marshallian Consumer.
How can the basic elements be formalized procedurally? In the first instance the following basic elements must be
defined, explicitly or implicitly:

(a) the budget constraint;
(b) a set, perhaps existing only in the “mind” of the Marshallian Consumer, defining those amounts (“values”) of

the basket that are minimally acceptable or desirable;
(c) some feeling of the priorities over the elements of the basket (again, perhaps, existing only in the “mind” of the

Marshallian Consumer) – exhibited, for example, in the precise sequence of purchases.

These are, obviously, minimal elements characterizing the Marshallian Consumer's behavioral profile.121 Given the
modern facilities for experimental home shopping, the plethora of software to analyze home and other accounts, etc.,
let me assume that the Marshallian Consumer tries to simulate the sequential behavior before embarking with the empty
shopping basket and a reasonably full wallet. Taking all of the above into consideration, a plausible but approximate
model could be the following.

Denote by

R the feasible region determined by the budget constraint;
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Ω the set of admissible values for the commodity basket (existing, perhaps, only in the mind of the Marshallian
Consumer);
xd an initial conjecture on possible values for the (vector of) amounts for the basket of purchases (xd ∈ Ω).

To make a workable model I add the following more specific assumptions:

(8.1)

i.e., initially at least, the feasible region is taken to be a set of linear equality constraints, with N an (n × n) matrix with
linearly independent columns, and En the n-dimensional Euclidean vector space.

Next, I need a structured, specific, assumption to encapsulate the relative priorities over the (potential) elements of the
desired basket of commodities:

(8.2)

where Qc is the current n × n (positive definite) weighting matrix, and qc the current quadratic criterion function; i.e., the
relative priorities are formalized by a quadratic criterion function, but, as will be seen, there is no built-in assumption
that this captures, ab inizio, the preference structure of the Marshallian Consumer. Indeed, quite the contrary. We can
begin, at the initial stages of the conceptual experiment, by assuming equal priorities over all desired commodities.

Now, a possible conceptual choice procedure for the Marshallian Consumer is the following:MC ALGORITHM

Step 0.
Given xd and R, assume (any) initial weighting matrix Qc.

Step 1.
Using Qc, solve:

(8.3)
such that (8.1), is satisfied, to obtain a set of initial values, xc.
Step 2.

Let the MC inspect xc; if the MC finds it acceptable, then xc ∈ Ω (in fact, xc ∈ Ω ∧ R), stop. If not, let the MC
specify the changes required in xc such that they also lie in Ω; i.e.,

(8.4)
where σ is the vector of desired changes to xc.
Step 3.

Use the following formula to compute
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(8.5)
for some choice of the scalar μ ≥ 0.
Step 4.

Set Qc = Qn and return to step 1.

Remark 1. The behavioral content of the processes in (8.4) and (8.5) can be depicted in the Figure 8.1. The economic
meaning of this sequential updating is outlined below (cf. the explanatory paragraphs above and below
(8.15)).

Fig. 8.1

Remark 2. The result of the MC Algorithm can be summarized as follows. Let the solution to (8.3) subject to (8.1)
when Qn in (8.5) is substituted for Qc be denoted by xn. Then (putting Hc = Qc

−1)

(8.6a)

(8.6b)
and

(8.6c)

Remark 3. A desirable local property of this algorithm is that, at every stage at which Qc is updated and a new xn is
computed, the MC is more satisfied with this new solution compared with the “current” xc.
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I now come to the important technical question. Can it be shown that this innocuous-looking procedure converges
tractably? The Marshallian Consumer makes choices in real time; hence, tractability is a crucial constraint.

8.3Khachian's Ellipsoid Algorithm and the Complexity of Policy
Design

Rather than revolutionizing the solving of linear programs, Khachiyan's publication has brought to the fore the gap
between complexity theory and practice, and has caused a reconsideration of the value of “polynomiality” of
algorithms.
Schrijver (198: 170)

In this section, the termination or tractable property of the MC Algorithm for the Marshallian Consumer's decision
process is discussed in outline. In particular, I show that the MC's decision process terminates after a finite number of
iterations if the model and the inequality constraints bounding the region Ω are assumed to be linear. The region Ω
and the inequality constraints bounding it are still assumed to exist only in the mind of the Marshallian Consumer.

Convergence of the above algorithms in polynomial time is studied by establishing an equivalence with Khachian's
(1979, 1980) ellipsoid algorithm for linear programming. The latter algorithm has been shown to terminate in
polynomial time; i.e., the number of iterations required to arrive at a solution – or to establish the absence of one – is
bounded by a polynomial in the original data of the problem (Khachian 1979, 1980; Kozlov et al.1979).

In order to introduce the ellipsoid algorithm, consider first the problem of finding a feasible point satisfying the
following system of inequalities:

(8.7)

where hi ∈ En, p ≥ 2, n ≥ 2. Khachian's algorithm, summarized below, finds such a point, or establishes its
nonexistence, in a finite number of iterations. Let L be the length of the binary encoding of the input data hi, hi, gi, i =
1, . . . , p, i.e., the number of 0s and 1s needed to write these coefficients in binary form:
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(8.8)

where hij is the jth element of vector hi. Khachian's algorithm assumes that coefficients hij, gj are integers. This can
trivially be achieved, in general, by suitably scaling each inequality. The algorithm discussed below can also be used
directly for nonintegers hij, gj. In this case, the slight change in the properties of the algorithm are discussed in Goldfarb
and Todd (1982).

KHACHIAN'S ALGORITHM

Step 1 (Initialization).
Set x0 = 1, H0 = 22LI, k = 0.

Step 2. If xk satisfies

(8.9)
then terminate the algorithm with xk as a feasible solution. If k < 4(n + 1)2L, then go to step 3; otherwise, terminate

the algorithm with the tractable, but negative, answer that no solution exists.
Step 3. Select any inequality for which

(8.10)
and set

(8.11)
and

(8.12)
Set k = k + 1 and go to step 2.
Some properties of the algorithm are discussed in Rustem and Velupillai (1985). The most important property, also
referred to below, is that a feasible solution is returned or its absence is established in 4(n + 1)2L iterations.
Consider now the problem of finding the solution to the system of inequalities (8.7) in the presence of linear equalities:

(8.13)

In this case, given a starting point , the initial solution estimate is defined by It can be verified that . In order that all xk

generated by the algorithms satisfy NTxk = b, we have to replace (6a) by
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(8.14)

where Pk + I − Hk(NTHkN)−1NT. It can also be verified that Pk(xk+1 − xk) = xk+1 − xk. All other steps of the algorithm
remain unchanged. Thus, any feasible point generated by the algorithm also satisfies the linear equalities given by
(8.13).

Let us now return to algorithm above and attempt to identify the reason why the Marshallian Consumer may wish to
specify a given direction σ as a direction of “improvement.” When the MC is asked in step 2 of the algorithm to specify
σ or the preferred value xp(= xc + σ), she is, in effect, required to specify the point, nearest to xc, that is in Ω. This
“nearness” is measured with respect to the current weighting matrix Qc. Thus, the MC is asked to specify xp, which is
the solution of

(8.15)

where á h, xñ ≤ g is one of the implicit constraints describing the region Ω and violated at xc. The MC may not know
that such a constraint exists until he notices that xc is violating it; i.e., á h, xñ > g. Clearly, the MC also does not know h
and g, but can only specify xp. I argue below that this is sufficient to identify h to some degree, and thereby to quantify
Ω, if xp is interpreted as the solution of (8.15). This interpretation is shown to allow the use of Khachian's algorithm,
discussed above, to solve for a feasible point of Ω ∩ R in polynomial time by updating H = Q−1 and using
(8.11)–(8.12).

The solution of (8.15) can be obtained by writing the first-order necessary conditions of optimality.

(8.16)

Thus, σ = xp − xc = − Qc
−1hλ where the Lagrange multiplier (shadow price) λ is non-negative. It can be seen from

(8.16) that

Since λ ≥ 0, these yield
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Thus, we have

(8.17)

It is shown in Rustem and Velupillai (1985) that the rank-one update (8.5) can be reformulated as (8.12) and that the
algorithm can be made equivalent to Khachian's algorithm using (8.17).

8.4 Concluding Notes
Perfection of a kind was what he was after,
And the poetry he invented was easy to understand;
. . .

Auden, Epitaph on a Tyrant

The example in Section 8.2 has been chosen and discussed to show, partly at least, how and where the synergies are
between traditional theory and computable economics: they complement each other in exactly the same way that
classical, constructive, and computable analyses complement each other. In some sense I have tried to build up to this
tentative conclusion by beginning with the negative implications of a recursion-theoretic vision of the standard
framework.

On the more specific issue of computational complexity, are we, perhaps, asking for too much when we impose
tractability requirements in economic choice situations? The example in Section 8.2 should give a negative answer to
this question. On the other hand, it may be legitimate to ask whether computational complexity theory encapsulates
the proper intuitive content of tractability.

In the earlier chapters I have worked, explicitly and implicitly, under the assumption of the Church–Turing thesis in
computability theory and the Kolmogorov–Chaitin–Solomonoff thesis in algorithmic information theory. The former
thesis is about the formal equivalence between the intuitive notion of effective calculability and the mathematical
notion of (partial) recursive functions; the latter is about the formal equivalence between the intuitive notion of
randomness and its mathematical encapsulation algorithmically. What, analogously, would be a thesis in computational
complexity theory? What, in other words, is the intuitive notion we are trying to formalize mathematically?
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The lack of an acceptable answer may be an indication of the existence of a variety of alternative measures of
tractability: average-case complexity, computational complexity, information-based complexity, etc. I do not know
whether there is any possibility of achieving consensus in the form of a thesis for tractability analogous to the
Church–Turing and the Kolmogorov–Chaitin–Solomonoff theses. Until such time as there is a consensus on a thesis
equating the intuitive and the formal, the sense of ad-hockery that pervades the field may have to continue. No one
has stopped using the simplex algorithm simply because the Klee–Minty results demonstrate its intractability.

The best that can be done, in the interim, is to follow the Linnean precept suggested, with characteristic simplicity and
blunt directness, by the great Rutherford: continue to study individual classes of examples and classify them as stamp
collectors would. This will progressively “refine” and sensitize intuition, and the formal will emerge, eventually. But the
album for the stamp-collecting exercise will have to be a model of computation, under the Church–Turing thesis.

Leijonhufvud's Marshallian Consumer is studied, in this chapter, with Rutherford's Linnean precepts in mind. If the
generalized decision problem model for economics, suggested at the end of Chapter 4, is to be made inductively useful,
then large classes of such special cases (like the MC) will have to be studied, categorized, and catalogued. The hope of
achieving generalized solutions to whole classes of decision problems will then be facilitated by progressively more
precise theses of the Church–Turing and Kolmogorov–Chaitin–Solomonoff variety: for complexity, for consumer
choice, and so on. The humble step of analyzing special classes of decision problems has, for too long, been
submerged in the blind adherence to the apparent power of the standard, but noneffective, choice-theoretic paradigm.
To undo its stranglehold, it is necessary to have the decision problem framework as a backdrop to an analysis of special
classes of procedural choice problems. It is in this spirit that I have tried to analyze and formalize Leijonhufvud's
Marshallian Consumer.
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9 Explorations in Computable Economics

Are there general procedures for finding shortcuts? . . . If you look at a map there is a procedure for finding a
shortcut, but if you look at mathematics, there is no such procedure . . . There is no way of making mathematical
decisions; there are always theorems whose proofs may or may not turn up. Turing . . . loved making little
machines, and so he invented a device called a Turing Machine, and the most important thing that we know is
that all mechanisms which, like science, are of this kind are expressible as Turing machines.
Bronowski (1978: 76–7; emphasis added)

9.1 Introduction
[T]he house of analysis . . . is to a large degree built on sand. I believe that I can replace this shifting foundation with
pillars of enduring strength. They will not, however, support everything which today is generally considered to be
securely grounded. I give up the rest, since I see no other possibility.
Weyl (1917/1994: 1)

I want to suggest three topics, circumscribed by the tools used and the concepts suggested in this essay, that could
point the way towards some of the possible frontiers of computable economics.

One of the most fundamental results in economic theory is appropriately referred to as the second fundamental
theorem of welfare economics.122 This is deep in economic content and wide in scope; and

122 Have we, in economics, been influenced by the existence of such “fundamental theorems” in analysis, algebra, and number theory in looking for, and naming, results
analogously? Are our two “fundamental theorems” as basic to economic analysis as the analogous results in these other mathematical disciplines? I don't know that there can
be a clear answer to such a rhetorical, perhaps even counterfactual, question. If pressed, my tentative answer would be in the negative.



it is profound in the mathematical foundations that establish its analytical validity. It is, therefore, legitimate to ask
whether its effective content is as rich and, if not, why not.

Second, there is production theory. All the examples in earlier chapters have been based on the framework of
traditional-choice theory, whether it be rationality, adaptive behavior, learning, or games. Paul Romer, one of the
pioneers of endogenous growth theory, has suggested a formalism for production processes that seems to exploit
recursion-theoretic ideas. I want to explore some directions in which Romer's characteristically fertile suggestions can
be taken in an elementary recursion-theoretic way.

Third, coupled to the question about the effective content of the Second Fundamental Theorem of welfare economics,
there should be an analogous question about tâtonnement.

There are, surely, many other interesting problems at the frontiers of economics that can be studied recursion-
theoretically. Other scholars, technically better equipped and deeper and abler in their economic intuition and historical
vision than myself, may be motivated to tackle them when the computable approach to economics attains the
proverbial status of Kuhnian “normal science” – as I hope and expect it will. I shall discuss only selected aspects of the
above three problems, from a recursion-theoretic point of view.

The appendix to this chapter is an exercise in methodological exploration. The only purely methodological chapter in
this book is the overly formal Chapter 5. The main theme of that chapter is the link between induction and simplicity.
In the appendix to this chapter, I extend that methodological framework to suggest a way of resolving a perennial issue
in business cycle theorizing: is there a “scientific” way of effectively deciding between alternative formalizations of
mathematical theories of economic fluctuations? I pose this question for business cycle theories simply because
practitioners of Real Business Cycle theories have been meticulously detailed and precise about their methodological
credo and precepts. But I relegate the discussion to an appendix simply because it is a purely speculative exploration.

The next three sections discuss, somewhat discursively, the above three issues – (efficient) decentralization, aspects of
the modelling of
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production structures, and the effectivity of tâtonnement — recursion theoretically. In the final section, I summarize the
discussion and try to extract simple, applicable, methodological precepts.

9.2 Effective Decentralization
Citizens: How can we be rid of the plague?Delphic oracle: Construct a cubic altar of double the size of the
existing one.Arrow and Debreu: Can we use the Hahn–Banach theorem?pace Stan Wagon,

The Banach–Tarski Paradox (Wagon 1985: v)

Consider a simple, and numerically concrete, example (cf. Scarf 1989) of a straight forward linear optimization
problem as a standard linear programming (LP) versus an integer programming problem:

Fig. 9.1

The lessons and results seem to be as follows.

(i) The solution to the LP version of the problem is x = 0; y = 5/3; and the optimal value of the dual variable
(shadow price) is 1.

(ii) For the LP this means, according to the standard interpretation, that the second “industry” is activated and
satisfies the
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zero profit criterion; the first industry is not activated since it makes a negative profit;
(iii) The optimal integer linear programming (ILP) solutions, on the other hand, are: x = 1; y = 1; and there does

not exist an “optimal” value for the shadow prices such that the traditional zero profit condition holds
simultaneously for the two activated industries.

(iv) In other words, in the standard LP case there is, for example, a clear economic interpretation of the (say,
simplex) algorithm that substantiates the case for decentralized price and quantity decisions.

(v) In the ILP case, this classic “rule of free goods” and the “rule of profitability” fail; technically, this means that
“unprofitable” industries may have to be activated at sectoral levels so that the overall (aggregate) economic
system can be profitable.

(vi) Finally, there is no such thing as a uniform procedure — like simplex for LP — that can, in general, find the
optimal solution (if it exists) to an arbitrary ILP.

The main implication of these lessons seem to be that we must ask a different kind of question when faced, say, with
intrinsic indivisibilities: are there tractable methods to find feasible solutions? Surely, this is a move toward an economy
peopled by boundedly rational agents satisficing their way through the intricacies of indivisible economic life tackling
decision problems in their full generality? This was why I suggested, in Chapter 4, the latter as the paradigmatic choice
framework and the boundedly rational agent as the general problem-solver, rather than proposing these two as special
cases of the standard problem and orthodox rationality.

Leaving aside the indivisible — intrinsically nonconvex — case, let me now look at the standard mathematical
justifications for decentralization via an appeal to the Second Fundamental Theorem of welfare economics. I cannot
do better than to quote the maestro himself:

The second [fundamental theorem of welfare economics] provides a deeper economic insight and rests on a
property of convex sets. It asserts that associated with a Pareto optimal state s of an economy, there is a price-
vector p relative to which all the agents are in equilibrium . . . The treatment of the problem [of efficient
decentralization] . . . given by means of convexity theory
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was rigorous, more general and simpler than the treatment by means of the differential calculus that had been
traditional since Pareto. The supporting hyperplane theorem (more generally the Hahn–Banach theorem . . . )
seemed to fit the economic problem perfectly. (Debreu 1984: 268–9)

Or did the economist transmogrify123 “the economic problem” to “fit” the known theoretical technology? Every
economist knows, or ought to know, that the Hahn–Banach theorem, as an extension theorem for linear functionals,
can in fact be viewed as a generalization of the projection theorem124 in appropriate spaces, i.e. the key analytical and
conceptual device in generalizing optimization problems where, in particular, duality principles are exploited (as even in
the simple numerical example above).

Now, the question I wish to pose is: what is the effective content of the Second Fundamental Theorem of welfare
economics? I ask this question in the same sense, and in the same spirit, as I have asked analogous questions about
rationality (Chapter 3), adaptive behavior (Chapter 4), learning REE (Chapter 6), and playability of (arithmetical) games
(Chapter 7). Surely without an unambiguous answer to this question, it is not clear to what extent we have made a
trade-off between rigor and numerical content.

There are at least two different ways to approach possible answers to this question, mirroring the two modes
previously employed in this essay:125 either we formulate the economic problem, ab inizio, recursion-theoretically and
then appeal to a recursive version of the Hahn–Banach theorem (cf. Metakides et al.1985: 87; or Metakides and
Nerode, 1982: 128 ff.); or we take the standard formulation of the economic agent and her optimization problems and
modify the framework to a computable analytic setting and, once again, rely on the recursive version of the
Hahn–Banach theorem.126

I conjecture that the economic implications of the answers we get by choosing one or the other of the above two
strategies will be fundamentally
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Makes fact fit theories and has fashions too.

(letter to Lord Byron; emphasis added)

124 Extensively used in my algorithm for the Marshallian Consumer's sequential behavioral activities, in the previous chapter.
125 As in Chs. 3, 4, and 7, or as in the second part of Ch. 6.
126 Again, this is in Ch. 6, where I investigated the computable content of REE from the point of view of computable analysis.



different in precisely the sense suggested in the following way by Debreu (referring to his “topological” approach to
economics):

Especially relevant to my narrative is the fact that the restatement of welfare economics in set-theoretical terms
forced a re-examination of several of the primitive concepts of the theory of general economic equilibrium. (Debreu
1984: 269)

If we opt for the first solution, we will have algorithmically rational agents with their “rich” repertoire of
incompletenesses, uncomputabilities, and undecidabilities operating in equally “exotic” recursively represented metric
and other spaces; we may, I conjecture with even more conviction, have to be more modest than the maestro in our
customary claims “for the success of the mathematization of economic theory”:

one can describe the action of an economic agent by a vector in the commodity space Rl [when the commodities in
the economy are l, finite, in number]. The fact that the commodity space has the structure of a real vector space is a
basic reason for the success of the mathematization of economic theory. (Debreu 1984: 268)

On the other hand, if we choose to proceed along the second option, it is possible, I think, to continue “business as
usual” — but at the price of some vagueness about the numerical content of our theorems and unclarity in the
procedural status of decision-makers and their decision problems.

9.3 Notes on Recursion-Theoretic Production Theory
The same arrogance that made people at the turn of the century think that almost everything had already been
invented sometimes leads us to think that there is nothing left to discover about the institutions that can encourage
economic development. . . . Just as in a child's chemistry set, there is far more scope for discovering new institutional
arrangements than we can possibly understand.
Romer (1992: 66, 89; emphasis added)

In a recent publication, Paul Romer broached new visions for an understanding of the growth process in widely
differing economic
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systems (Romer 1993). He points out that the conventional modelling of growth processes are deficient in their
incorporation of the role and genesis of ideas. To rectify this deficiency, he proposes an economic definition of ideas
based, inter alia, on a distinction between their use and their production. These definitions have an evolutionary and
algorithmic underpinning to them; moreover, the institutional setting in which ideas are used and produced is also
given an evolutionary basis.

In this section I make an attempt to encapsulate some of these fertile and imaginative suggestions in a recursion-
theoretic formalism. Thus, Romer's suggestions are first summarized with such a formalism as the backdrop for the
interpretations; then, building on the skeletal model developed by Romer, an algorithmic interpretation of his
formalism is suggested which makes the empirical implementation of the modified, computable model immediate. In
particular, the framework becomes natural for a genetic (or any other evolutionary) programming implementation.
This gives the algorithmic formulation an evolutionary flavor.

Romer's Suggestions to Formalize the Use and Production of Ideas in Growth
Models
The economic underpinning of Romer's definition of an idea is that it is nonrival and excludable.127 “Nonrival” means
that the use of an idea by one agent does not deprive other agents from using it. “Excludability” signifies the feasibility
of an agent preventing other agents from using it.128

The functional characterization of an idea is based on the dichotomy between its use and its production. Romer
explains this dichotomy in a characteristic economic setting: ideas are used for producing human capital; in turn,
human capital is used to produce ideas.129 This simple but illuminative description to evoke definitions suggests an
economic setting in which ideas may usefully enhance the descriptive and explanatory power of (endogenous) growth
models.130
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128 This is where cryptology, in particular public-key cryptology, enters the scheme of things.
129 Human capital is, on the other hand, an excludable, rival good.
130 I return to this theme later in this section.



For the formal definition of an idea, Romer resorts to the imaginative metaphor of toy chemistry sets.131 Such sets
typically consist of “a collection of N jars, each containing a different chemical element.” Thus, in a set with N jars,
there can be at least 2K−1 combinations of K elements (K = 1, . . . , N). If we move from a child's chemistry set to a
typical garment factory in the Free Trade Zone (FTZ) of a developing country, we might find that, say, sewing a shirt
entails 52 distinct, sequenced activities. There are thus 52! = 1068 distinct orderings of the sequences in the preparation
of a shirt. Now, as Romer perceptively notes,

For any realistic garment assembly operation, almost all the possible sequences for the steps would be wildly
impractical,132 but if even a very small fraction of sequences is useful, there will be many such sequences. It is
therefore extremely unlikely that any actual sequence that humans have used for sewing a shirt is the best possible
one. (Romer 1993: 69)

Thus,

The potential for continued economic growth comes from the vast search space that we can explore. The curse of
dimensionality [i.e., 2K−1, or 52! = 1068] is, for economic purposes, a remarkable blessing. To appreciate the potential
for discovery, one need only consider the possibility that an extremely small fraction of the large number of possible
mixtures may be valuable. (Romer 1993: 68–9)133

There are some problems with these imaginative and interesting observations, notwithstanding their casual and
heuristic nature. First of all, there is the perennial question of the existence of a best sequence. Second, even if
existence can be proved, in some mathematical sense — it is not clear that it can be discovered and implemented in an
operational sense. Third, there will not be any feasible way of discovering, formally, even the “extremely small fraction”
of sequences that may well be valuable. Finally, even in the unlikely
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herself” (Swan 1956: 343). Is it a sign of the times that our metaphors have “evolved” from the mechanical to the chemical ?

132 I have, for example, personally seen the synchronized and immaculate sequencing of button-holes and buttons for shirts being prepared in exemplary fashion in Bangkok
and compared it with the somewhat haphazard methods employed in Colombo.

133 This, surely, is a basis for “learning by doing” emanating from Lundberg's famous “Horndal effect,” made famous by Arrow (1962) and David (1975: ch. 3).



event that all of these issues can be resolved satisfactorily, there is the real question of the transition from the currently
implemented sequence to a “more valuable region” of the feasible domain. Unless the currently utilized sequence is in
the neighborhood of the “extremely small valuable fraction,” it is unlikely that a transition will make economic sense in
the context of a pure growth model with its given institutional background. The point at which development will have
to be distinguished from pure growth may well be located in this transition manifold, to be somewhat pseudo-
mathematical about it.

These problems need not be faced as squarely within the traditional production-theoretic framework with its
handmaiden, the Book of Blueprints.134 In the traditional framework, the well defined concepts of the efficient frontier
and concomitant best-practice technologies and so on make most, if not all, of the above issues almost irrelevant. But,
by the same token, they make it impossible to raise the interesting and important issues that Romer is trying to broach.

Romer emphasizes time-sequenced processes and, hence, must have something more than the Book of Blueprints
metaphor for the repository or encapsulation of ideas. Not even “The Library of Babel”135 can usefully encapsulate the
vast vistas that Romer is trying
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134 Obviously, the book must have an “appendix” instructing the user on the necessity and mode of using the axiom of choice . Every indiscriminate reliance on indexing over a
continuum of agents, technologies, etc., is an implicit appeal to the axiom of choice, or one of its noneffective and nonconstructive equivalents (cf. Velupillai 1999b).

135 “The content of [the book] was . . . deciphered: some notions of combinative analysis, illustrated with examples of variation with unlimited repetition. These examples made
it possible for a librarian of genius to discover the fundamental law of the Library. This thinker observed that all the books, no matter how diverse they might be, are made
up of the same elements . . . He also alleged a fact which travellers have confirmed: In the vast Library there are no two identical books. From these two incontrovertible premises
he deduced that the library is total and that its shelves register all the possible combinations of the twenty-odd orthographical symbols (a number which, though extremely
vast, is not infinite): in other words, all that is given to express, in all languages. Everything: the minutely detailed history of the future . . . the interpolations of every book in
all books” (Borges 1964: 54).The operational content of the two propositions in this paper is philosophically interpretable in terms of this particular story by the inimitable
Borges. The paradoxes and the treachery of the finite can, in my opinion, best be highlighted by combinatorial analysis within the discipline provided by recursion theory.
Indeed, classic Gödelian incompleteness results can easily be invoked to cast formal doubt on the (effective) existence of “The Library of Babel.” I have always been
convinced that Borges must have such paradoxical conclusions in mind with this and many other related constructions.



to unfold. If it can, it will immediately be invalidated by a suitable application of one of the classic incompleteness
theorems of Gödel. This, however, might be an unnecessarily nihilistic approach, and that is clearly not Romer's
intention. I believe that he is trying to open some manageable vistas without trying to view all of the contents of
Pandora's proverbial box. I believe it can be done, albeit with a good dose of ad-hockery. Such is the backdrop for my
formal interpretation of the Romer suggestions and the basis for the two propositions I derive in this section.

To return to Romer's ideas on ideas, the casual empiricism of the above two quotes, underpinned by the metaphor of
the child's toy chemistry set and its functions, suggests to him the analogy of ideas as mixtures, or as each of the
potentially feasible 2K−1 mixtures (i.e., each of the 52! = 1068 ways of sequencing the sewing of a shirt):

Within the metaphor of the chemistry set, it is obvious what one means by an idea. Any mixture can be recorded as
a bit string, an ordered sequence of 0s and 1s [of length N] . . . [A]n idea is the increment in information that comes
from sorting some of the bit strings into two broad categories: useful ones and useless ones. . . .
When a useful mixture is discovered . . . the discovery makes possible the creation of economic value. It lets us
combine raw materials of low intrinsic value into mixtures that are far more valuable. Once we have the idea, the
process of mixing [the production function] will require its own (specialized capital and labor). For example, the bit
string representing nylon requires a chemical processing plant and skilled workers. Important as these tangible
inputs are, it is still the idea itself that permits the resulting increase in value. In this fundamental sense, ideas make
growth and development possible. (Romer 1993: 68; emphasis added)

The final metaphoric invocation is to get hints on the way to encapsulate, formally, the role played by ideas, defined as
evolving bit-strings, when “used to produce human capital.” Here Romer relies on neurophysiological metaphors:
ideas literally reconfigure the architecture of the neural network representation (cf. Chapter 4) of what Simon would
term the Thinking (Wo)Man.136 “Ideas . . . represented as pure pieces of information, as bit strings” (Romer 1993: 71)
enhance the productivity of physical capital solely by a rearrangement of the possible permutations of the constituent
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elements that go into its manufacture, be it a process, such as sewing a shirt, or a piece of equipment, say a computer.
Similarly, they enhance the value of human capital by reconfiguring the physical architecture underlying, say, thought
processes:

Now consider human capital. In my brain there are different physical connections between my neurons. . . . [T]he
knowledge that reading a software manual [for a new computer and new wordprocessing software gives] rearranges
connections in my brain and makes my human capital more valuable. . . . The increased value is created by new
ideas. Whether it takes the form of a hardware design, software code, or an instruction manual, an idea is used to
mix or arrange roughly the same physical ingredients in ways that are more valuable. And in each case, these ideas
can be represented as pure pieces of information, as bit strings. (Romer 1993: 71)

Once again, therefore, ideas represented as bit-strings encapsulating “pure pieces of information”137 function as inputs
into a physical architecture representing human capital and transform its “wiring,” so to speak, in such a way that it is
able to process them more effectively. From standard results in automata and computability theory, going back to the
classic works by McCulloch and Pitts (cf., again, Chapter 4), Kleene, and others, it is well known that neural network
architectures can be given recursion-theoretic formalisms as automata of varying degrees of complexity. To be
consistent with the standard postulates of rationality in economic theory, however, it is necessary to postulate an
architecture that is formally equivalent to a Turing machine. Such an architecture allows rational decision processes to
exhibit the kind of formal untamability of ideas.

Let me expand on the heuristics of this last comment a little more (to supplement the previous discursive comments).
The inadequacy of the traditional Book of Blueprints vision of feasible technologies becomes patently evident if any
such interpretation is attempted for ideas held by rational economic agents interpreted as Turing machines. The
background to this statement is provided, for example, by the Busy Beaver (cf. Chapter 8). Even if the neurons in a
brain are finite, not even the proponents of strong artificial intelligence (AI) would suggest that the world of ideas in
any unit can be formally tamed or accessed — unless by magic or the kind of sleight of hand involved in invoking the
axiom of choice. Somehow, somewhere, the
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open-endedness of ideas must assert itself in some kind of indeterminacy in models of growth and development. That
is why the past can never hold all the secrets about the future. Trivial though this remark may sound, to encapsulate it
formally in an interesting and operational way is not easy. And without such a formalism it will not be possible to
delimit the range of validity of Romer's fertile ideas. Hence the attempt at a recursion-theoretic formalism — although
this is only one of the reasons.138

This completes the background of intuitive building-blocks. We can now piece together a recursion-theoretic
formalism. Before doing this, however, it is necessary to summarize Romer's production submodel which is to be
embedded in an (endogenous) growth framework. Romer considers output, Y, to be an additive function of a standard
production function and a term representing the production of ideas, one for each of n sectors as follows:

(9.1)

In addition to the conventional notation, we have

Hj: human capital used in sector (or activity) j;
Aj: an “idea” characterizing sector (or activity) j;

The search for new ideas is formalized as a general dynamical system as follows:

(9.2)

This has the following interpretation: the genesis of new ideas is a function of:

HA(t)human capital used exclusively in the search of the “space” of ideas at time t;
Ai(t) (i = 1, . . . , N(n≤ N)), the collection of ideas available in a specified economic region at time t.
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The role of ideas in enhancing human capital and a learning-by-doing specification can together be captured in the
following way to complete the output submodel:

(9.3)

Now, according to the intuitive definitions:

(a) Ai(t), ( ∀ i + 1, . . . , N), are specified as bit strings.
(b) Hj(t), ( ∀ j + 1, . . . , n), when considered as arguments of Gj( ∀ j = 1, . . . , n), are neural networks; to be

consistent with the rationality postulates of economic theory, these neural networks must be capable of
computation universality.

Then, by the Church–Turing Thesis, we can represent each Hj, j = 1, . . . , n, and Ha as programs (or algorithms)
computationally equivalent to the corresponding Turing machine.

Next, by stacking the bit-strings Ai, ∀ i = 1, . . . , N, we can consider the prevailing collection of ideas as a program
(or algorithm).139 This means that the arguments of the function S in (9.2) are a collection of programs, and thus, search
can be said to be conducted in the space of programs. At this point, a direct genetic programming interpretation of the
(computable) search function S makes the dynamical system (9.2) naturally evolutionary. However, the bit-strings
representing ideas can be retained as the data structures for the programs, partial recursive functions, and Turing
machines in (9.1)–(9.3). Then search will be conducted in the space of programs and data structures.

A similar interpretation for (9.3) is quite straightforward. However, (9.1) is an entirely different matter. Standard
definitions define the arguments of F and Kj and Lj as arguments in Gj on the domain of real numbers. Given the
algorithmic definitions of Hj and Aj, it is clear that Gj must be a partial recursive function for the whole system
(9.1)–(9.3) to make analytic sense. This means one of two possible resolutions:

• Kj and Lj ( ∀ j = 1, . . . , n) must be defined as computable reals; hence extended redefinitions of the domain of
definition of Hj and Aj from the computable numbers to the computable reals; or
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• Kj and Lj must be defined over the (countable set of) computable numbers.

Either way, on the one hand standard constrained optimization must be replaced by combinatorial optimization; and
on the other hand one loses the applicability of separating hyperplane theorems — as discussed in the previous sub-
section — and hence welfare and efficiency properties of equilibria cannot, in general, be derived. The next two formal
propositions give recursion-theoretic content to this negative assertion.

PROPOSITION9.1. Given the algorithmic interpretation of (9.2), there is no effective procedure to “locate” an arbitrary
Pareto-improving configuration of ideas from the given configuration as an initial condition.

Remark. The proof of this proposition is based on a simple application of the Rice or Rice–Shapiro theorems.

PROPOSITION 9.2. Given an initial, empirically determined configuration of ideas represented algorithmically in (9.2),
there is no effective procedure to determine whether S, implemented as a genetic program, will halt (whether at a
Pareto-improved configuration or not).

Remark. This proposition can be proved by appealing to the halting problem for Turing machines or, alternatively, by
exploiting the diophantine properties of recursively enumerable sets and then applying the results used in showing the
unsolvability of Hilbert's Tenth Problem (cf. Chapter 7).

These two propositions cast doubts about the blessings of the “curse of dimensionality” to which Romer refers (cf.
above and Romer 1993: 68–9). There are no effective procedures, discoverable a priori and systematically, to determine
which “small fraction of the large number of possible mixtures may be valuable.” This is why economic development,
like the evolutionary paradigm itself, is so difficult to encapsulate in simplistic, formal, growth models — endogenous
or not. Proposition 9.1, therefore, is a formal statement of the heuristic comments made earlier in this section as the
background building-blocks for the model.

I suppose that the moral of the algorithmic formulation and the implication of the two propositions are that
evolutionary models of growth à la Nelson and Winter have been, together with Molière's
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M. Jourdain, speaking prose all along; and that Romer is absolutely right, on the basis of his intuitive definitions, to
conclude that:

a trained person is still the central input in the process of trial and error, experimentation, guessing, hypothesis
formation, and articulation that ultimately generates a valuable new idea that can be communicated to and used by
others. (Romer 1993: 71; emphasis added)

To that extent, the model has to be formally open-ended; i.e. with some indeterminateness to be “closed” by the
“trained person.” However, the indeterminacy is not arbitrary: there must be, proverbially, some method in the madness.
The above two propositions are an attempt to encapsulate formal indeterminateness in a structured way. Some kind of
formal border between what can be known, learned, and “told” — i.e. formally described — and what cannot be so
described defines the dividing line between the neat and determined world of formal growth models and the messy
and evolutionary development process. The skeletal recursion-theoretic formalism, and the interpretation of Romer's
ideas given above and the ensuing two propositions, make it possible to indicate the formal nature of this dividing line.
In general, processes that are recursively enumerable but not recursive allow the kind of indeterminacy I am suggesting. The
proofs of the above two propositions would locate the indeterminate range without actually determining it, to put it
somewhat paradoxically. For, if not, there might be the unwarranted suspicion that I have tried to resurrect the logical
positivistic dogma of the Wiener Kreis! Nothing can be further from my intentions. The existence of the dividing line
and its formal indeterminacy is, more than anything else, what makes it necessary to resort to evolutionary selection
criteria, and hence the applicability of genetic programming techniques.

But then, Simon, Nelson, Winter, Day, and others have been telling this to economists, within behavioral, institutional
and evolutionary models of growth and development since at least the mid-1950s.

9.3 Effective TÂtonnement?
[P]erfectly respectable equations have a natural interpretation as models of physically impossible devices.
Stewart (1991: 665)
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The excess demand functions play a pivotal role in standard proofs of the existence of varieties of Walrasian equilibria.
In view of the celebrated – almost startling — results of Sonnenschein–Debreu–Mantel (for convenience referred to as
S–D–M) theorems, it is possible (and easy) to show that the dynamics of a tâtonnement, via the excess demand
functions, is essentially arbitrary. In other words, the tâtonnement process can be represented as as:

(9.4)

where: ϕ (p) is the vector of excess demand functions.

It is, then, a simple exercise to show that intuitively acceptable economic reasons underpinning the tâtonnement process
in (9.4) induce a vector field on a relevant domain of the unit sphere. Then, in view of S–D–M theorems, the geometry
of the resulting flow can be shown to be arbitrary. An interpretation of (9.4) as a differential, topological, or
measurable dynamical object contains too little structure for it to be tamed even by the massive mathematical
formalisms of such systems. The arbitrariness of the geometry (or the equivalent dynamics) of the flow is one of the
reasons for the impossibility of extracting an economically meaningful procedure from conventional proofs of the
existence of varieties of Walrasian equilibria.

The analogous result, when (9.4) is interpreted from a recursion-theoretic viewpoint, is that the characterization of its
limit set is effectively undecidable. This means, simply, that the steady-state or equilibrium characterization of (9.4) is
effectively undecidable. In other words, it is possible to encapsulate and delineate the meaning and scope of the notion
“arbitrary” emanating in a dynamical systems context in the precise recursion theoretic notion of effective
undecidability.140

At a more elementary economic level, there is the standard mapping:141

(9.5)

where: M(pt) is based on the excess demand function ϕ(p), and e is the appropriately dimensioned unit column vector.
This mapping, interpreted as a (topological) mathematical object, is then shown to
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possess the fix-point property on the basis of various technical assumptions, not all of which are given readily intuitive
economic interpretations. Next, the fix-point property is interpreted as an economic equilibrium “proof.”

Nothing in this standard exercise, at almost any level of mathematical or economic sophistication, warrants the claim
that one has: “been able to establish that for the economy here described there exists a set of ‘signals’ — market prices
— that will lead agents to make decisions that are mutually compatible” (Arrow and Hahn, 1971: 29). It is
“unwarranted' not only because of the standard criticism levelled against nonconstructive and noneffective existence
proofs, but particularly because the fix-point itself is, in general, noneffective. In more vivid language, this means that
the “signals' cannot be effectively encoded, in general, for economic agents to be “led to make decisions that are
mutually compatible.”

On the other hand we could adopt the alternative path of interpreting the mapping (9.5) as a recursion-theoretic object
ab inizio and implement the economic procedure intrinsic to it, say on an appropriately encoded Turing machine (TM).
This means that:142

(a) the sequence of price vectors must, at least, be a recursively enumerable (RE) object;
(b) the constituent functions, M(p), and the underlying excess demand functions, ϕ(p), must be at least partial

recursive functions (PRC).

Both of these properties have natural and intuitive economic interpretations that are intrinsically procedural. Moreover,
no hidden appeals to dubious set-theoretic axioms will have to be made at any stage of the analysis.

What would be the analogous recursion-theoretic question to be posed to the TM that has been encoded to implement
the economic procedure inherent in (9.5)? “Analogous,” that is, to the topological questions conventionally posed
about the existence of a fix-point for (9.4), and “analogous” to the geometric questions posed to (9.4) viewed as a
differential, topological, or measurable dynamical system? It will be the following:143
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QUESTION 9.1. Given an arbitrary initial price “signal” as an input to the appropriately (and effectively) encoded TM,
is there an effective procedure to determine whether it will “halt” at an economically meaningful final configuration?

In view of the diophantine nature of recursively enumerable sets, the general answer to this questions turns out to be
negative. The negative result simply indicates that more structure has to be imposed on M(p) and the implicit excess
demand functions, ϕ(p); but more interesting from an economic point of view is that there is a potential trade-off
between more structure on M(p) and ϕ(p) as PRCs and some structure on the recursively enumerable sequence of price
vectors. Either way, they translate into a restriction of power of the TM to, say, some particular finite automaton (FA).
Then we can translate these structural assumptions to economic, behavioral, and institutional postulates implying
constraints on rationality and market structures.

What, then, of the mathematical and economic statuses of the technique of proof utilized to prove Question 9.1 as the
following proposition?

PROPOSITION 9.3. There is no effective procedure to determine whether (9.5) will eventually “halt” at an
economically meaningful final configuration when initialized with effectively encoded price “signals.”

Proof. By Rice's theorem and the “halting” problem for TMs, there is no such effective procedure.

Remark. Rice's theorem is exploited in interpreting the attempt to impose structure via an “economically meaningful
final configuration.”

This is nothing but a minor variant of the exercises in Chapter 4.

9.4 Concluding Notes
It is so hard to dream posterity Or haunt a ruined century . . .
Auden, People and Places

Two issues that are intimately related to the topics discussed in this chapter should have been at least mentioned in the
main body of this
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chapter: the status of the socialist calculation debate in the light of algorithmic and computational complexity theories,
and the recursion-theoretic sources of multiple equilibria in macrodynamic models of growth and cycles. But because
this chapter has become disproportionately large, I must limit myself to cursory remarks on these two important
issues.

Socialist economies may have collapsed with the paradigmatic and proverbial Wall, and the Iron Curtain too may have
disintegrated,144 but the “social planner” is alive and well in many representative agent models in macrodynamics. I
have continued to be puzzled at the reliance on the feasibility of decentralization, on the basis of appeals to the Second
Fundamental Theorem of welfare economics. It is as if the ghosts of Lange and Taylor have never been properly
exorcised, in spite of the powerful empirical reasons put forward by von Mises, Hayek, and Robbins.

I conjecture that the tools of algorithmic and computational complexity theory can be used to indicate the
computational infeasibility of the institutions of so-called socialist market economies based on Lange–Taylor type
arguments. Moreover, until the effective content and status of the Hahn–Banach theorem is rigorously analyzed, I am
equally convinced that reliance on the Second Fundamental Theorem of welfare economics to buttress the use of
representative agent models is misguided.

In a paper, the origins of which were the Vilfredo Pareto Lecture, entitled “The Problem of Multiple Equilibria,”
Costas Azariadis states that:145

This essay regards multiple equilibria in dynamic economies as a departure from the Cauchy–Peano theorem and
related results that ensure uniqueness of solutions to well-defined initial value problems. These violations are due to
a shortage of initial conditions, indeterminate state spaces or else to set-valued laws of motion. (Azariadis, 1992: 2)

I conjecture, instead, that this lack of uniqueness should be interpreted as coming from the lack of computability. By this I
mean a lack of sufficient recursivity in the underlying space in which the dynamics is embedded. Now, there are two
ways in which this conjecture can be discussed:

(01) by investigating the recursion-theoretic status of the set existence theorems that guarantee Cauchy–Peano; or
(001)Or by constructing an uncomputable solution to a computable dynamical system, say an ordinary differential

equation (ODE).
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The more fertile way would be to proceed via (001). The reason is as follows. Take the standard, elementary exposition
of the initial value problem to an ODE. I follow the lucid exposition in Coddington (1961: ch. 5). Find solutions to the
equation

(9.6)

where f is any continuous real-valued function defined on some rectangle<

(9.7)

in the real (x, y)-plane. The idea is to show that on some interval I containing x0 there exists a solution ϕ of (9.6) such
that

(9.8)

in other words, there exists a real-valued, differentiable function φ satisfying (9.8) such that

(9.9)

φ is then called a solution to the initial value problem (IVP)

(9.10)

When we use the method of successive approximation to demonstrate the existence of solutions on an IVP, we begin
by showing its equivalence to the following integral equation:

(9.11)

Again, by a solution to (9.11) on I I mean that there exists a φ, continuous and real-valued on I, such that

(9.12)

Now, in solving (9.11), we consider, as a first approximation to a solution,

(9.13)
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Obviously, (9.13) satisfies the initial condition given in (9.10). Compute

(9.14)

If the space on which the flow takes place allows “contraction,” we can expect φ1 to be a closer approximation to the
final solution than φ0. If we continue this process, we get (again):

(9.13)

and

(9.15)

Again, on a suitable space on which the flow takes place, we might take limits such that

(9.16)

and ((9.12) again):

(9.12)

The functions φ0, φ1, φ2, . . . defined by (9.15) are the successive approximations to the IVP or to a solution to (9.11). At
this point, Coddington gives a suggestive picture to describe or explain the method of successive approximations. Here
I follow him quite literally:

One way to picture the successive approximations is to think of a machine S (for solving)146 which converts functions
φ into new functions S(φ) defined by

A solution to the initial value problem [(9.10)] would then be a function φ which moves through the machine
untouched, that is, a function satisfying S(φ) = φ. Starting with φ0(x) = y0, we see that S converts φ0 into φ1, and then
φ1 into φ2. In general, S(φk) = φk+1, and ultimately we end up with a φ such that S(φ) = φ. (Coddington 1961: 201–2;
emphasis added)

Now we want to grant the IVP all that is granted by the conventional mathematician both pure and applied (hence
including economists). Then we want to ask whether the S-machine can get “jammed,” enter a loop, or even break
down when, finally, φ is its
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input. The answer is in the affirmative, and can be summarized in the following celebrated theorem from computable
analysis.

THEOREM 9.1. There exists an ordinary differential equation with initial condition

such that F(x, y) is computable on the rectangle {0 ≤ x ≤ 1, −1 ≤ y ≤ 1}, but no solution of the differential
equation is computable on any interval [0, σ], σ > 0.

Now rewrite (9.6) as an integral equation, as is done in Coddington's S-machine proof:

(9.17)

Now integration is a computable process in the sense that is computable if h is computable.147 So, if the
theorem is correct there is an integral in (9.17) that generates a computable transformation — but has no computable
fix-point (recall S-machine φ).

Another “aside.” In 1974 Georg Kreisel posed the following problem:

We consider theories, by which we mean such things as classical or quantum mechanics, and ask if every sequence of
natural numbers or every real number which is well defined (observable) according to the theorymust be recursive or, more
generally, recursive in the data. . . . Equivalently, we may ask whether any such sequence of numbers, etc., can also be
generated by an ideal computing or Turing Machine if the data are used as input. The question is certainly not empty
because most objects considered in a (physical) theory are not computers in the sense defined by Turing. . . .
(Kreisel 1974: 11)

Thus, if the sequence is not recursive, then the nature of the theoretical knowledge required must be nonalgorithmic;
for example, we will have to theorize about equilibria in formalistic, platonic, senses.

In our context of differential equations, Marian Pour-El and Ian Richards put it this way:

Our results are related to [the above] remarks of Kreisel. In [Kreisel, 1974 he] concerns himself with the following
question: Can one predict theoretically, on the basis of some current physical theory, e.g. classical mechanics or
quantum mechanics, the existence of a physical constant which is not a recursive real? Since physical theories are
often expressed in terms of
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differential equations, it is natural to ask the following question: Are the solutions of φ′ = F(x, φ), φ(0) = 0,
computable when F is? (Pour-El and Richards 1979: 62)

If they are not, the most immediate implication will be the generation of multiple equilibria. In this sense, then, the
genesis of multiple equilibria can fruitfully be investigated recursion-theoretically and will be a fertile source of a
disciplining research program. It is, of course, only a conjecture. What it means is that the economic system, even if
“fed” inputs in the form of initial conditions that are computable, can generate evidence, i.e. output or observables,
that are nonrecursive (e.g. Coddington's S-machine generating a nonrecursive output).

Appendix: Simplest Fluctuation Theories

Description must be non-linear, prediction must be linear
Alan Turing (in Hodges 1983: 495)

In a famously polemical piece, Lucas and Sargent appear to have stated their methodological credo clearly:

Further, as Frisch and Slutsky emphasized, linear stochastic difference equations are a very flexible device for
studying business cycles. It is an open question whether for explaining the central features of the business cycle
there will be a big reward to fitting nonlinear models. (Lucas and Sargent 1979/1981: 314)

(It has never been clear to me148 that “Frisch . . . emphasized linear stochastic difference equations [as] a very flexible
device for studying business cycles,” but let that pass.) In contrast to the New Classical credo, there is what may be
called a new (or neo) Keynesian credo where the cycle theorist is advised to149 “look more closely at the sort of
mechanisms that may be responsible for significant nonlinearities in the economic system if they wish to have a proper
foundation
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upon which to build a sound business cycle theory” (Grandmont 1985: 1042).

Is there an effective procedure to decide this perennial dispute, one way or the other — or is it an undecidable
question? So far as I can see, the controversy does not involve issues of fundamental economic principle. The question
seems to be simply (!) the relative explanatory power of two alternative (theoretical) visions of the macrodynamic
economic system. But, in fact, the issue is far from simple in (at least) one important respect: how are we to interpret
“explanatory power”? Hard-core instrumentalists would reason in terms of predictive power; at the other end, realists
may argue for descriptive relevance; in between, there is the amorphous world of ad-hockeries. I do not wish to enter this
particular philosophical debate. However, I do wish to claim that recursion-theoretic tools can be used to advantage in
going at least part of the way in resolving the controversy.

Before suggesting how this can be done, let me give a concrete example of the general idea I have in mind.
Connoisseurs and students of the history of business cycle theory will be familiar with the devices of the full-
employment ceiling and the investment floor, introduced by Hicks, to bound his piecewise linear model from exploding
or collapsing away into oblivion. Richard Goodwin, by embedding the piecewise linear (deterministic) dynamics in a
nonlinear (differential) dynamic model, was able to show that one of the economic constraints was sufficient — i.e.
either the ceiling or the floor — to generate persistent (endogenous) economic fluctuations. Goodwin's stated purpose
was to look for the simplest hypothesis with equal explanatory power. His trade-off was that between a second-order
linear difference equation with two “nonlinear” constraints as against a second-order nonlinear differential equation
with one “nonlinearity,” in a precise sense. Which is the simpler theoretical system? Can we find a theoretical measure
to quantify the simplicity in terms of these concepts, given that the two systems have equal explanatory power?150

A suggestive example may be useful in focusing attention on some aspect of the issue. Consider the famous Lorenz
equations:

(9A.1)

(9A.2)
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(9A.3)

Equations (9A.2) and (9A.3) contain the nonlinear terms (−x1x3) and (x1x2) respectively; but the system as a whole is
homogeneous. Otto Rössler consciously sought a simpler system in terms of the number of nonlinearities; i.e., he
sought to reduce the number of nonlinearities in the system as a whole151 to the minimum of one. He “succeeded” in
constructing, artificially, the following system:

(9A.4)

(9A.5)

(9A.6)

It is evident that the trade-off in the Rössler system was for the elimination of one nonlinearity at the cost of introducing
an inhomogeneity in the dynamics of the third variable,152 which, now, is the simpler system. An immediate supplementary
question would be whether it is

(a) simpler in terms of the theory utilized to summarize the evidence;
(b) simpler in terms of the data used;
(c) simpler in terms of the resources needed to use the data, in conjunction with the theory, to understand relevant

regularities in the data;
(d) or, perhaps, a combination of some or all of these factors.

At this level of generalization, a first, tentative approach might be to use Rissanen's Minimum Description Length (MDL)
principle. According to this principle, the scientific enterprise consists in:153

(i) starting with a space of theories or set of hypotheses characterized by the evidence;
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(ii) selecting, on the basis of some a priori criteria, a subclass or subset of theories or hypotheses;
(iii) encoding each of the chosen theories or hypotheses number-theoretically (say, Gödel numbering) and

representing them in binary code;
(iv) choosing, finally, that theory and hypothesis which minimizes the sum of:

(α) The length of the number theoretically represented theories or hypotheses.
(β) The length of the data, represented similarly, and encoded utilizing the theories or hypotheses in (α).

However, we face, once again, the problem of “relevant regularities” and “characterized by the evidence.” One may
legitimately ask:

• Is the scientific enterprise restricted to finding mechanisms — theories, hypotheses — that can reproduce the
evidence?

• Or, is it, perhaps, the more fundamental one of detecting the underlying mechanisms that gives rise to the
evidence?

This is where the philosophical distinction between the instrumentalists and the realists becomes significant. To stay
clear of this veritable minefield, I would like to suggest that the scientific enterprise must encompass both aspects.
There will be, in any realized scientific exercise, a trade-off between the two aspects.154

Let me return to the problem of “relevant regularities” in the evidence for the subject being studied and the choice of
the evidence for the theories or hypotheses. In the case of business cycle studies, there is, increasingly, a consensus
about the nature of the evidence and the structure of the regularities in the evidence that characterize the subject. A
brief aside on this issue, in business cycle studies, may put the problem in perspective. A succinct description of the
scientific enterprise guiding Real Business Cycle studies is the following:

(1) Identify business cycle facts a priori.
(2) Construct and compute quantitative measures of business cycle facts from the actual evidence.
(3) Simulate the theoretical (stochastically perturbed) model economy and construct and compute similar

quantitative measures for the model economy as in (b);
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(4) Compare the results from (2) and (3) and check the extent to which (stochastic) shocks “explain” deviations
from trend.

(5) Repeat the whole procedure with progressively relaxed assumptions in (3).

What are business cycle facts? They are analogous to the familiar stylized facts of growth immortalized by Kaldor. In
referring to a collection of the stylized facts of growth, two of the pioneers of Real Business Cycle theory, Kydland and
Prescott, pointed out that:

These facts are neither estimates nor measures of anything; they are obtained without first hypothesizing that the time
series are generated by a probability model belonging to some class. . . .
From [these facts] . . . Solow [developed] a parsimonious theory that rationalizes these facts – namely, his neo-
classical growth model. . . .
The growth facts are not the only interesting features of these aggregate time series. Also of interest are the more
volatile changes that occur in these and other aggregates – that is, the cyclical behavior of the time series. These
observations are interesting because they apparently conflict with basic competitive theory, in which outcomes
reflect people's ability and willingness to substitute between consumption and leisure at a given point in time and
between consumption at different points in time. (Kydland and Prescott 1990:. 4; emphasis added)

Having identified the business cycle facts, the guiding principles for steps (2) and (3) can be gleaned from the following
observation by Cooley and Prescott:

Lucas, following on the work of Burns and Mitchell, argued that the business cycle should be thought of as
apparent deviations from a trend in which variables move together. An examination of the time path of output for
any modern industrialized economy quickly reveals that output tends to fluctuate about a long-term growth path.
These fluctuations about trend are what we most often think of as the business cycle. The fluctuations are typically
irregularly spaced and of varying amplitude and duration. Nevertheless, the one very regular feature of these
fluctuations is the way variables move together. It is these comovements of variables that Burns and Mitchell
worked so hard to document and that Robert Lucas emphasized as the defining features of the business cycle.
These are the features of fluctuations that we would like an artificial economy – a business cycle model – to
replicate. (Cooley and Prescott 1995: 26)

In other words, we can detect, in the evidence from which we constructed business cycle facts, a set of (observable)
regularities “in the comovements among different aggregative time series” (Lucas 1981:
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217). At that point, like, say, Kaldor's or Solow's attempts to rationalize growth facts, via the extracted regularities, in
terms of a parsimonious theory, we try to rationalize business cycle facts (step 1) and their constructed regularities
(step 2) with a parsimonious business cycle theory (step 3). The next set of guiding principles, for step (3), would be, for
Real Business Cycle theory, the following exercise:

(γ) Specify the economic environment in terms of the neoclassical closure.
(σ) Specify the economic environment's evolution through time.

In the case of (γ), we get the discipline and organizing principles from microeconomic theory; in the case of (σ) we get
them from the growth theories that are based on (γ) but with the external constraints imposed by the need to
encapsulate elements from step (1) (i.e. business cycle facts).155

Before we implement the other part of step (3) – simulating the theoretical model economy and constructing and
computing measures analogous to those constructed in step (2) for the business cycle facts – we must construct and
compute the “raw” regularities. For this the strategy is as follows:

• We have time series data on the relevant aggregative variables, for example, GDP, yt. Let us assume that this
variable is the sum of a cyclical component and a growth component . Now, the conventional,
descriptive wisdom of students of business cycles is that fluctuations with a frequency of between 12 and 20
quarters around the trend growth path characterizes it – i.e., the business cycle(s).

• Therefore we take the raw time series of GDP, yt, and send it through a “filter” so that the filtered time series
eliminates the unwanted frequencies. How do we do this, i.e. what sort of filter should we use?

In Real Business Cycle (RBC) empirics, the following filter is used (all variables are in logs):

(9A.7)
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where

(9A.8)

and the terms inside the square brackets – the second term – are a rewriting of

(9A.9)

Thus:

(a) the first term is simply the sum of the squared deviations from trend – i.e. the cyclical component;
(b) the second term is the variation in the growth rate of the trend component.

Now, choose λ and with two criteria in mind: first, to minimise the expression (9A.7); secondly to eliminate
irrelevant frequencies. For example, if we choose λ = 0, then

(9A.10)

i.e., the growth component is the actual series. At the other extreme, as λ → ∞, the growth component approaches a
linear trend. By trial and error, on the basis of a priori restrictions on frequencies, it has been found that λ = 1400 does
the trick.

Next we implement this procedure for the model (stochastic) growth economy. The broad strategy is as follows:

(1) Simulate the calibrated model stochastic economy or its recursive competitive equilibrium (RCE).
(2) Filter the simulated data exactly as was done for the actual data.
(3) Compute and construct the same statistical measures from the filtered data.
(4) Compare the two sets of measures and try to impute causality to the stochastic productivity shocks.

Summarizing, in the Real Business Cycle scientific enterprise it may be agreed that, for this class of exogenous theories,
there is broad consensus on:

(0) the mode of constructing the evidence;
(00) the procedure for extracting the structural regularities in the evidence – i.e. the business cycle facts;
(000)the nature of the theories to be used in encapsulating evidence and encompassing the structural regularities;
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(0000)
the way the theories are to be used in validating the evidence and its structural regularities.

I do not think the Real Business Cycle scientific enterprise is at either end of the philosophical–methodological divide
of instrumentalism or realism: I believe it to be a combination of the two.

Even though such a systematic procedure has not been articulated for the endogenous theories of the business cycle, it
is clear that a similar exercise can be devised for these theories, at least in principle. Given, then, this background, we
have all the elements necessary to face the main question of this section: can it effectively be decided which is the more
“desirable” theory of the business cycle? The framework I suggest is based on those suggested by Chaitin (1979),
Bennett (1988), and Koppel (1988).

I will need to modify some of the definitions in previous chapters, particularly those of the Universal Turing Machine
(UTM) and complexity – for this exercise.

DEFINITION 9.1 (Koppel 1988: 436). For every partially computable function F, there exists a program P such that,
for all data D,

(9A.11)

where: U(P, D) is the Output of the Universal Turing machine given inputs P and D.

Then, the economic interpretation within the real business cycle scientific enterprise would be as follows.

(I) The structural regularities in the evidence are represented by the function computed by the program part of the
minimal description to the UTM.

(II) The “continuations” (i.e. forecasting) intrinsic to the evidence are those that belong to the range of that
program (in (I) above).

(III) The (minimum) measure of the mechanism that generates the structural regularities in the evidence is given by
the size of that program; call it theoretical depth (Bennett 1988).

From step (III), we get a direct comparative measure for, say, the two theories of the business cycle. The more
desirable theory has the shorter program under Definition 9.1 and (I)–(II).

In this framework, the dynamical system I considered earlier, the Rössler system, acts as a “translator” which, given the
relevant
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descriptions, generates the object being described: the “business cycle.”

DEFINITION 9.2: COMPLEXITY. The complexity of the evidence E is given by:

DEFINITION 9.3: THEORETICAL DEPTH (TD). The TD for E, denoted156TDc(E), is given by

Remark 1.

(σ) If | P| + | D| ≤ H(S) + C the description (P, D) of E will be called c-minimal.
(ρ) If P is the shortest program such that, for some D, (P, D) is a c-minimal description of E, then the program P is

called a c-minimal program for E.

Remark 2. The size of c is a quantitative measure of the amount of ad-hockery in a minimal program (i.e. theory). Thus,
we have the c-minimal program for E denoting that part of the description of E which represents the structural
regularities in E. On the other hand, the range of this c-minimal program P spans the set of E that encompass the
relevant structural regularities. It is because the range is multi-valued that instrumentalist philosophies will differ from
the realists; the latter will try to identify the unique c-minimal program so that the range is single-valued.

Remark 3. A final remark may highlight one significant feature of the definition of theoretical depth: it is compatible
with evidence that is nonrecursive.

Since all the elements of the Real Business Cycle scientific enterprise are effectively encodable, it is possible to compute
the relevant measures defined above. The hard task is to systemize the scientific enterprise that is the endogenous
vision of business cycles. I suspect the role of c will be more pronounced in the endogenous theory than in the
exogenous theories. A further selection criterion, ceteris paribus, could therefore be based on the value of c.

One final question: which of the theories would be compatible with computation universality at the microeconomic
level? If, as suggested
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in earlier chapters, rational behavior in a dynamic sense is encapsulated in a formalism implying computation
universality, then which formalism at the macro dynamic level would be consistent with it? It seems clear to me, at least
within the framework employed in this book, that a nonlinear dynamic formalism at the macro level is the only
candidate. This ties up well with the view of Hirsch (cf. fn. 28) on interesting dynamics.
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10 Conclusions: Reections and Hopes

So the twine unwinds and loosely widens
backward through areas that forwarded
understandings of all I would undertake.

Seamus Heaney, Unwinding
All I know is that the hours are long, under these conditions, and constrain us to beguile them with proceedings
which – how shall I say – which may at first sight seem reasonable, until they become a habit. You may say it is to
prevent our reason from foundering. No doubt. But has it not long been straying in the night without end of the
abyssal depths? That's what I sometimes wonder. You follow my reasoning?
Vladimir to Estragon, in Beckett's Waiting for Godot

“The hours are long,” indeed, “under these conditions,” and I suspect that readers of this book, expecting a rich
harvest of recursion-theoretic economic propositions, may have felt as if they were “waiting for Godot.” I hope,
naturally, that some felt otherwise. In his characteristically lucid Presidential Address to the Southern Economic
Association, which he titled “Economics as an Inductive Science,” Clower suggested that:

an inductive science of economics must start from explicit recognition that . . . economies of scale are ubiquitous,
and must be accommodated in any real-time description of economic processes. Neowalrasian analysis is limited
strictly to convex economies; so any reconstructed theory must deal with systems that involve nonconvexities in
essential ways. This means, among other things, that the whole of modern welfare economics must be consigned to
metaphysical oblivion. And that is just a minor casualty, because only slightly less draconian changes are needed to
lend honesty to other constrained-optimization branches of economic theory. (Clower 1994: 811)



It is the “draconian changes . . . to lend honesty” to the scientific enterprise in economics that have compromised the
main analytical contents of this book. It is my hope that the changes required “to lend honesty to other constrained
optimization branches of economic theory” are not as draconian as Clower envisaged, although I am afraid he is
inclined to have the correct intuitions about such things.

I have suggested that reformulating the standard economic problem (SEP; cf. Chapter 4) as a decision problem brings
integer programming (i.e. nonconvex optimization) problems (for example) quite naturally within its domain. Hence
the paradigmatic case of increasing-returns-to-scale economies resulting from indivisibilities is viewed as a decision
problem (cf. Chapter 9).

On the other hand, without emphasizing nonconvexities, but by investigating the exact recursion-theoretic content of
the Hahn–Banach theorem – i.e. the separating hyperplane theorem – I have suggested, in Chapter 9, that the status of
the Second Fundamental Theorem of welfare economics is questionable. I suspect that Clower's pungent conjecture
that “the whole of welfare economics must be consigned to metaphysical oblivion” can be rigorously demonstrated
with recursion-theoretic tools.

The often implicit – and sometimes explicit – methodological credo of this book has been a plea to (re)inductivize
economics. To this end, a whole chapter (Chapter 5) was devoted to a presentation of the modern theory of induction.
The “draconian changes . . . to lend honesty” to the scientific enterprise must begin, in my opinion, with a dethroning
of the supreme status of deductive logic and the pervasive reliance on set-theoretic foundations. The confident world
of determined equilibria and the “super-rational” agent was due to this excessive reliance placed, I think with naive
enthusiasm, in the powers of set-theoretic formalisms and their deductive handmaidens (for example the declarative).
Perhaps these enthusiasms and the concomitant activities were a sign of the times. Cantor's paradise was the setting,
lofty Bourbakianism the methodology, logical positivism the epistemological basis; and Hilbert the Pope with his
periodic encyclicals.157 Brouwer and Gödel cried in the wilderness, at least so far as the odyssey of economic formalism
was concerned.
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In many senses, this formalistic and deductive dominance of economic analysis is quite surprising. The quantitative
impetus to economic analysis was imparted, at the long-ago dawn of the subject, by a Bacon-influenced William Petty.
Petty's stated intent was to make and represent the concepts of political economy “in number, weight and measure.”
Smith and Malthus, surely, were squarely in this Baconian inductive–quantitative tradition. Somewhere along the line,
the supreme deductive powers of Ricardo seem to have mesmerized the economic analyst. To that extent, the subject
seems to have “made facts fit theories” rather than the other way around.

In another incarnation and context, Clower (with Howitt) pointed out that a class of important problems in monetary
economics requires, for their proofs, “the use of number theory – a branch of mathematics unfamiliar to most
economists” (Clower and Howitt 1978: 168).158 However, it is not just for the proofs of certain propositions, but for
the realistic and inductive framing of the problems of economics, that there is a need to use number theory and
recursion theory – branches of mathematics “unfamiliar to most economists.” While this remains true, we will, I am
afraid, subvert the framing of problems like increasing returns to scale, decentralization, etc., with the inappropriate
tools that were devised for a wholly different class of problems.

Moreover, there is an uncritical faith in the real number system159 to provide the numerical foundations for quantitative
analysis in economics. This faith has also been important in making “facts fit theories” in the vast pseudo-scientific
enterprise that is the mathematization of economics. Much hand-waving about approximations is one mode of
justifying the use of the (extended) real number system as the domain over which economic entities are defined. That
an inductively significant “subset” of these numbers has no numerical meaning or content seems never to have
occurred to many economists. This may well be because we have forgotten the following:

We all are familiar with the fascination with impossibility proofs in mathematics: √ 2 is not a rational number, there
is no general method to trisect
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any angle by ruler and compass, arithmetic is incompletable, there are non-computable real numbers, etc. In each
case, we arrive at the negative result by using a clear positive delineation of the original domain. For example, we give a systematic
characterization of the whole range of constructions by ruler and compass, and then we are able to see that for
certain angles, to trisect them calls for steps not lying in that range. It is only after Turing has found a clear characterization
of computable real numbers that one sees easily there must also be noncomputable numbers. (Wang 1986: 138; emphasis added)

Turing's characterization of the computable numbers can be interpreted as distinguishing between numbers that are
defined by pure existential statements and those that can be algorithmically defined. This is why standard mathematical
economics is replete with existential theorems without the slightest concern over their constructive or algorithmic
status. A subject whose fundamental entities are defined over the whole of the real number system will, naturally, not
worry too much about the subset that is numerically meaningful in a constructive or algorithmic sense. It is also why
economic theory has not been a pleasant playing field for those of us who would like to interpret the cardinal aim of
the subject to be problem-solving and who would, therefore, insist on characterizing rational agents as meaningful
problem-solvers and would also indulge in hair-splitting about the importance of methods for solving problems.

The skeptical economic theorist might not find the above paragraph particularly convincing. What is the difference
between problem-solving on the subset of the computable numbers or constructive numbers and problem-solving on
the whole of the real number system (leaving aside the thorny issue of problem-solving on the domain of the
nonstandard numbers), the skeptic may ask? There is a fundamental and foundational difference, which is best
captured in an important theoretical contribution made by Kolmogorov a long time ago:

In addition to theoretical logic, which systemizes the proof schemata of theoretical truths, one can systematize the
schemata of solution of problems.
. . . The calculus of problems is formally identical with the Brouwerian intuitionistc logic, which has recently been formulated by Mr
Heyting. . . . it follows that one should consider the solution of problems as the independent goal of mathematics (in
addition to the proofs of theoretical propositions). (Kolmogorov 1932: 58–65)

At the very beginning of this book, I pointed out that there was a fourfold division of mathematical logic: set theory,
proof theory,
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recursion theory, and model theory. I also claimed that most, if not all, of standard economic theory was formalized in
terms of set theory and model theory. I wondered why it was not possible to try formalizing in terms of recursion
theory. However, I did not link this query with my belief – imparted to me by my teacher, mentor, and friend Richard
Goodwin – that economic theory should be about problem-solving. I have concentrated, in the whole of this work on
characterizing the problem-solvers and the methods recursion-theoretically, but have left out the difficult problem of
justifying the basic belief: that economics is problem-solving.

I can now round off the whole story. I consider economics as problem-solving because I believe that formalization of
economic theory must proceed without relying on dubious logical principles. I do not know whether there is a logic –
call it algorithmic logic – lying between classical and intuitionistic logics that would enable me to state, like
Kolmogorov above, that problem-solving in the domain of computable numbers is formally identical with such an
algorithmic logic.160 I do not doubt, however, that such a logic can be devised, in the unlikely event that it has not
already been done, and that it would be a logic that would not hesitate to leave imaginary paradises, whether sanctioned
by Hilbert, Cantor, or Bourbaki. That standard economic theory, in its mathematical mode, is happy to reside in such
imaginary paradises is the reason for the somnambulent dominance of existential results.161

The dominance of (universal) negative results may not be adequately compensated by the meager algorithmic
existential results, at least for the above skeptic. But the strategy followed by Arrow in deriving Impossibility Theorem
in social choice theory was no different. The “clear positive delineation of the original domain” of economics
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Only those who love illusion, and know it,

Will go far; for, if not, we will spend our time

In a confusion of what we say and do,

With who we really are.

W. H. Auden, Many Happy Returns

Mathematical economics has become a theatre whose stage seems to be populated by “those who love illusion”; whether they “know it,” I do not know. I consider part of the
message of this essay as an attempt to dispel such people of some of their illusions. I do not expect “to go far.”



is an activity of the future for which we will, I am sure, find distinguished classes of Kafka's predecessors,” too. When
that is done, it will be seen that recursion-theoretic tools will help in the generation of theories that will fit facts, rather
than the other way around. At least, that is a message I wish to convey in this work.

On the other hand, I have tried to indicate, in Chapter 6 and 9, that a deft use of computable analysis enables much of
the standard framework of economics to be operational in the usual ways. The advantage gained by working within a
computable analytic domain rather than the conventional domain of real analysis is that ad hoc approximations and
undecidable disjunctions are detected quite easily. This detection is faciliated by the (universal) negative results.

I would like to think that the computable approach to economics provides hints on enriching the neoclassical closure
in interesting ways. Thus, perhaps it is possible to redefine the closure in terms of decision rules, institutions, and the
knowledge base, rather than preferences, endowments, and technology. The former three can be given consistent
recursion-theoretic characterizations; the latter three will become special cases.

In Chapter 7 I used the program-card interpretation of a Turing machine. In Scarf's beautiful lecture on “Mathematical
Programming and Economic Theory” (Scarf 1989) there is an imaginative interpretation of institutions as algorithms.
In Romer's speculative thoughts on understanding growth and development (Romer 1993) there is a fascinating
interpretation of modelling production algorithmically (cf. Velupillai 1996). I have suggested that the Rational Man of
Economics, by way of Simon's Human Problem Solver and his Thinking Man, could fruitfully be modelled as Turing's
Man of Economics. Given the program-card interpretation of Turing machines, Turing's Man can also be characterized
algorithmically.

These, then, can be the building-blocks for the new closure I am suggesting, a closure that is consistently algorithmic
and, hence, intrinsically dynamic and process-oriented. As pointed out earlier, David Ruelle, in his Willard Gibbs
Lecture (Ruelle 1988), probed the question of the naturalness of our mathematics: “How natural is our human 20th-century
mathematics?” (p. 260; cf. also Chapter 1 above). His conclusions were that there was nothing natural about human
mathematics: “it could be quite different from what it is” (p. 266).

The laws of economics have been sought by looking for formal structure using a narrow repertoire of mathematical
tools. If, as
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Ruelle persuasively argues, there is nothing natural about “our human 20th-century mathematics,” then could it be the
case that we have discovered unnatural laws of economics? Perhaps the gods did not lay out a path for the discovery of
the laws of economics by human mathematics as we know it today. But, then, we cannot know whether that is the case
until we try at least some of the other “human 20th-century mathematics” at our disposal. If all else fails, then that will
remain the minimal case for the computable approach to economics.
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Appendix: A Child's Guide to Elementary Aspects of
Computability

A1 Preamble
And one might express what [Turing] says also in the form of games. And the interesting games would be such as
brought one via certain rules to nonsensical instructions.
Wittgenstein (1980: s. 1096)

The following are the contents of a child's toy set, curiously called “Computable and Uncomputable Games.” The
game in question is a game of solitaire, i.e. played by one person:

(a) a tinman with movable joints and sensory organs;
(b) a small box car, big enough for the tinman, on grooved wheels;
(c) a large supply of pieces of rails on which the grooves of the boxcar fit smoothly; each piece of rail is

approximately long enough to hold the boxcar, but sliding wedges – like in Lego sets – make it possible to
build long railroad lines in both directions;

(d) a long white board, on stands, that can be placed alongside the railroad lines – potentially extendable as far as
the lines go; the tinman's vision is constrained, by artificial means, to view the contents of exactly one square of
the white board per unit of time;

(e) colored chalks, cloth to wipe the board, and an extra boxcar; also instructions on how to order extra rail pieces
and extensions for the white board.

The tinman in action is schematically illustrated in Figure A1.

Like all serious toy sets, this one includes a book of instructions and rules on how to “play” the game. The boxcar can
move to the



Fig. A1

right or left on the rails, one section of rail at a time; its movement is controlled by a lever which operates the wedges
connecting adjacent pieces of rails. The tinman operates the lever. The operation is not unlike that which is done to
shunt trains onto different tracks.

The tinman's functions are specified in the book of instructions as follows:

(i) to write any one symbol at a time in the square on the white board facing the boxcar in which the tinman
stands; the instruction book specifies the allowable symbols (usually, 0, 1, and B (for blank, distinguishable
from 0));

(ii) to erase the symbol, if any, that is in the square facing the boxcar;
(iii) to leave a square without altering its contents, if so wished.

The tinman's sensory organs are connected to a gearing mechanism which can operate at any one of a finite number of
states (think of 16 speed gears on a bicycle, for example).

The rules, according to the instruction book, for allowable sequences of symbols with which the tinman can fill the
squares are as follows:

(α) The person playing the game begins by filling a finite number of the squares on the white board with the
allowable symbols.

(β) The boxcar is placed on the rail facing the leftmost of the squares that the player has filled, with the tinman in
the boxcar.

(χ) When the tinman's sensory organs sense the scanned symbol – i.e. when the tinman “sees” the square on the
white board facing the boxcar in which he is standing – they “instruct” his hand to:

(i) erase the current symbol and replace it with another one; or,
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(ii) leave “as is”;
(iii) shift gears to another level depending on the new symbol in the square;
(iv) shift the lever to move the boxcar to the next rail on the left or right.

The above description exhausts the rules of the game as far as playing it is concerned. Games hang by their own
bootstraps until some indication of a way to reach a “result” is specified. In “Computable and Uncomputable Games,”
a play terminates when the gearing mechanism of the tinman's sensory organs reaches a specified position. The result
of a game that terminates is a function of the string of symbols appearing on the white board at termination.

Surely, this is a game any child can play?

But, will every play of the game terminate? Does every game of Monopoly end conclusively in finite time? Of course
not. In principle, the game of Monopoly can go on for ever. Similarly, in principle, the tinman can keep on working for
ever – subject to availability of extension railtracks and white boards!

The above are the ingredients of a machine that can compute anything that is intuitively understood and accepted to be
computable. But, the perceptive child will ask: “Whose intuition,” and what does “computable” mean? The second part
is relatively easy to answer (cf. next section); the first part is more difficult.

It is in answering the first part of the child's query that one begins to enter the metaphysical zone of computable and
uncomputable games. Let us agree, at least pro tempore, on the meaning to be attached to “computable” in the everyday
sense of arithmetic at the grocery shop. The process of computing a sum, a product, a division, or a subtraction is not
universal. The abacus, for example, is still dominant in everyday computing in Japan. But the abacus and the simple
calculating machines come to the same answer, when given the same data and asked to perform one of the arithmetic
operations. Are there fundamental irreducible processes hidden underneath superficially different activities? Turing
answered this question by constructing his Turing machine, and its building-blocks are almost exactly those in the
above toy set.

We compute not only ordinary sums and the like; we also compute velocities, areas, and so on. Imagine another toy –
let us call it “Recursive and Nonrecursive Games,” perhaps for slightly older
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children – which claims to be able to compute all intuitively computable functions! How shall we decide whose
intuition is superior? Fortunately, we are spared this difficult decision: it turns out that both games, in their plays,
compute exactly the same class of functions. Evidence gathered over the years from different toy sets confirms that all
of the games, even while allowing the plays to be different, compute the same class of functions. This “empirical fact”
is called the Church–Turing thesis. Its origins lie in the deep recesses of mathematical epistemology. I have alluded to
these issues, tangentially, in each chapter. A full discussion will appear in the companion book to this one.

But what does it mean “to compute a function”? Surely, any explication would require concepts and a maturity that
would be beyond most children? Space and context do not allow me to go into a detailed answer refuting such
skeptical thoughts, although an attempt – inadequate, no doubt – will be made in the next section. Suffice it to say that
it is much easier to teach and motivate the meaning of a computation and the concomitant computable function than it
is to teach much that is commonly taught as mathematics in high schools.

To conclude these elementary observations, consider the following questions posed by a perceptive child:

(1) Since the child learns, by playing, that the result of a terminated game is a function of the final sequence of
symbols in the series of squares on the white board, it may wonder as follows: can I specify any pattern I like
for the final configuration of a terminating game and ask you to give me the initial configuration that will lead
to it? Like most “inverse problems,” this one gives a negative answer – unless the final configuration is trivial.
This question, and the answer, contain much of the import of Rice's theorem.

(2) The child may also ask, after playing the game many times, if it is possible to “say” beforehand whether any
given initial configuration will lead to a terminating game? This, too, leads to a negative answer and contains
much of the substance of what I have referred to in the main text as the undecidability of the halting problem for
Turing machines.

Why, the weary reader may wonder, should an economist try to seek theoretical foundations for economic theory in
such simple games? I may happily deflect this reader to the perceptive admonition by
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Arrow to economists to seek “more consistent assumptions of computability in the formulation of economic
hypotheses” (cf. Chapter 3 above). I could even refer such readers all the way back to Petty's attempts to quantify
economics, at its very origin.

But I may also answer by pointing out that it is the mathematization of economics that has caused the subject to
become quantitative in a meaningful numerical and constructive sense. The epistemological constraints that
mathematicians imposed on their own foundations led to a branch of mathematics that characterized the real number
systems into a computable and an uncomputable part. If, therefore, economic entities are to be quantified, then it
seems natural that they must be based on the computable numbers. These numbers are algorithmically generated by
nothing other than “Computable and Uncomputable Games,” “Recursive and Non-recursive Games,” and other
games related to this by the Church–Turing thesis. It just so happens that these are almost as simple as children's
games to play, and to understand. It is the algorithmic (rule-based) generation that makes the game playable (cf. Chapter
7). If, as I have also argued, economics is also problem-solving, then it may be necessary to leave out undecidable
disjunctions, uncomputable numbers, and such noneffective methods. There again, the metaphor of the child's toy set
is a good example: a toy set with noneffective instructions is useless. The same applies to any formalization. The
beauty lies in the fact that a finitely specified effective game for children contains nonterminating plays!

A2 Pseudo-Theory
That we calculate with some concepts and with others do not, merely shews how different in kind conceptual tools
are . . .
Wittgenstein (1980, s. 1095)

A2.1 Description, Denitions, and Conventions
In preparing this section, I have used Boolos and Jeffrey (1989), Bridges (1994), Davis (1982), Hunter (1971), and
Moret (1998) quite freely, and many of the standard classics of computability theory.

DESCRIPTION A.1. A Turing machine consists of the following interlinked parts:
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(i) a movable control mechanism which at any given point in time is in one of a finite number of possible
states;

(ii) a sensor, attached to the movable control mechanism, that can scan the symbols on an infinite tape,
interpret the symbols, erase them, and also write symbols on the tape;

(iii) the tape, infinite to the left and right, divided into (scannable) cells, in each one of which one symbol from
a fixed alphabet can be written.

One of the many possible ways of depicting the essence of such a machine is shown in Figure A2.

Fig. A2

CONVENTION A1
(a) The sensor can scan exactly one cell at a time.
(b) Only a finite number of cells of the infinite tape are nonempty at any given point in time.
(c) The sensor is placed scanning the leftmost nonempty cell when it is initialized.
(d) The fixed alphabet consists of the three symbols á 0, 1, Øñ (where Ø: denotes the symbol “blank” and is

different from the numeral 0).

Denote byQ:
finite set of states;

q0 ∈ Q:
a pre-specified initial state;

qT ∈ Q:
a pre-specified terminal state;

δ: a partial function (i.e., not defined over the whole of its domain); i.e.,

δ: Q × Λ → Q × Λ × {L, R, γ},

where Λ is the symbol set (alphabet): á 0, 1, Øñ in our case; L is a left-ward movement of the movable control; R is a
rightward movement
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of the movable control; γ represents no movement of the movable control; and where (qT, α) is not defined, ∀ α ∈ Λ;
i.e., if the movable control is in, or reaches, the terminal state T, the actions of the Turing machine cease.

DEFINITION A1. TURING MACHINE. Given the fixed alphabet Λ, a Turing machine (TM) is a quadruple: TM ≡ á Q, δ,
q0, qTñ

Remark. Many elements of the description and the convention have been chosen with a view to making the definition
seem “natural.” Not all of the elements are necessary. I have not sought a minimal set of elements for the description
and the definition.

A2.2 Examples of Computation

(a) A General Example for the Turing Machine
(1) Assume that a finite portion of the infinite tape has written in the corresponding cells the following sequence

of symbols: with empty squares to the left of the leftmost 1 and to the right of the
rightmost Ø.

(2) TM must be set to state q0 and the sensor places against the leftmost 1.

(3) Then, in general, if the TM senses the symbol α in state q, it will compute δ(q, α) which may be equal to, say,
δ(q′, α′, S).

(4) The TM sensors would write α′ in place of α, shift to state q′, and move one cell to the left (S = L), right (S =
R), or not move at all (S = γ).

(5) If the TM ever reaches the state qT, it will stop its activities.

(6) The sequence of symbols remaining when the TM reaches qT is the output.

(b) A Simple Example for TM, I.E. á Q, δ, Q0, Qtñ

Given Q = á q0, q1, q2, qTñ, Λ ≡ á 0, 1, Øñ and the following tape input:

the rules (= “programs”) for the activities of TM, i.e. the state transition function δ, can be given in a transition table
(Table A1).
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Table A1

0 1 Ø
q0 á q1,1,Rñ á q2,Ø,Rñ á qT,Ø,Lñ
q1 á q1,1,Rñ á q1,0,Rñ á qT,Ø,Lñ
q2 á q1,Ø,Rñ á q2,1,γñ á qT,0,Lñ
qT STOP STOP STOP

For example the instructions are read column-by-row; then TM, scanning 0 in state q0, overwrites 0 with 1, enters state
q1, and shifts to scan the next cell on the right.

Hence, TM1's activities for the given input and transition table here, Table A1 will be as follows:

Step 1: 0 Ø 1 1 0 0
Step 2: 1 Ø 1 1 0 0
Step 3: 1 Ø 1 1 0 0

This Turing machine's activity consists in replacing the leftmost 0 by a 1.

CONVENTION A2. The natural number n ∈ N is represented on a Turing machine tape by n + 1 symbols of the
numeral 1. By courtesy, zero is represented by a single 1.

CONVENTION A3. The transition function δ is represented by a series of program cards, one card for each of the finite
states of the relevant Turing machine, each of which specifies, for each symbol of the given alphabet, the computing
activity of the machine.

(C) A Computation Using Program Cards
Consider the 2-state, 2-symbol Turing machine, TM2 (Figure A3), whose activities are represented by two program
cards (where state 1 corresponds to q0). On each card we have:

(a) Column 1: scanned symbol
(b) Column 2: the new symbol to be inserted
(c) Column 3: shift left or right instruction
(d) Column 4: next state to enter

Example. Let us start TM2 on state 1 scanning a blank tape (see Figure A4):

192 APPENDIX



Fig. A3

(State 1) Step 1: scanning 0; overwrite 1; shift R; enter state 2
(State 2) Step 2: scanning 0; overwrite 1; shift L; enter state 1
(State 1) Step 3: scanning 1; overwrite 1; shift L; enter state 2
(State 2) Step 4: scanning 0; overwrite 1; shift L; enter state 1
(State 1) Step 5: scanning 0; overwrite 1; shift R; enter state 2
(State 2) Step 6: scanning 1; overwrite 1; shift L; stop

The activities of TM2, started off on a blank tape, can be summarized as follows:

(i) It writes four 1s on a blank tape.
(ii) It is a 2-state machine that shifts 6 times.

DEFINITION A2. TURING MACHINE COMPUTABLE FUNCTIONS. A function f is Turing machine (TM) computable if
there exists a Turing machine such that, whenever the TM is started in state 1 (= q0), scanning the leftmost of x + 1
consecutive 1s, the TM eventually halts scanning at the leftmost of f(x) + 1 consecutive 1s.

(d) An Example of a TM That Computes f(x) = 2
The 5-state, 2 symbol TM depicted in Figure A5 computes f(x) = 2 under the above definition (i.e., start in state 1, etc).

Example of a noncomputable function: cf. Chapter 7.

A2.3 Enumerability, Recursive Functions, and Sets: Some Denitions and
Theorems
Consider the following four functions which can be accepted, unambiguously, as intuitively computable in the sense
that it is easy to construct Turing machines to compute them:
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Fig. A4

(i) zero function: z(x) = 0, ∀ x ∈ N. This function assigns the same value, zero, to each natural number as
argument; i.e. z(0) = z(1) = z(2) = . . . = 0;

(ii) identity function: Id(x) = (x), ∀ x ∈ N. This function assigns to each natural number as argument its own value
as output; i.e., Id(0) = 0; Id(1) = 1; Id(2) = 2; . . . ;
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Fig. A5

(iii) successor function: S(x) = x + 1, ∀ x ∈ N;
(iv) projection function: , defined by projecting” the ith coordinate of a k-dimensioned domain as

DEFINITION A3: THE BASIC FUNCTIONS. The collection of intuitively computable functions given by (i)–(iv) are
the basic functions.

Next, consider the following two operations that are to be applied to given computable functions – again, in the sense
that it is easy to construct Turing machines to perform them.

(α) Composition of computable functions. If f and gi (i = 1, 2, . . . , m) are computable functions of m and n arguments,
respectively, then h is obtained by composition from f and gi (i = 1, 2, . . . , m) as follows:

(β) Primitive recursion of computable functions. Given the computable functions

the computable function Ψ: Nn → N is obtained from φ and θ by primitive recursion whenever

and
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DEFINITION A4: PRIMITIVE RECURSIVE FUNCTIONS. The set of primitive recursive functions are those that are
closed with respect to (finite applications of) composition and primitive recursion on the basic functions.

Unfortunately, this set does not exhaust the class of intuitively computable functions. The classic intuitively
computable function from N × N → N defined by Ackerman grows faster than any member of . Recall, from Chapter
7, that the construction of an intuitively uncomputable function used the same principle. Ackerman's famous function
is:

The same strategy as used for the Busy Beaver game can be used for the Ackerman function to show monstrous
growth rates.

Now, since Ackerman's function is intuitively computable, the class of primitive recursive functions will have to be
enlarged. On what basis can this enlargement be executed so that exactly the intuitively computable functions are
included in it? We have accepted that all the Turing machine computable functions are intuitively computable. Are
there, conversely, intuitively computable functions that are not Turing machine computable? Answers to these
questions are summarized, as mentioned in earlier sections and chapters, in the Church–Turing thesis. But to get to
that, a few more definitions and details are necessary.

DEFINITION A5: PARTIAL FUNCTION AND TOTAL FUNCTION. A function f: X → Y but where f may not be defined
on the entire domain X is called a partial function. Correspondingly, a total function is defined on its entire domain.

(γ)Minimalization of computable functions. The function h of n arguments is obtained by the following operation – called
minimalization – from the computable total function f of n + 1 arguments:

The qualifications “if any” and “for no y” introduce elements of effective undecidability to elementary
computability
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theory. We may keep on trying, in some definite order, different values of y until f(x1, . . . , xn, y) = 0. There is no
guarantee, except for trivial functions, that failure to find such a y after a billion or a trillion trials means that it will
not be found in the next, say, 18 attempts. The same ambiguity applies to the activity of locating “the smallest y”.
This operation of minimalization ties up recursive functions with the real activity of computation. A computer (i.
e. a Turing machine) may fail to terminate for some inputs; a function h may be undefined.

DEFINITION A6: PARTIAL RECURSIVE FUNCTIONS. The set of functions PRC that are closed with respect to the
(finitely applied) operations of composition, primitive recursion, and minimalization on the basic functions are the
partial recursive functions.

CHURCH–TURING THESIS. A partial function is computable if and only if a Turing machine can be constructed to
compute it.

Remark. This is a thesis and not a theorem. It is entirely possible that some future Alan Turing will find a way to tame
the monstrous growth rates inherent in a Busy Beaver game. There are distinguished recursion theorists, philosophers,
and mathematicians (Laszlo Kalmar, Ludwig Wittgenstein, and Steve Smale, respectively, come immediately to mind)
who feel that there is more to be said on these issues.

DEFINITION A7: RECURSIVE SETS. A set X ⊆ N of natural numbers is recursive if and only if there is a partial recursive
function φ such that ∀ n, n ∈ X if and only if φ(n) = 0.

DEFINITION A8: DECIDABLE SETS. A set is decidable if and only if there is an effective (i.e. computable) method to
characterize any member of the set.

Thus, since every partial recursive function is computable, every recursive set is decidable. In other words, there is an
effective method – an algorithm — to decide whether or not an arbitrary n is a member of X.

DEFINITION A9: RECURSIVELY ENUMERABLE SETS. A set X ⊆ N of natural numbers is recursively enumerable (r.e.) if
and only if it is either empty or describes the range of a partial recursive function.

There is an open-endedness in the definition of r.e. sets that is absent in the definition of recursive sets. The definition
of r.e. sets
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entails the existence of a partial recursive function (or, equivalently — by the Church–Turing thesis — a Turing
machine) which can systematically output members of such sets. Thus, the openendedness comes from the fact that an
arbitrary n ∈ n may not, say, till the billionth try be the output of a PRC; but it may well be the next output after the
billionth try. We can only keep on trying, without any guarantee of a definite answer.

Some elementary and immediate implications of the above three definitions can now be stated.

PROPOSITION A1. If a set is recursive, then its complement is also recursive.

PROPOSITION A2. A recursive set is also recursively enumerable. (In other words, a decidable set is listable
(enumerable).)

PROPOSITION A3. If a set and its complement are both recursively enumerable, then the two sets are also recursive.

THEOREM A.1: THE UNDECIDABILITY OF THE HALTING PROBLEM FOR TURING MACHINES. There is no algorithm
to decide whether or not any given Turing machine enters the terminal state for arbitrary input configurations on the
tape.

Remark. Any standard textbook on recursion theory will normally include a discussion of this theorem and, of course,
complete proofs. The reason for stating the theorem at this particular juncture is as follows. According to this theorem,
there is no effective method (i.e., again, there is no algorithm) to decide whether or not a Turing machine for an
arbitrary program card will enter its terminal state. An immediately relevant question will be: can it be decided whether
a Turing machine exhibits some particular input–output behavior? Armed with a knowledge of the undecidability of
the halting problem, it will not be surprising that the answer is in the negative. Rice's theorem summarizes the result.

THEOREM A2: RICE'S THEOREM. Denote by φi: N → N the partial recursive function computed by Turing machine
TM. If X ⊆ N is recursive, then there exists i, j such that i ∈ X and j ∈ N − X, and φi = φj.

In other words, there are distinguishable Turing machines, TMi and TMj, that compute the same partial recursive
functions. Thus, if Di is a decidable property possessed by TMi and not possessed by
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TMj, then it is not possible to tell which is which simply by observing their input–output behavior. Another, and more
succinct, way of stating the import of the theorem is as follows:

Any nontrivial input–output property of programs is undecidable.

This can be interpreted — exactly — to mean that only the properties of the empty set and the universal set are
effectively decidable. Now, Rice's theorem characterizes recursive sets. The natural extension of Rice's theorem would
be an analogous result for recursively enumerable sets. Such a result is encapsulated in the following theorem.

THEOREM A3: THE RICE–SHAPIRO THEOREM. Consider the set of partial recursive functions such that

Then, for any partial recursive function ψ,

Now, every finite input–output configuration defines a recursive set. Going, therefore, from Rice's theorem to
the Rice–Shapiro theorem would be akin to finding an extension of some finite input–output configuration to
define recursively enumerable sets. Thus, according to the Rice–Shapiro theorem, a class of partial recursive
functions is recursively enumerable if and only if each member of this class is defined by the extension of some
finite input–output configuration in a recursively enumerable set of such configurations.

A3 Partial Reections
[T]he importance of the concept of general recursiveness (or Turing's computability) . . . is largely due to the fact
that with this concept one has for the first time succeeded in giving an absolute definition of an interesting
epistemological notion, i.e., not one depending on the formalism chosen.
Gödel (1946/1965: 84)

Computability and randomness are the two basic epistemological notions I have used as building-blocks to define
computable economics. Both of these notions can be put to work to formalize
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economic theory in effective ways. However, they can be made to work only on the basis of two theses: the
Church–Turing thesis, and the Kolmogorov–Chaitin–Solomonoff thesis. Under these theses, we have definitions,
independent of any chosen formalism, for computability and randomness.

In this appendix I have given an outline of elementary aspects of computability theory. The building-blocks are simple,
intuitively acceptable, and easy to assemble into vast, elegant, and useful structures. A similar outline could be given for
the elementary parts of applied computability theory — i.e. algorithmic, computational, and diophantine complexity
theories. For reasons of space, I must, reluctantly, refrain from attempting such an outline in this work.
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